PERIODIC REVIEW REPORT

100 East Mineola Avenue

Valley Stream, New York

NYSDEC Site Number: V-00145-1

USEPA ID # NYD008923526

Prepared for:

Sid Harvey Industries

Garden City, New York

January 2023

Prepared By: Nicholas A. Andrianas, P.E.

NAA ENGINEERING
1 Sound Breeze Drive

Miller Place, New York 11764

Tel 516-680-1677

nickandrianas@optimum.net

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	SITE OVERVIEW	3
3.0	EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND	
	PROTECTIVENESS	6
4.0	IC/EC PLAN COMPLIANCE REPORT	12
5.0	MONITORING PLAN COMPLIANCE REPORT	14
6.0	OPERATION & MAINTENANCE PLAN COMPLIANCE REPORT	18
7.0	OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS	20

PROFESSIONAL ENGINEER'S CERTIFICATION

In accordance with NYSDEC DER-10, this Periodic Review Report is certified as follows:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the site is compliant with the environmental easement;*
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification
 are in accordance with the requirements of the site remedial program and generally accepted
 engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false

statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Nicholas A. Andrianas, PE am certifying as Remedial Party Designated Site Representative I have been authorized and designated by the remedial party to sign this certification for the site."

No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

Nicholas A. Andrianas, P.E.

REGISTERED PROFESSIONAL ENGINEER NUMBER: 063661

DATE: January 31, 2023

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the remedial program for the 100 East Mineola Avenue property located in Valley Stream, New York ("Site"). The Site was in the New York State (NYS) Voluntary Cleanup Program (VCP) Site No. V-00145-1, which is administered by New York State Department of Environmental Conservation (NYSDEC). This PRR was prepared in accordance with the NYSDEC approved Site Management Plan (SMP) requirements. This report covers the period from November 21, 2021 to November 21, 2022, as requested by NYSDEC. In December 2021 the owner of the property notified Sid Harvey and NYSDEC that the property was sold to Site100 LLC on December 2, 2021. A copy of the notification letter to NYSDEC is attached.

- A. Nature and Extent of Contamination Numerous site investigations were performed between 1998 and 2015. The results of the on-site investigation found that the soil, soil vapor and groundwater beneath the Site and offsite were contaminated by chlorinated solvents from on-site sources and by petroleum products from an off-site, up-gradient source. The groundwater flow direction was determined to be to the south-southwest. The approximate downgradient extent of VOCs in groundwater is East Hawthorne Avenue. The onsite and offsite investigations were completed in 2015. the results of the on-site and the off-site investigations are described in the "May 2015, Remedial Investigation Report."
- B. Effectiveness of the Remedial Program The enhanced anaerobic bioremediation system has reduced the concentrations of total chlorinated VOCs in groundwater, since the treatment chemicals were injected. The SSDS at 140 East Mineola Avenue meets the remedial objective and prevents soil vapor migration from the subsoil to indoor air. The onsite SVE system captures VOC vapors onsite and meets the remedial objective. The system removed approximately 3.4 lbs of total VOCs in soil vapor in 2019, approximately 3.4 pounds in 2020 and 2.8 pounds in 2021 and 2.23 pounds in 2022. The Institutional and

Engineering Controls (ICs and ECs) were incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment, and no changes are needed. An Environmental Easement granted to the NYSDEC, and recorded with the Nassau County Clerk, requires compliance with the NYSDEC approved Site Management Plan (SMP). The ECs and ICs are in place on the site.

- C. Compliance The major elements of the SMP including the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan comply with the SMP requirements.
- D. Recommendations No changes to the SMP are needed. The annual frequency of PRR submittal should continue unchanged. The PRR will include the annual monitoring and O&M results/inspections.

2.0 Site Overview

The site is located at 100 East Mineola Avenue in Valley Stream, Nassau County, New York and is identified as Section 37 Block 75 and Lots 20-24, 25-30, 49-51 on the Valley Stream, Nassau County Tax Map. The site is an approximately 1 acre and is bounded by East Mineola Avenue to the north, East Valley Stream Boulevard, houses, and industrial building to the south, an industrial building and LIRR railroad to the east. The Site consists of an approximate 33,000 square feet building with paved surfaces and a parking area on the north side of the building. The Site is zoned industrial and is currently occupied by multiple tenants. Site occupants include a company that prepares floral arrangements and leases equipment for special events, a Budget Truck rental storage yard, and a Corvette automobile rebuild/storage shop. The site remediation systems and monitoring points are shown on attached figure.

The final selected remedy for the site includes the combined air sparge/ soil vapor extraction (AS/SVE) system, sub-slab depressurization system (SSDS) at the adjoining property, enhanced anaerobic biodegradation to treat groundwater and institutional controls. The NYSDEC issued an April 2016 Sid Harvey Facility Operable Unit 2: Saturated Soil and Groundwater decision document for the site to supplement the OU-1 remedy and the selected elements of the OU-1 and OU-2 remedies are summarized below:

- 1. **Air Sparge with Soil Vapor Extraction (AS/SVE)-** Continue operation of the air sparge system installed as an IRM for this operable unit and the OU1 soil vapor extraction system to address the contaminated soils and groundwater to a depth of about 60 feet below ground surface (bgs).
- 2. **Enhanced Bioremediation-** In-situ enhanced biodegradation was employed to treat VOCs in the areas below 60 feet bgs beyond the influence of the AS/SVE system.

The biological breakdown of contaminants through anaerobic reductive dechlorination is enhanced by multiple and mixed injections of electron donor products and other amendments that were injected into the subsurface to promote microbe growth via injection wells screened at multiple locations and depths.

- 3. **Cover System-** A site cover currently exists and is maintained to allow for industrial use of the site. Any site redevelopment will maintain the existing site cover, which consists either of the structures such as buildings, pavement, sidewalks or soil where the upper one foot of exposed surface soil meets the applicable soil cleanup objectives (SCOs) for industrial use. Any fill material brought to the site will meet the requirements for the identified site use as set forth in 6NYCRR part 375-6.7(d).
- **4. Institutional Control-** Imposition of an institutional control in the form of a deed restriction for the controlled property which addresses the following:
 - requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional controls in accordance with Part 375-1.8(h)(3);
 - allows the use and development of the controlled property for industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
 - restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or Nassau County DOH; and requires compliance with the Department approved Site Management Plan.

The Remedial Action Objectives (RAOs) for the Site as listed in the April 14, 2016 Decision Document are summarized as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

• Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

3.0 Evaluate Remedy Performance, Effectiveness, and Protectiveness

Groundwater

The groundwater remedy for the site at this time is enhanced anaerobic bioremediation. The air sparge remediation system is presently shut down to permit anaerobic bioremediation. The enhanced anaerobic, biological treatment remedy consisted of the January 2017 injection of Regenesis 3DMe, Bio-Dechlor Inoculum Plus and CRS solution at three rows of injection points at the northeast corner of the property. The treatment biological chemicals were injected at a total of 8 points. The NYSDEC approved remedy also includes injection of food grade molasses and Bio-Dechlor Inoculum Plus at wells PMW-3, MW-6I, and MW-12 on a monthly basis. The monthly treatment began in January 2017 and was completed in December 2017 for a total of 12 months.

Groundwater monitoring to track the performance of the enhanced bioremediation for this 2021 PRR was performed in December 2019, December 2021 and the results are summarized in this section. A round of sampling was collected on January Prior to sampling, depth-to-groundwater measurements were taken at all wells. The sampling results for VOCs are presented in Table 1 of the enclosed report. The locations of the monitoring wells and groundwater flow direction are shown on Figure 1 of the report.

On December 14, 2021 an annual round of groundwater samples were monitoring wells MW-3I, MW-6I, and MW-12. The wells were sampled as required by the New York State Department of Environmental Conservation (NYSDEC) approved "May 2018 Site Management Plan" (SMP) to track the effectiveness of the enhanced, anaerobic, biological groundwater remediation put into place at the site in 2017.

The enhanced anaerobic, biological treatment remedy consisted of the January 2017 injection of Regenesis 3DMe, Bio-Dechlor Inoculum Plus and CRS solution at three rows of injection points at the northeast corner of the property. The treatment biological chemicals were injected at a total of 8 points. The NYSDEC approved remedy also includes injection of food grade molasses and Bio-Dechlor Inoculum Plus at wells PMW-3, MW-6I, and MW-12 on a monthly basis. The monthly

treatment began in January 2017 and was completed in December 2017 for a total of 12 months.

The groundwater samples were collected in accordance with the NYSDEC approved May 2018 Site Management Plan. The samples were placed in laboratory prepared sample containers and shipped to Phoenix, Environmental Laboratories Inc., an ELAP certified laboratory located in Manchester, Connecticut. The samples and a trip blank were analyzed for volatile organic compounds (VOCs) as required by the SMP. The laboratory data are enclosed.

Prior to sampling, depth-to-groundwater measurements were taken at all wells. The water level measurements are shown in Table 3. The monitoring well locations and groundwater flow direction are shown on Figures 1 - 2019 and 2020.

2019 VOC Results

The VOC sampling results are presented in Table 2. The December 2019 concentrations of chlorinated volatile organic compounds (CVOCs) at groundwater monitoring wells MW-12, MW-6I and MW-3I have significantly decreased at each well from the baseline, pre-remediation CVOC concentrations found in the round of sampling conducted in August 2016. Hydrogen sulfide odors observed at each monitoring well during sample collection confirm that there is ongoing, active anaerobic, microbiological treatment activity required for the degradation of the CVOCs.

The concentrations of 1,1,1-trichloroethane, trichloroethene and 1,1-dichloroethane were only slightly greater than the Class GA-1 groundwater standards in the sample collected at MW-3I. The concentrations of 1,1-dichloroethene, cis-1,2-dichloroethene and tetrachloroethene, were less than the groundwater standards in the well MW-3I sample. The CVOC concentrations were non-detect in the sample collected at well MW-6I. The CVOCs were detected at concentrations only slightly greater than the Class GA-1 groundwater standards in the sample and the duplicate sample collected from monitoring well MW-12.

The December 2019 sampling results confirm that the NYSDEC approved treatment remedy for objective specified in the RAWP.

2020 VOC Results

The sampling results for VOCs are presented in Table 2. The December 2020 concentrations of chlorinated volatile organic compounds (CVOCs) at groundwater monitoring wells MW-12, MW-6I and MW-3I have significantly decreased at each well from the baseline, pre-remediation CVOC concentrations found in the round of sampling conducted in August 2016. Hydrogen sulfide odors observed at each monitoring well during sample collection are indicative of the active anaerobic, microbiological treatment activity required for the degradation of the CVOCs.

The following VOCs were detected in sample MW-3I: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethene, and trichloroethene. The concentrations are less than the baseline, pre-remediation concentrations of CVOCs.

The following VOCs were detected in sample MW-6I. 1,1,1-trichloroethane, cis-1,2-dichloroethene, and trichloroethene. The concentrations are less than the baseline, pre-remediation concentrations of CVOCs.

The following VOCs were detected in samples MW-12 and DUP: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trichloroethene, 1,2-dichlorobenzene, and trichlorofluoromethane. In addition to the above VOCs, the following VOCs were detected in the DUP sample: ethyl Benzene, m/p-xylenes, o-xylene, tetrachloroethene, toluene, trans-1,2-dichloroethene, trichlorofluoromethane, 1,2-dichlorobenzene, and 1,2,4-trimethylbenzene. The concentrations are greater than the baseline, pre-remediation concentrations of CVOCs. The concentrations of in 1,1,1-trichloroethane and the dechlorination by-product 1,1-dichloroethane increased. The groundwater removed from MW-12 had a strong sulfur odor indicative of active anaerobic bacterial degradation of the CVOCs in accordance with the site enhanced groundwater bioremediation.

2021-2023 VOC Results

The sampling results for VOCs are presented in Table 2. The laboratory results of the December 2021 sampling round are attached. The December 2021 concentrations of chlorinated volatile

organic compounds (CVOCs) at groundwater monitoring wells MW-12, MW-6I and MW-3I have significantly decreased at each well from the baseline, pre-remediation CVOC concentrations found in the round of sampling conducted in August 2016. Hydrogen sulfide odors continue to be observed at each monitoring well during sample collection are indicative of the active anaerobic, microbiological treatment activity required for the degradation of the CVOCs.

The following VOCs were detected in sample MW-3I: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, and trichloroethene. Tetrachloroethylene was not detected. The concentrations are less than the baseline, pre-remediation concentrations of CVOCs.

No VOCs were detected in the sample from monitoring MW-6I.

The following VOCs were detected in samples MW-12 and DUP: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trichloroethene, 1,2-dichlorobenzene, and trichlorofluoromethane. In addition to the above VOCs, the following VOCs were detected in the DUP sample: ethyl benzene, xylenes, dioxane, tetrachloroethene, toluene, trans-1,2-dichloroethene, trichlorofluoromethane, and 1,2,4-trimethylbenzene. The concentrations are greater than the baseline, pre-remediation concentrations of CVOCs. The groundwater removed from MW-12 had a strong sulfur odor indicative of active anaerobic bacterial degradation of the CVOCs in accordance with the site enhanced groundwater bioremediation. The concentrations of 1,1,1-tricholorethane in December 2021 well MW-12 samples were similar to the 2020 concentrations and were 1,040 ug/L and 898 ug/L in the sample and the duplicate sample.

The December 2019-2023 sampling results are plotted in the attached figures and confirm that the NYSDEC approved treatment remedy for groundwater continues to reduce VOCs, as required to achieve the aquifer restoration remedial objective specified in the RAWP. The CVOCs observed at well MW-12 found in the December 2021 also decreased. The latest round of groundwater sample samples were collected on January 17, 2023. The results are included in this report and shown in the tabulated results and graphed to show the continued decease in CVOC concentrations including the decrease in the CVOC concentrations in the sample from MW-12.

<u>SSDS</u>

The SSDS at 140 East Mineola Avenue operates continuously 365 days per year. The SSDS meets the remedial objective. The annual sub-slab vapor and indoor air sampling was performed on March 10, 2022. The sampling results confirm that VOC concentrations meet the "No Further Action" criteria in the New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 with the SSD system in operation.

On February 11 and on March 30, 2022, the SSDS well SSD-1 and SSD-2 were found to be operating at a flow rate of 58 cubic feet per minute (CFM). Vacuum measurements at wells SSD-1 and SSD-2 were 2.8 and 2.0 inches water column (wc), respectively.

