PLUMLEY ENGINEERING, P.C.

Civil and Environmental Engineering

8232 LOOP ROAD, BALDWINSVILLE, NEW YORK 13027

Telephone: (315) 638-8587

Fax: (315) 638-9740

E-mail: Pros@PlumleyEng.com

September 9, 2004

Mr. Kevin J. Kelly
Environmental Engineer
NEW YORK STATE DEPARTMENT OF
ENVIRONMENTAL CONSERVATION
Division of Environmental Remediation, Region 7
615 Erie Boulevard West
Syracuse, New York 13204-2400

RE: Proposed Remedial Excavation Site No. V-00150-7 Town of Cicero, Onondaga County Project No. 2003074

Dear Mr. Kelly:

As set forth in the Remedial Work Plan, dated February 2004, enclosed please find the following documents with regard to the proposed remedial excavation:

- Sheet SP-1 Site Plan Soil Data
- Sheet GW-1 Site Plan Groundwater Data
- Sheet CS-1 Cross-Sections
- Table 1 Summary of Soil Data
- Table 2A Soil Analytical Results, Volatile Organic Compounds (VOCs) Test Pits
- Table 2B Soil Analytical Results, VOCs Soil Borings
- Table 3 Soil Analytical Results, Semi-Volatile Organic Compounds
- Table 4A Groundwater Analytical Results, VOCs Test Pits
- Table 4B Groundwater Analytical Results, VOCs Monitoring Wells

- Table 5 Groundwater Elevations
- Appendix A Soil Boring Logs

The key findings of the subsurface investigation relating to the limits of the proposed remedial excavation are summarized as follows:

- 1. The deep stratigraphic boring SB-1 indicated soils on the site were predominantly silts and fine sands to a depth of 11.5 feet, overlying a 5-foot thick clay layer. Below this, silts and fine to medium sands were encountered to the bottom of the boring at 52 feet. Bedrock was not encountered. Based on this information, all shallow borings were limited to penetrating 1 to 2 feet into the clay layer, which was encountered in all borings on the site in the range of 10 to 13 feet deep. Refer to Sheet CS-1 and Appendix A for additional information.
- 2. Groundwater was encountered in the range of 3 to 5 feet below ground surface in most of the borings.
- 3. Photoionization detection (PID) meter readings (Table 1 and Sheet CS-1) indicated limited soil contamination. PID readings were non-detected or low (less than 10 parts per million) in all samples, except in the immediate area of the former sump.
- 4. Soil samples were submitted for laboratory analysis based on PID readings. Samples with concentrations exceeding recommended soil cleanup values¹ (RSCVs) are highlighted in Tables 1, 2A and 2B and a summary of the data is shown on Sheet SP-1. The highest concentrations were found in soil boring SB-7 in the immediate area of the former sump, and extended from 4 feet to 18 feet below ground. The main contaminant exceeding soil cleanup guidance values was tetrachloroethene (PCE), with concentrations ranging from 9.2 to 570 parts per million (ppm) in the area of the former sump. The RSCV for PCE is 1.4 ppm. Acetone was also detected in this area at 52 ppm compared to its RSCV of 0.2 ppm.

¹New York State Department of Environmental Conservation (DEC) Technical and Administrative Guidance Memorandum (TAGM) 4046, *Determination of Soil Cleanup Objectives and Cleanup Levels*, dated January 24, 1994 and DEC Memorandum dated April 10, 2001.

- 5. Immediately outside the former sump area, samples collected to the east and south (SB-9, SB-10 and SB-14) had non-detect PID readings and concentrations less than RSCVs in all samples.
- 6. Samples collected to the west of the former sump area (SB-8) had low PID readings (less than 5 ppm) and concentrations less than RSCVs in both samples submitted for laboratory analysis.
- 7. Samples collected to the north of the former sump area (SB-12, SB-13 and SB-15) had non-detect PID readings in all samples except for a narrow band just above or into the top of the clay layer. In these isolated samples, PID readings were 33, 3.9 and 1.4 ppm, respectively, and concentrations of PCE were 19, 2.3 and 3.7 ppm, respectively. These results suggest this contamination has migrated along the top of the clay from the former sump area.
- 8. PID and soil analytical data from soil boring SB-7 indicate contamination levels decrease as the depth in the clay unit increases, suggesting the clay is attenuating the vertical migration of the contamination.

Refer to Tables 1, 2A, 2B and 3 and Sheet SP-1 for additional information.

The limits of the proposed remedial excavation are shown on Sheet SP-1 and are based on the following rationale:

- 1. The objective of the remedial excavation is to remove the source of the contamination which has been identified as the area of former sump.
- 2. An area surrounding the former sump is proposed to be excavated to the top of the clay layer to a depth of approximately 13 feet. The horizontal dimensions of the proposed excavation are estimated at 15 feet by 15 feet at the base of the excavation and extending to 30 feet by 30 feet at the ground surface.

- 3. Two areas where RSCVs were exceeded are not in the proposed excavation. The areas and reasons for not including these areas are as follows:
 - a. The isolated deep contamination (about 10 feet) identified in samples from soil borings SB-12, SB-13 and SB-15:
 - PID readings and analytical results indicate the contamination is limited to a narrow vertical band along the top of the clay layer. It is impractical, cost prohibitive and of limited benefit to remove this limited mass of contamination.
 - The PCE concentrations in these isolated samples are relatively low at 19, 2.3 and 3.7 ppm as compared to the RSCV of 1.4 ppm, considering that the guidance value is for protection of drinking water, the area is served by public water and deed restrictions are likely to prevent any use of the groundwater.
 - The contamination is below the water table and is more representative of the groundwater contamination, not contaminated source soils. Proposed measures to address groundwater contamination, including in this area, will be proposed in subsequent submittals.
 - b. The area of the sewer/water line in the area of test pits TP-1A and TP-1B:
 - The only compound identified at concentrations exceeding its RSCV was acetone at 0.22 ppm and 0.24 ppm, as compared the RSCV of 0.2 ppm.
 - PID readings were non-detected in the test pits.
 - Groundwater samples from these test pits had concentrations of acetone below State groundwater standards.² Proposed measures to address other groundwater contaminants in the utility trenches will be proposed in subsequent submittals.

²DEC Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limits*, dated June 1998, and April 2002 Addendum.

Mr. Kevin J. Kelly September 9, 2004 Page 5

- 4. The excavation will be dewatered during the remedial work, following the procedures outlined in the Remedial Work Plan.
- 5. The actual limits will depend on field indicators of contamination and practical excavation limitations (e.g. sidewall stability). A PID meter reading threshold of 10 ppm is proposed for discontinuing excavation. The area below the water table to the top of the clay layer will be excavated in the former sump area until PID readings indicate the vertically spread contamination, as exhibited in SB-7, is removed.
- 6. Clean soil, as determined in the field by PID readings, will be stripped from the area prior to excavation. This material would be placed back in the excavation and covered with clean soil.
- 7. Confirmation samples will be collected from the bottom and four sidewalls to document residual soil contamination levels.

We look forward to your timely concurrence with this approach so that we may proceed with the work. If you have any questions, please do not hesitate to contact me.

Sincerely,

PLUMLEY ENGINEERING, P.C.

Dale R. Vollmer, P.E.

DRV/cas

Enclosures

cc: Wendy Marsh, Esquire (w/3 enclosures)

Ms. Wendy Kuehner, DOH (w/enclosure)

CROSS SECTION A-A'

SCALE: 1" = 20 ' HORIZONTAL 1" = 5' VERTICAL

NOTES:

- 1. PID READINGS SHOWN IN RED.
- 2. ONLY POSITIVE PID READINGS ARE SHOWN.

CROSS SECTION B-B'

SCALE: 1" = 20 ' HORIZONTAL 1" = 5' VERTICAL

VCA No. A7-0466-0702

DWG. TITLE:

CROSS SECTIONS

CLIENT:

HANCOCK & ESTABROOK, LLP

LOCATION:
TOWN OF CICERO, ONONDAGA COUNTY, NEW YORK

 PROJECT No.:
 2003074

 FILE NAME.:
 CS01P

 SCALE:
 AS NOTED

 DATE:
 SEPT. 2004

 ENG'D BY:
 SAZ

 DRAWN BY:
 JTG

 CHECKED BY:
 DRV

CS-

© Plumley Engineering, P.C. 2004

TABLE 1 - SUMMARY OF SOIL DATA PHOTOIONIZATION DETECTION METER READINGS AND ANALYTICAL DATA

Date Sampled: As indicated

Boring	Sample	Depth	PID Reading	TOTAL VOCs	TOTAL
Location	Collection Date	(feet)	(ppm)	(ppm)	TOTAL SVOCs
TP-1A	6/9/04	4	0	1.255*	(ppm)
TP-1B	6/9/04	5	0	1.537*	NA
TP-2A	6/9/04	5	0	0.055	NA
TP-2B	6/9/04	5	0	0.033	NA
TP-3A	6/9/04	4	0	0.161	NA NA
TP-3B	6/9/04	4	0	0.036	NA
TP-4	6/9/04	4	0	NA	NA
TP-5	6/9/04	2	0	0.247	NA
TP-6	6/9/04	2	0	0.05	NA
TP-7	6/7/04	3	0	0.059	NA NA
TP-8	6/7/04	3	0	0.019	NA
B-1 (Deep Boring)	7/15/04	0 to 52	All readings 0	NA	NA
		0 to 2	NR	INA	NA
		2 to 4	0		
		4 to 6	0	0.025	
SB-2	7/15/04	6 to 8	0	0.025	NA
		8 to 10	0		
		10 to 12	0		
		12 to 14	NR		
		0 to 2	0		
		2 to 4	0		
		4 to 6	0	0.020	
SB-3	7/15/04	6 to 8	0	0.020	NA
		8 to 10	NR		
		10 to 12	0		
		12 to 14	0		
		0 to 2	0		
		2 to 4	0		
		4 to 6	0	0.004	
SB-4	7/15/04	6 to 8	0	0.024	NA
		8 to 10	0		
		10 to 12	0		
		12 to 14	0		
		0 to 2	NR		
		2 to 4	0		
		4 to 6	0	0.000	
SB-5	7/15/04	6 to 8		0.080	ND
		8 to 10	0		
		10 to 12	0		
		12 to 14	NR		
		0 to 2	NR		
]	2 to 4	4		
CD C		4 to 6	5.6	0.012	37.
SB-6	7/16/04	6 to 8	5.6	0.013	NA
		8 to 10			
		10 to 12	7.1	0.044	
		0 to 2	4	0.044	NA
		2 to 4	0		
		4 to 6	49	7 00	
			111	500	1.4
SB-7	7/16/04	6 to 8	39		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8 to 10 10 to 12	41		
			50	14	ND
		') + \ 1 A !	107		
		12 to 14 14 to 16	185 17	622	ND

