

July 21, 2011

Mr. Bryan Wong Environmental Engineer NYS Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101

Subject: Remedial Action Work Plan Addendum #1

75-20 Astoria Blvd Site

Jackson Heights, Queens, New York

VCA No.: W2-0854-9906

Dear Mr. Wong,

This submittal is Addendum #1 to the New York State Department of Environmental Conservation (NYSDEC)-approved Remedial Action Work Plan (RAWP) dated April 7, 2008. This addendum has been prepared to address the mobile dense non-aqueous phase liquids (DNAPL) zone in the area of monitoring well MW-35, and summarizes the investigational activities, remedial action selection process, and the planned remedial approach.

INTRODUCTION

On December 17, 2008, during groundwater monitoring well sampling activities, mobile DNAPL was identified within monitoring wells MW-35S and MW-35D.

This mobile DNAPL finding was significant, as the existing bioremediation system was originally intended to address the relatively low levels (i.e., residual) of DNAPL that were found in the source area. The mobile DNAPL found in the area of monitoring well MW-35 is not amenable to the existing biological remedial approach.

To address this, a co-solvent flushing approach is proposed to reduce the DNAPL to residual levels (i.e., elimination of mobile DNAPL) which will then be addressed by the existing bioremediation system.

REMEDIAL INVESTIGATION

As previously stated, on December 17, 2008, during groundwater monitoring activities, mobile DNAPL was identified within wells MW-35S and MW-35D. Based on this finding, the NYSDEC was immediately notified and additional investigational activities and system modifications were undertaken.

Between January 12, 2009 and February 6, 2009 four (4) soil borings (MW-35DD, and B/MW-42 through B/MW-44) were completed to investigate the horizontal and vertical delineation of the mobile DNAPL. The borings were completed using hollow-stem auger (HSA) drilling techniques, and following completion of each boring the borehole was converted into a monitoring well. Determination of the presence of mobile DNAPL was completed primarily through visual inspection of the soil cores and through subsequent well pumping. Other indicators used included laboratory analysis, PID readings and screening of soils under ultraviolet lighting. Results of this investigation identified that separate-phase DNAPL was present at MW-35, which had migrated vertically downward into the underlying sandy zone. Additionally, mobile DNAPL was also present within the silt-zone at boring/monitoring well B/MW-42; however, only residual-phase DNAPL was found to be present in the underlying sandy zone at this location. Boring/monitoring well locations B/MW-43 and B/MW-44 did not contain any indications of mobile DNAPL in either the silt zone or the underlying sandy zone.

As a result of B/MW-42's mobile DNAPL findings, three additional borings/monitoring wells (B/MW-45 through B/MW-47) were completed between March 10, 2009 and March 27, 2009 to further investigate the mobile DNAPL zone. Results of this investigation did not identify any further mobile DNAPL in either the silt-zone or the underlying sandy zone. However, while mobile DNAPL was not visually present at B/MW-45, laboratory analysis of a soil sample collected from the silt-zone identified a trichloroethane (TCA) concentration of 8,100 parts per million (ppm) which is indicative of DNAPL potentially being present.

As a result of B/MW-45's TCA soil concentration, boring B-48 was completed to the northwest of B/MW-45 on April 15, 2009. For this boring a Geoprobe™ was utilized to collect soils from the silt-zone and upper region of the underlying sandy zone. There were no visual indications of DNAPL, and laboratory analysis of the silt-zone soil identified a TCA concentration of only 18 ppm, which is not indicative of DNAPL being present. In addition, laboratory analysis of the soils collected from the upper region of the underlying sandy zone did not contain soil VOC concentrations of any significant concern, as only 1,1-dichloroethane (DCA) marginally exceeded its TAGM 4046 soil guidance value.

On May 28, 2009, a work plan titled DNAPL Well Installation Plan was submitted to the NYSDEC. The first part of this plan called for the installation of three silt-zone monitoring wells (MW-49S through MW-51S), three cluster monitoring wells (MW-55 D₁D₂D₃ through MW-57 D₁D₂D₃) and two downgradient deep monitoring wells (MW-52DD and MW-53DD) in the underlying sandy zone. The second part of this plan called for the relocation of extraction well EW-16's bladder pump to be moved among the wells located within the mobile DNAPL zone to physically extract the mobile DNAPL from the ground and capture it within DNAPL knockout vessels located within the system enclosure. Between June 22, 2009 and August 4, 2009, following NYSDEC approval of the work plan, well installation and trenching activities occurred. During installation of cluster well MW-56 flowing sands prevented the deepest interval (60'-65' below grade (bg)) from being installed. Following well installation activities, trenching was completed between wells EW-16, MW-35S, MW-42S, and MW-49S through MW-51S for the installation of a sub-grade conduit to provide access for EW-16's pump to these other wells. This conduit served to pass through the water level sensor and bladder pump's air and water lines from well to well. Once DNAPL recovery from a particular well became asymptotic, the pump would be relocated to another well. Monitoring wells installed within the underlying sandy zone were initially used to confirm the physical presence or absence of DNAPL, thereafter monitoring wells MW-35DD, MW-52DD and MW-53DD were added to the routine groundwater monitoring schedule. During development of these underlying sandy-zone wells, no DNAPL was observed in the extracted groundwater.

Between August 2009 and the present time, extraction well EW-16's pump and sensor were installed in each of the silt-zone DNAPL zone wells. Through March 31, 2011, approximately 76.35 gallons of DNAPL had been extracted from the subsurface. Of this, 60.99 gallons were captured via the knockouts and 15.36 gallons recovered via well bailing.

On May 17, 2010 cluster wells MW-55D₁D₂D₃, MW-56 D₁D₂, and MW-57 D₁D₂D₃, and deep zone monitoring wells MW-52DD and MW-53DD were sampled to further confirm the delineation of the mobile DNAPL within the underlying sandy zone. Groundwater analytical results identified TCA concentrations of 3.0 ppm, 46.3 ppm and 1.78 ppm, respectively for MW-55D₁D₂D₃'s three sampling intervals, and 6.06 ppm, 18.5 ppm and 10.7 ppm, respectively for MW-57 D₁D₂D₃'s sampling intervals. These TCA concentrations are not indicative of DNAPL being present and thus confirm the delineation of

mobile DNAPL to the east and north. Meanwhile, monitoring wells MW-52DD and MW-53DD located to the west (downgradient), were identified to contain a TCA concentration of 5.59 ppm and 3.1 ppm, respectively. Again, these concentrations are not indicative of DNAPL being present and thus delineates to the west. However, cluster well MW-56 D_1D_2 , located to the south, contained elevated dissolved-phase TCA concentrations of 1,120 ppm and 888 ppm for the 40'-47' bg sampling interval and the 50'-56' bg sampling interval, respectively. These identified concentrations are potentially indicative of DNAPL present in the area. As a result, the southern mobile DNAPL boundary in the underlying sandy zone was considered undelineated.

Between September 1 and 3, 2010, boring B-54 was completed south of cluster well MW-56 D_1D_2 . This boring served a dual purpose: 1) to delineate the southern boundary in the underlying sandy zone, and 2) to tighten up the southern boundary within the silt-zone (currently delineated by EW-47, IW-13, IW-14 and MW-39). Of the three soil samples collected within the silt zone, the maximum TCA soil concentration detected was 7.3 ppm. Of the two soil samples selected from within the underlying sandy-zone, the TCA concentrations were non-detect and 42 parts per billion (ppb), respectively. These soil concentrations detected are not indicative of DNAPL being present in either the silt-zone or the underlying sandy-zone. Thus, this boring completed the delineation.

Boring/monitoring well locations are depicted on Figure 1, and boring/well construction logs have been included as Appendix A. Soil analytical results and groundwater analytical results have been tabulated as Table 1 and Table 2, respectively.

Summary of Remedial Investigation Silt Zone

Figure 2 depicts the horizontal delineation and Figures 4 and 5 depict the vertical delineation of the mobile DNAPL within the silt-zone. Within the silt-zone, DNAPL was visually identified in borings MW-35DD, B/MW-42S and MW-45S. In addition to those borings, DNAPL was physically extracted from MW-35S and EW-16 via hand bailing or pumping. Other indications of residual DNAPL, which included soil fluorescence, elevated PID readings and olfactory observations, were identified within boring/monitoring well B/MW-46, B/MW-47, B/MW-49S and B/MW-50S.

In all, within a circular shaped area of approximately 30' in diameter, visual DNAPL or indications of residual DNAPL ranging in thickness from 1' to 4' along the perimeter and to approximately 8' thick near the center (MW-42S) have been identified.

Underlying Sandy Zone

Figure 3 depicts the horizontal delineation and Figures 4 and 5 depict the vertical delineation of the mobile DNAPL within the underlying sandy-zone. Within the underlying sandy-zone, DNAPL was visually observed in borings MW-35DD and B/MW-42S. In addition, DNAPL has been physically extracted from MW-35D, and indications of DNAPL (based on groundwater concentrations) are present at MW-56 D_1D_2 .

In all, an oval shaped area approximately 16' by 8' was identified to contain DNAPL. Within this zone, visual DNAPL ranged from approximately 34' bg (the silt/underlying sand interface) to approximately 36' bg, with additional indications of residual DNAPL (i.e., fluorescence, PID readings, olfactory observations) ranging to depths of approximately 46' bg.

REMEDIAL ACTION SELECTION

The purpose of a remedial action selection (RAS) is to identify and evaluate the most appropriate remedial strategy for a particular situation. In developing the remedial strategy, the selected remedial alternative needs to satisfy a set of remedial action objectives (RAOs). These RAOs are as follows:

- 1. Protection of Public Health and the Environment Ensure that on-site contaminant levels in soil and groundwater do not pose unacceptable risks to the public health: The selected remedial approach should not create a exposure pathway. Currently there is no use of groundwater at the Site and no other potential for the building occupants to contact subsurface contaminants. The only potential exposure pathway of concern is vapor intrusion into indoor air. This has been shown not to be a concern, based on indoor air sampling previously conducted at nearby residences and conducted annually on an ongoing basis at the Site.
- 2. Standards, Criteria & Guidance (SCGs): The goal of this remedial action is the elimination of the DNAPL sources to residual levels that can be treated by the existing bioremediation system. For evaluation of the data the following SCGs will be used: Soil: NYSDEC's CP-51, Soil Cleanup Guidance; Groundwater: NYSDEC's Class GA standards; and Vapor: NYSDOH's Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- **3. Short-term Effectiveness:** The selected remedial approach should be able to achieve significant short-term (i.e. within 6 months) reductions.
- **4. Long-term Effectiveness and Permanence:** The remedial approach selected must have the ability to achieve permanent results following completion of the remedial action.
- **5. Reduction of Toxicity, Mobility or Volume with Treatment:** The remedial approach must have the ability to reduce the toxicity, mobility or volume of the contaminants for each media (i.e., soil, groundwater, etc.).
- **6. Implementability:** The remedial approach must be technically and economically feasible for all aspects of the project, including construction, maintenance and monitoring.

Based on these factors, several technologies were evaluated. These technologies include:

1. Chemical Oxidation: Chemical oxidants such as persulfate and Fenton's Reagent are technologies that can remediate volatile organics in a relatively quick timeframe. However, chemical oxidants often require pH changes, high temperature or a second chemical activator to trigger the reaction which can be difficult to obtain in well-buffered soils. In addition, chemical oxidation can be challenging in geology with high soil oxidant demand (SOD), as injected oxidant can be consumed by the soil matrix rather than the target contaminants. As part of the evaluation of this remedial alternative, Shaw conducted a soil buffering test and soil oxidant demand (SOD) tests for peroxide-activated persulfate and Fenton's Reagent. Results of the peroxide-activated persulfate SOD test indicated an SOD value of approximately 100 g/Kg, and the Fenton's Reagent SOD test indicated an SOD value of approximately 60 g/Kg. In addition,

the soil buffering test determined the Site soils had a strong buffering capacity. Based on these factors, chemical oxidation would most likely be ineffective for this Site;

- 2. Thermal Heating / Soil Vapor Extraction (i.e., electrical resistance heating): Thermal heating is a newer technology in which the subsurface is heated to vaporize the contaminants. The subsequent vapors are then captured via a soil vapor extraction system. While the thermal heating would most likely be very effective in vaporizing the Site contaminants, vapor recovery could be difficult based on Site geology. Sand stringers present within the silt zone could potentially direct vapors to areas outside the vapor extraction zone of influence, thereby increasing the risk of exposure. In addition, installation of the subsurface infrastructure associated with the heating elements and vapor extraction legs could impact the existing bioremediation system. Based on this, thermal heating / SVE has not been selected;
- 3. Excavation: Excavation is a traditional and effective approach for the removal of source-zone impacts. However, Louis Berger has two main concerns with this approach: 1) Excavation of the silt zone would create a pathway in which surrounding impacts (residual DNAPL and impacted groundwater) could migrate downward into the underlying sandy zone. 2) As the depth of the DNAPL within the silt zone is approximately 35' bg, the excavation would either have to be exponentially larger to allow for proper sloping, or would require an expensive shoring system. In either case (though especially with an un-shored excavation) the existing bioremediation system would be dramatically impacted. And 3) the digging, loading and transportation of these DNAPL-laden soils could create an exposure risk (e.g., through odors during soil excavation and loading). Thus, excavation was not considered for this Site;
- 4. Co-Solvent Flushing: Co-solvent flushing is an innovative remedial approach in which a co-solvent is injected into a DNAPL zone. The injected solution interacts with the contaminants by lowering the interfacial tension between the DNAPLs and the soils (mobilization) and enhancing DNAPL solubility (solubilization), as it is flushed through the zone of contamination. As applied to this project, DNAPL solubilization into the dissolved-phase will be the most significant action occurring. The elutriate (i.e., the mixture of injected co-solvent, contaminant and groundwater) is then captured from the subsurface by a network of extraction wells for treatment and/or offsite disposal (for this project, the extracted elutriate will be transported offsite for proper disposal).

Advantages to co-solvent flushing include: 1) It will rapidly remove a significant portion of the total DNAPL mass trapped in the subsurface; 2) as an in-situ technology, it will eliminate the need to excavate, handle and transport large quantities of contaminated soil and sediment; 3) it is effective on a wide range of contaminants (including TCA); 4) it can be used in conjunction with the existing bioremediation technology; and 5) the residual ethanol remaining in the subsurface after co-solvent flushing is completed has been shown to enhance bioremediation of chlorinated solvents, which is expected to complement the existing bioremediation system. It represents the most cost effective approach to rectify the DNAPL contamination. Implementation of this technology requires a full understanding and delineation of the DNAPL zone, considerable modeling and design with extensive bench-scale testing to determine the appropriate co-solvent and stringent requirements to control and monitor injection and to capture co-solvent to prevent further migration of DNAPL.

In comparison to alternative technologies, co-solvent flushing achieves the RAO's and has the advantage of limiting exposure by remediating the contaminants without the need for excavation. It also removes DNAPL, and the residual concentration of the co-solvent (ethanol) will stimulate the existing biological process. In addition, co-solvent flushing has immediate (short-term) effectiveness as the DNAPL is physically removed from the subsurface, and has long-term effectiveness as the co-solvent provides an additional stimulant to the existing bioremediation system and thereby further reduces the volume of contaminants in both soil and groundwater.

In consideration of these advantages and potential benefits to the existing bioremedial process, co-solvent flushing has been selected as the best option to address the DNAPL source.

REMEDIAL ACTION SCOPE OF WORK

Louis Berger has selected co-solvent flushing as the remedial strategy to address the DNAPL impacts in the area of MW-35. This section describes development of the co-solvent approach and conceptual design, full scale implementation, and the associated monitoring activities and schedule.

Development of Conceptual Design

Implementation of co-solvent flushing requires detailed hydrogeological information, in-situ modeling to determine fluid migration, and bench-scale testing to ensure co-solvency of the DNAPL with the selected alcohol co-solvent. The steps that were completed included the following:

1. Hydraulic Conductivity Field Testing: As the Site has a great deal of heterogeneity, pumping tests were completed at MW-50S in order to determine the hydraulic conductivity within the DNAPL treatment zone. To complete this, the transmissivity (T_i) was first calculated using the Jacobs method over one log cycle (i.e., well drawdown then recovery). For the data to be valid, the hydraulic properties computed from the drawdown and recovery curves should be within 10% of one another. Transmissivity values calculated from the drawdown and recovery curves are 0.0012 and 0.0011 ft²/min, respectively. These computed values are sufficiently close to be considered valid.

To compute the hydraulic conductivity (K), the saturated thickness of the transmissive unit must be known. For this calculation, a transmissive unit thickness of 8' (the length of the well screen) was used. Using the mean transmissivity (i.e., $0.00115 \text{ ft}^2/\text{min}$) and a thickness of 8 feet, the hydraulic conductivity was calculated to be $1.44 \times 10^{-4} \text{ ft/min}$ or $2.07 \times 10^{-1} \text{ ft/day}$. Hydraulic conductivity field testing data and calculations have been included as Appendix B.

- 2. Tracer Test Preliminary Modeling: The hydraulic conductivity data, along with other site-specific data (geology, groundwater flow direction, saturated thickness, etc.) were then used to calculate an estimated timeframe for the movement of particles within the saturated zone (in this case, bromide particles).
- 3. Tracer Test: A simple bromide tracer test was then performed to determine the effective porosity within the target treatment zone. During this test, groundwater was extracted from MW-49S at a

rate of approximately 0.1 gallons per minute (gpm), amended with sodium bromide to achieve a bromide concentration of 400 mg/L and then reinjected into MW-50S. In total, the tracer test lasted 21 days, and determined an effective porosity of approximately 7.7%. This information was used to determine the co-solvent flushing volume. The tracer test results have been included as Appendix C.

4. Well Field Modeling: Using WinFlow, an analytical model that simulates two-dimensional steady-state and transient groundwater flow, the proper well layout and injection/extraction rates were determined.

Initially, different well field designs were evaluated. For this situation, a five-spot well layout was determined to be the most effective. Using this type of design, a network of four injection wells and nine extraction wells would be necessary to provide adequate coverage and containment. A layout of these wells is presented as Figure 6. However, while the five-spot layout was identified as the most effective, stagnant zones equivalent to 5-10% of the treatment area remained. Thus, a two-stage injection approach was determined to be necessary to provide 100% coverage.

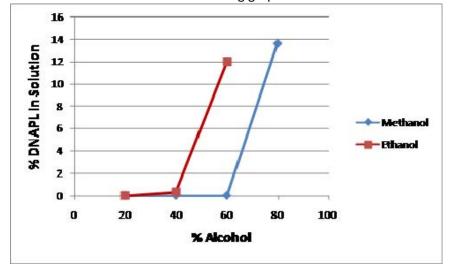
Stage 1 would involve injecting into EXT-09 (center well) while extracting from INJ-01 through INJ-04. The simulated injection and extraction rates are as follows:

	Number of Wells	Target Pumping Rate (gpm)	Resultant Water Level Change (ft)	Water Level (ft bg)
Extraction Wells EXT-01 through EXT-04	4	0.04	-5.4	20.4
		Total Extraction	on Rate = 0.16	
Injection Wells EXT-09	1	0.12	+7.5	7.5
		Total Injectio	n Rate = 0.12	

Based on the well layout and injection rates, the timeframe it takes to complete one pore volume sweep is approximately 21 days. Particle tracking modeling results for time T=4 days, 7.5 days, 15 days and 30 days have been included as Appendix D. Based on the flow rates specified the maximum drawdown is expected to be only 5.4 feet, to a depth of 20.4 feet bg. As the treatment interval is between 26-35 feet bg, this drawdown does not preclude any portion of the treatment area.

Thereafter, Stage 2 would involve injection into INJ-01 through INJ-04 while extracting from EXT-01 through EXT-09. The simulated injection and extraction rates are as follows:

	Number of Wells	Target Pumping Rate (gpm)	Resultant Water Level Change (ft)	Water Level (ft bg)
Extraction Well EXT-9 (center)	1	0.12	-11.5	26.5
Extraction Wells EXT-1 through 4	4	0.07	-4.3	19.3
Extraction Wells EXT-5 through 8	4	0.03	-2.3	17.3
		Total Extraction	on Rate = 0.52	
Injection Wells INJ-1 through 4	4	0.125	+14	6
		Total Injectio	n Rate = 0.50	


Based on the well layout and injection rates, the timeframe it takes to complete one pore volume sweep is approximately 15 days. Particle tracking modeling results for time T=4 days, 7.5 days, 15 days, 30 days and 45 days have been included as Appendix E. These timeframes are in agreement with the bromide tracer test results, which showed that it took about 14 days for the tracer concentration to reach its maximum achievable concentration at the recovery well.

During this stage, the maximum drawdown at extraction wells EXT-1 through EXT-8 does not extend into the target interval (26'-35' bg). The drawdown at extraction well EXT-9, however, does marginally extend into the treatment interval. The drawdown extends only 0.5 feet into the treatment interval, and has a radius of less than 1 foot from the well. It should be noted though, that as EXT-9 is used as an injection well during Stage 1, this area is included within the scope of the remediation.

5. Co-Solvent Bench-Scale Testing: To determine the most effective co-solvent, a laboratory bench-scale test was completed comparing ethanol and methanol. Initially, solutions of ethanol and deionized water of 20, 40, and 60 % (by volume), and methanol and deionized water of 20, 40, 60 and 80% solution were prepared. The experiment consisted of adding incremental 0.2 mL aliquots of the Site DNAPL to 50 mL alcohol solutions in glass beakers, and visually determining how much DNAPL each alcohol solution could solubilize by observing the phase behavior. The experiment was performed at room temperature (approximately 20 degrees C).

Results are summarized in the following graph:

For methanol, the 0.2 mL aliquots of DNAPL became solubilized only in the 80% methanol solution. A total of 6.8 mLs of the DNAPL (assumed to be primarily TCA) were solubilized in the 80% methanol solution, which equates to approximately 14% DNAPL in solution or 160,000 mg/L. It was noted that some viscous residue began accumulating in the beaker after 2 mLs of DNAPL were added. This residue is likely a contaminant comingled with the primarily TCA DNAPL. The volume of the residue was small compared to the total DNAPL volume, suggesting the volume fraction of this compound within the DNAPL is small.

For ethanol, results indicate that the cosolvency effect was substantially greater than for methanol. At an ethanol volume composition of 40%, nearly all of the 0.2mL aliquot of DNAPL became solubilized. At an ethanol volume composition of 60%, 6 mLs of the DNAPL became solubilized, which equates to approximately 12% DNAPL in solution or 144,000 mg/L. Trace amounts of the viscous residue were observed in the ethanol experiments, but the amount was significantly less than in the methanol experiments, suggesting that the ethanol was more effective at solubilizing a wider range of contaminants than methanol.

Based on the results of this bench scale screening test, ethanol was shown to be a more effective co-solvent than methanol for treating the site DNAPL. A 60% ethanol solution had approximately the same solubilizing effectiveness as an 80% methanol solution. In addition, the accumulation of the insoluble viscous residue was substantially less in the 60% ethanol solution than in the 80% methanol solution, suggesting that the comingled compound was better solubilized by ethanol than by methanol.

Considering that alcohol concentrations in the recovery wells are unlikely to be greater than 60 to 80% (due to mixing), ethanol has been selected as the most appropriate co-solvent for this application.

6. Evaluation of DNAPL Migration: Because co-solvent flushing operates in part by lowering the interfacial tension (at high co-solvent concentrations) between the DNAPL and soil matrix, the potential exists for DNAPL mobilization. As such, as part of the conceptual design, calculations to

determine the potential vertical migration of DNAPL were completed using several conservative assumptions. In summary, during the timeframe in which co-solvent flushing activities are occurring, a worst case vertical migration rate of 1.4×10^{-7} m/s, or 0.04 ft/day was calculated. Based on this worst case rate, over the approximately 50 day duration of the co-solvent flushing activities, a total vertical DNAPL migration is expected to be a maximum of only 2 ft. A detailed discussion of the evaluation, the conservative assumptions, and the calculations is presented as Appendix F.

FULL SCALE SCOPE OF WORK

As determined based on the modeling, distribution of the flushing amendments will be performed using an array of four (4) injection wells and nine (9) extraction wells. All extraction/injection wells will be drilled using hollow-stem auger (HSA) drilling techniques and will be screened (including the well sand pack) from a depth of just above the silt/underlying sand interface (approximately 35' bg) upward nine feet (to approximately 26' bg). The injection and extraction wells will be constructed of 4"schedule 40 PVC and will contain 8' of well screen. The actual depth of the wells will be based on the silt/underlying sand interface. For the following well construction description, it is assumed that the silt/underlying sand interface is at 35' bg: Following insertion of the well to a depth of 34.5' bg, a 9-foot well sand pack will be installed (between approximately 25.5' to 34.5'), followed by a 3-foot bentonite seal (between approximately 22.5' and 25.5'). The remaining borehole will be grouted to the surface. The surface will then be finished with a flush-mounted roadbox set within a 2'x2' concrete apron. Finally, the wells will be developed via overpumping to remove fine-grained sediments from the vicinity of the well screen. Well construction for the Injection/ extraction wells has been depicted as Figure 7.