The blower vacuum measurements confirm that the SSDS is operating within the design vacuum parameters and maintains the design vacuum response throughout the building footprint to control vapor migration to indoor air, based on the prior sub-slab vacuum measurements.

No corrective actions to the SSDS were needed during this reporting period. The sampling and inspection reports are appended to this PRR. Cracks in the concrete floor were repaired in August 2021 to minimize vapor migration to indoor air. No cracks requiring repairs were observed in 2022.

SVE System

The onsite SVE runs 24 hours per day 365 days system captures soil vapor VOC vapors onsite and meets the remedial objective. The system consists of 7 SVE extraction wells, a 5 HP regenerative blower, a moisture knockout vessel and 2 parallel flow granular activated carbon vessels to remove VOCs from the air stream.

Vacuum and air flow rate are measured monthly to confirm that the system meets the remedial design criteria.

A round of SVE system soil vapor and VGAC air emission samples were collected on October 18, 2022, A copy of the laboratory report is appended to this PRR. The VOC concentrations in the

exhaust air from the SVE stack were screened and compared to the NYSDEC Annual Guidance Concentrations (AGC) and Short term guidance concentrations (SGC) in accordance with the "NYSDEC DAR-1 Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212". The concentrations discharged from the SVE stack were modeled using "AERSCREEN", the NYSDEC screen-level air quality model in accordance with DAR-1. The VOC concentrations modeled in air are less than the DAR-1 Short-term (one-hour) and Annual Guideline Concentrations (AGCs & SGCs) and no emission control modifications were needed in 2022. In September 2021 the carbon vessels were replaced with new vessels, as a preventative measure.

The VOC mass removal rates were calculated based on the blower exhaust VOC concentrations and the SVE blower air flowrate. The SVE system removed approximately 3.4 lbs of total VOCs in soil vapor in 2019, approximately 3.4 pounds in 2020, 2.8 pounds in 2021 and 2.23 pounds in 2022.

Sitewide Cap

A sitewide cap consisting of asphalt and concrete covered surfaces is part of the site remedy. The cap is good condition and prevents ingestion/direct contact with contaminated soil. The cap was inspected on August 11, 2022 and the inspection report is attached. No changes are required to the cap.

4.0 IC/EC Plan Compliance Report

<u>Institutional and Engineering Controls</u>

The institutional and engineering controls and the compliance status as of November 21, 2022 are summarized below:

- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Nassau County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department. The control is in place.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP. The monitoring is performed as required by the SMP. The results are included in this PRR.
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP. The data and information are reported as required by the SMP. The results are included in this PRR.
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP. No activities were performed that disturbed the material.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP. The monitoring is performed and the results are included in this PRR.
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP. The SVE and the SSDS equipment is inspected and maintained as required by the SMP. The inspection and maintenance logs are included with this PRR.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area

NICHOLAS A. ANDRIANAS, P.E.

within the IC boundaries noted on Figure 6, and any potential impacts that are identified must be monitored or mitigated. No buildings were developed in the area.

• Vegetable gardens and farming on the site are prohibited. No vegetable gardening or farming are performed at the site.

The deed restriction for the institutional controls is in place. A copy is appended to this report. The property was sold in December 2021 and the deed was recorded on January 6, 2022. The Institutional and Engineering Controls Certification Form is enclosed.

5.0 Monitoring Plan Compliance Report

The compliance status of each component of the site remedy is summarized in the tables below. No corrective actions or changes are recommended. No deficiencies were noted. The data obtained in compliance with the monitoring requirements are provided in the attached logs and confirm compliance with the remedial action objectives.

SVE System Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
SVE Blower	Flow Rate (CFM)	225 to 300 CFM	Monthly	Yes
SVE Blower	Vacuum (Inches Water Column)	45 to 100 IWC	Monthly	Yes
SVE Wells	Vacuum (Inches Water Column)	10 to 50 IWC	Monthly	Yes
SVE Wells	Flow Rate (CFM)	10 to 100 CFM	Annual	Yes
SVE Well Covers	Soundness	Soundness	Annual	Yes
KO Vessel	Capacity	0 to 35 gallons	Monthly	Yes

General	System	Soundness	Soundness	Monthly	Yes
Piping					
System Ef	fluent	Flow Rate (CFM)	10 to 100 CFM	Annual	Yes
VGAC Vessel	Carbon	VOC (PPM)	Below AGC	Semi-Annual	Yes

AS System Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
AS Compressor	Flow Rate	20-50 CFM	Monthly	See note 1
Deep	(CFM)			
AS Compressor	Pressure (PSI)	28-100 PSI	Monthly	See note 1
Deep				
AS Deep Wells	Flow Rate	10-25 CFM	Monthly	See note 1
	(CFM)			
AS Deep Wells	Pressure (PSI)	28-100 PSI	Monthly	See note 1
AS Compressor	Flow Rate	28-32 CFM	Monthly	See note 1
Shallow	(CFM)			
AS Compressor	Pressure (PSI)	16-22 PSI	Monthly	See note 1
Shallow				
AS Shallow Wells	Flow Rate	10-16 CFM	Monthly	See note 1
	(CFM)			

AS Shallow	Wells	Pressure (PSI)	16-22 PSI	Monthly	See note 1
AS Well Co	overs	Soundness	Soundness	Annual	Yes
General Piping	System	Static Head (PSI)	26-28 PSI	Monthly	Yes

Note 1. Air sparge system shut down during groundwater enhanced anaerobic dechlorination treatment.

SSDS 140 East Mineola Avenue Monitoring Compliance

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule	In Compliance Yes/No
SSDS Well-1	Vacuum (Inches Water Column)	2 to 3 IWC	Semi-Annual	Yes
SSDS Well-1	Flow Rate (CFM)	10 to 50 CFM	Semi-Annual	Yes
SSDS Well-2	Vacuum (Inches WC)	1.8 to 3 IWC	Semi-Annual	Yes
SSDS Well-2	Flow Rate (CFM)	10 to 80 CFM	Semi-Annual	Yes
Sub-Slab Vapor Implants	Soundness	Soundness	Semi-Annual	Yes
General System Piping	Soundness	Soundness	Semi-Annual	Yes

Remedial System Sampling Requirements Compliance

		Analytical Parameters				In Compliance
Sampling Location					Schedule	Yes/No
	VOCs (EPA Method 624)	TAL Metals (EPA Method 6010B)	pH (EPA Method 9040)	VOC (EPA Method TO-15)		
SSDS Well-1				X	Annual	Yes
SSDS Well-2				X	Annual	Yes
SSVI				X	Annual	Yes
Indoor Ambient Air				X	Annual	Yes
Outdoor Ambient Air				X	Annual	Yes
SVE-Wells				X	Annual	Yes
SVE VGAC				X	Semi- Annual	Yes (annual sampling since carbon changeout in 2020)

6.0 Operation & Maintenance (O&M) Plan Compliance Report

The operation, maintenance and monitoring plan for the Site consists of groundwater monitoring to track the enhanced bioremediation remedy, SVE system operation, cap maintenance and SSDS operation at 140 East Mineola Ave. The facility complies with the operation, maintenance and monitoring programs. The components and compliance are summarized below. No corrective actions or changes are recommended. No deficiencies were noted.

Groundwater

The groundwater monitoring O&M requires annual inspections of the condition of the monitoring wells. The wells were inspected on October 20, 2022. No corrective actions were required.

AS/SVE and SSDS

The SVE system is inspected at a minimum monthly and the reports for the period of November 21 2021 to November 21, 2022 are attached. The flow rate, vacuum measurements corrective actions and maintenance are included in the reports.

The requirements are summarized below and O&M results confirm compliance with the remedial system performance criteria. The O&M data are summarized in the enclosed system logs.

AS/SVE and SSDS Remedial System Minimum Operating Requirements

Remedial System Component	Parameter	Minimum Operating Range
SVE Blower	Flow Rate (CFM)	150 CFM
SVE Blower	Vacuum (Inches WC)	45 IWC
SVE Wells	Flow Rate (CFM)	10 CFM
SVE Wells	Vacuum (Inches WC)	10 IWC
VGAC-Carbon Units	Flow Rate (CFM)	10 CFM/Ft ²
VGAC-Carbon Units	PID (PPM)	0.0 PPM

Shallow AS Well	Flow Rate (CFM)	10 CFM
SSDS Blower 1	Vacuum (Inches WC)	2.0 IWC
SSDS Blower 2	Vacuum (Inches WC)	2.0 IWC
SSDS Blower 1	Flow Rate (CFM)	10 CFM
SSDS Blower 2	Flow Rate (CFM)	10 CFM

SITE WIDE CAP

The cap was inspected on August 11, 2022. The asphalt paved surface area and the cracks were repaired, as needed. No additional maintenance was required. The inspection report is appended to this PRR.

7.0 Overall PRR Conclusions and Recommendations

Compliance with the SMP

The SMP includes IC/EC, monitoring, and O&M. The compliance status for each component of the SMP is summarized below.

IC/EC

The institutional and engineering controls and the compliance status are summarized below:

- The use of groundwater underlying the property is prohibited.
- Groundwater, soil vapor and indoor monitoring were performed as defined in this SMP.
- Data and information pertinent to site management were reported at the frequency as defined in the SMP.
- No activities were performed that disturbed remaining contaminated material.
- Monitoring to assess the performance and effectiveness of the remedy was performed as defined in the SMP.
- Operation, maintenance, monitoring, inspection, and reporting of the SVE and the SSDS equipment was performed as required by the SMP.
- No buildings that required vapor intrusion analyses were developed in the area.
- No vegetable gardening or farming were performed at the site.

The deed restriction for the institutional controls is in place.

Monitoring

The SMP required monitoring for groundwater, the AS/SVE system and the SSDS was performed in compliance with the SMP. No corrective actions or changes are recommended. No deficiencies

were noted.

<u>O&M</u>

The SMP required O&M for groundwater, the AS/SVE system and the SSDS was performed compliance with the SMP. No corrective actions or changes are recommended. No deficiencies were noted.

Performance and Effectiveness of the Remedy

This PRR evaluation of the components of the SMP demonstrates that each component of the remedy meets the remedial objectives for the site. No changes are recommended.

Future PRR Submittals

Future PRR submittals should continue at the current frequency.

ALBANESE & ALBANESE LLP

ATTORNEYS AT LAW

1050 Franklin Avenue Garden City, New York 11530 Tel (516) 248-7000 • Fax (516) 747-7777 WWW.Albaneselegal.com

Vincent A. Albanese, Esq. Partner vaalbanese@albaneselegal.com

December 27, 2021

Via Certified Mail, RRR

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7020

Re:

Change of Ownership

100 East Mineola Avenue, Valley Stream, New York Your Matter No. V00145 (Sid Harvey Industries Facility)

Ladies and Gentlemen:

We represent 100 East Properties LLC. Please be advised that the above-referenced commercial premises was sold on December 2, 2021. Fee title to said premises was transferred from 100 East Properties LLC, as seller, to Site 100 LLC, as purchaser, by a deed which has been submitted to the Nassau County Clerk's Office for recording. The new owner's contact information is as follows:

Site 100 LLC c/o Kay Development LLC 49 N. Central Avenue, Suite 201 Valley Stream, New York 11580 Attention: Vassilis Kefalas

E-mail: kefalas@kay-development.com

If you have any questions, please do not hesitate to contact the undersigned.

Very truly yours,

ALBANESE & ALBANESE LLP

Vincent A. Albanese

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	V00145	Site Details	Box 1	
Site	e Name Sid	d Harvey Industries Fac	cility		
City	e Address: y/Town: Va unty:Nassau e Acreage:	ı .	Zip Code: 11580		
Re	porting Perio	od: November 21, 2021	to November 21, 2022		
				YES	NO
1.	Is the infor	mation above correct?		X	
	If NO, inclu	ide handwritten above or	on a separate sheet.		
2.		or all of the site property nendment during this Re	been sold, subdivided, merged, or undergone a porting Period?	X	
3.		peen any change of use a RR 375-1.11(d))?	at the site during this Reporting Period		X
4.		ederal, state, and/or loca e property during this Rep	Il permits (e.g., building, discharge) been issued porting Period?		X
			s 2 thru 4, include documentation or evidence viously submitted with this certification form.		
5.	(See attacl		ownership change submitted in the 2021 PRR)		X
				Box 2	
_				YES	NO
6.	Is the curre Industrial	ent site use consistent wi	th the use(s) listed below?	X	
7.	Are all ICs	in place and functioning	as designed?	X	
	IF TI		QUESTION 6 OR 7 IS NO, sign and date below a HE REST OF THIS FORM. Otherwise continue.	and	
A C	Corrective M	easures Work Plan mus	t be submitted along with this form to address t	hese iss	ues.
Sia	nature of Ow	ner. Remedial Party or De	esignated Representative Date		

SITE NO. V00145 Box 3

Description of Institutional Controls

Institutional Control Parcel Owner

Ground Water Use Restriction

Soil Management Plan Site 100 LLC

Monitoring Plan c/o Kay Development LLC

Site Management Plan 49 N. Central Avenue, Suite 201 Valley O&M Plan

Stream, New York 11580

Attention: Vassilis Kefalas

Hassan Dharsi

E-mail: kefalas@kay-development.com

Landuse Restriction

IC/EC Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

O&M Plan IC/EC Plan

Box 4

Description of Engineering Controls

Engineering Control Parcel

> Vapor Mitigation Cover System

Air Sparging/Soil Vapor Extraction

Monitoring Wells Vapor Mitigation Cover System

Air Sparging/Soil Vapor Extraction

Monitoring Wells

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;					
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted					
	engineering practices; and the information presented is accurate and compete. YES NC)				
	\mathbf{X}					
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:					
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;					
	(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;	and				
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document					
	YES NO)				
	\mathbf{X}					
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. V00145

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, NICHOLAS A. ANDRIANAS, P.E., at 1 Sound Breeze Drive, Miller Place, New York 11764 am certifying as professional engineer for Remedial Party for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative

Turbok & hudwar

January 9,2023 Date

Rendering Certification

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, NICHOLAS A. ANDRIANAS at 1 Sound Breeze Drive, Miller Place, New York 11764 am certifying as a Professional Engineer for the Remedial Party.

