SUB-SLAB INVESTIGATION AND REMEDIATION SUMMARY REPORT

Former Champion Products Facility 200 North Main Street Perry, New York

> VCP No. V000189-9 Delta Project No. 0610756P

> > November 10, 2008

Prepared for:

Hanesbrands, Inc. 1000 Hanes Mill Road Winston-Salem, NC 27105

Prepared by:

Mr. Mark J. Schumacher Senior Project Manager

mark & Schumacher

Reviewed by:

Mr. Scott Bryant Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODUC	CTION	1
	1.1 Object	tivestives	1
	1.2 Organ	ization	1
2.0	SITE BACK	(GROUND	1
	2.1 Previo	ous Investigations and Remedial Activities	2
	2.1.1	Dual Phase Vacuum Extraction System Operations	2
		Site Characterization Study, February 2003	
		Baseline Soil Vapor Intrusion Study, June 2007	
3.0		oil Investigation	
		oring Installations	
		Soil Sampling	
		/alidation	
		Evaluation	
		oring Results	
		Geology	
		Field Screeningnalytical Results	
<i>1</i> ∩		er monitoring – 2007 and 2008	
4.0		dwater Sampling	
		Evaluation	
		dwater Flow	
		dwater Analytical Results	
		May 2007 Groundwater Analytical Results	
		March 2008 Groundwater Analytical Results	
5.0		OF FINDINGS	
	5.1 Soil Sa	ampling Findings	9
	5.1.1	Current Screen Wash Area	9
	5.1.2	Former Manual Screen Wash Area	9
		ampling Summary	
		dwater Sampling Summary	
6.0	CONCLUS	IONS AND RECOMMENDATIONS	12
		FIGURES	
Figu	ıre 1	Site Plan	
Figu	ıre 2	Sub-Slab Soil Boring Locations	
Figu	ıre 3	Groundwater Elevation Contour Map – May 15, 2007	
Figu	ıre 4	Groundwater Elevation Contour Map – March 11, 2008	
Figu	ıre 5	Areas Exceeding Part 375 Soil SCOs	
		TABLES	
Tab	le 1	May 2007 Soil Sample Analytical Results – Volatile Organic Compounds	
	le 2	Groundwater Sample Analytical Results – May 2007 and March 2008	
Tab	le 3	February 2003 Soil Sample Analytical Results – Volatile Organic Compounds	
Tab	le 4	Groundwater Sample Analytical Results – February 2003	

TABLE OF CONTENTS continued

ATTACHMENTS

Attachment 1 Support Documentation

Attachment 2 Soil Boring Logs

Attachment 3 Soil Sampling Analytical Data

Attachment 4 DUSR

Attachment 5 Groundwater Sampling Analytical Data

Note: Due to its size, Attachment 3 includes only the analytical data summary and not the full Category B data deliverable package. The full backup package is available upon request.

SUB-SLAB INVESTIGATION AND REMEDIATION SUMMARY REPORT VCP NO. V000189-9

FORMER CHAMPION PRODUCTS FACILITY 200 NORTH MAIN STREET PERRY, NEW YORK DELTA PROJECT NO. 0610756P

1.0 INTRODUCTION

This report summarizes the activities performed and results of the Sub-slab Soil Investigation (SSI) and groundwater sampling events that were performed at the subject site (hereinafter the "Site") by Delta Consultants (Delta) on behalf of Hanesbrands, Inc. (HBI) in 2007 and 2008. The report also compares results from these activities with historic field observations as well as historic soil and groundwater analytical data and presents a summary of current Site conditions. SSI work was conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved SSI Work Plan (dated April 26, 2007). Groundwater monitoring was conducted in accordance with the NYSDEC approved groundwater sampling plan dated January 22, 2007.

1.1 Objectives

The objectives of this report are to: 1) update the findings of the 2003 Site Characterization Study, 2) compare the 2007 SSI results to the applicable Remedial Program Soil Cleanup Objectives (SCOs) and assess current Site conditions, and 3) evaluate the SSI findings and results of other historic and recent evaluations at the Site and determine if onsite remedial activities have been successful and have achieved applicable remedial objectives.

1.2 Organization

This document presents the Sub-Slab Investigation and Remediation Summary Report for the Site and is organized as follows.

- A description of the overall project objectives and report organization (Section 1.0);
- A summary of site background and previous investigations and remedial work conducted at the Site (Section 2.0);
- A description of the SSI work performed at the Site (Section 3.0);
- A summary of 2007 and 2008 groundwater sampling activities (Section 4.0);
- A summary of findings (Section 5); and
- Conclusions and recommendations (Section 6.0).

2.0 SITE BACKGROUND

The former Champion Products (Champion) facility was owned and operated from 1955 until 1998 by Champion, an affiliate of the Sara Lee Corporation. In 1998, the property was sold to SMG Development Corporation. Following the sale, Champion leased the building from SMG and continued operations at

the Site until December 2001. In January 2002, American Classic Outfitters (ACO) was formed and has operated at the Site since that time. Irrespective of ownership, the facility has been primarily used since 1955 for the manufacture of print screen apparel for sports teams and retail sale. A site plan of the facility is presented on Figure 1.

In March 2000, Champion entered into a Voluntary Cleanup Agreement (VCA) with NYSDEC for the remediation of soil and groundwater underlying the facility, which was impacted by chlorinated and non-chlorinated volatile organic compounds (VOCs). In accordance with the VCA, Champion implemented the remedial strategy presented in the NYSDEC-approved Final Remediation Work Plan (submitted on February 11, 2000). The Work Plan included installation, operation and maintenance of a dual phase vacuum extraction (DPVE) system and excavation and disposal of impacted soil from the Former Empty Drum Storage Area. HBI is now performing the activities initiated by Champion under the VCA.

2.1 Previous Investigations and Remedial Activities

A brief summary of the previous investigation and remedial activities, which were conducted at the Site between 2000 and 2007, are described below. Information referenced in this section has previously been provided to NYSDEC and is not provided in this report unless otherwise noted.

2.1.1 Dual Phase Vacuum Extraction System Operations

In July 2000, a DPVE system was installed to address VOC impacts in soil and groundwater in the Former Manual Screen Wash Area and the Current Screen Wash Area (Figure 1). In February 2007, the DPVE was shutdown in accordance with the NYSDEC approved System Shutdown Plan dated February 27, 2007. Shutdown of the system was approved based on system monitoring data that indicated the DPVE system had effectively reduced VOC concentrations across the impacted area of the Site by an average of 87 percent. Monitoring data also indicated that by 2007 VOC reductions had reached an asymptotic state and it was clear that continued operation of the system was not likely to achieve additional benefits in VOC reductions.