Following installation and development of the well network, co-solvent flushing activities will be implemented. A two-stage injection approach has been selected for the treatment area in order to achieve 100% flushing coverage. Based on a circular treatment area with a radius of 16 feet, a 9' depth interval (~26'-35' bg), and a porosity of 7.7%, the two-stage treatment approach will require a total ethanol usage of 11,250 gallons. During the first stage of flushing, Louis Berger will be flushing an equivalent of approximately one pore volume through the treatment area. A total of 3,250 gallons of ethanol will be injected into EXT-09, while groundwater is pumped from extraction wells EXT-01 through EXT-04. During the second stage of flushing, Louis Berger will be flushing an equivalent of approximately two pore volumes through the treatment area for a total of 8,000 gallons of ethanol. During this second flushing stage, ethanol will be injected into injection wells INJ-01 through INJ-04 and groundwater extracted from extraction wells EXT-01 through EXT-09. Detailed injection procedures are as follows:

Pre-Ethanol Injection Activities: Initially, the injection and extraction wells will be operated at the design flow rates for each stage to ensure target rates can be attained. Potable water will be injected, and extracted groundwater will be directed into the onsite waste storage tank for future off-site disposal. During this period, groundwater elevations will be monitored in nearby monitoring wells to confirm adequate containment exists (i.e., water table elevations outside the treatment zone are not increasing). It is anticipated that the pre-ethanol injection activities will occur over a period of six hours (three hours for each stage); thereafter, baseline samples for ethanol and VOCs (EPA Method 8260) will be performed at each extraction well, and at all nearby monitoring wells (Table 3).

Stage 1, Phase 1: During this phase, 500 gallons of ethanol solution will be injected into extraction well EXT-09 (center well) at the specified design rate. Initially, co-solvent solution will be 10 % ethanol and 90 % water by volume; this ratio will be evenly increased to approximately 100% ethanol over the 500

gallon injection volume. The increasing rate of ethanol solution injection will limit buoyancy effects during the ethanol injection¹. A total of 250 gallons of ethanol will be injected during this phase. Stage 1, Phase 1 is anticipated to take approximately 3 days to complete.

During this phase, monitoring will include daily ethanol and VOC samples from each of the four extraction wells as well as a VOC sample from within the storage tank. In addition, 11 nearby monitoring locations (Table 3) will be sampled for VOCs and ethanol at the end of Phase 1. Groundwater samples will be carefully examined for phase behavior. Free product or emulsions volumes will, to the extent possible, be quantified. Ethanol and VOC analyses will be performed on the aqueous phase only. Ethanol analyses will be performed with a 24-hour turnaround time. If substantial migration of ethanol is observed beyond the influence of the extraction wells (i.e., concentration > 10% by volume (100,000 mg/L)), then the system will be modified (e.g., adjustment of extraction or injection well flow rates, and/or use of existing wells as additional extraction wells to enhance capture). Injection and extraction well flow rates also will be measured on a daily basis.

Stage 1, Phase 2: After completion of the ethanol ramp-up activities (Phase 1) and after confirmation of significant containment based on the monitoring well sampling, 2,750 gallons of 100% ethanol will be injected into extraction well EXT-09 (center well) at the specified design rate. This phase of the injection is expected to take up to 15 days to complete. During this time, injection and extraction well flow rates will be recorded on a daily basis and the total fluid removal (water/ethanol and DNAPL phases) will be measured daily. During this phase, monitoring will include daily ethanol and VOC samples from each of the four extraction wells as well as a VOC sample from within the storage tank. In addition, every 3rd day, VOC and ethanol analyses will be performed at 11 additional monitoring locations (Table 3).

Stage 1, Phase 3: Following the ethanol injection described in Stage 1, Phase 2, 500 gallons of ethanol solution will be injected into extraction well EXT-09 at the specified design rate. Initially, co-solvent solution composition will be 90 % ethanol and 10 % water by volume; this ratio will be evenly increased to 100% water over the 500 gallon injection volume. A total of 250 gallons of ethanol will be injected during this phase. It is anticipated that this phase will take 3 days to complete. During this phase, monitoring will include daily ethanol and VOC samples from each of the four extraction wells as well as a VOC sample from within the storage tank. In addition, 11 nearby monitoring locations (Table 3) will be sampled for VOCs and ethanol at the end of Phase 3.

Stage 1, Phase 4: Water injection will continue into extraction well EXT-09 until ethanol concentrations decrease below 20% at all monitoring locations. Monitoring will be occur from each of the four extraction wells, collection tank and 11 nearby monitoring locations for VOCs and ethanol every 3rd day. While an exact timeframe for this phase is unknown, it is believed that this phase should be complete in approximately 7 days.

Stage 2, Phase 1: During this phase, 500 gallons of ethanol solution will be injected simultaneously into injection wells INJ-01 through INJ-04 at the specified design rates. Initially, co-solvent solution will be 10% ethanol and 90% water by volume; this ratio will be evenly increased to approximately 100% ethanol over the 500 gallon injection volume at each well. As previously stated, the increased rate of

¹ Jawitz, J.W., Sillan, R.K., Annable, M.D., Rao, P.S.C., Warner, K. 2000. In-situ alcohol flushing of a DNAPL source zone at a dry cleaner site. *Environ. Sci. Technol.*, 34, 3722-3729.

ethanol solution injection will limit buoyancy effects during the ethanol injection. A total of 2,000 gallons of ethanol solution will be injected during this phase, of which approximately 1,000 gallons will be ethanol. Stage 2, Phase 1 is anticipated to take approximately 3 days to complete.

During this phase, monitoring will include daily ethanol and VOC samples from all nine extraction wells as well as a VOC sample from within the storage tank. In addition, 14 nearby monitoring locations will be sampled for VOCs and ethanol at the end of Phase 1. All samples will be carefully examined for phase behavior. Free product or emulsions volumes will, to the extent possible, be quantified. Ethanol and VOC analyses will be performed on the aqueous phase only. Ethanol analyses will be performed with a 24-hour turnaround time. If substantial migration of ethanol (i.e., concentration >10% by volume (100,000 mg/L)) is observed beyond the influence of the extraction wells, then the system will be modified (e.g., adjustment of extraction or injection well flow rates, and/or use of existing wells as additional extraction wells to enhance capture). Injection and extraction well flow rates also will be measured on a daily basis.

Stage 2, Phase2: After completion of the Stage 2, Phase 1 activities and after confirmation of significant containment based on the monitoring well sampling, up to 1,500 gallons of 100% ethanol will be injected simultaneously into each of the four injection wells at the specified design rates (for a total of 6,000 gallons ethanol). This phase of the injection is expected to take up to 9 days to complete. During this time, injection and extraction well flow rates will be recorded on a daily basis as well as the total fluid removal (water/ethanol and DNAPL phases) will be measured. During this phase, monitoring will include daily ethanol and VOC samples from all nine extraction wells as well as a VOC sample from within the storage tank. In addition, 14 nearby monitoring locations (Table 3) will be sampled for VOCs and ethanol every 3rd day.

Stage 2, Phase 3: Following the ethanol injection described in Stage 2, Phase 2, 500 gallons of ethanol/water mixtures will be simultaneously injected into each injection well (for a total of 2,000 gallons injected) at the specified design rates. Initial co-solvent solution composition will be 90 % ethanol and 10 % water by volume; this ratio will be evenly increased to 100% water over the 500 gallon injection volume at each well. A total of 2,000 gallons of ethanol solution will be injected during this phase, of which approximately 1,000 gallons is ethanol. It is anticipated that this phase will take 3 days to complete. During this phase, monitoring will include daily ethanol and VOC samples from all nine extraction wells as well as a VOC sample from within the storage tank. In addition, 14 nearby monitoring locations (Table 3) will be sampled for VOCs and ethanol at the end of Phase 3.

Stage 2, Phase 4: Water injection will continue in each injection well until ethanol concentrations decrease to 3% by volume at all monitoring locations. Monitoring will be performed from each extraction well, as well as 14 other nearby monitoring locations (Table 3) and the collection tank every 3rd day. While an exact timeframe for this phase is unknown, it is believed that this phase should be completed in approximately eight days.

Post-Injection Monitoring: At approximately 1 and 8 weeks after co-solvent and water injection has been completed, all extraction and monitoring locations (Table 3) will be sampled for ethanol, VOC, and anions. Collected groundwater will be carefully examined for the presence of any non-aqueous phases during sampling.

Sub-Slab Soil Vapor Monitoring: At approximately 2 weeks following commencement of injection activities, sub-slab soil vapor will be collected from sub-slab sampling locations 1S and 2S (Figure 8). The purpose of this sampling is to evaluate if co-solvent flushing activities will affect sub-slab soil vapor concentrations beneath the Site building. This data will be evaluated against the historical data collected annually since 2005, and will be used to determine if additional monitoring is required during co-solvent flushing activities.

To collect the sub-slab vapor samples, a 5/8-inch diameter hole will be drilled through the concrete slab using an electric drill. The drill bit will be advanced approximately 3-inches into the sub-slab material to create an open cavity. The vapor probe will consist of a length of 3/8-inch diameter Teflon™ tubing, which will then be inserted no farther than 2-inches into the sub-slab material. The tubing will be sealed to the surface with a non-VOC containing material consisting of permagum grout or beeswax or equivalent.

Prior to collection of the sub-slab soil vapor samples, the tubing will be purged of 1-3 volumes to eliminate air within the tubing. During purging, a tracer gas (helium) will be used to verify the integrity of the seal. Purged air will not be discharged to the indoor air. Following purging, the tubing will be attached to a 6L Summa canister fitted with an in-line filter and a 1-hour flow regulator. Prior to opening the Summa canister, the initial vacuum will be noted. After 1 hour, the Summa canister will be closed and the final vacuum noted. Based on the sample volume of 6L and a sample period of 1 hour, the sub-slab samples will be collected at a flow rate of approximately 0.1 liters per minute. Following collection of the sub-slab vapor samples, the drilled hole in the foundation will be sealed with concrete slurry.

The sub-slab soil vapor samples will then be shipped following proper chain-of-custody procedures to a NYSDOH Environmental Laboratory Approval Program (ELAP)-accredited laboratory, where they will be analyzed for VOCs in accordance with EPA Method TO-15.

CONCEPTUAL SYSTEM DESIGN

As previously stated, the co-solvent flushing system will operate by extracting groundwater while simultaneously injecting ethanol. Since the extracted groundwater will not be reinjected, the system essentially contains two separate operations; an extraction operation, and an injection operation. Details of these are described below and a conceptual process and instrumentation diagram (P&ID) has been included as Figure 9.

Extraction Operations: The extraction operations include the bladder pumps with associated controls and air supply, a manifold, two DNAPL knockouts and a waste storage tank. Groundwater will be extracted via bottom-loading bladder pumps, set approximately 12-inches off the bottom of the extraction wells. The specific bladder pump that will be used is QED's Well Wizard® T1250 bladder pump. These bladder pumps will be controlled using the existing bioremediation system's controls, and supply air will be provided by the existing bioremediation's air compressor. The water return lines from the extraction wells will then be combined into a single water stream and directed through two DNAPL knockout vessels, located in series. The effluent water stream will then be contained within a storage tank for subsequent offsite disposal.

Injection Operations: The injection operations include an ethanol storage tank, ethanol metering pumps with associated controls, flow meters, and a potable water supply. During periods in which potable

water is injected to the subsurface, rotameters will be used to control the flow of water to the injection wells. Water will be supplied via the facility's tap or fire hydrant. At the same time, metering pumps will meter ethanol from the ethanol storage tank into the water lines. During Phase 2 of both Stage 1 and 2, the rotameters will be closed as only ethanol will be injected during this period.

SAFETY

Ethanol is flammable material, and as such requires special safety considerations. Currently, Louis Berger is in communications with the New York City Fire Department as part of the system design process; however, at a minimum, the following safety-related tasks are planned:

- Updating of Louis Berger's Health and Safety Plan (HASP) to include co-solvent flushing-related activities. A copy of the updated HASP will be forwarded to the NYSDEC;
- Secure work area via Jersey Barriers and the construction of 6' chain-link fence to prevent unauthorized access or vehicles and pedestrians, respectively. The access gate will be locked at all times when Louis Berger personnel are not within the work area;
- All electronic equipment located within the work zone (i.e., solenoid valves, metering pumps, etc.) will be intrinsically safe (to eliminate ignition sources within the work area);
- All equipment (i.e., tanks, supports, etc.) will be grounded to prevent static discharges;
- Nitrogen will be introduced into the ethanol and waste storage tank headspaces to eliminate the presence of oxygen;
- All equipment used for groundwater monitoring events will be intrinsically safe; and
- No smoking will be allowed in or around the work area.

Prior to commencement of injection activities, permits will be obtained from the USEPA Underground Injection Control (UIC) department, the Alcohol and Tobacco Tax and Trade Bureau (a bureau of the United States Department of Treasury), New York City Fire Department (FDNY) and the New York City Department of Environmental Protection.

SCHEDULE

The anticipated schedule for implementation of the proposed remedy, following NYSDEC approval, is as follows:

<u>Activity</u>	<u>Timeframe</u>
Procurement & Permits	Weeks 1 – 7
Well Installation and Development	Weeks 8 – 9
Treatment System Construction	Weeks 10 – 11
Treatment System Operation	Weeks 12 – 20
Post System Operation Monitoring	Weeks 20 – 28
Total Timeframe	28 Weeks

SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

Louis Berger & Associates, P.C. (Louis Berger) in conjunction with Shaw Environmental, Inc. has prepared this addendum to the RAWP for the 75-20 Astoria Blvd Site located at 75-20 Astoria Boulevard, in Jackson Heights, Queens County, New York.

LOUIS BERGER & ASSOCIATES, P.C.

Erik Gustafson

Principal Environmental Scientist

Ajay Kathuria, P.E. Principal Engineer

SHAW ENVIRONMENTAL, INC.

Charles Schaefer, PhD

Senior Technology Applications Engineer

List of Attachments

Figures

Figure 1 – Site Plan

Figure 2 – Horizontal Extent of Mobile DNAPL – Silt Zone

Figure 3 – Horizontal Extent of Mobile DNAPL – Underlying Sandy Zone

Figure 4 - Cross Section A - A'

Figure 5 – Cross Section B – B'

