Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

Tel: 585.359.9000 Fax: 585.359.4650 HaleyAldrich.com

23 March 2009 File No. 70665-014

Mr. Frank Sowers, P.E. New York State Department of Environmental Conservation, Region 8 Division of Environmental Remediation 6274 East Avon-Lima Road Avon, New York 14414-9519

Subject: Indoor Air Investigation Data Submittal

CooperVision, Inc. Scottsville, New York (VCA Site #V00175-8)

Dear Mr. Sowers:

The purpose of this letter is to provide you with the validated laboratory data associated with the indoor air and sub-slab vapor investigation that was conducted on 30 January 2009, 9 and 10 February 2009, and 26 and 27 February 2009 at the residential properties east of the CooperVision facility. The work was conducted pursuant to the Indoor Air Investigation Work Plan dated 4 February 2009 and approved on 5 February 2009.

Included in this submittal is:

- A summary of the laboratory results (Tables 1 and 2)
- A Data Usability Summary Report (DUSR) Appendix A
- Copies of the full laboratory data packages Appendix B

Summary of Results:

Indoor air and sub-slab vapor samples were collected over a 24-hour period from the following residential buildings east of the CooperVision facility:

- 2 Nathaniel Drive
- 8 Nathaniel Drive
- 10 Nathaniel Drive
- 16 Nathaniel Drive
- 58 Nathaniel Drive
- 64 Nathaniel Drive
- 705-1 North Road
- 709-2 North Road

In addition, a 24-hour outdoor/ambient air sample was collected during each 24-hour period in which indoor air and sub-slab vapor samples were collected.

Target volatile organic compounds (VOCs), which consisted of vinyl chloride, chloroethane, 1,1-dichloroethane, 1,1-dichloroethane, and 1,1,1-trichloroethane, were not detected above laboratory reporting limits.

New York State Department of Environmental Conservation, Region 8 23 March 2009 Page 2

The data were evaluated in accordance with the NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)," dated September 1997, and the United States Environmental Protection Agency (USEPA) "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008), and "National Functional Guidelines for Inorganic Data Review, Final" (EPA 540-R-01-008).

A review of the data indicated that all data generated during investigation activities were properly analyzed by the laboratories, and the analytical results were found to be compliant with the data quality objectives for the project and 100% usable.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Susan Boyle Senior Scientist

Susan Hogh

Vincent B. Dick Vice President

Attachments:

Table 1 – Summary of Volatile Gasses in Indoor Air and Sub-Slab Vapor

Table 2 – Summary of Volatile Gasses in Ambient Air

Appendix A – Data Usability Summary Report

Appendix B – Laboratory Data Reports

c: Julia M. Guastella; New York State Department of Health

Carol R. Kaufman; The Cooper Companies, Inc.

Dennis Snyder; CooperVision, Inc.

Christopher H. Marraro, Howrey LLP

G:\Projects\70665\014 - VCA Closeout - 2008-09\Indoor Air_Sub-Slab Reports\2009_0323_Data Transmittal Letter_F.doc

TABLE 1 COOPERVISION, INC. SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Un	it 2	Unit 8		Unit 10	
Sample ID	SV-InA-2	SV-SS-2	SV-InA-8	SV-SS-8	SV-INA10	SV-SS10
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab
Initial Pressure/Final Pressure (psig)	1.6/3.5	-0.3/3.5	-3.9/3.6	-1.5/3.5	-2.3/3.5	-2.3/3.5
Date Sampled:	2/10/2009	2/10/2009	2/10/2009	2/10/2009	1/30/2009	1/30/2009
Compound:						
VOLATILE ORGANICS	1.39x Dil.	1.26x Dil.	1.69x Dil.	1.38x Dil.	1.47x Dil.	1.47x Dil.
Vinyl Chloride	ND (0.14)	ND (0.13)	ND (0.17)	ND (0.14)	ND (0.41)	ND (0.41)
Chloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.85)	ND (0.85)
1,1-Dichloroethene	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.65)	ND (0.65)
1,1-Dichloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.66)	ND (0.66)
1,1,1-Trichloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.88)	ND (0.88)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

- reporting limit
 1. Volatile organic compounds were collected
 using 24-hour, 6 Liter Summa Cansiters and
 analyzed via method TO-15 or TO-15 Sim where
 applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE 1 COOPERVISION, INC. SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Uni	t 16	Unit 58		Unit 64	
Sample ID	SV-InA-16	SV-SS-16	SV-InA-58	SV-SS-58	SV-InA-64	SV-SS-64
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab
Initial Pressure/Final Pressure (psig)	-3.7/3.5	-1.3/3.5	-4.3/3.5	-1.1/3.5	-4.4/3.5	0.5/3.8
Date Sampled:	2/10/2009	2/10/2009	2/10/2009	2/10/2009	2/10/2009	2/10/2009
Compound:						
VOLATILE ORGANICS	1.65x Dil.	1.36x Dil.	1.78x Dil.	1.34xDil.	1.77x Dil.	1.22x Dil.
Vinyl Chloride	ND (0.17)	ND (0.14)	ND (0.18)	ND (0.13)	ND (0.18)	ND (0.12)
Chloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1-Dichloroethene	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1-Dichloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1,1-Trichloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

1. Volatile organic compounds were collected

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE 1 COOPERVISION, INC. SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Unit 7	705-1	Unit 709-2		
Sample ID	SV-InA-704-1	SV-SS-705-1	SV-InA-709-2	SV-SS-709-2	
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	
Initial Pressure/Final Pressure (psig)	0.3/3.5	-0.8/3.7	-0.8/3.5	-1.1/3.5	
Date Sampled:	2/27/2009	2/27/2009	2/27/2009	2/27/2009	
Compound:					
VOLATILE ORGANICS	1.21x Dil.	1.32x Dil.	1.31x Dil.	1.34x Dil.	
Vinyl Chloride	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.13)	
Chloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)	
1,1-Dichloroethene	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)	
1,1-Dichloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)	
1,1,1-Trichloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)	

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

- reporting limit
 1. Volatile organic compounds were collected
 using 24-hour, 6 Liter Summa Cansiters and
 analyzed via method TO-15 or TO-15 Sim where
 applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE 2 COOPERVISION, INC. SUMMARY OF VOLATILE GASES IN AMBIENT AIR

All values expressed in ug/m³

Location	·	Outdoor/Ambient	Air
Sample ID	SV-OUTA10	SV-OutA-020909	SV-OutA-022609
Sample Type	Outdoor Air	Outdoor Air	Outdoor Air
Initial Pressure/Final Pressure (psig)	-0.8/3.5	-1.3/3.5	-2.1/3.5
Date Sampled:	1/30/2009	2/10/2009	2/27/2009
Compound:			
VOLATILE ORGANICS	1.31x Dil.	1.36x Dil	1.44x Dil.
Vinyl Chloride	ND (0.37)	ND (0.14)	ND (0.14)
Chloroethane	ND (0.76)	ND (0.68)	ND (0.72)
1,1-Dichloroethene	ND (0.58)	ND (0.68)	ND (0.72)
1,1-Dichloroethane	ND (0.59)	ND (0.68)	ND (0.72)
1,1,1-Trichloroethane	ND (0.79)	ND (0.68)	ND (0.72)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit.

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

APPENDIX A

Data Usability Summary Report

Data Usability Summary Report (DUSR) CooperVision - Residential Sub-Slab/Indoor Air

Analytical Laboratory: Columbia Analytical Services, Inc. - Rochester, NY Sample Delivery Group # R0900538, P0900513, P0900735

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008) and/or USEPA National Functional Guidelines for Low Concentration Organic Data Review (EPA 540-R-04-004)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable.

This DUSR pertains to the following samples:

Sample ID
SV-InA-10
SV-OutA-10
SV-SS-10
SV-SS-58
SV-InA-58
SV-SS-64
SV-InA-64
SV-SS-8
SV-InA-8
SV-OutA-020909
SV-SS-2
SV-InA-2
SV-SS-16

Sample ID
SV-InA-16
SV-SS-705-1
SV-InA-705-1
SV-OutA-022609
SV-SS-709-2
SV-InA-709-2

Project Samples were analyzed according to the following analytical methods:

	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA TO-15	30 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- Internal Standard Recoveries
- Duplicate Sample Analysis
- Target Compound Identification
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No qualification of the data is recommended.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No Qualification of the data is recommended.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane), or 5 times (5X) the amount for other target compounds. Target analytes were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples. No qualification of the data is recommended.

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 25% for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

Target Compound Identification

GC/MS qualitative analysis for organic parameters was performed to remove mis-identifications of the target compounds. The relative retention times (RRT) of all reported target compounds were within \pm 0.06 RRT units of the associated calibration standard RRT, and all ions present in the reference standard spectrum at a relative intensity greater than 10 percent were also present in the sample spectrum. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using NYSDEC ASP Category B format or equivalent. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\70665\014 - VCA Closeout - 2008-09\Lab Data\Indoor Air_Sub Slab\[2009_0313_CooperVision_Residential_DV Notes.xls]Final Report

APPENDIX B

Laboratory Data Reports

March 3, 2009

Ms. Sue Boyle Haley & Aldrich of New York 200 Town Centre Drive Ste. 2 Rochester, NY 14623-4264

Coopervision Re:

CAS Submission #: R0900538

Revised: 3/3/09 **Additional Data**

Dear Ms. Boyle,

Enclosed is the analytical data report for the above referenced Project and Submission #. All samples were analyzed by the CAS- Rochester laboratory. All data was previously emailed to you on 2/19/09. At the request of Claire DeBergalis of H&A on 2/24/09, the package was upgraded to an ASPB package deliverables. All data has been reviewed prior to report submission. The full package is included here, the initial package II is equivalent to the summary package.

Please contact me at (585)-288-5380 if you have questions regarding this information.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Karen Bunker Project Manager

Enc.

Report contians a total of 102 pages

SDG NARRATIVE

COLUMBIA ANALYTICAL SERVICES, INC.

Client: Haley & Aldrich Service Request No.: R0900538
Project: CooperVison #70665-014 Date Received: 1/30/09

Sample Matrix: Air

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier ASPB data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses.

Sample Receipt

Three (3) SUMMA Canister Air samples were collected by H&A on 1/30/09 and received for analysis at Columbia Analytical Services on the same day. The samples were received in good condition and consistent with the accompanying chain of custody form.

Volatile Organic Compounds by Method TO-15

Three (3) air samples were analyzed for a client specific list of Volatile Organic compounds by GC/MS method TO-15.

The Initial and Continuing Calibration Criteria were met.

Batch QC is included in the report. All Laboratory Control Sample (LCS) recoveries for target compounds were within QC limits.

All data is reported in both UG/M3 and PPBv units.

All Surrogate recoveries are within acceptance limits.

All Laboratory Method Blanks were free from contamination.

Any hits between the Method Reporting Limit (MRL) and Minimum Detection Limit (MDL) are flagged as "J".

No other problems were encountered during the analysis of these samples.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details contained above Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Approved by Javen Burles Date 8/8/05

Рапе

CAS ASP/CLP Batching Form/Login Sheet

Client Proj #: 70665-014 Airs	Batch Complete: Yes	Date Revised:	
Submission: R0900538	Diskette Requested: No	Date Due: 2/16/09	
Client: Haley & Aldrich, Incorporated	Date: 2/24/09	Protocol: EPA	
Client Rep; KBUNKER	Custody Seal: Present/Absent:	Shipping No.:	
Project: Coopervision	Chain of Custody: Present/Absent:		Washing Andrews (1997) (1997) (1997)
		Date Date pH %	% Remarks

Diskette Requested: No	ch, Incorporated Date: 2/24/09	Custody Seal: Present/Absent:	Chain of Custody: Present/Absent:		EPAID Mail Sample Condition Sampled Received (Solids) Solids Sample Condition	410 Air TO-15 1/30/09 1/30/09	JTA10 Air TO-15 1/30/09 1/30/09	
	Haley & Aldrich, Incorporated Da	KBUNKER	Coopervision Ch		Circuit PA ID	SV-INA10	R0900538-002 SV-OUTA10	
Submission: R0900538	Client: Hale	Client Rep; KBL	Project: Coo	# 447	# 207 のよう	R0900538-001 SV-INA10	R0900538-002	

fafalkenii Kiviviki

REPORT QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).
 - For DoD reports, the J-flag may also be used to indicate that the concentration between two columns for pesticides/Aroclors is greater than 40% difference.
- B Indicates this compound was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- Metals Indicates an estimated value. The concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).
- E Indicates that the sample concentration had exceeded the calibration range for that specific analysis.
- D Indicates the sample concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- X See Case Narrative for discussion.
- This flag is used for a pesticide/Aroclor target concentration when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns.
 - For DoD reports, the J-flag is used instead of "P".
- N Inorganics- Indicates the matrix spike recovery was outside laboratory limits.
- N- Organics- Indicates presumptive evidence of a compound (reported as a tentatively identified compound) based on the mass spectral library search.

CAS/Rochester Lab ID # for State Certifications1

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID #294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at www.caslab.com.

CHAINS OF CUSTODY INTERNAL CHAINS

į
í
•
į
į
5
5
75794
5
Ď
\geq
2
3
2
3
_
Ö
ë
Jhain
C
1
1
7

CAS Project No.

Requested Turnaround Time in Business Days From Receipt, please circle

Rochester, New York 14609-6925

Mustard Street, Suite 250

Project Requirements (MRLs, QAPP) Specific Instructions R0400538 Comments Analysis Method and/or Analytes ime: 16:30 Ime: Time: 1-36-09 EDD Units: Date: Oate: CAS Contact: EDD required Yes / No 91-01 1 Day 2 Day 3 Day 4 Day 5 Day (10 Day-Standard Type: Sample Final Vacuum Sampler (Print & Sign)
On Abla Received by: (Signature) Received by: (Signafure) Received by. (Signaturg) hio-sagol ००७३५ 00783 PSECOO P.O. # / Billing Information Canister ID Flow Controller ID 419-lac600039 00130 HILP-14000100 1430/10150004 Time: M1/30 Tier III (CLP Forms Only) Tier IV (Data Validation) Time Date Date Collected Phone (585) 288-5380 Fax (585) 288-8475 ompany Name & Address (Reporting Information) Laboratory ID Number B 502 8 Haley c Aldrich roject Managen, c Aldrich S. Boyle Fax in I. (Results/Default if not specified) aport Tier Levels - please select mail Address for Result Reporting Columbia Analytical Services Reliquished by: (Signature) Reliquished by: (Signature) SV-SS ID SV-10A10 er II (Results + QC) Slient Sample ID

*				Cooler Receipt	And Pr	eservation C	heck Fo	orm		i	
		1+/	4		Submi	ssion Numbe	<u>, RO</u>	900	<u>539</u>	3	
Project/Clie Cooler rece		30-0	9	by: \\\ \(\) \(\) CC		R: CAS U		EDEX	VELO		CLIENT
1. Wes 2. We 3. Did 4. Did 5. We	re custody re custody all bottles any VOA re Ice or I	seals pape arriv vials ce pa	on on or	coutside of cooler? coperly filled out good condition (we significant* air present? originate? (s) upon receipt:	(ink, sig unbroke	n)?		YES YES YES YES YES CAS/R	NO NO NO NO OC C) N LIENT	/A
				in 0° - 6° C?:	Yes	Yes	Y	es	Yes		Yes
If I Da Th	No, Expla nte/Time T nermomete	in Be empe r ID:	e low eratur 161	res Taken:			ng Fron				No ample Bottle
PC Secon Cooler Br 1. W 2. D 3. W 4 A	dary Revieus de la commentation de la contraction de la contractio	Date laborated construction of the l	e:_bels els antaine	packing/ice con a 2 0 complete i.e. and tags agree with trs used for the te	alysis, p h custod	by: reservation, e y papers?	tc.)?	H XES XES YES	NO NO NO ar® Bag)))	ated N/A
		1		Lot Received	Exp	Sample ID	Vol.	Lot Ac	ded	Final	Yes = All
pH	Reagent	YES	NO	Lot Received	ZAP		Added		1	pH	samples OK
≥12	NaOH					·					No=
<i>S</i> 2	HNO₃										Samples
Residual Chlorine	H ₂ SO ₄ For TCN and Phenol			If present, contact add ascorbic acid	PM to						preserved at lab as listed
(-)	Na ₂ S ₂ O ₃	-	-			*Not to be to tested and re	sted before	ore analy	sis – pH or GenC	hem	PM OK to
	Zn Aceta	-	-		<u> </u>	on a separate	worksh	eet	or conc		Adjust:
	HCl	*	*]					
Bottle lot Other Co	numbers:					·					

PC Secondary Review: 12 2 1909

Columbia Analytical Services, Inc. Chain of Custody Report

Client: Haley & Aldrich, Inc.

Project: Coopervision/70665-014 Airs

Service Request: R0900538

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
R0900538-001.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
				^	2/16/09
R0900538-002.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
				*	2/16/09
R0900538-003.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
				•	2/16/09

Page 1 of 1

VOLATILE ORGANICS QC SUMMARY

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Date Analyzed: 2/5/09

Service Request: R0900538

Sample Matrix:

Air

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

TO-15 Analytical Method:

Units: µg/m³

Basis: NA

Analysis Lot: 142047

	Lah	07.70		
A NA MATERIAL PARTY AND A STATE OF THE STATE	Result	% Rec Limits		
Analyte Name	axesuit	Expected	% Rec	*LINAME CO
Vinyl Chloride	5.40	6.45	84	70 - 130
Chloroethane	5.86	6.66	88	70 - 130
1,1-Dichloroethene (1,1-DCE)	8.54	10.7	80	70 - 130
1,1-Dichloroethane (1,1-DCA)	9.32	10.7	87	70 - 130
1,1,1-Trichloroethane (TCA)	15.2	14.3	106	70 - 130

Comments:

SuperSet Reference:

4A

VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK1

Lab Name: CAS/ROCH Contract: H&A

Lab File ID: A6458.D Lab Sample ID: METBLK

Date Analyzed: 2/5/2009 Time Analyzed: 15:32

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: MS#9

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

:	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
า1	LCS1	LCS	A6457.D	13:06
) .] 2	SV-INA10	R0900538-001	A6459.D	18:42
73	SV-OUTA10	R0900538-002	A6460.D	19:33
14	SV-SS10	R0900538-003	A6461.D	20:23

COMMENTS:

page 1 of 1 FORM IV VOA TO-15

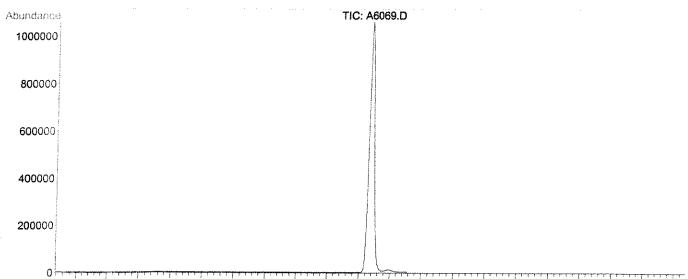
VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

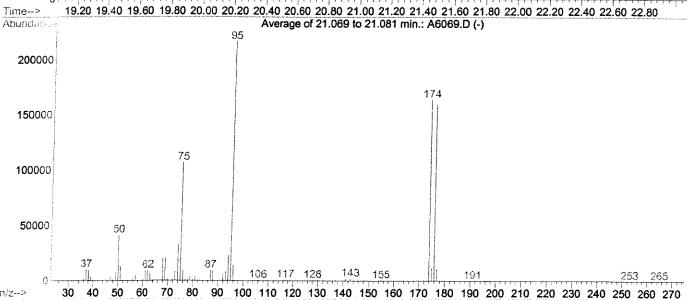
Lab Name:	CAS/ROCH			Contract: I	H&A	
Lab Code:	10145		: R900538	SAS No.:	SDG I	No.: SV-INA10
Lab File ID:	A6069.D			BFB	Injection Date:	11/14/2008
Instrument IE				BFB	Injection Time:	12:40
GC Column:		ID: 0.25	(mm)	Heat	ted Purge: (Y/N)	Ν

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	19.2
75	30.0 - 66.0% of mass 95	49.3
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 120.0% of mass 95	75.7
175	4.0 - 9.0% of mass 174	5.4 (7.2)1
176	93.0 - 101.0% of mass 174	73.6 (97.3)1
177	5.0 - 9.0% of mass 176	4.9 (6.7)2
	1-Value is % mass 174	2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

F	PA	LAB	LAB	DATE	TIME
SAMPL		SAMPLE ID	FILE ID	ANALYZED	ANALYZED
11 VBLK		METBLK 1.0	A6071.D	11/14/2008	14:45
0 02 PP	R	0.02 PPB	A6072.D	11/14/2008	15:31
าร 0.095 Pi		0.095 PPB	A6073.D	11/14/2008	16:16
0.20 PP		0.20 PPB	A6074.D	11/14/2008	17:01
15 0.50 PP		0.50 PPB	A6075.D	11/14/2008	17:46
1.0 PPB		1.0 PPB	A6076.D	11/14/2008	18:31
7 2.5 PPB		2.5 PPB	A6077.D	11/14/2008	19:16
)8 5.0 PPB		5.0 PPB	A6078.D	11/14/2008	20:02
)9 7.5 PPB		7.5 PPB	A6079.D	11/14/2008	20:50
10.0 PP	,	10.0 PPB	A6080.D	11/14/2008	21:41
10 10V		ICV	A6081.D	11/14/2008	22:26


Data File : J:\ACQUDATA\AIR1\DATA\111408\A6069.D


Vial: 1 : 14 Nov 2008 12:40 Acq On Operator: T.WALTON : TUNE : GC/MS Ins Sample

: PI=0 PF=0 Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	19.2	41519	PASS
75	95	30	66	49.3	106797	PASS
95	95	100	100	100.0	216683	PASS
96	95	5	9	6.8	14675	PASS
173	174	0.00	2	0.5	852	PASS
174	95	50	120	75.7	163989	PASS
175	174	4	9	7.2	11771	PASS
176	174	93	101	97.3	159531	PASS
177	176	5	9	6.7	10693	PASS

TH14-08.

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

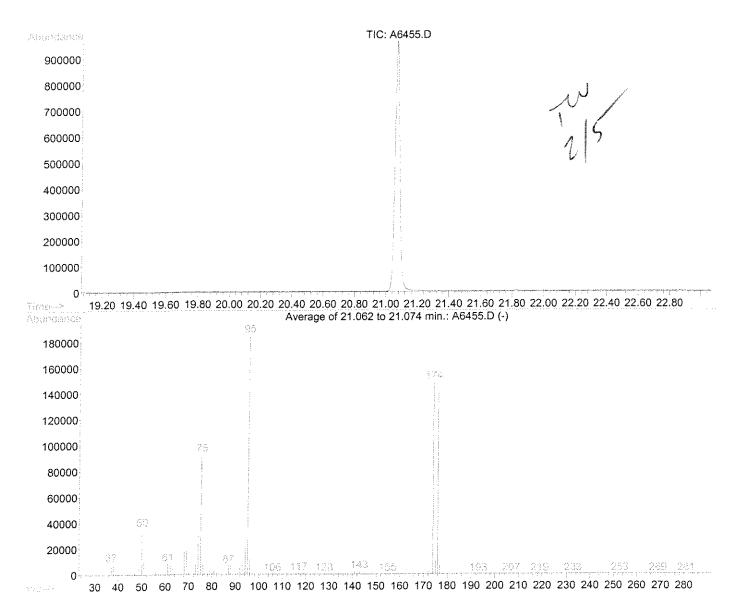
Lab Name:	CAS/ROCH			Contract:	H&A		
Lab Code:	10145	Case No.	: R900538	SAS No),;		No.: SV-INA10
Lab File ID:	A6455.D			BF	B Injection	Date:	2/5/2009
Instrument ID); MS#9			BF	B Injection	Time:	11:36
GC Column:	DB-624	ID: 0.25	(mm)	He	ated Purge	e: (Y/N)	N

:		9	% RELATIVE				
m/e	ION ABUNDANCE CRITERIA	F	ABUNDANCE				
50	8.0 - 40.0% of mass 95		19.3				
75	30.0 - 66.0% of mass 95		50.0				
95	Base peak, 100% relative abundance		100.0				
96	5.0 - 9.0% of mass 95		6.6				
173	Less than 2.0% of mass 174		0.7	(0.9)1		
174	50.0 - 120.0% of mass 95		80.3				
175	4.0 - 9.0% of mass 174		5.5	(6.8)1		
176	93.0 - 101.0% of mass 174		76.8	(95.6)1		
177	5.0 - 9.0% of mass 176		5.0	(6.6)2		
i	1-Value is % mass 174	2-Value is % mass 176					

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
;	VSTD1	CCV	A6456.D	2/5/2009	12:21
j F	LCS1	LCS	A6457.D	2/5/2009	13:06
i	VBLK1	METBLK	A6458.D	2/5/2009	15:32
	SV-INA10	R0900538-001	A6459.D	2/5/2009	18:42
	SV-OUTA10	R0900538-002	A6460.D	2/5/2009	19:33
 	SV-SS10	R0900538-003	A6461.D	2/5/2009	20:23

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6455.D


Vial: 14 : 5 Feb 2009 11:36 Operator: T.WALTON Acq On Inst : GC/MS Ins : TUNE Sample

Multiplr: 1.00 Misc

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

AutoFind: Scans 2648, 2649, 2650; Background Corrected with Scan 2636

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	19.3	35893	PASS
75	95	30	66	50.0	92909	PASS
95	95	100	100	100.0	185643	PASS
96	95	5	9	6.6	12296	PASS
173	174	0.00	2	0.9	1276	PASS
174	95	50	120	80.3	149056	PASS
175	174	4	9	6.8	10156	PASS
176	174	93	101	95.6	142507	PASS
177	176	5	9	6.6	9343	PASS
		, 		·		

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab N	lame:	CAS/ROCH	4		Contract: H	1&A		
Lab C	ode:	10145	Case No.:	R900538	SAS No.:	SDG	No.: SV-INA10	
Lab F	ile ID (S	Standard):	A6456.D			Date Analyzed	: 2/5/2009	
Instru	ment ID): MS#9				Time Analyzed	l: 12:21	
GC C	olumn:	DB-624	ID: 0.25	(mm)		Heated Purge:	(Y/N) N	
			IS1		IS2		IS3	
:			AREA #	RT #	AREA #	RT #	AREA #	RT #
:	12 HO	UR STD	199630	12.23	721323	13.90	646352	18.97
	UPPER	R LIMIT	279482	12.73	1009852	14.40	904893	19.47
	LOWE	RLIMIT	119778	11.73	432794	13.40	387811	18.47
,	EPA S	AMPLE						
	N	10.						
01	LCS1	:	197552	12.23	711491	13.90	619207	18.98
02	VBLK1		194920	12.23	691141	13.90	613865	18.97
03	SV-INA	. 10	187279	12.23	686506	13.90	606563	18.97
04	SV-OU	TA10	194865	12.23	690165	13.90	608370	18.97

713308

12.23

193834

13.90

IS1 = bromochloromethane IS2 = 1,4-difluorobenzene IS3 = chlorobenzene-d5

05 SV-SS10

AREA UPPER LIMIT = +40% of internal standard area
AREA LOWER LIMIT = -40% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

18.97

646086

^{*} Values outside of contract required QC limits

VOLATILE ORGANICS SAMPLE DATA

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Haley & Aldrich, Incorporated Client: Coopervision/70665-014 Airs Project:

Air Sample Matrix:

Sample Name: SV-INA10 R0900538-001 Lab Code:

Service Request: R0900538 **Date Collected:** 1/30/09 1610 Date Received: 1/30/09

Date Analyzed: 2/5/09 1842 Analytical Method: TO-15

Canister Dilution Factor: 1.47

Final Pressure (psig): 3,5 -2.3 Initial Pressure (psig):

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.020	0.41	0.020	0.0077	0.16	0.0077	U
75-00-3	Chloroethane	1000	0.023	0.85	0.023	0.0087	0.32	0.0087	U
75-35-4	1.1-Dichloroethene (1,1-DCE)	1000	0.016	0.65	0.016	0.0040	0.16	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.031	0,66	0.031	0.0076	0.16	0.0076	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.030	0.88	0.030	0.012	0.16	0.0056	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromofluorobenzene	109	70-130	2/5/09 1842			

(Not Reviewed)

Multiplr: 1.00

Vial: 2 Operator: T.WALTON

Inst : GC/MS Ins

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6459.D

Acq On : 5 Feb 2009 18:42

: R0900538-001

Sample : R0900538-001 Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Results File: 111408B.RES Quant Time: Feb 5 19:16 2009

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Units 1	Dev(Mi	n)
				33 0000 ~~		0.00
1) bromochloromethane	12.23	130	187279	13.2200 ng		
28) 1,4-difluorobenzene	13.90	114	686506	11.6400 ng		0.00
48) chlorobenzene-d5	18.97	117	606563	12.0200 ng	-	0.01
Company de						
System Monitoring Compounds	21 07	174	376605	19.54 ng	-0.	0.1
55) surr 1, bromofluorobenzene	41.V/	- 130		-		-
Spiked Amount 17.880 Ran	ige /v	T20	Recove	ry 1001	200	
Target Compounds					Ovalu	le
-2) propylene	5.06	41-	38201	0.5959 ng	#	77
3) dichlorodifluoromethane	5.16	85	98928	1.8391 ng		99
4) freon-114	5.51	85	4413	0.1087 ng		80
5) chloromethane	5.63	50	41118	0.8147 ng		97
7) 1,3-butadiene	6.03	54	3086	0.0754 ng		91
9) chloroethane	6.98		277	0 0133 ng		43
10) trichlorofluoromethane	7.56	101	47959	1.0288 ng		99
	7.97	45	171042	11.9093 ng		99
11) ethanol	8.64	101	11469	0.4737 ng		99
12) freon-113	8.75	43	471487	6.2031 ng		94
14) acetone	9.03	45	104184	2.3358 ng		63
15) isopropanol		76	4960	0.0546 ng		85
16) carbon disulfide	9.11			0.0340 ng		76
17) methylene chloride	9.54	84	4158			96
20) hexane	10.57	57	11775	0.2410 ng		99
23) 2-butanone	11.85	43	41794	0.5100 ng		
25) ethyl acetate	11.94	43	6123	0.0745 ng		94
26) chloroform	12.34	83	3350	0.0836 ng		99
-27) tetrahydrofuran	12.41		318	0.0194 ng		
29) 1,1,1-trichloroethane	12.70	97	1584	0.0454 ng		88
-30) cyclohexane	-12.84		7530	0.1498 ng		73
31) carbon tetrachloride	13.00	117	14693	0.4954 ng		99
32) 1,2-dichloroethane	13.33	62	2092	0.0648 ng		88
33) benzene	13.33	78	44853	0.4879 ng		97
34) heptane	13.71	71	6518	0.2501 ng		85
35) trichloroethene	14.39	130	439	0.0193 ng		87
36) 1,2-diclpropane	-14.77	63	1117	0.0455 ng		39.
38) bromodichloromethane	15.18	83	398	0.0135 n g		18
40) 4-methyl-2-pentanone	16.20	43_	1541	0.0227 n g	#-	74
41) toluene	16.56	91	97849	1.1383 ng		96
43) 1,1,2-trichloroethane	-17.20	97-	253	0.0124 n g		7
44) tetrachloroethene	17.52	166	1433	0.0626 ng		96
45) 2-hexanone	17.62	43	1510	0.0230 ng	[70
50) ethylbenzene	19.18	91	14380	0.1369 ng	ľ	99
51) M+P xylene	19.38	91	32299	0.3879 ng	(97
52) O xylene	20.11	91	14243	0.1629 ng		85
53) styrene	20.12	104	32585	0.4846 ng		89
58) 1,3,5-trimethylbenzene	21.81		2914	0.0332 ng		92
59) 1,2,4-trimethylbenzene	22.53	105	7799	0.0908 ng		100
- 60) 1,3-dclbenz	23.27		30668	0.6682 nc		95
61) 1,4-dclbenz	23.27	146	30668	0.6769 ng	,	96
			7656	6.0249		720 2
4 ethyl Tolerene	21.72	, and the same	400 C	U. M. Z. I. Z.		,

(#) = qualifier out of range (m) = manual integration

A6459.D 111408B.M Thu Feb 05 19:16:39 2009 OFFLINE

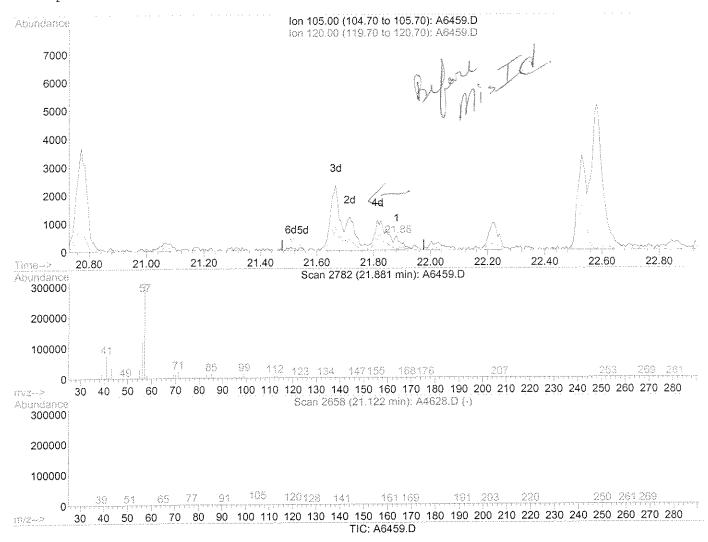
Page 1

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6459.D

Vial: 2 Operator: T.WALTON

: 5 Feb 2009 18:42 Acq On : GC/MS Ins Inst : R0900538-001 Sample : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00


Misc MS Integration Params: LSCINT2.P

Quant Results File: temp.res Quant Time: Feb 13 14:39 2009

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Method

: TO-15 Title

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(57) 4-ethyltoluene

21.88min 0.0067ng

response 719

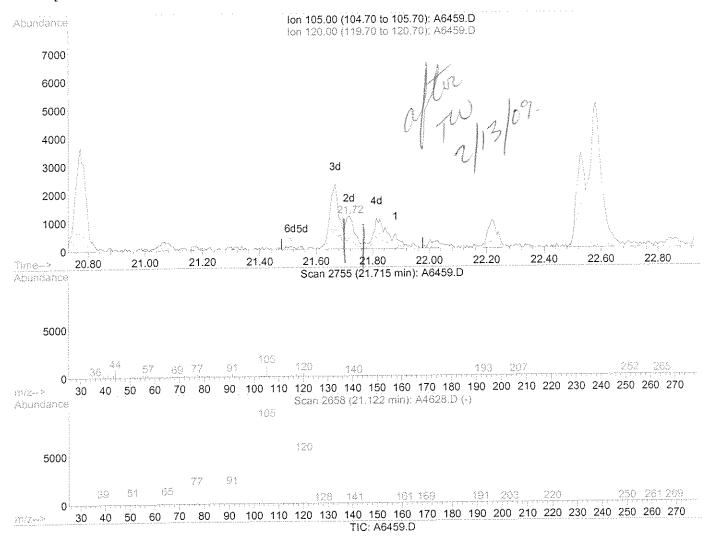
Act% lon Exp% 100 100 105.00 30.20 17.39 120.00 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Víal: 2

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6459.D

Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00


MS Integration Params: LSCINT2.P

Quant Time: Feb 13 14:42 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(57) 4-ethyltoluene

21.72min 0.0249ng m

response 2656

 Ion
 Exp%
 Act%

 105.00
 100
 100

 120.00
 30.20
 4.71#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

```
9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00
                  8.00
                       7.00
                       6.00
                       5.00
```

OFFLINE

19:16:41

0.5

Feb

111408B.M

A6459.D

znediob-**δ**, Γ 1,2,4-trimethylbenzene Quant Results File: 111408B.RES anasnadlydamint-8,6,1 Surr 1, bromofluorobenzene, S. 1.00 (RTE Integrator) TIC: A6459.D e panetak re Multiplr: elhylbenzene M+P xylene l, db-ensanedoroldo eneritge.pplg2gNex 1,1,2-trichloroethane 4-methyl-2-pentanone J:\ACQUDATA\AIR1\METHODS\111408B.M bromodichloromethane 1,2-diclpropane +3.5PSI richloroethene 1,4-difluorobenzene,1 peptane 2009 ansitisorostnikarite d Lanadisomondomorfile In the state of the sta H&A-3901-T2 1000ML -4.7" Thu Jan 15 15:59:15 : Initial Calibration MS Integration Params: LSCINT2.P Quant Time: Feb 5 19:16 2009 эивхэц methylene chloride ୭**୦:୩୧୯୫୫**୧୬ ទកយ៍ទំវិឌី^{១០១។} TO-15 lonedia trichloroffuoromethane cyloroethane Response via Last Update 9-3-butadiene ti r-noghadiamoroido anerhamorouffb3/10ff3fb Method Title 500000 1500000 2500000 2000000 1000000 Abundance 3500000 300000 6500000 5500000 5000000 4500000 6000000 4000000 5 - 20 E

GC/MS Ins

T.WALTON

Operator:

Inst

Vial:

J:\ACQUDATA\AIR1\DATA\020509\A6459.D

5 Feb 2009 18:42

Data File

Acq On Sample

Misc

R0900538-001

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: Project: Haley & Aldrich, Incorporated

Coopervision/70665-014 Airs

Sample Matrix:

Air

Sample Name: Lab Code:

SV-OUTA10

Analytical Method: TO-15

R0900538-002

Date Analyzed: 2/5/09 1933

Service Request: R0900538

Date Received: 1/30/09

Date Collected: 1/30/09 1605

Canister Dilution Factor: 1.31

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.017	0.37	0.017	0.0068	0.14	0.0068	U
75-00-3	Chloroethane	1000	0.020	0.76	0.020	0.0077	0.29	0.0077	U
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	0.014	0.58	0.014	0.0035	0.15	0.0035	U
75-34-3	1.1-Dichloroethane (1,1-DCA)	1000	0.028	0.59	0.028	0.0068	0.15	0.0068	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.027	0.79	0.027	0.012	0.14	0.0050	U

(Not Reviewed)

Vial: 3 Operator: T.WALTON

Inst : GC/MS Ins Multiplr: 1.00

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6460.D

Acq On : 5 Feb 2009 19:33

Sample : R0900538-002 Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Results File: 111408B.RES Quant Time: Feb 5 20:07 2009

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

: TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Min)	
1) bromochloromethane	12.23	130	194865	13.2200 ng	0.00	
28) 1,4-difluorobenzene	13.90		690165	11.6400 ng		
48) chlorobenzene-d5	18.97		608370			
48) Chrorobenzene do	10.07		0000.0	~~··· _		
System Monitoring Compounds			0 m 4 F C 4	70 70	0.00	
55) surr 1, bromofluorobenzene	21.07	174	3/4564	19.38 ng	0.00	
Spiked Amount 17.880 Ran	nge 70	- 130	Recove	= 108.3	000	
Target Compounds					Qvalue	
2) propylene	5.07	41	48077	0.7207 ng		
3) dichlorodifluoromethane	5.16	85	115892		100	
4) freon-114	5.50	85	4459		92	
5) chloromethane	5.62	50	40672		100	
-7) 1,3-butadiene		5 y4,	1001	0.0235 ng	#1-8	0.0263 @ 700
8) bromomethane	6.73	94	404			*
10) trichlorofluoromethane	7.56	101	52880			
11) ethanol	8.05	45	30470	2.0390 ng		
12) freon-113	8.64	101	12736 220396	0.5056 ng		
14) acetone	8.77	43	220396	2.7867 ng		
16) carbon disulfide	9.11	76	1005			
17) methylene chloride	9.56	84	4187			
20) hexane	10.57	57	5320 28479	0.1047 ng		
23) 2-butanone	11.86	43	28479	0.3340 ng		
25) ethyl acetate	11.93		2792			
26) chloroform	12.34	83	2028		93	
29) 1,1,1-trichloroethane	12.70	97	1746	0.0498 ng 0.0801 ng	98	
30) cyclohexane	12.84	56				
31) carbon tetrachloride	13.01	117	15357		99	
32) 1,2-dichloroethane	13.33	62	1853		92	
33) benzene	13.34	78	38346	0.4149 ng	9.7	
34) heptane	13.72	71	1542	_	91	
	14.76		939			
40) 4-methyl-2-pentanone	16.20		1466		#4. 92	
41) toluene	16.56	91	46560			
43) 1,1,2-trichloroethane	17.04			0.0117 ng	**	
44) tetrachloroethene	17.53	166	971	0.0422 ng 		
45) 2-hexanone	17.61			-	***	
50) ethylbenzene	19.18	91	6756	0.1791 ng		
51) M+P xylene	19.38	91	14957	0.1791 ng		
52) O xylene	20.11	91	4858 1052	0.0354 ng 	# 6	
53) styrene	<u> 20.12</u>	<u>+U4</u> 83	1631		ш э.	0
56) 1,1,2,2-tetrachloroethane	21.07		3041	0.0284 ng	η Δ.	6 NT-MISID. 5 NT-MISID.
57) 4-ethyltoluene	21.66	105	1031	0.0284 ng	.ر ا و	5 NT-MIST
58) 1,3,5-trimethylbenzene	21.72	105 105	3259	0.0378 ng		
59) 1,2,4-trimethylbenzene	22.54		3259 <u>1</u> 129	0.0376 Hg 0:0245 Hg	9	
60) 1,3-dclbenz	23.27	146	1129	0.0248 ng		
61) 1,4-dclbenz	23.27	T 47 D	1147	0.0240 119)	_

A6460.D 111408B.M Thu Feb 05 20:07:17 2009 OFFLINE

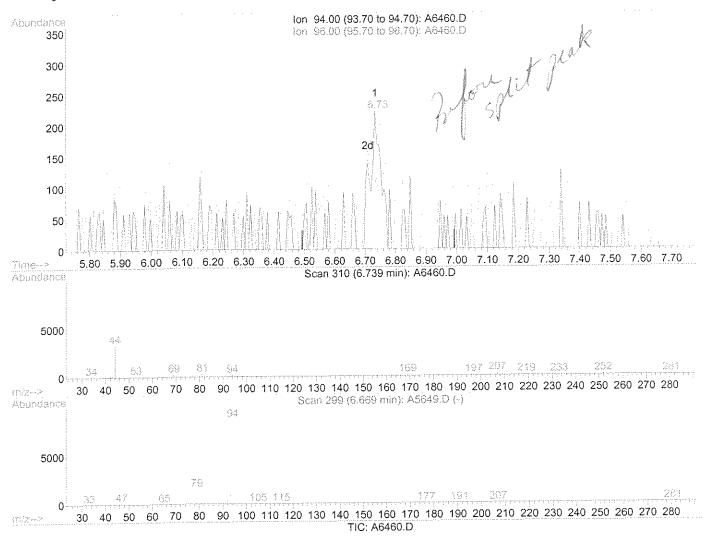
Page 1

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6460.D Vial: 3

Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI Multiplr: 1.00


MS Integration Params: LSCINT2.P

Quant Time: Feb 15 12:48 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(8) bromomethane

6.73min 0.0176ng

response 404

 Ion
 Exp%
 Act%

 94.00
 100
 100

 96.00
 94.40
 104.95

 0.00
 0.00
 0.00

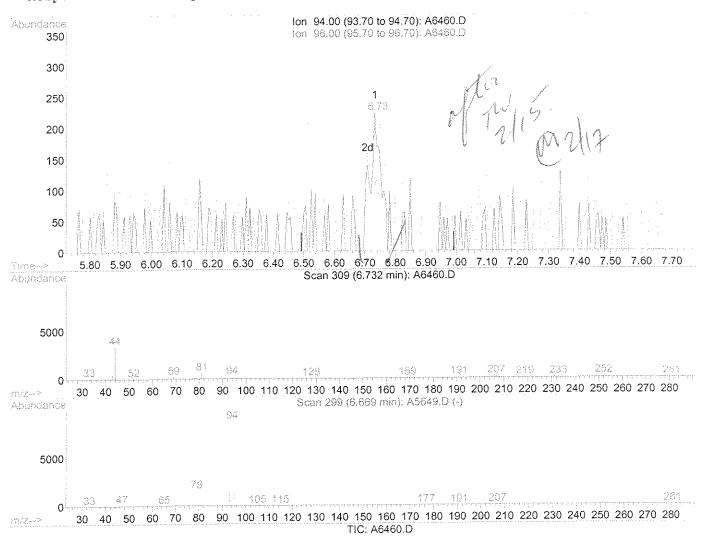
 0.00
 0.00
 0.00

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6460.D

Vial: 3 Operator: T.WALTON

Acq On : 5 Feb 2009 19:33 : GC/MS Ins Inst : R0900538-002 Sample : H&A-3901-T2 1000ML -1.7" +3.5PSI Multiplr: 1.00


Misc MS Integration Params: LSCINT2.P

Quant Results File: temp.res Quant Time: Feb 15 12:49 2009

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Method

: TO-15 Title

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(8) bromomethane

6.73min 0.0263ng m

response 604

Ехр% Act% lon 94.00 100 100 70.20# 96.00 94.40 0.00 0.00 0.00 0.00 0.00 0.00

Vial: Multiplr: Operator: Inst J:\ACQUDATA\AIR1\DATA\020509\A6460.D

GC/MS Ins

1.00

T.WALTON

+3.5PSI R0900538-002

5 Feb 2009 19:33

Data File

Acq On Sample

Misc

H&A-3901-T2 1000ML -1.7"

Quant Results File: 111408B.RES

MS Integration Params: LSCINT2.P 5 20:07 2009 Quant Time: Feb J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

2009 Thu Jan 15 15:59:15 : Initial Calibration TO-15 Last Update

Method

Title

Response via 1300000

TIC: A6460.D

8, an an earthounthountably (S) the i,4-difluorobenzene,1

1200000

1100000

0000001

1,cb-eneznedorolño

bromochloromethane,1

znadlob-**6**, f

e Brownian Care

elhylbenzene analyx Y+M

anarligg以付款6升或 1,1,2-trichtoroethane anauloi 4-methyl-2-pentanone

1,2-dicipropane

enscheorostastas carbon leftachloride

อบยาต่อน

chloroform

pexane

joueqja

methylene chloride

trichlorofluoromethane

200000

ansnioM6MMBdAoinane

300000

500000

400000

2000007

800000

000006

000009

carbon disuffide jieon-113 acetone

bromomethane

anaibetud-8, /

ลูกยูปมู่จุบ

90996世代帝

1,2,4-trimethylbenzene

anasnad**P(Maleft)yd(2**,1

Page

20:07:20 2009 0.5 E D Thu

7.00

6.00

5.00

A - 1480 D

100000

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Service Request: R0900538 **Date Collected:** 1/30/09 1615

Sample Matrix:

Air

Date Received: 1/30/09

Sample Name:

SV-SS10 R0900538-003 Lab Code:

Analytical Method: TO-15

Date Analyzed: 2/5/09 2023

Canister Dilution Factor: 1.47

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.020	0.41	0.020	0.0077	0.16	0.0077	U
75-00-3	Chloroethane	1000	0.023	0.85	0.023	0.0087	0.32	0.0087	U
75-35-4	1.1-Dichloroethene (1,1-DCE)	1000	0.016	0.65	0.016	0.0040	0.16	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.031	0.66	0.031	0.0076	0.16	0.0076	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.030	0.88	0.030	0.0056	0.16	0.0056	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	115	70-130	2/5/09 2023	

Form 1A

SuperSet Reference: 290000991238 ev 00

(Not Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6461.D

Acq On : 5 Feb 2009 20:23

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

Sample : R0900538-003 Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Results File: 111408B.RES Quant Time: Feb 5 20:57 2009

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth : 111408B

Inte	rnal Standards	R.T.	QIon	Response	Conc Units De	v(Mi:	n) -
- ~	bromochloromethane	12.23	130	193834	13.2200 ng		0.00
28)	1,4-difluorobenzene	13.90	114	713308	11.6400 ng		0.00
48)	chlorobenzene-d5	18.97	117	646086	12.0200 ng	-	0.01
Svst	em Monitoring Compounds						
55)	surr 1, bromofluorobenzene	21.07	174	420655	20.49 ng	-0.	01
Sp	iked Amount 17.880 Ra	nge 70	- 130	Recove	= 114.62	ક	
Tara	et Compounds				Q	valu	.e
2)	-propylene	5.07	41	172521	2.5999 ng	#	- 55
3)	dichlorodifluoromethane	5.16	85	100202	1.7997 ng		100
	freon-114	5.50	85	4856	0.1156 ng	#	73
	chloromethane	5.63	50	4705	0.0901 ng		93
	1 3-butadiene	6.03	54	566	0.0134 ng	#	2
10)	trichlorofluoromethane	7.56	101	45049	0.9337 ng		98
	ethanol	7.98	45	47067	3.1664 ng		99
	freon-113	8.64	101	10851	0.4330 ng		96
	acetone	8.74	43	1042660	13.2537 ng		95
15)	isopropanol	9.03	45	25819	0.5593 ng	#	23
16)	carbon disulfide	9.11	76	173234	1.8425 ng		99
17)	methylene chloride	9.55	84	2281	0.0933 ng	#	54
19)	methyl tert butyl ether	10.14	73	2306	0.0290 ng	#	- 50
20)	hexane	10.57	57	127177	2.5151 ng		97
23)		11.85	43	229576	2.7066 ng		100
	_sth/_acetate	11.85	43	229576	2.6977 ng		78
	chloroform	12.34	83	83953	2.0231 ng		100
	tetrahydrofuran	12.40	72	8932	0,5255 ng	#	59
201	1,1,1-trichloroethane	12.70	97	2106	0.0581 ng	#	7.7
20)	cyclohexane	12.85	56	127953	2.4491 ng		94
31)		13.00	117	9035	0.2932 ng		93
	1.2-dichloroethane	13.34	62	1000	0.0298 ng		96
	benzene	13.34	78	82968	0.8687 ng		97
	heptane	13.71	71	106162	3.9201 ng		98
36)		14.75	63	4301	0.1686 ng	#	57
38)	The same of the sa	15.20	83	10409	0.3401 ng		100
40)	4-methyl-2-pentanone	16.20	43	31244	0.4426 ng		94
	toluene	16.55	91	349107	3.9088 ng		96
42)	112-trichloroethane	17.22	97	15711	0.7396 ng	#	14
44)	tetrachloroethene	17.53	166	4660	0.1959 ng		91
	and the second s	17.61	43	15656	0.2297 ng		99
40) 101	2-hexanone dibromochloromethane	17.92	129	1279	0.0589 ng		98
40/	1.2-dibromosthane	18.33		1067	0.0478 ng		89
	ethylbenzene	19.18	91	69155	0.6182 ng		100
	M+P xylene	19.38	91	410292	4.6263 ng		99
	O xylene	20.11	91	127333	1.3672 ng		99
	styrene	20.12	104	13154	0.1836 ng	#	3-(
5.A.\	bromoform	20.52	173	365	0.0198 ng	#-	2-{
571	4-ethyltoluene	21.72	105	36882	0.3244 ng		99
2//	1,3,5-trimethylbenzene	21.82		69711	0.7457 ng		91
20)	1,2,4-trimethylbenzene	22.53	105	179505	1.9614 ng		95
	1,3 dclbenz				0.4742 ng		95

(#) = qualifier out of range (m) = manual integration

A6461.D 111408B.M Thu Feb 05 20:58:02 2009 OFFLINE

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6461.D Vial: 4

Acq On : 5 Feb 2009 20:23 Operator: T.WAI Sample : R0900538-003 Inst : GC/MS Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00 Operator: T.WALTON Inst : GC/MS Ins

MS Integration Params: LSCINT2.P

Quant Results File: 111408B.RES Quant Time: Feb 5 20:57 2009

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration
DataAcq Meth : 111408B

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
61) 1,4-dclbenz				0.4822 ng	
62) benzyl chloride	23.50	91	2636	0.0342 ng	
63) 12 dclbenz	23.99	146	684	0.0147 ng	# 69
64) 1.2.4-trichlorobenzene	27.01	180	302	0:0115 ng	

```
Page
```

```
9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00
                                                                                           1,2,4-trichlorobenzene
                                                                                 9nəznədiyiləmin)-4,2,1
                                                                                   416/19/19/19/19enzene
                                   S,anasnadorouñomord ,f riue
                                                                                                    рготофогт
                                                                                                       30√x¢<del>kca</del>ne
                                                                                   eihylbenzene M+P χγίεηε
                                                          chlorobenzene-d5,1
                                                                                               §.2-dibromoethane
                                                                                             dibromochloromethane
                                                                                              foluene
                                                                                             4-methyl-2-pentanone
                                                                                                                                              2009
                                                                                             bromodichloromethane
                                                                               1,2-dicipropane
                                                                                                                                              05 20:58:05
                                                              1,4-difluorobenzene,1
                                                                                               Snshisonoshadane
                                                                                            anadlagoldichit-ì,1,1
abiiolasailai nocisa
                                                                           1,9nsthemorolicomochinally Riffe
                                                                                                     andons/dis
                                                                                                      рехэц
                                                                                               methyl tert butyl ether
                                                                                                  methylene chloride
                                                                                                    abilluzknagagai
                                                                                           acetone
                                                                                                             .Ell-nogi
                                                                                                                                      7.00 8.00
                                                                                                                 lonsrite
                                                                                              trichlorofluoromethane
                                                                                                                                      6.00
                                                                                                          anaibetud-8, r
                                                                                                  411 - angritamo Toldo
                                                                                                                                      5.00
                                                                                          ansdi9ffib/oblittonoldold
                                                                                                                                               A6461.D
                                                                1500000
                                                                                                             500000
                                           2000002
                                                                                       1000001
3000000
                      2500000
```

Quant Results File: 111408B.RES

Multiplr:

+3.5PSI

MS Integration Params: LSCINT2.P

5 20:57 2009

Quant Time: Feb

H&A-3901-T2 1000ML

R0900538-003

Inst

J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

2009

Thu Jan 15 15:59:15 : Initial Calibration

Response via

Ahundance

4000000

3500000

Last Update

Method

Title

TO-15

TIC: A6461.D

GC/MS Ins

T.WALTON

Operator: Vial:

J:\ACQUDATA\AIR1\DATA\020509\A6461.D 5 Feb 2009 20:23

Data File

Acq On Sample

Misc

VOLATILE ORGANICS STANDARDS DATA

11408 ABV.

CALRPT.TXT Response Factor Report GC/MS Ins

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)
Title : TO-15
Last Update : Sat Nov 15 11:31:59 2008
Response via : Initial Calibration

Calibration Files 0.02 =A6072.D 0.5 =A6075.D 5.0 =A6078.D	0.1 1.0 7.5	=A6073.D =A6076.D =A6079.D	0.2 2.5 10.0	=A6074.D =A6077.D =A6080.D
==				
5.0 =A6078.D				=A6080

	Compound Compound	0.02 5.0	0.1 7.5	0.2 10.0	0.5		2.5		%RSD
1) I 2)	bromochloromethane propylene		1.412	1.735	5 1.559	1.405	1.402	1.472	8.94
3)	dichlorodifluorome		3.606 3.495	3.685 3.389	3.595)	3.544	3.521	3.549	2.46
4)	freon-114	3.738 3.859	3.713 3.775	3.921 3.647	3.820	3.826	3.782	3.787	2.16
5)	chloromethane	1.413	1.361 1.391	1.462 1.323	1.395	1.385	1.394	1.391	2.88
6)	vinyl chloride	1.460 1.556	1.462 1.535	1.531 1.372	1.509	1.482	1.511	1.491	3.70
7)	1,3-butadiene	1.313 1.274	1.149 1.258	1.178 1.091	1.190	1.200	1.227	1.209	5.60
8)	bromomethane	1.157	1.191 1.142	1.160 1.106	1.115	1.146	1.142	1.145	2.32
9)	chloroethane	0.809 0.744	0.707 0.739	0.735 0.710	0.721	0.697	0.736	0.733	4.47
10)	trichlorofluorometh	3.531 3.580	3.325 3.494	3.640 3.335	3.425	3.578	3.541	3.494	3.17
11)	ethanol	0.274	0.326	0.254	0.321	0.513	0.478	0.361	29.98
12)	freon-113	2.682 2.521	2.376 2.491	2.569 2.427	2.462	2.289	2.466	2.476	4.53
13)	1,1-dichloroethene	2.249 2.230	1.908 2.214	2.112 2.123	2.056	2.131	2.193	2.135	4.97
14)	acetone	2.428	2.368	2.330	2.828	2.115	2.386	2.409	9.67
15)	isopropanol	1.010	1.367	1.120	1.136	2.185	1.960	1.463	33.60 /
16)	carbon disulfide	4.178 3 3.828 3	3.612 3.757	3.772 3.604	3.655	3.791	3.773	3.774	4.55

Page 1

17)	methylene chloride	1.115	CALRPT 1.131 1. 5 1.119 1.	108 1.085	1.022 1.091	1.095	3.08
18)	trans-1,2-dichloro	e 2.196 2.160	5 1.947 2.0 0 2.132 2.0	074 2.048 069	1.945 2.106	2.075	4.18
19)	methyl tert butyl	e 4.081 3.948	L 3.609 3.4 3 3.899 3.8	472 3.619 831	3.092 3.744	3.700	8.01
20)	hexane	2.461	2.1 2.436 2.3	149 2.217 368	2.089 2.364	2.298	6.34
21)	1,1-diclethane	2.694 2.604	2.510 2.5 2.569 2.5	538 2.546 512	2.294 2.551	2.535	4.21
22)	vinyl acetate	4.369 4.460	3.731 3.6 4.400 4.3	511 4.015 325	3.233 4.212	4.040	10.56
23)	2-butanone	3.356	3.404 3.1 3.326 3.1	178 3.299 170	2.799 3.268	3.225	5.90
24)	cis-1,2-dichloroeth	1.330	1.210 1.2 1.324 1.3	254 1.243 803	1.129 1.272	1.258	5.28
25)	ethyl acetate	4.167	3.996 3.9 4.013 3.8	01 4.093 95	3.480 4.084	3.954	5.39
26)	chloroform	2.696	2.640 2.6 2.666 2.6	42 2.625 11	2.377 2.639	2.612	3.76
27)	tetrahydrofuran	0.678 0.728	0.584 0.5 0.721 0.7	53 0.619 10	0.542 0.681	0.646	11.32
28) I 29)	1,4-difluorobenzene 1,1,1-trichloroetha	0.724	0.646 0.7 0.723 0.6	10 0.680	0.631 0.711	0.693	5.11
30)	cyclohexane	0.673	0.55 0.672 0.6	98 0.598 32	0.577 0.660	0.630	6.31
31)	carbon tetrachlorid	0.720 0.728	0.598 0.66 0.732 0.69	68 0.647 93	0.617 0.709	0.679	7.28
32)	1,2-dichloroethane	0.516 0.492	0.458 0.49 0.489 0.46	98 0.474 61	0.413 0.479	0.476	6.22
33)	benzene		1.072 1.09 1.112 1.04		0.933 1.096	1.069	5.67
34)	heptane	0.426	0.35 0.426 0.40	57 0.362 03	0.343 0.404	0.389	8.77
35)	trichloroethene	0.533 (0.460 (0.405 0.43 0.464 0.44	36 0.419 32	0.399 0.442	0.444	9.01
36)	1,2-diclpropane		0.399 0.41 0.441 0.42		0.347 0.424	0.413	7.38
37)	1,4-dioxane		0.105 0.14 0.138 0.09		0.176 0.173	0.132	23.70
38)	bromodichloromethan (0.822 (0.643 0.69 Page 2		0.638 0.736	0.718	8.31

CALRPT.TXT 0.762 0.761 0.722

		0.762	0.761	. 0.722	2				
39)	cis-1,3-dichloropro	0.674 0.640	0.512 0.641	0.552	2 0.553 9	0.484	0.604	0.586	10.92
40)	4-methy1-2-pentanor		0.937 1.080	0.986	5 0.992 9	0.949	1.078	1.013	6.14
41)	toluene	1.299	1.083 1.281	1.149 1.206	1.188	0.986	1.241	1.179	8.88
42)	trans-1,3-dichlorop	0.612	0.482 0.613	0.497 0.585	0.527	0.453	0.578	0.543	11.40
43)	1,1,2-trichloroetha			0.409 0.415		0.337	0.412	0.406	7.42
44)	tetrachloroethene	0.723 0.591	0.497 0.598	0.537 0.573	0.525	0.484	0.560	0.565	12.58
45)	2-hexanone	1.072	0.879 1.044	0.931 0.948	0.938	0.943	1.072	0.978	7.49
46)	dibromochloromethan	0.782 0.715	0.542 0.722	0.576 0.688	0.592	0.548	0.669	0.648	13.27
47)	1,2-dibromoethane	0.803 0.626				0.480	0.597	0.601	14.78
48) I 49)	chlorobenzene-d5 chlorobenzene	1.204	1.060	1.121		0.928	1.148	1.108	7.66
50)	ethylbenzene	2.076	1.997	1.804 1.868	1.881	1.533	1.994	1.879	9.51
51)	M+P xylene	1.637	1.547	1.461 1.405	1.530	1.248	1.599	1.490	8.89
52)	o xylene	1.752			1.535	1.270	1.662	1.564	10.60
53)	styrene	1.336			1.127	0.943	1.257	1.180	12.19
54)	bromoform	0.869 (0.869 (0.556 0.872	0.604 0.835	0.644	0.589	0.787	0.736	18.38
55) S	surr 1, bromofluoro	0.568 (0.569 (0.568 0.582	0.551 0.590	0.557	0.567	0.560	0.568	2.12
56)	1,1,2,2-tetrachloro	1.809 1 1.216 1	1.098 1.189	1.133 1.117	1.142	0.945	1.164	1.202	20.02
57)	4-ethyltoluene	2.649 1 2.421 2	.791 .336	1.931 2.156	2.077	1.778	2.316	2.162	13.73
58)	1,3,5-trimethylbenz	2.146 1 1.981 1			1.721	1.473	1.902	1.777	13.17
59)	1,2,4-trimethylbenz 2	2.079 1 L.973 1	.924	L.517 L.779 ge 3	1.654	1.439	1.873	1.740	13.93

CALRPT.TXT

60)	1,3-dclbenz		0.960 1.239	1.008 1.174	1.039	0.886	1.168	1.137	16.65
61)	1,4-dclbenz		0.933 1.244	0.993 1.180	1.022	0.877	1.164	1.122	16.03
62)	benzyl chloride	1.760	1.739	1.620	1.325	1.183	1.631	1.543	15.23
63)	1,2-dclbenz		0.898 1.170	0.950 1.115	0.990	0.831	1.096	1.079	17.91
64)	1,2,4-trichlorobenz	0.995 0.808			0.723	0.551	0.720	0.754	17.02
65)	hexachlorobutadiene	1.288 0.819			0.847	0.651	0.800	0.852	20.49

(#) = Out of Range ### Number of calibration levels exceeded format ###

111408A.M Sat Nov 15 11:37:21 2008 OFFLINE

HP CHEMSTATION CUSTOM REPORT CALIBRATION SUMMARY

	a constant of the constant of				Method File	<u>.</u> .	Calibration Title	n Title	lact Cali	act Calibration Hodge		
aliorar	Calibration Table Concentrations (Level 1-20	s (Level	1-20)		111408A		TO-15		Sat Nov	Sat Nov 15 11:31:59 2008	2008	
- Te		A6072.D	A6072.D A6073.D	A6074.D	A6075.D A6076.D	A6076.D		A6078 D	•	A GORD D	7000	
		₩-	7	က	4	ĸ				7.000	2	
2	Compound	0.02	0.1	0.2	0.5). 0.F	2 5	ָ ע כ	0 4		‡	
	bromochloromethane	2.5000	2.5000	2.5000	2.5000	2.5000	2 5000	2.5000	2.5	ľ		
76	propylene	0.0206	0.0979	0.2060	0.5150	1 030	2 5750	4.3000	4.3000			
(r)	dichlorodifluoromethane	0.0202	0.0960	0.2020	0.5050	1.0100	2 5250	5.1300	7.7.50			
()	Treon-114	0.0200	0.0950	0.2000	0.5000	1 000	2 5000	2000	00/0"			
ন	chloromethane	0.0202	0960.0	0.2020	0.5050	3/2	2 5250	00000	7.5000		Ţ	
آ ۵	Vinyl chloride	0.0200	0.0950	0 2000	0.5000	2000	2.3230	5.0500	7.5750		-	
	1,3-butadiene	0.0216	0.1026	0.2160	0.3000	0000	2.5000	2.0000	7.5000	10.0000		
8)	bromomethane	0.0202	0.0960	0 2020	0.5050	1.0000	2.7000	5.4000	8.1000		-1	
6	chloroethane	0.0202	0.0960	0 2020	0.5050	1.0100	2.5250	5.0500	7.5750		-1	
10)	trichlorofluoromethane	0.0198	0.0941	0.1980	0.0000	00100	2.5250	2.0500	7.5750	10.1000 -1		
13)	ethanol	0.0194	0 0922	0 1940	0.1330	0.9900	2.4750	4.9500	7.4250	9.9000		
12)	freon-113	0.0214	0 1017	0 2440	0.4030	0.8700	2.4250	4.8500	7.2750	9.7000 -1		
13)	1,1-dichloroethene	0.0218	0 1036	02180	0.2330	00/07	2.6/50	5.3500	8.0250	10.7000 -	1	
4	acetone	0.0210	8000	23100	0.0400	1.0900	2.7250	5.4500	8.1750	10.9000 -1		
3	isopropanol	0.0222	0.1055	0.2220	0.5550	1 1100	2.5250	5.2500	7.8750		-	
16)	carbon disulfide	0.0208	0.0988	0 2080	0.5300	300	7.7.700	2.2200	8.3250	11.1000 -1		
17)	methylene chloride	0.0218	0.1036	0.2180	0.5450	0000	2 7250	5.2000	0008.	10.4000 -1		
18)	trans-1,2-dichloroethene	0.0210	0.0998	0.2100	0.5250	1 0500	2 6250	0.400	0.1/30	- 0006.01		
19)	methyl tert butyl ether	0.0212	0.1007	0.2120	0.5300	1 0600	2 6500	0.4300	7.07.00	10.5000		
20)	hexane	0.0214	0.1017	0.2140	0.5350	1 0700	2 8750	3.3000	0008.7	10.6000		
21)	1,1-diclethane	0.0212	0.1007	0.2120	0.5300	1060	2 8500	5.3000	8.0250			
22	vinyl acetate	0.0198	0.0941	0.1980	0.4950	0.000	2 4750	1.3000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1	7.4250	コト		
23)	2-butanone	0.0216	0.1026	0.2160	0.5400	1.0800	27000	5 4000	2 1000 A	3.9000		
24)	cls-1,2-dichloroethene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5,3500	8 0250	10.0000		
(2)	ethyl acetate	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7 8750	10.5000		Ī
(07	chlorotorm	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7 8750	-		
(17	tetranydrofuran	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5 3500	8 0250			
78)	1,4-difluorobenzene	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2 5000	2,5000			ŧ
73)	1,1,1-trichloroethane	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	+-		
3	cyclonexane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000		
- 1	carbon tetrachloride	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.50001		
32)	1,2-dichloroethane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000 -1		
33)	Denzene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000 -1		
04)	neplane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000 -1		
												1

F	—	Ţ	7	_			<u> </u>	T	Ŧ	T	T	7	T	T	T	T	T	_	Ţ	7	T	T	_	_		F	T	T	T	_	Ŧ
E	#	‡	#	#			E	E	Ħ	ŧ	Ŧ	ŧ	ŧ	Ŧ	ŧ	Ŧ	Ŧ	F	ŧ	ŧ	E	\vdash	E	F		E	Ė	ŧ	E	ŧ	‡
E	#	#	#	#				E	E	E	F	F	Ŧ	Ŧ	ŧ	Ŧ	E	E	ŧ	ŧ	E	E	E	E	E	E	E	ŧ	E	Ŧ	#
E	丰	#	#	〓				E	F	E	E	E	I	Ŧ	E	E	E	E	E	E	E	E		E	E	E	Ė	Ė	E	Ė	#
7	+	-	-	-+	``	7	-	7,	1	E	1	+-		F	۲,	+	1	7	F	1	1	7	7	7	7	7	1	1	1	+	-
					읽	8	8	8	18	18	18	18		8	18	18	18	18	18	18	8	8	용	8	8	18	18	18	18	18	
10 4000		20000	3 2	10.4000	10.2000	10.7000	10.8000	11.1000	10.4000	10.5000	10.7000	10.5000	10.5000	2.5000	10,6000	10.6000	20.8000	10.5000	10.5000	10.4000	2.5000	10.5000	10.1000	10.6000	10.4000	10.4000	10.4000	10.4000	10,1000	10.1000	
-	+	+	+	+	\dashv	-	_	├-	┢	┢	┢	╀	+-	╁	╁	╁_	<u> </u>	-	╀	┢	-			-	_	-	-	┢	╁	╁	+
ROOO	7 9500	2000	00000		0000.	8.0250	8.1000	8.3250	7.8000	7.8750	8.0250	7.8750	7.8750	2.5000	7.9500	7.9500	15.6000	7.8750	7.8750	7.8000	2.5000	7.8750	.5750	7.9500	7.8000	8	7.8000	7.8000	7.5750	7.5750	
7 8	10	. v	- 1	:	٥.	8	œ 1	8.3	7.8	200	80	18.	7.8	25	7.9	7.9	15.6	7.8	7.8	7.8	2.5	7.8	7.5	7.9	7.8	7.8000	7.8	8.	7.5	7.5	ľ
0	,	,		1	5		7	0	0		0	6	6	0	0	0	g	0	0	0	0	0	0	0	0	0	0	6	0	0	t
5 2000	5 3000	5 2000	5 2000		3. IOU	5.3500	5.4000	5.5500	5.2000	5.2500	5.3500	5.2500	5.2500	2.5000	5.3000	5.3000	10.4000	5.2500	5.2500	5.2000	2.5000	5.2500	5.0500	5.3000	5.2000	5.2000	5.2000	5.2000	5.0500	5.0500	
5,	1.	ماد	ù	3 4	ဂါ	ام	ŝ	Š	5,	5.	5	3	5	2	S	S	10	3	5,	5,	2.5	5	5	S.	2	5	5	5	5.(5.	ŀ
0	وأو	واع	2 5		2 9	وأو	g	Ö	0	Ö	ဂ္က	ŏ	Ö	0(8	0	Q	ŏ	0	0	0	o	Q	9	힞	Q	9	2	9	o	ľ
2.6000	2 6500	2 6000	2 6000	2 5500		2.6750	2.7000	2.7750	2.6000	2.6250	2.6750	2.6250	2.6250	2.5000	2.6500	2.6500	5.2000	2.6250	2.6250	2.6000	2.5000	2.6250	2.5250	2.6500	2.6000	2.6000	2.6000	2.6000	2.5250	5250	
2	1	1	1	1	4	7	7	~	~	7	2	2	2	2	7	2	ξ.	7	ر ک	7	7	이	7	7	۲Ì	2	2.	2	2	2	ľ
8	8	8	8	3 8	3 8	3 8	3	8	잉	႘ွှ	잉	8	8	잉	8	8	잉	8	8	8	8	8	8	8	8	8	8	8	8	8	ŀ
1.0400	1.0600	0400	1 0400	1000	3 3	00/0.	0080.	1,1100	97	1.0500	1.0700	1.0500	1.0500	2.5000	1.0600	1.0600	2.0800	1.0500	1.0500	86.6	2.5000	.050	1.018	1.0600	1.040	1.0400	1.0400	1.0400	1.0100	1.0100	
F	Ľ	Ľ	Ļ	Ļ	1	+	1	`	\dashv	\dashv	-	\dashv	-	\dashv	-	-	``	`-	-	\dashv		1	+	\dashv	+		_			Ľ	Ľ
0.5200	0.5300	0.5200	0.5200	إ	2000	ဂ္ဂုန	0.0400	င္သ	0.5200	0.5250	0.5350	0.5250	0.5250	2.5000	읾	0.5300	1.0400	윘	0.5250	0.5200	읽	0.5250	0.5050	0.5300	윘	잃	8	0.5200	350	0.5050	0071
0.5	0.5	0.5	0.5	0.5100) c		0.5550	0.5	0	0.5	0	0.5	25	0.5300	0.5	위	0.5250	0.5	0.5	2.5000	0.5		0.5	0.5200	0.5200	0.5200	0.5	0.5050	0.5	
6	0	5	1	╁	╫) c	╅	\dashv		٦,	5			-	-		╅	╅		\dashv	\dashv	1	7		1				_		-
0.2080	0.2120	0.2080	0.2080	0.2040	02440	0.440		0.2220	0.2080	0.2100	0.2140	0.2100	0.2100	2.5000	0.2120	0.2120	0.4160	0.270	0.2100	0.2080	2.5000	0.2100	0.2020	0.2120	0.2080	0.2080	0.2080	0.2080	0.2020	0.2020	0.000
Ö	Ö	Ö	0	o	٦	عاد	ءاد	-i	٥	وإد	ء اد	5	$\circ $	~i	5	٥	ြ	-i	0		~	ء اد	3 3	: c	5	اة	اة	ö	ö	0	Ċ
8)7	82	8	92	1	<u>.</u>	2 4	واع	واي	112	1	واړ	<u></u> χ 2	21	Ş	SI:	واع	g	χ	χ j	≥ 1	χ	وأج	≤ 1	g g	_∞ l	<u></u>	<u></u>	္က	힜	9
0.0988	0.1007	0.0988	0.0988	0.0969	0 1017	0 1026	1000	ĕĮŝ	0.0988	2000		0.0888	0.0998	2.5000	0.100	0.1007	0.1976	0.0888	0.0998	0.0988	2.5000	0.0998		001.00	0.0988	0.0988	0.0988	0.0988	0.0960	0.0960	
Ö	0	0	0	0	15	2	1	기	2 0	기 ^c	7	2	7	7	1	그	2 0	ľ	<u></u>	<u> </u>	Y	2 0	ᆙ	2	2	2	9	이	o	의	
8	12	80	8	8	14	4	3 5	1/2	3 8	2 5	<u> </u>	2 9		3 5	2	2 4	٥١٥	2 5		glg	3 \$	2 2	3 5	2 8	9 8		8	8	잉	엥	Š
0.0208	0.0212	0.0208	0.0208	0.0204	0.0214	0 0216	0.000		0.0208	0.02.0	20.00		0.0210		0.0212	2170.0	0.0410		0.0210	0.0208	2000	0.02 0		0.0212		0.0208	0.0208	0.0208	0.0202	0.0202	7000
	\exists	<u>ں</u>		Ľ	Ľ	1	4	1	#	#	7	7	4	1	4	4	4	4	4	1	4	1	4	4	1	4	4	4	긔	4	_
																					וע									-	
				a)			ans	2												6	1 1 2 2-tetrachloroothage	פ									
			ane	ğ	e e		o'		ט		au									ğ		2	2		5					ale ale	9
			Et	500	ano		200		و اق	2	15	2 2	5 4	3						5		3	20	מולים מולים מולים	5					žų.	-
9	aue		5	00	ěnt		di	2 3			١٥	ç		2 2	2 0	,				5		<u> </u>	<u>ا</u> اِ	計	2		-	g		ğ	1
影	ğ	13	읡	뒨	-2-	1	ģ			e e	분	١		1 2	100	۽ ا	?		1	١٤		1	1		2 2		2	9	일.	ള	hovachioroputadiana
trichloroethene	읈	ŏ	ğ	8	thy	<u>e</u>	-13	<u> </u>		ğ	۱Ě	ğ	ع ا	l e	e c	֓֡֞֞֞֞֞֞֞֞֡֓֓֓֓֞֡		٩	2 2	عاد	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡	<u> </u> \$	ĮĘ	֓֡֞֞֜֞֜֞֜֞֜֞֜֞֜֞֡֓֓֓֓֓֡֓֓֡֓֡֡֡֡֡֡֡֡֡֡֡֡	3-delhona		3 -	<u>تا</u> :	ğ .	읡:	ç
힔	,2-dicipropane	1,4-dioxane	bromodichloromethane	cis-1,3-dichloropropene	4-methyl-2-pentanone	toluene	trans-1.3-dichloropropene	1 12-trichloroethane	tetrachloroethene	2-hexanone	dibromochloromethane	1 2-dihromoethane	chlorohenzene-d5	chlorobenzene	ethylbenzene	M+P xylene	O xvlene	Styrene	hromoform	֝֞֞֝֝֝֝֝֝֝֝ <u>֚</u>	1 1 2 2-tetrachiomethans	4-ethyltolijene	3.5-trimethylhenzene	1.2 4-trimethylbenzene	2		1,4-ucibenz	penzyi chloride	1,2-dclbenz	1,2,4-frichiorobenzene	200
<u> </u>	4	-	ᆰ	ਹ	4	l _s	=	+	12	2	P	-	+2	10	Œ	12	10	3	علا	<u> </u>	1	4	-	-	+	-	-1-	<u> </u>	+	<u>-</u>	2
								1	1	ļ.,	ļ.,	-	 ~			1_	 _	<u>_</u>		\		1	_)	1=	1	1	.	<u> </u>		بندء طو
8	۶ اد	3	38	38	40	4	42	43	44	45	46	47	48	49	20	5	52	53	54	55	56	57	58	59	9	3 6	٥١٥	9 6	ခြင်	2	2
Portugue	THE PERSON		HVMOOIM	1									The state of the s	NAME OF TAXABLE PARTY.	WKO PAGE		WINDSON.	L	PREMISES	000000	STEEL	Primerated	- Mary	OTCOURS.	Metable	and the second	WARRENES	ì	decoura-	THANK PERSON	

111408CAL.xls

CALRPT.TXT Response Factor Report GC/MS Ins

111408B ng/thatter armyog. Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration

Ca	1	i	b	r	a	t	i	on	1	F	i	1	es
----	---	---	---	---	---	---	---	----	---	---	---	---	----

0.02	=A6072.D	0.1	=A6073.D	0.2	=A6074.D
0.5	=A6075.D	1.0	=A6076.D	2.5	=A6077.D
5.0	=A6078.D	7.5	=A6079.D	10.0	=A6080.D

	trong .	=			=	=			
	Compound Compound	0.02 5.0	0.1	0.2 10.0	0.5		2.5	Avg	%RSD
1) I 2)	bromochloromethane propylene		4.341	5.332	2 4.791				8.94
3)	dichlorodifluorome		3.859 3.739	3.942 3.625	? 3.84€ 5	3.791	3.767	3.797	2.47
4)	freon-114		2.810 2.857			2.896	2.862	2.866	2.16
5)	chloromethane	3.621	3.488 3.564	3.746 3.388	3.573	3.548	3.572	3.562	2.88
6)	vinyl chloride	3.023 3.220	3.027 3.177	3.168 2.840	3.122	3.067	3.126	3.085	3.70
7)	1,3-butadiene	3.138 3.045	2.746 3.007	2.818 2.609	2.846	2.871	2.933	2.890	5.59
8)	bromomethane	1.576	1.624 1.556	1.581 1.507	1.520	1.562	1.557	1.560	2.33
9)	chloroethane	1.621 1.493	1.418 1.482	1.474 1.424	1.447	1.397	1.476	1.470	4.45
10)	trichlorofluorometh	3.324 3.371	3.132 3.290	3.428 3.140	3.225	3.369	3.334	3.290	3.16
11)	ethanol	0.770	0.915	0.713	0.902	1.440	1.343	1.014	29.98
12)	freon-113	1.851 1.740			1.699	1.580	1.702	1.709	4.53
13)	1,1-dichloroethene	3.001 2.976	2.547 2.954	2.818 2.833	2.743	2.843	2.927	2.849	4.96
14)	acetone	5.407	5.274	5.189	6.299	4.709	5.315	5.365	9.67
15)	isopropanol	2.174	2.942	2.409	2.444	4.703	4.219	3.148	33.60
16)	carbon disulfide	7.102 6 6.503 6	5.137 (5.383 (6.407 5.122	6.209	6.440	6.409	6.412	4.57

Page 1

17)	methylene chloride		CALRPT. 1.724 1.6 1.704 1.6	87 1.652	2 1.556 1.662	1.668	3.09
18)	trans-1,2-dichloro	e 2.931 2.882	2.599 2.7 2.845 2.7	67 2.732 61	2 2.595 2.810	2.769	4.18
19)	methyl tert butyl (e 5.989 5.793	5.296 5.0 5.722 5.6	95 5.310 21	0 4.537 5.494	5.428	8.01
20)	hexane	3.694	3.2 3.656 3.5	25 3.328 54	3 3.135 3.549	3.449	6.34
21)	1,1-diclethane	3.520 3.404	3.281 3.3 3.358 3.2	17 3.327 33	2.998 3.334	3.314	4.20
22)	vinyl acetate	6.563 6.701	5.609 5.43 6.611 6.49	25 6.032 98	4.858 6.329	6.070	10.55
23)	2-butanone	6.021	6.106 5.70 5.965 5.68	01 5.918 37	5.020 5.863	5.785	5.90
24)	cis-1,2-dichloroeth		1.615 1.67 1.767 1.75	'4 1.659 89	1.506 1.697	1.679	5.27
25)	ethyl acetate	6.117	5.870 5.72 5.891 5.71	?7 6.008 .7	5.108 5.995	5.804	5.39
26)	chloroform	2.921	2.862 2.86 2.888 2.82	2.844 8	2.576 2.860	2.830	3.77
27)	tetrahydrofuran	1.216 1.306	1.047 0.99 1.294 1.27	2 1.110	0.973 1.221	1.159	11.32
28) I 29)	1,4-difluorobenzene 1,1,1-trichloroetha	0.618	0.552 0.60 0.617 0.58	6 0.581	0.538 0.607	0.591	5.10
30)	cyclohexane	0.911 (0.80 0.910 0.85	9 0.809 6	0.780 0.893	0.853	6.31
31)	carbon tetrachlorid	0.533 (0.539 (0.443 0.49 0.542 0.51	5 0.479 3	0.457 0.525	0.503	7.27
32)	1,2-dichloroethane	0.594 (0.566 (0.528 0.57 0.562 0.53	3 0.546 1	0.475 0.551	0.547	6.22
33)	benzene		1.563 1.60 1.621 1.52		1.360 1.598	1.559	5.67
34)	heptane	0.484 0	0.40 0.484 0.45	6 0.412 3	0.390 0.459	0.442	8.77
35)	trichloroethene	0.462 0 0.399 0).351 0.378).402 0.383	3 0.363	0.346 0.383	0.385	9.02
36)	1,2-diclpropane	0 0.447 0).402 0.420).445 0.424	0.416	0.349 0.427	0.416	7.38
37)	1,4-dioxane		0.136 0.187 0.179 0.124		0.228 0.223	0.170	23.70
38)	bromodichloromethan (0.571 0	.447 0.481 Page 2	0.479	0.443 0.512	0.499	8.31

CALRPT.TXT 0.530 0.529 0.502

		0.530	0.529	0.502	2				
39)	cis-1,3-dichloropro	0.692 0.657	0.526 0.657	0.567	7 0.567 5	0.497	0.620	0.601	10.91
40)	4-methy1-2-pentanor	1.245	1.066 1.228	1.121	1.127	1.079	1.226	1.152	6.13
41)	toluene	1.606	1.339 1.583			1.219	1.534	1.457	8.88
42)	trans-1,3-dichlorop	0.628	0.495 0.629	0.510 0.600	0.540	0.465	0.594	0.558	11.39
43)	1,1,2-trichloroetha		0.346 0.370			0.288	0.352	0.347	7.42
44)	tetrachloroethene	0.496 0.406	0.341 0.411	0.369 0.394	0.360	0.332	0.385	0.388	12.57
45)	2-hexanone	1.219	1.000 1.187			1.072	1.218	1.112	7.48
46)	dibromochloromethan	0.427 0.391	0.297 0.395	0.315 0.376	0.324	0.300	0.366	0.354	13.27
47)	1,2-dibromoethane	0.487 0.380				0.291	0.362	0.364	14.77
48) I 49)	chlorobenzene-d5 chlorobenzene	1.258	1.108	1.171	1.167		1.200		7.66
50)	ethylbenzene	2.300	2.212	1.998 2.069	2.084	1.698	2.209	2.081	9.51
51)	M+P xylene	1.814	1.713	1.618 1.556	1.695	1.382	1.772	1.650	8.89
52)	O xylene	1.940			1.700	1.407	1.841	1.733	10.60
53)	styrene	1.508			1.273	1.064	1.420	1.333	12.19
54)		0.405 0.404			0.300	0.274	0.366	0.343	18.38
55) S	surr 1, bromofluoro	0.382 (0.383 (0.374	0.381	0.377	0.382	2.12
56)	1,1,2,2-tetrachloro	1.268 (0.852 (0.800	0.662	0.816	0.842	20.02
57)		2.591 2 2.369 2			2.032	1.740	2.266	2.115	13.71
58)	1,3,5-trimethylbenz	2.099 1 1.938 1	L.458 L.886	1.531 1.753	1.684	1.442	1.861	1.739	13.17
59)	1,2,4-trimethylbenz	2.034 1 1.931 1	882 [1.485 1.741 ge 3	1.618	1.408	1.833	1.703	13.93

CALRPT.TXT

60)	1,3-dclbenz			0.806 0.939	0.831	0.709	0.935	0.910	16.65
61)	1,4-dclbenz		0.747 0.995		0.817	0.702	0.931	0.898	16.03
62)	benzyl chloride	1.635	1.616	1.505	1.231	1.099	1.515	1.434	15.23
63)	1,2-dclbenz		0.719 0.936		0.792	0.665	0.877	0.863	17.90
64)	1,2,4-trichlorobenz		0.427 0.537		0.469	0.357	0.467	0.488	17.02
65)	hexachlorobutadiene	0.581 0.369	0.369 0.370	0.386 0.346	0.382	0.294	0.361	0.384	20.49

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### 111408B.M Thu Feb 19 16:24:12 2009 OFFLINE

RT Order Factors to convert from PPBV to ng/L ng/L=un/m3=PPBV*MW/24.46

ng/L=un/m3=PPBV^MVV/24.46				
Y . J . damid	cas#	MW	ppbv	ng/L
Internal standard	110073	12.00		4 7004
propylene dichlorodifluoromethane	115-07-1	42.08	4	1.7204
freon-114	75-71-8 76-14-2	120.91 170.92	1	4.9432
chloromethane	74-87-3	50.49	1	6.9877 2.0642
vinyl chloride	75-01-4	62.5	1	
1,3-butadiene	106-99-0	54.09	1	2.5552
bromomethane	74-83-9	94.09 94.9	1	2.2114 3.8798
chloroethane	75-00-3	64.5	1	2.6370
trichlorofluoromethane	75-69-4	137.37	1	5.6161
ethanol	64-17-5	46.07	1	1.8835
freon-113	76-13-1	187.38	1	7.6607
1,1-dichloroethene	75-35-4	96.94	4	3.9632
acetone	67-64-1	58.08	1	2.3745
isopropanol	67-63-0	60.1	1	2.4571
carbon disulfide	75-15-0	76.14	1	3.1128
methylene chloride	75-09-2	84.93	1	3.4722
trans-1,2-dichloroethene	156-60-5	96.94	1	3.9632
methyl tert butyl ether	1634-04-4	88.15	1	3.6038
hexane	110-54-3	86.18	1	3.5233
1,1-dichloroethane	107-06-2	98.96	1	4.0458
vinyl acetate	108-05-4	86.09	1	3.5196
2-butanone	78-93-3	72.11	1	2.9481
cis-1,2-dichloroethene	156-59-2	96.94	1	3.9632
ethyl acetate	141-78-6	88.11	1	3.6022
chloroform	67-66-3	119.38	1	4.8806
tetrahydrofuran	109-99-9	72.11	1	2.9481
Internal standard				
1,1,1-trichloroethane	71-55-6	133.4	1	5.4538
cyclohexane	110-82-7	84.16	1	3.4407
carbon tetrachloride	56-23-5	153.82	1	6.2886
1,2-dichloroethane	107-06-2	98.96	1	4.0458
benzene	71-43-2	78.11	1	3.1934
heptane	142-82-5	100.2	1	4.0965
trichloroethylene	79-01-6	131.39	1	5.3716
1,2-dichloropropane	78-87-5	112.99	1	4.6194
1,4-dioxane	123-91-1	88.11	1	3.6022
bromodichloromethane	75-27-4	163.83	1	6.6979
cis-1,3-dichloro-1-propene	10061-01-5	110.97	1	4.5368
4-methyl-2-pentanone	108-10-1	100.16	1	4.0948
toluene	108-88-3	92.14	1	3.7670
trans-1,3-dichloro-1-propene	10061-02-6	110.97	1	4.5368
1,1,2-trichloroethane	79-00-5	133.4	1	5.4538
tetrachloroethene	127-18-4	165.83	1	6.7796
2-hexanone	591-78-6	100.16	1	4.0948
dibromochloromethane	124-48-1	208.28	1	8.5151
1,2-dibromoethane	106-93-4	187.86	1	7.6803
Internal standard chlorobenzene	100.00.7	112.56	4	4.0040
	108-90-7	112.56	1	4.6018
ethylbenzene M+P xylene	100-41-4	106.17	1 1	4.3406
O xylene	1330-20-7 95-47-6	106.17 106.17	1	4.3406
styrene	100-42-5	100.17	1	4.3406 4.2580
bromoform	75-25-2	252.73	1	
Surrogate standard	1,7-2,7-2	durit day of I	į.	10.3324
1.1.2,2-tetrachioroethane	79-34-5	167.85	1	8 8622
4-ethyltoluene	622-96-8	120.19	1	6.8622 4.9137
1,3,5-trimethylbenzene	108-67-8	120.19	1	4.9137
1,2,4-trimethylbenzene	95-63-6	120.19	1	4.9137
1.3-dichlorobenzene	541-73-1	147	1	6.0098
1,4-dichlorobenzene	106-46-7	147	1	6.0098
benzyl chloride	100-44-7	126.59	: 1	5.1754
1,2-dichlorobenzene	95-50-1	147	1	6.0098
1,2,4-trichlorobenzene	120-82-1	181.45	1	7.4182
hexachlorobutadiene	87-68-3	260.76	1	10.6607
THE STREET STREET, STR	01-00"1	~X2V.73/	1	19.9001

11/109. Wy 0813.

HP CHEMSTATION CUSTOM REPORT CALIBRATION SUMMARY

4	,				Method File	 <u>e</u>	Calibration Title	Tiffe.	l act Calib	last Calibration Hodato	
Calibra	Calibration Table Concentrations	(Level 1-20)	1-20)		111408B		TO-15		Thu.lan 1	Thu .lan 15 15:59:15 2009	zare . 5 200a
TITE PV®		A6072.D	A6073.D	A6074.D	A6075.D	A6076.D	A6077.D	A6078.D	A6079.D	A6080.D	
	Compound	G	7 ;	က	4	വ	9	7	œ	တ	10#######
+	bromoshlomom at	0.05		0.2	0.5	1.0	2.5	5.0	7.5	10.0	
	Disconding of the mane	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	-1 International
7.7	pi opyrene dioblosodia	0.0354	0.1683	0.3544	0.8860	1.7720	4.4299	8.8599	13.2898	17.7197	
	freez 111	0.0999	0.4743	0.9985	2.4963	4.9926	12.4815	24.9630	37.4445	49.9260	
75	24 CAS	0.1398	0.6638	1.3975	3.4939	6.9877	17.4693	34.9387	52 4080	69 8774	
(3)	visid et esta	0.0417	0.1981	0.4170	1.0424	2.0848	5.2121	10 4241	15 6362	20.8783	
	VIIIIVI Chloride	0.0511	0.2427	0.5110	1.2776	2.5552	6.3880	12 7760	10 1630	25 5540	
77	1,3-butadiene	0.0478	0.2269	0.4777	1.1941	2.3883	5 9707	11 0414	17 0424	22.0013	
0	<u>bromomethane</u>	0.0784	0.3723	0.7837	1.9593	3.9186	9 7965	19 5930	70 380E	20 4050	
(A)	chloroethane	0.0533	0.2530	0.5327	1.3317	2.6633	6.6583	13.3166	10 0750	28.1000	
(0)	trichlorofluoromethane	0.1112	0.5282	1.1120	2.7800	5.5599	13 8999	27 7997	11 6006	50.0333 56.600E	
	ethanol	0.0365	0.1736	0.3654	0.9135	1.8270	4.5674	9 1349	13 7023	2600	
(7)	Treon-113	0.1639	0.7787	1.6394	4 0985	8 1969	20 4023	40 08 AE	04 4760	0807	
13)	1,1-dichloroethene	0.0864	0.4104	0.8640	2.1599	4 3199	10 7997	21 500E	22 2002	81.9692	
14)	acetone	0.0499	0.2369	0.4986	1 2466	2 4932	6 2330	12 4664	10 6004	45.1369	
12)	isopropanol	0.0545	0.2591	0.5455	1.3637	2 7274	6 8187	12 6260	00.0331	24.332	
16)	carbon disulfide	0.0647	0.3075	0.6475	1.6187	3.2374	8 0934	16 1868	24 2801	30 3735	
10	methylene chloride	0.0757	0.3595	0.7569	1.8923	3 7847	9 4617	18 023E	2021	07 0470	7
18)	trans-1,2-dichloroethene	0.0832	0.3953	0.8323	2.0807	4.1614		20 8068	34 2402	01.041U	
19)	methyl tert butyl ether	0.0764	0.3629	0.7640	1.9100	3.8201	9.5502	19 1004	28 6506	28 2007	
20)	hexane	0.0754	0.3581	0.7540	1.8850	3,7699	9 4248	18 8497	28 2745	37 6003	
21)	1,1-diclethane	0.0858	0.4074	0.8577	2.1443	4.2885	10.7213	21 4427	32 1640	42 8854	
22)	vinyl acetate	0.0697	0.3310	0.6969	1.7422	3.4844	8.7111	17.4221	26.1332	34.8443	
7.3)	Z-butanone	0.0637	0.3025	0.6368	1.5920	3.1839	7.9598	15.9196	23.8794	31.8392	1
24)	cis-1,2-dichloroethene	0.0848	0.4029	0.8481	2.1203	4.2406	10.6016	21.2031	31.8047	42,4063	-1
25)	ethyl acetate	0.0756	0.3593	0.7565	1.8912	3.7823	9.4558	18.9116	28.3674	37 8232	
26)	chloroform	0.1025	0.4868	1.0249	2.5623	5.1247	12.8116	25.6233	38.4349	2465	
27)	tetrahydrofuran	0.0631	0.2997	0.6309	1.5772	3.1544	7.8861	15.7722	23.6583	5444	-1
28)	1,4-difluorobenzene	11.6400	11.6400	11.6400	11.6400	11.6400	11.6400	11.6400	11.6400	1	-1
	1,1,1-trichloroethane	0.1145	0.5440	1,1453	2.8632	5.7265	14.3162	28.6325	42.9487	57.2649	1
30)	cyclohexane	0.0736	0.3497	0.7363	1.8408	3.6816	9.2039	18.4078	27.6118	36.8157	-1
8	carbon tetrachloride	0.1321	0.6273	1.3206	3.3015	6,6031	16.5077	33.0153	49.5230	66.0307	-1 ####################################
32)	1,2-dichloroethane	9980.0	0.4113	0.8658	2.1645	4.3290	10.8225	21.6450	32.4675	43.2899	-1
33)	Denzene	0.0683	0.3246	0.6834	1.7085	3.4169	8.5423	17.0846	25.6268	34,1691	- 1

			H				77													H		H	¥						111111				
							11																						#				
E					-1#	-1 HH	-1 ##							7		7			-		1	-	-	Ţ.	+	 #	-	1	-1##	# 7	1	1	=
, 000 01			48.9054	37.4630	69.6579	46.2753	43.8149	40 6832	50 3584	_			89 4088	80 6/34	12 0200	48 7701	18 0000		-	_	44.7087	-			49.6287			$\overline{}$	62.5020	53.8240	1-	1	108.7388 -1
00.00	32.8/43	41.8987	30.7241	780.87	52.2434	34.7065	32.8612	30.5124	37.7688	42 5397	53 3807	32 8612	67.0566	60 4823	12 0200	36 5843	34 5074	67 7407	24 4040	27 7247	33.5315	80.5926	17.8800	54.0400	37.2216	39.0042	38.3271	46.8765	46.8765	40.3680	45.5243	56.1931	81.5541
24 0400	2018.12	C7CS. 17	1704.407	10.7315	34.8289	23.1377	21.9074	20.3416	25.1792	28.3598	35 5931	21 9074	44.7044	40.3215	12.0200	24,3895	23.0049	45 1418	22 7070	20 35 44	44.3344	33.7204	0088.71	36.0267	24.8144	20.0428	41.00.07	31.2510	31.2510	26.9120	30.3496	37.4621	54.3694
10 0501	10.3301	10.3002	0 2057	3.3037	17.4145	11.5688	10.9537	10.1708	12.5896	14.1799	17,7966	10.9537	22.3522	20.1608	12.0200	12.1948	11,5025	22 5709	11 3040	44 4770	20000	47 0000	0000.	18.0133	12 0244	10.02 14	12.7727	15.0.255	15.6255	13.4560	15.1748	18.7310	27.1847
4 3832	5 5865	4 8965	2 7463	2012	9,3058	4.6275	4.3815	4.0683	5.0358	5.6720	7.1186	4.3815	8.9409	8.0643	12.0200	4.8779	4.6010	9.0284	4 5576	4 4700	10 72 57	47 8800	20000	7.2033	4.3023 5.3086	0.2000	0.1.00	7007.0	6.2502	5.3824	6.0699	7.4924	10.8739
2 1916	2 7032	2 4483	1 8731	2,00,0	0.4029	2.3138	2.1907	2.0342	2.5179	2.8360	3.5593	2.1907	4.4704	4.0322	12.0200	2.4390	2.3005	4.5142	2 2 7 8 8	2 2354	5 3708	17 8800	3 6027	2.0027	2 60/3	2 5554	2 4054	071.6	3,1251	2.6912	3.0350	3.7462	5.4369
0.8766	1 1173	0.9793	0 7493	1 2022	2000.	0.9255	0.8763	0.8137	1.0072	1.1344	1.4237	0.8763	1.7882	1.6129	12.0200	0.9756	0.9202	1.8057	0.9115	0.8942	2 1491	17 8800	1 4411	0 9926	1 0417	1 0001	1 2500	2002.2	1.2500	1.0765	1.2140	1.4985	2.1748
0.4164	0.5307	0.4652	0.3559	0.6617	0.00	0.4390	0.4162	0.3865	0.4784	0.5388	0.6763	0.4162	0.8494	0.7661	12.0200	0.4634	0.4371	0.8577	0.4330	0.4247	1.0208	17,8800	0.6845	0.4715	0.4948	0.4855	0.5038	0.000	0.3338	0.5113	0.5766	0.7118	1.0330
0.0877	0.1117	0.0979	0.0749	0.1393	0.000	0.0020	0.0070	0.0814	0.1007	0.1134	0.1424	0.0876	0.1788	0.1613	12.0200	0.0976	0.0920	0.1806	0.0912	0.0894	0.2149	17.8800	0.1441	0.0993	0.1042	0 1022	0 1250	0 4 250	0.120	0.1076	0.1214	0.1498	0.2175
heptane	trichloroethene	1,2-diclpropane	1,4-dioxane	bromodichloromethane	cis-1.3-dichloropronene	4-methyl-2-nentanone	toliono	from 4 2 diati	1 1 2 trickless the	totrackless the	2 become	Z-llexanone	1.2 dibramont	Appart	ohlorok a	oth the care	emyloenzene	M+P xylene	O xylene	styrene	bromoform	surr 1, bromofluorobenzene	1,1,2,2-tetrachloroethane	4-ethyltoluene	1,3,5-trimethylbenzene	1,2,4-trimethylbenzene	1,3-dclbenz	1 4-dolhanz	1 - XXIX	venzyi Gnioride	1,2-dclbenz	1,2,4-trichlorobenzene	
34)	35)	36)	37)	38)	39)	40)	41)	(CV	13)	44)	157	46)	47)	(8)	40)	50	00 00 00 00 00 00 00 00 00 00 00 00 00		170	53)	54)	55)	56)	57)	58)	59)	(09	61)	CS	02)	63)	64)	(65)

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

Acq On : 14 Nov 2008 15:31

Inst : GC/MS Ins Multiplr: 1.00 : 0.02 PPB Sample Misc : PI=0 PF=0

MS Integration Params: RTEINT.P Quant Results File: 111408A.RES Quant Time: Nov 15 8:54 2008

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth : 111408A

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) bromochloromethane					0.00
28) 1,4-difluorobenzene	13.91	114	862919	2.5000 pdbv	0.00
48) chlorobenzene-d5	18.98	117	732479	2.5000 ppbv	-0.03
40) Chilomopolimonia				<u> </u>	
System Monitoring Compounds					
55) surr 1, bromofluorobenzene	21.08	174	416308	2.50 ppbv -	0.02
Spiked Amount 2.500 Ra	ange 70	- 130	Recove	ry = 100.10%	
				Qva	luo
Target Compounds	5.06	41	7200	0.0467 ppbv #	
2) propylene3) dichlorodifluoromethane					
3) dichiorodiliuoromethane	5.10	85	7232 6375	0.0234 ppbv	96
4) freon-114	5.49 5.62 5.92	50	03/3 2005	0.0197 ppbv 0.0237 ppbv	10 TW /1/3 -08
5) chloromethane	5.02	62	2003[[]	0.0237 ppbv 0.0196 ppbv	95
6) vinyl chloride	6.03	54			
7) 1,3-butadiene	6.03	04	2419	0.0235 ppbv	88
8) bromomethane	6.74 6.99	54 64	1202	0.0274 ppbv #	59
 9) chloroethane 10) trichlorofluoromethane 	0.99	101	1333	0.0274 ppbv 0.0223 ppbv # 0.0200 ppbv	93
10) trichlorofluoromethane	7.56	101	3567	0.0200 ppbv N.D. d	93
10) trichlorofluoromethane 11) ethanol 12) freon-113 13) 1,1-dichloroethene 14) acetone	0.00	45			98
12) freon-113	8.64	101	4074	0.0232 ppbv 0.0230 ppbv # 0.0613 ppbv	62
13) 1,1-dichloroethene	8.65	61 43	4182	0.0230 ppbv #	92
14) acetone	0.00	43			92
151 15001000000	0.00	+ -	0		9.7
16) carbon disulfide	9.11	76	7411	0.0230 ppbv 0.0285 ppbv 0.0222 ppbv	87
17) methylene chloride	9.55	84	2/61	0.0285 ppdv	91
16) carbon disulfide 17) methylene chloride 18) trans-1,2-dichloroethene 19) methyl tert butyl ether	10.09	61	3933	0.0222 ppbv	86
19) methyl tert butyl ether	10.16	73	7379	0.0233 ppbv 0.0207 ppbv 0.0225 ppbv 0.0213 ppbv 0.0307 ppbv	98
20) hexane 21) 1,1-diclethane 22) vinyl acetate 23) 2-butanone	10.58	57	3979	0.0207 ppbv	96
21) 1,1-diclethane	10.83	63	4871	0.0225 ppbv	90
22) vinyl acetate	10.88	43	7377	0.0213 ppbv	98
23) 2-butanone	11.88	43	8915	0.0307 ppbv	97
24) cis-1,2-dichloroethene	11.83	96	3190	0.0280 ppbv 0.0269 ppbv 0.0232 ppbv 0.0225 ppbv	81
25) ethyl acetate	11.95	4.3	9459	0.0269 ppbv	100
26) chloroform	12.34	83	5219	0.0232 ppbv	98
24) cis-1,2-dichloroethene 25) ethyl acetate 26) chloroform 27) tetrahydrofuran	12.44	72	1237	0.0225 ppbv	96
29) 1,1,1-trichloroethane 30) cyclohexane 31) carbon tetrachloride 32) 1,2-dichloroethane	12.72	97	5248	0.0219 ppbv	96
30) cyclohexane	12.85	56	4912	0.0229 ppbv	97
31) carbon tetrachloride 32) 1,2-dichloroethane 33) benzene	13.01	117	5221	0.0223 ppbv	98
<pre>32) 1,2-dichloroethane</pre>	13.33	62	3815	0.0232 ppbv	98
33) benzene	13.34	78	11579	0.0295 ppbv	97
34) heptane	13.72	71	2915	0.0221 ppbv	99
<pre>35) trichloroethene</pre>	14.40	130	3828	0.0250 ppbv	96
<pre>36) 1,2-diclpropane</pre>	14.77	63	3814	0.0260 ppbv	91
37) 1,4-dioxane	0.00	88	0	N.D. d	
38) bromodichloromethane	15.20	83	5900	0.0238 ppbv	97
39) cis-1,3-dichloropropene	15.95	75	4749	0.0235 ppbv	94
40) 4-methyl-2-pentanone	16.21	43	10187	0.0279 ppbv	96
41) toluene	16.56	91	10954	0.0262 ppbv	99
42) trans-1,3-dichloropropene	16.87	75	5080	0.0264 ppbv	95
43) 1,1,2-trichloroethane	17.21		4014	0.0275 ppbv	93
44) tetrachloroethene	17.54		5240	0.0269 ppbv	94
				. And the real rate who who was take the same and the same the sam	w

^{(#) =} qualifier out of range (m) = manual integration

A6072.D 111408A.M Sat Nov 15 08:56:32 2008 OFFLINE

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D Vial: 2

Acq On : 14 Nov 2008 15:31 Sample : 0.02 PPB Operator: T.WALTON Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: 111408A.RES Quant Time: Nov 15 8:54 2008

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

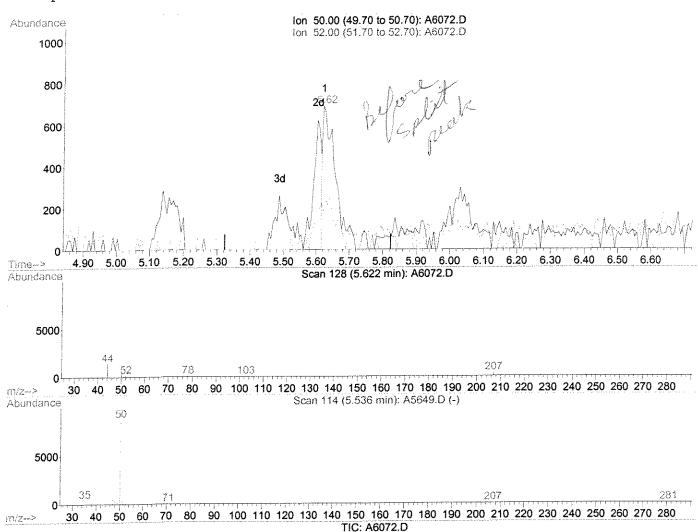
	Compound	R.T.	QIon	Response	Conc Unit Qvalue) -
45)	2-hexanone	17.63	43	9229	0.0265 ppbv	96
	dibromochloromethane	17.93	129	5665	0.0253 ppbv	99
	1,2-dibromoethane	18.18	107	5820	0.0281 ppbv	98
	chlorobenzene	19.04	112	9643	0.0284 ppbv	95
	ethylbenzene	19.19	91	15045	0.0268 ppbv	98
	M+P xylene	19.39	91	23217	0.0522 ppbv	97
	O xylene	20.12	91	11760	0.0255 ppbv	97
	styrene	20.13	104	8264	0.0241 ppbv	98
	bromoform	20.50	173	5298	0.0246 ppbv	99
	1,1,2,2-tetrachloroethane	21.27	83	11132	0.0316 ppbv	99
	4-ethyltoluene	21.72	105	15679	0.0248 ppbv	98
	1,3,5-trimethylbenzene	21.83	105	13329	0.0256 ppbv	99
59)	1,2,4-trimethylbenzene	22.54	105	12667	0.0249 ppbv	99
	1,3-dclbenz	23.12	146	9222	0.0277 ppbv	97
61)		23.28	146	8763	0.0266 ppbv	98
	benzyl chloride	23.50	91	9889	0.0229 ppbv	98
	1,2-dclbenz	23.99	146	8751	0.0277 ppbv	98
	1,2,4-trichlorobenzene	27.01	180	5891	0.0267 ppbv	98
	hexachlorobutadiene	27.31	225	7698	0.0309 ppbv	93

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008


Quant Results File: temp.res

Vial: 2

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration

(5) chloromethane

5.62min 0.0150ppbv

response 1819

 Ion
 Exp%
 Act%

 50.00
 100
 100

 52.00
 32.30
 23.86

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Quantitation Report (Qedit)

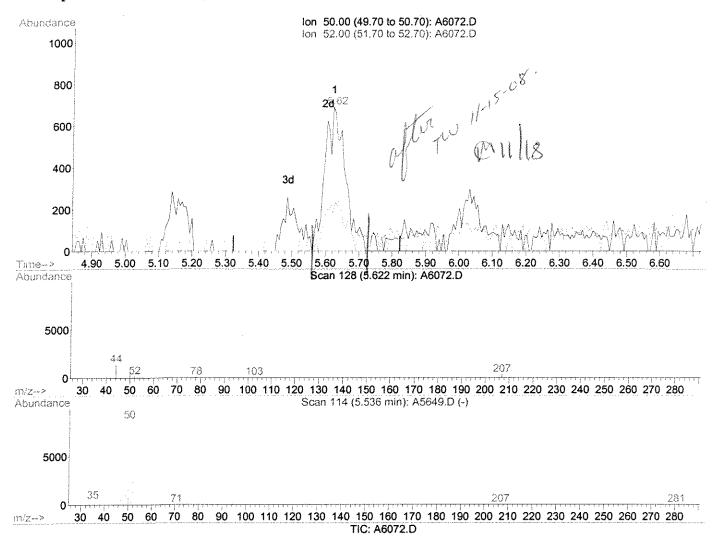
Vial: 2

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

 Acq On : 14 Nov 2008 15:31
 Operator: T.WALTON

 Sample : 0.02 PPB
 Inst : GC/MS Inst

Misc : PI=0 PF=0 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:53 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration

