UNDERGROUND ENGINEERING & ENVIRONMENTAL SOLUTIONS

Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264 Tel: 716.359.9000 Fax: 716.359.4650 www.HaleyAldrich.com

23 May 2003 File No. 70665-009

Frank Sowers, P.E. New York State Department of Environmental Conservation 6274 East Avon-Lima Rd. Avon, NY 14414

Subject:

Coopervision - 1st Quarterly Progress Report

711 North Road Scottsville, NY

Dear Mr. Sowers:

This letter is the first quarterly progress report as required by the Voluntary Cleanup Agreement (VCA) between Coopervision, Inc. and the New York State DEC for the period of remediation operation and maintenance. This report covers the quarterly period of January through March 2003. The project status update is intended to meet the requirements of Section II of the VCA. This report comprises the first quarterly sampling report associated with site monitoring as agreed with NYSDEC on 10 January 2003, replacing the monthly status reports identified in Section II of the VCA.

Activities Performed During Past Quarter: Groundwater samples were collected and analyzed for VOCs and metabolic acids during January. This sampling event was in addition to the Revised Remediation Groundwater Schedule that was submitted to the NYSDEC in August 2002 (approval received from NYSDEC in August 2002). The additional sampling was performed by the Volunteer due to the encouraging results of the October 2002 event. NYSDEC was notified of the sampling by e-mail on 14 January 2003 in accordance with the VCA requirement for notice in advance of field work. The analytical results of the January sampling are attached.

Results of Sampling to Date: This report includes the results of the VOC and metabolic acid analyses from the 27-29 January 2003 event. Updated summary tables, associated time series charts, and laboratory analytical reports are also attached.

The results of the latest data set indicate an overall decrease in site contaminant concentrations and support the site model that low permeability subsurface conditions are causing what appears to be a time-lag of biodegradation. HRC continues to liberate hydrogen as evidenced by increases in metabolic acid trends.

OFFICES

Boston Massachusetts

Cleveland Ohio

Dayton Ohio

Denver Colorado

Detroit Michigan

Hartford Connecticut

Los Angeles California

Manchester New Hampshire

Newark New Jersey

Portland Maine

San Diego California

Tucson Arizona

Washington
District of Columbia

MAY 29 2003
DERIHAZ WASTERED
REGION 8
REGION 8

Printed on recycled paper.

New York State Department of Environmental Conservation 23 May 2003
Page 2

The following describe specific results:

- Recent data indicate a slight overall decrease in VOCs in the source area. January 2003 data indicate 1,1,1-TCA is non-detect in MW-401 (deep well). VOC concentrations in the source area remain stable with respect to time.
- Decreased levels of 1,1,1-TCA and increased levels of 1,1-DCA were detected at mid-gradient wells MW-3 (also detectable concentrations of chloroethane at MW-3) and MW-502. These data indicate that degradation is occurring through the expected sequence of daughter products.
- Decreased levels of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE were observed at mid-gradient well MW-2.
- Increasing metabolic acid concentration trends were observed in wells MW-501, MW-502 and MW-205. This indicates the injected substrate (HRC) continues to stimulate generation of the range of desired metabolic acids, in turn indicating liberation of hydrogen as needed for reductive dechlorination.

Please note that the enclosed tables represent all data as reported from the lab in concentration format (mg/L), however on the time-trend graphs concentrations have been converted to mmol/L to provide better representation of relative mass of parent (TCA) to daughter (DCA, chloroethane, etc.) compounds. Also note that scale varies between graphs in order to depict ranges of value for each well.

Reports and Deliverables: Other than submittal of analytical results, no reports or deliverables were required during last quarter.

Upcoming Schedule: Activities anticipated for Second Quarter 2003 include:

■ Updating the analytical summary tables as data from the 7-10 April sampling event is received from the laboratory. The groundwater samples collected during April will be analyzed for the parameters listed on the Revised Remediation Groundwater Schedule. A copy of that schedule is attached. The next sampling event is scheduled for October 2003.

New York State Department of Environmental Conservation 23 May 2003 Page 3

Please do not hesitate to call if you have any questions or comments.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Glenn M. White

Environmental Scientist

Susan L. Boyle (Senior Engineer

Vincent B. Dick Vice President

Distribution attached

Enclosures

Coopervision Incorporated Scottsville, New York Facility

Revised Remediation Groundwater Schedule 2002 - 2003

October 2002

WELL ID	Dissolved Gases	VOCs	Anion List	Cation List	SOC	Metabolic Acids	Field Parameters
MW-202		Х					X
MW-203		Х					X
MW-204		X					X
MW-205	X	х				X	X
MW-2		х					X
MW-304		х					X
MW-401		Х					X
MW-402		Х					X
MW-3	X	Х				X	X
MW-501	X	Х				X	X
MW-502	X	Х				х	X
OWD-302-D	X	Х				X	X
OWS-302-S	Х	Х				Х	X

April 2003

WELL ID	Dissolved Gases	VOCs	Anion List	Cation List	SOC	Metabolic Acids	Field Parameters
MW-202		Х					X
MW-203		Х					X
MW-204		Х					X
MW-205	Х	X	х	х	· X	Х	X
MW-2		X					X
MW-304		X					X
MW-401		Х					X
MW-402		Х					X
MW-3	Х	Х	Х	х	Х	Х	X
MW-501	X	Х	X	Х	Х	X	X
MW-502	Х	X	X	Х	X	X	X
OWD-302-D	Х	X	X	х	X	X	X
OWS-302-S	Х	X	***	www	***	X	X

October 2003

WELL ID	Dissolved Gases	VOCs	Anion List	Cation List	SOC	Metabolic Acids	Field Parameters
MW-202		X					X
MW-203		Х					X
MW-204		Х					X
MW-205	X	Х				X	X
MW-2		Х					X
MW-304		, X					X
MW-401		X					X
MW-402		X					X
MW-3	Х	Х				X	X
MW-501	X	Х				X	X
MW-502	Х	X				X	X
OWD-302-D	Х	Х				х	X
OWS-302-S	X	Х				Х	Х

Notes:

- 1. Dissolved Gases include methane, ethane, and ethene
- 2. VOCs will be analyzed by EPA Method 8260
- 3. The Anion List includes sulfate, sulfide, nitrate, nitrite, chloride, and alkalinity
- 4. The Cation List includes ferrous and total iron
- 5. Metabolic Acids include lactic, acetic, proprionic, pyruvic, and butyric
- 6. Field Parameters include dissolved oxygen, temperature, conductivity, oxidation-reduction potential, and pH
- 7. *** indicates that due to low groundwater yield in well OWS-302-S these analytical parameters have been eliminated from the monitoring program.

TABLE 5

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY SOURCE AREA WELLS

Sample ID:					OWD-302D						OWD-302S					OWS-302S		-					OWS-302D	
Well Screen Interval (ft):					32.5 - 33.5						21.0 - 22.0					13.0 - 14.0							29.5 - 30.5	
Date Sampled:	6/1/1999	10/26/1999	4/28/2000	7/19/2001	10/18/2001	1/30/2002	4/9/2002	7/31/2002	10/15/2002	1/28/2003	4/28/2000	6/1/1999	6/1/1999 DEC SPLIT	4/28/2000	7/19/2001	10/18/2001	1/30/2002	4/9/2002	7/31/2002	10/16/2002	1/28/2003	6/1/1999	10/26/1999	4/28/200
Compound: VOLATILE ORGANICS	_						-																	
		-			1		N/P	NID	ND	ND	ND	ND	10 0	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
Acetone	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND		1.8 B		1.0				-	17/		ND		-
1,1-Dichloroethane	54 I	1	0.63	3.1 I	1.7 D	0.57	1.2	0.24	0.97	D 0.51	350	49	61 D	390	180 D	200 I	370	D 390	270	360	330	1.5	220	23
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.022 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	110 I	0.021	ND	0.016	ND	ND	0.046	ND	ND	ND	2.4	ND	0.94	ND	4	2.2	ND	ND	ND	ND	ND	0.22	ND	8.8
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	0.0059	ND	ND	ND	ND	ND	ND	ND	ND	0.056 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEMI-VOLATILE ORGANICS																								
Bis(2-ethylhexyl) pthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED GASES																								
Methane	NA	NA	NA	0.038	0.016	0.013	NA	ND	0.0062	0.03	DRY	NA	NA	NA	DRY	ND	0.0021	NA	0.0063	NA	0.0016	NA	NA	NA
Ethane	NA	NA	NA	0.015	0.0045	0.0041	NA	ND	0.0012	0.0083	DRY	NA	NA	NA	DRY	0.0079	ND	NA	0.03	NA	0.0034	NA	NA	NA
Ethene	NA	NA	NA	0.0013	ND	ND	NA	ND	ND	ND	DRY	NA	NA	NA	DRY	0.0075	ND	NA	0.022	NA	0.0025	NA	NA	NA

NOTES:

- NOTES:

 1. All values expressed in mg/L (ppm).

 2. ND Indicates Not Detected

 3. NA Indicates Not Analyzed

 4. DRY indicates Not Analyzed

 5. "D" indicates the result was diluted

 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value.

 7. "B" indicates the analyte was detected in the blank
- blank
 8. Note scale differences on charts

Real Difference

No Change

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY SOURCE AREA WELLS

Sample ID:	B303-OWD-S	B303-OWD-D	B303-OWS-S	M	W-1					MW-205			627						_	OW-401				
Well Screen Interval (ft):	19.5 - 20.5	31.0 - 32.0	12.5 - 13.5	4.0	- 14.0					21.2 - 28.0									4	4.0 - 46.0				
Date Sampled:	6/1/1999	6/1/1999	6/1/1999	4/16/1997	6/2/1999	7/10/1997	6/2/1999	4/28/2000	7/19/2001	10/18/2001	1/29/2002	4/9/2002	7/31/2002	10/15/2002	1/29/2003	10/26/1999	4/28/2000	7/19/2001	10/18/2001	1/29/2002	4/10/2002	7/30/2002	10/15/2002	1/29/2003
Compound:																								
VOLATILE ORGANICS																								
Acetone	0.18	0.073	0.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	36	ND	153	190 E	ND	180 E	160 E	240	290	260	260	230	0.22	ND	0.5	0.43	0.7	D 0.5 D	0.5	2.2	D 0.31
1,1-Dichloroethene	ND	ND	ND	12	13	ND	ND	ND	2.6	ND	ND	ND	ND	ND	ND	0.014	ND	0.045	0.028	0.057	0.044	0.032	0.066	0.025
1,1,1-Trichloroethane	ND	ND	ND	370	320	421	480 D	ND	260 E	180 E	300	300	280	260	200	0.21	ND	0.36	0.14	0.021	0.0075	0.025	1.5	ND
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND	ND	ND	ND	ND
2-Butanone (MEK)	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEMI-VOLATILE ORGANICS																								
Bis(2-ethylhexyl) pthalate	NA	NA	NA	NA	NA	NA	0.016	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED GASES																								
Methane	NA	NA	NA	NA	NA	NA	NA	NA	0.005	0.0053	0.0052	NA	0.0062	0,0057	0.0014	NA	NA	NA	NA	NA	NA	ND	NA	NA
Ethane	NA	NA	NA	NA	NA	NA	NA	NA	0.01	0.0084	0.0069	NA	0.0098	0.0086	0.0012	NA	NA	NA	NA	NA	NA	0.0013	NA	NA
Ethene	NA	NA	NA	NA	NA	NA	NA	NA	0.0029	0.0024	0.002	NA	0.0026	0.0023	0.004	NA	NA	NA	NA	NA	NA	ND	NA	NA

NOTES:

1. All values expressed in mg/L (ppm).

2. ND - Indicates Not Detected

3. NA - Indicates Not Analyzed

4. DRY - indicates insufficient recharge

4. DRY - indicates the result was diluted 5. "D" indicates the result was diluted 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value. 7. "B" indicates the analyte was detected in the bland.