Figure 6 – Co-Solvent Well Network Layout

Figure 7 - Well Construction Details

Figure 8 – Sub-Slab Sampling Locations

Figure 9 – Conceptual Process and Instrumentation Diagram

Tables

Table 1 – Summary of Soil Analytical Data

Table 2 – Summary of Groundwater Analytical Data

Table 3 – Process and Monitoring Schedule

Appendices

Appendix A – Boring/Well Construction Logs

Appendix B – Hydraulic Conductivity Field Test Results

Appendix C - Tracer Test Results

Appendix D – Stage 1 Particle Tracking Modeling Results

Appendix E – Stage 2 Particle Tracking Modeling Results

Appendix F – Evaluation of Vertical DNAPL Migration

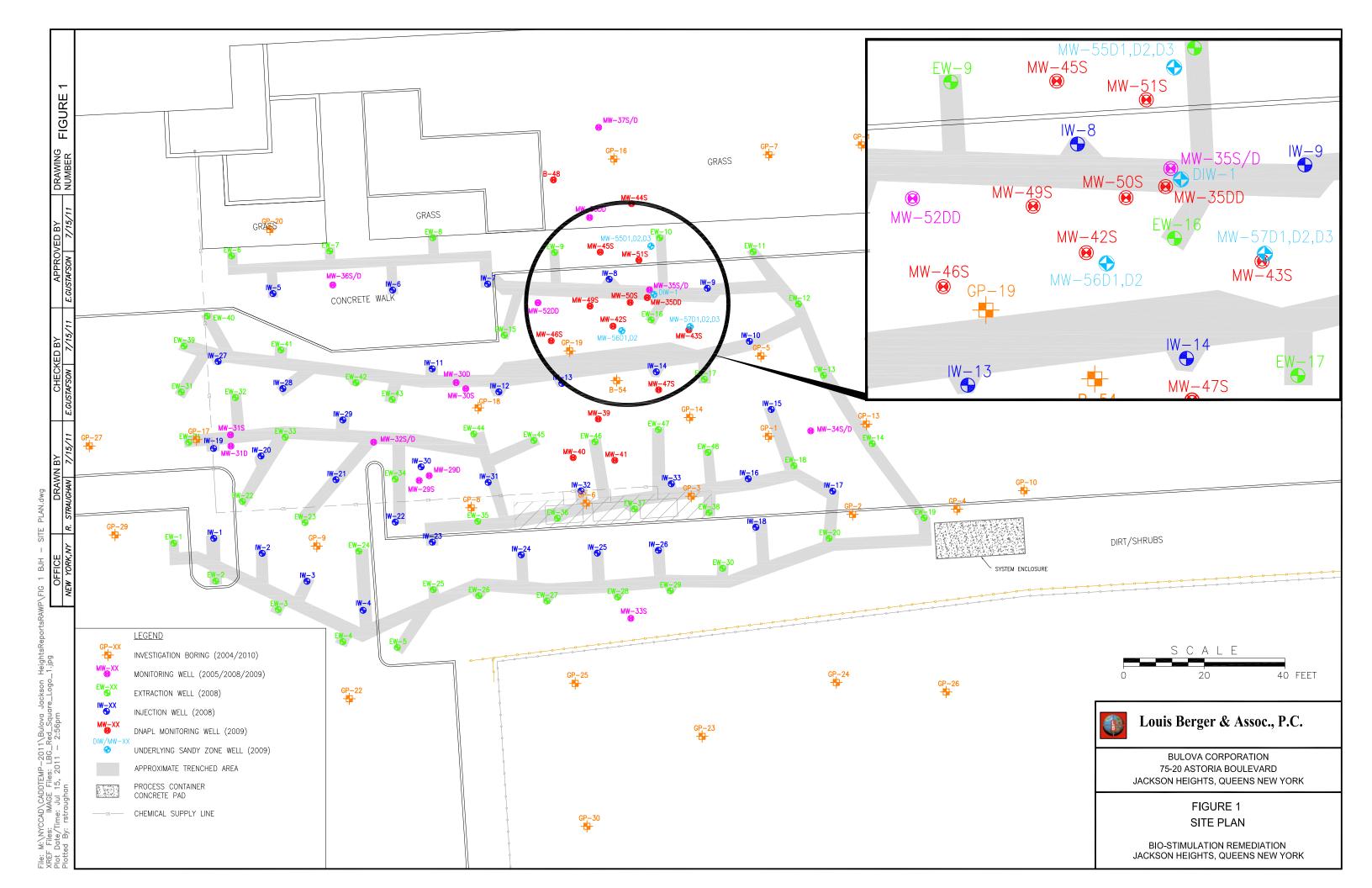
C: Jane H. O'Connell – NYSDEC

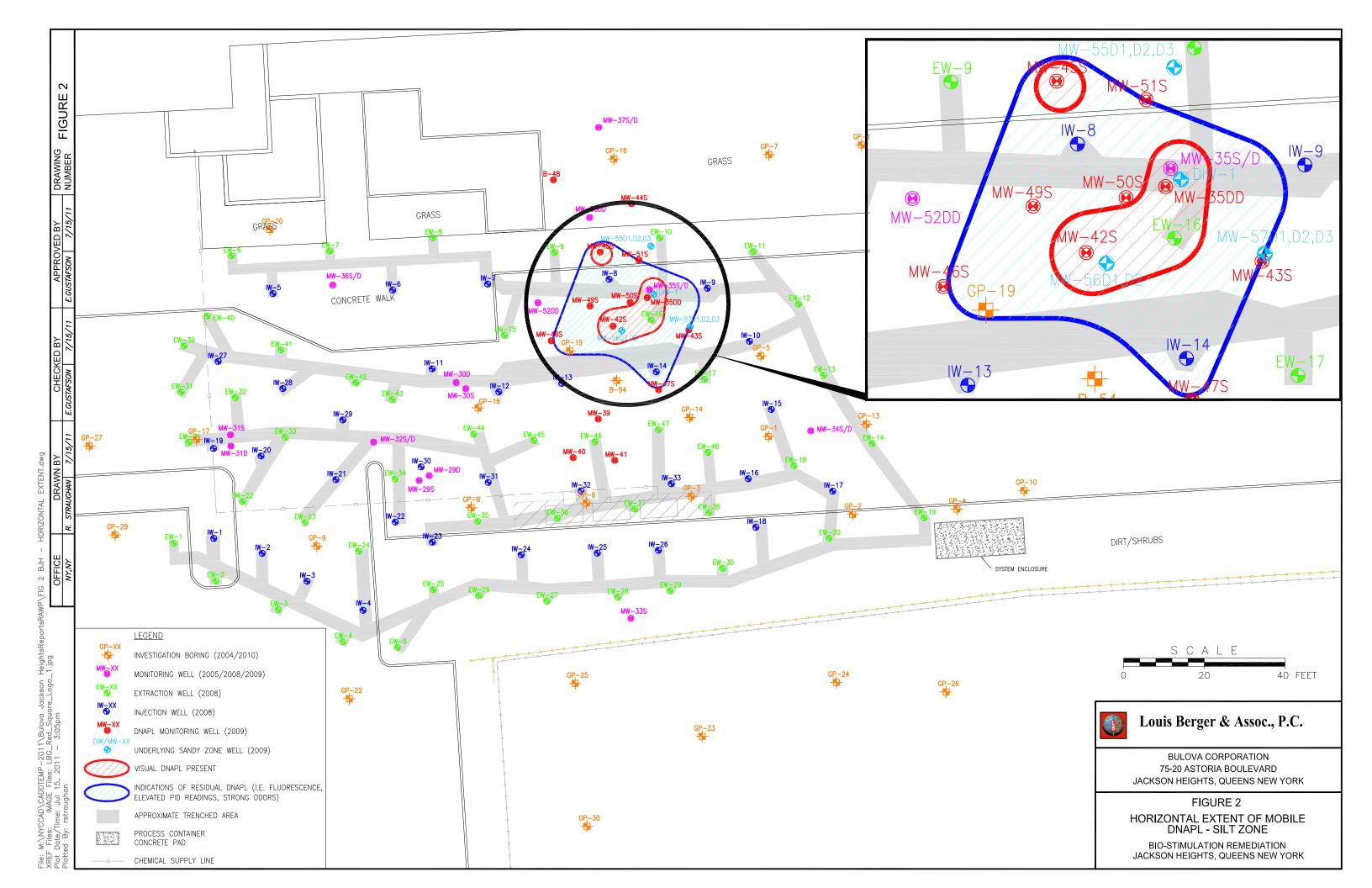
Dawn Hettrick – NYSDOH

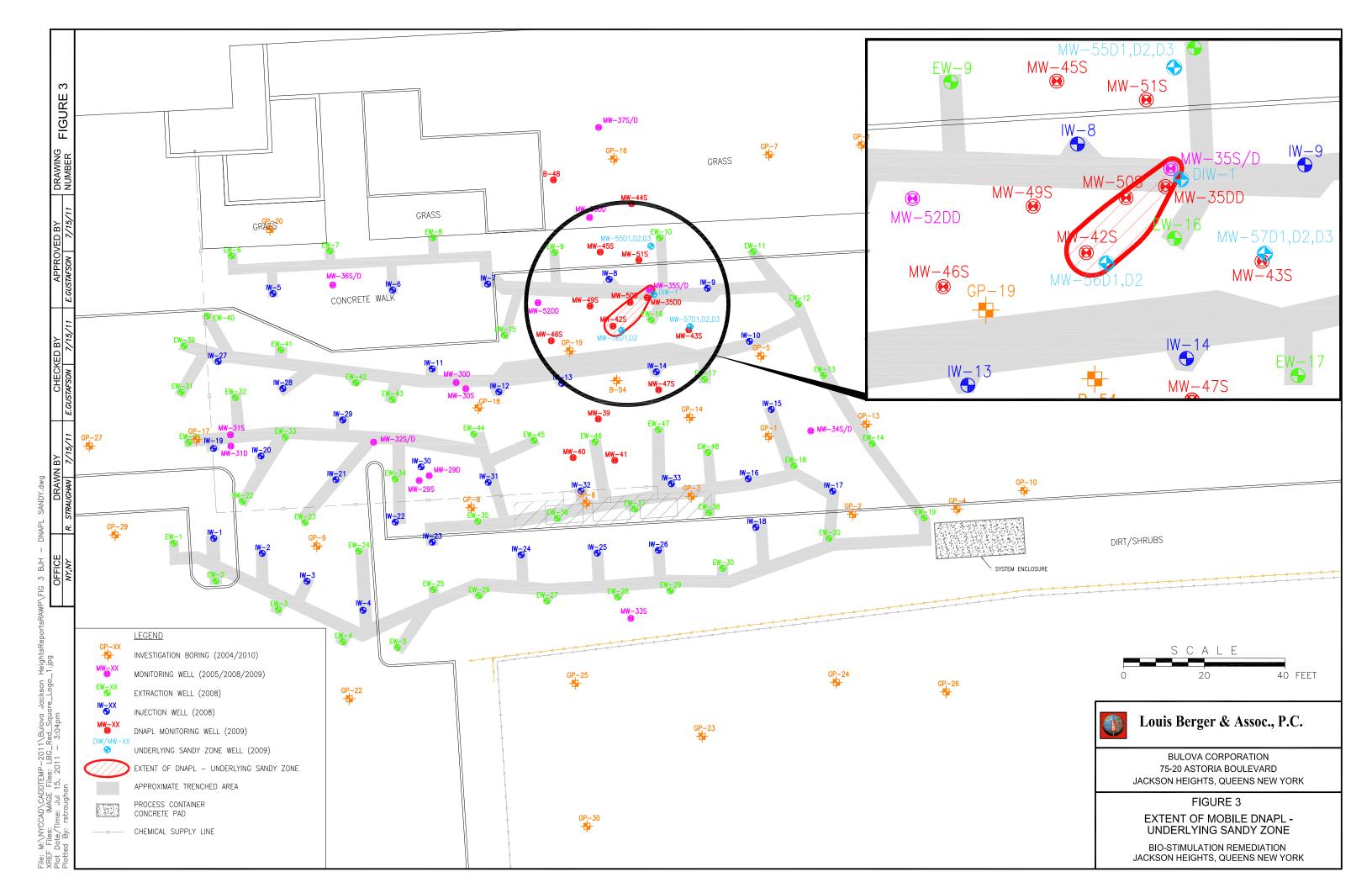
Robert Webber - Bulova Corporation

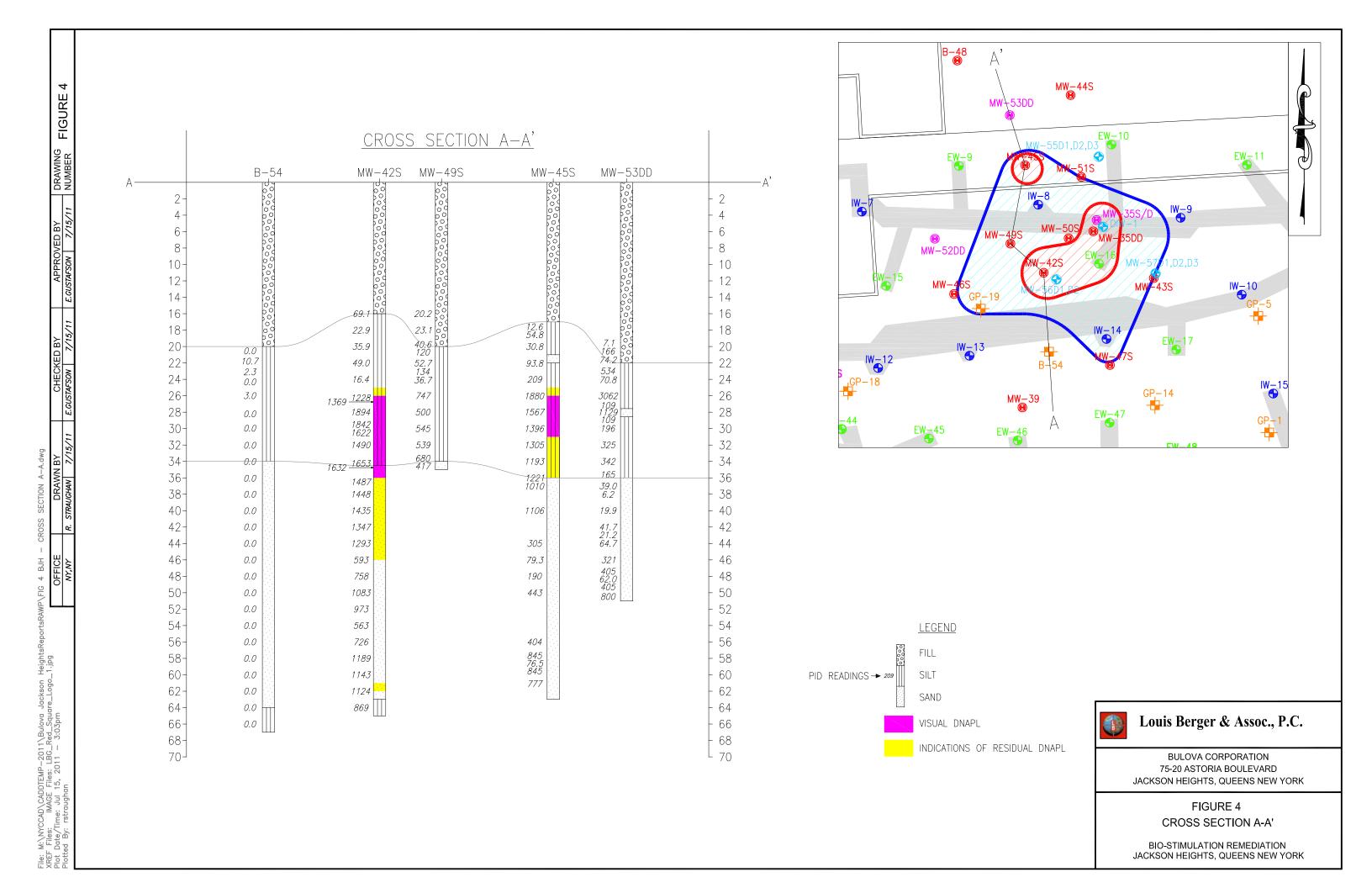
Mitch Bernstein, Esq. - Van Ness Feldman

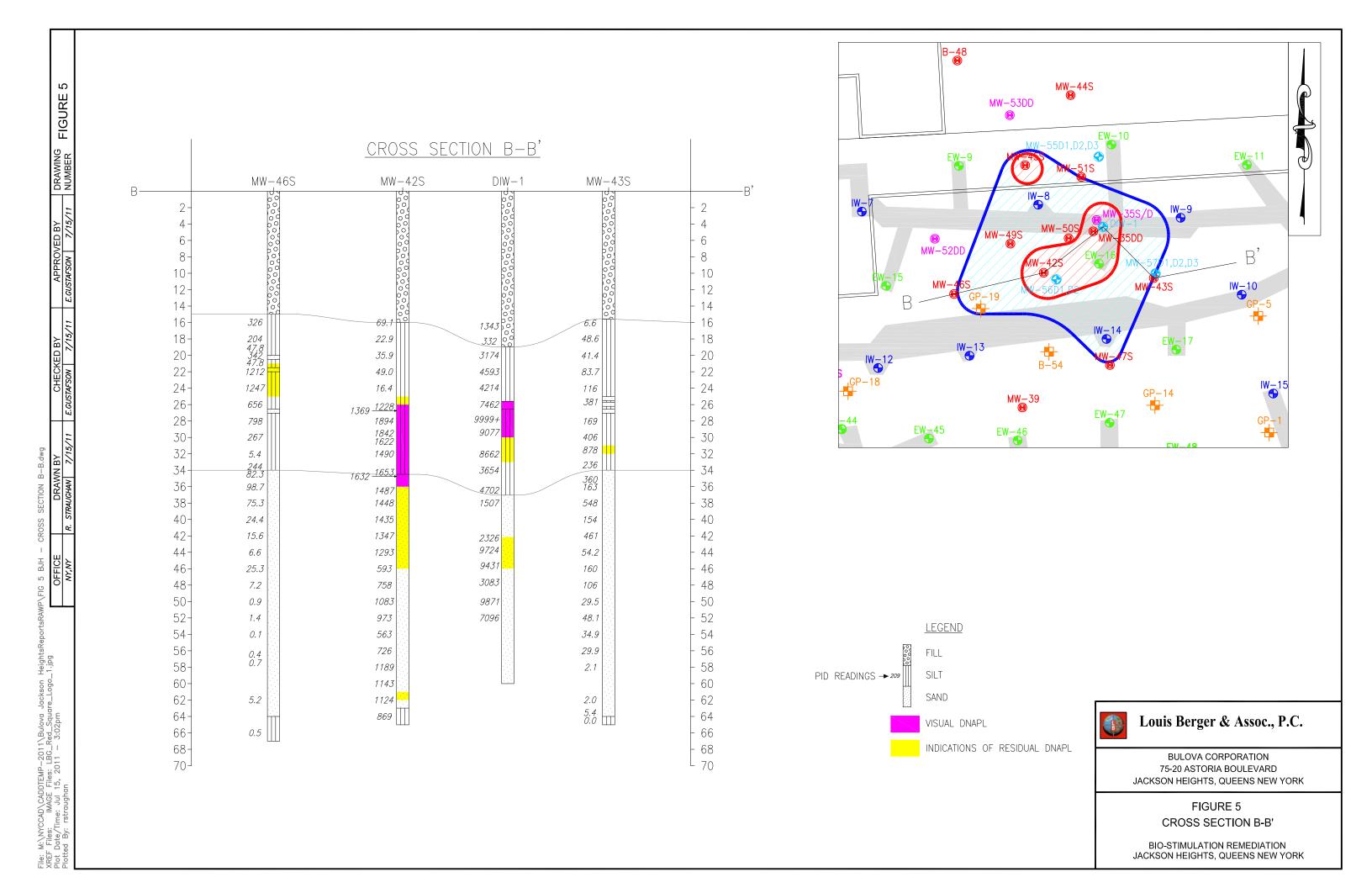
Brad Blumenfeld – Blumenfeld Development Group

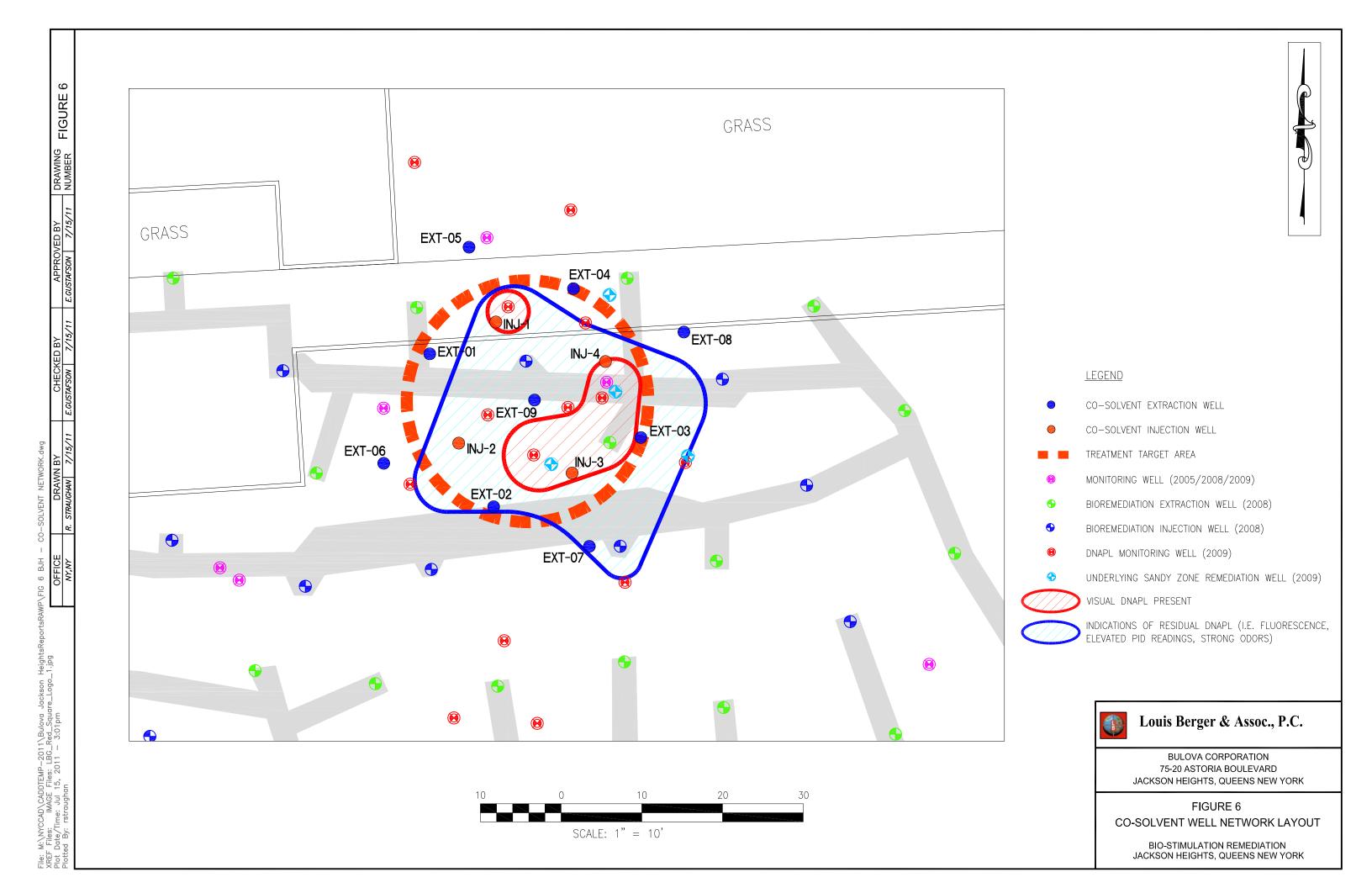

James Rigano – Rigano, LLC

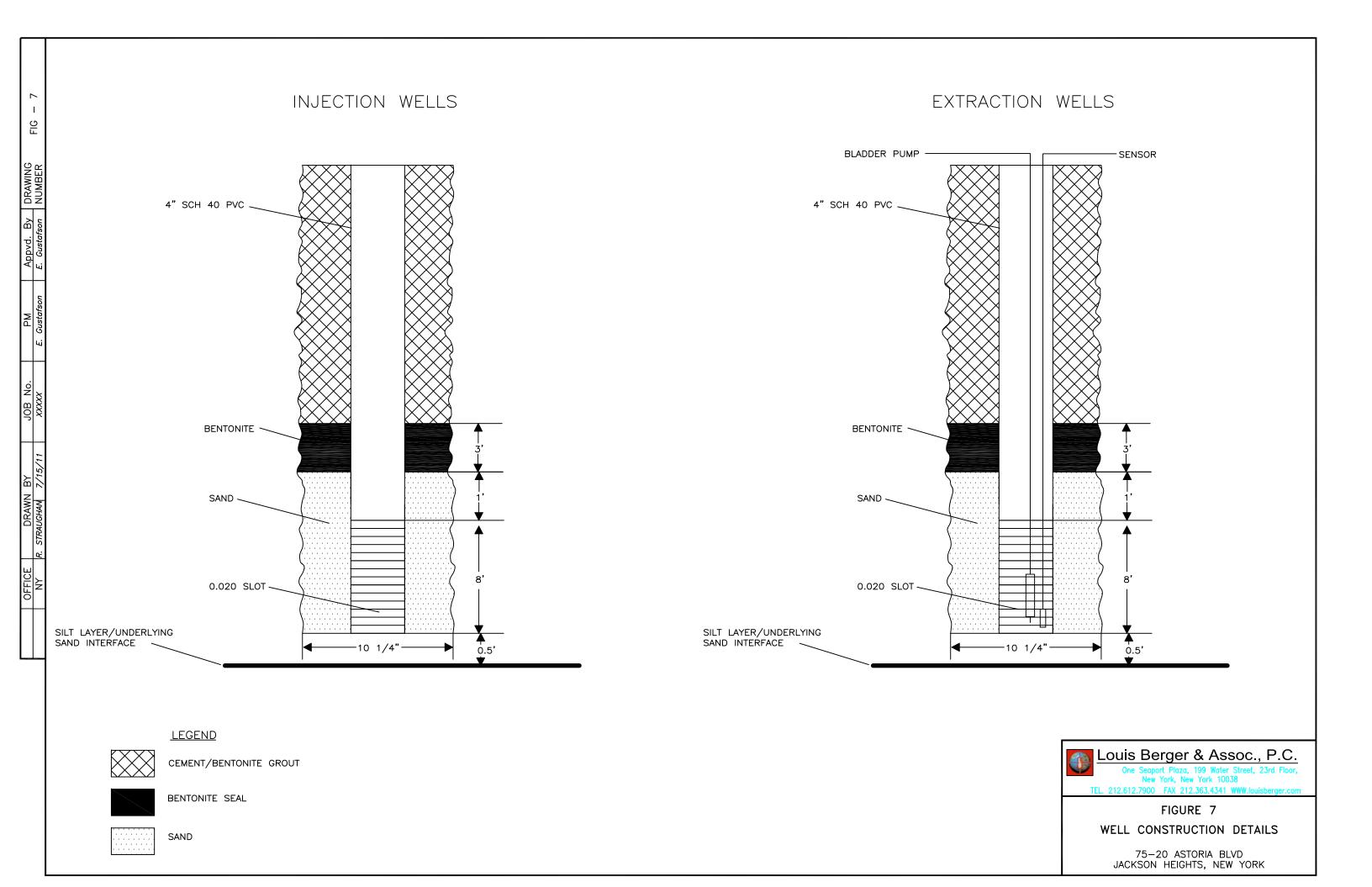

Erik Gustafson – Louis Berger


Ajay Kathuria – Louis Berger


Charles Schaefer - Shaw

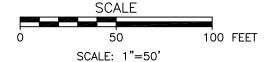

FIGURES







FORMER MONITO	RING LOCATIONS	
NUMBER	EW COLUMN	NS COLUMN
1-S	0.75	C 1/4
2-S	6 3/4	C 1/2
3-SA	11	F 1/4
4-S	13	F 1/4
5-S	19 1/4	C 3/4
6-S	2	M 1/4
7-SA	6 1/4	М
8-S	13 3/8	Q
9-S	18 3/4	N 1/4
10-S	12 1/4	J
11-S	13 3/4	E

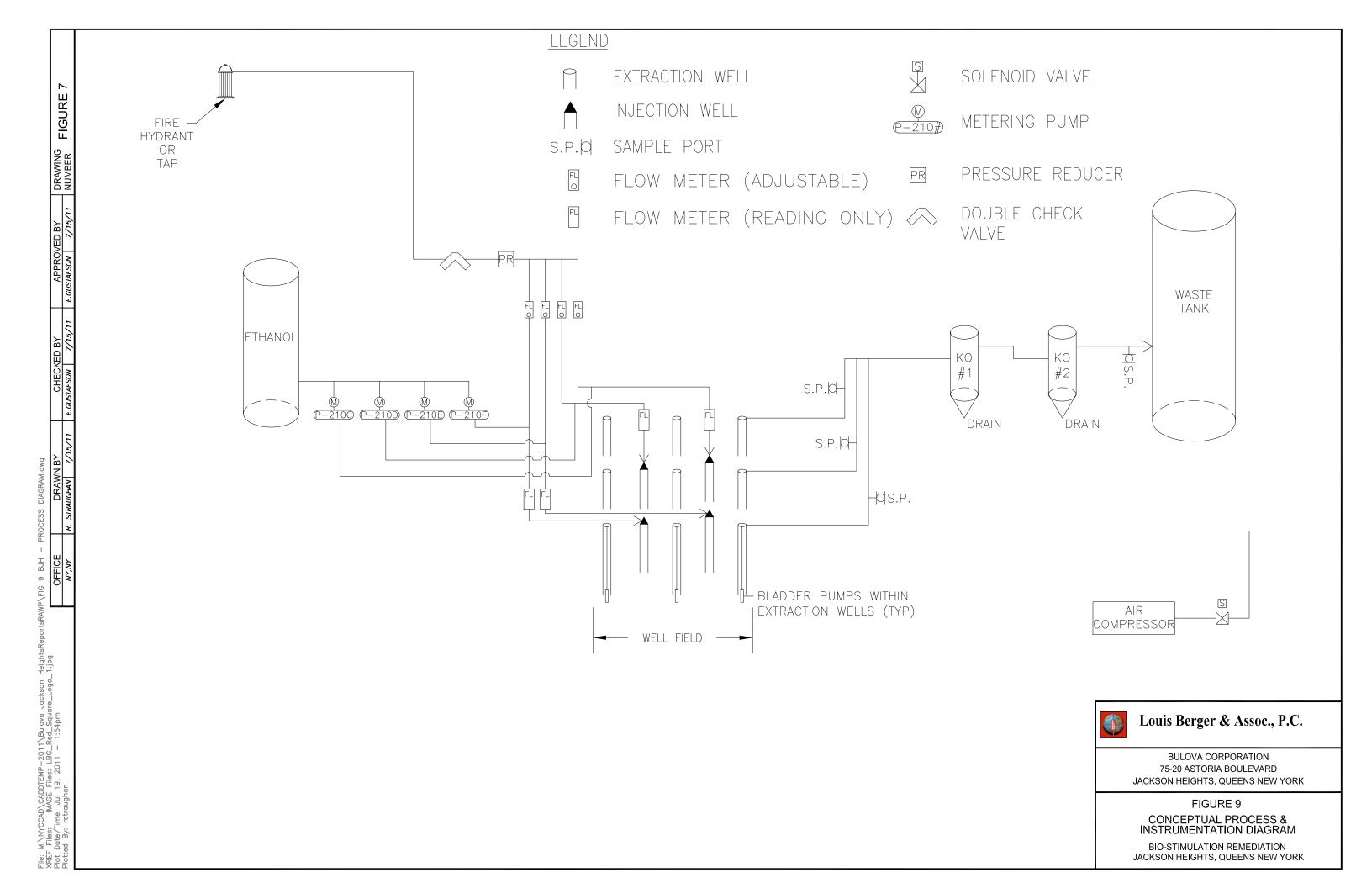

ANNUAL MONITORING LOCATIONS										
NUMBER	EW COLUMN	NS COLUMN								
1 - S	0.75	C 1/4								
2-S	6 3/4	C 1/2								
4-S	13	F 1/4								
8-S	13 3/8	Q								

CO-SOLVENT	FLUSHING SAME	PLING LOCATIONS
1 - S	0.75	C 1/4
2-S	6 3/4	C 1/2

NOTES:

A = INDOOR AIR

S = SUB SLAB



Louis Berger & Assoc., P.C.

One Seaport Plaza, 199 Water Street, 23rd Floor, New York, New York 10038 TEL. 212.612.7900 FAX 212.363.4341 WWW.louisberger.com

FIGURE 8
SUB-SLAB SAMPLING LOCATIONS

75-20 ASTORIA BLVD JACKSON HEIGHTS, NEW YORK

TABLES

Table 1 Summary of Soil Analytical Data Volatile Organic Compounds

75-20 Astoria Blvd Site Jackson Heights, New York

	NYS Soil		MW-35DD		ь	-42		3-43	Г	-44	1	B-45		1	B-46		I	B-47	
	Guidance	33'-35'	59'-61'	65'-67'	37'-39'	- 4 2 57'-59'	31'-33'	63'-65'	27'-29'	63'-64'	29'-31'	35'-37'	57'-59'	23'-25'	34'-35'	65'-69'	21'-23'	37'-39'	61'-64'
Compound		01/13/09	01/15/09	01/15/09	01/22/09	01/23/09	01/27/09	01/29/09	01/30/09	02/02/09	03/11/09	03/11/09	03/11/09	03/16/09	03/16/09	03/17/09	03/19/09	03/19/09	03/20/09
<u> </u>	**			1		<u>'</u>	1		U 1/30/03	1	U	-		<u> </u>	<u> </u>			. 	
Dichlorodifluoromethane	**	U	U		U		Ĺ		U	_	ı U			U				<u> </u>	U U
Chloromethane	200	U	U		U		Ü		U		ı U		,	U					U U
Vinyl Chloride	**	U		1	U		, ,				ı U			U					U U
Bromomethane	1900	U	U		U		, ,		U	_	ı U			U					U U
Chloroethane	1900	U			U		, ,		U		ı U			U				· .	U U
Trichlorofluoromethane		U	U	U	U	_	L L		U		U U			U	L L		`	<u> </u>	U U
1,1,2-Trichlorotrifluoroethane	6000	000 D		0		<u> </u>		J U		<u> </u>	57000 D			, ,		, <u> </u>	· ·	•	
1,1-Dichloroethene	400	880 D	12 U	25	28	U) 0	21	<u> </u>			<u> </u>	1100	3.3 J	07 1	13		U U
Acetone	200 2700	480	U	3.0 J	U		470	<u>U</u>	140 U	U	U U		,	U		27 J	57		U U
Carbon Disulfide	2700 **	U			U		L L		U		U U		-				`	•	
Methyl tert-butyl Ether	**	U											-	U	_				
Methyl Acetate		U			U		L		U		U U			U					
Methylene Chloride	100	U			U		L			_				U	_				
trans-1,2-Dichloroethene	300	U	U		U	U		J U	U		U U			U		_			U U
1,1-Dichloroethane	200	720 JD		160	4.5 J	U	91		130 JE		18000	<u> </u>		4000	7.2	.	00	_	U U
Cyclohexane		U	U		U		110		U		U U			U	_				U U
2-Butanone	300	U	U		U		110 J		U		U U			U					U U
Carbon Tetrachloride	600	U	U		U			J U	U		U U			U					U U
cis-1,2-Dichloroethene	**	U	U		U		L		U		U			U					U U
Chloroform	300	18	U		U		L		U		U		-	U					U U
1,1,1-Trichloroethane	800	67000 D	3000 D		5500 D		1100 D		1300 D		8100000 D		220 D			3.4 J			U 10
Methylcyclohexane	**	U			U			J U	U		U U			U		_			U U
Benzene	60	U	U		U		L		U		U			U	_				U U
1,2-Dichloroethane	100	60	U		U	U	16 J		3.8 J	U	U		<u> </u>	U	Ç		,		U U
Trichloroethene	700	2200 D		180 JD	40	U	L		24	U	150000 D		-	930	L		9.2		U U
1,2-Dichloropropane	**	U			U		L	_	U		U U			U		_			U U
Bromodichloromethane	**	U	U		U		L		U		U			U	_				U U
4-Methyl-2-Pentanone	1000	U	U	1	U		L		U		U			U	_				U U
Toluene	1500	U			U		L		Ŭ					U	_	J 1.4 J			U U
t-1,3-Dichloropropene	300	U	U		U		L		U		U			U					U U
cis-1,3-Dichloropropene	**	U	U		U		L		U		U			U					U U
1,1,2-Trichloroethane	**	13	3.5 J	4.7 J	U		L		U		U			U					U U
2-Hexanone	**	U			U		L		U	_	U			U					U U
Dibromochloromethane	**	U	U		U		L	_	U		U			U		_			U U
1,2-Dibromoethane	**	U			U	U	l	J U	U	U	U			U	·				U U
Tetrachloroethene	1400	420 JD		110	12	U	40	U	14	U	24000	L L		280 J	L		7.1 JI		U U
Chlorobenzene	1700	U	U	U	U		L		U		U U			U					U U
Ethyl Benzene	5500	U			U		L		U	_	U			U					U U
m/p-Xylenes	1200	U	U		U		L		U		U U			U					U U
o-Xylene	1200	U			U		L		U		U		<u> </u>	U			`		U U
Styrene	**	U	U		U		L		Ü	_	U		-	U	_				U U
Bromoform	**	U		Ū		Ū		J U	<u> </u>	Ū	Ū	,	,	U	C		`	, ,	U U
Isopropylbenzene	**	U		_	U		L	_	U	_	U			U	_	_			U U
1,1,2,2-Tetrachloroethane	600	U		1	U		L		U		U			U					U U
1,3-Dichlorobenzene	1600	U			U		L		Ŭ		U			U					U U
1,4-Dichlorobenzene	8500	U		1	U		L		U		U			U	_				U U
1,2-Dichlorobenzene	7900	U		_	U		Ļ		U					U		_		· .	U U
1,2-Dibromo-3-Chloropropane	**	U			U		L		U		U			U	_				U U
1,2,4-Trichlorobenzene	**	U	U		U		19 J	, ,	U	Ŭ	U	•	′	U	Ç		· ·		U U
TOTAL	10000	71791	3079.6	1893.7	5584.5	100	1846	0	1632.8	15.2	8349000	22	259	226310	68	39.4	171.3	0	10

Notes:
Soil guidance values for NYSDEC TAGM 4046, Table 1, Rec. Soil Cleanup Objective
**: No soil guidance value identified for compound
Results in ug/Kg (ppb)

Bold = Exceeds the applicable NYS groundwater standard/GV.