TABLE 1 - SUMMARY OF SOIL DATA PHOTOIONIZATION DETECTION METER READINGS AND ANALYTICAL DATA

Date Sampled: As indicated

Boring	Sample	Depth	PID Reading	TOTAL VOCs	TOTAL SVOC
Location	Collection Date	(feet)	(ppm)	(ppm)	(ppm)
		0 to 2	NR		(PPIII)
		2 to 4	3.2		
SB-8	7/16/04	4 to 6	1.8	0.700	ND
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6 to 8	0.9		1,12
		8 to 10	0		
		10 to 12	0	0.110	NA
		0 to 2	0		
		2 to 4	0	0.013	NA
SB-9	7/16/04	4 to 6	0		
		6 to 8	0		
		8 to 10	0		
		10 to 12	0		
		0 to 2	0		
		2 to 4	0	0.047	NA
SB-10	7/16/04	4 to 6	0		
		6 to 8	0		
		8 to 10	0		
		10 to 12	0		
		0 to 2 2 to 4	0		
	-		0	0.048	ND
SB-11	7/16/04	4 to 6	0		
	}	6 to 8	0		
		8 to 10	0		
		10 to 12	0	0.935	NA
		0 to 2 2 to 4	0		
GD 10	ļ	4 to 6	0		
SB-12	7/16/04	6 to 8	0		
	<u> </u>	8 to 10	0		
		10 to 12	33	10	
		0 to 2	0	19	ND
		2 to 4	0		
CD 12	7/1.5/2.1	4 to 6	0		
SB-13	7/16/04	6 to 8	0		
	<u> </u>	8 to 10	3.9	2.20	
		10 to 12	0	2.30	NA
		0 to 2	0		
	<u> </u>	2 to 4	0	0.022	
SB-14	7/16/04	4 to 6	0	0.033	NA
	//10/04	6 to 8	NR		
	Ī	8 to 10	0		
		10 to 12	0		
		0 to 2	0		
	Ī	2 to 4	0		
SB-15	7/16/04	4 to 6	0		
10	//10/04	6 to 8	0		
		8 to 10	0		
		10 to 12	1.4	3.70	NIA
		0 to 2	NR	3.70	NA
	Ţ	2 to 4	0		
SB-16	7/16/04	4 to 6	0	ND	NA
-	//10/07	6 to 8	0		INA
		8 to 10	0		
		10 to 12	0		

TABLE 1 - SUMMARY OF SOIL DATA PHOTOIONIZATION DETECTION METER READINGS AND ANALYTICAL DATA

Date Sampled: As indicated

Matrix: Soil

Boring Location	Sample Collection Date	Depth (feet)	PID Reading (ppm)	TOTAL VOCs (ppm)	TOTAL SVOCs (ppm)	
		0 to 2	0			
		2 to 4	0	1		
MW-1	7/22/04	4 to 6	2	1		
	1122104	6 to 8	7	NA	NA	
		8 to 10	0			
		10 to 12	0	1		
		0 to 2	0			
		2 to 4	0	1		
MW-2	7/22/04	4 to 6	1	1		
· · <u>-</u>	1122104	6 to 8	3	- NA	NA	
		8 to 10	1	-		
· · · · · · · · · · · · · · · · · · ·		10 to 12	0	1		
		0 to 2	0			
		2 to 4	0			
MW-3	7/22/04	4 to 6	0			
	7722704	6 to 8	1.2	NA	NA	
		8 to 10	0			
		10 to 12	0			
		0 to 2	0			
		2 to 4	0	1		
MW-4	7/22/04	4 to 6	0	1		
212 17 1	1122104	6 to 8	NS	NA	NA	
		8 to 10	NS	1		
		10 to 12	NS	1	{	

Notes:

NA Sample not analysed

No soils recovered from specified interval NR

Specified interval not screened due to meter failure NS

Not detected at method detection limit ND

Samples with analytical results with any compound(s) that exceeded Recommended Soil Cleanup Levels are denoted in $\textbf{\textit{BOLD}}$.

* Acetone was the only compound exceeding Recommended Soil Cleanup Levels.

TABLE 2A - SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS - TEST PITS

Date Sampled: June 9, 2004

Matrix: Soil

	Recommended					Test Pit Grab	Samples (mg/kg)			
Compound Sample Depth	Soil Cleanup Leve1 ¹	TP-1A	TP-1B	TP-2A	TP-2B	TP-3A	TP-3B	TP-5	TP-6	TP-7	TP-8
	(mg/kg)	4'	5'	5'	5'	4'	4'	2'	2'	3'	3'
Acetone	0.2	0.24	0.22	0.03	0.06	0.04	0.027	0.12	0.03	0.03 B	ND<0.013
2-Butanone (MEK)	0.3	0.1	0.06 J	ND<0.013	0.02	0.01 J	0.01 J	0.09	0.01 J	0.02	0.01 J
Dichlorodifluoromethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Chloromethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Vinyl Chloride	0.2	0.002 J	0.02 J	0.01 J	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Bromomethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Chloroethane	1.9	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Trichlorofluoromethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
1,1-Dichloroethene	0.4	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Methylene Chloride	0.1	0.02 J	0.02 J	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	0.006 BJ		
trans-1,2-Dichloroethene	0.3	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
cis-1,2-Dichloroethene		0.06 J	0.1	0.02	0.02	0.02	ND<0.012	0.001 J	ND<0.013	ND<0.013	ND<0.013
1,1-Dichloroethane	0.2	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Chloroform	0.3	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
1,1,1-Trichloroethane	1.4	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Carbon Tetrachloride	0.6	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
1,2-Dichloroethane	0.1	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Trichloroethene (TCE)	0.7	0.05 J	0.24	ND<0.013	0.02	0.01 J	ND<0.012	0.002 J	ND<0.013	ND<0.013	ND<0.013
1,2-Dichloropropane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Bromodichloromethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
cis-1,3-Dichloropropene		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
rans-1,3-Dichloropropene		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
2-Chloroethylvinyl Ether		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
1,1,2-Trichloroethane		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Tetrachloroethene (PCE)	1.4	0.81	0.88	0.004 J	0.01 J	0.08	ND<0.012	0.04	ND<0.013	ND<0.013	ND<0.013
Chlorobenzene	1.7	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Bromoform		ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
,1,2,2-Tetrachloroethane	0.6	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
,3-Dichlorobenzene	1.6	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
,4-Dichlorobenzene	8.5	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
,2-Dichlorobenzene	7.9	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Benzene	0.06	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
Toluene	1.5	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	0.006 J	0.004 J	ND<0.013
Ethylbenzene	5.5	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	ND<0.013
otal Xylenes	1.2	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	0.001 J	ND<0.013	ND<0.013 ND<0.013
Methyl-tert butyl ether (MTBE)	0.12	ND<0.062	ND<0.062	ND<0.013	ND<14	ND<0.013	ND<0.012	ND<0.012	ND<0.013	ND<0.013	
OTAL VOCs	10	1.26	1.54	0.055	0.133	0.161	0.04	0.25	0.05	0.06	ND<0.013 0.019

Notes

ng/kg milligrams per kilogram (equivalent to parts per million, ppm) Compounds that exceeded Recommended Soil Cleanup Levels are denoted in *BOLD*. ND< Not detected less than
--- No promulgated State Standard

B Indicates compound detected in blank as well as the sample

J Concentration of compound was detected at a concentration below method detection limit

Ref: NYSDEC Technical Administration Guidance Memorandum (TAGM) No. 4046, *Determination of Soil Cleanup Objectives and Cleanup Levels*, dated January 24, 1994, as modified by DEC Memorandum of April 10, 2001. Allowable concentration with no dilution/attenuation factor. See TAGM 4046. Soil cleanup objectives are developed for soil organic carbon content of 1% and should be adjusted for actual carbon content if known.