blank 8. Note scale differences on charts

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY MID-GRADIENT WELLS

Sample ID:				M	W-2								N	1W-3				
Well Screen Interval (ft):				2.0	- 10.0				***				3.0	- 10.0			***	
Date Sampled:	4/16/1997	6/2/1999	7/19/2001	10/18/2001	1/28/2002	4/9/2002	7/29/2002	10/15/2002	1/29/2003	6/18/1997	6/2/1999	10/26/1999	10/18/2001	2/15/2002	4/9/2002	7/30/2002	10/15/2002	1/28/2003
Compound:																		
VOLATILE ORGANICS																		
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.372	0.1	0.17	0.3	0.19	0.26	0.26	4.9 I	1.1	2	2.9	3.2	0.79	2.8	2.4	3.8	3.9	5.8
1,1-Dichloroethene	0.182	0.41	0.21 D	0.46	0.27	0.38	0.27	0.88	0.21	0.63	1.8	2.2	0.53	2	2	1.8	1.4	1.5
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	0.37	0.063	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.519	3.7	1.2 D	3	2.1	2.7	1.8	1.1	0.29	3.3	10	8	2.4 I	9.1	8.5	6.2	3.4	1.7
Tetrachloroethene	0.006	ND	0.022	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.039	ND	0.074	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.037	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	0.26	0.1	ND	ND	ND	ND	ND	ND	ND	ND	0.29
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DISSOLVED GASES																		
Methane	NA	NA	NA	NA	NA	NA	0.083	NA	NA	NA	NA	NA	DRY	0.02	NA	0.039	0.036	0.12
Ethane	NA	NA	NA	NA	NA	NA	0.0025	NA	NA	NA	NA	NA	DRY	0.0039	NA	0.0029	0.0016	0.0029
Ethene	NA	NA	NA	NA	NA	NA	0.0026	NA	NA	NA	NA	NA	DRY	ND	NA	ND	ND	ND

NOTES:

- All values expressed in mg/L (ppm).
 ND Indicates Not Detected
- 3. NA Indicates Not Analyzed
- NA Indicates Not Analyzed
 DRY indicates insufficient recharge
- 5. "D" indicates the result was diluted
- 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value.
- 7. "B" indicates the analyte was detected in the blank

Acal Changes

Real charges

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY MID-GRADIENT WELLS

Sample ID:		MW-403					MW-501								MW-502	2			
Well Screen Interval (ft):		38.5 - 43.5					20.0 - 25.0								30.0 - 35.	0			
Date Sampled: Compound:	10/26/1999	10/26/1999 DEC SPLIT	7/19/2001	7/23/2001	10/17/2001	10/17/2001 DEC SPLIT	2/15/2002	4/9/2002	7/30/2002	10/15/2002	1/29/2003	7/24/2001	10/17/2001	10/17/2001 DEC SPLIT	1/28/2002	4/9/2002	7/30/2002	10/15/2002	1/27/2003
VOLATILE ORGANICS																			
Acetone	ND	0.062 H	B ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.072	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.0059	0.001 J	ND	5.3 D	0.055	0.4475	0.96	9.9	1.8	2.2 I	4.3	9.8	D 11	4.3759	3.3	0.82 I	3.8 I	11	D 17
1,1-Dichloroethene	ND	ND	ND	0.0098	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.059	0.16	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	0.001 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.011	ND	0.0455	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.012	ND	0.0115	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0063	1.1	0.0489	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	0.005 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.011	ND	ND	ND	ND	ND	ND	ND
DISSOLVED GASES																			
Methane	NA	NA	0.0033	0.0081	0.018	NA	0.02	NA	0.037	0.25	5.5	DRY	0.018	NA	0.0027	NA	0.32	0.78	3.4
Ethane	NA	NA	ND	0.005	0.004	NA	0.0018	NA	0.0011	ND	ND	DRY	0.024	NA	0.0061	NA	ND	ND	ND
Ethene	NA	NA	ND	0.0045	0.0014	NA	0.0012	NA	ND	ND	ND	DRY	0.0066	NA	0.002	NA	ND	ND	ND

NOTES:

- All values expressed in mg/L (ppm).
 ND Indicates Not Detected
- 3. NA Indicates Not Analyzed
- 4. DRY indicates insufficient recharge
- 5. "D" indicates the result was diluted
- 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value.
- 7. "B" indicates the analyte was detected in the

TABLE 7

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY DOWNGRADIENT WELLS

Sample ID:				B304-OW						-			MW-202					
Well Screen Interval (ft):				4.0 - 14.0									10.1 - 20.3					
Date Sampled:	6/1/1999	7/18/2001	10/18/2001	1/29/2002	4/8/2002	7/29/2002	10/14/2002	1/30/2003	7/10/1997	6/2/1999	10/26/1999	7/18/2001	10/18/2001	1/28/2002	4/8/2002	7/29/2002	10/14/2002	1/29/2003
Compound:															1			
VOLATILE ORGANICS																		
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	0.027	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.012	0.024	0.044	ND	ND	0.007	0.014	ND	0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.006	0.014	0.026	ND	ND	ND	ND	ND	0.018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.036	0.028	0.037	0.010	0.009	0.014	0.017	0.006	0.061	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DISSOLVED GASES																		
Methane	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA
Ethane	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA
Ethene	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA

NOTES

- 1. All values expressed in mg/L (ppm).
- 2. ND Indicates Not Detected
- 3. NA Indicates Not Analyzed
- 4. DRY indicates insufficient recharge
- 5. "D" indicates the result was diluted
- "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value.
- 7. "B" indicates the analyte was detected in the

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY DOWNGRADIENT WELLS

Sample ID:				M	W-203								MV	V-204				
Well Screen Interval (ft):				9.8	3 - 20.0								9.8	- 20.0	1			
Date Sampled:	7/10/1997	6/2/1999	7/18/2001	10/18/2001	1/29/2002	4/8/2002	7/29/2002	10/14/2002	1/30/2003	7/10/1997	6/2/1999	7/18/2001	10/18/2001	1/28/2002	4/8/2002	7/29/2002	10/14/2002	1/30/2003
Compound:																		
VOLATILE ORGANICS																		
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.012	0.019	0.011	0.010	0.007	0.010	0.008
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0088	0.015	0.008	0.007	ND	0.008	0.006
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	0.022	0.011	0.010	ND	0.011	0.007
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.015	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DISSOLVED GASES																		
Methane	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA
Ethane	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA
Ethene	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA

NOTES

- 1. All values expressed in mg/L (ppm).
- 2. ND Indicates Not Detected
- 3. NA Indicates Not Analyzed
- 4. DRY indicates insufficient recharge
- 5. "D" indicates the result was diluted
- 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the
- at a value below the calibrated range of the instrument and is therefore an estimated value.
- 7. "B" indicates the analyte was detected in the blank

TABLE 7

COOPERVISION, INC.

VOLATILE ORGANICS AND DISSOLVED GASES SUMMARY DOWNGRADIENT WELLS

Sample ID:				OW-402				
Well Screen Interval (ft):				38.5 - 43.5				
Date Sampled:	10/26/1999	7/18/2001	10/18/2001	1/28/2002	6/21/2002	7/29/2002	10/14/2002	1/29/2003
Compound:								
VOLATILE ORGANICS								
Acetone	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND
DISSOLVED GASES								
Methane	NA	NA	NA	NA	NA	0.0038	NA	NA
Ethane	NA	NA	NA	NA	NA	0.0014	NA	NA
Ethene	NA	NA	NA	NA	NA	ND	NA	NA

- 1. All values expressed in mg/L (ppm).
- 2. ND Indicates Not Detected
- 3. NA Indicates Not Analyzed
- 4. DRY indicates insufficient recharge
- 5. "D" indicates the result was diluted
- 6. "J" indicates that the analyte was detected but at a value below the calibrated range of the instrument and is therefore an estimated value.
- 7. "B" indicates the analyte was detected in the

COOPERVISION INCORPORA ADDITIONAL ANALYTICAL PARAMETER SUMMARY

Sample ID				OWD	-302-D							ows	-302-S	1		
Analyte	7/19/2001	9/26/2001	10/18/2001	1/28/2002	4/9/2002	7/29/2002	10/15/2002	1/28/2003	7/19/2001	9/26/2001	10/18/2001	1/28/2002	4/9/2002	7/29/2002	10/15/2002	1/28/2003
INORGANICS															· · · · · · · · · · · · · · · · · · ·	
Sulfate	850	NS	740	NA	NA	634	NA	NA	NA	NS	228	NA	NA	NS	NA	NA
Total Sulfide	ND	NS	ND	NA	NA	ND	NA	NA	NA	NS	3	NA	NA	NS	NA	NA
Total Iron	5.47	NS	2.9	NA	NA	0.858	NA	NA	NA	NS	NA	NA	NA	NS	NA	NA
Total Manganese	0.0589	NS	NA	NA	NA	0.0504	NA	NA	NA	NS	NA	NA	NA	NS	NA	NA
HRC COMPONENTS																
Lactic Acid (C4)	ND	NS	NA	ND	ND	ND	ND	ND	NA	NS	NA	ND	13.4	4.6	ND	ND
Acetic Acid (C2)	ND	NS	NA	ND	ND	ND	ND	ND	NA	NS	NA	ND	293	286	240	297
Propionic Acid (C3)	ND	NS	NA	ND	ND	ND	41.8	ND	NA	NS	NA	ND	9.8	ND	ND	ND
Pyruvic Acid (C3)	ND	NS	NA	ND	0.3	ND	ND	ND	NA	NS	NA	ND	0.5	1.4	ND	ND
Butyric Acid (C4)	ND	NS	NA	ND	ND	ND	ND	ND	NA	NS	NA	ND	ND	ND	ND	ND
FIELD PARAMETERS																
Dissolved Oxygen (mg/L)	1.42	DRY	MIS	7.2*	*1.29	0.77	2.86	0.87	DRY	DRY	MIS	NA	*1.74	1.24	2.23	*8.50
Redox (mV)	-68	DRY	MIS	162*	*-23	-141	-70	84	DRY	DRY	MIS	NA	*-59	-133	-122	-51
Conductivity (mS)	1.58	DRY	MIS	1.1	1.34	1.13	0.25	2.81	DRY	DRY	MIS	NA	6.45	0.94	4.22	5.03
Iron, dissolved (mg/L)	ND	DRY	MIS	ND	0	ND	4.4	0.0	ND	DRY	MIS	NA	3.3	5.9	5.2	3.8
Alkalinity (mg/L)	120	DRY	MIS	85	100	100	1000	240	640	DRY	MIS	580	600	720	820	520
Carbon Dioxide (mg/L)	20.8	DRY	MIS	49.8	50	40	268	26	DRY	DRY	MIS	NA	358	260	38	475

Notes

- 1) All results expressed in mg/L unless otherwise noted.
- 2) Standard Inorganic Data Qualifiers have been applied.
- 3) NS Not Sampled
- 4) NA Not Analyzed
- 5) NR Not Received (to date)
- 6) MIS Data was misplaced
- 7) MW-403 Sampling discontinued after 10/15/2002 event.
- * Sample was oxygenated in Waterra tubing, reason for high DO reading.
- **Hach kits were not available during September 2001 event.