2.1.2 Site Characterization Study, February 2003

In February 2003, a Site Characterization Study (SCS) was performed to obtain soil samples from the Former Manual Screen Wash Area and the Current Screen Wash Area, which were located proximate to impacted areas identified in the Final Remediation Work Plan (February 2000). Objectives of the SCS were to better determination the nature and extent of impacted soils onsite and to determine the effectiveness of remediation by the DPVE system. During the SCS, 18 soil borings were installed onsite to depths of up to 16 feet below grade with 35 soil samples being analyzed for VOCs (Attachment 1). Groundwater samples were also collected from all onsite monitoring wells during the SCS. The following briefly summarizes the findings of the SCS.

- A review of soil analytical data collected from both screen wash areas indicated that between July 2000 and February 2003, the DPVE system had removed approximately 51 to 99.9 percent of VOCs from soil located within the DPVE extraction wells radius of influence.
- Toluene, xylenes and carbon disulfide were identified in soil samples at three locations (SCRW-5, SCRW-8 and SCRW-10) beneath the Former Manual Screen Wash Area at concentrations in excess of TAGM 4046 recommended soil cleanup objectives (SCOs). Concentrations of toluene and xylenes in the remaining soil samples located within the DPVE extraction well radius of influence for this area were below applicable TAGM 4046 SCOs.
- Analytical data for soil samples collected from the Current Screen Wash Area did not indicate the
 presence of VOCs in excess of TAGM 4046 SCOs; therefore, soil located within this area was not
 considered to be the source of dissolved phase VOCs previously observed in monitoring well
 MW-107.
- A review of available groundwater analytical data indicated that between July 2000 and February 2003, the concentrations of VOCs in groundwater within the Former Manual Screen Wash Area decreased by approximately 78 to 100 percent within the DVPE extraction wells radius of influence. However, the data also indicated that VOCs continued to be detected in monitoring wells (SCRW-05 and MW-106) located outside of the extraction wells radius of influence.
- VOCs were detected in groundwater samples collected from three extraction wells (DVE-103, DVE-104 and DVE-105) at concentrations below NYSDEC Class GA groundwater quality standards.

Based on the findings of the SCS, Delta recommended modifications to the DPVE system to enhance the removal of the remaining VOCs that had been identified in soil and groundwater across the treatment area. Following implementation of the recommended modifications, treatment continued onsite with some additional modifications to the system until the system was shutdown in February 2007.

Note: At the time of the SCS, soil sample analytical results were compared to the applicable NYSDEC recommended SCOs presented in TAGM 4046. On December 14, 2006, the 6 NYCRR Subpart 375-6 (Part 375) Remedial Program SCOs became effective and have thus superseded the TAGM 4046 SCO. NYSDEC has indicated to Delta that the Part 375 SCOs are now applicable to the Site; therefore, in future sections of this report all available soil analytical data will be referenced to and compared to the Part 375 SCOs.

2.1.3 Baseline Soil Vapor Intrusion Study, June 2007

In March 2007, a baseline Soil Vapor Intrusion (SVI) Study was conducted at the Site in accordance with the NYSDEC and New York State Department of Health (NYSDOH) approved SVI Work Plan dated March 12, 2007. The objectives of the SVI Study were to: 1) evaluate the potential exposure pathway from soil vapor intrusion from beneath the northwest portion of the facility where VOCs are documented to be present in soil and groundwater, 2) to determine baseline sub-slab and indoor air conditions prior to the performance of proposed sub-slab soil sampling within the remaining source area, and 3) to evaluate the potential for VOC rebound in groundwater following shutdown of the DPVE system. As part of the SVI Study, a pre-sampling building survey and chemical inventory were conducted followed by the collection of one upwind outdoor ambient air sample, five indoor ambient air samples, and five sub-slab air samples (Attachment 1). The following briefly summarizes the findings of the SVI Study.

- Four VOCs (dichlorofluoromethane, chloromethane, trichlorofluoromethane, and methylene chloride) were detected in the outdoor, upwind air sample at low concentrations.
- Two VOCs (methylene chloride and n-hexane) were generally detected at higher concentrations in indoor ambient air samples versus their corresponding sub-slab air samples.
- Concentrations of methylene chloride detected in four of the five ambient indoor air samples ranged from 4,900 ug/m³ to 8,700 ug/m³ and exceeded the NYSDOH Indoor Air Guideline of 60 ug/m³.
- Concentrations of methylene chloride detected in sub-slab air samples ranged from 31 ug/m³ to 900 ug/m³ and were generally lower than those detected in the ambient indoor air samples by one to two orders of magnitude.
- Concentrations of n-hexane detected in ambient indoor air samples ranged from 110 ug/m³ to 250 ug/m³ and generally exceeded their corresponding sub-slab air sample concentrations by approximately one order of magnitude.
- VOCs detected in sub-slab samples at concentrations notably higher than corresponding ambient indoor air samples included 1,1,1-trichloroethane (TCA), tetrachloroethene (PCE), 1,1-dichloroethane (DCA), cyclohexane, and methyl ethyl ketone (MEK).
- Concentrations of PCE detected in two ambient indoor air samples (IA-3 @ 300 ug/m³ and IA-5 @ 220 ug/m³) exceeded the NYSDOH Air Guideline Value of 100 ug/m³.
- Sub-slab concentrations of PCE at two sub-slab sample locations (SS-3 @ 630 ug/m³ and SS-5 @ 1,500 ug/m³) were higher than corresponding ambient indoor air sample concentrations.
- PCE was in three other sub-slab samples (SS-1, SS-2, and SS-4) at concentrations of 81 ug/m³, 660 ug/m³ and 390 ug/m³, respectively.

Based upon the findings of the baseline SVI Study Delta concluded the following.

- There was no association between VOCs detected in upwind outdoor air and ambient indoor air samples.
- Methylene chloride and PCE were detected in ambient indoor air samples at concentrations that exceeded their respective NYSDOH Indoor Air Guidelines. However, concentrations of these VOCs in ambient indoor air samples were well below the OSHA Permissible Exposure Limits.
- Current ACO operations more than likely contributed to the detection of some compounds in the ambient indoor air samples, most notably methylene chloride, n-hexane, and PCE. This is consistent with findings from the pre-sampling chemical inventory, a review of MSDSs of onsite products in use, and the chemical odors noted during sampling.
- Indoor air concentrations of methylene chloride and n-hexane generally exceeded corresponding sub-slab vapor concentration by at least an order of magnitude indicating the likely association with ACO operations.
- PCE concentrations were notably higher in sub-slab air samples than corresponding indoor air samples. While some of the PCE in the indoor air samples may be associated with infiltration from the sub-slab, current manufacturing and production processes may also have contributed to the detection of PCE in indoor air samples.
- A review of the analytical data (indoor air and sub-slab air) indicated that several other VOCs (TCA, DCA, cyclohexane, and MEK) were also detected at the same sub-slab locations where elevated concentrations of PCE were detected. However, none of these VOCs were reported in indoor air samples at the detection limits reported, which indicated that a potential incomplete exposure pathway from sub-slab vapor existed.

3.0 SUB-SLAB SOIL INVESTIGATION

On May 19, 2007, five sub-slab soil borings (GSB-1 to GSB-5) were installed in the area of the Former Manual Screen Wash and Current Screen Wash to assess current soil conditions in screen wash areas where VOC impacts were observed in soils during the February 2003 SCS (Figure 2).