(5) chloromethane

5.62min 0.0237ppbv m

response 2885

ion Exp% Act% 50.00 100 100 52.00 32.30 15.04 0.00 0.00 0.00 0.00 0.00 0.00

Time-> 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

OFFLINE

```
J:\ACQUDATA\AIR1\DATA\111408\A6072.D
                    14 Nov 2008 15:31
Data File
                    Acq On
```

: PI=0 PF=0 0.02 PPB Sample Misc

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:54 2008

Method Title

J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Quant Results File: 111408A.RES

: GC/MS Ins 2 T.WALTON

Operator: Vial:

Inst

Multiplr: 1.00

TO-15 Last Update

: Sat Nov 15 08:48:57 2008 : Initial Calibration Response via

Abundance

TIC: A6072.D

											znedovold: eibaludovold			
													A.	
													W. M.	
											apuo	ino lyzned ediob-S,t	Š	E
										ລຸບຣ	i <mark>žž</mark> Jetyklpeuzo	38 38-£;	3	
														-
	_1										eoroldzens Alena			Ē
ذ	2,anaznadow	oultomend-	- J. J. J. J. J. S	****	***************************************	en e	rammarana na předevší pokožde kriti					niolomoid		E
11C. A001 2.L	Non our	***************************************										chiorose envioles M+P xyl	3	Ë
<u>:</u>	i.čb-ene	zuopoloj	·											Ē
										อน	ocometha	ichtasates toomordib nordib-S, f	ر د	-
											dichloropro Noroethane	1,1,2-trich	4	
											onsinaq-2	ensulot	J	-
											hloroprope		and many of the second	F
										əu	onaqu Norometha		j	Ě
												trichloroet projekt.	, V	E
		i,anasr	difluorober)-サ′し ~					ww.xw		21.00.020.0	euelden		~
											enaritacio Sinoiria Sinoritacio	Cyclohex carbon tet	3	F
						l,aneritam	promochloro				nein	611919191BHB		
										91	A loroether	aiferCalmeio	1	
											୬ ଟିଅ	jeksane jekspledele	1	
										ə∪ ĕ	(splotoeth	HARTEN) AS	/////////////////	-
												carbon dis methylene	1	Ē
											anadiaon			
										æu	ocometha		,	-
												bromome chloroeths		
										aue	nsorometh Ansr Ansr Ansr Ansr Ansr Ansr Ansr Ansr	Marchinan Marcharan Marcha	Control of the contro	
8	8	8	2	8	8	8	8	8	8		,			>
1300000	1200000	1100000	1000000	000006	800000	700000	900009	200000	400000	300000	200000	100000		

erre 1

Quantitation Report

(Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D

Acq On : 14 Nov 2008 16:16

Sample : 0.095 PPB

Misc : PI=0 PF=0

Vial: 3 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth : 111408A

Inter	rnal Standards	R.T.	QIon	Response	Conc Units Dev(N	(in)
1)	bromochloromethane	12.24	130	208026	2.5000 ppbv	0.00
	1,4-difluorobenzene	13.90	114	838041	2.5000 ppbv	-0.01
48)	chlorobenzene-d5	18.98	117	710736	2.5000 ppbv	-0.02
	em Monitoring Compounds					
	surr 1, bromofluorobenzen ked Amount 2.500 R		174 - 130			0.02
	et Compounds				Oval	110
	propylene	5.06	41	14859	0.0987 ppbv	.ue 87
	dichlorodifluoromethane	5.16	85	28803	0.0957 ppbv	99
	freon-114	5.49	85	29354	0.0931 ppbv	99
	chloromethane	5.62	50	10872	0.0916 ppbv	92
	vinyl chloride	5.91	62	11560	0.0933 ppbv	100
	1,3-butadiene	6.03	54	9806	0.0975 ppbv	99
	bromomethane	6.74	94	9515	0.0949 ppbv	91
	chloroethane	6.98	64	5644	0.0926 ppbv	79
	trichlorofluoromethane	7.56	101	26036	0.0896 ppbv	97
	ethanol	7.97	45	3533	0.0982 ppbv #	37
	freon-113	8.64	101	20110	0.0977 ppbv	96
	1,1-dichloroethene	8.65	61	16451	0.0927 ppbv	81
	acetone	8.77	43	33916	0.1137 ppbv	95
	isopropanol	9.07	45	13220	0.1040 ppbv	97
	carbon disulfide	9.11	76	29695	0.0946 ppbv	94
	methylene chloride	9.55	84	9752	0.1030 ppbv	87
	trans-1,2-dichloroethene	10.08	61	16168	0.0937 ppbv	88
	methyl tert butyl ether	10.15	73	30243	0.0980 ppbv	98
	hexane	10.58	57	17644	0.0939 ppbv	100
	1,1-diclethane	10.82	63	21035	0.0998 ppbv	100
	vinyl acetate	10.88	43	29216	0.0866 ppbv	99
	2-butanone	11.86	43	29064	0.1027 ppbv	98
	cis-1,2-dichloroethene	11.83	96	10241	0.0920 ppbv	95
	ethyl acetate	11.94	43	33187	0.0967 ppbv	98
	chloroform	12.35	83	21927	0.0997 ppbv	100
	tetrahydrofuran	12.42	72	4938	0.0919 ppbv	99
	1,1,1-trichloroethane	12.72	97	21605	0.0930 ppbv	97
	cyclohexane	12.85	56	17731	0.0851 ppbv	95
	carbon tetrachloride	13.02	117	20015	0.0879 ppbv	100
	1,2-dichloroethane	13.34	62	15626	0.0980 ppbv	97
	penzene	13.34	78	36532	0.0957 ppbv	98
		13.72	71	10837	0.0847 ppbv	99
	neptane crichloroethene	14.40	130	13409	0.0900 ppbv	95
	1,2-diclpropane	14.77	63	13477	0.0945 ppbv	94
	- -	15.06	88	3493	0.1007 ppbv	98
	1,4-dioxane oromodichloromethane	15.00	83	21290	0.0883 ppbv	99
			75	16638	0.0847 ppbv	97
	cis-1,3-dichloropropene	15.94	43		0.0847 ppbv 0.0901 ppbv	99
	l-methyl-2-pentanone	16.21		31935	0.0901 ppbv 0.0918 ppbv	
	coluene	16.56	91	37261		99
	rans-1,3-dichloropropene	16.86	75	17059	0.0912 ppbv	98
	.,1,2-trichloroethane	17.20		13412	0.0946 ppbv	89
	etrachloroethene	17.54	166	16624	0.0878 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D

Vial: 3 Acq On : 14 Nov 2008 16:16 Operator: T.WALTON Sample : 0.095 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth : 111408A

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.62	43	29974	0.0885 p	pbv 99
46)	dibromochloromethane	17.93	129	18142	0.0835 p	pbv 97
47)	1,2-dibromoethane	18.18	107	17895	0.0889 p	pbv 100
49)	chlorobenzene	19.03	112	30349	0.0923 p	pbv 98
50)	ethylbenzene	19.19	91	48333	0.0887 p	pbv 98
51)	M+P xylene	19.39	91	74242	0.1721 p	pbv 100
52)	O xylene	20.12	91	37304	0.0832 p	pbv 100
53)	styrene	20.13	104	26511	0.0797 p	pbv 97
54)		20.51	173	15612	0.0746 p	
56)	1,1,2,2-tetrachloroethane	21.26	83	31154	0.0912 p	
57)	4-ethyltoluene	21.72	105	48890	0.0796 p	pbv 97
58)	1,3,5-trimethylbenzene	21.83	105	42657	0.0843 p	pbv 98
59)	1,2,4-trimethylbenzene	22.54	105	39979	0.0808 p	pbv 99
60)	1,3-dclbenz	23.12	146	26956	0.0835 p	pbv 98
61)	1,4-dclbenz	23.28	146	26215	0.0821 p	pbv 98
62)	benzyl chloride	23.50	91	31375	0.0750 p	
63)	1,2-dclbenz	23.99	146	24504	0.0799 p	
64)	1,2,4-trichlorobenzene	27.01	180	17989	0.0839 p	pbv 97
65)	hexachlorobutadiene	27.31	225	22524	0.0931 p	pbv 98

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

hexachlorobutadiene 1,2,4-trichlorobenzene

7.00 8.00

6.00

5.00

Time-v

J:\ACQUDATA\AIR1\DATA\111408\A6073.D 14 Nov 2008 Data File

0.095 PPB Acq On Sample

PI=0 PF=0

MS Integration Params: Misc

RTEINT. P Quant Time: Nov 15 8:47 2008

Method

Title

1.00 Multiplr:

GC/MS Ins

Inst

T. WALTON

Vial: Operator: Quant Results File: 111408A.RES

J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)
TO-15

Sat Nov 15 08:27:05 2008 Initial Calibration Response via Last Update Abymetallice 130000

TIC: A6073.D

znedlob-S, f penzyl chloride anasnadlydłamitt-4,S,f eneznadiąRialfAllygie; ł eneriteoroldostiel-S,S,t, S.enexenedoronnoment, t mus motomord ခ**ာအ**ခောက်(၉ chlorobenzene-db,1 dibromochloromethane 1,2-dibromoethane anadiagnofiagiats 1,1,2-trichloroethane tohuene trans-1,3-dichloropropene trans-1,3-dichloropropene eneqorqoiolhabe, t-sia 4-methyl-2-lyntem-4 ansitiamoroln3lb8m61d, h eneqorqipib-S,f trichloroethene 1,4-difluorobenzene,1 anediaoroethached iehenylkitäinen Elektrischene etinotheriet bromochloromethane,1 SIMPLE STREET GLOSIDENS ұқұ<mark>ардаға</mark>е иехэие antichteorechtaites. Knasent methylene chloride apuinamentag162 acetheordillogeness loneme trichlorofluoromethane chloroethane chlüftihiehene Mitsumitene archiedanoromethane 000009 500000 400000 200000 800000 700007 100000 1000000 300000 120000 1100000 00006

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D

Vial: 3

Acq On : 14 Nov 2008 17:01 Operator: T.WALTON Sample : 0.20 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

: TO-15 Title

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) bromochloromethane	12.24	130	205921	2.5000 ppbv	0.00
28) 1,4-difluorobenzene	13.91		780689	2.5000 ppbv	-0.01
48) chlorobenzene-d5	18.98		646753	2.5000 ppbv	-0.02
10, 011202010110101010101				# # # ·	
System Monitoring Compounds					
55) surr 1, bromofluorobenzen	e 21.07	174	356293	2.43 ppbv -	0.03
Spiked Amount 2.500 R	ange 70	- 130	Recove	ry = 97.03%	
Target Compounds				Qva	
2) propylene	5.05	41	29435	0.1975 ppbv	95
 dichlorodifluoromethane 	5.15	85	61317	0.2058 ppbv	100
4) freon-114	5.49	85	64598	0.2070 ppbv	97
5) chloromethane	5.62	50	24333	0.2072 ppbv	98
6) vinyl chloride	5.92	62	25213	0.2055 ppbv	100
7) 1,3-butadiene	6.03	54	20966	0.2107 ppbv	99
8) bromomethane	6.74	94	19295	0.1943 ppbv	95
9) chloroethane	6.98	64	12233	0.2028 ppbv	95
trichlorofluoromethane	7.56	101	59370	0.2065 ppbv	100
11) ethanol	7.98	45	7490	0.2103 ppbv	99
12) freon-113	8.64	101	45278	0.2222 ppbv	100
<pre>13) 1,1-dichloroethene</pre>	8.64	61	37928	0.2159 ppbv	91
14) acetone	8.76	43	53055	0.1797 ppbv	94
15) isopropanol	9.05	45	29423	0.2338 ppbv	97
<pre>16) carbon disulfide</pre>	9.12	76	64619	0.2079 ppbv	98
17) methylene chloride	9.55	84	19887	0.2122 ppbv	92
18) trans-1,2-dichloroethene	10.08	61	35867	0.2101 ppbv	92
19) methyl tert butyl ether	10.14	73	60628	0.1985 ppbv	98
20) hexane	10.57	57	37882	0.2036 ppbv	100
21) 1,1-diclethane	10.82	63	44319	0.2124 ppbv	100
22) vinyl acetate	10.88	43	58894	0.1763 ppbv	99
23) 2-butanone	11.86	43	56547	0.2019 ppbv	97
24) cis-1,2-dichloroethene	11.84	96	22109	0.2007 ppbv	96
25) ethyl acetate	11.94	43	67479	0.1987 ppbv	98
26) chloroform	12.34	83	45691	0.2100 ppbv	100
27) tetrahydrofuran	12.41	72	9749	0.1833 ppbv	99
29) 1,1,1-trichloroethane	12.72	97	46577	0.2152 ppbv	96
30) cyclohexane	12.85	56	39972	0.2059 ppbv	96
31) carbon tetrachloride	13.01	117	43818	0.2066 ppbv	100
32) 1,2-dichloroethane	13.34	62	33250	0.2239 ppbv	98
33) benzene	13.34	78	73424	0.2065 ppbv	98
34) heptane	13.72	71	23852	0.2001 ppbv	99
35) trichloroethene	14.40	130	28339	0.2042 ppbv	95
36) 1,2-diclpropane	14.77	63	27562	0.2074 ppbv	97
37) 1,4-dioxane	15.05	88	9403	0.2910 ppbv	93
38) bromodichloromethane	15.20	83	44988	0.2003 ppbv	98
39) cis-1,3-dichloropropene	15.95	75	35186	0.1922 ppbv	99
40) 4-methyl-2-pentanone	16.21	43	65866	0.1996 ppbv	100
41) toluene	16.56	91	77485	0.2049 ppbv	97
42) trans-1,3-dichloropropene	16.87	75	34459	0.1978 ppbv	98
43) 1,1,2-trichloroethane	17.20	97	26556	0.2010 ppbv	93
44) tetrachloroethene	17.53	166	35206	0.1995 ppbv	99
				a - man and grame :	

(#) = qualifier out of range (m) = manual integration A6074.D 111408A.M Sat Nov 15 08:47:23 2008 OFFLINE

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D Vial: 3

Acq On : 14 Nov 2008 17:01 Sample : 0.20 PPB Misc : PI=0 PF=0 Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
46) 47) 49) 50)	2-hexanone dibromochloromethane 1,2-dibromoethane chlorobenzene ethylbenzene M+P xylene O xylene styrene bromoform	17.62 17.93 18.18 19.03 19.19 19.39 20.12 20.13 20.51	43 129 107 112 91 91 91 104 173	62218 37783 37197 61467 98947 157215 78392 57320 32481	0.1971 j 0.1866 j 0.1983 j 0.2054 j 0.1996 j 0.4004 j 0.1922 j 0.1894 j 0.1707 j	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	99 100 100 98 99 99 100 96
60) 61) 62) 63) 64)	4-ethyltoluene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1,3-dclbenz 1,4-dclbenz benzyl chloride	21.26 21.72 21.83 22.54 23.12 23.28 23.50 23.99 27.02 27.31	83 105 105 105 146 146 91 146 180 225	61555 100892 85829 81651 54214 53412 64875 49626 35017 45116	0.1980 0.1806 0.1865 0.1814 0.1845 0.1838 0.1703 0.1779 0.1779 0.2049 0.2	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	100 100 97 99 97 98 99 98 100

OFFLINE

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

111408A.M A6074.D

9.00

8.00

7.00

6.00

5.00

J:\ACQUDATA\AIR1\DATA\111408\A6074.D 14 Nov 2008 17:01 Data File Acq On

PI=0 PF=0 0.20 PPB

Sample Misc

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008

Multiplr:

GC/MS Ins 3 T.WALTON

Operator:

Inst

Vial:

Quant Results File: 111408A.RES

(RTE Integrator)

J:\ACQUDATA\AIR1\METHODS\111408A.M Sat Nov 15 08:27:05 2008 TO-15 Last Update

Calibration

Initial

Response via

Abundance

1100001

1000000

900000

80000

70000

Method Title TIC: A6074.D

1,4-0clbenz he-oclbenz benzyl chloride 1,2,4-trimethylbenzene Latin Michelly Denzene f,1,2,2-tetrachloroethane Surr 1, bromofluorobenzene, S promotorm M+P xylene chlorobenzene chlorobenzene chlorobenzene-d5,1 dibromochloromethane 1,2-dibromoethane 2-hettachleroethene ansileonolhom-S,t,t trans-1,3-dichloropropene anauloi eis-1,3-dichloropropene 4-methyl-2-pentanone 4-dioxane bromodichloromethane 1,2-dictoropane trichloroethene 1,4-difluorobenzene,1 ansigar eneriteoro**eraisase**d enertiegigigigi, j. j. ebinolitasiiei nodiea ner016/16/16/19 bromochloromethane,} Single Statement and the new theorem

000009

500000

400000

30000

Smanled (autolites) (cream)

ensensohorohiorate, 2, f ensibeludorohoraxen

1,2-doloenz

methylene chlorida

abiliual@1681692 ananiaordilibiboe il anolace

> lonenie trichlorofluoromethane

MPX - EUGHENE Sherils florolda

enschemorouilBGNdfASiG 200002

10000

eacacae; -; Elelelele

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

1015.08 Vial: 3 Acq On : 14 Nov 2008 17:46 Operator: T.WALTON Inst : GC/MS Ins : 0.50 PPB Sample Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: 111408A.RES Quant Time: Nov 15 9:05 2008

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

Inte				Response	Conc Units Dev	r(Min)	
1)	bromochloromethane	12.24	130	207599	2.5000 ppbv	0.00	
28)	1,4-difluorobenzene chlorobenzene-d5	13.90	114	819303	2.5000 ppbv	-0.01	
48)	chlorobenzene-d5	18.98	117	685400	2.5000 ppbv	-0.02	
Syste	em Monitoring Compounds						
55)	surr 1, bromofluorobenzene	21.07	174	381536	2.45 ppbv		
Sp	iked Amount 2.500 Ra	nge 70	- 130	Recove	ry = 98.04*	ī	
arge	et Compounds				. "-	ralue	
2)	propylene	5.05		66658		100	
3)	dichlorodifluoromethane	5.15	85	150750	0.5018 ppbv		
4)	freon-114 chloromethane vinyl chloride	5.49	85	158616	0.5041 ppbv 0.4941 ppbv	99	
5)	chloromethane	5.62	50	58489	0.4941 ppbv	100 98	
6)	vinyl chloride	5.92	62	62641	0.5064 ppbv	96 97	
7)	freon-114 chloromethane vinyl chloride 1,3-butadiene bromomethane chloroethane trichlorofluoromethane	6.03	04	23320 46762	0.5318 ppbv	100	
8)	bromomethane	6.74	94 64	20252	0.4671 ppbv 0.4974 ppbv	98	
9)	trichlorofluoromethane	7 56	7 0 1	140770	0.4857 ppbv	99	
10)	trichioroffuoromethane	7.98	45	12939	0.3604 ppbv		
11.1	CLICATOR	8.64			* -	100	
12)	freon-113	8 65	61	109356 93050	0.5253 ppbv	91	
13)	1,1-dichloroethene acetone isopropanol	8 75	43	123309	0.4143 ppbv	96	
±4) ⇒∈\	isopropanol	9.05	45	52334	0.4125 ppbv	100	
12) 12)	carbon disulfide	9.11	76	157815	0.5037 ppbv		
171	methylene chloride	9.55	84	49096	0.5197 ppbv		
18)	methylene chloride trans-1,2-dichloroethene	10.08	61	89268	0.5186 ppbv	93	
19)	methyl tert butyl ether	10.13	73	159266	0.5172 ppbv	100	
20)	hexane	10.58		98508			
	1,1-diclethane	10.82				100	
	vinyl acetate	10.88	43	112038 165019	0.4901 ppbv	99	
	2-butanone	11.85	43	147949	0.5240 ppbv	98	
24)	cis-1,2-dichloroethene	11.83	96	55224			
	ethyl acetate	11.93	43	178420 114438	0.5211 ppbv 0.5217 ppbv	100	
	chloroform	12.34	83	114438	0.5217 ppbv		
27)	tetrahydrofuran	12.41	72	27487	0.5125 ppbv		
29)	1,1,1-trichloroethane	12.72	97	117054	0.5154 ppbv	96	
30)	cyclohexane	12.85		104763	0.5154 ppbv 0.5141 ppbv 0.4998 ppbv 0.5333 ppbv	97	
31)	carbon tetrachloride	13.02		111238	0.4998 ppbv	100	
32)	1,2-dichloroethane	13.34		83121	0.5333 ppbv	98	
33)	benzene	13.35	78	100/00	O.JOOJ PPDV	20	
	heptane	13.72	71	63542	0.5080 ppbv	99	
	trichloroethene	14.40	130	71408	0.4903 ppbv	96	
	1,2-diclpropane	14.77	63	71732	0.5144 ppbv	96	11-15-6
37)	1,4-dioxane	15.03	88	18474m	0.5447 ppbv	(A) TU	
	bromodichloromethane	15.20	83	117405	0.4982 ppbv	98	
	cis-1,3-dichloropropene	15.94	75	92377	0.4808 ppbv	99 98	
	4-methyl-2-pentanone	16.20	43	173850	0.5020 ppbv	98 99	
41)	toluene	16.56	91 75	210279	0.5298 ppbv	99 99	
1733	trans-1,3-dichloropropene	16.86	75 97	95791 68642	0.5240 ppbv 0.4950 ppbv	93	
4 Z)	1,1,2-trichloroethane	17.20					

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D Vial: 3

Acq On : 14 Nov 2008 17:46 Operator: T.WALTON Sample : 0.50 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:05 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15
Last Update : Sat Nov 15 08:27:05 2008
Response via : Initial Calibration

DataAcq Meth: 111408A

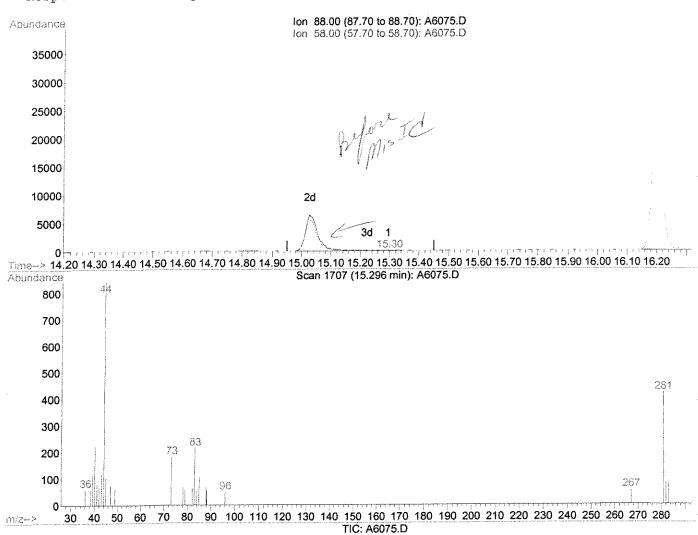
	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
45)	2-hexanone	17.62	43	164492	0.4966	ppbv	97
46)	dibromochloromethane	17.93	129	101926	0.4797	ppbv	100
47)	1,2-dibromoethane	18.17	107	98445	0.5000	ppbv	98
49)	chlorobenzene	19.03	112	162325	0.5118	ppbv	99
50)	ethylbenzene	19.19	91	273381	0.5203	ppbv	100
51)	M+P xylene	19.39	91	436292	1.0486	vďqq	100
52)	O xylene	20.12	91	220942	0.5112	ppbv	98
53)	styrene	20.13	104	162217	0.5057	ppbv	95
54)	bromoform	20.51	173	91816	0.4552	ppbv	98
56)	1,1,2,2-tetrachloroethane	21.26	83	164378	0.4989	ppbv	98
57)	4-ethyltoluene	21.72	105	287529	0.4856	ppbv	100
58)	1,3,5-trimethylbenzene	21.83	105	250071	0.5127	ppbv	98
59)	1,2,4-trimethylbenzene	22.54	105	235778	0.4943	ppbv	99
60)	1,3-dclbenz	23.12	146	148125	0.4757	ppbv	97
61)	1,4-dclbenz	23.28	146	145646	0.4730	ppbv	99
62)	benzyl chloride	23.50	91	188907	0.4680	ppbv	100
63)	1,2-dclbenz	23.99	146	137067	0.4635	ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	100156	0.4845	ppbv	99
65)	hexachlorobutadiene	27.31	225	118382	0.5072	ppbv	97

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

Vial: 3

Operator: T.WALTON : 14 Nov 2008 17:46 Acq On : GC/MS Ins : 0.50 PPB Inst Sample : PI=0 PF=0 Multiplr: 1.00


Misc MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: temp.res

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

: TO-15 Title

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.30min 0.0056ppbv

response 190

Act% Exp% lon 100 100 88.00 94.74 58.00 91.80 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

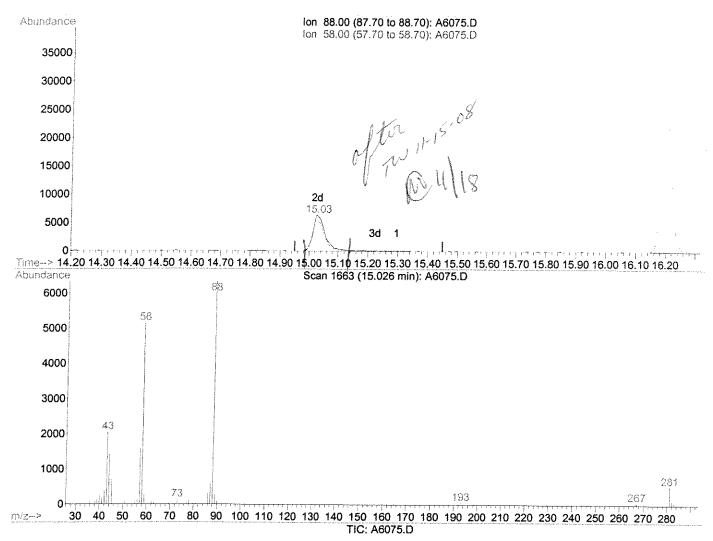
Vial: 3

Acq On : 14 Nov 2008 17:46 Sample : 0.50 PPB

Operator: T.WALTON
Inst : GC/MS Ins

Misc : PI=0 PF=0

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Nov 15 9:05 2008

Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.03min 0.5447ppbv m

response 18474

ion	Ехр%	Act%
88.00	100	100
58.00	91.80	0.97#
0.00	0.00	0.00
0.00	0.00	0.00

```
23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00
                                                                                                                                                                                                                                                                                                                                                                                                                               hexachlorobutadiene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9nexnedoroldoint-A,S,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1,2-dolbenz
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               penzyl chloride
                                                                          Quant Results File: 111408A.RES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1,2,4-trimetnylbenzene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     22.00
                                 GC/MS Ins
       3
T.WALTON
                                                                                                                                                                                                                                                                                                                                                                                                                                                            eneznedR/ffleiRHY&;e,}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1,1,2,2-tetrachloroethane
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00
                                                                                                                                                                                                   S, enexnedoroullomord, hmus
                                                                                                      (RTE Integrator)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         bromoform
                                                                                                                                                               TIC: A6075.D
                                             Multiplr:
                    Operator:
                                                                                                                                                                                                                                                                                                                                                                                                                  M+P xylene
     Vial
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 euezuegi/uje
euezuegioloju:
                                                                                                                                                                                                          chlorobenzene-d5,1
                                 Inst
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         enerhemorohionondib
enerhemorohio-2, i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Z-hexalidiachloroethene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       anedteoroldbith-S,f,t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  frans-1,3-dichloropropene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           enegorgonolhoib-£,1-sio
enonatneg-S-lydlem->
                                                                                                  J:\ACQUDATA\AIR1\METHODS\111408A.M
J:\ACQUDATA\AIR1\DATA\111408\A6075.D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           promodichloromethane
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   enexoib-p,f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1,2-diclpropane
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            trichloroethene
                                                                                                                                                                                                                                          1,4-difluorobenzene,i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       peptane
                                                                                                                                 2008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ensriteoroérais/fe/č
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Sat Nov 15 08:48:57
                                                                                                                                             Calibration
                                                                                                                                                                                                                                                                                                                                                                                           promochioromethane,1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 anaritaorologials (1411a
                                                     MS Integration Params: RTEINT.P
              14 Nov 2008 17:46
                                                                    Quant Time: Nov 15 9:05 2008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SERVING NEW PORTERS OF THE PROPERTY OF THE PRO
                                                                                                                                            Initial
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ebiliusib Assegiqosi
                                         PI=0 PF=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              acelone
                           0.50 PPB
                                                                                                                TO-15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   snadiao:6Hbiboane
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         cueuja
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             trichloroflooromethane
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              bromomethane
chloroethane
                                                                                                                                         Response via
                                                                                                                            Last Update
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ansighentemonoidio
Data File
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ensatemorouflibbliðliðlið
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5.00
            Acq On
                           Sample
                                                                                                Method
                                                                                                              Title
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A6075.D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       300000
                                                                                                                                                         Abundance
                                                                                                                                                                                1200000
                                                                                                                                                                                                                                                                                                            90000
                                                                                                                                                                                                                                                                                                                                                     800000
                                                                                                                                                                                                                                                                                                                                                                                                700000
                                                                                                                                                                                                                                                                                                                                                                                                                                         000009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             400000
                                                                                                                                                                                                                          11000011
                                                                                                                                                                                                                                                                   0000001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   200002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100000
                                          Misc.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TIM8-->
```

111408A.M

60:90:60

Nov 15 Sat

OFFLINE

31.00 32.00 33.00

Quantitation Report

(Nøt Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D

Acq On : 14 Nov 2008 18:31

: 1.0 PPB Sample

Misc : PI=0 PF=0

Vial: 4 Operator: T.WALTON

Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: 111408A.RES

MS Integration Params: RTEINT.P Ouant Time: Nov 15 8:47 2008

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

: TO-15 Title

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth : 111408A

Interna	al Standards	R.T.	QIon	Response	Conc Units Dev(Min)
,	romochloromethane	12.24		204544	2.5000 ppbv	0.0
	,4-difluorobenzene	13.91		787639	2.5000 ppbv	0.0
48) ch	nlorobenzene-d5	18.98	117	664084	2.5000 ppbv	-0.0
ystem	Monitoring Compounds					
	err 1, bromofluorobenzen				* *	0.02
Spike	ed Amount 2.500 R	ange 70	- 130	Recove	ry = 99.90%	
	Compounds				Qva	lue
	copylene	5.05	41	118394	0.7996 ppbv	9
	chlorodifluoromethane	5.15	85	292870	0.9894 ppbv	9
_,	reon-114	5.49	85	313051	1.0097 ppbv	9
,	loromethane	5.62	50	114446	0.9812 ppbv	9
	nyl chloride	5.92	62	121242	0.9948 ppbv	10
	3-butadiene	6.03	54	106079	1.0730 ppbv	9
	romomethane	6.74	94	94717	0.9603 ppbv	10
	loroethane	6.98	64	57564	0.9606 ppbv	9
	cichlorofluoromethane	7.56	101	289847	1.0149 ppbv	10
11) et		7.97	45	40706	1.1507 ppbv	9
	reon-113	8.64	101	200412	0.9900 ppbv	9
	1-dichloroethene	8.65	61	190050	1.0890 ppbv	9
-	etone	8.75	43	181654	0.6195 ppbv	9
	opropanol	9.03	45	198446	1.5877 ppbv	5
	rbon disulfide	9.12	76	322596	1.0450 ppbv	10
L7) me	thylene chloride	9.55	84	91116	0.9789 ppbv	5
18) tr	ans-1,2-dichloroethene	10.08	61	167089	0.9852 ppbv	9
	thyl tert butyl ether	10.12 10.58	73	268172	0.8839 ppbv 0.9892 ppbv	20
20) he		10.58	57 63	182850		10
	1-diclethane	10.82	43	198921	0.9597 ppbv 0.7894 ppbv	9
	nyl acetate	11.85		261886		9
	butanone	11.83	43 96	247316 98841	0.8890 ppbv	9
	s-1,2-dichloroethene	11.03	43	298933	0.9033 ppbv 0.8862 ppbv	10
	hyl acetate loroform	12.34	83	204230	0.8862 ppbv 0.9449 ppbv	10
	trahydrofuran	12.40	72	47482	0.8986 ppbv	9
-	1,1-trichloroethane	12.72	97	208577	0.9552 ppbv	9
	clohexane	12.84	56	194356	0.9921 ppbv	9
	rbon tetrachloride	13.02	117	204126	0.9540 ppbv	10
	2-dichloroethane	13.33	62	139256	0.9293 ppbv	9
 bei 		13.34	78	314443	0.8765 ppbv	9
 bei her 		13.72	71	115779	0.9628 ppbv	9
	ichloroethene	14.40	130	130787	0.9340 ppbv	9
	2-diclpropane	14.77	63	115741	0.8634 ppbv	9
	2-dicipiopane 4-dioxane	15.02	88	57692	1.7695 ppbv	9
	omodichloromethane	15.20	83	208995	0.9225 ppbv	9
	s-1,3-dichloropropene	15.25	75	155525	0.8420 ppbv	9
	methyl-2-pentanone	16.20	43	319925	0.9609 ppbv	9
1) tol	-	16.56	91	335479	0.8792 ppbv	9
	nns-1,3-dichloropropene	16.86	75	158373	0.8732 ppbv 0.9011 ppbv	9
	,2-trichloroethane	17.20	97	110556	0.8293 ppbv	9
	crachloroethene		166	160002	0.8987 ppbv	9:
	rachioroethene					9

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (Not Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D

Acq On : 14 Nov 2008 18:31 Sample : 1.0 PPB Operator: T.WALTON Inst : GC/MS Ins Sample Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

	Compound	R.T.	QIon	Response	Conc Unit Qva	lue
45)	2-hexanone	17.62	43	317903	0.9983 ppbv	96
46)	dibromochloromethane	17.93	129	181269	0.8874 ppbv	99
47)	1,2-dibromoethane	18.18	107	158800	0.8389 ppbv	99
49)	chlorobenzene	19.03	112	261262	0.8501 ppbv	99
50)	ethylbenzene	19.18	91	431518	0.8476 ppbv	100
51)	M+P xylene	19.39	91	689344	1.7100 ppbv	100
52)	O xylene	20.12	91	354254	0.8460 ppbv	98
53)	styrene	20.13	104	262878	0.8458 ppbv	94
54)	bromoform	20.51	173	162722	0.8327 ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	263554	0.8256 ppbv	99
57)	4-ethyltoluene	21.73	105	476982	0.8314 ppbv	100
58)	1,3,5-trimethylbenzene	21.82	105	414895	0.8779 ppbv	98
59)	1,2,4-trimethylbenzene	22.54	105	397401	0.8599 ppbv	99
60)	1,3-dclbenz	23.12	146	244775	0.8113 ppbv	98
61)	1,4-dclbenz	23.28	146	242262	0.8120 ppbv	98
62)	benzyl chloride	23.50	91	326879	0.8357 ppbv	98
63)	1,2-dclbenz	23.99	146	223065	0.7786 ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	147704	0.7375 ppbv	99
65)	hexachlorobutadiene	27.31	225	176356	0.7799 ppbv	96

GC/MS Ins

1.00

Multiplr:

Inst

T. WALTON

Operator: Vial:

J:\ACQUDATA\AIR1\DATA\111408\A6076.D 14 Nov 2008 18:31 1.0 PPB Data File Sample

PI=0 PF=0

MS Integration Params: RTEINT.P Misc

Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

> Method Title

Abundance

000006

800000

1000000

1100000

Sat Nov 15 08:27:05 2008 Calibration Initial TO-15 Response via Last Update

TIC: A6076.D

hexachlorobuladiene 1,2,4-trichlorobenzene 1,2-dcibenz peuski chloride 1,2,4-Inmethylbenzene anasnad**@mainik**e;8;1 1,1,2,2-tetrachloroethane S.eneshorobenzene, S. and F. horozene, S. molomoid ənəiyx 9+M chlorobelizene chiorobenzene-d5,i dibromochloromethane anachsomordib-2,1 Z-nexanon letrachloroethene 1,1,2-trichloroethane trans-1,3-dichloropropene toluene cis-1,2-dichloropropene 4-methyl-2-pentanone promodichloromethane ansxoib-4,1 1,2-diclpropane trichloroethene 1,4-difluorobenzene,1 aneidań อกเลที่เอยาดยามณฑ์ผู้ดี affectionograph, f.f.f. appropriation of the second of the retrahyblomplann bromochioromethane,i enertieorol**abionalitre (**kiesos l<u>yrite</u> October State эчехэц equal transport in the particular of the particu enenieo:6iNbiboleii lonsrite inchloromethane

000009

700007

500000

Xinyl chip 3d6u(adlene anediamorolda 5.00 propydithorodifluoromethane Time-->

\$11-009H

300000

200002

maraca VXXX

400000

8.00 7.00 00.9

9.00

OFFLINE

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

Quantitation Report

(Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D

Acq On : 14 Nov 2008 19:16

Sample : 2.5 PPB
Misc : PI=0 PF=0

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

Vial: 4 Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth : 111408A

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) bromochloromethane	12.24	130	206387	2.5000 ppbv	0.00
28) 1,4-difluorobenzene	13.91		786696	2.5000 ppbv	
48) chlorobenzene-d5	18.98		655993	2.5000 ppbv	
48) Chioropenzene as	20122	-			
System Monitoring Compounds					2 22
55) surr 1, bromofluorobenzen				T	-0.03
Spiked Amount 2.500 R	ange 70	- 130	Recove	ry = 98.66	5
Target Compounds				Q.	value
2) propylene	5.06	41	298118	1.9954 ppbv	97
3) dichlorodifluoromethane	5.15	85	733965	2.4575 ppbv	100
4) freon-114	5.50	85	780587	2.4952 ppbv	97
5) chloromethane	5.63	50	290671	2.4697 ppbv	100
6) vinyl chloride	5.92	62	311758	2.5352 ppbv	
7) 1,3-butadiene	6.02	54	273404	2.7408 ppbv	98
8) bromomethane	6.74	94	238111	2.3925 ppbv	98
9) chloroethane	6.98	64	153443	2.5378 ppbv	99
10) trichlorofluoromethane	7.56	101	723556	2.5110 ppbv	99
	7.97	45	95731	2.6821 ppbv	
11) ethanol	8.64	101	544573	2.6661 ppbv	100
12) freon-113	8.65			2.8022 ppbv	92
13) 1,1-dichloroethene		61	493427		95
14) acetone	8.74	43	517148	1.7478 ppbv	94
15) isopropanol	9.02	45	449081	3.5609 ppbv	
16) carbon disulfide	9.12	76	809800	2.5999 ppbv	100
17) methylene chloride	9.55	84	245530	2.6142 ppbv	88
18) trans-1,2-dichloroethene	10.08	61	456319	2.6665 ppbv	92
19) methyl tert butyl ether	10.12	73	819091	2.6757 ppbv	100
20) hexane	10.58	57	522139	2.7994 ppbv	99
21) 1,1-diclethane	10.83	63	558041	2.6684 ppbv	100
22) vinyl acetate	10.88	43	860680	2.5710 ppbv	98
23) 2-butanone	11.84	43	728530	2.5954 ppbv	98
24) cis-1,2-dichloroethene	11.83	96	280890	2.5440 ppbv	99
25) ethyl acetate	11.92	43	884979	2.6001 ppbv	99
26) chloroform	12.35	83	571961	2.6226 ppbv	99
27) tetrahydrofuran	12.39	72	150330	2.8196 ppbv	98
29) 1,1,1-trichloroethane	12.71	97	587607	2.6943 ppbv	96
30) cyclohexane	12.85	56	555257	2.8378 ppbv	98
31) carbon tetrachloride	13.01	117	586068	2.7422 ppbv	99
32) 1,2-dichloroethane	13.33	62	403062	2.6931 ppbv	99
33) benzene	13.34	78	922373	2.5742 ppbv	98
	13.72	71	339700	2.8282 ppbv	97
34) heptane 35) trichloroethene	14.40	130	361882	2.5876 ppbv	97
	14.77	63	353680	2.6415 ppbv	96
36) 1,2-diclpropane	15.00	88	141458	4.3440 ppbv	94
37) 1,4-dioxane				2.6620 ppbv	100
38) bromodichloromethane	15.20	83	602353		99
39) cis-1,3-dichloropropene	15.95	75 43	484957	2.6288 ppbv	
40) 4-methyl-2-pentanone	16.19	43	907426	2.7288 ppbv	96
41) toluene	16.56		1054523	2.7670 ppbv	100
42) trans-1,3-dichloropropene	16.86	75	505084	2.8773 ppbv	98
43) 1,1,2-trichloroethane	17.20	97	337110	2.5319 ppbv	93
44) tetrachloroethene	17.53	166	462489	2.6008 ppbv	99

(#) = qualifier out of range (m) = manual integration

A6077.D 111408A.M Sat Nov 15 08:47:35 2008 OFFLINE

Quantitation Report (Not Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D

Acq On : 14 Nov 2008 19:16 Operator: T.WALTON Sample : 2.5 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth : 111408A

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
45)	2-hexanone	17.61	43	901958	2.8358	ppbv	95
46)	dibromochloromethane	17.93	129	552777	2.7094	ppbv	100
47)	1,2-dibromoethane	18.18	107	493387	2.6097	ppbv	100
49)	chlorobenzene	19.04	112	798351	2.6298	ppbv	100
50)	ethylbenzene	19.19	91	1386713	2.7576	ppbv	99
51)	M+P xylene	19.38	91	2182325	5.4804	ppbv	99
52)	_ "	20.12	91	1144770	2.7677	ppbv	97
53)	styrene	20.13	104	866127	2.8211	ppbv	94
54)	bromoform	20.51	173	537128	2.7824	ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	801749	2.5427	ppbv	100
57)	4-ethyltoluene	21.73	105	1534570	2.7078	ppbv	99
58)	1,3,5-trimethylbenzene	21.83	105	1322346	2.8326	ppbv	97
59)	1,2,4-trimethylbenzene	22.54	105	1277721	2.7989	ppbv	97
60)		23.12	146	797098	2.6744	ppbv	97
61)	1,4-dclbenz	23.27	146	793948	2.6940	ppbv	98
62)	benzyl chloride	23.50	91	1112805	2.8802	ppbv	97
63)		23.99	146	726003	2.5653	ppbv	98
	1,2,4-trichlorobenzene	27.01	180	477087	2.4115		99
	hexachlorobutadiene	27.31	225	535297	2.3963	ppbv	97

Vial:

OFFLINE

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

8.00

3.8

6.00

5.00

J:\ACQUDATA\AIR1\DATA\111408\A6077.D 14 Nov 2008 19:16 Data File Acq On

PI=0 PF=0 2.5 PPB Sample

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008

Method Title

J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Sat Nov 15 08:27:05 2008 TO-15 Last Update

Initial Calibration

Response via

Abundance 3000000 2800000

2600000

1.00 Multiplr:Inst

GC/MS Ins T. WALTON Operator:

TIC: A6077.D

Quant Results File: 111408A.RES

pexachlorobutadiene f,2,4-trichlorobenzene 1,2-dclbenz zyadiopet, 1 9nəznədiyriəmi1;-4,2,1 anasnadhilialixiliæle, r S,eneznedojolnomoju f mus enedeololnomiet-X,X,T,T mnotomora chioroben & Mildenzene ethylbenzene 2-hexanone letrachloroethene ansitteonolitaint-S,t,t eneqorqorolidaib-£,1-anert anaulot cis-1,3-dichloropropene 4-methyl-2-pentanone bromodichloromethane ensxoib-4,t ensigen 1,4-ansknedorauflib-4,1 enerileoro**ehaks/Aed** aned sold of the first of the f l,anediamonidansil Eichdt@rdinbloroethene auexau transath 2-dechlouge abinoldo enslydsem anaritao16lifibibeta1 anerhamorouhorolficiti

2000000

2400000

2200002

1800000

abillusib noofisgorqosi

oueque

promomethane chloroethane

vinyi chipgidentadiene

chloromethane

propyletinorodilluoromethane

PLI-00934

800000

10000001

1200000

1400000

1600000

600000 400000

200000

Quantitation Report (QT Reviewed)

Qua	antitati	on Re	port (QI	T Reviewed)	
Data File: J:\ACQUDATA\AIR1\DAYACQ On: 14 Nov 2008 20:02 Sample: 5.0 PPB Misc: PI=0 PF=0 MS Integration Params: RTEINT.P Quant Time: Nov 15 9:08 2008 Quant Method: J:\ACQUDATA\AY Title: TO-15 Last Update: Sat Nov 15 08:27: Response via: Initial Calibration DataAcq Meth: 111408A Internal Standards 1) hyperaghlogomethage	FA\11140	8\A60	78.D Op In Mu Quant Resul	Vial: 4 perator: T.WALTO perst : GC/MS I pltiplr: 1.00 hts File: 111408	N 1/-15-08 A.RES JAWWY
Quant Method: J:\ACQUDATA\A\ Title: TO-15 Last Update: Sat Nov 15 08:27: Response via: Initial Calibrati DataAcq Meth: 111408A	\111408A :05 2008 ion	.M (R	TE Integrat	cor)	L'ofwelen
Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
 bromochloromethane 1,4-difluorobenzene chlorobenzene-d5 	14.41	100	200909	2.2000 0000	0.00
System Monitoring Compounds 55) surr 1, bromofluorobenzene Spiked Amount 2.500 Ra	: 21.08 nge 70	174 - 130	365403 Recove	2.51 ppbv ery = 100.27%	-0.02
Target Compounds 2) propylene 3) dichlorodifluoromethane 4) freon-114 5) chloromethane				Qv	alue
2) propylene	5.06	41	594738	4.0894 ppbv	97 99
4) freon-114	5.49	85	1550755	5.0922 ppbv	97
5) chloromethane 6) vinyl chloride 7) 1,3-butadiene 8) bromomethane 9) chloroethane	5.63	50	573624	5.0068 ppbv	100
oinyl chloride	5.92	62	625259	5.2232 ppbv	100
7) 1,3-butadiene	6.03	54	552662	5.6914 ppbv	96
8) bromomethane	6.74	94	469373	4.8448 ppbv	100
9) chloroethane	5.97 7.56	101	302105	5.1328 ppbv 5.0771 ppbv	100
10) trichlorofluoromethane 11) ethanol 12) freon-113	7.96	45	106924	3.0771 ppbv	99
12) freon-113	8.64	101	1083790	5.4506 ppbv	99
13) 1.1-dichloroethene	8.64	61	976881	5.6990 ppbv	90
14) acetone	8.73	43	1024405	3.5565 ppbv	94
14) acetone 15) isopropanol 16) carbon disulfide	9.01	45	450647	3.6707 ppbv	94
				5.2762 ppbv	100
17) methylene chloride	9.55 10.08	84 61	488194 911230	5.3396 ppbv 5.4700 ppbv	88 91
18) trans-1,2-dichloroethene 19) methyl tert butyl ether	10.08		1681571	5.4700 ppbv 5.6429 ppbv	100
20) hexane	10.58		1058129	5.8277 ppbv	98
21) 1,1-diclethane	10.82		1109296	5.4489 ppbv	100
22) vinyl acetate	10.87	43	1774315	5.4448 ppbv	98
23) 2-butanone	11.83	43	1456598	5.3306 ppbv	97
24) cis-1,2-dichloroethene	11.83		571634	5.3184 ppbv 5.3062 ppbv	99 98
<pre>25) ethyl acetate 26) chloroform</pre>	11.92 12.34	83 83	1758070 1137536	5.3582 ppbv	99
27) tetrahydrofuran	12.38	72	313111	6.0328 ppbv	97
29) 1,1,1-trichloroethane	12.72		1179093	5.5006 ppbv	97
30) cyclohexane	12.85	56	1114350	5.7944 ppbv	96
31) carbon tetrachloride	13.02	117		5.6298 ppbv	100
32) 1,2-dichloroethane	13.33	62	813431	5.5297 ppbv	99
33) benzene	13.34		1863727 704793	5.2919 ppbv 5.9699 ppbv	99 96
34) heptane 35) trichloroethene	13.72 14.40	71 130		5.3844 ppbv	
36) 1,2-diclpropane	14.77	63	726175	5.5180 ppbv	97 96 701-15-08
37) 1,4-dioxane	15.00	88			(FD) TW 11-15-08
38) bromodichloromethane	15.20		1226024	5.5125 ppbv	100
39) cis-1,3-dichloropropene			1009657		99
40) 4-methyl-2-pentanone	16.19	43	1811408	5.5420 ppbv	96
41) toluene	16.56	91	2169827	5.7926 ppbv	99 97
42) trans-1,3-dichloropropene	10.00	/5 97	1050232 697185	6.0869 ppbv 5.3274 ppbv	92
43) 1,1,2-trichloroethane 44) tetrachloroethene	17.54	166	959438	5.4893 ppbv	98
44) Cectaciioloccicic					pag una una mar

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D

Vial: 4 Acq On : 14 Nov 2008 20:02 Operator: T.WALTON Sample : 5.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:08 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

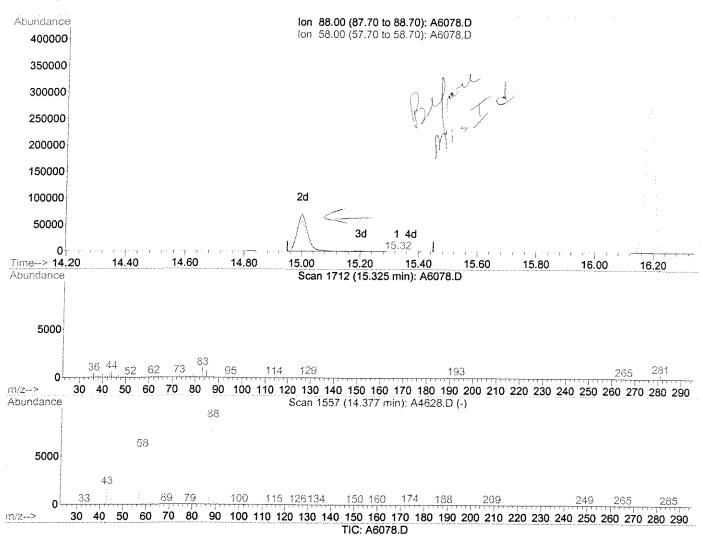
	Compound	R.T.	QIon	Response	Conc Unit	Ξ Q	value
45)	2-hexanone	17.60	43	1773396	5.6728	ppbv	93
46)	dibromochloromethane	17.93	129	1160396	5.7866	ppbv	99
47)	1,2-dibromoethane	18.18	107	1016757	5.4717	ppbv	100
49)	chlorobenzene	19.03	112	1638309	5.5158	ppbv	100
50)	ethylbenzene	19.19	91	2824789	5.7412	ppbv	98
51)	M+P xylene	19.39	91	4371717	11.2207		
52)	O xylene	20.12	91	2360889	5.8338	ppbv	96
53)	styrene	20.13	104	1800369	5.9935	ppbv	94
54)		20.51	173	1160376	6.1436	ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	1638833	5.3121	ppbv	100
57)	4-ethyltoluene	21.73	105	3138812	5.6608	ppbv	97
	1,3,5-trimethylbenzene	21.83	105	2695598	5.9017	ppbv	96
59)	1,2,4-trimethylbenzene	22.54	105	2634401	5.8982	ppbv	96
60)	1,3-dclbenz	23.12	146	1662189	5.7000		
61)	1,4-dclbenz	23.28	146	1669900	5.7913		
62)	benzyl chloride	23.50	91	2349543	6.2154		
63)	'	23.99	146	1528887	5.5214	ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	1047908	5.4137	ppbv	99
	hexachlorobutadiene	27.31	225	1072484	4.9071	ppbv	96

Vial: 4

Acq On : 14 Nov 2008 20: Sample : 5.0 PPB Operator: T.WALTON
Inst : GC/MS Ins

Misc : PI=0 PF=0

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

nt Time: Nov 15 8:47 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.32min 0.0043ppbv

response 139

ion Exp% Act%
88.00 100 100
58.00 91.80 84.89
0.00 0.00 0.00
0.00 0.00 0.00

Quantitation Report (Qedit)

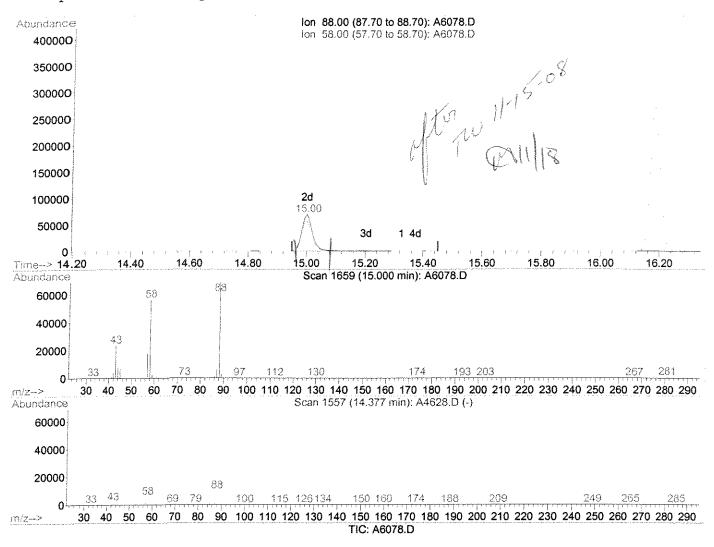
Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D

 Acq On : 14 Nov 2008 20:02
 Operator: T.WALTON

 Sample : 5.0 PPB
 Inst : GC/MS Inst

Misc : PI=0 PF=0 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:08 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.00min 5.5567ppbv m

response 177852

ion Exp% Act%
88.00 100 100
58.00 91.80 0.07#
0.00 0.00 0.00
0.00 0.00

Vial J:\ACQUDATA\AIR1\DATA\111408\A6078.D

T.WALTON Operator:

GC/MS Ins 1.00 Inst

Multiplr:

Quant Results File: 111408A.RES

MS Integration Params: RTEINT.P 14 Nov 2008 PI=0 PF=0 5.0 PPB

Data File

Sample Acq On

Misc

9:08 2008 Quant Time: Nov 15

Sat Nov 15 08:48:57 2008 Initial Calibration Response via Last Update

Abundance

5500000

500000

9000009

(RTE Integrator)

J:\ACQUDATA\AIR1\METHODS\111408A.M

Method

Title

TIC: A6078.D

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Vial: 4
Operator: T.WALTON
Inst : GC/MS Ins
Multiplr: Acq On : 14 Nov 2008 20:50 Sample : 7.5 PPB Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15
Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)	
1) bromochloromethane						
28) 1,4-difluorobenzene	13.91	114	777474	2.5000 ppbv	0.00	
28) 1,4-difluorobenzene 48) chlorobenzene-d5	18.98	117	657464	2.5000 ppbv	-0.02	
System Monitoring Compounds 55) surr 1, bromofluoroben						
Spiked Amount 2.500	Range 70	- 130) Recove	ry = 102.49	ī	
***	J			•		
Target Compounds				Qv	alue	
2) propylene 3) dichlorodifluoromethane 4) freon-114 5) chloromethane 6) vinyl chloride 7) 1,3-butadiene 8) bromomethane 9) chloroethane 10) trichlorofluoromethane 11) ethanol 12) freon-113 13) 1,1-dichloroethene 14) acetone 15) isopropanol 16) carbon disulfide 17) methylene chloride 18) trans-1,2-dichloroethene 19) methyl tert butyl ether 20) hexane 21) 1,1-diclethane 22) vinyl acetate 23) 2-butanone	5.05	41	888654	6.0286 ppbv	97	
 dichlorodifluoromethane 	e 5.15	85	2156474	7.3182 ppbv	99	
4) freon-114	5.50	85	2306292	7.4720 ppbv	96	
5) chloromethane	5.62	50	858270	7.3911 ppbv	99	
6) vinyl chloride	5.92	62	937718	7.7286 ppbv	100	
7) 1,3-butadiene	6.03	54	829673	8.4299 ppbv	97	
8) bromomethane	6.74	94	704399	7.1735 ppbv	100	
9) chloroethane	6.98	64	456054	7.6448 ppbv	100	
10) trichlorofluoromethane	7.56	101	2113406	7.4335 ppbv	99	
11) ethanol	7.96	45	193140	5.4844 ppbv	99	
12) freon-113	8.64	101	1627935	8.0777 ppbv	98	
13) 1.1-dichloroethene	8.64	61	1474279	8.4858 ppbv	89	
14) acetone	8.74	43	1519164	5.2037 ppbv	93	
15) isopropanol	9.01	45	926888	7.4490 ppby	92	
16) carbon disulfide	9.12	76	2387015	7.7672 ppby	100	
17) methylene chloride	9.55	84	745181	8.0415 ppby	86	
18) trans-1.2-dichloroethen	e 10.08	61	1367803	8 1010 ppby	90	
19) methyl tert butyl ether	10.11	73	2525075	8 3602 ppbv	99	
20) hevane	10.57	57	1592430	8 6532 ppby	98	
21) 1 1-diclethane	10.83	63	1663844	8 0636 ppbv	99	
22) vinyl acetate	10.87	43	2661051	8 0567 ppbv	97	
23) 2-butanone 24) cis-1,2-dichloroethene 25) ethyl acetate 26) chloroform	11 84	43	2194058	7 9221 ppbv	97	
24) gig-1 2-dichloroethene	11.01	96	865407	7.9221 ppbv	700	
25) other agetate	11 02	43	2574156	7.5440 ppbv	100	
25) abloroform	12.24	47	1700703	7.0034 ppbv	20	
27) tetrahydrofuran	12.34	72	1709793	8.9647 ppbv	99	
20) 1 1 1 trichloroethane	12.30	97	1770010	0.9047 ppbv	27	
20) gral chorago	12.74	57	1677020	0.2139 ppbv	97	
29) 1,1,1-trichloroethane30) cyclohexane31) carbon tetrachloride	12.03	117	1077920	0.0773 ppbv	100	
32) 1,2-dichloroethane	13.01	44/ 67	1/21/24	8.2472 ppbv	100	
33) benzene	13.34 13.72	78	2775457	7.8377 ppbv 8.9609 ppbv	100	
34) heptane		71	1063708		96	
35) trichloroethene	14.40	130	1124932	8.1390 ppbv	97	
36) 1,2-diclpropane	14.77	63	1091440	8.2483 ppbv	97	11-15-08
37) 1,4-dioxane	15.00	88	335138m	10.4138 ppbv	(10), 7h	11/12
38) bromodichloromethane	15.20	83	1845861	8.2542 ppbv	99	
39) cis-1,3-dichloropropene	15.95		1524060	8.3593 ppbv	98	
40) 4-methyl-2-pentanone	16.19		2694350	8.1984 ppbv	94	
41) toluene	16.56		3226001	8.5652 ppbv	98	
42) trans-1,3-dichloroproper			1587640	9.1514 ppbv	97	
43) 1,1,2-trichloroethane	17.20		1051241	7.9890 ppbv	92	
44) tetrachloroethene	17.53	166	1465095	8.3366 ppbv	99	

(#) = qualifier out of range (m) = manual integration

A6079.D 111408A.M Sat Nov 15 09:10:27 2008 OFFLINE

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Vial: 4 Acq On : 14 Nov 2008 20:50 Operator: T.WALTON Sample : 7.5 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15
Last Update : Sat Nov 15 08:27:05 2008
Response via : Initial Calibration

DataAcq Meth : 111408A

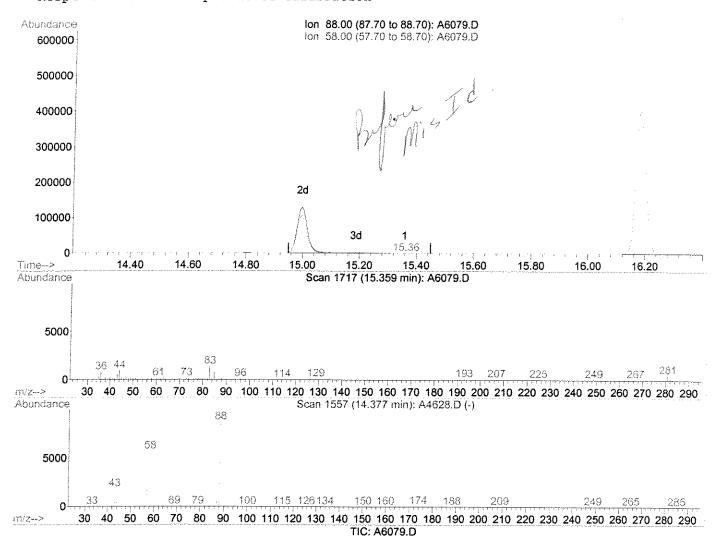
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
45)	2-hexanone	17.61	43	2605557	8.2892	ppbv	92
46)	dibromochloromethane	17.93	129	1768046	8.7688	ppbv	99
47)	1,2-dibromoethane	18.18	107	1538372	8.2335	ppbv	99
49)	chlorobenzene	19.03	112	2459216	8.0827	ppbv	99
50)	ethylbenzene	19.19	91	4174631	8.2829	ppbv	96
51)	M+P xylene	19.39	91	6345008	15.8982	ppbv	94
52)	O xylene	20.13	91	3513211	8.4748	ppbv	95
53)	styrene	20.13	104	2704595	8.7895	vďqq	95
54)	bromoform	20.51	173	1788004	9.2414	ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	2462549	7.7922	ppbv	99
57)	4-ethyltoluene	21.72	105	4654069	8.1939]	ppbv	95
58)	1,3,5-trimethylbenzene	21.83	105	4029644	8.6127 j	ppbv	94
59)	1,2,4-trimethylbenzene	22.54	105	3946207	8.6251]	· ·	95
60)	1,3-dclbenz	23.12	146	2540841	8.5059 <u>j</u>	ppbv	99
61)	1,4-dclbenz	23.28	146	2551530	8.6384]		98
62)	benzyl chloride	23.50	91	3568040	9.2143]	ppbv	94
63)	1,2-dclbenz	23.99	146	2331398	8.2194		98
	1,2,4-trichlorobenzene	27.02	180	1649891	8.3210 p		99
65)	hexachlorobutadiene	27.31	225	1649859	7.3693 p	opbv	95

Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Vial: 4

: 14 Nov 2008 20:50 Acq On Operator: T.WALTON : 7.5 PPB Sample Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: temp.res

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

: TO-15 Title

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.36min 0.0044ppbv

response 141

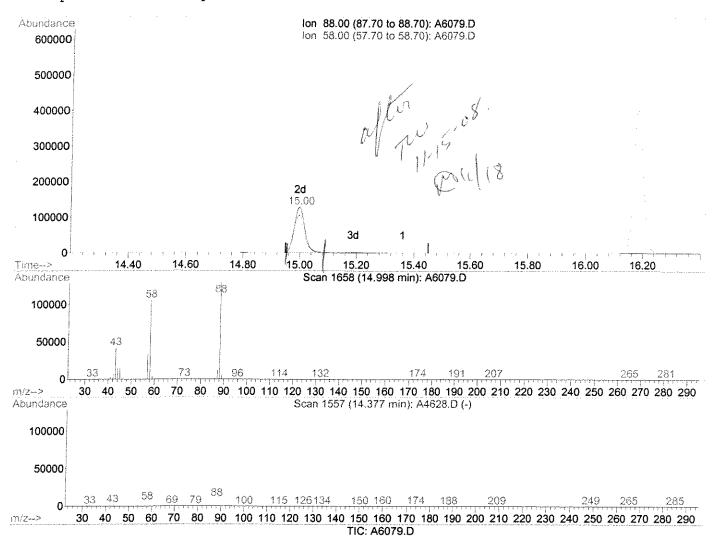
lon Exp% Act% 88.00 100 100 58.00 91.80 85.82 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Misc : PI=0 PF=0 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.00min 10.4138ppbv m

response 335138

 Ion
 Exp%
 Act%

 88.00
 100
 100

 58.00
 91.80
 0.04#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Vial: Operator:

GC/MS Ins 4 T.WALTON

Inst : (Multiplr:

Nov 15 09:10:28 2008

J:\ACQUDATA\AIR1\DATA\111408\A6079.D 14 Nov 2008 20:50 7.5 PPB

Data File

Acq On Sample

PI=0 PF=0

MS Integration Params: Misc

RTEINT. P Quant Time: Nov 15 9:10 2008

Quant Results File: 111408A.RES

J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)
TO-15 Sat Nov

Method Title

TIC: A6079.D 15 08:48:57 2008 Calibration Initial Response via Last Update Abundance 9000006 hexachlorobutadiene 1,2,4-trichlorobenzene 1,2-dclbenz penzyl chloride 9neznedlydlemint-4,2,1 anasnadynikité,t,t anerhaonoidoentat-S.S.1,1 S.enesnedoroullomord, f suct chlorobenzene 1'CD-euszusgojojijo dibromochloromethane 1,2-dibromochlorom euguexeu-z tetrachioroethene ansiteorolitoin-2,1,1 irans-1,3-dichloropropene anauloi cis-1,3-dichloropropene promodichloromethane anexolb-4,1 ensigen ensriteoroethane 1,1,1-trichlopethane carbon feinaches bromochloromethapparayoromon ethyl acetate Sibutishdiabloroethene estadibiood foobligatement methylene chloride abiliusib nodi<mark>gg</mark>aqorqos

anadisoi6lfbibeath

6500000

6000000

5500000

5000000

4500000

4000000

3500000

7000000

8000000

850000

7500000

111408A.M

8.00

7.00

loueura

promomethane chloroethane

zinyl chipgdautadiene

500000

10000001

00076

Propy@Bfforodilluoromethane

2000002

enethemorouhoroldone

>11-noan

2500000

3000000

(Not Reviewed)

Vial: 4

1W5.08.

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D

Acq On : 14 Nov 2008 21:41

Sample : 10.0 PPB Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) bromochloromethane	12.24	130	209517	2.5000 ppbv	0.00
28) 1,4-difluorobenzene	13.91			2.5000 ppbv	-0.01
48) chlorobenzene-d5	18.98			2.5000 ppbv	-0.02
				FF2	0.02
System Monitoring Compounds					
55) surr 1, bromofluorobenzen				2.60 ppbv -0	0.03
Spiked Amount 2.500 R	ange 70	- 13	0 Recove	ery = 103.92%	
Target Compounds				Qval	
2) propylene	5.06			7.7200 ppbv	97
3) dichlorodifluoromethane	5.16			9.4603 ppbv	99
4) freon-114	5.50			9.6239 ppbv	96
5) chloromethane	5.62		1119550	9.3704 ppbv	99
6) vinyl chloride	5.91		1150024	9.2122 ppbv	99
7) 1,3-butadiene	6.02			9.7501 ppbv	92
8) bromomethane	6.73		935901	9.2633 ppbv	99
9) chloroethane	6.97		600865	9.7893 ppbv	99
10) trichlorofluoromethane	7.55			9.4598 ppbv	99
11) ethanol	8.03	45	206458	5.6978 ppbv	99
12) freon-113	8.64			10.4957 ppbv	98
13) 1,1-dichloroethene	8.64	61	1939274	10.8487 ppbv	88
14) acetone	8.75	43	2050171	6.8253 ppbv	93
15) isopropanol	9.06	45	1041423	8.1344 ppbv	92
16) carbon disulfide	9.11	76	3141178	9.9341 ppbv	99
17) methylene chloride	9.55	84	996598	10.4524 ppbv	87
18) trans-1,2-dichloroethene	10.08	61	1820858	10.4814 ppbv	89
19) methyl tert butyl ether	10.11	73	3402972	10.9503 ppbv	99
20) hexane	10.57	57	2123575	11.2152 ppbv	98
21) 1,1-diclethane	10.83	63	2231424	10.5105 ppbv	99
22) vinyl acetate 23) 2-butanone	10.87 11.84	43	3588511	10.5595 ppbv	97
24) cis-1,2-dichloroethene		43	2869593	10.0702 ppbv	96
	11.82	96	1168814	10.4277 ppbv	100
25) ethyl acetate 26) chloroform	11.92	43	3427141	9.9187 ppbv	96
27) tetrahydrofuran	12.34	83 72	2297201	10.3760 ppbv	99
29) 1,1,1-trichloroethane	12.39 12.72	72 97	637081	11.7705 ppbv	99
30) cyclohexane	12.72	56	2375207	10.3390 ppbv	97
31) carbon tetrachloride	13.01	117	2243279	10.8839 ppbv	95
32) 1,2-dichloroethane	13.33	62	2412020 1635747	10.7139 ppbv	100
33) benzene	13.34	78	3719855	10.3756 ppbv 9.8554 ppbv	100
34) heptane	13.72	71	1430097		100
35) trichloroethene	14.40	130	1522586	11.3029 ppbv	95
36) 1,2-diclpropane	14.77	63		10.3352 ppbv	97
37) 1,4-dioxane	15.02	88	1478843	10.4853 ppbv	97
38) bromodichloromethane	15.02	83	332000	9.6787 ppbv	91
39) cis-1,3-dichloropropene	15.20	75	2489869	10.4459 ppbv	99 97
40) 4-methyl-2-pentanone	16.19	43	2059619 3507186	10.5986 ppbv	97 93
41) toluene	16.56	91		10.0122 ppbv	93 97
42) trans-1,3-dichloropropene	16.87	75	4317744 2152636	10.7553 ppbv	97 96
43) 1,1,2-trichloroethane	17.20	75 97	1431449	11.6413 ppbv 10.2061 ppbv	96
44) tetrachloroethene	17.54	166	1995743	10.6543 ppbv	92 99

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D

Vial: 4 Acq On : 14 Nov 2008 21:41 Sample : 10.0 PPB Misc : PI=0 PF=0 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth : 111408A

	Compound	R.T.	QIon	Response	Conc Uni	t Ç)value
45)	2-hexanone	17.61	43	3361268	10.0325	vdaa	7 90
46)	dibromochloromethane	17.93	129	2395252	11.1452		
47)	1,2-dibromoethane	18.18	107	2093871	10.5140		
49)	chlorobenzene	19.03	112	3309563	10.1832		
50)	ethylbenzene	19.19	91	5560956	10.3292		
51)	M+P xylene	19.40	91	8208900	19.2554		
52)	O xylene	20.12	91	4695473	10.6037		
53)	styrene	20.13	104	3649391	11.1029		
54)	bromoform	20.51	173	2439230	11.8026		
56)	1,1,2,2-tetrachloroethane	21.26	83	3296215	9.7644		
	4-ethyltoluene	21.73	105	6117714	10.0832		
	1,3,5-trimethylbenzene	21.83	105	5335405	10.6756		
59)	1,2,4-trimethylbenzene	22.54	105	5198743	10.6373		
60)	1,3-dclbenz	23.13	146	3430814	10.7521		
	1,4-dclbenz	23.28	146	3446871	10.9247		
62)	benzyl chloride	23.50	91	4734123	11.4452		
-	1,2-dclbenz	24.00	146	3162511	10.4378	ppbv	98
	1,2,4-trichlorobenzene	27.02	180	2347086	11.0815		
65)	hexachlorobutadiene	27.31	225	2198567	9.1933		

A6080.D

8.00

7.08

9.00

5.00

vinyl chigi 69 adiene

2000002

\$! f-noon

400000

3000000

8000000

700000

0000000

0000009

2000000

ansrhamorolita

J:\ACQUDATA\AIR1\DATA\111408\A6080.D 4 Nov 2008 21:41

Vial: Operator: Multiplr: Inst

GC/MS Ins 4 T.WALTON

Quant Results File: 111408A.RES 8:47 2008

PI=0 PF=0 10.0 PPB

Data File

Acq On Sample

TO-15 Last Update Method Title

1.2e+07

1.1e+07

1e+07

J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Sat Nov 15 08:27:05 2008 : Initial Calibration MS Integration Params: RTEINT.P Quant Time: Nov 15 Response via

TIC: A6080.D

hexachlorobutadiene 1,2,4-trichlorobenzene 1,2-dcibenz peuski cyloride 1,2,4-trimethylbenzene 1,1,2,2-teirachloroethane S.eneznedorouñomord , t mus bromoform chlorobenzene ethylbenzene anethamorohomochlomethane 1,2-dibromoethane retrachioroethene 1,1,2-trichloroethane eneqorqorolitaib-6,1-ansit cis-1,3-dichloropropene bromodichloromethane 9nexoib-4,1 1,2-dicipropane I,anaxnadoroullib-A heptane anschaonobizitana 8 nsituoionethangahiyakoninan etnyi acetat Selucedaria oroethene methylene chloride enerileor6ifibitoeti inchiorottuoromethane

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00

23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

22.00

Evaluate Continuing Calibration Report

Vial: 15 Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D

Acq On : 5 Feb 2009 12:21
Sample : CCV
Misc : 500ML Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

1		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
2 propylene dichlorodifluoromethane 3.797 3.454 9.0 9 0.00 √ 4 freon-114 2.866 2.555 10.9 87 0.00 √ 4 freon-114 2.866 2.555 10.9 87 0.00 6 √ 1,3 butadiene 2.890 2.298 20.5 75 0.00 8 bromomethane 1.560 1.511 3.1 95 0.00 6 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 T	· - · · ·			0.0	99	0.00
dichlorodifluoromethane 3.797 3.484 9.0 90 0.00							
Treon-114							
Chloromethane 3.562 2.773 22.2 76 0.00							
Vinyl chloride 3.085 2.568 16.8 79 0.00 1,3-butadiene 2.890 2.298 20.5 75 0.00 9							
1,3-butadiene							
Section							
Onlorethane							
10 trichlorofluoromethane 3.290 3.332 -1.3 98 0.00 11 ethanol 1.014 0.925 8.8 119 0.00 12 freon-113 1.709 1.649 3.5 94 0.00 13 1,1-dichloroethene 2.849 2.351 17.5 78 0.00 14 acetone 5.365 4.443 17.2 82 0.00 15 isopropanol 3.148 2.481 21.2 113 0.00 16 carbon disulfide 6.412 5.745 10.4 88 0.00 16 carbon disulfide 6.6412 5.745 10.4 88 0.00 18 trans-1,2-dichloroethene 2.769 2.343 15.4 81 0.00 18 trans-1,2-dichloroethene 3.314 2.858 13.8 83 0.00 21 1,1-diclethane 3.314 2.858 13.8 83 0.00 22 <							
11							
1.709 1.649 3.5 94 0.00							
13							
14 acetone							
15							
16 carbon disulfide 6.412 5.745 10.4 88 0.00 17 methylene chloride 1.668 1.497 10.3 88 0.00 18 trans-1,2-dichloroethene 2.769 2.343 15.4 81 0.00 19 methyl tert butyl ether 5.428 4.475 17.6 77 0.00 20 hexane 3.449 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.836 17.8 76 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 27							
17 methylene chloride 1.668 1.497 10.3 88 0.00 18 trans-1,2-dichloroethene 2.769 2.343 15.4 81 0.00 19 methyl tert butyl ether 5.428 4.475 17.6 77 0.00 20 hexane 3.449 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.858 13.8 83 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 <t< td=""><td></td><td>isopropanol</td><td></td><td></td><td></td><td></td><td></td></t<>		isopropanol					
18 trans-1,2-dichloroethene 2.769 2.343 15.4 81 0.00 19 methyl tert butyl ether 5.428 4.475 17.6 77 0.00 20 hexane 3.449 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.858 13.8 83 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahy		carbon disulfide					
19 methyl tert butyl ether 5.428 4.475 17.6 77 0.00 20 hexane 3.449 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.858 13.8 83 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 c	17	methylene chloride					
20 hexane 3.449 2.836 17.8 76 0.00 21 1,1-diclethane 3.314 2.858 13.8 83 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00	18						
1,1-diclethane 3.314 2.858 13.8 83 0.00 22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.588 0.538 3.6 80 0.00 44 tetrachloroethene 0.347 0.348 -0.3 88 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.347 0.348 -0.3 88 0.00 47 1,2-dibromoethane 0.347 0.348 -0.3 88 0.00 47 1,2-dibromoethane 0.347 0.348 -0.3 88 0.00	19	methyl tert butyl ether					
22 vinyl acetate 6.070 4.813 20.7 71 0.00 23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.553 0.580 -15.3 100 0.00 32 1,	20	hexane					
23 2-butanone 5.785 4.879 15.7 81 0.00 24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 44 tetrachloroethene 0.347 0.348 -0.3 88 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00	21	1,1-diclethane		2.858			
24 cis-1,2-dichloroethene 1.679 1.512 9.9 85 0.00 25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 31 carbon tetrachloride 0.533 0.756 11.4 77 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00	22	vinyl acetate	6.070	4.813	20.7	71	0.00
25 ethyl acetate	23	2-butanone	5.785	4.879	15.7	81	0.00
25 ethyl acetate 5.804 4.781 17.6 78 0.00 26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36	24	cis-1,2-dichloroethene	1.679	1.512	9.9	85	0.00
26 chloroform 2.830 2.675 5.5 91 0.00 27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37			5.804	4.781	17.6	78	0.00
27 tetrahydrofuran 1.159 1.021 11.9 78 0.00 28 I 1,4-difluorobenzene 1.000 1.000 0.0 93 0.00 29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptame 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodi			2.830	2.675	5.5	91	0.00
29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42				1.021	11.9	78	0.00
29 1,1,1-trichloroethane 0.591 0.615 -4.1 92 0.00 30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42	28 T	1.4-difluorobenzene	1.000	1.000	0.0	93	0.00
30 cyclohexane 0.853 0.756 11.4 77 0.00 31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichl					-4.1	92	0.00
31 carbon tetrachloride 0.503 0.580 -15.3 100 0.00 32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 0.357 0.538 0.538 3.6 0.00 42 tran							
32 1,2-dichloroethane 0.547 0.547 0.0 90 0.00 33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 <							
33 benzene 1.559 1.498 3.9 85 0.00 34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 <							
34 heptane 0.442 0.408 7.7 79 0.00 35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethane 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00		•					
35 trichloroethene 0.385 0.369 4.2 86 0.00 36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.364 0.396 -11.9 95 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
36 1,2-diclpropane 0.416 0.376 9.6 78 0.00 37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.364 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
37 1,4-dioxane 0.170 0.192 -12.9 126 0.00 38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
38 bromodichloromethane 0.499 0.518 -3.8 91 0.00 39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
39 cis-1,3-dichloropropene 0.601 0.549 8.7 78 0.00 40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00		1,4-dioxalle					
40 4-methyl-2-pentanone 1.152 1.086 5.7 81 0.00 41 toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
toluene 1.457 1.455 0.1 85 0.00 42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
42 trans-1,3-dichloropropene 0.558 0.538 3.6 80 0.00 43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
43 1,1,2-trichloroethane 0.347 0.348 -0.3 88 0.00 44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
44 tetrachloroethene 0.388 0.397 -2.3 91 0.00 45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
45 2-hexanone 1.112 1.018 8.5 78 0.00 46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
46 dibromochloromethane 0.354 0.396 -11.9 95 0.00 47 1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
1,2-dibromoethane 0.364 0.356 2.2 88 0.00							
	46						
48 I chlorobenzene-d5 1.000 1.000 0.0 101 0.00	47	1,2-dibromoethane	0.364	0.356	2.2	88	0.00
	48 I	chlorobenzene-d5	1.000	1.000	0.0	101	0.00

Evaluate Continuing Calibration Report

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D

Acq On : 5 Feb 2009 12:21 Sample : CCV Misc : 500ML Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
49	chlorobenzene	1.158	1.069	7.7	86	0.00
50	ethylbenzene	2.081	1.922	7.6	84	0.00
51	M+P xylene	1.650	1.572	4.7	87	0.00
52	O xylene	1.733	1.626	6.2	84	0.00
53	styrene	1.333	1.253	6.0	84	0.00
54	bromoform	0.343	0.394	-14.9	98	0.00
55 S	surr 1, bromofluorobenzene	0.382	0.438	-14.7	115	0.00
56	1,1,2,2-tetrachloroethane	0.842	0.706	16.2	84	0.00
57	4-ethyltoluene	2.115	1.920	9.2	82	0.00
58	1,3,5-trimethylbenzene	1.739	1.580	9.1	82	0.00
59	1,2,4-trimethylbenzene	1.703	1.531	10.1	80	0.00
60	1,3-dclbenz	0.910	0.808	11.2	82	0.00
61	1,4-dclbenz	0.898	0.809	9.9	81	0.00
62	benzyl chloride	1.434	1.220	14.9	75	0.00
63	1,2-dclbenz	0.863	0.754	12.6	80	0.00
64	1,2,4-trichlorobenzene	0.488	0.371	24.0	71	0.00
65	hexachlorobutadiene	0.384	0.310	19.3	85	0.00

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D
Acq On : 5 Feb 2009 12:21
Sample : CCV
Misc : 500ML Vial: 15 Operator: T.WALTON Inst : GC/MS Ins

MS Integration Params: LSCINT2.P Quant Time: Feb 5 12:55 2009

Quant Results File: 111408B.RES

Multiplr: 1.00

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration
DataAcq Meth : 111408B

Internal Standards		QIon	Response	Conc Units De	v(Min)
1) bromochloromethane	12.23	130	199630	13.2200 ng	0.00
	13.90		721323		0.00
28) 1,4-difluorobenzene 48) chlorobenzene-d5	18.97		646352	12.0200 ng	0.00
40) 01110102011110110				•	
System Monitoring Compounds					
55) surr 1, bromofluorobenzen	e 21.07	174	421245	20.51 ng	
Spiked Amount 17.880 R	ange 70	- 130) Recove	= 114.73	8
					3
Target Compounds	5 05	4.3	200540		value 99
2) propylene	5.05		398549 1302050	5.8319 ng 22.7074 ng	99
3) dichlorodifluoromethane	5.15 5.50			31.1475 ng	91
4) freon-114	5.62	85 50	1347874 436524	8.1145 ng	99
5) chloromethane	5.92			10.6343 ng	99
6) vinyl chloride	6.02	54	495475 414346	9.4936 ng	96
7) 1,3-butadiene	6.74	94	447152	18.9770 ng	99
8) bromomethane	6.97		253329	11.4116 ng	100
 9) chloroethane 10) trichlorofluoromethane 	7.55	101	1398619	28.1477 ng	100
11) ethanol	7.96	45	127579	8.3335 ng	98
	8.64	101	1020612	39.5459 ng	97
12) freon-113 13) 1,1-dichloroethene	8.64	61	766714	17.8202 ng	87
14) acetone	8.74		836302	10.3220 ng	94
15) isopropanol	9.02	45		10.7479 ng	88
16) carbon disulfide	9.11	76		14.5007 ng	100
17) methylene chloride	9.54		427806	16.9840 ng	# 78
18) trans-1,2-dichloroethene	10.07	61	736233	17.6071 ng	87
19) methyl tert butyl ether	10.11	73		15.7472 ng	98
20) hexane	10.57		807244	15.5007 ng	97
21) 1,1-diclethane	10.82		925356	18.4926 ng	99
22) vinyl acetate	10.87	43	1266166	13.8147 ng	96
23) 2-butanone	11.84	43	1172854	13.4259 ng	96
24) cis-1,2-dichloroethene	11.82	96	483996	19.0915 ng	100
25) ethyl acetate	11.92	43	1365202	15.5765 ng	96
26) chloroform	12.34	83	1034980	24.2169 ng	99
27) tetrahydrofuran	12.39	72	243209	13.8936 ng	99
29) 1,1,1-trichloroethane	12.71	97	1090586	29.7587 ng	97
30) cyclohexane	12.84	56	862281	16.3215 ng	92
31) carbon tetrachloride	13.01	117	1186914	38.0877 ng	99
32) 1,2-dichloroethane	13.32	62	733230	21.6199 ng	100
33) benzene	13.34	78	1586196	16.4230 ng	100
34) heptane	13.71	71	554435	20.2454 ng	96
35) trichloroethene	14.39	130	638097	26.7250 ng	96
36) 1,2-diclpropane	14.76	63	569843	22.0864 ng	99
37) 1,4-dioxane	15.00	88	223328	21.1898 ng	89
38) bromodichloromethane	15.19	83	1118279	36.1337 ng	100
39) cis-1,3-dichloropropene	15.94	75	787038	21.1362 ng	97
40) 4-methyl-2-pentanone	16.18	43	1474856		95
41) toluene	16.55	91	1834651	20.3134 ng	99
42) trans-1,3-dichloropropene	16.85	75	839137	24.2786 ng	97
43) 1,1,2-trichloroethane			611260		91
44) tetrachloroethene			875402		96

^{(#) =} qualifier out of range (m) = manual integration A6456.D 111408B.M Thu Feb 05 12:56:01 2009 OFFLINE

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D Vial: 15

Acq On : 5 Feb 2009 12:21 Operator: T.WALTON Sample : CCV Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 12:55 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth : 111408B

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.60	43	1381715	20.0431 ng	94
	dibromochloromethane	17.93	129	1098315	49.9985 ng	100
47)		18.17	107	889939	39.4040 ng	100
	chlorobenzene	19.03	112	1401498	22.5097 ng	99
	ethylbenzene	19.18	91	2377966	21.2475 ng	98
	M+P xylene	19.38	91	3815949	43.0095 ng	97
-	O xylene	20.11	91	1993027	21.3902 ng	97
53)	-	20.12	104	1506557	21.0246 ng	95
54)	bromoform	20.50	173	1138175	61.7927 ng	100
	1,1,2,2-tetrachloroethane	21.26	83	1368520	30.2294 ng	99
	4-ethyltoluene	21.72	105	2562398	22.5289 ng	97
58)	1,3,5-trimethylbenzene	21.82	105	2212658	23.6597 ng	97
59)	1,2,4-trimethylbenzene	22.53	105	2104124	22.9814 ng	97
	1,3-dclbenz	23.11	146	1357036	27.7465 ng	98
	1,4-dclbenz	23.27	146	1360323	28.1750 ng	97
	benzyl chloride	23.49	91	1765221	22.8976 ng	96
	1,2-dclbenz	23.98	146	1229976	26.5060 ng	97
	1,2,4-trichlorobenzene	27.00	180	747908	28.4737 ng	99
	hexachlorobutadiene	27.30	225	907658	43.9486 ng	93

Vial:

J:\ACQUDATA\AIR1\DATA\020509\A6456.D

Data File

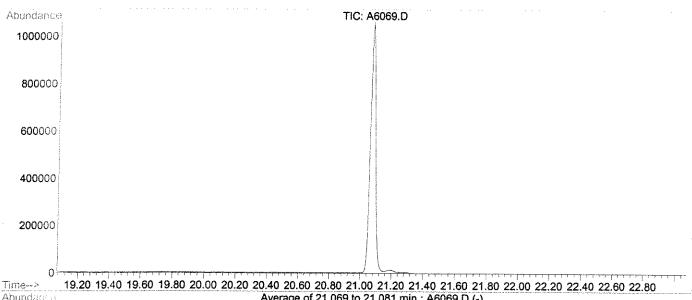
24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 1,2-dolbenz 23.00; Quant Results File: 111408B.RES anaznadiyilamiti-A,S,1 22.00 GC/MS Ins 15 T.WALTON enezRBBKRISKAR-8,E,t 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 sur 1, bromofluorobenzene S. sur 1, bromofluorobensene : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
: TO-15
: Thu Jan 15 15:59:15 2009
: Initial Calibration TIC: A6456.D Operator: Multiplr: M+P xylene Li,db-anasnadorolna Inst dibromochloromethane 2-hexanone tetrachioroethene 1,1,2-trichloroethane cis-1,3-dichloropropene 4-methyl-2-penlanone bromodichloromethane 1,2-dictpropane ansigad anschaorostmaca, d elhyl acetale & dulandadeloroethene MS Integration Params: LSCINT2.P 12:21 Quant Time: Feb 5 12:55 2009 មាននេះស្រីពេលខាងសម្រើជនែរពទាវ 5 Feb 2009 ebillusib nodeggqorqest anolece. anadiaon6ifibiaean 8.00 500ML ensitiemotouitotoidont 7.00 Response via 6.00 Last Update eneibeAN/8/40 lyniv... chloromethane hit-nosit 5.00 propyle@chlorodifluoromethane Acq On Sample Method 10000001 Title 4000000 1500000 2500000 550000 4500000 3500000 2000002 5000000 300000 Misc

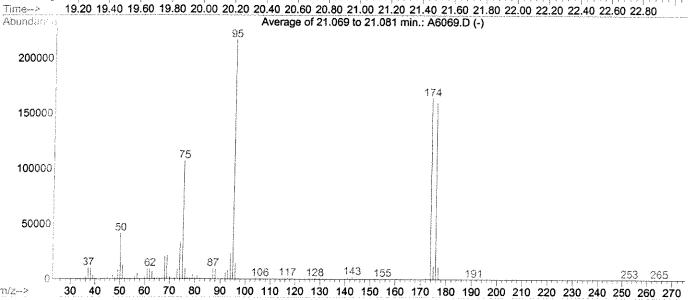
pexachlorobutadiene

1,2,4-trichlorobenzene

VOLATILE ORGANICS RAW QC DATA

Data File: J:\ACQUDATA\AIR1\DATA\111408\A6069.D


Vial: 1 : 14 Nov 2008 12:40 Acq On Operator: T.WALTON : TUNE Sample Inst : GC/MS Ins


: PI=0 PF=0 Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

Title : TO-15

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

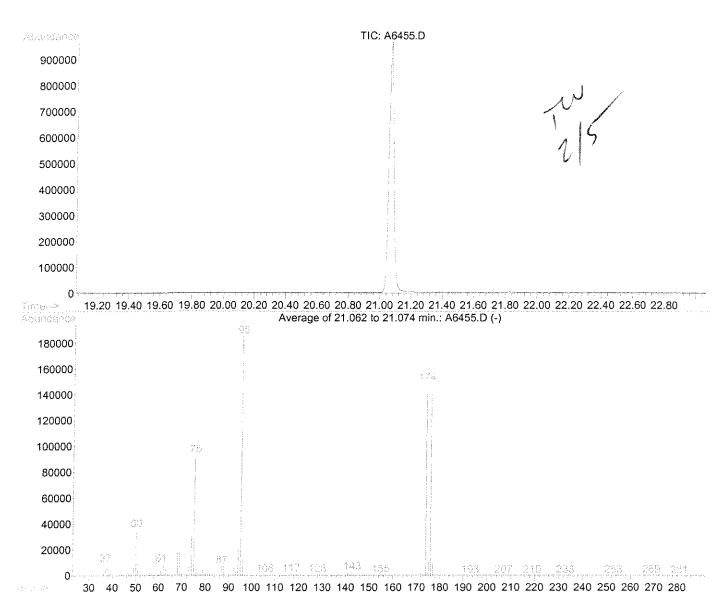
	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
-	50	95	8	40	19.2	41519	PASS
	75	95	30	66	49.3	106797	PASS
	95	95	100	100	100.0	216683	PASS
Ì	96	95	5	9	6.8	14675	PASS
	173	174	0.00	2	0.5	852	PASS
	174	95	50	120	75.7	163989	PASS
İ	175	174	4	9	7.2	11771	PASS
	176	174	93	101	97.3	159531	PASS
-	177	176	5	9	6.7	10693	PASS

N 14-08.

Vial: 14

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6455.D

 Acq On : 5 Feb 2009 11:36
 Operator: T.WALTON


 Sample : TUNE
 Inst : GC/MS Ins

 Misc : Multiplr: 1.00

Misc : MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

AutoFind: Scans 2648, 2649, 2650; Background Corrected with Scan 2636

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
-	50	95		40	19.3	35893	PASS
1	75	95	30	66	50.0	92909	PASS
-	95	95	100	100	100.0	185643	PASS
	96	95	5	9	6.6	12296	PASS
j	173	174	0.00	2	0.9	1276	PASS
i	174	95	50	120	80.3	149056	PASS
ĺ	175	174	4	9	6.8	10156	PASS
-	176	174	93	101	95.6	142507	PASS
ĺ	177	176	5	9	6.6	9343	PASS
,							

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Sample Matrix:

Air

Method Blank

Sample Name: Lab Code:

RQ0900784-02

Analytical Method: TO-15

Service Request: R0900538 Date Collected: NA

Date Analyzed: 2/5/09 1532

Date Received: NA

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.013	0.28	0.013	0.0052	0.11	0.0052	U
75-00-3	Chloroethane	1000	0.016	0.58	0.016	0.0059	0.22	0.0059	U
75-35-4	1.1-Dichloroethene (1,1-DCE)	1000	0.011	0.44	0.011	0.0027	0.11	0.0027	U
75-34-3	1.1-Dichloroethane (1,1-DCA)	1000	0.021	0.45	0.021	0.0052	0.11	0.0052	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.021	0,60	0.021	0.0038	0.11	0.0038	U

Quantitation Report

(Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6458.D

Acq On : 5 Feb 2009 15:32

: METBLK

Misc : 1000ML UZ AIR DIRECT

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 16:06 2009

Operator: T.WALTON RG0900784-02 Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: 111408B.RES

Quant Method : $J:\ACQUDATA\A...\111408B.M$ (RTE Integrator)

: TO-15 Title

Sample

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Units De	ev(Min)
1) bromochloromethane 28) 1,4-difluorobenzene	12.23	130 114	194920 691141	13.2200 ng 11.6400 ng	-0.01 0.00
48) chlorobenzene-d5	18.97	117	613865	12.0200 ng	-0.01
System Monitoring Compounds					
55) surr 1, bromofluorobenzene Spiked Amount 17.880 Ra	21.07 nge 70			_	
Target Compounds				C	value
Target Compounds 3) dichlorodifluoromethane	5.16	85	4059	0.0725 ng	value 92 N
	5.16 8.01	85 45	4059 	-	92 /V / # 37
3) dichlorodifluoromethane				0.0725 ng	92 NT # 37 100 LT
3) dichlorodifluoromethane 11) ethanol 14) acetone	8.01	45	552	0.0725 ng 	92 NT
3) dichlorodifluoromethane 11) ethanol 14) acetone	8.01 8.77	45 43	552 9356	0.0725 ng 	92 NT 37 100 LT
3) dichlorodifluoromethane 11) ethanol 14) acetone 17) methylene chloride	8.01 8.77 9.53	45 43 84	552 9356 484	0.0725 ng 0.0369 ng 0.1183 ng 0.0197 ng	92 NT # 37 100 LT 94 J
3) dichlorodifluoromethane 11) ethanol 14) acetone 17) methylene chloride 23) 2-butanone	8.01 8.77 9.53 11.88	45 43 84 43	552 9356 484 857	0.0725 ng 0.0369 ng 0.1183 ng 0.0197 ng 0.0100 ng	92 N # 37 100 L 94 J # 55

ell NT for 900542.

113.

Page

OFFLINE

Thu Feb 05 16:06:30 2009

111408B.M

A6458.D

rararaci.

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 23.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 1,2,4-trichlorobenzene Quant Results File: 111408B.RES GC/MS Ins 1 T.WALTON S,anaznadoroullomord-, Firus 1.00 J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
TO-15 TIC: A6458.D Multiplr:Vial: Operator: chlorobenzene-d5,1 Inst J:\ACQUDATA\AIR1\DATA\020509\A6458.D 5 Feb 2009 15:32 l,eneznedorouñideañ Thu Jan 15 15:59:15 2009 : Initial Calibration I, enerthemorothcomord 8tbykamentee MS Integration Params: LSCINT2.P 1000ML UZ AIR DIRECT 5 16:06 2009 methylene chloride enotece METBLK lonsdia Quant Time: Feb 6.00 7.00 Response via Last Update 5.00 dichlorodifiuoromethane Acq On Sample Method Title 1200000 900000 800000 700000 600000 500000 400000 1000001 1100000 1000000 300000 200000

いったいさい

Data File

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Project:

Air

Service Request: R0900538 Date Collected: NA

Sample Matrix:

Date Received: NA

Sample Name: Lab Code:

Lab Control Sample RQ0900784-01

Analytical Method: TO-15

Date Analyzed: 2/5/09 1306

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	5.40	0.28	0.013	2,11	0,11	0.0052	
75-00-3	Chloroethane	1000	5.86	0.58	0.016	2.22	0.22	0.0059	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	8,54	0.44	0.011	2.16	0.11	0.0027	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	9.32	0.45	0.021	2.30	0.11	0.0052	
71-55-6	1,1,1-Trichloroethane (TCA)	1000	15.2	0.60	0.021	2.78	0.11	0.0038	

Compagata Nama	%Rec	Control Limits	Date Analyzed	Note
Surrogate Name	70ICC		•	Note
4-Bromofluorobenzene	113	70-130	2/5/09 1306	

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D Vial: 16

Acq On : 5 Feb 2009 13:06

Operator: T.WALTON RQ0900784-0/ Inst : GC/MS Ins Multiplr: 1.00

Sample : LCS Misc : 250ML

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 14:12 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration
DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)	
at the second se	10 00	770	307550	12 222	0 00	
1) bromochloromethane 28) 1,4-difluorobenzene 48) chlorobenzene-d5	12.23	130	19/554	13.2200	ng 0.00	
28) 1,4-diriuorobenzene	13.90	114	/11491	11.6400	ng 0.00	
48) chlorobenzene-d5	18.98	TT /	619207	12.0200	ng 0.00	
System Monitoring Compounds						
55) surr 1, bromofluorobenzene	21.07	174	397635	20.21 ng	0.00	
Spiked Amount 17.880 Ra	nge 70	- 130	Recove:	ry = 11	3.05%	
Target Compounds					Qvalue	
Target Compounds 2) propylene 3) dichlorodifluoromethane	5.05	41	198609	2,9368	na 99	
3) dichlorodifluoromethane	5.15	85	663335	11.6901	ng 1.00	
3) dichlorodifluoromethane 4) freon-114 5) chloromethane 6) vinyl chloride 7) 1,3-butadiene 8) bromomethane 9) chloroethane 10) trichlorofluoromethane 11) ethanol 12) freon-113	5.49	8.5	687865	16.0628	na 92	
5) chloromethane	5.62	50	218929	4.1124	ng 100	
6) vinvl chloride	5.92	62	249116	5.4030	na 99	
7) 1 3-hutadiene	6.03	54	203346	4.7081	na 96	
9) bromomethane	6 74	94	227448	9 7544	na 97	
a) chloroothane	6 97	64	129737	5 8602 3	ng 100	
10) trichlorofluoromethane	7 56	101	713100	14 5025	ng 100	
10) CITCHIOIOITHOIOMECHANE	7.50	10I	71010	4 7410	.19 97	
11) ethanol	0 64	101	71033 E07090	10 0000	.ig 97	
12) freon-113	0.04	101	20/303	19.0902 1	19 9/	
13) 1,1-dichioroethene	0.04	9.T	303707	0.5443	19 00	
14) acetone	8.74	4.3	400313	4.9928	ig 95	nu 2/5.
15) isopropanoi	9.03	45	244866	5.2045	1g 80	1
16) carbon disulfide	9.11	76	682638	7.1238 1	1g 100	TW 2/5.
17) methylene chloride	9.55	84	210151m	8.4308 1	19 (/)	, ,
18) trans-1,2-dichloroethene	10.08	61	346138	8.3650 1	1g 87	
19) methyl tert butyl ether	10.11	73	598999	7.3842 1	100	
20) hexane	10.57	57	369921	7.1779 i	ng 98	
21) 1,1-diclethane	10.82	63	461635	9.3225 1	ng 100	
22) vinyl acetate	10.87	43	629461	6.9401 r	ng 96	
23) 2-butanone	11.84	43	570396	6.5981 r	ng 96	
24) cis-1,2-dichloroethene	11.82	96	231992	9.2473 r	ng 100	
25) ethyl acetate	11.92	43	600503	6.9236 r	1g 97	
26) chloroform	12.34	83	516315	12.2080 r	1g 99	
27) tetrahydrofuran	12.39	72	109986	6.3492 r	1g 99	
29) 1,1,1-trichloroethane	12.71	97	548395	15.1708 r	ıg 97	
30) cyclohexane	12.84	56	399845	7.6730 r	1g 93	
12) freon-113 13) 1,1-dichloroethene 14) acetone 15) isopropanol 16) carbon disulfide 17) methylene chloride 18) trans-1,2-dichloroethene 19) methyl tert butyl ether 20) hexane 21) 1,1-diclethane 22) vinyl acetate 23) 2-butanone 24) cis-1,2-dichloroethene 25) ethyl acetate 26) chloroform 27) tetrahydrofuran 29) 1,1,1-trichloroethane 30) cyclohexane 31) carbon tetrachloride 32) 1,2-dichloroethane 33) benzene 34) heptane	13.01	117	592637	19.2803 r	ng 100	
32) 1,2-dichloroethane	13.33	62	366769	10.9639 r	ng 98	
33) benzene	13.34	78	777381	8.1600 r	ig 100	
34) heptane	13.71	71	259727	9.6151 r	ıg 97	
35) trichloroethene	14.39	130	306016	12.9938 r	ıg 96	
36) 1,2-diclpropane	14.76	63	276850	10.8786 r	ng 99	
37) 1,4-dioxane	15.00	88	106332	10.2284 r		
38) bromodichloromethane	15.19	83	553571	18.1341 r	_	
39) cis-1,3-dichloropropene	15.94		360077	9.8036 n	-	
40) 4-methyl-2-pentanone	16.18		702607	9.9788 n	_	
41) toluene	16.56		875723	9.8301 n	2	
42) trans-1,3-dichloropropene	16.86		393293	11.5363 r		
43) 1,1,2-trichloroethane		97	304604	14.3767 n		
44) tetrachloroethene	17.53			17.9633 r		
44) Cectaculorocomono					-	

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

Vial: 16 Acq On : 5 Feb 2009 13:06 Operator: T.WALTON
Inst : GC/MS Ins Sample : LCS Misc : 250ML Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Results File: 111408B.RES Quant Time: Feb 5 14:12 2009

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

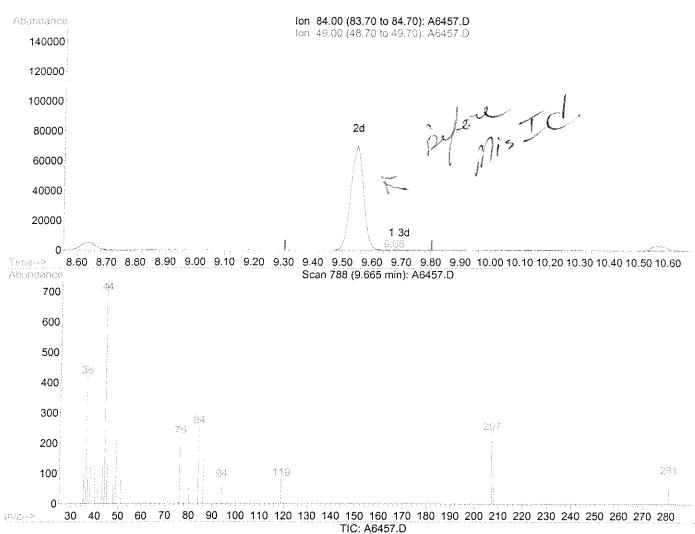
Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration DataAcq Meth : 111408B

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.60	43	674812	9.9241 ng	97
46)	dibromochloromethane	17.92	129	533192	24.6079 ng	99
47)	1,2-dibromoethane	18.17	107	431979	19.3911 ng	99
49)	chlorobenzene	19.03	112	705578	11.8292 ng	99
50)	ethylbenzene	19.18	91	1164479	10.8609 ng	99
51)	M+P xylene	19.38	91	1937509	22.7950 ng	99
52)	O xylene	20.11	91	997244	11.1721 ng	98
53)	styrene	20.12	104	734966	10.7064 ng	95
54)	bromoform	20.50	173	536705	30.4156 ng	99
56)	1,1,2,2-tetrachloroethane	21.26	83	702453	16.1968 ng	100
57)	4-ethyltoluene	21.72	105	1292460	11.8616 ng	98
58)	1,3,5-trimethylbenzene	21.82	105	1125060	12.5575 ng	97
59)	1,2,4-trimethylbenzene	22.53	105	1071187	12.2125 ng	98
60)	1,3-dclbenz	23.11	146	711985	15.1957 ng	97
61)	1,4-dclbenz	23.27	146	709296	15.3350 ng	97
62)	benzyl chloride	23.49	91	825640	11.1793 ng	97
63)	1,2-dclbenz	23.99	146	648106	14.5789 ng	97
64)	1,2,4-trichlorobenzene	27.01	180	434724	17.2760 ng	99
65)	hexachlorobutadiene	27.30	225	543972	27.4937 ng	94

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

Vial: 16 : 5 Feb 2009 13:06 Acq On Operator: T.WALTON : LCS : GC/MS Ins Sample Inst Misc : 250ML Multiplr: 1.00


MS Integration Params: LSCINT2.P

Quant Time: Feb 5 13:40 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(17) methylene chloride

9.66min 0.0086ng

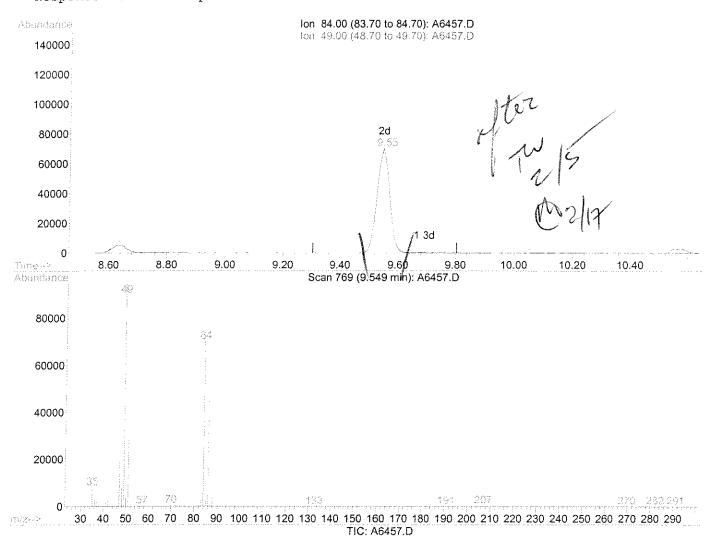
response 214

Exp% Act% lon 84.00 100 100 159.81 49.00 168.40 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

Misc : 250ML Multiplr: 1.00


MS Integration Params: LSCINT2.P

Quant Time: Feb 5 14:12 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009
Response via : Multiple Level Calibration

(17) methylene chloride

9.55min 8.4308ng m

response 210151

 Ion
 Exp%
 Act%

 84.00
 100
 100

 49.00
 168.40
 0.16#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

8.00

Vial: : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

5 Feb 2009 13:06

Data File

Acq On Sample

: LCS : 250ML

Misc

GC/MS Ins T.WALTON 1.00 Operator: Inst

Multiplr:

Quant Results File: 111408B.RES

MS Integration Params: LSCINT2.p 5 14:12 2009

Quant Time: Feb

Method

Title

J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Thu Jan 15 15:59:15 2009 : Initial Calibration TO-15 Response via Last Update

2800000

2600000

2400000

W+P xylene

hexachlorobutadiene

1,2,4-trimethylbenzene

anasnadleMSHXft2, E, r

ลกลกเลดา**ผิน**ณ์เปลี่ย

1600000

1400000

1200000

1000001

800000

2000000

1800000

2200000

1,2,4-trichlorobenzene

1,2-dclbenz

dibromochloromethane dibromochloromethane

tetrachloroethene 1,1,2-trichloroethane enequopointais, 3-dichloropropene 4-methyl-2-pentanone

> bromodichloromethane 1,2-diclpropane

snelgeh I,enesnedorouflib-4,f

ethyl acetate Sabula anioroethene

шегручеле сътопае

abiliusib nolonggarqası...

enschemoroultorofchit promomethane chloroethane

winyl cheidfadiene propyienachlorodilluoromethane

200000

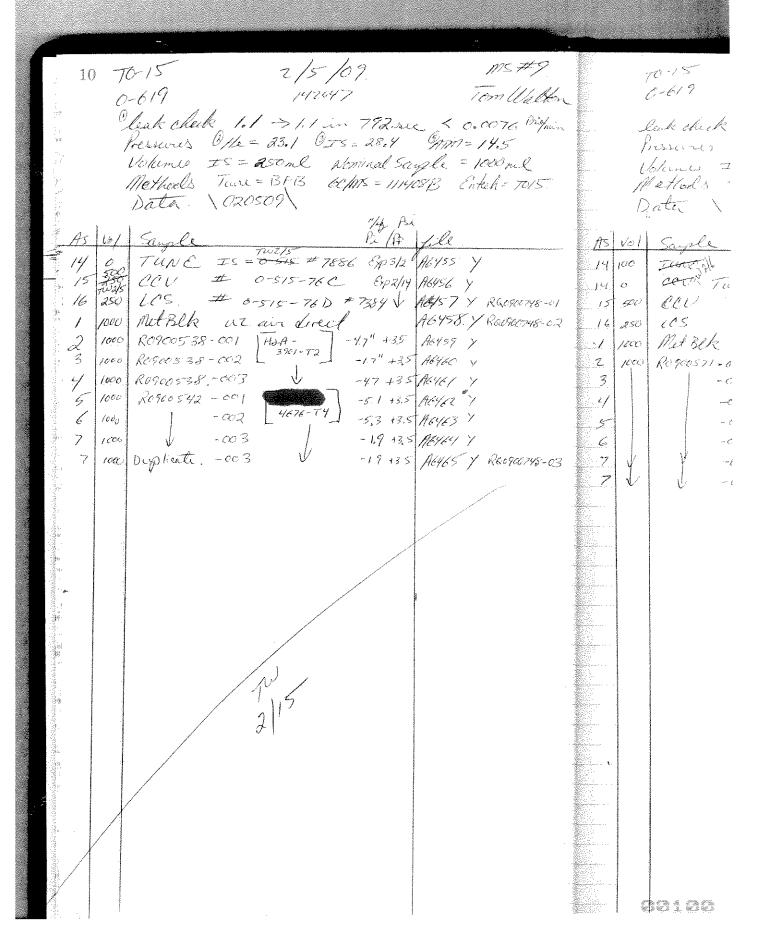
anas

400000

600000

6.00 7.00 5.00

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00


lenk check 16-216 in 1210 sec Presents He = 230 IS = 28,9 ATM = 14.5 Volume IS = 250 Nominal Sayph = 1000 ml Methods Time = BFB CCMS = 111408A 2nteck = 1015

Sample Lite or Comments Tane IS = 0-515-728 A6069 Y12:40 Blank 1.0 ux an direct 1000 A6070 Y Met Blanke 10 us an direct 1000 A6071 Y 2 100 0.02 996 #6012 Y 0.095 pp 1 95 3 0-515-733 Exp 743 116073 Y 0-20 ppb 3 200 A6074 Y 3 500 0 50 ppb A6075 Y 1.0 196 100 0-515-73C 146076 V 250 2.5 A6077 Y dag 500 50 A6078 Y 750 7.5 PPb 16079 y A6080 Y 4 10.0 ppb 1000 A6081 4 A6082 Y 500 0-515-720 Exp 12/10 250 Blk cary over check 1000 0/0 16083 y 7 A6084 y Regort as mB 1000 CLN BER 10 Can 15000662 0/0 8 1000 CEN BUR 1.0 0/0 18085 Y can SLC00054 9 1000 CEN BLK 1.0 0/0 116086 4 1000 -3.6/7.5 A6087 Y 1146273 1.0 Q R46926 1000 1150201 1.0 -6.5/7.5 A6088 y TOIS. IMP -8.7/8.4 176089 Y 1150195 5.0 200 ASP13 -8.1/7.5 AE090 Y 13 50 1150196 200 100 -65/7.6 MO9/ Y 1150197 10.0 15 100 1150198 10.0 -7.7/7.4 A6092 Y -3.4/28.4 AE093 (D)-E 16 100 1146939 10.0 16 -34/284 HERRY (2)-E 1146939 100 Dup R 46698 BLA TUILIS Ruge + Bake prior to V 1146939 44.0 -3 1/204 HOPS Y DL SyR (25/1100) Valid calibration saved, up lated RT from 5ppb. NT- Isopreparal finds ICV. Perum Sich ICV prior to any samples Sequiry Isoproponal as target.

to fune

cl.

aux as CCU

11-10-08 13	P=29.32 /0	6 T= 23°C	and the second s
		-515-68F @ 30pr	19 + 31/11
0-515-72A.	deluted 2.4	Inl of 0-515-66D	Exp 9/4/09
0.2 ppb 10	into canist	in 8/34 + Press	to +29.3 "/4.
		0 Expires 12-10-	
0-515-72B		e of 0-515-66D	
10ppb 10	auto court	5 8/32 + Press.	to +29.3"/4
	= 12/12,000	Expires 12-10	-08.
0-515-720	deluted	120 ml of 0-515-	56 D
19pb 1°	into cani	ster 81334 Pres	o to +29-3
V •	= 120/12.0	000 Expires 12-	10-08.
0-515-72 D	deluted 12	00 ml of 0-515-	53A Mp 2/25/09.
10ppb 20	into carir	ster 2337 + Pres	1 10 +29.3
* *	,	00 Expires 12-10	
filler		15000739 + 15	
11/12/08	BP = 29.60 Co	26 T = 23°C	,
<u>P</u> e	lution Air = 0	-515-68F @ 30 prig	+34/him
0-515-728	detated 1.5	3 ml of 0-515-53 C	Exp3/1/09
10ppb IS	into caniste	2 K1590 + Pressuria	ed to 29.6" Hg
,	= /.2 / 30,000	deliction Exp 121	12/08.
3-515-72 F	Prepared sa	ne 1 into can ki	591 exp 12/12/08
10 ppb IS		s can 150 00739	
<i>U</i>	<u></u>	~~	8 TW
			/
		/	
	1413-0		
	/ //		Continued on Page
	4.	Read and Understood By	
- 11111	11/12/20	•	
Signed	//// <i>>/US</i> . Date	. Signed	
	84 C4 S C	oigiiru	GROWN AND CONTROL

Signad

11-13-08	BP = 29.20/abT = 23°C
	Dilution Br = 0-515-68F @ 30pig + 34min
0-515-73A	deluted 7.4 ml of 0-515-668 mp 9/4/09.
0.2 pb 10	into courster 8134 + Press to + 29.2"/kg.
	= 204/12.000 expires 12-13-08
0-515-733	
1.0 ppb 10	diluted 12 ml of 0-515-66D into canister 8132 + Press to +29.2"149
y je je	
0-515-77	= 13/12.000 repires 12-13-08.
0-515-73 C	deluted 120 ml of 0-515-66D
10 ppb 10	into Camples 8/33 + Puss to +2902"Hy
	= 120/12.000 expires 12-13-08.
0-515-73)	Ciluted 120ml of 0-515-661)
10ppb 10	into Cawiter 2338 + Press to +29.2"/fg
	= 120 /12,000 Expires 12-13-08.
	My 08
The second secon	

,	Continued on Page
	Read and Understood By

Data

02----

LABORATORY REPORT

March 9, 2009

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

RE: Cooper Vision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on February 12, 2009. For your reference, these analyses have been assigned our service request number P0900513.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains 234 pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Spulle

Kate Aguilera

Project Manager

NARRATIVE

2655 Park Center Drive, Suite A

Simi Valley, California 93065

(805) 526-7161

(805) 526-7270 fax

Client: Project:

Haley & Aldrich, Inc.

