REPORT ON REVISED SOIL VAPOR INVESTIGATION RESULTS REPORT ADDENDUM COOPERVISION, INC. SCOTTSVILLE, NEW YORK (VCA SITE #V00175-8)

by

Haley & Aldrich of New York Rochester, New York

for

New York State Department of Environmental Conservation Avon, New York

File No. 70665-017 Revised 11 September 2009 Original Date: 12 June 2009

Haley & Aldrich of New York 200 Town Centre Dr. Suite 2 Rochester, NY 14623-4264

> Tel: 585.359.9000 Fax: 585.359.4650 Haley Aldrich.com

HALEY& ALDRICH

Revised 11 September 2009 Original Date: 12 June 2009

File No. 70665-017

New York State Department of Environmental Conservation Division of Environmental Remediation Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Attention:

Mr. Frank Sowers, P.E.

Subject:

Revised Soil Vapor Investigation Results Report Addendum

CooperVision, Inc. Scottsville, New York (VCA Site #V00175-8)

Dear Mr. Sowers:

On behalf of CooperVision, Inc., Haley & Aldrich is pleased to submit this Soil Vapor Investigation (SVI) Results Report Addendum for the CooperVision Facility in Scottsville, New York. This work was pursued under a Voluntary Cleanup Agreement (VCA) between CooperVision, Inc, and the New York State Department of Environmental Protection (NYSDEC), which was executed by NYSDEC in May 2001 for the above referenced site ("the Site") and is an addendum to the 28 October 2009 Soil Vapor Investigation Results Report. This report summarizes the activities and results of those activities described in the following NYSDEC-approved work plans:

- 27 March 2008 Soil Vapor Investigation Work Plan
- 1 August 2008 Interim Remedial Measure (IRM) Work Plan (Soil Vapor Sampling portion only)
- 10 December 2008 Soil Vapor Investigation Work Plan Second Phase
- 4 February 2009 Sub Slab Vapor & Indoor Air Investigation Work Plan

This report contains the following:

- A site description summary and recent project history summary that relate to the vapor intrusion investigation activities,
- A summary of the vapor intrusion investigation activities and results.

This report is intended to conclude the investigation of potential offsite vapor impacts to the residential properties located adjacent to the east side of the Site. This report has been revised as per NYSDEC

New York State Department of Environmental Conservation Revised 11 September 2009 Page 2

comments dated 28 August 2009. This report subsequently supersedes the Soil Vapor Investigation Results Addendum dated 12 June 2009. Significant revisions are shown herein in italics.

Please contact the undersigned with any questions you may have.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Claire L. DeBergalis

Staff Environmental Scientist

Mark N. Ramsdell, P.E

Senior Engineer

Vincent B. Dick Vice President

CC.

Julia M. Guestella; New York State Department of Health

Christopher Marraro, Howry LLP Bernie Hallatt; CooperVision, Inc. Dennis Snyder; CooperVision, Inc. Tarun Patel; CooperVision, Inc. Carol Kaufman; CooperVision, Inc.

Enclosures

G:\Projects\70665\017 - VCA Closeout 2009-10\Revised VI Investigation Report\SVI Investigation Addendum\2009_0911_HANY_VI Investigation Rpt Add_Revised_F.doc

EXECUTIVE SUMMARY

Multiple phases of a vapor intrusion investigation occurred at the CooperVision property, adjacent eastern right-of-way, and on the adjacent eastern residential properties between April 2008 and March 2009. The investigation was in response to concentrations of 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), and 1,1-dichloroethane (1,1-DCA) existing in onsite groundwater well MW-204 above the New York State Ambient Water Quality Standards and Guidance Values (TOGS 1.1.1.). MW-204 is located on the eastern property line of the CooperVision Site (Figure 2). The purpose of the investigation was to evaluate whether or not concentrations of vapors from the contaminants of concern (1,1,1-TCA, 1,1,-DCE, 1,1-DCA, Chloroethane, and vinyl chloride) were migrating offsite to the east and potentially impacting the residential properties.

The investigation occurred in three stages with an Interim Remedial Measure (IRM) conducted inbetween the first and second stages as follows:

First Phase Soil Vapor Sampling (April 2008 - June 2008) - This stage consisted of a soil
vapor investigation at both shallow and deep intervals in the source area of groundwater
contamination and on the eastern property line of the Site as well as within the right-of-way of
Briarwood Lane. The first phase soil vapor points are shown on Figure 2.

The results of the first phase sampling indicated that concentrations of chlorinated compounds of concern in vapor were present along the property line and right-of-way; most notably in the vicinity of a natural gas utility line that traverses from the contaminant source area of the CooperVision property to the eastern property line where it meets the main gas utility line in the street on the east side of the property. An additional natural gas line connects to that main line and extends towards the residential properties to the east. Based on those results, it appeared that the natural gas utility line was *potentially* acting as a preferential pathway for vapor migration (Figure 2).

 Interim Remedial Measure (August 2008 - October 2008) - As described in the NYSDECapproved IRM work plan, dated 1 August 2008, the IRM consisted of the installation of soil/bentonite/cement (SBC) trench collars in five locations along the natural gas utility line and on a water line to act as barriers to vapor migration.

Following installation of the collars, additional soil vapor sampling was conducted and was used to evaluate the effectiveness of the collars. Though concentrations of vapors on the property line and right-of-way decreased, they did not decrease to non-actionable levels.

Second Phase Soil Vapor Sampling (December 2008) - This stage consisted of the installation
and sampling of additional soil vapor points on the CooperVision property and on the
residential properties to the east. The second phase soil vapor points are shown on Figure 2.

The results of the second phase sampling indicated that chlorinated compounds of concern were detected in vapor on the adjacent eastern property, though at much lower concentrations than previously seen on the CooperVision property and in the right-of-way. This was likely a result of a combination of factors including distance from the source area of contamination, distance away from the utility line, *temporal and seasonal variability*, and the *potential* effectiveness of the trench collars previously installed that were acting as a barrier to vapor migration.

4. Indoor Air & Sub-Slab Vapor Sampling (January 2009 - March 2009) - In order to evaluate the potential presence of vapor from the contaminants of concern in the residential buildings themselves, indoor air and sub-slab vapor sampling occurred within eight of the residential units on the east side of the CooperVision property.

There were no vapor detections above laboratory detection limits of the contaminants of concern within the indoor air or sub-slab vapor samples from the eight sampled locations.

In general, the soil vapor intrusion investigation indicated that though vapor concentrations of the contaminants of concern were present on the CooperVision property boundary and within the right-of-way, they had not adversely impacted the residential properties.

TABLE OF CONTENTS

			Page
LIST	OF TA	E SUMMARY ABLES GURES	i v v
1.	INTR	RODUCTION	1
	1.1 1.2	Project Description Recent Activities	1 1
2.	SOIL	L VAPOR INVESTIGATION - FIRST PHASE	3
	2.1 2.2 2.3	Point Location Sampling and Sample Locations Sampling Results 2.3.1 Source Area Points (SV-1 and SV-2) 2.3.2 Property Line (SV-3, SV-4, SV-5) and Right-of-Way Points (SV-6, SY-8)	3 4 4 V-7, and 4
3.	SOIL	L VAPOR INVESTIGATION - INTERIM REMEDIAL MEASURE	6
	3.1 3.2	Sampling and Sample Locations Sampling Results	6
4.	SOIL	L VAPOR INVESTIGATION - SECOND PHASE	8
	4.1 4.2 4.3	Soil Vapor Point Installation 4.1.1 Point Location 4.1.2 Installation Method Soil Vapor & Ambient Air Sample Collection Sampling Results 4.3.1 Onsite and Right-of-Way Points (SV-3, SV-6, SV-101, SV-108) 4.3.2 Offsite Locations (SV-102, SV-103, SV-104, SV-106, SV-107)	8 8 8 9 9 9
5.	INDO	OOR AIR AND SUB-SLAB VAPOR INVESTIGATION	11
	5.1 5.2 5.3 5.4 5.5 5.6	Sampling Locations Pre-Sampling Inventory Sub-Slab Residential Vapor Sampling 5.3.1 Point Installation 5.3.2 Sub-slab Sampling Residential Indoor Air Sampling Outdoor Ambient Air Sampling Sampling Results	11 11 12 12 12 13 13

TABLE OF (continued)	CONTEN	NTS	
(continued)			Page
	5.6.1 5.6.2	Analytical Results Summary Data Usability	13 14
6. WAS	TE MAN	NAGEMENT	15
7. CON	CLUSIO	NS	10
8. CER	TIFICAT	ION	12
REFERENC	ES		18
APPENDIX APPENDIX APPENDIX	B – Field C – Pre-S D – Labo	Vapor Point Installation Reports – Second Phase Sampling Forms Sampling Inventory Forms ratory Analytical Data Usability Summary Report	
APPENDIX	F - Waste	Disposal Documentation	

LIST OF TABLES

I Summary of Volatile Gases in Soil Vapor II Summary of Volatile Gases in Ambient Air (During Soil Vapor Sampling) III Summary of Volatile Gases in Indoor Air and Sub-Slab Vapor IV Summary of Volatile Gases in Ambient Air (During Indoor Air and Sub-Slab Sampling)	Table No.	Title
 III Summary of Volatile Gases in Indoor Air and Sub-Slab Vapor IV Summary of Volatile Gases in Ambient Air (During Indoor Air and Sub-Slab 	I	Summary of Volatile Gases in Soil Vapor
IV Summary of Volatile Gases in Ambient Air (During Indoor Air and Sub-Slab	II	Summary of Volatile Gases in Ambient Air (During Soil Vapor Sampling)
	III	Summary of Volatile Gases in Indoor Air and Sub-Slab Vapor
	IV	

LIST OF FIGURES

Figure No.	Title
1	Project Locus
2	Site Plan
3	Detail - Indoor Air & Sub-Slab Vapor Points

1. INTRODUCTION

1.1 Project Description

The CooperVision facility is located at 711 North Road in Scottsville, New York on an approximately 5.4 acre parcel of land (See Figures 1 and 2). As summarized in past submittals to the NYSDEC, volatile organic compounds (VOCs), primarily 1,1,1-trichloroethane (1,1,1-TCA) have been found in soil and groundwater on some portions of the property.

CooperVision, Inc. applied to the NYSDEC for participation in New York State's Voluntary Cleanup Program (VCP) for the CooperVision facility, and was deemed eligible to be a volunteer in 18 March 1999 (investigation VCA). A separate remediation VCA was initiated on 22 March 2001.

1.2 Recent Activities

The Draft FER and Operations Maintenance and Monitoring (OM&M) Plan, both dated 7 May 2007 were submitted to the NYSDEC for review in June 2007. The NYSDEC provided comments to the documents in a letter dated 21 August 2007 to which Haley & Aldrich responded on behalf of CooperVision in a letter dated 11 October 2007. A meeting with the NYSDEC, the New York State Department of Health (NYSDOH), CooperVision, and Haley & Aldrich followed on 30 October 2007. The purpose of the meeting and associated correspondence was to discuss the remaining two main NYSDEC concerns with the project:

- 1. Residual source area concentrations.
- 2. The potential for offsite migration of contaminated groundwater and vapor as a result of contaminant concentrations detected in MW-204 on the easternmost side of the Site.

Groundwater monitoring has occurred at the Site since 1997. In October 2006, concentrations of chlorinated compounds, 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), and 1,1,1-TCA were detected in MW-204, the easternmost downgradient well located along the eastern property boundary (see Figure 2) at levels higher than what had historically been detected in this well. Haley & Aldrich attributed these increases to the presence of lower groundwater elevations than was normal (due to a summer with low precipitation). Since the 2006 sampling and results, the chlorinated compound detections have decreased to low ppb levels; consistent with what otherwise historically had been detected in this well.

Even though the chlorinated compound concentrations have decreased, the NYSDEC and NYSDOH felt it was prudent to evaluate the soil vapor conditions in this general area of the groundwater plume.

To address the NYSDEC's concerns, a first phase soil vapor investigation was conducted on the CooperVision Site in May and June of 2008 as per the 27 March Soil Vapor Investigation Work Plan. The results of the first phase of investigation were summarized in the Soil Vapor Investigation Results Report dated 28 October 2008, and are briefly summarized herein in Section 2.

The remainder of this report summarizes the activities and results of the soil vapor intrusion related activities that occurred following the first phase of soil vapor investigation until the conclusion of the soil vapor investigation as a whole. Those activities included:

- Confirmatory Soil vapor sampling performed following installation of the IRM (Soil-Bentonite-Cement (SBC) trench collars).
- A second phase soil vapor investigation, which included offsite soil vapor sampling to the east of the CooperVision Site.
- Indoor air and sub-slab vapor sampling within the residential buildings to the east of the CooperVision Site.

2. SOIL VAPOR INVESTIGATION - FIRST PHASE

Fourteen (14) permanent soil vapor points were installed at eight (8) locations on the Site and in the adjacent eastern right-of-way on 29 April 2008 by Nothnagle Drilling of Scottsville, New York. The points were sampled on 1 May and a confirmatory re-sampling event was conducted on 12 and 16 June 2008. In addition, ambient air sampling was conducted during each day that soil vapor samples were collected for both the initial and confirmatory sampling events.

Soil vapor point installation, soil vapor sampling, and ambient are sampling were conducted in conformance to the New York State Department of Health Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 (NYSDOH Guidance).

The first phase of the soil vapor investigation is summarized herein for reference and context. Additional information regarding soil vapor point installation and field activities associated with the first phase of the soil vapor investigation is included in the 28 October 2008 Soil Vapor Investigation Results Report.

2.1 Point Location

The locations of the soil vapor points installed during the first phase are described below.

One soil vapor point was installed in two source area locations as shown on Figure 2:

- **SV-1:** 3 ft. bgs.
- SV-2: 3 ft. bgs.

Though high groundwater was also present along the property line and right-of-way, nested points were installed at each of the following locations with the understanding that the deeper points could be sampled when the groundwater was lower due to seasonal fluctuations. Two nested soil vapor points were installed at the following property line and right-of-way locations as shown on Figure 2:

- SV-3S/SV-3D: 2.7 ft. bgs and 4.7 ft. bgs, respectively.
- SV-4S/SV-4D: 4.3 ft. bgs and 6.3 ft. bgs, respectively.
- SV-5S/SV-5D: 2.7 ft. bgs and 4.7 ft bgs, respectively.
- SV-6S/SV-6D: 3.0 ft. bgs and 4.8 ft bgs, respectively.
- SV-7S/SV-7D: 3.0 ft. bgs and 5.0 ft. bgs, respectively.
- SV-8S/SV-8D: 3.0 ft. bgs and 5.0 ft. bgs, respectively.

2.2 Sampling and Sample Locations

Initial soil vapor samples were collected from select soil vapor points on 1 May 2008, at least 24 hours after the soil vapor points were installed. A confirmatory re-sampling event was conducted on 12 and 16 June 2008. In addition, an ambient air sample was collected from an upwind location each day that soil vapor sampling occurred. Sampling procedure is described in the 28 October 2008 Soil Vapor Investigation Results Report. The samples were collected in conformance with the 27 March 2008 Soil Vapor Investigation Work Plan, as approved, and the NYSDOH Guidance.

Due to high groundwater in the vicinity of the CooperVision facility, not all of the points could be sampled during each of the sampling events as the point screens were located below groundwater. The following points were sampled during the May 2008 and June 2008 sampling events.

- Initial sampling May 2008: SV-1, SV-2, SV-3S, SV-4S, SV-5S, SV-6S, and SV-7S
- Confirmatory sampling June 2008: SV-1, SV-2, SV-3S, SV-3D, SV-4S, SV-4D, SV-5S, SV-5D, SV-6S, SV-6D, SV-7S, and SV-8S

The soil vapor samples were submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for analysis of target compounds using EPA Method TO-15. The target compound list consisted of 1,1-DCA, 1,1-DCE, 1,1,1-TCA, chloroethane, and vinyl chloride. The ambient air sample was also submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for VOCs using EPA Method TO-15.

2.3 Sampling Results

The analytical results are briefly summarized below. Refer to Tables I and II for a complete summary of the analytical data. The laboratory analytical data reports are included in Appendix D.

2.3.1 Source Area Points (SV-1 and SV-2)

As shown on Table I, the results for SV-1 and SV-2 were variable. One would have expected the results from SV-1 and SV-2 to be similar because those sampling points are located relatively near one another in the source area. However, the results were not consistent with each other. SV-2 had a higher result in the May sampling event compared with SV-1 and the exact opposite was true during the June sampling event. We suspected that there are two potential reasons for these results.

- SV-1 and SV-2 were likely within the radius of influence of the sub-slab depressurization system installed within the CooperVision building. The negative pressure gradient generated beneath the ground surface as a result of the system may have produced the inconsistent results.
- 2. The samples may have been inadvertently switched either in the laboratory or field during either sampling event (review of field data and conversations with laboratory personnel did not indicate this had occurred, though subsequent sampling in October 2008 (see Section 3 and Table I) indicated that this was the likely reason for the variability).

One of the original purposes of sampling those points (other than assessing the conditions nearer the source area) was to use them in comparison with the April 2008 groundwater analytical data to determine a site-specific vapor attenuation factor. Because the results were so variable however, they were not be used for this purpose.

2.3.2 Property Line (SV-3, SV-4, SV-5) and Right-of-Way Points (SV-6, SV-7, and SV-8)

In general, the results of the sampling along the property line and the right-of-way showed a decreasing trend from north to south, with SV-3 and SV-6 indicating the highest concentration

of VOC impacted vapors. Also, there generally appeared to be higher concentrations of vapor in the deeper points than the shallower points which would be consistent with vapor generating from affected groundwater at depth.

However, based on the groundwater data collected thus far, there was not compelling evidence that groundwater was the proximate source for the vapor detections observed at the property line, and following additional evaluation, the most compelling reason for the high VOC vapor concentrations present in SV-3 and SV-6 was suggested to be the presence of underground utilities that originate from the source area, transect the Site, and connect to the main line in the right-of-way and split again to connect to the adjacent eastern properties (See Figure 2).

Based on the existing groundwater data and the determined location of utility lines, it was concluded that the existing natural gas pipeline bedding/utility trench may be acting as a preferential vapor or groundwater conduit and following the circuitous route presented by the utility trenches to the eastern properties. Refer to the 28 October 2008 Soil Vapor Investigation Report for additional information regarding this evaluation.

In order to address the utilities as being a potential vapor migration pathway, an Interim Remedial Measure (IRM) Work Plan was submitted to the NYSDEC on 1 August 2008, which is described briefly in the Section 3. The IRM included an additional round of soil vapor sampling of existing points which is also described in Section 3 below.

3. SOIL VAPOR INVESTIGATION - INTERIM REMEDIAL MEASURE

The IRM Work Plan was submitted to the NYSDEC on 1 August 2008 to address the utilities as a potential vapor migration pathway to the residential properties east of the Site. The IRM generally consisted of installing Soil-Bentonite-Cement (SBC) trench collars in five locations along the existing natural gas and water lines present on both the CooperVision property and the adjacent eastern right-of-way. The locations of the SBC trench collars are shown on Figure 2.

Also included as part of the IRM was a third round of soil vapor sampling at the existing soil vapor points (those installed in the first phase).

3.1 Sampling and Sample Locations

Soil vapor samples were collected from select soil vapor points on 14 October 2008, concurrently with regularly scheduled semi-annual groundwater sampling. The samples were collected in conformance with the 27 March Soil Vapor Investigation Work Plan (referenced in the 1 August IRM Work Plan), as approved, and the NYSDOH October 2006 Guidance. Samples were collected from all points installed as part of first phase soil vapor sampling except SV-7D, SV-8S, and SV-8D due to the presence of high groundwater.

Prior to sampling, each of the soil vapor points were briefly evacuated to purge any stagnant vapors within the probe. Additionally, during the purging process, a tracer compound (helium) was released around the probe at the ground surface, and the vapor point was then screened for helium vapors to analyze for potential short-circuiting and to ensure that the surface seal was intact (helium test). Each of the points passed the helium test showing no short-circuiting of vapors.

The soil vapor samples were collected in dedicated, laboratory-supplied "batch certified clean" stainless steel Summa canisters at rates no greater than 0.2 L/min (i.e., an estimated 30 minutes completion time to fill one 6L Summa canister), with an average target fill-time of approximately 2 hours per canister. Some samples had to be sampled twice due to faulty cans and/or flow controllers.

The samples were submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for analysis of target compounds using EPA Method TO-15. The target compound list consisted of 1,1-DCA, 1,1-DCE, 1,1,1-TCA, Chloroethane, and vinyl chloride.

Concurrent with soil vapor sampling, one ambient air sample was collected at the CooperVision Site at one upwind location. The sample was collected using a "batch certified-clean" 6.0-liter canister equipped with an 8-hour flow controller. The ambient air sample was also submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for VOCs using EPA Method TO-15.

3.2 Sampling Results

The results of the soil vapor sampling conducted in October 2008 are summarized in Tables I and II. In general, compared to the results from the May and June sampling events, the following were noted:

 The soil vapor concentrations in both shallow and deep points at location SV-3 had decreased by almost half.

- The vapor concentration in the deep point at SV-6 decreased significantly, though the vapor concentrations in the shallow point at SV-6 increased.
- 3. The vapor concentrations decreased slightly overall in the deep point at SV-4, the deep point at SV-5, and the shallow point at SV-7 (to non-detect).

Overall, the utility trench collars that were installed under the 1 August 2008 IRM Work Plan appeared to potentially be a contributing factor to the notable soil vapor concentration decreases between the June 2008 and October 2008 sampling events. While other factors may have also contributed to the decrease in vapor concentrations, including seasonal and temporal variability, the findings supported the site model that the utility lines, particularly the natural gas line, provided a preferential pathway for vapor. While the concentrations of soil vapor did decrease following installation of the trench collars, they did not decrease to below actionable levels. As a result, the second phase of soil vapor sampling was conducted, which included soil vapor sampling on the adjacent eastern properties.

4. SOIL VAPOR INVESTIGATION - SECOND PHASE

The second phase of the soil vapor sampling occurred in response to the soil vapor sampling results from October 2008. This phase included additional installation of soil vapor sampling points both on the CooperVision property and on the adjacent properties to the east of the Site with the purpose of further understanding the nature and extent of the potential vapor plume, and to further understand the impact that the utility lines may have been having on the migration of the vapor. The installation and sampling activities took place in between 23 and 30 December 2008 and are described in the sections below. The work was completed in accordance was with the 10 December Soil Vapor Investigation Work Plan – Second Phase. Vapor point installation reports are included in Appendix A, and field sampling forms are included in Appendix B.

4.1 Soil Vapor Point Installation

Sixteen (16) temporary soil vapor points were installed at eight (8) locations on the Site and on the adjacent eastern residential properties by Nothnagle Drilling of Scottsville, New York. Soil vapor point installation was overseen by Haley & Aldrich and NYSDEC representatives.

Soil vapor point installation was conducted in conformance to the NYSDOH Guidance.

4.1.1 Point Location

The locations of the installed soil vapor points are described below. Based on what was observed during the installation of the first phase soil vapor points, high groundwater was anticipated to be present during installation of the second phase points. Regardless, as with the first phase, nested points were installed at each location with the understanding that the deeper points could be sampled when the groundwater was lower due to seasonal fluctuations. Two nested soil vapor points were installed in the locations shown on Figure 2, and to the following depths:

- SV-101S/SV-101D: 3 ft. bgs and 5 ft. bgs, respectively.
- SV-102S/SV-102D: 3.5 ft. bgs and 5.5 ft. bgs, respectively.
- SV-103S/SV-103D: 3 ft. bgs and 5 ft bgs, respectively.
- SV-104S/SV-104D: 4 ft. bgs and 6 ft bgs, respectively.
- SV-105S/SV-105D: 3.5 ft. bgs and 6 ft. bgs, respectively.
- SV-106S/SV-106D: 3 ft. bgs and 6 ft. bgs, respectively.
- SV-107S/SV-107D: 4 ft. bgs and 7 ft. bgs, respectively.
- SV-108S/SV-108D: 4.2 ft. bgs and 5.8 ft bgs, respectively.

4.1.2 Installation Method

Each sample point was installed in accordance with the 10 December Soil Vapor Investigation Work Plan – Second Phase, as approved, and the October 2006 NYSDOH guidance Figure 2.2. Each point location was installed using a direct push, GeoProbe rig. The depths of the points were determined in the field based on the depth of groundwater. Two and one quarter inch (2.25 in.), woven steel wire screens attached to Teflon tubing was installed in each sample point. The points were then backfilled with quartz sand allowing a 1 to 2 foot length sampling zone, then filled to 1 foot below the ground surface using hydrated bentonite.

The soil vapor points were sealed at the ground surface with 1 foot of concrete to prevent any inflow from ambient surface air. Each soil vapor point opening was capped and encased and secured in a bolted cast aluminum flush-mount roadway box. The soil vapor point installation including the surface seal installation method was observed and approved in the field by NYSDEC personnel.

4.2 Soil Vapor & Ambient Air Sample Collection

Soil vapor samples were collected from select soil vapor points on 30 December 2008. The samples were collected in conformance with the 10 December Soil Vapor Investigation Work Plan – Second Phase, as approved, and the NYSDOH Guidance. Samples were planned to be collected from all of the newly installed 100-series vapor points as well as from the vapor point couplets at SV-3, SV-5, SV-6, and SV-8 in order to provide a concurrent sample set from those previously sampled locations and further data on the performance of the SBC trench collars. Ultimately, due to high groundwater in some locations, samples were only collected from the previously-existing and new vapor points noted on the table below.

Points Sampled	Point planned to be sampled, but could not be due to high groundwater	Points not planned to be sampled			
101S, SV-102S, SV-102D,	SV-3D, SV-5S, SV-5D, SV-8S, SV-8D, SV-101D, SV-103D, SV-105S, SV-105D, SV-106D, SV-107D				

Soil vapor samples were collected in a manner consistent with previous sampling events (described in Section 3.1 above), and in accordance with the NYSDOH Guidance.

The samples were submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for analysis of target compounds using EPA Method TO-15. The target compound list consisted of 1,1-DCA, 1,1-DCE, 1,1,1-TCA, Chloroethane, and vinyl chloride.

Concurrent with soil vapor sampling, one ambient air sample was collected at the CooperVision Site at one upwind location. The sample was collected using a "batch certified-clean" 6.0-liter canister equipped with an 8-hour flow controller. The ambient air sample was also submitted to Columbia Analytical Services Air Lab in Simi Valley, CA for VOCs using EPA Method TO-15.

4.3 Sampling Results

The analytical results are briefly summarized below. Refer to Tables I and II for a complete summary of the analytical data. The laboratory analytical data reports are included in Appendix D.

4.3.1 Onsite and Right-of-Way Points (SV-3, SV-6, SV-101, SV-108)

Since the sampling event prior (October 2008), the concentrations of contaminants of concern in SV-3 and SV-6, both shallow and deep, decreased markedly as described below:

Shallow Points:

The concentrations of nearly all of the contaminants of concern in SV-3S decreased by an order of magnitude or more. In SV-6S, the concentrations a majority of the contaminants of concern decreased by 2 to 5 times what was previously detected in October 2008.

Deep Points:

Concentrations of the contaminants of concern were either not detected or decreased by approximately half in SV-6D since the previous sampling event.

The substantial decrease in concentration of the contaminants of concern in SV-3 and SV-6, both located in close proximity to the natural gas utility line, suggest that the SBC trench collars installed on that line *may have contributed to* mitigating soil vapor migration from the Site to the adjacent properties to the east.

SV-101 and SV-108 was sampled for the first time in December 2008, and were intended to be used to define the northern (SV-101) and southern (SV-108) boundary of the vapor plume. Contaminants of concern were not detected in SV-101S (SV-101D could not be sampled due to high groundwater). 1,1,1-TCA was detected at low levels in SV-108S. 1,1,1-TCA was also detected in SV-108D one order of magnitude higher that SV-108S. A low level detection of 1,1-DCA was also present in SV-108D. The higher contaminant detections in the deeper sample is consistent with the assumption that vapor is generating from affected groundwater at depth.

4.3.2 Offsite Locations (SV-102, SV-103, SV-104, SV-106, SV-107)

Detections of the contaminants of concern were substantially less than what was seen on the property boundary and in the right-of-way. Vinyl chloride, Chloroethane, and 1,1-DCA were not detected in any of the offsite points sampled. 1,1-DCA was detected at a low level in SV-104D. 1,1,1-TCA was detected in the shallow samples between non-detect and 21 ug/m³, and was detected in deep samples between 2.8 ug/m³ and 27 ug/m³.

The low level detections indicated that vapors from the CooperVision facility were migrating onto the adjacent properties. At the request of the NYSDOH and the NYSDEC a sub-slab and indoor air investigation was conducted within the six apartment buildings closest to SV-3 and SV-6 to determine if migrating soil vapors were impacting the adjacent residences. Information pertaining to that investigation is described in Section 5 below.

5. INDOOR AIR AND SUB-SLAB VAPOR INVESTIGATION

The indoor air and sub-slab vapor investigation occurred in response to concerns of potential soil vapor migration to the adjacent residential properties (North Road Townhomes and Briarwood Place). The sub-slab vapor point installation and sampling activities took place in three events 28-30 January 2009, 8-10 February 2009, and 25-27 February 2009 as per access agreements with property owners. The work was completed in accordance with the 4 February 2009 Indoor Air Investigation Work Plan and in conformance with the NYSDOH Guidance. Note that due to access restrictions, the 28-30 January sampling event occurred before the Work Plan was completed and approved.

5.1 Sampling Locations

The below described work scope was completed in connection with the indoor air investigations on the bottommost level at the following locations:

North Road Townhomes (sampled 25-27 February 2009):

- Unit #705-1 (Basement)
- Unit #709-2 (First Floor No basement present)

Briarwood Place (sampled 8-10 February 2009, except where noted):

- Unit #2 (Utility Closet)
- Unit #8 (Basement)
- Unit #10 (Basement) (sampled 28-30 January 2009)
- Unit #16 (Utility Closet)
- Unit #60 (Basement)
- Unit #64 (Utility Closet)

The above-listed locations are shown on Figure 3.

5.2 Pre-Sampling Inventory

A pre-sampling survey consisting of a building inspection and product inventory as described in the 4 February 2009 Indoor Air Investigation Work Plan was completed prior to sub-slab and indoor air sampling in each of the units sampled. Inventory forms are included in Appendix C.

The building inventory was used to identify potential VOC sources from interior materials (e.g., residential construction materials, household products) that may affect the sample analysis. If a chemical known to contain site-specific compounds of concern was identified in the residence (e.g. products containing 1,1,1-TCA or other target compounds), that product was placed in containment for the duration of the testing and then replaced afterward.

Although there was no control over activities conducted in the residences throughout the sampling duration, a reasonable attempt was made to select a sampling location away from VOC sources inside the structure and avoiding resident activities, to mitigate analytical interference to the extent feasible.

5.3 Sub-Slab Residential Vapor Sampling

5.3.1 Point Installation

A temporary soil vapor point was installed in each of the locations noted in Section 5.1 above. Where there was a basement present, the point was installed beneath the basement slab (approximately 2 inches). For locations where there was no basement, including the utility closets, the point was installed beneath the first floor slab. The locations of the sub-slab points were determined based upon residence construction, foundation type, information concerning utilities, and discussions/access from the property owners.

The points were constructed of inert tubing of approximately 1/8 inch in diameter. The sampling points were sealed at the surface using hydrated bentonite to prevent infiltration of indoor air during sampling.

5.3.2 Sub-slab Sampling

Twenty-four hours after installation of the sub-slab points, sub-slab vapor sampling was conducted in accordance with the NYSDOH Guidance at each location as follows:

- The sub-slab vapors were briefly evacuated to purge any stagnant vapors from within the point (approximately three probe volumes were purged). During the purging process, Helium tracer gas was released around the point at the ground surface, and a helium detector was used at the vapor point to assess potential short-circuiting and ensure the surface seal was intact. Purging occurred at a rate of less than 0.2 L/m. All points passed the tracer gas test and were found to have adequate surface seals.
- Samples were collected immediately after purging using dedicated, laboratory-supplied "batch certified clean" stainless steel SUMMA® canisters with dedicated flow controllers. The cans had an average target fill time of approximately 24-hours per canister. Initial and final vacuum measurements were documented during sampling. Field forms are included in Appendix B.
- The samples were shipped at ambient temperature under a chain of custody to Columbia Analytical Services Air Lab in Simi Valley, California, with the exception of the sample from Briarwood Place Unit #10, which was submitted to Columbia Analytical Services in Rochester, New York. The samples were analyzed for target VOCs via EPA Method TO-15 and TO-15 SIM. The target list consisted of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, Chloroethane, and vinyl chloride, consistent with what was analyzed for previously in soil vapor, and the compounds detected in groundwater at the CooperVision property line. The SIM Method was used for some compounds (e.g. Vinyl Chloride) to allow the laboratory to achieve detection limits consistent with what is required by the NYSDOH Guidance.
- After completion of the sub-slab vapor sampling, the soil vapor point was removed, and the location was sealed using cement.

5.4 Residential Indoor Air Sampling

Concurrent with sub-slab vapor sampling, an indoor air sample was collected in the basement level, first floor, or utility area of each unit sampled in accordance with the NYSDOH Guidance as follows:

- Samples were collected using dedicated, laboratory-supplied "batch certified clean" stainless steel SUMMA® canisters with dedicated flow controllers. The cans had an average target fill time of approximately 24-hours per canister. Initial and final vacuum measurements were documented during sampling. Field forms are included in Appendix B.
- The canisters were placed roughly 3-5 feet above floor level, to approximate the breathing zone of residents. If a sump was present, the canister was placed in the general vicinity of the sump.
- The samples were shipped at ambient temperature under a chain of custody to Columbia Analytical Services Air Lab in Simi Valley, California, with the exception of the sample from Briarwood Place Unit #10, which was submitted to Columbia Analytical Services in Rochester, New York. The samples were analyzed for target VOCs via EPA Method TO-15 and TO-15 SIM. The target list consisted of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, Chloroethane, and vinyl chloride, consistent with what was analyzed for previously in soil vapor, and the compounds detected in groundwater at the CooperVision property line. The SIM Method was used for some compounds (e.g. Vinyl Chloride) to allow the laboratory to achieve detection limits consistent with what is required by the NYSDOH Guidance.

5.5 Outdoor Ambient Air Sampling

Concurrent with sub-slab vapor and indoor air sampling, one ambient air sample was collected from an upwind outdoor location during every day sampling was conducted. As with the sub-slab and indoor air samples, ambient air samples were collected using "batch certified clean" 6-Liter SUMMA* canisters equipped with an integrated flow controller over a 24-hour period. Initial and final vacuum measurements were documented during sampling. Field forms are included in Appendix B.

The samples were shipped at ambient temperature under a chain of custody to Columbia Analytical Services in Simi Valley, California, with the exception of the sample from Briarwood Place Unit #10, which was submitted to Columbia Analytical Services in Rochester, New York. The samples were analyzed for target volatile organic compounds (VOCs) via EPA Method TO-15 and TO-15 SIM. The target list consisted of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, Chloroethane, and vinyl chloride, consistent with what was analyzed for previously in soil vapor, and the compounds detected in groundwater at the CooperVision property line. The SIM Method was used for some compounds (e.g. – Vinyl Chloride) to allow the laboratory to achieve detection limits consistent with what is required by the NYSDOH Guidance.

5.6 Sampling Results

5.6.1 Analytical Results Summary

Laboratory results are summarized in Table III and Table IV and the laboratory analytical data is included in Appendix D. In summary, target VOCs, (vinyl chloride, Chloroethane, 1,1-DCE, 1,1-DCA, and 1,1,1-TCA, were not detected above laboratory reporting limits. According to the Soil Vapor/Indoor Air Matrices included as part of the NYSDOH Guidance, no further

action is necessary with respect to vapor intrusion monitoring or mitigating with in the adjacent residential properties.

5.6.2 Data Usability

The indoor air, sub-slab, and ambient air data were evaluated in accordance with the NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)," dated September 1997, and the United States Environmental Protection Agency (USEPA) "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008), and "National Functional Guidelines for Inorganic Data Review, Final" (EPA 540-R-01-008).

A review of the data indicated that all data generated during the indoor air investigation activities were properly analyzed by the laboratories, and the analytical results were found to be compliant with the data quality objectives for the project and 100% usable. The data usability summary report is included in Appendix E.

6. WASTE MANAGEMENT

One drum of soil cuttings was generated during each phase of soil vapor point installation (two drums total). A confirmatory sample was collected from each of the drums for evaluation of disposal characteristics. Based on the results, the drum from the first phase was removed on 23 September 2008 and transported to EQ Detroit, Inc. in Detroit, Michigan (waste removal documentation was included in Appendix E of the 28 October Soil Vapor Investigation Report). The drum from the second phase was removed on 23 April 2009 and transported to the Clean Harbors facility in Chattanooga, Tennessee by Franks Vacuum Truck Service, Inc. (see disposal documentation in Appendix F and analytical data in Appendix D).

No waste that required offsite management was generated during the soil vapor sampling associated with the IRM or during the Indoor Air/Sub-Slab Vapor investigation.

7. CONCLUSIONS

In order to address potential vapor intrusion at the residential properties located to the east of the CooperVision property, the following actions occurred:

- 1. A first phase onsite and right-of-way soil vapor investigation (May and June 2008).
- An Interim Remedial Measure (IRM) and re-sampling of the first phase soil vapor points (August 2008 (IRM) and October 2008 (sampling)).
- 3. A second phase onsite and offsite (on eastern residential properties) soil vapor investigation (December 2008).
- 4. An indoor air and sub-slab vapor investigation within the adjacent residential properties (January February 2009).

The first phase soil vapor investigation indicated that vapors from target VOCs were migrating offsite, apparently via a preferential pathway created by the presence of utility lines that traversed the site from the source area to the eastern roadway, and then continued to the eastern residential properties. As a result, the IRM was completed to mitigate the apparently migrating vapors. The soil vapor sampling that occurred subsequent to the IRM and the second phase soil vapor sampling indicated that the IRM appeared to contribute to mitigating the spread of vapor via the utility line, however did not provide conclusive evidence that the indoor air within the adjacent residences were not impacted by vapors originating from the CooperVision Site. The indoor air and sub-slab vapor investigation revealed that target VOCs were not detected in the indoor air or sub-slabs of the adjacent properties. Soil vapor, indoor air, and sub-slab vapor investigations were conducted in accordance with the 2006 NYSDOH Vapor Intrusion Guidance. In summary, the soil vapor intrusion investigation indicated that though vapor concentrations of the contaminants of concern were present on the CooperVision property boundary and within the right-of-way, they had not adversely impacted the residential properties.

8. CERTIFICATION

On behalf of Haley & Aldrich of New York, the undersigned state that the investigation work described in this document "Revised Soil Vapor Investigation Report Addendum", dated 4 September 2009, was conducted in conformance with:

- Voluntary Cleanup Agreement (Remediation) dated 31 May 2001;
- Soil Vapor Investigation Work Plan Second Phase," dated 10 December 2008;
- "Sub Slab Vapor & Indoor Air Investigation Work Plan," dated 4 February 2009;
- Field modifications made to the Soil Vapor Investigation Work Plan and approved by the NYSDEC during remediation activities, as summarized in the text of this report.

This report is a true and accurate summary of the work performed. Haley & Aldrich of New York was the firm responsible for the day to day performance of activities that comprised this site's investigation. The undersigned certify that the aforementioned 10 December 2008 and 4 February 2009 Work Plans were implemented and that investigation activities were completed in accordance with the Department-approved aforementioned 10 December 2008 and 4 February 2009 Work Plans and were personally witnessed by me (or by persons under my direct supervision).

Mark N. Ramsdell, P.E., Project Manager

Mark n. Kunselly

Haley & Aldrich

Vincent B. Dick, Vice President

Haley & Aldrich

REFERENCES

- 1. "Draft Final Engineering Report, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 7 May 2007. Prepared by Haley & Aldrich of New York.
- "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006.
 Prepared by the New York State Department of Health
- "Interim Remedial Measure (IRM) Work Plan, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 1 August 2008. Prepared by Haley & Aldrich of New York.
- 4. "Soil Vapor Investigation Results Report, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 28 October 2008. Prepared by Haley & Aldrich of New York.
- 5. "Soil Vapor Investigation Work Plan, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 27 March 2008. Prepared by Haley & Aldrich of New York.
- "Soil Vapor Investigation Work Plan Second Phase, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 10 December 2008. Prepared by Haley & Aldrich of New York.
- "Sub Slab Vapor & Indoor Air Investigation Work Plan, CooperVision Inc., Scottsville, New York (VCA Site #V00175-8)" dated 4 February 2009. Prepared by Haley & Aldrich of New York.

G:\Projects\70665\017 - VCA Closeout 2009-10\Revised VI Investigation Report\SVI Investigation Addendum\2009_0911_HANY_VI Investigation Rpt Add_Revised_F.doc

All values expressed in ug/m3

Location		SV-1			SV-2		SV-3					
Sample ID		SV-1			SV-2		SV-3 (S)				SV-3 (D)	
Sample Depth		3.0 ft.			3.0 ft.		2.7 ft.				4.7	7 ft.
Initial Pressure/Final Pressure (psig)	-1.7/3.5	-1.4/3.5	-1.1/3.5	-1.5/3.5	1.9/3.5	-0.6/3.5	-1.7/3.5	0.8/3.5	-2.1/3.5	-1.5/3.5	-1.3/3.5	-1.9/3.5
Date Sampled:	5/1/2008	6/16/2008	10/14/2008	5/1/2008	6/12/2008	10/14/2008	5/1/2008	6/12/2008	10/14/2008	12/30/2008	6/12/2008	10/14/2008
Compound:												
VOLATILE ORGANICS	1.4x Dil.	1.37x Dil.	1.34x Dil.	1.38x Dil.	1.42x Dil.	1.29x Dil.	1.40x Dil.	1.31x Dil.	1.44x Dil.	1.38x Dil.	1.36x Dil.	1.42x Dil.
Vinyl Chloride	ND	7.7	ND	ND	ND	ND	2.4	19	6.9	0.39	62	16
Chloroethane	ND	ND	ND	ND	ND	2.0	ND	ND	ND	1.5	59	28
1,1-Dichloroethene	ND	300	160	390	ND	ND	1,800	3,600	1,600	200	8,000	4,000
1,1-Dichloroethane	ND	290	120	230	ND	ND	270	1,200	680	38	4,000	2,200
1,1,1-Trichloroethane	3.7	5,200	3,800	2,300	3.7	1.9	990	2,800	1,400	100	6,400	3,400

Notes & Abbreviations:

- 1. Volatile organic compounds were collected using 2-hour, 6 Liter Summa Cansiters and analyzed via method TO-15.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m3).
- 3. Deep (D) sample locations and SV-8 were not sampled in May 2008; and SV-7 (D) and SV-8 (D) were not sampled during June 2008 due to high groundwater. SV-7 (D) and SV-8(S & D) were not sampled October 2008 due to high groundwater.

All values expressed in ug/m3

Location			SV-4					SV-5		
Sample ID		SV-4 (S)		SV-	4 (D)		SV-5 (S)		SV-	5 (D)
Sample Depth		4.3 ft.		6.3	ß ft.		2.7 ft.		4.7	ft.
Initial Pressure/Final Pressure (psig)	-1.4/3.5	-2.2/3.5	-1.4/3.5	-1.4/3.7	-1.3/3.5	-1.5/3.5	-1.0/3.5	-1.0/3.5	-2.1/3.5	-1.6/3.6
Date Sampled:	5/1/2008	6/12/2008	10/14/2008	6/16/2008	10/14/2008	5/1/2008	6/12/2008	10/14/2008	6/16/2008	10/14/2008
Compound:										
VOLATILE ORGANICS	1.37x Dil.	1.46x Dil	1.37x Dil	1.38x Dil	1.36x Dil	1.38x Dil.	1.33x Dil.	1.33x Dil.	1.44x Dil.	1.40x Dil.
Vinyl Chloride	0.41	0.33	ND	0.98	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	35	57	20	50	34	0.96	5.7	4.3	6.3	3.0
1,1-Dichloroethane	30	39	11	52	28.0	1.4	1.7	1.2	3.9	ND
1,1,1-Trichloroethane	200	370	290	410	340	82	140	130	240	150

Notes & Abbreviations:

- 1. Volatile organic compounds were collected using 2-hour, 6 Liter Summa Cansiters and analyzed via method TO-15.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m3).
- 3. Deep (D) sample locations and SV-8 were not sampled in May 2008; and SV-7 (D) and SV-8 (D) were not sampled during June 2008 due to high groundwater. SV-7 (D) and SV-8(S & D) were not sampled October 2008 due to high groundwater.

All values expressed in ug/m3

Location	Location SV-6								SV-7		SV-8	SV-101	SV-	-102
Sample ID		SV-	6 (S)			SV-6 (D)		SV-7 (S)			SV-8 (S)	SV-101(S)	SV-102(S)	SV-102(D)
Sample Depth		3.0) ft.			4.8 ft.			3.0 ft.		3.0 ft.	3.0 ft.	3.5 ft.	5.5 ft.
Initial Pressure/Final Pressure (psig)	-2.1/3.5	-2.8/3.5	-1.9/3.9	-0.8/3.5	-1.3/3.6	-2.1/3.5	-0.8/3.5	-2.9/3.5	-2.3/3.5	-2.2/3.5	-1.8/3.5	-0.8/3.6	-1.6/3.5	-0.1/.35
Date Sampled:	5/1/2008	6/12/2008	10/14/2008	12/30/2008	6/16/2008	10/14/2008	12/30/2008	5/1/2008	6/12/2008	10/14/2008	6/12/2008	12/30/2008	12/30/2008	12/30/2008
Compound:														
VOLATILE ORGANICS	1.44x Dil.	1.53x Dil.	1.45x Dil.	1.31x Dil.	1.37x Dil.	1.44x Dil.	1.31x Dil	1.54x Dil.	1.47x Dil.	1.46x Dil.	1.41x Dil.	1.32x Dil.	1.39x Dil.	1.25x Dil.
Vinyl Chloride	10	29	23	7.2	82	34	15	ND	ND	ND	1.1	ND	ND	ND
Chloroethane	36	28	ND	11	56	ND								
1,1-Dichloroethene	4,500	4,500	5,100	2,400	9,200	5,600	3,800	ND	1.4	ND	3.8	ND	ND	ND
1,1-Dichloroethane	1,000	2,900	3,200	680	5,900	3,900	2,100	1.6	3.2	ND	120	ND	ND	ND
1,1,1-Trichloroethane	2,700	4,200	5,100	1,700	8,200	5,900	3,100	23	29	ND	130	ND	1.9	2.8

Notes & Abbreviations:

- 1. Volatile organic compounds were collected using 2-hour, 6 Liter Summa Cansiters and analyzed via method TO-15.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m3).
- 3. Deep (D) sample locations and SV-8 were not sampled in May 2008; and SV-7 (D) and SV-8 (D) were not sampled during June 2008 due to high groundwater. SV-7 (D) and SV-8(S & D) were not sampled October 2008 due to high groundwater.

All values expressed in ug/m3

Location	SV-103	SV-	104	SV-106	SV-107	SV-	108
Sample ID	SV-103(S)	SV-104(S)	SV-104(D)	SV-106(S)	SV-107(S)	SV-108(S)	SV-108(D)
Sample Depth	3.0 ft.	4.0 ft.	6.0 ft.	3.0 ft.	4.0 ft.	4.2 ft.	5.8 ft.
Initial Pressure/Final Pressure (psig)	-0.4/3.5	1.1/3.5	-0.4/3.5	-0.7/3.5	-0.6/3.5	-0.8/3.6	0.7/3.5
Date Sampled:	12/30/2008	12/30/2008	12/30/2008	12/30/2008	12/30/2008	12/30/2008	12/30/2008
Compound:							
VOLATILE ORGANICS	1.27x Dil.	1.32x Dil.	1.27x Dil.	1.30x Dil.	1.29x Dil.	1.32x Dil.	1.30x Dil.
Vinyl Chloride	ND						
Chloroethane	ND						
1,1-Dichloroethene	ND	ND	0.73	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	0.68
1,1,1-Trichloroethane	4.1	21	27	ND	12	8.7	29

Notes & Abbreviations:

- 1. Volatile organic compounds were collected using 2-hour, 6 Liter Summa Cansiters and analyzed via method TO-15.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m3).
- 3. Deep (D) sample locations and SV-8 were not sampled in May 2008; and SV-7 (D) and SV-8 (D) were not sampled during June 2008 due to high groundwater. SV-7 (D) and SV-8(S & D) were not sampled October 2008 due to high groundwater.

TABLE II COOPERVISION, INC.

SUMMARY OF VOLATILE GASES IN AMBIENT AIR (DURING SOIL VAPOR SAMPLING)

All values expressed in ug/m³

All values exp				1
Location			•	
Sample ID			pient	
Sample Depth		NA	NA	NA
Initial Pressure/Final Pressure (psig)	-2.2/3.5	-3.2/3.5	-3.3/3.6	-2.5/3.5
Date Sampled:	5/1/2008	6/12/2008	6/16/2008	12/30/2008
Compound:	=			
VOLATILE ORGANICS	1.46x Dil.	1.58x Dil.	1.61x Dil.	1.49x Dil.
Propene	3.1	ND	1.3	ND
Dichlorodifluoromethane (CFC 12)	2.1	2.3	2.3	2.3
Chloromethane	ND	ND	ND	ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
1,3-Butadiene	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Ethanol	9.4	ND	15	ND
Acetonitrile	ND	ND	ND	ND
Acrolein	4.1	0.85	ND	ND
Acetone	80	10	9.1	1.3
Trichlorofluoromethane	1.2	1.1	1.1	ND
2-Propanol (Isopropyl Alcohol)	0.84	ND	4.1	NA
Acrylonitrile	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND
3-Chloro-1-propene (Allyl Chloride)	ND	ND	ND	ND
Trichlorotrifluoroethane	ND	ND	ND	ND
Carbon Disulfide	0.96	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
Methyl tert-Butyl Ether	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND
2-Butanone (MEK)	20	1.4	2.5	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND
Ethyl Acetate	1.2	4.1	2.2	ND
n-Hexane	1.2	ND	ND	ND
Chloroform	ND	ND	ND	ND
Tetrahydrofuran (THF)	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
Benzene	0.79	ND	ND	ND
Carbon Tetrachloride	0.27	0.44	0.42	0.51

TABLE II COOPERVISION, INC.

SUMMARY OF VOLATILE GASES IN AMBIENT AIR (DURING SOIL VAPOR SAMPLING)

All values expressed in ug/m³

All values exp	ressed in ug/in			1
Location		Α =	.•4	
Sample ID			pient	
Sample Depth	NA	NA	NA	NA
Initial Pressure/Final Pressure (psig)	-2.2/3.5	-3.2/3.5	-3.3/3.6	-2.5/3.5
Date Sampled:	5/1/2008	6/12/2008	6/16/2008	12/30/2008
Compound:				
VOLATILE ORGANICS	1.46x Dil.	1.58x Dil.	1.61x Dil.	1.49x Dil.
Cyclohexane	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
1,4-Dioxane	ND	ND	3.7	ND
Methyl Methacrylate	ND	ND	ND	ND
n-Heptane	1.1	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	0.84	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Toluene	2.5	2	1.2	0.88
2-Hexanone	1.1	ND	2.1	ND
Dibromochloromethane	ND	ND	ND	ND
1,2-Dibromoethane	ND	ND	ND	ND
n-Butyl Acetate	ND	ND	ND	ND
n-Octane	1.4	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND
m,p-Xylenes	2.4	ND	ND	ND
Bromoform	ND	ND	ND	ND
Styrene	ND	ND	ND	ND
o-Xylene	0.88	ND	ND	ND
n-Nonane	0.75	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Cumene	ND	ND	ND	ND
alpha-Pinene	4.4	ND	ND	ND
n-Propylbenzene	ND	ND	ND	ND
4-Ethyltoluene	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND
1,2,4-Trimethylbenzene	1	ND	ND	ND
Benzyl Chloride	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND

TABLE II COOPERVISION, INC.

SUMMARY OF VOLATILE GASES IN AMBIENT AIR (DURING SOIL VAPOR SAMPLING)

All values expressed in ug/m³

7 m varaes enp	ressed in ug/m			
Location				
Sample ID		Aml	oient	
Sample Depth	NA	NA	NA	NA
Initial Pressure/Final Pressure (psig)	-2.2/3.5	-3.2/3.5	-3.3/3.6	-2.5/3.5
Date Sampled:	5/1/2008	6/12/2008	6/16/2008	12/30/2008
Compound:				
VOLATILE ORGANICS	1.46x Dil.	1.58x Dil.	1.61x Dil.	1.49x Dil.
1,4-Dichlorobenzene	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
d-Limonene	2.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND
Naphthalene	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND

Notes & Abbreviations:

ND: Not Detected Above laboratory Detection Limits

NA: Not Analysed

1. Volatile organic compounds were collected using 8-hour, 6 Liter Summa Cansiters and analyzed via method TO-15.

2. The tables represent all data as reported from the lab in concentration format (ug/m^3) .

TABLE III COOPERVISION, INC.

SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Unit 2		Unit 8		Unit 10	
Sample ID	SV-InA-2	SV-SS-2	SV-InA-8	SV-SS-8	SV-INA10	SV-SS10
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab
Initial Pressure/Final Pressure (psig)	1.6/3.5	-0.3/3.5	-3.9/3.6	-1.5/3.5	-2.3/3.5	-2.3/3.5
Date Sampled:	2/10/2009	2/10/2009	2/10/2009	2/10/2009	1/30/2009	1/30/2009
Compound:						
VOLATILE ORGANICS	1.39x Dil.	1.26x Dil.	1.69x Dil.	1.38x Dil.	1.47x Dil.	1.47x Dil.
Vinyl Chloride	ND (0.14)	ND (0.13)	ND (0.17)	ND (0.14)	ND (0.41)	ND (0.41)
Chloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.85)	ND (0.85)
1,1-Dichloroethene	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.65)	ND (0.65)
1,1-Dichloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.66)	ND (0.66)
1,1,1-Trichloroethane	ND (0.7)	ND (0.63)	ND (0.85)	ND (0.69)	ND (0.88)	ND (0.88)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE III COOPERVISION, INC.

SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Unit 16		Unit 58		Unit 64	
Sample ID	SV-InA-16	SV-SS-16	SV-InA-58	SV-SS-58	SV-InA-64	SV-SS-64
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab
Initial Pressure/Final Pressure (psig)	-3.7/3.5	-1.3/3.5	-4.3/3.5	-1.1/3.5	-4.4/3.5	0.5/3.8
Date Sampled:	2/10/2009	2/10/2009	2/10/2009	2/10/2009	2/10/2009	2/10/2009
Compound:						
VOLATILE ORGANICS	1.65x Dil.	1.36x Dil.	1.78x Dil.	1.34xDil.	1.77x Dil.	1.22x Dil.
Vinyl Chloride	ND (0.17)	ND (0.14)	ND (0.18)	ND (0.13)	ND (0.18)	ND (0.12)
Chloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1-Dichloroethene	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1-Dichloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)
1,1,1-Trichloroethane	ND (0.83)	ND (0.68)	ND (0.88)	ND (0.67)	ND (0.89)	ND (0.61)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE III COOPERVISION, INC.

SUMMARY OF VOLATILE GASSES IN INDOOR AIR AND SUB-SLAB VAPOR

All values expressed in ug/m³

Location	Unit 705-1		Unit 709-2	
Sample ID	SV-InA-704-1	SV-SS-705-1	SV-InA-709-2	SV-SS-709-2
Sample Type	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab
Initial Pressure/Final Pressure (psig)	0.3/3.5	-0.8/3.7	-0.8/3.5	-1.1/3.5
Date Sampled:	2/27/2009	2/27/2009	2/27/2009	2/27/2009
Compound:				
VOLATILE ORGANICS	1.21x Dil.	1.32x Dil.	1.31x Dil.	1.34x Dil.
Vinyl Chloride	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.13)
Chloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)
1,1-Dichloroethene	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)
1,1-Dichloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)
1,1,1-Trichloroethane	ND (0.61)	ND (0.66)	ND (0.66)	ND (0.67)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

TABLE IV COOPERVISION, INC.

SUMMARY OF VOLATILE GASES IN AMBIENT AIR (DURING INDOOR AIR AND SUB-SLAB SAMPLING)

All values expressed in ug/m³

Location	·	Outdoor/Ambient	Air
Sample ID	SV-OUTA10	SV-OutA-020909	SV-OutA-022609
Sample Type	Outdoor Air	Outdoor Air	Outdoor Air
Initial Pressure/Final Pressure (psig)	-0.8/3.5	-1.3/3.5	-2.1/3.5
Date Sampled:	1/30/2009	2/10/2009	2/27/2009
Compound:			
VOLATILE ORGANICS	1.31x Dil.	1.36x Dil	1.44x Dil.
Vinyl Chloride	ND (0.37)	ND (0.14)	ND (0.14)
Chloroethane	ND (0.76)	ND (0.68)	ND (0.72)
1,1-Dichloroethene	ND (0.58)	ND (0.68)	ND (0.72)
1,1-Dichloroethane	ND (0.59)	ND (0.68)	ND (0.72)
1,1,1-Trichloroethane	ND (0.79)	ND (0.68)	ND (0.72)

Notes & Abbreviations:

ND: Not Detected Above laboratory reporting limits. The number in parentheses is the reporting limit.

- 1. Volatile organic compounds were collected using 24-hour, 6 Liter Summa Cansiters and analyzed via method TO-15 or TO-15 Sim where applicable.
- 2. The tables represent all data as reported from the lab in concentration format (ug/m³).

APPENDIX A

Soil Vapor Point Installation Reports - Second Phase

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-101S Boring No. SV-101S

						21.1019	
PROJECT	Soil Vapor Point Install	ations		H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY			PROJECT	S. Boyle	;	
CLIENT	Coopervision			FIELD RI	EP. D. Nosti	ant	
CONTRACTOR	Nothnagle Drilling			DATE IN	STALLED 12/22/20	008	
DRILLER	J. Schweitzer			WATER I	LEVEL N/A		
Ground El.	ft	Location	See Plan		Guard Pipe	9	
El. Datum					✓ Roadway F	Box	
SOIL/ROCK	BOREHOLE		Type of protective cove	r/lock	Bolted Cas	t Aluminum	
CONDITIONS			Type of protective cove				_
CONDITIONS	BACKFILL		— Height of top of readwar	av hov		0.0	ft
			Height of top of roadwa	ay DUX		0.0	_ ¹¹
			g				
		-	l				
	CONCRETE						
			← Type of protective casin	ng:	Flushmou	nt Roadbox	_
			Length			1.0	ft
			Inside Diameter			4.0	in
		0.8	Depth of bottom of road	dway box		1.0	ft
				•			
			Tvr	oe of Seals	Top of Seal (ft)	Thickness (ft)	
			i i	Concrete	0.0	0.8	
				tonite Seal	0.8	1.4	_
		7.1		nonne Sear		1.4	_
	VIVID A TIPE	L1				-	_
	HYDRATED						_
	BENTONITE						
			Type of Soil VaporPoin	-		PE	_
			Inside diameter of v		bing	0.25	in
			Type of backfill aro	und tubing	See D	iagram	_
		2.2					
			← Diameter of borehole			3.2	in
		1	Depth to top of Soil Va	por Point Scr	een	2.3	ft
			Type of screen		Woven Stainl	ess Steel Wire	
	QUARTZ		Pore diameter or siz	ze of openings		0.0057	in
	SAND	L2	Diameter of screen			0.4	— in
			▼ Type of backfill around	l screen	No 0. Ou	artz Sand	
			Type or backim around	. sereen	110.0 Q	artz Bund	_
		2.0	— Donth of hottom of Soil	Wanan Daint	Canaan	2.0	£4
		3.0	Depth of bottom of Soil	vapor romi	Screen	2.8	ft
		L3	1 1 1 2 2 2 2 2 2 2 2 2 2			• •	
		1.5	Bottom of Soil Vapor P			3.0	_ft
	4 —		Depth of bottom of bore	ehole		4.0	ft
	om of Exploration) epth from ground surface in feet)			(Not to Scale)			
(Tambers refer to the		<u> </u>		(to bear)			
COMMENTS:							
N/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-101D
Boring No.
SV-101D

PROJECT	Soil Vapor Point Instal	latior	ns			H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJECT	S. Boyle		
CLIENT	Coopervision					FIELD RI	EP. D. Nostr	ant	
CONTRACTOR	Nothnagle Drilling					DATE INS	STALLED 12/22/20	800	
DRILLER	J. Schweitzer					WATER I	LEVEL N/A		
Ground El.	ft	Lo	cation	See P	lan		Guard Pipe	•	
El. Datum							✓ Roadway B	ox	
SOIL/ROCK	BOREHOLE				Type of protecti	ve cover/lock	Bolted Cast	Aluminum	
CONDITIONS	BACKFILL								
		0.0		\downarrow	Height of top of	roadway box		0.0	ft
	CONCRETE		ſ	•	above ground su	-			
		0.8	<u> </u>						
		0.0							
							FI 1		
					Type of protecti	ve casing:	Flushmour		_
	HYDRATED				Length			1.0	ft
	BENTONITE				Inside Diame	eter		4.0	in
					Depth of bottom	of roadway box		1.0	ft
						Type of Seals	Top of Seal (ft)	Thickness (ft)	
						Concrete	0.0	0.8	
						Bentonite Seal	0.8	3.4	
			L1						
		4.2						-	
		2			i !				_
	QUARTZ				Type of Soil Ver	porPoint Tubing:	HD	NDE	
	SAND				-	eter of vapor point tul	•	0.25	— in
	SAND				!		_		''''
		. .			туре от раск	afill around tubing	See D	lagram	_
		5.0							
					Diameter of bor	ehole		3.2	in
			+	-	<u> </u>				
					Depth to top of S	Soil Vapor Point Scre	een	4.3	ft
				•	Type of screen		Woven Stainl	ess Steel Wire	
					Pore diamete	er or size of openings		0.0057	in
			L2		Diameter of s	screen		0.4	in
				-	Type of backfill	around screen	No.0 Qu	artz Sand	
					Depth of bottom	of Soil Vapor Point	Screen	4.8	ft
			L3		Bottom of Soil V	apor Point		5.0	ft
					Depth of bottom			8.0	ft
(Rette	om of Exploration)		'		-F 32 20000m				_~~
	lepth from ground surface in feet)					(Not to Scale)			
	bserved DTW at 6.5 ft.,	5.20 f	ft., 6.13	ft., 6.13 f	tmonitored over 25 hour	rs			
N/A-not applicable									

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-102S
Boring No.
SV 102S

		1011		ATION			SV-102S	
PROJECT	Soil Vapor Point Installa	ations			H&A FILI	E NO. 70665-0	14	
LOCATION	Scottsville, NY				PROJECT	MGR. S. Boyle	:	
CLIENT	Coopervision				FIELD RE	D. Nostr	rant	
CONTRACTOR	Nothnagle Drilling				DATE INS			
DRILLER	J. Schweitzer				WATER L	-		
		1						
Ground El.	ft	Location	See F	lan		Guard Pipe		
El. Datum						✓ Roadway B	Box	
SOIL/ROCK	BOREHOLE			Type of protective	cover/lock	Bolted Cas	t Aluminum	
CONDITIONS	BACKFILL							_
CONDITIONS				TT 1 1 . 0 . 0			0.0	0.
	0.0	_		Height of top of ros	-		0.0	ft
				above ground surfa	ace			
		1 1						
	CONCRETE							
	CONCRETE							
				Type of protective	casing:	Flushmour	nt Roadbox	_
				Length			1.0	ft
				Inside Diameter	r		4.0	in
		0.8		Depth of bottom of	roodway bay		1.0	ft
		0.8		Depth of bottom of	Toauway box		1.0	1
					Type of Seals	Top of Seal (ft)	Thickness (ft)	
					Concrete	0.0	0.8	
					Bentonite Seal	0.8	1.5	
		L1		_				
	HVDDATED	l Î		_				
	HYDRATED			_			-	
	BENTONITE							
				Type of Soil Vapor	Point Tubing:	HE	PE	
				Inside diameter	of vapor point tub	oing	0.25	in
				Type of backfill	l around tubing	See D	iagram	
				71				_
							2.2	
				Diameter of boreho	oie		3.2	in
		2.7	_	 				
				Depth to top of Soi	l Vapor Point Scre	en	2.8	ft
				Type of screen		Woven Steinl	ess Steel Wire	
				i		woven stann		—.
	QUARTZ			}	or size of openings		0.0057	in
	SAND	L2		Diameter of scr	reen		0.4	in
			-	Type of backfill are	ound screen	No.0 Qu	artz Sand	
				Depth of bottom of	Soil Vanor Daint	Saraan	3.3	ft
				Depth of bottom of	Son vapor rome	oci cen		"
		<u>+</u>	-					
		L3	□	Bottom of Soil Vap	oor Point		3.5	ft
	3.5			Depth of bottom of	fborehole		3.5	ft
(Botto	om of Exploration)							
(Numbers refer to d	lepth from ground surface in feet)				(Not to Scale)			
	orehole installed with blin	nd probe. C	bserved b	orehole dry at 4.0 ft. prior to	installing vapor po	int.		
N/A-not applicable								

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-102D
Boring No.
SV-102D

		1011	IDDITION REI	OILI		SV-102D	
PROJECT	Soil Vapor Point Install	ations		H&A FIL	LE NO. 70665-0)14	
LOCATION	Scottsville, NY			PROJEC	T MGR. S. Boyle	e	
CLIENT	Coopervision			FIELD R	EP. D. Nost	rant	
CONTRACTOR	Nothnagle Drilling			DATE IN	ISTALLED 12/23/2	008	
DRILLER	J. Schweitzer			WATER	LEVEL N/A		
Ground El.	ft	Location	See Plan		Guard Pip	e	
El. Datum		2000000	500 1 11111		✓ Roadway I		
		 					
SOIL/ROCK	BOREHOLE		Type of protective cover	/lock	Bolted Cas	st Aluminum	
CONDITIONS	BACKFILL						
	0.0		Height of top of roadway	y box		0.0	ft
			above ground surface				
	CONCRETE						
		1					
		0.0					
		0.8					
			Type of protective casing	g:	Flushmou	nt Roadbox	
			Length			1.0	ft
			Inside Diameter			4.0	in
	HYDRATED						
	BENTONITE		Depth of bottom of road	way box		1.0	ft
				·			
			Type	e of Seals	Top of Seal (ft)	Thickness (ft)	`
							L
				oncrete	0.0	0.8	—
			Bento	onite Seal	0.8	4.0	
		L1			· -		
					<u> </u>		
			Type of Soil VaporPoint	Tubing:	HI	DPE	
		4.8	Inside diameter of va	por point tu	ıbing	0.25	— in
	QUARTZ		Type of backfill arou			Diagram	_
	SAND		Type of backin arou	ind tubing		nagram	—
	SAND						
			Diameter of borehole			3.2	in
		5.5					
			Depth to top of Soil Vap	or Point Scr	een	4.8	ft
			Type of screen		Woven Stain	less Steel Wire	
			Pore diameter or size	e of openings	s	0.0057	— in
		L2	Diameter of screen			0.4	— in
			Type of backfill around	comoon	No 0. O	uartz Sand	—
			Type of backing around	screen		iaitz Sand	—
			Depth of bottom of Soil	Vapor Point	Screen	5.3	ft
		🗼					
		L3	Bottom of Soil Vapor Po	int		5.5	ft
		1	Depth of bottom of bore	hole		8.0	ft
(Botto	om of Exploration)	7 '					_
(Numbers refer to d	lepth from ground surface in feet)		(1	Not to Scale)			
	oserved DTW at 6.9 ft. for .5	5 hrs. due to s	and layer at 6.2 ft., decision to set vapor point a	t 5.8 ft. to avo	id permiable layer		
N/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-103S Boring No. SV-103S

PROJECT	Soil Vapor Point Instal	lations		H&A FILI	E NO. 70665-0	14	
LOCATION	Scottsville, NY			PROJECT			
CLIENT	Coopervision			FIELD RE			
CONTRACTOR	Nothnagle Drilling			DATE INS			
DRILLER	J. Schweitzer			WATER I			
		<u> </u>	g 71		-		
Ground El.	ft	Location	See Plan		Guard Pipe		
El. Datum					✓ Roadway B	ox	
SOIL/ROCK	BOREHOLE		Type of protective co	ver/lock	Bolted Cast	Aluminum	
CONDITIONS	BACKFILL						_
	0.0		Height of top of road	way hoy		0.0	ft
	0.0	r	above ground surface	-		0.0	—"
	CONCRETE	-	\neg \Box				
		0.8					
			Type of protective ca	sing:	Flushmour	t Roadbox	
			Length	g-		1.0	— ft
			Inside Diameter			4.0	in
			Depth of bottom of re	oadway box		1.0	ft
			Т Т	ype of Seals	Top of Seal (ft)	Thickness (ft)	
			_	Concrete	0.0	0.8	
							_
				entonite Seal	0.8	1.5	_
		L1	<u> </u>				_
	HYDRATED						_
	BENTONITE						
			Type of Soil VaporPo	oint Tubing:	HD	PE	
			Inside diameter of	f vapor point tul	ning	0.25	in
			Type of backfill a		See Di		
			Type of backing a	round tubing		agram	_
			- Diameter of borehole	•		3.2	in
			Depth to top of Soil V	/apor Point Scre	en	2.3	ft
			Type of screen		Woven Stainle	ess Steel Wire	
			Pore diameter or	size of enenings	- TO TON BRAINING	0.0057	— in
							_
		2.3 L2	Diameter of scree			0.4	in
			▼ Type of backfill arou	nd screen	No.0 Qu	artz Sand	_
	QUARTZ						
	SAND		Depth of bottom of S	oil Vapor Point	Screen	2.8	ft
							_
		L3	Bottom of Soil Vapor	Doint		2.0	£4
		1				3.0	_ft
<u> </u>		 	Depth of bottom of b	orehole		3.0	ft
	om of Exploration)			(Not to Scale)			
(inumbers refer to c	depth from ground surface in feet)			(FIGURE 10 Scale)			
COMMENTE		1. 4	marks Observed board 1 1 1 14000 1				
N/A-not applicable	on vapor point boring instal	iea with blind	probe. Observed borehole, dry at 4.0 ft. pri	or to installing soil	vapor point.		
v/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-103D Boring No. SV-103D

PROJECT	Soil Vapor Point Instal	lations				H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJECT			
CLIENT	Coopervision					FIELD RI			
CONTRACTOR	Nothnagle Drilling						STALLED 12/23/20		
DRILLER	J. Schweitzer					WATER I			
		1_	_	a 5					
Ground El.	ft	Loca	tion	See Pl	lan		Guard Pipe		
El. Datum		L,					✓ Roadway B	ox	
SOIL/ROCK	BOREHOLE				Type of protectiv	ve cover/lock	Bolted Cast	Aluminum	
CONDITIONS	BACKFILL								_
	0.0				Height of top of	roadway boy		0.0	ft
	0.0		Г		above ground su			0.0	—"
					8				
	CONCRETE	-	<u>→</u>						
		1.0							
					Type of protectiv	ve casing:	Flushmour	ıt Roadbox	
	HYDRATED				Length			1.0	ft
	BENTONITE				Inside Diame	ter		4.0	— in
	BENTONIE				mside Diame	ici		4.0	—'''
					Depth of bottom	of roadway box		1.0	ft
						Type of Seals	Top of Seal (ft)	Thickness (ft)	
						Concrete	0.0	1.0	
		4.2				Bentonite Seal	1.0	3.2	
			L1		-				
			Ī		-			-	
	OLLABEZ				-	_			
	QUARTZ								
	SAND				Type of Soil Vap	_	HD		_
		5.0			Inside diamet	ter of vapor point tu	bing	0.25	in
					Type of back	fill around tubing	See Di	agram	
					◆ Diameter of bore	ehole		3.2	in
									_
		-	 		Depth to top of S	Soil Vapor Point Scr	en	4.3	ft
					Depth to top of a	on tupor rome serv			
					Type of screen		Woven Stainle	ess Steel Wire	_
					Pore diamete	r or size of openings		0.0057	in
			L2		Diameter of s	screen		0.4	in
				-	Type of backfill	around screen	No.0 Qu	artz Sand	
					—Denth of bottom	of Soil Vapor Point	Screen	4.8	ft
					Depth of sottom	or som vapor rome	3010011		_~~
		-	L3		D // AC 11 T			5 0	0.
		-	12.5		Bottom of Soil V	-		5.0	ft
	8 -		[_		Depth of bottom	of borehole		8.0	ft
	om of Exploration)					(N-44 S 1)			
(inumbers refer to d	lepth from ground surface in feet)					(Not to Scale)			
COMMENTE: P	proholo obsolved for a sec-	o of	tor for	Shro M	viet coil at 5 6 ft /hh1	avad from 0.0.5 to 5.5	ft) no fron water -1	.A	
N/A-not applicable	prenote checked for present	e or wa	ter for .	nrs. Mo	pist soil at 5.6 ft. (borehole c	avea from 8.0 ft. to 5.6	ii.) no iree water observe	u.	
v/A-not applicable									

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-104S Boring No. SV-104S

PROJECT	Soil Vapor Point Instal	lations		H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY			PROJECT			
CLIENT	Coopervision			FIELD RI			
CONTRACTOR	Nothnagle Drilling			DATE INS	STALLED 12/23/20	008	
DRILLER	J. Schweitzer			WATER I	LEVEL N/A		
Ground El.	ft	Location	See Plan		Guard Pipe		
El. Datum		Zocution	500 1 1411		✓ Roadway B		
	PODEHOLE		T	/			
SOIL/ROCK	BOREHOLE		Type of protective cov	ver/lock	Bolted Cast	Aluminum	_
CONDITIONS				_			
	0.0		Height of top of roads			0.0	ft
			above ground surface	•			
	CONCRETE		_				
		0.8	Type of protective cas	sing:	Flushmour	nt Roadbox	
			Length	S		1.0	ft
			Inside Diameter			4.0	—in
			Inside Diameter			4.0	_'''
			D 41 61 44 6			1.0	C4
			Depth of bottom of ro	oadway box		1.0	ft
			<u>T</u>	ype of Seals	Top of Seal (ft)	Thickness (ft)	
				Concrete	0.0	0.8	_
	HYDRATED			entonite Seal	0.8	3.2	
	BENTONITE	L1					
					·		
			Type of Soil VaporPo	int Tubing:	HD	PE	
			Inside diameter of	_	bing	0.25	— in
			Type of backfill ar		See Di		
			Type of backing at	tubing		адган	_
			Diameter of borehole			2.2	•
			Diameter of borenole			3.2	in
		+					
			Depth to top of Soil V	apor Point Scre	een	3.3	ft
		3.2	Type of screen		Woven Stainle	ess Steel Wire	_
			Pore diameter or s	size of openings		0.0057	in
		L2	Diameter of screen	n		0.4	in
	QUARTZ		Type of backfill arou	nd screen	No.0 Qu	artz Sand	
	SAND						
			Depth of bottom of So	oil Vapor Point	Screen	3.8	ft
							_
		L3	Bottom of Soil Vapor	Doint		4.0	ft
		1	—				
	4 -	—— i	Depth of bottom of bo	orenoie		4.0	ft
	om of Exploration) depth from ground surface in feet)			(Not to Scale)			
	· · · · · · · · · · · · · · · · · · ·	·		•			
COMMENTS: BO	orhole installed using a blin	d probe. Borel	nole dry when checked prior to installing va	por point.			
N/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-104D
Boring No.
SV-104D

		1011	шш		LI OILI		SV-104D	
PROJECT	Soil Vapor Point Install	ations			H&A FILI	E NO. 70665-0)14	
LOCATION	Scottsville, NY				PROJECT	S. Boyl	e	
CLIENT	Coopervision				FIELD RE	EP. D. Nost	rant	
CONTRACTOR	Nothnagle Drilling				DATE INS	STALLED 12/23/2	008	
DRILLER	J. Schweitzer				WATER I	LEVEL N/A		
Ground El.	ft	Location	See Plan			☐ Guard Pip	e	
El. Datum	-		-		_	✓ Roadway		
SOIL /DOCK	BOREHOLE			True of must satis	o cover/look	-		
SOIL/ROCK				Type of protective	e cover/lock	Boiled Cas	st Aluminum	_
CONDITIONS	BACKFILL BACKFILL							
	0.0		<u> </u>	Height of top of r	-		0.0	ft
				above ground sur	rface			
	CONCRETE							
		1 1						
		0.8						
		0.0						
				T		Th 1	na Danadhan	
				Type of protective	e casing:	Fiusnmou	nt Roadbox	
				Length			1.0	ft
				Inside Diamet	ter		4.0	in
		 		Depth of bottom	of roadway box		1.0	ft
					Type of Seals	Top of Seal (ft)	Thickness (ft))
	HYDRATED				Concrete	0.0	0.8	-
	BENTONITE			_	Bentonite Seal	0.8	4.4	_
	BENTONIE	L1		_	Bentomie Bear	0.0		_
				_				_
				-				_
				Type of Soil Vapo	_	•	DPE	
				Inside diamete	er of vapor point tul	oing	0.25	in
				Type of backf	ill around tubing	See D	Diagram	
		5.2		Diameter of bore	hole		3.2	in
				_				
				Depth to top of So	oil Vapor Point Scre	en	5.3	ft
	QUARTZ							
	SAND			Type of screen		Woven Stain	less Steel Wire	
	SAND	6.0			r or size of openings	Woven Stain	0.0057	— in
		' i						
		L2		Diameter of so			0.4	in
				Type of backfill a	around screen	No.0 Q	uartz Sand	_
				Depth of bottom	of Soil Vapor Point	Screen	5.8	ft
		1]				
		L3		Bottom of Soil Va	apor Point		6.0	ft
	o	1		Depth of bottom	of borehole		8.0	ft
(Botto	om of Exploration)							
(Numbers refer to d	depth from ground surface in feet)				(Not to Scale)			
COMMENTS:								
N/A-not applicable								

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-105S Boring No. SV-105S

PROJECT	Soil Vapor Point Instal	lations		H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY			PROJECT			
CLIENT	Coopervision			FIELD RE			
CONTRACTOR	Nothnagle Drilling			DATE INS			
DRILLER	J. Schweitzer			WATER I			
Ground El.	ft	Location	See Plan	- -	Guard Pipe		
	п	Location	See Plan				
El. Datum		<u> </u>			✓ Roadway B	OX	
SOIL/ROCK	BOREHOLE		Type of protective cov	ver/lock	Bolted Cast	Aluminum	
CONDITIONS	BACKFILL BACKFILL						
	0.0		Height of top of roadv			0.0	ft
			above ground surface				
	CONCRETE						
		1					
			Type of protective cas	sing:	Flushmour	it Roadbox	_
			Length			1.0	ft
			Inside Diameter			4.0	in
		0.8					
			Depth of bottom of ro	adway box		1.0	ft
	HYDRATED			ype of Seals	Top of Seal (ft)	Thickness (ft)	
					0.0	0.8	
	BENTONITE			Concrete		•	_
				entonite Seal	0.8	2.0	_
		L1					_
			Type of Soil VaporPoi	int Tubing:	HD	PE	
			Inside diameter of	vapor point tul	oing	0.25	in
			Type of backfill ar		See Di		
				vana vasing			
			Diameter of borehole			2.2	•
			Diameter of borenole			3.2	in
		2.8					
			Depth to top of Soil V	apor Point Scre	een	2.8	ft
	QUARTZ		← Type of screen		Woven Stainle	ess Steel Wire	
	SAND		Pore diameter or s	size of openings		0.0057	in
		L2	Diameter of screen	1		0.4	in
			← Type of backfill aroun		No.0 Qu	•	_
			Type of backing aroun	ia sereen	110.0 Qu	artz Sand	_
					~		
			Depth of bottom of So	oil Vapor Point	Screen	3.3	ft
		→					
		L3	Bottom of Soil Vapor	Point		3.5	ft
	3.5		Depth of bottom of bo	orehole		3.5	ft
	om of Exploration)						
(Numbers refer to d	depth from ground surface in feet)			(Not to Scale)			
	oring installed with blind	probe. Obs	served moist tip of water level probe at 4.6	6 ft.			
N/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-105D
Boring No.
SV-105D

	.	. 41	J L 1		DATIONINE			SV-105D	
PROJECT	Soil Vapor Point Install	atio	ns			H&A FILI	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJECT	MGR. S. Boyle	<u> </u>	
CLIENT	Coopervision					— FIELD RE			
CONTRACTOR	Nothnagle Drilling					DATE INS			
DRILLER	J. Schweitzer					WATER L		500	
		_				_ WATER E			
Ground El.	ft	Lo	cation	See	Plan	_	Guard Pip	e	
El. Datum						_	✓ Roadway I	Box	
SOIL/ROCK	BOREHOLE				Type of protective co	ver/lock	Bolted Cas	t Aluminum	
					Type of protective to	, 61,10611			
CONDITIONS	BACKFILL								
				<u> </u>	Height of top of road	-		0.0	ft
	CONCRETE				above ground surface	9			
		0.8							
			1						
					Type of protective case	sing:	Flushmou	nt Roadbox	
					Length			1.0	ft
					Inside Diameter			4.0	in
					Histor Diameter			4.0	_'''
	HYDRATED								
	BENTONITE				Depth of bottom of ro	oadway box		1.0	ft
					Т	ype of Seals	Top of Seal (ft)	Thickness (ft)	
					_	Concrete	0.0	0.8	
					Be	entonite Seal	0.8	4.4	
			L1						
					True of Coil Manage	int Tubing.	111	NDE	
					Type of Soil VaporPo	_	-)PE	_
					Inside diameter of	f vapor point tub	oing	0.25	in
					Type of backfill a	round tubing	See D	iagram	
		5.2			Diameter of borehole			3.2	in
			🕇		<u> </u>				
					Depth to top of Soil V	apor Point Scre	en	5.3	ft
	QUARTZ								
	SAND								
					Type of screen		Woven Stain	ess Steel Wire	
					Pore diameter or s	size of openings		0.0057	— in
			'		1				_
			L2		Diameter of screen	n		0.4	in
		6.0			Type of backfill arou	nd screen	No.0 Qu	artz Sand	
					Depth of bottom of So	oil Vanor Point 9	Screen	5.8	ft
					Depth of bottom of Se	on vapor romes	Screen		_"
			<u>+</u>						
			L3	L.\ *	Bottom of Soil Vapor	Point		6.0	ft
	o		[Depth of bottom of bo	orehole		8.0	ft
(Botto	om of Exploration)		•		••				_
	epth from ground surface in feet)					(Not to Scale)			
			-						
COMMENTS: DI	ΓW at 7.5 ft. after 0.5 hor	ırs							
N/A-not applicable									
11									

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-106S
Boring No.
SV 106S

		11) 1 1			OKI		SV-106S	
PROJECT	Soil Vapor Point Install	ation	ıs			H&A FILI	E NO. 70665-0)14	
LOCATION	Scottsville, NY					PROJECT	S. Boyl	e	
CLIENT	Coopervision					FIELD RE	EP. D. Nost	rant	
CONTRACTOR	Nothnagle Drilling					DATE INS	STALLED 12/23/2	008	
DRILLER	J. Schweitzer					WATER I			
		L		-	DI.	<u> </u>			
Ground El.	ft	Loc	cation	See	Plan		Guard Pip		
El. Datum						_	✓ Roadway l	Box	
SOIL/ROCK	BOREHOLE				Type of protective cove	er/lock	Bolted Cas	st Aluminum	
CONDITIONS	BACKFILL								
CONDITIONS	Diterribe							0.0	£4
			ĺ	*	Height of top of roadw above ground surface	ay box		0.0	ft
					above ground surface				
	CONCRETE								
			Î l						
		0.0				,	T. 1	. D. II	
		0.8			← Type of protective casi	ng:	Flushmou	nt Roadbox	_
					Length			1.0	ft
					Inside Diameter			4.0	<u>in</u>
					Depth of bottom of roa	ndway box		1.0	ft
									_
						8.0	T 0 C 1 (0)	751 1 (0)	
					•	pe of Seals	Top of Seal (ft)	Thickness (ft)	<u>)</u>
						Concrete	0.0	0.8	
	HYDRATED				Bei	ntonite Seal	0.8	1.5	
	BENTONITE		L1						
						_			
					Trme of Cail ManayDair	nt Tubina.	III	DDE	
					Type of Soil VaporPoin	-		DPE	—
					Inside diameter of v		_	0.25	in
					Type of backfill are	ound tubing	See D	Diagram	
					◆ Diameter of borehole			3.2	in
		2.3	1						
			1		Depth to top of Soil Va	por Point Scre	en	2.3	ft
				*	Type of screen		Woven Stain	less Steel Wire	
					Pore diameter or si	ze of openings		0.0057	in
	QUARTZ		L2		Diameter of screen			0.4	in
	SAND				Type of backfill aroun	d screen	No 0 O	uartz Sand	_
	5.11.12				Type of Succession around	a sereen		auriz pund	_
					Depth of bottom of Soi	l Vapor Point	Screen	2.8	ft
			<u></u>						
			L3		Bottom of Soil Vapor I	Point		3.0	ft
			\uparrow		Depth of bottom of bor	rehole		3.0	ft
(Rotto	om of Exploration)		' i						
	epth from ground surface in feet)					(Not to Scale)			
<u> </u>									
COMMENTS: M	oist to wet tip of water le	vel a	t 4.0 ft						
N/A-not applicable									
		_	-	-					

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-106D Boring No. SV-106D

								D 1 100D	
PROJECT	Soil Vapor Point Instal	lation	ıs			H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJEC'	T MGR. S. Boyle		
CLIENT	Coopervision					FIELD R			
CONTRACTOR	Nothnagle Drilling						STALLED 12/23/20		
							-	108	
DRILLER	J. Schweitzer					WATER 1	LEVEL N/A		
Ground El.	ft	Loc	cation	See P	Plan		☐ Guard Pipe	;	
El. Datum							✓ Roadway B	ox	
SOIL/ROCK	BOREHOLE				True of mustoot	irro oorron/look	Doltad Con	A 1	
					Type of protect	ive cover/lock	Boiled Casi	Aluminum	
CONDITIONS	S BACKFILL								
			_	<u> </u>	Height of top of	f roadway box		0.0	ft
					above ground s	urface			
	CONCRETE								
	CONCRETE		_						
		0.8							
					Type of protect	ive casing:	Flushmour	nt Roadbox	
						ive cusing.	Tushinou		— _c ,
					Length			1.0	ft
					Inside Diam	eter		4.0	in
					— Depth of botton	n of roadway box		1.0	ft
			!		2 opin or sotton	ii or roud way bon			
						Type of Seals	Top of Seal (ft)	Thickness (ft)	<u>)</u>
						Concrete	0.0	0.8	
	HYDRATED					Bentonite Seal	0.8	4.4	
	BENTONITE		L1						
	BENTONTIE		1					-	
									_
				←	Type of Soil Va	porPoint Tubing:	HD	PE	
					Inside diam	eter of vapor point tu	hing	0.25	— in
					†				—"
					Type of back	kfill around tubing	See D	agram	_
		5.2			← Diameter of bor	rehole		3.2	in
	QUARTZ		1		Denth to top of	Soil Vapor Point Scr	een	5.3	ft
	_				Depth to top of	Son vapor rome ser	cen	3.3	—"
	SAND								
		6.0		-	Type of screen		Woven Stainl	ess Steel Wire	
					Pore diamet	ter or size of openings	•	0.0057	in
			L2		Diameter of			0.4	— in
			12		į.		N 0 0		—'''
					Type of backfill	l around screen	No.0 Qu	artz Sand	_
					Depth of botton	n of Soil Vapor Point	Screen	5.8	ft
					1	•		•	_
			13	—	P				
			<u>L3</u>	Щ	Bottom of Soil			6.0	ft
					Depth of botton	n of borehole		8.0	ft
(Botto	om of Exploration)								
(Numbers refer to d	depth from ground surface in feet)					(Not to Scale)			
COMMENTS: D	TW at 7.6 ft., 7.4 ft., 7.2	ft., 7.	.1 ftm	onitored	over 0.5 hour				
N/A-not applicable		-							
-									

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-107S Boring No. SV-107S

PROJECT	Soil Vapor Point Instal	lations		H&A FILI	E NO. 70665-0	14	
LOCATION	Scottsville, NY			PROJECT			
CLIENT	Coopervision			FIELD RE			
CONTRACTOR	Nothnagle Drilling			DATE INS	-		
DRILLER	J. Schweitzer			WATER L	LEVEL N/A		
Ground El.	ft	Location	See Plan		Guard Pipe		
El. Datum		2000000	200 1 1		✓ Roadway B		
-	BOREHOLE		Tyme of must estima ser	row/Lo als	•		
SOIL/ROCK			Type of protective cov	er/lock	Bolted Cast	Aluminum	_
CONDITIONS			***************************************			0.0	0.
	0.0	— г	Height of top of roadv			0.0	ft
			above ground surface				
		_					
	CONCRETE						
			← Type of protective cas	ing:	Flushmour	nt Roadbox	
			Length			1.0	ft
			Inside Diameter			4.0	— in
		0.8	Depth of bottom of ro	adway bay		1.0	£4
		0.8	Depth of bottom of ro	adway box		1.0	ft
			_				
				vpe of Seals	Top of Seal (ft)	Thickness (ft)	
				Concrete	0.0	0.8	
			Be	entonite Seal	0.8	2.4	
		L1					
	HYDRATED						
	BENTONITE						
			Type of Soil VaporPoi	int Tubing:	HD	PE	
			Inside diameter of	_	oing	0.25	— in
			Type of backfill ar		See Di		
			l l l l l l l l l l l l l l l l l l l	ошти <i>т</i> иготд			_
			Diameter of borehole			2.2	i.
		2.0	Diameter of borenote			3.2	in
		3.2	D 11	D		2.2	0.
			Depth to top of Soil V	apor Point Scre	en	3.3	ft
			Type of screen		Woven Stainle	ess Steel Wire	_
	QUARTZ		Pore diameter or s	ize of openings		0.0057	in
	SAND	L2	Diameter of screen	ı		0.4	in
			Type of backfill aroun	nd screen	No.0 Qu	artz Sand	
			—Depth of bottom of So	il Vapor Point S	Screen	3.8	ft
			1 1	•			
		4.0 L3	Bottom of Soil Vapor	Point		4.0	ft
		<u> </u>	Depth of bottom of bo			4.6	— ft
	4.6	 	Dehru or norroun or po	n enoic		4.0	_11
	om of Exploration) lepth from ground surface in feet)			(Not to Scale)			
		•					
COMMENTS: BO	oring completed with bli	nd probe. Tip	of water level probe slightly moist at 4.	.6 ft.			
N/A-not applicable							

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-107D Boring No. SV-107D

PROJECT	Soil Vapor Point Instal	lations				H&A FIL	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJECT			
CLIENT	Coopervision					FIELD RI			
CONTRACTOR	Nothnagle Drilling					DATE INS			
DRILLER	J. Schweitzer					WATER I	LEVEL N/A		
Ground El.	ft	Locati	ion	See Pla	an		Guard Pipe	1	
El. Datum							☑ Roadway B		
	PODEHOLE				T				
SOIL/ROCK	BOREHOLE				Type of protective	ve cover/lock	Boiled Casi	Aluminum	_
CONDITIONS	İ								
	0.0		Г	_ _^	Height of top of a above ground su	-		0.0	ft
					above ground su	Tiace			
	CONCRETE	_	_	-1					
		0.8							
					Type of protectiv	ve casing:	Flushmour	ıt Roadbox	
					Length			1.0	ft
					Inside Diame	ter		4.0	in
									_
	HYDRATED				Depth of bottom	of roadway box		1.0	ft
	BENTONITE		1						
	BENTONIE					Type of Seals	Top of Seal (ft)	Thickness (ft)	,
						· · · ·	0.0	0.8	
					-	Concrete			
					-	Bentonite Seal	0.8	5.4	_
		I	1		-				
					-				
					Type of Soil Vap	orPoint Tubing:	HD	PE	
					Inside diamet	ter of vapor point tu	bing	0.25	in
					Type of back	fill around tubing	See Di	agram	
					Diameter of bore	ehole		3.2	in
		_	_						
		1			Depth to top of S	Soil Vapor Point Scre	een	6.3	ft
		6.2			Type of screen		Woven Stainle	ess Steel Wire	
						r or size of openings		0.0057	— in
		ī	.2		Diameter of s			0.4	— in
	QUARTZ		Ĩ		Type of backfill		No.0 Qu		
	SAND				Type of backing	around screen	110.0 Qu	artz Sand	
	SAND								
		7.0			D 4 61 4	ecus. D.	G.	6.0	e.
		7.0			Depth of bottom	of Soil Vapor Point	Screen	6.8	ft
		-	2						
		-	.3		Bottom of Soil V	-		7.0	ft
			l		Depth of bottom	of borehole		8.0	ft
	om of Exploration) depth from ground surface in feet)					(Not to Scale)			
(, numbers refer to 0		ı				(Not to State)			
COMMENTS: M	loist tip of water level probe	e at 8.0 ft	-no fre	e water. re	echecked following 15 min	utes-same condition.			
N/A-not applicable	r Probe								

SOIL VAPOR POINT INSTALLATION REPORT

Well No.
SV-108S
Boring No.
SV-108S

			IDDITION REI			SV-108S	
PROJECT	Soil Vapor Point Install	lations		H&A FIL	E NO. 70665-	014	
LOCATION	Scottsville, NY			PROJECT	S. Boy	le	
CLIENT	Coopervision		-	FIELD RE	EP. D. Nos	trant	
CONTRACTOR	Nothnagle Drilling			DATE INS	STALLED 12/23/2	2008	
DRILLER	J. Schweitzer			WATER I	LEVEL N/A		
Ground El.	- C	T4'	See Plan	1	Guard Pi		
	ft	Location	See Fian				
El. Datum		<u> </u>			∠ Roadway	Вох	
SOIL/ROCK	BOREHOLE		Type of protective cover/le	ock	Bolted Ca	st Aluminum	
CONDITIONS	BACKFILL						
	0.0		Height of top of roadway	box		0.0	ft
			above ground surface				
		→					
	CONCRETE						
			Type of protective casing:		Flushmo	unt Roadbox	
			Length			1.0	ft
			Inside Diameter			4.0	in
			Inside Blaneter			1.0	
		0.0	D 41 61 44 6 1	,		1.0	e,
		0.8	Depth of bottom of roadw	ay box		1.0	ft
			Type o	of Seals	Top of Seal (ft)	Thickness (ft)	
			Con	ncrete	0.0	0.8	
			Benton	nite Seal	0.8	2.6	
		L1			'		
	HYDRATED						_
	BENTONITE					-	
	BENTONITE		TO BE THE DESCRIPTION OF A STATE		***	DDE	
			Type of Soil VaporPoint T	_	-	DPE	_
			Inside diameter of vap		bing	0.25	in
			Type of backfill aroun	d tubing	See I	Diagram	
			← Diameter of borehole			3.2	in
		3.4					
		 	Depth to top of Soil Vapor	r Point Scre	en	3.5	ft
							_
					W. G.	1 0 1777	
			Type of screen		Woven Stair	nless Steel Wire	
	QUARTZ		Pore diameter or size of	of openings		0.0057	in
	SAND	L2	Diameter of screen			0.4	in
			Type of backfill around so	creen	No.0 Q	uartz Sand	
			Depth of bottom of Soil V	apor Point	Screen	4.0	ft
		4.2 L3	Dottom of C-9 V P	.+		4.2	£ι
		4.2 L3	Bottom of Soil Vapor Poin			4.2	ft
	4.5		Depth of bottom of boreho	ole		4.5	ft
	om of Exploration) lepth from ground surface in feet)		(No.	ot to Scale)			
(14umbers felet fo d	repair from ground surface in feet)		(INO	. w scarc)			
COMMENTS: Bo	oring completed with blir	nd probe Ti	p of water level probe slightly moist at 4.6 ft.				
N/A-not applicable	ompleted with bill	.a p1000. 11	y or mater to real proper singling moist at 4.0 ft.				
11							

SOIL VAPOR POINT INSTALLATION REPORT

Well No. SV-108D Boring No. SV-108D

		٠,٠						2 A - 100D	
PROJECT	Soil Vapor Point Install	atior	ıs			H&A FILI	E NO. 70665-0	14	
LOCATION	Scottsville, NY					PROJECT	S. Boyle	2	
CLIENT	Coopervision					FIELD RE	D. Nosti	rant	
CONTRACTOR	Nothnagle Drilling					DATE INS	STALLED 12/23/20	008	
DRILLER	J. Schweitzer					WATER I	LEVEL N/A		
Ground El.	ft	Lω	cation	See 1	Plan		Guard Pipe	α .	
El. Datum		Lo	cation	<u> </u>	i idii		✓ Roadway B		
		L					-		
SOIL/ROCK	BOREHOLE				Type of protective	cover/lock	Bolted Cas	t Aluminum	
CONDITIONS	BACKFILL								
	0.0			. ↓	Height of top of roa	adway box		0.0	ft
					above ground surfa	ace			
	CONCRETE								
	CONCRETE	0.0							
		0.8							
					← Type of protective	casing:	Flushmou	nt Roadbox	
					Length			1.0	ft
					Inside Diameter			4.0	— in
					mside Diameter	L		4.0	_''''
	HYDRATED				Depth of bottom of	roadway box		1.0	ft
	BENTONITE								
						Type of Seals	Top of Seal (ft)	Thickness (ft)	
						Concrete	0.0	0.8	
					-		0.8	4.2	_
					_	Bentonite Seal	0.8	4.2	_
			L1		_				_
					_				
				-	Type of Soil Vapor	Point Tubing:	Н	PE	
					1	of vapor point tub	ning	0.25	— in
					Type of backfill			iagram	
					Type of backing	around tubing	See D	iagraiii	_
					Diameter of boreho	ole		3.2	in
		5.0	+		<u> </u>				
					Depth to top of Soi	l Vapor Point Scre	en	5.1	ft
	QUARTZ								
	SAND				Type of screen		Woven Stein	ess Steel Wire	
	SAND						woven Stann		— <u>.</u>
					1	or size of openings		0.0057	in
		5.8	L2		Diameter of scr	een		0.4	in
				-	Type of backfill are	ound screen	No.0 Qu	artz Sand	
					Depth of bottom of	Soil Vapor Point	Screen	5.6	ft
			_ L3		Dottom of Coll W	on Doint		£ 0	£4
			1		Bottom of Soil Vap			5.8	_ft
	8 —				Depth of bottom of	borehole		8.0	ft
	om of Exploration)					(Not to Saala)			
(inumbers refer to d	lepth from ground surface in feet)					(Not to Scale)			
COMMENTE		t		CO 6 1	-11 f 1/0 l	. 0.6			
	prenote caved to 7.0 ft. stand	iing v	water at	6.9 It. che	cked for 1/2 hour, remained at 6	o.9 It.			
N/A-not applicable									

APPENDIX B

Field Sampling Forms

											Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	<u> </u>	
LOCATION	Rochester, N	ΤΥ	·						PROJECT MGR.	Sue Boyle		*******
CLIENT	Coopervisio	n							FIELD REP	EGL	,,,	
Implant Installation D												
Well ID:	*****	_	GPS Coord	linates:		Lat.	Lon	g.				
Date:		_		Time:		_	Implant Type:	permanent	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamb								, ,		
Implant Depth:	in	W	eather Cond	litions:								
Other pertinent observ	ations:											
***************************************		***************************************			*****							

Sampling Data:				O	640 760 76					(
Date: 0/1 Purge Rate: 20	14/08	_		Time:	My -	_	Helium Trace Tes	st Performed:	(Yes) / No Pa	ssed		
Purge Rate: 70	0	ml/min	Purge	Time:	T b	sec	Volume Extracted	l:	nı # of implant	volumes:	0.0	******
Canister ID:	00366	_ , FI	Ow Control	lar ID: //	40017	7	Sample Time:				·~	
Weather Conditions:	SUMM	brec?	EY 60)5			•			<u></u>	.1	
Other pertinent observ	ations:		11					******				
		***************************************					***************************************					

]]		· · · · · · · · · · · · · · · · · · ·			B-000000000000000000000000000000000000	
Sample Location	Start Time	Initial	Interim	Interim	Final Time	Final						
Sample Location	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)			Comments			
			, ,			(**************************************						
51/-	0840	35			1050	5.5						
				 	1000	0.0						
*****	<u> </u>								····			
				<u> </u>								·····

	<u> </u>											
111												
							į					

ı	HALEY &
	ALDRICH

											Page	l of 1	ı
PROJECT	Coopervisio	n Soil Vapor S	Sampling			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			H&A FILE NO.	70665-014			-
LOCATION	Rochester, N	1Y	····						PROJECT MGR.			******	
CLIENT	Coopervisio	n	· · · · · · · · · · · · · · · · · · ·				***************************************		FIELD REP	EGL			
Implant Installation D	ata:										,		
Well ID:			GPS Coord	linates:		Lat.	Long	,					
Date:		-		Time:			Implant Type:	permanent	semi-permanent	temporary			
	Geoprobe	 Slamb							semi-permanent	temporary			
Implant Depth:	in	W	eather Conc	fitions:									
Other pertinent observ													
***************************************		Militar					····						
Sampling Data: Date: Purge Rate: 27 Canister ID: 560 Weather Conditions: Other pertinent observe	00 00655 Sunny	Sre e 3	Purge	ler ID: O	\$52 76 A0045	sec	Helium Trace Test Volume Extracted: Sample Time:		ml # of implant	volumes:			
	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)			Comments				
SV-2	0852	<i>30,5</i>			1049	7,0							-
													
												****	_
											***************************************		•••
													_
													_
												***************************************	***
								·····					
				Ì						-			_

	IAL		
A	LD	RIC	H

	2										Page 1	of 1	Į
PROJECT	Coopervision	Soil Vapor S	sampling						H&A FILE NO.	70665-014	<u> </u>		
LOCATION	Rochester, N	Y							PROJECT MGR.	Sue Boyle			
CLIENT	Coopervision	i							FIELD REP	EGL		*****	
	·	 											
Implant Installation I													
Well ID:		-	GPS Coord	inates:		Lat.	Long.						
Date:	····			Time:	· · · · · · · · · · · · · · · · · · ·	_	Implant Type:	permanent	semi-permanent	temporary			
	Geoprobe	Slamba	ar	Other:			·····		~				
Implant Depth:			eather Cond	litions:				*****	****				
Other pertinent obser	vations:				·····								
		····-											
Caralta Dota				·····					1				
Sampling Data:	14/08			Time: 1Z	(7					,			
	 			****					Yes / No P				
Purge Rate: 7	<u>80</u>	ml/min	Purge	Time:	7.3	sec v	Volume Extracted:	· · · · · · · · · · · · · · · · · · ·	ml # of implant	volumes:	0.0		
Canister ID: 8	700,460	FI (ow Controll	ler ID: O	<u> 20017</u>	2_	Sample Time:		hr Purge Devic	:e:			
Weather Conditions:	CRaga	1 DIC	EEX	<u>6 Y</u>	<u> </u>								
Other pertinent observ	ations:			***************************************			····						
	·····								·				
				T	T								
		Initial	Interim	Yorkendore		2							
Sample Location	Start Time (24hrs)	Vacuum	Time	Interim Vacuum	Final Time (24hrs)	Final Vacuum			Comments				
		(inHg)	(24hrs)	(inHg)	(24/0.8)	(inHg)							
<11.7(E)	1212	210	1207c	UZ 2	1.77	1							
-00^{-3}	100	3(,0	1307	N7.0	1415	7.0							
				ļ			ļ						J
				 		<u> </u>			·				
	+							····					
	 					ļ <u>-</u>							
					ļ		·····	*****	***************************************				
					ļ	: 							
	+												
					<u> </u>		1	27					

Form 3010:

											Page 1	of	1
PROJECT	Coopervisio	n Soil Vapor S	Sampling			***************************************			H&A FILE NO.	70665-014	E		
LOCATION	Rochester, N	ΙΥ							PROJECT MGR.				
CLIENT	Coopervisio	n		·					FIELD REP	EGL	***************************************		***-

Implant Installation Da												.,,	
Well ID:	·····	_	GPS Coord	linates:		Lat.	Long	g.					
Date:		_		Time:	···	_	Implant Type:	permanent	semi-permanent	temporary			
Install. Method:	Geoprobe	Slamb							•				
Implant Depth:	in	W	eather Cond	litions:						-TARREST			
Other pertinent observa	itions:							***		*****			****
								***************************************			***************************************	*****	-
								***			***************************************		
Sampling Data:	11-1			1 -	216						***		
Date: (0/4	4/08	.		Time:	216	_	Helium Trace Tes	t Performed:	Yes / No Pe	assed			
Purge Rate:	0	ml/min	Purge		(sec	Volume Extracted	<i>:</i>	ml # of implant	volumes:	0.0		****
Canister ID: 5C	065(9	F	low Control	ler ID: 🕜	40016	3	Sample Time:						-
Weather Conditions:	ر (ص کر	s. 51	re Zx	600	e	- 0 -							_
Other pertinent observa	tions:	J(****	····					-
				***************************************		·					·		
							*****			*****	***		-
													····
Committee of	Start Time	Initial	Interim	Interim	Final Time	Final							
Sample Location	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)	30		Comments				
5	İ			(****-		(III.A.B.)							
5U-3(D)	1216	3(,0	1307	170	14/6	6,6	~···						
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1 30							*****	
					f				******		·		

						***************************************			*****				
	1	ź.				·			····				
					-								•••
						*							
								-14-1					

											Page	1 of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	<u></u>	
LOCATION	Rochester, N	VΥ							PROJECT MGR.	***************************************		
CLIENT	Coopervisio	n							FIELD REP	EGL	*****	
										*		
Implant Installation I							<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
Well ID:			GPS Coord	linates:		Lat.	Long.					
Date:		-					Implant Type:		semi-permanent	taranama		
Install. Method:	Geoprobe	– Slamb							•	temporary		
Implant Depth:	in			ditions:		*****	*****					
Other pertinent obser					*****							
	**				***************************************		*****	······		*****	***************************************	
			:	······································								
Sampling Data:											<u></u>	
Date: (C	14/08			Time: O	754		Unliver Trans Tost	D C 1	Vec / No Pa	ral		
Purge Rate: Z	<u>()</u>	- ml/min	Durgo	Time. 7	77							
Canister ID: SC	00/6/0		r unge Lave Cantral	lando.	1001	sec 2 of	Volume Extracted:					
Weather Conditions:		į 171	ow Connor	uer ID: U	4004		Sample Time:		hr Purge Device	ze:		
												
Other pertinent observ	vanons:								****			
		****	·····								······	*****
			T	T	1	T						
		Initial	1	¥								
Sample Location	Start Time (24hrs)	Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum			Comments			
	(24///3)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)			Commenta			
						<u> </u>						
<u> 50-9 (5)</u>	0954	3(0			((53	5.5						******
		****								· · · · · · · · · · · · · · · · · · ·		
						***************************************				*****		

						····			····			
						***************************************					····	

я		ı
н	HALEY &	ı
а		ı
н		ı
8		ŧ
н	ALDRICH	ı
н		E
		ŧ
		ŀ
		ı.

											Page	1 of	1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
LOCATION	Rochester, N	VΥ				···	····		PROJECT MGR.	Sue Boyle			
CLIENT	Coopervisio	n							FIELD REP	EGL		*****	_
Implant Installation	Data:										······································	······································	
Well ID:	·		GPS Coord	linates:		Lat.	Long	i.					
		_					Implant Type:		semi-permanent	temporary			
	Geoprobe	– Slamb							•	componery			
Implant Depth:	in	W	eather Cond	litions:	***************************************							wi-	
Other pertinent obs													
							4						_
Sampling Data:	-												
Date: (0/14/08			Time: O	150		Unliver Tenna Tool	t Dawfa	Yes / No po	cool			
Purge Rate:		 ml/min	Purge	Time:	50		Volume Extracted:						_
Canister ID: 5(**	low Control	lar ID: 0	40009	- ^{sec} 7	Sample Time:			volumes:			
Weather Condition	Dec G	ייי אייי א	1.a L.	ю ю. <u>Ф</u>	10007		Sampie Time:		hr Purge Devi	ce:			
Weather Condition Other pertinent obs	" party	> 0 KV	<u>טפי לאו</u>	ee zr	603	···							_
Outer perunent obs	ervations:						····					*****	_
			··········				*****			····			
											····		
6	Start Time	Initial	Interim	Interim	Final Time	Final							
Sample Location	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)			Comments				
		((21	((turig)							
5V.4 (D)	0950	78,6			1152	5.0			***************************************				***

		12				-				****		*****	

						**					***	*****	
				*****		··							
											***************************************		-

											Page	1 of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling					·	H&A FILE NO.	70665-014		
LOCATION	Rochester, 1	VΥ							PROJECT MGR.			***************************************
CLIENT	Coopervisio	n		****					FIELD REP	EGL		
										**		
Implant Installation	Data:											
Well ID:	<u></u>	_	GPS Coord	linates:		Lat.	Long.					
Date:		•••		Time:			Implant Type:	permanent	semi-permanent	temporary		
Install. Method:	Geoprobe	 Slamb	ar						, and the second	temporary		
Implant Depth:	in	w	eather Cond									
Other pertinent obse								******				
	-			****				······································				
	***************************************		***************************************					*******	******			
Sampling Data: Date: (O) Purge Rate: Canister ID: (SC) Weather Conditions Other pertinent observation Sample Location	100473 Partly	Initial Vacuum (inHg)	Purge low Control	Time: OA	770 773 004 (8 605 Final Time (24hrs)	sec	Helium Trace Test Volume Extracted: Sample Time:		_ml # of implant	volumes:		
(15/6												
50-5 (S)	0920	295		1	1056	3.5		******				
					`							
			****									****

		,						******				
····												

	1 1				1							

											Page 1	of 1
PROJECT	Coopervision	n Soil Vapor S	ampling						H&A FILE NO.	70665-014		
LOCATION	Rochester, N	ĪΥ		-					PROJECT MGR.	Sue Boyle		***
CLIENT	Coopervision	n							FIELD REP	EGL		***
Implant Installation Da	.to.		·	· · · · · · · · · · · · · · · · · · ·		,,						
.,			4									
Well ID:		_					Long.					
Date:		_					Implant Type:	permanent	semi-permanent	temporary		
	Geoprobe	Slamb	ат	Other:				·····				
	in	W	eather Cond	litions:								
Other pertinent observa	ations:	1.					· · · · · · · · · · · · · · · · · · ·					****
			······································									
Purge Rate: Canister ID: Weather Conditions: Other pertinent observa	00 0037 Parfly		Purge ow Control		4 (A 00 17	sec 2-5	Helium Trace Test Volume Extracted: Sample Time:	2	<u> </u>		0.0	
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24brs)	Final Vacuum (inHg)			Comments			
SV-5(D)	0915	31.0			1057	5.0		······			*******	
									······································		***************************************	***************************************
								·····	******			
						******		*****	***************************************			
							******	****				
							***************************************	***				

										Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling					H&A FILE NO.	70665-014	<u> </u>	
LOCATION	Rochester, N	ΙΥ						PROJECT MGR.	Sue Boyle		
CLIENT	Coopervision	n						FIELD REP	EGL		
Implant Installation	Data:									·	····
Well ID:			GPS Coord	linates:		_Lat.	Long.			•	
		_		Time:			Implant Type: permanent	semi-permanent te	mporary		
Install. Method:	Geoprobe	- Slamb					, JF-	permanent	inponut y		
Implant Depth:	in	W	eather Conc	fitions:							
Other pertinent obser	rvations:										 -
	······································										-
Purge Rate: 7 Canister ID: 50 Weather Conditions Other pertinent obser	:		Purge low Control		76 <u>A000</u> 0	sec 5 9	Helium Trace Test Performed: Volume Extracted: Sample Time:		olumes:	0.0	
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments			
SV-6 (5)	[[2]	30.5	1223	(5.5	1323	65					****
					1						
							***************************************		······································		

											444

									·····	*****	
	Į į										***

				J46 DC)	r Cann	ster Sampring F	OI III				
PROJECT	Coopervision	n Soil Vapor :	Sampling					H&A FILE NO.	70665-014	Page 1	of	1
LOCATION	Rochester, N							PROJECT MGR.			*	
CLIENT	Coopervision	1					***************************************	FIELD REP	EGL			_
Implant Installation D	ata:											
Well ID:			GPS Coord	linates:		Lat.	Long.					
Date:		_					Implant Type: permanent	semi-permanent	temporary			
<u> </u>	Geoprobe	- Slamb						permanen.	emporary			
Implant Depth:	in	W	eather Conc	ditions:								-
Other pertinent observ	ations:						***************************************				*	
					*****						*	_
Sampling Data: Date: 10 Purge Rate: 2 Canister ID: 50 Weather Conditions: Other pertinent observ	200 84=		Purge Iow Control	Time:	42	sec	Helium Trace Test Performed: Volume Extracted: Sample Time:	ml # of implant				
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments				
5V-6(D)	4511	30.0	1773	16.0	1326	6,75						
······································							***************************************					
											~	
	_											
									***************************************	***************************************		
		······									,	

	<u> </u>											

											Page !	l of 1
PROJECT	Coopervisio	n Soil Vapor S	ampling						H&A FILE NO.	70665-014		·····
LOCATION	Rochester, N	ĺΥ							PROJECT MGR.	***************************************		
CLIENT	Coopervisio	n							FIELD REP	EGL		
Implant Installation	Data				······································							
=			GPS Coord	linatan		* .	_					
Date:		_					Long.					
Install. Method:							Implant Type:	permanent	semi-permanent	temporary		
	Geoprobe	Slamba		Other:								
Implant Depth:			eather Cond	ditions:								
Other pertinent obse	rvations:										****	*****

Sampling Data:								<u> </u>	N			<u></u>
Date: 10	14/08			Time: \\7	72(Helium Trace Test	Performed:	(Yes) / No p	1155Rd		
Purge Rate:	700	_ ml/min		Time:	26		Volume Extracted:		ml # of implant	volumes.	0.0	
Canister ID: 54	C00714		ow Control	ler ID: 0	A 004	0.3	Sample Time:			ce:		
Weather Conditions	partly	SUN	na 6	TCT Z	V/60	<u>)</u>	, , , , , , , , , , , , , , , , , , ,	S	ii Imge Devi			
Other pertinent obser	rvations:		<i>y</i>		4/ -	<u> </u>						
			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	***************************************	A		***************************************
									7	***************************************		
		T_1(A T	*									***************************************
Sample Location	Start Time (24hrs)	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum			Comments			
	(24105)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)			Comments			
(1-7(6)	1028	-707 Fm	me all	a c	1221	u n		****				
<u> </u>	1007	78.5	₹1116	9,0	(22)	4,0		·				

								··········				
	l i				ļ							

											Page	1 of 1
PROJECT	Coopervisio	n Soil Vapor	Sampling			***************************************			H&A FILE NO.	70665-014	1	
LOCATION	Rochester, 1	VΥ					***************************************		PROJECT MGR.			***************************************
CLIENT	Coopervisio	1)							FIELD REP	EGL		
Implant Installation I	0.4						····					
			ana a									
Well ID:	·	_	GPS Coord	linates:		_ Lat		g.				
Date:		_					Implant Type:	permanent	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamb		Other:	····		····					_
	i	W	eather Cond	inons:								
Other pertinent obser	vations:		******									
Sampling Data: Date: (O	MANDO		,	- 000	201					11/1		
·	- 1708	-		Time: <u>0</u>		=	Helium Trace Tes		Yes / No	<u> </u>		
Purge Rate:	7.7/	_ ml/min	-	Time:		sec	Volume Extracted	:	ml # of implant	volumes:		
Canister ID:	200+96	- F	Iow Control	ller ID: <u></u>	20009	1	Sample Time:	8	hr Purge Devi	ce:		
Weather Conditions:	bree zy	, SUNK	4,60°				**************************************					
Other pertinent obser	vations:	, 										
			··			····	-					
				1		T						
		Initial	Interim	Interim		 Final						
Sample Location	Start Time (24hrs)	Vacuum	Time	Vacuum	Final Time (24hrs)	Vacuum			Comments			
		(inHg)	(24hrs)	(inHg)	(211113)	(inHg)						
AA-101408	0808	29.0	1305	13.0	1501	7.5						
	- 00 0	1,0		1 200		7.3						
***************************************											·····	
						, E.,						

										Page 1	l of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling					H&A FILE NO.	70665-014		7,
LOCATION	Rochester, N	ĮΥ	•					PROJECT MGR.	Sue Boyle		***************************************
CLIENT	Coopervisio	n						FIELD REP	EGL		
Implant Installation D	ata:									D-14-20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Well ID:			GPS Coord	linates:		Lat.	Long.				
Date:		_					Implant Type: permanent	semi-permanent	temporary		
	Geoprobe	– Slamb	ar					sem-permanent	temporary		
Implant Depth:	in			ditions:							
Other pertinent observ											
										1	
Sampling Data:	12.10			25	ر ار سرا - ار سرا			. ^	á		
Date: 12/		_		Time:	910	_	Helium Trace Test Performed:	Yes / No 1	955e2		
Purge Rate: 70	7	mI/min	Purge	Time:	Z3	sec	Volume Extracted:			0.0	
Canister ID: S	100709	F	low Control	ller ID: 07/	100167		Sample Time: 2	 hr Purge Devic	:e: G/ 7	4:1	
Weather Conditions:									<u></u>	6	
Other pertinent observ	ations:										
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum		Comments			
	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)		Comments			
0176										····	
21.5	0910	30,0	1040	9.0	110	6.0					···
				1							

					ļ	· · · · · · · · · · · · · · · · · · ·				-	
									·····		
											9

					1						

			······································		T					Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling					H&A FILE NO.	70665-014	<u></u>	
LOCATION	Rochester, N	ĵγ						PROJECT MGR.	Suc Boyle		
CLIENT	Coopervision	<u> </u>						FIELD REP	EGL		
					3				*		
Implant Installation								<u>,,,</u>			
Well ID:		•	GPS Coord	linates:		Lat.	Long.				
Date:		_						nanent semi-permanent	temporary		
	Geoprobe	– Slamb							спротагу		
Implant Depth:	in		eather Cond	3 (4)			19/1//		···		
Other pertinent obse				***************************************	W				·····		
·		***************************************	**								
Sampling Data:	/										
Date:	2/30/68			Time:	977		Holizan Tarres Terre D. C.	N.	-crol		
Purge Rate:		nl/min	Duran	Time.	76	-	ricium trace test remoi	rmed: Yes / No Pa	>54 C		
Canister ID: 50	200536	> E	Turge Love Control	1 mile	7.6 10001	sec	volume Extracted:	ml # of implant		0.0	
Weather Conditions	,	, J''	iow Control	ier iD: <u>\\\ /</u> .	10001	1	Sample Time:	hr Purge Devic	e: <u>61/</u>	<u> </u>	
	***	***************************************									
Other pertinent obse	rvations:				w						
		T	7	· · · · · · · · · · · · · · · · · · ·	7	,					
						ŀ					
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum		Comments			
	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)		Consuchts			
711 /											
<u> 50-65</u>	0932	30.5	W44	13.5	1130	7.5					

		2				-					
		-									
				***************************************					****		··
					 	······					
											<u> </u>
				i I			1				

							Page 1	of 1
PROJECT	Coopervision	n Soil Vapor S	Sampling				H&A FILE NO. 70665-014	
LOCATION	Rochester, N	Υ					PROJECT MGR. Sue Boyle	
CLIENT	Coopervision	3					FIELD REP EGL	4-4-4-4
Implant Installation l								
Well ID:		÷	GPS Coord	linates:		Lat.	Long.	
							Implant Type: permanent semi-permanent temporary	
Install. Method:	Geoprobe	Slamb						
Implant Depth:	in	W	eather Conc	ditions:				
Other pertinent obser	rvations:							
				***************************************	-:-			
Sampling Data:	/a /a /							
Date: 14	130/06			Time: O	141		Helium Trace Test Performed: (Yes) / No Passed	
Purge Rate:	Z <i>0</i> 0	ml/min	Purge	Time:	42,	sec .	Volume Extracted: ml # of implant volumes: 0.0	
Canister ID: 50	C00957	- - F	low Control	ller ID:	A0038	6	Sample Time: 2 hr Purge Device: Gil A.	
Weather Conditions		-			- \2	\(\lambda \)	<u> </u>	
Other pertinent obser				***************************************				
*								

]		T	<u> </u>		
	Start Time	Initial	Interim	Interim	Final Time	Final		
Sample Location	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)	Comments	
		([(= 1)	(maxg)		(milg)		
SV-6 D	6941	29.5	1044	12.0	1130	5.0		
			 	1	11.30	7 11/		
				<u> </u>				

			_					
		·····						
1111111								

										Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor (Sampling					H&A FILE NO.	70665-014	4	<u></u>
LOCATION	Rochester, N	ťΥ						PROJECT MGR.	Sue Boyle	***************************************	
CLIENT	Coopervision	n		*****				FIELD REP	EGL		
.											
Implant Installation Da											
Well ID:			GPS Coord	linates:		_Lat	Long.				
Date:	***************************************			Time:			Implant Type: <u>permanent</u>	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamb		Other:		···					
	in	W	eather Cond	litions:							
Other pertinent observa	ations:										
				····							
O # D											
Sampling Data:	12-105				~ · · · · · · ·						
Date: [2/		_		Time: [000	-	Helium Trace Test Performed:		scel		
Purge Rate:	***************************************	_ ml/min	Purge	Time:	ζ0	sec	Volume Extracted:	ml # of implant	volumes:	0.0	
Canister ID: SC	00351	_ F	low Control	ller ID: <u>/</u> /	10000	13_	Sample Time: 2	hr Purge Devi	ce: <u>Gil</u>	AV	
Weather Conditions:				······································	·······						
Other pertinent observa	ations:						***************************************				

	····	7	· · · · · · · · · · · · · · · · · · ·		·						
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum		Comment			
- -	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)		Comments			
(1) 10/ (
SV-10(S	1001	27.0	(115	7.0	1138	4.0					
										***************************************	****

ı	TTIE
Ì	HALEY &
ï	AT ISSUE
ŀ	ALDRICH
ľ	

)									Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	<u> </u>	
LOCATION	Rochester, N	ŢΥ							PROJECT MGR.		***************************************	
CLIENT	Coopervision	1	*****						FIELD REP	EGL		
Implant Installation	Data:										······	
W-11 115.			GPS Coord	inates:		Lat.	Long.					
				Time:				permanent	semi-permanent	tamparan;		
Install. Method:	Geoprobe	– Slamb							senn-permanem	temporary		
Implant Depth:	•			litions:								
Other pertinent obse						*****						

Sampling Data: Date: 12 Purge Rate: 2 Canister ID: 56 Weather Conditions Other pertinent obse	5:		iow Control	ler ID: (/)	40040	/ Ø	Sample Time:	Performed:	Ves / No O ml # of implant br Purge Devi	volumes:	0.0	
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments			
5V-102 5	1151	27/5	1308	8.0	1330	4.5						
		•				1.0				***************************************		
									4444			
····												*************

150												

										Page 1	l of 1
PROJECT	Coopervision	n Soil Vapor S	ampling					H&A FILE NO.	70665-014.		
LOCATION	Rochester, N	īΥ	-					PROJECT MGR.	Sue Boyle		
CLIENT	Coopervision)	······································		***************************************			FIELD REP	EGL		
Implant Installation D)ata:				***************************************						<u>,</u>
Well ID:			GPS Coord	inates:		Lat.	Long.				
		_					Implant Type: permanent	semi-permanent	temporary		
	Geoprobe	- Slamb					Established Specification of the second seco	Serii permanent	Строгиз		
Implant Depth:	in		eather Cond	litiona							
Other pertinent observ											
Sampling Data:	/ / /			1	171				. /		
Date: \ \ \ Z		-		Time:	48	**	Helium Trace Test Performed: (Yes / No	1455ed		4840.4
Purge Rate: Canister ID: 5	<u> 100</u>	ml/min	Purge	Time:	48	sec	Volume Extracted:	ml # of implant	volumes:	0.0	
		§ Fl	low Control	ler ID: <u>O</u>	4003	81	Sample Time:	hr Purge Devic	ce: <u>G/1</u> /	1:/	
Weather Conditions:			····				M-11		.,		
Other pertinent observ	vations:						<u>,, , , , , , , , , , , , , , , , , , ,</u>				***************************************
					T						
	04 (77)	 Initial	Interim	Interim		Final					
Sample Location	Start Time (24hrs)	Vacuum	Time	Vacuum	Final Time (24hrs)	Vacuum		Comments			
		(inHg)	(24hrs)	(inHg)	(2 33.3)	(inHg)					
SU-102 D	1159	79.5	1308	11,0	1356	4.0					
		F									W.M.

