PERIODIC REVIEW REPORT

100 East Mineola Avenue

Valley Stream, New York

NYSDEC Site Number: V-00145-1

USEPA ID # NYD008923526

Prepared for:

Sid Harvey Industries

Garden City, New York

November 2019

Revised October 2020

Prepared By: Nicholas A. Andrianas, P.E.

28 Henry Street Kings Park, New York 11754 (631) 269-2680 (631) 269-2685 FAX

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	SITE OVERVIEW	3
3.0	EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND	
	PROTECTIVENESS	6
4.0	IC/EC PLAN COMPLIANCE REPORT	10
5.0	MONITORING PLAN COMPLIANCE REPORT	12
6.0	OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT	16
7.0	OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS	18

PROFESSIONAL ENGINEER'S CERTIFICATION

In accordance with NYSDEC DER-10, this Periodic Review Report is certified as follows:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the site is compliant with the environmental easement;*
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification
 are in accordance with the requirements of the site remedial program and generally accepted
 engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false

statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Nicholas A. Andrianas, PE am certifying as Remedial Party Designated Site Representative I have been authorized and designated by the remedial party to sign this certification for the site."

No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

Nicholas A. Andrianas, P.E.

REGISTERED PROFESSIONAL ENGINEER NUMBER: 063661

DATE: November 1, 2019

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the remedial program for the 100 East Mineola Avenue property located in Valley Stream, New York ("Site"). The Site was in the New York State (NYS) Voluntary Cleanup Program (VCP) Site No. V-00145-1, which is administered by New York State Department of Environmental Conservation (NYSDEC). This PRR was prepared in accordance with the NYSDEC approved Site Management Plan (SMP) requirements.

- A. Nature and Extent of Contamination Numerous site investigations were performed between 1998 and 2015. The results of the on-site investigation found that the soil, soil vapor and groundwater beneath the Site and offsite were contaminated by chlorinated solvents from on-site sources and by petroleum products from an off-site, up-gradient source. The groundwater flow direction was determined to be to the south-southwest. The approximate downgradient extent of VOCs in groundwater is East Hawthorne Avenue. The onsite and offsite investigations were completed in 2015. the results of the on-site and the off-site investigations are described in the "May 2015, Remedial Investigation Report."
- B. Effectiveness of the Remedial Program The enhanced anaerobic bioremediation system has reduced the concentrations of total chlorinated VOCs in groundwater, since the treatment chemicals were injected. The SSDS at 140 East Mineola Avenue meets the remedial objective and prevents soil vapor migration from the subsoil to indoor air. The onsite SVE system captures VOC vapors onsite and meets the remedial objective. The system removed approximately 4 lbs of total VOCs in soil vapor in 2019. The Institutional and Engineering Controls (ICs and ECs) were incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment and no changes are needed. An Environmental Easement granted to the NYSDEC, and recorded with the Nassau County Clerk, requires compliance with the NYSDEC approved Site Management Plan (SMP). The ECs and ICs are in place on the site.

- C. Compliance The the major elements of the SMP including the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan comply with the SMP requirements.
- D. Recommendations No changes to the SMP are needed. The annual frequency of PRR submittal should continue unchanged. The PRR will include the annual monitoring and O&M results/inspections.

2.0 Site Overview

The site is located at 100 East Mineola Avenue in Valley Stream, Nassau County, New York and is identified as Section 37 Block 75 and Lots 20-24, 25-30, 49-51 on the Valley Stream, Nassau County Tax Map. The site is an approximately 1 acre and is bounded by East Mineola Avenue to the north, East Valley Stream Boulevard, houses, and industrial building to the south, an industrial building and LIRR railroad to the east. The Site consists of an approximate 33,000 square feet building with paved surfaces and a parking area on the north side of the building. The Site is zoned industrial and is currently occupied by multiple tenants. Site occupants include a company that prepares floral arrangements and leases equipment for special events, a Budget Truck rental storage yard, and a Corvette automobile rebuild/storage shop. The site remediation systems and monitoring points are shown on attached figure.

The final selected remedy for the site includes the combined air sparge/ soil vapor extraction (AS/SVE) system, sub-slab depressurization system (SSDS) at the adjoining property, enhanced anaerobic biodegradation to treat groundwater and institutional controls. The NYSDEC issued an April 2016 Sid Harvey Facility Operable Unit 2: Saturated Soil and Groundwater decision document for the site to supplement the OU-1 remedy and the selected elements of the OU-1 and OU-2 remedies are summarized below:

- 1. **Air Sparge with Soil Vapor Extraction (AS/SVE)-** Continue operation of the air sparge system installed as an IRM for this operable unit and the OU1 soil vapor extraction system to address the contaminated soils and groundwater to a depth of about 60 feet below ground surface (bgs).
- 2. **Enhanced Bioremediation-** In-situ enhanced biodegradation was employed to treat VOCs in the areas below 60 feet bgs beyond the influence of the AS/SVE system.

The biological breakdown of contaminants through anaerobic reductive dechlorination is enhanced by multiple and mixed injections of electron donor products and other amendments that were injected into the subsurface to promote microbe growth via injection wells screened at multiple locations and depths.

- 3. **Cover System-** A site cover currently exists and is maintained to allow for industrial use of the site. Any site redevelopment will maintain the existing site cover, which consists either of the structures such as buildings, pavement, sidewalks or soil where the upper one foot of exposed surface soil meets the applicable soil cleanup objectives (SCOs) for industrial use. Any fill material brought to the site will meet the requirements for the identified site use as set forth in 6NYCRR part 375-6.7(d).
- **4. Institutional Control-** Imposition of an institutional control in the form of a deed restriction for the controlled property which addresses the following:
 - requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional controls in accordance with Part 375-1.8(h)(3);
 - allows the use and development of the controlled property for industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
 - restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or Nassau County DOH; and requires compliance with the Department approved Site Management Plan.

The Remedial Action Objectives (RAOs) for the Site as listed in the April 14, 2016 Decision Document are summarized as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

• Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

3.0 Evaluate Remedy Performance, Effectiveness, and Protectiveness

Groundwater

The groundwater remedy for the site at this time is enhanced anaerobic bioremediation. The air sparge remediation system is presently shut down to permit anaerobic bioremediation. The enhanced anaerobic, biological treatment remedy consisted of the January 2017 injection of Regenesis 3DMe, Bio-Dechlor Inoculum Plus and CRS solution at three rows of injection points at the northeast corner of the property. The treatment biological chemicals were injected at a total of 8 points. The NYSDEC approved remedy also includes injection of food grade molasses and Bio-Dechlor Inoculum Plus at wells PMW-3, MW-6I, and MW-12 on a monthly basis. The monthly treatment began in January 2017 and was completed in December 2017 for a total of 12 months.

Groundwater monitoring to track the performance of the enhanced bioremediation for this 2019 PRR was performed in December 2018 and the report was submitted to NYSDEC. A copy is enclosed. Prior to sampling, depth-to-groundwater measurements were taken at all wells. The sampling results for VOCs are presented in Table 1 of the enclosed report. The locations of the monitoring wells and groundwater flow direction are shown on Figure 1 of the report.

The December 2018 concentrations of chlorinated volatile organic compounds (CVOCs) at downgradient groundwater monitoring wells MW-12, MW-6I and MW-3I have significantly decreased at each well from the baseline, pre-remediation CVOC concentrations found in the round of sampling performed in August 2016. Hydrogen sulfide odors observed at each monitoring well during sample collection are indicative of the active anaerobic, microbiological treatment activity required for the degradation of the CVOCs.

The following VOCs were detected in samples MW-3I and DUP: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethene, and trichloroethene. The concentrations are less than the baseline, pre-remediation concentrations of CVOCs.

The following VOCs were detected in sample MW-6I: 2-butanone (MEK), and toluene. Butanone

is a common laboratory artifact. The toluene concentration is anomalous and historically has not been found in the samples collected at well MW-6I. No site related CVOCs of concern were found in well MW-6I sample.

The following VOCs were detected in sample MW-12: 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, ethyl benzene, m/p-xylenes, o-xylene, tetrachloroethene, trans-1,2-dichloroethene, trichloroethene, vinyl chloride, and 1,2-dichlorobenzene. The concentration of site related 1,1,1-trichlorethane has decreased to non-detect. The concentrations of CVOCs 1,1-dichloroethane, 1,1-dichloroethene and cis-1,2 dichloroethane, and tetrachloroethene have increased. The increase in CVOCs observed at well MW-12 will be reevaluated based on the December 2019 round of groundwater sampling and will be addressed in the 2020 PRR.

The enhanced bioremediation treatment has reduced the VOC concentrations. No changes to the enhanced bioremediation groundwater remedy are recommended. Monitoring should continue to track the VOC concentrations in groundwater.

SSDS

The SSDS at 140 East Mineola Avenue operates continuously 365 days per year. The SSDS meets the remedial objective. The annual sub-slab vapor and indoor air sampling was performed in March 2019 and the report is attached. The sampling results confirm that VOC concentrations meet the "No Further Action" criteria in the New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 with the SSD system in operation. The sub-slab and indoor air sampling results are presented in Tables 2 through 9 of the enclosed report.

The SSDS was inspected on March 5, 2019. The SSDS well SSD-1 was found to be operating at a flow rate of 52 cubic feet per minute (CFM), and SSDS well SSD-2 was found to be operating at a flow rate of 55 CFM. Vacuum measurements at wells SSD-1 and SSD-2 were 2.559 and 2.089 inches water column (wc), respectively. On October 21, 2019 the SSDS was inspected to confirm that the equipment is in good working order. The SSDS was operating normally. The sub-slab vacuum measurements confirm that the SSDS maintains the design vacuum response throughout

the building footprint to control vapor migration to indoor air. The vacuum contours are shown on Drawing 1 of the enclosed report. The SSDS sub-slab vacuum measurements, blower flowrates and vacuum measurements are summarized in Table 1 in the enclosed

No corrective actions to the SSDS were needed during this reporting period. The sampling and inspection reports are appended to this PRR.

SVE System

The onsite SVE runs 24 hours per day 365 days system captures soil vapor VOC vapors onsite and meets the remedial objective. The system consists of 7 SVE extraction wells, a 5 HP regenerative blower, a moisture knockout vessel and 2 parallel flow granular activated carbon vessels to remove VOCs from the air stream.

Vacuum and air flow rate are measured monthly to confirm that the system meets the remedial design criteria.

A round of SVE system soil vapor and VGAC air emission samples were collected in October 2019. A copy of the laboratory reports are appended to this PRR. The VOC concentrations in the exhaust air from the SVE stack were screened and compared to the NYSDEC Annual Guidance Concentrations (AGC) and Short term guidance concentrations (SGC) in accordance with the "NYSDEC DAR-1 Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212" The concentrations discharged from the SVE stack were modeled using "AERSCREEN", the NYSDEC screen-level air quality model in accordance with DAR-1. The VOC concentrations modeled in air are less than the DAR-1 Short-term (one-hour) and Annual Guideline Concentrations (AGCs & SGCs) and no emission control modifications are needed.

The 2019 SVE sampling results for VOCs will be compared to the 2020 sampling results to evaluate the mass of VOCs removed over time. The mass removal rate was calculated based on the October 2019 combined total VOC concentrations in the SVE manifold upstream of the VGAC treatment vessel. At the total VOC concentration in the exhaust of 509 ug/m3 and the flowrate of 224 CFM,

approximately 0.01 pounds of VOCs are removed per day by the SVE system.

Comparison of the 2019 mass removal rates to the 2020 sampling results will be provided in the 2020 PRR.

Sitewide Cap

A sitewide cap consisting of asphalt and concrete covered surfaces is part of the site remedy. The cap is good condition and prevents ingestion/direct contact with contaminated soil. No changes are required to the cap.

4.0 IC/EC Plan Compliance Report

<u>Institutional and Engineering Controls</u>

The institutional and engineering controls and the compliance status are summarized below:

- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Nassau County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department. The control is in place.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP. The monitoring is performed as required by the SMP. The results are included in this PRR.
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP. The data and information are reported as required by the SMP. The results are included in this PRR.
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP. No activities were performed that disturbed the material.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP. The monitoring is performed and the results are included in this PRR.
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP. The SVE and the SSDS equipment is inspected and maintained as required by the SMP. The inspection and maintenance logs are included with this PRR.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 6, and any potential impacts that are identified must be

monitored or mitigated. No buildings were developed in the area.

• Vegetable gardens and farming on the site are prohibited. No vegetable gardening or farming are performed at the site.

The deed restriction for the institutional controls is in place. A copy is appended to this report. The Institutional and Engineering Controls Certification Form is enclosed.

5.0 Monitoring Plan Compliance Report

The compliance status of each component of the site remedy is summarized in the tables below. No corrective actions or changes are recommended. No deficiencies were noted. The data obtained in compliance with the monitoring requirements are provided in the attached logs and confirm compliance with the remedial action objectives.

SVE System Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
SVE Blower	Flow Rate (CFM)	225 to 300 CFM	Monthly	Yes
SVE Blower	Vacuum (Inches Water Column)	45 to 100 IWC	Monthly	Yes
SVE Wells	Vacuum (Inches Water Column)	10 to 50 IWC	Monthly	Yes
SVE Wells	Flow Rate (CFM)	10 to 100 CFM	Annual	Yes
SVE Well Covers	Soundness	Soundness	Annual	Yes
KO Vessel	Capacity	0 to 35 gallons	Monthly	Yes

General	System	Soundness	Soundness	Monthly	Yes
Piping					
System Ef	fluent	Flow Rate (CFM)	10 to 100 CFM	Annual	Yes
VGAC Vessel	Carbon	VOC (PPM)	Below AGC	Semi-Annual	Yes

AS System Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
AS Compressor	Flow Rate	20-50 CFM	Monthly	See note 1
Deep	(CFM)			
AS Compressor	Pressure (PSI)	28-100 PSI	Monthly	See note 1
Deep				
AS Deep Wells	Flow Rate	10-25 CFM	Monthly	See note 1
	(CFM)			
AS Deep Wells	Pressure (PSI)	28-100 PSI	Monthly	See note 1
AS Compressor	Flow Rate	28-32 CFM	Monthly	See note 1
Shallow	(CFM)			
AS Compressor	Pressure (PSI)	16-22 PSI	Monthly	See note 1
Shallow				
AS Shallow Wells	Flow Rate	10-16 CFM	Monthly	See note 1
	(CFM)			

AS Shallow Wells	Pressure (PSI)	16-22 PSI	Monthly	See note 1
AS Well Covers	Soundness	Soundness	Annual	Yes
General Syst Piping	em Static Head (PSI)	26-28 PSI	Monthly	Yes

Note 1. Air sparge system shut down during groundwater enhanced anaerobic dechlorination treatment.

SSDS 140 East Mineola Avenue Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
SSDS Well-1	Vacuum (Inches Water Column)	2 to 3 IWC	Semi-Annual	Yes
SSDS Well-1	Flow Rate (CFM)	10 to 50 CFM	Semi-Annual	Yes
SSDS Well-2	Vacuum (Inches WC)	1.8 to 3 IWC	Semi-Annual	Yes
SSDS Well-2	Flow Rate (CFM)	10 to 80 CFM	Semi-Annual	Yes
Sub-Slab Vapor Implants	Soundness	Soundness	Semi-Annual	Yes
General System Piping	Soundness	Soundness	Semi-Annual	Yes

Remedial System Sampling Requirements Compliance

Sampling Location		Analytical F	arameters	\$	Schedule	In Compliance Yes/No
Document	VOCs (EPA Method 624)	TAL Metals (EPA Method 6010B)	pH (EPA Method 9040)	VOC (EPA Method TO-15)		
SSDS Well-1				X	Annual	Yes
SSDS Well-2				X	Annual	Yes
SSVI				X	Annual	Yes
Indoor Ambient Air				X	Annual	Yes
Outdoor Ambient Air				X	Annual	Yes
SVE-Wells				X	Annual	Yes
SVE VGAC				X	Semi- Annual	Yes (no sampling during COVID-19 shutdown)

6.0 Operation & Maintenance (O&M) Plan Compliance Report

The operation, maintenance and monitoring plan for the Site consists of groundwater monitoring to track the enhanced bioremediation remedy, SVE system operation, cap maintenance and SSDS operation at 140 East Mineola Ave. The facility complies with the operation, maintenance and monitoring programs. The components and compliance are summarized below. No corrective actions or changes are recommended. No deficiencies were noted.

Groundwater

The groundwater monitoring O&M requires annual inspections of the condition of the monitoring wells. The wells were inspected on June 3, 2018 and October 21, 2019. No corrective actions were required.

AS/SVE and SSDS

The SVE system is inspected at a minimum monthly and the reports for the period of June 21, 2019 and October 2019 are attached. The flow rate, vacuum measurements corrective actions and maintenance are included in the reports.

The requirements are summarized below and O&M results confirm compliance with the remedial system performance criteria. The O&M data are summarized in the enclosed system logs.

AS/SVE and SSDS Remedial System Minimum Operating Requirements

Remedial System Component	Parameter	Minimum Operating Range
SVE Blower	Flow Rate (CFM)	150 CFM
SVE Blower	Vacuum (Inches WC)	45 IWC
SVE Wells	Flow Rate (CFM)	10 CFM
SVE Wells	Vacuum (Inches WC)	10 IWC
VGAC-Carbon Units	Flow Rate (CFM)	10 CFM/Ft2

VGAC-Carbon Units	PID (PPM)	0.0 PPM
Shallow AS Well	Flow Rate (CFM)	10 CFM
SSDS Blower 1	Vacuum (Inches WC)	2.0 IWC
SSDS Blower 2	Vacuum (Inches WC)	2.0 IWC
SSDS Blower 1	Flow Rate (CFM)	10 CFM
SSDS Blower 2	Flow Rate (CFM)	10 CFM

SITE WIDE CAP

The cap was inspected on June 3, 2019 and October 21, 2019. The asphalt paved surface area was recently resealed by the property owner and the cracks were repaired, as needed. No additional maintenance was required. The inspection reports are appended to this PRR.

7.0 Overall PRR Conclusions and Recommendations

Compliance with the SMP

The SMP includes IC/EC, monitoring, and O&M. The compliance status for each component of the SMP is summarized below.

IC/EC

The institutional and engineering controls and the compliance status are summarized below:

- The use of groundwater underlying the property is prohibited.
- Groundwater, soil vapor and indoor monitoring were performed as defined in this SMP.
- Data and information pertinent to site management were reported at the frequency as defined in the SMP.
- No activities were performed that disturbed remaining contaminated material.
- Monitoring to assess the performance and effectiveness of the remedy was performed as defined in the SMP.
- Operation, maintenance, monitoring, inspection, and reporting of the SVE and the SSDS equipment was performed as required by the SMP.
- No buildings that required vapor intrusion analyses were developed in the area.
- No vegetable gardening or farming were performed at the site.

The deed restriction for the institutional controls is in place.

Monitoring

The SMP required monitoring for groundwater, the AS/SVE system and the SSDS was performed in compliance with the SMP. No corrective actions or changes are recommended. No deficiencies

were noted.

<u>O&M</u>

The SMP required O&M for groundwater, the AS/SVE system and the SSDS was performed compliance with the SMP. No corrective actions or changes are recommended. No deficiencies were noted.

Performance and Effectiveness of the Remedy

This PRR evaluation of the components of the SMP demonstrates that each component of the remedy meets the remedial objectives for the site. No changes are recommended.

Future PRR Submittals

Future PRR submittals should continue at the current frequency.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

O:4	. N.	V004.45	Site Details	Box	1
	e No.	V00145			
Sit	e Name Sic	l Harvey Industries Fac	ility		
City	e Address: ′ y/Town: Va unty: Nassau e Acreage:	ı Î	Zip Code: 11580		
Re	porting Perio	od: June 21, 2018 to Oct	ober 21, 2019		
Ŕ		C DO F FW	F	YES	NO NO
1.	Is the inform	mation above correct?	38	X	
	If NO, inclu	de handwritten above or	on a separate sheet.		W
2.		or all of the site property nendment during this Rep	been sold, subdivided, merged, or un porting Period?	ndergone a	X
3.		peen any change of use a RR 375-1.11(d))?	at the site during this Reporting Perio	od 🗆	X
4.		ederal, state, and/or loca e property during this Rep	I permits (e.g., building, discharge) boorting Period?	een issued	X
			s 2 thru 4, include documentation viously submitted with this certific		
5.	Is the site of	currently undergoing deve	elopment?		X
			3.5 8	Box	2
			2	YES	NO
6.	Is the curre	ent site use consistent wit	th the use(s) listed below?	X	
7.	Are all iCs/	ECs in place and function	ning as designed?	X	
	(F T		QUESTION 6 OR 7 IS NO, sign and IE REST OF THIS FORM. Otherwise		
A C	Corrective M	easures Work Plan must	t be submitted along with this form	to address these is	sues.
Sig	nature of Ow	ner, Remedial Party or De	esignated Representative	Date	

SITE NO. V00145

Box 3

Description of Institutional Controls

Parcel

Owner

Hassan Dharsi

Institutional Control

Ground Water Use Restriction Soil Management Plan Monitoring Plan Site Management Plan O&M Plan

Landuse Restriction
IC/EC Plan
Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

Box 4

Description of Engineering Controls

Parcel

Engineering Control

Vapor Mitigation
Cover System
Air Sparging/Soil Vapor Extraction
Monitoring Wells
Vapor Mitigation
Cover System
Air Sparging/Soil Vapor Extraction

Monitoring Wells

Periodic Review Report (PRR) Certification Statements

. Ic	ertify by checking "YES" below that: engineering practices, and the information presented is accurate and compete.			
	a) the Periodic Review report and all attachments were prepared under the creviewed by, the party making the certification;	YES direction of, X	NO and □	
or	b) to the best of my knowledge and belief, the work and conclusions describe his site has an IO/EC Plan (or equivalent as required in the Decision Document) are has control program and of Engineering control listed in Boxes 3 and/or 4, 1 certify by checking "YES" below lowing statements are true:	ed in this ce for each in nerally acc that all of t	ertification epited he	on ial
	(a) the Institutional Control and/or Engineering Control(s) employed at this s since the date that the Control was put in-place, or was last approved by the			
	(b) nothing has occurred that would impair the ability of such Control, to prot the environment;	ect public h	nealth ar	nd
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Continued maintenance of this Continued maintenance.			
	(d) nothing has occurred that would constitute a violation or failure to comply Site Management Plan for this Control; and	with the		
	(e) if a financial assurance mechanism is required by the oversight documer mechanism remains valid and sufficient for its intended purpose established			
		YES	NO	
		Х		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise contin			9
A Co	prrective Measures Work Plan must be submitted along with this form to address	ss these is:	sues.	
	ature of Owner, Remedial Party or Designated Representative Date	e		

IC CERTIFICATIONS **SITE NO. V00145**

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

NICHOLAS A. ANDRIANAS print name

at 28 HENRY STREET, KINGS PARK, NY 11754

print business address

am certifying as REMEDIALPARTY(Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative

Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

NICHOLAS A. ANDRIANAS at 28 HENRY STREET, KINGS PARK, NY 11754 print name print business address

am certifying as a Professional Engineer for the REMEDIAL PARTY

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

ed for PF)

Date

Nassau County Maureen OConnell **County Clerk** Mineola, NY 11501

Instrument Number: 2018- 00029353

D06 - AGREEMENT

Recorded On: April 03, 2018

Parties: 100 EAST PROPERTIES LLC

TO

Billable Pages: 10 Num Of Pages: 11

Comment:

Recorded By: RUSSELL TUMSUDEN

** Examined and Charged as Follows: **

D06 - AGREEMENT

Tax-Transfer

Blocks - Deeds - \$300 95.00

300.00

Tax Affidavit TP 584

5.00

Recording Charge:

400.00

Consideration

Amount

Amount RS#/CS#

Basic

0.00 Spec ASST

0.00

HEMPSTEAD

0.00 RE 18333

Local NY CITY

0.00 Spec ADDL SONYMA

0.00

Additional MTA

0.00 Transfer

0.00

Tax Charge:

0.00

0.00

Property Description:

e Section	Block	Lot	Unit	Town Name
37	75	20		HEMPSTEAD
37	75	21		HEMPSTEAD
37	75	22		HEMPSTEAD
37	75	23		HEMPSTEAD
37	75	24	4	HEMPSTEAD
37	75	25		HEMPSTEAD
37	75	26		HEMPSTEAD
37	75	27		HEMPSTEAD
37	75	28		HEMPSTEAD
37	75	29.	•	HEMPSTEAD
37	75	30		HEMPSTEAD
37	75	49		HEMPSTEAD
37	75	50		HEMPSTEAD
37	75	51		HEMPSTEAD

** THIS PAGE IS PART OF THE INSTRUMENT **

I hereby certify that the within and foregoing was recorded in the Clerk's Office For: Nassau County, NY

File Information:

Record and Return To:

Document Number: 2018-00029353

RUSSELL TUMSUDEN

Receipt Number: 1018831

SID HARVEY INDUSTRIES INC

Recorded Date/Time: April 03, 2018 02:32:18P

605 LOCUST ST

Book-Vol/Pg: Bk-D VI-13638 Pg-531

GARDEN CITY NY 11530

Cashier / Station: 0 AAR / NCCL-CCR1FP2

Marrier D'Connell County Clerk Maureen O'Connell

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 29 h day of March , 2018 between Owner(s) 100 East Properties LLC, having an office at 570 Washington Avenue, Plainview, New York 11803, County of Nassau, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 100 East Mineola Avenue in Valley Stream, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 37 Block 75 Lots 20-30 and 49-51, being the same as that property conveyed to Grantor by deed dated October 27, 2015 and recorded in the Nassau County Clerk's Office in Book of Deeds, Liber and Page 13282/20. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.8106 +/- acres, and is hereinafter more fully described in the Land Title Survey dated June 16, 2017 and last revised December 22, 2017 prepared by John J. Toscano, L.L.S. of Carman-Dunne, P.C., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Voluntary Cleanup Agreement Index Number: W1-0809-98-03, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Nassau County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

County: Nassau Site No: V00145 Voluntary Cleanup Agreement Index: W1-0809-98-03

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential, Restricted Residential or Commercial purposes as defined in 6NYCRR 375-1.8(g)(i), (ii) and (iii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: V00145

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

County: Nassau Site No: V00145 Voluntary Cleanup Agreement Index: W1-0809-98-03

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

100 East Properties LLC:
By:
Print Name: Hussemali Oharsi
Title: Officer Date: March 26th, 2018

Grantor's Acknowledgment

STATE OF NEW YORK)
COUNTY OF ASSAU) ss:
On the 26th day of MH, in the year 2014, before me, the undersigned,
personally appeared Hussian, plants, personally known to me or proved to me on the basis
of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within
instrument and acknowledged to me that he/she/they executed the same in his/her/their
capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the

personupon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

NOTARY PUBLIC STATE OF NEW YORK NASSAU COUNTY
LIC. #01MC6165404
COMM. EXP. 5 7 761 5

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By: Michael J. Ryan, Assistant Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)
) ss:
COUNTY OF ALBANY)

On the day of March, in the year 2018, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/executed the same in his/her/capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

Legal Description for 100 East Mineola Avenue, Valley Stream, NY

ALL that certain plot, piece or parcel of land, situate, lying and being in the Incorporated Village of Valley Stream, in the Town of Hempstead, County of Nassau and State of New York, known as and by the Lots Numbers 20 to 30 (both inclusive) and 49 to 51 (both inclusive), on a certain map entitled, "Map of property belonging to I. Lang and M. Stern, Valley Stream, L.I., New York, December, 1905, John S. Newman, C.E. and Surveyor, Woodmere, L.I.," and filed in the Nassau County Clerk's Office as Map Number 136, Case Number 1287, which said Lots, when taken together, are more particularly bounded and described as follows:

BEGINNING at the corner formed by the intersection of the southerly line of Mineola Avenue (E. Mineola Ave.) with the westerly line of the property belonging to the Hempstead Branch of the Long Island Railroad;

RUNNING THENCE westerly along the southerly line of Mineola Avenue and on a course, North 60 degrees 34 minutes 00 seconds West, 297.58 feet;

RUNNING THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey);

THENCE South 60 degrees 34 minutes 00 seconds East, 150.00 feet;

THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey) to the northerly side of E. Valley Stream Blvd. (New York Avenue);

THENCE on a course, South 60 degrees 34 minutes 00 seconds East, 55.50 feet (55.51 feet per survey) to the westerly line of the Hempstead Branch of the Long Island Railroad;

THENCE northeasterly along the westerly line of the Hempstead Branch of the Long Island Railroad on a course North 62 degrees 17 minutes 00 seconds East, 238.16 feet (238.07 feet per survey) to the point or space of BEGINNING.

Containing approximately 35,308 square feet or 0.8106 acres more or less.

Return to

Russell TumSuden

Sid Harvey Industries, Inc.

605 Locust Street

Garden City, NY 11530

NASSAU COUNTY CLERK

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 2.4. day of March, 2018 between Owner(s) 100 East Properties LLC, having an office at 570 Washington Avenue, Plainview, New York 11803, County of Nassau, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 100 East Mineola Avenue in Valley Stream, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 37 Block 75 Lots 20-30 and 49-51, being the same as that property conveyed to Grantor by deed dated October 27, 2015 and recorded in the Nassau County Clerk's Office in Book of Deeds, Liber and Page 13282/20. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.8106 +/- acres, and is hereinafter more fully described in the Land Title Survey dated June 16, 2017 and last revised December 22, 2017 prepared by John J. Toscano, L.L.S. of Carman-Dunne, P.C., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Voluntary Cleanup Agreement Index Number: W1-0809-98-03, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Nassau County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential, Restricted Residential or Commercial purposes as defined in 6NYCRR 375-1.8(g)(i), (ii) and (iii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: V00145

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

100 East Properties LLC:
Ву:
Print Name: Husseinali Oharsi
Title: Officer Date: March 26th, 2018
Grantor's Acknowledgment
STATE OF NEW YORK)
) ss:
COUNTY OF)
On the
person upon behalf of which the individual(s) acted, executed the instrument.
Notary Public - State of New York
LIC. #0165404 COMM EXP. COLOR

County: Nassau Site No: V00145 Voluntary Cleanup Agreement Index: W1-0809-98-03 THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner, By: Michael J. Ryan, Assistant Director Division of Environmental Remediation Grantee's Acknowledgment STATE OF NEW YORK) ss: COUNTY OF ALBANY On the _____ day of ____, in the year 20_, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

SCHEDULE "A" PROPERTY DESCRIPTION

Legal Description for 100 East Mineola Avenue, Valley Stream, NY

ALL that certain plot, piece or parcel of land, situate, lying and being in the Incorporated Village of Valley Stream, in the Town of Hempstead, County of Nassau and State of New York, known as and by the Lots Numbers 20 to 30 (both inclusive) and 49 to 51 (both inclusive), on a certain map entitled, "Map of property belonging to I. Lang and M. Stern, Valley Stream, L.I., New York, December, 1905, John S. Newman, C.E. and Surveyor, Woodmere, L.I.," and filed in the Nassau County Clerk's Office as Map Number 136, Case Number 1287, which said Lots, when taken together, are more particularly bounded and described as follows:

BEGINNING at the corner formed by the intersection of the southerly line of Mineola Avenue (E. Mineola Ave.) with the westerly line of the property belonging to the Hempstead Branch of the Long Island Railroad;

RUNNING THENCE westerly along the southerly line of Mineola Avenue and on a course, North 60 degrees 34 minutes 00 seconds West, 297.58 feet;

RUNNING THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey);

THENCE South 60 degrees 34 minutes 00 seconds East, 150.00 feet;

THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey) to the northerly side of E. Valley Stream Blvd. (New York Avenue);

THENCE on a course, South 60 degrees 34 minutes 00 seconds East, 55.50 feet (55.51 feet per survey) to the westerly line of the Hempstead Branch of the Long Island Railroad;

THENCE northeasterly along the westerly line of the Hempstead Branch of the Long Island Railroad on a course North 62 degrees 17 minutes 00 seconds East, 238.16 feet (238.07 feet per survey) to the point or space of BEGINNING.