NS = Not sampled.
ND = Not detected at laboratory detection limit.

J: Estimated Value
B: Analyte Found in Blank Sample

Table 1 Summary of Soil Analytical Data Volatile Organic Compounds

75-20 Astoria Blvd Site Jackson Heights, New York

	ſ	R-	48		neignis, ive		-	B-54			
	30.5'-31'	١	34.5'-35'		21'-23'		25'-27'	31'-33'		41'-43'	62'-64'
Compound	04/15/09		04/15/09		09/03/10		09/03/10	09/03/10)	09/04/10	09/04/10
Dichlorodifluoromethane		U	0 17 10700	U	00/00/10	U	U			U	U
Chloromethane		Ü		U		U	U			Ü	Ü
Vinyl Chloride	5.7	J		U		U	U		U	Ü	Ü
Bromomethane		Ŭ		U		U	U		Ū	Ü	Ü
Chloroethane		Ū		Ū	85		130	16		Ü	Ü
Trichlorofluoromethane		Ū		Ü		U	U		U	Ü	Ü
1,1,2-Trichlorotrifluoroethane		Ū		Ū		Ū	Ü		Ū	Ü	Ü
1,1-Dichloroethene	260	JD	21	_	64		420 JE			Ü	3.5 J
Acetone		U		U	56		490	440		U	8.8 J
Carbon Disulfide		Ū	3.7	J		U	U		U	Ü	U
Methyl tert-butyl Ether	5	J		Ū	1.6	J	1.5 J	_	Ū	Ü	Ü
Methyl Acetate	_	Ū		Ū		Ū	U	1	Ū	Ü	Ü
Methylene Chloride		Ū		Ū		Ū	Ü		Ū	Ü	Ū
trans-1,2-Dichloroethene		U		U		U	U		U	U	U
1,1-Dichloroethane	1100	D	310	JD	170	JD	1600 D		D	Ü	22
Cyclohexane		U		U		U	U		U	U	U
2-Butanone		Ū		U	49		180	130		U	U
Carbon Tetrachloride		U		U		U	U		U	U	U
cis-1,2-Dichloroethene		U		U	9.5		11		U	U	U
Chloroform		U		U	1.3	J	19	2.7	J	U	U
1,1,1-Trichloroethane	18000	D	250	JD	500	JD	7300 D	4300	D	U	42
Methylcyclohexane		U		U		U	U		U	U	U
Benzene		U		U		U	U		U	U	U
1,2-Dichloroethane		U		U	7.7		61	20		U	U
Trichloroethene	420	JD	8.5		35		66	40		U	U
1,2-Dichloropropane		С		U		U	U		U	U	U
Bromodichloromethane		С		U		U	U		U	U	U
4-Methyl-2-Pentanone		С		U		U	U		U	U	U
Toluene		U		U	1.2	J	U		U	U	U
t-1,3-Dichloropropene		U		U		U	U		U	U	U
cis-1,3-Dichloropropene		U		С		С	U		U	U	U
1,1,2-Trichloroethane		U		U		U	3.6 J	2.3	J	U	U
2-Hexanone		U		U		U	U		U	U	U
Dibromochloromethane		U		U		U	U	1	U	U	U
1,2-Dibromoethane		U		U		U	U		U	U	U
Tetrachloroethene	290	JD	3	J	17		22	21		U	U
Chlorobenzene		U		U		U	U		U	U	U
Ethyl Benzene		U		C	1.4	J	U		U	U	U
m/p-Xylenes		U		U	7.7	J	U		U	U	U
o-Xylene		U		U	3.6	J	U		U	U	U
Styrene		U		C			U		U	U	U
Bromoform		U		U		U	U		U	U	U
Isopropylbenzene		U		U		U	U		U	U	U
1,1,2,2-Tetrachloroethane		U		U		U	U		U	U	U
1,3-Dichlorobenzene		U		U		U	U		U	U	U
1,4-Dichlorobenzene		U		U		U	U		U	U	U
1,2-Dichlorobenzene		U		U		U	U		U	U	U
1,2-Dibromo-3-Chloropropane		U		U:		U:	U		U	U	U
1,2,4-Trichlorobenzene	00000 =	U	500.0	U	4010	U	U		U	U	U
TOTAL	20080.7		596.2		1010		10304.1	6172		0	76.3

Soil guidance values for NYSDEC TAGM 4046, Table 1, Rec. Soil Cleanup Objective
**: No soil guidance value identified for compound
Results in ug/Kg (ppb)

Bold = Exceeds the applicable NYS groundwater standard/GV.

NS = Not sampled.

ND = Not detected at laboratory detection limit.

J: Estimated Value

B: Analyte Found in Blank Sample

Table 2 Summary of Groundwater Analytical Data Volatile Organic Compounds

75-20 Astoria Blvd Site Jackson Heights, New York

	B-48			MW-52DD				Heights, New	MW-53DD			MW-	-55D1	MW-	-55D2	MW-	-55D3
Compound	4/15/09	9/23/09	12/1/09	2/24/10	5/17/10	9/27/10	9/23/09	12/1/09	2/24/10	5/17/10	9/27/10	5/17/10	9/10/10	5/17/10	9/10/10	5/17/10	9/10/10
Dichlorodifluoromethane	1/13/03	1				J			J U			J	1			3/1//10	
Chloromethane	II	11	11	Ü		i Ü		85.3 J				Ü	_			U U	i i
Vinyl Chloride	12	Ü	il ü			Ü		00.0			142 D	Ü	Ŭ	Ŭ		U II	Ŭ
Bromomethane	12	- i	Ü			i ii	- U	i				Ü				U II	- ii
Chloroethane	21	225 JE		6.3	199 D	Ŭ	1530 D	<u> </u>		533 D	,	70.3 D		Ü		4.2 J	13.5
Trichlorofluoromethane			11			U			J 0.5			70.0 D		<u> </u>		1.2 0	10.0
1,1,2-Trichlorotrifluoroethane	II	11	11	U U		Ü		1			,	U U	1 11	·	Ŭ	U II	
1,1-Dichloroethene	2800 D	825 D	483 D		74.4 D		608 D	389		76.1	129 D	89.3 D	190	734 D	279 D	28.9	88.8
Acetone	120	020 0	1 11			U	U 11	1		+		U U				11	11
Carbon Disulfide	120	Ü	Ü			Ü	ŭ	223				7.3 JD		Ü		Ü	U
Methyl tert-butyl Ether	15	Ü	Ü			Ü	, ,	1				1.0 02		<u> </u>		Ü	U
Methyl Acetate	IJ	Ü	Ü	Ü		Ü		ì				Ü	Ü	·		Ü	U
Methylene Chloride	U	Ü	Ü			Ü	Ü	i	J U	Ü	J U	Ü	Ü	Ü	Ü	Ü	U
trans-1,2-Dichloroethene	U	Ü	Ü			Ü	Ü	i	J U	Ü	J U	Ü	Ü	Ü	Ü	Ü	Ü
1,1-Dichloroethane	21000 D	3480 D	1570 D		1330 D	251 D	34400 D	67400 E	124	1580 D	7610 D	4250 D	2000 D	3900 D	2410 D	143	305 D
Cyclohexane	U	U	U			U	U	l	_			U				U	U
2-Butanone	U	Ü	Ü	Ü		Ü	Ü	471			J U	Ü	Ü	Ü	Ü	Ü	Ü
Carbon Tetrachloride	18000 D	Ü	Ü			Ü	Ü	i i	J U	Ü	J U	Ü	Ü	Ü	Ü	Ü	U
cis-1,2-Dichloroethene	U	Ü	Ü	5.5		2.9 J	321 JE	583) U	6.3	13.1	38.3 D	29.1	Ü	Ü	Ü	U
Chloroform	U	Ü	Ü			U	U	l				U		Ü	Ü	Ü	U
1,1,1-Trichloroethane	140000 D	132000 D	43500 D			4120 D	106000 D	14900 E	D 661 D	3100 D) 11400 D	3000 D	10200 D	46300 D	17400 D	1780 D	6630 D
Methylcyclohexane	U	U	U	U		U	U	l				U	U		U	U	U
Benzene	U	U	Ü	U		Ü	U	Ü	J U	Ü	J U	U	U	U	U	U	U
1,2-Dichloroethane	U	U	Ü	Ü		Ü	U	Ü	J U	Ü	J U	U	U	U	U	U	U
Trichloroethene	1100 D	1630 D	605 D	38.5	93.2 D	161	648 D	229	9.2	38.6	252 D	51.0 D	261 D	474 D	438 D	80.8	183 D
1,2-Dichloropropane	U		U	U		U			J U			U				U	_
Bromodichloromethane	U	Ü	Ü	Ü		Ü	Ü	i	J Ü	Ü	J U	Ü	Ü	Ü	Ü	Ü	U
4-Methyl-2-Pentanone	U	U	Ü	U		Ü	U	Ü	J U	Ü	J U	U	U	U	U	U	U
Toluene	1.9 J	U	Ü			Ü	U	Ü	J U	2.3 J	8.2	U	U	U	U	U	U
t-1,3-Dichloropropene	U	U	U			U	U	l	J U	U		U	U	U	U	U	U
cis-1,3-Dichloropropene	U	U	U			U	U	l	J U	U	J U	U	U	U	U	U	U
1,1,2-Trichloroethane	U	U	U	U		U	U	U	J U	U	J U	U	U	U	U	U	U
2-Hexanone	3.7 J	U	U	U		U	U	l	U	U	U	U	U	U	U	U	U
Dibromochloromethane	U	U	U	U		U	U	Ų	J	U	J U	U	U	U	U	U	U
1,2-Dibromoethane	U	U	U	U		U	U	l	J U	U	J U	U	U	U	U	U	U
Tetrachloroethene	150	101 JE) U	U		8.0	214 JE) l	J U	6.2	26.2	3.6 JD	18.4	U	U	2.4 J	10.8
Chlorobenzene	U	U	U	U		U	U	Į	J U	U	J U	U	U	U	U	U	U
Ethyl Benzene	U	U	U	U		U	U	U	J U	U	J U	U	U	U	U	U	U
m/p-Xylenes	U	U	U			U	U	Ų	J U	U	J U	U	U	U	U	U	U
o-Xylene	U	U	U	U		U	U	Ų	J U	U	J U	U	U	U	U	U	U
Styrene	U	U	U	U		U	U	ι	J U	U	U	U	U	U	U	U	U
Bromoform	U	U	U	U		U	U	Ų	J	U	U	U	U	U	U	U	U
Isopropylbenzene	U	U	U	U		U	U	Ų	J U	U	J U	U	U	U	U	U	U
1,1,2,2-Tetrachloroethane	U	U	U			U	U	Ų	J U	U	J U	U	U	U	U	U	U
1,3-Dichlorobenzene	U	U	U	+		U	U	ι	J U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	U	U	U	U		U	U	ι	J U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	U	U	U	Ū		U	U	l	J	U	U	U	U	U	U	U	U
1,2-Dibromo-3-Chloropropane	U	U	U	U		U	U	Ų	J U	U	J U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	U	U	U	U		U	U	Ų	J U	U	J U	U	U	U	U	U	U
TOTAL (ug/L)	183223.6	138261	46158	603.9	7286.6	4625.9	143721	85700.3	815.3	5374.5	21448.9	7509.8	12754.4	51408.0	20527.0	2039.3	7231.1

Notes:

Results in ug/L (ppb)

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantification limit but greater than MDL.
- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

Table 2 Summary of Groundwater Analytical Data Volatile Organic Compounds

75-20 Astoria Blvd Site Jackson Heights, New York

Ţ 	Jackson Heights, New York MW-56D1 MW-56D2 MW-57D1 MW-57D2 MW-57D3																	
	M	W-5	56D1		MW-	56D2	D2 MW-57D1					MW-57D2				MW-57D3		
				F4740 04040					_					E/47/40 0/40/40				
Compound	5/17/10		9/10/10	5/17/10		9/10/10	5/17/10		9/10/10		5/17/10		9/10/10	1	5/17/10		9/10/10	
Dichlorodifluoromethane		U	U		U	_		U		U		U		U		U		U
Chloromethane		U	U		U			U		U		U	07.0	U		U		U
Vinyl Chloride		U	U		JD			U		D		U	37.3	١		U	3.5	_ <u>J</u>
Bromomethane	1000	U	U		U	U		U		U		U		U		U		U
Chloroethane	1239	D	2620 D		JD			D		D	172	D	881	D	82.1	D	36.1	
Trichlorofluoromethane		U	U		U	U		U		U		U		U		U		U
1,1,2-Trichlorotrifluoroethane		U	U		U	U		U		U		U		U		U		U
1,1-Dichloroethene	13400	D	12040 D		D	10600 D	110	D		D	262	D	64.4	1	172	D	53.5	
Acetone		U	U		U	U		U		U		U		U		U		U
Carbon Disulfide		U	U		U	U		U		D		U	98.4	_		U	2.0	<u>J</u>
Methyl tert-butyl Ether		U	U		U	U		U		U		U		U		U		U
Methyl Acetate		U	U		U	U		U		U		U		U		U		U
Methylene Chloride		U	U		U	U		U		U		U		U		U		U
trans-1,2-Dichloroethene		U	U		U	U		U		U		U		U		U		U
1,1-Dichloroethane	32800	D	45040 D	59400	D	115000 D	4270	D	8620	D	3260	D	3610	D	2010	D	296	D
Cyclohexane		U	U		U	U		U		U		U		U		U		U
2-Butanone		U	U		U	2135 JD)	U		U		U		U		U		U
Carbon Tetrachloride		U	U		U	U		U		U		U		U		U		U
cis-1,2-Dichloroethene		U	U		U	U		U		U		U	20.6			U	5.0	
Chloroform		U	U	1082	D	U		U		U		U		U		U	<u> </u>	U
1,1,1-Trichloroethane	1120000	D	909000 D	888000	D	844000 D	6060	D	12100	D	18500	D	536	D	10700	D	2110	D
Methylcyclohexane		U	U		U	U		U		U		U		U		U		U
Benzene		U	J		U	U		U		U		U		U		U	<u> </u>	U
1,2-Dichloroethane		С	U		U	U		U		U		U		U		U	· [U
Trichloroethene	13200	D	12800 D	10400	D	9770 D	94.4	D	105	D	249	D	110		128	D	81.9	
1,2-Dichloropropane		U	U		U	U		U		U		U		U		U		U
Bromodichloromethane		С	U		U	U		U		U		U		U		U		U
4-Methyl-2-Pentanone		С	U		U	U		U		U		U		U		U	· [U
Toluene		U	U		U	U		U		U		U		U		U		U
t-1,3-Dichloropropene		С	U		U	U		U		U		U		U		U		U
cis-1,3-Dichloropropene		U	U		U	U		U		U		U		U		U		U
1,1,2-Trichloroethane		U	U		U	U		U		U		U		U		U	· 	U
2-Hexanone		С	U		U	U		U		U		U		U		U		U
Dibromochloromethane		С	U		U	U		U		U		U		U		U		U
1,2-Dibromoethane		U	U		U	U		U		U		U		U		U	<u> </u>	U
Tetrachloroethene		U	U		U	313 JE	11.4	JD		U		U	2.8	J		U	4.4	J
Chlorobenzene		U	U		U	U		U		U		U		U		U		U
Ethyl Benzene		U	U		U			U		U		U		U		U	<u> </u>	U
m/p-Xylenes		U	U		U	U		U		U		U		U		U		U
o-Xylene		U	U		U	U		U		U		U		U		U		U
Styrene		U	U		U	U		U		U		U		U		U		U
Bromoform		U	U		U	U		U		U		U		U		U		U
Isopropylbenzene		U	U		U	U		U		U		U		U		U		U
1,1,2,2-Tetrachloroethane		U	U		U	U		U		U		U		U		U		U
1,3-Dichlorobenzene		U	U		U	U		U		U		U		U		U		U
1,4-Dichlorobenzene		U	U		U			U		U		U		U		U		U
1,2-Dichlorobenzene		Ū	U		Ū			Ū		Ū		Ū		Ū		Ū	1	Ū
1,2-Dibromo-3-Chloropropane		U	U		U			Ū		Ū		U		U		Ū	1	Ū
1,2,4-Trichlorobenzene		U	U		Ū	Ū		Ū		Ū		U		Ū		Ū	1	Ū
TOTAL (ug/L)	1180639.0		981500.0	977414.0)	983338.0	18015.8	-	34360.9		22443.0		5360.5	Ť	13092.1		2592.4	_

Notes:

Results in ug/L (ppb)

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantification limit but greater than MDL.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

Table 3 Process and Monitoring Schedule

75-20 Astoria Blvd Site Jackson Heights, New York

			SYSTEM PROCESS			MONITORING		
Stage	Phase	Injection Wells Utilized	Injection Rate (gpm)	Extraction Wells Utilized	Extraction Rate (gpm)	Locations	Parameters	Frequency
Pre-Ethanol Injection	Pre-Injection	INJ-01 through	0.125 each (water only)	EXT-01 through EXT-04 EXT-05 through EXT-08	0.07 each 0.03 each	Extraction Wells EXT-01 to EXT-09 Injection Well IW-7, IW-8, IW-9, IW-13 and IW-14 Extraction Wells EW-9, EW-10 and EW-16 Silt-Zone Monitoring Wells MW-35S, 42S to 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, MW-55D1 and MW-56D1 Extraction Wells EXT-1 to EXT-9	Groundwater Elevations	Through-Out Pre-Ethanol Injection Activities
Monitoring	Monitoring	INJ-04		EXT-09	0.12	Injection Well IW-8 and IW-9 Injection Well IW-8 and IW-9 Extraction Wells EW-9, 10 and 16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	End of Pre-Ethanol Injection Activities
						EXT-01 to EXT-04 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
	1	EXT-09	0.12 (ethanol ramp up)	EXT-01 through EXT-04	0.04 each	Co-solvent Flushing Injection Well INJ-8 Bioremediation Injection Well IW-8 Bioremediation Extraction Well EW-16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S, 49S, and 50S Underlying Sandy-Zone Monitoring Wells MW-35D and 56D1	VOCs, Ethanol	End of Phase 1
						EXT-01 to EXT-04 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
1	2	EXT-09	0.12 (ethanol only)	EXT-01 through EXT-04	0.04 each	Co-solvent Flushing Injection Well INJ-8 Bioremediation Injection Well IW-8 Bioremediation Extraction Well EW-16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S, 49S, and 50S Underlying Sandy-Zone Monitoring Wells MW-35D and 56D1	VOCs, Ethanol	Every 3rd Day
1						EXT-01 to EXT-04 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
	3	EXT-09	0.12 (ethanol ramp down)	EXT-01 through EXT-04	0.04 each	Co-solvent Flushing Injection Well INJ-8 Bioremediation Injection Well IW-8 Bioremediation Extraction Well EW-16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S, 49S, and 50S Underlying Sandy-Zone Monitoring Wells MW-35D and 56D1	VOCs, Ethanol	End of Phase 3
	4	EXT-09	0.12 (water only)	EXT-01 through EXT-04	0.04 each	EXT-01 to EXT-04 Collection Tank (VOCs only) Co-solvent Flushing Injection Well INJ-8 Bioremediation Injection Well IW-8 Bioremedation Extraction Well EW-16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S, 49S, and 50S Underlying Sandy-Zone Monitoring Wells MW-35D and 56D1	VOCs, Ethanol	Every 3rd Day
				5)(T.04.1)	0.07	Extraction Wells EXT-01 to EXT-09 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
	1	INJ-01 through INJ-04	0.125 each (ethanol ramp up)	EXT-01 through EXT-04 EXT-05 through EXT-08 EXT-09	0.07 each 0.03 each 0.12	Injection Well IW-8 and IW-9 Extraction Wells EW-9, EW-10 and EW-16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	End of Phase 1
				EVT 04 discount EVT 01	0.07 - 1	Extraction Wells EXT-01 to EXT-09 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
2	2	INJ-01 through INJ-04	0.125 each (ethanol only)	EXT-01 through EXT-04 EXT-05 through EXT-08 EXT-09	0.07 each 0.03 each 0.12	Injection Well IW-8 and IW-9 Extraction Wells EW-9, 10 and 16 Silt-Zone Monitoring Wells MW-35S, 42S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	Every 3rd Day
2				EVT 01 through EVT 04	0.07.55-1-	Extraction Wells EXT-01 to EXT-09 Collection Tank (VOCs only)	VOCs, Ethanol	Daily
	3	INJ-01 through INJ-04	0.125 each (ethanol ramp down)	EXT-01 through EXT-04 EXT-05 through EXT-08 EXT-09	0.07 each 0.03 each 0.12	Injection Well IW-8 and IW-9 Extraction Wells EW-9, 10 and 16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	End of Phase 3
	4	INJ-01 through INJ-04	0.125 each (water only)	EXT-01 through EXT-04 EXT-05 through EXT-08 EXT-09	0.07 each 0.03 each 0.12	Extraction Wells EXT-01 to EXT-09 Collection Tank (VOCs only) Injection Well IW-8 and IW-9 Extraction Wells EW-9, 10 and 16 Silt-Zone Monitoring Wells EW-35, 42S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	Every 3rd Day
Post-Ethanol Injection Monitoring	Post-Injection Monitoring	NA	NA	NA	NA	Extraction Wells EXT-01 to EXT-09 Extraction Wells EW-9, 10 and 16 Silt-Zone Monitoring Wells MW-35S, 42S, 45S, 46S and 49S to 51S Underlying Sandy-Zone Monitoring Wells MW-35D, 55D1 and 56D1	VOCs, Ethanol	Time = 1 week and 8 week post injection activites

APPENDIX A

BORING LOGS

Drilling Log

Soil Boring

B-42Page: 1 of 4

Proiect	75-20 As	toria Blvd S	ite		Owner Blumenfeld Development Group, Inc.	COMMENTS
					New York Proj. No. 821687	Selected 37'-39' and 57'-59' soil samples for laboratory analysis.
					NA Static NA Diameter	
					Type/Size NA	
Casing: D	ia <i>NA</i>		Length NA	1	Type _ <i>NA</i>	.
Fill Materi	al Grou	rt			Rig/Core Cantera	
					Air Rotary / Hollow Stem Auger	
					arelli Date Permit # <u>NA</u>	.
					icense No.	
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Recovery Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the	uscs.
- 0 <i>-</i>					Asphalt	
_ 0 _					Air drilled to pre-clear through upper fill material	
	ŀ					,
			1665			
- 2 -						
			1998			
_			1665			
_			2997			
- 4 -			600			
-						
6						
	-					
- 8 -						
			1650			
-						
- 10 -	∦		1990			
	.		1662			:
 	4			•		
- 12 -						
	<u> </u>	•				
L 44						
<u> </u>						
_	1				Continued Next Page	