3.1 Soil Boring Installations

Soil borings were installed through the concrete floor within the building to a maximum depth of 16 feet below grade using "direct-push" soil sampling techniques. Soil samples were collected continuously from grade to the final depth of each boring. Following collection, all soil samples were logged by Delta's onsite geologist, and screened in the field with a photoionization detector (PID) to assess the potential presence for VOCs. Soil descriptions along with field observations and results of field screening are presented on the soil boring logs included in Attachment 2. Upon completion, drill cuttings were used to backfill the soil borings and concrete patch was applied to repair holes through the concrete floor slab.

3.1.1 Soil Sampling

Soil samples were selected for laboratory analysis based on visual observations, odors, and PID head-space screening. Samples exhibiting the highest PID readings (a minimum of two per boring) were selected from each boring for analysis. Fourteen soil samples and one duplicate sample were analyzed for VOCs (EPA 8021 list by EPA Method 8260) by Severn Trent Laboratories (STL) located in Amherst, New York. STL is a New York State Department of Health (NYSDOH) Environmental Laboratory Program (ELAP) certified laboratory that uses analytical procedures that are consistent with the latest NYSDEC Analytical Services Protocol (ASP).

3.2 Data Validation

Analytical results were reported using NYSDEC ASP 2000 Category A deliverables. In accordance with the NYSDEC-approved SSI Work Plan, site-specific quality assurance/quality control (QA/QC) samples, including matrix spike (MS) and matrix spike duplicate (MSD) samples were not collected. Following receipt, analytical data was checked by Delta for completeness and accuracy; and was validated by a NYSDEC-approved data validation chemist and a Data Usability Summary Report (DUSR) was prepared. Laboratory analytical data is presented in Attachment 3 and the DUSR is presented in Attachment 4.

3.3 Data Evaluation

Following receipt of validated data, analytical data were checked for completeness and accuracy by Delta and data summary tables were prepared (Table 1). Soil analytical data were compared to 6NYCRR Part 375 SCOs.

3.4 Soil Boring Results

3.4.1 Geology

Soil boring samples indicated that the concrete floor beneath the investigation area was underlain by approximately 0.75-foot of sub-base gravel fill followed by up to approximately 14.75 feet of a mixed sand and gravel unit with varying minor fractions of silt and/or clay (Attachment 2). Unconsolidated soils in the upper seven feet of the boring were observed to be dry. Soils below seven feet in depth were wet.

These unconsolidated deposits were underlain by a bedrock unit at depths ranging from 13.9 feet to 16 feet below grade. Previously installed deep monitoring wells at the Site indicate that the underlying bedrock unit is composed of shale.

3.2.2 Field Screening

Field screening of soil samples indicated that there was no evidence of staining in any of the soil samples; however, "solvent-type" odors and elevated PID readings (>5ppm) were observed in three of the five soil borings (GSB-2, 3 and 4). Impacts to soils were generally detected in the saturated zone; whereas, soils in the unsaturated zone typically did not show evidence of impacts. A summary of the field observations are presented below.

- **GSB-1**: PID readings were observed at levels that were no higher that 4.7 ppm (12 feet to 13.9 feet) and there was no evidence of odors.
- **GSB-2**: PID readings were elevated between 8 feet and 14 feet in depth (180 ppm @ 8 feet to 10 feet, 10.4 ppm @ 10 feet to 12 feet, and 68.7 ppm @ 12 feet to 14 feet). Solvent-type odors were also noted in samples from 8 feet to 14 feet in depth.
- **GSB-3**: PID readings were elevated between 8 feet and 16 feet in depth (85 ppm @ 8 feet to 10 feet, 1,082 ppm @ 10 feet to 12 feet, 420 ppm @ 12 feet to 14 feet, and 38 ppm @ 14 feet to 16 feet). Solvent-type odors were also noted in samples from 8 feet to 16 feet in depth with strong odors being noted in the 10 foot to 12 foot depth interval.
- **GSB-4**: PID readings were elevated between 8 feet and 14.8 feet in depth (1,189 ppm @ 8 feet to 10 feet, 1,313 ppm @ 10 feet to 12 feet, and 336 ppm @ 12 feet to 14.8 feet). Solvent-type odors were also noted in samples from 8 feet to 14.8 feet in depth with strong odors being noted in the 8 foot to 12 foot depth interval.
- **GSB-5**: PID readings were slightly elevated between 8 feet and 14 feet in depth (32 ppm @ 8 feet to 10 feet, 25 ppm @ 10 feet to 12 feet, and 36 ppm @ 12 feet to 14 feet). Little to no odors were noted in samples from 8 feet to 14 feet in depth.

3.5 Soil Analytical Results

Soil analytical results are presented on Table 1, along with a comparison of the analytical data to Part 375 SCOs, which include SCOs that are based upon current, intended or reasonably intended land uses for impacted sites. Soil analytical data collected during the SSI were compared to both unrestricted use and restricted use SCOs. Unrestricted use SCOs represent the concentration of a contaminant in soil which, when achieved at a site, will require no use restrictions for the protection of public health, groundwater or ecological resources due to the presence of contaminants at the site. Restricted use SCOs are protective of public health at every restricted use site where contamination has been identified in soil above the protection limit for a particular use (residential, restricted-residential, commercial or industrial). In addition, SCOs for the protection of groundwater resources were also considered. A review of the soil analytical data indicated the following.

- VOCs were not detected in any samples at concentrations in excess of the restricted use SCOs (residential, restricted-residential, commercial, and industrial).
- VOCs were detected in two samples (GSB-6 @ 10 feet to 12 feet and GSB-4 @ 10 feet to 12 feet) at concentrations barely in excess of their respective unrestricted use SCOs. Acetone was detected in duplicate sample GSB-6 at a concentration of 53 ppb, which barely exceeded the 50 ppb unrestricted use SCO. This sample is a duplicate sample of GSB-3 from the same depth

- interval, and while acetone was detected in the GSB-3 sample, it did not exceed the unrestricted use SCO for acetone. Xylenes (m and p) were detected in sample GSB-4 (280 ppb) and a reanalyzed sample GSB-4RI (300 ppb) at concentrations that barely exceeded the 260 ppb unrestricted use SCO.
- Acetone was detected in sample GSB-6 at a concentration, which barely exceeded the 50 ppb protection of groundwater SCO. This sample is a duplicate sample of GSB-3 from the same depth interval, and while acetone was detected in the GSB-3 sample, it did not exceed the protection of groundwater SCO.

4.0 GROUNDWATER MONITORING – 2007 AND 2008

On May 30, 2007 and March 11, 2008, groundwater samples and groundwater elevation measurements were collected from select onsite monitoring wells to evaluate groundwater conditions and flow patterns following the shutdown of the DPVE remedial system.