Containing approximately 35,308 square feet or 0.8106 acres more or less.

ENVIRONMENTAL EASEMENT CHECKLIST/CERTIFICATION SITE No. V00145

The following requirements and attachments must be included as part of the submission to the Department for an Environmental Easement. Upon completion of the review, an attorney must sign the checklist indicating that they have fully completed the checklist. The Department will not accept submissions which have not been signed as being accurate and complete by both the Remedial Party and Attorney. Where the property owner is not the Remedial Party, the Department also requires the Owner to sign the checklist.

1) Special Circumstances

The last owner search was completed and the deed transfer is by Quit Claim or other
restricted transfer deed Yes No
The property in the Brownfield Cleanup Agreement includes lands under water ☐Yes ☑No
The property has multiple owners 🛮 Yes 💆 No
If you answered "Yes" to any of these items, contact the Department's Environmental Easement contact person for a determination as to whether further title work is

2) Verification of ownership of the property

- Submit documentation (such as a corporate resolution) that the signatory on the easement has authority to sign the Easement
- Ownership of the property matches the current deed.
- Verification reviewed and included for authority to sign Easement.
- Updated copies of legal organizational documents have been reviewed and are included. Examples of the appropriate documentation will include, for:
 - corporations: articles of incorporation, organizational agreements, minutes of annual meetings, resolutions, authorities for signature;
 - partnerships: a copy of the partnership agreement; verification that necessary parties are participating in the Easement;
 - trusts: trust agreement, affidavit of no change in the trust; and
 - estates: estate letters, powers of attorney.

3) Verification of Property Subject to Easement

- Description of the property for the Easement and DEC Agreement/Order/SAC matches description of property in the deed (Separate submittal must be included to explain to the satisfaction of the Department why there is any discrepancy).
- ☐ The Tax Map identifier (SBL) matches on all documents.

4) Survey Review

V	Survey includes metes and bounds description. Survey includes a graphic scale.
	Survey includes Tax Map Section, Block and Lot.
/	Survey includes physical address and is consistent with the DEC Agreement/Order/SAC.
Ø	The survey must bear the name, address, telephone number, signature and certification of the professional land surveyor who performed the survey, his or her official seal and registration number, the date the survey was completed, the dates of all of the surveyor's revisions.
<u> </u>	The survey boundaries must be drawn to a convenient scale, with that scale clearly indicated. A graphic scale, shown in feet and meters, must be included.
	The symbols and abbreviations that are used on the survey must be identified by the use of a legend.
<u>N</u>	Diagrams must be accurately presented. The point of beginning of the legal description must be shown.
	The legal description must be correct.
	The legal description must state the acreage.
	If the deed(s) description differs from the measured bearings/angles/distances, both must be indicated on the survey.
	The survey must show the location of all
	buildings/monuments/overlaps/encroachments upon the surveyed property with their locations defined by measurement perpendicular to the nearest perimeter boundaries.
	The survey must depict the location of visible improvements within five feet of each side of boundary lines.
Ø	The survey must show ponds, lakes, springs, rivers or a natural water boundary bordering on or running through the surveyed property; the survey must measure the location of the natural water boundary and note on the survey the date of the measurement.
	The survey must correctly depict the environmental easement area with corresponding metes & bounds description and acreage, and include the following sentence: "This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law. The engineering and institutional controls for this Easement are set forth in the Site Management Plan (SMP). A copy of the SMP must be obtained by any party with an interest in the property. The SMP can be obtained from NYS Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233 or at derweb@dec.ny.gov ". This reference must be located on the face of the survey and be in at least 15-point type.
	If the survey consists of more than one sheet, sheets must be numbered and the total number of sheets must be indicated on each sheet.

	In addition to county-specific requirements	submittal of the approved	I survey to th	ıe
_	Department must include the following:			

- A "D" sized copy (24" x 36") of the final signed, stamped map
- A 600 DPI scan of the final signed, stamped map
- An Autocad .dwg or exported .dxf file of the polyline (at a minimum) of the final survey

5) Submissions

The Environmental Easement Package being submitted to the Department includes the applicable documents set forth in Attachment A.

PLEASE READ THE FOLLOWING CAREFULLY

The Remedial Party and the Remedial Party's attorney understand and acknowledge that the New York State Department of Environmental Conservation will rely on each and every answer in this statement: (1) to determine whether the Easement Package can be reviewed in a timely fashion; and (2) to determine whether the Easement Package should be approved. The Remedial Party and the Remedial Party's attorney understand and acknowledge that any false statement or misrepresentation herein will constitute cause for the revocation of the Certificate of Completion issued in reliance on this checklist and accompanying documentation. The Remedial Party and the Remedial Party's attorney further acknowledge that the failure to provide the Department with valid and enforceable Environmental Easement on the property may be grounds for the Department to revoke any Certificate of Completion for the site.

Statement of Certification and Signatures

I have reviewed the information being submitted in relation to this Easement Package and this information, to the best of my knowledge and belief, is accurate and correct. I further acknowledge that the failure to provide the Department with valid and enforceable Environmental Easement on the property may be grounds for the Department to revoke any Certificate of Completion for the site.

1) By Remedial Party: I hereby affirm that info to the best of my know Department with valid grounds for the Depart	rledge and belief. I t and enforceable Er tment to revoke any	further acknowledge nvironmental Easem Certificate of Com	e that the failure to ent on the propert	provide the ty may be
Print Name:	umSuden, SVP of	Sid Harvey Indust	ries, Inc.	
2) By Remedial Party's I hereby affirm that I ar that I am authorized by prepared by me or und form and its attachmer	m the attorney for _ / that entity to make ler my supervision :	e this certification; the and direction; and t	nat this certification hat information pro	n was ovided on this
Date:	Signature:			
Print Name:		· · · · · · · · · · · · · · · · · · ·		
Attachment	•			

Statement of Certification and Signatures

I have reviewed the information being submitted in relation to this Easement Package and this information, to the best of my knowledge and belief, is accurate and correct. I further acknowledge that the failure to provide the Department with valid and enforceable Environmental Easement on the property may be grounds for the Department to revoke any Certificate of Completion for the site.

Attachment A

Documents required to be sent in hard copy with electronic formats copied to the Project Manager and Project Attorney for a complete Environmental Easement package:

- 1) Copy(ies) of current deed(s) and supporting title documentation (see Department Title Requirements).
- 2) Copy of tax map.
- 3) Proof of authority to obligate owner of property as set forth in "Verification of ownership of property" on the Easement checklist.
- 4) Legal description of the easement area, electronic copy to be in an electronic text format (i.e., MS Word or Rich Text Format).
- 5) One full-sized, signed Survey and an electronic Survey submitted as a fully rendered PDF (not scanned).
- 6) A draft Notice to Municipality, with appropriate site-specific provisions.
- 7) Easement Checklist with certification signed by Remedial Party and Remedial Party's attorney.
- 8) Signed transfer tax forms (TP-584 or ACRIS Forms).

Hard copy submission shall be sent to:

Bradford Burns, Esq.
New York State Department of Environmental Conservation
Office of General Counsel
625 Broadway
Albany, NY 12233-1500

· CLC-81535 N

Form 8002 - Bargain and Sale Deed, with Covenant against Grantor's Acts - Individual or Corporation

CONSULT YOUR LAWYER BEFORE SIGNING THIS INSTRUMENT-THIS INSTRUMENT SHOULD BE USED BY LAWYERS ONLY.

THIS INDENTURE, made the 27th day of October, 2015

BETWEEN L&L POSEDIAN REALTY LLC, with offices at 600 Old Country Road, Garden City, NY 11530, party of the first part, and

100 EAST PROPERTIES LLC, with offices at 570 Washington Avenue, Plainview, NY 11803, party of the second part,

WITNESSETH, that the party of the first part, in consideration of ten dollars and other good and valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever,

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the

See Schedule "A" annexed hereto and made a part hereof.

Said premises also known as and by 100 East Mineola Avenue, Valley Stream, NY.
13014 File 50 me premises described in Dead dates 5-72/2014 Rec. 6/6/14 (1841)3097 pg 404

TOGETHER with all right, title and interest, if any, of the party of the first part in and to any streets and roads abutting the above described premises to the center lines thereof; TOGETHER with the appurtenances and all the estate and rights of the party of the first part in and to said premises; TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part covenants that the party of the first part has not done or suffered anything whereby the said premises have been encumbered in any way whatever, except as aforesaid.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose. The word "party" shall be construed as if it read "parties" whenever the

THIS CONVEYANCE IS MADE IN THE REGULAR COURSE OF BUSINESS OF THE GRANTOR.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed the day and year first

L&L POSEDIAN REALTY LLC

hun kery wa MEMBER

Old Republic National Title Insurance Company

Title No.: CLC 81535N

SCHEDULE A

ALL that certain plot, piece or parcel of land, situate, lying and being in the Incorporated Village of Valley Stream, in the Town of Hempstead, County of Nassau and State of New York, known as and by the Lots Numbers 20 to 30 (both inclusive) and 49 to 51 (both inclusive), on a certain map entitled, "Map of property belonging to I. Lang and M. Stern, Valley Stream, L.I., New York, December, 1905, John S. Newman, C.E. and Surveyor, Woodmere, L.I.," and filed in the Nassau County Clerk's Office as Map Number 136, Case Number 1287, which said Lots, when taken together, are more particularly bounded and described as follows:

BEGINNING at the corner formed by the intersection of the southerly line of Mineola Avenue (E. Mineola Ave.) with the westerly line of the property belonging to the Hempstead Branch of the Long Island Railroad;

RUNNING THENCE westerly along the southerly line of Mineola Avenue and on a course, North 60 degrees 34 minutes 00 seconds West, 297.58 feet;

RUNNING THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey);

THENCE South 60 degrees 34 minutes 00 seconds East, 150.00 feet;

THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet per survey) to the northerly side of E. Valley Stream Blvd. (New York Avenue);

THENCE on a course, South 60 degrees 34 minutes 00 seconds East, 55.50 feet (55.51 feet per survey) to the westerly line of the Hempstead Branch of the Long Island Railroad;

THENCE northeasterly along the westerly line of the Hempstead Branch of the Long Island Railroad on a course North 62 degrees 17 minutes 00 seconds East, 238.16 feet (238.07 feet per survey) to the point or space of BEGINNING.

STATE OF NEW YORK, COUNTY OF NASSAU

On the 27th day of October, 2015, before me, the undersigned, personally appeared Joshun, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person on behalf of which the individual(s) acted, executed the

LAWRENCE P MONGELLI
Notary Public, State of New York
No. 61M0483261
Qualified in Queens County
Commission Expires Jan. 25, 2019

Bargain and Sale Deed with Covenant Against Grantor's Acts

TITLE NO. CLC&1535N C&C BOSEDIAN Realty LLC TO 100 EAST Properties LLC

SECTION 37
BLOCK 75
LOT 20-30,49,50961
COUNTY OR TOWN NASSAU

RETURN BY MAIL TO:
Thomas D. Benjeno, eva.
333 HempitenD NUNCE:
suite 203
Mn/VERNE, NY/1565

**** Electronically Filed Document ****

Instrument Number: 2015-22465

Recorded As:

EX-D01 - DEED

Recorded On:

November 06, 2015

Recorded At:

03:49:09 pm

Receipt Number:

36400

Number of Pages: 4

Processed By:

001 DMF

Book-VI/Pg:

Bk-D VI-13282 Pg-20

Total Rec Fee(s):

EX-TP-584 Affidavit Fee

\$4,245.00

** Examined and Charged as Follows **

01 - DEED

\$ 60.00 \$ 5.00

EX-Blocks

\$ 150,00

EX-RP5217 Commercial Fee

\$ 250.00

Tax-Transfer HEMPSTEAD

Tax Amount

Consid Amt RS#/CS# \$ 3780.00

\$ 945000,00 RE 7037

Basic

\$ 0.00

Local NY CITY

\$ 0.00

Additional MTA Spec ADDL SONYMA \$ 0.00

Spec ASST

\$ 0.00 \$ 0.00

Transfer

\$ 3780.00

Tax Charge:

\$ 3780,00

Property Information;

Section		ock Lot	Unit	Town Name		
**********	******	人名英马利 美国大学大学大学	*********	*************	**************************************	
37	75	20	HE	MPSTEAD		
37	75	21	HE	MPSTEAD		
37	75	22	HE	MPSTEAD		
37	75	23		MPSTEAD		
37	75	24		MPSTEAD		
37	75	25		MPSTEAD		
37	75	26	HE	MPSTEAD		
37	75	27	HE	MPSTEAD		
37	75	28	HE	MPSTEAD		
37	75	29		MPSTEAD		
37	75	30		MPSTEAD		
37	75	49	HE	MPSTEAD		

37	75	51	HE	MPSTEAD	File for the first transfer of the first tra	with the

************THIS PAGE IS PART OF THE INSTRUMENT **********

Any provision herein which restricts the Sale. Rental or use of the described REAL PROPERTY because of color or race is invalid and unenforceable under federal law.

County Clark Maurean O'Connell

EDWARD P. MANGANO County Executive

JAMES E. DAVIS Acting County Assessor

NASSAU COUNTY DEPARTMENT OF ASSESSMENT 240 Old Country Road Mincola, New York 11501 (516) 571-1500

Letter No: 15-130480

Dear Tracey Garger;

On 10/29/2015, I, James E. Davis, Nassau County Acting Assessor, hereby verify that the Legal Identification (Nassau County Tax Map Number) for this property is accurate and is identified on Nassau County Land and Tax Maps as:

Section: 37 Block: 075

Lot: 20

Condo:

Unit:

Pursuant to Section 6-33.0 of the Nassau County Administrative Code, this verification letter shall be presented for recording pursuant to Title A of Chapter 19 of this Code.

Sincerely Yours,

James E. Davis Nassau County Acting Assessor 240 Old Country Rd. Mineola, NY 11501

^{**} Please note, the County Assessor and County Clerk Databases are formatted differently and may have different place holders for section, block, and lats. Accordingly, please ensure your section, block and lot conform with the official record of the Nassau County Clerk.

EDWARD P. MANGANO County Executive

JAMES E. DAVIS
Acting County Assessor

NASSAU COUNTY
DEPARTMENT OF ASSESSMENT
240 Old Country Road
Mineola, New York 11501
(516) 571-1500

Letter No: 15-130530

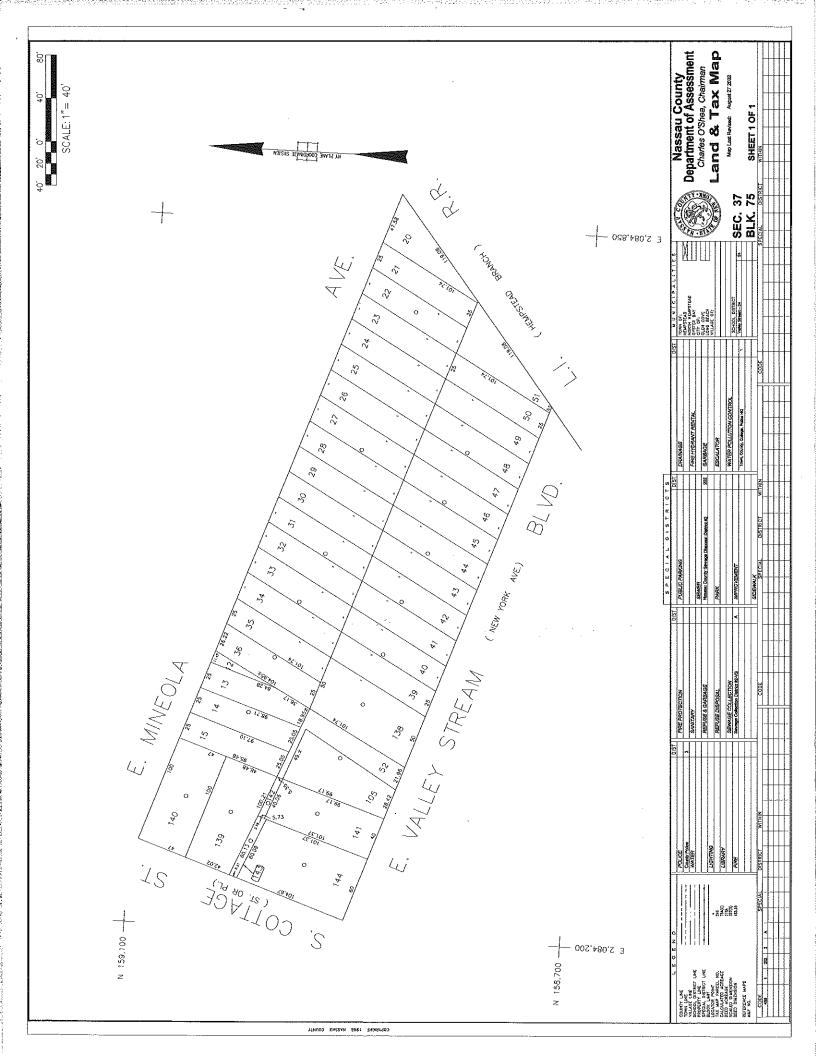
Dear Tracey Garger:

On 10/29/2015, I, James E. Davis, Nassau County Acting Assessor, hereby verify that the Legal Identification (Nassau County Tax Map Number) for this property is accurate and is identified on Nassau County Land and Tax Maps as:

Section: 37 Block: 075

Lot: 25

Condo:


Unit:

Pursuant to Section 6-33.0 of the Nassau County Administrative Code, this verification letter shall be presented for recording pursuant to Title A of Chapter 19 of this Code.

Sincerely Yours,

James E. Davis Nassau County Acting Assessor 240 Old Country Rd. Mineola, NY 11501

¹⁰ Please note, the County Assessor and County Cierk Databases are formatted differently and may have different place hubbers for section, block, and has. Accordingly, please custum your section, block and tot conform with the official record of the Nassau County Clerk.

MEMBER'S CERTIFICATE (100 East Properties LLC)

I, Hassan Dharsi, do hereby certify that I am the Managing Member of 100 East Properties LLC, a Limited Liability Company organized under the laws of the State of New York (the "Company"); that the following people are officers of the Company and are authorized to sign an Easement with the NYS Department of Environmental Conversation for the property at 100 Mineola Avenue, Valley Stream NY:

Managing Member - Hassan Dharsi

IN WITNESS WHEREOF, I have hereunto signed my name this 18th day of September 2017.

Of September 2017.

CHANCIAN STATEMENT TRICK

CATHERINE T. PICK

CATHERINE T. PICK

CATHERINE T. PICK

OATHERINE T. PICK

WY COMMISSION OF FEB 119

EXPRISES, 1984 11, 2019

SOUTH OF SEMENT STATEMENT STATEME

File: FILENAME * Lower \p * MERGEFORMAT i:\board of directors\secretary certificate-leases.doc

STATE OF NEW YORK

DEPARTMENT OF STATE

I hereby certify that the annexed copy has been compared with the original document in the custody of the Secretary of State and that the same is true copy of said original.

WITNESS my hand and official seal of the Department of State, at the City of Albany, on September 04, 2015.

Anthony Giardina

Executive Deputy Secretary of State

antiny Siedina

ARTICLES OF ORGANIZATION OF

100 east properties llc

Under Section 203 of the Limited Liability Company Law

FIRST: The name of the limited liability company is:

100 east properties llc

* *

SECOND: To engage in any lawful act or activity within the purposes for which limited liability

companies may be organized pursuant to Limited Liability Company Law provided that the limited liability company is not formed to engage in any act or activity requiring the consent or approval of any state official, department, board, agency, or other body without

such consent or approval first being obtained.

THIRD: The county, within this state, in which the office of the limited liability company is to be

located is NASSAU.

FOURTH: The Secretary of State is designated as agent of the limited liability company upon whom

process against it may be served. The address within or without this state to which the Secretary of State shall mail a copy of any process against the limited liability company

served upon him or her is:

hassan dharsi

570 washington ave

plainview, NY 11803

FIFTH: The limited liability company designates the following as its registered agent upon whom

process against it may be served within the State of New York is:

hassan dharsi

570 washington ave plainview, NY 11803

SIXTH: The limited liability company is to be managed by: ONE OR MORE MEMBERS.

SEVENTH: The existence of the limited liability company shall begin upon filing of these Articles of

Organization with the Department of State.

EIGHTH: The limited liability company shall defend, indemnify and hold harmless all members, managers, and former members and managers of the limited liability company against expenses (including attorney's fees, judgments, fines, and amounts paid in settlement) incurred in connection with any claims, causes of action, demands, damages, liabilities of the limited liability company, and any pending or threatened action, suit, or proceeding. Such indemnification shall be made to the fullest extent permitted by the laws of the State of New York, provided that such acts or omissions which gives rise to the cause of action or proceedings occurred while the Member or Manager was in performance of his or her duties for the limited liability company and was not as a result of his or her fraud, gross negligence, willful misconduct or a wrongful taking. The indemnification provided herein shall inure to the benefit of successors, assigns, heirs, executors, and the administrators of any such person.

I certify that I have read the above statements, I am authorized to sign these Articles of Organization, that the above statements are true and correct to the best of my knowledge and belief and that my signature typed below constitutes my signature.

hassan dharsi, member (signature)

hassan dharsi, ORGANIZER 570 washington ave plainview, NY 11803

Filed by: financial accounting services plc 730 w colonial dr orlando, FL 32804

NAC CONSULTANTS, INC.

28 Henry Street Kings Park, New York 11754 631-269-2680 Fax 631-269-2685

March 26, 2019

Mr. Robert D. DeCandia Jr., P.E. New York State Department of Environmental Conservation Remedial Bureau A, 12th Floor 625 Broadway Albany, New York 12233-7015

RE: Sid Harvey Industries, Inc.

SITE No. V-00145-1

December 2018 Annual Groundwater Sampling and Emerging Groundwater

Contaminant Sampling

Dear Mr. DeCandia,

On December 19, 2018 **NAC CONSULTANTS, INC.** (**NAC**) collected a round of groundwater samples at monitoring wells MW-6I, MW-3I, and MW-12. The wells were sampled as required by the New York State Department of Environmental Conservation (NYSDEC) approved "*May 2018 Site Management Plan*" (SMP) to track the effectiveness of the enhanced, anaerobic, biological groundwater remediation put into place at the site in 2017.

The enhanced anaerobic, biological treatment remedy consisted of the January 2017 injection of Regenesis 3DMe, Bio-Dechlor Inoculum Plus and CRS solution at three rows of injection points at the northeast corner of the property. The treatment biological chemicals were injected at a total of 8 points. The NYSDEC approved remedy also includes injection of food grade molasses and Bio-Dechlor Inoculum Plus at wells PMW-3, MW-6I, and MW-12 on a monthly basis. The monthly treatment began in January 2017 and was completed in December 2017 for a total of 12 months.

The groundwater samples were collected in accordance with the NYSDEC approved "December 2018 Sampling Procedures Groundwater for Emerging Contaminants1,4-Dioxane and per- and polyfluoroalkyl substances (PFAS), Former Sid Harvey Site". The samples were placed in laboratory prepared sample containers and shipped to Test America Laboratories, an ELAP certified laboratory located in Edison, New Jersey. The samples and a trip blank were analyzed for volatile organic compounds (VOCs) as required by the SMP, and for per- and poly-fluoroalkyl substances (PFAS), the emerging contaminants of concern. The laboratory data are enclosed.

Prior to sampling, depth-to-groundwater measurements were taken at all wells. The water level

Robert D. DeCandia Jr., P.E. March 26, 2019 Page 2

measurements are shown in Table 3. The monitoring well locations and groundwater flow direction are shown on Figure 1.

VOC Results

The sampling results for VOCs are presented in Table 1. The December 2018 concentrations of chlorinated volatile organic compounds (CVOCs) at groundwater monitoring wells MW-12, MW-6I and MW-3I have significantly decreased at each well from the baseline, pre-remediation CVOC concentrations found in the round of sampling conducted in August 2016. Hydrogen sulfide odors observed at each monitoring well during sample collection are indicative of the active anaerobic, microbiological treatment activity required for the degradation of the CVOCs.

The following VOCs were detected in samples MW-3I and DUP: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethene, and trichloroethene. The concentrations are less than the baseline, pre-remediation concentrations of CVOCs.

The following VOCs were detected in sample MW-6I: 2-butanone (MEK), and toluene. Butanone is a common laboratory artifact. The toluene concentration is anomalous and historically has not been found in the samples collected at well MW-6I. No site related CVOCs of concern were found in well MW-6I sample.

The following VOCs were detected in sample MW-12: 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, ethyl benzene, m/p-xylenes, o-xylene, tetrachloroethene, trans-1,2-dichloroethene, trichloroethene, vinyl chloride, and 1,2-dichlorobenzene. The concentration of site related 1,1,1-trichlorethane has decreased to non-detect. The concentrations of CVOCs 1,1-dichloroethane, 1,1-dichloroethene and cis-1,2 dichloroethane, and tetrachloroethene have increased.

The following VOCs were detected in the equipment rinse blank (ERB): acetone, m-xylene and p-xylene, and 1,4-dioxane.

During water level measurements at well MW-5 petroleum type odor was detected at the well head. A new petroleum impact in the region may be contributing to the increased concentration of petroleum related VOCs at wells MW-6I and MW-12.

Robert D. DeCandia Jr., P.E. March 26, 2019 Page 3

PFAS Results

The PFAS results are presented in Table 2. There are no standards for the PFAS. The following PFAS were detected in samples MW-3I and DUP: perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorohexanoic acid (PFHxA), perfluorobetanoic acid (PFOA), perfluorobetanesulfanic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS).

The following PFAS were detected in sample MW-6I: PFBA, PFHxA, PFHpA, and PFOA.

The following PFAS were detected in sample MW-12: PFBA, PFHxA, PFHpA, and PFOA.

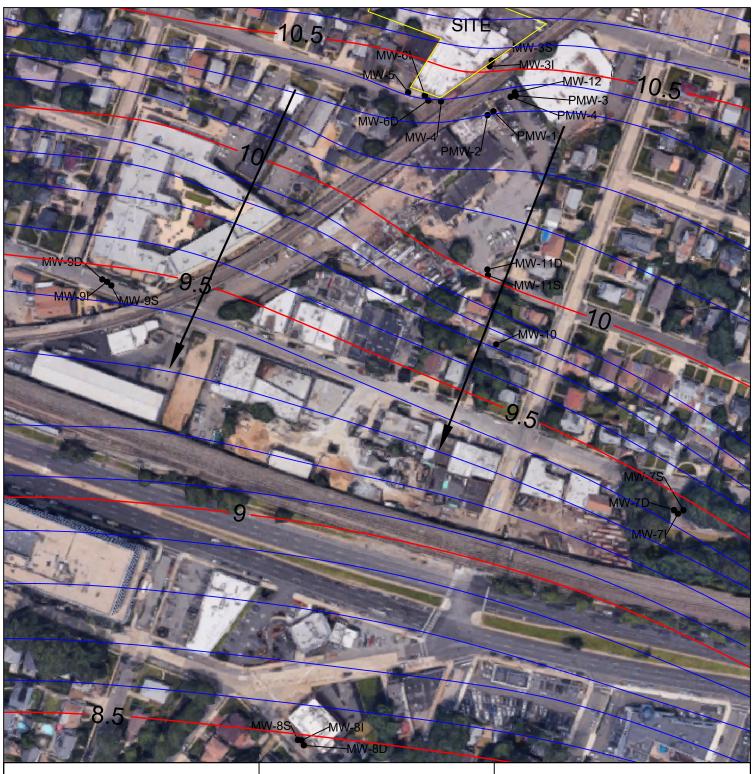
PFAS were not detected in the ERB sample.

PFAS are not known to be related to the former Sid Harvey site and are likely indicators of regional groundwater quality.

The December 2018 sampling results confirm that the NYSDEC approved treatment remedy for groundwater continues to reduce VOCs, as required to achieve the aquifer restoration remedial objective specified in the RAWP. The increase in CVOCs observed at well MW-12 will be reevaluated following the next round of groundwater sampling in December 2019 in accordance with the NYSDEC approved SMP.

If you have any questions, please feel free to contact me at (631) 269-2680 x100.

Sincerely,


NAC CONSULTANTS, INC.