Cooper Vision / 70665-014

CAS Project No:

P0900513

New York Lab ID: 11221

CASE NARRATIVE

The samples were received intact under chain of custody on February 12, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Haley & Aldrich, Incorporated

Client:

Project: Cooper Vision 70665-014

Detailed Sample Information

Folder: P0900513

Bottle Order #	12000	12000	12000	12000	12000	12000	12000	12000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12000	12000_
FC ID	OA00912	FC00490	_OA00542	_FC00591_	OA00930	FC00378	FC00545	_OA00898	1	OA00543	FC00367
Order#	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000
Cont ID	SC00119	AC00848	_ <u>\$</u> C00931	_AC00946	SC00641	ĀC01435	_ĀC01179	_ <u>\$</u> C00160	AC01423	SC00932	ÄČ01351
Pf2		i ; ; ;		:	 	: : : : :	: : : : : : : : : : : : : : : : : : : :	: :	: : : :	: : : : :	
Pi2 (psig)			: : : : : : : : : : : : : : : : : : :	 	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	} :	
Pi2 (Hg)			 		1	1			1 3 3 7	f ; ;	
Pf1	3.5	3.5	3.8	3.5	3,5	3.6	3.5	3.5	3.5	3.5	3.5
Pi1 (psig)	1.	4.3	0.5	-4.4	1,5	-3.9	1.3	-0.3	-1.6	-1,3	-3.7
Pi1 (Hg)	-2.3	ထု ဆ		-9.0	ري 1.	2,9	-2.7	-0.6	် လ လ	-2.7	-7.6
Container Type	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient
CAS Sample ID Client Sample ID Container Type	SV-SS-58	SV-InA-58	SV-SS-64	SV-InA-64	SV-SS-8	SV-InA-8	SV-OutA-020909	SV-SS-2	SV-InA-2	SV-SS-16	SV-InA-16
CAS Sample ID	P0900513-001.01 SV-SS-58		P0900513-003.01	P0900513-004.01 SV-InA-64	P0900513-005.01	P0900513-006.01	P0900513-007.01 SV-OutA-020909	P0900513-008.01		P0900513-010.01	P0900513-011.01

Miscellaneous Items - received

AVG00192	AVG00696	AVG01053	AVG00980	AVG00870
AVG00822	AVG01012	AVG00871	AVG00749	AVG00884

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Ald	lrich, Inc.			_	Work order:	P0900513			
Project:	Cooper Visio	on / 70665-014								
Sample(s) received or	n: <u>02/12/09</u>			Date opened	: 02/12/09	by:	MZAN	/ORA	
Note: This i	form is used for <u>a</u>	ll samples received by CAS.	The use of this for	rm for custody seal	s is strictly meant	t to indicate presence/	absence and not as a	n indicati	on of	
compliance o	or nonconformity	. Thermal preservation and p	H will only be eva	duated either at the	e request of the cl	ient and/or as required	l by the method/SOI		NI.	N-1 / A
a a	YY 7 X			4.	A			Yes	No	N/A
1		e containers properly	marked with o	lient sample I	D?			\boxtimes		
2		supplied by CAS?						\boxtimes		
3	Did sample	containers arrive in g	ood condition	?				\boxtimes		
4	Was a chain	<pre>-of-custody provided?</pre>						X		
5	Was the cha	in-of-custody properly	completed?					X		
6	Did sample	container labels and/	or tags agree v	vith custody pa	ipers?			\times		
7	Was sample	volume received adeq	uate for analy	sis?				X		
8	Are samples	within specified holdi	ng times?					\boxtimes		
9	Was proper t	temperature (thermal	preservation)	of cooler at re	ceipt adhered	to?				×
		-			Temperature		°C			
10		lank received?		•	1				\boxtimes	
	-	supplied by CAS:							_	******
11	^	y seals on outside of o	poler/Box?				-		\boxtimes	
• •	Location of	-	ordin Boil.				Sealing Lid?			$\overline{\mathbb{X}}$
		ture and date included	19				_ Scaling Liu:			×
	Were seals		Lţ							\mathbf{X}
			manla containa	0						
		y seals on outside of sa	прие сопташе	XI !			G 11 7 . 10		\boxtimes	
	Location of		.0	***************************************			_Sealing Lid?			$\overline{\mathbf{X}}$
	_	ture and date included	17							\boxtimes
	Were seals		_							X
12		s have appropriate pre				Client specified in	iformation?			X
	Is there a cli	ent indication that the	submitted san	nples are pH p	reserved?	•				$ \mathbf{x} $
	Were <u>VOA</u>	vials checked for prese	ence/absence o	of air bubbles?						\times
	Does the clie	ent/method/SOP requir	e that the ana	lyst check the	sample pH ar	nd <u>if necessary</u> al	ter it?			X
13	Tubes:	Are the tubes cap	ped and intac	t?						\times
		Do they contain	moisture?							\boxtimes
14	Badges:	Are the badges p		d and intact?				П		X
		Are dual bed bac	~		lly canned an	id intact?				X
					Y					
Labs	iample II)	Container	Required	Received	Adjusted	VOA Headspace		t / Prese	Automobile Commission	
		Description	pH *	pH	pH	(Presence/Absence)		onuncu	is .	
0900513		6.0 L Source Can	***************************************							
0900513		6.0 L Ambient Can				`				
20900513- 20900513-		6.0 L Source Can						~~~		
0900513		6.0 L Ambient Can 6.0 L Source Can								
0900513		6.0 L Ambient Can								
		s: (include lab sample II) numbers):			<u>* * * * * * * * * * * * * * * * * * * </u>				
	-,	Continue and Continue II.								

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Inc.		Work order:	P0900513	
Project: Cooper Vision / 70665-014				
Sample(s) received on: 02/12/09	Date opened:	02/12/09	by:	MZAMORA

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
T.	Description	pH *	pH	pH	(Presence/Absence)	Comments
P0900513-007.01	6.0 L Ambient Can					
	6.0 L Source Can					
	6.0 L Ambient Can					Sample NOT received.
P0900513-010.01	6:0 L Source Can					
P0900513-011.01	6.0 L Ambient Can					
		MAN MANAGEMENT AND				
		***				**************************************
		·····				

Explain any discrepancies: (include lab sample ID numbers):

NYSDEC DATA PACKAGE SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory			Analytical			
Sample	Sample	*VOA	*BNA	*VOA	*Pest	*Metals	*Other
Code	Code	GC/MS	GC/MS	GC	PCBs		
		Method	Method	Method	Method		
		#	#	#	#		
SV-SS-58	P0900513-001	EPA TO-15					
SV-InA-58	P0900513-002	EPA TO-15					
SV-SS-64	P0900513-003	EPA TO-15					
SV-InA-64	P0900513-004	EPA TO-15					
SV-SS-8	P0900513-005	EPA TO-15					
SV-InA-8	P0900513-006	EPA TO-15					
SV-OutA-020909	P0900513-007	EPA TO-15					
SV-SS-2	P0900513-008	EPA TO-15					
SV-InA-2	P0900513-009	EPA TO-15					
SV-SS-16	P0900513-010	EPA TO-15					
SV-InA-16	P0900513-011	EPA TO-15	·····				
			· · · · · · · · · · · · · · · · · · ·				
				<u> </u>			
				<u> </u>			
				<u> </u>	<u> </u>		

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
P0900513-001	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-002	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-003	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-004	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-005	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-006	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-007	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-008	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-009	Air	2/10/09	2/16/09	NA	2/16/09
P0900513-010	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-011	Air	2/10/09	2/12/09	NA	2/13/09
·					
					· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		
		ļ			

CHAIN OF CUSTODY FORMS

✓ Columbia

Analytical Services*

Analytical Services*

Analytical Services*

Output

Description

Output

D

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%)でも Day (25%) 10 Day - Standard

CAS Project No. やでいるころろ CAS Contact

ACC Compact (Compact (Comp	Name & Address (Report I own Center! OSLO NV [Unit	ing intormalia		111					7				
COO Per US 10	FIGUS ESS			rojeci, ivan	96				2		3		
Fax Project Number		(•	(8)	Ser-Co	SION				Analysis Method (ınd/or Analytes		
Fax Fayorting Sampler (Print & Sign) Califord		5 Q	<u>a</u>	roject Nun	100¢	0-00					**************************************		
Frak	ger		0.	.O. # / Billi	ng Informati	ion							Comments e.g. Actual Preservative
Sampler (Print & Sign)	-												or specific instructions
Angle Print & Sign	1000												
Minshing Ordak. Minshing Ordak. Minshing Minshing Ordak. Minshing Ordak. Minshing Minshing Ordak. Minshing Minshin	s for Result Reporting		(C)	Sampler (F	rint & Sign)				02/00/00	7 6 6			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Laboratory Data Time Sample Type Carlete of Fig. 7n Sample Type Carlete of Said			Co. Y	TSIN	う Su Su	ななが			<u>5</u>		(lacoum)		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
0.4.3 0.3 0.4 0.0 0.	The state of the s		Date Sllected C	Time	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)			北京中	SP S	econ start		package
1945 1960	(C)	1	3/0d		210	61100	51500	70)	1.66.	900	86	78	VIMUL CANORAC
1940 1940	0 88-1	1 .	<u> </u>	ļ		00848			1330	300	વર	90	שונח לפספלונים
9-4.0 COGHU DOGSC 1315 30 11 150 1315 30 11 150 133 30 11 150 133 30 11 150 133 30 11 150 120 133 30 11 150 120		16.5				0431			1500 	<u>マ</u>	00	0	iwit for
\$\limins_{0.7c}\$\text{60.7c}\$\tag{5.3.1}\$60.04 009(30) 1545 1335 30 05 11 12 12 12 12 12 12 1		0.6				2462	18800		1500	315	30		Substant Mim
61g 01435 00379 1540 1335 30 11 kg		3.1				11490	00930		1545	382	30	SS	MADON SOF
10-21		21.0				35	00878		<u>2</u>	32.0	30		2 MACON : 125
Soc 1901 100 1905 19	अर्था	121				01119	30.05		동	1500 0	Å,	<u>R</u> .	Amingrove en e
40 10 10 10 10 10 10 10	€ C	D-0 6				Q	00898		1625 2	500	98	3	OH OTHER
(10,716 00,950 00,907 10,55 154,5 30 0.55 154,5 30 0.55 154,5 30 0.55 154,5 30 0.55 154,5 30 0.55 154,5 30 0.55 154,5 15	d					01483	COSIE		S	1505	30	18	Compounds
10-76 10-55 15-45 30 30 30 30 30 30 30 3	ار ا	92.7				(KB)00	00548°	and desired, page	165.5	57.0	71	22	MIN CODITION
Tier III - (Data Validation Package) 10% Surcharge	1A-110 G	1).76		- James	-	<u>0</u> 80	7989		16.55	101.00 10.100	30	08	I'mit = 1418
Tier III - (Data Validation Package) 10% Surcharge				>					•				
Tier III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No Tier V - (client specified) 10% Surcharge Type: EDD required Yes / No EDD Units: Type: A CONCAC Date: Fine: Received by: (Signature) CONCAC Date: Time: Received by: (Signature) Date: Time: Received by: (Signature)													anduze
Tier III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No Tier V - (client specified) 10% Surcharge Type: There III - (Data Validation Pockage) 10% Surcharge Type: There III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No EDD Units: There III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No EDD Units: There III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No EDD Units: There III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No EDD Units: The III - (Data Validation Pockage) 10% Surcharge EDD required Yes / No EDD Units: The III - (Data Validation Pockage) 10% Surcharge EDD Force III - Infection Pockage III - Infection III - Infection Pockage III - Infection Pockage III - Infection III - Infection Pockage III - Infection Pockage III - Infection I	The first way of the fi												10 10
Tier III - (Data Validation Package) 10% Surcharge Tier V - (client specified) Tier V - (client speci	CONTRACTOR OF THE PROPERTY OF												
Made Ordak Date: Received by: (Signature) (CHILLER OFFILE; Tige: 40	evels - please select Default if not specified)	Tie	r III - (Data V	Validation Pacl	kage) 10% Surc	sharge		EDD required `	Yes / No	EDD Units:		Project F	Project Requirements (MRLs, QAPP)
MAJAN (MAJAK Date: Time: Received by: (Signature)	4	-	,	toll co	71160	2	1	L.	** - *	10			
Date: The state of	27	Ž	Ä	Date:	Time:	Received by	(Signature)	E C		o Care		_	Management of the state of the
Danahad ber (Stenatura)	(Signature)			Date.	je je	Doorhood by	· (Signature)			opp.		Coolea	Didiin

GC/MS VOLATILES DATA

QC Summary

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Haley & Aldrich, Inc.

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

l'est Code:

EPA TO-15

Instrument ID:

Sampling Media:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

6.0 L Summa Canister(s)

Date(s) Collected: 2/10/09

Date(s) Received: 2/12 - 2/16/09

Date(s) Analyzed: 2/13 - 2/16/09

Test Notes:

		1,2-Dichlor	oethane-d4	Tolue	ne-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	0/0	Acceptance	%	Acceptance	9/0	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P090213-MB	99	70-130	97	70-130	103	70-130	
Method Blank	P090216-MB	100	70-130	99	70-130	103	70-130	
Lab Control Sample	P090213-LCS	98	70-130	96	70-130	109	70-130	
Lab Control Sample	P090216-LCS	98	70-130	97	70-130	108	70-130	
SV-SS-58	P0900513-001	101	70-130	90	70-130	106	70-130	
SV-InA-58	P0900513-002	98	70-130	96	70-130	106	70-130	
SV-InA-58	P0900513-002DUP	98	70-130	. 97	70-130	106	70-130	
SV-SS-64	P0900513-003	97	70-130	97	70-130	105	70-130	
SV-InA-64	P0900513-004	98	70-130	98	70-130	103	70-130	
SV-SS-8	P0900513-005	98	70-130	95	70-130	106	70-130	
SV-InA-8	P0900513-006	98	70-130	97	70-130	106	70-130	
SV-OutA-020909	P0900513-007	99	70-130	98	70-130	104	70-130	
SV-SS-2	P0900513-008	99	70-130	98	70-130	105	70-130	
SV-InA-2	P0900513-009	101	70-130	98	70-130	103	70-130	
SV-InA-2	P0900513-009DUP	101	70-130	98	70-130	101	70-130	
SV-SS-16	P0900513-010	98	70-130	98	70-130	104	70-130	
SV-InA-16	P0900513-011	99	70-130	98	70-130	103	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page Lof L

lient: Haley & Aldrich, Inc.

Hient Sample ID: Lab Control Sample

Hient Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513 CAS Sample ID: P090213-LCS

'est Code:

EPA TO-15

istrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

inalysti

est Notes:

ampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA Date Analyzed: 2/13/09

Volume(s) Analyzed:

NA Liter(s)

CAS#	Compound	Spike Amount	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	25.5	22.4	88	57-132	
75-00-3	Chloroethane	25.8	25.0	97	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	27.3	102	72-130	
71-55-6	1,1,1-Trichloroethane	26.5	25.9	98	69-127	

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

lient:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090216-LCS

'est Code:

'est Notes:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

malyst:

ampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/16/09

Volume(s) Analyzed:

NA Liter(s)

CAS#	Compound	Spike Amount	Result	% Recovery	CAS Acceptance	Data
		ng	ng		Limits	Qualifier
75-01-4	Vinyl Chloride	25.5	21.5	. 84	57-132	
75-00-3	Chloroethane	25.8	24.3	94	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	•
75-34-3	1,1-Dichloroethane	26.8	26.9	100	72-130	
71-55-6	1.1,1-Trichloroethane	26.5	25.7	97	69-127	

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

lient: Haley & Aldrich, Inc.

Client Sample ID: SV-InA-58

Client Project ID: Cooper Vision / 70665-014 CAS Sample ID: P0900513-002DUP

'est Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 nstrument ID: malyst:

Wida Ang

ampling Media:

6.0 L Summa Canister

Date Collected: 2/10/09

Date Received: 2/12/09 Date Analyzed: 2/13/09

CAS Project ID: P0900513

Volume(s) Analyzed: 1.00 Liter(s)

est Notes:

Iontainer ID:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.75

			Dupli	cate				
Compound	Sample Result		Sample	e Result Average		% RPD	RPD	Data
	μg/m³	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND	-	h-v	25	-
Chloroethane	ND	ND	ND	ND	-	-	25	•
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND	-	_	25	
1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25	

D = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By: Date: TOISSCAN.XLT - NL - PageNo.:

LABORATORY DUPLICATE SUMMARY RESULTS

Page Lof L

Hient:

Haley & Aldrich, Inc.

llient Sample ID: SV-InA-2

lient Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-009DUP

est Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/16/09

istrument ID: .nalyst:

Wida Ang

Date Analyzed: 2/16/09

ampling Media:

est Notes: ontainer ID: 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

AC01423

Initial Pressure (psig):

-1.6

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.39

	Duplicate							
Compound	Sample Result		Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND	-	-	25	
Chloroethane	ND	ND	ND	ND	-	w	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
L.1-Dichloroethane	ND	ND	ND	ND	-	-	25	
1.1.1-Trichloroethane	ND	ND	ND	ND	-	-	25	

D = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:_ Date: TOISSCAN, XLT - NL - PageNo.:

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02130902.D

Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:34

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P090213-LCS	02130903.D	10:15
SV-SS-58	P0900513-001	02130909.D	15:00
SV-InA-58	P0900513-002	02130910.D	15:47
SV-InA-58 (Lab Duplicate)	P0900513-002DUP	02130911.D	16:33
SV-SS-64	P0900513-003	02130912.D	17:35
SV-InA-64	P0900513-004	02130913.D	18:18
SV-SS-8	P0900513-005	02130914.D	19:01
SV-InA-8	P0900513-006	02130915.D	19:44
SV-OutA-020909	P0900513-007	02130916.D	20:27
SV-SS-2	P0900513-008	02130917.D	21:09
SV-SS-16	P0900513-010	02130918.D	21:52
SV-InA-16	P0900513-011	02130919.D	22:35

RESULTS OF ANALYSIS

Page Lof E

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02160902.D

Analyst:

Wida Ang

Date Analyzed: 2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:56

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P090216-LCS	02160903.D	10;36
SV-InA-2	P0900513-009	02160906.D	12:54
SV-InA-2 (Lab Duplicate)	P0900513-009DUP	02160907.D	13:37

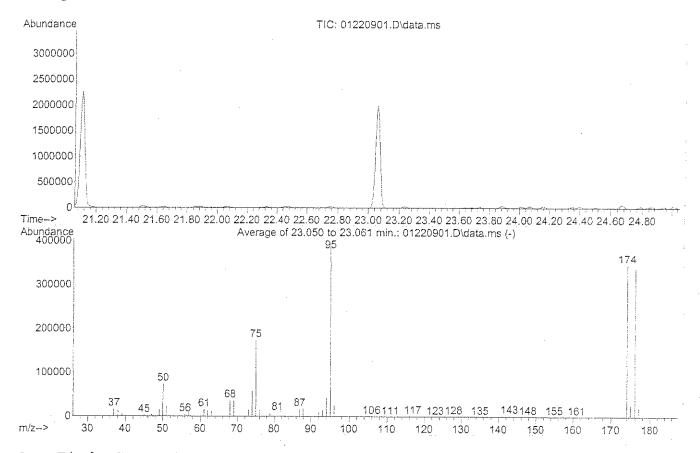
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220901.D

Acq On : 22 Jan 2009 12:23

Operator : WA/LH

Sample : 25ng BFB STD Misc : S20-01050901


ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Jan 14 10:48:15 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail	
50 75 95 96 173 174 175 176 177	95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101	19.3 45.3 100.0 6.4 0.8 89.8 7.4 97.3 6.5	74544 174848 385771 24733 2660 346496 25515 337152 22019	PASS PASS PASS PASS PASS PASS PASS	41.000 A 1.000

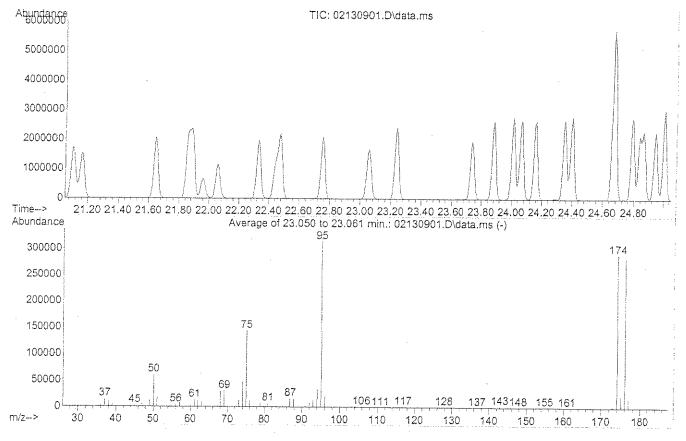
Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50 75 95 96 173 174 175	95 95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93	40 66 100 9 2 120 9	18.9 44.9 100.0 6.6 0.8 90.4 7.4 97.2	60608 144299 321301 21275 2264 290539 21421 282496	PASS PASS PASS PASS PASS PASS
177	176	5	9	6.6	18635	PASS PASS

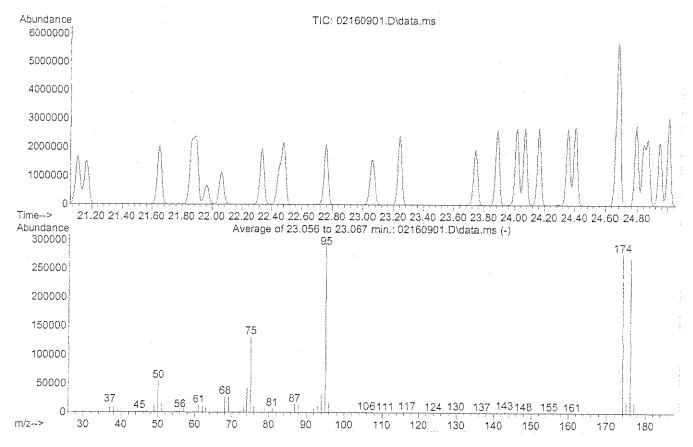
Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3421, 3422, 3423; Background Corrected with Scan 3410

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93	40 66 100 9 2 120 9	18.7 44.8 100.0 6.5 0.8 94.2 7.0 97.4 6.4	55179 131859 294421 19196 2115 277440 19352 270101 17252	PASS PASS PASS PASS PASS PASS PASS PASS

Page: 1

RESULTS OF ANALYSIS Page Lof L

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Lab File ID: 02130901.D Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:46

Test Notes:

					•		
		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT = #
	24 Hour Standard	292784	12.31	1302929	15.22	652497	21.10
	Upper Limit	409898	12.64	1824101	15.55	913496	21.43
	Lower Limit	175670	11.98	781757	14.89	391498	20.77
	Client Sample ID						
01	Method Blank	284429	12.28	1305482	15.21	643376	21.10
02	Lab Control Sample	291926	12.31	1297420	15.23	649667	21.11
03	SV-SS-58	252921	12.29	1178644	15.22	658456	21.10
04	SV-InA-58	302189	12.28	1378004	15.22	691613	21.10
05	SV-InA-58 (Lab Duplicate)	306251	12.28	1398587	15.21	695931	21.10
06	SV-SS-64	307525	12.28	1399299	15.21	683757	21.10
07	SV-In∆-64	295705	12.28	1353741	15.21	651687	21.10
08	SV-SS-8	293846	12.29	1333826	15.22	689543	21.10
()9	SV-InA-8	299869	12.28	1350439	15.22	668943	21.10
10	SV-OutA-020909	298820	12.28	1377268	15.21	670624	21.10
11	SV-SS-2	290183	12.28	1338269	15.21	658768	21.10
12	SV-SS-16	296454	12.28	1340448	15.21	652867	21.10
13	SV-InA-16	287537	12.28	1323889	15.21	642037	21.10
14							
15							
16							
17				9			
18							
19							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:_	63	Date:	2/18/09	
		37013307	SAN MIT - ME - Bono No. :	

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Lab File ID: 02160901.D Date Analyzed: 2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:47

Test Notes:

		IS1 (BCM)	······································	IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	285040	12.31	1272496	15.23	627427	21.11
	Upper Limit	399056	12.64	1781494	15.56	878398	21.44
	Lower Limit	171024	11.98	763498	14.90	376456	20.78
	Client Sample ID						
01	Method Blank	276341	12.28	1277940	15.21	621270	21.10
02	Lab Control Sample	293871	12.31	1307508	15.23	644721	21.11
03	SV-InA-2	276686	12.28	1269109	15.21	624161	21.10
04	SV-InA-2 (Lab Duplicate)	267798	12.28	1235225	15.21	607502	21.10
0.5							
06							
07				·			
08							
09							
10		•					
				•			
12							
13				· · ·			
14							
15							
16							
17							
18							
[9							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:		Date:	2 /18/04
	· ·	TOESCA	N.XLT - NL - PageNo.

MDLs for TO-15 (LOW LEVEL - SCAN)

Marie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	?	10/02/08	10/03/08	10/03/08	1	• /			T FII	VAL
	MS8	MS9	MS13	MS16	MAX				MDL _R	MDLR
COMPOUND	MDL _R	MDL _R	MDL _R	MDLR	MDL _R	μg/m³	ppbV	MW	µg/m³	ppbV
Propene		0.050	0.050	0.050	0.0500	0.050	0.02906	42.08	0.050	0.029
Dichlorodifluoromethane		0.050	0.050	0.050	0.0500	0.050	0.01012	120.90	0.050	0.010
Chloromethane		0.050	0.050	0.050	0.0500	0,050	0.02422	50.49	0.050	0.024
Freon 114		0.050	0.050	0.050	0.0500	0.050	0.00716	170.90	0.050	0.0072
Vinyl Chloride	<u> </u>	0.050	0.050	0.050	0.0500	0.050	0.01957	62.50	0.050	0.020
1,3-Butadiene		0.050	0.050	0.050	0.0500	0.050	0.02261	54.09	0.050	0.023
Bromomethane		0.050	0.050	0.050	0.0500	0.050	0.01288	94.94	0,050	0.013
Chloroethane		0.050	0.072	0.050	0.0720	0.072	0.02730	64.52	0.072	0.027
Ethanol		. 0.140	0.133	0.133	0.1400	0.140	0.07433	46.07	0.14	0.074
Acetonitrile		0.050	0.050	0.050	0.0500	0.050	0.02979	41.05	0.050	0.030
Acrolein		0.056	0.110	0.050	0.1100	0.110	0.04800	56.06	0.11	0.048
Acetone	<u> </u>	0.137	0.137	0.137	0.1370	0.140	0.05896	58.08	0.14	0.059
Frichlorofluoromethane		0.050	0.050	0.050	0.0500	0.050	0.00890	137.40	0.050	0.0089
sopropanol	<u> </u>	0.050	0.050	0.180	0.1800	0.180	0.07326	60.10	0.18	0.073
Acrylonitrile		0.050	0.050	0.050	0.0500	0.050	0.02305	53.06	0.050	0.023
1,1-Dichloroethene	<u> </u>	0.050	0.056	0.050	0.0560	0.056	0.01413	96.94	0.056	0.014
ert-Butanol		0.051	0.051	0.051	0.0510	0.051	0.01683	74.12	0.051	0.017
Vethylene Chloride		0.050	0.055	0.050	0.0550	0.055	0.01584	84.94	0.055	0.016
Allyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.01598	76.53	0.050	0.016
Frichlorotrifluoroethane		0.050	0.058	0.050	0.0580	0.058	0.00757	187.38	0.058	0.0076
Carbon Disulfide		0.050	0.050	0.050	0.0500	0.050	0.01606	76.14	0.050	0.016
rans-1.2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
I,1-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
Vethyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01387	88.15	0.050	0.014
/inyl Acetate		0.126	0.290	-0.220	0.2900	0.290	0.08240	86.09	0.29	0.082
2-Butanone		0.050	0.096	0.057	0.0960	0.096	0.03256	72.11	0.096	0.033
:is-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
Diisopropyl Ether		0.050	0.050	0.052	0.0520	0.052	0.01245	102.18	0.052	0.012
Ethyl Acetate		0.076	0.120	0.054	0.1200	0.120	0.03331	88.11	0.12	0.033
1-Hexane		0.050	0.050	0.050	0.0500	0.050	0.01419	86.17	0.050	0.014
Chloroform		0.050	0.050	0.050	0.0500	0.050	0.01024	119.40	0.050	0.010
etrahydrofuran		0.050	0.085	0.064	0.0850	0.085	0.02883	72.11	0.085	0.029
Ethyl tert-Butyl Ether	1	0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
,1,1-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133.40	0.050	0.0092
sopropyl Acetate		0.053	0.053	0.053	0.0530	0.053	0.01269	102.13	0.053	0.013
-Butanol		0.055	0.056	0.055	0.0560	0.056	0.01848	74.12	0.056	0.018
7		0.050	0.050	0.050	0.0500	0.050	0.01566	78.11	0.050	0.016
Senzene Carbon Tetrachloride		0.050	0.050	0.050	0.0500	0.050	0.00795	153.80	0.050	0.0080
Dyciohexane		0.055	0.055	0.055	0.0550	0.055	0.00793	84.16	0.055	0.016
ert-Amyl Methyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01399	102.18	0.050	0.012
,2-Dichloropropane		0.050	0.050	0.050	0.0500	0.050	0.01082	113.00	0.050	0.012
3romodichloromethane		0.050	0.050	0.050	0.0500	0.050	0.01062	163.80	0.050	0.0075
richloroethene		0.050	0.050	0.050	0.0500	0.050	0.00747	131,40	0.050	0.0073
		0.050	0.060	0.050	0.0600	0.060	0.00931	88.11	0.060	0.0033
,4-Dioxane	}		0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
sooctane //ethyl Methacrylate		0.050	0.050	0.054	0.0300	0.030	0.01077	100.12	0.094	0.023
-Heptane		0.059	0.050	0.050	0.0500	0.050	0.02290	100.20	0.054	0.023
is-1,3-Dichioropropene		0.050	0.050	0.050	0.0500	0.050	0.01221	111.00	0.050	0.012
			0.050	0.050	0.0500	0.050	0.01702	100.20	0.050	0.011
-Methyl-2-pentanone		0.050	-	0.050	0.0500	0.050	0.01221	111.00	0.050	0.012
rans-1,3-Dichloropropene		0.050	0.050					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.050	0.0092
,1,2-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133.40		
oluene		0.050	0.050	0.050	0.0500	0.050	0.01327	92.14	0.050	0.013
-Hexanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.16	0.050	0.012
2 Dibromochloromethane		0.050	0.050	0.050	0.0500	0.050	0.00587	208.30	0.050	0.0059
,2-Dibromoethane	-	0.050	0.050	0.050	0.0500	0.050	0.00651	187.90	0.050	0.0065
lutyl Acetate	<u> </u>	0.050	0.050	0.050	0.0500	0.050	0.01053	116.16	0.050	0.011

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08					FIN	\AL
	MS8	MS9	MS13	MS16	MAX				MDLR	MDL _R
COMPOUND	MDL _R	μg/m³	ppbV	MW	hg∖ш₃	ppbV				
n-Octane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
Tetrachloroethene		0.050	0.050	0.050	0.0500	0.050	0.00738	165.80	0.050	0.0074
Chlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.01086	112.60	0.050	0.011
Ethylbenzene		0.050	0.050	0.050	0.0500	.0.050	0.01152	106.20	0.050	0.012
n- & p-Xylene		0.053	0.053	0.053	0.0530	0.053	0.01221	106.20	0.053	0.012
Bromoform		0.050	0.050	0.053	0.0530	0.053	0,00513	252.80	0.053	0.0051
Styrene		0.050	0.050	0.050	0.0500	0.050	. 0.01175	104.10	0.050	0.012
o-Xylene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
n-Nonane		0.050	0.050	0.050	0.0500	0.050	0.00954	128.26	0.050	0.0095
1,1,2,2-Tetrachloroethane		0.050	0.050	0.050	0.0500	0.050	0.00728	167.90	0.050	0.0073
Cumene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
alpha-Pinene		0.050	0.050	0.050	0.0500	0.050	0.00898	136,24	0.050	0.0090
n-Propylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
3-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1,3,5-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120:20	0.050	0.010
alpha-Methylstyrene		0.050	0.050	0.050	0.0500	0.050	0.01035	118.19	0.050	0.010
2-Ethyltoluene		0.050	0.050	0.050	0.0500	0:050	0.01017	120.20	0.050	0.010
1,2,4-Trimethylbenzene		0,050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
n-Decane		0.050	0.050	0.050	0.0500	0.050	0.00860	142.28	0.050	0.0086
Benzyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.00966	126.59	0.050	0.0097
1,3-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
I,4-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
ec-Butylbenzene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
>-Isopropyltoluene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
1,2,3-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
I.2-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
I-Limonene		0.050	0.029	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
2-Dibromo-3-Chloropropane		0.050	0.043	0.050	0.0500	0.050	0.00517	236.33	0.050	0.0052
n-Undecane		0.050	0.050	0.050	0.0500	0.050	0.00782	156.31	0.050	0.0078
,2,4-Trichlorobenzene		0.083	0.053	0.076	0.0830	0.083	0.01119	181.50	0.083	0.011
Vaphthalene		0.050	0.050	0.050	0.0500	0.050	0.00954	128.17	0.050	0.0095
n-Dodecane		0.050	0.050	0.050	0.0500	0.050	0.00718	170.34	0.050	0.0072
dexachloro-1,3-butadiene		0.050	0.050	0.050	0.0500	0.050	0.00469	260.80	0.050	0.0047

Sample Data

RESULTS OF ANALYSIS

Page Lof L

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-58

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-001

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Analyst:

Wida Ang

Date Analyzed: 2/13/09 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID:

SC00119

Initial Pressure (psig):

-1.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.34

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.67	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.67	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.67	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130909.D

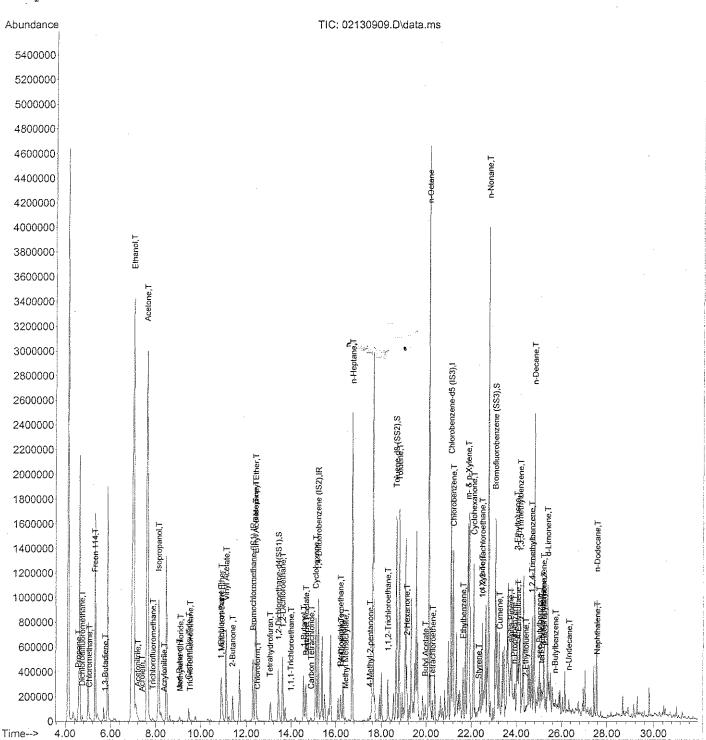
Acq On : 13 Feb 2009 15:00

Operator : WA/LH

Sample : P0900513-001 (1000mL)

Misc : Haley & Aldrich SV-SS-58 (-1.1, 3.5) ✓

ALS Vial : 16 Sample Multiplier: 1


Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130909.D

: 13 Feb 2009 15:00 Acq On

Operator : WA/LH

Sample : P0900513-001 (1000mL)
Misc : Halor C 713-1-1 CY

: Haley & Aldrich SV-SS-58 (-1.1, 3.5) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

33 1,2-Dichloroethane-d4(13.43 65 409097 25.293 ng -0.03	Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min)
ystem Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.43 65 409097 25.293 ng -0.03 Spiked Amount 25.000 Recovery = 101.16 √ 57) Toluene-d8 (SS2) 18.67 98 1391218 22.442 ng -0.01 Spiked Amount 25.000 Recovery = 89.76 € √ 73) Bromofiluorobenzene (SS3) 23.06 174 618862 26.578 ng 0.00 Spiked Amount 25.000 Recovery = 89.76 € √ 73) Bromofiluorobenzene (SS3) 23.06 174 618862 26.578 ng 0.00 Spiked Amount 25.000 Recovery = 106.32 € √ arget Compounds Qvalue 2) Propene 4.58 42 91551 6.466 ng # 81 3) Dichlorodifluoromethane 4.75 85 53267 2.155 ng 100 4) Chloromethane 5.06 50 4159 0.206 ng 91 5) Freon 114 5.30 135 734 0.062 ng 68 6) Vinyl Chloride 0.00 62 0 N.D. ✓ 7) 1,3-Butadiene 5.77 54 3554 0.296 ng 90 8) Bromomethane 6.26 94 56 N.D. 9) Chloroethane 6.56 64 233 N.D. ✓ 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 192263 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1,1-Dichloroethene 0.00 96 0 N.D. ✓ 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.27 41 418 N.D. 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0067-ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.883 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 36 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.999 ng # 1 300 Ethyl Acetate 12.40 61 28801 6.516 ng # 53	1) Bromochloromethane (IS1)	12.29	130	252921	25.000	ng	- C	.03
ystem Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.43 65 409097 25.293 ng -0.03 Spiked Amount 25.000 Recovery = 101.16 √ 57) Toluene-d8 (SS2) 18.67 98 1391218 22.442 ng -0.01 Spiked Amount 25.000 Recovery = 89.76 € √ 73) Bromofiluorobenzene (SS3) 23.06 174 618862 26.578 ng 0.00 Spiked Amount 25.000 Recovery = 89.76 € √ 73) Bromofiluorobenzene (SS3) 23.06 174 618862 26.578 ng 0.00 Spiked Amount 25.000 Recovery = 106.32 € √ arget Compounds Qvalue 2) Propene 4.58 42 91551 6.466 ng # 81 3) Dichlorodifluoromethane 4.75 85 53267 2.155 ng 100 4) Chloromethane 5.06 50 4159 0.206 ng 91 5) Freon 114 5.30 135 734 0.062 ng 68 6) Vinyl Chloride 0.00 62 0 N.D. ✓ 7) 1,3-Butadiene 5.77 54 3554 0.296 ng 90 8) Bromomethane 6.26 94 56 N.D. 9) Chloroethane 6.56 64 233 N.D. ✓ 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 192263 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1,1-Dichloroethene 0.00 96 0 N.D. ✓ 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.27 41 418 N.D. 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0067-ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.883 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 36 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.999 ng # 1 300 Ethyl Acetate 12.40 61 28801 6.516 ng # 53	37) 1,4-Difluorobenzene (IS2)	15.22	114	1178644	25.000	ng	- C	1.03
33) 1,2-Dichloroethane-d4(13.43 65 409097 25.293 ng -0.03 Spiked Amount 25.000 Recovery = 101.16 √	56) Chlorobenzene-d5 (IS3)	21.10	82	658456	25.000	ng	– C	.01
Spiked Amount 25.000 Spiked Amount 26.000 Spiked Am	System Monitoring Compounds		-					
Spiked Amount 25.000 Spiked Amount 25.000 Recovery = 89.76%		13.43	65	409097	25.293	ng	- C	.03
Spiked Amount 25.000	Spiked Amount 25.000	10 60	0.0	Reco	very =	101	.16%	√ 0.1
Romonfluorobenzene (SS3) 23.06 174 618862 26.578 ng 0.00 Spiked Amount 25.000 Recovery = 106.32% arget Compounds Qvalue 2 Propene 4.58 42 91551 6.466 ng # 81 81 3) Dichlorodifluoromethane 4.75 85 53267 2.155 ng 100 4) Chloromethane 5.06 50 4159 0.206 ng 91 5) Freon 114 5.30 135 734 0.062 ng 68 6) Vinyl Chloride 0.00 62 0 N.D. 7 1,3-Butadiene 5.77 54 3554 0.296 ng 90 8) Bromomethane 6.26 94 56 N.D. 9) Chloroethane 6.56 64 233 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Tsopropanol 8.14 45 2047545 57.013 ng 97 15) Tsopropanol 8.14 45 2047545 57.013 ng 97 15) Tsopropanol 8.14 45 2047545 57.013 ng 97 15) Trichloroethene 0.00 96 0 N.D. 7 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19 Methylene Chloride 9.11 84 1392 0.110 ng # 54 19 10 10 10 10 10 10 10		18.6/	98	1391218	22.442	ng	769	7
## Spiked Amount 25.000 ## Recovery = 106.32% / Qvalue 2) Propene	Spiked Amount 25.000	22 06	174	Keco	very =	צט יי	./55	√
2) Propene		23.06	1/4	Reco	very =	106	.32%	.00 √
2) Propene	Target Compounds						Ova	lue
3) Dichlorodifluoromethane	2) Propene	4.58	42	91551	6.466	nq	#	81
8) Brommethane 6.26 94 33 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1.1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 10.89 63 1388 0.067 ng # 38 28) Cis-1,2-Dichloroethene 11.39 72 84166 11.009 ng # 38 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	3) Dichlorodifluoromethane	4.75	85	53267	2.155	ng		100
8) Brommethane 6.26 94 33 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1.1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 10.89 63 1388 0.067 ng # 38 28) Cis-1,2-Dichloroethene 11.39 72 84166 11.009 ng # 38 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	4) Chloromethane	5.06	50	4159	0.206	ng		91
8) Brommethane 6.26 94 33 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1.1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 10.89 63 1388 0.067 ng # 38 28) Cis-1,2-Dichloroethene 11.39 72 84166 11.009 ng # 38 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	5) Freon 114	5.30	135	734	0.062	ng		68
8) Brommethane 6.26 94 33 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1.1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 10.89 63 1388 0.067 ng # 38 28) Cis-1,2-Dichloroethene 11.39 72 84166 11.009 ng # 38 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	6) Vinyl Chloride	0.00	62	0	N.D	. 6		
8) Brommethane 6.26 94 33 N.D. 10) Ethanol 7.02 45 11136389 1268.277 ng 93 11) Acetonitrile 7.20 41 49948 2.101 ng 90 12) Acrolein 7.40 56 5778 0.785 ng 85 13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1.1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 10.89 63 1388 0.067 ng # 38 28) Cis-1,2-Dichloroethene 11.39 72 84166 11.009 ng # 38 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	7) 1,3-Butadiene	5.77	54	3554	0.296	ng		90
11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) Acrylonitrile 18) Methylene Chloride 19) Methylene Chloride 19) Allyl Chlorotethane 10) Allyl Chlorotethane 11) Trichlorotrifluoroethane 12) Carbon Disulfide 13) trans-1,2-Dichloroethane 14) Trichloroethane 15) Isopropanol 18, 14 45 2047545 57.013 ng 197 18, 2047545 57.013 ng 197 18, 45 2047545 57.013 ng 197 198 199 Methylene Chloride 19, 11 84 1392 0.292 ng 190 191 Methylene Chloride 19, 11 84 1392 0.110 ng 194 190 Allyl Chloride 19, 27 41 418 N.D. 191 Trichlorotrifluoroethane 19, 153 151 4634 0.481 ng 190 190 190 191 Trichloroethane 19, 153 151 4634 0.481 ng 190 190 190 190 190 190 190 190 190 190	8) Bromomethane	6,26	94	56	N.D	•		
11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) Acrylonitrile 18) Methylene Chloride 19) Methylene Chloride 19) Allyl Chlorotethane 10) Allyl Chlorotethane 11) Trichlorotrifluoroethane 12) Carbon Disulfide 13) trans-1,2-Dichloroethane 14) Trichloroethane 15) Isopropanol 18, 14 45 2047545 57.013 ng 197 18, 2047545 57.013 ng 197 18, 45 2047545 57.013 ng 197 198 199 Methylene Chloride 19, 11 84 1392 0.292 ng 190 191 Methylene Chloride 19, 11 84 1392 0.110 ng 194 190 Allyl Chloride 19, 27 41 418 N.D. 191 Trichlorotrifluoroethane 19, 153 151 4634 0.481 ng 190 190 190 191 Trichloroethane 19, 153 151 4634 0.481 ng 190 190 190 190 190 190 190 190 190 190	9) Chloroethane	6.56	64	233	N.D			
12) Acrolein	10) Ethanol	7.02	45	11136389	1268.27	7 ng		
13) Acetone 7.61 58 1922683 192.049 ng # 75 14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1,1-Dichloroethene 0.00 96 0 N.D. / 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	11) Acetonitrile	7.20	41	49948	2.101	ng ∞~		
14) Trichlorofluoromethane 7.88 101 23203 1.080 ng 97 15) Isopropanol 8.14 45 2047545 57.013 ng 97 16) Acrylonitrile 8.38 53 4790 0.292 ng 96 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	12) Acrolein	7.40	50	2022602	102.785	119	11	85 75
15) Isopropanol		7.61	101	7377003	1 000	ng	##	75
18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	15) Toppopagol	7.00 Q 1 <i>4</i>	45	25205	57 013	119		97
18) tert-Butanol 9.06 59 71968 2.125 ng 94 19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	16) Acrylonitrile	8 38	53 53	4790	0 292	na 3		
19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 230) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	17) 1.1-Dichloroethene	0.00	96	0	N.D			
19) Methylene Chloride 9.11 84 1392 0.110 ng # 54 20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 230) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	18) tert-Butanol	9.06	59	71968	2.125	ng		94
20) Allyl Chloride 9.27 41 418 N.D. 21) Trichlorotrifluoroethane 9.53 151 4634 0.481 ng 90 22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	19) Methylene Chloride	9.11	84	1392	0.110	ng	#	54
22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	20) Allyl Chloride	9.27	41	418	N.D			
22) Carbon Disulfide 9.47 76 231656 5.212 ng 98 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	21) Trichlorotrifluoroethane	9.53	151	4634	0.481	ng		90
23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 10.88 63 1388 0.067 ng # 1 25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	22) Carbon Disulfide	9.47	76	231656	5.212	ng		98
25) Methyl tert-Butyl Ether 10.91 73 8632 0.277 ng 85 26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	23) trans-1,2-Dichloroethene	0.00	61	0	N.D	-		
26) Vinyl Acetate 11.10 86 22622 10.893 ng # 1 27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	24) 1,1-Dichloroethane	10.88					#	1
27) 2-Butanone 11.39 72 84166 11.009 ng # 38 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	25) Methyl tert-Butyl Ether							
28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	26) Vinyl Acetate					_		
29) Diisopropyl Ether 12.41 87 8407 0.909 ng # 1 30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53	27) 2-Butanone					. —	#	3.8
30) Ethyl Acetate 12.40 61 28801 6.516 ng # 53							11	-
						_		
31) n-Hexane 12.41 5/ 8/3912 41.826 ng 89						_	Ħ	
	31) n-Hexane	12.41	<u>۵</u> /	8/3912	41.826	110		07 3

Data File : 02130909.D

: 13 Feb 2009 15:00 Acq On

Operator : WA/LH

Sample : P0900513-001 (1000mL)

: Haley & Aldrich SV-SS-58 (-1.1, 3.5) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal	Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
32) Chl	oroform	12.50	83	18034	0.939	na		99
	rahydrofuran	13.06		40451		ng		94
35) Eth	yl tert-Butyl Ether							
36) 1,2	-Dichloroethane	13.63	62	3418	0.211	ng	#	45
	,1-Trichloroethane	13.99	97	1298				85
39) Isoj	propyl Acetate	14.68		2522		ng	#	1
40) 1-Bi	utanol	14.56	56					87
41) Ben:	zene	14.68			7.578	ng		99
42) Carl	oon Tetrachloride		117	3925	0.239	ng		97
43) Cyc	lohexane	15.11	84	434477		ng	#	67
44) tert	t-Amyl Methyl Ether	15.52	73	1319				
	-Dichloropropane	15.90	63	287	N.D			
	modichloromethane	16.21	83	23522			#	20
	chloroethene	16.26	130	56	N.D			
	-Dioxane	16.22	88	16223			#	78
49) Iso				38720	0.677	ng	#	1
	nyl Methacrylate	16.43	100	5809	1.171		#	1
51) n-He		16.72	71	725870	58.078		#	74
	-1,3-Dichloropropene	17.32	75	111				
	ethyl-2-pentanone	17.51	58	15813				81
	ns-1,3-Dichloropropene	18.23	75	264	N.D		ш	~ ^
	,2-Trichloroethane	18.29	9/	13773 1615979	1.163	119	#	70
58) Toli 59) 2-He		19.13	4.5 7.1	277886	Z3.80/	ng .	#	99 29
	comochloromethane		129		7.325 N.D		#	29
	-Dibromoethane		107		N.D			
	/l Acetate	19.96			N.D	na	#	1
63) n-O			57	1022865	71 224	119	#	71
	cachloroethene	20.30		2931	0 168	na	TT	98.
	probenzene	21.21	112	147948	3.578		#	44
	/lbenzene	21.64	91	326100	4 683	na		100
	p-Xylene	21.86	91	1368379	25.059			97
68) Bron		0.00			N.D			<i>- .</i>
	cene	22.33			0.238			91
70) o-Xy			91	407194	7.285			98
71) n-No	·	22.75	43	1867795	54.026			91
	2,2-Tetrachloroethane	22.48	83	3869	0.156		#	18
74) Cume		23.24	105	74070	1.002		•	97
75) alph	na-Pinene	23.74	93	134835	4.232			99
-	ropylbenzene	23.88	91	91595	1.022			90
	hyltoluene	24.01	105	179329	2.647	ng		96
	thyltoluene	24.06	105	65189	0.983			96
79) 1,3,	5-Trimethylbenzene	24.15	105	129187	2.256	ng		93 32

Data File : 02130909.D

: 13 Feb 2009 15:00 Acq On

Operator : WA/LH

Sample : P0900513-001 (1000mL)
Misc : Haley & Aldrich SV-SS-58 (-1.1, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.35	118	1321	N.D.	
81) 2-Ethyltoluene	24.40	105			95
82) 1,2,4-Trimethylbenzene	24.67		177691	2.893 ng	97
83) n-Decane	24.79		894332	24.767 ng	82
84) Benzyl Chloride	24.88	91	1203	N.D.	
85) 1,3-Dichlorobenzene	24.87		186	N.D.	
86) 1,4-Dichlorobenzene	24.95	146	1226	N.D.	
87) sec-Butylbenzene	25.00		27093	0.338 ng	98
88) p-Isopropyltoluene	25.20	119	31621	0.406 ng	96
89) 1,2,3-Trimethylbenzene	25.20	105	35995	0.586 ng	93
90) 1,2-Dichlorobenzene	25.36	146	1752	N.D.	
91) d-Limonene	25.37	68	258716	10.850 ng	99
92) 1,2-Dibromo-3-Chloropr	. 0.00	157	0	N.D.	
93) n-Undecane	26.32	57	43734	1.122 ng	# 47
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95) Naphthalene	27.57	128	94654	1.069 ng	98
96) n-Dodecane	27.55	57	312753	7.118 ng	78
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98) Cyclohexanone	22.11	55	137083	5.215 ng	# 41
99) tert-Butylbenzene	25.12	119	22234	0.373 ng	92
100) n-Butylbenzene	25.71	91	14115	0.222 ng	# 15

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-58

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-002

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.75

CAS#	Compound	Result μg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.18	ND	0.068	-
75-00-3	Chloroethane	ND	0.88	ND	0.33	
75-35-4	1,1-Dichloroethene	ND	0.88	ND	0.22	
75-34-3	1,1-Dichloroethane	ND	0.88	ND	0.22	
71-55-6	1,1,1-Trichloroethane	ND	0.88	ND	0.16	

VID = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:___ Date:

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

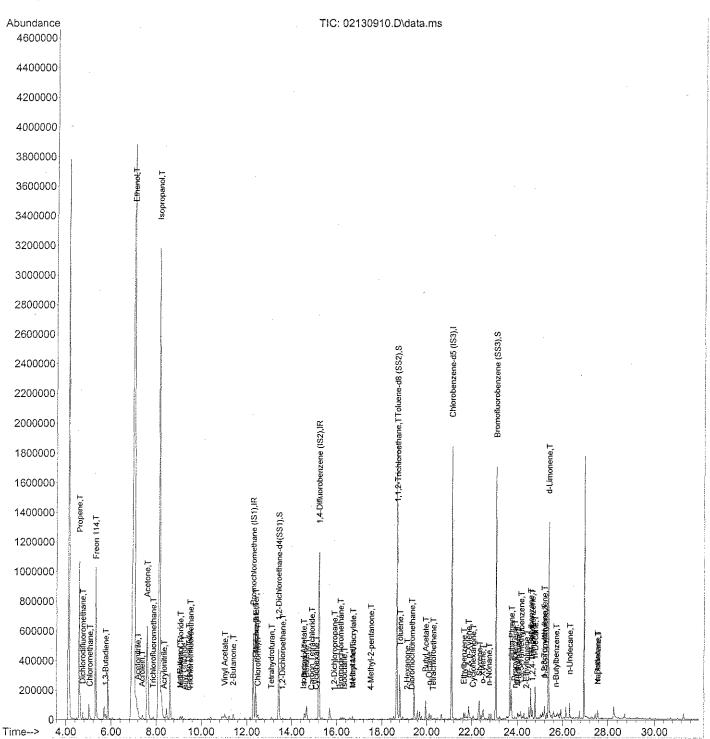
Data File : 02130910.D

Acq On : 13 Feb 2009 15:47

Operator : WA/LH

Sample : P0900513-002 (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5) ✓


ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130910.D

Acq On : 13 Feb 2009 15:47 Operator : WA/LH

Sample : P0900513-002 (1000mL)
Misc : Haley & Aldrich SV-InA : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	302189	25.000	ng	-0	.05
37) 1,4-Difluorobenzene (IS2)	15.22	114	1378004				.03
56) Chlorobenzene-d5 (IS3)	21.10	82	691613	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	473561				
Spiked Amount 25.000			Recov	rery =			
57) Toluene-d8 (SS2)	18.67	98					
Spiked Amount 25.000			Recov	/ery =	96.	16%	V
73) Bromofluorobenzene (SS3)	23.06	174	646175	26.420	ng .	0	.00
Spiked Amount 25.000			Recov	rery =	105.	68%	V
Target Compounds						Qva	
2) Propene	4.58	42	519516	30.710	ng		90
3) Dichlorodifluoromethane	4.75	85	48566	1.644	ng		100
4) Chloromethane 5) Freon 114	5.06	50	21493	0.891	ng		97
5) Freon 114	5.31	135	883	0.063	ng		63
6) Vinyl Chloride	0.00	62	0	N.D	. 1		0.0
7) I,3-Butadiene	5.77	54	19955	1.391	ng		98
8) Bromomethane	6.24	94	467	N.D	•		
9) Chioroethane	5.5/	04 4 E	1333335	N.D	. V 7 ~~~		00
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein	7.03	43	102070	14/0.95	, 11a		93
12) Acrolein	7.13	41	36057	4 000	ng		94
13) Acetone	7.33	50	412779	3/ 509	11g		02 01
14) Trichlorofluoromethane	7.00	101	20629		ng		96
							100
15) Isopropanol16) Acrylonitrile	8.37	53	9349	0.476	ng		95
17) 1.1-Dichloroethene	0.00	96	0	N.D	. 19		J _
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride	9.07	59	19931	0.493	na na	#	36
19) Methylene Chloride	9.08	84	4089	0.269	na	# #	
20) Allyl Chloride	9.26	41	2236	0.122	ng	#	55
21) Trichlorotrifluoroethane	9.53	151	4367	0.379	na		91
22) Carbon Disulfide	9.46	76	7325 0	0.138	ng		94
23) trans-1,2-Dichloroethene	0.00	61	0	N,D	• •		
24) 1,1-Dichloroethane	0.00	63	0	N.D	.1		
25) Methyl tert-Butyl Ether	10.91	73	453	N.D			
26) Vinyl Acetate	11.03	86	12666	5.105		#	1
27) 2-Butanone	11.40	72	15395	1.685	_	#	39
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	12.40	87	859	0.078		#	1
30) Ethyl Acetate	12.39	61	50686				84
31) n-Hexane	12.40	57	13023	0.522	ng		91 3(

Data File : 02130910.D

Acq On : 13 Feb 2009 15:47

Operator : WA/LH

Sample : P0900513-002 (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Det	r(Min)
32) Chloroform	12.49	83	32504	1.417 ng		98
34) Tetrahydrofuran	13.10	72	515		#	- 1
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59	62	6129	0.317 ng		98
38) 1,1,1-Trichloroethane	13.98	97	631	N.D.		
39) Isopropyl Acetate	14.55	61	1686	0.172 ng	#	1
40) 1-Butanol	14.57	56	37921	2.505 ng		88
41) Benzene	14.67	78	114151	1.932 na		99
42) Carbon Tetrachloride	14.90	117	5407	0.282 ng		98
43) Cyclohexane	15.09	84	3746	0 191 na	#	72
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	15.90	63	900	0.060 ng		96
46) Bromodichloromethane	16.18	83	11537	0.628 ng		93
47) Trichloroethene		130				
48) 1,4-Dioxane	16.23	88	117	N.D.		
49) Isooctane	16.34	57	15286	0.228 ng		95
50) Methyl Methacrylate	16.72	100	2131	0.367 ng	#	1
51) n-Heptane	16.70	71	2131 6948 0	0.475 ng	#	79
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.51	58	1802	0.130 ng		79
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	133917	9.673 ng	#	8
58) Toluene	18.80	91	245179	3.736 ng		99
59) 2-Hexanone	19.13	43	245179 7841	0.197 ng		86
60) Dibromochloromethane	19.34	129	4035	0.248 ng		95
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.95	43	122883	2.689 ng		94
63) n-Octane	20.11	57	9182 1368	0.609 ng	#	86
64) Tetrachloroethene	20.28		1368	0.075 ng		99
65) Chlorobenzene	21,17	112	444	N.D.		
66) Ethylbenzene	21.64	91	40616	0.555 ng		100
67) m- & p-Xylene	21.86	91	40616 79830 238	1.392 ng		98
68) Bromoform	21.95	173	238	N.D.		~ -
69) Styrene	22.33	104	22785	0.517 ng		97
70) o-Xylene	22.10		21010	0.102 119		98
71) n-Nonane	22.75	43	18408	0.507 ng		95
72) 1,1,2,2-Tetrachloroethane	22.48	83	1011	N.D.		
74) Cumene	23.23	105	4296	N.D.		0.6
75) alpha-Pinene	23.74	93	95123	2.843 ng	.1.1.	96 76
76) n-Propylbenzene	23.88	91	11035	0.117 ng	#	76
77) 3-Ethyltoluene	24.01	105	20509	0.288 ng		95
78) 4-Ethyltoluene	24.06	105	9717	0.139 ng		92
79) 1,3,5-Trimethylbenzene	24.16	105	7053	0.117 ng		90 37

Data File : 02130910.D

: 13 Feb 2009 15:47 Acq On

Operator : WA/LH

Sample : P0900513-002 (1000mL)
Misc : Halev & Aldrich GV T-7

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	24.35	118	1647	N.D.	
81)	<u> </u>	24.39	105	8420	0.115 ng	99
	1,2,4-Trimethylbenzene	24.67		23845	0.370 ng	96
	n-Decane		57	84766	2.235 ng	75
84)	Market Control of the		91	399	N.D.	
	1,3-Dichlorobenzene	24.94		2143	N.D.	
	1,4-Dichlorobenzene	24.94		2143	N.D.	
	sec-Butylbenzene	25.01		940	N.D.	
	p-Isopropyltoluene	25.20		34526	0.422 ng	93
	1,2,3-Trimethylbenzene	25.20	105	9704	0.150 ng	# 63
	1,2-Dichlorobenzene	25.37	146	262	N.D.	
	d-Limonene	25.37	68	344842	13.769 ng	99
	1,2-Dibromo-3-Chloropr	26.32		61	N.D.	
,	n-Undecane	26.32		40713	0.995 ng	80
	1,2,4-Trichlorobenzene	0.00		0	N.D.	
	Naphthalene	27.57	128	24087	0.259 ng	97
	n-Dodecane	27.55	57	17776	0.385 ng	77
	Hexachloro-1,3-butadiene	0.00		0	N.D.	
	Cyclohexanone		55	15204	0.551 ng	# 93
	tert-Butylbenzene	24.59		4214	0.067 ng	93
100)	n-Butylbenzene	25.71	91	4291	0.064 ng	# 27

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-64

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0900513

CAS Sample ID: P0900513-003

Test Code:

EPA TO-15

Instrument ID:

Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Date Analyzed: 2/13/09

Wida Ang

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

SC00931

Initial Pressure (psig):

0.5

Final Pressure (psig):

3.8

Canister Dilution Factor: 1,22

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.12	ND	0.048	
75-00-3	Chloroethane	ND	0.61	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.61	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.61	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.61	ND	0.11	

NI) = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

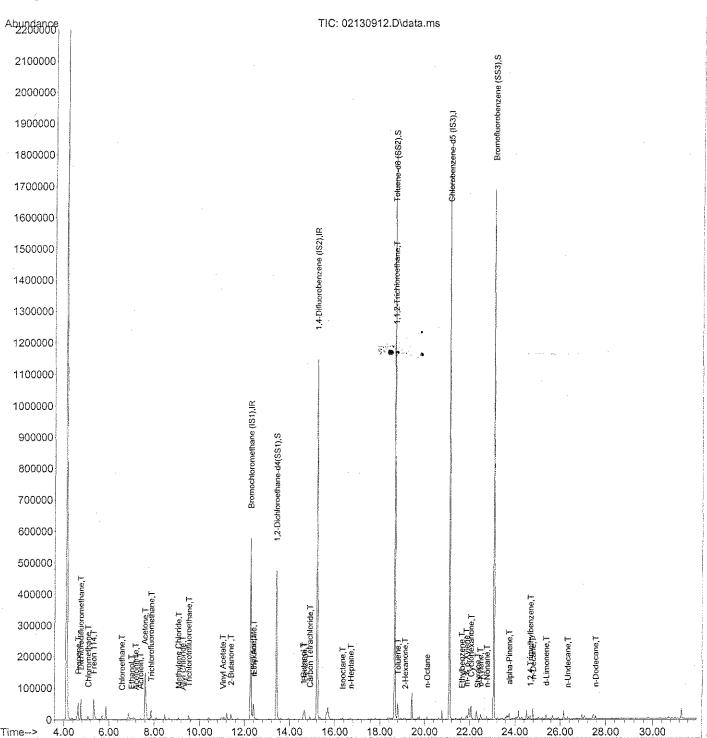
Data File : 02130912.D

Acg On : 13 Feb 2009 17:35

Operator : WA/LH

Sample : P0900513-003 (1000mL)

Misc : Haley & Aldrich SV-SS-64 (0.5, 3.8) ✓


ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130912.D Acq On : 13 Feb 2009 17:35

Operator : WA/LH

: P0900513-003 (1000mL) Sample

: Haley & Aldrich SV-SS-64 (0.5, 3.8) Misc

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev	(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	1399299		- (0.05 0.03 0.01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000				24.322 ng ery = 97	7.28%	V
57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.66		Recove 632656	24.367 ng ery = 97 26.165 ng ery = 104	7.488)	0.00
-			100000	.r.y		
Target Compounds 2) Propene 3) Dichlorodifluoromethane	4.63		8899 69054	0.517 ng 2.297 ng	#	alue 29 99
4) Chloromethane 5) Freon 114	5.08 5.32	50 135	14471 1269	0.589 ng 0.089 ng		98
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	0.00	54		N.D.	N.	
9) Chloroethane 10) Ethanol 11) Acetonitrile	7.00	45	11393	0 .149 ng 1.067 ng 0.093 ng		
12) Acrolein 13) Acetone	7.40 7.60	.56 58	5878 104432	0.657 ng 8.579 ng		81 87
14) Trichlorofluoromethane15) Isopropanol16) Acrylonitrile	7.87 8.20 8.47	101 45 53	30458 1913 71	1.166 ng N.D. N.D.		96
17) 1,1-Dichloroethene 18) tert-Butanol	0.00 9.03	96 59	0 888		11	
19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane	9.27	41	1339	0.072 ng		54 83 91
	9.47	76	2871 0 0	N.D. N.D. N.D.		
25) Methyl tert-Butyl Ether 26) Vinyl Acetate	10.94 11.04	73 86	54 1554	N.D. 0.615 ng	#	1
27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether	11.40 0.00 0.00	72 61 87	7899 0 0	0.850 ng N.D. N.D.	#	44
30) Ethyl Acetate 31) n-Hexane	12.40 12.41	61 57	9542 5919	1.775 ng 0.233 ng	~	88 92 👍

2/17/09

Page: 1

Data File : 02130912.D

: 13 Feb 2009 17:35 Acq On

Operator : WA/LH

Sample : P0900513-003 (1000mL)

: Haley & Aldrich SV-SS-64 (0.5, 3.8) Misc

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards		QIon	Response	Conc Units	Dev(1	Min)
32) Chloroform	12.48	83	1076	N.D.		
34) Tetrahydrofuran			198			
35) Ethyl tert-Butyl Ether			0	N.D.		
36) 1,2-Dichloroethane	13.58	62	993	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	829	N.D.✓		
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	14.62	56	9149	0.595 ng		94
41) Benzene	14.67	78	29187	0.486 ng		96
42) Carbon Tetrachloride			8316	0.427 ng		99
43) Cyclohexane	15.11	84	575	N.D.		
44) tert-Amyl Methyl Ether						
45) 1,2-Dichloropropane			514	N.D.		
46) Bromodichloromethane						
47) Trichloroethene	16.25	130	795	N.D.		
	0.00					
				0.079 ng		81
50) Methyl Methacrylate	16.70	100				
51) n-Heptane	16.70			0.104 ng	#	73
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52	58	696	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	132422	9.420 ng	#	8
58) Toluene	18.80	91	41616	0.642 ng		98
59) 2-Hexanone	19.12	43	4904	0.124 ng		90
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
	19.97					
· · · · · · · · · · · · · · · · · · ·	20.11					88
64) Tetrachloroethene	20.30	166	974			
	21.17			N.D.		
			6139			99
			12058	0.213 ng		94
68) Bromoform	0.00					
69) Styrene	22.34					99
70) o-Xylene	22.47	91		0.079 ng		99
71) n-Nonane	22.75	43	5417	0.151 ng		85
72) 1,1,2,2-Tetrachloroethane	22.48	83	548	N.D.		
74) Cumene	23.24	105	4006	N.D.		
75) alpha-Pinene	23.73	93	8444	0.255 ng		95
76) n-Propylbenzene	23.88	91	2986	N.D.		
77) 3-Ethyltoluene	24.01	105	3907	N.D.		
78) 4-Ethyltoluene	24.06	105	1917	N.D.		at ante-
79) 1,3,5-Trimethylbenzene	24.16	105	1464	N.D.		42

Data File : 02130912.D Acq On : 13 Feb 2009 17:35

Operator : WA/LH

: P0900513-003 (1000mL) Sample

: Haley & Aldrich SV-SS-64 (0.5, 3.8) Misc

Sample Multiplier: 1 ALS Vial : 11

Quant Time: Feb 16 09:09:51 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene		105 105	1480 4384		94
83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene	24.79 24.67 24.95	91	13725 545 395	N.D.	81
87) sec-Butylbenzene	24.95 25.00 25.20	105	395 336 1241	N.D.	
89) 1,2,3-Trimethylbenzene		105 146	1135 395	N.D.	97
92) 1,2-Dibromo-3-Chloropr 93) n-Undecane	0.00 26.32	157 57	0 2941	N.D. 0.073 ng	# 52
94) 1,2,4-Trichlorobenzene 95) Naphthalene 96) n-Dodecane	0.00 27.57 27.55	128 57	3152 4146	~···	90
97) Hexachloro-1,3-butadiene 98) Cyclohexanone 99) tert-Butylbenzene		55 119	26808 621	N.D.	95
100) n-Butylbenzene	25.74	91 	172	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-64

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-004

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00946

Initial Pressure (psig):

-4,4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.77

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.18	ND	0.069	
75-00-3	Chloroethane	ND	0.89	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.89	ND	0.22	
75-34-3	1,1-Dichloroethane	ND	0.89	ND	0.22	
71-55-6	1,1,1-Trichloroethane	ND	0.89	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:__ Date: TOISSCAN.XLT - NL - PageNo.:

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

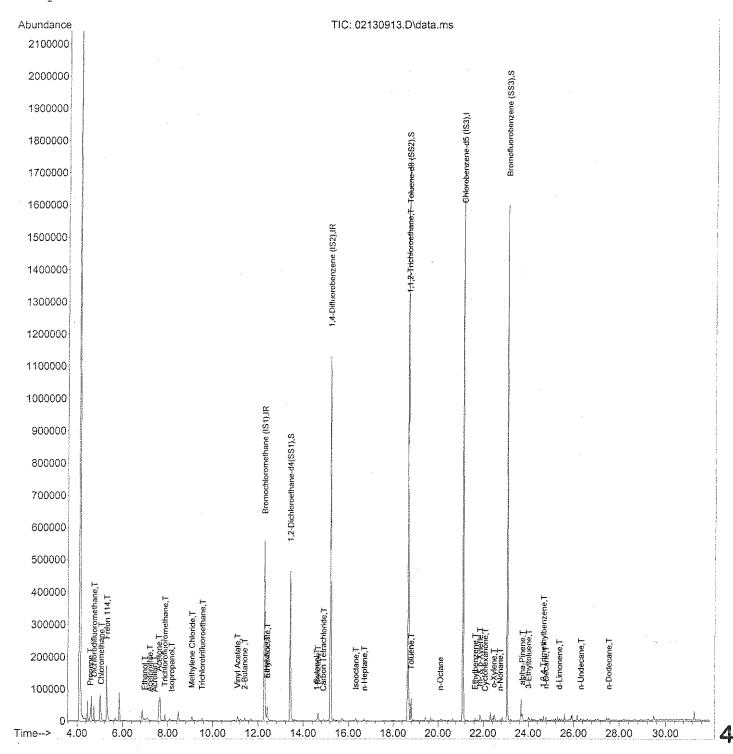
Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5) ✓


ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards				Conc Units	
1) Bromochloromethane (IS1)	12.28	130	295705	25.000 ng	-0.05
3/) I,4-DILLUOLODENZENE (152)	T2.ZI	114	1353/41	25.000 mg	-0.03
56) Chlorobenzene-d5 (IS3)	21.10	82	651687	25.000 ng	-0.01
System Monitoring Compounds					
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.42			24.501 ng ery = 98	
57) Toluene-d8 (SS2)	18.67	98	1508673	24.589 ng	-0.01
Spiked Amount 25.000				ery = ⁻ 98	
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174		25.797 ng ery = 103	
·			110001		
Target Compounds 2) Propene	/ EQ	43	5753	0.348 ng	Qvalue # 1
3) Dichlorodifluoromethane					
4) Chloromethane					
5) Freon 114	5.31	135	833	0.061 ng	64
6) Vinyl Chloride	0.00	62	0	N.D.	
// I,3-bucautene	5.79	54	234	N.D.	
8) Bromomethane	0.00	94	0	N.D. N.D.√	
9) Chloroethane	0.00	64	0	N.D.✓	
				1.727 ng	
				0.071 ng	
			1639		
			41401		
14) Trichlorofluoromethane 15) Isopropanol					
			360		00
17) 1,1-Dichloroethene	0.40	96	0	N D	
18) tert-Butanol	9.03	59	119	N.D.	
19) Methylene Chloride					# 53
20) Allyl Chloride	9.17	41	837	N.D.	
21) Trichlorotrifluoroethane	9.54	151	4361	0.387 ng	97
			2161		
23) trans-1,2-Dichloroethene	0.00		0		
24) 1,1-Dichloroethane	0.00	63	0	N.D.	
25) Methyl tert-Butyl Ether		73	0	N.D.	11
26) Vinyl Acetate	11.10		281		# 1
27) 2-Butanone	11.41	72			# 51
28) cis-1,2-Dichloroethene	0.00	61 07	0	N.D. N.D.	
29) Diisopropyl Ether 30) Ethyl Acetate	0.00 12.41	87 61	0 7731		87
31) n-Hexane	12.41	57	6893		95 46
					70

Page: 1

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

32 Chloroform 12.49 83 1129 N.D.	Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	v(Min)
35 Ethyl tert-Butyl Ether 0.00 87 0 N.D. 36 1,2-Dichloroethane 13.59 62 681 N.D. 38 1,1,1-Trichloroethane 13.98 97 545 N.D. 39 Isopropyl Acetate 0.00 61 0 N.D. 39 Isopropyl Acetate 0.00 61 0 N.D. 39 150 30 30 30 30 30 30 30	32)	Chloroform	12.49	83	1129	N.D.		
36	34)	Tetrahydrofuran	0.00	72	0	N.D.		
38	35)	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
39) Isopropyl Acetate				62	681	N.D.		
40) 1-Butanol	38)	1,1,1-Trichloroethane	13.98	97	545	N.D.√		
40) 1-Butanol	39)	Isopropyl Acetate	0.00	61	0	N.D.		
41) Benzene	40)			56	7597	0.511 ng		97
43) Cyclohexame	41)	Benzene	14.67	78	29315	0.505 ng		99
44) tert-Amyl Methyl Ether 0.00 73 0 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.34 57 10749 0.164 ng 91 50) Methyl Methacrylate 16.70 100 332 N.D. 51) n-Heptane 16.72 71 1643 0.114 ng 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 53) 4-Methyl-2-pentanone 0.00 75 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00	42)	Carbon Tetrachloride	14.90	117	3771	0.200 ng		100
45) 1,2-Dichloropropane						N.D.		
46) Bromodichloromethane			0.00	73	0	N.D.		
47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.34 57 10749 0.164 ng 91 50) Methyl Methacrylate 16.70 100 332 N.D. 51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Btyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 <td>45)</td> <td>1,2-Dichloropropane</td> <td>0.00</td> <td>63</td> <td>0</td> <td>N.D.</td> <td></td> <td></td>	45)	1,2-Dichloropropane	0.00	63	0	N.D.		
48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.34 57 10749 0.164 ng 91 50) Methyl Methacrylate 16.70 100 332 N.D. 51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 107 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D.	46)	Bromodichloromethane	0.00	83	0	N.D.		
49) Isooctane 16.34 57 10749 0.164 ng 91 50) Methyl Methacrylate 16.70 100 332 N.D. 51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00	47)	Trichloroethene	0.00	130	0	N.D.		
50) Methyl Methacrylate 16.70 100 332 N.D. 51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 21.65 91 905 0.131 ng 99 67) m- & p-Xylene 21.86 <td>48)</td> <td>1,4-Dioxane</td> <td>0.00</td> <td>88</td> <td>0</td> <td>N.D.</td> <td></td> <td></td>	48)	1,4-Dioxane	0.00	88	0	N.D.		
51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 0 0 N.D. 0 N.D. 0 N.D. 0 0 N.D.				57	10749	0.164 ng		91
51) n-Heptane 16.72 71 1643 0.114 ng # 66 52) cis-1,3-Dichloropropene 0.00 75 0 N.D. 0 0 N.D. 0 N.D. 0 N.D. 0 0 N.D.	50)	Methyl Methacrylate	16.70	100	332	N.D.		
53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.31 166 996 N.D. N.D. 996 N.D. N.D				71	1643	0.114 ng	#	66
54) trans-1,3-Dichloropropene 0.00 75 0 N.D. 55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 <td>52)</td> <td></td> <td></td> <td></td> <td></td> <td>N.D.</td> <td></td> <td></td>	52)					N.D.		
55) 1,1,2-Trichloroethane 18.68 97 129158 9.497 ng # 8 58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. N.D. 90 N.D. 90 N.D. 90 N.D. 90 90 N.D. 90 90 N.D. 90 90 N.D. 90	53)	4-Methyl-2-pentanone	0.00	58	0	N.D.		
58) Toluene 18.80 91 54577 0.883 ng 100 59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83	54)	trans-1,3-Dichloropropene	0.00	75	0	N.D.		
59) 2-Hexanone 19.14 43 1997 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	55)	1,1,2-Trichloroethane	18.68	97	129158	9.497 ng	#	8
60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 0.00 107 0 N.D. 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91<	58)	Toluene	18.80	91	54577	0.883 ng		100
61) 1,2-Dibromoethane 62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 60) Styrene 61) 1,2-Dibromoethane 62) 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 68) Bromoform 69) Styrene 61) 1,2-2-Tetrachloroethane 61) 1,1-2-Tetrachloroethane 62) 1,1-2-Tetrachloroethane 63) 1,1-2-Tetrachloroethane 64) 1215 N.D. 65) 1215 N.D. 66) Ethylbenzene 65) 21 2179 0.392 ng 97 67) 1,1-2-Tetrachloroethane 67) 1,1-2-Tetrachloroethane 68) 173 0 N.D. 79) 1,1-2-Tetrachloroethane 70) 0-Xylene 71) 1,1-2-Tetrachloroethane 72) 1,1-2-Tetrachloroethane 73) 1,1-2-Tetrachloroethane 74) Cumene 75) 1 215 N.D. 76) 1 215 N.D. 77) 3-Ethyltoluene 78) 4-Ethyltoluene 79 0.102 ng 98 78) 4-Ethyltoluene 71 105 6839 0.102 ng 98 78) 4-Ethyltoluene	59)	2-Hexanone	19.14	43	1997	N.D.		
62) Butyl Acetate 19.97 43 463 N.D. 63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105	60)	Dibromochloromethane	0.00	129	0	N.D.		
63) n-Octane 20.11 57 1296 0.091 ng # 78 64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	61)	1,2-Dibromoethane	0.00	107	0	N.D.		
64) Tetrachloroethene 20.30 166 996 N.D. 65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	62)	Butyl Acetate	19.97	43				
65) Chlorobenzene 0.00 112 0 N.D. 66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	63)	n-Octane	20.11	57	1296	0.091 ng	#	78
66) Ethylbenzene 21.65 91 9059 0.131 ng 99 67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	64)	Tetrachloroethene	20.30	166	996	N.D.		
67) m- & p-Xylene 21.86 91 21179 0.392 ng 97 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	65)	Chlorobenzene						
68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	66)	Ethylbenzene	21.65	91	9059	0.131 ng		99
69) Styrene 22.34 104 1460 N.D. 70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	67)					0.392 ng		97
70) o-Xylene 22.48 91 8512 0.154 ng 100 71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.			0.00	173	0	N.D.		
71) n-Nonane 22.75 43 2548 0.074 ng 98 72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	69)	Styrene	22.34	104	1460			
72) 1,1,2,2-Tetrachloroethane 0.00 83 0 N.D. 74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	70)	o-Xylene	22.48	91	8512	0.154 ng		100
74) Cumene 23.24 105 1215 N.D. 75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	71)	n-Nonane	22.75	43	2548	0.074 ng		98
75) alpha-Pinene 23.74 93 9016 0.286 ng # 43 76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.								
76) n-Propylbenzene 23.89 91 2835 N.D. 77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.	-							
77) 3-Ethyltoluene 24.01 105 6839 0.102 ng 98 78) 4-Ethyltoluene 24.06 105 3482 N.D.						_	#	43
78) 4-Ethyltoluene 24.06 105 3482 N.D.								
						_		98
79) 1,3,5-Trimethylbenzene 24.16 105 2731 N.D. 47		→						
	79)	1,3,5-Trimethylbenzene	24.16	105	2731	N.D.		47

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Ouant Time: Feb 16 09:09:58 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

	ernal Standards	10.4.	Q1011	response	Conc Units	Dev (Mill)
80)	alpha-Methylstyrene	24.36	118	132	N.D.	
	2-Ethyltoluene	24.40			N.D.	
	1,2,4-Trimethylbenzene	24.67		8584		92
83)	n-Decane	24.79	57	5467	0.153 ng	74
84)	Benzyl Chloride	24.67	91	827	N.D.	
85)	1,3-Dichlorobenzene	24.95		1125		
	1,4-Dichlorobenzene			1125		
	☆			290		
	p-Isopropyltoluene			977		
	1,2,3-Trimethylbenzene			2239		
	1,2-Dichlorobenzene			1125		
	d-Limonene	25.37		2391	_	95 .
	1,2-Dibromo-3-Chloropr	0.00			N.D.	
	n-Undecane	26.32				# 35
	1,2,4-Trichlorobenzene	0.00		0	N.D.	
	Naphthalene	27.58		4405	N.D.	
	n-Dodecane	27.55		3530	0.081 ng	95
	Hexachloro-1,3-butadiene	0.00			N.D.	
	Cyclohexanone	22.08				88
	tert-Butylbenzene	24.68			N.D.	
100)	n-Butylbenzene	25.67	91	1342	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page I of I

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-8

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-005

Test Code:

EPA TO-15

Date Collected: 2/10/09

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 2/12/09

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

SC00641

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.69	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.69	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.69	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.69	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: TOISSCAN, XLT - NL - PageNo.:

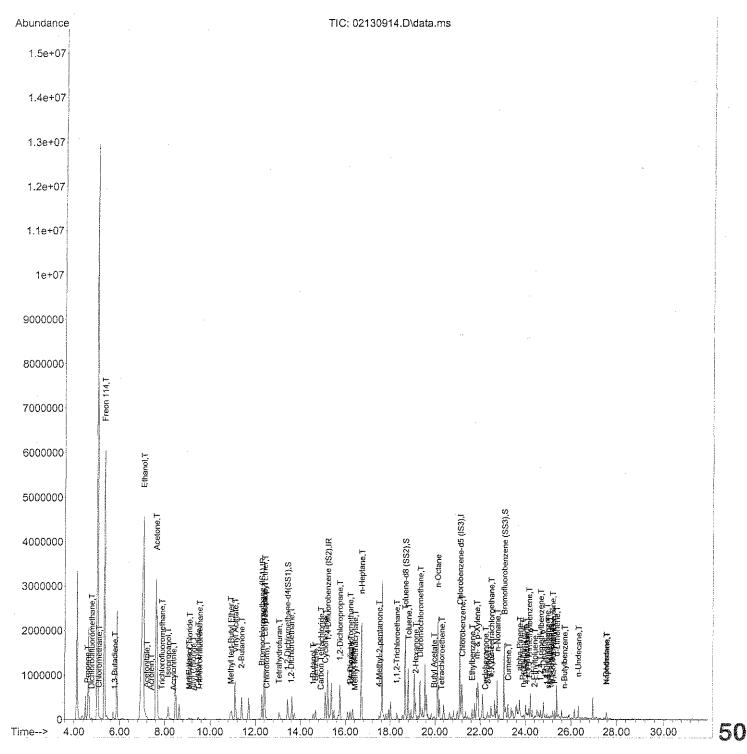
Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

Misc : Haley & Aldrich SV-SS-8 (-1.5, 3.5) ✓


ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

Misc : Haley & Aldrich SV-SS-8 (-1.5, 3.5) ✓

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIor	n Response	. Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.22	114	1333826	25.000	ng	- 0	.03 .03 .01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.67	98	Recov 1539442 Recov 643343	ery = 23.713	97. ng 94. ng	.56% -0 .84% 0	.01 .00
3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	5.09 5.33 0.00 5.79 6.25	85 50 135 62 54 94	59437 18960 1016 0 16670 518	2.069 0.808 0.074 N.D 1.195 N.D	ng ng ng ng ng	Qval #	1
9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile	6.58 7.06 7.20 7.41 7.62 7.88 8.15 8.39	45 41 56 58	146 16986275 96755 16648 2014381 26232 675380 8474	1665.073 3.503 1.946 173.185	2 ng ng ng na	#	93 94 84 76 96 97
14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00 9.07 9.09 9.27 9.53 9.47 0.00	96 59 84 41 151 76 61	0 67859 4239 1838 5400 112673	N.D 1.725 0.287 0.103 0.482 2.182 N.D	ng ng ng ng ng	# # #	77 56 55 89 99
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene	10.88 10.92 11.10 11.39 0.00	63 73 86 72 61	1170 9871 31734 213371 0	N.D 0.273 13.153 24.022 N.D	ng ng ng	##	93 2 33
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	12.41 12.40 12.41	87 61 57	9772 54211 926043	0.909 10.557 38.148	ng	##	1 68 88 5

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

Misc : Haley & Aldrich SV-SS-8 (-1.5, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.50	83	50403	2.260 ng		98
34) Tetrahydrofuran	13.06	72	64158		#	64
	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.60		4088	0.217 ng		97
38) 1,1,1-Trichloroethane			850	N.D.		
39) Isopropyl Acetate	14.54	61	54	N.D.		
40) 1-Butanol	14.57	56	124690	8.510 ng		85
41) Benzene	14.67	78	283348	4.955 ng		99
42) Carbon Tetrachloride	14.91	117	5400	0.291 ng		99
43) Cyclohexane	15.11	84	330557	17.390 ng	#	64
44) tert-Amyl Methyl Ether	15.75	73	52	N.D.		
45) 1,2-Dichloropropane	15.75	63	1498	0.104 ng	#	·58
46) Bromodichloromethane	16.22	83	26008	1.463 ng	#	18
47) Trichloroethene	16.26	130	629	N.D.		
48) 1,4-Dioxane	16.23	88	1839	0.167 ng	#	80
49) Isooctane	16.33	57	46295	0.715 ng	#	1
50) Methyl Methacrylate	16.43	100	2793		#	1
51) n-Heptane	16.72		638719	45.159 ng	#	73
52) cis-1,3-Dichloropropene	17.33		179	N.D.		
53) 4-Methyl-2-pentanone			34129	2.536 ng		81
54) trans-1,3-Dichloropropene			65	N.D.		
55) 1,1,2-Trichloroethane	18.29	97	5900	_	#	72
58) Toluene	18.80	91	1008044	15.409 ng		100
59) 2-Hexanone	19.13	43	231833	5.835 ng	#	41
60) Dibromochloromethane	19.34	129	2121	_		96
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.95	43			#	1
63) n-Octane	20.11			34.332 ng	#	69
64) Tetrachloroethene	20.30					100
65) Chlorobenzene	21.21		87799	~	#	43
66) Ethylbenzene	21.64					99
67) m- & p-Xylene			606659			97
68) Bromoform	21.96					
69) Styrene	22.33	104	24445	_		95
·70) o-Xylene	22.48	91		2.901 ng		99
71) n-Nonane	22.75	43	406087	11.217 ng		91
72) 1,1,2,2-Tetrachloroethane				_	#	18
74) Cumene	23.24		38409			95
75) alpha-Pinene	23.74	93				98
76) n-Propylbenzene			46554			94
77) 3-Ethyltoluene	24.01		63990			95
78) 4-Ethyltoluene	24.06		26561			97
79) 1,3,5-Trimethylbenzene	24.15	105	25329	0.422 ng		96 52

Data File : 02130914.D

: 13 Feb 2009 19:01 Acq On

Operator : WA/LH

Sample : P0900513-005 (1000mL)

: Haley & Aldrich SV-SS-8 (-1.5, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Ouant Time: Feb 16 09:10:02 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	24.35	118	1189	N.D.	and the second s
81)	2-Ethyltoluene	24.40	105	22571	0.310 ng	94
	1,2,4-Trimethylbenzene	24.67		66414	1.032 ng	97
83)			57	172934	4.573 ng	68
84)	→		91	543	N.D.	
85)	•	24.95	146	27231	0.725 ng	99
	1,4-Dichlorobenzene	24.95	146	27231	0.708 ng	99
	sec-Butylbenzene	25.00	105	7821	0.093 ng	98
	p-Isopropyltoluene	25.20	119	37881	0.465 ng	95
	1,2,3-Trimethylbenzene	25.20	105	21273	0.330 ng	82
90)	1,2-Dichlorobenzene	24.95	146	27231	0.766 ng	100
	d-Limonene	25.37	68	199454	7.988 ng	99
92)	1,2-Dibromo-3-Chloropr	26.31	157	431	N.D.	
	n-Undecane	26.32	57	104224	2.554 ng	, 67
94)	1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
	Naphthalene	27.57	128	85462	0.921 ng	97
96)	n-Dodecane	27.55	57	38567	0.838 ng	77
97)	Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98)	Cyclohexanone	22.23	55	1796	0.065 ng	94
99)	tert-Butylbenzene	25.12		5433	0.087 ng	98
100)	n-Butylbenzene	25.71	91	18943	0.285 ng	# 59

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-8

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

Date Collected: 2/10/09

CAS Sample ID: P0900513-006

Γest Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

6.0 L Summa Canister

Date Received: 2/12/09 Date Analyzed: 2/13/09

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

Sampling Media:

AC01435

Initial Pressure (psig):

-3.9

Final Pressure (psig):

3.6

Volume(s) Analyzed:

Canister Dilution Factor: 1.69

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${ m ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.17	ND	0.066	
75-00-3	Chloroethane	ND	0.85	ND	, 0.32	
75-35-4	1,1-Dichloroethene	ND	0.85	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.85	ND	0.21	
71-55-6	1,1,1-Trichloroethane	ND	0.85	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

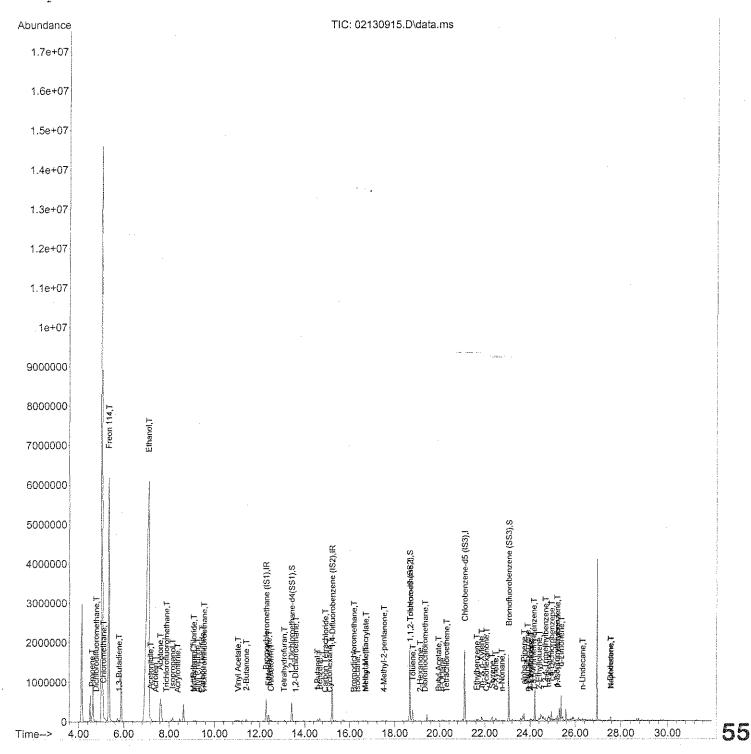
Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

Sample : P0900513-006 (1000mL)

Misc : Haley & Aldrich SV-InA-8 (-3.9, 3.6) 🗸


ALS Vial: 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130915.D

Acq On. : 13 Feb 2009 19:44

Operator : WA/LH

: P0900513-006 (1000mL) Sample

: Haley & Aldrich SV-InA-8 (-3.9, 3.6) √

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	299869	25.000	ng	-0	.05
37) 1,4-Difluorobenzene (IS2)	15.22	114	1350439	25.000	ng	- 0	.03
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.10	82	668943	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(
Spiked Amount 25.000			Reco	very =	97	.888	\checkmark
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18.67	98	1533579	24.351	ng	-0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	~		Reco	very =	97	.40%	V
73) Bromoiluoropenzene (SS3)	23.06	174	625487	26.441	ng	0	,00
Spiked Amount 25.000			Reco	very =	105	. 768 v	1
arget Compounds						Qva.	
2) Propene	4.59	42	72939	4.345	ng	#	1
3) Dichlorodifluoromethane	4.78	85	48827	1.666	ng		99
3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene	5.09	. 50	22808	0.952	ng		98
5) Freon 114	5.33	135	851	0.061	ng		64
6) Vinyi Chioride	0.00	62	10673	N.D	. ~		0.0
/) I,3-Butadiene	5.79	54	186/3	T.3TZ	ng		96
8) Chloroothane	0.20	24	440	N.D	•		
8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein	7 10	64 4E	00000E0	N.U	.V		റാ
11) Agotonitrilo	7.10	4: D // 1	110750	2712.51	r ug		92 92
12) Acrolein	7.19	56	22973	2.222	ng ng		92 80
13) Acetone	7.40	5.8 5.8	359991	30 328	na ma	#	81
14) [[[7 00	7 0 1	01050	0 0 0 0			0.4
15) Isopropánol	8 16	45	190403	4 472	na ++3		94
14) Trichlorofituoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol	8.38	53	8203	0.421	na		94
17) 1.1-Dichloroethene	0.00	96	0	N.D			
8) tert-Butanol	9.08	59	23201	0.578	ng	#	26
19) Methylene Chioride	9.08	84	4641	0.308	na	#	55
20) Allyl Chloride	9.26	41	1676	0.092	nq	#	55
20) Allyl Chloride 21) Trichlorotrifluoroethane	9.53	151	4627	0.405	ng		89
22) Carbon Disulfide	9.46	76	9670	0.184	ng		95
23) trans-1,2-Dichloroethene	0.00	61	0	N.D	_		
24) 1,1-Dichloroethane	0.00	63	0	N.D	. V		
25) Methyl tert-Butyl Ether	10.92	73	374	N.D			
26) Vinyl Acetate	11.03	86	12707	5.161	ng	#	1
27) 2-Butanone	11.40	72	22679	2.502	ng	#	37
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	12.39	87	571	N.D			
30) Ethyl Acetate	12.40	61	35561	6.786	_		82
31) n-Hexane	12.40	57	17052	0.688	na		88 🗲

Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

Sample : P0900513-006 (1000mL)

Misc : Haley & Aldrich SV-InA-8 (-3.9, 3.6)

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	36173	1.589 ng		96
34) Tetrahydrofuran			3559	_	#	1
35) Ethyl tert-Butyl Ether	0.00	87		_	.,	
36) 1,2-Dichloroethane	13.59	62	3178			94
38) 1,1,1-Trichloroethane	13.98	97	623	N.D. 7		
39) Isopropyl Acetate	14.56	61	473	N.D.		
40) 1-Butanol	14.57	56	49904	3.364 ng		86
41) Benzene	14.67	78	93623	1.617 ng		100
42) Carbon Tetrachloride	14.91	117	5298	0.282 ng		98
43) Cyclohexane	15.10	84	4224	0.219 ng	#	68
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane				0.509 ng		98
			567			
48) 1,4-Dioxane	16.24	88	527	N.D.		
49) Isooctane	16.34	57	14016	0.214 ng	-	88
50) Methyl Methacrylate	16.70		1775	0.312 ng	#	1
51) n-Heptane	16.70				#	74
52) cis-1,3-Dichloropropene	0.00	75	0			
53) 4-Methyl-2-pentanone						87
54) trans-1,3-Dichloropropene	0.00	75	0			
55) 1,1,2-Trichloroethane	18.68		130818			8
58) Toluene	18.80	91	257668	4.060 ng		98
59) 2-Hexanone	19.13			0.225 ng		76
60) Dibromochloromethane						99
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.95	43	25383	0.574 ng		91
63) n-Octane	20.11	57	5959	0.408 ng	#	79
64) Tetrachloroethene	20.30	166	2459			90
65) Chlorobenzene	21.17	112	417	N.D.		
66) Ethylbenzene	21.64	91	44090	0.623 ng		100
67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene	21,85	91	102739	1.852 ng		96
68) Bromoform	21.96	173	394	N.D.		
69) Styrene	22.33	104	34034	0.799 ng		97
70) o-Xylene	22.48	91	34132	0.601 ng		100
71) n-Nonane	22.75	43	12413	0.353 ng		92
72) 1,1,2,2-Tetrachloroethane	22.49	83	694	N.D.		
74) Cumene	23.24	105	4252	N.D.		0.77
75) alpha-Pinene	23.74	93	89880	2.777 ng	11	97
76) n-Propylbenzene	23.88	91	10485	0.115 ng	#	76
77) 3-Ethyltoluene	24.01		24758	0.360 ng		95
78) 4-Ethyltoluene	24.06		11788	0.175 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	9353	0.161 ng		99 57

Data File : 02130915.D

: 13 Feb 2009 19:44 Acq On

Operator : WA/LH

Sample : P0900513-006 (1000mL)

: Haley & Aldrich SV-InA-8 (-3.9, 3.6)

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80)	alpha-Methylstyrene	24.35	118	1735	N.D.		
81)		24.40	105	9418	0.133 ng		97
82)	1,2,4-Trimethylbenzene	24.67	105	31149	0.499 ng		97
83)	n-Decane	24.82		48558	1.324 ng	#	1
84)	Benzyl Chloride	24.85	91	1234	N.D.		
	1,3-Dichlorobenzene	24.95		99470	2.730 ng		99
	1,4-Dichlorobenzene	24.95		99470	2.665 ng		99
	sec-Butylbenzene	25.01			N.D.		
	p-Isopropyltoluene	25.20			0.445 ng		95
	1,2,3-Trimethylbenzene	25.20	105	13028	0.209 ng		70
	1,2-Dichlorobenzene	25.37	146	292	N.D.		
	d-Limonene	25.37	68	161823	6.680 ng		96
	1,2-Dibromo-3-Chloropr	0.00			N.D.		
	n-Undecane	26.32		17280	0.437 ng	#	51
	1,2,4-Trichlorobenzene	0.00		0	N.D.		
	Naphthalene	27.57		50418	0.560 ng		98
	n-Dodecane	27.55	57	28907	0.648 ng		74
	Hexachloro-1,3-butadiene	0.00		0	N.D.		
	Cyclohexanone	22.06			0.663 ng	#	93
	tert-Butylbenzene	25.12		2677	N.D.		
100)	n-Butylbenzene	25.71	91	3278	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-OutA-020909

6.0 L Summa Canister

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-007

Test Code:

EPA TO-15

Date Collected: 2/10/09

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 2/12/09

Analyst:

Wida Ang

Date Analyzed: 2/13/09 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

AC01179

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.053	
75-00-3	Chloroethane	. ND	0.68	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.68	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.68	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.68	ND	0.12	

VI) = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Quantitation Report (Not Reviewed)

Data Path : J:\MS16\DATA\2009 02\13\

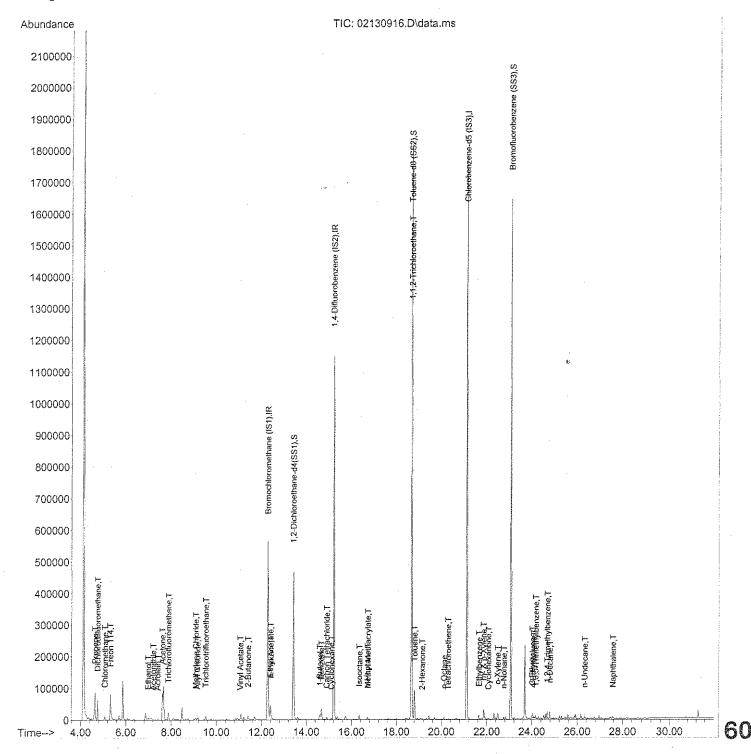
Data File : 02130916.D

Acg On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)


ALS Vial : 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

: P0900513-007 (1000mL) Sample

: Haley & Aldrich SV-OutA-020909 (-1.3, 3.5) Misc

: 15 Sample Multiplier: 1 ALS Vial

Quant Time: Feb 16 09:10:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Unit	s Det	r(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2)	15.21	114	1377268	25.000 ng		-0:05 -0:03
56) Chlorobenzene-d5 (IS3)	21.10	82	670624	25.000 ng	-	-0.01
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000			Recov	24.795 ng ery = 99		
57) Toluene-d8 (SS2)	18.67	98	1546800	24.499 ng	-	0.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	22 06	177	Recov	ery = 98	3.00%	5 V
Spiked Amount 25.000	43.00	1. /4		ery = 104		
Target Compounds						ralue
2) Propene	4.63		14367	0.859 ng	#	25
3) Dichlorodifluoromethane	4.76	85	63155	2.162 ng 0.497 ng 0.084 ng		98
4) Chloromethane 5) Freon 114 6) Vinyl Chloride	5.08	50	11852	0.497 ng		96
5) Freon 114	5.31	135	1166	0.084 ng		69
6) Vinyl Chloride	5.78	62	529	N.D.		•
7) 1,3-Butadiene 8) Bromomethane	5.78	04	529			
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane	0.25	94 C1	102	N.D. N.D.		
10) Ethanol	6 98	45	9350	0.901 ng		97
11) Acetonitrile	7 21	43	2751	0.901 ng		90
12) Acrolein	7.21 7.41	56	2605	0.098 ng		
13) Acetone			51776	4.377 ng	#	
14) Trichlorofluoromethane	7.88	101	27817		11	95
15) Isopropanol	8 18	45	2197	N.D.		
16) Acrylonitrile	8.18 8.48 0.00	53	357			
17) 1,1-Dichloroethene	0.00	96	0	N.D. N.D.		
18) tert-Butanol	9.08	59	295	N.D.		
19) Methylene Chloride	9.08	84	3289	0.219 ng	#	54
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.16	41	2083	0.115 ng	#	
21) Trichlorotrifluoroethane	9.53	151	6037	0.530 ng		88
22) Carbon Disulfide	9.48	76	2132	N.D.		
24) 1,1-Dichloroethane	0.00	63	0	N.D.		
25) Methyl tert-Butyl Ether	0.00	73	0	N.D.	44	
26) Vinyl Acetate	11.06	86	567	0.231 ng	#	1
27) 2-Butanone	11.41	72	5452	0.604 ng	#	60
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.		
29) Diisopropyl Ether	0.00	87	0	N.D.		٥٢
30) Ethyl Acetate	12.41	61 57	6109	1.170 ng		86
31) n-Hexane	12.41	5 /	10348	0.419 ng		91 61

Page: 1

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32)	Chloroform	12.49	83	1146	N.D.		
34)	Tetrahydrofuran	0.00	72	0	N.D.		
35)	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36)	1,2-Dichloroethane	13.58	62	860	N.D.		
38)	1,1,1-Trichloroethane	13.98	97	910	N.D.		
39)	Isopropyl Acetate	0.00	61	0	N.D.		
40)	1-Butanol	14.59					89
	Benzene	14.67			0.713 ng		100
42)	Carbon Tetrachloride				0.363 ng		
	Cyclohexane				0.079 ng	#	74
	tert-Amyl Methyl Ether				N.D.		
		0.00		0	N.D.		
	Bromodichloromethane		83	0	N.D.		
		0.00	130	0	N.D.		
	•	0.00	88	0			
	Isooctane	16.34			~		94
	Methyl Methacrylate	16.72		641		#	1
	n-Heptane			2303	0.158 ng	#	72
	cis-1,3-Dichloropropene			0	N.D.		
	4-Methyl-2-pentanone			57	N.D.		
	trans-1,3-Dichloropropene			0			
	1,1,2-Trichloroethane	18.68		131038		# .	8
	Toluene	18.80		77467			98
	2-Hexanone	19.14				#	55
					N.D.		
	1,2-Dibromoethane	0.00			N.D.		
	Butyl Acetaté			1704			
	n-Octane			1317		#	76
	Tetrachloroethene	20.29			0.066 ng		94
	Chlorobenzene	21.16			N.D.		
	Ethylbenzene	21.65			0.188 ng		95
	m- & p-Xylene	21.86			0.596 ng		99
	Bromoform	0.00					
	Styrene			1319			
	o-Xylene	22.48			0.226 ng		97
	n-Nonane	22.75	43	3431	0.097 ng		79
	1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.		
,	Cumene	23.24	105	1761	N.D.		
	alpha-Pinene	23.74	93	1662	N.D.		
	n-Propylbenzene	23.88	91	3860	N.D.		
	3-Ethyltoluene	24.01	105	10882	0.158 ng		99
	4-Ethyltoluene	24.06	U.J	5352	0.079 ng		99
79)	1,3,5-Trimethylbenzene	24.16	105	4262	0.073 ng		98 6 2