COOPERVISION INCORPORATED ADDITIONAL ANALYTICAL PARAMETER SUMMARY

Sample ID				MW	-205							M	W-3	II.		
Analyte	7/19/2001	9/26/2001	10/18/2001	1/28/2002	4/9/2002	7/29/2002	10/15/2002	1/28/2003	7/19/2001	9/26/2001	10/18/2001	2/15/2002	4/9/2002	7/30/2002	10/15/2002	1/28/2003
INORGANICS			1													
Sulfate	96.9	NS	91	NA	NA	27.5	NA	NA		NS	15.1	NA	NA	2.08	NA	NA
Total Sulfide	ND	NS	ND	NA	NA	ND	NA	NA	DRY	NS	ND	NA	NA	ND	NA	NA
Total Iron	21.2	NS	47.3	NA	NA	51.2	NA	NA	DKI	NS	14.1	NA	NA	181	NA	NA
Total Manganese	0.641	NS	NA	NA	NA	1.3	NA	NA		NS	NA	NA	NA	8.01	NA	NA
HRC COMPONENTS																
Lactic Acid (C4)	ND	NS	NA	23.6	NA	39.1	59.5	41		NS	· NA	ND	ND	8.2	ND	12.5
Acetic Acid (C2)	139	NS	NA	179	NA	209	236	273		NS	NA	14	37.2	83.8	180	86.8
Propionic Acid (C3)	ND	NS	NA	ND	NA	34.9	62.1	134	DRY	NS	NA	15	42.5	248	606	241
Pyruvic Acid (C3)	ND	NS	NA	ND	NA	ND	ND	ND		NS	NA	ND	0.2	0.1	ND	ND
Butyric Acid (C4)	ND	NS	NA	ND	NA	ND	ND	13.1		NS	NA	7.6	24.3	72	505	157
FIELD PARAMETERS														N.		
Dissolved Oxygen (mg/L)	0	0	MIS	0.29	0.014	0.1	0.63	0.5		NS	MIS	5.19	*4.95	1.34	2.86	2.40
Redox (mV)	-53	-26	MIS	-88	-61	-182	-166	-103		NS	MIS	-116	35	-127	-70	-79
Conductivity (mS)	2.41	3	MIS	2.31	2.48	2.49	2.9	2.7	DRY	NS	MIS	0.07	0.06	0.12	0.25	0.00
Iron, dissolved (mg/L)	0.2	NA	MIS	2.6	3.2	4.9	5.8	5.0	DKI	NS	MIS	NA**	0.2	0.9	4.4	4.5
Alkalinity (mg/L)	500	NA	MIS	580	580	630	680	600		NS	MIS	NA**	240	680	1000	280
Carbon Dioxide (mg/L)	182	NA	MIS	140	330	220	59	418		NS	MIS	NA**	61.7	84	268	220

Notes

- 1) All results expressed in mg/L unless otherwise noted.
- 2) Standard Inorganic Data Qualifiers have been applied.
- 3) NS Not Sampled
- 4) NA Not Analyzed
- 5) NR Not Received (to date)
- 6) MIS Data was misplaced
- 7) MW-403 Sampling discontinued after 10/15/2002 event.
- * Sample was oxygenated in Waterra tubing, reason for high DO reading.
- **Hach kits were not available during September 2001 event.

COOPERVISION INCORPORA ADDITIONAL ANALYTICAL PARAMETER SUMMARY

Sample ID				MV	V-501							MW	-502			
Analyte	7/19/2001	9/26/2001	10/18/2001	2/15/2002	4/9/2002	7/29/2002	10/15/2002	1/29/2003	7/19/2001	9/26/2001	10/18/2001	1/28/2002	4/9/2002	7/20/2002	10/15/2002	1/05/0000
INORGANICS									7712001	3/20/2001	10/18/2001	1/20/2002	4/9/2002	7/29/2002	10/15/2002	1/27/2003
Sulfate	40.2	NS	21.5	NA	NA	27.3	NA	NA	183	NS	56.2	NA	NTA	4.74		
Total Sulfide	ND	NS	1.18J	· NA	NA	ND	NA	NA	1.08	NS			NA	4.74	NA	NA
Total Iron	462	NS	662	NA	NA	152	NA	NA	8.76		1.28	NA	NA	1.2	NA	NA
Total Manganese	11.8	NS	NA	NA	NA	4.1	NA NA	NA	-	NS	4.96	NA	NA	12	NA	NA
HRC COMPONENTS					1111	7.1	NA	NA	0.317	NS	NA	NA	NA	0.259	NA	NA
Lactic Acid (C4)	ND	NS	NA	ND	34.3	8.7	ND	ND	NYD							
Acetic Acid (C2)	ND	NS	NA	ND	15.7	10.3	6.3		ND	NS	NA	ND	ND	ND	ND	ND
Propionic Acid (C3)	ND	NS	NA	ND	15.4	10.3		33.3	ND	NS	NA	ND	3.5	38.5	70.5	236
Pyruvic Acid (C3)	ND	NS	NA	ND	1.1	ND	4.2	15.2	ND	NS	NA	ND	ND	22.6	97.5	233
Butyric Acid (C4)	ND	NS	NA ·	ND			2.4	ND	ND	NS	NA	ND	ND	ND	ND	ND
FIELD PARAMETERS		110	NA	ND	8.2	ND	ND	ND	ND	NS	NA	ND	ND	ND	20.2	54.8
Dissolved Oxygen (mg/L)	0.3	0.01	MIS	0.27	1.07	0.40										
Redox (mV)	-280	-205	MIS	-108	1.07	0.49	2.18	0.46	2.9	0.51	MIS	2.93	0.13	0.00	0.21	0.93
Conductivity (mS)	1.61	0.68	MIS		5	-196	-141	-131	-264	-262	MIS	28	-103	-117	-196	-118
Iron, dissolved (mg/L)	ND		7.00	12.03	1.55	0.76	1.01	8.08	0.64	0.98	MIS	0.33	2.79	0.1	0.93	1.06
Alkalinity (mg/L)		NA	MIS	0.2	ND	ND	0.5	0.9	ND	NA	MIS	ND	0	ND	0	1.5
	920	NA	MIS	200	210	320	360	280	120	NA	MIS	75	54	220	200	140
Carbon Dioxide (mg/L)	34	NA	MIS	90	60	38	32.6	104	27.2	NA	MIS	37.4	180	72	32.6	114

Notes

- 1) All results expressed in mg/L unless otherwise noted.
- 2) Standard Inorganic Data Qualifiers have been applied.
- 3) NS Not Sampled
- 4) NA Not Analyzed
- 5) NR Not Received (to date)
- 6) MIS Data was misplaced
- 7) MW-403 Sampling discontinued after 10/15/2002 event.
- * Sample was oxygenated in Waterra tubing, reason for high DO reading.
- **Hach kits were not available during September 2001 event.

COOPERVISION INCORPORA ADDITIONAL ANALYTICAL PARAMETER SUMMARY

Sample ID			MW-403						MW-401			
Analyte	7/19/2001	9/26/2001	1/29/2002	7/29/2002	10/15/2002	7/19/2001	9/26/2001	1/29/2002	4/10/2002	7/30/2002	10/15/2002	1/29/2002
INORGANICS											10/10/2002	1/2//2002
Sulfate	1010	NS	NA	NS	NS	NA	NA	NA	NA	1510	NA	NA
Total Sulfide	ND	NS	NA	NS	NS	NA	NA	NA	NA	ND	NA	NA
Total Iron	10.5	NS	NA	NS	NS	NA	NA	NA	NA	3.16	NA	NA
Total Manganese	0.222	NS	NA	NS	NS	NA	NA	NA	NA	0.0802	NA	NA
HRC COMPONENTS										0.0000		
Lactic Acid (C4)	ND	NS	ND	NA	NS	NA	NA	NA	NA	NA	NA	NA
Acetic Acid (C2)	ND	NS	ND	NA	NS	NA	NA	NA	NA	NA	NA	NA
Propionic Acid (C3)	ND	NS	ND	NA	NS	NA	NA	NA	NA	NA	NA	NA
Pyruvic Acid (C3)	ND	NS	ND	NA	NS	NA	NA	NA	NA	NA	NA	NA
Butyric Acid (C4)	ND	NS	ND	NA	NS	NA	NA	NA	NA	NA	NA	NA
FIELD PARAMETERS												
Dissolved Oxygen (mg/L)	0.7	0.51	0.99	NS	NS	0.42	0.21	0.15	0.13	0.12	1.29	0.38
Redox (mV)	-70	-52	-14	NS	NS	-42	-46	-77	-29	-75	-0.87	-68
Conductivity (mS)	1.49	1.49	0.73	NS	NS	2.1	2.57	2.02	2.01	0	2.16	1.98
Iron, dissolved (mg/L)	0.6	NA	0.9	NS	NS	1.8	NA	2.9	2.6	2.2	3.1	3.2
Alkalinity (mg/L)	100	NA	180	NS	NS	200	NA	220	180	220	220	180
Carbon Dioxide (mg/L)	33	NA	60.8	NS	NS	138	NA	168	126	98	48.8	150

Notes:

- 1) All results expressed in mg/L unless otherwise noted.
- 2) Standard Inorganic Data Qualifiers have been applied.
- 3) NS Not Sampled
- 4) NA Not Analyzed
- 5) NR Not Received (to date)
- 6) MIS Data was misplaced
- 7) MW-403 Sampling discontinued after 10/15/2002 event.
- * Sample was oxygenated in Waterra tubing, reason for high DO reading.
- **Hach kits were not available during September 2001 event.

FEB 2 1 2003

JEIVE

A FULL SERVICE ENVIRONMENTAL LABORATORY

February 14, 2003

Ms. Sue Boyle
Haley & Aldrich of New York
200 Town Centre Drive
Suite 2
Rochester, NY 14623-4264

PROJECT: COOPERVISION #70665-009 Submission #:R2315571

Dear Ms. Boyle

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Valmiller for:

Karen Bunker Project Manager

Enc.

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Lab Submission # : R2315571

Project Manager : Karen Bunker

Reported : 02/14/03

Report Contains a total of Mpages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

This report contains analytical results for the following samples:

Submission #: R2315571

Lab ID	Client ID
617380	TRIP BLANK
617381	MW-202
617382	MW-205
617383	MW-2
617384	MW-401
617385	MW-402
617386	MW-3
617387	MW-501
617388	MW-502
617389	OWD-302D
617390	OWD-302S
617391	MW-203
617392	OW-304
617393	MW-204

FEB 2 1 2003

1 1/2 1 1 1 1 1 1 1

A FULL SERVICE ENVIRONMENTAL LABORATORY

February 14, 2003

Ms. Sue Boyle
Haley & Aldrich of New York
200 Town Centre Drive
Suite 2
Rochester, NY 14623-4264

PROJECT: COOPERVISION #70665-009 Submission #:R2315571

Dear Ms. Boyle

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Valmiller for:

Karen Bunker Project Manager

Enc.

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Lab Submission # : R2315571

Project Manager : Karen Bunker

Reported : 02/14/03

Report Contains a total of M pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

This report contains analytical results for the following samples:

Submission #: R2315571

<u>Lab ID</u>	Client ID
617380	TRIP BLANK
617381	MW-202
617382	MW-205
617383	MW-2
617384	MW-401
617385	MW-402
617386	MW - 3
617387	MW-501
617388	MW-502
617389	OWD-302D
617390	OWD-302S
617391	MW-203
617392	OW-304
617393	MW-204

Case Narrative

Company: Haley & Aldrich Project: Coopervision #70665-009 Submission #: R2315571

H&A collected water samples on 01/27-30/03. Samples were received at CAS on 01/30/03, unbroken, packed in ice, with custody seals intact, at a cooler temperature of 4°C.

GC/MS VOLATILE ORGANICS

Fourteen (14) water samples including one (1) Trip Blank, were analyzed for the Target Compound List of Volatile Organics by GC/MS Method 8260B from SW-846.

All Tuning criteria for BFB were within limits.

The initial and continuing calibration criteria were met for all analytes.

Surrogate standard recoveries were within acceptance limits.

QC is provided in the report package. All Spike recoveries and RPD's are within limits. All Laboratory Control Sample compounds are acceptable.

Several samples required dilutions to bring target compounds within the calibration range of the standards. Hits outside the range are flagged as "E" and the sample is reanalyzed at the appropriate dilution. In this case, both sets of data are included in the report package.

The Trip Blank and Laboratory Method Blanks associated with these analyses were free from contamination.

The samples were run within the 14 day holding time for preserved sample vials for the method. All used vials were checked for preservation after analysis and found to be <2.

No other analytical or QC problems were encountered.

R2315571 Continued

GC Volatile Organics

Six (6) water samples were analyzed for Ethane, Ethene, Methane and Propane by modified GC method RSK-175.

All associated QC was within limits for these samples.

One sample required a dilution to bring target compounds within the calibration range of the standards. Hits outside the range are flagged as "E" and the sample is reanalyzed at the appropriate dilution. In this case, both sets of data are included in the report package.

All used sample vials were checked after analysis for preservation. All were properly preserved to a pH of <2.

Samples were run within holding time for the method.

The Method Blank was free from contamination.

No problems were encountered during the analysis.

Effective 11/4/2002

ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.