Turkelin ahlan -

Nicholas A. Andrianas, P.E.

enc.

cc: R. TumSuden (Sid Harvey)

NAC CONSULANTS, INC. 28 Henry Street Kings Park, NY 11754

Drawn By: MRG Approved By: NAA

Figure 1

December 2018 Groundwater Flow Contour

2018 Annual Report 100 East Mineola Ave Valley Stream, NY

Legend:

Major Groundwater Contour LineMinor Groundwater Contour Line

Monitoring Well

Flow Direction

Sid Harvey Industries, Inc. Valley Stream, New York

Table 1
December 2018 Groundwater Sampling Results: RAWP Sampling Round

Well Identification	MW-3I		MW-12	MW-6I	Equipment Rinse Blank	Trip Blank	NYSDEC
Sample Identification	MW-3I	DUP	MW-12	MW-6I	ERB	TB	Groundwater
Sampling Date	12/19/2018				12/19/2018		Standards (ppb)
PARAMETER - µg/l	12/19/2010	12/19/2010	12/19/2018	12/19/2018	12/19/2010	12/19/2016	41 /
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	5.0 ²
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	5.0 ²
1,1,1-Trichloroethane	6.60	6.10	ND	ND	ND	ND	5.0 ²
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	5.0 ²
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	1.0
1,1-Dichloroethane	21.00	20.00	110.00	ND	ND	ND	5.0 ²
1,1-Dichloroethene	2.70	2.40	37.00	ND	ND	ND	5.0 ²
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	*
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	*
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	0.6
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	1.0
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	5.0 ²
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	5.0 ²
2-Butanone (MEK)	ND	ND	ND	5.00	ND	ND	50.0 ⁵
Acetone	ND	ND	ND	ND	8.00	10.00	50.0 ⁵
Benzene	ND	ND	ND	ND	ND	ND	1.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	5.0 ²
Bromodichloromethane	ND	ND	ND	ND	ND	ND	*
Bromoform	ND	ND	ND	ND	ND	ND	*
Bromomethane	ND	ND	ND	ND	ND	ND	5.0 ²
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	5.0
Chlorobenzene	ND	ND	ND	ND	ND	ND	5.0 ²
Chloroethane	ND	ND	ND	ND	ND	ND	5.0 ²
Chloroform	ND	ND	ND	ND	ND	ND	7.0
Chloromethane	ND	ND	ND	ND	ND	ND	* 3
cis-1,2-Dichloroethene	0.60	0.64	220.00	ND	ND	ND	5.0 ²
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.4 4
Dibromochloromethane	ND	ND	ND	ND	ND	ND	5.0 ²
Dibromomethane	ND	ND	ND	ND	ND	ND	5.0 ²
Ethyl Benzene	ND	ND	5.30	ND	ND	ND	5.0 ²
Isopropylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
m/p-Xylenes	ND	ND	12.00	ND	0.65	ND	5.0 ²
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	ND	ND	ND	10.0 5
Methylene Chloride	ND	ND	ND	ND	ND	ND	5.0 ²
o-Xylene	ND	ND	4.00	ND	ND	ND	5.0 ²
Styrene	ND	ND	ND	ND	ND	ND	5.0 ²
Tetrachloroethene	1.60	1.60	42.00	ND	ND	ND	5.0 ²
Toluene	ND	ND	ND	440.00	ND	ND	5.0 ²
trans-1,2-Dichloroethene	ND	ND	6.80	ND	ND	ND	5.0 ²
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.4 4
Trichloroethene	15.00	14.00	42.00	ND	ND	ND	5.0 ²
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	5.0 ²
Vinyl Chloride	ND	ND	1.20	ND	ND	ND	2.0

Notes:

ND- Not Detected

Sid Harvey Industries, Inc. Valley Stream, New York

Table 1 (continued) **December 2018 Groundwater Sampling Results: RAWP Sampling Round**

Well Identification	MW	7-3I	MW-12	MW-6I	Equipment Rinse Blank	Trip Blank	NYSDEC
Well Depth	MW-3I	DUP	MW-12	MW-6I	ERB	TB	Groundwater
Sampling Date	12/19/2018	12/19/2018	12/19/2018	12/19/2018	12/19/2018	12/19/2018	Standards (ppb)
PARAMETER - μg/l							
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	0.04
1,1,2-Trichlorotrifluoroethane	ND	ND	ND	ND	ND	ND	*
Chlorodifluoromethane	ND	ND	ND	ND	ND	ND	*
Methyl Isobutyl Ketone (MIBK)	ND	ND	ND	ND	ND	ND	*
Methylcyclohexane	ND	ND	ND	ND	ND	ND	*
p-Diethylbenzene	ND	ND	ND	ND	ND	ND	*
p-Ethyltoluene	ND	ND	ND	ND	ND	ND	*
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.5
Naphthalene	ND	ND	ND	ND	ND	ND	10.0 5
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	3.0
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	3.0
1,2-Dichlorobenzene	ND	ND	5.90	ND	ND	ND	3.0
Bromobenzene	ND	ND	ND	ND	ND	ND	5.0 ²
n-Propylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	5.0 ²
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	5.0 ²
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
n-Butylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	5.0 ²
Freon 113	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	5.0 ²
Carbon Disulfide	ND	ND	ND	ND	ND	ND	-
4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	5.0 ⁵
Total VOCs	47.50	44.74	486.20	445.00	8.65	10.00	

Notes: ND- Not Detected (D)- Dilution

Sid Harvey Industries, Inc. Valley Stream, New York

 $Table\ 2$ December 2018 Groundwater Sampling Results: Compared to previous Groundwater Sampling Results

Well Identification	MW-6I							MW-12							MW-3I						NYSDEC				
Sample Identification	MW-6I	MW-6I	DUP	MW-6I	MW-6I	DUP	MW-6I	DUP	MW-6I	MW-12	MW-12	MW-12	MW-12	MW-12	DUPA	MW-12	MW-3I	DUP	MW-3I	MW-3I	DUP	MW-3I	MW-3I	MW-3I	Groundwater
	12/19/2018		12/18/2017	8/31/2017	4/13/2017	4/13/2017	8/9/2016	8/9/2016		12/19/2018	12/18/2017	8/31/2017	4/13/2017				12/19/2018	12/18/2017	12/18/2017	8/31/2017	8/31/2017	4/13/2017		8/19/2014	Standards (ppb)
Sampling Date	12/19/2018	12/18/2017	12/18/2017	8/31/2017	4/13/2017	4/15/2017	8/9/2016	8/9/2016	8/19/2014	12/19/2018	12/18/2017	8/31/2017	4/13/2017	8/10/2016	8/10/2016	8/18/2014	12/19/2018	12/18/2017	12/18/2017	8/31/2017	8/31/2017	4/13/2017	8/9/2016	8/19/2014	41.7
PARAMETER - µg/l	ND	ND	ND	ND	ND	ND	NID	ND	NID	NID	NID	ND	MD	NID	NID	NID	NID	NID	MID	NID	ND	ND	ND	NID	5.0 ²
Dichlorodifluoromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 °
1,1,1,2-Tetrachloroethane	ND	ND ND	ND	1.20	1.90	1.90	11.00	13.10	41.5	ND	170.00	18.50	6.20	450.00	440.00	420	6.6	6.1	15	61.40	61.50	10.50	55.70	200	5.0°
1,1,2,2-Tetrachloroethane	ND	ND ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,1,2,2-1etrachioroethane 1,1,2-Trichloroethane	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	1.0
1,1-Dichloroethane	ND	3.50	4.10	5.60	8.80	8.70	5.80	6.00	18.2	110.00	13.70	1.50	0.93	22.80	22.60	11.7	21.0	20.0	27.5	38.30	36.80	29.10	73.70	70	5.0 ²
1.1-Dichloroethene	ND	1.20	1.40	1.80	2.90	2.90	2.10	1.20	6.9	37.00	10.10	ND	0.42	14.70	14.10	9.1	2.7	2.4	3.1	4.90	5.30	3.30	8.10	12.6	5.0 ²
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0
1.2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
1.2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
1,2-Dichloropropane	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	1.0
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
2.2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
2-Butanone (MEK)	5.00	200.00	170.00	95.60	78.60	78.90	ND	ND	ND	ND	ND	59.60	74.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50.0 s
Acetone	ND	ND	ND	ND	48.30	59.00	ND	ND	ND	ND	ND	ND	80.40	ND	ND	ND	ND	ND	2.2	ND	ND	ND	ND	ND	50.0 s
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND	ND	ND	1.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.0
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	* 3
cis-1,2-Dichloroethene	ND	ND	ND	1.40	2.10	2.20	ND	ND	ND	220.00	31.10	3.30	1.80	1.80	1.80	1.5	0.6	0.6	ND	0.91	0.92	6.30	1.40	3.5	5.0 ²
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 4
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Ethyl Benzene	ND	0.82	0.30	ND	ND	ND	ND	ND	ND	5.30	0.38	ND	ND	0.60	0.57	0.28	ND	ND	ND	0.25	0.26	ND	0.31	2.3	5.0 ²
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
m/p-Xylenes	ND	0.61	ND	ND	ND	ND	ND	ND	ND	12.00	ND	ND	ND	1.00	0.99	1.1	ND	ND	ND	0.51	0.51	ND	0.52	5.8	5.0 ²
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.0 ⁵
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.00	ND	ND	ND	0.37	0.31	0.58	ND	ND	ND	ND	ND	ND	ND	1.8	5.0 ²
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Tetrachloroethene	ND	ND	ND	ND	1.10	1.10	ND	ND	ND	42.00	0.48	0.48	0.60	140.00	130.00	150	1.6	1.6	1.40	1.10	1.10	1.20	3.10	2.7	5.0 ²
Toluene	440.00	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	1.20	1.20	ND	ND	ND	ND	1.00	1.10	ND	ND	8.1	5.0 ²
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.80	0.70	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 4
Trichloroethene	ND	1.20	1.30	1.20	5.30	5.40	6.40	6.90	11.0	42.00	ND	2.60	2.60	8.80	8.20	5.9	15.0	14.0	23.1	22.60	22.20	11.60	52.20	210.0	5.0 ²
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0

Notes: ND- Not Detected

Valley Stream, New York Table 2 (continued)
December 2018 Groundwater Sampling Results: Compared to August 2014 Groundwater Sampling Results

Well Identification					MW-6I								MW-12							MW-	-3I				NYSDEC
Well Depth	MW-6I	MW-6I	DUP	MW-6I	MW-6I	DUP	MW-6I	DUP	MW-6I	MW-12	MW-12	MW-12	MW-12	MW-12	DUPA	MW-12	MW-3I	DUP	MW-3I	MW-3I	DUP	MW-3I	MW-3I	MW-3I	Groundwater
Sampling Date	12/19/2018	12/18/2017	12/18/2017	8/31/2017	4/13/2017	4/13/2017	8/9/2016	8/9/2016	8/19/2014	12/19/2018	12/18/2017	8/31/2017	4/13/2017	8/10/2016	8/10/2016	8/18/2014	12/19/2018	12/18/2017	12/18/2017	8/31/2017	8/31/2017	4/13/2017	8/9/2016	8/19/2014	Standards (ppb)
PARAMETER - ug/l	12/17/2010	12/10/2017	12/10/2017	0/31/2017	4/13/2017	4/13/2017	0/2/2010	0/ 2/ 2010	0/12/2014	12/17/2010	12/10/2017	0/31/2017	4/13/2017	0/10/2010	0/10/2010	0/10/2014	12/17/2010	12/10/2017	12/10/2017	0/31/2017	0/31/2017	4/13/2017	0/7/2010	0/17/2014	***
1.2.3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1.1.2-Trichlorotrifluoroethane	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	3.90	4.00	4.0	ND ND	ND	ND	0.46	0.53	ND	0.66	37	*
Chlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
Methyl Isobutyl Ketone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	*
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95	0.85	1.5	ND	0.25	0.25	0.52	0.54	ND	0.74	1.7	*
p-Diethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
p-Ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
1.2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
Nanhthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.0 5
1.3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	0.22	ND	ND	ND	5.90	ND	ND	ND	1.90	1.70	2.8	ND	ND	ND	ND	ND	ND	0.41	0.8	3.0
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Freon 113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
1,2,4,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ²
Carbon Disulfide	ND	ND	ND	ND	ND	1.00	ND	ND	ND	ND	ND	1.50	0.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0 ⁵
Total VOCs	445.00	207.33	177.10	106.80	149.00	161.32	25.30	27.20	78.70	486.20	225.76	87.48	168.04	648.02	626.32	608.46	47.50	44.74	72.95	131.95	130.76	62.00	196.84	523.04	
PARAMETER - µg/l																									
Iron		16,200	16,100	15,800	77,300	75,200	9,100	9,020	-		25,100	28,500	56,200	1,110	1,050	-	-		2,430.00	1,910	1,800	10,200	1,990		-
Manganese	-	795	793	809	2,440	2,430	456	453	-	-	246	314	518	401	381	-	-	-	719.00	705	697	834	822	-	-
PARAMETER - mg/l																									
Nitrate	•	0.065	0.120	ND	0.094	0.094	ND To no	ND	-	-	36.00	0.35	0.83	3.60	3.60	-	-	•	2.70	2.30	2.30	1.30	0.70	-	-
Sulfate TOC		88.30 910.000	82.40 868.000	334 (D) 1440 (D)	167 (D) 2,290 (D)	168 (D)	50.80 0.969	50.20 0.833	-		136.00 778.000	317 (D) 1060 (D)	104 (D)	42.70	42.90 0.947	-	-		79.50	56.7 (D) 1.000	56.5 (D) 0.900	54.6 (D) ND	56.70 1.200	-	
100		710.000	000.000	1440 (D)	2,270 (D)	2,210 (D)	0.709	0.033			770.000	1000 (D)	200	0.939	0.947		•	-	1.200	1.000	0.900	ND	1.200	-	-

Notes: ND- Not Detected

NAC CONSULTANTS, INC.

28 HENRY STREET KINGS PARK, NEW YORK 11754

PHONE: (631) 269-2680 FAX: (631) 269-2685

Table 3: December 17, 2018 Groudwater Levels

	Depth to Water	Depth to Bottom	
Well Identification	(Feet Below Grade)	(Feet Below Grade)	<u>Notes</u>
MW-1	UTA	-	
MW-2	7.81	20.20	
MW-3S	8.84	20.21	
MW-3I	8.92	82.35	
MW-4	8.48	19.30	
MW-5	8.65	18.80	
MW-6I	8.46	89.81	
MW-6D	UTA	>100	
MW-7S	8.41	61.40	
MW-7I	8.38	89.86	
MW-7D	9.95	>100	
MW-8S	7.61	27.25	
MW-8I	7.62	89.40	
MW-8D	8.20	>100	
MW-9S	9.72	30.15	
MW-9I	9.64	84.20	
MW-9D	10.13	>100	
MW-10	7.63	78.15	
MW-11S	5.12	34.95	
MW-11D	UTA	-	
MW-12	8.15	81.65	
PMW-1	UTA	-	
PMW-2	7.92	14.96	
PMW-3	7.86	35.50	
PMW-4	7.77	50.50	

Project: **Annual Sampling** Site: Well Idetificatic MW-3I Date: Sid Harvey 12/19/2018 82.35' BG Well Diameter: 2" PVC Well Depth: Screen Legth: 10' Casing Type: Bladder Pump Tubing Type: Sampling Device: HDPE Water Level: 8.92' BG

Additional Information: Sample Collected 11:30

Sampling Personnel: James Urbat and Madelyn Grun

Time	Conductivity (ms/cm)	pH (S.U.)	TDS (g/l)	DO (mg/l)	ORP (mV)	Tempeture (°C)	Turbidity (NTUs)
<u>- 111116</u>	3%	+/- 0.1 S.U.	-	10%	+/- 10 mV	3%	10%
	5/.	,		2011	, 20	371	2071
10:35	0.024	5.13	0.016	3.26	-220	12.32	16.1
10:40	0.025	5.11	0.017	3.13	-228	12.36	19.5
10:45	0.034	4.92	0.026	3.03	-246	12.26	83.2
10:50	0.200	4.47	0.135	0.91	-265	12.21	339
10:55	0.259	4.40	0.170	0.17	-259	12.24	383
11:00	0.272	4.39	0.177	0.00	-253	12.20	344
11:05	0.272	4.39	0.179	0.00	-251	12.14	268
11:10	0.275	4.23	0.179	0.00	-258	12.12	254
11:15	0.275	4.24	0.179	0.00	-256	12.17	235
11:20	0.276	4.23	0.180	0.00	-256	12.17	235

Project:	Annual Sampling	Site:	Sid Harvey	Well Idetificatic MW-6I	Date:	12/19/2018
Well Depth:	89.81' BG	Screen Legth:	20'	Well Diameter: 2"	Casing Type:	PVC
Sampling Devi	ce: Bladder Pum	р	Tubing Type:	HDPE	Water Level:	8.15' BG
Additional Info	rmation:	Sample collect	ed 15:00			

Sampling Personnel: James Urbat and Madelyn Grun

						<u>Tempeture</u>	<u>Turbidity</u>
<u>Time</u>	Conductivity (ms/cm)	рН (S.U. <u>)</u>	TDS (g/l)	<u>DO (mg/l)</u>	ORP (mV)	<u>(°C)</u>	<u>(NTUs)</u>
-	3%	+/- 0.1 S.U.	-	10%	+/- 10 mV	3%	10%
14:25	0.256	5.08	0.167	0.00	-201	12.92	59.6
14:30	0.256	5.09	0.166	0.00	-201	12.96	54.0
14:35	0.256	5.04	0.166	0.00	-203	12.94	66.7
14:40	0.255	5.07	0.166	0.00	-204	12.96	67.9
14:45	0.256	5.04	0.167	0.00	-203	12.92	65.3
14:50	0.256	5.06	0.166	0.00	-205	12.94	62.4
14:55	0.256	5.08	0.166	0.00	-207	12.92	63.4

Project:	Annual Sampli	n Site:	Sid Harvey	Well Idetificatic MW-12	Date:	12/19/2018
Well Depth:	81.65' BG	Screen Legth:	20'	Well Diameter: 2"	Casing Type:	PVC
Sampling Device:	Bladder Pump	_	Tubing Type:	HDPE	Water Level:	8.15' BG
Additional Informati	on:	Samples collec	ted at 13:30			

Sampling Personnel: James Urbat and Madelyn Grun

						<u>Tempeture</u>	<u>Turbidity</u>
<u>Time</u>	Conductivity (ms/cm)	рН (S.U. <u>)</u>	TDS (g/l)	<u>DO (mg/l)</u>	ORP (mV)	<u>(°C)</u>	<u>(NTUs)</u>
-	3%	+/- 0.1 S.U.	-	10%	+/- 10 mV	3%	10%
12:45	0.253	4.12	0.169	0.00	-123	12.01	44.6
12:50	0.303	4.98	0.197	0.00	-182	11.98	62.1
12:55	0.312	5.09	0.203	0.00	-190	12.04	62.5
13:00	0.315	5.16	0.205	0.00	-198	12.02	69.5
13:05	0.319	5.27	0.209	0.00	-206	12.06	96.6
13:10	0.342	5.30	0.221	0.00	-206	12.03	116.0
13:15	0.365	5.36	0.238	0.00	-209	12.07	170.0
13:20	0.367	5.46	0.238	0.00	-216	12.07	174.0
13:25	0.368	5.44	0.240	0.00	-213	12.05	171.0

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

TestAmerica Job ID: 460-172026-2 Client Project/Site: Sid Harvey

For:

NAC Consultants Inc. 28 Henry Street Kings Park, New York 11754

Attn: Mr. James Urbat

Authorized for release by: 1/11/2019 12:18:17 PM

Jill Miller, Senior Project Manager (484)685-0871

iill.miller@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	18

3

4

9

Definitions/Glossary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Qualifiers

LCMS

Qualifier	Qualifier Description
U	Analyzed for but not detected.
*	Isotope Dilution analyte is outside acceptance limits.
J	Indicates an estimated value.
В	The analyte was found in an associated blank, as well as in the sample.
	,

Glossary

ML

NC

ND

PQL

QC

RER

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

RPD Relative Percent Difference, a measure of the relative difference between two points TEF

Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

Case Narrative

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Job ID: 460-172026-2

Laboratory: TestAmerica Edison

Narrative

Job Narrative 460-172026-2

Comments

No additional comments.

Receipt

The samples were received on 12/20/2018 9:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

LCMS

Method(s) 537 (modified): Results for samples MW-6I (460-172026-2) and MW-12 (460-172026-3) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) 537 (modified): M2-6:2 FTS Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for the following samples: MW-3I (460-172026-1), MW-3I (460-172026-1[MS]), MW-12 (460-172026-3) and ERB (460-172026-5). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method(s) 537 (modified): 13C8 FOSA Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: ERB (460-172026-5). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). All detection limits are below the lower calibration.

Method(s) 537 (modified): Results for sample ERB (460-172026-5) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) 537 (modified): 13C2 PFDoA Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: ERB (460-172026-5). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). All detection limits are below the lower calibration. Part of the reason for the reduced recovery may be due to an early retention time drift caused by non-target interferences. As a result, the peak is eluting so early that the first ~20% of the peak is eluting prior to the peak being acquired. Since there is no detectable level of Perfluorododecanoic acid (PFDoA), the analyst decided not to dilute the sample any more than this 10-fold analysis, which may have provided a better IDA recovery, but would have increased the target compound's reporting limit.

Method(s) 537 (modified): The continuing calibration verification (CCV) associated with batch 200-138989 recovered above the upper control limit for M2-6:2 FTS. The analysis of the samples associated with this CCV have resulted in this IDA response increasing, likely due to presence of non-target interferences. The following sample is impacted: (CCV 200-138989/15).

Method(s) 537 (modified): The continuing calibration verification (CCV) associated with batch 200-138946 recovered above the upper control limit for 13C3 PFBS. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: (CCV 200-138946/11).

Method(s) 537 (modified): The method blank for preparation batch 200-138726 and analytical batch 200-138864 contained Perfluorooctanoic acid (PFOA) and Perfluoroundecanoic acid (PFUnA) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

0

6

Q

9

10

Client: NAC Consultants Inc. Project/Site: Sid Harvey

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

13C3 PFBS

TestAmerica Job ID: 460-172026-2

Lab Sample ID: 460-172026-1

Matrix: Water

Client Sample ID: MW-3I Date Collected: 12/19/18 11:30 Date Received: 12/20/18 21:00

Method: 537 (modified) - Fluo Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.95		1.94	0.40	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluoropentanoic acid (PFPeA)	6.46		1.94	0.73	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorohexanoic acid (PFHxA)	8.34		1.94	0.23	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluoroheptanoic acid (PFHpA)	9.95		1.94	0.31	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorooctanoic acid (PFOA)	25.8	В	1.94	0.31	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorononanoic acid (PFNA)	1.94	U	1.94	0.37	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorodecanoic acid (PFDA)	1.94	U	1.94	0.37	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluoroundecanoic acid (PFUnA)	1.94	U	1.94	0.24	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorododecanoic acid (PFDoA)	1.94	U	1.94	0.34	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorotridecanoic acid (PFTriA)	1.94	U	1.94	0.23	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorotetradecanoic acid (PFTeA)	1.94	U	1.94	0.44	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorobutanesulfonic acid (PFBS)	0.70	J	1.94	0.43	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorohexanesulfonic acid (PFHxS)	5.22		1.94	0.25	ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.88	J	1.94		ng/L			01/08/19 08:50	1
Perfluorooctanesulfonic acid (PFOS)	5.14		1.94		ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorodecanesulfonic acid (PFDS)	1.94	U	1.94		ng/L		01/02/19 13:45	01/08/19 08:50	1
Perfluorooctanesulfonamide (PFOSA)	1.94	U	1.94	0.54	ng/L		01/02/19 13:45	01/08/19 08:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	19.4		19.4		ng/L			01/08/19 08:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	19.4	U	19.4		ng/L			01/08/19 08:50	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	19.4	U	19.4		ng/L		01/02/19 13:45	01/08/19 08:50	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	19.4	U	19.4	0.54	ng/L		01/02/19 13:45	01/08/19 08:50	1
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	103		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C4 PFHpA	61		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C4 PFOA	76		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C4 PFOS	94		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C5 PFNA	66		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C4 PFBA	35		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C2 PFHxA	53		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C2 PFDA	70		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C2 PFUnA	70		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C2 PFDoA	63		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C8 FOSA	48		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C5 PFPeA	56		25 - 150				01/02/19 13:45	01/08/19 08:50	1
13C2 PFTeDA	53		25 - 150				01/02/19 13:45	01/08/19 08:50	1
d3-NMeFOSAA	50		25 - 150					01/08/19 08:50	1

01/02/19 13:45 01/08/19 08:50

01/02/19 13:45 01/08/19 08:50

01/02/19 13:45 01/08/19 08:50

01/02/19 13:45 01/08/19 08:50

25 - 150

25 - 150

25 - 150

25 - 150

58

191 *

87

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Lab Sample ID: 460-172026-2

Matrix: Water

Client Sample ID: MW-6l Date Collected: 12/19/18 15:00 Date Received: 12/20/18 21:00

Method: 537 (modified) - Fluor Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	54.4		18.0	3.69	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluoropentanoic acid (PFPeA)	18.0	U	18.0	6.74	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorohexanoic acid (PFHxA)	4.17	J	18.0	2.16	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluoroheptanoic acid (PFHpA)	4.30	J	18.0	2.88	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorooctanoic acid (PFOA)	5.85	JB	18.0	2.88	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorononanoic acid (PFNA)	18.0	U	18.0	3.42	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorodecanoic acid (PFDA)	18.0	U	18.0	3.42	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluoroundecanoic acid (PFUnA)	18.0	U	18.0	2.25	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorododecanoic acid (PFDoA)	18.0	U	18.0	3.15	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorotridecanoic acid (PFTriA)	18.0	U	18.0	2.16	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorotetradecanoic acid (PFTeA)	18.0	U	18.0	4.05	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorobutanesulfonic acid (PFBS)	18.0	U	18.0	3.96	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorohexanesulfonic acid (PFHxS)	18.0	U	18.0	2.34	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluoroheptanesulfonic Acid (PFHpS)	18.0	U	18.0	7.37	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorooctanesulfonic acid (PFOS)	18.0	U	18.0	6.83	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorodecanesulfonic acid (PFDS)	18.0	U	18.0	4.77	ng/L		01/02/19 13:45	01/08/19 09:38	10
Perfluorooctanesulfonamide (PFOSA)	18.0	U	18.0	5.04	ng/L		01/02/19 13:45	01/08/19 09:38	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	180	U	180	4.05	ng/L		01/02/19 13:45	01/08/19 09:38	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	180	U	180	6.29	ng/L		01/02/19 13:45	01/08/19 09:38	10
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	180	U	180	8.99	ng/L		01/02/19 13:45	01/08/19 09:38	10
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	180	U	180	5.04	ng/L		01/02/19 13:45	01/08/19 09:38	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	106		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C4 PFHpA	88		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C4 PFOA	91		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C4 PFOS	102		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C5 PFNA	93		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C4 PFBA	69		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C2 PFHxA	78		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C2 PFDA	84		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C2 PFUnA	92		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C2 PFDoA	56		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C8 FOSA	59		25 - 150				01/02/19 13:45	01/08/19 09:38	10
13C5 PFPeA	80		25 - 150					01/08/19 09:38	10
13C2 PFTeDA	26		25 - 150				01/02/19 13:45	01/08/19 09:38	10
d3-NMeFOSAA	67		25 - 150				01/02/19 13:45	01/08/19 09:38	10
d5-NEtFOSAA	70		25 - 150				01/02/19 13:45	01/08/19 09:38	10
M2-6:2 FTS	109		25 - 150					01/08/19 09:38	10
M2-8:2 FTS	106		25 - 150					01/08/19 09:38	10

1/11/2019

3

5

8

9

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Client Sample ID: MW-12 Date Collected: 12/19/18 13:30 Date Received: 12/20/18 21:00

TestAmerica Job ID: 460-172026-2

Lab Sample	ID:	460-172026-3
		Matrix: Water

Method: 537 (modified) - Fluor Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	188	- Qualifier	16.6		ng/L		•	01/08/19 09:54	10
Perfluoropentanoic acid (PFPeA)	16.6	П	16.6		ng/L			01/08/19 09:54	10
Perfluorohexanoic acid (PFHxA)	4.29		16.6		ng/L			01/08/19 09:54	10
					J				
Perfluoroheptanoic acid (PFHpA)	7.27		16.6		ng/L			01/08/19 09:54	10
Perfluorooctanoic acid (PFOA)	17.3		16.6		ng/L			01/08/19 09:54	10
Perfluorononanoic acid (PFNA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluorodecanoic acid (PFDA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluoroundecanoic acid (PFUnA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluorododecanoic acid (PFDoA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluorotridecanoic acid (PFTriA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluorotetradecanoic acid (PFTeA)	16.6		16.6		ng/L			01/08/19 09:54	10
Perfluorobutanesulfonic acid (PFBS)	16.6	U	16.6		ng/L		01/02/19 13:45	01/08/19 09:54	10
Perfluorohexanesulfonic acid (PFHxS)	16.6		16.6		ng/L		01/02/19 13:45	01/08/19 09:54	10
Perfluoroheptanesulfonic Acid (PFHpS)	16.6	U	16.6		ng/L		01/02/19 13:45	01/08/19 09:54	10
Perfluorooctanesulfonic acid (PFOS)	16.6	U	16.6	6.31	ng/L		01/02/19 13:45	01/08/19 09:54	10
Perfluorodecanesulfonic acid (PFDS)	16.6	U	16.6	4.40	ng/L		01/02/19 13:45	01/08/19 09:54	10
Perfluorooctanesulfonamide (PFOSA)	16.6	U	16.6	4.65	ng/L		01/02/19 13:45	01/08/19 09:54	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	166	U	166	3.73	ng/L		01/02/19 13:45	01/08/19 09:54	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	166	U	166	5.81	ng/L		01/02/19 13:45	01/08/19 09:54	10
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	166	U	166	8.30	ng/L		01/02/19 13:45	01/08/19 09:54	10
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	166	U	166	4.65	ng/L		01/02/19 13:45	01/08/19 09:54	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	85		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C4 PFHpA	78		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C4 PFOA	94		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C4 PFOS	83		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C5 PFNA	91		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C4 PFBA	50		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C2 PFHxA	79		25 - 150					01/08/19 09:54	10
13C2 PFDA	85		25 - 150				01/02/19 13:45	01/08/19 09:54	10
13C2 PFUnA	74		25 ₋ 150					01/08/19 09:54	10
13C2 PFDoA	57		25 ₋ 150					01/08/19 09:54	10
13C8 FOSA	48		25 - 150 25 - 150					01/08/19 09:54	10
13C5 PFPeA	92		25 - 150 25 - 150					01/08/19 09:54	10
13C2 PFTeDA	27		25 - 150 25 - 150					01/08/19 09:54	10
d3-NMeFOSAA	47		25 - 150 25 - 150					01/08/19 09:54	10
d5-NEtFOSAA	79		25 - 150 25 - 150					01/08/19 09:54	10
	187	*						01/08/19 09:54	
M2-6:2 FTS			25 ₋ 150						10
M2-8:2 FTS	132		25 ₋ 150					01/08/19 09:54	10
13C3 PFBS	117		25 - 150				01/02/19 13:45	01/08/19 09:54	10

1/11/2019

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Lab Sample ID: 460-172026-4

Matrix: Water

Client Sample ID: DUP Date Collected: 12/19/18 11:30

Date Received: 12/20/18 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	5.87		2.00	0.41	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluoropentanoic acid (PFPeA)	6.61		2.00	0.75	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorohexanoic acid (PFHxA)	7.81		2.00	0.24	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluoroheptanoic acid (PFHpA)	10.7		2.00	0.32	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorooctanoic acid (PFOA)	27.7	В	2.00	0.32	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorononanoic acid (PFNA)	2.00	U	2.00	0.38	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorodecanoic acid (PFDA)	2.00	U	2.00	0.38	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluoroundecanoic acid (PFUnA)	2.00	U	2.00	0.25	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorododecanoic acid (PFDoA)	2.00	U	2.00	0.35	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorotridecanoic acid (PFTriA)	2.00	U	2.00	0.24	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorotetradecanoic acid (PFTeA)	2.00	U	2.00	0.45	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorobutanesulfonic acid (PFBS)	0.91	J	2.00	0.44	ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluorohexanesulfonic acid (PFHxS)	5.45		2.00		ng/L		01/02/19 13:45	01/08/19 10:10	
Perfluoroheptanesulfonic Acid (PFHpS)	0.89	J	2.00	0.82	-		01/02/19 13:45	01/08/19 10:10	
Perfluorooctanesulfonic acid (PFOS)	5.64		2.00	0.76	-			01/08/19 10:10	
Perfluorodecanesulfonic acid (PFDS)	2.00		2.00	0.53	-			01/08/19 10:10	
Perfluorooctanesulfonamide (PFOSA)	2.00	U	2.00	0.56	•		01/02/19 13:45	01/08/19 10:10	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	20.0	U	20.0		ng/L		01/02/19 13:45	01/08/19 10:10	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	20.0		20.0	0.70				01/08/19 10:10	,
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	20.0		20.0		ng/L			01/08/19 10:10	•
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	20.0	U	20.0	0.56	ng/L		01/02/19 13:45	01/08/19 10:10	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1802 PFHxS	109		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C4 PFHpA	66		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C4 PFOA	75		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C4 PFOS	106		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C5 PFNA	72		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C4 PFBA	45		25 - 150				01/02/19 13:45	01/08/19 10:10	
13C2 PFHxA	61		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C2 PFDA	75		50 ₋ 150				01/02/19 13:45	01/08/19 10:10	
13C2 PFUnA	71		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C2 PFDoA	63		50 - 150				01/02/19 13:45	01/08/19 10:10	
13C8 FOSA	53		25 - 150					01/08/19 10:10	
13C5 PFPeA	63		25 - 150					01/08/19 10:10	
13C2 PFTeDA	59		50 - 150					01/08/19 10:10	
d3-NMeFOSAA	52		50 - 150					01/08/19 10:10	
d5-NEtFOSAA	59		50 - 150 50 - 150					01/08/19 10:10	
M2-6:2 FTS	141		25 ₋ 150					01/08/19 10:10	
M2-8:2 FTS	94		25 - 150 25 - 150					01/08/19 10:10	
WE 0.21 10	34		20 - 100				01/02/19 10.40	51/00/19 10.10	