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.58			N.D.	
81) 2-Ethyltoluene			4010		
82) 1,2,4-Trimethylbenzene				0.205 ng	
83) n-Decane			9711		76
84) Benzyl Chloride	24.85	91	54	N.D.	
85) 1,3-Dichlorobenzene	24.95	146	1619	N.D.	
86) 1,4-Dichlorobenzene	24.95	146	1619	N.D.	
87) sec-Butylbenzene	25.00	105	368	N.D.	
88) p-Isopropyltoluene	25.20	119	1107	N.D.	
89) 1,2,3-Trimethylbenzene	25.20	105	3253	N.D.	
90) 1,2-Dichlorobenzene	24.95	146	1619	N.D.	
91) d-Limonene	25.37	68	709	N.D.	
92) 1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.	
93) n-Undecane	26.32	57	3316	0.084 ng	# 65
94) 1,2,4-Trichlorobenzene	0.00	184	. 0	N.D.	
95) Naphthalene	27.57	128	5558	0.062 ng	95
96) n-Dodecane	27.55	57	2471	N.D.	
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98) Cyclohexanone				0.075 ng	# 92
99) tert-Butylbenzene					
100) n-Butylbenzene	25.67				

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-2

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00160

Initial Pressure (psig):

-0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.26

CAS#	Compound	Result μg/m³	MRL μg/m³	Result pphV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.049	
75-00-3	Chloroethane	ND	0.63	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.63	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.63	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.63	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date:_ TOISSCAN, XLT - NL - PageNo.: Quantitation Report (Nøt Reviewed)

Data Path : J:\MS16\DATA\2009 02\13\

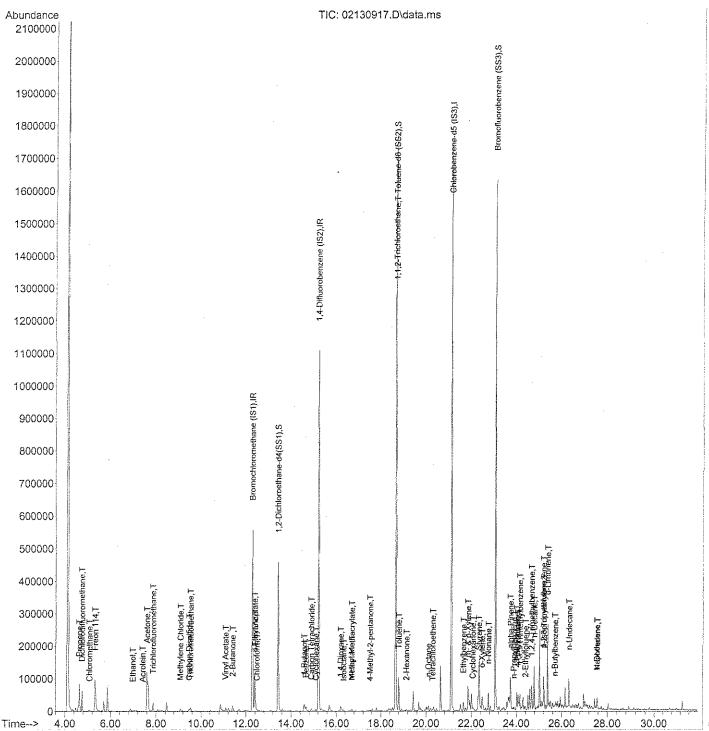
Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5) ✓


ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	290183	25.000	ng	- 0	.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1338269	25.000	ng	- 0	
56) Chlorobenzene-d5 (IS3)	21.10	82	658768	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65					
Spiked Amount 25.000			Recove	ery =	99.	.32%	/
57) Toluene-d8 (SS2)	18.67	98	1513501	24.403	ng	~0	.01
Spiked Amount 25.000	02.06	7 17 4	Recove	ery =	97.	. 60%	V
73) Bromofluorobenzene (SS3)	23.06	174					
Spiked Amount 25.000			kecove	ery =	104.	808	√ ·
Target Compounds						Qva	
2) Propene	4.64	42	12594	0.775	ng	#	15
3) Dichlorodifluoromethane	4.76	85	65434	2.307	ng		99
4) Chloromethane	5.08	50	2422	0.105	ng		93
5) Freon 114 6) Vinyl Chloride	5.32	135	1123	0.083	ng		9.7
6) Vinyi Chloride	0.00	62	475	N.D	. V		
7) 1,3-Butadiene	5.70	54	4/5	N.D	•	•	
8) Bromomethane	0.00	94	0	M.D	1		
9) Chloroethane 10) Ethanol	6.57	0 4	5050	V EV1	.v ~~		88
10) Ethanol11) Acetonitrile12) Acrolein13) Acetone	7 10	4:5 4:1	1552	U.501	119		00
12) Accountifie	7.13	5.6 4.1	1710	0.203	• na	#	73
13) Acetone	7.42	50 50	76626	6 671	ng	#	7.5
14) Trichlorofluoromethane	7.00	101	28682	1.163			97
15) Isopropanol							<i>J</i> ,
16) Acrylonitrile	8 48	53	118	N D	•		
17) 1,1-Dichloroethene	0.00	96	0	N.D	1		
18) tert-Butanol	9.10	59	604	N.D	-		
19) Methylene Chloride						#	57
20) Allyl Chloride							
21) Trichlorotrifluoroethane	9.53	151	6084	0.550	ng		87
22) Carbon Disulfide	9.47	76	14363	0.282	ng		97
23) trans-1,2-Dichloroethene	0.00	61	0	AT TO	-		
24) 1,1-Dichloroethane	0.00	63	0	N.D.	. two		
25) Methyl tert-Butyl Ether	10.86	73	115	N.D.	•		
26) Vinyl Acetate	11.09	86	396	0.166	ng	#	1
27) 2-Butanone	11.41	72	8409	0.959	ng	#	44
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.	١.		
29) Diisopropyl Ether	0.00	87	0	N.D.			
30) Ethyl Acetate	12.40	61	23957	4.724			89
31) n-Hexane	12.41	57	6184	0.258	ng		93 6 (

Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	12.48	83	1512	0.069 ng		94
34) Tetrahydrofuran	13.10		360	N.D.		
35) Ethyl tert-Butyl Ether			. 0	N.D.		
36) 1,2-Dichloroethane	13.59		731	N.D. /		
38) 1,1,1-Trichloroethane			867	$N.D.\checkmark$		
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	14.59	56	29609	2.014 ng		90
41) Benzene	14.67	78	13460	0.235 ng		98
42) Carbon Tetrachloride			6918			99
43) Cyclohexane	15.10	84		_	#	65
44) tert-Amyl Methyl Ether	0.00		0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	0	N.D.		
47) Trichloroethene	16.25	130	132	N.D.		
48) 1,4-Dioxane	16.21	88	17569		#	72
49) Isooctane	16.34	57	5037	0.078 ng		79
50) Methyl Methacrylate	16.70	100	447	0.079 ng	#	1
51) n-Heptane	16.70	71	1617	0.114 ng	#	81
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52	58	1045	0.077 ng	#	46
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane			128441	9.553 ng	#	8
58) Toluene	18.80	91	74467	1.191 ng		98
59) 2-Hexanone	19.14	43	5735	0.151 ng		95
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.96	43	2434	N.D.		
63) n-Octane	20.11	57	3539	0.246 ng	#	82
64) Tetrachloroethene	20.30	166	1390	0.080 ng		99
65) Chlorobenzene	21.20	112	251	N.D.		
66) Ethylbenzene	21.64	91	24363	0.350 ng		99
67) m- & p-Xylene	21.86	91	76727	1.404 ng		98
68) Bromoform	0.00	173	0	N.D.		
69) Styrene	22.33	104	6740	0.161 ng		98
70) o-Xylene	22.48	91	24438	0.437 ng		98
71) n-Nonane	22.75	43	25679	0.742 ng		93
72) 1,1,2,2-Tetrachloroethane	22.44	83	63	N.D.		
74) Cumene	23.23	105	3268	N.D.		
75) alpha-Pinene	23.74	93	47060	1.476 ng		97
76) n-Propylbenzene	23.88	91	8664	0.097 ng		95
77) 3-Ethyltoluene	24.01	105	23439	0.346 ng		96
78) 4-Ethyltoluene	24.06	105	11631	0.175 ng		98
79) 1,3,5-Trimethylbenzene	24,15	105	9076	0.158 ng		94 67
· · · · · · · · · · · · · · · · · · ·				~		

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

82) 1,2,4-Trimethylbenzene 24.67 105 29368 0.478 ng 83) n-Decane 24.79 57 49691 1.375 ng 84) Benzyl Chloride 24.84 91 698 N.D. 85) 1,3-Dichlorobenzene 24.95 146 320 N.D. 86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	in)
82) 1,2,4-Trimethylbenzene 24.67 105 29368 0.478 ng 83) n-Decane 24.79 57 49691 1.375 ng 84) Benzyl Chloride 24.84 91 698 N.D. 85) 1,3-Dichlorobenzene 24.95 146 320 N.D. 86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	
83) n-Decane 24.79 57 49691 1.375 ng 384) Benzyl Chloride 24.84 91 698 N.D. 85) 1,3-Dichlorobenzene 24.95 146 320 N.D. 86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 39 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	95
84) Benzyl Chloride 24.84 91 698 N.D. 85) 1,3-Dichlorobenzene 24.95 146 320 N.D. 86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	97
85) 1,3-Dichlorobenzene 24.95 146 320 N.D. 86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 9 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	75
86) 1,4-Dichlorobenzene 24.95 146 320 N.D. 87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	
87) sec-Butylbenzene 25.01 105 1022 N.D. 88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	
88) p-Isopropyltoluene 25.20 119 44326 0.569 ng 9 89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	
89) 1,2,3-Trimethylbenzene 25.20 105 9151 0.149 ng #	
	90
	45
90) 1,2-Dichlorobenzene 24.95 146 320 N.D.	
	97
92) 1,2-Dibromo-3-Chloropr 0.00 157 0 N.D.	
	58
94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D.	
· · · · · · · · · · · · · · · · · · ·	99
	54
97) Hexachloro-1,3-butadiene 0.00 225 0 N.D.	
	75
99) tert-Butylbenzene 25.12 119 2106 N.D.	
100) n-Butylbenzene 25.70 91 4772 0.075 ng # 3	8 8

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-2

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0900513

CAS Sample ID: P0900513-009

Test Code:

EPA TO-15

Date Collected: 2/10/09

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 2/16/09

Analyst:

Date Analyzed: 2/16/09

Sampling Media:

Wida Ang

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01423

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.39

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.70	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.70	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND ,	0.70	ND	0.13	

VID = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data Path : J:\MS16\DATA\2009 02\16\

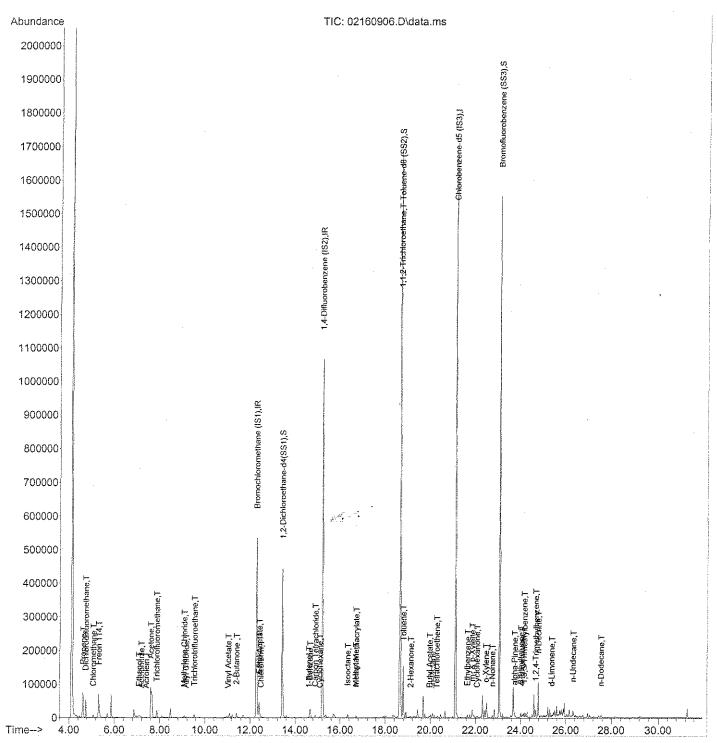
Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)


ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

: P0900513-009 (1000mL) Sample

: Haley & Aldrich SV-InA-2 (-1.6, 3.5) 🗸 Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Uni	ts De	v(Min)
1) Bromochloromethane (IS1)	12.28	130	276686	25.000 ng		-0.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1269109	25.000 ng	-	-0.03
56) Chlorobenzene-d5 (IS3)	21.10	82	624161	25.000 ng	-	-0.01
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.42	65	446597	25.240 ng		-0.04
Spiked Amount 25.000				ery = 1		
57) Toluene-d8 (SS2)	18.67	- 98	1443468	24.564 ng	- 0 0 4 9	-0.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	00 00	154	Recove	ery =	98.243	5 1
73) Bromofluorobenzene (SS3)	23.06	174	566996	25.688 ng	مم سرد ⁰	0.00
Spiked Amount 25.000			Recove	ery = 1	02.764	5 6
Target Compounds						ralue
2) Propene	4.63	42	12330	0.796 ng	#	24
3) Dichlorodifluoromethane	475	25	55256	2.043 ng 0.476 ng		99
4) Chloromethane 5) Freon 114	5.08	50 -	10515	0.476 ng		93
5) Freon 114	5.32	135	979	0.076 ng		87
6) Vinyl Chloride7) 1,3-Butadiene	0.00	62	0	N.D.		
7) 1,3-Butadiene	5.78	54	420	N.D.	4	
8) Bromomethane	6.25	94	54	N.D.		
9) Chloroethane	0.00	64	0 4104	N.D.		93
10) Ethanol			24184			
11) Acetonitrile	7.13	E C	2719	0.105 Hg		88
	7.41	20	2798 57345	5.236 ng	#	76
13) Acetone14) Trichlorofluoromethane				1.044 ng		
15) Isopropanol	9.07 8.18	45	809	N D		,,,
16) Acrylonitrile	8 46	53	56	N D		
17) 1,1-Dichloroethene	0.00	96	0	N.D.		
18) tert-Butanol	9.07	59	405	N.D.		
19) Methylene Chloride	9.08	84	3096	0.223 ng	#	50
20) Allyl Chloride	9.16	41	1178	0.070 ng	#	55
21) Trichlorotrifluoroethane	9.53	151	5077	0.482 ng		91
			2740			
23) trans-1,2-Dichloroethene	0.00	61	0	N.D.		
24) 1,1-Dichloroethane	0.00	63	0	N.D.		
25) Methyl tert-Butyl Ether	0.00	73	0	N.D.		
26) Vinyl Acetate	11.04	86	693	0.305 ng	#	1
27) 2-Butanone	11.41	72	6314	0.755 ng	#	57
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.		
29) Diisopropyl Ether	0.00	87	0	N.D.		
30) Ethyl Acetate	12.40	61	7304	1.511 ng		89
31) n-Hexane	12.41	57	7309	0.320 ng		94 7

Data Path : J:\MS16\DATA\2009_02\16\

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform 34) Tetrahydrofuran	12.48		1603 0	0.076 ng N.D.		94
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1 2-Dichloroethane	12 59	62	671	N.D.		
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol	13.98	97	705	N.D.		
39) Isopropyl Acetate	0.00	61	0			
				0.304 na		93
41) Benzene	14.67	78	33640	0.618 ng		98
42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	14.90	117	6542	0.618 ng 0.370 ng		93
43) Cyclohexane	15.10	84	1393	0.077 ng	#	66
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	. 0	N.D.		
45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane	16.25	130	110	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.34	57	12404	0.201 ng		87
50) Methyl Methacrylate	16.71	100	401	0.075 ng	#	1
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene	16.70	71	1866	0.139 ng	#	70
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52	58	534	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.	.,	
55) 1,1,2-Trichloroethane	18.68	97	122016	9.570 ng	#	8
58) Toluene	18.80	91	63083	1.065 ng		99
59) 2-Hexanone	19.13	43	4414	0.123 ng		82
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		PT 0
62) Butyl Acetate	19.97	4.3	3080	0.075 ng		70
63) n-Uctane	20.11	5/	2524	0.185 ng		85
						92
65) Chlorobenzene 66) Ethylbenzene	21 64	01	10154	N.D.		98
67) m- E n-Vulene	21.04	9.I	73846	N.D. 0.154 ng 0.461 ng		100
68) Bromoform 69) Styrene 70) o-Xylene	0.00	173	23040	0.461 ng N.D.		100
69) Styrene	22 34	104	1580	N.D.		
70) o-Xylene	22.48	91	9532	0.180 ng		98
71) n-Nonane	22.75	43	4083	0.125 ng		96
72) 1,1,2,2-Tetrachloroethane	22.48	83	370	N.D.		20
74) Cumene	23.24	105	1839	N.D.		
75) alpha-Pinene	23.74	93	3666	0.121 ng	#	43
76) n-Propylbenzene	23.89	91	3115	N.D.		
77) 3-Ethyltoluene	24.01	105	7608	0.118 ng		95
78) 4-Ethyltoluene	24.07	105	4243	0.067 ng		92
79) 1,3,5-Trimethylbenzene	24.16	105	3260	0.060 ng		93 72

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

: Haley & Aldrich SV-InA-2 (-1.6, 3.5) Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene	24.59 24.40 24.67	105	1117 2993 9640	N.D. N.D. 0.166 ng		92
83) n-Decane 84) Benzyl Chloride		57	41239 55	1.205 ng N.D.		77
85) 1,3-Dichlorobenzene	24.95 24.95	146	1923 1923			
·	25.01	105	276	N.D.		
89) 1,2,3-Trimethylbenzene		105	2391 1923	N.D.		
91) d-Limonene 92) 1,2-Dibromo-3-Chloropr		157	0	0.074 ng N.D.		85
93) n-Undecane 94) 1,2,4-Trichlorobenzene	26.32	184	0	0.204 ng N.D.	#	39
95) Naphthalene 96) n-Dodecane	27.58 27.55	57		0.073 ng		74
97) Hexachloro-1,3-butadiene 98) Cyclohexanone	0.00 22.07 24.67	. 55	3224	N.D. 0.129 ng N.D.		96
99) tert-Butylbenzene 100) n-Butylbenzene	25.67		2058	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Haley & Aldrich, Inc.

Client Sample ID: SV-SS-16 CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014 CAS Sample ID: P0900513-010

Test Code: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 2/12/09

Analyst: Wida Ang Date Analyzed: 2/13/09
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Instrument ID:

Container ID: SC00932

Initial Pressure (psig): -1.3 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.36

Date Collected: 2/10/09

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.053	
75-00-3	Chloroethane	· ND	0.68	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.68	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.68	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.68	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 2 118/09
TOISSCAN.XLT - NL - PageNo.:

Data Path : J:\MS16\DATA\2009 02\13\

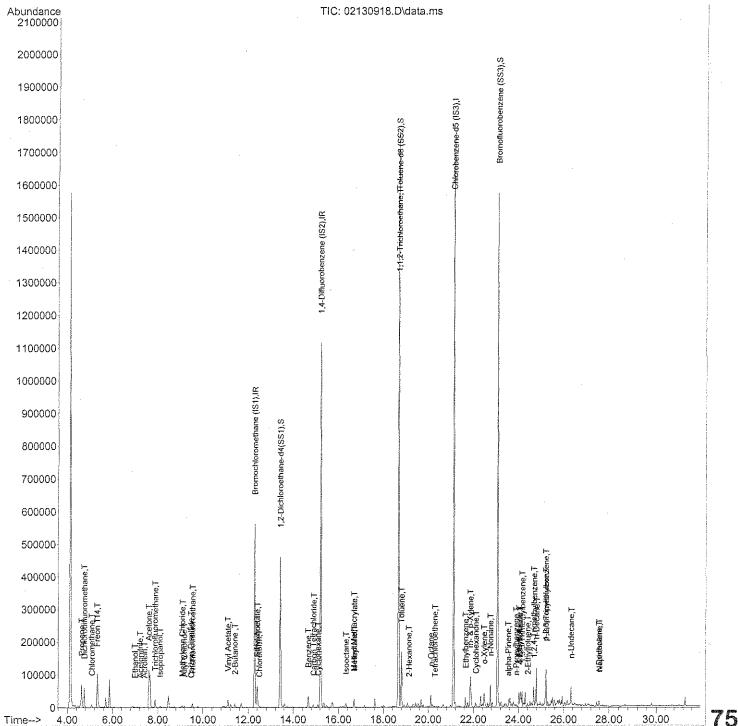
Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5) ✓


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

1) Bromochloromethane (IS1) 12.28 130 296454 25.000 ng -0.05 37) 1,4-Difluorobenzene (IS2) 15.21 114 1340448 25.000 ng -0.03 56) Chlorobenzene-d5 (IS3) 21.10 82 652867 25.000 ng -0.01 System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42 65 464279 24.490 ng -0.04 Spiked Amount 25.000 Recovery = 97.96% V 57) Toluene-d8 (SS2) 18.67 98 1503562 24.462 ng -0.01 Spiked Amount 25.000 Recovery = 97.84% V 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% V Target Compounds Qvalue 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. V 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 6.25 94 178 N.D. 9) Chloroethane 6.98 45 2691 0.261 ng # 54 11) Acetonitrile 7.21 41 2213 0.079 ng 91
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42 65 464279 24.490 ng -0.04 Spiked Amount 25.000 Recovery = 97.96% / 57) Toluene-d8 (SS2) 18.67 98 1503562 24.462 ng -0.01 Spiked Amount 25.000 Recovery = 97.84% / 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% / Target Compounds Qvalue 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. / 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. / 9) Chloroethane 0.00 64 0 N.D. / 10) Ethanol 6.98 45 2691 0.261 ng # 54
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42 65 464279 24.490 ng -0.04 Spiked Amount 25.000 Recovery = 97.96% / 57) Toluene-d8 (SS2) 18.67 98 1503562 24.462 ng -0.01 Spiked Amount 25.000 Recovery = 97.84% / 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% / Target Compounds Qvalue 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. / 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. / 9) Chloroethane 0.00 64 0 N.D. / 10) Ethanol 6.98 45 2691 0.261 ng # 54
33) 1,2-Dichloroethane-d4(13.42 65 464279 24.490 ng -0.04 Spiked Amount 25.000 Recovery = 97.96% / 57) Toluene-d8 (SS2) 18.67 98 1503562 24.462 ng -0.01 Spiked Amount 25.000 Recovery = 97.84% / 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% / 74
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 Spiked Amount 25.000 Recovery = 97.84% \(\cdot \) 73) Bromofluorobenzene (SS3) Spiked Amount 25.000 Spiked Amount 25.000 Target Compounds 2) Propene 2) Propene 3) Dichlorodifluoromethane 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
57) Toluene-d8 (SS2) 18.67 98 1503562 24.462 ng -0.01 Spiked Amount 25.000 Recovery = 97.84% V 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% V Target Compounds Qvalue 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. V 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. V 10) Ethanol 6.98 45 2691 0.261 ng # 54
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) 23.06 174 598431 25.920 ng 0.00 Spiked Amount 25.000 Recovery = 103.68% / Target Compounds 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. / 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. / 10) Ethanol 6.98 45 2691 0.261 ng # 54
73) Bromofluorobenzene (SS3)
Target Compounds 2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
2) Propene 4.64 42 12241 0.738 ng # 28 3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
3) Dichlorodifluoromethane 4.76 85 60544 2.089 ng 100 4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
4) Chloromethane 5.08 50 10878 0.459 ng 94 5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
5) Freon 114 5.32 135 1004 0.073 ng 94 6) Vinyl Chloride 0.00 62 0 N.D. 7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
7) 1,3-Butadiene 5.78 54 651 N.D. 8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
8) Bromomethane 6.25 94 178 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.98 45 2691 0.261 ng # 54
10) Ethanol 6.98 45 2691 0.261 ng # 54
11) Nantonitrilo 7 21 41 2212 0 070 ng 01
11) Aceconiciate /.21 41 2213 0.079 ng 91
12) Acrolein 7.41 56 2490 0.289 ng 80
13) Acecone 7.00 30 70027 0.649 ng 93
14) Trichlorofluoromethane 7.87 101 26700 1.060 ng 95
15) Isopropanol 8.09 45 2758 0.066 ng # 47
16) Acrylonitrile 8.48 53 429 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D.
18) tert-Butanol 9 07 59 244 N.D.
19) Methylene Chloride 9.09 84 3602 0.242 ng # 51
18) tert-Butanol 9.07 59 244 N.D. 19) Methylene Chloride 9.09 84 3602 0.242 ng # 51 20) Allyl Chloride 9.18 41 1574 0.087 ng # 55
21) Trichlorotrifluoroethane 9.53 151 5852 0.518 ng 86
22) Carbon Disulfide 9.47 76 4330 0.083 ng 78
23) trans-1,2-Dichloroethene 0.00 61 0 N.D.
24) 1,1-Dichloroethane 0.00 63 0 N.D.✓
25) Methyl tert-Butyl Ether 0.00 73 0 N.D.
26) Vinyl Acetate 11.10 86 743 0.305 ng # 1
27) 2-Butanone 11.41 72 5677 0.633 ng # 52 28) cis-1,2-Dichloroethene 0.00 61 0 N.D.
28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D.
30) Ethyl Acetate 12.40 61 9434 1.821 ng 88
31) n-Hexane 12.41 57 17035 0.696 ng 91 76

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(M	Min)
32) Chloroform	12.49	83	1504	0.067 ng		87
34) Tetrahydrofuran	13.09	72	62	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	. 0	N.D.	•	
36) 1,2-Dichloroethane	13.59	62	885	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	849	N.D.V		
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	0.00	56	0	N.D.		
41) Benzene	14.67	78	43706	0.760 ng		100
42) Carbon Tetrachloride	14.91	117	6704	0.359 ng		94
43) Cyclohexane	15.10	84	4430	0.232 ng	#	63
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	16.19	83	170	N.D.		
47) Trichloroethene	0.00	130	0	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.34	57	15821	0.243 ng		88
50) Methyl Methacrylate	16.70	100	2156	0.382 ng	#	1.
51) n-Heptane	16.71	71	7433	0.523 ng	#	75
52) cis-1,3-Dichloropropene	0.00		0	N.D.		
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	126913	9.424 ng	#	8
58) Toluene	18.80	91	139667	2.255 ng		98
59) 2-Hexanone	19.13	43	3508	0.093 ng	#	39
60) Dibromochloromethane	0.00	129	. 0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.97	43	644			
63) n-Octane	20.11	57	8139		#	74
64) Tetrachloroethene	20.29	166	1290	0.075 ng		88
65) Chlorobenzene	21.16	112		N.D.		
66) Ethylbenzene		91		0.414 ng		99
67) m- & p-Xylene	21.85	91	93121	1.720 ng		97
68) Bromoform	0.00	173	0	N.D.		
69) Styrene		104	2232	N.D.		
70) o-Xylene	22.48	91	28968	0.523 ng	1	.00
71) n-Nonane	22.75	43	32551	0.950 ng		94
72) 1,1,2,2-Tetrachloroethane	22.50	83	56	N.D.		
74) Cumene	23.24	105	3697	N.D.		
75) alpha-Pinene	23.54	93	2154	0.068 ng		77
76) n-Propylbenzene	23.88	91	7452	0.084 ng		96
77) 3-Ethyltoluene	24.01	105	19489	0.290 ng		93
78) 4-Ethyltoluene	24.06		9896	0.150 ng		98
79) 1,3,5-Trimethylbenzene	24.15	105	6774	0.119 ng		94 7
						• '

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

: Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	Ŕ.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene	24.79 24.96 24.95	105 105 57 91 146	170 7321 21872 42926 633 335	0.359 ng 1.199 ng N.D. N.D.		97 97 97 77
87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene	25.20 24.95	105 119 105 146	54624 8120 335	N.D. 0.708 ng 0.133 ng N.D.	#	89 22
91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene	25.37 0.00 26.32 0.00	157 57 184	20144 0	N.D. 0.521 ng N.D.		67
95) Naphthalene 96) n-Dodecane 97) Hexachloro-1,3-butadiene	27.57 27.55 0.00	57 225	4398 0	0.162 ng 0.101 ng N.D.	#	99 65
98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	22.10 24.67 25.68	119	2689 2719 2968	0.103 ng N.D. N.D.	#	66

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of I

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-16

Client Project ID: Cooper Vision / 70665-014

CAS Sample ID: P0900513-011

CAS Project ID: P0900513

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/12/09

Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Container ID:

AC01351

Initial Pressure (psig):

-3.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.65

CAS#	Compound	Result	MRL	Result	MRL	Data
	·	$\mu g/m^3$	-μg/m³	m ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.17	ND	0.065	
75-00-3	Chloroethane	ND	0.83	ND	0.31	•
75-35-4	1,1-Dichloroethene	ND	0.83	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.83	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.83	ND	0.15	

VID = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data Path : J:\MS16\DATA\2009 02\13\

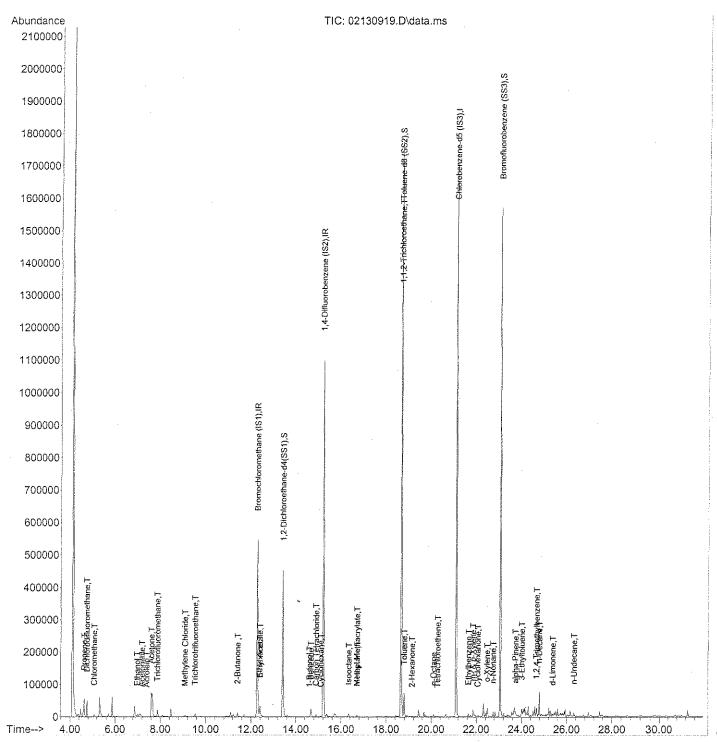
Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5) ✓


ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130919.D

: 13 Feb 2009 22:35 Acq On

Operator : WA/LH

: P0900513-011 (1000mL) Sample

: Haley & Aldrich SV-InA-16 (-3.7, 3.5) Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

1) Bromochloromethane (IS1) 12.28 130 287537 25.000 ng -0.05 37) 1,4-Diffluorobenzene (IS2) 15.21 114 1323889 25.000 ng -0.03 56) Chlorobenzene-d5 (IS3) 21.10 82 642037 25.000 ng -0.01 System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42 65 455839 24.790 ng -0.04 Spiked Amount 25.000	Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev	/(Min)
System Monitoring Compounds 33							
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42 65 455839 24.790 ng -0.04 Spiked Amount 25.000 Recovery = 99.16%							
33 1,2-Dichloroethane-d4 (13.42 65 455839 24.790 ng -0.04	56) Unioropenzene-d5 (183)	21.10	82	642037	25.000 ng	-	-0.01
Spiked Amount							
Spiked Amount		13.42	65				
Spiked Amount 25.000		10 67	0.0	Recove			
73) Bromofluorobenzene (SS3) 23.06 174 583162 25.685 ng 0.00 Spiked Amount 25.000 Recovery = 102.76% \sqrt{30} Target Compounds Qvalue 2) Propene 4.63 42 10566 0.656 ng # 35 3 Dichlorodifluoromethane 4.76 85 50160 1.785 ng 100 4) Chloromethane 5.08 50 9308 0.405 ng 97 5) Freon 114 5.33 135 789 N.D. 6) Vinyl Chloride 0.00 62 0 N.D. \sqrt{71},3-Butadiene 5.79 54 317 N.D. 8) Bromomethane 6.26 94 61 N.D. 9) Chloroethane 0.00 64 0 N.D. \sqrt{10} 10) Ethanol 6.99 45 18150 1.818 ng 88 11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.09 84 76 2030 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.48 76 2030 N.D. 19) Methylene Chloroethane 0.00 61 0 N.D. 20) Trichloroethane 0.00 63 0 N.D. 21) Trichlorotifluoroethane 0.00 63 0 N.D. 22) Carbon Disulfide 9.48 76 2030 N.D. 22) Trichloroethane 0.00 63 0 N.D. 22) Trichloroethane 0.00 61 0 N.D. 22) Pattanone 11.41 72 5617 0.646 ng # 43 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 30) Ethyl Acetate 11.47 25617 0.646 ng # 43 28) Cis-1,2-Dichloroethene 0.00 61 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90		18.6/	98				
Target Compounds 2) Propene 2) Propene 4.63 3) Dichlorodifluoromethane 4.76 4.65 5.08 5.08 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	Spiked Amount 25.000	22 06	174	KECOVE			
Target Compounds 2) Propene		23.06	1/4				
2) Propene	Spiked Amount 25.000			Recove	17 - TO	2.703) <i>V</i>
3) Dichlorodifluoromethane 4.76 85 50160 1.785 ng 100 4) Chloromethane 5.08 50 9308 0.405 ng 97 5) Freon 114 5.33 135 789 N.D. 6) Vinyl Chloride 0.00 62 0 N.D.✓ 7) 1,3-Butadiene 5.79 54 317 N.D. 8) Bromomethane 0.00 64 0 N.D.✓ 9) Chloroethane 0.00 64 0 N.D.✓ 10) Ethanol 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) 45 2261 0.270 ng 84 13) Acetone 16) Acrylonitrile 17) 41 56 2261 0.270 ng 84 13) Acetone 17) 1,1-Dichloroethene 18) 19 45 516 N.D. 16) Acrylonitrile 19) Methylene Chloride 19) 09 84 2811 0.195 ng # 52 20) Allyl Chloride 19) Methylene Chloride 19) 19 41 713 N.D. 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 20) Diisopropyl Ether 0.00 87 0 N.D. 20 Ethyl Acetate 1.40 61 4245 0.845 ng 90			•				
4) Chloromethane 5.08 50 9308 0.405 ng 97 5) Freon 114 5.33 135 789 N.D. 6) Vinyl Chloride 0.00 62 0 N.D.✓ 7) 1,3-Butadiene 5.79 54 317 N.D. 8) Bromomethane 6.26 94 61 N.D. 9) Chloroethane 0.00 64 0 N.D.✓ 10) Ethanol 6.99 45 18150 1.818 ng 88 11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D.✓ 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D.✓ 25) Methyl tert-Butyl Ether 0.00 63 0 N.D.✓ 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 20) Diisopropyl Ether 0.00 87 0 N.D. 210 Ethyl Acetate 12.40 61 4245 0.845 ng 90							
5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) 5.79 54 8) Bromomethane 9) Chloroethane 9) Chloroethane 10.00 62 10. N.D. 8) Bromomethane 9) Chloroethane 10.00 64 10. N.D. 9) Chloroethane 10.00 64 10. N.D. 10) Ethanol 10 Ethanol 10 Acetonitrile 11 Acetonitrile 12 Acrolein 13 Acetone 14 Trichlorofluoromethane 15 Acetone 16 Acrylonitrile 17 Acrylonitrile 18 Acetone 17 Acrylonitrile 18 Acetone 19 Acrylonitrile 19 Acrylonitrile 10 Acrylonitrile 11 Acetone 12 Acrylonitrile 13 Acetone 14 Trichloroethene 15 Acrylonitrile 16 Acrylonitrile 17 Acrylonitrile 18 Acrylonitrile 18 Acrylonitrile 19 Acrylonitrile 19 Acrylonitrile 20 Allyl Chloride 20 Allyl Chloride 21 Trichloroethane 22 Carbon Disulfide 22 Carbon Disulfide 23 trans-1,2-Dichloroethene 25 Methyl tert-Butyl Ether 26 Vinyl Acetate 27 Acetate 28 cis-1,2-Dichloroethene 29 Diisopropyl Ether 20 Diisopropyl Ether 20 Distryl Acetate 20 Carbyl Acetate 20 Distryl Acetate 20 Carbyl Acetate 20 Distryl Acetate 21 Down Acetate 22 Distryl Acetate 23 Distryl Acetate 24 Down Acetate 25 December Acetate 26 December Acetate 27 December Acetate 28 Down Acetate 29 Distryl Acetate 20 Distryl Acetate			85	50160	1.785 ng		100
6) Vinyl Chloride			50	9308	0.405 ng		97
7) 1,3-Butadiene 5.79 54 317 N.D. 8) Bromomethane 6.26 94 61 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.99 45 18150 1.818 ng 88 11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
8) Bromomethane 6.26 94 61 N.D. 9) Chloroethane 0.00 64 0 N.D. 10) Ethanol 6.99 45 18150 1.818 ng 88 11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 19) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	6) Vinyl Chloride	0.00	62				
9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 19) Allyl Chloride 20) Allyl Chloride 21) Trichloroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) Carbon Disopropyl Ether 28) Cis-1,2-Dichloroethene 20,000 Ethyl Acetate 21,000 Ethyl Acetate 21,000 Ethyl Acetate 20,000 Ethyl Acetate 21,000 Ethyl Acetate 22,000 Ethyl Ether 21,000 Ethyl Ether 21,000 Ethyl Ether 21,000 Ethyl Ether 22,000 Ethyl Ether 23,000 Ethyl	7) 1,3-Butadiene	5.79	54				
10) Ethanol 6.99 45 18150 1.818 ng 88 11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	8) Bromomethane	6.26	94				
11) Acetonitrile 7.20 41 2102 0.078 ng 85 12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 63 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
12) Acrolein 7.41 56 2261 0.270 ng 84 13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
13) Acetone 7.62 58 49415 4.342 ng # 79 14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 61 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
14) Trichlorofluoromethane 7.88 101 22033 0.902 ng 93 15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	•						
15) Isopropanol 8.19 45 516 N.D. 16) Acrylonitrile 8.48 53 169 N.D. 17) 1,1-Dichloroethene 0.00 96 0 N.D. 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
16) Acrylonitrile	· · · · · · · · · · · · · · · · · · ·						93
17) 1,1-Dichloroethene 0.00 96 0 N.D. ✓ 18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. ✓ 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
18) tert-Butanol 9.05 59 63 N.D. 19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
19) Methylene Chloride 9.09 84 2811 0.195 ng # 52 20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90		0.00	70 50	63			
20) Allyl Chloride 9.19 41 713 N.D. 21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90						#	E 2
21) Trichlorotrifluoroethane 9.53 151 4693 0.428 ng 94 22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	20) Allyl Chloride	9.09	41	713	0.133 11g	11	22
22) Carbon Disulfide 9.48 76 2030 N.D. 23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	21) Trichlorotrifluoroethane	9.19	151	4693	0 428 ng		94
23) trans-1,2-Dichloroethene 0.00 61 0 N.D. 24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							ノエ
24) 1,1-Dichloroethane 0.00 63 0 N.D. 25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90	*** ** *						
25) Methyl tert-Butyl Ether 0.00 73 0 N.D. 26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
26) Vinyl Acetate 11.07 86 106 N.D. 27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
27) 2-Butanone 11.41 72 5617 0.646 ng # 43 28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
28) cis-1,2-Dichloroethene 0.00 61 0 N.D. 29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90						#	43
29) Diisopropyl Ether 0.00 87 0 N.D. 30) Ethyl Acetate 12.40 61 4245 0.845 ng 90					_	**	
30) Ethyl Acetate 12.40 61 4245 0.845 ng 90							
							90
	31) n-Hexane	12.41		7096	0.299 ng		97 8

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5)

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.48	83	1300	N.D.		
	0.00		0	N.D.		
35) Ethyl tert-Butyl Ether				N.D.		
36) 1,2-Dichloroethane	13.59	62	580			
38) 1,1,1-Trichloroethane	13.98	97	596	N.D.		
39) Isopropyl Acetate	0.00	61	0			
40) 1-Butanol	14 61	56	3117			99
41) Benzene	14 67	78	31093	0.548 ng		98
42) Carbon Tetrachloride	14 89	117	5609	0.304 ng		97
43) Cyclohexane	15 10	84	1256	0.067 ng	#	
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.	**	-
44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	0.00	63	Ö			
		83		N.D.		
	0.00	130		N.D.		
	0.00		Ö			
49) Isooctane	16.34	57	12153	0.189 ng		90
50) Methyl Methacrylate	16 71	100	432	0 077 na	#	ī
51) n-Heptane	16.72	71	1652	0.118 ng	#	71
52) cis-1,3-Dichloropropene	0 00	75	0	0.118 ng N.D.	**	
53) 4-Methyl-2-pentanone	17.54	58	158	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane		, 5 97	126445	9.507 ng	#	8
58) Toluene	18.80	91	56067	0.920 ng	11	99
59) 2-Hexanone	19.15	43	3074	0.083 ng		78
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.97	43	1735			
63) n-Octane	20.11	57	1743	0.124 ng	#	83
64) Tetrachloroethene	20.28	166	1035	0.061 ng	''	80
	0.00	112	0	N.D.		
66) Ethylhenzene	21.65	91	9248	0.136 ng		100
67) m- & p-Xylene	21.86	91	22017	0.414 ng		96
68) Bromoform	21.86	173	0	N.D.		
69) Styrene	22.34	104	1184	N.D.		
70) o-Xylene	22.48		8587	0.158 ng		97
71) n-Nonane	22.75	43	7775	0.231 ng		96
72) 1,1,2,2-Tetrachloroethane	22.49	83	65	N.D.		
74) Cumene	23.24	105	1270	N.D.		
75) alpha-Pinene	23.74	93	5574	0.179 ng	#	43
76) n-Propylbenzene	23.89	91	2868	N.D.		•
77) 3-Ethyltoluene	24.01	105	6810	0.103 ng		88 .
78) 4-Ethyltoluene	24.07	105	3438	N.D.		
79) 1,3,5-Trimethylbenzene	24.16	105	3031	N.D.		82
•		•				

Page: 2

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5)

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.59 24.40		291 2690	N.D.	
82) 1,2,4-Trimethylbenzene	24.67	105	8921	0.149 ng	91
83) n-Decane			30731	_	79
84) Benzyl Chloride	24.95		61		
85) 1,3-Dichlorobenzene			730		
	24.95		730	N.D.	
.	25.01		185		
88) p-Isopropyltoluene		119	2228	N.D.	
89) 1,2,3-Trimethylbenzene					
90) 1,2-Dichlorobenzene	24.95	146	730	N.D.	
91) d-Limonene	25.38	68	1663	0.072 ng	96
92) 1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.	
93) n-Undecane	26.32	57	4219	0.111 ng	# 33
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95) Naphthalene	27.58	128	5104	N.D.	
96) n-Dodecane	27.55	57	2030	N.D.	
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98) Cyclohexanone	22.07	55	2264	0.088 ng	# 79
99) tert-Butylbenzene	24.67	119	1379	N.D.	
100) n-Butylbenzene	25.68	91	1868	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Standards Data

Method Path : J:\MS16\METHODS\
Method File : R16012209.M
Title : EPA TO-15 per SOP VOA-TO15 (CASS ŢO-15/GC-MS)
Last Update : Fri Jan 23 08:54:57 2009
Response Via : Initial Calibration

Calibration Files

25 =012209	F		c	φυ	οц		י גר) M	0	9	4	0	9	9	D.	9	· LO	0	. 4		· L	7	7	9	. 0	7	m	. 9	0,	4	0	
906.D	Avg	1	r		7.7 6	الما - الما الما الما الما الما الما الما الما) 4 , (, H	2.7	6.0	1.7	9.7	7.4	6.2	7.6	4.6		ж 2	9			7.3	7.	6.4	ζ.	0.9	\sim	7.6	S	9	4.	Į
=01220	10	1	-	7 t C	1.997	1 1	1.78	1.18	0.92	0.79	0.86	2.35	0.72	0.99	2.12	3.55	1.62	1.04	3.34	1.25	1.51	0.95	4.39	1.71	2.04	3.08	0.20	0.75	1.67	0.91	0.43	
D 5.0			. V 	7 -	1 1 691	. H	1.77	1,31	0.87	0.72	0.89	2.17	0.70	0.94	1.96	2.68	1.74	1.03	2.26	1.10	1.70	0.98	3.85	1.68	1.96	3.08	0.17	0.74	1.61	0.96	0.49	0
20905.1	25	 	3 6 6	2 P - C C	1 1.624	4 0.98	4 1.54	1 1.13	4 0.85	0.0.70	0.88	5 2.17	8 0.69	5 0.92	9 1.96	3 2.84	3 1.73	3 1.01	3 3.34	5 I.09	1 1.67	7 0.94	3.81	5 1.68	1 1.94	1.2.94	1 0.19	7 0.76	1.59	06.00	5 0.47	50 03
0 =012	5.0		7 1 2	7 2.07	0 1.85	3 1.00	8 I.57	4 1.13	1 0.88	6 0.72	4 0.90	3 2.26	2 0.69	8 0.92	0 2.02	9 3.40	3 1.78	2 1.03	9 3.41	1.11	2 1.69	5 0.89	3 3.94	J 1.72	1.99	1 2.90	10.21	1 0.78	9 1.65	0.88	5 0.46	1 92
4.D 1.	O !		9 1.36	6 2.28	7 1.66	9 1.05	4 1.59	9 1.03	2 0.77	5 0 74	5.0.82	5 2.29	1 0.62	0 0.86	0 1.96	7 2.67	2 1.64	96.0 C	3 3.15	2 I.06	1.46	1 0.86	1 3.70	5 1.66	1.90	1 2.73	1 0.18	1 0.71	2 1.57	9 0.83	1.0.41	7 1 82
1220904	0.5	1	7 1.2	5 2	06 2.07	1 1.1	0 1.7	4 1.1	3.0	0 ·	4 0 .	4 Z	3.0.6	0	8 2.1	7 3.7	3 1.7	6 1.0	1 3.4	4 1.1	4 1.4	3 0.9	0 4.1	0 1.7	9 2.0	4.2.9	7 0.2	3 0.7	3 1.7	10.8	7 0.4	1 9
0.5 =0	0.2		7 1.3	2 2 8	58 2.3	7 1.3	3 2.0	8 1.2	7 1.0	0.0	0 · · · · · · · · · · · · · · · · · · ·	3 2 7	7.09	0 T 0	5.2	3.4.1	8 1.6	3 7.1	1 3.7	1.1.3	0 1.4	2 1.0	4.4	7 1.7	22.	3.2	5 0 .2	5 0 . 7	7 1.8	0.0	0.4	
03.D 09.D	0 - 1	i i [;	(*)	8 2.4	08 2.1	7 1.1	5 1.7	4 1.0	0 0	20 C	ים סיס	7. 7.	7.07	m (4 2.0	2 3.5	1 1 1	8 1.0	43.1	1 1.3	3 1.2	<u>.</u>	4 4.2	5 I.5	0 1.9	6.2.9	3 0.1	4 0.6	4.1.4	3 0 0	0.3	4.2.0
.012209 :012209	 	ane		2	2.6	4.	ζ.	4.	۳. •	2) (χ, «	4. (·	ļ	2. 5	C.	4		ζ.	Φ	īU.	J. 0	e 7.0	0)	4.	φ, (∞	. H	er 1.03	4.	4
.D 0.2 = .D 100 =	! ! ! ! ! !	oromet	d)	ichlorodifluo.	loromethane	14	lori	adie	sthane	etnane 7		rrite	111	F	ororluor.	. •	rylonitrile	thloroet.	<u></u>	ا إ		, , -	fld,	U	Ψ	tert.	cetate	one	lchlo.	opyl Eth	Cet t	ല
01220902 01220908	Compound	Bromochl	Propene	Dichlo	Chloror	Freon	γŢ	1,3-But	Bromomethan		ZCHAHO.	ACELOILI	ACIOLE.	Acetone	Trichit		ACTYLO	1, 1-D10		Methyle	ALIYL C	Trichlorotri	Carbon	trans-1	1,1-D1C	ernyı	ınyı	- But	1.S.T.	lisop	TXT	п-нехап
.1 .0	1 1 1) IR	T (H	H	H (H		~ ~						<i></i>			~ .					~ .				_	_	_			
O Ū	i	-	Ω.	m	4	ທີ່	9	<u></u>	o c	א כ) r	1 T T	4 5	٦ -	† † †	7,7	9 7		87	J (0.70	Z = 7	N C	2 0	7 7 0	0 0	0 0 0 V	700	α N V) V) (C	7 T

•	8,84	۰, ۳) (\	,	0.7	·	8	\sim	ص. ص	7.2	8.8	6.3	0.3	0.1	9.6	1.9	1.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ω, 	4.3	. U	2.0	ω.) M	, ,		. C	9.7	
.31	0.942	ν α	. 2	.40	.57	5		. 23	. 63	т С	.37	. 89	.36	9	.04	.95	.33	. 28	.90	.44	.47	.27	.36	.66	54	66	26	.40	1
.358	1.047	. 070. 050	.362	.727	.943	.812	.443	.476	.947	. 659	.502	.296	.570	. 588	.407	.294	.632	.509	.024	.529	.616	.323	.833	.866	.641	025	543	.671	
.315	0.988	.851	269	.548	.776	.636	.291	. m 0 00 1 00 1 00	161	.602	.462	.177	.458	.478	.263	.366	.621	.428	.035	.498	.558	.291	574	815	571	992	498	578	1
347	.005	.870	.272	.576	.743	.673	.295	ω. Σ/Υ	. x	. 55.50 20.40 20.10	.473	.193	.464	.489	.288	.306	.578	.414	.028	.496	.546	.282	.465	.746	.553	.005	465	588	
15/GC- 1.224	0 C	2.50	1.12	3.20	2.41	2.42	7.05	1. 1. 1.	7.0.7	7 · - C	L.30	1. 3.	1.30	1.32	2.90	2.81	2.21	1.24	0.88	0.44	1.37	0.26	3.33	1.57	0.50	0.93	2.10	2.34	1 1 1 1 1 1 1
ASS TO-	0.00	2.74	1.15	3.28	2.42	7. 4.0	70.7		0.0	7 7 7	1	7.8	T . 30	1.32	2.93	2.80	2.21	1.21	0.86	0.43	1.38	0.26	3.30	1.56	0.52	0.96	2.10	2.34	1
015 (0	30.00 50.000	3 2.86	6 1.21	2 3.47	6 2.54	4.50 0.50	7 . L . L . L . L . L . L . L . L . L .	7 7 7 7		07·7 T	7. 4.74	0. H . U	J. 1.36	95.T.	5 3.03	2 2.87	9.2.29	9 1.27	10.88	1 0.43	9 1.42	7 0.27	3.34	3 1.56	0.54	2 1.03	2.19	2.38	1 1 1 1
VOA-7	5 0 .86	8 2.44	1 1.00	4 2.83	2 2.05	7. L. L. C.	7 T. C.	0	7 6.10	00.1.0) L・L4	1 4.30	OT'T /	4 1.12	7 2.46	7.32	5 1.86	9 1.00	5 0.69	9 0.32	9 1.26	0.20	7 2.67	5 1.37	2 0.43	5 0.78	1.85	3 1.91	
ET W	JI W	•		u,	٠.	11. (• C			11 E	•	γ,	4.	0 M	∞.	ς.	ζ.	∞.	4	9.	N.	с	\sim		ζ.	≥ 2.3	4.	1
MS1 012 0-1	2-Tetrac. luoroben.		nene	oenzene	toluene	rcornelle Trimothy:	- italineciiy. -Methvist	hvltolupisc.	Trimethy	. KIII C C 111 Y .	(h) 025 do	CHIOLIGE Gbloscho	Lorobe.	chiorope.	Lbenzene	oyitol.	imethy.	orobe.	1e	8 - omo	le , -	chlor.	ene		:0-1,3.	none	Butylbenzen	nzene	1
th: le: . EE	1,1,2,2- Bromoflu	mene	lpha-Pinene	Propy	-Ethyltoluen	1117 2 E		Ţ Ţ] し)	- ()	ביינט מיניז מיני	144 <u>7</u> 1	0 4 1 J t	±1 ±	ÜΙ	opro	- Tr			,2-Dibromo	ַס'	,2,4-Trich	pht	-Dodecan	exachloro	C]O	<u>ا</u>	-Butylben	: ! ! ! !
Method F Title 1) T n			ಹ		م (ر	† r-	n ⊦	3 ~	1 -	4 F		ק ק ק			W	Ω,	r-1	,— ^r	ರ		T,		ž	T I	T He	Ð H	T te	ä. H	1 .
M M M M M M M M M M M M M M M M M M M	73)	74)		76)	() (~ ~ ~	100) () () () (Z	, (u	000	α 2 2 2 3	α (o a	() ()	(06	91)	92)	93)	94 4 (ν υυ ()	96)	(16	(86	(66	(00-	1 (

07-02-00 U104-401

Primary Source Standards Concentrations (Working & Initial Calibration)

Q:\TO15 Std. Concentrations\MS16 Std. Conc\R16012209\lCAL Conc. (Primary Source)

200ng/L Std. ID:	S20:01220901							ICAL C	oncontr	ations	/Drimon	/ Source)	1
Dilution Factors:		5	50	250	Working STD Conc.(ng/L):	+ **4 × ·	4		20	20	200	200	200
	Source Std.		Working S		injection (L):	0.025	0.05	0.025	0.050	0.25	0.125	·	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L		·	·				·		
Propene	1.03	206			ICAL Points:	0.1ng	0.2ng	<u>0.5ng</u>	1ng	5ng	<u>25ng</u>	<u>50ng</u>	<u>100ng</u>
Dichlorodifiuoromethane	1.05	210	20.6	4.12	-{//////////	0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Chloromethane	1.01	202	20.2	4.20 4.04	-(/////////	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Freon-114	1.06	212	21.2			0.101	0.202	0.505	1.01	5.05	25.3	50.5	101
Vinyl Chloride	1.02	204	20.4	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,3-Butadiene	1.08	216	21.6	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
Bromomethane	1.03	206		4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Chloroethane	-1.04	208	20.6 20.8	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Ethanol	5.29	1058		4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Acetonitrile	1.05	210	106	21.2		0.529	1.058	2.65	5.29	26.5	132	265	529
Acrolein	1.05	·	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Acetone	5.31	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Trichlorofluoromethane		1062	106	21,2		0.531	1.062	2.66	5.31	26.6	133	266	531
Isopropanol	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Acrylonitrile	1.94	388	38.8	7.76		0.194	0.388	0.970	1.94	9.70	48.5	97.0	194
1,1-Dichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
·	1.10	220	22.0	4.40		0.110	0.220	0.550	1,10	5.50	27.5	55.0	110
tert-Butanol Methylana Chlorida	2.00	400	40.0	8.00	HHHHH	0.200	0.400	1.00	2.00	10.0	50.0	100	200
Methylene Chloride	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5,30	26.5	53.0	106
Allyl Chloride	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Trichlorotrifluoroethane	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Carbon Disulfide	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
trans-1,2-Dichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,1-Dichloroethane	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Methyl tert-Butyl Ether	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26,5	53.0	106
Vinyl Acetate	5.05	1010	101	20.2	VIIIIIIA	0.505	1,010	2,53	5.05	25.3	126	253	505
2-Butanone	1.08	216	21.6	4.32	UIIIIIII	0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
cis-1,2-Dichloroethene	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
Diisopropyl Ether	1,06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Ethyl Acetate	2.08	416	41.6	8.32	VIIIIIIIA	0.208	0.416	1.04	2.08	10.4	52.0	104	208
n-Hexane	1.04	208	20.8	4.16	UIIIIIII	0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Chloroform	1.10	220	22.0	4.40	VIIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Tetrahydrofuran	1.07	214	21.4	4.28	VIIIIIIIA	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Ethyl tert-Butyl Ether	1.03	206	20.6	4.12	VIIIIIIIA	0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloroethane	1.06	212	21.2	4.24	UIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,1,1-Trichloroethane	1.05	210	21,0	4.20	(())))))))	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropyl Acetate	2.09	418	41.8	8.36		0.209	0.418	1.05	2.09	10.5	52.3	105	209
1-Butanol	2.16	432	43.2	8.64		0.216	0.432	1.08	2.16	10.8	54.0	108	216
Benzene	1.03	206	20.6	4.12	UIIIIIIA	0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Carbon Tetrachloride	1,05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexane	2.12	424	42.4	8.48		0.212	0.424	1.06	2.12	10.6	53.0	106	212
tert-Amyl Methyl Ether	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloropropane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Bromodichloromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Trichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,4-Dioxane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Isooctane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Methyl Methacrylate	2.13	426	42.6	8.52		0.213	0.426	1.07	2.13	10.7	53.3	107	213
n-Heptane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
cis-1,3-Dichloropropene	1.00	200	20.0	4.00		0.100	0.200	0.500	1.00	5.00	25.0	50.0	
4-Methyl-2-pentanone	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3		100
				1.00		0.100	0,2 10	0.040	1.09	3.40	21.5	54.5	109
trans-1,3-Dichloropropene	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27 5	55.0	
1,1,2-Trichloroethane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04		27.5	55.0	110
Toluene	1.08	216	21.6	4.32		0.108	0.216	0.540		5.20	26.0	52.0	104
2-Hexanone	1.10	220	22.0	4.40		0.100			1.08	5.40	27.0	54.0	108
Dibromochloromethane	1.15	230	23.0	4.60			0.220	0.550	1.10	5.50	27.5	55.0	110
1,2-Dibromoethane	1.06	212	21.2	4.24		0.115	0.230	0.575	1.15	5.75	28.8	57.5	115
n-Butyl Acetate	1.10	220	22.0	4.40		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
n-Octane	1.05	210	21.0		411111111	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Tetrachloroethene	1.03			4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Chlorobenzene	1.03	206 212	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
	1.00	414	21.2	4.24	VIIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
	1.05	210	21.0	4 00	11/11/11/11/11/11/11/11/11/11/11/11/11/	0 40-	0.0.0						
Ethylbenzene n-&p-Xylene	1.05 2.08	210 416	21.0 41.6	4.20 8.32		0.105	0.210	0.525 1.04	1.05 2.08	5.25 10.4	26.3 52.0	52.5 104	105 208

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: S20-01050915 20ng/L Std. ID:

200ng/L Std. ID:						T			*********				
Dilution Factors:		-			Working STD							/ Source	}
Ditaboli Factors.	6	5	50	250	Conc.(ng/L);	4	4	20	20	20	200	200	200
0	Source Std.	,	Working S	tandards	Injection (L):	0.025	0.050	0.025	0.05	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L	ICAL Points:	0.1ng	0.2ng	0.5ng	1ng	5ng	25ng	50ng	100no
Bromoform	1.07	214	21.4	4.28	MIIIII	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Styrene	1.07	214	21.4	4.28	MIIIII	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
o-Xylene	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Nonane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
1,1,2,2-Tetrachloroethane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40			
Cumene	1.02	204	20.4	4.08		0.108	0.216	0.540	1.08		27.0	54.0	108
alpha-Pinene	1.10	220	22.0	4.40		0.102	0.204	0.550		5.10	25.5	51.0	102
n-Propylbenzene	1.02	204	20.4	4.08		0.102	0.220	0.550	1.10	5.50	27.5	55.0	110
3-Ethyltoluene	1.10	220	22.0	4.40		0.102	0.204		1.02	5.10	25.5	51.0	102
4-Ethyltoluene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3,5-Trimethylbenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.10	5.50	27.5	55.0	110
alpha-Methylstyrene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.08	5.40	27.0	54.0	108
2-Ethyltoluene	1.08	216	21.6	4.32		0.108	0.212	0.540		5.30	26.5	53.0	106
1,2,4-Trimethylbenzene	1.05	210	21.0	4.20		0.105	0.210	0.525	1.08	5.40	27.0	54.0	108
n-Decane	1.08	216	21.6	4.32	UIIIIIII	0.108	0.216	0.540	1.05	5.25 5.40	26.3	52.5	105
Benzyl Chloride	1.10	220	22.0	4.40		0.110	0.210	0.550	1.10	5.40	27.0	54.0	108
1,3-Dichiorobenzene	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	27.5 26.8	55.0	110
1,4-Dichlorobenzene	1.06	212	21,2	4.24	UIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.5	107
sec-Butylbenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
p-Isopropyltoluene	1.02	204	20.4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	53.0	106
1,2,3-Trimethylbenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	51.0 53.0	102
1,2-Dichlorobenzene	1.07	214	21.4	4.28		0.107	0.214	0.535	1.00	5.35			106
d-Limonene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.8 26.5	53.5	107
chloropropane	1.08	216	21.6	4.32		0.108	0.216	0.540				53.0	106
n-Undecane	1.07	214	21.4	4.28		0.108			1.08	5.40	27.0	54.0	108
1,2,4-Trichlorobenzene	1.10	220	22.0	4.40		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Naphthalene	1.01	202	20.2	4.04	<i>411111111</i>	0.101	0.202	0.550	1.10	5.50	27.5	55.0	110
n-Dodecane	0.94	188	18.8	3.76		0.101	0.202	0.505	1,01	5.05	25.3	50.5	101
				- 0.70		0.094	U. 100	0.470	0.940	4.70	23.5	47.0	94.0
Hexachloro-1,3-butadiene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Methacrylonitrile	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexanone	0.99	198	19.8	3.96	1111111111	0.099	0.198	0.495	0.990	4.95	24.8	49.5	99.0
tert-Butylbenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Butylbenzene	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
								2,210	1.00	-V.70	-1.0	U4.0	109
			`										

^{*}Enter Information in the Solid Shaded Areas ONLY.

Calibration Status Report GCMS-16

Method Path : J:\MS16\METHODS\

Method File: R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
Last Update : Fri Jan 23 09:05:22 2009
Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
1	0.1	0	25	J:\MS16\DATA\2009 01\22\01220902.D
2	0.2	0	25	J:\MS16\DATA\2009 01\22\01220903.D
3	0.5	1	25	J:\MS16\DATA\2009 01\22\01220904.D
4	1.0	1	25	J:\MS16\DATA\2009 01\22\01220905.D
5	5.0	5	25	J:\MS16\DATA\2009 01\22\01220906.D
6	25	26	25	J:\MS16\DATA\2009 01\22\01220907.D
7	50	52	25	J:\MS16\DATA\2009 01\22\01220908.D
8	100	103	25	J:\MS16\DATA\2009_01\22\01220909.D

#	ID	Update Time	Quant Time	Acquisition Time					
			Mr. An extra term time time and time are some and time time time time time time.						
1	0.1	Jan 23 08:53 2009	Jan 22 17:20 2009	22 Jan 2009 13:28					
2	0.2	Jan 23 08:54 2009	Jan 22 17:21 2009	22 Jan 2009 14:09					
3	0.5	Jan 23 08:54 2009	Jan 22 17:22 2009	22 Jan 2009 14:50					
4	1.0	Jan 23 08:54 2009	Jan 22 17:29 2009	22 Jan 2009 15:31					
5	5.0	Jan 23 08:54 2009	Jan 22 17:29 2009	22 Jan 2009 16:12					
6	25	Jan 23 08:54 2009	<i>J</i> an 22 17:31 2009	22 Jan 2009 16:53					
7	50	Jan 23 08:54 2009	Jan 23 08:52 2009	22 Jan 2009 17:34					
8	100	Jan 23 08:54 2009	Jan 23 08:53 2009	22 Jan 2009 18:14					

R16012209.M Fri Jan 23 09:08:31 2009

Data Path : J:\MS16\DATA\2009 01\22\

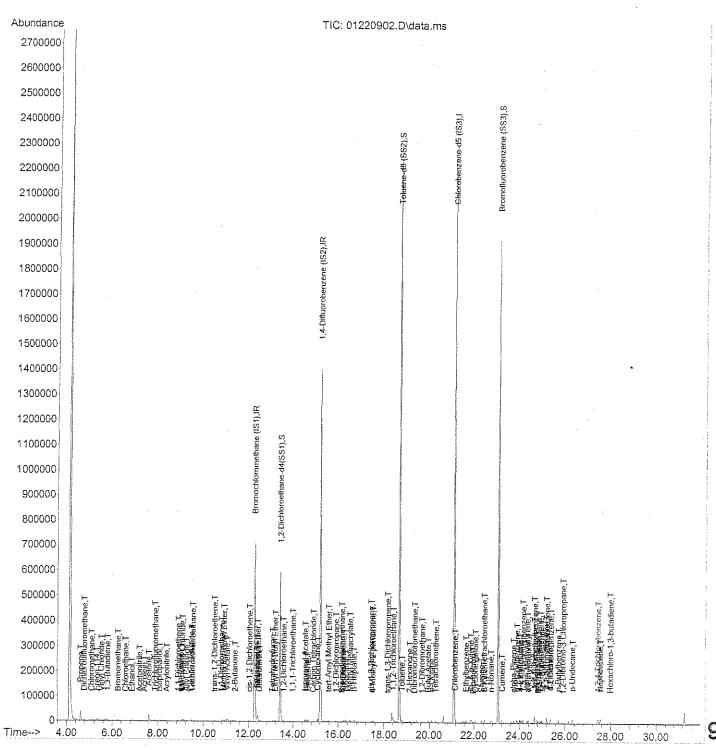
Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220902.D

: 22 Jan 2009 13:28 Acq On

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD : S20-01050901/S20-01090915 Misc ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (Min)
1) Bromochloromethane (IS1)	12.28	130	377102	25.000	na		. 05
3// 1.4-Ditimorphenzene (TS2)	15 21	7 7 /	1701454	25 000	~~~	_	.03
56) Chlorobenzene-d5 (IS3)	21.10	82	833909	25,000	ng	- C	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	613791	21.756	na	<u> </u>	04
Spiked Amount 25.000			Recove	erv =	87.	04%	,01
57) Toluene-d8 (SS2)	18.66	98	Recove 1965506	25.266	na .	- O	0.2
Spiked Amount 25.000			Recove	rv =	101.	08%	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.06	174	712809	27.488	nq	0	.00
Spiked Amount 25.000			Recove	ry =	109.	96%	,
Target Compounds						Qva	lue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	4.62	42	2641	0.122	ng		98
 Dichlorodifluoromethane 	4.78	85	5081	0.135	na	#	95
4) Chloromethane	5.09	50	3973	0.119	ng `		93
5) Freon 114	5.33	135	2282	0.130	na		95
6) Vinyl Chloride	5.53	62	3515	0.123	na		81
7) 1,3-Butadiene	5.80	54	2336	0.108	na		98
8) Bromomethane	6.26	94	1817	0.125	ng		98
9) Chloroethane	6.59	64	1448	0.117	nq		79
10) Ethanol	6.86	45	6935m	0.411	ng		
11) Acetonitrile	7.20	41	3951	0.103	ng		71
12) Acrolein	7.41	56	1681	0.185	nq	#	76
13) Acetone	7.62	58	14995	0.958	ng		99
14) Trichlorofluoromethane	7.89	101	3997	0.122	na		93
15) Isopropanol	8.08	45	15398m	0.299	nq		
16) Acrylonitrile	8.39	53	2317	0.092	ng		98
17) 1,1-Dichloroethene	8.89	96	1888	0.119	nq	#	71
18) tert-Butanol	9.03	59	12925	0.268	ng		71
19) Methylene Chloride	9.08	84	2976	0.162	ng	#	50
20) Allyl Chloride	9.27	41	2547	0.097	nq		87
21) Trichlorotrifluoroethane	9.54	151	1781	0.124	nq		95
22) Carbon Disulfide	9.48	76	11003	0.172	nq		95
23) trans-1,2-Dichloroethene	10.51	61	2976	0.113	ng		78
24) 1,1-Dichloroethane	10.81	63	3873	0.116	nq		98
25) Methyr tert-Butyr Ether	10.92	73	6118	0.125	nq		81
26) Vinyl Acetate	11.06	86	1777	0.563		#	21
27) 2-Butanone	11.41	72	1407	0.146		#	72
28) cis-1,2-Dichloroethene	12.05	61	3164	0.120			80
29) Diisopropyl Ether	12.41	87	1652	0.117	-	#	23
30) Ethyl Acetate	12.41	61	1287	0.169			76
31) n-Hexane	12.41	57	3850	0.110			98 92

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	3634	0.119 ng		97
34) Tetrahydrofuran	13.07	72	1283 2236	0.126 ng	#	56
35) Ethyl tert-Butyl Ether	13.19	87	2236	0.109 ng	;; #	78
36) 1,2-Dichloroethane	13.58	62	2771	0.101 ng	**	97
38) 1,1,1-Trichloroethane	13.98	97	3400	0.123 ng		86
39) Isopropyl Acetate	14.54	61	3400 2787	0.241 ng	#	86
40) 1-Butanol	14.60	56	3453	0.187 na	#	68
41) Benzene	14.67	78	9800	0.134 ng		99
42) Carbon Tetrachloride	14.90	117	2888	0.115 ng		99
43) Cyclohexane	15.09	84	5689	0.225 ng	#	70
44) tert-Amyl Methyl Ether	15.59	73	5929	0.118 ng		85
45) 1,2-Dichloropropane	15.91	63	2219	0.117 ng		94
46) Bromodichloromethane 47) Trichloroethene	16.18	83	2587			86
47) Trichloroethene	16.24	130	2235	0.115 ng		100
48) 1,4-Dioxane	16.23	88	1574	0.123 ng	#	68
49) Isooctane	16.35	57	10400	0.125 ng		99
50) Methyl Methacrylate	16.53	100	1500	0.233 ng	#	82
51) n-Heptane	16.70	71	1965		#	
50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene	17.46	75	2911			91
53) 4-Methyl-2-pentanone	17,51	58	1987	0.115 ng		95
54) trans-1,3-Dichloropropene	18.17	75	2877	0.114 ng		99
55) 1,1,2-Trichloroethane	18.41	97	2121	0.130 ng		96
58) Toluene	18.80	91	10215	0.132 ng		98
59) 2-Hexanone	19.13	43	5897	0.123 ng		98
60) Dibromochloromethane	19.35	129	2318	0.126 ng		98
61/ 1,2-Didromoethane	19.68	107	2236	0.117 ng		100
62) Butyl Acetate	19.95	43	6276	0.121 ng		92
63) n-Octane	20.11	57	~ ~	0.125 ng	#	78
64) Tetrachloroethene	20.29	166	2554	0.130 ng		94
62) CHIOLODGHSelle	21.16	112	6344	0.129 ng		98
66) Ethylbenzene	21.64	91	2155 2554 6344 10273 15606 1861	0.122 ng		99
67) m- & p-Xylene	21.86	91	15606	0.234 ng		99
68) Bromoform	21.97	173	1861 5742	0.110 ng		94
69) Styrene	22.33	104	5742	0.121 ng		98
70) o-Xylene	22.48	91	8158	0.123 ng		99
71) n-Nonane	22.75	43	5226	0.134 ng		94
72) 1,1,2,2-Tetrachloroethane	22.45	83	3356	0.108 ng		98
74) Cumene	23.24	105	10303	0.118 ng		100
75) alpha-Pinene	23.73	93	4700	0.127 ng		92
76) n-Propylbenzene	23.88	91	12195	0.115 ng		93
77) 3-Ethyltoluene	24.01	105	9840	0.128 ng		96
78) 4-Ethyltoluene	24.06	105	9027	0.118 ng		90
79) 1,3,5-Trimethylbenzene	24.16	105	7938	0.122 ng		90 93

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.35	118	4081	0.116 ng	96
81) 2-Ethyltoluene	24.40	105	9651	0.122 ng	95
82) 1,2,4-Trimethylbenzene	24.67	105	8272	0.130 ng	91
83) n-Decane	24.79	57	5198	0.144 ng	82
84) Benzyl Chloride	24.83	91	6279	0.110 ng	96
85) 1,3-Dichlorobenzene	24.86	146	4738	0.121 ng	99
86) 1,4-Dichlorobenzene	24.95	146	5070	0.127 ng	97
87) sec-Butylbenzene	25.01	105	10773	0.119 ng	99
88) p-Isopropyltoluene	25.20	119	9686	0.122 ng	98
89) 1,2,3-Trimethylbenzene	25.20	105	7977	0.126 ng	87
90) 1,2-Dichlorobenzene	25.37	146	4351	0.109 ng .	95
91) d-Limonene	25.38	68	2919	0.099 ng	99
92) 1,2-Dibromo-3-Chloropr	25.90	157	1509	0.118 ng	96
93) n-Undecane	26.32	57	5921	0.197 ng	83
94) 1,2,4-Trichlorobenzene	27.44	184	989 .	0.176 ng	# 89
95) Naphthalene	27.57	128	11377	0.186 ng	96
96) n-Dodecane	27.55	57	5756	0.243 ng	78
97) Hexachloro-1,3-butadiene	27.99	225	2062	0.151 ng	97
98) Cyclohexanone	22.07	55	4112	0.132 ng	95
99) tert-Butylbenzene	24.67	119	8398	0.132 ng	98
100) n-Butylbenzene	25.71	91	8917	0.135 ng	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

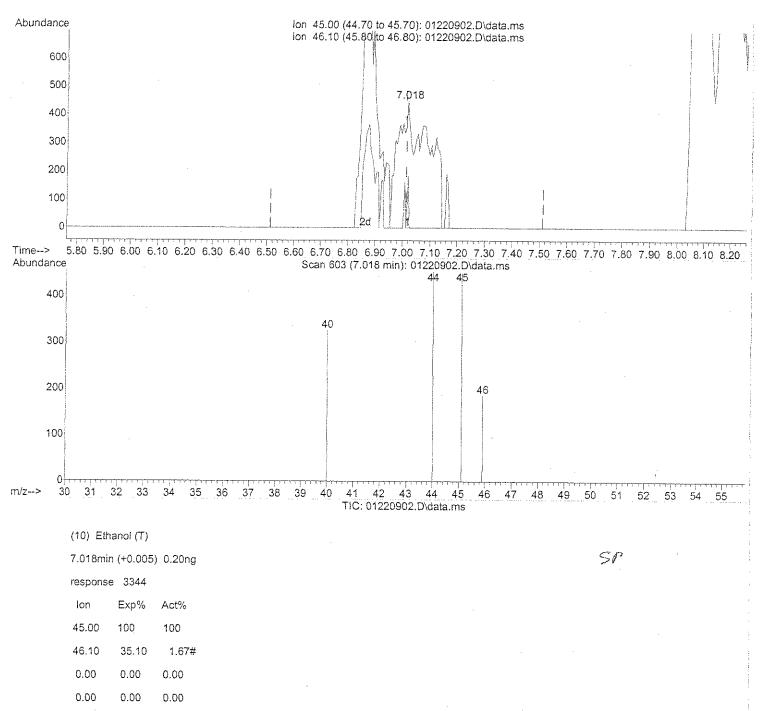
Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

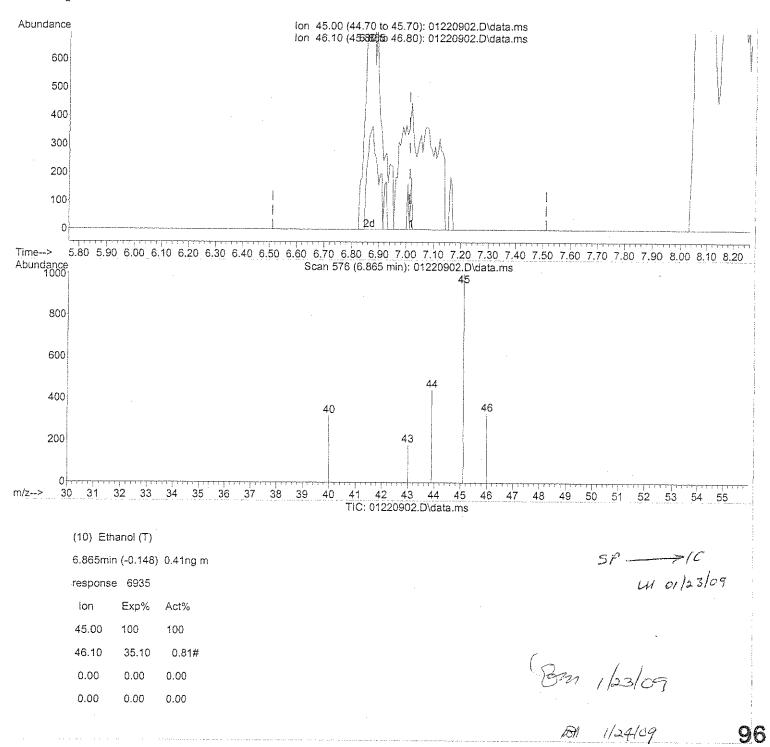
Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

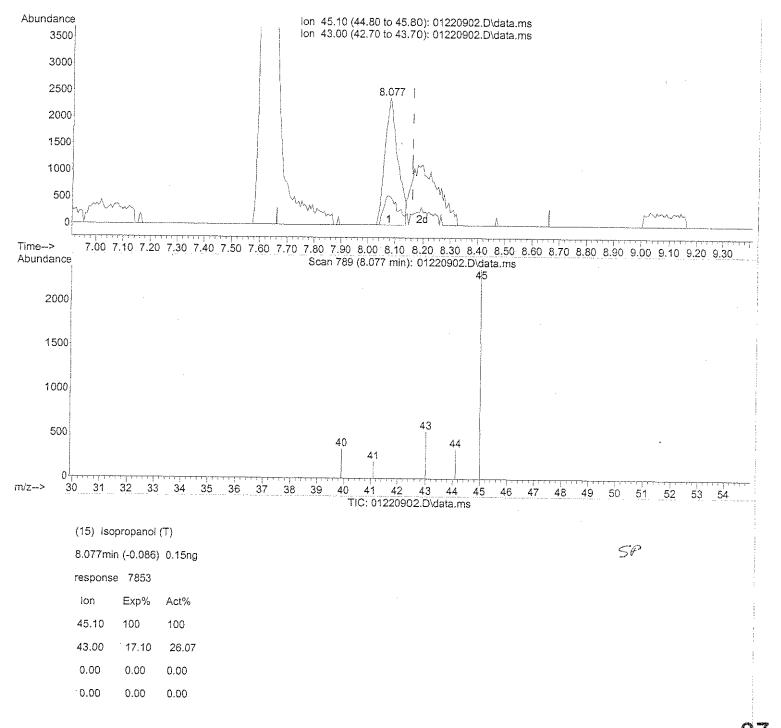
Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

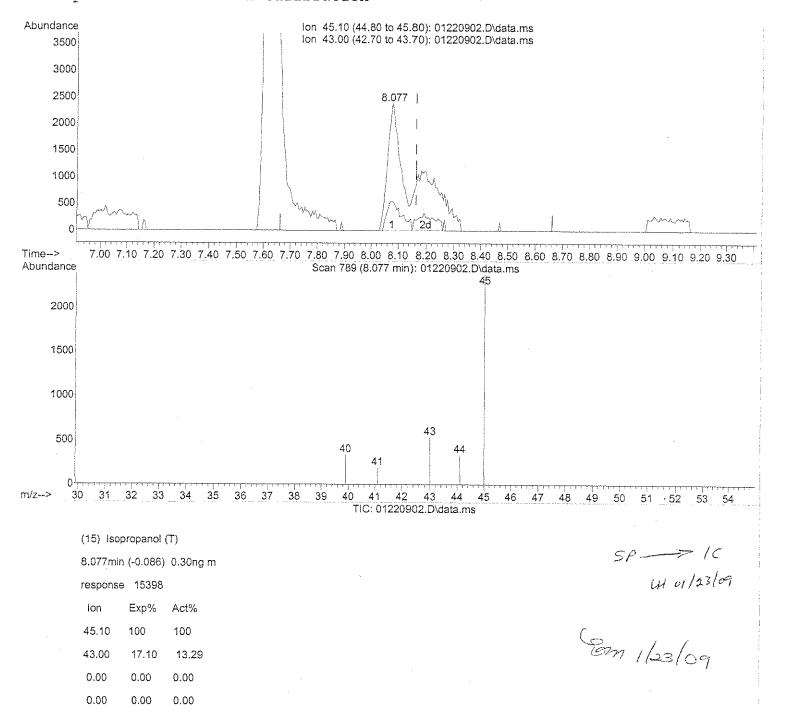
Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

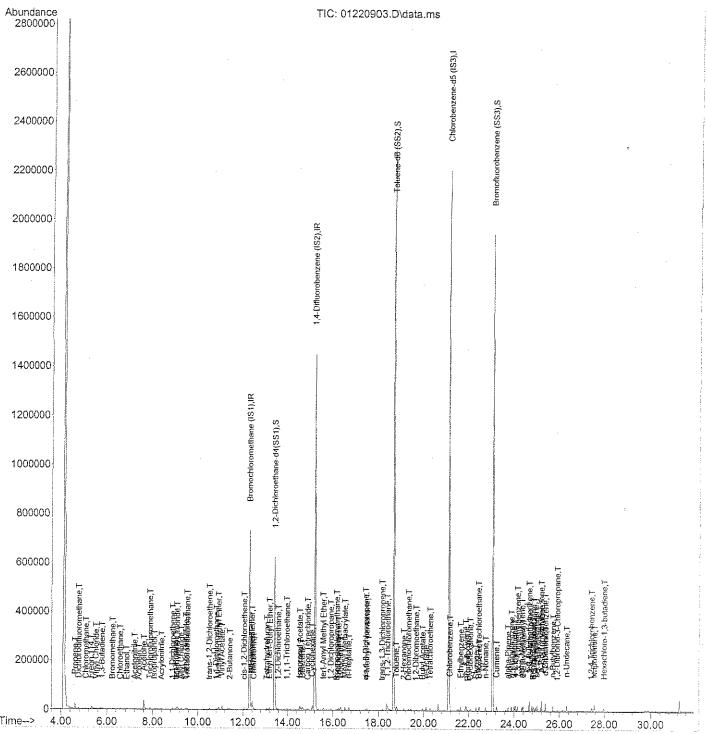
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD


Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Mi	n)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28 15.21 21.10	130 114 82	378650 1747588 834047	25.000 25.000 25.000	ng ng	-0.0 -0.0 -0.0	4 3 1
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.67	98	Recove 1978033 Recove 721223	ery = 25.423 erv =	88. ng 101. ng	24% -0.0 68% 0.0	l
10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether	5.09 5.32 5.78 6.35 6.29 6.81 7.41 7.68 7.41 7.68 9.08 8.49 9.53 9.53 9.48	85052444451681536941168176	6568 21114m 3739 3341 19331 4179 3960	0.206 0.196 0.215 0.185 0.200 0.210 0.618 0.174 0.253 1.371 0.200 0.408 0.148 0.210 0.399 0.226 0.150 0.209 0.208	ng n	93 83 94 100 75 892 99 96 78 84 95	66373140 7629 203351515
26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	11.06 11.41 12.05 12.40 12.40	86 72 61 87 61 57	2977 2212 4909 2637 2335 6318	0.940 0.228 0.185 0.186 0.306 0.179	ng ; ng ; ng ; ng ; ng	# 13 # 68 # 70 # 24	} } }

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	5931	0.194 ng		100
34) Tetrahydrofuran	13 07	70	2062	0 202 ===	#	53
35) Ethyl tert-Butyl Ether	33 00	O ==				
36) 1,2-Dichloroethane	13.59	62	4960	0.133 ng	TT	98
38) 1,1,1-Trichloroethane	13.98	97	5632	0.175 ng		88
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol	14.54	61	4377	0.150 ng	#	86
40) 1-Butanol	14.59	56	5146	0.300 ng	#	47
41) Benzene	14.67	78	14577	0.271 ng	TT	99
42) Carbon Tetrachloride	14.89	117	4467	0.175 ng		99
43) Cyclohavana	15.11	84	9475	0.1/1 ng	#	54
44) tert-Amyl Methyl Ether	15.58	73	9897	0.192 ng	TT	85
45) 1,2-Dichloropropane	15.91	63	3789	0.194 ng		95
46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane	16.17	83	4282	0.173 ng		98
47) Trichloroethene	16.25	130	3733	0.187 ng		99
48) 1,4-Dioxane	16.23	88	2506	0.190 ng	#	60
10\ Tasastass	16.33	57	16189	0.190 ng	14	99
50) Methyl Methacrylate 51) n-Heptane	16.53	100	2545	0.384 ng	#	87
51) n-Heptane	16.70	71	3501	0.191 ng	#	67
52) cis-1,3-Dichloropropene	17.46	75	4922	0.175 ng	**	95
53) 4-Methyl-2-pentanone	17.51	58	2962	0.167 ng		82
54) trans-1,3-Dichloropropene	18.17	75	4560	0.199 ng 0.179 ng 0.179 ng 0.198 ng 0.368 ng 0.271 ng 0.193 ng 0.194 ng 0.192 ng 0.194 ng 0.197 ng 0.190 ng 0.190 ng 0.191 ng 0.177 ng 0.167 ng 0.167 ng 0.177 ng 0.167 ng 0.167 ng 0.177 ng 0.188 ng 0.205 ng 0.188 ng 0.204 ng 0.191 ng		96
55) 1,1,2-Trichloroethane	18.41	97	3221	0.193 ng		96
58) Toluene	18.79	91	15884	0.205 ng		99
59) 2-Hexanone	19.13	43	8993	0.188 ng		93
60) Dibromochloromethane	19.34	129	3775	0.204 ng		99
61) 1,2-Dibromoethane 62) Butyl Acetate	19.67	107	3677	0.192 ng		99
62) Butyl Acetate	19.95	43	9807	0.189 ng		95
63) n-Octane	20.11	57	3304	0.191 ng	#	69
64) Tetrachloroethene	20.29	166	4055	0.207 ng		100
65) Chlorobenzene	21.16	112	10029	0.204 ng		98
66) Ethylbenzene	21.64	91	4055 10029 16264 24377	0.194 ng		98
67) m- & p-Xylene	21.87	91	24377	0.366 ng		98
68) Bromoform	24.20	د / ــــ	2.150	0.165 ng		97
69) Styrene	22.33	104	9221	0.195 ng ·		98
70) o-Xylene	22.48	91	12637	0.190 ng		98
71) n-Nonane	22.75	43	8301	0.214 ng		94
72) 1,1,2,2-Tetrachloroethane	22.44	83	5572	0.179 ng		99
74) Cumene	23.23	105	16630	0.191 ng		97
75) alpha-Pinene	23.74	93	7382	0.199 ng		81
76) n-Propylbenzene	23.88	91	19277	0.181 ng		98
77) 3-Ethyltoluene	24.01	105	15087	0.196 ng		94
78) 4-Ethyltoluene	24.06	105	15641	0.204 ng		94
79) 1,3,5-Trimethylbenzene	24.16	105	13199	0.203 ng		9101

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.35	118	6807	0.194 ng	95
81) 2-Ethyltoluene	24.40	105	15399	0.195 ng	96
82) 1,2,4-Trimethylbenzene	24.67	105	13176	0.208 ng	92
83) n-Decane	24.79	57	8233	0.228 ng	79
84) Benzyl Chloride	24.84	91	10023	0.175 ng	99
85) 1,3-Dichlorobenzene	24.86	146	7855	0.200 ng	98
86) 1,4-Dichlorobenzene	24.95	146	7923	0.198 ng	100
87) sec-Butylbenzene	25.01	105	17444	0.193 ng	99
88) p-Isopropyltoluene	25.20	119	15803	0.198 ng	97
89) 1,2,3-Trimethylbenzene	25.20	105	13220	0.209 ng	91
90) 1,2-Dichlorobenzene	25.37	146	7205	0.181 ng	100
91) d-Limonene	25.38	68	4911	0.166 ng	94
92) 1,2-Dibromo-3-Chloropr	25.90	157	2311	0.181 ng	97
93) n-Undecane	26.32	57	9057	0.301 ng	80
94) 1,2,4-Trichlorobenzene	27.43	184	1516	0.270 ng	# 91
95) Naphthalene	27.57	128	17992	0.293 ng	96
96) n-Dodecane	27.55	57	8642	0.364 ng	80
97) Hexachloro-1,3-butadiene	27.99	225	3166	0.232 ng	99
98) Cyclohexanone	22.07	55	5164	0.166 ng	95
99) tert-Butylbenzene	24.67	119	13331	0.209 ng	95
100) n-Butylbenzene	25.71	91	13907	0.211 ng	96

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009_01\22\

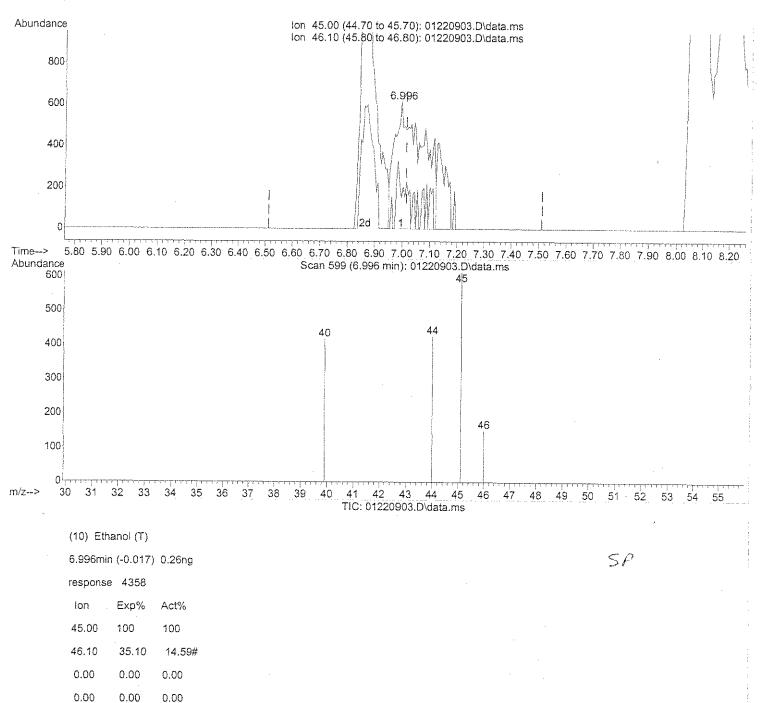
Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 15:26:10 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

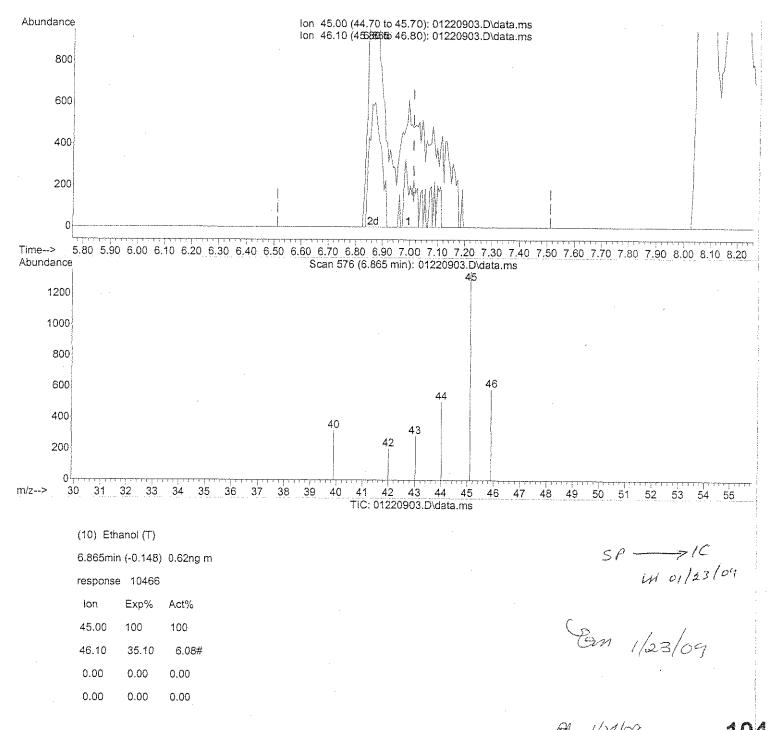
Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 15:26:10 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

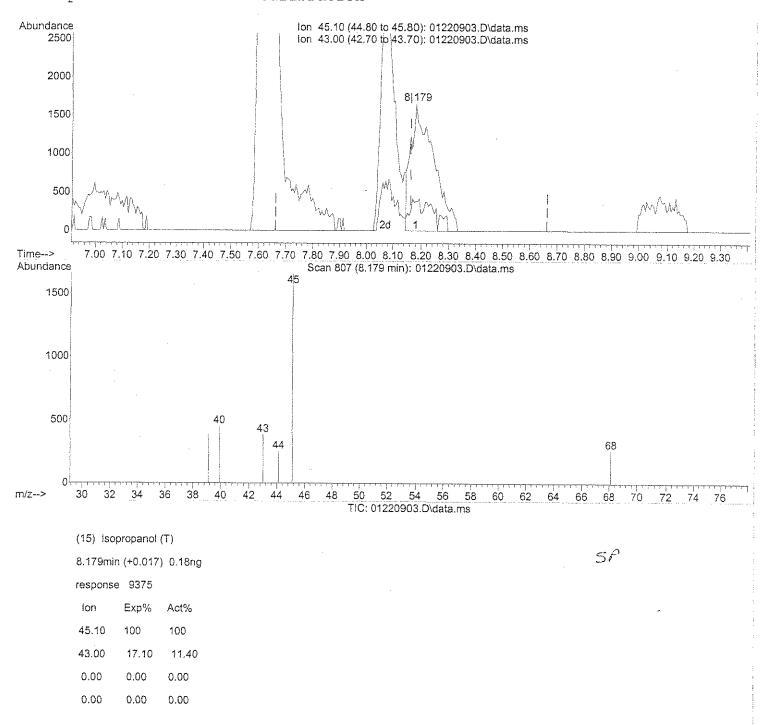
Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 15:26:10 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

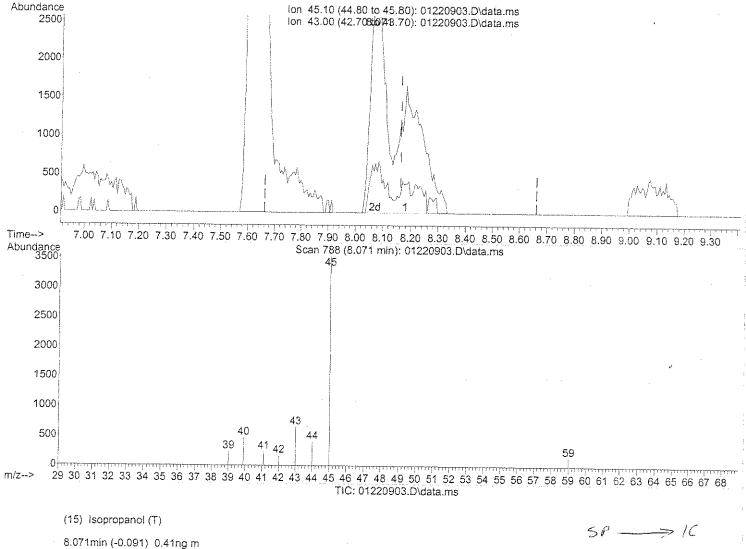
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Aca On : 22 Jan 2009

Operator : WA/LH

Sample 0.2ng TO-15 ICAL STD Misc S20-01050901/S20-01090915 ALS Vial 5 Sample Multiplier: 1


Quant Time: Jan 22 15:26:10 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

response 21114

lon Exp% Act% 45.10 100 100 43.00 17.10 5.06 0.00 0.00 0.00 0.00 0.00 0.00

Gm 1/23/09

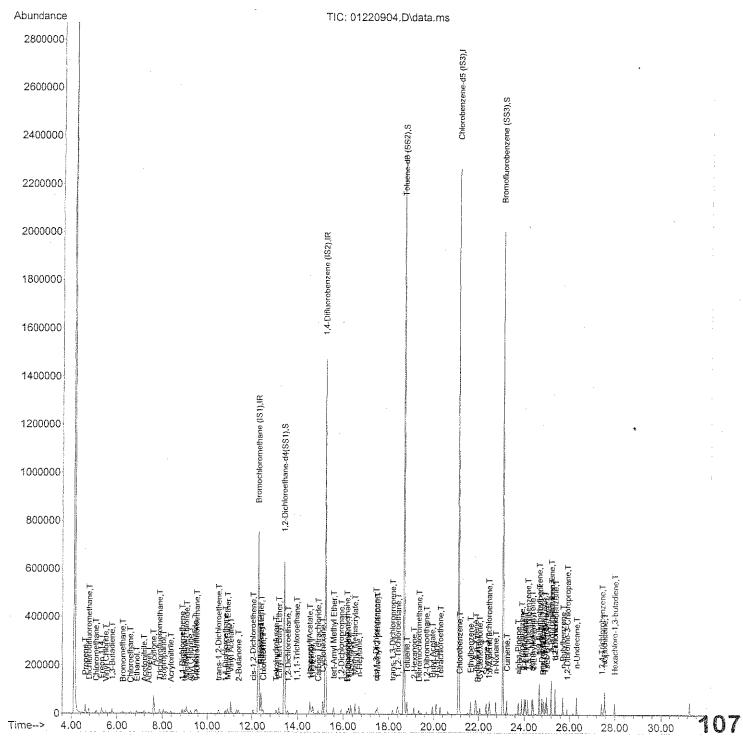
Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	386947	25.000	ng	-0	.04
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	10.22	T T 4	1//01/25	25.000	ng	()	.02
30) Chiolopenzene-d5 (153)	Z1.1U	8∠	860455	25.000	ng	()	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	639349	22.085	ng	- 0	.03
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	18.67	98	2024722	25.224	ng	-0	.01
Spiked Amount 25.000	• *		Recove	ery =	100.	888	
73) Bromofluorobenzene (SS3)	23.06	174	742061	27.734	ng	0	.00
Spiked Amount 25.000			Recove	ery =	110.	92%	
Target Compounds						Qva	lue
2) Propene	4.61	42	11134	0.501	na	32	92
3) Dichlorodifluoromethane	4.77	85	11134 22790	0.588	na		99
	5.08		18024	0.524	na		99
F \ T			10836	0.600	na		88
6) Vinyl Chloride	5.51	62	16185	0.551	na ·		84
7) 1,3-Butadiene	5.78	54	10484	0.474	na		96
8) Bromomethane	6.25	94	7992	0.536	na **9		95
9) Chloroethane	6.58	64	7316	0.577	na		97
10) Ethanol	6.85	45	41573m	2 403	na		
6) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein	7.20	41	22624	0.573	na na		79
12) Acrolein	7.40	56	6042	0.648	na		81
13) Acetone	7.61	58	41942	2.611	na		93
14) Trichlorofluoromethane	7 00	101	10000	0.567	na		96
15) Isopropanol 16) Acrylonitrile	8.05	45	62404m	1.179	na na		, ,
16) Acrylonitrile	8,38	53	13253	0.514			96
17) 1,1-Dichloroethene	8.89	96	9673	0.596		#	64
18) tert-Butanol	8.99	59	57434m		na **3	11	O 4
18) tert-Butanol 19) Methylene Chloride	9.08	84	10862	0.575	na	#	55
20) Allyl Chloride	9.27	41	12072	0.447	na	* 1	77
21) Trichlorotrifluoroethane	9,53	151	8709	0.592	na		91
20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	9.47	76	36061	0.550	na		98
23) trans-1,2-Dichloroethene	10.51	61	14267	0.528	na		73
24) 1,1-Dichloroethane	10.81	63	18126	0.528	na		99
25) Methyl tert-Butyl Ether	10.92	73	26774	0.531	_		84
26) Vinyl Acetate	11.06	86	9280	2.866		#	10
27) 2-Butanone	11.41	72	6501	0.655		#	52
28) cis-1,2-Dichloroethene	12.05	61	15207	0.561		11	74
29) Diisopropyl Ether	12.40	87	7990	0.552		#	20
30) Ethyl Acetate	12.40	61	7042	0.904	na na	11	79
31) n-Hexane	12.41	57	17257	0.480			8108
			,	·	5		~ 1 🔰 🕻

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	De	v(Min)
32)	Chloroform	12.49	83	17676	0.565 ng		99
34)	Tetrahydrofuran	13.06	72	6035	0 580 na	#	51
35)	Ethyl tert-Butyl Ether	13.19	87	11265	0.534 ng	#	72
36)	1,2-Dichloroethane	13.59	62	14804	0.524 ng		94
38)	1,1,1-Trichloroethane	13.97	97	15532	0.539 ng		93
39)	Isopropyl Acetate	14.54		13409	1.113 ng	#	87
40)	1-Butanol	14.58	56	22226	1 157 na	#	69
	Benzene	14.67	78	40723	0.533 ng	•	100
42)	Carbon Tetrachloride	14.90	117	13168	0.506 ng		99
	Cyclohexane	15.10	84	27848	1.060 ng	#	64
44)	tert-Amyl Methyl Ether	15.58	73	28617	0.547 ng		84
45)	1,2-Dichloropropane	15.91	63	10660	0.540 ng		98
46)	Bromodichloromethane	16.17	83	13165	0.525 na		98
47)	Trichloroethene	16.24	130	11016	0.544 ng		96
	1,4-Dioxane	16.22	88	8145	0.610 ng	#	72
	Isooctane	16.34	57	47408	0.550 ng		99
	Methyl Methacrylate	16.52	100	8117	1.210 ng	#	88
51)	n-Heptane	16.71	71	10438	0.562 ng	#	73
52)	cis-1,3-Dichloropropene	17.46	75	14519	0 509 ng		97
53)	4-Methyl-2-pentanone	17.51	5.8	10186	0 566 pa		79
54)	trans-1,3-Dichloropropene	18.17	75	14746	0.564 ng		97
55)	1,1,2-Trichloroethane	18.40	97	9946	0.588 ng		98
58)	Toluene	10 00	0.1	4 () 4 7	0.579 ng		99
	2-Hexanone	19.12	43	28186			95
60)	Dibromochloromethane	19.12 19.35 19.68 19.95	129	12161	0.638 ng		99
61)	1,2-Dibromoethane	19.68	107	11552			98
	Butyl Acetate	19.95	43	31970	0.596 ng		96
	n-Octane	20 11	57	0015	0.559 ng	#	68
	Tetrachloroethene	20.30	166	12158	0.600 ng		100
	Chlorobenzene	20.30 21.16 21.64	112	30592	0.602 ng		98
	Ethylbenzene	21.64	91	48392	0.558 ng		99
	m- & p-Xylene	21.87	91	74767	1.087 ng		97
	Bromoform	21.96	173	9897	0.569 ng		98
	•	22.33	104	28995	0.593 ng		95
	o-Xylene	22.4/	91	38812	0.565 ng		99
	n-Nonane	22.75	43	23892	0.596 ng		89
	1,1,2,2-Tetrachloroethane	22.44	83	17902	0.558 ng		95
	Cumene	23.24	105	50343	0.560 ng		98
	alpha-Pinene	23.74	93	22971	0.602 ng		94
	n-Propylbenzene	23.88	91	60926	0.555 ng		97
	3-Ethyltoluene	24.01	105	48076	0.606 ng		96
	4-Ethyltoluene	24.06		48601	0.614 ng		96
79)	1,3,5-Trimethylbenzene	24.15	105	40779	0.607 ng		9409

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene	24.35 24.40 24.67 24.79 24.84 24.86 24.95 25.00 25.20	118 105 105 57 91 146 146 105 119	21923 49352 40863 25013 33919 25055 25455 55389 50500 41771	0.605 ng 0.606 ng 0.624 ng 0.670 ng 0.573 ng 0.618 ng 0.617 ng 0.595 ng 0.614 ng 0.640 ng	94 96 90 79 96 99 100 100 96 88
90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene 96) n-Dodecane 97) Hexachloro-1,3-butadiene 98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	25.37 25.37 25.90 26.32 27.43 27.57 27.55 27.99 22.05 24.67 25.71	146 68 157 184 128 57 225 119	23462 16217 8131 26212 5211 58179 25257 10264 17622 40756 44745	0.571 ng 0.530 ng 0.619 ng 0.846 ng 0.900 ng 0.919 ng 1.032 ng 0.730 ng 0.548 ng 0.620 ng 0.657 ng	94 99 91 81 99 77 99 99 97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

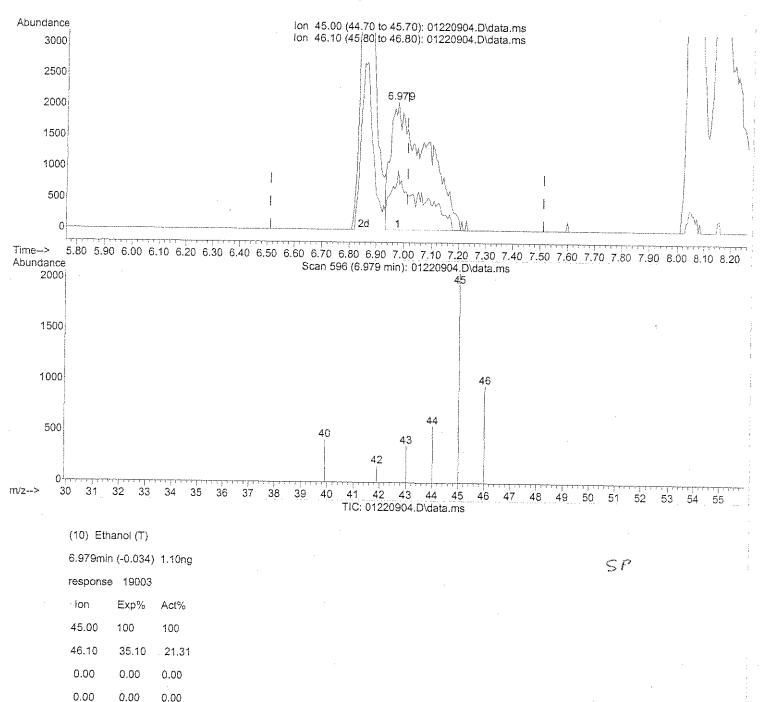
Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

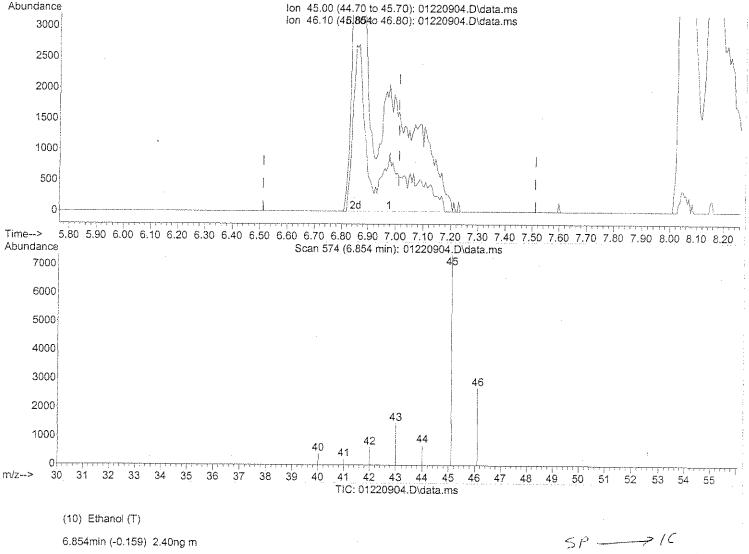
Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator WA/LH

Sample 0.5ng TO-15 ICAL STD Misc S20-01050901/S20-01220904 ALS Vial 2 Sample Multiplier: 1


Quant Time: Jan 22 15:26:28 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

response 41573

0.00

lon Exp% Act% 45.00 100 100 46,10 35.10 9.74# 0.00 0.00 0.00

0.00

SP -->16 UN 01/23/09 Gm 1/23/09

1/24/09

0.00

Data Path : J:\MS16\DATA\2009 01\22\

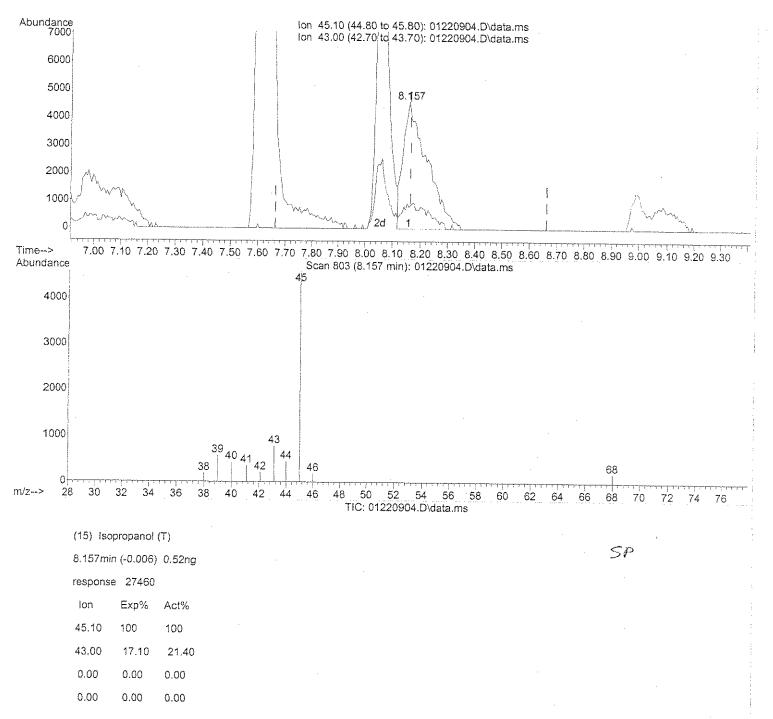
Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