										Page 1	l of 1
PROJECT	Coopervision	s Soil Vapor S	Sampling					H&A FILE NO.	70665-014		
LOCATION	Rochester, N	Υ						PROJECT MGR.	Sue Boyle	***************************************	
CLIENT	Coopervision	1			·····			FIELD REP	EGL		
Implant Installation	Data:							***************************************			
*			GPS Coord	inates:		Lat	Long.				
	···	_					Implant Type: permanent	semi-permanent	toman anam.		
Install, Method:	Geoprobe	- Slamb					хапрант з урс. <u>регтанен</u> г	senu-permanem	temporary		
Implant Depth:			eather Cond	itions-							·····
Other pertinent obse			- Common Common								
Sampling Data: Date: (7) Purge Rate: (7) Canister ID: 54	2/30/08 200 200315	ml/min	Purge	Time: 2	15 76 140017	sec '	Helium Trace Test Performed: Volume Extracted: Sample Time:	Yes / No) 9 5 Sed volumes:	0.0	
Weather Condition Other pertinent obse								in Turge Deva	<u> </u>	1	
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments	•		
SV-1035	1215	31.0	1304	15,0	W(3	40					·····
		*	,								

PROJECT	Coopervision	1 Soil Vapor S	ampling					H&A FILE NO.	70665-014
LOCATION	Rochester, N	Y				····	*****	PROJECT MGR.	Sue Boyle
CLIENT	Coopervision	1				····		FIELD REP	EGL
Implant Installation E	Data:				······		· · · · · · · · · · · · · · · · · · ·	- TS-mirror mark	
Well ID:		_	GPS Coord	inates:		Lat.	Long.		
							Implant Type: permanen	t semi-permanent te	mporary
Install. Method:	Geoprobe	Slamba							
Implant Depth:	in	W	eather Cond	litions:					
Other pertinent obser	vations:								
Date: 12/ Purge Rate: 565 Canister ID: 56	<u> 100 + 10 </u>	F FI	low Control	ler ID: Or	1 0000 00 3 8	4	Sample Time:	hr Purge Device	GAAIT
Weather Conditions: Other pertinent observ				0/47	0038	8	Sample Time:	hr Purge Device	· GilAir
Weather Conditions:				0/47	0038	Final Vacuum (inHg)		hr Purge Device	: Gi(Ai)
Weather Conditions: Other pertinent observ	vations: Start Time	Initial Vacuum (inHg)	Interim Timc	Interim Vacuum	Final Time	Final Vacuum			: GAAI
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			· GAAI
Weather Conditions: Other pertinent observ	vations: Start Time	Initial Vacuum (inHg)	Interim Timc	Interim Vacuum (inHg)	Final Time	Final Vacuum			: GILAIN
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			· GAA
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			: GILAIN
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			: GAAI
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			: GILAIN

										Page 1	of 1
PROJECT	Coopervisio	п Soil Vapor S	Sampling					H&A FILE NO.	70665-014		
LOCATION	Rochester, N	ĬΥ						PROJECT MGR.	Sue Boyle	***************************************	
CLIENT	Coopervisio	n						FIELD REP	EGL.	***	
Implant Installation D	latar			···	<u></u>					***************************************	
***			CDC Coord	li							
Well ID:							Long.				
	Geoprobe						Implant Type: <u>pe</u>	ermanent semi-permanent	temporary		
Implant Depth:	*	Slamb		Other:			***************************************		******	***	
Other pertinent observ											
Once perment observ	anons.			···						****	
											
Sampling Data:	/- 10 h			1	~ //						
Date: [7]		MA.		Time: \[\]	-41		Helium Trace Test Per	formed: (Y) / No	55ed		
Purge Rate: 70 Canister ID: 50	0	ml/min	Purge	Time:	\sim	sec	Volume Extracted:	ml # of implant		0.0	
Canister ID: 5C	00141	F1	low Control	ler ID:	4004	50	Sample Time:	Z hr Purge Devic	e: G114	/ ₃ /-	
Weather Conditions:									•		
Other pertinent observ	ations:		·	<u></u>							
											
		Initial	Interim	Interim		Final					
Sample Location	Start Time (24hrs)	Vacuum	Time	Vacuum	Final Time (24hrs)	Vacuum		Comments			
	(211112)	(inHg)	(24hrs)	(inHg)	(24315)	(inHg)					
511-104 0	1241	7.9.5	1363	10.5	1427	τ_{α}					
	10-11	270	1703	10.15	1404	5.0		······································			
MM				Į							

		ľ									

											Page 1	of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	***************************************	
LOCATION	Rochester, N	ΙΥ							PROJECT MGR.			
CLIENT	Coopervision	n							FIELD REP	EGL	****	
Implant Installation	Data									······································		
Well ID:	Data:		CBC C1	e.								
		-	GPS Coord	imates:		Lat	Long.	,				
					***************************************		Implant Type:	permanent	semi-permanent	temporary		
Install. Method: Implant Depth:	Geoprobe .	Slamb										
	in	W	eather Cond	ittons:				····		-		
Other pertinent obse	rvations:											***************************************
Sampling Data:			<u></u>									
Date: <u></u> {7	130/08			Time: (?	323 26		Helium Trace Test	t Performed:	Cyes No Po	255PL		
Purge Rate:		ml/min	Purge	Time:	26	sec			_ 		0.0	
Canister ID: 5	100683	 <u>F</u>			10020		Volume Extracted: Sample Time:	7/	hr Purge Devic		4:1	
Weather Conditions	3:				7-0		•		_			
Other pertinent obse	rvations:											
					***************************************			***************************************			***************************************	
											***************************************	····
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum	-		Comments			
	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)			Considerate			
(11.10/			1.10-					w-1				
EV-106 S	323	28.5	1433	9.5	15(8	3.5						
· · · · · · · · · · · · · · · · · · ·		`										
							ļ					
·												

							•				Page 1	l of 1
PROJECT	Coopervisio	n Soil Vapor S	Sampling						H&A FILE NO.	70665-014	<u> </u>	
LOCATION	Rochester, N	1,							PROJECT MGR.			
CLIENT	Coopervisio	n							FIELD REP	EGL		
Implant Installation D			···					***************************************				
Well ID:		_	GPS Coord	linates:		Lat.	Long	Į.				
Date:							Implant Type:		semi-permanent	temporary		
Install. Method:		- Slamb	ат						sem permanent	толироват у		
Implant Depth:	ín	W	eather Cond	ditions:								
Other pertinent observ					***************************************					····		
1										***************************************		
					•							
Sampling Data:						····						
Data: (7 al	12 m/m			_ 13	112				\sim	e cond		
Date: [7] Purge Rate: 2 Canister ID: 5(70/00	_	ъ.	Time: \	7 7		Helium Trace Tes	t Performed:	Yes / No f	1540		
Canistar ID: S/	000	_ mi/mn _	Purge	: Time:	>> 10000	sec	Volume Extracted:		ml # of implant	volumes:	0.0	
Woodban Candida	200435	∠ F	low Control	lier ID:	4005	>7	Sample Time:		hr Purge Devi	ce: <u>971-</u>	40	
Weather Conditions:												
Other pertinent observe	ations:											

		1	1									
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum			C			
	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)			Comments			
54-1075	(347	35.0	1435	23,0	540	120				***************************************		
										***************************************	****	***************************************
											····	

									<i>*</i>	Page 1	of 1
PROJECT	Coopervision	n Soil Vapor S	Sampling				201	H&A FILE NO.	70665-014		
LOCATION	Rochester, N						· · · · · · · · · · · · · · · · · · ·	PROJECT MGR.	Sue Boyle		
CLIENT	Coopervision	1						FIELD REP	EGL.		
Implant Installation	Data:		,								
			GPS Coord	linates:		Lat	Long				
Date:		-		Time:			Long. Implant Type: permanent				
	Geoprobe	 Slamb						·	temporary		
Implant Depth:	*			litions:				A.1			
Other pertinent obse											
Sampling Data: Date:	00928 s:	ml/min Fl	Purge low Controll	Time: ler ID:		sec Z	Helium Trace Test Performed: Volume Extracted: Sample Time: Z	Yes / No ff a ml # of implant hr Purge Device	volumes:	0.0	
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments			
511.1085	6825	33.0	0922	18.5	1026	8.0					
					1040	0,0					
									····		

<u> </u>											
							:.				

th

												Page 1	of 1
PROJECT	Coopervision	n Soil Vapor S	Sampling							H&A FILE NO.	70665-014		
LOCATION	Rochester, N	ΙΥ				***************************************				PROJECT MGR.			
CLIENT	Coopervision	1								FIELD REP	EGL	75.444.2	
Implant Installation D													
Well ID:	·	***	GPS Coord	linates:		Lat		Long.					
Date:		_					Implant Typ			semi-permanent	temporary		
Install. Method:	•	Slamb		Other:	·								
Implant Depth:	inin	W	eather Cond	litions:									
Other pertinent observ	ations:												
										***************************************			***************************************
	·									***************************************		*******	
Sampling Data:	, ,				* / / -								
Date: [7/ Purge Rate: 7	130/08	•		Time: 08	340	_	Helium Trace	Test	Performed:	Yes No Po	asæd		
Purge Rate: 2	-00	ml/min	Purge	Time:	50	sec	Volume Extra	cted:		ml # of implant		0,0	
Canister ID: <u>SC</u>	00903	F	low Control	ller ID: 🔿	40038	39	Volume Extra Sample Tim	ie:	2	hr Purge Devi	ce: G17	150	
Weather Conditions:					7 14 11 11 11 11 11 11 11 11 11 11 11 11	•	•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Other pertinent observ	ations:												
		, and an an an an an an an an an an an an an			· · · · · · · · · · · · · · · · · · ·								
		1										******	
	.]												
Sample Location	Start Time	Initial	Interim	Interim	Final Time	Final							
Sample Escation	(24hrs)	Vacuum (inHg)	Time (24hrs)	Vacuum (inHg)	(24hrs)	Vacuum (inHg)				Comments			
5V-108 D	0440	29.0	0972	18.0	1040	4.5				***************************************	*****	****	
		•									·····	***************************************	
											·····		
		·				4114444					***************************************		
						·····							

										Page 1	of 1
PROJECT	Coopervision	n Soil Vapor S	Sampling					H&A FILE NO.	70665-014	A	***************************************
LOCATION	Rochester, N	Υ						PROJECT MGR.	Sue Boyle		
CLIENT	Coopervision	1					***************************************	FIELD REP	EGL		
					W						***************************************
Implant Installation I)ata:										
Well ID:		_	GPS Coord	linates:		Lat.	Long.		and a second		
Date:		_		Time:			Implant Type: permanent	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamb	ar	Other:							
Implant Depth:	in	_ <u>W</u>	eather Conc	litions:							
Other pertinent obser	vations:										
						h.M			*******		
Sampling Data:						***************************************		,[1		***************************************
Date: 12/	30/04			Time: <u>08</u>	300		Helium Trace Test Performed:	Yes (No No	A		
Purge Rate:		ml/min					Volume Extracted:		volumes:	0.0	
Canister ID: AC	100719	F	low Control	ler ID: F(0067	2	Sample Time:		ce:		****
Weather Conditions:		- - Lu Pi	111 -	S(A)	20001		outopic rane.	n 1 tilge Devi			
Other pertinent observ		/ 00 1 4	3	/							
production of											
			T T				1.				
	0	Initial	Interim	Interim		Final					
Sample Location	Start Time (24hrs)	Vacuum	Time	Vacuum	Final Time (24hrs)	Vacuum		Comments			
		(inHg)	(24hrs)	(inHg)	(24.03)	(inHg)					
AA-123008	Mall		1000		1 = 1 ()	<u> </u>					
AN CONDOR	0804	29.5	M36	12.0	1545	90					
		<u> </u>			***************************************	·					
		<u> </u>									
								#.WA	·····		
		***************************************						At			
		······································									
					-						

HALI ALDI	Y& UCH			SUM	MA C	aniste	r Sam	pling F	orm IND	OOR			· · · · · · · · · · · · · · · · · · ·
PROJECT	1									···		Page	of
LOCATIO)N						 ,			H&A FILE NO.			
CLIENT										PROJECT MGR.			
CONTRAC	CTOR		, , , , , , , , , , , , , , , , , , , ,	······································			_			FIELD REP			
Samplir	ıg Data:									DATE	<u>-017.5</u>	<u>30/0</u>	9
Sample Purge S Purge I	EID: SV - Start: 14 End: 14	310 310 310	Single	le Depth: Well Volun Volume:	ne:	<u>10.8</u> 10.8	_ml. Pur	ging Device: ge Rate: ge Time:	gilair Boo	Tracer Test Pass:ml/minsec Slab thickness	and the second		- Andrew Special Control of the Cont
Canister II #	D Flow Contro ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Tim (24hrs)	Final Vacuum (inHg)			Comments/ PID reading			
SLC	平乙	1430	38			1,.15	4						
1 4000	00729					4015							***************************************
	00161												
										······································			
Sampling	g Data:			<u> </u>	<u> </u>			<u> </u>					
Sample	ID:		Sample	Depth:			in Purg	ing Device:					
Purge St	art:		Single V	Well Volume	3.4			e Rate:		Tracer Test Pass: Y	/N		
Purge Ei	nd:		Purge V	olume:				e Time:		ml/min			
							ini. Turg	c rune.		sec Slab Thickness:			
Canister ID #	Flow Control ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments/PID reading			
	-												

Chris Norton - 303-4787

HALI ALDI	Y&. RICH ===			SUM	MA C	anistei	r Samj	oling F	orm INI	DOOR	
PROJECT	·						***************************************	-			Page o
LOCATIO	N				······································					H&A FILE NO.	
CLIENT									74°F	PROJECT MGR.	
CONTRAC	CTOR		<u> </u>				******				
Samplin	ıg Data:									DATE O)/:	30/09
Purge S	e ID: <u>SV-</u> Start: End:		Single	e Depth: Well Volum	ne:		_ml. Purg	ing Device: e Rate:			
1 mgc 1			_ Purge	Volume:			_ml. Purg	e Time:		sec Slab thickness:	
Canister II #	D Flow Control ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments/ PID reading	
LC.	FC	1416	199			17					
20100	00793	1114		 		1610	4				
and f My palls	(1)										
Sampling	g Data:		<u> </u>	I	<u> </u>	<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	*		
Sample	ID: <u>SV-()</u>	MAID	Sample	Depth:			in Purgi	ng Device:			
Purge St	art:		Single V	Vell Volume			ml. Purge			Tracer Test Pass: Y/N	
Purge Er	ıd:		Purge V		***************************************		_	Time:			
	·						ruge	ime.		sec Slab Thickness:	
anister ID #	Flow Control ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments/ PID reading	
LC	FC	1419	38			1605	2				· · · · · · · · · · · · · · · · · · ·
20039	00784	* * * * -				100.)	3				
1								A	<u> </u>		
	Ī										

LOCATION	ON			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						Page of
CLIENT							····		H&A FILE NO. PROJECT MGR.	
CONTRA									FIELD REP	N/N/III
Sampli	ng Data:							Manager 1988	DATE OÑ	0/DMNJ 109/09
Sampl Purge	***************************************	SS58 1335 1335	Sing	ple Depth: le Well Volu e Volume:	ume:		<u>S</u> ml. Pt	ging Device: O	Tracer Test Pass YN Soo ml/min sec Slab thickness:	800/60
anister II #	Flow Contr ID#	(24hrs)	Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)		Final Vacuum (inHg)		Comments/PID reading	mp
	00912	1337	Q9 			1200	03			
mpling	Data:									
	D: <u>SV</u> rt:	InAss	- '''	Vell Volume	: 		in Purgi ml. Purge ml. Purge		Tracer Test Pass: Y/N ml/min	
*	ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (înHg)	Final Time (24hrs)	Final Vacuum (inHg)	IIIC:	sec Slab Thickness: Comments/ PID reading	
844	FC 5490	1330	29			200	08			

LOCATIO	NT.							Page
LOCATIO CLIENT	N						****	H&A FILE NO. PROJECT MGR.
CONTRAC								FIELD REP 050/DMV
Purge S	g Data: ID: <u></u>		Single	e Depth: Well Volun Volume:	-	20	_ml. Pur	rging Device: Tracer Test Pass: Y/N rge Rate: ml/min
				1	1	66	_mi. Pur	ge Time: Sec Slab thickness:
Canister ID #	Flow Control ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments/ PID reading
50		500	30			1215	Ò	no glass logods used
M31	00542	/					*****	open void or inches bolow slab
								Von out one
Sampling Sample II Purge Sta Purge End	D: <u>SV - [</u> rt:	DAID		Vell Volume	:	I	nl. Purge	ing Device: Tracer Test Pass: Y/N e Rate: ml/min e Time: sec Slab Thickness:
mister ID I	Flow Control (Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments/ PID reading
K		1500	30				1	Shul off party to remain

PROJECT		······································						pling Form INDOOR
LOCATIO	N							H&A FILE NO.
CLIENT								PROJECT MGR.
CONTRA								FIELD REP
			Single	le Depth: Well Volun Volume:	me:	84 10.9 34	_ml. Pu	ging Device: Tracer Test Pass: Y/N ge Rate: Tracer Test Pass: Y/N ge Time: Sec Slab thickness:
anister II #	Flow Contro ID#	Start Tim (24hrs)	e Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments/ PID reading
SC	OA	1545	730			1335	05	
0041	D930	·						
ampling Sample I Purge Sta Purge En	D: <u>SV}</u> art:	nA9		Well Volume	2:		in Purg	113/11111
nister ID #	Flow Control ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments/ PID reading
		1						
0	FC	<u>540</u>	7 30			335		

		, , , , , , , , , , , , , , , , , , ,							orm INDOOR	Page of
LOCATIO CLIENT									H&A FILE NO. PROJECT MGR.	-
Sample Purge S	ng Data: ID: Start: End:		Samp Single	le Depth: Well Volume:	-	24 10,8 34	ml. Pur	rging Device: rge Rate: rge Time:	FIELD REP DATE ON ON ON ON ON ON ON ON ON ON ON ON ON O	2/09
anister II #	Flow Contro ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	e Final Vacuum (inHg)		Comments/ PID reading	
3c 20160	0A 00898	1025	29			1505	3			
ampling Sample I Purge Sta Purge En	D: <u>SV-</u>	nAQ	~	Well Volume	::		ml. Purge	ing Device: e Rate: e Time:	Tracer Test Pass: Y/N ml/min sec Slab Thickness:	
uister ID 1	Flow Control ID#	Start Time (24hrs)	Initial Vacuum	Interim Time	Interim Vacuum	Final Time (24hrs)	Final Vacuum		Comments/ PID reading	
#		/w15	(inHg) 730	(24hrs)	(inHg)		(inHg)		Comments FID reading	(

HALI ALDI	EY & RICH			SUM	MA C	aniste	r Sam _l	oling F	orm INDOOR
PROJECT	Γ						·	·····	Page of
LOCATIO									H&A FILE NO.
CLIENT		·····				····	_		PROJECT MGR.
CONTRA	CTOR								FIELD REP CSO/AMN
Samplii	ng Data:	2.							DATE <u>ORINGIOS</u>
Sampl	e ID: <u>SV-</u> ?	22 //2	Sampl	e Depth:		24			
Purge	Start:		_ Single	Well Volun		10.8		ging Device:	Tracel Test Fass 17N
Purge 1	End:		Purge	Volume:		<u> </u>		ge Rate:	ml/min
				voidine.		.) //	_ml. Purg	ge Time:	loosec Slab thickness: 3-4inches
Canister I #	D Flow Control ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments/ PID reading
SC	OA					IGHE	03		
00132	Natio					1 513	1 600		
	as 18								
Samplin	g Data:		<u> </u>		.L				
	ID: <u>SV-</u>	nA16	Sample	Depth:	-		in Purgi	ng Device:	_
Purge S			Single V	Well Volume	e:		ml. Purge	-	Tracer Test Pass: Y/N
Purge E	nd:		Purge V	olume:	·		_	Time:	ml/min
									sec Slab Thickness:
anister ID #	Flow Control ID#	(24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments/PID reading
\C	FC	1424	1.DV			10117			
	' -					1545	<u> </u>		
1155	06307								
	<u> </u>				1	f f	1		

PROJEC			······································	SUM		aniste	r Sam	pling Form	INDOOR	D	
LOCATIO CLIENT CONTRA	ON								H&A FILE NO. PROJECT MGR. FIELD REP	Page	of
Sampli Sampli Purge Purge	***************************************	-OU+A	Single	OG e Depth: Well Volu Volume:	me:		ml. Pur	ging Device: ge Rate: ge Time:	Tracer Test Pass: Y/N ml/min sec Slab thickness:	09/09	
Canister l #	D Flow Contr ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Tim (24hrs)	Final Vacuum (inHg)		Comments/ PID reading		
AC > 179	FC 005/5	1347	30			1520	5				
Sample Purge S	g Data: ID: tart: nd:			Vell Volum	e:		ml. Purge	ing Device: Rate:	Tracer Test Pass: Y/N ml/min sec Slab Thickness		· · · · · · · · · · · · · · · · · · ·
nister ID #	Flow Control ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		sec Slab Thickness: Comments/ PID reading		

HALE ALDR	Y& UCH			SUM	MA C	anistei	r Samj	oling F	orm INDO	OOR		
PROJECT LOCATIO CLIENT	N	Co	ooperi							H&A FILE NO. PROJECT MGR. FIELD REP	 Page	of
Purge S	ng Data: S	25	Sample Single	706-1 e Depth: Well Volum Volume:	ne:	24 10.9 34	_ml. Purg	ing Device: e Rate: e Time:	gilair 200 10	DATE	ISS)	- Common of the common of the
Canister II #	P Flow Control ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		A Married Communication of the	Comments/ PID reading		
SC 00615	0A 00857	1307	285			1200	Φ					
Purge Sta	D: <u>SV - r</u> art: <u> </u>	A-705 Ja. Start Time (24hrs)	Single V Purge V Initial Vacuum	Vell Volume olume: Interim Time	Interim Vacuum	Va.	in Purgi ml. Purge ml. Purge Final Vacuum		_n/a	Tracer Test Pass: Market Test Pass: \footnote{Market Test Pass: \footnote{Ma		
ДС 0Ф365	FC DOUGS	1867	(inHg)	(24hrs)	(inHg)	1200	(inHg)			reading		

HAIFY	
A DRIC	

SUMMA Canister Sampling Form INDOOR

LOCATIO CLIENT	ON								H&A FILE NO. PROJECT MGR.
CONTRA	CTOR					·			FIELD REP CSO/EGI
Sampl Purge	ng Data: e ID: S\/-\/ Start: End:		Single	le Depth: Well Volun Volume:			_ml. Pu	ging Device: The Rate: Time:	Tracer Test Pass: Y/N ml/min sec Slab thickness:
#	D Flow Contro ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments/ PID reading
AC 00989	FC 60384	14)3	730			1200	0.3		
Purge St	g Data: ID: art: id:		Sample Single V	Vell Volume			in Purg ml. Purge ml. Purge		Tracer Test Pass: Y/N ml/min sec Slab Thickness:
unister ID #	Flow Control ID #	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments/ PID reading

		····		DOIVE	TATA C	aniste	r Sam	pung k	Form INDOOR		
PROJECT LOCATION CLIENT CONTRACT									H&A FILE NO. PROJECT MGR. FIELD REP	Page	of
Sampling Sample Purge St Purge Er	art:	A - 026	Single	le Depth: Well Volun Volume:	me:		_ml. Pu	ging Device: ge Rate: ge Time:	DATE OA/	26/09	
rC	Flow Contro ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments/ PID reading		
mpling I Sample ID Purge Star Purge End	1: <u>14</u>	5-709-		Well Volume	e:	ev l	ml. Purge	ing Device: e Rate:	Tracer Test Pass: (a) O(a) ml/min (b) sec Slab Thickness: 44		
ister ID FI	low Control ID#	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		sec Slab Thickness: Comments/ PID reading		
	3		į		J	ļ	1				

APPENDIX C

Pre-Sampling Inventory Forms

		- and the second
		ned/Practices accommon to the control of the contro
		to permitte a ministration of a security of
		delicorence a manufacturing delicorence de
		The second secon
		And And Complete And Comment
		100 million mi
		Advances of Printed Assessment Constitution of the Constitution of

INDOOR AIR ASSESSMENT QUESTIONNAIRE AND BUILDING INVENTORY FOR RESIDENTIAL STRUCTURES

Form Completed by: DAULO M. NOTO NOT
Date/Time Initial Call/Visit: 1/29/09 1430
Date/Time Follow-up Call/Visit:
1. OWNER OR LANDLORD(Check if same as occupant) Interviewed: Y/N
First Name: Last Name:
Address: UNITIO
Contact information:
Home Phone: Cell Phone:
Work Location/Phone:
Preferred means and time(s) to contact:
In person At Home by Phone
At Work by Phone By Cell Phone
How long have you owned the house?
Number of Occupants/persons at this location: <u>Vacant</u> Age of Occupants:
Permission to contact the current tenants? Y/N
How long have current tenants lived in the house (per unit, if multiple units)?
If property is occupied by the owner and is a single-family house, skip to Question 3.
If property is a rental house, get contact information for tenants and contact them to answer Question 2.
Comments:
,

information for each	address as possible]	Interviewed: Y/N				
Name:						
Address:						
	•	Cell Phone:				
Preferred means and t	In person	Home Phone Cell Phone				
How long have you ling Age of Occupants:	ved there?	Number living at this location:				
2b. RENTER/OCCU Interviewed: Y/N	PANT:					
Name:	Maria and the control of the control					
Address:	No. 12 page 1 pa					
		Cell Phone:				
Preferred means and t	_In person	Home Phone Cell Phone				
	ved there?	Number living at this location:				
2c. RENTER/OCCU Interviewed: Y/N	PANT:					
Name:						
Address:						
Home Phone:	Office Phone:	Cell Phone:				
Preferred means and		Home Phone Cell Phone				
·	ived there?	Number living at this location:				

2a. RENTER/OCCUPANT: [Note: for multi-tenant structures, please collect

3. RESIDENTIAL STRUCTURE CHARACTERISTICS

Residential type: (Circle	appropriate responses)		
Ranch	Multi-story	Multi-Family	
Raised Ranch Split Level	Apartment Mobile Home	Modular	Townhouse/Condo
Number of stories:	le units, number of units: re: Residentim Hous		
n (\	as been used as a commerc		* "
4. RESIDENTIAL STRU	CTURE CONSTRUCTIO	N	
	ood frame concrete stor		
Year Constructed			
Is there an attic: Yes / N Is the attic occupied? Yes	No Comments		
Is there a basement: Yes Is the basement occupied?	y No Yes /No Comments:		
Is there a crawl space: Ye Construction: (Circle app	es / No Where located?	Gravel Plasti	ic lining Insulation
5. OCCUPANCY			
Level General Use	of Each Floor (e.g., fam	ily room, bedro	om, laundry, workshop)
Basement STORME	, was wen Differ the	4.	
1st Floor Living	KITCHEN, LAUN	very, Bur	HROOM
2 nd Floor Benke	30MS	· · · · · · · · · · · · · · · · · · ·	
3 rd Floor			
4th Floor			

6. BASEMENT CHARACTERISTICS (circle all that apply)
a. Insulation: Describe: Consultation BlankETType 1/2 were (upper)
b. Basement type: NA full partial unfinished partially finished finished Comments:
c. Basement floor: concrete dirt stone Comments:
d. Concrete floor: unsealed sealed carpet painted Generally describe condition (e.g. cracks, damaged areas):
FlowTWG SLAB, FORM EUP. JOINTMATURIAN IN GAP between
FLOREDGE THE WALLS, LOSSE, GARS ARE OPEN AT EXP. JOINT MATERIAL HUD FLOOT, e. Describe the condition of the basement floor: (circle any relevant key words that describe the response)
Good (no cracks or very minor cracking)
Fair (numerous small cracks, chips in several areas)
Poor (many cracks 1/8" or greater, heaved in areas)
Comments:
f. The condition of the basement is: (circle any relevant key words that describe the response) Dry regardless of rainfall Damp (feels humid, moisture evident on walls and floor, moldy, musty odor) Leaks/Seeps (water enters only during heavy rain events) Wet (small pools/puddles/streams of water most of the time, water seepage through floors and or walls) Comments:
g. Most recent weather or sewer related flood event, if any h. Sump present? Ves No Location SE Corner i. Water in sump? NA DTW 0.9
j. Foundation walls: poured (Lower) (block prov) stone other k. Foundation walls: sealed/painted:
k. Foundation walls: sealed/painted:
7. HEATING, VENTING and AIR CONDITIONING (circle all that apply)
Type of heating system(s) used in this building: (circle all that apply - note primary)
Hot air circulation Heat pump Hot water baseboard Space Heaters Steam radiation Radiant floor
Electric baseboard Wood stove/Fireplace Outdoor wood boiler Other
The primary type of fuel used is: Natural Gas Electric Fuel Oil Kerosene Propane Solar Wood Coal
Where is the hot water tank located? 3'S, of heading unit Fueled by: NAT GAS

Where is the boiler/furnace located?: 5/8. of center of basenit
Air conditioning: Central Air Window units None
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY (Circle appropriate responses. Provide comments and or specify where response is "other")
a. Is there smoking in the residence? Yes / No
b. Has the residence ever had a fire? Yes / No When/Cause
c. Is there a garage? Yes/No Attached Detached Outbuilding Garage Use: Outbuilding Use:
d. If an attached garage: Is it heated? Yes / No NA How heated? Furnace (Electric/Natural Gas) Stove (Wood/Pellets/Coal/Other) Space Heater (Electric/Kerosene/Propane) Boiler (Natural Gas/Other) Comments: Are petroleum-powered machines or vehicles stored in it? (lawnmower, ATV, car)
Yes / No NA Comments Has the attached garage had a fire? Yes / No NA When/Cause
e. Is there a workshop or hobby craft area in the house or attached garage? Yes / No Where
garage in the past 6 months? Yes No Where/When/Type (latex, oil, solvent)
g. Has any new carpet) drapes or other textiles been installed in the past several months? Yes No Where/When/Type
h. Do you have a kitchen exhaust fan? Yes / No If yes, where vented
i. Do you have bathroom exhaust fan(s)? Yes No If yes, where vented (e.g attic) outside)?
j. Do you have a clothes dryer? Yes / No If yes, where vented? THE UGL S. WAN
k. Have any pesticides been used at the house? Yes / No Describe:

	inaped Odor
(e	. Do any of the building occupants use solvents at work? Yes / No .g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fue I delivery, boiler mechanic, pesticide application, nail technician, hair stylist, other)
T	ypes of solvents used/comments:
If	yes, are their clothes washed at work? Yes / No
	Do any of the building occupants regularly use or work at a dry-cleaning service? ircle appropriate response) No
	Yes, use dry-cleaning regularly (weekly)
	Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service
0	
	omments:
р	Have cleaning products been used recently? Yes No Then/Type Floor Wax STRIPPER, Wax (KITCHEN Floor)
q q	. Have cleaning products been used recently? Yes No
Q Q V	Have cleaning products been used recently? Yes No When/Type Floor Wax STRIPPER, Wax (KITCHEN Floor) Have cosmetic products been used recently? Yes / No
p W q V	Have cleaning products been used recently? Then/Type Floor Wax STRIPPER, Wax (KITCHEN Floor) Have cosmetic products been used recently? Yes / No Then/Type
р Ч Ч Т	Have cleaning products been used recently? Then/Type Floor Wax STRIPPER, Wax (KITCHEN Floor) Have cosmetic products been used recently? Yes / No Then/Type Do you regularly use air fresheners? Yes / No Describe where/type/frequency WATER AND SEWAGE Vater Supply: Other: Public Water Drilled Well Driven Well Dug Well Other:
9 W	Have cleaning products been used recently? When/Type Floor Wax STRIPPER, Wax (KITCHEN Floor) Have cosmetic products been used recently? Yes / No When/Type Do you regularly use air fresheners? Yes / No Describe where/type/frequency WATER AND SEWAGE Vater Supply: Public Water Drilled Well Driven Well Dug Well

10. PRODUCT INVENTORY - Request information concerning the types, quantities, and locations of household and other chemicals and petroleum-type products that may be located at the residence and document information, below. Additional information concerning chemical/product inventory is to be documented based upon on-site observations.

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size(units)	Condition ¹	Chemical Ingredients
NONE OBSERVED				
		1		
	A CONTRACTOR OF THE CONTRACTOR			
			-	
		77777		Managery (s, s,
	The state of the s		and a managery and the hard of the symmetry and a second property of the second property of	
		10-1-1		

Location	Product	Size(units)	Condition ¹	Chemical Ingredients
	Description			
			, , , , , , , , , , , , , , , , , , , ,	
			THE RESIDENCE OF THE PROPERTY	
* • • • • • • • • • • • • • • • • • • •			The state of the s	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Notes: 1. Describe the condition of the containers as Closed (C), Open (O), new or used (N or U), or Deteriorated (D).

11. ADDITIONAL NOTES allegher condutions

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Allilla
		<u> </u>
 	, por	
		77844

12. FLOOR PLANS - TO BE COMPLETED ON-SITE, BY SAMPLING TEAM

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

BASEMENT:

FIRST FLOOR:

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system (if applicable), and a qualifying statement to help locate the site on a topographic map.

Haley & Aldrich, Inc.
Z:\Projects\26708 Home Ave\112 Phase II Indoor Air Sampling Program\Blank_Questionaire_HomeAve.doc

October 2007

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name <u>Chara Ondak</u> Date/Time Prepared <u>Q.109/09</u> Preparer's Affiliation <u>H&A</u> Phone No. <u>381-4217</u> Purpose of Investigation <u>Cooper Vision</u> 3VI							
1. OCCUPANT:							
Interviewed: Y/N							
Last Name: First Name:							
Address: 458 Berne Mona							
County:Nonroe							
Home Phone							
Number of Occupants/persons at this location 4 Age of Occupants 30'5 (2), 1-Teen, 1-2 yes eld							
2. OWNER OR LANDLORD: (Check if same as occupant)							
Interviewed: Y/N							
Last Name: First Name:							
Address:							
County:							
Home Phone: Office Phone:							
3. BUILDING CHARACTERISTICS Type of Building: (Circle appropriate response)							
Residential School Commercial/Multi-use Industrial Church Other:							

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hous Log Home	se Town		
If multiple units, how ma	ny?			
If the property is comme	rcial, type?			
Business Type(s)		***************************************		
Does it include resider	nces (i.e., multi-use)?	Y/N	If yes, how many?	
Other characteristics:				•
Number of floors		Building age_	<u>1999</u>	
Is the building insulate	ed?Y)N	How air tight?	Tight Average / Not Tight	
4. AIRFLOW				
Use air current tubes or	tracer smoke to evalu	ate airflow pa	atterns and qualitatively descr	ribe:
		-	• •	
Airflow between floors				
		•		
		,		
Airflow near source				
[PATE]				
Outdoor air infiltration				
1111-1111-1111-1111-1111-1111-1111-1111-1111	Na			***************************************
Infiltration into air ducts				

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade constru	ection: wood frame) concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	1
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	(unsealed)	sealed	scaled with	other/z often
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially fini	shed
j. Sump present?	Y/N	The state of the second		
k. Water in sump?	Y/N/not applicable	le		
Basement/Lowest level dep	oth below grade:	(feet)		
Identify potential soil vapo	or entry points and app	roximate size (e.	g., cracks, utilit	ty ports, drains)
Open seem	at wall/floc	or Joint		
6. HEATING, VENTING	G and AIR CONDITIO	NING (Circle all	that apply)	
Type of heating system(s)	used in this building: (c	ircle all that app	oly – note prim	
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radi Wood stove	ation Rad	water baseboard iant floor door wood boile	in the second second
The primary type of fuel u	sed is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Ker Sola	osene ar	
Domestic hot water tank f	ueled by: <u>Ras</u>			
Boiler/furnace located in:	Basement Ou	tdoors Mai	n Floor	Other
Air conditioning:	Central Air Wi	ndow units Ope	en Windows	None
		Olm and		

MINDOUNIE

Are there air distribution ducts present?

Y/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

flo	or ducts	The Agraphy of the State of the	
7. OCCUPA			page and the same
Is basement/	lowest level occupied? Full-time Occ	asionally (Seldom Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedro	om, laundry, workshop, storage)
Basement	Storage		
1 st Floor	Living room, leitener		· 45
2 nd Floor			
3 rd Floor			Milder transport and the Committee C
4 th Floor			Polaries and Company and Compa
O TO A CHOWAND	CO STREET A ONE TO A OF A ST. STATISTICS RESERVED THE TRANSPORT A STREET	OFIFE FORE	,
	S THAT MAY INFLUENCE INDOOR AIR	QUALITI	Y/N)
•	an attached garage?		
b. Does the	e garage have a separate heating unit?		Y/N/NA
	roleum-powered machines or vehicles of the garage (e.g., lawnmower, atv, car)		Y/N/NA Please specify
d. Has the	building ever had a fire?		Y/NWhen?
e. Is a ker	osene or unvented gas space heater present?		Y (N) Where?
f. Is there	a workshop or hobby/craft area?	Y/N	Where & Type?
g. Is there	smoking in the building?	ÝVN	How frequently? Some times
h. Have cl	eaning products been used recently?	(Y) N	When & Type? OYKE a Week
i. Have co	smetic products been used recently?	(Y) N	When & Type? d longs ago

j. Has painting/sta	aining been done in the last 6 months	? Y(N)	Where & Whe	en?	
k. Is there new ca	rpet, drapes or other textiles?	Y(N)	Where & Whe	en?	
l. Have air freshe	ners been used recently?	Y/N	When & Type	?	
m. Is there a kitch	nen exhaust fan?	(Y) N	If yes, where	vented? Other	Capora
n. Is there a bath	room exhaust fan?	₹ ^N N	If yes, where	vented?	
o. Is there a cloth	es dryer?	(Y) N	If yes, is it ver	nted outside? (Y)N	
p. Has there been	a pesticide application?	Y(N)	When & Type	?	
Are there odors in If yes, please des	n the building? cribe: Linny Smell	Y/N L\O\W	ofer on	Acstebo	ggeten .
(e.g., chemical manu	ng occupants use solvents at work? facturing or laboratory, auto mechanic ticide application, cosmetologist	Y / Ñ or auto body	shop, painting	, fuel oil delivery,	
If yes, what types	of solvents are used?	Marketing Control of the Control of		THE RESERVE THE PROPERTY OF TH	
If yes, are their clo	othes washed at work?	Y(N)		
Do any of the buildi	ing occupants regularly use or work	at a dry-clea	aning service?	(Circle appropriate	
Yes, use dry	-cleaning regularly (weekly) -cleaning infrequently (monthly or less a dry-cleaning service)	No Unknown	dont	know
Is there a radon mi Is the system active	tigation system for the building/struc or passive? Active/Passive	ture? Y/N	Date of Instal	lation:	
9. WATER AND SI	EWAGE				
Water Supply:	Public Water Drilled Well Dr	riven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer Septic Tank Le	each Field	Dry Well	Other:	
10. RELOCATION	INFORMATION (for oil spill resid	ential emerç	gency)		
a. Provide reas	ons why relocation is recommended:				
b. Residents che	oose to: remain in home relocate to	o friends/fan	aily reloc	ate to hotel/motel	
c. Responsibilit	y for costs associated with reimburse	ement expla	ined? Y/N	Į.	
d. Relocation p	ackage provided and explained to re	sidents?	Y/N		
001(43	60-9791				

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

* PID FPD readings

O ambient location

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

		2					i				ĺ	1	1	***************************************]		č, 111aman			**************************************							:	
***************************************		·																		<u> </u>	<u> </u>			i	·		······	
·	· · · · · · · · · · · · · · · · · · ·				2400-yanuaran 11	: grannesses							······································	#1#1-78Am-dis.,,		د دیا دستونگ دی دا	į	Vienes a reco	{ 	***************************************	:							
************************						· · · · · · · · · · · · · · · · · · ·				P 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							i		·	······			a.v. e.e			···	!	-
			<u>-</u>	·			<u></u>			· 			:		.,					i				ļ				
		· · · · · · · · · · · · · · · · · · ·		/s mare - s		i							<u>:</u>				<u>.</u>								·			
/km hm 1 1419				1			;			-		me ja		**************************************	, Seminario na		ļ	***************************************				<u>.</u>		<u></u> ,,,,				
	-25-44-7-44-4	.~	tampEm its		nder alt annung der						nagoutharn Park							->	e karabahan pa				nearethy! Medical					********
	·				,,	•	i .			·				— j		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· ·		·	:						.,	
···		, arrama, 1, 1 a a a a		. Park and an extra design				·				:			·	· · · · · · · · · · · · · · · · · · ·	Ť.			Parameter .							na waterway	
:		·		·		1								-m 10 AIF111117		u an		·	i "	· i			·					
**************************************				atterite a _{ne} p agradiane n		;				********							باستعملي	-,, ₋ ,,	**********	arrows a garanter plan	and the state of the state of		******				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Andreas of Principles		INTO AN ELVE	:		.,,,,,,,,,,	man, 10 c-1100p.	inam.i.		ngabiren an		Fefters of multiple II	- Owntriand.e.	1	i 		· Camperiate	i			, manifestation on			American de constitue		:	to the walker of the
·					***************************************	ì	*	,	**************************************	en santalan tan				·'v		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				6		!	4 t. 11 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t. 14 t		,		,	an an p
		}		í				j		i	·		·					a manaches.				,	```````		;	The Superior was	i	···
	:	Market Service Confession Confess				VALUE IN THE	.4 ~~~~		i Iel beetere	-						Automorphis Production of Spring	:	I Antony Colonia					:		ya Emilikawa ma		*****	
·		*******) 		<u>.,i</u>				971 . 1 N m name was	F-100 100 100 100 100 100 100 100 100 100							:		:	}	,		******	1
 -				:	i		.,	l 		i			}						-	********				**************************************	:	;	<u> </u>	
	<u> </u>				<u> </u>		: 		v							nament traderine	,,imm,,		مستند									
							i : ::::::::::::::::::::::::::::::::::	i 			:	************											:		: 			** == t-== p*,***
	reinantear sta	gymayr, 17, by han					n) p. 1 700 nome 110	1	d a Cagnerry, 1 a, 1, a			······· ·	:	omenajemas.e.	والمستارين	, 9a-qay, 1-14-14, 78488449 pris.						·		***********	anifrantene de		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	; **:::::::::::::::::::::::::::::::::::
						:			i						i i	// · > *** *** **** **** **** **** ***	,						i				· **	
··-	+			terança es a antono				·		,	aar tot urgam							1		<u> </u>		aranista #11,4 tirns		: /	<u></u>			
	: :	***************************************																·	·	i			:	>~				
i	1 (:		<u>-</u>				-						_!	·					~>					
tentur,II) russ,sVr.			*********		Manager Street Julius	ļ				:				Part	na di dina pana.	al alle described half described experience of the state			- p	ļ			***************************************		ngajiranjan, 1981 (sandara		unimet??use	
	j		1	***********		;		j				d			1	1	.,	1							of weak and or		,	hard administrative
	;						:							:				*****		:	:				·		:	Ï
		er laure en e-	en nye'nel dina					i	********				:	Marrier I II and Co.	1							and the same		1				
	i	i											mi wan, wa ay ay a										7			parameter or stands		
	agent and an array	····					: 	·			en and the announce					(<u>-</u>							:	·	ericenso e la comitação			
		1						<u> </u>	.,							! }		1	j								·	

11	PRODUCT	INVENTORY	TODA
4.0.	1 10001000	1 1 X Y 2 1 1 X 2 X P 2 X 3	1, C 3 2 7 12 2

Make & Model of field instrument used:
List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
					, , , , , , , , , , , , , , , , , , ,	1
						-
						A STATE OF THE STA

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name	Christina O	Notak Date/Time Prepared 60/09/09	9 1600
Preparer's Affiliation	n Aft May	Phone No.	Agenting Special Control
Purpose of Investiga	ution	·	•
1. OCCUPANT:	Utility Cla	oset # a	
Interviewed: Y/1	ŗ.		
Last Name:	Fi	rst Name:	
Address:			
County:			
Home Phone:	Office	Phone:	
Number of Occupar	nts/persons at this location	Age of Occupants	n-14ppped mann
2. OWNER OR LA	NDLORD: (Check if san	ne as occupant)	
Interviewed: Y/	Ÿ	•	
Last Name:	Firs	st Name:	
Address:			
County:			
Home Phone:	Office	Phone:	
3. BUILDING CH	ARACTERISTICS		
Type of Building:	(Circle appropriate respons	ee)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If t	he property is residential,	type? (Circle app	propriate	e respons	se)	
	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home			al	
lf i	multiple units, how many?	**************************************				
If t	the property is commercial	l, type?				
	Business Type(s)	·			NAMES COLUMN	
	Does it include residences	(i.e., multi-use)?	Y/N		If yes, how many?	
Ot	her characteristics:					
	Number of floors		Buildi	ng age_		
	Is the building insulated? Y	Y/N	How a	ir tight?	Tight / Average / Not Tight	
4.	AIRFLOW					
Us	e air current tubes or trac	er smoke to eval	uate air	flow pat	tterns and qualitatively describe:	
	rflow between floors					
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************		
Aiı	rflow near source					
				, , , , , , , , , , , , , , , , , , , ,		
		***************************************	***************************************	***************************************		
Ou	tdoor air infiltration					
		***************************************		***************************************		~
Inf	Iltration into air ducts					

5,	BASEMENT AND CONSTRUC		3 CTERISTICS	(Circle all that a	pply)
	a. Above grade construction:	wood frame	concrete	stone	brick
	b. Basement type:	full	crawlspace	slab	other
	c. Basement floor:	concrete	dirt	stone	other
	d. Basement floor:	uncovered	covered	covered with	
	e. Concrete floor:	unsealed	sealed	sealed with	
	f. Foundation walls:	poured	block	stone	other
	g. Foundation walls:	unsealed	sealed		
	h. The basement is:	wet	damp	dry	
	i. The basement is:	finished	unfinished	partially finis	hed
	j. Sump present?	Y/N			
	k. Water in sump? Y/N	/ not applicable			
Ba	sement/Lowest level depth below	grade:	_(feet)		
Id	entify potential soil vapor entry po	oints and appro	ximate size (e.g	., cracks, utility	ports, drains)
			·		
6.	HEATING, VENTING and AIR	CONDITION	ING (Circle all t	hat apply)	
Ty	ype of heating system(s) used in th	is building: (cir	cle all that app	ly – note prima	ry)
	Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiat Wood stove	ion Radi	water baseboard ant floor oor wood boiler	Other <u>New E</u>
T	ne primary type of fuel used is:				
	Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero Solar		

Domestic hot water tank fueled by:

Basement

Central Air

Outdoors

Main Floor

Window units Open Windows

Other

None

Boiler/furnace located in:

Air conditioning:

Are there air d	istribution ducts prese	nt? Y/N	•		
	ipply and cold air retur air return and the tight				
		***************************************			
**************************************					
7. OCCUPAN	NCY				
Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never
<u>Level</u>	General Use of Each F	loor (e.g., fa	<u>milyroom, bedi</u>	coom, laundry	, workshop, storage)
Basement					
1 st Floor		Michael Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th	,		тимперениция.
2 nd Floor	VAR. 14 (1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				······································
3 rd Floor					
4 th Floor					hannan managara
8. FACTORS	THAT MAY INFLUE	NCE INDOOI	R AIR QUALI	гү	
a. Is there as	attached garage?			Y/N	•
b. Does the g	garage have a separate	heating unit?		Y/N/NA	
	leum-powered machine the garage (e.g., lawnmo			Y / N / NA Please spec	ify
d. Has the b	uilding ever had a fire?	,		Y/N WI	nen?
e. Is a keros	ene or unvented gas sp	ace heater pre	sent?	Y/N W	nere?
f. Is there a	workshop or hobby/cra	ift area?	Y/1	Where & T	ype?
a Is there s	naking in the huilding	,	. V/1	V How freque	ntlv?

Y/N When & Type? _____

Y / N When & Type?

h. Have cleaning products been used recently?

i. Have cosmetic products been used recently?

1. mas hamma/star	ning been done i	nths? Y/N	Where & Wh	& When?		
k. Is there new car	pet, drapes or ot	Y / N	Where & Wh	en?		
I. Have air freshen	ers been used re	cently?	Y/N	When & Typ	e?	
m. Is there a kitche	en exhaust fan?		Y / N	If yes, where	vented?	
n. Is there a bathr	oom exhaust fan	Y/N	If yes, where	vented?		
o. Is there a clothes	s dryer?		Y/N	If yes, is it ve	nted outside? Y / N	
p. Has there been a	a pesticide applic	Y/N	When & Typ	e?		
Are there odors in If yes, please descr	the building?		Y/N			
Do any of the buildin (e.g., chemical manufa boiler mechanic, pesti	acturing or labora	tory, auto mecha		shop, painting	g, fuel oil delivery,	
If yes, what types of	f solvents are use	d?				
If yes, are their clot	hes washed at wo	rk?	Y/N			
Do any of the buildin response)	ig occupants reg	ularly use or w	ork at a dry-clea	aning service?	(Circle appropriate	
Yes, use dry-c	cleaning regularly cleaning infrequent a dry-cleaning ser	less)	No Unknown			
Is there a radon miti Is the system active o		r the building/s Active/Passive		Date of Insta	llation:	
9. WATER AND SE	WAGE					
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION 1	INFORMATION	N (for oil spill r	esidential emerg	gency)		
a. Provide reason	ns why relocation	n is recommenc	led:	**************************************		
b. Residents choo	ose to: remain in	home reloca	ate to friends/fan	nily reloc	ate to hotel/motel	
c. Responsibility	for costs associa	ited with reimb	ursement explai	ined? Y/1	N .	
d. Relocation pa	ckage provided :	Y/3	1			

#### 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



#### 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



13. PRODUCT INVENTORY FOR	$\mathbb{R}^{N}$	FOI	PV	വ	TINT	TNI	TICT	$\cap \Gamma$	$\mathbf{p}$	13
---------------------------	------------------	-----	----	---	------	-----	------	---------------	--------------	----

Make & Model of field instrument used:	
List specific products found in the residence that have the potential to affect indoor air quality	, <u>.</u>

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo **  Y/N
			-			
***************************************			***************************************			
	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th		-			
	***************************************					
						1

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PICKUP at 1330 Kg

## NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

//-	g Spark	Date/Time Prepared <u>Od/09/09</u>	1515
Preparer's Affiliation		Phone No.	
Purpose of Investigation			
1. OCCUPANT:			
Interviewed: Y/N			
Last Name:	First Name:		
Address: 48 Bring			
County: MONROE		•	
Home Phone:	Office Phone:	ophild termination and the first company of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of the first contract of	
Number of Occupants/persons at	this location	Age of Occupants 205(2) Kird 3(1-5	yes, (-internet)
2. OWNER OR LANDLORD:	(Check if same as occup	ant)	
Interviewed: Y/N			
Last Name:	First Name:		·
Address:		ge ^{nergo} ine en en en en en en en en en en en en e	
County:			
Home Phone:	Office Phone:		
3. BUILDING CHARACTERI	STICS		
Type of Building: (Circle appro	priate response)		
and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	School Commer Church Other:	rcial/Multi-use	

it the broberty is resident	iai, type: (Circle appropriate response)
Ranch	2-Family 3-Family
Raised Ranch	Split Level Colonial
Cape Cod	Contemporary Mobile Home
Duplex Modular	Apartment House Townhouses/Condos Log Home Other:
If multiple units, how man	
If the property is commer	cial, type?
Business Type(s)	
Does it include residen	aces (i.e., multi-use)? Y/N If yes, how many?
Other characteristics:	
Number of floors	Building age 955
Is the building insulate	d)(Y) N How air tight? (Tight) Average / Not Tight
4. AIRFLOW	
Use air exercent tubes or t	racer smoke to evaluate airflow patterns and qualitatively describe:
Ose an entrem tubes of t	racer smoke to evaluate atthow patterns and quantativery describe:
Airflow between floors	
Airflow near source	
Continue to the Manual continue	
Outdoor air infiltration	
Infiltration into air ducts	
ter second and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	
WILLIAM TO THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RES	

5. BASEMENT AND CONST	TRUCTION CHAR	ACTERIST	ICS (Circle all thi	at apply)	
a. Above grade constructio	n: wood frame	concrete	stone	brick	
b. Basement type:	full	crawlspa	ce slab	other	
c. Basement floor:	concrete	dirt	stone	other	And Address of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co
d. Basement floor:	uncovered	covered	covered w	ith	and the spanishers.
e. Concrete floor:	unsealed	sealed	sealed wit	h	Charles at
f. Foundation walls:	poured	(block)	stone	other	115-fiberglass ras blanketen u half.
g. Foundation walls:	unsealed	sealed		h	
h. The basement is:	wet	damp	dry	moldy	
i. The basement is:	finished	unfinish	ed) partially fi	inished	
j. Sump present?	Y N				
To a series	YN / not applicab				
Basement/Lowest level depth b	oelow grade: <u>S</u>	(feet)			
Identify potential soil vapor en	itry points and appl	roximate siz	e (e.g., cracks, uti	ility ports, drains	a)
6. HEATING, VENTING and				o a o ofice	
Type of heating system(s) used	l in this building: (c	ircle all that	apply – note pri	mary)	4
Hot air circulation Space Heaters Electric baseboard	on Heat pump Stream radiation		Hot water baseboo Radiant floor Outdoor wood boi	<u> </u>	idair s
The primary type of fuel used	is:				
Natural Gas Electric Wood	Fuel Oil Propane Coal		Kerosene Solar		
Domestic hot water tank fuele	d by: <u>' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( </u>		***************************************		
Boiler/furnace located in:	Basement Ou	tdoors	Main Floor	Other	
Air conditioning:	Central Air Wi	ndow units	Open Windows	None	

Are there air distribution ducts present?

Y/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

	Dime volums		÷	
	- Transfer	***************************************	Marining Comments	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
***************************************				
Name and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control		***************************************		
7. OCCUPA	NCY			
Is basement/le	owest level occupied? Full-time Occa	usionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyroo	om, bedro	om, laundry, wo	rkshop, storage)
Basement	pool table, smoking	<u> </u>	aro Hes	
I st Floor	lung mon, kitcher		of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the	
2 nd Floor	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t			
3 rd Floor			***************************************	
4 th Floor			·	
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY	,	
a. Is there a	n attached garage?		Y/N	
b. Does the	garage have a separate heating unit?		Y/NZNA	
	deum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)		Y / NA Please specify_	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
d. Has the l	ouilding ever had a fire?		Y/NWhen?	
e. Is a keros	sene or unvented gas space heater present?		Y/NWhere?	
f. Is there a	workshop or hobby/craft area?	Y/	Where & Type?	?
g. Is there s	moking in the building?	(Y) N	How frequently	? basment
h. Have cle	aning products been used recently?	YN	When & Type?	Clarke
i. Have cosı	netic products been used recently?	Y/N	When & Type?	0 mas

j. Has painting/staining been done in the last 6 months?	Y/N/	Where & Whe	n?	
k. Is there new carpet, drapes or other textiles?	Y(N)	Where & Whe	n?	mm 1900 MANAGARA
I. Have air fresheners been used recently?	(Y)/ N	When & Type	? <u>=</u> qny_	<u> Lega 24</u>
m. Is there a kitchen exhaust fan?	- without		rented? Out	
n. Is there a bathroom exhaust fan?	( <b>y</b> )/ N	If yes, where v	ented?	Managarda de caracida
o. Is there a clothes dryer?	YN	If yes, is it ven	nted outside? Y / h	1
p. Has there been a pesticide application?	YN	When & Type	?	·
Are there odors in the building?  If yes, please describe:	YN	:		,
Do any of the building occupants use solvents at work?  (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	Y/N auto body	shop, painting,	fuel oil delivery,	
If yes, what types of solvents are used?	y/N	<u>bleach</u> Clean	- DITTLA CO	ok Vuale
Do any of the building occupants regularly use or work at response)	a dry-clea	ning service? (	(Circle appropriat	2
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service		No Unknown		
Is there a radon mitigation system for the building/structu Is the system active or passive?  Active/Passive	re? Y (N	Date of Install	lation:	magajiki (Pilitonia
9. WATER AND SEWAGE				
Water Supply: Public Water Drilled Well Driv	en Well	Dug Well	Other:	_
Sewage Disposal: Public Sewer Septic Tank Lead	sh Field	Dry Well	Other:	-
10. RELOCATION INFORMATION (for oil spill residen	tial emerg	ency)		
a. Provide reasons why relocation is recommended:	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Total management of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second		an.
b. Residents choose to: remain in home relocate to f	riends/fan	ily reloca	ate to hotel/motel	
c. Responsibility for costs associated with reimbursem	ent explai	ned? Y/N		
d. Relocation package provided and explained to resid	lents?	Y / N		

#### 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



## 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



13.	PROD	NV	PNT	$\Omega \mathbf{R} \mathbf{V}$	LUM.	ħ/Ě
.h. J a		 TT 4 A 3		1/1/	1. ( ) 1.	1 T

Make & Model of field instrument used:	
List specific products found in the residence that have the potential to affect indoor air quality.	

Field Photo ** Instrument Size Condition* Location **Product Description Chemical Ingredients** (units) Y/NReading (units)

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

# NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name _	Christina	Ondak	Date/Time Prepared <u>DD/DA/D9</u>	LUCI
	•		Phone No.	
Purpose of Investi	gation			***************************************
1. OCCUPANT:				
Interviewed: Y	/ N			
Last Name: Address:	tility Clo	First Name:		
County:	<b>.</b>			
Home Phone:		Office Phone:		
Number of Occup	ants/persons at this	location	Age of Occupants	
2. OWNER OR I	LANDLORD: (Ch	eck if same as occup	ant)	
Interviewed: Y	/ N			
Last Name:		First Name:		
Address:		And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		
County:				
Home Phone:		Office Phone:		
3, BUILDING C	HARACTERISTI	CS		
Type of Building	;: (Circle appropriat	e response)		
Residenti Industrial			cial/Multi-use	

If the property is residential, type? (Circle appropriate response)

	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	se		al
If mul	tiple units, how many?				
If the	property is commercial	, type?			
В	usiness Type(s)	.,			gyggg/kannan
D	oes it include residences	(i.e., multi-use)?	Y/N		If yes, how many?
Other	characteristics:				
Nt	ımber of floors		Buildin	ng age	
Is	the building insulated? Y	7/N	How ai	r tight?	Tight / Average / Not Tight
Use ai	IRFLOW r current tubes or trace w between floors	er smoke to eval	uate air	flow pat	tterns and qualitatively describe:
			·		
Airflo	w near source				
***************************************					
Outdo	or air infiltration				·
Infiltra	ation into air ducts				

	5.	BASEMENT	AND	CONSTRUCTION	CHARA	CTERISTICS	(Circle all	that apply
--	----	----------	-----	--------------	-------	------------	-------------	------------

a. Above grade construct	ion: wood	frame concret	e stone	brick
b. Basement type:	full	crawlsp	pace slab	other
c. Basement floor:	concre	ete dirt	stone	other
d. Basement floor:	uncov	ered covered	d covered w	rith
e. Concrete floor:	unseal	ed sealed	sealed wit	h
f. Foundation walls:	poure	i block	stone	other
g. Foundation walls:	unseal	ed sealed	sealed wit	h
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finish	ed unfinis	hed partially f	inished
j. Sump present?	Y/N			
k. Water in sump?	Y/N/not app	olicable		
Basement/Lowest level depti	below grade: _	(feet)		
6. HEATING, VENTING	and AIR COND	ITIONING (Circ	tle all that apply)	
Type of heating system(s) us		·	** */	mary)
Hot air circulation Space Heaters Electric baseboard	Wood	oump n radiation l stove	Hot water basebo Radiant floor Outdoor wood bo	
The primary type of fuel use	d is:			
Natural Gas Electric Wood	Fuel ( Propa Coal		Kerosene Solar	
Domestic hot water tank fue	led by: <u>// A</u>		and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
Boller/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there ai	ir distribution ducts present? Y/N			
	e supply and cold air return ductwork, and its old air return and the tightness of duct joints. I			
man and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o				
***				-
W				
				•
7. OCCUI				
Is basement	<u>.</u>	sionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedro	om, laundry, w	orkshop, storage)
Basement				
1 st Floor				
2 nd Floor				
3 rd Floor				
4 th Floor				
8. FACTO	RS THAT MAY INFLUENCE INDOOR AIR	QUALITY	,	
a. Is there	e an attached garage?		Y/N	
b. Does tl	ne garage have a separate heating unit?		Y/N/NA	
	troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)		Y/N/NA Please specify_	
d. Has th	e building ever had a fire?		Y/N When	<b>*************************************</b>
e. Is a kei	rosene or unvented gas space heater present?		Y/N Where	?
f. Is there	e a workshop or hobby/craft area?	Y/N	Where & Type	?
g. Is there	e smoking in the building?	Y/N	How frequently	y?
h. Have c	leaning products been used recently?	Y/N	When & Type	?
i. Have co	osmetic products been used recently?	Υ/N	When & Type	?

j. Has painting/sta	ining been done i	in the last 6 moi	ntns? Y/N	where & wh	en?
k. Is there new car	pet, drapes or ot	her textiles?	Y/N	Where & Wh	en?
I. Have air freshen	ers been used re	cently?	Y/N	When & Typ	e?
m. Is there a kitch	en exhaust fan?		Y/N	If yes, where	vented?
n. Is there a bath:	oom exhaust fan	Y / N	If yes, where vented?		
o. Is there a clothe	s dryer?		Y / N	If yes, is it ve	ented outside? Y / N
p. Has there been	a pesticide applic	cation?	Y/N	When & Typ	e?
Are there odors in If yes, please desc	the building?		Y/N		
Do any of the building (e.g., chemical manuf boiler mechanic, pesti	acturing or labora	tory, auto mecha		shop, painting	g, fuel oil delivery,
If yes, what types of	of solvents are use	ď?			
If yes, are their clot	hes washed at wo	rk?	Y/N		
Do any of the building response)	ng occupants reg	ularly use or wo	ork at a dry-cles	aning service?	(Circle appropriate
Yes, use dry-	cleaning regularly cleaning infreque a dry-cleaning ser	ntly (monthly or	less)	No Unknown	
s there a radon mits to the system active				Date of Insta	Ilation:
O. WATER AND SE	WAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATIO	Ň (for oil spill re	esidential emerg	gency)	
a. Provide reaso	ns why relocation	n is recommend	led:		
b. Residents cho	ose to: remain in	home reloca	nte to friends/fan	nily reloc	cate to hotel/motel
c. Responsibility	for costs associa	ited with reimb	ursement expla	ined? Y/1	Ŋ
d. Relocation pa	ckage provided a	and explained to	residents?	Y/1	N.

# 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement: Utile h	i C C O-5rt	A I	Magan.			MANUSCON WARRING COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMMISSION OF THE PERSON NAMED IN COMISSION OF THE PERSON	ramanya manada man	HERESTERNA CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P	FF44 PGE-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
		M	SS (SA-ARIZAMA) (Savery Press)	1	i	CALA	V.			
itele 1			A Secretarian Contraction of the Second Secretarians	·		Contract of the second second		i		
	. E. E.				-W	<b>_</b>			<u>!</u>	s chromitanter annoth
120	100	24			OP		i :			
general storage					· · · · · · · · · · · · · · · · · · ·		man and district and district the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t			
		ENISCES AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		Armstatili <del>tinasistatilis</del> }	AND VALUE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	CONTRACTOR OF THE PARTY OF	Constitution of the last	source med
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		1		- Andrews		er e tota a uni menemente entre entre		· · · · · · · · · · · · · · · · · · ·		
1	:				# Cas #	minutes from the Assessment Comment				
<u> </u>	ho( /			*	door	·	or an end the page many consequences.			
mmuqa 4 kumuqayan mishi saan, qaaqib dha mishi dhama saadhan abuubu, ah uu ay iy kurishi daaray qa'd dham 		الله من الأحد عن الإيريسيون عن إلى الأنافات المناطقة الأمامة الأنافية المناطقة الإيريسية المناطقة المناطقة الم المناطقة المناطقة ال	on and dependent and an according to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta		water a land of the second of		manufactures of manufactures of contract	No. of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Con	Пт (2 го страневана пред <b>т</b> енения	distriction de la company
A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA			manuscum ""/- "bur- beneven e e eserci breek	1					:	
										}
<u> </u>		1 1		and the second second	1	1.0		4.00		
			enter the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second			Pro-tores at the contract of the con-			Salara & P	or a second
First Floor:			*Pp	b read	175	I I	\$ 50	mae	GO IF	1
First Floor:			*Pp	b read	173		& SA	mae	POV	
First Floor:			* 0	b read	175		<b>6</b> 50	ndersking of Verrigin Problem Prince	FOK	
First Floor:			PP	e read	175	1	\$ 54	ndersking of Verrigin Problem Prince		
First Floor:			* 67	e cad	*75		<b>&amp;</b> &4	ndersking of Verrigin Problem Prince	Pow	
First Floor:			P	to read	175		\$ 54	ndersking of Verrigin Problem Prince	Polí	
First Floor:				e rad	4775		<b>\$</b> \$4	ndersking of Verrigin Problem Prince	Por	
First Floor:			* Pr	ead.	***************************************		<b>&amp; &amp; A</b>	ndersking of Verrigin Problem Prince	POW	
First Floor:				b read	+73		<b>&amp;</b> \$44	ndersking of Verrigin Problem Prince	Polí	
First Floor:				e read	1775		<b>&amp;</b> \$4	ndersking of Verrigin Problem Prince	Por	
First Floor:					# 7765 		<b>&amp; &amp; 4</b>	ndersking of Verrigin Problem Prince	Por	
First Floor:								ndersking of Verrigin Problem Prince	POI	
First Floor:					1776		<b>&amp; &amp; A</b>	ndersking of Verrigin Problem Prince	Por	

#### 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



1	13	DDC	TOTAL	INVENT	ODV	DODA
1	.7.	1 24 1	DIPE: 1	# 1 % 1 % 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	1 8 K V	DIE BINCINA

Make & Model of field instrument used:	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo **  Y/N
	Laterenamed	50	9004		Oppo	
			*waf		, · ·	
					VIII-	
<del></del>						
					4. As 11111111111111111111111111111111111	
		1				
		-				inger-channel
		-				
		1	<u> </u>	1000,000,000		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

# NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name	Christina Ondale	Date/Time PreparedOS_109/09	Inle
		Phone No.	y W. French
	tion		
1. OCCUPANT:	Utility Closet #16	<i>}</i>	
Interviewed: Y/N	-		
Last Name:	First Name:		
Address:			
County:			
Home Phone:	Office Phone:	ng shi magaalay sa ayaa <mark>aa aa </mark>	
Number of Occupar	ts/persons at this location A	ge of Occupants	
2. OWNER OR LA	NDLORD: (Check if same as occupar	nt)	
Interviewed: Y/I	1		
Last Name:	First Name:		
Address:			
County:			
Home Phone:	Office Phone:		
3. BUILDING CH	ARACTERISTICS		
Type of Building:	Circle appropriate response)		
Residential	School Commerci	al/Multi-use	

If the property is residentia	l, type? (Circle app	ropriate respo	nse)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	Mobi se Towr		
If multiple units, how many	?			
If the property is commercial	al, type?			
Business Type(s)			· ·	
Does it include residence	es (i.e., multi-use)?	Y/N	If yes, how many?	
Other characteristics:				
Number of floors		Building age	. Makkaning property	
Is the building insulated?	Y/N	How air tight	? Tight / Average / Not Tight	
4. AIRFLOW				
Use air current tubes or tra	cer smoke to eval	uate airflow p	atterns and qualitatively describe:	
Airflow between floors				
				·
Airflow near source	•			
		· · · · · · · · · · · · · · · · · · ·		
Outdoor air infiltration				
	PRINCE TO THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE THE PRINCE T			
Infiltration into air ducts				

	·	3			
5. BASEMENT AND CONSTRU	CTION CHARA	CTERISTICS	S (Circle all that	apply)	
a. Above grade construction:	wood frame	concrete	stone	brick	
b. Basement type:	full	crawlspace	slab	other	
c. Basement floor:	concrete	dirt	stone	other	
d. Basement floor:	uncovered	covered	covered with		
e. Concrete floor:	unsealed	sealed	sealed with	***************************************	
f. Foundation walls:	poured	block	stone	other	
g. Foundation walls:	unsealed	sealed	sealed with	sealed with	
h. The basement is:	wet	damp	dry	moldy	
i. The basement is:	finished	unfinished	partially fini	shed	
j. Sump present?	Y/N				
k. Water in sump? Y/1	N / not applicable				
Basement/Lowest level depth belov	v grade:	_(feet)			
Identify potential soil vapor entry	points and appro	oximate size (e	.g., cracks, utilit	y ports, drains)	
6. HEATING, VENTING and AI	R CONDITION	ING (Circle al	l that apply)		
Type of heating system(s) used in t	his building: (cir	cle all that ap	ply – note prim	ary)	
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiat Wood stove	ion Rac	water baseboard liant floor tdoor wood boile		
The primary type of fuel used is:					
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kei Sol	rosene ar		
Domestic hot water tank fueled by					

Main Floor

Window units Open Windows

Other____

None

Boiler/furnace located in:

Air conditioning:

Basement

Central Air

Outdoors

Are there air	distribution ducts present? Y/N			
	upply and cold air return ductwork, and its air return and the tightness of duct joints. I			
			·	***************************************
7. OCCUPA	NCV			
		asionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedro	om, laundry, wo	rkshop, storage)
Basement				
1 st Floor				
2 nd Floor				
3 rd Floor			and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
4 th Floor				
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY		
a. Is there a	n attached garage?		Y/N	
b. Does the	garage have a separate heating unit?		Y/N/NA	
	leum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)		Y/N/NA Please specify_	
d. Has the l	ouilding ever had a fire?		Y/N When?	
e. Is a kero	sene or unvented gas space heater present?		Y/N Where	7
f. Is there a	workshop or hobby/craft area?	Y/N	Where & Type	?
g. Is there s	moking in the building?	Y/N	How frequently	7?
h. Have cle	aning products been used recently?	Y/N	When & Type?	

i. Have cosmetic products been used recently? Y/N When & Type?

j. Has painting/sta	ining been done i	in the last 6 mo	nths? Y/N	Where & Wh	en?
k. Is there new car	pet, drapes or ot	her textiles?	Y/N	Where & Wh	en?
l. Have air freshen	ers been used re	cently?	Y/N	When & Type	>?
m. Is there a kitch	en exhaust fan?		Y/N	If yes, where	vented?
n. Is there a bathr	oom exhaust fan	?	Y/N	If yes, where	vented?
o. Is there a clothe	s dryer?		Y/N	If yes, is it ve	nted outside? Y / N
p. Has there been	a pesticide applic	cation?	Y/N	When & Typ	e?
Are there odors in If yes, please desc	the building?		Y/N		
Do any of the buildir (e.g., chemical manuf boiler mechanic, pesti	acturing or labora	tory, auto mecha		v shop, painting	, fuel oil delivery,
If yes, what types o	f solvents are use	d?			
If yes, are their clot	hes washed at wo	rk?	Y/N		
Do any of the building response)	ig occupants reg	ularly use or w	ork at a dry-cle	aning service?	(Circle appropriate
Yes, use dry-	cleaning regularly cleaning infreque a dry-cleaning ser	ntly (monthly or	· less)	No Unknown	
Is there a radon mit Is the system active		r the building/s Active/Passive		Date of Insta	llation:
9. WATER AND SE	WAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATIO	N (for oil spill r	esidential emer	gency)	
a. Provide reaso	ns why relocation	n is recomment	led:		
b. Residents cho	ose to: remain in	home reloc	ate to friends/far	nily reloc	cate to hotel/motel
c. Responsibility	for costs associa	ited with relimb	ursement expla	ined? Y/I	1
d. Relocation pa	ckage provided :	and explained t	o residents?	Y/1	٧

## 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



### 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



7	3	PDO	111	TAIXIE	A TO TO	$\mathbf{p}\mathbf{v}$	ROR	/
Ŧ			PLICIE	* 1 W W 5		12. 4	ALM BREI	V I

Make & Model of field instrument used:
List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo **  Y/N
			71.00			
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-						
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
***************************************		-				
		ļ				
						-
			-			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

# NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Ohnshna	Ondak	Date/Time Prepared Phone No	02/26/09
Preparer's Affiliat	ion Haleyr	Aldrich_	Phone No	
Purpose of Investi	igation_SVI			
1. OCCUPANT:			•	
Interviewed: Y	/N			
Last Name:	······································	First Name:		·
County:	VPP-04-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-			
Home Phone:		Office Phone:		
Number of Occup	ants/persons at this lo-	cation Ag	e of Occupants	
2. OWNER OR	LANDLORD: (Chec	k if same as occupant	i)	
Interviewed: Y	/ N			
Last Name:		First Name:		
Address:	TO COME AND A STREET OF THE ANGEN AND A STREET OF THE ANGEN AND A STREET OF THE ANGEN AND A STREET OF THE ANGEN	version and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		· ·
County:				
Home Phone:		Office Phone:		
3. BUILDING C	HARACTERISTICS	<b>S</b>		
Type of Building	g: (Circle appropriate i	response)		
Residenti Industria			ıl/Multi-use	

If the property is resident	iai, type? (Circle app	propriate respo	nse)	•	
Ranch	2-Family	3-Far	nilv		
Raised Ranch	Split Level	Color			
Cape Cod	Contemporary		le Home		
Duplex	Apartment Hou		houses/Condos		
Modular	Log Home		ALL CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF		
	3				
If multiple units, how man	ay?				
If the property is commer	cial, type?				
Business Type(s)					
Does it include residen	ces (i.e., multi-use)?	Y/N	If yes, how many	?	
Other characteristics:					
Number of floors 💍	•	Building age	1996		
Is the building insulated	N/Ø/N	How air tight	? Tight / Average /	Not Tight	
4. AIRFLOW					
Use air current tubes or to	racer smoke to eval	uate airflow p	atterns and qualita	tively describe:	:
Airflow between floors					
Althow between mous					
			-		
A	**************************************		***************************************		
	•*				
Airflow near source					
M					
		<u> </u>			
Outdoor air infiltration					
Commence of the state of the st					
**************************************					
	· · · · · · · · · · · · · · · · · · ·		ALL THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRA		
Infiltration into air ducts		•			
manufaction and the manufaction				•	•
			**************************************	***************************************	
Manager and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second					

5.	BASEMENT A	AND	CONSTRUCTION	CHARACTERISTICS	(Circle all	that apply)

a. Above grade constructi	on: <u>wood frame</u> )	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other <u></u>
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured (	block	stone	other
g. Foundation walls:	unscaled	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y/Ø			
k. Water in sump?	Y/ (v) not applicable			
Basement/Lowest level depth	below grade:	(feet) Na	i.	
Identify potential soil vapor of	4		•	ports, drains)
laundy room dra Utility room Cor 6. HEATING, VENTING a Type of heating system(s) use Hot air circulation Space Heaters	nd AIR CONDITIONI	NG (Circle all the all that app	that apply)	
Electric baseboard	Wood stove	Outd	oor wood boiler	Other
The primary type of fuel uses	is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero Solar		
Domestic hot water tank fuel	ed by:			
Boiler/furnace located in:	Basement Outdo	ors Mair	1 Floor	Other
Air conditioning:	Central Air Windo	ow units Oper	n Windows	None

Are there air distribution ducts present?

Y/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Cal	ines	
	<u> </u>	
· · · · · · · · · · · · · · · · · · ·		
7. OCCUPA	NCY	
Is basement/lo	owest level occupied? Full-time Occa	sionally Seldom Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedroom, laundry, workshop, storage)
Basement	<u> none</u>	
1 st Floor	lwing area	
2 nd Floor		
3 rd Floor		
4 th Floor		
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there a	n attached garage?	Y / 🕥
b. Does the	garage have a separate heating unit?	Y/ONA
	oleum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)	Y / NA Please specify
d. Has the l	ouilding ever had a fire?	Y/O When?
e. Is a kero	sene or unvented gas space heater present?	Y / Where?
f. Is there a	workshop or hobby/craft area?	Y / N Where & Type?
g. Is there s	moking in the building?	Y / N How frequently?
h. Have cle	aning products been used recently?	N When & Type? Smelled
i. Have cos	metic products been used recently?	Y/N When & Type?

J. Has painting/staining been done in the last 6 months?	Y / N	Where & Wh	en'
k. Is there new carpet, drapes or other textiles?	Ø√ N	Where & Wh	en? <u>Carpat ao</u> C
l. Have air fresheners been used recently?	( <u>)</u> / N	When & Typ	e? poporti
m. Is there a kitchen exhaust fan?			vented?
n. Is there a bathroom exhaust fan?	$\mathcal{O}_{N}$	If yes, where	vented?
o. Is there a clothes dryer?	Ø/N	If yes, is it ve	ented outside? Y / N
p. Has there been a pesticide application?	(Y)/N	When & Typ	e? granular
Are there odors in the building? If yes, please describe: Claning pro	duat	pr.	
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist		shop, painting	r, fuel oil delivery,
If yes, what types of solvents are used?	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th		Volatile Control of the Control of t
If yes, are their clothes washed at work?	Y/N		
Do any of the building occupants regularly use or work at response)	t a dry-clea	ning service?	(Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service		No Unknown	
Is there a radon mitigation system for the building/structure. Is the system active or passive?  Active/Passive	ure? Y/N	Date of Insta	llation:
9. WATER AND SEWAGE			
Water Supply: Public Water Drilled Well Driv	ven Well	Dug Weli	Other:
Sewage Disposal: Public Sewer Septic Tank Lea	ch Field	Dry Well	Other:
10. RELOCATION INFORMATION (for oil spill resider	itial emerg	ency)	
a. Provide reasons why relocation is recommended:			•
b. Residents choose to: remain in home relocate to	friends/fan	ily reloc	cate to hotel/motel
c. Responsibility for costs associated with reimbursen	nent explai	ned? Y/1	Ŋ
d. Relocation package provided and explained to rest	dents?	Y/1	V

# 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:			
And a summation of the man annual of any other for the property of the substitute of a substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of the substitute of t	1	4	
j	كالمدارة المتراوية والمتارس والمدارة والمتارية والمتارية والمتارس المتارس المتارس والمتارس وا	The same and the same of the same and the same and the same and the same and the same and the same and the same	1 x x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x 2 y x
E			· · ·
	A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	Amounts have marked to \$ 1 to \$ 1 to \$1 to	
A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	<u> </u>		
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			orand amening man il fami amen amening and sent amening the consequence of management of management of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the consequence of the c
er er er er er er er er er er er er er e	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	namananing ing gapan propenjaganan jeung penerupan naman naman naman naman nama nama na	3 / 3
	i		
A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O		The second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the second statement of the se	
THE PERSONNEL PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY AND A CONTRACT PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERT	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	
and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th			annia paga agamente penanga agamente paga kanangang paga kanangang paga agamente paga agamente paga agamente p
		i	
	gegently beginning angular on a trade of the state of the		
MANUAL SAMUAL I SAMUAL ARCOCAL OF SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL SAMUAL		4516347 (14424-4444) 4 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 Mary 1 M	
First Floor:	anninganista a anna ann an airstean ann an ann an ann an ann ann ann ann		
1 1			
	Lington		tra living room
			trailiving coom
	deningram	Dowdec /	that living coon
		powder /	that hving coon
		pouder room	tra-living coon
		pousder room	time living coon
		Powder / room	time living com
		powder / porcy	the living coon
		pouder / room	C Kitche C
		powder / poors	the living coon  [ Kitcheh  - laway
		room	Likhen
	whth.	room	C Kitche C
	whth.	room	C Kitche C
	whth.	room	C Kitche C
	whth.	room	C Kitche C
		room	C Kitche C

### 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



'n	3	PRC	TOTAL	INVEN	ropv	RODA	4
- 5		* ***	B S D C 1 C . N	# 1 A A B. LA	9 2 3 2 2 2 2	2 / C P 2 / C ) Y	Ŀ

Make & Model of field instrument used:	
List specific products found in the residence that have the potential to affect indoor air quality.	

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
·						
-						-
: 				The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

# NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	1shna Onda	L Date/Time Prepa	ared 02/26/09
		Phone No	
Purpose of Investigation	SVI		
1. OCCUPANT:			
Interviewed: Y/N	tennant not	home	
Last Name:	Fi	rst Name:	
Address: 4 75-			
County:			
Home Phone:	Office	Phone:	-
Number of Occupants/pe	rsons at this location	Age of Occupants	
2. OWNER OR LAND	LORD: (Check if sar	ne as occupant)	
Interviewed: Y/N			
Last Name:	Fir	st Name:	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Address:		·*	
County:	additional design of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of		
Home Phone:	Office	Phone:	<u></u>
3. BUILDING CHARA	CTERISTICS		
Type of Building: (Circ	le appropriate respons	se)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

if the property is residential,	type: (Circle app.	robitate tespon	SC)		
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hous Log Home	Townh			
If multiple units, how many?					
If the property is commercial	l, type?				
Business Type(s)			And any place of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		
Does it include residences	(i.e., multi-use)?	Y/N	If yes, how many?	Part 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Other characteristics:					
Number of floors 3		Building age_	1999 1991		
Is the building insulated	ð/N	How air tight?	Tight / Average / N	ot Tight	
4. AIRFLOW					
Use air current tubes or trace	er smoke to evalu	ıate airflow na	tterns and qualitati	velv describe:	
OSC MIX CONTINUE CADOS OF CARCO	or said to cyalu	and an more pa	een 110 and Jamitas	voly describe.	
Airflow between floors					
Airflow near source					
			× ·	**************************************	
Outdoor air infiltration					
	V				
erent deuts. White and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	. Martin de Agrico de Carrero de				
		······································		**************************************	
Infiltration into air ducts					
				***************************************	Vermine in apply Vermine in apply in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of
And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				

5. BASEMENT AND CONSTRU	ICTION CHARAC	CTERISTICS	(Circle all that ap	ply)
a. Above grade construction:	(wood frame)	concrete	stone	brick
b. Basement type:	(full)	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	(uncovered)	covered	covered with _	**************************************
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	(block)	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	(dry)	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Q/N	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		
k. Water in sump?	N)not applicable			
Basement/Lowest level depth below	w grade:	(feet)		
6. HEATING, VENTING and Al	IR CONDITIONI	<b>NG</b> (Circle all t	hat apply)	
Type of heating system(s) used in	this building: (circ	le all that appl	iy – note primar	y)
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiatio Wood stove	on Radia	vater baseboard ant floor oor wood boiler	Other
The primary type of fuel used is:				
Natural Gas Electric Wood	Electric Propane			
Domestic hot water tank fueled by	r e R			•
Boiler/furnace located in: Bas	ement Outdo	ors Main	Floor	Other
Air conditioning:	otral Air Winde	w units Open	Windows	None

Are there air distribution ducts present? $Y/N$	
Describe the supply and cold air return ductwork, and its cotthere is a cold air return and the tightness of duct joints. In diagram.	
7. OCCUPANCY	
	sionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyroor	•
General the of Each Floor (e.g., Taininy) out	m, bedioom, faundry, workshop, storage;
Basement	
1 st Floor	**************************************
2 nd Floor	**************************************
3 rd Floor	
4 th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR Q	QUALITY
a. Is there an attached garage?	Y (N)
b. Does the garage have a separate heating unit?	Y/N)NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y NA Please specify
d. Has the building ever had a fire?	Y/N When?
e. Is a kerosene or unvented gas space heater present?	Y A Where?
f. Is there a workshop or hobby/craft area?	Y/N Where & Type?
g. Is there smoking in the building?	Y (N) How frequently?
h. Have cleaning products been used recently?	Y/N When & Type? don't KNOV

i. Have cosmetic products been used recently?

Y N When & Type?

j. Has painting/staining been done in	the last 6 mo	nths? Y/N)	Where & Whe	n?		
k. Is there new carpet, drapes or oth	er textiles?	Y/10	Where & Whe	en?		
l. Have air fresheners been used rec	l. Have air fresheners been used recently?					
m. Is there a kitchen exhaust fan?		Ø/N	If yes, where	vented?		
n. Is there a bathroom exhaust fan?	,	(Y) N	If yes, where v	/ented?		
o. Is there a clothes dryer?		(A) M	If yes, is it ver	uted outside (Ŷ)/N		
p. Has there been a pesticide applica	ition?	Ø/N				
			lawns	s in summer		
Are there odors in the building? If yes, please describe:		Y/O	)	- Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andrews and Andr		
(e.g., chemical manufacturing or laborate boiler mechanic, pesticide application, or If yes, what types of solvents are used	osmetologist					
If yes, are their clothes washed at wor	k?	Y/N				
Do any of the building occupants regularizes response)  Yes, use dry-cleaning regularizes, use dry-cleaning infrequent Yes, work at a dry-cleaning server.	(weekly) tly (monthly or		No Unknown	(Circle appropriate		
Is there a radon mitigation system for Is the system active or passive?	the building/s Active/Passive	•	Date of Instal	lation:		
9. WATER AND SEWAGE						
Water Supply: Public Water	Drilled Well	Driven Well	Dug Well	Other:		
Sewage Disposal: Public Sewer	Septic Tank	Leach Field	Dry Well	Other:		
10. RELOCATION INFORMATION	(for oil spill re	esi <b>d</b> ential emerg	gency)			
a. Provide reasons why relocation	is recommend	led:				
b. Residents choose to: remain in h	ome reloca	ate to friends/fan	nily reloca	ate to hotel/motel		
c. Responsibility for costs associat	ed with reimb	ursement explai	ined? Y/N			
d. Relocation package provided a	nd explained t	o residents?	Y/N			

## 11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



### 12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



1	1	ppn	THEFT	שוני איי	VENT	DV.	MODM
		1 14 6 5		21%	* K1.1* 1 %	* K * * *	LE BET IN

Make & Model of field instrument used:	
Make & Model of field instrument used:	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
					79.7	
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
		1				
,						
		<u> </u>				
		1				

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

# APPENDIX D

**Laboratory Analytical Data** 





### LABORATORY REPORT

May 20, 2008

Susan Boyle Haley & Aldrich, Incorporated 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

**RE: Cooper Vision / 70665-012** 

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on May 5, 2008. For your reference, these analyses have been assigned our service request number P0801298.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **2**\ pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Late Igen leng

Kate Aguilera

Project Manager



Client: Project:

Haley & Aldrich, Incorporated

Cooper Vision / 70665-012

CAS Project No:

P0801298

New York Lab ID: 11221

### **CASE NARRATIVE**

The samples were received intact under chain of custody on May 5, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

## Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client:

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-012

# **Detailed Sample Information**

CAS Sample ID	Client Sample ID	Container Type	<u>Pi1</u> (Hg)	<u>Pi1</u> (psig)	Pf1	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	Pf2	Cont ID	Order #	FC ID	Order#
P0801298-001.01	SV-1	6.0 L-Summa Canister Source	-3.5	-1.7	3.5				SC00554	8595	OA00167	8595
P0801298-002.01	SV-2	6.0 L-Summa Canister Source	-3.0	-1.5	3.5			100	SC00945	8595	OA00386	8595
P0801298-003.01	SV-3 (S)	6.0 L-Summa Canister Source	-3.4	-1.7	3.5				SC00758	8595	oa00143	
P0801298-004.01	SV-4 (S)	6.0 L-Summa Canister Source	-2.9	-1.4	3.5				SC00611	8595	oa00207	
P0801298-005.01	SV-5 (S)	6.0 L-Summa Canister Source	-3.0	-1.5	3.5				SC00391	8595	oa00406	
P0801298-006.01	SV-6 (S)	6.0 L-Summa Canister Source	-4.2	-2.1	3.5				SC00590	8595	OA00283	8595
P0801298-007.01	SV-7 (S)	6.0 L-Summa Canister Source	-6.0	-2.9	3.5				SC00361	8595	OA00177	8595
P0801298-008.01	Ambient	6.0 L-Summa Canister Ambient	-4.5	-2.2	3.5				AC01499	8595	FC00525	8595

Folder: P0801298

Client: Haley & Aldrich, Incorporated Folder: P0801298

**Project:** Cooper Vision 70665-012

# **Detailed Sample Information**

<u>Pi1 Pi1 Pi2 Pi2</u>

CAS Sample ID Client Sample ID Container Type (Hg) (psig) Pf1 (Hg) (psig) Pf2 Cont ID Order # FC ID Order #

### Miscellaneous Items - received

OA00403

FC00564

SC00977

AVG00676

SC00693

AVG00571

FC00599

AC01427

OA00059

SC00883

FC00572 AVG00744

AV000744

AVG00729

SC00616

AVG00437

AVG00227

OA00093

AVG00640

AVG00722

AVG00593

AC00594

AVG00236

AVG00245

AVG00513

FC00163

AVG00566

FC00533

AVG00367

SC00951

AC00871

Client:

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-012

**Folder:** P0801298

FC ID

Order#

# **Detailed Sample Information**

<u>Pi1</u>

(psig) Pf1

(Hg) (psig) Pf2

Cont ID

Order #

(Hg)

CAS Sample ID	Client Sample ID	Container Type
AVG00809		
AVG00543		
AVG00689		
AVG00657		
SC00306		
AVG00601		
OA00450		
OA00014		
AVG00287		
AC00564		
AVG00503		
AC00764		
OA00047		
OA00176		
OA00417		
AVG00533		
SC00837		
AVG00629		
SC00085		
SC00027		
OA00451		

OA00417
AVG00533
SC00837
AVG00629
SC00085
SC00027

C3/15/2008 3:27:08PM Page 3 of 3

# Air - Chain of Custody Record & Analytical Service Request



2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

An Employee - Owned Company	Phone (805) 526-7161 Fax (805) 526-7270						s Days (Surchar 4 Day (35%) 5 [			CAS Proje	ect No. 801198
is along & MIA.	es (Reporting Information)	Project Name			-			Bunker	<del></del>	Agnilera	
200 Town Co Rochester, 1	entee Dr. Surtez Ny 14623						7				
Project Manager SULBOULE Phone 585 - 321 - 4219	Fax 585-4814-8219	70665 P.O. #/Billing 70665- Bill to attn:	Information	res al			TO-15 1,1-DCA, 1,1-DCE CONTOYOGHANG, VC ON	70C			Comments e.g. Actual Preservative or specific instructions
Email Address for Result Coleberagins@	Reporting : Maleyaldrich . (d	1	<del></del>		e L. DeB Beyons	ergalis	15- DCA Se 1,1	ls T			4
Client Sample ID	Laboratory Date ID Number Collected	Collected (A	Air/Tube/ (B	Canister ID Bar Code # - .C, SC, etc.)	Flow Controller (Bar Code - FC #)	Sample Volume	10-10-10-10-10-10-10-10-10-10-10-10-10-1	10			` <u>:</u>
SV-1	1) 3.5 5hlos	1032 A	hir S	Cobsal	CADDICT	loL	1				
SV-2	13-3.0 SIVO	1245 A	hr S	Coont	1 DA00386	(oL	1				Please Run
SV-3(S)	3-24 5110	1120 A	tir s	C00758	0A00143	6L	\				TCE, Carbon
SV-4(S)	129 SINO	1239 A			0A00207	(oL				, i	Tetrachloride
SV-5(S)	D-20 5/11d	1145 A	W 50	C00391	01000406	66	(				& Vinyl Chlorid
Sv-6(S)		1221 A	hr &	C00591	0A00283	loL	J				Clow det. Imi
(2) F-V2	D-6.0 5/1908				OHOOITT	4-	ì				(0.25 ug/m3)
Ambient	9-45 SIIO	\$1009 K			FC22A513X			1			32
				·							
Report Tier Levels - please sier I - (Results/Default if not speci ier II - (Results + QC)	*_/	uta Validation Package	∍) 10% Surcharç	ge		DD required (	(es /No	EDD Units:	w/m34 Pr		equirements (MRLs, QAPP)
Relinquished by: (Signature)	eigil		Time: 340	Received by:	-Ut	Telley		5/3/	Time:		
Relinquished by: (Signature)				Received by:				Date:	Time:	Cooler / B	
, , , , , , , , , , , , , , , , , , ,		1		l ,				1-2.0.	1	Temperatu	ıre °C

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

		Sampl	e Acceptance	Check Forn		D0001200			
Client: Haley & Aldı				<u>.</u>	Work order:	P0801298	***********		***************************************
Project: Cooper Visio Sample(s) received on				Date opened:	5/5/2009	hv	MZAN	10D A	<del></del>
Note: This form is used for a		The use of this	•	-	******************************	·			
compliance or nonconformity	-							marcanor	101
compliance of noncomorning	. Thermal preservation and	pir will only be	evariation of their a	tino request or t	are offern und/or as re	quired by the mour	Yes	No	N/A
1 Were sample	containers properly n	narked with cl	ient sample ID	?				X	
2 Container(s)	supplied by CAS?						X		
3 Did sample c	containers arrive in goo	od condition?					X		
4 Were chain-o	of-custody papers used	and filled out	?				$\times$		
5 Did sample c	container labels and/or	tags agree wi	th custody par	ers?				$\times$	
6 Was sample	volume received adequ	ate for analys	is?				X		
7 Are samples	within specified holdin	g times?					X		
8 Was proper to	emperature (thermal p	reservation) o	of cooler at rec	eipt adhered	to?				$\times$
(	Cooler Temperature		°C Blank	- Γemperature		°C			
	ank received?			-		<del></del>		X	
-	supplied by CAS: Seria	1#		-TB					
-	y <b>seals</b> on outside of co			•				X	
Location of						Sealing Lid?			$\times$
Were signat	ture and date included?					_			$\times$
Were seals:									X
	seals on outside of sar	nple containe	r?					X	
Location of		1				Sealing Lid?			X
	ture and date included?								X
Were seals									X
	s have appropriate <b>pre</b> s	servation, acc	ording to metl	nod/SOP or C	Client specified in	formation?			X
	ent indication that the s		_		1				×
	vials checked for presen	-							$\boxtimes$
	nt/method/SOP require			ample nU and	d if necessary al	tor it?			$\mathbf{x}$
	Are the tubes cap	•		ашрге ргі апс	a <u>ii necessary</u> ar	ter it:			$\boxtimes$
12 Tubes:			•						
10 70 1	Do they contain m		1 1' 4 40						$\boxtimes$
13 Badges:	Are the badges pr								$\boxtimes$
Teassassassassassassassassassassassassass	Are dual bed badg	es separated a	ind individuall	y capped and	l intact?	02 DOCUMENTO DE COMPONIO DE CO			$\boxtimes$
Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receip	t / Pres	ervation	ı
	Description	pH *	рH	pН	(Presence/Absence)	•	?ommen	its	
P0801298-001.01	6.0 L Source Can								
P0801298-002.01	6.0 L Source Can						·		
P0801298-003.01	6.0 L Source Can								
P0801298-004.01	6.0 L Source Can								
P0801298-005.01 P0801298-006.01	6.0 L Source Can 6.0 L Source Can					-			-
P0801298-007.01	6.0 L Source Can								
Explain any discrepancies		numbers):							
Samples -001 & -002 are n			the container t	ags.	•	-	***************************************		
Sample -002 has canister S	SN SC00977 listed on the	COC,we receiv	ed canister SN	SC00945.					

Sample -004 has canister SN SC00306 listed on the COC, we received canister SN SC00611

^{*}Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H2SO4 (pH<2); Metals, HNO3 (pH<2); CN (NaOH or NaOH/Asc Acid) (pH>12);

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Incorporated		Work order:	P0801298		
Project: Cooper Vision / 70665-012					
Sample(s) received on: 5/5/2008	Date opened:	5/5/2008	by:	MZAMORA	

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P0801298-008.01	6.0 L Ambient Can					
				,		
***************************************						
***************************************						
				***************************************		
		***************************************				
			<u>,</u>			
	-		<del></del>			
					***************************************	

Explain any discrepancies: (include lab sample ID numbers	s):		

### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-1

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Instrument ID: Analyst:

Wida Ang

Volume(s) Analyzed:

Date Analyzed: 5/7/08

1.00 Liter(s)

Sampling Media: Test Notes:

Container ID:

SC00554

6.0 L Summa Canister

Initial Pressure (psig): -1.7 Final Pressure (psig):

3.5

Canister Dilution Factor: 1.40

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.055	
75-00-3	Chloroethane	ND	0.70	ND	0.27	
75-35-4	1,1-Dichloroethene	ND	0.70	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND	0.17	
71-55-6	1,1,1-Trichloroethane	3.7	0.70	0.67	0.13	· · · ·

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-2

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-002

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Analyst:

Wida Ang

Date Analyzed: 5/7/08

Test Notes:

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed:

0.10 Liter(s)

0.025 Liter(s)

Container ID:

SC00945

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	1.4	ND	0.54	
75-00-3	Chloroethane	ND	6.9	ND	2.6	
75-35-4	1,1-Dichloroethene	390	6.9	100	1.7	
75-34-3	1,1-Dichloroethane	230	6.9	56	1.7	
71-55-6	1,1,1-Trichloroethane	2,300	6.9	430	1.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-3 (S)

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-003

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Analyst:

Wida Ang

Date Analyzed: 5/7/08

Sampling Media:

Instrument ID:

6.0 L Summa Canister

Volume(s) Analyzed:

0.075 Liter(s)

Test Notes:

Container ID:

SC00758

Initial Pressure (psig):

-1.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.40

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	2.4	1.9	0.93	0.73	<u> </u>
75-00-3	Chloroethane	ND	9.3	ND	3.5	
75-35-4	1,1-Dichloroethene	1,800	9.3	470	2.4	
75-34-3	1,1-Dichloroethane	270	9.3	67	2.3	
71-55-6	1,1,1-Trichloroethane	990	9.3	180	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Incorporated

Client Sample ID: SV-4 (S)

CAS Project ID: P0801298

CAS Sample ID: P0801298-004

Client Project ID: Cooper Vision / 70665-012

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Instrument ID: Analyst:

Test Code:

Wida Ang

Date Analyzed: 5/8/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.50 Liter(s)

Test Notes:

Container ID:

SC00611

Initial Pressure (psig):

-1.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.37

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	0.41	0.27	0.16	0.11	
75-00-3	Chloroethane	ND	1.4	ND	0.52	
75-35-4	1,1-Dichloroethene	35	1.4	8.9	0.35	
75-34-3	1,1-Dichloroethane	30	1.4	7.3	0.34	
71-55-6	1,1,1-Trichloroethane	200	1.4	37	0.25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-5 (S)

CAS Project ID: P0801298

Client Project ID: Cooper Vision / 70665-012

6.0 L Summa Canister

CAS Sample ID: P0801298-005

Test Code:

EPA TO-15

Date Collected: 5/1/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 5/5/08

Analyst: Sampling Media: Wida Ang

Date Analyzed: 5/7/08 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00391

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.69	ND	0.26	
75-35-4	1,1-Dichloroethene	0.96	0.69	0.24	0.17	
75-34-3	1,1-Dichloroethane	1.4	0.69	0.35	0.17	
71-55-6	1,1,1-Trichloroethane	82	0.69	15	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-6 (S)

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-006

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 5/7 - 5/8/08

0.050 Liter(s)

Sampling Media: Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.020 Liter(s)

Container ID:

SC00590

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	10	2.9	4.0	1.1	
75-00-3	Chloroethane	36	14	14	5.5	
75-35-4	1,1-Dichloroethene	4,500	14	1,100	3.6	
75-34-3	1,1-Dichloroethane	1,000	14	250	3.6	
71-55-6	1,1,1-Trichloroethane	2,700	14	490	2.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Incorporated

Client Sample ID: SV-7 (S)

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-007

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08

Date Received: 5/5/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 5/8/08

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.70 Liter(s)

Container ID:

SC00361

Initial Pressure (psig):

-2.9

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.54

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.22	ND	0.086	
75-00-3	Chloroethane	ND	1.1	ND	0.42	
75-35-4	1,1-Dichloroethene	ND	1.1	ND	0.28	
75-34-3	1,1-Dichloroethane	1.6	1.1	0.38	0.27	
71-55-6	1,1,1-Trichloroethane	23	1.1	4.1	0.20	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

Client:

Haley & Aldrich, Incorporated

Client Sample ID: Ambient

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

Date Collected: 5/1/08

CAS Sample ID: P0801298-008

Test Code:

EPA TO-15

6.0 L Summa Canister

Instrument ID:

Wida Ang

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 5/5/08 Date Analyzed: 5/7/08

1.00 Liter(s)

Analyst:

Sampling Media:

Test Notes:

Container ID:

AC01499

Initial Pressure (psig):

-2.2

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Canister Dilution Factor: 1.46

CAS#	Compound	Result	MRL	Result	MRL	Data
115.05.1		<u>μg/m³</u>	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	3.1	0.73	1.8	0.42	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.1	0.73	0.43	0.15	
74-87-3	Chloromethane	ND	0.73	ND	0.35	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.73	ND	0.10	
75-01-4	Vinyl Chloride	ND	0.15	ND	0.057	
106-99-0	1,3-Butadiene	ND	0.73	ND	0.33	MRACH MARKATAN AND AND AND AND AND AND AND AND AND A
74-83-9	Bromomethane	ND	0.73	ND	0.19	
75-00-3	Chloroethane	ND	0.73	ND	0.28	
64-17-5	Ethanol	9.4	7.3	5.0	3.9	
75-05-8	Acetonitrile	ND	0.73	ND	0.43	
107-02-8	Acrolein	4.1	0.73	1.8	0.32	
67-64-1	Acetone	80	7.3	34	3.1	
75-69-4	Trichlorofluoromethane	1.2	0.73	0.21	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	0.84	0.73	0.34	0.30	
107-13-1	Acrylonitrile	ND	0.73	ND	0.34	•
75-35-4	1,1-Dichloroethene	ND	0.73	ND	0.18	
75-09-2	Methylene Chloride	ND	0.73	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.73	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.73	ND	0.095	
75-15-0	Carbon Disulfide	0.96	0.73	0.31	0.23	
156-60-5	trans-1,2-Dichloroethene	ND	0.73	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.73	ND	0.18	
1634-04-4	Methyl tert-Butyl Ether	ND	0.73	ND	0.20	
108-05-4	Vinyl Acetate	ND	7.3	ND	2.1	
78-93-3	2-Butanone (MEK)	20	0.73	6.7	0.25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Ambient

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298

CAS Sample ID: P0801298-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08
Date Received: 5/5/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 5/7/08

Sampling Media: 6.0 I

6.0 L Summa Canister

Volume(s) Analyzed: 1.0

1.00 Liter(s)

Test Notes:

Container ID:

AC01499

Initial Pressure (psig):

-2.2 Final F

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.46

CAS#	Compound	Result	MRL	Result	MRL	Data
156-59-2	cis-1,2-Dichloroethene	$\frac{\mu g/m^3}{ND}$	μg/m³ 0.73	ppbV ND	ppbV 0.18	Qualifier
		1.2				
141-78-6	Ethyl Acetate		0.73	0.34	0.20	
110-54-3	n-Hexane	1.2	0.73	0.33	0.21	
67-66-3	Chloroform	ND	0.73	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.73	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.73	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.73	ND	0.13	
71-43-2	Benzene	0.79	0.73	0.25	0.23	
56-23-5	Carbon Tetrachloride	0.27	0.15	0.043	0.023	
110-82-7	Cyclohexane	ND	0.73	ND	0.21	
78-87-5	1,2-Dichloropropane	ND	0.73	ND	0.16	
75-27-4	Bromodichloromethane	ND	0.73	ND	0.11	
79-01-6	Trichloroethene	ND	0.15	ND	0.027	
123-91-1	1,4-Dioxane	ND	0.73	ND	0.20	
80-62-6	Methyl Methacrylate	ND	0.73	ND	0.18	
142-82-5	n-Heptane	1.1	0.73	0.27	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.73	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.73	ND	0.18	
10061-02-6	trans-1,3-Dichloropropene	ND	0.73	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.73	ND	0.13	
108-88-3	Toluene	2.5	0.73	0.66	0.19	
591-78-6	2-Hexanone	1.1	0.73	0.28	0.18	
124-48-1	Dibromochloromethane	ND	0.73	ND	0.086	
106-93-4	1,2-Dibromoethane	. ND	0.73	ND	0.095	
123-86-4	n-Butyl Acetate	ND	0.73	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Rc Date: 51508

#### **RESULTS OF ANALYSIS**

Page 3 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Ambient

CAS Project ID: P0801298 CAS Sample ID: P0801298-008

Client Project ID: Cooper Vision / 70665-012

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 5/1/08 Date Received: 5/5/08

Date Analyzed: 5/7/08

Analyst: Sampling Media:

Wida Ang 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01499

Initial Pressure (psig):

-2.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.46

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	1.4	0.73	0.30	0.16	
127-18-4	Tetrachloroethene	ND	0.73	ND	0.11	
108-90-7	Chlorobenzene	ND	0.73	ND	0.16	
100-41-4	Ethylbenzene	ND	0.73	ND	0.17	
179601-23-1	m,p-Xylenes	2.4	0.73	0.56	0.17	
75-25-2	Bromoform	ND	0.73	ND	0.071	
100-42-5	Styrene	ND	0.73	ND	0.17	
95-47-6	o-Xylene	0.88	0.73	0.20	0.17	
111-84-2	n-Nonane	0.75	0.73	0.14	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.73	ND	0.11	
98-82-8	Cumene	ND	0.73	ND .	0.15	
80-56-8	alpha-Pinene	4.4	0.73	0.78	0.13	
103-65-1	n-Propylbenzene	ND	0.73	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.73	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.73	ND	0.15	
95-63-6	1,2,4-Trimethylbenzene	1.0	0.73	0.21	0.15	
100-44-7	Benzyl Chloride	ND	0.73	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.73	ND	0.12	
106-46-7	1,4-Dichlorobenzene	ND	0.73	ND	0.12	
95-50-1	1,2-Dichlorobenzene	ND	0.73	ND	0.12	
5989-27-5	d-Limonene	2.5	0.73	0.45	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.73	ND	0.076	
120-82-1	1,2,4-Trichlorobenzene	ND	0.73	ND	0.098	
91-20-3	Naphthalene	ND	0.73	ND	0.14	
87-68-3	Hexachlorobutadiene	ND	0.73	ND	0.068	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS Page 1 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-012

CAS Project ID: P0801298 CAS Sample ID: P080507-MB

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Test Notes:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 5/7/08

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND ·	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	0.50	ND	0.22	,
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.50	ND	0.20	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND -	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS Page 2 of 3

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-012

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

CAS Project ID: P0801298

CAS Sample ID: P080507-MB

Date Collected: NA

Date Received: NA

Date Analyzed: 5/7/08 Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	${\sf ppbV}$	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	0.50	ND	0.14	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	0.50	ND	0.15	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	0.50	ND	0.12	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	Published State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the State Control of the
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Haley & Aldrich, Incorporated

CAS Project ID: P0801298

Date Collected: NA

Date Received: NA

Client Sample ID: Method Blank

CAS Sample ID: P080507-MB

Client Project ID: Cooper Vision / 70665-012

Test Code:

EPA TO-15

Instrument ID: Tekm

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 5/7/08 Volume(s) Analyzed: 1.

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	$\mathbf{ppbV}^{-}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 515/08



# LABORATORY REPORT

June 19, 2008

Susan Boyle Haley & Aldrich, Incorporated 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

**RE:** Coopervision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on June 13, 2008. For your reference, these analyses have been assigned our service request number P0801808.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **22** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Speules

Kate Aguilera

Project Manager

Page 1 of <u>22</u>



Haley & Aldrich, Incorporated

CAS Project No:

P0801808

Project:

Coopervision / 70665-014

New York Lab ID:

11221

#### **CASE NARRATIVE**

The samples were received intact under chain of custody on June 13, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

# **Volatile Organic Compound Analysis**

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Haley & Aldrich, Incorporated

Project:

Coopervision 70665-014

# **Detailed Sample Information**

Folder: P0801808

			<u>Pi1</u>	<u>Pi1</u>		<u>Pi2</u>	<u>Pi2</u>					
CAS Sample ID	Client Sample ID	Container Type	<u>(Hg)</u>	(psig)	<u>Pf1</u>	<u>(Hg)</u>	(psig)	<u>Pf2</u>	Cont ID	Order #	FC ID	Order#
P0801808-001.01	SV-2	6.0 L-Summa Canister Source	-3.8	-1.9	3.5				SC00592	9044	OA00168	9044
P0801808-002.01	SV-3 (S)	6.0 L-Summa Canister Source	-1.7	-0.8	3.5	100	100		SC00870	9044	OA00175	9044
P0801808-003.01	SV-3 (D)	6.0 L-Summa Canister Source	-2.7	-1.3	3.5			1520 - Maria Cara Cara Cara Cara Cara Cara Cara	SC00260	9044	OA00011	9044
P0801808-004.01	SV-4 (S)	6.0 L-Summa Canister Source	-4.5	-2.2	3.5				SC00798	9044	OA00178	9044
P0801808-005.01	SV-5 (S)	6.0 L-Summa Canister Source	-2.1	-1.0	3.5				SC00588	9044	OA00121	9044
P0801808-006.01	SV-6 (S)	6.0 L-Summa Canister Source	-5.8	-2.8	3.5				SC00920	9044	OA00298	7758
P0801808-007.01	SV-7 (S)	6.0 L-Summa Canister Source	-4.7	-2.3	3.5				SC00745	9044	OA00122	9044
P0801808-008.01	SV-8 (S)	6.0 L-Summa Canister Source	-3.6	-1.8	3.5	100			SC00849	9044	OA00405	9044
P0801808-009.01	Ambient-061208	6.0 L-Summa Canister Ambient	-6.6	-3.2	3.5		DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF		AC01481	9044	FC00288	9044
P0801808-010.01	SC00286	6.0 L-Summa Canister Source	-28.0	-13.8					SC00286	9044		
P0801808-011.01	SC00063	6.0 L-Summa Canister Source	-27.1	-13.3	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)				SC00063	9044		novino provincia por a por en escalapanta (por escala
P0801808-012.01	SC00777	6.0 L-Summa Canister Source	-26.9	-13.2					SC00777	9044		
P0801808-013.01	SC00270	6.0 L-Summa Canister Source	-24.1	-11.8	-				SC00270	9044		
P0801808-014.01	SC00756	6.0 L-Summa Canister Source	-0.5	-0.2					SC00756	9044		
P0801808-015.01	SC00807	6.0 L-Summa Canister Source		0.3					SC00807	9044		

**©**/18/2008 11:04:43AM Page 1 of 2

Haley & Aldrich, Incorporated

Project:

Coopervision 70665-014

Folder: P0801808

# **Detailed Sample Information**

<u>Pi1</u> CAS Sample ID Client Sample ID Container Type (Hg) (psig) Pf1

<u>Pi2</u> (Hg) <u>Pi1</u> Pi2

(psig) Pf2 FC ID Cont ID Order# Order#

# Miscellaneous Items - received

OA00209

AVG00064

AVG00607

OA00144

AVG00517

AVG00623

AVG00666

OA00448

AVG00661

AVG00797

OA00418

AVG00431

AVG00630

OA00206

AVG00695

OA00429

AVG00356

# Columbia An Employee - Owned Company

Relinquished by: (Signature) Relinquished y: (Signature) Relinquished by: (Signature)

# Air - Chain of Custody Record & Analytical Service Request

Temperature ___

2655 Park Cent Simi Valley, Cali Phone (805) 52 Fax (805) 526-

An Employee - Owned Company	2655 Park Cen Simi Valley, Ca Phone (805) 5 Fax (805) 526	ilifornia 93 526-7161		A	eguested Tur Day (100%)	rnaround Time 2 Day (75%) 3	in Busine; Day (50%)	ss Days (Surchard) 4 Day (35%) 5 D	ges) please cir Day (25%) 10 E	cle Day - Standard	CAS Proj	ject No.
Company Name & Address (F	Reporting Inform	mation)	Project Na	ame			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Kate A	avilera			
Haley +Aldri 200 Town Cen	ich		(00	pervi	5704				nalysis Method	and/or Analytes		-
200 Town Cen	tre or,	Suite 2	Project No	umber								-
Rochester, N	4 14623	7	700	665-	614			32 7				
Project Manager SJE BOYLE			7066	lling Informa				(1-DCE) Chlonethore (oride only	77			Comments e.g. Actual Preservative
Phone	85-486-	8219	Billa	to addi	ressab	ve Vee			72/2			or specific instructions
Email Address for Result Rep	oorting	- / /	Sampler	Print & Sign	Ethan	ree		157-104 1.	(5/			
Cdebergalise h	a leveld	1Ch.com	W	1×1	el/		1	12/2/2				
Client Sample ID	Laboratory ID Number	Date Collected	Time	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)		Sample Volume	1-01	2			
SV-Z	D-3.8	6/17/69	1045	Air	500592	0400168	66	X				Please Nn
SV-3(S)	0-17		1100			0A 00175		X				TCE, Carbon
SV-3 (D)	3-2.7		1117		500060	04000 K		$\perp$		-		retrachlonde,
54-4 (5)	4)-45		1113		SCOOTIS	8F100 A0		X				+ unal chloride
SV-5 (S)	3-21		1202		500588	0400121		X		·		@ Low betedion
SV-6 (5)	Q-55		1452			0A00298		X				(mar (0.25 49)
SU-7 (S)	7.47		1334		\$C00745	0A00122		X				ms
SU-8 (5)	3-3.6		1209			0400405		X				
Ambient-061205	7	J	1530	1	AC01481	FC00288	L.		$\overline{}$			
	-285			·								
	-271											·
W	-119											
3006840	-24_/											
ME. J. A. J.	-05											
	ta3											
Report Tier Levels - please selectifier I - (Results/Default if not specified) Tier II - (Results + QC)		Tier III - (Da Tier V - (clier		ckage) 10% Surd	charge	_	DD required	Yes No	EDD Units:	ug/m³ s pp	bv Project Re	lequirements (MRLs, QAPP)
Relinquished by: (Signature)	ste	<del></del>	Date:/12,	Time 60	Received by	: (Signature)	1771	00002	Cation	Section 14x		
Relinquished by: (Signature)			Date:	Time:	Received by		<del></del>		Date:	Time:	Cooler / E	3lank
Relinquiched by: (Signature)			Date:	Timo	Received by	· (Signature)			Data:	I Timo:		1

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldri	ch, Incorporated		. *		Work order:	P0801808			
Project:	Coopervision.	/ 70665-014								
~	s) received on:				Date opened:		by:	MZAN		
		samples received by CAS. T							on of	
compliance of	or nonconformity.	Thermal preservation and pl	I will only be eval	uated either at the	request of the clie	ent and/or as required	by the method/SO	P. <u><b>Yes</b></u>	<u>No</u>	<u>N/A</u>
1	Were comple	containers properly n	narked with cl	ient sample IT	)?			$\boxtimes$		
2		supplied by CAS?	narked with er	ioni sampie il				$\boxtimes$		
		ontainers arrive in go	od condition?					×		
3				.0				X		
4		f-custody papers used			0			X		
5	-	ontainer labels and/o			pers?					
6 .		volume received adequ		18?				X		
7	-	vithin specified holding	_					$\boxtimes$		
8		mperature (thermal )	preservation) (			to?				X
		Cooler Temperature		°C Blank	Femperature 1		_°C		-	_
9	Was a trip bla								X	
	-	upplied by CAS: Seri			-TB					
10	•	seals on outside of co	oler/Box?						$\overline{\times}$	
	Location of	seal(s)?					_Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								$\overline{\mathbf{X}}$
	Were custody	seals on outside of sar	mple container	r?					X	
	Location of	seal(s)?					_Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								X
11	Do containers	have appropriate pre	servation, acc	cording to meth	nod/SOP or C	Client specified in	nformation?			X
	Is there a clie	nt indication that the	submitted san	nples are <b>pH</b> p	reserved?					X
	Were <b>VOA v</b>	ials checked for prese	nce/absence o	f air bubbles?						X
	Does the clier	nt/method/SOP requir	e that the anal	yst check the	sample pH an	d if necessary al	ter it?			$\boxtimes$
12	<b>Tubes:</b>	Are the tubes cap		•	1 1					X
		Do they contain	_							X
13	Badges:	Are the badges p		1 and intact?				П		X
13	Duagesi	Are dual bed bad			lly canned an	d intact?				X
Lab !	Sample ID	Container	Required pH *	Received pH		VOA Headspac		pt / Pres		1
		Description	μ	γα	pH	(Presence/Absence		Commer	ILS	
P0801808		6.0 L Source Can	***************************************							
P0801808 P0801808		6.0 L Source Can 6.0 L Source Can								
P0801808		6.0 L Source Can				<u> </u>	1		····	
P0801808		6.0 L Source Can								
P0801808		6.0 L Source Can								
P0801808	3-007.01	6.0 L Source Can								
Explain a	ny discrepancies	: (include lab sample II	numbers):							

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Incorporated	Work order:	P0801808		
Project: Coopervision / 70665-014				
Sample(s) received on: 06/13/08	Date opened: 06/13/08	by:	MZAMORA	

Lab Caracter III	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
Lab Sample ID	Description	pH *	pH	pH	(Presence/Absence)	Comments
		17				
P0801808-008.01	6.0 L Source Can					
P0801808-009.01	6.0 L Ambient Can					
P0801808-010.01	6.0 L Source Can					Returned canister
P0801808-011.01	6.0 L Source Can					Returned canister
P0801808-012.01	6.0 L Source Can					Returned canister
P0801808-013.01	6.0 L Source Can					Returned canister
P0801808-014.01	6.0 L Source Can					Returned canister
P0801808-015.01	6.0 L Source Can					Returned canister
				·		
		· · · · · · · · · · · · · · · · · · ·				
			`,	``		
				*		
,						
					i	
		****				
		•				,
						·
			-			
,	-					

Explain any discrepancies: (include lab sample ID numbers):

#### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** Haley & Aldrich, Incorporated

Client Sample ID: SV-2

CAS Project ID: P0801808 CAS Sample ID: P0801808-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 6/12/08

Instrument ID: Analyst:

Wida Ang

Date Received: 6/13/08 Date Analyzed: 6/16/08

Client Project ID: Coopervision / 70665-014

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

SC00592

Initial Pressure (psig):

-1.9

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.42

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.056	
75-00-3	Chloroethane	ND	0.71	ND	0.27	
75-35-4	1,1-Dichloroethene	ND	0.71	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.71	ND	0.18	
71-55-6	1,1,1-Trichloroethane	3.7	0.71	0.67	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** Haley & Aldrich, Incorporated

Client Sample ID: SV-3 (S) CAS Project ID: P0801808

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801808-002

EPA TO-15 Date Collected: 6/12/08 Test Code:

Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/13/08 Analyst: Date Analyzed: 6/16 - 6/17/08 Wida Ang

6.0 L Summa Canister Sampling Media: Volume(s) Analyzed: 0.040 Liter(s)

Test Notes: 0.020 Liter(s) SC00870 Container ID:

Final Pressure (psig): Initial Pressure (psig): -0.8 3.5

Canister Dilution Factor: 1.31

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	19	3.3	7.3	1.3	
75-00-3	Chloroethane	ND	16	ND	6.2	
75-35-4	1,1-Dichloroethene	3,600	16	900	4.1	
75-34-3	1,1-Dichloroethane	1,200	16	300	4.0	
71-55-6	1,1,1-Trichloroethane	2,800	16	510	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_ TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 1

Client: Haley & Aldrich, Incorporated

Client Sample ID: SV-3 (D)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801808

CAS Sample ID: P0801808-003

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 6/12/08

Date Received: 6/13/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 6/16 - 6/17/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.020 Liter(s)

Test Notes:

0.0050 Liter(s)

Container ID:

SC00260

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	- 62	6.8	24	2.7	
75-00-3	Chloroethane	59	34	22	13	
75-35-4	1,1-Dichloroethene	8,000	34	2,000	8.6	
75-34-3	1,1-Dichloroethane	4,000	34	990	8.4	
71-55-6	1,1,1-Trichloroethane	6,400	.34	1,200	6.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: TO15SCAN.XLT - 75 Compounds - PageNo.:

10

P0801808_TO15_0806180957_SS.xls - Sample (3)

#### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** Haley & Aldrich, Incorporated

Client Sample ID: SV-4 (S)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801808 CAS Sample ID: P0801808-004

Date Collected: 6/12/08

Date Received: 6/13/08

Date Analyzed: 6/16 - 6/17/08

Test Code: Instrument ID:

Analyst:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID: SC00798

Initial Pressure (psig):

-2.2

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Canister Dilution Factor: 1.46

1.00 Liter(s)

0.10 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	0.33	0.15	0.13	0.057	
75-00-3	Chloroethane	ND	0.73	ND	0.28	
75-35-4	1,1-Dichloroethene	57	0.73	14	0.18	
75-34-3	1,1-Dichloroethane	39	0.73	9.6	0.18	
71-55-6	1,1,1-Trichloroethane	370	0.73	69	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: TO15SCAN.XLT - 75 Compounds - PageNo.:

#### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-5 (S)

CAS Project ID: P0801808

Client Project ID: Coopervision / 70665-014

6.0 L Summa Canister

CAS Sample ID: P0801808-005

Test Code:

EPA TO-15

Date Collected: 6/12/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 6/13/08

Analyst:

Date Analyzed: 6/16/08

Sampling Media:

Wida Ang

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00588

Initial Pressure (psig):

-1.0

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.33

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	5.7	0.67	1.4	0.17	
75-34-3	1,1-Dichloroethane	1.7	0.67	0.43	0.16	
71-55-6	1,1,1-Trichloroethane	140	0.67	25	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Incorporated

Client Sample ID: SV-6 (S)

CAS Project ID: P0801808

Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0801808-006

Test Code:

EPA TO-15

Date Collected: 6/12/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 6/13/08

Analyst:

Wida Ang

Date Analyzed: 6/16 - 6/17/08

0.10 Liter(s)

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.015 Liter(s)

Test Notes: Container ID:

SC00920

Initial Pressure (psig):

-2.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.53

CAS#	Compound	Result	MRL	Result	MRL	Data
CAS #	Compound					
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	29	1.5	11	0.60	
75-00-3	Chloroethane	28	7.7	11	2.9	
75-35-4	1,1-Dichloroethene	4,500	7.7	1,100	1.9	
75-34-3	1,1-Dichloroethane	2,900	7.7	710	1.9	
71-55-6	1,1,1-Trichloroethane	4,200	7.7	780	1.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-7 (S)

Client Project ID: Coopervision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0801808

CAS Sample ID: P0801808-007

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 6/12/08 Date Received: 6/13/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 6/16/08 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media:

Test Notes:

Container ID:

SC00745

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.47

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.15	ND	0.058	
75-00-3	Chloroethane	ND a	0.74	ND	0.28	
75-35-4	1,1-Dichloroethene	1.4	0.74	0.36	0.19	
75-34-3	1,1-Dichloroethane	3.2	0.74	0.80	0.18	
71-55-6	1,1,1-Trichloroethane	29	0.74	5.3	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: (14-TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-8 (S)

CAS Project ID: P0801808

Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0801808-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 6/12/08 Date Received: 6/13/08

Instrument ID: Analyst:

Sampling Media:

Wida Ang

Date Analyzed: 6/16/08

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00849

Initial Pressure (psig):

-1.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.41

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	${\sf ppbV}$	Qualifier
75-01-4	Vinyl Chloride	1.1	0.14	0.42	0.055	
75-00-3	Chloroethane	ND	0.71	ND	0.27	
75-35-4	1,1-Dichloroethene	3.8	0.71	0.97	0.18	
75-34-3	1,1-Dichloroethane	120	0.71	30	0.17	
71-55-6	1,1,1-Trichloroethane	130	0.71	23	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

as Verified By: TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 3

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: Ambient-061208

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801808

Date Collected: 6/12/08

CAS Sample ID: P0801808-009

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 6/13/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 6/16/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01481

Initial Pressure (psig):

-3.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.58

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
115-07-1	Propene	ND	0.79	ND	0.46	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.79	0.46	0.16	
74-87-3	Chloromethane	ND	0.79	ND	0.38	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.79	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.062	
106-99-0	1,3-Butadiene	ND	0.79	ND	0.36	
74-83-9	Bromomethane	ND	0.79	ND	0.20	
75-00-3	Chloroethane	ND	0.79	ND	0.30	
64-17-5	Ethanol	ND	7.9	ND	4.2	
75-05-8	Acetonitrile	ND	0.79	ND	0.47	
107-02-8	Acrolein	0.85	0.79	0.37	0.34	
67-64-1	Acetone	10	7.9	4.2	3.3	
75-69-4	Trichlorofluoromethane	1.1	0.79	0.20	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.79	ND	0.32	
107-13-1	Acrylonitrile	ND	0.79	ND	0.36	
75-35-4	1,1-Dichloroethene	ND	0.79	ND	0.20	
75-09-2	Methylene Chloride	ND	0.79	ND	0.23	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.79	ND	0.25	
76-13-1	Trichlorotrifluoroethane	ND	0.79	ND	0.10	
75-15-0	Carbon Disulfide	ND	0.79	ND	0.25	
156-60-5	trans-1,2-Dichloroethene	ND	0.79	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.79	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.79	ND	0.22	
108-05-4	Vinyl Acetate	ND	7.9	ND	2.2	
78-93-3	2-Butanone (MEK)	1.4	0.79	0.47	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: _____ Date: TO15SCAN.XLT - 75 Compounds - PageNo.:

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Ambient-061208

CAS Project ID: P0801808

CAS Sample ID: P0801808

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801808-009

Test Code: EPA TO-15 Date Collected: 6/12/08
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/13/08

Analyst: Wida Ang Date Analyzed: 6/16/08

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

-3.2

Test Notes:
Container ID: AC01481

Initial Pressure (psig):

Canister Dilution Factor: 1.58

3.5

Final Pressure (psig):

CAS#	Compound	Result	MRL	Result	MRL	Data
	·	$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.79	ND	0.20	
141-78-6	Ethyl Acetate	4.1	0.79	1.1	0.22	
110-54-3	n-Hexane	ND	0.79	ND	0.22	
67-66-3	Chloroform	ND	0.79	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.79	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	0.79	ND.	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.79	ND	0.14	
71-43-2	Benzene	ND	0.79	ND	0.25	
56-23-5	Carbon Tetrachloride	0.44	0.16	0.070	0.025	
110-82-7	Cyclohexane	ND	0.79	ND	0.23	
78-87-5	1,2-Dichloropropane	ND	0.79	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.79	ND	0.12	
79-01-6	Trichloroethene	ND	0.16	ND	0.029	
123-91-1	1,4-Dioxane	ND	0.79	ND	0.22	
80-62-6	Methyl Methacrylate	ND	0.79	ND	0.19	
142-82-5	n-Heptane	ND	0.79	ND	0.19	
10061-01-5	cis-1,3-Dichloropropene	ND	0.79	ND	0.17	
108-10-1	4-Methyl-2-pentanone	ND	0.79	ND	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.79	ND	0.17	
79-00-5	1,1,2-Trichloroethane	ND	0.79	ND	0.14	
108-88-3	Toluene	2.0	0.79	0.53	0.21	
591-78-6	2-Hexanone	ND	0.79	ND	0.19	
124-48-1	Dibromochloromethane	ND	0.79	ND	0.093	
106-93-4	1,2-Dibromoethane	ND	0.79	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.79	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/18/08

TOISSCAN.XLT - 75 Compounds - PageNo.:

#### **RESULTS OF ANALYSIS**

Page 3 of 3

**Client:** Haley & Aldrich, Incorporated

Client Sample ID: Ambient-061208

CAS Project ID: P0801808 CAS Sample ID: P0801808-009

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 6/12/08 Date Received: 6/13/08 Date Analyzed: 6/16/08

Analyst: Wida Ang

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

AC01481

Initial Pressure (psig):

-3.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.58

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.79	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.79	ND	0.12	
108-90-7	Chlorobenzene	ND	0.79	ND	0.17	
100-41-4	Ethylbenzene	ND	0.79	ND	0.18	
179601-23-1	m,p-Xylenes	ND	0.79	ND	0.18	
75-25-2	Bromoform	ND	0.79	ND	0.076	
100-42-5	Styrene	ND	0.79	ND	0.19	
95-47-6	o-Xylene	ND	0.79	ND	0.18	
111-84-2	n-Nonane	ND	0.79	ND	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.79	ND	0.12	
98-82-8	Cumene	ND	0.79	ND	0.16	
80-56-8	alpha-Pinene	ND	0.79	ND	0.14	
103-65-1	n-Propylbenzene	ND .	0.79	ND	0.16	
622-96-8	4-Ethyltoluene	ND	0.79	ND	0.16	
108-67-8	1,3,5-Trimethylbenzene	ND	0.79	ND	0.16	
95-63-6	1,2,4-Trimethylbenzene	ND	0.79	ND	0.16	
100-44-7	Benzyl Chloride	ND	0.79	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	0.79	ND	0.13	
106-46-7	1,4-Dichlorobenzene	ND	0.79	ND	0.13	
95-50-1	1,2-Dichlorobenzene	ND	0.79	ND	0.13	
5989-27-5	d-Limonene	ND	0.79	ND	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.79	ND	0.082	
120-82-1	1,2,4-Trichlorobenzene	ND	0.79	ND	0.11	
91-20-3	Naphthalene	ND	0.79	ND	0.15	
87-68-3	Hexachlorobutadiene	ND	0.79	ND	0.074	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date:

TO15SCAN.XLT - 75 Compounds - PageNo.:

18

# RESULTS OF ANALYSIS

Page 1 of 3

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801808 CAS Sample ID: P080616-MB

Test Code:

Test Notes:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 6/16/08

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	*
107-02-8	Acrolein	ND	0.50	ND	0.22	e minima de mante de la companio de la companio de la companio de la companio de la companio de la companio de
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.50	ND	0.20	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 6/18/18
TOISSCAN.XLT - 75 Compounds - PageNo.: Verified By:

# RESULTS OF ANALYSIS Page 2 of 3

Client:

Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801808 CAS Sample ID: P080616-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Received: NA Date Analyzed: 6/16/08

Date Collected: NA

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	0.50	ND	0.14	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	0.50	ND	0.15	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	0.50	ND	0.12	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	1
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 6/18/08
TOI5SCAN.XLT - 75 Compounds - PageNo.: Verified By: 14

20

# RESULTS OF ANALYSIS Page 3 of 3

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang

Analyst: Sampling Media:

6.0 L Summa Canister

Test Notes:

CAS Project ID: P0801808 CAS Sample ID: P080616-MB

Date Collected: NA

Date Received: NA

Date Analyzed: 6/16/08

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	$\mathbf{ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	restanting to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 6/18/08/ TO15SCAN.XLT - 75 Compounds - PageNo.: Verified By: 14

# RESULTS OF ANALYSIS

Page 1 of 1

Haley & Aldrich, Incorporated **Client:** 

Client Sample ID: Method Blank

CAS Project ID: P0801808 Client Project ID: Coopervision / 70665-014 CAS Sample ID: P080617-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 6/17/08 Volume(s) Analyzed:

Date Collected: NA

Date Received: NA

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: TO15SCAN.XLT - 75 Compounds - PageNo.:



# LABORATORY REPORT

June 23, 2008

Susan Boyle Haley & Aldrich, Incorporated 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

**RE:** Coopervision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on June 17, 2008. For your reference, these analyses have been assigned our service request number P0801831.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains 15 pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Late Eguiles

Kate Aguilera Project Manager

Page



Haley & Aldrich, Incorporated

CAS Project No:

P0801831

Project: Coopervision / 70665-014

New York Lab ID:

11221

#### CASE NARRATIVE

The samples were received intact under chain of custody on June 17, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

# **Volatile Organic Compound Analysis**

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client: Haley & Aldrich, Incorporated

**Project:** Coopervision 70665-014

# **Detailed Sample Information**

Folder: P0801831

CAS Sample ID	Client Sample ID	Container Type	<u>Pi1</u> (Hg)	Pi1 (psig)	<u>Pf1</u>	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	<u>Pf2</u>	Cont ID	Order #	FC ID	Order#
P0801831-001.01	SV-1	6.0 L-Summa Canister Source	-2.9	-1.4	3.5				SC00806	9123	OA00283	9123
P0801831-002.01	SV-4 (D)	6.0 L-Summa Canister Source	-2.8	-1.4	3.7				SC00987	9123	OA00014	9123
P0801831-003.01	SV-5 (D)	6.0 L-Summa Canister Source	-4.2	-2.1	3.5				SC00978	9123	OA00387	9123
P0801831-004.01	SV-6 (D)	6.0 L-Summa Canister Source	-2.7	-1.3	3.6				SC00943	9123	OA00047	9123
P0801831-005.01	Ambient 061608	6.0 L-Summa Canister Ambient	-6.8	-3.3	3.6				AC01191	9123	FC00056	8747
P0801831-006.01	SC00989	6.0 L-Summa Canister Source	-29.1	-14.3					SC00989	9123		
P0801831-007.01	SC00799	6.0 L-Summa Canister Source	-25.3	-12.4	nici transcessi isolikaji isolikaji i				SC00799	9123		

# Miscellaneous Items - received

AVG00463

AVG00758

AVG00742

OA00450

AVG00120

OA00449

OA00106

AVG00697

OA00388

AVG00627

. . . . . . . . . .

AVG00320

AVG00602

AVG00649

6/19/2008 2:08:13PM Page 1 of 1

# Air - Unain of Custody Record & Analytical Service Request

₩ <b>8</b>
Columbia
Analytical Analytical
Services INC.
An Employee Owned Company

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Page	1	of	
------	---	----	--

An Employee - Owned Company	Phone (805) 5 Fax (805) 526		W	[ H	lequested Tur Day (100%)	naround Time 2 Day (75%)	Day (50%)	s Days (Surchard 4 Day (35%) 5 D	ges) please c Day (25%) 10	i <b>rcle</b> Day - Star	ndard	CAS Proje	ect No. 50 1963
Company Name & Address Haley - Aldrich Zoo Town Centro	(Reporting Inform	mation)	Project Na		Ton			CAS Contact	nalysis Method	guili I and/or Ana	<u> </u>	·	
Rochester, NY	14623	VC _	Project Nu	mber 65-0	 D14			<i>5</i> , 2	100				
Project Manager Sue Bayle			P.O. # / Bill	ing Informa		1	,	,1-DCE, Calorochane, or, de ontu	7				Comments e.g. Actual Preservative
Phone 585-321-4219		8219	944	n: 500	2 Boylo	50VC		1,50	7				or specific instructions
Email Address for Result Re Clebergalis Tha	eporting classification	.com	Sampler (I	⊃rint & Sigr	W W			#422	5				
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)		Sample Volume	P 7-1-8	2 2				
5V-(	1)-19	6/16/08	1037	Air	800806	0400783	6L	X	ot				Please non
SV-4 (D)	12-18		1100			0400014		X					TETRICHONSE,
SV-5 (D)	3-4.2		1120		5600978	0A00387		X					refractional,
SV-6 (D)	4)-2.1		1151		5600943	0400047		X					+ Vinal Chloride
Ambrent-0616E	A Paris and	. 1	1500	7	AC01191	FC00056			X				@ Lou
	-29.1												Letection
Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of th	-15,3												limit.
													(0.75 mg/m3)
												7	3 day TAT
													į
				····									
Report Tier Levels - please sel Fier I - (Results/Default if not specifie Fier II - (Results + QC)	ect	Tier III - (Da Tier V - (clier	ta Validation Pac nt specified)	kage) 10% Su	rcharge		EDD required	Yes No	EDD Units:	ug/m³.	- pph		equirements (MRLs, QAPP)
Relinquished by: (Signature)	4 Sec		100/6/0	\$ TING 30	Received by	: (Signature)	17500	uuk	lest	7/05	0940	7	
Relinquished by: (Signature)			Date:	Time:		: (Signature)	- COCO		Date	: Ti	ime:	Cooler / E	Blank
Relinquished by: (Signature)			Date:	Time:	Received by	: (Signature)			Date	: Ті	ime:	1	

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldri	ch, Incorporated	эшпр		. Cneck Forn	Work order:	P0801831		P	
-	Coopervision.									
	s) received on:	***************************************		•	Date opened:		by:	MZAN		
		samples received by CAS.							on of	
compliance o	or nonconformity.	Thermal preservation and pl	H will only be eval	uated either at the	request of the clie	ent and/or as require	d by the method/SOF	Yes	<u>No</u>	<u>N/A</u>
1	Were sample	<b>containers</b> properly r	narked with cl	lient sample II	<b>)</b> ?			X		
2	Container(s) s	supplied by CAS?						X		
3	Did sample co	ontainers arrive in go	od condition?					X		
4	Were chain-or	<b>f-custody</b> papers used	l and filled out	t?				X		
5	Did sample co	ontainer labels and/o	r tags agree w	rith custody par	pers?			X		
6	Was sample v	olume received adequ	ate for analys	is?				X		
7	Are samples v	vithin specified holdir	ng times?					X		
8	Was proper te	mperature (thermal	preservation)	of cooler at rec	eipt adhered	to?				X
		Cooler Temperature		°C Blank	Temperature		_°C			
9	Was a trip bla								$\boxtimes$	
	1	upplied by CAS: Seri			-TB			_	-	,
10	·	seals on outside of co	ooler/Box?						×	
	Location of	seal(s)?					Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								$\times$
	Were custody	seals on outside of sar	mple containe	r? .					X	
	Location of	seal(s)?					Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								X
11	Do containers	have appropriate pre	servation, acc	cording to met	nod/SOP or C	lient specified	information?			$\boxtimes$
	Is there a clie	nt indication that the	submitted san	nples are <b>pH</b> p	reserved?					X
		ials checked for prese								X
		nt/method/SOP requir			romple pU en	d if nooggoest o	Itor it?			$\boxtimes$
10	Tubes:	Are the tubes cap		-	sampie pri an	iu <u>ii necessai y</u> a	itter it?			X
12	Tupes.	-	-	l !						
40	D 1	Do they contain		1 11 4 40						$\boxtimes$
13	Badges:	Are the badges p			11 1	1:				X
		Are dual bed bac	iges separated	and individua	Hy capped an	d intact?				X
Lab !	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Receip	i / Pres	ervatio	1
		Description	pH *	pH	pH	(Presence/Absence	9) (	lommei	its .	
P0801831	-001.01	6.0 L Source Can								
P0801831		6.0 L Source Can								
P0801831		6.0 L Source Can								
P0801831		6.0 L Source Can								
P0801831	-005.01 -006.01	6.0 L Ambient Can 6.0 L Source Can								
				1			1			31
P0801831		6.0 L Source Can								

 $[*]Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H2SO4 (pH<2); \\ Metals, HNO3 (pH<2); CN (NaOH or NaOH/Asc Acid) (pH>12); \\ NaOH or$ 

#### RESULTS OF ANALYSIS

Page 1 of 1

Haley & Aldrich, Incorporated Client:

Client Sample ID: SV-1 CAS Project ID: P0801831

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801831-001

Date Collected: 6/16/08 Test Code: EPA TO-15 Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/17/08

Analyst: Wida Ang Date Analyzed: 6/18/08

6.0 L Summa Canister Volume(s) Analyzed: 0.020 Liter(s) Sampling Media:

Test Notes: Container ID: SC00806

Final Pressure (psig): Initial Pressure (psig): -1.43.5

Canister Dilution Factor: 1.37

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	7.7	6.9	3.0	2.7	
75-00-3	Chloroethane	ND	34	ND	13	
75-35-4	1,1-Dichloroethene	300	34	76	8.6	
75-34-3	1,1-Dichloroethane	290	34	71	8.5	
71-55-6	1,1,1-Trichloroethane	5,200	34	960	6.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: PH TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 1

Client: Haley & Aldrich, Incorporated

SC00987

Container ID:

Client Sample ID: SV-4 (D) CAS Project ID: P0801831

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801831-002

Test Code: EPA TO-15 Date Collected: 6/16/08 Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/17/08

Date Analyzed: 6/18/08 Analyst: Wida Ang

-1.4

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.40 Liter(s)

Test Notes: 0.050 Liter(s)

Initial Pressure (psig):

3.7

Final Pressure (psig):

Canister Dilution Factor: 1.38

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	0.98	0.35	0.38	0.14	
75-00-3	Chloroethane	ND	1.7	ND	0.65	
75-35-4	1,1-Dichloroethene	50	1.7	13	0.44	
75-34-3	1,1-Dichloroethane	52	1.7	13	0.43	
71-55-6	1,1,1-Trichloroethane	410	1.7	75	0.32	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:____ CH Date: TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: SV-5 (D)

CAS Project ID: P0801831

Client Project ID: Coopervision / 70665-014

6.0 L Summa Canister

CAS Sample ID: P0801831-003

Test Code:

EPA TO-15

Date Collected: 6/16/08

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 6/17/08 Date Analyzed: 6/18/08

Sampling Media:

Wida Ang

Volume(s) Analyzed:

0.50 Liter(s)

Test Notes:

Container ID:

SC00978

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.29	ND	0.11	
75-00-3	Chloroethane	ND	1.4	ND	0.55	
75-35-4	1,1-Dichloroethene	6.3	1.4	1.6	0.36	
75-34-3	1,1-Dichloroethane	3.9	1.4	0.97	0.36	
71-55-6	1,1,1-Trichloroethane	240	1.4	45	0.26	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/08
TOISSCAN.XLT - 75 Compounds - PageNo.: CH

#### RESULTS OF ANALYSIS

Page 1 of 1

Client: Haley & Aldrich, Incorporated

SC00943

Client Sample ID: SV-6 (D) CAS Project ID: P0801831

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801831-004

Test Code: EPA TO-15 Date Collected: 6/16/08

Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/17/08
Analyst: Wida Ang Date Analyzed: 6/18/08

-1.3

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID:

Initial Pressure (psig):

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.37

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	82	9.1	32	3.6	
75-00-3	Chloroethane	56	46	21	17	
75-35-4	1,1-Dichloroethene	9,200	46	2,300	12	
75-34-3	1,1-Dichloroethane	5,900	46	1,500	11	
71-55-6	1,1,1-Trichloroethane	8,200	46	1,500	8.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/08
TOISSCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 1 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Ambient 061608 CAS Project ID: P0801831
Client Project ID: Coopervision / 70665-014 CAS Sample ID: P0801831-005

Test Code: EPA TO-15 Date Collected: 6/16/08
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/17/08
Analyst: Wida Ang Date Analyzed: 6/18/08

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01191

Initial Pressure (psig): -3.3 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.61

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
115-07-1	Propene	1.3	0.81	0.77	0.47	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.81	0.46	0.16	
74-87-3	Chloromethane	ND	0.81	ND	0.39	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.81	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.063	
106-99-0	1,3-Butadiene	ND	0.81	ND	0.36	
74-83-9	Bromomethane	ND	0.81	ND	0.21	
75-00-3	Chloroethane	ND	0.81	ND	0.31	
64-17-5	Ethanol	15	8.1	7.7	4.3	
75-05-8	Acetonitrile	ND	0.81	ND	0.48	
107-02-8	Acrolein	ND	0.81	ND	0.35	
67-64-1	Acetone	9.1	8.1	3.8	3.4	
75-69-4	Trichlorofluoromethane	1.1	0.81	0.20	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	4.1	0.81	1.7	0.33	
107-13-1	Acrylonitrile	ND	0.81	ND	0.37	
75-35-4	1,1-Dichloroethene	ND	0.81	ND	0.20	
75-09-2	Methylene Chloride	ND	0.81	ND	0.23	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.81	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.81	ND	0.11	
75-15-0	Carbon Disulfide	ND	0.81	ND	0.26	
156-60-5	trans-1,2-Dichloroethene	ND	0.81	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.81	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.81	ND	0.22	
108-05-4	Vinyl Acetate	ND	8.1	ND	2.3	
78-93-3	2-Butanone (MEK)	2.5	0.81	0.85	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/08

TOISSCAN.XLT - 75 Compounds - PageNo.:

#### **RESULTS OF ANALYSIS**

Page 2 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Ambient 061608 CAS Project ID: P0801831 Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0801831-005

Test Code: EPA TO-15 Date Collected: 6/16/08 Date Received: 6/17/08

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang

Date Analyzed: 6/18/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01191

> Initial Pressure (psig): -3.3 Final Pressure (psig): 3.6

> > Canister Dilution Factor: 1.61

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.81	ND	0.20	
141-78-6	Ethyl Acetate	2.2	0.81	0.61	0.22	
110-54-3	n-Hexane	ND	0.81	ND	0.23	
67-66-3	Chloroform	ND	0.81	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.81	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	0.81	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.81	ND	0.15	
71-43-2	Benzene	ND	0.81	ND	0.25	
56-23-5	Carbon Tetrachloride	0.42	0.16	0.066	0.026	
110-82-7	Cyclohexane	ND	0.81	ND	0.23	
78-87-5	1,2-Dichloropropane	ND	0.81	ND	0.17	PROSECTION AND A TOTAL WINE A SHARE VARIABLE AND A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHARE A SHA
75-27-4	Bromodichloromethane	ND	0.81	ND	0.12	
79-01-6	Trichloroethene	ND	0.16	ND	0.030	
123-91-1	1,4-Dioxane	3.7	0.81	1.0	0.22	
80-62-6	Methyl Methacrylate	ND	0.81	ND	0.20	
142-82-5	n-Heptane	ND	0.81	ND	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.81	ND	0.18	
108-10-1	4-Methyl-2-pentanone	0.84	0.81	0.20	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.81	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.81	ND	0.15	
108-88-3	Toluene	1.2	0.81	0.31	0.21	
591-78-6	2-Hexanone	2.1	0.81	0.52	0.20	
124-48-1	Dibromochloromethane	ND	0.81	ND	0.095	
106-93-4	1,2-Dibromoethane	ND	0.81	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.81	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: _____ Date: 6/19/08
TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 3 of 3

Client:Haley & Aldrich, IncorporatedCAS Project ID: P0801831Client Sample ID:Ambient 061608CAS Sample ID: P0801831-005

Client Project ID: Coopervision / 70665-014

Test Code: EPA TO-15 Date Collected: 6/16/08
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 6/17/08

Analyst: Wida Ang Date Analyzed: 6/18/08

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01191

Initial Pressure (psig): -3.3 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.61

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	μg/m³	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.81	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.81	ND	0.12	
108-90-7	Chlorobenzene	ND	0.81	ND	0.17	
100-41-4	Ethylbenzene	ND	0.81	ND	0.19	
179601-23-1	m,p-Xylenes	ND	0.81	ND	0.19	
75-25-2	Bromoform	ND	0.81	ND	0.078	To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
100-42-5	Styrene	ND	0.81	ND	0.19	
95-47-6	o-Xylene	ND	0.81	ND	0.19	
111-84-2	n-Nonane	ND	0.81	ND	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.81	ND	0.12	
98-82-8	Cumene	ND	0.81	ND	0.16	
80-56-8	alpha-Pinene	ND	0.81	ND	0.14	
103-65-1	n-Propylbenzene	ND	0.81	ND	0.16	
622-96-8	4-Ethyltoluene	ND	0.81	ND	0.16	
108-67-8	1,3,5-Trimethylbenzene	ND	0.81	ND	0.16	
95-63-6	1,2,4-Trimethylbenzene	ND	0.81	ND	0.16	
100-44-7	Benzyl Chloride	ND	0.81	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.81	ND	0.13	
106-46-7	1,4-Dichlorobenzene	ND	0.81	ND	0.13	
95-50-1	1,2-Dichlorobenzene	ND	0.81	ND	0.13	
5989-27-5	d-Limonene	ND	0.81	ND	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.81	ND	0.083	
120-82-1	1,2,4-Trichlorobenzene	ND	0.81	ND	0.11	
91-20-3	Naphthalene	ND	0.81	ND	0.15	
87-68-3	Hexachlorobutadiene	ND	0.81	ND	0.075	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/08
TOISSCAN.XLT - 75 Compounds - PageNo.:

P0801831_TO15_0806191123_SS.xls - Sample (5)

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Haley & Aldrich, Incorporated

Client Sample ID: Method Blank CAS Project ID: P0801831

Client Project ID: Coopervision / 70665-014 CAS Sample ID: P080618-MB

Test Code: EPA TO-15 Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: NA

Analyst: Wida Ang Date Analyzed: 6/18/08

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s) Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	μg/III ND	0.50	ND	0.29	Quanner
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	0.50	ND	0.22	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.50	ND	0.20	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	inamata'i Mahahadi ahinda di dalami i san dalami i Yang i sang a sang ananan a sang me
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/08

TOISSCAN.XLT - 75 Compounds - PageNo.