Drilling Log

Soil Boring

B-42

Page: 2 of 4

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

Location .	,				<i>a</i>	Proj. No. <u>027007</u>
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color Forture Structure)
ا ۵۰	- 😃	San R.R.	Blow	ָ טַ	nsc	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
						Continued
- 16 -	69.1	15-17' 75%				Gray brown saturated Silty Clay with brick/fill fragments Grayish brown saturated Silty Clay
- 18 -	22.9	17'- 19' 35%	X			Grayish brown saturated Silty Clay
; - 			M			Grayish brown saturated Silty Gray
- 20 -	35.9	<u>19'-</u> <u>21'</u> 75%				Gray brown saturated Silty Clay Gray saturated fine to medium Sand, some fines (clay/silt) Gray brown saturated Silty Clay
22 -	49.0	<u>21'-</u> <u>23'</u> 100%	M			Gray brown mushy mix of sand/silt/varoius debris (brick/asphalt) Grayish brown Silty Clay
			igwedge			
- 24 - 	16.4	<u>23'-</u> <u>25</u> ' 100%				Gray brown mushy mix of sand/silt/clay with various debris (brick/asphalt)
26 -		25'-	M			,
20	1228 1369	<u>25'-</u> <u>27'</u> 50%				Gray brown saturated Silty Clay various debris (rocks/wood/brick). Note: Sample partially flouresced under UV light, visible sheen present Tan brown saturated fine to medium Sand. Note: Sample flouresced under UV light, visible sheen present
_ 28 _	1894	<u>27'-</u> <u>29'</u> 75%			-	Tan brown saturated fine to medium Sand. Note: Visual DNAPL present, sample flouresced under UV light Gray brown saturated Silty Clay. Note: Visual DNAPL present, sample flouresced under UV light
30 -	1842 1622	<u>29'-</u> <u>31'</u> 90%	\bigvee			Tan brown saturated fine to medium Sand. Note: Visual DNAPL present, sample flouresced under UV light Mucky mix of sand/silt/clay with debris (rock/brick fragments). Note: Visual DNAPL present, sample flouresced under UV light Gray brown saturated Silty Clay. Note: Visual DNAPL present, sample flouresced under UV light
- 32 -	1490	31'- 33' 90%				Gray brown saturated Silty Clay. Note: Visual DNAPL present, sample flouresced under UV light
34 -	1653 1632	33'- 35' 50%				Gray brown saturated Silty Clay with debris (rocks/gravel). Note: Visual DNAPL present, sample flouresced under UV light Continued Next Page

Drilling Log

Soil Boring

B-42 Page: 3 of 4

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

	T	H		1		Proj. No. <u>927007</u>
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description
] o €	교율	Sec	Seco	Gray	SOS	(Color, Texture, Structure)
		w %	<u> </u>		SO	Geologic Descriptions are Based on the USCS.
						Continued
† †			-M			Reddish brown saturated medium to fine Sand. Note: Visual DNAPL
	1412	35'-	11			present, sample flouresced under UV light. At sand/silt interface soil was
- 36 -		37'	1/1			black in color Gray brown saturated Silty Clay. Note: Sample flouresced under UV light,
	1487	7576	Н	8.77.6		∖ sheen on water
}	İ			*****		Reddish brown saturated medium to fine Sand, trace pebbles. Note:
			Ŋ			Sample partially flouresced under UV light
- 38 -	1448	<u>37'-</u> 39'	Д]	
		50%		p • • • • • • •		Reddish brown saturated medium to fine Sand, trace gravel. Note: Sample flouresced under UV light, sheen on water
						nodresced drider OV light, sheer on water
1 40		39'-				
40	1435	41' 5%				
F -			×		$\vdash \vdash$	Rock stuck in bottom of split spoon sampler. Note: Sample flouresced
		41'-				under UV light, sheen on water
 42 	1347	41'- 43'				
		10%				
1 1			Н	~.%1.°4		Reddish brown saturated well graded Sand. Note: Sample flouresced
			- X			under UV light, sheen on water
L 44 -	1293	43'- 45' 40%	Ή			
77	1200	40%	-	2::4::V		Reddish brown saturated medium to fine Sand, some rocks. Note: Sample
[]						partially flouresced under UV light, sheen on water
$\lceil \rceil$			M	٠,٠٠٠,		Paddish brown agturated well graded Cand
40		<u>45'-</u>	171		ÌÌ	Reddish brown saturated well graded Sand
46	593	45'- 47' 85%	/			
	:			0000		
<u> </u>			Н			
1		<u>47'-</u>	IXI			
⊢ 48 −	758	49' 50%	Н			Reddish brown saturated medium to fine Sand, trace rocks and pebbles
1		3070		6.00		The same and the same and same and perpies
1			A	\$ • • • • • • • • • • • • • • • • • • •		
50 -	1083	<u>49'-</u> <u>51'</u> 15%				
		15%		***************************************		
				<u></u>		Reddish brown saturated well graded Sand, some pebbles
			M			<u> </u>
50	030	<u>51'-</u>	M			
52 -	973	53' 50%	П			Reddish brown saturated well graded Sand, some rocks
1						
			H	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		53'-	M	% : %! . %		Reddish brown saturated medium to fine Sand, some rocks
⊢ 54 −	563	<u>53'-</u> <u>55</u> ' 75%	/	e 6.		33.3, 33.3.3
		13%	H			
+ 4			니			
						Continued Next Page

Soil Boring

B-42

Page: 4 of 4

Location		.0.0	, ru, ouc		g,	Proj. No. <u>02/00/</u>
Depth (ft.)	(udd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
						Continued
- 56 -	726	<u>55'-</u> <u>57'</u> 40%	X			Reddish brown saturated medium to coarse Sand
- 58 -	1189	57'- 59' 10%				
60 -	1143	<u>59'-</u> <u>61'</u> 15%	X	<u>~ </u>		Reddish brown saturated well graded Sand, some pebbles and rocks
			×			Rock and brick fragments, saturated. Note: Sample partially flouresced under UV light
62 -	1124	6 <u>1'-</u> 6 <u>3'</u> 5%		> e\ele e		Rock and pebble fragments mixed with coarse sand, saturated.
- 64 -	869	<u>63'-</u> <u>65'</u> 50%	M			Gray saturated Silt
66 -						
68 —					:	
			and the second			
70 -						
-						
- 72 - -			Variable 10 10 10 10 10 10 10 10 10 10 10 10 10			
- 74 -	ابر ق					

Soil Boring **B-43**

Project _	75-20 As	toria Blvd	Site		Owner	Blumen	feld Develo	pment G	roup, Inc.	COMMENTS
Location	_75-20 A	storia Blv	d, Jackson H	eights	, New York		Pı	roj. No	821687	Selected 31'-33' and 63'-65' soil samples for laboratory analysis.
Surface E	lev. NA		Total Hole	Depth	65.0 ft.	North _		East		
Top of Ca	sing NA	4	Water Leve	l Initia	l NA	Static	NA	Diame	eter	_
Screen: D	ia <i>_NA</i> _		Length _N	Α		Type/S	ize <i>NA</i>			_
Casing: D	ia <i>NA</i>		Length N	<u> </u>		Туре	NA			_
					Rig/Core					_
					Air Rotary / Ho					_
					sarelli					
Checked	By <i>Е. G</i>	ustafson		L	icense No					_ [
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery Graphic Log	USCS Class.			(Co		ription re, Structure	·)
		,χ [%]		Š					are Based on t	
- 0 -					A Air drilled to	sphalt pre-cle	ar through	n upper f	ill material	
- 2 -										
				:						
- 4 -										
- 6 -										
- 8 -		·								
- 10 - 	The state of the s									
- 12 - -										
- 14 - - -				Programme and the state of the						
	ļ							Continued	Next Page	

Soil Boring

B-43 Page: 2 of 4

Project 75-20 Astoria Blvd Site

Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York

Proj. No. <u>821687</u>

···		1	ı		1 1	-
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description
ag b	d)	Samı 6 Ret	Rec	Gra	scs	(Color, Texture, Structure)
					⊃	Geologic Descriptions are Based on the USCS.
1 4						Continued
			X			
<u> </u>	6.6	<u>15-17'</u> 30%	П			
"	0.0	30%				
						Grayish brown Silty Clay, some tan brown medium sand
f 1			М			
1 ,		<u>17'-</u> 19'	JXI	L _ J		
- 18 -	48.6	<u>19'</u> 55%	H			Crushed brick and rock fragments Grayish brown saturated Silty Clay
]	i					Grayish brown saturated Silty Gray
1 1	-		\Box			Crushed brick and rock fragments
	٠,	<u>19'-</u>				Grayish brown saturated Silty Clay
<u></u>	41.4	19'- 21' 90%	- 1/1			
:						
h -						
		21'-				Gray brown saturated Silty Clay
<u> </u>	83.7	2 <u>1'-</u> 2 <u>3'</u> 75%	M			
		10%	H			
-			Н			
	1	201	\ /			Gray brown saturated Silty Clay
- 24 -	116	<u>23'-</u> <u>25'</u> 90%				
	:	90%	₩			
			H			Gray brown paturated Silty Clay
:	:		M			Gray brown saturated Silty Clay Light brown saturated fine Sand
<u> </u>	384	25'- 27' 90%				Gray brown saturated Silty Clay
		90%	\mathbb{N}			Light brown saturated fine Sand Gray brown saturated Silty Clay
1 4	1		H			Light brown saturated fine Sand
	169		- 1/1			Gray brown saturated Silty Clay Gray brown saturated Silty Clay
_ 28 _	202	<u>27'-</u> 29'	IV.			Gray brown saturated Silty Clay, some fine sand
-	169	29' 100%	M			Gray brown saturated Silty Clay
			M			Gray brown saturated Silty Clay
30 -	406	<u>29'-</u> <u>31'</u> 100%	IV)			
	-100	100%	/			Gray brown saturated Silty Clay, some light brown fine sand
			<u> </u>			Gray brown saturated Silty Clay
1 1			\square			Gray brown saturated Silty Clay. Note: Sample partially flouresced under
1 20	070	31'- 33'	V			UV light
32	878	33' 100%	\lambda			
1			/\			
						Gray brown saturated Clayey Silt
		33'-	\			Gray brown saturated Silty Clay
34	236	33'- 35' 100%				
			\mathbb{N}			
 			닉			Continued Next Page
			!!	į	ı	44.0.044.1.440.1.440

Soil Boring

Page: 3 of 4

B-43

Project 75-20 Astoria Blvd Site

Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York

Proj. No. <u>821687</u>

		ı	n	1.		•
Depth (ft.)	PľD (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
1		SS %	용절	0	ns(Geologic Descriptions are Based on the USCS.
		ļ <u></u>				Continued
	360		П			Reddish brown saturated medium Sand Gray brown saturated Silty Clay
36 -	300	35'- 37'	M			
	163	100%	\mathbb{N}	o. . (^\ ^		Reddish brown saturated medium to fine Sand, some rock fragments
1 1			M	···-		
38 -		<u>37'-</u> 39'	M	3333333		Gray brown saturated Sily Clay
	548 53.5	60%				Reddish brown saturated medium to fine Sand, some rock fragments
1 1				· · 1: ·		
<u> </u>	154	<u>39'-</u> <u>41'</u> 80%	IX.			Mirky mix of clay, silt and sand Reddish brown saturated medium to fine Sand
		80%	Ц	Mill		Mirky mix of clay, silt and sand
1			Ø			
42 -	461	41'- 43' 20%				
		20%		, 000		Reddish brown well graded Sand
			M			
44 -	54.2	43'- 45' 50%	А	په دېږي. م		Reddish brown medium to fine Sand, some pebbles and rocks
:		30%		\$: (<u>)</u> . \$		reduced by the content of the conten
			M			
46 -	160	<u>45'-</u> <u>47'</u> 60%	· 🛚			Reddish brown medium to fine Sand, some pebbles and rocks
		0078				
			M	ધપ		Daddish brown modium to fine Cond. come nakhlas and radio
48 -	106	<u>47'-</u> <u>49'</u> 75%	₩	8. (<u>)</u> .6.		Reddish brown medium to fine Sand, some pebbles and rocks
		401				
- 50 -	29.5	<u>49'-</u> <u>51'</u> 5%				
				~~~ <u>~</u>		Light brown eaturated well graded Sand
		54'	M	اه وريء د		Light brown saturated well graded Sand
<del>-</del> 52 -	41.8	51'- 53' 70%	$\mathbb{N}$	o 6. ()		Reddish brown saturated medium to fine Sand, some pebbles and rocks
				) 0		
		53'	M			
- 54 -	34.9	<u>53'-</u> <u>55'</u> 50%	$\mathbb{H}$			Reddish brown saturated medium to fine Sand, some pebbles
			Ц			
						Continued Next Page



Soil Boring

**B-43**Page: 4 of 4

Location	75-207	1StOria D	ivu, Ja	UNSUIT I I	ngnto,	<u>New York</u> Proj. No. <u>827087</u>
Depth (ft.)	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
- 56 -	29.9	55'- 57' 100%			Section of the sectio	Continued Reddish brown saturated well graded Sand, some pebbles and rocks
- 58 -	2.1	<u>57'-</u> <u>59'</u> 60%				Reddish brown saturated medium to fine Sand, some pebbles and rocks
60 -	NA	<u>59'-</u> <u>61'</u> 0%				No Recovery
- 62 -	2,0	61'- 63' 25%	X			Reddish brown saturated medium to fine Sand, some rocks
- 64 -	5.4 0.0	<u>63'-</u> <u>65</u> ' 50%	X			Reddish brown saturated medium to fine Sand, some pebbles Gray saturated Silt
- 66 -			-			
- 68						
70 -				and the second s		
72 -	:					
- 74 -						
-						



Soil Boring

B-44

Project _	75-20 As	toria Blvc	Site			Owner Blumenfeld Development Group, Inc.	COMMENT'S Selected 27'-29' and 63'-64' soil
Location	75-20 A	storia Bl	/d, Jac	ckson He	ights,	New York Proj. No. 821687	samples for laboratory analysis.
Surface E	Elev. <u>N</u> A		_ Tota	al Hole D	epth	65.0 ft. North East	
Top of Ca	asing NA	4	Wat	ter Level	Initial	NA Static NA Diameter	
						Type/Size <u>NA</u>	
Casing: [	Dia <i>NA</i>		_ Len	igth NA	·	Type NA	
Fill Mater	ial <i>_Grou</i>	ıt				Rig/Core Cantera	
						Air Rotary / Hollow Stem Auger	
			-			arelli Date Permit # <u>NA</u>	
Checked	Ву <u>Е. С</u>	ustafson			Li	cense No.	
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the	uscs.
	-						
		1					
L ، -		f 				Grass	
- 0 -						Air drilled to pre-clear through upper fill material	
				292			
	]						
_	:						
- 2 -	] '						:
Γ							
4 -							
1							•
_	1 1						
<del> </del> 6 -	1 1						
<u> </u>	1 1						
8 -							
<u> </u>	1						
- 10 -	T .		-				
-	1 1						
						'	
- 12 -	1						
<b> </b>	+						
						·	
<u> </u>	-						
						•	
-	1 :		$\dashv$			Continued Next Page	



Soil Boring

Page: 2 of 4

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York

Proj. No. <u>821687</u>

Location						Proj. No. OZ 1007
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
						Continued
16 -	NA	<u>15-17'</u> 5%	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Fill Material - rock, brick and wood fragments
- 18 -	4.3	17'- 19' 25%	X			Fill Material - sand and crushed stone, rock and brick fragments
-	-		H			Gray brown saturated Silty Clay
	0,0	<u> 19'-</u>	Ŋ			Gray brown saturated Silty Clay
20 -	:	21' 75%	$\mathbb{N}$			Gray brown saturated medium to fine Sand
<u> </u>	14.1			,000		
- 22 -	71.1 206 74.8	<u>21'-</u> <u>23'</u> 80%	$\bigvee$			Gray brown Silty Clay Gray brown saturated medium to fine Sand, some rocks Gray brown saturated Silty Clay
-	1		М	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
24 -	123 72.9	<u>23'-</u> <u>25'</u> 60%	Å			Gray brown Silty Clay mixed with medium to fine sand Gray brown saturated Silty Clay
		051	M			Gray brown saturated Silty Clay, some sand
26 -	358	<u>25'-</u> <u>27'</u> 75%	$\mathbb{A}$			Light brown saturated medium to fine Sand Gray brown saturated Silty Clay, some sand
- 28 -	812	<u>27'-</u> <u>29'</u> 100%				Gray brown saturated Silty Clay
1	425		П	a sasasas		Gray brown saturated medium to fine Sand, some brick fragments
- 30 -	504	29'- 31' 100%	$\langle \rangle$			Gray brown saturated Silty Clay
- 32 -	312	31'- 33' 100%				Gray brown saturated Silty Clay
- 34 -	227	33'- 35' 100%				Gray brown saturated Silty Clay
						Continued Next Page



Soil Boring

B-44

Page: 3 of 4

Location			,, ,, ,,	CKSON HE		Proj. No. <u>827687</u>
Depth (ff.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
						Continued Gray brown saturated Silty Clay
- 36 -	74.9	35'- 37' 100%				
	54.9	<u>37'-</u>				Reddish brown saturated medium to fine Sand Gray brown saturated Silty Clay
38 -	20.6	3 <u>9'</u> 100%				Reddish brown saturated medium to fine Sand, some pebble and crushed rock
- 40 - 	7.1	39'- 41' 60%				Reddish brown saturated medium to fine Sand, some pebble and crushed rock
42 -	2.9	41'- 43' 5%				
- -		43'	V	o. 01.01.04		Reddish brown saturated medium to fine Sand, some rocks
44 -	0.0	43'- 45' 60%	Δ			Reddish brown saturated medium to fine Sand, some pebbles
- 46 -	4.2	<u>45'-</u> <u>47'</u> 50%	X			Reddish brown saturated medium to fine Sand, some pebbles
- 48 -	8.6	<u>47'-</u> <u>49'</u> 95%				Reddish brown saturated medium to fine Sand, some pebbles and rocks
- 50 -	5.9	<u>49'-</u> <u>51'</u> 95%	$\bigvee$			Reddish brown saturated medium to fine Sand, some pebbles and rocks
_		54'-				Reddish brown saturated well graded Sand, some rocks
- 52 -	11.4	<u>51'-</u> <u>53'</u> 45%				Reddish brown saturated medium to fine Sand, some rocks
- 54 -	6.8	53'- 55' 100%				Reddish brown saturated medium to fine Sand, some pebbles and rocks
I					I	Continued Next Page



Soil Boring

B-44

Page: 4 of 4

Project 75-20 Astoria Blvd Site

Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York

Proj. No. 821687

Location	75-20 A	Astoria B	lvd, Jac	kson He	ights,	New York Proj. No. <u>821687</u>
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
- 56 -	5.3	<u>55'-</u> <u>57'</u> 100%			-	Continued Reddish brown saturated coarse Sand Reddish brown saturated medium to fine Sand, some pebbles and rocks
- 58 -	0.0 0.0	<u>57'-</u> <u>59'</u> 70%				Reddish brown saturated medium to fine Sand, some pebbles and rocks  Tan brown saturated fine Sand
60 -	0.0	<u>59'-</u> <u>61'</u> 60%				Reddish brown medium to fine Sand, some tan brown fine sand and rocks
62 -	1.3	61'- 63' 45%	X	00000		Tan brown saturated fine Sand
- 64 -	0.0	63'- 65' 60%		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Tan brown saturated well graded Sand Gray saturated Silt
- 66 -						
- 68 -						
70 -						
- 72 -						
- 74 <i>-</i>						
:	1	1		11	11 1	



Soil Boring

**B-45** Page: 1 of 4

Location Surface I Top of C Screen: I Casing: I Fill Mate Drill Co. Driller _	75-20 A Elev. NA asing NA Dia NA Dia NA rial Grou Fenley C. Guzza	Astoria Blu A A ut & Nicol Ei	vd, Jac Tota Wat Len Len Inviro, I	al Hole D ter Level ngth NA ngth NA Inc. Me	ights, epth Initial L ethod Pass	Owner _E  New York  61.0 ft.      NA      Rig/Core  Air Rotary / Hollo  arelli   Da  cense No	North Static <i>NA</i> Type/Size <i>N</i> Type <i>NA</i> <i>Cantera</i> ow Stem Aug	_ Proj. No East _ Diame  VA  er Permit:	ter	COMMENT'S Selected 29'-31', 35'-37' and 57'-59' soil samples for laboratory analysis.
Depth (ft.)	OIA (mdd)	Sample ID % Recovery	Blow Count Recovery		USCS Class.		. 40.	Desc (Color, Textu	ription ure, Structure) are Based on the	USCS.
- 0 - - - 2 -			The state of the s			Cor Air drilled to p	ncrete pre-clear thr	ough upper f	ill material	
_ 4 -		1000 a 7 7 4 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
— 6 -										
8 -								·		
- 10 - - - 12 -										
— 14 -								Confinue	d Nevt Page	



Soil Boring **B-45** 

Page: 2 of 4

Location	10-207	isiona D	IVU, UE	CASON 110	ignts,	Proj. No. <u>021001</u>
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
					ם	Geologic Descriptions are Based on the USCS.
-			Þ			Continued
16 -	12.6	<u>15'-</u> <u>17'</u> 5%		4444444		Dade can estimated City Clay
			V	1		Dark gray saturated Silty Clay
18	54.8	17'- 19' 50%	<u>/</u>			Gray saturated Silty Clay
- 20	30.8	<u>19'-</u> 21' 60%	<u> </u>			Gray brown saturated Silty Clay
-		I	X	1000		Brown saturated medium to fine gray brown Sand
_ 22 -	93.8	21'- 23' 20%				Creat hazarra activisted City Class come moditum cond
-			-			Gray brown saturated Silty Clay, some medium sand
24 —	209	23'- 25' 65%	<u> </u>			Gray brown saturated Silty Clay
26	1888	25'- 27' 75%				Gray brown saturated Silty Clay. Note: Visible DNAPL sheen present; Sample flouresced under UV light
		, .	F			Gray brown saturated Silty Clay. Note: Visible DNAPL sheen present;
28 -	1567	<u>27'-</u> <u>29'</u> 100%				Sample flouresced under UV light Gray brown saturated Silty Clay. Note: Visible DNAPL present; Sample flouresced under UV light
- 30 -	1396	29'- 31' 65%				Gray brown saturated Silty Clay. Note: Visible DNAPL present; Sample flouresced under UV light
		0070				Gray brown saturated Silty Clay. Note: Visible DNAPL present; Sample
32 -	1305	31'- 33' 100%				flouresced under UV light Gray brown saturated Clayey Silt. Note: Strong odor preset; Sample flouresced under UV light
34 -	1193	33'- 35' 90%				Gray brown saturated Silty Clay. Note: Visible DNAPL sheen present; Stong odor; Sample flouresced under UV light
1				1 .		Continued Next Page



Soil Boring

B-45

Page: 3 of 4

Location	70 207	ISIONE D	79 ta, Ota	0/(00/) / / 0	iginio,	Proj. No. 027007
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
		San Re	Blow	<u>5</u>	USC	Geologic Descriptions are Based on the USCS.
						Continued
- 36 -	1221	35'- 37'	M			Gray brown saturated Silty Clay. Note: Stong odor; Sample partially flouresced under UV light
-	1010	80%	1	5.9.3. 3.6.		Reddish brown saturated medium to fine Sand. Note: Stong odor
٠,,	772	<u>37'-</u> 39'	$\mathbb{N}$			Gray brown saturated Silty Clay
38 -	108	75%	\ \ \			Reddish brown saturated medium to fine Sand
- 40 -	1106	39'- 41' 20%				
-			æ			Reddish brown saturated medium to fine Sand, some rock fragments
<del>- 42 -</del>	1066	41'- 43' 5%				
			7			Well graded reddish brown saturated Sand
44 -	305	<u>43'-</u> <u>45'</u> 60%	X			Reddish brown saturated medium to fine Sand mixed with pebbles, trace rock fragments
-			X	//·~·``		
46 -	79.3	45'- 47' 50%				Reddish brown saturated medium to fine Sand, some pebbles
		471	χ			
- 48 -	190	47- 49' 50%				Well graded reddish brown saturated Sand, some pebbles
-		49'-	X			
- 50 -	443	49'- 51' 20%	1	ુ. ^{દ્} યુ . ત્		Well graded reddish brown saturated Sand, some pebbles
-	-		$\downarrow$	,		Well graded reddish brown saturated Sand, some pebbles, trace rocks
- 52 -	108	<u>51'-</u> <u>53'</u> 100%				
- 54 -	261	<u>53'-</u> <u>55'</u> 40%	$\rangle$			
T 34 -	201	40%				Reddish brown saturated medium to fine Sand, some pebbles and rocks
<u> </u>	1		L			Continued Next Page