TABLE 2B - SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS - SOIL BORINGS

Date Sampled: July 13, 2004

Matrix: Soil

	Recommended Soil		······································	· · · · · · · · · · · · · · · · · · ·		Soil Bor	ing Grab Sam	oles (mg/kg)			·····	Wiatrix. Sur
Compound	Cleanup Level	SB-2	SB-3	SB-4	SB-5	SB-6	SB-6	SB-7	SB-7	SB-7	SB-7	SB-8
	(mg/kg)	4-6	4-6	4-6	4-6	4-6	10-12	4-6	10-12	12-14	16-18	4-6
Chloromethane		ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<630	ND<0.062
Bromomethane		ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<630	ND<0.062
Vinyl Chloride	0.2	ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<630	ND<0.062
Chloroethane	1.9	ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<630	ND<0.062
Methylene Chloride	0.1	ND<0.006	ND<0.006	0.009	0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Acetone (2-Propanone)	0.2	0.03 B	0.02 B	0.02 E	0.02	B 0.01 (0 0.02 E		ND<1.3	52	ND<630	ND<0.062
Carbon Disulfide	2.7	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.002
1,1-Dichloroethene	0.4	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
1,1-Dichloroethane	0.2	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
trans-1,2-Dichloroethene	0.3	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
cis-1,2-Dichloroethene		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Chloroform (Trichloromethane)	0.3	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
1,2-Dichloroethane	0.1	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
MEK(2-Butanone)	0.3	ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.006	ND<0.012	ND<24	ND<0.630	ND<26	ND<630	ND<0.031
1,1,1-Trichloroethane	0.8	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Carbon Tetrachloride	0.6	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Bromodichloromethane		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
1,2-Dichloropropane		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
cis-1,3-Dichloropropene		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Trichloroethene (TCE)	0.7	ND<0.006	ND<0.006	ND<0.006	0.01	ND<0.006	0.01	ND<24	ND<0.630	ND<26	ND<320	0.04
Dibromochloromethane	NA	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031
1,1,2-Trichloroethane		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031 ND<0.031
Benzene	0.06	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	ND<0.031 ND<0.031
trans-1,3-Dichloropropene		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320 ND<320	ND<0.031 ND<0.031
Bromoform		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320 ND<320	ND<0.031 ND<0.031
MIBK (4-Methyl-2-pentanone)	1	ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<520 ND<630	ND<0.031 ND<0.062
2-Hexanone		ND<0.012	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.012	ND<48	ND<1.3	ND<51	ND<630	
Tetrachloroethene (PCE)	1.4	ND<0.006	ND<0.006	ND<0.006	0.05	ND<0.006	0.02	500	14	570	9.2	ND<0.062
1,1,2,2-Tetrachloroethane	0.6			ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24	ND<0.630	ND<26	ND<320	0.66
Toluene	1.5		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24 ND<24	ND<0.630	ND<26		ND<0.031
Chlorobenzene	1.7		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24 ND<24	ND<0.630	ND<26	ND<320	ND<0.031
Ethylbenzene	5.5		ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24 ND<24	ND<0.630 ND<0.630	ND<26 ND<26	ND<320	ND<0.031
Styrene	1	T I	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<24 ND<24	ND<0.630 ND<0.630	ND<26 ND<26	ND<320	ND<0.031
p-Xylene/m-Xylene ²			ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006 ND<0.006	ND<24 ND<24	ND<0.630 ND<0.630		ND<320	ND<0.031
o-Xylene		ľ		ND<0.006	ND<0.006	ND<0.006	ND<0.006 ND<0.006	ND<24 ND<24	ND<0.630 ND<0.630	ND<26	ND<320	ND<0.031
TOTAL VOCs	10	0.03	0.02	0.02	0.07	0.01	0.05	500	ND<0.630	ND<26 622	ND<320 9.2	ND<0.031 0.7

TABLE 2B - SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS - SOIL BORINGS

Date Sampled: July 13, 2004

Matrix: Soil

	Recommended Soil					Soil Boring Gra	ab Samples (m	g/kg)			
Compound	Cleanup Level	SB-8	SB-9	SB-10	SB-11	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16
	(mg/kg)	10-12	2-4	2-4	2-4	10-12	10-12	8-10	2-4	10-12	4-6
Chloromethane		ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	ND<0.012	ND<0.250	ND<0.012
Bromomethane		ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	ND<0.012	ND<0.250	ND<0.012
Vinyl Chloride	0.2	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	0.01	ND<0.250	ND<0.012
Chloroethane	1.9	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	ND<0.012	ND<0.250	ND<0.012
Methylene Chloride	0.1	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Acetone (2-Propanone)	0.2	ND<0.013	0.01 B	0.05 E	3 ND<0.012	ND<0.062	ND<1.2	ND<0.130	0.02	ND<0.250	ND<0.012
Carbon Disulfide	2.7	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,1-Dichloroethene	0.4	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,1-Dichloroethane	0.2	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
trans-1,2-Dichloroethene	0.3	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
cis-1,2-Dichloroethene		ND<0.007	ND<0.006	ND<0.006	ND<0.006	0.1	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Chloroform (Trichloromethane)	0.3	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,2-Dichloroethane	0.1	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
MEK(2-Butanone)	0.3	ND<0.013	ND<0.012	ND<0.012	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,1,1-Trichloroethane	0.8	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Carbon Tetrachloride	0.6	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Bromodichloromethane		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,2-Dichloropropane		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
cis-1,3-Dichloropropene		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Frichloroethene (TCE)	0.7	ND<0.007	ND<0.006	ND<0.006	ND<0.006	0.07	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Dibromochloromethane	NA	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
1,1,2-Trichloroethane		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Benzene	0.06	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
rans-1,3-Dichloropropene		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
Bromoform		ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
MIBK (4-Methyl-2-pentanone)	1 1	ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	ND<0.012	ND<0.250	ND<0.000 ND<0.012
2-Hexanone		ND<0.013	ND<0.012	ND<0.012	ND<0.012	ND<0.062	ND<1.2	ND<0.130	ND<0.012	ND<0.250	ND<0.012 ND<0.012
Tetrachloroethene (PCE)	1.4	0.11	0.01	ND<0.006	0.05	0.7	19	2.3	ND<0.006	3.7	ND<0.012 ND<0.006
,1,2,2-Tetrachloroethane	0.6	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	
Coluene	1.5	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063 ND<0.063	ND<0.006 ND<0.006	ND<0.120 ND<0.120	ND<0.006
Chlorobenzene	1.7	ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031	ND<0.62 ND<0.62	ND<0.063	ND<0.006 ND<0.006		ND<0.006
Ethylbenzene	5.5	ND<0.007 ND<0.007	ND<0.006	ND<0.006	ND<0.006	ND<0.031 ND<0.031	ND<0.62 ND<0.62	ND<0.063 ND<0.063	ND<0.006 ND<0.006	ND<0.120	ND<0.006
tyrene	5.5	ND<0.007 ND<0.007	ND<0.006	ND<0.000 ND<0.006	ND<0.006 ND<0.006	ND<0.031 ND<0.031				ND<0.120	ND<0.006
-		ND<0.007	ND<0.006 ND<0.006	ND<0.006 ND<0.006	ND<0.006 ND<0.006)	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
-Xylene/m-Xylene ²	1.2 1.2	ND<0.007 ND<0.007	ND<0.006 ND<0.006			ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
-Xylene				ND<0.006	ND<0.006	ND<0.031	ND<0.62	ND<0.063	ND<0.006	ND<0.120	ND<0.006
TOTAL VOCs	10	0.11	0.02	0.05	0.05	0.94	19	2.3	0.02	3.7	ND

Notes:

mg/kg milligrams per kilogram, equivalent to parts per million (ppm)

ND< Not detected less than

--- No Recommended Cleanup Level
Compounds that exceeded Recommended Soil Cleanup Levels are denoted in *BOLD*.

¹ Ref: NYSDEC Technical Administration Guidance Memorandum (TAGM) No. 4046, Determination of Soil Cleanup Objectives and Cleanup Levels, dated January 24, 1994 and revised April 10, 2001.

² The Recommended Soil Cleanup Level for each isomer of Xylene is 1.2 mg/kg.

TABLE 3 - SOIL ANALYTICAL RESULTS - SEMI-VOLATILE ORGANIC COMPOUNDS

Date Sampled: 7/13/04

Matrix: Soil

_	Recommended			Soil Borin	g Grah Sam	ples (mg/kg)		Matrix: S
Compound	Soil Cleanup	SB-5	SB-12	SB-7	SB-8	SB-11	SB-7	CD 5
	Level (mg/kg)	4-6	10-12	4-6	4-6	2-4	10-12	SB-7
n-Nitrosodimethylamine		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	12-14
Aniline	0.1	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
Bis(2-chloroethyl)ether		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
1,3 Dichlorobenzene	1.6	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
1,4 Dichlorobenzene	8.5	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
1,2 Dichlorobenzene	7.9	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	
Benzyl Alcohol		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
Bis(2-Chloroisopropylether)		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42 ND<0.42
Hexachloroethane		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42 ND<0.42
n-Nitrosodi-n-propylamine		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42 ND<0.42
Nitrobenzene	0.2^{2}	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	
Isophorone	4.4	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42
bis(-2-chloroethoxy)methane		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42
1,2,4-Trichlorobenzene	3.4	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42 ND<0.42	ND<0.42
Naphthalene	13	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	1	ND<0.42
4-Chloroaniline	0.222	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41 ND<0.41	ND<0.42	ND<0.42
Hexachlorobutadiene		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41 ND<0.41	ND<0.42	ND<0.42
2-Methylnaphthalene	36.4	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Hexachlorocyclopentadiene		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41 ND<0.41	ND<0.42	ND<0.42
2-Chloronaphthalene		ND<0.41	ND<0.41	ND<0.40	ND<0.41 ND<0.41		ND<0.42	ND<0.42
2-Nitroaniline	0.43^{2}	ND<2.10	ND<2.10	ND<2.00	ND<0.41 ND<2.10	ND<0.41	ND<0.42	ND<0.42
Dimethyl phthalate	2	ND<0.41	ND<0.41	ND<2.00 ND<0.40	ND<2.10 ND<0.41	ND<2.10	ND<2.10	ND<2.10
Acenaphthylene	41	ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41 ND<0.41	ND<0.41	ND<0.42	ND<0.42
2,6-Dinitrotoluene	1	ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41 ND<0.41	ND<0.41	ND<0.42	ND<0.42
3-Nitroaniline	0.5 ²	ND<2.10	ND<2.10	ND<0.40 ND<2.00	ND<0.41 ND<2.10	ND<0.41	ND<0.42	ND<0.42
Acenaphthene	50	ND<0.41	ND<0.41	ND<2.00 ND<0.40		ND<2.10	ND<2.10	ND<2.10
2,4-Dinitrotoluene		ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Dibenzofuran	6.2	ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Diethyl phthalate	7.1	ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Fluorene	50	ND<0.41	ND<0.41	ND<0.40 ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
4-Chlorophenylphenylether		ND<0.41	ND<0.41 ND<0.41		ND<0.41	ND<0.41	ND<0.42	ND<0.42
4-Nitroaniline		ND<2.10	ND<0.41 ND<2.10	ND<0.40 ND<2.00	ND<0.41	ND<0.41	ND<0.42	ND<0.42
1,2-Diphenylhydrazine		ND<0.41	ND<2.10 ND<0.41	1	ND<2.10	ND<2.10	ND<2.10	ND<2.10
n-Nitrosodiphenylamine		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Azobenzene		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
4-Bromophenyl-phenyl ether		ND<0.41	ND<0.41 ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Hexachlorobenzene	0.41	ND<0.41	ND<0.41 ND<0.41	ND<0.40 ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Phenanthrene	50	ND<0.41	ND<0.41		ND<0.41	ND<0.41	ND<0.42	ND<0.42
Anthracene	50	ND<0.41	ND<0.41 ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Di-n-butyl phthalate	8.1	ND<0.41	ND<0.41 ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Fluoranthene	50	ND<0.41	ND<0.41 ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzidine		ND<0.41 ND<0.41		ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Pyrene	50	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Butyl benzyl phthalate	50	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzo(a)anthracene	0.2242	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
3,3-Dichlorobenzidene	NA	ND<0.41 ND<0.81	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Chrysene	0.4	ND<0.81 ND<0.41	ND<0.81	ND<0.80	ND<0.82	ND<0.81	ND<0.84	ND<0.85
Bis(2-ethylhexyl)phthalate	50	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzo(b)Fluoranthene	1.1	ND<0.41 ND<0.41	ND<0.41	1.4	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzo(k)Fluoranthene	1.1	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzo(a)pyrene	0.061 ²	ND<0.41 ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Indeno(1,2,3-cd)pyrene	3.2		ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Dibenzo(a,h)anthracene	0.014^{2}	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzo(g,h,i)perylene	50	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Methylphenol/4-Methylphenol	0.9³	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Phenol	0.9^{3} 0.03^{2}	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2-Chlorophenol	0.032	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2-Methylphenol	0.8 0.1^2	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2-Nitrophenol	0.1 ² 0.33 ²	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2,4-Dimethylphenol		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Benzoic Acid		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
4-Chloro-3-Methylphenol	0.242	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2-Methylnaphthalene		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
Hexachlorocyclopentadiene	36.4	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2,4,6-Trichlorophenol		ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2,4,5-Trichlorophenol	0.1	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
2,4-Dinitrophenol	0.1	ND<0.41	ND<0.41	ND<0.40	ND<0.41	ND<0.41	ND<0.42	ND<0.42
4-Nitrophenol	0.22	ND<2.10	ND<2.10	ND<2.00	ND<2.10	ND<2.10	ND<0.42 ND<2.10	ND<0.42 ND<2.10
2-Methyl 4.6 Dimin	0.12	ND<2.10	ND<2.10	ND<2.10	ND<2.10	ND<2.10	ND<2.10 ND<2.10	ND<2.10 ND<2.10
2-Methyl-4,6-Dinitrophenol		ND<2.10	ND<2.10	ND<2.00	ND<2.10	ND<2.10	ND<2.10 ND<2.10	ND<2.10 ND<2.10
Pentachlorophenol	12	ND<2.10	ND<2.10	ND<2.00	ND<2.10	ND<2.10	ND<2.10 ND<2.10	
TOTAL SVOCs	500	ND	ND	1.4	ND	ND VIII	ND~2.10 ND	ND<2.10