#### RESULTS OF ANALYSIS Page 2 of 3

**Client:** 

Haley & Aldrich, Incorporated

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0801831 CAS Sample ID: P080618-MB

Date Collected: NA

Date Received: NA

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 6/18/08 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	_
141-78-6	Ethyl Acetate	ND	0.50	ND	0.14	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	0.50	ND	0.15	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	0.50	ND	0.12	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: CH Date: TO15SCAN.XLT - 75 Compounds - PageNo.:

#### RESULTS OF ANALYSIS

Page 3 of 3

Client: Haley & Aldrich, Incorporated

CAS Project ID: P0801831 CAS Sample ID: P080618-MB

Date Collected: NA

Date Received: NA

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 6/18/08 Volume(s) Analyzed: 1.0

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 6/19/05

TO15SCAN.XLT - 75 Compounds - PageNo.:



## A FULL SERVICE ENVIRONMENTAL LABORATORY

September 4, 2008

Ms. Sue Boyle
Haley & Aldrich of New York
200 Town Centre Drive
Suite 2
Rochester, NY 14623-4264

PROJECT: COOPERVISION #70665-014 Submission #:R2845311

Dear Ms. Boyle

Enclosed are the analytical results of the analyses requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Karen Bunker Project Manager

Enc.



1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

#### THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-014

Lab Submission # : R2845311

Contact Person : Karen Bunker
Phone Number : (585) 288-5380

Reported : 09/04/08

Report Contains a total of 14 pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.



#### CASE NARRATIVE

This report contains analytical results for the following samples:

Submission #: R2845311

Lab ID

Client ID

1125793

CONT. DRUM 1A-1D COMPOSITE

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.







## **ORGANIC QUALIFIERS**

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL. This flag is also used for DoD instead of "P" as indicated below.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P" ("J" for DoD).
- Q for DoD only indicates a pesticide/Aroclor target is not confirmed. This flag is used when there is ≥ 100% difference for the detected concentrations between the two GC columns.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- * This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

#### CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

H:\FORMS\QUALIF_O.DOC







## INORGANIC QUALIFIERS

#### C (Concentration) qualifier -

- B if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but was greater than or equal to the Instrument Detection Limit (IDL). This qualifier may also be used to indicate that there was contamination above the reporting limit in the associated blank. See Narrative for details.
- U if the analyte was analyzed for, but not detected

Q qualifier - Specified entries and their meanings are as follows:

- D Spike was diluted out
- E The reported value is estimated because the serial dilution did not meet criteria.
- J Estimated Value
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for Furnace AA Analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- Duplicate analysis not within control limits.
- + Correlation coefficient for the MSA is less than 0.995.

#### M (Method) qualifier:

- "P" for ICP
- "A" for Flame AA
- "F" for Furnace AA
- "PM" for ICP when Microwave Digestion is used
- "AM" for Flame AA when Microwave Digestion is used
- "FM" for Furnace M when Microwave Digestion is used
- "CV" for Manual Cold Vapor AA
- "AV" for Automated Cold Vapor AA
- "AF" for Automated Cold Vapor Atomic Fluorescence Spectrometry
- "CA" for Midi-Distillation Spectrophotometric
- "AS" for Semi-Automated Spectrophotometric
- "C" for Manual Spectrophotometric
- "T" for Titrimetric
- " " where no data has been entered
- "NR" if the analyte is not required to be analyzed.

#### CAS/Rochester Lab ID # for State Certifications

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Massachusetts ID # M-NY032

Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID # 68-786 Rhode Island ID # 158 West Virginia ID # 292

Reported: 09/04/08

Haley & Aldrich of New York
Project Reference: COOPERVISION #70665-014 Client Sample ID : CONT. DRUM 1A-1D COMPOSITE

Date Sampled: 08/12/08 11:30 Date Received: 08/12/08 Order #: 1125793 Sample Matrix: SOIL/SEDIMENT

Submission #: R2845311

ANALYTE	METHOD	PQL	RESULT	DRY WEIGHT UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
PERCENT SOLIDS	160.3M	1.00	78.8	ફ	08/18/08	12:15	1.0

Reported: 09/04/08

Haley & Aldrich of New York
Project Reference: COOPERVISION #70665-014
Client Sample ID : CONT. DRUM 1A-1D COMPOSITE

Date Sampled: 08/12/08 11:30 Order #: 1125793
Date Received: 08/12/08 Submission #: R2845311 Sample Matrix: SOIL/SEDIMENT

ANALYTE	METHOD	PQL;	RESULT	DRY WEIGH UNITS	T DATE ANALYZED	DILUTION
ARSENIC	6010B	1.00	4.09	MG/KG	08/20/08	1.0
BARIUM	6010B	2.00	54.7	MG/KG	08/20/08	1.0
CADMIUM	6010B	0.500	0.635 U	MG/KG	08/20/08	1.0
CHROMIUM	6010B	1.00	18.1	MG/KG	08/20/08	1.0
LEAD	6010B	5.00	34.6	MG/KG	08/20/08	1.0
MERCURY	7471A	0.0500	0.0635 U	MG/KG	08/19/08	1.0
SELENIUM	6010B	1.00	1.27 U	MG/KG	08/20/08	1.0
SILVER	6010B	1.00	1.27 U	MG/KG	08/20/08	1.0

#### VOLATILE ORGANICS METHOD 8260B TCL

Reported: 09/04/08

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-014 Client Sample ID : CONT. DRUM 1A-1D COMPOSITE

Date Sampled: 08/12/08 11:30 Order #: 1125793 Sample Matrix: SOIL/SEDIMENT Date Received: 08/12/08 Submission #: R2845311 Percent Solid: 78.8

7 37 T 37777	~~ T	T 11 (1 × × × × × × × × × × × × × × × × ×	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 08/15/08			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	25 U	UG/KG
BENZENE	5.0	6.3 U	UG/KG
BROMODICHLOROMETHANE	5.0	6.3 U	UG/KG
BROMOFORM	5.0	6.3 U	UG/KG
BROMOMETHANE	5.0	6.3 U	UG/KG
2-BUTANONE (MEK)	10	13 U	UG/KG
CARBON DISULFIDE	10	13 U	UG/KG
CARBON TETRACHLORIDE	5.0	6.3 U	UG/KG
CHLOROBENZENE	5.0	6.3 U	UG/KG
CHLOROETHANE	5.0	6.3 U	UG/KG
CHLOROFORM	5.0	6.3 U	UG/KG
CHLOROMETHANE	5.0	6.3 U	UG/KG
DIBROMOCHLOROMETHANE	5.0	6.3 U	UG/KG
1,1-DICHLOROETHANE	5.0	6.3 U	UG/KG
1,2-DICHLOROETHANE	5.0	6.3 U	UG/KG
1,1-DICHLOROETHENE	5.0	6.3 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	6.3 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	6.3 U	UG/KG
1,2-DICHLOROPROPANE	5.0	6.3 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	6.3 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	6.3 U	UG/KG
ETHYLBENZENE	5.0	6.3 U	UG/KG
2-HEXANONE	10	13 U	UG/KG
METHYLENE CHLORIDE	5.0	6.3 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	13 U	UG/KG
STYRENE	5.0	6.3 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	6.3 U	UG/KG
TETRACHLOROETHENE	5.0	6.3 U	UG/KG
TOLUENE	5.0	6.3 U	UG/KG
L,1,1-TRICHLOROETHANE	5.0	6.3 U	UG/KG
L,1,2-TRICHLOROETHANE	5.0	6.3 U	UG/KG
TRICHLOROETHENE	5.0	6.3 U	UG/KG
INYL CHLORIDE	5.0	6.3 U	UG/KG
)-XYLENE	5.0	6.3 U	UG/KG
M+P-XYLENE	5.0	6.3 U	UG/KG
SURROGATE RECOVERIES	QC LIMITS		
-BROMOFLUOROBENZENE (!	50 - 135 %)	104	용
	75 - 128 %)	100	00
	58 - 133 %)	94	olo

#### EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES

Reported: 09/04/08

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-014
Client Sample ID: CONT. DRUM 1A-1D COMPOSITE

Date Sampled: 08/12/08 11:30 Order #: 1125793 Sample Matrix: SOIL/SEDIMENT Date Received: 08/12/08 Submission #: R2845311 Percent Solid: 78.8

Date Received: 00/12/00 Submission #		reicent porid:	/0.8
ANALYTE	PQL	RESULT	UNITS '
DATE EXTRACTED : 08/19/08			
DATE ANALYZED : 08/22/08			
ANALYTICAL DILUTION: 5.00			Dry Weight
ACENAPHTHENE	330	2100 U	UG/KG
ACENAPHTHYLENE	330	2100 U	UG/KG
ANTHRACENE	330	2100 U	UG/KG
BENZO (A) ANTHRACENE	330	3900	UG/KG
BENZO (A) PYRENE	330	4200	UG/KG
BENZO (B) FLUORANTHENE	330	4900	UG/KG
BENZO(G,H,I)PERYLENE	330	3900	UG/KG
BENZO (K) FLUORANTHENE	330	3900	UG/KG
BENZYL ALCOHOL	330	2100 U	UG/KG
BUTYL BENZYL PHTHALATE	330	2100 U	UG/KG
DI-N-BUTYLPHTHALATE	330	2100 U	UG/KG
CARBAZOLE	330	2100 U	UG/KG
INDENO(1,2,3-CD)PYRENE	330	3100	UG/KG
4-CHLOROANILINE	330	2100 U	UG/KG
BIS (-2-CHLOROETHOXY) METHANE	330	2100 U	UG/KG
BIS (2-CHLOROETHYL) ETHER	330	2100 U	UG/KG
2-CHLORONAPHTHALENE	330	2100 U	UG/KG
2-CHLOROPHENOL	330	2100 U	UG/KG
2,2'-OXYBIS(1-CHLOROPROPANE)	330	2100 U	UG/KG
CHRYSENE	330	5100	UG/KG
DIBENZO (A, H) ANTHRACENE	330	2100 U	UG/KG
DIBENZOFURAN	330	2100 U	UG/KG
1,3-DICHLOROBENZENE	330	2100 U	UG/KG
1,2-DICHLOROBENZENE	330	2100 U	UG/KG
1,4-DICHLOROBENZENE	330	2100 U	UG/KG
3,3'-DICHLOROBENZIDINE	330	2100 U	UG/KG
2,4-DICHLOROPHENOL	330	2100 U	UG/KG
DIETHYLPHTHALATE	330	2100 U	UG/KG
DIMETHYL PHTHALATE	330	2100 U	UG/KG
2,4-DIMETHYLPHENOL	330	2100 U	UG/KG
2,4-DINITROPHENOL	1700	11000 U	UG/KG
2,4-DINITROTOLUENE	330	2100 U	UG/KG
2,6-DINITROTOLUENE	330	2100 U	UG/KG
BIS(2-ETHYLHEXYL)PHTHALATE	330	2100 U	UG/KG
FLUORANTHENE	330	14000	UG/KG
FLUORENE	330	2100 U	UG/KG
HEXACHLOROBENZENE	330	2100 U	UG/KG
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	330	2100 U	UG/KG
HEXACHLOROCYCLOPENTADIENE	330	2100 U	UG/KG
HEXACHLOROETHANE	330	2100 U	UG/KG
	330		
ISOPHORONE		2100 U	UG/KG
2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL	330 1700	2100 U 11000 U	UG/KG UG/KG
, w	1 / 1 1 1 1	1 1 1/1/1/1	1 15 mi / K (mi

#### EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES

Reported: 09/04/08

Haley & Aldrich of New York

Project Reference: COOPERVISION #70665-014
Client Sample ID: CONT. DRUM 1A-1D COMPOSITE

Date Sampled: 08/12/08 11:30 Order #: 1125793 Sample Matrix: SOIL/SEDIMENT

Date Received: 08/12/08 Submission #: R2845311 Percent Solid: 78.8

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/19/08			
DATE ANALYZED : 08/22/08 ANALYTICAL DILUTION: 5.00			Drose Madah
ANALITICAL DILICITION. 5.00			Dry Weight
4-CHLORO-3-METHYLPHENOL	330	2100 U	UG/KG
2-METHYLPHENOL	330	2100 U	UG/KG
3+4-METHYLPHENOL	330	2100 U	UG/KG
NAPHTHALENE	330	2100 U	UG/KG
2-NITROANILINE	1700	11000 U	UG/KG
3-NITROANILINE	1700	11000 U	UG/KG
4-NITROANILINE	1700	11000 U	UG/KG
NITROBENZENE	330	2100 U	UG/KG
2-NITROPHENOL	330	2100 U	UG/KG
4-NITROPHENOL	1700	11000 U	UG/KG
N-NITROSODIMETHYLAMINE	330	2100 U	UG/KG
N-NITROSODIPHENYLAMINE	330	2100 U	UG/KG
DI-N-OCTYL PHTHALATE	330	2100 U	UG/KG
PENTACHLOROPHENOL	1700	11000 U	UG/KG
PHENANTHRENE	330	8200	UG/KG
PHENOL	330	2100 U	UG/KG
4-BROMOPHENYL-PHENYLETHER	330	2100 U	UG/KG
4-CHLOROPHENYL-PHENYLETHER	330	2100 U	UG/KG
N-NITROSO-DI-N-PROPYLAMINE	330	2100 U	UG/KG
PYRENE	330	9900	UG/KG
1,2,4-TRICHLOROBENZENE	330	2100 U	UG KG
2,4,6-TRICHLOROPHENOL	330	2100 U	UG ['] /KG
2,4,5-TRICHLOROPHENOL	330	2100 U	UG/KG
SURROGATE RECOVERIES QC	LIMITS		
TERPHENYL-d14 (48	- 131 %)	63	96
NITROBENZENE-d5 (27	- 130 %)	62	%
PHENOL-d6 (10	- 133 %)	54	90
2-FLUOROBIPHENYL (32	- 130 %)	63	ે
2-FLUOROPHENOL (10	- 130 %)	56	િ
2,4,6-TRIBROMOPHENOL (33	- 139 %)	62	olo

VOLATILE ORGANICS METHOD 8260B TCL Reported: 09/04/08

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled: Order #: 1129292 Sample Matrix: SOIL/SEDIMENT Date Received: Submission #: Percent Solid: 100

Date Received:	Submission #:	Percent Solid: 100						
ANALYTE		PQL	RESULT	UNITS				
	/15/08							
ANALYTICAL DILUTION:	1.00			Dry Weight				
ACETONE		20	20 U	UG/KG				
BENZENE		5.0	5.0 U	UG/KG				
BROMODICHLOROMETHANE		5.0	5.0 U	UG/KG				
BROMOFORM		5.0	5.0 U	UG/KG				
BROMOMETHANE		5.0	5.0 U	UG/KG				
2-BUTANONE (MEK)		10	10 U	UG/KG				
CARBON DISULFIDE		10	10 U	UG/KG				
CARBON TETRACHLORIDE		5.0	5.0 U	UG/KG				
CHLOROBENZENE		5.0	5.0 U	UG/KG				
CHLOROETHANE		5.0	5.0 U	UG/KG				
CHLOROFORM		5.0	5.0 U	UG/KG				
CHLOROMETHANE		5.0	5.0 U	UG/KG				
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/KG				
1,1-DICHLOROETHANE		5.0	5.0 U	UG/KG				
1,2-DICHLOROETHANE		5.0	5.0 U	UG/KG				
1,1-DICHLOROETHENE		5.0	5.0 U	UG/KG				
CIS-1, 2-DICHLOROETHENE		5.0	5.0 U	UG/KG				
TRANS-1, 2-DICHLOROETHENE		5.0	5.0 U	UG/KG				
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/KG				
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/KG				
TRANS-1,3-DICHLOROPROPEN	<b>L</b> i	5.0	5.0 U	UG/KG				
ETHYLBENZENE		5.0	5.0 U	UG/KG				
2-HEXANONE		10	10 U	UG/KG				
METHYLENE CHLORIDE	~ TZ \	5.0	5.0 U	UG/KG				
4-METHYL-2-PENTANONE (MI)	BK)	10	10 U	UG/KG				
STYRENE	<b>a</b>	5.0	5.0 U	UG/KG				
1,1,2,2-TETRACHLOROETHAN	E.	5.0	5.0 U	UG/KG				
TETRACHLOROETHENE		5.0	5.0 U	UG/KG				
TOLUENE		5.0	5.0 U	UG/KG				
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/KG				
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/KG				
TRICHLOROETHENE		5.0 5.0	5.0 U 5.0 U	UG/KG UG/KG				
VINYL CHLORIDE		5.0	5.0 U	UG/KG				
O-XYLENE		5.0	5.0 U					
M+P-XYLENE		5.0	5.0 0	UG/KG				
SURROGATE RECOVERIES	QC LIMIT	S 						
4-BROMOFLUOROBENZENE	(50 - 13	•	93	ક				
TOLUENE-D8	(75 - 12	,	94	ક				
DIBROMOFLUOROMETHANE	(58 - 13)	3 왕)	102	ફ				

#### EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES

Reported: 09/04/08

Project Reference:

Client Sample ID : METHOD BLANK

Date Samp		Order Submission	1128423	Sample Ma Percent S		SOIL/SEDIMENT
ANALYTE			 PQL	RES	ULT	UNITS
DATE EXT	RACTED : 0	8/19/08			······································	
DATE ANA	LYZED : 0	8/22/08				
ANALYTIC	AL DILUTION:	1.00				Dry Weight
ACENAPHTH	ENE		330	330	U	UG/KG
ACENAPHTH	YLENE		330	330	U	UG/KG
ANTHRACEN	E		330	330	U	UG/KG
BENZO (A) A	NTHRACENE		330	330	U	UG/KG
BENZO (A) P	YRENE		330	330	U	UG/KG
BENZO(B)F	LUORANTHENE		330	330	U	UG/KG
	, I) PERYLENE		330	330	U	UG/KG
	LUORANTHENE		330	330	U	UG/KG
BENZYL AL			330	330	U	UG/KG
	ZYL PHTHALATE		330	330	U	UG/KG
	LPHTHALATE		330	330	U	UG/KG
CARBAZOLE			330	330	U	UG/KG
	2,3-CD)PYRENE		330	330	U	UG/KG
4 - CHLOROA	NILINE		330	330	U	UG/KG
BIS(-2-CH	LOROETHOXY) MET	HANE	330	330	U	UG/KG
	OROETHYL) ETHER		330	330	U	UG/KG
	APHTHALENE		330	330	U	UG/KG
2-CHLOROP			330	330		UG/KG
	IS(1-CHLOROPRO	PANE)	330	330		UG/KG
CHRYSENE	•		330	330		UG/KG
	, H) ANTHRACENE		330	330	U	UG/KG
DIBENZOFU			330	330	U	UG/KG
1,3-DICHL	OROBENZENE		330	330	U	UG/KG
	OROBENZENE		330	330	U	UG/KG
	OROBENZENE		330	330	U	UG/KG
	LOROBENZIDINE		330	330	U	UG/KG
2,4-DICHL			330	330	U	UG/KG
DIETHYLPH			330	330	U	UG/KG
DIMETHYL			330	330	U	UG/KG
2,4-DIMET			330	330	Ŭ	UG/KG
2,4-DINIT			1700	1700	U	UG/KG
2,4-DINIT			330	330	U	UG/KG
2,6-DINIT			330	330	U	UG/KG
BIS (2-ETH	YLHEXYL) PHTHALA	TE	330	33(	U	UG/KG
FLUORANTH			330	330	U	UG/KG
FLUORENE			330	330		UG/KG
HEXACHLOR	OBENZENE		330	330		UG/KG
	OBUTADIENE		330	330		UG/KG
	OCYCLOPENTADIEN	E	330	330		UG ['] /KG
HEXACHLOR			330	330		UG/KG
ISOPHORONI			330	330		UG/KG
2-METHYLNA			330	330		UG/KG
	RO-2-METHYLPHEN	OL	1700	1700		UG/KG
	B-METHYLPHENOL		330	330		UG/KG

#### EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES

Reported: 09/04/08

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled : Date Received:	Order #: Submission #:		Sample Matrix: Percent Solid:	SOIL/SEDIMENT
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 08 ANALYTICAL DILUTION: 2-METHYLPHENOL	/19/08 /22/08 1.00	330	330 U	Dry Weight UG/KG
3+4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE		330 330 1700 1700 1700 330	330 U 330 U 1700 U 1700 U 1700 U 330 U	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG
2-NITROPHENOL 4-NITROPHENOL N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE		330 1700 330 330 330	330 U 1700 U 330 U 330 U 330 U	UG/KG UG/KG UG/KG UG/KG UG/KG
PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHE 4-CHLOROPHENYL-PHENYLETH	ER	1700 330 330 330 330	1700 U 330 U 330 U 330 U 330 U	UG/KG UG/KG UG/KG UG/KG UG/KG
N-NITROSO-DI-N-PROPYLAMII PYRENE 1,2,4-TRICHLOROBENZENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	NE	330 330 330 330 330	330 U 330 U 330 U 330 U 330 U	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIM	ITS		
TERPHENYL-d14 NITROBENZENE-d5 PHENOL-d6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(27 - (10 - (32 - (10 -	131 %) 130 %) 133 %) 130 %) 130 %) 139 %)	84 75 67 75 64 80	olo olo olo olo olo olo



## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE OF

SR#			-	
CAS Contact	Κ.	Bur	Ke	Y

www.casiab.com	Cano noon troonstat, we have	(500) #60 0000 500 000		(+ )		*******						1	***	
Project Name	Project Number	14.	(hidde	ı	NALYSIS R	EQUESTE	D (Incl	ude Meth	od Nu	mber a	and Co	ontaine	r Prese	rvative)
Project Manager Boylo	Report CC Claire D	e Revadis	PRESERVA	ATIVE O	0		(	2						
Project Manager Project Manager Company/Address Project Manager Company/Address Project Manager Company/Address	entre Dr.				/ / ,	/ /	/ ₀ \(\infty\)	$\sqrt{/}$	$\overline{}$	$\overline{}$		7		Preservative Key 0. NONE 1. HCL
Sirto 2			CONTAINERS				\$ 3	3						2. HNO ₃ 3. H ₂ SO ₄ 4. NāOH
Rochester	NY 14623		CONTA	107	7 8021 AS 10LP PESTONES 1 802 PESTONES PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR 1 900 PESTONES POR		A Sold Sold Sold Sold Sold Sold Sold Sold	S belo		/	/	/ ,	/ /	5. Zn. Acetate 6. MeOH
(585)321-4219 (585)486-8219			NUMBER OF	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 1/6 P	0 8082 0 0 UCLI METALS, TOTAL			/ /					7. NaHSO ₄ 8. Other
agnature de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la compan	Sampler's Printed Name,	rauss	NUME /	20 S 0 S		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
CLIENT SAMPLE ID	LAB ID DATE		/ S				Tist Time	-/-	_	_	_		/	REMARKS/ ALTERNATE DESCRIPTION
Cont. Drum 1A-17	P 11 25793 8121	08 1130 3011	4 X	$\vdash$										
	+	IXIX XIXI	\$											
			\$											***************************************
									-					
														, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
													τ	NUCLOS DISCOSSISSISSISSISSISSISSISSISSISSISSISSISSI
SPECIAL INSTRUCTIONS/COMMENTS  Metals	, .		- C)	RU	ROUND REQ SH (SURCHARC	ES APPLY)	],	REPORT REQUIREMENTS  1. Results Only			S		INVOICE INFORMATION	
Please Cor	nposite fou ry. Please C	y Sarry	62	24 hr	48 hr	5 da	By .		sults + QC DUP, MS			d)	PO#	
as necessa	ry. Hease C	an voin		REQUESTE				III. Re	sults + Q	C and Ca	alibration	•	BILL TO	<u>);</u>
buesiloris.				DE OLIFOTAL	REPORT DAT	æ			ta Validat	ion Repo	ort with F	law Data		
				HEQUESTE	) REPORT DAT	<b>-</b>		V. Spe	icialized f	Forms / C	Custom F	Report		
See QAPP		CUSTODY SEA	I S. V AL	, <u> </u>				Edat	a	Yes	^	lo	$\int_{0}^{\infty} \sqrt{2}$	3545311
SAMPLE RECEIPT: CONDITION/COOLER TEMP: 4°C CUSTODY SEAL RELINQUISHED BY RECEIVED BY RELINQUISHED E			AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUM		RECEIVED	ВУ			RELINO	UISHED	D BY	******		RECEIVED BY
Signature	Symple 1. 1	Signature		Signature				Signature					Signatu	
Printed Name	Printed Names Rachel Lones	Printed Name Luxe A. Straus	····	Printed Nam	9			rinted Name	)				Printed	Name
Firm	Firm Ast	Halous Aldric	<u>.                                    </u>	Firm				Firm				Firm  Date/Time		
	Date/Jime 1705	Date Time 1705		Date/Time				)ate/Time					pate/11	me SCOC-1102-08

Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

#230

>				Cooler Rece	ipt And	Preservati	on Chec	k Form		,
ject/C	lient	1 8	A		Sub	mission Nu	mber	P284	<u>531)</u> .	
oler re	ceived on	3/1	20	by:	COURI	ER: CAS	UPS	FEDEX	VELOC	ITY CLIENT
V E V V	Vere custood all bott of all bott of all bott of any VC Vere Ice on Where did to	dy pa les ar A vi Les lhe be	pers rive als h pacl	on outside of cooled properly filled ou in good condition have significant* a ss present? s originate? er(s) upon receipt:	at (ink, s a (unbro air bubb	ken)?	?	YES YES YES YES CASIR	NO NO NO NO NO NO NO NO NO NO NO NO NO N	NA IENT
I	s the tempe	eratu	re wi	thin 0° - 6° C?:	Ye	Ye	S	Yes	Yes	Yes
	f No, Exp				No	n No	)	No	No	No
C Second Cooler H	Tempera Indary Rev Breakdown Were all bott Did all bott Were corre Air Sample	ture, iew: : Da ottle l le lat ct con	not  ate: abels bels atain Casse	e packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  packing/ice cor  pack	adition,	Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apportunity Client Apport	y:, etc.)?	Run Sar VES VES VES Tedlar	NO NO NO Bags I	
эH	Reagent	YES	NO	Lot Received	Exp	Sample 1D	Vol. Added	Loi Add	ed Fina	1
≥12	NaOH						·			
<u>\$2</u>	HNO₃	<u> </u>						<del> </del>		No = Samples
<u>s</u>	H ₂ SO ₄	<u> </u>	ļ				_			were were
Residual Chlorine	For TCN and Phenol			If present, contact add ascorbic acid	PM to		A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	me de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la co	A PARTY COMPANY  preserved at lab as listed	
(-)	Na ₂ S ₂ O ₃ Zn Aceta	-	-				ecorded b	ore analysis by VOAs or		PM OK to Adjust:
Bottle lot	numbers:	 .D	lab	els remove	d					

PC Secondary Review: 44 8 18 108 12B

H: SMODOCS'Cooler Receipt 2.doc

Other Comments:

^{*}significant air bubbles are greater than 5-6 mm



#### LABORATORY REPORT

January 7, 2009

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

**RE:** Cooper Vision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on December 31, 2008. For your reference, these analyses have been assigned our service request number P0804386.

All Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains 28 pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Lote Speckera Kate Aguilera

Project Manager



Haley & Aldrich, Inc.

Project: Cooper Vision / 70665-014

CAS Project No: New York Lab ID: P0804386 11221

#### CASE NARRATIVE

The samples were received intact under chain of custody on December 31, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample(s) at the time of sample receipt.

#### Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The isopropyl alcohol percent recovery in the initial calibration verification standard was outside the laboratory quality control limit of 70-130. This compound was not reported.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-014

## **Detailed Sample Information**

CAS Sample ID	Client Sample ID	Container Type	<u>Pi1</u> (Hg)	Pi1 (psig)	Pf1	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	Pf2	Cont ID	Order #	FC ID	Bottle Order#
P0804386-001.01	SV-108(S)	6.0 L-Summa Canister Source	-1.6	-0.8	3.6				SC00828	11469	OA00122	11469
P0804386-002.01	SV-108(D)	6.0 L-Summa Canister Source	-1.4	-0.7	3.5				SC00903	11469	ŌĀ00389	11469
P0804386-003.01	SV-3(S)	6.0 L-Summa Canister Source	-3.0	-1.5	3.5				SC00709	11469	OA00167	11469
P0804386-004.01	SV-6(S)	6.0 L-Summa Canister Source	-1.7	-0.8	3.5				\$C00536	11469	OA00014	11469
P0804386-005.01	SV-6(D)	6.0 L-Summa Canister Source	-1.7	-0.8	3.5				\$C00957	11469	OA00386	11469
P0804386-006.01	SV-101(S)	6.0 L-Summa Canister Source	-1.6	-0.8	3.6				SC00351	11469	OA00093	11469
P0804386-007.01	SV-102(S)	6.0 L-Summa Canister Source	-3.2	-1.6	3.5				\$C00299	11469	OA00406	11469
P0804386-008.01	SV-102(D)	6.0 L-Summa Canister Source	-0.2	-0.1	3.5				\$C00333	11469	OA00387	11469
P0804386-009.01	SV-103(S)	6.0 L-Summa Canister Source	-0.8	-0.4	3.5				SC00315	11469	OA00177	11469
P0804386-010.01	SV-104(D)	6.0 L-Summa Canister Source	-0.9	-0.4	3.5				SC00141	11469	OA00450	11469
P0804386-011.01	SV-104(S)	6.0 L-Summa Canister Source	0.0	1.1	3.5				SC00565	11469	OA00388	11469
P0804386-012.01	SV-106(S)	6.0 L-Summa Canister Source	-1.4	-0.7	3.5			~ ~	\$C00683	11469	OA00207	11469
P0804386-013.01	SV-107(S)	6.0 L-Summa Canister Source	-1.2	-0.6	3.5				SC00432	11469	OA00354	11469
P0804386-014.01	AA-123008	6.0 L-Summa Canister Ambient	-5.1	-2.5	3.5				AC00719	11469	FC00672	11469
P0804386-015.01	AC00701	6.0 L-Summa Canister Ambient	-29.7	-14.6					ĀC00701	11469	<del></del>	
P0804386-016.01	SC00977	6.0 L-Summa Canister Source	-29.7	-14.6					SC00977	11469		
P0804386-017.01	SC00222	6.0 L-Summa Canister Source	-29.7	-14.6					SC00222	11469		
P0804386-018.01	SC00612	6.0 L-Summa Canister Source	-29.7	-14.6					SC00612	11469		
P0804386-019.01	SC00593	6.0 L-Summa Canister Source	-29.7	-14.6					SC00593	11469		
P0804386-020.01	SC00942	6.0 L-Summa Canister Source	-29.6	-14.5					SC00942	11469		
P0804386-021.01	SC00665	6.0 L-Summa Canister Source	-29.6	-14.5					SC00665	11469		
P0804386-022.01	SC00980	6.0 L-Summa Canister Source	<i>-</i> 29.6	-14.5					SC00980	11469		
P0804386-023.01	SC00562	6.0 L-Summa Canister Source	-29.6	-14.5					SC00562	11469	·	
P0804386-024.01	SC00163	6.0 L-Summa Canister Source	-29.5	-14.5					SC00163	11469		
P0804386-025.01	SC00367	6.0 L-Summa Canister Source	-29.3	-14.4					SC00367	11469		
P0804386-026.01	SC00987	6.0 L-Summa Canister Source	-29.1	-14.3					SC00987	11469		
P0804386-027.01	SC00767	6.0 L-Summa Canister Source	-12.4	-6.1					SC00767	11469		

Folder: P0804386

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-014

**Folder:** P0804386

## **Detailed Sample Information**

<u>Pi1</u> <u>Pi1</u> <u>Pi2</u> Pi2 Bottle (Hg) (psig) Pf1 (Hg) CAS Sample ID Client Sample ID Container Type (psig) Pf2 Cont ID Order# FC ID Order#

#### Miscellaneous Items - received

AVG00601

AVG00502

OA00403

OA00417

AVG00870

AVG00869

AVG01075

AVG00679 AVG00167

AV 000101

AVG00802

OA00429

AVG00593

OA00449

AVG00460

AVG00573

AVG00696

AVG00750

AVG00959

AVG00547

AVG00379

OA00448

OA00451

OA00059

FC00695

OA00283

OA00418

AVG00694

AVG00136

AVG00322

AVG00043

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-014

**Detailed Sample Information** 

<u>CAS Sample ID</u> <u>Client Sample ID</u> <u>Container Type</u>

<u>Pi1</u> <u>Pi1</u> Pi2 (psig) (Hg) (Hg) <u>Pf1</u> (psig)

Pi2

Pf2

Cont ID Order#

Bottle FC ID Order#

Folder: P0804386

AVG00824

OA00047

AVG00752

AVG00737

AVG00675

AVG00192

AVG00800

OA00404

AVG00883

OA00206

## Air - Chain of Custody Record & Analytical Service Request

Page _	of
--------	----

**Columbia** Analytical Services

Email Address for Result Reporting

Client Sample ID

-109 (0)

(D)

CD

Report Tier Levels - please select Tier I - (Results/Default if not specified)

-101

SV-102 (5

5V-WZ (D)

SV-103 (5)

-104 106

5V-104

Tier II - (Results + QC)

Relinquished by: (Signature) Relinquished (Signature)

Relinquished by: (Signature)

Company Name & Address (Reporting Information)

coebergalis @ halagaldrich.com

Laboratory

**ID Number** 

-1.4

-3.2

1.7

**8-01** 

19-0.8

10)-0.g

(v)

(61)

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

Tier III - (Data Validation Packag

Date:

Received by: (Signature)

Tier V - (client specified)

Collected

43908

Drive, Suite A rnia 93065	ماد					
7161 70	Requested Turnaround Time in Busin 1 Day (100%) 2 Day (75%) 3 Day (50°	ess Days (Surchar 4 Day (35%) 5	ges) please cir Day (25%) 10 D	<b>cle</b> Day - Standard	CAS Proj	ect No. 20804386
Project Name	Vicion	CAS Contact	Aguillere Analysis Method a	<b></b>		
Project Number	VISION		<u> </u>	Г		-
70665	-014	25				
P.O. # / Billing Info		7 3 0	:			O-manto
70665-0 3ill to add	lness above	4, 1,1-DCE, 4, Chloraet Chloraet	1065			Comments e.g. Actual Preservative or specific instructions
Sampler (Print & S	sign) Ethan Lec	7.42 = 7.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.42 = 1.	F 7			
Time Collected Sample (Air/Tub Solid	pe/ (Bar Code # - (Bar Code - Volume	1	2 P			
1026 ATT	SCOOBER 04 00122 6L	- X				Please Nn
1040 Ar	- SC00903 OA DO384 6L					TCE, Carbon
1110	SLO0909 0400167 6L					retruchlorise,
1130	SCO0536 0A00014 6L					1 VC @ low
1130	5009570A00386 6L				-	detection.
1138	SC00351 0A00093 6L	X				limit (0.75 m/03)
1330	SC00299 0A00406 6L	1	1			J
1356	SC00 333 OAO0387 6L	. X				
1413	SC00315 0400 177 6L	X				. '
1427	SCOOLY1 0400450 6L					
1420	500565 0A00388 6L	$X_{i}$	-			
1518	500683 0A00207 6L					
1540	SCO0432 0100354 6L	.   X				
545	AC00719FC00672 6L		X			Ambrent
					T_ :	
Validation Package) 10% specified)	Surcharge EDD require Type:	d Coons	EDD Units: _	ug/m3 + ppl	Project R	lequirements (MRLs, QAPP)
Date: 7/30/30 Time:	Received by: (Signature)	10 UC	Mag	ILIS TIPSEIK	201	
Date: Time:	Received by: (Signature)		Date:	Time:	Cooler / E	3lank

Date:

Time:

Temperature

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldri	ch, Inc.		<u>.</u>	_	Work order:	P0804386			
	Cooper Vision									
	s) received on:				Date opened:		by:	MZAN		
		samples received by CAS.							on of	
		Thermal preservation and pl containers properly r				ent and/or as required	l by the method/SO	Yes	<u>No</u>	<u>N/A</u>
	-	containers property to cappiled by CAS?	narked with Ci	ient sample it	) !			X		
3	Did sample co	ontainers arrive in go	od condition?					X		
4	Were chain-of	f-custody papers used	l and filled out	.?				X		
5	Did sample co	ontainer labels and/o	r tags agree w	ith custody pa	pers?			X		
6	Was sample v	olume received adequ	ate for analys	is?				X		
7	Are samples w	vithin specified holdin	ng times?					X		. 🔲
8	Was proper te	mperature (thermal	preservation) (	of cooler at rec	eipt adhered	to?				X
	C	Cooler Temperature		°C Blank	Гетрегаture		_°C			
9	Was a trip bla	ank received?				-	<del></del>		X	
	Trip blank s	upplied by CAS: Seri	al#		-TB					
10	Were custody	seals on outside of co	ooler/Box?						X	
	Location of	seal(s)?					_Sealing Lid?			$\times$
	Were signat	ure and date included	?							X
	Were seals i	ntact?								X
	Were custody	seals on outside of sar	mple container	:?					X	
	Location of	seal(s)?					Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i			,						X
11	Do containers	have appropriate pre	servation, acc	ording to metl	nod/SOP or C	Client specified i	nformation?			X
		nt indication that the		_		•				X
		ials checked for prese								$\boxtimes$
		nt/method/SOP requir			sample nH an	d if necessary a	lter it?			$\boxtimes$
12	Tubes:	Are the tubes cap		•	sampre pri an	u <u>n necessary</u> a	iter it:			$\boxtimes$
12	I does.	Do they contain:	-	•						$\boxtimes$
1.2	D = J ====	Are the badges p		. 1 مصنات مع				_		X
13	Badges:	0 1			11 <del>-</del> 11-11	dimtost9				X
		Are dual bed bad	<u> </u>				1			
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac		ot / Pres		ı
		Description	pH *	pH	pH	(Presence/Absence	1	Commei	HS	
P0804386		6.0 L Source Can		<u></u>						
P0804386		6.0 L Source Can								
P0804386 P0804386		6.0 L Source Can 6.0 L Source Can								
P0804386		6.0 L Source Can								
P0804386	5-006.01	6.0 L Source Can								
P0804386	5-007.01	6.0 L Source Can								
Explain a	ny discrepancies	:: (include lab sample II	numbers):							

### Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Inc.	Work order:	P0804386	
Project: Cooper Vision / 70665-014			
Sample(s) received on: 12/31/08	Date opened: 12/31/08	_ by:	MZAMORA

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
Lau Saupie II)	Description	pH *	pH	pH	(Presence/Absence)	Comments
2000120100001						
P0804386-008.01	6.0 L Source Can					
P0804386-009.01	6.0 L Source Can					-
P0804386-010.01	6.0 L Source Can					
P0804386-011.01	6.0 L Source Can					 
P0804386-012.01	6.0 L Source Can	•				
P0804386-013.01	6.0 L Source Can					
P0804386-014.01	6.0 L Ambient Can					
		_				
			<del>4</del>			
				1.		
	· · · · · · · · · · · · · · · · · · ·		-			
		****				
			-			
	aistan anns an an an an an an an an an an an an an					
		i i i i i i i i i i i i i i i i i i i				
		·				
			7.00			
	· · · · · · · · · · · · · · · · · · ·					
			A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	***************************************		
		***************************************			<u> </u>	
						·

Explain any discrepancies: (include lab sample l	ID numbers):	 	

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-108(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-001

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08

Date Received: 12/31/08

Analyst: Sampling Media:

6.0 L Summa Canister

Wida Ang

Date Analyzed: 1/2/09 Volume(s) Analyzed:

0.30 Liter(s)

Test Notes:

Container ID:

SC00828

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.32

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.44	ND	0.17	
75-00-3	Chloroethane	ND	2.2	ND	0.83	
75-35-4	1,1-Dichloroethene	ND	2.2	ND	0.56	
75-34-3	1,1-Dichloroethane	ND	2.2	ND	0.54	
71-55-6	1,1,1-Trichloroethane	8.7	2.2	1.6	0.40	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-108(D)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-002

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08

Date Received: 12/31/08

Instrument ID: Analyst:

Date Analyzed: 1/2/09

Sampling Media:

Wida Ang 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00903

Initial Pressure (psig):

-0.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.30

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
75-00-3	Chloroethane	. ND	0.65	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.65	ND	0.16	
75-34-3	1,1-Dichloroethane	0.68	0.65	0.17	0.16	
71-55-6	1,1,1-Trichloroethane	29	0.65	5,3	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_

#### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-3(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

Date Collected: 12/30/08

CAS Sample ID: P0804386-003

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma/Wida Ang

6.0 L Summa Canister

Date Received: 12/31/08

Date Analyzed: 1/2/09 & 1/5/09

Volume(s) Analyzed:

1.00 Liter(s) 0.20 Liter(s)

Test Notes:

Container ID:

Sampling Media:

SC00709

Initial Pressure (psig):

-1.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.38

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	0.39	0.14	0.15	0.054	
75-00-3	Chloroethane	1.5	0.69	0.58	0.26	
75-35-4	1,1-Dichloroethene	200	0.69	52	0.17	
75-34-3	1,1-Dichloroethane	38	0.69	9.4	0.17	
71-55-6	1,1,1-Trichloroethane	100	0.69	19	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-6(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-004

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma/Wida Ang

Date Collected: 12/30/08 Date Received: 12/31/08

Date Analyzed: 1/2/09 & 1/5/09

0.070 Liter(s)

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.025 Liter(s)

Container ID:

SC00536

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.31

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	7.2	1.9	2.8	0.73	
75-00-3	Chloroethane	11	9.4	4.2	3.5	
75-35-4	1,1-Dichloroethene	2,400	9.4	600	2.4	
75-34-3	1,1-Dichloroethane	860	9.4	210	2.3	
71-55-6	1,1,1-Trichloroethane	1,700	9.4	310	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-6(D)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-005

Test Code:

EPA TO-15

Instrument ID:

Wida Ang

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08 Date Received: 12/31/08

Date Analyzed: 1/2/09

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.035 Liter(s)

Analyst:

Container ID:

SC00957

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.31

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	15	3.7	6.0	1.5	
75-00-3	Chloroethane	ND	19	ND	7.1	
75-35-4	1,1-Dichloroethene	3,800	19	960	4.7	
75-34-3	1,1-Dichloroethane	2,100	19	510	4.6	
71-55-6	1,1,1-Trichloroethane	3,100	19	570	3.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-101(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-006

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma

Date Collected: 12/30/08 Date Received: 12/31/08

Date Analyzed: 1/5/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00351

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.32

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	-
75-00-3	Chloroethane	ND	0.66	ND	0.25	*
75-35-4	1,1-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-102(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-007

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08

Date Received: 12/31/08 Date Analyzed: 1/2/09

Analyst: Sampling Media: Wida Ang 6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID:

SC00299

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.39

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.70	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.70	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND	0.17	
71-55-6	1,1,1-Trichloroethane	1.9	0.70	0.35	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-102(D)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-008

Date Collected: 12/30/08

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Received: 12/31/08

Wida Ang

Date Analyzed: 1/2/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00333

Initial Pressure (psig):

-0.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.25

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.049	
75-00-3	Chloroethane	ND	0.63	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.63	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.63	ND	0.15	
71-55-6	1,1,1-Trichloroethane	2.8	0.63	0.52	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-103(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-009

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08 Date Received: 12/31/08

Wida Ang

Date Analyzed: 1/2/09

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Container ID:

SC00315

Initial Pressure (psig):

-0.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.27

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.050	
75-00-3	Chloroethane	ND	0.64	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.64	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.64	ND	0.16	
71-55-6	1,1,1-Trichloroethane	4.1	0.64	0.75	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-104(D)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-010

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08

Date Received: 12/31/08

Analyst:

Wida Ang 6.0 L Summa Canister

Date Analyzed: 1/2/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

SC00141

Initial Pressure (psig):

-0.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.27

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.050	
75-00-3	Chloroethane	ND	0.64	ND	0.24	
75-35-4	1,1-Dichloroethene	0.73	0.64	0.18	0.16	
75-34-3	1,1-Dichloroethane	ND	0.64	ND	0.16	
71-55-6	1,1,1-Trichloroethane	27	0.64	5.0	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-104(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386 CAS Sample ID: P0804386-011

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08 Date Received: 12/31/08

Analyst: Sampling Media: 6.0 L Summa Canister

Wida Ang

Date Analyzed: 1/2/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00565

Initial Pressure (psig):

1.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.15

CAS#	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.12	ND	0.045	
75-00-3	Chloroethane	ND	0.58	ND	0.22	
75-35-4	1,1-Dichloroethene	ND	0.58	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.58	ND	0.14	
71-55-6	1,1,1-Trichloroethane	21	0.58	3.9	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-106(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-012

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Wida Ang

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08 Date Received: 12/31/08

Date Analyzed: 1/2/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00683

Initial Pressure (psig):

-0.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.30

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
75-00-3	Chloroethane	ND	0.65	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.65	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.65	ND.	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.65	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-107(S)

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P0804386-013

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Wida Ang

Date Collected: 12/30/08 Date Received: 12/31/08

Date Analyzed: 1/2/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00432

Initial Pressure (psig):

-0.6

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.29

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.050	
75-00-3	Chloroethane	ND	0.65	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.65	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.65	· ND	0.16	
71-55-6	1,1,1-Trichloroethane	12	0.65	2.2	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS

Page 1 of 3

Client:

Haley & Aldrich, Inc.

Client Sample ID: AA-123008

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

Date Collected: 12/30/08

CAS Sample ID: P0804386-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Received: 12/31/08

Analyst:

Wida Ang

Date Analyzed: 1/2/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00719

Initial Pressure (psig):

-2.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.49

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.75	ND	0.43	<u> </u>
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.75	0.46	0.15	
74-87-3	Chloromethane	ND	0.75	ND	0.36	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.75	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.15	ND	0.058	
106-99-0	1,3-Butadiene	ND	0.75	ND	0.34	AND A COMMITTEE CONTRACTOR AND ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRE
74-83-9	Bromomethane	ND	0.75	ND	0.19	
75-00-3	Chloroethane	ND	0.75	ND	0.28	
64-17-5	Ethanol	ND	7.5	ND	4.0	
75-05-8	Acetonitrile	ND	0.75	ND	0.44	
107-02-8	Acrolein	ND	0.75	ND	0.33	
67-64-1	Acetone	ND	7.5	ND	3.1	
75-69-4	Trichlorofluoromethane	1.3	0.75	0.23	0.13	
107-13-1	Acrylonitrile	ND	0.75	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.75	ND	0.19	
75-09-2	Methylene Chloride	ND	0.75	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.75	ND	0.24	
76-13-1	Trichlorotrifluoroethane	ND	0.75	ND	0.097	
75-15-0	Carbon Disulfide	ND	0.75	ND	0.24	
156-60-5	trans-1,2-Dichloroethene	ND	0.75	ND	0.19	
75-34-3	1,1-Dichloroethane	ND	0.75	ND	0.18	
1634-04-4	Methyl tert-Butyl Ether	ND	0.75	ND	0.21	
108-05-4	Vinyl Acetate	ND	7.5	ND	2.1	
78-93-3	2-Butanone (MEK)	ND	0.75	ND	0.25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 2 of 3

Client:

Haley & Aldrich, Inc.

Client Sample ID: AA-123008

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0804386

CAS Sample ID: P0804386-014

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 12/30/08 Date Received: 12/31/08

Wida Ang

Date Analyzed: 1/2/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

AC00719

Initial Pressure (psig):

-2.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.49

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.75	ND	0.19	
141-78-6	Ethyl Acetate	ND	1.5	ND	0.41	
110-54-3	n-Hexane	ND	0.75	ND -	0.21	
67-66-3	Chloroform	ND	0.75	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.75	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.75	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.75	ND	0.14	
71-43-2	Benzene	ND	0.75	ND	0.23	
56-23-5	Carbon Tetrachloride	0.51	0.15	0.080	0.024	
110-82-7	Cyclohexane	ND	1.5	ND	0.43	
78-87-5	1,2-Dichloropropane	ND	0.75	ND	0.16	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
75-27-4	Bromodichloromethane	ND	0.75	ND	0.11	
79-01-6	Trichloroethene	ND	0.15	ND	0.028	
123-91-1	1,4-Dioxane	ND	0.75	ND	0.21	
80-62-6	Methyl Methacrylate	ND	1.5	ND	0.36	
142-82-5	n-Heptane	ND	0.75	ND	0.18	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
10061-01-5	cis-1,3-Dichloropropene	ND	0.75	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.75	ND	0.18	
10061-02-6	trans-1,3-Dichloropropene	ND	0.75	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.75	ND	0.14	
108-88-3	Toluene	0.88	0.75	0.23	0.20	
591-78-6	2-Hexanone	ND	0.75	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.75	ND	0.087	
106-93-4	1,2-Dibromoethane	ND	0.75	ND	0.097	
123-86-4	n-Butyl Acetate	ND	0.75	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: RG

### RESULTS OF ANALYSIS

Page 3 of 3

Client: Haley & Aldrich, Inc.

Client Sample ID: AA-123008

CAS Project ID: P0804386 CAS Sample ID: P0804386-014

Client Project ID: Cooper Vision / 70665-014

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Wida Ang 6.0 L Summa Canister Date Received: 12/31/08

Date Collected: 12/30/08

Date Analyzed: 1/2/09

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID:

Sampling Media:

AC00719

Initial Pressure (psig):

-2.5

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.49

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	. ND	0.75	ND	0.16	
127-18-4	Tetrachloroethene	ND	0.75	ND	0.11	
108-90-7	Chlorobenzene	ND	0.75	ND	0.16	
100-41-4	Ethylbenzene	ND	0.75	ND	0.17	
179601-23-1	m,p-Xylenes	ND	1.5	ND	0.34	
75-25-2	Bromoform	ND	0.75	ND	0.072	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
100-42-5	Styrene	ND	0.75	ND	0.18	
95-47-6	o-Xylene	ND	0.75	ND	0.17	
111-84-2	n-Nonane	ND	0.75	ND	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.75	ND	0.11	
98-82-8	Cumene	ND	0.75	ND	0.15	re-commission of the second section of the second second second second section of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
80-56-8	alpha-Pinene	ND	0.75	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.75	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.75	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.75	ND	0.15	
95-63-6	1,2,4-Trimethylbenzene	ND	0.75	ND	0.15	
100-44-7	Benzyl Chloride	ND	0.75	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.75	ND	0.12	
106-46-7	1,4-Dichlorobenzene	ND	0.75	ND	0.12	
95-50-1	1,2-Dichlorobenzene	ND	0.75	ND	0.12	
5989-27-5	d-Limonene	ND	0.75	ND	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.75	ND	0.077	
120-82-1	1,2,4-Trichlorobenzene	ND	0.75	ND	0.10	
91-20-3	Naphthalene	ND	0.75	ND	0.14	
87-68-3	Hexachlorobutadiene	ND_	0.75	ND	0.070	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: TO15SCAN.XLT - 75 Compounds - PageNo.:

# RESULTS OF ANALYSIS

Page 1 of 3

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386 CAS Sample ID: P090102-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Received: NA

Volume(s) Analyzed:

Date Analyzed: 1/2/09

Date Collected: NA

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	0.50	ND	0.22	
67-64-1	Acetone	ND	5.0	ND	2.1	•
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND .	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

P0804386_TO15_0901061455_RE.xls - MBlank

# RESULTS OF ANALYSIS Page 2 of 3

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386 CAS Sample ID: P090102-MB

Date Collected: NA

Date Received: NA

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 1/2/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound		Result	MRL	Result	MRL	Data
			μg/m³	$\mu g/m^3$	$\mathbf{ppbV}$	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene		ND	0.50	 ND	0.13	
141-78-6	Ethyl Acetate		ND	1.0	ND .	0.28	
110-54-3	n-Hexane		ND	0.50	ND	0.14	
67-66-3	Chloroform		ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)		ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	# (	ND	0.50	 ND	0.12	
71-55-6	1,1,1-Trichloroethane		ND	0.50	ND	0.092	
71-43-2	Benzene		ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride		ND	0.10	ND	0.016	
110-82-7	Cyclohexane		ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane		ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane		ND	0.50	ND	0.075	
79-01-6	Trichloroethene		ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane		ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate		ND	1.0	ND	0.24	
142-82-5	n-Heptane		ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene		ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone		ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene		ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane		ND	0.50	ND	0.092	
108-88-3	Toluene		ND	0.50	ND	0.13	
591-78-6	2-Hexanone		ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane		ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane		ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate		ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Re	Date:	16161	
		TOISSCAN.XLT - 7	75 Compounds - Page	No.:

26

# RESULTS OF ANALYSIS Page 3 of 3

**Client:** 

Haley & Aldrich, Inc.

CAS Project ID: P0804386

Date Collected: NA

Date Received: NA

Client Sample ID: Method Blank

CAS Sample ID: P090102-MB

Client Project ID: Cooper Vision / 70665-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 1/2/09 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: R. TO15SCAN.XLT - 75 Compounds - PageNo.:

# RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0804386

CAS Sample ID: P090105-MB

Test Code:

EPA TO-15

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA Date Analyzed: 1/5/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.



### LABORATORY REPORT

October 31, 2008

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

RE: Coopervision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on October 16, 2008. For your reference, these analyses have been assigned our service request number P0803421.

All Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **26** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No. 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Ageilera

Kate Aguilera Project Manager Page 1 of **26** 



Haley & Aldrich, Inc.

Project: Coopervision / 70665-014

CAS Project No: New York Lab ID: P0803421 11221

### CASE NARRATIVE

The samples were received intact under chain of custody on October 16, 2008 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

# Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Haley & Aldrich, Incorporated

Project:

Coopervision 70665-014

# **Detailed Sample Information**

			<u>Pi1</u>	Pi1		Pi2	<u>Pi2</u>					Bottle
CAS Sample ID	Client Sample ID	Container Type	<u>(Hg)</u>	(psig)	<u>Pf1</u>	<u>(Hg)</u>	(psig)	Pf2	Cont ID	Order #	FC ID	Order #
P0803421-001.01	SV-1	6.0 L-Summa Canister Source	-2.3	-1.1	3.5				SC00366	10567	OA00177	10567
P0803421-002.01	SV-2	6.0 L-Summa Canister Source	-1.3	-0.6	3.5				SC00655	10567	OA00451	10567
P0803421-003.01	SV-3 (S)	6.0 L-Summa Canister Source	-4.2	-2.1	3.5				SC00960	10567	OA00122	10567
P0803421-004.01	SV-3 (D)	6.0 L-Summa Canister Source	-3.8	-1.9	3.5				SC00519	10567	OA00168	10567
P0803421-005.01	SV-4 (S)	6.0 L-Summa Canister Source	-2.8	-1.4	3.5	ALCONO. C. 2277 A 9-3-4 (1-77)	100m 4.0 - 00 - 1000 HELL - 0.10 HER	- Carallana objeta et materialiste	SC00669	10567	OA00429	10567
P0803421-006.01	SV-4 (D)	6.0 L-Summa Canister Source	-2.7	-1.3	3.5				SC01037	10567	OA00093	10567
P0803421-007.01	SV-5 (S)	6.0 L-Summa Canister Source	-2.1	-1.0	3.5	Make recover recommendation		e te die eeu versche propositioner van	SC00473	10567	OA00418	10567
P0803421-008.01	SV-5 (D)	6.0 L-Summa Canister Source	-3.3	-1.6	3.6				SC00037	10567	OA00175	10567
P0803421-009.01	SV-6 (S)	6.0 L-Summa Canister Source	-3.8	-1.9	3.9	contemporary or desired of the			SC00984	10567	OA00059	10567
P0803421-010.01	SV-6 (D)	6.0 L-Summa Canister Source	-4.3	-2.1	3.5				SC00847	10567	OA00208	10567
P0803421-011.01	SV-7 (S)	6.0 L-Summa Canister Source	-4.5	-2.2	3.5		PARTICULATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	5-12-04-01117-0-1110-11-5-12-	SC00714	10567	OA00403	10567
P0803421-012.01	AA-101408	6.0 L-Summa Canister Ambient	-7.0	-3.4	3.4				AC00796	10567	FC00097	10567
P0803421-013.01	SC00002	6.0 L-Summa Canister Source	-29.6	-14.5		erorgaesan njarraysensa.	DPC-Sector St. Chapter of Conf.	2.101.000 a \$70.00 to \$70.00 b \$70.00 b)	SC00002	10567	CLEANING OF THE STREET	
P0803421-014.01	SC00173	6.0 L-Summa Canister Source	-29.6	-14.5			100	100	SC00173	10567		
P0803421-015.01	SC00867	6.0 L-Summa Canister Source	-29.6	-14.5		A, MERIPOLA STESSMENT CONTROLS		121272494500000100000411	SC00867	10567	- del filo provincio di processo superio spesio filo di popisi (14 2007)	e-christophetascal-us St. agus-sperits heide - ves cor
P0803421-016.01	SC00322	6.0 L-Summa Canister Source	-29.6	-14.5					SC00322	10567		
P0803421-017.01	AC01489	6.0 L-Summa Canister Ambient	-29.1	-14.3		March March of Charles of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro	ESPECIAL MAY ASSESS MANUSARE	1844/1940/1940/1955/5/201	AC01489	10567	CONTRACTOR STREET, CHICANOS CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTR	
P0803421-018.01	SC00957	6.0 L-Summa Canister Source	-27.0	-13.3					SC00957	10567		
P0803421-019.01	SC01029	6.0 L-Summa Canister Source	-6.6	-3.2			eventuration objective with the		SC01029	10567	Marit value Latin Sacrat value (arright Septilla Septilla Septilla Septilla Septilla Septilla Septilla Septilla	
P0803421-020.01	SC00979	6.0 L-Summa Canister Source		0.3			3000		SC00979	10567		

Folder: P0803421

Haley & Aldrich, Incorporated

Project:

Coopervision 70665-014

**Folder:** P0803421

# **Detailed Sample Information**

<u>Pi1</u> <u>Pi1</u> Pi2 Pi2 Bottle (Hg) Order # CAS Sample ID Client Sample ID Container Type (Hg) (psig) <u>Pf1</u> (psig) Pf2 Cont ID Order# FC ID

# Miscellaneous Items - received

FC00518

AVG00750

OA00144

OA00449

AVG00823

AVG00558

AVG00666

AVG00587

AVG01017

AVG00544

AVG00687

OA00178

AVG00652

AVG00331

AVG00644

AVG00214

OA00011

AVG00713

AVG00869

OA00448

OA00406

OA00405

AVG00728

AVG00126

AVG00102

AVG00256

AVG00496

AVG00682

Haley & Aldrich, Incorporated

Project:

Coopervision 70665-014

Folder: P0803421

**Detailed Sample Information** 

CAS Sample IDClient Sample IDContainer TypePi1Pi2Pi2Pi2Pi2Pi2Di2BottleCAS Sample IDClient Sample IDContainer Type(Hg)(psig)Pf1(Hg)(psig)Pf2Cont IDOrder #FC IDOrder #

# Columbia Analytical An Employee - Owne

Relinquished by: (Signature)

# Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A

Services INC.  An Employee - Owned Company	Simi Valley, Cal Phone (805) 5		065	Re	equested Tur	naround Time i	in Busines	s Days (Surchar	ges) please çir	efe	CAS Proj	ect No.
All Employee - Owned Company	Fax (805) 526			1	Day (100%)	2 Day (75%) 3	Day (50%)	4 Day (35%) 5 [	Day (25%) 10 E	ay - Standard		P0803421
Company Name & Address Haley + Aldro 700 town Cent	Reporting Inform	nation)	Project Na	ame Dervis	Ton		4	CAS Contact	n ker / Ka nalysis Method a	and/or Analytes	erg	
200 Town cent	re on s	Jule Z	Project Nu	ımber				LI-DCA,				1
Lochester 1	1467			Iling Informat				1 / 1	TO 1+			
Project Manager					tion			ILLI TO A	10-0			Comments
Project Manager SM Boyle			7066	5-014	. 1			chlosopethan	, TCL			e.g. Actual Preservative
Phone 585-321-4219 Email Address for Result Re	Fax 585-486.	-8219	Bill 4	no addre	BOYLE	ve .		1,1-DCE, 1,1,1-TCA, chloroethane VC only TO-(5)	VOCS			or specific instructions
Email Address for Result Re	porting	_	Sampler (	Print & Sign)	Elhan	lee		10-15				
Cdebegali30	nallyaldn	ch com		Et Z	4 fee	/		1000				
Client Sample ID	Laboratory ID Number	Date Collected <b>700</b> \$	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)	FC #)	Sample Volume					·
SV-I	0-23	1914	1050	AX	500366	0A00 L77	6L	X				Please Run
SV-2	1.3		1049		k (00663	OA 00451		X				TCE, Carbon
SV-3(S)	342		1415		500060	0400122		X				refactionde,
SV-3 (P)	D-3.8		1416		5<00519	0A00168		X				& Vinyl Chloride
SU-4 (5)	3)-28		1153		500669	0A00429		X				@ low det.
5V-4 (D)	0-27		1152		5001037	OA00093		X				imit
SV-5 (S)	0.21		1056		5400473	OACOUR		X				(0.75 mg/m3)
SV-5 (0)	8-33		1057			0A00175		X				0, 0
SV-6 (S)	9-38		1323		500984	0A00059		X				
SV-6 (D)	<b>10-43</b>		1326		5000847	CACOZOB		X				:
SU-7 (S)	10-45	$\downarrow$	1221			0A00403	+	X				
AA-101408	10.7.0	1	1501	7	AC0079	FC00097	· J	ixetar	X			·
	124,6	1(1)										
	-29.1											
Service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and the service and th	-27.0											
Report Tier Levels - please selection I - (Results/Default if not specified Tier II - (Results + QC)	1) 🗡	Tier III - (Da Tier V - (clier		ckage) 10% Surd	charge		DD require	Yes No	EDD Units: /	uym3 -ppb	✓ Project R	equirements (MRLs, QAPP)
Relinquished by: (Signature)	Arel		Date (4/0)	S Time o O	Received by	(Signature)	Aziw	1.00	he/i	Uer 10940		
Relinquished by: (Signature)			Date:	Time:	Received by				Date:	Time:	Cooler / E	3lank

Date:

Time:

Temperature

Received by: (Signature)

Date:

Time:

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldri	ich, Inc.	~~~ <b>~</b>	<u> </u>	_	Work order:	P0803421			
Project:	Coopervision.	/ 70665-014		W/45/48/48/49/49/49/49/49/49/49/49/49/49/49/49/49/						
-	s) received on:			-	Date opened:		_ by:	MZAN		
		samples received by CAS.							on of	
compliance o	or nonconformity.	Thermal preservation and pl	H will only be eval	uated either at the	request of the cli-	ent and/or as required	by the method/SOF	Yes	<u>No</u>	N/A
1	Were sample	containers properly r	narked with c	lient sample II	)?			$\times$		
2	Container(s) s	supplied by CAS?						X		
3	Did sample co	ontainers arrive in go	od condition?					$\times$		
4	Were chain-of	f-custody papers used	and filled ou	t?				$\times$		
5	Did sample co	ontainer labels and/o	r tags agree w	ith custody pa	pers?			X		
6	Was sample v	volume received adequ	ate for analys	is?				X		
7		vithin specified holding						X		
8		emperature (thermal)	-	of cooler at rec	eipt adhered	to?				X
	C	Cooler Temperature		°C Blank	Temperature		°C			
9	Was a trip bla	ank received?			-		<del>-</del>		X	
	Trip blank s	supplied by CAS: Seri	al#		-TB					
10	Were custody	seals on outside of co	ooler/Box?						X	
	Location of	seal(s)?					_Sealing Lid?			$\times$
	Were signat	ure and date included	?							X
	Were seals i	ntact?								X
	Were custody	seals on outside of sar	mple containe	r?					X	
	Location of		•				Sealing Lid?			X
	Were signat	ure and date included	? .				<b></b>			X
	Were seals i									X
11	Do containers	have appropriate <b>pre</b>	servation, acc	cording to met	hod/SOP or C	Client specified in	nformation?			X
	Is there a clie	nt indication that the	submitted san	nples are <b>pH</b> p	reserved?	-				$\boxtimes$
		ials checked for prese								$\overline{\mathbf{x}}$
		nt/method/SOP requir			sample pH ar	nd if necessary al	ter it?			×
12	Tubes:	Are the tubes cap		-	sampio pri ai	ia <u>ii necessar y</u> ar	ter it:			$\boxtimes$
12	1 4205	Do they contain:	_	•						$\boxtimes$
13	Badges:	Are the badges p		d and intact?						X
. 13	Dauges.	Are dual bed bad			lly canned an	id intact?				$\boxtimes$
			<u> </u>		, 11					
Lab :	Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace		t / Pres lommei	ervatioi 	
			рия	pu	h11	(Presence/Absence)	`	Antinici	на	
P0803421		6.0 L Source Can					<b>.</b>			
P0803421		6.0 L Source Can								
P0803421 P0803421		6.0 L Source Can 6.0 L Source Can								
P0803421		6.0 L Source Can					<b>†</b>	· And a second of the second of the second		
P0803421		6.0 L Source Can					1			
P0803421		6.0 L Source Can	-							
Explain a	ny discrepancies	: (include lab sample II	numbers):							

# Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Inc.	Work order:	P0803421		
Project: Coopervision / 70665-014				
Sample(s) received on: 10/16/08	Date opened: 10/16/08	by:	MZAMORA	

Lak Carata 110	Continue	Danisasi	Danisai	Adimed	VOLUME -	Daniel / Decourse to a
Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
		ри	lui.	pri	(FreshiterAnsente)	Committees
P0803421-008.01	6.0 L Source Can					
P0803421-009.01	6.0 L Source Can				, it is a superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the supe	
P0803421-010.01	6.0 L Source Can					
P0803421-011.01	6.0 L Source Can					·
P0803421-012.01	6.0 L Ambient Can					
*						
	•					
						-
		-				
				·		
		-				
					. , , ,	
						:
		·				
			·	**************************************		
	***************************************					
			•			
·						
·						
			######################################		***************************************	
					en en en en en en en en en en en en en e	
					1	

Explain any discrepancies: (include lab sample ID numbers):	

### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-1

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421 CAS Sample ID: P0803421-001

Date Collected: 10/14/08

Date Received: 10/16/08

Date Analyzed: 10/22/08

Test Code:

Analyst:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

6.0 L Summa Canister

Test Notes:

Container ID:

Sampling Media:

SC00366

Initial Pressure (psig):

-1.1

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Canister Dilution Factor: 1,34

0.045 Liter(s)

0.025 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	3.0	ND	1.2	
75-00-3	Chloroethane	ND	15	ND	5.6	
75-35-4	1,1-Dichloroethene	160	15	41	3.8	
75-34-3	1,1-Dichloroethane	120	15	31	3.7	
71-55-6	1,1,1-Trichloroethane	3,800	15	700	2.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-2

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-002

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08 Date Received: 10/16/08

Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00655

Initial Pressure (psig):

-0.6

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.29

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.050	
75-00-3	Chloroethane	2.0	0.65	0.74	0.24	
75-35-4	1,1-Dichloroethene	ND	0.65	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.65	ND	0.16	
71-55-6	1,1,1-Trichloroethane	1.9	0.65	0.35	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-3 (S)

CAS Project ID: P0803421

Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0803421-003

Test Code:

EPA TO-15

Date Collected: 10/14/08

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 10/16/08

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.080 Liter(s)

Test Notes:

Container ID:

SC00960

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	6.9	1.8	2.7	0.70	
75-00-3	Chloroethane	ND	9.0	ND	3.4	
75-35-4	1,1-Dichloroethene	1,600	9.0	390	2.3	
75-34-3	1,1-Dichloroethane	680	9.0	170	2.2	
71-55-6	1,1,1-Trichloroethane	1,400	9.0	260	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-3 (D)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-004

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.035 Liter(s)

Test Notes:

Container ID:

SC00519

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.42

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	16	4.1	6.4	1.6	
75-00-3	Chloroethane	28	20	10	7.7	
75-35-4	1,1-Dichloroethene	4,000	20	1,000	5.1	
75-34-3	1,1-Dichloroethane	2,200	20	540	5.0	
71-55-6	1,1,1-Trichloroethane	3,400	20	620	3.7	

-1.9

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-4 (S)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-005

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 10/22/08

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.10 Liter(s)

Test Notes:

Container ID:

SC00669

Initial Pressure (psig):

-1.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.37

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.69	ND	0.26	
75-35-4	1,1-Dichloroethene	20	0.69	4.9	0.17	
75-34-3	1,1-Dichloroethane	11	0.69	2.8	0.17	
71-55-6	1,1,1-Trichloroethane	 290	0.69	53	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Re-Date: 10/29/08 TOI5SCAN.XLT - 75 Compounds - PageNo.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-4 (D)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-006

Test Code:

EPA TO-15

Date Collected: 10/14/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 10/16/08

Analyst:

Wida Ang

Date Analyzed: 10/23/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.35 Liter(s)

Test Notes:

Container ID:

SC01037

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.39	ND	0.15	
75-00-3	Chloroethane	ND	1.9	ND	0.74	
75-35-4	1,1-Dichloroethene	34	1.9	8.7	0.49	
75-34-3	1,1-Dichloroethane	28	1.9	7.0	0.48	
71-55-6	1,1,1-Trichloroethane	340	1.9	63	0.36	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

# RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-5 (S)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-007

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00473

Initial Pressure (psig):

-1.0

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.33

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	4.3	0.67	1.1	0.17	
75-34-3	1,1-Dichloroethane	1.2	0.67	0.29	0.16	
71-55-6	1,1,1-Trichloroethane	130	0.67	24	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### **RESULTS OF ANALYSIS**

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-5 (D)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

Date Collected: 10/14/08

CAS Sample ID: P0803421-008

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 10/16/08

Analyst:

Wida Ang

Date Analyzed: 10/22 - 10/23/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s) 0.10 Liter(s)

Test Notes: Container ID:

SC00037

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.6

Canister Dilution Factor: 1.40

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	$\mathbf{ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.055	
75-00-3	Chloroethane	ND	0.70	ND	0.27	
75-35-4	1,1-Dichloroethene	3.0	0.70	0.76	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND	0.17	
71-55-6	1,1,1-Trichloroethane	150	0.70	28	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-6 (S)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-009

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.025 Liter(s)

Test Notes:

Container ID:

SC00984

Initial Pressure (psig):

-1.9

Final Pressure (psig):

3.9

Canister Dilution Factor: 1.45

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	23	5.8	9.0	2.3	
75-00-3	Chloroethane	ND	29	ND	11	
75-35-4	1,1-Dichloroethene	5,100	29	1,300	7.3	
75-34-3	1,1-Dichloroethane	3,200	29	800	7.2	
71-55-6	1,1,1-Trichloroethane	5,100	29	940	5.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-6 (D)

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-010

Test Code:

EPA TO-15

Date Collected: 10/14/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 10/16/08

Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

0.015 Liter(s)

Test Notes:

Container ID:

SC00847

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	34	9.6	13	3.8	Quantitei
75-00-3	Chloroethane	ND	48	ND	18	
75-35-4	1,1-Dichloroethene	5,600	48	1,400	12	
75-34-3	1,1-Dichloroethane	3,900	48	950	12	
71-55-6	1,1,1-Trichloroethane	5,900	48	1,100	8.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 10/29/08 TO15SCAN.XLT - 75 Compounds - PageNo.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: SV-7 (S)

6.0 L Summa Canister

CAS Project ID: P0803421

Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0803421-011

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08 Date Received: 10/16/08

Analyst: Sampling Media: Wida Ang

Date Analyzed: 10/22/08 Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00714

Initial Pressure (psig):

-2.2

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.46

CAS#	Compound	Result μg/m³	$MRL \ \mu g/m^3$	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.15	ND	0.057	
75-00-3	Chloroethane	ND	0.73	ND	0.28	
75-35-4	1,1-Dichloroethene	ND	0.73	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.73	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.73	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 1 of 3

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: AA-101408

CAS Project ID: P0803421

Client Project ID: Coopervision / 70665-014

CAS Sample ID: P0803421-012

Test Code:

EPA TO-15

Date Collected: 10/14/08

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 10/16/08

Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00796

Initial Pressure (psig):

-3.4

Final Pressure (psig):

3.4

Canister Dilution Factor: 1.60

CAS#	Compound	Result	MRL	Result	MRL	Data
	•	$\mu g/m^3$	$\mu g/m^3$	$\mathbf{ppbV}$	ppbV	Qualifier
115-07-1	Propene	ND	0.80	ND	0.47	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.4	0.80	0.48	0.16	
74-87-3	Chloromethane	ND	0.80	ND	0.39	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.80	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.063	
106-99-0	1,3-Butadiene	ND	0.80	ND	0.36	
74-83-9	Bromomethane	ND	0.80	ND	0.21	
75-00-3	Chloroethane	ND	0.80	ND	0.30	
64-17-5	Ethanol	12	8.0	6.6	4.2	
75-05-8	Acetonitrile	ND	0.80	ND	0.48	
107-02-8	Acrolein	ND	0.80	ND	0.35	
67-64-1	Acetone	18	8.0	7.7	3.4	
75-69-4	Trichlorofluoromethane	1.2	0.80	0.21	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	1.6	0.80	0.65	0.33	
107-13-1	Acrylonitrile	ND	0.80	ND	0.37	
75-35-4	1,1-Dichloroethene	ND	0.80	ND	0.20	
75-09-2	Methylene Chloride	ND	0.80	ND	0.23	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.80	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.80	ND	0.10	
75-15-0	Carbon Disulfide	ND	0.80	ND	0.26	
156-60-5	trans-1,2-Dichloroethene	ND	0.80	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.80	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.80	ND	0.22	
108-05-4	Vinyl Acetate	ND	8.0	ND	2.3	
78-93-3	2-Butanone (MEK)	1.5	0.80	0.51	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: RG Date: 1009155
TOISSCAN.XLT - 75 Compounds - PageNo.

20

# RESULTS OF ANALYSIS

Page 2 of 3

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: AA-101408

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P0803421-012

Test Code:

EPA TO-15

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Analyzed: 10/22/08

Sampling Media:

Wida Ang 6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00796

Initial Pressure (psig):

-3.4

Final Pressure (psig):

3.4

Canister Dilution Factor: 1.60

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.80	ND	0.20	
141-78-6	Ethyl Acetate	3.6	0.80	0.99	0.22	
110-54-3	n-Hexane	ND	0.80	ND	0.23	
67-66-3	Chloroform	ND	0.80	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.80	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	0.80	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.80	ND	0.15	
71-43-2	Benzene	ND	0.80	ND	0.25	
56-23-5	Carbon Tetrachloride	0.51	0.16	0.082	0.025	
110-82-7	Cyclohexane	ND	0.80	ND	0.23	
78-87-5	1,2-Dichloropropane	ND	0.80	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.80	ND	0.12	
79-01-6	Trichloroethene	ND	0.16	ND	0.030	
123-91-1	1,4-Dioxane	ND	0.80	ND	0.22	
80-62-6	Methyl Methacrylate	ND	0.80	ND	0.20	
142-82-5	n-Heptane	ND	0.80	ND	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.80	ND	0.18	
108-10-1	4-Methyl-2-pentanone	ND	0.80	ND	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.80	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.80	ND	0.15	
108-88-3	Toluene	1.1	0.80	0.29	0.21	-
591-78-6	2-Hexanone	ND	0.80	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.80	ND	0.094	
106-93-4	1,2-Dibromoethane	ND	0.80	ND	0.10	
123-86-4	n-Butyl Acetate	ND ND	0.80	ND_	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

#### RESULTS OF ANALYSIS

Page 3 of 3

**Client:** Haley & Aldrich, Inc.

Client Sample ID: AA-101408

CAS Project ID: P0803421 CAS Sample ID: P0803421-012

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

6.0 L Summa Canister

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 10/14/08

Date Received: 10/16/08

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00796

Initial Pressure (psig):

-3.4

Final Pressure (psig):

3.4

Canister Dilution Factor: 1.60

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.80	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.80	ND	0.12	
108-90-7	Chlorobenzene	ND	0.80	ND	0.17	
100-41-4	Ethylbenzene	ND	0.80	ND	0.18	
179601-23-1	m,p-Xylenes	ND	0.80	ND	0.18	
75-25-2	Bromoform	ND	0.80	ND	0.077	
100-42-5	Styrene	ND	0.80	ND	. 0.19	
95-47-6	o-Xylene	ND	0.80	ND	0.18	
111-84-2	n-Nonane	ND	0.80	ND	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.80	ND	0.12	
98-82-8	Cumene	ND	0.80	ND	0.16	
80-56-8	alpha-Pinene	ND	0.80	ND	0.14	
103-65-1	n-Propylbenzene	ND	0.80	ND	0.16	
622-96-8	4-Ethyltoluene	ND	0.80	ND	0.16	
108-67-8	1,3,5-Trimethylbenzene	ND	0.80	ND	0.16	
95-63-6	1,2,4-Trimethylbenzene	1.4	0.80	0.28	0.16	
100-44-7	Benzyl Chloride	ND	0.80	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	0.80	ND	0.13	
106-46-7	1,4-Dichlorobenzene	ND	0.80	ND	0.13	
95-50-1	1,2-Dichlorobenzene	ND	0.80	ND	0.13	
5989-27-5	d-Limonene	ND	0.80	ND	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.80	ND	0.083	
120-82-1	1,2,4-Trichlorobenzene	ND	0.80	ND	0.11	
91-20-3	Naphthalene	ND	0.80	ND	0.15	
87-68-3	Hexachlorobutadiene	- ND	0.80	ND	0.075	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified	By:	Ro	Date:	10/29/08
			TOISSCAN.XLT - 75	Compounds - PageNo.

#### RESULTS OF ANALYSIS

Page 1 of 3

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421 CAS Sample ID: P081022-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 10/22/08

Volume(s) Analyzed:

Date Collected: NA

Date Received: NA

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	$\mathbf{ppbV}$	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	cannot be seen a second dead block of the 5000 VVVV
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND .	0.50	ND	0.22	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.50	ND	0.20	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND -	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: R. TO15SCAN.XLT - 75 Compounds - PageNo.:

#### **RESULTS OF ANALYSIS** Page 2 of 3

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

CAS Project ID: P0803421

CAS Sample ID: P081022-MB

Date Collected: NA

Date Received: NA

Date Analyzed: 10/22/08

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	0.50	ND	0.14	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	0.50	ND	0.15	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	0.50	ND	0.12	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND .	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

#### RESULTS OF ANALYSIS Page 3 of 3

**Client:** 

Haley & Aldrich, Inc.

CAS Project ID: P0803421

Client Sample ID: Method Blank

CAS Sample ID: P081022-MB

Client Project ID: Coopervision / 70665-014

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: NA

Instrument ID:

Date Received: NA

Wida Ang

Date Analyzed: 10/22/08

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS#	Compound	$\mu g/m^3$	$\mu g/m^3$	${f ppbV}$	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

### RESULTS OF ANALYSIS

Page 1 of 1

**Client:** 

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Coopervision / 70665-014

CAS Project ID: P0803421

CAS Sample ID: P081023-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Analyst: Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 10/23/08

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:



March 3, 2009

Ms. Sue Boyle Haley & Aldrich of New York 200 Town Centre Drive Ste. 2 Rochester, NY 14623-4264

Re: Coopervision

CAS Submission #: R0900538

Revised: 3/3/09
**Additional Data**

Dear Ms. Boyle,

Enclosed is the analytical data report for the above referenced Project and Submission #. All samples were analyzed by the CAS- Rochester laboratory. All data was previously emailed to you on 2/19/09. At the request of Claire DeBergalis of H&A on 2/24/09, the package was upgraded to an ASPB package deliverables. All data has been reviewed prior to report submission. The full package is included here, the initial package II is equivalent to the summary package.

Please contact me at (585)-288-5380 if you have questions regarding this information.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Huen Burla

Karen Bunker Project Manager

Enc.

Report contians a total of 102 pages

### **SDG NARRATIVE**

Client:Haley & AldrichService Request No.:R0900538Project:CooperVison #70665-014Date Received:1/30/09

Sample Matrix: Air

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier ASPB data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses.

#### Sample Receipt

Three (3) SUMMA Canister Air samples were collected by H&A on 1/30/09 and received for analysis at Columbia Analytical Services on the same day. The samples were received in good condition and consistent with the accompanying chain of custody form.

#### Volatile Organic Compounds by Method TO-15

Three (3) air samples were analyzed for a client specific list of Volatile Organic compounds by GC/MS method TO-15.

The Initial and Continuing Calibration Criteria were met.

Batch QC is included in the report. All Laboratory Control Sample (LCS) recoveries for target compounds were within QC limits.

All data is reported in both UG/M3 and PPBv units.

All Surrogate recoveries are within acceptance limits.

All Laboratory Method Blanks were free from contamination.

Any hits between the Method Reporting Limit (MRL) and Minimum Detection Limit (MDL) are flagged as "J".

No other problems were encountered during the analysis of these samples.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details contained above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Approved by Kuen Bunker Date 3310

#### CAS ASP/CLP Batching Form/Login Sheet

Yes

Client Proj #: 70665-014 Airs

Submission: R0900538

Batch Complete: Diskette Requested: No Date Revised:

Haley & Aldrich, Incorporated

Date Due: 2/16/09

Client:

Date: 2/24/09

Protocol: EPA

Client Rep: KBUNKER

Custody Seal: Present/Absent:

Shipping No.:

Project: Coopervision Chain of Custody: Present/Absent:

CAS Job#	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks Sample Condition
R0900538-001	SV-INA10	Air	TO-15	1/30/09	1/30/09			(Control of the Control of the Contr
R0900538-002	SV-OUTA10	Air	TO-15	1/30/09	1/30/09			
R0900538-003	SV-SS10	Air	TO-15	1/30/09	1/30/09			



#### REPORT QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).
  - For DoD reports, the J-flag may also be used to indicate that the concentration between two columns for pesticides/Aroclors is greater than 40% difference.
- B Indicates this compound was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- B- Metals Indicates an estimated value. The concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).
- E Indicates that the sample concentration had exceeded the calibration range for that specific analysis.
- D Indicates the sample concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- X See Case Narrative for discussion.
- P This flag is used for a pesticide/Aroclor target concentration when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns.
  - For DoD reports, the J-flag is used instead of "P".
- N Inorganics- Indicates the matrix spike recovery was outside laboratory limits.
- N- Organics- Indicates presumptive evidence of a compound (reported as a tentatively identified compound) based on the mass spectral library search.



#### CAS/Rochester Lab ID # for State Certifications1

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited

Navy Facilities Engineering Service Center Approved

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <a href="https://www.caslab.com">www.caslab.com</a>.

# CHAINS OF CUSTODY INTERNAL CHAINS

#### All - Chain of Gustouy Negotia & Allan, and and



1 Mustard Street, Suite 250

Columbia	Rochester, N				<u> </u>				11.	OAC Durings	Ma	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
OCI MOCO	Phone (585)						s Days From Re		CITCIE	CAS Project	NO.	
Ass Completents - Someway Companies	Fax (585) 28	38-8475		1 Day 2 Da	y 3 Day 4	Day 5 DayC	10 Day-Standard	CAS Contact:				
ompany Name & Address (Re	norting Inform	nation)		Project Name				CAS COMBC.	•	•		
114-114	porming milion	indiroit)			pecus	2121		Analys	sis Method	and/or An	alvtes	
the contra				Project Number	A COL	<u> </u>			T	T		
Haley Aldri	ch	•		·					1			
rolect Managel				P.O. # / Billin	ng Information			1	1			
SiBoyle	·			7010	65-01	1			1			
321-4222	Fax			100	φ <u>ე</u> - Οι	7			1 2 3			Comments
mail Address for Result Reporting	<u> </u>			Sampler (Print	& Sign\			(0)				Specific Instructions
A Tarapara Caraba			Chris	tina O	ndak		7					
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID	Flow Controller	Sample Final Vacuum		12				
SV-InaIO	7001	01/30	IUII0-IId	mino	007a3	4		<u> </u>				
SV-ONTAID	-cu2-		1419-11005	00039	00184	.3		<del>                                     </del>				and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
3V-SS10	7003	14	1490-1105	00001	00729	4		1				
Million Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of th			100 1010	1,	COIC	4		<del>                                     </del>		<b> </b>		
		<u> </u>				·						
the second state of the second state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second												Addition to the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the secti
ACCURATION OF SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURITY SECURIT		<u> </u>				<del></del>			1			
	<u> </u>											A 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100 C 100
Survivore Management (mages) (miles (Management (miles and a miles (Management (miles and a miles and a miles						·			1			THE RESIDENCE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY
		<u> </u>								1.		Andrew Colonia and Colonia and Colonia and Colonia and Colonia and Colonia and Colonia and Colonia and Colonia
Supposition - 1995 i variable supposition de la constitución de la con												And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		<b></b>	<b> </b>									
Forester Apparation of the party of the facility of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of		1.										
		<u> </u>				<u>.</u>						
		<u> </u>										
	<u> </u>	<u> L</u>	<u> </u>		<u> </u>						Project Requ	irements (MRLs, QAPP)
eport Tier Levels - please se at I - (Results/Default if not specifie	ed)		Forms Only)				EDD required Type:	Yes / No	EDD Units:	· · · · · · · · · · · · · · · · · · ·	R09	00538
I (Results + QC)		Tier IV (Data		Time:	Received by: (Si	ignature /	111	Ja	Date:   -36. <b>0</b> 9	Time: 16:30		
erreliquished by: (Signature)	at_			1430		N 1/1	Juliu		]-30'099 Date:	16;2() Time:		
Reliquished by: (Signature)			Dale:	Time:	Received by: (Si	•				Time		
Reliquished by: (Signature)			Date:	Time:	Received by: (Si	gnature)			Date:	Time:		

		. 1		Cooler Recei	pt And	Preservation	Check	Form		
· Project/Cl	ient	4	<u>A</u>	<u> </u>	Subi	nission Num	ber <u>R</u>	<u> </u>	<u>538</u>	
Cooler rec	ceived on	-30-	-09	_ by:(	COURI	ER: CAS	UPS	FEDEX '	VELOCIT	Y CLIENT
1. Were custody seals on outside of cooler? 2. Were custody papers properly filled out (ink, signed, etc.)? 3. Did all bottles arrive in good condition (unbroken)? 4. Did any VOA vials have significant* air bubbles? 5. Were Ice or Ice packs present? 6. Where did the bottles originate? 7. Temperature of cooler(s) upon receipt:										
ls	the tempe	ratur	e wit	hin 0° - 6° C?:	Ye	s Yes		Yes	Yes	Yes
	No, Expl			v ures Taken:	No.	19 8	/ 17;	No ()	No	No
				1 / IR GUN#2 (	IR GU	N#3 Rea	ding Fro	m: Temp	Blank (S	Sample Bottle
PC Secon Cooler B 1. V 2. I 3. V 4. A	ndary Revi reakdown: Vere all bo Did all bott Vere correctir Sample	ew: Da ttle la te lab ct con s: C	te:_abels abels a atain asse	e packing/ice cor B 2 0 a 2 0 complete i.e. and and tags agree with ers used for the te	alysis, ph custodests indi	by preservation, dy papers? cated?	: etc.)?	XES XES YES	NO NO NO Bags Infl	ated N/A.
pH	Reagent			Lot Received	Exp	Sample ID	Vol.	Lot Added	3 - 1	Yes = All
≥12	NaOH	YES	NO				Added		pH	samples OK
\$2	HNO ₃									No=
<b>S</b> 2	H₂SO₄									Samples were
Residual Chlorine (-)	For TCN and Phenol			If present, contact add ascorbic acid	PM to					preserved at lab as listed
<u> </u>	Na ₂ S ₂ O ₃	-	-					ore analysis -		PM OK to
	Zn Aceta	-	-			tested and re on a separat		y VOAs or C eet	ienChem	Adjust:
	HCl	*	*				·			<del></del>
Bottle lot Other Cor	numbers: nments:				· · ·	·	<u></u>		·	

PC Secondary Review: 18 2 909

### Columbia Analytical Services, Inc. Chain of Custody Report

Client: Project: Haley & Aldrich, Inc.

Coopervision/70665-014 Airs

Service Request: R0900538

Bottle ID	Tests	Date	Time	Sample Location / User	Disposed On
R0900538-001.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
				^	2/16/09
R0900538-002.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
					2/16/09
R0900538-003.01					
	TO-15				
		2/2/09	1312	SMO / AHENTSCHKE	
		2/2/09	1639	R-A02 / KCOOK	
		2/16/09	14:16	P-Disposed / TWALTON	
					2/16/09

# VOLATILE ORGANICS QC SUMMARY

QA/QC Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Sample Matrix:

Air

Service Request: R0900538 Date Analyzed: 2/5/09

Lab Control Sample Summary

Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

**Analytical Method:** 

Units: µg/m³ Basis: NA

Analysis Lot: 142047

	<b>Lab Control Sample</b> RQ0900784-01						
Analyte Name	Result	Expected	% Rec	Limits			
Vinyl Chloride	5.40	6.45	84	70 - 130			
Chloroethane	5.86	6.66	88	70 - 130			
1,1-Dichloroethene (1,1-DCE)	8.54	10.7	80	70 - 130			
1,1-Dichloroethane (1,1-DCA)	9.32	10.7	87	70 - 130			
1,1,1-Trichloroethane (TCA)	15.2	14.3	106	70 - 130			

Comments:

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK1

Contract: H&A

Lab File ID: A6458.D Lab Sample ID: METBLK

Date Analyzed: 2/5/2009 Time Analyzed: 15:32

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: MS#9

Lab Name: CAS/ROCH

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
:	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS1	LCS	A6457.D	13:06
02	SV-INA10	R0900538-001	A6459.D	18:42
03	SV-OUTA10	R0900538-002	A6460.D	19:33
04	SV-SS10	R0900538-003	A6461.D	20:23

COMMENTS:

page 1 of 1 FORM IV VOA TO-15

## VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	CAS/ROCH			Contract:	H&A	
Lab Code:	10145	Case No.	.: R900538		.: SDG	No.: SV-INA10
Lab File ID:	A6069.D			BF	B Injection Date:	11/14/2008
Instrument IE	D: MS#9			BF	B Injection Time:	12:40
GC Column:	DB-624	ID: 0.25	(mm)	He	ated Purge: (Y/N)	) N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	19.2
75	30.0 - 66.0% of mass 95	49.3
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.4 ( 0.5)
174	50.0 - 120.0% of mass 95	75.7
175	4.0 - 9.0% of mass 174	5.4 ( 7.2)
176	93.0 - 101.0% of mass 174	73.6 ( 97.3)
177	5.0 - 9.0% of mass 176	4.9 ( 6.7)
	1-Value is % mass 174	2-Value is % mass 176

#### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ĺ	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VBLK	METBLK 1.0	A6071.D	11/14/2008	14:45
02	0.02 PPB	0.02 PPB	A6072.D	11/14/2008	15:31
03	0.095 PPB	0.095 PPB	A6073.D	11/14/2008	16:16
04	0.20 PPB	0.20 PPB	A6074.D	11/14/2008	17:01
05	0.50 PPB	0.50 PPB	A6075.D	11/14/2008	17:46
06	1.0 PPB	1.0 PPB	A6076.D	11/14/2008	18:31
07	2.5 PPB	2.5 PPB	A6077.D	11/14/2008	19:16
80	5.0 PPB	5.0 PPB	A6078.D	11/14/2008	20:02
09	7.5 PPB	7.5 PPB	A6079.D	11/14/2008	20:50
10	10.0 PPB	10.0 PPB	A6080.D	11/14/2008	21:41
11	ICV	ICV	A6081.D	11/14/2008	22:26

Vial: 1

W 14-08.

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6069.D

Acq On : 14 Nov 2008 12:40 Operator: T.WALTON Sample : TUNE Inst : GC/MS Ins

Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15





AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

***************************************	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
-	50	95	8	40	19.2	41519	PASS
Ì	75	95	30	66	49.3	106797	PASS
i	95	95	100	100	100.0	216683	PASS
-	96	95	5	9	6.8	14675	PASS
i	173	174	0.00	2	0.5	852	PASS
	174	95	50	120	75.7	163989	PASS
	175	174	4	9	7.2	11771	PASS
Ì	176	174	93	101	97.3	159531	PASS
and or other party of the same	177	176	5	9	6.7	10693	PASS

## VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	CAS/ROCH			Contract:	H&A	
Lab Code:	10145	Case No.	: R900538	SAS No	st sdg	No.: SV-INA10
Lab File ID:	A6455.D			BF	B Injection Date:	2/5/2009
Instrument IE	): MS#9			BF	B Injection Time:	11:36
GC Column:	DB-624 I	D: 0.25	(mm)	He	ated Purge: (Y/N)	N

		% RELATIVE				
m/e	ION ABUNDANCE CRITERIA	ABU	ABUNDANCE			
50	8.0 - 40.0% of mass 95	19.	3	:		
75	30.0 - 66.0% of mass 95	50.	0			
95	Base peak, 100% relative abundance	100.	0			
96	5.0 - 9.0% of mass 95	6.	6			
173	Less than 2.0% of mass 174	0.	7 (	0.9)1		
174	50.0 - 120.0% of mass 95	80.	3			
175	4.0 - 9.0% of mass 174	5.	5 (	6.8 )1		
176	93.0 - 101.0% of mass 174	76.	8 (	95.6)1		
177	5.0 - 9.0% of mass 176	5.	0 (	6.6)2		
	1-Value is % mass 174	2-Value is % mass 176				

#### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

!'	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD1	CCV	A6456.D	2/5/2009	12:21
02	LCS1	LCS	A6457.D	2/5/2009	13:06
03	VBLK1	METBLK	A6458.D	2/5/2009	15:32
04	SV-INA10	R0900538-001	A6459.D	2/5/2009	18:42
05	SV-OUTA10	R0900538-002	A6460.D	2/5/2009	19:33
06:	SV-SS10	R0900538-003	A6461.D	2/5/2009	20:23

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6455.D Vial: 14

 Acq On : 5 Feb 2009 11:36
 Operator: T.WALTON

 Sample : TUNE
 Inst : GC/MS Ins

 Misc : Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15



AutoFind: Scans 2648, 2649, 2650; Background Corrected with Scan 2636

1	arget Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
	50	95	8	40	19.3	35893	PASS
	75	95	30	66	50.0	92909	PASS
*	95	95	100	100	100.0	185643	PASS
	96	95	5	9	6.6	12296	PASS
· ·	173	174	0.00	2	0.9	1276	PASS
	174	95	50	120	80.3	149056	PASS
	175	174	4	9	6.8	10156	PASS
	176	174	93	101	95.6	142507	PASS
	177	176	5	9	6.6	9343	PASS

## 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Na	ame:	CAS/ROCH	4		Contract: H	1&A	****	
Lab Co	ode:	10145	Case No.:	R900538	SAS No.:	SDG N	lo.: SV-INA10	
Lab Fil	le ID (S	standard):	A6456.D			Date Analyzed:	2/5/2009	
Instrun	nent ID	: MS#9				Time Analyzed:	12:21	
GC Co	olumn:	DB-624	ID: 0.25	(mm)		Heated Purge: (	Y/N) N	
			IS1		IS2		IS3	
:			AREA #	RT#	AREA #	RT #	AREA #	RT #
:	12 HO	JR STD	199630	12.23	721323	13.90	646352	18.97
	UPPER	RLIMIT	279482	12.73	1009852	14.40	904893	19.47
	LOWE	RLIMIT	119778	11.73	432794	13.40	387811	18.47
	EPA SA	AMPLE						
	Ν	Ο,						
01	LCS1	:	197552	12.23	711491	13.90	619207	18.98
02	VBLK1	:	194920	12.23	691141	13.90	613865	18.97
03	SV-INA	10	187279	12.23	686506	13.90	606563	18.97
04	SV-OUT	A10	194865	12.23	690165	13.90	608370	18.97
05	SV-SS1	0	193834	12.23	713308	13.90	646086	18.97

IS1 = bromochloromethane IS2 = 1,4-difluorobenzene IS3 = chlorobenzene-d5

AREA UPPER LIMIT = +40% of internal standard area
AREA LOWER LIMIT = -40% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

# VOLATILE ORGANICS SAMPLE DATA

Analytical Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Sample Matrix:

Air

Service Request: R0900538

Date Collected: 1/30/09 1610

Date Received: 1/30/09

Sample Name: SV-INA10 Lab Code: R0900538-001

Analytical Method: TO-15

**Date Analyzed: 2/5/09 1842** 

Canister Dilution Factor: 1.47

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3,5

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.020	0.41	0.020	0.0077	0.16	0.0077	U
75-00-3	Chloroethane	1000	0.023	0.85	0.023	0.0087	0.32	0.0087	U
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	0.016	0.65	0.016	0.0040	0.16	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.031	0.66	0.031	0.0076	0.16	0.0076	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.030	0.88	0.030	0.012	0.16	0.0056	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
4-Bromofluorobenzene	109	70-130	2/5/09 1842			

#### Quantitation Report

(Not Reviewed)

Operator: T.WALTON

Multiplr: 1.00

Inst : GC/MS Ins

Data File: J:\ACQUDATA\AIR1\DATA\020509\A6459.D Vial: 2

Acq On : 5 Feb 2009 18:42

: R0900538-001

Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 19:16 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

: TO-15 Title

Sample

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth: 111408B

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
<ol> <li>bromochloromethane</li> </ol>	12.23	130	187279	13.2200 ng	0.00
28) 1,4-difluorobenzene	13.90	114	686506	11.6400 ng	0.00
48) chlorobenzene-d5	18.97	117	606563	12.0200 ng	-0.01

System Monitoring Compounds

55) surr 1, bromofluorobenzene 21.07 174 376605 19.54 ng -0.01 Spiked Amount 17.880 Range 70 - 130 Recovery = 109.30%

~					1	-00	
Tarq	et Compounds					Oval	ue
	propylene	5.06	41	38201	0.5959 no	~	
	dichlorodifluoromethane	5.16	85	98928	1.8391 ng		99
	freon-114	5.51	85	4413	0.1087 ng		80
	chloromethane	5.63	50	41118	0.8147 ng		97
7)	1,3-butadiene	6.03	54	3086	0.0754 ng		91
رو.		6.98	64	277	0.0133 ng		43
10)		7.56	101	47959	1.0288 ng		99
11)	ethanol	7.97	45	171042	11.9093 ng		99
12)		8.64	101	11469	0.4737 ng		99
14)		8.75	43	471487	6.2031 ng		94
15)	isopropanol	9.03	45	104184	2.3358 ng		63
16)		9.11	76	4960	0.0546 ng		85
17)		9.54	84	4158	0.1760 ng		76
20)	*	10.57	57	11775	0.2410 nq		96
23)	2-butanone	11.85	43	41794	0.5100 ng		99
25)	ethyl acetate	11.94	43	6123	0.0745 ng		94
26)	chloroform	12.34	83	3350	0.0836 ng		99
27)	-tetrahydrofuran	12.41	72-	318	0.0194 nq		
	1,1,1-trichloroethane	12.70	97	1584	0.0454 ng		88
	cyclohexane	12.84	56-	7530	0.1498 ng	#-	<del>73</del>
31)	carbon tetrachloride	13.00	117	14693	0.4954 ng		99
32)	1,2-dichloroethane	13.33	62	2092	0.0648 ng		88
	benzene	13.33	78	44853	0.4879 ng		97
34)	heptane	13.71	71	6518	0.2501 ng		85
35)	trichloroethene	14.39	130	439	0.0193 ng	#	87
36)	1,2-diclpropane	14.77	63	1117	0.0455 nq	#	39.
38)	bromodichloromethane	15:18	83	<del>398</del>	0.0135 ng	+	18
40)	4-methyl-2-pentanone	16.20	43	1541	- 0.0227 ng	#	74
41)	toluene	16.56	91	97849	1.1383 ng		96
43	1,1,2-trichloroethane	<del>17.20</del> -	97-	<del>253</del>	0.0124 ng		7
44)	tetrachloroethene	17.52	166	1433	0.0626 ng		96
45)	2-hexanone	17.62	43	1510	0.0230 ng		70
50)	ethylbenzene	19.18	91	14380	0.1369 ng		99
51)		19.38	91	32299	0.3879 ng		97
	O xylene	20.11	91	14243	0.1629 ng		85
53)		20.12	104	32585	0.4846 ng		89
58)	-	21.81	105	2914	0.0332 ng		92
	1,2,4-trimethylbenzene	22.53	105	7799	0.0908 ng		100
	1,3-dclbenz	23.27	146	30568	0.6682 ng		95
61)		23.27	146	30668	0.6769 ng		96
	4 ethyl Tokune	21.72		2656	6.0249 14	(A)	70 :
	**				-		

(#) = qualifier out of range (m) = manual integration

A6459.D 111408B.M Thu Feb 05 19:16:39 2009 OFFLINE

#### Quantitation Report (Qedit)

Vial: 2

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6459.D

: 5 Feb 2009 18:42 Acq On Operator: T.WALTON : R0900538-001 Sample Inst : GC/MS Ins : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00

Misc

MS Integration Params: LSCINT2.P

Ouant Time: Feb 13 14:39 2009 Quant Results File: temp.res

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Method

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration



(57) 4-ethyltoluene

21.88min 0.0067ng

response 719

Act% lon Exp% 105.00 100 100 17.39 120.00 30.20 0.00 0.00 0.00 0.00 0.00 0.00

#### Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\020509\A6459.D Vial: 2

 Acq On
 : 5 Feb 2009 18:42
 Operator: T.WALTON

 Sample
 : R0900538-001
 Inst : GC/MS Ins

Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Time: Feb 13 14:42 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration



(57) 4-ethyltoluene

21.72min 0.0249ng m

response 2656

 Ion
 Exp%
 Act%

 105.00
 100
 100

 120.00
 30.20
 4.71#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6459.D Vial: 2 Aca On : 5 Feb 2009 18:42 Operator: T.WALTON Sample : R0900538-001 Inst : GC/MS Ins Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI Multiplr: 1.00 MS Integration Params: LSCINT2.P Quant Time: Feb 5 19:16 2009 Quant Results File: 111408B.RES : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Method Title : TO-15 Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration Abundance TIC: A6459.D 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 4,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1000000 ethylbenzene M+P xylene trichloroffuoro 500000 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

A6459.D 111408B.M

Thu Feb 05 19:16:41 2009

OFFLINE

Analytical Report

Client: Project:

Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Sample Matrix:

Air

Sample Name: Lab Code:

SV-OUTA10 R0900538-002

Analytical Method: TO-15

**Date Analyzed: 2/5/09 1933** 

Service Request: R0900538

Date Received: 1/30/09

**Date Collected:** 1/30/09 1605

Canister Dilution Factor: 1.31

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.017	0.37	0.017	0.0068	0.14	0.0068	U
75-00-3	Chloroethane	1000	0.020	0.76	0.020	0.0077	0.29	0.0077	U
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	0.014	0.58	0.014	0.0035	0.15	0.0035	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.028	0.59	0.028	0.0068	0.15	0.0068	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.027	0.79	0.027	0.012	0.14	0.0050	U

Form 1A

SuperSet Reference: #99-0000094238 rev 00

Vial: 3

Operator: T.WALTON

Inst : GC/MS Ins Multiplr: 1.00

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6460.D

Acq On : 5 Feb 2009 19:33

Sample : R0900538-002 Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 20:07 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Units D	ev(Min)	
1) bromochloromethane	12.23	130	194865	13.2200 ng	0.00	)
				11.6400 ng		
48) chlorobenzene-d5	18.97	117	608370	12.0200 ng	0.00	
						,
System Monitoring Compounds						
55) surr 1, bromofluorobenzene	21.07	174	374564	19.38 ng	0.00	
Spiked Amount 17.880 Ra						
				_		
Target Compounds					Qvalue	
2) propylene	5.07	41	48077	0.7207 ng	#6-8	<b>}</b>
3) dichlorodifluoromethane		85	115892	2.0705 ng 0.1056 ng 0.7745 ng	100	
4) freon-114	5.50	85	4459	0.1056 ng	92	
5) chloromethane		50	40672	0.7745 ng	100	
-7) 1,3-butadiene					#18	0.0263 @ 700
8) bromomethane		94	404	0.0176 ng		
10) trichlorofluoromethane		101	52880 30470	1.0903 ng		
11) ethanol	8.05	45	30470	2.0390 ng	96	
12) freon-113	8.64		12736		98	
14) acetone	8.77	43	220396	2.7867 ng	94	<u>:</u> -
<ul><li>16) carbon disulfide</li><li>17) methylene chloride</li><li>20) hexane</li></ul>	9.11		220396 1005 4187	0.0106 ng 0.1703 ng	# 75	,
17) methylene chioride	9.56		4187 5320	0.1703 ng		
20,	10.57					
23) 2-butanone	11.86	43	28479	0.3340 ng		
25) ethyl acetate	11.93	4.3	2792 2028 1746	0.0326 ng		
<ul><li>26) chloroform</li><li>29) 1,1,1-trichloroethane</li></ul>	12.34	07	2028	0.0486 ng 0.0498 ng	93	
30) cyclohexane	12.70	9/	1/46	0.0498 ng	98 # 76	
31) carbon tetrachloride	12 01	117	15357	0.5150 ng	99	
22) I 2.dichloroethane	12 22	62	15357 1853 38346	0.0571 ng	92	
33) benzene	13.34	78	38346	0.4149 ng		
34) heptane	13.72	71	1542	0.0588 ng	91	
36) 1,2-diclpropane				0.0300 ng		
40) 4-methyl-2-pentanone	16.20	43		0.0315 ng		
41) toluene	16.56		46560			
43) 1,1,2-trichloroethane			240	0.0117 ng	# 7	
	17.53		971			)
45) 2-hexanone				0.0109 ng		
50) ethylbenzene	19.18	91		0.0641 nq		
51) M+P xylene 52) O xylene 53) styrene	19.38	91	14957	0.1791 ng	97	<i>!</i>
52) O xylene	20.11		4858	0.0554 ng	100	)
53) styrene	20.12		1052	0:0156 ng		<u>*</u>
56) 1,1,2,2-tetrachloroethane	21.07	83	1631	<del>- 0.0383 ng</del>	# 18	r mistd.
57) 4-ethyltoluene	21.66	105	3041	0.0284 ng	96	SNT-MISIE.
58) 1,3,5-trimethylbenzene	21.72	105	1031	0.0117 ng	95	, AT -
59) 1,2,4-trimethylbenzene	22.54	105	3259	0.0378 ng	91	L
60) 1,3-dclbenz	2327	_146	129	0.0245 ng	97	
61) 1,4-dclbenz	23.27	146	1129	0.0248 ng	96	3

(#) = qualifier out of range (m) = manual integration

A6460.D 111408B.M Thu Feb 05 20:07:17 2009 OFFLINE

Page 1

#### Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\020509\A6460.D Vial: 3

 Acq On
 : 5 Feb 2009 19:33
 Operator: T.WALTON

 Sample
 : R0900538-002
 Inst : GC/MS Inst

Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Time: Feb 15 12:48 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration



#### (8) bromomethane

6.73min 0.0176ng

response 404

A6460.D 111408B.M

 Ion
 Exp%
 Act%

 94.00
 100
 100

 96.00
 94.40
 104.95

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

#### Quantitation Report (Qedit)

Vial: 3

Data File: J:\ACQUDATA\AIR1\DATA\020509\A6460.D

Acq On : 5 Feb 2009 19:33 Operator: T.WALTON Sample : R0900538-002 : GC/MS Ins Tnst. Multiplr: 1.00

Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI

MS Integration Params: LSCINT2.P

Quant Time: Feb 15 12:49 2009 Quant Results File: temp.res

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Method

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration



#### (8) bromomethane

6.73min 0.0263ng m

response 604

Ехр% Act% lon 94.00 100 100 70.20# 96.00 94.40 0.00 0.00 0.00 0.00 0.00 0.00

Data File : J:\ACOUDATA\AIR1\DATA\020509\A6460.D

: 5 Feb 2009 19:33

Vial: 3 Operator: T.WALTON

: R0900538-002

Inst : GC/MS Ins

Sample Misc : H&A-3901-T2 1000ML -1.7" +3.5PSI

Multiplr: 1.00

MS Integration Params: LSCINT2.P

Ouant Time: Feb 5 20:07 2009

Ouant Results File: 111408B.RES

Method

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration



A6460.D 111408B.M

Thu Feb 05 20:07:20 2009

OFFLINE

Page 2

Analytical Report

Client: Project: Haley & Aldrich, Incorporated Coopervision/70665-014 Airs

Air

Sample Name: Lab Code:

Sample Matrix:

SV-SS10

R0900538-003

Analytical Method: TO-15

**Date Analyzed: 2/5/09 2023** 

Service Request: R0900538

Date Received: 1/30/09

**Date Collected:** 1/30/09 1615

Canister Dilution Factor: 1.47

Initial Pressure (psig):

-2.3

Final Pressure (psig):

3.5

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.020	0.41	0.020	0.0077	0.16	0.0077	U
75-00-3	Chloroethane	1000	0.023	0.85	0.023	0.0087	0.32	0.0087	U
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	0.016	0.65	0.016	0.0040	0.16	0.0040	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.031	0.66	0.031	0.0076	0.16	0.0076	U
71-55-6	1,1,1-Trichloroethane (TCA)	1000	0.030	0.88	0.030	0.0056	0.16	0.0056	U

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Note
4-Bromofluorohenzene	115	70-130	2/5/09 2023	

Form 1A

SuperSet Reference: 89-000099438 TeV 00

#### Quantitation Report (Not Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6461.D

Acq On : 5 Feb 2009 20:23 Operator: T.WALTON Sample : R0900538-003 Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI Inst : GC/MS Ins

Multiplr: 1.00

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration

DataAcq Meth: 111408B

Internal Standards	R.T.	QIon	Response	Conc Units De	ev(Min)
1) bromochloromethane	12.23	130	193834	13.2200 ng	0.00
28) 1,4-difluorobenzene	13.90		713308	11.6400 ng	0.00
48) chlorobenzene-d5	18.97		646086	12.0200 ng	-0.01
to, circuloncimonic do	10.57	Au An I	040000	12.0200 119	0.01
System Monitoring Compounds					
55) surr 1, bromofluorobenzene	21.07	174	420655	20.49 ng	-0.01
		- 130			
*	_			*	
Target Compounds				· ·	Qvalue
-2) propylene	5.07		<del>- 172521</del>	<del>2.5999</del> ng -	
<ol> <li>dichlorodifluoromethane</li> </ol>	5.16	85	100202	1.7997 ng	100
4) freon-114	5.50	85	4856	0.1156 ng	# 73
5) chloromethane	5.63	50	4705	0.0901 ng	93
7) 1,3-butadiene	6.03		5.66	0.0134 ng	# 2
10) trichlorofluoromethane	7.56	101	45049	0.9337 ng	98
11) ethanol	7.98	45	47067	3.1664 ng	99
12) freon-113	8.64	101	10851	0.4330 ng	96
14) acetone	8.74	43	1042660	13.2537 ng	95
15) isopropanol	9.03	45	25819	0.5593 ng	# 23
16) carbon disulfide	9.11	76	173234	1.8425 ng	99
17) methylene chloride	9.55	84	2281	0.0933 ng	# 54
19) methyl tert butyl ether		73	2306	<del>- 0.0290 ng</del>	# 50
20) hexane	10.57	57	127177	2.5151 ng	97
23) 2-butanone	11.85	43	229576	2.7066 ng	100
_25)_ethy1_acetate	-11.85	43	<del>-229576 -</del>	2.6977 ng	***************************************
26) chloroform	12.34	83	83953	2.0231 ng	100
27) tetrahydrofuran	12.40		8932	0.5255 ng-	#59
29) 1,1,1-trichloroethane	12.70	97	2106	0.0581 ng	# 77
30) cyclohexane	12.85	56	127953	2.4491 ng	94
31) carbon tetrachloride	13.00	117	9035	0.2932 ng	93
32) 1,2-dichloroethane	13.34		1000	0.0298-ng	96
33) benzene	13.34	78	82968	0.8687 ng	97
34) heptane	13.71	71	106162	3.9201 ng	98
36) 1,2-diclpropane	14.75	63	4301	0.1686 ng	#57
38) bromodichloromethane	15.20	83	10409	0.3401 ng	100
40) 4-methyl-2-pentanone	16.20	43	31244	0.4426 ng	94
41) toluene	16.55	91	349107	3.9088 ng	96
. 43) 1,1,2-trichloroethane	-17.22	97	15711	0.7396 ng	#14
44) tetrachloroethene	17.53	166	4660	0.1959 ng	91
45) 2-hexanone	17.61	43	15656	0.2297 ng	99
46) dibromochloromethane	17.92	129	1279	0.0589 ng	98
47) 1,2 dibromosthane	18.33	107-	1067	0.0478 ng	
50) ethylbenzene	19.18	91	69155	0.6182 ng	100
51) M+P xylene	19.38	91	410292	4.6263 ng	99
52) O xylene	20.11	91	127333	1.3672 ng	99
.53) styrene	20.12	104	13154	- 0.1836 ng	# 36
54) bromoform	20.52	173	<del>365</del>	-0.0198 ng	#28
57) 4-ethyltoluene	21.72	105	36882	0.3244 ng	99
58) 1,3,5-trimethylbenzene	21.82	105	69711	0.7457 ng	97
59) 1,2,4-trimethylbenzene	22.53	105	179505	1.9614 ng	95
60) 1,3 dclbenz	23.27	-146	23184	0.4742 ng	95

(#) = qualifier out of range (m) = manual integration

A6461.D 111408B.M Thu Feb 05 20:58:02 2009 OFFLINE

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6461.D Vial: 4

Acq On : 5 Feb 2009 20:23

Sample : R0900538-003

Misc : H&A-3901-T2 1000ML -4.7" +3.5PSI

MS Integration Params: LSCINT2.P Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

Quant Time: Feb 5 20:57 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration
DataAcq Meth : 111408B

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
61) 1,4-dclbenz 62) benzyl chloride	23.27		23274	0.4822 ng	93
63) 1y2 dclbenz	23.99	-146	684	0.0147-ng	#69
_64) 1,2,4-trichlorobenzene	27.01	-180-	<del>302</del>	0.0115 ng	#1

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6461.D

Acq On : 5 Feb 2009 20:23

Vial: 4 Operator: T.WALTON

Sample : R0900538-003

: GC/MS Ins Inst

Misc

: H&A-3901-T2 1000ML -4.7" +3.5PSI

Multiplr: 1.00

MS Integration Params: LSCINT2.P

Ouant Time: Feb 5 20:57 2009

Ouant Results File: 111408B.RES

Method

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration



A6461.D 111408B.M

Thu Feb 05 20:58:05 2009

OFFLINE

Page 3

# VOLATILE ORGANICS STANDARDS DATA

11408 ABV.

## CALRPT.TXT Response Factor Report GC/MS Ins

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)
Title : TO-15
Last Update : Sat Nov 15 11:31:59 2008
Response via : Initial Calibration

0.02	ration Files =A6072.D 0.1 =A6075.D 1.0 =A6078.D 7.5	=A6073.D =A6076.D =A6079.D	0.2 =A6074.D 2.5 =A6077.D 10.0 =A6080.D	
	Compound Compound	0.02 0.1 5.0 7.5	0.2 0.5 1.0 2.5 10.0	Avg %RSD
1) I 2)	bromochloromethane propylene	1.437 1.412	1.735 1.559 1.405 1.402 1.356	1.472 8.94
3)	dichlorodifluorome	t 3.606 3.560 3.495	3.685 3.595 3.544 3.521 3.389	3.549 2.46
4)	freon-114	3.738 3.713 3.859 3.775	3.921 3.820 3.826 3.782 3.647	3.787 2.16
5)	chloromethane	1.361 1.413 1.391	1.462 1.395 1.385 1.394 1.323	1.391 2.88
6)	vinyl chloride	1.460 1.462 1.556 1.535	1.531 1.509 1.482 1.511 1.372	1.491 3.70
7)	1,3-butadiene	1.313 1.149 1.274 1.258	1.178 1.190 1.200 1.227 1.091	1.209 5.60
8)	bromomethane	1.191 1.157 1.142	1.160 1.115 1.146 1.142 1.106	1.145 2.32
9)	chloroethane	0.809 0.707 0.744 0.739	0.735 0.721 0.697 0.736 0.710	0.733 4.47
10)	trichlorofluorometh	3.531 3.325 3.580 3.494	3.640 3.425 3.578 3.541 3.335	3.494 3.17
11)	ethanol	0.274 0.326	0.321 0.513 0.478 0.254	0.361 29.98
12)		2.682 2.376 2.521 2.491	2.569 2.462 2.289 2.466 2.427	2.476 4.53
13)	1,1-dichloroethene	2.249 1.908 2.230 2.214	2.112 2.056 2.131 2.193 2.123	2.135 4.97
14)	acetone	2.428 2.368	2.828 2.115 2.386	2.409 9.67
15)	isopropanol	1.010 1.367	1.136 2.185 1.960	1.463 33.60 NJT
16)	carbon disulfide		3.772 3.655 3.791 3.773	3.774 4.55 ET OF

17)	methylene chloride	1.115		RPT.TX 1.108 1.091	1.085	1.022	1.091	1.095	3.08
18)	trans-1,2-dichloroe	2.196 2.160	1.947	2.074	2.048	1.945	2.106	2.075	4.18
19)	methyl tert butyl e	4.081 3.948	3.609 3.899	3.472 3.831	3.619	3.092	3.744	3.700	8.01
20)	hexane	2.461	2.436			2.089	2.364	2.298	6.34
21)	1,1-diclethane		2.510 2.569			2.294	2.551	2.535	4.21
22)	vinyl acetate		3.731 4.400			3.233	4.212	4.040	10.56
23)	2-butanone	3.356	3.404 3.326	3.178 3.170	3.299	2.799	3.268	3.225	5.90
24)	cis-1,2-dichloroeth		1.210 1.324	1.254 1.303	1.243	1.129	1.272	1.258	5.28
25)	ethyl acetate	4.167	3.996 4.013	3.901 3.895	4.093	3.480	4.084	3.954	5.39
26)	chloroform	2.696	2.640 2.666	2.642 2.611	2.625	2.377	2.639	2.612	3.76
27)	tetrahydrofuran		0.584 0.721			0.542	0.681	0.646	11.32
28) I 29)	1,4-difluorobenzene 1,1,1-trichloroetha	0.724		0.710	-ISTD- 0.680			0.693	5.11
30)	cyclohexane	0.673	0.672		0.598	0.577	0.660	0.630	6.31
31)	carbon tetrachlorid	0.720 0.728	0.598 0.732	0.668 0.693	0.647	0.617	0.709	0.679	7.28
32)	1,2-dichloroethane	0.516 0.492			0.474	0.413	0.479	0.476	6.22
33)	benzene	1.126	1.072 1.112	1.099 1.049	1.065	0.933	1.096	1.069	5.67
34)	heptane	0.426			0.362	0.343	0.404	0.389	8.77
35)		0.533 0.460			0.419	0.399	0.442	0.444	9.01
36)	1,2-diclpropane	0.443			0.413	0.347	0.424	0.413	7.38
37)	1,4-dioxane	0.111			0.108	0.176	0.173	0.132	23.70
38)	bromodichloromethan	0.822 (		0.693 ge 2	0.689	0.638	0.736	0.718	8.31

CALRPT.TXT 0.762 0.761 0.722 39) cis-1,3-dichloropro 0.674 0.512 0.552 0.553 0.484 0.604 0.586 10.92 0.640 0.641 0.609 40) 4-methy1-2-pentanon 0.937 0.986 0.992 0.949 1.078 1.013 6.14 1.095 1.080 0.989 1.083 1.149 1.188 0.986 1.241 1.299 1.281 1.206 41) toluene 1.179 8.88 0.482 0.497 0.527 0.453 0.578 0.612 0.613 0.585 trans-1,3-dichlorop 0.543 42) 11.40 0.405 0.409 0.403 0.337 0.412 0.406 7.42 43) 1,1,2-trichloroetha 0.433 0.433 0.415 0.723 0.497 0.537 0.525 0.484 0.560 tetrachloroethene 0.565 44) 12.58 0.591 0.598 0.573 0.879 0.931 0.938 0.943 1.072 45) 2-hexanone 0.978 7.49 1.072 1.044 0.948 dibromochloromethan 0.782 0.542 0.576 0.592 0.548 0.669 46) 0.648 13.27 0.715 0.722 0.688 0.803 0.535 0.567 0.572 0.480 0.597 0.626 0.628 0.602 1,2-dibromoethane 0.601 47) 14.78 48) I chlorobenzene-d5 ----ISTD-----1.060 1.121 1.117 0.928 1.148 chlorobenzene 1.108 7.66 49) 1.204 1.176 1.111 1.804 1.881 1.533 1.994 50) ethylbenzene 1.879 9.51 2.076 1.997 1.868 51) M+P xvlene 1.461 1.530 1.248 1.599 1.490 8.89 1.637 1.547 1.405 52) 0 xylene 1.443 1.535 1.270 1.662 1.564 10.60 1.752 1.696 1.592 1.055 1.127 0.943 1.257 1.336 1.306 1.237 53) 1.180 12.19 styrene 0.869 0.556 0.604 0.644 0.589 0.787 0.736 54) bromoform 18.38 0.869 0.872 0.835 surr 1. bromofluoro 0.568 0.568 0.551 0.557 0.567 0.560 55) S 0.568 2.12 0.569 0.582 0.590 1,1,2,2-tetrachloro 1.809 1.098 1.133 1.142 0.945 1.164 1.216 1.189 1.117 1.202 20.02 56) 2.649 1.791 1.931 2.077 1.778 2.316 57) 4-ethyltoluene 2.162 13.73 2,421 2,336 2,156 58) 1,3,5-trimethylbenz 2.146 1.490 1.565 1.721 1.473 1.902 1.777 13.17 1.981 1.927 1.792 1,2,4-trimethylbenz 2.079 1.423 1.517 1.654 1.439 1.873 1.973 1.924 1.779 59) 1.740 13.93

Page 3

CALRPT.TXT

60)	1,3-dclbenz	1.513 0 1.245 1			1.039	0.886	1.168	1.137	16.65
61)	1,4-dclbenz	1.438 0 1.251 1			1.022	0.877	1.164	1.122	16.03
62)	benzyl chloride	1.760 1	739	1.620	1.325	1.183	1.631	1.543	15.23
63)	1,2-dclbenz	1.479 0 1.179 1			0.990	0.831	1.096	1.079	17.91
64)	1,2,4-trichlorobenz	0.995 0 0.808 0			0.723	0.551	0.720	0.754	17.02
65)	hexachlorobutadiene	1.288 0 0.819 0			0.847	0.651	0.800	0.852	20.49
									• ***

(#) = Out of Range ### Number of calibration levels exceeded format ###

111408A.M Sat Nov 15 11:37:21 2008 OFFLINE

# HP CHEMSTATION CUSTOM REPORT CALIBRATION SUMMARY

Calibration Table Concentrations (Level 1-20)

Method File:
Calibration Title: Last Calibration Update:
TO-15
Sat Nov 15 11:31:59 2008

	tion Table Concentration	s (Level	1-20)		111408A		TO-15		Sat Nov 1	5 11:31:59	3 20	08			
file		A6072.D	A6073.D	A6074.D	A6075.D	A6076.D	A6077.D	A6078.D	A6079.D	A6080 D				-	7
Level		1	2	3	4	5	6	7	8	9	#				
ID	Compound	0.02	0.1	0.2	0.5	1.0	2.5	5.0	7.5	10.0	•,				
1)	bromochloromethane	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-1	П	TT	TT	П
2)	propylene	0.0206	0.0979	0.2060	0.5150	1.0300	2.5750	5.1500	7.7250	10.3000	-1	$\dagger \dagger \dagger$	$+\!\!\!+$	H	Н
3)	dichlorodifluoromethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	╫	+	₩	H
4)	freon-114	0.0200	0.0950	0.2000	0.5000	1.0000	2.5000	5.0000	7.5000	10.0000	1	╫	╫	₩	╂┼
5)	chloromethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	<del>-  </del>	₩	+	╫	₩
6)	vinyl chloride	0.0200	0.0950	0.2000	0.5000	1.0000	2.5000	5.0000	7.5000	10.0000		╁╂┦	╫	₩	++-
7)	1,3-butadiene	0.0216	0.1026	0.2160	0.5400	1.0800	2.7000	5.4000	8.1000	10.8000	-1	╫	╫	₩	₩
8)	bromomethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750		-1	₩	+	₩	₩
9)	chloroethane	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	₩	++	₩	₩
10)	trichlorofluoromethane	0.0198	0.0941	0.1980	0.4950	0.9900	2.4750	4.9500	7.4250	9.9000		╂┼┤	+	₩	₩
11)	ethanol	0.0194	0.0922	0.1940	0.4850	0.9700	2.4250	4.8500	7.2750	9.7000		HI	$+\!\!+$	#	₩
12)	freon-113	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000		++1	++	H	++-
13)	1,1-dichloroethene	0.0218	0.1036	0.2180	0.5450	1.0900	2.7250	5.4500	8.1750	10.7000	-1	╫	╫	#	₩
14)	acetone	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	HI	$\mathbf{H}$	₩	₩
15)	isopropanol	0.0222	0.1055	0.2220	0.5550	1.1100	2.7750	5.5500	8.3250		-1	H	-	#	H
16)	carbon disulfide	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	11.1000 10.4000	-+	₩	++	${f H}$	₩
17)	methylene chloride	0.0218	0.1036	0.2180	0.5450	1.0900	2.7250	5.4500	8.1750	10.4000		$+\!\!+\!\!\!+\!\!\!\!+$	#	₩	₩
18)	trans-1,2-dichloroethene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-11	HH	++	₩	++-
19)	methyl tert butyl ether	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500		-1 -1	₩	$+\!\!+$	₩	₩
20)	hexane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250		-1	++1	$+\!\!+\!\!\!+$	₩	₩
21)	1,1-diclethane	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500		7	╫┦	╫	₩	╁╂┦
22)	vinyl acetate	0.0198	0.0941	0.1980	0.4950	0.9900	2.4750	4.9500	7.4250	9.9000		╫	╫	₩	₩
23)	2-butanone	0.0216	0.1026	0.2160	0.5400	1.0800	2.7000	5.4000	8.1000	10.8000	<del>-</del>	HI	$+\!+$	₩	₩
24)	cis-1,2-dichloroethene	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-;}	₩	╫	₩	₩
25)	ethyl acetate	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.7000	= +	HH	$+\!\!+$	╫	╫
26)	chloroform	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	╫╢	$+\!\!+$	₩	₩
27)	tetrahydrofuran	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-++	₩	++	₩	╁┼
28)	1,4-difluorobenzene	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	<del>-</del> #	₩	$\mathbf{H}$	#	₩
29)	1,1,1-trichloroethane	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	HH	#	₩	₩
30)	cyclohexane	0.0214	0.1017	0.2140	0.5350	1.0300	2.6750	5.3500	8.0250		<del>-; </del>	₩	+	#	++
31)	carbon tetrachloride	0.0214	0.0998	0.2140	0.5350	1.0500				10.7000	╬	+	#	#	₩
32)	1,2-dichloroethane	0.0210	0.1017				2.6250	5.2500	7.8750	10.5000		H	$\mathbf{H}$	#	₩
33)	· · · · · · · · · · · · · · · · · · ·	0.0214	·	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-4	Ш	#	#	₩
34)	benzene		0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-11	Ш	#	#	H
1 34)	heptane	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1			П	

35)	trichloroethene	0.0208	0.0988 [	0.2080	0.5200	1.0400	2.6000 [	5.2000	7.8000	10.4000	.1	П	П	П	П
36)	1,2-diclpropane	0.0200	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	<u>.</u> 11	/	卄	H	Ш
37)	1,4-dioxane	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000		1	/#	$\dagger \dagger$	tt	m
38)	bromodichloromethane	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	H	#	H	Ш
39)	cis-1,3-dichloropropene	0.0204	0.0969	0.2040	0.5100	1.0200	2.5500	5.1000	7.6500	10.2000	-1	Ш	#	Ħ	H
40)	4-methyl-2-pentanone	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1	Ш	11	#	H
41)	toluene	0.0216	0.1026	0.2160	0.5400	1.0800	2.7000	5.4000	8.1000	10.8000	-1	H	$\Pi$	#	H
42)	trans-1,3-dichloropropene	0.0222	0.1055	0.2220	0.5550	1.1100	2.7750	5.5500	8.3250	11.1000	寸	H	$\Pi$ †	H	Ħ
43)	1,1,2-trichloroethane	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	H	$\Pi$	#	H
44)	tetrachloroethene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	廿	H	#	H
45)	2-hexanone	0.0214	0.1017	0.2140	0.5350	1.0700	2.6750	5.3500	8.0250	10.7000	-1	H	H	$\Pi$	$\dagger \dagger$
46)	dibromochloromethane	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	廿	Ш	/11	11
47)	1,2-dibromoethane	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	$\dagger \dagger$	Ш	ſĦ	$\dagger$
48)	chlorobenzene-d5	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-1	Ħ	H	П	T
49)	chlorobenzene	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	$\Pi$	Ш	Ш	$\Pi$
50)	ethylbenzene	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	$\Pi$	П	Ш	$\Pi$
51)	M+P xylene	0.0416	0.1976	0.4160	1.0400	2.0800	5.2000	10.4000	15.6000	20.8000	-1	$\prod$	П	$\prod$	$\Pi$
52)	O xylene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	$\prod$	$\prod$	$\prod$	m I
53)	styrene	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	$\prod$	$\coprod$		$\coprod$
54)	bromoform	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	$\prod$	$\coprod$		$\coprod$
<b>5</b> 5)	surr 1, bromofluorobenzene	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	2.5000	-1	Ш	Ш	Ш	Ш
56)	1,1,2,2-tetrachloroethane	0.0210	0.0998	0.2100	0.5250	1.0500	2.6250	5.2500	7.8750	10.5000	-1	Ш	Щ	Ш	Ш
57)	4-ethyltoluene	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000	-1	Щ	4	Щ	Ш
58)	1,3,5-trimethylbenzene	0.0212	0.1007	0.2120	0.5300	1.0600	2.6500	5.3000	7.9500	10.6000	-1	Щ	4	Щ'	Щ
59)	1,2,4-trimethylbenzene	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ш	4	4	4
60)	1,3-dclbenz	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000	-1	Ш	4	Щ	Ш
61)	1,4-dclbenz	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000		Ш	4	#	Ш
62)	benzyl chloride	0.0208	0.0988	0.2080	0.5200	1.0400	2.6000	5.2000	7.8000	10.4000		Ш	#	#	H
63)	1,2-dclbenz	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000		Ш	#	$\mathbf{H}$	H
64)	1,2,4-trichlorobenzene	0.0202	0.0960	0.2020	0.5050	1.0100	2.5250	5.0500	7.5750	10.1000		Ш	#	$\mathbf{H}$	Ш
65)	hexachlorobutadiene	0.0204	0.0969	0.2040	0.5100	1.0200	2.5500	5.1000	7.6500	10.2000	1-7	Ш	Ш	Ш	Ш



#### CALRPT.TXT Response Factor Report GC/MS Ins

111408B rg/attation arwhylog. Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration

0.02 0.5	ration Files =A6072.D 0.1 =A6075.D 1.0 =A6078.D 7.5	=A6073.D =A6076.D =A6079.D	0.2 =A6072 2.5 =A6073 10.0 =A6080	7.D	7 11/1/
د سپ بید پید سد عد	Compound Compound	0.02 0.1 0 5.0 7.5 1	0.0	) 2.5 Avg	
1) I 2)	bromochloromethane propylene		332 4.791 4.31	18 4.311 4.5	26 8.94
3)	dichlorodifluoromet	3.859 3.9 3.809 3.739 3.9		91 3.767 3.79	97 2.47
4)	freon-114	2.828 2.810 2.921 2.857 2.5		96 2.862 2.8	66 2.16
5)	chloromethane	3.488 3.3 3.621 3.564 3.3		18 3.572 3.50	62 2.88
6)	vinyl chloride	3.023 3.027 3.3 3.220 3.177 2.8		3.126 3.08	85 3.70
7)	1,3-butadiene	3.138 2.746 2.8 3.045 3.007 2.6		1 2.933 2.89	90 5.59
8)	bromomethane	1.624 1.5 1.576 1.556 1.5	81 1.520 1.56 07	52 1.557 1.50	60 2.33
9)	chloroethane	1.621 1.418 1.4 1.493 1.482 1.4		7 1.476 1.47	70 4.45
10)	trichlorofluorometh	3.324 3.132 3.4 3.371 3.290 3.1		9 3.334 3.29	90 3.16
11)	ethanol	0.770 0.915 0.7		0 1.343 1.03	14 29.98
12)	freon-113	1.851 1.641 1.7 1.740 1.719 1.6		0 1.702 1.70	09 4.53
13)	1,1-dichloroethene	3.001 2.547 2.8 2.976 2.954 2.8	18 2.743 2.84 33	3 2.927 2.84	19 4.96
14)	acetone	5.407 5.274 5.1	6.299 4.70 89	9 5.315 5.36	55 9.67
15)	isopropanol	2.174 2.942 2.4	2.444 4.70 09	3 4.219 3.14	18 33.60
16)	carbon disulfide	7.102 6.137 6.4 6.503 6.383 6.1		0 6.409 6.43	L2 4.57

17)	methylene chloride	1.698			1.652	1.556	1.662	1.668	3.09
18)	trans-1,2-dichloroe	2.931 2.882	2.599 2.845	2.767 2.761	2.732	2.595	2.810	2.769	4.18
19)	methyl tert butyl e	5.989 5.793	5.296 5.722	5.095 5.621	5.310	4.537	5.494	5.428	8.01
20)	hexane	3.694	3.656			3.135	3.549	3.449	6.34
21)	1,1-diclethane		3.281 3.358			2.998	3.334	3.314	4.20
22)	vinyl acetate		5.609 6.611			4.858	6.329	6.070	10.55
23)	2-butanone	6.021	6.106 5.965	5.701 5.687	5.918	5.020	5.863	5.785	5.90
24)	cis-1,2-dichloroeth	1.774	1.615 1.767			1.506	1.697	1.679	5.27
25)	ethyl acetate	6.117	5.870 5.891			5.108	5.995	5.804	5.39
26)	chloroform	2.921	2.862 2.888		2.844	2.576	2.860	2.830	3.77
27)	tetrahydrofuran	1.216 1.306	1.047 1.294	0.992 1.274	1.110	0.973	1.221	1.159	11.32
28) I 29)	1,4-difluorobenzene 1,1,1-trichloroetha	0.618 0.620	0.552	0.606	-ISTD- 0.581			0.591	5.10
30)	cyclohexane	0.911			0.809	0.780	0.893	0.853	6.31
31)	carbon tetrachlorid	0.533 0.539	0.443 0.542	0.495 0.513	0.479	0.457	0.525	0.503	7.27
32)	1,2-dichloroethane	0.594 0.566			0.546	0.475	0.551	0.547	6.22
33)	benzene	1.642			1.553	1.360	1.598	1.559	5.67
34)	heptane	0.484			0.412	0.390	0.459	0.442	8.77
35)		0.462 0.399			0.363	0.346	0.383	0.385	9.02
36)	1,2-diclpropane	0.447			0.416	0.349	0.427	0.416	7.38
37)	1,4-dioxane				0.140	0.228	0.223	0.170	23.70
	,	0.143 (	).179 (	U.124					

CALRPT.TXT

		0.530	0.529	0.502					
39)	cis-1,3-dichloropro	0.692 0.657	0.526	0.567	0.567	0.497	0.620	0.601	10.91
40)	4-methyl-2-pentanor	າ 1.245	1.066 1.228	1.121 1.124	1.127	1.079	1.226	1.152	6.13
41)	toluene	1.606	1.339 1.583	1.420 1.491	) 1.469 ·	1.219	1.534	1.457	8.88
42)	trans-1,3-dichlorop	0.628	0.495 0.629	0.510 0.600	0.540	0.465	0.594	0.558	11.39
43)	1,1,2-trichloroetha	0.370	0.346 0.370			0.288	0.352	0.347	7.42
44)	tetrachloroethene	0.496 0.406	0.341 0.411	0.369 0.394	0.360	0.332	0.385	0.388	12.57
45)	2-hexanone	1.219	1.000 1.187			1.072	1.218	1.112	7.48
46)	dibromochloromethan		0.297 0.395			0.300	0.366	0.354	13.27
47)	1,2-dibromoethane		0.324 0.381		0.347	0.291	0.362	0.364	14.77
48) I 49)	chlorobenzene-d5 chlorobenzene			1.171			1.200		7.66
50)	ethylbenzene	2.300	2.212	1.998 2.069	2.084	1.698	2.209	2.081	9.51
51)	M+P xylene	1.814	1.713	1.618 1.556	1.695	1.382	1.772	1.650	8.89
52)	O xylene	1.940	1.879	1.598 1.763	1.700	1.407	1.841	1.733	10.60
53)	styrene	1.508	1.475	1.191 1.397	1.273	1.064	1.420	1.333	12.19
54)	bromoform	0.405 0.404			0.300	0.274	0.366	0.343	18.38
55) S	surr 1, bromofluoro	0.382 0.383			0.374	0.381	0.377	0.382	2.12
56)	1,1,2,2-tetrachloro	1.268 0.852			0.800	0.662	0.816	0.842	20.02
57)		2.591 2.369			2.032	1.740	2.266	2.115	13.71
58)	1,3,5-trimethylbenz	2.099 1.938	1.458 1.886	1.531 1.753	1.684	1.442	1.861	1.739	13.17
59)	1,2,4-trimethylbenz	2.034 1.931	1.882		1.618	1.408	1.833	1.703	13.93

CALRPT.TXT

60)	1,3-dclbenz	1.211 0.996			0.831	0.709	0.935	0.910	16.65
61)	1,4-dclbenz	1.150 1.001			0.817	0.702	0.931	0.898	16.03
62)	benzyl chloride	1.635	1.616	1.505	1.231	1.099	1.515	1.434	15.23
63)	1,2-dclbenz	1.183 0.943			0.792	0.665	0.877	0.863	17.90
64)	1,2,4-trichlorobenz	0.645 0.524			0.469	0.357	0.467	0.488	17.02
65)	hexachlorobutadiene	0.581 0.369			0.382	0.294	0.361	0.384	20.49

(#) = Out of Range ### Number of calibration levels exceeded format ###

111408B.M Thu Feb 19 16:24:12 2009 OFFLINE

RT Order Factors to convert from PPBV to ng/L ng/L=un/m3=PPBV*MW/24.46

ng/L=un/m3=PPBV*MVV/24.46	cas#	MW	ppbv	ng/L
Internal standard	Cabri	273.41	•	
propylene	115-07-1	42.08	1	1.7204
dichlorodifluoromethane	75-71-8	120.91	1	4.9432
freon-114	76-14-2	170.92	1	6.9877
chloromethane	74-87-3	50.49	1	2.0642
vinyl chloride	75-01-4	62.5	1	2.5552
1,3-butadiene	106-99-0	54.09	1	2.2114
bromomethane	74-83-9	94.9	*****	3.8798
chloroethane	75-00-3	64.5	1	2.6370
trichlorofluoromethane	75-69-4	137.37	1	5.6161
ethanol	64-17-5	46.07	1	1.8835
freon-113	76-13-1	187.38	1	7.6607
1.1-dichloroethene	75-35-4	96.94	4	3.9632
acetone	67-64-1	58.08	1	2.3745
isopropanol	67-63-0	60.1	4	2.4571
carbon disulfide	75-15-0	76.14	1	3.1128
methylene chloride	75-09-2	84.93	1	3.4722
trans-1,2-dichloroethene	156-60-5	96.94	1	3.9632
methyl tert butyl ether	1634-04-4	88.15	1	3.6038
hexane	110-54-3	86.18	1	3.5233
1.1-dichloroethane	107-06-2	98.96	1	4.0458
vinyl acetate	108-05-4	86.09	1	3.5196
2-butanone	78-93-3	72.11	1	2.9481
cis-1,2-dichloroethene	156-59-2	96.94	1	3.9632
ethyl acetate	141-78-6	88.11	1	3.6022
chloroform	67-66-3	119.38	1	4.8806
tetrahydrofuran	109-99-9	72.11	1	2.9481
Internal standard				
1,1.1-trichloroethane	71-55-6	133.4	1	5.4538
cyclohexane	110-82-7	84.16	1	3.4407
carbon tetrachloride	56-23-5	153.82	1	6.2886
1.2-dichloroethane	107-06-2	98.96	1	4.0458
benzene	71-43-2	78.11	1	3.1934
heptane	142-82-5	100.2	1	4.0965
trichloroethylene	79-01-6	131.39	1	5.3716
1,2-dichloropropane	78-87-5	112.99	1	4.6194
1,4-dioxane	123-91-1	88.11	1	3.6022
bromodichloromethane	75-27-4	163.83	1	6.6979
cis-1,3-dichloro-1-propene	10061-01-5	110.97	1	4.5368
4-methyl-2-pentanone	108-10-1	100.16	1	4.0948
toluene	108-88-3	92.14	1	3.7670
trans-1,3-dichloro-1-propene	10061-02-6	110.97	1	4.5368
1,1,2-trichloroethane	79-00-5	133.4	1	5.4538
tetrachloroethene	127-18-4	165.83	1	6.7796
2-hexanone	591-78-6	100.16	1	4.0948
dibromochloromethane	124-48-1	208.28	1	8.5151
1.2-dibromoethane	106-93-4	187.86	1	7.6803
Internal standard				
chlorobenzene	108-90-7	112.56	1	4.6018
ethylbenzene	100-41-4	106.17	1	4.3406
M+P xylene	1330-20-7	106.17	1	4.3406
O xylene	95-47-6	106.17	1	4.3406
styrene	100-42-5	104.15	1	4.2580
bromoform	75-25-2	252.73	1	10.3324
Surrogate standard				
1,1,2,2-tetrachloroethane	79-34-5	167.85	1	6.8622
4-ethyltoluene	622-96-8	120.19	1	4.9137
1,3,5-trimethylbenzene	108-67-8	120.19	1	4.9137
1,2,4-trimethylbenzene	95-63-6	120.19	1	4.9137
1.3-dichlorobenzene	541-73-1	147	1	6.0098
1,4-dichlorobenzene	106-46-7	147	1	6.0098
benzyl chloride	100-44-7	126.59	1	5.1754
1,2-dichlorobenzene	95-50-1	147	1	6.0098
1,2,4-trichlorobenzene	120-82-1	181.45	1	7.4182
hexachlorobutadiene	87-68-3	260.76	1	10.6607
MARKETTON DOCUMENTS	V - VO-~		•	

M9/09.