Soil Boring **B-45** 

Page: 4 of 4

Location	75-20 A	Astoria B	lvd, Jackso	on Height	s, <i>New York</i> Proj. No. 821687
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery Granhic	Log USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
- 56 -	404	55'- 57' 20%	X	٠٠٠ • • • • •	Continued  Well graded reddish brown saturated Sand, some pebbles and rocks
- 58 	76.5 845	<u>57'-</u> <u>59'</u> 45%		્યું. ન્યું જ	Well graded reddish brown saturated Sand, some pebbles and rocks Well graded tan brown saturated Sand Well graded reddish brown saturated Sand, some pebbles and rocks
- 60 - 	777	59'- 61' 5%		010 84	Gray brown saturated fine Sand, some rock fragments. Note: Refusal at 61'
- 62 -					
- 64 -					
- 66 - 					
- 68 - 					
- 70 - -					
- 72 -					
- 74 - -					



Soil Boring

**B-46**Page: 1 of 4

Project _						Owner New York				COMMENTS Selected 23'-25', 34'-35' and
						67.0 ft.		-		65'-67' soil samples for laboratory analysis.
						NA NA				
						Rig/Core				
						Air Rotary / Ho				
						arelli				
Checked I	ву <u>г. с</u>	ustarsori		,		icense No				
		이 를	ŧ,		SS.			Desc	cription	
Depth (ft.)	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class				-	
ا څي	<u>م</u> ق	Se Sam	Rec	ည် ကြော	SCS				ure, Structure)	
		3%			'n		Geolo	gic Descriptions	s are Based on the	USCS.
										:
- 0 -							sphalt			
U						Air drilled to	pre-clear thr	ough upper	fill material	
				903						
				200						
_ 2 _										
·				NA TO						;
										i
- 4 <del>-</del>										
4				200						
_	1 1									
				2007						
- 6 <del>-</del>	1									
			and the same of th							1
			-							
			-	100 A						
- 8 -										
				KQ2						ļ
<del>-</del> 10 -				200						
										,
				2223						
<b>–</b> 12 –										
										1
<del>-</del> 14				ACC.						
-			$\dashv$		$\vdash \vdash$			Continue	ed Next Page	
ı	n l	l			ıi	I		501101100		



Soil Boring

B-46

Page: 2 of 4

Location	70-20 F	Siona D	ivu, Jac	,KSUII I IC	nymo,	rivew York Proj. No. 02 7007
Depth (ft.)	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
		w/%	ā "		SD	Geologic Descriptions are Based on the USCS.
						Continued
- 16 -	326	15'- 17' 20%				Gray brown saturated Silty Clay, some sand and rock fragments
- 18 -	204	<u>17'-</u> <u>19'</u> 30%				Gray brown saturated Silty Clay, some sand and rock fragments
- 20 -	47.8 342 47.8	<u>19'-</u> <u>21'</u> 60%				Gray brown saturated Silty clay Yellowish brown saturated medium to fine Sand Gray brown saturated Silty Clay
- 22 -	1212	21'- 23' 100%				Gray brown saturated Silty Clay, some medium to coarse sand. Note: Sample flouresced under UV light Light gray saturated medium to coarse Sand. Note: Sample flouresced under UV light Gray brown saturated Silty Clay, some medium to coarse sand. Note: Sample flouresced under UV light
_ 24 -	1247	<u>23'-</u> <u>25'</u> 85%				Gray brown saturated Silty Clay. Note: visible sheen present; Sample flouresced under UV light Gray brown saturated Silty Clay. Note: visible sheen present; Sample partially flouresced under UV light
- 26 -	656	<u>25'-</u> <u>27'</u> 95%				Gray brown saturated Silty Clay  Light gray saturated medium to coarse Sand
- 28 -	798	27'- 29' 100%				Gray brown saturated Silty Clay Gray brown saturated Silty Clay
- 30 -	267	29'- 31' 100%				Gray brown saturated Silty Clay
32 -	5.4	31'- 33' 100%				Gray brown saturated Silty Clay
- 34 -	244 82.3	33'- 35' 65%				Gray brown saturated Silty Clay Dark gray/black saturated medium Sand
						Continued Next Page



Soil Boring

B-46

Page: 3 of 4

1			174, 54			
€	_ <u>€</u>	Sample ID % Recovery	Blow Count Recovery	hic	USCS Class.	Description
Depth (ft.)	PID (ppm)	Reco	low C	Graphic Log	scs (	(Color, Texture, Structure)
		01/%			ő	Geologic Descriptions are Based on the USCS.
]				,		Continued  Reddish brown saturated medium Sand
		0.51	1)(			Reddistriblown Saturated medium Sand
36 -	98.7	35'- 37' 50%	Н			Well graded reddish brown saturated Sand
		0070				_
1			М	- 0		
38 -	75,3	<u>37'-</u> <u>39'</u> 50%	Δ			
	75.5	50%		7.50		Reddish brown saturated medium to fine Sand, some pebbles
1 -			283	*°°°°°°		
		301				
- 40 -	24.4	39'- 41' 5%				
-			V	0. 0/010 0		Well graded reddish saturated brown Sand, some rock and brick fragments
42 -	15.6	<u>41'-</u> <u>43'</u> 50%	- 1			
72	10.5	50%				Reddish brown satarated medium to fine Sand, some rock and pebbles
-						
		43'-	1			Reddish brown medium to fine Sand, some pebbles
<del>-</del> 44 -	6.6	<u>43'-</u> <u>45'</u> 75%	$\Lambda$	8. Q. 0		
			F			
			×			
<u> </u>	25.3	45'- 47' 10%				
		10%				
-			<u> </u>	, 000,		Reddish brown saturated well graded Sand
		<u>47'-</u>	IX	ુ. <u>ે</u> ડ્ડુ		Reddish brown medium to fine Sand, some pebbles
<del>- 48 -</del>	7.2	49' 65%	<u> </u>	6. Q.\$		The state of the s
				60		
			1			
<del>-</del> 50 -	0.9	<u>49'-</u> <u>51'</u> 65%	$\setminus$			Reddish brown saturated medium to fine Sand, trace rock
		65%				4.44
} -			×	(a)0	}	
		<u>51'-</u>				
<del>- 52 -</del>	1.4	<u>51'-</u> <u>53'</u> 5%				
			k -	• */* * 4	<b> </b>	Well graded reddish brown saturated Sand, some pebbles
		l cor	X	4		g. 2.2. g. 2.2. g. a.
<u> </u>	0,1	53'- 55' 25%				
		2376		رباب: بر ا		Well graded reddish brown saturated Sand, some rock fragments
-			<u> </u>			Continued Next Page



Soil Boring

B-46

Page: 4 of 4

					, New York Proj. No. 821687
PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
0.4	55'- 57' 50%				Continued  Tan to yellow to brown coarse Sand, some rocks  Gray brown Sandy Silt , some pebbles  Refusal
NA	57'- 59' 0%				
NA	<u>59'-</u> <u>61'</u> 0%				Refusal
5.2	61'- 63' 40%	X			Light gray saturated Sandy Silt, some pebbles and rocks
NA .	63'- 65' 0%				Refusal
0.5	<u>65'-</u> <u>67'</u> 60%				Gray saturated Silt
	ore-every femiliary reserved augustration durable under retaining de la constant				
:					
	(mdd) 0.4 0.7 NA NA 5.2	(mdd)	(hpm)	0.4 0.7	0.4 55'- 57' 50%  0.7



Soil Boring

**B-47**Page: 1 of 4

						Owner Blumenteld Development Group, Inc.	Selected 21'-23', 37'-39' and
Location	75-20 A	Astoria B	lvd, Jac	ckson He	ights,	New York Proj. No. <u>821687</u>	61'-64' soil samples for
Surface	Elev. NA	١	Tota	al Hole D	epth	67.0 ft. North East	laboratory analysis.
						NA Static NA Diameter	
Screen:	Dia <i>NA</i>		_ Len	igth _ <i>NA</i>	١	Type/Size	
Casing: 1	Dia <i>NA</i>	····	_ Len	igth NA	·	Type	
						Rig/Core Cantera	
Drill Co.	Fenley 6	& Nicol I	Enviro,	Inc. M	ethod	Air Rotary / Hollow Stem Auger	
						arelli Date Permit # _ <i>NA</i>	
						cense No.	
	1 1	T					
_		Sample ID % Recovery	Blow Count Recovery	.હ	USCS Class.	Description	
Depth (ft.)	PID (mdd)	ndle eco	ŏ ŏ	Graphic Log	၁ဗ	(Color, Texture, Structure)	
"		Sal R	8 8	ျော်	OSO	Geologic Descriptions are Based on the U	JSCS.
		ļ					
1							
						Asphalt	
├ º -	╢ `			2770		Air drilled to pre-clear through upper fill material	
				1665			
ŀ	-			2007			
- 2 -	_						
_				300			
:							
_ 4 -							
4				ZXXX			
				2000			
	1						
<u></u>	1		-				
i <del>-</del>	-						
-				300 R			
- 8	4			2000			
	1			200			
:							
- 10			-				
10							
:				500R			
t	1						
<u> </u>	$\dashv$						
}	-						
				200			
- 14	_						
1							
L							
1	ll .	II		II .		Continued Next Page	



Soil Boring

B-47

Page: 2 of 4

		1	1	11		110j. No
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	Description
Deg	l dd)	Samp % Rec	Blow ( Reco	Grap	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
				:		Continued
			A			
16 -	133	<u>15'-</u> <u>17'</u> 15%				·
		15%				
-			<b>X</b>			Fill Material - Gray brown saturated sand, rock, brick and wood
<u> </u>	1739	<u>17'-</u> <u>19'</u> 15%				
	1100	15%				
+ -						Gray saturated Silty Clay, some rock fragments
		<u>19'-</u> 21'	XI			Gray brown saturated Clayey Silt
<del>-</del> 20 -	1025	65%				ora, aronn catalates orayo, one
-				ШШ		
	6046	21'-	M			Gray brown saturated Clayey Silt. Note: Stong odor; Sample partially
22 -		23' 80%	M			flouresced under UV light Tan brown saturated medium Sand. Note: Stong odor; Sample flouresced
	6046 >9999					under UV light Gray brown saturated Silty Clay. Note: Stong odor; Sample partially
				ļ		flouresced under UV light Tan brown saturated medium Sand. Note: Stong odor; Sample flouresced
_ 24 -	935	23'- 25' 5%				under UV light
		370				
-			M	AAAAAAA		Gray brown saturated Silty Clay
_ 26 _	2107	25'- 27'				
		30%				Gray brown saturated Silty Clay Note: Sample partially flouresced under
				33333333 33333333		UV light Gray brown saturated Silty Clay. Note: Sample partially flouresced under
28 —	3107	<u>27'-</u> 29'	<u> </u>			UV light
		<u>29'</u> 90%	W			
-						Gray brown saturated Silty Clay. Note: Sample partially flouresced under
30 -	2122	<u>29'-</u>	M			UV light
_ 30 <u>_</u>	2124	29'- 31' 100%	M			
-						Gray brown saturated Silty Clay
		<u>31'-</u>	M			,, <del></del> ,
- 32 -	3316	31'- 33' 100%	M			
-			Ц			Crow brown paterated Silty Clay
:		33'_	M			Gray brown saturated Silty Clay
<del>-</del> 34	1401	33'- 35' 85%	\\			
· :						Gray brown saturated Silty Clay
						Continued Next Page



Soil Boring

B-47

Page: 3 of 4

Project _75-20 Astoria Blvd Site

Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York

______ Proj. No. <u>821687</u>

Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
		35'-				Continued  Reddish brown saturated medium Sand
36 -	3106	35'- 37' 35%		\$		Gray brown saturated Silty Clay, some rock
38 -	173	37*- 39' 65%				Reddish brown saturated fine to medium Sand, some pebbles
- 40 -	39.3	39'- 41' 70%				Reddish brown saturated fine to medium Sand, some pebbles and rocks
- 42 -	389	41'- 43' 75% 43'-	W A			Reddish brown saturated fine to medium Sand, some pebbles and rocks
44 -	0.0	43'- 45' 50%				Reddish brown saturated fine to medium Sand, some pebbles and rocks
- 46	0.0	45'- 47' 45%	X			Reddish brown saturated fine to medium Sand, some pebbles
48 -	0.0	<u>47'-</u> <u>49'</u> 65%				Reddish brown saturated fine to medium Sand, some pebbles
50 -	20.1	49'- 51' 20%		;; <u>;</u> ;;;		Reddish brown saturated fine to medium Sand, some pebbles
- 52 -	9.1	51'- 53' 55%	X			Reddish brown saturated fine to medium Sand, some rocks
- 54 -	4.7	<u>53'-</u> <u>55'</u> 50%				Reddish brown saturated fine to medium Sand, some pebbles and rocks
	<u> </u>	<u> </u>				Continued Next Page



Soil Boring

B-47

Page: 4 of 4

Location .						New York Proj. No. O21007
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
						Continued
- 56 -	6.0	55'- 57' 10%	×	<u>, •                                   </u>		Reddish brown saturated fine to medium Sand, some rocks
58	11.7	<u>57'-</u> <u>59'</u> 25%	X	• • <b>∖•</b>  • •		
			Ц	o \		Well graded reddish brown saturated Sand, some rocks
60 -	0.6	<u>59'-</u> <u>61'</u> 70%	M			Well graded reddish brown saturated Sand, some pebbles and rocks
1 -	6.9					Light gray saturated Sandy Silt, some pebbles
- 62 - 	19.6	61'- 63' 40%				Well graded reddish brown saturated Sand, some pebbles
- 64 -	1.8	63'- 65' 50%	X			Well graded reddish brown saturated Sand, some pebbles and rocks Light gray saturated Sandy Silt, some pebbles
- 66 	4.7	65'- 67' 35%	X			Gray saturated Silt
- 68 -			· recent distribution			
- 70 -						
- 72 <b>-</b>			The second secon			
- 74 - -						



Soil Boring

B-48

Project _						Owner Blumenfeld Development Group, Inc. COMMENTS Selected 30.5'-31' and 34.5'-35'							
						New York Proj. No. 827687 soil samples for laboratory							
					•	35.0 ft. North East analysis.							
	_					NA Static NA Diameter							
			-			Type/Size NA							
						Type _ <i>NA</i>							
						Rig/Core Track-Mounted Geoprobe							
						Direct Push							
						arelli Date 4/15/09 Permit # NA							
Checked	Ву <u>Е. С</u>	Sustafson			_ Li	cense No.							
		حرک	<b>#</b>		σį	Description							
Depth (ft.)	OF (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Class.	Description							
	E B	Rec	Jow (	Gra	nscs	(Color, Texture, Structure)							
-		υλ/% 	B 1		۳	Geologic Descriptions are Based on the USCS.							
1													
L 0 -	4					Grass							
			- 1										
L.	<u> </u>												
_					1								
- 5 -	1												
<b>†</b>	1				:								
- 10 -	1 1												
<u>.</u> -	4												
<u> </u>	]					Fill Mark and 1 Park, words blank and mark of Olfo Olavania day 24 and 4 fairly							
	2.2					Fill Material - Dark gray to black saturated Silty Clay mixed with wood, brick and rock fragments and other debris							
		<u>15'-</u> 20'				Gray brown saturated Silty Clay							
:	0.0	100%			Ĭ								
		}											
20 -	0.0					Gray brown saturated Clayey Silt mixed wiht rock and sand							
	0.0	<u> 20'-</u>		เหนา		Tan brown yellowish saturated medium to fine Sand							
†	0.0	<u>25'</u> 95%				Gray brown saturated Silty Clay							
	0.0												
25 -	1												
	33.9	251				Gray brown saturated Silty Clay							
-	70.7	<u>25'-</u> <u>30'</u>											
	20.4	80%				Gray brown saturated fine Sand							
- 30 -	24.6					Gray brown saturated Silty Clay							
"	500					Gray brown saturated Silty Clay. Soils flouresced between 30.5'-32' bg,							
	387	<u>30'-</u>				and partially flouresced between 32'-33' bg							
	- 351 62.6	35' 90%											
	32.5		Щ			Daddish have a stantal and tour to Co. O. o. o. o. o. o. o. o. o.							
35 -	21.4		4	4 ° 4 ° 6		Reddish brown saturated medium to fine Sand mixed with pebbles and rocks							



Soil Boring

B-54

CN 105744 CD 6	ar of more									rage. 1 01 2	
Project _7						Owner _ <i>BI</i>				COMMENTS Selected 21'-23', 25'-27', 31'-33',	
						New York				41'-43' and 62'-64' soiil samples for laboratoyr analysis.	
						67.0 ft. N					
-	_					<i>NA</i> S					
				-		T					
						Rig/Core					
Drill Co	Fenley &	& Nicol E	nviro,	Inc. M	ethod	Air Rotary / Hollo	w Stem Auge	r			
						na Dat					
						cense No					
Depth (ff.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.			Descrip			
ا مق	டத	Sam % Re	Blow	9,0	SSS		Coolor	Color, Texture)		sce	
		•			۱	Geologic Descriptions are Based on the USCS.					
			i								
- o -				المحكرة		Aspi Air drilled to p		ugh upper fill	material		
						All diffied to p	ie-deal iiii	ingu apper un	materiai		
										•	
<u> </u>							*				
				<b>100</b> 2						•	
										·  	
			:								
<u> </u>				EXE EXE							
			:								
-											
_ 15 <u>_</u>		15'-	p≤e			Fill Motorial	Dark brown	to block wat n	nodium to coi	urse SAND, little fine	
	0.0	17' 10%				gravel	Dark blowin	to black wet i	nediain to co	inse oand, inde line	
		17'-	×			Fill Material - '	Wet bricks				
]	0.0	19' 30%		(p)							
<u> </u>	0.0	<u>19'-</u> 21'	X	<del>-200</del> 4	Щ	Fill Material Gray to dark g	Travium CII	T SAND			
. 1	10.7	60% <u>21'-</u>	Ž		$\vdash\vdash$	Gray to dark g			clayey		
<u> </u>	2.3	23' 50%				, <u>-</u>		,			
	0.0	23'- 25'				No Recovery					
_ 25 _	5.5	0%	$\nabla$			Gray to dark g	aray caturat	24 CH T CAME	) trace clove	M.	
	3.0	25'- 27' 40%				Gray to dark g	gray Saturdi	JU OILT SAINE	, пас <del>с</del> стаув	r	
-		27'-	V		H	Gray to dark g	gray saturat	ed SILT, trace	clayey		
	0.0	80%			Ш	Outside to		- 4 OU T :	_1		
<u> </u>	0.0	<u>29'-</u> <u>31'</u>	X			Gray to dark g	gray saturat	ed SILT, trace	ciayey		
		90% 31'-	$\forall$		$\vdash$	Gray to dark g	gray saturat	ed SILT, trace	clayey		
-	0.0	33' 100%	X				-				
1	0.0	33'- 35'	Ŋ			Gray to dark g	gray saturat	ed SILT, trace	clayey		
<del>-</del> 35 -		100%	ĽΔ	,00,				Continued N	lext Page		



Soil Boring

B-54

Page: 2 of 2

Location .	70 207	iotoria bi	ra, dao		·	Pioj. No. <u>Geroor</u>
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	Ciass.	Description
De De	ld)	Samr Rec	Reco	Gra L	nscs	(Color, Texture, Structure)
		811.00			ä	Geologic Descriptions are Based on the USCS.
35 -						Continued
L 30 _	0.0	<u>35'-</u> 37'	M			Black saturated medium to course SAND Gray to light brown saturated medium to course SAND, few pebbles and
		50%				gravel
-	0.0	37'- 39'		$\times$		No Recovery - Stone stuck in spoon
		0% 39'-	k,	<u>્રાચન્સ</u>		Light tan saturated medium to course SAND, little pebbles, gravel and rock
40 -	0.0	41' 60%	Д			pieces
		11	М			Light tan saturated medium to course SAND, little pebbles, gravel and rock
ļ	0.0	41'- 43' 70%	М	8.17.6		pieces
		43'- 45'	M			Light tan saturated medium to course SAND, little pebbles, gravel and rock
A.E.	0.0	60%		6.0.0		pieces
<del> </del> 45 -	0.0	<u>45'-</u> 47'	X			Light tan saturated medium to course SAND, little pebbles, gravel and rock
	0.0	50%				pieces
1 -	0.0	<u>47'-</u> 49'	Ä	o		Light tan saturated medium to course SAND, little pebbles, gravel and rock pieces
		40%	Н			Light tan saturated medium to course SAND, little pebbles, gravel and rock
<del>-</del> 50 -	0.0	49'- 51' 60%	А	8.17.0		pieces
		51'- 53'	Ϋ́			Light tan saturated medium to course SAND, little pebbles, gravel and rock
-	0.0	<u>53'</u> 50%				pieces
		<u>53'-</u> <u>55'</u>	×	ૢ૽૾ૢ૽ૹ૽૽૽૾ૢૺૺ		Gray saturated medium to course SAND, little rock pieces/fragments
_ 55 <i>-</i>	0.0	20%				
, 35 -	0.0	<u>55'-</u> 57'	M	g. VI . N		Gray saturated medium to course SAND, little rock pieces/fragments
-		65%		8. ( <u>)</u>		Light brown saturated medium to course SAND, little rock pieces/fragments
_	0.0	<u>57'-</u> <u>59'</u>	X	10.00		
		60% 59'-	Ж			Greenish gray fine to medium SAND, little fine gravel Greenish gray fine to medium SAND, little fine gravel
<del> </del> 60 -	0.0	61' 60%	Ή	1.0.0		
		61'- 63'	М	<del>ढ़ख़ॕ</del> ऄ		Greenish gray fine to medium SAND, some large pebbles, gravels, little fine sand
	0.0	6 <u>3'</u> 70%	H	: O.		Greenish gray fine to medium SAND, layers of silty sand with pebbles
	0.0	<u>63'-</u> 65'	X			Greenish gray fine to medium SAND, layers of silty sand with pebbles
65 -	] 0.0	50%	Ц			Dark greenish gray SILT, some mica flakes
	0.0	65'- 67' 50%	X			Dark greenish gray SILT, some mica flakes
		50%			-	
<del> </del> 70 -						·
-						
- 75 <b>-</b>	-					
1 .						
			ļ			
00						
80 -						
-1	II .	11		l I	H	1)



Monitoring Well **MW-42S** 

SAURIAM D	المالواتي	C.							Page: 1 of 1
Project	75-20 /	4stori	a Blvd S	Site			_ Ov	wner Blumenfeld Development Group, Inc.	COMMENTS
_								Proj. No. <u>821687</u>	
								North East	
								Static NA Diameter	
								Type/Size PVC/.020 in.	
								Type	
								g/Core Cantera	
								ry / Hollow Stem Auger	
								Date Permit # NA	
								Date Fernica Fernica	
- CHECKED	П			T		LICCIIS	C 140.		
		ဋ		의항	¥ ≥	υ l	ass.	Description	
Depth (ft.)	Well	iblet	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·	
	[	5	- 5	SSa Reg	Reg B	ა_	SS	(Color, Texture, Structi Geologic Descriptions are Based of	
	<b></b>							Geologic Descriptions are based to	in the OSOS.
								·	
								Asphalt	
- 0 -	╢							Aspiralit	
L									
		::							
_		W	1						
- 5 -									
		W							
┡	-16/2								
<u> </u>									
'									
		W							
_			:						
		$\bowtie$							
<del> </del> 15 −	-188								
L									
		M							
		\ \ X							
<u> </u>									
	,	,							
<u> </u>	1 1								
<u> </u>	1:1_	<u>.</u> ,							
		1							
<u> </u>	1 =	[:4							
<del> </del> 30 -	╢┈≣								
		<u> </u> :							
L	# E								:
	1	۹۰-							
25		ļ							
<del>-</del> 35 -		l	1	1					



Monitoring Well

/IW-43S

Project _	75-20 Astori	ia Blvd S	Site			_ 0\	vner Blumenfeld Development Group, Inc.	COMMENTS
							Proj. No. <u>821687</u>	
							North East	
							Static NA Diameter	
							Type/Size	
							Type PVC	
							g/Core <u>Cantera</u>	
							ry / Hollow Stem Auger	
							Date _ <del>2/4/09</del> Permit # _ <i>NA</i>	
				ı			Description	<u>.                                    </u>
Depth (ft.)	Veil	PID (ppm)	l age	O Col	Graphic Log	ဗ္ဗီ	·	
	Well Completion	_ <u>_</u>	Sample ID % Recovery	Blow Count Recovery	ნ_	USCS Class.	(Color, Texture, Structu Geologic Descriptions are Based o	*
						-	Geologic Descriptions are bases o	ir tile 0000.
	<u></u> _						Asphalt	
- 0 -						$\square$	-6	
		,						
	$\bowtie$	:						
- 5 -								
			}					
<b>−</b> 10 <b>−</b>								
				1				
	$\mathbb{M}$		1					
ļ								
- 15 -								
				. 1				
	K// K//							
- 20 <b>-</b>								
– 25 –								
20								
<b>–</b> 30 –								
_								
				ļ				
- 35 <del>-</del>								



Monitoring Well

**NW-44S** 

								wner Blumenfeld Development Group, Inc.	COMMENTS
								Proj. No. <u>821687</u>	
								North East	
								Static NA Diameter	
Screen: D	ia <u>4</u>	in		Length	8 ft.			Type/Size	
								Type PVC	
								g/Core Cantera	
								ry / Hollow Stem Auger	
								Date Permit #	
Checked I	Ву <u>Е.</u>	Gust	afson		<del></del>	License	No.		
Depth (ft.)	Well	Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	
									:
- o -								Grass	
					,				
									:
<u> </u>									
:		<b>K</b>							
ļ									
10					Ī				
- 10 -		$\otimes$			:				
├ -					٠				
<u> </u>									
		$\otimes$							
<u> </u>									
1		V							
20 -									
			,						
<u>-</u>					1				
					ļ				
_ 25 -	╢┈╞	<b>-</b>							
	╟╠	∄:1							
<u> </u>	E	∄							
	N:E	$\ \cdot\ $							
20	∦ E	∄.∦							
- 30 -	∥⊹⊨								:
	II E	]: :							
t -	∦≟ <b>E</b>	∃:<:							
- 35 -	1								



Monitoring Well MW-45S

_



Monitoring Well

MW-46S

Project _	75-20 Astor	ia Blvd S	Site			_ Ov	wner Blumenfeld Development Group, Inc.	COMMENTS
							Proj. No. <u>821687</u>	
Surface E	lev. <u>NA</u>		Total Hol	ie Depi	th <u>26.</u>	0 ft.	North East	
							Static NA Diameter	
Screen: D	ia <u>4 in.</u>		Length _	6 ft.			Type/Size <u>PVC/.020 in.</u>	
							Type _ <i>PVC</i>	
							g/Core <u>Cantera</u>	
							ry / Hollow Stem Auger	
							Date <u>3/24/09</u> Permit # <u>NA</u>	
Checked I	By <u>E. Gus</u>	tafson			License	No.		
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu	
	0		0/1%	<u>a</u> –		ž	Geologic Descriptions are Based o	n the USCS.
_ 0 _							Asphalt	
<u></u> 5 −								
								:
<b>⊢</b> 10 −								:
					:			:
- 15 -								
20 -				:				,
_ 25 _								
  -  -								
- 30 -							·	:
35 -								



Monitoring Well **MW-47S** 

								1 490. 1 0/ 1
Project _	75-20 As	toria Blvd	Site			_ 0	wner Blumenfeld Development Group, Inc.	COMMENTS
Location .	75-20 A	storia Blvo	d, Jackso	n Heigl	hts, New	York	Proj. No. <u>821687</u>	
Surface E	lev. <u>NA</u>		Total He	ole Dep	oth <u>31.</u>	0 ft.	North East	
-	_						Static NA Diameter	
							Type/Size _ <i>PVC/.020 in.</i>	
							Type <i>PVC</i>	
							g/Core Cantera	
Drill Co	Fenley &	Nicol En	viro, Inc.	Meth	nod <u>Air</u>	Rota	ry / Hollow Stem Auger	
							Date <u>3/25/09</u> Permit # <u>NA</u>	
Checked I	Зу <u>Е. G</u>	ustafson			License	e No.		
Depth (ft.)	Well Completion	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Struct	iure)
_	l		81%	음 8	O	nsc	Geologic Descriptions are Based	
_ ^							Asphalt	
- 0 -	1	T						
		,						
- 5 -		<b>X</b>						
		<b>X</b>						
40								
– 10 –								
		$\mathbb{X}$						
– 15 –							·	
	<b>Y</b> // <b>&gt;</b>	2						
00								
– 20 –								
		<u>.</u>		1				
– 25 –		욁						
		<u>.</u>						
		딐						
		.3		j				
- 30 -								
- 35 -								
l	1	II	II .					