CAS/Rochester Lab ID # for State Certifications

Army Corp of Engineers Validated
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved
Nebraska Accredited

NELAP Accredited New York ID # 10145 New Jersey ID # NY004 New Hampshire ID # 294100 A/B Rhode Island ID # 158 South Carolina ID #91012 West Virginia ID # 292

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009 Client Sample ID: TRIP BLANK

Date Sampled: 01/30/03 Date Received: 01/30/03 Subr	Order #: 617380 mission #: R2315571	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/0			
ANALYTICAL DILUTION:	1.00		
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
	10	10 U	UG/L
CARBON DISULFIDE	5.0	5.0 U	UG/L
CARBON TETRACHLORIDE			
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5. <mark>0</mark> U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	109	ક
TOLUENE-D8	(91 - 113 %)	104	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	109	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-202

Date Sampled: 01/29/03 16:00 Order #: 617381 Sample Matrix: WATER
Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/	/03		
ANALYTICAL DILUTION:	1.00		
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
	10		UG/L
CARBON DISULFIDE		10 U	
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L/
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
	10		
4-METHYL-2-PENTANONE (MIBK)		10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
FRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	108	96
FOLUENE-D8	(91 - 113 %)	101	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	109	8
	-20 0/		•

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-205

Date Sampled: 01/28/03 15:15 Order #: 617382 Sample Matrix: WATER
Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/	′03		
ANALYTICAL DILUTION: 200			
ACETONE	20	40000 U	UG/L
BENZENE	5.0	10000 U	UG/L
BROMODICHLOROMETHANE	5.0	10000 U	UG/L
BROMOFORM	5.0	10000 U	UG/L
BROMOMETHANE	5.0	10000 U	UG/L
2-BUTANONE (MEK)	10	20000 U	UG/L
CARBON DISULFIDE	10	20000 U	UG/L
CARBON TETRACHLORIDE	5.0	10000 U	UG/L
CHLOROBENZENE	5.0	10000 U	UG/L
CHLOROETHANE	5.0	10000 U	UG/L
CHLOROFORM	5.0	10000 U	UG/L
CHLOROMETHANE	5.0	10000 U	UG/L
DIBROMOCHLOROMETHANE	5.0	10000 U	UG/L
1,1-DICHLOROETHANE	5.0	230000	UG/L
1,2-DICHLOROETHANE	5.0	10000 U	UG/L
1,1-DICHLOROETHENE	5.0	10000 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	10000 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	10000 U	UG/L
1,2-DICHLOROPROPANE	5.0	10000 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	10000 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	10000 U	UG/L
ETHYLBENZENE	5.0	10000 U	UG/L
2-HEXANONE	10	20000 U	UG/L
METHYLENE CHLORIDE	5.0	10000 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	20000 U	UG/L
STYRENE	5.0	10000 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	10000 U	UG/L
FETRACHLOROETHENE	5.0	10000 U	UG/L
POLUENE	5.0	10000 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	200000	UG/L
1,1,2-TRICHLOROETHANE	5.0	10000 U	UG/L
TRICHLOROETHENE	5.0	10000 U	UG/L
VINYL CHLORIDE	5.0	10000 U	UG/L
D-XYLENE	5.0	10000 U	UG/L
M+P-XYLENE	5.0	10000 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	109	ક
FOLUENE-D8	(91 - 113 %)	101	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	109	8

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-205

Date Sampled: 01/28/03 15:15 Order #: 617382 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 1.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	12 4.0 14 1.2	UG/L UG/L UG/L UG/L

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009 Client Sample ID: MW-2

Date Sampled: 01/29/03 15:00 Orde Date Received: 01/30/03 Submission	er #: 617383 on #: R2315571	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/03			
ANALYTICAL DILUTION: 10.00			
ACETONE	20	200 U	UG/L
BENZENE	5.0	50 U	
BROMODICHLOROMETHANE	5.0	50 U	UG/L
BROMOFORM	5.0	50 U	UG/L
BROMOMETHANE	5.0	50 U	UG/L
2-BUTANONE (MEK)	10	100 U	UG/L
CARBON DISULFIDE	10	100 U	
CARBON TETRACHLORIDE	5.0	50 U	
CHLOROBENZENE	5.0	50 U	UG/L
CHLOROBENZENE CHLOROETHANE	5.0	100	UG/L
CHLOROFORM	5.0	50 U	UG/L
CHLOROMETHANE	5.0	50 U	UG/L
DIBROMOCHLOROMETHANE	5.0	50 U	UG/L
1,1-DICHLOROETHANE	5.0	1100	UG/L
1,2-DICHLOROETHANE	5.0	50 U	UG/L
1,1-DICHLOROETHENE	5.0	210	UG/L
CIS-1,2-DICHLOROETHENE	5.0	63	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	50 U	UG/L
1,2-DICHLOROPROPANE	5.0	50 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	50 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	50 U	UG/L
ETHYLBENZENE	5.0	50 U	UG/L
2-HEXANONE	10	100 U	UG/L
METHYLENE CHLORIDE	5.0	50 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	100 U	UG/L
STYRENE	5.0	50 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	50 U	UG/L
TETRACHLOROETHENE	5.0	50 U	UG/L
TOLUENE	5.0	50 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	290	UG/L
1,1,2-TRICHLOROETHANE	5.0	50 U	UG/L
TRICHLOROETHENE	5.0	50 U	UG/L
VINYL CHLORIDE	5.0	50 U	UG/L
O-XYLENE	5.0	50 U	UG/L
M+P-XYLENE	5.0	50 U	UG/L
SURROGATE RECOVERIES QC	CLIMITS		
4-BROMOFLUOROBENZENE (83	3 - 118 %)	108	96
TOLUENE-D8 (91		100	8
DIBROMOFLUOROMETHANE (87		109	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-401

Date Sampled: 01/29/03 12:20 Order #: 617384 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/0	3		
	.00		
CETONE	20	20 U	UG/L
ENZENE	5.0	5.0 U	UG/L
	5.0	5.0 U	UG/L
ROMODICHLOROMETHANE	5.0	5.0 U	UG/L
ROMOFORM		5.0 U	UG/L
ROMOMETHANE	5.0		
-BUTANONE (MEK)	10	10 U	UG/L
ARBON DISULFIDE	10	10 U	UG/L
ARBON TETRACHLORIDE	5.0	5.0 U	UG/L
HLOROBENZENE	5.0	5.0 U	UG/L
HLOROETHANE	5.0	5.0 U	UG/L
HLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
IBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHANE	5.0	340 E	UG/L
,2-DICHLOROETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHENE	5.0	25	UG/L
IS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
RANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
RANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
THYLBENZENE	5.0	5.0 U	UG/L
-HEXANONE	10	10 U	UG/L
ETHYLENE CHLORIDE	5.0	5.0 U	UG/L
	10	10 U	UG/L
-METHYL-2-PENTANONE (MIBK)	5.0	5.0 U	UG/L
STYRENE	5.0	5.0 U	UG/L
,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
COLUENE		5.0 U	
,1,1-TRICHLOROETHANE	5.0		UG/L
,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
RICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
)-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
-BROMOFLUOROBENZENE	(83 - 118 %)	110	8
COLUENE-D8	(91 - 113 %)	103	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	112	8

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-401

Date Sampled: 01/29/03 12:20 Order #: 617384 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/	/03		
ANALYTICAL DILUTION:	2.00		
ACETONE	20	40 U	UG/L
BENZENE	5.0	10 U	UG/L
BROMODICHLOROMETHANE	5.0	10 U	UG/L
BROMOFORM	5.0	10 U	UG/L
BROMOMETHANE	5.0	10 U	UG/L
2-BUTANONE (MEK)	10	20 U	UG/L
			* .
CARBON DISULFIDE	10	20 U	UG/L
CARBON TETRACHLORIDE	5.0	10 U	UG/L
CHLOROBENZENE	5.0	10 U	UG/L
CHLOROETHANE	5.0	10 U	UG/L
CHLOROFORM	5.0	10 U	UG/L
CHLOROMETHANE	5.0	10 U	UG/L
DIBROMOCHLOROMETHANE	5.0	10 U	UG/L
1,1-DICHLOROETHANE	5.0	310	UG/L
1,2-DICHLOROETHANE	5.0	10 U	UG/L
1,1-DICHLOROETHENE	5.0	24	UG/L
CIS-1,2-DICHLOROETHENE	5.0	10 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	10 U	UG/L
1,2-DICHLOROPROPANE	5.0	10 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	10 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	10 U	UG/L
ETHYLBENZENE	5.0	10 U	UG/L
2-HEXANONE	10	20 U	UG/L
METHYLENE CHLORIDE	5.0	10 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	20 U	UG/L
STYRENE	5.0	10 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	10 U	UG/L
retrachloroethene	5.0	10 U	UG/L
FOLUENE	5.0	10 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	10 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	10 U	UG/L
TRICHLOROETHENE			
	5.0	10 U	UG/L
VINYL CHLORIDE D-XYLENE	5.0	10 U	UG/L
M+P-XYLENE	5.0	10 U	UG/L UG/L
VI+P-XILENE	5.0	10 U	06/1
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	107	8
TOLUENE-D8	(91 - 113 %)	99	ક
DIBROMOFLUOROMETHANE	(87 - 115 %)	111	ક

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-402

Date Sampled: 01/27/03 11:45 Order #: 617385 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/	03		
	1.00		
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
l,1-DICHLOROETHENE	5.0		
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
FRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0 U	UG/L
	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
FOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	107	%
FOLUENE-D8	(91 - 113 %)	100	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	111	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-3

Date Sampled: 01/28/03 12:40 Order #: 617386 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/0	0.3		
	5.00		
ACETONE	20	500 U	UG/L
BENZENE	5.0	130 U	UG/L
BROMODICHLOROMETHANE	5.0	130 U	UG/L
BROMOFORM	5.0	130 U	UG/L
BROMOMETHANE	5.0	130 U	UG/L
2-BUTANONE (MEK)	10	250 U	UG/L
CARBON DISULFIDE	10	250 U	UG/L
			UG/L
CARBON TETRACHLORIDE	5.0	130 U	
CHLOROBENZENE	5.0	130 U	UG/L
CHLOROETHANE	5.0	290	UG/L
CHLOROFORM	5.0	130 U	UG/L
CHLOROMETHANE	5.0	130 U	
DIBROMOCHLOROMETHANE	5.0	130 U	
1,1-DICHLOROETHANE	5.0	6500 E	UG/L
L, 2-DICHLOROETHANE	5.0	130 U	UG/L
1,1-DICHLOROETHENE	5.0	1500	UG/L
CIS-1,2-DICHLOROETHENE	5.0	130 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	130 U	UG/L
1,2-DICHLOROPROPANE	5.0	130 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	130 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	130 U	UG/L
ETHYLBENZENE	5.0	130 U	UG/L
2-HEXANONE	10	250 U	UG/L
METHYLENE CHLORIDE	5.0	130 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	250 U	UG/L
STYRENE	5.0	130 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	130 U	UG/L
TETRACHLOROETHENE	5.0	130 U	UG/L
	5.0	130 U	
TOLUENE			UG/L
1,1,1-TRICHLOROETHANE	5.0	1700	UG/L
1,1,2-TRICHLOROETHANE	5.0	130 U	UG/L
TRICHLOROETHENE	5.0	130 U	UG/L
VINYL CHLORIDE	5.0	130 U	UG/L
O-XYLENE	5.0	130 U	UG/L
M+P-XYLENE	5.0	130 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	109	ક
TOLUENE-D8	(91 - 113 %)	102	ક
DIBROMOFLUOROMETHANE	(87 - 115 %)	111	ક

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 02/14/03

Haley & Aldrich of New York
Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-3