### HP CHEMSTATION CUSTOM REPORT CALIBRATION SUMMARY

Method File: Calibration Title: Last Calibration Update:

Calibration Table Concentrations (Level 1-20)

111408B

To-15

Thu Jan 15 15:59:15 2009

Calibrati	<u>on Table Concentrations</u>	(rever	1-20)		<u>111408B</u>		TO-15		Inu Jan	5 15:59:1	5 2009
file		A6072.D	A6073.D	A6074.D	A6075.D	A6076.D	A6077.D	A6078.D	A6079.D	A6080.D	
Level		1	2	3	4	5	6	7	8	9	10##########
םו	Compound	0.02	0.1	0.2	0.5	1.0	2.5	5.0_	7.5	10.0	
1)	bromochloromethane	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	13.2200	-1 <b>////////////////////////////////////</b>
2)	propylene	0.0354	0.1683	0.3544	0.8860	1.7720	4.4299	8.8599	13.2898	17.7197	-1 <b>////////////////////////////////////</b>
3)	dichlorodifluoromethane	0.0999	0.4743	0.9985	2.4963	4.9926	12,4815	24.9630	37.4445	49.9260	-1 <i>/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A</i>
4)	freon-114	0.1398	0.6638	1.3975	3.4939	6.9877	17.4693	34.9387	52.4080	69.8774	_1 <i>\#\#\#\#\#\#\#</i>
5)	chloromethane	0.0417	0.1981	0.4170	1.0424	2.0848	5.2121	10.4241	15.6362	20.8483	-1 <b>/4///////////////////////////////////</b>
6)	vinyl chloride	0.0511	0.2427	0.5110	1.2776	2.5552	6.3880	12.7760	19.1639	25.5519	-1 / <i>4///4/4/4/4/4/4/4/4/4</i>
[	1,3-butadiene	0.0478	0.2269	0.4777	1.1941	2.3883	5.9707	11.9414	17.9121	23.8827	-1 / <i>///////////////////////////////////</i>
8)	bromomethane	0.0784	0.3723	0.7837	1.9593	3.9186	9.7965	19.5930	29.3895	39.1860	-1 <b>////////////////////////////////////</b>
9)	chloroethane	0.0533	0.2530	0.5327	1.3317	2.6633	6.6583	13.3166	19.9750	26.6333	-1 ////////////////////////////////////
10)	trichlorofluoromethane	0.1112	0.5282	1.1120	2.7800	5.5599	13.8999	27.7997	41.6996	55.5995	-1 ####################################
11)	ethanol	0.0365	0.1736	0.3654	0.9135	1.8270	4.5674	9.1349	13.7023	18.2698	-1 ////////////////////////////////////
12)	freon-113	0.1639	0.7787	1.6394	4.0985	8.1969	20.4923	40.9846	61.4769	81.9692	-1 ////////////////////////////////////
13)	1,1-dichloroethene	0.0864	0.4104	0.8640	2.1599	4.3199	10.7997	21.5995	32.3992	43.1989	_1 <i>////////////////////////////////////</i>
14)	acetone	0.0499	0.2369	0.4986	1.2466	2.4932	6.2330	12.4661	18.6991		
15)	isopropanol	0.0545	0.2591	0.5455	1.3637	2.7274	6.8184	13.6368	20.4551		
16)	carbon disulfide	0.0647	0.3075	0.6475	1.6187	3.2374	8.0934	16.1868	24.2801	32.3735	<u> </u>
17)	methylene chloride	0.0757	0.3595	0.7569	1.8923	3.7847	9.4617	18.9235			
18)	trans-1,2-dichloroethene	0.0832	0.3953	0.8323	2.0807	4.1614	10.4034	20.8068		<del>,</del>	
19)	methyl tert butyl ether	0.0764	0.3629	0.7640	1.9100	3.8201	9.5502	19.1004			
20)	hexane	0.0754	0.3581	0.7540	1.8850	3.7699	9.4248	18.8497			
21)	1,1-diclethane	0.0858	0.4074	0.8577	2.1443	4.2885	10.7213		····		
22)	vinyl acetate	0.0697	0.3310	0.6969	1.7422	3.4844	8.7111	17.4221	26.1332		
23)	2-butanone	0.0637	0.3025	0.6368	1.5920	3.1839	7.9598	15.9196			
24)	cis-1,2-dichloroethene	0.0848	0.4029	0.8481	2.1203	4.2406					
25)	ethyl acetate	0.0756	0.3593	0.7565	1.8912	3.7823	9.4558	18.9116			
26)	chloroform	0.1025	0.4868	1.0249	2.5623	5.1247	12.8116		38.4349		
27)	tetrahydrofuran	0.0631	0.2997	0.6309	1.5772	3.1544		15.7722			
28)	1,4-difluorobenzene	11.6400	11.6400	11.6400	11.6400				****		
29)	1,1,1-trichloroethane	0.1145	0.5440	1.1453	2.8632	5.7265			<del></del>		
30)	cyclohexane	0.0736	0.3497	0.7363	1.8408	3.6816					
31)	carbon tetrachloride	0.1321	0.6273	1.3206	3.3015				-		
32)	1,2-dichloroethane	0.0866	0.4113	0.8658	2.1645						
33)	benzene	0.0683	0.3246	0.6834	1.7085	<u>3.4169</u>	8.5423	17.0840	<u> 25.6268</u>	3 34.169	1 <u>  - 1  /4/4/4/4/4/4/4/4/4</u>
to agricultural and a service		· · · · · · · · · · · · · · · · · · ·									

12/19/02 Ng/Lbatil 10/1088.

										<del></del>	
34)	heptane	0.0877	0.4164	0.8766	2.1916	4.3832			32.8743	43.8324	<u> 1                                   </u>
_ 35)	trichloroethene	0.1117	0.5307	1.1173	2.7932	5.5865			41.8987	55.8649	-1 <b>/4/4/4/4/4/4/4/4</b>
36)	1,2-diclpropane	0.0979	0.4652	0.9793	2.4483	4.8965	12.2414	24.4827	36.7241	48.9654	1 ####################################
37)	1,4-dioxane	0.0749	0.3559	0.7493	1.8731	3.7463	9.3657	18.7315	28.0972	37.4630	-1 <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
38)	bromodichloromethane	0.1393	0.6617	1.3932	3.4829	6.9658	17.4145	34.8289	52.2434	69.6579	-1 <del>////////////////////////////////////</del>
39)	cis-1,3-dichloropropene	0.0926	0.4396	0.9255	2.3138	4.6275	11.5688	23.1377	34.7065	46.2753	-1 <i>/A/A/A/A/A/A/A/A/A/A</i>
40)	4-methyl-2-pentanone	0.0876	0.4162	0.8763	2.1907	4.3815	10.9537	21.9074	32.8612	43.8149	-1 <b>////////////////////////////////////</b>
41)	toluene	0.0814	0.3865	0.8137	2.0342	4.0683	10.1708	20.3416	30.5124	40.6832	-1 / <i>ΝΑΙΑ</i> ΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙΑΙ
42)	trans-1,3-dichloropropene	0.1007	0.4784	1.0072	2.5179	5.0358	12.5896	25.1792	37.7688	50.3584	-1 <i>////////////////////////////////////</i>
43)	1,1,2-trichloroethane	0.1134	0.5388	1.1344	2.8360	5.6720	14.1799	28.3598	42.5397	56.7195	-1 <b>////////////////////////////////////</b>
44)	tetrachloroethene	0.1424	0.6763	1.4237	3.5593	7.1186	17.7966	35.5931	53.3897	71.1862	-1 <b>////////////////////////////////////</b>
45)	2-hexanone	0.0876	0.4162	0.8763	2.1907	4.3815	10.9537	21.9074	32.8612	43.8149	-1
46)	dibromochloromethane	0.1788	0.8494	1.7882	4.4704	8.9409	22.3522	44.7044	67.0566	89.4088	-1 <i>₩₩₩₩₩₩₩₩</i>
47)	1,2-dibromoethane	0.1613	0.7661	1.6129	4.0322	8.0643	20.1608	40.3215	60.4823	80.6431	-1 <b>////////////////////////////////////</b>
48)	chlorobenzene-d5	12.0200	12.0200	12.0200	12.0200	12.0200	12.0200	12.0200	12.0200	12.0200	-1 ////////////////////////////////////
49)	chlorobenzene	0.0976	0.4634	0.9756	2.4390	4.8779	12.1948	24.3895	36.5843	48.7791	-1 <i>/A/A/A/A/A/A/A/A/A/A</i>
50)	ethylbenzene	0.0920	0.4371	0.9202	2.3005	4.6010	11.5025	23.0049	34.5074	46.0099	-1 <b>////////////////////////////////////</b>
51)	M+P xylene	0.1806	0.8577	1.8057	4.5142	9.0284	22.5709	45.1418	67.7127	90.2836	-1 <b>////////////////////////////////////</b>
52)	O xylene	0.0912	0.4330	0.9115	2.2788	4.5576	11,3940	22.7879	34.1819	45.5758	-1 <b>////////////////////////////////////</b>
53)	styrene	0.0894	0.4247	0.8942	2.2354	4.4709	11,1772	22.3544	33.5315		<del>                                 </del>
54)	bromoform	0.2149	1.0208	2.1491	5.3728	10.7457	26.8642	53.7284	80.5926	107.4567	
55)	surr 1, bromofluorobenzene	17.8800	17.8800	17.8800	17.8800	17.8800	17,8800	17.8800	17.8800	17.8800	-1 #############
56)	1,1,2,2-tetrachloroethane	0.1441	0.6845	1,4411	3.6027	7.2053	18.0133	36.0267	54.0400		-1 ////////////////////////////////////
57)	4-ethyltoluene	0.0993	0.4715	0.9926	2.4814	4.9629	12.4072		37.2216	<del></del>	<u> -1<b>/4/4/4/4/4/4</b></u>
58)	1,3,5-trimethylbenzene	0.1042	0.4948	1.0417	2.6043	5.2086	13.0214		***************************************		-1 ////////////////////////////////////
59)	1,2,4-trimethylbenzene	0.1022	0.4855	1.0221	2.5551	5.1103	12.7757	25.5514	7	51.1029	<u> -1  //////////////////////////////////</u>
60)	1,3-dclbenz	0.1250	0.5938	1.2500	3.1251	6.2502	15.6255				-1 ####################################
61)	1,4-dclbenz	0.1250	0.5938	1.2500	3.1251	6.2502	15.625 <u>5</u>		···		-1 ////////////////////////////////////
62)	benzyl chloride	0.1076	0.5113	1.0765	2.6912	5.3824	13.4560				-1/////////////////////////////////////
63)	1,2-dclbenz	0.1214	0.5766	1.2140	3.0350	6.0699	15.1748				-1 ////////////////////////////////////
64)	1,2,4-trichlorobenzene	0.1498	0.7118	1.4985	3.7462	7.4924	18,7310				-1 ####################################
65)	hexachlorobutadiene	0.2175	1.0330	2.1748	5.4369	10.8739	27.1847	54.3694	81.5541	108,738	3 -1 <b>/4/4/4/4/4/</b>

# Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

Acq On : 14 Nov 2008 15:31 Sample : 0.02 PPB

Misc : PI=0 PF=0

Operator: T.WALTON Inst : GC/MS Ins

TW 5.08

Multiplr: 1.00

Vial: 2

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:54 2008

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

Internal Standards			Response	Conc Units Dev(Min)
			213205	2 5000 pphy 0 00
<ol> <li>bromochloromethane</li> <li>1,4-difluorobenzene</li> </ol>	13.91	114	862919	2 5000 ppbv 0 00
48) chlorobenzene-d5	18.98	117	732479	2.5000 ppby -0.03
10, 01120100011			, • ,	2.000 pp.2.
System Monitoring Compounds				
55) surr 1, bromofluorobenzene	e 21.08	174	416308	2.50 ppbv -0.02
Spiked Amount 2.500 Ra				
-				
Target Compounds				Qvalue
<pre>2) propylene</pre>	5.06		7200	0.0467 ppbv # 66 0.0234 ppbv 100 0.0197 ppbv 96 700 /4/5-08 0.0237 ppbv
<ol><li>dichlorodifluoromethane</li></ol>			7232	0.0234 ppbv 100
4) freon-114	5.49	85	6375	0.0197 ppbv 96 700 11-15-08
5) chloromethane	5.62	50	2885m)	0.0237 ppbv
6) vinyl chloride	5.62 5.92 6.03	50 62 54	2491	U.U196 DDDV 95
7) 1,3-butadiene	6.03	54	2419	0.0235 ppbv 97
8) bromomethane	6.74	94	2822	0.0274 ppbv 88
<ul><li>8) bromomethane</li><li>9) chloroethane</li><li>10) trichlorofluoromethane</li><li>11) ethanol</li></ul>	6.99	64	1393	0.0223 ppbv # 59 0.0200 ppbv 93 N.D. d
10) trichlorofluoromethane	7.56	101	5962	0.0200 ppbv 93
11) ethanol	0.00	45	0	N.D. d
	8.64		4894	0.0232 ppbv 98
13) 1,1-dichloroethene	8.65	61	4182	0.0230 ppbv # 62 0.0613 ppbv 92
14) acetone	8.77 0.00	43	18748	0.0613 ppbv 92
15) isopropanol	0.00	45	0	N.D. d 0.0230 ppbv 87
16) carbon disulfide	3.11	76	7411	0.0230 ppbv 87
17) metnylene chloride	7.00	84	7/01 2/01	0.0285 ppbv 91
17) methylene chloride 18) trans-1,2-dichloroethene 19) methyl tert butyl ether 20) hexane	10.09	61 73	3733	0.0285 ppbv 91 0.0222 ppbv 86 0.0233 ppbv 98 0.0207 ppbv 96
19) methyl tert butyl ether	10 50	73 57	7379	0.0233 ppbv 98
20) nexame 21) 1,1-diclethane	10.50	G 2	33/3 4971	0.0207 ppbv 96 0.0225 ppbv 90
21) 1,1-dictediane	10.03	43	4871	0.0213 ppbv 98
22) vinyl acetate 23) 2-butanone 24) cis-1,2-dichloroethene	11 88	43	7377 8915 3190	0.0213 ppbv 98
24) cis-1 2-dichloroethene	11 83	96	3190	0.0307 ppbv 97 0.0280 ppbv 81
25) ethyl acetate	11.95	43	9459	0.0269 ppbv 100
	12.34		5219	0.0232 ppbv 98
27) tetrahydrofuran	12.44	72	1237	0.0225 ppbv 96
27) tetrahydrofuran 29) 1,1,1-trichloroethane 30) cyclohexane	12.72	97	1237 5248 4912	0.0225 ppbv 96 0.0219 ppbv 96
30) cyclohexane	12.85	56	4912	0.0229 ppbv 97
31) carbon tetrachloride	13.01	117	5221	0.0223 ppbv 98
32) 1,2-dichloroethane		62	3815	0.0232 ppbv 98
33) benzene	13.34	78	11579	0.0295 ppbv 97
34) heptane	13.72	71	2915	0.0221 ppbv 99
35) trichloroethene	14.40	130	3828	0.0250 ppbv 96
36) 1,2-diclpropane	14.77	63	3814	0.0260 ppbv 91
37) 1,4-dioxane	0.00	88	0	N.D. d
38) bromodichloromethane	15.20	83	5900	0.0238 ppbv 97
39) cis-1,3-dichloropropene	15.95	75	4749	0.0235 ppbv 94
40) 4-methyl-2-pentanone	16.21	43	10187	0.0279 ppbv 96
41) toluene	16.56	91	10954	0.0262 ppbv 99
42) trans-1,3-dichloropropene	16.87	75	5080	0.0264 ppbv 95
43) 1,1,2-trichloroethane	17.21	97	4014	0.0275 ppbv 93
44) tetrachloroethene	17.54	166	5240	0.0269 ppbv 94

^{(#) =} qualifier out of range (m) = manual integration

# Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

Vial: 2 Acq On : 14 Nov 2008 15:31 Sample : 0.02 PPB Operator: T.WALTON Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:54 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	: Qvalue	
45)	2-hexanone	17.63	43	9229	0.0265	ppbv	96
46)	dibromochloromethane	17.93	129	5665	0.0253	ppbv	99
47)	1,2-dibromoethane	18.18	107	5820	0.0281	ppbv	98
49)	chlorobenzene	19.04	112	9643	0.0284	ppbv	95
50)	ethylbenzene	19.19	91	15045	0.0268	ppbv	98
51)	M+P xylene	19.39	91	23217	0.0522	ppbv	97
52)	0 xylene	20.12	91	11760	0.0255	ppbv	97
53)	styrene	20.13	104	8264	0.0241	ppbv	98
54)	bromoform	20.50	173	5298	0.0246	ppbv	99
	1,1,2,2-tetrachloroethane	21.27	83	11132	0.0316	ppbv	99
57)	4-ethyltoluene	21.72	105	15679	0.0248	ppbv	98
58)	1,3,5-trimethylbenzene	21.83	105	13329	0.0256	ppbv	99
59)	1,2,4-trimethylbenzene	22.54	105	12667	0.0249	ppbv	99
60)	1,3-dclbenz	23.12	146	9222	0.0277	ppbv	97
61)	1,4-dclbenz	23.28	146	8763	0.0266	ppbv	98
62)	benzyl chloride	23.50	91	9889	0.0229	ppbv	98
63)	1,2-dclbenz	23.99	146	8751	0.0277	ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	5891	0.0267	ppbv	98
65)	hexachlorobutadiene	27.31	225	7698	0.0309	ppbv	93

#### Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\111408\A6072.D Vial: 2

 Acq On
 : 14 Nov 2008 15:31
 Operator: T.WALTON

 Sample
 : 0.02 PPB
 Inst : GC/MS Ins

 Misc
 : PI=0 PF=0
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration



## (5) chloromethane

5.62min 0.0150ppbv

response 1819

 Ion
 Exp%
 Act%

 50.00
 100
 100

 52.00
 32.30
 23.86

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

#### Quantitation Report (Qedit)

Vial: 2

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6072.D

Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:53 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration



#### (5) chloromethane

5.62min 0.0237ppbv m

response 2885

 Ion
 Exp%
 Act%

 50.00
 100
 100

 52.00
 32.30
 15.04

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data File : J:\ACOUDATA\AIR1\DATA\111408\A6072.D

: 14 Nov 2008 15:31

Vial: 2 Operator: T.WALTON Inst : GC/MS Ins

Sample : 0.02 PPB Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

Multiplr: 1.00

Ouant Time: Nov 15 8:54 2008

Ouant Results File: 111408A.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008 Response via : Initial Calibration



#### Quantitation Report

(Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D

Acq On : 14 Nov 2008 16:16

: 0.095 PPB Sample Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

vial: 3 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: 111408A.RES

Ouant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

Quant Time: Nov 15 8:47 2008

Internal Standards	R.T.	QIon	Response	Conc Units Dev(M	(in)
1) bromochloromethane	12.24	130	208026	2.5000 ppbv	0.00
28) 1,4-difluorobenzene	13.90		838041	2.5000 ppbv	-0.01
48) chlorobenzene-d5	18.98		710736	2.5000 ppbv	-0.02
System Monitoring Compounds					
55) surr 1, bromofluorobenzer			403679		0.02
Spiked Amount 2.500 F	Range 70	- 130	Recover	y = 100.04%	
Target Compounds				Qval	ue
2) propylene	5.06	41	14859	0.0987 ppbv	87
3) dichlorodifluoromethane	5.16	85	28803	0.0957 ppbv	99
4) freon-114	5.49	85	29354	0.0931 ppbv	99
5) chloromethane	5.62	50	10872	0.0916 ppbv	92
6) vinyl chloride	5.91	62	11560	0.0933 ppbv	100
7) 1,3-butadiene	6.03	54	9806	0.0975 ppbv	99
8) bromomethane	6.74	94	9515	0.0949 ppbv	91
9) chloroethane	6.98	64	5644	0.0926 ppbv	79
10) trichlorofluoromethane	7.56	101	26036	0.0896 ppbv	97
11) ethanol	7.97	45	3533	0.0982 ppbv #	37
12) freon-113	8.64	101	20110	0.0977 ppbv	96
13) 1,1-dichloroethene	8.65	61	16451	0.0927 ppbv	81
14) acetone	8.77	43	33916	0.1137 ppbv	95
15) isopropanol	9.07	45	13220	0.1040 ppbv	97
16) carbon disulfide	9.11	76	29695	0.0946 ppbv	94
17) methylene chloride	9.55	84	9752	0.1030 ppbv	87
18) trans-1,2-dichloroethene	10.08	61	16168	0.0937 ppbv	88
19) methyl tert butyl ether	10.15	73	30243	0.0980 ppbv	98
20) hexane	10.58	57	17644	0.0939 ppbv	100
21) 1,1-diclethane	10.82	63	21035	0.0998 ppbv	100
22) vinyl acetate	10.88	43	29216	0.0866 ppbv	99
23) 2-butanone	11.86	43	29064	0.1027 ppbv	98
24) cis-1,2-dichloroethene	11.83	96	10241	0.0920 ppbv	95
25) ethyl acetate	11.94	43	33187	0.0967 ppbv	98
26) chloroform	12.35	83	21927	0.0997 ppbv	100
27) tetrahydrofuran	12.42	72	4938	0.0919 ppbv	99
<pre>29) 1,1,1-trichloroethane</pre>	12.72	97	21605	0.0930 ppbv	97
30) cyclohexane	12.85	56	17731	0.0851 ppbv	95
31) carbon tetrachloride	13.02	117	20015	0.0879 ppbv	100
32) 1,2-dichloroethane	13.34	62	15626	0.0980 ppbv	97
33) benzene	13.34	78	36532	0.0957 ppbv	98
34) heptane	13.72	71	10837	0.0847 ppbv	99
<pre>35) trichloroethene</pre>	14.40	130	13409	0.0900 ppbv	95
<pre>36) 1,2-diclpropane</pre>	14.77	63	13477	0.0945 ppbv	94
37) 1,4-dioxane	15.06	88	3493	0.1007 ppbv	98
38) bromodichloromethane	15.20	83	21290	0.0883 ppbv	99
39) cis-1,3-dichloropropene	15.94	75	16638	0.0847 ppbv	97
40) 4-methyl-2-pentanone	16.21	43	31935	0.0901 ppbv	99
41) toluene	16.56	91	37261	0.0918 ppbv	99
42) trans-1,3-dichloropropene	16.86	75	17059	0.0912 ppbv	98
43) 1,1,2-trichloroethane	17.20	97	13412	0.0946 ppbv	89
44) tetrachloroethene	17.54	166	16624	0.0878 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

# Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D

Vial: 3 Acq On : 14 Nov 2008 16:16 Operator: T.WALTON Sample : 0.095 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit Qva	lue
45)	2-hexanone	17.62	43	29974	0.0885 ppbv	99
46)	dibromochloromethane	17.93	129	18142	0.0835 ppbv	97
47)	1,2-dibromoethane	18.18	107	17895	0.0889 ppbv	100
49)	chlorobenzene	19.03	112	30349	0.0923 ppbv	98
50)	ethylbenzene	19.19	91	48333	0.0887 ppbv	98
51)	M+P xylene	19.39	91	74242	0.1721 ppbv	100
	O xylene	20.12	91	37304	0.0832 ppbv	100
53)	styrene	20.13	104	26511	0.0797 ppbv	97
	bromoform	20.51	173	15612	0.0746 ppbv	98
56)	1,1,2,2-tetrachloroethane	21.26	83	31154	0.0912 ppbv	99
57)	4-ethyltoluene	21.72	105	48890	0.0796 ppbv	97
58)	1,3,5-trimethylbenzene	21.83	105	42657	0.0843 ppbv	98
59)	1,2,4-trimethylbenzene	22.54	105	39979	0.0808 ppbv	99
60)	1,3-dclbenz	23.12	146	26956	0.0835 ppbv	98
61)	1,4-dclbenz	23.28	146	26215	0.0821 ppbv	98
62)	benzyl chloride	23.50	91	31375	0.0750 ppbv	99
63)	1,2-dclbenz	23.99	146	24504	0.0799 ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	17989	0.0839 ppbv	97
65)	hexachlorobutadiene	27.31	225	22524	0.0931 ppbv	98

Vial: 3

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6073.D

TO On . 14 Now 2009 1C.16

And the arm is all the excellent of the property of a great

Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Sample

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration



# Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D

Vial: 3

Acq On : 14 Nov 2008 17:01 Operator: T.WALTON Sample : 0.20 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

28) 1,4-difluorobenzene 13.91 114 780689 2.5000 ppbv - 48) chlorobenzene-d5 18.98 117 646753 2.5000 ppbv -	
28) 1,4-difluorobenzene 13.91 114 780689 2.5000 ppbv - 48) chlorobenzene-d5 18.98 117 646753 2.5000 ppbv -	0.01
48) chlorobenzene-d5 18.98 117 646753 2.5000 ppbv -	0.02
• • • • • • • • • • • • • • • • • • •	)3
Gratem Monitoring Compounds	
System Monitoring Compounds	
55) surr 1, bromofluorobenzene 21.07 174 356293 2.43 ppbv -0.	
Spiked Amount 2.500 Range 70 - 130 Recovery = 97.03%	
Target Compounds Qvalue	
2) propylene 5.05 41 29435 0.1975 ppbv	95
3) dichlorodifluoromethane 5.15 85 61317 0.2058 ppbv	100
4) freon-114 5.49 85 64598 0.2070 ppbv	97
5) chloromethane 5.62 50 24333 0.2072 ppbv	98
6) vinyl chloride 5.92 62 25213 0.2055 ppbv	100
7) 1,3-butadiene 6.03 54 20966 0.2107 ppbv	99
8) bromomethane 6.74 94 19295 0.1943 ppbv	95
9) chloroethane 6.98 64 12233 0.2028 ppbv	95
10) trichlorofluoromethane 7.56 101 59370 0.2065 ppbv	100
11) ethanol 7.98 45 7490 0.2103 ppbv	99
12) freon-113 8.64 101 45278 0.2222 ppbv	100
13) 1,1-dichloroethene8.6461379280.2159 ppbv14) acetone8.7643530550.1797 ppbv	91 94
	97
	98
16) carbon disulfide 9.12 76 64619 0.2079 ppbv 17) methylene chloride 9.55 84 19887 0.2122 ppbv	92
18) trans-1,2-dichloroethene 10.08 61 35867 0.2101 ppbv	92
19) methyl tert butyl ether 10.14 73 60628 0.1985 ppbv	98
	100
	100
21) 1,1-diclethane 10.82 63 44319 0.2124 ppbv 22) vinyl acetate 10.88 43 58894 0.1763 ppbv	99
23) 2-butanone 11.86 43 56547 0.2019 ppbv	97
24) cis-1,2-dichloroethene 11.84 96 22109 0.2007 ppbv	96
25) ethyl acetate 11.94 43 67479 0.1987 ppbv	98
26) chloroform 12.34 83 45691 0.2100 ppbv	100
27) tetrahydrofuran 12.41 72 9749 0.1833 ppbv	99
29) 1,1,1-trichloroethane 12.72 97 46577 0.2152 ppbv	96
30) cyclohexane 12.85 56 39972 0.2059 ppbv	96
31) carbon tetrachloride 13.01 117 43818 0.2066 ppbv	100
32) 1,2-dichloroethane 13.34 62 33250 0.2239 ppbv	98
33) benzene 13.34 78 73424 0.2065 ppbv	98
34) heptane 13.72 71 23852 0.2001 ppbv	99
35) trichloroethene 14.40 130 28339 0.2042 ppbv	95
36) 1,2-diclpropane 14.77 63 27562 0.2074 ppbv	97
37) 1,4-dioxane 15.05 88 9403 0.2910 ppbv	93
38) bromodichloromethane 15.20 83 44988 0.2003 ppbv	98
39) cis-1,3-dichloropropene 15.95 75 35186 0.1922 ppbv	99
40) 4-methyl-2-pentanone 16.21 43 65866 0.1996 ppbv	100
41) toluene 16.56 91 77485 0.2049 ppbv	97
42) trans-1,3-dichloropropene 16.87 75 34459 0.1978 ppbv	98
43) 1,1,2-trichloroethane 17.20 97 26556 0.2010 ppbv	93
44) tetrachloroethene 17.53 166 35206 0.1995 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

#### Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D

Vial: 3 Acq On : 14 Nov 2008 17:01 Sample : 0.20 PPB Misc : PI=0 PF=0 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit Q	value
45)	2-hexanone	17.62	43	62218	0.1971 ppbv	99
46)	dibromochloromethane	17.93	129	37783	0.1866 ppbv	100
47)	1,2-dibromoethane	18.18	107	37197	0.1983 ppbv	100
49)	chlorobenzene	19.03	112	61467	0.2054 ppbv	98
50)	ethylbenzene	19.19	91	98947	0.1996 ppbv	99
51)	M+P xylene	19.39	91	157215	0.4004 ppbv	99
52)	O xylene	20.12	91	78392	0.1922 ppbv	100
53)	styrene	20.13	104	57320	0.1894 ppbv	96
54)	bromoform	20.51	173	32481	0.1707 ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	61555	0.1980 ppbv	100
57)	4-ethyltoluene	21.72	105	100892	0.1806 ppbv	100
58)	1,3,5-trimethylbenzene	21.83	105	85829	0.1865 ppbv	97
59)	1,2,4-trimethylbenzene	22.54	105	81651	0.1814 ppbv	99
60)	1,3-dclbenz	23.12	146	54214	0.1845 ppbv	97
61)	1,4-dclbenz	23.28	146	53412	0.1838 ppbv	98
62)	benzyl chloride	23.50	91	64875	0.1703 ppbv	99
63)	1,2-dclbenz	23.99	146	49626	0.1779 ppbv	98
64)	1,2,4-trichlorobenzene	27.02	180	35017	0.1795 ppbv	100
65)	hexachlorobutadiene	27.31	225	45116	0.2049 ppbv	96

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6074.D

: 14 Nov 2008 17:01

Vial: 3

Sample : 0.20 PPB Operator: T.WALTON Inst : GC/MS Ins

Misc : PI=0 PF=0

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES

Method

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via: Initial Calibration



10,5.08

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

Vial: 3 Acq On : 14 Nov 2008 17:46 Sample : 0.50 PPB Operator: T.WALTON Inst : GC/MS Ins Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:05 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

Internal Standards					
1) bromochloromethane	12.24	130	207599	2.5000 ppbv	
28) 1.4-difluorobenzene	13.90	114	819303	2.5000 ppbv	
<ol> <li>bromochloromethane</li> <li>1,4-difluorobenzene</li> <li>chlorobenzene-d5</li> </ol>	18.98	117	685400	2.5000 ppbv	-0.02
System Monitoring Compounds					
55) surr 1, bromofluorobenzene	21.07	174	381536	2.45 ppbv	-0.03
Spiked Amount 2.500 Ra					
Target Compounds				0.7	ralua
Target Compounds	5 05	43	<i></i>	0 4436 nnhrr	value
<ul><li>2) propylene</li><li>3) dichlorodifluoromethane</li></ul>	5.05	4.	66658 150750	0.4436 ppbv	
	5.49	05	158616	0.5018 ppbv 0.5041 ppbv	100
4) freon-114	2.42	εΛ 50	T200T0	0.5041 ppbv	39
5) chloromethane 6) vinyl chloride 7) 1,3-butadiene 8) bromomethane	5.04 E 03	20	20403	0.4941 ppbv 0.5064 ppbv 0.5318 ppbv	100
5) Vinyi Chioride	5.74	© 4	02041 	0.5064 pppv	98
/) 1,3-butadiene	6.03	04	23330	0.5318 ppbv 0.4671 ppbv	3/
9) chloroethane	6.74	24	46/63	0.46/1 ppov	
9) chloroethane	6.98	707	30253	0.4974 ppbv	
10) trichlorofluoromethane	7.56	101	140770 12939	0.4857 ppbv 0.3604 ppbv	99
11) ethanol	7.98 8.64	45	12939	0.3604 pppv	98
12) freon-113	8.64	101		0.5322 ppbv	100
13) 1,1-dichloroethene	8.65	6.1	93050	0.5253 ppbv	91
<ul><li>14) acetone</li><li>15) isopropanol</li><li>16) carbon disulfide</li></ul>	8./5	4.3	123309	0.4143 ppbv 0.4125 ppbv 0.5037 ppbv	96
15) isopropanoi	9.05	45	52334	0.4125 ppbv	100
16) carbon disulfide	9.11	76	157815	0.5037 ppbv	99
17) methylene chloride					88
18) trans-1,2-dichloroethene 19) methyl tert butyl ether	10.08	61	89268	0.5186 ppbv	93
19) methyl tert butyl ether	10.13	73	159266 98508	0.5172 ppbv	100
20) nexane	10.20	<b>D</b> /	900U0	U.SZSI DDDV	99
21) 1,1-diclethane	10.82		112038		100
22) vinyl acetate	10.88		165019	0.4901 ppbv	
23) 2-butanone	11.85	43	147949 55224	0.5240 ppbv	
24) cis-1,2-dichloroethene 25) ethyl acetate	11.83		55224	0.4972 ppbv	98
				0.5211 ppbv	100
26) chloroform	12.34			0.5217 ppbv	100
27) tetrahydrofuran	12.41	72	27487	0.5125 ppbv	
29) 1,1,1-trichloroethane	12.72	97	117054	0 E1E4 mmhrz	96
30) cyclonexane	12.85	56	104763	0.5134 ppbv 0.5141 ppbv	97
31) carbon tetrachloride			111238	0.4998 ppDV	100
<pre>32) 1,2-dichloroethane</pre>	13.34		83121	0.5333 ppbv	98
33) benzene	13.35	78	186768	0.5005 ppbv	98
34) heptane	13.72	71	63542	0.5080 ppbv	99
35) trichloroethene	14.40	130	71408	0.4903 ppbv	96
36) 1,2-diclpropane	14.77	63	71732	0.5144 ppbv	965-03
37) 1,4-dioxane	15.03	88	18474m	0.5447 ppbv	96 TW 11-15-08
38) bromodichloromethane	15.20	83	117405	0.4982 ppbv	98
39) cis-1,3-dichloropropene	15.94	75	92377	0.4808 ppbv	99
40) 4-methyl-2-pentanone	16.20	43	173850	0.5020 ppbv	98
41) toluene	16.56	91	210279	0.5298 ppbv	99
42) trans-1,3-dichloropropene	16.86	75	95791	0.5240 ppbv	99
43) 1,1,2-trichloroethane	17.20	97	68642	0.4950 ppbv	93
44) tetrachloroethene	17.53	166	90277	0.4875 ppbv	98

^{(#) =} qualifier out of range (m) = manual integration

#### Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D Vial: 3

Acq On : 14 Nov 2008 17:46 Operator: T.WALTON Sample : 0.50 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:05 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15 Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.62	43	164492	0.4966 ppb	v 97
46)	dibromochloromethane	17.93	129	101926	0.4797 ppb	v 100
47)	1,2-dibromoethane	18.17	107	98445	0.5000 ppb	v 98
49)	chlorobenzene	19.03	112	162325	0.5118 ppb	v 99
50)	ethylbenzene	19.19	91	273381	0.5203 ppb	v 100
51)	M+P xylene	19.39	91	436292	1.0486 ppb	v 100
52)	O xylene	20.12	91	220942	0.5112 ppb	v 98
53)	styrene	20.13	104	162217	0.5057 ppb	v 95
54)	bromoform	20.51	173	91816	0.4552 ppb	v 98
56)	1,1,2,2-tetrachloroethane	21.26	83	164378	0.4989 ppb	v 98
57)	4-ethyltoluene	21.72	105	287529	0.4856 ppb	v 100
58)	1,3,5-trimethylbenzene	21.83	105	250071	0.5127 ppb	v 98
59)	1,2,4-trimethylbenzene	22.54	105	235778	0.4943 ppb	v 99
60)	1,3-dclbenz	23.12	146	148125	0.4757 ppb	v 97
61)	1,4-dclbenz	23.28	146	145646	0.4730 ppb	v 99
62)	benzyl chloride	23.50	91	188907	0.4680 ppb	v 100
63)	1,2-dclbenz	23.99	146	137067	0.4635 ppb	
64)	1,2,4-trichlorobenzene	27.01	180	100156	0.4845 ppb	
65)	hexachlorobutadiene	27.31	225	118382	0.5072 ppb	v 97

#### Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

Vial: 3

Acq On : 14 Nov 2008 17:46 Sample : 0.50 PPB Operator: T.WALTON
Inst : GC/MS Ins

Misc : PI=0 PF=0

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: temp.res

Quant Time: Nov 15 8:47 2008

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Method

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration



(37) 1,4-dioxane

15.30min 0,0056ppbv

response 190

 Ion
 Exp%
 Act%

 88.00
 100
 100

 58.00
 91.80
 94.74

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

#### Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\111408\A6075.D

Vial: 3

: 14 Nov 2008 17:46 Operator: T.WALTON : GC/MS Ins : 0.50 PPB Sample Inst Multiplr: 1.00

Misc : PI=0 PF=0 MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:05 2008 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration



#### (37) 1,4-dioxane

15.03min 0.5447ppbv m

response 18474

lon Exp% Act% 88.00 100 100 58.00 91.80 0.97# 0.00 0.00 0.00 0.00 0.00 0.00

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6075.D

Acq On : 14 Nov 2008 17:46

Operator: T.WALTON Inst : GC/MS Ins

Sample : 0.50 PPB Misc : PI=0 PF=0

Multiplr: 1.00

Vial: 3

MS Integration Params: RTEINT.P Quant Time: Nov 15 9:05 2008

Quant Results File: 111408A.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008



#### Quantitation Report

(Nøt Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D

Acq On : 14 Nov 2008 18:31

: 1.0 PPB Sample Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

Vial: 4

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Ouant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

				Conc Units Dev(M	11II)
1) bromochloromethane	12.24	130	204544	2.5000 ppbv	0.00
28) 1,4-difluorobenzene	13.91		787639		
48) chlorobenzene-d5	18.98		664084		-0.02
10, 0112011011011				<b>F</b> F	
System Monitoring Compounds					
55) surr 1, bromofluorobenzene	21.08	174	376680	2.50 ppbv -0	.02
Spiked Amount 2.500 Ray	nge 70	- 130	Recove	cy = 99.90%	
Target Compounds	- 0-	47	110204	Qval	
2) propylene	5.05	41	118394	0.7996 ppbv	99
3) dichlorodifluoromethane	5.15	85 85	292870	0.9894 ppbv	99
4) freon-114	5.49 5.62	50	313051	1.0097 ppbv	98
5) chloromethane	5.92	62	114446 121242	0.9812 ppbv	99
6) vinyl chloride	6.03	54		0.9948 ppbv 1.0730 ppbv	100
7) 1,3-butadiene 8) bromomethane	6.74	94	106079 94717	0.9603 ppbv	98
9) chloroethane	6.98	64	57564	0.9606 ppbv	100 98
10) trichlorofluoromethane	7.56		289847	1.0149 ppbv	100
11) ethanol	7.97	45	40706	1.1507 ppbv	98
12) freon-113	8.64	101	200412	0.9900 ppbv	99
13) 1,1-dichloroethene	8.65	61	190050	1.0890 ppbv	93
14) acetone	8.75	43	181654	0.6195 ppbv	94
15) isopropanol	9.03	45	198446	1.5877 ppbv	96
16) carbon disulfide	9.12	76	322596	1.0450 ppbv	100
17) methylene chloride	9.55	84	91116	0.9789 ppbv	89
18) trans-1,2-dichloroethene	10.08	61	167089	0.9852 ppbv	92
19) methyl tert butyl ether	10.12	73	268172	0.8839 ppbv	99
20) hexane	10.58	57	182850	0.9892 ppbv	100
21) 1,1-diclethane	10.82	63	198921	0.9597 ppbv	99
22) vinyl acetate	10.88	43	261886	0.7894 ppbv	98
23) 2-butanone	11.85	43	247316	0.8890 ppbv	98
24) cis-1,2-dichloroethene	11.83	96	98841	0.9033 ppbv	99
25) ethyl acetate	11.93	43	298933	0.8862 ppbv	100
26) chloroform	12.34	83	204230	0.9449 ppbv	100
27) tetrahydrofuran	12.40	72	47482	0.8986 ppbv	98
<pre>29) 1,1,1-trichloroethane</pre>	12.72	97	208577	0.9552 ppbv	96
30) cyclohexane	12.84		194356	0.9921 ppbv	98
<ol> <li>carbon tetrachloride</li> </ol>	13.02	117	204126	0.9540 ppbv	100
<pre>32) 1,2-dichloroethane</pre>	13.33	62	139256	0.9293 ppbv	99
33) benzene	13.34	78	314443	0.8765 ppbv	98
34) heptane	13.72	71	115779	0.9628 ppbv	98
35) trichloroethene	14.40	130	130787	0.9340 ppbv	97
36) 1,2-diclpropane	14.77	63	115741	0.8634 ppbv	96
37) 1,4-dioxane	15.02	88	57692	1.7695 ppbv	90
38) bromodichloromethane	15.20	83	208995	0.9225 ppbv	99
39) cis-1,3-dichloropropene	15.95	75	155525	0.8420 ppbv	99
40) 4-methyl-2-pentanone	16.20	43	319925	0.9609 ppbv	98
41) toluene	16.56	91	335479	0.8792 ppbv	99
42) trans-1,3-dichloropropene		75	158373	0.9011 ppbv	98
43) 1,1,2-trichloroethane	17.20		110556		93
44) tetrachloroethene		166	160002	0.8987 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

#### Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D

Vial: 4 Acq On : 14 Nov 2008 18:31 Sample : 1.0 PPB Misc : PI=0 PF=0 Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.62	43	317903	0.9983 pp	bv 96
46)	dibromochloromethane	17.93	129	181269	0.8874 pp	bv 99
47)	1,2-dibromoethane	18.18	107	158800	0.8389 pp	bv 99
49)	chlorobenzene	19.03	112	261262	0.8501 pp	bv 99
50)	ethylbenzene	19.18	91	431518	0.8476 pp	bv 100
51)	M+P xylene	19.39	91	689344	1.7100 pp	bv 100
52)	O xylene	20.12	91	354254	0.8460 pp	bv 98
53)	styrene	20.13	104	262878	0.8458 pp	bv 94
54)	bromoform	20.51	173	162722	0.8327 pp	bv 99
56)	1,1,2,2-tetrachloroethane	21.26	83	263554	0.8256 pp	bv 99
57)	4-ethyltoluene	21.73	105	476982	0.8314 pp	bv 100
58)	1,3,5-trimethylbenzene	21.82	105	414895	0.8779 pp	bv 98
59)	1,2,4-trimethylbenzene	22.54	105	397401	0.8599 pp	bv 99
60)	1,3-dclbenz	23.12	146	244775	0.8113 pp	bv 98
61)	1,4-dclbenz	23.28	146	242262	0.8120 pp	bv 98
62)	benzyl chloride	23.50	91	326879	0.8357 pp	bv 98
63)	1,2-dclbenz	23.99	146	223065	0.7786 pp	bv 98
64)	1,2,4-trichlorobenzene	27.01	180	147704	0.7375 pp	bv 99
65)	hexachlorobutadiene	27.31	225	176356	0.7799 pp	bv 96

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6076.D

: 14 Nov 2008 18:31

Vial: 4

Sample : 1.0 PPB Operator: T.WALTON : GC/MS Ins

Misc : PI=0 PF=0

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration



# Quantitation Report

(Not Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D

Acq On : 14 Nov 2008 19:16

: 2.5 PPB Sample Misc : PI=0 PF=0

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

Interna	al Standards	R.T.	QIon	Response	Conc Units Dev(	Min)
	romochloromethane	12.24	130	206387	2.5000 ppbv	0.00
28) 1,	4-difluorobenzene	13.91	114	786696	2.5000 ppbv	0.00
48) ch	lorobenzene-d5	18.98	117	655993	2.5000 ppbv	-0.02
	Monitoring Compounds					
	rr 1, bromofluorobenzen				2.47 ppbv -	0.03
Spike	d Amount 2.500 R	ange 70	- 130	) Recove	ry = 98.66%	
Target	Compounds				Qva	lue
	opylene	5.06	41	298118	1.9954 ppbv	97
3) di	chlorodifluoromethane	5.15	85	733965	2.4575 ppbv	100
	eon-114	5.50	85	780587	2.4952 ppbv	97
	loromethane	5.63	50	290671	2.4697 ppbv	100
6) vi	nyl chloride	5.92	62	311758	2.5352 ppbv	100
	3-butadiene	6.02	54	273404	2.7408 ppbv	98
	omomethane	6.74	94	238111	2.3925 ppbv	98
	loroethane	6.98	64	153443	2.5378 ppbv	99
10) tr	ichlorofluoromethane	7.56	101	723556	2.5110 ppbv	99
11) et		7.97	45	95731	2.6821 ppbv	100
	eon-113	8.64	101	544573	2.6661 ppbv	100
13) 1,	1-dichloroethene	8.65	61	493427	2.8022 ppbv	92
14) ac		8.74	43	517148	1.7478 ppbv	95
	opropanol	9.02	45	449081	3.5609 ppbv	94
	rbon disulfide	9.12	76	809800	2.5999 ppbv	100
	thylene chloride	9.55	84	245530	2.6142 ppbv	88
	ans-1,2-dichloroethene	10.08	61	456319	2.6665 ppbv	92
	thyl tert butyl ether	10.12	73	819091	2.6757 ppbv	100
20) her		10.58	57	522139	2.7994 ppbv	99
	l-diclethane	10.83	63	558041	2.6684 ppbv	100
	nyl acetate	10.88	43	860680	2.5710 ppbv	98
	outanone	11.84	43	728530	2.5954 ppbv	98
	s-1,2-dichloroethene	11.83	96	280890	2.5440 ppbv	99
	nyl acetate	11.92	43	884979	2.6001 ppbv	99
	loroform	12.35	83	571961	2.6226 ppbv	99
	rahydrofuran	12.39	72	150330	2.8196 ppbv	98
	,1-trichloroethane	12.71	97	587607	2.6943 ppbv	96
	clohexane	12.85	56	555257	2.8378 ppbv	98
	bon tetrachloride	13.01	117	586068	2.7422 ppbv	99
-	2-dichloroethane	13.33	62	403062	2.6931 ppbv	99
33) ben		13.34	78	922373	2.5742 ppbv	98
34) hep		13.72	71	339700	2.8282 ppbv	97
	chloroethene	14.40	130	361882	2.5876 ppbv	97
	-diclpropane	14.77	63	353680	2.6415 ppbv	96
	-dioxane	15.00	88	141458	4.3440 ppbv	94
	modichloromethane	15.20	83	602353	2.6620 ppbv	100
	-1,3-dichloropropene	15.95	75	484957	2.6288 ppbv	99
	ethyl-2-pentanone	16.19	43	907426	2.7288 ppbv	96
41) tol		16.56	91	1054523	2.7670 ppbv	100
	ns-1,3-dichloropropene	16.86	75	505084	2.8773 ppbv	98
43) 1,1	,2-trichloroethane	17.20	97	337110	2.5319 ppbv	93
44) tet	rachloroethene	17.53	166	462489	2.6008 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

#### Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D Vial: 4

Acq On : 14 Nov 2008 19:16 Operator: T.WALTON Sample : 2.5 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit Q	value
45)	2-hexanone	17.61	43	901958	2.8358 ppbv	95
46)	dibromochloromethane	17.93	129	552777	2.7094 ppbv	100
47)	1,2-dibromoethane	18.18	107	493387	2.6097 ppbv	100
49)	chlorobenzene	19.04	112	798351	2.6298 ppbv	100
50)	ethylbenzene	19.19	91	1386713	2.7576 ppbv	99
51)	M+P xylene	19.38	91	2182325	5.4804 ppbv	99
52)	O xylene	20.12	91	1144770	2.7677 ppbv	97
53)	styrene	20.13	104	866127	2.8211 ppbv	94
54)	bromoform	20.51	173	537128	2.7824 ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	801749	2.5427 ppbv	100
57)	4-ethyltoluene	21.73	105	1534570	2.7078 ppbv	99
58)	1,3,5-trimethylbenzene	21.83	105	1322346	2.8326 ppbv	97
59)	1,2,4-trimethylbenzene	22.54	105	1277721	2.7989 ppbv	97
60)	1,3-dclbenz	23.12	146	797098	2.6744 ppbv	97
61)	1,4-dclbenz	23.27	146	793948	2.6940 ppbv	98
62)	benzyl chloride	23.50	91	1112805	2.8802 ppbv	97
63)	1,2-dclbenz	23.99	146	726003	2.5653 ppbv	98
64)	1,2,4-trichlorobenzene	27.01	180	477087	2.4115 ppbv	99
65)	hexachlorobutadiene	27.31	225	535297	2.3963 ppbv	97

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6077.D

Acq On : 14 Nov 2008 19:16

Vial: 4
Operator: T

Sample : 2.5 PPB
Misc : PT=0 PF=0

Operator: T.WALTON Inst : GC/MS Ins Multiplr: 1.00

Misc : PI=0 PF=0
MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008

Quant Results File: 111408A.RES

Method

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration



# Quantitation Report (QT Reviewed)

Qı	uantitati	on Re	eport (Q	Γ Reviewed)	
Data File: J:\ACQUDATA\AIR1\DAACQ On: 14 Nov 2008 20:02 Sample: 5.0 PPB Misc: PI=0 PF=0 MS Integration Params: RTEINT.I Quant Time: Nov 15 9:08 2008  Quant Method: J:\ACQUDATA\A Title: TO-15 Last Update: Sat Nov 15 08:27 Response via: Initial Calibrate DataAcq Meth: 111408A  Internal Standards	ATA\11140	08\A60	078.D Op In Mu Quant Resul	Vial: 4 perator: T.WALTO nst : GC/MS : ultiplr: 1.00	ON 11-15-08 BA.RES JAWA WIT
Quant Method: J:\ACQUDATA\A Title: TO-15 Last Update: Sat Nov 15 08:27 Response via: Initial Calibrat DataAcq Meth: 111408A	\111408A 7:05 2008 ion	M (R	TE Integrat	cor)	Totalar
Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
<ol> <li>bromochloromethane</li> <li>1,4-difluorobenzene</li> <li>chlorobenzene-d5</li> </ol>	12.24	130	200909	2.5000 ppbv	0.00
System Monitoring Compounds 55) surr 1, bromofluorobenzen Spiked Amount 2.500 R	ange 70	- 13	0 Recove	ery = 100.27%	;
Target Compounds 2) propylene 3) dichlorodifluoromethane 4) freon-114 5) chloromethane 6) vinyl chloride				Qv	ralue
2) propylene	5.06	41	594738	4.0894 ppbv	97
4) freon-114	5.49	85	1550755	5.0922 ppbv	97
5) chloromethane	5.63	50	573624	5.0068 ppbv	100
<ul><li>6) vinyl chloride</li><li>7) 1,3-butadiene</li><li>8) bromomethane</li></ul>	5.92	62	625259	5.2232 ppbv	100
7) 1,3-butadiene	6.03	54	552662 469373	5.6914 ppbv	96
9) chloroethane	6.97	64	302105	4.8448 ppbv 5.1328 ppbv	99
11) ethanol 12) freon-113 13) 1,1-dichloroethene	7.96	45	106924	3.0773 ppbv	99
12) freon-113	8.64	101	1083790	5.4506 ppbv	99
14) acetone	8.73	43	1024405	3.5565 ppbv	94
13) 1,1-dichloroethene 14) acetone 15) isopropanol 16) carbon disulfide	9.01	45	450647	3.6707 ppbv	94
16) carbon disulfide	9.11	76	1599797	5.2762 ppbv	100
<pre>17) methylene chloride 18) trans-1,2-dichloroethene</pre>	9.55 10.08	84 61	488194 911230	5.3396 ppbv 5.4700 ppbv	88 91
19) methyl tert butyl ether	10.11	73		5.6429 ppbv	100
20) hexane	10.58	57		5.8277 ppbv	98
21) 1,1-diclethane	10.82	63	1109296	5.4489 ppbv	100
22) vinyl acetate 23) 2-butanone	10.87 11.83	43 43	1774315 1456598	5.4448 ppbv 5.3306 ppbv	98 97
24) cis-1,2-dichloroethene	11.83	96	571634	5.3184 ppbv	99
25) ethyl acetate	11.92	43	1758070	5.3062 ppbv	98
26) chloroform	12.34	83		5.3582 ppbv	99
<pre>27) tetrahydrofuran 29) 1,1,1-trichloroethane</pre>	12.38 12.72	72 97	313111 1179093	6.0328 ppbv 5.5006 ppbv	97 97
30) cyclohexane	12.85		1114350	5.7944 ppbv	96
31) carbon tetrachloride	13.02	117	1182620	5.6298 ppbv	100
32) 1,2-dichloroethane	13.33	62	813431	5.5297 ppbv	99
33) benzene 34) heptane	13.34 13.72	78 71	1863727 704793	5.2919 ppbv 5.9699 ppbv	99 96
35) trichloroethene	14.40	130	740148	5.3844 ppbv	97
36) 1,2-diclpropane	14.77	63	726175	5.5180 ppbv	
37) 1,4-dioxane	15.00	88	177852m	~ ~	BO TW 11-15-08
38) bromodichloromethane 39) cis-1,3-dichloropropene	15.20 15.95		1226024 1009657	5.5125 ppbv 5.5682 ppbv	- 100 - 99
40) 4-methyl-2-pentanone	16.19		1811408	5.5420 ppbv	96
41) toluene	16.56		2169827	5.7926 ppbv	99
42) trans-1,3-dichloropropene	16.86		1050232	6.0869 ppbv	97
43) 1,1,2-trichloroethane 44) tetrachloroethene	17.20 17.54	97 166	697185 959438	5.3274 ppbv 5.4893 ppbv	92 98
					~~~

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6078.D Vial: 4

Acq On : 14 Nov 2008 20:02 Operator: T.WALTON Sample : 5.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:08 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.60	43	1773396	5.6728 p	93 vdq
46)	dibromochloromethane	17.93	129	1160396	5.7866 p	
47)	1,2-dibromoethane	18.18	107	1016757	5.4717 p	pbv 100
49)	chlorobenzene	19.03	112	1638309	5.5158 p	pbv 100
50)	ethylbenzene	19.19	91	2824789	5.7412 p	pbv 98
51)	M+P xylene	19.39	91	4371717	11.2207 p	pbv 96
52)	O xylene	20.12	91	2360889	5.8338 p	pbv 96
53)	styrene	20.13	104	1800369	5.9935 p	pbv 94
		20.51	173	1160376	6.1436 p	pbv 99
56)	1,1,2,2-tetrachloroethane	21.26	83	1638833	5.3121 p	pbv 100
	4-ethyltoluene	21.73	105	3138812	5.6608 p	pbv 97
58)	1,3,5-trimethylbenzene	21.83	105	2695598	5.9017 p	pbv 96
59)	1,2,4-trimethylbenzene	22.54	105	2634401	5.8982 p	pbv 96
60)	1,3-dclbenz	23.12	146	1662189	5.7000 p	98 vdq
61)	1,4-dclbenz	23.28	146	1669900	5.7913 p	pbv 98
62)	benzyl chloride	23.50	91	2349543	6.2154 p	pbv 96
63)	1,2-dclbenz	23.99	146	1528887	5.5214 p	pbv 98
64)	1,2,4-trichlorobenzene	27.01	180	1047908	5.4137 p	pbv 99
65)	hexachlorobutadiene	27.31	225	1072484	4.9071 p	pbv 96

Vial: 4 : 14 Nov 2008 20:02

Operator: T.WALTON : 5.0 PPB : GC/MS Ins Sample Inst : PI=0 PF=0 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: temp.res

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

: TO-15 Title

Last Update : Sat Nov 15 08:48:57 2008 Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.32min 0.0043ppbv

response 139

Exp% Act% 100 100 88.00 58.00 91.80 84.89 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Data File: J:\ACQUDATA\AIR1\DATA\111408\A6078.D

 Acq On : 14 Nov 2008 20:02
 Operator: T.WALTON

 Sample : 5.0 PPB
 Inst : GC/MS Inst

Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P Ouant Time: Nov 15 9:08 2008

Quant Results File: temp.res

Vial: 4

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.00min 5.5567ppbv m

response 177852

ion Exp% Act%
88.00 100 100
58.00 91.80 0.07#
0.00 0.00 0.00
0.00 0.00

Data File : J:\ACOUDATA\AIR1\DATA\111408\A6078.D

Aca On : 14 Nov 2008 20:02

Vial: 4 Operator: T.WALTON Inst : GC/MS Ins

Sample : 5.0 PPB Misc : PI=0 PF=0

Multiplr: 1.00

MS Integration Params: RTEINT.P Ouant Time: Nov 15 9:08 2008

Quant Results File: 111408A.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Vial: 4
Operator: T.WALTON
Inst : GC/MS Ins Acq On : 14 Nov 2008 20:50 Sample : 7.5 PPB Misc : PI=0 PF=0

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008 Response via : Initial Calibration

DataAcq Meth: 111408A

Inte	rnal Standards	R.T.	QIon	Response	Conc Uni	ts De	v(Min)	
1)	bromochloromethane	12.24	130	203631	2.5000	ppbv	0.00	
28)	bromochloromethane 1,4-difluorobenzene	13.91	114	777474	2.5000	ppbv	0.00	
	chlorobenzene-d5	18.98	117	657464	2.5000	ppbv	-0.02	
Syst	em Monitoring Compounds							
55)	surr 1, bromofluorobenze	ene 21.07	174	382580	2.56 p	pbv	-0.03	
Sp	iked Amount 2.500	Range 70	- 130) Recove	ery = 1	02.499	ł .	
Targ	et Compounds						/alue	
2)	propylene	5.05	41	888654	6.0286	ppbv	97	
3)	dichlorodifluoromethane	5.15	85	2156474	7.3182	ppbv	99	
4)	freon-114 chloromethane vinyl chloride 1,3-butadiene	5.50	85	2306292 858270 937718 829673 704399	7.4720	ppbv	96	
5)	chloromethane	5.62	50	858270	7.3911	ppbv	99	
6)	vinyl chloride	5.92	62	937718	7.7286	ppbv	100	
7)	1,3-butadiene	6.03	54	829673	8.4299	ppbv	97	
8)	bromomethane	6.74	94	704399	7.1735	ppbv	100	
9)	chloroethane trichlorofluoromethane ethanol freon-113	6.98	64	456054	7.6448	ppbv	100	
10)	trichlorofluoromethane	7.56	101	2113406	7.4335	ppbv	99	
11)	ethanol	7.96	45	193140	5.4844	ppbv	99	
12)	freon-113	8.64	101	1627935	8.0777	ppbv	98	
13)	1,1-dichloroethene acetone isopropanol carbon disulfide methylene chloride	8.64	61	1474279	8.4858	ppbv	89	
14)	acetone	8.74	43	1519164	5.2037	ppbv	93	
15)	isopropanol	9.01	45	926888	7.4490	ppbv	92	
16)	carbon disulfide	9.12	76	2387015	7.7672	ppbv	100	
17)	methylene chloride	9.55	84	745181	8.0415	ppbv	86	
18)	trans-1,2-dichloroethene methyl tert butyl ether hexane	10.08	61	1367803 2525075 1592430	8.1010	vdqq	90	
19)	methyl tert butyl ether	10.11	73	2525075	8.3602	vdqq	99	
20)	hexane	10.57	57	1592430	8.6532	vdaa	98	
	1 1-diclethane	10.83	63	1663844	8.0636	vdag	99	
	vinyl acetate	10.87	43	2661051	8.0567	vdqq	97	
23)	2-butanone	11.84	43	2194058				
24)	2-butanone cis-1,2-dichloroethene	11.82	96	865407	7.9221	vdaa	100	
25)	ethyl acetate	11.92	43	2574156	7.6654	vdaa	96	
26)	chloroform	12.34	83	1709793	7.9460	ppby	99	
	tetrahydrofuran	12.38	72	471588	8.9647			
29)	1.1.1-trichloroethane	12.72	97	1770818	8.2159	ppby	99 97	
30)	1,1,1-trichloroethane cyclohexane	12.85	56	471588 1770818 1677928	8.6773	ppby	97 96 100	
31)	carbon tetrachloride	13.01	117	1791754	8.4830	pphy	100	
	1,2-dichloroethane	13.33	62	1219837	8.2472	FF	100	
	benzene	13.34	78	2775457	7.8377		100	
-	heptane	13.72	71	1063708	8.9609		96	
	trichloroethene	14.40	130	1124932	8.1390		97	
	1,2-diclpropane	14.77	63	1091440	8.2483			
	1,4-dioxane	15.00	88	335138m	10.4138		10 74	111-15-08
	bromodichloromethane	15.20		1845861	8.2542		(2)	
	cis-1,3-dichloropropene	15.95		1524060	8.3593		98	
	4-methyl-2-pentanone	16.19		2694350	8.1984		94	
	toluene	16.56		3226001	8.5652		98	
	trans-1,3-dichloropropene			1587640	9.1514		97	
	1,1,2-trichloroethane	17.20		1051241	7.9890		92	
	tetrachloroethene	17.53		1465095			99	
441	Certaciirotoeciieiie	#1.D3	700	7402033	8.3366	۷ بدیارج	フフ	

(#) = qualifier out of range (m) = manual integration

A6079.D 111408A.M Sat Nov 15 09:10:27 2008 OFFLINE

Quantitation Report (QT Reviewed)

Vial: 4

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Acq On : 14 Nov 2008 20:50 Operator: T.WALTON Sample : 7.5 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
45)	2-hexanone	17.61	43	2605557	8.2892	opbv	92
46)	dibromochloromethane	17.93	129	1768046	8.7688	pbv	99
47)	1,2-dibromoethane	18.18	107	1538372	8.2335 p	pbv	99
49)	chlorobenzene	19.03	112	2459216	8.0827 p	pbv	99
50)	ethylbenzene	19.19	91	4174631	8.2829 p	pbv	96
51)	M+P xylene	19.39	91	6345008	15.8982 p	pbv	94
52)	0 xylene	20.13	91	3513211	8.4748 p	pbv	95
53)	styrene	20.13	104	2704595	8.7895 g	vdqq	95
54)	bromoform	20.51	173	1788004	9.2414 p	pbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	2462549	7.7922 p	pbv	99
57)	4-ethyltoluene	21.72	105	4654069	8.1939 p	pbv	95
58)	1,3,5-trimethylbenzene	21.83	105	4029644	8.6127 g	pbv	94
59)	1,2,4-trimethylbenzene	22.54	105	3946207	8.6251 p	vdqq	95
60)	1,3-dclbenz	23.12	146	2540841	8.5059 p	pbv	99
61)	1,4-dclbenz	23.28	146	2551530	8.6384 r		98
62)	benzyl chloride	23.50	91	3568040	9.2143 p		94
63)	1,2-dclbenz	23.99	146	2331398	8.2194 p	pbv	98
	1,2,4-trichlorobenzene	27.02	180	1649891	8.3210 p		99
65)	hexachlorobutadiene	27.31	225	1649859	7.3693 p	pbv	95

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Acg On : 14 Nov 2008 20:50

Vial: 4

Operator: T.WALTON
Inst : GC/MS Ins

Sample Misc : 7.5 PPB

Multiplr: 1.00

Misc : PI=0 PF=0 MS Integration Params: RTEINT.P

Ouant Time: Nov 15 8:47 2008

Quant Results File: temp.res

Method

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title

: TO-15

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

(37) 1,4-dioxane

15.36min 0.0044ppbv

response 141

 Ion
 Exp%
 Act%

 88.00
 100
 100

 58.00
 91.80
 85.82

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D

Vial: 4
Operator: T.WALTON
Inst : GC/MS Ins

Sample : 7.5 PPB Inst : GC/Ms Misc : PI=0 PF=0 Multiplr: 1.00

MS Integration Params: RTEINT.P Ouant Time: Nov 15 9:10 2008

Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Acq On

Last Update : Sat Nov 15 08:48:57 2008
Response via : Multiple Level Calibration

: 14 Nov 2008 20:50

(37) 1,4-dioxane

15.00min 10.4138ppbv m

response 335138

 ion
 Exp%
 Act%

 88.00
 100
 100

 58.00
 91.80
 0.04#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Sall Sall Sall was

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6079.D Acq On

Vial: 4 : 14 Nov 2008 20:50

Sample : 7.5 PPB Misc : PI=0 PF=0

Operator: T.WALTON : GC/MS Ins Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 9:10 2008 Quant Results File: 111408A.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:48:57 2008 Response via : Initial Calibration

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D Acq On : 14 Nov 2008 21:41

Sample : 10.0 PPB Misc : PI=0 PF=0

MS Integration Params: RTEINT.P Quant Time: Nov 15 8:47 2008

Vial: 4

Operator: T.WALTON Inst : GC/MS Ins

1W5.08.

Multiplr: 1.00

Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15
Last Update : Sat Nov 15 08:27:05 2008
Response via : Initial Calibration

DataAcq Meth: 111408A

Internal Standards		QIon	Response	Conc Units Dev(Min)
1) bromochloromethane		770	200515	0 5000	
28) 1,4-difluorobenzene	12.24 13.91			2.5000 ppbv 2.5000 ppbv	0.00
48) chlorobenzene-d5	18.98			2.5000 ppbv 2.5000 ppbv	
40) CHI OLOBOHIZOHO (CO	30.50	J. J., /	,02230	2.3000 pppv	-0.02
System Monitoring Compounds					
55) surr 1, bromofluorobenzer	ne 21.07	174	414387	2.60 ppbv -	0.03
		- 13	0 Recove	— -	
Target Compounds				Qva.	lue
<pre>2) propylene</pre>	5.06			7.7200 ppbv	97
 dichlorodifluoromethane 	5.16	85	2868277	9.4603 ppbv	99
4) freon-114	5.50	85		9.6239 ppbv	96
5) chloromethane	5.62	50	1119550	9.3704 ppbv	99
6) vinyl chloride	5.91	62	1150024	9.2122 ppbv	99
7) 1,3-butadiene	6.02	54	987347	9.7501 ppbv	92
8) bromomethane	6.73	94	935901	9.2633 ppbv	99
9) chloroethane	6.97		600865	9.7893 ppbv	99
10) trichlorofluoromethane 11) ethanol	7.55	101		9.4598 ppbv	99
12) freon-113	8.03 8.64	45	206458	5.6978 ppbv	99
13) 1,1-dichloroethene	8.64	101 61	2176384 1939274	10.4957 ppbv	98
14) acetone	8.75	43	2050171	10.8487 ppbv 6.8253 ppbv	88
15) isopropanol	9.06	45	1041423	8.1344 ppbv	93 92
16) carbon disulfide	9.11	76	3141178	9.9341 ppbv	99
17) methylene chloride	9.55	84	996598	10.4524 ppbv	87
18) trans-1,2-dichloroethene	10.08	61	1820858	10.4814 ppbv	89
19) methyl tert butyl ether	10.11	73	3402972	10.9503 ppbv	99
20) hexane	10.57	57	2123575	11.2152 ppbv	98
21) 1,1-diclethane	10.83	63	2231424	10.5105 ppbv	99
22) vinyl acetate	10.87	43	3588511	10.5595 ppbv	97
23) 2-butanone	11.84	43	2869593	10.0702 ppbv	96
24) cis-1,2-dichloroethene	11.82	96	1168814	10.4277 ppbv	100
25) ethyl acetate	11.92	43	3427141	9.9187 ppbv	96
26) chloroform	12.34	83	2297201	10.3760 ppbv	99
27) tetrahydrofuran	12.39	72	637081	11.7705 ppbv	99
29) 1,1,1-trichloroethane	12.72	97	2375207	10.3390 ppbv	97
30) cyclohexane	12.85	56	2243279	10.8839 ppbv	95
 carbon tetrachloride 	13.01	117	2412020	10.7139 ppbv	100
32) 1,2-dichloroethane	13.33	62	1635747	10.3756 ppbv	100
33) benzene	13.34	78		9.8554 ppbv	100
34) heptane	13.72	71	1430097	11.3029 ppbv	95
35) trichloroethene	14.40	130	1522586	10.3352 ppbv	97
36) 1,2-diclpropane	14.77	63	1478843	10.4853 ppbv	97
37) 1,4-dioxane	15.02	88	332000	9.6787 ppbv	91
38) bromodichloromethane	15.20	83	2489869	10.4459 ppbv	99
39) cis-1,3-dichloropropene	15.95	75	2059619	10.5986 ppbv	97
40) 4-methyl-2-pentanone	16.19	43	3507186	10.0122 ppbv	93
41) toluene	16.56	91	4317744	10.7553 ppbv	97
42) trans-1,3-dichloropropene	16.87	75		11.6413 ppbv	96
43) 1,1,2-trichloroethane	17.20 17.54		1431449	10.2061 ppbv	92
44) tetrachloroethene			1995743	10.6543 ppbv	99

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D Vial: 4

Acq On : 14 Nov 2008 21:41 Operator: T.WALTON Sample : 10.0 PPB Misc : PI=0 PF=0 Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 15 8:47 2008 Quant Results File: 111408A.RES

Quant Method : J:\ACQUDATA\A...\111408A.M (RTE Integrator)

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

DataAcq Meth: 111408A

	Compound	R.T.	QIon	Response	Conc Unit	: Qva	lue
45)	2-hexanone	17.61	43	3361268	10.0325	ppbv	90
46)	dibromochloromethane	17.93	129	2395252	11.1452	ppbv	99
47)	1,2-dibromoethane	18.18	107	2093871	10.5140	ppbv	100
49)	chlorobenzene	19.03	112	3309563	10.1832	ppbv	98
50)	ethylbenzene	19.19	91	5560956	10.3292	ppbv	94
51)	M+P xylene	19.40	91	8208900	19.2554	ppbv	91
52)	0 xylene	20.12	91	4695473	10.6037	ppbv	94
53)	styrene	20.13	104	3649391	11.1029	ppbv	96
54)	bromoform	20.51	173	2439230	11.8026	ppbv	99
56)	1,1,2,2-tetrachloroethane	21.26	83	3296215	9.7644	ppbv	98
57)	4-ethyltoluene	21.73	105	6117714	10.0832	ppbv	93
58)	1,3,5-trimethylbenzene	21.83	105	5335405	10.6756	ppbv	92
59)	1,2,4-trimethylbenzene	22.54	105	5198743	10.6373	ppbv	92
60)	1,3-dclbenz	23.13	146	3430814	10.7521	ppbv	99
61)	1,4-dclbenz	23.28	146	3446871	10.9247	ppbv	98
62)	benzyl chloride	23.50	91	4734123	11.4452	ppbv	92
63)	1,2-dclbenz	24.00	146	3162511	10.4378	ppbv	98
64)	1,2,4-trichlorobenzene	27.02	180	2347086	11.0815		100
65)	hexachlorobutadiene	27.31	225	2198567	9.1933	ppbv	95

Service Calculate Report

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6080.D

Aca On : 14 Nov 2008 21:41 Vial: 4

Sample : 10.0 PPB Misc

Operator: T.WALTON : GC/MS Ins Multiplr: 1.00

: PI=0 PF=0 MS Integration Params: RTEINT.P

Ouant Time: Nov 15 8:47 2008

Ouant Results File: 111408A.RES

: J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator) Method

Title : TO-15

Last Update : Sat Nov 15 08:27:05 2008

Response via : Initial Calibration

Time > 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

新物

Evaluace Continuing Calibration Report

Vial: 15

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D Acq On : 5 Feb 2009 12:21 Operator: T.WALTON Sample : CCV Misc : 500ML Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15 Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I	bromochloromethane	1.000	1.000	0.0	99	0.00
2	propylene	4.526	2.979	34.2#		0.00
3	dichlorodifluoromethane	3.797	3.454	9.0	90	0.00
4	freon-114	2.866	2.555	10.9	87	0.00
5	chloromethane	3.562	2.773	22.2	76	0.00
б	vinyl chloride	3.085	2.568	16.8	79	0.00
7	1,3-butadiene	2.890	2.298	20.5	75	0.00
8	bromomethane	1.560	1.511	3.1	95	0.00
9	chloroethane	1.470	1.260	14.3	84	0.00
10	trichlorofluoromethane	3.290	3.332	-1.3	98	0.00
11	ethanol	1.014	0.925	8.8	119	0.00
12	freon-113	1.709	1.649	3.5	94	0.00
13	1,1-dichloroethene	2.849	2.351	17.5	78	0.00
14	acetone	5.365	4.443	17.2	82	0.00
15	isopropanol	3.148	2.481	21.2	113	0.00
16	carbon disulfide	6.412	5.745	10.4	88	0.00
17	methylene chloride	1.668	1.497	10.3	88	0.00
18	trans-1,2-dichloroethene	2.769	2.343	15.4	81	0.00
19	methyl tert butyl ether	5.428	4.475	17.6	77	0.00
20	hexane	3.449	2.836	17.8	76	0.00
21	1,1-diclethane	3.314	2.858	13.8	83	0.00
22	vinyl acetate	6.070	4.813	20.7	71	0.00
23	2-butanone	5.785	4.879	15.7	81	0.00
24	cis-1,2-dichloroethene	1.679	1.512	9.9	85	0.00
25	ethyl acetate	5.804	4.781	17.6	78	0.00
26	chloroform	2.830	2.675	5.5	91	0.00
27	tetrahydrofuran	1.159	1.021	11.9	78	0.00
28 I	1,4-difluorobenzene	1.000	1.000	0.0	93	0.00
29	1,1,1-trichloroethane	0.591	0.615	-4.1	92	0.00
30	cyclohexane	0.853	0.756	11.4	77	0.00
31	carbon tetrachloride	0.503		-15.3	100	0.00
32	1,2-dichloroethane	0.547	0.547	0.0	90	0.00
33	benzene	1.559	1.498	3.9	85	0.00
34	heptane	0.442	0.408	7.7	79	0.00
35	trichloroethene	0.385		4.2	86	0.00
36	1,2-diclpropane	0.416		9.6	78	0.00
37	1,4-dioxane	0.170	0.192	-12.9	126	0.00
38	bromodichloromethane	0.499	0.192	-3.8	91	0.00
	cis-1,3-dichloropropene	0.601		-3.6 8.7		0.00
39			1.086	5.7		0.00
40	4-methyl-2-pentanone				81	
41	toluene	1.457		0.1	85	0.00
42	trans-1,3-dichloropropene		0.538	3.6	80	0.00
43	1,1,2-trichloroethane	0.347		-0.3	88	0.00
44	tetrachloroethene		0.397	-2.3	91	0.00
45	2-hexanone	1.112		8.5	78	0.00
46	dibromochloromethane		0.396	-11.9	95	0.00
47	1,2-dibromoethane	0.364	0.356	2.2	88	0.00
48 I	chlorobenzene-d5	1.000	1.000	0.0	101	0.00
~ ~ ~ ~ ~ ~						

(#) = Out of Range

Evaluate Continuing Calibration Report

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D

Acq On : 5 Feb 2009 12:21 Sample : CCV Misc : 500ML Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)
Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
49	chlorobenzene	1.158	1.069	7.7	86	0.00
50	ethylbenzene	2.081	1.922	7.6	84	0.00
51	M+P xylene	1.650	1.572	4.7	87	0.00
52	O xylene	1.733	1.626	6.2	84	0.00
53	styrene	1.333	1.253	6.0	84	0.00
54	bromoform	0.343	0.394	-14.9	98	0.00
55 S	surr 1, bromofluorobenzene	0.382	0.438	-14.7	115	0.00
56	1,1,2,2-tetrachloroethane	0.842	0.706	16.2	84	0.00
57	4-ethyltoluene	2.115	1.920	9.2	82	0.00
58	1,3,5-trimethylbenzene	1.739	1.580	9.1	82	0.00
59	1,2,4-trimethylbenzene	1.703	1.531	10.1	80	0.00
60	1,3-dclbenz	0.910	0.808	11.2	82	0.00
61	1,4-dclbenz	0.898	0.809	9.9	81	0.00
62	benzyl chloride	1.434	1.220	14.9	75	0.00
63	1,2-dclbenz	0.863	0.754	12.6	80	0.00
64	1,2,4-trichlorobenzene	0.488	0.371	24.0	71	0.00
65	hexachlorobutadiene	0.384	0.310	19.3	85	0.00

Qualititation Report (Nøt kevlewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D
Acq On : 5 Feb 2009 12:21
Sample : CCV
Misc : 500ML Operator: T.WALTON Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: LSCINT2.P Quant Time: Feb 5 12:55 2009

Quant Results File: 111408B.RES

Vial: 15

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration

DataAcq Meth: 111408B

Internal Standards		QIon	Response	Conc Units De	ev(Min)
1) bromochloromethane	12.23	130	199630	13.2200 ng	0.00
28) 1,4-difluorobenzene					0.00
48) chlorobenzene-d5	18.97	117	646352	12.0200 ng	
				•	
System Monitoring Compounds					
55) surr 1, bromofluorobenzen					
Spiked Amount 17.880 R	ange 70	- 130) Recove	ery = 114.73	*
Target Compounds				~	value
2) propylene	5.05	41	398549	5.8319 ng	99
3) dichlorodifluoromethane	5.15		1302050	22.7074 ng	99
4) freon-114	5.50		1347874	-	91
5) chloromethane	5.62		436524	8.1145 ng	99
6) vinyl chloride			495475		
7) 1,3-butadiene				9.4936 ng	96
8) bromomethane	6.74	94	447152		99
9) chloroethane	6.97	64	447152 253329	11.4116 ng	100
10) trichlorofluoromethane	7.55	101	1398619	28.1477 ng	100
11) ethanol	7.96	45	127579	8.3335 ng	98
12) freon-113	8.64	101	1020612	39.5459 ng	97
<pre>13) 1,1-dichloroethene</pre>	8.64	61	766714	17.8202 ng	87
14) acetone	8.74		836302	10.3220 ng	94
15) isopropanol			510999		88
16) carbon disulfide	9.11		1404139		100
17) methylene chloride	9.54	84	427806	16.9840 ng	# 78
18) trans-1,2-dichloroethene			736233	17.6071 ng	87
19) methyl tert butyl ether		73	1290843		98
20) hexane	10.57		807244		97
21) 1,1-diclethane	10.82	63	925356	18.4926 ng	99
22) vinyl acetate	10.87		1266166	13.8147 ng	96
23) 2-butanone	11.84	43	1172854	13.4259 ng	96
24) cis-1,2-dichloroethene	11.82	96 43	483996	-	100
25) ethyl acetate	11.92	43 83	1365202	15.5765 ng 24.2169 ng	96
26) chloroform 27) tetrahydrofuran	12.34 12.39	72	1034980 243209	13.8936 ng	99 99
29) 1,1,1-trichloroethane	12.71			29.7587 ng	97
30) cyclohexane	12.84		862281	16.3215 ng	92
31) carbon tetrachloride			1186914	38.0877 ng	99
32) 1,2-dichloroethane	13.32		733230	21.6199 ng	100
33) benzene	13.34		1586196		
34) heptane	13.71	71	554435	_	96
35) trichloroethene			638097		96
36) 1,2-diclpropane	14.76	63	569843	22.0864 ng	99
37) 1,4-dioxane	15.00	88	569843 223328	21.1898 ng	89
38) bromodichloromethane	15.19				100
39) cis-1,3-dichloropropene	15.94	75		21.1362 ng	97
40) 4-methyl-2-pentanone	16.18	43	1474856	20.6611 ng 20.3134 ng	95
41) toluene	16.18 16.55	91	1834651	20.3134 ng	99
42) trans-1,3-dichloropropene	16.85	75	839137	24.2786 ng	97
43) 1,1,2-trichloroethane			611260		91
44) tetrachloroethene			875402	36.3880 ng	96
					···

^{(#) =} qualifier out of range (m) = manual integration A6456.D 111408B.M Thu Feb 05 12:56:01 2009 OFFLINE

Quantitation Report (Not Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D Vial: 15

Acq On : 5 Feb 2009 12:21
Sample : CCV
Misc : 500ML Operator: T.WALTON
Inst : GC/MS Ins

Multiplr: 1.00 MS Integration Params: LSCINT2.P

Quant Time: Feb 5 12:55 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration

DataAcq Meth : 111408B

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.60	43	1381715	20.0431 ng	94
46)	dibromochloromethane	17.93	129	1098315	49.9985 ng	100
47)	1,2-dibromoethane	18.17	107	889939	39.4040 ng	100
49)	chlorobenzene	19.03	112	1401498	22.5097 ng	99
50)	ethylbenzene	19.18	91	2377966	21.2475 ng	98
51)	M+P xylene	19.38	91	3815949	43.0095 ng	97
52)	O xylene	20.11	91	1993027	21.3902 ng	97
53)	styrene	20.12	104	1506557	21.0246 ng	95
54)	bromoform	20.50	173	1138175	61.7927 ng	100
56)	1,1,2,2-tetrachloroethane	21.26	83	1368520	30.2294 ng	99
	4-ethyltoluene	21.72	105	2562398	22.5289 ng	97
58)	1,3,5-trimethylbenzene	21.82	105	2212658	23.6597 ng	97
59)	1,2,4-trimethylbenzene	22.53	105	2104124	22.9814 ng	97
60)	1,3-dclbenz	23.11	146	1357036	27.7465 ng	98
61)	1,4-dclbenz	23.27	146	1360323	28.1750 ng	97
62)	benzyl chloride	23.49	91	1765221	22.8976 ng	96
63)	1,2-dclbenz	23.98	146	1229976	26.5060 ng	97
64)	1,2,4-trichlorobenzene	27.00	180	747908	28.4737 ng	99
65)	hexachlorobutadiene	27.30	225	907658	43.9486 ng	93

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6456.D

Vial: 15

Acq On : 5 Feb 2009 12:21

Operator: T.WALTON : GC/MS Ins Inst

Sample : CCV Misc : 500ML

MS Integration Params: LSCINT2.P

Multiplr: 1.00

Quant Time: Feb 5 12:55 2009

Quant Results File: 111408B.RES

Method Title : TO-15

: J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

VOLATILE ORGANICS RAW QC DATA

Vial: 1

Data File : J:\ACQUDATA\AIR1\DATA\111408\A6069.D

Acq On : 14 Nov 2008 12:40 Operator: T.WALTON : TUNE Sample Inst : GC/MS Ins

: PI=0 PF=0 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Method : J:\ACQUDATA\AIR1\METHODS\111408A.M (RTE Integrator)

Title

143 155

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

AutoFind: Scans 2649, 2650, 2651; Background Corrected with Scan 2637

106 117 128

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	19.2	41519	PASS
75	95	30	66	49.3	106797	PASS
95	95	100	100	100.0	216683	PASS
96	95	5	9	6.8	14675	PASS
173	174	0.00	2	0.5	852	PASS
174	95	50	120	75.7	163989	PASS
175	174	4	9	7.2	11771	PASS
176	174	93	101	97.3	159531	PASS
177	176	5	9	6.7	10693	PASS
	·					

50000

m/z->

50

Vial: 14

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6455.D

Acq On : 5 Feb 2009 11:36 Operator: T.WALTON Sample : TUNE Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: LSCINT2.P

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

AutoFind: Scans 2648, 2649, 2650; Background Corrected with Scan 2636

***************************************	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
	50	95	8	40	19.3	35893	PASS
1	75	95	30	66	50.0	92909	PASS
	95	95	100	100	100.0	185643	PASS
	96	95	5	9	6.6	12296	PASS
į	173	174	0.00	2	0.9	1276	PASS
	174	95	50	120	80.3	149056	PASS
	175	174	4	9	6.8	10156	PASS
	176	174	93	101	95.6	142507	PASS
j	177	176	5	9	6.6	9343	PASS

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Haley & Aldrich, Incorporated Client: Project:

Sample Matrix:

Sample Name: Method Blank RQ0900784-02 Lab Code:

Coopervision/70665-014 Airs

Service Request: R0900538 Date Collected: NA Date Received: NA

Analytical Method: TO-15 **Date Analyzed: 2/5/09 1532**

CAS#	Analyte Name	Sample Amount mL	Result μg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	0.013	0.28	0.013	0.0052	0.11	0.0052	U
75-00-3	Chloroethane	1000	0.016	0.58	0.016	0.0059	0.22	0.0059	U
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	0.011	0.44	0.011	0.0027	0.11	0.0027	U
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	0.021	0.45	0.021	0.0052	0.11	0.0052	U
71-55-6	1, 1, 1-Trichloroethane (TCA)	1000	0.021	0.60	0.021	0.0038	0.11	0.0038	U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	108	70-130	2/5/09 1532	

Quantitation Report

(Nøf Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6458.D

Acq On : 5 Feb 2009 15:32

Vial: 1 Operator: T.WALTON

Sample : METBLK

RG0900784-02 Inst : GC/MS Ins Multiplr: 1.00

Misc : 1000ML UZ AIR DIRECT MS Integration Params: LSCINT2.P

Quant Time: Feb 5 16:06 2009

Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

: TO-15 Title

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Units De	ev(Min)
1) bromochloromethane	12.23	130	194920	13.2200 ng	-0.01
28) 1,4-difluorobenzene	13.90	114	691141	11.6400 ng	0.00
48) chlorobenzene-d5	18.97	117	613865	12.0200 ng	-0.01
System Monitoring Compounds					
55) surr 1, bromofluorobenzene	21.07	174	375876	19.27 ng	-0.01
Spiked Amount 17.880 Ra	ange 70	- 130		_	
Target Compounds				C	Qvalue
Target Compounds 3) dichlorodifluoromethane	5.16	85	4059	0.0725 ng	Ovalue
	5.16 8.01		4059 ——552	-	92 N
3) dichlorodifluoromethane				0.0725 ng	92 NT # 37 100 2 T
3) dichlorodifluoromethane 11) ethanol	8.01	45	552	0.0725 ng 	92 NT # 37 100 2 T
3) dichlorodifluoromethane 11) ethanol 14) acetone	8.01 8.77	45 43	552 9356	0.0725 ng 0.0369 ng 0.1183 ng	92 NT # 37 100 2 T
3) dichlorodifluoromethane 11) ethanol 14) acetone 17) methylene chloride	8.01 8.77 9.53	45 43 84	552 9356 484	0.0725 ng 0.0369 ng 0.1183 ng 0.0197 ng	92 NT 37 100 2 T 94 T
3) dichlorodifluoromethane 11) ethanol 14) acetone 17) methylene chloride 23) 2-butanone	8.01 8.77 9.53 11.88	45 43 84 43	552 9356 484 857	0.0725 ng 0.0369 ng 0.1183 ng 0.0197 ng 0.0100 ng	92 NT 37 100 LT 94 T # 55

All NT progress 42.

1/3.

Vial: 1

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6458.D

: 5 Feb 2009 15:32

Operator: T.WALTON Sample : METBLK Inst : GC/MS Ins : 1000ML UZ AIR DIRECT Multiplr: 1.00

Misc MS Integration Params: LSCINT2.P

Quant Time: Feb 5 16:06 2009 Quant Results File: 111408B.RES

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Haley & Aldrich, Incorporated Client: Coopervision/70665-014 Airs Project:

Sample Matrix:

Lab Control Sample Sample Name: RQ0900784-01 Lab Code:

Service Request: R0900538 Date Collected: NA Date Received: NA

Analytical Method: TO-15

Date Analyzed: 2/5/09 1306

CAS#	Analyte Name	Sample Amount mL	Result µg/m³	MRL μg/m³	MDL μg/m³	Result ppbv	MRL ppbv	MDL ppbv	Data Qualifier
75-01-4	Vinyl Chloride	1000	5,40	0.28	0.013	2,11	0,11	0.0052	
75-00-3	Chloroethane	1000	5.86	0.58	0.016	2.22	0.22	0.0059	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1000	8.54	0.44	0.011	2.16	0.11	0.0027	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1000	9.32	0.45	0.021	2.30	0.11	0.0052	
71-55-6	1,1,1-Trichloroethane (TCA)	1000	15.2	0.60	0.021	2.78	0.11	0.0038	

G Name	0/ m	Control	Date	NT
Surrogate Name	%Rec	Limits	Analyzed	Note
4-Bromofluorobenzene	113	70-130	2/5/09 1306	

Form 1A

SuperSet Reference: 09-0000094238 rev 00

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D Vial: 16

Acq On : 5 Feb 2009 13:06 Operator: T.WALTON RQ0900784-0/ Inst : GC/MS Ins Multiplr: 1.00 Sample : LCS Misc : 250ML

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 14:12 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)
Title : TO-15
Last Update : Thu Jan 15 15:59:15 2009
Response via : Initial Calibration
DataAcq Meth : 111408B

Internal Standards	R.T.	QIon	Response	Conc Uni	ts Dev	(Min)	
1) bromochloromethane	12.23	130	197552	13.2200	ng	0.00	
28) 1,4-difluorobenzene 48) chlorobenzene-d5	13.90	114	711491	11.6400	ng	0.00	
48) chlorobenzene-d5	18.98	117	619207	12.0200	ng	0.00	
System Monitoring Compounds							
55) surr 1, bromofluorobenzene	21.07	174	397635	20.21 n	g	0.00	
Spiked Amount 17.880 Ra	.nge 70	- 130	Recove	ry = 1	13.05%		
Target Compounds 2) propylene 3) dichlorodifluoromethane 4) freon-114 5) chloromethane 6) vinyl chloride 7) 1,3-butadiene 8) bromomethane 9) chloroethane 10) trichlorofluoromethane 11) ethanol 12) freon-113 13) 1,1-dichloroethene 14) acetone 15) isopropanol 16) carbon disulfide 17) methylene chloride 18) trans-1,2-dichloroethene 19) methyl tert butyl ether 20) hexane 21) 1,1-diclethane 22) vinyl acetate 23) 2-butanone 24) cis-1,2-dichloroethene 25) ethyl acetate					Ov.	alue	
2) propylene	5.05	41	198609	2.9368	nq	99	
3) dichlorodifluoromethane	5.15	85	663335	11.6901	nq	100	
4) freon-114	5.49	85	687865	16.0628	ng	92	
5) chloromethane	5.62	50	218929	4.1124	na	100	
6) vinvl chloride	5.92	62	249116	5,4030	na	99	
7) 1 3-butadiene	6.03	54	203346	4.7081	na	96	
8) bromomethane	6.74	94	227448	9.7544	na	97	
9) chloroethane	6.97	64	128737	5 8602	na	100	
10) trichlorofluoromethane	7 56	101	713108	14 5025	na	99	
11) othanol	7 97	45	71839	4 7419	na a	97	
12) from 113	8 64	101	507989	19 8902	no	97	
12) 1 1 dichloroethere	8 64	61	363707	9 5423	ng 119	88	
14) agotopo	8 74	43	400313	4 9928	na my	95	
14) deecone	0.74	45	400212	5 2045	ng ng	20	
15) Isopropalior	9.03	76	692629	7.2042	119	0.0	سب ا
15) Carbon disurride	2.11	0.4	002030	7.1230	119		TW 2/5.
1/) methyrene chroride	10 00	∠1	210131111	0.4300	119	47	
18) trans-1,2-dichioloethene	10.00	72	240130	0.3030	ng	100	
19) methyl tert butyl ether	10.11	/ J	250555	7.3042	119	100	
20) nexane	10.57	2 / 2 2	303321 46163E	7.1//5	ng	100	
21) 1,1-dictethane	10.02	43	401033	2.3443 6 0401	11g	100	
22) Vinyi acetate	11 04	4:3	62346I	6.5401	119	90 06	
23) 2-butanone	11.04	4.3	270270	0.3301	119	700	
24) cis-1,2-dichioroethene	11.02	90 43	231992 C00E03	9.44/3	ng	100	
25) etnyl acetate	11.92	4.3	600503	70.9236	119	97	
26) Chioroform	12.34	0.3	310313	72.2000	119	22	
2/) tetranydroluran	12.33	07	103306	0.3434	ng	23	
29) 1,1,1-trichioroethane	12.71	<i>31</i>	340333	7 6730	ng	97	
24) cis-1,2-dichloroethene 25) ethyl acetate 26) chloroform 27) tetrahydrofuran 29) 1,1,1-trichloroethane 30) cyclohexane 31) carbon tetrachloride 32) 1,2-dichloroethane 33) benzene	12.04	117	507677	10 2002	ng	100	
31) carpon tetrachioride	T3.UT	11/	366760	10.2003	ng	100	
32) 1,2-dichioloethane	13.33	70	300703 777301	10.9639	11 9	100	
33) penzene	13.34	70	259727	0.1000	113	97	
34) neptane	13.11	7 1,	233121	9.0101	119	96	
35) trichloroethene	14.39	130	306016	12.9930			
36) 1,2-diclpropane	14.76	6.3	276850	10.8786		99	
37) 1,4-dioxane	15.00		106332	10.2284	_	91	
38) bromodichloromethane	15.19		553571		***	100	
39) cis-1,3-dichloropropene	15.94		360077			97	
40) 4-methyl-2-pentanone	16.18			9.9788		97	
41) toluene		9 I	875723	9.8301	ng	98	
42) trans-1,3-dichloropropene	16.86	75	393293	11.5363	ng	98	
43) 1,1,2-trichloroethane						91	
44) tetrachloroethene	17.53	166 	426259	17.9633		97	

Quantitation Report (QT Reviewed)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D Vial: 16

Acq On : 5 Feb 2009 13:06 Operator: T.WALTON Sample : LCS Misc : 250ML Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 14:12 2009 Quant Results File: 111408B.RES

Quant Method : J:\ACQUDATA\A...\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009

Response via : Initial Calibration

DataAcq Meth : 111408B

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
45)	2-hexanone	17.60	43	674812	9.9241 nc	97
46)	dibromochloromethane	17.92	129	533192	24.6079 ng	99
47)	1,2-dibromoethane	18.17	107	431979	19.3911 ng	99
49)	chlorobenzene	19.03	112	705578	11.8292 ng	99
50)	ethylbenzene	19.18	91	1164479	10.8609 ng	99
51)	M+P xylene	19.38	91	1937509	22.7950 ng	99
52)	O xylene	20.11	91	997244	11.1721 ng	98
53)	styrene	20.12	104	734966	10.7064 ng	95
54)	bromoform	20.50	173	536705	30.4156 ng	99
56)	1,1,2,2-tetrachloroethane	21.26	83	702453	16.1968 ng	100
57)	4-ethyltoluene	21.72	105	1292460	11.8616 ng	98
58)	1,3,5-trimethylbenzene	21.82	105	1125060	12.5575 ng	97
59)	1,2,4-trimethylbenzene	22.53	105	1071187	12.2125 ng	98
60)	1,3-dclbenz	23.11	146	711985	15.1957 ng	97
61)	1,4-dclbenz	23.27	146	709296	15.3350 ng	97
62)	benzyl chloride	23.49	91	825640	11.1793 ng	97
63)	1,2-dclbenz	23.99	146	648106	14.5789 ng	97
	1,2,4-trichlorobenzene	27.01	180	434724	17.2760 ng	99
65)	hexachlorobutadiene	27.30	225	543972	27.4937 ng	94

Quantitation Report (Qedit)

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

Vial: 16 Acq On : 5 Feb 2009 13:06 Operator: T.WALTON : LCS Sample Inst : GC/MS Ins

: 250ML Multiplr: 1.00 Misc

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 13:40 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

: TO-15 Title

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(17) methylene chloride

9.66min 0.0086ng

response 214

Exp% lon Act% 100 100 84.00 49.00 168,40 159.81 0.00 0.00 0.00 0.00 0.00 0.00

Quantitation Report (Qedit)

Vial: 16

Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D

 Acq On : 5 Feb 2009 13:06
 Operator: T.WALTON

 Sample : LCS
 Inst : GC/MS Inst

Misc : 250ML Multiplr: 1.00

MS Integration Params: LSCINT2.P

Quant Time: Feb 5 14:12 2009 Quant Results File: temp.res

Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator)

Title : TO-15

Last Update : Thu Jan 15 15:59:15 2009 Response via : Multiple Level Calibration

(17) methylene chloride

9.55min 8.4308ng m

response 210151

lon	Exp%	Act%
84.00	100	100
49.00	168.40	0.16#
0.00	0.00	0.00
0.00	0.00	0.00

Anamerication Kebott Data File : J:\ACQUDATA\AIR1\DATA\020509\A6457.D Vial: 16 : 5 Feb 2009 13:06 Operator: T.WALTON Sample : LCS : GC/MS Ins Misc : 250ML Multiplr: 1.00 MS Integration Params: LSCINT2.P Quant Time: Feb 5 14:12 2009 Quant Results File: 111408B.RES Method : J:\ACQUDATA\AIR1\METHODS\111408B.M (RTE Integrator) Title : TO-15 Last Update : Thu Jan 15 15:59:15 2009 Response via : Initial Calibration TIC: A6457.D 2800000 2600000 2400000 2200000 2000000 1,5.5th/HelingtBenzene 1800000 1600000

5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00

1/14/68

Tom Whether

leuk chiek 16 > 16 in 1290 sie Pressures 1/e = 230 IS = 28,9 ATM = 14.5 Volume IS = 250 Nominal Saugh = 1000 nl Methodo Tune = BFB CMS = 11408A Entud = 1015

	<u>.</u>)		2. 100	11 -1 1 +
	L AS	1/01	Sayle	12//F	file or Comments
	_ /	0	Tune IS = 0-515-728	1	A6069 712:40
	_ 1	1000	Blank 1.0 uz am direct	7.1	A6070 Y
	_ 1	1000	met Blank 10 we are direct		A6071 Y
	_ 2	100	0.02 ggb 0-518-73A	12/13	A6012 Y
	3	95	0.095 pph 0-515-73B	7 '	A6073 Y
	. 3	200	0.20 ppb	-71	A6074 Y
	_ 3	500	050 ppb		A6075 Y
	4	100	1.0 ppb 0-515-73C	Ex 443"	196076 Y .
	4	250	25 226		A6077 Y
	4	500	50 ppb	ľ	A6078 Y
	4	750	7.5 996	r	A6079 y
	·	1000	10.0 ppb		16080 Y
	5	500	ICV 0-515-72D	Exp 12/10	A608/ 4 * A6082 Y
	5	1000	Blk cary over check	0/0	A6083 Y
		1000	ClN Bek 10 can 15000662	0/0	A6084 y Report as mB
	· · · ·	1000	CLN Blk 10 can SLC00054	0/0	AB085 Y
~ .	o	1000	CRN Blk 1.0 can 2100044	0/0	ME086 y
****		1000	1146273 1.0 TOIS TAR	-3.6/7.5	A6087 Y
		1000	1 K467~6	1 . 1	A6088 y
	1	200	1150195 5.0 ASPB	-8.7/8.4	
	17	1	1150196 20.0	-8.1/7.5	AE090 Y
		100	1150197 10.0	-65/7.6	1609/ Y
	: [<i>]5</i> "	ļ	1150198 10.0	-7.7/7.4	AEC92 Y
	16	100	1146939 10.0 TOIS. IAQ	·	16093 D-E
	16	1	1146939 100 Dep R 46698	,	16094 (D) E
		L+-	Bek pullis Proge+Bake p	ior to b	Alons
	/	1	1146939 44.0 (25/100)	-3 1/284	ABOPS Y DL
			Valid calibration saved,	up lated	RT from Sppb.
			NT- Isograpanol finds ICV	. Perun f	whiter prior to
			any samples sugaring Is	opro gand	as target.
		1		* *)
	-	l			5

ted fund to be get

ec.

and as cou

11-10-08	BP=29.32 106	T= 23°C	
70	Dilution air = 0-5		ig + 31/min.
0-515-72/	deluted 2.4m	l of 0-515-66D	Exp 9/4/09
0.2 ppb 1		8/34 + Press	
		Expires 12-10-	-
0-515-72B		g 0-515-66D	
10ppb 1º	, sita canister	8132 + Press	to +29.3"/4
	a contract of the contract of	Expires 12-10	-08.
0-515-720		10 ml of 0-515	
19pb 1°	into canist	ta 8/33+ Pres	s to +19-3
0	,	Expires 12-	
0-515-72 D	/ *	•	-53A up 2/25/09.
10ppb 20		tis 2337 + Pres	
μρ	,	Expires 12-1	
dell'e	e Blanks cen 1		
11/2/08	BP = 29.60 Col	57 - 23°C	
	Delition Air = 0-5	515-68F C30pi	7+31/hen
	detated 1.2.		
10ppb IS.	into conister	K1590 + Pressuri	red to 29.6" He
7/7	= 1.2 / 30,000	Selection Exp 12	1/2/08
0-515-72 F	Prepared san	et into can k	-1591 exp 12/12/08
10ppb IS		aan 150 00739	
		_	08 TU
			are a second constant of the second constant
	1 113-00		
			Continued on Page
	4 R	ead and Understood By	
	11/- 100		
<i></i>	////3/08. Date	Signed	aa i a i Date
	Miller Attend on the		The state of the s

73

henniR

Octo

LABORATORY REPORT

March 9, 2009

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

RE: Cooper Vision / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on February 12, 2009. For your reference, these analyses have been assigned our service request number P0900513.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains **234** pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kate Spulls

Kate Aguilera

Project Manager

NARRATIVE

2655 Park Center Drive, Suite A

Simi Valley, California 93065

(805) 526-7161

(805) 526-7270 fax

Client: Project:

Haley & Aldrich, Inc.

Cooper Vision / 70665-014

CAS Project No:

P0900513

New York Lab ID: 11221

CASE NARRATIVE

The samples were received intact under chain of custody on February 12, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client:

Haley & Aldrich, Incorporated

Project:

Cooper Vision 70665-014

Detailed Sample Information

CAS Sample ID	Client Sample ID	Container Type	<u>Pi1</u> (Hg)	<u>Pi1</u> (psig)	<u>Pf1</u>	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	Pf2	Cont ID	Order #	FC ID	Bottle <u>Order #</u>
P0900513-001.01	SV-SS-58	6.0 L-Summa Canister Source	-2.3	-1.1	3.5				SC00119	12000	OA00912	12000
P0900513-002.01	SV-InA-58	6.0 L-Summa Canister Ambient	-8.8	-4.3	3.5		,		ĀČ00848	12000	FC00490	12000
P0900513-003.01	\$V-\$\$-64	6.0 L-Summa Canister Source		0.5	3.8				SC00931	12000	OA00542	12000
P0900513-004.01	SV-InA-64	6.0 L-Summa Canister Ambient	-9.0	-4.4	3.5			** **	AC00946	12000	FC00591	12000
P0900513-005.01	SV-SS-8	6.0 L-Summa Canister Source	-3.1	-1.5	3.5				ŠC00641	12000	OA00930	12000
P0900513-006.01	SV-InA-8	6.0 L-Summa Canister Ambient	-7.9	-3.9	3.6			. ~	AC01435	12000	FC00378	12000
P0900513-007.01	SV-OutA-020909	6.0 L-Summa Canister Ambient	-2.7	-1.3	3.5			/	AC01179	12000	FC00545	12000
P0900513-008.01	SV-SS-2	6.0 L-Summa Canister Source	-0.6	-0.3	3.5				ŠČ00160	12000	OA00898	12000
P0900513-009.01	SV-InA-2	6.0 L-Summa Canister Ambient	-3.3	-1.6	3.5				AC01423	12000		
P0900513-010.01	SV-SS-16	6.0 L-Summa Canister Source	-2.7	-1.3	3.5				SC00932	12000	OA00543	12000
P0900513-011.01	SV-InA-16	6.0 L-Summa Canister Ambient	-7.6	-3.7	3.5				ÃŌ1351	12000	FC00367	12000

Miscellaneous Items - received

AVG00192

AVG00822

AVG00696

AVG01012

AVG01053

AVG00871

AVG00980

AVG00749

AVG00870

AVG00884

Folder: P0900513

Columbia Analytical Services, Inc. Sample Acceptance Check Form

	Haley & Aldı		_	<u> </u>		Work order:	P0900513			
		n / 70665-014							***	
	s) received on			-	Date opened:		by:	MZAN		
		l samples received by CAS.							on of	
compliance o	or nonconformity.	Thermal preservation and p	H will only be eva	luated either at the	request of the cli	ent and/or as require	d by the method/SOF	<u>Yes</u>	Na	N/A
1	Wood coments		as outraid smith a	lient semale D	D.O.			$\frac{1 \text{ cs}}{ X }$	<u>No</u> □	
1	-	e containers properly	marked with c	nent sample li	D?			ĭ∑i		
2		supplied by CAS?	3 . 3111							
3	•	containers arrive in go	ood condition?	•				\boxtimes		
4		<pre>-of-custody provided?</pre>						\times		
5		n-of-custody properly	-					X		
6	Did sample o	container labels and/o	r tags agree w	ith custody pa	pers?			\boxtimes		
7	Was sample	volume received adeq	uate for analys	sis?				\times		
8	Are samples	within specified holding	ng times?					X		
9	Was proper to	emperature (thermal	preservation)	of cooler at re	ceipt adhered	to?				X
	(Cooler Temperature		°C Blank	Temperature		_°C			
10	Was a trip bl	lank received?							X	
	Trip blank	supplied by CAS:								
11	Were custody	y seals on outside of co	ooler/Box?						\times	
	Location of	seal(s)?					Sealing Lid?			$\overline{\mathbf{X}}$
	Were signat	ture and date included	?		***************************************					X
	Were seals									\boxtimes
		seals on outside of sa	mple containe	r?			•		X	
	Location of		1				Sealing Lid?			X
		ture and date included	?		**************************************		<u> </u>			X
	Were seals									\boxtimes
12		s have appropriate pre	servation acc	ording to met	hod/SOP or C	Tient specified i	nformation?			\boxtimes
12		ent indication that the				ment specified i	mornation:			X
					Teset ved t					
		vials checked for prese		·						\boxtimes
		nt/method/SOP requir		•	sample pH an	id <u>if necessary</u> al	ter it?			\boxtimes
13	Tubes:	Are the tubes cap		17						X
		Do they contain	moisture?							X
14	Badges:	Are the badges p	roperly cappe	d and intact?						\times
		Are dual bed bad	lges separated	and individua	lly capped an	d intact?				X
Lab 5	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Receip	t / Pres	ervation	
		Description	pH *	pH	pH	(Ртексиси/Авканов)		ommei		
P0900513	-001.01	6.0 L Source Can					T			
20900513		6.0 L Ambient Can				` `				
20900513	-003.01	6.0 L Source Can								
20900513		6.0 L Ambient Can								
P0900513		6.0 L Source Can						· · · · · · · · · · · · · · · · · · ·		
20900513		6.0 L Ambient Can					1			
Explain ar	ny discrepancie	s: (include lab sample II	numbers):						***************************************	

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client: Haley & Aldrich, Inc.		Work order:	P0900513		
Project: Cooper Vision / 70665-014					
Sample(s) received on: 02/12/09	Date opened:	02/12/09	hv:	MZAMORA	

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
*	Description	pH *	pH	pH	(Presence/Absence)	Comments
P0900513-007.01	6.0 L Ambient Can					
P0900513-008.01	6.0 L Source Can					
P0900513-009.01	6.0 L Ambient Can					Sample NOT received.
P0900513-010.01	6:0 L Source Can					
P0900513-011.01	6.0 L Ambient Can					
		·····				
Winds and a second seco						
		:				
	·					
				· · · · · · · · · · · · · · · · · · ·		
	***************************************	·····				

NYSDEC DATA PACKAGE SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory			Analytica	_		······································
Sample	Sample	*VOA	*BNA	*VOÁ	*Pest	*Metals	*Other
Code	Code	GC/MS	GC/MS	GC	PCBs		
		Method	Method	Method	Method		
		#	#	#	#		
SV-SS-58	P0900513-001	EPA TO-15					
SV-InA-58	P0900513-002	EPA TO-15			}		
SV-SS-64	P0900513-003	EPA TO-15					
SV-InA-64	P0900513-004	EPA TO-15					
SV-SS-8	P0900513-005	EPA TO-15					
SV-InA-8	P0900513-006	EPA TO-15					
SV-OutA-020909	P0900513-007	EPA TO-15					
SV-SS-2	P0900513-008	EPA TO-15					
SV-InA-2	P0900513-009	EPA TO-15					
SV-SS-16	P0900513-010	EPA TO-15		·			
SV-InA-16	P0900513-011	EPA TO-15					
							· · · · · · · · · · · · · · · · · · ·
				<u> </u>			
W							
				<u> </u>			
			····				
							<u> </u>
							<u></u>
]		

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
P0900513-001	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-002	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-003	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-004	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-005	Air	2/10/09	2/12/09	NA I	2/13/09
P0900513-006	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-007	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-008	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-009	Air	2/10/09	2/16/09	NA	2/16/09
P0900513-010	Air	2/10/09	2/12/09	NA	2/13/09
P0900513-011	Air	2/10/09	2/12/09	NA	2/13/09
					· · · · · · · · · · · · · · · · · · ·
<u> </u>					
					, <u>, , , , , , , , , , , , , , , , , , </u>
			7		
		·			
					-

CHAIN OF CUSTODY FORMS

Haley: Aldrich aco Town Centre Br

Rochester NY 14623

Email Address for Result Reporting

Project Manager

Client Sample ID

585 321.4aaa

1-38-5R

Report Tier Levels - please select Tier 1 - (Results/Default if not specified)

Tier II - (Results + QC)

Relinquishad by: (Signature)

Relinquished by: (Signature)

Phone

Company Name & Address (Reporting Information)

Fax

Laboratory

ID Number

D-4.8

G.D-

<u>6.19</u>

8-06 9

1001.7 (11)-76

(4)

(5)

-020909 (D-2.7

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

Date:

Time:

Received by: (Signature)

		5 Re	equested Turi Day (100%) 2	naround Time i 2 Day (75%) 3	i n Busines Day (50%)	s Days (Surcha 4 Day (35%)	ges) please cir Day (£5%) 10 [cle Day - Standard	CAS Proj	ect No. CC105513
······································						CAS Contact	n			
ation)	Project Na					K.	<u> Aguil</u>		····	_
	$C\infty$	<u> Doga</u>	notzi			,	Analysis Method	and/or Analytes		
	Project Nu	1064	p5-01					***************************************		
	P.O. # / Bi	lling Informat	ion							Comments e.g. Actual Preservative or specific instructions
		(Print & Sign)				09/09/09	02/10/09	(Vacuum)		please provide result= ASP-B
Date Collected	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar Code # - AC, SC, etc.)	Flow Controller (Bar Code - FC #)	Sample Volume	time Start	time Stop	can start	can stop	package
03/09	ayhr	our	00119	००५१८	(eL	1337	1900	89	03	ungi chioride
		<u> </u>	00848	00490	<u> </u>	1330	1900	29	<u>08</u>	min reporting
,			00931	0054a		1600	1216	30	\bigcirc	lumit for
			009410	00591		1500	IA15	30		substab= ly/m=
			0641	00930		1545	1335	30	05	wylcor= ,as
			01435	00379		1540	1335	30	11	auldoor=, a5
			01179	00545		1347	1520	36	D'5	
			00100	00898		1625	1585	29	Q3	alloher
			01423	00215		1615	1585	30	ඊට්	compounds
		THE STATE OF THE S	00932	00548		1655	1545	27	D3	min reporting
	1	1	01351	00367		11655	11545	30	08	kmit = /4/m3
	V	Y		,	V					V.
										analyze
							····			TD-15
									Project F	Requirements (MRLs, QAPP)
Tier III - (Dat Tier V - (clien	t specified)	ockage) 10% Sun /09 	00	1	EDD required Type:	Yes / No	: EDD Units: _		,	· · · · · · · · · · · · · · · · · · ·
ak	Date:	fime:	Received by:		Uta	MIN	241	else Tiere		
	Date:	Time:	Received by:	(əignature)			Date:	Time:	Cooler /	Rlank

Date:

₽С

Temperature

GC/MS VOLATILES DATA

QC Summary

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Collected: 2/10/09

Date(s) Received: 2/12 - 2/16/09

Date(s) Analyzed: 2/13 - 2/16/09

Test Notes:

		1,2-Dichlor	oethane-d4	Tolue	ene-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	9/0	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P090213-MB	99	70-130	97	70-130	103	70-130	
Method Blank	P090216-MB	100	70-130	99	70-130	103	70-130	
Lab Control Sample	P090213-LCS	98	70-130	96	70-130	109	70-130	
Lab Control Sample	P090216-LCS	98	70-130	97	70-130	108	70-130	
SV-SS-58	P0900513-001	101	70-130	90	70-130	106	70-130	
SV-InA-58	P0900513-002	98	70-130	96	70-130	106	70-130	
SV-InA-58	P0900513-002DUP	98	70-130	97	70-130	106	70-130	
SV-SS-64	P0900513-003	97	70-130	97	70-130	105	70-130	
SV-InA-64	P0900513-004	98	70-130	98	70-130	103	70-130	
SV-SS-8	P0900513-005	98	70-130	95	70-130	106	70-130	
SV-InA-8	P0900513-006	98	70-130	97	70-130	106	70-130	
SV-OutA-020909	P0900513-007	99	70-130	98	70-130	104	70-130	
SV-SS-2	P0900513-008	99	70-130	98	70-130	105	70-130	
SV-InA-2	P0900513-009	101	70-130	98	70-130	103	70-130	
SV-InA-2	P0900513-009DUP	101	70-130	98	70-130	101	70-130	
SV-SS-16	P0900513-010	98	70-130	98	70-130	104	70-130	
SV-InA-16	P0900513-011	99	70-130	98	70-130	103	70-130	

LABORATORY CONTROL SAMPLE SUMMARY

Page Lof L

llient:

Haley & Aldrich, Inc.

llient Sample ID: Lab Control Sample

Hient Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090213-LCS

Date Collected: NA

Date Received: NA

'est Code:

EPA TO-15

istrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

.nalyst:

ampling Media:

6.0 L Summa Canister

Date Analyzed: 2/13/09 Volume(s) Analyzed:

NA Liter(s)

est Notes:

CAS#	Compound	Spike Amount .	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	25.5	22.4	88	57-132	
75-00-3	Chloroethane	25.8	25.0	97	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	27.3	102	72-130	
71-55-6	1,1,1-Trichloroethane	26.5	25.9	98	69-127	

LABORATORY CONTROL SAMPLE SUMMARY

Page Loft

Hient:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090216-LCS

Date Collected: NA

Date Received: NA

'est Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

malyst

Wida Ang

ampling Media:

6.0 L Summa Canister

Date Analyzed: 2/16/09 Volume(s) Analyzed:

NA Liter(s)

est Notes:

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
75-01-4	Vinyl Chloride	25.5	21.5	- 84	57-132	
75-00-3	Chloroethane	25.8	24.3	94	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	26.9	100	72-130	
71-55-6	1.1,1-Trichloroethane	26.5	25.7	97	69-127	

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

lient:

Haley & Aldrich, Inc.

Hient Sample ID: SV-InA-58

Hient Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-002DUP

'est Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

6.0 L Summa Canister

Date Collected: 2/10/09

Date Received: 2/12/09

Date Analyzed: 2/13/09 Volume(s) Analyzed:

1.00 Liter(s)

'est Notes:

vnalyst:

Container ID:

ampling Media:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.75

	Duplicate								
Compound	Sample Result		Sample Result		Average	% RPD	RPD	Data	
	μg/m³	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier	
Vinyl Chloride	ND	ND	ND	ND	-	1-	25		
Chloroethane	ND	ND	ND	ND	-		25	*	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25		
I, I-Dichloroethane	ND	ND	ND	ND	-	u.	25		
1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25		

D = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By: Date: TOISSCAN.XLT - NL - PageNo.:

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Hient: Haley & Aldrich, Inc.

Hient Sample ID: SV-InA-2 CAS Project ID: P0900513

lient Project ID: Cooper Vision / 70665-014 CAS Sample ID: P0900513-009DUP

EPA TO-15 'est Code:

Date Received: 2/16/09 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

istrument ID: Date Analyzed: 2/16/09 .nalyst: Wida Ang

6.0 L Summa Canister Volume(s) Analyzed: ampling Media: 1.00 Liter(s)

ontainer ID:

est Notes:

AC01423

Final Pressure (psig): 3.5 Initial Pressure (psig): -1.6

Canister Dilution Factor: 1.39

Date Collected: 2/10/09

			Dupli	cate				
Compound	Sample	Result	Sample Result		Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND	-	-	25	
Chloroethane	ND	ND	ND	ND	-	***	25	
1,1-Dichloroethene	ND	ND	ND	ND	•	-	25	
L.1-Dichloroethane	ND	ND	ND	ND	-	_	25	
1.1,1-Trichloroethane	ND	ND	ND	ND	-		25	

D = Compound was analyzed for, but not detected above the laboratory reporting limit.