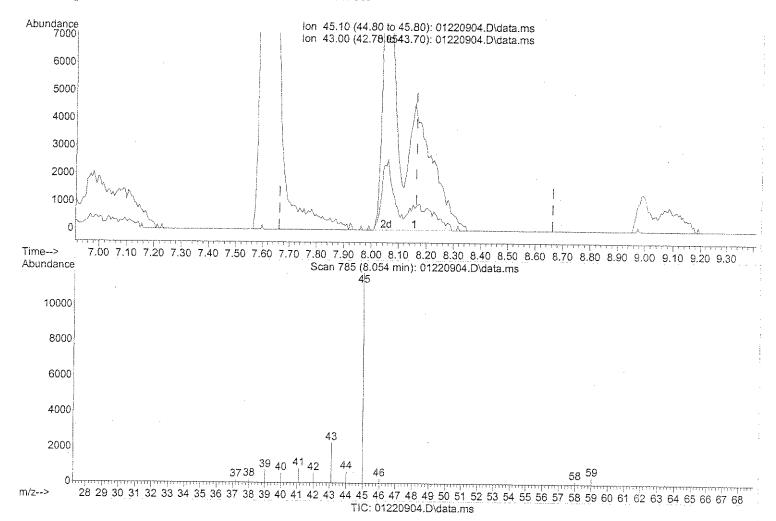
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial Sample Multiplier: 1


Quant Time: Jan 22 15:26:28 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.054min (-0.108) 1.18ng m

response 62404

lon Ехр% Act% 45.10 100 100 43.00 17.10 9.42 0.00 0.00 0.00 0.00 0.00 0.00

in 01/23/09 Em 1/23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

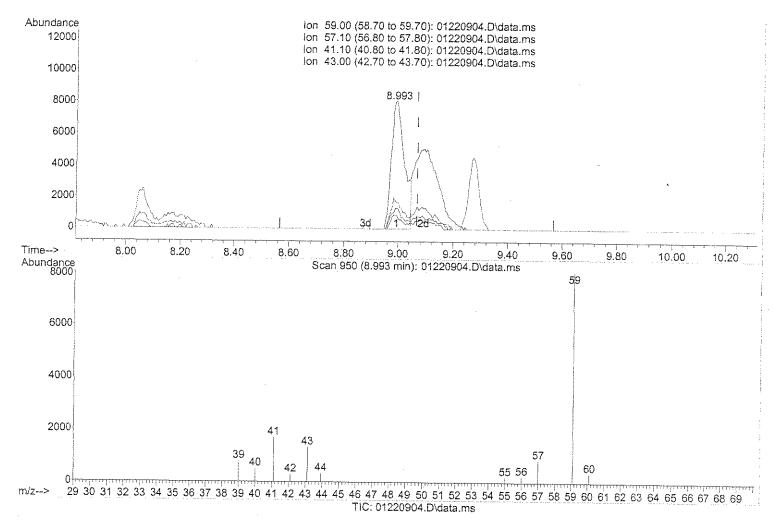
Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(18) tert-Butanol (T)

8.993min (-0.074) 0.55ng

response 27074

 Ion
 Exp%
 Act%

 59.00
 100
 100

 57.10
 10.50
 11.02

 41.10
 23.00
 23.55

 43.00
 14.50
 15.97

115

SP

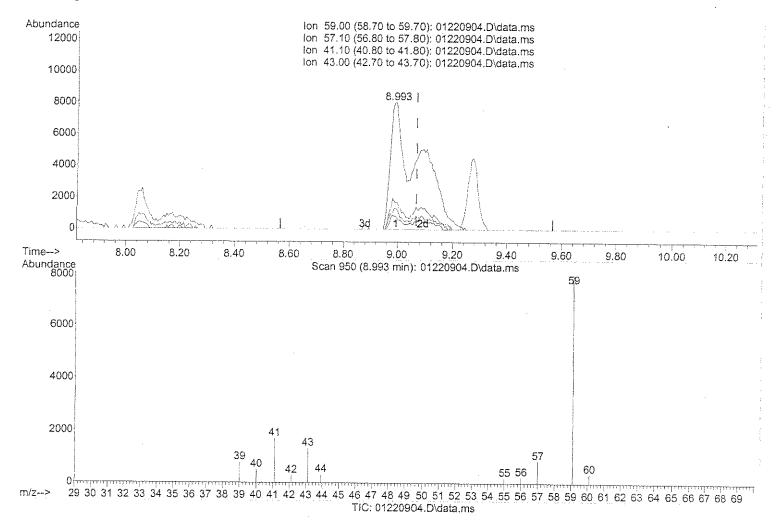
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial 2 Sample Multiplier: 1


Quant Time: Jan 22 15:26:28 2009

Quant Method : J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(18) tert-Butanol (T)

8.993min (-0.074) 1.16ng m

response 57434

Ion Ехр% Act% 59.00 100 100 57.10 10.50 5.19 41.10 23.00 11.10 43.00 14.50 7.53

SP -> 10 UN 01/23/09

104/09

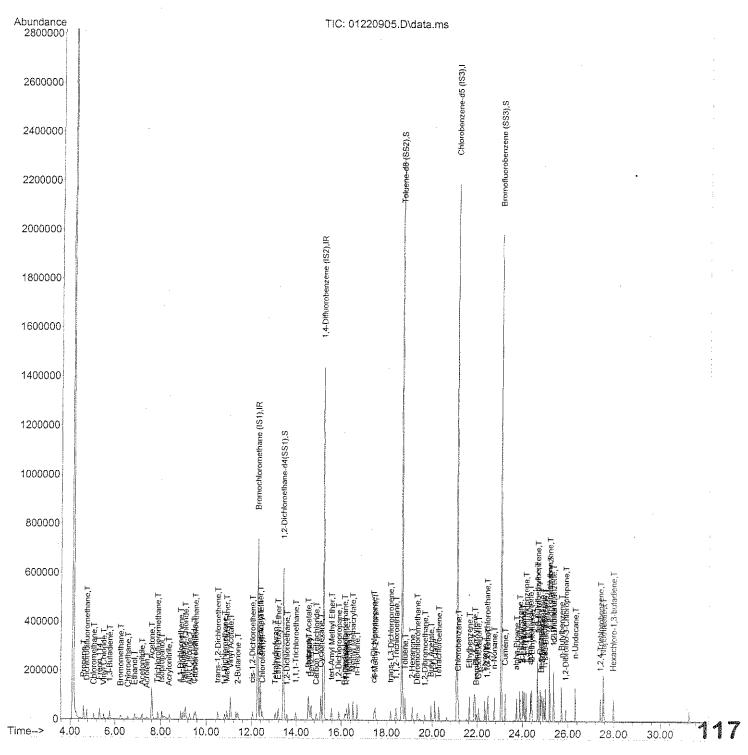
Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220905.D Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD Misc : S20-01050901/S20-0122 : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (Mir	1)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28	130	381959	25.000	ng	-0.04	
56) Chlorobenzene-d5 (IS3)	21.10	82	844687	25.000	ng	-0.02	
		0.0	011007	23.000	119	-0.01	-
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65					
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18.67	0.0	Recove	ery =	87.	.64%	
Spiked Amount 25.000			Recove	אדרב ארב	101	002	
73) Bromofluorobenzene (SS3)	23.06	174	731192	27.838	na na	00%	
Spiked Amount 25.000				ery =			
Taxat Compounds				4			
Target Compounds 2) Propene	4.60	4.0	10054	0 011		Qvalue	
3) Dichlorodifluoromethane	4.00	85	19974 40850		ng ng	90 99	
4) ('hloromethane	5.07	50	32057		ng	98	
	5.32	135	19254		na	87	
6) Vinyl Chloride	5.51	62	27487	0.948	na 9	86	
7) 1,3-Butadiene	5.78	54	27487 18957	0.869	na .	96	
8) Bromomethane	6.25	94	14511	0.985	nq	98	
9) Chloroethane	6.57	64	13266	1.060	ng	97	
10) Ethanol	6.86	45	73179m	4.285	ng		
11) Acetonitrile	7.19	41	40193	1.032			
12) Acrolein	7.40	56	10743	1.167	ng	81	
13) Acetone	7.61	- 58	73830	4.656	ng	92	
14) Trichlorofluoromethane15) Isopropanol	7.88	101	34331	1.034			
15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene	8.05	45	111661m	2.138			
17) 1 1-Dichloroethens	0.3/	53	27258	1.071			
I BI I ATI - BIIT ANO!	y au	- L3	3 A 3 B 6 E 5 5	2 2 2 2		# 66	
19) Methylene Chloride	9 08	84	10390311	2.129	ng n~	# 54	
19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	9.27	41	23124	0.867	119	# 54 77	
21) Trichlorotrifluoroethane	9.53	151	15641	1.077	na	89	
22) Carbon Disulfide	9.47	76	65166	1.006	na	100	
23) trans-1,2-Dichloroethene	10.51	61	27139	1.018			
24) 1,1-Dichloroethane	10.81	63	33257	0.982	nq	96	
25) Methyl tert-Butyl Ether	10.91	73	47197			85	
	11.06	86	16473			# . 7	
27) 2-Butanone	11.40	72		1.197	ng.	# 44	
28) cis-1,2-Dichloroethene	12.05	61	28504				
29) Diisopropyl Ether	12.40	87	14552	1.018		# 18	
30) Ethyl Acetate 31) n-Hexane	12.40	61	13391	1.741		85 8	a e
or, n-nexame	12.41	57	30930	0.871	ng	8	

DI 1/24/09

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD
Misc : S20-01050901/S20-01220904
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	32329	1.048 ng		97
				1.064 ng	#	
35) Ethyl tert-Butyl Ether	13.19	87	20566	0.988 ng	#	70
36) 1,2-Dichloroethane	13.59	62	26942	0.966 ng	11	97
38) 1,1,1-Trichloroethane	13.98	97	27647	0.976 ng		95
39) Isopropyl Acetate	14.54	61	10937 20566 26942 27647 24491	2.069 ng	#	93 87
40) 1-Butanol	14.56	56	42440	2.247 ng	#	73
41) Benzene	14.67	78	73440	0.979 ng	#	73 99
42) Carbon Tetrachloride	14.90	117	24184	0.945 ng		98
43) Cyclohexane	15.10	84	50627	1.961 ng	#	64
44) tert-Amyl Methyl Ether	15.58	73	50328	0.979 ng	11	86
45) 1,2-Dichloropropane	15.90	63	19410	1.000 ng		100
46) Bromodichloromethane	16.17	83	24448	0.992 ng		99
47) Trichloroethene	16.25	130	20163	1.013 ng		96
48) 1,4-Dioxane	16.22	88	15184	1.158 ng	#	67
49) Isooctane	16.34	57	87266	1.029 ng	11	99
50) Methyl Methacrylate	16.52	100	15385	2.333 ng		91
51) n-Heptane	16.70	71	19300	1.057 ng	#	72
52) cis-1,3-Dichloropropene	17.46	75	27016	0.964 ng	11	99
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene	17.51	58	18897	1.069 ng		79
54) trans-1,3-Dichloropropene	18.17	75	27893	1.085 ng		98
55) 1,1,2-Trichloroethane	18.41	97	17658	1.061 ng		97
58) Toluene	18.80	91	85075	1.085 ng		98
59) 2-Hexanone	19.12	43	52878	1.090 ng		93
60) Dibromochloromethane	19.34	129	21721	1.161 ng		100
61) 1,2-Dibromoethane	19.68	107	21365	1.100 ng		100
62) Butyl Acetate	19.95	43	60295	1.145 ng		97
63) n-Octane	20.11	57	18216	1.042 ng	#	66
64) Tetrachloroethene	20.29	166	21948	1.104 ng	• •	99
65) Chlorobenzene	21.16	112	55542	1.114 ng		100
66) Ethylbenzene	21.64	91	55542 90951 139979	1.068 ng		99
67) m- & p-Xylene	21.88	91	139979	2.074 ng		99
68) Bromoform	21.96	173	18564	1.086 ng		97
69) Styrene	22.33	104	54072	1.127 ng		96
70) o-Xylene	22.47	91	71597	1.062 ng		100
71) n-Nonane	22.75	43	44647	1.134 ng		90
72) 1,1,2,2-Tetrachloroethane	22.44	. 83	33990	1.079 ng		97
74) Cumene	23.23	105	94619	1.073 ng		97
75) alpha-Pinene	23.74	93	42870	1.144 ng		97
76) n-Propylbenzene	23.88	91	113276	1.050 ng		97
77) 3-Ethyltoluene	24.01	105	90110	1.158 ng		95
78) 4-Ethyltoluene		105	90973	1.171 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	75794	1.150 ng		95119

Data File : 01220905.D Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD : S20-01050901/S20-01220904 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene	24.35 24.40 24.67 24.79 24.83 24.87 24.95 25.00 25.20 25.37 25.37 25.37 25.37 25.37 25.37	118 105 105 57 91 146 146 105 119 105 146 68 157 57 184	41702 93625 77039 47359 66188 47192 47489 105089 96633 79277 43846 30881 15772 50158 9972 112840	Conc Units	Dev (Min) 94 96 91 80 97 98 99 96 90 97 99 87 79 # 90 98
96) n-Dodecane 97) Hexachloro-1,3-butadiene 98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	27.55 27.98 22.06 24.67 25.71	55	49759 19528 32363 76685 86271	2.070 ng 1.414 ng 1.026 ng 1.189 ng	78 100 95 100
	_ #U . / I 		002/1	1.290 ng	97

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

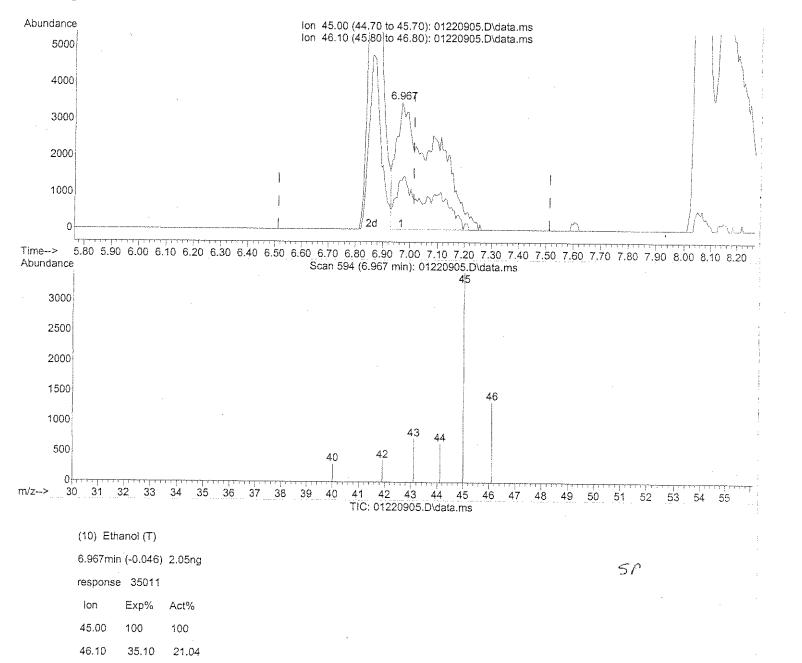
Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

0.00

0.00

0.00

0.00

0.00

0.00

Data Path : J:\MS16\DATA\2009 01\22\

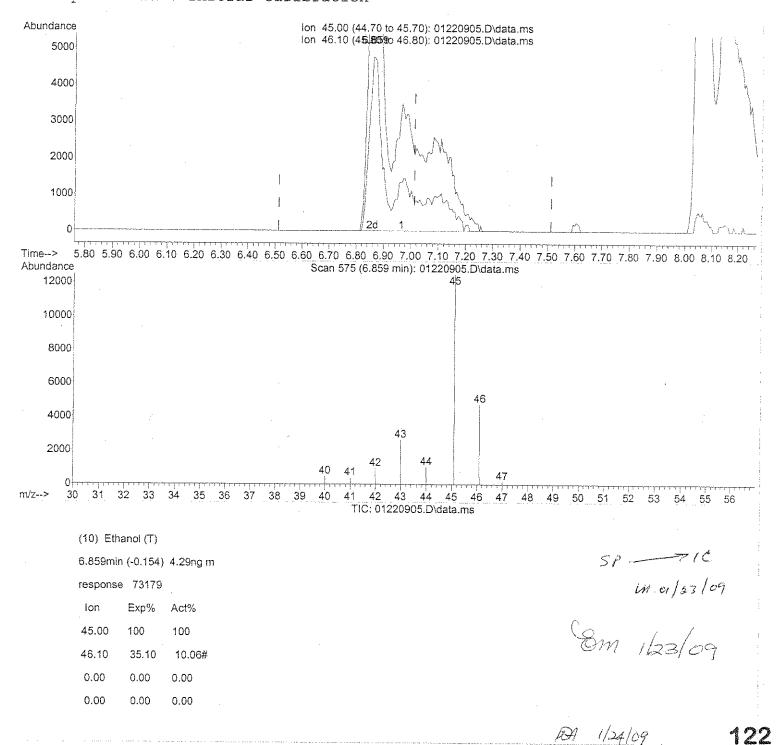
Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220905.D

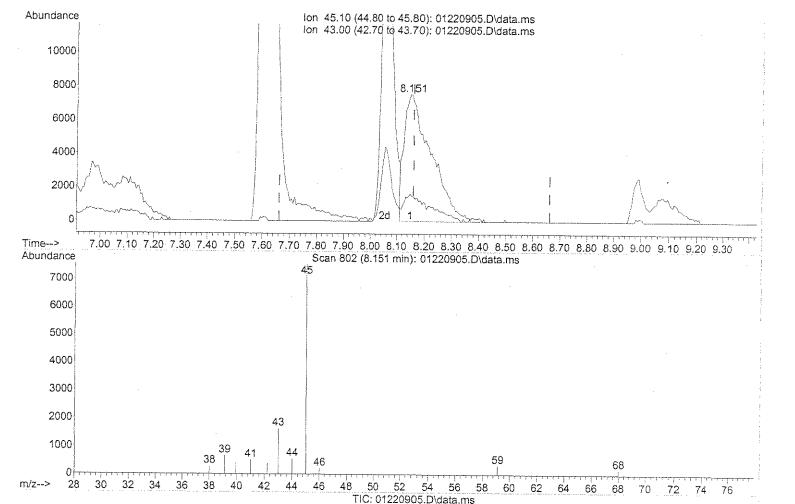
Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 16:07:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.151min (-0.011) 0.99ng

51

response 51652

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 20.78

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

123

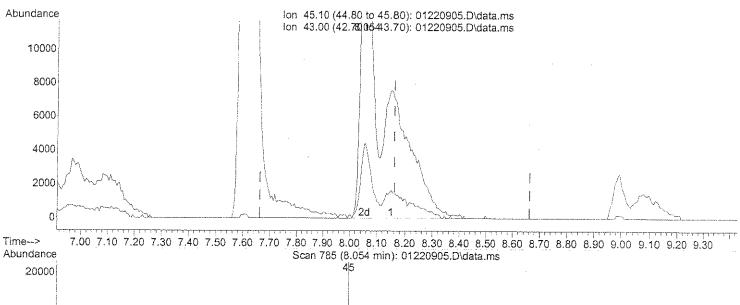
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD Misc S20-01050901/S20-01220904 ; ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

15000 10000 5000 43 46 58 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

m/z--> TIC: 01220905.D\data.ms

(15) Isopropanol (T)

8.054min (-0.108) 2.14ng m

response 111661

lon Ехр% Act% 45.10 100 100 43.00 17.10 9.61 0.00 0.00 0.00 0.00 0.00 0.00

58 --- 16 in 01/23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File: 01220905.D

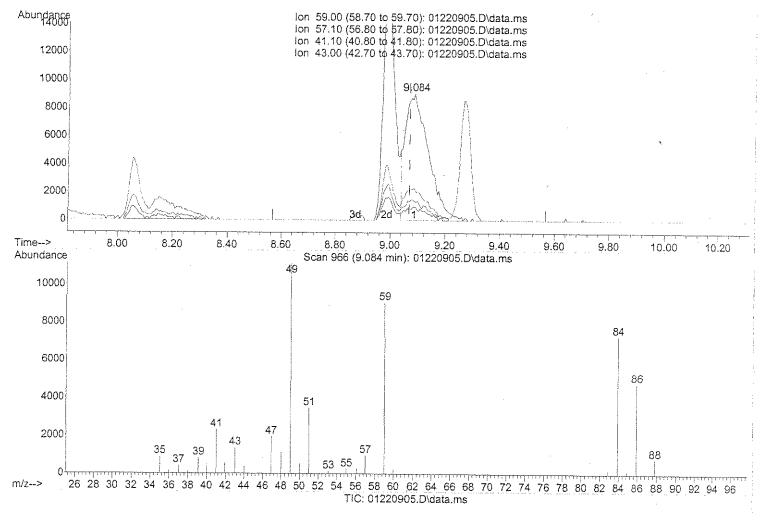
Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 16:07:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(18) tert-Butanol (T)

9.084min (+0.017) 1.07ng

50

response 52068
ion Exp% Act%
59.00 100 100
57.10 10.50 9.60

41.10 23.00 25.97

43.00 14.50 16.55

Data Path : J:\MS16\DATA\2009 01\22\

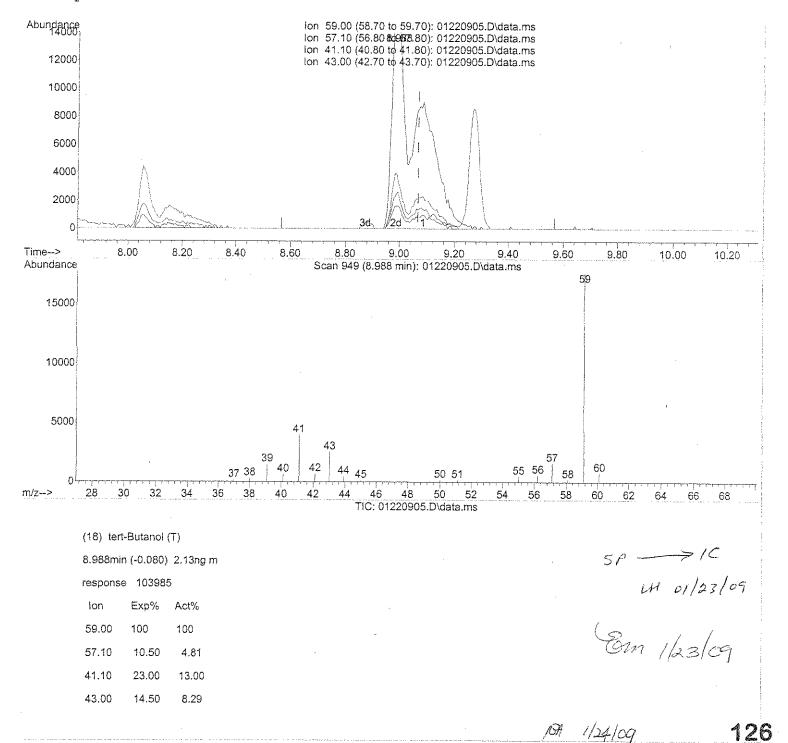
Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

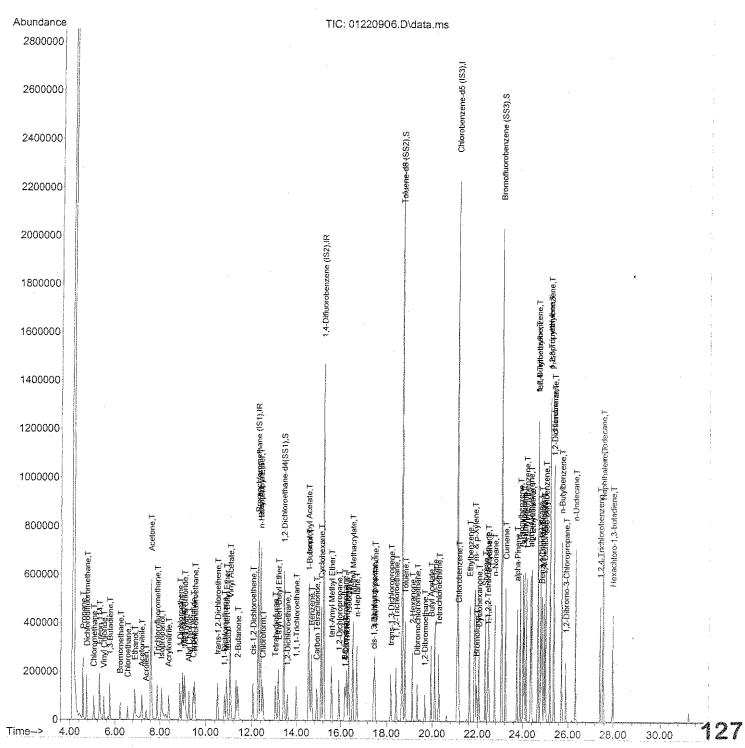
Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.29	130	389162	25.000	ng	- 0	.03
37) 1,4-Difluorobenzene (IS2)	15.23	114	1797444	25.000	nq	0	.02
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.10	82	863137	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.43	65	625886	21.497	nq	- 0	.02
Spiked Amount 25.000			Recov	erv =	86	.00%	
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18.67	98	2025979	25.161	ng	- 0	.01
Spiked Amount 25.000			Recov	ery =	100	.648	
73) Bromofluorobenzene (SS3)	23.06	174	760427	28.332	nq :	0	.00
Spiked Amount 25.000			Recov	ery =	113	. 32%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether						Qva]	lue
2) Propene	4.58	42	109370	4.896	ng		89
 Dichlorodifluoromethane 	4.75	85	186877	4.794	ng		99
4) Chloromethane	5.06	50	130472	3.774	ng	-	100
5) Freon 114	5.31	135	86900	4.781	ng		87
6) Vinyl Chloride	5.49	62	126900	4.295	ng		86
7) 1,3-Butadiene	5.77	54	86911	3.909	ng		98
8) Bromomethane	6.24	94	61814	4.118	ng		97
9) Chloroethane	6.57	64	60357	4.732	ng		96
10) Ethanol	6.88	45	340071m	19.546	ng		
11) Acetonitrile	7.19	41	187386	4.720	ng		91
12) Acrolein	7.39	56	52266	5.572	ng		82
13) Acetone	7.60	58	359565	22.255	ng		95
14) Trichlorofluoromethane	7.87	101	160198	4.736	ng		96
15) Isopropanol	8.07	45	404443m	7.601	ng		
16) Acrylonitrile	8.38	53	132114	5.097	ng		99
17) 1,1-Dichloroethene	8.88	96	82357	5.045	ng	#	65
18) tert-Butanol	9.00	59	491745	9.882	ng		99
19) Methylene Chloride	9.08	84	87789	4.624	ng	#	54
20) Allyl Chloride	9.27	41	122923	.4.523	ng .		79
21) Trichlorotrifluoroethane	9.53	151	74082	5.007	ng		91
22) Carpon Disulide	9.46	76	299704	4.541	ng		99
23) trans-1,2-Dichloroethene	10.51	61	133837	4.929	ng		74
24) 1,1-Dichloroethane	10.81	63	158582	4.594	ng		98
mo, rectific out of the first	TO. 21	7 5	42000	# . # J i	119		00.
26) Vinyl Acetate	11.06	86	71445	21.941		#	1
27) 2-Butanone	11.39	72	59989	6.012		#	34
28) cis-1,2-Dichloroethene	12.06	61	133971	4.914		1.5	75
29) Diisopropyl Ether	12.40	87	68491	4.702		#	22
30) Ethyl Acetate	12.40	61	67279	8.586			84
31) n-Hexane	12.41	57	147395	4.073	ng		8 128

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene 71) n-Nonane 72) 1,1,2,2-Tetrachloroethane	12.50	83	149792	4.764 ng		98
34) Tetrahydrofuran	13.06	72	55860	5.335 ng	#	49
35) Ethyl tert-Butyl Ether	13.19	87	97789	4.609 ng	#	69
36) 1,2-Dichloroethane	13.59	62	126727	4.460 ng		97
38) 1,1,1-Trichloroethane	13.98	97	134556	4.600 ng		93
39) Isopropyl Acetate	14.54	61	123428	10.091 ng	#	83
40) 1-Butanol	14.55	56	219897	11.271 ng	#	76
41) Benzene	14.67	78	352097	4.543 ng		100
42) Carbon Tetrachloride	14.91	117	120654	4.562 ng		98
43) Cyclohexane	15.10	84	248514	9.317 ng	#	64
44) tert-Amyl Methyl Ether	15.58	73	245397	4.619 ng		84
45) 1,2-Dichloropropane	15.91	63	94516	4.715 ng		98
46) Bromodichloromethane	16.17	83	119692	4.703 ng		98
47) Trichloroethene	16.26	130	96337	4.683 ng		97
48) 1,4-Dioxane	16.20	88	72596	5.358 ng	#	69
49) Isooctane	16.34	57	415097	4.739 ng		9.8
50) Methyl Methacrylate	16.53	100	76372	11.209 ng	#	86
51) n-Heptane	16.71	71	92365	4.895 ng	#	73
52) cis-1,3-Dichloropropene	17.46	75	136245	4.705 ng		100
53) 4-Methyl-2-pentanone	17.50	58	96313	5.274 ng		77
54) trans-1,3-Dichloropropene	18.17	75	142627	5.368 ng		98
55) 1,1,2-Trichloroethane	18.41	97	86820	5.051 ng		99
58) Toluene	18.80	91	399746	4.988 ng		99
59) 2-Hexanone	19.12	43	260227	5.251 ng		93
60) Dibromochloromethane	19.34	129	109520	5.729 ng		99
61) 1,2-Dibromoethane	19.67	107	103798	5.228 ng		99
62) Butyl Acetate	19.95	43	296176	5.502 ng		97
63) n-Octane	20.11	57	91982	·5.151 ng	#	68
64) Tetrachloroethene	20.29	166	105491	5.194 ng		98
65) Chlorobenzene	21.16	112	262768	5.156 ng		99
66) Etnylbenzene	21.64	91	444323	5.108 ng		99
6/) m- & p-xylene	21.88	91	685738	9.941 ng		97
68) Bromolorm	21.96	173	98367	5,634 ng		99
69) Styrene	22.33	104	281883	5.748 ng		97
71\ m Monano	22.48	91	360301	5.232 ng		99
71) n-Nonane	22.75	43	221797	5.513 ng		89
74) Cumene 75) alpha-Pinene	23.24	105	457520	5.076 ng		96
76) n-Propylbenzene	23.74	93 01	212781	5.555 ng		99
77) 3-Ethyltoluene	23.88 24.01	91 105	565115	5.128 ng		97
78) 4-Ethyltoluene	24.01		458915	5.769 ng		96 05
79) 1,3,5-Trimethylbenzene	24.06	105	460146 383184	5.797 ng 5.687 ng		95
, , , , , , , , in the city in enderte	47.10	T 0 D	J0J104	2.00/ 119		9420

Data File : 01220906.D

: 22 Jan 2009 16:12 Acq On

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

: S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Intern	al Standards	R.T.	QIon	Response	Conc Unit	s !	Dev(Min)
	lpha-Methylstyrene -Ethyltoluene	24.35	118	218975 468559	6.021 ng 5.731 ng		95 95
	,2,4-Trimethylbenzene	24.67	105	395767	6.025 ng		92
	-Decane	24.79	57	242716	6.483 ng		80
	enzyl Chloride	24.83	91	352551	5.942 ng	*	96
	,3-Dichlorobenzene	24.86	146	241583	5.944 ng		100
	,4-Dichlorobenzene	24.95	146	243153	5.878 ng		99
	ec-Butylbenzene	25.00	105	531677	5.696 ng		99
	-Isopropyltoluene	25.20	119	495785	6.012 ng		95
	,2,3-Trimethylbenzene	25.20	105	404626	6.180 ng		89
	,2-Dichlorobenzene	25.37	146	230616	5.596 ng		98
	-Limonene	25.37	68	161798	5.276 ng		100
	,2-Dibromo-3-Chloropr	25.90		83590	6.342 ng	7	# 80
-	-Undecane	26.32	57	254060	8.170 ng		78
	,2,4-Trichlorobenzene	27.43	184	49542	8.532 ng	#	# 94
	aphthalene	27.57	128	580614	9.147 ng		100
	-Dodecane	27.55	57	256024	10.424 ng		78
	exachloro-1,3-butadiene	27.99	225	95364	6.758 ng		99
	yclohexanone	22.05	55	159341	4.942 ng		93
	ert-Butylbenzene	24.67		392335	5.953 ng		100
100) n	-Butylbenzené	25.71	91	440531	6.444 ng		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

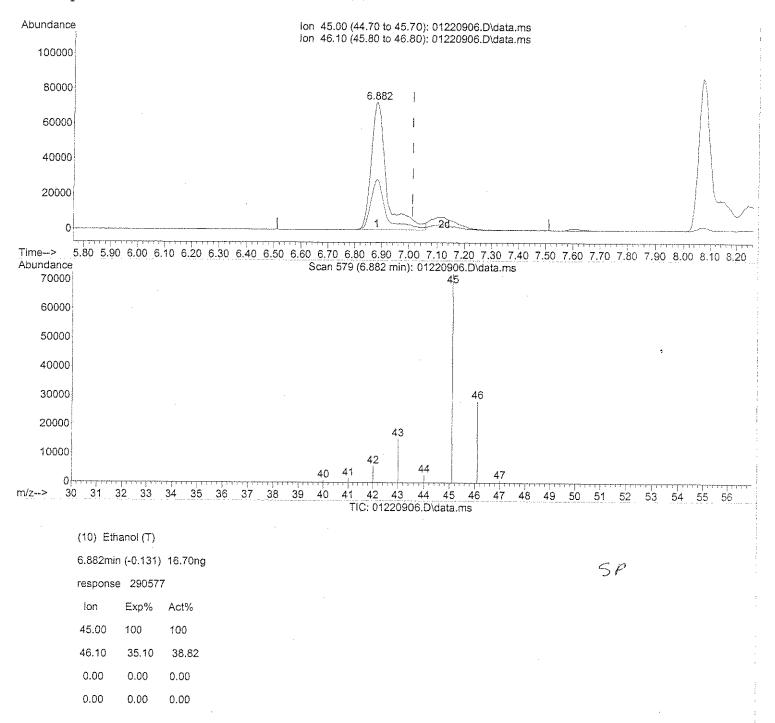
Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

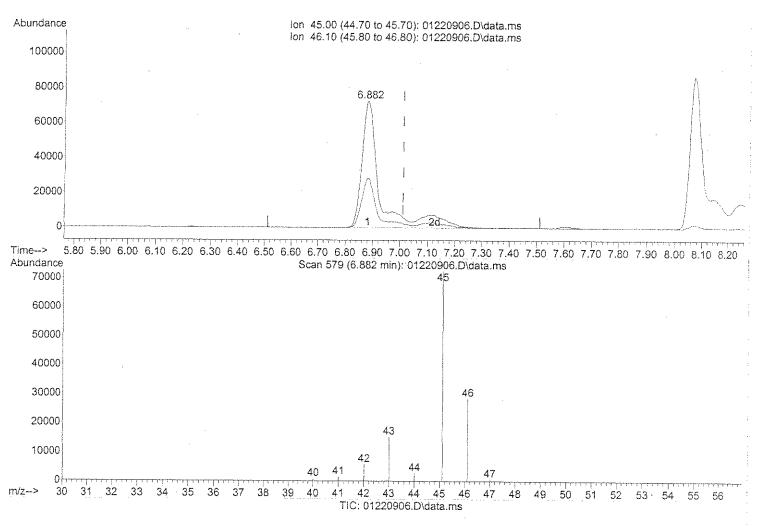
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220906.D

: 22 Jan 2009 Acq On 16:12

Operator : WA/LH

Sample 5.0ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial 2 Sample Multiplier: 1


Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via: Initial Calibration

(10) Ethanol (T)

6.882min (-0.131) 19.55ng m

response 340071

lon Exp% Act% 45.00 100 100 46.10 35.10 33.17 0.00 0.00 0.00 0.00 0.00 0.00

Em 1/23/09

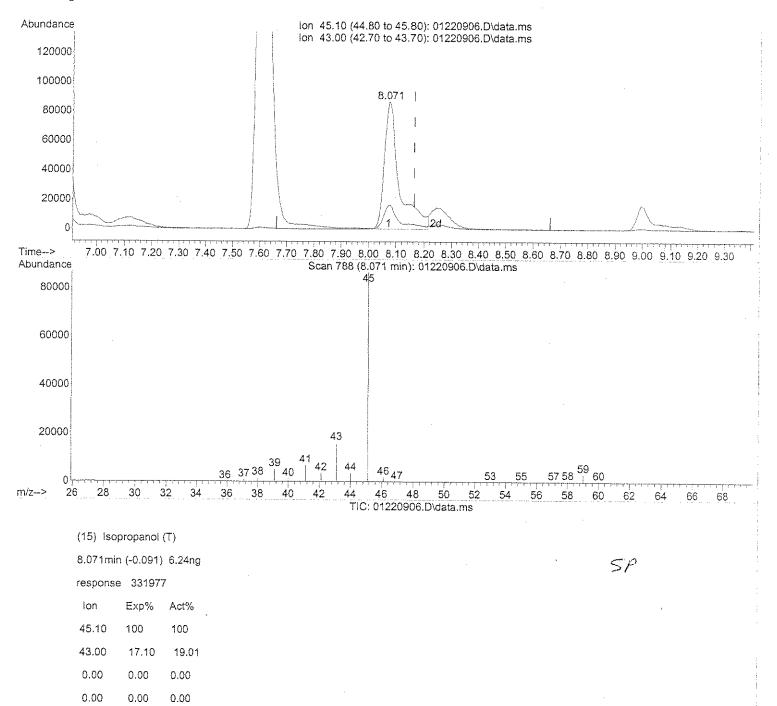
Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD


Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

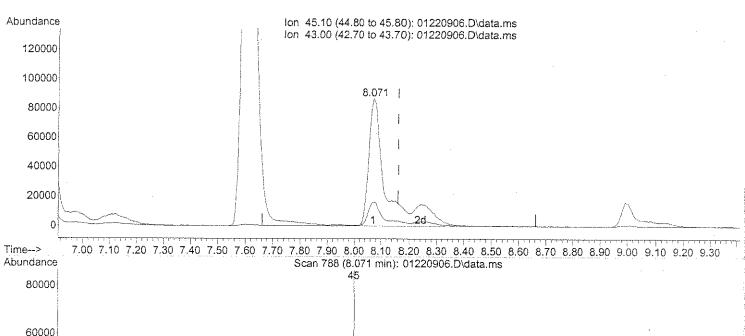
Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220906.D

: 22 Jan 2009 Acq On 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

Time>	7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00 9.10 9.20 9.30
Abundance	Scan 788 (8.071 min): 01220906.D\data.ms
80000	45
60000	
40000	
20000	36 37 38 40 42 44 46 47 53 55 57 58 59 60
m/z> 26	28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 TIC: 01220906.D\data.ms

(15) Isopropanol (T)

8.071min (-0.091) 7.60ng m

response 404443

lon Exp% Act% 45.10 100 100 43.00 17.10 15.61 0.00 0.00 0.00 0.00 0.00 0.00

SP ->10 W 01/23/09 Em 1/23/09

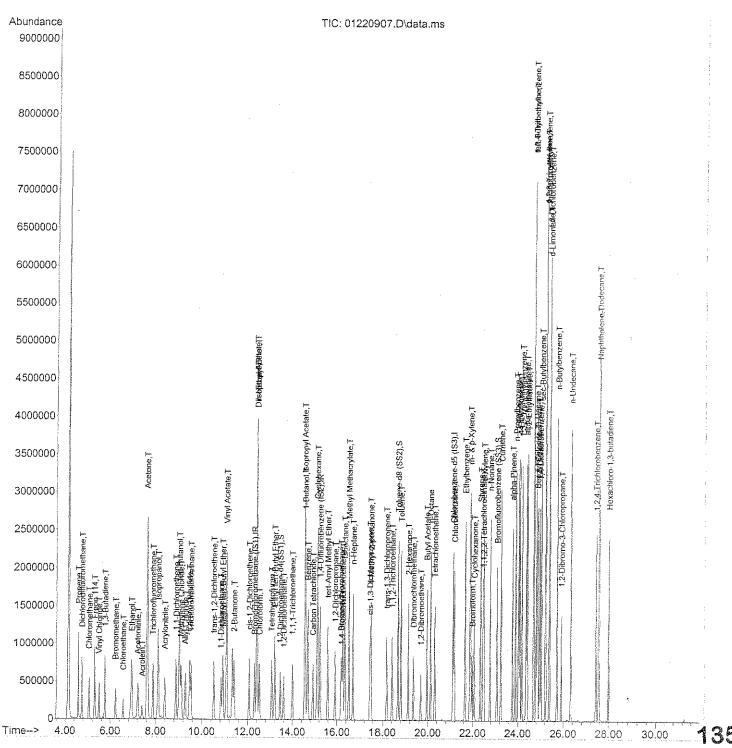
1/24/09

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD


Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Respons	e Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1)	12.31	130	403989	25.000	nq		0.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1818049	25.000	na	- 1	0.01
56) Chlorobenzene-d5 (IS3)	21.11	82	856657	25.000	ng	ı	0.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	629869	20.840	nq	(0.02
Spiked Amount 25.000			Reco ⁻	very =			
57) Toluene-d8 (SS2)	18.67	98	2012401				
Spiked Amount 25.000			Reco	very =	100	. 72%	
73) Bromofluorobenzene (SS3)	23.06	174	772363	28.994	ng	(0.00
Spiked Amount 25.000				very =			
Target Compounds					· ·	Ova	alue
2) Propene	4.58	42	512566	22.104	ng		88
 Dichlorodifluoromethane 	4.74	85	880717	21.762	ng		100
4) Chloromethane	5.06	50	756621	21.084	ng		99 .
5) Freon 114	5.30	135	429851	22.780	na		87
6) Vinyl Chloride	5.49	62	648753	21.152	ng		86
7) 1,3-Butadiene	5.77	54	493377	21.376	ng		99
8) Bromomethane	6.24	94	368361	23.642	ng		98
9) Chloroethane	6.57	64	302369	22.836	ng		95
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol	6.94	45	1920140m	106.313	ng		
ii/ Acetonitriie	7.21	41	963156	23.372	na		91
12) Acrolein	7.41	56	304372	31.257	na		83
13) Acetone	7.63	58	1987451	118.499	ng		99
14) Trichlorofluoromethane	7.88	101	862121	24.552	ng		95
15) Isopropanol 16) Acrylonitrile	8.11	45	2671174m	48.356	ng		
16) Acrylonitrile	8.40	53	743283				99
17) 1,1-Dichloroethene	8.89	96	461353			#	62
18) tert-Butanol	9.03	59	2761784	53.464	ng		98
19) Methylene Chloride	9.10	84	478114	24.259	ng	#	52
20) Allyl Chloride	9.28	41	737745	26.150	ng		77
21) Trichlorotrifluoroethane	9.53	151	398618	25.950	ng		90
22) Carbon Disulfide	9.47	76	1656214	24.173	ng		99
23) trans-1,2-Dichloroethene		61	719038	25.508	ng '		73
24) 1,1-Dichloroethane	10.83	63	863341	24.093	ng		97
25) Methyl tert-Butyl Ether	10.91	73	1242174	23.613	ng		85
26) Vinyl Acetate	11.08		435554	128.852	ng	#	1
27) 2-Butanone	11.41		343171	33.128		#	32
28) cis-1,2-Dichloroethene	12.07						74
29) Diisopropyl Ether	12.40		379329			#	23
30) Ethyl Acetate	12.41	61	391990				83
31) n-Hexane	12.41	57	809021	21.537	ng		8 43 (

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Inte:	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32)	Chloroform	12.52	83	831131	25.461	na		98
34)	Tetrahydrofuran	13.06	72	309969	28.517	' ng	#	49
35)	Ethyl tert-Butyl Ether	13.20	87	535728	24.322		#	68
	1,2-Dichloroethane	13.60	62	670876	22.745			96
38)	1,1,1-Trichloroethane	13.99	97	717476	24.249			93
39)	Isopropyl Acetate	14.55	61	706528	57.108		#	80
40)	1-Butanol	14.57	56	1233093	62.489		.,	81
	Benzene	14.68	78	1905925	24.310			100
42)	Carbon Tetrachloride	14.91	117	677767	25.335			99
43)	Cyclohexane	15.11	84	1354459	50.203		#	64
44)	tert-Amyl Methyl Ether	15.58	73	1345778	25.046		.,	83
45)	1,2-Dichloropropane	15.91	63	513794	25.338			98
46)	Bromodichloromethane Trichloroethene	16.18	83	653244	25.377			99
47)	Trichloroethene	16.26	130	537115	25.814			97
48)	1,4-Dioxane	16.21	88	400365	29,213		#	68
	Isooctane	16.35	57	2236807	25.249			97
50)	Methyl Methacrylate	16.53	100	443319	64.330			90
51)	n-Heptane	16.72	71	506040	26.512		#	73
52)	cis-1,3-Dichloropropene	17.46	75	764467	26.102			99
53)	4-Methyl-2-pentanone	17.51	58	764467 524879	28.419			77
54)	trans-1,3-Dichloropropene	18.17	75	792198	29.476			99
	1,1,2-Trichloroethane	18.41	97	470095	27.040			100
	Toluene	18.80	91	2138553	26.888			99
59)	2-Hexanone	19.12	43	1392273	28.305			91
	Dibromochloromethane	19.35	129	613477	32.334			100
	1,2-Dibromoethane	19.68	107	568922 1615778	28.872			99
	Butyl Acetate	19.95	43	1615778	30.243	ng		95
	n-Octane	20.11	57	500539	28.240	ng	#	67
	Tetrachloroethene	20.30	166	591975	29.367	ng		99
	Chlorobenzene	21.17	112	1404364	27.765	ng		100
	Ethylbenzene	21.65	91	2443512	28.305	ng		100
	m- & p-Xylene	21.88	91	3817815	55.767	ng		97
	Bromoform	21.96	173	1404364 2443512 3817815 554785 1579423 1980620	32.016	ng.		100
	Styrene	22.33	104	1579423	32.452	ng		97
	o-Xylene	22.48	91	1980620	28.977	ng		99
	n-Nonane	22.75	43	1213938	30.401	ng		88
	1,1,2,2-Tetrachloroethane	22.45	83		29.103	ng		96
,	Cumene	23.24	105		28.031			96
	alpha-Pinene	23.74	93		31.528			97
	n-Propylbenzene	23.88	91		28.571			96
	3-Ethyltoluene	24.01	105		32.735			95
	4-Ethyltoluene		105		31.967			94
79)	1,3,5-Trimethylbenzene	24.16	105	2123437	31.754	ng		9437

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.35	118	1250854	34.655 ng	98
81) 2-Ethyltoluene	24.40	105	2604838	32.103 ng	94
82) 1,2,4-Trimethylbenzene	24.67	105	2287344	35.086 ng	90
83) n-Decane	24.79	57	1362915	36.680 ng	80
84) Benzyl Chloride	24.84	91	2066886	35.101 ng	95
85) 1,3-Dichlorobenzene	24.87	146	1344112	33.320 ng	99
86) 1,4-Dichlorobenzene	24.95	146	1352310	32.938 ng	99
87) sec-Butylbenzene	25.01	105	2985879	32.232 ng	98
88) p-Isopropyltoluene	25.20	119	2888998	35.296 ng	94
89) 1,2,3-Trimethylbenzene	25.20	105	2340811	36.022 ng	88
90) 1,2-Dichlorobenzene	25.37	146	1298969	31.761 ng	98
91) d-Limonene	25.38		933758	30.680 ng	99
92) 1,2-Dibromo-3-Chloropr			458831	35.073 ng	# 77
93) n-Undecane		57	1420055	46.012 ng	78
94) 1,2,4-Trichlorobenzene	27.43	184	265504	46.072 ng	# 92
95) Naphthalene	27.57	128	3004092	47.683 ng	100
96) n-Dodecane 97) Hexachloro-1.3-butadiene	27.55	57	1405823	57.674 ng	76
	27.99		521366	37.225 ng	99
98) Cyclohexanone			854350	26.698 ng	92
99) tert-Butylbenzene 100) n-Butylbenzene	24.67	119	2280972	34.869 ng	100
100) n-Butylbenzene	25.71	91	2421034	35.683 ng	94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

```
Data Path : J:\MS16\DATA\2009_01\22\
```

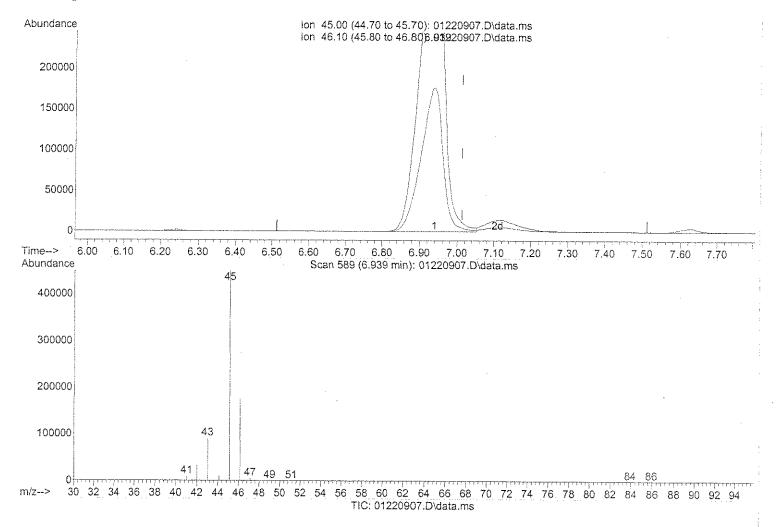
Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 17:30:19 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

response 1829652

6.939min (-0.074) 101.30ng

lon	Exp%	Act%
45.00	100	100
46.10	35.10	39.00
0.00	0.00	0.00
0.00	0.00	0.00

SP

139

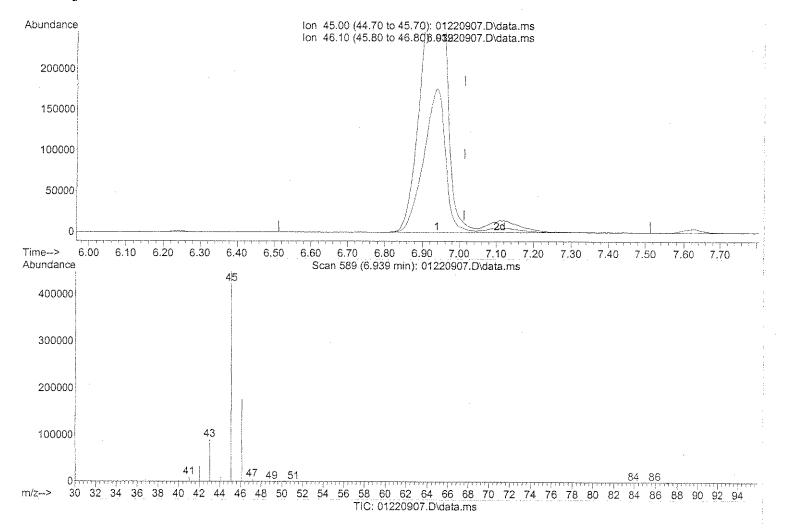
Data File : 01220907.D

Acq On : 22 Jan 2009

: WA/LH Operator

: 25ng TO-15 ICAL STD Sample

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.939min (-0.074) 106.31ng m

response 1920140

ion Exp% Act% 45.00 100 100 46.10 35.10 37.16 0.00 0.00 0.00 0.00 0.00 0.00

SF -71C W 01/23/09

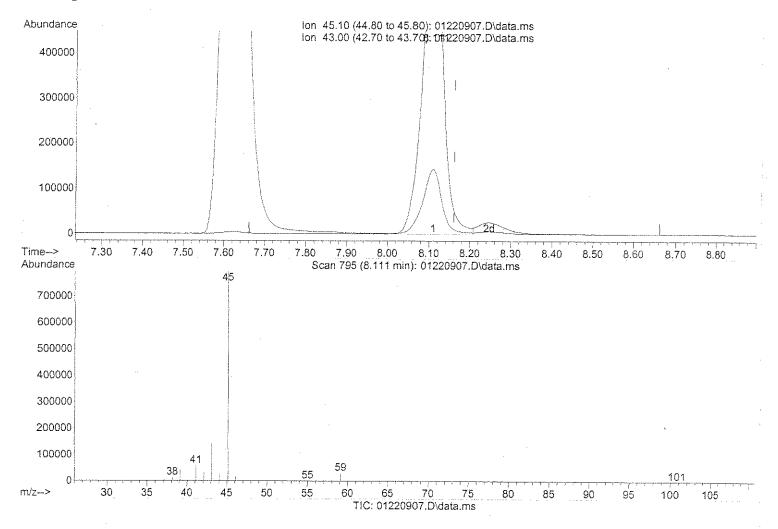
Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.111min (-0.051) 46.20ng

SP

response 2551895

 ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.89

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

141

Data Path : J:\MS16\DATA\2009 01\22\

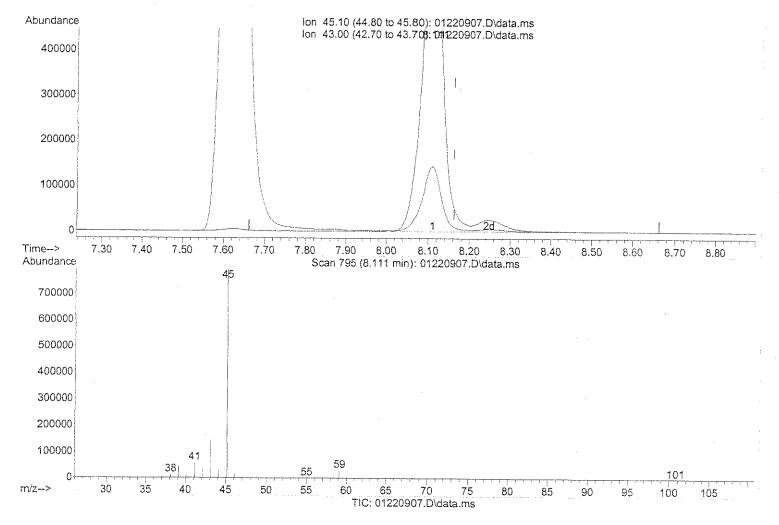
Data File : 01220907.D

Acg On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via: Initial Calibration

(15) Isopropanol (T)

8.111min (-0.051) 48.36ng m

response 2671174

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.09

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP -7/C

Ein 1/23/09

DA 1/24/09

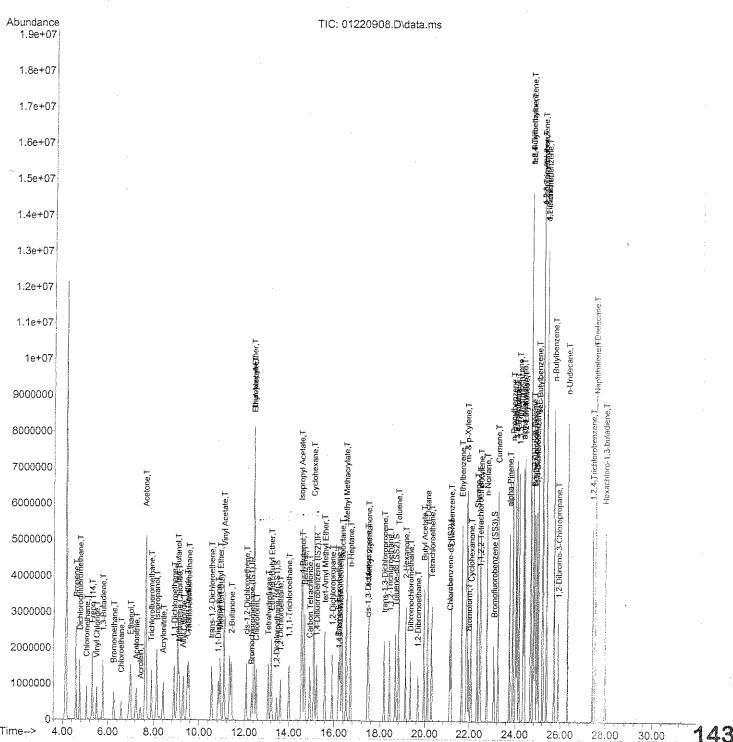
142

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD


Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

: S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1)	12.32	130	425118	25.000	nq		0.00
37) 1,4-Difluorobenzene (IS2)	15.24	114	1906826	25.000	ng		0.00
56) Chlorobenzene-d5 (IS3)	21.11	82	897441	25.000	ng		0.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.45	65	649651	20.426	ng		0.00
Spiked Amount 25.000			Recov	ery =	81	.72%	i
57) Toluene-d8 (SS2)	18.67	98	Recov 2088767	24.949	ng .		0.00
Spiked Amount 25.000			Recov	ery =	99	.80%	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.06	174	822929	29.488	ng		0.00
Spiked Amount 25.000			Recov	ery =	117	.96%	
Target Compounds						Qv	alue
2) Propene	4.58	42	1212020	49.669	ng		
 Dichlorodifluoromethane 	4.75	85	1845340	43.332	na		99
4) Chloromethane 5) Freon 114	5.07	50	1394221	36.920	ng		99
5) Freon 114	5.31	135	884506	44.545	ng		86
6) Vinvi Chloride	5 50	62	1220261	41 400	**		0.7
7) 1,3-Butadiene	5.78	54	1041189	42.869	ng		99
8) Bromomethane	6.25	94	752452	45.892	ng		97
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	6.58	64	619185	44.438	ng		94
10) Ethanol	6.97	45	3982602m	209.546	ng		
11) Acetonitrile	7.23	41	1937558	44.680	ng		90
IZ) ACTOTETH	7.42	56	636257	62.091	na		82
13) Acetone	7.64	58	4173647	236.480	ng		96
14) Trichlorofluoromethane	7.89	101	1751316	47.396	ng		95
14) If Chiloroff doromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride	8.14	45	4694788m	80.766	ng		
16) Adrylonitrile	8.42	53	1519401	53.656	ng		100
1/) 1,1-Dichioroethene	8.89	96	951359	53.352	ng	#	61
18) tert-Butanoi	9.06	59	5692129	104.715	ng		97
19) Methylene chioride	9.12	84	984568	47.472	ng	#	51
20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.29	41	1535825	51.734	ng		76
21) Illichiotottilliuoroethane	9.54	12T	881246	54.518	ng		89
22) trans 1 2 Dighleresthere	9.4/	76	3376495	46.832	ng		98
24) 1,1-Dichloroethane	10.54	ς. ρ.Τ	14/480/	49.719	ng		73
25) Methyl tert-Butyl Ether	10.84	63	1770623	46.957			97
26) Vinyl Acetate	10.92 11.09	73		47.874	-	11	85
27) 2-Butanone	11.09	86 72		235.479		#	1
28) cis-1,2-Dichloroethene	12.08		705867	64.754		#	31
29) Diisopropyl Ether	12.08	61 87	1481887 818142	49.757		11	73
30) Ethyl Acetate	12.41		845365	51.418 98.759		#	19
31) n-Hexane	12.42	57	1800184	45.540			82 8 3 4 4
,	ىكەت ، يەخد	J /	**O O O T O A	エン・フォリ	117		္ ျခန္မြန္မ်ားမ်ား

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	e Conc	Units	Dev	(Min)
32)	Chloroform	12.53	83	1681134	48.941	na		98
34)	Chloroform Tetrahydrofuran Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane Isopropyl Acetate	13.06	72	642655	56.185	na na	#	48
35)	Ethyl tert-Butyl Ether	13.20	87	1124253	48.504	na	#	
36)	1,2-Dichloroethane	13.61	62	1338601	43.128	na	11	96
38)	1,1,1-Trichloroethane	14.00	97	1490009	48.015	na na		93
39)	Isopropyl Acetate	14.56	61	1486463	114.556	na	#	
40)	1,1,1-Trichloroethane Isopropyl Acetate 1-Butanol Benzene	14.59		2582249			11	83
41)	Benzene	14.69	7.8	300000	48.515	na		100
42)	Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene	14.92	117	1416184	50.473	na		99
43)	Cyclohexane	15.12	84	2930223	103.552	na	#	
44)	tert-Amyl Methyl Ether	15.59	73	2798709			,,	82
45)	1,2-Dichloropropane	15.92	63	1055483	49.629	na		98
46)	1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate	16.19	83	1333384	49.386	na		99
47)	Trichloroethene	16,27	130	1110292	50.876	na		97
48)	1,4-Dioxane	16.22		830221	57.758	na	#	
49)	Isooctane	16.35	57	4618908	49.710	na	11	96
50)	Methyl Methacrylate	16.54	300	^ ·	126.697	na '		89
51)	n-Heptane -	16.72	71	1050375	52.469	na	#	
52)	n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 2-Hexanone	17.47	75	1574113	51.245	na	1,	100
53)	4-Methyl-2-pentanone	17.51	58	1094891	56.521	na		78
54)	trans-1,3-Dichloropropene	18.18	75	1639269	58.154	na		99
55)	1,1,2-Trichloroethane	18.42	97	966700	53.015	na		
58)	Toluene	18.81	91	4394126	52.737	ng		100
59)	2-Hexanone	19.13	43	2847885	55.267	na		90
007	DIDIOCHIOLOMECHANE	19.35	129	1262299	63.506	ng		100
61)	1,2-Dibromoethane Butyl Acetate	19.68 19.95			56.564	na		99
62)	Butyl Acetate	19.95	43	1167679 3369109	60.195	na		
63)	n-Octane	20.12	57	1047018	56.387	na	#	67
64)	n-Octane Tetrachloroethene Chlorobengono	20.30	166	1231518	58.318	nq	,,	98
00)	CITTOTODETIVETIE	/ بلا ، بلا ک	112	2906652	54.854	ng		100
	Ethylbenzene	21.65	91	5023154	55.542	ng		99
	m- & p-Xylene	21.89		8021976	111.851	ng		96
	Bromoform	21,97	173	1151987				
	Styrene		104	3282282	64.375	nq		97
	o-Xylene	22.48	91	4093586	57.168	nq		98
	n-Nonane	22.76	43	2477484	59.224	nq		86
	1,1,2,2-Tetrachloroethane		83		57.180			96
	Cumene	23.24		5218838	55.690	ng		96
	alpha-Pinene	23.74	93	2505843	62.918			96
	n-Propylbenzene			6494853	56.684	ng		96
	3-Ethyltoluene			5481043	66.270	ng		95
	4-Ethyltoluene			5205050	63.066			94
79)	1,3,5-Trimethylbenzene	24.17	105	4441891	63.406	ng		9145

Data File : 01220908.D

: 22 Jan 2009 17:34 Acq On

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

: S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
80)	alpha-Methylstyrene	24.35	118	2629315	69.536	nq		98
81)	2-Ethyltoluene	24.40	105	5422276	63.789			94
82)	<u> </u>	24.68	105	4903717	71.801	ng •		90
83)	n-Decane	24.79	57	2834310	72.813	ng		80
84)	Benzyl Chloride		91	4297382	69.664	ng		94
85)	1,3-Dichlorobenzene	24.87	146	2800431	66.267			98
86)	1,4-Dichlorobenzene	24.95		2812888	65.399	ng		99
87)		25.01	105	6207321	63.962			98
	p-Isopropyltoluene	25.20	119	6162941	71.873			94
	* · · · · · · · · · · · · · · · · · · ·	25.21	105	4986589	73.250			87
90)	1,2-Dichlorobenzene	25.38	146	2742255	64.004			98
91)	d-Limonene	25.38	68	1968842	61.750	ng		99
92)	1,2-Dibromo-3-Chloropr	25.91		965320	70.437	ng	#	74
,	n-Undecane	26.32		2993050	92.572	ng		78
	• •	27.43	184	574249	95.119	ng	#	92
	Naphthalene	27.57	128	6479843	98.178			99
	n-Dodecane	27.55	57		119.893			75
	Hexachloro-1,3-butadiene	27.99		1127285	76.830			99
	Cyclohexanone	22.07		1763017	52.590	ng		92
	tert-Butylbenzene	24.68		4841916	70.654			100
100)	n-Butylbenzene	25.71	91	5043950	70.963	ng		94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

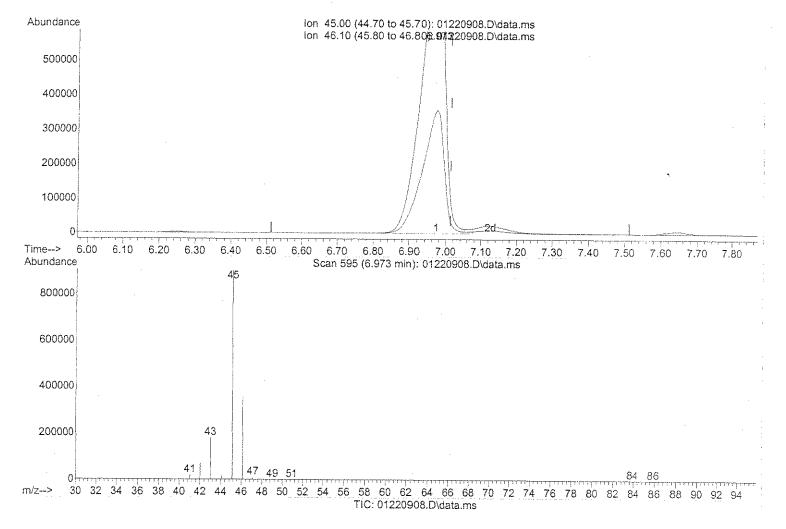
Data File: 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 23 08:52:11 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.973min (-0.040) 202.32ng

response 3845354

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 39.07

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

147

SP

Data Path : J:\MS16\DATA\2009 01\22\

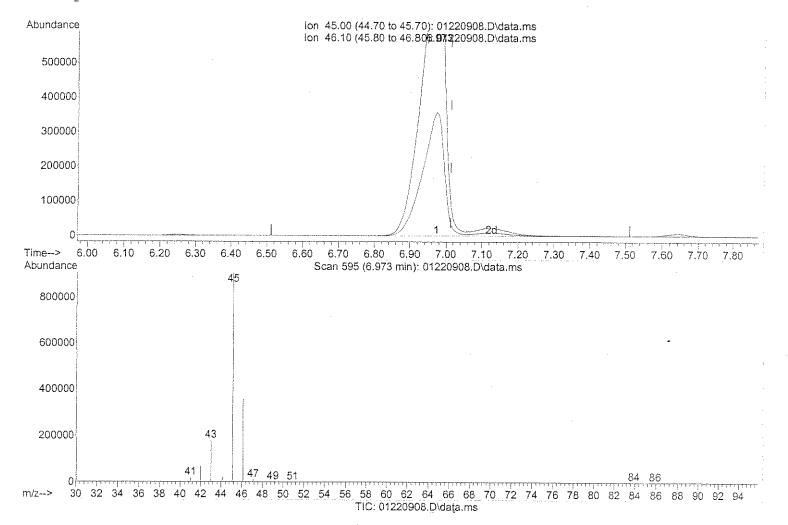
Data File : 01220908.D

: 22 Jan 2009 Acq On 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 2 ALS Vial Sample Multiplier: 1


Ouant Time: Jan 23 08:52:11 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.973min (-0.040) 209.55ng m

response 3982602

lon Exp% Act% 45.00 100 100 46.10 35.10 37.72 0.00 0.00 0.00 0.00 0.00 0.00

58 -> 10 11 01/23/09 Eng 1/23/09

Data Path : J:\MS16\DATA\2009_01\22\

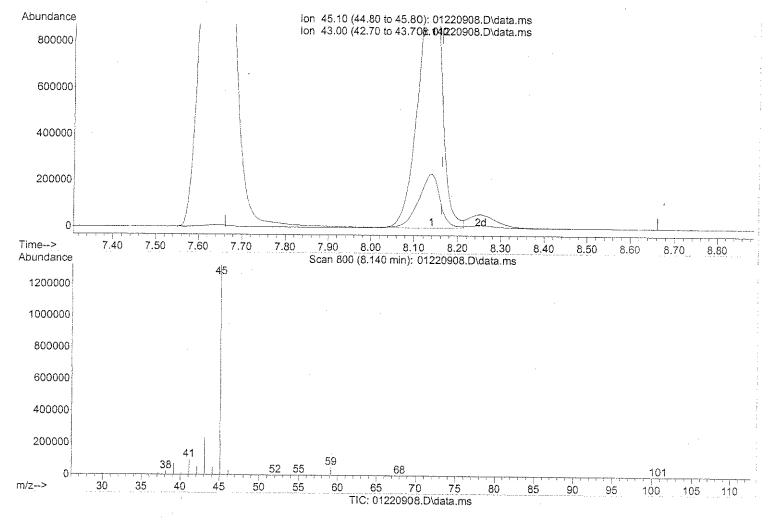
Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Jan 23 08:52:11 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

/1E1	Isopropanol (T)	
1 1 1 3 1	ESCHALL MALE BOLD	

8.140min (-0.023) 76.12ng

SP

response 4424774

ion	Exp%	Act%
45.10	100	100
43.00	17.10	17.72
0.00	0.00	0.00
0.00	0.00	0.00

149

Data Path : J:\MS16\DATA\2009 01\22\

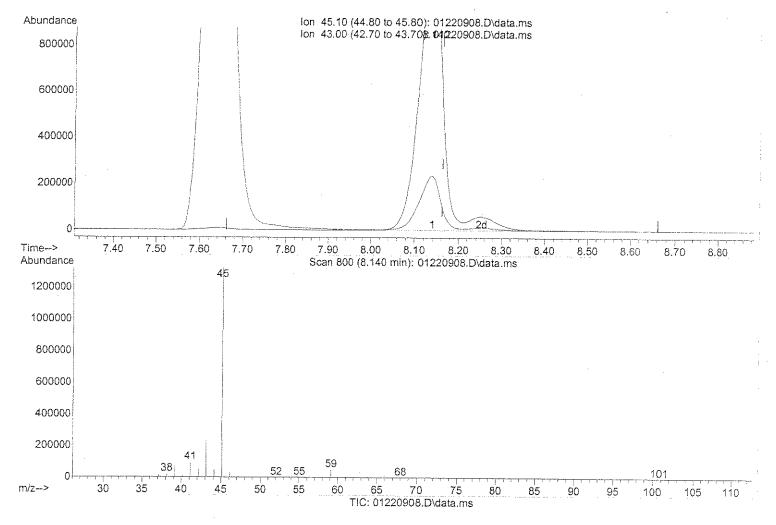
Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial 2 Sample Multiplier: 1


Quant Time: Jan 23 08:52:11 2009

Quant Method : J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Quant Title

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.140min (-0.023) 80.77ng m

response 4694788

ion Exp% Act% 45.10 100 100 43.00 17.10 16.70 0.00 0.00 0.00 0.00 0.00 0.00

SP -->16 UN 01/23/09 Em 1/23/09

194 1/24/09

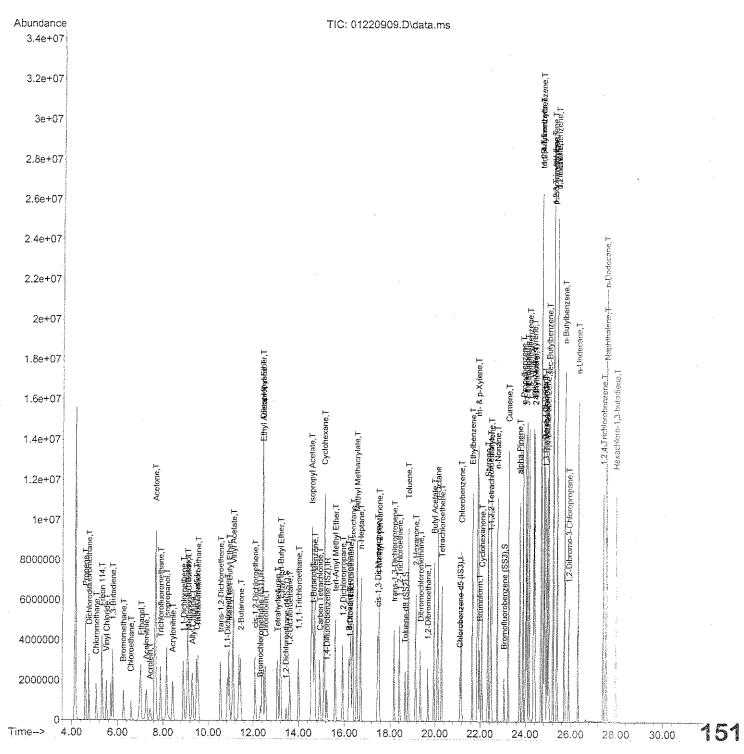
Data File : 01220909.D

Acq On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220909.D

Acq On : 22 Jan 2009 18:14

Operator : WA/LH

: 100ng TO-15 ICAL STD Sample : S20-01050901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009 Response via : Initial Calibration

Inter	nal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
37) :	Bromochloromethane (IS1) 1,4-Difluorobenzene (IS2)	15.25	114	1974517	25.000	na	0	.00
56) (Chlorobenzene-d5 (IS3)	21.12	82	902617	25.000	ng '		.00
Svster	m Monitoring Compounds							
33)	1,2-Dichloroethane-d4(13.46	65	665827	20.382	nq	0	.00
Spil	red Amount 25 000			Dogg	T C 707 T	0.3	F 0 0.	
	Toluene-d8 (SS2)	18.68	98	2136477	25.373	ng	0	.00
Spik	red Amount 25.000			Recov	ery =	101.	. 48%	
/3) £	Bromofluorobenzene (SS3)	23.06	174	835343	29.762	ng ·	0	.00
SDIL	ted Amount 25.000			Recov	rery =	119.	. 04왕	
	Compounds						Qva.	lue
2) E	ropene	4.59	42	2636549	105.195	ng		86
3) I	Dichlorodifluoromethane	4.75	85	3856585	88.169	ng		99
	Chloromethane	5.07	50	2982994	76.907	ng		99
	reon 114	5.31	135	2100034	102.970	na		86
6) V	inyl Chloride	5.51	62	3158744	95.287	ng		87
7) 1	,3-Butadiene	5.78	54	2473175	99.140	ng		97
8) E	Bromomethane	6.26	94	1569976	93.227	ng		97
9) (Chloroethane	6.59	64	1320603	92.277	ng		94
10) E	inyl Chloride ,,3-Butadiene Bromomethane Chloroethane Sthanol Acetonitrile Acrolein	7.02	45	8258630	423.063	ng		93
11) A	cetonitrile	7.26	41	3985068	89.471	ng		90
12) A	crolein	7.43	56	1319572	125.377	ng		81
13) A	cetone richlorofluoromethane sopropanol crylonitrile	7.67	58	8/43/4/	482.349	na ·		90
14) 1	richiorofiuoromethane	7.89	101	3607517	95.054	ng		95
12) T	sopropanol	8.17	45	9106545	152.528	ng		98
10) A	crylonitrile	8.44	53	3131702	107.675	ng		99
1/) 1	,1-Dichloroethene	8.90 9.09	96	1988660	108.580	ng	#	61
10) L	ert-Burdhor	9.09	59	7911970	141.711	ng	16	97
12) N	ert-Butanol ethylene Chloride llyl Chloride richlorotrifluoroethane arbon Disulfide rans-1,2-Dichloroethene	9.12	84	2041691	95.845	ng	#	49
ת נטב די נוכ	rightoretriftuereethane	9.3I	41	3219712	105.593	ng		75
22) (arbon Digulfide	9.55	70T	1894203.	114.092	ng		89
22) 6	rang-1 2-Dichloroethene	7.40 10 EE	/ O	202220	94.461	ng		98
24) 1	,1-Dichloroethane	10.85	63	3665212	99.202	ng		72
	ethyl tert-Butyl Ether	10.93	73		94.636			97
	inyl Acetate	11.11	86		100.274	_	11.	85
	-Butanone	11.44	72		419.553		#	1
	is-1,2-Dichloroethene	12.09	61		126.107 100.476		#	29
	iisopropyl Ether	12.42	87		100.476		#	72 11
	thyl Acetate	12.44	61		204.736		717	81
	-Hexane	12.42	57	3976995	97.954			845
								~ ~ a a # 4

Data File : 01220909.D

Acq On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Inte:	rnal Standards	R.T.	QIon	n Respons	e Conc	Units	Dev	(Min)
32)	Chloroform	12.55	83	3444973	97.644	na		98
34)	Tetrahydrofuran	13.08	72	1268116			#	48
35)	Ethyl tert-Butyl Ether	13.21	87	2420207			#	68
	1,2-Dichloroethane	13.62		2701643			**	96
38)	1,1,1-Trichloroethane	14.01		3105454				93
39)	Isopropyl Acetate	14.57		3161510			#	70
40)	1-Butanol	14.63	56	5254448			.,	85
41)	Benzene	14.70		8468069				100
42)	Carbon Tetrachloride	14.93		2998272				99
	Cyclohexane	15.13		6396996			#	64
· · · · · · · · · · · · · · · · · · ·	tert-Amyl Methyl Ether	15.60		5943162			*1	82
	1,2-Dichloropropane	15.93		2203196				98
46)	Bromodichloromethane	16.20		2756072				98
47)		16.27	130	2385026				97
48)	1,4-Dioxane	16.23	88	1753012			#	68
	Isooctane	16.36					T	95
50)	Methyl Methacrylate	16.56						92
51)	n-Heptane	16.73					#	72
	cis-1,3-Dichloropropene	17.47					17	100
	4-Methyl-2-pentanone	17.52						78
	trans-1,3-Dichloropropene	18.18						99
55)	1,1,2-Trichloroethane	18.42						100
58)	Toluene	18.82		9332416				100
59)	2-Hexanone	19.14	43					89
		19.36						99
		19.69						99 99
	Butyl Acetate	19.03	43	7443720				93
	n-Octane	20.12	4 3	2247786			11	
	Tetrachloroethene	20.30	166	2644103			#	67
	Chlorobenzene	20.30		6157948				99
	Ethylbenzene			10714802				99
	-	21.00		17264543				98
	Bromoform	21.90						95
69)	Styrene	22.34	104					100
	o-Xylene				136.852			96
	n-Nonane	22.49		8798410				97
	1,1,2,2-Tetrachloroethane	22.//	4:3	5148342	122.365	ng		83
	Cumene	22.40	105	4081295	121.195	ng		96
	alpha-Pinene	23.23 22.71	702 T02	11262809 5408005	125.49/	119		95
	<u> -</u>	∠⊃./4 ევ იბ	93 01	3408005 1370F001	110.008	ng		95
	n-Propylbenzene 3-Ethyltoluene	23.07	コクロ	13725291	119.101	ng		95 0.4
.770\	A-Prhyleolucia	24.02	TOD	11686342	134 510	119		94
701	4-Ethyltoluene 1,3,5-Trimethylbenzene	24.U0	10E	11166338	134.518	ng		94
13)	r, s, s-irimethyroenzene	24.1/	TUD	7524858	135.184	ng		945

Data File : 01220909.D Acq On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD Misc : S20-01050901/S20-0122 : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009 Response via: Initial Calibration

Inte	rnal Standards	R.T.	QIoi	n Respons	e Conc	Units	Dev(Min)
80)	<u>, </u>	24.36	118	5648866	148.535	ng	96
81)	2-Ethyltoluene	24.42	105	11492918	134.431	ng	93
	1,2,4-Trimethylbenzene	24.69	105	10082002	146.775	ng	. 90
83)		24.80	57	5856264	149.584	ng	79
84)		24.85	91	9120268	146.999	ng	93
85)	•	24.88	146	6063302	142.654	ng	99
86)	•	24.96	146	6076015	140.455	ng	99
87)	<u> </u>	25.02	105	13037480	133.571	ng	97
	p-Isopropyltoluene	25.21	119	12131080	140.662	ng	94
	1,2,3-Trimethylbenzene	25.21	105	10073950	147.131	ng	89
	1,2-Dichlorobenzene	25.38	146	5829997	135.291	ng	98
91)	d-Limonene	25.38	68	3918375	122.189	ng	96
	1,2-Dibromo-3-Chloropr	25.91	157	2062515	149.633	ng	# 70
93)	n-Undecane		57	6243269	191.990	ng	76
	1,2,4-Trichlorobenzene	27.44	184	1283481	211.379	ng	# 92
95)	Naphthalene	27.58	128	13976472	210.547	ng	99
96)	n-Dodecane	27.56	57	6332586	246.565	ng	72
	Hexachloro-1,3-butadiene	28.00	225	2545463	172.490	ng	99
98)	Cyclohexanone	22.08	55	3664664	108.689	ng	90
	tert-Butylbenzene	24.68	119	9914688	143.848	ng	99
100)	n-Butylbenzene	25.72	91	10511825	147.043		92

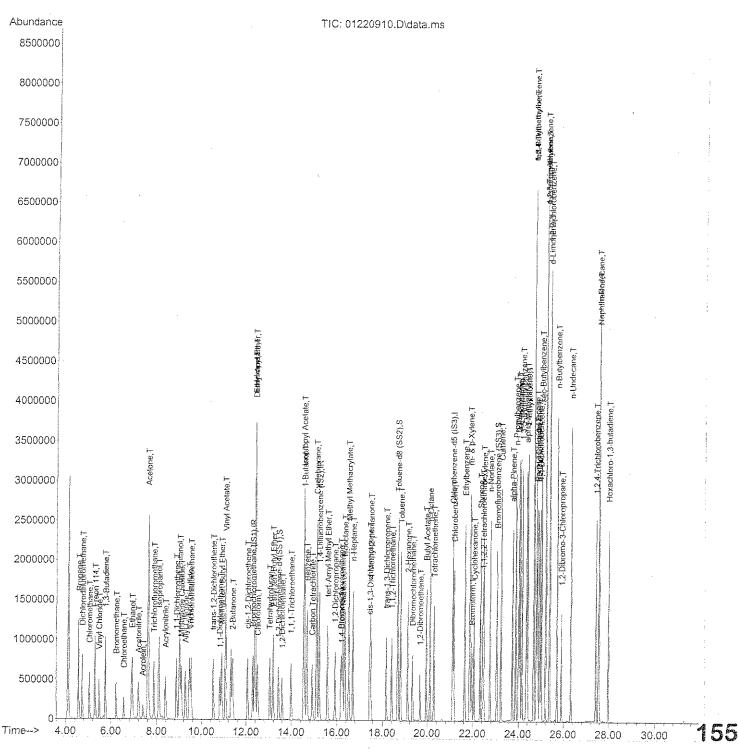
^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD


Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.31	130	444679	25.000	ng	-0	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1984621	25.000	ng	- 0	.02
56) Chlorobenzene-d5 (IS3)	21.11	82	909679	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	668385	23.504	ng	- 0	.02
Spiked Amount 25.000	18.67		Recov	ery =	94.	. 00왕	
57) Toluene-d8 (SS2)	18.67	98	2155730	25.171	ng	0	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recov	ery =	100.	. 68왕	
(SS3)	23.06	174	827465	25.722	ng	0	.00
Spiked Amount 25.000				ery =			
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane						Qva	lue
2) Propene	4.58	42	583213	23.428	ng		87
3) Dichlorodifluoromethane	4.74	85	874379	20.115	ng		99
4) Chloromethane	5.06	50	834991	23.510	ng		99
5) Freon 114	5.30	135	486109	23.518	ng		86
b) vinyi Unioride	5.49	62	720472	22.641	ng		86
// I,3-Butadiene	5.76	54	636841	30.165	ng		98
9) Chloroethare	6.24	94 C4	420931	25.524	ng •		97
10) Ethanol	6.57	64 4E	321253 1025055m	22.624	ng 		95
11) Acetonitrile	7 21	43	1933633III	140.395	ng		0.0
12) Acrolein	7 40	22	313303 201203	23.013	ng		90
13) Acetone	7.40	58 58	2005535	113 939	na		0 E
14) Trichlorofluoromethane	7.88	101	870777	23 046	ng		95
15) Isopropanol	8.10	45	2359475m	37 367	na .		20
16) Acrylonitrile	8.39	53	740165	25.625	ng		99
17) 1,1-Dichloroethene	8.88	96	461047	24.777	na	#	61
18) tert-Butanol	9.02	59	2651253	44.530	ng	Ls	97
19) Methylene Chloride	9.10	84	465317	20.835	ng	#	49
20) Allyl Chloride	9.28	41	739864	27.383	ng		76
21) Trichlorotrifluoroethane	9.53	151	407077	24.027	ng		88
22) Carbon Disulfide	9.47	76	1673774	21.421	ng		99
23) trans-1,2-Dichloroethene	10.52	61	727813	23.868	ng		72
24) 1,1-Dichloroethane	10.83	63	850972	23.384	ng		97
20/ Mediyi edic bucyi bener	10.91	15	1767000	23.046	119		85
26) Vinyl Acetate	11.08	86		110.999		#	1
27) 2-Butanone	11.40	72	341839	25.431	ng	#	29
28) cis-1,2-Dichloroethene	12.07	61	707171	23.791		#	72
29) Diisopropyl Ether	12.40	87	373475	22.969		#	19
30) Ethyl Acetate	12.41	61	382627	49.236			81
31) n-Hexane	12.41	57	792829	21.582	ng		815(

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.52	83	800918	23.729 ng		98
34) Tetrahydrofuran	13.05		314794	25.280 ng	#	48
35) Ethyl tert-Butyl Ether			529711	22.450 ng	#	67
36) 1,2-Dichloroethane			637005	22.395 ng	11	96
38) 1,1,1-Trichloroethane	13.99	97	702036	22.576 ng		93
39) Isopropyl Acetate	14.55		674420		#	78
40) 1-Butanol	14.56		1238253	56.799 ng	11	84
41) Benzene	14.68		1850868	21.752 ng		100
42) Carbon Tetrachloride			653863	23.678 ng		99
43) Cyclohexane	15.11	84	1362891	48.189 ng	#	63
44) tert-Amyl Methyl Ether			1327096	22.888 ng	13	82
45) 1,2-Dichloropropane	15.91		493554	22.928 ng		99
46) Bromodichloromethane			644243	24.349 ng		99
47) Trichloroethene	16.26		522343	23.049 ng		97
48) 1,4-Dioxane			403155		#	68
49) Isooctane	16.35	57	2169636	22.513 ng	"	96
50) Methyl Methacrylate	16.53	100	423910	50.729 ng		91
51) n-Heptane		71	502176	23.862 ng	#	73
52) cis-1,3-Dichloropropene	17.46		737411			99
53) 4-Methyl-2-pentanone	17.50	58	521826	26.055 ng		77
54) trans-1,3-Dichloropropene	18.17	75	767272	26.063 ng		99
55) 1,1,2-Trichloroethane			454094	22.775 ng		100
58) Toluene	18.80		2049378	23.745 ng		99
59) 2-Hexanone	19.12	43	1356382	25.879 ng		90
60) Dibromochloromethane	19.35	129	603878	28.252 ng		100
61) 1,2-Dibromoethane	19.68	107	548423	24.965 ng		99
62) Butyl Acetate	19.95	43	1528704	25.437 ng		95
63) n-Octane	20.11	57	480653	24.226 ng	#	66
64) Tetrachloroethene	20.30	166	573364	23.829 ng		99
65) Chlorobenzene	21.17	112	1350947	23.649 ng		100
66) Ethylbenzene		91	2318491	24.100 ng		99
67) m- & p-Xylene	21.88	91	3624725	48.047 ng		97
68) Bromoform			550527	27.909 ng		100
69) Styrene	22.33	104		25.907 ng		97
70) o-Xylene	22.48	91	1873099	24.256 ng		98
71) n-Nonane	22.75	43	1149566	24.068 ng		87
72) 1,1,2,2-Tetrachloroethane			878501	25.638 ng		96
74) Cumene	23.24		2416178	23.649 ng		96
75) alpha-Pinene	23.74	93		26.130 ng		97
76) n-Propylbenzene	23.88			24.113 ng		96
77) 3-Ethyltoluene				26.471 ng		95
78) 4-Ethyltoluene				26.879 ng		94
79) 1,3,5-Trimethylbenzene	24.16	105	2021059	25.551 ng		9457

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
80) 81) 82) 83) 84) 85) 86) 87) 88) 90) 91) 92) 93) 95)	alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene p-Isopropyltoluene 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene d-Limonene 1,2-Dibromo-3-Chloropr n-Undecane	24.35 24.40 24.67 24.79	118 105 105 57 91 146 146 105 119 105 146 68 157	Response 1178247 2493538 2158307 1286405 2060386 1279339 1294633 2851521 2750234 2226987 1234367 869783 462071 1350551 274937 3196067 1391794	26.127 25.969 25.432 25.786 29.856 25.506 25.506 25.506 26.224 26.309 26.404 28.373 25.090 27.774 26.119	ng n	#	994 908 999 999 999 9777 90
			57	1391794	22.928	ng .		75
95)	Naphthalene	27.57	128	3196067	26.119	ng		
98) 99)	Hexachloro-1,3-butadiene Cyclohexanone tert-Butylbenzene	27.99 22.06 24.67	55	531935 812170 2166174	27.020 22.365 26.333	ng		100 92 100
100)	n-Butylbenzene	25.71 	91	2319025	26.457	ng 		94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.928min (-0.097) 120.63ng

response 1862354

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 39.20

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

159

SP

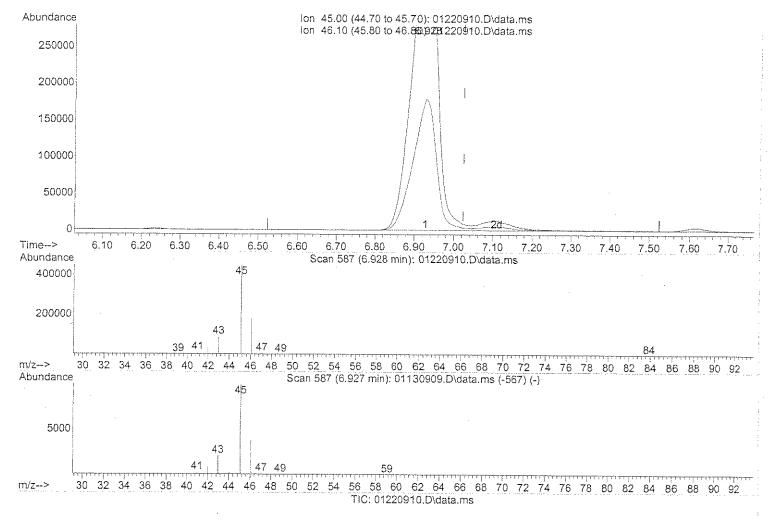
Data File : 01220910.D

Acq On : 22 Jan 2009

Operator : WA/LH

: 25ng TO-15 ICV STD Sample

: S20-01050901/S20-01050904 Misc ALS Vial : 3 Sample Multiplier: 1


Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

/10\	Ethanol	(T)

6.928min (-0.097) 125.40ng m

response 1935855

lon Ехр% Act% 45.00 100 100 46.10 35.10 37.71 0.00 0.00 0.00 0.00 0.00 0.00

SP -> 1C UN 01/23/09 Em //23/09

Data Path : J:\MS16\DATA\2009_01\22\

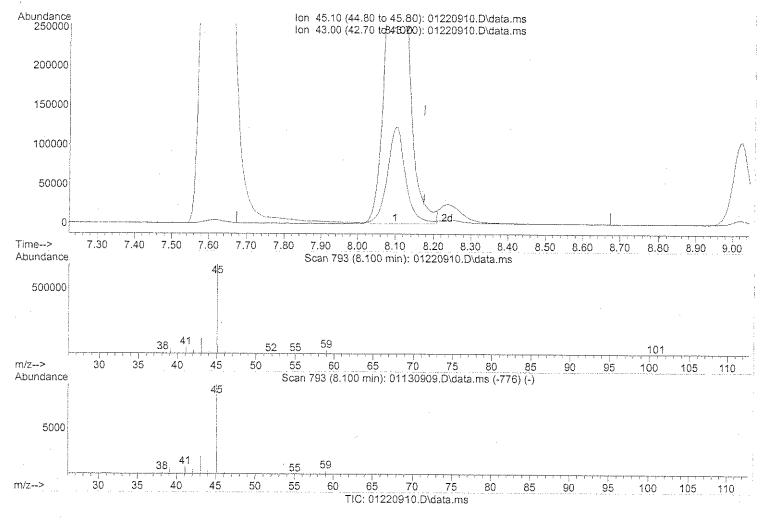
Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Jan 23 08:59:44 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 35.53ng

SP

response 2243268

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.84

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

161

Data Path : J:\MS16\DATA\2009 01\22\

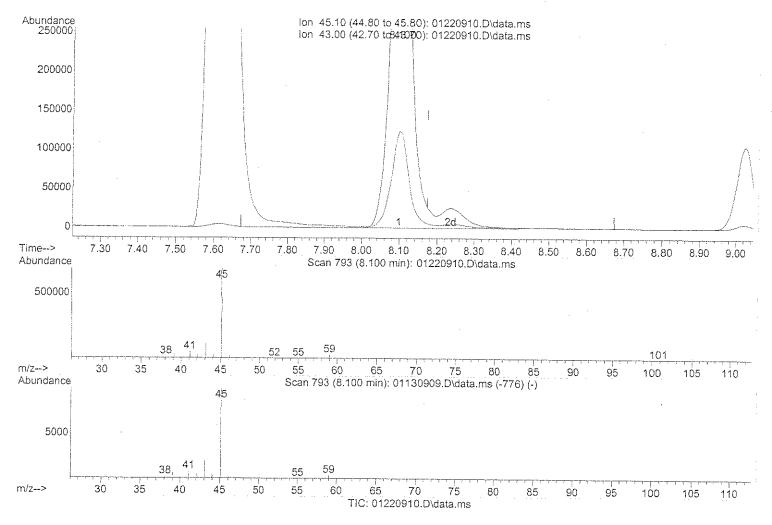
Data File : 01220910.D

: 22 Jan 2009 Acq On

Operator : WA/LH

Sample 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 37.37ng m

response 2359475

lon Exp% Act% 45.10 100 100 43.00 17.10 16.96 0.00 0.00 0.00 0.00 0.00 0.00

5P -- 71C W 01/23/09 &m 1/23/09

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 01220910.D

Acq. Method File: TO15LT.M

Data File Path: J:\MS16\DATA\2009_01\22\

Name: 25ng TO-15 ICV STD

Operator: WA/LH

Misc Info: S20-01050901/S20-01050904

Date Acquired: 1/22/09 18:55 Instrument Name: GCMS-16

		Ret.	Amt.	Spike	%	Lower	Upper	* OR
#	Compound	<u>Time</u>	<u>(ng)</u>	Amt.(ng)	Rec.	<u>Limit</u>	Limit	<u>Fail</u>
2)	Propene	4.58	23.4	26.3	89.0	70	130	*
3)	Dichlorodifluoromethane	4.74	20.1	26.3	76.4	70	130	*
4)	Chloromethane	5.06	23.5	25.3	92.9	70	130	*
5)	Freon 114	5.30	23.5	26.8	87.7	70	130	. *
6)	Vinyl Chloride	5.49	22.6	25.5	88.6	70	130	*
7)	1,3-Butadiene	5.76	30.2	30.0	100.7	70	130	*
8)	Bromomethane	6.24	25.5	25.8	98.8	70	130	*
9)	Chloroethane	6.57	22.6	25.8	87.6	70	130	*
10)	Ethanol	6.93	125.4	133.0	94.3	70	130	*
11)	Acetonitrile	7.21	23.0	26.3	87.5	70	130	*
,	Acrolein	7.40	24.2	27.3	88.6	70	130	*
	Acetone	7.62	113.9	137.0	83.1	70	130	*
,	Trichlorofluoromethane	7.88	23.0	26.3	87.5	70	130	*
	isopropanol	8.10	37.4	48.0	77.9	70	130	*
	Acrylonitrile	8.39	25.6	26.8	95.5	70	130 -	*
	1,1-Dichloroethene	8.88	24.8	27.5	90.2	70	130	* *
	tert-Butanol	9.02	44.5	50.5	88.1	70	130	*
,	Methylene Chloride	9.10	20.8	26.5	78.5	70	130	*
	Allyl Chloride	9.28	27.4	27.0	101.5	70	130	*
21)	Trichlorotrifluoroethane	9.53	24.0	27.5	87.3	70	130	*
	Carbon Disulfide	9.47	21.4	26.8	79.9	70	130	*
23)	trans-1,2-Dichloroethene	10.52	23.9	26.8	89.2	70	130	*
24)	1,1-Dichloroethane	10.83	23.4	26.8	87.3	70	130	*
25)	Methyl tert-Butyl Ether	10.91	23.0	27.5	83.6	70	130	*
26)	Vinyl Acetate	11.08	111.0	126.0	88.1	70	130	*
27)	2-Butanone	11.40	25.4	27.5	92.4	70	130	*
28)	cis-1,2-Dichloroethene	12.07	23.8	27.5	86.5	70	130	*
	Diisopropyl Ether	12.40	23.0	27.0	85.2	70	130	*
30)	Ethyl Acetate	12.41	49.2	53.5	92.0	70	130	*
,	n-Hexane	12.41	21.6	27.3	79.1	70	130	*
32)	Chloroform	12.52	23.7	26.8	88.4	70	130	*
	Tetrahydrofuran	13.05	25.3	27.5	92.0	70	130	*
,	Ethyl tert-Butyl Ether	13.20	22.4	26.0	86.2	70	130	*
•	1,2-Dichloroethane	13.60	22.4	26.8	83.6	70	130	*
	1,1,1-Trichloroethane	13.99	22.6	26.5	85.3	70	130	*
39)	Isopropyl Acetate	14.55	. 47.8	52.8	90.5	70	130	*
	1-Butanol	14.56	56.8	54.8	103.6	70	130	*
	Benzene	14.68	21.8	26.8	81.3	70	130	*
	Carbon Tetrachloride	14.91	23.7	27.0	87.8	70	130	*
	Cyclohexane	15.11	48.2	54.5	88.4	70	130	*
44)	tert-Amyl Methyl Ether	15.58	22.9	26.3	87.1	70	130	*
	1,2-Dichloropropane	15.91	22.9	26.5	86.4	70	130	*
	Bromodichloromethane	16.18	24.3	27.3	89.0	70	130	*
	Trichloroethene	16.26	23.0	26.5	86.8	70	130	*
	1,4-Dioxane	16.21	24.6	27.0	91.1	70	130	*
	Isooctane	16.35	22.5	26.5	84.9	70	130	*
50)	Methyl Methacrylate	16,53	50.7	53.5	94.8	70	130	*

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 01220910.D

Acq. Method File: TO15LT.M

Data File Path: J:\MS16\DATA\2009_01\22\

Name: 25ng TO-15 ICV STD

Operator: WA/LH

Date Acquired: 1/22/09

18:55

Misc Info: S20-01050901/S20-01050904 Instrument Name: GCMS-16

		Ret.	Amt.	Spike	%	Lower	Upper	* OR
#		<u>Time</u>	<u>(ng)</u>	Amt.(ng)	Rec.	Limit	<u>Limit</u>	<u>Fail</u>
) n-Heptane	16.72	23.9	27.0	88.5	70	130	*
) cis-1,3-Dichloropropene	17.46	23.2	25.0	92.8	70	130	*
) 4-Methyl-2-pentanone	17.50	26.1	27.5	94.9	70	130	*
54	trans-1,3-Dichloropropene	18.17	26.1	27.5	94.9	70	130	*
55) 1,1,2-Trichloroethane	18.41	22.8	26.3	86.7	70	130	*
) Toluene	18.80	23.7	27.0	87.8	70	130	*
) 2-Hexanone	19.12	25.9	27.5	94.2	70	130	*
	Dibromochloromethane	19.35	28.3	28.8	98.3	70	130	*
	1,2-Dibromoethane	19.68	25.0	26.8	93.3	70	130	*
	Butyl Acetate	19.95	25.4	27.5	92.4	70	130	*
	n-Octane	20.11	24.2	26.8	90.3	70	130	*
	Tetrachloroethene	20.30	23.8	25.8	92.2	70	130	*
	Chlorobenzene	21.17	23.6	26.8	88.1	70	130	*
	Ethylbenzene	21.65	24.1	26.5	90.9	70	130	*
	m- & p-Xylene	21.88	48.0	52.5	91.4	70	130	*
-	Bromoform	21.96	27.9	26.0	107.3	70	130	*
	Styrene	22.33	25.9	27.0	95.9	70	130	*
	o-Xylene	22.48	24.3	26.5	91.7	70	130	*
,	n-Nonane	22.75	24.1	26.5	90.9	70	130	*
	1,1,2,2-Tetrachioroethane	22.45	25.6	27.0	94.8	70	130	*
	Cumene	23.24	23.6	25.8	91.5	70	130	*
	alpha-Pinene	23.74	26.1	27.5	94.9	70	130	*
	n-Propylbenzene	23.88	24.1	25.8	93.4	70	130	*
	3-Ethyltoluene	24.01	26.5	27.5	96.4	70	130	*
	4-Ethyltoluene	24.07	26.9	27.5	97.8	70	130	*
	1,3,5-Trimethylbenzene	24.16	25.6	27.3	93.8	70	130	*
	alpha-Methylstyrene	24.35	26.1	26.8	97.4	70	130	*
	2-Ethyltoluene	24.40	26.0	27.3	95.2	70	130	*
82)	1,2,4-Trimethylbenzene	24.67	25.4	26.8	94.8	70	130	*
,	n-Decane	24.79	25.8	27.3	94.5	70	130	*
	Benzyl Chloride	24.84	29.9	28.8	103.8	70	130	*
	1,3-Dichlorobenzene	24.87	25.8	27.5	93.8	70	130	. *
	1,4-Dichlorobenzene	24.95	25.5	27.3	93.4	70	130	*
	sec-Butylbenzene	25.01	25.7	26.8	95.9	70	130	*
	p-isopropyltoluene	25.20	25.6	26.0	98.5	70	130	*
	1,2,3-Trimethylbenzene	25.20	26.2	26.8	97.8	70	130	*
	1,2-Dichlorobenzene	25.37	26.3	27.3	96.3	70	130	*
,	d-Limonene	25.38	26.4	26.8	98.5	70	130	*
	1,2-Dibromo-3-Chloropropane	25.90	28.4	27.5	103.3	70	130	*
	n-Undecane	26.32	25.1	27.3	91.9	70	130	*
	1,2,4-Trichlorobenzene	27.43	27.8	28.8	96.5	70	130	*
	Naphthalene	27.57	26.1	25.8	101.2	70	130	*
,	n-Dodecane	27.55	22.9	26.8	85.4	70	130	*
	Hexachloro-1,3-butadiene	27.99	27.0	28.8	93.8	70	130	*
,	Cyclohexanone	22.06	22.4	25.3	88.5	70	130	*
	tert-Butylbenzene	24.67	26.3	27.0	97.4	70	130	*
100)	n-Butylbenzene	25.71	26.5	27.5	96.4	70	130	*
	· · · · · · · · · · · · · · · · · · ·							

^{*} Denotes Passing Criterion

Evaluate Continuing Calibration Report

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH
Sample : 25ng TO-15 CCV STD
Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Are	a% Dev(min)
1234567890123456789012345678901234567890123345678903233333333333333333333333333333333333	Bromochloromethane (IS1) Propene Dichlorodifluoromethane Chloromethane Freon 114 Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride Allyl Chloride Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1) Tetrahydrofuran Ethyl tert-Butyl Ether	1.000 1.404 1.900 2.444 1.962 1.782 1.1827 0.7857 0.852 0.7924 0.3251 0.3251 0.3251 0.3251 1.0408 0.3251 1.0408 1.593 1.708 0.777 1.593 1.708 0.768 1.777 1.	1.000 1.482 2.295 0.968 1.2927 0.968 1.2927 1.000 2.4450 1.0125 3.5206 1.1053 1.1052 1.10	0.99 0.7 10.7 10.7 10.7 10.3 1	a% Dev(min) 72 -0.02 0.00 77 0.00 78 -0.01 70 0.00 74 -0.02 79 -0.02 79 -0.03 78 -0.05 78 -0.05 78 -0.05 78 -0.05 78 -0.02 79 -0.02 79 -0.02 79 -0.02 70 -0.02 71 -0.02 72 -0.02 73 -0.02 74 -0.02 75 -0.02 76 -0.02 77 -0.02 77 -0.02 78 -0.02 77 -0.02 78 -0.03 79 -0.02 70 -0.02 71 -0.02 71 -0.02 72 -0.03 73 -0.02 74 -0.02 75 -0.03 75 -0.03 76 -0.02 77 -0.02 77 -0.02 78 -0.03 78 -0.03 79 -0.03 70 -0.03 70 -0.03 70 -0.03 70 -0.03 70 -0.03 70 -0.03 70 -0.03
36 T 37 IR 38 T	1,2-Dichloroethane 1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane		1.644 1.000 0.400	0.0 7	6 -0.02 2 -0.02 6 -0.02 165

16012209.M Fri Feb 13 10:10:05 2009

En 2/6/09 mostistos

Page: 1

Evaluate Continuing Calibration Report

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Min. RRF :

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
39 T 40 T 41 T 42 T 43 T 44 T 45 T 46 T 48 T 49 T 51 T 51 T 51 T	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene	0.178 0.275 1.072 0.348 0.356 0.730 0.271 0.333 0.285 0.207 1.214 0.105 0.265 0.401 0.252 0.371	0.200 0.333 1.097 0.378 0.376 0.751 0.287 0.364 0.307 0.228 1.232 0.121 0.281 0.444 0.283 0.419	-12.4 77 -21.1 76 -2.3 77 -8.6 76 -5.6 77 -2.9 75 -5.9 77 -9.3 76 -7.7 77 -10.1 77 -1.5 75 -15.2 76 -6.0 75 -10.7 76 -12.3 77	-0.07 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.01 -0.02
55 T	1,1,2-Trichloroethane	0.371	0.419	-12.9 76 -6.0 77	
56 57 58 59 61 62 63 64 56 67 67 77 77 77 77 77 77	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	1.000 2.354 2.372 1.440 0.587 0.604 1.652 0.661 1.570 2.644 2.073 0.542 1.593 2.122 1.313 0.884 2.808 1.210 3.404	1.000 2.256 2.323 1.511 0.627 0.630 1.746 0.564 0.568 2.737 2.184 0.615 1.749 2.230 1.389 1.017 0.962 2.921 1.276 3.681	0.0 76 4.2 73 2.1 77 -4.9 78 -6.8 77 -4.3 77 -5.7 78 -3.5 77 -3.5 77 -3.5 77 -3.5 77 -3.5 77 -5.4 78 -13.5 77 -5.8 77 -5.8 77 -8.8 77 -8.8 77 -8.8 78 -4.0 78 -5.5 78	-0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01

116012209.M Fri Feb 13 10:10:05 2009

Em 2/16/09 mostistog

Page: 2

Evaluate Continuing Calibration Report

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

: 13 Feb 2009 8:46 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD Misc : S20-01290901/920-012 : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

Menty -	··	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
77	T	3-Ethyltoluene	2.572	2.831	-10.1	79	-0.01
7.8	T	4-Ethyltoluene	2.519	2.713	-7.7	77	-0.01
79	T	1,3,5-Trimethylbenzene	2.174	2.354	-8.3	78	-0.01
80	${\mathbb T}$	alpha-Methylstyrene	1.239	1.399	-12.9	77	-0.02
81	T	2-Ethyltoluene	2.639	2.908	-10.2	79	-0.02
82	T	1,2,4-Trimethylbenzene	2.332	2.615	-12.1	78	-0.02
83	T	n-Decane	1.371	1.522	-11.0	79	-0.02
84	T	Benzyl Chloride	1.897	2.216	-16.8	77	-0.02
85	\mathbf{T}	1,3-Dichlorobenzene	1.362	1.524	-11.9	79	-0.02
86	7	1,4-Dichlorobenzene	1.395	1.567	-12.3	80	-0.02
87	T	sec-Butylbenzene	3.043	3.408	-12.0	79	-0.01
	T	p-Isopropyltoluene	2.954	3.436	-16.3	79	-0.02
89	T	1,2,3-Trimethylbenzene	2.334	2.664	-14.1	79	-0.01
90	T	1,2-Dichlorobenzene	1.289	1.482	-15.0	80	-0.01
91	T	d-Limonene	0.905	1.045	-15.5	77	-0.01
	T	1,2-Dibromo-3-Chloropropane	0.448	0.510	-13.8	78	-0.01
	T	n-Undecane	1.479	1.601	-8.2	79	0.00
	T	1,2,4-Trichlorobenzene	0.272	0.296	-8.8	80	0.00
	T	Naphthalene	3.363	3.618	-7.6	80	-0.01
		n-Dodecane	1.668	1.825	-9.4	80	0.00
97	T	Hexachloro-1,3-butadiene	0.541	0.577	-6.7	79	0.00
98	T	Cyclohexanone	0.998	1.014	-1.6	77	-0.02
99	T	tert-Butylbenzene	2.261	2.551	-12.8	79	-0.01
100	T	n-Butylbenzene	2.409	2.695	-11.9	79	-0.01