Monitoring Well

**MW-49S** 

Location Surface E	lev. <u>NA</u>	oria Blvo	<i>, Jackson Hei</i> Total Hole De	ghts, New epth <u>35.</u>	York 0 ft.	Winer         Blumenfeld Development Group, Inc.           Proj. No.         821687           Beast         Static           North         Diameter	COMMENTS
-	-					Type/Size PVC/.020 in.	
						Type	
Fill Materi	al <u>Sand/B</u>	entonite	/Grout		_ Ri	g/Core Cantera	
						ry / Hollow Stem Auger	
			0 ,			Date <u>6/26/09</u> Permit # <u>NA</u>	
Checked I	By <i>E. Gus</i>	tatson		_ Licens	e No.		
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery Blow Count	Graphic	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	-
					_	Geologic Descriptions are based of	iii tile 0303.
- o -						Asphalt  Air drilled to pre-clear through upper fill ma	aterial
 - 5 -							
- -							
- 10							
  - 15			_				
15		20.2	15'- 17'				
		23.1 40.6	5% 17'- 19' 15% 19'-			Fill Material - Rock fragments in black sou Fill Material - Rock fragments and wood in mix	
<u> </u>		120	<u>21'</u> 60%			Fill Material - Rock fragments and wood in	black soupy sand/fill
		52.7	21'- 23'	1		mix Gray brown saturated clayey Silt, trace fin	e sand
– 25 –		134 36.7 747	20% 23'- 25' 85% 25'- 27'			Fill Material - Rock fragments and wood in mix Gray brown saturated Sily Clay Gray brown saturated Sily Clay Gray brown saturated Silty Clay. Note: vis	ı black soupy sand/fill
- 30 -		500 545	90% 27'- 29' 90% 29'- 31' 90% 31'-			sample flouresced under UV light Gray brown saturated Clayey Silt. Note: s flouresced under UV light Gray brown saturated Clayey Silt. Note: s flouresced under UV light Gray brown saturated Clayey Silt. Note: s	ample partially ample partially
_ 35 <u>_</u>			33' 100% 33'- 35' 95%			flouresced under UV light  Gray brown saturated Silty Clay. Note: vis sample flouresced under UV light Reddish brown saturated Sand, some peb	sible sheen present;



Monitoring Well

**WW-50S** 

-							wner Blumenfeld Development Group, Inc. Proj. No. 821687	COMMENTS
							North East	·
							Static NA Diameter	
							Type/Size PVC/.020 in.	
	ia <u>4 in.</u>							
-			-				g/Core Cantera	
							ry / Hollow Stern Auger	
							Date _6/29/09 Permit # _NA	
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description	ura)
	Con	- <u>y</u>	San R	Blov	9	Sc	(Color, Texture, Structi Geologic Descriptions are Based o	
<u> </u>							Geologic Descriptions are based of	in the ococ.
							Asphalt	
F 0 -	1				2002	Н	Air drilled to pre-clear through upper fill m	aterial
T								
<b>├</b> 5 -								
L								
L 10 -								
10 -					503			
L								
15 -								
			15'- 17'	X	William Control		Fill Material - gray saturated medium to co	parse sand.
<u>.</u> -			75% 17'-	X			Greenish gray wet Silty Clay	
			<u>19'</u> 50% 19'-		33333333	<u> </u>	Greenish gray wet Silty Clay	
20 -			21' 50%				Soupy mixture of silt, sand and gravel Gray saturated Silty Clay	
} -			23' 40%				Soupy mixture of silt, sand and gravel	
25			23'- 25'	X			Soupy mixture of silt, sand and gravel	
- 25 -			70% 25'-	X	444444		Gray brown saturated Silty Clay	
L			27' 50%	Н			Gray brown saturated Silty Clay Gray brown saturated Silty Clay	
			27'- 29'	ĮΧ			Gray brown saturated Gitty Gray	
- 30 -			100% 29'-	X				
30 -			31'				Gray brown saturated Silty Clay	
		2929	50% 31'-					
		500	33' 20%	М			Gray brown saturated medium to fine Sar	nd. Note: soils partial
  - 35 -		532 2015	33'- 35'	Å			flourescenced under UV light Gray brown saturated Silty Clay. Note: so	oils partial flourescenced
_ 33 -			80%				∥∖∖under UV light	•
L	]						\Gray brown saturated Silty Clay. Note: so	oils partial flourescenced
							\under UV light Reddish brown saturated medium Sand,	some rock fragments
<del>- 40 -</del>								•
1 70								



Continued Next Page

MW-51S Monitoring Well Page: 1 of 2 Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc. COMMENTS Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687 Surface Elev. NA Total Hole Depth 39.0 ft. North East Top of Casing NA Water Level Initial NA Static NA Diameter Screen: Dia 4 in. Length 8 ft. Type/Size PVC/.020 in. Casing: Dia 4 in. Length 28 ft. Type PVC Fill Material Sand/Bentonite/Grout Rig/Core Cantera Drill Co. Fenley & Nicol Enviro, Inc. Method Air Rotary / Hollow Stem Auger Driller C. Guzzardo Log By G. Passarelli Date 7/1/09 Permit # NA Checked By E. Gustafson ____ License No. Blow Count Recovery JSCS Class Description Graphic Log PID (mdd) (#g (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Concrete 0 Air drilled to pre-clear through upper fill material 10 15 738 45% Gray with some brown patches saturated Silty Clay covered in black mirky water <u>19'</u> 15% 0.0 Fill Material - Coarse sand with pebbles, rocks and brick <u>19'-</u> 21' 80% fragments covered in black mirky water 554 20 261 Fill Material - Rock, brick and wood fragments 554 Gray saturated Silty Clay 99.6 Gray satruated fine Sand 3262 50% 1365 Gray saturated Silty Clay 23'-25' 15% 3262 Gray satruated fine Sand 3173 Gray brown saturated Silty Clay 25 Tan brown saturated medium to fine Sand Gray brown saturated Silty Clay 85% Gray brown saturated Silty Clay mixed with wood, brick and rock fragments 1318 Gray brown saturated Silty Clay Gray brown saturated Silty Clay 30 809 31' 100% Gray brown saturated Silty Clay Gray brown saturated Silty Clay 33' 95% 965 Gray brown saturated Silty Clay



Monitoring Well

MW-51S

Page: 2 of 2

Location .	75-20 Asto	ria Blvo	, Jacksoi	n Heigl	nts, New	York	Proj. No. <u>821687</u>
Depth (ft.)	Well Completion	OIA (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
35 —		438 499	35'- 37' 100% 37'-	X			Continued Gray brown saturated Silty Clay
- 40 -		201	<u>37'-</u> <u>39</u> ' 75%	- 🛕			Gray brown saturated Silty Clay  Reddish brown saturated medium to fine Sand mixed with pebbles. Note: black discoloration at sand/silt interface
- 45 -						,	
- 50 -							
- 55 -							-
60 -			-				
- 65 -							
- 70 -							
- 75 -							
80 -							
L	-		U				FI



Monitoring Well

MW-52DD Page: 1 of 2

Project _	75-20 A	stori	a Blvd 3	Site			_ Ov	wner Blumenfeld Development Group, Inc.	COMMENTS			
Location	75-20	Asto	ria Blvo	, Jacksor	n Heigi	hts, New	York	Proj. No. <u>821687</u>				
Surface E	lev. N	Ά		Total Ho	le Dep	oth _59.	0 ft.	North East				
Top of Ca	sing _^	VΑ		Water Le	evel In	itial NA		Static Diameter				
Screen: D	ia <u>2 ir</u>	7.		Length	_10 ft.			Type/Size PVC/.020 in.				
Casing: D	ia <u>2 in</u>	7.		Length	47 ft.			Type _ <i>PVC</i>				
Fill Materi	al Sar	nd/Be	entonite	/Grout			_ Ri	g/Core <u>Cantera</u>				
Drill Co	Fenley	& N.	icol En	viro, Inc.	Met	nod <u>Air</u>	Rota	ry / Hollow Stem Auger				
Driller _C	C. Guzza	ardo		Log By	G. P.	assarelli		Date <u>6/23/09</u> Permit # <u>NA</u>				
Checked I	Ву <u><i>Е.</i></u>	Gust	afson			License	No.					
Depth (ft.)	Welf	ioseid iso	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	· .			
- 0 <i>-</i>		<b>;</b> †						Asphalt Air drilled to pre-clear through upper fill ma	aterial			
- 5 - - 10 - - 15 -				15'-								
			760	<u>17'</u> 40%		744Q		Fill Material - Brown saturated medium sa	nd mixed with brick			
┝╶			136	<u>17'-</u> 19'	Д	<del>کام المالا</del>		fragments, rock debris and asphalt				
		<b>X</b>		50%	H	<b>20000000</b>		Fill Material - Saturated rock and brick frag Gray with swirls of tan saturated Silty Clay				
<u> </u>			182	21' 80%	Å			Fill Material - Saturated rock and brick frag	-			
				60% <u>21'-</u>	×		$\vdash \vdash$	Tan saturated brown fine Sand				
			182	23' 15% 23'- 25'	X	3333333		Gray brown saturated Silty Clay  Fill Material - Saturated rock and brick frag  Gray brown saturated Silty Clay				
<u> </u>				65%	$\Box$		$\vdash \vdash \vdash$	Gray brown saturated Silty Clay. Note: str	ong odor			
			155	<u>27'</u>	X			Gray brown saturated Silty Clay				
			108	95% <u>27'-</u> 29'	M			Gray brown saturated Silty Clay				
				90%	$\langle \rangle$		<b>  </b>		ĺ			
<del>-</del> 30 -			403	29 - 31'	X			Gray brown saturated Silty Clay				
		M		50% 31'-	Н		$\vdash \vdash \vdash$	Gray brown saturated Silty Clay				
<u> </u>			63.0	31'- 33' 100%	X			212, 212 22				
					X	AAAAAAA		Reddish brown saturated medium Sand				
- 35 -		N/	1.1	33'- 35' 40%		<u> </u>		Reddish brown saturated medium Sand, s  Continued Next Page	ome rocks			



Monitoring Well

MW-52DD

Page: 2 of 2

					nts, New		Proj. No827687
Depth (ft.)	Well	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
35	Ø 160		35'-	X			Continued
			35'- 37' 50% 37'- 39'	X	, initial		Gray brown saturated Silty Clay Reddish brown saturated medium Sand, some pebbles
			20%	<b>5</b> 2	હાન્ય		Reddish brown saturated medium Sand, some pebbles
40		1	39'- 41' 10% 41'- 43'	×	<u>a a\ale el</u>		Reddish brown saturated medium Sand, some pebbles
		0.0	30% 43'- 45'	X	<u>، ،                                  </u>		Reddish brown saturated medium Sand, some rocks and pebbles. Note: quartz rock found at end of sample Reddish brown saturated medium Sand, some pebbles
<b>45</b>			65% 45'- 47' 100%	M			Soupy mix of reddish brown medium to coarse Sand mixed with pebbles and rock fragments
		4.7	47'- 49'	Ä			Reddish brown saturated medium Sand, some pebbles
- 50 -		6.0	60% <u>49'-</u> 51'	×	~~~	ļ	Reddish brown saturated coarse Sand
		0.0	20% 51'- 53'	×	<u>:::</u>		Reddish brown saturated medium Sand, some rock fragments and pebbles
		1.7	20% 53'- 55'	X			Reddish brown saturated medium Sand, some rock fragments and pebbles
55			50% 55'- 57'	$\nabla$			Reddish brown saturated medium Sand, some rock fragments  Reddish brown saturated medium Sand, some rock fragments
		0.0	75%	$\nabla$	0 0		and pebbles Tan brown saturated well graded Sand
		49.0	<u>57'-</u> <u>59'</u> 65%		77.8		Reddish brown saturated medium to fine Sand, some rock fragments and pebbles
60 -							Refusal at 59' below grade
65 -	1						
-							
70 -							
<b> </b>		,					
75							
75 -							
+ 1		·					
80 -	1						



Monitoring Well N

MW-53DD

Page: 1 of 2

Project _	75-20 Astor	a Blvd	Site			_ Ov	wner Blumenfeld Development Group, Inc.	COMMENTS
Location	75-20 Asto	ria Blvo	l, Jackson	Heigi	hts, New	York	Proj. No. <u>821687</u>	
Surface E	ırface Elev. North East East							
	Casing NA Water Level Initial NA Static NA Diameter				,			
Screen: Dia 2 in. Length 8 ft. Type/Size PVC/.020 in.								
							Type PVC	
Fill Materi	al Sand/B	entonite	/Grout			_ Ri	g/Core Cantera	
							ry / Hollow Stern Auger	
Driller _C	C. Guzzardo		Log By _	G. P	assarelli		Date Permit #	
Checked I	By E. Gus	afson			License	No.		
Depth (ft.)	Well	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	·
- 0 -					0		Grass Air drilled to pre-clear through upper fill ma	aterial
- 5 -							All dillied to pre-clear through upper fill his	ateriai
- 10 -  - 15 -								
		NA	15'- 17'				No Recovery	
_ 20 -		<b>NA</b> 7.1	0% 17'- 19' 0% 19'- 21'	X			No Recovery	
		166 74.2 534 70.8	50% 21'- 23' 80% 23'- 25'	X			Fill Material - Dark gray saturated Silty Cla fragments Dark gray saturated fine Sand Dark gray to tan brown saturated medium brick fragments Dark gray saturated Sandy Silt	
<u> </u>		,	5%	$\Box$			Dark gray saturated Sandy Silt  Dark gray to tan brown saturated medium	Sand some rock and
]		3062	27'	X			brick fragments     brick fragments	cana, como rook and
L -		109	75% <u>27'-</u> 29'	$\mathbb{R}$			Gray brown saturated Silty Clay	
		1129 10 <del>9</del>	<u>29'</u> 80%	Δ			Gray brown saturated Silty Clay Gray brown saturated fine Sand	
  - 30 -		196	<u>29'-</u>	Ā			Gray brown saturated Silty Clay	
30 -		190	85%				Gray brown saturated Silty Clay Gray brown saturated Silty Clay	
		325	<u>31'-</u> <u>33'</u>	M			Gray brown saturated Silty Clay	
<u> </u>			80% 33'-	$\exists$			Gray brown saturated Silty Clay	
_ ر		342	35' 80%	Д			July 575 The Saturation Only Olay	
<del>-</del> 35 −							Continued Next Page	



Monitoring Well

VW-53DD

Page: 2 of 2

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

Location	75-20 Asto	ria Blvo	i, Jackso	n Heigi	hts, New	York	Proj. No. <u>821687</u>
Depth (ft.)	Weil Completion	Old (bpm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
35		165 0.0 39.0	35'- 37' 100% 37'- 39'	X			Continued Gray brown saturated Silty Clay Reddish brown saturated medium Sand, some pebbles and rock fragments
<b>40</b> -		6.2 19.9 41.7	39'- 60% 39'- 41' 100% 41'- 43' 50%	X			Gray brown saturated Silty Clay Reddish brown saturated medium Sand, some pebbles Soupy mix of reddish brown medium Sand, rock fragments and pebbles
45		21.2 64.7 321	43'- 45' 5% 45'- 45'- 47' 45%	X	aaaaaa		Gray brown saturated Silty Clay Reddish brown saturated medium Sand, some pebbles and rock fragments Reddish brown saturated medium Sand, some rock fragments Reddish brown saturated medium Sand, some pebbles and rock
- 50 -		405 62.0	47'- 49'- 35% 49'- 51' 20%	X X	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		fragments  Reddish brown saturated medium Sand, some pebbles Crushed quartz rock, saturated Reddish brown saturated medium Sand, some pebbles Reddish brown saturated medium Sand, some pebbles and rock fragments Refusal at 51' bgs
- 55 -							
60 -							
- 65 -							
70 -							
- 75 -				:			
80 -							



Monitoring Well

MW-55 D1 D2 D3 Page: 1 of 2

	75-20 Astori						vner Blumenfeld Development Group, Inc.	COMMENTS
							Proj. No. <u>821687</u>	
							North East	
Top of Cas	sing NA		Water Le	evel In	itial <i>NA</i>		Static <u>NA</u> Diameter	
							Type/Size	
Casing: Di	a <u>2 in.</u>		Length	40/5	50 / 60 ft.		Type <u>PVC</u>	
							g/Core Cantera	
							ry / Hollow Stem Auger	
Driller <u>C</u>	. Guzzardo		Log By	G. Pa	assarelli		Date <u>7/28/09</u> Permit # <u>NA</u>	
Checked E	By <u>E. Gus</u>	tafson			License	e No.		
Depth (ff.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	
- 0 -							Asphalt	
- 5 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
10 <del></del>							·	•
15 -	X110X110X110 XX110X110X110 XX110X110X110							:
- 20 - 	7.17.84.17.84.17.8 2.17.84.17.84.17.8 2.17.84.17.84.17.8							
<b>– 25</b> –								
- 30 -								
0.5								
— 35 <i>—</i>	א נא נא נא						Continued Next Page	



Monitoring Well

MW-55 D1 D2 D3

Page: 2 of 2

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

Location	73-20 ASIC		, • • • • • • • • • • • • • • • • • • •				Proj. No
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 35 -							Continued
40 —							
- 45 -							
- 50 -							
<b>– 55</b> –							
60 -							
- 65 -							
70							
70 -							
- 75 -							
_ 80 —							



35

## **Drilling Log**

MW-56 D1 D2 Monitoring Well Page: 1 of 2 Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc. COMMENTS Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687 Surface Elev. NA Total Hole Depth 56.0 ft. North East Top of Casing NA Water Level Initial NA Static NA Diameter Screen: Dia 2 in. Length 7 / 6 ft. Type/Size PVC/.020 in. Casing: Dia 2 in. Length 40 / 50 ft. Type PVC Fill Material Sand/Bentonite/Grout Rig/Core Cantera Drill Co. Fenley & Nicol Enviro, Inc. Method Air Rotary / Hollow Stem Auger Driller C. Guzzardo Log By G. Passarelli Date 7/16/09 Permit # NA Checked By E. Gustafson License No. _ Blow Count Recovery Description Graphic Log PID (mdd) Depth (ft.) (Color, Texture, Structure) Geologic Descriptions are Based on the USCS. Asphalt Air drilled to pre-clear through upper fill material 10 15 Wet Sandy Soil. Note: strong odor 2181 17' 100% Greenish gray Silty Clay 767 <u>19'</u> 50% Greenish gray Silty Clay. Note: mild odor Wet Sandy Soil, some rock fragments 20 Brownish gray saturated Silty Clay 80% Wet Sandy Soil, some rock fragments Brownish gray saturated Silty Clay NA 23′ 100% Wet Sandy Soil Brownish gray saturated Clayey Silt Greenish gray saturated Clayey Silt <u>25'</u> 100% NA 25 <u>25'-</u> <u>27'</u> 100% Greenish gray saturated Clayey Silt NA Saturated medium to coarse Sand, little fine gravel, few pebbles Saturated medium to coarse Sand, little fine gravel, few pebbles. NΑ <u>29'</u> 100% Note: visual DNAPL present, soils flouresced under UV light, stong odor 30 NA Greenish gray saturated Clayey Silt 80% Brown saturated fine to medium Sand, little fine gravel, wood and <u>31'-</u> <u>33'</u> 60% rocks. Note: soils partially flouresced under UV light, stong odor NΑ Brown gray saturated Clayey Silt. Note: soils partially flouresced under UV light, stong odor 35' 100% Brown saturated fine to medium Sand, little fine gravel, wood and

Continued Next Page



## Monitoring Well

MW-56 D1 D2

Page: 2 of 2

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

Location	75-20 Asto	oria Blvo	l, Jackso	n Heig	hts, New	York	Proj. No. <u>821687</u>
Depth (ft.)	Well Completion	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
35 -		NA NA	35'- 37' 60% 37'- 39' 0%	X			Continued  \text{\rocks. Note: soils partially flouresced under UV light, stong odor}  \text{\rocks. Note: soils partially flouresced}  \text{\rocks. Note: soils partially flouresced}  \text{\rocks. Note: visual DNAPL}  \text{\rocks. Note: visual DNAPL}
- 40 -		NA NA	0% 39'- 41' 40% 41'- 43'	X	*:4:.4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- 45 <del>-</del>		NA NA	30% 43'- 45' 50% 45'- 47' 50%	X			No Recovery, but appears to be medium to coarse sand. Note: water had strong odor. Brownish gray saturated medium to very coarse Sand, some angular rock fragments, medium gravel and pebbles, little fine sand. Note: mild odor Brownish gray saturated medium to very coarse Sand, some angular rock fragments, medium gravel and pebbles, little fine
- 50 -		NA NA NA	49'- 51'- 40% 51'- 53'- 40%	X X X			\sand. Note: mild odor Light brown saturated medium to very coarse Sand, few pebbles, little fine sand, angular rock fragments. Note: mild odor Light brown saturated medium to very coarse Sand, few pebbles, little fine sand, angular rock fragments. Note: mild odor Light brown saturated medium to very coarse Sand, few pebbles,
55 		NA NA NA	53'- 55' 50% 55'- 57' 10% 57'- 59'	X *			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 60 -		NA	10% 59'- 61' 40%	X			coarse angular rock fragments, few pebbles, little fine sand.  Note: mild odor  Light brown saturated fine to medium Sand, some black very coarse angular rock fragments, few pebbles, little fine sand.  Note: mild odor, tight soils - split spoon only penetrated 1 foot
- 65 -							Light brown saturated fine to medium Sand, some black very coarse angular rock fragments, few pebbles, little fine sand. Note: mild odor, tight soils - split spoon only penetrated 1 foot Light brown to red saturated fine to medium Sand, little fine gravel, few pebbles, very little coarse sand. Note: mild odor,
					Happina magy in a manasan mana		geology very tight Refusal @ 61' below grade
- 70 - 							
- 75 <i>-</i>					annapa asananan ayaaya marii ayayiiyi		
_ 80 <i>-</i>							



Monitoring Well

**MW-57 D1 D2 D3**Page: 1 of 2

							wner Blumenfeld Development Group, Inc.	COMMENTS
							Proj. No. <u>821687</u>	
		North East East						
							Static NA Diameter	
			_				Type/Size PVC/.020 in.	
	ia 2 in.							
							g/Core <u>Cantera</u> ry / Hollow Stem Auger	
							Date Permit #	
							Date 172203 Permit # NA	
Jileckeu i	Dy	1			Licens	z INO.		
Depth (ft.)	Well	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structu Geologic Descriptions are Based o	·
	:							
					!			
- 0 -	L						Asphalt	
U	<b>▗</b>							
_				:				
_								
- 5 -		•		li				
<u>-</u>								
								,
– 10 <i>–</i>								
								•
- 15 <del>-</del>								
								İ
- 20 <del>-</del>								
20								
							·	
- 25 -								•
-								
- 30 —								:
								1
_								
- 35 -	8888							
	H I		I			ıl	Continued Next Page	



Monitoring Well

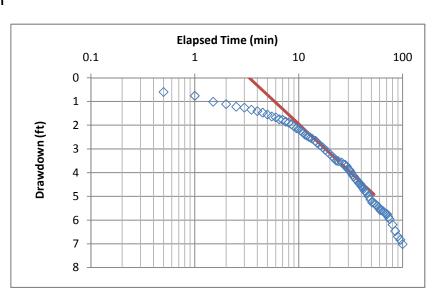
MW-57 D1 D2 D3

Page: 2 of 2

Project 75-20 Astoria Blvd Site Owner Blumenfeld Development Group, Inc.