Date:____ TOISSCAN.XLT - NL - PageNo.:

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02130902.D

Analyst:

Wida Ang

Date Analyzed: 2/13/09 Time Analyzed: 09:34

Sampling Media:

6.0 L Summa Canister(s)

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P090213-LCS	02130903.D	10:15
SV-SS-58	P0900513-001	02130909.D	15:00
SV-InA-58	P0900513-002	02130910.D	15:47
SV-InA-58.(Lab Duplicate)	P0900513-002DUP	02130911.D	16:33
SV-SS-64	P0900513-003	02130912.D	17:35
SV-InA-64	P0900513-004	02130913.D	18:18
SV-SS-8	P0900513-005	02130914.D	19:01
SV-InA-8	P0900513-006	02130915.D	19:44
SV-OutA-020909	P0900513-007	02130916.D	20:27
SV-SS-2	P0900513-008	02130917.D	21:09
SV-SS-16	P0900513-010	02130918.D	21:52
SV-InA-16	P0900513-011	02130919.D	22:35

RESULTS OF ANALYSIS

Page Lof L

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02160902.D

Analyst:

Wida Ang

Date Analyzed: 2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:56

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P090216-LCS	02160903.D	10:36
SV-InA-2	P0900513-009	02160906.D	12:54
SV-InA-2 (Lab Duplicate)	P0900513-009DUP	02160907.D	13:37

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220901.D

: 22 Jan 2009 12:23 Acq On

: WA/LH Operator

: 25ng BFB STD Sample : S20-01050901 Misc

ALS Vial Sample Multiplier: 1 : 2

Integration File: RTEINT.P

: J:\MS16\METHODS\R16012209.M Method

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Jan 14 10:48:15 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	4.0	19.3	74544	PASS
75	95	30	66	45.3	174848	PASS
95	95	100	100	100.0	385771	PASS
96	95	5	9	6.4	24733	PASS
173	174	0.00	2	0.8	2660	PASS
174	95	50	120	89.8	346496	PASS
1.75	174	4	9	7.4	25515	PASS
176	174	93	101	97.3	337152	PASS
177	176	5	9	6.5	22019	PASS

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

: 13 Feb 2009 Acq On

: WA/LH Operator

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.9	60608	PASS
75	95	30	66	44.9	144299	PASS
95	95	100	100	100.0	321301	PASS
96	95	5	9	6.6	21275	PASS
173	174	0.00	2	0.8	2264	PASS
174	95	. 50 Ì	120	90.4	290539	PASS
175	174	4	9	7.4	21421	PASS
176	174	93	101	97.2	282496	PASS
177	176	5	9	6.6	18635	PASS

Page: 1

Data Path : J:\MS16\DATA\2009_02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3421, 3422, 3423; Background Corrected with Scan 3410

Target :	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	8 30 100 5 0.00 50 4	40 66 100 9 2 120 9	18.7 44.8 100.0 6.5 0.8 94.2 7.0 97.4	55179 131859 294421 19196 2115 277440 19352 270101	PASS PASS PASS PASS PASS PASS

RESULTS OF ANALYSIS

Page Lof L

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Lab File ID: 02130901.D 2/13/09

Analyst:

Date Analyzed:

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:46

Test Notes:

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	292784	12.31	1302929	15.22	652497	21.10
ļ	Upper Limit	409898	12.64	1824101	15.55	913496	21.43
	Lower Limit	175670	11.98	781757	14.89	391498	20.77
	Client Sample ID						
01	Method Blank	284429	12.28	1305482	15.21	643376	21.10
02	Lab Control Sample	291926	12.31	1297420	15.23	649667	21.11
03	SV-SS-58	252921	12.29	1178644	15.22	658456	21.10
04	SV-InA-58	302189	12.28	1378004	15.22	691613	21.10
0.5	SV-InA-58 (Lab Duplicate)	306251	12.28	1398587	15.21	695931	21.10
06	SV-SS-64	307525	12.28	1399299	15.21	683757	21.10
07	SV-InA-64	295705	12.28	1353741	15.21	651687	21.10
08.	SV-SS-8	293846	12.29	1333826	15.22	689543	21.10
09	SV-InA-8	299869	12.28	1350439	15.22	668943	21.10
10	SV-OutA-020909	298820	12.28	1377268	15.21	670624	21.10
]]	SV-SS-2	290183	12.28	1338269	15.21	658768	21.10
12	SV-SS-16	296454	12.28	1340448	15.21	652867	21.10
-13	SV-InA-16	287537	12.28	1323889	15.21	642037	21.10
14							
15							
16							
17				N.			
18							
19							
20		•					

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By:	<u> </u>	Date:	2/15/09
		TOISSC	AN, XLT - Nt PageNo.:

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02160901.D

Analyst:

Wida Ang

Date Analyzed: 2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:47

Test Notes:

		IS1 (BCM)	***************************************	IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	285040	12.31	1272496	15.23	627427	21.11
	Upper Limit	399056	12.64	1781494	15.56	878398	21.44
<u> </u>	Lower Limit	 171024	11.98	763498	14.90	376456	20.78
	Client Sample ID						
01	Method Blank	276341	12.28	1277940	15.21	621270	21.10
02	Lab Control Sample	293871	12.31	1307508	15.23	644721	21.11
03	SV-InA-2	276686	12.28	1269109	15.21	624161	21.10
()4	SV-InA-2 (Lab Duplicate)	267798	12.28	1235225	15.21	607502	21.10
05				•			
06							
07							
08							
09							
10							
				•			
12							
13				W.			
14							
15							•
16							
17		-					
18							
[9							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Date:

MDLs for TO-15 (LOW LEVEL - SCAN)

? 10/02/08 10/03/08 10/03/08			FINAL		JΔF					
	MS8	MS9	MS13	MS16	MAX	T			MDLR	MDLR
COMPOUND	MDL _R	MDL _R	MDL _R	MDLR	MDL _R	μg/m³	ppbV	MW	µg/m³	Vdqq
Propene		0.050	0.050	0.050	0.0500	0.050	0.02906	42.08	0.050	0.029
Dichlorodifluoromethane		0.050	0.050	0.050	0.0500	0.050	0.01012	120.90	0.050	0.010
Chloromethane		0.050	0.050	0.050	0.0500	0.050	0.02422	50.49	0.050	0.024
Freon 114		0.050	0.050	0.050	0.0500	0.050	0.00716	170.90	0.050	0.0072
Vinyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.01957	62.50	0.050	0.020
1.3-Butadiene		0.050	0.050	0.050	0.0500	0.050	0.02261	54.09	0.050	0.023
Bromomethane		0.050	0.050	0.050	0.0500	0.050	0.01288	94.94	0.050	0.013
Chloroethane		0.050	0.072	0.050	0.0720	0.072	0.02730	64.52	0.072	0.027
Ethanol		0.140	0.133	0.133	0.1400	0.140	0.07433	46.07	0.14	0.074
Acetonitrile		0.050	0.050	0.050	0.0500	0.050	0.02979	41.05	0.050	0.030
Acrolein		0.056	0.110	0.050	0.1100	0.110	0.04800	56.06	0.11	0.048
Acetone		0.137	0.137	0.137	0.1370	0.140	0.05896	58.08	0.14	0.059
Trichlorofluoromethane		0.050	0.050	0.050	0.0500	0.050	0.00890	137.40	0.050	0.0089
sopropanol		0.050	0.050	0.180	0.1800	0.180	0.07326	60.10	0.18	0.073
Acrylonitrile		0.050	0.050	0.050	0.0500	0.050	0.02305	53.06	0.050	0.023
1,1-Dichloroethene		0.050	0.056	0.050	0.0560	0.056	0.01413	96.94	0.056	0.014
ert-Butanol		0.051	0.051	0.051	0.0510	0.051	0.01683	74.12	0.051	0.017
Vethylene Chloride		0.050	0.055	0.050	0.0550	0.055	0.01584	84.94	0.055	0.016
Allyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.01598	76.53	0.050	0.016
Frichlorotrifluoroethane		0.050	0.058	0.050	0.0580	0.058	0.00757	187.38	0.058	0.0076
Darbon Disulfide		0.050	0.050	0.050	0.0500	0.050	0.01606	76.14	0.050	0.016
rans-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
I,1-Dichloroethane	Ĺ	0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
Nethyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01387	88.15	0.050	0.014
/inyl Acetate		0.126	0.290	-0.220	0.2900	0.290	0.08240	86.09	0.29	0.082
2-Butanone		0.050	0.096	0.057	0.0960	0.096	0.03256	72.11	0.096	0,033
is-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
Diisopropyl Ether		0.050	0.050	0.052	0.0520	0.052	0.01245	102.18	0.052	0.012
Ethyl Acetate		0.076	0.120	0.054	0.1200	0.120	0.03331	88,11	0.12	0.033
ı-Hexane		0.050	0.050	0.050	0.0500	0.050	0.01419	86.17	0.050	0.014
Chloroform		0.050	0.050	0.050	0.0500	0.050	0.01024	119.40	0.050	0.010
etrahydrofuran		0.050	0.085	0.064	0.0850	0.085	0.02883	72.11	0.085	0.029
Ethyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
,1,1-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133.40	0.050	0.0092
sopropyl Acetate		0.053	0.053	0.053	0.0530	0.053	0.01269	102.13	0.053	0.013
-Butanol		0.055	0.056	0.055	0.0560	0.056	0.01848	74.12	0.056	0.018
3enzene		0.050	0.050	0.050	0.0500	0.050	0.01566	78.11	0.050	0.016
Carbon Tetrachloride		0.050	0.050	0.050	0.0500	0.050	0.00795	153.80	0.050	0.0080
Dyciohexane		0.055	0.055	0.055	0.0550	0.055	0.01599	84.16	0.055	0.016
ert-Amyl Methyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloropropane		0.050	0.050	0.050	0.0500	0.050	0.01082	113.00	0.050	0.011
3romodichloromethane		0.050	0.050	0.050	0.0500	0.050	0.00747	163.80	0.050	0.0075
<u>richloroethene</u>		0.050	0.050	0.050	0.0500	0.050	0.00931	131,40	0.050	0.0093
,4-Dioxane		0.050	0.060	0.050	0.0600	0.060	0.01666	88.11	0.060	0.017
sooctane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
Nethyl Methacrylate		0.059	0.094	0.054	0.0940	0.094	0.02296	100.12	0.094	0.023
-Heptane		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
is-1,3-Dichloropropene		0.050	0,050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
-Methyl-2-pentanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
rans-1,3-Dichloropropene		0.050	0.050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
,1,2-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133.40	0.050	0.0092
oluene		0.050	0.050	0.050	0.0500	0.050	0.01327	92.14	0.050	0.013
:-Hexanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.16	0.050	0,012
)ibromochloromethane		0.050	0.050	0.050	0.0500	0.050	0.00587	208.30	0.050	0.0059
,2-Dibromoethane		0.050	0.050	0.050	0.0500	0.050	0.00651	187.90	0.050	0.0065
iutyl Acetate		0.050	0.050	0.050	0.0500	0.050	0.01053	116.16	0.050	0.011

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08					FII	VAL
	MS8	MS9	MS13	MS16	MAX			T.	MDLR	MDL _R
COMPOUND	MDL _R	MDLR	MDL _R	MDL _R	MDL _R	μg/m³	ppbV	MW	μg/m³	ppbV
n-Octane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
Tetrachloroethene		0.050	0.050	0.050	0.0500	0.050	0.00738	165.80	0.050	0.0074
Chlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.01086	112.60	0.050	0.011
Ethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
m- & p-Xylene		0.053	0.053	0.053	0.0530	0.053	0.01221	106.20	0.053	0.012
3romoform		0.050	0.050	0.053	0.0530	0.053	0.00513	252.80	0.053	0.0051
Styrene		0.050	0.050	0.050	0.0500	0.050	. 0.01175	104.10	0.050	0.012
o-Xylene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
n-Nonane		0.050	0.050	0.050	0.0500	0.050	0.00954	128.26	0.050	0.0095
1,1,2,2-Tetrachloroethane		0.050	0.050	0.050	0.0500	0.050	0.00728	167.90	0.050	0.0073
Cumene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
alpha-Pinene		0.050	0.050	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
n-Propylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
3-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1,3,5-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120:20	0.050	0.010
alpha-Methylstyrene		0.050	0.050	0.050	0.0500	0.050	0.01035	118.19	0.050	0.010
2-Ethyltoluene		0.050	0.050	0.050	0.0500	0:050	0.01017	120.20	0.050	0.010
1,2,4-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0,050	0.010
1-Decane		0.050	0.050	0.050	0.0500	0.050	0.00860	142.28	0.050	0.0086
3enzyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.00966	126.59	0.050	0.0097
1,3-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
I,4-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
ec-Butylbenzene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
)-Isopropyltoluene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
I,2,3-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
I,2-Dichlorobenzene		0.050	0,050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
I-Limonene		0.050	0.029	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
.,2-Dibromo-3-Chloropropane		0.050	0.043	0.050	0.0500	0.050	0.00517	236.33	0.050	0.0052
n-Undecane		0.050	0.050	0.050	0.0500	0.050	0.00782	156.31	0.050	0.0078
,2,4-Trichlorobenzene		0.083	0.053	0.076	0.0830	0.083	0.01119	181.50	0.083	0.011
Vaphthalene		0.050	0.050	0.050	0.0500	0.050	0.00954	128.17	0.050	0.0095
n-Dodecane		0.050	0.050	0.050	0.0500	0.050	0.00718	170.34	0.050	0.0072
Hexachloro-1,3-butadiene		0.050	0.050	0.050	0.0500	0.050	0.00469	260.80	0.050	0.0047

Sample Data

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-58

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-001

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

SC00119

Initial Pressure (psig):

-1.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.34

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu \mathrm{g}/\mathrm{m}^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.67	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.67	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.67	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130909.D

Acq On : 13 Feb 2009 15:00

Operator : WA/LH

Sample : P0900513-001 (1000mL)

Misc : Haley & Aldrich SV-SS-58 (-1.1, 3.5) ✓

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130909.D

: 13 Feb 2009 15:00 Acq On

Operator : WA/LH

Sample : P0900513-001 (1000mL)

: Haley & Aldrich SV-SS-58 (-1.1, 3.5) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev (Min)
1) Bromochloromethane (IS1)	12.29	130	252921	25.000	nq	-0	.03
37) 1,4-Difluorobenzene (IS2)			1178644		_		.03
			658456				.01
Comban March Control Communication							
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.43	65	409097	25 292	na	- 0	0.3
Spiked Amount 25.000	13,43	00		z3.293 ery =			
57) Toluene-d8 (SS2)	18.67	98	1391218				
Spiked Amount 25.000				/ery =			
73) Bromofluorobenzene (SS3)	23.06	174	618862				.00
Spiked Amount 25.000			Recov	very =			V
Target Compounds						Qva:	lue
2) Propene	4.58	42	91551	6.466	nq		81
3) Dichlorodifluoromethane			53267				100
4) Chloromethane	5.06		4159				91
5) Freon 114	5.30		734				
6) Vinyl Chloride					· Lorente		
7) 1,3-Butadiene	5.77	54			ng		90
8) Bromomethane			56				
9) Chloroethane	6.56		233				
			11136389				93
	7.20	41	49948		ng		90
12) Acrolein	7.40						85
13) Acetone	7.61		1922683	192.049		#	
·	7.88						97
			2047545				97
	8.38			0.292	-w-		96
17) 1,1-Dichloroethene	0.00	96	0 71968				94
18) tert-Butanol 19) Methylene Chloride						#	54
			418			#	J 4
21) Trichlorotrifluoroethane				0.481			90
22) Carbon Disulfide	9.47		231656				98
23) trans-1,2-Dichloroethene			0	N.D			5 0
24) 1,1-Dichloroethane	10.88	63	1388	0.067		#	1
25) Methyl tert-Butyl Ether	10.91	73	8632	0.277		*1	85
26) Vinyl Acetate	11.10	86	22622			#	1
27) 2-Butanone	11.39	72	84166	11.009	_	#	3.8
28) cis-1,2-Dichloroethene	0.00	61	0	N.D			
29) Diisopropyl Ether	12.41	87	8407	0.909		#	1
30) Ethyl Acetate	12.40	61	28801		_	#	53
31) n-Hexane	12.41	57	873912	41.826	ng		89 3

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130909.D

Acq On : 13 Feb 2009 15:00

Operator : WA/LH

Sample : P0900513-001 (1000mL)

: Haley & Aldrich SV-SS-58 (-1.1, 3.5) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.50	83	18034	0.939 ng		99
34) Tetrahydrofuran	13.06					94
35) Ethyl tert-Butyl Ether						
36) 1,2-Dichloroethane	13.63	62	3418		#	45
38) 1,1,1-Trichloroethane					**	85
39) Isopropyl Acetate	14.68		2522		#	1
40) 1-Butanol	14.56					87
41) Benzene	14.68	78	382952	7.578 ng		99
42) Carbon Tetrachloride	14.91	117	3925	0.239 ng		97
43) Cyclohexane	15.11	84	434477	25.867 ng	#	67
44) tert-Amyl Methyl Ether	15.52	73	1319			
45) 1,2-Dichloropropane	15.90	63	287	N.D.		
46) Bromodichloromethane	16.21	83	23522	1.497 ng	#	20
47) Trichloroethene	16.26	130	56	N.D.		
48) 1,4-Dioxane	16.22	88	16223	1.664 ng	#	78
49) Isooctane	16.32	57	38720	0.677 ng	#	1
50) Methyl Methacrylate	16.43	100	5809	1.171 ng	#	. 1
51) n-Heptane			725870		#	74
52) cis-1,3-Dichloropropene	17.32	75	111	N.D.		
53) 4-Methyl-2-pentanone	17.51	58	15813	1.329 ng		81
54) trans-1,3-Dichloropropene	18.23	75	264	N.D.	**	
55) 1,1,2-Trichloroethane	18.29	97	13773	1.163 ng	#	70
58) Toluene			1615979	25.867 ng		99
59) 2-Hexanone	19.13			7.325 ng	#	29
60) Dibromochloromethane				N.D.		
61) 1,2-Dibromoethane	0.00	107		N.D.	ш	7
62) Butyl Acetate	19.96 20.12		10179	0.372 ng 71.224 ng	# #	1
63) n-Octane 64) Tetrachloroethene	20.12		2931	0.168 ng	##	71 98
	20.30		147948	3.578 ng	#	98 44
66) Ethylbenzene	21.21	11Z 01	14/J40 226100	4.683 ng	11	100
67) m- & p-Xylene	21.04	91	1368379	25.059 ng		97
68) Bromoform	0.00	173	0	N.D.		91
69) Styrene	22.33		9964	0.238 ng		91
70) o-Xylene	22.48		407194	7.285 ng		98
71) n-Nonane	22.75	43	1867795	54.026 ng		91
72) 1,1,2,2-Tetrachloroethane	22.48	83	3869	0.156 ng	#	18
74) Cumene	23.24	105	74070	1.002 ng	••	97
75) alpha-Pinene	23.74	93	134835	4.232 ng		99
76) n-Propylbenzene	23.88	91	91595	1.022 ng	•	90
77) 3-Ethyltoluene	24.01	105	179329	2.647 ng		96
78) 4-Ethyltoluene	24.06	105	65189	0.983 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	129187	2.256 ng		93 32
• ••				-		Vall Cham

Data Path : J:\MS16\DATA\2009_02\13\
Data File : 02130909.D

: 13 Feb 2009 15:00 Acq On

Operator : WA/LH

Sample : P0900513-001 (1000mL)
Misc : Haley & Aldrich 977-99 : Haley & Aldrich SV-SS-58 (-1.1, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 13 15:37:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80)	alpha-Methylstyrene	24.35	118	1321	N.D.		
	2-Ethyltoluene	24.40	105		0.775 ng		95
82)	1,2,4-Trimethylbenzene	24.67	105	177691	2.893 ng		97
	n-Decane	24.79		894332	24.767 ng		82
	Benzyl Chloride		91	1203	N.D.		
	1,3-Dichlorobenzene	24.87	146	186	N.D.		
	1,4-Dichlorobenzene	24.95		1226	N.D.		
	sec-Butylbenzene	25.00		27093	0.338 ng		98
	p-Isopropyltoluene	25.20		31621	0.406 ng		96
	1,2,3-Trimethylbenzene	25.20		35995	0.586 ng		93
	1,2-Dichlorobenzene	25.36		1752	N.D.		
	d-Limonene	25.37	68	258716	10.850 ng		99
	1,2-Dibromo-3-Chloropr	0.00			N.D.	.,	
	n-Undecane	26.32	57	43734	1.122 ng	#	47
	1,2,4-Trichlorobenzene	0.00		0	N.D.		
	Naphthalene	27.57		94654	1.069 ng		98
	n-Dodecane	27.55	57	312753	7.118 ng		78
	Hexachloro-1,3-butadiene	0.00	225	0	N.D.	11	
	Cyclohexanone		55	137083	5.215 ng	#	41
	tert-Butylbenzene			22234	0.373 ng		92
100)	n-Butylbenzene	25.71	91 	14115	0.222 ng	#	15

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-58

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-002

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

1.00 Liter(s)

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

Test Notes:

Container ID:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.75

CAS#	Compound	Result μg/m³	MRL μg/m³	Result pphV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.18	ND	0.068	
75-00-3	Chloroethane	ND	0.88	ND	0.33	
75-35-4	1,1-Dichloroethene	ND	0.88	ND	0.22	
75-34-3	1,1-Dichloroethane	ND	0.88	ND	0.22	
71-55-6	1,1,1-Trichloroethane	ND	0.88	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130910.D

Acq On : 13 Feb 2009 15:47

Operator : WA/LH

Sample : P0900513-002 (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5) ✓

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130910.D

Acq On : 13 Feb 2009 15:47

Operator : WA/LH

Sample : P0900513-002 (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev((Min)
1) Bromochloromethane (IS1)	12.28	130	302189	25.000	nq	- 0	.05
37) 1,4-Difluorobenzene (IS2)							.03
56) Chlorobenzene-d5 (IS3)					ng	0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	473561	24.505	nq	- 0	.04
Spiked Amount 25.000	•		Recov	rery =			
57) Toluene-d8 (SS2)	18.67	98	1565338				
Spiked Amount 25.000			Recov	ery =	96.	16%	W
73) Bromofluorobenzene (SS3)	23.06	174	646175	26.420	ng .	0	.00
Spiked Amount 25.000			Recov	rery =	105.	68%	V
Target Compounds						Qva	
2) Propene	4.58	42	519516	30.710	ng		90
3) Dichlorodifluoromethane	4.75	85	48566	1.644	ng		100
4) Chloromethane 5) Freon 114	5.06	50	21493	0.891	ng		97
5) Freon 114	5.31	135	883	0.063	ng		63
6) Vinyl Chloride	0.00	62	0	N.D	. 6		
7) 1,3-Butadiene	5.77	54	19955	1.391	ng		98
8) Bromomethane	6.24	94	467	N.D			
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	b.5/	64 4 m	134	N.D	. i⁄		00
11) Acotonitrilo	7.03	45	102070	1270.95	/ ng		93
12) Acrolein	7.13	41	36057	4 000	119		94
13) Acetone	7.33	20	412779	2/ 509	ng		o∠ on
14) Trichlorofluoromethane	7.00	101	20629		ng ng		96
							100
16) Acrylonitrile	8.37	53	9349	0.476	na		95
17) 1.1-Dichloroethene	0.00	96	0	N.D	. 13		
18) tert-Butanol	9.07	59	19931	0.493	nia -	#	36
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride	9.08	84	4089	0.269	na	#	49
20) Allyl Chloride	9.26	41	2236	0.122	nq	#	55
21) Trichlorotrifluoroethane	9.53	151	4367	0.379	na		91
22) Carbon Disulfide	9.46	76	7325 0	0.138	ng		94
23) trans-1,2-Dichloroethene	0.00	61	0	N,D	• ,		
24) 1,1-Dichloroethane	0.00	63	0	N.D	· land		
25) Methyl tert-Butyl Ether	10.91	73	453	N.D	•		
26) Vinyl Acetate	11.03	86	12666			#	1
27) 2-Butanone	11.40	72	15395	1.685	_	#	39
28) cis-1,2-Dichloroethene	0.00	61	0	N.D		u	-
29) Diisopropyl Ether	12.40	87	859	0.078		#	1
30) Ethyl Acetate	12.39	61 57	50686				84
31) n-Hexane	12.40	57	13023	0.522	119		91 3(

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130910.D

Acq On : 13 Feb 2009 15:47

Operator : WA/LH

Sample : P0900513-002 (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	32504			98
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether	13.10	72	515		#	- 1
35) Ethyl tert-Butyl Ether	0.00	87	0			
36) 1,2-Dichloroethane	13.59	62	6129	0.317 ng		98
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate	13.98	97	631	N.D.		
39) Isopropyl Acetate	14.55	61	1686	0.172 ng	#	
40) 1-Butanol	14.57	56	37921	2.505 ng 1.932 ng 0.282 ng 0.191 ng N.D.		88
41) Benzene	14.67	78	114151	1.932 ng		99
42) Carbon Tetrachloride	14.90	117	5407	0.282 ng		98
43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	15.09	84	3746	0.191 ng	#	72
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	15.90	63	900	0.060 ng		96
46) Bromodichioromethane	16.18	83	11537	0.628 ng		93
	16.24	130	900 11537 550 117	N.D.		
48) 1,4-Dioxane	16.23	88	117	N.D.		
49) Isooctane	16.34	57	15286	0.228 ng		95
48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	16.72	100	2131	0.367 ng	#	1
51) n-Heptane	16.70	71	6948	0.475 ng	#	79
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.51	58	1802	0.130 ng		79
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	133917	9.673 ng 3.736 ng 0.197 ng	#	8
58) Toluene	18.80	91	245179	3.736 ng		99
59) 2-Hexanone	19.13	43	7841	0.197 ng		86
59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate	19.34	129	4035	0.248 ng		95
61) 1,2-Dibromoethane	0.00	T07	11	N.D.		
62) Butyl Acetate	19.95	43	122883	2.689 ng		94
63) n-Octane	20.11	57	9182	0.609 ng	· #	86
64) Tetrachloroethene	20.28	166	1368	0.075 ng		99
65) Chlorobenzene	21.17	112	444	N.D.		
66) Ethylbenzene	21.64	91	40616	0.555 ng		100
65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene	21.86	91	444 40616 79830 238 22785 24018	1.392 ng		98
68) Bromoform	21.95	173	238	N.D.		
69) Styrene	22.33	104	22785	0.517 ng		97
70) o-Xylene	22.48	91	24018	0.409 ng		98
71) n-Nonane	22.75	43	18408	0.507 ng		95
72) 1,1,2,2-Tetrachloroethane	22.48	83	1011	N.D.		
74) Cumene	23.23	105	4296	N.D.		
75) alpha-Pinene	23.74	93	95123	2.843 ng		96
76) n-Propylbenzene	23.88	91	11035	0.117 ng	#	76
77) 3-Ethyltoluene	24.01	105	20509	0.288 ng		95
78) 4-Ethyltoluene	24.06	105	9717	0.139 ng		92
79) 1,3,5-Trimethylbenzene	24.16	105	7053	0.117 ng		90 37

Data File : 02130910.D

: 13 Feb 2009 15:47 Acq On

Operator : WA/LH

Sample : P0900513-002 (1000mL)
Misc : Haley & Aldrich GV T-7

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 16:22:48 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene	24.35 24.39 24.67 24.79 24.85 24.94	105 105 57 91 146	1647 8420 23845 84766 399 2143	0.115 ng 0.370 ng 2.235 ng N.D. N.D.	one was our man o	99 96 75
86) 1,4-Dichlorobenzene 87) sec-Butylbenzene	24.94 25.01	105		N.D.		
88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene	25.20 25.20		34526 9704	0.422 ng 0.150 ng	#	93 63
90) 1,2-Dichlorobenzene	25.37	146	262	N.D.		
91) d-Limonene 92) 1,2-Dibromo-3-Chloropr	25.37 26.32		344842 61	13.769 ng N.D.		99
93) n-Undecane 94) 1,2,4-Trichlorobenzene	26.32 0.00		40713 0	0.995 ng N.D.		80
95) Naphthalene 96) n-Dodecane	27.57 27.55	128 57	24087 17776	~		97 77
97) Hexachloro-1,3-butadiene	0.00		1///6	0.385 ng N.D.		1 1
98) Cyclohexanone 99) tert-Butylbenzene	22.05 24.59		15204 4214	0.551 ng 0.067 ng	#	93 93
100) n-Butylbenzene	25.71	91	4291	0.064 ng	#	27

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-64

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-003

Date Collected: 2/10/09

Test Code:

EPA TO-15

Instrument ID:

Wida Ang

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Analyzed: 2/13/09

Date Received: 2/12/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

SC00931

Initial Pressure (psig):

0.5

Final Pressure (psig):

3.8

Canister Dilution Factor: 1.22

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.12	ND	0.048	
75-00-3	Chloroethane	ND	0.61	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.61	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.61	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.61	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:____

Data File : 02130912.D

Acq On : 13 Feb 2009 17:35

Operator : WA/LH

Sample : P0900513-003 (1000mL)

Misc : Haley & Aldrich SV-SS-64 (0.5, 3.8) ✓

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130912.D Acq On : 13 Feb 2009 17:35

Operator : WA/LH

: P0900513-003 (1000mL) Sample

: Haley & Aldrich SV-SS-64 (0.5, 3.8) 🗸 Misc

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114			ng	- 0	.05 .03
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2)	13.42 18.66		478323 Recove 1568592	ery =	97.	28%	V
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000			Recove 632656	ery = 26.165 ery =	97. ng	48%	,00
Target Compounds	1 62	40	8899	0 E17	na	Qva: #	lue 29
2) Propene3) Dichlorodifluoromethane4) Chloromethane5) Freon 114		85 50	69054 14471	2.297 0.589	ng ng ng		99
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	0.00 6.25	62 54 94	0 0 263	N.D N.D N.D			
11) Acetonitrile	7.00	45 41	11393 2690	1.067 0.093		#	76 95 63 81
13) Acetone14) Trichlorofluoromethane	7.60 7.87	58 101	104432	8.579 1.166	ng ng		87 96
16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol	8.47 0.00 9.03	53 96 59	71 0 888	N.D. N.D. N.D.	. is/		
21) Trichlorotrifluoroethane	9.27 9.53	41 151	1339 6517	0.072 0.556	ng ng	#	54 83 91
22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether	0.00 0.00 10.94		2871 0 0 54	N.D. N.D. N.D.			
26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene	11.04 11.40 0.00	86 72 61	1554 7899 0	0.615 0.850 N.D.	ng ng	# #	1 44
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	0.00 12.40 12.41	87 61 57	0 9542 5919	N.D. 1.775 0.233	ng	~	88 92 4

Data File : 02130912.D

Acq On : 13 Feb 2009 17:35

Operator : WA/LH

: P0900513-003 (1000mL) Sample

: Haley & Aldrich SV-SS-64 (0.5, 3.8) Misc

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	12.48	83	1076	N.D.	
34) Tetrahydrofuran	13.09		198		
35) Ethyl tert-Butyl Ether				N.D.	
36) 1,2-Dichloroethane	13.58		993	N.D.	
38) 1,1,1-Trichloroethane			829	N.D.√	
	0.00		0		
40) 1-Butanol	14.62				94
41) Benzene	14.67	78	29187		96
42) Carbon Tetrachloride			8316		99
43) Cyclohexane	15.11				
44) tert-Amyl Methyl Ether					
45) 1,2-Dichloropropane	15.90				
46) Bromodichloromethane	0.00	83	0	N.D.	
47) Trichloroethene	16.25				•
	0.00				
49) Isooctane	16.34			0.079 ng	81
50) Methyl Methacrylate			334		
51) n-Heptane	16.70				# 73
52) cis-1,3-Dichloropropene					
53) 4-Methyl-2-pentanone				N.D.	
54) trans-1,3-Dichloropropene			0	N.D.	
55) 1,1,2-Trichloroethane			132422	9.420 ng	# 8
58) Toluene				0.642 ng	
59) 2-Hexanone	19.12				90
60) Dibromochloromethane				_	
61) 1,2-Dibromoethane	0.00	107	0	N.D.	
62) Butyl Acetate	19.97	43	1539	N.D.	
63) n-Octane	20.11	57	1891	0.127 ng	88
64) Tetrachloroethene	20.30	166	974		
65) Chlorobenzene	21.17	112	53	N.D.	
66) Ethylbenzene	21.64	91	6139	0.085 ng	99
67) m- & p-Xylene	21.86	91	12058	0.213 ng	94
68) Bromoform	0.00	173		N.D.	
69) Styrene	22.34		2666	0.061 ng	99
70) o-Xylene	22.47	91	4559	0.079 ng	99
71) n-Nonane	22.75	43	5417	0.151 ng	85
72) 1,1,2,2-Tetrachloroethane	22.48	83	548	N.D.	
74) Cumene	23.24	105	4006	N.D.	
75) alpha-Pinene	23.73	93	8444	0.255 ng	95
76) n-Propylbenzene	23.88	91	2986	N.D.	•
77) 3-Ethyltoluene	24.01	105	3907	N.D.	
78) 4-Ethyltoluene	24.06	105	1917	N.D.	نطسم وال
79) 1,3,5-Trimethylbenzene	24.16	105	1464	N.D.	42
				•	

Data File : 02130912.D

Acq On : 13 Feb 2009 17:35

Operator : WA/LH

Sample : P0900513-003 (1000mL)

Misc : Haley & Aldrich SV-SS-64 (0.5, 3.8)

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Feb 16 09:09:51 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	0.00	118	0	N.D.	
81)	2-Ethyltoluene	24.40	105	1480	N.D.	
82)	1,2,4-Trimethylbenzene	24.67		4384	0.069 ng	94
	n-Decane			13725	0.366 ng	81
	Benzyl Chloride	24.67	91	545	N.D.	
85)	1,3-Dichlorobenzene	24.95	146	395	N.D.	
-	1,4-Dichlorobenzene	24.95		395		
	sec-Butylbenzene	25.00	105	336	N.D.	
	p-Isopropyltoluene	25.20		1241	N.D.	
	1,2,3-Trimethylbenzene			1135		
90)	1,2-Dichlorobenzene	24.95	146	395	N.D.	
	d-Limonene	25.37	68	3728	0.151 ng	97
92)	1,2-Dibromo-3-Chloropr	0.00		. 0	N.D.	
93)	n-Undecane	26.32	57	2941	0.073 ng	# 52
	1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95)	Naphthalene	27.57	128	3152	N.D.	
96)	n-Dodecane	27.55	57	4146	0.091 ng	90
	Hexachloro-1,3-butadiene	0.00			N.D.	
	Cyclohexanone	22.05		26808	_	95
	tert-Butylbenzene	24.66		621	N.D.	
100)	n-Butylbenzene	25.74	91	172	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-64

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-004

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09

Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC00946

Initial Pressure (psig):

-4.4

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.77

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.18	ND	0.069	
75-00-3	Chloroethane	ND	0.89	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.89	ND	0.22	
75-34-3	1,1-Dichloroethane	ND	0.89	ND	0.22	
71-55-6	1,1,1-Trichloroethane	ND	0.89	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 2/18/09 TOBSCAN.XLT - NL - PageNo.:

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5) ✓

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	295705	25.000	ng	- 0	.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1353741	25.000	ng	- O	.03
56) Chlorobenzene-d5 (IS3)	21.10	82	651687	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	463323				
Spiked Amount 25.000			Recove	ery =			
57) Toluene-d8 (SS2)	18.67	98					
Spiked Amount 25.000	00.06	2 - 4		ery =			
73) Bromofluorobenzene (SS3)	23.06	1/4					
Spiked Amount 25.000			Kecove	ery =	103	.∠∪৳.	/
Target Compounds						Qva	
			5753				
3) Dichlorodifluoromethane	4.75	85	46917	1.623	ng		99
4) Chloromethane5) Freon 1146) Vinyl Chloride	5.07	50	8888	0.376	ng		
5) Freon 114	5.31	135	833	0.061	ng		64
6) Vinyl Chloride	0.00	62	0	N.D	. ✓		
7) 1,3-Butadiene	5.79	54	234	U.N			
8) Bromomethane	0.00	94	U	N.D N.D			
9) Chloroethane 10) Ethanol	6.00	45	17728	1 707			94
IU/ Echanor	0.50	-± ->	1962	2.121		#	
			1639		119	#	75
			41401		na na	17 	7.5 6.8
14) Trichlorofluoromethane	7.01	101	21021	0.837	na 9	11	97
					na		60
15) Isopropanol 16) Acrylonitrile	8.48	53	360	N.D			••
17) 1,1-Dichloroethene	0.00	96	0	N.D			
18) tert-Butanol	9.03	59	119	N.D			
19) Methylene Chloride	9.08	84	7959	0.536	ng	#	53
20) Allyl Chloride	9.17	41	837	N.D	•		
21) Trichlorotrifluoroethane	9.54	151	4361	0.387	ng		97
22) Carbon Disulfide	9.47	76	2161	N.D		٠	
23) trans-1,2-Dichloroethene				N.D.	• /		
24) 1,1-Dichloroethane	0.00	63	0	N.D	· Los		
25) Methyl tert-Butyl Ether	0.00	73	0	N.D		• 1	_
26) Vinyl Acetate	11.10	86	281	0.116		#	_1
27) 2-Butanone	11.41	72	4076	0.456		#	51
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.			
29) Diisopropyl Ether	0.00	87	0	N.D.			0.5
30) Ethyl Acetate	12.41	61	7731	1.496			87
31) n-Hexane	12.40	57	6893	0.282	110		95 46

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards		R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform		12.49	83	1129	N.D.		
34) Tetrahydrofuran		0.00	72	0			•
35) Ethyl tert-Buty			87				
36) 1,2-Dichloroeth		13.59	62	681	N.D.		
38) 1,1,1-Trichloro					N.D.		
39) Isopropyl Aceta			61	0	N.D.		
40) 1-Butanol		14.61		7597			97
41) Benzene		14.67	78				99
42) Carbon Tetrachlo	oride	14.90		3771			100
43) Cyclohexane		15.11	84				
44) tert-Amyl Methyl	l Ether	0.00	73				•
45) 1,2-Dichloroprop		0.00			N.D.		
46) Bromodichloromet			83		N.D.		
47) Trichloroethene		0.00	130	0	N.D.		
48) 1,4-Dioxane		0.00	88	0	N.D.		
49) Isooctane		16.34	57	10749	0.164 ng		91
50) Methyl Methacry	late	16.70	100	332			
51) n-Heptane		16.72	71	1643	0.114 ng	#	66
52) cis-1,3-Dichloro	opropene						
53) 4-Methyl-2-penta		0.00			N.D.		
54) trans-1,3-Dichlo	propropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroe				129158		#	8
58) Toluene				54577			100
59) 2-Hexanone		19.14	43	1997	N.D.		
60) Dibromochloromet	hane	0.00	129	0	N.D.		
61) 1,2-Dibromoethar	ne	0.00	107	0	N.D.		
62) Butyl Acetate		19.97	43	463	N.D.		
63) n-Octane		20.11	57	1296	0.091 ng	#	78
64) Tetrachloroether	ne	20.30	166	996	N.D.		
65) Chlorobenzene		0.00	112	0	N.D.		
66) Ethylbenzene		21.65	91	9059			99
67) m- & p-Xylene		21.86	91	21179	0.392 ng		97
68) Bromoform		0.00	173	0	N.D.		
69) Styrene		22.34	104	1460	N.D.		
70) o-Xylene		22.48	91	8512	0.154 ng		100
71) n-Nonane		22.75	43	2548	0.074 ng		98
72) 1,1,2,2-Tetrachl	Loroethane	0.00	83	0	N.D.		
74) Cumene		23.24	105	1215	N.D.		
75) alpha-Pinene		23.74	93	9016	0.286 ng	#	43
76) n-Propylbenzene		23.89	91	2835	N.D.		
77) 3-Ethyltoluene		24.01	105	6839	0.102 ng		98
78) 4-Ethyltoluene	*	24.06	105	3482	N.D.		
79) 1,3,5-Trimethylk	penzene	24.16	105	2731	N.D.		47

Data File : 02130913.D

Acq On : 13 Feb 2009 18:18

Operator : WA/LH

Sample : P0900513-004 (1000mL)

Misc : Haley & Aldrich SV-InA-64 (-4.4, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Feb 16 09:09:58 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	24.36	118	132	N.D.	
81)	2-Ethyltoluene	24.40	105	2686	N.D.	
82)	1,2,4-Trimethylbenzene	24.67	105	8584	0.141 ng	92
83)	n-Decane	24.79	57	5467	0.153 ng	74
84)	Benzyl Chloride	24.67	91	827	N.D.	
85)	1,3-Dichlorobenzene	24.95	146	1125	N.D.	
	1,4-Dichlorobenzene	24.95	146	1125	N.D.	
	*			290		•
	p-Isopropyltoluene			977	N.D.	
	1,2,3-Trimethylbenzene			2239		
	1,2-Dichlorobenzene			1125		
	d-Limonene	25.37			0.101 ng	95
	1,2-Dibromo-3-Chloropr	0.00			N.D.	
	n-Undecane	26.32				# 35
	1,2,4-Trichlorobenzene	0.00			N.D.	
	Naphthalene	27.58				
	n-Dodecane	27.55		3530		95
	Hexachloro-1,3-butadiene	0.00			N.D.	
	Cyclohexanone	22.08			0.091 ng	88
	tert-Butylbenzene	24.68			N.D.	
100)	n-Butylbenzene	25.67	91	1342	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page I of I

Client: Haley & Aldrich, Inc.

Client Sample ID: SV-SS-8 CAS Project ID: P0900513

Client Project ID: Cooper Vision / 70665-014 CAS Sample ID: P0900513-005

EPA TO-15 Date Collected: 2/10/09 Test Code:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 2/12/09

Instrument ID: Wida Ang Date Analyzed: 2/13/09 Analyst:

1.00 Liter(s) Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed:

Test Notes: SC00641 Container ID:

Initial Pressure (psig): -1.5 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.38

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${ m ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.69	ND	0.26	i
75-35-4	1,1-Dichloroethene	ND	0.69	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.69	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.69	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: TOISSCAN, XLT - NL - PageNo.:

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

Misc : Haley & Aldrich SV-SS-8 (-1.5, 3.5) ✓

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

: Haley & Aldrich SV-SS-8 (-1.5, 3.5) ✓ Misc.

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.29	130	293846	25.000	ng	- 0	.03
37) 1,4-Difluorobenzene (IS2)	15.22	114	1333826	25.000	ng	-0	.03
56) Chlorobenzene-d5 (IS3)	21.10	82	689543	25.000	ng	-0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.43	65	458243	24.386	ng	- 0	.03
Spiked Amount 25.000			Reco	very =	97	. 56%	V
	18.67	98	1539442				
Spiked Amount 25.000				very =			
73) Bromofluorobenzene (SS3)	23.06	174					
Spiked Amount 25.000			Reco	very =	105.	52%	/
Target Compounds						Qva:	
2) Propene	4.59	42	71843				1
3) Dichlorodifluoromethane	4.78	85	59437	2.069	ng		99
4) Chloromethane	5.09	50	18960	0.808	ng		97
5) Freon 114	5.33	135	1016	0.074	ng		91
4) Chloromethane5) Freon 1146) Vinyl Chloride7) 1,3-Butadiene	0.00	62	0	N.D	· 1/		0.0
7) I,3-Butadiene	5.79	54	16670	1.195	ng		97
8) Bromomethane	6.25	94	518	N.D			
9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein	7.06	04 4E	16006075	N.D	. V		0.2
11) Agetonitrile	7.00	43 41	16966275	1665.07	ng ng		94
12) Acrolain	7.20	56	16648	1 946	ng		84
13) Acetone	7.62	58	2014381	173.185	na a	#	76
14) Trichlorofluoromethane	7.88	101	26232	1.051	ng		96
15) Isopropanol	8.15	45	675380	16.186	ng		97
15) Isopropanol 16) Acrylonitrile	8.39	53	8474	0.444	nq		94
17) 1,1-Dichloroethene	0.00	96	0	N.D	. 7		
17) 1,1-Dichloroethene 18) tert-Butanol	9.07	59	67859	1.725	ng	#	77
19) Methylene Chloride	9.09	84	4239	0.287	ng	#	56
20) Allyl Chloride	9.27	41	1838	0.103	ng	#	55
21) Trichlorotrifluoroethane	9.53	151	5400	0.482	ng		89
22) Carbon Disulfide	9.47	76	112673	2.182	ng		99
23) trans-1,2-Dichloroethene				N.D	. /		
24) 1,1-Dichloroethane	10.88	63	1170	N.D	·		
25) Methyl tert-Butyl Ether	10.92	73	9871	0.273		11.	93
26) Vinyl Acetate	11.10	86	31734	13.153		#	2
27) 2-Butanone	11.39	72 61	213371	24.022 N.D		#	33
28) cis-1,2-Dichloroethene 29) Diisopropyl Ether	0.00 12.41	61 87	0 9772	ים. א 0.909		#	1
30) Ethyl Acetate	12.41	61	54211	10.557		# #	68
31) n-Hexane	12.40	57	926043	38.148	_	11	88 51
~ x / x x x x x x x x x x x x x x x x x	abouted as the other	J,	V L J	20.110	5		

Page: 1

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

Misc : Haley & Aldrich SV-SS-8 (-1.5, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.50	83	50403	2.260 ng		98
34) Tetrahydrofuran	13.06 0.00 13.60 13.98 14.54	72	64158	7.797 ng	#	64
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.60	62	4088			97
38) 1,1,1-Trichloroethane	13.98	97	850	N.D.		
39) Isopropyl Acetate	14.54	61	54	N.D.		
40) 1-Butanol	14.57	56	124690	8.510 ng		85
41) Benzene	14.67	78	283348	4.955 ng		99
42) Carbon Tetrachloride	14.91	117	5400	0.291 ng		99
43) Cyclohexane	15.11	84	330557	17.390 ng	#	64
44) tert-Amyl Methyl Ether	15.75	73	52	N.D. 0.104 ng		
45) 1,2-Dichloropropane	15.75	63	1498	0.104 ng	#	58
46) Bromodichloromethane	16.22	83	26008	1.463 ng	#	18
47) Trichloroethene	16.26		629	N.D.		
48) 1,4-Dioxane	16.23	88	1839	0.167 ng	#	80
49) Isooctane	16.33	57	46295	0.715 ng	#	1
50) Methyl Methacrylate	16.43	100	2793	0.497 ng	#	1
51) n-Heptane	16.72	71	638719	45.159 ng	#	73
52) cis-1,3-Dichloropropene	17.33	75	179	N.D.		
53) 4-Methyl-2-pentanone	17.50	58	179 34129	2.536 ng		81
54) trans-1,3-Dichloropropene	18.24	75	65	N.D.		
55) 1,1,2-Trichloroethane	18.24 18.29	97	5900	N.D. 0.440 ng	#	72
58) Toluene	18.80	91	T0000±#	70.402 HB		100
59) 2-Hexanone	19.13		231833	5.835 ng	#	41
60) Dibromochloromethane	19.34	129		0.131 ng		96
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.95	43	21862	0.480 ng	#	1
63) n-Octane	20.11			34.332 ng	#	69
64) Tetrachloroethene	20.30	166	3246	0.178 ng	14	100
65) Chlorobenzene	21.21	112	87799	2.028 ng	#	43
66) Ethylbenzene	21.64	91	196082			99
67) m- & p-Xylene	21.86	91	606659	10.609 ng		97
68) Bromoform	21.96	173	350	N.D.		0.5
69) Styrene	22.33	104	24445	0.556 ng		95
70) o-Xylene	22.48	91	169783	2.901 ng		99
71) n-Nonane	22.75	43	406087	11.217 ng	н	91
72) 1,1,2,2-Tetrachloroethane		83	2410	0.093 ng	#	18
74) Cumene	23.24	105	38409	0.496 ng		95
75) alpha-Pinene	23.74	93	194934	5.843 ng		98
76) n-Propylbenzene	23.88	91 105	46554			94
77) 3-Ethyltoluene	24.01		63990	0.902 ng		95 97
78) 4-Ethyltoluene 79) 1,3,5-Trimethylbenzene	24.06		26561	0.382 ng		
/3/ 1,3,3-111methythemzene	24.15	105	25329	0.422 ng		96 52

Data File : 02130914.D

Acq On : 13 Feb 2009 19:01

Operator : WA/LH

Sample : P0900513-005 (1000mL)

: Haley & Aldrich SV-SS-8 (-1.5, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Feb 16 09:10:02 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	alpha-Methylstyrene	24.35	118	1189	N.D.	
81)	2-Ethyltoluene	24.40	105	22571	0.310 ng	94
82)	1,2,4-Trimethylbenzene	24.67	105	66414	1.032 ng	97
83)	n-Decane	24.79	57	172934	4.573 ng	68
84)	Benzyl Chloride	24.87	91	543	N.D.	
85)	1,3-Dichlorobenzene	24.95	146	27231	0.725 ng	99
86)	1,4-Dichlorobenzene	24.95	146	27231	0.708 ng	99
87)	sec-Butylbenzene	25.00	105	7821	0.093 ng	98
88)	p-Isopropyltoluene	25.20	119	37881	0.465 ng	95
89)	1,2,3-Trimethylbenzene	25.20	105	21273	0.330 ng	82
90)	1,2-Dichlorobenzene	24.95	146	27231	0.766 ng	100
91)	d-Limonene	25.37	68	199454	7.988 ng	99
92)	1,2-Dibromo-3-Chloropr	26.31	157	431	N.D.	
93)	n-Undecane	26.32	57	104224	2.554 ng	67
94)	1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95)	Naphthalene	27.57	128	85462	0.921 ng	97
96)	n-Dodecane	27.55	57	38567	0.838 ng	77
97)	Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98)	Cyclohexanone	22.23	55	1796	0.065 ng	94
	tert-Butylbenzene	25.12	119	5433	0.087 ng	98
	n-Butylbenzene	25.71	91	18943	0.285 ng	# 59

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-8

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

EPA TO-15

Fest Code: Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Wida Ang

Analyst:

Sampling Media:

Test Notes: Container ID:

AC01435

Initial Pressure (psig):

-3.9

Final Pressure (psig):

3.6

Volume(s) Analyzed:

CAS Project ID: P0900513

Date Collected: 2/10/09

Date Received: 2/12/09

Date Analyzed: 2/13/09

CAS Sample ID: P0900513-006

Canister Dilution Factor: 1.69

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.17	ND	0.066	
75-00-3	Chloroethane	ND	0.85	ND	0.32	
75-35-4	l, I-Dichloroethene	ND	0.85	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.85	ND	0.21	
71-55-6	1,1,1-Trichloroethane	ND	0.85	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

Sample : P0900513-006 (1000mL)

Misc : Haley & Aldrich SV-InA-8 (-3.9, 3.6) ✓

ALS Vial: 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

Sample : P0900513-006 (1000mL)

Misc : Haley & Aldrich SV-InA-8 (-3.9, 3.6) √

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	n Respons	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)		130	299869	25.000	ng ng	-0	.05
37) 1,4-Difluorobenzene (IS2)	15.22	114	1350439	25.000	ng ng	- 0	.03
56) Chlorobenzene-d5 (IS3)	21.10	82	668943	25.000	ng	-0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(
Spiked Amount 25.000 57) Toluene-d8 (SS2)			Reco	very =	97	.88%	√
57) Toluene-d8 (SS2)	18.67	98	1533579	24.351	. ng	-0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	e-		Reco	very =	97	.40%	/
73) Bromofluorobenzene (SS3)	23.06	174	625487	26.441	ng _	0	,00
Spiked Amount 25.000				very =			
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane						Qva.	lue
2) Propene	4.59	42	72939	4.345	ng	#	1
3) Dichlorodifluoromethane	4.78	85	48827	1.666	ng		99
4) Chioromethane	5.09	. 50	22808	0.952	ng		98
5) Freon 114	5.33	T 3 2	821	0.061	ng		64
7) 1 2 Putadione	5.00	6Z	10673	N.D	'. V		06
2) Promomethane	5.79	24	100/3	7.2T	113		90
9) Chloroethane	0.20	64	0	N.D			
10) Ethanol	7.10	45	28238952	2712.51	1 na		92
11) Acetonitrile	7.19	4.1	110750	3.929	na na		92
12) Acrolein	7.40	56	22973	2.632	ng		80
13) Acetone	7.61	58	359991	30.328	nq	#	81
14) Trichlorofluoromethane	7.88	101	21850	0.858	ng		94
15) Isopropanol	8.16	45	190403	4.472	ng		94
16) Acrylonitrile	8.38	53	8203	0.421	ng		94
17) 1,1-Dichloroethene	0.00	96	. 0	N.D	. V		
18) tert-Butanol	9.08	59	23201	0.578	ng	#	26
19) Methylene Chloride	9.08	84	4641	0.308	ng	#	55
20) Allyl Chloride	9.26	41	1676	0.092	ng	#	55
21) Trichlorotrilluoroethane	9.53	T2T	4627	0.405	ng		89
22) trang 1 2 Dighleroothere	9.46	/ 0	9670	U.184	ng		95
24) 1,1-Dichloroethane	0.00	6.3 P.T	0	N.D	• ./		
25) Methyl tert-Butyl Ether	10.92	63 73	374	N.D	· V		
26) Vinyl Acetate	11.03	86	12707	5.161		#	1
27) 2-Butanone	11.40	72	22679	2.502		#	37
28) cis-1,2-Dichloroethene	0.00	61	0	N.D		11	- ,
29) Diisopropyl Ether	12.39	87	571	N.D			
30) Ethyl Acetate	12.40	61	35561	6.786			82
31) n-Hexane	12.40	57	17052	0.688			88 56

Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

Sample : P0900513-006 (1000mL)

Misc : Haley & Aldrich SV-InA-8 (-3.9, 3.6)

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T	. QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	36173	1.589 ng		96
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane	13.08	72	3559	0.424 ng	#	1
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59	62	3178			94
38) I,I,I-IIICIIIOLOEUIAIIE	13.90	9 /	023	N.D. 🗸		
39) Isopropyl Acetate	14.56	61	473	N.D.		
40) 1-Butanol	14.57	56	49904	3.364 ng		86
41) Benzene	14.67	78	93623	1.617 ng		1.00
42) Carbon Tetrachloride	14.91	117	5298	0.282 ng		98
43) Cyclohexane	15.10	84	4224	0.219 ng	#	68
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane		83	9169	N.D. 0.509 ng		98
47) Trichloroethene	16.25	130	567	N.D.		
	16.24	88	527	N.D.		
49) Isooctane	16.34	57	14016	N.D. 0.214 ng		88
50) Methyl Methacrylate	16.70	100	1775	0.312 ng	#	1
51) n-Heptane	16.70	71	6093	0.425 ng	#	74
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.51	58	3365	0.247 ng		87
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	130818	9.643 ng	#	8
58) Toluene		91				
59) 2-Hexanone	19.13			0.225 ng		76
60) Dibromochloromethane	19.34			0.216 ng		99
61) 1,2-Dibromoethane	0.00	107	0	U.D.		
62) Butyl Acetate	19.95	43	25383	0.574 ng		91
				0.408 ng		79
64) Tetrachloroethene						90
65) Chlorobenzene	21.17	112	417	N.D.		
				0.623 ng		100
67) m- & p-Xylene	21.85	91	102739	1.852 ng		96
68) Bromoform	21.96	173	394	N.D.		
69) Styrene	22.33	104	34034	N.D. 0.799 ng		97
70) o-Xylene	22.48	91	34132	0.601 ng		100
71) n-Nonane	22.75		12413	0.353 ng		92
72) 1,1,2,2-Tetrachloroethane		83	694	N.D.		
74) Cumene	23.24	105	4252	N.D.		
75) alpha-Pinene	23.74	93	89880	2.777 ng		97
76) n-Propylbenzene	23.88	91	10485	0.115 ng	#	76
77) 3-Ethyltoluene	24.01	105	24758	0.360 ng		95
78) 4-Ethyltoluene	24.06		11788	0.175 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	9353	0.161 ng		99 57
						Aller 6

Data File : 02130915.D

Acq On : 13 Feb 2009 19:44

Operator : WA/LH

: P0900513-006 (1000mL) Sample

: Haley & Aldrich SV-InA-8 (-3.9, 3.6)

ALS Vial : 14 Sample Multiplier: 1

Ouant Time: Feb 16 09:10:08 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene	24.35 24.40 24.67 24.82	118 105 105 57 91 146 146 105 119	1735 9418 31149 48558 1234 99470 99470 1219 35156 13028	N.D. 0.133 ng 0.499 ng 1.324 ng N.D. 2.730 ng 2.665 ng N.D. 0.445 ng 0.209 ng	#	97 97 97 1 99 99
90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane	25.37 25.37 0.00 26.32	146 68 157 57	292 161823 0 17280	N.D. 6.680 ng N.D. 0.437 ng	· #	96 51
94) 1,2,4-Trichlorobenzene 95) Naphthalene 96) n-Dodecane 97) Hexachloro-1,3-butadiene	0.00 27.57 27.55 0.00	128 57	0 50418 28907 0	N.D. 0.560 ng 0.648 ng N.D.		98 74
98) Cyclohexanone 99) tert-Butylbenzene 100) n-Butylbenzene	22.06 25.12 25.71	55	17698 2677 3278	0.663 ng N.D. N.D.	#	93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-OutA-020909

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-007

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Collected: 2/10/09 Date Received: 2/12/09

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 2/13/09

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01179

Initial Pressure (psig):

-1.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.36

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.053	
75-00-3	Chloroethane	. ND	0.68	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.68	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.68	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.68	ND	0.12	

VID = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Quantitation Report (Not Reviewed)

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5) 🗸

ALS Vial: 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	298820 1377268 670624		ng	- 0	
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000			473818 Recove	ery =	99.	. 16%	\checkmark
57) Toluene-d8 (SS2) Spiked Amount 25.000	18.67	98	1546800 Recove	24.499 ery =	ng 98	-0 00%	.01
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	617456	26.036 ery =	ng	0	.00
Target Compounds		٠				Qva	lue
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane	5.08 5.31 0.00 5.78 6.25 0.00	85 50 135 62 54 94	14367 63155 11852 1166 .0 529 182	2.162 0.497 0.084 N.D N.D N.D	ng ng ng	#	25 98 96 69
	6.98 7.21		9350 2751	0.901 0.098			97 90
12) Acrolein13) Acetone14) Trichlorofluoromethane	7.41 7.61 7.88	56 58 101	2605 51776	0.299	ng ng ng	##	78 58 95
16) Acrylonitrile17) 1,1-Dichloroethene18) tert-Butanol	8.48 0.00 9.08	53 96 59	357 0 295	N.D. N.D. N.D.			
23) trans-1,2-Dichloroethene	9.16 9.53 9.48 0.00	41 151 76 61	2083 6037 2132 0	0.115 0.530 N.D. N.D.	ng ng	#	54 55 88
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene	0.00 0.00 11.06 11.41 0.00	63 73 86 72 61	0 0 567 5452 0	N.D. N.D. 0.231 0.604 N.D.	ng ng	##	1 60
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	0.00 12.41 12.41	87 61 57	0 6109 10348	N.D. 1.170 0.419	ng		86 91 6

Page: 1

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Ouant Time: Feb 16 09:10:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards			Response	Conc Units	Dev((Min)
32) Chloroform	12.49		1146	N.D.		
34) Tetrahydrofuran	0.00	72	0	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.58	62	860	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	910	N.D. ✓		
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	14.59	56	18468	1.221 ng		89
41) Benzene	14.67	78	42113	0.713 ng		100
42) Carbon Tetrachloride				0.363 ng		94
43) Cyclohexane	15.11	84	1544	0.079 ng	#	74
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
		83	0	N.D.		
47) Trichloroethene	0.00	130	0	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.34	57	17242	0.258 ng		94
50) Methyl Methacrylate	16.72	100	641	0.111 ng	#	1
51) n-Heptane	16.70		2303	0.158 ng		72
52) cis-1,3-Dichloropropene			0	N.D.		
53) 4-Methyl-2-pentanone	17.83	58	57	N.D.		
54) trans-1,3-Dichloropropene			0	N.D.		
55) 1,1,2-Trichloroethane		97	131038	9.471 ng	#	8
58) Toluene	18.80	91	77467	1.218 ng		98
59) 2-Hexanone	19.14		2349	0.061 ng	#	55
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	19.97	43	1704	N.D.		
63) n-Octane	20.11	57	1317	0.090 ng	#	76 -
64) Tetrachloroethene	20.29	166	1168	0.066 ng		94
65) Chlorobenzene	21.16	112	55	N.D.		
66) Ethylbenzene	21.65	91	13354	0.188 ng		95
67) m- & p-Xylene	21.86	91	33149	0.596 ng		99
68) Bromoform	0.00	173	0	N.D.		
69) Styrene	22.34	104	1319	N.D.		
70) o-Xylene	22.48	91	12885	0.226 ng		97
71) n-Nonane	22.75	43	3431	0.097 ng		79
72) 1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.		
74) Cumene	23.24	105	1761	N.D.		
75) alpha-Pinene	23.74	93	1662	N.D.		
76) n-Propylbenzene	23.88	91	3860	N.D.		
77) 3-Ethyltoluene	24.01	105	10882	0.158 ng		99
78) 4-Ethyltoluene	24.06	105	5352	0.079 ng		99
79) 1,3,5-Trimethylbenzene	24.16	105	4262	0.073 ng		98 62

Data File : 02130916.D

Acq On : 13 Feb 2009 20:27

Operator : WA/LH

Sample : P0900513-007 (1000mL)

Misc : Haley & Aldrich SV-OutA-020909 (-1.3, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Feb 16 09:10:14 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.58		53 4010		
82) 1,2,4-Trimethylbenzene				0.205 ng	100
83) n-Decane	24.79	57	9711	0.264 ng	76
84) Benzyl Chloride	24.85	91	54	N.D.	
85) 1,3-Dichlorobenzene	24.95	146	1619	N.D.	
86) 1,4-Dichlorobenzene	24.95	146	1619	N.D.	
87) sec-Butylbenzene			368		
88) p-Isopropyltoluene				N.D.	
89) 1,2,3-Trimethylbenzene				N.D.	
90) 1,2-Dichlorobenzene	24.95	146	1619	N.D.	
91) d-Limonene	25.37	68	709	N.D.	
92) 1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.	
93) n-Undecane				0.084 ng	# 65
94) 1,2,4-Trichlorobenzene	0.00	184	. 0	N.D.	
95) Naphthalene	27.57	128	5558	0.062 ng	95
96) n-Dodecane	27.55			N.D.	
97) Hexachloro-1,3-butadiene	0.00	225	- 0	N.D.	
98) Cyclohexanone				0.075 ng	# 92
99) tert-Butylbenzene				N.D.	
100) n-Butylbenzene	25.67	91	1718	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-2

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

CAS Project ID: P0900513

CAS Sample ID: P0900513-008

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Date Collected: 2/10/09

Date Received: 2/12/09 Date Analyzed: 2/13/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

Sampling Media:

SC00160

Initial Pressure (psig):

-0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.26

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.049	
75-00-3	Chloroethane	ND	0.63	ND	0.24	
75-35-4	1,1-Dichloroethene	ND	0.63	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.63	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.63	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date:

Quantitation Report (Not Reviewed)

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5) 🗸

ALS Vial: 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130917.D

Acq On : 13 Feb 2009 21:09

Operator : WA/LH

Sample : P0900513-008 (1000mL)

Misc : Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Uni	s Dev(Min)	
1) Bromochloromethane (IS1)	12.28	130	290183	25.000 ng	-0.05	
37) 1,4-Difluorobenzene (IS2)	15.21	114	1338269	25.000 ng	-0.03	
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.10	82	658768	25.000 ng	-0.01	
, , _ , _ , _ , _ , _ , _ , _ ,				J		
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.42	65	460851	24.834 ng	-0.04	
Spiked Amount 25.000			Recove	ry = 3	9.32% /	
57) Toluene-d8 (SS2)	18.67	98	1513501	24.403 ng	-0.01	
Spiked Amount 25.000			Recove	= $=$ $=$	7.60% /	
73) Bromofluorobenzene (SS3)	23.06	174	610324			
Spiked Amount 25.000			Recove	ry = 10)4.80% ✓	
Target Compounds					Qvalue	
	4.64	42	12594	0.775 ng	11	
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	4.76	85	65434	2.307 ng	99	
4) Chloromethane	5.08	50	2422	0.105 ng	93	
5) Freon 114	5.32	135	1123	0.083 ng	97	
6) Vinyl Chloride	0.00	62	0	N.D.		
7) 1,3-Butadiene	5.70	54	475	N.D.		
8) Bromomethane	0.00	94	0	N.D.		
9) Chloroethane	6.57	64	266	$N.D.\sqrt{}$		
10) Ethanol	6.98	45	5050	0.501 ng	88	
11) Acetonitrile	7.19	41	1552	N.D.		
12) Acrolein	7.42	56	1719	0.203 ng	# 73	
13) Acetone	7.60	58	76626	6.671 ng	# 85	
14) Trichlorofluoromethane	7.88	101	28682	1.163 ng	97	
15) Isopropanol	8.18	45	1772	N.D.		
16) Acrylonitrile	8.48	53	118	N.D.		
1/) 1,1-Dichloroethene	0.00	96	0	N.D.		
18) tert-Butanoi	9.10	59	604	N.D.	11	
19) Methylene Chioride	9.08	8 4	3520 .	0.242 ng	# 57	
21) Triablerotriflueroethane	9.10	151	6004	N.D.	87	
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	9.55	76	1/3/63	0.330 ng	97	
22) trang_1 2_Dichloroethene	0.47	7 U	T#202	0.262 Hg	3 /	
24) 1,1-Dichloroethane	0.00	63	0	N.D.		
25) Methyl tert-Butyl Ether	10.86	73	115	N.D.		
26) Vinyl Acetate	11.09	86	396	0.166 ng	# 1	
27) 2-Butanone	11.41	72	8409	0.959 ng	# 44	
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.	,,	
29) Diisopropyl Ether	0.00	87	0	N.D.		
30) Ethyl Acetate	12.40	61	23957	4.724 ng	89	
31) n-Hexane	12.41	57	6184	0.258 ng	93 🕻	36

Data File : 02130917.D

: 13 Feb 2009 21:09 Acq On

Operator : WA/LH

: P0900513-008 (1000mL) Sample

: Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	12.48	83	1512	0.069 ng		94
34) Tetrahydrofuran	13.10	72	360	N.D.		
35) Ethyl tert-Butyl Ether		87	0	N.D.		
36) 1,2-Dichloroethane	13.59		731	N.D. /		
38) 1,1,1-Trichloroethane	13.98	97	867	N.D.		
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	14.59	56	29609	2.014 ng		90
41) Benzene	14.67	78				98
42) Carbon Tetrachloride		117		-		99
43) Cyclohexane	15.10	84	2749	0.144 ng	#	65
44) tert-Amyl Methyl Ether		73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane		83	0	N.D.		
47) Trichloroethene	16.25	130	132			
48) 1,4-Dioxane	16.21	88	17569		#	72
49) Isooctane	16.34	57	5037			79
50) Methyl Methacrylate			447		#	1
51) n-Heptane	16.70		1617	0.114 ng	#	81
52) cis-1,3-Dichloropropene			0	N.D.		
53) 4-Methyl-2-pentanone	17.52		1045	0.077 ng	#	46
54) trans-1,3-Dichloropropene			0	N.D.		
55) 1,1,2-Trichloroethane			128441		#	8
58) Toluene	18.80	91	74467			98
59) 2-Hexanone	19.14	43	5735			95
60) Dibromochloromethane	0.00	129		N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
	19.96	43	2434			
63) n-Octane	20.11	57	3539		#	82
64) Tetrachloroethene	20.30		1390	0.080 ng		99
65) Chlorobenzene	21.20		251	N.D.		
66) Ethylbenzene	21.64		24363	_		99
67) m- & p-Xylene	21.86			1.404 ng		98
	0.00			N.D.		
69) Styrene	22.33		6740	0.161 ng		98
70) o-Xylene	22.48	91	24438	0.437 ng		98
71) n-Nonane	22.75	43	25679	0.742 ng		93
72) 1,1,2,2-Tetrachloroethane	22.44	83	63	N.D.		
74) Cumene	23.23	105	3268	N.D.		O ***7
75) alpha-Pinene	23.74	93	47060	1.476 ng		97
76) n-Propylbenzene	23.88	91	8664	0.097 ng		95
77) 3-Ethyltoluene	24.01	105	23439	0.346 ng		96
78) 4-Ethyltoluene	24.06	105	11631	0.175 ng		98
79) 1,3,5-Trimethylbenzene	24.15	105	9076	0.158 ng		⁹⁴ 67

Data File : 02130917.D

: 13 Feb 2009 21:09 Acq On

Operator : WA/LH

: P0900513-008 (1000mL) Sample

: Haley & Aldrich SV-SS-2 (-0.3, 3.5)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Feb 16 09:10:20 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene	24.35	118	906	N.D.		
81) 2-Ethyltoluene	24.40	105	8624	0.124 ng		95
82) 1,2,4-Trimethylbenzene	24.67		29368	0.478 ng		97
83) n-Decane	24.79		49691	1.375 ng		75
84) Benzyl Chloride	24.84		698	N.D.		
85) 1,3-Dichlorobenzene	24.95		320	N.D.		
86) 1,4-Dichlorobenzene	24.95		320	N.D.		
87) sec-Butylbenzene	25.01		1022	N.D.		
88) p-Isopropyltoluene	25.20		44326	0.569 ng		90
89) 1,2,3-Trimethylbenzene	25.20		9151	0.149 ng	#	45
90) 1,2-Dichlorobenzene	24.95	146	320	N.D.		
91) d-Limonene	25.37	68	64524	2.705 ng		97
92) 1,2-Dibromo-3-Chloropr	0.00		0	N.D.		
93) n-Undecane		57	30464	0.781 ng	#	58
94) 1,2,4-Trichlorobenzene	0.00		0	N.D.		
95) Naphthalene	27.57		20596	0.232 ng		99
96) n-Dodecane	27.55	57	9577	0.218 ng	#	64
97) Hexachloro-1,3-butadiene	0.00		0	N.D.		
98) Cyclohexanone	22.07		5143	0.196 ng	#	75
99) tert-Butylbenzene	25.12		2106	N.D.		
100) n-Butylbenzene	25.70	91	4772	0.075 ng	#	38
	- ~					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-2

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-009

Test Code:

EPA TO-15

Instrument ID:

Wida Ang

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

6.0 L Summa Canister

Date Collected: 2/10/09

Date Received: 2/16/09 Date Analyzed: 2/16/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

Sampling Media:

AC01423

Initial Pressure (psig):

-1.6

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.39

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
75-00-3	Chloroethane	ND	0.70	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.70	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND .	0.70	ND	0.13	

VID = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	276686	25.000	ng	-0	.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1269109	25.000	ng	- 0	
56) Chlorobenzene-d5 (IS3)	21.10	82	624161	25.000	ng	-0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65	446597				
Spiked Amount 25.000				ery =			
57) Toluene-d8 (SS2)	18.67	- 98	1443468	24.564	ng	- 0	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recove	ery =	98.	. 24%	-
73) Bromofluorobenzene (SS3)	23.06	174	566996	25.688	ng	0	.00
Spiked Amount 25.000			Recove	ery =	102	. 76%	V
Target Compounds						Qva	
2) Propene	4.63	42	12330				
 Dichlorodifluoromethane 	4.75	85	55256	2.043	ng		99
4) Chloromethane	5.08	50		0.476	ng		93
5) Freon 114	5.32	135	979				87
6) Vinyl Chloride	0.00	62	0	N.D	• Samona		
7) 1,3-Butadiene							
	6.25		54				
9) Chloroethane	0.00	64	0	N.D			
10) Ethanol	7.10	45	24184	2.518			93
11) Acetonitrile	7.19	41	2719		ng		76
			2798				
			57345				
14) Trichlorofluoromethane					_		98
	8.18 8.46		809				
<pre>16) Acrylonitrile 17) 1,1-Dichloroethene</pre>		96	56 0	M.D	•		
	9.07		405				
19) Methylene Chloride						#	50
			1178				
21) Trichlorotrifluoroethane							91
22) Carbon Disulfide	9.48				_		
23) trans-1,2-Dichloroethene	0.00		0	N.D			
24) 1,1-Dichloroethane	0.00		Ö	N.D	- 4000		
25) Methyl tert-Butyl Ether	0.00	73	Ō	N.D.			
26) Vinyl Acetate	11.04	86	693	0.305		#	1
27) 2-Butanone	11.41	72	6314	0.755		#	57
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.	_		
29) Diisopropyl Ether	0.00	87	0	N.D.			
30) Ethyl Acetate	12.40	61	7304	1.511			89
31) n-Hexane	12.41	57	7309	0.320			94 7
·							•

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.48			0.076 ng		94
34) Tetrahydrofuran	0.00	72	0	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36\ 1 2-Dichloroethane	12 50	62	671	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	705	N.D.		
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol	0.00	61	0	N.D.		
40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	14.62	56	4238	0.304 ng		93
41) Benzene	14.67	78	33640	0.618 ng		98
42) Carbon Tetrachloride	14.90	117	6542	0.370 ng		93
43) Cyclohexane	15.10	84	1393	0.077 ng	#	66
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	. 0	N.D.		
46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane	16.25	130	110	N.D.		
48) 1,4-Dioxane	0.00	88	0			~
49) Isooctane	16.34	57	12404	0.201 ng	.,	87
50) Methyl Methacrylate	16.71	100	401	0.075 ng	#	1
51) n-Heptane	16.70	71	T866	0.139 ng	#	70
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52	58	534	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		_
55) 1,1,2-Trichloroethane	18.68	97	122016	9.570 ng	#	8
58) Toluene	18.80	91	63083	1.065 ng		99
59) 2-Hexanone	19.13	43	4414	0.123 ng		82
60) Dibromochioromethane	0.00	129	0	N.D.		
61) 1,2-Dipromoethane	0.00	107	2000	N.D.		F7 (C)
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane	19.97	43	3080	0.075 ng		70
63) N-Octane	20.11	1 6 6	202 4	0.185 ng		85
63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene	20.29	110	1126	0.185 ng 0.070 ng N.D.		92
65) Chlorobenzene 66) Ethylbenzene	21 64	01	10154	N.D. 0.154 ng 0.461 ng		98
(m) m (c m 3/1 c m a	21.04	9.1 0.1	10124	0.154 ng		100
67) m- & p-xyrene 68) Bromoform 69) Styrene 70) o-Xylene	0.00	173	23040	0.461 ng N.D.		100
69) Styrene	22 34	104	1580	N.D.		
70) o-Xylene	22.34	91	9532	0.180 ng		98
71) n-Nonane	22.75	43	4083	0.125 ng		96
72) 1,1,2,2-Tetrachloroethane	22.48	83	370	N.D.		
74) Cumene	23.24	105	1839	N.D.		
75) alpha-Pinene	23.74	93	3666	0.121 ng	#	43
76) n-Propylbenzene	23.89	91	3115	N.D.	"	~ ~~
77) 3-Ethyltoluene	24.01	105	7608	0.118 ng		95
78) 4-Ethyltoluene	24.07	105	4243	0.067 ng		92
79) 1,3,5-Trimethylbenzene	24.16	105	3260	0.060 ng		93 72
				<i></i>		- (Com

Data File : 02160906.D

Acq On : 16 Feb 2009 12:54

Operator : WA/LH

Sample : P0900513-009 (1000mL)

: Haley & Aldrich SV-InA-2 (-1.6, 3.5) Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 13:27:52 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inte	ernal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
	alpha-Methylstyrene 2-Ethyltoluene	24.59 24.40			N.D. N.D.	
	1,2,4-Trimethylbenzene	24.67	105	9640	0.166 ng	92
	n-Decane	24.79			-	77
	Benzyl Chloride	24.84		55	N.D.	
	1,3-Dichlorobenzene			1923		
	•	24.95		1923		
	sec-Butylbenzene			276		
	p-Isopropyltoluene					
	1,2,3-Trimethylbenzene	25.20	105	2391		
	1,2-Dichlorobenzene	24.95	146	1923	N.D.	
	d-Limonene	25.37			0.074 ng	85
	1,2-Dibromo-3-Chloropr	0.00		0	N.D.	
	n-Undecane	26.32	57	7550	0.204 ng	# 39
94)	1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95)	Naphthalene	27.58	128	3833	N.D.	
	n-Dodecane	27.55	57	3027	0.073 ng	74
97)	Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98)	Cyclohexanone	22.07	. 55	3224	0.129 ng	96
	tert-Butylbenzene	24.67	119	1183	N.D.	
100)	n-Butylbenzene	25.67	91	2058	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Haley & Aldrich, Inc. Client:

CAS Project ID: P0900513 Client Sample ID: SV-SS-16

Client Project ID: Cooper Vision / 70665-014 CAS Sample ID: P0900513-010

EPA TO-15 Test Code:

Date Collected: 2/10/09 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 2/12/09

Analyst: Wida Ang Date Analyzed: 2/13/09

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s) Test Notes:

-1.3

Container ID: SC00932

Instrument ID:

Initial Pressure (psig):

Canister Dilution Factor: 1.36

3.5

Final Pressure (psig):

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.053	
75-00-3	Chloroethane	· ND	0.68	ND	0.26	
75-35-4	1,1-Dichloroethene	ND	0.68	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.68	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.68	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 2 月2/0年 TOISSCAN.XLT - NL - PageNo.;

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5) ✓

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards			Response				Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)							.05 .03 .01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.42	65	464279 Recove 1503562	24.490 ery =	ng 97	-0 .96%	.04 V
57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	18.67	98	1503562 Recove	24.462 ∋ry = 25.920	ng 97.	0- 84%.	.01
Spiked Amount 25.000	23.00	1/4	Recove	ery =	103.	. 68%	V
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol	4.64 4.76 5.08 5.32 0.00 5.78 6.25 0.00	42 85 50 135 62 54 94 64	12241 60544 10878 1004 0 651 178	0.738 2.089 0.459 0.073 N.D N.D N.D	ng ng ng ng	Qva. #	lue 28 100 94 94
10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene	6.98 7.21 7.41 7.60 7.87 8.09	45 41 56 58 101 45	2691 2213 2490 78027 26700 2758	0.261 0.079 0.289 6.649 1.060 0.066	ng ng ng ng ng ng	#	54 91 80 93 95 47
17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00 9.07 9.09 9.18 9.53 9.47	96 59 84 41 151 76	244 3602 1574 5852 4330	N.D N.D 0.242 0.087 0.518 0.083 N.D	ng ng ng ng	#	51 55 86 78
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate	0.00 0.00 11.10 11.41 0.00 0.00	63 73 86 72 61 87	0 0 743 5677 0 0 9434	N.D N.D 0.305 0.633 N.D N.D	ng ng	##	1 52 88
31) n-Hexane	12.41	57	17035	0.696			⁹¹ 76

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	s De	v(Min)
32) Chloroform	12.49	83	1504	0.067 ng		87
34) Tetrahydrofuran	13.09	72	62	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59	62	885	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	849	N.D.V		
39) Isopropyl Acetate	0.00		0	N.D.		
40) 1-Butanol	0.00		0	N.D.		
41) Benzene	14.67	78	43706			100
42) Carbon Tetrachloride	14.91	117	6704	0.359 ng		94
43) Cyclohexane	15.10	84	4430		#	63
44) tert-Amyl Methyl Ether	0.00	73		N.D.		
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	16.19	83		N.D.		
47) Trichloroethene	0.00		0	N.D.		
48) 1,4-Dioxane	0.00		0	N.D.		
49) Isooctane	16.34	57	15821	0.243 ng		88
50) Methyl Methacrylate	16.70	100	2156	0.382 ng	#	1
51) n-Heptane	16.71	71	7433	0.523 ng	#	75
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	126913	9.424 ng	#	8
58) Toluene	18.80	91	139667			98
59) 2-Hexanone	19.13	43	3508	0.093 ng	#	39
60) Dibromochloromethane	0.00	129	. 0	N.D.		
61) 1,2-Dibromoethane	0.00			N.D.		
62) Butyl Acetate	19.97	43	644	N.D.		
63) n-Octane	20.11	57	8139		#	74
64) Tetrachloroethene	20.29	166	1290			88
65) Chlorobenzene	21.16	112	174	N.D.	•	
66) Ethylbenzene	21.64	91	28590	0.414 ng		99
67) m- & p-Xylene	21.85	91	93121			97
68) Bromoform	0.00	173	0	N.D.		
69) Styrene			2232	N.D.		
70) o-Xylene	22.48	91	28968	0.523 ng		100
71) n-Nonane	22.75	43	32551	0.950 ng		94
72) 1,1,2,2-Tetrachloroethane	22.50	83	56	N.D.		
74) Cumene	23.24	105	3697	N.D.		L
75) alpha-Pinene	23.54	93	2154	0.068 ng		77
76) n-Propylbenzene	23.88	91	7452	0.084 ng		96
77) 3-Ethyltoluene	24.01		19489	0.290 ng		93
78) 4-Ethyltoluene	24.06		9896	0.150 ng		98
79) 1,3,5-Trimethylbenzene	24.15	105	6774	0.119 ng		94 7

Data File : 02130918.D

Acq On : 13 Feb 2009 21:52

Operator : WA/LH

Sample : P0900513-010 (1000mL)

Misc : Haley & Aldrich SV-SS-16 (-1.3, 3.5)

ALS Vial : 5 Sample Multiplier: 1

Ouant Time: Feb 16 09:10:26 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.67 24.40		170 7321	N.D. 0.106 ng		97
82) 1,2,4-Trimethylbenzene	24.67	105	21872	0.359 ng	•	97
83) n-Decane	24.79		42926	_		77
84) Benzyl Chloride	24.96		633	N.D.		
85) 1,3-Dichlorobenzene	24.95		335	N.D.		
86) 1,4-Dichlorobenzene	24.95		335	N.D.		
87) sec-Butylbenzene	25.01			N.D.		
88) p-Isopropyltoluene	25.20		54624			89
89) 1,2,3-Trimethylbenzene			8120	0.133 ng	#	22
• • •	24.95		335	N.D.		
91) d-Limonene	25.37		262	N.D.		
92) 1,2-Dibromo-3-Chloropr	0.00			N.D.		
93) n-Undecane	26.32		20144	0.521 ng		67
94) 1,2,4-Trichlorobenzene			0	N.D.		
95) Naphthalene	27.57		14230	0.162 ng		99
96) n-Dodecane	27.55	57	4398	0.101 ng	#	65
97) Hexachloro-1,3-butadiene	0.00		0	N.D.		
98) Cyclohexanone	22.10	55	2689	0.103 ng	#	66
99) tert-Butylbenzene	24.67			N.D.		
100) n-Butylbenzene	25.68	91	2968	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of I

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-16

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P0900513-011

Test Code:

EPA TO-15

Date Collected: 2/10/09

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Date Received: 2/12/09 Date Analyzed: 2/13/09

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01351

Initial Pressure (psig):

-3.7

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.65

CAS#	Compound	Result μg/m³	MRL -µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.17	ND	0.065	
75-00-3	Chloroethane	ND	0.83	ND	0.31	•
75-35-4	1,1-Dichloroethene	ND	0.83	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.83	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.83	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5) ✓

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5)

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev	v(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	1323889	25.000 ng	-	-0.05 -0.03 -0.01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000			Recove	24.790 ng ery = 9		
57) Toluene-d8 (SS2) Spiked Amount 25.000	18.67	98	1485167	24.570 ng ery = 9	-	-0.0,1
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	583162	25.685 ng ery = 10		0.90
Target Compounds					Οv	alue
2) Propene3) Dichlorodifluoromethane	4.63 4.76 5.08			0.656 ng 1.785 ng 0.405 ng	#	.35 100
6) Vinyl Chloride	5.33 0.00	135 62	789 0	N.D. N.D.✓		97
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane	5.79 6.26 0.00	54 94 64	317 61 0	N.D.		
10) Ethanol	6.99	45	18150	1.818 ng		88
11) Acetonitrile 12) Acrolein	7.20 7.41		2102 2261			
13) Acetone	7.62			4.342 ng		
14) Trichlorofluoromethane			22033	0.902 ng	,,	93
	8.19		516	N.D.		
	8.48		169	N.D.		
17) 1,1-Dichloroethene	0.00	96	. 0	N.D.		
			63		"	m 0
19) Methylene Chloride	9.09	84	2811	0.195 ng	#	52
20) Allyl Chloride 21) Trichlorotrifluoroethane	9.19	41	113	N.D.		94
			2030			24
23) trans-1,2-Dichloroethene			2030	N.D.		
24) 1,1-Dichloroethane	0.00	63	ő	N.D.		
25) Methyl tert-Butyl Ether	0.00	73	Ō	N.D.		
26) Vinyl Acetate	11.07	86	106	N.D.		
27) 2-Butanone	11.41	72	5617	0.646 ng	#	43
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.		
29) Diisopropyl Ether	0.00	87	0	N.D.		
30) Ethyl Acetate	12.40	61	4245	0.845 ng		90
31) n-Hexane	12.41	57	7096	0.299 ng		97 8

Data File : 02130919.D

Acq On : 13 Feb 2009 22:35

Operator : WA/LH

Sample : P0900513-011 (1000mL)

Misc : Haley & Aldrich SV-InA-16 (-3.7, 3.5)

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inter	nal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) (Chloroform	12.48	83	1300	N.D.		
34) '	Tetrahydrofuran	0.00		0	N.D.		
	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
		13.59			N.D.		
38)	1,1,1-Trichloroethane	13.98			N.D.		
		0.00	61	0	N.D.		
	1-Butanol				0.214 ng		99
41) 1	Benzene	14.67	78	31093	0.548 ng		98
	Carbon Tetrachloride	14.89	117	5609	0.304 ng		97
					0.067 ng	#	64
44) t	tert-Amyl Methyl Ether	0.00	73	0	N.D.		
	1,2-Dichloropropane	0.00	63	0	N.D.		
46) I	Bromodichloromethane	0.00	83	0 .	N.D.		
47) 5	Trichloroethene	0.00	130	0	N.D.		
48)		0.00			N.D.		
49)	Isooctane	16.34			0.189 ng		90
50) N	Methyl Methacrylate				0.077 ng	#	1
51) r	n-Heptane	16.72	71	1652	0.118 ng	#	71
52) (cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4	4-Methyl-2-pentanone	17.54			N.D.		
54) t	trans-1,3-Dichloropropene	0.00	75	0			
55) 3	1,1,2-Trichloroethane	18.68	97	126445	9.507 ng	#	8
58) 7	Toluene	18.80	91	56067	0.920 ng		99
		19.15			0.083 ng		78
	Dibromochloromethane						
61) 1		0.00			N.D.		
	_	19.97	43	1735	N.D.		
	n-Octane	20.11	57	1743	0.124 ng	#	83
	Tetrachloroethene	20.28			0.061 ng		80
	Chlorobenzene	0.00	112	0			
		21.65	91	9248	0.136 ng		100
	m- & p-Xylene	21.86	91	22017	0.414 ng		96
		0.00			N.D.		
	Styrene			1184			
	o-Xylene	22.48		8587	0.158 ng		97
	n-Nonane	22.75	43	7775	0.231 ng		96
	1,1,2,2-Tetrachloroethane	22.49	83	65	N.D.		
	Cumene_	23.24	105	1270	N.D.		
	alpha-Pinene	23.74	93	5574	0.179 ng	#	43
•	n-Propylbenzene	23.89	91	2868	N.D.		0.0
	3-Ethyltoluene	24.01	105	6810	0.103 ng		88
	4-Ethyltoluene	24.07	105	3438	N.D.		<i>6</i> 6
79)]	1,3,5-Trimethylbenzene	24.16	105	3031	N.D.		82

Data File : 02130919.D

: 13 Feb 2009 22:35 Acq On

Operator : WA/LH

Sample : P0900513-011 (1000mL)

: Haley & Aldrich SV-InA-16 (-3.7, 3.5)

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Feb 16 09:10:33 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.59 24.40			N.D.	
82) 1,2,4-Trimethylbenzene					91
83) n-Decane	24.79			0.873 ng	79
•	24.95		61	N.D.	
85) 1,3-Dichlorobenzene			730		
86) 1,4-Dichlorobenzene			730	N.D.	
87) sec-Butylbenzene					
88) p-Isopropyltoluene				N.D.	
89) 1,2,3-Trimethylbenzene					
	24.95		730		
91) d-Limonene	25.38			0.072 ng	96
92) 1,2-Dibromo-3-Chloropr	0.00			N.D.	
93) n-Undecane	26.32			0.111 ng	# 33
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.	
95) Naphthalene	27.58	128	5104	N.D.	
96) n-Dodecane	27.55	57	2030	N.D.	
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.	
98) Cyclohexanone	22.07	55	2264	0.088 ng	# 79
99) tert-Butylbenzene	24.67	119	1379	N.D.	
100) n-Butylbenzene	25.68	91	1868	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Standards Data

Method Path : J:\MS16\METHODS\

Method File: R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

Response Via: Initial Calibration

Calibration Files

0.1 =01220902.D 0.2 =01220903.D 0.5 =01220904.D 1.0 =01220905.D 5.0 =01220906.D 25 =01220907.D

50 =01220908.D 100 =01220909.D

1) IR Bromochloromethane		Compound			0.2	0.5	1.0	5.0	25	50	100	Avg	%RSD
23													
3) T Dichlorodifluo 3.208 2.462 2.805 2.546 2.287 2.072 2.067 2.103 2.444 16.56 4) T Chloromethane 2.608 2.158 2.306 2.077 1.660 1.851 1.624 1.691 1.997 17.65 5) T Freon 114 1.427 1.187 1.321 1.189 1.053 1.004 0.981 1.134 1.162 13.30 6) T Vinyl Chloride 2.285 1.723 2.050 1.764 1.598 1.574 1.544 1.773 1.789 14.35 7) T 1.3-Butadiene 1.434 1.048 1.254 1.149 1.034 1.131 1.134 1.311 1.187 11.53 8) T Bromomethane 1.169 0.937 1.003 0.922 0.771 0.884 0.859 0.873 0.927 12.79 9) T Chloroethane 0.923 0.827 0.999 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1.1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.166 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifi 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.561 1.561 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.749 0.756 7.66 28) T Cis-1,2-Dichlo 1.924 1.487 1.803 1.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T Diisopropyl Ether 1.033 0.821 0.974 0.890 0.830 0.886 0.908 0.962 0.914 7.94													
4) T Chloromethane 2.608 2.158 2.306 2.077 1.660 1.851 1.624 1.691 1.997 17.65 5) T Freen 114 1.427 1.187 1.321 1.189 1.053 1.004 0.981 1.134 1.162 13.30 6) T Vinyl Chloride 2.285 1.723 2.050 1.764 1.598 1.574 1.544 1.773 1.789 14.35 7) T 1,3-Butadiene 1.434 1.048 1.254 1.149 1.034 1.131 1.134 1.311 1.187 11.53 8) T Bromomethane 1.169 0.937 1.003 0.922 0.771 0.884 0.859 0.873 0.927 12.79 9) T Chloroethane 0.923 0.827 0.999 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Bthanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acctonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.338 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.150 3.418 3.347 2.265 3.347 1.694 19) T Methylene Chlo 1.661 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691													
6) T Vinyl Chloride 2.285 1.723 2.050 1.764 1.598 1.574 1.544 1.773 1.789 14.35 7) T 1,3-Butadiene 1.434 1.048 1.254 1.149 1.034 1.131 1.134 1.311 1.187 11.53 8) T Bromomethane 1.169 0.937 1.003 0.922 0.771 0.884 0.859 0.873 0.927 12.79 9) T Chloroethane 0.923 0.827 0.909 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.994 1.994 1.994 1.966 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.771 0.714 0.787 0.769 0.749 0.756 7.66 28) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.902 0.914		Dichlorodifluo	3.208	2.462	2.805	2.546	2.287	2.072	2.067	2.103	2.444	16.56	
6) T Vinyl Chloride 2.285 1.723 2.050 1.764 1.598 1.574 1.544 1.773 1.789 14.35 7) T 1,3-Butadiene 1.434 1.048 1.254 1.149 1.034 1.131 1.134 1.311 1.187 11.53 8) T Bromomethane 1.169 0.937 1.003 0.922 0.771 0.884 0.859 0.873 0.927 12.79 9) T Chloroethane 0.923 0.827 0.909 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.994 1.994 1.994 1.966 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.771 0.714 0.787 0.769 0.749 0.756 7.66 28) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.902 0.914	4) T	Chloromethane	2.608	2.158	2.306	2.077	1.660	1.851	1.624	1.691	1.997	17.65	
6) T Vinyl Chloride 2.285 1.723 2.050 1.764 1.598 1.574 1.544 1.773 1.789 14.35 7) T 1,3-Butadiene 1.434 1.048 1.254 1.149 1.034 1.131 1.134 1.311 1.187 11.53 8) T Bromomethane 1.169 0.937 1.003 0.922 0.771 0.884 0.859 0.873 0.927 12.79 9) T Chloroethane 0.923 0.827 0.909 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.994 1.994 1.994 1.966 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.771 0.714 0.787 0.769 0.749 0.756 7.66 28) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.902 0.914	5) T	Freon 114	1.427	1.187	1.321	1.189	1.053	1.004	0.981	1.134	1.162	13.30	
8) T Bromomethane	6) T	Vinyl Chloride	2.285	1.723	2.050	1.764	1.598	1.574	1.544	1.773	1.789	14.35	•
9) T Chloroethane 0.923 0.827 0.909 0.835 0.746 0.720 0.700 0.727 0.798 10.96 10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11.74 11.74 11.75 11.75 Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12.75 Acetone 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13.75 Acetone 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13.75 17.75	7) T	1,3-Butadiene	1.434	1.048	1.254	1.149	1.034	1.131	1.134	1.311	1.187	11.53	
10) T Ethanol 0.869 0.653 1.014 0.905 0.824 0.900 0.884 0.894 0.868 11.74 11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 1.35 1 Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.044 2.244 4.404 4.401 1.462 1.691 1.673 1.707 1.519 11.35 1.35 1 T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	8) T	Bromomethane	1.169	0.937	1.003	0.922	0.771	0.884	0.859	0.873	0.927	12.79	
11) T Acetonitrile 2.495 2.113 2.784 2.505 2.293 2.266 2.170 2.173 2.350 9.70 12) T Acrolein 1.032 0.705 0.723 0.651 0.622 0.698 0.693 0.700 0.728 17.46 13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor. 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifil 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	9) T											10.96	
13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914	10) T	Ethanol	0.869	0.653	1.014	0.905	0.824	0.900	0.884	0.894	0.868	11.74	
13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914	11) T	Acetonitrile	2.495	2.113	2.784	2.505	2.293	2.266	2.170	2.173	2.350	9.70	
13) T Acetone 1.340 1.019 0.910 0.868 0.925 0.923 0.943 0.990 16.26 14) T Trichlorofluor 2.524 2.065 2.348 2.140 1.960 2.029 1.962 1.967 2.124 9.75 15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914	12) T	Acrolein	1.032	0.705	0.723	0.651	0.622	0.698	0.693	0.700	0.728	17.46	
15) T Isopropanol 5.262 3.593 4.157 3.767 2.679 3.408 2.846 2.688 3.550 24.66 16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 1.71 1.1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 1.017 1.018 1.048 1.019	13) T	Acetone		1.340	1.019	0.910	0.868	0.925	0.923	0.943	0.990	16.26	
16) T Acrylonitrile 1.491 1.198 1.663 1.732 1.648 1.783 1.735 1.741 1.624 11.95 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	14) T	Trichlorofluor	2.524	2.065	2.348	2.140	1.960	2.029	1.962	1.967	2.124	9.75	
17) T 1,1-Dichloroet 1.138 1.003 1.136 1.040 0.962 1.038 1.017 1.035 1.046 5.89 18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	15) T	Isopropanol	5.262	3.593	4.157	3.767	2.679	3.408	2.846	2.688	3.550	24.66	
18) T tert-Butanol 4.284 3.191 3.711 3.403 3.159 3.418 3.347 2.265 3.347 16.94 19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	16) T											11.95	
19) T Methylene Chlo 1.861 1.301 1.324 1.182 1.064 1.116 1.092 1.103 1.256 20.97 20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914	17) T	1,1-Dichloroet	1.138	1.003	1.136	1.040	0.962	1.038	1.017	1.035	1.046	5.89	
20) T Allyl Chloride 1.563 1.210 1.444 1.401 1.462 1.691 1.673 1.707 1.519 11.35 21) T Trichlorotrifl 1.073 0.902 1.023 0.931 0.865 0.897 0.942 0.986 0.952 7.37 22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914	18) T	tert-Butanol	4.284	3.191	3.711	3.403	3.159	3.418	3.347	2.265	3.347	16.94	
22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	19) T												
22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	20) T	Allyl Chloride	1.563	1.210	1.444	1.401	1.462	1.691	1.673	1.707	1.519	11.35	
22) T Carbon Disulfide 7.014 4.234 4.480 4.101 3.703 3.942 3.819 3.851 4.393 24.77 23) T trans-1,2-Dich 1.915 1.527 1.790 1.725 1.669 1.725 1.684 1.680 1.714 6.46 24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	21) T	Trichlorotrifl	1.073	0.902	1.023	0.931	0.865	0.897	0.942	0.986	0.952	7.37	
24) T 1,1-Dichloroet 2.400 1.939 2.189 2.034 1.904 1.994 1.946 1.961 2.046 8.20 25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	22) T	Carbon Disulfide	7.014	4.234	4.480	4.101	3.703	3.942	3.819	3.851	4.393		
25) T Methyl tert-Bu 3.826 2.980 3.264 2.914 2.734 2.901 2.941 3.080 3.080 10.97 26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	23) T											6.46	
26) T Vinyl Acetate 0.233 0.195 0.237 0.214 0.181 0.214 0.195 0.174 0.205 11.23 27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	24) T	1,1-Dichloroet	2.400	1.939	2.189	2.034	1.904	1.994	1.946	1.961	2.046	8.20	•
27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	25) T	Methyl tert-Bu	3.826	2,980	3.264	2.914	2.734	2.901	2.941	3.080	3.080	10.97	
27) T 2-Butanone 0.864 0.676 0.778 0.711 0.714 0.787 0.769 0.749 0.756 7.66 28) T cis-1,2-Dichlo 1.924 1.487 1.803 1.712 1.579 1.651 1.599 1.614 1.671 8.29 29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	26) T	Vinyl Acetate	0.233	0.195	0.237	0.214	0.181	0.214	0.195	0.174	0.205	11.23	
29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	27) T											7.66	
29) T Diisopropyl Ether 1.033 0.821 0.974 0.899 0.830 0.886 0.908 0.962 0.914 7.94	28) T	cis-1,2-Dichlo	1.924	1,487	1.803	1.712	1.579	1.651	1.599	1.614	1.671	8.29	
	29) T											7.94	
31) T n-Hexane 2.454 2.005 2.144 1.947 1.821 1.926 2.036 2.189 2.065 9.52	30) T	Ethyl Acetate	0.410	0.371	0.437	0.421	0.416	0.466	0.478	0.495	0.437	9.40	
· ·	31) T	n-Hexane	2.454	2.005	2.144	1.947	1.821	1.926	2.036	2.189	2.065	9.52	

	d Path : J:\MS16\ME d File : R16012209.1 : EPA TO-15 pe:	v]	1E /C7C	a mo a	[] (] (] (] (]	, (C)				
							1 700	1 700	1 000	0.35
32) T	Chloroform 1,2-Dichloroet	2.190 1.780	2.076	1.924	1.750	1.870	I./98	1./93	1.898	8.35
33), S	1,2-Dichloroet	1.628 1.650	1.652	1.639	1.608	1.559	1.528	1.525	1.599	3.35
34) T	Tetrahydrofuran Ethyl tert-But	0.795 0.636	0,729	0.669	0.671	0.716	0.706	0.679	0.700	6.92
										5.40
36) T	1,2-Dichloroet	1.733 1.545	1.805	1.664	1.536	1.567	1.485	1.459	1.599	7.65
37) IR	1,4-Difluorobenze	n		TSTI) =			_ =		
38) T	1,1,1-Trichlor								0 392	9.74
39) T	Isopropyl Acetate									8.84
40) T	1-Dutanol	0.136 0.130	0.200	0.100	0.103	0 214	0.100	0.102	0.275	17.95
	1-Butanol Benzene Carbon Tetrach	1 200 1 012	1 117	1 005	0.203	1 016	1 016	0.500	1 077	13.01
41) T	Benzene	1.390 1.012	T • T T \	0.020	0.331	1.010	T.UIO	1.041	1.072	
42) T	Carbon Tetrach	0.404 0.304	0.354	0.331	0.320	0.354	0.354	0.362	0.348	8.73
43) T	Cyclohexane tert-Amyl Meth	0.394 0.320	0.3/1	0.343	0.326	0.351	0.362	0.382	0.356	7.36
44) T	tert-Amyl Meth	0.846 0.687	0.785	0.702	0.663	0.717	0.712	0.731	0.730	8.02
45) T	1,2-Dichloropr									7.00
46) T	Bromodichlorom									6.54
47) T	Trichloroethene	0.319 0.259	0.302	0.281	0.260	0.286	0.283	0.293	0.285	7.01
48) T	1,4-Dioxane	0.222 0.172	0.221	0.210	0.194	0.212	0.209	0.213	0.207	7.92
49) T	Isooctane Methyl Methacr	1.469 1.113	1.288	1.206	1.110	1.183	1.165	1.178	1.214	9.66
50) T	Methyl Methacr	0.103 0.085	0.107	0.104	0.099	0.114	0.112	0.116	0.105	9.44
51) T	n-Heptane cis-1,3-Dichlo	0.278 0.241	0.283	0.267	0.247	0.268	0.265	0.273	0.265	5.48
52) T	cis-1,3-Dichlo	0.428 0.352	0.410	0.388	0.379	0.420	0.413	0.419	0.401	6.45
53) T	4-Methyl-2-pen	0.268 0.194	0.264	0.249	0.246	0.264	0.263	0.269	0.252	9.88
54) T	trans-1,3-Dich									8.86
55) T	1,1,2-Trichlor									9.60
JJ/ 1	1,1,2 111,011,01	0.500 0.222	0.270	0.211	0.252	0.2010	0.211	0.242	0.201	٥.00
56) I	Chlorobenzene-d5									
57) S	Toluene-d8 (SS2)									0.57
58) T	Toluene	2.836 2.204	2.488	2.331	2.144	2.311	2.267	2.393	2.372	9.09
59) T	2-Hexanone	1.607 1.225	1.489	1.423	1.370	1.477	1.442	1.489	1.440	7.67
60) T	Dibromochlorom	0.604 0.492	0.614	0.559	0.552	0.622	0.612	0.645	0.587	8.45
61) T	1,2-Dibromoethane	0.632 0.520	0.633	0.597	0.567	0.627	0.614	0.640	0.604	6.87
62) T	Butyl Acetate	1.710 1.336	1.689	1.622	1.560	1.715	1.706	1.874	1.652	9.44
63)	n-Octane	0.615 0.472								8.57
64) T	Tetrachloroethene									8.19
65) T	Chlorobenzene	1.794 1.418								7.88
66) T	Ethylbenzene	2.933 2.321								
	4									7.44
67) T	m- & p-Xylene	2.249 1.756								8.67
68) T	Bromoform	0.521 0.391								14.03
69) T	Styrene	1.609 1.292								10.21
70) T	o-Xylene	2.329 1.804	∠.148	Z.UI8	T. 788	Z.198	2.1/2	2.321	2.122	8.38

Method Path : J:\MS16\METHODS\ Method File: R16012209.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) 71) T n-Nonane $1.492\ 1.185\ 1.322\ 1.258\ 1.224\ 1.347\ 1.315\ 1.358\ 1.313$ 7.21 1,1,2,2-Tetrac... 0.932 0.773 0.963 0.931 0.894 1.005 0.988 1.047 0.942 72) T 8.84 Bromofluoroben... 0.855 0.865 0.862 0.866 0.881 0.902 0.917 0.925 0.884 73) S 3.07 74) T Cumene 3.028 2.443 2.868 2.746 2.598 2.870 2.851 3.058 2.808 7.39 alpha-Pinene 1.281 1.006 1.213 1.153 1.121 1.272 1.269 1.362 1.210 75) T 9.29 3.584 2.832 3.471 3.287 3.209 3.576 3.548 3.727 3.404 76) T n-Propylbenzene 8.38 2.682 2.056 2.540 2.425 2.417 2.743 2.776 2.943 2.572 77) T 3-Ethyltoluene 10.73 2.460 2.131 2.567 2.448 2.423 2.673 2.636 2.812 2.519 78) T 4-Ethyltoluene 8.13 1,3,5-Trimethy... 2.203 1.832 2.194 2.077 2.055 2.295 2.291 2.443 2.174 79) T 8,56 alpha-Methylst... 1.154 0.962 1.202 1.164 1.197 1.378 1.382 1.476 1.239 80) T 13.23 2.679 2.137 2.655 2.566 2.513 2.815 2.797 2.947 2.639 81) T 2-Ethvltoluene 9.35 1.2.4-Trimethy... 2.362 1.881 2.261 2.172 2.183 2.538 2.602 2.659 2.332 82) T 11.23 83) T n-Decane 1.443 1.142 1.346 1.298 1.302 1.473 1.462 1.502 1.371 8.89 84) T Benzvl Chloride 1.711 1.366 1.792 1.781 1.857 2.193 2.177 2.296 1.897 16.30 1,3-Dichlorobe... 1.327 1.100 1.361 1.305 1.308 1.464 1.458 1.570 1.362 85) T 10.33 86) T 1,4-Dichlorobe... 1.434 1.120 1.395 1.326 1.329 1.489 1.478 1.588 1.395 10.11 87) T sec-Butylbenzene 3.047 2.466 3.036 2.934 2.906 3.288 3.263 3.407 3.043 9.65 p-Isopropyltol... 2.847 2.322 2.877 2.804 2.816 3.306 3.366 3.294 2.954 88) T 11.92 89) T 1,2,3-Trimethy... 2.256 1.869 2.290 2.214 2.211 2.578 2.621 2.632 2.334 11.27 1,2-Dichlorobe... 1.219 1.009 1.274 1.213 1.249 1.414 1.428 1.509 1.289 90) T 12.24 0.826 0.694 0.889 0.862 0.884 1.028 1.035 1.024 0.905 91) T d-Limonene 13.16 1.2-Dibromo-3-... 0.419 0.321 0.437 0.432 0.448 0.496 0.498 0.529 0.448 92) T 14.32 93) T n-Undecane 1.659 1.269 1.424 1.387 1.375 1.546 1.558 1.616 1.479 9.16 94) T 1,2,4-Trichlor... 0.270 0.207 0.275 0.268 0.261 0.282 0.291 0.323 0.272 12.04 95) T 3.377 2.670 3.347 3.307 3.330 3.465 3.574 3.833 3.363 Naphthalene 9.81 96) T n-Dodecane 1.836 1.378 1.561 1.567 1.578 1.746 1.815 1.866 1.668 10.35 Hexachloro-1,3... 0.562 0.431 0.542 0.525 0.502 0.553 0.571 0.641 0.541 97) T 11.10 98) T Cyclohexanone 1.245 0.782 1.034 0.968 0.932 1.005 0.992 1.025 0.998 12.86 99) T tert-Butvlbenzene 2.331 1.850 2.193 2.102 2.104 2.465 2.498 2.543 2.261 10.65 100) T n-Butylbenzene 2.453 1.912 2.385 2.343 2.341 2.588 2.578 2.671 2.409 9.77

(#) = Out of Range

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: \$20-01050915 20ng/L Std. ID: \$20-01220904 200ng/L Std. ID: \$20-01220901

200ng/L Std. ID:	520-00220000	2				<u> </u>	~	ICAL C	oncentr	ations (Primary	Source)	
Dilution Factors:	19 TO 10 1 TY 10 10 10	5	50	250	Working STD Conc.(ng/L):	4 4 4	4.1		201	20	200	200	200
	Source Std.		Vorkina S		injection (L):	0.025	0.05	0.025	0.050	0.25	0.125	0.25	0.50
Compounds	mg/m ³	200ng/L	20ng/L	4ng/L	ICAL Points:	0.1ng	0.2ng	0.5ng	1ng	5ng	25ng	50ng	100ng
					TOAL POINTS:		0.206	0.515	1.03	5.15	25.8	51.5	103
Propene	1,03	206 210	20.6	4.12 4.20		0.103	0.200	0.515	1.05	5.25	26.3	52.5	105
Dichlorodifiuoromethane	1.05	202	20.2	4.04		0.103	0.202	0.505	1.01	5.05	25.3	50.5	101
Chloromethane Freon-114	1.06	212	21.2	4.04		0.101	0.202	0.530	1.06	5.30	26.5	53.0	106
Vinyl Chloride	1.02	204	20.4	4.08		0.100	0.204	0.510	1.02	5.10	25.5	51.0	102
1,3-Butadiene	1.08	216	21.6	4.32		0.102	0.216	0.540	1.08	5.40	27.0	54.0	108
Bromomethane	1.03	206	20.6	4,12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Chloroethane	1.03	208	20.8	4.12		0.103	0.208	0.520	1.04	5.20	26.0	52.0	104
Ethanol	5.29	1058	106	21.2		0.529	1.058	2.65	5.29	26.5	132	265	529
Acetonitrile	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Acrolein	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Acetone	5.31	1062	106	21,2		0.108	1.062	2.66	5.31	26.6	133	266	531
Trichlorofluoromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropanol	1,94	388	38.8	7.76		0.194	0.388	0.970	1.94	9.70	48.5	97.0	194
Acrylonitrile	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,1-Dichloroethene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
tert-Butanol	2.00	400	40.0	8.00		0.110	0.400	1.00	2.00	10.0	50.0	100	200
Methylene Chioride	1.06	212	21.2	4.24	HHHHH	0.106	0.212	0.530	1.06	5,30	26.5	53.0	106
Allyl Chloride	1.08	216	21.6	4,32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Trichlorotrifluoroethane	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Carbon Disulfide	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
trans-1,2-Dichloroethene	1.03	206	20.6	4.12	HHHHH	0.103	0.206	0.520	1.03	5.15	25.8	51.5	103
1,1-Dichloroethane	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Methyl tert-Butyl Ether	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Vinvi Acetate	5.05	1010	101	20.2		0.505	1,010	2,53	5.05	25.3	126	253	505
2-Butanone	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
cis-1,2-Dichloroethene	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
Diisopropyl Ether	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Ethyl Acetate	2.08	416	41.6	8.32		0.208	0.416	1.04	2.08	10.4	52.0	104	208
n-Hexane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Chloroform	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Tetrahydrofuran	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Ethyl tert-Butyl Ether	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloroethane	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,1,1-Trichloroethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropyl Acetate	2.09	418	41.8	8.36		0.209	0.418	1.05	2.09	10.5	52.3	105	209
1-Butanol	2.16	432	43.2	8.64		0.216	0.432	1.08	2.16	10.8	54.0	108	216
Benzene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Carbon Tetrachloride	1,05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexane	2.12	424	42.4	8.48		0.212	0.424	1.06	2,12	10.6	53.0	106	212
tert-Amyl Methyl Ether	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloropropane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Bromodichloromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Trichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,4-Dioxane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
isooctane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Methyl Methacrylate	2.13	426	42.6	8.52		0.213	0.426	1.07	2.13	10.7	53.3	107	213
n-Heptane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
cis-1,3-Dichloropropene	1.00	200	20.0	4.00		0.100	0.200	0.500	1.00	5.00	25.0	50.0	100
4-Methyl-2-pentanone	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
trans-1,3-Dichloropropene	1.10	220	22.0	4.40	UIIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,1,2-Trichioroethane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Loluene		220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
	1,10	420		10	VIIIIIIII	0.115	0.230	0.575					115
2-Hexanone	1.10 1.15			4.60	V11/1/1/1/1/1/				1,15	5 /5	1 288 1	- 5/5 i	
2-Hexanone Dibromochloromethane	1.15	230	23.0	4.60 4.24					1.15	5.75 5.30	28.8 26.5	57.5 53.0	
2-Hexanone Dibromochloromethane 1,2-Dibromoethane	1.15 1.06	230 212	23.0 21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate	1.15 1.06 1.10	230 212 220	23.0 21.2 22.0	4.24 4.40		0.106 0.110	0.212 0.220	0.530 0.550	1.06 1.10	5.30 5.50	26.5 27.5	53.0 55.0	106 110
2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane	1.15 1.06 1.10 1.05	230 212 220 210	23.0 21.2 22.0 21.0	4.24 4.40 4.20		0.106 0.110 0.105	0.212 0.220 0.210	0.530 0.550 0.525	1.06 1.10 1.05	5.30 5.50 5.25	26.5 27.5 26.3	53.0 55.0 52.5	106 110 105
2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethane	1.15 1.06 1.10 1.05 1.03	230 212 220 210 206	23.0 21.2 22.0 21.0 20.6	4.24 4.40 4.20 4.12		0.106 0.110 0.105 0.103	0.212 0.220 0.210 0.206	0.530 0.550 0.525 0.515	1.06 1.10 1.05 1.03	5.30 5.50 5.25 5.15	26.5 27.5 26.3 25.8	53.0 55.0 52.5 51.5	106 110 105 103
Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene	1.15 1.06 1.10 1.05	230 212 220 210	23.0 21.2 22.0 21.0	4.24 4.40 4.20		0.106 0.110 0.105	0.212 0.220 0.210	0.530 0.550 0.525	1.06 1.10 1.05	5.30 5.50 5.25	26.5 27.5 26.3	53.0 55.0 52.5	106 110 105

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: S20-01050915 20ng/L Std. ID:

									****				-
200ng/L Std. ID:		Working STD	ICAL Concentrations (Primary Source)										
Dilution Factors:		5	50	250	Conc.(ng/L):	4	4	20	20	20	200	200	200
	Source Std.	Primary V	Vorking S	tandards	Injection (L):	0.025	0.050	0.025	0.05	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L	ICAL Points:	0.1ng	0.2ng	0.5ng	1ng	5ng	25ng	50ng	100ng
Bromoform	1.07	214	21.4	4.28	MININI	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Styrene	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
o-Xylene	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Nonane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
1,1,2,2-Tetrachloroethane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Cumene	1.02	204	20.4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
alpha-Pinene	1.10	220	22.0	4.40		. 0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
n-Propylbenzene	1.02	204	20.4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
3-Ethyltoluene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
4-Ethyltoluene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3,5-Trimethylbenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
alpha-Methylstyrene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
2-Ethyltoluene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
1,2,4-Trimethylbenzene	1.05	210	21.0	4.20	VIIIIIII	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Decane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Benzyl Chloride	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3-Dichiorobenzene	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
1,4-Dichlorobenzene	1.06	212	21.2	4.24	YIIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
sec-Butylbenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
p-Isopropykoluene	1.02	204	20.4	4.08	Ullilli	0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
1,2,3-Trimethylbenzene	1.06	212	21.2	4.24	VIIIIIIA	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,2-Dichlorobenzene	1.07	214	21.4	4.28	VIIIIIIIA	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
d-Limonene	1.06	212	21.2	4.24	Ullilli	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
chloropropane	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Undecane	1.07	214	21.4	4.28	VIIIIIIA	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
1,2,4-Trichlorobenzene	1.10	220	22.0	4.40	UIIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Naphthalene	1.01	202	20.2	4.04	ELLILLIA ELLE	0.101	0.202	0.505	1,01	5.05	25.3	50.5	101
n-Dodecane	0.94	188	18.8	3.76		0.094	0.188	0.470	0.940	4.70	23.5	47.0	94.0
Hexachloro-1,3-butadiene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Methacrylonitrile	1.05	210	21.0	4.20	UIIIIIII	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexanone	0.99	198	19.8	3.96	UHHHHA	0.099	0.198	0.495	0.990	4.95	24.8	49.5	99.0
tert-Butvibenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Butylbenzene	1.09	218	21.8	4.36		0.108	0.218	0.545	1.08	5.45	27.3	54.5	109
is busylogeration		2.10	4110	7.00		W. 1VJ	V.4. IV	0.040	1.00	0.40	21.0	U4.0	100
					UHHHA								
					Elllilli								
		 											

^{*}Enter Information in the Solid Shaded Areas ONLY.

W 01/23/09

Calibration Status Report GCMS-16

Method Path : J:\MS16\METHODS\

Method File : R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 09:05:22 2009
Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
Ţ	0.1	0	25	J:\MS16\DATA\2009_01\22\01220902.D
2	0.2	0	25	J:\MS16\DATA\2009 01\22\01220903.D
3	0.5	1	25	J:\MS16\DATA\2009_01\22\01220904.D
4	1.0	1	25	J:\MS16\DATA\2009\01\22\01220905.D
5	5,0	5	25	J:\MS16\DATA\2009\01\22\01220906.D
6	25	26	25	J:\MS16\DATA\2009 01\22\01220907.D
7	50	52	25	J:\MS16\DATA\2009 01\22\01220908.D
8	100	103	25	J:\MS16\DATA\2009_01\22\01220909.D

#	ID	Update Time	Quant Time	Acquisition Time		
1	0.1	Jan 23 08:53 2009	Jan 22 17:20 2009	22 Jan 2009 13:28		
2	0.2	Jan 23 08:54 2009	Jan 22 17:21 2009	22 Jan 2009 14:09		
3	0.5	Jan 23 08:54 2009	Jan 22 17:22 2009	22 Jan 2009 14:50		
4	1.0	Jan 23 08:54 2009	Jan 22 17:29 2009	22 Jan 2009 15:31		
5	5.0	Jan 23 08:54 2009	Jan 22 17:29 2009	22 Jan 2009 16:12		
6	25	Jan 23 08:54 2009	<i>J</i> an 22 17:31 2009	22 Jan 2009 16:53		
7	50	Jan 23 08:54 2009	Jan 23 08:52 2009	22 Jan 2009 17:34		
8	100	Jan 23 08:54 2009	Jan 23 08:53 2009	22 Jan 2009 18:14		

R16012209.M Fri Jan 23 09:08:31 2009

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc '	Units	Dev(Min)
1) Bromochloromethane (IS1)							
37) 1,4-Difluorobenzene (IS2)							.03
56) Chlorobenzene-d5 (IS3)	21.10	82	833909	25,000	ng	- 0	.01
System Monitoring Compounds			-				
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.42	65		21.756 ery =			.04
	18.66	98	1965506	25.266	na ,	-0	.02
Spiked Amount 25.000				ery =			
73) Bromofluorobenzene (SS3)	23.06	174					.00
Spiked Amount 25.000				ery =			
Target Compounds						Qva	lue
	4.62	42	2641	0.122	nq	-	
	4.78	85	5081	0.135	nq	#	95
4) Chloromethane	5.09		3973	0.119	ng '		93
5) Freon 114	5.33	135	2282	0.130	nq		95
6) Vinyl Chloride	5.53	62	3515	0.123	nq		81
7) 1,3-Butadiene	5.80	54	2336	0.108	ng		98
8) Bromomethane	6.26	94	1817	0.125			98
9) Chloroethane	6.59	64	1448	0.117	nq		79
10) Ethanol	6.86	45	6935m	0.411	ng		
11) Acetonitrile	7.20	41	3951	0.103	ng		71
12) Acrolein	7.41	56		0.185	ng	#	76
13) Acetone	7.62		14995		ng		99
14) Trichlorofluoromethane	7.89		3997		ng		93
15) Isopropanol	8.08		15398m		ng		
16) Acrylonitrile	8.39	53	2317		ng		98
17) 1,1-Dichloroethene	8.89	96	1888	0.119	ng	#	71
	9.03	59	12925	0.268	ng		71
19) Methylene Chloride	9.08	84	2976	0.162	ng	#	50
20) Allvi Chioride	9.27	4.1	2547	0.097			87
21) Trichlorotrifluoroethane	9.54	151	1781	0.124	ng		95
	9.48		11003				95
23) trans-1,2-Dichloroethene	10.51	61	2976	0.113	ng		78
24) 1,1-Dichloroethane	10.81	63	3873	0.116	ng		98
25) Methyl tert-Butyl Ether	10.92	73	6118	0.125	ng		81
26) Vinyl Acetate	11.06	86	1777	0.563	ng .	#	21
27) 2-Butanone	11.41	72	1407	0.146	ng	#	72
28) cis-1,2-Dichloroethene	12.05	61	3164	0.120	ng		80
29) Diisopropyl Ether	12.41	87	1652	0.117	ng	#	23
30) Ethyl Acetate	12.41	61	1287	0.169			76
31) n-Hexane	12.41	57	3850	0.110	ng.		98 9

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	12.49	83	3634	0.119 ng	97
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene	13.07	72	1283	0.126 na	# 56
35) Ethyl tert-Butyl Ether	13.19	87	2236	0.109 ng	# 78
36) 1,2-Dichloroethane	13.58	62	2771	0.101 ng	
38) 1,1,1-Trichloroethane	13.98	97	3400	0.123 ng	86
39) Isopropyl Acetate	14.54	61	2787	0.241 na	# 86
40) 1-Butanol	14.60	56	3453	0.187 ng	# 68
41) Benzene	14.67	78	9800	0.134 ng	99
42) Carbon Tetrachloride	14.90	117	2888	0.115 ng	99
43) Cyclohexane	15.09	84	5689	0.225 ng	
44) tert-Amyl Methyl Ether	15.59	73	5929	0.118 ng	85
45) 1,2-Dichloropropane	15.91	63	2219	0.117 ng	94
46) Bromodichloromethane	16.18	83	2587	0.107 ng	86
47) Trichloroethene	16.24	130	2235	0.115 ng	100
48) 1,4-Dioxane	16.23	88	1574	0.123 ng	# 68
49) Isooctane	16.35	57	10400	0.125 ng	99
50) Methyl Methacrylate	16.53	100	1500	0.233 ng	# 82
51) n-Heptane	16.70	71	1965	0.110 ng	# 77 91
52) cis-1,3-Dichloropropene	17.46	75	2911	0.106 ng	91
53) 4-Methyl-2-pentanone	17.51	58	1987	0.115 ng	95
42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene	18.17	75	2877	0.110 ng 0.106 ng 0.115 ng 0.114 ng 0.130 ng 0.132 ng 0.123 ng	99
55) 1,1,2-Trichloroethane	18.41	97	2121	0.130 ng	96
58) Toluene	18.80	91	10215 5897	0.132 ng	98
59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane	19.13	43	5897	0.123 ng	98
60) Dibromochloromethane	19.35	129	2318	0.126 ng	98
61) 1,2-Dibromoethane	19.68	107	2236	0.117 ng	100
62) Butyl Acetate	19.95	43	6276	0.121 ng 0.125 ng	92
63) n-Octane 64) Tetrachloroethene 65) Chlorobenzene 66) Ethylbenzene	20.11	57	2155	0.125 ng	# 78
CAL Botandaloxoothood	2011 2012	7 4 4	*) La ia //	()))) ~~	94
65) Chlorobenzene	21.16	112	6344	0.129 ng	98
65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene 71) n-Nonane	21.64	91	10273	0.122 ng	99
67) m- & p-Xylene	21.86	91	15606	0.234 ng	99
68) Bromoform	21.97	173	1861	0.110 ng 0.121 ng 0.123 ng	94
69) Styrene	22.33	104	5742	0.121 ng	98
70) o-Xylene	22.48	91	8128	0.123 ng	
-,					94
72) 1,1,2,2-Tetrachloroethane	22.45	83	3356	0.108 ng	98
74) Cumene	23.24	105	10303	0.118 ng	100
75) alpha-Pinene	23.73	93	4700	0.127 ng	92
76) n-Propylbenzene	23.88	91	12195	0.115 ng	93
77) 3-Ethyltoluene	24.01	105	9840	0.128 ng	96
78) 4-Ethyltoluene	24.06	105	9027	0.118 ng	90 90 93 .
79) 1,3,5-Trimethylbenzene	24.16	105	7938	0.122 ng	90 3 3

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:20:03 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80)	<u> </u>	24.35	118	4081	0.116 ng	96
81)		24.40	105	9651	0.122 ng	95
	1,2,4-Trimethylbenzene	24.67	105	8272	0.130 ng	91
83)		24.79	57	5198	0.144 ng	82
84)	Benzyl Chloride	24.83	91	6279	0.110 ng	96
85)	1,3-Dichlorobenzene	24.86	146	4738	0.121 ng	99
86)	1,4-Dichlorobenzene	24.95	146	5070	0.127 ng	97
87)	sec-Butylbenzene	25.01	105	10773	0.119 ng	99
88)	p-Isopropyltoluene	25.20	119	9686	0.122 ng	98
89)	1,2,3-Trimethylbenzene	25.20	105	7977	0.126 ng	87
90)	1,2-Dichlorobenzene	25.37	146	4351	0.109 ng	95
91)	d-Limonene	25.38	68	2919	0.099 ng	99
92)	1,2-Dibromo-3-Chloropr	25.90	157	1509	0.118 ng	96
93)	n-Undecane	26.32	57.	5921	0.197 ng	83
94)	1,2,4-Trichlorobenzene	27.44	184	989 .	0.176 ng	# 89
95)	Naphthalene	27.57	128	11377	0.186 ng	96
96)	n-Dodecane	27.55	57	5756	0.243 ng	78
97)	Hexachloro-1,3-butadiene	27.99	225	2062	0.151 ng	97
	Cyclohexanone	22.07	55	4112	0.132 ng	95
	tert-Butylbenzene	24.67	119	8398	0.132 ng	98
	n-Butylbenzene	25.71	91	8917	0.135 ng	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

(10) Ethanol (T)

7.018min (+0.005) 0.20ng

response 3344

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 1.67#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP

96

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Ouant Time: Jan 22 14:02:21 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220902.D

Acq On : 22 Jan 2009 13:28

Operator : WA/LH

Sample : 0.lng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 14:02:21 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Ouant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1)							
37) 1,4-Difluorobenzene (IS2)							
56) Chlorobenzene-d5 (IS3)	21.10	82	834047	25.000	ng .	- (0.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.42	65		22.060 ery =			
57) Toluene-d8 (SS2)	18.67	98	1978033				
Spiked Amount 25.000				ery =			
73) Bromofluorobenzene (SS3)	23.06	174	721223				0.00
Spiked Amount 25.000			Recove	ery =	111.	. 24%	
Target Compounds							alue
2) Propene			4328				
 Dichlorodifluoromethane 	4.78	85	7832	0.206	ng		96
4) Chloromethane 5) Freon 114	5.09	50	6601	0.196	ng		93
-,							-
			5324				
7) 1,3-Butadiene	5.78	54	3430	0.159	ng		91
			2922				
9) Chloroethane			2605				100
			10466m				
•			6722		ng		77
12) Acrolein			2305				86
13) Acetone			21549				92
14) Trichlorofluoromethane			6568				99
15) Isopropanol			21114m				
			3739			"	92
17) 1,1-Dichloroethene	8,89	96	3341 10001	0.210		#	60
18) tert-Butanol			19331			41.	78
19) Methylene Chloride			4179 3960				53
20) Allyl Chloride 21) Trichlorotrifluoroethane							85
21) Trichiorotriliuoroethane 22) Carbon Disulfide			13339				84 95
23) trans-1,2-Dichloroethene	10.81	63	6285	0.187			74 96
24) 1,1-Dichloroethane	10.81	73	9570		_		96 84
25) Methyl tert-Butyl Ether	10.92	73 86	2977			11	13
26) Vinyl Acetate 27) 2-Butanone	11.41	72	2212			# #	±3 68
28) cis-1,2-Dichloroethene	12.05	72 61	4909			#	70
29) Diisopropyl Ether	12.40		2637			#	24
30) Ethyl Acetate	12.40		2335			Ħ	90
31) n-Hexane	12.40	57	6318	0.179	_		0 e s
JI) HITHENGILE	⊥∠.Ţ∪	١, ر	0010	V.17	**7		U 🖁 🔛 [

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD : S20-01050901/S20-01090915 Misc ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	/(Min)
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate	12.49	83	5931	0.194 ng		100
34) Tetrahydrofuran	13.07	72	2063	0.202 ng	#	53
35) Ethyl tert-Butyl Ether	13.20	87	4116	0.199 ng	#	68
36) 1,2-Dichloroethane	13.59	62	4960	0.179 ng		98
38) 1,1,1-Trichloroethane	13.98	97	5632	0.198 ng		88
39) Isopropyl Acetate	14.54	61	4377	0.368 ng	#	86
40) 1-Butanol	14.59	56	5146	0.271 ng	#	47
41) Benzene	14.67	78	14577	0.193 ng		99
42) Carbon Tetrachloride	14.89	117	4467	0.174 ng		99
43) Cyclohexane	15.11	84	9475	0.365 ng	#	64
44) tert-Amyl Methyl Ether	15.58	73	9897	0.192 ng		85
45) 1,2-Dichloropropane	15.91	63	3789	0.194 ng		95
46) Bromodichloromethane	16.17	83	4282	0.173 ng		98
47) Trichloroethene	16.25	130	3733	0.187 ng		99
48) 1,4-Dioxane	16.23	88	2506	0.190 ng	#	60
49) Isooctane	16.33	57	16189	0.190 ng	.,	99
50) Methyl Methacrylate	16.53	T00	2545	0.384 ng	#	87
51) n-Heptane	16.70	71	3501	0.191 ng	#	67
52) dis-1,3-Dichloropropene	17.46	75	4922	0.175 ng		95
53) 4-Metny1-2-pentanone	17.51	58	2962	0.167 ng		82
54) trans-1,3-Dichloropropene	18.17	75	4560	0.177 ng		96
55) 1,1,2-Trichloroethane	18.41	97	3221	0.193 ng		96
58) Toluene	18.79	91	15884	0.205 ng		99
59) Z-Hexanone	19.13	43	8993	0.188 ng		93
60) Dibromochioromethane	19.34	129	3//5	0.204 ng		99
61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane	19.67	TO /	36//	0.192 ng		99
62) n Oatons	19.95	4.5	9807	0.105 119		
63) II-Octane	20.11	3/	3304	0.191 ng	#	
64) Tetrachloroethene	20.29	110	10000	0.207 ng		100
65) Chlorobenzene	21 C4	0.1 TTT	16064	0.204 ng		98
66) Ethylbenzene	21.04	91 01	10204	0.194 119		98
67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene	21.07	172	2#3// 2790	0.366 ng		97
69) Styrene	22.20	104	9221	0.105 ng		98
70) o-Xylene	22 48	97	12637	0.190 ng		98
71) n-Nonane	22.75	43	8301	0.214 ng		94
72) 1,1,2,2-Tetrachloroethane		83	5572	0.179 ng		99
74) Cumene	23.23		16630	0.191 ng		97
75) alpha-Pinene	23.74		7382	0.199 ng		81
76) n-Propylbenzene	23.88	91	19277	0.181 ng		98
77) 3-Ethyltoluene	24.01		15087	0.196 ng		94
78) 4-Ethyltoluene	24.06		15641	0.204 ng		94
79) 1,3,5-Trimethylbenzene	24.16	105	13199	0.203 ng		9101
· · · · · · · · · · · · · · · · · · ·						- 8 49k £

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD : S20-01050901/S20-01090915 Misc ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 17:21:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

80) alpha-Methylstyrene	Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
82) 1,2,4-Trimethylbenzene 24.67 105 13176 0.208 ng 92 83) n-Decane 24.79 57 8233 0.228 ng 79 84) Benzyl Chloride 24.84 91 10023 0.175 ng 99 85) 1,3-Dichlorobenzene 24.86 146 7855 0.200 ng 98 86) 1,4-Dichlorobenzene 24.95 146 7923 0.198 ng 100 87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	·	and the second s				
83) n-Decane 84) Benzyl Chloride 24.84 91 10023 0.175 ng 99 85) 1,3-Dichlorobenzene 24.86 146 7855 0.200 ng 98 86) 1,4-Dichlorobenzene 24.95 146 7923 0.198 ng 100 87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng						96
84) Benzyl Chloride 24.84 91 10023 0.175 ng 99 85) 1,3-Dichlorobenzene 24.86 146 7855 0.200 ng 98 86) 1,4-Dichlorobenzene 24.95 146 7923 0.198 ng 100 87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 8	82) 1,2,4-Trimethylbenzene	24.67				92
85) 1,3-Dichlorobenzene 24.86 146 7855 0.200 ng 98 86) 1,4-Dichlorobenzene 24.95 146 7923 0.198 ng 100 87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0	83) n-Decane	24.79	57	8233	0.228 ng	79
86) 1,4-Dichlorobenzene 24.95 146 7923 0.198 ng 100 87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng	84) Benzyl Chloride	24.84	91	10023	0.175 ng	99
87) sec-Butylbenzene 25.01 105 17444 0.193 ng 99 88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	85) 1,3-Dichlorobenzene	24.86	146	7855	0.200 ng	98
88) p-Isopropyltoluene 25.20 119 15803 0.198 ng 97 89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	86) 1,4-Dichlorobenzene	24.95	146	7923	0.198 ng	100
89) 1,2,3-Trimethylbenzene 25.20 105 13220 0.209 ng 91 90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	87) sec-Butylbenzene	25.01	105	17444	0.193 ng	99
90) 1,2-Dichlorobenzene 25.37 146 7205 0.181 ng 100 91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	88) p-Isopropyltoluene	25.20	119	15803	0.198 ng	97
91) d-Limonene 25.38 68 4911 0.166 ng 94 92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95		25.20	105	13220	0.209 ng	91
92) 1,2-Dibromo-3-Chloropr 25.90 157 2311 0.181 ng 97 93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	90) 1,2-Dichlorobenzene	25.37	146	7205	0.181 ng	100
93) n-Undecane 26.32 57 9057 0.301 ng 80 94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	91) d-Limonene	25.38	68	4911	0.166 ng	94
94) 1,2,4-Trichlorobenzene 27.43 184 1516 0.270 ng # 91 95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	92) 1,2-Dibromo-3-Chloropr	25.90	157	2311	0.181 ng	97
95) Naphthalene 27.57 128 17992 0.293 ng 96 96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	93) n-Undecane	26.32	57	9057	0.301 ng	80
96) n-Dodecane 27.55 57 8642 0.364 ng 80 97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	94) 1,2,4-Trichlorobenzene	27.43	184	1516	0.270 ng	# 91
97) Hexachloro-1,3-butadiene 27.99 225 3166 0.232 ng 99 98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	95) Naphthalene	27.57	128	17992	0.293 ng	96
98) Cyclohexanone 22.07 55 5164 0.166 ng 95 99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	96) n-Dodecane	27.55	57	8642	0.364 ng	80
99) tert-Butylbenzene 24.67 119 13331 0.209 ng 95	97) Hexachloro-1,3-butadie	ne 27.99	225	3166	0.232 ng	9 9
	98) Cyclohexanone	22.07	55	5164	0.166 ng	95
100) n-Butylbenzene 25.71 91 13907 0.211 ng 96	99) tert-Butylbenzene	24.67	119	13331	0.209 ng	95
	100) n-Butylbenzene	25.71	91	13907	0.211 ng	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 15:26:10 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.996min (-0.017) 0:26ng

SP

response 4358

ion Exp% Act%
45.00 100 100
46.10 35.10 14.59#
0.00 0.00 0.00
0.00 0.00

103

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-01050901/S20-01090915 ALS Vial : 5 Sample Multiplier: 1

Ouant Time: Jan 22 15:26:10 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD
Misc : S20-01050901/S20-01090915
ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 22 15:26:10 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220903.D

Acq On : 22 Jan 2009 14:09

Operator : WA/LH

Sample : 0.2ng TO-15 ICAL STD

S20-01050901/S20-01090915 Misc ALS Vial Sample Multiplier: 1

Ouant Time: Jan 22 15:26:10 2009

Ouant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Quant Title

OLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) isopropanol (T)

8.071min (-0.091) 0.41ng m

response 21114

lon Exp% Act% 45.10 100 100 43.00 5.06 17.10 0.00 0.00 0.00 0.00 0.00 0.00

SP -> 12 11 01/03/09

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-0122 : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009 Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2)	12.28	130	386947	25.000	ng	-0	.04
37) 1,4-Difluorobenzene (IS2)	15.22	114	1770125	25.000	ng	-0	.02
56) Chlorobenzene-d5 (IS3)	21.10	82	860455	25.000	ng	-0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.42	65					
Spiked Amount 25.000			Recove	ery =	88	. 36%	
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18.67	98	2024722	25.224	ng	-0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recove	ery =	100	.88%	
73) Bromofluorobenzene (SS3)	23.06	174	742061	27.734	ng	0	.00
Spiked Amount 25.000			Recove	ery =	110.	. 92%	
Target Compounds						Qva.	
2) Propene	4.61	42	11134	0.501	ng		92
3) Dichlorodifluoromethane	4.77	85	22790	0.588	ng		99
4) Chloromethane 5) Freon 114	5.08	50	18024	0.524	ng		99
5) Freon 114	5.32	135	10836	0.600	ng		88
6) Vinyl Chloride	5.51	62					
7) 1,3-Butadiene	5.78	54	10484	0.474	ng		96
8) Bromomethane	6.25	94	7992		ng		95
9) Chloroethane	6.58	64.	7316	0.577	ng		97
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	6.85	45	41573m	2.403			
11) Acetonitrile	7.20	41	22624	0.573			
12) ACLULETI	7.40 7.61	20	6042	0.648	ng		93
			41942 19080		ng		93 96
14) Trichlorofluoromethane 15) Isopropanol	7.00	101 45	62404m		ng		90
	8.38	42		0.514	ng		96
17) 1,1-Dichloroethene	0,50	96	9673		ng	#	64
1// 1/1 1101101000110110	0.02		57434m	1.161	ng	TT	0.4
19) Methylene Chloride	9.08	84	10862	0.575		#	55
			12072	0.447	na	71	77
21) Trichlorotrifluoroethane	9.53	151	8709	0.592	na na		91
22) Carbon Disulfide	9.47	76	36061	0.550	ng		98
23) trans-1,2-Dichloroethene	10.51	61	14267		ng		73
24) 1,1-Dichloroethane	10.81			0.528			99
25) Methyl tert-Butyl Ether	10.92	73	26774	0.531			84
26) Vinyl Acetate	11.06	86	9280			#	10
27) 2-Butanone	11.41	72	6501			#	52
28) cis-1,2-Dichloroethene	12.05	61	15207	0.561			74
29) Diisopropyl Ether	12.40	87	7990	0.552		#	20
30) Ethyl Acetate	12.40	61		0.904			79
31) n-Hexane	12.41	57	17257	0.480	ng		8 10 8