Date Sampled:	01/28/03	12:40 Order	#:	617386	Sample Matrix:	WATER
Date Received:	01/30/03	Submission	#:	R2315571	Analytical Run	87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/03			
ANALYTICAL DILUTION: 50.00			
ACETONE	20	1000 U	UG/L
BENZENE	5.0	250 U	UG/L
BROMODICHLOROMETHANE	5.0	250 U	UG/L
BROMOFORM	5.0	250 U	UG/L
BROMOMETHANE	5.0	250 U	UG/L
2-BUTANONE (MEK)	10	500 U	UG/L
CARBON DISULFIDE	10	500 U	UG/L
CARBON TETRACHLORIDE	5.0	250 U	UG/L
CHLOROBENZENE	5.0	250 U	UG/L
CHLOROETHANE	5.0	320	UG/L
CHLOROFORM	5.0	250 U	UG/L
CHLOROMETHANE	5.0	250 U	-
DIBROMOCHLOROMETHANE	5.0		UG/L
L,1-DICHLOROETHANE		250 U	UG/L
L,2-DICHLOROETHANE	5.0	5800	UG/L
1,1-DICHLOROETHENE	5.0	250 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	1400	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	250 U	UG/L
	5.0	250 U	UG/L
, 2-DICHLOROPROPANE	5.0	250 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	250 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	250 U	UG/L
ETHYLBENZENE	5.0	250 U	UG/L
2-HEXANONE	10	500 U	UG/L
METHYLENE CHLORIDE	5.0	250 U	UG/L
-METHYL-2-PENTANONE (MIBK)	10	500 U	UG/L
STYRENE	5.0	250 U	UG/L
,1,2,2-TETRACHLOROETHANE	5.0	250 U	UG/L
TETRACHLOROETHENE	5.0	250 U	UG/L
COLUENE	5.0	250 U	UG/L
,1,1-TRICHLOROETHANE	5.0	1400	UG/L
,1,2-TRICHLOROETHANE	5.0	250 U	UG/L
RICHLOROETHENE	5.0	250 U	UG/L
VINYL CHLORIDE	5.0	250 U	UG/L
)-XYLENE	5.0	250 U	UG/L
1+P-XYLENE	5.0	250 U	UG/L
SURROGATE RECOVERIES QC	LIMITS		
-BROMOFLUOROBENZENE (83	3 - 118 %)	109	%
COLUENE-D8 (91		101	8
DIBROMOFLUOROMETHANE (87			90
(0)	- 112 4)	112	र्द

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-3

Date Sampled: 01/28/03 12:40 Order #: 617386 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 2.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	2.9 2.0 U 120 2.0 U	UG/L UG/L UG/L UG/L

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-501

Date Sampled: 01/29/03 13:35 Order #: 617387 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/	03		
	0.00		
		•	
ACETONE	20	400 U	UG/L
BENZENE	5.0	100 U	UG/L
BROMODICHLOROMETHANE	5.0	100 U	UG/L
BROMOFORM	5.0	100 U	UG/L
BROMOMETHANE	5.0	100 U	UG/L
2-BUTANONE (MEK)	10	200 U	UG/L
CARBON DISULFIDE	10	200 U	UG/L
CARBON TETRACHLORIDE	5.0	100 U	UG/L
CHLOROBENZENE	5.0	100 U	UG/L
CHLOROETHANE	5.0	100 U	UG/L
CHLOROFORM	5.0	100 U	UG/L
CHLOROMETHANE	5.0	100 U	UG/L
DIBROMOCHLOROMETHANE	5.0	100 U	UG/L
1,1-DICHLOROETHANE	5.0	4300 E	UG/L
1,2-DICHLOROETHANE	5.0	100 U	UG/L
1,1-DICHLOROETHENE	5.0	100 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	100 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	100 U	UG/L
1,2-DICHLOROPROPANE	5.0	100 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	100 U	UG/L
The state of the s	5.0	100 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	100 U	UG/L
ETHYLBENZENE			UG/L
2 - HEXANONE	10.	200 U	
METHYLENE CHLORIDE	5.0	100 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	200 U	UG/L
STYRENE	5.0	100 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	100 U	UG/L
TETRACHLOROETHENE	5.0	100 U	UG/L
TOLUENE	5.0	100 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	100 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	100 U	UG/L
TRICHLOROETHENE	5.0	100 U	UG/L
VINYL CHLORIDE	5.0	100 U	UG/L
O-XYLENE	5.0	100 U	UG/L
M+P-XYLENE	5.0	100 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	109	8
TOLUENE-D8	(91 - 113 %)	100	ક
DIBROMOFLUOROMETHANE	(87 - 115 %)	112	ક

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-501

Date Sampled: 01/29/03 13:35 Order #: 617387 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS	
DATE ANALYZED : 02/06/	03		-	
ANALYTICAL DILUTION: 2	5.00			
ACETONE	20	500 U	UG/L	
BENZENE	5.0	130 U	UG/L	
BROMODICHLOROMETHANE	5.0	130 U	UG/L	
BROMOFORM	5.0	130 U	UG/L	
BROMOMETHANE	5.0	130 U	UG/L	
2-BUTANONE (MEK)	10	250 U	UG/L	
CARBON DISULFIDE	10	250 U	UG/L	
CARBON TETRACHLORIDE	5.0	130 U	UG/L	
CHLOROBENZENE	5.0	130 U	UG/L	
CHLOROETHANE				
CHLOROFORM	5.0	130 U	UG/L	
	5.0	130 U	UG/L	
CHLOROMETHANE	5.0	130 U	UG/L	
DIBROMOCHLOROMETHANE	5.0	130 U	UG/L	
1,1-DICHLOROETHANE	5.0	4000	UG/L	
1,2-DICHLOROETHANE	5.0	130 U	UG/L	
1,1-DICHLOROETHENE	5.0	130 U	UG/L	
CIS-1,2-DICHLOROETHENE	5.0	130 U	UG/L	
TRANS-1,2-DICHLOROETHENE	5.0	130 U	UG/L	
1,2-DICHLOROPROPANE	5.0	130 U	UG/L	
CIS-1,3-DICHLOROPROPENE	5.0	130 U	UG/L	
TRANS-1,3-DICHLOROPROPENE	5.0	130 U	UG/L	
ETHYLBENZENE	5.0	130 U	UG/L	
2-HEXANONE	10	250 U	UG/L	
METHYLENE CHLORIDE	5.0	130 U	UG/L	
4-METHYL-2-PENTANONE (MIBK)	10	250 U	UG/L	
STYRENE	5.0	130 U	UG/L	
1,1,2,2-TETRACHLOROETHANE	5.0	130 U	UG/L	
TETRACHLOROETHENE	5.0	130 U	UG/L	
TOLUENE	5.0	130 U	UG/L	
1,1,1-TRICHLOROETHANE	5.0	130 U	UG/L	
1,1,2-TRICHLOROETHANE	5.0	130 U	UG/L	
TRICHLOROETHENE	5.0	130 U	UG/L	
VINYL CHLORIDE	5.0	130 U	UG/L	
O-XYLENE	5.0	130 U	UG/L	
M+P-XYLENE	5.0	130 U	UG/L	
SURROGATE RECOVERIES	QC LIMITS			
4-BROMOFLUOROBENZENE	(83 - 118 %)	109	%	
TOLUENE-D8	(91 - 113 %)	101	8	

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-501

Date Sampled: 01/29/03 13:35 Order #: 617387 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

	RESULT	UNITS
.0	50 U 50 U 400 E 50 U	UG/L UG/L UG/L UG/L
	. 0 . 0 . 0 . 0	.0 50 U .0 5400 E

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-501

Date Sampled: 01/29/03 13:35 Order #: 617387 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 100.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	100 U 100 U 5500 100 U	UG/L UG/L UG/L

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009
Client Sample ID: MW-502

Date Sampled: 01/27/03 14:25 Order #: 617388 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763			
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/05/	03		
ANALYTICAL DILUTION: 10	0.00		
ACETONE	20	2000 U	UG/L
BENZENE	5.0	500 U	UG/L
BROMODICHLOROMETHANE	5.0	500 U	UG/L
BROMOFORM	5.0	500 U	UG/L
BROMOMETHANE	5.0	500 U	UG/L
2-BUTANONE (MEK)	10	1000 U	UG/L
CARBON DISULFIDE	10	1000 U	UG/L
CARBON TETRACHLORIDE	5.0	500 U	UG/L
CHLOROBENZENE	5.0	500 U	UG/L
CHLOROBENZENE	5.0	500 U	UG/L
	5.0	500 U	UG/L
CHLOROFORM	5.0	500 U	UG/L
CHLOROMETHANE			
DIBROMOCHLOROMETHANE	5.0	500 U	UG/L
1,1-DICHLOROETHANE	5.0	17000	UG/L
1,2-DICHLOROETHANE	5.0	500 U	UG/L
1,1-DICHLOROETHENE	5.0	500 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	500 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	500 U	UG/L
1,2-DICHLOROPROPANE	5.0	500 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	500 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	500 U	UG/L
ETHYLBENZENE	5.0	500 U	UG/L
2-HEXANONE	10	1000 U	UG/L
METHYLENE CHLORIDE	5.0	500 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	1000 U	UG/L
STYRENE	5.0	500 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	500 U	UG/L
TETRACHLOROETHENE	5.0	500 U	UG/L
POLUENE	5.0	500 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	500 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	500 U	UG/L
TRICHLOROETHENE	5.0	500 U	UG/L
VINYL CHLORIDE	5.0	500 U	UG/L
O-XYLENE	5.0	500 U	UG/L
M+P-XYLENE	5.0	500 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	108	00
TOLUENE-D8	(91 - 113 %)	101	8
DIBROMOFLUOROMETHANE	(87 - 115 %)	114	ક

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : MW-502

Date Sampled: 01/27/03 14:25 Order #: 617388 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 50.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	50 U 50 U 3400 50 U	UG/L UG/L UG/L UG/L

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009 Client Sample ID: OWD-302D

Date Sampled: 01/28/03 15:50 Order #: 617389 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763			
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/03			
ANALYTICAL DILUTION: 5.00			
ACETONE	20	100 U	UG/L
BENZENE	5.0	25 U	UG/L
BROMODICHLOROMETHANE	5.0	25 U	UG/L
BROMOFORM	5.0	25 U	UG/L
BROMOMETHANE	5.0	25 U	UG/L
2-BUTANONE (MEK)	10	50 U	UG/L
CARBON DISULFIDE	10	50 U	UG/L
CARBON TETRACHLORIDE	5.0	25 U	UG/L
CHLOROBENZENE	5.0	25 U	UG/L
CHLOROETHANE	5.0	25 U	UG/L
CHLOROFORM	5.0	25 U	UG/L
CHLOROMETHANE	5.0	25 U	UG/L
DIBROMOCHLOROMETHANE	5.0	25 U	UG/L
1,1-DICHLOROETHANE	5.0	510	UG/L
1,2-DICHLOROETHANE	5.0	25 U	UG/L
1,1-DICHLOROETHENE	5.0	25 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	25 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	25 U	UG/L
1,2-DICHLOROPROPANE	5.0	25 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L
ETHYLBENZENE	5.0	25 U	UG/L
2-HEXANONE	10	50 U	UG/L
METHYLENE CHLORIDE	5.0	25 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	50 U	UG/L
STYRENE	5.0	25 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	25 U	UG/L
TETRACHLOROETHENE	5.0	25 U	UG/L
TOLUENE	5.0	25 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	25 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	25 U	UG/L
TRICHLOROETHENE	5.0	25 U	UG/L
VINYL CHLORIDE	5.0	25 U	UG/L
O-XYLENE	5.0	25 U	UG/L
M+P-XYLENE	5.0	25 U	UG/L
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (83	- 118 %)	108	%
TOLUENE-D8 (91		100	ક
DIBROMOFLUOROMETHANE (87	- 115 %)	110	ક

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009 Client Sample ID: OWD-302D

Date Sampled: 01/28/03 15:50 Order #: 617389 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 1.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	8.3 1.0 U 30 2.9	UG/L UG/L UG/L UG/L

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009
Client Sample ID: OWD-302S

Date Sampled: 01/28/03 13:30 Or Date Received: 01/30/03 Submiss	der #: 617390 ion #: R2315571	Sample Matrix: Analytical Rur	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/03			
ANALYTICAL DILUTION: 2000.00			
ACETONE	20	40000 U	UG/L
BENZENE	5.0	10000 U	UG/L
BROMODICHLOROMETHANE	5.0	10000 U	UG/L
BROMOFORM	5.0	10000 U	UG/L
BROMOMETHANE	5.0	10000 U	UG/L
2-BUTANONE (MEK)	10	20000 U	UG/L
CARBON DISULFIDE	10	20000 U	UG/L
CARBON TETRACHLORIDE	5.0	10000 U	
CHLOROBENZENE	5.0	10000 U	· ·
CHLOROETHANE	5.0	10000 U	
CHLOROFORM	5.0	10000 U	
CHLOROMETHANE	5.0	10000 U	
DIBROMOCHLOROMETHANE	5.0	10000 U	UG/L
1,1-DICHLOROETHANE	5.0	330000	UG/L
1,2-DICHLOROETHANE	5.0	10000 U	
1,1-DICHLOROETHENE	5.0		
CIS-1,2-DICHLOROETHENE	5.0		
TRANS-1,2-DICHLOROETHENE	5.0		
1,2-DICHLOROPROPANE	5.0	10000 U	
	5.0	10000 U	
CIS-1,3-DICHLOROPROPENE			
TRANS-1,3-DICHLOROPROPENE	5.0		
ETHYLBENZENE	5.0	10000 U	
2-HEXANONE	10	20000 U	
METHYLENE CHLORIDE	5.0	10000 U	
4-METHYL-2-PENTANONE (MIBK)	10	20000 U	
STYRENE	5.0	10000 U	
1,1,2,2-TETRACHLOROETHANE	5.0	10000 U	UG/L
TETRACHLOROETHENE	5.0	10000 U	UG/L
TOLUENE	5.0	10000 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	10000 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	10000 U	UG/L
TRICHLOROETHENE	5.0	10000 U	UG/L
VINYL CHLORIDE	5.0	10000 U	UG/L
O-XYLENE	5.0	10000 U	UG/L
M+P-XYLENE	5.0	10000 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE (83 - 118 %)	109	ક
TOLUENE-D8 ((91 - 113 %)	101	%
	87 - 115 %)	113	%