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Lab Sample ID: 460-172026-5

Matrix: Water

Client Sample ID: ERB

Date Collected: 12/19/18 12:14 Date Received: 12/20/18 21:00

Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	1.72	U	1.72	0.35	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluoropentanoic acid (PFPeA)	1.72	U	1.72	0.64	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorohexanoic acid (PFHxA)	1.72	U	1.72	0.21	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluoroheptanoic acid (PFHpA)	1.72	U	1.72	0.27	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorooctanoic acid (PFOA)	1.72	U	1.72	0.27	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorononanoic acid (PFNA)	1.72	U	1.72	0.33	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorodecanoic acid (PFDA)	17.2	U	17.2	3.26	ng/L		01/02/19 13:45	01/10/19 15:26	1
Perfluoroundecanoic acid (PFUnA)	17.2	U	17.2	2.15	ng/L		01/02/19 13:45	01/10/19 15:26	1
Perfluorododecanoic acid (PFDoA)	17.2	U	17.2	3.00	ng/L		01/02/19 13:45	01/10/19 15:26	1
Perfluorotridecanoic acid (PFTriA)	1.72	U	1.72	0.21	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorotetradecanoic acid (PFTeA)	1.72	U	1.72	0.39	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorobutanesulfonic acid (PFBS)	1.72	U	1.72	0.38	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorohexanesulfonic acid (PFHxS)	1.72	U	1.72	0.22	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluoroheptanesulfonic Acid (PFHpS)	1.72	U	1.72	0.70	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorooctanesulfonic acid (PFOS)	1.72	U	1.72	0.65	ng/L		01/02/19 13:45	01/08/19 10:26	
Perfluorodecanesulfonic acid (PFDS)	17.2	U	17.2	4.55	ng/L		01/02/19 13:45	01/10/19 15:26	1
Perfluorooctanesulfonamide (PFOSA)	1.72	U	1.72	0.48	ng/L		01/02/19 13:45	01/08/19 10:26	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	172	U	172	3.86	ng/L		01/02/19 13:45	01/10/19 15:26	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	172	U	172	6.01	ng/L		01/02/19 13:45	01/10/19 15:26	1
IH,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	17.2	U	17.2	0.86	ng/L		01/02/19 13:45	01/08/19 10:26	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	172	U	172	4.81	ng/L		01/02/19 13:45	01/10/19 15:26	1
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1802 PFHxS	98		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C4 PFHpA	85		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C4 PFOA	80		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C4 PFOS	105		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C5 PFNA	82		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C4 PFBA	77		25 - 150				01/02/19 13:45	01/08/19 10:26	
13C2 PFHxA	95		50 - 150				01/02/19 13:45	01/08/19 10:26	
13C2 PFDA	76		50 - 150				01/02/19 13:45	01/10/19 15:26	1
13C2 PFUnA	87		50 - 150				01/02/19 13:45	01/10/19 15:26	1
13C2 PFDoA	42	*	50 - 150				01/02/19 13:45	01/10/19 15:26	1
13C8 FOSA	12	*	25 - 150				01/02/19 13:45	01/08/19 10:26	
13C5 PFPeA	103		25 - 150				01/02/19 13:45	01/08/19 10:26	
3C2 PFTeDA	68		50 - 150				01/02/19 13:45	01/08/19 10:26	
d3-NMeFOSAA	53		50 ₋ 150				01/02/19 13:45	01/10/19 15:26	•
15-NEtFOSAA	64		50 ₋ 150					01/10/19 15:26	
M2-6:2 FTS	165	*	25 - 150					01/08/19 10:26	
M2-8:2 FTS	85		25 - 150					01/10/19 15:26	•
13C3 PFBS	103		50 - 150					01/08/19 10:26	-

1/11/2019

_

5

6

9

-

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Lab Sample ID: 460-172026-1

Matrix: Water

Client Sample ID: MW-3I Date Collected: 12/19/18 11:30

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		1	138864	01/08/19 08:50	BWC	TAL BUR

Lab Sample ID: 460-172026-2 **Client Sample ID: MW-61** Date Collected: 12/19/18 15:00

Matrix: Water

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		10	138864	01/08/19 09:38	BWC	TAL BUR

Client Sample ID: MW-12 Lab Sample ID: 460-172026-3

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 12/19/18 13:30 Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		10	138864	01/08/19 09:54	BWC	TAL BUR

Lab Sample ID: 460-172026-4 **Client Sample ID: DUP**

Date Collected: 12/19/18 11:30

Date Received: 12/20/18 21:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		1	138864	01/08/19 10:10	BWC	TAL BUR

Client Sample ID: ERB Lab Sample ID: 460-172026-5

Date Collected: 12/19/18 12:14

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		1	138864	01/08/19 10:26	BWC	TAL BUR
Total/NA	Prep	3535			138726	01/02/19 13:45	JM1	TAL BUR
Total/NA	Analysis	537 (modified)		10	138989	01/10/19 15:26	BWC	TAL BUR

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Edison

Accreditation/Certification Summary

Client: NAC Consultants Inc. TestAmerica Job ID: 460-172026-2 Project/Site: Sid Harvey

Laboratory: TestAmerica Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Connecticut	State Program	1	PH-0200	09-30-20
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	N/A	12-31-19
New Jersey	NELAP	2	12028	06-30-19
New York	NELAP	2	11452	04-01-19
Pennsylvania	NELAP	3	68-00522	02-28-19
Rhode Island	State Program	1	LAO00132	12-30-19
USDA	Federal		NJCA-003-08	06-13-20

Laboratory: TestAmerica Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
ANAB	DoD ELAP		L2336	02-25-20
Connecticut	State Program	1	PH-0751	09-30-19
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-01-19 *
Florida	NELAP	4	E87467	06-30-19
Maine	State Program	1	VT00008	04-17-19
Minnesota	NELAP	5	050-999-436	12-31-19
New Hampshire	NELAP	1	2006	12-18-18 *
New Jersey	NELAP	2	VT972	06-30-19
New York	NELAP	2	10391	04-01-19
Pennsylvania	NELAP	3	68-00489	04-30-19
Rhode Island	State Program	1	LAO00298	12-30-19
US Fish & Wildlife	Federal		LE-058448-0	07-31-19
USDA	Federal		P330-11-00093	07-24-20
Vermont	State Program	1	VT-4000	12-31-19
Virginia	NELAP	3	460209	12-14-19

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
3535	Solid-Phase Extraction (SPE)	SW846	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

3

4

5

7

8

9

Sample Summary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-172026-1	MW-3I	Water	12/19/18 11:30 12	2/20/18 21:00
460-172026-2	MW-6I	Water	12/19/18 15:00 12	2/20/18 21:00
460-172026-3	MW-12	Water	12/19/18 13:30 12	2/20/18 21:00
460-172026-4	DUP	Water	12/19/18 11:30 12	2/20/18 21:00
460-172026-5	ERB	Water	12/19/18 12:14 12	2/20/18 21:00

3

4

5

6

8

9

Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No	Relinquished by:	Reliadushed by:	Relinquished by:	Empty Kit Relinquished by:	Deliverable Requested: I, II, III, IV, Other (specify)	ant	Possible Harry Montification		Trip Blank	EKB	MSO	MS	DUP	MW-12	MW-6I	MW-3I		Sample Identification		Sile: Valley Stream	Project Name: Sid Harvey	Email: jdurbat@nacconsultantsinc.com	Proff 31 - 269 - 2680	State, Zip: NY, 11754	City: Kings Park	Address: 28 Henry Street	Company: NAC Consultants Inc.	Client Contact Mr. James Urbat	Client Information	Edison, NJ 08817 Phone (732) 549-3900 Fax (732) 549-3679	TestAmerica Edison 777 New Durham Road
	Date/fime: Company	My decide Co. h & Millington	Date/Time: 12:38 Company / 1			Poison B Unknown Radiological			G Water	12:14 G Water	u. 39 G Water	(1) 30 G Water	(L) 30 G Water	[3:32] G Water		12/19/19 (11:30 G Water	apiesewa	Type (N=water, S=soild, S=soild, O=waste/oil, O=waste/oil, O=grab) Bt=Tissue, A-Air)	Sample Matrix	SSOW#:		*	nase Order Requested	Stevelesel	TAT Requested (days):	Due Date Requested:		269-2680	Sampler Chart Lab PM: Miller, Jill K		Chain of Custody Record
Cooler Temperature(s) °C and Other Remarks:	Received by: Date/Time:	Received by Date Time	AC Received by: 08 Date Tiffe:	Time: Method of Shipment:	Special Instructions/QC Requirements.	460-172026 Chain of Custody			×	× × ×	× × × × 7	× × ×	×××	×××	× × ×			8260C - TC PFC_IDA - 8270D_SIM	CL Vol	latile C	Organio MS/MS ,4-Dlo:	c Com	pound	s +TICs			Analysis Requested	E-Mail: jill.miller@testamericainc.com	Jill K Carrentacking No(s):	N	acord
	Com	20/18 2/00 Company & C	9/10/2000 88 C/ 1/			Archive ForMonths			2個 6		1 🖺			and MW-12	placess in MW-67			Special Instructions/Note:	i i i i i i i i i i i i i i i i i i i	Other:	L-EDA	i - Ice J - Di Water	G - Amchlor H - Ascorbic Acid	D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3		ation Coc	1720a6	Page: Page 1 of 2	COC No: 460-106998-68587.1	THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica

Ver: 08/04/2016

Receipt Temperature and pH Log TestAmerica Edison

			TALS Sample Number		Number of Coolers American Ame	Job Number:
			(pH<2)	Ammonia	S C C	8
			(pH<2)	COD	35. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	8080
			(pH<2)	Nitrate Nitrite		
			(pH<2)	Metals *	IR:Gun'#; Co	
			(pH<2)	Hardness		
			(pH 5-9)	Pest	Cooler Temperatures 14. 0 °c 15. 0 °c 16. 0 °c	
			(pH<2)	EPH or QAM	oler Tempera	
			(pH<2)	Phenols Sulfide	itures	
			(pH>9)	Sulfide	O O O	
			(pH<2)	TKN	Cocje;#7	
			(pH<2)	Тос	CO CO	
			(pH>12) (pH<2)	Total Cyanide	TOORRECTEDS TO	
			(pH<2)	Total Cyanide Total Phos Other		
				Other		
				Other		
	_					

EDS-WI-038, Rev 4, 06/09/2014 Preservative Name/Conc.: Lot # of Preservative(s):

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.
Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Sample No(s), adjusted: Initials: Volume of Preservative used (ml): Date:

If pH adjustments are required record the information below:

SHIP DATE: 26DEC18 ACTWGT: 52.45 LB CAD: 0358159/CAFE3211

EDISON, NJ 08817 UNITED STATES US

BILL RECIPIENT

10 SAMPLE CUSTODY TEST AMERICA BURLINGTON 30 COMMUNITY DRIVE SUITE 11 SOUTH BURLINGTON VT-05403

FedEx Express

1 of 2 TRK# 4137 2537 6198 THU - 27 DEC 10:30A

05403 VT-US BTV

EDISON, NJ 08817 UNITED STATES US

SHIP DATE: 26DEC18 ACTWGT: 33.05 LB CAD: 0358159/CAFE3211

BILL RECIPIENT

SAMPLE CUSTODY **TEST AMERICA BURLINGTON** 30 COMMUNITY DRIVE

SOUTH BURLINGTON VT 05403

Express

THU - 27 DEC 10:30A

FedEx

2 of 2 MPS# 4137 2537 6202

0201

05403 BŢV VT -- US

Page 17 of 19

Login Sample Receipt Checklist

Client: NAC Consultants Inc. Job Number: 460-172026-2

Login Number: 172026 List Source: TestAmerica Edison

List Number: 1

Creator: Pinilla, Angela C

oroator: I milia, Angola o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

3

4

6

ا

9

10

Login Sample Receipt Checklist

Client: NAC Consultants Inc. Job Number: 460-172026-2

Login Number: 172026
List Source: TestAmerica Burlington
List Number: 2
List Creation: 12/27/18 01:28 PM

Creator: Johnson, Eleanor E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4°C, 0.6°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Edison

3

4

5

9

10

1.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

TestAmerica Job ID: 460-172026-1 Client Project/Site: Sid Harvey

For:

NAC Consultants Inc. 28 Henry Street Kings Park, New York 11754

Attn: Mr. James Urbat

Authorized for release by: 1/4/2019 9:22:01 AM

Jill Miller, Senior Project Manager (484)685-0871 iill.miller@testamericainc.com

····· Links ·····

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receint Checklists	22

-5

4

5

7

8

10

Definitions/Glossary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

DL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	Method Detection Limit

Detection Limit (DoD/DOE)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Pra	actical Quantitation	Limit
---------	----------------------	-------

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Edison

Page 3 of 22 1/4/2019

Case Narrative

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Job ID: 460-172026-1

Laboratory: TestAmerica Edison

Narrative

CASE NARRATIVE

Client: NAC Consultants Inc.

Project: Sid Harvey

Report Number: 460-172026-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/20/2018; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.0 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-3I (460-172026-1), MW-6I (460-172026-2), MW-12 (460-172026-3), DUP (460-172026-4), ERB (460-172026-5) and Trip Blank (460-172026-6) were analyzed for Volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 01/01/2019 and 01/02/2019.

The continuing calibration verification (CCV) analyzed in batch 460-579845 was outside the method criteria for the following analyte(s): Carbon tetrachloride, Bromoform, Dichlorodifluoromethane and Trichlorofluoromethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-579845 recovered outside control limits for the following analytes: 1,2,4-Trichlorobenzene and Chlorodibromomethane. These analytes were not detected in the associated samples; therefore, the data have been reported.

The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-12 (460-172026-3). Elevated reporting limits (RLs) are provided.

The continuing calibration verification (CCV) analyzed in batch 460-579953 was outside the method criteria for the following analyte(s): Trichlorofluoromethane, Vinyl chloride and Dichlorodifluoromethane (biased low) and Bromoform (biased high). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

3

4

5

7

8

Case Narrative

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Job ID: 460-172026-1 (Continued)

Laboratory: TestAmerica Edison (Continued)

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-579953 recovered outside control limits for the following analytes: Bromoform and Dichlorodifluoromethane. These analytes were not detected in the associated samples; therefore, the data have been reported.

The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-6I (460-172026-2). Elevated reporting limits (RLs) are provided.

Chlorodibromomethane failed the recovery criteria low for LCS 460-579845/5. Dichlorodifluoromethane failed the recovery criteria low for LCS 460-579953/3. 1,2,4-Trichlorobenzene failed the recovery criteria low for LCSD 460-579845/6. Bromoform failed the recovery criteria high for LCSD 460-579953/4. Refer to the QC report for details.

Several analytes failed the recovery criteria low for the MS of sample MW-3IMS (460-172026-1) in batch 460-579845.

1,2,4-Trichlorobenzene, Carbon tetrachloride and Chlorodibromomethane failed the recovery criteria low for the MSD of sample MW-3IMSD (460-172026-1) in batch 460-579845.

Refer to the QC report for details.

Samples MW-6I (460-172026-2)[2X] and MW-12 (460-172026-3)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

1,4 DIOXANE BY 8270D SIM, ISOTOPE DILUTION

Samples MW-3I (460-172026-1), MW-6I (460-172026-2), MW-12 (460-172026-3), DUP (460-172026-4) and ERB (460-172026-5) were analyzed for 1,4 Dioxane by 8270D SIM, Isotope Dilution in accordance with EPA SW-846 Method 8270D SIM. The samples were prepared on 12/24/2018 and analyzed on 12/26/2018.

No difficulties were encountered during the 1,4 Dioxane analysis.

All quality control parameters were within the acceptance limits.

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Sample ID: 460-172026-1

Matrix: Water

Client Sample ID: MW-3I Date Collected: 12/19/18 11:30

Date Received: 12/20/18 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	6.6	F1	1.0	0.24	ug/L		-	01/01/19 02:44	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			01/01/19 02:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.31	U	1.0		ug/L			01/01/19 02:44	
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			01/01/19 02:44	
1,1-Dichloroethane	21		1.0		ug/L			01/01/19 02:44	
1,1-Dichloroethene	2.7		1.0		ug/L			01/01/19 02:44	
1,2,3-Trichlorobenzene	0.36	U F1	1.0		ug/L			01/01/19 02:44	
1,2,4-Trichlorobenzene	0.37	U F1 *	1.0		ug/L			01/01/19 02:44	
1,2-Dichloropropane	0.35	U	1.0		ug/L			01/01/19 02:44	
1,3-Dichlorobenzene	0.34	U	1.0		ug/L			01/01/19 02:44	
1,4-Dichlorobenzene	0.76	U	1.0		ug/L			01/01/19 02:44	
1,4-Dioxane	28	U	50		ug/L			01/01/19 02:44	
2-Butanone (MEK)	1.9		5.0					01/01/19 02:44	
2-Hexanone	2.9		5.0		ug/L			01/01/19 02:44	
4-Methyl-2-pentanone (MIBK)	2.7		5.0		ug/L			01/01/19 02:44	
Acetone	5.0		5.0		ug/L			01/01/19 02:44	
Benzene	0.43		1.0		ug/L			01/01/19 02:44	
Bromoform	0.54	_	1.0		ug/L			01/01/19 02:44	
Bromomethane	1.0		1.0		ug/L			01/01/19 02:44	
Carbon disulfide	0.16		1.0		ug/L			01/01/19 02:44	
Carbon tetrachloride		U F1	1.0		ug/L			01/01/19 02:44	
Chlorobenzene	0.38		1.0		ug/L			01/01/19 02:44	
Chlorobromomethane	0.30		1.0		ug/L			01/01/19 02:44	
Chlorodibromomethane		U F1 *	1.0		ug/L			01/01/19 02:44	
Chloroethane	0.20		1.0		ug/L			01/01/19 02:44	
Chloroform	0.32		1.0		ug/L			01/01/19 02:44	
Chloromethane	0.33		1.0		ug/L ug/L			01/01/19 02:44	
	0.60		1.0		ug/L			01/01/19 02:44	
cis-1,2-Dichloroethene	0.80		1.0		-			01/01/19 02:44	
cis-1,3-Dichloropropene	0.40		1.0		ug/L ug/L			01/01/19 02:44	
Cyclohexane Dichlorobromomethane	0.32				-				
	0.34		1.0		ug/L			01/01/19 02:44 01/01/19 02:44	
Dichlorodifluoromethane			1.0		ug/L				
Ethylbenzene	0.30		1.0		ug/L			01/01/19 02:44	
Ethylene Dibromide	0.50		1.0		ug/L			01/01/19 02:44	
Isopropylbenzene	0.34		1.0		ug/L			01/01/19 02:44	
Methyl acetate	0.31		5.0		ug/L			01/01/19 02:44	
Methyl tert-butyl ether	0.47		1.0		ug/L			01/01/19 02:44	
Methylcyclohexane	0.26		1.0		ug/L			01/01/19 02:44	
Methylene Chloride	0.32		1.0		ug/L			01/01/19 02:44	
m-Xylene & p-Xylene	0.30		1.0		ug/L			01/01/19 02:44	
o-Xylene	0.36		1.0		ug/L			01/01/19 02:44	
Styrene	0.42		1.0		ug/L			01/01/19 02:44	
Tetrachloroethene	1.6		1.0		ug/L			01/01/19 02:44	
Toluene	0.38		1.0		ug/L			01/01/19 02:44	
trans-1,2-Dichloroethene	0.24		1.0		ug/L			01/01/19 02:44	
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			01/01/19 02:44	
Trichloroethene	15		1.0	0.31	ug/L			01/01/19 02:44	
Trichlorofluoromethane	0.14	U F1	1.0		ug/L			01/01/19 02:44	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			01/01/19 02:44	

TestAmerica Edison

Page 6 of 22 1/4/2019

2

4

5

9

TestAmerica Job ID: 460-172026-1

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Client Sample ID: MW-3I

Lab Sample ID: 460-172026-1

Date Collected: 12/19/18 11:30 **Matrix: Water** Date Received: 12/20/18 21:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier		KL	MDL	Unit	U	Prepared	Analyzea	DII Fac
1,2-Dichloroethane	0.43	U		1.0	0.43 ι	ug/L			01/01/19 02:44	1
1,2-Dichlorobenzene	0.43	U		1.0	0.43 ι	ug/L			01/01/19 02:44	1
1,2-Dibromo-3-Chloropropane	0.38	U		1.0	0.38 ι	ug/L			01/01/19 02:44	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	R	?T	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L			_			01/01/19 02:44	1

gate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
chloroethane-d4 (Surr)	87		74 - 132	-		01/01/19 02:44	1
nofluorobenzene	88		77 - 124			01/01/19 02:44	1
nofluoromethane (Surr)	90		72 - 131			01/01/19 02:44	1
e-d8 (Surr)	98		80 - 120			01/01/19 02:44	1
	gate chloroethane-d4 (Surr) nofluorobenzene nofluoromethane (Surr) ne-d8 (Surr)	hofluoroethane-d4 (Surr) 87 nofluorobenzene 88 nofluoromethane (Surr) 90	chloroethane-d4 (Surr) 87 nofluorobenzene 88 nofluoromethane (Surr) 90	Schloroethane-d4 (Surr) 87 74 - 132 nofluorobenzene 88 77 - 124 nofluoromethane (Surr) 90 72 - 131	Schloroethane-d4 (Surr) 87 74 - 132 Inofluorobenzene 88 77 - 124 Inofluoromethane (Surr) 90 72 - 131	hofluoroethane-d4 (Surr) 87 74 - 132 hofluorobenzene 88 77 - 124 hofluoromethane (Surr) 90 72 - 131	Schloroethane-d4 (Surr) 87 74 - 132 01/01/19 02:44 nofluorobenzene 88 77 - 124 01/01/19 02:44 nofluoromethane (Surr) 90 72 - 131 01/01/19 02:44

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

0.56 U

0.64 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.016	U	0.20	0.016	ug/L		12/24/18 09:07	12/26/18 09:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: MW-61 Lab Sample ID: 460-172026-2 **Matrix: Water**

Date Collected: 12/19/18 15:00 Date Received: 12/20/18 21:00

Chlorodibromomethane

Chloroethane

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.48	U	2.0	0.48	ug/L			01/02/19 16:45	2
1,1,2,2-Tetrachloroethane	0.73	U	2.0	0.73	ug/L			01/02/19 16:45	2
1,1,2-Trichloro-1,2,2-trifluoroethane	0.62	U	2.0	0.62	ug/L			01/02/19 16:45	2
1,1,2-Trichloroethane	0.87	U	2.0	0.87	ug/L			01/02/19 16:45	2
1,1-Dichloroethane	0.53	U	2.0	0.53	ug/L			01/02/19 16:45	2
1,1-Dichloroethene	0.23	U	2.0	0.23	ug/L			01/02/19 16:45	2
1,2,3-Trichlorobenzene	0.71	U	2.0	0.71	ug/L			01/02/19 16:45	2
1,2,4-Trichlorobenzene	0.73	U	2.0	0.73	ug/L			01/02/19 16:45	2
1,2-Dichloropropane	0.71	U	2.0	0.71	ug/L			01/02/19 16:45	2
1,3-Dichlorobenzene	0.68	U	2.0	0.68	ug/L			01/02/19 16:45	2
1,4-Dichlorobenzene	1.5	U	2.0	1.5	ug/L			01/02/19 16:45	2
1,4-Dioxane	56	U	100	56	ug/L			01/02/19 16:45	2
2-Butanone (MEK)	5.0	J	10	3.7	ug/L			01/02/19 16:45	2
2-Hexanone	5.8	U	10	5.8	ug/L			01/02/19 16:45	2
4-Methyl-2-pentanone (MIBK)	5.5	U	10	5.5	ug/L			01/02/19 16:45	2
Acetone	10	U	10	10	ug/L			01/02/19 16:45	2
Benzene	0.86	U	2.0	0.86	ug/L			01/02/19 16:45	2
Bromoform	1.1	U *	2.0	1.1	ug/L			01/02/19 16:45	2
Bromomethane	2.0	U	2.0	2.0	ug/L			01/02/19 16:45	2
Carbon disulfide	0.31	U	2.0	0.31	ug/L			01/02/19 16:45	2
Carbon tetrachloride	0.42	U	2.0	0.42	ug/L			01/02/19 16:45	2
Chlorobenzene	0.75	U	2.0	0.75	ug/L			01/02/19 16:45	2
Chlorobromomethane	0.82	U	2.0	0.82	ug/L			01/02/19 16:45	2

2.0

2.0

0.56 ug/L

0.64 ug/L

TestAmerica Edison

01/02/19 16:45

01/02/19 16:45

2

Page 7 of 22 1/4/2019

TestAmerica Job ID: 460-172026-1

Client Sample ID: MW-6l Lab Sample

Date Collected: 12/19/18 15:00 Date Received: 12/20/18 21:00 Lab Sample ID: 460-172026-2

Matrix: Water

Method: 8260C - Volatile Org Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	0.65	U	2.0	0.65	ug/L			01/02/19 16:45	2
Chloromethane	0.29	U	2.0	0.29	ug/L			01/02/19 16:45	2
cis-1,2-Dichloroethene	0.44	U	2.0	0.44	ug/L			01/02/19 16:45	2
cis-1,3-Dichloropropene	0.91	U	2.0	0.91	ug/L			01/02/19 16:45	2
Cyclohexane	0.64	U	2.0	0.64	ug/L			01/02/19 16:45	2
Dichlorobromomethane	0.69	U	2.0	0.69	ug/L			01/02/19 16:45	2
Dichlorodifluoromethane	0.24	U *	2.0	0.24	ug/L			01/02/19 16:45	2
Ethylbenzene	0.60	U	2.0	0.60	ug/L			01/02/19 16:45	2
Ethylene Dibromide	1.0	U	2.0	1.0	ug/L			01/02/19 16:45	2
Isopropylbenzene	0.67	U	2.0	0.67	ug/L			01/02/19 16:45	2
Methyl acetate	0.63	U	10	0.63	ug/L			01/02/19 16:45	2
Methyl tert-butyl ether	0.93	U	2.0	0.93	ug/L			01/02/19 16:45	2
Methylcyclohexane	0.52	U	2.0	0.52	ug/L			01/02/19 16:45	2
Methylene Chloride	0.63	U	2.0	0.63	ug/L			01/02/19 16:45	2
m-Xylene & p-Xylene	0.59	U	2.0	0.59	ug/L			01/02/19 16:45	2
o-Xylene	0.72	U	2.0	0.72	ug/L			01/02/19 16:45	2
Styrene	0.83	U	2.0	0.83	ug/L			01/02/19 16:45	2
Tetrachloroethene	0.50	U	2.0	0.50	ug/L			01/02/19 16:45	2
Toluene	440		2.0	0.76	ug/L			01/02/19 16:45	2
trans-1,2-Dichloroethene	0.47	U	2.0	0.47	ug/L			01/02/19 16:45	2
trans-1,3-Dichloropropene	0.97	U	2.0	0.97	ug/L			01/02/19 16:45	2
Trichloroethene	0.63		2.0	0.63	ug/L			01/02/19 16:45	2
Trichlorofluoromethane	0.29	U	2.0	0.29	ug/L			01/02/19 16:45	2
Vinyl chloride	0.34	U	2.0	0.34	ug/L			01/02/19 16:45	2
1,2-Dichloroethane	0.86	U	2.0	0.86	ug/L			01/02/19 16:45	2
1,2-Dichlorobenzene	0.86	U	2.0	0.86	ug/L			01/02/19 16:45	2
1,2-Dibromo-3-Chloropropane	0.75	U	2.0	0.75	ug/L			01/02/19 16:45	2
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					01/02/19 16:45	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		74 - 132			•		01/02/19 16:45	2
4-Bromofluorobenzene	106		77 - 124					01/02/19 16:45	2

Method: 8270D SIM ID - Sem	nivolatile Orga	anic Comp	ounds (GC/	MS SIM /	Isotop	e Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.016	U	0.20	0.016	ug/L		12/24/18 09:07	12/26/18 10:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	26		10 - 150				12/24/18 09:07	12/26/18 10:05	1

72 - 131

80 - 120

102

97

Client Sample ID: MW-12

Date Collected: 12/19/18 13:30

Lab Sample ID: 460-172026-3

Matrix: Water

Date Collected: 12/19/18 13:30 Date Received: 12/20/18 21:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: 8260C - Volatile Orga	nic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1100	5.0	1.2 ug/L			01/01/19 04:35	- 5

TestAmerica Edison

01/02/19 16:45

01/02/19 16:45

2

Page 8 of 22

3

5

9

1

1/4/2019

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Sample ID: 460-172026-3

Matrix: Water

Client Sample ID: MW-12 Date Collected: 12/19/18 13:30

Date Received: 12/20/18 21:00 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) MDL Unit Dil Fac Result Qualifier D Analyzed Analyte Prepared 1,1,2,2-Tetrachloroethane 1.8 U 5.0 1.8 ug/L 01/01/19 04:35 5 1.6 ug/L 01/01/19 04:35 5.0 5 1,1,2-Trichloro-1,2,2-trifluoroetha 5.3 ne 1,1,2-Trichloroethane 2.2 U 5.0 2.2 ug/L 01/01/19 04:35 5 5.0 5 1.1-Dichloroethane 110 1.3 ug/L 01/01/19 04:35 37 5.0 0.59 ug/L 01/01/19 04:35 5 1,1-Dichloroethene 5 1,2,3-Trichlorobenzene 1.8 U 5.0 1.8 ug/L 01/01/19 04:35 1,2,4-Trichlorobenzene 1.8 U * 5.0 1.8 ug/L 01/01/19 04:35 5 5.0 5 1,2-Dichloropropane 1.8 U 1.8 ug/L 01/01/19 04:35 1.7 5.0 5 1,3-Dichlorobenzene 1.7 ug/L 01/01/19 04:35 5 1,4-Dichlorobenzene 3.8 U 5.0 3.8 ug/L 01/01/19 04:35 1,4-Dioxane 140 U 250 140 ug/L 01/01/19 04:35 5 25 01/01/19 04:35 5 2-Butanone (MEK) 93 U 9.3 ug/L 2-Hexanone 15 U 25 15 ug/L 01/01/19 04:35 5 4-Methyl-2-pentanone (MIBK) 14 U 25 ug/L 5 14 01/01/19 04:35 25 5 Acetone 25 U 25 ug/L 01/01/19 04:35 Benzene 2.1 U 5.0 2.1 01/01/19 04:35 5 ug/L Bromoform 2.7 U 5.0 2.7 ug/L 01/01/19 04:35 5 Bromomethane 5.0 U 5.0 5.0 ug/L 01/01/19 04:35 5 5 Carbon disulfide 0.78 U 5.0 0.78 01/01/19 04:35 ug/L

Carbon tetrachloride 1.0 U 5.0 1.0 ug/L 01/01/19 04:35 5 Chlorobenzene 1.9 U 5.0 1.9 5 ug/L 01/01/19 04:35 5 Chlorobromomethane 2.1 U 5.0 2.1 ug/L 01/01/19 04:35 Chlorodibromomethane 5 1.4 U 5.0 1.4 ug/L 01/01/19 04:35 Chloroethane 1.6 U 5.0 1.6 ug/L 01/01/19 04:35 5 Chloroform 16 U 5.0 1.6 ug/L 01/01/19 04:35 5 Chloromethane 0.72 U 5.0 0.72 ug/L 01/01/19 04:35 5 5.0 1.1 5 cis-1,2-Dichloroethene 220 ug/L 01/01/19 04:35 cis-1,3-Dichloropropene 2.3 U 5.0 2.3 ug/L 01/01/19 04:35 5 Cyclohexane 1.6 U 5.0 1.6 ug/L 01/01/19 04:35 5 1.7 U 5.0 1.7 5 Dichlorobromomethane ug/L 01/01/19 04:35 Dichlorodifluoromethane 0.61 U 5.0 0.61 ug/L 01/01/19 04:35 5 1.5 ug/L 5 Ethylbenzene 5.3 5.0 01/01/19 04:35 5 Ethylene Dibromide 2.5 U 5.0 2.5 ug/L 01/01/19 04:35 1.7 U 5.0 5 Isopropylbenzene 17 ug/L 01/01/19 04:35 25 5 Methyl acetate 1.6 1.6 ug/L 01/01/19 04:35 5 Methyl tert-butyl ether 5.0 2.3 01/01/19 04:35 2.3 U ug/L Methylcyclohexane 5.0 5 1.3 U 1.3 ug/L 01/01/19 04:35 1.6 U 5 Methylene Chloride 5.0 1.6 ug/L 01/01/19 04:35 m-Xylene & p-Xylene 12 5.0 1.5 ug/L 01/01/19 04:35 5 5 o-Xylene 5.0 1.8 ug/L 01/01/19 04:35 4.0 J 2.1 5 Styrene 21 U 5.0 ug/L 01/01/19 04:35 5.0 1.2 ug/L 01/01/19 04:35 5 **Tetrachloroethene** 3.1 5 **Toluene** 43 5.0 1.9 ug/L 01/01/19 04:35 5 trans-1,2-Dichloroethene 6.8 5.0 1.2 ug/L 01/01/19 04:35 5 trans-1,3-Dichloropropene 2.4 U 5.0 2.4 ug/L 01/01/19 04:35 **Trichloroethene** 42 5.0 1.6 ug/L 01/01/19 04:35 5 0.72 U 5 Trichlorofluoromethane 5.0 0.72 ug/L 01/01/19 04:35 1.2 J 5.0 0.86 ug/L 01/01/19 04:35 Vinyl chloride