Notes:

mg/kg - milligrams per kilogram (parts per million)

Compounds that exceeded Recommended Soil Cleanup Levels are denoted in **BOLD**

No Recommended Cleanup Level

NA Not Available

ND< Not detected less than

¹ Ref: NYSDEC Technical Administration Guidance Memorandum (TAGM) No. 4046, Determination of Soil Cleanup Objectives and Cleanup Levels, dated January 24, 1994 and revised April 10, 2001.

² or Method Detection Limit (MDL)

³ 0.9 mg/kg is for 4-Methylphenol only

TABLE 4A - GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS - TEST PITS

Date Sampled: 6/7/04 and 6/9/04

Matrix: Groundwater

Compound	State		Test P	it Grab Sampl	es (µg/L)	
Location	Standard ¹	GW-1	GW-1B	GW-2B	GW-3A	GW-3B
A	(ug/L)	Leach Field	Test Pit TP-1B	Test Pit TP-	Test Pit TP-3B	Test Pit TP-3B
Acetone	50	7 BJ	ND<200	11	ND<100	8 I
2-Butanone (MEK)	50	ND<10	ND<200	ND<10	ND<100	ND<10
Dichlorodifluoromethane	5	ND<10	ND<200	ND<10	ND<100	ND<10
Chloromethane	5	ND<10	ND<200	ND<10	ND<100	ND<10
Vinyl Chloride	2	ND<10	260	ND<10	ND<100	***************************************
Bromomethane	5	ND<10	ND<200	ND<10	ND<100	43 ND<10
Chloroethane	5	ND<10	ND<200	ND<10	ND<100	***************************************
Trichlorofluoromethane	5	ND<10	ND<200	ND<10	ND<100	ND<10 ND<10
1,1-Dichloroethene	5	ND<10	ND<200	ND<10	ND<100	
Methylene Chloride	5	2 BJ	ND<200	3 I	ND<100	ND<10
trans-1,2-Dichloroethene	5	ND<10	ND<200	ND<10	ND<100	ND<10
cis-1,2-Dichloroethene	5	ND<10	830	1 T	190	ND<10
1,1-Dichloroethane	5	ND<10	ND<200	ND<10	ND<100	120
Chloroform	7	ND<10	ND<200	ND<10		ND<10
1,1,1-Trichloroethane	5	ND<10	ND<200	ND<10	ND<100	ND<10
Carbon Tetrachloride	5	ND<10	ND<200	ND<10 ND<10	ND<100	ND<10
1,2-Dichloroethane	0.6	ND<10	ND<200		ND<100	ND<10
Trichloroethene (TCE)	5	ND<10	950	ND<10	ND<100	ND<10
1,2-Dichloropropane	1	ND<10	ND<200	ND<10	98 J	15
Bromodichloromethane	50	ND<10	ND<200	ND<10	ND<100	ND<10
cis-1,3-Dichloropropene	0.4	ND<10	ND<200	ND<10	ND<100	ND<10
trans-1,3-Dichloropropene	0.4	ND<10	ND<200	ND<10	ND<100	ND<10
2-Chloroethylvinyl Ether		ND<10	ND<200	ND<10	ND<100	ND<10
1,1,2-Trichloroethane	1	***************************************		ND<10	ND<100	ND<10
Tetrachloroethene (PCE)	5	ND<10 ND<10	ND<200	ND<10	ND<100	ND<10
Chlorobenzene	5	ND<10	3,600	ND<10	910	4 J
Bromoform	50	ND<10 ND<10	ND<200	ND<10	ND<100	ND<10
1,1,2,2-Tetrachloroethane	5		ND<200	ND<10	ND<100	ND<10
1,3-Dichlorobenzene	2	ND<10	ND<200	ND<10	ND<100	ND<10
1,4-Dichlorobenzene	2	ND<10	ND<200	ND<10	ND<100	ND<10
1,2-Dichlorobenzene	2	ND<10	ND<200	ND<10	ND<100	ND<10
Benzene	1	ND<10	ND<200	ND<10	ND<100	ND<10
Toluene	1	ND<10	ND<200	ND<10	ND<100	ND<10
Ethylbenzene	<u>y</u>	ND<10	ND<200	ND<10	ND<100	ND<10
Total Xylenes	<u> </u>	ND<10	ND<200	ND<10	ND<100	ND<10
Methyl-tert butyl ether (MTBE)	5 10	ND<10	ND<200	ND<10	ND<100	ND<10
TOTAL VOCs	10	ND<10	ND<200	ND<10	ND<100	ND<10
TOTAL YOUS		9	5,640	15	1,198	190

Notes:

Compounds that exceeded State Standards are denoted in BOLD.

¹ State standard is in reference to the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS)

^{1.1.1,} Ambient Water Quality Standards and Guidance Values, reissued June 1998.

micrograms per liter, equivalent to parts per billion (ppb) μg/L

ND <Not detected less than

No promulgated State Standard

Indicates compound detected in blank as well as the sample В

Concentration of compound was detected at a concentration below method detection limit

TABLE 4B - GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS - MONITORING WELLS

Date Sampled: 7/26/04 Matrix: Groundwater State Monitoring Well Samples (µg/L) Compound Location Standared¹ **MW-1** MW-2 **MW-3** MW-4 CES-MW-1 CES-MW-2 **TW-4** (ug/L) **TW-5** Acetone 50 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 2-Butanone (MEK) 50 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Dichlorodifluoromethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Chloromethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Vinyl Chloride 2 ND<20 ND<200 44 ND<10 *57* ND<10 ND<10,000 52 Bromomethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Chloroethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Trichlorofluoromethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10,000 ND<10 ND<50 1,1-Dichloroethene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 trans-1,2-Dichloroethene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 cis-1,2-Dichloroethene 5 84 420 140 ND<10 *150* ND<10 4800 450 1,1-Dichloroethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10,000 ND<10 ND<50 Chloroform 7 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,1,1-Trichloroethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Carbon Tetrachloride 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,2-Dichloroethane 0.6 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Trichloroethene (TCE) 5 56 440 47 ND<10 ND<10 ND<10 ND<10,000 230 1,2-Dichloropropane 1 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Bromodichloromethane 50 ND<200 ND<20 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 cis-1,3-Dichloropropene 0.4 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Dibromochloromethane 50 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 trans-1,3-Dichloropropene 0.4 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,1,2-Trichloroethane 1 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Tetrachloroethene (PCE) 5 420 E 2100 8 ND<10 ND<10 ND<10 160,000 430 Chlorobenzene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10,000 ND<10 ND<50 Bromoform 50 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 4-Methyl-2-Pentanone ---ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 2-Hexanone 50 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,1,2,2-Tetrachloroethane 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,3-Dichlorobenzene 3 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 ,4-Dichlorobenzene 3 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,2-Dichlorobenzene 3 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Benzene 1 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Toluene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Ethylbenzene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Total Xylenes 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Carbon Disulfide 60 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,001 ND<51 Styrene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Methyl Acetate ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Freon 113 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Cyclohexane ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10.000 ND<50 Methylcyclohexane ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1.2-Dibromoethane 0.0006 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 1,2-dibromo-3-chloro-Propane 0.04 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10,000 ND<10 ND<50 ,2,4-Trichlorobenzene 5 ND<20 ND<200 ND<10 ND<10 ND<10 ND<10 ND<10,000 ND<50 Methyl-tert butyl ether (MTBE) 10 ND<20 ND<200 8 ND<10 ND<10 J ND<10,000 ND<50

Notes:

TOTAL VOCs

560

micrograms per liter (equivalent to parts per billion, ppb)

ND< Not detected less than

No promulgated State Standard

Indicates compound detected in blank as well as the sample В

Concentration of compound was detected at a concentration below method detection limit J

Concentration of compound was detected at a concentration greater than calibrated range of instrument used for specified analysis E Compounds that exceeded State Standards are denoted in BOLD.