4.1 Groundwater Sampling

Groundwater samples were collected from fourteen wells (DVE-101, DVE-102, DVE-104, DVE-106, DVE-107, DVE-108, DVE-109, MW-105, MW-106, MW-107, MW-108, CSW-01, CSW-06, AND SCRW-05) during the May 2007 sampling event and from twenty one wells (DVE-101, DVE-103, DVE-104, DVE-105, DVE-106, DVE-107, DVE-108, DVE-109, MW-101, MW-102, MW-103, MW-105, MW-106, MW-107, MW-108, MW-109, MW-201, MW-202, CSW-01, CSW-06, AND SCRW-05) during the March 2008 sampling event. A groundwater sample was not collected from well DVE-102 during the March 2008 sampling event because the well could not be located under heavy snow cover at the time of sampling.

Groundwater samples from each monitoring event were analyzed for VOCs (EPA 8021 list by EPA Method 8260) by Upstate Laboratories, Inc. (ULI) located in Syracuse, New York. ULI is a New York State Department of Health (NYSDOH) Environmental Laboratory Program (ELAP) certified laboratory that uses analytical procedures that are consistent with the latest NYSDEC Analytical Services Protocol (ASP). Laboratory analytical data is presented in Attachment 5.

4.2 Data Evaluation

Following receipt, analytical data were checked for completeness and accuracy by Delta and data summary tables were prepared. Analytical data were not validated. Analytical data were compared to NYSDEC TOGS 1.1.1 ambient water quality standards and guidance values, which are derived from 6 NYCRR Parts 700-705, Water Quality Regulations.

4.3 Groundwater Flow

A shallow water table groundwater flow system is present in the mixed sand and gravel deposits located beneath the Site. Groundwater flow maps for May 30, 2007 and March 11, 2008 are presented on Figure 3 and Figure 4, respectively.

A review of the May 2007 groundwater flow map indicated that groundwater flow beneath the western area of the Site was generally to the east with some variations and a minor deflection to the southeast near the southwest corner of the building. The groundwater gradient was approximately 0.16 ft/ft.

A review of the March 2008 groundwater flow map indicated that groundwater flow beneath the western area of the Site was generally to the east with a minor deflection to the southeast near the southwest corner of the building. The groundwater gradient was approximately 0.17 ft/ft.

Groundwater flow conditions observed during the 2007 and 2008 monitoring events were consistent with groundwater flow direction and gradients historically observed at the Site.

4.4 Groundwater Analytical Results

Groundwater analytical data are presented on Table 2 along with a comparison to NYSDEC Class GA groundwater standards.

4.4.1 May 2007 Groundwater Analytical Results

A review of the May 30, 2007 groundwater analytical data indicate that between two and seven VOCs were detected in four (MW-106, MW-107, CSW-01 and SCRW-05) of the 14 wells sampled at concentrations in excess of applicable groundwater standards. Total VOC concentrations ranged from 19.8 ppb to 447 ppb. VOCs detected in the groundwater samples above applicable groundwater standards included; chloroethane, methylene chloride, TCA, DCA, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and vinyl chloride.

4.4.2 March 2008 Groundwater Analytical Results

A review of the March 11, 2008 groundwater analytical data indicate that between one and five VOCs were detected in five (MW-101, MW-106, MW-107, CSW-01and SCRW-05) of the 21 wells sampled at concentrations in excess of applicable groundwater standards. Total VOC concentrations ranged from 13.4 ppb to 176 ppb. VOCs detected in the groundwater samples above applicable groundwater standards included; chloroethane, TCA, DCA, 1,2,4-trimethylbenzene, cis-1,2-dichloroethene (cis-1,2-DCE), n-butylbenzene, and vinyl chloride.

5.0 SUMMARY OF FINDINGS

Soil and groundwater analytical data for samples collected from the Former Manual Screen Wash area and the Current Screen Wash Area during the 2003 SCS, the 2007 SSI, and the 2007 and 2008 groundwater sampling events, were reviewed to evaluate the effectiveness of previously implemented remedial activities across these areas of the Site and to determine current conditions in soil and groundwater in these areas following shutdown of the DPVE remedial system. A review and summary of

the available data and comparison to the applicable Part 375 SCOs and NYSDEC Class GA groundwater standards is presented in the following sections.

5.1 Soil Sampling Findings

Soil sampling data collected during the 2003 SCS and 2007 SSI were compared to the Part 375 SCOs as these are the current SCOs which NYSDEC has indicated are applicable to the Site.

5.1.1 Current Screen Wash Area

In February 2003, eight soil borings (CSW-01 to CSW-07 and MM-1) were installed across the Current Screen Wash Area to determine if residual phase VOCs were present in the vicinity of monitoring well MW-107 and extraction well DVE-107 (Figure 2). A review of the analytical data indicated that one VOC (acetone) was detected in six of the 16 soil samples collected at concentrations (between 55 ppb and 75 ppb), which were slightly in excess of the unrestricted use and protection of groundwater SCOs (50 ppm) for acetone (Table 3). Exceedences of the acetone SCO were only observed in soil samples that were collected from the saturated zone at depths ranging from 8.5 feet to 14.5 feet below grade. Acetone was not detected in soil samples collected in the unsaturated zone at concentrations above unrestricted use and protection of groundwater SCOs. VOCs were not detected in any of the soil samples at concentrations in excess of restricted use SCOs (residential, restricted-residential, commercial and industrial).

In May 2007, two soil borings (GSB-1 and GSB-2) were installed across the Current Screen Wash Area to determine if the remedial system had effectively reduced concentrations of VOCs in soils across this area between 2003 and 2007 (Figure 2). A review of the analytical data indicated that VOCs were not detected in any of the five saturated zone soil samples analyzed from the soil borings at concentrations in excess of any of the Part 375 SCOs (Table 1). In addition, it should be noted that acetone was not detected in any of the soil samples. Based on a comparison of the 2003 and 2007 soil analytical data it is concluded that saturated soils in this area of the Site meet the most stringent Part 375 SCOs (unrestricted use and protection of groundwater) and that remediation activities were effective in reducing VOC impacts in soils across this area of the Site.

5.1.2 Former Manual Screen Wash Area

In February 2003, 10 soil borings (SCRW-01 to SCRW-10 were installed across the Former Manual Screen Wash Area to obtain soil samples proximate to impacted areas that were previously identified onsite in an effort to better determine the nature and extent of VOC impacts in soils across this area of the Site (Figure 2). The soil sampling data were also used to evaluate the effectiveness of the remedial system, which had been in operation since July 2000. A review of the analytical data indicated that up to four VOCs including acetone (three samples), carbon disulfide (one sample), toluene (three samples),

and xylenes (two samples) were detected in 7 of the 19 soil samples at concentrations in excess of the unrestricted use and protection of groundwater SCOs (Table 3). Note: Carbon disulfide does not have a Part 375 SCO; however, under these circumstances NYSDEC recommends using a TAGM 4046 SCO for evaluation purposes. Exceedences of VOCs in soils were detected in soil samples collected from the saturated zone at depths ranging from 9 feet to 15 feet below grade. VOCs were not detected in any soil samples in the unsaturated soils at concentrations in excess of any SCOs.