TestAmerica Edison

Page 9 of 22 1/4/2019

TestAmerica Job ID: 460-172026-1

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Client Sample ID: MW-12 Date Collected: 12/19/18 13:30 Lab Sample ID: 460-172026-3

Matrix: Water

Date Received: 12/20/18 21:00

Method: 8260C - Vo	atile Organic Compounds by	GC/MS (Continued)
Analyta	Pocult Qualifion	DI MDI

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane	2.2	U	5.0	2.2	ug/L			01/01/19 04:35	5
	1,2-Dichlorobenzene	5.9		5.0	2.2	ug/L			01/01/19 04:35	5
	1,2-Dibromo-3-Chloropropane	1.9	U	5.0	1.9	ug/L			01/01/19 04:35	5
ı										

Tentatively Identified Compound Tentatively Identified Compound	Est. Result Qualifier None	Unit ug/L	D	RT _	CAS No.	Prepared	Analyzed 01/01/19 04:35	Dil Fac 5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74 - 132	_		01/01/19 04:35	5
4-Bromofluorobenzene	88		77 - 124			01/01/19 04:35	5
Dibromofluoromethane (Surr)	93		72 - 131			01/01/19 04:35	5
Toluene-d8 (Surr)	97		80 - 120			01/01/19 04:35	5

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	. D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.016	U	0.20	0.016	ug/L		12/24/18 09:07	12/26/18 10:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.4-Dioxane-d8	21		10 - 150				12/24/18 09:07	12/26/18 10:22	

Client Sample ID: DUP Lab Sample ID: 460-172026-4 **Matrix: Water**

Date Collected: 12/19/18 11:30 Date Received: 12/20/18 21:00

Mothod: 9260C Volatile Organic Compounds by	CC/MC
Method: 8260C - Volatile Organic Compounds by	GC/IVIO

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	6.1		1.0	0.24	ug/L			01/01/19 03:06	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			01/01/19 03:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.31	U	1.0	0.31	ug/L			01/01/19 03:06	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			01/01/19 03:06	1
1,1-Dichloroethane	20		1.0	0.26	ug/L			01/01/19 03:06	1
1,1-Dichloroethene	2.4		1.0	0.12	ug/L			01/01/19 03:06	1
1,2,3-Trichlorobenzene	0.36	U	1.0	0.36	ug/L			01/01/19 03:06	1
1,2,4-Trichlorobenzene	0.37	U *	1.0	0.37	ug/L			01/01/19 03:06	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			01/01/19 03:06	1
1,3-Dichlorobenzene	0.34	U	1.0	0.34	ug/L			01/01/19 03:06	1
1,4-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			01/01/19 03:06	1
1,4-Dioxane	28	U	50	28	ug/L			01/01/19 03:06	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			01/01/19 03:06	1
2-Hexanone	2.9	U	5.0	2.9	ug/L			01/01/19 03:06	1
4-Methyl-2-pentanone (MIBK)	2.7	U	5.0	2.7	ug/L			01/01/19 03:06	1
Acetone	5.0	U	5.0	5.0	ug/L			01/01/19 03:06	1
Benzene	0.43	U	1.0	0.43	ug/L			01/01/19 03:06	1
Bromoform	0.54	U	1.0	0.54	ug/L			01/01/19 03:06	1
Bromomethane	1.0	U	1.0	1.0	ug/L			01/01/19 03:06	1
Carbon disulfide	0.16	U	1.0	0.16	ug/L			01/01/19 03:06	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			01/01/19 03:06	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			01/01/19 03:06	1
Chlorobromomethane	0.41	U	1.0	0.41	ug/L			01/01/19 03:06	1
Chlorodibromomethane	0.28	U *	1.0	0.28	ug/L			01/01/19 03:06	1
Chloroethane	0.32	U	1.0	0.32	ug/L			01/01/19 03:06	1

TestAmerica Edison

TestAmerica Job ID: 460-172026-1

Client Sample ID: DUP

Lab Sample ID: 460-172026-4

Date Collected: 12/19/18 11:30 Date Received: 12/20/18 21:00 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	0.33	U	1.0	0.33	ug/L			01/01/19 03:06	1
Chloromethane	0.14	U	1.0	0.14	ug/L			01/01/19 03:06	1
cis-1,2-Dichloroethene	0.64	J	1.0	0.22	ug/L			01/01/19 03:06	1
cis-1,3-Dichloropropene	0.46	U	1.0	0.46	ug/L			01/01/19 03:06	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			01/01/19 03:06	1
Dichlorobromomethane	0.34	U	1.0	0.34	ug/L			01/01/19 03:06	1
Dichlorodifluoromethane	0.12	U	1.0	0.12	ug/L			01/01/19 03:06	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			01/01/19 03:06	1
Ethylene Dibromide	0.50	U	1.0	0.50	ug/L			01/01/19 03:06	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			01/01/19 03:06	1
Methyl acetate	0.31	U	5.0	0.31	ug/L			01/01/19 03:06	1
Methyl tert-butyl ether	0.47	U	1.0	0.47	ug/L			01/01/19 03:06	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			01/01/19 03:06	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			01/01/19 03:06	1
m-Xylene & p-Xylene	0.30	U	1.0	0.30	ug/L			01/01/19 03:06	1
o-Xylene	0.36	U	1.0	0.36	ug/L			01/01/19 03:06	1
Styrene	0.42	U	1.0	0.42	ug/L			01/01/19 03:06	1
Tetrachloroethene	1.6		1.0	0.25	ug/L			01/01/19 03:06	1
Toluene	0.38	U	1.0	0.38	ug/L			01/01/19 03:06	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			01/01/19 03:06	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			01/01/19 03:06	1
Trichloroethene	14		1.0	0.31	ug/L			01/01/19 03:06	1
Trichlorofluoromethane	0.14	U	1.0	0.14	ug/L			01/01/19 03:06	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			01/01/19 03:06	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			01/01/19 03:06	1
1,2-Dichlorobenzene	0.43	U	1.0	0.43	ug/L			01/01/19 03:06	1
1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38	ug/L			01/01/19 03:06	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D I	RT	CAS No.	Prepared	Analyzed	Dil Fac

	Tentatively Identified Compound	None	ug/L	01/01/19 03:0	5 1
	Surrogate	%Recovery Qualit	fier Limits	Prepared Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	91	74 - 132	01/01/19 03:0	6 1
	4-Bromofluorobenzene	88	77 - 124	01/01/19 03:0	6 1
	Dibromofluoromethane (Surr)	94	72 - 131	01/01/19 03:0	6 1
l	Toluene-d8 (Surr)	100	80 - 120	01/01/19 03:0	6 1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.016	U	0.20	0.016	ug/L		12/24/18 09:07	12/26/18 10:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	38		10 - 150				12/24/18 09:07	12/26/18 10:38	1

Client Sample ID: ERB Lab Sample ID: 460-172026-5

Date Collected: 12/19/18 12:14 Date Received: 12/20/18 21:00

Method: 8260C - Volatile Organic Compounds by GC/MS										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			01/01/19 02:00	1

TestAmerica Edison

Matrix: Water

4

6

8

10

Client Sample Results

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Sample ID: 460-172026-5

Matrix: Water

Client Sample ID: ERB

Date Collected: 12/19/18 12:14 Date Received: 12/20/18 21:00

		RL			D	Prepared	Analyzed	Dil Fa
0.37	U	1.0	0.37	ug/L			01/01/19 02:00	
0.31	U	1.0	0.31	ug/L			01/01/19 02:00	
0.43	U	1.0	0.43	ug/L			01/01/19 02:00	
0.26	U	1.0	0.26	ug/L			01/01/19 02:00	
0.12	U	1.0	0.12	ug/L			01/01/19 02:00	
0.36	Ü	1.0	0.36	ug/L			01/01/19 02:00	
0.37	U *	1.0	0.37	ug/L			01/01/19 02:00	
0.35	U	1.0	0.35	ug/L			01/01/19 02:00	
0.34	U	1.0	0.34	ug/L			01/01/19 02:00	
0.76	U	1.0	0.76	ug/L			01/01/19 02:00	
28	U	50	28	ug/L			01/01/19 02:00	
1.9	U	5.0		-			01/01/19 02:00	
2.9	U	5.0		-			01/01/19 02:00	
2.7	U			_			01/01/19 02:00	
							01/01/19 02:00	
	U			-			01/01/19 02:00	
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				_				
				-				· · · · · .
				-				
				-				
· · · · · · · · <u>.</u> · <u></u>				<u></u>				
				-				
								· · · · · .
				•				
				-				
				-				
				-				
				-				
0.14	U	1.0	0.14	-			U1/U1/19 02:00	•
0.17		1.0		ug/L			01/01/19 02:00	
	0.37 0.31 0.43 0.26 0.12 0.36 0.37 0.35 0.34 0.76 28 1.9 2.9 2.7 8.0 0.43 0.54 1.0 0.16 0.21 0.38 0.41 0.28 0.32 0.33 0.14 0.22 0.46 0.32 0.34 0.12 0.30 0.50 0.34 0.31 0.47 0.26 0.32 0.65 0.36 0.42 0.25 0.38 0.24 0.49 0.31	Result Qualifier 0.37 U 0.31 U 0.43 U 0.26 U 0.12 U 0.36 U 0.37 U* 0.35 U 0.34 U 0.76 U 28 U 1.9 U 2.9 U 2.7 U 8.0 0.43 U 0.16 U 0.21 U 0.38 U 0.41 U 0.28 U* 0.32 U 0.33 U 0.41 U 0.22 U 0.46 U 0.32 U 0.34 U 0.32 U 0.34 U 0.31 U 0.31 U 0.31 U 0.47 U 0.26 U 0.32 U 0.47 U 0.26 U 0.32 U 0.47 U 0.26 U 0.31 U 0.47 U 0.26 U 0.32 U 0.49 U 0.49 U 0.49 U 0.49 U 0.49 U 0.41 U	0.37 U 1.0 0.31 U 1.0 0.43 U 1.0 0.26 U 1.0 0.12 U 1.0 0.36 U 1.0 0.37 U* 1.0 0.35 U 1.0 0.34 U 1.0 0.76 U 1.0 28 U 50 1.9 U 5.0 2.9 U 5.0 2.7 U 5.0 8.0 5.0 0.43 U 1.0 0.54 U 1.0 0.16 U 1.0 0.21 U 1.0 0.38 U 1.0 0.31 U 1.0 0.32 U 1.0 0.33 U 1.0 0.34 U 1.0 0.32 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U* 1.0 0.38 U 1.0 0.39 U 1.0 0.39 U 1.0 0.30 U 1.0 0.30 U 1.0 0.31 U 1.0 0.32 U 1.0 0.33 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.39 U 1.0 0.39 U 1.0 0.30 U 1.0 0.30 U 1.0 0.31 U 1.0 0.32 U 1.0 0.33 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.39 U 1.0 0.39 U 1.0 0.30 U 1.0 0.30 U 1.0 0.30 U 1.0 0.31 U 1.0 0.32 U 1.0 0.33 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.39 U 1.0 0.39 U 1.0 0.39 U 1.0 0.30 U 1.0 0.30 U 1.0 0.30 U 1.0 0.31 U 1.0 0.32 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.49 U 1.0 0.49 U 1.0 0.31 U 1.0	0.37 U 1.0 0.37 0.31 U 1.0 0.43 0.26 U 1.0 0.26 0.12 U 1.0 0.12 0.36 U 1.0 0.36 0.37 U* 1.0 0.35 0.34 U 1.0 0.34 0.76 U 1.0 0.76 28 U 5.0 28 1.9 U 5.0 1.9 2.9 U 5.0 2.9 2.7 U 5.0 2.7 8.0 5.0 5.0 5.0 0.43 U 1.0 0.43 0.54 U 1.0 0.54 1.0 U 1.0 0.54 1.0 U 1.0 0.54 1.0 U 1.0 0.54 1.0 U 1.0 0.21 0.38 U 1.0 0.38 <td>0.37 U 1.0 0.37 ug/L 0.31 U 1.0 0.31 ug/L 0.43 U 1.0 0.43 ug/L 0.26 U 1.0 0.26 ug/L 0.12 U 1.0 0.12 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U* 1.0 0.37 ug/L 0.35 U 1.0 0.35 ug/L 0.34 U 1.0 0.34 ug/L 0.76 U 1.0 0.76 ug/L 28 U 50 28 ug/L 1.9 U 5.0 1.9 ug/L 2.9 U 5.0 2.9 ug/L 2.9 U 5.0 2.9 ug/L 2.9 U 5.0 2.9 ug/L 2.7 U 5.0 2.9 ug/L 2.7 U <</td> <td> 0.37 U</td> <td>0.37 U 1.0 0.37 ug/L 0.31 U 1.0 0.31 ug/L 0.43 U 1.0 0.43 ug/L 0.26 U 1.0 0.26 ug/L 0.12 U 1.0 0.36 ug/L 0.37 U* 1.0 0.37 ug/L 0.35 U 1.0 0.34 ug/L 0.76 U 1.0 0.76 ug/L 28 U 50 28 ug/L 1.9 U 5.0 1.9 ug/L 2.9 U 5.0 2.9 ug/L 2.7 U 5.0 2.7 ug/L 8.0 5.0 0.76 ug/L 0.54 U 1.0 0.43 ug/L 0.54 U 1.0 0.43 ug/L 0.54 U 1.0 0.54 ug/L 0.54 U 1.0 0.58 ug/L 0.30 U 1.0 0.38 ug/L 0.31 U 1.0 0.38 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 U 1.0 0.41 ug/L 0.28 U* 1.0 0.21 ug/L 0.38 U 1.0 0.32 ug/L 0.39 U 1.0 0.32 ug/L 0.30 U 1.0 0.32 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 U 1.0 0.44 ug/L 0.35 U 1.0 0.32 ug/L 0.35 U 1.0 0.32 ug/L 0.36 U 1.0 0.32 ug/L 0.37 U 1.0 0.32 ug/L 0.38 U 1.0 0.32 ug/L 0.39 U 1.0 0.30 ug/L 0.30 U 1.0 0.30 ug/L 0.31 U 1.0 0.47 ug/L 0.26 U 1.0 0.26 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.47 U 1.0 0.47 ug/L 0.26 U 1.0 0.47 ug/L 0.26 U 1.0 0.26 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.47 U 1.0 0.47 ug/L 0.26 U 1.0 0.47 ug/L 0.26 U 1.0 0.49 ug/L 0.25 U 1.0 0.38 ug/L 0.49 U 1.0 0.49 ug/L</td> <td> 0.37 U</td>	0.37 U 1.0 0.37 ug/L 0.31 U 1.0 0.31 ug/L 0.43 U 1.0 0.43 ug/L 0.26 U 1.0 0.26 ug/L 0.12 U 1.0 0.12 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U* 1.0 0.37 ug/L 0.35 U 1.0 0.35 ug/L 0.34 U 1.0 0.34 ug/L 0.76 U 1.0 0.76 ug/L 28 U 50 28 ug/L 1.9 U 5.0 1.9 ug/L 2.9 U 5.0 2.9 ug/L 2.9 U 5.0 2.9 ug/L 2.9 U 5.0 2.9 ug/L 2.7 U 5.0 2.9 ug/L 2.7 U <	0.37 U	0.37 U 1.0 0.37 ug/L 0.31 U 1.0 0.31 ug/L 0.43 U 1.0 0.43 ug/L 0.26 U 1.0 0.26 ug/L 0.12 U 1.0 0.36 ug/L 0.37 U* 1.0 0.37 ug/L 0.35 U 1.0 0.34 ug/L 0.76 U 1.0 0.76 ug/L 28 U 50 28 ug/L 1.9 U 5.0 1.9 ug/L 2.9 U 5.0 2.9 ug/L 2.7 U 5.0 2.7 ug/L 8.0 5.0 0.76 ug/L 0.54 U 1.0 0.43 ug/L 0.54 U 1.0 0.43 ug/L 0.54 U 1.0 0.54 ug/L 0.54 U 1.0 0.58 ug/L 0.30 U 1.0 0.38 ug/L 0.31 U 1.0 0.38 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 U 1.0 0.41 ug/L 0.28 U* 1.0 0.21 ug/L 0.38 U 1.0 0.32 ug/L 0.39 U 1.0 0.32 ug/L 0.30 U 1.0 0.32 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 U 1.0 0.44 ug/L 0.35 U 1.0 0.32 ug/L 0.35 U 1.0 0.32 ug/L 0.36 U 1.0 0.32 ug/L 0.37 U 1.0 0.32 ug/L 0.38 U 1.0 0.32 ug/L 0.39 U 1.0 0.30 ug/L 0.30 U 1.0 0.30 ug/L 0.31 U 1.0 0.47 ug/L 0.26 U 1.0 0.26 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.47 U 1.0 0.47 ug/L 0.26 U 1.0 0.47 ug/L 0.26 U 1.0 0.26 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.47 U 1.0 0.47 ug/L 0.26 U 1.0 0.47 ug/L 0.26 U 1.0 0.49 ug/L 0.25 U 1.0 0.38 ug/L 0.49 U 1.0 0.49 ug/L	0.37 U

TestAmerica Edison

1/4/2019

3

5

7

9

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Client Sample ID: ERB Lab Sample ID: 460-172026-5 Date Collected: 12/19/18 12:14

Matrix: Water

01/01/19 02:00

Date Received: 12/20/18 21:00

Toluene-d8 (Surr)

Method: 8260C - Volatile Org	•	•	•	ntinu			_			
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	0.43	U	1.0		0.43	ug/L			01/01/19 02:00	1
1,2-Dibromo-3-Chloropropane	0.38	U	1.0		0.38	ug/L			01/01/19 02:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						01/01/19 02:00	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	-	74 - 132					-	01/01/19 02:00	1
4-Bromofluorobenzene	85		77 - 124						01/01/19 02:00	1
Dibromofluoromethane (Surr)	89		72 - 131						01/01/19 02:00	1

	Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)											
١.	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
	1,4-Dioxane	0.18	J	0.20	0.016	ug/L	<u> </u>	12/24/18 09:07	12/26/18 10:55	1		
	Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
	1,4-Dioxane-d8	35		10 - 150				12/24/18 09:07	12/26/18 10:55	1		

80 - 120

Client Sample ID: Trip Blank Lab Sample ID: 460-172026-6 Date Collected: 12/19/18 00:00 **Matrix: Water**

Date Received: 12/20/18 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			01/01/19 02:22	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			01/01/19 02:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.31	U	1.0	0.31	ug/L			01/01/19 02:22	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			01/01/19 02:22	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			01/01/19 02:22	1
1,1-Dichloroethene	0.12	U	1.0	0.12	ug/L			01/01/19 02:22	1
1,2,3-Trichlorobenzene	0.36	U	1.0	0.36	ug/L			01/01/19 02:22	1
1,2,4-Trichlorobenzene	0.37	U *	1.0	0.37	ug/L			01/01/19 02:22	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			01/01/19 02:22	1
1,3-Dichlorobenzene	0.34	U	1.0	0.34	ug/L			01/01/19 02:22	1
1,4-Dichlorobenzene	0.76	U	1.0	0.76	ug/L			01/01/19 02:22	1
1,4-Dioxane	28	U	50	28	ug/L			01/01/19 02:22	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			01/01/19 02:22	1
2-Hexanone	2.9	U	5.0	2.9	ug/L			01/01/19 02:22	1
4-Methyl-2-pentanone (MIBK)	2.7	U	5.0	2.7	ug/L			01/01/19 02:22	1
Acetone	10		5.0	5.0	ug/L			01/01/19 02:22	1
Benzene	0.43	U	1.0	0.43	ug/L			01/01/19 02:22	1
Bromoform	0.54	U	1.0	0.54	ug/L			01/01/19 02:22	1
Bromomethane	1.0	U	1.0	1.0	ug/L			01/01/19 02:22	1
Carbon disulfide	0.16	U	1.0	0.16	ug/L			01/01/19 02:22	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			01/01/19 02:22	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			01/01/19 02:22	1
Chlorobromomethane	0.41	U	1.0	0.41	ug/L			01/01/19 02:22	1
Chlorodibromomethane	0.28	U *	1.0	0.28	ug/L			01/01/19 02:22	1
Chloroethane	0.32	U	1.0	0.32	ug/L			01/01/19 02:22	1
Chloroform	0.33	U	1.0	0.33	ug/L			01/01/19 02:22	1

TestAmerica Edison

Client Sample Results

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Sample ID: 460-172026-6

01/01/19 02:22

01/01/19 02:22

01/01/19 02:22

01/01/19 02:22

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 12/19/18 00:00

Date Received: 12/20/18 21:00

Vinvl chloride

1,2-Dichloroethane

1,2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **MDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed Chloromethane 0.14 U 1.0 0.14 ug/L 01/01/19 02:22 0.22 ug/L cis-1,2-Dichloroethene 0.22 U 1.0 01/01/19 02:22 cis-1,3-Dichloropropene 0.46 U 1.0 0.46 ug/L 01/01/19 02:22 Cyclohexane 0.32 U 1.0 0.32 ug/L 01/01/19 02:22 Dichlorobromomethane 0.34 U 1.0 0.34 ug/L 01/01/19 02:22 Dichlorodifluoromethane 0.12 U 1.0 0.12 ug/L 01/01/19 02:22 Ethylbenzene 0.30 U 1.0 0.30 ug/L 01/01/19 02:22 Ethylene Dibromide 0.50 U 1.0 0.50 ug/L 01/01/19 02:22 01/01/19 02:22 Isopropylbenzene 0.34 ug/L 0.34 U 1.0 Methyl acetate 0.31 U 5.0 0.31 ug/L 01/01/19 02:22 Methyl tert-butyl ether 0.47 U 1.0 0.47 ug/L 01/01/19 02:22 Methylcyclohexane 0.26 ug/L 0.26 U 1.0 01/01/19 02:22 Methylene Chloride 0.32 U 1.0 0.32 ug/L 01/01/19 02:22 m-Xylene & p-Xylene 0.30 U 1.0 0.30 ug/L 01/01/19 02:22 o-Xylene 0.36 U 1.0 0.36 ug/L 01/01/19 02:22 Styrene 0.42 U 1.0 0.42 ug/L 01/01/19 02:22 Tetrachloroethene 0.25 U 1.0 0.25 ug/L 01/01/19 02:22 0.38 ug/L Toluene 0.38 U 1.0 01/01/19 02:22 trans-1.2-Dichloroethene 0.24 U 1.0 0.24 ug/L 01/01/19 02:22 trans-1,3-Dichloropropene 0.49 U 1.0 0.49 ug/L 01/01/19 02:22 Trichloroethene 0.31 U 1.0 0.31 ug/L 01/01/19 02:22 0.14 ug/L Trichlorofluoromethane 0.14 U 1.0 01/01/19 02:22

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					01/01/19 02:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		74 - 132					01/01/19 02:22	1
4-Bromofluorobenzene	89		77 - 124					01/01/19 02:22	1
Dibromofluoromethane (Surr)	92		72 - 131					01/01/19 02:22	1
Toluene-d8 (Surr)	99		80 - 120					01/01/19 02:22	1

1.0

1.0

1.0

1.0

0.17 ug/L

0.43 ug/L

0.43 ug/L

0.38 ug/L

0.17 U

0.43 U

0.43 U

0.38 U

TestAmerica Edison

1/4/2019

4

6

8

9

10

Client: NAC Consultants Inc. Project/Site: Sid Harvey

Lab Sample ID: 460-172026-1

Matrix: Water

Client Sample ID: MW-3I Date Collected: 12/19/18 11:30 Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	579845	01/01/19 02:44	VBP	TAL EDI
Total/NA	Prep	3510C			578397	12/24/18 09:07	DXD	TAL EDI
Total/NA	Analysis	8270D SIM ID		1	578622	12/26/18 09:48	CAZ	TAL EDI

Lab Sample ID: 460-172026-2 **Client Sample ID: MW-61** Date Collected: 12/19/18 15:00

Matrix: Water

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			579953	01/02/19 16:45	SZD	TAL EDI
Total/NA	Prep	3510C			578397	12/24/18 09:07	DXD	TAL EDI
Total/NA	Analysis	8270D SIM ID		1	578622	12/26/18 10:05	CAZ	TAL EDI

Client Sample ID: MW-12 Lab Sample ID: 460-172026-3 Date Collected: 12/19/18 13:30

Matrix: Water

Matrix: Water

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	579845	01/01/19 04:35	VBP	TAL EDI
Total/NA	Prep	3510C			578397	12/24/18 09:07	DXD	TAL EDI
Total/NA	Analysis	8270D SIM ID		1	578622	12/26/18 10:22	CAZ	TAL EDI

Client Sample ID: DUP Lab Sample ID: 460-172026-4

Date Collected: 12/19/18 11:30

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			579845	01/01/19 03:06	VBP	TAL EDI
Total/NA	Prep	3510C			578397	12/24/18 09:07	DXD	TAL EDI
Total/NA	Analysis	8270D SIM ID		1	578622	12/26/18 10:38	CAZ	TAL EDI

Client Sample ID: ERB Lab Sample ID: 460-172026-5

Date Collected: 12/19/18 12:14 **Matrix: Water**

Date Received: 12/20/18 21:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	579845	01/01/19 02:00	VBP	TAL EDI
Total/NA	Prep	3510C			578397	12/24/18 09:07	DXD	TAL EDI
Total/NA	Analysis	8270D SIM ID		1	578622	12/26/18 10:55	CAZ	TAL EDI

TestAmerica Edison

Lab Chronicle

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Sample ID: 460-172026-6

Matrix: Water

Date Collected: 12/19/18 00:00 Date Received: 12/20/18 21:00

Client Sample ID: Trip Blank

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	579845	01/01/19 02:22	VBP	TAL EDI

Laboratory References:

TAL EDI = TestAmerica Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

2

9

10

Accreditation/Certification Summary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Laboratory: TestAmerica Edison

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11452	04-01-19

4

5

7

9

10

Method Summary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL EDI
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL EDI
5030C	Purge and Trap	SW846	TAL EDI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = TestAmerica Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

16

4

5

6

0

9

10

Sample Summary

Client: NAC Consultants Inc. Project/Site: Sid Harvey

TestAmerica Job ID: 460-172026-1

Lab Cample ID	Client Semule ID	Matrix	Callagiad	Descived
Lab Sample ID	Client Sample ID	watrix	Collected	Received
460-172026-1	MW-3I	Water	12/19/18 11:30	12/20/18 21:00
460-172026-2	MW-6I	Water	12/19/18 15:00	12/20/18 21:00
460-172026-3	MW-12	Water	12/19/18 13:30	12/20/18 21:00
460-172026-4	DUP	Water	12/19/18 11:30	12/20/18 21:00
460-172026-5	ERB	Water	12/19/18 12:14	12/20/18 21:00
460-172026-6	Trip Blank	Water	12/19/18 00:00	12/20/18 21:00

3

4

F

6

8

9

10

	Chain of Custody Record	
7 (0)	7	
11 3147	13	D

Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No	Relinquished by:	Paper Medi	Reinquished by 12/28/K	nquished by:		Skin Irritant Poison B Unknown		Tip Blank	の 大 D	MS()	MS	UP	MW-12	MW-6I	MW-3I 12/19/18		Sample Identification Sample Date	sie Valley Stream ssown		consultantsinc.com	31-269-2680		City: TAT Requested (days): Kings Park	ess: terny Street	Inc.		ormation	-ax (732) 549-3679	/// New Dufnam Road
	Company	8 Viss Company	12:38 Company	Date:		nown Radiological		G Water	12:14 G Water	11,39 G Water	(t) 30 G water	U 130 G Water	[3:30 G Water	16;00 G Water			Sample (V=valer, Type S=solid, C=comp, Co-wasteld) BT-Time G=grab) BT-Tissus, A-A/			Task# Org#:	er Requested	Lery	days):	sted:		24-2680	UBat	Chain of Custody Record	
Cooler Temperature(s) °C and Other Remarks:	ny Received by:	py A Received-by	MAC Received by: 08	Time:	Special Instructions/QC Requirements	Sami 460-172026 Chain of Custody		x	iter × ×	iter × × ×	iter × × ×	iter × × ×	iter × × ×	iter × × ×	×		REGISTANT STATE OF THE STATE OF	olatile	Organi MS/MS	c Com	pound	s +TIC			naly	E-Mail: jill.miller@testamericainc.com		y Record	
Remarks:	Date/Time:	Date/Times 2 20/18 2	Date/Tiple:	Method of Shipment:				2	7	7	7	7	7 2 0re		7 2		o S		A CL-EDA			D - Nitric Acid	B - NaOH C - Zn Acetate	Preservation	sis Requested	Page: Page 1 of 2	Carriel Tracking No(s): COC No: 460-106	± # •	
-	Company	2 100 Company w(c	S & Completed			etained longer than 1 month) Archive For Months						4	1 MW-12	in MW-6I	Ares	The second secon	Special Instructions/Note:			U - Acetone V - MCAA	or Acid		H N - None	8	172026	of 2	COC No: 460-106998-68587.1	THE LEADER IN ENVIRONMENTAL TESTING	

Ver: 08/04/2016

Receipt Temperature and pH Log TestAmerica Edison

		Г	T -	1	Г		Т				Т	T	T	7₹		E I Company
														TALS Sample Number		Number of Coolers: Cooler #1 / W Coolers: Cooler #2 / Cooler #3:
!	<u> </u>	<u></u>	<u> </u>	<u>L</u>		<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>] <u>~</u>		まままし
If pH adjustments are required record the information below:														(pH<2)	Ammonia	Cooler #3:
stments a) } }		<u> </u>							(pH<2)	COD	C CONNECTED OF THE PROPERTY OF
are requir														(pH<2)	Nitrate Nitrite	
ed record														(pH<2)	Metals *	JR.Gun# CC CC
the info														(pH<2)	Hardness	00 00 00 00 00 00 00 00 00 00 00 00 00
mation b														(pH 5-9)	Pest	Cooler #5 Cooler #6 Cooler
elow:														(pH<2)	EPH or QAM	S. C.
ļ														(pH<2)	Phenols	iwres:
														(6 <hd)< td=""><td>Sulfide</td><td></td></hd)<>	Sulfide	
														(pH<2)	TKN	Cooler #9:
														(pH<2)	Тос	Cooler#8: ""C
														(pH>12)	Total Cyanide	C C
														(pH<2)	Total Cyanide Total Phos	
															Other	
															Other	on Maria

EDS-WI-038, Rev 4, 06/09/2014

Initials:

Preservative Name/Conc.:

Sample No(s). adjusted:

Lot # of Preservative(s): Expiration Date:

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.

Volume of Preservative used (ml):

Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Date:

Client: NAC Consultants Inc.

Job Number: 460-172026-1

Login Number: 172026 List Source: TestAmerica Edison

List Number: 1

Creator: Pinilla, Angela C

oreator. Fillina, Angela o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Edison

NAC CONSULTANTS, INC.

28 Henry Street Kings Park, New York 11754 631-269-2680 Fax 631-269-2685

April 17, 2019

Robert DeCandia, Jr. P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015

RE: 140 East Mineola Avenue

Sub-Slab Depressurization Performance Monitoring Report

Dear Mr. DeCandia:

On behalf of Sid Harvey Industries Inc, **NAC CONSULTANTS, INC.** is pleased to submit the enclosed "April 2019, Sub-Slab Depressurization System Annual Sub-Slab Sampling, & Performance Monitoring Report".

Please call me if you have any questions.