=

Signature of Professional Engineer, for the Remedial Party, Rendering Certification

ALBANESE & ALBANESE LLP

ATTORNEYS AT LAW

1050 Franklin Avenue Garden City, New York 11530 Tel (516) 248-7000 • Fax (516) 747-7777 WWW.Albaneselegal.com

Vincent A. Albanese, Esq.
Partner
vaalbanese@albaneselegal.com

December 27, 2021

Via Certified Mail, RRR

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7020

Re: Change of Ownership

100 East Mineola Avenue, Valley Stream, New York Your Matter No. V00145 (Sid Harvey Industries Facility)

Ladies and Gentlemen:

We represent 100 East Properties LLC. Please be advised that the above-referenced commercial premises was sold on December 2, 2021. Fee title to said premises was transferred from 100 East Properties LLC, as seller, to Site 100 LLC, as purchaser, by a deed which has been submitted to the Nassau County Clerk's Office for recording. The new owner's contact information is as follows:

Site 100 LLC c/o Kay Development LLC 49 N. Central Avenue, Suite 201 Valley Stream, New York 11580 Attention: Vassilis Kefalas

E-mail: kefalas@kay-development.com

If you have any questions, please do not hesitate to contact the undersigned.

Very truly yours,

ALBANESE & ALBANESE LLP

Vincent A. Albanese

**** Electronically Filed Document ****

Instrument Number: 2022-1847

Recorded As:

EX-D12 - COMMERCIAL

Recorded On:

January 06, 2022

Recorded At:

10:31:01 am

Receipt Number:

2472698

Number of Pages: 4

Processed By:

001 AH

Book-VI/Pg:

Bk-D VI-14185 Pg-867

Total Rec Fee(s):

\$7,615.00

** Examined and Charged as Follows **

12 - COMMERCIAL DEED

\$ 60.00

EX-Blocks - Deeds - \$300

\$ 300.00 EX-RP5217 Commercial Fee

\$ 250.00

EX-TP-584 Affidavit Fee

\$ 5.00

Tax Amount Consid Amt RS#/CS#

Tax-Transfer HEMPSTEAD

\$ 7000.00

\$ 1750000.00 RE 13140

Basic \$ 0.00 Local NY CITY

\$ 0.00

Additional MTA

\$ 0.00

Spec ASST

\$ 0.00

Spec ADDL SONYMA

\$ 0.00

Transfer

\$ 7000.00

Tax Charge:

\$ 7000.00

Property Information:

Toperty into	Jimation.								
Section	Block	Lot	Unit	Town Name	Section	Block	Lot	Unit	Town Name
******	******	******	******	*********	** ********	*****	*****	******	**********
37	75	20		HEMPSTEAD	37	75	50		HEMPSTEAD
37	75	21		HEMPSTEAD	37	75	51		HEMPSTEAD
37	75	22		HEMPSTEAD					TIEM OF EAD
37	75	23		HEMPSTEAD					
37	75	24		HEMPSTEAD					
37	75	25		HEMPSTEAD					
37	75	26		HEMPSTEAD					
37	75	27		HEMPSTEAD					
37	75	28		HEMPSTEAD					
37	75	29		HEMPSTEAD					
37	75	30		HEMPSTEAD					
37	75	49		HEMPSTEAD					

************THIS PAGE IS PART OF THE INSTRUMENT **********

Any provision herein which restricts the Sale, Rental or use of the described REAL PROPERTY because of color or race is invalid and unenforceable under federal law.

County Clerk Maureen O'Connell

Standard N.Y.B.T.U. Form 8002* - Bargain and Sale Deed, with Covenant against Grantor's Acts-Individual or Corporation (single sheet)

CONSULT YOUR LAWYER BEFORE SIGNING THIS INSTRUMENT-THIS INSTRUMENT SHOULD BE USED BY LAWYERS ONLY

THIS INDENTURE, made as of December 2, 2021

BETWEEN

100 EAST PROPERTIES LLC, a New York limited liability company having an address at 201 Specialty Point, Sanford, Florida 32771

party of the first part, and

SITE 100 LLC, a New York limited liability company having an address at 49 N. Central Avenue, Suite 201, Valley Stream, New York 11580

party of the second part,

WITNESSETH, that the party of the first part, in consideration of Ten and 00/100 (\$10.00) Dollars and other valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever, all of its right, title and interest in and to the following described commercial premises:

SEE THE LEGAL DESCRIPTION IN SCHEDULE A ATTACHED HERETO AND MADE A PART HEREOF

BEING AND INTENDED to be the same premises described in that certain deed made by L&L Posedian Realty LLC, dated 10/27/2015, and recorded 11/6/2015, in the Office of the Nassau County Clerk in Liber 13282, Page 20.

SAID PREMISES also known as and by the street address: 100 East Mineola Avenue, Valley Stream, New York 11580 and the Nassau County Tax Map Designation: Section: 37, Block: 75, Lot: 20-24, 25-30, and 49-51.

TOGETHER with all right, title and interest, if any, of the party of the first part in and to any streets and roads abutting the above-described premises to the center lines thereof; TOGETHER with the appurtenances and all the estate and rights of the party of the first part in and to said premises; TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part covenants that the party of the first part has not done or suffered anything whereby the said premises have been encumbered in any way whatever, except as aforesaid.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose.

The word "party" shall be construed as if it read "parties" whenever the sense of this indenture so requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed as of the day and year first above written.

IN PRESENCE OF:

SITE 100 LLC, a New York limited liability company having an address at 49 N. Central Avenue, Suite 201, Valley Stream, New York 11580

party of the second part,

WITNESSETH, that the party of the first part, in consideration of Ten and 00/100 (\$10.00) Dollars and other valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever, all of its right, title and interest in and to the following described commercial premises:

SEE THE LEGAL DESCRIPTION IN SCHEDULE A ATTACHED HERETO AND MADE A PART HEREOF

BEING AND INTENDED to be the same premises described in that certain deed made by L&L Posedian Realty LLC, dated 10/27/2015, and recorded 11/6/2015, in the Office of the Nassau County Clerk in Liber 13282, Page 20.

SAID PREMISES also known as and by the street address: 100 East Mineola Avenue, Valley Stream, New York 11580 and the Nassau County Tax Map Designation: Section: 37, Block: 75, Lot: 20-24, 25-30, and 49-51.

TOGETHER with all right, title and interest, if any, of the party of the first part in and to any streets and roads abutting the above-described premises to the center lines thereof; TOGETHER with the appurtenances and all the estate and rights of the party of the first part in and to said premises; TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part covenants that the party of the first part has not done or suffered anything whereby the said premises have been encumbered in any way whatever, except as aforesaid.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose.

The word "party" shall be construed as if it read "parties" whenever the sense of this indenture so requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed as of the day and year first above written.

IN PRESENCE OF:

100 EAST PROPERTIES LLC

Name:

HASSAN DHARSI

Title

MEMBER

15. 70.24 25-30 49.51

*STATE OF NEW YORK) / COUNTY OF NASSAU)SS.:	*STATE OF NEW YORK) COUNTY OF)SS.:				
On the 30th day of Beember in the year 2021 before me, the undersigned, a Notary Public in and for said State, personally appeared HAGAN DHARS personally known to me or proved to me on the basis of satisfactory evidence to be the individuals whose name is subscribed to the within instrument and acknowledged to me that they executed the same in their capacity, and that by their signatures on the instrument, the individuals, or the person upon behalf of which the individuals acted, executed the instrument.	On the day of in the year 2021 before me, the undersigned, a Notary Public in and for said State, personally appeared personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that she executed the same in her capacity, and that by her signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.				
Signature and Office of Individual taking acknowledgment VINCENT A. Notary Public, St No. 02AL- Qualified in No. Commission Expir	ALBANESE Individual taking acknowledgment ete Of New York 1008960 es March 8, 20 23				
* For acknowledgments taken in New York State ** State, District of Columbia, Territory, Possession, or Foreign	1 Country				
STATE OF () SS.:					
On the day of in the year 2021 before me, the undersigned proved to me on the basis of satisfactory evidence to be the individual acknowledged to me that he/she/they executed the same in his/her/the individual(s), or the person upon behalf of which the individual(s) actual appearance before the undersigned in the or country or other place the acknowledgment was taken).	(s) whose name(s) is (are) subscribed to the within instrument and ir capacity(ies), that by his/her/their signature(s) on the instrument, the ed, executed the instrument, and that such individual made such (Insert the city or other political subdivision and the state				
** For acknowledgments taken outside of New York State.	Signature and Office of Individual taking acknowledgment				
Bargain and Sale Deed WITH COVENANT AGAINST GRANTOR'S ACTS TITLE NO.	SECTION: 37 BLOCK: 75 LOT: 20-24, 25-30, & 49-51 RECORD AND RETURN TO:				
100 EAST PROPERTIES LLC	RECORD AND RETURN TO.				
TO SITE 100 LLC	Nicholas Kordas, Esq. 5-44 47 th Avenue Long Island City, New York 11101				
RESERVE THIS SPACE FOR	USE OF RECORDING OFFICE				

R

Title Number: CL-28264-N

Page 1

SCHEDULE A DESCRIPTION - AMENDED

ALL that certain plot, piece or parcel of land, situate, lying and being in the Incorporated Village of Valley Stream, in the Town of Hempstead, County of Nassau and State of New York, known as and by the Lots Numbers 20 to 30 (both inclusive) and 49 to 51 (both inclusive), on a certain map entitled, "Map of Property belonging to I. Lang and M. Stern, Valley Stream, L.I., New York, December, 1905, John S. Newman, C.E. and Surveyor, Woodmere, L.I.," and filed in the Nassau County Clerk's Office as Map Number 136, Case Number 1287, which said Lots, when taken together, are more particularly bounded and described as follows:

BEGINNING at the corner formed by the intersection of the southerly line of Mineola Avenue (E. Mineola Ave.) with the westerly line of the property belonging to the Hempstead Branch of the Long Island Railroad;

RUNNING THENCE westerly along the southerly line of Mineola Avenue and on a course, North 60 degrees 34 minutes 00 seconds West, 297.58 feet;

RUNNING THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet calc.);

THENCE South 60 degrees 34 minutes 00 seconds East, 150.00 feet;

THENCE South 39 degrees 56 minutes 00 seconds West, 101.74 feet (101.70 feet calc.) to the northerly side of E, Valley Stream Blvd. (New York Avenue);

THENCE on a course, South 60 degrees 34 minutes 00 seconds East, 55.50 feet (55.51 feet calc.) to the westerly line of the Hempstead Branch of the Long Island Railroad;

THENCE northeasterly along the westerly line of the Hempstead Branch of the Long Island Railroad on a course North 62 degrees 17 minutes 00 seconds East, 238.16 feet (238.07 feet calc.) to the point or place of BEGINNING.

THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 OF ARTICLE 71 OF THE ENVIRONMENTAL CONSERVATION LAW.

FOR INFORMATION ONLY, NOT INSURED: SAID PREMISES BEING KNOWN AS AND BY: 100 EAST MINEOLA AVENUE, VALLEY STREAM, NY

SECTION: 37 BLOCK: 75

LOT: 20-30 and 49-51

COUNTY: NASSAU

Cap Inspection Form 100 East Mineola Ave, Valley Stream New York

Person Performing the Inspection: NICHOLAS A. ANDRIANAS.'R0G0"		
Weather Conditions: Sunny 84F" Date: 8/11/2022		
	V.D.C	NO W
Are there any areas from which the asphalt or concrete cap has been removed?	YES	NO X
Describe the Number, Size, and Location of areas:		
Are there any areas of damaged or degraded asphalt or concrete,	YES	NO X
or loose aggregate?		
Number, Size, and Location of the areas:		
Are there any significant discontinuities in the asphalt or concrete cap?	YES	NO X
Number, Length, and Location of the discontinuities:		
	YES	NO X
Are there any depressions or sink holes in the asphalt cap?		
Number, Size, and Location of the depressions:		

YES NO X

Date: 8/11/2022

Are there any areas of the asphalt that could not be inspected?

Number, Size, and Location of the areas, and reason(s) why the areas could not be inspected:

YES NO X

Are there any heavy vehicles or equipment parked on the asphalt cap? Number, Location, and Description of these vehicles: yes 2 light trucks in east driveway.

Turbolis ahharan

Sketch any observed areas of concern: None

Name: Nicholas A. Andrianas

Signature:

Date: 8/11/2022

NAA ENGINEERING 100 EAST MINEOLA AVE WELL GAGING

	Table 3: Groudwate	er Levels Januam	17.2023
	Depth to Water	Depth to Bottom	,
Well Identification	(Feet Below Grade)	(Feet Below Grade)	<u>Notes</u>
MW-1	UTA	•	cant locate
MW-2 ✓	7.95 8.97	20.20 70.21	
MW-3S 🗸	9.00 10.50	20.21 70.20	
MW-31 ✓	9.08 10.61	82.30 BZ.Z7	
MW-4 🗸	8.64 9.89	19.30 19.31	
MW-5 🗸	8.81 9 .99	18.80 18.76	
MW-6I ✓	8.62 9.98	89.12 89.10	
MW-6D ✓	UTA UTA	>100 >100 ?	impacted @ ~9 ft (sand)
MW-7S ✓	8.57 10.09	61.40 61.41	
MW-7I ✓	8.53 10.01	89.86 89.79	
MW-7D ✓	ראון 10.13	>100 7100	
MW-8S 🗸	7.75 8.57	27.25 29.98	impacted well (backer?)
MW-8I ✓	7.76 9 .U	89.40 89.40	
MW-8D	8.35 9.87	>100 אטול	
MW-9S 🗸	9.9 11.09	30.15 30.12	
MW-9I	9.82 [0	84.20 84.U	
MW-9D 🗸	10.32 1.97	>100 >100	
MW-10 🗸	7.77 8.99	78.15 78.11	
MW-11S 🗸	5.21 6.51	34.95 34.94	
MW-11D 🗸	ATU ATU		obstructed/cant locate
MW-12 ✓	8.31 9.79	81.45 81.4	Sampled + Duplicate
PMW-1 ✓	UTA UTA		obstructed / cant locate
PMW-2 ✓	8.07 9.48	14.96 14.95	
PMW-3 ✓	8.01 9.52	35.50 35.43	
PMW-4 ✓	7.91 9.41	50.50 50.47	

Project:	Annual Sampli	n Site:	Sid Harvey	Well Idetificatic MW-12	Date:	12/19/2018
Well Depth:	81.45' BG	Screen Legth:	20'	Well Diameter: 2"	Casing Type:	PVC
Sampling Device:	low-flow subm	nersiabile	Tubing Type:	HDPE	Water Level:	8.31' BG
Additional Information	:	Sample collect	ed \$300 11:35	+ DUPEll:30	(maria-DIP)	
		Vid				