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0

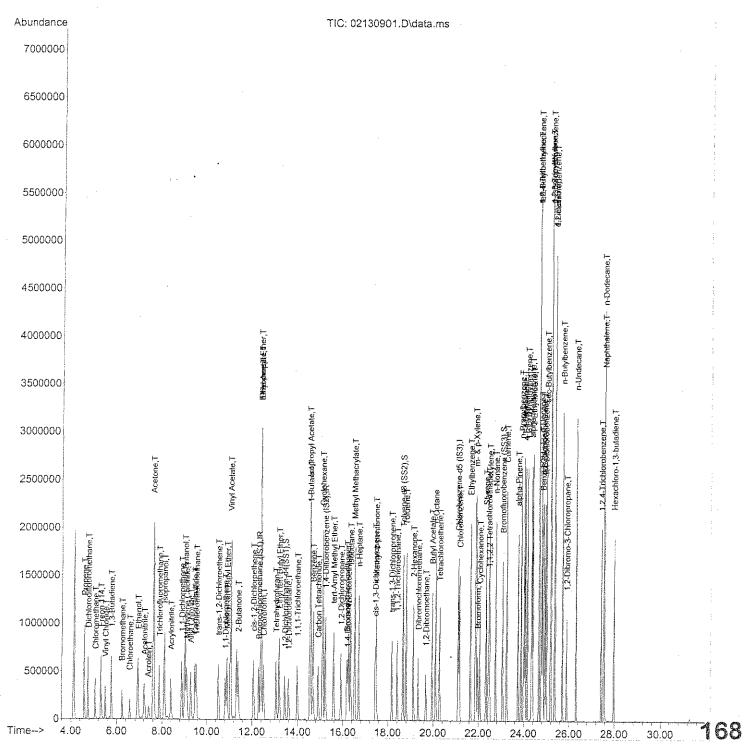
Em 2/6/09 Woslislog

167

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator WA/LH


Sample 25ng TO-15 CCV STD

Misc S20-01290901/S20-01220901 ALS Vial 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2)	12.31	130 114	292784 1302929	25.000 25.000	ng na	- 0 - 0	.02
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.10	82	652497	25.000	ng	-0	.01
System Monitoring Compounds							
33) l,2-Dichloroethane-d4(13.44	65	457613	24.441	ng	-0	.02
Spiked Amount 25.000 57) Toluene-d8 (SS2)	10 67	00	Recov 1472180	ery =	97.	76%	o =
Spiked Amount 25.000	10.6/	98	14 /2 18U	23.965	ng	-0	.01
73) Bromofluorobenzene (SS3)	23 06	174	627925	ery = 27.213	95.	846	0.0
Spiked Amount 25.000	23.00	1.74		z/.zi3 /ery =	108	84%	.00
-			11000	C = 1	100.	0 1 0	
Target Compounds	4 50	4.0	4.55			Qva.	
2) Propene3) Dichlorodifluoromethane			447867		ng		88
				23.706	ng 		99
4) Chloromethane 5) Freon 114	5.00	135	200216	25.283 22.067	ng		98
6) Vinyl Chloride	5.31	F22	3003I0	22.780	119		87 86
7) 1,3-Butadiene	5 77	54	387673	27.889			98
8) Bromomethane	6.24	94	278479	25.647			98
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol	6.57	64	239645	25.633	na na		94
10) Ethanol	6.93	45	1546467m	152.142	na		<i></i>
11) Acetonitrile	7.21	41	752242	27.332	na		90
12/ ACTOTETI	7.40	σc	23/005	27.807	na		83
13) Acetone	7.62	58	1577578	136.123	na		99
14) Trichlorofluoromethane15) Isopropanol16) Acrylonitrile	7.88	101	654456	26.306	ng		95
15) Isopropanol	8.11	45	2007000m	48.275	ng		
16) Acrylonitrile	8.40	53	582985	30.655	ng	1	100
17) 1,1-Dichloroethene	8.88	96	356062	29.062	ng	#	63
18) tert-Butanol	9.03	59	2076990	52.983	ng		99
19) Methylene Chioride	9.10	84	364808	24.809	ng	#	54
20) Aliyi Chioride	9.28	41	606618	34.099	ng		79
22) Carbon Digulfido	9.53	TDT	498425	26.752	ng		90
16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	7,40 10 50	7 O	12/3/2/	24./58	ng		99
24) 1,1-Dichloroethane	10.83	63	683500	27.552	ng		74
25) Methyl tert-Butyl Ether	10.83	73	948158	28.526 26.286			97 86
26) Vinyl Acetate	11.08	86		148.630		#	4
27) 2-Butanone	11.40	72	263659	29.791		#	37
28) cis-1,2-Dichloroethene	12.07	61	561130	28.671		IT	74
29) Diisopropyl Ether	12.40	87	287780	26.881		#	28
30) Ethyl Acetate	12.41	61	306411	59.884		• •	85
31) n-Hexane	12.41	57	613769	25.376			846
•					_		0 -000 0

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32) Chloroform	12.51	83	643080	28.937	na		98
34) Tetrahydrofuran	13.05	72	235832	28.764		#	51
35) Ethyl tert-Butyl Ether	13.19	87	407345	26.220	nq	#	69
36) 1,2-Dichloroethane	13.60		510118	27.238	nq		96
38) 1,1,1-Trichloroethane	13.99	97	548587	26.871			94
39) Isopropyl Acetate	14.54	61	546040	58.990		#	82
40) 1-Butanol	14.56	56	937168	65.480		#	78
41) Benzene	14.68	78	1475476	26.413			99
42) Carbon Tetrachloride	14.91		517564	28.549			100
43) Cyclohexane	15.11	84	1039020	55.959		#	65
44) tert-Amyl Methyl Ether			1009276	26.514			84
45) 1,2-Dichloropropane	15.91	63	393491	27.843			99
46) Bromodichloromethane			498740	28.712			99
47) Trichloroethene	16.25	130	412382	27.718	ng		97
48) 1,4-Dioxane	16.21			28.691	ng	#	69
49) Isooctane	16.35	57	1669578	26.388			98
50) Methyl Methacrylate	16:53		335949	61.237		#	88
51) n-Heptane			380500	27.540	ng	#	74
52) cis-1,3-Dichloropropene	17.46		577901	27.641	ng		99
53) 4-Methyl-2-pentanone	17.50		402305	30.597	ng		79
54) trans-1,3-Dichloropropene	18.17			31.059			99
55) 1,1,2-Trichloroethane	18.41			27.548			100
58) Toluene	18.80			26.443			99
59) 2-Hexanone	19.12		1084517	28.847			92
60) Dibromochloromethane	19.35	129	471078	30.726	ng		100
61) 1,2-Dibromoethane	19.68			27.634			98
62) Butyl Acetate		43	1253069	29.069			97
63) n-Octane	20.11	57		27.210		#	69
64) Tetrachloroethene				26.364			98
65) Chlorobenzene		112	1084447	26.466			100
66) Ethylbenzene		91	1878766	27.227	ng		99
67) m- & p-Xylene	21.88	91	2964685	54.787	ng		97
68) Bromoform	21.96		429951	30.387			100
69) Styrene	22.33	104		29.429			97
70) o-Xylene	22.48	91		27.640			98
71) n-Nonane	22.75	43	953548	27.833	ng		90
72) 1,1,2,2-Tetrachloroethane		83	716536	29.153	ng		96
74) Cumene	23.24	105		26.525			96
75) alpha-Pinene	23.74			29.016			98
76) n-Propylbenzene	23.88		2450048	27.574	ng	•	97
77) 3-Ethyltoluene			2032272	30.269	ng		95
78) 4-Ethyltoluene				29.617			94
79) 1,3,5-Trimethylbenzene	24.16	105	1658708	29.235	ng		947(

Data File : 02130901.D

: 13 Feb 2009 8:46 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane	24.35 24.40 24.67 24.79 24.84 24.87 24.95 25.01 25.20 25.37 25.37 25.37 25.37	118 105 105 57 91 146 146 105 119 105 146 68 157	967491 2049527 1795061 1072752 1590821 1066217 1083879 2357391 2286704 1842327 1036857 722434 359216 1119930	29.909 29.758 29.489 29.979 32.138 30.002 29.770 29.678 29.659 30.245 30.810 30.575 30.751 29.006	ng n	Dev (Min) 98 94 90 81 95 98 99 98 94 88 99 76 78
94) 1,2,4-Trichlorobenzene 95) Naphthalene	27.43 27.57	184 128	212719 2389155	29.959 27.220	ng ng	# 92 100
96) n-Dodecane 97) Hexachloro-1,3-butadiene 98) Cyclohexanone	27.55 27.99 22.06	57 225	1119421 414204 656285	25.710 29.332 25.196	ng ng	77 99 93
99) tert-Butylbenzene 100) n-Butylbenzene	24.67 25.71		1797718 1920473	30.467	ng	100

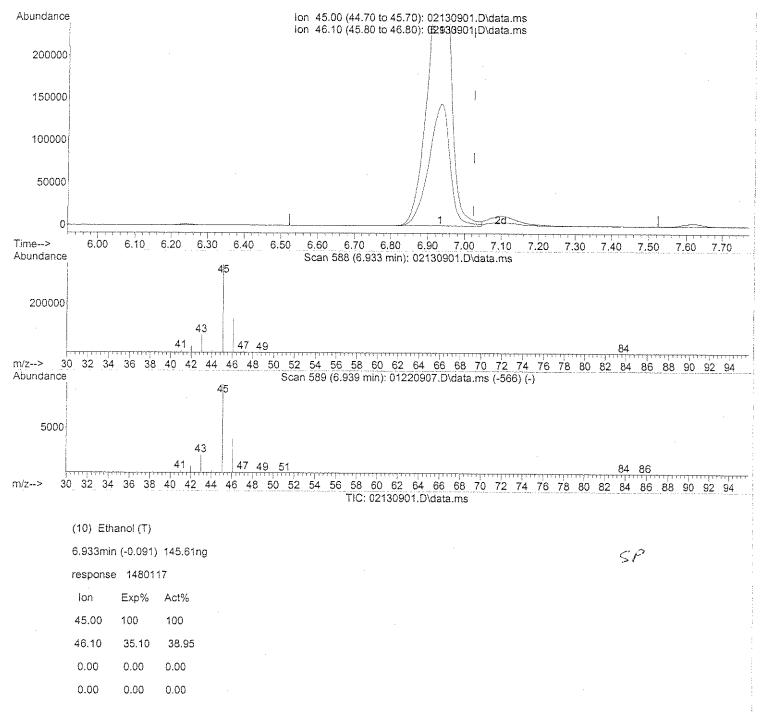
^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

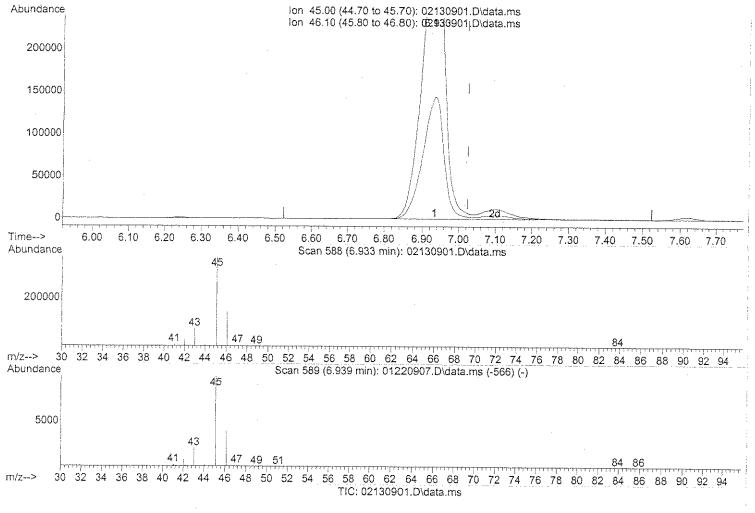
Data File : 02130901.D

Acq On : 13 Feb 2009

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.933min (-0.091) 152.14ng m

response 1546467

ion Exp% Act% 45.00 100 100 46.10 35.10 37.28 0.00 0.00 0.00 0.00 0.00 0.00

SP ->10 UN 03/13/09 UM 2/16/09

Qu 2/16/09

Data Path : J:\MS16\DATA\2009 02\13\

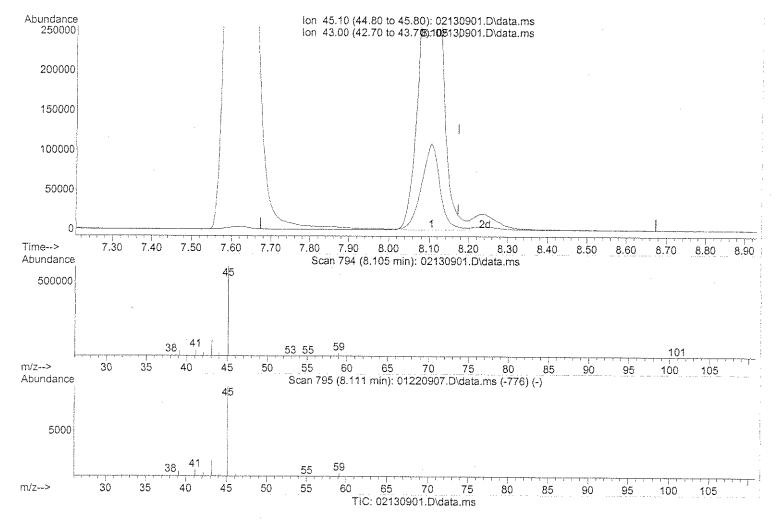
Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.105min (-0.068) 46.14ng

response 1918028

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.91

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

174

SP

Data Path : J:\MS16\DATA\2009 02\13\

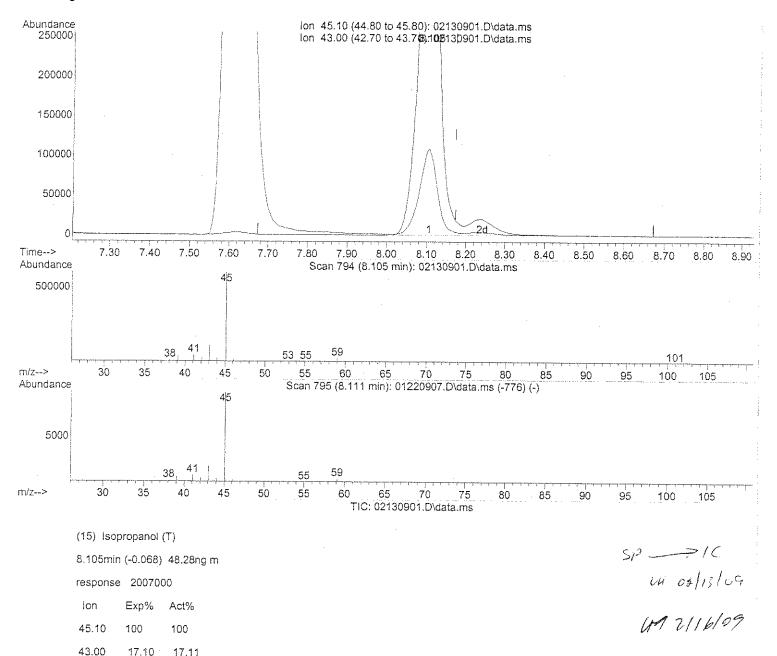
Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Feb 13 10:09:00 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

0.00

0.00

0.00

0.00

0.00

0.00

Em 2/6/09

Evaluate Continuing Calibration Report

Data Path : J:\MS16\DATA\2009_02\16\

Data File : 02160901.D

: 16 Feb 2009 8:47 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD Misc : S20-01290901/S20-03 : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Are	a%	Dev(min)
1 T T T T T T T T T T T T T T T T T T T	Bromochloromethane (IS1) Propene Dichlorodifluoromethane Chloromethane Freon 114 Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride Allyl Chloride Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether	1.000 1.400 2.444 1.997 1.189 1.189 1.189 1.1928 0.798 0.850 0.924 3.524 1.046 3.2519 0.347 1.5519 0.347 1.5953 1.746 3.726 1.9953 1.746 3.756 1.9956	1.000 1.376 2.208 1.911 1.020 1.629 1.267 0.942 0.783 1.008 2.431 0.749 1.0203 3.751 1.944 1.126 3.700 1.939 1.939 0.984 4.304 1.939 0.9853 1.837 2.201 3.190 0.853 1.968	0.77 4.29 -1.91 -2.33.77 -1.69 -1.63.99 -1.77 -1.55 -1.64 -2.77 -1.68 -2.77 -1.68 -2.77 -1.68 -2.77 -1.68 -1	-7777777777777777777777777777777777777	-0.02 0.00 0.00 -0.01 0.00 -0.02 -0.02 -0.02 -0.05 -0.03 -0.04 -0.02 -0.06 -0.04 -0.02 -0.06 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
30 T 31 T 32 T 33 S 34 T 35 T 36 T	Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1) Tetrahydrofuran Ethyl tert-Butyl Ether 1,2-Dichloroethane	0.437 2.065 1.898 1.599 0.700	0.520 2.123 2.029 1.573 0.778	-19.0 -2.8 -6.9 1.6 -11.1 -5.1	77 79 78 77 71 77	-0.02 -0.03 -0.02 -0.04 -0.02 -0.03 -0.02 -0.02
37 IR 38 T	1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	1.000	1.000 0.413		70 77	-0.02 -0.02 176

:16012209.M Mon Feb 16 10:52:21 2009

Evaluate Continuing Calibration Report

Data Path : J:\MS16\DATA\2009_02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ai	rea%	Dev(mir	1)
39 T 40 T 41 T 42 T 43 T 44 T 45 T 46 T 48 T 49 T 50 T 51 T 52 T	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone	0.178 0.275 1.072 0.348 0.356 0.730 0.271 0.333 0.285 0.207 1.214 0.105 0.265 0.401 0.252	0.204 0.341 1.121 0.393 0.388 0.772 0.291 0.374 0.312 0.232 1.251 0.125 0.286 0.453 0.288	-14.6 -24.0 -4.6 -12.9 -9.0 -5.8 -7.4 -12.3 -9.5 -12.1 -3.0 -19.0 -7.9 -13.0 -14.3	77 76 77 78 77 76 77 76 77 76 75 75 75	-0.07 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.03	
54 T 55 T	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	0.371 0.251	0.431	-16.2 -10.0	76 78		
ISTTTT TTTTTTSTTT7567612345566789712374557677273747576	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	1.000 2.354 2.372 1.440 0.587 0.604 1.652 0.545 0.661 1.570 2.644 2.073 0.542 1.593 2.122 1.313 0.942 0.884 2.808 1.210 3.404	1.000 2.303 2.423 1.566 0.659 0.657 1.796 0.587 0.704 1.625 2.852 2.277 0.647 1.828 2.329 1.430 1.061 0.965 3.042 1.335 3.835	0.0 2.2 -8.3 -8.7 -6.5 -7.5 -3.9 -14.8 -9.3 -10.3 -12.7	73 72 77 78 77 77 77 77 77 78 78 78 78 78 78	-0.02 -0.01 -0.02 -0.01 0.00 0.00 0.00 -0.01 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02	

16012209.M Mon Feb 16 10:52:21 2009

Page: 2

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47 Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
77 T T T T T T T T T T T T T T T T T T	Compound 3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene p-Isopropyltoluene 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene d-Limonene 1,2-Dibromo-3-Chloropropane n-Undecane 1,2,4-Trichlorobenzene Naphthalene n-Dodecane Hexachloro-1,3-butadiene	AvgRF 2.572 2.519 2.174 1.239 2.639 2.332 1.371 1.897 1.362 1.395 3.043 2.954 2.334 1.289 0.905 0.448 1.479 0.272 3.363 1.668 0.541	CCRF 2.910 2.881 2.462 1.462 3.034 2.749 1.571 2.346 1.603 1.633 3.564 3.607 2.802 1.563 1.086 0.541 1.653 0.308 3.794 1.892 0.602	%Dev Area -13.1 7 -14.4 7, -13.2 7, -18.0 7, -15.0 7, -17.9 7, -14.6 7, -17.1 8, -17.1 7, -22.1 8, -20.1 8, -21.3 8, -20.0 7, -20.8 8, -11.8 7, -12.8 8, -13.4 7, -11.3 8,	8 -0.01 9 -0.01 9 -0.01 8 -0.01 9 -0.02 9 -0.01 9 -0.02 9 -0.01 0 -0.01
98 T 99 T .00 T	Cyclohexanone tert-Butylbenzene n-Butylbenzene	0.998 2.261 2.409	1.043 2.683 2.819	-4.5 76 -18.7 80 -17.0 80	-0.02 -0.01
	···				

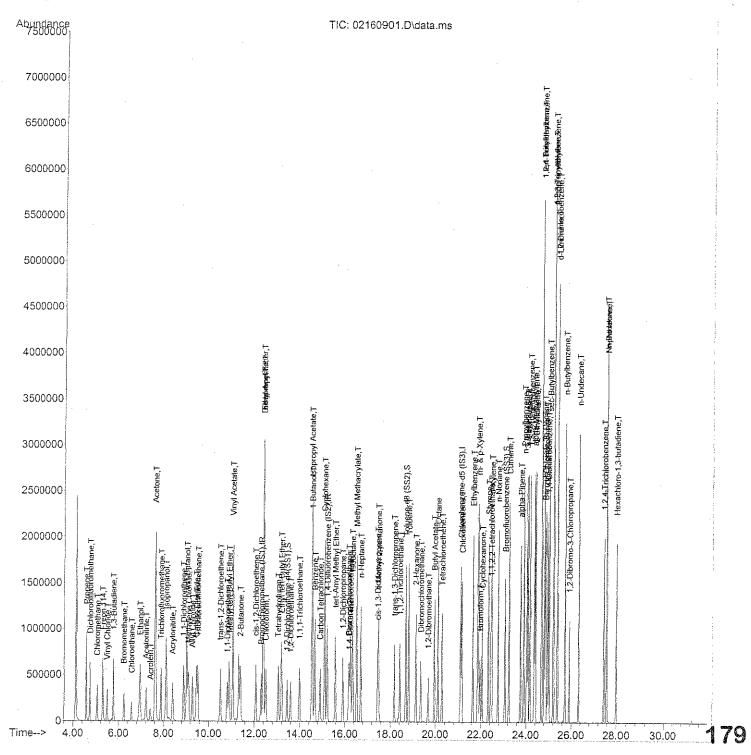
(#) = Out of Range SPCC's out = 0 CCC's out = 0

Page: 3

Data File : 02160901.D

Acq On : 16 Feb 2009

Operator : WA/LH


Sample 25ng TO-15 CCV STD

Misc S20-01290901/S20-01220901 ALS Vial Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160901.D

: 16 Feb 2009 8:47 Acq On

Operator : WA/LH

: 25ng TO-15 CCV STD Sample

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Respons	e Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1)	12.31	130	285040	25.000	na) -).02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1272496	25.000	na	(0.02
56) Chlorobenzene-d5 (IS3)	21.11	82	627427	25.000	ng	(0.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	448472	24.603	nq	- 0	0.02
STIKED AMOUNT OF HAA			T		~ ~		
57) Toluene-d8 (SS2)	18.67	98	Recor 1444808	24.459	nq	C	0.00
73) Bromofluorobenzene (SS3)	23.06	174	605502	27.290	ng	C	0.00
Spiked Amount 25.000			Recor	very =	Ĭ09.	.16%	
Target Compounds						Ova	lue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane	4.58	42	404664	25.360	ng		88
3) Dichlorodifluoromethane	4.75	85	662152	23.764	ng		99
4) Chloromethane	5.06	50	551302	24.216	ng		99
5) Freon 114	5.31	135	308189	23.261	ng		86
6) Vinyl Chloride	5.49	62	473610	23.219	ng		87
7) 1,3-Butadiene	5.77	54	389992	28.818	ng		97
8) Bromomethane	6.24	94	277100	26.213	ng		97
9) Chloroethane	6.57	64	232186	25.510	ng		94
10) Ethanol	6.94	45	1516909m	153.288	ng		
11) Acetonitrile	7.21	41	729110	27.212	ng		90
12) Acrolein	7.41	56	230662	27.798	ng		82
13) Acetone	7.63	58	1560456	138.304	ng		98
14) Trichlorofluoromethane	7.88	101	660498	27.270	ng		95
15) Isopropanol	8.11	45	2074449m	51.253	ng		
15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride	8.40	53	571976	30.893	ng		99
1/) 1,1-Dichloroethene	8.88	96	353191	29.611	ng	#	62
18) tert-Butanol	9.03	59	2109488	55.274	ng		99
19) Methylene Chloride	9.11	84	362199	25.301	ng	#	53
20) Allyl Unioride	9.28	41	596957	34.467	ng		78
21) ITICHIOTOTTITIUOTOETHANE	9.53	151	308580	28.414	ng		90
20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.47	76	1275937	25.475	ng		99
24) 1 1 Dichlorathan	10.52	61	540398	27.647	ng		73
24) 1,1-Dichloroethane	10.83	63	672546	28.832			97
25) Methyl tert-Butyl Ether 26) Vinyl Acetate	10.91	73	963946			14	86
27) 2-Butanone	11.08	86		159.769		#	1
28) cis-1,2-Dichloroethene	11.40	72	262672	30.485		#	36
29) Diisopropyl Ether	12.07	61	554350	29.095			74
30) Ethyl Acetate	12.40 12.41	87 61	292376	28.052		#	26
31) n-Hexane		61 57	308363	61.903			85 40
OT IT HONGING	12.41	57	629305	26.725	ng		8 48 0

Page: 1

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.51	83	636158	29.404 ng		98
34) Tetrahydrofuran	13.05	72	237722 410405 511241 553177 543459 935932	29.782 ng	#	50
35) Ethyl tert-Butyl Ether	13.19	87	410405	27.135 ng	#	
36) 1,2-Dichloroethane	13.60	62	511241	28.039 ng	ŦT'	97
38) 1,1,1-Trichloroethane	13.99	97	553177	27.744 ng		93
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate	14.55	61	543459	60.116 ng	#	81
40) 1-Butanol	14.56	56	935932	66.957 ng	11	78
41) Benzene	14.68					100
42) Carbon Tetrachloride	14 01	7 7 77	m 0 c 0 m 1	00 000		99
43) Cyclohexane 44) tert-Amyl Methyl Ether	15.11	84	1045870	57.675 ng	#	
44) tert-Amyl Methyl Ether	15.58	73	1013541	27.263 ng	"	84
45) 1,2-Dichloropropane	15.91	63	389363	28.210 ng		98
46) Bromodichloromethane 47) Trichloroethene	16.18	83	1045870 1013541 389363 500796 409135 306454	29.519 ng		99
47) Trichloroethene	16.25	130	409135	28.157 ng		97
48) 1,4-Dioxane	16.21	88	306454	29.114 ng	#	68
15/ 1500 CCCIIC					••	98
50) Methyl Methacrylate	16.53	100	338201	63.122 ng		89
51) n-Heptane	16.71	71	338201 379006 575998 400785 602648 364692 1642209 1080586	28.088 ng	#	
51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene	17.46	75	575998	28.209 ng		
53) 4-Methyl-2-pentanone	17.50	58	400785	31.210 ng		78
54) trans-1,3-Dichloropropene	18.17	75	602648	31.927 ng		99
55) 1,1,2-Trichloroethane	18.41	97	364692	28.528 ng		100
58) Toluene	18.80	91	1642209 1080586	27.587 ng		99
59) 2-Hexanone	19.12	43	1080586	29.891 ng		93
60) Dibromochloromethane	19.35	123	4/6505	32.322 ng		100
61) 1,2-Dibromoethane	19.68	107	437070	28.847 ng		99
62) Butyl Acetate	19.95	43	1239596	29.905 ng	-	96
63) n-Octane	20.11	57	387363	28.307 ng	#	69
64) Tetrachloroethene	20.30	166	456092	27.483 ng		99
65) Chlorobenzene	21.17	112	1080682	27.428 ng		100
66) Ethylbenzene	21.65	91	1882386	28.369 ng		99
67) m- & p-Xylene 68) Bromoform	21.89		2971475	57.107 ng		97
69) Styrene	21.96		435299	31.995 ng		100
70) o-Xylene		104		30.765 ng		96
71) n-Nonane	22.48	91	1537314	28.864 ng		99
72) 1,1,2,2-Tetrachloroethane	22.75	43	944035	28.657 ng		89
74) Cumene	22.45 23.24	83 10E		30.433 ng		97 2 <i>a</i>
75) alpha-Pinene	23.24	105	1946760	27.627 ng		96
76) n-Propylbenzene	23.74	93 91		30.341 ng		98
77) 3-Ethyltoluene	23.09	105		28.722 ng		97 05
78) 4-Ethyltoluene	24.01	105		31.105 ng		95 05
79) 1,3,5-Trimethylbenzene	24.07	105	1668226	31.452 ng		95 9 181
· · / · · / · / · · · · · · · · · · · ·	~ 1 . IV	105	T000770	30.577 ng		74 ()

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

80) alpha-Methylstyrene	Inte	rnal Standards	R.T.	QIon	Response	Conc Units	De ⁻	v(Min)
82) 1,2,4-Trimethylbenzene 24.68 105 1814157 30.993 ng 90 83) n-Decane 24.79 57 1064320 30.932 ng 80 84) Benzyl Chloride 24.84 91 1618911 34.012 ng 95 85) 1,3-Dichlorobenzene 24.87 146 1078240 31.553 ng 99 86) 1,4-Dichlorobenzene 24.95 146 1086192 31.026 ng 99 87) sec-Butylbenzene 25.01 105 2370219 31.032 ng 98 88) p-Isopropyltoluene 25.20 119 2308518 31.139 ng 94 89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92 1,2-Dibromo-3-Chloropr. 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100						_		
83) n-Decane 24.79 57 1064320 30.932 ng 80 84) Benzyl Chloride 24.84 91 1618911 34.012 ng 95 85) 1,3-Dichlorobenzene 24.87 146 1078240 31.553 ng 99 86) 1,4-Dichlorobenzene 24.95 146 1086192 31.026 ng 99 87) sec-Butylbenzene 25.01 105 2370219 31.032 ng 98 88) p-Isopropyltoluene 25.20 119 2308518 31.139 ng 94 89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100								94
84) Benzyl Chloride 24.84 91 1618911 34.012 ng 95 85) 1,3-Dichlorobenzene 24.87 146 1078240 31.553 ng 99 86) 1,4-Dichlorobenzene 24.95 146 1086192 31.026 ng 99 87) sec-Butylbenzene 25.01 105 2370219 31.032 ng 98 88) p-Isopropyltoluene 25.20 119 2308518 31.139 ng 94 89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100								90
85) 1,3-Dichlorobenzene 24.87 146 1078240 31.553 ng 99 86) 1,4-Dichlorobenzene 24.95 146 1086192 31.026 ng 99 87) sec-Butylbenzene 25.01 105 2370219 31.032 ng 98 88) p-Isopropyltoluene 25.20 119 2308518 31.139 ng 94 89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 97 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100					1064320	30.932 ng		80
86) 1,4-Dichlorobenzene 24.95 146 1086192 31.026 ng 99 87) sec-Butylbenzene 25.01 105 2370219 31.032 ng 98 88) p-Isopropyltoluene 25.20 119 2308518 31.139 ng 94 89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr. 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100			24.84	91	1618911	34.012 ng		95
87) sec-Butylbenzene	85)	1,3-Dichlorobenzene	24.87	146	1078240	31.553 ng		99
88) p-Isopropyltoluene	86)	1,4-Dichlorobenzene	24.95	146	1086192	31.026 ng		99
89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	87)	sec-Butylbenzene	25.01	105	2370219	31.032 ng		98
89) 1,2,3-Trimethylbenzene 25.20 105 1863397 31.813 ng 87 90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100			25.20	119	2308518	31.139 ng		94
90) 1,2-Dichlorobenzene 25.37 146 1051001 32.478 ng 98 91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	89)	1,2,3-Trimethylbenzene	25.20	105	1863397	31.813 ng		
91) d-Limonene 25.38 68 722108 31.783 ng 99 92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	90)	1,2-Dichlorobenzene	25.37	146	1051001			98
92) 1,2-Dibromo-3-Chloropr 25.90 157 366345 32.615 ng # 76 93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	91)	d-Limonene	25.38	68	722108			
93) n-Undecane 26.32 57 1111494 29.937 ng 78 94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	92)	1,2-Dibromo-3-Chloropr	25.90	157	366345		#	
94) 1,2,4-Trichlorobenzene 27.43 184 212309 31.096 ng # 92 95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	93)	n-Undecane	26.32	57	1111494			
95) Naphthalene 27.57 128 2409134 28.545 ng 100 96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	94)	1,2,4-Trichlorobenzene	27.43	184	212309		#	and the second second
96) n-Dodecane 27.55 57 1115639 26.647 ng 76 97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	95)	Naphthalene	27.57	128	2409134		••	
97) Hexachloro-1,3-butadiene 27.99 225 415615 30.608 ng 100 98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	96)	n-Dodecane	27.55	57	1115639			
98) Cyclohexanone 22.06 55 649200 25.920 ng 93 99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100	97)	Hexachloro-1,3-butadiene	27.99	225	415615			
99) tert-Butylbenzene 24.67 119 1818272 32.047 ng 100			22.06					
	99)							
25.71 51 1531051 51.951 119 94	100)	n-Butylbenzene	25.71	91	1931651	31.951 ng		94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 02\16\

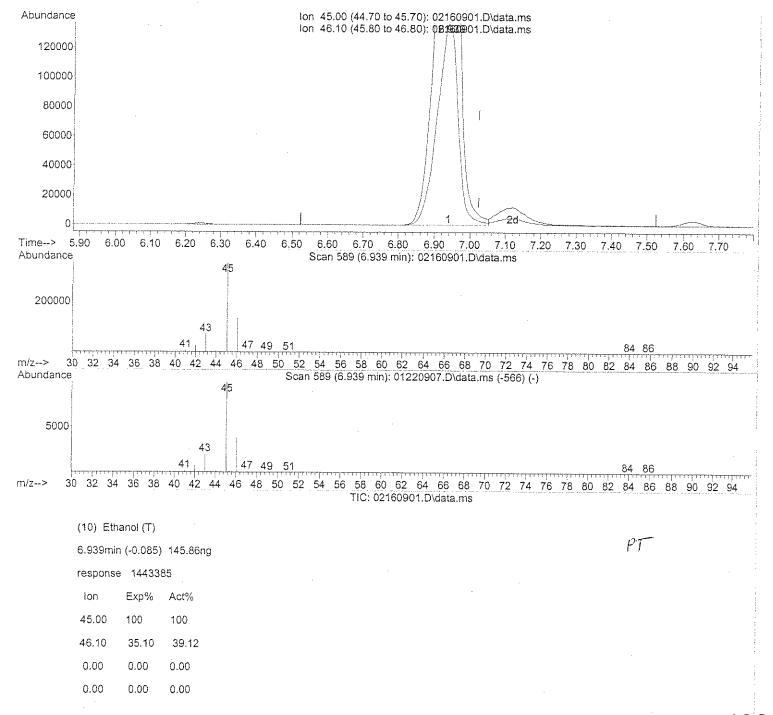
Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : V

: WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

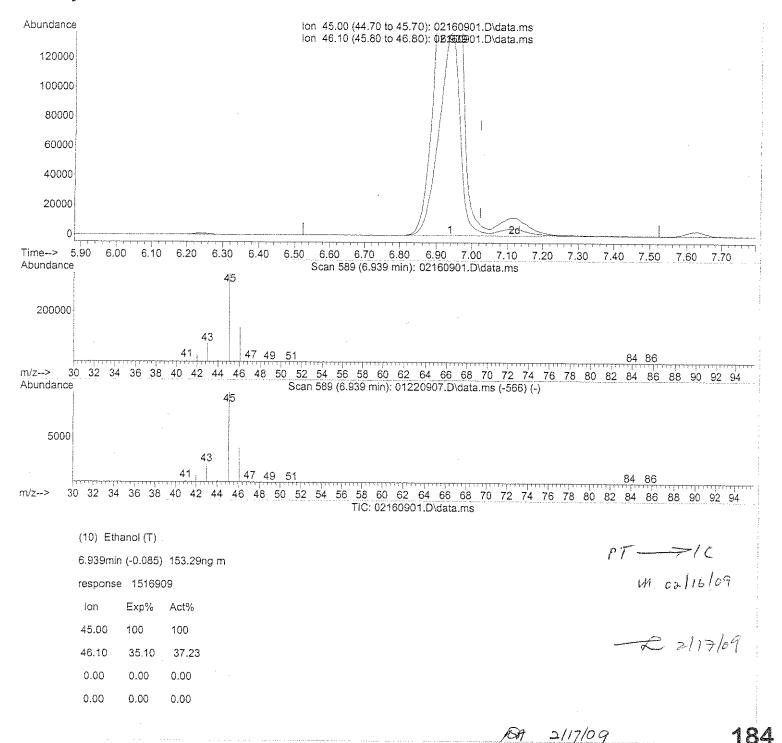
QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

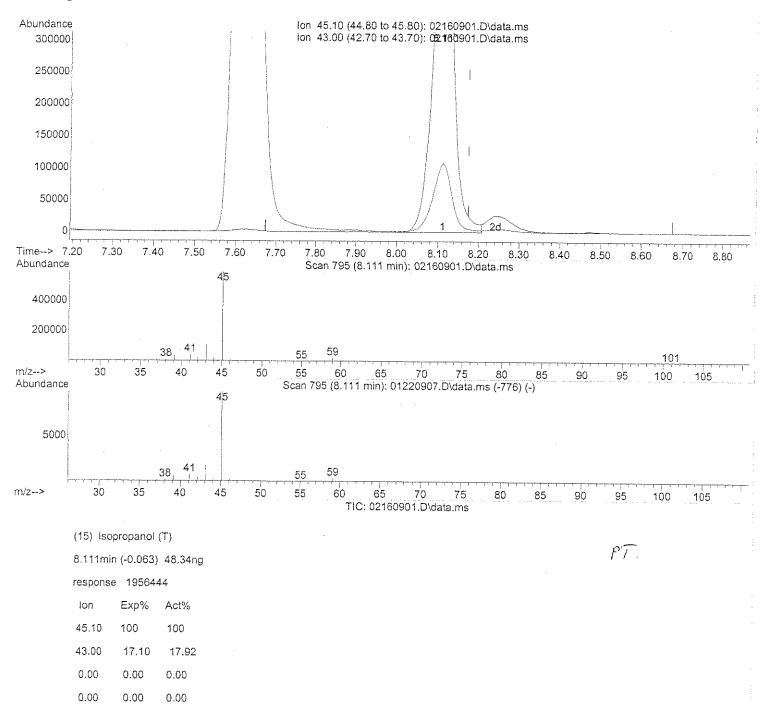
Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\16\

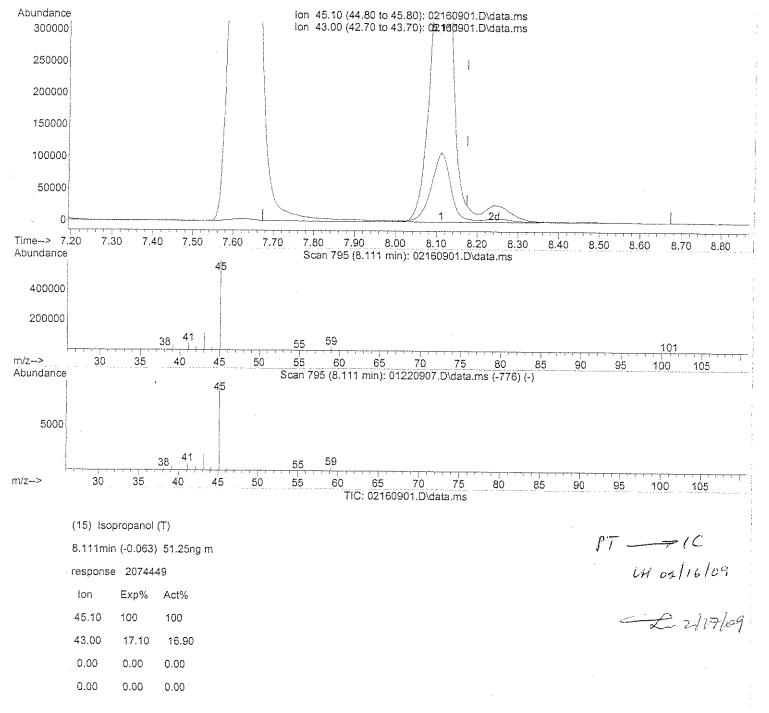
Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

1811 2/17/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page I of I

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

7/171510

Lab File ID: 02130901.D

Analyst:

Wida Ang

Date Analyzed:

2/13/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:46

Test Notes:

		, .		w-w			
**		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT#	AREA #	RT #
	24 Hour Standard	292784	12.31	1302929	15.22	652497	21.10
	Upper Limit	409898	12.64	1824101	15.55	913496	21.43
	Lower Limit	175670	11.98	781757	14.89	391498	20.77
	Client Sample ID						
() [Method Blank	284429	12.28	1305482	15.21	643376	21.10
02	Lab Control Sample	291926	12.31	1297420	15.23	649667	21.11
03	SV-SS-58	252921	12.29	1178644	15.22	658456	21.10
()4	SV-InA-58	302189	12.28	1378004	15.22	691613	21.10
05	SV-InA-58 (Lab Duplicate)	306251	12.28	1398587	15.21	695931	21.10
06	SV-SS-64	307525	12.28	1399299	15.21	683757	21.10
07	SV-InA-64	295705	12.28	1353741	15.21	651687	21.10
08	SV-SS-8	293846	12.29	1333826	15.22	689543	21.10
09	SV-lnA-8	299869	12.28	1350439	15.22	668943	21.10
10	SV-OutA-020909	298820	12.28	1377268	15.21	670624	21.10
11	SV-SS-2	290183	12.28	1338269	15.21	658768	21.10
12	SV-SS-16	296454	12.28	1340448	15.21	652867	21.10
13	SV-InA-16	287537	12.28	1323889	15.21	642037	21.10
14							
15							
16							
17							
18		•					
19							
20							

IS1 (BCM) = Bromochloromethane

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:	Ug	Date:	2/18/09	4		1
		TO15SC.	AN, XLT - NL - Page	No.:	ARD.	

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Note Analysis J.

Lab File ID: 02160901.D

Analyst:

Wida Ang

Date Analyzed:

2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:47

Test Notes:

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	·····
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	285040	12.31	1272496	15.23	627427	21.11
	Upper Limit	399056	12.64	1781494	15.56	878398	21.44
	Lower Limit	171024	11.98	763498	14.90	376456	20.78
	Client Sample ID						
() [Method Blank	276341	12.28	1277940	15.21	621270	21.10
02	Lab Control Sample	293871	12.31	1307508	15.23	644721	21.11
03	SV-InA-2	276686	12.28	1269109	15.21	624161	21.10
04	SV-InA-2 (Lab Duplicate)	267798	12.28	1235225	15.21	607502	21.10
05		•					
06							
07							
08							
09	·						
10				•			
11							
12							
13							
14							
15				•			
16							
17							
18							
19							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

/erified By:_			9	8	8
	TOTOGA	NEWSTER ASS	Down Min.		

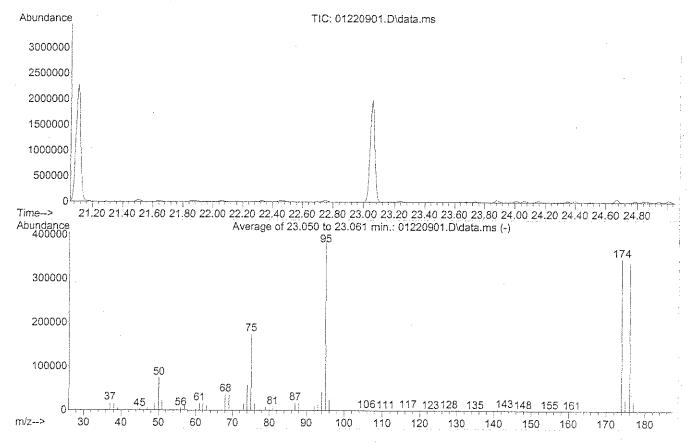
Raw QC Data

Data File : 01220901.D

Acq On : 22 Jan 2009 12:23

Operator : WA/LH

Sample : 25ng BFB STD Misc : S20-01050901


ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Jan 14 10:48:15 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

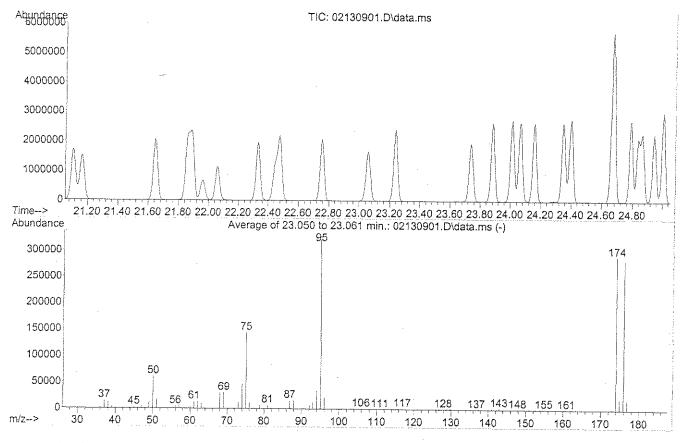
Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93	40 66 100 9 2 120 9 101	19.3 45.3 100.0 6.4 0.8 89.8 7.4 97.3 6.5	74544 174848 385771 24733 2660 346496 25515 337152 22019	PASS PASS PASS PASS PASS PASS PASS PASS

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

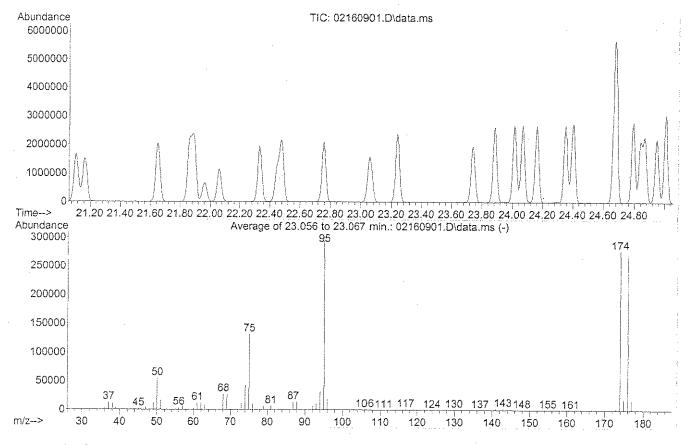
Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101	18.9 44.9 100.0 6.6 0.8 90.4 7.4 97.2 6.6	60608 144299 321301 21275 2264 290539 21421 282496 18635	PASS PASS PASS PASS PASS PASS PASS PASS

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD


Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3421, 3422, 3423; Background Corrected with Scan 3410

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 93	40 66 100 9 2 120 9 101	18.7 44.8 100.0 6.5 0.8 94.2 7.0 97.4 6.4	55179 131859 294421 19196 2115 277440 19352 270101 17252	PASS PASS PASS PASS PASS PASS PASS PASS

Page: 1

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090213-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Sampling Media:

Wida Ang

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/13/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	μg/m³	${ m ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	I,l-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

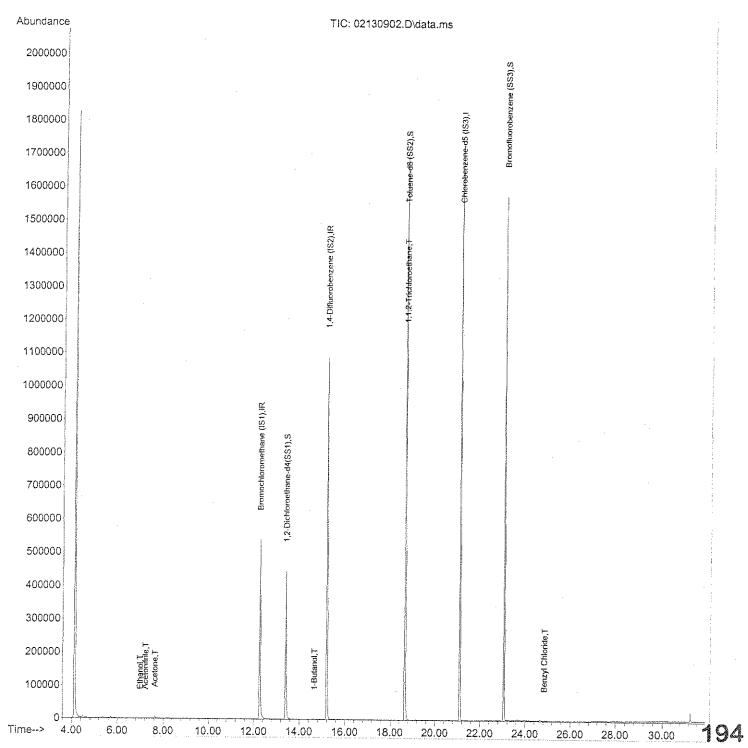
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02130902.D

Acq On : 13 Feb 2009

Operator : WA/LH

Sample TO-15 Method blank (1000mL) :


Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130902.D

Acq On : 13 Feb 2009 9:34

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)
Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	. QIon	Response	Conc Unit	s Dev	r(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28	130	284429	25.000 ng		0.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1305482	25.000 ng	_	0.03
56) Chlorobenzene-d5 (IS3)	21.10	82	643376	25.000 ng	-	-0.01
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.42	65	449600	24.718 ng	_	0.05
Spiked Amount 25.000			Recov	ery = s	8.88	;
57) Toluene-d8 (SS2)	18.66	98	1469827	24.266 ng	_	0.02
Spiked Amount 25.000			Recov	ery = S	7.08%	
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	586589	25.782 ng		0.00
Spiked Amount 25.000		•	Recov	ery = 10	3.12%	
Target Compounds					Ov	alue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	4.63	42	785	N.D.	. xc. *	
3) Dichlorodifluoromethane	4.78	85	256	N.D.		
4) Chloromethane	5.09	50	112	N.D.		
5) Freon 114	0.00	135	0	N.D.		
6) Vinyl Chloride	0.00	62	0	N.D.		
7) 1,3-Butadiene	0.00	54	0	N.D.		
8) Bromomethane	0.00	94	0	N.D.		
9) Unioroethane	0.00	64	Ó	N.D.		
IU/ Ethanol	6.98	45	686	0. 069 ng	#	40
11) Acetonitrile	7.21	41	1870	0.070 ng		89
12) Acrotein	7.43	56	364	N.D.		
14) Trichloroflyamanable	7.63	58	5346	0.475 ng		96
15) Idonarana	7.90	101	53	N.D.		
16) Agrilonitaile	8.13	45	415	N.D.		
17) 1 1 Diahlarasthans	0.00	53	0	N.D.		
18) tert_Putarol	8.90	96	52	N.D.		
19) Methylene Chlorida	9.11	59	52	N.D.		
20) Allyl Chloride	9.08	84	777	N.D.		
21) Trichlorotrifluoroethano	0.00	41	0	N.D.		
22) Carbon Digulfide	0.00	72T	0	N.D.		
23) trans-1.2-Dichloroethana	7.40 10 51	/ b	2238 EE	N.D.		
24) 1,1-Dichloroethane	10.80	. es	55 E0	N.D.		
25) Methyl tert-Butyl Ether	10.80	63 73				
26) Vinyl Acetate	0.00	73 86	54	N.D.		
27) 2-Butanone	11.45	72	0	N.D.		
28) cis-1,2-Dichloroethene	12.06	61	56 57	N.D.		
29) Diisopropyl Ether	0.00	87	57 0	N.D.		
30) Ethyl Acetate	0.00	61		N.D.		
31) n-Hexane	12.40	57	0 71	N.D.		AME
		/ ب	/ 1	N.D.		198

Data File : 02130902.D

Acq On : 13 Feb 2009

Operator : WA/LH

: TO-15 Method blank (1000mL) Sample

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
m m \ : m1 2	0.00	83	0	N.D.	
34) Tetrahvdrofuran	0.00	72	. 0	N.D.	
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.	
36) 1,2-Dichloroethane	13.58	62	53	N.D.	
38) 1,1,1-Trichloroethane	0.00	97	0	N.D.	
39) Isopropyl Acetate	0.00	61	0	N.D.	
40) 1-Butanol	14.67	56	1085	0.076 na	98
40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride	14.67	78	1168	N.D.	
42) Carbon Tetrachloride	0.00	117	0	N.D.	
43) Cvclohexane	15.10	84	326	ND	
44) tert-Amyl Methyl Ether	15.59	73	70	N.D.	
45) 1,2-Dichloropropane 46) Bromodichloromethane	0.00	63	0	N.D.	
46) Bromodichloromethane	0.00	83	0	N.D.	
47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate	0.00	130	0	N.D.	
48) 1,4-Dioxane	0.00	88	0	N.D.	
49) Isooctane	16.33	57	865	N.D.	
50) Methyl Methacrylate	0.00	100	0		
51) n-Heptane	0.00	71	D	N.D	
52) cis-1,3-Dichloropropene	17.48	75	57	N.D.	
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.	
54) trans-1,3-Dichloropropene	18.19	75	332		
55) 1,1,2-Trichloroethane	18.68	97	125929	9-602 na	# FP 8
58) Toluene 59) 2-Hexanone 60) Dibromochloromethane	18.79	91	1472	N.D.	
59) 2-Hexanone	19.16	4.3	1396	N.D.	
60) Dibromochloromethane	0.00	129	0	N.D.	
61) 1,2-Dibromoethane	19.68	107	233	N.D.	·
62) Butyl Acetate	20.10	43	348	N.D.	
62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene	20.45	57	60	N.D.	
64) Tetrachloroethene	20.30	166	55	N.D.	
65) Chlorobenzene	21.15	112	725	N.D.	
66) Ethylbenzene	21.65	91	966	N.D.	
67) m- & p-Xylene	21.88	91	2023	N.D.	
68) Bromoform	0.00	173	0	N.D.	
69) Styrene			681	N.D.	
70) o-Xylene	22.48	91	1172	N.D.	
71) n-Nonane	22.75	43	363	N.D.	
72) 1,1,2,2-Tetrachloroethane	22.45	83	53	N.D.	
74) Cumene	23.23	105	2114	N.D.	
75) alpha-Pinene	0.00	93	0	N.D.	
76) n-Propylbenzene	23.89	91	1709	N.D.	
77) 3-Ethyltoluene	24.00	105	2229	N.D.	
78) 4-Ethyltoluene	24.07	105	1854	N.D.	•
79) 1,3,5-Trimethylbenzene	24.16	105	1347	N.D.	196

Data File : 02130902.D

Acq On : 13 Feb 2009 9:34

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

: S20-01290901 Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev(Mir	n)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene	24.36 24.39 24.67 24.79 24.85 24.87 24.95 25.20 25.20 25.37 0.00 25.31 0.00	118 105 105 57 91 146 146 105 119 105 146 68 157 184	369 1232 2682 437 3412 907 1274 775 595 874 494 0 53 304	N.D. N.D. N.D. O.070 ng N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	# 57	
96) n-Dodecane	27.55	57	487	N.D.	•	
97) Hexachloro-1,3-butadiene	27.55 27.98	57 225	487 313			
98) Cyclohexanone	22.08	55	845	N.D.		
99) tert-Butylbenzene 100) n-Butylbenzene	24.79		232 734			
·· ·· · · · · · · · · · · · · · · · ·			~			_

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513 CAS Sample ID: P090216-MB

Test Code:

Test Notes:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/16/09 Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:___

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

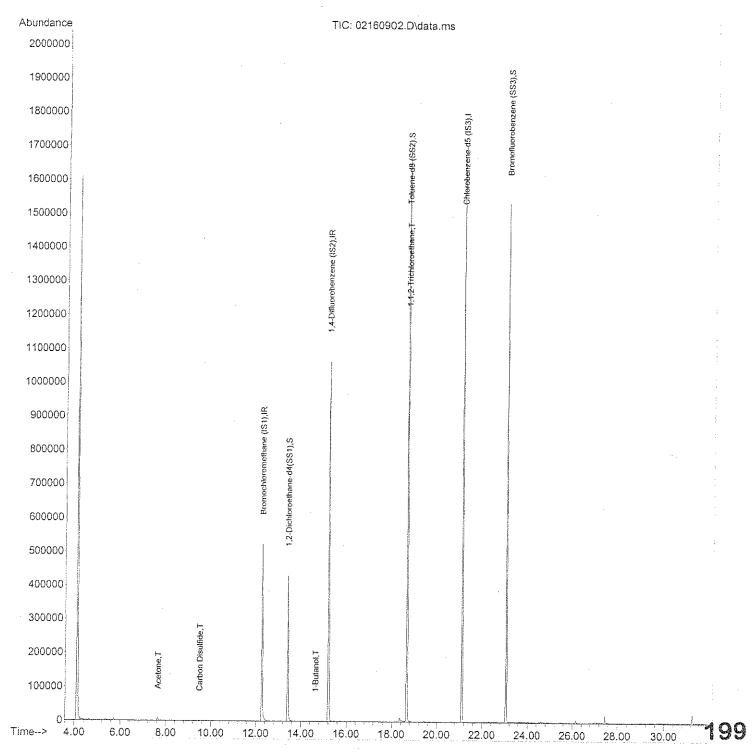
Data File : 02160902.D

Acq On : 16 Feb 2009 9:56

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160902.D

Acq On : 16 Feb 2009 9:56

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(Min)	
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28 15.21 21.10	130 114 82	276341 1277940 621270	25.000 25.000 25.000	ng -0.05 ng -0.03 na -0.01	
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2)	13.42	65	441228	24.968		
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	Recove 564423	ery = 25.691	99.24% ng 0.00 102.76%	
10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00 0.00 0.00 7.00 7.22 7.41 7.64	54 94 64 45 41 56	0 0 0 382 834 277 6188	N.D. N.D. N.D. N.D. N.D. N.D.	1g # 80	
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	0.00 10.96 0.00 11.43 0.00 0.00 0.00	63 73 86 72 61 87 61 57	0 54 0 118 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	200	

Data File : 02160902.D

Acq On : 16 Feb 2009 9:56

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

: S20-01290901 Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene	0.00	83	0	N.D.	
34) Tetrahydrofuran	0.00	72	Ō	N.D.	
35) Ethyl tert-Butyl Ether	0.00	87	Ō	N.D.	
36) 1,2-Dichloroethane	0.00	62	0	N.D.	
38) 1,1,1-Trichloroethane	0.00	97	Ō	N.D.	
39) Isopropyl Acetate	0.00	61	Ō	N.D.	
40) 1-Butanol	14.64	56	886	0.063 na	99
41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene	14.68	78	1103	N.D.	
42) Carbon Tetrachloride	0.00	117	0	N.D.	
43) Cyclohexane	15.09	84	112	N.D.	
44) tert-Amyl Methyl Ether	15.58	73	57	N.D.	
45) 1,2-Dichloropropane	0.00	63	0	N.D.	
46) Bromodichloromethane	0.00	83	0	N.D.	
47) Trichloroethene	0.00	130	0	N.D.	
40/ 1.4=1/10×30E	1	$\times \times$	()	AI IN	
48) 1,4-Dioxane 49) Isooctane	16.34	57	789	N.D.	
50) Methyl Methacrylate	0.00	100	0	N.D.	
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane	0.00	71	0	N.D.	
52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	0.00	75	0	N.D.	
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.	
54) trans-1,3-Dichloropropene	18.19	75	268	N.D.	
55) 1,1,2-Trichloroethane	18.68	97	123103	9.589 ng	# FP 8
58) Toluene 59) 2-Hexanone 60) Dibromochloromethane	18.80	91	1760	N.D.	
59) 2-Hexanone	19.14	43	1294	N.D.	
60) Dibromochloromethane	0.00	129	0	N.D.	
61) 1,2-Dibromoethane	19.68	107	203	N.D.	
62) Butyl Acetate	19.97	43	62	N.D.	
63) n-Octane	20.11	57	1,58	N.D.	
64) Tetrachloroethene	0.00	166	0	N.D.	
65) Chlorobenzene	21.16	112	596	N.D.	
66) Ethylbenzene	21.64	91	707	N.D.	
61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform	21.86	91	596 707 575 0	N.D.	
68) Bromoform 69) Styrene 70) o-Xylene	0.00	173	0	N.D.	
69) Styrene	22.34	104	557	N.D.	
70) o-Xylene	22.48		1651	N.D.	
71) n-Nonane	22.75	43	479	N.D.	
72) 1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.	
74) Cumene	23.24	105	776	N.D.	
75) alpha-Pinene	0.00	93	0	N.D.	
76) n-Propylbenzene	23.88	91	1781	N.D.	
77) 3-Ethyltoluene	24.01	105	1444	N.D.	
78) 4-Ethyltoluene	24.07	105	1428	N.D.	<i>~ ~ . .</i>
79) 1,3,5-Trimethylbenzene	24.17	105	1695	N.D.	201

Data File : 02160902.D

: 16 Feb 2009 Acq On

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene	24.36 24.40 24.67 24.79 24.84 24.96 25.00 25.20 25.20 25.38 0.00 0.00 26.32 27.44 27.58	118 105 105 91 146 109 105 119 106 157 184 128	115 1076 1767 412 1125 699 1006 611 545 631 518 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
97) Hexachloro-1,3-butadiene 98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	27.99 22.08 24.67	225 55 119	313 1387	N.D. N.D. N.D.

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090213-LCS

l'est Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Analyst: Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/13/09

Volume(s) Analyzed:

NA Liter(s)

Test Notes:

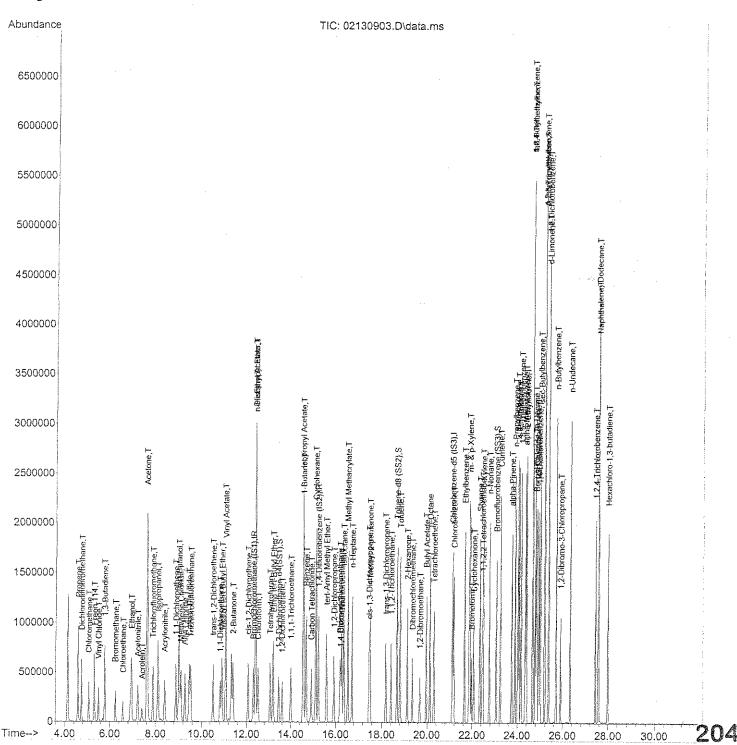
CAS#	Compound	Spike Amount	Result .	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	25.5	22.4	88	57-132	
75-00-3	Chloroethane	25.8	25.0	97	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	27.3	102	72-130	
71-55-6	1,1,1-Trichloroethane	26.5	25.9	98	69-127	

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD


Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130903.D Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev (Min)
1) Bromochloromethane (IS1)	12.31	130	291926	25.000) ng	 -0	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1297420	25.000	na	- 0	.02
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.11	82	649667	25.000	ng	Ō	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	455196	24.383	na	- 0	.02
Spiked Amount 25.000			Recor	/erv =	97	528	
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000	18.67	98	1466786	23.981	ng	0	.00
Spiked Amount 25.000			Recov	ery =	95.	92%	
73) Bromofluorobenzene (SS3)	23.06	174	626116	27.253	ng	0	.00
Spiked Amount 25.000			Recor	rery =	109.	.00%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane	•					Qva	lue
2) Propene	4.58	42	448275	27.430	ng		87
3) Dichlorodifluoromethane	4.74	85	668079	23.412	ng		100
4) Chloromethane	5.06	50	567374	24.334	ng		99
5) Freon 114	5.30	135	307592	22.668	ng		86
6) Vinyl Chloride	5.49	62	467734	22.390	ng	,	86
7) 1,3-Butadiene	5.77	54	451976	32.611	ng		97
8) Bromomethane	6.24	94	285953	26.412	ng		98
9) Chloroethane	6.57	64	232599	24.952	nq		95
10) Ethanol	6.93	45	1529546m	150.919	ng		
11) Acetonitrile	7.21	41	741868	27.035	nq		90
12) Acrolein	7.41	56	231516	27.243	nq		83
13) Acetone	7.62	58	1566922	135.601	ng		100
14) Trichlorofluoromethane	7.88	101	652990	26.324	ng		95
15) Isopropanol	8.10	45	1818382m	43.867	ng		
16) Acrylonitrile	8.40	53	565249	29.809	ng	:	100
17) 1,1-Dichloroethene	8.89	96	338762	27.731	ng .	#	62
18) tert-Butanol	9.02	59	1945791	49.782	nq		99
19) Methylene Chloride	9.10	84	348281	23.755	ng	#	53
20) Allyl Chloride	9.28	41	584839	32.971	ng		78
21) Trichlorotrifluoroethane	9.53	151	291304	26.191	ng		90
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	9.47	76	1249192	24.352	ng		98
23) trans-1,2-Dichloroethene	10.52	61	546040	27.277	nq		73
		63	652861	27.328	ng		97
25) Methyl tert-Butyl Ether	10.91	73	945470	26.289			86
* - \	11.08	86	294949	123.050		#	3
	11.40	72	258358	29.277		#	37
	12.07	61	535201	27.427			74
29) Diisopropyl Ether	12.40	87	277740	26.020		#	31
man and a summary of the summary of	12.41	61	298661	58.541			
31) n-Hexane	12.41	57	615519	25.523			820E

Data File : 02130903.D

: 13 Feb 2009 10:15 Acq On

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

: S20-01290901/S20-01210903 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride	12.52	83	614063	27.713	na		99
34) Tetrahydrofuran	13.06	72	235633	28.824		#	
35) Ethyl tert-Butyl Ether	13.20	87	391143	25.251		#	
36) 1,2-Dichloroethane	13.60	62	486242	26.039		TF.	96
38) 1,1,1-Trichloroethane	13.99	97	526187	25.883			93
39) Isopropyl Acetate	14.55	61	520741	56.496		#	
40) 1-Butanol	14.56	56	897917	63.004		#	
41) Benzene	14.68	78	1404676	25.252		11	100
42) Carbon Tetrachloride	14.91	117	491091	27,203			98
42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane	15.11	84	1031046	55.765		#	
44) tert-Amyl Methyl Ether	15.58	73	972444	25.655	na 	11	84
45) 1,2-Dichloropropane	15.91	63	375374	26.674			99
46) Bromodichloromethane 47) Trichloroethene	16.18	83	491333	28.405			99
47) Trichloroethene	16.26	130	491333 390098	26.332			97
48) 1,4-Dioxane	16.21	88	305210	28.438		#	
49) Isooctane	16.35	57	1619665	25.708		11	97
50) Methyl Methacrylate	16 50	100	21 6001	m 0 0 1 0		#	
51) n-Heptane	16.72	71	375388	27.286		#	
51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	17.46	75	553732	26.598		π	100
53) 4-Methyl-2-pentanone	17.50	58	392718	29.995			79
54) trans-1,3-Dichloropropene	18.17	75	574823	29.868			99
55) 1,1,2-Trichloroethane	18.41	97	342966	26.313			100
58) Toluene	18.80	91	1571169	25.490			99
59) 2-Hexanone	19.12		1059039	28.292	na 9		93
60) Dibromochloromethane	19.35		461293	30.219			100
61) 1,2-Dibromoethane			418504	26.676			99
62) Butyl Acetate	19.95	43	1198034	27.913			97
63) n-Octane	20.11		372507	26.289		#	70
64) Tetrachloroethene	20.30		431849	25.131		11	99
65) Chlorobenzene	21.17		1035614	25.384			100
66) Ethylbenzene		91	1783893	25.965	na		99
67) m- & p-Xylene	21.88		2803517	52.034	na		97
68) Bromoform	21.96			29.772	na		100
69) Styrene	22.33	104		28.150	na		97
70) o-Xylene	22.48	91	1460746	26.487	ng		98
71) n-Nonane	22.75	43	925080	27.120	na		90
72) 1,1,2,2-Tetrachloroethane	22.45	83	689861	28.190			96
74) Cumene	23.24	105		25.607			96
75) alpha-Pinene	23.74	93		28.261			97
76) n-Propylbenzene	23.88	91		26.649			97
77) 3-Ethyltoluene	24.01			29.267			95
78) 4-Ethyltoluene	24.07			29.580			94
79) 1,3,5-Trimethylbenzene	24.16	105		28.095			9206

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards		R.T.	QIon	Response	Conc	Units	Dev	(Min)
	alpha-Methylstyrene	24.35		934827	29.025	ng		. 98
81)	2-Ethyltoluene	24.40	105	1978673	28.855	ng		94
82)	2	24.67	105	1728430	28.518	ng		90
83)	n-Decane	24.79	57	1037083	29.109	ng		81
84)	Benzyl Chloride	24.84	91	1572576	31.907	ng		95
	1,3-Dichlorobenzene	24.87	146	1022283	28.891	ng		98
86)	•	24.95	146	1034313	28.532	ng		99
87)	sec-Butylbenzene	25.01	105	2278631	28.812			98
88)	p-Isopropyltoluene	25.20	119	2203977	28.711			94
89)	1,2,3-Trimethylbenzene	25.20	105	1781419	29.372			87
90)	1,2-Dichlorobenzene	25.37	146	990093	29.549			97
91)		25.38	68	698666	29.698			99
92)	1,2-Dibromo-3-Chloropr	25.90	157	359820	30.937		#	76
93)	n-Undecane	26.32	57	1087630	28.292		.,	78
94)	1,2,4-Trichlorobenzene	27.43	184	217519	30.769		#	93
95)	Naphthalene	27.57	128	2526946	28.916		,,	100
96)	n-Dodecane	27.55	57	1124103	25.930			77
97)	Hexachloro-1,3-butadiene	27.99	225	413738	29.427			100
98)	Cyclohexanone	22.06	55	596309	22.993			93
99)	tert-Butylbenzene	24.67		1728658	29.425			100
	n-Butylbenzene	25.71	91	1856239	29.653			94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

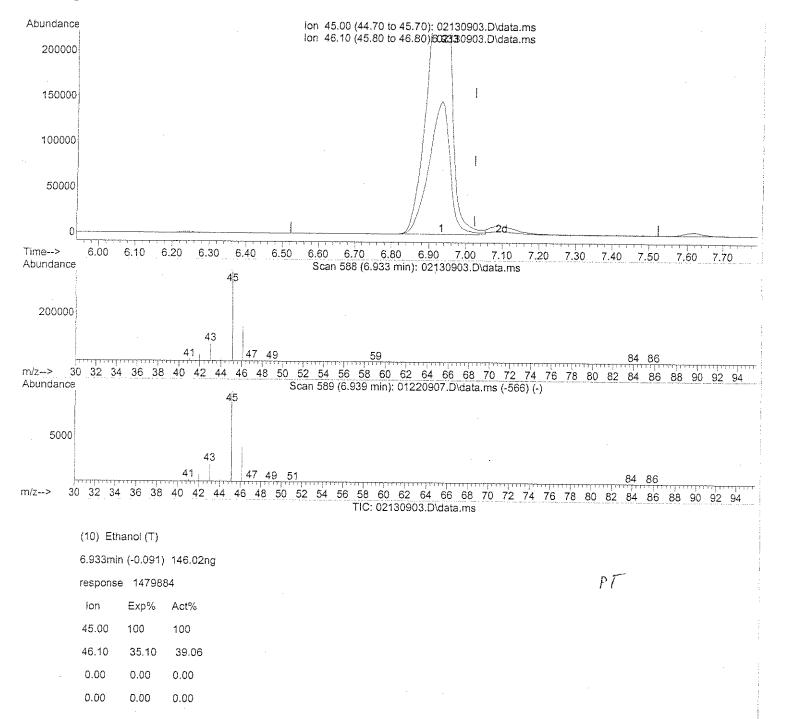
Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD


Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

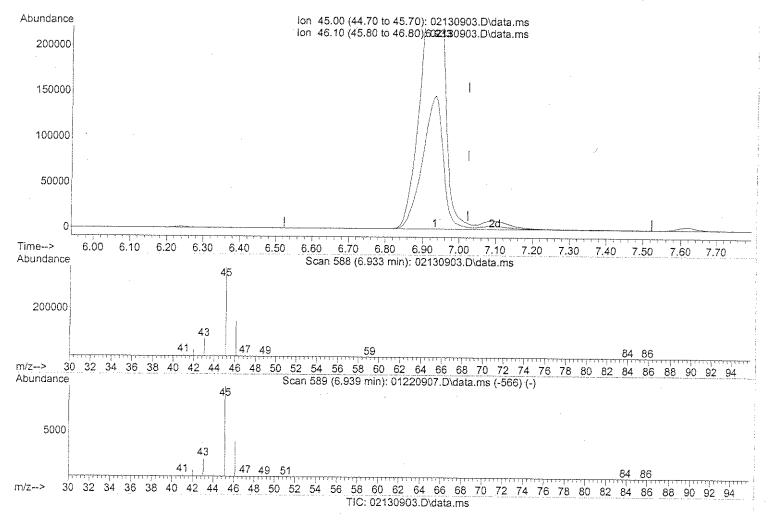
Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Feb 13 11:04:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.933min (-0.091) 150.92ng m

response 1529546

lon Exp% Act% 45.00 100 100 46.10 35.10 37.80 0.00 0.00 0.00 0.00 0.00 0.00

W 2/14/09

Em 2kd09

209

Data Path : J:\MS16\DATA\2009 02\13\

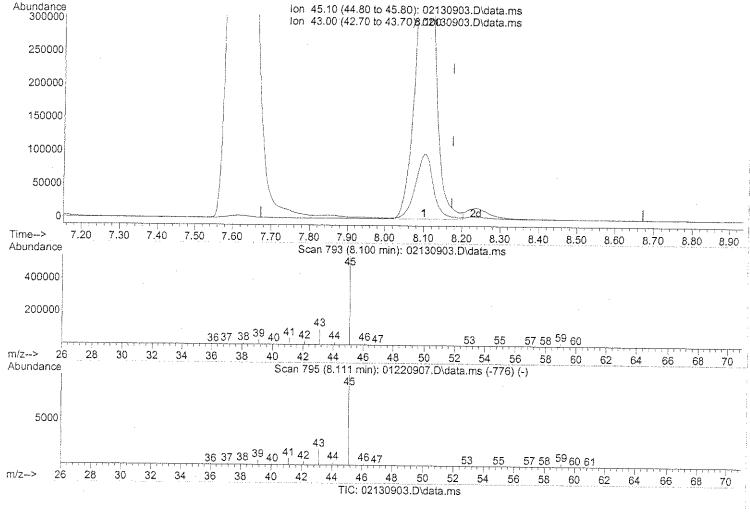
Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Feb 13 11:04:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 42.17ng

PT

response 1747939

ion Exp% Act% 45.10 100 100 43.00 17.10 17.95 0.00 0.00 0.00 0.00 0.00 0.00

210

Data Path : J:\MS16\DATA\2009 02\13\

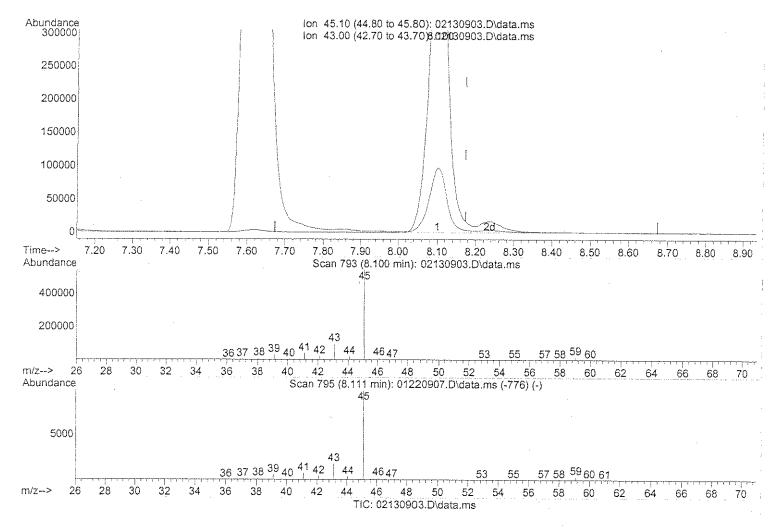
Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Feb 13 11:04:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 43.87ng m

response 1818382

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.26

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

PT --- 10 in 02/13/09

M 2/16/09

En 2/16/09

211

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090216-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst: Sampling Media:

Test Notes:

Wida Ang

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/16/09 Volume(s) Analyzed:

NA Liter(s)

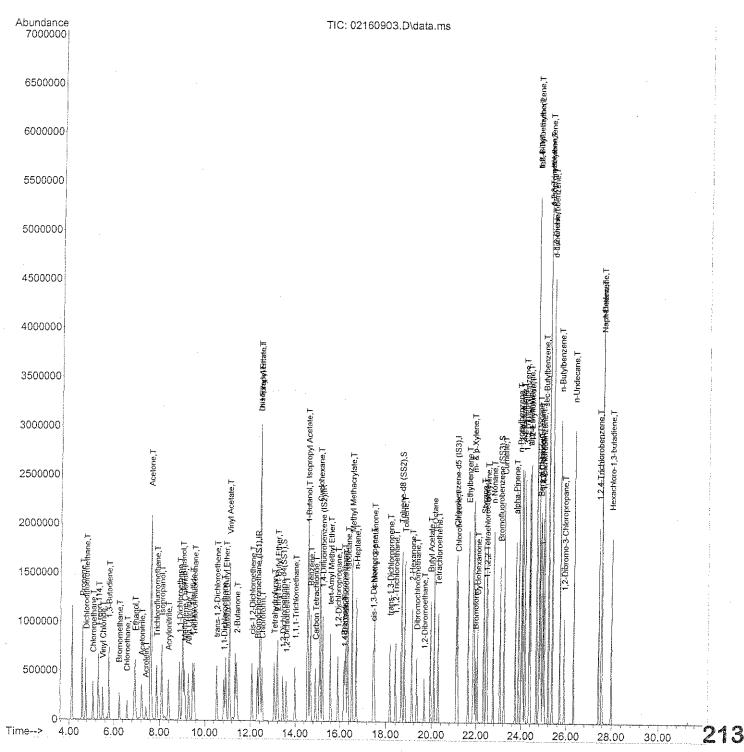
CAS#	Compound	Spike Amount	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-()1-4	Vinyl Chloride	25.5	21.5	84	57-132	
75-00-3	Chloroethane	25.8	24.3	94	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	26.9	100	72-130	
71-55-6	I,I,I-Trichloroethane	26.5	25.7	97	69-127	

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD


Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Respons	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.31	130	293871	25.000	na	 - 0	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1307508	25.000	na	-0	.02
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.11	82	644721	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.44	65	458354	24.390	ng	-0	.02
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18 67	9.8	1470976	24 234 AGT À —	<i>51.</i>	202	0.0
Spiked Amount 25.000	10.07	20	##70370	verv -	119 06	ans.	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.06	174	616426	27 037	na	22°	00
SDIKEG AROUNE 25.000			Reco	TF-777	100	769	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether						Ova:	lue
2) Propene	4.58	42	430729	26.182	ng		88
 Dichlorodifluoromethane 	4.75	85	659132	22.945	ng		99
4) Chloromethane	5.06	50	531285	22.636	ng		99
5) Freon 114	5.31	135	300124	21.971	ng		86
6) Vinyl Chloride	5.49	62	451613	21.475	ng		86
7) 1,3-Butadiene	5.77	54	431265	30.911	ng		98
8) Bromomethane	6.24	94	263387	24.167	na		98
9) Chloroethane	6.57	64	228314	24.330	na		94
10) Ethanol	6.93	45	1495507m	146.584	na		
11) Acetonitrile	7.21	41	727250	26.327	na		90
12) Acrolein	7.41	56	229313	26.805	ng		81
13) Acetone	7.62	58	1546605	132.957	na	-	100
14) Trichlorofluoromethane	7.88	101	658972	26.390	na	_	95
15) Isopropanol	8.11	45	1772570m	42.479	na		
16) Acrylonitrile	8.40	53	558522	29.260	na	7	1.00
17) l,1-Dichloroethene	8.89	96	340857	27.718	na	#	62
18) tert-Butanol	9.03	59	1940756	49.324	na		99
19) Methylene Chloride	9.11	84	346081	23.449	na	#	53
20) Allyl Chloride	9.28	41	577798	32.359	na		78
21) Trichlorotrifluoroethane	9.53	151	296944	26.521	nq		90
22) Carbon Disulfide	9.47	76	1252001	24.245	ng		99
23) trans-1,2-Dichloroethene	10.52	61	534605	26.529	ng		73
24) 1,1-Dichloroethane	10.83	63	645789	26.853	na		97
25) Methyl tert-Butyl Ether	10.91	73	949218	26.219	na		86
26) Vinyl Acetate	11.08	86	303556	125.803	_	#	2
27) 2-Butanone	11.40	72	259832	29.250	~	#	35
28) cis-1,2-Dichloroethene	12.07	61	527915	26.875			73
29) Diisopropyl Ether	12.40	87	280237	26.080		#	28
30) Ethyl Acetate	12.41	61	301290	58.666			84
31) n-Hexane	12.41	57	620422	25.556			8214

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH Sample : 25ng TO-15 LCS STD Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32) Chloroform	12.52	83	611060	27.395	na		99
34) Tetrahydrofuran	13.06	72	234600	28 508	na	#	50
35) Ethyl tert-Butyl Ether	13.20	87	395364	25.355	no	#	69
36) 1,2-Dichloroethane	13.60	62	487099	25.913	na	"	97
38) 1,1,1-Trichloroethane	14.00	97	527489	25 747	no		94
39) Isopropyl Acetate	14.55	61	515665	55 514	na	#	81
40) 1-Butanol	14.57	56	890881	62.028	na	"	79
41) Benzene	14.68	78	1404796	25 059	17) CY		99
42) Carbon Tetrachloride	14.91	117	495936	27.260	na		99
43) Cvcloherane	7 5 7 7	0.4	1020000	EE 222		#	64
44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	15.58	73	975472	25.536	ng		83
45) 1,2-Dichloropropane	15.91	63	370752	26.142	ng		98
46) Bromodichloromethane	16.18	83	488767	28.039	'nα		99
47) Trichloroethene							97
48) I,4-Dioxane	16.21	88	297960	27.549	na	#	69
49) Isooctane	16.35	57	1598375	25.174	ng		98
50) Methyl Methacrylate	16.53	100	315327	57.277	ng	#	88
51) n-Heptane	16.72	71	371981	26.829	ng	#	74
52) cis-1,3-Dichloropropene	17.46	75	548357	26.136	ng		99
53) 4-Methy1-2-pentanone	17.51	58	388484	29.442	ng		79
54) trans-1,3-Dichloropropene	18.17	75	570157	29.397	ng		99
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene	18.41	97	341945	26.032	ng		100
							99
59) 2-Hexanone 60) Dibromochloromethane	19.12	43	1048664	28.230	ng		92
60) Dibromochiorane	19.35	129	462694	30.543	ng		100
61) 1,2-Dibromoethane	19.68	107	414295	26.610	ng		99
62) Butyl Acetate 63) n-Octane	19.95	43	1163485	27.316	ng		97
64) Tetrachloroethene	20.11	57	368456	26.203	ng	#	69
65) Chlorobenzene	20.30	166 166	429680	25.197	ng		99
	21.1/	T T Z	1023408 1780631	25.278	ng		100
67) m- & p-Xylene	21.65	9.T	1/80631	26.116	ng		99
68) Bromoform	21.09	フユ 1 フラ	401706	52.485	ng		97
66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene	21.20	104	441/00 1150011	30.170	ng		100
70) o-Xylene	22.33	404	1 V E U 3 3 E T T 2 2 2 T T	26.077	119		96
71) n-Nonane	22.75	43	906207	26.500	119		98
72) 1,1,2,2-Tetrachloroethane	22.45	83	678771	26.771 27.950			90
74) Cumene	23.24			25.574			96 06
75) alpha-Pinene	23.74			28.231			96 98
76) n-Propylbenzene	23.89			26.638			98
77) 3-Ethyltoluene	24.01			29.012			95
78) 4-Ethyltoluene	24.07			29.638			95
79) 1,3,5-Trimethylbenzene	24.16			27.974			9215
•				_,,,,,	-^J		- 45mm 1 mm

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Unit	s De	ev(Min)
Internal Standards 80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene	R.T. 24.35 24.40 24.67 24.79 24.84 24.87 24.95 25.01 25.20 25.37 25.38	118 105 105 57 91 146 146 105 119 105	Response 921060 1959010 1707192 1021966 1580751 1011132 1026955 2255176 2189550 1768670 989131 688683	Conc Unit 28.817 ng 28.787 ng 28.384 ng 28.905 ng 32.319 ng 28.795 ng 28.795 ng 28.742 ng 28.742 ng 29.386 ng 29.746 ng 29.498 ng	s De	ev(Min) 97 94 90 81 95 98 98 98 98
92) 1,2-Dibromo-3-Chloropr 93) n-Undecane	25.90	157	358735	31.081 ng	#	76
94) 1,2,4-Trichlorobenzene	26.32 27.43		1063532 212624	27.877 ng 30.307 ng	#	78 93
95) Naphthalene 96) n-Dodecane	27.57 27.55	128 57	2490959 1098888	28.722 ng 25.543 ng		100 76
97) Hexachloro-1,3-butadiene 98) Cyclohexanone	27.99 22.06	225 55	407933 576271	29.237 ng 22.391 ng		100 92
99) tert-Butylbenzene 100) n-Butylbenzene	24.67 25.71	119 91	1720031 1843465	29.502 ng 29.675 ng		100 94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

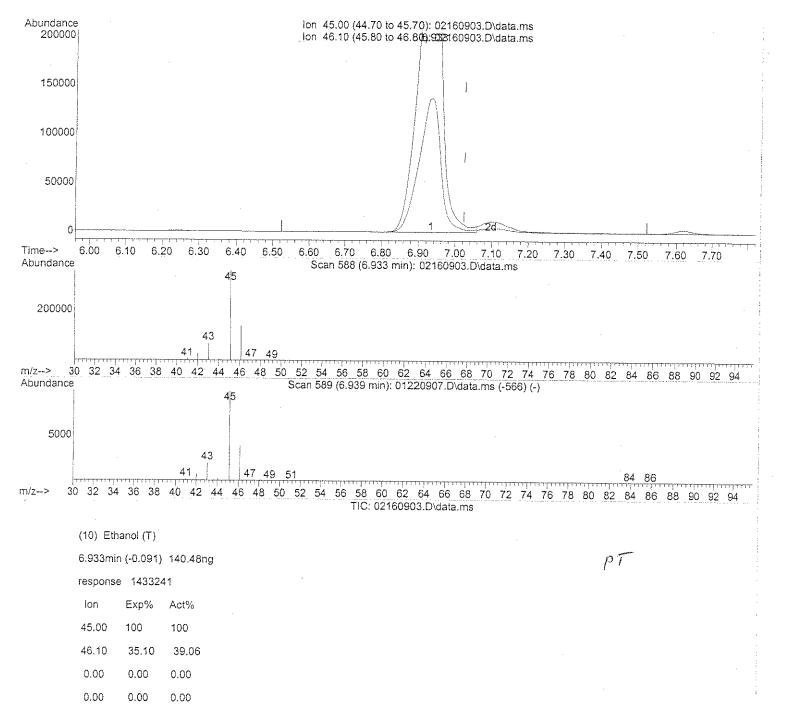
Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160903.D

Acg On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD


Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\16\

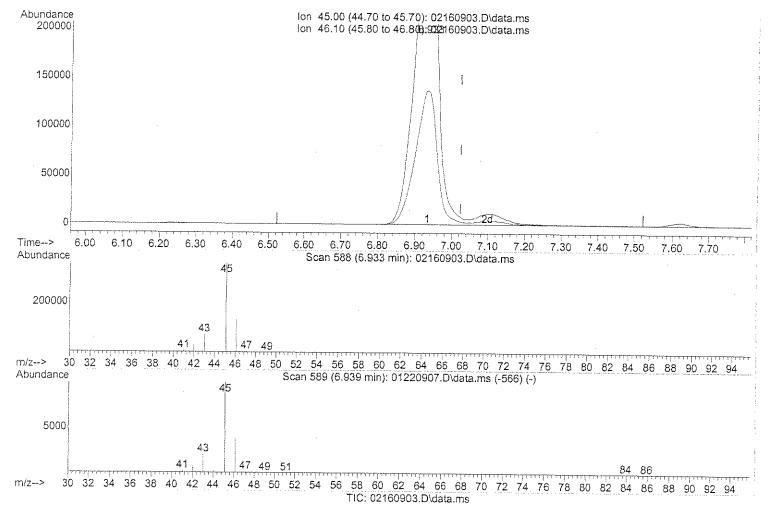
Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Feb 16 11:13:07 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethan	nol (T)				
6.933min (-0.091)	146.58ng m			PT 10
response	149550	7			4 02/16/09
Ion E	Ехр%	Act%			-11 - 1-1
45.00 1	100	100	·		
46.10	35.10	37.43		•	-£ 2/17/09
0.00	0.00	0.00			
0.00	0.00	0.00			

MA 2/17/09

Data Path : J:\MS16\DATA\2009 02\16\

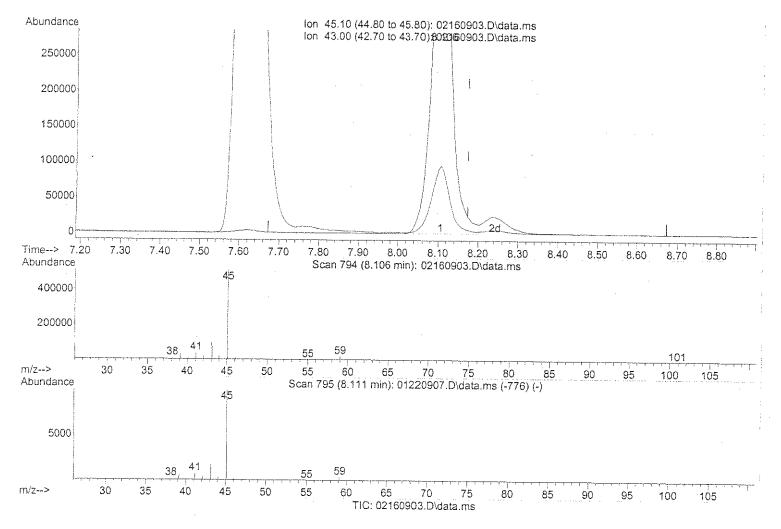
Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Feb 16 11:13:07 2009

Quant Method : J:\MS16\METHOD\$\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.106min (-0.068) 40.02ng

response 1670028

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 18.13

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

PT

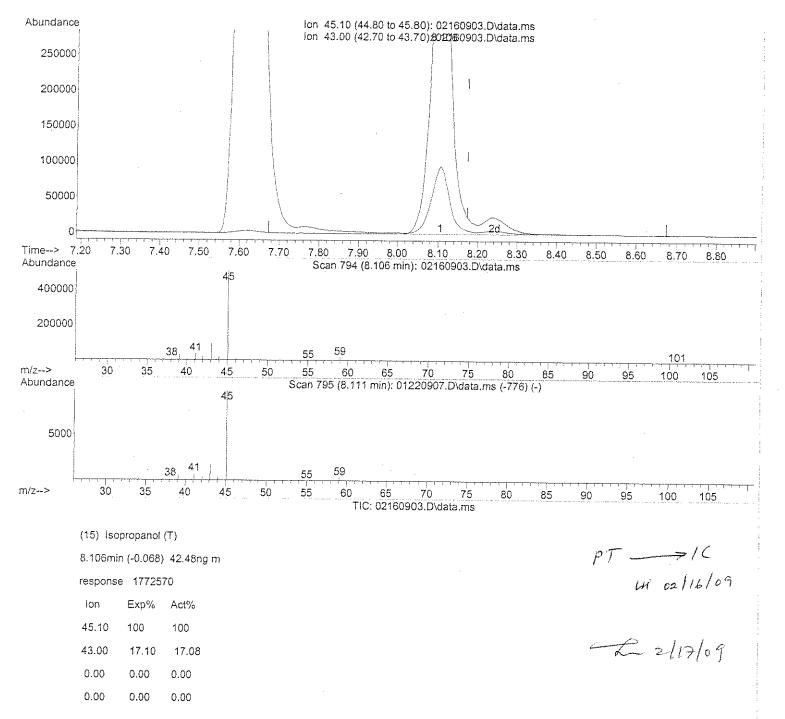
Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD


Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-58

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0900513

CAS Sample ID: P0900513-002DUP

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Sampling Media:

Date Analyzed: 2/13/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.75

	Duplicate								
Compound	Sample Result		Sample Result		Average	% RPD	RPD	Data	
	μg/m³	ppbV	μg/m³	ppbV	ppbV		Limit	Qualifier	
Vinyl Chloride	ND	ND	ND	ND		-	25		
Chloroethane	ND	ND	ND	ND	*	-	25		
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25		
1,1-Dichloroethane	ND	ND	ND	ND	-	-	25		
1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25		

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Quantitation Report (Not Reviewed)

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130911.D

Acq On : 13 Feb 2009 16:33

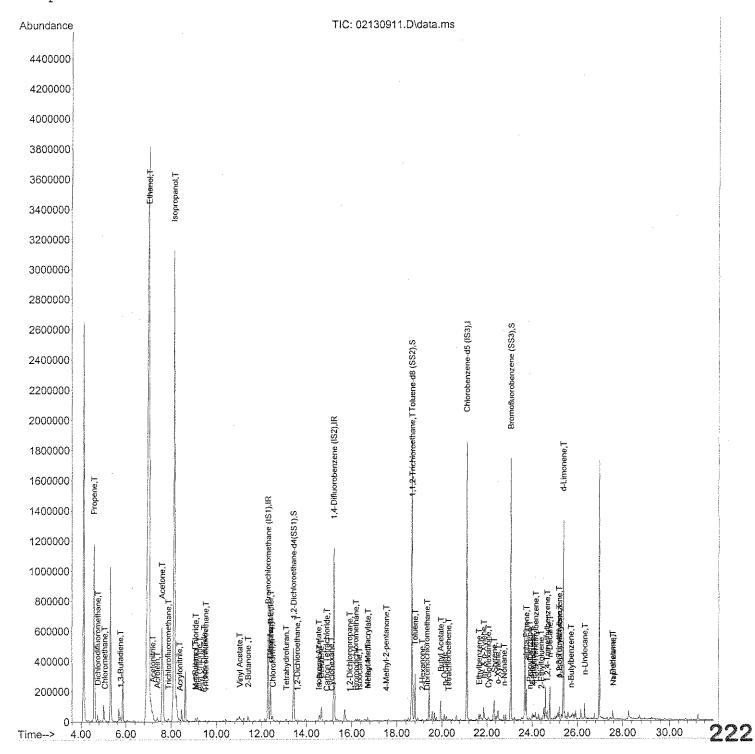
Operator : WA/LH

Sample : P0900513-002Dup (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009


Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via: Initial Calibration

R16012209.M Mon Feb 16 11:31:02 2009

Data File : 02130911.D

: 13 Feb 2009 16:33 Acq On

Operator : WA/LH

: P0900513-002Dup (1000mL) Sample

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) √ Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	1398587	25.000 ng	-0.03
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.67	98	Recov 1583839 Recov 653389	24.496 ng very = 98 24.173 ng very = 96 26.550 ng very = 106	.00% / -0.01 .68% / 0.00
6) Vinyl Chloride7) 1,3-Butadiene8) Bromomethane	5.06 5.31 0.00 5.77 6.24	85 50 135 62 54 94	17591 834 0 19130 262	1.604 ng 0.719 ng N.D. N.D. V 1.316 ng N.D.	100 98
10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol	7.60 7.87 8.15	45 41 56 58 101 45	13135748 103668 34567 406622 21358 7396652	170.091 ng	84 91 95 99
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	0.00 9.07 9.08 9.26 9.52 9.46	96 59 84 41 151 76	0 17145 3934 2157 4524 7345	0.116 ng 0.388 ng 0.136 ng	# 16 # 54 # 55 83
23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate	0.00	61 63 73 86 72 61 87 61	0 356 11313 15035 0	1.624 ng N.D. 0.091 ng	# 1 # 40 # 1 82

Page: 1

Data File : 02130911.D

: 13 Feb 2009 16:33 Acq On

Operator : WA/LH

Sample : P0900513-002Dup (1000mL)

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	33139	1.426 ng		100
34) Tetrahydrofuran	13.10			0.066 ng	#	1
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59					99
38) 1,1,1-Trichloroethane			644	N.D.		
39) Isopropyl Acetate	14.55	61	1686	0.170 ng	#	1
40) 1-Butanol	14.57	56	36518	2.377 ng		92
41) Benzene	14.67	78	115716	1.930 ng		99
42) Carbon Tetrachloride			5583	0.287 ng		100
43) Cyclohexane 44) tert-Amyl Methyl Ether	15.10	84	3971	0.199 ng	#	70
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		•
45) 1,2-Dichloropropane	15.90					88
46) Bromodichloromethane				0.545 ng		99
47) Trichloroethene	16.25			N.D.		
48) 1,4-Dioxane	16.24			N.D.		
49) Isooctane		57	15150			82
50) Methyl Methacrylate				0.360 ng	#	1
51) n-Heptane			7047	0.475 ng	#	78
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52	58	1941	0.138 ng		76
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane			134476	9.571 ng	#	8
58) Toluene			249992	3.786 ng		98
59) 2-Hexanone			7749	0.193 ng		89
60) Dibromochloromethane			3880	0.237 ng		99
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate			124347	2.705 ng		94
63) n-Octane			8384	0.552 ng	#	75
64) Tetrachloroethene	20.29			0.079 ng		91
65) Chlorobenzene	21.16	112	488	N.D.		
66) Ethylbenzene	21.64	91	39935	0.543 ng		100
67) m- & p-Xylene	21.86	91	78940	1.368 ng		98
68) Bromoform	21.95	1/3	344 22797	N.D.		0.77
69) Styrene				0.514 ng		97
70) o-Xylene	22.48 22.75	91	23805	0.403 ng		99
71) n-Nonane 72) 1,1,2,2-Tetrachloroethane	22.49	43 83	17524 872	0.480 ng N.D.		91
74) Cumene	23.24		3762	N.D.		
74) Cumene 75) alpha-Pinene	23.74	105 93	96169			97
76) n-Propylbenzene		93 91	10502	2.856 ng 0.111 ng		97 79
77) 3-Ethyltoluene	24.01	105	21227	0.296 ng		97
78) 4-Ethyltoluene	24.01	105	10569	0.151 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	7769	0.128 ng		
, , , , , , , , , , , , , , , , , , ,		±00	1102	0.120 119		10224

Data File : 02130911.D

Acq On : 13 Feb 2009 16:33 Operator : WA/LH

: P0900513-002Dup (1000mL) Sample

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009 Response via: Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	De	v(Min)
80)	alpha-Methylstyrene	24.35	118	1685	N.D.		
81)	2-Ethyltoluene	24.40	105	8223	0.112 ng		100
82)	1,2,4-Trimethylbenzene	24.67		23686	0.365 ng		94
83)	n-Decane	24.79		86736	2.273 ng		77
	Benzyl Chloride	24.85	91	130	N.D.		
85)	1,3-Dichlorobenzene	24.95		2145			
86)	1,4-Dichlorobenzene	24.95		2145	N.D.		
87)	sec-Butylbenzene	25.01		1019			
	p-Isopropyltoluene	25.20		34364	0.418 ng		93
89)	1,2,3-Trimethylbenzene	25.20	105	9438	0.145 ng	#	66
90)	1,2-Dichlorobenzene	25.37		205	N.D.		
91)	d-Limonene	25.37	68	346862	13.764 ng		99
92)	1,2-Dibromo-3-Chloropr	26.32	157	59	N.D.		
93)	n-Undecane	26.32		37651	0.914 ng		68
94)	1,2,4-Trichlorobenzene	0.00		0	N.D.		
95)	Naphthalene	27.57	128	22856	0.244 ng		100
96)	n-Dodecane	27.55	57	17437	0.375 ng		74
97)	Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98)	Cyclohexanone	22.06	55	14690	0.529 ng	#	93
99)	tert-Butylbenzene	25.12		2439	N.D.		
100)	n-Butylbenzene	25.71	91	4183	0.062 ng	#	30

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-2

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

EPA TO-15

Test Code: Instrument ID:

Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang

Sampling Media:

Test Notes:

Container ID:

AC01423

Initial Pressure (psig):

-1.6

CAS Project ID: P0900513 CAS Sample ID: P0900513-009DUP

Date Collected: 2/10/09

Date Received: 2/16/09

Date Analyzed: 2/16/09 Volume(s) Analyzed:

Final Pressure (psig): 3.5

1.00 Liter(s)

Canister Dilution Factor: 1.39

Compound	Sample	Average	% RPD	RPD	Data			
•	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND	**		25	
Chloroethane	ND	ND	ND	ND		-	25	
1,1-Dichloroethene	ND	ND	ND	ND	ver.	**	25	
1,1-Dichloroethane	ND	ND	ND	ND	m	**	25	
1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

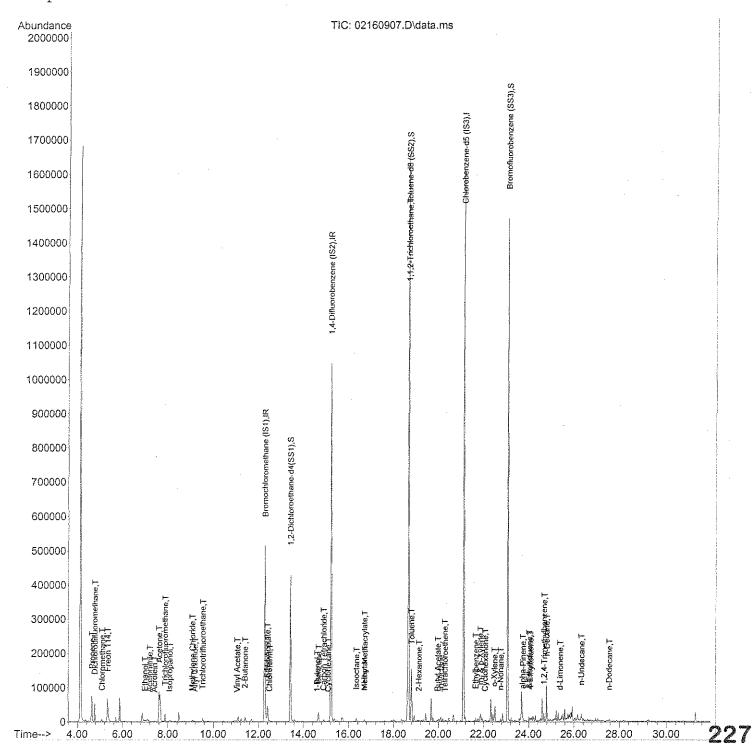
Data File : 02160907.D

Acq On : 16 Feb 2009 13:37

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)


ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160907.D

: 16 Feb 2009 13:37 Acq On

Operator : WA/LH

: P0900513-009Dup (1000mL) Sample

: Haley & Aldrich SV-InA-2 (-1.6, 3.5) Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28	130	267798 1235225	25.000	ng ng	- 0 - 0	.05
56) Chlorobenzene-d5 (IS3)	21.10	82	607502	25.000	ng	- 0	.01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.42	65	433669	25.323	ng	- 0	.04
Spiked Amount 25.000			Pecor	ery =	101	. 28ક	
57) Toluene-d8 (SS2)	18.67	98	1402601				.01
Spiked Amount 25.000	22.06	7 7 1	Recov	very =	98	.08%	0.0
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	1/4	544271 Recov	25.335 ery =	101	328 328	.00
Spiked Amount 25.000			10000		101	. 32.0	
Target Compounds						Qva	
2) Propene	4.63	42	12505	0.834	ng	#	26
3) Dichlorodifluoromethane	4.76	85	54618 8576	2.086	ng		99
4) Chioromethane	5.09	135	8576 1012	0.401	ng ng		76
6) Vinyl Chloride	0.00	£2.	1012	N.D	119		7 0
7) 1.3-Butadiene	5.79	54	395	N.D			
4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	6.26	94	54	N.D	• ,		
9) Chloroethane	0.00	64	0 13223	N.D			•
10) Ethanol 11) Acetonitrile	6.98	45	13223	1.422	ng	,,	75
11) Acetonitrile	7.19	41	2387 3013	0.095	ng	#	
						#	79 78
13) Acetone	7.61	101	23974	1 054	ng	++	78 94
15) Tenpropanol	8.08	45	5319	0.140	ng		62
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene	8.49	53	301	N.D	•		
17) 1,1-Dichloroethene	0.00	96	0	N.D	. 🗸		
18) tert-Butanol	9.03	59	954	N.D	•		
19) Methylene Chloride	9.08	84	2898	0.215	ng	#	57
20) Allyl Chloride	9.18	41	1158	0.071	ng	#	55 92
21) Trichlorotrilluoroethane	9.53	151 76	2622 2020	0.435 A N	119		22
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00	61	0	N.D			
24) 1,1-Dichloroethane	0.00	63	Ö	N.D			
25) Methyl tert-Butyl Ether	0.00	73	0	N.D			
26) Vinyl Acetate	11.05	86	543	0.247	_	#	1
27) 2-Butanone	11.40	72	6085	0.752		#	58
28) cis-1,2-Dichloroethene	0.00	61 07	0	N.D			
29) Diisopropyl Ether	0.00	87 61	. 0 7021	N.D 1.500			94
30) Ethyl Acetate 31) n-Hexane	12.40 12.41	57	7549	0.341	_		10 228
JI/ II IICAGIIC	سده مل و سک سب	J,	, 5 1 2	V. J. I		•	

Data File : 02160907.D

Acq On : 16 Feb 2009 13:37

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev	v(Min)
32) Chloroform	12.49	83	1561	0.077 ng		93
34) Tetrahydrofuran	0.00	72	0	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59	62	835	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	829	N.D.		
39) Isopropyl Acetate	0.00		0	N.D.		
40) 1-Butanol	14.62			0.284 ng		90
41) Benzene	14.67	78	33275	0.628 ng		98
42) Carbon Tetrachloride	14.90	117	5872	0.342 ng		97
43) Cyclohexane	15.09	84	1276	0.0,	#	69
43) Cyclohexane 44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	0	N.D.		
46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane	16.26	130	66	N.D.		
48) 1,4-Dioxane	.0.00	88	0	N.D.		
49) Isooctane	16.34	57	12665	0.211 ng		93
50) Methyl Methacrylate	16.71	100	356	0.068 ng		1
50) Methyl Methacrylate 51) n-Heptane	16.70	71	1734	0.132 ng	#	73
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.54	58	464	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0			
55) 1,1,2-Trichloroethane	18.68	97	119825	9.656 ng	#	8
58) Toluene	18.80	91	64022	1.111 ng		99
59) 2-Hexanone	19.13		4098	0.117 ng		84
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane 62) Butyl Acetate	0.00	107	0	N.D.		•
62) Butyl Acetate	19.97	43	2878	0.072 ng	#	56
63) n-Octane	20.11	57	2554	0.193 ng		85
64) Tetrachloroethene	20.29	166	1051	0.065 ng		90
65) Chlorobenzene	21.15	112	59	N.D.		
66) Ethylbenzene	21.64	91	10187	0.159 ng		97
67) m- & p-Xylene	21.86	91	23261	0.462 ng		98
68) Bromoform	0.00	173	0	N.D.		
69) Styrene			1501	N.D.		
70) o-Xylene	22.48	91	9260	0.180 ng		99
71) n-Nonane	22.75	43	3808	0.119 ng		96
72) 1,1,2,2-Tetrachloroethane	22.48	83	52	N.D.		
74) Cumene	23.24	105	1596	N.D.		
75) alpha-Pinene	23.74	93	3691	0.126 ng	#	43
76) n-Propylbenzene	23.89	91	3189	N.D.		
77) 3-Ethyltoluene	24.02	105	7591	0.121 ng		100
78) 4-Ethyltoluene	24.07	105	3899	0.064 ng		93
79) 1,3,5-Trimethylbenzene	24.16,	105	3069	N.D.		229

Data File : 02160907.D Acq On : 16 Feb 2009 13:37

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)
Misc : Halev & Aldrid : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(I	Min)
		24.59			N.D.		
	• -			2936	N.D.		
82)	1,2,4-Trimethylbenzene	24.67			_		93
83)	n-Decane	24.79			***		80
84)	Benzyl Chloride	24.84	91	53	N.D.		
85)	1,3-Dichlorobenzene	24.95	146	1859	N.D.		
86)	1,4-Dichlorobenzene	24.95	146	1859	N.D.		
87)	sec-Butylbenzene	25.01	105	458	N.D.		
88)	p-Isopropyltoluene	25.20	119	1244	N.D.		
89)	1,2,3-Trimethylbenzene	25.20	105	2544	N.D.		
90)	1,2-Dichlorobenzene	24.95	146	1859	N.D.		
91)	d-Limonene	25.38	68	1383	0.063 ng		93
92)	1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.		
93)	n-Undecane	26.32	57	9763	0.272 ng		68
94)	1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
95)	Naphthalene	27.58	128	3242	N.D.		
96)	n-Dodecane	27.55	, 57	3331	0.082 ng		92
97)	Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
	Cyclohexanone	22.07	55	2943	0.121 ng	#	75
	tert-Butylbenzene	24.67	119	1160	N.D.		
	n-Butylbenzene	25.67		1970	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Copy of Calculations

Instructions for Data Validation-Method TO-15(SCAN)

1. Determination of Pressure Dilution Factor

Upon receipt at the laboratory the pressure or vacuum of the sample canisters is measured using a digital pressure gauge. The canisters are then pressurized with humidified zero air to approximately +3.5 psig (pounds per square inch gauge).