Sincerely,

NAC CONSULTANTS, INC.

Turbos ahhan

Nicholas A. Andrianas, P.E.

Enclosure

cc: Steve Karpinski (NYSDOH)

Wayne Kempski (NCDOH)

Russell Tumsuden (Sid Harvey Industries, Inc.)

Marc Strauss (Weinstock Bros. Corporation)

Eric Weinstock (Amec Foster Wheeler)

140 East Mineola Avenue Valley Stream, New York Weinstock Brothers Corp.

Sub-Slab Depressurization System Annual Sub-Slab Sampling, & Performance Monitoring Report April 2019

System Performance Overview

On March 5, 2019, the sub-slab depressurization (SSD) system well SSD-1 was found to be operating at a flow rate of 52 cubic feet per minute (CFM), and SSDS well SSD-2 was found to be operating at a flow rate of 55 CFM. Vacuum measurements at wells SSD-1 and SSD-2 were 2.559 and 2.089 inches water column (inches wc), respectively. The blower was turned off March 5, 2019 for sub-slab vapor sampling on March 8, 2019, the system was turned on after the sampling was completed.

System Inspections

The SSD system operates continuously. The vacuum measurement log (Table 1) is enclosed with this report. Drawing 1 shows the -0.010 "we vacuum contour, -0.002 vacuum contour, SSD system well locations, and sub-slab vapor implant (SSVI) locations. Drawing 1 is enclosed with this report. The sub-slab vacuum measurements demonstrate that the SSDS meets the design objective to prevent indoor air migration of VOCs from the sub-slab vapor.

Sub-Slab Vapor and Indoor Air Samples

In accordance with the NYSDEC approved September 2008 Revision, Soil Vapor Intrusion Investigation Work Plan and the February 2010 Mitigative Measures Work Plan, sub-slab vapor, indoor air, and ambient air samples were collected on March 8, 2019. The locations of the indoor samples were selected based on the areas occupied by building personnel on a daily basis. Samples were collected at SSV implants SSVI-7 and SSVI-12. A duplicate sample was collected at SSVI-12. Two indoor air samples were collected (IA-1 and IA-2), as well as an outdoor, ambient air sample (AA-1).

The March 8, 2019 sub-slab vapor and ambient air sampling results are presented in Table 2. The March 2018, March 2017, February 2016, February 2015, January 2013, June 2012, and February/March 2009 sub-slab soil vapor and indoor air sampling results from are presented in Tables 2 through 9. An electronic copy of the laboratory report for the March 8, 2019 sample analyses is enclosed. The sampling locations and the capture zone radius are shown on the SSD System Progress Report Site Plan (Drawing 1).

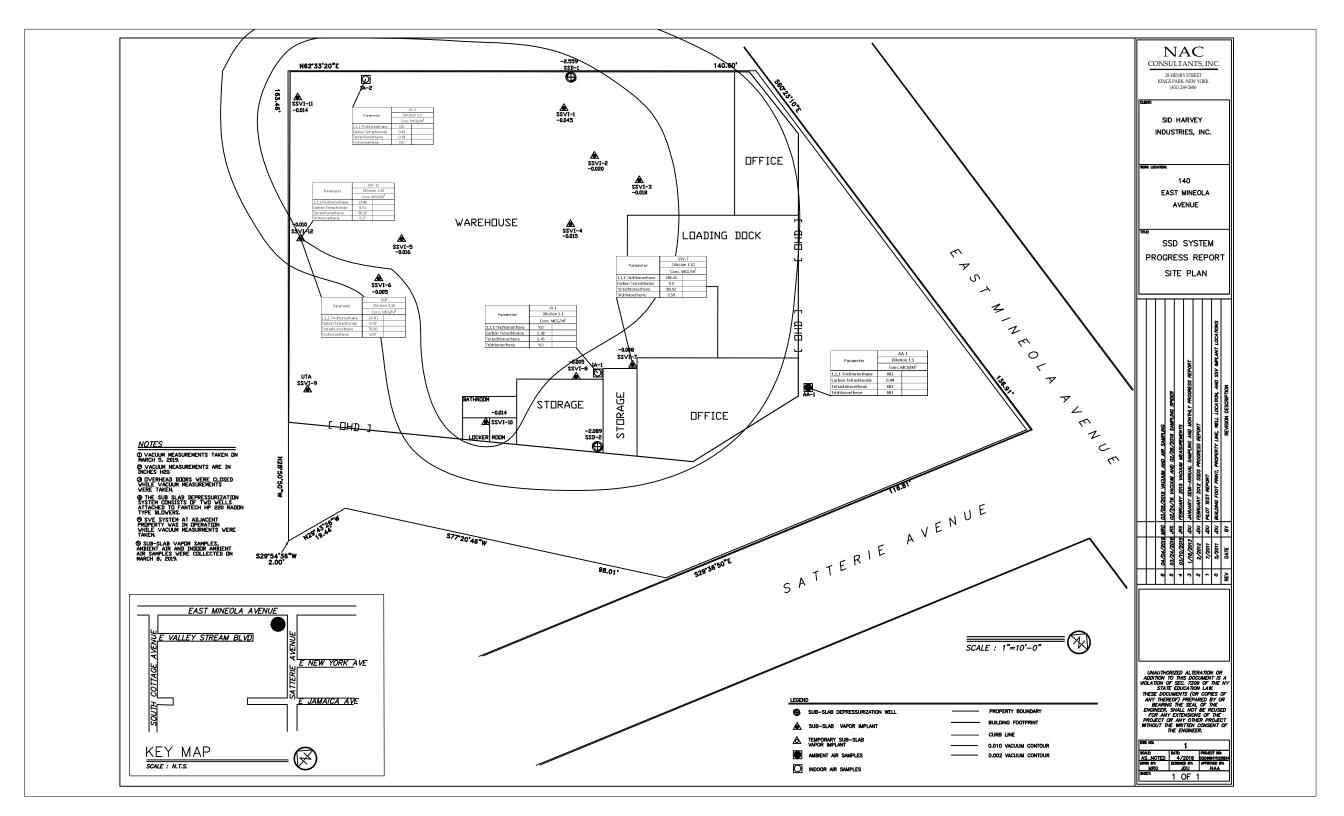
Carbon tetrachloride was detected in the ambient air sample AA-1 (0.44 ug/m³). Carbon tetrachloride was found in both indoor air samples IA-1 (0.38 mcg/m³) and IA-2 (0.43 mcg/m³) at concentrations less than outdoor, ambient air concentration. The results confirm that 1,1,1-trichloroethane and trichloroethene were not detected in the indoor ambient air or outdoor, ambient air samples.

Concentrations of 1,1,1-trichloroethane, trichloroethene, tetrachloroethene and carbon tetrachloride in the SSVI-7 sample fall in the *New York State Department of Health Services, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006* Soil Vapor/Indoor Air Matrices (Appendix A) Matrix Category B-1, "No Further Action."

Concentrations of 1,1,1-trichloroethane, carbon tetrachloride, tetrachloroethene, and trichloroethene in the SSVI-12 sample were less than the concentrations in the matrix range that meet the "no further action" criteria according to the *New York State Department of Health Services, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October* 2006 Soil Vapor/Indoor Air Matrices (Appendix A).

The March 8, 2019 sub-slab soil vapor and indoor air sampling results confirm that the sub-slab vapor concentrations of 1,1,1-trichloroethane, carbon tetrachloride, trichloroethene, and tetrachloroethene have significantly decreased since the SSD system was placed in service in February 2012. The concentrations of 1,1,1-trichloroethane, carbon tetrachloride, tetrachloroethene, and trichloroethene meet the "No Further Action" criteria, in the *New York State Department of Health Services, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006* with the SSD system in operation. The results also confirm that the SSD system meets the remedial objectives of the NYSDEC-approved *February 2010 Mitigative Measures Work Plan*.

Conclusions, System Adjustments, & Recommendations


The sampling results confirm that VOC concentrations meet the "No Further Action" criteria in the *New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006* with the SSD system in operation.

During the March 8, 2019 sampling round, minor breaks/cracks in the concreate floor were observed. The breaks/cracks should be repaired to maintain a proper seal in the floor as a preventative measure to control VOC migration to indoor air.

The SSD system should remain in operation to prevent VOC migration from sub-slab vapor to the indoor air. The next sampling round will be performed in March 2020 in accordance with the

NAC CONSULTANTS, INC.

NYSDEC-approved "Site Management Plan".

140 East Mineola Avenue Valley Stream, NY Sub Slab Depressurization System

Table 1 Vacuum Measurement Log

Inspection Time and Date													
		2/24/2016	3/17/2017	3/5/2019									
		8:00	-	-									
	"WC	-2.540	-2.973	-2.559									
SSD-1	CFM	54	50	52									
	PID	0.0	-	-									
	"WC	-2.300	-2.489	-2.089									
SSD-2	CFM	56	52	55									
	PID	0.0	-	-									
SSVI-1	"WC	-0.045	-0.013	-0.045									
SSVI-2	"WC	-0.012	-0.014	-0.020									
SSVI-3	"WC	-0.013	-0.015	-0.018									
SSVI-4	"WC	-0.020	-0.015	-0.015									
SSVI-5	"WC	-0.005	-0.010	-0.016									
SSVI-6	"WC	-0.010	-0.010	-0.005									
SSVI-7	"WC	-0.012	-0.015	-0.008									
SSVI-8	"WC	-0.010	UTA	-0.005									
SSVI-9	"WC	-0.010	-0.010	-									
SSVI-10	"WC	-0.012	UTA	-0.014									
SSVI-11	"WC	-0.014	-0.012	-0.014									
SSVI-12	"WC	-0.015	-0.010	-0.010									

Remarks: SSD-1 and 2 shut down for sampling after measurements on February 24, 2016. SSD-1 and 2 turned on after sampling on February 26, 2016.

SSD-1 and SSD-2 were temporarily shut down three days prior to sampling on March 9, 2017, and turned back on after sampling was completed.

UTA-Unable to attain

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 8, 2019 Table 2

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1,1-Trichloroethane	13.40	18.90	196.00	ND	ND	ND		20.6	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	ND	ND	9.83	ND	ND	ND		<.09	<.08
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND		9.5	5.8
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND			
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND			
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND			
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND		3.7	2.7
1.3-Butadiene	ND	ND	ND	ND	ND	ND		<3.0	<3.4
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND		<2.4	<2.2
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND		5.5	1.2
1,4-Dioxane	ND	ND	ND	ND	ND	ND			
2,2,4-Trimethylpentane (Isooctane)	ND	ND	ND	ND	ND	ND			
2-Butanone (MEK)	ND	1.04	ND	1.21	1.17	ND			
2-Chlorotoluene	ND	ND	ND	ND	ND	ND			
2-Hexanone (MBK)	ND	ND	ND	ND	ND	ND			
3-Chloropropene (Allyl chloride)	ND	ND	ND	ND	ND	ND			
4-Ethyltoluene	ND	ND	ND	ND	ND	ND		3.6	3
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND			-
Acetone	6.27	4.80	11.60	11.00	10.80	4.51		98.9	43.7
Acetonitrile	ND	ND	ND	ND	ND	ND			
Acrylonitrile	ND	ND	ND	ND	ND	ND			
Benzene	ND	ND	ND	1.28	1.54	ND		9.4	6.6
Benzyl chloride	ND	ND	ND	ND	ND	ND			
Bromodichloromethane	ND	ND	ND	ND	ND	ND			
Bromoethane (Ethyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoethene (Vinyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoform	ND	ND	ND	ND	ND	ND			
Bromomethane	ND	ND	ND	ND	ND	ND		<1.7	<1.6
Carbon disulfide	ND	ND	ND	ND	ND	ND		4.2	3.7
Carbon tetrachloride	0.51	0.53	ND	0.38	0.43	0.44		<1.3	0.7
Chlorobenzene	ND	ND	ND	ND	ND	ND		_	
Chloroethane	ND	ND	ND	ND	ND	ND		<1.1	<1.2

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 8, 2019
- 4. SSD System was temporarily Shutdown for Sampling.
 B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
- D(#)= Result reported from diluted analysis at (#).

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 8, 2019 Table 2 (continued)

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
Chloroform	ND	ND	ND	ND	ND	ND		1.1	0.06
Chloromethane	ND	ND	ND	1.29	1.31	1.10		3.7	3.7
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND			
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Cyclohexane	ND	ND	ND	1.35	1.52	1.37			
Dibromochloromethane	1.59	1.63	1.71	ND	ND	ND			
Ethanol	7.76	5.86	6.76	15.40	17.00	4.86			
Ethyl acetate	ND	ND	ND	ND	ND	ND			
Ethylbenzene	ND	ND	ND	ND	ND	ND		5.7	3.5
Freon 11 (Trichlorofluoromethane)	1.04	1.07	1.33	1.31	1.39	1.37		18.1	4.3
Freon 113 (1,1,2-Trichlorotrifluoroethan	ND	ND	ND	ND	ND	ND			
Freon 114 (1,2-Dichlorotetrafluoroethan	ND	ND	ND	ND	ND	ND			
Freon 12 (Dichlorodifluoromethane)	ND	ND	ND	2.07	2.02	2.01		16.5	8.1
Hexachloro-1,3-butadiene	ND	ND	ND	ND	ND	ND			
Isopropyl alcohol (2-Propanol)	1.15	1.03	1.34	2.21	1.53	ND			
Isopropylbenzene (cumene)	ND	ND	ND	ND	ND	ND			
Methyl Methacrylate	ND	ND	ND	ND	ND	ND			
Methylene chloride	ND	ND	ND	ND	ND	ND	60	10	6.1
Methyl-tert-butyl ether (MTBE)	ND	ND	ND	ND	ND	ND		11.5	6.2
Naphthalene	ND	ND	ND	ND	ND	ND			
n-Butane	ND	ND	ND	ND	ND	ND			
n-Heptane	ND	ND	ND	ND	ND	ND			
n-Hexane	ND	ND	ND	3.40	2.71	2.36		10.2	6.4
Propylene	ND	ND	ND	1.12	ND	ND			
Styrene	ND	ND	ND	ND	ND	ND		1.9	1.3
Tertiary butyl alcohol (TBA)	ND	ND	ND	ND	ND	ND			
Tetrachloroethene	58.20	74.60	89.50	0.45	0.54	ND	30	15.9	6.5
Tetrahydrofuran	ND	ND	ND	ND	ND	ND			
Toluene	ND	ND	ND	2.03	2.06	ND		43	33.7
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND		<u> </u>	
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Trichloroethene	5.27	6.87	0.59	ND	ND	ND	5	4.2	1.3
Vinyl acetate	ND	ND	ND	ND	ND	ND			
Vinyl chloride	ND	ND	ND	ND	ND	ND			
Xylene (Ortho)	ND	ND	ND	ND	ND	ND		7.9	4.6
Xylene (p,m)	ND	ND	ND	1.35	1.60	ND		22.2	12.8

- Air samples analyzed by USEPA Method T0-15.
 ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 8, 2019
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 6, 2018 Table 3

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1,1-Trichloroethane	ND	ND	190.00	ND	ND	ND		20.6	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND		<.09	<.08
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND		9.5	5.8
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND			
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND			
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND			
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND		3.7	2.7
1,3-Butadiene	ND	ND	ND	ND	ND	ND		<3.0	<3.4
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND		<2.4	<2.2
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND		5.5	1.2
1,4-Dioxane	ND	ND	ND	ND	1.90	ND			
2,2,4-Trimethylpentane (Isooctane)	ND	ND	ND	ND	ND	ND			
2-Butanone (MEK)	ND	ND	ND	2.30	7.30	2.30			
2-Chlorotoluene	ND	ND	ND	ND	ND	ND			
2-Hexanone (MBK)	ND	ND	ND	ND	ND	ND			
3-Chloropropene (Allyl chloride)	ND	ND	ND	ND	ND	ND			
4-Ethyltoluene	ND	ND	ND	ND	ND	ND		3.6	3
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	13.00			
Acetone	15.00	ND	ND	13.00	45.00	6.80		98.9	43.7
Acetonitrile	ND	ND	ND	ND	ND	ND			
Acrylonitrile	ND	ND	ND	ND	ND	ND			
Benzene	ND	ND	ND	ND	ND	ND		9.4	6.6
Benzyl chloride	ND	ND	ND	ND	ND	ND			
Bromodichloromethane	ND	ND	ND	ND	ND	ND			
Bromoethane (Ethyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoethene (Vinyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoform	ND	ND	ND	ND	ND	ND			
Bromomethane	ND	ND	ND	ND	ND	ND		<1.7	<1.6
Carbon disulfide	ND	ND	ND	ND	ND	ND		4.2	3.7
Carbon tetrachloride	ND	ND	ND	ND	ND	ND		<1.3	0.7
Chlorobenzene	ND	ND	ND	ND	ND	ND			
Chloroethane	ND	ND	ND	ND	ND	ND		<1.1	<1.2

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 6, 2018
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.

 D(#)= Result reported from diluted analysis at (#).

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 6, 2018 Table 3 (continued)

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
Chloroform	ND	ND	ND	ND	ND	ND		1.1	0.06
Chloromethane	ND	ND	ND	ND	1.30	ND		3.7	3.7
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND			
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Cyclohexane	ND	ND	ND	3.40	3.70	ND			
Dibromochloromethane	ND	ND	ND	ND	ND	ND			
Ethanol	ND	ND	ND	4.70	22.00	4.70			
Ethyl acetate	ND	ND	ND	14.00	34.00	14.00			
Ethylbenzene	ND	ND	ND	ND	ND	ND		5.7	3.5
Freon 11 (Trichlorofluoromethane)	ND	ND	ND	ND	ND	ND		18.1	4.3
Freon 113 (1,1,2-Trichlorotrifluoroethan	ND	ND	ND	ND	ND	ND			
Freon 114 (1,2-Dichlorotetrafluoroethan	ND	ND	ND	ND	ND	ND			
Freon 12 (Dichlorodifluoromethane)	ND	ND	ND	ND	ND	ND		16.5	8.1
Hexachloro-1,3-butadiene	ND	ND	ND	ND	ND	ND			
Isopropyl alcohol (2-Propanol)	ND	ND	ND	4.70	23.00	4.00			
Isopropylbenzene (cumene)	ND	ND	ND	ND	ND	ND			
Methyl Methacrylate	ND	ND	ND	ND	ND	ND			
Methylene chloride	ND	ND	ND	ND	2.50	ND	60	10	6.1
Methyl-tert-butyl ether (MTBE)	ND	ND	ND	ND	ND	ND		11.5	6.2
Naphthalene	ND	ND	ND	ND	ND	ND			
n-Butane	ND	ND	ND	2.50	14.00	2.50			
n-Heptane	ND	ND	ND	ND	ND	ND			
n-Hexane	ND	ND	ND	ND	16.00	ND		10.2	6.4
Propylene	ND	ND	ND	ND	ND	ND			
Styrene	ND	ND	ND	ND	ND	ND		1.9	1.3
Tertiary butyl alcohol (TBA)	ND	ND	ND	ND	ND	ND			
Tetrachloroethene	ND	65.00	110.00	ND	ND	ND	30	15.9	6.5
Tetrahydrofuran	ND	ND	ND	ND	13.00	ND			
Toluene	ND	ND	ND	7.60	16.00	7.60		43	33.7
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND			
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Trichloroethene	ND	ND	ND	ND	ND	ND	5	4.2	1.3
Vinyl acetate	ND	ND	ND	ND	ND	ND			
Vinyl chloride	ND	ND	ND	ND	ND	ND			
Xylene (Ortho)	ND	ND	ND	ND	ND	ND		7.9	4.6
Xylene (p,m)	ND	ND	ND	ND	ND	ND		22.2	12.8

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 6, 2018
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 7, 2017 Table 4

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1,1-Trichloroethane	29.00	ND	130.00	ND	ND	ND		20.6	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND		<.09	<.08
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2,4-Trimethylbenzene	ND	ND	ND	3.30	5.40	ND		9.5	5.8
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND			
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND			
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND			
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND		3.7	2.7
1,3-Butadiene	ND	ND	ND	ND	ND	ND		<3.0	<3.4
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND		<2.4	<2.2
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND		5.5	1.2
1,4-Dioxane	ND	ND	ND	ND	ND	ND			
2,2,4-Trimethylpentane (Isooctane)	ND	ND	ND	ND	ND	ND			
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND			
2-Chlorotoluene	ND	ND	ND	ND	ND	ND			
2-Hexanone (MBK)	ND	ND	ND	ND	ND	ND			
3-Chloropropene (Allyl chloride)	ND	ND	ND	ND	ND	ND			
4-Ethyltoluene	ND	ND	ND	3.40	5.30	ND		3.6	3
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND			
Acetone	19.00	28.00	26.00	67.00	190.00 D (1:10)	5.50		98.9	43.7
Acetonitrile	ND	ND	ND	ND	ND	ND			
Acrylonitrile	ND	ND	ND	ND	ND	ND			
Benzene	ND	ND	ND	ND	ND	ND		9.4	6.6
Benzyl chloride	ND	ND	ND	ND	ND	ND			
Bromodichloromethane	ND	ND	ND	ND	ND	ND			
Bromoethane (Ethyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoethene (Vinyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoform	ND	ND	ND	ND	ND	ND			
Bromomethane	ND	ND	ND	ND	ND	ND		<1.7	<1.6
Carbon disulfide	ND	ND	ND	ND	ND	ND		4.2	3.7
Carbon tetrachloride	ND	ND	ND	ND	ND	ND		<1.3	0.7
Chlorobenzene	ND	ND	ND	ND	ND	ND			
Chloroethane	ND	ND	ND	ND	ND	ND		<1.1	<1.2

Notes:

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 7, 2017
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.

D(#)= Result reported from diluted analysis at (#).

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples March 7, 2017 Table 4 (continued)

Parameter	SSV- Dilution	n 1:10	D I Dilutio	on 1:10	SS' Dilutio	on 1:10	IA Diluti	on 1:1	Diluti		Diluti	A-1 ion 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. M	CG/M ³	Conc. N	ICG/M ³	Conc. N	1CG/M ³	Conc. N	1CG/M ³	Conc. N	ICG/M ³		MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³
Chloroform	ND		ND		ND		ND		ND		ND			1.1	0.06
Chloromethane	ND		ND		ND		1.20		1.20		1.10			3.7	3.7
cis-1,2-Dichloroethene	ND		ND		ND		ND		ND		ND				
cis-1,3-Dichloropropene	ND		ND		ND		ND		ND		ND				
Cyclohexane	ND		ND		ND		3.00		7.70		ND				
Dibromochloromethane	ND		ND		ND		ND		ND		ND				
Ethanol	20.00		50.00		110.00		56.00		490.00	D (1:10)	6.50				
Ethyl acetate	ND		ND		ND		6.90		8.60		3.80				
Ethylbenzene	ND		ND		ND		ND		ND		ND			5.7	3.5
Freon 11 (Trichlorofluoromethane)	ND		ND		ND		ND		ND		ND			18.1	4.3
Freon 113 (1,1,2-Trichlorotrifluoroethan	ND		ND		ND		ND		ND		ND				
Freon 114 (1,2-Dichlorotetrafluoroethan	ND		ND		ND		ND		ND		ND				
Freon 12 (Dichlorodifluoromethane)	ND		ND		ND		ND		ND		ND			16.5	8.1
Hexachloro-1,3-butadiene	ND		ND		ND		ND		ND		ND				
Isopropyl alcohol (2-Propanol)	ND		ND		ND		3.80		5.50		2.10				
Isopropylbenzene (cumene)	ND		ND		ND		ND		ND		ND				
Methyl Methacrylate	ND		ND		ND		ND		ND		ND				
Methylene chloride	ND		ND		ND		ND		ND		ND		60	10	6.1
Methyl-tert-butyl ether (MTBE)	ND		ND		ND		ND		ND		ND			11.5	6.2
Naphthalene	ND		ND		ND		ND		ND		ND				
n-Butane	39.00		92.00		91.00		300.00	D (1:10)	870.00	D (1:10)	4.50				
n-Heptane	ND		ND		ND		3.70		7.50		ND				
n-Hexane	40.00		100.00		93.00		330.00	D (1:10)	1000.00	D (1:10)	2.90			10.2	6.4
Propylene	ND		ND		ND		ND		ND		ND				
Styrene	ND		ND		ND		ND		ND		ND			1.9	1.3
Tertiary butyl alcohol (TBA)	ND		ND		ND		ND		ND		ND				
Tetrachloroethene	110.00		78.00		69.00		ND		ND		ND		30	15.9	6.5
Tetrahydrofuran	ND		ND		ND		ND		ND		ND				
Toluene	ND		ND		ND		3.00		3.50		ND			43	33.7
trans-1,2-Dichloroethene	ND		ND		ND		ND		ND		ND				
trans-1,3-Dichloropropene	ND		ND		ND		ND		ND		ND				
Trichloroethene	ND		ND		ND		ND		ND		ND		5	4.2	1.3
Vinyl acetate	ND		ND		ND		ND		ND		ND				
Vinyl chloride	ND		ND		ND		ND		ND		ND				
Xylene (Ortho)	ND		ND		ND		ND		ND		ND			7.9	4.6
Xylene (p,m)	ND		ND		ND		ND		ND		ND			22.2	12.8

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on March 7, 2017
- 4. SSD System was temporarily Shutdown for Sampling.
 B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
 D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples February 26, 2016 Table 5

Parameter	SSV-12 Dilution 1:10	DUP Dilution 1:10	SSV-7 Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1,1-Trichloroethane	ND	ND	87.00	ND	ND	ND		20.6	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND		<.09	<.08
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND		9.5	5.8
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND			
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND			
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND			
1.3.5-Trimethylbenzene	ND	ND	ND	ND	ND	ND		3.7	2.7
1.3-Butadiene	ND	ND	ND	ND	ND	ND		<3.0	<3.4
1.3-Dichlorobenzene	ND	ND	ND	ND	ND	ND		<2.4	<2.2
1.4-Dichlorobenzene	ND	ND	ND	ND	ND	ND		5.5	1.2
1,4-Dioxane	ND	ND	ND	ND	ND	ND			
2,2,4-Trimethylpentane (Isooctane)	ND	ND	ND	ND	ND	ND			
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND			
2-Chlorotoluene	ND	ND	ND	ND	ND	ND			
2-Hexanone (MBK)	ND	ND	ND	ND	ND	ND			
3-Chloropropene (Allyl chloride)	ND	ND	ND	ND	ND	ND			
4-Ethyltoluene	ND	ND	ND	ND	3.70	ND		3.6	3
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND			
Acetone	14.00	ND	20.00	13.00	15.00	4.80		98.9	43.7
Acetonitrile	ND	ND	ND	ND	ND	ND			
Acrylonitrile	ND	ND	ND	ND	ND	ND			
Benzene	ND	ND	ND	ND	ND	ND		9.4	6.6
Benzyl chloride	ND	ND	ND	ND	ND	ND			
Bromodichloromethane	ND	ND	ND	ND	ND	ND			
Bromoethane (Ethyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoethene (Vinyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoform	ND	ND	ND	ND	ND	ND			
Bromomethane	ND	ND	ND	ND	ND	ND		<1.7	<1.6
Carbon disulfide	ND	ND	ND	ND	ND	ND		4.2	3.7
Carbon tetrachloride	ND	ND	ND	ND	ND	ND		<1.3	0.7
Chlorobenzene	ND	ND	ND	ND	ND	ND			
Chloroethane	ND	ND	ND	ND	ND	ND		<1.1	<1.2

Notes:

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on February 26, 2016
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.

D(#)= Result reported from diluted analysis at (#).