Sampling Personnel: James Urbat

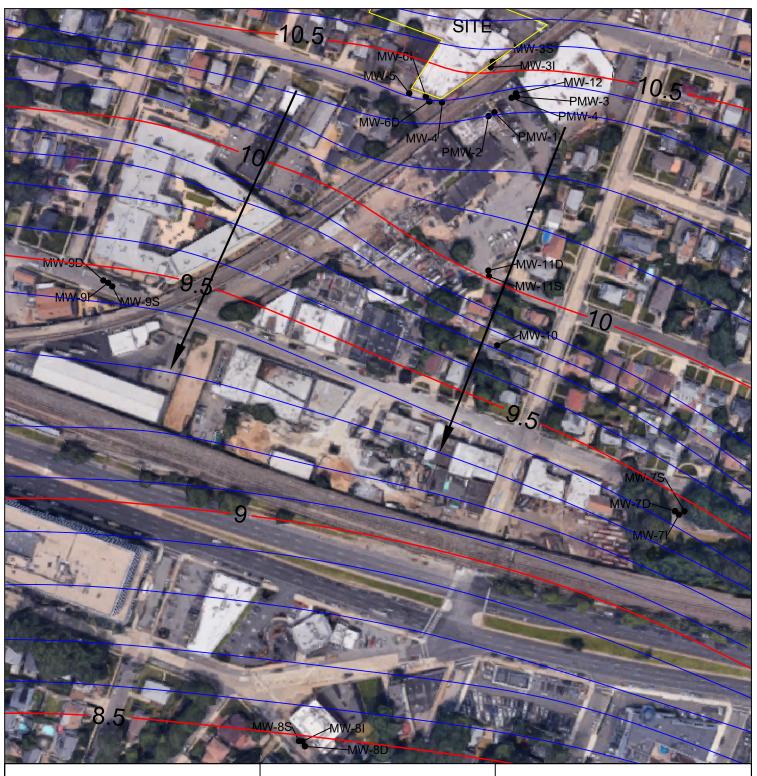
<u>Time</u>	Conductivity (ms/cm)	pH (S.U.)	TDS (g/l)	DO (mg/l)	ORP (mV)	Tempeture (°C)	Turbidity (NTUs)
	3%	+/- 0.1 S.U.		10%	+/- 10 mV	3%	10%
(0:55	0.391	5.88		1.78	-90	16.09	3.6
12:45	0.396	6.36	0.257	0.00	-126	14.46	26.0
11100	0.431	5.81		1.11	-104	16.08	1.3
12:50	0.396	6.37	0.259	0.00	-132	14.45	25.6
11:05	0.441	5.74		0.65	-111	16.02	2.1
12:55	0.396	6.35	0.259	0.00	-154	14.44	24.8
11:16	0.442	5.90		0.63	-128	16.02	3.0
13:00	0.396	6.35	0.257	0.00	-144	14.47	26.5
11:15	0.439	5.94	6	0.44	-132	16.02	3.4
13:05	0.396	6.35	0.258	0.00	-140	14.47	25.8
11:20	0.438	5.93		02.34	-133	16.03	3.2
13:10	0.396	6.33	0.256	0.00	-150	14.46	24.3
13:15	0.396	SAMP	E 0.257	020.60 E	CJ-148 D	14.46	24.0
13:20	- š.		Samp	le Collected	-		
	= 81	•	10 6 1	1		1 7	
		* a					
	8 W ,	- H					

12/6/21

12/17/2019 Project: **Annual Sampling** Site: Sid Harvey Well Idetificatic MW-31 Date: 82.30' BG Well Depth: Screen Legth: 10' Well Diameter: 2" Casing Type: PVC Sampling Device: low-flow submersiabile Tubing Type: HDPE Water Level: 9.08' BG

Additional Information: Sample Collected 10:10

Sampling Personnel: James Urbat


<u>Time</u>	Conductivity (ms/cm)	pH (S.U.)	TDS (g/l)	DO (mg/l)	ORP (mV)	Tempeture (°C)	Turbidity (NTUs)
	3%	+/- 0.1 S.U.		10%	+/- 10 mV	3%	10%
9:35	0.052	6.90		9.77	151	16.10	6.8
11:45	0.371	5.37	0.243	6.01	313	14.37	24.4
9:40	0.052	6.37		5.17	143	16.11	1.1
11:50	0.333	5.11	0.251	3.88	270	14.36	3.2
4:45	0.061	5.47		1.5-1	114	16.15	0.0
11:55	0.392	5.11	0.255	2.39	252	14.36	2.21
9:50	0.382	5.18		0.76	136	16.11	0.2
12:00	0.391	5.10	0.255	1.62	245	14.39	3.21
9:55	0.401	4.98		0.31	152	16.06	0.0
12:05	0.391	5.10	0.254	1.72	244	14.38	3.31
10:00	0.398	4.98	· ·	0.26	158	16.05	0.0
12:10	0.392	5.08	0.255	1.70	242	14.37	3.31
12:15	0.387	4.84	Samp	e Collected	172	16.04	0.0
10:10	0.388	4.85		0.26	174	16.04	0.6
10:15	SAM	PLE.	TAKEN				
			10		V		
		* 2	-		4		2

NAC CONSULTANTS, INC.

28 HENRY STREET KINGS PARK, NEW YORK 11754

PHONE: (631) 269-2680 FAX: (631) 269-2685 12/6/21

	vels	L6, 2019 Groudwater Le	Table 3: December 1	No. o
_		Depth to Bottom	Depth to Water	217
	<u>Notes</u>	(Feet Below Grade)	(Feet Below Grade)	Well Identification
×	obstructed /mt forma	-	UTA	MW-1 🗸
	/	20.20 26.17	7.95 9.02	MW-2
		20.21 20.23	9.00 9.97	MW-3S /
		82.30 82.41	9.08 10.04	MW-31 /
	Y	19.30 /9.27	8.64 9.58	MW-4 /
		18.80 18.81	8.81 9.86	MW-5 /
- resched	in produce (no scaple -	89.12 -	8.62 —	MW-61 /
7	in puddle (~6.0 -ctv)	>100 —	UTA —	MW-6D /
	9	61.40 61.38	8.57 9.51	MW-7S 🗸
		89.86 74.45	8.53 9.48	MW-7I
		>100 7100	10.13 1/.04	MW-7D
	.42 Bake invell	27.25	7.75 8.44	MW-8S
		89.40 89.37	7.76 8.46	MW-8I
		>100 >100	8.359.07	MW-8D
F 14		30.15 30.12	9.9 10.31	MW-9S V
		84.20 84.33	9.82 10.29	MW-9I
		>100 7/00	10.32 10.98	MW-9D
		78.15 78.0	7.77 -862	MW-10 7
		34.95 34.87	5.21 6.22	MW-118 ✓
7	obstrated Inthornal		UTA	MW-11D √
	7	81.45 81.61	8.31 9.21	MW-12
A Miner	obstructed fort tand	- \	UTA	PMW-1
	Σ	14.96 14.92	8.07 9.05	PMW-2
		35.50 35.17	8.01 8.97	PMW-3
		817 84 FO FO		DAAVA/ A

NAC CONSULANTS, INC. 28 Henry Street Kings Park, NY 11754

Drawn By: JDU Approved By: NAA

Figure 1

December 2019
Groundwater Flow Contour

2019 Annual Report 100 East Mineola Ave Valley Stream, NY

Legend:

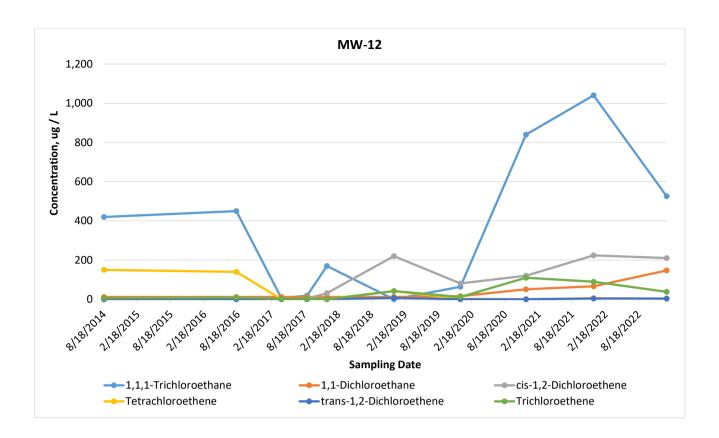
Major Groundwater Contour LineMinor Groundwater Contour Line

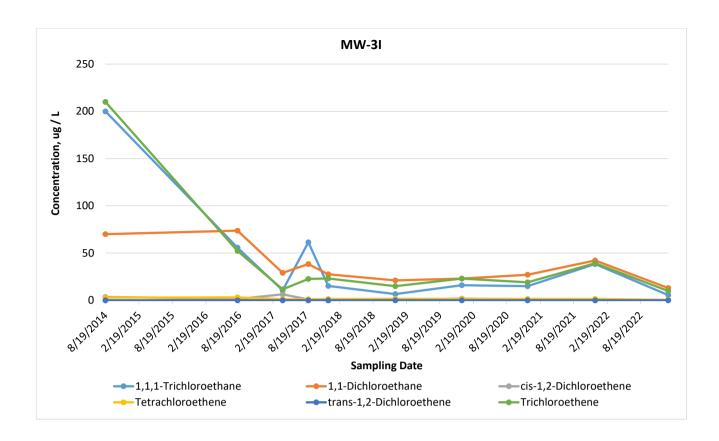
Monitoring Well

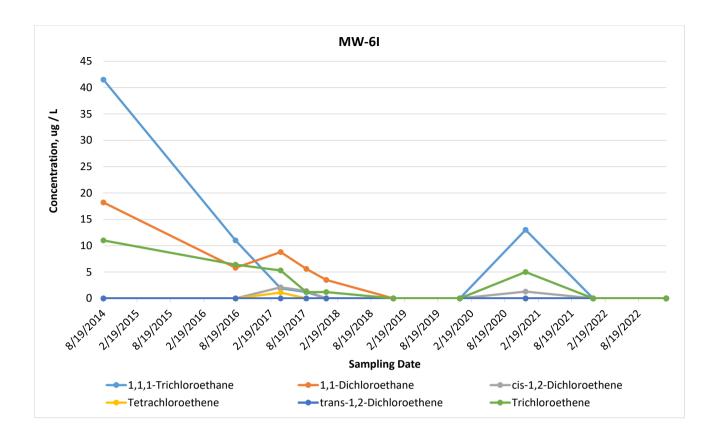
Flow Direction

Sid Harvey Justries, Inc.
Valley Stream, New York
Table 2 (continued)
December 2020 Annual Groundwater Sampling Results: Compared to previous Groundwater Sampling Results vancy sucani, New 1015.

Table 2


Annual Groundwater Sampling Results: Compared to previous Groundwater Sampling Results


Sid Harvey Iustries, Inc. Valley Stream, New York Tablè 2 (continued) Annual Groundwater Sampling Results: Compared to previous Groundwater Sampling Results


	Well Identification	1	1			MW-61					NYSDEC	Well Identification					, h	dW-12				NYSDEC	Well Identification	T T	1			MW-31				NYSDEC
		MW-61	MW.61	MW-61 A	4W-61	MW-61 MW-61	MW.6I M	W-6I	MW-61	MW-61			MW-12	MW-12	MW-12	MW-12	MW-12	MW-12 M	V.12 MW	-12 M	IW-12 MW-12			MW.21	MW-21	MW-21	MW-21 MW-21	MW-21	MW-21	MW-31	MW-21 MW-21	
Martine of the content of the conten																																
Separate Properties of the pro		1/17/2023	12/14/2021	12/10/2020 12/	17/2019	12/19/2018 12/18/2017	7 8/31/2017 4/1	3/2017	8/9/2016	8/19/2014	manum (PFn)		1/17/2023	12/14/2021	12/10/2020	12/17/2019	12/19/2018	12/18/2017 8/31	2017 4/13/2	2017 8/1	0/2016 8/18/2014	name (He)		1/17/2023	12/14/2021	12/10/2020	12/17/2019 12/19/2018	12/18/2017	8/31/2017 4	1/13/2017	8/9/2016 8/19/2014	.4(FF-)
Marchen Marc								_					ļ			_			- 1	- 1										_		
Marian M																																
132 Marchemore 10 10 10 10 10 10 10 1								_												_												
1. 1. 1. 1. 1. 1. 1. 1.		0.00	0.00	13.00	0.00	0.00 0.00	1.20	1.90	11.00	41.5			526.00	1,040.00	840.00	64.00	0.00	170.00 1	.50 6.2	20 4:	50.00 420			5.5	38.4	15.0	16.0 6.6	15	61.40	10.50	55.70 200	
Marchander Color								_																								
Column																																
Althornoones		0.00	0.00		0.00							1,1-Dichioroculane																				
Amount A						1.20	1.80	2.90	2.10	6.9			37.80	2.00	27.00	4.40	9.1	9.1	.1 9.1	1	9.1 9.1			1.9	6.5	3.4	3.2 2.7	3.1	4.90	3.30	8.10 12.6	
Abbleventers 1																																
3. Abbreviewers																																
Second S								_												_												
2. Schlergreger		+	1													1									-			1				
Notes: See See See See See See See See See Se																																
The content of the co						5.00 200.00						2-Butanone (MEK)				1		5!					2-Butanone (MEK)									
Image: Control of the control of t	Acetone						4	8.30				Acetone							80.4	40			Acetone									
Comparison Com												Benzene											Benzene					0.4				
The formal section is a section of the section of t																																
Company Comp																																
Table Probables 1																																
Checkederes																																
Discontance																																
Section Company Comp																																
Secondary Controller Cont																																
and J. J. J. Adabharenesses and J. J. J. Adabharenesses and J.																																
8-1-Debleveropees 1	Chloromethane																															
Demonstration Demonstratio		0.00	0.00	1.30	0.00	0.00 0.00	1.40	2.10	0.00	0.00		CB-1,2-Dicilior octilene	210.00	224.00	120.00	81.00	220.00	31.10 3	30 1.8	30	1.80 1.5			0.4	0.0	1.0	1.9 0.6	0.0	0.91	6.30	1.40 3.5	
Decomposition Decompositio																																
Section Sect																																
Second Control Seco																																
Polythers						0.82							2.45	8.70			5.30	0.38			0.60 0.28								0.25		0.31 2.3	
Administration Admi																																
Application Company	m/p-Xylenes					0.61					5.0 2	m/p-Xylenes	5.4				12.00				1.00 1.1	5.0°	m/p-Xylenes						0.51		0.52 5.8	5.0°
Note: 1 1 1 1 1 1 1 1 1	Methyl tert-Butyl Ether (MTBE)	0.3									10.0 '	Methyl tert-Butyl Ether (MTBE)										10.0 *	Methyl tert-Butyl Ether (MTBE)									10.0
Note: 1 1 1 1 1 1 1 1 1 1	Methylene Chloride		1								5.0 3	Methylene Chloride	9		1							5.0 °	Methylene Chloride	1		1		1				5.0 °
Complementation Complement	o-Xylene										5.0 3	o-Xylene					4.00			Ī	0.37 0.58	5.0°	o-Xylene								1.8	5.0°
10 10 10 10 10 10 10 10	Styrene										5.0 2	Styrene										5.0°	Styrene									
Tables of Control Tabl	Tetrachloroethene	0.00	0.00	0.00	0.00	0.00 0.00	0.00	1.10	0.00	0.00	5.0 2	Tetrachloroethene	2.90	5.70	0.00	2.40	42.00	0.48 0	48 0.6	50 1-	40.00 150	5.0°	Tetrachloroethene	0.4	1.5	1.5	1.5 1.6	1.40	1.10	1.20	3.10 2.7	
0.4	Toluene		1			440.00				1.1	5.0 2	Toluene	4.65	6.10							1.20	5.0 °	Toluene					1	1.00		8.1	5.0°
Columbia	trans-1,2-Dichloroethene	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	5.0 °	trans-1,2-Dichloroethene	3.55	3.9	0.00	0.00	6.80	0.70	0.0	00	0.00	5.0 °	trans-1,2-Dichloroethene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0°
Columbia	trans-1,3-Dichloropropene										0.4 "	trans-1.3-Dichloropropene	0									0.4 "	trans-1.3-Dichloronronene									0.4 4
Family	Trichloroethene	0.00	0.00	5.00	0.00	0.00 1.20	1.20	5.30	6.40	11.0	5.0 °	Trichloroethene	38.00	89.60	110.00	12.00	42.00	0.00 2	60 2.6	50 :	8.80 5.9	5.0 2	Trichloroethene	9.9	39.3	19.0	23.0 15.0	23.1	22.60	11.60	52.20 210.0	5.0 2
stee Steel S	Trichlorofluoromethane										5.0°	Trichlorofluoromethane				2.20						5.0°	Trichlorofluoromethane									5.01
- Not Detected - Not Detected	Vinyl Chloride										2.0	Vinyl Chloride					1.20					2.0	Vinyl Chloride									2.0
	Notes:																															
	- Not Detected											- Not Detected											- Not Detected									