2,960

247

0

207

5

164,800

1,162

¹ State standard is in reference to the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values, reissued June 1998.

TABLE 5 - GROUNDWATER ELEVATIONS

MONITORING WELL CONSTRUCTION	MONITORING WELL DESIGNATION												
DATA	MW-1	MW-2	MW-3	MW-4	CES-MW-1	CES-MW-2	TW-4	TW-5					
Rim Elevation	103.07	103.42	103.80	104.35	102.71	104.93	108.37	107.75					
Ground Elevation	103.69	103.94	104.08	104.98	102.91	105.23	105.29	104.69					
Total Depth of Well	11.32	11.27	11.20	11.35	12.18	14.55	13.02	15.00					
Depth of Well Elevation	91.75	92.15	92.60	93.00	90.53	90.38	95.35	92.75					
Diameter (inches)	2	2	2	2	1	1	1	1					
MEASUREMENT DATE	-			GROUNDWATE	R ELEVATIONS ¹								
07/26/04	99.66	98.42	98.46	99.30	98.09	100.62	102.06	101.34					

Notes:

¹ Groundwater elevations are based on an arbitrary datum of 100.0 feet.

August 24, 2004

Mr. Derk Hudson Plumley Engineering, P.C. 8232 Loop Road Baldwninsville, New York 13027

Re:

04135A

North Star Cleaners

7980-7984 Brewerton Road Town of Cicero, New York

Dear Mr. Hudson:

Enclosed are the driller's field logs of 6 groundwater monitoring well installations and 14 test borings made for you for the above project.

Soil samples from this work were retained by your representative at the job site.

The borings were made at points located by you. Drilling, sampling and the well installations were done in accordance with your instructions.

Thank you for this opportunity to work with you.

Very truly yours,

PARRATT - WOLFF, INC.

Joel V. Parratt

JVP/blo

enc:

SOIL SAMPLING-METHODS

Split barrel sampling

The following excerpts are from "Standard Method for penetration test and split-barrel sampling of soils." (ASTM designation: D-1586-99 AASHO Designation: T-206-87.)

1. Scope

1.1 This method describes a procedure for using a splitbarrel sampler to obtain respresentative samples of soil for identification purposes and other laboratory tests, and to obtain a measure of the resistance of the soil to penetration of the sampler.

2. Apparatus

- 2.1 Drilling Equipment Any drilling equipment shall be acceptable that provides a reasonably clean hole before insertion of the sampler to ensure that the penetration test is performed on undisturbed soil, and that will permit the driving of the sampler to obtain the sample and penetration record in accordance with the procedure described in 3. Procedure. To avoid "whips" under the blows of the hammer, it is recommended that the drill rod have stiffness equal to or greater than the A-rod. An "A" rod is a hollow drill rod or "steel" having an outside diameter of 1-5/8 in. or 41.2 mm and an inside diameter of 1-1/8 in. or 28.5 mm, through which the rotary motion of drilling is transferred from the drilling motor to the cutting bit. A stiffer drill rod is suggested for holes deeper than 50 ft (15m). The hole shall be limited in diameter to between 2-1/4 and 6 in. (57.2 and 152mm).
- 2.2 Split-Barrel Sampler The sampler shall be constructed with the dimensions indicated (in Fig. 1.) The drive shoe shall be of hardened steel and shall be replaced or repaired when it becomes dented or distorted. The coupling head shall have four 1/2-in. (12.7-mm) (minimum diameter) vent ports and shall contain a ball check valve. If sizes other than the 2-in. (50.8-mm) sampler are permitted, the size shall be conspicuously noted on all penetration records.
- 2.3 Drive Weight Assembly The assembly shall consist of a 140-lb (63.5-kg) weight, a driving head, and a guide permitting a free fall of 30 in. (0.76 m). Special precautions shall be taken to ensure that the energy of the falling weight is not reduced by friction between the drive weight and the guides.
- 2.4 Accessory Equipment Labels, data sheets, sample jars, paraffin, and other necessary supplies should accompany the sampling equipment.

GENERAL NOTES

1. Soil boring logs, notes and other data shown are the results of personal observations and interpretations made by Parratt-Wolff, Inc.

Exploration records prepared by our drilling foreman in the field form the basis of all logs, and samples of subsurface materials retained by the driller are observed by technical personnel in our laboratory to check field classifications.

- 2. Explanation of the classifications and terms:
 - a. Bedrock Natural solid mineral matter occurring in great thickness and extent in its natural location. It is classified according to geological type and structure (joints, bedding, etc.) and described as solid, weathered, broken or fragmented depending on its condition.
 - b. Soils Sediments or other unconsolidated accumulations of particles produced by the physical and chemical disintegration of rocks and which may or may not contain organic matter.

PENETRATION RESISTANCE

COHESIONL	ESS SOILS	COHESIN	/E SOILS
Blows Per Ft.	Relative Density	Blows Per Ft.	Consistency
0 to 4	Very Loose	0 to 2	Very Soft
4 to 10	Loose	2 to 4	Soft
10 to 30	Medium Dense	4 to 8	Medium Stiff
30 to 50	Dense	8 to 15	Stiff
Over 50	Very Dense	15 to 30	Very Stiff
		Over 30	Hard
Size C	omponent Terms	Prop	portion By Weight
	Larger than 300 mm 300 mm to 76 mm	•	omponent is shown letters capitalized.
— medium			component percen- rms of total sample
— medium — fine		some little .	. 35 to 50 percent . 20 to 35 percent . 10 to 20 percent . 1 to 10 percent

- c. Gradation Terms The terms coarse, medium and fine are used to describe gradation of Sand and Gravel.
- d. The terms used to describe the various soil components and proportions are arrived at by visual estimates of the recovered soil samples. Other terms are used when the recovered samples are not truly representative of the natural materials, such as soil containing numerous cobbles and boulders which cannot be sampled, thinly stratified soils, organic soils and fills.
- e. Ground water The measurement was made during exploration work or immediately after completion, unless otherwise noted. The depth recorded is influenced by exploration methods, soil type and weather conditions during exploration. Where no water was observed it is so indicated. It is anticipated that the ground water table may rise during periods of wet weather and may fall during dry weather. In addition, perched ground water above the water levels indicated (or above the bottom of the hole where no ground water is indicated) may be encountered at changes in soil strata or top of rock.

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

7.3'

HOLE NO. MW-1 JOB NUMBER: 04135A

SURF. EL.

DATE STARTED 07/22/04

DATE COMPLETED 07/22/04

BEFORE CASING

AFTER CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

FALLING

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

REMOVED CASING TYPE

HOLLOW STEM AUGER

"/ OR PERCENT CORE RECOVERY SHEET 1 OF 1

				SAM	PLE .			
-				DRI	VE			STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER	₹6"	N		DEPTH
	0.0'-	1		DIRE	ECT		ASPHALT	0.3'
	2.0'			PU:	SH		Brown moist fine to medium GRAVEL,	
	2.0'-	2		DIRE	ECT		some fine to medium sand, trace silt	2.5'
	4.0'			PÜ	SH		Brown moist SILT, trace fine sand, trace	
5.0	4.0'-	3		DIRE			organic material	
	6.0'			PÜ				6.0'
WL <u>▼</u>	6.0'-	4		DIRE	CT		Brown moist to wet SILT, little clay, trace	
	8.0'			PU			fine sand	
	8.0'-	5		DIRE				
10.0	10.0'			PU				9.5'
·	10.0'-	6		DIRE			Gray wet silty CLAY	
1	12.0'			PU	SH			
1							Bottom of Boring	12.0'
15.0	<u> </u>					<u> </u>	Note: Installed 2" stainless steel 10 slot	
							screen 12.0' to 7.0', 2" PVC to surface	1
							with flush mounted cover.	
							Material used:	
		<u></u>					5' - stainless steel screen 10 slot	
							1' sump	
							7' - PVC riser and cap	1
						Ĺ	8" x 8" flush mounted cover	İ
							3-3/4 bags 00 sand	1
							1-1/2 bags hole plug	1
							1 bag gravel mix	
]	1
								}
				1 1		1	1	
							1	
							1	
		T		11			1	
]	

PROJECT North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

8.01

HOLE NO. JOB NUMBER:

MW-2 04135A

SURF. EL.

DATE STARTED 07/22/04

DATE COMPLETED 07/22/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

FALLING

"/ OR PERCENT CORE RECOVERY

CASING TYPE

HOLLOW STEM AUGER

SHEET 1 OF 1

				SAMPLE DRIVE			STRATA
	1	SAMPLE		RECORD	1	DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH		Rec		N		DEPTH
	0.0'-	1		DIRECT		ASPHALT	0.1
	2.01			PUSH		Brown dry fine to medium SAND, some	
	2.0'-	2		DIRECT		fine to medium gravel, trace silt	2.0
	4.0'			PUSH		Brown moist SILT, little fine sand, trace	
5.0	4.0'-	3		DIRECT	<u> </u>	clay	
	6.0'			PUSH			6.0
	6.0'-	4		DIRECT	J	Brown moist to wet SILT, little fine sand,	
WL <u>▼</u>	8.0'			PUSH		little clay	1
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH			
•	10.0'-	6		DIRECT			11.0
	12.0'	<u> </u>		PUSH		Gray wet silty CLAY	
						Bottom of Boring	12.0
		·					ļ
15.0						Note: Installed 2" stainless steel 10 slot	
						screen 12.0' to 7.0', 2" PVC to surface	
						with flush mounted cover.	İ
						Material used:	
L						5' - stainless steel screen 10 slot	
] 1' sump	
			[7' - PVC riser and cap	1
						8" x 8" flush mounted cover	
						4 bags 00 sand	
!		1				1-1/2 bags hole plug	
						1 bag gravel mix	
			1			1	
		1			1		
			İ				
l					\top	1	
		 	 	 	 	1	
1	<u> </u>	1	<u> </u>	 	1	1	
			 	 	+	-	
		+		 	 	4	
		 	 			1	
L	_1					<u> </u>	

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

7.0'

HOLE NO. JOB NUMBER:

MW-3 04135A

SURF. EL.