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples February 26, 2016 Table 5 (continued)

Parameter	SSV-1		D i Dilutio	U P on 1:10		V-7 on 1:10	IA Dilutio	on 1:1	I <i>A</i> Diluti	1-2 on 1:1	A A Diluti		NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MC	CG/M ³	Conc. M	ICG/M ³	Conc. N	ICG/M ³	Conc. M	ICG/M ³		ACG/M ³	Conc. N	ACG/M ³	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³
Chloroform	ND		ND		ND		ND		ND		ND			1.1	0.06
Chloromethane	ND		ND		ND		1.20		1.10		1.30			3.7	3.7
cis-1,2-Dichloroethene	ND		ND		ND		ND		ND		ND				
cis-1,3-Dichloropropene	ND		ND		ND		ND		ND		ND				
Cyclohexane	ND		ND		ND		ND		ND		ND				
Dibromochloromethane	ND		ND		ND		ND		ND		ND				
Ethanol	32.00		34.00		47.00		43.00		47.00		5.80				
Ethyl acetate	ND		ND		ND		23.00		28.00		6.50				
Ethylbenzene	ND		ND		ND		ND		ND		ND			5.7	3.5
Freon 11 (Trichlorofluoromethane)	ND		ND		ND		ND		ND		ND			18.1	4.3
Freon 113 (1,1,2-Trichlorotrifluoroethan	ND		ND		ND		ND		ND		ND				
Freon 114 (1,2-Dichlorotetrafluoroethan	ND		ND		ND		ND		ND		ND				
Freon 12 (Dichlorodifluoromethane)	ND		ND		ND		ND		ND		ND			16.5	8.1
Hexachloro-1,3-butadiene	ND		ND		ND		ND		ND		ND				
Isopropyl alcohol (2-Propanol)	28.00		35.00		39.00		19.00		33.00		7.90				
Isopropylbenzene (cumene)	ND		ND		ND		ND		ND		ND				
Methyl Methacrylate	ND		ND		ND		ND		ND		ND				
Methylene chloride	ND		ND		ND		ND		ND		ND		60	10	6.1
Methyl-tert-butyl ether (MTBE)	ND		ND		ND		ND		ND		ND			11.5	6.2
Naphthalene	ND		ND		ND		ND		ND		ND				
n-Butane	ND		ND		ND		100.00	Е	250.00	D (1:10)	2.80				
n-Heptane	ND		ND		ND		ND		2.40		ND				
n-Hexane	ND		ND		ND		110.00		300.00	D (1:10)	ND			10.2	6.4
Propylene	ND		ND		ND		ND		ND		ND				
Styrene	ND		ND		ND		ND		ND		ND			1.9	1.3
Tertiary butyl alcohol (TBA)	ND		ND		ND		ND		ND		ND				
Tetrachloroethene	66.00		70.00		52.00		ND		ND		ND		30	15.9	6.5
Tetrahydrofuran	ND		ND		ND		ND		ND		ND				
Toluene	ND		ND		ND		2.50		3.10		ND			43	33.7
trans-1,2-Dichloroethene	ND		ND		ND		ND		ND		ND				
trans-1,3-Dichloropropene	ND		ND		ND		ND		ND		ND				
Trichloroethene	ND		ND		ND		ND		ND		ND		5	4.2	1.3
Vinyl acetate	ND		ND		ND		ND		ND		ND				
Vinyl chloride	ND		ND		ND		ND		ND		ND		_		_
Xylene (Ortho)	ND		ND		ND		ND		ND		ND			7.9	4.6
Xylene (p,m)	ND		ND		ND		ND		ND		ND			22.2	12.8

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on February 26, 2016
- 4. SSD System was temporarily Shutdown for Sampling.
 B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
 D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples February 9, 2015 Table 7

Parameter	SSV-12 Dilution 1:10	SSV-7 Dilution 1:10	DUP Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1,1-Trichloroethane	ND	130.00	210.00	ND	ND	ND		20.6	2.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND		<.09	<.08
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND		9.5	5.8
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND			
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND			
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND			
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND		3.7	2.7
1,3-Butadiene	ND	ND	ND	ND	ND	ND		<3.0	<3.4
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND		<2.4	<2.2
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND		5.5	1.2
1,4-Dioxane	ND	ND	ND	ND	ND	ND			
2,2,4-Trimethylpentane (Isooctane)	ND	ND	ND	ND	ND	ND			
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND			
2-Chlorotoluene	ND	ND	ND	ND	ND	ND			
2-Hexanone (MBK)	ND	ND	ND	ND	ND	ND			
3-Chloropropene (Allyl chloride)	ND	ND	ND	ND	ND	ND			
4-Ethyltoluene	ND	ND	ND	ND	ND	ND		3.6	3
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND			
Acetone	ND	ND	ND	38.00	60.00	6.20		98.9	43.7
Acetonitrile	ND	ND	ND	ND	ND	ND			
Acrylonitrile	ND	ND	ND	ND	ND	ND			
Benzene	ND	ND	ND	ND	ND	ND		9.4	6.6
Benzyl chloride	ND	ND	ND	ND	ND	ND			
Bromodichloromethane	ND	ND	ND	ND	ND	ND			
Bromoethane (Ethyl bromide)	ND	ND	ND	ND	ND	ND			
Bromoethene (Vinyl bromide)	ND	ND	ND	ND	ND	ND	_		
Bromoform	ND	ND	ND	ND	ND	ND			
Bromomethane	ND	ND	ND	ND	ND	ND		<1.7	<1.6
Carbon disulfide	ND	ND	ND	ND	ND	ND		4.2	3.7
Carbon tetrachloride	ND	ND	ND	ND	ND	ND		<1.3	0.7
Chlorobenzene	ND	ND	ND	ND	ND	ND			
Chloroethane	ND	ND	ND	ND	ND	ND		<1.1	<1.2

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on February 9, 2015
- 4. SSD System was temporarily Shutdown for Sampling.
- B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples February 9, 2015 Table 7 (continued)

Parameter	SSV-12 Dilution 1:10	SSV-7 Dilution 1:10	DUP Dilution 1:10	IA-1 Dilution 1:1	IA-2 Dilution 1:1	AA-1 Dilution 1:1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
Chloroform	ND	ND	ND	ND	ND	ND		1.1	0.06
Chloromethane	ND	ND	ND	1.30	1.30	1.20		3.7	3.7
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND			
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Cyclohexane	ND	ND	ND	ND	ND	ND			
Dibromochloromethane	ND	ND	ND	ND	ND	ND			
Ethanol	ND	ND	ND	19.00	16.00	31.00			
Ethyl acetate	ND	ND	ND	ND	ND	ND			
Ethylbenzene	ND	ND	ND	ND	ND	ND		5.7	3.5
Freon 11 (Trichlorofluoromethane)	ND	ND	ND	ND	ND	ND		18.1	4.3
Freon 113 (1,1,2-Trichlorotrifluoroethan	ND	ND	ND	ND	ND	ND			
Freon 114 (1,2-Dichlorotetrafluoroethan	ND	ND	ND	ND	ND	ND			
Freon 12 (Dichlorodifluoromethane)	ND	ND	ND	ND	ND	ND		16.5	8.1
Hexachloro-1,3-butadiene	ND	ND	ND	ND	ND	ND			
Isopropyl alcohol (2-Propanol)	ND	ND	ND	3.00	3.00	5.60			
Isopropylbenzene (cumene)	ND	ND	ND	ND	ND	ND			
Methyl Methacrylate	ND	ND	ND	ND	ND	ND			
Methylene chloride	ND	ND	ND	2.50	ND	2.50	60	10	6.1
Methyl-tert-butyl ether (MTBE)	ND	ND	ND	ND	ND	ND		11.5	6.2
Naphthalene	ND	ND	ND	ND	ND	ND			
n-Butane	12.00	ND	ND	39.00	59.00	2.70			
n-Heptane	ND	ND	ND	ND	ND	ND			
n-Hexane	ND	ND	ND	34.00	52.00	5.40		10.2	6.4
Propylene	ND	ND	ND	ND	ND	ND			
Styrene	ND	ND	ND	ND	ND	ND		1.9	1.3
Tertiary butyl alcohol (TBA)	ND	ND	ND	ND	ND	ND			
Tetrachloroethene	ND	36.00	63.00	ND	ND	ND	30	15.9	6.5
Tetrahydrofuran	ND	22.00	19.00	2.40	ND	ND			
Toluene	ND	ND	ND	2.60	2.90	ND		43	33.7
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND			
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND			
Trichloroethene	ND	ND	ND	ND	ND	ND	5	4.2	1.3
Vinyl acetate	ND	ND	ND	ND	ND	ND			
Vinyl chloride	ND	ND	ND	ND	ND	ND			
Xylene (Ortho)	ND	ND	ND	ND	ND	ND		7.9	4.6
Xylene (p,m)	ND	ND	ND	ND	ND	ND		22.2	12.8

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on February 9, 2015
- 4. SSD System was temporarily Shutdown for Sampling.
 B = Compound also found in method blank.
- E= Estimated concentration exceeding upper calibration range.
 D= Result reported from diluted analysis.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples January 16, 2013 Table 7

Parameter	SS	V-6	DUP	DUPRE	S	SV-7	IA-1	IA-1RE	IA-2	IA-2RE	AA-1
	Dilution 1:1	Dilution 10:1	Dilution 1:1	Dilution 1:1	Dilution 1:1	Dilution 10:1	Dilution 1:1				
	Conc. MCG/M ³										
1,1,1-Trichloroethane	88.90 E	63.80 D	0.60	0.65	175.00 E	140.00 D	0.16 U				
1,1,2,2-Tetrachloroethane	0.69 U	6.87 U	0.69 U	0.69 U	0.69 U	6.87 U	0.69 U				
1,1,2-Trichloroethane	0.55 U	5.46 U	0.55 U	0.55 U	0.55 U	5.46 U	0.55 U				
1,1,2-Trichlorotrifluoroethane	1.84	3.83 U	0.77	0.77	0.77	3.83 U	0.69 J	0.77	0.61 J	0.69 J	0.54 J
1,1-Dichloroethane	0.20 U	2.02 U	0.20 U	0.20 U	6.07	5.26 D	0.20 U				
1,1-Dichloroethene	0.20 U	1.98 U	0.20 U	0.20 U	0.20 U	1.98 U	0.20 U				
1,2,4-Trichlorobenzene	0.37 U	3.71 U	0.37 U	0.37 U	0.37 U	3.71 U	0.37 U				
1,2,4-Trimethylbenzene	0.54	4.92 U	2.26	2.65	0.98	4.92 U	4.92	4.13	4.38	3.74	1.52
1,2-Dibromoethane	0.77 U	7.69 U	0.77 U	0.77 U	0.77 U	7.69 U	0.77 U				
1,2-Dichlorobenzene	0.60 U	6.01 U	0.60 U	0.60 U	0.60 U	6.01 U	0.60 U				
1,2-Dichloroethane	0.40 U	4.05 U	0.40 U	0.40 U	0.40 U	4.05 U	0.40 U				
1,2-Dichloropropane	0.46 U	4.62 U	0.46 U	0.46 U	0.46 U	4.62 U	0.46 U				
1,3,5-Trimethylbenzene	0.49 U	4.92 U	0.98	1.13	0.49 U	4.92 U	1.62	1.33	1.47	1.23	0.49
1,3-Butadiene	0.22 U	2.21 U	0.22 U	0.22 U	0.22 U	2.21 U	0.22 U				
1,3-Dichlorobenzene	0.60 U	6.01 U	0.60 U	0.60 U	0.60 U	6.01 U	0.60 U				
1,4-Dichlorobenzene	0.60 U	6.01 U	0.60 U	0.60 U	0.60 U	6.01 U	0.60 U				
1,4-Dioxane	0.36 UQ	3.60 UQ	0.36 UQ	0.36 UQ	0.36 UQ	3.60 UQ	0.36 UQ				
2,2,4-Trimethylpentane	0.23 U	2.34 U	0.75	0.75	0.23 U	2.34 U	0.70	0.56	0.65	0.61	0.47
2-Butanone	0.68	2.95 U	0.77	0.74	1.12	2.95 U	0.80	0.71	0.77	0.68	0.41
2-Chlorotoluene	0.52 U	5.18 U	0.52 U	0.52 U	0.52 U	5.18 U	0.52 U				
4-Ethyltoluene	0.49 U	4.92 U	1.43	1.52	0.49 U	4.92 U	1.62	1.28	1.62	1.33	0.49 U
4-Methyl-2-Pentanone	0.20 U	2.05 U	0.41	0.45	0.20 U	2.05 U	0.61	0.49	0.49	0.45	0.20 U
Acetone	6.41	13.80 D	12.10	11.90	7.13	14.70 D	12.40	13.80	12.60	13.10	7.13
Allyl Chloride	0.16 U	1.57 U	0.16 U	0.16 U	0.16 U	1.57 U	0.16 U				
Benzene	0.42	1.60 U	1.25	1.25	0.58	1.60 U	1.28	1.21	1.21	1.12	0.96
Bromodichloromethane	0.33 U	3.35 U	0.33 U	0.33 U	0.33 U	3.35 U	0.33 U				
Bromoethene	0.22 U	2.19 U	0.22 U	0.22 U	0.22 U	2.19 U	0.22 U				
Bromoform	0.52 U	5.17 U	0.52 U	0.52 U	0.52 U	5.17 U	0.52 U				
Bromomethane	0.19 U	1.94 U	0.19 U	0.19 U	0.19 U	1.94 U	0.19 U				
Carbon Disulfide	0.16 U	1.56 U	0.16 U	0.16 U	0.16 U	1.56 U	0.16 U				
Carbon Tetrachloride	0.57	1.89 U	0.31	0.31	0.19 U	1.89 U	0.31	0.31	0.31	0.31	0.31
Chlorobenzene	0.46 U	4.61 U	0.46 U	0.46 U	0.46 U	4.61 U	0.46 U				
Chloroethane	0.26 U	2.64 U	0.26 U	0.26 U	0.26 U	2.64 U	0.26 U				
Chloroform	1.47	2.44 U	0.24 U	0.24 U	0.24 U	2.44 U	0.24 U				

Notes:

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on January 16, 2013
- 4. SSD System was temporarily Shutdown for Sampling.
- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- E (Organics) Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
- E (Inorganics) The reported value is estimated because of the presence of interference.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples January 16, 2013 Table 7 (continued)

Parameter	SS	V-6	DUP	DUPRE	SS	SV-7	IA-1	IA-1RE	IA-2	IA-2RE	AA-1
1 ai ainetei	Dilution 1:1	Dilution 1:10	Dilution 1:1	Dilution 1:1	Dilution 1:1	Dilution 1:10	Dilution 1:1				
											_
	Conc. MCG/M ³										
Chloromethane	0.21 U	2.07 U	0.87	0.89	0.52	2.07 U	0.83	0.89	0.81	0.89	0.72
cis-1,2-Dichloroethene	0.40 U	3.96 U	0.40 U	0.40 U	0.40 U	3.96 U	0.40 U				
cis-1,3-Dichloropropene	0.45 U	4.54 U	0.45 U	0.45 U	0.45 U	4.54 U	0.45 U				
Cyclohexane	0.34 U	3.44 U	0.45	0.45	0.34 U	3.44 U	0.48	0.55	0.41	0.45	0.34 U
Dibromochloromethane	0.43 U	4.26 U	0.43 U	0.43 U	0.43 U	4.26 U	0.43 U				
Dichlorodifluoromethane	1.04	2.47 U	1.19	1.19	1.38	2.47 U	1.38	1.14	1.38	1.29	1.58
Dichlorotetrafluoroethane	0.35 U	3.49 U	0.35 U	0.35 U	0.35 U	3.49 U	0.35 U				
Ethyl Benzene	0.48	4.34 U	2.82	2.82	0.61	4.34 U	2.52	2.04	2.35	2.04	0.65
Heptane	0.41 U	4.10 U	1.07	1.11	0.41 U	4.10 U	1.02	0.98	0.98	0.86	0.45
Hexachloro-1,3-Butadiene	1.07 U	10.70 U	1.07 U	1.07 U	1.07 U	10.70 U	1.07 U	1.07 U	1.07 U	1.07 U	1.07 U
Hexane	0.88	1.76 U	3.38	3.49	1.16	1.76 U	3.24	3.07	5.64	5.29	6.34
m/p-Xylene	1.69	8.69 U	9.56	9.56	2.17	8.69 U	9.12	7.82	8.25	7.38	2.35
Methyl Methacrylate	0.41 U	4.09 U	0.41 U	0.41 U	0.41 U	4.09 U	0.41 U				
Methyl tert-Butyl Ether	0.18 U	1.80 U	0.18 U	0.18 U	0.18 U	1.80 U	0.18 U				
Methylene Chloride	2.12	1.74 U	1.84	1.91	4.17	1.74 U	2.05	2.26	16.30	17.70	2.99
o-Xylene	0.52	4.34 U	3.52	3.65	0.78	4.34 U	3.43	2.78	3.13	2.78	0.83
Styrene	0.43 U	4.26 U	0.43 U	0.43 U	0.43 U	4.26 U	0.43 U				
t-1,3-Dichloropropene	0.45 U	4.54 U	0.45 U	0.45 U	0.45 U	4.54 U	0.45 U				
tert-Butyl alcohol	0.30 U	3.03 U	0.30 U	0.30 U	0.30 U	3.03 U	0.30 U				
Tetrachloroethene	46.10	35.30 D	0.88	0.95	50.90	40.70 D	1.08	1.02	0.81	0.68	0.34
Tetrahydrofuran	0.29 U	2.95 U	0.29 U	0.29 U	0.29 U	2.95 U	0.29 U				
Toluene	3.47	1.88 U	6.03	6.03	3.09	1.88 U	6.41	5.65	6.41	5.65	3.32
trans-1,2-Dichloroethene	0.40 U	3.96 U	0.40 U	0.40 U	0.40 U	3.96 U	0.40 U				
Trichloroethene	22.60	17.20 D	0.21	0.21	0.38	1.61 U	0.21	0.21	0.16 U	0.16 U	0.16 U
Trichlorofluoromethane	1.69	2.81 U	1.52	1.57	1.52	2.81 U	1.52	1.74	1.52	1.52	1.40
Vinyl Chloride	0.08 U	0.77 U	0.08 U	0.08 U	0.08 U	0.77 U	0.08 U				

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- 3. Samples collected in Summa Cannisters on January 16, 2013
- 4. SSD System was temporarily Shutdown for Sampling.
- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.
- The concentration given is an approximate value.
- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- E (Organics) Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
- E (Inorganics) The reported value is estimated because of the presence of interference.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples June 28, 2012 Table 8

Parameter	SSV-6	DUP	SSV-7	IA-1	IA-2	AA-1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
1,1-Dichloroethane	1.42	1.54	1.13	< 0.81	< 0.81	< 0.81	-	< 0.9	< 0.8
1,1-Dichloroethene	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	-	-	-
1,2-Dibromoethane	< 1.54	< 1.54	< 1.54	< 1.54	< 1.54	< 1.54	-	-	-
1,2-Dichlorobenzene (v)	< 3.01	< 3.01	< 3.01	< 3.01	< 3.01	< 3.01	-	-	-
1,2-Dichloroethane	< 2.03	< 2.03	< 2.03	< 2.03	< 2.03	< 2.03	-	-	-
1,2-Dichloropropane	< 2.31	< 2.31	< 2.31	< 2.31	< 2.31	< 2.31	-	-	-
1,2-Dichlorotetrafluoroethane	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	-	-	-
1,3-Butadiene	< 2.21	< 2.21	< 2.21	< 2.21	< 2.21	< 2.21	-	<3.0	<3.4
1,3-Dichlorobenzene (v)	< 3.01	< 3.01	< 3.01	< 3.01	< 3.01	< 3.01	-	<2.4	<2.2
1,4-Dichlorobenzene (v)	< 1.20	< 1.20	3.37	< 1.20	< 1.20	< 1.20	-	5.5	1.2
1,4-Dioxane	< 3.60	< 3.60	< 3.60	< 3.60	< 3.60	< 3.60	-	-	-
1,1,1-Trichloroethane	349.00	329.00	4.80	< 1.09	< 1.09	< 1.09	-	20.6	2.6
1,1,2-Trichloroethane	< 1.09	< 1.09	< 1.09	< 1.09	< 1.09	< 1.09	-	-	-
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.20	8.81	< 1.53	< 1.53	< 1.53	< 1.53			
1,1,2,2-Tetrachloroethane	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37	< 1.37	-	-	-
1,2,4-Trimethylbenzene	1.47	1.13	3.64	2.46	2.61	1.62	-	9.5	5.8
1,3,5-Trimethylbenzene	< 2.46	< 2.46	1.08	< 2.46	< 2.46	< 2.46	-	3.7	2.7
2,2,4-Trimethylpentane	< 2.33	< 2.33	4.02	1.87	1.49	< 2.33	-	-	-
2-Hexanone	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	< 2.05	-	-	-
3-Chloropropene	< 1.57	< 1.57	< 1.57	< 1.57	< 1.57	< 1.57	-	-	-
Acetone	45.80	50.20	55.40	94.30	55.40	33.60	-	98.9	43.7
Acrylonitrile	< 2.17	< 2.17	< 2.17	< 2.17	< 2.17	< 2.17	-	-	-
Benzene	< 0.64	< 0.64	1.02	0.74	0.70	< 0.64	-	9.4	6.6
Benzyl Chloride	< 2.59	< 2.59	< 2.59	< 2.59	< 2.59	< 2.59	-	-	-
Bromodichloromethane	< 1.33	< 1.33	< 1.33	< 1.33	< 1.33	< 1.33	-	-	-
Bromoform	< 2.07	< 2.07	< 2.07	< 2.07	< 2.07	< 2.07	-	-	-
Bromomethane	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	-	<1.7	<1.6
c-1,2-Dichloroethene	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	-	-	-
c-1,3Dichloropropene	< 2.27	< 2.27	< 2.27	< 2.27	< 2.27	< 2.27	-	-	-
Carbon disulfide	1.68	< 1.56	< 1.56	< 1.56	< 1.56	8.94	-	4.2	3.7
Carbon Tetrachloride	1.51	1.51	< 2.52	< 2.52	< 2.52	< 2.52	-	<1.3	0.7
Chlorobenzene	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	< 0.92	-	-	-
Chlorodibromomethane	< 1.69	< 1.69	< 1.69	< 1.69	< 1.69	< 1.69	-	-	-
Chloroethane	< 2.64	< 2.64	< 2.64	< 2.64	< 2.64	1.03	-	<1.1	<1.2

- 1. Air samples analyzed by USEPA Method T0-15.
- 2. ND Not Detected.
- Samples collected in Summa Cannisters on June 28, 2012
 SSD System was temporarily Shutdown for Sampling.

140 East Mineola Avenue Valley Stream, NY Sub-Slab Vapor and Ambient Air Samples June 28, 2012 Table 8 (continued)

Parameter	SSV-6	DUP	SSV-7	IA-1	IA-2	AA-1	NYSDOH Air Guideline Values	USEPA BASE Indoor Air Concentrations	USEPA BASE Outdoor Air Concentrations
	Conc. MCG/M ³	Conc. MCG/M ³	Conc. MCG/M ³						
Chloroform	4.83	5.18	< 0.97	< 0.97	< 0.97	< 0.97	-	1.1	0.6
Chloromethane	0.68	0.54	1.26	1.16	1.16	< 2.07	-	3.7	3.7
Cyclohexane	< 0.69	< 0.69	1.24	0.86	0.72	< 0.69	-	-	-
Dichlorodifluoromethane	< 0.99	< 0.99	2.37	2.47	2.42	2.37	-	16.5	8.1
Ethyl Acetate	< 18.01	< 18.01	< 18.01	< 18.01	< 18.01	< 18.01	-	-	-
Ethyl alcohol	67.00	45.60	196.00	63.00	138.00	25.70	-	-	-
Ethyl Benzene	< 0.87	< 0.87	1.69	1.22	1.09	< 0.87	-	5.7	3.5
Freon 113	< 0.77	< 0.77	< 0.77	< 0.77	< 0.77	< 0.77	-	-	-
Heptane	< 2.05	< 2.05	2.46	2.34	1.43	< 2.05	-	-	-
Hexachlorobutadiene	< 5.34	< 5.34	< 5.34	< 5.34	< 5.34	< 5.34	-	-	-
Hexane	2.40	2.33	2.57	61.70	28.10	1.48	1	10.2	6.4
Isopropyl Alcohol	4.55	3.81	16.30	6.81	7.69	4.69	•	=	-
m + p Xylene	2.22	1.91	6.08	4.04	3.52	2.39	-	22.2	12.8
Methyl Butyl Ketone	1.56	1.47	1.31	< 0.82	< 0.82	1.02	-	-	-
Methyl Ethyl Ketone	9.97	8.76	5.99	4.90	4.04	4.13	•	=	-
Methylene Chloride	1.13	1.05	8.35	1.83	1.48	1.16	60.00	10.0	6.1
Methylisobutylketone	4.02	3.11	2.99	< 4.10	2.17	0.86	1	-	-
o Xylene	< 0.87	< 0.87	2.35	1.61	1.35	1.00	-	7.9	4.6
p-Ethyltoluene	< 2.46	< 2.46	< 2.46	< 2.46	< 2.46	< 2.46	-	3.6	3.0
Propylene	1.34	< 0.86	1.53	2.75	1.41	0.69	-	-	-
Styrene	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	-	1.9	1.3
t-1,2-Dichloroethene	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	-	-	-
t-1,3Dichloropropene	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	< 0.91	-	-	-
ter.ButylMethylEther	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	-	11.5	6.2
tert. Butyl Alcohol	3.52	3.52	1.79	2.00	1.33	1.42	-		
Tetrachloroethene	161.00	173.00	1.83	< 1.36	< 1.36	< 1.36	100.00	15.9	6.5
Tetrahydrofuran	2.03	1.50	1.09	< 1.47	< 1.47	< 1.47	-	-	-
Toluene	4.33	3.54	16.30	21.20	28.30	4.75	-	43.0	33.7
Trichloroethene	66.10	70.50	< 1.07	< 1.07	< 1.07	< 1.07	5.00	4.2	1.3
Trichlorofluoromethane	2.25	2.08	2.81	4.44	4.38	4.72	-	18.1	4.3
Vinyl Acetate	< 1.76	< 1.76	< 1.76	< 1.76	< 1.76	< 1.76	-	-	-
Vinyl Bromide	< 0.88	< 0.88	< 0.88	< 0.88	< 0.88	< 0.88	-	=	-
Vinyl Chloride	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	-	-	-
Helium %	1.4	2.4	0.12	< 0.010	< 0.010	0.095	-	-	-

- Air samples analyzed by USEPA Method T0-15.
 ND Not Detected.
- 3. Samples collected in Summa Cannisters on June 28, 2012
- 4. SSD System was temporarily Shutdown for Sampling.

140 East Mineola Avenue Valley Stream, NY

February/March 2009 Soil Vapor Intrusion Investigation Sampling Round Table 9+A61 - Sub-Slab Soil Vapor and Indoor Air Sampling Results Page 1 of 2

Sample Location	140 East	Mineola Avenue.	, Valley Stream, N	ew York		USEPA BASE	USEPA BASE
Sample Type	Sub-Slab	Soil Vapor	Indoo	or Air	NINGER CALL		
Sample Identification	140EN	A-SSV	140E	M-IA	NYSDOH Air	Indoor Air	Outdoor Air
Laboratory Identification	2908	13.09	2908	13.04	Guideline Values	Concentrations	Concentrations
Sample Collection Date		4, 2009		4, 2009		90 th Percentile	90 th Percentile
Concentration Units	Conc. (mcg/m ³)	LRL (mcg/m ³)	Conc. (mcg/m ³)	LRL (mcg/m ³)	Conc. (mcg/m ³)	Conc. (mcg/m ³)	Conc. (mcg/m ³)
Sample Parameters	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, , , , , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · · · · · · · · · · · · · · · · · ·		
Propylene	ND 1	0.86	ND	0.86	-	-	-
Dichlordifluoromethane	ND	0.99	ND	0.99	-	16.5	8.1
1,2-Dichlorotetrafluoroethane	ND	0.70	ND	0.70	-	-	-
Chloromethane	ND	0.41	ND	0.41	-	3.7	3.7
1,3-Butadiene	ND	2.21	ND	2.21	-	< 3.0	< 3.4
Vinyl Chloride	ND	0.13	ND	0.13	_	-	_
Bromomethane	ND	0.39	ND	0.39	-	< 1.7	< 1.6
Chloroethane	ND	1.32	ND	1.32	-	< 1.1	< 1.2
Vinyl Bromide	ND	0.44	ND	0.44	-	-	-
Trichlorofluoromethane	ND	0.56	ND	0.56	-	18.1	4.3
Ethyl Alcohol	ND	3.77	48.96	3.77	-	_	-
Freon 113	ND	0.77	ND	0.77	-	-	-
1,1-Dichloroethene	150.86	0.40	ND	0.40	-	-	-
Acetone	ND	1.19	99.88	2.38	-	98.9	43.7
Carbon Disulfide	ND	0.31	ND	0.31	-	4.2	3.7
Isopropyl Alcohol	ND	12.28	ND	12.28	-	-	-
3-Chloropropene	ND	1.57	ND	1.57	-	-	-
Methylene Chloride	ND	0.35	ND	0.35	60	10	6.1
tert. Butyl Alcohol	ND	6.06	ND	6.06	-	-	-
ter.ButylMethylEther (MTBE)	ND	0.35	ND	0.35	-	11.5	6.2
trans-1,2-Dichloroethene	8.73	0.40	ND	0.40	-	-	-
Acrylonitrile	ND	2.17	ND	2.17	-	-	-
Hexane	ND	1.06	ND	1.06	-	10.2	6.4
Vinyl Acetate	ND	1.76	ND	1.76	-	-	-
1,1-Dichloroethane	401.05	0.41	ND	0.41	-	-	-
cis-1,2-Dichloroethene	26.98	0.40	ND	0.40	-	-	-
Methyl Ethyl Ketone (MEK)	ND	2.95	ND	2.95	-	-	-
Ethyl Acetate	ND	18.01	ND	18.01	-	-	-
Tetrahydrofuran	ND	1.47	ND	1.47	-	-	-
Chloroform	ND	0.49	ND	0.49	-	1.1	0.6
Cyclohexane	ND	0.69	ND	0.69	-	-	-
1,1,1-Trichloroethane	81,885	1.09	14.19	0.55	-	20.6	2.6
Carbon Tetrachloride	ND	0.25	ND	0.25	-	< 1.3	0.7
Benzene	ND	0.32	1.98	0.32	-	9.4	6.6
2,2,4-Trimethylpentane	ND	0.47	ND	0.47	-	-	-
1,2-Dichloroethane	ND	0.41	ND	0.41	-	< 0.9	< 0.8
Heptane	ND	0.82	1.47	0.82	-	-	-
Trichloroethene	2,686.50	0.21	1.24	0.21	5.0	4.2	1.3
1,2-Dichloropropane	ND	0.46	ND	0.46	-	-	-
1,4-Dioxane	ND	3.60	ND	3.60	-	-	-
Bromodichloromethane	ND	0.66	ND	0.66	-	-	-

140 East Mineola Avenue Valley Stream, NY

February/March 2009 Soil Vapor Intrusion Investigation Sampling Round Table 9 - Sub-Slab Soil Vapor and Indoor Air Sampling Results Page 2 of 2

Sample Location	140 East	Mineola Avenue.	, Valley Stream, N	ew York		USEPA BASE	USEPA BASE
Sample Type	Sub-Slab	Soil Vapor	Indo	or Air	NYSDOH Air	Indoor Air	Outdoor Air
Sample Identification	140EN	1-SSV	140E	M-IA	NYSDOH Air Guideline Values	Concentrations	Concentrations
Laboratory Identification	2908	13.09	290813.04		Guideline Values		90 th Percentile
Sample Collection Date	March	4, 2009	March	4, 2009		90 th Percentile	90 ^m Percentile
Concentration Units	Conc. (mcg/m ³)	LRL (mcg/m ³)	Conc. (mcg/m ³)	LRL (mcg/m ³)	Conc. (mcg/m ³)	Conc. (mcg/m ³)	Conc. (mcg/m ³)
Sample Parameters							
cis-1,3-Dichloropropene	ND	0.45	ND	0.45	-	-	-
Methylisobutylketone	ND	4.10	ND	4.10	-	-	-
Toluene	9.79	0.75	3.50	0.38	-	43	33.7
trans-1,3-Dichloropropene	ND	0.45	ND	0.45	-	-	-
1,1,2-Trichloroethane	ND	0.55	ND	0.55	-	-	-
Tetrachloroethene	10,178	1.36	7.46	0.68	100.00	15.9	6.5
2-Hexanone	ND	2.05	ND	2.05	-	-	-
Chlorodibromomethane	ND	0.84	ND	0.84	-	-	-
1,2-Dibromoethane	ND	0.77	ND	0.77	-	-	-
Chlorobenzene	ND	0.46	ND	0.46	-	-	-
Ethyl Benzene	ND	0.43	3.38	0.43	-	5.7	3.5
m + p Xylene	ND	2.17	13.91	0.43	-	22.2	12.8
o-Xylene	ND	0.43	3.56	0.43	-	7.9	4.6
Styrene	ND	0.43	ND	0.43	-	1.9	1.3
Bromoform	ND	1.04	ND	1.04	-	-	-
1,1,2,2-Tetrachloroethane	ND	0.69	ND	0.69	-	1	1
p-Ethyltoluene	ND	0.49	ND	0.49	-	3.6	3.0
1,3,5-Trimethylbenzene	ND	0.49	ND	0.49	-	3.7	2.7
1,2,4-Trimethylbenzene	ND	0.49	ND	0.49	-	9.5	5.8
1,3-Dichlorobenzene (v)	ND	0.60	ND	0.60	-	< 2.4	< 2.2
1,4-Dichlorobenzene (v)	ND	0.60	ND	0.60	-	5.5	1.2
Benzyl Chloride	ND	0.52	ND	0.52	-	•	-
1,2-Dichlorobenzene (v)	ND	0.60	ND	0.60	-	1	-
Hexachlorobutadiene	ND	1.07	ND	1.07	-	1	1

Notes:

2. Environmental Protection Agency (EPA) Building Assessment Survey Evaluation (BASE) Source: NYSDOH, October 2006, Summary of Indoor and Outdoor Levels of

Volatile Organic Compounds from Selected Public and Commercial Office Buildings Reported in Various Locations within Office Settings in NYS, 1994-1996.

^{1.} ND - Not Detected

Wednesday, March 20, 2019

Attn: James D. Urbat NAC Consultants Inc. 28 Henry Street Kings Park, NY 11754

Project ID: 140 EMA SDG ID: GCC66046

Sample ID#s: CC66046 - CC66051

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

March 20, 2019

SDG I.D.: GCC66046

Project ID: 140 EMA

Client Id	Lab Id	Matrix
SSV1-7	CC66046	AIR
SSV1-12	CC66047	AIR
DUP	CC66048	AIR
AA-1	CC66049	AIR
IA-2	CC66050	AIR
IA-1	CC66051	AIR

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

March 20, 2019

SDG I.D.: GCC66046

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat

NAC Consultants Inc. 28 Henry Street Kings Park, NY 11754

Sample Information Custody Information Date <u>Time</u> AIR Collected by: JU 03/08/19 15:52 Matrix: Received by: Location Code: NAC SW 03/12/19 14:56 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Canister Id: 28614 Laboratory Data SDG ID: GCC66046 Phoenix ID: CC66046

Project ID: 140 EMA Client ID: SSV1-7

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	35.9	0.183	0.183	196	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	2.43	0.247	0.247	9.8	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	4.87	0.421	0.421	11.6	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Client ID: SSV1-7

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	ND	0.032	0.032	ND	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.345	0.202	0.202	1.71	1.00	1.00	03/13/19	KCA	1	
Ethanol	3.59	0.531	0.531	6.76	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	0.545	0.407	0.407	1.34	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	13.2	0.037	0.037	89.5	0.25	0.25	03/13/19	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	1
Toluene	ND	0.266	0.266	ND	1.00	1.00	03/13/19	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	03/13/19	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Trichloroethene	0.109	0.037	0.037	0.59	0.20	0.20	03/13/19	KCA	1	
Trichlorofluoromethane	0.236	0.178	0.178	1.33	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	03/13/19	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	03/13/19	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	105	%	%	105	%	%	03/13/19	KCA	1	
% IS-1,4-Difluorobenzene	87	%	%	87	%	%	03/13/19	KCA	1	
% IS-Bromochloromethane	93	%	%	93	%	%	03/13/19	KCA	1	
% IS-Chlorobenzene-d5	91	%	%	91	%	%	03/13/19	KCA	1	

Phoenix I.D.: CC66046

Project ID: 140 EMA Phoenix I.D.: CC66046

Client ID: SSV1-7

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat

NAC Consultants Inc. 28 Henry Street Kings Park, NY 11754

Sample Informa	<u>ition</u>	Custody Informa	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:	JU	03/08/19	15:54
Location Code:	NAC	Received by:	SW	03/12/19	14:56
Rush Request:	Standard	Analyzed by:	see "By" below		
D O #.					