Sid Harvey Justries, Inc.
Valley Stream, New York
Table 2 (continued)
pling Results: Compared to previous Groundwater Sampling Results Sid Harvey Iustries, Inc. Valley Stream, New York Table 2 (continued) pling Results: Compared to previous Groundwater Sampling Results Sid Harvey Iustries, Inc. Valley Stream, New York Table 2 (continued) Results: Compared to previou

	Annual	Groundwater	Sampling Results:	Compare	a to previou	is Groundwa	iter Samptin	ig Resuits					Annual	Groundwater Sa	ampling Res	ults: Compar	red to previous	s Groundwate	r Sampling I	tesults					Annuai	Groundwater Sa	mpling Res	auts: Compare	d to previous	Groundwater	Sampting R	esuits		
Well Identification						MW-6I					NYSDEC	Well Identification	Т					MW-12					NYSDEC	Well Identification						MW-3I				NYSDEC
Well Depth	MW-6I	MW-6I	MW-61 1	MW-6I	MW-6I	MW-6I	MW-6I	MW-6l	MW-6I	MW-6I	Grouwater	Well Depth	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	Grouwater	Well Depth	MW-3I	MW-3I	MW-31	I MW-3I	MW-3I	MW-3I	MW-31	MW-3I	MW-3I MW	
Sampling Date	1/17/2023	12/14/2021	12/10/2020 12	/17/2019	12/19/2018	12/18/2017	8/31/2017	7 4/13/201	7 8/9/2016	8/19/2014	Staards (ppb)	Sampling Date	1/17/2023	12/14/2021	12/10/202	0 12/17/2019	9 12/19/2018	8 12/18/2017	8/31/2017	4/13/2017	8/10/2016	8/18/2014	Staards (ppb)	Sampling Date	1/17/2023	12/14/2021	12/10/20*	20 12/17/201	12/19/2018	12/18/2017	8/31/2017	4/13/2017	8/9/2016 8/19/2	2014 Staards (ppb)
PARAMETER - ug/l												PARAMETER - ug/l	T											PARAMETER - ug/l										
1,2,3-Trichloropropane				T							0.04	1,2,3-Trichloropropane						1					0.04	1,2,3-Trichloropropane			T	$\overline{}$	1			-		0.04
1,1,2-Trichlorotrifluoroethane												1,1,2-Trichlorotrifluoroethane	1								3.90	4.0		1,1,2-Trichlorotrifluoroethane							0.46		0.66 3.1	7 +
Chlorodifluoromethane												Chlorodifluoromethane												Chlorodifluoromethane										
Methyl Isobutyl Ketone (MIBK)												Methyl Isobutyl Ketone (MIBK)												Methyl Isobutyl Ketone (MIBK)										
Methylcyclohexane												Methylcyclohexane									0.95	1.5		Methylcyclohexane						0.25	0.52	/	0.74 1.	.7 +
p-Diethylbenzene												p-Diethylbenzene												p-Diethylbenzene										
p-Ethyltoluene												n-Ethyltoluene												n-Ethyltoluene										
1,2-Dibromo-3-Chloropropane											0.04	1,2-Dibromo-3-Chloropropane											0.04	1,2-Dibromo-3-Chloropropane										0.04
Hexachlorobutadiene											0.5	Hexachlorobutadiene											0.5	Hexachlorobutadiene										0.5
Naphthalene											10.0 °	Naphthalene											10.0 '	Naphthalene										10.0 '
1,3-Dichlorobenzene											3.0	1,3-Dichlorobenzene											3.0	1,3-Dichlorobenzene										3.0
1,4-Dichlorobenzene											3.0	1,4-Dichlorobenzene											3.0	1,4-Dichlorobenzene										3.0
1,2-Dichlorobenzene											3.0	1,2-Dichlorobenzene				1.80	5.90				1.90	2.8	3.0	1,2-Dichlorobenzene								/	0.41 0.8	
Bromobenzene											5.0 2	Bromobenzene											5.0 2	Bromobenzene										5.0 ²
n-Propylbenzene											5.0 2	n-Pronvibenzene											5.0 2	n-Pronvibenzene										5.0 2
2-Chlorotoluene											5.0 2	2-Chlorotoluene											5.0 2	2-Chlorotoluene										5.0 2
1,3,5-Trimethylbenzene											5.0 2	1,3,5-Trimethylbenzene											5.0 2	1,3,5-Trimethylbenzene										5.0 2
4-Chlorotoluene											5.0 3	4-Chlorotoluene											5.0 2	4-Chlorotoluene										5.0°
tert-Butylbenzene											5.0°	tert-Butylbenzene											5.02	tert-Butylbenzene										5.02
1,2,4-Trimethylbenzene											5.0 2	1,2,4-Trimethylbenzene											5.0 2	1,2,4-Trimethylbenzene										5.0 ²
sec-Butylbenzene											5.0 2	sec-Butylbenzene											5.0 2	sec-Butylbenzene										5.0 2
n-Butylbenzene											5.0 2	n-Butylbenzene											5.0 2	n-Butylbenzene										5.0 2
1,2,4-Trichlorobenzene											5.0°	1,2,4-Trichlorobenzene											5.02	1,2,4-Trichlorobenzene										5.02
1,2,3-Trichlorobenzene											5.0 2	1.2.3-Trichlorobenzene											5.0 2	1.2.3-Trichlorobenzene										5.0 2
Freon 113											5.0°	Freon 113											5.0°	Freon 113										5.02
1,2,4,5-Trimethylbenzene											5.0°	1,2,4,5-Trimethylbenzene											5.02	1,2,4,5-Trimethylbenzene										5.01
Carbon Disulfide												Carbon Disulfide							1.50	0.99				Carbon Disulfide										
4-Isopropyltoluene											5.0 '	4-Isopropyltoluene											5.0 *	4-Isopropyltoluene										5.0 '
Total VOCs	0.00	0.00	19.30	0.00	445.00	207.33	106.80	149.00	25.30	78.70		Total VOCs	996.70	1,446.10	1,148.00	183.80	486.20	225.76	106.78	187.49	631.32	608.46		Total VOCs	31.12	127.87	66.90	68.60	47.50	72.95	131.95	62.00	196.84 523.	.04
PARAMETER - µg/l																																		
Iron	4,670		-		_	16,200	15,800	77,300	9,100			Iron	8,200					25,100						Iron	395.00					2,430.00	1,910	10,200	1,990 -	
Manganese	482	527	-			795	809	2,440	456			Manganese	621	805			-	246	314	518	401	-		Manganese	470.00				4	719.00	705	834	822 -	
PARAMETER - mg/l															_																			
Nitrate	140.0	72.8 24.200.0	-			0.065		0.094	50.80	-		Nitrate	78.00		-		-	36.00	0.35	0.83	3.60	-		Nitrate	1,020.00		-		4				0.70 - 56.70 -	
Sulfate TOC		24,200.0			_	88.30	334 (D)	167 (D	50.80			Sulfate TOC	23,900.00	32,300.00				136.00 778.00	317 (D)	104 (D)	42.70			Sulfate	32,900.00		+	_	4	79.50 1.20	56.7 (D)	54.6 (D)	56.70	
Notes:	2,470.0	2,070.0				710.00	1440 (D)	2,270 (L	0.707			Notes:	2,020.000	1,530,000				.78.00	1030 (D)	700	0.939			Notes:	1,000.000					20	1.00	$\overline{}$	1.20	
- Not Detected												- Not Detected												- Not Detected										