Data File : 01220904.D

Acg On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

	Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
	32)	Chloroform	12.49	83	17676	0.565 ng		99
	34)	Tetrahydrofuran	13.06	72	6035		#	51
		Ethyl tert-Butyl Ether	13.19		11265		#	72
		1,2-Dichloroethane	13.59		14804			94
	38)	1,1,1-Trichloroethane	13.97	97	15532			93
	39)	Isopropyl Acetate	14.54	61	13409		#	87
	40)	1-Butanol	14.58	56	22226		#	69
	41)	Benzene	14.67	78	40723	0.533 ng		100
	42)	Carbon Tetrachloride	14.90	117	13168	0.506 ng		99
	43)	Cyclohexane	15.10	84	27848	1.060 ng	#	64
	44)	tert-Amyl Methyl Ether	15.58	73	28617	0.547 ng		84
	45)	1,2-Dichloropropane	15.91	63	10660	0.540 ng		98
	46)	Bromodichloromethane	16.17	83	13165	0.525 ng		98
	47)	Trichloroethene	16.24	130	11016	0.544 ng		96
·	48)	1,4-Dioxane	16.22	88	8145	0.610 ng	#	72
	49)	Isooctane	16.34	57	47408	0.550 ng		99
	50)	Methyl Methacrylate	16.52	100	8117	1.210 ng	#	88
		n-Heptane	16.71	71	10438	0.562 ng	#	73
	52)	cis-1,3-Dichloropropene	17.46	75	14519			97
	53)	4-Methyl-2-pentanone	17.51	58	10186	0.566 ng		79
		trans-1,3-Dichloropropene	18.17	75	14746			97
	55)	1,1,2-Trichloroethane	18.40	97	9946			98
	58)	Toluene	18.80	91	46247			99
		2-Hexanone	19.12	43	28186	0.570 ng		95
	60)	Dibromochloromethane	19.35	129	12161	0.638 ng		99
	61)	1,2-Dibromoethane	19.68	107	11552	0.584 ng ·		98
		Butyl Acetate	19.95	43	31970	0.596 ng		96
	63)	n-Octane		57	9945	0.559 ng	#	68
	64)	Tetrachloroethene		166		0.600 ng		100
		Chlorobenzene	21.16		30592	0.602 ng		98
	66)	Ethylbenzene		91	48392	0.558 ng		99
		m- & p-Xylene	21.87		74767	1.087 ng		97
	68)	Bromoform	21.96			0.569 ng		98
	69)	Styrene	22.33		28995			95
	70)	o-Xylene	22.47	91	38812	0.565 ng		99
		n-Nonane	22.75	43	23892	0.596 ng		89
		1,1,2,2-Tetrachloroethane	22.44	83	17902	0.558 ng		95
	,	Cumene	23.24	105		0.560 ng		98
		alpha-Pinene	23.74	93		0.602 ng		94
		n-Propylbenzene	23.88	91		0.555 ng		97
		3-Ethyltoluene	24.01	105	, _	0.606 ng		96
		4-Ethyltoluene	24.06	105		0.614 ng		96
	79)	1,3,5-Trimethylbenzene	24.15	105	40779	0.607 ng		9409

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:22:46 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Inter	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) 81)	alpha-Methylstyrene 2-Ethyltoluene	24.35	118 105	21923 49352	0.605 ng 0.606 ng	94 96
82)	·-	24.67	105	40863	0.624 ng	90
-		24.79	57	25013	0.670 ng	79
		24.84	91	33919	0.573 ng	96
	1,3-Dichlorobenzene	24.86	146	25055	0.618 ng	99
	1,4-Dichlorobenzene	24.95	146	25455	0.617 ng	100
	-	25.00	105	55389	0.595 ng	100
	p-Isopropyltoluene	25.20	119	50500	0.614 ng	96
	1,2,3-Trimethylbenzene	25.20	105	41771	0.640 ng	88
	1,2-Dichlorobenzene	25.37	146	23462	0.571 ng	94
-	d-Limonene	25.37	68	16217	0.530 ng	99
	1,2-Dibromo-3-Chloropr	25.90	157	8131	0.619 ng	.91
	n-Undecane	26.32	57	26212	0.846 ng .	81
	1,2,4-Trichlorobenzene	27.43	184	5211	0.900 ng	# 91
	Naphthalene	27.57	128	58179	0.919 ng	99
	n-Dodecane	27.55	57	25257	1.032 ng	77
	Hexachloro-1,3-butadiene	27.99	225	10264	0.730 ng	99
	Cyclohexanone	22.05	55	17622	0.548 ng	95
	tert-Butylbenzene	24.67	119	40756	0.620 ng	99
TOO)	n-Butylbenzene	25.71	91	44745	0.657 ng	97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD
Misc : S20-01050901/S20-01220904
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.979min (-0.034) 1.10ng

SP

response 19003

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 21.31

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

: 22 Jan 2009 Acq On 14:50

: WA/LH Operator

: 0.5ng TO-15 ICAL STD Sample : S20-01050901/S20-01220904 Misc ALS Vial 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Ouant Title

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.854min (-0.159) 2.40ng m

response 41573

Exp% Act% lon 45.00 100 100 46,10 35.10 9.74# 0.00 0.00 0.00 0.00 0.00 0.00

SP -->16 IN 01/23/09 CM 1/23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD
Misc : S20-01050901/S20-01220904
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acg On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

TIC: 01220904.D\data.ms

(15) Isopropanol (T)

8.054min (-0.108) 1.18ng m

response 62404

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 9.42

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SF -> /C

Em //23/09

104 1/24/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220904.D

Acq On : 22 Jan 2009 14:50

Operator : WA/LH

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(18) tert-Butanol (T)

8.993min (-0.074) 0.55ng

response 27074

 Ion
 Exp%
 Act%

 59.00
 100
 100

 57.10
 10.50
 11.02

 41.10
 23.00
 23.55

 43.00
 14.50
 15.97

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File: 01220904.D

: 22 Jan 2009 Acq On 14:50

Operator : WA/LH

: 0.5ng TO-15 ICAL STD Sample

: S20-01050901/S20-01220904 Misc ALS Vial Sample Multiplier: 1

Ouant Time: Jan 22 15:26:28 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(18) tert-Butanol (T)

8.993min (-0.074) 1.16ng m

response 57434

Ion Exp% Act% 59.00 100 100 57.10 10.50 5.19 41.10 23.00 11.10 43.00 14.50 7.53

SP -> 10 W 01/23/09

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31 Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response		Units	Dev (M	in)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.28 15.22	130 114			ng ng	-0. -0.	04
	21.10	82	844687	25.000	ng	-0.	01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.42	65	626113	21.911	ng	-0.	03
57) Toluene-d8 (SS2) Spiked Amount 25.000	18.67	98	Recove 1990880 Recove	25.265 erv =	ng 101	-0. -0.	01
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	731192	27.838 ery =	ng	0.	00
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane			-			Qval	ue
2) Propene	4.60	42	19974	0.911	ng		90
3) Dichlorodifluoromethane	4.76	85	40850	1.068	ng		99
4) Chloromethane	5.07	5U	32057	0.945	ng		98
5) Freon II4	5.32	T33	19254 27497	1.079	ng		0 / 0 <i>6</i>
7) 1 3-Rutadiene	5.78	54	18957	0.940	na na		96
8) Bromomethane	6 25	94	14511	0.005	na ,		98
9) Chloroethane	6.57	64	13266	1.060	na		97
10) Ethanol	6.86	45	73179m	4.285	na		.
11) Acetonitrile	7.19	41	40193	1.032	nq		98
12) Acrolein	7.40	56	10743	1.167	ng		81
13) Acetone	7.61	- 58	73830	4.656	ng		92
14) Trichlorofluoromethane	7.88	101	34331	1.034	ng		94
15) Isopropanol	8.05	45	111661m	2.138	ng		
16) Acrylonitrile	8.37	53	27258	1.071	ng		97
17) 1,1-Dichloroethene	8.88	96	17476	1.091	ng	#	66
18) tert-Butanol	8.99	59	103985m	2.129	ng		
19) Methylene Chloride	9.08	84	19140	1.027	ng	#	54
20) Allyl Chloride	9.27	41	23124	0.867	ng		77
21) Trichlorotrilluoroethane	9.53	T2T	15641	1.077	ng	=	89
22) trang 1 2-Dighteroothere	7.4/ 10 E1	- 70 - E1	27120	1 010	119		7 C
24) 1,1-Dichloroethane	10.31	63	33257	0.982	119		76 96
25) Methyl tert-Butyl Ether	10.91	73	47197	0.949	119		85
	11.06	86	16473	5.154			7
27) 2-Butanone	11.40	72		1.197			44
28) cis-1,2-Dichloroethene	12.05	61	28504	1.065			77
29) Diisopropyl Ether	12.40	87	14552	1.018			18
30) Ethyl Acetate	12.40	61	13391	1.741			85
31) n-Hexane	12.41	57	30930	0.871			e 118

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD Misc : S20-01050901/S20-01220 : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	32329	1.048 ng		97
34) Tetrahydrofuran	13.07		10937		#	52
35) Ethyl tert-Butyl Ether			20566		#	70
36) 1,2-Dichloroethane	13.59	62	26942		,,	97
38) 1,1,1-Trichloroethane	13.98	97	27647			95
39) Isopropyl Acetate	14.54	61	24491		#	87
IO/ I DOCUMENT	T 1	56	42440	2.247 ng	#	73
41) Benzene	14.67	78	73440	0.979 ng .	٠	99
42) Carbon Tetrachloride	14.90	117	24184	0.945 ng		98
43) Cyclohexane	15.10	84	50627	1.961 ng	#	6.4
44) tert-Amyl Methyl Ether	15.58	73	50328	0.979 ng		86
45) 1,2-Dichloropropane	15.90	63	19410	1.000 ng		100
46) Bromodichloromethane						99
	16.25	130	20163			96
			15184		#	67
49) Isooctane	16.34	57	87266	1.029 ng		99
50) Methyl Methacrylate	16.52	100	15385	2.333 ng		91
51) n-Heptane	16.70	71	19300	1.057 ng	#	72
52) cis-1,3-Dichloropropene	17.46	75	27016	0.964 ng		99
53) 4-Methyl-2-pentanone	17.51	58	18897	1.069 ng		79
54) trans-1,3-Dichloropropene	18.17	75	27893	1.085 ng		98
55) 1,1,2-Trichloroethane		97	17658	1.061 ng		97
58) Toluene	18.80	91	85075	1.085 ng		98
		43	52878			93
60) Dibromochloromethane		129	21721			100
61) 1,2-Dibromoethane	19.68	107	21365	1.100 ng		100
62) Butyl Acetate	19.95	43	60295	1.145 ng		97
63) n-Octane	20.11	57	18216 21948 55542 90951	1.042 ng	#	66
64) Tetrachloroethene	20.29	166	21948	1.104 ng		99
65) Chlorobenzene	21.16	112	55542	1.114 ng		100
	21.64	91	90951	1.068 ng		99
67) m- & p-Xylene	21.88	91	139979	2.074 ng		99
68) Bromoform	21.96	173	18564	1.086 ng		97
69) Styrene 70) o-Xylene	22.33	104	54072	1.127 ng		96
	22.47		71597	1.062 ng		100
71) n-Nonane	22.75	43	44647	1.134 ng		90
72) 1,1,2,2-Tetrachloroethane	22.44	. 83	33990	1.079 ng		97
74) Cumene	23.23	105	94619	1.073 ng		97
75) alpha-Pinene	23.74	93	42870	1.144 ng		97
76) n-Propylbenzene	23.88		113276	1.050 ng		97
77) 3-Ethyltoluene 78) 4-Ethyltoluene	24.01 24.06	105	90110	1.158 ng		95 06
· · · · · · · · · · · · · · · · · · ·			90973 75794	1.171 ng		96 9 119
79) 1,3,5-Trimethylbenzene	24.15	105	/5/94	1.150 ng		9 31 1 27

Page: 2

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

: 1.0ng TO-15 ICAL STD Sample : S20-01050901/S20-01220904 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.35	118	41702	1.172 ng	94
81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene	24.40	105 105	93625 77039	1.170 ng	96
<u> </u>	24.67			1.198 ng	91
83) n-Decane	24.79	57	47359	1.293 ng	80
84) Benzyl Chloride	24.83	91	66188	1.140 ng	97
85) 1,3-Dichlorobenzene	24'.87	146	47192	1.186 ng	98
86) 1,4-Dichlorobenzene	24.95	146	47489	1.173 ng	99
87) sec-Butylbenzene	25.00	105	105089	1.150 ng	99
88) p-Isopropyltoluene	25.20	119	96633	1.197 ng	96
89) 1,2,3-Trimethylbenzene	25.20	105	79277	1.237 ng	90
90) 1,2-Dichlorobenzene	25.37	146	43846	1.087 ng	97
91) d-Limonene	25.37	68	30881	1.029 ng	99
92) 1,2-Dibromo-3-Chloropr	25.90	157	15772	1.223 ng	87
93) n-Undecane	26.32	57	50158	1.648 ng	. 79
94) 1,2,4-Trichlorobenzene	27.43	184	9972	1.755 ng	# 90
95) Naphthalene	27.57	128	112840	1.816 ng	98
96) n-Dodecane	27.55	57	49759	2.070 ng	78
97) Hexachloro-1,3-butadiene	27.98	225	19528	1.414 ng	100
98) Cyclohexanone	22.06	55	32363	1.026 ng	95
99) tert-Butylbenzene	24.67		76685	1.189 ng	100
100) n-Butylbenzene	25.71	91	86271	1.290 ng	97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

 ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 21.04

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acg On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD
Misc : S20-01050901/S20-01220904
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.151min (-0.011) 0.99ng

response 51652

 Jon
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 20.78

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

 $\leq P$

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

: 1.0ng TO-15 ICAL STD Sample : S20-01050901/S20-01220904 Misc ALS Vial Sample Multiplier: 1

Ouant Time: Jan 22 16:07:55 2009

Ouant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

0.00

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

eshouse 95000

Ion	Exp%	Act%
59.00	100	100
57.10	10.50	9.60
41.10	23.00	25.97
43.00	14.50	16.55

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220905.D

Acq On : 22 Jan 2009 15:31

Operator : WA/LH

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:07:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

1/24/09

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220906.D

: 22 Jan 2009 16:12 Acq On

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD Misc : \$20-01050901/\$20-0122 : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)		130	389162	25.000	ng	- 0	.03
37) 1,4-Difluorobenzene (IS2)		114	1797444	25.000	ng	-0	.02
56) Chlorobenzene-d5 (IS3)	21.10	82	863137	25.000	ng	- 0	.01
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.43	65		21.497 ery =			
57) Toluene-d8 (SS2)	18.67	98	2025979	25.161	na	- n	. 0.1
Spiked Amount 25.000	20.0	20		ery =			
73) Bromofluorobenzene (SS3)	23.06	174	760427				.00
Spiked Amount 25.000				ery =			
Target Compounds						Qva	lue
2) Propene	4.58		109370				
 Dichlorodifluoromethane 			186877				99
4) Chloromethane	5.06	50	130472				100
5) Freon 114	5.31	135	86900				
			126900				
			86911				
			61814				
			60357				96
			340071m	19.546			
•	7.19		187386				
*	7.39	56	52266	5.572	ng		82
13) Acetone			359565				
			160198				96
15) Isopropanol							0.0
			132114				
17) 1,1-Dichloroethene			82357 491745				
19) Methylene Chloride 20) Allyl Chloride							
21) Trichlorotrifluoroethane	9.27	1 II 1	122923	5 007	ng .		7 <i>9</i> 91
			299704				
23) trans-1,2-Dichloroethene					ng		74
24) 1,1-Dichloroethane			158582	4 594	na 119		98
25) Methyl tert-Butyl Ether							85
26) Vinyl Acetate	11.06		71445		-	#	1
27) 2-Butanone	11.39		59989		n.a-	#	34
			133971				75
29) Diisopropyl Ether	12.40		68491			#	22
30) Ethyl Acetate			67279				84
31) n-Hexane	12.41	57					812
							S Cimo

Data File : 01220906.D Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Uni	ts De	v(Min)
32) Chloroform	12.50	83	149792	4.764 ng		98
34) Tetrahvdrofuran	13.06	72	55860	5.335 ng		
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane	13.19	87	97789	4.609 ng	#	
36) 1,2-Dichloroethane	13.59	62	126727	4.460 ng		97
38) 1,1,1-Trichloroethane	13.98	97	134556	4.600 ng		93
39) Isopropyl Acetate	14.54	61	123428	10.091 ng		83
40) 1-Butanol	14.55	56	219897	11.271 ng	#	
41) Benzene	14.67	78	352097	4.543 ng		100
42) Carbon Tetrachloride				4.562 ng		98
43) Cyclohexane	15.10	84	248514	9.317 ng		64
44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	15.58	73	245397	4.619 ng		84
45) 1,2-Dichloropropane	15.91	63	94516	4.715 ng		98
46) Bromodichloromethane 47) Trichloroethene	16.17	83	119692	4.703 ng		98
	16.26	130	96337	4.683 ng		97
48) 1,4-Dioxane	16.20	88	72596	5.358 ng	#	
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene	16.34	57	415097	4.739 ng		98
50) Methyl Methacrylate	16.53	100	76372	11.209 ng	#	86
51) n-Heptane	16.71	71	92365	4.895 ng	#	
52) cis-1,3-Dichloropropene	17.46	75	136245	4.705 ng		100
53) 4-Methyl-2-pentanone	17.50	58	96313	5.274 ng		77
54) trans-1,3-Dichloropropene	18.17	75	142627	5.368 ng		98
55) 1,1,2-Trichloroethane	18.41	97	86820	5.051 ng		99
58) Toluene	18.80	91	399746	4.988 ng		99
59) 2-Hexanone	19.12	43	260227	5.251 ng		93
60) Dibromochloromethane						99
61) 1,2-Dibromoethane	19.67	107	103798			99
62) Butyl Acetate	19.95	43	296176	5.502 ng	51	97
	20.11	57	91982	5.151 ng		
64) Tetrachloroethene	20.29			5.194 ng		98
	21.16		262768	5.156 ng		99
66) Ethylbenzene	21.64	91	444323	5.108 ng		99
67) m- & p-Xylene	21.88	77	685738	9.941 ng		97
	21.90	1/3	98367 281883	5,634 ng		99 97
69) Styrene	22.33			5.748 ng 5.232 ng		97
70) o-Xylene 71) n-Nonane	22.40	43	221797	5.232 ng 5.513 ng		
72) 1,1,2,2-Tetrachloroethane	22.75	83	166753			89 96
74) Cumene	23.24			5.178 ng 5.076 ng		96
75) alpha-Pinene	23.74	93		_		99
76) n-Propylbenzene	23.74	93 91				97
76) N-Propyrbenzene 77) 3-Ethyltoluene	24.01		458915			96
78) 4-Ethyltoluene	24.06		460146			95
79) 1,3,5-Trimethylbenzene	24.15	105	383184	5.687 ng		
, , , , , , , , , , , , , , , , , , ,	e= = + J	± 0 J		J.00/ 119		9429

Data File : 01220906.D

: 22 Jan 2009 16:12 Acq On

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

: S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:29:56 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Uni	ts I	Dev(Min)
80)	<u> </u>	24.35	118	218975	6.021 ng		95
81)	2-Ethyltoluene	24.40	105	468559	5.731 ng		95
	1,2,4-Trimethylbenzene	24.67	105	395767	6.025 ng		92
83)		24.79	57	242716	6.483 ng		80
84)	Benzyl Chloride	24.83	91	352551	5.942 ng	•	96
85)	1,3-Dichlorobenzene	24.86	146	241583	5.944 ng		100
86)	1,4-Dichlorobenzene	24.95	146	243153	5.878 ng		99
87)	sec-Butylbenzene	25.00	105	531677	5.696 ng		99
88)	p-Isopropyltoluene	25.20	119	495785	6.012 ng		95
89)	1,2,3-Trimethylbenzene	25.20	105	404626	6.180 ng		89
90)	1,2-Dichlorobenzene	25.37	146	230616	5.596 ng		98
91)	d-Limonene	25.37	68	161798	5.276 ng		100
92)	1,2-Dibromo-3-Chloropr	25.90	157	83590	6.342 ng	‡	# 80
93)	n-Undecane	26.32	57	254060	8.170 ng		78
94)	1,2,4-Trichlorobenzene	27.43	184	49542	8.532 ng	‡	94
95)	Naphthalene	27.57	128	580614	9.147 ng		100
96)	n-Dodecane	27.55	57	256024	10.424 ng		78
97)	Hexachloro-1,3-butadiene	27.99	225	95364	6.758 ng		99
98)	Cyclohexanone	22.05	55	159341	4.942 ng		93
	tert-Butylbenzene	24.67	119	392335	5.953 ng		100
	n-Butylbenzene	25.71	91	440531	6.444 ng		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample 5.0ng TO-15 ICAL STD : S20-01050901/S20-01220904 Misc 2 ALS Vial Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.882min (-0.131) 19.55ng m

response 340071

lon Exp% Act% 45.00 100 100 46.10 35.10 33.17 0.00 0.00 0.00 0.00 0.00 0.00

Em 1/23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220906.D

Acq On : 22 Jan 2009 16:12

Operator : WA/LH

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220904 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

0.00

0.00

0.00

0.00

0.00

0.00

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220906.D

: 22 Jan 2009 Acq On

: WA/LH Operator

Sample : 5.0ng TO-15 ICAL STD : S20-01050901/S20-01220904 Misc ALS Vial Sample Multiplier: 1

Quant Time: Jan 22 16:51:40 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Ouant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.071min (-0.091) 7.60ng m

response 404443

Ехр% Ion Act% 45.10 100 100 43.00 15.61 17.10 0.00 0.00 0.00 0.00 0.00 0.00

SP ->10 m 01/23/09 Em 1/23/09

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD Misc : \$20-01050901/\$20-010

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(N	Min)
1) Bromochloromethane (IS1)	12.31	130	403989	25.000	ng	-0.	. 02
37) 1,4-Difluorobenzene (IS2)							
56) Chlorobenzene-d5 (IS3)	21.11	82	856657	25.000	ng	0 .	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	629869				. 02
Spiked Amount 25.000				very =			
57) Toluene-d8 (SS2)	18.67	98					.00
Spiked Amount 25.000			Recov	ery =			
73) Bromofluorobenzene (SS3)	23.06	174					. 0 0
Spiked Amount 25.000			Recov	ery =	115	. 96%	
Target Compounds					:	Qval	
			512566				
3) Dichlorodifluoromethane	4.74	85	880717	21.762	ng	1	_00
4) Chloromethane	5.06	50	756621	21.084	ng		99
5) Freon 114 6) Vinyl Chloride	5.30	135	429851	22.780	ng		87
6) Vinyl Chloride	5.49	62	648/53	21.152	ng		86
// I,3-Butadiene	5.77	04	493377	21.3/6	ng		99
8) Chloroethane	6.24	94 64	3033€0 30930T	23.642	119		98
10) Fthanol	6.57	45	302309	106 313	119		30
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	7 21	41	192014011	100.313	ng ng		a 1
12) Acrolein	7.21	56	304372	31 257	na na		83
			1987451				99
14) Trichlorofluoromethane							95
15) Isopropanol	8.11	45	2671174m	48.356	na		
15) Isopropanol 16) Acrylonitrile	8.40	53	743283	27.621	ng		99
17) 1,1-Dichloroethene	8.89	96	461353	27.226	nq	#	62
18) tert-Butanol	9.03	59	2761784	53.464	ng		98
19) Methylene Chloride	9.10	84	478114	24.259	ng	#	52
20) Allyl Chloride	9.28	41	737745	26.150	ng		77
21) Trichlorotrifluoroethane	9.53	151	398618	25.950	ng		90
22) Carbon Disulfide	9.47	76	1656214	24.173	ng		99
23) trans-1,2-Dichloroethene							73
24) 1,1-Dichloroethane	10.83	63		24.093			97
25) Methyl tert-Butyl Ether	10.91	73	1242174	23.613			85
26) Vinyl Acetate	11.08		435554			#	1
27) 2-Butanone	11.41	72				#	32
28) cis-1,2-Dichloroethene		61 87				#	74 23
29) Diisopropyl Ether 30) Ethyl Acetate	12.40 12.41					tt	83
31) n-Hexane	12.41 12.41	57		21.537			8 436
JI II HEAGHE		J 1		/ ل. ل. د. د. د. د.	11J		OCF

Data File : 01220907.D

: 22 Jan 2009 16:53 Acq On

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

: S20-01050901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32)	Chloroform	12.52	83	831131	25.461	na .		98
34)	Tetrahydrofuran	13.06		309969			#	49
	Ethyl tert-Butyl Ether	13.20					#	68
	1,2-Dichloroethane	13.60	62	670876				96
	1,1,1-Trichloroethane			717476				93
39)	Isopropyl Acetate	14.55		706528			#	80
40)	1-Butanol	14.57						81
	Benzene	14.68	78	`1905925				100
42)	Carbon Tetrachloride	14.91	117	677767				99
	Cyclohexane		84	1354459	50.203	nq	#	64
	tert-Amyl Methyl Ether	15.58	73					83
	1,2-Dichloropropane	15.91	63	513794				98
	Bromodichloromethane			653244				99
47)	Trichloroethene	16.26		537115				97
48)	1,4-Dioxane	16.21	88	400365	29.213	ng	#	68
49)	Isooctane	16.35	57	2236807	25.249	ng		97
50)	Methyl Methacrylate			443319	64.330			90
	n-Heptane	16.72			26.512	ng	#	73
52)	cis-1,3-Dichloropropene	17.46	75	764467	26.102	ng		99
53)	4-Methyl-2-pentanone	17.51	58	524879		ng		77
54)	trans-1,3-Dichloropropene	18.17	75	792198	29.476	ng		99
55)	1,1,2-Trichloroethane	18.41			27.040	ng.		100
58)	Toluene	18.80	91	2138553				99
59)	2-Hexanone	19.12				ng		91
60)	Dibromochloromethane	19.35	129	613477				100
61)	1,2-Dibromoethane	19.68	107	568922				99
62)	Butyl Acetate	19.95						95
63)	n-Octane		57		28.240		#	67
64)	Tetrachloroethene			591975	29.367			99
	Chlorobenzene		112					100
	Ethylbenzene		91					100
	m- & p-Xylene	21.88						97
	Bromoform			554785				100
69)	Styrene			1579423				97
70)	o-Xylene		91	1980620	28.977	"Mary"		99
	n-Nonane	22.75	43	1213938	30.401			88
	1,1,2,2-Tetrachloroethane	22.45	83		29.103			96
	Cumene	23.24		2507441	28.031			96
	alpha-Pinene	23.74		1198608	31.528			97
,	n-Propylbenzene	23.88	91		28.571			96
	3-Ethyltoluene	24.01			32.735			95
	4-Ethyltoluene	24.07		2518477	31.967			94
79)	1,3,5-Trimethylbenzene	24.16	105	2123437	31.754	ng		9437

Data File : 01220907.D Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

: S20-01050901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:31:01 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
	alpha-Methylstyrene	24.35	118	1250854	34.655 ng	98
81)	<u> </u>	24.40	105	2604838	32.103 ng	94
82)	1,2,4-Trimethylbenzene	24.67	105	2287344	35.086 ng	90
83)	n-Decane	24.79	57	1362915	36.680 ng	80
84)		24.84	91	2066886	35.101 ng	95
85)	1,3-Dichlorobenzene	24.87	146	1344112	33.320 ng	99
86)	1,4-Dichlorobenzene	24.95	146	1352310	32.938 ng	99
87)	sec-Butylbenzene	25.01	105	2985879	32.232 ng	98
88)	p-Isopropyltoluene	25.20	119	2888998	35.296 ng	94
89)	1,2,3-Trimethylbenzene	25.20	105	2340811	36.022 ng	88
90)	1,2-Dichlorobenzene	25.37	146	1298969	31.761 ng	98
91)	d-Limonene	25.38	68	933758	30.680 ng	99
92)	1,2-Dibromo-3-Chloropr	25.90	157	458831	35.073 ng	# 77
93)	n-Undecane	26.32	57	1420055	46.012 ng	78
94)	1,2,4-Trichlorobenzene	27.43	184	265504	46.072 ng	# 92
95)	Naphthalene	27.57	128	3004092	47.683 ng	100
96)	n-Dodecane	27.55	57	1405823	57.674 ng	76
97)	Hexachloro-1,3-butadiene	27.99	225	521366	37.225 ng	99
98)	Cyclohexanone	22.06	55	854350	26.698 ng	92
99)	tert-Butylbenzene	24.67	119	2280972	34.869 ng	100
100)	n-Butylbenzene	25.71	91	2421034	35.683 ng	94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.939min (-0.074) 101.30ng

response 1829652

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 39.00

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220907.D

: 22 Jan 2009 Acg On 16:53

: WA/LH Operator

Sample : 25ng TO-15 ICAL STD

: S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.939min (-0.074) 106.31ng m

response 1920140

ion Exp% Act% 45.00 100 100 46.10 35.10 37.16 0.00 0.00 0.00 0.00 0.00 0.00

SF -71C W 01/23/09 Em 1/23/09

Data File : 01220907.D

Acq On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.111min (-0.051) 46.20ng

response 2551895

ion Exp% Act%
45.10 100 100
43.00 17.10 17.89
0.00 0.00 0.00
0.00 0.00 0.00

141

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220907.D

Acg On : 22 Jan 2009 16:53

Operator : WA/LH

Sample : 25ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 22 17:30:19 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.111min (-0.051) 48.36ng m

response 2671174

 ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.09

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP -710

Ein 1/23/09

PA 1/24/09

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220908.D

: 22 Jan 2009 17:34 Acq On

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD Misc : S20-01050901/S20-012 : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.32	130	425118	25.000	ng	0.00
37) 1,4-Difluorobenzene (IS2)	15.24	114	1906826	25.000	ng	0.00
56) Chlorobenzene-d5 (IS3)	21.11	82	897441	25.000	ng	0.00
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.45	65				
Spiked Amount 25.000	18.67		Recove	ery =	81	.72%
	18.67	98	2088767	24.949	ng .	0.00
Spiked Amount 25.000	22 00	5 T A	Recove	ery =	99	.80%
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	1 / 4	822929	29.488 ery =	ng	0.00
Spiked Amount 25.000			Recove	sr A =	TT.	. 906
Target Compounds						Qvalue
2) Propene	4.58	42	1212020	49.669	ng	87
3) Dichlorodifluoromethane	4.75	85	1845340	43.332	na	99
4) Chloromethane 5) Freon 114	5.07	50	1394221	36.920	ng	99
			884506	44.545	ng	86
6) Vinyi Chloride	5.50	62	1339261	41.495	ng	86
6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	5.78	54	1041189	42.869	ng	99
8) Bromomethane	6.25	94	752452	45.892	ng	9 /
			619185			
10) Echdiol	5.97	45	3982602m 2 1937558	209.546 44.600	ng	0.0
11) Accetonitifie 12) Acrolein	7.43	# T	636257	44.680	119	90 82
	7.42			236.480		
14) Trichlorofluoromethane			1751316			
15) Isopropanol	9 14	45	4694788m			
16) Acrylonitrile	8 42	# J	1519401			
15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene	8.89	96	951359			
18) tert-Butanol	9.06	59		104.715		97
19) Methylene Chloride	9.12	84	984568	47.472	na '	# 51
20) Allyl Chloride	9.29	41	1535825	51.734	ng	76
21) Trichlorotrifluoroethane	9.54	151	881246	54.518	nq	89
22) Carbon Disulfide	9.47	76	3376495 1474807	46.832	ng	98
23) trans-1,2-Dichloroethene	10.54	61	1474807	49.719	ng	73
24) 1,1-Dichloroethane	10.84	63	1770623	46.957	ng	97
25) Methyl tert-Butyl Ether	10.92	73	2650205	47.874	ng	85
26) Vinyl Acetate	11.09		837615 2	235.479	ng	# 1
27) 2-Butanone	11.42		705867	64.754	_	# 31
28) cis-1,2-Dichloroethene	12.08		1481887	49.757		73
29) Diisopropyl Ether	12.41		818142	51.418	****	# 19
30) Ethyl Acetate	12.42		845365	98.759		82
31) n-Hexane	12.42	57	1800184	45.540	ng	8 4 4

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
32)	Chloroform	12.53	 83	1681134	48.941	na		98
34)	Tetrahydrofuran	13.06	72	642655			#	48
35)	Ethyl tert-Butyl Ether	13.20	87	1124253			#	68
36)	1,2-Dichloroethane	13.61	62	1338601				96
38)	1,1,1-Trichloroethane	14.00	97	1490009	48.015			93
39)	Isopropyl Acetate	14.56	61	1486463	114.556	ng	#	77
40)	1-Butanol	14.59	56	2582249		ng		83
41)	Benzene	14.69	78	3989285	48.515	ng		100
42)	Carbon Tetrachloride	14.92	117	1416184	50.473	ng		99
43)	Cyclohexane	15.12	84	2930223	103.552	ng	#	64
44)	tert-Amyl Methyl Ether	15,59	73	2798709	49.660	ng		82
45)	1,2-Dichloropropane	15.92	63	1055483	49.629	ng		98
46)	Bromodichloromethane	16.19	83	1333384				99
47)	Trichloroethene	16.27	130	1110292	50.876	ng		97
48)	1,4-Dioxane		- 88	830221			#	68
-	Isooctane	16.35	57	4618908	49.710	ng		96
	Methyl Methacrylate	16.54		915746		ng '		89
51)	n-Heptane	16.72	71	1050375			#	73
	cis-1,3-Dichloropropene	17.47		1574113				100
	4-Methyl-2-pentanone	17.51	58	1094891				78
	trans-1,3-Dichloropropene	18.18		1639269				99
	1,1,2-Trichloroethane	18.42		966700				100
58)	Toluene	18.81		4394126				100
59)	2-Hexanone	19.13	43	2847885				90
	Dibromochloromethane	19.35	129	1262299				100
	1,2-Dibromoethane	19.68	107	1167679				99
62)	Butyl Acetate	19.95	43	3369109				95
	n-Octane	20.12	57	1047018			#	67
64)	Tetrachloroethene	20.30	166	1231518				98
	Chlorobenzene	21.17	112	2906652				100
66)	Ethylbenzene	21.65	91	5023154				99
	m- & p-Xylene	21.89	91	8021976	111.851			96
68)	Bromoform	21,97		1151987	63.458			100
69)	Styrene	22.34	104	3282282				97
70)	o-Xylene	22.48	91	4093586	57.168			98
	n-Nonane	22.76	43	2477484	59.224			86
	1,1,2,2-Tetrachloroethane	22.45	83	1914512	57.180			96
	Cumene	23.24	105	5218838	55.690			96
	alpha-Pinene	23.74	93	2505843				96
	n-Propylbenzene	23.89		6494853	56.684			96
		24.02	105	5481043	66.270			95
	4-Ethyltoluene	24.07	105	5205050	63.066			94 A A I
79)	1,3,5-Trimethylbenzene	24.17	105	4441891	63.406	ng		9 4 4

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:41 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	Conc Uni	ts	Dev(Min)
80) alpha-Methylstyren	e 24.35	118	2629315	69.536 ng		98
81) 2-Ethyltoluene	24.40	105	5422276	63.789 ng		94
82) 1,2,4-Trimethylben	zene 24.68	105	4903717	71.801 ng	•	90
83) n-Decane	24.79	57	2834310	72.813 ng		80
84) Benzyl Chloride	24.84	91	4297382	69.664 ng		94
85) 1,3-Dichlorobenzen	e 24.87	146	2800431	66.267 ng		98
86) 1,4-Dichlorobenzen	e 24.95	146	2812888	65.399 ng		99
87) sec-Butylbenzene	25.01	105	6207321	63.962 ng		98
88) p-Isopropyltoluene		119	6162941	71.873 ng		94
89) 1,2,3-Trimethylben		105	4986589	73.250 ng		87
90) 1,2-Dichlorobenzen	e 25.38	146	2742255	64.004 ng		98
91) d-Limonene	25.38	68	1968842	61.750 ng		99
92) 1,2-Dibromo-3-Chlo	ropr 25.91	157	965320	70.437 ng	:	# 74
93) n-Undecane	26.32	57	2993050	92.572 ng		78
94) 1,2,4-Trichloroben	zene 27.43	184	574249	95.119 ng	;	# 92
95) Naphthalene	27.57	128	6479843	98.178 ng		99
96) n-Dodecane	27.55	57	3061573	119.893 ng		75
97) Hexachloro-1,3-but	adiene 27.99	225	1127285	76.830 ng		99
98) Cyclohexanone	22.07	55	1763017	52.590 ng		92
99) tert-Butylbenzene	24.68	119	4841916	70.654 ng		100
100) n-Butylbenzene	25.71	91	5043950	70.963 ng		94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009_01\22\

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jan 23 08:52:11 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.973min (-0.040) 202.32ng

response 3845354

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 39.07

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

147

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220908.D

: 22 Jan 2009 Aca On 17:34

: WA/LH Operator

Sample 50ng TO-15 ICAL STD

S20-01050901/S20-01220901 Misc : ALS Vial 2 Sample Multiplier: 1

Ouant Time: Jan 23 08:52:11 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Ouant Title

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.973min (-0.040) 209.55ng m

response 3982602

lon Exp% Act% 45.00 100 100 46.10 35.10 37.72 0.00 0.00 0.00 0.00 0.00 0.00

5P -> 10 UN 01/23/09 Enn 1/23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220908.D

Acq On : 22 Jan 2009 17:34

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:52:11 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.140min (-0.023) 76.12ng

response 4424774

 ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.72

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220908.D

Acq On : 22 Jan 2009

Operator : WA/LH

Sample : 50ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901 ALS Vial Sample Multiplier: 1

Ouant Time: Jan 23 08:52:11 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Wed Jan 14 10:48:15 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.140min (-0.023) 80.77ng m

response 4694788

ion	Exp%	Act%
45.10	100	100
43.00	17.10	16.70
0.00	0.00	0.00
0.00	0.00	0.00

51 --- 16 Un 01/23/09 Em 1/23/09

MH 1/24/09

Data File : 01220909.D

Acq On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD

Misc : S20-01050901/S20-01220901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Data File : 01220909.D

Acg On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Jan 14 10:48:15 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(M	(in)
1) Bromochloromethane (IS1)	12.33	130	436641	25.000	nq	0.	00
37) 1,4-Difluorobenzene (IS2)	15.25	114	1974517	25.000	ng ,	0.	00
56) Chlorobenzene-d5 (IS3)	21.12	82	902617	25.000	ng	0.	00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.46	65	665827	20.382	ng	0.	00
Spiked Amount 25.000			Recor	very =			
	18.68	98	2136477	25.373	ng	0.	00
Spiked Amount 25.000				very =			
73) Bromofluorobenzene (SS3)	23.06	174	835343	29.762			00
Spiked Amount 25.000			Reco	very =	119.	.04%	
Target Compounds						Qval	ue
2) Propene	4.59		2636549				86
 Dichlorodifluoromethane 			3856585				99
4) Chloromethane	5.07	50	2982994	76.907	ng		99
	5.31		2100034				86
6) Vinyl Chloride	5.51	62	3158744				87
7) 1,3-Butadiene	5.78	54	2473175	99.140	ng		
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile	6.26	94	1569976	93.227	ng		97
9) Chloroethane	6.59	64	1320603				94
10) Ethanol	7.02	45	8258630	423.063			93
11) Acetonitrile	7.26	41	3985068	89.471			90
12) Acrorein	7.43	20	1319572	125.377			81
	7.67		8743747	482.349			90
14) Trichlorofluoromethane	7.89	101		95.054			95
15) Isopropanol 16) Acrylonitrile	8.1/	45	9106545	152.528			98
16) Acrylonitrile 17) 1,1-Dichloroethene	8.90	53 07	3131702 1988660	107.675 108.580			99 61
18) tert-Butanol	9.09	<i>7</i> 0	7911970	141.711			97
19) Methylene Chloride			2041691				49
20) Allyl Chloride			3219712				75
21) Trichlorotrifluoroethane							89
			6995030	94 461	na		98
23) trans-1,2-Dichloroethene			3022399				72
24) 1,1-Dichloroethane	10.85	63	3665212	94.636			97
25) Methyl tert-Butyl Ether	10.93	73	5701410	100.274			85
26) Vinyl Acetate	11.11		1532829	419.553		#	1
27) 2-Butanone	11.44		1411934	126.107			29
28) cis-1,2-Dichloroethene	12.09		3073521	100.476			72
29) Diisopropyl Ether	12.42		1781440	109.003			11
30) Ethyl Acetate	12.44		1800021	204.736			81
31) n-Hexane	12,42	57	3976995	97.954			845
· ·							

Data File : 01220909.D

Acg On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD : S20-01050901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	/(Min)
32)	Chloroform	12.55	 83	3444973	97.644	na		98
34)	Tetrahvdrofuran	13.08	72	1268116			#	48
35)	Ethvl tert-Butvl Ether	13.21	87	2420207	101.660	na	#	
36)	1.2-Dichloroethane	13.62	62	2701643			**	96
38)	Tetrahydrofuran Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	14.01	97	3105454	96.641	na		93
39)	Isopropyl Acetate	14.57	61	3161510			#	
		14.63	56		245.176			85
41)	Benzene	14.70	78	8468069				100
42)	Carbon Tetrachloride	14.93		2998272	103.196			99
43)	Cyclohexane	15.13			218.316		#	64
44)	tert-Amyl Methyl Ether	15.60	73	5943162	101.840	ng		82
45)	1,2-Dichloropropane	15.93		2203196	101.840 100.043 98.581	ng .		98
46)	Bromodichloromethane	16.20	83	2756072	98.581	ng		98
	Trichloroethene	16.27	130	2385026	105.541	ng		97
48)	1,4-Dioxane	16.23	88	1753012	117.775	ng	#	68
49)	Isooctane	16.36	57	9676702	100.574	ng		95
50)	Methyl Methacrylate	16.56	100	1957964	261.605	ng		92
51)	n-Heptane	16.73	71	2239909	108.053		#	72
52)	cis-1,3-Dichloropropene	17.47	75	3308785	104.025			100
53)	cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene	17.52	58	2319556	115.636	ng		78
54)	trans-1,3-Dichloropropene	18.18	75	3434769	117.674	ng		99
55)	1,1,2-Trichioroethane	18.42	\mathcal{I}	2048306	108.481	ng		100
58)	Toluene	18.82	91	9332416	111.362			100
59)					114.105			89
	Dibromochloromethane	19.36	129		133.902			99
	1,2-Dibromoethane	19.69	107		117.992			99
	Butyl Acetate	19.97	43	7443720				93
		20.12			120.361		#	
		20.30			124.491			99
-		21.17			115.545			99
	<u> </u>				117.796			98
				17264543				95
,					134.823			100
	Styrene	22.34			136.852			96
	o-Xylene	22.49			122.169	-		97
	n-Nonane	22.77			122.365			83
	1,1,2,2-Tetrachloroethane				121.195	-		96
,		23.25			119.497			95
	alpha-Pinene	23.74			135.008			95
	n-Propylbenzene	23.89			119.101	_		95
77)	3-Ethyltoluene	24.02			140.486			94
	4-Ethyltoluene	24.08		11166338				94
79)	1,3,5-Trimethylbenzene	24.17	105	9524858	135.184	па		945

Data File : 01220909.D

Acq On : 22 Jan 2009 18:14

Operator : WA/LH

Sample : 100ng TO-15 ICAL STD Misc : S20-01050901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 23 08:53:15 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jan 14 10:48:15 2009

Internal St	andards	R.T.	QIor	n Respons	e Conc	Units	Dev (Min)
	Methylstyrene	24.36	118	5648866	148.535	_		96
	ltoluene	24.42			134.431			93
	Trimethylbenzene	24.69	105	10082002	146.775	Anger 1		90
83) n-Deca		24.80	57	5856264	149.584			79
	Chloride	24.85	91	9120268	146.999	ng		93
85) 1,3-Di	chlorobenzene	24.88	146	6063302	142.654	ng		99
86) 1,4-Di	chlorobenzene	24.96	146	6076015	140.455	ng		99
87) sec-Bu	tylbenzene	25.02	105	13037480	133.571	nq		97
88) p-Isop	ropyltoluene	25.21	119	12131080	140.662	nq		94
89) 1,2,3-	Trimethylbenzene	25.21	105	10073950	147.131	ng		89
	chlorobenzene	25.38	146	5829997	135.291	nq		98
91) d-Limo	nene	25.38	68	3918375	122.189	, nd		96
92) 1,2-Dil	oromo-3-Chloropr	25.91	157	2062515	149.633		#	70
93) n-Unde		26.32	57	6243269	191.990			76
94) 1,2,4-	Trichlorobenzene	27.44	184	1283481	211.379	ng	#	92
95) Naphth	alene	27.58	128	13976472	210.547	No.		99
96) n-Dode		27.56	57	6332586	246.565	Name.		72
•	loro-1,3-butadiene	28.00	225	2545463	172.490	~		99
•	exanone	22.08	55	3664664	108.689	_/		90
	utylbenzene	24.68		9914688	143.848			99
	lbenzene	25.72		10511825	147.043			92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File: 01220910.D Acq On: 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD Misc : S20-01050901/S20-01 : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(1	Min)
1) Bromochloromethane (IS1)	12.31	130	444679	25.000	ng	-0.	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1984621	25.000	ng	- 0	.02
56) Chlorobenzene-d5 (IS3)	21.11	82	909679	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.44	65	668385 Recov	23.504 ery =			.02
57) Toluene-d8 (SS2)	18.67	98	2155730	25.171	nq	0	. 00
Spiked Amount 25.000			Recov	ery =	100	.68%	
73) Bromofluorobenzene (SS3)	23.06	174	827465	25.722	ng	0.	.00
Spiked Amount 25.000				ery =			
Target Compounds						Qva]	Lue
2) Propene	4.58		583213	23.428			87
			874379	20.115			99
4) Chloromethane	5.06	50	834991	23.510			99
•	5.30		486109				86
			720472				86
			636841				98
			420931				
			321253				95
	7.21		1935855m 961963				90
			313323				80
13) Acetone	7.62			113.939			95
14) Trichlorofluoromethane			870777				96
15) Isopropanol			2359475m				20
	8.39		740165				99
17) 1,1-Dichloroethene						#	61
	9.02		2651253			11	97
19) Methylene Chloride						#	49
			739864				76
21) Trichlorotrifluoroethane	9.53	151	407077	24.027	nq		88
22) Carbon Disulfide	9.47		1673774				99
23) trans-1,2-Dichloroethene	10.52	61	727813	23.868	ng		72
24) 1,1-Dichloroethane	10.83	63	850972	23.384	ng		97
25) Methyl tert-Butyl Ether	10.91	73	1262553	23.046	ng		85
26) Vinyl Acetate	11.08	86	405282	110.999	ng	#	1
27) 2-Butanone	11.40	72	341839	25.431	ng	#	29
28) cis-1,2-Dichloroethene	12.07		707171	23.791		#	72
29) Diisopropyl Ether	12.40		373475	22.969	-	#	19
30) Ethyl Acetate	12.41		382627	49.236			81
31) n-Hexane	12.41	57	792829	21.582	ng		815

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

: S20-01050901/S20-01050904 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.52	83	800918	23.729 ng		98
34) Tetrahydrofuran	13.05			25.280 ng	#	48
35) Ethyl tert-Butyl Ether		87	529711	22.450 ng	#	67
36) 1.2-Dichloroethane	13.60	62	637005	22.395 ng	**	96
36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane	13.99	97	702036	22.576 ng		93
39) Isopropyl Acetate	14.55	61	674420	47.833 ng	#	78
40) 1-Butanol	14.56			56.799 ng		84
41) Benzene				21.752 ng		100
42) Carbon Tetrachloride				23.678 ng		99
43) Cyclohexane	15.11	84	1362891	48.189 ng	#	63
44) tert-Amyl Methyl Ether	15.58	73	1327096	22.888 ng		82
45) 1,2-Dichloropropane	15.91	63	1327096 493554	22.928 ng		99
46) Bromodichloromethane	16.18	83	644243	24.349 ng		99
	16.26			23.049 ng		97
48) 1,4-Dioxane	16.21	88		24.557 ng	#	68
	16.35			22.513 ng		96
50) Methyl Methacrylate				50.729 ng		91
51) n-Heptane	16.72			23.862 ng	#	73
52) cis-1,3-Dichloropropene	17.46	75	737411			99
53) 4-Methyl-2-pentanone	17.50	58	521826	26.055 ng		77
54) trans-1,3-Dichloropropene	18.17	75	767272	26.063 ng		99
55) 1,1,2-Trichloroethane			454094	22.775 ng		100
58) Toluene				23.745 ng		99
59) 2-Hexanone	19.12	4.3	1356382	25.879 ng		90
	19.35			28.252 ng		100
	19.68		548423	24.965 ng		99
62) Butyl Acetate	19.95	43		25.437 ng	.,	95
	20.11			24.226 ng	#	66
64) Tetrachloroethene	20.30	100	573364	23.829 ng		99
65) Chlorobenzene	21.17	TTZ	1350947	23.649 ng		100
66) Ethylbenzene	21.05	91	2318491 3624725	24.100 ng		99
67) m- & p-Xylene 68) Bromoform	21.00	7 7 2	550527	48.047 ng 27.909 ng		97
69) Styrene			1501516	25.907 ng		100 97
70) o-Xylene	22.48	91	1873099	24.256 ng		98
71) n-Nonane	22.75	43	1149566	24.068 ng		87
72) 1,1,2,2-Tetrachloroethane	22.45		878501	25.638 ng		96
74) Cumene	23.24		2416178	23.649 ng		96
75) alpha-Pinene	23.74		1150105	26.130 ng		97
76) n-Propylbenzene	23.88		2986935	24.113 ng		96
77) 3-Ethyltoluene	24.01		2477747	26.471 ng		95
78) 4-Ethyltoluene	24.07		2463481	26.879 ng		94
79) 1,3,5-Trimethylbenzene	24.16	105	2021059	25.551 ng		9457
-				_		

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

: S20-01050901/S20-01050904 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 09:00:34 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	De	v(Min)
80)	alpha-Methylstyrene	24.35	118	1178247	26.127 ng		98
81)	2-Ethyltoluene	24.40	105	2493538	25.969 ng		94
82)	1,2,4-Trimethylbenzene	24.67	105	2158307	25.432 ng		90
83)	n-Decane	24.79	57	1286405	25.786 ng		80
84)	Benzyl Chloride	24.84	91	2060386	29.856 ng		95
85)	1,3-Dichlorobenzene	24.87	146	1279339	25.822 ng		99
86)	•	24.95	146	1294633	25.506 ng		99
87)	sec-Butylbenzene	25.01	. 105	2851521	25.750 ng		98
	p-Isopropyltoluene	25.20	119	2750234	25.586 ng		94
	1,2,3-Trimethylbenzene	25.20	105	2226987	26.224 ng		88
	1,2-Dichlorobenzene	25.37	146	1234367	26.309 ng		97
91)	d-Limonene	25.38	68	869783	26.404 ng		99
92)	1,2-Dibromo-3-Chloropr	25.90	157	462071	28.373 ng	#	75
	n-Undecane	26.32	57	1350551	25.090 ng		. 77
94)	1,2,4-Trichlorobenzene	27.43	184	274937	27.774 ng	#	94
	Naphthalene	27.57	128	3196067	26.119 ng		100
	n-Dodecane	27.55	57	1391794	22.928 ng		75
	Hexachloro-1,3-butadiene	27.99		531935	27.020 ng		100
	Cyclohexanone	22.06	55	812170	22.365 ng		92
	tert-Butylbenzene	24.67		2166174	26.333 ng		100
100)	n-Butylbenzene	25.71	91	2319025	26.457 ng		94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.928min (-0.097) 120.63ng

response 1862354

 Ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 39.20

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

159

SP

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220910.D

: 22 Jan 2009 Acq On

: WA/LH Operator

: 25ng TO-15 ICV STD Sample

: S20-01050901/S20-01050904 Misc : 3 ALS Vial Sample Multiplier: 1

Ouant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Quant Title

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.928min (-0.097) 125.40ng m

response 1935855

lon Exp% Act% 45.00 100 100 46.10 35.10 37,71 0.00 0.00 0.00 0.00 0.00 0.00

SP -> 1C U 01/23/09 Sm /23/09

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

Misc : S20-01050901/S20-01050904 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 35.53ng

SP

response 2243268

lon	Exp%	Act%
45.10	100	100
43.00	17.10	17.84
0.00	0.00	0.00
0.00	0.00	0.00

161

Data Path : J:\MS16\DATA\2009 01\22\

Data File : 01220910.D

Acq On : 22 Jan 2009 18:55

Operator : WA/LH

Sample : 25ng TO-15 ICV STD

: S20-01050901/S20-01050904 Misc : 3 ALS Vial Sample Multiplier: 1

Quant Time: Jan 23 08:59:44 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.100min (-0.074) 37.37ng m

response 2359475

lon Exp% Act% 45.10 100 100 43.00 17.10 16.96 0.00 0.00 0.00 0.00 0.00 0.00

5P -- 71C W 01/23/09 &m 1/23/09

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 01220910.D

Acq. Method File: TO15LT.M

Data File Path: J:\MS16\DATA\2009_01\22\

Name: 25ng TO-15 ICV STD

Operator: WA/LH

Misc Info: S20-01050901/S20-01050904

Date Acquired: 1/22/09 18:55 Instrument Name: GCMS-16

		Ret.	Amt,	Spike	%	Lower	Upper	* OR
#	Compound	Time	<u>(ng)</u>	Amt.(ng)	Rec.	Limit	Limit	Fail
2)		4.58	23.4	26.3	89.0	70	130	*
3)	•	4.74	20.1	26.3	76.4	70	130	*
4)		5.06	23.5	25.3	92.9	70	130	*
5)	Freon 114	5.30	23.5	26.8	87.7	70	130	. *
6)	Vinyl Chloride	5.49	22.6	25.5	88.6	70	130	*
7)	-	5.76	30.2	30.0	100.7	70	130	*
8)	Bromomethane	6.24	25.5	25.8	98.8	70	130	*
9)	Chloroethane	6.57	22.6	25.8	87.6	70	130	*
10) Ethanol	6.93	125.4	133.0	94.3	70	130	*
11) Acetonitrile	7.21	23.0	26.3	87.5	70	130	*
12) Acrolein	7.40	24.2	27.3	88.6	70	130	*
13) Acetone	7.62	113.9	137.0	83.1	70	130	*
14) Trichlorofluoromethane	7.88	23.0	26.3	87.5	70	130	*
15) isopropanol	8.10	37.4	48.0	77.9	70	130	*
16) Acrylonitrile	8.39	25.6	26.8	95.5	70	130 -	*
17) 1,1-Dichloroethene	8.88	24.8	27.5	90.2	70	130	* *
18) tert-Butanol	9.02	44.5	50.5	88.1	70	130	*
19) Methylene Chloride	9.10	20.8	26.5	78.5	70	130	*
20) Allyl Chloride	9.28	27.4	27.0	101.5	70	130	*
21) Trichlorotrifluoroethane	9.53	24.0	27.5	87.3	70	130	*
22) Carbon Disulfide	9.47	21.4	26.8	79.9	70	130	*
23	trans-1,2-Dichloroethene	10.52	23.9	26.8	89.2	70	130	*
24) 1,1-Dichloroethane	10.83	23.4	26.8	87.3	70	130	*
25) Methyl tert-Butyl Ether	10.91	23.0	27.5	83.6	70	130	*
26) Vinyl Acetate	11.08	111.0	126.0	88.1	70	130	π
27) 2-Butanone	11.40	25.4	27.5	92.4	70	130	*
28) cis-1,2-Dichloroethene	12.07	23.8	27.5	86.5	70	130	*
29) Diisopropyl Ether	12.40	23.0	27.0	85.2	70	130	*
30) Ethyl Acetate	12.41	49.2	53.5	92.0	70	130	*
31) n-Hexane	12.41	21.6	27.3	79.1	70	130	*
32) Chloroform	12.52	23.7	26.8	88.4	70	130	*
34) Tetrahydrofuran	13.05	25.3	27.5	92.0	70	130	*
35) Ethyl tert-Butyl Ether	13.20	22.4	26.0	86.2	70	130	*
36) 1,2-Dichloroethane	13.60	22.4	26.8	83.6	70	130	*
38) 1,1,1-Trichloroethane	13.99	22.6	26.5	85.3	70	130	*
) Isopropyl Acetate	14.55	47.8	52.8	90.5	70	130	*
40) 1-Butanol	14.56	56.8	54.8	103.6	70	130	*
41) Benzene	14.68	21.8	26.8	81.3	70	130	*
) Carbon Tetrachloride	14.91	23.7	27.0	87.8	70	130	*
43) Cyclohexane	15.11	48.2	54.5	88.4	70	130	*
44) tert-Amyl Methyl Ether	15.58	22.9	26.3	87.1	70	130	*
) 1,2-Dichloropropane	15.91	22.9	26.5	86.4	70	130	*
) Bromodichloromethane	16.18	24.3	27.3	89.0	70	130	*
47) Trichloroethene	16.26	23.0	26.5	86.8	70	130	*
48) 1,4-Dioxane	16.21	24.6	27.0	91.1	70	130	*
) Isooctane	16.35	22.5	26.5	84.9	70	130	*
50) Methyl Methacrylate	16.53	50.7	53.5	94.8	70	130	*

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 01220910.D

Acq. Method File: TO15LT.M

Data File Path: J:\MS16\DATA\2009_01\22\

Name: 25ng TO-15 ICV STD

Operator: WA/LH

Misc Info: S20-01050901/S20-01050904

Date Acquired: 1/22/09 18:55 Instrument Name: GCMS-16

		Ret.	Amt.	Spike	%	Lower	Upper	* OR
#	Compound	<u>Time</u>	<u>(ng)</u>	Amt.(ng)	<u>Rec.</u>	Limit	<u>Limit</u>	<u>Fail</u>
	n-Heptane	16.72	23.9	27.0	88.5	70	130	*
52)	cis-1,3-Dichloropropene	17.46	23.2	25.0	92.8	70	130	*
53)	4-Methyl-2-pentanone	17.50	26.1	27.5	94.9	70	130	*
54)	trans-1,3-Dichloropropene	18.17	26.1	27.5	94.9	70	130	*
	1,1,2-Trichloroethane	18.41	22.8	26.3	86.7	70	130	*
58)	Toluene	18.80	23.7	27.0	87.8	70	130	*
59)	2-Hexanone	19.12	25.9	27.5	94.2	70	130	*
,	Dibromochloromethane	19.35	28.3	28.8	98.3	70	130	*
61)	1,2-Dibromoethane	19.68	25.0	26.8	93.3	70	130	*
-	Butyl Acetate	19.95	25.4	27.5	92.4	70	130	*
	n-Octane	20.11	24.2	26.8	90.3	70	130	*
64)	Tetrachloroethene	20.30	23.8	25.8	92.2	70	130	*
	Chlorobenzene	21.17	23.6	26.8	88.1	70	130	*
	Ethylbenzene	21.65	24.1	26.5	90.9	70	130	*
	m- & p-Xylene	21.88	48.0	52.5	91.4	70	130	*
	Bromoform	21.96	27.9	26.0	107.3	70	130	*
	Styrene	22.33	25.9	27.0	95.9	70	130	*
	o-Xylene	22.48	24.3	26.5	91.7	70	130	*
,	n-Nonane	22.75	24.1	26.5	90.9	70	130	*
	1,1,2,2-Tetrachloroethane	22.45	25.6	27.0	94.8	70	130	*
	Cumene	23.24	23.6	25.8	91.5	70	130	*
	alpha-Pinene	23.74	26.1	27.5	94,9	70	130	*
,	n-Propylbenzene	23.88	24.1	25.8	93.4	70	130	*
	3-Ethyltoluene	24.01	26.5	27.5	96.4	70	130	*
	4-Ethyltoluene	24.07	26.9	27.5	97.8	70	130	*
	1,3,5-Trimethylbenzene	24.16	25.6	27.3	93.8	70	130	*
	alpha-Methylstyrene	24.35	26.1	26.8	97,4	70	130	*
	2-Ethyltoluene	24.40	26.0	27.3	95.2	70	130	*
	1,2,4-Trimethylbenzene	24.67	25.4	26.8	94.8	70	130	*
	n-Decane	24.79	25.8	27.3	94.5	70	130	*
	Benzyl Chloride	24.84	29.9	28.8	103.8	70	130	*
	1,3-Dichlorobenzene	24.87	25.8	27.5	93.8	70	130	*
	1,4-Dichlorobenzene	24.95	25.5	27.3	93.4	70	130	*
	sec-Butylbenzene	25.01	25.7	26.8	95.9	70	130	*
	p-Isopropyltoluene	25.20	25.6	26.0	98.5	70	130	*
	1,2,3-Trimethylbenzene	25.20	26.2	26.8	97.8	70	130	*
	1,2-Dichlorobenzene	25.37	26.3	27.3	96.3	70	130	*
	d-Limonene	25.38	26.4	26.8	98.5	70	130	*
	1,2-Dibromo-3-Chloropropane	25.90	28.4	27.5	103.3	70	130	*
,	n-Undecane	26.32	25.1	27.3	91.9	70	130	*
	1,2,4-Trichlorobenzene	27.43	27.8	28.8	96.5	70	130	*
	Naphthalene	27.57	26.1	25.8	101.2	70	130	*
	n-Dodecane	27.55	22.9	26.8	85.4	70	130	*
,	Hexachloro-1,3-butadiene	27.99	27.0	28.8	93.8	70 70	130	ń
	Cyclohexanone	22.06	22.4	25.3	88.5	70	130	* *
-	tert-Butylbenzene	24.67	26.3	27.0	97.4	70	130	*
	n-Butylbenzene	25.71	26.5	27.5	96.4	70	130	*
, 50)	it waty in a law is	-U.1 1	20.0	ليده است	J.,-	7.0	100	

^{*} Denotes Passing Criterion

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acg On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

1 IR Bromochloromethane	1.400	1.000		2 -0.02
2 T Propene 3 T Dichlorodifluoromet 4 T Chloromethane 5 T Freon 114 6 T Vinyl Chloride 7 T 1,3-Butadiene 8 T Bromomethane 9 T Chloroethane 10 T Ethanol 11 T Acetonitrile 12 T Acrolein 13 T Acetone 14 T Trichlorofluorometh 15 T Isopropanol 16 T Acrylonitrile 17 T 1,1-Dichloroethene 18 T tert-Butanol 19 T Methylene Chloride 20 T Allyl Chloride 21 T Trichlorotrifluoroe 22 T Carbon Disulfide 23 T trans-1,2-Dichloroe 24 T 1,1-Dichloroethane 25 T Methyl tert-Butyl E 26 T Vinyl Acetate 27 T 2-Butanone 28 T cis-1,2-Dichloroeth 29 T Diisopropyl Ether 30 T Ethyl Acetate 31 T n-Hexane 32 T Chloroform 33 S 1,2-Dichloroethane-	3.550 1.624 1.046 3.347 1.256 1.519 thane 0.952 4.393 thene 1.714 2.046 ther 3.080 0.205 0.756 ene 1.671 0.914 0.437 2.065 1.898 d4(SS1) 1.599	2.203 1.9968 1.5968 1.5220 0.787 1.002 0.7503 2.125 3.5329 1.105 2.125 3.547 1.918 7.125 1.927 1.928 1.837 1.928 1.837 1.928 1	9.1 16.7 10.7 10.7 10.3 1.4 15.2 15.2 15.3 10.5 10	7 0.00
34 T Tetrahydrofuran 35 T Ethyl tert-Butyl Et 36 T 1,2-Dichloroethane 37 IR 1,4-Difluorobenzene 38 T 1,1,1-Trichloroetha	1.599 (IS2) 1.000	0.751 1.348 1.644 1.000 0.400	-1.6 7 -2.8 7 0.0 7	6 -0.03 6 -0.02 6 -0.02 2 -0.02 6 -0.02

.16012209.M Fri Feb 13 10:10:05 2009

En 2/6/09 mostistes

165

Page: 1

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Ar	rea%	Dev(min)
39 T	Isopropyl Acetate	0.178	0.200	-12.4	77	-0.03	
40 T	1-Butanol	0.275	0.333	-21.1	76	-0.07	
41 T	Benzene	1.072	1.097	-2.3	77	-0.02	
42 T	Carbon Tetrachloride	0.348	0.378	-8.6	76	-0.02	
43 T	Cyclohexane	0.356	0.376	-5.6	77	-0.02	
44 T	tert-Amyl Methyl Ether	0.730	0.751	-2.9	75	-0.02	
45 T	1,2-Dichloropropane	0.271	0.287	-5.9	77	-0.02	
46 T	Bromodichloromethane	0.333	0.364	-9.3	76	-0.02	
47 T	Trichloroethene	0.285	0.307	-7.7	77	-0.02	
48 T	1,4-Dioxane	0.207	0.228	-10.1	77	-0.02	
49 T	Isooctane	1.214	1.232	-1.5	75	-0.02	
50 T	Methyl Methacrylate	0.105	0.121	-15.2	76	-0.03	
51 T	n-Heptane	0.265	0.281	-6.0	75	-0.02	
52 T	cis-1,3-Dichloropropene	0.401	0.444	-10.7	76	-0.01	
53 T	4-Methyl-2-pentanone	0.252	0.283	-12.3	77	-0.02	
54 T	trans-1,3-Dichloropropene	0.371	0.419	-12.9	76	-0.02	
55 T	1,1,2-Trichloroethane	0.251	0.266	-6.0	77	-0.02	
56 I	Chlorobenzene-d5 (IS3)	1.000	1.000	0.0	76	-0.01	
57 S	Toluene-d8 (SS2)	2.354	2.256	4.2	73	-0.01	
58 T	Toluene	2.372	2.323	2.1	77	-0.01	
59 T	2-Hexanone	1.440	1.511	-4.9	78	-0.02	
60 T	Dibromochloromethane	0.587	0.627	-6.8	77	-0.01	
61 T	1,2-Dibromoethane	0.604	0.630	-4.3	77	-0.01	
62 T	Butyl Acetate	1.652	1.746	-5.7	78	-0.02	
63	n-Octane	0.545	0.564	-3.5	77	-0.01	
64 T	Tetrachloroethene	0.661	0.676	-2.3	77	0.00	
65 T	Chlorobenzene	1.570	1.568	0.1	77	0.00	
66 T	Ethylbenzene	2.644	2.737	-3.5	77	-0.01	
67 T	m- & p-Xylene	2.073	2.184	-5.4	78	-0.02	
68 T	Bromoform	0.542	0.615	-13.5	77	-0.01	
69 T	Styrene	1.593	1.749	-9.8	77	-0.01	
70 T	o-Xylene	2.122	2.230	-5.1	77	-0.02	
71 T	n-Nonane	1.313	1.389	-5.8	79	-0.01	
72 T	1,1,2,2-Tetrachloroethane	0.942	1.017	-8.0	77	-0.02	
73 S	Bromofluorobenzene (SS3)	0.884	0.962	-8.8	81	0.00	
74 T	Cumene	2.808	2.921	-4.0	78	-0.01	
75 T	alpha-Pinene	1.210	1.276	-5.5	76	0.00	A 1
76 T	n-Propylbenzene	3.404	3.681	-8.1	78	-0.01	A Company

Em 2/16/09 Mostislog

Page: 2

66

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

: 13 Feb 2009 8:46 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
77		3-Ethyltoluene	2.572	2.831	-10.1	 79	-0.01
7.8	\mathbf{T}	4-Ethyltoluene	2.519	2.713	-7.7	77	-0.01
79	T	1,3,5-Trimethylbenzene	2.174	2.354	-8.3	78	-0.01
80	${\mathbb T}$	alpha-Methylstyrene	1.239	1.399	-12.9	77	-0.02
81	\mathbf{T}	2-Ethyltoluene	2.639	2,908	-10.2	79	-0.02
82	${ m T}$	1,2,4-Trimethylbenzene	2.332	2.615	-12.1	78	-0.02
83	${f T}$	n-Decane	1.371	1.522	-11.0	79	-0.02
84	${ m T}$	Benzyl Chloride	1.897	2.216	-16.8	77	-0.02
85	${f T}$	1,3-Dichlorobenzene	1.362	1.524	-11.9	79	-0.02
86		1,4-Dichlorobenzene	1.395	1.567	-12.3	80	-0.02
87		sec-Butylbenzene	3.043	3.408	-12.0	79	-0.01
88		p-Isopropyltoluene	2.954	3.436	-16.3	79	-0.02
89		1,2,3-Trimethylbenzene	2.334	2.664	-14.1	79	-0.01
90		1,2-Dichlorobenzene	1.289	1.482	-15.0	80	-0.01
		d-Limonene	0.905	1.045	-15.5	77	-0.01
92	T	1,2-Dibromo-3-Chloropropane	0.448	0.510	-13.8	78	-0.01
93	${\mathbb T}$	n-Undecane	1.479	1.601	-8.2	79	0.00
94		1,2,4-Trichlorobenzene	0.272	0.296	-8.8	80	0.00
95		Naphthalene	3.363	3.618	-7.6	80	-0.01
96	T	n-Dodecane	1.668	1.825	-9.4	80	0.00
97	T	Hexachloro-1,3-butadiene	0.541	0.577	-6.7	79	0.00
98	T	Cyclohexanone	0.998	1.014	-1.6	77	-0.02
99	T	tert-Butylbenzene	2.261	2.551	-12.8	79	-0.01
100	T	n-Butylbenzene	2.409	2.695	-11.9	79	-0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0

Em 2/6/09 mostistog

Data File : 02130901.D

Acg On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.		Response			Dev(Min)
1) Bromochloromethane (IS1)	12.31	130	292784	25.000	ng	-0.02
37) I,4-Dilluorobenzene (182)	15.22	J. J. 4	1302929	25.000	ng	-0.02
56) Chlorobenzene-d5 (IS3)	21.10	82	652497	25.000	ng	-0.01
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.44	65	457613 Recov	24.441 zerv =	ng 97	-0.02 .76%
Spiked Amount 25.000 57) Toluene-d8 (SS2)	18.67	98	1472180	23.965	ng	-0.01
Spiked Amount 25.000			Recor	very =	95	.84%
73) Bromofluorobenzene (SS3)	23.06	174				
Spiked Amount 25.000			Kecol	very =	108	.848
Target Compounds						Qvalue
2) Propene	4.58	42	447867	27.325	ng	88
3) Dichlorodifluoromethane	4.75	85	678463	23.706	ng	99
4) Chloromethane 5) Freon 114 6) Vinyl Chloride	5.06	50	591226	25.283	ng	98
5) Freon 114	5.31	135	300316	22.067	ng	87
6) Vinyl Chloride	5.49	62	477277	22.780	ng	86
7) 1,3-Butadiene	5.77	54	387673	27.889	ng	98
8) Bromomethane	6.24	94	278479	25.647	ng	98
9) Chloroethane 10) Ethanol 11) Acetonitrile	6.57	64	239645	25.633	ng	94
10) Ethanol	6.93	45	1546467m	152.142	ng	
11) Acetonitrile	7.21	41	752242	27.332	ng	90
12) Acrolein	7.40	56	237005	27.807	nq	83
13) Acetone	7.62	58	1577578	136.123	ng	99
14) Trichlorofluoromethane	7.88	101	654456	26.306	ng	95
15) Isopropanol	8.11	45	2007000m	48.275	ng	
16) Acrylonitrile	8.40	53	582985	30.655	ng	100
17) 1,1-Dichloroethene 18) tert-Butanol	8.88	96	356062	29.062	ng	# 63
18) tert-Butanol	9.03	59	2076990	52,983	ng	99
19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	9.10	84	364808	24.809	ng	# 54
20) Allyl Chloride	9.28	41	606618	34.099	ng	79
21) Trichlorotrifluoroethane	9.53	151	298425	26.752	ng	90
22) Carbon Disulfide	9.46	76	1273727	24.758	ng -	99
23) trans-1,2-Dichloroethene						
24) 1,1-Dichloroethane	10.83	63	683500			97
25) Methyl tert-Butyl Ether		73				86
26) Vinyl Acetate	11.08	86				# 4
27) 2-Butanone	11.40	72				# 37
28) cis-1,2-Dichloroethene		61				74
29) Diisopropyl Ether	12.40	87				# 28
30) Ethyl Acetate	12.41	61				85
31) n-Hexane	12.41	57	613769	25.376	ng	8 4 6

Data File : 02130901.D

: 13 Feb 2009 8:46 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
32) Chloroform	12.51	83	643080	28.937			98
34) Tetrahydrofuran	13.05	72	235832	28.764		#	51
35) Ethyl tert-Butyl Ether	13.19		407345	26.220		#	69
36) 1,2-Dichloroethane	13.60		510118	27.238	na na	11	96
38) 1,1,1-Trichloroethane	13.99	97	548587	26.871			94
39) Isopropyl Acetate	14.54		546040	58.990		#	82
40) 1-Butanol	14.56	56	937168	65.480		#	78
41) Benzene	14.68		1475476	26.413		a r	99
42) Carbon Tetrachloride	14.91		517564	28.549			100
43) Cyclohexane	15.11			55.959		#	65
44) tert-Amyl Methyl Ether			1009276	26.514		11	84
45) 1,2-Dichloropropane	15.91	63	393491	27.843			99
46) Bromodichloromethane	16.18	83	498740	28.712			99
47) Trichloroethene	16.25		412382	27.718			97
48) 1,4-Dioxane		88	309230	28.691		#	69
49) Isooctane	16.35		1669578	26.388		Ħ	98
50) Methyl Methacrylate	16.53		335949	61.237		#	88
51) n-Heptane	16.71		380500	27.540		#	74
52) cis-1,3-Dichloropropene	17.46	75	577901	27.641		11	99
53) 4-Methyl-2-pentanone	17.50	58	402305	30.597			79
54) trans-1,3-Dichloropropene		75	600281	31.059			99
55) 1,1,2-Trichloroethane	18.41	97	360589	27.548			100
58) Toluene	18.80	91	1637006	26.443			99
59) 2-Hexanone	19.12		1084517	28.847			92
60) Dibromochloromethane	19.35		471078	30.726			100
61) 1,2-Dibromoethane	19.68	107.	435424	27.634			98
62) Butyl Acetate		43	1253069	29.069			97
63) n-Octane	20.11	57	387233	27.210		#	69
64) Tetrachloroethene	20.30		455014	26.364		**	98
65) Chlorobenzene	21.17	112	1084447	26.466			100
66) Ethylbenzene	21.64	91	1878766	27.227	na		99
67) m- & p-Xylene	21.88		2964685	54.787	na		97
68) Bromoform	21.96		429951	30.387	na		100
69) Styrene	22.33	104	1223422	29.429	na		97
70) o-Xylene	22.48	91	1530956	27.640			98
71) n-Nonane	22.75	43	953548	27.833			90
72) 1,1,2,2-Tetrachloroethane	22.45	83	716536	29.153	na		96
74) Cumene	23.24	105	1943792	26.525			96
75) alpha-Pinene	23.74	93	916082	29.016			98
76) n-Propylbenzene	23.88	91	2450048	27.574		•	97
77) 3-Ethyltoluene	24.01	105	2032272	30.269			95
78) 4-Ethyltoluene	24.07	105	1946982	29.617			94
79) 1,3,5-Trimethylbenzene	24.16	105	1658708	29.235			947
<u>*</u>					ب. ٠٠		- E &

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 13 10:09:36 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	: De	v(Min)
80) alpha-Methylstyrene	24.35	118	967491	29.909 ng		98
81) 2-Ethyltoluene	24.40	105	2049527	29.758 ng		94
82) 1,2,4-Trimethylbenzene	24.67	105	1795061	29.489 ng		90
83) n-Decane	24.79	57	1072752	29.979 ng		81
84) Benzyl Chloride	24.84		1590821	32.138 ng		95
85) 1,3-Dichlorobenzene	24.87	146	1066217	30.002 ng		98
86) 1,4-Dichlorobenzene	24.95		1083879	29.770 ng		99
87) sec-Butylbenzene	25.01		2357391	29.678 ng		98
88) p-Isopropyltoluene	25.20		2286704	29.659 ng		94
89) 1,2,3-Trimethylbenzene	25.20	105	1842327	30.245 ng		88
90) 1,2-Dichlorobenzene	25.37	146	1036857	30.810 ng		98
91) d-Limonene	25.37		722434	30.575 ng		99
92) 1,2-Dibromo-3-Chloropr	25.90		359216	30.751 ng	#	76
93) n-Undecane	26.32		1119930	29.006 ng		78
94) 1,2,4-Trichlorobenzene	27.43		212719	29.959 ng	#	92
95) Naphthalene	27.57	128	2389155	27.220 ng		100
96) n-Dodecane	27.55	57	1119421	25.710 ng		77
97) Hexachloro-1,3-butadiene	27.99		414204	29.332 ng		99
98) Cyclohexanone	22.06		656285	25.196 ng		93
99) tert-Butylbenzene	24.67		1797718	30.467 ng		100
100) n-Butylbenzene	25.71	91	1920473	30.546 ng		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Fri Jan 23 08:54:57 2009

Response via: Initial Calibration

(10) Ethanol (T)

6.933min (-0.091) 152.14ng m

response 1546467

 ion
 Exp%
 Act%

 45.00
 100
 100

 46.10
 35.10
 37.28

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP ->10 CH 05/13/09 UM 2/16/09

(1 C) 101 01

En 2/16/09

Data Path : J:\MS16\DATA\2009_02\13\

Data File : 02130901.D

Acq On : 13 Feb 2009 8:46

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:09:00 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.105min (-0.068) 46.14ng

response 1918028

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.91

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

SP

1/4

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130901.D

13 Feb 2009 Acq On

Operator WA/LH

25ng TO-15 CCV STD Sample

S20-01290901/S20-01220901 Misc 2 ALS Vial Sample Multiplier: 1

Ouant Time: Feb 13 10:09:00 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

8.105min (-0.068) 48.28ng m

response 2007000

lon	Exp%	Act%
45.10	100	100
43.00	17.10	17.11
0.00	0.00	0.00
0.00	0.00	0.00

Em 2/6/09

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Are	ea%.	Dev(min)
1 IR 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	Bromochloromethane (IS1) Propene Dichlorodifluoromethane Chloromethane Freon 114 Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane Isopropanol Acrylonitrile 1,1-Dichloroethene tert-Butanol Methylene Chloride Allyl Chloride Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1)	1.000 1.400 2.444 1.997 1.162 1.789 1.187 0.7865 0.927 0.928 0.929 2.15524 1.0347 1.5529 0.3456 1.5953 1.746 3.2519 0.436 1.76914 0.436 1.996 1.	1.000 1.376 2.208 1.911 1.020 1.629 1.629 1.629 1.020 1.020 1.0267 0.743 1.020 2.203 3.749 1.029 2.203 3.749 1.126 3.709 1.939 0.984 4.307 2.201 3.1960 0.853 1.9520 2.1029 1.573	0.77 4.29 -1.91 -16.49 -1.63.9	- 777777777777777777777777777777777777	-0.02 0.00 0.00 -0.01 0.00 -0.02 -0.02 -0.03 -0.04 -0.02 -0.04 -0.02 -0.03 -0.04 -0.04 -0.04 -0.04 -0.05
33 S 34 T 35 T 36 T 37 IR 38 T	1,2-Dichloroethane-d4(SS1) Tetrahydrofuran Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	1.599 0.700 1.327 1.599 1.000 0.392	1.573 0.778 1.395 1.692 1.000 0.413	1.6 -11.1 -5.1 -5.8 0.0 -5.4	71 77 77 76 70 77	-0.02 -0.03 -0.02 -0.02 -0.02
	•					

116012209.M Mon Feb 16 10:52:21 2009

พ ธรุ/แ/ชๆ Page: 1

76

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area	a% Dev(min)
39 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene	0.265 0.401 0.252 0.371	0.204 0.341 1.121 0.393 0.388 0.772 0.291 0.374 0.312 0.232 1.251 0.125 0.286 0.453 0.288 0.431	-24.0 -4.6 -12.9 -9.0 -5.8 -7.4 -12.3 -9.5 -12.1 -3.0 -19.0 -7.9 -13.0 -14.3 -16.2	77 -0.02 76 -0.07 77 -0.02 78 -0.02 77 -0.02 75 -0.02 76 -0.02 77 -0.02 77 -0.02 77 -0.02 74 -0.02 76 -0.03 75 -0.03 75 -0.02 76 -0.03 77 -0.02 77 -0.02 77 -0.02 78 -0.02 79 -0.02 70 -0.03 70 -0.02 70 -0.02 70 -0.03 70 -0.02 70 -0.02 70 -0.02 70 -0.03 70 -0.02 70 -0.02 70 -0.02 70 -0.02 70 -0.02 70 -0.03 70 -0.02 70 -0.02 70 -0.03 70 -0.03
55 55 55 55 55 55 56 61 62 63 64 55 65 65 65 65 65 77 77 77 77 77 77	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	0.604 1.652 0.545 0.661 1.570 2.644 2.073 0.542 1.593 2.122 1.313 0.942	0.276 1.000 2.303 2.423 1.566 0.659 0.657 1.796 0.587 0.704 1.625 2.852 2.277 0.647 1.828 2.329 1.430 1.061 0.965 3.042 1.335 3.835	0.0 2.2 -2.2 -8.8 -12.3 -8.7 -7.7 -6.5 -3.5 -7.9 -9.8 -19.4 -14.8 -9.8 -9.2 -9.2 -8.3 -10.3	78 -0.02 73 0.00 72 0.00 77 -0.01 78 -0.02 78 -0.01 77 -0.01 77 -0.02 77 -0.01 77 0.00 77 0.00 77 0.00 77 0.00 77 0.00 78 -0.01 78 -0.01 78 -0.01 78 -0.01 78 -0.02 78 -0.01 79 0.00 77 0.00

16012209.M Mon Feb 16 10:52:21 2009

Page: 2

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
77 T 78 T 79 T 80 T 81 T 82 T 83 T 84 T 85 T 86 T 87 T	3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene	2.572 2.519 2.174 1.239 2.639 2.332 1.371 1.897 1.362 1.395 3.043	2.910 2.881 2.462 1.462 3.034 2.749 1.571 2.346 1.603 1.633 3.564	-13.1 -14.4 -13.2 -18.0 -15.0 -17.9 -14.6 -23.7 -17.7 -17.1	789 799 799 799 780 798 799	-0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.02 -0.02
88 T 89 T 90 T 91 T	p-Isopropyltoluene 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene d-Limonene	2.954 2.334 1.289 0.905	3.607 2.802 1.563 1.086	-22.1 -20.1 -21.3 -20.0	80 80 81 77	-0.01 -0.01 -0.01 0.00
92 T 93 T 94 T 95 T 96 T 97 T 98 T	1,2-Dibromo-3-Chloropropane n-Undecane 1,2,4-Trichlorobenzene Naphthalene n-Dodecane Hexachloro-1,3-butadiene Cyclohexanone	0.448 1.479 0.272 3.363 1.668 0.541 0.998	0.541 1.653 0.308 3.794 1.892 0.602 1.043	-20.8 -11.8 -13.2 -12.8 -13.4 -11.3 -4.5	80 78 80 80 79 80 76	-0.01 0.00 0.00 -0.01 0.00 0.00
99 T .00 T	tert-Butylbenzene n-Butylbenzene	2.261 2.409	2.683 2.819	-18.7 -17.0	80 80	-0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0

Page: 3

Data File : 02160901.D

16 Feb 2009 Acq On

Operator WA/LH

25ng TO-15 CCV STD Sample

S20-01290901/S20-01220901 Misc Sample Multiplier: 1 ALS Vial 2

Ouant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160901.D

: 16 Feb 2009 8:47 Acq On

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(M	(in)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.31	130	285040	25.000	ng	-0.	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1272496	25.000	ng	-0.	02
56) Chlorobenzene-d5 (IS3)	21.11	82	627427	25.000	ng	0.	00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	448472	24.603	ng	-0.	02
Spiked Amount 25.000			Reco	ery =	98.	. 40왕	
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	18.67	98	1444808	24.459	ng	0.	00
Spiked Amount 25,000			Recor	very =	97.	. 84%	
73) Bromofluorobenzene (SS3)	23.06	174	605502	27.290	ng	0.	00
Spiked Amount 25.000			Recor	very =	109.	16%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane						Qval	ue
2) Propene	4.58	42	404664	25.360	ng		88
3) Dichlorodifluoromethane	4.75	85	662152	23.764	ng		99
4) Chloromethane	5.06	- 50	551302	24.216	ng		99
5) Freon 114	5.31	135	308189	23.261	ng		86
6) Vinyl Chloride	5,49	62	473610	23.219	ng		87
7) 1,3-Butadiene	5.77	54	389992	28.818	ng		97
8) Bromomethane	6.24	94	277100	26.213	ng		97
9) Chloroethane	6.57	64	232186	25.510	ng		94
10) Ethanol	6.94	45	1516909m	153.288	ng		
11) Acetonitrile	7.21	41	729110	27.212	ng		90
12) Acrolein	7.41	56	230662	27.798	ng		82
13) Acetone	7.63	58	1560456	138.304	ng		98
14) Trichlorofluoromethane	7.88	101	660498	27.270	ng		95
15) Isopropanol	8.11	45	2074449m	51.253	ng		
16) Acrylonitrile	8.40	53	571976	30.893	ng		99
17) 1,1-Dichloroethene	8.88	96	353191	29.611	ng	#	62
18) tert-Butanol	9.03	59	2109488	55.274	ng		99
19) Methylene Chloride	9.11	84	362199	25.301	ng	#	53
20) Allyl Chloride	9.28	41	596957	34.467	ng		78
21) Trichlorotrifluoroethane	9.53	151	308580	28.414	ng		90
22) Carbon Disulfide	9.47	76	1275937	25.475	ng		99
23) trans-1,2-Dichloroethene	10.52	61	540398	27.647	ng		73
24) 1,1-Dichloroethane	10.83	63	672546	28.832	ng		97
25) Metnyi tert-Butyi Ether	10.91	73	703746	27.450	ng		86
26) Vinyl Acetate	11.08	86	373928	159.769		#	1
27) 2-Butanone	11.40	72	262672	30.485	_		36
28) cis-1,2-Dichloroethene	12.07	61	554350	29.095			74
29) Diisopropyl Ether	12.40	87	292376	28.052	_	#	26
30) Ethyl Acetate	12.41	61	308363	61.903			85 400
31) n-Hexane	12.41	57	629305	26.725	ng		8 480

Page: 1

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

: S20-01290901/S20-01220901 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	r(Min)
32) Chloroform	12.51	83	636158	29.404 ng		98
34) Tetrahydrofuran	13.05	72	237722	29.782 ng	#	50
35) Ethyl tert-Butyl Ether	13.19	87	410405	27.135 ng	#	69
36) 1,2-Dichloroethane	13.60	62	511241	28.039 ng		97
38) 1,1,1-Trichloroethane	13.99	97	553177	27.744 ng		93
39) Isopropyl Acetate	14.55	61	543459	60.116 ng	#	81
40) 1-Butanol	14.56	56	935932	66.957 ng		78
41) Benzene	14.68	78	1472489	26.990 ng		100
42) Carbon Tetrachloride	14.91	117	526071	29.712 ng		99
43) Cyclohexane	15.11	84	1045870	57.675 ng	#	64
44) tert-Amyl Methyl Ether	15.58	73	1013541	27.263 ng		84
45) 1,2-Dichloropropane	15.91	63	389363	28.210 ng		98
46) Bromodichloromethane	16.18	83	500796	29.519 ng		99
47) Trichloroethene	16.25	130	409135	28.157 ng		97
48) 1,4-Dioxane	16.21	88	306454	29.114 ng	#	68
49) Isooctane	16.35	57	1655519	26.792 ng		98
50) Methyl Methacrylate	16.53	100	338201	63.122 ng		89
51) n-Heptane	16.71	71	379006	28.088 ng	#	73
52) cis-1,3-Dichloropropene	17.46	75	575998	28.209 ng		100
53) 4-Methyl-2-pentanone	17.50	58	400785	31.210 ng		78
54) trans-1,3-Dichloropropene	18.17	75	602648	31.927 ng		99
55) l,1,2-Trichloroethane	18.41	97	364692	28.528 ng		100
58) Toluene	18.80	91	1642209	27.587 ng		99
59) 2-Hexanone	19.12	43	1080586	29.891 ng		93
60) Dibromochloromethane	19.35	129	476505	32.322 ng		100
61) 1,2-Dibromoethane	19.68	107	437070	28.847 ng		99
62) Butyl Acetate	19.95	43	1239596	29.905 ng		96
63) n-Octane	20.11	57	387363	28.307 ng	#	69
64) Tetrachloroethene	20.30	166	456092	27.483 ng		99
65) Chlorobenzene	21.17	112	1080682	27.428 ng		100
66) Ethylbenzene	21.65	91	1882386	28.369 ng		99
67) m- & p-Xylene	21.89	91	2971475	57.107 ng		97
68) Bromoform	21.96	173	435299	31.995 ng		100
69) Styrene	22.33	104	1229797	30.765 ng		96
70) o-Xylene	22.48	91	1537314	28.864 ng		99
71) n-Nonane	22.75	43	944035	28.657 ng		89
72) 1,1,2,2-Tetrachloroethane	22.45	83	719244	30.433 ng		97
74) Cumene	23.24		1946760			96
75) alpha-Pinene	23.74	93	921094	30.341 ng		98
76) n-Propylbenzene	23.89		2453999			97
77) 3-Ethyltoluene	24.01	105	2008164	31.105 ng		95
78) 4-Ethyltoluene	24.07	105	1988224	31.452 ng		95 9 28
79) 1,3,5-Trimethylbenzene	24.16	105	1668226	30.577 ng		9 2 0 °

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47 Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:51:55 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
80)	alpha-Methylstyrene	24.35	118	972532	31.266	ng	95
81)	WF-	24.40	105	2056022	31.046		94
82)	1,2,4-Trimethylbenzene	24.68		1814157	30.993		90
83)	n-Decane	24.79	57	1064320	30.932	ng	80
84)	Benzyl Chloride	24.84	91	1618911	34.012	ng	95
85)	·	24.87	146	1078240	31.553	ng	99
86)	1,4-Dichlorobenzene	24.95	146	1086192	31.026		99
87)	sec-Butylbenzene	25.01	105	2370219	31.032	ng	98
88)	<u> </u>	25.20	119	2308518	31.139	ng	94
89)	1,2,3-Trimethylbenzene	25.20	105	1863397	31.813	ng	87
90)	1,2-Dichlorobenzene	25.37	146	1051001	32.478	ng	98
91)	d-Limonene	25.38	68	722108	31.783	ng	99
92)	1,2-Dibromo-3-Chloropr	25.90	157	366345	32.615	ng	# 76
93)	n-Undecane	26.32	57	1111494	29.937	ng	78
94)	1,2,4-Trichlorobenzene	27.43	184	212309	31.096	ng	# 92
95)	Naphthalene	27.57	128	2409134	28.545	ng	100
96)	n-Dodecane	27.55	57	1115639	26.647	ng	76
97)	Hexachloro-1,3-butadiene	27.99	225	415615	30.608	ng	100
98)	Cyclohexanone	22.06	55	649200	25.920	ng	93
99)	tert-Butylbenzene	24.67	119	1818272	32.047	ng	100
100)	n-Butylbenzene	25.71	91	1931651	31.951	ng	94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acg On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 16 10:18:57 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

: WA/LH Operator

Sample : 25ng TO-15 CCV STD

\$20-01290901/\$20-01220901 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:18:57 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.111min (-0.063) 48.34ng

response 1956444

lon	Ехр%	Act%
45.10	100	100
43.00	17.10	17.92
0.00	0.00	0.00
0.00	0.00	0.00

PT.

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:18:57 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

2/17/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page I of I

Client:

Haley & Aldrich, Inc.

6.0 L Summa Canister(s)

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02130901.D

Analyst:

Wida Ang

Date Analyzed:

2/13/09

Sampling Media:

Time Analyzed: 08:46

Test Notes:

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
-	24 Hour Standard	292784	12.31	1302929	15.22	652497	21.10
	Upper Limit	409898	12.64	1824101	15.55	913496	21.43
	Lower Limit	175670	11.98	781757	14.89	391498	20.77
*********	Client Sample ID						
() [Method Blank	284429	12.28	1305482	15.21	643376	21.10
02	Lab Control Sample	291926	12.31	1297420	15.23	649667	21.11
03	SV-SS-58	252921	12.29	1178644	15.22	658456	21.10
04	SV-InA-58	302189	12.28	1378004	15.22	691613	21.10
05	SV-InA-58 (Lab Duplicate)	306251	12.28	1398587	15.21	695931	21.10
06	SV-SS-64	307525	12.28	1399299	15.21	683757	21.10
07	SV-InA-64	295705	12.28	1353741	15.21	651687	21.10
08	SV-SS-8	293846	12.29	1333826	15.22	689543	21.10
09	SV-lnA-8	299869	12.28	1350439	15.22	668943	21.10
10	SV-OutA-020909	298820	12.28	1377268	15.21	670624	21.10
11	SV-SS-2	290183	12.28	1338269	15.21	658768	21.10
12	SV-SS-16	296454	12.28	1340448	15.21	652867	21.10
13	SV-InA-16	287537	12.28	1323889	15.21	642037	21.10
14							
15				·			
16	·						
17							
18		•					
19							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Verified By: Up-	Date:	2/18/09	4	Q	
		SCAN, XLT - NL - PageNo	. 19 L.:	Ser.	B.

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900513

Client Project ID:

Cooper Vision / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Lab File ID: 02160901.D

Analyst:

Wida Ang

Date Analyżed: 2/16/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 08:47

Test Notes:

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	285040	12.31	1272496	15.23	627427	21.11
	Upper Limit	399056	12.64	1781494	15.56	878398	21.44
	Lower Limit	171024	11.98	763498	14.90	376456	20.78
	Client Sample ID						
01	Method Blank	276341	12.28	1277940	15.21	621270	21.10
02	Lab Control Sample	293871	12.31	1307508	15.23	644721	21.11
03	SV-InA-2	276686	12.28	1269109	15.21	624161	21.10
04	SV-InA-2 (Lab Duplicate)	267798	12.28	1235225	15.21	607502	21.10
05							
06							
07							
08							
09	·						
10							
11							
12							
13							
14							
15							
16				•			
17							
18							
19							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Raw QC Data

Data File : 01220901.D

Acq On : 22 Jan 2009 12:23

Operator : WA/LH

Sample : 25ng BFB STD Misc : S20-01050901

ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Jan 14 10:48:15 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target	Rel. to	Lower	Upper	Rel.	Raw	Result	
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail	
50 75 95 96 173 174 175 176 177	95 95 95 174 95 174 174 176	8 30 100 5 0.00 50 4 93 5	40 66 100 9 2 120 9 101	19.3 45.3 100.0 6.4 0.8 89.8 7.4 97.3 6.5	74544 174848 385771 24733 2660 346496 25515 337152 22019	PASS PASS PASS PASS PASS PASS PASS PASS	The state of the s

Data File : 02130901.D

: 13 Feb 2009 8:46 Aca On

Operator : WA/LH

: 25ng TO-15 CCV STD Sample

: S20-01290901/S20-01220901 Misc Sample Multiplier: 1 ALS Vial

Integration File: RTEINT.P

: J:\MS16\METHODS\R16012209.M Method

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3420, 3421, 3422; Background Corrected with Scan 3409

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.9	60608	PASS
75	95	30	66	44.9	144299	PASS
95	95	100	100	100.0	321301	PASS
96	95	5	9	6.6	21275	PASS
173	174	0.00	2	0.8	2264	PASS
174	95	50	120	90.4	290539	PASS
175	174	4	9	7.4	21421	PASS
176	174	93	101	97.2	282496	PASS
177	176	5	9	6.6	18635	PASS

Data File : 02160901.D

Acq On : 16 Feb 2009 8:47

Operator : WA/LH

Sample : 25ng TO-15 CCV STD

Misc : S20-01290901/S20-01220901 ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS16\METHODS\R16012209.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Fri Jan 23 08:54:57 2009

AutoFind: Scans 3421, 3422, 3423; Background Corrected with Scan 3410

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.7	55179	PASS
75	95	30	66	44.8	131859	PASS
95	95	100	100	100.0	294421	PASS
96	95	5	9	6.5	19196	PASS
173	174	0.00	2	0.8	2115	PASS
174	95	50	120	94.2	277440	PASS
175	174	4	9	7.0	19352	PASS
176	174	93	101	97.4	270101	PASS
177	176	5	9	6.4	17252	PASS

Page: 1

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090213-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst: Sampling Media: Wida Ang

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/13/09

Volume(s) Analyzed:

1.00 Liter(s)

l'est Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	μg/m³	${\sf ppbV}$	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	I,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02130902.D

Acq On : 13 Feb 2009 9:34

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02130902.D

Acq On : 13 Feb 2009 9:34

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)
Misc : S20-01290901

: S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev(Min)
1) Bromochloromethane (IS1)	12.28	130	284429	25.000 ng	-0.05
37) 1,4-Difluorobenzene (IS2)	15.21	114	1305482	25.000 ng	-0.03
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.10	82	643376	25.000 ng	-0.01
System Monitoring Compounds					
33) 1,2-Dichloroethane-d4(13.42	65	449600	24.718 ng	-0.05
Spiked Amount 25.000			Recove	erv = 98	3.88%
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000	18.66	98	1469827	24.266 ng	-0.02
Spiked Amount 25.000			Recove	ery = 97	7.08%
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.06	174	586589	25.782 ng	0.00
Spiked Amount 25.000			Recove	ery = 103	3.12%
Target Compounds					Qvalue
2) Propene	4.63	42	785	N.D.	
3) Dichlorodifluoromethane	4.78	85	256	N.D.	
4) Chloromethane	5.09	50	112	N.D	
5) Freon 114	0.00	135	0	N.D.	
5) Freon 114 6) Vinyl Chloride	0.00	62	0	N.D.	
7) 1,3-Butadiene	0.00	54	0	N.D.	
8) Bromomethane	0.00	94	0	N.D.	
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein	0.00	64	Ó	N.D.	
10) Ethanol	6.98	45	686	0. 069 ng	# 40
11) Acetonitrile	7.21	41	1870	0.070 - ng	89
12) Acrolein 13) Acetone	7.43	56	364	N.D.	
13) Acetone	7.63	58	5346	u-4-/5-ng	96
14) Trichlorofluoromethane	7.90	101	53	N.D.	
15) Isopropanol 16) Acrylonitrile	8.13	45	415	N.D.	
16) Acrylonitrile	0.00	53	0	N.D.	
17) 1,1-Dichloroethene	8.90	96	52	N.D.	
18) tert-Butanol	9.11	59	52	N.D.	
18) tert-Butanol 19) Methylene Chloride	9.08	84	777	N.D.	
20) Allyl Chloride	0.00	41	0	N.D.	
21) Trichlorotrifluoroethane	0.00	151	0	N.D.	
22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.48	76	2238	N.D.	
23) trans-1,2-Dichloroethene	10.51	61	55	N.D.	
24) 1,1-Dichloroethane	10.80	63	52	N.D.	
25) Methyl tert-Butyl Ether	10.94	73	54	N.D.	
26) Vinyl Acetate	0.00	86	0	N.D.	
27) 2-Butanone	11.45	72	56	N.D.	
28) cis-1,2-Dichloroethene	12.06	61	57	N.D.	
29) Diisopropyl Ether	0.00	87	0	N.D.	
30) Ethyl Acetate	0.00	61	0	N.D.	A 6° . 8
31) n-Hexane	12.40	57	71	N.D.	198

16012209.M Fri Feb 13 10:10:39 2009 Eng 2/16/09 mos/13/09

Page: 1

Data File : 02130902.D

Acq On : 13 Feb 2009

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

: S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

22) Chloroform	Internal Standards		R.T.	QIon	Response	Conc Units	Dev(Mi	n)
34 Tetrahydrofuran	32) Chloroform	0	.00	83	0	N.D.		
35) Ethyl tert-Butyl Ether 0.00 87 0 N.D. 36) 1,2-Dichloroethane 13.58 62 53 N.D. 38) 1,1,1-Trichloroethane 0.00 97 0 N.D. 39) Isopropyl Acetate 0.00 61 0 N.D. 40) 1-Butanol 14.67 76 1085 0.076 mg 98 41) Benzene 14.67 78 1168 N.D. 42) Carbon Tetrachloride 0.00 117 0 N.D. 43) Cyclohexane 15.10 84 326 N.D. 44) tert-Amyl Methyl Ether 15.59 73 70 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1.4-Dioxane 16.33 57 865 N.D. 49) Isocctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9.692 mg # FF 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 19.68 107 233 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m-& p-Xylene 21.68 91 1722 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 610 n-Propylbenzene 22.45 83 53 N.D. 62) Li,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 63 n-Dromylbenzene 22.45 83 53 N.D. 64) Cumene 22.45 83 53 N.D. 65) Li,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 67) n-Nonane 22.75 43 363 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.45 83 53 N.D. 61) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 61) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 62) Lipha-Pinene 0.00 93 0 N.D. 63) 1-Propylbenzene 23.89 91 1709 N.D. 64) 2-Ethyltoluene 24.00 105 2229 N.D.	34) Tetrahydrofuran	0	.00	72	. 0	N.D.		
38) 1,1,1-Trichloroethane	35) Ethyl tert-Butyl	Ether 0	.00	87	. 0	N.D.		
38) 1,1,1-Trichloroethane	36) 1,2-Dichloroetha	ne 13	.58	62	53	N.D.		
41) Benzene 14.67 78 1168 N.D. 42) Carbon Tetrachloride 0.00 117 0 N.D. 43) Cyclohexane 15.10 84 326 N.D. 44) tett-Amyl Methyl Ether 15.59 73 70 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentamone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9.602 N.D. 55) 1,1,2-Trichloromethane 18.68 97 125929 9.602 N.D. 55) 2-Hexanone 18.79 91 1472 N.D. 55) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 19.68 107 233 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 73 alpha-Pinene 0.00 93 0 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D.	38) 1,1,1-Trichloroe	thane 0	.00	97	0	N.D.		
41) Benzene 14.67 78 1168 N.D. 42) Carbon Tetrachloride 0.00 117 0 N.D. 43) Cyclohexane 15.10 84 326 N.D. 44) tett-Amyl Methyl Ether 15.59 73 70 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentamone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9.602 N.D. 55) 1,1,2-Trichloromethane 18.68 97 125929 9.602 N.D. 55) 2-Hexanone 18.79 91 1472 N.D. 55) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 19.68 107 233 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 73 alpha-Pinene 0.00 93 0 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D.	39) Isopropyl Acetat	e 0	.00	61	0	N.D.		
41) Benzene 14.67 78 1168 N.D. 42) Carbon Tetrachloride 0.00 117 0 N.D. 43) Cyclohexane 15.10 84 326 N.D. 44) tett-Amyl Methyl Ether 15.59 73 70 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentamone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9.602 N.D. 55) 1,1,2-Trichloromethane 18.68 97 125929 9.602 N.D. 55) 2-Hexanone 18.79 91 1472 N.D. 55) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 19.68 107 233 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 73 alpha-Pinene 0.00 93 0 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D.	40) 1-Butanol	14	.67	56	1085	0.076 ng	. 9	8
42) Carbon Tetrachloride 0.00 117 0 N.D. 43) Cyclohexane 15.10 84 326 N.D. 44) tert-Amyl Methyl Ether 15.59 73 70 N.D. 45) 1,2-Dichloropropane 0.00 63 0 N.D. 46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethane 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 12529 9-602 ng # Ff 8 58) Toluene 19.16 43 1396 N.D. 50)	41) Henzene	4	.6/	7/8	.1.1.68	N.D.		
46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctame 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FF 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m-& p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	42) Carbon Tetrachlo	ride 0	.00	117	0	N.D.		
46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctame 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FF 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m-& p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	43) Cyclohexane	15	.10	84	326	N.D.		
46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctame 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FF 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m-& p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	44) tert-Amyl Methyl	Ether 15	.59	73	70	N.D.		
46) Bromodichloromethane 0.00 83 0 N.D. 47) Trichloroethene 0.00 130 0 N.D. 48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctame 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FF 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m-& p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	45) 1,2-Dichloroprop	ane 0	.00	63	0	N.D.		
48) 1,4-Dioxane 0.00 88 0 N.D. 49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloropthane 18.68 97 125929 9-602 ng # FP 8 58) Toluene 18.79 91 1472 N.D. 58) Toluene 19.16 43 1396 N.D. 60) Dibromochloromethane	46) Bromodichloromet	hane 0	.00	83	0	N.D.		
49) Isooctane 16.33 57 865 N.D. 50) Methyl Methacrylate 0.00 100 0 N.D. 51) n-Heptane 0.00 71 0 N.D. 52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichlorocethane 18.68 97 125929 9.602 ng # FP 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Eth	47) Trichloroethene	. 0	.00	130	0	N.D.		
50) Methyl Methacrylate	48) 1,4-Dioxane	. 0	.00	88	0	N.D.		
52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FP 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 69) Styrene 22.48 91 1172 N.D. 70) o-	49) Isooctane	16	.33	57	865	N.D.		
52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FP 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 69) Styrene 22.48 91 1172 N.D. 70) o-	50) Methyl Methacryl	ate 0	.00	100	0	N.D.		
52) cis-1,3-Dichloropropene 17.48 75 57 N.D. 53) 4-Methyl-2-pentanone 0.00 58 0 N.D. 54) trans-1,3-Dichloropropene 18.19 75 332 N.D. 55) 1,1,2-Trichloroethane 18.68 97 125929 9-602 ng # FP 8 58) Toluene 18.79 91 1472 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 69) Styrene 22.48 91 1172 N.D. 70) o-	51) n-Heptane	0	.00	71	0	N.D.		
58) Tollene 18.79 91 14.72 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0	52) die-1 3-Dichloro	nropene 17	4.8	75	57	V1 T/		
58) Tollene 18.79 91 14.72 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0	53) 4-Methyl-2-penta	none 0	.00	58	0	N.D.		
58) Tollene 18.79 91 14.72 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0	54) trans-1,3-Dichlo	ropropene 18	.19	75	332	N.D.		
58) Tollene 18.79 91 14.72 N.D. 59) 2-Hexanone 19.16 43 1396 N.D. 60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 75) alpha-Pinene 0.00 93 0	55) 1,1,2-Trichloroe	thane 18	.68	97	125929	9 .602 ng	# FP	8
60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91	58) Toluene	18	.79	91	1472	N.D.		
60) Dibromochloromethane 0.00 129 0 N.D. 61) 1,2-Dibromoethane 19.68 107 233 N.D. 62) Butyl Acetate 20.10 43 348 N.D. 63) n-Octane 20.45 57 60 N.D. 64) Tetrachloroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91	59) 2-Hexanone	19	.16	4.3	1396	N.D.		
64) Tetrachioroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	60) Dibromochloromet	hane n	0.0	129	Ω	M T		
64) Tetrachioroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	61) 1,2-Dibromoethan	e 19	.68	107	233	N.D.		
64) Tetrachioroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	.62) Butyl Acetate	20	.10	43	348	N.D.		
64) Tetrachioroethene 20.30 166 55 N.D. 65) Chlorobenzene 21.15 112 725 N.D. 66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	63) n-Octane	20	.45	57	60	N.D.		
66) Ethylbenzene 21.65 91 966 N.D. 67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	64) Tetrachioroethen	e 20	.30	T 6 6	55	N.D.		
67) m- & p-Xylene 21.88 91 2023 N.D. 68) Bromoform 0.00 173 0 N.D. 69) Styrene 22.35 104 681 N.D. 70) o-Xylene 22.48 91 1172 N.D. 71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	65) Chlorobenzene	21	.15	112	725	N.D.		
71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	66) Ethylbenzene	21	.65	91	966	N.D.		
71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	67) m- & p-Xylene	21	.88	91	2023	N.D.		
71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	68) Bromoform	0	.00	173	0	N.D.		
71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	69) Styrene	22	.35	104	681	N.D.		
71) n-Nonane 22.75 43 363 N.D. 72) 1,1,2,2-Tetrachloroethane 22.45 83 53 N.D. 74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	70) o-Xylene	22	.48	91	1172	N.D.		
74) Cumene 23.23 105 2114 N.D. 75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	71) n-Nonane	22	.75	43	363	N.D.		
75) alpha-Pinene 0.00 93 0 N.D. 76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.								
76) n-Propylbenzene 23.89 91 1709 N.D. 77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.	•							
77) 3-Ethyltoluene 24.00 105 2229 N.D. 78) 4-Ethyltoluene 24.07 105 1854 N.D.								
78) 4-Ethyltoluene 24.07 105 1854 N.D.								
· · · · · · · · · · · · · · · · · · ·								,
79) 1,3,5-Trimethylbenzene 24.16 105 1347 N.D. 19	<u> </u>							
	/9) 1,3,5-Trimethylb	enzene 24	.16	T02	1347	N.D.		196

Data File : 02130902.D

: 13 Feb 2009 9:34 Acq On

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 13 10:10:17 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

80) alpha-Methylstyrene	Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
82) 1,2,4-Trimethylbenzene 24.67 105 2682 N.D. 83) n-Decane 24.79 57 437 N.D. 84) Benzyl Chloride 24.85 91 3412 0.070 ng # 57 85) 1,3-Dichlorobenzene 24.87 146 907 N.D. 86) 1,4-Dichlorobenzene 24.95 146 1274 N.D. 87) sec-Butylbenzene 25.01 105 775 N.D. 88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr. 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 2							
83) n-Decane 24.79 57 437 N.D. 84) Benzyl Chloride 24.85 91 3412 0.070 ng # 57 85) 1,3-Dichlorobenzene 24.87 146 907 N.D. 86) 1,4-Dichlorobenzene 24.95 146 1274 N.D. 87) sec-Butylbenzene 25.01 105 775 N.D. 88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D.							
85) 1,3-Dichlorobenzene 24.87 146 907 N.D. 86) 1,4-Dichlorobenzene 24.95 146 1274 N.D. 87) sec-Butylbenzene 25.01 105 775 N.D. 88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.							
86) 1,4-Dichlorobenzene 24.95 146 1274 N.D. 87) sec-Butylbenzene 25.01 105 775 N.D. 88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 95) Naphthalene 27.55 57 487 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	84) Benzyl Chloride	24.85	91	3412	0 .070 ng	#	57
87) sec-Butylbenzene 25.01 105 775 N.D. 88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	85) 1,3-Dichlorobenzene	24.87	146	907	N.D.		
88) p-Isopropyltoluene 25.20 119 595 N.D. 89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	86) 1,4-Dichlorobenzene	24.95	146	1274	N.D.		
89) 1,2,3-Trimethylbenzene 25.20 105 874 N.D. 90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	87) sec-Butylbenzene	25.01	105	775	N.D.		
90) 1,2-Dichlorobenzene 25.37 146 494 N.D. 91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.				595	N.D.		
91) d-Limonene 0.00 68 0 N.D. 92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	89) 1,2,3-Trimethylbenzene			874	N.D.		
92) 1,2-Dibromo-3-Chloropr 25.91 157 53 N.D. 93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.				494	N.D.		
93) n-Undecane 26.31 57 304 N.D. 94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.				_	N.D.		
94) 1,2,4-Trichlorobenzene 0.00 184 0 N.D. 95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.							
95) Naphthalene 27.59 128 4901 N.D. 96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	· · · · · · · · · · · · · · · · · · ·						
96) n-Dodecane 27.55 57 487 N.D. 97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.							
97) Hexachloro-1,3-butadiene 27.98 225 313 N.D. 98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	_						
98) Cyclohexanone 22.08 55 845 N.D. 99) tert-Butylbenzene 24.79 119 232 N.D.	·						
99) tert-Butylbenzene 24.79 119 232 N.D.							
' **	*						
100) n-Butylbenzene 25 71 91 734 N.D							
100/ II bacy to citacite 20.71 of 754 N.D.	100) n-Butylbenzene	25.71	91 	734	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090216-MB

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst: Sampling Media: Wida Ang

6.0 L Summa Canister

Date Received: NA

Volume(s) Analyzed:

Date Analyzed: 2/16/09

Date Collected: NA

1.00 Liter(s)

l'est Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Date: 2 111/09 TOISSCAN.XLT - NL - PageNo.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 02160902.D

Acq On : 16 Feb 2009 9:56

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160902.D

Acq On : 16 Feb 2009 9:56 Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	s Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	276341 1277940	25.000 ng 25.000 ng	-0.03
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	18.66	98	Recove 1451372 Recove 564423	ery = 99 24.814 ng	9.88% -0.02 9.24% 0.00
3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide	4.78 5.11 0.00 5.53 0.00 0.00 7.02 7.41 7.64 0.05 8.41 0.16 9.16 9.27 0.09	850524445168153694116 1050524445168153694116	57 0 54 0 0 0 382 834 277 618 0 64 61 0 66 697 54 0 4504	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	86
23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	0.00 0.00		0 0 54 0		

Data File : 02160902.D

: 16 Feb 2009 9:56 Acq On

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

Misc : S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method: J:\MS16\METHODS\R16012209.M
Quant Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	0.00	83	0	N.D.	
34) Tetrahydrofuran	0.00	72	0	N.D.	
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.	
36) 1,2-Dichloroethane	0.00	62	0	N.D.	
38) 1,1,1-Trichloroethane	0.00	97	0	N.D.	
39) Isopropyl Acetate	0.00	61	0	N.D.	
40) 1-Butanol	14.64	56	886	0.063 - nq	99
41) Benzene	14.68	78	1103	N.D.	
42) Carbon Tetrachloride	0.00	117	0	N.D.	
43) Cyclohexane	15.09	84	112	N.D.	
44) tert-Amyl Methyl Ether	15.58	73	57	N.D.	
45) 1,2-Dichloropropane	0.00	63	0	N.D.	
	0.00	83	0	N.D.	
47) Trichloroethene	0.00	130	0	N.D.	
48) 1,4-Dioxane	0.00	88	0	N.D.	
49) Isooctane	16.34	57	789	N.D.	
50) Methyl Methacrylate	0.00	100	0	N.D.	
	0.00		0	N.D.	
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.	
	0.00		0	N.D.	
54) trans-1,3-Dichloropropene				N.D.	
55) 1,1,2-Trichloroethane			123103		# FP 8
58) Toluene	18.80		1760	N.D.	,,
59) 2-Hexanone	19.14			N.D.	
60) Dibromochloromethane	0.00			N.D.	
61) 1,2-Dibromoethane	19.68			N.D.	
62) Butyl Acetate	19.97	43	62	N.D.	
63) n-Octane	20.11			N.D.	
•	0.00			N.D.	
	21.16				
66) Ethylbenzene	21.64				
67) m- & p-Xylene	21.86				
	0.00			N.D.	
69) Styrene	22.34		557	N.D.	
70) o-Xylene		91	1651	N.D.	
71) n-Nonane	22.75	43	479	N.D.	
72) 1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.	
74) Cumene	23.24	105	776	N.D.	
75) alpha-Pinene	0.00	93	. 0	N.D.	
76) n-Propylbenzene		91	1781	N.D.	
77) 3-Ethyltoluene	24.01	105	1444	N.D.	·
78) 4-Ethyltoluene	24.07	105		N.D.	
79) 1,3,5-Trimethylbenzene	24.17	105	1695	N.D.	201

Data File : 02160902.D

: 16 Feb 2009 9:56 Acq On

Operator : WA/LH

Sample : TO-15 Method blank (1000mL)

: S20-01290901

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 16 10:52:53 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
80) alpha-Methylstyrene	24.36			N.D.
81) 2-Ethyltoluene	24.40			
82) 1,2,4-Trimethylbenzene				
83) n-Decane			412	N.D.
84) Benzyl Chloride	24.84		1125	
85) 1,3-Dichlorobenzene	24.87	146	699	N.D.
86) 1,4-Dichlorobenzene	24.96	146	1006	N.D.
87) sec-Butylbenzene	25.00	105	611	N.D.
88) p-Isopropyltoluene	25.20	119	545	N.D.
89) 1,2,3-Trimethylbenzene	25.20	105	631	N.D.
90) 1,2-Dichlorobenzene	25.38	146	518	N.D.
91) d-Limonene	0.00	68	0	N.D.
92) 1,2-Dibromo-3-Chloropr	0.00	157	0	N.D.
93) n-Undecane	26.32	57	304	N.D.
94) 1,2,4-Trichlorobenzene	27.44	184	54	N.D.
95) Naphthalene	27.58	128	3860	N.D.
96) n-Dodecane	27.55	57	677	N.D.
97) Hexachloro-1,3-butadiene	27.99	225	313	N.D.
98) Cyclohexanone	22.08	55	1387	N.D.
99) tert-Butylbenzene	24.67	119	885	N.D.
100) n-Butylbenzene	25.71	91	479	N.D.

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090213-LCS

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Test Notes:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA

Date Analyzed: 2/13/09.

Volume(s) Analyzed:

NA Liter(s)

				CAS				
CAS#	Compound	Spike Amount	Result .	% Recovery	Acceptance	Data		
		. ng	ng		Limits	Qualifier		
75-01-4	Vinyl Chloride	25.5	22.4	88	57-132			
75-00-3	Chloroethane	25.8	25.0	97	68-123			
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123			
75-34-3	1,1-Dichloroethane	26.8	27.3	102	72-130			
71-55-6	1,1,1-Trichloroethane	26.5	25.9	98	69-127			

TOISSCAN.XLT - NL - PageNo.

Data File : 02130903.D

: 13 Feb 2009 Acq On 10:15

: WA/LH Operator

Sample 25ng TO-15 LCS STD :

S20-01290901/S20-01210903 Misc : ALS Vial 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Quant Title

QLast Update : Fri Jan 23 08:54:57 2009 Response via : Initial Calibration

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response					
1) Bromochloromethane (IS1)						ng		
37) 1,4-Difluorobenzene (IS2)	15.23	114	1297420	25.	.000	ng	***	0.02
56) Chlorobenzene-d5 (IS3)	21.11	82	649667	25.	.000	ng		0.00
System Monitoring Compounds					~ ~ ~			
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.44	65	455196 Recov					
57) Toluene-d8 (SS2)	18.67	98	1466786					
Spiked Amount 25.000			Recov					
73) Bromofluorobenzene (SS3)	23.06	174	626116	27.	253	ng		0.00
Spiked Amount 25.000			Recov	ery	Men	109	. 00%	
Target Compounds							Qv	alue
2) Propene								
3) Dichlorodifluoromethane	4.74	85	668079	23.	412	ng		100
4) Chloromethane	5.06	50	567374	24.	334	ng		99
			307592					
6) Vinyl Chloride	5.49	62	467734	22.	390	ng		86
7) 1,3-Butadiene								
			285953					
			232599					95
10) Ethanol	6.93	45	1529546m	T20.	919	ng		0.0
			741868					
13) Acetone	7.62		231516 1566922					
14) Trichlorofluoromethane								
15) Isopropanol	8 10	45	1818382m					90
16) Acrylonitrile	8.40	53	565249					100
17) 1,1-Dichloroethene								
18) tert-Butanol	9.02	59	1945791	49.	782	na	,,	99
19) Methylene Chloride	9.10	84	348281	23.	755	nq	#	53
20) Allyl Chloride	9.28	41	584839	32.	971	ng		78
21) Trichlorotrifluoroethane	9.53	151	291304	26.	191	ng		90
22) Carbon Disulfide	9.47	76	1249192	24.	352	ng		98
23) trans-1,2-Dichloroethene		61	546040	27.	277	ng		73
24) 1,1-Dichloroethane	10.83			27.				97
25) Methyl tert-Butyl Ether			945470					86
26) Vinyl Acetate	11.08		294949					3
27) 2-Butanone	11.40		258358					37
28) cis-1,2-Dichloroethene			535201					.74
29) Diisopropyl Ether			277740				#	31
30) Ethyl Acetate	12.41		298661					820E
31) n-Hexane	12.41	5/	615519	∠5.	523	ng		8 6 4 6

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15 Operator : WA/LH

Sample : 25ng TO-15 LCS STD

: S20-01290901/S20-01210903 Misc ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	/(Min)
32) Chloroform 34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether 36) 1,2-Dichloroethane 38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol 41) Benzene 42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane 50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane 58) Toluene 59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate	12.52	83	614063	27.713 ng		99
34) Tetrahydrofuran	13.06	72	235633	28.824 ng	#	51
35) Ethyl tert-Butyl Ether	13.20	87	391143	25.251 ng	#	69
36) 1,2-Dichloroethane	13.60	62	486242	26.039 ng		96
38) 1,1,1-Trichloroethane	13.99	97	526187	25.883 ng		93
39) Isopropyl Acetate	14.55	61	520741	56.496 ng	#	82
40) 1-Butanol	14.56	56	897917	63.004 ng	#	77
41) Benzene	14.68	78	1404676	25.252 ng		100
42) Carbon Tetrachloride	14.91	117	491091	27.203 ng		98
43) Cyclohexane	15.11	84	1031046	55.765 ng	#	65
44) tert-Amyl Methyl Ether	15.58	73	972444	25.655 ng		84
45) 1,2-Dichloropropane	15.91	63	375374	26.674 ng		99
46) Bromodichloromethane	16.18	83	491333	28.405 ng		99
47) Trichloroethene	16.26	130	390098	26.332 ng		97
48) 1,4-Dioxane	16.21	88	305210	28.438 ng	#	69
49) Isooctane	16.35	57	1619665	25.708 ng		97
50) Methyl Methacrylate	16.53	100	316901	58.010 ng	#	87
51) n-Heptane	16.72	71	375388	27.286 ng	#	74
52) cis-1,3-Dichloropropene	17.46	75	553732	26.598 ng		100
53) 4-Methyl-2-pentanone	17.50	58	392718	29.995 ng		79
54) trans-1,3-Dichloropropend	≥ 18.17	75	574823	29.868 ng		99
55) 1,1,2-Trichloroethane	18.41	97	342966	26.313 ng		100
58) Toluene	18.80	91	1571169	25.490 ng		99
59) 2-Hexanone	19.12	43	1059039	28.292 ng		93
60) Dibromochloromethane	19.35	129	461293	30.219 ng		100
61) 1,2-Dibromoethane	19.68	107	418504	26.676 ng		99
61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane 64) Tetrachloroethene	19.95	43	1198034	27.913 ng		97
63) n-Octane	20.11	57	372507	26.289 ng	#	70
64) Tetrachloroethene	20.30	T00	431849	25.131 ng		99
65) Unioropenzene	21.17	T T Z	1035614	25.384 ng		T00 .
65) Chlorobenzene 66) Ethylbenzene 67) m- & p-Xylene 68) Bromoform 69) Styrene 70) o-Xylene	21.65	0.1 7.T	1/83893	25.965 ng		99
67) m- & p-xyrene	21.88	7 7 2 7 7 2	430400	52.034 119		7.00
66) Styrono	21.30	104	419422	29.772 119		100
70) o-Vileno	22.33	10 1	1460746	20.130 Hg		97
71) n-Nonane	22.40	43	925080	27.120 ng		90
72) 1,1,2,2-Tetrachloroethane		83	689861	28.190 ng		96
74) Cumene	23.24	105	1868383	25.607 ng		96 96
74) cumene 75) alpha-Pinene	23.24		888357	28.261 ng		97
76) n-Propylbenzene	23.74	91		26.649 ng		97
77) 3-Ethyltoluene	24.01	105		29.267 ng		95
78) 4-Ethyltoluene	24.07		1936113	29.580 ng		94
79) 1,3,5-Trimethylbenzene	24.16	105		28.095 ng		9 206
,,,				=		- county date, apts,

Data File : 02130903.D

: 13 Feb 2009 10:15 Acq On

Operator : WA/LH

Sample : 25ng TO-15 LCS STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:43 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
81)		24.35 24.40	105	934827 1978673	29.025 i 28.855 i	ng -	98
82)	· · ·	24.67	105	1728430	28.518 1	~	90
83) 84)		24.79 24.84		1037083 1572576	29.109 i 31.907 i		81 95
85)	· · · · · · · · · · · · · · · · · · ·	24.87	146	1022283	28.891 i		98
86)	•	24.95	146	1034313	28.532 1		99
87)		25.01	105	2278631	28.812 1		98
	p-Isopropyltoluene 1,2,3-Trimethylbenzene	25.20 25.20	119 105	2203977 1781419	28.711 r 29.372 r		94 87
	1,2-Dichlorobenzene	25.37		990093	29.549 r		97
91)		25.38		698666	29.698 m		99
	1,2-Dibromo-3-Chloropr	25.90		359820	30.937 r		# 76
,	n-Undecane 1,2,4-Trichlorobenzene	26.32 27.43	57 184	1087630 217519	28.292 r 30.769 r		78 # 93
95)	· · ·	27.57	128	2526946	28.916 r		100
96)		27.55	57	1124103	25.930 r		. 77
97)	,	27.99		413738	29.427 r		100
	Cyclohexanone tert-Butylbenzene	22.06 24.67	55 119	596309 1728658	22.993 r 29.425 r		93 100
	n-Butylbenzene	25.71	91	1856239	29.653 r	_	94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

: WA/LH Operator

Sample : 25ng TO-15 LCS STD

S20-01290901/S20-01210903 Misc ALS Vial Sample Multiplier: 1

Quant Time: Feb 13 11:04:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)

6.933min (-0.091) 150.92ng m

response 1529546

0.00

on Exp% Act% 45.00 100 100 46.10 35.10 37.80 0.00 0.00 0.00

0.00

PT - 71C W 02/13/09 W 2/14/09

Em 2/6/09

209

0.00

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data Path : J:\MS16\DATA\2009 02\13\

Data File : 02130903.D

Acq On : 13 Feb 2009 10:15

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 13 11:04:14 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15)	I Isopropanol (T)
------	-----------------	---	---

8.100min (-0.074) 43.87ng m

response 1818382

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 17.26

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

PT --- 10 UN eal13/09

M 2/16/09

Em 2/16/09

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

CAS Sample ID: P090216-LCS

l'est Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:

Test Notes:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Collected: NA

Date Received: NA Date Analyzed: 2/16/09

Volume(s) Analyzed:

NA Liter(s)

CAS#	Compound	Spike Amount	Result ng	% Recovery	CAS Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	25.5	21.5	84	57-132	
75-00-3	Chloroethane	25.8	24.3	94	68-123	
75-35-4	1,1-Dichloroethene	27.5	27.7	101	70-123	
75-34-3	1,1-Dichloroethane	26.8	26.9	100	72-130	
71-55-6	1,1,1-Trichloroethane	26.5	25.7	97	69-127	

2/18/09

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Ouant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev((Min)
1) Bromochloromethane (IS1)	12.31	130	293871	25.000	ng	-0	.02
37) 1,4-Difluorobenzene (IS2)	15.23	114	1307508	25.000	nq	- 0	.02
56) Chlorobenzene-d5 (IS3)	21.11	82	644721	25.000	ng	C	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.44	65	458354	24.390	ng	- 0	.02
Spiked Amount 25 000			Dogor	TO 2017	07	500	
57) Toluene-d8 (SS2)	18.67	98	1470976	24.234	ng	0	.00
			*		~ ~	000	
73) Bromofluorobenzene (SS3)	23.06	174	616426	27.037	ng	0	.00
Spiked Amount 25.000			Recor	/ery =	108.	16%	
Target Compounds						Qva	lue
2) Propene 3) Dichlorodifluoromethane	4.58	42	430729	26.182	ng		88
 Dichlorodifluoromethane 	4.75	85	659132	22.945	ng		99
4) Chloromethane 5) Freon 114	5.06	50	531285	22.636	ng		99
5) Freon 114	5.31	135	300124	21.971	nq		86
C) TT = T (N) T = = -1 T =	- 40		4 - 4 - 5 - 5	07 455			~ ~
7) 1,3-Butadiene	5.77	54	431265	30.911	ng		98
8) Bromomethane	6.24	94	263387	24.167	ng		98
7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone	6.57	64	228314	24.330	ng		94
10) Ethanol	6.93	45	1495507m	146.584	nq		
11) Acetonitrile	7.21	41	727250	26.327	ng		90
12) Acrolein	7.41	56	229313	26.805	ng		81
13) Acetone	7.62	58	1546605	132.957	ng		100
14) Trichlorofluoromethane	7.88	101	658972	26.390	nq		95
15) Isopropanol	8.11	45	1772570m	42.479	ng		
16) Acrylonitrile	8.40	53	558522	29.260	ng		100
17) 1,1-Dichloroethene	8.89	96	340857	27.718	ng	#	62
18) tert-Butanol	9.03	59	1940756	49.324	ng		99
19) Methylene Chloride	9.11	84	346081	23.449	ng	#	53
20) Allyl Chloride	9.28	41	577798	32.359	ng		78
21) Trichlorotrifluoroethane	9.53	151	296944	26.521	ng		90
14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.47	76	1252001	24.245	ng		99
23) trans-1,2-Dichloroethene	10.52	61	534605	26.529	ng		73
24) 1,1-Dichloroethane	10.83	63	645789	26.853	ng		97
25) Methyl tert-Butyl Ether	10.91	73	949218	26.219			86
26) Vinyl Acetate	11.08	86	303556	125.803	_	#	2
27) 2-Butanone	11.40	72	259832	29.250		#	35
28) cis-1,2-Dichloroethene	12.07	61	527915	26.875			73
29) Diisopropyl Ether	12.40	87	280237			#	28
30) Ethyl Acetate	12.41	61	301290	58,666			84
31) n-Hexane	12.41	57	620422	25.556			8214

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD Misc : S20-01290901/S20-01 : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	r(Min)
32) Chloroform	12.52	83	611060	27 205			99
34) Tetrahydrofuran	13.06	72	234600	27.395 28.508		#	50
35) Ethyl tert-Butyl Ether	13.00	87	395364	25.355		#	69
36) 1,2-Dichloroethane	13.60	62	487099	25.913		11	97
38) 1,1,1-Trichloroethane	14.00		527489	25.747			94
	14.55	61	515665	55.514		#	81
<pre>39) Isopropyl Acetate 40) 1-Butanol</pre>	14.55	56	890881	62.028		11	79
	14.57	78	1404796	25.059			7 <i>9</i> 99
41) Benzene 42) Carbon Tetrachloride	14.00	117	495936	27.260			99
43) Cyclohexane	15.11	84	1030828	55.323		#	99 64
	15.58		975472	25.536		#	83
44) tert-Amyl Methyl Ether	15.91		370752				98
45) 1,2-Dichloropropane 46) Bromodichloromethane	16.18		488767	26.142	-		90 99
	16.26		390699	28.039	-		97
	16.21	88	297960	26.169	_	#	
48) 1,4-Dioxane 49) Isooctane	16.35	57	1598375	27.549		##	69 08
	16.53			25.174	-	11	98
	16.72		315327 371981	57.277	_	# #	88
<pre>51) n-Heptane 52) cis-1,3-Dichloropropene</pre>	17.46			26.829		#	74
	17.40	75 50	548357 388484	26.136			99
53) 4-Methyl-2-pentanone	18.17		570157	29.442	_		79
54) trans-1,3-Dichloropropene	18.41	97		29.397	_		99
55) 1,1,2-Trichloroethane 58) Toluene	18.80	91	341945	26.032	_		100
	19.12	43	1556123	25.440	-		99
•	19.12		1048664 462694	28.230			92
	19.68	107	414295	30.543	_		100
61) 1,2-Dibromoethane	19.00	43	1163485	26.610	ng		99
62) Butyl Acetate	20.11	57		27.316		11	97
63) n-Octane	20.30		368456	26.203		#	69
64) Tetrachloroethene			429680	25.197	_		99
65) Chlorobenzene	21.17 21.65	112 91	1023408	25.278	ng		100
66) Ethylbenzene	21.89	91	1780631	26.116			99
67) m- & p-Xylene 68) Bromoform	21.96		2806254	52.485			97 100
	22.33		421786	30.170			100
69) Styrene		104	1153311	28.077			96
70) o-Xylene	22.48 22.75	91 43	1450335	26.500			98
71) n-Nonane		43	906207	26.771			90
72) 1,1,2,2-Tetrachloroethane	22.45	83	678771	27.950			96
74) Cumene 75) alpha-Pinene	23.24 23.74	105 93	1851756	25.574			96 00
76) n-Propylbenzene		93 91	880670 2338656	28.231			98 07
77) 3-Ethyltoluene	23.89 24.01		1924686	26.638			97
78) 4-Ethyltoluene	24.01	105 105		29.012			95 95
			1925143				95 9 21
79) 1,3,5-Trimethylbenzene	24.16	105	1568242	27.974	119		7 4.