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID : OWD-302S

Date Sampled: 01/28/03 13:30 Order #: 617390 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87618

ANALYTE	POL	RESULT	UNITS
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 1.00			
ETHANE ETHYLENE METHANE PROPANE	1.0 1.0 2.0 1.0	34 25 16 2.4	UG/L UG/L UG/L

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009

Client Sample ID: MW-203

Date Sampled: 01/30/03 12:30 Order #: 617391 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/06/	03		
	1.00		
		00 **	770 /7
CETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
ROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
ROMOMETHANE	5.0	5.0 U	UG/L
-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	
			UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHANE	5.0	5.0 U	UG/L
,2-DICHLOROETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
RANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
RANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
THYLBENZENE	5.0	5.0 U	UG/L
-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
ETRACHLOROETHENE	5.0	5.0 U	UG/L
OLUENE	5.0	5.0 U	UG/L
,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
RICHLOROETHENE	5.0	5.0 U	UG/L
INYL CHLORIDE	5.0	5.0 U	UG/L
-XYLENE	5.0	5.0 U	UG/L
I+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
-BROMOFLUOROBENZENE	(83 - 118 %)	108	ક
OLUENE-D8	(91 - 113 %)	99	્રે
DIBROMOFLUOROMETHANE	(87 - 115 %)	113	%

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Haley & Aldrich of New York
Project Reference: COOPERVISION #70665-009

Client Sample ID: OW-304

Date Sampled: 01/30/03 13:30 Order #: 617392 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763			
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03			
ANALYTICAL DILUTION: 1.00			
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	. 10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	6.2	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES Q	C LIMITS		
4-BROMOFLUOROBENZENE (8		93	ક
TOLUENE-D8 (9		97	ક
DIBROMOFLUOROMETHANE (8	7 - 115 %)	113	ક

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 02/14/03

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-009 Client Sample ID: MW-204

Date Sampled: 01/30/03 14:50 Order #: 617393 Sample Matrix: WATER Date Received: 01/30/03 Submission #: R2315571 Analytical Run 87763			
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 02/07/03			
ANALYTICAL DILUTION: 1.	00		
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	7.7	UG/L
	5.0	5.0 U	
1,2-DICHLOROETHANE			UG/L
1,1-DICHLOROETHENE	5.0	6.4	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	7.0	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(83 - 118 %)	94	. 8
TOLUENE-D8	(91 - 113 %)	98	eg .
DIBROMOFLUOROMETHANE	(87 - 115 %)	112	8

VOLATILE ORGANICS METHOD: 8260B TCL

REFERENCE ORDER #: 619931	ANALYT	ICAL RUN # :	87763				
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS				
DATE ANALYZED : 02/05/03							
ANALYTICAL DILUTION: 1.0							
ACETONE	20.0	120	50 - 150				
BENZENE	20.0	96	70 - 130				
BROMODICHLOROMETHANE	20.0	103	70 - 130				
BROMOFORM	20.0	98	70 - 130				
BROMOMETHANE	20.0	82	50 - 150				
2-BUTANONE (MEK)	20.0	83	50 - 150				
CARBON DISULFIDE	20.0	93	70 - 130				
CARBON TETRACHLORIDE	20.0	102	70 - 130				
CHLOROBENZENE	20.0	95	70 - 130				
CHLOROETHANE	20.0	98	70 - 130				
CHLOROFORM	20.0	102	70 - 130				
CHLOROMETHANE	20.0	100	70 - 130				
DIBROMOCHLOROMETHANE	20.0	99	70 - 130				
1,1-DICHLOROETHANE	20.0	101	70 - 130				
1,2-DICHLOROETHANE	20.0	98	70 - 130				
1,1-DICHLOROETHENE	20.0	96	70 - 130				
	20.0	99	70 - 130				
CIS-1,2-DICHLOROETHENE	20.0	94	70 - 130				
TRANS-1,2-DICHLOROETHENE			70 - 130				
1,2-DICHLOROPROPANE	20.0	93					
CIS-1,3-DICHLOROPROPENE	20.0	101	70 - 130				
TRANS-1,3-DICHLOROPROPENE	20.0	101	70 - 130				
ETHYLBENZENE	20.0	94	70 - 130				
2-HEXANONE	20.0	81	70 - 130 70 - 130				
METHYLENE CHLORIDE	20.0	101	70 - 130				
4-METHYL-2-PENTANONE (MIBK)	20.0	84					
STYRENE	20.0	96	70 - 130				
1,1,2,2-TETRACHLOROETHANE	20.0	93	70 - 130				
TETRACHLOROETHENE	20.0	95	70 - 130				
TOLUENE	20.0	95	70 - 130				
1,1,1-TRICHLOROETHANE	20.0	92	70 - 130				
1,1,2-TRICHLOROETHANE	20.0	96	70 - 130				
TRICHLOROETHENE	20.0	96	70 - 130				
VINYL CHLORIDE	20.0	100	70 - 130				
O-XYLENE	20.0	94	70 - 130				
M+P-XYLENE	40.0	94	70 - 130				

VOLATILE ORGANICS METHOD: 8260B TCL

REFERENCE ORDER #: 619933	ANALYT	ICAL RUN # :	87763
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 02/06/03			
ANALYTICAL DILUTION: 1.0			
ACETONE	20.0	120	50 - 150
BENZENE	20.0	93	70 - 130
BROMODICHLOROMETHANE	20.0	102	70 - 130
BROMOFORM	20.0	98	70 - 130
BROMOMETHANE	20.0	88	50 - 150
2-BUTANONE (MEK)	20.0	85	50 - 150
CARBON DISULFIDE	20.0	105	70 - 130
CARBON TETRACHLORIDE	20.0	100	70 - 130
CHLOROBENZENE	20.0	92	70 - 130
CHLOROETHANE	20.0	94	70 - 130
CHLOROFORM	20.0	101	70 - 130
CHLOROMETHANE	20.0	108	70 - 130
DIBROMOCHLOROMETHANE	20.0	103	70 - 130
1,1-DICHLOROETHANE	20.0	93	70 - 130
	20.0	102	70 - 130
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	20.0	92	70 - 130
CIS-1,2-DICHLOROETHENE	20.0	93	70 - 130
TRANS-1,2-DICHLOROETHENE	20.0	88	70 - 130
1,2-DICHLOROPROPANE	20.0	88	70 - 130
CIS-1,3-DICHLOROPROPENE	20.0	100	70 - 130
TRANS-1,3-DICHLOROPROPENE	20.0	102	70 - 130
ETHYLBENZENE	20.0	91	70 - 130
2-HEXANONE	20.0	81	70 - 130
METHYLENE CHLORIDE	20.0	99	70 - 130
4-METHYL-2-PENTANONE (MIBK)	20.0	84	70 - 130
STYRENE	20.0	94	70 - 130
1,1,2,2-TETRACHLOROETHANE	20.0	93	70 - 130
TETRACHLOROETHENE	20.0	95	70 - 130
TOLUENE	20.0	91	70 - 130
1,1,1-TRICHLOROETHANE	20.0	91	70 - 130
1,1,2-TRICHLOROETHANE	20.0	95	70 - 130
TRICHLOROETHENE	20.0	94	70 - 130
VINYL CHLORIDE	20.0	104	70 - 130
O-XYLENE	20.0	94	70 - 130
M+P-XYLENE	40.0	91	70 - 130

VOLATILE ORGANICS METHOD: 8260B TCL

REFERENCE ORDER #: 619935	ANALYT	ICAL RUN # :	87763
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 02/07/03			
ANALYTICAL DILUTION: 1.0			
ACETONE	20.0	84	50 - 150
BENZENE	20.0	92	70 - 130
BROMODICHLOROMETHANE	20.0	103	70 - 130
BROMOFORM	20.0	104	70 - 130
	20.0	81	50 - 150
BROMOMETHANE	20.0	64	50 - 150
2-BUTANONE (MEK)		89	70 - 130
CARBON DISULFIDE	20.0		70 - 130
CARBON TETRACHLORIDE	20.0	106	70 - 130
CHLOROBENZENE	20.0	101	
CHLOROETHANE	20.0	88	70 - 130
CHLOROFORM	20.0	94	70 - 130
CHLOROMETHANE	20.0	102	70 - 130
DIBROMOCHLOROMETHANE	20.0	109	70 - 130
1,1-DICHLOROETHANE	20.0	88	70 - 130
1,2-DICHLOROETHANE	20.0	101	70 - 130
1,1-DICHLOROETHENE	20.0	88	70 - 130
CIS-1,2-DICHLOROETHENE	20.0	87	70 - 130
TRANS-1,2-DICHLOROETHENE	20.0	84	70 - 130
1,2-DICHLOROPROPANE	20.0	86	70 - 130
CIS-1,3-DICHLOROPROPENE	20.0	98	70 - 130
TRANS-1,3-DICHLOROPROPENE	20.0	96	70 - 130
ETHYLBENZENE	20.0	99	70 - 130
2-HEXANONE	20.0	76	70 - 130
METHYLENE CHLORIDE	20.0	92	70 - 130
4-METHYL-2-PENTANONE (MIBK)	20.0	71	70 - 130
STYRENE	20.0	101	70 - 130
1,1,2,2-TETRACHLOROETHANE	20.0	97	70 - 130
TETRACHLOROETHENE	20.0	110	70 - 130
TOLUENE	20.0	92	70 - 130
1,1,1-TRICHLOROETHANE	20.0	87	70 - 130
1,1,2-TRICHLOROETHANE	20.0	89	70 - 130
TRICHLOROETHENE	20.0	93	70 - 130
VINYL CHLORIDE	20.0	104	70 - 130
O-XYLENE	20.0	100	70 - 130
M+P-XYLENE	40.0	101	70 - 130