Pressure Dilution factor is calculated as:

$$PDF = \frac{P_f + 14.7}{P_i + 14.7}$$

Pf final pressure in psigPi initial pressure in psig

2. Validating Initial and Continuing Calibration Results

GC/MS target compound analysis is performed using internal standard quantitation. Three internal standard compounds (Bromochloromethane, 1,4-Difluorobenzene and Chlorobenzene-d5) are added to each aliquot of sample, blank, standard and duplicate at an amount of 25 nanograms(ng). Internal standard responses are used to calculate RRFs (relative response factors) as follows:

$$RRF = \frac{AxCis}{AisCx}$$

A: area response of the analyte quantitation ion

Air area response of the corresponding internal standard quantitation ion

Cu internal standard concentration, ng

Cz analyte concentration, ng

The percent relative standard deviation (%RSD) for the five or six initial calibration points should be less than 30% (with a maximum of two analytes ≤90%) for the calibration to be considered valid and linear.

$$\%RSD = \frac{SD}{RRF}(100)$$

SD standard deviation

RRF average or mean RRF (ICAL)

Instructions for Data Validation-Method TO-15(SCAN)

The initial calibration is verified once per twenty-four hour analytical sequence with the analysis of a continuing calibration standard at one of the initial calibration levels (actual analyte concentrations of the CCV are the same as the corresponding concentrations in the initial calibration). The relative response factor of each target analyte from the daily continuing calibration standard is compared to the average relative response factor from the initial multipoint calibration. The percent difference (%D) of the initial and continuing calibration relative response factors is calculated as follows:

$$\%D = \left(\frac{\overline{RRF} - RRF \ cont}{RRF}\right) (100)$$

RRF cont

average relative response factor from the initial calibration

relative response factor from the daily continuing calibration standard

Note: the percent difference (%D) should be less than 30% for an acceptable continuing calibration standard.

3. Validating GC/MS Target Analyte Quantitation Results

Target analytes are measured in nanograms using internal standard quantitation as follows:

$$ng_x = \frac{A_x ng_w}{A_w RRF}$$

ng: nanogram concentration of analyte x

 A_x area response of the analyte's quantitation ion

Ais area response of the corresponding internal standard's quantitation ion

ngis internal standard amount, in nanograms

RRF average or mean RRFs (ICAL)

4. Calculation of μg/m³ (microgram per cubic meter) Results

Target compound results reported on the "Results of Analysis" form in units of $\mu g/m^3$ are calculated as follows:

$$\mu g/m^3 = \frac{(ng)(PDF)}{L}$$

ng nanograms of analyte (measured on the GC/MS quantitation report)

PDF pressure dilution factor (see equation 1)

L sample aliquot in Liters

Instructions for Data Validation-Method TO-15(SCAN)

5. Conversion to ppb (parts per billion) Volume

$$C_{ppbv} = C_x \left(\frac{24.46}{FW}\right)$$

formula weight of the target analytes (i.e. formula weight of Dichloromethane is 84.94; 1.2-Dichloropropane is 113)

24.46 molar volume of ideal gas at 25°C and 1 atmosphere

 C_x . final analyte concentration calculated in equation 4 (µg/m³)

LABORATORY REPORT

March 9, 2009

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

RE: Cooper Vision SVI / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on March 2, 2009. For your reference, these analyses have been assigned our service request number P0900735.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains 17 pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Latt Azula

Kate Aguilera

Project Manager

NARRATIVE

2655 Park Center Drive, Suite A

Simi Valley, California 93065

(805) 526-7161

(805) 526-7270 fax

Client: Project:

Haley & Aldrich, Inc.

Cooper Vision SVI / 70665-014

CAS Project No: New York Lab ID: P0900735

11221

CASE NARRATIVE

The samples were received intact under chain of custody on March 2, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Folder: P0900735

Client: Haley & Aldrich, Incorporated

Project: Cooper Vision SVI 70665-014

Detailed Sample Information

Bottle Order #	12000	12000	12000	12000	12000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FC ID	OA00857	FC00695	FC00266	OA00846 -	FC00384			: : : : :	
Order#	12000	12000	12000	12000	12000	12000	12000	12000	12000
Cont ID	SC00615	AC01365	_ AC00977 _	\$000196	_ AC00989	_AC00681	- AC01060	ĀC01048	_ <u>S</u> C00588
Pt2	! :		i 	! ! !	1 1 1 1	1 1 1 1	! ! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	: ! : : : : ! :
Pi2 psig)	: 		; ; ! ! !	:	:	! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Pi2 (Hg) (: : : : : : : : : : : : : : : : : : : :	: : ! !	1 1 1 1 1) (: :		
H	3.7	3.5	3,5	3.5	3.5	 	 	i i i	
Pi1 psig)	-0.8	0.3	-2.1		-0.8	-14.5	-14.5	-14.5	-14,4
Pid (Hg) (-1,7		4.2	-2.3	:	:	-29.6	-29.6	-29.3
	; ; ;		i I I	! !		! ! !	: : !		
Container Type	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source	6.0 L-Summa Canister Ambient	6.0 L-Summa Canister Source			
CAS Sample ID Client Sample ID Container Type	SV-SS-705-1	SV-InA-705-1	SV-OutA-022609	_SV-SS-709-2	-SV-InA-709-2	AC00681	AC01060	AC01048	\$C00588
CAS Sample ID	P0900735-001.01 SV-SS-705-1	P0900735-002.01	P0900735-003.01 SV-OutA-022609	P0900735-004.01	P0900735-005.01	P0900735-006.01	P0900735-007.01	P0900735-008.01	P0900735-009.01

Miscellaneous Items - received

_						۵.
AVG00750 AVG00601	OA00539 AVG00976	AVG00916 AVG00062	AVG01003 FC00215	AVG00288 AVG00804	FC00559 FC00509	FC00660 AVG00632
	•	` `	•	- , ,		•

AVG00958

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldr	ich, Inc.			_	Work order:	P0900735			
		1 SVI / 70665-014				W				
A. 1	s) received on:			-	Date opened:		by:	MZAN		
		samples received by CAS.							on of	
compliance o	or nonconformity.	Thermal preservation and pl	H will only be eval	luated either at the	request of the cli	ent and/or as require	d by the method/SOI	Yes	No	<u>N/A</u>
1	Were sample	containers properly i	narked with c	lient sample II	D?			×		
2	_	supplied by CAS?						X		
		ontainers arrive in go	nod condition?	ı				\boxtimes		
	^	of-custody provided?	The second section of the second second					\boxtimes		
		n-of-custody properly	completed?					\boxtimes		
		ontainer labels and/o		ith custody na	nere?		•	\boxtimes		
	-	volume received adequ			iporo i			\boxtimes		
	•	within specified holding	•	10;				X		
	. =	emperature (thermal		of cooler at re	raint adharad	to9				\boxtimes
9	^ ^	-	preservation)		-		°C	لبسيا	<u></u>	[23]
*0		Cooler Temperature	<u></u>	°C Blank	Temperature		_ "		X	
10	Was a trip bla							<u>L_</u>		Ц
4.4	*	upplied by CAS:	alar/Davig				······		X	
11	·	seals on outside of co	oler/Box?				C - 1' - T ' 40			X
	Location of	• •	0				_Sealing Lid?			\boxtimes
	-	ure and date included	7							
	Were seals i		1	0						\boxtimes
		seals on outside of sa	mple containe	r?			G 11 7 (10		\boxtimes	
	Location of	* *					_Sealing Lid?			\boxtimes
	, –	ure and date included	?							X
	Were seals is									\boxtimes
12		have appropriate pre				Client specified i	nformation?			\boxtimes
		nt indication that the			reserved?					X
	Were VOA v	<u>ials</u> checked for prese	nce/absence o	f air bubbles?						X
	Does the clier	nt/method/SOP requir	e that the anal	yst check the	sample pH an	nd <u>if necessary</u> a	lter it?			\boxtimes
13	Tubes:	Are the tubes cap	ped and intact	?						X
		Do they contain:	moisture?							\times
14	Badges:	Are the badges p	roperly capped	d and intact?						\times
		Are dual bed bad	lges separated	and individua	lly capped an	d intact?				\overline{X}
Labs	ample II)	Container	Required	Received	Adjusted	VOA Headspac	e Recein	t / Pr e si	ervation	
		Description	pH *	pH	pH	(Presence/Absence		ommen		
20900735	-001 01	6.0 L Source Can								
20900735	-	6.0 L Ambient Can							····	
0900735		6.0 L Ambient Can								
P0900735-004.01 6.0 L Source Can										
9090073 <i>5</i>	-005.01	6.0 L Ambient Can								
Explain aı	ny discrepancies	: (include lab sample II	numbers):	······································	·····					
		<u></u>		······································						

NYSDEC DATA PACKAGE SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory	poratory Analytical Analytical						
Sample	Sample	*VOA	*BNA	*VOĀ	*Pest	*Metals	*Other	
Code	Code	GC/MS	GC/MS	GC	PCBs	-		
		Method	Method	Method	Method			
		#	#	#	#			
SV-SS-705-1	P0900735-001	EPA TO-15						
SV-InA-705-1	P0900735-002	EPA TO-15						
SV-OutA-022609	P0900735-003	EPA TO-15						
SV-SS-709-2	P0900735-004	EPA TO-15						
SV-InA-709-2	P0900735-005	EPA TO-15			***************************************			
	, 0000100 000							
			·					
			<u></u>				····	
				·		<u> </u>		
								
							·	
						ļ		
·								
					·			
		win						
<u> </u>	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
P0900735-001	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-002	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-003	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-004	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-005	Air	2/27/09	3/2/09	NA	3/4/09
1 0300733-003	7.41	2/21/00	0,2,00		
				1	
1					
-			:		
				·	

CHAIN OF CUSTODY FORMS

Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A

Columbia Analytical Services™

Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard Requested Turnaround Time in Business Days (Surcharges), please circle

PO900 135

CAS Project No.

ö

Page

please provide min reporting Chronel Children e.g. Actual Preservative Subside Lalim or specific instructions Project Requirements (MRLs, QAPP) min reporting 24 - 32 COMPOSTORS C.C. JOHN Comments package 211 Other results ASP- C Levie -IMI+ Analysis Method and/or Analytes Lime: OGTA - Agen Pra M C 412 1/200 30 1/03 ato for John took EDD Units: 157/12cd 30 MO/11204 26 1206 28 Vacuum Contact: EDD required Yes / No 307 (20/20) trats DMH 7110016 Volume Sample 3 POOPERUISION SUF Flow Controller (Bar code -DOBLE 3900 P8800 00857 SORTE Project Number 7000 5 - 014 Received by: (Signature (Bar code # -AC, SC, etc.) P.O. # / Billing Information Canister ID 8368 20196 898 00017 MISTINA <u>8</u> appler (Print & Sign Tier III (Data Validation Package) 10% Surcharge Sample Type (Air/Tube/ Solid) Project Name こ 法 Collected SE PC Time Tier V (client specified) 03/a/6 Collected Date Company Name & Address (Reporting Information) Laboratory ID Number 317 F)-13 9to ÷/57; 767 0-1.7 3 -14.3 741 Report Tier Levels - please select ier i - (Results/Default if not specified) taley i Alchrich Email Address for Result Reporting Phone 32 - 433 a Project Manager W-Out A Daggood SV-INA-709-2 2-801-88-NS Reliquish diby: (Signature) 3/-In4-705-31-SS-1051 Fier If (Results + QC) Client Sample ID

ပ

Cooler / Blank Temperature

Time;

Date:

Received by: (Signature)

Time:

Date:

Reliquished by: (Signature)

Reliquished by: (Signature)

Received by: (Signature)

GC/MS VOLATILES DATA

QC Summary

COLUMBIA ANALYTICAL SERVICES, INC.

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

Test Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Collected: 2/27/09 Date(s) Received: 3/2/09

Date(s) Analyzed: 3/4/09

Fest Notes:

		1,2-Dichloroethane-d4		Toluene-d8		Bromofluorobenzene			
Client Sample ID	CAS Sample ID	6/0	Acceptance	0/0	Acceptance	%	Acceptance	Data	
		Recovered	Limits	Recovered	Limits.	Recovered	Limits	Qualifier	
Method Blank	P090304-MB	102	70-130	101	70-130	98	70-130		
Lab Control Sample	P090304-LCS	101	70-130	99	70-130	99	70-130		
SV-SS-705-1	P0900735-001	101	70-130	100	70-130	99	70-130		
SV-InA-705-1	P0900735-002	101	70-130	100	70-130	100	70-130		
SV-OutA-022609	P0900735-003	102	70-130	99	70-130	98	70-130		
SV-SS-709-2	P0900735-004	101	70-130	99	70-130	98	70-130		
SV-InA-709-2	P0900735-005	102	70-130	100	70-130	98	70-130		

LABORATORY CONTROL SAMPLE SUMMARY Page I of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P090304-LCS

Test Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Sampling Media: Fest Notes:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA Date Analyzed: 3/04/09

Volume(s) Analyzed:

NA Liter(s)

				CAS				
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data		
		ng	ng		Limits	Qualifier		
75-01-4	Vinyl Chloride	25.5	22.0	86	57-132	, , , , , , , , , , , , , , , , , , ,		
75-00-3	Chloroethane	25.8	24.5	95	68-123			
75-35-4	1,1-Dichloroethene	27.5	22.7	83	70-123			
75-34-3	1,1-Dichloroethane	26.8	25.7	96	72-130			
71-55-6	I,I,I-Trichloroethane	26.5	25.3	95	69-127			

RESULTS OF ANALYSIS

Page I of I

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900735

Client Project ID:

Cooper Vision SVI / 70665-014

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Lab File ID: 03040902.D

Analyst:

Elsa Moctezuma

Date Analyzed: 3/04/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:05

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed	
Lab Control Sample	P090304-LCS	03040907.D	13:08	
SV-InA-705-1	P0900735-002	03040909.D	14:35	
SV-OutA-022609	P0900735-003	03040910.D	15:21	
SV-SS-705-1	P0900735-001	03040912.D	17:11	
SV-SS-709-2	P0900735-004	03040913.D	17:52	
SV-InA-709-2	P0900735-005	03040914.D	18:34	

Data Path : J:\MS09\Data\2009_02\17\

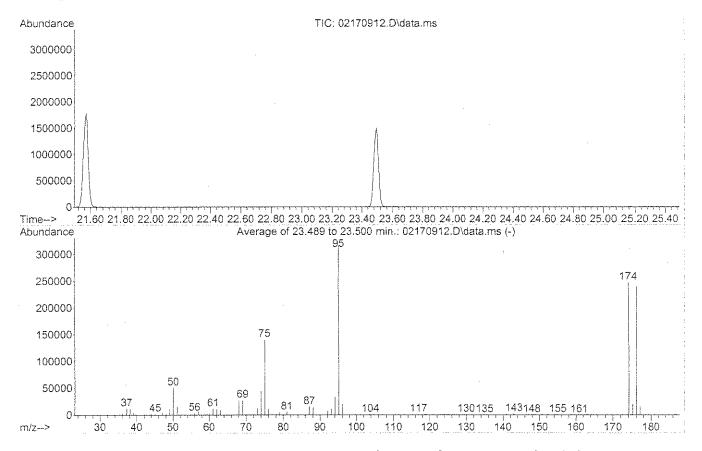
Data File : 02170912.D

Acq On : 17 Feb 2009 16:49

Operator : EM

Sample : BFB Tune Standard (200ml)

Misc : S20-02030901


ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Mon Feb 16 12:39:21 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.1	50781	PASS
75	95	30	66	44.7	140904	PASS
95	95	100	100	100.0	315477	PASS
96	95	5	9	6.4	20125	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	78.3	247104	PASS
175	174	4	9	8.0	19773	PASS
176	174	93	101	96.9	239509	PASS
177	176	5	9	6.3	15112	PASS

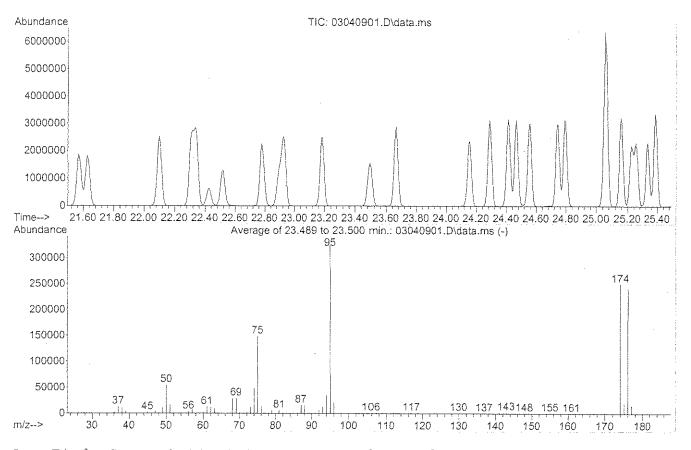
341 2/18/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD


Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.9	54877	PASS
75	95	30	66	45.7	148885	PASS
95	95	100	100	100.0	325611	PASS
96	95	5	9	6.5	21061	PASS
173	174	0,.00	2	0.0	0	PASS
174	95	50	120	76.8	250176	PASS
175	174	4	9	7.9	19880	PASS
176	174	93	101	96.5	241323	PASS
177	176	5	9	6.4	15501	PASS

Em 3/4/09

RESULTS OF ANALYSIS

Page Fof [

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900735

Client Project ID:

Cooper Vision SVI / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Lab File ID: 03040901.D

Analyst:

Elsa Moctezuma

Date Analyzed: 3/4/09

Time Analyzed: 08:10

Sampling Media:

6.0 L Summa Canister(s)

Test Notes:

		IS1 (BCM	IS1 (BCM) IS2 (DI			IS3 (CBZ)		
		AREA				AREA #	RT #	
	24 Hour Standard	333021	12.82	1607634	15.77	798532	21.57	
	Upper Limit	466229	13.15	2250688	16.10	1117945	21.90	
	Lower Limit	199813	12.49	964580	15.44	479119	21.24	
	Client Sample ID							
01	Method Blank	330101	12.80	1608551	15.75	791060	21.57	
02	Lab Control Sample	322309	12.82	1549597	15.77	774690	21.57	
03	SV-InA-705-1	338724	12.80	1633065	15.75	812724	21.57	
04	SV-OutA-022609	338884	12.80	1640751	15.75	814845	21.57	
05	SV-SS-705-1	313335	12.82	1507301	15.76	752075	21.57	
06	SV-SS-709-2	324268	12.82	1568878	15.76	785278	21.57	
07	SV-InA-709-2	313952	12.80	1523485	15.75	755013	21.57	
08	2 · · · · · · · · · · · · · · · · · · ·							
09						•		
10							*	
11								
12								
13								
14		•						
15								
16								
17								
18								
19								
20								

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified liimits. See case narrative.

Verified By: RG Date: 3665

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08					FIN	NAL .
	MS8	MS9	MS13	MS16	MAX		1		MDLR	MDLR
COMPOUND	MDL _R	MDL _R	MDL _R	MDL _R	MDLR	µg/m ^s	ppbV	MW	μg/m³	ppbV
	INDER			1	<u> </u>		0.02906	42.08	0.050	0.029
Propene		0.050	0.050	0.050	0.0500 0.0500	0.050	0.02900	120.90	0.050	0.010
<u>Dichlorodifluoromethane</u>		0.050	0.050		0.0500	0.050	0.02422	50.49	0.050	0.024
Chloromethane		0.050	0.050	0.050	§	0.050	0.02422	170.90	0.050	0.0072
Freon 114		0.050	0.050	0.050	0.0500	0.050	0.01957	62.50	0.050	0.0072
√inyl Chloride		0.050	0.050	0.050	0.0500			54.09	0.050	0.020
1,3-Butadiene		0.050	0.050	0.050	0.0500	0.050	0.02261	94.94	0.050	0.023
3romomethane		0.050	0.050	0.050	0.0500	0.050	0.01288 0.02730	64.52	0.072	0.013
Chloroethane		0.050	0.072	0.050	0.0720	0.072	0.02730	46.07	0.072	0.074
Ethanol		0.140	0.133	0.133 0.050	0.1400 0.0500	0.050	0.07433	41.05	0.050	0.030
Acetonitrile		0.050	0.050	0.050	0.1100	0.030	0.02979	56.06	0.011	0.048
Acrolein		0.056	0.110		}	0.140	0.05896	58.08	0.14	0.059
Acetone	ļ	0.137	0.137	0.137 0.050	0.1370 0.0500	0.050	0.03690	137.40	0.050	0.0089
<u>Frichlorofluoromethane</u>		0.050	0.050	0.050	0.0500	0.030	0.07326	60.10	0.18	0.0003
sopropanol		0.050	0.050		0.0500	0.760	0.02305	53.06	0.050	0.023
Acrylonitrile		0.050	0.050	0.050	·		0.02303	96.94	0.056	0.023
1,1-Dichloroethene		0.050	0.056	0.050	0.0560	0.056		74.12	0.050	0.017
ert-Butanol		0.051	0.051	0.051	0.0510	0.051	0.01683	84.94	0.055	0.017
Methylene Chloride		0.050	0.055	0.050	0.0550	0.055	0.01584	76.53	0.050	0.016
Allyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.01598	187.38	0.050	0.0076
<u>Frichlorotrifluoroethane</u>		0.050	0.058	0.050	0.0580	0.058	0,00757	·		0.0076
Carbon Disulfide		0.050	0.050	0.050	0.0500	0.050	0.01606	76.14	0.050 0.050	0.018
rans-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94		
I,1-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
Methyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01387	88.15	0.050 0.29	0.014
/inyl Acetate		0.126	0.290	0.220	0.2900	0.290	0.08240	86.09		
?-Butanone		0.050	0.096	0.057	0.0960	0.096	0.03256	72.11	0.096	0.033 0.013
is-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	
Diisopropyl Ether		0.050	0.050	0.052	0.0520	0.052	0.01245	102.18	0.052	0.012
Ethyl Acetate		0.076	0.120	0.054	0.1200	0.120	0.03331	88.11	0.12	0.033
-Hexane		0.050	0.050	0.050	0.0500	0.050	0.01419	86.17	0.050	0.014
Chloroform		0.050	0.050	0.050	0.0500	0.050	0.01024	119.40	0.050	0.010
etrahydrofuran		0.050	0.085	0.064	0.0850	0.085	0.02883	72.11	0.085	0.029
Ethyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012 0.012
,2-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.0092
,1,1-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133.40	0.050	
sopropyl Acetate		0.053	0.053	0.053	0.0530	0.053	0.01269	102.13	0.053	0.013
-Butanol		0.055	0.056	0.055	0.0560	0.056	0.01848	74.12	0.056	0.018
Jenzene		0.050	0.050	0.050	0.0500	0.050	0.01566	78.11	0.050	0.016
Carbon Tetrachloride		0.050	0.050	0.050	0.0500	0.050	0.00795	153.80	0.050	0.0080
Cyclohexane		0.055	0.055	0.055	0.0550	0.055	0.01599	84.16	0.055	0.016
ert-Amyl Methyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloropropane		0.050	0.050	0.050	0.0500	0.050	0.01082	113.00	0.050	0.011
3romodichloromethane		0.050	0.050	0.050	0.0500	0.050	0.00747	163.80	0.050	0.0075
richioroethene		0.050	0.050	0.050	0.0500	0.050	0.00931	131.40	0.050	0.0093
,4-Dioxane		0.050	0.060	0.050	0.0600	0.060	0.01666	88.11	0.060	0.017
sooctane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
/lethyl Methacrylate		0.059	0.094	0.054	0.0940	0.094	0.02296	100.12	0.094	0.023
-Heptane		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
is-1,3-Dichloropropene		0.050	0.050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
Methyl-2-pentanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
rans-1,3-Dichloropropene		0.050	0.050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
,1,2-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133,40	0.050	0.0092
oluene		0.050	0.050	0.050	0.0500	0.050	0.01327	92.14	0.050	0.013
!-Hexanone		0.050	0.050	0.050	0.0500	0.050	0,01221	100.16	0.050	0.012
Dibromochloromethane		0.050	0.050	0.050	0.0500	0.050	0,00587	208.30	0.050	0.0059
,2-Dibromoethane		. 0.050	0.050	0.050	0.0500	0.050	0.00651	187.90	0.050	0.0065
Butyl Acetate		0.050	0.050	0.050	0.0500	0.050	0.01053	116.16	0.050	0.011

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08					FIN	NAL .
	MS8	MS9	MS13	MS16	MAX				MDL _R .	MDLR
COMPOUND	MDL _R	μg/m³	ppbV	MW	μg/m³	ppbV				
n-Octane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
Fetrachloroethene		0.050	0.050	0.050	0.0500	0.050	0.00738	165.80	0.050	0.0074
Chlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.01086	112.60	0.050	0.011
Ethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
n- & p-Xylene		0.053	0.053	0.053	0.0530	0.053	0.01221	106.20	0.053	0.012
3romoform		0.050	0.050	0.053	0.0530	0.053	0.00513	252.80	0.053	0.0051
Styrene		0.050	0.050	0.050	0.0500	0.050	0.01175	104.10	0.050	0.012
>-Xylene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
1-Nonane		0.050	0.050	0.050	0.0500	0.050	0.00954	128.26	0.050	0.0095
1,1,2,2-Tetrachloroethane		0.050	0.050	0.050	0.0500	0.050	0.00728	167.90	0.050	0.0073
Dumene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
Ipha-Pinene		0.050	0.050	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
n-Propylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
3-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
I-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
.3.5-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
ilpha-Methylstyrene		0.050	0.050	0.050	0.0500	0.050	0.01035	118.19	0.050	0.010
?-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
,2,4-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1-Decane		0.050	0.050	0.050	0.0500	0.050	0.00860	142.28	0.050	0.0086
3enzyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.00966	126.59	0.050	0.0097
,3-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
.4-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
ec-Butylbenzene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
Isopropyltoluene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
,2,3-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
,2-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
-Limonene		0.050	0.029	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
,2-Dibromo-3-Chloropropane		0.050	0.043	0.050	0.0500	0.050	0.00517	236.33	0.050	0.0052
i-Undecane		0.050	0.050	0.050	0.0500	0.050	0.00782	156.31	0.050	0.0078
.2,4-Trichlorobenzene		0.083	0.053	. 0.076	0.0830	0.083	0.01119	181.50	0.083	0.011
iaphthalene		0.050	0.050	0.050	0.0500	0.050	0.00954	128.17	0.050	0.0095
i-Dodecane		0.050	0.050	0.050	0.0500	0.050	0.00718	170.34	0.050	0.0072
lexachloro-1,3-butadiene		0.050	0.050	0.050	0.0500	0.050	0.00469	260.80	0.050	0.0047

Sample Data

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-705-1

Client Project ID: Cooper Vision SVI / 70665-014

EPA TO-15

Instrument ID:

Fest Code:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma

Analyst: Sampling Media:

6.0 L Summa Canister

Fest Notes:

Container ID:

SC00615

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.7

Volume(s) Analyzed:

CAS Project ID: P0900735

Date Collected: 2/27/09 Date Received: 3/2/09

Date Analyzed: 3/4/09

CAS Sample ID: P0900735-001

Canister Dilution Factor: 1.32

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.66	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

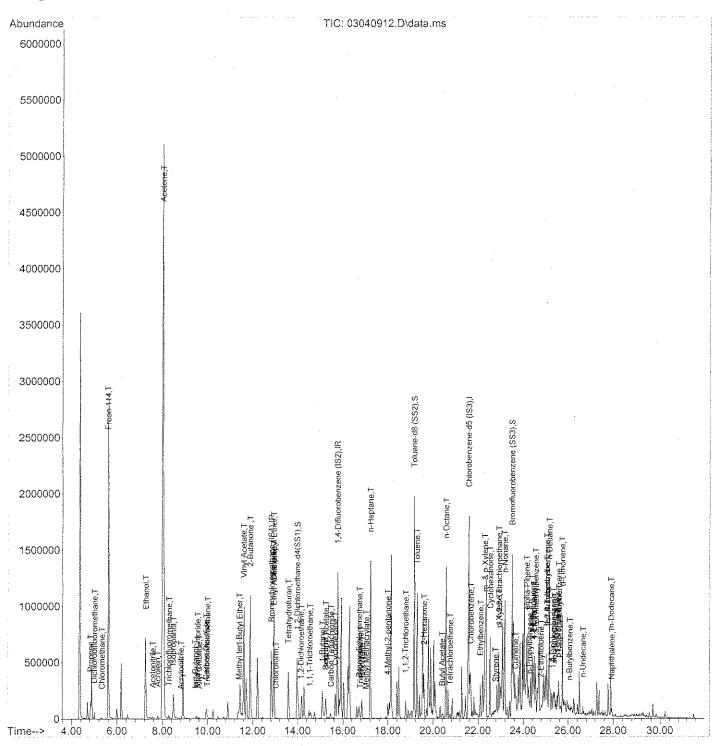
Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)


ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)		130 114 82	313335 1507301 752075	25.000 25.000 25.000	ng ng ng	- 0 - 0	.03 .02 .00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	19.15	98	Recov 1770677 Recov 500813	mery = 24.902 mery =	101 ng 99 ng	.48% -0 .60% 0	.01
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane	4.84 5.01 5.34 5.60 5.80 6.09 0.00	42 85 50 135 62 54 94	71666 66894 1983 1723 744 636 0	2.552 1.791 0.060 0.088 N.D N.D N.D	ng ng ng ng	Qva # #	lue 96 98 52 57
11) Acetonitrile 12) Acrolein	7.58	41	27761 41124	0.722	ng ng		96 99 79 97 97
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	9.45 9.55 9.62 9.99 9.94 0.00	59 84 41 151 76 61 63	24520 7170 3488 14340 206404 0	0.582 0.343 0.130 1.009 2.788 N.D N.D	ng ng ng ng ng	##	89 45 53 94 99
25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	11.40 11.60 11.89 12.58 12.93 12.92	73 86 72	59309 31239 496701 105 6742 12084 665053	1.168 9.594 43.414 N.D 0.421 1.816 17.516	ng ng ng ng ng	# # #	89 1 26 1 14 88 2

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.03	83	8562	0.285 ng		97
34) Tetrahydrofuran	13.58	72	167041	13.851 ng	#	53
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	14.15	62	1313	0.058 ng	#	44
38) 1,1,1-Trichloroethane	14.54	97	2948	0 .114 n g	#	81
39) Isopropyl Acetate	15.24	61	1073	0.093 ng	#	1
40) 1-Butanol	15.09	56	248525	14.021 ng	#	55
41) Benzene	15.24	78	230426	2.564 ng		99
42) Carbon Tetrachloride	15.47	117	9230	0.414 ng		98
43) Cyclohexane *	15.66	84	123762	3.864 ng	#	64
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	16.43	63	104	N.D.		
46) Bromodichloromethane	16.73	83	15609	0.665 ng	#	20
47) Trichloroethene	16.79	130	1176	0.052 ng		90
48) 1,4-Dioxane	16.75	88.	528	N.D.		
49) Isooctane	16.86	57	52926	0.546 ng	#]
50) Methyl Methacrylate	17.04	100	810	0.109 ng	#	1
51) n-Heptane	17.22	71	455332	20.032 ng	#	69
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.99	58	51120	3.118 ng		83
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.78	97	3848	0.221 ng		87
58) Toluene	19.28	91	1119547	12.699 ng		100
59) 2-Hexanone	19.60	43	240620	6.151 ng	#	39
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	20.40	43	12116	0.258 ng	#	45
63) n-Octane	20.57	57	303366	14.916 ng	#	65
64) Tetrachloroethene	20.76	166	12066	0.580 ng		96
65) Chlorobenzene	21.67	112	47040	0.854 ng	#	43
66) Ethylbenzene	22.10	91	273437	2.882 ng		97
67) m- & p-Xylene	22.31	91	844146	11.517 ng		100
68) Bromoform	0.00		0	N.D.		
69) Styrene	22.79	104	21251			98
70) o-Xylene	22.92	91	226193	3.033 ng		99
71) n-Nonane	23.19	43	432446	9.190 ng		92
72) 1,1,2,2-Tetrachloroethane	22.93	83	7021	0.235 ng	#	54
74) Cumene	23.67	105	55075	0.581 ng		98
75) alpha-Pinene	24.16	93	247146	5.807 ng		96
76) n-Propylbenzene	24.29	91	51701	0.437 ng		93
77) 3-Ethyltoluene	24.41	105	106477	1.232 ng		100
78) 4-Ethyltoluene	24.47	105	46595	0.543 ng		97
79) 1,3,5-Trimethylbenzene	24.56	105	49972	0.683 ng		99 2
	<u> </u>		/ /	•		dis

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.75	118	1427	N.D.		
81) 2-Ethyltoluene	24.79	105	34578	0.392 ng		98
82) 1,2,4-Trimethylbenzene	25.05	105	98210	1.265 ng		92
83) n-Decane	25.16	57	389202	8.377 ng		77
84) Benzyl Chloride	25.27	91	1899	N.D.		
85) 1,3-Dichlorobenzene	25.25	146	114	N.D.		
86) 1,4-Dichlorobenzene	25.33	146	1761	0.042 ng	•	84
87) sec-Butylbenzene	25.39	105	7830	0.077 ng	#	80
88) p-Isopropyltoluene	25.57	119	25303	0.261 ng		94
89) 1,2,3-Trimethylbenzene	25.58	105	22561	0.291 ng		97
90) 1,2-Dichlorobenzene	25.33	146	1761	0.044 ng		85
91) d-Limonene	25.74	68	229149	7.150 ng		99
92) 1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.		
93) n-Undecane	26.66	57	28836	0.610 ng	#	45
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
95) Naphthalene	27.94	128	52286	0.549 ng		97
96) n-Dodecane	27.90	57	194034	3.874 ng		74
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98) Cyclohexanone	22.54	55	74757	2.692 ng	#	35
99) tert-Butylbenzene	25.06	119	12840	0.172 ng	#	56
100) n-Butylbenzene	26.07	91	12546	0.157 ng	#	65

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Em 3/5/09

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-705-1

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-002

Fest Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

Date Collected: 2/27/09 Date Received: 3/2/09

Date Analyzed: 3/4/09

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

Sampling Media:

AC01365

Initial Pressure (psig):

0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.21

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.12	ND	0.047	
75-00-3	Chloroethane	ND	0.61	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.61	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.61	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.61	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

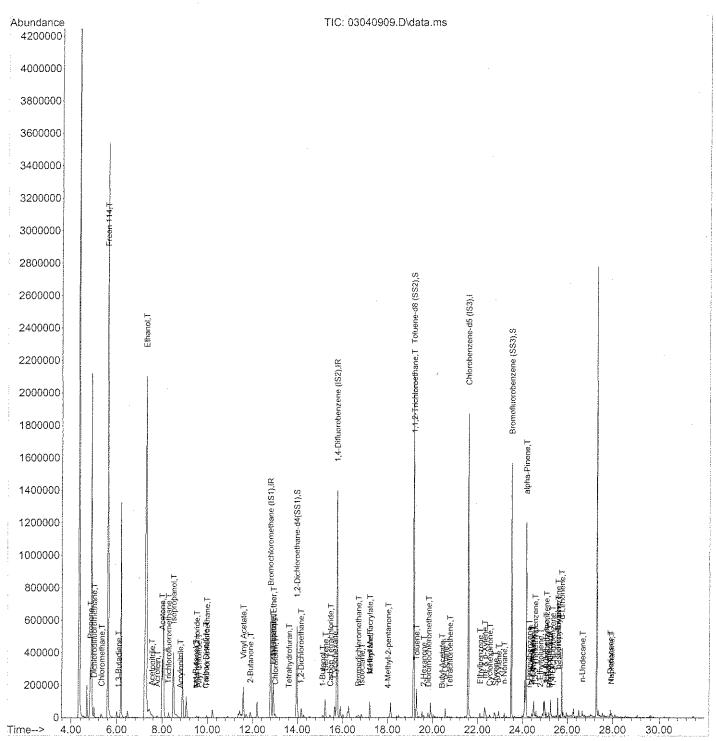
Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)


ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)							
56) Chlorobenzene-d5 (IS3)	21.57	82	812724	25.000	ng	(0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(12 06	6 E	EE/201	25 221	na	<i>I</i>	1 04
Spiked Amount 25.000			Recov	ery =	100	. 88ક	J. 0 ±
57) Toluene-d8 (SS2)	19.15	98	1919519	24.980	ng	(0.01
Spiked Amount 25.000			Recov	ery =	99	.92%	
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.49	174	548550 Recov	25.062 ery =	ng 100	248 248	3.00
Spined Amount 25.000			1000	O-1	200		
Target Compounds							alue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane	4.84	42	144595	4.764	ng		96 98
4) Chloromethane	5.01	50 50	17719	0 498	na	•	95
5) Freen 114	5.60	135	1618	0.076	ng	#	44
6) Vinyl Chloride	0.00	62	0	N.D		,,	
7) 1,3-Butadiene	6.09	54	2870	0.109	ng	#	82
8) Bromomethane	6.57 0.00 7.30	94	695	N.D	•		
9) Chloroethane	0.00	64	0	N.D	. 6		
10) Ethanoi	7.30	45	5408914	320.795	119		T 0 0
11) Acetonitrile	7.56	41	20496 15692	0.493	ng		99
12) Acrolein	7.79	56	15692	1.353	ng	#	96 65
13) Acetone	8.00	50 101	26016 221133	1 110	ng	††	98
15) Teopropanol	8 50	45	843804	17 148	na		100
16) Adrylonitrile	8.81	53	2028	0.075	ng		98
17) 1,1-Dichloroethene	0.00	96	0	N.D	• استسسمه		
18) tert-Butanol	.9.48	59	6832	0.150	ng	#	75
19) Methylene Chloride	9.53	84	4224	0.187	ng	#	49
20) Allyl Chloride	9.62	41	2346	0.081	ng	+#	53
21) Trichlorotrifluoroethane	9.98	151	6604	0.430	ng		89
11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.94	76	4716	0.059	ng	#	75
23) trans-1,2-Dichioroethene	0.00	e o p T	0	M.D	·		
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether	0.00 0.00	63 73	0	N.D			
26) Vinyl Acetate	11.60	86	6291	1.787		#	1
27) 2-Butanone	11.90	72	18438	1.491		#	35
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	12.92	87	1003	0.058		#	1
30) Ethyl Acetate	12.91	61	11770	1.637		#	70
31) n-Hexane	12.93	57	121059	2.950	ng		89 2

Em 3/5/09

(Nøt Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)
ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Quantitation Report

QLast Update: Wed Feb 18 07:31:09 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32)	Chloroform	13.01	83	26320	0.811 ng		98
34)	Tetrahydrofuran	13.62	72	721	0.055 ng	#	33
35)	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36)	1,2-Dichloroethane	14.14	62	1443	0.059 ng	#	44
38)	1,1,1-Trichloroethane	14.54	97	845	N . D .		
39)	Isopropyl Acetate	15.23	61	270	N.D.		
40)	1-Butanol	15.11	56	15628	0.814 ng	#	65
41)	Benzene	15.23	78	145600	1.495 ng		98
42)	Carbon Tetrachloride	15.46	117	9544	0.395 ng		97
43)	Cyclohexane	15.66	84	37513	1.081 ng	#	65
44)	tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45)	1,2-Dichloropropane	0.00	63	0	N.D.		
46)	Bromodichloromethane	16.70	83	9737	0.383 ng		93
47)	Trichloroethene	16.77	130	602	N.D.		
48)	1,4-Dioxane	0.00	88	0	N.D.		
49)	Isooctane	16.86	57	17216	0.164 ng	#	56
50)	Methyl Methacrylate	17.22	100	8341	1.038 ng	#	1
	n-Heptane	17.21	71	31985	1.299 ng	#	67
52)	cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53)	4-Methyl-2-pentanone	18.02	58	825	0.046 ng	#	44
54)	trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55)	1,1,2-Trichloroethane	19.16	97	162296	8.600 ng	#	6
58)	Toluene	19.28	91	168392	1.768 ng		99
	2-Hexanone	19.60	43	14019	0.332 ng	# .	60
	Dibromochloromethane	19.82	129	2353	0.128 ng		99
	1,2-Dibromoethane	0.00	107	0	N.D.		
62)	Butyl Acetate	20.42	43	3029	0.060 ng	#	85
	n-Octane	20.56	57	12936	0.589 ng	#	70
	Tetrachloroethene	20.76	166		0.085 ng		99
	Chlorobenzene	21.63	112	857	N.D.		
	Ethylbenzene	22.10	91	28171	~		98
	m- & p-Xylene	22.31	91	65312	0.825 ng		99
	Bromoform	0.00		0	N.D.		
	Styrene	22.79		9660	0.164 ng		98
70)	o-Xylene	22.92	91	24586	0.305 ng		92
-	n-Nonane	23.18	43	14346	0.282 ng		93
	1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.		
•	Cumene	23.67	105	4088	N.D.		
•	alpha-Pinene	24.15	93	584458	12.708 ng		98
	n-Propylbenzene	24.29	91	8653	0.068 ng		92
	3-Ethyltoluene	24.41	105	15838	0.170 ng		94
	4-Ethyltoluene	24.47		12526			92
79)	1,3,5-Trimethylbenzene	24.55	105	6960	0.088 ng		98 3
		c		1 1			_

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)
ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80)	alpha-Methylstyrene	24.75	118	761	N.D.	was were any det	phone talker about house cause
81)		24.79	105	6805	0.071 ng		92
	1,2,4-Trimethylbenzene	25.06	105	23070	0.275 ng		81
83)	n-Decane	25.15	57	14365	0.286 ng		68
84)			91	3421	0.059 ng	#	56
	1,3-Dichlorobenzene	25,25		1512	N.D.		
	1,4-Dichlorobenzene	25.33	146	2986	0.065 ng		96
	sec-Butylbenzene	25.39		1537	N.D.		
	p-Isopropyltoluene	25.57		67280	0.642 ng		95
	1,2,3-Trimethylbenzene	25.57	105	8092	0.097 ng	#	15
	1,2-Dichlorobenzene	25.75	146	1008	N.D.		
	d-Limonene	25.75	68	118653	3.426 ng		99
	1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.		
	n-Undecane	26.66	57	16925	0.331 ng		75
	1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
	Naphthalene	27.94	128		0.189 ng		97
	n-Dodecane	27.89	57	15521	0.287 ng	#	63
	Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
	Cyclohexanone		55	4950	0.165 ng	#	74
	tert-Butylbenzene	25.05		3332	0.041 ng	#	56
100)	n-Butylbenzene	26.07	91	3255	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Gm 3/5/09

RESULTS OF ANALYSIS

Page I of I

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-OutA-022609

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-003

Fest Code: nstrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

6.0 L Summa Canister

Date Collected: 2/27/09 Date Received: 3/2/09

Date Analyzed: 3/4/09

Analyst: Sampling Media: Elsa Moctezuma

Volume(s) Analyzed:

1.00 Liter(s)

Fest Notes:

Container ID:

AC00977

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	. ND	0.14	ND	0.056	
75-00-3	Chloroethane	ND	0.72	ND	0.27	
75-35-4	1,1-Dichloroethene	ND	0.72	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.72	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.72	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

[√]RL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

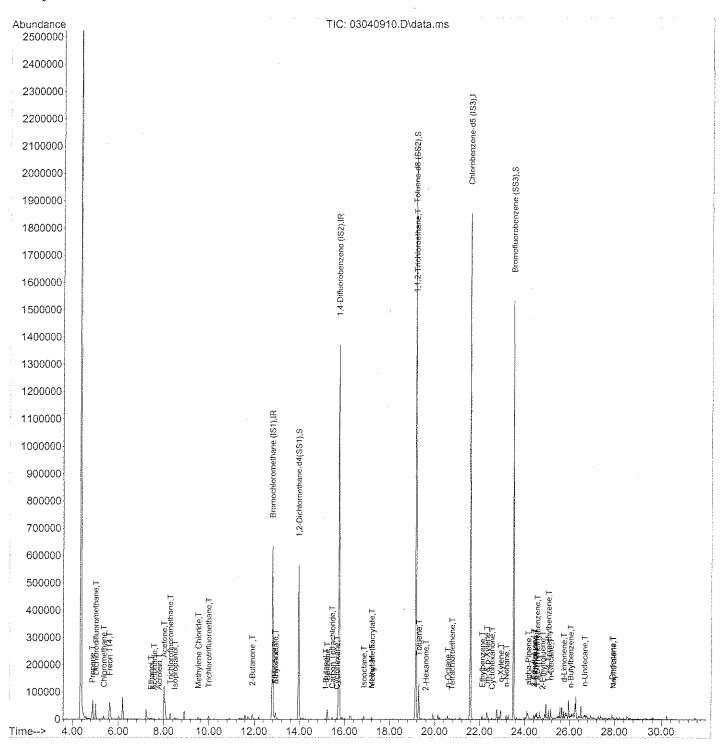
Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)


ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1)	12.80	130	338884	25.000	ng	- (0.05
37) 1,4-Difluorobenzene (IS2)	15.75	114	1640751	25.000	ng	(0.02
56) Chlorobenzene-d5 (IS3)	21.57	82	814845	25.000	ng	(0.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.96	65					
Spiked Amount 25.000		•		ery =			
	19.15	98					0.02
Spiked Amount 25.000				ery =			
73) Bromofluorobenzene (SS3)	23.49	174					
Spiked Amount 25.000			Recove	ery =	98	.48%	
Target Compounds							alue
2) Propene			14571				1
3) Dichlorodifluoromethane			61562	1.524	ng		97
4) Chloromethane	5.35	50	13335	0.375	ng		91
5) Freon 114	5.60		1325	0.062	ng	#	44
6) Vinyl Chloride 7) 1,3-Butadiene	0.00	62	0	N.D			
7) 1,3-Butadiene	6.11	54	530	N.D			
	6.60	94	119	N.D			
	0.00	64	0 13472	N.D	ه الساسس		
10) Ethanol	7.43	45	13472	0.799	ng		96
11) Acetonitrile	7.57	41	4493		ng		96
	7.79		3186		ng		
13) Acetone	8.01		79036		ng		
14) Trichlorofluoromethane	8.29	101	27210	0.817	ng		
15) Isopropanol	8.49	45	12886	0.262	ng		94
	0.00	53	0	N.D			
17) 1,1-Dichloroethene	0.00	96	0	N.D			
18) tert-Butanol	0.00	59	0	N.D		11	FT 0
19) Methylene Chloride	9.53	84	3757	U.166		#	50
20) Allyl Chloride 21) Trichlorotrifluoroethane	9.62	41	514	N.U	•		0.0
21) Trichtorotriffuoroethane	9.99	151	5/56	0.3/4	ng		99
22) Carbon Disulfide	9.95	/6	1990	N.D			
23) trans-1,2-Dichloroethene		61	0	N.D			
24) 1,1-Dichloroethane	0.00			N.D			
25) Methyl tert-Butyl Ether	0.00	73	0	N.D			
26) Vinyl Acetate	0.00	86	0	N.D		11	20
27) 2-Butanone	11.91	72	9434	0.762		#	38
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	0.00	87	1757	N.D			0.0
30) Ethyl Acetate	12.93	61 57	1757	0.244			98
31) n-Hexane	12.93	57	9856	0.240	119		96 气

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards		QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	1155	N.D.		ann. Man. Mah. Mon. Mah.
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	14.14	62	472	N.D.		
38) 1,1,1-Trichloroethane	14.53	97	362	N.D.		
39) Isopropyl Acetate	0.00	61	0			
40) 1-Butanol	15.16	56	3774	0.196 ng	#	55
	15.23	78	49729	0.508 ng	,,	98
42) Carbon Tetrachloride	15.46	117	7515	0.310 ng		99
43) Cyclohexane	15.66	84	1853	0.053 ng	#	68
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.	,,	
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	0	N.D.		
47) Trichloroethene	16.78	130	105	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.86	57	13611	0.129 ng		98
50) Methyl Methacrylate	17.21	100	489	0.061 ng	#	1
51) n-Heptane	17.22	71	2890	0.117 ng	#	
50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene	0.00	75	. 0	N.D.		
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	19.16	97	161351	8.509 ng	#	6
58) Toluene	19.28	91	112784	1.181 ng		98
59) 2-Hexanone	19.59	43	3854	0.091 ng	#	27
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	20.43	43	1970	N.D.		
63) n-Octane	20.56	57	2220	0.101 ng	#	71
64) Tetrachloroethene	20.75	166	1556	0.069 ng		89
65) Chlorobenzene	21.63	112	111	N.D.		
66) Ethylbenzene	22.10	91	13406	0.130 ng		99
67) m- & p-Xylene	22.31	91	30351	0.382 ng		99
68) Bromoform	0.00	173	0 1873	N.D.		
69) Styrene	22.78	104	1873	N.D.		
70) o-Xylene	22.93	91	11798	0.146 ng		100
71) n-Nonane	23.18	43	7074	0.139 ng		92
72) 1,1,2,2-Tetrachloroethane	22.92	83	257	N.D.		
74) Cumene	23.67	105	2190	N.D.		
75) alpha-Pinene	24.15	93	7931	0.172 ng	#	43
76) n-Propylbenzene	24.29	91	4848	N.D.		•
77) 3-Ethyltoluene	24.41	105	10259	0.110 ng		97
78) 4-Ethyltoluene	24.47	105	5944	0.064 ng		91
79) 1,3,5-Trimethylbenzene	24.56	105	3922	0.049 ng		83 35
	C		1 1			

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	r(Min)
80) alpha-Methylstyrene	24.74	118	215	N.D.		00
81) 2-Ethyltoluene	24.79		4215	0.044 ng		92
82) 1,2,4-Trimethylbenzene	25.05		11550	0.137 ng	41	89
83) n-Decane	25.16		17114	0.340 ng	#	66
84) Benzyl Chloride	25.25		123	N.D.		
85) 1,3-Dichlorobenzene	25.26	146	262	N.D.		
86) 1,4-Dichlorobenzene	25.33	146	1353	N.D.		
87) sec-Butylbenzene	25.38	105	490	N.D.		
88) p-Isopropyltoluene	25.57	119	2010	N.D.		
89) 1,2,3-Trimethylbenzene	25.57	105	3269	N.D.		
90) 1,2-Dichlorobenzene	25.33	146	1353	N.D.		
91) d-Limonene	25.75	68	7759	0.223 ng		97
92) 1,2-Dibromo-3-Chloropr	. 0.00	157	0	N.D.		
93) n-Undecane	26.66	57	3584	0.070 ng	#	43
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
95) Naphthalene	27.95	128	8107	0.079 ng		92
96) n-Dodecane	27.90	57	7584	0.140 ng		85
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98) Cyclohexanone	22.53		2049	0.068 ng	#	77
99) tert-Butylbenzene	24.95			N.D.		
100) n-Butylbenzene	26.04	91	3827	0.044 ng	#	47

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Gm 3/5/09

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-709-2

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-004

Test Code:

EPA TO-15

Date Collected: 2/27/09

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Received: 3/2/09 Date Analyzed: 3/4/09

\nalyst:

Elsa Moctezuma

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Fest Notes:

Container ID:

SC00196

Initial Pressure (psig):

-1.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.34

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.67	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.67	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.67	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

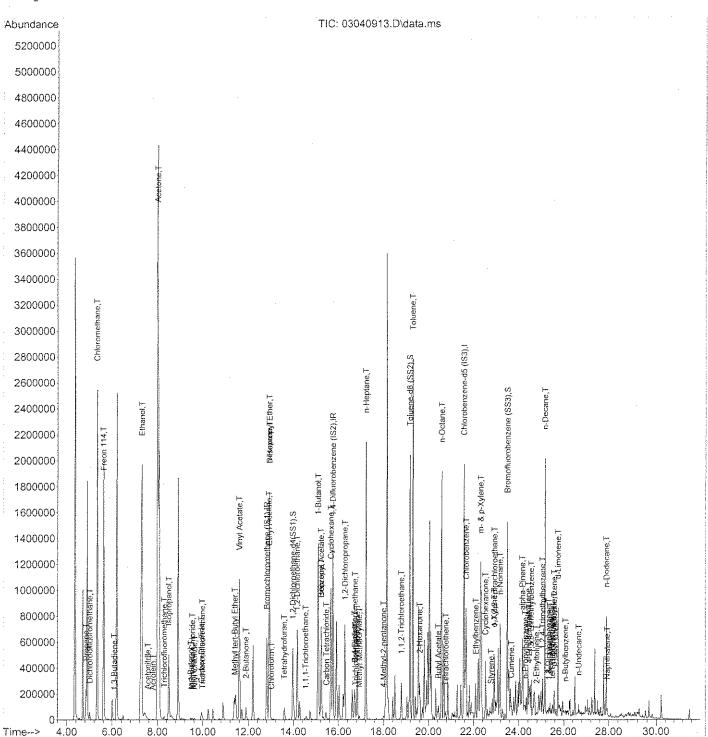
Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)


ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 $(-1.1, 3.5)^{\nu}$

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.82 15.76	130	324268 1568878	25.000 25.000	ng ng	- 0 - 0	.03
System Monitoring Compounds	21.07	02	705270	23.000	119	O	.00
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.97	65		25.344 /ery =			.03
57) Toluene-d8 (SS2) Spiked Amount 25.000	19.15	98	1841517 Recov	24.803 zery =:			.01
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.49	174	515640	24.382 very =	ng	0	.00
Target Compounds			102889 65195 47251 1499 238 2027 0			Qva	lue
2) Propene3) Dichlorodifluoromethane	4.85	42	102889	3.541 1.687	ng ra		96 99
4) Chloromethane	5.33	50	47251	1.388	ng	#	47
5) Freon 114 6) Vinyl Chloride	5.60	135	1499	0.074	ng		70
7) 1,3-Butadiene	6.09	54	2027	0.081	ng	#	73
8) Bromomethane9) Chloroethane	0.00	94 64	0	N.D	·		
10) Ethanol	7.30 7.57 7.80 8.01	45	4676848	289.743	ng		97
II) ACELOHIUFILE	7.57	41	9427 8728	0.43/	110		100
12) Acrolein 13) Acetone	7.80 8.01	56 58	2000123	100 100			97 96
14) Trichlorofluoromethane	8.29	101	29401 977489 939 117 24707 6445 4611	0.923	na na		98
15) Isopropanol	8.50	45	977489	20.751	ng		98
16) Acrylonitrile	8.82	53	939	N.D			
17) 1,1-Dichloroethene	9.34	96	117	N.D	• •		
18) tert-Butanol	9.47	59	24707	0.567	ng	11	88
19) Methylene Chloride 20) Allyl Chloride	9.54	84 41	6445	0.298	ng	# #	49 53
20) Allyl Chloride	9.04	151	7322	0.103	na	#	98
21) Trichlorotrifluoroethane 22) Carbon Disulfide	9.94	76	142119	1.855			99
23) trans-1,2-Dichloroethene	0.00	61	0	N.D.			
24) 1,1-Dichloroethane	11.39	63	607	N.D			
25) Methyl tert-Butyl Ether	11.41	73	10042	0.191	ng		99
26) Vinyl Acetate	11.61	86	33864	10.050		#	1
27) 2-Butanone	11.90	72	45686	3.859		#	26
28) cis-1,2-Dichloroethene	12.58	61	328	N.D.		ti	7
29) Diisopropyl Ether	12.94	87		0.737		#	1
30) Ethyl Acetate	12.92 12.94	61 57	3945 1221000	0.573 31.075		#	1 22 ^
31) n-Hexane	エム・フサ	C 34		J1.075	119		88 3

Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)
ALS Vial : 14 Sample Multiplier: 1

Ouant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte:	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32)	Chloroform	13.03	83	5623	0.181 ng		97
34)	Tetrahydrofuran	13.59	72	21133	1.693 ng	#	92
35)	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36)	1,2-Dichloroethane	14.17	62	3271 6490	0.141 ng	#	44
38)	1,1,1-Trichloroethane	14.54	97	6490	0 .241 ng		90
39)	Isopropyl Acetate	15.24	61.	5448	0.453 Ng	#	1
40)	1-Butanol	15.10	56	1265563		#	54
41)	Benzene	15.24	78		10.196 ng		98
42)	Carbon Tetrachloride	15.47	117	9129	0.393 ng		94
	Cyclohexane	15.67	84	579633	17.386 ng	#	64
	tert-Amyl Methyl Ether	0.00	73	\cap	N.D.		
45)	1,2-Dichloropropane	16.29	63	841	0.041 ng	#	12
46)	Bromodichloromethane		83	32652	1.337 ng	#	20
47)		16.78	130	1042	U.U44 NG		93
	1,4-Dioxane	16.73	88	4527	0.298 ng		96
	Isooctane	16.85	57	55193	0.547 ng	#	1
	Methyl Methacrylate	16.94	100	5592	0.298 ng 0.547 ng 0.724 ng	#	1
51)	n-Hentane	17.22	71	700424	29.605 ng	#	69
52)	cis-1.3-Dichloropropene	18.15	75	490	N.D.		
53)	4-Methyl-2-pentanone	18.00	58	11074	0.649 ng		82
54)	trans-1.3-Dichloropropene	0.00	75	0	N.D.		
55)	cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane	18.79	97	10536	0 581 na	#	75
58)	Toluene	19.29	91	2719024	29.537 ng		100
	2-Hexanone	19.60	43	164651	4.031 ng	#	36
	Dibromochloromethane	0.00	129	0	N.D.		
	1,2-Dibromoethane	0.00	107		N.D.		
	Butyl Acetate	20.43			0.241 ng	#	1
	n-Octane	20.57	57	420887	19.819 ng	#	65
	Tetrachloroethene	20.76	166	5597	0.258 ng		94
	Chlorobenzene	21.67		106668	1.856 ng	#	43
	Ethylbenzene	22.10		240953	0.258 ng 1.856 ng 2.432 ng		98
	m- & p-Xylene	22.31	91	1161583	15.178 ng		99
	Bromoform	0 00	777	^	NT T		
	Styrene	22.78	104	18857	0.331 ng 3.936 ng	#	79
	o-Xylene	22.92	91	306508	3.936 ng		100
	n-Nonane	23.18	43	311509	6.340 ng		93
72)	1,1,2,2-Tetrachloroethane	22.93	83	3020	0.097 ng	#	1
	Cumene	23.67	105	27792	0.281 ng	14	98
	alpha-Pinene	24.16	93	246455	5.546 ng		95
	n-Propylbenzene	24.29	91	35790	0.290 ng	#	55
	3-Ethyltoluene	24.41	105	86531	0.959 ng	**	99
	4-Ethyltoluene	24.47	105	36420	0.406 ng		97
	1,3,5-Trimethylbenzene	24.55	105	56773	0.743 ng		
121	I, J, J II I I I I I I I I I I I I I I I	2	. (/ /	v • · • · • · · · · · · · · · · · · · ·		974(
			Y.	1 1			

Em 3/5/09

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)
ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Ouant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	24.74	118	1462	N.D.	
81)	2-Ethyltoluene	24.79	105	25967	0.282 ng	96
82)	1,2,4-Trimethylbenzene	25.05	105	95722	1.181 ng	91
83)		25.16	57	730870	15.066 ng	76
84)	<u> </u>		91	118	N.D.	
	1,3-Dichlorobenzene	25.33		1,773	0.041 ng	87
	1,4-Dichlorobenzene	25.33	146	1773	0.040 ng	88
87)	sec-Butylbenzene	25.39	105	6060	0.057 ng	89
88)		25.57	119	17609	0.174 ng	87
89)	1,2,3-Trimethylbenzene	25.57	105	21626	0.267 ng	95
90)		25.33	146	1773	0.043 ng	88
	d-Limonene	25.74	68	230608	6.892 ng	99
92)	1,2-Dibromo-3-Chloropr	0.00		0	N.D.	
	n-Undecane	26.66	57	30934	0.627 ng	80
	1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
	Naphthalene	27.94	128	43889	0.441 ng	97
	n-Dodecane	27.89	57	280239	5.359 ng	74
	Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
	Cyclohexanone	22.53	55	47470	1.637 ng	# 33
	tert-Butylbenzene	25.49		5563	0.072 ng	96
100)	n-Butylbenzene	26.08	91	13909	0.166 ng	# 47

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Em 3/5/09

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-709-2

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-005

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 2/27/09 Date Received: 3/2/09

Date Analyzed: 3/4/09

Analyst:

Elsa Moctezuma

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

Fest Notes: Container ID:

AC00989

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.31

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
75-00-3	Chloroethane	ND	0.66	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

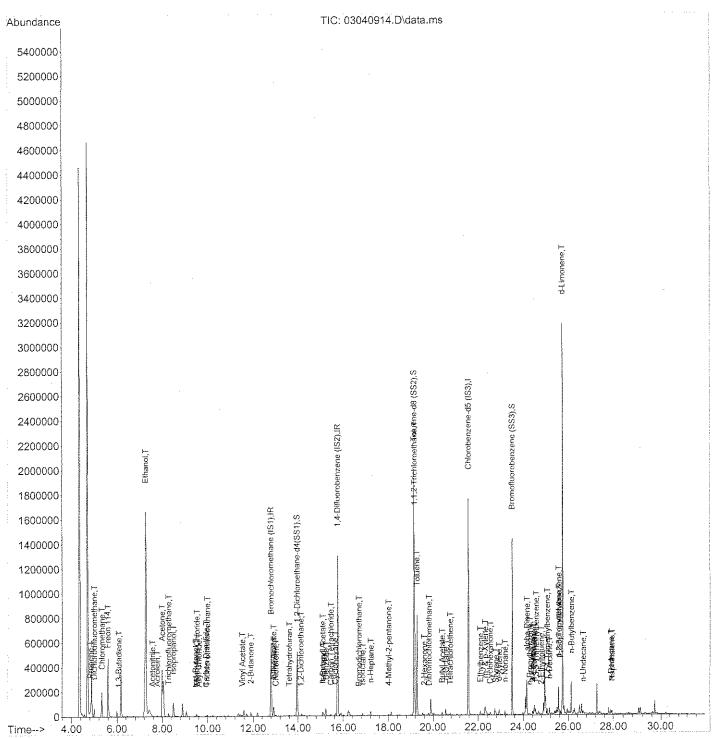
Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)


ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (Min)
1) Bromochloromethane (IS1)	12.80	130	313952	25.000	ng	- C	.05
37) 1,4-Difluorobenzene (IS2)							
56) Chlorobenzene-d5 (IS3)	21.57	82	755013	25.000	ng	C	00.
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.96	65	517025	25.377	na	- 0	0.04
Spiked Amount 25.000			Recov	erv =	101.	.52%	
57) Toluene-d8 (SS2)	19.15	98	1785907	25.018	ng	- C	0.01
Spiked Amount 25.000			Recov	ery =	100.	. 08%	
73) Bromofluorobenzene (SS3)	23.49	174					.00
Spiked Amount 25.000			Recov	ery =	98.	.24%	
Target Compounds						Qva	lue
2) Propene	4.84	42	29899	1.063	ng		95
 Dichlorodifluoromethane 	5.00	85	71437 18841 1619	1.909	ng		98
4) Chloromethane	5.33	50	18841	0.572	ng	1.5	88
5) Freon 114	5.59	135	1619	0.082	ng	#	56
6) Vinyi Chioride	5.79	62	132	N.D	,	11	C O
7) 1,3-Butadiene	0.08	54 94	10/2	0.U44	119	##	60
9) Chloroethane	6 93	54 61	107	N D	·		
10) Ethanol	7 28	45	3662979	234 388	na		100
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	7.56	41	6563	0.170	na		97
12) Acrolein	7.78	56	13897	1.293	nq		99
13) Acetone	7.99	58	253527	13.883	ng		96
14) Trichlorofluoromethane15) Isopropanol16) Acrylonitrile	8.28	101	30977	1.004	ng		98
15) Isopropanol	8.49	45	191078	4.190	ng		99
16) Acrylonitrile	8.82	53	333	N.D	•		
17) 1,1-Dichloroethene 18) tert-Butanol	9.32	96	341	N.D	السسسا،		
18) tert-Butanol	9.47	59	8301	0.197	ng	#	
19) Methylene Chloride	9.53	84 41	4/94	0.229	ng na	TT #	51 53
20) Allyl Chloride	3.01	151	1537 6151	0.037	ng	##	93
21) Trichlorotrifluoroethane22) Carbon Disulfide	9.90	76	7597	0.432	na		84
23) trans-1,2-Dichloroethene	0.00	61	0	N.D	**9		0 4
24) 1,1-Dichloroethane	0.00	63	. 0	N.D			
25) Methyl tert-Butyl Ether	0.00	73	Ō	N.D			
26) Vinyl Acetate	11.52	86	2903	0.890		#	1
27) 2-Butanone	11.90	72	15208	1.327		#	35
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	13.01	87	395	N.D			
30) Ethyl Acetate	12.92	61	7031	1.055	_		75
31) n-Hexane	12.93	57	33162	0.872	ng		90 👍

Quantitation Report (Nøt keviewed)

Data Path : J:\MS09\Data\2009_03\04\

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

: P0900735-005 (1000ml) Sample

: Haley SV-InA-709-2 (-0.8, 3.5)

: 15 ALS Vial Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev((Min)
32) Chloroform	13.01	83	9398			97
34) Tetrahydrofuran	13.62	72	754		#	1
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	14.13	62	2382	0.106 ng	#	52
38) 1,1,1-Trichloroethane	14.54	97				
39) Isopropyl Acetate 40) 1-Butanol	15.09	61	1129 34342 73856 11884 11264	0.097 ng	# .	1
40) 1-Butanol	15.10	56	34342	1.917 ng	#	62
41) Benzene	15.23	78	73856	0.813 ng		97
42) Carbon Tetrachloride	15.46	117	11884	0.527 ng		97
43) Cyclohexane	15.66	84	11264	0.348 ng	#	66
44) tert-Amyl Methyl Ether	0.00	72		IN. J.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	16.70	83	2840	0.120 ng		89
47) Trichloroethene	16.77	130	521	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.86	57	19888	0.203 ng		86
50) Methyl Methacrylate	17.03	100	235	M D		
	17.22	71	10818	0.471 ng	#	67
51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	0.00	75	0	N.D.		
53) 4-Methvl-2-pentanone	18.01	58	3337	0.201 ng		96
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	19.16	97	149872 805191	8.512 ng	#	6
58) Toluene	19.28	91	805191	9.098 ng		99
59) 2-Hexanone	19.60	43	8162 771	0.208 ng	#	68
60) Dibromochloromethane	19.82	129	771	0.045 ng		86
61) 1,2-Dibromoethane	0.00	107	[1]	IXI F F		
62) Butyl Acetate	20.40	43	28936 11422 5532	0.615 ng		93
63) n-Octane	20.56	57	11422	0.559 ng	#	66
64) Tetrachloroethene	20.76		5532	0.265 ng		99
65) Chlorobenzene	21 63	112	1864	M D		
66) Ethylbenzene	22.10	91	34555	0.363 ng		97
67) m- & p-Xylene	22.31	91	34555 68084	0.925 ng		99
68) Bromoform	0.00	1.73				
69) Styrene	22.78		13961 25107	0.255 ng		99
70) o-Xylene	22.92	91	25107	0.335 ng		98
71) n-Nonane	23,18		16975	0.359 ng		96
72) 1,1,2,2-Tetrachloroethane	22.92	83	110	N.D.		
74) Cumene	23.67	105	3556	N.D.		
75) alpha-Pinene	24.15	93	136812	3.202 ng		98
76) n-Propylbenzene	24.28	91	9956	0.084 ng		85
77) 3-Ethyltoluene	24.41	105	15636	0.180 ng		100
78) 4-Ethyltoluene	24.47	105	8682	0.101 ng		91
79) 1,3,5-Trimethylbenzene	24.56	105	6100	0.083 ng		9345
	(//			ente é

Em 3/5/09

Page: 2

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	r(Min)
80)	alpha-Methylstyrene	24.75	118	518	N.D.		
81)		24.79		6078			98
	1,2,4-Trimethylbenzene	25.05	105	19660	0.252 ng		90
83)	n-Decane	25.16		24550	0.526 ng		78
84)	mt.	25.35		1603	N.D.		
	1,3-Dichlorobenzene	25.33		1580	N.D.		
	1,4-Dichlorobenzene	25.33		1580	N.D.		
	sec-Butylbenzene	25.39		546			
	p-Isopropyltoluene	25.57		126624			93
	1,2,3-Trimethylbenzene	25.57	105	9562	0.123 ng	#	1
	1,2-Dichlorobenzene	25.33	146	1580	N.D.		
91)	d-Limonene	25.75	68	878278	27.299 ng		99
	1,2-Dibromo-3-Chloropr	0.00			N.D.		
	n-Undecane	26.66	57	11083	0.234 ng	#	72
	1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
	Naphthalene	27.94	128	29926	0.313 ng		99
	n-Dodecane	27.90	57	12840	0.255 ng	#	56
	Hexachloro-1,3-butadiene	0.00		0	N.D.		
	Cyclohexanone	22.52		9080	****	#	79
	tert-Butylbenzene	25.05		2652	N.D.		
100)	n-Butylbenzene	26.13	91	49050	0.610 ng	#	51

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Em 3/5/09

Standards Data

20.17

12.8

2.210 0.913

0.841

1.944

2.001 1.308

.084

. 932

.208

.628

2.252

2.635 1.146

1.180

Diisopropyl Ether

cis-1,2-Dichloroe

2-Butanone

27) 28) 29)

1.064

0.953

(CASS TO-15/GC-MS) (RTE Integrator) J:\MS09\Methods\R9021709.M EPA TO-15 per SOP VOA-TO15 Method Title

Wed Feb 18 07:31:09 2009 Last Update

Calibration Initial Response via

=02170917.D 5.0 =02170916.D 11 0. =02170915.D =02170920.D 0.5 =02170914.D =02170919.D 0.2 50 Calibration Files =02170913.D =02170918.D 0.1 25

10.85 9.32 13.77 7.83 9.62 8.87 9.88 6.90 7.50 18.19 6.43 14.83 17.06 20.50 14.26 20.99 14.48 18.56 10.56 11.09 10.62 21.12 %RSD .625 559 983 2.979 1.571 2.757 1.940 1.356 1.255 3.066 0.856 2.614 .240 1.244 1.454 2.456 3.632 3.360 1.667 2.149 1.134 5.906 2.295 4.051 0.260 Avg .147 .260 .756 .503 .131 .796 .844 .116 .714 .050 .127 1.025 2.216 5.235 2.090 2.490 3.982 0.285 1.401 100 1.438 2.371 2.910 1.369 1.800 2.282 1.320 1.139 1.062 2.565 1.222 1.214 2.915 0.864 2.178 2.108 1.337 3.308 2.260 5.333 2.156 4.152 0.313 50 3.050 1.185 2.000 1.454 1.262 1.226 0.898 2.268 1.392 3.664 2.694 2.573 2.547 1.392 3.644 2.197 1.497 2.352 1.098 5.545 2.249 1.921 2.672 4.203 0.323 IJ abla.378 1.172 2.056 2.349 1.738 1.268 2.858 2.115 1.985 1.283 2.079 2.587 1.348 1.174 0.827 1.421 2.843 3.291 1.391 1.006 2.466 3.781 0.237 5.094 2.041 \circ .410 .350 .293 ..625 .092 .524 .454 966. .508 .356 1.144 2.302 719 2.789 778 878 660. 1.631 3.268 1.612 2.216 0.207 5.824 1.0 3.0 4 .578 494 .917 .427 .039 .146 .472 .823 .555 .231 .721 .307 1.869 .960 I.903 3.814 1.402 .601 1.841 1.876 6.746 IJ 0 4 4 1.639 3.029 2.477 3.103 2.723 1.805 1.268 0.815 2.528 3.803 2.943 2.891 1.281 1.297 1.467 1.697 1.722 1.852 1.137 6.038 .791 1.808 2.193 0 3.005 3.766 1.921 3.617 2.271 1.348 1.128 1.149 2.889 0.762 1.777 3.960 1.424 2.055 3.045 2.267 1.834 1.199 2.488 0.1 Dichlorodifluorom 1,1-Dichloroethen Trichlorofluorome trans-1,2-Dichlor 1,1-Dichloroethan Methylene Chlorid Methyl tert-Butyl Bromochloromethan Trichlorotrifluor Carbon Disulfide Vinyl Chloride Allyl Chloride 1,3-Butadiene Acrylonitrile Chloromethane Vinyl Acetate Bromomethane Chloroethane tert-Butanol Acetonitril Isopropanol Freon 114 Compound Acrolein Propene Acetone Ethanol 106400000 11) 20) 21) 10) 12) 13) 14) 15) 16) 17) 18) 22) 23) 24) 25) 26)

levels exceeded format 2009 calibration 18 07:44:45 Wed Feb ### Number of R9021709.M of Range Out

: J:\MS09\Methods\R9021709.M (RTE Integrator) : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) : Wed Feb 18 07:31.09 2000 Last Update Title

Wed Feb 18 07:31:09 2009 Initial Calibration Response via

=02170917.D 5.0 =02170916.D 1.0 =02170915.D =02170920.D 0.5 100 =02170914.D =02170919.D 0.2 50 Calibration Files 0.1 =02170913.D =02170918.D 25

###

Eun 2/18/69

Ø

Page

(RTE Integrator) (CASS TO-15/GC-MS) J:\MS09\Methods\R9021709.M EPA TO-15 per SOP VOA-TO15

Method

Wed Feb 18 07:31:09 2009 Initial Calibration Last Update Title

Response via

=02170917.D 5.0 =02170916.D 1.0 =02170915.D 0.5 =02170914.D 0.2 Calibration Files =02170913.D 0.1

25	=02170918.D 50	=021	70919	.D 100	=02	170920	Д	II		12	**
	Compound	0.1	0.2		1.0	5.0	. [50	100	Avg	\square
EI	ยู	.538	3.0	٠	0,	.51		.63	.5	.93	
EI	Hexanone			 i	3		.54		.43		2.1
	Dibromochlorometh	. 52	.46	.65	59	. 52	.60	. 58	. 58	.56	0.3
EI	ibromoe	0.528	_	. 74	.67	50	.67	.65	.64	.63	0.7
E	tyl		06.	.48	47	.53	.82	.81	.87	. 55	1.5
E4	H	.79	. 68	. 78	.68	. 58	.64	.62	.6I	.67	1.6
E	Tetrachloroethene	0.819	. 68	.82	.70	.59	.64	.63	.63	.69	2.7
<u>[-</u> -	Chlorobenzene	. 22	.87	≓	.82	.57	. 72	.66	.64	.83	2.7
E	Ethylbenzene	.40	.08	.62	.20	.81		.02	96.	5	8.1
H	m- & p-Xylene	53	.35	.76	.46	.16	.43	.38	.38	43	7.0
[(romc	.34	.36	.51	.46	.42	.50	.50	.50	.45	4.8
H	Styrene	1.746	9.	ω	.82	.67	.89	.85	. 85	8	7.0
E	o-Xylene	58	.38	.80	. 52	. 21	.46	.42	. 42	.47	6.8
E1	n-Nonane	.81	.60	. 82	.56	.37	.50	.44	38	.56	₩.3
[-	1,1,2,2-Tetrachlo	.84	.83	.08	. 99	. 95	.08	.06	.08	.99	9.0
W.	Bromofluorobenzen	.67	.67	.67	99.	.67	.67	.67	.67	.67	0.5
E(mene	.29	5	.56	.21	U	.17	0.0	.06	.15	φ.
<u></u>	alpha-Pinene	.42	.31	.54	.40	2.9	.46	.43	.44	.41	9.
H	1	.08	.66	.45	.02	. 58	.97	.86	.77	.92	0.
<u></u>	日日	ω	.50	. 16	.90	. 62	.97	87	.94	.87	4.
[Ethy	Q	.66	.24	.87	.60	.86	.87	.79	.85	9
Ħ	8	.45	.21	.74	.45	.21	.47	. 44	.46	.43	ω,
E	lpha-	.17	.17	.36	25	. 18	.40	40	.43	.30	
\vdash	hylt	00.	. 73	.27	.99	.66	.96	.92	.91	. 93	φ.
H	, 2	.4	.32	7.9	57	.30	.67	. 74	.84	. 58	ς.
H	Decan	Ŋ	47	9	.56	.41	. 56	.52	.49	.54	9.9
Ęi	Benzyl Chloride	1.170	1.185	QJ	.68	.82	. 23	.27	.30	.79	υ.
<u>-</u>	1,3-Dichlorobenze	. 4	с. С.	Γ	.36	.2I	.34	.34	.38	.37	\sim
<u>[</u> -	chl	4	.35	, 	.42	.25	.38	.38	.39	.41	4.
[3.444	.17	ω	.43	.07	.44	.37	.33	.37	φ.

###

 \sim

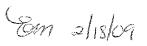
Page

(CASS TO-15/GC-MS) (RTE Integrator) J:\MSO9\Methods\R9021709.M EPA TO-15 per SOP VOA-TO15 Wed Feb 18 07:31:09 2009 Initial Calibration Method

.. Title

Last Update

Response via


	%RSD	, 	ς.	.2		rU.	4.	0.	. 7	ص	4.	Q.	8.11	
=02170917.D	AVG	.22	.57	31	9	.37	.57	. 23	\circ	. 66	47	.92	2.477	9
5.0] 													
1.0 =02170916.D =	50 100	3.418 3.50	2.730 2.83	1.341 1.43	6 1.180 1.166	0.437 0.44	1.612 1.58	0.271 0.28	3.485 3.59	1.796 1.79	0.488 0.52	1.003 0.98	2.581 2.	3 2.754 2.727
9.9.	25	3.34	2.66	1.30	1.17	0.43	1.62	0.25	3.28	1.74	0.46	1.02	2.53	7 2.78
170915	5.0	2.89	2.29	1.14	0.9	0.37	1.48	0.23	2.95	1.61	0.43	0.81	2.19	2.47
5 = 02	1 0 1 1 •	3.17	.52	. 28	1.019	39	.58	. 24	.02	99.	47	0.867	.43	1 2.72
D 0.	0.5	516		9	1.097	∞	\square	\circ	9	9	$\langle \mathcal{C} \rangle$	4		2.94
=02170914. =02170919.	0.2	2.8	2.275	1.203	0.956	0.293	1.420	0.202	2.720	1.451	0.439		2.210	12.316
11 11	0.1	3.030	2.497	1.362	0.982	0.266	1.507	0.111		1.590	0.450		2.425	2.581
s 0.2] 	luen	ylbe	enze		-ch1		robe			3-bu	<i>a</i>)	Izene	ine
Calibration Files 0.1 =02170913.D 25 =02170918.D	Compound	-Isopropylt	1,2,3-Trimethylbe	1,2-Dichlorobenze	d-Limonene	1,2-Dibromo-3-Chl	n-Undecane	1,2,4-Trichlorobe	Naphthalene	n-Dodecane	Hexachloro-1,3-bu	Cyclohexanone	tert-Butylbenzene	n-Butylbenzene
Cal: 0.1 25					E									E4
		88)	(68		91)				95)				(66	100)

H00623850H591

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: \$20-02090905 20ng/L Std. ID: \$20-02090905 200ng/L Std. ID: \$20-02090903

200ng/L Std. ID:	S20-02090903				Working STD			ICAL C	oncentr	ations (Primary	Source)	
Dilution Factors:		5	50	250	Conc.(ng/L):	gi 4 4	4 4 %		20 🖈	20	200	200	200
	Source Std.	Primary V	Vorking S	tandards	Injection (L):	0.025	0.05	0.025	0.050	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L	ICAL Points:	0.1ng	0.2ng	0.5ng	1ng	5ng	25ng	50ng	100ng
Propene	1.03	206	20.6	4.12	MINIMI	0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Dichlorodifluoromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Chloromethane	1.01	202	20.2	4.04		0.101	0.202	0.505	1.01	5.05	25.3	50.5	101
Freon-114	1.06	. 212	21,2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Vinyl Chloride	1.02	204	20:4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
1,3-Butadiene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Bromomethane	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Chloroethane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Ethanol	5.29	1058	106	21.2		0.529	1.058	2.65	5.29	26.5	132	265	529
Acetonitrile	1.05	210	21.0	4.20		- 0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Acrolein	1.08	216	21.6	4,32		0.108	0.216	0.540	1,08	5.40	27.0	54.0	108
Acetone	5.31	1062	106	21.2		0.531	1.062	2.66	5.31	26.6	133	266	531
Trichlorofluoromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropanol	1.94	388	38.8	7.76		0.194	0.388	0.970	1.94	9.70	48.5	97.0	194
Acrylonitrile	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,1-Dichloroethene	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
teri-Butanol	2.00	400	40.0	8.00	HHHHH	0.200	0.400	1.00	2.00	10.0	50.0	100	200
Methylene Chloride	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Allyl Chloride	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Trichlorotrifiuoroethane	1.10	220	22.0	4.40	HHHHH	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Carbon Disulfide	1.04	. 208	20.8	4,16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
trans-1,2-Dichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,1-Dichloroethane	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Methyl tert-Butyl Ether	1.06	212.	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Vinyi Acetate	5.05	1010	101	20.2		0.505	1.010	2.53	5.05	25.3	126	253	505
2-Butanone cis-1,2-Dichloroethene	1.08 1.09	216 218	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Diisopropyl Ether	1.06	210	21.8 21.2	4.36 4.24		0.109 0.106	0.218	0.545	1.09 1.06	5.45 5.30	27.3	54.5	109
Ethyl Acetate	2.08	416	41.6	8.32		0.208	0.416	1.04	2.08	10.4	26.5 52.0	53.0 104	106 208
n-Hexane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Chloroform	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Tetrahydrofuran	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Ethyl tert-Butyl Ether	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloroethane	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,1,1-Trichloroethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropyl Acetate	2.09	418	41.8	8.36		0.209	0.418	1.05	2.09	10.5	52.3	105	209
1-Butanol	2.16	432	43.2	8.64		0.216	0.432	1.08	2.16	10.8	54.0	108	216
Benzene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Carbon Tetrachloride	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexane	2.12	424	42.4	8.48		0.212	0.424	1.06	2.12	10.6	53.0	106	212
tert-Amyl Methyl Ether	1.03	206	20.6	. 4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloropropane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Bromodichloromethane	1,05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52,5	105
Trichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,4-Dioxane	1.04	208	20.8	4,16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Isooctane	1.04	208	20.8	4.16	MILLING	0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Methyl Methacrylate	2.13	426	42.6	8.52		0.213	0.426	1.07	2.13	10.7	53.3	107	213
n-Heptane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
cis-1,3-Dichloropropene	1.00	200	20.0	4:00		0.100	0.200	0.500	1.00	5.00	25.0	50.0	100
4-Methyl-2-pentanone	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
toons 4.2 Disk!	4.40	1 200	20.0	4.40		0.440	0.000	D					
trans-1,3-Dichloropropene	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,1,2-Trichloroethane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Toluene	1.08 1.10	216	21.6 22.0	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
2-Hexanone		220		4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Dibromochloromethane	1.15 1.06	230	23.0	4.60		0.115	0.230	0.575	1.15	5.75	28.8	57.5	115
1,2-Dibromoethane			21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
n-Butyl Acetate	1,10 1.05	220 210	22.0 21.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
n-Octane Tetrachloroethene	1.03	206	20.6	4.20		0.105	0.210	0.525	1.05	5,25	26.3	52.5	105
	1.11.3	. ZUO 1	ZU.0 1	4.12	11111111111	0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
													400
Chlorobenzene Ethylbenzene	1.06 1.05	212 210	21.2 21.0	4.24 4.20		0.106 0.105	0.212 0.210	0.530 0.525	1.06 1.05	5.30 5.25	26.5 26.3	53.0 52.5	106 105

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: S20-02090906 20ng/L Std. ID:

Dilution Factors:		5	50	250	Working STD Conc.(ng/L):	4	4	ICAL C	20	20	200	200	200
	Source Std.		Vorking S		Injection (L):	0.025	0.050	0.025	0.05	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20na/L	4ng/L	ICAL Points:	0.1ng	0.2ng	0.5ng	1ng	5ng	25ng	50ng	100ng
Bromoform	1.07	214	21.4	4.28	THININ TO	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Styrene	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
o-Xylene	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Nonane	1.05	210	21.0	4.20		0.105	0.210	0.525	1,05	5.25	26.3	52.5	105
1,1,2,2-Tetrachioroethane	1.08	216	21.6	4.32		0.108	0.216	0.540	1,08	5,40	27.0	54.0	108
Cumene	1.02	204	20.4	4.08	VIIIIIII	0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
alpha-Pinene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
n-Propylbenzene	1.02	204	20.4	4.08	MIIIIII	0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
3-Ethyltoluene	1.10	220	22.0	4.40	MIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
4-Ethyltoluene	1.10	220	22.0	4.40	VIIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3,5-Trimethylbenzene	1.08	216	21,6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
alpha-Methylstyrene	1.06	212	21.2	4.24	VIIIIIIIA	0.106	0.212	0.530	1,06	5.30	26.5	53.0	106
2-Ethyltoluene	1.08	216	21.6	4.32	VIIIIIIIA	0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
1,2,4-Trimethylbenzene	1.05	210	21,0	4.20	VIIIIIIA	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Decane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Benzyl Chloride	1.10	220	22.0	4,40	VIIIIIIA	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3-Dichlorobenzene	1.07	214	21.4	4.28	VIIIIIIA	0.107	0.214	0.535	1,07	5.35	26.8	53.5	107
1,4-Dichlorobenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
sec-Butylbenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
o-Isopropyltoluene	1.02	204	20.4	4.08	VIIIIIIA	0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
1,2,3-Trimethylbenzene	1.06	212	21.2	4.24	VIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,2-Dichlorobenzene	1.07	214	21,4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
d-Limonene	1.06	212	21.2	4,24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
chloropropane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Undecane	1.07	214	21.4	4.28	7/////////	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
1,2,4-Trichlorobenzene	1.10	220	22.0	4.40	UIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Naphthalene	1.01	202	20.2	4.04		0.101	0.202	0.505	1.01	5.05	25.3	50.5	101
n-Dodecane	0.94	188	18.8	3.76		0.094	0.188	0.470	0.940	4.70	23.5	47.0	94.0
texachioro-1,3-butadiene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.40	E F.O.	07.7	ee 5	4.0
Methacrylonitrile	1.05	210	21.0	4.20	<i>(11111111)</i>	0.110	0.220	0.550 0.525	1.10 1.05	5.50	27.5	55.0	110
Cyclohexanone	0.99	198	19.8	3.96		0.105	0.210			5.25	26.3	52.5	105
ert-Butylbenzene	1.08	216	21.6	4.32		0.108	0.198	0.495	0.990	4.95	24.8	49.5	99.0
n-Butylbenzene	1.09	218	21.8	4.36	111111111111111111111111111111111111111	0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
	1.00	210	41.0	4.00		0.109	U.Z18	0.545	1.09	5.45	27.3	54.5	109
		1	i		MILLINI								

*Enter Information in the Solid Shaded Areas ONLY.

Method Path : J:\MS09\Methods\

Method File : R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
Last Update : Wed Feb 18 07:31:09 2009
Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
- 1	0.1	0	25	J:\MS09\Data\2009_02\17\02170913.D
2	0.2	0	25	J:\MS09\Data\2009_02\17\02170914.D
3	0.5	1	25	J:\MS09\Data\2009 <u>0</u> 2\17\02170915.D
4	1.0	,1	2.5	J:\MS09\Data\2009_02\17\02170916.D
5	5.0	• 5	25	J:\MS09\Data\2009 <u>0</u> 2\17\02170917.D
6	25	26	- 25	J:\MS09\Data\2009_02\17\02170918.D
7	50	52	25	J:\MS09\Data\2009_02\17\02170919.D
8	100	103	25	J:\MS09\Data\2009_02\17\02170920.D

#	ID	Update Time	Quant Time	Acquisition Time
			was now was over men over over over over over over over over	
1	0.1	Feb 18 07:29 2009	Feb 18 07:14 2009	17 Feb 2009 17:30
2	0.2	Feb 18 07:29 2009	Feb 18 07:18 2009	17 Feb 2009 18:11
3	0.5	Feb 18 07:30 2009	Feb 18 07:20 2009	17 Feb 2009 18:53
.4	1.0	Feb 18 07:30 2009	Feb 18 07:21 2009	17 Feb 2009 19:34
5	5.0	Feb 18 07:30 2009	Feb 18 07:23 2009	17 Feb 2009 20:16
6	25	Feb 18 07:30 2009	Feb 18 07:24 2009	17 Feb 2009 20:57
7	50	Feb 18 07:30 2009	Feb 18 07:28 2009	17 Feb 2009 21:38
8	100	Feb 18 07:31 2009	Feb 18 07:29 2009	17 Feb 2009 22:20

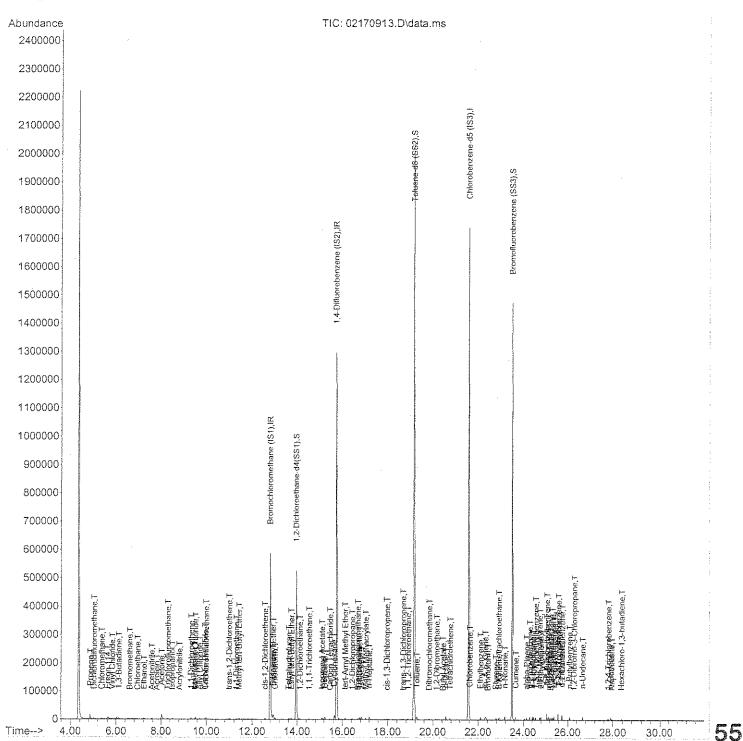
(9021709.M Wed Feb 18 08:04:48 2009

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170913.D

: 17 Feb 2009 17:30 Acq On

Operator : EM

: 0.lng TO-15 ICAL STD Sample

: S20-02030901/S20-02090906 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.80	130	324892	25.000	na	O	. 04
37) 1,4-Difluorobenzene (IS2)	15.75	114	1571162	25.000	na	÷ 0	.03
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.57	82	767994	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.96	65					
Spiked Amount 25.000			Recove	ery =	101	.16%	
57) Toluene-d8 (SS2)	19.15	98	Recove 1822803	24.672	ng	- 0	.01
Spiked Amount 25.000			Recove	ery =	98.	. 68%	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.49	174	517779	24.590	ng	0	.00
Spiked Amount 25.000			Recove	ery =	98.	.36%	
Target Compounds						Qva	lue
2) Propene	4.88	42	4318	0.188	ng	2	98
2) Diablaradifluaramathana	5.04	85	5139	0.153	ng	#	
4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone	5.37	50	4138 2646 4795 3187 1804	0.139	ng		
5) Freon 114	5.62	135	2646	0.140	ng		90
6) Vinyl Chloride	5.83	62	4795	0.154	ng		90
7) 1,3-Butadiene	6.12	54	3187	0.150	ng		93
8) Bromomethane	6.60	94	1804	0.111	ng		99
9) Chloroethane	6.95	64	1524	0.103		#	46
10) Ethanol	6.60 6.95 7.24 7.59 7.81	45	7898	0.543		•	80
11) Acetonitrile	7.59	41	3942	0.109			86
12) Acrolein	7.81	56	1070	0.106		#	67
13) Acetone	6.U3	つひ	12262	0.837		#	81
14) Trich Orot Hioromethane	8.31	101	4100	0 140			98
15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride	8.51	45	9984	0.214			78
16) Acrylonitrile	8.83	53	1906	0.083	nq		97
17) 1,1-Dichloroethene	9.34	96	2938	0.166	22.04	41	62
18) tert-Butanol	9.49	59	7915	0.182	ng	#	75
19) Methylene Chloride	9.53	84	3123	0.168	ng	#	49
18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	9.73	41	2574	0.103	ng		98
21) Trichlorotrifluoroethane	10.00	151	1714	0.125	ng	#	78
22) Carbon Disulfide23) trans-1,2-Dichloroethene	9.95	76	10046	0.152	ng		79
	11.00	61	3647	0.138	ng		85
24) 1,1-Dichloroethane	11.30	63	3460	0.112	ng		87
25) Methyl tert-Butyl Ether	11.44	73	5301	0.107	ng		80
26) Vinyl Acetate	0.00	86	0	N.D			
27) 2-Butanone	11.97	72	217	N.D	•		
28) cis-1,2-Dichloroethene	12.57	61	3733	0.148	ng		78
29) Diisopropyl Ether	12.93	87	1579	0.104	ng	#	45
30) Ethyl Acetate	12.96	61	105	N.D			
31) n-Hexane	12.93	57	4974	0.141	ng		84 5

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	3913	0.138 ng		91
34) Tetrahydrofuran	13.63	72	1178	0.101 ng	#	66
35) Ethyl tert-Butyl Ether	13.74	87	1943	0.096 ng	#	74
36) 1,2-Dichloroethane	14.13	62	2411	0.112 ng	#	53
38) 1,1,1-Trichloroethane	14.54	97	2848	0.115 ng	#	74
39) Isopropyl Acetate	15.11	61	1371	0.123 ng	#	18
40) 1-Butanol	15.19	56	1344	0.075 ng	#	58
41) Benzene	15.23	78	13261	0.155 ng		98
42) Carbon Tetrachloride	15.46	117	2502	0.116 ng		100
43) Cyclohexane	15.66	84	8819	0.293 ng	#	66
44) tert-Amyl Methyl Ether	16.13	73	5381	0.106 ng	#	1
45) 1,2-Dichloropropane	16.45	63	2121	0.118 ng		82
46) Bromodichloromethane	16.70	83	2643	0.119 ng		95
47) Trichloroethene	16.78	130	3167	0.152 ng		93
48) l,4-Dioxane	16.77	88	946	0.071 ng	#	1
49) Isooctane	16.86	57	13634	0.155 ng		94
50) Methyl Methacrylate	17.06		726	0.106 ng	#	5
51) n-Heptane	17.22	71	2952	0.142 ng	#	66
52) cis-1,3-Dichloropropene	17.96	75	2713	0.096 ng		76
53) 4-Methyl-2-pentanone	18.04	58	251	N.D.		
		75	2460	0.098 ng		63
55) 1,1,2-Trichloroethane	18.90	97	1655	0.098 ng		96 .
58) Toluene	19.29	91	11738	0.145 ng		99
59) 2-Hexanone	19.66	43	126	N.D.		
60) Dibromochloromethane	19.83		1850	0.110 ng		96
61) 1,2-Dibromoethane	20.16	107	1719	0.092 ng		95
62) Butyl Acetate	20.44	43	2175	0.052 ng	#	42
63) n-Octane	20.56	57	2562	0.135 ng	#	70
64) Tetrachloroethene	20.76	166	2593	0.130 ng		95
65) Chlorobenzene	21.63	112	7255	0.136 ng		94
66) Ethylbenzene	22.10	91	10985	0.117 ng		94
67) m- & p-Xylene	22.31	91	16190	0.224 ng	#	28
68) Bromoform	22.43	173	1120	0.082 ng	#	27
69) Styrene	22.78	104	5740	0.105 ng		93
70) o-Xylene	22.93	91	8350	0.113 ng		99
71) n-Nonane	23.19	43	5857	0.135 ng		94
72) 1,1,2,2-Tetrachloroethane	22.90	83	2815	0.097 ng		94
74) Cumene	23.67	105	10315	0.113 ng		96
75) alpha-Pinene 76) n-Propylbenzene	24.16	93 91	4807	0.115 ng		88
77) 3-Ethyltoluene	24.29 24.41	105	12808	0.110 ng		94
78) 4-Ethyltoluene	24.41		10120 9796	0.116 ng 0.114 ng		99 98
79) 1,3,5-Trimethylbenzene	24.56	105	8139	0.114 ng 0.109 ng		
, , , , , , , , , , , , , , , , , , ,	24.50	100	U 4. U 1	0.107 119		96 5

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.75 24.80	118 105	3833 9978	0.096 ng 0.113 ng	92 98
81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene	25.06	105	7882	0.113 ng	97
83) n-Decane	25.16	57	5126	0.116 ng	81
84) Benzyl Chloride	25.23	91	3952	0.069 ng	71
85) 1,3-Dichlorobenzene	25.26	146	4778	0.117 ng	98
86) 1,4-Dichlorobenzene	25.33	146	4796	0.113 ng	100
87) sec-Butylbenzene	25.39	105	11214	0.112 ng	96
88) p-Isopropyltoluene	25.57	119	9495	0.099 ng	98
89) 1,2,3-Trimethylbenzene	25.58	105	8132	0.107 ng	100
90) 1,2-Dichlorobenzene	25.75	146	4476	0.115 ng	92
91) d-Limonene	25.75	68	3197	0.101 ng	89
92) 1,2-Dibromo-3-Chloropr	26.28	157	883	0.077 ng	# 82
93) n-Undecane	26.66	57	4952	0.107 ng	82
94) 1,2,4-Trichlorobenzene	27.80	184	374	0.051 ng	# 1
95) Naphthalene	27.96	128	8285	0.084 ng	# 71
96) n-Dodecane	27.91	57	4590	0.088 ng	86
97) Hexachloro-1,3-butadiene	28.37 22.55	225 55	1521 1030	0.104 ng N.D.	85
98) Cyclohexanone	25.06	119	8047	0.109 ng	99
99) tert-Butylbenzene 100) n-Butylbenzene	25.08	91	8641	0.110 ng	# 87
100/ II-Buchtbelle					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

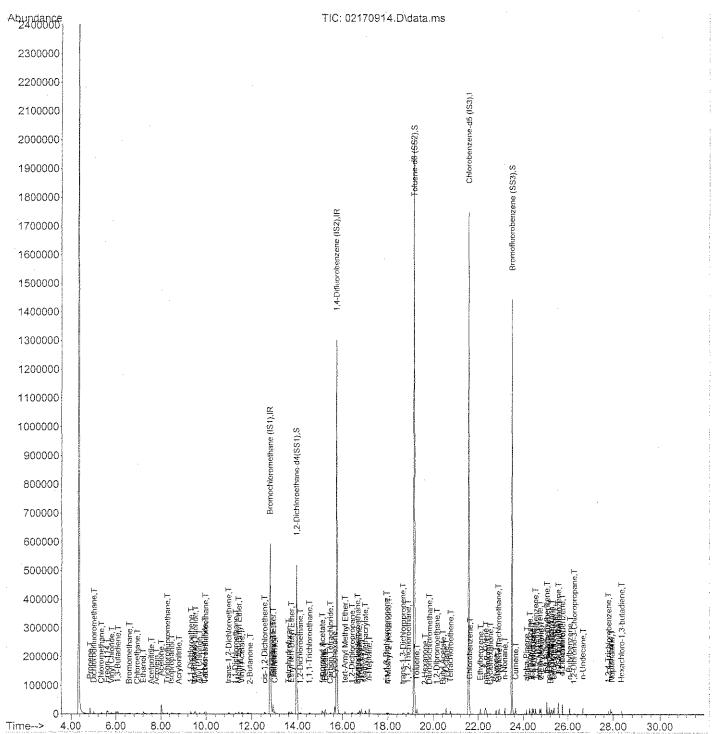
Den 2/18/09

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170914.D

: 17 Feb 2009 18:11 Acq On

Operator : EM

Sample : 0.2ng TO-15 ICAL STD Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.I.	QIon	Response	Conc	Units	Dev(I	Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.80	130	323936	25.000	ng	-0	.04
37) 1,4-Difluorobenzene (IS2)	15.75	114	1562761	25.000	ng	- 0	.03
56) Chlorobenzene-d5 (IS3)	21.57	82	766032	25.000	ng	0	.00
System Monitoring Compounds							
33) 1.2-Dichloroethane-d4(13.96	65	523979	25.360	nq	- 0	.03
Spiked Amount 25.000			Recove	ery =	101	. 4 4 %	
57) Toluene-d8 (SS2) Spiked Amount 25.000	19.15	98	Recove 1821287	24.714	ng	- 0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recove	ery =	98	. 84왕	
73) Bromofluorobenzene (SS3)	23.49	174	513642	24.456	ng	0	.00
Spiked Amount 25.000			Recove	ery =	97	.84%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane						Qva]	lue
2) Propene	4.87	42	6235	0.272	ng		97
3) Dichlorodifluoromethane	5.03	85	8444	0.252	ng		92
4) Chloromethane	5.36	50	7127	0.241	ng		95
5) Freon 114	5.61	135	4503	0.240	ng		92
6) Vinyi Unioride	5.81	62	7642	0.245	ng		98
/) I,3-Butadiene	6.10	54	5052	0.238	ng		95
8) Bromomethane	6.59	94	3419	0.212	ng	-	T00
10) Ethanol	0.95	64 4E	341/ 17700	U.231	ng		8 /
11\ Acetonitrile	7.43	4: D 1 1	1//02	1.22/	ng		00
12\ Acrolein	7.50	41	2243	0.229	ng		05
13) Acetone	7.01	50 50	2202	1 202	ng	11	95 95
14) Trichlorofluoromethane	8 29	101	6880	0.236	na	17	97
15) Isopropanol	8 4 9	45	19119	0.230	na 119		86
16) Acrylonitrile	8.81	53	4531	0.197	na na		93
17) 1,1-Dichloroethene	9.33	96	4910	0.278	na	#	56
18) tert-Butanol	9.48	59	15255	0.352	ng	#	82
19) Methylene Chloride	9.53	84	5088	0.275	ng	#	48
20) Allyl Chloride	9.73	41	5059	0.202	ng		84
21) Trichlorotrifluoroethane	9.99	151	3242	0.237	ng		92
22) Carbon Disulfide	9.95	76	16273	0.247	ng		95
23) trans-1,2-Dichloroethene	11.00	61	5854	0.222	ng		75
24) 1,1-Dichloroethane	11.30	63	6869	0.222	ng		94
25) Metnyi tert-Butyi Etner	11.43	13	10415	0.211	ng		74
26) Vinyl Acetate	11.56	86	853	0.292		#	47
27) 2-Butanone	11.93	72	1475	0.141		#	91
28) cis-1,2-Dichloroethene	12.57	61	6362	0.253			78
29) Diisopropyl Ether	12.93	87	3242	0.213	-	#	43
30) Ethyl Acetate	12.93	61	1586	0.261			77
31) n-Hexane	12.93	57	8151	0.232	ng		98 60

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	6816	0.241 ng		98
34) Tetrahydrofuran	13.62	72	2392	0.206 ng	#	68
35) Ethyl tert-Butyl Ether	13.73	87	4009	0.199 ng	#	65
36) 1,2-Dichloroethane	14.13	62	4558	0.213 ng		93
38) 1,1,1-Trichloroethane	14.53	97	5039	0.204 ng		89
39) Isopropyl Acetate	15.10	61	4109	0.370 ng	#	92
40) 1-Butanol	15.16	56	4504	0.253 ng	#	59
41) Benzene	15.23	78	21032	0.247 ng		99
42) Carbon Tetrachloride	15.46	117	4522	0.210 ng		100
43) Cyclohexane	15.65	84	14292	0.477 ng	#	67
44) tert-Amyl Methyl Ether	16.13	73	10421	0.207 ng	#	1
45) 1,2-Dichloropropane	16.44	63	3997	.0.223 ng		8.8
46) Bromodichloromethane	16.70	83	4725	0.215 ng		99
47) Trichloroethene	16.78	130	5373	0.259 ng		96
48) 1,4-Dioxane	16.75	88	2145	0.162 ng	#	57
49) Isooctane	16.86	57	21421	0.244 ng		98
50) Methyl Methacrylate	17.04	100	2185	0.321 ng	#	66
51) n-Heptane	17.21	71	5007	0.242 ng	#	65
52) cis-1,3-Dichloropropene	17.96	75	5290	0.188 ng		94
53) 4-Methyl-2-pentanone	18.03	58	2227	0.146 ng	#	63
54) trans-1,3-Dichloropropene	18.67	75	4841	0.193 ng		100
55) 1,1,2-Trichloroethane	18.90	97	3315	0.198 ng		94
58) Toluene	19.28	91	20225	0.250 ng		99
59) 2-Hexanone	19.63	43	4587	0.127 ng		82
60) Dibromochloromethane	19.83	129	3255	0.194 ng		91
61) 1,2-Dibromoethane	20.16	107	3722	0.200 ng		98
62) Butyl Acetate	20.43	43	6115	0.148 ng		87
63) n-Octane	20.56	57	4383	0.232 ng	#	70
64) Tetrachloroethene	20.76	166	4304	0.216 ng		100
65) Chlorobenzene	21.63	112	12190	0.229 ng		99
66) Ethylbenzene	22.11	91	19818	0.212 ng		97
67) m- & p-Xylene	22.33	91	30052	0.417 ng		98
68) Bromoform	22.43		2399	0.177 ng		94
69) Styrene	22.79	104	10738	0.196 ng		97
70) o-Xylene	22.92	91	15370	0.208 ng		99
71) n-Nonane	23.18		10331	0.238 ng		94
	22.89		5495			95
74) Cumene	23.67		18490			100
75) alpha-Pinene	24.16		8832			93
- _	24.29		22876			96
	24.41			0.194 ng		95
	24.47			0.210 ng		98
79) 1,3,5-Trimethylbenzene	24.56	105	14658	0.197 ng		99 6

Data File : 02170914.D

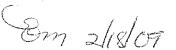
Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009


Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.74	118	7644	0.192 ng	95
81) 2-Ethyltoluene	24.80	105	18092	0.205 ng	99
82) 1,2,4-Trimethylbenzene	25.06	105	14928	0.195 ng	100
83) n-Decane	25.16	57	9776	0.221 ng	82
84) Benzyl Chloride		91	7986	0.140 ng	92
85) 1,3-Dichlorobenzene	25.25	146	8682	0.213 ng	99
86) 1,4-Dichlorobenzene	25.33	146	8776	0.208 ng	98
87) sec-Butylbenzene	25.39	105	20591	0.206 ng	98
88) p-Isopropyltoluene.	25.57	119	18026	0.189 ng	95
89) 1,2,3-Trimethylbenzene	25.58	105	14780	0.195 ng	96
90) 1,2-Dichlorobenzene	25.75	146	7887	0.203 ng	99
91) d-Limonene	25.75	68	6211	0.198 ng	97
92) 1,2-Dibromo-3-Chloropr	26.28	157	1940	0.170 ng	89
93) n-Undecane	26.66	57	9313	0.201 ng	79
94) 1,2,4-Trichlorobenzene	27.80	184	1359	0.185 ng	# 85
95) Naphthalene	27.96	128	16835	0.170 ng	91
96) n-Dodecane	27.90	57	8356	0.160 ng	76
97) Hexachloro-1,3-butadiene	28.36	225	2957	0.202 ng	90
98) Cyclohexanone	22.54	55	2599	0.096 ng	# 79
99) tert-Butylbenzene	25.06		14627	0.199 ng	96
100) n-Butylbenzene	26.08	91	15470	0.198 ng	93

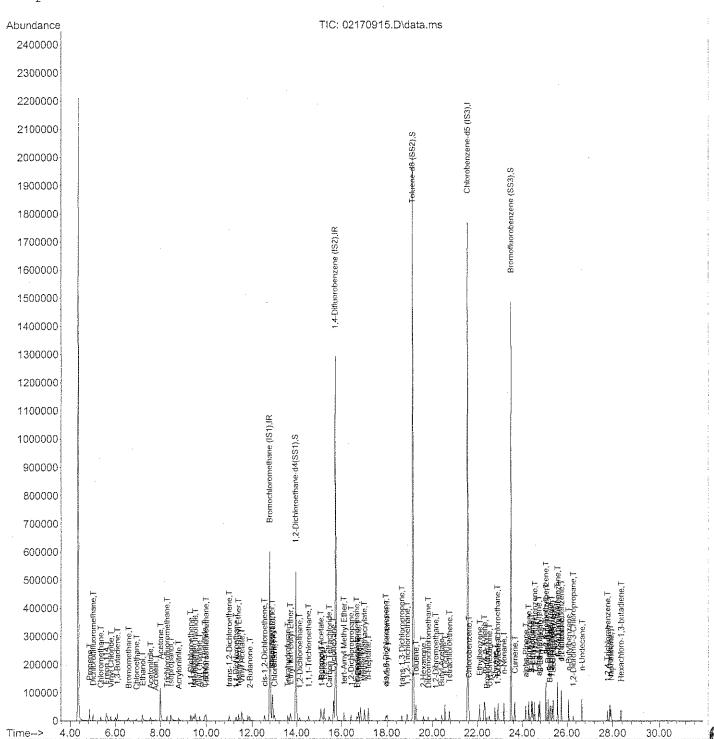
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170915.D