Ul 02/16/09

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

: 25ng TO-15 LCS STD Sample

: S20-01290901/S20-01210903 Misc : 3 ALS Vial Sample Multiplier: 1

Quant Time: Feb 16 11:13:47 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene	24.35		921060	28.817 ng		97
81) 2-Ethyltoluene	24.40	105	1959010	28.787 ng		94
82) 1,2,4-Trimethylbenzene	24.67		1707192	28.384 ng		90
83) n-Decane		57	1021966	28.905 ng		81
84) Benzyl Chloride	24.84	91	1580751	32.319 ng		95
85) 1,3-Dichlorobenzene	24.87	146	1011132	28.795 ng		98
86) 1,4-Dichlorobenzene	24.95	146	1026955	28.547 ng		99
87) sec-Butylbenzene	25.01	105	2255176	28.734 ng		98
88) p-Isopropyltoluene	25.20	119	2189550	28.742 ng		94
89) 1,2,3-Trimethylbenzene	25.20	105	1768670	29.386 ng		88
90) 1,2-Dichlorobenzene	25.37	146	989131	29.746 ng		98
91) d-Limonene	25.38	68	688683	29.498 ng		99
92) 1,2-Dibromo-3-Chloropr	25.90	157	358735	31.081 ng	#	76
93) n-Undecane	26.32	57	1063532	27.877 ng		78
94) 1,2,4-Trichlorobenzene	27.43	184	212624	30.307 ng	#	93
95) Naphthalene	27.57	128	2490959	28.722 ng		100
96) n-Dodecane	27.55	57	1098888	25.543 ng		76
97) Hexachloro-1,3-butadiene	27.99	225	407933	29.237 ng		100
98) Cyclohexanone	22.06	55		22.391 ng		92
99) tert-Butylbenzene	24.67		1720031	29.502 ng		100
100) n-Butylbenzene	25.71	91	1843465	29.675 ng		94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 3

Data Path : J:\MS16\DATA\2009_02\16\

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Quantitation Report (Qedit)

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(10) Ethanol (T)		
6.933min (-0.091)	146.58ng m	PT 10
response 14955	77	4 02/16/09
Ion Exp%	Act%	
45.00 100	100	0 -1-10
46.10 35.10	37.43	-£ 2/19/09
0.00 0.00	0.00	
0.00 0.00	0.00	

MA 2/17/09

218

Quantitation Report (Qedit)

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Response via : Initial Calibration

(15) Isopropanol (T)

8.106min (-0.068) 40.02ng

PT

response 1670028

 Ion
 Exp%
 Act%

 45.10
 100
 100

 43.00
 17.10
 18.13

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

219

Quantitation Report (Qedit)

Data Path : J:\MS16\DATA\2009 02\16\

Data File : 02160903.D

Acq On : 16 Feb 2009 10:36

Operator : WA/LH

Sample : 25ng TO-15 LCS STD

Misc : S20-01290901/S20-01210903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 16 11:13:07 2009

Quant Method: J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

- LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-58

Client Project ID: Cooper Vision / 70665-014

CAS Project ID: P0900513

Date Collected: 2/10/09

CAS Sample ID: P0900513-002DUP

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Sampling Media:

6.0 L Summa Canister

Date Received: 2/12/09 Date Analyzed: 2/13/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Analyst:

Container ID:

AC00848

Initial Pressure (psig):

-4.3

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.75

			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	μg/m³	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND		•	25	
Chloroethane	ND	ND	ND	ND	**	-	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND	_	-	25	
1,1,1-Trichloroethane	ND	ND	ND	ND			25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Data File : 02130911.D

Acq On : 13 Feb 2009 16:33

Operator : WA/LH

Sample : P0900513-002Dup (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Data File : 02130911.D Acq On : 13 Feb 2009 16:33

Operator : WA/LH

: P0900513-002Dup (1000mL) Sample

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) √ Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	e Conc Units	s De	v(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.21	114	1398587	25.000 ng		-0.05 -0.03 -0.01
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(12 42	65	479750	24 496 na		-0 04
Spiked Amount 25.000	10.44	0.5		rery = 98		
57) Toluene-d8 (SS2)	18.67	98	1583839	24.173 na		-0.01
Spiked Amount 25 000			Pagos	10 m 06	. 68	9 1
73) Bromofluorobenzene (SS3)	23.06	174	653389	26.550 ng		0.00
Spiked Amount 25.000			Recov	very = 106	.20	ૄ √
Target Compounds						value
2) Propene	4.58		579027			91
3) Dichlorodifluoromethane	4.75	85		1.604 ng		
4) Chloromethane 5) Freon 114	5.06	50		0.719 ng		98
5) Freon 114 6) Vinyl Chloride	5.31	135	834	N.D.		
7) 1,3-Butadiene	0.00	5∠ = 1	10120	N.D. V 1.316 ng		93
8) Bromomethane	5.77	24	262	N.D.		93
				N.D. 1/		
				1235.469 ng		93
11) Acetonitrile	7.02 7.19	41		3.601 ng		97
12) Acrolein	7.39	56	34567	3.877 ng		
	7.60	58	406622	33.543 ng		91
14) Trichlorofluoromethane	7.87	101				95
15) Isopropanol	8.15	45	7396652	170.091 ng		99
16) Acrylonitrile 17) 1,1-Dichloroethene	8.38	53	9363	0.471 ng		96
17) 1,1-Dichloroethene	0.00	96	0	N.D. 🗸		
18) tert-Butanol	9 07	59	17145	0.418 ng	#	16
19) Methylene Chloride	9.08	84	3934	0.256 ng	#	54
20) Allyl Chloride	9.26	41	2157	0.116 ng	#	55
21) Trichlorotrifluoroethane	9.52	151	4524	0.388 ng		83
22) Carbon Disulfide		76 61	7345			91
23) trans-1,2-Dichloroethene	0.00 0.00		0	N.D.		
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether	10.92	63 73	356	N.D. V N.D.		
26) Vinyl Acetate	11.03	86	11313	4.499 ng	#	1
27) 2-Butanone	11.40	72	15035	1.624 ng	#	40
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.	**	
29) Diisopropyl Ether	12.40	87	1017	0.091 ng	#	1
30) Ethyl Acetate	12.39	61	49067	9.168 ng		82
31) n-Hexane	12.40	57	13388	0.529 ng		8 223

Data File : 02130911.D

: 13 Feb 2009 16:33 Acq On

Operator : WA/LH

Sample : P0900513-002Dup (1000mL)

: Haley & Aldrich SV-InA-58 (-4.3, 3.5) Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	33139	1.426 ng		100
34) Tetrahydrofuran	13.10	72		0.066 ng	#	1
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	13.59		6118	0.312 ng		99
38) 1,1,1-Trichloroethane						
39) Isopropyl Acetate	14.55	61		0.170 ng	#	1
40) 1-Butanol	14.57	56	36518	2.377 ng		92
41) Benzene	14.67	78	115716			99
42) Carbon Tetrachloride	14.90	117	5583	0.287 ng		100
43) Cyclohexane	15.10	84	3971	0.199 ng	#	70
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		•
45) 1,2-Dichloropropane	15.90	63	992			88
46) Bromodichloromethane				0.545 ng		99
47) Trichloroethene	16.25					
48) 1,4-Dioxane	16.24			N.D.		
49) Isooctane	16.33	57	15150	0.223 ng		82
50) Methyl Methacrylate	16.71	100	2119	0.360 ng	#	1
51) n-Heptane	16.71	71	7047	0.475 ng	#	78
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.52			0.138 ng		76
54) trans-1,3-Dichloropropene	0.00			N.D.		
55) 1,1,2-Trichloroethane			134476	9.571 ng	#	8
58) Toluene	18.80	91	249992	3.786 ng		98
59) 2-Hexanone			7749	0.193 ng		89
60) Dibromochloromethane	19.34			0.237 ng		99
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate			124347	2.705 ng		94
63) n-Octane			8384	0.552 ng	#	75
64) Tetrachloroethene	20.29			0.079 ng		91
65) Chlorobenzene	21.16	112	488	N.D.		
66) Ethylbenzene	21.64	91	39935	0.543 ng		100
67) m- & p-Xylene	21.86	91	78940	1.368 ng		98
68) Bromoform	21.95	173	344	N.D.		~ ****
69) Styrene	22.33			0.514 ng		97
70) o-Xylene		91	23805	0.403 ng		99
71) n-Nonane	22.75	43	17524	0.480 ng		91
72) 1,1,2,2-Tetrachloroethane	22.49	83	872	N.D.		
74) Cumene	23.24	105	3762	N.D.		~ □
75) alpha-Pinene	23.74	93	96169	2.856 ng		97
76) n-Propylbenzene	23.88	91 105	10502	0.111 ng		79
77) 3-Ethyltoluene	24.01	105	21227	0.296 ng		97 0.6
78) 4-Ethyltoluene	24.07	105	10569	0.151 ng		96
79) 1,3,5-Trimethylbenzene	24.15	105	7769	0.128 ng		10224

Data File : 02130911.D

Acq On : 13 Feb 2009 16:33

Operator : WA/LH

Sample : P0900513-002Dup (1000mL)

Misc : Haley & Aldrich SV-InA-58 (-4.3, 3.5)

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Feb 13 17:15:17 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	De	v(Min)
80) alpha-Methylstyrene	24.35	118	1685	N.D.		100
81) 2-Ethyltoluene	24.40	105	8223	0.112 ng		100
82) 1,2,4-Trimethylbenzene	24.67		23686	0.365 ng		94
83) n-Decane	24.79		86736	2.273 ng		77
84) Benzyl Chloride		91	130	N.D.		
85) 1,3-Dichlorobenzene	24.95		2145			
86) 1,4-Dichlorobenzene	24.95	146	2145	N.D.		
87) sec-Butylbenzene	25.01	105	1019	N.D.		
88) p-Isopropyltoluene	25.20	119	34364	0.418 ng		93
89) 1,2,3-Trimethylbenzene	25.20	105	9438	0.145 ng	#	66
90) 1,2-Dichlorobenzene	25.37	146	205	N.D.		
91) d-Limonene	25.37	68	346862	13.764 ng		99
92) 1,2-Dibromo-3-Chloropr	26.32	157	59	N.D.		
93) n-Undecane	26.32	57	37651	0.914 ng		68
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
95) Naphthalene	27.57	128	22856	0.244 ng		100
96) n-Dodecane	27.55	57	17437	0.375 ng		74
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98) Cyclohexanone	22.06	55	14690	0.529 ng	#	93
99) tert-Butylbenzene	25.12	119	2439	N.D.		
100) n-Butylbenzene	25.71		4183	0.062 ng	#	30

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-2

Client Project ID: Cooper Vision / 70665-014

6.0 L Summa Canister

Fest Code: Instrument ID:

Analyst:

EPA TO-15

Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Wida Ang

Sampling Media:

Test Notes:

Container ID:

AC01423

Initial Pressure (psig):

-1.6

CAS Sample ID: P0900513-009DUP

Date Collected: 2/10/09

CAS Project ID: P0900513

Date Received: 2/16/09 Date Analyzed: 2/16/09

Volume(s) Analyzed:

Final Pressure (psig): 3.5

1.00 Liter(s)

Canister Dilution Factor: 1.39

Compound	Sample	Duplicate Sample Result Sample Result Average						Data
	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	ppbV		Limit	Qualifier
Vinyl Chloride	ND	ND	ND	ND		-	25	
Chloroethane	ND	ND	ND	ND	••	-	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND	-	_	25	
1,1,1-Trichloroethane	ND	ND	ND	ND	-		25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Data File : 02160907.D

Acq On : 16 Feb 2009 13:37

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Data File : 02160907.D

Acq On : 16 Feb 2009 13:37

Operator : WA/LH

: P0900513-009Dup (1000mL) Sample

: Haley & Aldrich SV-InA-2 (-1.6, 3.5) Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards			Response	Conc (Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)			267798 1235225 607502	25.000 25.000 25.000	ng ng ng	-0.05 -0.03 -0.01
	18.67	98	Recov 1402601	ery = 24.523	101. ng	28% -0.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.06	174	544271	25.335 ery =	ng	0.00
9) Chloroethane 10) Ethanol 11) Acetonitrile	0.00 6.98 7.19	64 45 41	0 13223 2387	N.D. 1.422 0.095	ng na	75 # 42
16) Acrylonitrile 17) 1.1-Dichloroethene	8.49 0.00	45 53 96	301 0	N.D. N.D.	ng ⁄	6∠
18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	0.00	61 63	2532 0 0	N.D. N.D. N.D.		# 57 # 55 92
25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether 30) Ethyl Acetate	0.00 11.05 11.40 0.00 0.00 12.40	73 86 72 61 87 61	0 543 6085 0 0 7021	N.D. 0.247 0.752 N.D. N.D.	ng ng	# 1 # 58
31) n-Hexane	12.41	57	7549	0.341	ng	10228

Data File : 02160907.D

Acq On : 16 Feb 2009 13:37

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)

Misc : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Fri Jan 23 08:54:57 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	12.49	83	1561	0.077 ng		93
34) Tetrahydrofuran	0.00	72	0	N.D.		
35) Ethyl tert-Butyl Ether	0.00	87	0			
36) 1 2-Dichloroethane	13 59	62	835	N.D.		
38) 1,1,1-Trichloroethane	13.98	97	829	N.D.		
38) 1,1,1-Trichloroethane 39) Isopropyl Acetate 40) 1-Butanol	0.00	61	0	N.D.		
40) 1-Butanol	14.62	56	3860	0.284 ng		90
41) Benzene	14.67	78	33275	0.628 na		98
12) Carbon Totrachlorido	1/ 00	117	E 0 7 2	0 343 na		97
43) Cyclohexane	15.09	84	1276	0.072 ng	#	69
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	0.00	83	0	N.D.		
46) Bromodichloromethane 47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane	16.26	130	66	N.D.		
48) 1,4-Dioxane	0.00	88	0	N.D.		
49) Isooctane	16.34	57	12665	0.211 ng		93
50) Methyl Methacrylate	16.71	100	356	0.068 ng	#	1
50) Methyl Methacrylate 51) n-Heptane	16.70	71	1734	0.132 ng	#	73
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.54	58	464	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.68	97	119825	9.656 ng	#	8
58) Toluene	18.80	91	64022	1.111 ng		99
59) 2-Hexanone	19.13	43	4098	0.117 ng		84
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		•
60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate 63) n-Octane	19.97	43	2878	0.072 ng	#	56
00/ 11 0000110		~ ,		0.193 ng		85
64) Tetrachloroethene	20.29	166	1051	0.065 ng		90
65) Chlorobenzene	21.15	112	59	N.D.		
66) Ethylbenzene	21.64	91	10187	0.159 ng		97
67) m- & p-Xylene	21.86	91	23261	0.462 ng		98
	0.00	173	0	N.D.		
69) Styrene		104	1501	N.D.		
70) o-Xylene	22.48		9260	0.180 ng		99
71) n-Nonane	22.75	43	3808	0.119 ng		96
72) 1,1,2,2-Tetrachloroethane	22.48	83	52	N.D.		
74) Cumene	23.24	105	1596	N.D.	17	4.5
75) alpha-Pinene	23.74	93	3691	0.126 ng	#	43
76) n-Propylbenzene	23.89	91	3189	N.D.		5.00
77) 3-Ethyltoluene	24.02	105	7591	0.121 ng		100
78) 4-Ethyltoluene	24.07	105	3899	0.064 ng		93
79) 1,3,5-Trimethylbenzene	24.16,	105	3069	N.D.		220

Data File : 02160907.D

: 16 Feb 2009 13:37 Acq On

Operator : WA/LH

Sample : P0900513-009Dup (1000mL)
Misc : Halev & Alder : : Haley & Aldrich SV-InA-2 (-1.6, 3.5)

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Feb 16 14:38:50 2009

Quant Method : J:\MS16\METHODS\R16012209.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Fri Jan 23 08:54:57 2009

Internal Stand	ards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Met 81) 2-Ethylto				988 2936		
82) 1,2,4-Tri	methylbenzene				0.165 ng	
83) n-Decane		24.79	57	42072	1.263 ng	80
· · · · · · · · · · · · · · · · · · ·	loride			53		
85) 1,3-Dichl	orobenzene	24.95	146	1859	N.D.	
86) 1,4-Dichl	orobenzene	24.95	146	1859	N.D.	
87) sec-Butyl	penzene	25.01	105	458	N.D.	
88) p-Isoprop	yltoluene	25.20	119	1244	N.D.	
89) 1,2,3-Trii	methylbenzene	25.20	105	2544	N.D.	
90) 1,2-Dichle	orobenzene	24.95	146	1859	N.D.	
91) d-Limonen	€	25.38	68	1383	0.063 ng	93
92) 1,2-Dibro	mo-3-Chloropr	0.00	157		N.D.	
93) n-Undecan	≘	26.32	57	9763	0.272 ng	68
94) 1,2,4-Tri	chlorobenzene	0.00	184	0	N.D.	
95) Naphthale	ne	27.58	128	3242	N.D.	
96) n-Dodecane	<u> </u>	27.55	, 57	3331	0.082 ng	92
97) Hexachlor	o-1,3-butadiene	0.00	225		N.D.	
98) Cyclohexai					0.121 ng	# 75
99) tert-Buty				1160		
100) n-Butylber		25.67		1970		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Copy of Calculations

Instructions for Data Validation-Method TO-15(SCAN)

1. Determination of Pressure Dilution Factor

Upon receipt at the laboratory the pressure or vacuum of the sample canisters is measured using a digital pressure gauge. The canisters are then pressurized with humidified zero air to approximately +3.5 psig (pounds per square inch gauge).

Pressure Dilution factor is calculated as:

$$PDF = \frac{P_{\ell} + 14.7}{P_{i} + 14.7}$$

 P_f final pressure in psig P_i initial pressure in psig

2. Validating Initial and Continuing Calibration Results

GC/MS target compound analysis is performed using internal standard quantitation. Three internal standard compounds (Bromochloromethane, 1,4-Difluorobenzene and Chlorobenzene-d5) are added to each aliquot of sample, blank, standard and duplicate at an amount of 25 nanograms(ng). Internal standard responses are used to calculate RRFs (relative response factors) as follows:

$$RRF = \frac{AxC_{is}}{A_{is}C_{x}}$$

area response of the analyte quantitation ion $A_{\mathcal{L}}$

 A_{is} area response of the corresponding internal standard quantitation ion

 C_{ii} internal standard concentration, ng

 C_{r} analyte concentration, ng

The percent relative standard deviation (%RSD) for the five or six initial calibration points should be less than 30% (with a maximum of two analytes ≤0%) for the calibration to be considered valid and linear.

$$\%RSD = \frac{SD}{RRF}(100)$$

standard deviation

average or mean RRF (ICAL)

Instructions for Data Validation-Method TO-15(SCAN

The initial calibration is verified once per twenty-four hour analytical sequence with the analysis of a continuing calibration standard at one of the initial calibration levels (actual analyte concentrations of the CCV are the same as the corresponding concentrations in the initial calibration). The relative response factor of each target analyte from the daily continuing calibration standard is compared to the average relative response factor from the initial multipoint calibration. The percent difference (%D) of the initial and continuing calibration relative response factors is calculated as follows:

$$\%D = \left(\frac{\overline{RRF} - RRF \ cont}{\overline{RRF}}\right) (100)$$

RRF

average relative response factor from the initial calibration

. RRF cont relative response factor from the daily continuing calibration standard

Note: the percent difference (%D) should be less than 30% for an acceptable continuing calibration standard

3. Validating GC/MS Target Analyte Quantitation Results

Target analytes are measured in nanograms using internal standard quantitation as follows:

$$ng_x = \frac{Axng_b}{A_b RRF}$$

ng: nanogram concentration of analyte x

As area response of the analyte's quantitation ion

As area response of the corresponding internal standard's quantitation ion

ngi internal standard amount, in nanograms

RRF average or mean RRFs (ICAL)

4. Calculation of μg/m³ (microgram per cubic meter) Results

Target compound results reported on the "Results of Analysis" form in units of µg/m³ are calculated as follows:

$$\mu g/m^3 = \frac{(ng)(PDF)}{L}$$

ng nanograms of analyte (measured on the GC/MS quantitation report)

PDF pressure dilution factor (see equation 1)

L sample aliquot in Liters

Instructions for Data Validation-Method TO-15(SCAN)

5. Conversion to ppb (parts per billion) Volume

$$C_{ppbv} = C_x \left(\frac{24.46}{FW} \right)$$

- FW formula weight of the target analytes (i.e. formula weight of Dichloromethane is 84.94; 1,2-Dichloropropane is 113)
- 24.46 molar volume of ideal gas at 25°C and 1 atmosphere
- C_{y} final analyte concentration calculated in equation 4 ($\mu g/m^3$)

LABORATORY REPORT

March 9, 2009

Susan Boyle Haley & Aldrich, Inc. 200 Town Centre Drive Suite 2 Rochester, NY 14623-4264

RE: Cooper Vision SVI / 70665-014

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on March 2, 2009. For your reference, these analyses have been assigned our service request number P0900735.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains \[\begin{align*} \begin{align*} \leftilde{1} \\ \end{align*} \] pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Late Azula

Kate Aguilera

Project Manager

NARRATIVE

2655 Park Center Drive, Suite A

Simi Valley, California 93065

(805) 526-7161

(805) 526-7270 fax

Client: Project:

Haley & Aldrich, Inc.

Cooper Vision SVI / 70665-014

CAS Project No: New York Lab ID: P0900735

11221

CASE NARRATIVE

The samples were received intact under chain of custody on March 2, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Client:

Haley & Aldrich, Incorporated

Project:

Cooper Vision SVI 70665-014

Folder: P0900735

Detailed Sample Information

CAS Sample	D Client Sample ID	Container Type	<u>Pi1</u> (Hg)	<u>Pi1</u> (psig)	Pf1	<u>Pi2</u> (Hg)	<u>Pi2</u> (psig)	Pf2	Cont ID	Order#	FC ID	Bottle <u>Order #</u>
P0900735-001.0	SV-SS-705-1	6.0 L-Summa Canister Source	-1.7	-0.8	3.7				SC00615	12000	OĄ00857	12000
P0900735-002.0	SV-InA-705-1	6.0 L-Summa Canister Ambient		0.3	3.5	~ ~ ~			AC01365	12000	FC00695	12000
P0900735-003.0	SV-OutA-022609	6.0 L-Summa Canister Ambient	-4.2	-2.1	3.5				AC00977	12000	FC00266	12000
P0900735-004.0	SV-SS-709-2	6.0 L-Summa Canister Source	-2.3	-1.1	3.5				SC00196	12000	OA00846	12000
P0900735-005.0	SV-InA-709-2	6.0 L-Summa Canister Ambient	-1.6	-0.8	3.5				ĀČ00989	12000	FC00384	12000
P0900735-006.0	AC00681	6.0 L-Summa Canister Ambient	-29.6	-14.5					ĀC00681	12000		
P0900735-007.0	AC01060	6.0 L-Summa Canister Ambient	-29.6	-14.5	~ ~ ~ = -		~ ~ ~ ~ ~ ~ ~ ~		AC01060	12000		
P0900735-008.0	ÄC01048	6.0 L-Summa Canister Ambient	-29.6	-14.5					ĀC01048	12000		
P0900735-009.0	SC00588	6.0 L-Summa Canister Source	-29.3	-14.4					SC00588	12000	en was and the transition of the	
											the term and the term that the	

Miscellaneous Items - received

AVG00750

AVG00601

OA00539

AVG00976

AVG00916

AVG00062

AVG01003

FC00215

.

AVG00288

AVG00804

FC00559

FC00509

FC00660

AVG00632

AVG00958

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Haley & Aldr	ich, Inc.			_	Work order:	P0900735			
		n SVI / 70665-014								
Δ	s) received on:			_	Date opened:		by:	MZAN		
		samples received by CAS							on of	
compliance	or nonconformity.	Thermal preservation and	pH will only be eva	luated either at the	request of the clie	ent and/or as require	d by the method/SOI	?. <u>Yes</u>	No	<u>N/A</u>
1	Were sample	containers properly	marked with c	lient sample II	วา			\boxtimes		
2	_	supplied by CAS?	market with	mont sample m				$\overline{\mathbf{x}}$		
3		ontainers arrive in	wood condition?)				$\overline{\mathbf{x}}$		
	~	of-custody provided						\boxtimes		
4 5		n-of-custody properl						\boxtimes		
		ontainer labels and		ith custody na	nero?		•	[X]		
6 7	•	volume received ade	= =		pers:			\boxtimes		
8	•	within specified hold	-	515 ;				\boxtimes		
9		emperature (therma	_	of cooler at rea	reint adhered	to9				\boxtimes
9	• •	Cooler Temperature	i preservacion)		Temperature	101	°C	لبسبا		15.23
3.0	Was a trip bla	-		C Diank	1 emperature		_		X	
10	-								i.C.i	
1 1		seals on outside of	anolar/Pov?						X	
11	Location of		COOLEI/BOX !				Sealing Lid?			\boxtimes
		sear(s)? ure and date include			 		_ Seaming Lid?			X
	Were seals i		:U ?							\boxtimes
			emple contains	r)					\mathbf{X}	
	Location of	seals on outside of s	ampie contame	1 (Sealing Lid?			×
		·	.40				_ Staining Liu?			\boxtimes
	Were seals i	ure and date include	30.7							\boxtimes
10				ondina to mot	hod/SOD or C	liant appoified i	n formation ?			
12		have appropriate pr		-		mem specified i	mormation?			\boxtimes
		nt indication that th			reserved?					\boxtimes
		ials checked for pres								\boxtimes
		nt/method/SOP requ		•	sample pH an	d if necessary a	lter it?			\boxtimes
13	Tubes:	Are the tubes ca		: '7						X
		Do they contain								\boxtimes
14	Badges:	Are the badges	properly cappe	d and intact?						\boxtimes
		Are dual bed ba	adges separated	and individua	lly capped an	d intact?				X
Lab s	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Receip	t / Pres	ervation	
		Description	pH *	pH	pH	(Presence/Absence		ommer	its	
- -090073 <i>5</i>	-001.01	6.0 L Source Can	Ì						<u> </u>	
20900735	-002.01	6.0 L Ambient Can								
20900735		6.0 L Ambient Can								
20900735		6.0 L Source Can								
20900735	-002.01	6.0 L Ambient Can								
Explain a	ny discrenancies	: (include lab sample l	D numbers):							
жарыни а	il moorobarotes	· (morado no barripto :	L Hanovio),	·						
		<u> </u>		~~~						

NYSDEC DATA PACKAGE SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Customer	Laboratory			Analytica			
Sample	Sample	*VOA	*BNA	*VOÁ	*Pest	*Metals	*Other
Code	Code	GC/MS	GC/MS	GC	PCBs		
		Method	Method	Method	Method		
		#	#	#	#		
SV-SS-705-1	P0900735-001	EPA TO-15					
SV-InA-705-1	P0900735-002	EPA TO-15		<u> </u>	<u> </u>	-	
SV-OutA-022609	P0900735-003	EPA TO-15					
SV-SS-709-2	P0900735-004	EPA TO-15					
SV-InA-709-2	P0900735-005	EPA TO-15					
			······································				
					_		
						†	
					<u> </u>		
				1		<u> </u>	
						-	
							 ·
						<u> </u>	
			<u>,</u>				<u>.</u>
						 	
				í	<u> </u>		
						<u> </u>	
						<u> </u>	
				7,			
						 	
				· · · · · · · · · · · · · · · · · · ·		<u> </u>	
				-			
				,			

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
P0900735-001	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-002	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-003	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-004	Air	2/27/09	3/2/09	NA	3/4/09
P0900735-005	Air	2/27/09	3/2/09	NA	3/4/09
	· · · · · · · · · · · · · · · · · · ·				
1					
	<u> </u>				
		,			

CHAIN OF CUSTODY FORMS

Columbia Analytical Services*c

Air - Chain of Custody Record & Analytical Service Request

Page _____ of ____

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

b) Firebour - One les Frençois	Phone (805)	526-7161		Requested 1	Furnaround Ti	ime in Business	Days (Surchar	ges) please ci	rcle	CAS Project	No. O	
	Fax (805) 52	26-7270		1 Day (100%) 2 Day (75%)) 3 Day (50%) 4	Day (35%) 5 (C		ay-Standard		YOC	100 735
			·	1=	······			CAS Contact:	. 1			
Company Name & Address (Re	porting Inform	ation)		Project Name		0.11	-	L. AQ	Jui leco	ã		
				(,000	<u>ervisi</u>	on <u>su</u>	+	Analys	is Method	and/or An	alytes	
Haley & Aldrick)			1	<u> 0005-</u>	014		8 6				
roject Manager S. BOYLE				P.O. # / Billin	ng Information			+ (a/a)	7 3	, majo		Comments
Haley Aldrich roject Manager S. Boyle hone 321-4222	Fax							start (a/ab)	to to			e.g. Actual Preservative or specific instructions
mail Address for Result Reporting				Sampler (Print	& Sign) 1NA ON	dak		. 0	2 2			please provid
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Sample Type (Air/Tube/ Solid)	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller (Bar code - FC #)	Sample Volume	trac s	Vaeuum start Vacuum stad	Ė		results ASP-B
W-SS-7051	1-1.7	00/26	Q4 hc	Air	0015	00857	(GL		38/φ	Х		package
V-loA-705-L	2+03				<u>CO3600</u>	00695		1157/1200	30/0	X		
	3-4.2				00917	ଧ୍ୟାନ୍ତପ		1400/1140	50/06	X		Dray Chlorid
	9-23				00196	00846		1410/1200		X		min reporting
BV-Ina-709-2	10-16			1 1	009B9	00384	V	1413/1200	30/03	7		limit for
	-296	V	<u> </u>							*		Subdab= Ju/m
	-29.6											iv/100(= .25
	-246			<u> </u>							i	attdoor = .25
	-293								:			
									·			all other
	<u> </u>		<u> </u>	<u> </u>						<u> </u>		compounds
												min reporting
												limit = 11/n
									:			1,
Report Tier Levels - please se ier I - (Results/Default if not specifi				kage) 10% Surc	charge		EDD required		·		Project Requ	irements (MRLs, QAPP)
ier II (Results + QC)		Tier V (clien	t specified)			•	Type:	77.00-00	EDD Units:			
Reliquishadiby: (Signature)	Laken		Date: 021	Time: 1356	Received by: (5	1117	THEOD	VG	Date: 3/2/04	Time: 04-15		The state of the s
Reliquished by: (Signature)		_	Date:	Time:	Received by: (S	Signature)	30000		Date:	Time:		
Reliquished by: (Signature)			Date:	Time:	Received by: (S	Signature)			Date:	Time:	Cooler / Blan Temperature	. 1

GC/MS VOLATILES DATA

QC Summary

SURROGATE SPIKE RECOVERY RESULTS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

Test Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister(s)

Date(s) Collected: 2/27/09 Date(s) Received: 3/2/09

Date(s) Analyzed: 3/4/09

Fest Notes:

		1,2-Dichloroethane-d4		Toluene-d8		Bromofluo		
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
		Recovered	Limits	Recovered	Limits.	Recovered	Limits	Qualifier
Method Blank	P090304-MB	102	70-130	101	70-130	98	70-130	
Lab Control Sample	P090304-LCS	101	70-130	99	70-130	99	70-130	
SV-SS-705-1	P0900735-001	101	70-130	100	70-130	99	70-130	
SV-InA-705-1	P0900735-002	101	70-130	100	70-130	100	70-130	
SV-OutA-022609	P0900735-003	102	70-130	99	70-130	98	70-130	
SV-SS-709-2	P0900735-004	101	70-130	99	70-130	98	70-130	
SV-InA-709-2	P0900735-005	102	70-130	100	70-130	98	70-130	

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Lab Control Sample

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P090304-LCS

Date Collected: NA

Date Received: NA

Test Code:

EPA TO-15

nstrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 3/04/09 Volume(s) Analyzed:

NA Liter(s)

Fest Notes:

				CAS					
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data			
		ng	ng		Limits	Qualifier			
75-01-4	Vinyl Chloride	25.5	22.0	86	57-132	· · · · · · · · · · · · · · · · · · ·			
75-00-3	Chloroethane	25.8	24.5	95	68-123				
75-35-4	1,1-Dichloroethene	27.5	22.7	83	70-123				
75-34-3	1,1-Dichloroethane	26.8	25.7	96	72-130				
71-55-6	1,1,1-Trichloroethane	26.5	25.3	95	69-127				

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

Client Project ID:

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Lab File ID: 03040902.D

Analyst:

Elsa Moctezuma

Date Analyzed: 3/04/09

Sampling Media:

6.0 L Summa Canister(s)

Time Analyzed: 09:05

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed	
Lab Control Sample	P090304-LCS	03040907,D	13:08	
SV-InA-705-1	P0900735-002	03040909.D	14:35	
SV-OutA-022609	P0900735-003	03040910.D	15:21	
SV-SS-705-1	P0900735-001	03040912.D	17:11	
SV-SS-709-2	P0900735-004	03040913.D	17:52	
SV-InA-709-2	P0900735-005	03040914.D	18:34	

Data Path : J:\MS09\Data\2009_02\17\

Data File : 02170912.D

Acq On : 17 Feb 2009 16:49

Operator : EM

Sample : BFB Tune Standard (200ml)

Misc : S20-02030901

ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Mon Feb 16 12:39:21 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.1	50781	PASS
75	95	30	66	44.7	140904	PASS
95	95	100	100	100.0	315477	PASS
96	95	5	9	6.4	20125	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	78.3	247104	PASS
175	174	4	9	8.0	19773	PASS
176	174	93	101	96.9	239509	PASS
177	176	5	9	6.3	15112	PASS

Cur 2/18/09

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

00
.SS

Em 3/4/09

RESULTS OF ANALYSIS

Page Fof I

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900735

Client Project ID:

Cooper Vision SVI / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Lab File ID: 03040901.D

Analyst:

Elsa Moctezuma

Date Analyzed: 3/4/09 Time Analyzed: 08:10

Sampling Media:

6.0 L Summa Canister(s)

Test Notes:

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	333021	12.82	1607634	15.77	798532	21.57
	Upper Limit	466229	13.15	2250688	16.10	1117945	21.90
	Lower Limit	199813	12.49	964580	15.44	479119	21.24
	Client Sample ID						
01	Method Blank	330101	12.80	1608551	15.75	791060	21.57
02	Lab Control Sample	322309	12.82	1549597	15.77	774690	21.57
03	SV-InA-705-1	338724	12.80	1633065	15.75	812724	21.57
04	SV-OutA-022609	338884	12.80	1640751	15.75	814845	21.57
05	SV-SS-705-1	313335	12.82	1507301	15.76	752075	21.57
06	SV-SS-709-2	324268	12.82	1568878	15.76	785278	21.57
07	SV-InA-709-2	313952	12.80	1523485	15.75	755013	21.57
08							
09						•	
10							,
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

ISI (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside OC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Verified By: Ro Date: 3/6/09

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08	1	- /			1 50	VAL
•	MS8	MS9	MS13	MS16	MAX				MDL _R	MDLR
COMPOUND	MDL _R	MDLR	MDLR	MDL _R	MDLR	µg/m³	ppbV	MW	μg/m³	ppbV
Propene	, K	0.050	0.050	0.050	0.0500	0.050	0.02906	42.08	0.050	0.029
Dichlorodifluoromethane		0.050	0.050	0.050	0.0500	0.050	0.01012	120.90	0.050	0.029
Chloromethane		0.050	0.050	0.050	0.0500	0.050	0.01012	50.49	0.050	0.070
			0.050	0.050	0.0500	0.050	0.00716	170.90	0.050	0.0072
Freon 114 Vinyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.00716	62.50	0.050	0.0072
1.3-Butadiene			0.050		0.0500	· 		-;	0.050	0.020
		0.050	0.050	0.050	0.0500	0.050	0.02261	54.09 94.94	0.050	0.023
3romomethane Chloroethane		0.050 0.050	0.030	0.050	0.0300	0.050	0.01288	64.52	0.030	0.013
Ethanol		0.030	0.072	0.030	0.0720	0.072	0.02730	46.07	0.072	0.027
Acetonitrile			0.153	0.050	0.0500	0.050	0.02979	41.05	0.050	0.074
		0.050 0.056	0.030	0.050	0.0300	0.030	0.02373	56.06	0.030	0.048
Acrolein			0.110	~	0.1100		0.05896	58.08	0.14	0.059
Acetone Frichlorofluoromethane		0.137	0.050	0.137 0.050	0.0500	0.140	0.00890	137.40	0.050	0.0089
		0.050 0.050	0.050	0.050	0.0300	0.030	0.07326	60.10	0.030	0.0089
sopropanol					0.0500				0.050	
Acrylonitrile		0.050	0.050	0.050	ļ	0.050	0.02305	53.06		0.023
1,1-Dichloroethene	<u> </u>	0.050	0.056	0.050	0.0560	0.056	0.01413	96.94	0.056	0.014
ert-Butanol		0.051	0.051	0.051	0.0510	0.051	0.01683	74.12	0.051	0.017
Viethylene Chloride		0.050	0.055	0.050	0.0550	0.055	0.01584	84.94	0.055	0.016
Allyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.01598	76.53	0.050	0.016
Frichlorotrifluoroethane		0.050	0.058	0.050	0.0580	0.058	0,00757	187.38	0.058	0.0076
Carbon Disulfide		0.050	0.050	0.050	0.0500	0.050	0.01606	76.14	0.050	0.016
rans-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
I,1-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
Methyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01387	88.15	0.050	0.014
/inyl Acetate		0.126	0.290	0.220	0.2900	0.290	0.08240	86.09	0.29	0.082
2-Butanone		0.050	0.096	0.057	0.0960	0.096	0.03256	72.11	0.096	0.033
sis-1,2-Dichloroethene		0.050	0.050	0.050	0.0500	0.050	0.01262	96.94	0.050	0.013
Diisopropyl Ether		0.050	0.050	0.052	0.0520	0.052	0.01245	102.18	0.052	0.012
Ethyl Acetate		0.076	0.120	0.054	0.1200	0.120	0.03331	86.11	0.12	0.033
i-Hexane		0.050	0.050	0.050	0.0500	0.050	0.01419	86.17	0.050	0.014
Chloroform		0.050	0.050	0.050	0.0500	0.050	0.01024	119.40	0.050	0.010
<u>etrahydrofuran</u>		0.050	0.085	0.064	0.0850	0.085	0.02883	72.11	0.085	0.029
Ethyl tert-Butyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloroethane		0.050	0.050	0.050	0.0500	0.050	0.01236	98.96	0.050	0.012
,1,1-Trichloroethane		0.050	0.050	0.050	0.0500 -	0.050	0.00917	133.40	0.050	0.0092
sopropyl Acetate		0.053	0.053	0.053	0.0530	0.053	0,01269	102.13	0.053	0.013
-Butanol	1	0.055	0.056	0.055	0.0560	0.056	0.01848	74.12	0.056	0.018
3enzene	1	0.050	0.050	0.050	0.0500	0.050	0.01566	78.11	0.050	0.016
Carbon Tetrachloride		0.050	0.050	0.050	0.0500	0.050	0.00795	153,80	0.050	0.0080
Cyclohexane City City City City City City City City		0.055	0.055	0,055	0.0550	0.055	0.01599	84.16	0.055	0.016
ert-Amyl Methyl Ether		0.050	0.050	0.050	0.0500	0.050	0.01197	102.18	0.050	0.012
,2-Dichloropropane		0.050	0.050	0.050	0.0500	0.050	0.01082	113.00	0.050	0.011
3romodichioromethane		0.050	0.050	0.050	0.0500	0.050	0.00747	163.80	0.050	0.0075
richloroethene		0.050	0.050	0.050	0.0500	0.050	0.00931	131.40	0.050	0.0093
,4-Dioxane	i	0.050	0.060	0.050	0.0600	0.060	0.01666	88.11	0.060	0.017
sooctane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
/lethyl Methacrylate		0.059	0.094	0.054	0.0940	0.094	0.02296	100.12	0.094	0.023
ı-Heptane		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
:is-1,3-Dichloropropene	1	0.050	0.050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
Methyl-2-pentanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.20	0.050	0.012
rans-1,3-Dichloropropene		0.050	0.050	0.050	0.0500	0.050	0.01102	111.00	0.050	0.011
,1,2-Trichloroethane		0.050	0.050	0.050	0.0500	0.050	0.00917	133,40	0.050	0.0092
foluene		0.050	0.050	0.050	0.0500	0.050	0.01327	92.14	0.050	0.013
!-Hexanone		0.050	0.050	0.050	0.0500	0.050	0.01221	100.16	0.050	0.012
)ibromochloromethane		0.050	0.050	0.050	0.0500	0.050	0.00587	208.30	0.050	0.0059
,2-Dibromoethane		.0.050	0.050	0.050	0.0500	0.050	0.00651	187.90	0.050	0.0065
3utyl Acetate		0.050	0.050	0.050	0.0500	0.050	0.01053	116.16	0.050	0.011

COLUMBIA ANALYTICAL SERVICES

MDLs for TO-15 (LOW LEVEL - SCAN)

	?	10/02/08	10/03/08	10/03/08) FII	NAL.
	MS8	MS9	MS13	MS16	MAX		-		MDL _R	MDL _R
COMPOUND	MDLR	MDL _R	MDL _R	MDL _R	MDL _R	μg/m³	Vdqq	MW	μg/m³	ppbV
n-Octane		0.050	0.050	0.050	0.0500	0.050	0.01071	114.23	0.050	0.011
Fetrachloroethene		0.050	0.050	0.050	0.0500	0.050	0.00738	165.80	0.050	0.0074
Chlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.01086	112.60	0.050	0.011
Ethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
n- & p-Xylene		0.053	0.053	0.053	0.0530	0.053	0.01221	106.20	0.053	0.012
3romoform		0.050	0.050	0.053	0.0530	0.053	0.00513	252.80	0.053	0.0051
Styrene		0.050	0.050	0.050	0.0500	0.050	0.01175	104.10	0.050	0.012
>-Xylene		0.050	0.050	0.050	0.0500	0.050	0.01152	106.20	0.050	0.012
n-Nonane		0.050	0.050	0.050	0.0500	0.050	0.00954	128.26	0.050	0.0095
I,1,2,2-Tetrachloroethane		0.050	0.050	0.050	0.0500	0.050	0.00728	167.90	0.050	0.0073
Dumene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
Ipha-Pinene		0.050	0.050	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
n-Propylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
3-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
I-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
3,5-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
ilpha-Methylstyrene		0.050	0.050	0.050	0.0500	0.050	0.01035	118.19	0.050	0.010
?-Ethyltoluene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
,2,4-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01017	120.20	0.050	0.010
1-Decane		0.050	0.050	0.050	0.0500	0.050	0.00860	142.28	0.050	0.0086
Benzyl Chloride		0.050	0.050	0.050	0.0500	0.050	0.00966	126.59	0.050	0.0097
,3-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
,4-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
ec-Butylbenzene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
isopropyltoluene		0.050	0.050	0.050	0.0500	0.050	0.00911	134.22	0.050	0.0091
,2,3-Trimethylbenzene		0.050	0.050	0.050	0.0500	0.050	0.01018	120.19	0.050	0.010
,2-Dichlorobenzene		0.050	0.050	0.050	0.0500	0.050	0.00832	147.00	0.050	0.0083
I-Limonene		0.050	0.029	0.050	0.0500	0.050	0.00898	136.24	0.050	0.0090
,2-Dibromo-3-Chloropropane		0.050	0.043	0.050	0.0500	0.050	0.00517	236.33	0.050	0.0052
i-Undecane		0.050	0.050	0.050	0.0500	0.050	0.00782	156.31	0.050	0.0078
.2,4-Trichlorobenzene		0.083	0.053	. 0.076	0.0830	0.083	0.01119	181.50	0.083	0.011
Japhthalene		0.050	0.050	0.050	0.0500	0.050	0.00954	128.17	0.050	0.0095
i-Dodecane		0.050	0.050	0.050	0.0500	0.050	0.00718	170.34	0.050	0.0072
lexachloro-1,3-butadiene		0.050	0.050	0.050	0.0500	0.050	0.00469	260.80	0.050	0.0047

Sample Data

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-705-1

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-001

Fest Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 2/27/09 Date Received: 3/2/09

Instrument ID: Analyst:

Date Analyzed: 3/4/09

Sampling Media:

Elsa Moctezuma

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Fest Notes:

Container ID:

SC00615

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3.7

Canister Dilution Factor: 1.32

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	. ND	0.052	
75-00-3	Chloroethane	ND	0.66	ND	0.25	
75-35-4	I,1-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	

[√]D = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response		Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.82	130 114	313335	25.000	ng ng	- 0 - 0	.03
56) Chlorobenzene-d5 (IS3)	21.57	82	752075	25.000	ng	0	.00
System Monitoring Compounds	10.00	<i>~</i> =	#1 F0 F0			^	0.0
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000			Reco	very =	101	. 48%	
	19.15	98	1770677	24.902 very =	ng	-0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.49	174	500813	24.727	ng	. 60% 0	.00
Spiked Amount 25.000			Reco	very =	. 98.	.92%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol						Qva	
2) Propene 3) Dichlorodifluoromethane	4.84	42	71666 66894	2.552	ng ng		96 98
4) Chloromethane	5.34	50	1983	0.060	na 119	#	52
5) Freon 114	5.60	135	1723	0.088	ng	# #	57
6) Vinyl Chloride	5.80	62	744 636 0 109 1335326 27761	N.D			
7) 1,3-Butadiene	6.09	54	636	N.D	•		
8) Bromomethane	0.00	94	0	N.D			
9) Chloroethane	6.93	64	109	N.D			0.0
		4 ~	0 = = < 0	0 000			99
11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether	7.58	4 T	41124	0.722	ng		96 99
13) Acetone	1.13 Ω Ω1	50 58	3773758	2.033	ng	#	79
14) Trichlorofluoromethane	8 29	101	35572	1 156	na	TT	97
15) Isopropanol	8.48	45	447955	9.841	na		97
16) Acrylonitrile	8.82	53	4131	0.166	nq		96
17) 1,1-Dichloroethene	9.34	96	115	N.D			
18) tert-Butanol	9.45	59	24520	0.582	ng		89
19) Methylene Chloride	9.55	84	7170	0.343	ng	#	45
20) Allyl Chloride	9.62	41	3488	0.130	ng	#	53
21) Trichlorotrilluoroethane	9.99	151	14340	1.009	ng		94
22) trang 1 2 Dighloroothone	9.94	/ b	206404	Z./88	ng		99
24) 1 1-Dichloroethane	0.00	6.3 0.T	0	N.D	4		
25) Methyl tert-Butyl Ether	11.40	73	59309	1.168	na		89
26) Vinyl Acetate	11.60	86	31239	9.594		#	1
27) 2-Butanone	11.89	72	496701	43.414		#	26
28) cis-1,2-Dichloroethene	12.58		105	N.D			
29) Diisopropyl Ether	12.93	87	6742	0.421		#	1
30) Ethyl Acetate	12.92	61	12084	1.816		#	14
31) n-Hexane	12.94	57	665053	17.516	ng		88 2

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Der	r(Min)
32) Chloroform	13.03	83	8562	0.285 ng		97
34) Tetrahydrofuran	13 58	72		13.851 ng	#	53
35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1 2-Dichloroethane	14 15	62	1313	0 058 na	#	44
38) 1,1,1-Trichloroethane	14.54	97	2948	0 .114 n g 0.093 ng	#	81
39) Isopropyl Acetate	10.41	61	1073	0.093 ng	#	1
40) 1-Butanol	15.09	56	248525	14.021 ng	#	55
41) Benzene	15.24	78	230426	14.021 ng 2.564 ng 0.414 ng 3.864 ng N.D.		99
4.6.) Garahan Matanahali 4 (3)	-1 A	7 7 17	9230	0.414 ng		98
42) Carbon Tetrachioride 43) Cyclohexane 44) tert-Amyl Methyl Ether 45) 1,2-Dichloropropane 46) Bromodichloromethane	15.66	84	123762	3.864 ng	#	64
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	16.43	63				
46) Bromodichloromethane	16.73	83	15609	0.665 ng	#	20
47) Trichloroethene	16.79	130	1176	0.665 ng 0.052 ng N.D.		90
48) 1,4-Dioxane	16.75	88.	528	N.D.		
49) Isooctane	16 86	57	52026	0.546 na	#	1
50) Methyl Methacrylate 51) n-Heptane 52) cis-1,3-Dichloropropene	17.04	100	810	0.546 ng 0.109 ng	#	1
51) n-Heptane	17.22	71	455332	20.032 ng	#	69
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	17.99	58	51120	3.118 ng		83
53) 4-Methyl-2-pentanone 54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	18.78	97	3848	0.221 ng		87
58) Toluene	19.28	91	1119547	12.699 ng		100
59) 2-Hexanone	19.60	43	240620	6.151 ng	#	39
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
59) 2-Hexanone 60) Dibromochloromethane 61) 1,2-Dibromoethane 62) Butyl Acetate	20.40	43	12116	0.258 ng	#	45
63) n-Octane	20.57	57	303366	14.916 ng	#	65
64) Tetrachloroethene	20.76	166	12066	0.580 ng		96
65) Chlorobenzene	21.67	112	47040	0.854 ng	#	43
66) Ethylbenzene	22.10	91	273437	2.882 ng		97
67) m- & p-Xylene	22.31	91	844146	14.916 ng 0.580 ng 0.854 ng 2.882 ng 11.517 ng N.D.		100
68) Bromoform	0.00	173	0	N.D.		
pa) arateme	22.19	104	21251	0.369 119		98
70) o-Xylene		91	226193	3.033 ng		99
71) n-Nonane	23.19	43	432446	9.190 ng		92
72) 1,1,2,2-Tetrachloroethane	22.93	83	7021	0.235 ng	#	54
74) Cumene	23.67	105	55075	0.581 ng		98
75) alpha-Pinene	24.16	93	247146	5.807 ng		96
76) n-Propylbenzene	24.29	91	51701	0.437 ng		93
77) 3-Ethyltoluene	24.41	105	106477	1.232 ng		100
78) 4-Ethyltoluene	24.47	105	46595	0.543 ng		97
79) 1,3,5-Trimethylbenzene	24.56	105	49972	0.683 ng		99 25
	(/ /			

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040912.D

Acq On : 4 Mar 2009 17:11

Operator : EM

Sample : P0900735-001 (1000ml)

Misc : Haley SV-SS-705-1 (-0.8, 3.7)

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Mar 05 07:15:34 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene	24.75	118	1427	N.D.		
81) 2-Ethyltoluene	24.79	105	34578	0.392 ng		98
82) 1,2,4-Trimethylbenzene	25.05	105	98210	1.265 ng		92
83) n-Decane	25.16	57	389202	8.377 ng		77
84) Benzyl Chloride	25.27	91	1899	N.D.		
85) 1,3-Dichlorobenzene	25.25	146	114	N.D.		
86) 1,4-Dichlorobenzene	25.33		1761	0.042 ng		84
87) sec-Butylbenzene	25.39		7830	0.077 ng	#	80
88) p-Isopropyltoluene	25.57		25303	0.261 ng		94
89) 1,2,3-Trimethylbenzene	25.58	105	22561	0.291 ng		97
90) 1,2-Dichlorobenzene	25.33	146	1761	0.044 ng		85
91) d-Limonene	25.74	68	229149	7.150 ng		99
92) 1,2-Dibromo-3-Chloropr	0.00		0	N.D.		
93) n-Undecane	26.66	57	28836	0.610 ng	#	45
94) 1,2,4-Trichlorobenzene	0.00		0	N.D.		
95) Naphthalene	27.94	128	52286	0.549 ng		97
96) n-Dodecane	27.90	57	194034	3.874 ng		74
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98) Cyclohexanone	22.54	55	74757	2.692 ng	#	35
99) tert-Butylbenzene	25.06		12840	0.172 ng	#	56
100) n-Butylbenzene	26.07	91	12546	0.157 ng	#	65

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Em 3/5/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Haley & Aldrich, Inc.

Client Sample ID: SV-InA-705-1 CAS Project ID: P0900735

Client Project ID: Cooper Vision SVI / 70665-014 CAS Sample ID: P0900735-002

Fest Code: E

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 2/27/09 Date Received: 3/2/09

Analyst: Sampling Media:

Elsa Moctezuma

6.0 L Summa Canister

Date Analyzed: 3/4/09

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

nstrument ID:

Container ID:

AC01365

Initial Pressure (psig):

0.3

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.21

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.12	ND	0.047	
75-00-3	Chloroethane	ND	0.61	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.61	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.61	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.61	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev	r(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.80 15.75	130 114	338724 1633065	25.000 25.000	ng ng	-	0.02
	21.57	82	812724	25.000	ng		0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.96	65	554391				
Spiked Amount 25.000	19.15	0.0		very =			
57) Toluene-d8 (SS2) Spiked Amount 25.000	19.15	98	1919519	24.980 ery =			
73) Bromofluorobenzene (SS3)	23.49	174	548550	25.062	ng .	(0.00
Spiked Amount 25.000			Recov	very =	100.	. 248	5
Target Compounds						Qν	ralue
2) Propene	4.84	42	144595	4.764	ng		96
3) Dichlorodifluoromethane	5.01	85	72239 17719 1618 0	1.790	ng	•	98
4) Chloromethane 5) Freon 114	5.34	305	1//19	0.498	ng	#	95 44
6) Vinyl Chloride	0.00	£25	TOTO	0.076	119	#	44
7) 1,3-Butadiene	6.09	54	2870 . 695 . 0	0.109	na	#	82
8) Bromomethane	6.57	94	695	N.D		"	
9) Chloroethane	0.00	64	0	N.D			
10) Ethanol	7.30	45	5408914	320.795	ng		100
11) Acetonitrile	7.56	41	20496	0.493	ng		99
12) Acrolein	7.79	56	15692 251199	1.353	ng		96
13) Acetone	8.00	58	251199	12.749	ng	#	
14) Trichlorofluoromethane	8.28	101	36946 843804	1.110	ng		98
15) Isopropanol	8.50	45	843804	17.148	ng		100 98
17) 1 1-Dichloroethere	0.01	96	2028	0.075	119		90
18) tert-Butanol	9 48	59	6832	0 150	na na	#	75
19) Methylene Chloride	9.53	84	4224	0.187	na na	#	49
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane	9.62	41	2346	0.081	nq	#	53
21) Trichlorotrifluoroethane	9.98	151	6604	0.430	ng .	•	89
22) Carbon Disulfide	9.94	76	4716	0.059	ng	#	75
23) trans-1,2-Dichloroethene	0.00	61	0	N.D	•		
24) 1,1-Dichloroethane	0.00	63	0	N.D	· Karaman		
25) Metnyl tert-Butyl Etner	0.00	/ 3	U	N.D	•		
26) Vinyl Acetate	11.60	86	6291	1.787		#	1
27) 2-Butanone	11.90	72 61	18438	1.491	***	#	35
28) cis-1,2-Dichloroethene 29) Diisopropyl Ether	0.00 12.92	61 87	0 1003	N.D 0.058		#	1
30) Ethyl Acetate	12.91	61	11770	1.637		#	70
31) n-Hexane	12.93	57	121059	2.950		11	89 2
							Com

Em 3/5/09

(Nøt Reviewed)

Quantitation Report

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)
ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Inter	rnal Standards	R.T.	QIon	Response	Conc Units	Dev ((Min)
32)	Chloroform	13.01	83	26320	0.811 ng		98
	Tetrahydrofuran	13.62		721	0.055 ng	#	33
	Ethyl tert-Butyl Ether	0.00		0	N.D.		
	1,2-Dichloroethane	14.14		1443	0.059 ng	#	44
	1,1,1-Trichloroethane	14.54		845	N.D.		
	Isopropyl Acetate	15.23		270	N.D.		
	1-Butanol	15.11		15628		#	65
1	Benzene	15.23		145600	1.495 ng		98
	Carbon Tetrachloride	15.46		9544			97
	Cyclohexane	15.66		37513		#	65
	tert-Amyl Methyl Ether	0.00		0	N.D.	,,	
	1,2-Dichloropropane	0.00		Ō	N.D.		
	Bromodichloromethane	16.70		9737	0.383 ng		93
	Trichloroethene	16.77		602	N.D.		
	1,4-Dioxane	0.00	88	0	N.D.		
	Isooctane	16.86	57	17216		#	56
	Methyl Methacrylate	17.22		8341	_	#	1
	n-Heptane	17.21		31985	1.299 ng	#	67
		0.00	75	0	N.D.	71	0 /
	4-Methyl-2-pentanone	18.02	58	825	0.046 ng	#	44
		0.00		0	N.D.	TT	11
	1,1,2-Trichloroethane	19.16		162296		#	6
	Toluene	19.28	91	168392	1.768 ng	71	99
	2-Hexanone	19.60		14019	0.332 ng	#	60
	Dibromochloromethane	19.82		2353	0.128 ng	TT	99
	1,2-Dibromoethane	0.00	107	0	N.D.		J J
	Butyl Acetate	20.42	43	3029		#	85
	n-Octane	20.56	57	12936	0.589 ng	#	70
	Tetrachloroethene	20.76			0.085 ng	Ħ	99
	Chlorobenzene	21.63		857	N.D.		29
	Ethylbenzene		91	28171			98
	m- & p-Xylene	22.31		65312	0.825 ng		99
	Bromoform	0.00		0	N.D.		ככ
	Styrene	22.79		9660	0.164 ng		98
	o-Xylene	22.73	91	24586	0.305 ng		92
					_		
	n-Nonane	23.18	43	14346	0.282 ng		93
	1,1,2,2-Tetrachloroethane		83	0	N.D.		
	Cumene	23.67	105	4088	N.D.		0.0
	alpha-Pinene	24.15	93	584458	12.708 ng		98
	n-Propylbenzene	24.29	91 10E	8653	0.068 ng		92
	3-Ethyltoluene	24.41	105	15838	0.170 ng		94
	4-Ethyltoluene	24.47		12526			92
19)	1,3,5-Trimethylbenzene	24.55	105	6960	0.088 ng		98 3
		<i>c</i>		I = I			

Data File : 03040909.D

Acq On : 4 Mar 2009 14:35

Operator : EM

Sample : P0900735-002 (1000ml)

Misc : Haley SV-InA-705-1 (0.3, 3.5)
ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 04 15:13:20 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	r(Min)
80) alpha-Methylstyrene	24.75	118	761	N.D.		- 14- 154 4- 4- 4-
81) 2-Ethyltoluene	24.79	105	6805	0.071 ng		92
82) 1,2,4-Trimethylbenzene	25.06	105	23070	0.275 ng		81
83) n-Decane	25.15	57	14365	0.286 ng		68
84) Benzyl Chloride	25.22	91	3421	0.059 ng	#	56
85) 1,3-Dichlorobenzene	25,25	146	1512	N.D.		
86) 1,4-Dichlorobenzene	25.33	146	2986	0.065 ng		96
87) sec-Butylbenzene	25.39	105	1537	N.D.		
88) p-Isopropyltoluene	25.57	119	67280	0.642 ng		95
89) 1,2,3-Trimethylbenzene	25.57	105	8092	0.097 ng	#	15
90) 1,2-Dichlorobenzene	25.75	146	1008	N.D.		
91) d-Limonene	25.75	68	118653	3.426 ng		99
92) 1,2-Dibromo-3-Chloropr	. 0.00	157	0	N.D.		
93) n-Undecane	26.66	57	16925	0.331 ng		75
94) 1,2,4-Trichlorobenzene	0.00	184	0	N.D.		
95) Naphthalene	27.94	128	19416	0.189 ng		97
96) n-Dodecane	27.89	57	15521	0.287 ng	#	63
97) Hexachloro-1,3-butadiene	0.00	225	0	N.D.		
98) Cyclohexanone	22.53	55	4950	0.165 ng	#	74
99) tert-Butylbenzene	25.05	119	3332	0.041 ng	#	56
100) n-Butylbenzene	26.07	91	3255	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Gm 3/5/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Haley & Aldrich, Inc. Client:

Client Sample ID: SV-OutA-022609

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735 CAS Sample ID: P0900735-003

Date Collected: 2/27/09

Fest Code: instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

Date Received: 3/2/09 Date Analyzed: 3/4/09

Analyst: Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Fest Notes:

Container ID:

AC00977

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.44

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.056	
75-00-3	Chloroethane	ND	0.72	ND	0.27	
75-35-4	1,1-Dichloroethene	ND	0.72	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.72	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.72	ND	0.13	

VD = Compound was analyzed for, but not detected above the laboratory reporting limit.

[△]RL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc 1	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12 80	130	338884	25 000	na	- 0	05
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	19.15	98	Recove 1913789 Recove 540198	ery = 24.841	101. ng 99. ng	.80% -0 -36% 0	.02
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane	5.01 5.35 5.60 0.00 6.11	85 50 135 62 54	14571 61562 13335 1325 0 530 119	1.524 0.375 0.062 N.D N.D	ng ng ng	#	lue 1 97 91 44
9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1 1-Dichloroethene	7.43 7.57 7.79 8.01 8.29	45 41 56 58 101	13472 4493 3186 79036 27210	0.799 0.108 0.275 4.010 0.817	ng ng ng ng ng		96 96 100 89 99
16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00 9.53 9.62 9.99 9.95	59. 84 41 151 76 61	0 3757 514 5756 1990	N.D 0.166 N.D 0.374 N.D N.D	ng ng ng	#	50 99
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene 29) Diisopropyl Ether	0.00 0.00 0.00 11.91 0.00	63 73 86 72 61 87	0 0 0 9434 0 0	N.D. N.D. N.D. 0.762 N.D.	ng	#	38
30) Ethyl Acetate 31) n-Hexane	12.93 12.93	61 57	1757 9856	0.244			98 96 3

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev ((Min)
32) Chloroform	13.01	83	1155	N.D.		- man, alaba bina Anah
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	14.14	62	472	N.D.		
38) 1,1,1-Trichloroethane						
39) Isopropyl Acetate	0.00	61	0	N.D.		
40) 1-Butanol	15.16	56	3774	0.196 ng	#	55
				0.508 ng		
42) Carbon Tetrachloride						99
43) Cyclohexane	15.66	84	1853	0.053 ng	#	
44) tert-Amyl Methyl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane						
46) Bromodichloromethane	0.00	83	0	N.D.		
47) Trichloroethene 48) 1,4-Dioxane 49) Isooctane	0.00	88	0	N.D.		
49) Isooctane	16.86	57	13611	0.129 ng		98
50) Methyl Methacrylate	17 21	100	489	0 061 ng	±	1
51) n-Heptane	17.22	71	2890	0.117 ng	#	
51) n-Heptane 52) cis-1,3-Dichloropropene 53) 4-Methyl-2-pentanone	0.00	75	. 0	N.D.		
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	19.16	97	161351	8.509 ng	#	6
58) Toluene 59) 2-Hexanone	19.28	91	112784	1.181 ng		98
59) 2-Hexanone	19.59	43	3854	0.091 ng	#	27
60) Dibromochloromethane	0.00	129	0	N.D.		
61) 1,2-Dibromoethane				N.D.		
62) Butyl Acetate	20.43	43	1970			
63) n-Octane	20.56	57	2220	0.101 ng	#	71
64) Tetrachloroethene	20.75	166		0.069 ng		89
65) Chlorobenzene	21.63	112	111	N.D.	•	
66) Ethylbenzene	22.10	91	13406	0.130 ng		99
67) m- & p-Xylene						
68) Bromoform	0.00	173	0	N.D.		
68) Bromoform 69) Styrene	22.78	104	1873	N.D.		
70) o-Xylene	22.93	91	11798	0.146 ng		100
71) n-Nonane	23.18	43	7074	0.139 ng		92
72) 1,1,2,2-Tetrachloroethane	22.92	83	257	N.D.		
74) Cumene	23.67	105	2190	N.D.		
75) alpha-Pinene	24.15	93	7931	0.172 ng	#	43
76) n-Propylbenzene	24.29	91	4848	N.D.		
77) 3-Ethyltoluene	24.41	105	10259	0.110 ng		97
78) 4-Ethyltoluene	24.47	105	5944	0.064 ng		91
79) 1,3,5-Trimethylbenzene	24.56	105	3922	0.049 ng		83 35
	(C78	-1-1-			

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040910.D

Acq On : 4 Mar 2009 15:21

Operator : EM

Sample : P0900735-003 (1000ml)

Misc : Haley SV-OutA-022609 (-2.1, 3.5)

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 04 16:24:04 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	r(Min)
	alpha-Methylstyrene 2-Ethyltoluene	24.74 24.79		215 4215	N.D. 0.044 ng		92
	1,2,4-Trimethylbenzene	25.05			0.137 ng		89
	n-Decane	25.16	57	17114	_	#	66
84)	Benzyl Chloride	25.25	91	123	N.D.		
85)	1,3-Dichlorobenzene	25.26	146	262	N.D.		
86)	1,4-Dichlorobenzene	25.33	146	1353	N.D.		
87)	sec-Butylbenzene	25.38	105	490	N.D.		
	p-Isopropyltoluene	25.57	119	2010	N.D.		
	1,2,3-Trimethylbenzene	25.57	105	3269	N.D.		
	1,2-Dichlorobenzene	25.33		1353	N.D.		
	d-Limonene	25.75			0.223 ng		97
	1,2-Dibromo-3-Chloropr	0.00			N.D.		
	n-Undecane	26.66		3584		#	43
	1,2,4-Trichlorobenzene	0.00		0	N.D.		
	Naphthalene	27.95		8107	0.079 ng		92
	n-Dodecane		57	7584	0.140 ng		85
	Hexachloro-1,3-butadiene	0.00		0	N.D.		
	Cyclohexanone	22.53		2049		#	77
	tert-Butylbenzene			1333	N.D.		
100)	n-Butylbenzene	26.04	91	3827	0.044 ng	#	47

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Om 3/5/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-SS-709-2

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

Volume(s) Analyzed:

CAS Sample ID: P0900735-004

Γest Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 2/27/09 Date Received: 3/2/09

nstrument ID: Analyst:

Elsa Moctezuma

6.0 L Summa Canister

Date Analyzed: 3/4/09

1.00 Liter(s)

Sampling Media:

Test Notes: Container ID:

SC00196

Initial Pressure (psig):

-1.1

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.34

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
75-00-3	Chloroethane	ND	0.67	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.67	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.67	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.67	ND	0.12	

VD = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040913.D

Acg On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040913.D

Acg On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)

ALS Vial : 14 Sample Multiplier: 1

Ouant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.82	130	324268	25.000	ng	-0	.03
37) 1,4-Difluorobenzene (IS2)	15.76	114	1568878	25.000	ng	-0	.02
37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	21.57	82	785278	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.97	65					.03
Spiked Amount 25.000				ery =			
	19.15	98	1841517				.01
Spiked Amount 25.000			Recov	ery =	: 99.	. 20%	
73) Bromofluorobenzene (SS3)	23.49	174	515640	24.382	ng	0	.00
Spiked Amount 25.000			Recov	ery =	97.	.52%	
Target Compounds						Qva	
2) Propene	4.85	42	102889 65195 47251 1499 238 2027 0	3.541	ng		96
3) Dichlorodifluoromethane	5.01	85	65195	3.541 1.687	ng		99
4) Chloromethane	5.33	50	47251	1.388	ng	#	
5) Freon 114	5.60	135	1499	0.074	ng		70
6) Vinyl Chloride	5.80	62	238	N.D	والمساء		
7) 1,3-Butadiene	6.09	54	2027	0.081	ng	#	73
8) Bromomethane	0.00	94	0	N.D			
9) Chloroethane	0.00	64	0	N.D N.D	فسسسا		
10) Ethanol	0.00 7.30 7.57 7.80 8.01	45	±0/00±0	202.743	110		97
11) Acetonitrile	7.57	41	9427	0.237			100
12) Acrolein	7.80	56	8728				97
13) Acetone	8.01	58	3082133	163.406	ng		96
14) Trichlorofluoromethane	8.29	101	29401	0.923	ng		98
15) Isopropanol	8.50	45	977489	20.751	ng		98
16) Acrylonitrile	8.82	53	939	N.D			
17) 1,1-Dichloroethene	9.34	96	117	N.D	• *		
18) tert-Butanol	9.47	59	24707	0.567	ng		88
19) Methylene Chloride	9.54	84	6445	0,298	ng	#	49
20) Allyl Chloride	9.64	41	4611	0.165	ng	#	53
21) Trichlorotrifluoroethane	9,99	151	7322	0.498	ng		98
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.94	76	142119	1.855	ng		99
23) trans-1,2-Dichloroethene	0.00	61	0	N.D	•		
24) I, I-DICITIOLOGCIIane	11.33	0.5	607	7A • T)	• 4		
25) Methyl tert-Butyl Ether	11.41	73	10042	0.191		**	99
26) Vinyl Acetate	11.61	86	33864	10.050		#	1
27) 2-Butanone	11.90	72	45686	3.859		#	26
28) cis-1,2-Dichloroethene	12.58	61	328	N.D		ti	-
29) Diisopropyl Ether	12.94	87		0.737		#	1
30) Ethyl Acetate	12.92	61	3945	0.573		#	1
31) n-Hexane	12.94	5.7 ^	1221000	31.075	119		88 3

Com 3/5/09

Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)
ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

nte:	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
	Chloroform	13.03	83	5623			97
	Tetrahydrofuran	13.59	72	21133		#	92
	Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
	1,2-Dichloroethane	14.17	62	3271	0.141 ng	#	44
	1,1,1-Trichloroethane		97	6490			90
39)	Isopropyl Acetate	15.24	61.		0.453 ng	#	1
10)	1-Butanol	15.10	56	1265563		#	54
	Benzene	15.24	78	953842	10.196 ng		98
12)	Carbon Tetrachloride	15.47	117	9129	0.393 ng		94
13)	Cyclohexane	15.67	84	579633		#	64
14)	tert-Amyl Methyl Ether	0.00	73	0	N.D.		
15)	1,2-Dichloropropane	16.29	63	841	0.041 ng	#	12
16)	Bromodichloromethane	16.74	83	32652	1.337 ng	#	20
	Trichloroethene	16.78	130	1042	0.044 ng		93
(8	1,4-Dioxane	16.73	88	4527	0.298 ng		96
19)	Isooctane	16.85	57	55193	0.547 ng	#	1
	Methyl Methacrylate	16.94	100	5592	0.724 ng	#	1
	n-Heptane	17.22				#	69
	cis-1,3-Dichloropropene			490	N.D.		
	4-Methyl-2-pentanone	18 00	58	11074			82
	trans-1,3-Dichloropropene	0.00	75	0	N.D.		
	1,1,2-Trichloroethane	18.79	97	10536	0.581 ng	#	75
(88	Toluene	19.29	91	2719024	29.537 ng		100
59)	2-Hexanone	19.60	43		4.031 ng	#	36
	Dibromochloromethane	0.00	129		N.D.		
	1,2-Dibromoethane	0.00	107	0	N.D.		
	Butyl Acetate	20.43	43		0.241 ng	#	1
	n-Octane	20.57	57			#	65
	Tetrachloroethene	20.76	166		0.258 ng	.,	94
	Chlorobenzene	21.67	112	106668	1.856 ng	#	43
	Ethylbenzene		91	240953	2.432 ng		98
	m- & p-Xylene	22.31	91				99
	Bromoform	0.00					
	Styrene				0.331 ng	#	79
(0)	o-Xylene	22.92	91	306508	3.936 ng	* *	100
1)	n-Nonane				6.340 ng		93
2)		22.93	83	3020	0.097 ng	#	1
	Cumene	23.67	105	27792	0.281 ng	14	98
	alpha-Pinene	24.16	93	246455	5.546 ng		95
	n-Propylbenzene	24.29	91	35790	0.290 ng	#	55
	3-Ethyltoluene	24.41	105	86531	0.959 ng	11:	99
	4-Ethyltoluene	24.47	105	36420	0.406 ng		97
	1,3,5-Trimethylbenzene	24.55	105	56773	0.743 ng		97
, 4			111	77 (27) / / 5	11 /4 3 11/1		

Quantitation Report (Not Reviewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040913.D

Acq On : 4 Mar 2009 17:52

Operator : EM

Sample : P0900735-004 (1000ml)

Misc : Haley SV-SS-709-2 (-1.1, 3.5)
ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 05 07:15:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.74	118	1462	N.D.	
81) 2-Ethyltoluene	24.79	105	25967	0.282 ng	96
82) 1,2,4-Trimethylbenzene	25.05	105	95722	1.181 ng	91
83) n-Decane	25.16	57	730870	15.066 ng	76
84) Benzyl Chloride	25.24	91	118	N.D.	
85) 1,3-Dichlorobenzene	25.33	146	1,773	0.041 ng	87
86) 1,4-Dichlorobenzene	25.33		1773	0.040 ng	88
87) sec-Butylbenzene	25.39		6060	0.057 ng	89
88) p-Isopropyltoluene	25.57		17609	0.174 ng	87
89) 1,2,3-Trimethylbenzene	25.57	105	21626	0.267 ng	95
90) 1,2-Dichlorobenzene	25.33		1773	0.043 ng	88
91) d-Limonene	25.74		230608	6.892 ng	99
92) 1,2-Dibromo-3-Chloropr	0.00		0	N.D.	
93) n-Undecane	26.66	57	30934	0.627 ng	80
94) 1,2,4-Trichlorobenzene	0.00		0	N.D.	
95) Naphthalene	27.94		43889	0.441 ng	97
96) n-Dodecane		57	280239	5.359 ng	74
97) Hexachloro-1,3-butadiene	0.00		0	N.D.	
98) Cyclohexanone	22.53		47470	1.637 ng	# 33
99) tert-Butylbenzene			5563	0.072 ng	96
100) n-Butylbenzene	26.08	91	13909	0.166 ng	# 47

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Ean 3/5/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS

Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: SV-InA-709-2

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P0900735-005

l'est Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

6.0 L Summa Canister

Date Collected: 2/27/09 Date Received: 3/2/09

Instrument ID: Analyst:

Elsa Moctezuma

Date Analyzed: 3/4/09 Volume(s) Analyzed:

1.00 Liter(s)

Sampling Media: Fest Notes:

Container ID:

AC00989

Initial Pressure (psig):

-0.8

Final Pressure (psig):

3,5

Canister Dilution Factor: 1.31

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
75-00-3	Chloroethane	ND	0.66	ND	0.25	
75-35-4	1,1-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

ARL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	15.75	114	1523485	25.000	ng	_	0.05 0.02 0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000			Recov	ery =	101	.52%	
57) Toluene-d8 (SS2) Spiked Amount 25.000			Recov	erv =	100	.08%	
73) Bromofluorobenzene (SS3) Spiked Amount 25.000	23.49	1./4	Recov	24.559 ery =	ng 98.	.24%	0.00
Target Compounds	1 0 1	4.0	00000			Qv	alue
4) Chloromethane	4.84 5.00 5.33	85 50	71437 18841	1.909 0.572	ng ng	11	95 98 88
5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene	5.59 5.79 6.08	62 54	1619 132 1072	N.D 0.044	ng	#	56 60
8) Bromomethane9) Chloroethane10) Ethanol	0.00 6.93 7.28	94 64 45	0 107	N.D N.D 234.388			100
11) Acetonitrile12) Acrolein13) Acetone	7.56 7.78 7.99	41 56 58	6563 13897 253527	0.170 1.293 13.883	ng		97 99 96
14) Trichlorofluoromethane	8.49	45	191078	4.190	ng ng		98 99
<pre>16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol</pre>	8.82 9.32 9.47	53 96 59	333 341 8301	N.D N.D 0.197	na	#	81
19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane	8.82 9.32 9.47 9.53 9.61	84 41	333 341 8301 4794 1537 6151 7597	0.229	ng ng	##	51 53 93
22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.94 0.00	76 61	7597 0	0.432 0.102 N.D	ng		93 84
24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate	0.00 0.00 11.52	63 73 86	0 0 2903	N.D N.D 0.890	•	#	1
27) 2-Butanone 28) cis-1,2-Dichloroethene	11.90	72 61	15208 0	1.327 N.D	ng	#	35
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	13.01 12.92 12.93	87 61 57	395 7031 33162	N.D 1.055 0.872	ng		75 90 👍

Quantitation Report (Nøt Kevlewed)

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev	(Min)
32) Chloroform	13.01	83	9398	0.313 ng		97
34) Tetrahydrofuran	13.62	03 72	754	0.062 ng	#	1
35) Ethyl tert-Butyl Ether	0.00		7.34	N.D.	17	
36) 1,2-Dichloroethane	14,13		2382	0.106 ng	_ #	52
38) 1,1,1-Trichloroethane	14.54		823	N.D.		24
39) Isopropyl Acetate	15.09	61	1129	0.097 ng	#	1
40) 1-Butanol	15.10	56	34342	1.917 ng		62
41) Benzene	15.23	78	73856	0.813 ng	17	97
42) Carbon Tetrachloride	15.46		11884	0.527 ng		97
43) Cyclohexane	15.46		11264	0.348 ng		66
44) tert-Amyl Methyl Ether		73	11204	N.D.	Ħ	00
45) 1,2-Dichloropropane	0.00	63	0	N.D.		
46) Bromodichloromethane	16.70	83				89
47) Trichloroethene	16.77		2840 521	0.120 ng N.D.		09
4// IIICITOTOECHETE	0.00					
48) 1,4-Dioxane	0.00	88	0	N.D.		0.6
49) Isooctane	16.86	57	19888	0.203 ng		86
50) Methyl Methacrylate	17.03		235	N.D.	41	c m
51) n-Heptane	17.22	71	10818		#	67
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	18.01	58	3337			96
54) trans-1,3-Dichloropropene	0.00	75	0	N.D.		
55) 1,1,2-Trichloroethane	19.16	97	149872	****		6
58) Toluene		91	805191	9.098 ng		99
59) 2-Hexanone	19.60	43	8162	0.208 ng		68
60) Dibromochloromethane	19.82		771	0.045 ng		86
61) 1,2-Dibromoethane	0.00	107	0	N.D.		
62) Butyl Acetate	20.40	43	28936	0.615 ng		93
63) n-Octane	20.56	57	11422	0.559 ng	#	66
64) Tetrachloroethene	20.76	166	5532	0.265 ng		99
65) Chlorobenzene	21.63	112	1864	N.D.		
66) Ethylbenzene	22.10	91	34555	0.363 ng		97
67) m- & p-Xylene	22.31	91	68084			99
68) Bromoform	0.00		0	N.D.		
69) Styrene	22.78	104	13961	0.255 ng		99
70) o-Xylene	22.92	91	25107	0.335 ng		98
71) n-Nonane	23.18	43	16975	0.359 ng		96
72) 1,1,2,2-Tetrachloroethane	22.92	83	110	N.D.		
74) Cumene	23.67	105	3556	N.D.		
75) alpha-Pinene	24.15	93	136812	3.202 ng		98
76) n-Propylbenzene	24.28	91	9956	0.084 ng		85
77) 3-Ethyltoluene	24.41	105	15636	0.180 ng		100
78) 4-Ethyltoluene	24.47		8682	0.101 ng		91
79) 1,3,5-Trimethylbenzene	24.56		6100	0.083 ng		93 4
			/ /			4
021709.M Thu Mar 05 07:15:46 200	9	3m	3/5/09		Page:	2

Data File : 03040914.D

Acq On : 4 Mar 2009 18:34

Operator : EM

Sample : P0900735-005 (1000ml)

Misc : Haley SV-InA-709-2 (-0.8, 3.5)

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 05 07:15:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene	24.75	118	518	N.D.		
81) 2-Ethyltoluene	24.79	105	6078	0.069 ng		98
82) 1,2,4-Trimethylbenzene	25.05		19660	0.252 ng		90
83) n-Decane		57	24550	0.526 ng		78
84) Benzyl Chloride		91	1603	N.D.		
85) 1,3-Dichlorobenzene	25.33		1580	N.D.		
86) 1,4-Dichlorobenzene	25.33		1580	N.D.		
87) sec-Butylbenzene	25.39		546			
88) p-Isopropyltoluene			126624			93
89) 1,2,3-Trimethylbenzene	25.57	105	9562	0.123 ng	#	1
90) 1,2-Dichlorobenzene	25.33	146	1580	N.D.		
91) d-Limonene	25.75	68	878278	27.299 ng		99
92) 1,2-Dibromo-3-Chloropr		157		N.D.		
93) n-Undecane		57	11083		#	72
94) 1,2,4-Trichlorobenzene	0.00		0	N.D.		
95) Naphthalene	27.94		29926	0.313 ng		99
96) n-Dodecane	27.90	57	12840	0.255 ng	#	56
97) Hexachloro-1,3-butadiene	0.00		0	N.D.		
98) Cyclohexanone		55	9080	0.326 ng	#	79
99) tert-Butylbenzene	25.05		2652	N.D.		
100) n-Butylbenzene	26.13	91	49050	0.610 ng	#	51

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

&m 3/5/09

Standards Data

Method : J:\MS09\Methods\R9021709.M (RTE Integrator)
Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Calibration Files

0.1 =02170913.D 0.2 =02170914.D 0.5 =02170915.D 1.0 =02170916.D 5.0 =02170917.D

25 =02170918.D 50 =02170919.D 100 =02170920.D =

		Compound	0.1	0.2	0.5	1.0	5.0	25	50	100	Avg	%RSD
_												
1)	IR	Bromochloromethan		 .	~ 		ISTD-				_	
2)	T	Propene	3.226	2.336	2.246	1.853	2.056	2.000	2.128	2.076	2.240	18.95
3)	T	Dichlorodifluorom	3.766	3.103	3.574	3.023	2.587	2.694	2.583	2.503	2.979	16.09
4)	T	Chloromethane	3.153	2.723	3.146	2.789	2.349	2.573	2.282	1.985	2.625	15.73
5)	\mathbf{T}	Freon 114	1.921	1.639	1.869	1.631	1.348	1.454	1.369	1.335	1.571	14.83
6)	T	Vinyl Chloride		2.891							2.757	17.06
7)	\mathbf{T}	1,3-Butadiene	2.271	1.805	2.231	1.996	1.738	1.921	1.800	1.756	1.940	10.85
8)	\mathbf{T}	Bromomethane	1.348	1.281	1.578	1.410	1.268	1.392	1.320	1.252	1.356	7.83
9)	\mathbf{T}	Chloroethane	1.128	1.268	1.494	1.350	1.172	1.262	1.222	1.147	1.255	9.62
10)	T	Ethanol		1.297							1.244	8.87
11)	${ m T}$	Acetonitrile	2.889	3.029	3.721	3.268	2.858	3.050	2.915	2.796	3.066	9.88
12)	T	Acrolein	0.762	0.815	0.960	0.878	0.827	0.898	0.864	0.844	0.856	6.90
13)	\mathbf{T}	Acetone	1.777	1.467	1.903	1.625	1.421	1.185	1.139	1.116	1.454	20.50
14)	T	Trichlorofluorome	3.005	2.528	2.917	2.508	2.115	2.268	2.178	2.127	2.456	14.26
15)	T	Isopropanol	3.960	3.803	4.823	4.356	2.843	3.644	2.910	2.714	3.632	20.99
16)	T	Acrylonitrile									1.983	14.48
17)	T	1,1-Dichloroethen	2.055	1.722	1.841	1.524	1.283	1.392	1.337	1.322	1.559	18.19
18)	\mathbf{T}	tert-Butanol		2.943							3.360	9.32
19)	\mathbf{T}	Methylene Chlorid									1.667	18.56
20)	${ m T}$	Allyl Chloride									2.149	10.56
21)	T	Trichlorotrifluor									1.134	11.09
22)	${\mathbb T}$	Carbon Disulfide									5.906	13.77
23)	T	trans-1,2-Dichlor									2.295	10.62
24)	T	1,1-Dichloroethan	2.488	2.477	3.039	2.719	2.466	2.672	2.565	2.490	2.614	7.50
25)	T	Methyl tert-Butyl	3.848	3.791	4.555	4.099	3.781	4.203	4.152	3.982	4.051	6.43
26)	Τ	Vinyl Acetate			0.194	0.207	0.237	0.323	0.313	0.285	0.260	21.12
27)	Τ	2-Butanone									0.913	20.17
28)	${ m T}$	cis-1,2-Dichloroe	2.635	2.252	2.628	2.208	1.932	2.084	2.001	1.944	2.210	12.85
29)	Т	Diisopropyl Ether	1.146	1.180	1.428	1.339	1.177	1.318	1.308	1.327	1.278	7.72

^(#) Out of Range ### Number of calibration levels exceeded format ### R9021709.M Wed Feb 18 07:44:45 2009

By 2/18/09

Method : J:\MS09\Methods\R9021709.M (RTE Integrator)
Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

Response via: Initial Calibration

Calibration Files

0.1 =02170913.D 0.2 =02170914.D 0.5 =02170915.D 1.0 =02170916.D 5.0 =02170917.D

25 =02170918.D 50 =02170919.D 100 =02170920.D =

	Compound	0.1	0.2	0.5	1.0	5.0	25	50	100	Avg	%RSD
30) 7	Ethvl Acetate		0.294	0 530	0.521	0.530	0.619	0 611	0.609	0 531	21.27
31) ['Ethyl Acetate 'n-Hexane	3.680	3.024	3.498	2.966	2.576	2.855	2.825	2.811	3 029	12.30
32)											11.30
33) 9										1.622	0.65
34) T										0.962	9.07
35) 7	<u> </u>										8.40
36)]										1.794	8.10
37) 1	R 1,4-Difluorobenze		 			TSTD:				_	
38) 7									0.407	0.428	8.63
39) 7		0.104	0.157	0.213	0.209	0.195	0.224	0.217	0.215	0.192	21.39
40) 7										0.294	24.18
41) 7	' Benzene	2,049	1.633	1.744	1.444	1.227	1.317	1.269	1.243	1.491	19.77
42) 7	' Carbon Tetrachlor	0.379	0.344	0.418	0.382	0.338	0.374	0.365	0.359	0.370	6.77
43) 7										0.531	12.77
44) 7	tert-Amyl Methyl	0.831	0.809	0.984	0.881	0.790	0.872	0.836	0.835	0.855	7.03
45) 7	' 1,2-Dichloropropa	0.321	0.304	0.381	0.339	0.305	0.334	0.321	0.313	0.327	7.59
46) 7	' Bromodichlorometh	0.401	0.360	0.444	0.400	0.357	0.396	0.383	0.371	0.389	7.26
47) 7	'Trichloroethene	0.489	0.417	0.444	0.380	0.303	0.328	0.317	0.314	0.374	18.63
48) 7								0.261		0.242	14.73
49) 7										1.606	15.64
50) 7	<i>A A</i>								0.137	0.123	16.03
51) T	- Ann									0.377	11.95
52) 7	·									0.494	9.43
53) '										0.272	19.00
54) T	· · · · · · · · · · · · · · · · · · ·									0.435	12.35
55) 1	1,1,2-Trichloroet	0.253	0.255	0.339	0.305	0.273	0.304	0.293	0.288	0.289	9.91
56) I	Chlorobenzene-d5	w				ISTD				_	
57) 8											0.56

^(#) Out of Range ### Number of calibration levels exceeded format ###
R9021709.M Wed Feb 18 07:44:45 2009

: J:\MS09\Methods\R9021709.M (RTE Integrator) Method Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Calibration Files

	Compound	0.1	0.2	0.5	1.0	5.0	25 .	50	100	Avg	%RSD
58) T	Toluene	3.538	3.056	3.409	2.947	2.510	2.752	2.636	2.597	2.931	13.03
59) T	2-Hexanone		0.680	1.313	1.334	1.308	1.543	1.485	1.437	1.300	22.15
60) T	Dibromochlorometh	0.524	0.462	0.652	0.592	0.529	0.601	0.586	0.583	0.566	10.32
61) T	1,2-Dibromoethane	0.528	0.573	0.744	0.678	0.598	0.675	0.654	0.645	0.637	10.70
62) T	Butyl Acetate		0.907	1.480	1.473	1.535	1.826	1.814	1.873	1.558	21.50
63) T	n-Octane	0.794	0.681	0.789	0.684	0.585	0.640	0.621	0.615	0.676	11.62
64) T	Tetrachloroethene									0.691	12.71
65) T	Chlorobenzene	2.228	1.877	2.110	1.822	1.574	1.729	1.661	1.640	1.830	12.72
66) T	Ethylbenzene	3.406	3.080	3.622	3.204	2.815	3.113	3.022	2.969	3.154	8.11
67) T	m- & p-Xylene	2.534	2.358	2.768	2.468	2.169	2.431	2.381	2.384	2.436	7.00
68) T	Bromoform	0.341	0.366	0.510	0.467	0.428	0.505	0.500	0.504	0.453	14.88
69) T	Styrene	1.746	1.638	2.037	1.822	1.674	1.891	1.851	1.856	1.814	7.04
70) T	o-Xylene		2.389							2.479	6.87
71) T	n-Nonane	1.816	1.606	1.821	1.569	1.370	1.502	1.442	1.387	1.564	11.30
72) T	1,1,2,2-Tetrachlo									0.993	10.63
73) S	Bromofluorobenzen	0.674	0.671	0.674	0.668	0.674	0.670	0.679	0.676	0.673	0.54
74) T	Cumene	3.292	2.958	3.562	3.213	2.857	3.171	3.096	3.069	3.152	6.85
75) T	alpha-Pinene	1.423	1.310	1.543	1.401	1.298	1.464	1.435	1.443	1.415	5.66
76) T	n-Propylbenzene									3.929	7.05
77) T	3-Ethyltoluene	2.995	2.505	3.169	2.904	2.621	2.978	2.870	2.949	2.874	7.43
78) T	4-Ethyltoluene		2.669							2.852	6.68
79) T	1,3,5-Trimethylbe	2.453	2.215	2.742	2.451	2.210	2.476	2.444	2.462	2.432	6.89
80) T	alpha-Methylstyre									1.301	8.73
81) T	2-Ethyltoluene		2.734							2.935	6.35
82) T	1,2,4-Trimethylbe									2.581	8.24
83) T			1.477							1.544	6.69
84) T	Benzyl Chloride									1.798	25.52
85) T	1,3-Dichlorobenze									1.374	7.28
86) T	1,4-Dichlorobenze									1.410	7.43
87) T	sec-Butylbenzene	3.444	3.170	3.729	3.434	3.079	3.445	3.379	3.333	3.377	5.82

(#) Out of Range ### Number of calibration levels exceeded format Wed Feb 18 07:44:45 2009

Em 2/18/09

Method : J:\MS09\Methods\R9021709.M (RTE Integrator) Title

: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

Response via: Initial Calibration

Calibration Files

	Compound	0.1	0.2	0.5	1.0	5.0	25	50	100	Avg	%RSD
88) T	p-Isopropyltoluen	3.030	2.884	3.516	3.176	2.897	3.347	3.418	3.507	3.222	8.13
89) T	1,2,3-Trimethylbe	2.497	2.275	2.799	2.527	2.298	2.669	2.730	2.833	2.579	8.35
90) T	1,2-Dichlorobenze	1.362	1.203	1.466	1.280	1.148	1.302	1.341	1.435	1.317	8,21
91) T	d-Limonene	0.982	0.956	1.097	1.019	0.946	1.176	1.180	1.166	1.065	9.50
92) T	1,2-Dibromo-3-Chl	0.266	0.293	0.387	0.392	0.377	0.430	0.437	0.447	0.379	17.55
93) T	n-Undecane	1.507	1.420	1.751	1.588	1.482	1.629	1.612	1.580	1.571	6.48
94) T	1,2,4-Trichlorobe	0.111	0.202	0.264	0.244	0.237	0.257	0.271	0.289	0.234	24.03
95) T	Naphthalene		2.720	3.099	3.027	2.958	3.288	3.485	3.597	3.168	9.72
96) T	n-Dodecane	1.590	1.451	1.664	1.668	1.614	1.744	1.796	1.793	1.665	6.96
97) T	Hexachloro-1,3-bu	0.450	0.439	0.530	0.479	-0.437	0.468	0.488	0.521	0.476	7.40
98) T	Cyclohexanone			0.846	0.867	0.811	1.026	1.003	0.985	0.923	9.99
99) T	tert-Butylbenzene	2.425	2.210	2.734	2.435	2.197	2.536	2.581	2.696	2.477	8.11
100) T	n-Butylbenzene	2.58	1 2.31	5 2.941	1 2.72	2.477	2.783	2.754	2.727	2.662	7.37

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: \$20-02090906 20ng/L Std. ID: \$20-02090905

200ng/L Std. ID: S20-02090903				Working STD	ICAL Concentrations (Primary Source					Source)	e)		
Dilution Factors:		5	50	250	Conc.(ng/L):	点之4.本	22. 4 80	20	91.1.	20	200	200	200
	Source Std.	Primary V	Vorking S	tandards	Injection (L):	0.025	0.05	0.025	0.050	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L	ICAL Points:	<u>0.1ng</u>	0.2ng	<u>0.5ng</u>	<u>1ng</u>	5ng	<u>25ng</u>	50ng	<u>100ng</u>
Propene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Dichlorodifluoromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Chloromethane	1.01	202	20.2	4.04		0.101	0.202	0.505	1.01	5.05	25.3	50.5	101
Freon-114	1.06	. 212	21,2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Vinyl Chloride	1.02	204	20:4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
1,3-Butadiene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
Bromomethane	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Chioroethane	1.04	208	20.8	4.16		0.104	0,208	0.520	1.04	5.20	26.0	52.0	104
Ethanol	5.29	1058	106	21.2		0.529	1.058	2.65	5.29	26.5	132	265	529
Acetonitrile	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Acrolein	1.08	216	21.6	4,32		0.108	0.216	0.540	1,08	5.40	27.0	54.0	108
Acetone	5.31	1062	106	21.2		0.531	1.062	2.66	5.31	26.6	133	266	531
Trichiorofluoromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropanol	1.94	388	38.8	7.76		0.194	0.388	0.970	1.94	9.70	48.5	97.0	194
Acrylonitrile	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,1-Dichloroethene	1.10	220	22.0	4.40		0.100	0.220	0.550	1.10	5.50	27.5	55.0	110
tert-Butanol	2.00	400	40.0	8.00		0.200	0.400	1.00	2.00	10.0	50.0	100	200
Methylene Chloride	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5,30	26.5	53.0	106
Allyl Chloride	1.08	216	21.6	4,32		0.108	0.212	0.540	1.08	5.40	27.0	54.0	108
Trichlorotrifiuoroethane	1.10	220	22.0	4.40		0.110	0.210	0.550	1.10	5.50	27.5	55.0	110
Carbon Disulfide	1.04	208	20.8	4,16		0.170	0.220	0.520	1.04	5.20	26.0	52.0	104
· — — · · · · · · · · · · · · · · · · ·	1.03	206	20.6	4.10		0.103	0.206	0.520	1.03	5.15	25.8	51.5	103
trans-1,2-Dichloroethene 1,1-Dichloroethane	1.03	214	21.4	4.12		0.103	0.206	0.535	1.03	5.35	26,8	53.5	103
		212.	21.2	4.20		0.107							
Methyl tert-Butyl Ether	1.06	1010	101	20.2			0.212 1.010	0.530	1.06	5.30	26.5	53.0	106
Vinyi Acetate	5.05	216				0.505		2.53	5.05	25.3	126	253	505
2-Butanone	1.08		21.6	4,32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
cis-1,2-Dichloroethene	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
Diisopropyl Ether	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Ethyl Acetate	2.08	416	41.6	8.32		0.208	0.416	1.04	2.08	10.4	52.0	104	208
n-Hexane	1.04	208	20.8	4,16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Chloraform	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Tetrahydrofuran	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Ethyl tert-Butyl Ether	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloroethane	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,1,1-Trichloroethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Isopropyl Acetate	2.09	418	41.8	8.36		0.209	0.418	1.05	2.09	10.5	52.3	105	209
1-Butanol	2.16	432	43.2	8.64		0.216	0.432	1.08	2.16	10.8	54.0	108	216
Benzene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Carbon Tetrachloride	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexane	2.12	424	42.4	8.48		0.212	0.424	1.06	2,12	10.6	53.0	106	212
tert-Amyl Methyl Ether	1.03	206	20.6	. 4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,2-Dichloropropane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Bromodichioromethane	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Trichloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
1,4-Dioxane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Isooctane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Methyl Methacrylate	2.13	426	42.6	8.52		0.213	0.426	1.07	2.13	10.7	53.3	107	213
n-Heptane	1.04	208	20.8	4.16		0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
cis-1,3-Dichloropropene	1.00	200	20.0	4:00		0.100	0.200	0.500	1.00	5.00	25.0	50.0	100
4-Methyl-2-pentanone	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
				}									
trans-1,3-Dichloropropene	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,1,2-Trichloroethane	1.04	208	20.8	4.16	HHHHH	0.104	0.208	0.520	1.04	5.20	26.0	52.0	104
Toluene	1.08	216	21.6	4.32	HHHHH	0.108	0.216		1.08	5.40	27.0	54.0	108
2-Hexanone	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27,5	55.0	110
Dibromochloromethane	1.15	230	23.0	4,60	HHHHH	0.115	0.230	0.575	1.15	5.75	28.8	57.5	115
1,2-Dibromoethane	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
n-Butyl Acetate	1,10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
n-Octane	1.05	210	21.0	4.20	MILLINIA	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Tetrachloroethene	1.03	206	20.6	4.12		0.103	0.206	0.515	1.03	5.15	25.8	51.5	103
Chlorobenzene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
Ethylbenzene	1.05	210	21.0	4.20		0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
m-&p-Xylene	2.08	416	41.6	8.32		0.208	0.416	1.04	2.08	10.4	52.0	104	208
			·····		**********								

Primary Source Standards Concentrations (Working & Initial Calibration)

4ng/L Std. ID: S20-02090906 20ng/L Std. ID:

200ng/L Std. ID:		_			Working STD		·····	ICAL C	,				
Dilution Factors:		5	50	250	Conc.(ng/L):	4	4	20	20	20	200	200	200
	Source Std.	Primary V	Vorking S	tandards	Injection (L):	0.025	0.050	0.025	0.05	0.25	0.125	0.25	0.50
Compounds	mg/m³	200ng/L	20ng/L	4ng/L	ICAL Points:	<u>0.1ng</u>	<u>0.2ng</u>	0.5ng	<u>inq</u>	<u>5ng</u>	<u>25ng</u>	<u>50ng</u>	<u>100ng</u>
Bromoform	1.07	214	21.4	4.28		0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
Styrene	1.07	214	21.4	4.28	VIIIIIIII	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
o-Xylene	1.05	210	21.0	4.20	VIIIIIII	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
n-Nonane	1.05	210	21.0	4.20	VIIIIIII	0.105	0.210	0.525	1,05	5.25	26.3	52.5	105
1,1,2,2-Tetrachloroethane	1.08	216	21.6	4.32		0.108	0.216	0.540	1,08	5.40	27.0	54.0	108
Cumene	1.02	204	20.4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
alpha-Pinene	1.10	220	22.0	4.40	VIIIIIIIA	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
n-Propylbenzene	1.02	204	20.4	4.08	VIIIIIIA	0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
3-Ethyltoluene	1.10	220	22.0	4.40	VIIIIIII	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
4-Ethyltoluene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
1,3,5-Trimethylbenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
alpha-Methylstyrene	1.06	212	21.2	4.24	VIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
2-Ethyltoluene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
1,2,4-Trimethylbenzene	1.05	210	21.0	4.20	AHHHHA	0.105	0.210	0.525	1.05	5.25_	26.3	52.5	105
n-Decane	1.08	216	21.6	4.32	VIIIIIII	0.108	0.216	0.540	1,08	5.40	27.0	54.0	108
Benzyl Chloride	1.10	220	22.0	4,40		0.110	0.220	0.550	1.10	5,50	27.5	55.0	110
1,3-Dichlorobenzene	1.07	214	21.4	4.28	VIIIIIIA	0.107	0.214	0.535	1,07	5.35	26.8	53.5	107
1,4-Dichlorobenzene	1.06	212	21.2	4.24	VIIIIIIA	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
sec-Butylbenzene	1.06	212	21.2	4.24	Ullllll	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
p-Isopropyitoluene	1.02	204	20.4	4.08		0.102	0.204	0.510	1.02	5.10	25.5	51.0	102
1,2,3-Trimethylbenzene	1.06	212	21.2	4.24	VIIIIIII	0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
1,2-Dichlorobenzene	1.07	214	21.4	4.28	VIIIIIII	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
d-Limonene	1.06	212	21.2	4.24		0.106	0.212	0.530	1.06	5.30	26.5	53.0	106
chloropropane	1.08	216	21.6	4.32	(11111111111111111111111111111111111111	0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Undecane	1,07	214	21.4	4.28	<i>/////////////////////////////////////</i>	0.107	0.214	0.535	1.07	5.35	26.8	53.5	107
1,2,4-Trichlorobenzene	1.10	220	22.0	4.40		0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Naphthalene	1.01	202	20.2	4.04		0.101	0.202	0.505	1.01	5.05	25.3	50.5	101
n-Dodecane	0.94	188	18.8	3.76		0.094	0.188	0.470	0.940	4.70	23.5	47.0	94.0
					Ullillia								
Hexachloro-1,3-butadiene	1.10	220	22.0	4.40	VIIIIIIIA	0.110	0.220	0.550	1.10	5.50	27.5	55.0	110
Methacrylonitrile	1.05	210	21.0	4.20	VIIIIIII	0.105	0.210	0.525	1.05	5.25	26.3	52.5	105
Cyclohexanone	0.99	198	19.8	3.96		0.099	0.198	0.495	0.990	4.95	24.8	49.5	99.0
tert-Butylbenzene	1.08	216	21.6	4.32		0.108	0.216	0.540	1.08	5.40	27.0	54.0	108
n-Butylbenzene	1.09	218	21.8	4.36		0.109	0.218	0.545	1.09	5.45	27.3	54.5	109
					CHILLINA								
					VIIIIIIII						ì		1

*Enter Information in the Solid Shaded Areas ONLY.

Em 2/18/09

Method Path : J:\MS09\Methods\

Method File : R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009
Response Via : Initial Calibration

#	ID	Conc	ISTD Conc	Path\File
1	0.1	0	25	J:\MS09\Data\2009_02\17\02170913.D
2	0.2	0	25	J:\MS09\Data\2009_02\17\02170914.D
3	0.5	1	25	J:\MS09\Data\2009_02\17\02170915.D
4	1.0	.1	2.5	J:\MS09\Data\2009_02\17\02170916.D
5	5.0	. 5	25	J:\MS09\Data\2009_02\17\02170917.D
6	25	26	- 25	J:\MS09\Data\2009_02\17\02170918.D
7	50	52	25	J:\MS09\Data\2009_02\17\02170919.D
8	100	103	25	J:\MS09\Data\2009_02\17\02170920.D

#	ID	Update Time	Quant Time	Acquisition Time			
			were more were more more more more with more with the work below with below				
1	0.1	Feb 18 07:29 2009	Feb 18 07:14 2009	17 Feb 2009 17:30			
2	0.2	Feb 18 07:29 2009	Feb 18 07:18 2009	17 Feb 2009 18:11			
3	0.5	Feb 18 07:30 2009	Feb 18 07:20 2009	17 Feb 2009 18:53			
4	1.0	Feb 18 07:30 2009	Feb 18 07:21 2009	17 Feb 2009 19:34			
5	5.0	Feb 18 07:30 2009	Feb 18 07:23 2009	17 Feb 2009 20:16			
6	25	Feb 18 07:30 2009	Feb 18 07:24 2009	17 Feb 2009 20:57			
7	50	Feb 18 07:30 2009	Feb 18 07:28 2009	17 Feb 2009 21:38			
8	100	Feb 18 07:31 2009	Feb 18 07:29 2009	17 Feb 2009 22:20			

(9021709.M Wed Feb 18 08:04:48 2009

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

55

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.lng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(1	Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)							
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(Spiked Amount 25.000	13.96	65 0 a	524003 Recove	25.287 ery =	ng 101	-0 .16%	. 03
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3) Spiked Amount 25.000	•		Recove	ery =	98	.36%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane							
21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane 25) Methyl tert-Butyl Ether 26) Vinyl Acetate 27) 2-Butanone 28) cis-1,2-Dichloroethene	9.73 10.00 9.95 11.00 11.30 11.44 0.00 11.97 12.57	41 151 76 61 63 73 86 72 61	2574 1714 10046 3647 3460 5301 0 217 3733	0.103 0.125 0.152 0.138 0.112 0.107 N.D N.D	ng ·	#	78 79 85 87 80
29) Diisopropyl Ether 30) Ethyl Acetate 31) n-Hexane	12.93 12.96 12.93	87 61 57	1579 105 4974	0.143 0.104 N.D 0.141	ng	#	45 84 56

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
32) Chloroform	13.01	83	3913	0.138 ng		91
34) Tetrahydrofuran	13.63	72	1178	0.101 ng	#	66
35) Ethyl tert-Butyl Ether	13.74	87	1943	0.096 ng	#	74
36) 1,2-Dichloroethane	14.13	62	2411	0.112 ng	#	53
38) 1,1,1-Trichloroethane	14.54	97	2848	0.115 ng	#	74
39) Isopropyl Acetate	15.11	61	1371	0.123 ng	#	18
40) 1-Butanol	15.19	56	1344	0.075 ng	#	58
41) Benzene	15.23	78	13261	0.155 ng		98
42) Carbon Tetrachloride	15.46	117	2502	0.116 ng		100
43) Cyclohexane	15.66	84	8819	0.293 ng	#	66
44) tert-Amyl Methyl Ether	16.13	73	5381	0.106 ng	#	1
45) 1,2-Dichloropropane	16.45	63	2121	0.118 ng		82
46) Bromodichloromethane	16.70	83	2643	0.119 ng		95
47) Trichloroethene	16.78	130	3167	0.152 ng		93
48) l,4-Dioxane	16.77	88	946	0.071 ng	#	1
49) Isooctane	16.86	57	13634	0.155 ng		94
50) Methyl Methacrylate	17.06		726	0.106 ng	#	5
51) n-Heptane	17.22	71	2952	0.142 ng	#	66
52) cis-1,3-Dichloropropene	17.96	75	2713	0.096 ng		76
53) 4-Methyl-2-pentanone	18.04	58	251	N.D.		
		75	2460	0.098 ng		63
55) 1,1,2-Trichloroethane	18.90	97	1655	0.098 ng		96
58) Toluene	19.29	91	11738	0.145 ng		99
59) 2-Hexanone	19.66	43	126	N.D.		
60) Dibromochloromethane	19.83	129	1850	0.110 ng		96
61) 1,2-Dibromoethane	20.16	107	1719	0.092 ng		95
62) Butyl Acetate	20.44	43	2175	0.052 ng	#	42
63) n-Octane	20.56	57	2562	0.135 ng	#	70
64) Tetrachloroethene	20.76	166	2593	0.130 ng		95
65) Chlorobenzene	21.63	112	7255	0.136 ng		94
66) Ethylbenzene	22.10	91	10985	0.117 ng	*1	94
67) m- & p-Xylene	22.31	91	16190	0.224 ng	#	28
68) Bromoform	22.43	173	1120	0.082 ng	#	27
69) Styrene	22.78	104	5740	0.105 ng		93
70) o-Xylene	22.93	91	8350	0.113 ng		99
71) n-Nonane	23.19	43	5857	0.135 ng		94
72) 1,1,2,2-Tetrachloroethane 74) Cumene	22.90	83	2815	0.097 ng		94
•	23.67	105	10315	0.113 ng		96
75) alpha-Pinene 76) n-Propylbenzene	24.16	93	4807	0.115 ng		88
76) 11-F1Opythenzene 77) 3-Ethyltoluene	24.29 24.41	91 105	12808	0.110 ng		94
78) 4-Ethyltoluene	24.41	105 105	10120 9796	0.116 ng		99
79) 1,3,5-Trimethylbenzene	24.47	105	8139	0.114 ng 0.109 ng		98
is, i, s, s in the city is enterine	2T.JU	T ())	0133	0.109 119		96 5

Data File : 02170913.D

Acq On : 17 Feb 2009 17:30

Operator : EM

Sample : 0.1ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:14:58 2009

Ouant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.75	118	3833	0.096 ng	92
81) 2-Ethyltoluene	24.80	105	9978	0.113 ng	98
82) 1,2,4-Trimethylbenzene	25.06	105	7882	0.103 ng	97
83) n-Decane	25.16	57	5126	0.116 ng	81
84) Benzyl Chloride	25.23	91	3952	0.069 ng	71
85) 1,3-Dichlorobenzene	25.26	146	4778	0.117 ng	98
86) 1,4-Dichlorobenzene	25.33	146	4796	0.113 ng	100
87) sec-Butylbenzene	25.39	105	11214	0.112 ng	96
88) p-Isopropyltoluene	25.57	119	9495	0.099 ng	98
89) 1,2,3-Trimethylbenzene	25.58	105	8132	0.107 ng	100
90) 1,2-Dichlorobenzene	25.75	146	4476	0.115 ng	92
91) d-Limonene	25.75	68	3197	0.101 ng	89
92) 1,2-Dibromo-3-Chloropr	26.28	157	883	0.077 ng	# 82
93) n-Undecane	26.66	57	4952	0.107 ng	82
94) 1,2,4-Trichlorobenzene	27.80	184	374	0.051 ng	# 1
95) Naphthalene	27.96	128	8285	0.084 ng	# 71
96) n-Dodecane	27.91	57	4590	0.088 ng	86
97) Hexachloro-1,3-butadiene	28.37	225	1521	0.104 ng	85
98) Cyclohexanone	22.55	55	1030	N.D.	
99) tert-Butylbenzene	25.06	119	8047	0.109 ng	99
100) n-Butylbenzene	26.08	91	8641	0.110 ng	# 87

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Ben 2/18/09

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Ouant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.80 15.75	130 114	323936 1562761	25.000 25.000	ng ng	- 0 - 0	.04
56) Chlorobenzene-d5 (IS3)	21.57	82	766032	25.000	ng	0	.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.96	65	523979	25.360	ng	- 0	.03
Spiked Amount 25.000	19.15		Recove	ery =	101	. 44%	
57) Toluene-d8 (SS2) Spiked Amount 25.000	19.15	98	1821287	24.714	ng	- 0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	00 10		Recove	ery =	98	.84%	0.0
73) Bromofluorobenzene (SS3)	23.49	174	513642	24.456 ery =	ng	048	.00
Spiked Amount 25.000				_			
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene 24) 1,1-Dichloroethane						Qva	lue
2) Propene	4.87	42	6235	0.272	ng	~	97
3) Dichlorodifluoromethane	5.03	85	8444	0.252	ng		92
4) Chloromethane	5.36	50	7127	0.241	ng		95
5) Freon 114	5.61	135	4503	0.240	ng		92
6) Vinyl Chloride	5.81	62	7642	0.245	ng		98
7) 1,3-Butadiene	6.10	54	5052	0.238	ng		95
8) Bromomethane	6.59	94	3419	0.212	ng		100
9) Unioroethane	b.95	64 1E	341/ 17700	1 227	ng		8/
11) Acetonitrile	7.43	4:5 4:1	27702	1.227	na		00
12) Acrolein	7.55	56	2243	0.223	na 119		95
13) Acetone	8.02	58	20183	1.382	na na	#	82
14) Trichlorofluoromethane	8.29	101	6880	0.236	na	11	97
15) Isopropanol	8.49	45	19119	0.411	nq		86
16) Acrylonitrile	8.81	53	4531	0.197	ng		93
17) 1,1-Dichloroethene	9.33	96	4910	0.278	ng	#	56
18) tert-Butanol	9.48	59	15255	0.352	ng	#	82
19) Methylene Chloride	9.53	84	5088	0.275	ng	#	48
20) Allyl Chloride	9.73	41	5059	0.202	ng		84
21) Trichlorotrifluoroethane	9.99	12T	3242 16070	0.23/	ng		92
23) trans-1 2-Dichloroethene	9.95 11 AO	/ 0 61	10273 5854	0.247	ng		75 75
24) 1,1-Dichloroethane	11.30	63	6869	0.222	na 119		94
25) Methyl tert-Butyl Ether	11.43	73	10415	0.211	na		74
26) Vinyl Acetate	11.56	86	853	0.292		#	47
27) 2-Butanone	11.93	72	1475	0.141		#	91
28) cis-1,2-Dichloroethene	12.57	61	6362	0.253			78
29) Diisopropyl Ether	12.93	87	3242	0.213		#	43
30) Ethyl Acetate	12.93	61	1586	0.261			77
31) n-Hexane	12.93	57	8151	0.232	ng		98 60

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

: S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	6816	0.241 ng		98
34) Tetrahydrofuran	13.62	72	2392	0.206 ng	#	68
	13.73		4009	0.199 ng	#	65
36) 1,2-Dichloroethane	14.13		4558	0.213 ng		93
	14.53		5039	0.204 ng		89
39) Isopropyl Acetate	15.10		4109	0.370 ng	#	92
40) 1-Butanol	15.16	56	4504	0.253 ng	#	59
41) Benzene	15.23	78	21032	0.247 ng		99
42) Carbon Tetrachloride	15.46	117	4522	0.210 ng		100
43) Cyclohexane	15.65	84	14292	0.477 ng	+	67
44) tert-Amyl Methyl Ether	16.13	73	10421	0.207 ng	#	1
45) 1,2-Dichloropropane	16.44		3997	.0.223 ng		8.8
46) Bromodichloromethane	16.70	83	4725	0.215 ng		99
47) Trichloroethene	16.78	130	5373	0.259 ng		96
48) 1,4-Dioxane	16.75	88	2145	0.162 ng	#	57
49) Isooctane	16.86	57	21421	0.244 ng		98
50) Methyl Methacrylate	17.04	100	2185	0.321 ng	#	66
51) n-Heptane	17.21	71	5007	0.242 ng	#	65
52) cis-1,3-Dichloropropene	17.96	75	5290	0.188 ng		94
53) 4-Methyl-2-pentanone	18.03	58	2227	0.146 ng	#	63
54) trans-1,3-Dichloropropene			4841	0.193 ng		100
55) 1,1,2-Trichloroethane	18.90	97	3315	0.198 ng		94
58) Toluene	19.28	91	20225	0.250 ng		99
59) 2-Hexanone	19.63	43	4587	0.127 ng		82
60) Dibromochloromethane	19.83	129	3255	0.194 ng		91
61) 1,2-Dibromoethane	20.16	107	3722	0.200 ng		98
62) Butyl Acetate	20.43	43	6115	0.148 ng		87
63) n-Octane	20.56	57	4383	0.232 ng	#	70
64) Tetrachloroethene	20.76		4304	0.216 ng		100
65) Chlorobenzene	21.63		12190	0.229 ng		99
66) Ethylbenzene	22.11		19818	0.212 ng		97
	22.33		30052	0.417 ng		98
68) Bromoform	22.43		2399	0.177 ng		94
69) Styrene	22.79		10738			97
70) o-Xylene	22.92	91	15370	0.208 ng		99
71) n-Nonane	23.18	43	10331	0.238 ng		94
	22.89		5495	0.190 ng		95
74) Cumene	23.67		18490	0.203 ng		100
75) alpha-Pinene	24.16	93	8832	0.212 ng		93
76) n-Propylbenzene		91	22876	0.197 ng		96
77) 3-Ethyltoluene	24.41		16886	0.194 ng		95
78) 4-Ethyltoluene	24.47		17993	0.210 ng		98
79) 1,3,5-Trimethylbenzene	24.56	105	14658	0.197 ng		99 6

Data File : 02170914.D

Acq On : 17 Feb 2009 18:11

Operator : EM

Sample : 0.2ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090906 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Feb 18 07:18:29 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.74 24.80	118 105	7644 18092	0.192 ng 0.205 ng	95 99
82) 1,2,4-Trimethylbenzene	25.06	105	14928	0.195 ng	100
83) n-Decane	25.16	57	9776	0.221 ng	82
84) Benzyl Chloride	25.23	91	7986	0.140 ng	92
85) 1,3-Dichlorobenzene	25.25	146	8682	0.213 ng	99
86) 1,4-Dichlorobenzene	25.33	146	8776	0.208 ng	98
87) sec-Butylbenzene	25.39	105	20591	0.206 ng	98
88) p-Isopropyltoluene	25.57	119	18026	0.189 ng	95
89) 1,2,3-Trimethylbenzene	25.58	105	14780	0.195 ng	96
90) 1,2-Dichlorobenzene	25.75	146	7887	0.203 ng	99
91) d-Limonene	25.75	68	6211	0.198 ng	97
92) 1,2-Dibromo-3-Chloropr	26.28	157	1940	0.170 ng	89
93) n-Undecane	26.66	57	9313	0.201 ng	79
94) 1,2,4-Trichlorobenzene	27.80	184	1359	0.185 ng	# 85
95) Naphthalene	27.96	128	16835	0.170 ng	91
96) n-Dodecane	27.90	57	8356	0.160 ng	76
97) Hexachloro-1,3-butadiene	28.36	225	2957	0.202 ng	90
98) Cyclohexanone	22.54	55	2599	0.096 ng	# 79
99) tert-Butylbenzene	25.06	119	14627	0.199 ng	96
100) n-Butylbenzene	26.08	91	15470	0.198 ng	93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170915.D

Acq On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170915.D

: 17 Feb 2009 18:53 Acq On

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

: S20-02030901/S20-02090905 Misc Sample Multiplier: 1 ALS Vial : 4

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.80	130	324440	25.000	ng	-0	.04
37) 1,4-Difluorobenzene (IS2)	15.75	114	1570822	25.000	ng	-0	.02
56) Chlorobenzene-d5 (IS3)	21.57	82	769662	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.95	65	533077	25.761	ng	- 0	.04
Spiked Amount 25.000			Recove	ery =	103	. 04왕	
57) Toluene-d8 (SS2)	19.15	98	1833074	24.757	ng	-0	.01
Spiked Amount 25.000 57) Toluene-d8 (SS2) Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recove	ery =	99	.04%	
/3/ Bromorraoropenzene (333)	23.49	174	210002	24.000	119	Û	.00
Spiked Amount 25.000			Recove	ery =	98	.32%	
Target Compounds						Qva	
2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol	4.86	4.2	15010	0.653	ng		98
3) Dichlorodifluoromethane	5.02	85	24352	0.726	ng		98
4) Chloromethane	5.35	50	20620	0.696	ng		99
5) Freon 114	5.60	135	12855	0.683	ng		98
6) Vinyl Chloride	5.81	62	21252	0.682	ng		94
7) 1,3-Butadiene	6.09	54	15635	0.736	ng		95
8) Bromomethane	6.59	94	10544	0.651	ng		96
9) Chloroethane	6.94	64	10080	0.681	ng		97
10) Ethanol	7.21	45	50633	3.487	ng		93
11) Acetonitrile	7.56	41	25354	0.702	ng		96
12) Acrolein	7.79	56	6726	0.669	ng		96
13) Acetone	8.00	58	65691	4.492	ng		88
14) Trichlorofluoromethane	8.29	101	19871	0.679	ng		97
15) Isopropanol	8.46	45	60718	1.303	ng		92
16) Acrylonitrile	8.80	53	15418	0.671	ng		99
17) 1,1-Dichloroethene	9.33	96	13139	0.743	ng	#	58
18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.44	59	49502	1.141	ng		87
19) Methylene Chloride	9.53	84	12905	0.696	ng	#	51
20) Allyl Chloride	9.72	41	17006	0.679	ng		79
21) Trichlorotrifluoroethane	10.00	151	10007	0.730	ng		98
22) Carbon Disulfide	9.94	76	45527	0.690	ng		98
23) trans-1,2-Dichloroethene	11.00	61	17382	0.659	ng		78
24) I, I DICHIOLOGUNARE	TT.30	0.3	21099	0.682	119		ヲ٥
25) Methyl tert-Butyl Ether	11.41	73	31331	0.634			85
26) Vinyl Acetate	11.55	86	6377	2.180		#	25
27) 2-Butanone	11.91	72	7034	0.670		#	54
28) cis-1,2-Dichloroethene	12.57	61	18585	0.739			74
29) Diisopropyl Ether	12.91	87	9822	0.645		#	50
30) Ethyl Acetate	12.92	61	7157	1.177	-		74
31) n-Hexane	12.93	57	23603	0.672	ng		91 6

Data File : 02170915.D

: 17 Feb 2009 18:53 Acq On

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

: S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	20270	0.715 ng		96
34) Tetrahydrofuran	13.60		7714	0.662 ng	#	
35) Ethyl tert-Butyl Ether				0.621 ng	#	66
36) 1,2-Dichloroethane	14.13		14410	0.673 ng	11	99
38) 1,1,1-Trichloroethane				0.671 ng		92
39) Isopropyl Acetate	15.09	61	14038	1,256 ng	#	85
40) 1-Butanol	15.13		18610	1.042 ng	*"	98
41) Benzene .	15.23		56428	0.658 ng		98
42) Carbon Tetrachloride			13784	0.637 ng		95
43) Cyclohexane	15.66		39790	1.320 ng	#	67
44) tert-Amyl Methyl Ether			31834	0.630 ng	#	1
45) 1,2-Dichloropropane	16.44		12555	0.697 ng	**	94
46) Bromodichloromethane	16.70		14654	0.662 ng		95
47) Trichloroethene	16.77	130	14352	0.688 ng		. 93
48) 1,4-Dioxane	16.74	88	8410	0.633 ng	#	72
49) Isooctane	16.86	57	60402	0.685 ng	**	97
50) Methyl Methacrylate	17.03	100	8351	1.222 ng	#	73
51) n-Heptane	17.21	71	14165	0.681 ng	#	71
52) cis-1,3-Dichloropropene			17329	0.614 ng	••	99
53) 4-Methyl-2-pentanone	18.00		9069	0.593 ng		88
54) trans-1,3-Dichloropropene			16294	0.647 ng		99
55) 1,1,2-Trichloroethane			11089	0.660 ng		99
58) Toluene	19.28			0.697 ng		99
59) 2-Hexanone		43				99
		129		0.685 ng		100
61) 1,2-Dibromoethane	20.15	107		0.649 ng		99
62) Butyl Acetate	20.41	43	25067	0.603 ng		97
63) n-Octane	20.56		12750	0.672 ng	#	64
64) Tetrachloroethene	20.76	166		0.656 ng		99
65) Chlorobenzene	21.63	112		0.644 ng		99
66) Ethylbenzene	22.10	91	58538	0.623 ng		97
67) m- & p-Xylene	22.32	91	88612	1.224 ng		100
68) Bromoform	22.43	173	8393	0.615 ng		94
69) Styrene	22.79	104	33547	0.610 ng		97
70) o-Xylene	22.92	91	45256	0.609 ng		100
71) n-Nonane	23.18	43	29432	0.675 ng		93
72) 1,1,2,2-Tetrachloroethane	22.89	83	18045	0.623 ng		97
74) Cumene	23.67	105	55931	0.610 ng		98
75) alpha-Pinene	24.16	93	26124	0.624 ng		94
76) n-Propylbenzene	24.29	91	70012	0.601 ng		97
77) 3-Ethyltoluene	24.41	105	53659	0.614 ng		94
78) 4-Ethyltoluene	24.47	105	54878	0.637 ng		99
79) 1,3,5-Trimethylbenzene	24.56	105	45577	0.611 ng		98 65

Data File : 02170915.D

Acq On : 17 Feb 2009 18:53

Operator : EM

Sample : 0.5ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:20:17 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.74	118	22293	0.558 ng	93
81) 2-Ethyltoluene	24.79	105	54487	0.614 ng	97
82) 1,2,4-Trimethylbenzene	25.05	105	45111	0.586 ng	96
83) n-Decane	25,16	57	29370	0.661 ng	80
84) Benzyl Chloride	25.23	91	28677	0.500 ng	97
85) 1,3-Dichlorobenzene	25.25	146	25658	0.626 ng	100
86) 1,4-Dichlorobenzene	25.33	146	26350	0.620 ng	98
87) sec-Butylbenzene	25.39	105	60847	0.607 ng	99
88) p-Isopropyltoluene	25.57	119	55208	0.576 ng	98
89) 1,2,3-Trimethylbenzene	25.58	105	45674	0.601 ng	96
90) 1,2-Dichlorobenzene	25.75	146	24138	0.619 ng	99
91) d-Limonene	25.75	68	17906	0.567 ng	97
92) 1,2-Dibromo-3-Chloropr	26.28	157	6434	0.562 ng	91
93) n-Undecane	26.66	57	28838	0.620 ng	76
94) 1,2,4-Trichlorobenzene	27.80	184	4467	0.606 ng	# 89
95) Naphthalene	27.94	128	48185	0.485 ng	94
96) n-Dodecane	27.90	57	24072	0.459 ng	75
97) Hexachloro-1,3-butadie	ne 28.36	225	8967	0.610 ng	94
98) Cyclohexanone	22.53	55	12892	0.474 ng	# 90
99) tert-Butylbenzene	25.06	119	45453	0.614 ng	97
100) n-Butylbenzene	26.08	91	49346	0.628 ng	93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.80	130	323771	25.000	ng	-0.04
37) 1,4-Difluorobenzene (IS2)	15.75	114	1555819	25.000	ng	-0.02
56) Chlorobenzene-d5 (IS3)	21.57	82	767932	25.000	ng	0.00
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4(13.96	65	525261			
Spiked Amount 25.000	20 75	0.0	Recove	ery =	101	.76%
57) Toluene-d8 (SS2)	19.15	98	1818735	24.618	ng	-0.UI
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	22 40	אל" ד	512810	ery =	78	.486 ^ ^ ^
Spiked Amount 25.000	23.49	1 / 1	DOCOL	24.300	119	112
Spined Amount 25.000	•		recove	=T \ \ -	51	. 110
Target Compounds						Qvalue
2) Propene	4.85		24722		ng	97
3) Dichlorodifluoromethane	5.01	85	41109	1.229	ng	98
4) Chloromethane	5.34	50	36483	1.234	ng	98
5) Freon 114	5.60	135	22394	1.193	ng	100
6) Vinyl Chloride	5.80	62	36699	1.180	ng	95
7) 1,3-Butadiene	6.09	54	27918	1.316	ng	96
8) Bromomethane	6.58	94	18814	1.165	ng	94
9) Chloroethane	6.93	64	18188	1.231	ng	94
10) Ethanol	7.20	45	88569	6.112	ng	98
11) Acetonitrile 12) Acrolein	7.56 7.78	41	44440	1.233	119	95 97
13) Acetone	8.00	= 0	12280 111761	1.224 7.658	ng	97 87
14) Trichlorofluoromethane	8.00		34101	1.168		
15) Isopropanol	8.45	45	109455	2.353	na na	93
16) Acrylonitrile	8.79	53	27901			99
17) 1,1-Dichloroethene	9.33	96	21708	1.230		# 60
18) tert-Butanol	9.42	59	89462	2.066		93
19) Methylene Chloride	9.52	84	22128	1.196		# 49
20) Allyl Chloride	9.72	41	30993	1.239	ng	78
21) Trichlorotrifluoroethane	9.98	151	16300	1.191	ng	92
22) Carbon Disulfide	9.93	76	78440	1.191	ng	
23) trans-1,2-Dichloroethene	10.99	61	30712	1.167		78
24) 1,1-Dichloroethane	11.30	63	37672	1.221		98
25) Methyl tert-Butyl Ether	11.40	73	56275	1.140		85
26) Vinyl Acetate	11.55	86	13526	4.634	_	# 19
27) 2-Butanone	11.90	72	13637	1.301		# 43
28) cis-1,2-Dichloroethene	12.57	61	31162	1.241		73
29) Diisopropyl Ether	12.91	87 61	18382	1.210		# 46
30) Ethyl Acetate 31) n-Hexane	12.90 12.93	61 57	14039 39942	2.313 1.139		# 69
SI, II-HEAGHE	12.23	/ د	ココブ性乙	1.139	119	88 6

Data File : 02170916.D

Acq On : 17 Feb 2009 19:34

Operator : EM

Sample : 1.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.01	83	34821	1.231 ng		98
34) Tetrahydrofuran	13.59	72	14078	1.211 ng	#	53
35) Ethyl tert-Butyl Ether	13.72	87	22627	1.125 ng	#	64
36) 1,2-Dichloroethane	14.13		25983	1.217 ng	• '	98
38) 1,1,1-Trichloroethane	14.53	97	28966	1.178 ng		94
39) Isopropyl Acetate	15.08	61	27146	2.452 ng	#	81
40) 1-Butanol	15.11	56	35610	2.013 ng	#	1
41) Benzene	15.23	78	92562	1.090 ng		98
42) Carbon Tetrachloride	15.46	117	24978	1.165 ng		100
43) Cyclohexane	15.66	84	68935	2.310 ng	#	66
44) tert-Amyl Methyl Ether		73	56476	1.128 ng	#	1
45) 1,2-Dichloropropane	16.44	63	22173	1.244 ng	.,	96
46) Bromodichloromethane	16.70	83	26155	1.193 ng		97
47) Trichloroethene	16.77	130	24363	1.179 ng		94
48) 1,4-Dioxane	16.73	88	16284	1.238 ng	#	70
49) Isooctane	16.86	57	103596	1.187 ng		98
50) Methyl Methacrylate	17.03	100	16442	2.428 ng	#	80
51) n-Heptane	17.21	71	24480	1.189 ng	#	70
52) cis-1,3-Dichloropropene	17.95	75	31839	1.139 ng		100
53) 4-Methyl-2-pentanone	18.00	58	18677	1.232 ng		83
54) trans-1,3-Dichloropropene	18.66	75	30085	1.206 ng		97
55) 1,1,2-Trichloroethane	18.90	97.	19743	1.186 ng		97
58) Toluene	19.28	91	97778	1.206 ng		99
59) 2-Hexanone	19.59	43		1.246 ng		99
60) Dibromochloromethane	19.83	129	20896	1.243 ng		99
61) 1,2-Dibromoethane	20.15	107	22090	1.183 ng		98
62) Butyl Acetate	20.40	4.3	49770	1.201 ng		96
63) n-Octane	20.56	57	22049	1.164 ng	#	66
64) Tetrachloroethene	20.76		22167	1.112 ng		96
65) Chlorobenzene	21.63	112	59338	1.113 ng		99
66) Ethylbenzene	22.10	91	103341	1.102 ng		97
67) m- & p-Xylene	22.32	91	157673	2.183 ng		100
68) Bromoform	22.42	173	15361	1.128 ng		96
69) Styrene	22.78	104	59872	1.091 ng		99
70) o-Xylene	22.92	91	81508	1.099 ng		98
71) n-Nonane	23.18	43	50619	1.163 ng		91
72) 1,1,2,2-Tetrachloroethane	22.89	83	33011	1.141 ng		99
74) Cumene	23.67	105	100654	1.101 ng		99
75) alpha-Pinene	24.16	93	47352	1.133 ng		95
76) n-Propylbenzene	24.29	91	125987	1.083 ng		98
77) 3-Ethyltoluene	24.41	105	98125	1.126 ng		100
	24.47	105	97228	1.131 ng		98
79) 1,3,5-Trimethylbenzene	24.55	105	81323	1.092 ng		98 6

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009_02\17\

Data File : 02170916.D

: 17 Feb 2009 19:34 Acq On

Operator : EM

Sample : 1.0ng TO-15 ICAL STD : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:21:46 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene	24.75 24.79	118 105	40973 99361	1.028 ng 1.121 ng	93 98
82) 1,2,4-Trimethylbenzene	25.05	105	81077	1.121 ng	95
83) n-Decane	25.16	57	51906	1.170 ng	77
84) Benzyl Chloride	25.22	91	57051	0.997 ng	100
85) 1,3-Dichlorobenzene	25.25	146	44787	1.095 ng	100
86) 1,4-Dichlorobenzene	25.33	146	46443	1.096 ng	99
87) sec-Butylbenzene	25.39	105	111818	1.117 ng	98
88) p-Isopropyltoluene	25.57	119	99522	1.041 ng	98
89) 1,2,3-Trimethylbenzene	25.57	105	82287	1.085 ng	96
90) 1,2-Dichlorobenzene	25.75	146	42059	1.081 ng	98
91) d-Limonene	25.75	68	33177	1.053 ng	98
92) 1,2-Dibromo-3-Chloropr	26.28	157	13018	1.141 ng	86
93) n-Undecane	26.66	57	52201	1.124 ng	76
94) 1,2,4-Trichlorobenzene	27.80	184	8256	1.122 ng	# 92
95) Naphthalene	27.94	128	93919	0.947 ng	98
96) n-Dodecane	27.90	57	48161	0.921 ng	76
97) Hexachloro-1,3-butadiene	28.36	225	16174	1.103 ng	97
98) Cyclohexanone	22.52	55	26368	0.971 ng	89
99) tert-Butylbenzene	25.05		80781	1.094 ng	99
100) n-Butylbenzene	26.08 	91	91148	1.162 ng	92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.81 15.75 21.57	130 114 82	329926 1586573 785194	25.000 25.000 25.000	ng ng ng	-0.03 -0.02 0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(13.97 19.15	65 98	537457 Recove 1848060 Recove 529420	25.540 ery = 24.465	ng 102. ng 97. ng	-0.03 .16% -0.01 .88%
26) Vinyl Acetate 27) 2-Butanone	8.46	45 53 96 59 84 41 151 76 63 73 86 72 61 87	363899 134916 93114 434296 97284 148148 73042 349581 138748 174140 264494 79129 67884 138953 82357	7.678 5.771	ng ng ng ng ng ng ng ng ng ng ng ng ng n	94

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Inte	rnal Standards	R.T.	QIon	Response	Conc Uni	ts De	ev(Min)
32)	Chloroform	13.02	83	152411	5.289 ng		98
34)	Tetrahydrofuran	13.58		66880			50
	Ethyl tert-Butyl Ether	13.71			5.085 ng		63
	1,2-Dichloroethane	14.13		117981	5.421 ng		98
	1,1,1-Trichloroethane	14.54		132747	5.295 ng		93
39)	Isopropyl Acetate	15.07		130075	11.523 ng		82
	1-Butanol	15.08			10.588 ng		92
	Benzene	15.23		400939	4.631 ng		99
	Carbon Tetrachloride	15.46			5.145 ng		98
	Cyclohexane	15.66		306793.			
	tert-Amyl Methyl Ether	16.11					
	1,2-Dichloropropane	16.44		101567			93
	Bromodichloromethane	16.70					96
	Trichloroethene	16.78		99104			96
	1,4-Dioxane	16.72		77267			70
		16.86					97
	Methyl Methacrylate	17.02		80541			
	n-Heptane	17.21			_		
	cis-1,3-Dichloropropene	17.96					99
	4-Methyl-2-pentanone	17.99		94689			79
	trans-1,3-Dichloropropene						97
	1,1,2-Trichloroethane	18.90		90197			99
	Toluene	19.28					100
	2-Hexanone	19.58					92
	Dibromochloromethane	19.82		95611	5.561 ng		98
	1,2-Dibromoethane	20.15		99504			98
	Butyl Acetate	20.39					96
	n-Octane	20.56		96396			65
	Tetrachloroethene	20.76		95382	~		97
	Chlorobenzene	21.63					100
	Ethylbenzene	22.10		464179	4.842 ng		98
67)	m- & p-Xylene	22.33		708530	9.595 ng		99
	Bromoform	22.42		71984			96
69)	Styrene	22.78					99
70)	o-Xylene	22.92	91	364798	4.812 ng		100
	n-Nonane	23.18	43	225981	5.077 ng		91
	1,1,2,2-Tetrachloroethane				5.482 ng		97
	Cumene	23.67		457607			98
	alpha-Pinene	24.16					95
		24.29					97
		24.41		452705			100
		24.47		449584			97
	1,3,5-Trimethylbenzene						97 7
, 2 /		22.50			1.721 113		- ' 6

Data File : 02170917.D

Acq On : 17 Feb 2009 20:16

Operator : EM

Sample : 5.0ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090905 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:23:26 2009

Quant Method: J:\MS09\Methods\R9021709.Mg .