In May 2007, three soil borings (GSB-3, GSB-4 and GSB-5) were installed across the Former Manual Screen Wash Area to determine if the remedial system had reduced concentrations of VOCs in soils across this area between 2003 and 2007 (Figure 2). A review of the analytical data indicated that VOCs were detected in two of the ten saturated zone soil samples analyzed from these soil borings at concentrations slightly in excess of Part 375 unrestricted use and/or protection of groundwater SCOs (Table 1). Acetone was detected in a duplicate sample (GSB-6) at a concentration of 53 ppb, which barely exceeded the 50 ppb unrestricted use and protection of groundwater SCOs. This sample was a duplicate sample of GSB-3 at the same depth interval and while acetone was detected in the GSB-3 sample, it did not exceed the unrestricted use or protection of groundwater SCO for acetone. In addition, xylenes (m and p) were detected in sample GSB-4 (10 feet to 12 feet) and the reanalyzed sample for that depth interval (GSB-4RI) at concentrations (280 ppb and 300 ppb, respectively) that barely exceeded the 260 ppb SCO for unrestricted use. VOCs were not detected in any samples at concentrations in excess of the restricted use SCOs (residential, restricted-residential, commercial, and industrial). Based on a comparison of the 2003 and 2007 soil analytical data it is concluded that soils in this area of the Site meet and/or very closely approximate the most stringent Part 375 SCOs (unrestricted use and protection of groundwater) and that remediation has been effective in reducing VOC impacts in soils across this area of the Site.

5.2 Soil Sampling Summary

A review of soil analytical data from the 2003 SCS indicated that VOCs were detected in saturated soils beneath the building in the Current Screen Wash Area (8.5 feet to 14.5 feet) and the Former Manual Screen Wash Area (9 feet to 15 feet) at concentrations in excess of Part 375 unrestricted use and protection of groundwater SCOs. In 2003, the areal extent of VOC impacts across the Current Screen Wash Area was estimated to encompass approximately 8,400 square feet (sf) and the areal extent across the Former Manual Screen Wash Area was estimated to encompass approximately 5,600 sf (Figure 5). Total VOC concentrations in saturated soil samples beneath the Current Screen Wash Area ranged from 41 ppb to 75 ppb and beneath the Former Manual Screen Wash Area from 0 ppb to 19,600 ppb (Table 3). VOCs were not detected in any soil samples from the unsaturated zone beneath either area at concentrations in excess of any of the Part 375 SCOs; therefore, unsaturated zone soils were not considered to be an area of concern at the Site.

A review of soil analytical data from the 2007 SSI indicated that VOCs were not detected in saturated soils beneath the building in the Current Screen Wash Area at concentrations in excess of any of the Part 375 SCOs. In the Former Manual Screen Wash Area, acetone was detected in one saturated zone soil sample (a duplicate) at a concentration barely in excess of Part 375 unrestricted use and protection of groundwater SCOs, while xylenes were detected in a second sample at concentrations slightly in excess of the unrestricted use SCOs. The analytical data also indicated that the areal extent of VOC impacts across the Current Screen Wash Area had been reduced by 100 percent (Figure 5). VOCs detected in the 2007 soil samples were at concentrations that were significantly below the most stringent SCOs. In addition, the analytical data indicated that the areal extent of VOC impacts across the Former Manual Screen Wash Area had been reduced by approximately 94 percent to an area of approximately 360 square feet that was tightly centered around soil borings GSB-3 and GSB-4 (Figure 5). Previous soil samples (SCRW-8 and SCRW-10) that had been collected from immediately adjacent soil borings in 2003 had total VOC concentrations of 6,800 ppb and 19,600 ppb, respectively. In 2007, total VOC concentrations in samples from soil borings GSB-3 and GSB-4 had decreased by between 92 and 99 percent to concentrations of between 205 ppb and 567 ppb, respectively.

Overall, the 2007 SSI analytical data indicated that the remedial activities conducted at the Site were effective in significantly reducing VOC concentrations in saturated soils beneath known source areas to concentrations that met and/or very closely approximate the most stringent Part 375 SCOs (unrestricted use and protection of groundwater). Based on these findings it is clear that the source areas onsite have been effectively remediated by the treatment activities.

5.3 Groundwater Sampling Summary

Groundwater analytical data from the 2003 SCS indicated that VOCs were detected in five groundwater samples (MW-105, MW-106, MW-107, CSW-01 and SCRW-05) at concentrations in excess of NYSDEC Class GA groundwater quality standards (Table 4). Impacts to groundwater were indicated in wells located in the Current Screen Wash Area (CSW-01 and MW-107) and the Former Manual Screen Wash Area (MW-105, MW-106 and SCRW-05). Total VOC concentrations in these samples ranged from 21 ppb to 3,850 ppb. VOCs detected in the groundwater samples above applicable groundwater standards included; chloroethane, chloroform, TCA, DCA, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and isopropyl benzene.

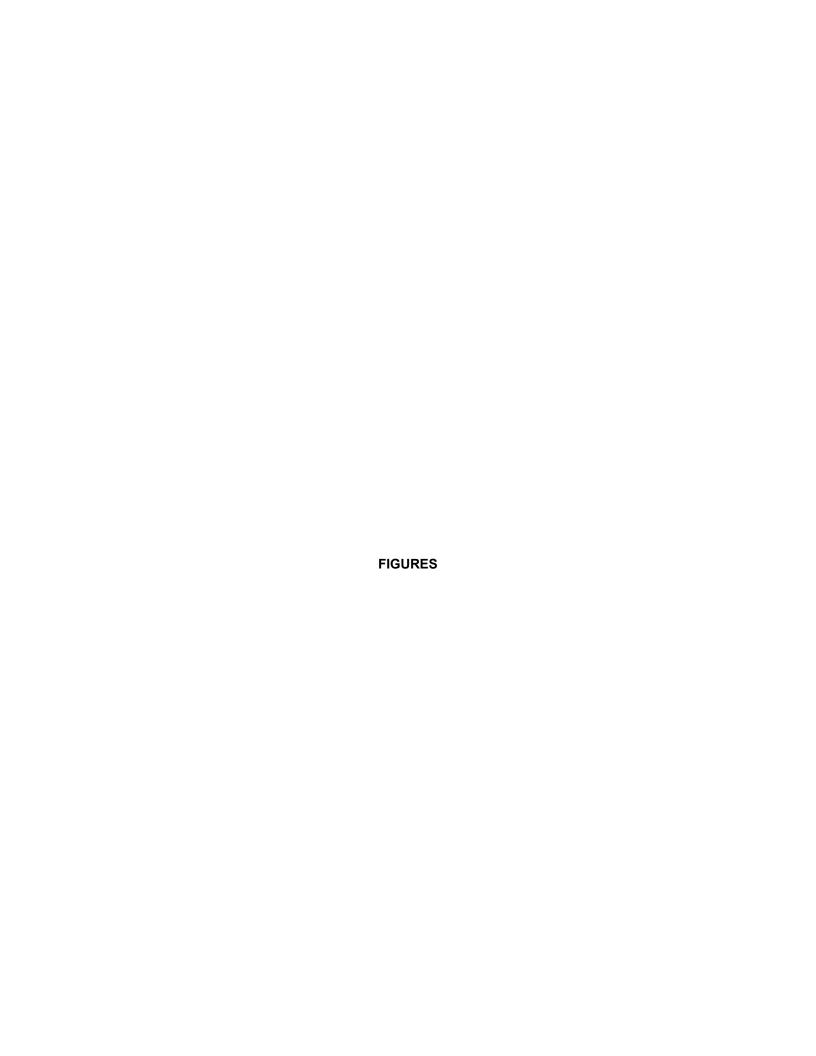
In May 2007 groundwater samples were collected from wells located across the Current Screen Wash Area and Former Manual Screen Wash Area to evaluate the effectiveness of the remedial treatment activities. A review of the analytical data from this sampling event indicated that VOCs were detected in four groundwater samples (MW-106, MW-107, CSW-01 and SCRW-05) at concentrations in excess of NYSDEC Class GA groundwater standards (Table 2). Total VOC concentrations in these samples