DATE STARTED 07/22/04

DATE COMPLETED 07/22/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

CASING TYPE

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

"/ OR PERCENT CORE RECOVERY FALLING

HOLLOW STEM AUGER

SHEET 1 OF 1

		-		SAM	PLE	-		
		ľ		DR	IVE	:		STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PEF	₹ 6"	N		DEPTH
	0.0'-	1		DIR	ECT		ASPHALT	0.3'
	2.0'			PU	SH		Brown dry fine to medium SAND, some fine	
ļ	2.0'-	2		DIR	ECT		to medium gravel	1.5'
	4.0'			PU	SH		Brown moist to wet SILT, little clay, trace	
5.0	4.0'-	3		DIR	ECT		fine sand, organic material	
	6.0'			PU	SH		_	
WL <u>▼</u>	6.0'-	4		DIR	ECT			
_	8.0'	1		PU	SH			
	8.0'-	5		DIR	ECT			i
10.0	10.0'			PU	SH			9.5'
	10.0'-	6		DIR	ECT		Gray wet silty CLAY	
	12.0'			PU	SH			
							Bottom of Boring	12.0'
15.0							Note: Installed 2" stainless steel 10 slot	
							screen 12.0' to 7.0', 2" PVC to surface	
							with flush mounted cover.	
							Material used:	
							5' - stainless steel screen 10 slot	
							1' sump	
							7' - PVC riser and cap	
							8" x 8" flush mounted cover	
							4 bags 00 sand	
							1-1/2 bags hole plug	1
							1 bag gravel mix	
]	
]	
]	
]	
								İ
]	
]	
							1	

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

7.5'

HOLE NO.

MW-4 04135A

JOB NUMBER: SURF. EL.

DATE STARTED 07/22/04

DATE COMPLETED 07/22/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

CASING TYPE

HOLLOW STEM AUGER

SHEET 1 OF 1

				SAM	IPLE			
		1		DR	IVE	l		STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PE	₹ 6"	N		DEPTH
	0.0'-	1		DIR	ECT		ASPHALT	0.3
	2.0'			PU	SH		Brown dry fine to medium GRAVEL, some	
1	2.0'-	2		DIR	ECT		fine to medium sand, trace silt	2.5'
	4.0'			PU	SH		Brown moist to wet SILT, little clay, trace	
5.0	4.0'-	3		DIR	ECT		fine sand	
	6.0'			PU	SH			ł
	6.0'-	4		DIR	ECT			
WL <u>▼</u>	8.0'			PU	SH			
	8.0'-	5		DIR	ECT			
10.0	10.0'			PU	SH			
	10.0'-	6		DIR	ECT			10.5'
	12.0'			PÜ	SH		Gray wet silty CLAY	
							Bottom of Boring	12.0'
							_	
15.0					-		Note: Installed 2" stainless steel 10 slot	
							screen 12.0' to 7.0', 2" PVC to surface	
							with flush mounted cover.	
İ							Material used:]
							5' - stainless steel screen 10 slot	1
							1' sump	
							7' - PVC riser and cap	
							8" x 8" flush mounted cover	
İ							4 bags 00 sand	
							2 bags hole plug	1
	1						1 bag gravel mix	
						1		
							1	
				-		†	1	
	1					†	1	
		†						,
ł					 	 		
			 -		}	1	1	
1						 	1	
L		<u></u>	<u> </u>		<u> </u>	1		1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.0'

HOLE NO.

04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

Added Water

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/

AFTER CASING

HAMMER

REMOVED

REMOVED

FALLING "/ OR PERCENT CORE RECOVERY

CASING TYPE

HOLLOW STEM AUGER

SHEET 1 OF 2

				044515			
				SAMPLE			070474
				DRIVE		DESCRIPTION OF MATERIA	STRATA
	SAMPLE	1		RECORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N		DEPTH
<u> </u>	0.0'-	1		DIRECT		Brown moist SILT, some fine to coarse	
İ	2.0'			PUSH		gravel, little fine to coarse sand	
	2.0'-	2		DIRECT			2.5'
	4.0'			PUSH		Brown moist SILT, some clay	
▼ 5.0	4.0'-	3		DIRECT			5.0'
WL	6.0'			PUSH		Brown wet SILT, little clay, trace fine	
	6.0'-	4		DIRECT		sand	
	8.0'			PUSH			
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH			
	10.0'-	6		DIRECT			
	12.0'			PUSH			11.5'
	12.0'-	7		DIRECT		Red-brown wet CLAY, trace fine sand	
	14.0'			PUSH		lenses	
15.0	14.0'-	8		DIRECT			
	16.0'			PUSH		1	
	16.0'-	9		DIRECT			16.5'
	18.0'			PUSH		Red-brown wet SILT, trace clay	
ĺ	18.0'-	10		DIRECT		1	19.0'
20.0	20.0'			PUSH		Red-brown wet fine SAND, little silt	
	20.0'-	11		DIRECT		1	20.5'
	22.0'			PUSH		Brown wet fine to medium SAND	
						1	
			1				
25.0							
	25.0'-	12		DIRECT		1	İ
	27.0'		-	PUSH	1	1	
į					 	1	ļ
			 	 	 	<u> </u>	
30.0		 		 	 	1	
<u> </u>	30.0'-	13		DIRECT	 	†	
	32.0'	 		PUSH	 	1	
		 	 	1 30		1	
		 		 	+	1	
35.0		 		 	 	1	
			ــــــــــــــــــــــــــــــــــــــ		L		

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.0'

HOLE NO.

JOB NUMBER: 04135A

SURF. EL.

DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

Added

Water

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

CASING TYPE

REMOVED

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING HOLLOW STEM AUGER

"/ OR PERCENT CORE RECOVERY

SHEET 2 OF 2

	1	· · · · · · · · · · · · · · · · · · ·	1	SAN	MPLE			T
					IVE			STDATA
ļ	SAMPLE	SAMPLE			ORD		DESCRIPTION OF MATERIAL	STRATA
DEPTH	DEPTH	NO.	Rec		R 6"	N	DESCRIPTION OF MATERIAL	CHANGE
DEI TH	35.0'-	14	Nec		ECT	IN	D	DEPTH
	37.0'	14					Brown wet fine to medium SAND	
1	37.0			PU	ISH			
		<u> </u>						
40.0								
40.0	40.01	15		D.D.				
	40.0'- 42.0'	15			ECT	ļ		41.0'
	42.0			PU	SH		Red-brown wet SILT, little clay	
	<u></u>							
45.0					ļ			
45.0	1							
1	45.0'-	16			ECT			1
ľ	47.0'			PU	SH			
	ļ					ļ		
								1
50.0								
	50.0'-	17			ECT			
	52.0'			PU	SH			
}							Bottom of Boring	52.0'
55.0								
]								
ŧ								
}								
ĺ						-		
			-					
	J							

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.0'

HOLE NO.

B-2

JOB NUMBER: 04135A

SURF. EL.

DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

REMOVED

CASING TYPE

AFTER CASING

"/ OR PERCENT CORE RECOVERY FALLING

SHEET 1 OF 1

		· · · · · · · · · · · · · · · · · · ·						
					SAMPLE			
					DRIVE			STRATA
l			SAMPLE		RECORE)	DESCRIPTION OF MATERIAL	CHANGE
[DEPTH	DEPTH	NO.	Rec		N		DEPTH
		0.0'-	1		DIRECT		ASPHALT	0.2'
1		2.0'			PUSH		Brown moist SILT, little fine sand	
		2.0'-	2		DIRECT			ľ
		4.0'			PUSH			
▼	5.0	4.0'-	3		DIRECT			5.0'
WL		6.0'			PUSH		Brown wet SILT	
ļ		6.0'-	4		DIRECT			
		8.0'			PUSH		1	
		8.0'-	5		DIRECT]	
	10.0	10.0'			PUSH			
		10.0'-	6		DIRECT			11.0
		12.0'			PUSH		Red-brown wet CLAY	
ł		12.0'-	7		DIRECT]	- }
İ		14.0'			PUSH	T		
	15.0						Bottom of Boring	14.0
İ				1				
							7	
							7	
							1	
l		-						
							1	- [
							7	1
				 			7	
1							1	
							1	
ł				1			1	
					 		1	
		1		 	 	_	7	
			 	 	 	+	†	
1					 	+	┥	
				 	 	+	1	
			<u> </u>			+-	1	
<u> </u>			ــــــــــــــــــــــــــــــــــــــ	1			<u></u>	

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.0'

HOLE NO.

04135A

JOB NUMBER:

SURF. EL. DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

HAMMER

REMOVED

AFTER CASING

C - NO. OF BLOWS TO DRIVE CASING 12" W/

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

				SAMPLE			
1	J			DRIVE			STRATA
	SAMPLE	SAMPLE		RECORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N		DEPTH
	0.0'-	1		DIRECT		ASPHALT	0.2
	2.0'			PUSH		Brown moist SILT, trace fine sand	
	2.0'-	2		DIRECT		1	
	4.0'			PUSH	1	1	
▼ 5.0	4.0'-	3		DIRECT		1	5.0
WL	6.0'		1	PUSH		Brown wet SILT	
	6.0'-	4		DIRECT		1	7.0
	8.0'			PUSH	<u> </u>	Brown wet fine SAND, some silt	
	8.0'-	5		DIRECT	 	1	
10.0	10.0'			PUSH	T	1	
	10.0'-	6		DIRECT	 	1	11.0'
	12.0'	1		PUSH	—	Red-brown wet CLAY, little silt	
ŀ	12.0'-	7		DIRECT	-	,	
·	14.0'			PUSH	 	1	
15.0						Bottom of Boring	14.0'
					 	1	
1		1				1	İ
					1	1	
					—		
İ					1		
			<u> </u>		†		
					 	1	
			 				
					 		
ļ			 		 	1	ļ
					1		
	<u> </u>	 	 		1		
ĺ		 	-	-	 		
		 			+		ļ
					 		
-	+	 	-		+	1	- 1
			-		 	1	
	 		<u> </u>		 	-	
		 		<u> </u>		-	1
	—		-		 	-	
		<u> </u>		<u> </u>	1		

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

HOLE NO.