P.O.#:

Laboratory Data SDG ID: GCC66046 Canister Id: 28558 Phoenix ID: CC66047

140 EMA Project ID: SSV1-12 Client ID:

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	2.46	0.183	0.183	13.4	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	2.64	0.421	0.421	6.27	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Phoenix I.D.: CC66047 Client ID: SSV1-12

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	0.081	0.032	0.032	0.51	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.322	0.202	0.202	1.59	1.00	1.00	03/13/19	KCA	1	
Ethanol	4.12	0.531	0.531	7.76	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	0.467	0.407	0.407	1.15	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	8.59	0.037	0.037	58.2	0.25	0.25	03/13/19	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	1
Toluene	ND	0.266	0.266	ND	1.00	1.00	03/13/19	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	03/13/19	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Trichloroethene	0.982	0.037	0.037	5.27	0.20	0.20	03/13/19	KCA	1	
Trichlorofluoromethane	0.186	0.178	0.178	1.04	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	03/13/19	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	03/13/19	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	103	%	%	103	%	%	03/13/19	KCA	1	
% IS-1,4-Difluorobenzene	98	%	%	98	%	%	03/13/19	KCA	1	
% IS-Bromochloromethane	99	%	%	99	%	%	03/13/19	KCA	1	
% IS-Chlorobenzene-d5	99	%	%	99	%	%	03/13/19	KCA	1	

Project ID: 140 EMA Phoenix I.D.: CC66047

Client ID: SSV1-12

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat

NAC Consultants Inc. 28 Henry Street Kings Park, NY 11754

Sample Informa	<u>ition</u>	Custody Inform	<u>ation</u>	<u>Date</u>				
Matrix:	AIR	Collected by:	JU	03/08/19	15:54			
Location Code:	NAC	Received by:	SW	03/12/19	14:56			
Rush Request:	Standard	Analyzed by:	see "By" below					

P.O.#:

Canister Id: 19835 Laboratory Data SDG ID: GCC66046 Phoenix ID: CC66048

Project ID: 140 EMA Client ID: DUP

Client ID: DUP

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	3.47	0.183	0.183	18.9	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	2.02	0.421	0.421	4.80	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Client ID: DUP

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	0.084	0.032	0.032	0.53	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.330	0.202	0.202	1.63	1.00	1.00	03/13/19	KCA	1	
Ethanol	3.11	0.531	0.531	5.86	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	0.419	0.407	0.407	1.03	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	0.353	0.339	0.339	1.04	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	11.0	0.037	0.037	74.6	0.25	0.25	03/13/19	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	1
Toluene	ND	0.266	0.266	ND	1.00	1.00	03/13/19	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	03/13/19	KCA	1	
trans-1,3-Dichloropropene	ND	0.232	0.232	ND	1.00	1.00	03/13/19	KCA	1	
Trichloroethene	1.28	0.037	0.037	6.87	0.20	0.20	03/13/19	KCA	1	
Trichlorofluoromethane	0.191	0.037	0.037	1.07	1.00	1.00	03/13/19	KCA	1	
	ND	0.178	0.176	ND	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	0.20	0.20	03/13/19	KCA	1	
Vinyl Chloride	ND	0.076	0.076	ND	0.20	0.20	03/13/19	KCA	1	
QA/QC Surrogates/Internals	107	0/	0/	107	0/	0/	02/12/10	KC V	4	
% Bromofluorobenzene	107 97	% %	% %	107 97	%	% %	03/13/19 03/13/19	KCA KCA	1	
% IS-1,4-Difluorobenzene					%			KCA	1	
% IS-Bromochloromethane	96	%	%	96	%	%	03/13/19		1	
% IS-Chlorobenzene-d5	93	%	%	93	%	%	03/13/19	KCA	1	

Project ID: 140 EMA Phoenix I.D.: CC66048

Client ID: DUP

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/ Result RL MDL Result RL MDL Date/Time

By

Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Parameter

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat

NAC Consultants Inc. 28 Henry Street Kings Park, NY 11754

Sample Informa	<u>tion</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	AIR	Collected by:	JU	03/08/19	15:35
Location Code:	NAC	Received by:	SW	03/12/19	14:56
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Canister Id: 19165 Laboratory Data SDG ID: GCC66046 Phoenix ID: CC66049

Project ID: 140 EMA

Client ID: AA-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	1.90	0.421	0.421	4.51	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Client ID: AA-1

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	0.070	0.032	0.032	0.44	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	0.533	0.485	0.485	1.10	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	0.398	0.291	0.291	1.37	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.406	0.202	0.202	2.01	1.00	1.00	03/13/19	KCA	1	
Ethanol	2.58	0.531	0.531	4.86	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	0.671	0.284	0.284	2.36	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	ND	0.407	0.407	ND	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene Styrene	ND	0.102	0.132	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	ND	0.037	0.233	ND	0.25	0.25	03/13/19	KCA	1	
	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	1
Tetrahydrofuran Toluene	ND	0.339	0.266	ND	1.00	1.00	03/13/19	KCA	1	·
	ND	0.252		ND	1.00	1.00	03/13/19	KCA	1	
Trans-1,2-Dichloroethene	ND	0.232	0.252 0.221	ND	1.00	1.00	03/13/19	KCA		
trans-1,3-Dichloropropene	ND	0.221	0.221	ND		0.20	03/13/19	KCA	1 1	
Trichloroethene					0.20					
Trichlorofluoromethane	0.244 ND	0.178	0.178	1.37	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	03/13/19 03/13/19	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	03/13/19	KCA	1	
QA/QC Surrogates/Internals	00	07	0/	00	0/	0/	02/42/40	KC A	4	
% Bromofluorobenzene	88	%	%	88	%	%	03/13/19	KCA	1	
% IS-1,4-Difluorobenzene	124	%	%	124	%	%	03/13/19	KCA	1	
% IS-Bromochloromethane	117	%	%	117	%	%	03/13/19	KCA	1	
% IS-Chlorobenzene-d5	132	%	%	132	%	%	03/13/19	KCA	1	

Project ID: 140 EMA Phoenix I.D.: CC66049

Client ID: AA-1

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat NAC Consultants Inc.

28 Henry Street Kings Park, NY 11754

Sample Information Custody Information Date <u>Time</u> AIR Collected by: JU 03/08/19 15:55 Matrix: Received by: Location Code: NAC SW 03/12/19 14:56 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Canister Id: 19630 Laboratory Data SDG ID: GCC66046 Phoenix ID: CC66050

Project ID: 140 EMA

Client ID: IA-2

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	4.56	0.421	0.421	10.8	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	0.482	0.313	0.313	1.54	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	0.069	0.032	0.032	0.43	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	0.634	0.485	0.485	1.31	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	0.442	0.291	0.291	1.52	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.409	0.202	0.202	2.02	1.00	1.00	03/13/19	KCA	1	
Ethanol	9.02	0.531	0.531	17.0	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	0.770	0.284	0.284	2.71	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	0.623	0.407	0.407	1.53	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	0.368	0.230	0.230	1.60	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	0.396	0.339	0.339	1.17	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	4
Propylene	ND	0.581	0.581	ND	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	0.079	0.037	0.037	0.54	0.25	0.25	03/13/19	KCA	1	1
Tetrahydrofuran	ND	0.339	0.339	ND 2.06	1.00	1.00	03/13/19	KCA	1 1	'
Toluene Trans 1.2 Diablareathers	0.548 ND	0.266 0.252	0.266 0.252	2.06 ND	1.00 1.00	1.00 1.00	03/13/19 03/13/19	KCA KCA	•	
Trans-1,2-Dichloroethene	ND	0.232	0.232	ND	1.00	1.00	03/13/19	KCA	1 1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	0.20	0.20	03/13/19	KCA	1	
Trichloroethene Trichlorofluoromethane	0.247	0.037	0.037	1.39	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	0.247 ND	0.178	0.178	ND	1.00	1.00	03/13/19	KCA	1	
Vinyl Chloride	ND	0.131	0.131	ND	0.20	0.20	03/13/19	KCA	1	
•	ND	0.070	0.070	ND	0.20	0.20	03/13/19	NOA	ı	
<u>QA/QC Surrogates/Internals</u> % Bromofluorobenzene	105	%	%	105	%	%	03/13/19	KCA	1	
% IS-1,4-Difluorobenzene	118	%	%	118	%	%	03/13/19	KCA	1	
% IS-Bromochloromethane	109	%	%	109	%	%	03/13/19	KCA	1	
% IS-Chlorobenzene-d5	111	%	%	111	%	%	03/13/19	KCA	1	
, 5 10 0111010001120110 do		, ,			,0	. •	· · ·		-	

Phoenix I.D.: CC66050

Project ID: 140 EMA Phoenix I.D.: CC66050

Client ID: IA-2

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GCC66046

Phoenix ID: CC66051

Analysis Report

March 20, 2019

FOR: Attn: James D. Urbat NAC Consultants Inc.

28 Henry Street Kings Park, NY 11754

Sample Information Custody Information Date <u>Time</u> AIR Collected by: JU 03/08/19 15:52 Matrix: Received by: Location Code: NAC SW 03/12/19 14:56 see "By" below

Laboratory Data

Rush Request: Standard Analyzed by:

Canister Id: 12866

140 EMA Project ID:

Client ID: IA-1

P.O.#:

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	03/13/19	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	03/13/19	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	03/13/19	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	03/13/19	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	03/13/19	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	03/13/19	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Acetone	4.65	0.421	0.421	11.0	1.00	1.00	03/13/19	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	03/13/19	KCA	1	
Benzene	0.402	0.313	0.313	1.28	1.00	1.00	03/13/19	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	03/13/19	KCA	1	

Client ID. IA-1										
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL		Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	03/13/19	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	03/13/19	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	03/13/19	KCA	1	
Carbon Tetrachloride	0.061	0.032	0.032	0.38	0.20	0.20	03/13/19	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	03/13/19	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	03/13/19	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	03/13/19	KCA	1	
Chloromethane	0.625	0.485	0.485	1.29	1.00	1.00	03/13/19	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	03/13/19	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Cyclohexane	0.393	0.291	0.291	1.35	1.00	1.00	03/13/19	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	03/13/19	KCA	1	
Dichlorodifluoromethane	0.419	0.202	0.202	2.07	1.00	1.00	03/13/19	KCA	1	
Ethanol	8.19	0.531	0.531	15.4	1.00	1.00	03/13/19	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	03/13/19	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	03/13/19	KCA	1	
Hexane	0.966	0.284	0.284	3.40	1.00	1.00	03/13/19	KCA	1	
Isopropylalcohol	0.901	0.407	0.407	2.21	1.00	1.00	03/13/19	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	03/13/19	KCA	1	
m,p-Xylene	0.312	0.230	0.230	1.35	1.00	1.00	03/13/19	KCA	1	
Methyl Ethyl Ketone	0.412	0.339	0.339	1.21	1.00	1.00	03/13/19	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	03/13/19	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	03/13/19	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	03/13/19	KCA	1	
Propylene	0.652	0.581	0.581	1.12	1.00	1.00	03/13/19	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	03/13/19	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	03/13/19	KCA	1	
Tetrachloroethene	0.067	0.037	0.037	0.45	0.25	0.25	03/13/19	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	03/13/19	KCA	1	1
Toluene	0.539	0.266	0.266	2.03	1.00	1.00	03/13/19	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	03/13/19	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	03/13/19	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	03/13/19	KCA	1	
Trichlorofluoromethane	0.233	0.178	0.178	1.31	1.00	1.00	03/13/19	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	03/13/19	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	03/13/19	KCA	1	
QA/QC Surrogates/Internals	07	0.4	0/	07	0.6	0/	00/40/40	140.4	4	
% Bromofluorobenzene	97 113	%	%	97	%	%	03/13/19	KCA	1	
% IS-1,4-Difluorobenzene	113 111	%	%	113	%	%	03/13/19	KCA	1	
% IS-Bromochloromethane	111	%	%	111	%	%	03/13/19	KCA	1	
% IS-Chlorobenzene-d5	118	%	%	118	%	%	03/13/19	KCA	1	

Phoenix I.D.: CC66051

Project ID: 140 EMA Phoenix I.D.: CC66051

Client ID: IA-1

ppbv ppbv LOD/ ug/m3 ug/m3 LOD/

Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 20, 2019

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Canister Sampling Information

March 20, 2019

FOR: Attn: James D. Urbat

NAC Consultants Inc. 28 Henry Street

Kings Park, NY 11754

Location Code: NAC

SDG I.D.: GCC66046

Project ID: 140 EMA

						Laboratory					Field				
Client Id	Lab Id	Canis Id	ster Type	Reg. Id	Chk Out Date	Out Hg	In Hg	Out Flow	In Flow	Flow RPD	Start Hg	End Hg	Sampling Start Date	Sampling End Date	
SSV1-7	CC66046	28614	6.0L	5382	03/04/19	-30	-4	10.8	11	1.8	-30	-4	03/08/19 7:52	03/08/19 15:52	
SSV1-12	CC66047	28558	6.0L	5521	03/04/19	-30	-7	10.8	10.8	0.0	-30	-6	03/08/19 7:52	03/08/19 15:54	
DUP	CC66048	19835	6.0L	5657	03/04/19	-30	-6	10.8	10.8	0.0	-30	-7	03/08/19 7:52	03/08/19 15:54	
AA-1	CC66049	19165	6.0L	0260	03/04/19	-30	-3	10.8	11.6	7.1	-30	-4	03/08/19 7:50	03/08/19 15:35	
IA-2	CC66050	19630	6.0L	4982	03/04/19	-30	-5	10.8	11.2	3.6	-30	-6	03/08/19 7:53	03/08/19 15:55	
IA-1	CC66051	12866	6.0L	4956	03/04/19	-30	-6	10.8	10.8	0.0	-30	-7	03/08/19 7:52	03/08/19 15:52	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GCC66046

QA/QC Report

March 20, 2019

QA/QC Data

War 611 20, 2017					-				3001	.D C		740	
Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 470047 (ppbv), Q	C Sami	ole No: C	C66049	(CC66046	6. CC66047.	CC660	48. CC6	66049. (CC6605	0. CC6	56051)		
Volatiles				(-, ,		,			-,	,		
1,1,1,2-Tetrachloroethane	ND	0.150	ND	1.03	98	ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.180	ND	0.98	92	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	98	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.180	ND	0.98	101	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethane	ND	0.250	ND	1.01	97	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.050	ND	0.20	87	ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trichlorobenzene	ND	0.130	ND	0.96	146	ND	ND	ND	ND	NC	70 - 130	25	ı
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	113	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorobenzene	ND	0.170	ND	1.02	98	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichloroethane	ND	0.250	ND	1.01	91	ND	ND	ND	ND	NC	70 - 130	25	
1,2-dichloropropane	ND	0.220	ND	1.02	108	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	90	ND	ND	ND	ND	NC	70 - 130	25	
1,3,5-Trimethylbenzene	ND	0.200	ND	0.98	107	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Butadiene	ND	0.450	ND	0.99	93	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Dichlorobenzene	ND	0.170	ND	1.02	101	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dichlorobenzene	ND	0.170	ND	1.02	98	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dioxane	ND	0.280	ND	1.01	110	ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.240	ND	0.98	106	ND	ND	ND	ND	NC	70 - 130	25	
4-Ethyltoluene	ND	0.200	ND	0.98	102	ND	ND	ND	ND	NC	70 - 130	25	
4-Isopropyltoluene	ND	0.180	ND	0.99	112	ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	101	ND	ND	ND	ND	NC	70 - 130	25	
Acetone	ND	0.420	ND	1.00	85	4.51	4.61	1.90	1.94	NC	70 - 130	25	
Acrylonitrile	ND	0.460	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.310	ND	0.99	100	ND	ND	ND	ND	NC	70 - 130	25	
Benzyl chloride	ND	0.190	ND	0.98	116	ND	ND	ND	ND	NC	70 - 130	25	
Bromodichloromethane	ND	0.150	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.097	ND	1.00	86	ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.260	ND	1.01	87	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.320	ND	1.00	88	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Tetrachloride	ND	0.032	ND	0.20	95	0.44	0.41	0.070	0.066	NC	70 - 130	25	
Chlorobenzene	ND	0.220	ND	1.01	106	ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.380	ND	1.00	90	ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.200	ND	0.98	98	ND	ND	ND	ND	NC	70 - 130	25	
Chloromethane	ND	0.480	ND	0.99	77	1.10	1.16	0.533	0.561	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.256	ND	1.01	100	ND	ND	ND	ND	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	114	ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.290	ND	1.00	104	1.37	1.43	0.398	0.417	NC	70 - 130	25	
Dibromochloromethane	ND	0.120	ND	1.02	99	ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.200	ND	0.99	93	2.01	1.98	0.406	0.401	NC	70 - 130	25	
Ethanol	ND	0.530	ND	1.00	108	4.86	4.76	2.58	2.53	NC	70 - 130	25	

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethyl acetate	ND	0.280	ND	1.01	88	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.240	ND	0.98	99	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	97	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.280	ND	0.99	122	2.36	2.43	0.671	0.689	NC	70 - 130	25
Isopropylalcohol	ND	0.410	ND	1.01	88	ND	ND	ND	ND	NC	70 - 130	25
Isopropylbenzene	ND	0.200	ND	0.98	111	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.340	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	95	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.860	ND	2.99	81	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.180	ND	0.99	105	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	111	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	0.580	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.180	ND	0.99	101	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.230	ND	0.98	115	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	107	ND	ND	ND	ND	NC	70 - 130	25
Tetrahydrofuran	ND	0.340	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.270	ND	1.02	104	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	92	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	100	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.037	ND	0.20	105	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.180	ND	1.01	80	1.37	1.15	0.244	0.205	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.130	ND	1.00	85	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.078	ND	0.20	86	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	101	%	101	%	99	88	101	88	101	NC	70 - 130	25
% IS-1,4-Difluorobenzene	140	%	140	%	115	124	118	124	118	NC	60 - 140	25
% IS-Bromochloromethane	135	%	135	%	108	117	114	117	114	NC	60 - 140	25
% IS-Chlorobenzene-d5	125	%	125	%	120	132	117	132	117	NC	60 - 140	25

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director March 20, 2019

SDG I.D.: GCC66046

Page 24 of 26

Wednesday, March 20, 2019

Sample Criteria Exceedances Report GCC66046 - NAC

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

CHAIN OF CUSTODY RECORD AIR ANALYSES

800-827-5426

email: greg@phoenixlabs.com

Data Delivery:

| Fax f: 631 - 264 - 2695 |
| Email: 3001 but @ 11/16Consulto-ts/nc-(m. 131 - 214-2160 P.O.#

Email: JOVI but @ WACCONSCHO-155/1/C/CM					 AmbienVlade Soil Gas Grab (G) Coo TO-14	AATRIX AN		×	×	×	×	×			Other (☐ 72 Hour Standard	I attest that all media released by Phoenix Environmental Laboratories, Inc. Move been received in good working condition and agree to the terms and conditions as listed on the back of this document:	Date:	
- 24 - 26		×	ables 🗌		Canister Pressure at End ("Hg)		7	9	E	7		×			X	, ,	ır. [oenix Environmenta nd agree to the term		
Email: JOV!	EMA.	: ASP CAT B	NJ Deliverables	llected: M	Canister Sample Pressure at Start Date Start (" Hg)	₩	05 MBE10:31 75:1	1 30	30	30	28	J 30		Data Format: 1745 6 f	Equis	l Time:	□ 48 Hour	tedia released by Phr working condition a ment:	į	
	Name: 140	Requested Deliverable:	MCP	State where samples collected: _	Sampling End Time		16:52	1:52 15:54	7.5215:64	4:50 15:35	小公后衙	15:9-		Data Format	Excel 🔀	D Turnaround Time:	□ 24 Hour	I attest that all media r received in good worki back of this document:	Signature:	
w w	Project Name:		ر (State w	Flow Controller Setting Sampling (mL/min) Start Time	+			1.52	Q:70	7.53	7:52	-	Time:		1511				
email: greg@phoenixlabs.com	15		Kings Park NY	dre	Incoming Flow Canister Flow Controller Pressure Regulator Setting ("Hg) ID# (m//min)		-4 5382 p.8	-7 seal	-6 5657	-3 OBEO	- 5 483	-(p 4956 J		Date:	3-12-19	ill 342-19	Requested Criteria		Quote Number:	
email:	Invoice to: Jaines Clibat	AC CONSULTANTES	28 Henry Street	led by: Simmes Chbato	Outgoing Canister Canister Pressure (T. Hg)	THIS SECT		S8) () SS	35	8	90	·		C PAG PA	Lapri	WINGSON	((ع#ع) (nº)		9	
587 East Middle Tumpile, P.O. Box 370, Manchester, CT 00040 Telephone, 860.645, 1102 - Fax 880.645.0823	Report to: James W. Bat	Customer: NAC Consultate	+	Kings tack, NY 11754 Sampled by	Phoenix ID # Client Sample ID Canister ID #		17	1047 55v1 - 12	MUDUYS DUP	200749 AA-1	1(10/30) TB-2	10051 IB-1		Relinguished by:	Wan I /	1000 XXII	SPECIAL INSTRUCTIONS, OC REQUIREMEYES, REGULATORY INFORMATION: (b) ($_6$			

Cap Inspection Form 100 East Mineola Ave, Valley Stream New York

Person Performing the Inspection: NICHOLAS A. ANDRIANAS Company:	NAC CON	SULTANTS
Weather Conditions: Sunny 65F Date: 10/21/19		
A (1	YES	NO X
Are there any areas from which the asphalt or concrete cap has been removed?		
Describe the Number, Size, and Location of areas:		
	VEC	NO V
Are there any areas of damaged or degraded asphalt or concrete,	YES	NO X
or loose aggregate?		
Number, Size, and Location of the areas:		
	YES	NO X
Are there any significant discontinuities in the asphalt or concrete cap?		
Number, Length, and Location of the discontinuities:		
	YES	NO X
Are there any depressions or sink holes in the asphalt cap?		
Number, Size, and Location of the depressions:		

YES NO X

Date: 10/21/19

Are there any areas of the asphalt that could not be inspected?

Number, Size, and Location of the areas, and reason(s) why the areas could not be inspected:

YES NO X

Are there any heavy vehicles or equipment parked on the asphalt cap? Number, Location, and Description of these vehicles: yes 2 light trucks in east driveway.

Sketch any observed areas of concern: None

Name: Nicholas A. Andrianas

Signature:

Date: October 29, 2019

Cap Inspection Form 100 East Mineola Ave, Valley Stream New York

Person Performing the Inspection: NICHOLAS A. ANDRIANAS Company:	NAC CON	SULTANTS
INC. Weather Conditions: Sunny 70F Date: 6/3/19		
Are there any areas from which the asphalt or concrete cap has been removed? Describe the Number, Size, and Location of areas:	YES	NO X
Are there any areas of damaged or degraded asphalt or concrete, or loose aggregate? Number, Size, and Location of the areas:	YES	NO X
Are there any significant discontinuities in the asphalt or concrete cap? Number, Length, and Location of the discontinuities:	YES	NO X
Are there any depressions or sink holes in the asphalt cap? Number, Size, and Location of the depressions:	YES	NO X

Date: 6/3/19

YES NO X

Are there any areas of the asphalt that could not be inspected?

Number, Size, and Location of the areas, and reason(s) why the areas could not be inspected:

YES NO X

Are there any heavy vehicles or equipment parked on the asphalt cap? Number, Location, and Description of these vehicles: 1 light truck in east driveway.

Turbolis ahharan

Sketch any observed areas of concern: None

Name: Nicholas A. Andrianas

Signature:

Date: June 4, 2019

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 System Operation Log

Dates From: <u>12/07/17</u> To: <u>06/27/18</u>

Inspection Date and Time (24 Hr)	(is the alarm on? yes/no) KO Drum Low Blower		Pressure Measurement ("H ₂ O)	Vacuum Measurement ("H2O)									Temperature Reading	Reading	ding Operator	
	KO Drum		Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Vessel	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	SVE-6	('F)	(cfm)	
12/07/2017	No	No	No	-	58	56	48	30	37	23	46	37	35	80	224	James Urbat
12/11/2017	No	No	No	-	58	56	48	30	37	23	46	45	35	80	224	James Urbat
1/07/2017	No	No	No	-	58	56	48	30	38	23	46	45	34	80	224	James Urbat
1/24/2017	No	No	No	-	58	56	48	30	37	24	48	47	34	80	224	James Urbat
1/31/2018	No	No	No	-	58	56	48	31	39	24	47	35	35	80	224	Lydia Yang
2/8/2018	Yes	Yes	No	-	0	0	0	0	0	18	0	0	0	50	0	Lydia Yang
2/28/2018	Yes	Yes	No	-	0	0	0	0	0	0	0	0	0	50	0	Lydia Yang
3/20/2018	Yes	Yes	No	-	60	60	46	30	40	23	54	49	35	38	350	Lydia Yang
3/28/2018	Yes	Yes	No	-	60	60	45	31	40	23	48	48	40	78	350	Lydia Yang
4/11/2018	Yes	Yes	No	-	60	60	45	30	40	23	47	49	35	100	350	Lydia Yang
4/18/2018	Yes	Yes	No	-	60	60	50	30	40	23	49	50	33	55	350	Lydia Yang
5/8/2018	No	Yes	No	-	100	58	48	28	39	23	47	41	37	110	220	Lydia Yang
5/16/2018	No	Yes	No	-	100	60	46	30	38	22	48	38	37	100	220	Lydia Yang
6/13/2018	Yes	Yes	No	-	56	54	44	26	35	22	40	44	35	98	224	JU/BH
6/27/2018	No	Yes	No	-	55	52	44	26	34	23	45	44	31	120	224	JU/MG

KO Drum									
Date/Time Emptied	Gallons of Water Removed (approx.)								
3/20/2018	50								
3/28/2018	50								
4/11/2018	50								
4/25/2018	50								

5/13/2018 approx. 50 gallons		
_	 	

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 (continued) System Operation Log

Dates From: <u>07/13/18</u> To: <u>2/19/2019</u>

Inspection Date and Time (24 Hr)	Check Alarm Lights (is the alarm on? yes/no)			Pressure Measurement ("H ₂ O)	Vacuum Measurement ("H2O)										Flow Rate Reading	Operator
	KO Drum	Low Vacuum	Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Vessel	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	SVE-6	(°F)	(cfm)	
7/13/2018	No	Yes	No	-	56	54	44	26	34	22	42	44	34	120	224	JDU
7/25/2018	No	Yes	No	-	56	54	46	26	38	23	48	40	34	128	224	MG/BH
8/08/2018	No	Yes	No	-	56	55	46	27	38	23	47	47	36	132	230	MG/BH
8/22/2018	No	Yes	No	-	56	56	46	28	38	23	46	40	36	122	224	MG
9/12/2018	No	Yes	No	-	58	58	48	30	38	23	48	38	36	120	224	MG
9/26/2018	No	Yes	No	-	58	58	48	30	38	23	46	41	37	118	224	MG
10/15/2018	No	Yes	No	-	58	58	48	30	40	23	46	48	38	65	220	JDU/MG
10/25/2018	No	Yes	No	-	58	58	48	30	38	23	46	41	37	118	220	JDU
11/08/2018	No	Yes	No	-	58	58	48	30	38	23	46	41	38	118	220	JDU
11/29/2018	No	Yes	No	-	58	58	48	30	38	22	48	41	38	118	224	MG
12/07/2018	No	Yes	No	-	58	58	48	30	38	22	46	41	37	100	224	JDU
12/13/2018	No	Yes	No	-	58	58	48	30	38	22	48	41	38	100	224	JDU
1/04/2019	No	Yes	No	-	60	58	52	32	42	24	48	48	38	50	224	JDU/MG
1/23/2019	No	Yes	No	-	60	58	52	32	42	24	48	48	38	50	224	JDU/MG
2/19/2019	Yes	Yes	No	-	60	58	52	32	42	24	48	48	38	50	224	JDU

KO Drum								
Date/Time Emptied	Gallons of Water Removed (approx.)							

10/15- Emptied Knockout Vessel								

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 (continued) System Operation Log

Dates From: 2/28/2019 To: 9/26/2019

Inspection Date and Time (24 Hr)	(is the alarm on? ves/no)			Pressure Measurem ent ("H ₂ O)					Temperature Reading	Reading	Operator					
	KO Drum	Low Vacuum	Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Vessel	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	SVE-6	(°F)	(cfm)	
2/28/2019	Yes	Yes	No	-	60	58	52	30	40	24	48	48	36	50	224	JDU
3/12/19	Yes	Yes	No	-	60	58	52	32	42	24	48	48	36	50	224	JDU
3/28/19	Yes	Yes	No	-	60	58	48	30	40	24	48	48	36	50	224	JDU
4/11/19	Yes	Yes	No	-	60	58	48	32	42	24	48	48	36	50	224	JDU
4/25/19	Yes	Yes	No	-	60	58	48	32	42	24	48	48	36	50	-	JDU
5/15/19	No	Yes	No	-	58	52	44	35	45	24	off	30	off	50	(200) -	JDU
5/16/19	No	No	No	-	58	54	46	35	45	40	off	35	off	50	(212) 266	JDU
5/30/2019	No	Yes	No	-	58	54	46	35	45	42	off	32	off	125	(205) 326	JDU
6/13/19	No	No	No	-	58	54	46	35	45	42	off	32	off	125	(205) -	JDU
6/27/19	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(200) 224	JDU
7/18/19	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(212) 224	JDU
7/25/19	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(212) 224	JDU
8/15/19	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(205) 224	JDU
8/29/19	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(212) 224	JDU
9/26/19	-	-	-	-	-	-	-	•		-	-	-	•	-	-	JDU

KO Drum								
Gallons of Water Removed (approx.)								

5/14/19- Closed wells SVE-4 and SVE-6, Reduced flow at SVE-5, Increased flow at SVE-1, SVE-2, SVE-3a &3b.

5/15/19- Numbers in parenthesis are collected using a Dwyer hot wire anemometer.

9/26/19- Unable to gain access to system due to installation of new fence, and sealed access to equipment. Visual inspection from the fence confirm system was in operation.

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 (continued) System Operation Log

Dates From: 9/2/2019 To: 11/05/2019

Inspection Date and Time (24 Hr)	Check Alarm Lights			Pressure Measurem ent ("H ₂ O)	easurem Vacuum Measurement ("H2O)										Flow Rate Reading	Operator
	KO Drum	Low Vacuum	Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Vessel	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	SVE-6	(°F)	(cfm)	
9/30/2019	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(212) 350	JDU
10/15/2019	No	No	No	-	58	54	46	35	45	42	off	32	off	135	(224) 350	JDU
10/25/2019	No	No	No	-	58	54	46	34	42	42	off	32	off	135	(224) 350	JDU
11/5/2019	No	No	No	-	58	54	46	34	42	42	off	32	off	135	-	JDU

KO Drum	Numbers in parenthesis are collected using a Dwyer hot wire anemometer.
Date/Time Emptied Gallons of Water Removed (approx.)	