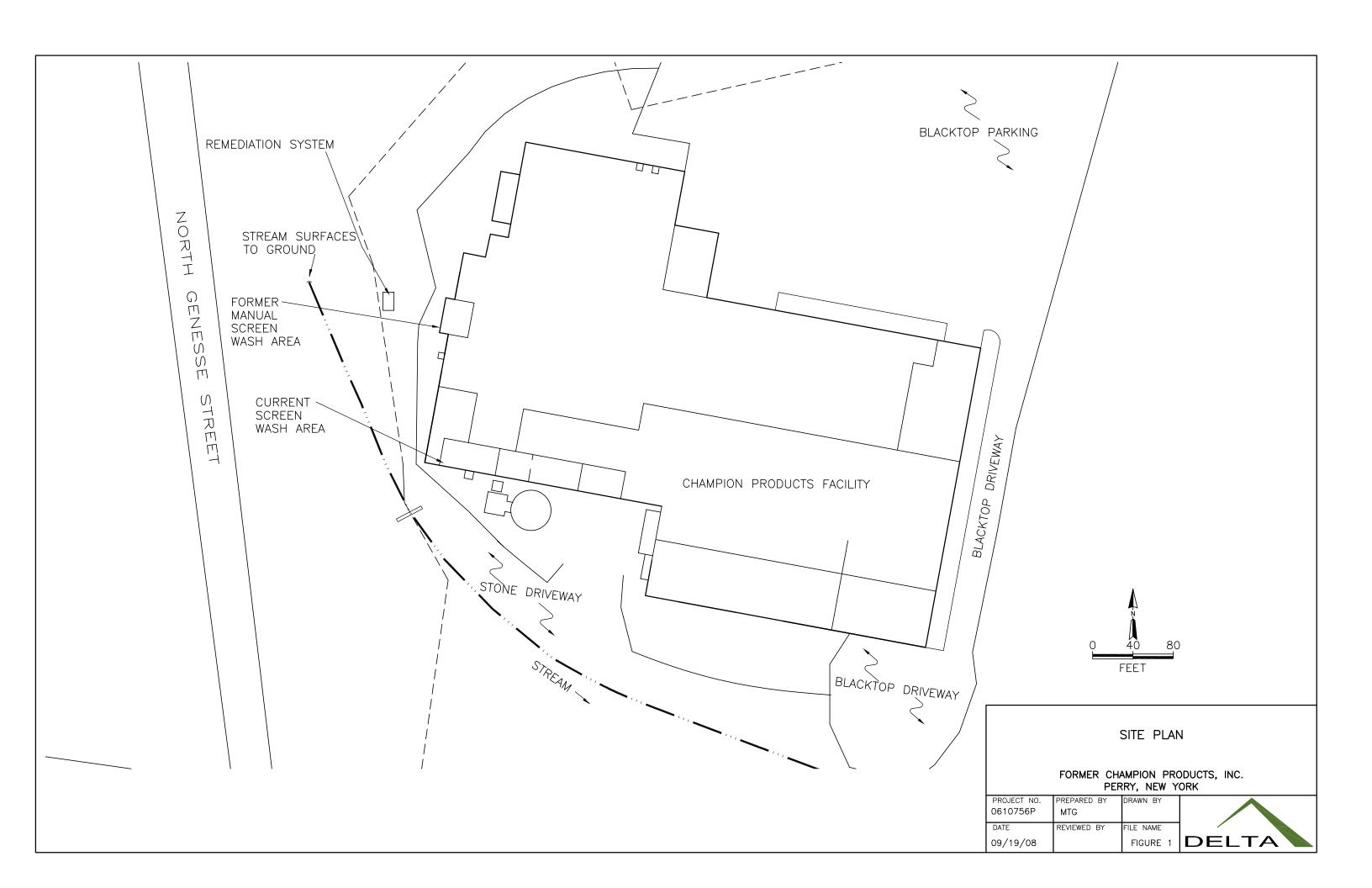
ranged from 19.8 ppb to 447 ppb. A comparison to the 2003 groundwater analytical data indicated that total VOC concentrations in wells MW-105, MW-106, MW-107, CSW-01 and SCRW-05 decreased by between 62 percent (CSW-01) and 97 percent (MW-106). The analytical data also indicated that the largest decreases in total VOC concentrations occurred in wells MW-106 (1,188 ppb in 2003 to 35.8 ppb in 2007) and SCRW-05 (3,850 ppb in 2003 and 447 ppb in 2007), which in 2003 had the highest total VOC concentrations. Based on a comparison of the 2003 and 2007 groundwater analytical data it can be concluded that remedial activities were effective in significantly reducing VOC concentrations in groundwater beneath impacted areas of the Site.