04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

		· · · · · · · · · · · · · · · · · · ·					
	İ			SAMPLE			
	i]		DRIVE			STRATA
		SAMPLE		RECORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N		DEPTH
	0.0'-	1		DIRECT		Brown moist SILT	
	2.0'			PUSH			
	2.0'-	2		DIRECT			3.0
WL <u>▼</u>	4.0'			PUSH		Brown wet SILT, little fine sand	
5.0	4.0'-	3		DIRECT		,	
	6.0'			PUSH			
	6.0'-	4		DIRECT			
	8.0'			PUSH			
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH			
	10.0'-	6		DIRECT			11.0
	12.0'			PUSH		Red-brown wet CLAY	
	12.0'-	7		DIRECT			
	14.0'			PUSH			
15.0						Bottom of Boring	14.0
						•	
							i
				-			
	†				 		
					 		
		 					
		<u> </u>			ļ		
		 			 		
	 	 					
	-						
					 		
	 				 		
	J						1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

HOLE NO.

B-5 04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/15/04

DATE COMPLETED 07/15/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

CASING TYPE

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

				SAMPLE			
				DRIVE	1		STRATA
	SAMPLE	SAMPLE		RECORD	l	DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N		DEPTH
	0.0'-	1		DIRECT		Brown moist SILT	
	2.0'			PUSH			
	2.0'-	2		DIRECT			1
WL <u>▼</u>	4.0'			PUSH			4.0'
5.0	4.0'-	3		DIRECT		Brown wet SILT, trace fine sand	
	6.0'			PUSH			1
	6.0'-	4		DIRECT			
ļ	8.0'			PUSH			
:	8.0'-	5		DIRECT			
10.0	10.0'			PUSH	T		
	10.0'-	6		DIRECT	1		11.0'
	12.0'	;		PUSH		Red-brown wet CLAY	
	12.0'-	7		DIRECT			
İ	14.0'			PUSH			
15.0						Bottom of Boring	14.0'
İ							
j							
]	
					1		
							1
]	1
]	
					1	1	
						1	
						1	
					1	1	1
			 		1	1	
					 	1	İ
					+-	1	
		1					

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

parratt

HOLE NO.

04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

		•					
				SAMPLE			
		}		DRIVE			STRATA
		SAMPLE		RECORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N.		DEPTH
	0.0'-	1		DIRECT		ASPHALT	0.2'
	2.0'			PUSH		Brown moist SILT, little fine sand	
[2.0'-	2		DIRECT			
WL <u>▼</u>	4.0'			PUSH			4.0'
5.0	4.0'-	3		DIRECT		Brown wet SILT, trace fine sand	
	6.0'			PUSH			
	6.0'-	4		DIRECT			
	8.0'			PUSH			
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH			
	10.0'-	6		DIRECT			11.0'
	12.0'			PUSH		Red-brown wet CLAY, little silt	
	12.0'-	7		DIRECT			
	14.0'			PUSH			
15.0						Bottom of Boring	14.0'
					<u> </u>		
							1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.01

HOLE NO.

04135A

JOB NUMBER: SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

AFTER CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING "/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

		· · · · · · · · · · · · · · · · · · ·		044515		<u></u>	
				SAMPLE	1		
	OALABI E			DRIVE			STRATA
DECT		SAMPLE	i i	RECORD	1	DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER 6"	N		DEPTH
	0.0'-	1		DIRECT	ļ	Brown moist fine to medium SAND, some	
	2.0'			PUSH		silt	
	2.0'-	2		DIRECT			
	4.0'			PUSH			İ
▼ 5.0	4.0'-	3		DIRECT			5.0
WL	6.0'			PUSH		Brown wet SILT, trace fine sand	
	6.0'-	4		DIRECT			
	8.0'			PUSH			1
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH			
	10.0'-	6		DIRECT			1
	12.0'			PUSH			
	12.0'-	7		DIRECT			
	14.0'			PUSH			13.5'
15.0	14.0'-	8		DIRECT		Red-brown wet CLAY	
	16.0'			PUSH			
	16.0'-	9		DIRECT			
	18.0'			PUSH			
1						Bottom of Boring	18.0
20.0							
						Note: Backfilled hole with bentonite chips.	
						Moved back 1.0', drove GeoProbe	
i						casing to 12.0'	
						Installed 1" PVC 10 slot screen 12.0'	
İ						to 2.0', 1" PVC riser to surface.	
						10 210 , 7 7 7 0 11007 10 04114001	
1	-				 	Material used:	
						1 - 10' x 1" x 10 slot PVC screen	
					 	1 - 5' x 1" PVC riser	
			-		-	2 plugs	
	 			 		2 piugs	
					 		
				<u> </u>			
			-				
		-		ļ			
L	<u> </u>	1	L		<u> </u>	<u> </u>	1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

3.0'

HOLE NO.

B-8 04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

	· · · · · · · · · · · · · · · · · · ·							
					IPLE			i
		!		DR	IVE			STRATA
	SAMPLE	SAMPLE		REC	ORD	ļ	DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PE	₹ 6"	N		DEPTH
	0.0'-	1			ECT		Brown moist SILT, some fine sand	
	2.0'				SH]
WL. ▼	2.0'-	2			ECT			3.0'
	4.0'				SH		Brown wet SILT, trace fine sand	
5.0	4.0'-	3			ECT			
	6.0'				SH			
	6.0'-	4			ECT			
	8.0'				SH			1
	8.0'-	5			ECT			
10.0	10.0'				SH			10.0'
	10.0'-	6			ECT		Brown wet CLAY	
	12.0'			PU	SH			
						<u> </u>	Bottom of Boring	12.0'
								-
15.0								
		<u></u>						
						<u> </u>		
						<u> </u>		
			ļ					
			<u> </u>					
]	
				<u> </u>			_	
]	1
						<u> </u>		
1			<u> </u>	<u> </u>		<u> </u>	_	
					<u> </u>	<u> </u>		
l					<u> </u>]	
		i						

P.O. Box 56, 5879 Fisher Road, East Syracuse, NY 13057 Telephone 315-437-1429 or 800-782-7260 FAX 315-437-1770 P.O. Box 1029, 501 Millstone Drive, Hillsborough, NC 27278 Telephone 919-644-2814 or 800-627-7920 FAX 919-644-2817

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

3.0'

HOLE NO.

B-9 04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

	·	,		0.145		T	
				SAMPLE			STRATA
			1	DRIVE	1	THE OF THE TENT OF	
		SAMPLE		RECORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec		N		DEPTH
	0.0'-	1		DIRECT		Brown moist SILT, little fine sand	
	2.0'			PUSH		1	
WL ▼	2.0'-	2		DIRECT			3.0
	4.0'			PUSH		Brown wet SILT, trace fine sand	
5.0	4.0'-	3		DIRECT			
	6.0'			PUSH			
	6.0'-	4		DIRECT			
	8.0'			PUSH		<u> </u>	J
	8.0'-	5		DIRECT			
10.0	10.0'			PUSH		<u>.</u>	
	10.0'-	6		DIRECT			
	12.0'			PUSH			11.5
						Brown moist CLAY	
						Bottom of Boring	12.0
15.0]	ļ
]	Į
							1
						7	ļ
							1
]			
		1				7	
			<u> </u>			1	
	+		†		-1	1	1
		 	†		_	1	
			 		\neg	1	1
		 	 	 	_	┪	
		 	 	 	+-	┪	1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

3.0'

HOLE NO.

04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

AFTER CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

REMOVED

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

SAMPLE DEPTH DEPTH NO. Rec PER 6" N DESCRIPTION OF MATERIAL CHANGE DEPTH NO. Rec PER 6" N DESCRIPTION OF MATERIAL CHANGE DEPTH DIRECT 2.0" PUSH 4.0" 3 DIRECT 6.0" PUSH 6.0" 4.0" S.0" PUSH 8.0" 5 DIRECT 8.0" PUSH 10.0" 5 DIRECT 12.0" PUSH Brown wet CLAY Bottom of Boring 12.0" 15.0 DIRECT Total material DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DEPTH DEPTH DEPTH DESCRIPTION OF MATERIAL CHANGE DEPTH DE			·		•				
SAMPLE SAMPLE DEPTH NO. Rec PER 6" N DESCRIPTION OF MATERIAL CHANGE DEPTH							ĺ		
DEPTH NO. Rec PER 6" N DEPTH 0.0'- 1 DIRECT Brown moist SILT 2.0' PUSH 3.0' 4.0' PUSH Brown wet SILT, trace fine sand 5.0 4.0'- 3 DIRECT 6.0'- 4 DIRECT 8.0'- 5 DIRECT 10.0 10.0'- PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'	1								STRATA
Value Val		SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
VIL ▼ 2.0'- 2 DIRECT	DEPTH		NO.	Rec	PEI	₹ 6"	N		DEPTH
WL ▼ 2.0'- 2 DIRECT 3.0' 4.0' PUSH Brown wet SILT, trace fine sand 5.0 4.0'- 3 DIRECT 6.0'- 4 DIRECT 8.0'- PUSH 8.0'- 5 DIRECT 10.0'- PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'			1					Brown moist SILT	
10.0 10.0' PUSH Brown wet SILT, trace fine sand		2.0'			PU	SH			
5.0	WL <u>▼</u>	2.0'-	2		DIR	ECT	,		3.0'
5.0 4.0'- 3 DIRECT 6.0' PUSH 6.0'- 4 DIRECT 8.0' PUSH 8.0'- 5 DIRECT 10.0 10.0' PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'	į	4.0'			PU	SH		Brown wet SILT, trace fine sand	
6.0'- 4 DIRECT 8.0' PUSH 8.0'- 5 DIRECT 10.0 10.0' PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'	5.0	4.0'-	3		DIR	ECT			
8.0' PUSH 8.0'- 5 DIRECT 10.0 10.0' PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'		6.0'			PU	SH			
10.0 10.0' PUSH 11.0' 11.0' 11.0' 12.0' Brown wet CLAY 12.0' Bottom of Boring 12.0' 12.0' 12.0' 12.0' 12	}		4		DIR	ECT			
10.0 10.0' PUSH 10.0'- 6 DIRECT 12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'									
10.0'- 6 DIRECT 11.0' 12.0'			5		DIR	ECT			
12.0' PUSH Brown wet CLAY Bottom of Boring 12.0'	10.0								
Bottom of Boring 12.0'			6		DIR	ECT			11.0'
		12.0'			PU	SH		Brown wet CLAY	
15.0								Bottom of Boring	12.0'
									1
	15.0								ŀ
	i								
									Į
	1								
	ļ								
	1			<u> </u>					1
									1

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

3.0'

HOLE NO.