Phoenix Environmental Laboratories, Inc. 587 East Middle Turnpike																					
P.O. Box 370 Manchester, CT 06040 (860) 645-1102	Lab Sample Id Collection Date Client Id			CK852: 3/10/20 IA-2			CK852 3/10/2 SSV1-	022			CK852 3/10/2 IA-1	022		CK8523 3/10/20 SSV1-)22		3/10	85240 1/2022 V1-7		CK852 3/10/2 AA-	022
Project Id: 140 E MINEOLA AVE VALLEY STREAM NY	Matrix CAS	Units	Result	Air	Qual MDI	. Result	Air		MDL	Result	Air	Qual MDL	Result	Air RL (MDL		Air . Qual MDI	L Result	Air	
Volatiles (TO15) By TO15																					
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	ppbv ppbv	< 0.146 < 0.183		U 0.14		0.146		0.146 0.183	< 0.146 < 0.183		U 0.146 U 0.183	< 0.146 12.9		U	0.146	< 0.146 0.14 12.8 0.18		-		U 0.146 U 0.183
1,1,2,2-Tetrachloroethane	79-34-5	ppbv	< 0.146	0.146	U 0.14	< 0.146	0.146	U	0.146	< 0.146	0.146	U 0.146	< 0.146	0.146		0.146	< 0.146 0.14	6 U 0.14	6 < 0.146	0.146	U 0.146
1,1,2-Trichloroethane 1,1-Dichloroethane	79-00-5 75-34-3	ppbv ppbv	< 0.183 < 0.247		U 0.18		0.183		0.183	< 0.183 < 0.247		U 0.183 U 0.247	< 0.183			0.183	< 0.183 0.18 1.04 0.24				U 0.183 U 0.247
1,1-Dichloroethene	75-35-4	ppbv	< 0.051	0.051	U 0.05	< 0.051	0.051	U	0.051	< 0.051	0.051	U 0.051	< 0.051	0.051	U	0.051	< 0.051 0.05	1 U 0.05	1 < 0.051	0.051	U 0.051
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	ppbv ppbv	< 0.135 4.88		U 0.13		0.135		0.135	< 0.135 3.97		U 0.135 0.204	< 0.135			0.135	< 0.135 0.13 0.77 0.20		5 < 0.135 4 < 0.204		U 0.135 U 0.204
1,2-Dibromoethane(EDB)	106-93-4	ppbv	< 0.130	0.130	U 0.130	< 0.130	0.130	U	0.130	< 0.130	0.130	U 0.130	< 0.130	0.130	U	0.130	< 0.130 0.13	0 U 0.13	0 < 0.130	0.130	U 0.130
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	ppbv	< 0.166 < 0.247		U 0.16		0.166		0.166 0.247	< 0.166 < 0.247		U 0.166 U 0.247	< 0.166 < 0.247			0.166	< 0.166 0.16 < 0.247 0.24		6 < 0.166 7 < 0.247		U 0.166 U 0.247
1,2-dichloropropane	78-87-5	ppbv	< 0.247		U 0.21		0.247		0.247	< 0.247		U 0.217	< 0.247			0.217	< 0.247 0.25				U 0.217
1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene	76-14-2 108-67-8	ppbv ppbv	< 0.143		U 0.14		0.143		0.143	< 0.143 0.961		U 0.143 0.204	< 0.143		U	0.143	< 0.143 0.14 0.254 0.20				U 0.143 U 0.204
1,3-Butadiene	106-99-0	ppbv	0.797		0.45		0.204		0.452	0.629		0.452	< 0.452		U	0.452	< 0.452 0.45				U 0.452
1,3-Dichlorobenzene 1.4-Dichlorobenzene	541-73-1 106-46-7	ppbv	< 0.166 < 0.166		U 0.16		0.166		0.166 0.166	< 0.166 < 0.166		U 0.166 U 0.166	< 0.166 < 0.166			0.166	< 0.166 0.16 < 0.166 0.16				U 0.166 U 0.166
1,4-Dichlorobenzene 1,4-Dioxane	123-91-1	ppbv ppbv	< 0.166		U 0.16		0.166		0.166	< 0.166		U 0.166	< 0.166			0.166	< 0.166 0.16				U 0.166
2-Hexanone(MBK)	591-78-6	ppbv	< 0.244		U 0.24		0.244		0.244	< 0.244		U 0.244	< 0.244			0.244	< 0.244 0.24 0.215 0.20		4 < 0.244		U 0.244
4-Ethyltoluene 4-Isopropyltoluene	622-96-8 99-87-6	ppbv ppbv	0.934 0.219		0.20		0.204		0.204 0.182	0.766 0.192		0.204 0.182	0.242 < 0.182			0.204	< 0.182 0.18		4 < 0.204 2 < 0.182		U 0.204 U 0.182
4-Methyl-2-pentanone(MIBK)	108-10-1	ppbv	< 0.244		U 0.24		0.244		0.244	< 0.244		U 0.244	< 0.244			0.244	< 0.244 0.24				U 0.244
Acetone Acrylonitrile	67-64-1 107-13-1	ppbv ppbv	6.44 < 0.461		0.42: U 0.46:		0.421		0.421 0.461	5.54 < 0.461		0.421 U 0.461	10.5			0.421	11.3 0.42 < 0.461 0.46			0.421	0.421 U 0.461
Benzene	71-43-2	ppbv	0.71	0.313	0.31	0.338	0.313		0.313	0.7	0.313	0.313	0.364	0.313		0.313	0.343 0.31	3 0.31	3 < 0.313	0.313	U 0.313
Benzyl chloride Bromodichloromethane	100-44-7 75-27-4	ppbv ppbv	< 0.193 < 0.149		U 0.19		0.193		0.193 0.149	< 0.193 < 0.149		U 0.193 U 0.149	< 0.193 < 0.149			0.193	< 0.193 0.19 < 0.149 0.14				U 0.193 U 0.149
Bromoform	75-25-2	ppbv	< 0.097	0.097	U 0.09	< 0.097	0.097	U	0.097	< 0.097	0.097	U 0.097	< 0.097	0.097	U	0.097	< 0.097 0.09	7 U 0.09	7 < 0.097	0.097	U 0.097
Bromomethane Carbon Disulfide	74-83-9 75-15-0	ppbv ppbv	< 0.258 < 0.321		U 0.25		0.258		0.258	< 0.258 < 0.321		U 0.258 U 0.321	< 0.258			0.258	< 0.258 0.25 0.373 0.32		8 < 0.258 1 < 0.321		U 0.258 U 0.321
Carbon Tetrachloride	56-23-5	ppbv	0.067	0.032	0.03	0.062	0.032		0.032	0.068	0.032	0.032	< 0.032	0.032	U	0.032	0.035 0.03	2 0.03	0.078	0.032	0.032
Chlorobenzene Chloroethane	108-90-7 75-00-3	ppbv ppbv	< 0.217 < 0.379		U 0.21		0.217		0.217	< 0.217 < 0.379		U 0.217 U 0.379	< 0.217 < 0.379			0.217	< 0.217 0.21 < 0.379 0.37		7 < 0.217 9 < 0.379		U 0.217 U 0.379
Chloroform	67-66-3	ppbv	< 0.205	0.205	U 0.20	< 0.205	0.205	U	0.205	< 0.205	0.205	U 0.205	< 0.205	0.205		0.205	< 0.205 0.20	5 U 0.20	< 0.205	0.205	U 0.205
Chloromethane Cis-1,2-Dichloroethene	74-87-3 156-59-2	ppbv ppbv	0.635 < 0.051		0.485 U 0.05		0.485		0.485	0.708 < 0.051		0.485 U 0.051	< 0.485 < 0.051			0.485	< 0.485 0.48 < 0.051 0.05		0.843 1 < 0.051		0.485 U 0.051
cis-1,3-Dichloropropene	10061-01-5	ppbv	< 0.221		U 0.22		0.221		0.221	< 0.221		U 0.221	< 0.221			0.221	< 0.221 0.22		1 < 0.221		U 0.221
Cyclohexane Dibromochloromethane	110-82-7 124-48-1	ppbv ppbv	0.492 < 0.118		0.29: U 0.11		0.291		0.291 0.118	0.405 < 0.118		0.291 U 0.118	< 0.291 < 0.118			0.291	< 0.291 0.29 < 0.118 0.11				U 0.291 U 0.118
Dichlorodifluoromethane	75-71-8	ppbv	0.416		0.20		0.202		0.202	0.497		0.202	0.459			0.202	0.492 0.20				0.202
Ethanol	64-17-5	ppbv	8.2		0.53 U 0.27		0.531		0.531	10.3 < 0.278		0.531 U 0.278	13.6 < 0.278			0.531 0.278	15.3 0.53 < 0.278 0.27			0.531	0.531 U 0.278
Ethyl acetate Ethylbenzene	141-78-6 100-41-4	ppbv ppbv	< 0.278 1.08		U 0.27		0.230		0.278	0.882		U 0.278 0.230	0.278			0.230	0.318 0.23		0 < 0.278		U 0.230
Heptane	142-82-5	ppbv	0.656		0.24		0.244		0.244	0.55		0.244	0.333			0.244	0.331 0.24		4 < 0.244		U 0.244
Hexachlorobutadiene Hexane	87-68-3 110-54-3	ppbv ppbv	< 0.094 1.86		U 0.094 0.284		0.094		0.094 0.284	< 0.094		U 0.094 0.284	< 0.094			0.094	< 0.094 0.09 0.472 0.28		4 < 0.094 4 < 0.284		U 0.094 U 0.284
Isopropylalcohol	67-63-0	ppbv	0.811		0.40		0.407		0.407	1.06		0.407	3.52			0.407	4.87 0.40				0.407
Isopropylbenzene m,p-Xylene	98-82-8 179601-23-1	ppbv ppbv	0.237 3.54		0.20		0.204		0.204	0.212 3.01		0.204 0.230	< 0.204			0.204	< 0.204 0.20 1.08 0.23				U 0.204 U 0.230
Methyl Ethyl Ketone	78-93-3	ppbv	< 0.339		U 0.339		0.339		0.339	< 0.339		U 0.339	0.597			0.339	0.631 0.33				U 0.339
Methyl tert-butyl ether(MTBE) Methylene Chloride	1634-04-4 75-09-2	ppbv ppbv	< 0.278		U 0.27		0.278		0.278 0.863	< 0.278 < 0.863		U 0.278 U 0.863	< 0.278			0.278	< 0.278 0.27 < 0.863 0.86				U 0.278 U 0.863
n-Butylbenzene	104-51-8	ppbv	0.709		0.18		0.182		0.182	0.565		0.182	< 0.182			0.182	< 0.182 0.18				U 0.182
o-Xylene Propylene	95-47-6 115-07-1	ppbv ppbv	1.64 < 0.581		0.230 U 0.58		0.230		0.230 0.581	1.28 < 0.581		0.230 U 0.581	0.478 6.69			0.230 0.581	0.386 0.23 6.75 0.58		0 < 0.230 1 < 0.581		U 0.230 U 0.581
sec-Butylbenzene	135-98-8	ppbv	0.229		0.18		0.182		0.182	< 0.182		U 0.182	< 0.182			0.182	< 0.182 0.18		2 < 0.182		U 0.182
Styrene Tetrachloroethene	100-42-5 127-18-4	ppbv ppbv	< 0.235		U 0.23		0.235		0.235	< 0.235		U 0.235 0.037	< 0.235			0.235	< 0.235 0.23 1.7 0.03		5 < 0.235 7 0.094		U 0.235 0.037
Tetrahydrofuran	109-99-9	ppbv	< 0.339	0.339	U 0.33	< 0.339	0.339		0.339	< 0.339	0.339	U 0.339	< 0.339	0.339	U	0.339	< 0.339 0.33	9 U 0.33	9 < 0.339	0.339	U 0.339
Toluene Trans-1,2-Dichloroethene	108-88-3 156-60-5	ppbv	6.05 < 0.252		0.26 U 0.25		0.266		0.266 0.252	5.13 < 0.252		0.266 U 0.252	< 0.252		U	0.266	2.25 0.26 < 0.252 0.25		0.317 2 < 0.252		0.266 U 0.252
trans-1,3-Dichloropropene	10061-02-6	ppbv	< 0.221	0.221	U 0.22	< 0.221	0.221	U	0.221	< 0.221	0.221	U 0.221	< 0.221	0.221	U	0.221	< 0.221 0.22	1 U 0.22	1 < 0.221	0.221	U 0.221
Trichloroethene Trichlorofluoromethane	79-01-6 75-69-4	ppbv	< 0.037		U 0.03		0.037		0.037	< 0.037 0.245		U 0.037 0.178	< 0.037		U	0.037	< 0.037 0.03 0.245 0.17		7 < 0.037 8 0.261		U 0.037 0.178
Trichlorotrifluoroethane	76-13-1	ppbv	< 0.131	0.131	U 0.13	< 0.131	0.131		0.131	< 0.131	0.131	U 0.131	< 0.131			0.131	< 0.131 0.13	1 U 0.13	< 0.131	0.131	U 0.131
Vinyl Chloride 1,1,1,2-Tetrachloroethane	75-01-4 630-20-6	ppbv ug/m3	< 0.078 < 1.00	0.078 1.00	U 0.07	3 < 0.078 0 < 1.00	0.078	U	1.00	< 0.078 < 1.00	1.00	U 0.078 U 1.00	< 0.078 < 1.00	0.078 1.00	U	1.00	< 0.078 0.07 < 1.00 1.0		8 < 0.078 0 < 1.00	1.00	U 0.078 U 1.00
1,1,1-Trichloroethane	71-55-6	ug/m3	< 1.00	1.00	U 1.0	2.26	1.00		1.00	< 1.00	1.00	U 1.00	70.3	1.00		1.00	69.8 1.0	1.0	< 1.00	1.00	U 1.00
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	ug/m3 ug/m3	< 1.00 < 1.00	1.00	U 1.00	< 1.00 < 1.00		U	1.00	< 1.00 < 1.00	1.00	U 1.00 U 1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 1.0 < 1.00 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
1,1-Dichloroethane	75-34-3	ug/m3	< 1.00	1.00	U 1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U 1.00	3.92	1.00		1.00	4.21 1.0	0 1.0	< 1.00	1.00	U 1.00
1,1-Dichloroethene 1.2.4-Trichlorobenzene	75-35-4 120-82-1	ug/m3 ug/m3	< 0.20 < 1.00	0.20 1.00	U 0.20	0 < 0.20 0 < 1.00		U	0.20 1.00	< 0.20 < 1.00	0.20 1.00	U 0.20 U 1.00	< 0.20 < 1.00	0.20 1.00	U	0.20 1.00	< 0.20 0.2 < 1.00 1.0		0 < 0.20 0 < 1.00	0.20 1.00	U 0.20 U 1.00
1,2,4-Trimethylbenzene	95-63-6	ug/m3	24	1.00	1.0	8.94		Ü	1.00	19.5	1.00	1.00	4.88	1.00	Ü	1.00	3.78 1.0		0 < 1.00		U 1.00
1,2-Dibromoethane(EDB) 1,2-Dichlorobenzene	106-93-4 95-50-1	ug/m3 ug/m3	< 1.00 < 1.00	1.00	U 1.00			U	1.00 1.00	< 1.00 < 1.00	1.00	U 1.00 U 1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 1.0 < 1.00 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
1,2-Dichloroethane	107-06-2	ug/m3	< 1.00	1.00	U 1.0			U	1.00	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00 1.0				U 1.00
1,2-dichloropropane 1.2-Dichlorotetrafluoroethane	78-87-5	ug/m3	< 1.00 < 1.00	1.00	U 1.00	< 1.00		U	1.00	< 1.00 < 1.00	1.00	U 1.00 U 1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 1.0 < 1.00 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
1,3,5-Trimethylbenzene	76-14-2 108-67-8	ug/m3 ug/m3	5.75	1.00	U 1.00	2.6		U	1.00	4.72	1.00	U 1.00 1.00	1.65	1.00	U	1.00	1.25 1.0		0 < 1.00		U 1.00 U 1.00
1,3-Butadiene	106-99-0	ug/m3	1.76	1.00	1.00	< 1.00		U	1.00	1.39	1.00	1.00	< 1.00	1.00	U	1.00	< 1.00 1.0		0 < 1.00	1.00	U 1.00
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	ug/m3 ug/m3	< 1.00 < 1.00	1.00	U 1.00	< 1.00 < 1.00		U	1.00	< 1.00 < 1.00	1.00	U 1.00 U 1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 1.0 < 1.00 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
1,4-Dioxane	123-91-1	ug/m3	< 1.00	1.00	U 1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00 1.0	0 U 1.0	0 < 1.00	1.00	U 1.00
2-Hexanone(MBK) 4-Ethyltoluene	591-78-6 622-96-8	ug/m3 ug/m3	< 1.00 4.59	1.00	U 1.00	2.14		U	1.00	< 1.00 3.76	1.00	U 1.00 1.00	< 1.00 1.19	1.00	U	1.00	< 1.00 1.0 1.06 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
4-isopropyltoluene	99-87-6	ug/m3	1.2	1.00	1.00	< 1.00	1.00	U	1.00	1.05	1.00	1.00	< 1.00	1.00	U	1.00	< 1.00 1.0	0 U 1.0		1.00	U 1.00
4-Methyl-2-pentanone(MIBK) Acetone	108-10-1 67-64-1	ug/m3 ug/m3	< 1.00 15.3	1.00	U 1.00			U	1.00	< 1.00 13.2	1.00	U 1.00 1.00	< 1.00 24.9	1.00	U	1.00	< 1.00 1.0 26.8 1.0		0 < 1.00 0 7.6	1.00	U 1.00 1.00
Acrylonitrile	107-13-1	ug/m3	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00 1.0	0 U 1.0	< 1.00	1.00	U 1.00
Benzene Benzyl chloride	71-43-2 100-44-7	ug/m3 ug/m3	2.27 < 1.00	1.00	1.00 U 1.00	1.08		U	1.00 1.00	2.23 < 1.00	1.00	1.00 U 1.00	1.16 < 1.00	1.00	U	1.00	1.1 1.0 < 1.00 1.0			1.00	U 1.00 U 1.00
Bromodichloromethane	75-27-4	ug/m3	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00 1.0	0 U 1.0	< 1.00	1.00	U 1.00
Bromoform Bromomethane	75-25-2 74-83-9	ug/m3 ug/m3	< 1.00 < 1.00	1.00	U 1.00	< 1.00 < 1.00		U	1.00 1.00	< 1.00 < 1.00	1.00	U 1.00 U 1.00	< 1.00 < 1.00	1.00	U	1.00	< 1.00 1.0 < 1.00 1.0		0 < 1.00 0 < 1.00	1.00	U 1.00 U 1.00
Carbon Disulfide	75-15-0	ug/m3	< 1.00	1.00	U 1.0	1.72		J	1.00	< 1.00	1.00	U 1.00	1.07	1.00	J	1.00	1.16 1.0		0 < 1.00	1.00	U 1.00
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	ug/m3	0.42	0.20 1.00	0.20 U 1.00	0.39		U	0.20 1.00	0.43 < 1.00	0.20 1.00	0.20 U 1.00	< 0.20 < 1.00	0.20 1.00	U	0.20	0.22 0.2 <1.00 1.0		0 0.49 0 < 1.00	0.20 1.00	0.20 U 1.00
CHIOLOGCHECHE	100-20-1	ug/m3	< 1.00	1.00	U 1.0			U	1.00	< 1.00	1.00	U 1.00	< 1.00	1.00	U	1.00	< 1.00 1.0			1.00	U 1.00