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Date Sampled : Date Received:	Order #: Submission #:	619930	Sample Matri Analytical	
ANALYTE		PQL	RESUL'	T UNITS
DATE ANALYZED	: 02/05/03			
ANALYTICAL DILUTION	: 1.00		•	
ACETONE		20	20 U	
BENZENE		5.0	5.0 U	
BROMODICHLOROMETHANE		5.0	5.0 U	
BROMOFORM		5.0	5.0 U	
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	
CHLOROETHANE		5.0	5.0 U	
CHLOROFORM		5.0	5.0 U	
CHLOROMETHANE		5.0	5.0 U	
DIBROMOCHLOROMETHANE		5.0	5.0 U	
		5.0	5.0 U	
1,1-DICHLOROETHANE		5.0	5.0 U	
1,2-DICHLOROETHANE			5.0 U	
1,1-DICHLOROETHENE		5.0		
CIS-1,2-DICHLOROETHE		5.0	5.0 U	
TRANS-1,2-DICHLOROET	HENE	5.0	5.0 U	
1,2-DICHLOROPROPANE		5.0	5.0 U	
CIS-1,3-DICHLOROPROP		5.0	5.0 U	
TRANS-1,3-DICHLOROPRO	OPENE	5.0	5.0 U	
ETHYLBENZENE		5.0	5.0 U	
2-HEXANONE		10	10 U	
METHYLENE CHLORIDE		5.0	5.0 U	
4-METHYL-2-PENTANONE	(MIBK)	10	10 U	
STYRENE		5.0	5.0 U	
1,1,2,2-TETRACHLOROE	THANE	5.0	5.0 U	
TETRACHLOROETHENE		5.0	5.0 U	
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHAN		5.0	5.0 U	
1,1,2-TRICHLOROETHAN	E	5.0	5.0 U	
TRICHLOROETHENE		5.0	5.0 U	
VINYL CHLORIDE		5.0	5.0 U	
O-XYLENE		5.0	5.0 U	
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIE	S QC LIM	ITS		
4-BROMOFLUOROBENZENE		118 %)	108	96
TOLUENE-D8		113 %)	101	8
DIBROMOFLUOROMETHANE	(87 -	115 %)	106	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Date Sampled: Date Received:	Order # Submission #	619932	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED ANALYTICAL DILUTION	: 02/06/03 1: 1.00			
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	<u> </u>	5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE	Ξ	5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	3	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHE		5.0	5.0 U	UG/L UG/L
TRANS-1,2-DICHLOROET	THENE	5.0 5.0	5.0 U 5.0 U	UG/L
1,2-DICHLOROPROPANE	DENTE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROF		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPE	ROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE		10	10 U	UG/L
2-HEXANONE		5.0	5.0 U	UG/L
METHYLENE CHLORIDE 4-METHYL-2-PENTANONE	E (MIBK)	10	10 U	UG/L
STYRENE	E (MIBK)	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROR	THANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHAN	JE.	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHAN		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIE	es QC LII	MITS		
4-BROMOFLUOROBENZENI	•	118 %)	108	8
TOLUENE-D8	1 -	113 %)	101	ક
DIBROMOFLUOROMETHAN	E (87 -	115 %)	110	ક

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 02/14/03

Date Sampled: Date Received:				WATER 87763
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED	: 02/07/03			
ANALYTICAL DILUTION	1.00			
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM	•	5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
•	NE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROET	HENE	5.0		UG/L
1,2-DICHLOROPROPANE			5.0 U	
CIS-1,3-DICHLOROPROP		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPRO	OPENE	5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE	(5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE	(MIBK)	10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROE	THANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHAN		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHAN	Ε	5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIE	S QC LIMI	rs		
4-BROMOFLUOROBENZENE	(83 - 1)	 18 %)	94	%
TOLUENE-D8	(91 - 1:		99	8
DIBROMOFLUOROMETHANE	(87 - 1:		112	8

VOLATILE ORGANICS METHOD: RSK-175 MODIFIED

REFERENCE ORDER #: 619118	ANALYTICAL RUN # :	87618				
ANALYTE	TRUE VALUE % RECOVERY	QC LIMITS				
DATE ANALYZED : 02/07/03 ANALYTICAL DILUTION: 5.0						
ETHANE ETHYLENE METHANE PROPANE	141 128 132 120 75.4 126 207 133	50 - 150 50 - 150 50 - 150 50 - 150				

VOLATILE ORGANICS

METHOD RSK-175 MODIFIED Reported: 02/19/03

Date Sampled : Date Received:	Order #: 619117 Submission #:	Sample Matrix: Analytical Run	
ANALYTE	PQI	L RESULT	UNITS
DATE ANALYZED : 0 ANALYTICAL DILUTION:	2/07/03 1.00		
ETHANE ETHYLENE METHANE PROPANE	1 2	1.0 U .0 1.0 U .0 2.0 U .0 1.0 U	UG/L UG/L UG/L

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	1	1
CAS Contact		

Services Services One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (716) 288-5380 • 800-695-7222 x11 • FAX (716) 288-8475 PAGE www.caslab.com

OF

ı			
1	CAS Conta	act	

Project Name COODENISION	Project Number 70065	5-009			ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager Boyle	Report CC			PRE	SER	VATIVE	1														
Company/Address 3 Aldric	ch			RS		/	1	/	18	45/082	OA's	METAL OCOTERIZAR	Phit	1		/		1	/!	D. NON	tive Key E
200 Town Cer	thre Drive.	Sited		OF CONTAINERS		./5	0 000	7 881 0 801/802 0 8081 CIDES 1802	800	120	1500	TERIT	50	P. Comment VED	S Colow				/	2. HNO 3. H ₂ SO 4. NaOI	34
Pochester, w'				OF CO		04'5	8.8%	601/6	508	27.8	METO	2 4 8 2 4 8	TO THE	DISS	1	/ /	/ ,	//		 Zn. A MeOl NaHS 	cetate H
359, 9000		.4650		ABER	1000	2002	500	10 10 10 10 10 10 10 10 10 10 10 10 10 1	PISC L	P'SL	AS	Z SC C	19 8 E	18	*/		/			3. Other	·
Sampler's Signature		prower/mic	chele Re	NZ N	8	800	3/S'8	7 E. S.	270	120 E	25/3	ME	ME	\$ Q	-/_		/	/ AL	TERNA	EMARKS/ TE DESCI	RIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLING DATE TIME	MATRIX	'																	
Trip Blank	(017380	1/30 -	AQ	3	X																
WM-509	381	1/29 1600	GW	3	X																
mw-203			-	3	X	+												00	16	2000	5
MW-304				3	X	3												11		0	,/
mw-205	382	1/28 1515		(0)	X									X							
mw-a	383	1/29 1500		3	X																
mw-304				3	X	-												00	10	000	2
mw-401	384	1/29 1220		3	X															5	
Mu)-400	,385	1/27 1145		2	Y																
m10-3	386	1/28 1240	1	(0	V									V							
SPECIAL INSTRUCTIONS/COMMENTS	(1)	1/00/10		N.C		π	JRNARO	DUND RE	EQUIRE	MENTS	1	/ REP	ORT RI	EQUIRI	EMENT	S		INV	OICE IN	FORMAT	ION
Metals						<u> </u>		(SURCHA			-	1. Res	ults Only								
						1		48	hr	5 day	-		oults + QC DUP, MS			d)	PO	#			
							_ STANG						sults + Q				BIL	L TO:	h	01	
						HEUU	ESTEDE	AX DATE				Summ		o and o	alibiation		-	5	1	1)+	
						REQUI	ESTED R	EPORT D	ATE			IV. Da	ta Validat	ion Repo	ort with F	Raw Data	a)	11,	110	
See QAPP											_	V. Spe	icalized I	Forms / (Custom F	Report					
SAMPLE RECEIPT: CONDITION/COOL	LER TEMP: 40C	CU	STODY SEA	LS: Y	N		*					Edat	a	_ Yes		10	SUE	BMISSION	*a	315	5571
RELINQUISHED BY	RECEIVED BY	RE BY	LINQUISHED	a.				RECEIVE	ED BY				RELING	UISHE	D BY				RECE	IVED BY	
Signature 5	Signature	Signature	was Col	lan		Signatu	ure				Sig	nature					Sigr	nature			
Penechame Amorovice	Printed Name	Printed Name	GAS	-1		Printed	Name				Pri	nted Name)				Printed Name				
	irm	Firm 1/22	2/03	16	54	Firm					Fir	m				-	Firm	n			
Date/Time 20 11.51	Date/Time	Date/Time		,		Date/Ti	ime				Da	te/Time		-			Date	e/Time			
Distribution: White - Return to Originator; Yellow	- Lab Copy; Pink - Retained by Cli	ient																#=	77/	n S	COC-0101-08

www.caslab.com

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#	
	٠
CAR Contact	

2212

Services Inc.

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (716) 288-5380 • 800-695-7222 x11 • FAX (716) 288-8475 PAGE OF

Project Name CODECUISON	ANALYSIS REQUESTED (Include Method Number and Container Preservative)																			
					SERVA	1													3.0	
Companyladdress A 200 Town Centre Orice						7 560 048 7 60MS 500 000 1 8270 500 000	///	1/	78082	OA's	1	ATTON	3/2	2	1	1	1	/ 0	servative NONE HCL	
Suite 2						100/	10/2	Sass	27.00	1500	15.5	S C S C S C S C S C S C S C S C S C S C	LVE	000	1		/	2. 3. 4.	HCL HNO ₃ H ₂ SO ₄ NaOH	
Rochester, N	JY 1462	3		P CO	/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	301	888	128	80/2	4RA	307	NSS Ment	7	//	//	//	6.	Zn. Acet MeOH NaHSO,	tate
359 9000	FAX# 36	9.4650)	NUMBER OF CONTAINERS	18/1	5000	045	000	ALL STA	700	O E C	16.5	186	H		/			Other _	4
Sampler's Signature	Sampler's Printed Na	me		NOW	100		780 PES	574	0 47	25	MAS.	MET		7	/	/ ,	/ ALT	REM.	ARKS/	TION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY	SAMPLING DATE TIME	MATRIX														712	LINVIIL	DECOM	noi.
mw-501	617387	1/29 133	5 GW	6	X								X				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
mw-502	1 388	1/27 142	5	6	X								X							
OWD-302D	389	1/28 156		6	X								X							
OW5-3025	390	1/28 133	0 4	6	X								X							
MW-203	391	1/30 1230		3	X															
0AW - 304	1/392	1/30 133		3	X															
MW-204	V 393	1/30 1450)	3	X															
	· · · · · · · · · · · · · · · · · · ·																			
SPECIAL INSTRUCTIONS/COMMENTS Metals						RI	USH (SUF		S APPLY)		L. F (L.C	EPORT Results Only Results + C S, DUP, M Results + C mmaries	C Summi S/MSD as	aries required	d)	PO#		Ar	ME	N
See QAPP						REQUESTI	ED REPO	RT DATE				Data Valida Speicalized					wag a con	•		
SAMPLE RECEIPT: CONDITION/COO	LER TEMP: 4°C	C	JSTODY SEA	LS: Y) N						Е	data	Yes	^	No	SUBN	RESIDE R	331	55	11
RELINQUISHED BY	RECEIVED BY	F	ELINQUISHED	BY			REC	EIVED B	Υ			RELING	UISHE) BY				RECEIVE	ED BY	
Signature	Signatur	Signature				Signature					Signature					Signa	ture			
Printed Name Amored Se ?	Printed Name	Printed Name				Printed Nar	ne				Printed Name				Printe	d Name				
	Firm	Firm				Firm	***************************************				Firm					Firm				
Date/Tings 30 1654	Date/Time /30/32 /	654 Date/Time				Date/Time					Date/Time					Date/	Time			
Distribution: White - Return to Originator; Yellow	- Lab Copy; Fink - Retained by C	Client																	SCC	OC-0101-08