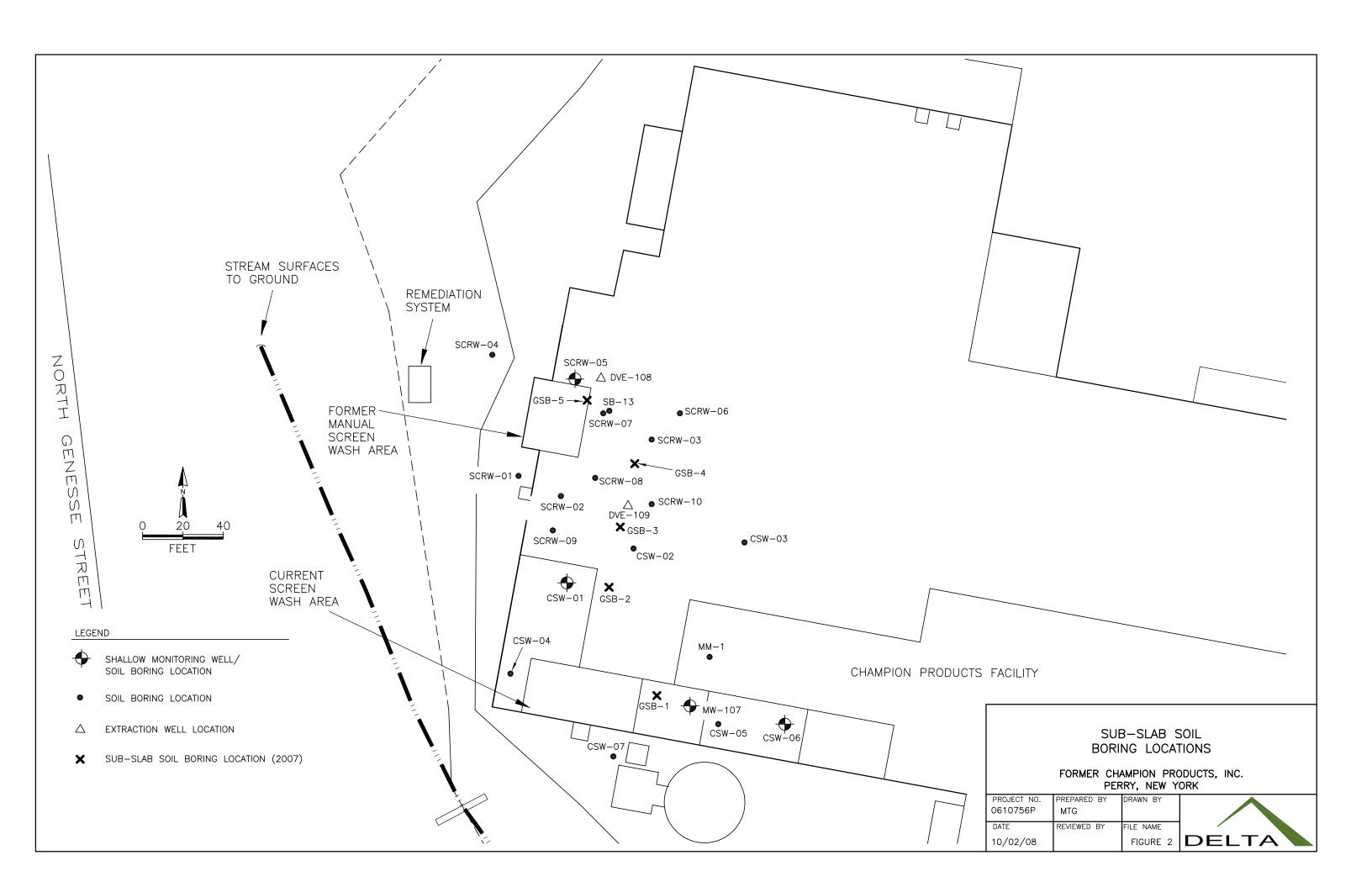
In March 2008 groundwater samples were collected from wells located across the Current Screen Wash Area and Former Manual Screen Wash Area to evaluate groundwater conditions onsite following the shutdown of the remedial system in February 2007. A review of the analytical data from this sampling event indicated that VOCs were detected in five groundwater samples (MW-101, MW-106, MW-107, CSW-01 and SCRW-05) at concentrations in excess of NYSDEC Class GA groundwater standards (Table 2). Total VOC concentrations in these samples ranged from 13.4 ppb to 176 ppb. A comparison to the 2007 groundwater analytical data indicated that total VOC concentrations continued to decrease in wells MW-107, CSW-01 and SCRW-05 and that a slight rebound had occurred in well MW-106. A comparison of data for well MW-101 could not be made as this well was not sampled in 2007; however, compared to 2003 data, total VOC concentrations were observed to remain similar. Overall analytical data from this sampling event generally indicated that VOC concentrations in groundwater beneath affected areas of the Site continued to decrease following shut down of the remedial system. These continuing decreases suggest that natural attenuation is occurring and that further reductions can be expected.

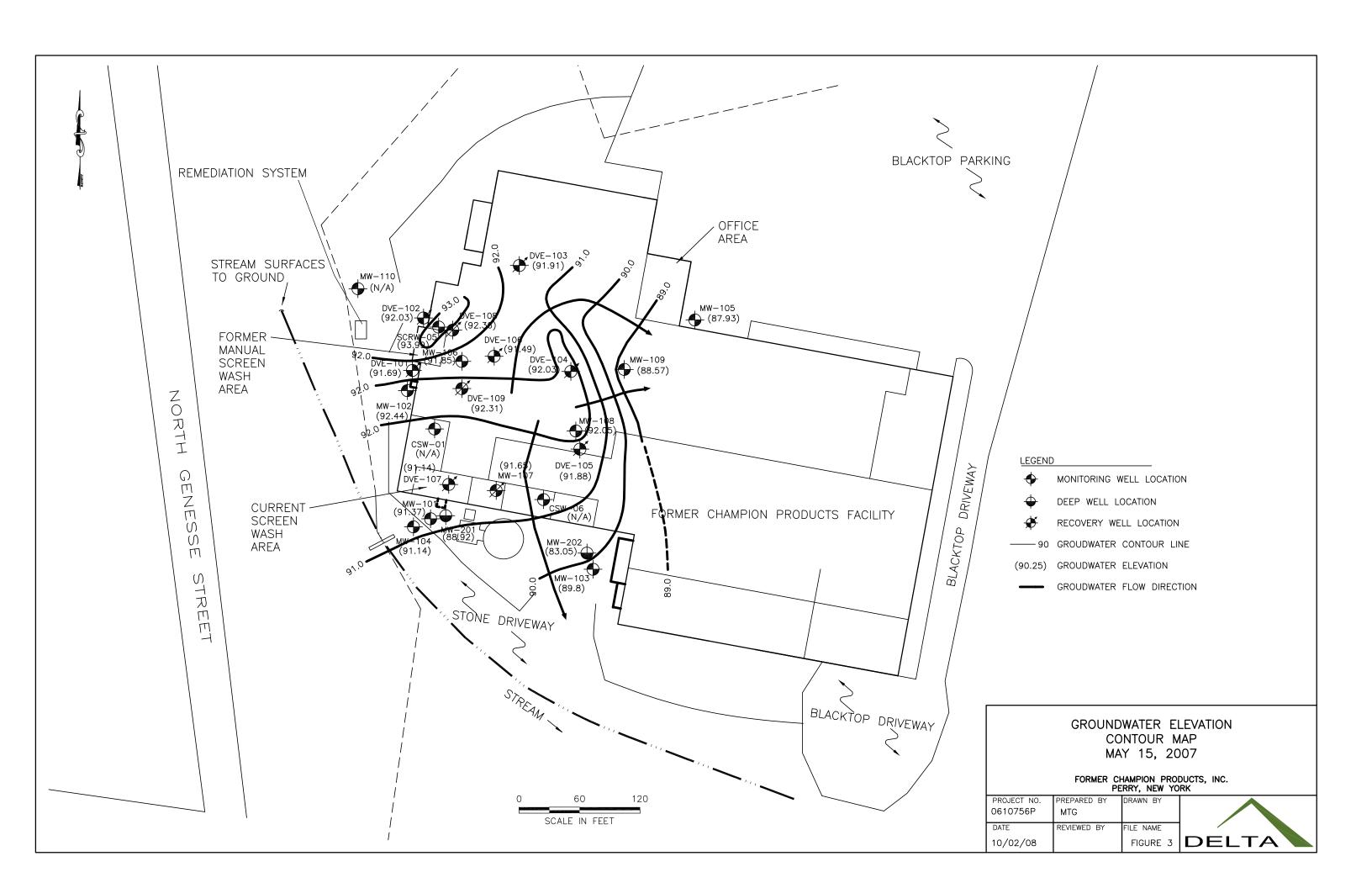
Overall, between 2003 and 2008 total VOC concentrations in wells located across the Current Screen Wash Area and Former Manual Screen Wash Area have shown a steadily decreasing trend in total concentrations. Since 2003 VOC concentrations have decreased between 72 percent and 96 percent in wells MW-105 (91.5 percent), MW-106 (91 percent), MW-107 (93 percent), CSW-01 (72 percent) and SCRW-05 (96 percent). The largest decreases in total VOC concentrations were noted in wells MW-106 and SCRW-05, which were located in the Former Manual Screen Wash Area. These wells had the highest overall concentrations of total VOCs detected in them in 2003 (MW-106 @1,188 ppb and SCRW-05 @ 3,850 ppb) and have shown the greatest overall declines in total VOC concentrations through 2008.