JOB NUMBER: 04135A

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

				SAM				
					IVE			STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PE	२ 6"	N		DEPTH
	0.0'-	1		DIR	ECT		Brown moist fine to medium SAND	
	2.0'			PU	SH			ļ
WL <u>▼</u>	2.0'-	2		DIR	ECT			3.0'
	4.0'			PU	SH		Brown wet SILT, little fine to medium sand	
5.0	4.0'-	3		DIR	ECT			
	6.0'			PU	SH			
	6.0'-	4		DIR	ECT			
	8.0'			PU	SH			1
	8.0'-	5		DIR	ECT			
10.0	10.0'				SH			10.0
	10.0'-	6			ECT		Brown wet CLAY	
ļ	12.0'			PU	SH			
							Bottom of Boring	12.0'
								Į
15.0								
								ļ
								ļ
								ŀ
ł								İ
								1
ļ								1
								1
]	
							1	
]	

PROJECT North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

HOLE NO. JOB NUMBER: 04135A

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

CASING TYPE

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING "/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

								- 1
					PLE			0.704.74
					IVE			STRATA
		SAMPLE			ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec		२ 6"	N		DEPTH
	0.0'-	1		DIR		L	Brown moist fine to medium SAND	
	2.0'				SH			2.0
	2.0'-	2		DIR	ECT		Brown moist SILT, little fine to medium	į.
WL <u>▼</u>	4.0'			PU	SH		sand	3.0
5.0	4.0'-	3		DIR	ECT		Brown wet SILT	
	6.0'			PU	SH			
	6.0'-	4		DIR	ECT			
	8.0'				SH			į
	8.0'-	5		DIR	ECT			
10.0	10.0'				SH			10.0
	10.0'-	6			ECT		Red-brown wet CLAY	
	12.0'				SH			- [
							Bottom of Boring	12.0
								
15.0	 		 					İ
		 	 	 		-		
		-		 				
	-	 				\vdash		-
		ļ		 	-			
		 		-	 	 		
				 		-		
	-	 				├		
		 	ļ	 	ļ		-	
		-	<u> </u>	 	<u> </u>	 	4	
	ļ		ļ	!	<u> </u>	├	-	į
	<u> </u>	_		<u> </u>		<u> </u>		
			ļ	!		ļ		
	<u> </u>		ļ			Ļ	4	İ
			<u> </u>	ļ	<u> </u>	ļ		-
			<u> </u>	<u> </u>			1	1
					L			
								- 1
								1
]	
			T					

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

5.0'

HOLE NO.

04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

"/ OR PERCENT CORE RECOVERY FALLING

HAMMER SHEET 1 OF 1

CASING TYPE

					/IPLE			
	ļ			DR	IVE			STRAT
		SAMPLE		REC	ORD	•	DESCRIPTION OF MATERIAL	CHANG
DEPTH	DEPTH	NO.	Rec	PEI	R 6"	N		DEPTH
	0.0'-	1			ECT		Brown moist SILT	DE: II
	2.0'				SH			
	2.0'-	2			ECT			3.
	4.0'				SH		Brown moist fine to medium SAND	
▼ 5.0	4.0'-	3			ECT			5.6
NL	6.0'				SH		Brown wet SILT, trace fine sand	
	6.0'-	4			ECT			
	8.0'		_		SH			
	8.0'-	5		DIR				
10.0	10.0'			PU				10.0
	10.0'-	6		DIR			Brown-red wet CLAY	
	12.0'			PU	SH			
							Bottom of Boring	12.0
							•••	12.
15.0								
								İ
								- [
								l
								•
	<u>- 1</u>							
:		-		-+	- 			
			+					
					+		·	1
			-+					
ŀ					 			1
}								1

P.O. Box 56, 5879 Fisher Road, East Syracuse, NY 13057 Telephone 315-437-1429 or 800-782-7260 FAX 315-437-1770 ☐ P.O. Box 1029, 501 Millstone Drive, Hillsborough, NC 27278 Telephone 919-644-2814 or 800-627-7920 FAX 919-644-2817

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

3.0'

HOLE NO.

B-14 04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER

FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

AFTER CASING

REMOVED

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

FALLING

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

				SAM	IPLE			
		<u> </u>	[DR	IVE			STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PE	₹'6"	N		DEPTH
	0.0'-	1		DIR	ECT		Brown moist fine to medium SAND	1.0'
	2.0'			PU	SH		Brown moist SILT	
WL <u>▼</u>	2.0'-	2		DIR	ECT			3.0'
	4.0'			PU	SH		Brown wet SILT	
5.0	4.0'-	3		DIR	ECT			
	6.0'			PU	SH			
	6.0'-	4		DIR	ECT			
	8.0'				SH			
	8.0'-	5		DIR	ECT			
10.0	10.0'				SH			
	10.0'-	6			ECT			
	12.0'			PU	SH			11.5'
							Red-brown wet CLAY	
							Bottom of Boring	12.0'
15.0								
								ļ
								1
						İ		
								
		· · · · · · · · · · · · · · · · · · ·						
						 	1	
		 					1	
		 					1	l
		<u> </u>					1	
				 		 	1	Ì
			 	 		 	1	
						 	1	
	-		 			1		
	——	-			-			1
		<u> </u>	L	L	L	<u> </u>	<u> </u>	

P.O. Box 56, 5879 Fisher Road, East Syracuse, NY 13057 Telephone 315-437-1429 or 800-782-7260 FAX 315-437-1770 ☐ P.O. Box 1029, 501 Millstone Drive, Hillsborough, NC 27278 Telephone 919-644-2814 or 800-627-7920 FAX 919-644-2817

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

HOLE NO.

B-15

JOB NUMBER:

04135A

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

AFTER CASING

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER

REMOVED

FALLING "/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

ı		,						·
				SAM				
				DRI				STRATA
		SAMPLE		REC			DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec			Ν		DEPTH
L	0.0'-	1		DIR			Brown moist SILT	
Ĺ	2.0'			PU				
	2.0'-	2		DIRE	ECT			
WL. ▼	4.0'			PU				4.0
5.0	4.0'-	3		DIRE	ECT		Brown wet SILT, trace fine sand	
	6.0'			PU				
	6.0'-	4		DIRI				1
	8.0'			PU	SH			
	8.0'-	5		DIR				
10.0	10.0'			PU				10.0
	10.0'-	6		DIRI			Brown wet CLAY	
[12.0'			PU	SH			
							Bottom of Boring	12.0
15.0							Note: Installed 1" PVC 10 slot screen 12.0'	1
							to 2.0', 1" PVC riser to surface.	1
							Material used:	
	,						1 - 10' x 1" x 10 slot PVC screen	
							1 - 5' x 1" PVC riser	
							2 plugs	
[
Γ								
Ţ]	
Ī								
ļ						· · · · ·		
ŗ								
1		T .	L				.1	
<u></u>				1				

PROJECT

North Star Cleaners

7980-7984 Brewerton Road

LOCATION Town of Cicero, New York

GROUNDWATER DEPTH

WHILE DRILLING

4.0'

HOLE NO.

B-16 04135A

JOB NUMBER:

SURF. EL.

DATE STARTED 07/16/04

DATE COMPLETED 07/16/04

BEFORE CASING

AFTER CASING

CASING TYPE

REMOVED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586 STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/

FALLING

HAMMER

REMOVED

"/ OR PERCENT CORE RECOVERY

SHEET 1 OF 1

		}	.	SAM				
	1				IVE			STRATA
	SAMPLE	SAMPLE		REC	ORD		DESCRIPTION OF MATERIAL	CHANGE
DEPTH	DEPTH	NO.	Rec	PER	₹ 6"	N		DEPTH
	0.0'-	1		DIR			ASPHALT	0.2
	2.0'				SH		Brown moist SILT	
	2.0'-	2		DIR	ECT			
WL <u>▼</u>	4.0'			PU				4.0
5.0	4.0'-	3		DIR	ECT		Brown wet SILT, trace fine sand	
	6.0'			PU	SH			
	6.0'-	4		DIR	ECT			1
	8.0'			PU	SH			
	8.0'-	5		DIR	ECT			1
10.0	10.0'			PU	SH			10.0'
	10.0'-	6		DIR	ECT		Red-brown wet CLAY	
	12.0'			PU	SH			
							Bottom of Boring	12.0'
							·	
15.0								
			İ					- 1
							1	
			1				1	
								ļ
							1	
		<u> </u>						
		 					1	
		 					1	1
							1	
						 	1	
	+		-				1	
			 				1	
			 	-		-	1	1
		 				 	1	
	ļ	 	-			 	1	
		<u>L</u>	L	l		l		