Cooler Receipt And Preservation Check Form

oject/Clientooler received on_/	/30/03 by: 12	3.	COU	RIER: CAS U	JPS FEDEX	CD&L CLI	ENT
Were custod Were custod Did all bottle Did any VO. Were Ice or Where did th	y seals on outside of y papers properly for arrive in good con A vials have significe packs present? The bottles originate of cooler(s) upon the seals of cooler(s) upon t	of cool illed o ondition icant a	er? ut (ink n (unb ir bubl	;, signed, etc.)?	YES YES YES YES YES CAS/R	NO NO NO NO OC CLIENT	
Is the temper	rature within 0° - 6	° C?:		Yes Yes	Yes	Yes Yes	S
If No, Expla	in Below emperatures Taker	1'		No No No 30/03	No	No No 17:05	
	er ID: 161 oc	The second second	IN	Reading From:	Temp Blank	or Sample Bo	ottle
Cooler Breakdown:	Date :	(i.e. a)	nalvsis	by:by:	c.)? YES	NO	
. Were all bottl. Did all bottl. Were correct	tle labels complete e labels and tags ag t containers used for Cassettes / Tube	ree wi	th cust ests in	s, preservation, et tody papers?	YES	NO NO NO B Bags Inflated	(N
. Were all bottl . Did all bottl . Were correct . Air Samples	tle labels complete e labels and tags ag t containers used for Cassettes / Tube	ree wi	th cust ests in	s, preservation, et tody papers? dicated?	YES	NO NO	
Were all both Did all botth Were correct Air Samples Explain any discrep	tle labels complete e labels and tags ag t containers used for Cassettes / Tube	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
Were all both Did all botth Were correct Air Samples	tle labels complete e labels and tags ag t containers used for : Cassettes / Tube ancies:	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
Were all bottle Did all bottle Were correct Air Samples explain any discrep	tle labels complete e labels and tags ag t containers used for Cassettes / Tube ancies: Reagent	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
Were all bot Did all bottl Were correct Air Samples Explain any discrep pH 12	tle labels complete e labels and tags ag t containers used for :: Cassettes / Tube ancies: Reagent NaOH	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
. Were all bot . Did all bottl . Were correct . Air Samples . Explain any discrep . pH . 12 . 2	tle labels complete e labels and tags ag t containers used for :: Cassettes / Tube ancies: Reagent NaOH HNO ₃ H ₂ SO ₄	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
. Were all bot . Did all bottl . Were correct . Air Samples . Explain any discrep pH 12 2 2	tle labels complete e labels and tags ag t containers used for :: Cassettes / Tube ancies: Reagent NaOH HNO ₃ H ₂ SO ₄	pree wi	th cust tests in ct	s, preservation, et tody papers? dicated? Canisters Pressur	YES YES ized Tedlar	NO NO B Bags Inflated	
Did all bottle Were correct Air Samples Explain any discrep pH 12 2 Residual Chlorine (+/- 5-9** VES = All samples OK *If pH adjustment is re	tle labels complete e labels and tags ag t containers used for :: Cassettes / Tube ancies: Reagent NaOH HNO ₃ H ₂ SO ₄) for TCN & Phenol P/PCBs (608 only) NO = Sam quired, use NaOH and/o	yes ples were H ₂ SO ₄	NO NO	s, preservation, et tody papers? dicated? Canisters Pressur Sample I.D.	YES YES ized Tedlar Reagent PC OK to adju	NO NO B Bags Inflated Vol. Added	
Did all bottle Were correct Air Samples Explain any discrep pH 12 2 Residual Chlorine (+/- 5-9** VES = All samples OK *If pH adjustment is re	tle labels complete e labels and tags ag t containers used for Cassettes / Tube ancies: Reagent NaOH HNO ₃ H ₂ SO ₄ for TCN & Phenol P/PCBs (608 only) NO = Sam	yes ples were H ₂ SO ₄	NO NO	s, preservation, et tody papers? dicated? Canisters Pressur Sample I.D.	YES YES ized Tedlar Reagent PC OK to adju	NO NO B Bags Inflated Vol. Added	
Did all bottle Were correct Air Samples Explain any discrep pH 12 2 Residual Chlorine (+/- 5-9** VES = All samples OK *If pH adjustment is re	tle labels complete e labels and tags ag t containers used for Cassettes / Tube ancies: Reagent NaOH HNO3 H ₂ SO ₄) for TCN & Phenol P/PCBs (608 only) NO = Sam quired, use NaOH and/o CC Vial pH Verification (Tested after Analysis) Following Samples	yes ples were H ₂ SO ₄	NO NO	s, preservation, et tody papers? dicated? Canisters Pressur Sample I.D.	YES YES ized Tedlar Reagent PC OK to adju	NO NO B Bags Inflated Vol. Added	

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

February 10, 2003

Work Order: 13A1075

Page 1 of 4

Report To

Sue Boyle

Haley & Aldrich - NY 200 Town Center Drive Rochester, NY 14623

Project : Regenesis
Project Number: Coopervision

Work Order Information

Date Received: 01/31/2003 10:30AM

Collector: Reay, Michelle/Amrozdwicz, Scott

Phone: 716-359-9000

PO Number:

Analyte	Result	MRL	Batch	Method	Analyst	Analyzed Qualifie
13A1075-01 MW-205				Matrix:Water	C	ollected: 01/28/03 15:15
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/l	0.1	1B30612	HPLC/UV	JLH	02/05/03 14:43
Lactic Acid (C3)	41.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 14:43
Acetic Acid (C2)	273 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 14:43
Propionic Acid (C3)	134 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 14:43
Butyric Acid (C4)	13.1 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 14:43
3A1075-02 MW-3				Matrix:Water	C	ollected: 01/28/03 12:40
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/1	0.1	1B30612	HPLC/UV	JLH	02/05/03 15:04
Lactic Acid (C3)	12.5 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:04
Acetic Acid (C2)	86.8 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:04
Propionic Acid (C3)	241 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:04
Butyric Acid (C4)	157 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:04
3A1075-03 MW-501				Matrix:Water	C	ollected: 01/29/03 13:35
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/l	0.1	1B30612	HPLC/UV	JLH	02/05/03 15-25
Lactic Acid (C3)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:25
Acetic Acid (C2)	33.3 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:25
Propionic Acid (C3)	15.2 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15.25
Butyric Acid (C4)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:25
3A1075-04 MW-502	*			Matrix:Water	C	ollected: 01/27/03 14:25
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/l	0.1	1B30612	HPLC/UV	JLH	02/05/03 15:46
Lactic Acid (C3)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:46
Acetic Acid (C2)	236 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:46
Propionic Acid (C3)	233 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:46
Butyric Acid (C4)	54.8 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 15:46
3A1075-05 MW-302D				Matrix: Water	C	ollected: 01/28/03 15:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Haley & Aldrich - NY 200 Town Center Drive Rochester, NY 14623

Work Order: 13A1075

February 10, 2003

Page 2 of 4

Analyte	Result	MRL	Batch	Method	Analyst	Analyzed Qualifier
13A1075-05 MW-302D				Matrix: Water	C	follected: 01/28/03 15:50
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/l	0.1	1B30612	HPLC/UV	JLH	02/05/03 16:08
Lactic Acid (C3)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:08
Acetic Acid (C2)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:08
Propionic Acid (C3)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:08
Butyric Acid (C4)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:08
13A1075-06 MW-302S				Matrix:Water	C	follected: 01/28/03 13:30
Determination of Metabolic Acids						
Pyruvic Acid (C3)	<0.1 mg/l	0.1	1B30612	HPLC/UV	JLH	02/05/03 16:29
Lactic Acid (C3)	<1.0 mg/1	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:29
Acetic Acid (C2)	297 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:29
Propionic Acid (C3)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:29
Butyric Acid (C4)	<1.0 mg/l	1.0	1B30612	HPLC/UV	JLH	02/05/03 16:29

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Haley & Aldrich - NY 200 Town Center Drive Rochester, NY 14623

Work Order: 13A1075

February 10, 2003

RPD

Page 3 of 4

Determination of Metabolic Acids - Quality Control Keystone Laboratories, Inc. - Newton

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B30612 - General Prep HPLO	C/IC									
Blank (1B30612-BLK1)				Prepared	& Analyze	ed: 02/05/	03			
Pyruvic Acid (С3)	ND	0.1	mg/l	The state of the s			A PROPERTY OF THE PARTY OF THE		har vite	
Lactic Acid (C3)	ND	1.0	11							
Acetic Acid (C2)	ND	1.0	**							
Propionic Acid (C3)	ND	1.0	11							
Butyric Acid (C4)	ND	1.0	14							
LCS (1B30612-BS1)				Prepared	& Analyze	ed: 02/05/	03			
Pyruvic Acid (C3)	35.98	0.1	mg/l	30.90		116	66-134			
Lactic Acid (C3)	178.4	1.0	09	177.2		101	68-138			
Acetic Acid (C2)	171.7	1.0	99	164.4		104	73-122			
Propionic Acid (C3)	166.8	1.0	. #	162.3		103	77-120			
Butyric Acid (C4)	176.9	1.0	99	171.2		103	75-119			
Calibration Check (1B30612-CCV1)				Prepared	& Analyze	ed: 02/05/	03			
Рутиvic Acid (С3)	14.62	0.1	mg/l	14.30		102	80-120		*** *** *	
Lactic Acid (C3)	110.3	1.0	n	117.3		94.0	80-120			
Acetic Acid (C2)	104.4	1.0	19	102.2		102	80-120			
Propionic Acid (C3)	101.9	1.0	10	102.0		99.9	80-120			
Butyric Acid (C4)	100.8	1.0	44	102.6		98.2	80-120			
Calibration Check (1B30612-CCV2)				Prepared	& Analyze	ed: 02/05/0	03			
Pyruvic Acid (C3)	14.98	0.1	mg/l	14.30	A and Standington path or name appears could be as as as as	105	80-120	ma map man a a desert		
Lactic Acid (C3)	110.2	1.0	81	117.3		93.9	80-120			
Acetic Acid (C2)	105.5	1.0	11	102.2		103	80-120			
Propionic Acid (C3)	98.66	. 1.0	н	102.0		96.7	80-120			
Butyric Acid (C4)	98.21	1.0	н	102.6		95.7	80-120			
Matrix Spike (1B30612-MS1)	S	ource: 13A109	0-02	Prepared a	& Analyze	ed: 02/05/0	03			
Рутиvic Acid (С3)	24.92	0.1	mg/l	20.60	ND	121	58-127			
Lactic Acid (C3)	123.0	1.0	11	118.2	ND	104	58-132			
Acetic Acid (C2)	119.3	. 1.0	H	109.6	ND	109	65-128			
Propionic Acid (C3)	118.8	1.0	99	108.2	ND	110	64-128			
Butyric Acid (C4)	123.2	1.0	**	114.1	ND	108	67-127			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Source

%REC

Haley & Aldrich - NY 200 Town Center Drive Rochester, NY 14623

Work Order: 13A1075

February 10, 2003

RPD

Page 4 of 4

Determination of Metabolic Acids - Quality Control Keystone Laboratories, Inc. - Newton

Spike

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1B30612 - General Prep HPLO	C/IC									
Matrix Spike Dup (1B30612-MSD1)	So	urce: 13A109	90-02	Prepared .	& Analyzo	ed: 02/05/	03			
Pyruvic Acid (C3)	24.77	0.1	mg/l	20.60	ND	120	58-127	0.604	28	
Lactic Acid (C3)	121.8	1.0	re	118.2	ND	103	58-132	0.980	29	
Acetic Acid (C2)	118.7	1.0	11	109.6	ND	108	65-128	0.504	31	
Propionic Acid (C3)	115.0	1.0	99	108.2	ND	106	64-128	3.25	28	
Butyric Acid (C4)	123.1	1.0	19	114.1	ND	108	67-127	0.0812	26	

ND = Non Detect; REC= Recovery; RPD= Relative Percent Difference

End of Report

Ericka Weink

Keystone Laboratories, Inc. Ericka Weintz Project Manager

MRL= Method Reporting Limit.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted.

CHAIN OF CUSTODY RECORD **Veystone** 600 E. 17th St. S. 3012 Ansborough Ave. 1304 Adams Waterloo, IA 50701 Kansas City, KS 66103 Newton, IA 50208 Phone: 319-235-4440 Phone: 913-321-7856 Phone: 641-792-8451 PAGE LABORATORIES, INC. Fax: 319-235-2480 913-321-7937 641-792-7989 PRINT OR TYPE INFORMATION BELOW SCOTT AMOZDWICZ SAMPLER: * Michelle Reay BILL TO: REPORT TO: NAME: Sue Boyle NAME: SHE BOYLE COMPANY NAME: Haley & Aldrich ADDRESS: 200 Town Centre Dr. Swite 2 COMPANY NAME: Haley + Aldrich SITE NAME: COOPERVISION ADDRESS: 200 Town Centre Dr. Suite2 ADDRESS: CITY/ST/ZIP: Scottsvile, NY CITY/ST/ZIP: Rochester, NY PHONE: 585-359-9000 CITY/ST/ZIP: RacheSter, NY 14623 PHONE: 585-359-9000 585-359-4650 PHONE: Keystone Quote No.: (If Applicable) ANALYSES REQUIRED LAB USE ONLY CONTAINERS LABORATORY WORK ORDER NO. GRAB/COMPOSITE SAMPLE TEMPERATURE **UPON RECEIPT:** LABORATORY MATRIX °C SAMPLE NUMBER CLIENT SAMPLE NUMBER SAMPLE LOCATION SAMPLE CONDITION/COMMENTS 1/28 1515 1240 1/28 03 1335 04 1/28 06 Date 30 Received by: (Signature) Relinquished by: (Signature) Turn, Around: Standard Rush Time 15 7912 8700 6536 Contact Lab Prior to Submission Received for Lab by: (Signature) Relinquished by: (Signature) Date Remarks: Date

Yellow - Lab Copy

Pink - Sampler Copy

FORM: CCR 7-97

Time

Original - Return with Report