Acq On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170915.D

Acg On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc 1	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.80	130	324440	25.000	ng	-0.04
37) 1,4-Difluorobenzene (IS2)	15.75	114	1570822	25.000	ng	-0.02
56) Chlorobenzene-d5 (IS3)	21.57	82	769662	25.000	ng	0.00
System Monitoring Compounds	-					
33) 1,2-Dichloroethane-d4(13.95	65	533077	25.761	ng	-0.04
Spiked Amount 25.000			Recove	ery =	103.	048
	19.15	98				
Spiked Amount 25.000			Recove	ery =	99.	04%
73) Bromofluorobenzene (SS3)	23.49	174				
Spiked Amount 25.000			Recove	ery =	98.	32%
Target Compounds						Qvalue
2) Propene	4.86	42	15010			
3) Dichlorodifluoromethane	5.02	85	24352	0.726	ng	98
4) Chloromethane 5) Freon 114	5.35	50	20620	0.696	ng	99
5) Freon 114	5.60	135	12855	0.683	ng	98
6) Vinyl Chloride	5.81	62 = :	21252	0.682		`94
7) 1,3-Butadiene	6.09	54	15635	0.736		95
5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol	6.59	94	10544	0.651		96
10) Ethanol	6.94	64	10080	0.681		97
10) Acetonitrile	7.21	45	25354	3.48/		93
II/ ACCCUITETIE	7.50	41	25354 6726	0.702		
13) Acetone	7.73 8.00	50 50	65691			
14) Trichlorofluoromethane			19871		119	88 97
			60718	1.303		
15) Isopropanol 16) Acrylonitrile.	8.80	53	15418	0.671		
17) 1,1-Dichloroethene	9.33	96	13139	0.743		# 58
			49502			87
19) Methylene Chloride	9.53	84	12905	0.696		# 51
20) Allyl Chloride	9.72	41	17006	0.679	na	79
21) Trichlorotrifluoroethane	10.00	151	10007	0.730	nq	98
22) Carbon Disulfide	9.94	76	45527	0.690	nq	98
23) trans-1,2-Dichloroethene	11.00	61	17382	0.659	ng	78
24) 1,1-Dichloroethane	11.30	63	21099	0.682		96
25) Methyl tert-Butyl Ether	11.41	73	31331	0.634	ng	85
26) Vinyl Acetate	11.55		6377		ng	# 25
27) 2-Butanone	11.91		7034			# 54
	12.57		18585			74
29) Diisopropyl Ether	12.91		9822			# 50
30) Ethyl Acetate	12.92		7157			74
31) n-Hexane	12.93	57	23603	0.672	ng	91 6

Data File : 02170915.D

Acq On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
32) Chloroform	13.01	 83	20270	0.715 ng	96	
34) Tetrahydrofuran	13.60		7714		# 58	
35) Ethyl tert-Butyl Ether					# 66	
36) 1,2-Dichloroethane	14.13		14410		99	
38) 1,1,1-Trichloroethane					92	
39) Isopropyl Acetate	15.09		14038		# 85	
40) 1-Butanol	15.13			1.042 ng	98	
41) Benzene .	15.23				98	
42) Carbon Tetrachloride	15.46				95	
43) Cyclohexane	15.66				# 67	
44) tert-Amyl Methyl Ether	16.11	73	31834		# 1	
45) 1,2-Dichloropropane	16.44	63	12555		94	
46) Bromodichloromethane					95	
47) Trichloroethene	16.77			0.688 ng	93	
48) 1,4-Dioxane			8410	0.633 ng	# 72	
49) Isooctane	16.86				97	
50) Methyl Methacrylate	17.03				# 73	
51) n-Heptane	17.21				# 71	
52) cis-1,3-Dichloropropene		75			99	
53) 4-Methyl-2-pentanone	18.00	58	9069		8.8	3
54) trans-1,3-Dichloropropene		75	16294			€
55) 1,1,2-Trichloroethane)
58) Toluene	19.28				99	9
59) 2-Hexanone	19.60	43			99)
	19.83	129	11538	0.685 ng	100)
61) 1,2-Dibromoethane	20.15	107	12136		99	€
62) Butyl Acetate	20.41	43	25067		97	7
63) n-Octane	20.56	57	12750	0.672 ng	# 64	<u> </u>
64) Tetrachloroethene	20.76	166	13108	0.656 ng	99)
65) Chlorobenzene	21.63	112	34429	0.644 ng	9.9	9
66) Ethylbenzene	22.10	91		0.623 ng	97	7
67) m- & p-Xylene	22.32				100)
68) Bromoform	22.43	173	8393	0.615 ng	94	1.
69) Styrene	22.79	104	33547	0.610 ng	9 7	7
70) o-Xylene	22.92	91	45256	0.609 ng	100)
71) n-Nonane	23.18	43	29432	0.675 ng	93	3
72) 1,1,2,2-Tetrachloroethane	22.89	83	18045	0.623 ng	97	7
74) Cumene	23.67	105	55931	0.610 ng	98	3
75) alpha-Pinene	24.16	93	26124	0.624 ng	94	
76) n-Propylbenzene	24.29	91	70012	0.601 ng	9".	
77) 3-Ethyltoluene	24.41	105	53659	0.614 ng	94	
78) 4-Ethyltoluene	24.47	105		0.637 ng	99	
79) 1,3,5-Trimethylbenzene	24.56	105	45577	0.611 ng	98	65

Data File : 02170915.D

Acq On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

Misc : S20~02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr	24.74 24.79 25.05 25.16	118 105 105 57 91 146 146 105 119 105 146 68	Response 22293 54487 45111 29370 28677 25658 26350 60847 55208 45674 24138 17906 6434 28838	Conc Units 0.558 ng 0.614 ng 0.586 ng 0.661 ng 0.500 ng 0.626 ng 0.620 ng 0.627 ng 0.607 ng 0.619 ng 0.619 ng 0.567 ng 0.562 ng 0.562 ng	Dev(Min) 93 97 96 80 97 100 98 99 98 96 99 97 76
- · · · · · · · · · · · · · · · · · · ·		57 184 128 57 225 55		0.620 ng 0.606 ng 0.485 ng 0.459 ng 0.610 ng 0.474 ng 0.614 ng 0.628 ng	76 # 89 94 75 94 # 90 97 93

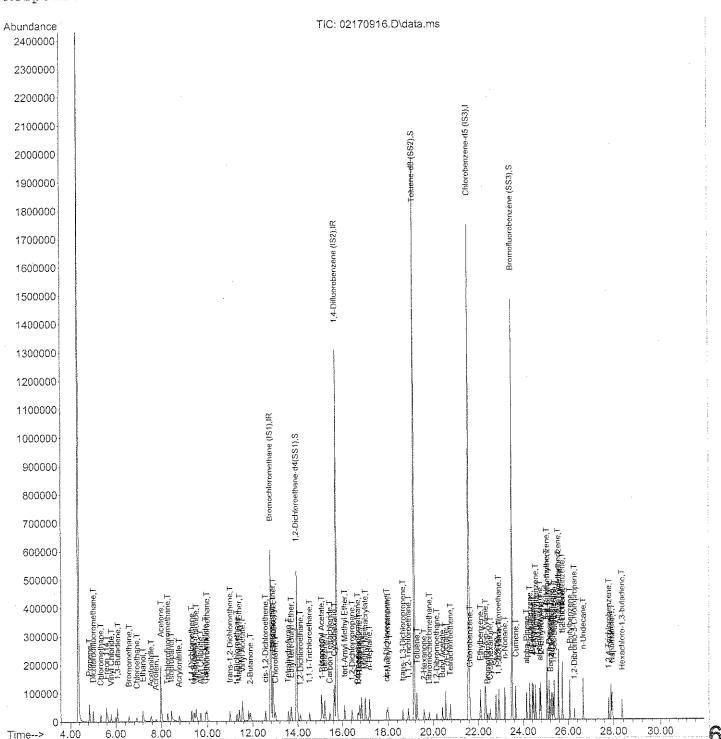
(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Ouant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.		Response		Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.80 15.75 21.57				ng ng ng	-0.04 -0.02 0.00
System Monitoring Compounds			•			
33) 1,2-Dichloroethane-d4(
Spiked Amount 25.000 57) Toluene-d8 (SS2)	19.15	98	1818735		ng	-0.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			RECOVE	ery =	98.	.48%
Spiked Amount 25.000	23.49	1.74	Recove	ery =	97.	44%
Target Compounds						Qvalue
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone	4.85	42	24722	1.077	ng	97 98
3) Dichlorodifluoromethane	5.01	85 E0	41109	1.229	ng	98
5) Freon 114	5.54 5.60	135	22394	1 193	na	98 100
6) Vinvl Chloride	5.80	62	36699	1.180	na	95
7) 1.3-Butadiene	6.09	54	27918	1.316	nq	95 96 94 94
8) Bromomethane	6.58	94	18814	1.165	ng	94
9) Chloroethane	6.93	64	18188	1.231	ng	94
10) Ethanol	7.20	45	88569	6.112	113	20
11) Acetonitrile 12) Acrolein	7.56	41	44440	1.233	ng	95 97
12) Acrolein	7.78	56	12280	1.224	ng	97
13) Acetone	8.00	58	111761	7.658	nq	87
14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene	8.29	101	34101	1.168	ng	98
15) Isopropanol	8.45	45	109455	2.353	ng	93 99
16) ACTYLORITETIE	0./9	9.6 9.6	2/901	1.216 1.230	119 ng	# 60
18) tert_Butanol	9.33	50 50	89462	2 066	na	4 50
19) Methylene Chloride	9.52	84	22128	1 196	na na	93 # 49
18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride	9.72	41	30993	1.239	ng	78
21) Trichlorotrifluoroethane	9.98	151	16300	1.191	ng	78 92
21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.93	76	78440	1.191	nq	100
23) trans-1,2-Dichloroethene	10.99	61	30712	1.167	ng	100 78
24) 1,1-Dichloroethane	11.30	63	37672	1.221		98
25) Methyl tert-Butyl Ether	11.40	73	56275	1.140		85
26) Vinyl Acetate	11.55	86	13526	4.634		# 19
27) 2-Butanone	11.90		13637	1.301	·	# 43
28) cis-1,2-Dichloroethene	12.57	61	31162	1.241		73
29) Diisopropyl Ether	12.91	87	18382	1.210		# 46
30) Ethyl Acetate	12.90	61 57	14039	2.313		# 69
31) n-Hexane	12.93	57	39942	1.139	113	88 6

Sin 2/18/09

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD

: S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Det	/(Min)
32) Chloroform	13.01	83	34821	1.231 ng		98
34) Tetrahydrofuran	13.59		14078	1.211 ng	#	53
35) Ethyl tert-Butyl Ether			22627	1.125 ng	#	
36) 1.2-Dichloroethane	14.13	62	22627 25983	1.217 ng	11	98
38) 1,1,1-Trichloroethane	14.53	97	28966	1.178 ng		94
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate	15.08	61	27146	2.452 ng	#	81
40) 1-Butanol	15.11	56	35610	2.013 na	#	1
41) Benzene	7 - 00			1.090 na	,,	98
41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene	15.46	117	24978	1.165 ng		100
43) Cyclohexane	15.66	84	68935	2.310 ng	#	66
44) tert-Amyl Methyl Ether	16.11	73	56476	1.128 ng	#	1
45) 1,2-Dichloropropane	16.44	63	22173	1.244 ng	''	96
46) Bromodichloromethane	16.70	83	26155	1.193 ng		97
47) Trichloroethene	16.77	130		1 179 na		94
48) 1,4-Dioxane	16.77 16.73 16.86	88	16284 103596	1.238 na	#	70
49) Isooctane	16.86	57	103596	1.187 ng	• •	98
50) Methyl Methacrylate	17.03	100	16442	2.428 ng	#	80
51) n-Heptane	17.21	71	24480	1.189 ng	#	
48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene	17.95	75	31839	1 139 na	.,	100
53) 4-Methyl-2-pentanone	18.00	58	18677	1.232 na		83
54) trans-1,3-Dichloropropene	18.66	75	30085	1.206 na		97
55) 1,1,2-Trichloroethane	18.90	97.	19743	1 186 na		97
58) Toluene	19.28	91	97778	1.206 ng		99
33/ 2-nexamone	19.59	4.3	45090	1.246 ng		99
60) Dibromochloromethane	7 () () ()	3 (3 (3	0000			99
61) 1,2-Dibromoethane	20.15	107	22090	1.183 ng		98
62) Butyl Acetate	20.40	4.3	49770	1.201 ng		96
63) n-Octane	20.56	57	22049	1.164 ng	#	66
64) Tetrachloroethene	20.76	166	22167	1.112 ng		96
65) Chlorobenzene	21.63	112	59338	1.113 ng		99
66) Ethylbenzene	22.10	91	103341	1.102 ng		97
67) m- & p-Xylene	22.32	91	157673	2.183 ng		100
68) Bromoform	22.42	173	20896 22090 49770 22049 22167 59338 103341 157673 15361 59872 81508	1.128 ng		96
69) Styrene	22.78	104	59872	1.091 ng		99
70) o-Xylene		91		1.099 ng		98
71) n-Nonane	23.18	43	50619	1.163 ng		91
72) 1,1,2,2-Tetrachloroethane	22.89	83	33011	1.141 ng		99
74) Cumene	23.67		100654	1.101 ng		99
75) alpha-Pinene	24.16	93	47352	1.133 ng		95
76) n-Propylbenzene	24.29	91	125987	1.083 ng		98
77) 3-Ethyltoluene	24.41	105	98125	1.126 ng		100
	24.47		97228	1.131 ng		98
79) 1,3,5-Trimethylbenzene	24.55	105	81323	1.092 ng		98 69

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009_02\17\

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

: 1.0ng TO-15 ICAL STD Sample : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.75	118	40973	1.028 ng	93
81) 2-Ethyltoluene	24.79	105	99361	1.121 ng	98
82) 1,2,4-Trimethylbenzene	25.05	105	81077	1.055 ng	95
83) n-Decane	25.16	57	51906	1.170 ng	77
84) Benzyl Chloride	25.22	91	57051	0.997 ng	100
85) 1,3-Dichlorobenzene	25.25	146	44787	1.095 ng	100
86) 1,4-Dichlorobenzene	25.33	146	46443	1.096 ng	99
87) sec-Butylbenzene	25.39	105	111818	1.117 ng	98
88) p-Isopropyltoluene	25.57	119	99522	1.041 ng	98
89) 1,2,3-Trimethylbenzene	25.57	105	82287	1.085 ng	96
90) 1,2-Dichlorobenzene	25.75	146	42059	1.081 ng	98
91) d-Limonene	25.75	68	33177	1.053 ng	98
92) 1,2-Dibromo-3-Chloropr	26.28	157	13018	1.141 ng	86
93) n-Undecane	26.66	57	52201	1.124 ng	76
94) 1,2,4-Trichlorobenzene	27.80	184	8256	1.122 ng	# 92
95) Naphthalene	27.94	128	93919	0.947 ng	98
96) n-Dodecane	27.90	57	48161	0.921 ng	76
97) Hexachloro-1,3-butadiene	28.36	225	16174	1.103 ng	97
98) Cyclohexanone	22.52	55	26368	0.971 ng	89
99) tert-Butylbenzene	25.05	119	80781	1.094 ng	99
100) n-Butylbenzene	26.08	91	91148	1.162 ng	92

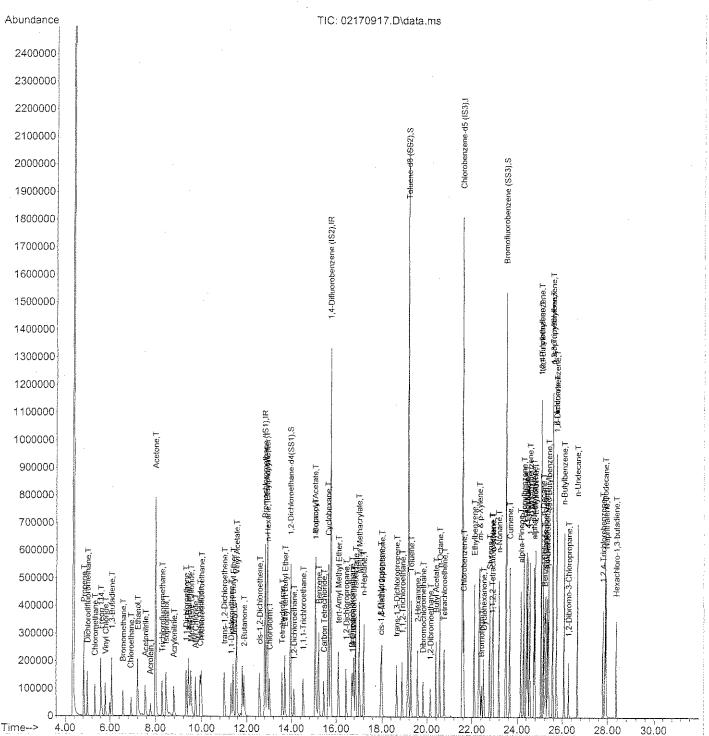
(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170917.D

: 17 Feb 2009 20:16 Acq On

Operator : EM

Sample : 5.0ng TO-15 ICAL STD Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (M	lin)
1) Bromochloromethane (IS1)	12.81	130	329926	25.000	ng	-0.	03
37) 1,4-Difluorobenzene (IS2)	15.75	114	1586573	25.000	ng	-0.	02
56) Chlorobenzene-d5 (IS3)	21.57	82	785194	25.000	ng	0.	00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.97	65	537457	25.540	ng	-0.	03
Spiked Amount 25.000				ery =			
57) Toluene-d8 (SS2)	19.15	98					01
Spiked Amount 25.000			Recove	ery =	97.	. 88%	
73) Bromofluorobenzene (SS3)	23.49	174					00
Spiked Amount 25.000			Recove	ery =	98.	. 36%	
Target Compounds						Qval	.ue
2) Propene	4.84		139766				98
 Dichlorodifluoromethane 	5.01	85	179243				98
4) Chlorodilluoromethane 5) Freon 114	5.33	50	156540		ng		97
			94256		ng		99
6) Vinyl Chloride	5.80	62	160059	5.049	ng		94
7) 1,3-Butadiene	6.08	54	123882	5.732	ng		96
8) Bromomethane 9) Chloroethane 10) Ethanol	6.58	94	86176	5.236	ng		97
9) Chloroethane	6.92	64	80430	5.344	ng		95
10) Ethanol	7.22	45	410678	27.814			99
11) Acetonitrile	7.56	41	198001	5.392	ng		97
12) Acrolein	7.77	56	58962	5.768	ng		0.0
13) Acetone	7.99		498890				
14) Trichlorofluoromethane	8.29	101	146567				
15) Isopropanol 16) Acrylonitrile	8.46	45	363899				
16) Acrylonitrile	8.79	53	134916				0.0
17) 1,1-Dichloroethene	9.32	96	93114	5.179	ng	#	
18) tert-Butanol	9.42	59.	434296	9.843	ng		95
19) Methylene Chloride	9.53	84	97284	5.158	ng	#	48
20) Allyl Chloride	9.72	41	148148	5.814	ng		
21) Trichlorotrifluoroethane	9.98	121	73042	5.237	ng		96
22) Carbon Disulfide	9.93		349581	5.208	ng		
23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane			138748				76
	11.30	63	174140	5.537			97
25) Methyl tert-Butyl Ether 26) Vinyl Acetate		73	264494				84
	11.54		79129				9
28) cis-1,2-Dichloroethene	11.89		67884				32
			138953				74
30) Ethyl Acetate	12.90		82357				52
31) n-Hexane	12.90	61 57	72805	11.772			71
271 H-HEVAILE	12.93	5 /	176787	4.949	пg		88 7

Data File : 02170917.D

: 17 Feb 2009 20:16 Acq On

Operator : EM

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Un	its D	ev(Min)
32) Chloroform	13.02	83	152411	5.289 n	a .	98
34) Tetrahydrofuran	13.58		66880	5.646 n		
35) Ethyl tert-Butyl Ether	13.71		104189	5.085 n		
36) 1,2-Dichloroethane	14.13		117981	5.421 n		98
38) 1,1,1-Trichloroethane	14.54		132747	5.295 n		93
39) Isopropyl Acetate	15.07	61	130075	11.523 n		82
40) 1-Butanol	15.08	56	190986	10.588 n		92
41) Benzene	15.23	78	400939	4.631 n	g	99
42) Carbon Tetrachloride	15.46	117	112495	5.145 n	g	98
43) Cyclohexane	15.66	84	306793.	10.080 n	g #	65
44) tert-Amyl Methyl Ether	16.11	73	258046	5.056 n	g #	1
45) 1,2-Dichloropropane	16.44		101567	5.586 n	g	93
46) Bromodichloromethane	16.70	83	118878	5.316 n	g	96
47) Trichloroethene	16.78	130	99104	4.705 n		96
48) 1,4-Dioxane	16.72	88	77267	5.761 n		70
49) Isooctane	16.86		453629	5.097 n		97
50) Methyl Methacrylate	17.02		80541	11.664 n		
51) n-Heptane	17.21		107905	5.138 n		
52) cis-1,3-Dichloropropene	17.96	75	151450	5.314 n		99
53) 4-Methyl-2-pentanone	17.99	58	94689	6.127 n		79
54) trans-1,3-Dichloropropene	18.65	75		5.893 n		97
55) 1,1,2-Trichloroethane	18.90	97	90197	5.315 n		99
58) Toluene	19.28		425688	5.133 n		100
59) 2-Hexanone	19.58		226019	6.107 n		92
60) Dibromochloromethane	19.82		95611	5.561 n		98
61) 1,2-Dibromoethane	20.15		99504	5.214 n		98
62) Butyl Acetate	20.39		265218	6.257 n		96
63) n-Octane	20.56		96396	4.977 n		
64) Tetrachloroethene	20.76		95382	4.678 n		97
65) Chlorobenzene	21.63		262042	4.806 n		100
66) Ethylbenzene	22.10		464179	4.842 n		98
67) m- & p-Xylene	22.33		708530	9.595 n		99
68) Bromoform	22.42		71984	5.170 n		96
69) Styrene	22.78		281262	5.015 n		99
70) o-Xylene	22.92	91	364798	4.812 n		100
71) n-Nonane	23.18		225981	5.077 n		91
72) 1,1,2,2-Tetrachloroethane			162097	5.482 n		97
74) Cumene	23.67					98
75) alpha-Pinene	24.16		224235	5.246 n		95
	24.29					97
77) 3-Ethyltoluene	24.41		452705			100
78) 4-Ethyltoluene	24.47		449584			97 07 ***
79) 1,3,5-Trimethylbenzene	24.50	105	374759	4.924 n	y	97 7

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M ...

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

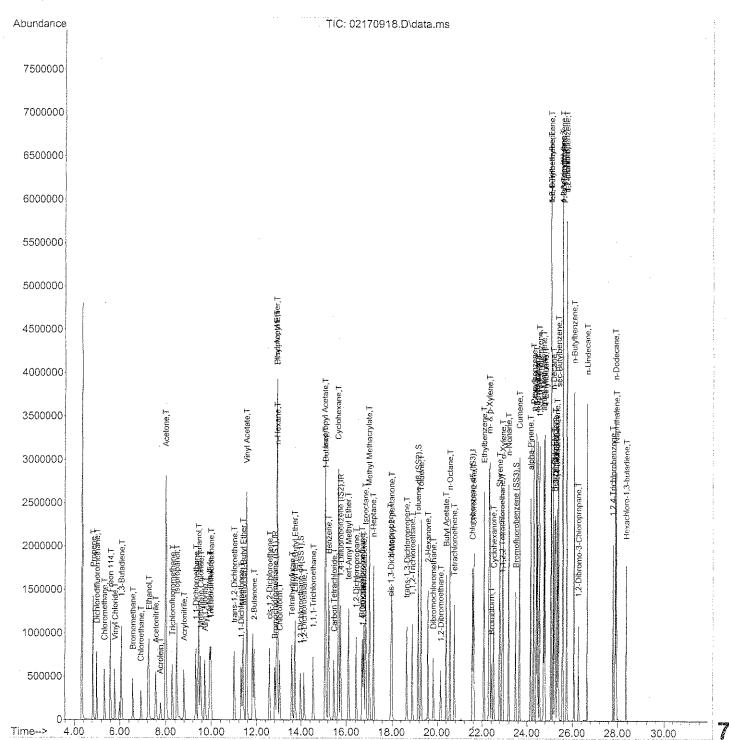
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene	24.74 24.79 25.05 25.16 25.22 25.25	118 105 105 57 91 146	196944 451377 380518 239323 315631 204001	4.831 ng 4.982 ng 4.844 ng 5.277 ng 5.394 ng 4.876 ng	97 97 95 79 99
86) 1,4-Dichlorobenzene	25.33	146	208046	4.801 ng	99
87) sec-Butylbenzene	25.39	105	512551	5.009 ng	99
88) p-Isopropyltoluene	25.57	119	464075	4.747 ng	98
89) 1,2,3-Trimethylbenzene	25.57	105	382499	4.933 ng	96
90) 1,2-Dichlorobenzene	25.75	146	192830	4.849 ng	99
91) d-Limonene	25.75	68	157519	4.890 ng	98
92) 1,2-Dibromo-3-Chloropr	26.28	157	63992	5.483 ng	88
93) n-Undecane	26.66	57	248977	5.243 ng	76
94) 1,2,4-Trichlorobenzene 95) Naphthalene	27.80 27.94 27.90		40940 469167 238295	5.442 ng 4.628 ng 4.456 ng	# 91 99 74
97) Hexachloro-1,3-butadiene	28.37	225	75512	5.034 ng	97
98) Cyclohexanone	22.52	55	126043	4.539 ng	# 89
99) tert-Butylbenzene 100) n-Butylbenzene	25.06 26.08	119 91	372667 423938	4.937 ng 5.287 ng	98 94

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170918.D

Acq On 17 Feb 2009 20:57

Operator EM


Sample 25ng TO-15 ICAL STD

S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Ouant Time: Feb 18 07:24:49 2009

Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170918.D

Acg On : 17 Feb 2009 20:57

Operator : EM

Sample : 25ng TO-15 ICAL STD

: S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.		Response		Units	Dev(I	Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.82	130	322237	25.000	ng	- 0	.02
37) 1,4-Difluorobenzene (IS2)	15.77	114	1549940	25.000	ng	- 0	.01
56) Chlorobenzene-d5 (IS3)	21.57	82	767143	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.98	65	523733	25.482	ng	-0	.02
Spiked Amount 25.000		0.0	Recov	rery =	101	.92%	
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000	19.16	98	1799947	24.389	ng	T C 0.	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	00 50	771	Recov	rery =	9/	.566 ^	0.0
(3) Bromolluoropenzene (553)	23.50	1/4	214104	24.443 ery =	119	768	.00
Spiked Amount 25.000				-			
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane						Qva.	lue
2) Propene	4.83	42	665112	29.123	ng		98
3) Dichlorodifluoromethane	5.00	85	913164	27.426	ng		99
4) Chloromethane	5.33	50	838916	28.514	ng		99
5) Freon 114	5.59	135	496652	26.581	ng		98
6) Vinyl Chloride	5.79	62	837076	27.033	ng .		94
// I,3-Butadiene	6.08	54	668625	31.6/4	ng		97
8) Bromomethane	6.57	94 C1	402020	20.790	119		96
9) Chioroethane	7 27	4 E	7/053/0	1// 603	119		100
11) Acetonitrile	7.27	41	1033778	28 824	na		98
12) Acrolein	7 78	56	312470	31 299	na na		100
13) Acetone	8.00	.58	2031281	139.855	na	#	83
14) Trichlorofluoromethane	8.29	101	768954	26.474	na	*1	97
15) Isopropanol	8.49	45	2277833	49.204	nq		97
16) Acrylonitrile	8.81	53	730753	32.006	ng		99
17) 1,1-Dichloroethene	9.32	96	493575	28.109	ng	#	59
18) tert-Butanol	9.45	59	2361481	54.796	ng		96
19) Methylene Chloride	9.54	84	511347	27.758	ng	#	48
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1 1-Dichloroethane	9.73	41	818421	32.883	ng		75
21) Trichlorotrifluoroethane	9.98	151	389157	28.566	ng		96
22) Carbon Disulfide	9.93	76	1858220	28.346	ng		99
23) trans-1,2-Dichloroethene	11.00	61	747760	28.560	ng		77
		0.0	, , , , , ,	00.010	3		- ·
25) Methyl tert-Butyl Ether	11.40	73 86				44	85
26) Vinyl Acetate 27) 2-Butanone	11,56 11.89		524643			# #	6 29
28) cis-1,2-Dichloroethene	12.58	6·1	370452 - 733259			17	72
29) Diisopropyl Ether	12.91	87	733259 450087	29.762	na 119	#	50
30) Ethyl Acetate	12.91	61	414949	68.693		#	72
31) n-Hexane	12.93	57	956894			14	88 76
, 					ر		(U

Data File : 02170918.D

Acq On : 17 Feb 2009 20:57

Operator : EM

Sample : 25ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Inte:	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32)	Chloroform	13.03	 83	809239	28.752 ng		98
		13.58		353881	30.587 ng	#	52
	Ethyl tert-Butyl Ether			565442	28.254 ng	#	62
	1,2-Dichloroethane	14.14	62	627757	29.533 ng		97
	1,1,1-Trichloroethane	14.54	97	713209	29.121 ng		93
	Isopropyl Acetate	15.07	61	725626	65.801 ng	#	82
	1-Butanol	15.10		1244696	70.635 ng		84
	Benzene	15.24		2107365	24.918 ng		97
	Carbon Tetrachloride			610290	28.572 ng		98
		15.66			55.054 ng	#	65
	tert-Amyl Methyl Ether			1395427	27.986 ng	#	1
	1,2-Dichloropropane	16.45		544240	30.642 ng		96
	Bromodichloromethane	16.70		645553	29.552 ng		96
	Trichloroethene			524686	25.497 ng		96
		16.73			33.212 ng	#	70
	- ,	16.87		2401455	27.618 ng		97
	Methyl Methacrylate				68.162 ng	#	81
	n-Heptane	17.22	71	574850	28.018 ng	#	
	cis-1,3-Dichloropropene		75	830360	29.826 ng		98
			58	535530	35.473 ng		77
54)	trans-1,3-Dichloropropene	18.66	75	836086	33.656 ng		96
55)	1,1,2-Trichloroethane	18.90	97	490471	29.585 ng		99
	Toluene	19.29		2279816	28.139 ng		100
		19.59		1302408	36.019 ng		91
	Dibromochloromethane			531295	31.630 ng		96
	1,2-Dibromoethane				29.450 ng		98
		20.40			37.204 ng		96
		20.57		516410	27.292 ng	#	65
	Tetrachloroethene			510414	25.620 ng	,	95
	Chlorobenzene			1406123	26.397 ng		100
		22.10			26.825 ng		98
		22.33		3878840	53.766 ng		99
	Bromoform	22.43			30.539 ng		97
	Styrene	22.78			28.376 ng		99
	o-Xylene	22.93	91	1990988	26.878 ng		100
	n-Nonane	23.19	43	1212518	27.883 ng		90
	1,1,2,2-Tetrachloroethane			894435	30.960 ng		98
	Cumene	23.67		2481020	27.163 ng		98
	alpha-Pinene	24.16		1235572	29.588 ng		95
-	n-Propylbenzene	24.29	91	3113587	26.804 ng		98
	3-Ethyltoluene	24.41		2512668	28.868 ng		99
	4-Ethyltoluene	24.47		2419877	28.168 ng		97
	1,3,5-Trimethylbenzene		105	2051460	27.587 ng		97
* /	· ·						F 6

Data File : 02170918.D

Acq On : 17 Feb 2009 20:57

Operator : EM

Sample : 25ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
80)	± 4 · · · 2 · · ·	24.75	118	1144722	28.740	ng	98
81)	2-Ethyltoluene	24.80	105	2455902	27.745	ng	97
82)		25.06	105	2161951	28.168	ng	95
83)	n-Decane	25.16	57	1295569	29.238	ng	78
84)	Benzyl Chloride	25.23	91	1889408	33.049	ng	99
85)		25.26	146	1108204	27.114	ng	99
86)	1,4-Dichlorobenzene	25.33	146	1127572	26.633	ng	98
87)	<u></u>	25.39	105	2801677	28.025	ng.	99
88)	± ± ± ±	25.57	119	2618882	27.419	ng	98
89)	, ,	25.58	105	2170222	28.647	ng	95
90)	,	25.75	146	1070805	27.560	ng	98
91)	d-Limonene	25.75	68	956342	30.390	ng	98
92)	1,2-Dibromo-3-Chloropr	26.28	157	356035	31.225	ng	# 85
93)	n-Undecane	26.66	57	1339743	28.875	ng	75
94)	1,2,4-Trichlorobenzene	27.80	184	216883	29.507	ng	89
95)	Naphthalene	27.94	128	2552932	25.776	ng	100
96)	n-Dodecane	27.90	57	1257425	24.066	ng	73
	Hexachloro-1,3-butadiene	28.37	225	395197	26.967		97
98)	Cyclohexanone	22.52	55	780845	28.779	ng	# 89
99)	tert-Butylbenzene	25.07	119	2100700	28.483		97
100)	n-Butylbenzene	26.08	91	2331621	29.760		95

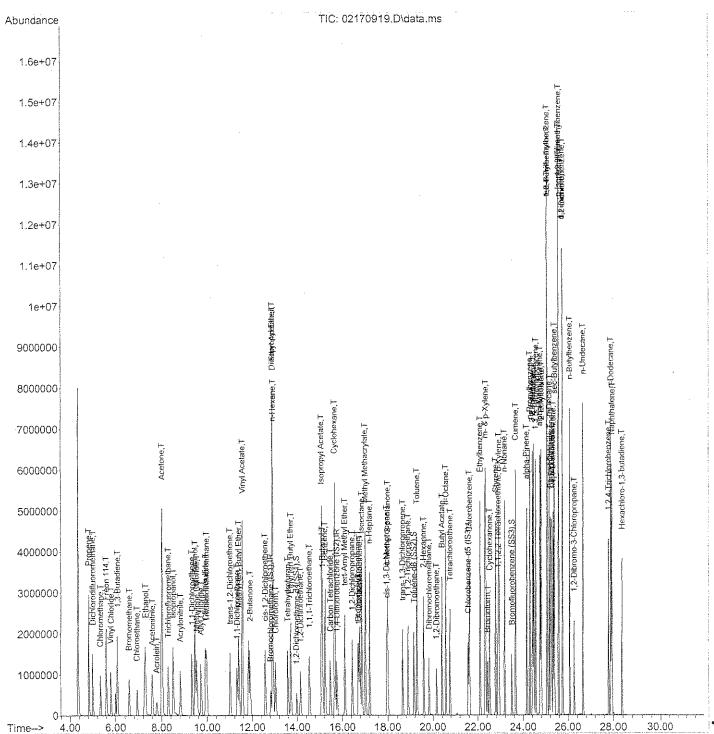
^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12-39:21 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(1	Min)
1) Bromochloromethane (IS1)	12.83	130	325939	25.000	nq	-0	.01
37) 1,4-Difluorobenzene (IS2)	15.77	114	1570223	25.000	ng	0	.00
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.58	82	775515	25.000	ng	0	.00
					_		
System Monitoring Compounds	10 00	<i>~</i> =	E2000E	25 200	~~~		0.1
33) 1,2-Dichloroethane-d4(13.98	65	528025				
Spiked Amount 25.000	19.16	0.0	Recov	rery =	TAT	.60%	0.0
	19.16	98					.00
Spiked Amount 25.000	00 50	7 177 4	Recov	/ery =	9/	./56	0.0
73) Bromofluorobenzene (SS3)	23.50	1/4					.00
Spiked Amount 25.000			Recov	/ery =	77	.006	
Target Compounds						Qva.	
2) Propene 3) Dichlorodifluoromethane	4.84	42	1428986	61.859	ng		98
3) Dichlorodifluoromethane	5.01	85	1768037	52.498	ng		99
4) Chloromethane	5.34	50	1502178	50.478	ng		99
5) Freon 114	5.59	135	945624	50.036	ng		98
6) Vinyl Chloride	5.80	62	1576657	50.339	ng		94
7) 1,3-Butadiene	6.09	54	1267303	59.353	ng		98
8) Bromomethane	6.59	94	886492	54.517	ng		96
9) Chloroethane	6.93	64	828155	55.698	ng		94
3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone	7.30	45	4193464	287.482	ng		99
11) Acetonitrile	7.60	41	1995080	54.995	ng		99
12) Acrolein	7.79	56	608282	60.238	ng		99
14) Trichlorofluoromethane	8.29	101					97
15) Isopropanol 16) Acrylonitrile	8.52	45					98
16) Acrylonitrile	8.83	53	1415580				99
17) 1,1-Dichloroethene	9.33	96	958370				59
18) tert-Butanol	9.48	59	4313280	98.949	ng		97
18) tert-Butanoi 19) Methylene Chloride	9.55	84	993341	53.310	ng	#	48
20) Allyl Chloride	9.74	41	1590985	63.197	ng		74
21) Trichlorotrifluoroethane	9.99	151	761654	55.274	ng		
22) Carbon Disulfide	9.94	76	3615618				98
23) trans-1,2-Dichloroethene					-		
24) 1,1-Dichloroethane	11.33	63	1788926	57.581			96
25) Methyl tert-Butyl Ether	11.40	73		57.738			85
26) Vinyl Acetate	11.58	86		350.855		#	1
27) 2-Butanone	11.91		722202	68.462		#	27
28) cis-1,2-Dichloroethene	12.59	61				#	72
29) Diisopropyl Ether	12.92		903608			#	44
30) Ethyl Acetate			828325			#	72
31) n-Hexane	12.94	57	1914895	54.259	ng		87 80

Data File : 02170919.D

Acg On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

: S20-02030901/S20-02090903 Misc ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal	Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32) Chlo	proform	13.05	83	1576845	55.389	ng		98
	rahydrofuran	13.59		668560	57.129		#	51
	ol tert-Butyl Ether	13.73		1132633	55.954		#	62
	Dichloroethane	14.15		1207722	56.172			97
	1-Trichloroethane	14.55		1387337	55.914			93
	propyl Acetate	15.09		1429702	127.974		#	79
_	itanol	15.13	56	2440076	136.682			82
41) Benz	zene	15.25	78	4103504	47.894	ng		97
42) Carb	oon Tetrachloride	15.47	117	1203146	55.600	ng		98
43) Cycl	ohexane	15.67	84	3243106	107.667		#	64
	-Amyl Methyl Ether	16.11	73	2704440	53.538	ng	#	1
45) 1,2-	Dichloropropane	16.45	63	1059667	58.891	ng		95
46) Brom	nodichloromethane	16.71	83	1263572	57.096	ng		96
47) Tric	chloroethene	16.79	130	1025565	49.194	ng		95
48) 1,4-	Dioxane	16.73	88	852096	64.195	ng	#	71
	octane	16.87		4644444	52.725			97
	nyl Methacrylate	17.04	100	914667	133.844		#	82
	eptane	17.22		1123115	54.033		#	69
	1,3-Dichloropropene	17.96	75	1621994	57.508			98
	ethyl-2-pentanone	18.00		1054103	68.920			77
	ns-1,3-Dichloropropene			1643288	65.295			96
	2-Trichloroethane	18.90		958181	57.051			99
58) Tolu		19.30		4415873	53.915			99
	exanone	19.59		2534245	69.330			90
	comochloromethane	19.83		1044818	61.530			96
	Dibromoethane	20.16		1075876	57.075			98
	l Acetate	20.40	43	3095213	73.932			95
	ctane	20.58		1011425	52.876		#	65
	rachloroethene	20.77		1009710	50.135			96
	probenzene	21.63	112	2730101	50.699			99
	rlbenzene	22.11	91	4921525	51.977			99
	z p-Xylene	22.34			105.309			98
	noform	22.43		830336	60.385			97
69) Styr		22.79		3072087	55.455	-		99
	rlene	22.93	91	3944199	52.672	****		100
71) n-No		23.19	43	2348806	53.430			89
		22.90		1789944	61.289			98
74) Cume		23.67		4898146	53.047			97 05
	na-Pinene	24.16		2448457	58.000			95
	ropylbenzene Lhyltoluene	24.29		6116147	52.083			98 .
	hyltoluene hyltoluene	24.42		4897062	55.655			97
	5-Trimethylbenzene	24.47 24.56	105 105	4897481	56.392			98
121 1,3,	2-irimethy inelizelle	24.JO	T 0 2	4093249	54.449	119		⁹⁷ 8

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
	alpha-Methylstyrene	24.75	118	2302499	57.184 ng		97
81)	2-Ethyltoluene	24.80	105	4897288	54.728 ng		97
82)	1,2,4-Trimethylbenzene	25.07	105	4474879	57.673 ng		95
83)	n-Decane		57	2560251	57.156 ng		77
84)	Benzyl Chloride	25.23	91	3877119	67.085 ng		99
85)	1,3-Dichlorobenzene	25.26	146	2232417	54.030 ng		99
86)	1,4-Dichlorobenzene	25.34	146	2270313	53.045 ng		98
87)	sec-Butylbenzene	25.39	105	5554907	54.966 ng		99
88)	p-Isopropyltoluene	25.58	119	5407603	56.005 ng		98
89)	1,2,3-Trimethylbenzene	25.59	105	4488477	58.609 ng		95
90)	1,2-Dichlorobenzene	25.76	146	2226330	56.681 ng		98
91)	d-Limonene	25.75	68	1939720	60.973 ng		99
92)	1,2-Dibromo-3-Chloropr	26.28	157	732444	63.543 ng	#	85
93)	n-Undecane	26.66	57	2674544	57.021 ng		74
94)	1,2,4-Trichlorobenzene	27.80	184	462562	62.252 ng	#	89
95)	Naphthalene	27.95	128	5459185	54.524 ng		100
96)	n-Dodecane	27.90	57	2618828	49.581 ng		72
97)	Hexachloro-1,3-butadiene	28.37	225	832307	56.182 ng		97
98)	Cyclohexanone	22.52	55	1540608	56.168 ng	#	88
99)	tert-Butylbenzene	25.07	119	4324288	57.999 ng		97
	n-Butylbenzene	26.08	91	4655248	58.776 ng		95

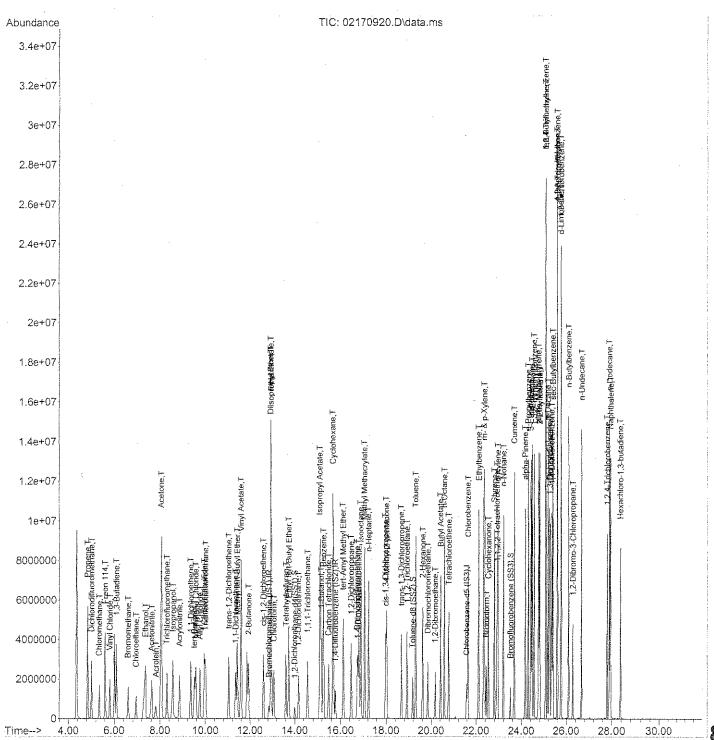
(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD


Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (Min)
1) Bromochloromethane (IS1)	12.85	130	339694	25.000	nq	0	.00
37) 1,4-Difluorobenzene (IS2)	15.78	114	1633143	25.000	ng	0	.00
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.57	82	803598	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(14.00	65	546520				
Spiked Amount 25.000			Recov	ery =	100.	.88%	
57) Toluene-d8 (SS2)	19.16	98	1894644	24.508	ng	0	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recov	ery =	98.	.04%	
73) Bromofluorobenzene (SS3)	23.50	174	543428	24.665	ng	0	.00
Spiked Amount 25.000			Recov	ery =	98.	.68%	
Target Compounds						Qva.	lue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane	4.84	42	2905484	120.682	ng		98
3) Dichlorodifluoromethane	5.01	85	3571506	101.755	ng		99
4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol	5.35	50	2724653	87.849	ng		100
5) Freon 114	5.60	135	1922197	97.590	ng		98
6) Vinyl Chloride	5.81	62	3132712	95.970	ng		93
/) 1,3-Butadiene	6.09	54	2577041	115.805	ng		98
8) Bromomethane	6.60	94	1752708	103.422	ng		96
9) Chloroethane	6.94	64	1621335	104.629	ng		94
10) Ethanol	7.35	45	8128313	534.671	ng		100
11) Acetonitrile	7.63	41	3989079	105.508	ng		98
12) Acrolein	/.8I	56	1238215	117.655	ng	11	99
13) Acetone	8.05	58	8053361	525.984	ng	#	
14) Intentorolluoromethane	8.30	TOT	30341/1	99.094	ng		97
15) ISOPIOPAROI	8.56	45	7155072	146.61/	ng	*	
17) 1 1 Dishlementhers	8.85	. 53	2868436	119.178			99
1// 1,1-Dichioroethene	9.34	70	1975485	106.723			
10) Mothylana Chlasida	9.50	59	3582301	78.852	ng	ы	95
20) Ally Chlorido	9.57	41	2017852	103.908	119	11	4/.
14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	10 00	4.7	3252415 1531901 7398269 2925575	106 660	119		7.3
22) Carbon Digulfide	20.00	76	7398269	100.009	ny		90
22) Carbon Disulfide 23) trans-1,2-Dichloroethene	7.70	70 61	7330203	107.057	ng		90 75
24) 1,1-Dichloroethane	11.34	63	3620138	111.805	119		96
25) Methyl tert-Butyl Ether	11.34	73		110.749			
26) Vinyl Acetate	11.60	86		638.645		#	85
27) 2-Butanone	11.93	72		112.298		# #	1 26
28) cis-1,2-Dichloroethene	12.60	61		109.317		#	72
29) Diisopropyl Ether	12.93	87		119.859		#	33
30) Ethyl Acetate	12.94	61		270.510		#	33 70
31) n-Hexane	12.94	57	3971806			11	
· · · · · · · · · · · · · · · · · · ·	July 8 JV 74	J /	2212000	. U 1 . D U 4	117		86 8 4

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Respons	e Conc	Units	Dev	(Min)
32) Chloroform	13.07	83	3223406	108.641	na		98
34) Tetrahydrofuran	13.61	72	1353266			#	51
35) Ethyl tert-Butyl Ether	13.74		2392115			#	60
36) 1,2-Dichloroethane	14.16		2426600				97
38) 1,1,1-Trichloroethane	14.56		2792534				93
39) Isopropyl Acetate	15.10	61	2939771			#	73
40) 1-Butanol	15.16	56	4822335	259.718			82
41) Benzene	15.26		8366925				97
42) Carbon Tetrachloride	15.49		2460358				99
43) Cyclohexane	15.69		6752129			#	63
44) tert-Amyl Methyl Ether	16 13	73	5619641			#	1
45) 1,2-Dichloropropane	16.46	63	2148780				95
46) Bromodichloromethane	16.72	83	2547673				96
47) Trichloroethene	16.79		2112887				96
48) 1,4-Dioxane	16.75		1731130			#	70
49) Isooctane	16.88		9391596				96
50) Methyl Methacrylate	17.06		1911019			#	85
51) n-Heptane	17.23	71	2310305			#	69
52) cis-1,3-Dichloropropene	17.97	75	3307418				98
53) 4-Methyl-2-pentanone	18 02	5.8	2150959				76
54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	18.67	75	3347137				95
55) 1,1,2-Trichloroethane	18.91	97	1954828				99
58) Toluene	19.30	91	9015484	106.227	ng ng		99
59) 2-Hexanone	19.60	43	5081842	134.166	ng		89
60) Dibromochloromethane	19.84	129	2154107	122.425	i ng		96
61) 1,2-Dibromoethane	20.17	107	2196178	112.435	ng		99
62) Butyl Acetate	20.41	43	6621845	152.641	. ng		93
63) n-Octane	20.58	57	2076490	104.763	ng ng	#	63
64) Tetrachloroethene	20.78	166	2104464	100.841	. ng		96
65) Chlorobenzene	21.64	112	5587961	100.144	l ng		99
66) Ethylbenzene	22.11	91	10021891	102.144	l ng		100
67) m- & p-Xylene	22.35	91	15939240	210.918	ng ng		97
68) Bromoform	22.44	173	1733477	121.658	ng ng		97
69) Styrene	22.80	104	6383016				99
70) o-Xylene	22.95	91	8188886	105.535	5 ng		99
71) n-Nonane	23.19	43	4680402	102.747	ng ng		87
72) 1,1,2,2-Tetrachloroethane	22.91	83	3747833	123.844	l ng		98
74) Cumene	23.68		10062966	105.173			96
75) alpha-Pinene	24.16		5102600	116.649			95
76) n-Propylbenzene	24.30		12376403	101.710			97
77) 3-Ethyltoluene	24.43		10428285	114.376			97
78) 4-Ethyltoluene	24.48		9870024				95
79) 1,3,5-Trimethylbenzene	24.57	105	8547489	109.727	ng ng		95 8

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min	1)
80)	alpha-Methylstyrene	24.76	118	4891450	117.238	ng	97	
81)	2-Ethyltoluene	24.81	105	10133371	109.285	ng	95	,
82)	1,2,4-Trimethylbenzene	25.08		9599097	119.392		92	
83)	n-Decane	25.17		5203341	112.101		75	
84)	Benzyl Chloride	25.24		8157706	136.218		98	
85)	·	25.27		4761175	111.206		99	
86)		25.35		4765648	107.456		98	
87)	<u> </u>	25.40		11355894	108.440		98	
88)		25.58		11498713	114.928	-	97	
	1,2,3-Trimethylbenzene	25.59	105	9653853	121.652		92	
	1,2-Dichlorobenzene	25.76	146	4935058	121.253		98	
91)		25.76	68	3972406	120.504		96	
92)	· ·	26.28		1551365	129.885		# 83	
	n-Undecane		57	5435172	111.828		72	
-	1,2,4-Trichlorobenzene	27.81		1021579	132.681	-	# 88	
	Naphthalene	27.96		11678926	112.568	_	98	
96)		27.90	57	5416300	98.961		70	
	Hexachloro-1,3-butadiene	28.37	225	1843176	120.069		97	
	Cyclohexanone	22.53	55	3133156	110.238	ng	# 88	
	tert-Butylbenzene	25.08		9360462	121.159		95	
100)	n-Butylbenzene	26.09	91	9552875	116.397	ng	97	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

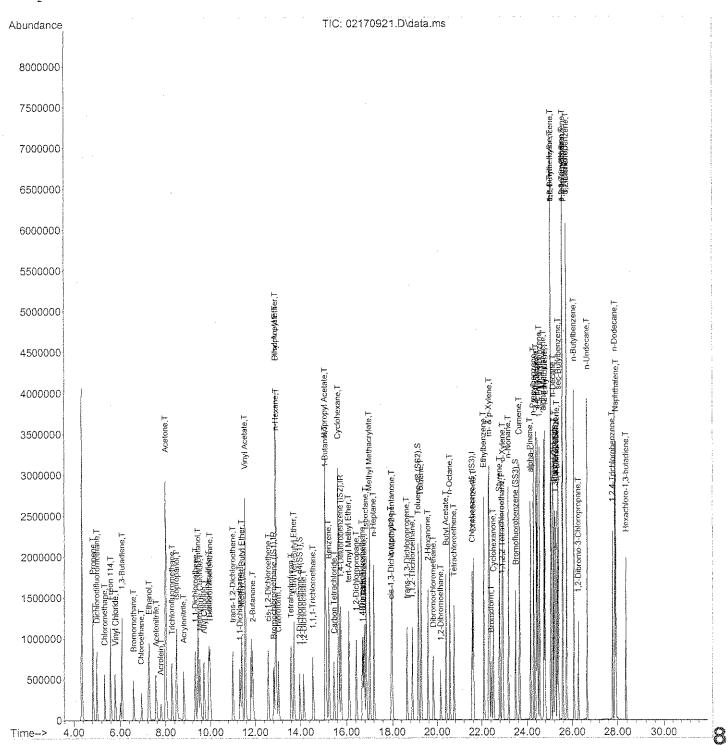
&m 2/18/09

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD


Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD Misc : S20-02030901/S20-02 : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response		Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.82 15.77 21.58	130 114 82	342809 1647148	25.000 25.000	ng ng ng	-0.02 -0.01 0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	19.16	98 174	Recov 1907296 Recov 549928 Recov	ery = 24.831 ery = 25.136 ery =	98 ng 99 ng 100	.88% 0.00 .32% 0.00 .56%
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether	8.01 8.29 8.49 8.81	58 101 45 53 96 84 41 151 61 63 72 61	2143430 832893 2316374 757752 512105 2462934 528863 854498 407956 1973759 790254 949484 1544993 555014 396075	107.492 24.734 46.514 27.874	ng n	# 82 97 98 100

8m 2/18/09 Page: 1

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards		QIon	Response	Conc	Units	Dev	(Min)
32) Chloroform	13.04	. 83	843454	25.695	na		98
34) Tetrahydrofuran	13.58		377102	28.581		#	50
35) Ethyl tert-Butyl Ether	13.72	87	595982	26.440		#	61
36) 1,2-Dichloroethane	14.14	62	644017	26.175		**	97
38) 1,1,1-Trichloroethane	14.54	97	745418	26.408			93
39) Isopropyl Acetate	15.08	61	752957	59.591		#	80
40) 1-Butanol	15.10		1279280	66.048			83
41) Benzene	15.24		2186097	22.257			97
42) Carbon Tetrachloride	15.47	117	644072	26.427			99
43) Cyclohexane	15.67	8.4	1753766	50.105		#	64
44) tert-Amyl Methyl Ether	16.11	73	1474200	26.175		#	1
45) 1,2-Dichloropropane	16.45	63	1474200 560496	25.985			95
46) Bromodichloromethane	16.71	83	695330	27.127	ng		96
47) Trichloroethene	16.78	130	547522	22.217	ng		96
48) 1,4-Dioxane	16.73	88	465481	29.198	ng	#	70
49) Isooctane	16.87	57	2483107	23.460	ng		97
50) Methyl Methacrylate	17.03	100	484495	59.751	ng	#	83
51) n-Heptane	17.22	71	613100	24.683	ng	#	69
52) cis-1,3-Dichloropropene	17.96	75	863608	26.521	ng		98
53) 4-Methyl-2-pentanone	17.99	58	576257	32.159	ng		77
54) trans-1,3-Dichloropropene	18.66	75	872941 506367	30.458	ng		96
55) 1,1,2-Trichloroethane	18.90	97	506367	26.601			99
58) Toluene	19.29	91	2363543	24.819			100
59) 2-Hexanone	19.59	43	1380690	32.674	ng		90
60) Dibromochloromethane	19.83	129	573165	31.163			96
61) 1,2-Dibromoethane	20.16	107	573024	27.688			98
62) Butyl Acetate	20.40		1620386	31.998			95
63) n-Octane	20.57		536144	24.404		#	64
64) Tetrachloroethene	20.76		534754	23.803			96
65) Chlorobenzene	21.63		1453050	24.433			100
66) Ethylbenzene	22.10		2593267	25.303			99 .
67) m- & p-Xylene	22.34		4015713	50.721			99
68) Bromoform	22.43		448112	30.463			97
69) Styrene	22.79		1622431	27.520			99
70) o-Xylene	22.93	91	2063837	25.620			100
71) n-Nonane	23.19	43	1244560	24.485			89
72) 1,1,2,2-Tetrachloroethane	22.89		931332	28.867			98
74) Cumene	23.67	105	2617749	25.556			97
75) alpha-Pinene	24.16	93 .	1302952	28.343			95
76) n-Propylbenzene	24.29	91	3264988	25.574			98
77) 3-Ethyltoluene	24.41		2646274	28.337			99
78) 4-Ethyltoluene	24.47	105	2599576	28.046			97
79) 1,3,5-Trimethylbenzene	24.56	105	2144343	27.139	ng		978

Em 2/18/09

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc 1	Units	Dev(Min)
80) alpha-Methylstyrene	24.75	118	1222237	28.918	ng	97
81) 2-Ethyltoluene	24.80	105	2604302	27.304	ng	97
82) 1,2,4-Trimethylbenzene	25.06	105	2271732	27.088	ng	95
83) n-Decane	25.16		1356496	27.029	_	77
84) Benzyl Chloride	25.23		2100541	35.956		99
85) 1,3-Dichlorobenzene			1166759	26.139		99
86) 1,4-Dichlorobenzene	25.33		1183918			9,9
87) sec-Butylbenzene	25.39		2961387	26,989		99
88) p-Isopropyltoluene	25.57		2784692	26.597		98
89) 1,2,3-Trimethylbenzene	25.58		2309387	27.560		95
90) 1,2-Dichlorobenzene	25.75		1125923	26.309		98
91) d-Limonene	25.75		1008751	29.140		99
92) 1,2-Dibromo-3-Chloropr			392087	31.859		# 85
93) n-Undecane			1432023	28.050	_	74
94) 1,2,4-Trichlorobenzene	27.80		245767	32.278		89
95) Naphthalene	27.94		2999961	29.142		100
96) n-Dodecane	27.90	57	1459101	26.971		72
97) Hexachloro-1,3-butadiene	28.37		437021	28.227		97
98) Cyclohexanone	22.52		813309	27.117		# 88
99) tert-Butylbenzene	25.06		2215162	27.522		97
100) n-Butylbenzene	26.08	91	2477461	28.635	ng	95

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Em 2/18/09

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 02170921.D

Acq. Method File: TO15LOW.M

Data File Path: J:\MS09\Data\2009_02\17\

Name: 25ng TO-15 ICV STD

Operator: EM

Misc Info: S20-02030901/S20-02090907

Instrument Name: MS09 Date Acquired: 2/17/09 23:01

		Ret.	Amt.	Spike	%	Lower	Upper	* OR
<u>#</u>	Compound	Time	(ng)	Amt.(ng)	Rec.	Limit	<u>Limit</u>	Fail
2)	Propene	4.84	22.2	26.3	84.4	70	130	*
3)	Dichlorodifluoromethane	5.00	23.0	26.3	87.5	70	130	*
4)	Chloromethane	5.33	22.9	25.3	90.5	70	130	*
5)	Freon 114	5.59	23.4	26.8	87.3	70	130	*
6)	Vinyl Chloride	5.80	21.7	25.5	85.1	70	130	÷
7)	1,3-Butadiene	6.08	29.2	30.0	97.3	70	130	*
8)	Bromomethane	6.58	25.1	25.8	97.3	70	130	*
9)	Chloroethane	6.92	24.2	25.8	93.8	70	130	*
,	Ethanol	7.27	120.6	133.0	90.7	70	130	*
,	Acetonitrile	7.58	25.1	26.3	95.4	70	130	*
12)	Acrolein	7.79	28.3	27.3	103.7	70	130	*
	Acetone	8.01	107.5	137.0	78.5	70	130	*
14)	Trichlorofluoromethane	8.29	24.7	26.3	93.9	70	130	* .
	Isopropanol	8.49	46.5	48.0	96.9	70	130	*
	Acrylonitrile	8.81	27.9	26.8	104.1	70	130	*
	1,1-Dichloroethene	9.33	23.9	27.5	86.9	70	130	*
,	tert-Butanol	9.45	53.5	50.5	105.9	70	130	*
,	Methylene Chloride	9.54	23.1	26.5	87.2	70	130	*
,	Allyl Chloride	9.73	29.0	27.0	107.4	70	130	*
	Trichlorotrifluoroethane	9.99	26.2	27.5	95.3	70	130	*
22)	Carbon Disulfide	9.94	24.4	26.8	91.0	70	130	*
23)	trans-1,2-Dichloroethene	11.01	25.1	26.8	93.7	70	130	*
,	1,1-Dichloroethane	11.32	26.5	26.8	98.9	70	130	*
,	Methyl tert-Butyl Ether	11.40	27.8	27.5	101.1	70	130	*
	Vinyl Acetate	11.56	155.8	126.0	123.7	70	130	*
	2-Butanone	11.90	31.6	27.5	114.9	70	130	*
,	cis-1,2-Dichloroethene	12.58	25.0	27.5	90.9	70	130	*
	Diisopropyl Ether	12.92	27.0	27.0	100.0	70	130	*
	Ethyl Acetate	12.92	61.0	53.5	114.0	70	130	*
,	n-Hexane	12.93	24.3	27.3	89.0	70	130	*
	Chloroform	13.04	25.7	26.8	95.9	70	130	*
	Tetrahydrofuran	13.58	28.6	27.5	104.0	70	130	*
	Ethyl tert-Butyl Ether	13.72	26.4	26.0	101.5	70	130	*
	1,2-Dichloroethane	14.14	26.2	26.8	97.8	70	130	*
,	1,1,1-Trichloroethane	14.54	26.4	26.5	99.6	70	130	*
	Isopropyl Acetate	15.08	59.6	52.8	112.9	70	130	÷
	1-Butanol	15.10	66.0	54.8	120.4	70	130	*
,	Benzene	15.24	22.3	26.8	83.2	70	130	*
,	Carbon Tetrachloride	15.47	26.4	27.0	97.8	70	130	*
,	Cyclohexane	15.67	50.1	54.5	91.9	70	130	*
	tert-Amyl Methyl Ether	16.11	26.2	26.3	99.6	70	130	*
,	1,2-Dichloropropane	16.45	26.0	26.5	98.1	70	130	*
	Bromodichloromethane	16.71	27.1	27.3	99.3	70	130	*
47)	Trichloroethene	16.78	22.2	26.5	83.8	70	130	*
,	1,4-Dioxane	16.73	29.2	27.0	108.1	70	130	*
	Isooctane	16.87	23.5	26.5	88.7	70	130	*
	Methyl Methacrylate	17.03	59.8	53.5	111.8	70	130	*
•								

Em 2/18/09 2/18/09 7:48 AM

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 02170921.D

Acq. Method File: TO15LOW,M

Data File Path: J:\MS09\Data\2009_02\17\

Name: 25ng TO-15 ICV STD

Operator: EM

Misc Info: S20-02030901/S20-02090907

Date Acquired: 2/17/09 23:01 Instrument Name: MS09

		Ret.	Amt.	Spike	0/6	Lower	Upper	* OR
<u>#</u>	Compound	<u>Time</u>	<u>(ng)</u>	Amt.(ng)	Rec.	<u>Limit</u>	<u>Limit</u>	Fail
51)	n-Heptane	17.22	24.7	27.0	91.5	70	130	*
52)	cis-1,3-Dichloropropene	17.96	26.5	25.0	106.0	70	130	*
53)	4-Methyl-2-pentanone	17.99	32.2	27.5	117.1	70	130	×
54)	trans-1,3-Dichloropropene	18.66	30.5	27.5	110.9	70	130	*
55)	1,1,2-Trichloroethane	18.90	26.6	26.3	101.1	70	130	*
58)	Toluene	19.29	24.8	27.0	91.9	70	130	*
59)	2-Hexanone	19.59	32.7	27.5	118.9	70	130	*
60)	Dibromochioromethane	19.83	31.2	28.8	108.3	70	130	*
61)	1,2-Dibromoethane	20.16	27.7	26.8	103.4	70	130	*
62)	Butyl Acetate	20.40	32.0	27.5	116.4	70	130	*
63)	n-Octane	20.57	24.4	26.8	91.0	70	130	*
64)	Tetrachioroethene	20.76	23.8	25.8	92.2	70	130	*
65)	Chlorobenzene	21.63	24.4	26.8	91.0	70	130	*
66)	Ethylbenzene	22.10	25.3	26.5	95.5	70	130	*
67)	m- & p-Xylene	22.34	50.7	52.5	96.6	70	130	*
68)	Bromoform	22.43	30.5	26.0	117.3	70	130	*
69)	Styrene	22.79	27.5	27.0	101.9	70	130	*
70)	o-Xylene	22.93	25.6	26.5	96.6	70	130	*
71)	n-Nonane	23.19	24.5	26.5	92.5	70	130	*
72)	1,1,2,2-Tetrachloroethane	22.89	28.9	27.0	107.0	70	130	*
74)	Cumene	23.67	25.6	25.8	99.2	70	130	*
75)	alpha-Pinene	24.16	28.3	27.5	102.9	70	130	*
76)	n-Propylbenzene	24.29	25.6	25.8	99.2	70	130	*
77)	3-Ethyltoluene	24.41	28.3	27.5	102.9	70	130	*
78)	4-Ethyltoluene	24.47	28.0	27.5	101.8	70	130	*
79)	1,3,5-Trimethylbenzene	24.56	27.1	27.3	99.3	70	130	*
80)	alpha-Methylstyrene	24.75	28.9	26.8	107.8	70	130	*
81)	2-Ethyltoluene	24.80	27.3	27.3	100.0	70	130	*
82)	1,2,4-Trimethylbenzene	25.06	27.1	26.8	101.1	70	130	*
	n-Decane	25.16	. 27.0	27.3	98.9	70	130	*
84)	Benzyl Chloride	25.23	36.0	28.8	125.0	70	130	*
	1,3-Dichlorobenzene	25.26	26.1	27.5	94.9	70	130	*
86)	1,4-Dichlorobenzene	25.33	25.8	27.3	94.5	70	130	*
87)	sec-Butylbenzene	25.39	27.0	26.8	100.7	70	130	*
	p-Isopropyltoluene	25.57	26.6	26.0	102.3	70	130	*
	1,2,3-Trimethylbenzene	25.58	27.6	26.8	103.0	70	130	*
	1,2-Dichlorobenzene	25.75	26.3	27.3	96.3	70	130	*
91)	d-Limonene	25.75	29.1	26.8	108.6	70	130	*
	1,2-Dibromo-3-Chloropropane	26.28	31.9	27.5	116.0	70	130	*
	n-Undecane	26.66	28.0	27.3	102.6	70	130	*
	1,2,4-Trichlorobenzene	27.80	32.3	28.8	112.2	70	130	*
	Naphthalene	27.94	29.1	25.8	112.8	70	130	*
	n-Dodecane	27.90	27.0	26.8	100.7	70	130	*
	Hexachloro-1,3-butadiene	28.37	28.2	28.8	97.9	70	130	*
	Cyclohexanone	22.52	27.1	25.3	107.1	70	130	*
	tert-Butylbenzene	25.06	27.5	27.0	101.9	70	130	*
	n-Butylbenzene	26.08	28.6	27.5	104.0	70	130	*

^{*} Denotes Passing Criterion

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD Misc : S20-03030904/S20-02 : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF		%Dev <i>A</i>		Dev(min)
l IR	Bromochloromethane (IS1)		1.000	0.0			
2 T	Propene	2.240	1.792	20.0	.93	0.00	
3 T	Dichlorodifluoromethane	2.979	2.482	16.7	95	-0.01	
4 T	Chloromethane	2.625	2.285	13.0		-0.01	
5 T	Freon 114	1.571	1.268	19.3		-0.01	
6 T	Vinyl Chloride	2.757	2.266	17.8		-0.01	
7 T	1,3-Butadiene	1.940	1.725	11.1	93	-0.01	
8 T	Bromomethane	1.356	1.271	6.3	94	-0.02	
9 T	Chloroethane	1.255	1.174	6.5	96	-0.01	
10 T	Ethanol	1.244	1.173	5.7	99	-0.07	
11 T	Acetonitrile	3.066	2.783	9.2	94	-0.05	
12 T	Acrolein	0.856	0.822	4.0	95	-0.03	
13 T	Acetone	1.454	1.103	24.1	96	-0.05	
14 T		2.456	2.137	13.0	97	-0.01	
15 T	Isopropanol	3.632	3.323	8.5	94	-0.06	
16 T	Acrylonitrile	1.983	2.022	-2.0	95	-0.03	
17 T	1,1-Dichloroethene	1.559	1.279	18.0	95	-0.02	
18 T	tert-Butanol	3.360	3.219	4.2	91	-0.05	
19 T	Methylene Chloride	1.667	1.380	17.2	95	-0.02	
20 T	Allyl Chloride	2.149	2.147	0.1	94	-0.02	
21 T	Trichlorotrifluoroethane	1.134	1.018	10.2	96	-0.02	
22 T	Carbon Disulfide	5.906	5.094	13.7	95	-0.01	
23 T		2.295	2.059	10.3	95		
24 T	1,1-Dichloroethane	2.614	2,464	5.7	95		
25 T	Methyl tert-Butyl Ether	4.051	3.842	5.2	94		
26 T	Vinyl Acetate	0.260	0.312	-20.0	100		
27 T	2-Butanone	0:913	0.979	-7.2	95	-0.03	
28 T	cis-1,2-Dichloroethene	2.210	1.924	12.9	95		
29 T	Diisopropyl Ether	1.278	1.208	5.5	95	-0.02	
30 T	Ethyl Acetate	0.531	0.576	-8.5	96		
31 T	n-Hexane	3.029	2.644	12.7	96		
32 T	Chloroform	2.394	2.116	11.6	96		
33 S	1,2-Dichloroethane-d4(SS1)	1.622	1.654	-2.0	105		
34 T	Tetrahydrofuran	0.962	0.966	-0.4	97		
35 T	Ethyl tert-Butyl Ether	1.644	1.577	4.1			
36 T	1,2-Dichloroethane	1.794	1.708	4.8	96	-0.02	
37 IR	1,4-Difluorobenzene (IS2)	1.000	1.000	0.0	104	-0.01	
38 T	1,1,1-Trichloroethane	0.428	0.402	6.1	95	-0.02	(

Em 3/4/09

Page: 1

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
39 T 40 T	Isopropyl Acetate 1-Butanol	0.192	0.205	-6.8	95	-0.02
40 T	Benzene -	1.491	0.334 1.212	-13.6 18.7	93 95	
42 T	Carbon Tetrachloride	0.370	0.347	6.2	96	-0.02 -0.02
43 T	Cyclohexane	0.531	0.459	13.6	96	-0.02
44 T	tert-Amyl Methyl Ether	0.855	0.821	4.0	98	-0.02
45 T	1,2-Dichloropropane	0.327	0.307	6.1	95	-0.02
46 T	Bromodichloromethane	0.389	0.364	6.4	95	-0.02
47 T	Trichloroethene	0.374	0.301	19.5	95	-0.01
48 T	1,4-Dioxane	0.242	0.244	-0.8	94	-0.02
49 T	Isooctane	1.606	1.354	15.7	94	-0.01
50 T	Methyl Methacrylate	0.123	0.124	-0.8	93	-0.03
51 T	n-Heptane	0.377	0.326	13.5	95	-0.02
52 T	cis-1,3-Dichloropropene	0.494	0.488	1.2	95	-0.01
53 T	4-Methyl-2-pentanone	0.272	0.288	-5.9	94	-0.02
54 T	trans-1,3-Dichloropropene	0.435	0.446	-2.5	94	-0.01
55 T	1,1,2-Trichloroethane	0.289	0.275	4.8	94	-0.02
56 I	Chlorobenzene-d5 (IS3)	1.000	1.000	0.0	104	0.00
57 S	Toluene-d8 (SS2)	2.364	2.361	0.1	105	-0.01
58 T	Toluene	2.931	2.500	14.7	95	-0.01
59 T	2-Hexanone	1.300	1.383	-6.4	93	-0.02
60 T	Dibromochloromethane	0.566	0.546	3.5	94	-0.01
61 T	1,2-Dibromoethane	0.637	0.611	4.1	94	-0.02
62 T	Butyl Acetate	1.558	1.577	-1.2	90	-0.02
63 T	n-Octane	0.676	0.582	13.9	95	-0.02
64 T	Tetrachloroethene	0.691	0.581	15.9	94	-0.01
65 T	Chlorobenzene	1.830	1.563	14.6	94	-0.01
66 T	Ethylbenzene	3.154	2.823	10.5	94	-0.01
67 T 68 T	m- & p-Xylene	2.436	2.207	9.4	94	-0.02
	Bromoform	0.453	0.455	-0.4	94	-0.01
69 T 70 T	Styrene	1.814	1.695	6.6	93	-0.02
70 I 71 T	o-Xylene n-Nonane	2.479	2.236	9.8	94	-0.02
71 I 72 T	n-Nonane 1,1,2,2-Tetrachloroethane	1.564	1.352	13.6	94	-0.01
72 1 73 S	Bromofluorobenzene (SS3)	0.993	0.990	0.3	96	-0.02
73 S 74 T	Cumene (553)	0.673 3.152	0.663	1.5	103	0.00
75 T	alpha-Pinene	1.415	2.866	9.1	94	-0.01
75 T	n-Propylbenzene	3.929	1.309 3.607	7.5 8.2	93	0.00
, O T	ii i roby rociizeiie	3.343	3.007	٥.∠	94	-0.01

Em 3/4/09

94

Evaluate Continuing Calibration Report

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area	b Dev(min)
77 T 78 T 79 T 80 T 81 T 82 T 84 T 85 T 86 T 87 T 89 T 89 T	Compound 3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene p-Isopropyltoluene 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene d-Limonene	2.874 2.852 2.432 1.301 2.935 2.581 1.544 1.798 1.374 1.410 3.377 3.222 2.579 1.317	2.623 2.638 2.242 1.262 2.688 2.427 1.408 2.030 1.223 1.255 3.114 3.027 2.437 1.193	8.7 92 7.5 96 7.8 94 3.0 92 8.4 94 6.0 94 8.8 94 11.0 94 11.0 94 11.0 94 5.5 95 9.4 95	-0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01
92 T	1,2-Dibromo-3-Chloropropane	1.065 0.379	1.066 0.406	-0.1 94 -7.1 98	
93 T 94 T 95 T 96 T 97 T	n-Undecane 1,2,4-Trichlorobenzene Naphthalene n-Dodecane Hexachloro-1,3-butadiene	1.571 0.234 3.168 1.665 0.476	1.486 0,255 3.320 1.667 0.448	5.4 95 -9.0 103 -4.8 105 -0.1 99 5.9 100	-0.01 -0.01 -0.01 0.00
98 T 99 T 00 T	Cyclohexanone tert-Butylbenzene n-Butylbenzene	0.923 2.477 2.662	0.919 2.292 2.539	0.4 93 7.5 94 4.6 95	-0.02 -0.02

(#) = Out of Range SPCC's out = 0 CCC's out = 0

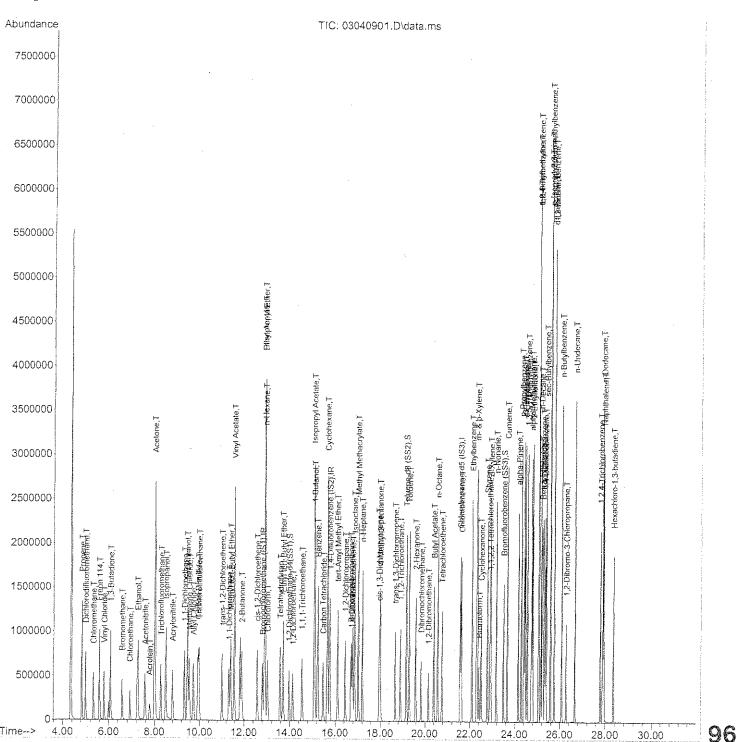
Com 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD


Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040901.D

: 4 Mar 2009 8:10 Acq On

Operator : EM

Sample : 25ng TO-15 CCV STD

: S20-03030904/S20-02090903 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.82	130	333021	-25.000	na	-0.02
37) 1,4-Difluorobenzene (IS2)	15.77	114	1607634	25.000	ng	-0.01
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.57	82	798532	25.000	ng	0.00
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.98	65	550743	25.484	na	-0.02
Spiked Amount 25.000			Recor	very =	101	. 92%
57) Toluene-d8 (SS2)	19.15	98	1885359	24.972	na	-0.01
Child Amount OF 000			***			000
73) Bromofluorobenzene (SS3)	23.49	174	529077	24.602	na	0.00
Spiked Amount 25.000			Recor	very =	98	.40%
Target Compounds						Qvalue
2) Propene3) Dichlorodifluoromethane	4.84	42	615952	20.641	ng	98
 Dichlorodifluoromethane 	5.00	85	869536	21.911	nq	99
4) Chloromethane	5,33	50	770098	22.024	nq	99
5) Freon 114	5.59	135	447675	21.397	ng	99
4) Chloromethane 5) Freon 114 6) Vinyl Chloride	5.80	62	769623	20.958	ng	94
/) I,3-Butadiene	6.08	54	620270	24.004	na	97
8) Bromomethane	6 58	94	436885	24 194	אם כינ	0.5
9) Chloroethane 10) Ethanol 11) Acetonitrile	6.93	64	406558	24.313	ng	94
10) Ethanol	7.28	45	2062552	124.422	ng	100
11) Acetonitrile	7.59	41	974959	23.874	ng	98
12) Acrolein	7.79	56	295617	25.924	ng	100
13) Acetone	8.01	58	1954361	100.891	ng	# 83
14) Trichlorofluoromethane	8.29	101	748723	22.888	ng	97
15) Isopropanol 16) Acrylonitrile	8.51	45	2146963	44.379	ng	96
16) Acrylonitrile	8.81	53	694763	26.308	ng	99
17) 1,1-Dichloroethene	9.33	96	468710	22.563	nq	# 60
18) tert-Butanol	9.46	59	2143948	47.900	ng	96
19) Methylene Chloride	9.54	84	487008	21.935	ng	# 49
20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	9.73	41	772078	26.973	ng	74
21) Trichiorotrifiuoroethane	9.98	151	373009	24.688	ng	95
22) Carbon Disulfide	9.94	76	1764179	22.424	ng	99
23) trans-1,2-Dichloroethene	11.01	61	707692	23.152	ng	77
24) 1,1-Dichloroethane	11.32	63	879706	25.259		97
25) Methyl tert-Butyl Ether	11.40	73	1356175	25.129		84
26) Vinyl Acetate	11.57			151.092		# 4
27) 2-Butanone	11.90	72		28.948		# 29
28) cis-1,2-Dichloroethene	12.58	61		23.759		73
29) Diisopropyl Ether	12.92	87		25.048		# 52
30) Ethyl Acetate 31) n-Hexane	12.92	61		56.423		74
DI/ II-REAGIE	12.93	57	915888	22.697	ng	88 97

Em 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	. De	v(Min)
32) Chloroform	13.04	83	775213	24.310 ng		98
34) Tetrahydrofuran	13.59	72	344792	26.900 ng	#	49
35) Ethyl tert-Butyl Ether	10 70	07	541916	24.748 ng	#	
36) 1,2-Dichloroethane	14.14	62		25.227 ng	71	96
38) 1,1,1-Trichloroethane	14.54	97	602974 680136	24.687 ng		93
39) Isopropyl Acetate	14.14 14.54 15.08	61	689642	55.922 ng	#	82
40) 1-Butanol	15.10	56	1159255	61.322 ng	11	85
41) Benzene	15.24		2010853	20.976 ng		98
42) Carbon Tetrachloride	15.47		586054	24.638 ng		99
43) Cyclohexane	15 67	QИ	1562266	45 761 na	#	65
44) tert-Amyl Methyl Ether	16.11	73	1362667	24.789 ng	#	1
45) 1,2-Dichloropropane	16.45	63	1362667 518805 616248	24.643 ng	11	. 95
46) Bromodichloromethane	16.70	83	616248	24.633 ng		96
47) Trichloroethene	16.78	130	499488	20.766 ng		95
48) 1,4-Dioxane	16.73	88	408232	26.237 ng	#	70
49) Isooctane	16.87	57	2264612	21.922 ng	"1	97
50) Methyl Methacrylate	17 03	100	426312	53 867 na	#	77
51) n-Heptane	17.22	71	544603	22.464 ng	#	
52) cis-1,3-Dichloropropene	17.96	75	785072	24.702 ng	,,	98
53) 4-Methyl-2-pentanone	17.99	58	544603 785072 506052 788158 460181	28.935 ng		78
54) trans-1,3-Dichloropropene	18.66	75	788158	28.175 ng		96
55) 1,1,2-Trichloroethane	18.90	97	460181	24.769 ng		99
58) Toluene	19.29	91	2155686	23.029 ng		100
59) 2-Hexanone	19.58	43	1215092	29.254 ng		91
60) Dibromochloromethane	19.83	129	501945	27.765 ng		96
61) 1,2-Dibromoethane	20.15	107	516915	25.410 ng		98
62) Butyl Acetate	20.39	43	1385608	27.837 ng		95
63) n-Octane	20.56	57	488775	22.634 ng	#	66
64) Tetrachloroethene	20.76	166	478931	21.688 ng		97
65) Chlorobenzene	21.63	112	1323394	22.639 ng		100
66) Ethylbenzene		91	2371682	23.543 ng		98
67) m- & p-Xylene	22.33	91	3665425	47.100 ng		99
68) Bromoform	22.43	173	389519	26.940 ng		97
69) Styrene	22.78	104	1450992	25.039 ng		99
70) o-Xylene	22.93	91	1878727	23.727 ng		100
71) n-Nonane	23.18	43	1135626	22.730 ng		90
72) 1,1,2,2-Tetrachloroethane	22.89	83	854196	26.936 ng		98
74) Cumene	23.67	105	2334658	23.188 ng		98
75) alpha-Pinene	24.16	93	1150129	25.453 ng		96
76) n-Propylbenzene	24.29	91	2937545	23.408 ng		98
77) 3-Ethyltoluene	24.41	105	2303910	25.099 ng		97
78) 4-Ethyltoluene	24.47	105	2316862	25.430 ng		98
79) 1,3,5-Trimethylbenzene	24.56	105	1933911	24.900 ng		98 9

Em 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

001	Tale Mathell street						
	alpha-Methylstyrene	24.75	118	1068016	25.707	ng	98
	2-Ethyltoluene	24.80	105	2318163	24.726	-	97
	1,2,4-Trimethylbenzene	25.06	105	2039135	24.736	ng	96
	n-Decane	25.16	57	1214100	24.611	ng	77
	Benzyl Chloride	25.23	91	1782834	31.048	ng	99
	1,3-Dichlorobenzene	25.25	146	1046776	23.858	ng	99
	1,4-Dichlorobenzene	25.33	146	1062129	23.581	ng	98
	sec-Butylbenzene	25.39	105	2635817	24.439	ng	99
	p-Isopropyltoluene	25.57	119	2465890	23.961	ng	98
	1,2,3-Trimethylbenzene	25.58	105	2062499	25.041	ng	96
	1,2-Dichlorobenzene	25.75	146	1020903	24.269	ng	98
	d-Limonene	25.75	68	902050	26.510	ng	98
	t,2-Dibromo-3-Chloropr	26.27	157	349893	28.924	ng	# 86
	1-Undecane	26.66	57	1272055	25.349	ng	75
	1,2,4-Trichlorobenzene	27.80	184	224085	29.941	ng	90
	Naphthalene	27.94	128	2683161	26.517	ng	100
	1-Dodecane	27.90	57	1251028	23.526	ng	73
	Mexachloro-1,3-butadiene	28.36	225	393675	25.868	ng	98
	Cyclohexanone	22.51	55	728322	24.705	ng	# 88
	tert-Butylbenzene	25.06	119	1976478	24.982	ng	98
100) n	n-Butylbenzene	26.08	91	2214151	26.036		94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900735

Client Project ID: Cooper Vision SVI / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Lab File ID: 03040901.D

Sampling Media:

6.0 L Summa Canister(s)

Date Analyzed: 3/4/09 Time Analyzed: 08:10

Test Notes:

		ISI (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	 333021	12.82	1607634	15.77	798532	21.57
	Upper Limit	466229	13.15	2250688	16.10	1117945	21.90
	Lower Limit	 199813	12.49	964580	15.44	479119	21.24
	Client Sample ID				•		
01	Method Blank	 330101	12.80	1608551	15.75	791060	21.57
02	Lab Control Sample	322309	12.82	1549597	15.77	774690	21.57
03	SV-InA-705-1	338724	12.80	1633065	15.75	812724	21.57
04	SV-OutA-022609	338884	12.80	1640751	15.75	814845	21.57
05	SV-SS-705-1	313335	12.82	1507301	15.76	752075	21.57
06	SV-SS-709-2	324268	12.82	1568878	15.76	785278	21.57
07	SV-InA-709-2	313952	12.80	1523485	15.75	755013	21.57
08							
09							
10							
11							
12							
13							
14							
1,5							
16							
17							
18							
19							
20		 					

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Re Verified By:___

Raw QC Data

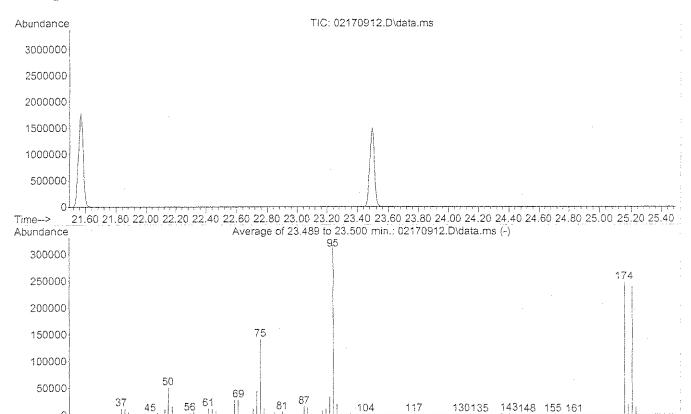
Data File : 02170912.D

: 17 Feb 2009 16:49 Acq On

Operator

Sample : BFB Tune Standard (200ml)

Misc : S20-02030901


ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

: J:\MS09\Methods\R9021709.M Method

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Title

Last Update : Mon Feb 16 12:39:21 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

100

110

120

130

140 150 160

70

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.1	50781	PASS
75	95	30	66	44.7	140904	PASS
95	95	100	100,	100.0	315477	PASS
96	95	5	9	6.4	20125	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	78.3	247104	PASS
175	174	4	9	8.0	19773	PASS
176	174	93	101	96.9	239509	PASS
177	176	5	9	6.3	15112	PASS

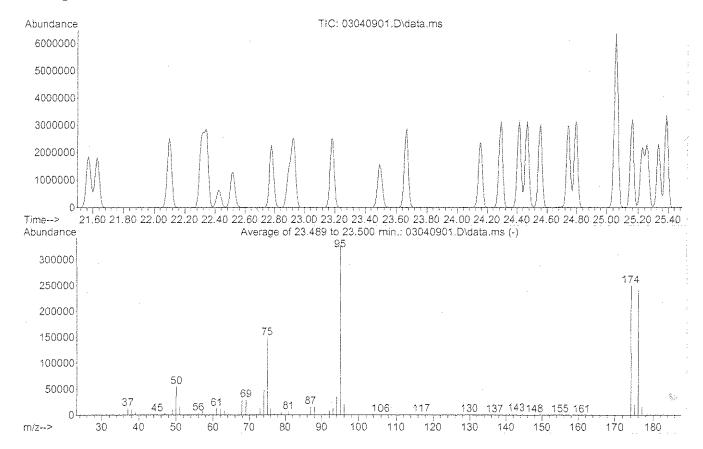
Page: 1

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD


Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.9	54877	PASS
75	95	30	. 66	45.7	148885	PASS
95	95	100	100	100.0	325611	PASS
96	95	5	9	6.5	21061	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	76.8	250176	PASS
175	174	4	9	7.9	19880	PASS
176	174	93	101	96.5	241323	PASS
177	176	5	9	6.4	15501	PASS
					يا بيا بيا بيا بيا بيا بيا بيا بيا بيا	

Em 34/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735 CAS Sample ID: P090304-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Sampling Media: Elsa Moctezuma

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 3/4/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
	·	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,I-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

VD = Compound was analyzed for, but not detected above the laboratory reporting limit.

[△]RL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

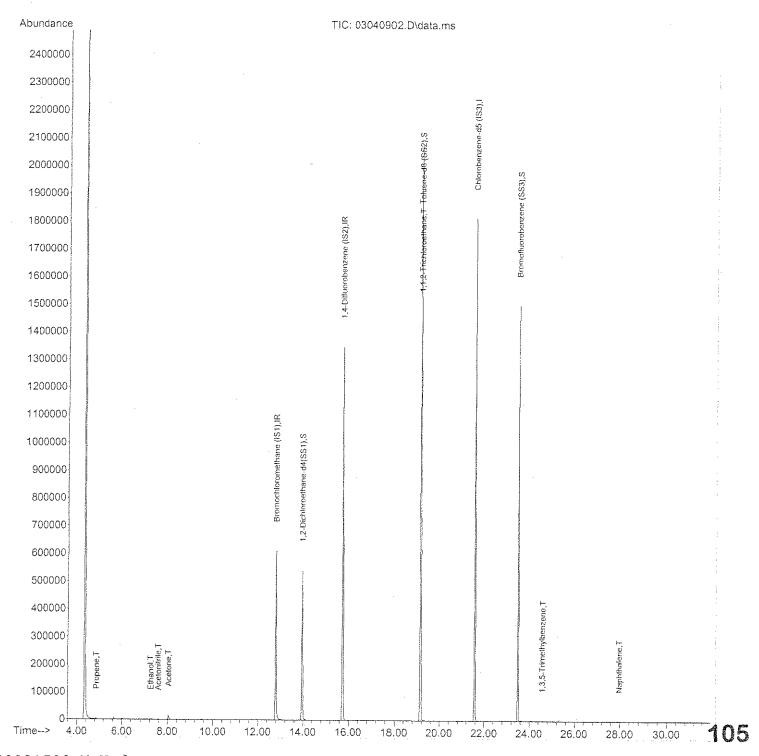
Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)

Misc : S20-03030904


ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)

Misc : S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.80	130	330101	25.000	na	- 0	.05
37) 1,4-Difluorobenzene (IS2)	15.75	114	1608551	25.000	nq	- 0	.03
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.57	82	791060	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25 000	13.95	65	547364	25.552	nq	- 0	.05
Spiked Amount 25.000			Recove	ery =	Ĭ02	.20%	
Spiked Amount 25.000 57) Toluene-d8 (SS2)	19.15	98	1879390	25.128	ng	- 0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recove	ery =	100	. 52%	
73) Bromofluorobenzene (SS3)	23.49	174	521466	24.477	ng	0	.00
Spiked Amount 25.000			Recove	ery =	97	.92%	
Target Compounds						Qva:	lue
2) Propene	4.87	42	1378	0.047	ng ng	#	90
3) Dichlorodifluoromethane	0.00	85	Ω	ND			
4) Chloromethane 5) Freon 114 6) Vinyl Chloride	0.00	50	0	N.D	•		
5) Freon 114	0.00	135	0	N.D	,		
6) Vinyl Chloride	0.00	62	0	N.D			
8) Bromomethane	0.00	94	0	N.D			
9) Chloroethane	0.00	64	0	N.D			
8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone	7.25	45	5369	0.327	ng		80
11) Acetonitrile	7.59	41	3408	0.084	ng		92
12) Acrotein	7.82	56	320	N.D	•		
14) Traightone fluoremethers	8.04	58	11566	0.602	ng	#	70
15) Toopropage	0.00	TOT	0	N.D	•		
16) Acrylonitrile	0.00	45	0	N.D	•		
17) 1 1-Diablaroothana	0.00	53	0	N.D	•		
18) tert-Butanol	0.00	96	Û	N.D	•		
14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride	0.00	59 04	Λ.7.1	M. M	•		
20) Allyl Chloride	0.00	/ 1	# / 1	N.D	•		
21) Trichlorotrifluoroethane	0.00	151	0	M.D	•		
22) Carbon Disulfide	9.96	76	1904	ת. או	•		
23) trans-1,2-Dichloroethene	0.00	61	1004	N.D			
24) 1,1-Dichloroethane	0.00	63	0	N.D			
25) Methyl tert-Butyl Ether	0.00	73	0	N.D			
26) Vinyl Acetate	0.00	86	0	N.D			
27) 2-Butanone	11.74	72	126	N.D.			
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.			
29) Diisopropyl Ether	0.00	87	0 .	N.D.			
30) Ethyl Acetate	0.00	61	Ô	N.D.			
31) n-Hexane	0.00	57	0	N.D.			106

19021709.M Wed Mar 04 10:13:09 2009

Jan 3/4/09

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05 Operator : EM

Sample : TO-15 Method Blank (1000ml)
Misc : S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T	. QIon	Response	Conc Units De	ev(Min)
32) Chloroform	0.00	83	0	N.D.	
32) Chioroform 34) Tetrahydrofuran	0.00		_	N.D.	
35) Ethyl tert-Butyl Ether	0.00	87	Ö	N.D.	
36) 1,2-Dichloroethane	0.00	- 62	0	N.D.	
38) 1,1,1-Trichloroethane	0.00	97		N.D.	
39) Isopropyl Acetate	0.00	61	Ö	N.D.	
40) 1-Butanol	15.19	56		N.D.	
41) Benzene	15.23	78	1064		
42) Carbon Tetrachloride	0.00	117	0	N.D.	
43) Cyclohexane	15.75	84	4.8.1	N.D.	
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.	
45) 1,2-Dichloropropane	. 0.00	63	Ω	N.D.	
46) Bromodichloromethane	0.00	83	Ω	N.D	
47) Trichloroethene	16.78	130	351	N.D.	
48) 1,4-Dioxane	0.00	88	Ω	N.D.	
49) Isooctane	0.00	57	0	N.D.	
49) Isooctane 50) Methyl Methacrylate	0.00	100	0	N.D.	
51) n-Heptane	0.00	71	0	N.D.	
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.	
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.	
54) trans-1,3-Dichloropropene	0.00	75	0	N.D	
55) 1,1,2-Trichloroethane	19.16	97	158143	8 .507 ng #	5
58) Toluene 59) 2-Hexanone	19.29	91	1722	N.D.	
59) 2-Hexanone	0.00	43	0	N.D.	
60) Dibromochloromethane	0.00	129	0	N.D.	
61) 1,2-Dibromoethane	0:00	107	0	N.D.	
62) Butyl Acetate	0.00	43	0	N.D.	
63) n-Octane 64) Tetrachloroethene	0.00	57	0	N.D.	
64) Tetrachloroethene	0.00	166	0	N.D.	
65) Chlorobenzene	0.00	112	0	N D	
66) Ethylbenzene	22.10	91	250	N.D.	
67) m- & p-Xylene	22.34	91	215	N.D.	
68) Bromoform			0	N.D.	
69) Styrene		104	117	N.D.	
70) o-Xylene			1011	N.D.	
71) n-Nonane	0.00	43	0	N.D.	
72) 1,1,2,2-Tetrachloroethane		83	0	N.D.	
74) Cumene	23.65	105		N.D.	
75) alpha-Pinene		93	0	N.D.	
76) n-Propylbenzene		91	789	N.D.	
77) 3-Ethyltoluene				N.D.	
78) 4-Ethyltoluene		105		N.D.	·
79) 1,3,5-Trimethylbenzene	24.57	105	3608	0.047 ng #	29 07

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)

Misc : S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Sta	ndards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-M 81) 2-Ethyl 82) 1,2,4-T 83) n-Decan 84) Benzyl 85) 1,3-Dic 86) 1,4-Dic 87) sec-But 88) p-Isopre 89) 1,2,3-T 90) 1,2-Dic 91) d-Limone 92) 1,2-Dib 93) n-Undec	ethylstyrene toluene rimethylbenzene e Chloride nlorobenzene nlorobenzene ylbenzene opyltoluene rimethylbenzene nlorobenzene ene como-3-Chloropr	0.00 24.79 25.07 25.49 25.24 25.27 25.34 25.59 0.00 25.59 25.34 0.00 0.00	118 105 105 57 91 146 105 119 105 146 68 157	0 1932 1297 951 1173 333 506 104 0 104 506 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		
94) 1,2,4-Ti 95) Naphtha	richlorobenzene lene	0.00	184	0 4536	N.D. 0. 045 ng	#	71
96) n-Dodec	ane bro-1,3-butadiene	27.90 0.00	57 225	519 0	N.D. N.D.		
	tylbenzene	25.08	119	. 437	N.D. N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Em 3/4/09

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of I

lient:

Haley & Aldrich, Inc.

lient Sample ID: Lab Control Sample

lient Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

Date Collected: NA

CAS Sample ID: P090304-LCS

est Code:

EPA TO-15

strument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

nalyst:

Elsa Moctezuma

impling Media:

6.0 L Summa Canister

Date Received: NA Date Analyzed: 3/04/09 Volume(s) Analyzed:

NA Liter(s)

est Notes:

			CAS			
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data Qualifier
	·	ng	ng		Limits	
75-01-4	Vinyl Chloride	25.5	22.0	86	57-132	
75-00-3	Chloroethane	25.8	24.5	95	68-123	
75-35-4	1,1-Dichloroethene	27.5	22.7	83	70-123	
15-34-3	1,1-Dichloroethane	26.8	25.7	96	72-130	
'1-55-6	1,1.1-Trichloroethane	26.5	25.3	95	69-127	

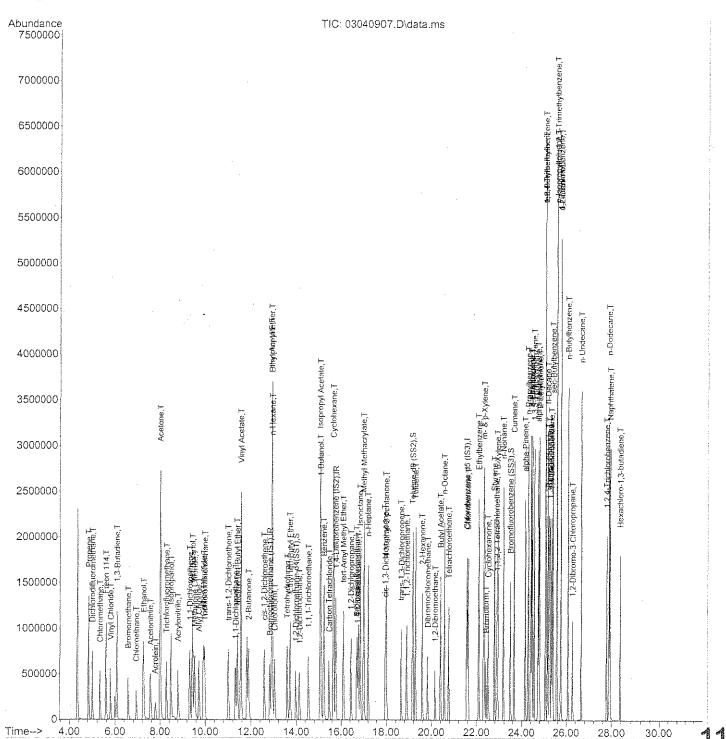
Verified By:_

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD


Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (1	Min)
1) Bromochloromethane (IS1)	12.82	130	322309	25.000	ng	- 0	.02
37) 1,4-Diffuorobenzene (182)	15.77	114	1549597	25.000	ng	0	.01
56) Chlorobenzene-d5 (IS3)	21.57	82	774690	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.98	65	526276	25.161	ng	- 0	.02
Spiked Amount 25.000			Recov	ery =	100	. 64%	
57) Toluene-d8 (SS2)	19.16	98	1813278	24.756	ng	0	.00
Spiked Amount 25.000			Recov	ery =	99	. 04왕	
73) Bromofluorobenzene (SS3)	23.49	174	Recov 514041	24.639	ng	0	.00
Spiked Amount 25.000			Recov	ery =	98	. 56%	
Target Compounds						Qva:	
	4.84		634407		ng		98
 Dichlorodifluoromethane 	5.00	85	850520	22.144	ng		99
4) Chloromethane 5) Freen 114	5.33	50	763378	22.558	ng		99
		135	462724	-22.852	ng		98
5) Freon 114 6) Vinyl Chloride	5.80	62	781506	21.989	ng		94
7) 1,3-Butadiene	6.08	54	781506 725915 443260	29.026	na		98
8) Bromomethane	6.58	94	443260	25.353	ng `		96
9) Chloroethane	6.93	64	395915	24.463	ng		95
10) Ethanol	7.27	45	1822782	113.612	nq		99
11) Acetonitrile	7.57	41	936105	23.684	ng		99
12) Acrolein	7.79	56	292556	26.508	ng		99
13) Acetone	8.01			104.681		#	
14) Trichlorofluoromethane	8.29	101	758246	23.949	ng		97
15) Isopropanol 16) Acrylonitrile 17) 1.1-Dichloroethene	8.49	45	1924606				96
16) Acrylonitrile	8.81	53	678418	26.543			99
m / / m / m D m O 1 1 2 0 2 0 0 0 1 1 0 1 1 0	~ . ~ ~		457168	22.739		#	
18) tert-Butanol	9.45	59	2053892	47.413			98
18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride	9.54	84	477440	22.219	ng	#	47
20) Allyl Chloride	9.73	41	765571	27.634 24.888	ng		73
21) Trichlorotrifluoroethane	9.99	151	363936	24.888	ng		95
	9.94		1773818	23.296	ng		99
23) trans-1,2-Dichloroethene	11.01	61	714346	24.146	~		77
24) 1,1-Dichloroethane	11.32	63	865309	25.672			97
25) Methyl tert-Butyl Ether	11.40	73	1376547	26.354			84
26) Vinyl Acetate	11.56	86		148.721		#	3
27) 2-Butanone	11.89	72	354841	30.151		#	28
28) cis-1,2-Dichloroethene	12.58	61	683113	23.972			73
29) Diisopropyl Ether	12.91	87	423522	25.707		#	52
30) Ethyl Acetate	12.91	61	400938	58,588			74
31) n-Hexane	12.93	57	914101	23.406	ng		8 4 1 .

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Inter	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32)	Chloroform	13.03	83	761758	24.682 ng		98
34)	Tetrahydrofuran	13.59	72	334644	26 976 na	#	51
35)	Ethyl tert-Butyl Ether	13.72	87	533362	25.166 ng	#	62
36)	1,2-Dichloroethane	14.14	62	590644	25.533 ng	16	97
38)	1,1,1-Trichloroethane	14.54	97	671686	25.294 ng		93
39)	Isopropyl Acetate	15.08	61	677881	57.027 ng	#	80
40)	1-Butanol	15.10	56	1108194	60.816 ng	П	85
41)	Benzene	15 24	77 Q	1965390	21 270 50		97
42)	Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane	15.47	117	579413	25 271 ng		98
43)	Cvclohexane	15.67	84	1590463	48 300 ng	#	64
44)	tert-Amvl Methyl Ether	16.11	73	1304878	24 627 ng	#	1
45)	1,2-Dichloropropane	16.45	63	508218	25.045 ng	TF	95
46)	Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane	16 70	83	622493	25.045 ng		96
47)	Trichloroethene	16.78	130	486608	20.010 mg		96
48)	1.4-Dioxane	16 73	88	411145	27.413 ng	#	70
49)	Isooctane	16 87	57	2245260	27.413 ng		97
50)	Methyl Methacrylate n-Heptane	17 03	100	419036	54 931 ng	#	78
51)	n-Hentane	17 22	71	549268	23 505 ng	11. #	
52)	n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene	17 96	75	769693	25.303 ng	#	98
53)	4-Methyl-2-pentanone	17 99	7.5 5.8	511168	20.120 ng		77
54)	trans-1,3-Dichloropropene						96
55)	1,1,2-Trichloroethane	18 90	97	455476	25.434 ng		98
58)	Toluene	19.29	91	2101017	23.136 ng		99
	2-Hexanone	19.59	43	1231992	30.574 ng		91
	Dibromochloromethane	19 83	129	513028	29.251 ng		96
	1,2-Dibromoethane	20 16	107	509579	25.820 ng		98
62)	Butyl Acetate	20.40	43	1434553	29.707 ng		95
	n-Octane			479879	22.906 ng	#	
		20.76	166	470482	21 961 ng	117	96
65)	Chlorobenzene	21.63	112	1293089	21.961 ng 22.801 ng		100
66)	Tetrachloroethene Chlorobenzene Ethylbenzene	22.10	91	2315057	23 688 ng		- 98
67)	m- & p-Xylene	22 24	0.7	3587528	4.77		99
	Bromoform	22.43	173	395324	28.183 ng		97
	Styrene	22.78	104	1424275	47.518 ng 28.183 ng 25.334 ng		99
	o-Xylene	22.93	91	1840488	23.959 ng		100
	n-Nonane	23.19	43	1120233	23.111 ng		90
	1,1,2,2-Tetrachloroethane	22.89	83	833802	27.102 ng		99
	Cumene	23.67	105	2314842	23.698 ng		98
	alpha-Pinene	24.16	93	1152211	26.284 ng		95
	n-Propylbenzene	24.29		2909839	23.901 ng		98
	3-Ethyltoluene	24.41	105		26.360 ng		99
	4-Ethyltoluene		105		25.795 ng		96
	1,3,5-Trimethylbenzene	24.56	105		25.164 ng		9812
, - ,		21.70	± ♥ ₽	+070044	20.104 119		7 OJ 1 6

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.75 24.80 25.06 25.16 25.23 25.26 25.33 25.39 25.57 25.58 25.75	118 105 105 57 91 146 146 105 119	Response 1053431 2289120 2007566 1205323 1811803 1009850 1029006 2614334 2446006 2035868 984001 879138	26.137 ng 25.168 ng 25.103 ng 25.185 ng 32.523 ng 23.724 ng 23.549 ng 24.986 ng 24.499 ng 25.478 ng 24.112 ng	97 96 96 77 99 99 98 99 98
92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene 96) n-Dodecane 97) Hexachloro-1,3-butadiene 98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	26.28	157 57 184 128 57 225 55	346831 1266419 215402 2603333 1285251 379479 704714 1955897 2198608	26.632 ng 29.553 ng 26.013 ng 29.667 ng 26.520 ng 24.914 ng 25.703 ng 24.640 ng 25.483 ng 26.648 ng	# 86 75 # 89 100 73 98 # 88 97 94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Copy of Calculations

Instructions for Data Validation-Method TO-15(SCAN)

1. Determination of Pressure Dilution Factor

Upon receipt at the laboratory the pressure or vacuum of the sample canisters is measured using a digital pressure gauge. The canisters are then pressurized with humidified zero air to approximately +3.5 psig (pounds per square inch gauge).

Pressure Dilution factor is calculated as:

$$PDF = \frac{P_f + 14.7}{P_t + 14.7}$$

 P_f final pressure in psig

 P_i initial pressure in psig

2. Validating Initial and Continuing Calibration Results

GC/MS target compound analysis is performed using internal standard quantitation. Three internal standard compounds (Bromochloromethane, 1,4-Difluorobenzene and Chlorobenzene-d5) are added to each aliquot of sample, blank, standard and duplicate at an amount of 25 nanograms(ng). Internal standard responses are used to calculate RRFs (relative response factors) as follows:

$$RRF = \frac{.4xC_{is}}{.4_{is}C_x}$$

A: area response of the analyte quantitation ion

Air area response of the corresponding internal standard quantitation ion

Cis internal standard concentration, ng

Cx analyte concentration, ng

The percent relative standard deviation (%RSD) for the five or six initial calibration points should be less than 30% (with a maximum of two analytes $\leq 10\%$) for the calibration to be considered valid and linear.

$$\%RSD = \frac{SD}{RRF}(100)$$

SD standard deviation

RRF average or mean RRF (ICAL)

Instructions for Data Validation-Method TO-15(SCAN)

The initial calibration is verified once per twenty-four hour analytical sequence with the analysis of a continuing calibration standard at one of the initial calibration levels (actual analyte concentrations of the CCV are the same as the corresponding concentrations in the initial calibration). The relative response factor of each target analyte from the daily continuing calibration standard is compared to the average relative response factor from the initial multipoint calibration. The percent difference (%D) of the initial and continuing calibration relative response factors is calculated as follows:

$$\%D = \left(\frac{\overline{RRF} - RRF \ cont}{\overline{RRF}}\right) (100)$$

RRF RRF cont average relative response factor from the initial calibration relative response factor from the daily continuing calibration standard

Note: the percent difference (%D) should be less than 30% for an acceptable continuing calibration standard.

3. Validating GC/MS Target Analyte Quantitation Results

Target analytes are measured in nanograms using internal standard quantitation as follows:

$$ng_x = \frac{A_x ng_x}{A_{ix} RRF}$$

ngx nanogram concentration of analyte x

 A_x area response of the analyte's quantitation ion

Air area response of the corresponding internal standard's quantitation ion

ngis internal standard amount, in nanograms

RRF average or mean RRFs (ICAL)

4. Calculation of μg/m³ (microgram per cubic meter) Results

Target compound results reported on the "Results of Analysis" form in units of $\mu g/m^3$ are calculated as follows:

$$\mu g/m^3 = \frac{(ng)(PDF)}{L}$$

ng nanograms of analyte (measured on the GC/MS quantitation report)

PDF pressure dilution factor (see equation 1)

Z sample aliquot in Liters

Instructions for Data Validation-Method TO-15(SCAN)

5. Conversion to ppb (parts per billion) Volume

$$C_{pphv} = C_x \left(\frac{24.46}{FW}\right)$$

formula weight of the target analytes (i.e. formula weight of Dichloromethane is 84.94; 1,2-Dichloropropane is 113)

24.46 molar volume of ideal gas at 25°C and 1 atmosphere

 C_{\star} final analyte concentration calculated in equation 4 (µg/m³)