Location 75-20 Astoria Blvd, Jackson Heights, New York Proj. No. 821687

Location	73-20 ASIO	na brea	, ouchoo			TOTA	Proj. No. <u>02/1007</u>
Depth (ft.)	Well Completion	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description  (Color, Texture, Structure)  Geologic Descriptions are Based on the USCS.
- 35 -							Continued
<del>- 40 -</del>							
- 45 -							
- 50 -							
- 55 -				1			
- 60 -							
- 65 -							
70 -							
75 -							
- 80 -							
1							


## **APPENDIX B**

#### **HYDRAULIC CONDUCTIVITY FIELD TEST RESULTS**

# Appendix B Hydraulic Conductivity Field Test Results

## MW-50S Drawdown

<u>Sec</u> 0	<u>Min</u>	<u>DTW</u> 13.05	Log(t) for Regression	<u>Observed</u> Drawdown	<u>Calculated</u> Drawdown
0.6	0.50	13.65	-0.30103	0.6	-3.369
1.2	1.00	13.81	0.00000	0.76	-2.138
1.86 2.743	1.50 2.00	14.06 14.16	0.17609 0.30103	1.01 1.11	-1.418 -0.906
3.36	2.50	14.10	0.39794	1.22	-0.510
4.14	3.00	14.31	0.47712	1.26	-0.186
4.98	3.50	14.4	0.54407	1.35	0.088
5.88 6.84	4.00 4.50	14.46 14.52	0.60206 0.65321	1.41 1.47	0.325 0.534
7.844	5.00	14.52	0.69897	1.55	0.721
8.88	5.50	14.68	0.74036	1.63	0.891
10.02	6.00	14.72	0.77815	1.67	1.045
11.22	6.50	14.8	0.81291	1.75	1.188
12.48 13.8	7.00 7.50	14.82 14.9	0.84510 0.87506	1.77 1.85	1.319 1.442
15.24	8.00	14.94	0.90309	1.89	1.556
16.74	8.50	15.01	0.92942	1.96	1.664
18.327	9.00	15.1	0.95424	2.05	1.766
19.98	9.50	15.18	0.97772	2.13	1.862
21.78 23.64	10.00 10.50	15.21 15.28	1.00000 1.02119	2.16 2.23	1.953 2.040
25.68	11.00	15.36	1.04139	2.31	2.122
27.875	11.50	15.45	1.06070	2.4	2.201
30	12.00	15.49	1.07918	2.44	2.277
32.4 34.919	12.50 13.00	15.54 15.58	1.09691 1.11394	2.49 2.53	2.349 2.419
37.56	13.50	15.62	1.13033	2.53 2.57	2.486
40.38	14.00				2.551
43.383	14.50	15.71	1.16137	2.66	2.613
46.56	15.00	15.79	1.17609	2.74	2.673
49.919 53.52	16.00 17.00	15.89 15.98	1.20412 1.23045	2.84 2.93	2.788 2.896
57.119	18.00	16.09	1.25527	3.04	2.997
61.32	19.00	16.18	1.27875	3.13	3.093
65.52	20.00	16.27	1.30103	3.22	3.184
69.72 74.52	21.00 22.00	16.36 16.45	1.32222 1.34242	3.31 3.4	3.271 3.354
74.32 79.919	23.00	16.54	1.36173	3.49	3.433
84.72	24.00	16.56	1.38021	3.51	3.508
90.72	25.00				
96.72	26.00	16.62	1.41497	3.57	3.650
102.72 109.319	27.00 28.00	16.7 16.72	1.43136 1.44716	3.65 3.67	3.717 3.782
116.52	29.00	16.78	1.46240	3.73	3.844
124.319	30.00	16.91	1.47712	3.86	3.905
132.119	31.00 32.00	16.95 17.05	1.49136	3.9 4	3.963
140.52 149.52	33.00	17.05	1.50515 1.51851	4 4.1	4.019 4.074
159.119	34.00	17.21	1.53148	4.16	4.127
168.72	35.00	17.29	1.54407	4.24	4.179
179.519 190.919	36.00 37.00	17.36 17.41	1.55630	4.31 4.36	4.229 4.277
202.919	38.00	17.41	1.56820 1.57978	4.36 4.44	4.325
215.519	39.00	17.52	1.59106	4.47	4.371
228.72	40.00	17.61	1.60206	4.56	4.416
243.119 258.119	41.00 42.00	17.66 17.73	1.61278 1.62325	4.61 4.68	4.460 4.502
273.771	43.00	17.73	1.63347	4.75	4.544
290.519	44.00	17.84	1.64345	4.79	4.585
308.593	45.00	17.9	1.65321	4.85	4.625
327.119 347.519	47.00 49.00	18.04 18.18	1.67210 1.69020	4.99 5.13	4.702 4.776
368.541	51.00	18.31	1.70757	5.26	4.847
390.72	53.00	18.33	1.72428	5.28	4.916
414.72	55.00	18.39	1.74036	5.34	4.982
439.919 466.319	57.00 59.00	18.44 18.54	1.75587 1.77085	5.39 5.49	5.045 5.106
494.519	61.00	18.63	1.78533	5.58	5.166
524.519	63.00	18.64	1.79934	5.59	5.223
556.319	65.00	18.67	1.81291	5.62	5.278
589.919 625.919	67.00 69.00	18.74 18.77	1.82607 1.83885	5.69 5.72	5.332 5.384
661.919	71.00	18.8	1.85126	5.75	5.435
703.919	73.00	18.92	1.86332	5.87	5.485
745.919	75.00	19.01	1.87506	5.96	5.533
787.919 835.919	80.00 85.00	19.24 19.51	1.90309 1.92942	6.19 6.46	5.647 5.755
889.919	90.00	19.51	1.95424	6.69	5.755 5.856
937.919	95.00	19.88	1.97772	6.83	5.953
997.919	100.00	20.06	2.00000	7.01	6.044
1057.919 1117.919	105.00 110.00	20.14 20.23	2.02119 2.04139	7.09 7.18	6.130 6.213
1183.919	115.00	20.23	2.06070	7.18	6.292
-	-	-	-		

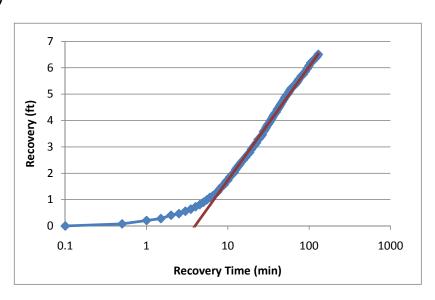


 $\Delta s = 4.09$  ft T = 13 +/- 1 gpd/ft Transmissivity = 0.0012 +/- 0.0001 ft²/min K = 1.5E-04 +/- 1.0E-05 ft/min

K (based on mean Transmissivity) = 1.44E-04 ft/min

## SUMMARY OUTPUT

Regression Statistics
Multiple R 0.985386
R Square 0.970986


Standard Error 0.066906
Observations 18

	Coefficients
Intercept	-2.137935
X Variable 1	4.090806

## Appendix B Hydraulic Conductivity Field Test Results

## MW-50S Recovery

<u>Sec</u>	<u>Min</u> Static	<u>DTW</u> 13.05	Log(t) for Regression	Observed Recovery	<u>Calculated</u> Recovery
0	0.10	20.22	-1.00000	0	-6.871
30	0.50	20.14	-0.30103	0.08	-3.862
60	1.00	20.01	0.00000	0.21	-2.567
90 120	1.50 2.00	19.94 19.81	0.17609 0.30103	0.28 0.41	-1.809 -1.271
150	2.50	19.75	0.39794	0.47	-0.854
180	3.00	19.66	0.47712	0.56	-0.513
210	3.50	19.58	0.54407	0.64	-0.225
240 270	4.00 4.50	19.49 19.41	0.60206 0.65321	0.73 0.81	0.025 0.245
300	5.00	19.41	0.69897	0.81	0.243
330	5.50	19.23	0.74036	0.99	0.620
360	6.00	19.14	0.77815	1.08	0.783
390	6.50	19.08	0.81291	1.14	0.932
420 450	7.00 7.50	19 18.92	0.84510 0.87506	1.22 1.3	1.071 1.200
480	8.00	18.8	0.90309	1.42	1.320
510	8.50	18.71	0.92942	1.51	1.434
540 570	9.00	18.65 18.53	0.95424	1.57	1.540
570 600	9.50 10.00	18.48	0.97772 1.00000	1.69 1.74	1.642 1.737
630	10.50	18.37	1.02119	1.85	1.829
660	11.00	18.3	1.04139	1.92	1.916
690	11.50	18.24	1.06070	1.98	1.999
720 750	12.00 12.50	18.18 18.08	1.07918 1.09691	2.04 2.14	2.078 2.155
780	13.00	18	1.11394	2.22	2.228
810	13.50	17.94	1.13033	2.28	2.298
840	14.00	17.88	1.14613	2.34	2.366
870 930	14.50 15.50	17.81 17.71	1.16137 1.19033	2.41 2.51	2.432 2.557
990	16.50	17.71	1.21748	2.61	2.673
1050	17.50	17.51	1.24304	2.71	2.783
1110	18.50	17.43	1.26717	2.79	2.887
1170 1230	19.50 20.50	17.31 17.22	1.29003 1.31175	2.91 3	2.986 3.079
1290	21.50	17.22	1.33244	3.08	3.168
1350	22.50	17.06	1.35218	3.16	3.253
1410	23.50	16.94	1.37107	3.28	3.335
1470 1530	24.50 25.50	16.89 16.82	1.38917 1.40654	3.33 3.4	3.412 3.487
1590	26.50	16.76	1.42325	3.46	3.559
1650	27.50	16.64	1.43933	3.58	3.628
1710	28.50	16.57	1.45484	3.65	3.695
1770 1830	29.50 30.50	16.49 16.41	1.46982 1.48430	3.73 3.81	3.760 3.822
1890	31.50	16.35	1.49831	3.87	3.882
1950	32.50	16.29	1.51188	3.93	3.941
2010 2070	33.50 34.50	16.22 16.16	1.52504 1.53782	4 4.06	3.997 4.052
2130	35.50	16.10	1.55023	4.13	4.106
2190	36.50	16.02	1.56229	4.2	4.158
2250	37.50	15.97	1.57403	4.25	4.208
2310 2370	38.50 39.50	15.92 15.89	1.58546 1.59660	4.3 4.33	4.257 4.305
2430	40.50	15.81	1.60746	4.41	4.352
2490	41.50	15.76	1.61805	4.46	4.398
2550 2610	42.50 43.50	15.72 15.66	1.62839 1.63849	4.5 4.56	4.442 4.486
2670	44.50	15.61	1.64836	4.61	4.528
2790	46.50	15.52	1.66745	4.7	4.610
2910	48.50	15.43	1.68574	4.79	4.689
3030 3150	50.50 52.50	15.34 15.26	1.70329 1.72016	4.88 4.96	4.764 4.837
3270	54.50	15.21	1.73640	5.01	4.907
3390	56.50	15.13	1.75205	5.09	4.974
3510	58.50	15.05 14.99	1.76716 1.78176	5.17	5.039
3630 3750	60.50 62.50	14.99	1.79588	5.23 5.27	5.102 5.163
3870	64.50	14.91	1.80956	5.31	5.222
3990	66.50	14.87	1.82282	5.35	5.279
4110 4230	68.50 70.50	14.82 14.78	1.83569 1.84819	5.4 5.44	5.334 5.388
4350	70.50	14.70	1.86034	5.5	5.440
4470	74.50	14.66	1.87216	5.56	5.491
4770 5070	79.50	14.54	1.90037	5.68 5.75	5.613
5070 5370	84.50 89.50	14.47 14.36	1.92686 1.95182	5.75 5.86	5.727 5.834
5670	94.50	14.25	1.97543	5.97	5.936
5970	99.50	14.14	1.99782	6.08	6.032
6270 6570	104.50 109.50	14.03 13.97	2.01912 2.03941	6.19 6.25	6.124 6.211
6870 6870	109.50	13.97	2.05881	6.25	6.211
7170	119.50	13.85	2.07737	6.37	6.375
7470 7770	124.50 129.50	13.79 13.71	2.09517 2.11227	6.43 6.51	6.451 6.525
1110	123.50	13.71	<u> </u>	0.01	0.323



 $\Delta s = 4.30$  ft T = 12 +/- 1 gpd/ft Transmissivity = 0.0011 +/- 0.0001 ft²/min K = 1.42E-04 +/- 9.04E-06 ft/min

K (based on mean Transmissivity) = 1.44E-04 ft/min

## SUMMARY OUTPUT

0.10 recovery yield (gpm)

Regression Statistics
Multiple R 0.998298
R Square 0.996598

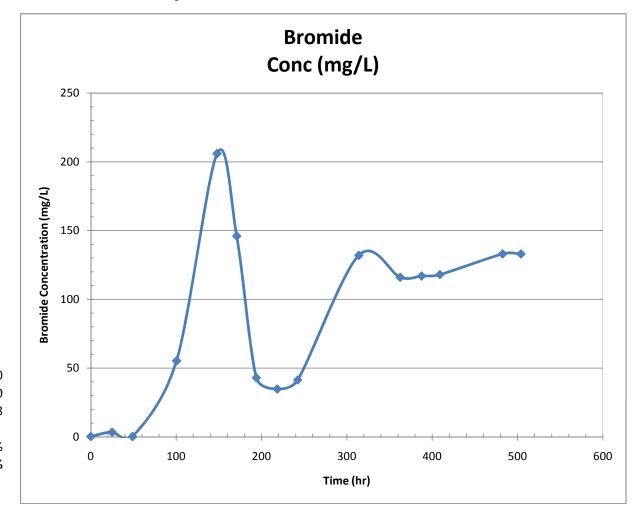
Standard Error 0.063534

Observations

Coefficients
Intercept -2.56672
X Variable 1 4.304125

Notes:

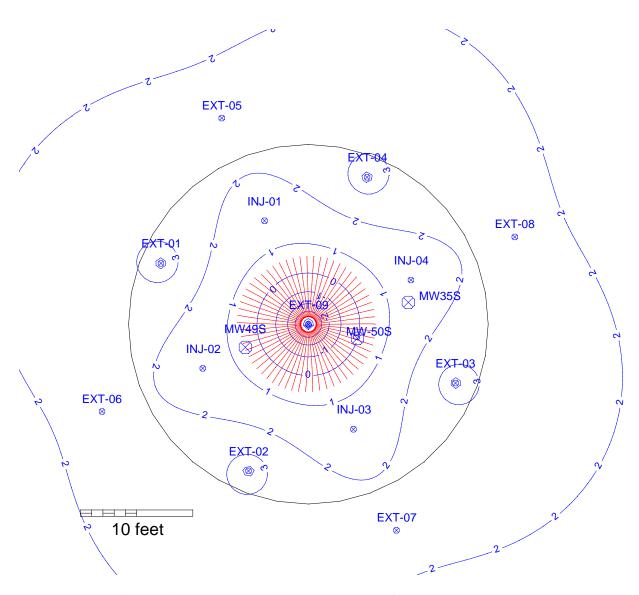
## **APPENDIX C**


#### TRACER TEST RESULTS

## APPENDIX C TRACER TEST RESULTS

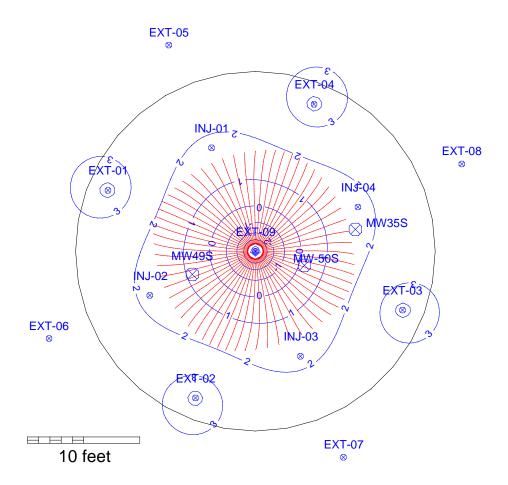
## 75-20 Astoria Blvd Site Jackson Heights, New York

	Bromide
Time (hr)	Conc (mg/L)
0	0.24
25	3.42
49	0.22
100.5	55.3
148	206
171	146
194	43
218.5	34.8
242.5	41.4
314	132
362.5	116
387.5	117
409	118
482.5	133
504	133


Conc. (mg/L)	15 70	40 90
time (hr) Thickness (feet)	8	8
Eff. Porosity (range) Effective Porisity (average)	6.7%	8.6% <b>7.7%</b>

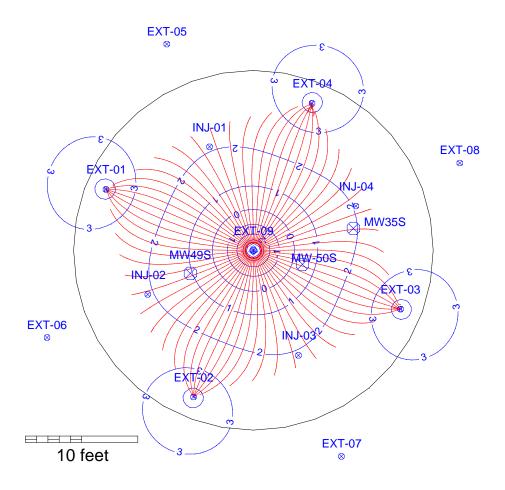


## **APPENDIX D**


## STAGE 1 PARTICLE TRACKING MODELING RESULTS

Appendix D
Stage 1 Particle Tracking Modeling Results




Particle Tracking (red lines) and drawdown (feet, blue contours) at Time = 4 days

Appendix D
Stage 1 Particle Tracking Modeling Results

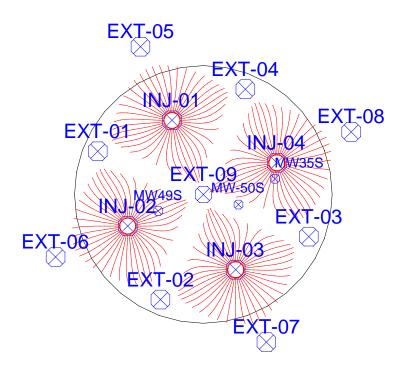


Particle Tracking (red lines) and drawdown (feet, blue contours) at Time = 7.5 days

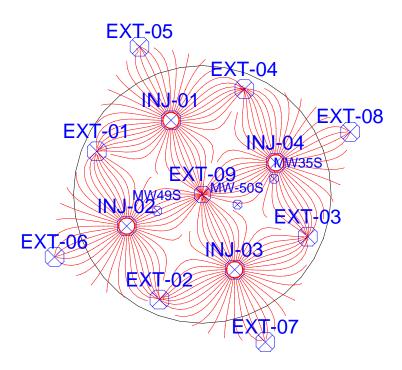
Appendix D
Stage 1 Particle Tracking Modeling Results



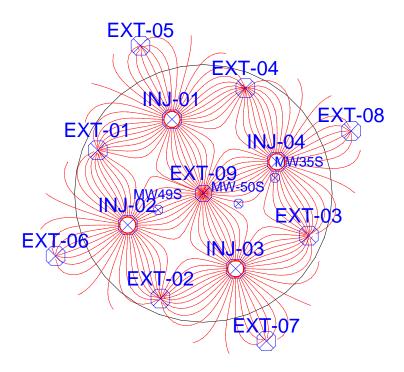
Particle Tracking (red lines) and drawdown (feet, blue contours) at Time = 15 days


Appendix D
Stage 1 Particle Tracking Modeling Results

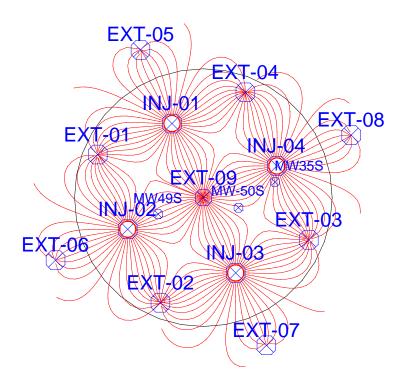



Particle Tracking (red lines) and drawdown (feet, blue contours) at Time = 30 days

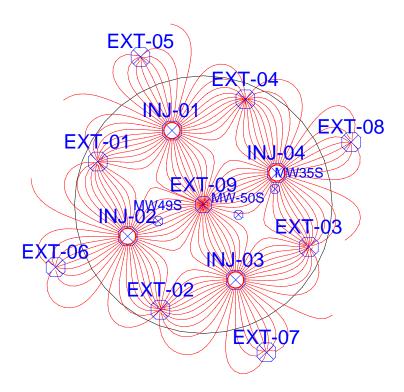
## **APPENDIX E**


#### **STAGE 2 PARTICLE TRACKING MODELING RESULTS**




Particle Tracking at Time = 4 days




Particle Tracking at Time = 7.5 days



Particle Tracking at Time = 15 days



Particle Tracking at Time = 30 days



Particle Tracking at Time = 45 days

# APPENDIX F

## **EVALUATION OF VERTICAL DNAPL MIGRATION**

#### **EVALUATION OF VERTICAL DNAPL MIGRATION**

The potential for downwards migration of DNAPL was considered during the conceptual design of the co-solvent flushing system. Exposure of the DNAPL to the co-solvent could result in mobilization of the DNAPL prior to solubilization. Although the time that the DNAPL could be potentially mobilized prior to solubilization would likely be short (days) due to both the volume of co-solvent being delivered, and the viscous nature of the DNAPL, screening level calculations were performed to determine a reasonable "worst-case" scenario for vertical DNAPL migration.

Vertical migration of DNAPL (V, in m/s) due to buoyancy is described by the following expressions:

$$V = \frac{\Delta \rho g K k_r}{\mu \theta S_{DNAPL}} \label{eq:V}$$
 Eq. 1

$$k_r = S_{DNAPL}^2$$
 Eq. 2

where  $\Delta \rho$  is the density difference between the DNAPL and water (0.34 x  $10^3$  kg/m³, assuming a DNAPL density equal to that of TCA, which is  $1.34 \text{x} 10^3$  kg/m³), g is the gravitational constant (9.8 m/s²), K is the permeability determined via pump and slug testing (6 x  $10^{-14}$  m²),  $\mu$  is the DNAPL viscosity (assumed equal to that of TCA,  $1.2 \text{x} 10^{-3}$  kg/m/s),  $\theta$  is the porosity (0.35), and  $S_{\text{DNAPL}}$  is the DNAPL pore saturation. A DNAPL pore saturation of 0.3 is conservatively estimated, as this value is representative of a DNAPL saturation that is approaching residual (i.e., immobile) saturation, which is consistent with the lack of appreciable product recovery in nearby wells. The relative permeability (k_r) is estimated using Eq. 2 (Charbeneau, 2000), with a resultant value of 0.09.

Incorporating these values into Eqs. 1 and 2, the calculated value of the vertical DNAPL velocity is  $1.4 \times 10^{-7}$  m/s, or 0.04 ft/day. Thus, over the duration of the co-solvent flushing, vertical DNAPL migration is expected to be a maximum of 2 ft. This value is considered to be a significant over-prediction of the rate of vertical DNAPL migration due to the conservative assumptions used in the calculations. For example, due to the layered stratigraphy in the DNAPL interbedded sand/silt zone, the vertical hydraulic conductivity is expected to be substantially less than the measured horizontal conductivity that was used in Eq. 1 (in general, vertical permeabilities are typically less than the corresponding horizontal permeabilities). Furthermore, dissolution of the DNAPL into the co-solvent is expected to diminish the DNAPL pore saturation ( $S_{DNAPL}$ ), thereby lowering the calculated DNAPL migration rate. Finally, vertical DNAPL migration will be retarded and eventually terminated due to retention of residually trapped DNAPL within the soil pores. This trapping phenomenon would limit both the extent and rate of vertical DNAPL migration.