Chloroform	67-66-3	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Chloromethane	74-87-3	ug/m3	1.31	1.00		1.00	< 1.00	1.00	U	1.00	1.46	1.00		1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	1.74	1.00		1.00
Cis-1,2-Dichloroethene	156-59-2	ug/m3	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20
cis-1,3-Dichloropropene	10061-01-5	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Cyclohexane	110-82-7	ug/m3	1.69	1.00		1.00	< 1.00	1.00	U	1.00	1.39	1.00		1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Dibromochloromethane	124-48-1	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Dichlorodifluoromethane	75-71-8	ug/m3	2.06	1.00		1.00	2.41	1.00		1.00	2.46	1.00		1.00	2.27	1.00		1.00	2.43	1.00		1.00	2.99	1.00		1.00
Ethanol	64-17-5	ug/m3	15.4	1.00		1.00	33	1.00		1.00	19.4	1.00		1.00	25.6	1.00		1.00	28.8	1.00		1.00	9.64	1.00		1.00
Ethyl acetate	141-78-6	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Ethylbenzene	100-41-4	ug/m3	4.69	1.00		1.00	2.9	1.00		1.00	3.83	1.00		1.00	1.51	1.00		1.00	1.38	1.00		1.00	< 1.00	1.00	U	1.00
Heptane	142-82-5	ug/m3	2.69	1.00		1.00	1.98	1.00		1.00	2.25	1.00		1.00	1.36	1.00		1.00	1.36	1.00		1.00	< 1.00	1.00	U	1.00
Hexachlorobutadiene	87-68-3	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Hexane	110-54-3	ug/m3	6.55	1.00		1.00	1.67	1.00		1.00	2.71	1.00		1.00	1.36	1.00		1.00	1.66	1.00		1.00	< 1.00	1.00	U	1.00
Isopropylalcohol	67-63-0	ug/m3	1.99	1.00		1.00	17.6	1.00		1.00	2.6	1.00		1.00	8.65	1.00		1.00	12	1.00		1.00	1.56	1.00		1.00
Isopropylbenzene	98-82-8	ug/m3	1.16	1.00		1.00	< 1.00	1.00	U	1.00	1.04	1.00		1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
m,p-Xylene	179601-23-1	ug/m3	15.4	1.00		1.00	9.68	1.00		1.00	13.1	1.00		1.00	5.16	1.00		1.00	4.69	1.00		1.00	< 1.00	1.00	U	1.00
Methyl Ethyl Ketone	78-93-3	ug/m3	< 1.00	1.00	U	1.00	1.89	1.00		1.00	< 1.00	1.00	U	1.00	1.76	1.00		1.00	1.86	1.00		1.00	< 1.00	1.00	U	1.00
Methyl tert-butyl ether(MTBE)	1634-04-4	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Methylene Chloride	75-09-2	ug/m3	11.2	3.00		3.00	< 3.00	3.00	U	3.00	< 3.00	3.00	U	3.00	< 3.00	3.00	U	3.00	< 3.00	3.00	U	3.00	< 3.00	3.00	U	3.00
n-Butylbenzene	104-51-8	ug/m3	3.89	1.00		1.00	< 1.00	1.00	U	1.00	3.1	1.00		1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
o-Xylene	95-47-6	ug/m3	7.12	1.00		1.00	3.47	1.00		1.00	5.55	1.00		1.00	2.07	1.00		1.00	1.68	1.00		1.00	< 1.00	1.00	U	1.00
Propylene	115-07-1	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	11.5	1.00		1.00	11.6	1.00		1.00	< 1.00	1.00	U	1.00
sec-Butylbenzene	135-98-8	ug/m3	1.26	1.00		1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Styrene	100-42-5	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Tetrachloroethene	127-18-4	ug/m3	6.13	0.25		0.25	11.5	0.25		0.25	14.1	0.25		0.25	13.4	0.25		0.25	11.5	0.25		0.25	0.64	0.25		0.25
Tetrahydrofuran	109-99-9	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Toluene	108-88-3	ug/m3	22.8	1.00		1.00	17.2	1.00		1.00	19.3	1.00		1.00	8.44	1.00		1.00	8.47	1.00		1.00	1.19	1.00		1.00
Trans-1,2-Dichloroethene	156-60-5	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
trans-1,3-Dichloropropene	10061-02-6	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Trichloroethene	79-01-6	ug/m3	< 0.20	0.20	U	0.20	0.6	0.20		0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20
Trichlorofluoromethane	75-69-4	ug/m3	1.33	1.00		1.00	1.43	1.00		1.00	1.38	1.00		1.00	1.35	1.00		1.00	1.38	1.00		1.00	1.47	1.00		1.00
Trichlorotrifluoroethane	76-13-1	ug/m3	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Vinyl Chloride	75-01-4	ug/m3	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20	< 0.20	0.20	U	0.20

SSV1-X is the blind duplicate of SSV1-7

Qualifiers

The compound was anlayzed for but not detected at or above the MDL.

The number immediately preceding the "U" represents the PQL reporting level corrected for percent solids, weight and/or volume calculations, and dilution factors.

- J The value is estimated. This flag is used
 a) on form 1 when the compound is reported above the MDL, but below the PQL, and
 b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.
- N The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.
- S This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.
- D The reported concentration is the result of a diluted analysis.
- 2 For TICS, this compound was quantitated using a calibration curve.
- (*) See report for comment.

Result Detected

Volatiles (TO15) By TO15 1,1,1,2-Tetrachloroethane 630-20-6 ppbv < 0.146	0.183 0.1832.44 0.2470.256 0.051
Matrix CAS Units Soil Vapor (SS) Result RL R	Air Result RL < 0.146 0.146 4.19 0.183 < 0.146 0.146 < 0.183 0.183 2.44 0.247 0.256 0.051
Volatiles (TO15) By TO15 CAS Units Soil Vapor (SS) Result RL Action 0.146 Co.146 0.146	< 0.146
Volatiles (TO15) By TO15	< 0.146
1,1,1,2-Tetrachloroethane 630-20-6 ppbv 4.0.146 0.146 < 0.146	4.19 0.183 < 0.146 0.146 < 0.183 0.183 2.44 0.247 0.256 0.051
1,1,1-Trichloroethane 71-55-6 ppbv 18.3 4.21 0.183 4.11 0.183 5.67 0.183 1,1,2,2-Tetrachloroethane 79-34-5 ppbv < 0.146	4.19 0.183 < 0.146 0.146 < 0.183 0.183 2.44 0.247 0.256 0.051
1,1,2,2-Tetrachloroethane 79-34-5 ppbv	0.1460.1830.1830.2470.2560.051
1,1,2-Trichloroethane 79-00-5 ppbv < 0.183 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183 < 0.183	0.183 0.1832.44 0.2470.256 0.051
1,1-Dichloroethene 75-35-4 ppbv 1.51 0.276 0.051 0.259 0.051 0.199 0.051 1,2,4-Trichlorobenzene 120-82-1 ppbv < 0.135	0.256 0.051
1,2,4-Trichlorobenzene 120-82-1 ppbv < 0.135	
1,2,4-Trimethylbenzene 95-63-6 ppbv < 0.204 0.204 0.204 0.204 0.204 0.204 1,2-Dibromoethane(EDB) 106-93-4 ppbv < 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 1,2-Dichlorobenzene 95-50-1 ppbv < 0.166 0.	
1,2-Dibromoethane(EDB) 106-93-4 ppbv < 0.130 0.130 < 0.130 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.130 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.143 < 0.1	
1,2-Dichlorobenzene 95-50-1 ppbv < 0.166 0.166 < 0.166 0.166 < 0.166 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.167 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 < 0.247 <	
1,2-dichloropropane 78-87-5 ppbv < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 < 0.217 0.217 0.217 0.218 0.218 0.218 0.243 0.213 0.214 0.204 <th< td=""><td></td></th<>	
1,2-Dichlorotetrafluoroethane 76-14-2 ppbv < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.143 0.143 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204 < 0.204	-
1,3,5-Trimethylbenzene 108-67-8 ppbv < 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 1,3-Butadiene 106-99-0 ppbv < 0.452 0.452 0.452 0.452 0.452 0.452 0.452 1,3-Dichlorobenzene 541-73-1 ppbv < 0.166 0.1	-
1,3-Butadiene 106-99-0 ppbv < 0.452	
1,3-Dichlorobenzene 541-73-1 ppbv < 0.166 0.166 < 0.166 0.166 < 0.166 0.166 < 0.166 0.166 < 0.166 0.166 < 0.166 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.166 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.204 < 0.204	
1,4-Dichlorobenzene 106-46-7 ppbv < 0.166	
2-Hexanone(MBK) 591-78-6 ppbv 2.02 0.244 0.622 0.244 0.696 0.244 4-Ethyltoluene 622-96-8 ppbv < 0.204	< 0.166 0.166
4-Ethyltoluene 622-96-8 ppbv < 0.204	< 0.278 0.278
4-Isopropyltoluene 99-87-6 ppbv < 0.182	0.526 0.244
4-Methyl-2-pentanone(MIBK) 108-10-1 ppbv < 0.244	
Acrylonitrile 107-13-1 ppbv < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 < 0.461 0.461 <	
Benzene 71-43-2 ppbv < 0.313 0.313 < 0.313 0.313 0.452 0.313 <	24.9 0.421
Benzyl chloride $100-44-7$ ppbv $\ <0.193\ <0.193\ <0.193\ <0.193\ <0.193\ <0.193\ <0.193\ $	
Bromodichloromethane 75-27-4 ppbv <0.149 0.149 0.149 0.149 0.149 0.149	
Bromoform 75-25-2 ppbv <0.097 0.097 <0.097 <0.097 <0.097 0.097 <	
Bromomethane 74-83-9 ppbv < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.258 0.258 < 0.	< 0.258 0.258
Carbon Disulfide 75-15-0 ppbv < 0.321 0.321 0.321 0.321 0.321 0.321 0.321	
Carbon Tetrachloride 56-23-5 ppbv 0.954 0.184 0.032 0.183 0.032 0.292 0.032	0.179 0.032
Chlorobenzene 108-90-7 ppbv < 0.217	
Chloroform 67-66-3 ppbv 1.46 0.205 1.37 0.379 0.379 0.205	1.44 0.205
Chloromethane 74-87-3 ppbv < 0.485 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.485 < 0.4	
Cis-1,2-Dichloroethene 156-59-2 ppbv 1.51 1.17 0.051 1.1 0.051 1.24 0.051	1.2 0.051
	< 0.221 0.221
Cyclohexane 110-82-7 ppbv 2.2 0.291 1.42 0.291 0.424 0.291	2.62 0.291
Dibromochloromethane 124-48-1 ppbv < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 < 0.118 0.118 0.118 < 0.118 0.118 0.118 < 0.118 0.118 0.118 < 0.118 0.1	0.546 0.202
Ethanol 64-17-5 ppbv 13.5 0.531 12 0.531 12.9 0.531	15.7 0.531
Ethyl acetate 141-78-6 ppbv < 0.278 0.278 0.278 0.278 < 0.278 0.278 0.278 < 0.278 0.278	< 0.278 0.278
Ethylbenzene 100-41-4 ppbv < 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230	
Heptane 142-82-5 ppbv 0.262 0.244 < 0.244 0.244 0.395 0.244 <	< 0.244 0.244 < 0.094 0.094
Hexachlorobutadiene 87-68-3 ppbv < 0.094 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094 < 0.094	0.712 0.284
Isopropylalcohol 67-63-0 ppbv 0.581 0.407 0.432 0.407 0.464 0.407	1.93 0.407
	< 0.204 0.204
m,p-Xylene 179601-23-1 ppbv 0.473 0.230 0.438 0.230 1.91 0.230	0.357 0.230
Methyl Ethyl Ketone 78-93-3 ppbv 22.7 0.339 7.99 0.339 5.6 0.339	5.7 0.339
Methyl tert-butyl ether(MTBE) 1634-04-4 ppbv < 0.278 0.278 < 0.278 0.278 < 0.278 0.278 < 0.278 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 < 0.278 <	1.96 0.863
n-Butylbenzene 104-51-8 ppbv 1.54 0.003 2.000 0.003 2.000 0.000 2.000	
o-Xylene 95-47-6 ppbv <0.230 0.230 0.230 0.230 0.230 0.230 0.230	
Propylene 115-07-1 ppbv <0.581 0.581 <0.581 0.581 <0.581 0.581 <	< 0.581 0.581
sec-Butylbenzene 135-98-8 ppbv <0.182 0.182 0.182 0.182 0.182 0.182 0.182	
Styrene 100-42-5 ppbv < 0.235 0.235 < 0.235 < 0.235 < 0.235 0.235 < 0.235 < 0.235 0.235 < 0.235 < 0.235 < 0.235	
Tetrachloroethene 127-18-4 ppbv 14.8 3.61 0.037 3.84 0.037 12.7 0.037 Tetrahydrofuran 109-99-9 ppbv < 0.339 0.339 < 0.339 0.339 < 0.339 0.339 < 0.339 0.339 < 0.339 0.339	3.09 0.037
Toluene 108-88-3 ppbv 1.54 0.266 1.61 0.266 3.51 0.266	1.36 0.266
Trans-1,2-Dichloroethene 156-60-5 ppbv < 0.252 0.252 0.252 < 0.252 0.252 < 0.252 0.252 < 0.252 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 < 0.252 <	
trans-1,3-Dichloropropene 10061-02-6 ppbv < 0.221 0.221 0.221 0.221 0.221 0.221 0.221	0.232 0.232
Trichloroethene 79-01-6 ppbv 1.12 2.1 0.037 2.27 0.037 5.9 0.037	< 0.221 0.221
Trichlorofluoromethane 75-69-4 ppbv 0.196 0.178 0.201 0.178 0.222 0.178	