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene 87) sec-Butylbenzene 88) p-Isopropyltoluene 89) 1,2,3-Trimethylbenzene 90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr.	24.74 24.79 25.05 25.16 25.22 25.25 25.33 25.39 25.57 25.57 25.75 25.75	118 105 105 57 91 146 146 105 119 105 146 68 157	196944 451377 380518 239323 315631 204001 208046 512551 464075 382499 192830 157519 63992	4.831 ng 4.982 ng 4.844 ng 5.277 ng 5.394 ng 4.876 ng 4.801 ng 5.009 ng 4.747 ng 4.933 ng 4.849 ng 4.890 ng 5.483 ng	97 97 95 79 99 100 99 98 96 99 98 88
92) 1,2-Dibromo-3-Chloropr.	26.28	157	63992	5.483 ng	88
93) n-Undecane 94) 1,2,4-Trichlorobenzene	26.66 27.80	57 184	248977 40940	5.243 ng 5.442 ng	76 # 91
95) Naphthalene 96) n-Dodecane	27.94 27.90	128 57	469167 238295	4.628 ng 4.456 ng	99 74
97) Hexachloro-1,3-butadien 98) Cyclohexanone	e 28.37 22.52	225 55	75512 126043	5.034 ng 4.539 ng	97 # 89
99) tert-Butylbenzene 100) n-Butylbenzene	25.06 26.08	119	372667 423938	4.937 ng 5.287 ng	98 94

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170918.D

Acq On : 17 Feb 2009 20:57

Operator : EM

Sample : 25ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170918.D

: 17 Feb 2009 20:57 Acq On

Operator : EM

Sample : 25ng TO-15 ICAL STD

: 520-02030901/S20-02090903 Misc ALS Vial : 4 Sample Multiplier: 1

Ouant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)	12.82	130	322237	25.000	ng	- 0	.02
37) 1,4-Difluorobenzene (IS2)	15.77	114	1549940	25.000	ng	- 0	.01
56) Chlorobenzene-d5 (IS3)	21.57	82	767143	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.98	65	523733	25.482	ng	- 0	.02
Spiked Amount 25.000			Recov	rery =	101	.92%	
57) Toluene-d8 (SS2)	19.16	98	Recov 1799947	24.389	ng	0	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)			Recov	very =	97	.56%	
73) Bromofluorobenzene (SS3)	23.50	174	514104	24.443	ng	0	.00
Spiked Amount 25.000			Recov	ery =	97	. 76%	
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane						Qva	lue
2) Propene	4.83	42	665112	29.123	ng		98
 Dichlorodifluoromethane 	5.00	85	913164	27.426	ng		99
4) Chloromethane	5.33	50	838916	28.514	ng		99
5) Freon 114	5.59	135	496652	26.581	ng		98
6) Vinyl Chloride	5.79	62	837076	27.033	ng .		94
7) 1,3-Butadiene	6.08	54	668625	31.674	ng		97
8) Bromomethane	6.57	94	462826	28.790	ng		96
9) Chloroethane	6.92	64	423028	28.778	ng		95
10) Ethanol	7.27	45	2085348	144.603	ng		100
11) Acetonitrile	7.57	41	1033778	28.824	ng		98
12) Acrolein	7.78	56	312470	31.299	ng		100
13) Acetone	8.00	.58	2031281	139.855	ng	#	83
14) Trichlorofluoromethane	8.29	101	768954	26.474	ng		97
15) Isopropanol	8.49	45	2277833	49.204	ng		97
16) Acrylonitrile	8.81	53	730753	32.006	ng		99
17) 1,1-Dichloroethene	9.32	96	493575	28.109	ng	#	59
18) tert-Butanol	9.45	59	2361481	54.796	ng.		96
19) Methylene Chloride	9.54	84	511347	27.758	ng	#	48
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.73	41	818421	32.883	ng		75
21) Trichlorotrifluoroethane	9.98	151	389157	28.566	ng		96
22) Carbon Disulfide	9.93	76	1858220	28.346	ng		99
23) trans-1,2-Dichloroethene	11.00	61	747760	28.560	ng		77
24) I, I DICHIOLOCCHANE	11.12.	0.0	222201	30.040	119		21
25) Methyl tert-Butyl Ether	11.40	73	1435591				85
26) Vinyl Acetate	11,56	86		180.584		#	6
27) 2-Butanone	11.89	72	370452			#	29
28) cis-1,2-Dichloroethene	12.58	61	733259	29.350			72
29) Diisopropyl Ether	12.91	87	450087	29.762		#	50
30) Ethyl Acetate	12.91	61	414949	68.693		#	72
31) n-Hexane	12.93	57	956894	27.425	ng		88 76

Data File : 02170918.D

Acq On : 17 Feb 2009 20:57 Operator : EM

Sample : 25ng TO-15 ICAL STD

: S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Inte:	rnal Standards	R.T.	QIon	Response	Conc (Units	Dev	(Min)
32)	Chloroform	13.03	83	809239	28.752	ng		98
34)	Tetrahydrofuran	13.58	72	353881	30.587	ng	#	52
35)	Ethyl tert-Butyl Ether	13.72	87	565442	28.254	ng	#	62
36)	1,2-Dichloroethane	14.14		627757	29.533	ng		97
38)	1,1,1-Trichloroethane	14.54	97	713209	29.121	ng		93
39)	Isopropyl Acetate	15.07		725626	65.801		#	82
40)	1-Butanol	15.10	56	1244696	70.635			84
41)	Benzene	15.24	78	2107365	24.918			97
	Carbon Tetrachloride	15.47		610290	28.572			98
	Cyclohexane	15.66	84	1636904	55.054		#	65
	tert-Amyl Methyl Ether			1395427	27.986		#	1
	1,2-Dichloropropane	16.45		544240	30.642			96
	Bromodichloromethane	16.70		645553	29.552			96
	Trichloroethene	16.78		524686	25.497			96
	1,4-Dioxane	16.73	88	435145	33.212		#	70
	Isooctane	16.87	57	2401455	27.618	_		97
	Methyl Methacrylate	17.03	100	459794	68.162		#	81
	n-Heptane	17.22	71	574850	28.018		#	70
	cis-1,3-Dichloropropene			830360	29.826			98
	4-Methyl-2-pentanone	17.99	58	535530	35.473			77
	trans-1,3-Dichloropropene	18.66	75	836086	33.656			96
		18.90		490471	29.585			99
•	Toluene	19.29	91	2279816	28.139			100
•	2-Hexanone	19.59		1302408	36.019			91
		19.83		531295	31.630			96
	1,2-Dibromoethane	20.16		549142	29.450			98
	Butyl Acetate	20.40		1540756	37.204			96
-	n-Octane	20.57	57	516410	27.292		#	65
•	Tetrachloroethene	20.76		510414	25.620			95
	Chlorobenzene	21.63		1406123	26.397			100
	Ethylbenzene	22.10		2512492	26.825			98
		22.33		3878840	53.766			99
-		22.43		415399	30.539			97
	Styrene	22.78		1555030	28.376			99
70)	o-Xylene	22.93	91	1990988	26.878			100
	n-Nonane	23.19	43	1212518	27.883			90
	1,1,2,2-Tetrachloroethane			894435	30.960			98
	Cumene	23.67		2481020	27.163			98
	alpha-Pinene	24.16	93	1235572	29.588			95
	n-Propylbenzene	24.29		3113587	26.804			98
		24.41		2512668	28.868			99
	4-Ethyltoluene	24.47		2419877	28.168			97
79)	1,3,5-Trimethylbenzene	24.56	105	2051460	27.587	ng		977

Quantitation Report (QT Reviewed)

Data Path : J:\MS09\Data\2009 02\17\

Data File : 02170918.D

Acq On : 17 Feb 2009 20:57

Operator : EM

: 25ng TO-15 ICAL STD Sample

: S20-02030901/S20-02090903 Misc ALS Vial : 4 Sample Multiplier: 1

Ouant Time: Feb 18 07:24:49 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 16 12:39:21 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
80) alpha-Methylstyrene	24.75	118	1144722	28.740 ng		98
81) 2-Ethyltoluene	24.80	105	2455902	27.745 ng		97
82) 1,2,4-Trimethylbenzene	25.06		2161951	28.168 ng		95
83) n-Decane	25.16		1295569	29.238 ng		78
84) Benzyl Chloride	25.23		1889408	33.049 ng		99
85) 1,3-Dichlorobenzene	25.26		1108204	27.114 ng		99
86) l,4-Dichlorobenzene	25.33	146	1127572	26.633 ng		98
87) sec-Butylbenzene	25.39	105	2801677	28.025 ng		99
88) p-Isopropyltoluene	25.57	119	2618882	27.419 ng		98
89) 1,2,3-Trimethylbenzene	25.58	105	2170222	28.647 ng		95
90) 1,2-Dichlorobenzene	25.75	146	1070805	27.560 ng		98
91) d-Limonene	25.75	68	956342	30.390 ng		98
92) 1,2-Dibromo-3-Chloropr	26.28	157	356035	31.225 ng	#	85
93) n-Undecane	26.66	57	1339743	28.875 ng		75
94) 1,2,4-Trichlorobenzene	27.80	184	216883	29.507 ng		89
95) Naphthalene	27.94	128	2552932	25.776 ng		100
96) n-Dodecane	27.90	57	1257425	24.066 ng		73
97) Hexachloro-1,3-butadiene	28.37	225	395197	26.967 ng		97
98) Cyclohexanone	22.52		780845	28.779 ng	#	89
99) tert-Butylbenzene	25.07		2100700	28.483 ng	,,	97
100) n-Butylbenzene	26.08	91	2331621	29.760 ng		95
ه بين سے جينے جي جين سم سد سد سے بين بين سد سد سد سد جين بين سد سد سد سد سد سد سد سے بين بين بين ب						

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009 Response via: Initial Calibration

1) Bromochloromethane (IS1) 12.8	83 1 77 1	30	325939	25 000			
	77 1			25.000	ng	-0.	.01
37) 1,4-Difluorobenzene (IS2) 15.		14 1	l570223	25.000	ng	0.	.00
56) Chlorobenzene-d5 (IS3) 21.	58	82	775515	25.000	ng	0 .	.00
ystem Monitoring Compounds							
33) 1,2-Dichloroethane-d4(13.	98	65	528025	25.399	ng	-0.	.01
Spiked Amount 25.000			Recov	ery =	101.	.60%	
57) Toluene-d8 (SS2) 19.3	16	98]	1823114				.00
Spiked Amount 25.000			Recov	ery =	97.	. 76%	
73) Bromofluorobenzene (SS3) 23.	50 1	74	526664	24.770	ng	0	.00
Spiked Amount 25.000			Recov	ery =	99.	.08%	
arget Compounds						Qval	lue
arget Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 4.6 5.6 6.7 6.7 7.7 7.7 7.7 8.8	84	42 1	L428986	61.859	ng		98
3) Dichlorodifluoromethane 5.0	01	85]	L768037	52.498	ng		99
4) Chloromethane 5.3	34	50	1502178	50.478	ng		99
5) Freon 114 5.1	59 1	35	945624	50.036	ng		98
6) Vinyl Chloride 5.	80	62	1576657	50.339	ng		94
7) 1,3-Butadiene 6.	09	54	1267303	59.353	ng		98
8) Bromomethane 6.	59	94	886492	54.517	ng		96
9) Chloroethane 6.	93	64	828155	55.698	ng		94
10) Ethanol 7.	30	45 4	1193464	287.482	nq		99
11) Acetonitrile 7.	60	41 1	1995080	54.995	ng		99
12) Acrolein 7.	79	56	608282	60.238	ng		99
13) Acetone 8.	03	58 3	3951720	268.988	nq	#	80
14) Trichlorofluoromethane 8.3	29 1	01	1490871	50.746	nq		97
15) Isopropanol 8. 16) Acrylonitrile 8.	52	45	3680635				98
16) Acrylonitrile 8.	83	53	1415580				99
7) 1,1-Dichloroethene 9.3	33	96	958370				
.8) tert-Butanol 9.4	48	59 4	1313280	98.949	ng		97
19) Methylene Chloride 9.1	55	84	993341	53.310	na	#	48
20) Allyl Chloride 9.	74	41 1	1590985	63.197	ng		74
21) Trichlorotrifluoroethane 9.	99 1	51	761654	55.274	ng		96
20) Allyl Chloride 9.22) Trichlorotrifluoroethane 9.22) Carbon Disulfide 9.23	94	76 3	3615618	54.528	nq		98
23) trans-1,2-Dichloroethene 11.	01	61	1447795	54.668	ng		76
24) 1,1-Dichloroethane 11.	33	63	1788926	57.581	na		96
25) Methyl tert-Butyl Ether 11.			2868689			t	85
26) Vinyl Acetate 11.			1031036			#	1
27) 2-Butanone 11.				68.462		#	27
28) cis-1,2-Dichloroethene 12.			1421459			#	72
29) Diisopropyl Ether 12.			903608			#	44
30) Ethyl Acetate 12.			828325			#	72
31) n-Hexane 12.			1914895	54.259		**	87#
********************************					:::		87

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

: S20-02030901/S20-02090903 Misc ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev	(Min)
32) Chloroform	13.05	 83	 1576845	55.389	na		98
34) Tetrahydrofuran	13.59		668560	57.129		#	51
35) Ethyl tert-Butyl Ether	13.73		1132633	55.954		#	62
36) 1,2-Dichloroethane	14.15		1207722	56.172		••	97
38) 1,1,1-Trichloroethane	14.55		1387337	55.914			93
39) Isopropyl Acetate	15.09	61	1429702	127.974		#	79
40) 1-Butanol	15.13		2440076	136.682			82
41) Benzene	15.25		4103504	47.894			97
42) Carbon Tetrachloride	15.47		1203146	55.600			98
43) Cyclohexane	15.67	84	3243106	107.667		#	64
44) tert-Amyl Methyl Ether	16.11		2704440	53.538		#	1
45) 1,2-Dichloropropane	16.45	63	1059667	58.891			95
46) Bromodichloromethane	16.71		1263572	57.096			96
47) Trichloroethene	16.79		1025565	49.194			95
48) 1,4-Dioxane	16.73	88	852096	64.195		#	71
49) Isooctane	16.87		4644444	52.725			97
50) Methyl Methacrylate	17.04	100	914667	133.844		#	82
51) n-Heptane	17.22	71	1123115	54.033		#	69
52) cis-1,3-Dichloropropene	17.96	75	1621994	57.508			98
53) 4-Methyl-2-pentanone	18.00	58	1054103	68.920			77
54) trans-1,3-Dichloropropene	18.66	75	1643288	65.295			96
55) 1,1,2-Trichloroethane	18.90	97	958181	57.051			99
58) Toluene	19.30	91	4415873	53.915			99
59) 2-Hexanone	19.59	43	2534245	69.330			90
60) Dibromochloromethane	19.83	129	1044818	61.530			96
61) 1,2-Dibromoethane	20.16	107	1075876	57.075			98
62) Butyl Acetate	20.40	43	3095213	73.932	ng		95
63) n-Octane	20.58	57	1011425	52.876	ng	#	65
64) Tetrachloroethene	20.77	166	1009710	50.135	ng		96
65) Chlorobenzene	21.63	112	2730101	50.699	ng		99
66) Ethylbenzene	22.11	91	4921525	51.977	ng		99
67) m- & p-Xylene	22.34		7680147	105.309	ng		98
68) Bromoform	22.43		830336	60.385			97
69) Styrene	22.79		3072087	55.455	ng		99
70) o-Xylene	22.93	91	3944199	52.672	ng		100
71) n-Nonane	23.19	43	2348806	53.430			89
72) 1,1,2,2-Tetrachloroethane	22.90		1789944	61.289			98
74) Cumene	23.67		4898146	53.047			97
75) alpha-Pinene	24.16		2448457	58.000			95
76) n-Propylbenzene	24.29		6116147	52.083			98
77) 3-Ethyltoluene	24.42		4897062	55.655			97
78) 4-Ethyltoluene	24.47		4897481	56.392			98
79) 1,3,5-Trimethylbenzene	24.56	105	4093249	54.449	ng		97 8

Data File : 02170919.D

Acq On : 17 Feb 2009 21:38

Operator : EM

Sample : 50ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:28:24 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

	alpha-Methylstyrene	24.75						
	O TI to la colo colo colo colo colo colo colo		118	2302499	57.184			97
	2-Ethyltoluene	24.80	105	4897288	54.728			97
	1,2,4-Trimethylbenzene	25.07	105	4474879	57.673			95
83)	n-Decane	25.16	57	2560251	57.156	ng		77
	Benzyl Chloride	25.23	91	3877119	67.085			99
85)	1,3-Dichlorobenzene	25.26	146	2232417	54.030	ng		99
86)	1,4-Dichlorobenzene	25.34	146	2270313	53.045	ng		98
87)	sec-Butylbenzene	25.39	105	5554907	54.966	ng		99
88)	p-Isopropyltoluene	25.58	119	5407603	56.005	ng		98
89)	1,2,3-Trimethylbenzene	25.59	105	4488477	58.609	ng		95
90)	1,2-Dichlorobenzene	25.76	146	2226330	56.681	ng		98
91)	d-Limonene	25.75	68	1939720	60.973	ng		99
92)	1,2-Dibromo-3-Chloropr	26.28	157	732444	63.543	ng	#	85
93) :	n-Undecane	26.66	57	2674544	57.021	ng		74
94)	1,2,4-Trichlorobenzene	27.80	184	462562	62.252	ng	#	89
95)	Naphthalene	27.95	128	5459185	54.524	ng		100
96) :	n-Dodecane	27.90	57	2618828	49.581	ng		72
97)	Hexachloro-1,3-butadiene	28.37	225	832307	56.182	ng		97
98)	Cyclohexanone	22.52	55	1540608	56.168	ng	#	88
99)	tert-Butylbenzene	25.07	119	4324288	57.999	ng		97
100)	n-Butylbenzene	26.08	91	4655248	58.776	ng		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1) 37) 1,4-Difluorobenzene (IS2) 56) Chlorobenzene-d5 (IS3)							
37) 1,4-Difluorobenzene (IS2)	15.78	114	1633143	25.000	ng	0	.00
56) Chlorobenzene-d5 (IS3)	21.57	82	803598	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(14.00	65	546520	25.224	na	0	.00
Spiked Amount 25,000							
57) Toluene-d8 (SS2)	19.16	98	Recov 1894644	$2\overline{4.508}$	nq	0	.00
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.50	174	543428	24.665	ng	0	.00
Spiked Amount 25.000			Recov	ery =	98	.68%	
Target Compounds						Qva	lue
Target Compounds 2) Propene 3) Dichlorodifluoromethane 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) 1,3-Butadiene 8) Bromomethane 9) Chloroethane 10) Ethanol 11) Acetonitrile 12) Acrolein 13) Acetone 14) Trichlorofluoromethane	4.84	42	2905484	120.682	ng		98
3) Dichlorodifluoromethane	5.01	85	3571506	101.755	ng		99
4) Chloromethane	5.35	50	2724653	87.849	ng		100
5) Freon 114	5.60	135	1922197	97.590	ng		98
6) Vinyl Chloride	5.81	62	3132712	95.970	ng		93
7) 1,3-Butadiene	6.09	54	2577041	115.805	ng		98
8) Bromomethane	6.60	94	1752708	103.422	ng		96
9) Chloroethane	6.94	64	1621335	104.629	ng		94
10) Ethanol	7.35	45	8128313	534.671	ng		100
11) Acetonítrile	7.63	41	3989079	105.508	ng		98
12) Acrolein	7.81	56	1238215	117.655	ng		99
13) Acetone	8.05	58	8053361	525.984	ng	#	74
13) Acetone 14) Trichlorofluoromethane 15) Isopropanol	8.30	101	3034171	99.094	ng		97
15) Isopropanol	8.56	45	7155072	146.617	ng		98
16) Acrylonitrile	8.85	53	2868436	119.178	ng		99
17) 1,1-Dichloroethene	9.34	96	1975485	106.723	ng	#	58
18) tert-Butanol	9.50	59	3582301	78.852	ng		95
19) Methylene Chloride	9.57	84	2017852	103.908	ng	#	47.
20) Allyi Chioride	9.75	41	3252415	123.961	ng		73
21) Trichlorotrifluoroethane	10.00	151	1531901	106.669	ng		96
14) Trichforoffuoromethane 15) Isopropanol 16) Acrylonitrile 17) 1,1-Dichloroethene 18) tert-Butanol 19) Methylene Chloride 20) Allyl Chloride 21) Trichlorotrifluoroethane 22) Carbon Disulfide 23) trans-1,2-Dichloroethene	9.95	76	7398269	107.057	ng		98
23) trans-1,2-Dichloroethene	11.02	61	2925575	105.996	ng		75
24/ I, I-DICHIOLOGUIANE	TT.24	02	2070120	TTT.002	119		90
25) Methyl tert-Butyl Ether	11.41			110.749		п	85
26) Vinyl Acetate	11.60			638.645		#	1
27) 2-Butanone	11.93			112.298		#	26
28) cis-1,2-Dichloroethene	12.60	61		109.317		#	72
29) Diisopropyl Ether	12.93	87		119.859	****	#	33
30) Ethyl Acetate	12.94	61		270.510		#	70
31) n-Hexane	12.94	57	3971806	10/.984	119		86 8 ,

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	e Conc	Units	Dev	(Min)
32) Chloroform	13.07	83	3223406	108.641			98
34) Tetrahydrofuran	13.61	72	1353266	110.955		#	51
35) Ethyl tert-Butyl Ether	13.74	87	2392115	113.388		#	60
36) 1,2-Dichloroethane	14.16		2426600	108.293		Τ;	97
38) 1,1,1-Trichloroethane	14.56		2792534	108.212			93
39) Isopropyl Acetate	15.10		2939771	253.004		#	73
40) 1-Butanol	15.16		4822335	259.718		13	82
41) Benzene	15.26		8366925				97
42) Carbon Tetrachloride	15.49		2460358	109.319			99
43) Cyclohexane	15.69		6752129	215.526		#	63
44) tert-Amyl Methyl Ether	16.13		5619641	106.962		#	1
45) 1,2-Dichloropropane	16.46		2148780	114.817		n	95
46) Bromodichloromethane	16.72		2547673	110.684			96
47) Trichloroethene	16.79	130	2112887	97.445			96
48) 1,4-Dioxane	16.75	88	1731130	125.396		#	70
49) Isooctane	16.88	57	9391596	102.507		,,	96
50) Methyl Methacrylate	17.06		1911019	268.867		#	85
51) n-Heptane	17.23		2310305	106.866		#	69
52) cis-1,3-Dichloropropene	17.97		3307418	112.746		**	98
53) 4-Methyl-2-pentanone	18.02		2150959	135.217			76
	18.67		3347137	127.873			95
55) 1,1,2-Trichloroethane	18.91		1954828	111.908			99
58) Toluene	19.30		9015484	106.227			99
59) 2-Hexanone	19.60		5081842	134.166			89
60) Dibromochloromethane	19.84		2154107	122.425			96
61) 1,2-Dibromoethane	20.17	107	2196178	112.435			99
62) Butyl Acetate	20.41		6621845	152.641			93
63) n-Octane	20.58	57	2076490	104.763		#	63
64) Tetrachloroethene	20.78	166	2104464	100.841			96
65) Chlorobenzene	21.64	112	5587961	100.144			99
66) Ethylbenzene	22.11	91	10021891	102.144	ng		100
67) m- & p-Xylene	22.35	91	15939240	210.918	ng		97
68) Bromoform	22.44		1733477	121.658	ng		97
69) Styrene	22.80	104	6383016	111.194	ng		99
70) o-Xylene	22.95	91	8188886	105.535			99
71) n-Nonane	23.19	43	4680402	102.747	ng		87
72) 1,1,2,2-Tetrachloroethane	22.91	83	3747833	123.844			98
74) Cumene	23.68	105	10062966	105.173	ng		96
75) alpha-Pinene	24.16	93	5102600	116.649			95
76) n-Propylbenzene	24.30		12376403	101.710			97
77) 3-Ethyltoluene	24.43		10428285	114.376			97
78) 4-Ethyltoluene	24.48	105	9870024	109.676			95
79) 1,3,5-Trimethylbenzene	24.57	105	8547489	109.727	ng		95 8

Data File : 02170920.D

Acq On : 17 Feb 2009 22:20

Operator : EM

Sample : 100ng TO-15 ICAL STD

Misc : S20-02030901/S20-02090903 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Feb 18 07:29:08 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Mon Feb 16 12:39:21 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIor	n Response	e Conc	Units	Dev(Min)
80) alpha-Methylstyrene	24.76	118	4891450	117.238	ng	97
81) 2-Ethyltoluene	24.81	105	10133371	109.285	ng	95
82) 1,2,4-Trimethylbenzene	25.08	105	9599097	119.392	ng	92
83) n-Decane	25.17			112.101		75
84) Benzyl Chloride	25.24		8157706	136.218	ng	98
85) 1,3-Dichlorobenzene	25.27		4761175	111.206	_	99
86) 1,4-Dichlorobenzene	25.35		4765648	107.456		98
87) sec-Butylbenzene	25.40		11355894	108.440		98
88) p-Isopropyltoluene	25.58	119	11498713	114.928	-	97
89) 1,2,3-Trimethylbenzene	25.59	105	9653853	121.652		92
90) 1,2-Dichlorobenzene	25.76	146	4935058	121.253	-	98
91) d-Limonene	25.76	68	3972406	120.504		96
92) 1,2-Dibromo-3-Chloropr	26.28	157	1551365	129.885		# 83
93) n-Undecane	26.67	57	5435172	111.828		72
94) 1,2,4-Trichlorobenzene	27.81		1021579	132.681		# 88
95) Naphthalene	27.96		11678926	112.568		98
96) n-Dodecane	27.90	57	5416300	98.961		70
97) Hexachloro-I,3-butadiene	28.37	225	1843176	120.069	-	97
98) Cyclohexanone	22.53	55	3133156	110.238	_	# 88
99) tert-Butylbenzene	25.08			121.159		95
100) n-Butylbenzene	26.09	91	9552875	116.397	ng	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

: S20-02030901/S20-02090907 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc	Units	Dev(Min)
1) Bromochloromethane (IS1)	12.82	130	342809	25.000	ng	-0.02
37) 1,4-Difluorobenzene (IS2)	15.77	114	1647148	25.000	ng	-0.01
56) Chlorobenzene-d5 (IS3)	21.58	82	812391	25.000	ng	0.00
System Monitoring Compounds 33) 1,2-Dichloroethane-d4(12 00	~ E	EAGGEO	01 716	~~	0 00
Spiked Amount 25.000	13.50	83		24./10 ery =		
57) Toluene-d8 (SS2)	19.16	9.8	1907296	24 831	na	0.00
Spiked Amount 25.000		" 0	Recov	ery =	99	.32%
73) Bromofluorobenzene (SS3)	23.50	174	549928	25.136	ng	0.00
Spiked Amount 25.000			Recov	ery =	100	.56%
_						_
Target Compounds	4 0 4	4.0				Qvalue
2) Propene	4.84	42	681272	22.178	ng	. 98
3) Dichlorodifluoromethane4) Chloromethane	5.00	8 D	941519 825179	23.04/	ng	99
4) Chloromethane 5) Freon 114	5.59	135	502923	22.320	119	98
			822151	23.332	11G	90
7) 1,3-Butadiene	5.00 6.08	54	776861	29 206	na 113	98
	6.58	94	467022	25.115	na	95
9) Chloroethane	6.92	64	417271	24.241	na	94
10) Ethanol	7.27	45	2058527	120.634	ng	94 100
	7.58	41	1055635	25.111	ng	98
12) Acrolein	7.79	56	332562	28.331	ng .	98
13) Acetone	8.01	58	2143430	107.492	ng	# 82
14) Trichlorofluoromethane	8.29	101	832893	24.734	ng	97
15) Isopropanol	8.49	45	2316374	46.514	ng	98
15) Isopropanol16) Acrylonitrile17) 1,1-Dichloroethene	8.81	53	757752	27.874	ng	100
17) 1,1-Dichloroethene	9.33	96	512105	23.948	ng	# 58
18) tert-Butanol	9.45	59	2462934	53.456	ng	99
19) Methylene Chloride 20) Allyl Chloride	9.54	84	528863	23.14U	ng	# 46 74
21) Trichlorotrifluoroethane	9./3	151	854498	29.000	119	97
22) Carbon Disulfide	9 94	76	1973759	24.372	na na	98
23) trans-1,2-Dichloroethene	11.01	61	790254	25.115	na	76
24) 1,1-Dichloroethane	11.32	63	949484	26.485		96
25) Methyl tert-Butyl Ether	11.40	73		27.810		84
26) Vinyl Acetate	11.56			155.805		# 3
27) 2-Butanone	11.90	72	396075	31.642		# 28
28) cis-1,2-Dichloroethene	12.58			24.998		# 72
29) Diisopropyl Ether	12.92			27.037		# 49
30) Ethyl Acetate	12.92			60.977	_	# 73
31) n-Hexane	12.93	57	1009701	24.308	ng	87 8

&m 2/18/09 Page: 1

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
32) Chloroform	13.04	83	843454	25.695 ng		98
34) Tetrahydrofuran	13.58	72	377102		#	50
35) Ethyl tert-Butyl Ether	13.72	87	595982	26.440 ng	#	61
36) 1,2-Dichloroethane	14.14	62	644017	~		97
38) 1,1,1-Trichloroethane	14.54	97	745418	26.408 ng		93
39) Isopropyl Acetate	15.08	61	752957	59.591 ng	#	80
40) 1-Butanol	15.10	56	1279280	66.048 ng		83
41) Benzene	15.24	78	2186097	22.257 ng		97
42) Carbon Tetrachloride	15.47	117	644072	26.427 ng		99
43) Cyclohexane	15.67	84	1753766	50.105 ng	#	64
44) tert-Amyl Methyl Ether	16.11	73	1474200	26.175 ng	#	1
45) 1,2-Dichloropropane	16.45	63	560496	25.985 ng		95
46) Bromodichloromethane	16.71	83	695330	27.127 ng		96
47) Trichloroethene	16.78	130	547522	22.217 ng		96
48) 1,4-Dioxane	16.73	88	465481	29.198 ng	#	70
49) Isooctane	16.87	57	2483107	23.460 ng		97
50) Methyl Methacrylate	17.03	100	484495	59.751 ng	#	83
51) n-Heptane	17.22	71	613100	24.683 ng	#	69
52) cis-1,3-Dichloropropene	17.96	75		26.521 ng		98
53) 4-Methyl-2-pentanone	17.99	58		32.159 ng		77
54) trans-1,3-Dichloropropene	18.66	75	872941	30.458 ng		96
55) 1,1,2-Trichloroethane	18.90	97	506367	26.601 ng		99
58) Toluene	19.29	91	2363543	24.819 ng		100
59) 2-Hexanone	19.59	43	1380690	32.674 ng		90
60) Dibromochloromethane	19.83	129	573165	31.163 ng		96
61) 1,2-Dibromoethane	20.16	107	573024	27.688 ng		98
62) Butyl Acetate	20.40	43	1620386	31.998 ng	11	95
63) n-Octane	20.57	5,7	536144	24.404 ng	#	64
64) Tetrachloroethene	20.76	166		23.803 ng		96
65) Chlorobenzene	21.63	112		24.433 ng		100
66) Ethylbenzene	22.10	91	2593267	25.303 ng		99 .
67) m- & p-Xylene 68) Bromoform	22.34 22.43	91	4015713	50.721 ng		99
69) Styrene	22.43	104	448112 1622431	30.463 ng 27.520 ng		97 99
70) o-Xylene	22.79	91	2063837	25.620 ng		100
71) n-Nonane	23.19	43	1244560	24.485 ng		89
72) 1,1,2,2-Tetrachloroethane	22.89	83	931332	28.867 ng		98
74) Cumene	23.67		2617749	25.556 ng		97
75) alpha-Pinene	24.16	93	1302952	28.343 ng		95
76) n-Propylbenzene	24.29		3264988	25.574 ng		98
77) 3-Ethyltoluene	24.41		2646274	28.337 ng		99
78) 4-Ethyltoluene	24.47		2599576	28.046 ng		97
79) 1,3,5-Trimethylbenzene	24.56	105	2144343	27.139 ng		97 8
. , ,		-				- ' 🛰 😉

Quantitation keport (QT keviewed)

Data Path : J:\MS09\Data\2009 02\17\

Data File : 02170921.D

Acq On : 17 Feb 2009 23:01

Operator : EM

Sample : 25ng TO-15 ICV STD

Misc : S20-02030901/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 18 07:45:06 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Inte:	rnal Standards	R.T.	QIon	Response	Conc	Units	Dev	(Min)
	alpha-Methylstyrene	24.75	118	1222237	28.918			97
81)	2-Ethyltoluene	24.80	105	2604302	27.304			97
	1,2,4-Trimethylbenzene	25.06		2271732	27.088	ng		95
83)	n-Decane			1356496	27.029	_		77
84)	Benzyl Chloride		91	2100541	35.956	ng		99
85)	•	25.26	146	1166759	26.139			99
86)	1,4-Dichlorobenzene	25.33	146	1183918 ~	25.837	ng		9,9
87)	sec-Butylbenzene	25.39	105	2961387	26.989	ng		99
88)	p-Isopropyltoluene	25.57	119	2784692	26.597	ng		98
89)	1,2,3-Trimethylbenzene	25.58	105	2309387	27.560	ng		95
90)	1,2-Dichlorobenzene	25.75	146	1125923	26.309	ng		98
91)	d-Limonene	25.75	68	1008751	29.140	ng		99
92)	1,2-Dibromo-3-Chloropr	26.28	157	392087	31.859	ng	#	85
93)	n-Undecane	26.66	57	1432023	28.050	ng		74
94)	1,2,4-Trichlorobenzene	27.80	184	245767	32.278	ng		89
95)	Naphthalene	27.94	128	2999961	29.142	ng		100
96)	n-Dodecane	27.90	57	1459101	26.971	ng		72
97)	Hexachloro-1,3-butadiene	28.37	225	437021	28.227	ng		97
98)	Cyclohexanone	22.52	55	813309	27.117	ng	#	88
99)	tert-Butylbenzene	25.06	119	2215162	27.522	ng		97
100)	n-Butylbenzene	26.08	91	2477461	28.635	ng		95

(#) = qualifier out of range (m) = manual integration (+) = signals summed.

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 02170921.D

Acq. Method File: TO15LOW.M

Data File Path: J:\MS09\Data\2009 02\17\

23:01

Name: 25ng TO-15 ICV STD

Operator: EM
Date Acquired: 2/17/09

Misc Info: S20-02030901/S20-02090907

Instrument Name: MS09

	·	Ret.	Amt.	Spike	%	Lower	Upper	* OR
#	Compound	Time	(ng)	Amt.(ng)	Rec.	Limit	Limit	Fail
2)	Propene	4.84	22.2	26.3	84.4	70	130	*
3)	Dichlorodifluoromethane	5.00	23.0	26.3	87.5	70	130	*
4)	Chloromethane	5.33	22.9	25.3	90.5	70	130	*
5)	Freon 114	5.59	23.4	26.8	87.3	70	130	*
6)	Vinyl Chloride	5.80	21.7	25.5	85.1	70	130	*
7)	1,3-Butadiene	6.08	29.2	30.0	97.3	70	130	*
8)	Bromomethane	6.58	25.1	25.8	97.3	70	130	*
9)	Chloroethane	6.92	24.2	25.8	93.8	70	130	*
10)	Ethanol	7.27	120.6	133.0	90.7	70	130	*
11)	Acetonitrile	7.58	25.1	26.3	95.4	70	130	*
12)	Acrolein	7.79	28.3	27.3	103.7	70	130	*
13)	Acetone	8.01	107.5	137.0	78.5	70	130	*
14)	Trichlorofluoromethane	8.29	24.7	26.3	93.9	70	130	* .
15)	Isopropanol	8.49	46.5	48.0	96.9	70	130	*
	Acrylonitrile	8.81	27.9	26.8	104.1	70	130	*
	1,1-Dichloroethene	9.33	23.9	27.5	86.9	70	130	*
18)	tert-Butanol	9.45	53.5	50.5	105.9	70	130	*
19)	Methylene Chloride	9.54	23.1	26.5	87.2	70	130	*
20)	Allyl Chloride	9.73	29.0	27.0	107.4	70	130	*
21)	Trichlorotrifluoroethane	9.99	26.2	27.5	95.3	70	130	. *
22)	Carbon Disulfide	9.94	24.4	26.8	91.0	70	130	*
23)	trans-1,2-Dichloroethene	11.01	25.1	26.8	93.7	70	130	*
24)	1,1-Dichloroethane	11.32	26.5	26.8	98.9	70	130	*
25)	Methyl tert-Butyl Ether	11.40	27.8	27.5	101.1	70	130	*
26)	Vinyl Acetate	11.56	155.8	126.0	123.7	70	130	*
27)	2-Butanone	11.90	31.6	27.5	114.9	70	130	*
28)	cis-1,2-Dichloroethene	12.58	25.0	27.5	90.9	70	130	*
29)	Diisopropyl Ether	12.92	27.0	27.0	100.0	70	130	*
30)	Ethyl Acetate	12.92	61.0	53.5	114.0	70	130	*
31)	n-Hexane	12.93	24.3	27.3	89.0	70	130	*
32)	Chloroform	13.04	25.7	26.8	95.9	70	130	*
34)	Tetrahydrofuran	13.58	28.6	27.5	104.0	70	130	*
35)	Ethyl tert-Butyl Ether	13.72	26.4	26.0	101.5	70	130	*
36)	1,2-Dichloroethane	14.14	26.2	26.8	97.8	70	130	*
38)	1,1,1-Trichloroethane	14.54	26.4	26.5	99.6	70	130	*
39)	Isopropyl Acetate	15.08	59.6	52.8	112.9	70	130	*
40)	1-Butanol	15.10	66.0	54.8	120.4	70	130	*
	Benzene	15.24	22.3	26.8	83.2	70	130	*
42)	Carbon Tetrachloride	15.47	26.4	27.0	97.8	70	130	*
43)	Cyclohexane	15.67	50.1	54.5	91.9	70	130	*
44)	tert-Amyl Methyl Ether	16.11	26.2	26.3	99.6	70	130	*
45)	1,2-Dichloropropane	16.45	26.0	26.5	98.1	70	130	*
	Bromodichloromethane	16.71	27.1	27.3	99.3	70	130	*
47)	Trichloroethene	16.78	22.2	26.5	83.8	70	130	*
	1,4-Dioxane	16.73	29.2	27.0	108.1	70	130	*
	Isooctane	16.87	23.5	26.5	88.7	70	130	*
50)	Methyl Methacrylate	17.03	59.8	53.5	111.8	70	130	*

Em 2/18/09 2/18/09 7:48 AM

INITIAL CALIBRATION VERIFICATION CHECK SHEET

Data File Name: 02170921.D

Acq. Method File: TO15LOW.M

Data File Path: J:\MS09\Data\2009_02\17\

Name: 25ng TO-15 ICV STD

Operator: EM

Misc Info: S20-02030901/S20-02090907

Date Acquired: 2/17/09 23:01 Instrument Name: MS09

## Compound Time (ng) Amt.(ng) Rec. Limit Fall 51) n-Heptane 17.22 24.7 72.0 91.5 70 130 * 52) cis-1,3-Dichloropropene 17.96 26.5 25.0 106.0 70 130 * 53) 4-Methyl-2-pentanone 18.66 30.5 27.5 111.7 70 130 * 55) 1,1,2-Trichloroethane 18.90 26.6 26.3 101.1 70 130 * 58) Toluene 19.59 32.7 27.5 118.9 70 130 * 58) Diusene 19.59 32.7 27.5 118.9 70 130 * 58) Diusene 19.59 32.7 27.5 118.9 70 130 * 61) Dibromochlaromethane 19.59 32.7 28.8 103.4 70 130 * 62) Buyl Acetate 20.40 32.0 27.5 118.4 70 130 * <th></th> <th></th> <th>Ret.</th> <th>Amt.</th> <th>Spike</th> <th>0/6</th> <th>Lower</th> <th>Upper</th> <th>* OR</th>			Ret.	Amt.	Spike	0/6	Lower	Upper	* OR
S2 cis-1,3-Dichloropropene 17.96 26.5 25.0 106.0 70 130 * 53 4-Methyl-2-pentanone 17.99 32.2 27.5 117.1 70 130 * 54 trans-1,3-Dichloropropene 18.66 30.5 27.5 110.9 70 130 * 55 1,1,2-Trichloroethane 18.90 26.6 26.3 101.1 70 130 * 55 1,1,2-Trichloroethane 19.59 22.4 27.5 118.9 70 130 * 55 2.14exanone 19.59 32.7 27.5 118.9 70 130 * 55 2.14exanone 19.59 32.7 27.5 118.9 70 130 * 55 2.14exanone 19.59 32.7 27.5 118.9 70 130 * 55 2.14exanone 20.16 27.7 28.8 108.3 70 130 * 56 2.14exanone 20.16 27.7 28.8 103.4 70 130 * 56 2.14exanone 20.16 27.7 28.8 103.4 70 130 * 56 2.14exanone 20.67 22.4 26.8 91.0 70 130 * 56 2.14exanone 20.67 22.4 26.8 91.0 70 130 * 56 2.14exanone 21.63 24.4 26.8 91.0 70 130 * 56 2.14exanone 22.10 25.3 26.5 95.5 70 130 * 56 2.14exanone 22.34 50.7 52.5 96.6 70 130 * 56 2.14exanone 22.34 50.7 52.5 96.6 70 130 * 56 2.14exanone 22.24 30.5 26.0 117.3 70 130 * 56 2.14exanone 22.24 30.5 26.0 117.3 70 130 * 56 2.14exanone 22.24 30.5 26.0 117.3 70 130 * 56 2.14exanone 22.29 27.5 27.0 101.9 70 130 * 56 2.14exanone 22.29 22.56 26.5 96.6 70 130 * 56 2.14exanone 22.29 22.56 26.5 92.5 70 130 * 56 2.14exanone 22.29 22.56 26.5 92.5 70 130 * 57 2.14exanone 22.29 22.56 22.58 99.2 70 130 * 57 2.14exanone 22.49 22.56 22.58 99.2 70 130 * 57 2.14exanone 22.49 22.56 22.58 99.2 70 130 * 57 2.14exanone 22.45 22.50 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.0 27.5 27.5 27.0 27.5 27.0	#	Compound	<u>Time</u>	<u>(ng)</u>	Amt.(ng)	Rec.	<u>Limit</u>	<u>Limit</u>	<u>Fail</u>
53) A-Methyl-2-pentanone 17.99 32.2 27.5 117.1 70 130 * 54) trans-1,3-Dichloropropone 18.66 30.5 27.5 110.9 70 130 * 58) Toluene 19.29 24.8 27.0 91.9 70 130 * 59) Z-Hexanone 19.59 32.7 27.5 118.9 70 130 * 60) Dibromochloromethane 20.16 27.7 27.5 118.9 70 130 * 61) 1,2-Dibromochlane 20.16 27.7 22.5 116.4 70 130 * 62) Butyl Acetate 20.40 32.0 27.5 116.4 70 130 * 63) n-Octane 20.76 23.8 25.8 91.0 70 130 * 64) Tetrachioroethene 21.63 24.4 26.8 91.0 70 130 * 65) Chlorobenzene 22.10 25.3 26.5 96.6 70 130 * <td>51)</td> <td>n-Heptane</td> <td>17.22</td> <td>24.7</td> <td>27.0</td> <td>91.5</td> <td>70</td> <td>130</td> <td>*</td>	51)	n-Heptane	17.22	24.7	27.0	91.5	70	130	*
54) trans-1,3-Dichloropropene 18,66 30,5 27,5 110,9 70 130 * 55) 1,1,2-Trichloroethane 19,29 24,8 27,0 91,9 70 130 * 59) 2-Hexanone 19,59 32,7 27,5 118,9 70 130 * 60) Dibromoethane 19,59 32,7 27,5 118,9 70 130 * 61) 1,2-Dibromoethane 20,16 27,7 28,8 103,4 70 130 * 62) Butyl Acetate 20,40 32,0 27,5 116,4 70 130 * 64) Tetrachloroethene 20,76 23,8 28,8 91,0 70 130 * 65) Chlorobenzene 21,63 24,4 28,8 91,0 70 130 * 66) Ethylbenzene 22,10 25,3 26,5 95,5 70 130 * 67) m. & p.Xylene 22,34 50,5 26,6 96,6 70 130 *<	52)	cis-1,3-Dichloropropene	17.96	26.5	25.0	106.0	70	130	*
55) 1,1,2-Trichloroethane 18,90 26,6 26,3 101.1 70 130 * 58) Toluene 19,29 24,8 27.0 91,9 70 130 * 59) 2-Hexanone 19,59 32,7 27.5 118,9 70 130 * 60) Dibromochloromethane 19,63 31,2 28.8 103,4 70 130 * 62) Butyl Acetate 20,40 32,0 27.5 116,4 70 130 * 63) n-Octane 20,76 23,8 25,8 92,2 70 130 * 65) Chlorobenzene 21,63 24,4 26,8 91,0 70 130 * 65) Chlorobenzene 22,10 25,3 26,5 95,6 70 130 * 65) Chlorobenzene 22,10 25,3 26,0 117,3 70 130 * 69) Strene	53)	4-Methyl-2-pentanone	17.99	32.2	27.5	117.1	70	130	*
58) Toluene 19.29 24.8 27.0 91.9 70 130 * 59) 2-Hexanone 19.59 32.7 27.5 118.9 70 130 * 60) Dibromochloromethane 19.83 31.2 28.8 108.3 70 130 * 61) 1,2-Dibromochlane 20.40 32.0 27.5 116.4 70 130 * 63) n-Octane 20.57 24.4 26.8 91.0 70 130 * 64) Tetrachloroethene 20.66 23.8 25.8 99.2 70 130 * 66) Chloroberzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.13 25.3 26.5 95.5 70 130 * 67) m. & pXylene 22.43 30.5 26.0 117.3 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 *	54)	trans-1,3-Dichloropropene	18.66	30.5	27.5	110.9	70	130	*
59) 2-Hexanone 19.59 32.7 27.5 118.9 70 130 * 60) Dibromochioromethane 19.83 31.2 28.8 108.3 70 130 * 62) Butyl Acetate 20.40 32.0 27.5 116.4 70 130 * 63) n-Octane 20.57 24.4 26.8 91.0 70 130 * 64) Tetrachioroethene 20.76 23.8 28.8 91.0 70 130 * 65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 67) m- & p-Xylene 22.43 30.5 26.0 117.3 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 *	55)	1,1,2-Trichloroethane	18.90	26.6	26.3	101.1	70	130	*
60) Dibromochloromethane 19.83 31.2 28.8 108.3 70 130 * 61) 1,2-Dibromocthane 20.16 27.7 26.8 103.4 70 130 * 62) Butyl Acetate 20.40 32.0 27.5 116.4 70 130 * 63) n-Octane 20.76 23.8 25.8 91.0 70 130 * 64) Tetrachloroethene 21.63 24.4 26.8 91.0 70 130 * 65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 68) Styrene 22.79 27.5 27.0 101.9 70 130 * 71) n-Nonane 23.19 24.5 26.5 96.6 70 130 *	58)	Toluene	19.29	24.8	27.0	91.9	70	130	*
61) 1,2-Dibromoethane	59)	2-Hexanone	19.59	32.7	27.5	118.9	70	130	*
62) Butyl Acetate 20.40 32.0 27.5 116.4 70 130 * 63) n-Octane 20.57 24.4 26.8 91.0 70 130 * 64) Tetrachioroethene 20.76 23.8 25.8 92.2 70 130 * 65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 69) Styrene 22.79 27.5 27.0 101.9 70 130 * 71) n-Nonane 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 22.89 28.9 27.0 107.0 70 130 * 71) n-Nonane 23.67 25.6 25.8 99.2 70 130 * 71) Cumene	60)	Dibromochloromethane	19.83	31.2	28.8	108.3	70	130	*
63) n-Octane 20.57 24.4 26.8 91.0 70 130 * 64) Tetrachioroethene 20.76 23.8 25.8 92.2 70 130 * 65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 67) m. & pXylene 22.43 50.7 52.5 96.6 70 130 * 68) Bromeform 22.43 30.5 26.0 117.3 70 130 * 69) Styrene 22.79 27.5 27.0 101.9 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.99 24.5 26.5 99.2 70 130 * 72) 1,1,2,2-Tetrachloroethane 23.67 25.6 25.8 99.2 70 130 *	61)	1,2-Dibromoethane	20.16	27.7	26.8	103.4	70	130	*
64) Tetrachloroethene 20.76 23.8 25.8 92.2 70 130 * 65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 * 66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 67) m- & p-Xylene 22.34 50.7 52.5 96.6 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 69) Styrene 22.79 27.5 27.0 101.9 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.49 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.66 27.1 27.3 99.3 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 27.3 99.3 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 107.8 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 87) sec-Butylbenzene 25.26 26.1 27.5 94.9 70 130 * 88) 1,2-S-Trimethylbenzene 25.26 26.1 27.5 94.9 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 90) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 * 91) 1,2-Dichlorobenzene 25.57 26.6 26.8 100.7 70 130 * 93) n-Undecane 25.57 26.6 28.0 27.3 102.6 70 130 * 94) 1,2-Trimethylbenzene 26.66 28.0 27.3 102.6 70 130 * 94) 1,2-Trimethylbenzene 26.66 28.0 27.3 102.6 70 130 * 95) Naphthalene 27.90 27.0 26.8 100.7 70 130 * 96) Naphthalene 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 *	62)	Butyl Acetate	20.40	32.0	27.5	116.4	70	130	*
65) Chlorobenzene 21.63 24.4 26.8 91.0 70 130 *66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 *67) m. & p. Kylene 22.10 25.3 26.5 95.5 70 130 *67) m. & p. Kylene 22.10 25.3 26.5 95.5 70 130 *68) Bromoform 22.43 30.5 26.0 117.3 70 130 *68) Bromoform 22.43 30.5 26.0 117.3 70 130 *69) Styrene 22.79 27.5 27.0 101.9 70 130 *70) o-Xylene 22.93 25.6 26.5 96.6 70 130 *71) n-Nonane 23.19 24.5 26.5 92.5 70 130 *71) n-Nonane 23.19 24.5 26.5 92.5 70 130 *71) n-Nonane 23.19 24.5 26.5 92.5 70 130 *72) 1,1,2,2-Tetrachloroethane 23.67 25.6 25.8 99.2 70 130 *74) Cumene 23.67 25.6 25.8 99.2 70 130 *75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 *75) alpha-Pinene 24.41 28.3 27.5 102.9 70 130 *75) alpha-Pinene 24.44 28.3 27.5 102.9 70 130 *770 3-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 *790 1,3,5-Trimethylbenzene 24.47 28.0 27.5 101.8 70 130 *790 1,3,5-Trimethylbenzene 24.80 27.3 99.3 70 130 *81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 *82) 1,2,4-Trimethylbenzene 25.66 27.1 26.8 101.1 70 130 *82) 1,2,4-Trimethylbenzene 25.60 27.1 26.8 101.1 70 130 *83) n-Decane 25.10 27.3 98.9 70 130 *84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 *85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 *85) 1,3-Dichlorobenzene 25.58 27.0 26.8 100.7 70 130 *88) pl-sporpyltoluene 25.57 26.6 26.1 27.5 94.9 70 130 *88) pl-sporpyltoluene 25.57 26.6 26.1 27.5 94.9 70 130 *89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 100.7 70 130 *89) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *89) 1,2-Dichlorobenzene 25.57 26.6 26.0 102.3 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.57 26.6 28.0 27.3 96.3 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.8 100.7 70 130 *90) 1,2-Dichlorobenzene 25.58 27.6 26.	63)	n-Octane	20.57	24.4	26.8	91.0	70	130	*
66) Ethylbenzene 22.10 25.3 26.5 95.5 70 130 * 67) m. & p-Xylene 22.34 50.7 52.5 96.6 70 130 * 68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 69) Styrene 22.79 27.5 27.0 101.9 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 *	64)	Tetrachioroethene	20.76	23.8	25.8	92.2	70	130	*
67) m- & p-Xylene	65)	Chlorobenzene	21.63	24.4	26.8	91.0	70	130	*
68) Bromoform 22.43 30.5 26.0 117.3 70 130 * 69) Styrene 22.79 27.5 27.0 101.9 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 23.67 25.6 25.8 99.2 70 130 * 73 alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 75) alpha-Pinene 24.29 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * <	66)	Ethylbenzene	22.10	25.3	26.5	95.5	70	130	*
69) Styrene 22.79 27.5 27.0 101.9 70 130 * 70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 *	67)	m- & p-Xylene	22.34	50.7	52.5	96.6	70	130	**
70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.41 28.3 27.5 102.9 70 130 * 77) 3-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 80 alpha-Methylistyrene 24.56 27.1 27.3 99.3 70 130 * 81) 2-Ethyltoluene 25.06 27.1 26.8 107.8 70 130 *		- ·	22.43	30.5	26.0		70	130	*
70) o-Xylene 22.93 25.6 26.5 96.6 70 130 * 71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.41 28.3 27.5 102.9 70 130 * 77) 3-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 80 alpha-Methylistyrene 24.56 27.1 27.3 99.3 70 130 * 81) 2-Ethyltoluene 25.06 27.1 26.8 107.8 70 130 *	69)	Styrene	22.79	27.5	27.0	101.9	70	130	*
71) n-Nonane 23.19 24.5 26.5 92.5 70 130 * 72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 80) alpha-Methylsbyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * <td></td> <td></td> <td>22.93</td> <td>25.6</td> <td></td> <td></td> <td>70</td> <td>130</td> <td>* **</td>			22.93	25.6			70	130	* **
72) 1,1,2,2-Tetrachloroethane 22.89 28.9 27.0 107.0 70 130 * 74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.66 27.1 27.3 99.3 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 25.06 27.1 26.8 101.1 70 130 * 82)		•	23.19	24.5	26.5	92.5	70	130	*
74) Cumene 23.67 25.6 25.8 99.2 70 130 * 75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.56 27.1 27.3 99.3 70 130 * 80 alpha-Methylstyrene 24.56 27.1 27.3 99.3 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * </td <td>72)</td> <td>1,1,2,2-Tetrachioroethane</td> <td>22.89</td> <td>28.9</td> <td>27.0</td> <td>107.0</td> <td>70</td> <td>130</td> <td>*</td>	72)	1,1,2,2-Tetrachioroethane	22.89	28.9	27.0	107.0	70	130	*
75) alpha-Pinene 24.16 28.3 27.5 102.9 70 130 * 76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.56 27.1 27.3 99.3 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 82) 1,2,4-Trimethylbenzene 25.16 27.0 27.3 98.9 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130			23.67	25.6			70	130	*
76) n-Propylbenzene 24.29 25.6 25.8 99.2 70 130 * 77) 3-Ethyltoluene 24.41 28.3 27.5 102.9 70 130 * 78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.56 27.1 27.3 99.3 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85)	75)	alpha-Pinene							*
77) 3-Ethyltoluene									*
78) 4-Ethyltoluene 24.47 28.0 27.5 101.8 70 130 * 79) 1,3,5-Trimethylbenzene 24.56 27.1 27.3 99.3 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.57 26.6 26.0 100.7 70 130		· · · · · · · · · · · · · · · · · · ·						130	*
79) 1,3,5-Trimethylbenzene 24.56 27.1 27.3 99.3 70 130 * 80) alpha-Methylstyrene 24.75 28.9 26.8 107.8 70 130 * 81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.33 25.8 27.3 94.5 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8		•							*
80) alpha-Methylstyrene									*
81) 2-Ethyltoluene 24.80 27.3 27.3 100.0 70 130 * 82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 87) sec-Butylbenzene 25.57 26.6 26.0 102.3 70 130 * 89) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 90) 1,2-Dichlorobenzene 25.75 29.1 26.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></td<>									*
82) 1,2,4-Trimethylbenzene 25.06 27.1 26.8 101.1 70 130 * 83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 890 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 991) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5		· · · · · · · · · · · · · · · · · · ·							*
83) n-Decane 25.16 27.0 27.3 98.9 70 130 * 84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 89) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6		•							*
84) Benzyl Chloride 25.23 36.0 28.8 125.0 70 130 * 85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 89) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 90) 1,2-Dibromo-3-Chloropropane 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 95) Naphthalene 27.94 29.1 25.8									*
85) 1,3-Dichlorobenzene 25.26 26.1 27.5 94.9 70 130 * 86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 90) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8									*
86) 1,4-Dichlorobenzene 25.33 25.8 27.3 94.5 70 130 * 87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 90) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></t<>	-								*
87) sec-Butylbenzene 25.39 27.0 26.8 100.7 70 130 * 88) p-Isopropyltoluene 25.57 26.6 26.0 102.3 70 130 * 89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 90) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8									*
88) p-Isopropyltoluene			25.39						*
89) 1,2,3-Trimethylbenzene 25.58 27.6 26.8 103.0 70 130 * 90) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 1									*
90) 1,2-Dichlorobenzene 25.75 26.3 27.3 96.3 70 130 * 91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
91) d-Limonene 25.75 29.1 26.8 108.6 70 130 * 92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
92) 1,2-Dibromo-3-Chloropropane 26.28 31.9 27.5 116.0 70 130 * 93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
93) n-Undecane 26.66 28.0 27.3 102.6 70 130 * 94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *	•								*
94) 1,2,4-Trichlorobenzene 27.80 32.3 28.8 112.2 70 130 * 95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
95) Naphthalene 27.94 29.1 25.8 112.8 70 130 * 96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *	,								*
96) n-Dodecane 27.90 27.0 26.8 100.7 70 130 * 97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *						· ·			*
97) Hexachloro-1,3-butadiene 28.37 28.2 28.8 97.9 70 130 * 98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *		·							*
98) Cyclohexanone 22.52 27.1 25.3 107.1 70 130 * 99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
99) tert-Butylbenzene 25.06 27.5 27.0 101.9 70 130 *									*
		-							*
		-							*

^{*} Denotes Passing Criterion

Evaluate Continuing Calibration Report

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Ouant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1 IR 2 T	Bromochloromethane (IS1)	1.000	1.000	0.0	103	-0.02
2 T 3 T	Propene Dichlorodifluoromethane	2.240	1.792 2.482	20.0 16.7	· 93 95	0.00 -0.01
3 I 4 T	Chloromethane	2.625	2.285	13.0	92	-0.01
5 T	Freon 114	1.571	1.268	19.3	90	
5 T	Vinyl Chloride	2.757	2.266	17.8	92	-0.01
7 T	1,3-Butadiene	1.940	1.725	11.1	93	-0.01
8 T	Bromomethane	1.356	1.271	6.3	94	-0.02
9 T	Chloroethane	1.255	1.174	6.5	96	-0.01
10 T	Ethanol	1.244	1.173	5.7	99	-0.07
11 T	7	3.066	2.783	9.2	94	-0.05
12 T	Acrolein	0.856	0.822	4.0	95	-0.03
13 T	Acetone	1.454	1.103	24.1	96	-0.05
14 T	Trichlorofluoromethane	2.456	2.137	13.0	97	-0.01
15 T	Isopropanol	3.632	3.323	8.5	94	-0.06
16 T	Acrylonitrile	1.983	2.022	-2.0	95	-0.03
17 T	1,1-Dichloroethene	1.559	1.279	18.0	95	-0.02
18 T	tert-Butanol	3.360	3.219	4.2	91	-0.05
19 T	Methylene Chloride	1.667	1.380	17.2	95	-0.02
20 T	Allyl Chloride	2.149	2.147	0.1	94	-0.02
21 T	Trichlorotrifluoroethane	1.134	1.018	10.2	96	-0.02
22 T	Carbon Disulfide	5.906	5.094	13.7	95	-0.01
23 T	trans-1,2-Dichloroethene	2.295	2.059	10.3	95	-0.02
24 T	1,1-Dichloroethane	2.614	2.464	5.7	95	-0.02
25 T	Methyl tert-Butyl Ether	4.051	3.842	5.2	94	-0.01
26 T	Vinyl Acetate	0.260	0.312	-20.0	100	-0.03
27 T	2-Butanone	0.913	0.979	-7.2	95	-0.03
28 T	cis-1,2-Dichloroethene	2.210	1.924	12.9	95	-0.02
29 T	Diisopropyl Ether	1.278	1.208	5.5	95	-0.02
30 T	Ethyl Acetate	0.531	0.576	-8.5	96	-0.03
31 T	n-Hexane	3.029	2.644	12.7	96	-0.01
32 T	Chloroform	2.394	2.116	11.6	96	-0.03
33 S	1,2-Dichloroethane-d4(SS1)	1.622	1.654	-2.0	105	-0.02
34 T	Tetrahydrofuran	0.962	0.966	-0.4	97	-0.02
35 T	Ethyl tert-Butyl Ether		1.577	4.1	96	-0.02
36 T	1,2-Dichloroethane	1.794	1.708	4.8	96	-0.02
37 IR	1,4-Difluorobenzene (IS2)	1.000	1.000	0.0	104	-0.01
38 T	1,1,1-Trichloroethane	0.428	0.402	6.1	95	-0.02

Em 3/4/09

Page: 1

93

Evaluate Continuing Calibration Report

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area	b Dev(min)
39 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane Isooctane Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene	0.192 0.294 1.491 0.370 0.531 0.855 0.327 0.389 0.374 0.242 1.606 0.123 0.377 0.494 0.272 0.435	0.205 0.334 1.212 0.347 0.459 0.821 0.307 0.364 0.301 0.244 1.354 0.124 0.326 0.488 0.288 0.446	-6.8 95 -13.6 95 18.7 95 6.2 96 4.0 98 6.1 95 -0.8 95 -0.8 95 -0.8 95 15.7 96 13.5 95 -1.2 95 -2.5 94	8 -0.06 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.03 -0.03 -0.03 -0.01 -0.02 -0.01 -0.02
T ISTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylene Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	0.289 1.300 2.364 2.931 1.300 0.5637 1.558 0.691 1.830 3.154 2.436 0.453 1.4564 0.693 0.673 3.1552 1.993 1.993	0.275 1.000 2.361 2.500 1.383 0.546 0.611 1.577 0.582 0.581 1.563 2.823 2.207 0.455 1.695 2.236 1.352 0.990 0.663 2.866 1.309 3.607	4.8 94 0.0 104 0.1 105 14.7 95 -6.4 93 4.1 94 -1.2 96 13.9 94 14.6 94 10.5 94 -0.4 94 6.6 93 9.8 94 13.6 94 0.3 96 1.5 96 8.2 94	0.00 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02

Em 3/4/09

94

Evaluate Continuing Calibration Report

Data Path : J:\MS09\Data\2009 03\04\

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Ouant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
77 T 78 T	3-Ethyltoluene 4-Ethyltoluene	2.874 2.852	2.623 2.638	8.7 7.5	92 96	-0.01
79 T	1,3,5-Trimethylbenzene	2.432	2.242	7.8	94	-0.01
80 T	alpha-Methylstyrene	1.301	1.262	3.0	93	-0.01
81 T	2-Ethyltoluene	2.935	2.688	8.4	94	-0.01
82 T	1,2,4-Trimethylbenzene	2.581	2.427	6.0	94	-0.02
83 T	n-Decane	1.544	1.408	8.8	94	-0.02
84 T	Benzyl Chloride	1.798	2.030	-12.9	94	-0.02
85 T	1,3-Dichlorobenzene	1.374	1.223	11.0	94	-0.02
86 T	l,4-Dichlorobenzene	1.410	1.255	11.0	94	-0.01
87 T	sec-Butylbenzene	3.377	3.114	7.8	94	-0.01
88 T	p-Isopropyltoluene	3.222	3.027	6.1	94	-0.01
89 T	1,2,3-Trimethylbenzene	2.579	2.437	5.5	95	-0.01
90 T	1,2-Dichlorobenzene	1.317	1.193	9.4	95	-0.01
91 T	d-Limonene	1.065	1.066	-0.1	94	-0.01
92 T	1,2-Dibromo-3-Chloropropane	0.379	0.406	-7.1	98	-0.01
93 T	n-Undecane	1.571	1.486	5.4	95	-0.01
94 T	1,2,4-Trichlorobenzene	0.234	0,255	-9.0	103	-0.01
95 T	Naphthalene	3.168	3.320	-4.8	105	-0.01
96 T	n-Dodecane	1.665	1.667	-0.1	99	0.00
97 T	Hexachloro-1,3-butadiene	0.476	0.448	5.9	100	0.00
98 T	Cyclohexanone	0.923	0.919	0.4	93	-0.02
99 T	tert-Butylbenzene	2.477	2.292	7.5	94	-0.02
00 T	n-Butylbenzene	2.662	2.539	4.6	95	-0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0

En 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

: S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Ouant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Intern	al Standards	R.T.	QIon	Response	e Conc	Units	Dev(Min)
1) B	romochloromethane (IS1) ,4-Difluorobenzene (IS2)	12.82	130	333021	25.000	ng	-0.02
37) 1	,4-Difluorobenzene (IS2)	15.77	114	1607634	25.000	ng	-0.01
56) C	hlorobenzene-d5 (IS3)	21.57	82	798532	25.000	ng	0.00
System	Monitoring Compounds						
33) 1	,2-Dichloroethane-d4(13.98	65	550743	25.484	ng	-0.02
Spik	ed Amount 25.000 oluene-d8 (SS2)			Recov	rery =	101	.92%
57) T	oluene-d8 (SS2)	19.15	98	1885359	24.972	ng	-0.01
Spik	ed Amount 25.000 romofluorobenzene (SS3)			Recov	ery =	99	.88%
73) B	romofluorobenzene (SS3)	23.49	174	529077	24.602	ng	0.00
Spik	ed Amount 25.000			Recov	rery =	98	.40%
Target	Compounds						Qvalue
2) P	ropene ichlorodifluoromethane hloromethane reon 114 inyl Chloride ,3-Butadiene	4.84	42	615952	20.641	ng	98
3) D	ichlorodifluoromethane	5.00	85	869536	21.911	ng	99
4) C	hloromethane	5.33	50	770098	22.024	ng	99
5) F	reon 114	5.59	135	447675	21.397	ng	99
6) V	inyl Chloride	5.80	62	769623	20.958	ng	94
7) 1	,3-Butadiene	6.08	54	620270	24.004	ng	97
8) B:	romomethane	6.58	94	436885	24.184	ng	95
9) C	hloroethane	6.93	64	406558	24.313	ng	94
10) E	romomethane hloroethane thanol cetonitrile crolein	7.28	45	2062552	124.422	ng	100
11) A	cetonitrile	7.59	41	974959	23.874	ng	98
12) A	crolein	7.79	56	295617	25.924	ng	100
T2/ W	CECOITE	0.01	J 0	エンフォンひエ	T00.03T	119	# 62
14) T	richlorofluoromethane	8.29	101	748723	22.888	ng	97
15) I	sopropanol crylonitrile	8.51	45	2146963	44.379	ng	96
16) A	crylonitrile	8.81	53	694763	26.308	ng	99
(17)	, I-Dichloroethene	9.33	96	468710	22.563	ng	# 60
18) t	ert-Butanol	9.46	59	2143948	47.900	ng	96
19) M	ethylene Chloride	9.54	84	487008	21.935	ng	# 49
20) A	llyl Chloride	9.73	41	772078	26.973	ng	74
21) T	richlorotrifluoroethane	9.98	151	373009	24.688	ng	95
22) C	llyl Chloride richlorotrifluoroethane arbon Disulfide	9.94	76	1764179	22.424	ng	99
	rans-1,2-Dichloroethene	11.U1	6 T	707692	23.152	nq	7.7
24) 1	,1-Dichloroethane	11.32	63	879706	25.259	ng	97
	ethyl tert-Butyl Ether	11.40	73	1356175	25.129		84
	inyl Acetate	11.57	86		151.092		# 4
	-Butanone	11.90	72	352005	28.948	-	# 29
	is-1,2-Dichloroethene	12.58	61	699557	23.759		73
	iisopropyl Ether	12.92	87	426383	25.048		# 52
	thyl Acetate	12.92	61	398953	56.423	_	74
31) n	-Hexane	12.93	57	915888	22.697	ng	88 97

Em 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(Min)
32) Chloroform	13.04	83	775213	24.310 r	 nar	98
	13.59			26.900 n		4 4 9
35) Ethyl tert-Butyl Ether		87		24.748 r		± 62
36) 1,2-Dichloroethane	14.14		602974	25.227 r		96
38) 1,1,1-Trichloroethane	14.54		680136	24.687 r		93
39) Isopropyl Acetate	15.08		689642	55.922 r		‡ 82
40) 1-Butanol	15.10		1159255	61.322 n		85
41) Benzene	15.24		2010853	20.976 r		98
42) Carbon Tetrachloride	15.47		586054	24.638 r		99
43) Cyclohexane	15.67		1563266	45.761 n	<u> </u>	ŧ 65
44) tert-Amyl Methyl Ether			1362667	24.789 n		
45) 1,2-Dichloropropane	16.45		518805	24.643 n		. 95
46) Bromodichloromethane	16.70		616248	24.633 n		96
47) Trichloroethene	16.78		499488	20.766 r		95
48) 1,4-Dioxane	16.73		408232	26.237 r		† 70
49) Isooctane	16.87		2264612	21.922 n		97
50) Methyl Methacrylate	17.03		426312	53.867 n		‡ 77
51) n-Heptane	17.22		544603	22.464 n		‡ 70
52) cis-1,3-Dichloropropene	17.96	75	785072	24.702 n		98
53) 4-Methyl-2-pentanone	17.99		506052	28.935 n		78
54) trans-1,3-Dichloropropene	18.66		788158	28.175 r		96
55) 1,1,2-Trichloroethane	18.90		460181	24.769 r	ng	99
58) Toluene	19.29	91	2155686	23.029 n	ıg	100
59) 2-Hexanone	19.58	43	1215092	29.254 n	1g	91
60) Dibromochloromethane	19.83	129	501945	27.765 n	_ 1g	96
61) 1,2-Dibromoethane	20.15		516915	25.410 n	ıg	98
62) Butyl Acetate	20.39	43	1385608	27.837 n	ng	95
63) n-Octane	20.56	57	488775	22.634 r	ıg ‡	‡ 66
64) Tetrachloroethene	20.76	166	478931	21.688 n	ıg	97
65) Chlorobenzene	21.63		1323394	22.639 n		100
66) Ethylbenzene	22.10	91	2371682	23.543 n		98
67) m- & p-Xylene	22.33		3665425	47.100 n		99
68) Bromoform	22.43		389519	26.940 n		97
69) Styrene	22.78	104	1450992	25.039 n	~	99
70) o-Xylene	22.93	91	1878727	23.727 n		100
71) n-Nonane	23.18	43	1135626	22.730 n		90
72) 1,1,2,2-Tetrachloroethane	22.89		854196	26.936 n		98
74) Cumene	23.67	105	2334658	23.188 n		98
75) alpha-Pinene	24.16	93	1150129	25.453 n		96
76) n-Propylbenzene	24.29		2937545	23.408 n		98
77) 3-Ethyltoluene	24.41	105	2303910	25.099 n		97
78) 4-Ethyltoluene	24.47		2316862	25.430 n		98
79) 1,3,5-Trimethylbenzene	24.56	105	1933911	24.900 n	1 g	98 9

Em 3/4/09

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

: S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:11:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene	24.75		1068016	25.707 ng	98
81) 2-Ethyltoluene	24.80		2318163	24.726 ng	97
82) 1,2,4-Trimethylbenzene	25.06		2039135	24.736 ng	96
83) n-Decane	25.16		1214100	24.611 ng	77
84) Benzyl Chloride	25.23		1782834	31.048 ng	99
85) 1,3-Dichlorobenzene	25.25	146	1046776	23.858 ng	99
86) 1,4-Dichlorobenzene	25.33		1062129	23.581 ng	98
87) sec-Butylbenzene	25.39		2635817	24.439 ng	99
88) p-Isopropyltoluene	25.57		2465890	23.961 ng	98
89) 1,2,3-Trimethylbenzene	25.58	105	2062499	25.041 ng	96
90) 1,2-Dichlorobenzene	25.75	146	1020903	24.269 ng	98
91) d-Limonene	25.75		902050	26.510 ng	98
92) 1,2-Dibromo-3-Chloropr	26.27	157	349893	28.924 ng	# 86
93) n-Undecane	26.66		1272055	25.349 ng	75
94) 1,2,4-Trichlorobenzene	27.80	184	224085	29.941 ng	90
95) Naphthalene	27.94	128	2683161	26.517 ng	100
96) n-Dodecane	27.90	57	1251028	23.526 ng	73
97) Hexachloro-1,3-butadiene			393675	25.868 ng	98
98) Cyclohexanone	22.51		728322	24.705 ng	# 88
99) tert-Butylbenzene	25.06		1976478	24.982 ng	98
100) n-Butylbenzene	26.08	91	2214151	26.036 ng	94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

CAS Project ID: P0900735

Client Project ID: Cooper Vision SVI / 70665-014

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Elsa Moctezuma

Lab File ID: 03040901.D 3/4/09

Sampling Media:

6.0 L Summa Canister(s)

Date Analyzed: Time Analyzed: 08:10

Test Notes:

			ISI (BCM)		IS2 (DFB)		IS3 (CBZ)	
			AREA #	RT #	AREA #	RT #	AREA #	RT#
	24 Hour Standard		333021	12.82	1607634	15.77	798532	21.57
	Upper Limit		466229	13.15	2250688	16.10	1117945	21.90
	Lower Limit		199813	12.49	964580	15.44	479119	21.24
	Client Sample ID							
() I	Method Blank		330101	12.80	1608551	15.75	791060	21.57
02	Lab Control Sample		322309	12.82	1549597	15.77	774690	21.57
03	SV-InA-705-1		338724	12.80	1633065	15.75	812724	21.57
04	SV-OutA-022609		338884	12.80	1640751	15.75	814845	21.57
05	SV-SS-705-1		313335	12.82	1507301	15.76	752075	21.57
06	SV-SS-709-2		324268	12.82	1568878	15.76	785278	21.57
07	SV-InA-709-2		313952	12.80	1523485	15.75	755013	21.57
08								
09								
10								
11								
12								
13		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
14								
15								
16								
17								
18								
19								
20					٠			e

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Verified By:

Raw QC Data

Data File : 02170912.D

Acq On : 17 Feb 2009 16:49

Operator : EM

Sample : BFB Tune Standard (200ml)

Misc : S20-02030901

ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Mon Feb 16 12:39:21 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

90 100 110

120

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	16.1	50781	PASS
75	95	30	66	44.7	140904	PASS
95	95	100	100,	100.0	315477	PASS
96	95	5	9	6.4	20125	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	78.3	247104	PASS
175	174	4	9	8.0	19773	PASS
176	174	93	101	96.9	239509	PASS
177	176	5	9	6.3	15112	PASS

Sen 2/18/09

130 140 150 160

Data File : 03040901.D

Acq On : 4 Mar 2009 8:10

Operator : EM

Sample : 25ng TO-15 CCV STD

Misc : S20-03030904/S20-02090903 ALS Vial : 3 Sample Multiplier: 1

Integration File: RTEINT.P

Method : J:\MS09\Methods\R9021709.M

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

Last Update : Wed Feb 18 07:31:09 2009

AutoFind: Scans 3485, 3486, 3487; Background Corrected with Scan 3475

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50 75 95 96 173 174 175	95 95 95 95 174 95 174	8 30 100 5 0,00 50	40 66 100 9 2 120	16.9 45.7 100.0 6.5 0.0 76.8	54877 148885 325611 21061 0 250176 19880	PASS PASS PASS PASS PASS PASS
176	174 176	93	101	96.5 6.4	241323 15501	PASS PASS

Em 34/09

COLUMBIA ANALYTICAL SERVICES, INC.

RESULTS OF ANALYSIS Page 1 of 1

Client:

Haley & Aldrich, Inc.

Client Sample ID: Method Blank

Client Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735 CAS Sample ID: P090304-MB

Date Collected: NA

Date Received: NA

Test Code:

EPA TO-15

instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Elsa Moctezuma

Sampling Media:

6.0 L Summa Canister

Date Analyzed: 3/4/09 Volume(s) Analyzed:

1.00 Liter(s)

Fest Notes:

Analyst:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	Result	MRL	Data
		$\mu g/m^3$	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	

VD = Compound was analyzed for, but not detected above the laboratory reporting limit.

[△]RL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)

Misc : S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040902.D

: 4 Mar 2009 9:05 Acq On

Operator : EM

Sample : TO-15 Method Blank (1000ml)
Misc : S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc (Units	Dev(Min)
1) Bromochloromethane (IS1)	12.80	130	330101	25.000	ng	- 0	.05
37) 1,4-Difluorobenzene (IS2)	15.75	114	1608551	25.000	ng	- 0	.03
56) Chlorobenzene-d5 (IS3)	21.57	82	791060	25.000	ng	0	.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4(Spiked Amount 25.000							
Spiked Amount 25.000 57) Toluene-d8 (SS2)	19.15	98	1879390	25.128	ng	- 0	.01
Spiked Amount 25.000 73) Bromofluorobenzene (SS3)	23.49	174	521466	24.477	ng	0	.00
Spiked Amount 25.000			Recove	ery =	97	.92%	
Target Compounds						Qva	lue
2) Propene	4.87	42	1378	0.047	ng	#	90
3) Dichlorodifluoromethane	0.00	85	0	N.D.			
4) Chloromethane 5) Freon 114	0.00	50	0	N.D.			
				N.D			
6) Vinyl Chloride	0.00	62		N.D			
7) 1,3-Butadiene	0.00	54	0	N.D.			
8) Bromomethane	0.00	94	0	N.D.			
9) Chloroethane	0.00	64	0 5369	N.D			
10) Ethanol 11) Acetonitrile	7.25	45	5369	0.327	ng		80
11) Acetonitrile	7.59	41	3408	0.084	ng		92
12) Acrolein	7.82	56	320	N.D.	•	.,	
13) Acetone	8.04	58	11566	0.602	ng	#	70
14) Trichlorofluoromethane	0.00	101	0	N.D.			
15) Isopropanol16) Acrylonitrile17) 1,1-Dichloroethene	0.00	45	0				
16) Acrylonitrile	0.00	53		N.D.	•		
1/) 1,1-Dichloroethene	0.00	96	0		•		
18) tert-Butanol	0.00	59	0	N.D.			
19) Methylene Chloride 20) Allyl Chloride	9.53	84 41	471				
20) Arryr Chroride	0.00	4 L	0	N.D.	•		
21) Trichlorotrifluoroethane	0.00	75 I	0 1904	N.D.			
22) Carbon Disulfide 23) trans-1,2-Dichloroethene	0.00	61	1504	N.D.			
24) 1,1-Dichloroethane	0.00	63	0	N.D.			
25) Methyl tert-Butyl Ether	0.00	73	0	N.D.			
26) Vinyl Acetate	0.00	86	0	N.D.			
27) 2-Butanone	11.74	72	126	N.D.			
28) cis-1,2-Dichloroethene	0.00	61	0	N.D.			
29) Diisopropyl Ether	0.00	87	0	N.D.			
30) Ethyl Acetate	0.00	61	Ö	N.D.			
31) n-Hexane	0.00	57	0	N.D.			10
· · · · · · · · · · · · · · · · · ·	0		~		•		₽ € #

Jan 3/4/09

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)
Misc : S20-03030904

: S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)	
32) Chloroform	0.00	83	0	N.D.		
34) Tetrahydrofuran	0.00	72	Ō	N.D.		
34) Tetrahydrofuran 35) Ethyl tert-Butyl Ether	0.00	87	0	N.D.		
36) 1,2-Dichloroethane	0.00	- 62	0			
38) 1,1,1-Trichloroethane	0.00	97	0	N.D.		
39) Isopropyl Acetate	0.00	61	Ō	N.D.		
40) 1-Butanol	15.19	56	130	N.D.		
			1064			
42) Carbon Tetrachloride	0.00	117	0	N.D.		
42) Carbon Tetrachloride 43) Cyclohexane 44) tert-Amyl Methyl Ether	15.75	84	481	N.D.		
44) tert-Amvl Methvl Ether	0.00	73	0	N.D.		
45) 1,2-Dichloropropane	0.00	63	0			
46) Bromodichloromethane	0.00	83	0			
47) Trichloroethene						
48) 1,4-Dioxane			0			
				N.D.		
49) Isooctane 50) Methyl Methacrylate 51) n-Heptane	0.00	100	0			
51) n-Heptane	0.00	71	0			
52) cis-1,3-Dichloropropene	0.00	75	0	N.D.		
53) 4-Methyl-2-pentanone	0.00	58	0	N.D.		
54) trans-1,3-Dichloropropene	0.00	75	0)	
54) trans-1,3-Dichloropropene 55) 1,1,2-Trichloroethane	19.16	97	158143	8 .507 n aTT	# 5	
58) Toluene			1722			
			0			
60) Dibromochloromethane						
61) 1,2-Dibromoethane						
	0.00			N.D.		
63) n-Octane	0.00	57	0	N.D.		
64) Tetrachloroethene	0.00	166	0			
65) Chlorobenzene						
66) Ethylbenzene	22 10	91	250	N.D.		
67) m- & p-Xylene	22.34	91	215			
67) m- & p-Xylene 68) Bromoform	0.00	173	0			
69) Styrene	22.80	104	0 117 1011	N.D.		
70) o-Xylene	22.94	91	1011	N.D.		
71) n-Nonane	0.00	43	0	N.D.		
72) 1,1,2,2-Tetrachloroethane	0.00	83	0	N.D.		
74) Cumene	23.65	105	1632	N.D.		
75) alpha-Pinene	0.00	93	0	N.D.		
76) n-Propylbenzene	24.31	91	789	N.D.		
77) 3-Ethyltoluene	24.41	105	1374	N.D.		
78) 4-Ethyltoluene	24.49	105	2272	N.D.		
79) 1,3,5-Trimethylbenzene	24.57	105	3608	0.047 ng	# 29	
					• •	_ •

Em 3/4/09

Data File : 03040902.D

Acq On : 4 Mar 2009 9:05

Operator : EM

Sample : TO-15 Method Blank (1000ml)
Misc : S20-03030904

: S20-03030904

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 04 10:12:39 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
80) alpha-Methylstyrene 81) 2-Ethyltoluene 82) 1,2,4-Trimethylbenzene 83) n-Decane 84) Benzyl Chloride 85) 1,3-Dichlorobenzene 86) 1,4-Dichlorobenzene	0.00 24.79 25.07 25.49 25.24 25.27 25.34 25.59	118 105 105 57 91 146 146 105	0. 1932 1297 951 1173 333 506	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Dev (Min)
90) 1,2-Dichlorobenzene 91) d-Limonene 92) 1,2-Dibromo-3-Chloropr 93) n-Undecane 94) 1,2,4-Trichlorobenzene 95) Naphthalene 96) n-Dodecane 97) Hexachloro-1,3-butadiene	25.34 0.00 0.00 26.58 0.00 27.97 27.90 0.00 0.00 25.08 0.00	146 68 157 57 184 128 57 225 55 119	506 0 0 114 0 4536 519 0	N.D. N.D. N.D. N.D. N.D. 0.045 ng N.D. N.D.	#	71

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

COLUMBIA ANALYTICAL SERVICES, INC.

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of I

lient:

Haley & Aldrich, Inc.

lient Sample ID: Lab Control Sample

lient Project ID: Cooper Vision SVI / 70665-014

CAS Project ID: P0900735

CAS Sample ID: P090304-LCS

Date Collected: NA

Date Received: NA

est Code:

EPA TO-15

strument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

nalyst:

Elsa Moctezuma

impling Media:

6.0 L Summa Canister

Date Analyzed: 3/04/09 Volume(s) Analyzed:

NA Liter(s)

est Notes:

		•			CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
75-()1-4	Vinyl Chloride	25.5	22.0	86	57-132	
75-00-3	Chloroethane	25.8	24.5	95	68-123	
⁷ 5-35-4	1,1-Dichloroethene	27.5	22.7	83	70-123	
15-34-3	1,1-Dichloroethane	26.8	25.7	96	72-130	
1-55-6	1,1,1-Trichloroethane	26.5	25.3	95	69-127	

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Wed Feb 18 07:31:09 2009

Data File : 03040907.D

Acq On : 4 Mar 2009 13:08

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

1) Bromochloromethane (IS2) 12.82 130 322309 25.000 ng -0.02 37) 1,4-Difluorobenzene (IS2) 15.77 114 1549577 25.000 ng -0.01 50 Chlorobenzene-d5 (IS2) 21.57 82 774690 25.000 ng -0.00 System Monitoring Compounds 33 1,2-Dichloroethane-d4(13.98 65 526276 25.161 ng -0.02 Spiked Amount 25.000 8 1813278 24.756 ng 0.00 Spiked Amount 25.000 73 Bromofluorobenzene (SS3) 23.49 174 514041 24.639 ng 0.00 Spiked Amount 25.000 8 24.639 ng 0.00 Spiked Amount 25.000 8 526276 22.144 ng 98 3Dichlorodifluoromethane 5.00 85 850520 22.144 ng 99 40 Chloromethane 5.33 50 763378 22.558 ng 99 40 Chloromethane 5.80 62 781508 21.989 ng 94 71.3-Butadiene 6.88 54 725915 29.026 ng 98 8 Bromomethane 6.58 94 443260 25.533 ng 96 96 Chloroethane 6.93 64 395915 24.463 ng 95 96 Chloroethane 6.93 64 395915 24.463 ng 95 96 Chloroethane 6.88 54 725915 29.026 ng 98 99 20 Acrolein 7.77 56 292556 26.508 ng 99 21 Acrolein 7.79 56 292556 26.508 ng 99 21 Acrolein 7.79 56 292556 26.508 ng 99 21 Acrolein 7.79 56 292556 26.508 ng 99 21 Acrolein 7.99 56 578264 104.681 ng 82 27 27 27 27 27 27 27	Internal Standards	R.T.	QIon	Response	Conc	Units	Dev (Min)
System Monitoring Compounds 33	1) Bromochloromethane (IS1)	12.82	130	322309	25.000	ng	-0	.02
System Monitoring Compounds 33	37) 1,4-Difluorobenzene (IS2)	15.77	114	1549597	25.000	ng	- 0	.01
Spiked Amount	56) Chlorobenzene-d5 (IS3)	21.57	82	774690	25.000	ng	0	.00
Spiked Amount	System Monitoring Compounds							
Spiked Amount 25.000 Spiked Amount 25.000 19.16 98 1813278 24.756 ng 0.00 25.000 35.000	33) 1.2-Dichloroethane-d4(13.98	65	526276	25.161	ng	- 0	.02
Spiked Amount	Spiked Amount 25,000			Recov	erv =	100	64%	
Spiked Amount 25.000 73) Bromofluorobenzene (SS3) 23.49 174 514041 24.639 ng 0.00 Spiked Amount 25.000 Target Compounds 2) Propene 4.84 42 634407 21.966 ng 98 3) Dichlorodifluoromethane 5.00 85 850520 22.144 ng 99 4) Chloromethane 5.33 50 763378 22.558 ng 99 5) Freon 114 5.59 135 462724 22.852 ng 98 6) Vinyl Chloride 5.80 62 781506 21.989 ng 94 7) 1,3-Butadiene 6.08 54 725915 29.026 ng 98 8) Bromomethane 6.58 94 443260 25.353 ng 96 9) Chloroethane 6.93 64 395915 24.463 ng 95 10) Ethanol 7.27 45 1822782 113.612 ng 99 11) Acetonitrile 7.57 41 936105 23.684 ng 99 12) Acrolein 7.79 56 292556 26.508 ng 99 13) Acetone 8.01 58 1962544 104.681 ng # 82 14) Trichlorofluoromethane 8.29 101 758246 21.989 ng 97 15) Isopropanol 8.49 45 1924606 41.105 ng 96 16) Acrylomitrile 8.81 53 678418 26.543 ng 99 17) 1,1-Dichloroethene 9.33 96 457168 22.739 ng # 60 18) tert-Butanol 9.45 59 2053892 47.413 ng 98 19) Methylene Chloride 9.54 84 477440 22.219 ng # 47 20 Allyl Chloride 9.73 41 765571 27.634 ng 99 121 Trichlorotrifluoroethane 9.99 151 363936 24.888 ng 95 22) Carbon Disulfide 9.73 41 765571 27.634 ng 99 22) Carbon Disulfide 9.73 41 765571 27.634 ng 99 22) Carbon Disulfide 9.73 41 765571 27.634 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 22) Carbon Disulfide 9.75 24 1.40 73 1376547 26.354 ng 84 26.00 14.	57) Toluene-d8 (SS2)	19.16	98	1813278	$2\overline{4}.756$	nq	0	.00
Target Compounds	eniked Amount 25 000	* +		Pagati	C 2037	0.0	012	
Target Compounds 2) Propene 4.84 42 634407 21.966 ng 98 3) Dichlorodifluoromethane 5.00 85 850520 22.144 ng 99 4) Chloromethane 5.33 50 763378 22.558 ng 99 5) Freon 114 5.59 135 462724 22.852 ng 98 6) Vinyl Chloride 5.60 62 781506 21.989 ng 94 7) 1,3-Butadiene 6.08 54 725915 29.026 ng 98 8) Bromomethane 6.58 94 443260 25.353 ng 96 9) Chloroethane 6.93 64 395915 24.463 ng 95 10) Ethanol 7.27 45 1822782 113.612 ng 99 11) Acetonitrile 7.57 41 936105 23.684 ng 99 12) Acrolein 7.79 56 292556 26.508 ng 99 13) Acetone 8.01 58 1962544 104.681 ng #82 14) Trichlorofluoromethane 8.29 101 758246 23.949 ng 97 15) Isopropanol 8.49 45 1924606 41.105 ng 96 16) Acrylonitrile 8.81 53 678418 26.543 ng 99 17) 1,1-Dichloroethene 9.33 96 457168 22.739 ng #60 18) tert-Butanol 9.45 59 2053892 47.413 ng 98 19) Methylene Chloride 9.73 41 765571 27.634 ng 73 21) Trichlorotrifluoroethane 9.99 151 363936 24.888 ng 95 22) Carbon Disulfide 9.73 41 765571 27.634 ng 73 21) Trichloroethane 11.01 61 713818 23.296 ng 99 23) trans-1,2-Dichloroethene 11.02 61 713818 23.296 ng 99 24) 1,1-Dichloroethane 11.32 63 865309 25.672 ng 97 24) 1,1-Dichloroethane 11.32 63 865309 25.672 ng 97 24) 1,1-Dichloroethene 11.06 71 713818 23.296 ng 99 23) trans-1,2-Dichloroethene 11.07 61 713818 23.296 ng 99 24) Carbon Disulfide 9.74 76 1773818 23.296 ng 99 25) Methyl tert-Butyl Ether 11.40 73 1376571 27.634 ng 73 26) Vinyl Acetate 11.56 86 498100 148.721 ng #3 27) 2-Butanone 11.89 72 354841 30.151 ng #3 28) Cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 61 400938 58.588 ng 74	73) Bromofluorobenzene (SS3)	23.49	174	514041	24.639	ng	0	.00
2) Propene	Spiked Amount 25.000			Recov	ery =	98	. 56%	
2) Propene	Target Compounds						Ova	lue
5) Freon 114	2) Propene	4.84	42	634407	21.966	na	· -	9.8
5) Freon 114	3) Dichlorodifluoromethane	5.00	85	850520	22.144	ng		99
7) 1,3-Butadiene 6.08 54 725915 29.026 ng 98 8) Bromomethane 6.58 94 443260 25.353 ng 96 9) Chloroethane 6.93 64 395915 24.463 ng 95 10) Ethanol 7.27 45 1822782 113.612 ng 99 11) Acetonitrile 7.57 41 936105 23.684 ng 99 12) Acrolein 7.79 56 292556 26.508 ng 99 13) Acetone 8.01 58 1962544 104.681 ng # 82 14) Trichlorofluoromethane 8.29 101 758246 23.949 ng 97 15) Isopropanol 8.49 45 1924606 41.105 ng 96 16) Acrylonitrile 8.81 53 678418 26.543 ng 99 17) 1,1-Dichloroethene 9.33 96 457168 22.739 ng # 60 18) tert-Butanol 9.45 59 2053892 47.413 ng 98 19) Methylene Chloride 9.54 84 477400 22.219 ng # 47 20) Allyl Chloride 9.73 41 765571 27.634 ng 73 21) Trichlorotrifluoroethane 9.99 151 363936 24.888 ng 95 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 23) trans-1,2-Dichloroethene 11.01 61 714346 24.146 ng 77 24) 1,1-Dichloroethane 11.02 63 865309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) Cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 61 400938 58.588 ng 74	4) Chloromethane	5.33	50	763378	22.558	ng		99
7) 1,3-Butadiene 6.08 54 725915 29.026 ng 98 8) Bromomethane 6.58 94 443260 25.353 ng 96 9) Chloroethane 6.93 64 395915 24.463 ng 95 10) Ethanol 7.27 45 1822782 113.612 ng 99 11) Acetonitrile 7.57 41 936105 23.684 ng 99 12) Acrolein 7.79 56 292556 26.508 ng 99 13) Acetone 8.01 58 1962544 104.681 ng # 82 14) Trichlorofluoromethane 8.29 101 758246 23.949 ng 97 15) Isopropanol 8.49 45 1924606 41.105 ng 96 16) Acrylonitrile 8.81 53 678418 26.543 ng 99 17) 1,1-Dichloroethene 9.33 96 457168 22.739 ng # 60 18) tert-Butanol 9.45 59 2053892 47.413 ng 98 19) Methylene Chloride 9.54 84 477400 22.219 ng # 47 20) Allyl Chloride 9.73 41 765571 27.634 ng 73 21) Trichlorotrifluoroethane 9.99 151 363936 24.888 ng 95 22) Carbon Disulfide 9.94 76 1773818 23.296 ng 99 23) trans-1,2-Dichloroethene 11.01 61 714346 24.146 ng 77 24) 1,1-Dichloroethane 11.02 63 865309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) Cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 61 400938 58.588 ng 74	5) Freon 114	5.59	135	462724	22.852	ng		98
16) Acrylonitrile	6) Vinyl Chloride	5.80	62	781506	21.989	ng		94
16) Acrylonitrile	7) 1,3-Butadiene	6.08	54	725915	29.026	ng		98
16) Acrylonitrile	8) Bromomethane	6.58	94	443260	25.353	ng `		96
16) Acrylonitrile	9) Chloroethane	6.93	64	395915	24.463	ng		95
16) Acrylonitrile	10) Ethanol	7.27	45	1822782	113.612	ng		99
16) Acrylonitrile	11) Acetonitrile	7.57	41	936105	23.684	ng		99
16) Acrylonitrile	12) Acrolein	7.79	56	292556	26.508	ng		99
16) Acrylonitrile	13) Acetone	8.01	58	1962544	104.681	ng	#	82
16) Acrylonitrile	14) Trichlorofluoromethane	8.29	101	758246	23.949	ng		97
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	15) Isopropanol	8.49	45	1924606	41.105	ng		96
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	16) Acrylonitrile	8.81	53	678418	26.543	ng		99
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	17) 1,1-Dichloroethene	9.33	96	457168	22.739	ng	#	60
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	18) tert-Butanol	9.45	59	2053892	47.413	ng		98
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	19) Methylene Chloride	9.54	84	477440	22.219	ng	#	47
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	20) Aliyi Chioride	9.73	41	765571	27.634	ng		73
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	21) Trichlorotrilluoroethane	9.99	TPT	363936	24.888	ng		95
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	22) Carbon Disuilide	9.94	/6	1//3818	23.296	ng		99
24) 1,1-Dichioroethane 11.32 63 683309 25.672 ng 97 25) Methyl tert-Butyl Ether 11.40 73 1376547 26.354 ng 84 26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	23) trans-1,2-Dichloroethene	11.01	6 J	714346	24.146	ng		07
26) Vinyl Acetate 11.56 86 498100 148.721 ng # 3 27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74	24) I, I-DICHIOLOGUHAHE	11.52	0.3	007303	25.672	119		91
27) 2-Butanone 11.89 72 354841 30.151 ng # 28 28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74							#	
28) cis-1,2-Dichloroethene 12.58 61 683113 23.972 ng 73 29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74								
29) Diisopropyl Ether 12.91 87 423522 25.707 ng # 52 30) Ethyl Acetate 12.91 61 400938 58.588 ng 74							π.	
30) Ethyl Acetate 12.91 61 400938 58.588 ng 74							#	
							13.	
- DI/ HTHEAGHE - 14.70 D/ DITIUM AO HU - OO N	31) n-Hexane	12.93	57	914101	23.406			841

Data File : 03040907.D

: 4 Mar 2009 13:08 Acq On

Operator : EM

Sample : 25ng TO-15 LCS STD

Misc : S20-03030904/S20-02090907 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009

Quant Method: J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

OLast Update : Wed Feb 18 07:31:09 2009

Inte	rnal Standards		QIon	Response	Conc U	nits	Dev	(Min)
30/	Chloroform	13.03	83	761758	24.682	n~		98
34)		13.59		334644	26.976		#	51
35)		13.72	87	533362	25.166		#	62
	1,2-Dichloroethane	14.14		590644	25.533		11	97
		14.14	02	671686	25.294			93
38)		15.08	<i>21</i>	677881	57.027		#	80
39)		15.10	₽.C 0.T	1108194	60.816		#	85
40)	· · · · · · · · · · · · · · · · · · ·	15.24	70	1965390	21.270			97
41)	Carbon Tetrachloride	15.47		579413	25.271			98
		15.47		1590463	48.300		11	90 64
43)	Cyclohexane tert-Amyl Methyl Ether	16.11		1304878	24.627		#	1
		16.45	7.3	508218	25.045		#	95
45)	1,2-Dichloropropane	16.70	C O	622493	25.815			95 96
40)	Bromodichloromethane	16.78	120	486608				96 96
	Trichloroethene	16.78	130	411145	20.988 27.413		41	
	1,4-Dioxane	16.73	ρο. -	771145 411145			#	70
	Isooctane	17.03	100	2245260			TT.	97
	Methyl Methacrylate	17.03	100	419036	54.931		#	78
51)	n-Heptane	17.22	7 1	549268	23.505		#	70
	cis-1,3-Dichloropropene	17.96	/5	769693 511168	25.125			98
53)	4-Methyl-2-pentanone	17.99	28	511168 778421	30.322			77
	trans-1,3-Dichloropropene		75	//8421	28.870			96
	1,1,2-Trichloroethane	18.90	9/	455476	25.434			98
	Toluene	19.29		2101017	23.136			99
59)		19.59		1231992	30.574			91
	Dibromochloromethane	19.83		513028	29.251			96
	1,2-Dibromoethane	20.16		509579	25.820			98
	Butyl Acetate	20.40		1434553	29.707		17	95
	n-Octane	20.57	57	479879	22.906		#	65
64)		20.76	166	470482	21.961			96
	Chlorobenzene	21.63		1293089	22.801			100
66)		22.10		2315057	23.688			98
	m- & p-Xylene	22.34		3587528	47.518			99
68)		22.43	173	395324	28.183			97
69)		22.78		1424275	25.334			99
	o-Xylene	22.93	91	1840488	23.959			100
	n-Nonane	23.19	43	1120233	23.111			90
	1,1,2,2-Tetrachloroethane	22.89		833802	27.102			99
	Cumene	23.67	105	2314842	23.698			98
	alpha-Pinene	24.16	93	1152211	26.284			95
	n-Propylbenzene	24.29	91	2909839	23.901			98
	3-Ethyltoluene	24.41	105	2347412	26.360			99
	4-Ethyltoluene	24.47	105	2279933	25.795			96
79)	1,3,5-Trimethylbenzene	24.56	105	1896044	25.164	ng		98 1

Data File : 03040907.D

: 4 Mar 2009 13:08 Acq On

Operator : EM

Sample : 25ng TO-15 LCS STD Misc : \$20-03030904/\$30.00 : S20-03030904/S20-02090907 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 04 14:43:45 2009
Quant Method : J:\MS09\Methods\R9021709.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update : Wed Feb 18 07:31:09 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Un	its 1	Dev(Min)
80) alpha-Methylstyrene	24.75	118	1053431	26.137 n	****	97
81) 2-Ethyltoluene	24.80	105	2289120	25.168 n		96
82) 1,2,4-Trimethylbenzene	25.06		2007566	25.103 ng	g	96
83) n-Decane	25.16		1205323	25.185 n	g	77
84) Benzyl Chloride	25.23	91	1811803	32.523 n	g	99
85) 1,3-Dichlorobenzene	25.26	146	1009850	23.724 n	g	99
86) l,4-Dichlorobenzene	25.33	146	1029006	23.549 ng	g	98
87) sec-Butylbenzene	25.39	105	2614334	24.986 ng	9	99
88) p-Isopropyltoluene	25.57	119	2446006	24.499 n	g	98
89) 1,2,3-Trimethylbenzene	25.58	105	2035868	25.478 n	g	96
90) 1,2-Dichlorobenzene	25.75	146	984001	24.112 ng	9	98
91) d-Limonene	25.75	68	879138	26.632 ng	g	98
92) 1,2-Dibromo-3-Chloropr	26.28	157	346831	29.553 ng	g i	# 86
93) n-Undecane	26.66	57	1266419	26.013 ng	g	75
94) 1,2,4-Trichlorobenzene	27.80	184	215402	29.667 ng	g i	# 89
95) Naphthalene	27.94	128	2603333	26.520 ng	g	100
96) n-Dodecane	27.90	57	1285251	24.914 n	g	73
97) Hexachloro-1,3-butadiene	28.36	225	379479	25.703 n	g	98
98) Cyclohexanone	22.52	55	704714	24.640 ng	g i	# 88
99) tert-Butylbenzene	25.06	119	1955897	25.483 ng	g	97
100) n-Butylbenzene	26.08	91	2198608	26.648 n	g	94

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Copy of Calculations

Instructions for Data Validation-Method TO-15(SCAN)

1. Determination of Pressure Dilution Factor

Upon receipt at the laboratory the pressure or vacuum of the sample canisters is measured using a digital pressure gauge. The canisters are then pressurized with humidified zero air to approximately +3.5 psig (pounds per square inch gauge).

Pressure Dilution factor is calculated as:

$$PDF = \frac{P_f + 14.7}{P_i + 14.7}$$

 P_f final pressure in psig P_i initial pressure in psig

2. Validating Initial and Continuing Calibration Results

GC/MS target compound analysis is performed using internal standard quantitation. Three internal standard compounds (Bromochloromethane, 1,4-Difluorobenzene and Chlorobenzene-d5) are added to each aliquot of sample, blank, standard and duplicate at an amount of 25 nanograms(ng). Internal standard responses are used to calculate RRFs (relative response factors) as follows:

$$RRF = \frac{A_x C_{is}}{A_{is} C_x}$$

area response of the analyte quantitation ion A_{x}

area response of the corresponding internal standard quantitation ion Ais

Cis internal standard concentration, ng

Cx. analyte concentration, ng

The percent relative standard deviation (%RSD) for the five or six initial calibration points should be less than 30% (with a maximum of two analytes ≤0%) for the calibration to be considered valid and linear.

$$\%RSD = \frac{SD}{RRF}(100)$$

standard deviation

average or mean RRF (ICAL)

Instructions for Data Validation-Method TO-15(SCAN

The initial calibration is verified once per twenty-four hour analytical sequence with the analysis of a continuing calibration standard at one of the initial calibration levels (actual analyte concentrations of the CCV are the same as the corresponding concentrations in the initial calibration). The relative response factor of each target analyte from the daily continuing calibration standard is compared to the average relative response factor from the initial multipoint calibration. The percent difference (%D) of the initial and continuing calibration relative response factors is calculated as follows:

$$\%D = \left(\frac{\overline{RRF} - RRF \ cont}{\overline{RRF}}\right) (100)$$

RRF

average relative response factor from the initial calibration

RRF cont

relative response factor from the daily continuing calibration standard

Note: the percent difference (%D) should be less than 30% for an acceptable continuing calibration standard.

3. Validating GC/MS Target Analyte Quantitation Results

Target analytes are measured in nanograms using internal standard quantitation as follows:

$$ng_{x} = \frac{Axng_{k}}{A_{k}RRF}$$

ng: nanogram concentration of analyte x

 A_{λ} area response of the analyte's quantitation ion

Ab area response of the corresponding internal standard's quantitation ion

ngu internal standard amount, in nanograms

RRF average of mean RRFs (ICAL)

4. Calculation of μg/m³ (microgram per cubic meter) Results

Target compound results reported on the "Results of Analysis" form in units of $\mu g/m^3$ are calculated as follows:

$$\mu g/m^3 = \frac{(ng)(PDF)}{L}$$

ng nanograms of analyte (measured on the GC/MS quantitation report)

PDF pressure dilution factor (see equation 1)

L sample aliquot in Liters

Instructions for Data Validation-Method TO-15(SCAN)

5. Conversion to ppb (parts per billion) Volume

$$C_{pphv} = C_x \left(\frac{24.46}{FW} \right)$$

- formula weight of the target analytes (i.e. formula weight of Dichloromethane is 84.94; 1,2-Dichloropropane is 113)
- 24.46 molar volume of ideal gas at 25°C and 1 atmosphere
- C. final analyte concentration calculated in equation 4 (ug/m³)

Analytical Report Cover Page

Haley & Aldrich of NY

For Lab Project # 09-1231 Issued April 14, 2009 This report contains a total of 13 pages

The reported results relate only to the samples as they have been received by the laboratory.

Any noncompliant QC parameters having impact on the data are flagged or documented on the final report.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of frequently used data flags and their meaning:

[&]quot;ND" = analyzed for but not detected.

[&]quot;E" = Result has been estimated, calibration limit exceeded.

[&]quot;D" = Duplicate results outside QC limits. May indicate a non-homogenous matrix.

[&]quot;M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

[&]quot;B" = Method blank contained trace levels of analyte. Refer to included method blank report.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Haley & Aldrich of NY

Lab Project No.: Lab Sample No.: 09-1231

Client Job Site: Coopervision

4352

Client Job No.: N/A

Sample Type:

Soil

Field Location: Drum Comp

Date Sampled: Date Received: 04/06/2009 04/07/2009

Field ID No.:

N/A

Laboratory Report for RCRA Metals Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	04/09/2009	EPA 6010	5.39
Barium	04/09/2009	EPA 6010	62.8
Cadmium	04/09/2009	EPA 6010	<0.399
Chromium	04/09/2009	EPA 6010	14.5
Lead	04/09/2009	EPA 6010	18.4
Mercury	04/14/2009	EPA 7471	0.0225
Selenium	04/09/2009	EPA 6010	<0.399
Silver	04/09/2009	EPA 6010	<0.796

ELAP ID No.:10958

Comments:

Bruce Hoogesteger, Technical Director

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site:

Coopervision Lab Project Number: 09-1231

Lab Sample Number: 4352

Client Job Number: N/A

Field Location:

Drum Comp

Field ID Number: N/A Sample Type:

Date Sampled: **Date Received:** 04/06/2009 04/07/2009

Soil Date Analyzed:

04/09/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 352	Dibenz (a,h) anthracene	ND< 352
Anthracene	ND< 352	Fluoranthene	ND< 352
Benzo (a) anthracene	ND< 352	Fluorene	ND< 352
Benzo (a) pyrene	ND< 352	Indeno (1,2,3-cd) pyrene	ND< 352
Benzo (b) fluoranthene	ND< 352	Naphthalene	ND< 352
Benzo (g,h,i) perylene	ND< 352	Phenanthrene	ND< 352
Benzo (k) fluoranthene	ND< 352	Pyrene	ND< 352
Chrysene	ND< 352	Acenaphthylene	ND< 352
Diethyl phthalate	ND< 352	1,2-Dichlorobenzene	ND< 352
Dimethyl phthalate	ND< 879	1,3-Dichlorobenzene	ND< 352
Butylbenzylphthalate	ND< 352	1,4-Dichlorobenzene	ND< 352
Di-n-butyl phthalate	ND< 352	1,2,4-Trichlorobenzene	ND< 352
Di-n-octylphthalate	ND< 352	Nitrobenzene	ND< 352
Bis (2-ethylhexyl) phthalate	ND< 352	2,4-Dinitrotoluene	ND< 352
2-Chloronaphthalene	ND< 352	2,6-Dinitrotoluene	ND< 352
Hexachlorobenzene	ND< 352	Bis (2-chloroethyl) ether	ND< 352
Hexachloroethane	ND< 352	Bis (2-chloroisopropyl) ether	ND< 352
Hexachlorocyclopentadiene	ND< 352	Bis (2-chloroethoxy) methan	ND< 352
Hexachlorobutadiene	ND< 352	4-Bromophenyl phenyl ether	ND< 352
N-Nitroso-di-n-propylamine	ND< 352	4-Chlorophenyl phenyl ether	ND< 352
N-Nitrosodiphenylamine	ND< 352	Benzidine	ND< 879
N-Nitrosodimethylamine	ND< 352	3,3'-Dichlorobenzidine	ND< 352
Isophorone	ND< 352	4-Chloroaniline	ND< 352
Benzyl alcohol	ND< 879	2-Nitroaniline	ND< 879
Dibenzofuran	ND< 352	3-Nitroaniline	ND< 879
2-Methylnapthalene	ND< 352	4-Nitroaniline	ND< 879

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 352	2-Methylphenol	ND< 352
2-Chlorophenol	ND< 352	3&4-Methylphenol	ND< 352
2,4-Dichlorophenol	ND< 352	2,4-Dimethylphenol	ND< 352
2,6-Dichlorophenol	ND< 352	2-Nitrophenol	ND< 352
2,4,5-Trichlorophenol	ND< 879	4-Nitrophenol	ND< 879
2,4,6-Trichlorophenol	ND< 352	2,4-Dinitrophenol	M ND< 352
Pentachlorophenol	ND< 879	4,6-Dinitro-2-methylphenol	M ND< 879
4-Chloro-3-methylphenol	ND< 352	Benzoic acid	ND< 879

ELAP Number 10958

Method: EPA 8270C

Data File: S44908.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site: Coopervision Lab Project Number: 09-1231

Lab Sample Number: Method Blank

Client Job Number: N/A

N/A

Date Sampled:

N/A

Field Location: Field ID Number:

Sample Type:

N/A Soil

Date Received:

N/A

Date Analyzed:

04/09/2009

			DH
Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 286	Dibenz (a,h) anthracene	ND< 286
Anthracene	ND< 286	Fluoranthene	ND< 286
Benzo (a) anthracene	ND< 286	Fluorene	ND< 286
Benzo (a) pyrene	ND< 286	Indeno (1,2,3-cd) pyrene	ND< 286
Benzo (b) fluoranthene	ND< 286	Naphthalene	ND< 286
Benzo (g,h,i) perylene	ND< 286	Phenanthrene	ND< 286
Benzo (k) fluoranthene	ND< 286	Pyrene	ND< 286
Chrysene	ND< 286	Acenaphthylene	ND< 286
Diethyl phthalate	ND< 286	1,2-Dichlorobenzene	ND< 286
Dimethyl phthalate	ND< 714	1,3-Dichlorobenzene	ND< 286
Butylbenzylphthalate	ND< 286	1,4-Dichlorobenzene	ND< 286
Di-n-butyl phthalate	ND< 286	1,2,4-Trichlorobenzene	ND< 286
Di-n-octylphthalate	ND< 286	Nitrobenzene	ND< 286
Bis (2-ethylhexyl) phthalate	ND< 286	2,4-Dinitrotoluene	ND< 286
2-Chloronaphthalene	ND< 286	2,6-Dinitrotoluene	ND< 286
Hexachlorobenzene	ND< 286	Bis (2-chloroethyl) ether	ND< 286
Hexachloroethane	ND< 286	Bis (2-chloroisopropyl) ether	ND< 286
Hexachlorocyclopentadiene	ND< 286	Bis (2-chloroethoxy) methan	ND< 286
Hexachlorobutadiene	ND< 286	4-Bromophenyl phenyl ether	ND< 286
N-Nitroso-di-n-propylamine	ND< 286	4-Chlorophenyl phenyl ether	ND< 286
N-Nitrosodiphenylamine	ND< 286	Benzidine	ND< 714
N-Nitrosodimethylamine	ND< 286	3,3'-Dichlorobenzidine	ND< 286
Isophorone	ND< 286	4-Chloroaniline	ND< 286
Benzyl alcohol	ND< 714	2-Nitroaniline	ND< 714
Dibenzofuran	ND< 286	3-Nitroaniline	ND< 714
2-Methylnapthalene	ND< 286	4-Nitroaniline	ND< 714

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 286	2-Methylphenol	ND< 286
2-Chlorophenol	ND< 286	3&4-Methylphenol	ND< 286
2,4-Dichlorophenol	ND< 286	2,4-Dimethylphenol	ND< 286
2,6-Dichlorophenol	ND< 286	2-Nitrophenol	ND< 286
2,4,5-Trichlorophenol	ND< 714	4-Nitrophenol	ND< 714
2,4,6-Trichlorophenol	ND< 286	2,4-Dinitrophenol	ND< 286
Pentachlorophenol	ND< 714	4,6-Dinitro-2-methylphenol	ND< 714
4-Chloro-3-methylphenol	ND< 286	Benzoic acid	ND< 714

ELAP Number 10958

Method: EPA 8270C

Data File: S44905.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site:

Coopervision

Lab Project Number: 09-1231

Client Job Number: N/A Lab Sample Number: 4352

Field Location: Field ID Number: Drum Comp Date Sampled: **Date Received:** 04/06/2009

N/A Sample Type: Soil

04/07/2009

Date Analyzed:

04/10/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 7.35
Bromomethane	ND< 7.35
Bromoform	ND< 18.4
Carbon Tetrachloride	ND< 18.4
Chloroethane	ND< 7.35
Chloromethane	ND< 7.35
2-Chloroethyl vinyl Ether	ND< 36.7
Chloroform	ND< 7.35
Dibromochloromethane	ND< 7.35
1,1-Dichloroethane	ND< 7.35
1,2-Dichloroethane	ND< 7.35
1,1-Dichloroethene	ND< 7.35
cis-1,2-Dichloroethene	ND< 7.35
trans-1,2-Dichloroethene	ND< 7.35
1,2-Dichloropropane	ND< 7.35
cis-1,3-Dichloropropene	ND< 7.35
trans-1,3-Dichloropropene	ND< 7.35
Methylene chloride	ND< 18.4
1,1,2,2-Tetrachloroethane	ND< 7.35
Tetrachloroethene	ND< 7.35
1,1,1-Trichloroethane	ND< 7.35
1,1,2-Trichloroethane	ND< 7.35
Trichloroethene	ND< 7.35
Trichlorofluoromethane	ND< 7.35
Vinyl chloride	ND< 7.35
ELAD N 400E0	N.4 - 11:

Aromatics	Results in ug / Kg
Benzene	ND< 7.35
Chlorobenzene	ND< 7.35
Ethylbenzene	ND< 7.35
Toluene	ND< 7.35
m,p-Xylene	ND< 7.35
o-Xylene	ND< 7.35
Styrene	ND< 18.4
1,2-Dichlorobenzene	ND< 18.4
1,3-Dichlorobenzene	ND< 18.4
1,4-Dichlorobenzene	ND< 7.35

Ketones	Results in ug / Kg
Acetone	267
2-Butanone	ND< 36.7
2-Hexanone	ND< 18.4
4-Methyl-2-pentanone	ND< 18.4

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 7.35
Vinyl acetate	ND< 18.4
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V64978.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site:

Coopervision

Lab Project Number: 09-1231

Client Job Number:

N/A

Lab Sample Number: Method Blank

Field Location:

N/A

Date Sampled:

N/A N/A

Field ID Number:

N/A

Date Received:

04/10/2009

Sample Type:

Soil

Date Analyzed:

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 5.00
Bromomethane	ND< 5.00
Bromoform	ND< 12.5
Carbon Tetrachloride	ND< 12.5
Chloroethane	ND< 5.00
Chloromethane	ND< 5.00
2-Chloroethyl vinyl Ether	ND< 25.0
Chloroform	ND< 5.00
Dibromochloromethane	ND< 5.00
1,1-Dichloroethane	ND< 5.00
1,2-Dichloroethane	ND< 5.00
1,1-Dichloroethene	ND< 5.00
cis-1,2-Dichloroethene	ND< 5.00
trans-1,2-Dichloroethene	ND< 5.00
1,2-Dichloropropane	ND< 5.00
cis-1,3-Dichloropropene	ND< 5.00
trans-1,3-Dichloropropene	ND< 5.00
Methylene chloride	ND< 12.5
1,1,2,2-Tetrachloroethane	ND< 5.00
Tetrachloroethene	ND< 5.00
1,1,1-Trichloroethane	ND< 5.00
1,1,2-Trichloroethane	ND< 5.00
Trichloroethene	ND< 5.00
Trichlorofluoromethane	ND< 5.00
Vinyl chloride	ND< 5.00
ELAD No 40050	N.A 41-

Aromatics	Results in ug / Kg
Benzene	ND< 5.00
Chlorobenzene	ND< 5.00
Ethylbenzene	ND< 5.00
Toluene	ND< 5.00
m,p-Xylene	ND< 5.00
o-Xylene	ND< 5.00
Styrene	ND< 12.5
1,2-Dichlorobenzene	ND< 12.5
1,3-Dichlorobenzene	ND< 12.5
1,4-Dichlorobenzene	ND< 5.00

Ketones	Results in ug / Kg
Acetone	ND< 25.0
2-Butanone	ND< 25.0
2-Hexanone	ND< 12.5
4-Methyl-2-pentanone	ND< 12.5

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 12.5

ELAP Number 10958

Method: EPA 8260B

Data File: V64975.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client:

Haley & Aldrich of NY

Lab Project No.:

09-1231

Client Job Site:

Coopervision

Lab Sample No.:

LCS 4/8 s

Client Job No.:

N/A

Sample Type:

Soil

Field Location:

N/A

Date Sampled: Date Received:

N/A N/A

Field ID No.:

N/A

Laboratory Report for Metals Analysis in Solid

Analyte	Date Analyzed	Method Blank	LCS Added	LCS Recovered	LCS Recovery	LCS Dup Added	LCS Dup Recovered	LCS Dup Recovery	LCS Dup Percent Difference	Percent Difference Limits	% Recovery Limits
		mg/kg_	mg/kg	mg/kg	%	mg/kg	mg/kg_	%	%	%	
Arsenic	04/09/2009	<0.48	213	203	95.2	212	208	98.4	3.31	5.87	88.1 - 109
Barium	04/09/2009	<1.96	213	210	98.8	212	212	100	1.21	5.06	92.3 - 111
Cadmium	04/09/2009	<0.489	85.2	83.0	97.5	84.6	83.2	98.4	0.919	4.95	92.0 - 110
Chromium	04/09/2009	<0.978	213	204	95.6	212	205	96.8	1.25	11.9	87.8 - 111
Lead	04/09/2009	<0.489	213	209	98.0	212	214	101	3.21	5.98	90.5 - 112
Mercury	04/14/2009	<0.0062	0.0741	0.0756	102	0.0668	0.067	101	1.58	2.37	87.0 - 109
Selenium	04/09/2009	<0.489	213	200	94.0	212	202	95.6	1.69	6.22	84.0 - 109
Silver	04/09/2009	<0.978	21.3	20.7	97.2	21.2	20.7	98.0	0.820	5.15	91.4 - 110

ELAP ID No.:10958

Comments:

Annroyed By

Bruce Hoogesteger, Technical Directo

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site: C

Coopervision

Lab Project Number: 09-1231

Lab Sample Number: 4352

SDG Group:

N/A

Client Job Number: N.A

Field Location: Field ID Number:

Sample Type:

Drum Comp

Drum Com N/A

Soil

Date Sampled: Date Received:

04/06/2009 04/07/2009

Date Analyzed:

04/09/2009

Spiked Compound	Sample Results	MS Spiked	MS Results	MS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
2-Chlorophenol	ND< 352	2,630	2,210	84.0	2,610	2,160	82.8	1.44
1,4-Dichlorobenzene	ND< 352	1,750	1,530	87.4	1,740	1,360	78.2	11.11
N-Nitroso-di-n-propylamine	ND< 352	1,750	1,530	87.4	1,740	1,400	80.5	8.22
Phenol	ND< 352	2,630	2,510	95.4	2,610	2,390	91.6	4.06
4-Chloro-3-methylphenol	ND< 352	2,630	2,430	92.4	2,610	2,430	93.1	0.75
2,4-Dichlorophenol	ND< 352	2,630	2,320	88.2	2,610	2,380	91.2	3.34
2,6-Dichlorophenol	ND< 352	2,630	1,940	73.8	2,610	2,080	79.7	7.69
2,4-Dimethylphenol	ND< 352	2,630	2,380	90.5	2,610	2,450	93.9	3.69
2-Nitrophenol	ND< 352	2,630	2,230	84.8	2,610	2,350	90.0	5.95
1,2,4-Trichlorobenzene	ND< 352	1,750	1,620	92.6	1,740	1,500	86.2	7.16
Acenaphthene	ND< 352	1,750	1,610	92.0	1,740	1,550	89.1	3.20
2,4-Dinitrophenol	ND< 352	2,630	351	13.3	2,610	349	13.4	0.75
2,4-Dinitrotoluene	ND< 352	1,750	1,580	90.3	1,740	1,580	90.8	0.55
4-Nitrophenol	ND< 879	2,630	876	33.3	2,610	937	35.9	7.51
2,4,6-Trichlorophenol	ND< 352	2,630	1,700	64.6	2,610	1,940	74.3	13.97
4,6-Dinitro-2-methylphenol	ND< 879	2,630	876	33.3	2,610	871	33.4	0.30
Pentachlorophenol	ND< 879	2,630	876	33.3	2,610	951	36.4	8.90
Pyrene	ND< 352	1,750	1,680	96.0	1,740	1,640	94.3	1.79
			1					

ELAP Number 10958

Data File: S44908.D

Data File: S44909.D

Data File: S44910.D

Method: EPA 8270C

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site: Coopervision

Lab Project Number: 09-1231 Lab Sample Number: 4352 SDG Group:

N/A

Client Job Number: N/A

Field Location: Dru

Drum Comp

Date Sampled: Date Received: 04/06/2009

Field ID Number: Sample Type: N/A Soil

Date Analyzed:

04/07/2009 04/09/2009

Spiked Compound	Sample Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
2-Chlorophenol	ND< 286	2,170	2,060	94.9	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	ND< 286	1,450	1,250	86.2	N/A	N/A	N/A	N/A
N-Nitroso-di-n-propylamine	ND< 286	1,450	1,340	92.4	N/A	N/A	N/A	N/A
Phenol	ND< 286	2,170	2,100	96.8	N/A	N/A	N/A	N/A
4-Chloro-3-methylphenol	ND< 286	2,170	2,250	104	N/A	N/A	N/A	N/A
2,4-Dichlorophenol	ND< 286	2,170	2,190	101	N/A	N/A	N/A	N/A
2,6-Dichlorophenol	ND< 286	2,170	2,220	102	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	ND< 286	2,170	2,220	102	N/A	N/A	N/A	N/A
2-Nitrophenol	ND< 286	2,170	2,220	102	N/A	N/A	N/A	N/A
1,2,4-Trichlorobenzene	ND< 286	1,450	1,370	94.5	N/A	N/A	N/A	N/A
Acenaphthene	ND< 286	1,450	1,360	93.8	N/A	N/A	N/A	N/A
2,4-Dinitrophenol	ND< 286	2,170	1,530	70.5	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	ND< 286	1,450	1,480	102	N/A	N/A	N/A	N/A
4-Nitrophenol	ND< 714	2,170	2,170	100	N/A	N/A	N/A	N/A
2,4,6-Trichlorophenol	ND< 286	2,170	2,370	109	N/A	N/A	N/A	N/A
4,6-Dinitro-2-methylphenol	ND< 714	2,170	1,990	91.7	N/A	N/A	N/A	N/A
Pentachlorophenol	ND< 714	2,170	2,470	114	N/A	N/A	N/A	N/A
Pyrene	ND< 286	1,450	1,410	97.2	N/A	N/A	N/A	N/A
FLAP Number 10958	Data File: \$44905 I		ata File: S44906 D		1	ata File: S44906 D		thod: EPA 82700

ELAP Number 10958

Data File: S44905.D

Data File: S44906.D

Data File: S44906.D

Method: EPA 8270C

Semi-Volatile Surrogate Report

Client: Haley & Aldirch of NY

Client Job Site: Coopervision

Lab Project Numb 09-1231

Client Job Number N/A

Date Received:

4/7/2009

Sample Type:

Soil

Lab Sample Number	Field Number	Field Location	2-FP	P-d5	NB-d5	2-FBF	2,4,6-TBP	TP-d14
Blank	N/A	N/A	70	73.5	77.8	82.5	84.7	80.6
LCS	N/A	N/A	86.5	91.6	94.7	98.6	101	101
4352	N/A	Drum Comp	75.8	80.7	85.5	85.5	80.9	80.0
4352 MS	N/a	Drum Comp	72.7	84.4	88.4	92.4	69.4	86.9
4352 MSD	N/A	Drum Comp	66.5	75.2	87.6	90.4	73.1	85.4
						1 1		
						·		
						1 1		

ELAP Number 10958

Soil

<u>Surrogate</u>	Advisory QC Surrogate Limit
2-Fluorophenol	44.3% - 85.6%
Phenol-d5	49.9% - 91.3%
Nitrobenzene-d5	46.5% - 102%
2-Fluorobiphenyl	15.0% - 109%
2,4,6-Tribromophenol	34.4% - 110%
Terphenyl-d14	45.4% - 130%

Comments:

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: Haley & Aldrich of NY

Client Job Site:

Coopervision

Lab Project Number: 09-1231 Lab Sample Number: 4352

SDG Group:

N/A

Client Job Number: N/A

Field Location:

LCS

Date Sampled:

04/06/2009

Field ID Number: N/A Sample Type: Soil

Date Received: Date Analyzed:

04/07/2009 04/10/2009

Spiked Compound	Blank Results	LCS Spiked	LCS Results	LCS Percent	MSD Spiked	MSD Results	MSD Percent	MS / MSD
	in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
1,1-Dichloroethene	ND< 5.00	125	112	89.6	N/A	N/A	N/A	N/A
Benzene	ND< 5.00	125	112	89.6	N/A	N/A	N/A	N/A
Trichloroethene	ND< 5.00	125	121	96.8	N/A	N/A	N/A	N/A
Toluene	ND< 5.00	125	121	96.8	N/A	N/A	N/A	N/A
Chlorobenzene	ND< 5.00	125	122	97.6	N/A	N/A	N/A	N/A
			:					

ELAP Number 10958

Data File: V64975.D

Data File: V64974.D

Data File: V64974.D

Method: EPA 8260D

Volatile Surrogate Report

Client: Haley & Aldrich of NY

Client Job Site: Coopervision

Lab Project Numb 09-1231

Client Job Number N/A

Date Received:

4/7/2009

Sample Type:

Soil

Lab Sample Number	Field Number	Field Location	1,2-DCE	Tol	4-BFB
LRB	N/A	N/A	104	101	86.6
4352	N/A	Drum Comp	82.5	81.7	58.0
]				
					1
			_		

ELAP Number 10958

Surrogate

Advisory QC Surrogate Limits

1,2-Dichloroethane-d4

72.8% - 128%

Toluene-d8

74.2% - 117%

4-Bromofluorobenzene

70.8% - 107%

Comments:

Signature:

Bruce Hoogesteger: Technical Director

PARADIGM

CHAIN OF CUSTODY

ENVIRON	IMENT/		I HIGGER GATTE VILLE AND					INVOICE TO:																
SERVICE	S, INC.							COMPANY: SANE													OJECT	#:		
179 Lake Avenue Rochester, NY 14608 (716) 647-2530 * (800) 724-1997 FAX: (716) 647-3311			ADDRESS: 200 TOWN CENTRE DR					ADDRESS:									09-1231							
			CITY: ROCHECTER NY 19623				CITY: STATE: ZIP:									TURNAR	OUND TIM	IE: (WOR	KING DA	/S)				
			PHONE	9000	FAX:			PHONE:					FAX:		,						STD		OT	HER
PROJECT NAME/SITE			ATTN:	, DEBUR	e GAZIS	•		ATTN:										1	2	Пз	冈	5		
Cooper	is and		COMMEN					L												- L			B	
1 Cooper V	, ,,, ,,,,	sign soul sig			A 12 A 14 A 15 A 15 A 15 A 15 A 15 A 15 A 15				R	EQI	JES1	TED /	ANAL	YSIS				ad lateral sold	ki éles si			dales A		i Santidas
DATE	TIME	C O M P O S I T E	G R A B	SAMPLE L	OCATION/FIELD	ID	M A T R I	C O N T A I N E R S	TOL 10055	Tel SVOC'S	KERA BMORG							REMA	RKS	ed tit om mit General programs			IGM LA	
14/6/09	1600	X		Drom C	onf		Soil	3	Х	X.	X											43	3 5	2
2					•																			
3									\prod						П									
4																				-				
5							<u> </u>		T		\top			1		1						1	十	\Box
									+	\neg	\top	+		+								十	+	H
6									+				\vdash	-	\vdash	_							+	+
7			 					ļ	+		_		╂╌╂╴		\vdash				,,			\dashv	十	
8		<u> </u>	-		***************************************		<u> </u>	 			_	+										\dashv	+	-
9			 					 	+	-		+-		-	\vdash	_	·					-	+	+
10	ONII V/tt							L	<u> </u>	Ш	!_	<u> </u>			Ш		***							
**LAB USE		ok hov				·		1 1						1.1	1				- 15	71				
if acceptable or				CONTAINER TYPE:	<u> </u>	PRESERVATION	is: / A 				HOLDI	NG TIME	≣:	X			TEMPERA		C 10	N ed				
Sampled By:	`			Date/Time);	Relinq	uished l	Зу:								Dat	e/Time:			Tota	l Cost:			
D. J.	0	1		4/6/09	1600																			
Relinquished B	22	X)	1	Date/Time 4/7/09	0850	Receiv	ed By:									Dat	te/Time:							
Received By:	Mu		· · · · · · · · · · · · · · · · · · ·	Vate/Time	R'50	Receiv	red@La	ab By:	a. 7	HO	m	ch	41	7/7/	09		te/Time:			P.I.F				

APPENDIX E

Data Usability Summary Reports

Data Usability Summary Report (DUSR) CooperVision - Residential Sub-Slab/Indoor Air Analytical Laboratory: Columbia Analytical Services, Inc. - Rochester, NY Sample Delivery Group # R0900538, P0900513, P0900735

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008) and/or USEPA National Functional Guidelines for Low Concentration Organic Data Review (EPA 540-R-04-004)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable.

This DUSR pertains to the following samples:

Sample ID
SV-InA-10
SV-OutA-10
SV-SS-10
SV-SS-58
SV-InA-58
SV-SS-64
SV-InA-64
SV-SS-8
SV-InA-8
SV-OutA-020909
SV-SS-2
SV-InA-2
SV-SS-16

Sample ID
SV-InA-16
SV-SS-705-1
SV-InA-705-1
SV-OutA-022609
SV-SS-709-2
SV-InA-709-2

Project Samples were analyzed according to the following analytical methods:

	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA TO-15	30 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- Target Compound Identification
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without

exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No qualification of the data is recommended.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No Qualification of the data is recommended.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane), or 5 times (5X) the amount for other target compounds. Target analytes were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples. No qualification of the data is recommended.

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters to quantify the amount of the targe compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 25% for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

Target Compound Identification

GC/MS qualitative analysis for organic parameters was performed to remove mis-identifications of the target compounds. The relative retention times (RRT) of all reported target compounds were within \pm 0.06 RRT units of the associated calibration standard RRT, and all ions present in the reference standard spectrum at a relative intensity greater than 10 percent were also present in the sample spectrum. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using NYSDEC ASP Category B format or equivalent. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\70665\014 - VCA Closeout - 2008-09\Lab Data\Indoor Air_Sub Slab\[2009_0313_CooperVision_Residential_DV Notes.xls\]Final Report

APPENDIX F

Waste Disposal Documentation

*	NON-HAZARDOUS	1. Generator ID Num			2. Page/1 of	3. Emergency Respons		4. Waste Ti	_		A A					
	5. Generator's Name and Mailin		7366	8279	VV	585-985-681 Generator's Site Addres	s (if different t	han mailing addre	0 4 2 3 2 0 0 9							
	Cooper Vision 711 North Road Scottsville NY 1 Generator's Phone: 585	4546		Att: T	arun Patel	Generalor S One Address	A THEOLOGICAL									
	U.S. EPA ID Number															
		Clean Harbors Environmental Services, Inc. 7. Transporter 2 Company Name							MAD03932250 U.S. EPAID Number							
	FRANKS VA	1.S. EPA ID Number														
	8. Designated Facility Name and Clean Harbors C 3300 Cummings Chattanooga TN Facility's Phone: 423 8	214	1 2 C													
		· · · · · · · · · · · · · · · · · · ·	:			10. Con	tainers	11. Total	12. Unit	— · ·	_ 					
	9. Waste Shipping Name		: !			No.	Туре	Quantity	Wt./Vol.							
GENERATOR -	1. USDOT Non- Drill Cuttings/	Regulated, No Soil Borings	n-Hazardou	8 ·		001	DM	600	Р							
GEN	2.															
	3.	: :			*	·										
	4.				<u></u>											
	13. Special Handling Instructions and Additional Information 1. CH363499, 55Gal. Plate# <u>F640484</u>															
	Sales Orde	er# 7222	89698													
	14. GENERATOR'S CERTIFIC	ATION: I certify the ma	aterials described al	bove on this manife	st are not subject	to federal regulations for	r reporting pro	per disposal of Ha	azardous W	/aste.						
45	Generator's/Offeror's Printed/Ty	yped Name			Siç	nature				Mont	h Day	Year				
V	15. International Shipments	JOHA	Hoga	. <i>'</i>				yan	<u>. —</u>	M	34	09				
INT	·	Import to U	.S.		Export from I	1.7	entry/exit:	[/	<u></u>	·		<u>**</u>				
	Transporter Signature (for expo		als	<u>,</u>	<u> </u>	Date lea	iving U.S.:				·					
NSPORTER	Transporter 1 Printed Typed Na Transporter 2 Printed Typed Na	Honto	2			nature				Month Month	123	Year Year				
H.	DAVID 4)	MENEC	:4			mil .	Lo	nener		7	7/	05				
A	17. Discrepancy		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
	17a. Discrepancy Indication Space Quantity Type Residue Partial Rejection Manifest Reference Number:											Full Rejection				
Σ	17b. Alternate Facility (or Generator)								U.S. EPA ID Number							
FACILIT		; ;				·.		1								
ATED	Facility's Phone: 17c. Signature of Alternate Faci	ility (or Generator)					<u> </u>		· _	Month	n Day	Year				
- DESIGN					4											
	18. Designated Facility Owner of	or Operator: Certification	on of receipt of mate	rials covered by the	manifest except	as noted in Item 17a										
	Printed/Typed Name		· · · · · · · · · · · · · · · · · · ·		Sig	nature		·		Month	n Day	Year				
V	DOUG Kelly	/			t	<u> </u>	<u> </u>	<u> </u>	· 		13	09				