Trichlorotrifluoroethane	76-13-1	ppbv	I	< 0.131	0 131	< 0 131	0 131	< 0.131	0 131	< 0.131	0 131
Vinyl Chloride	75-01-4	ppbv	2.35	< 0.078							
1,1,1,2-Tetrachloroethane	630-20-6	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,1,1-Trichloroethane	71-55-6	ug/m3	100	23	1.00	22.4	1.00	30.9	1.00	22.8	1.00
1,1,2,2-Tetrachloroethane	79-34-5	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,1,2-Trichloroethane	79-00-5	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,1-Dichloroethane	75-34-3	ug/m3		9.67	1.00	9.59	1.00	10.2	1.00	9.87	1.00
1,1-Dichloroethene	75-35-4	ug/m3	6	1.09	0.20	1.03	0.20	0.79	0.20	1.01	0.20
1,2,4-Trichlorobenzene	120-82-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,2,4-Trimethylbenzene	95-63-6	ug/m3		< 1.00	1.00	< 1.00	1.00	2.4	1.00	< 1.00	1.00
1,2-Dibromoethane(EDB)	106-93-4	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,2-Dichlorobenzene	95-50-1 107-06-2	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,2-Dichloroethane 1,2-dichloropropane	78-87-5	ug/m3 ug/m3		< 1.00 < 1.00	1.00 1.00						
1,2-Dichlorotetrafluoroethane	76-07-3 76-14-2	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,3,5-Trimethylbenzene	108-67-8	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,3-Butadiene	106-99-0	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,3-Dichlorobenzene	541-73-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,4-Dichlorobenzene	106-46-7	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
1,4-Dioxane	123-91-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
2-Hexanone(MBK)	591-78-6	ug/m3		8.27	1.00	2.55	1.00	2.85	1.00	2.15	1.00
4-Ethyltoluene	622-96-8	ug/m3		< 1.00	1.00	< 1.00	1.00	1.96	1.00	< 1.00	1.00
4-Isopropyltoluene	99-87-6	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
4-Methyl-2-pentanone(MIBK)	108-10-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Acetone	67-64-1	ug/m3		64.3	1.00	62	1.00	38.2	1.00	59.1	1.00
Acrylonitrile	107-13-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Benzene	71-43-2	ug/m3		< 1.00	1.00	< 1.00	1.00	1.44	1.00	< 1.00	1.00
Benzyl chloride	100-44-7	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Bromodichloromethane	75-27-4	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Bromoform	75-25-2	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Bromomethane	74-83-9	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Carbon Disulfide	75-15-0	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Carbon Tetrachloride	56-23-5	ug/m3	6	1.16	0.20	1.15	0.20	1.84	0.20	1.13	0.20
Chlorobenzene Chloroethane	108-90-7 75-00-3	ug/m3		< 1.00	1.00 1.00	< 1.00 < 1.00	1.00 1.00	< 1.00 < 1.00	1.00 1.00	< 1.00 < 1.00	1.00 1.00
Chloroform	67-66-3	ug/m3 ug/m3		< 1.00 7.12	1.00	6.69	1.00	7.81	1.00	7.03	1.00
Chloromethane	74-87-3	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Cis-1,2-Dichloroethene	156-59-2	ug/m3	6	4.64	0.20	4.36	0.20	4.91	0.20	4.75	0.20
cis-1,3-Dichloropropene	10061-01-5	ug/m3	J	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Cyclohexane	110-82-7	ug/m3		7.57	1.00	4.88	1.00	1.46	1.00	9.01	1.00
Dibromochloromethane	124-48-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Dichlorodifluoromethane	75-71-8	ug/m3		2.78	1.00	2.69	1.00	2.6	1.00	2.7	1.00
Ethanol	64-17-5	ug/m3		25.4	1.00	22.6	1.00	24.3	1.00	29.6	1.00
Ethyl acetate	141-78-6	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Ethylbenzene	100-41-4	ug/m3		< 1.00	1.00	< 1.00	1.00	2.24	1.00	< 1.00	1.00
Heptane	142-82-5	ug/m3		1.07	1.00	< 1.00	1.00	1.62	1.00	< 1.00	1.00
Hexachlorobutadiene	87-68-3	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Hexane	110-54-3	ug/m3		2.89	1.00	2.95		3.29	1.00	2.51	
Isopropylalcohol	67-63-0	ug/m3		1.43	1.00				1.00		
Isopropylbenzene	98-82-8	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
m,p-Xylene	179601-23-1	ug/m3		2.05	1.00	1.9	1.00	8.29	1.00	1.55	
Methyl Ethyl Ketone	78-93-3	ug/m3		66.9	1.00	23.6	1.00	16.5	1.00	16.8	1.00
Methylene Chleride	1634-04-4	ug/m3	100	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Methylene Chloride n-Butylbenzene	75-09-2 104-51-8	ug/m3 ug/m3	100	6.73 < 1.00	3.00 1.00	7.15 < 1.00	3.00 1.00	7.85 < 1.00	3.00 1.00	6.8 < 1.00	3.00 1.00
o-Xylene	95-47-6	ug/m3		< 1.00	1.00	< 1.00	1.00	3.1	1.00	< 1.00	1.00
Propylene	115-07-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
sec-Butylbenzene	135-98-8	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Styrene	100-42-5	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Tetrachloroethene	127-18-4	ug/m3	100	24.5	0.25	26	0.25	86.1	0.25	20.9	0.25
Tetrahydrofuran	109-99-9	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Toluene	108-88-3	ug/m3		5.8	1.00	6.06	1.00	13.2	1.00	5.12	1.00
Trans-1,2-Dichloroethene	156-60-5	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
trans-1,3-Dichloropropene	10061-02-6	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Trichloroethene	79-01-6	ug/m3	6	11.3	0.20	12.2	0.20	31.7	0.20	9.83	0.20
Trichlorofluoromethane	75-69-4	ug/m3		1.1	1.00	1.13	1.00	1.25	1.00	1.16	1.00
Trichlorotrifluoroethane	76-13-1	ug/m3		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00
Vinyl Chloride	75-01-4	ug/m3	6	< 0.20	0.20	< 0.20	0.20	< 0.20	0.20	< 0.20	0.20

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 System Operation Log

Sid Harvey Industries Valley Stream, New York Soil Vapor Extraction System Table 1 (continued) System Operation Log

Dates From: 5/28/2020 To: 01/15/2021

Dates From: 1/29/2021 To: 12/1/2022

nspection Date and Time (24 Hr)	Check Alarm Lights d (is the alarm on? yes/no)			Pressure Measurem ent ("H ₂ O)	Vacuum Measurement ("H2O)					Reading	Flow Rate Reading (cfm)	Operator Inspection Date and Time (24 Hr)	Check Alarm Lights (is the alarm on? yes/no)		Pressure Measurem ent ("H ₂ O)		Vacuum Measurement ("H2O)						Temperature Reading (°F)	re Flow Rate Reading (cfm)	Operator								
	KO Drum	Low Vacuum	Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Ves	sel SVE-1	SVE-2	SVE-	3 SVE-4	SVE-5	SVE-6	(°F)	(cim)	cfm)		KO Drum	Low Vacuum	Blower Temperature	Blower Exhaust	Blower Intake	Particulate Filter	KO Vessel	SVE-1	SVE-2	SVE-3	SVE-4	SVE-5	SVE-6	(1)	(cim)	i
5/28/2020	No	No	No	-	58	54	46	35	45	42	off	32	off	135	-	JDU	1/29/2021	No	No	No	-	58	54	46	35	45	42	no	32	off	98	(210) 350	JDU
6/14/2020	No	No	No		58	54	46	35	45	42	off	32	off	135	(224) 350	JDU	2/11/2021	No	No	No	-	58	54	46	35	45	42	off	32	off	98	-	JDU
6/22/2020	No	No	No	-	56	54	44	35	42	44	off	35	off	135	-	JDU	2/25/2021	No	No	No	-	56	54	44	35	42	44	off	35	off	98	(208) 350	JDU
7/07/2020	No	No	No	-	56	54	44	35	42	44	off	35	off	135	-	JDU	3/8/2021	No	No	No	-	56	54	44	35	42	44	no	35	off	98	-	JDU
8/12/2020	No	No	No	-	56	54	44	35	42	44	off	35	off	135	-	JDU	3/25/2021	No	No	No	-	56	54	44	35	42	44	off	35	off	98	(200) 350	JDU
8/20/2020	No	No	No		56	54	44	35	42	44	off	35	off	135	-	JDU	4/30/2021	No	No	No	-	56	54	44	35	42	44	off	35	off	98	(208) 350	JDU
9/16/2020	No	No	No	-	56	54	44	35	42	44	off	35	off	135	-	JDU	5/15/2021	No	No	No	-	56	54	44	35	42	44	off	35	off	100	(213) 350	JDU
22/2020	No	No	No		56	54	44	35	42	44	off	35	off	135	-	JDU	5/25/2021	No	No	No		56	54	44	35	42	44	off	35	off	120	(220) 350	JDU
0/01/2020	No	No	No		58	56	46	36	42	45	off	38	off	130	(218) 350	JDU	6/10/2021	No	No	No	-	58	56	46	36	42	45	off	38	off	120	(215) 350	JDU
0/15/2020	No	No	No		58	56	46	36	42	45	off	38	off	100		JDU	6/24/2021	No	No	No		58	56	46	36	42	45	off	38	off	135	(210) 350	JDU
1/04/2020	No	No	No	-	58	56	46	36	42	45	off	38	off	98	-	JDU	7/1/2021	No	No	No	-	58	56	46	36	42	45	off	38	off	120	-	JDU
1/25/2020	No	No	No	-	58	56	46	36	42	45	off	38	off	98	(210) 350	JDU	7/28/2021	No	No	No	-	58	56	46	36	42	45	no	38	off	120	(215) 350	JDU
2/2/2020	No	No	No	-	58	56	46	_	42	45	off	38	off	98	-	JDU	8/11/2021	No	No	No	-	58	56	46	36	42	45	off	38	off	135	-	JDU
2/31/2020	No	No	No	-	58	56	46	36	42	45	off	38	off	98	(214) 350	JDU	8/31/2021	No	No	No	-	58	56	46	36	42	45	off	38	off	135	(208) 350	JDU
																	2	No	No	No	-	58	56	46	36	42	45	off	38	off	135	-	JDU
																	9/30/2021	No	No	No	-	58	56	46	36	42	45	flo	38	off	135		NAA
																	10/2021	No	No	No	-	58	56	46	36	42	45	off	38	off	135		NAA
				ļ													10/2021	No	No	No	-	58	56	46	36	42	45	flo	38	off	135		NAA
																	11/8/2021	No	No	No	-	52	52	43	35	42	46	flo	40	off	98	(210) 350	NAA
																	11/23/2021	No	No	No	-	56	52	46	36	42	45	off	42	off	82	(210) 350	NAA
																	12/6/2021	No	No	No	-	58	53	46	35	42	45	off	40	off	92	(215) 350	NAA
																	12/16/2021	No	No	No		56	53	46	35	42	45	flo	42	off	92	210	NAA
																	01/12/2022												-				NAA Gate to SVE broke
				-	ļ				-				-				02/17/2022	No	No	No	ļ	58	56	44	35	42	46	off	42	off	86	215	NAA
							-										02/21/2022	No	No	No		58	56	44	36	44	46	off	42	off	82	215	NAA
																	03/04/2022	No	No	No		58	58	44	36	44	46	flo	43	off	80	215	NAA
							-										03/10/2022	No	No	No No		56	54	44	36	42	46	off	44	off	80	215	NAA
					-				-		_		 				03/30/2022	No No	No No	No No	!	56 57	54	44	36	42	45	off	42	off	88	215	NAA
				-			-								-		04/13/2022			No			52	44	36	42	46	off	44	off	102	215	NAA
					-				-		_		 				04/28/2022 05/20/2022	No No	No No	No No	!	56 54	54 52	44	36 36	42 42	46	off	42	No No	95 104	215 215	NAA NAA
																		No	No	No		54	52	44	35	42	44	off	41	off	126	215	NAA NAA
					1												05/31/2022	No	No	No		52	52		35	42	44	off	42	off		215	
																	06/15/2022	No	No	No		54	52	44	35	42	46	off	38	off	121	215	NAA
				 	1		+	+	+	+	+		1		!		06/22/2022 7/132022	No	No	No		54	52	44	34	42	46	off	44	off	132	215	NAA NAA
	+ -			 	 	+		+	+	-	+		+		!		7/26/2022	No	No	No		54	52	46	34	42	46	off	38	off	134	215	NAA NAA
				 	1	1	+	+	+	+	+		1		 		08/11/2022	No	No	No	1	54	52	44	35	42	46	off	36	off	134	215	NAA NAA
				1	1				1		+		1		l		08/11/2022	No	No	No		54	52	44	34	40	46	off	36	off	124	215	NAA
				1	†	1	+			-	1		1	†	!		08/24/2022	No	No	No	1	54	52	44	35	42	46	off	36	off	124	215	NAA
				l	1	1	1		+	1	1		1		t		09/13/2022	No	No	No	1	54	52	44	34	40	46	off	36	off	119	215	NAA
							1	+	+								10/04/2022	No	No	No		55	54	46	36	44	48	off	38	off	96	215	NAA
				1	1				+		1		1		1		10/13/2022	No	No	No	1	54	52	44	30	42	46	off	44	off	110	215	NAA
							1	+	1								11/16/2022	No	No	No		56	54	46	36	44	46	off	48	off	95	215	NAA
					1	1			1				1		l		11/28/2022	No	No	No		55	53	45	36	42	47	off	48	off	94	215	NAA
							1	+	+								12/09/2022	No	No	No		56	54	44	30	42	46	off	42	off	88	215	NAA
15/2021	No	No	No	1 .	58	56	46	36	42	45	off	38	no	98	1 .	NAA	12/22/2022	No	No	No		55	53	45	28	42	46	off	54	off	80	215	NAA

	KO Drum	1	Numbers in	1 parenthesis	are collectes	yer h	
Date/Time Emptied	Gallons of Water Removed (approx.)						
	<u> </u>						

Numbers in parenthesis are collected using a Dwyer hot wire anemometer.	KO Drum				
	Date/Time Emptied	Gallons of Water Removed (approx.)			
	11/8/2021	10			
	12/22 2022	20			
	12/29/2022	5			

Numbers in parenthesis are collected using a Dwyer hot wire anemometer.						
7/13/2022 PID VGAC 1 0.0ppm VGAC 2 0.0 ppm						