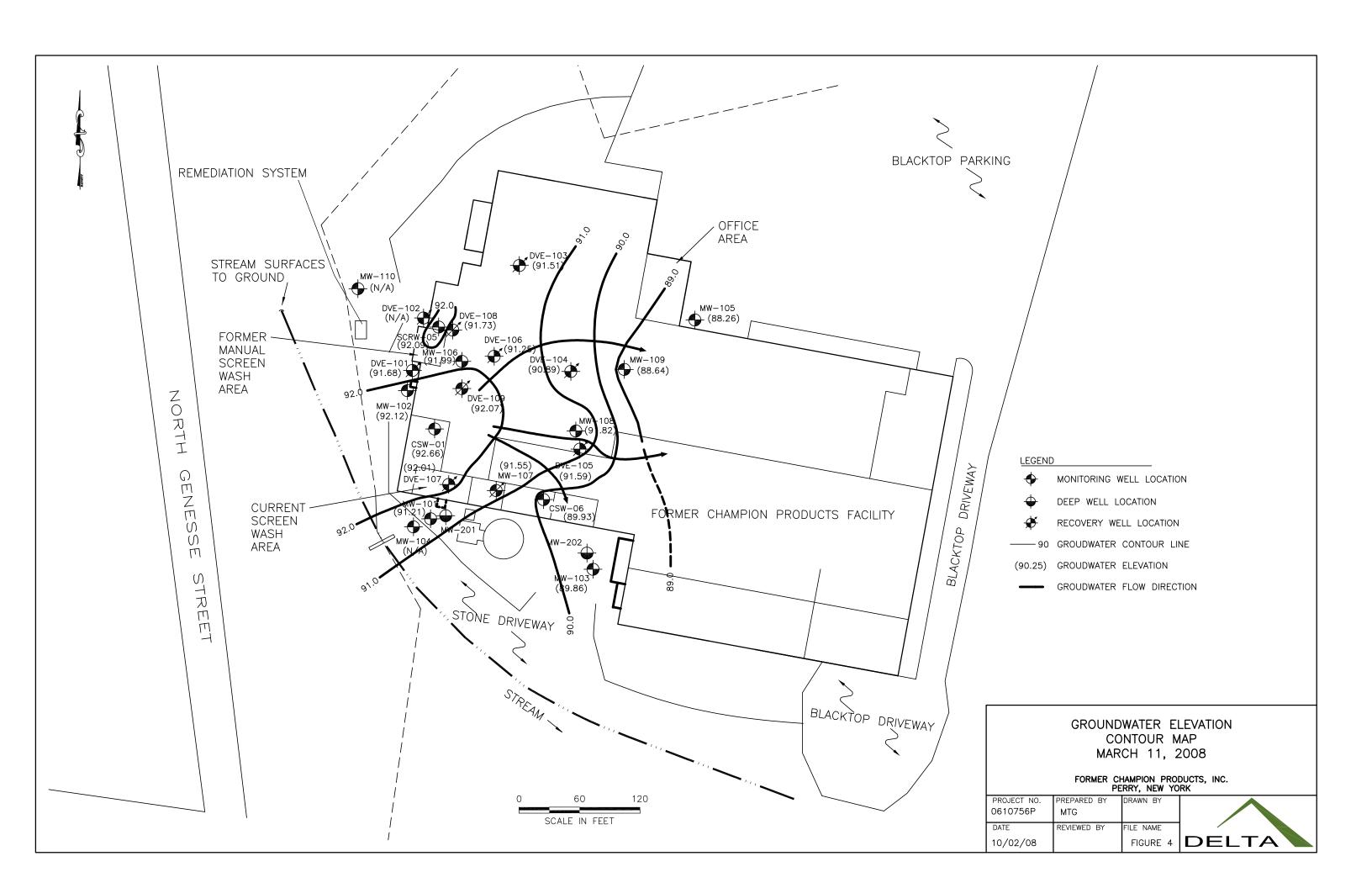
6.0 CONCLUSIONS AND RECOMMENDATIONS


SSI findings indicated that remedial activities have effectively reduced VOC concentrations in saturated soils beneath known source areas to levels that meet and/or closely approximate the most stringent Part 375 SCOs (unrestricted use and protection of groundwater). Reductions in VOCs concentrations in soils


Sub-Slab Investigation and Remediation Summary Report Former Champion Products Facility, Perry, NY Page 13 of 13


are a direct result of effective removal of source materials by the remedial system. Groundwater analytical data support these findings by showing continuing decreases in VOC concentrations in groundwater across the known source areas. As the remedial system has removed source materials there has been a trend towards significant reductions of VOCs in groundwater. While concentrations of VOCs in groundwater are still slightly above applicable NYSDEC groundwater standards, continuing VOC reductions in groundwater indicate that natural attenuation has been occurring across impacted areas following shutdown of the remedial system. Based on available analytical data it is Delta's opinion that natural attenuation will continue at the Site and further reductions in VOCs concentrations in groundwater will occur without the need for active remediation.


Soil and groundwater analytical data have shown that site remediation activities have effectively reduced VOC impacts in soil and groundwater onsite to levels that meet and/or slightly exceed applicable soil and groundwater goals. Soil vapor sampling has also shown that there is an incomplete pathway from the subsurface to the interior of the building and that the remaining impacts in soil and groundwater do not pose a risk to indoor air quality. Based on these findings Delta believes that the goals of the remedial activities have been met and that remaining limited impacts at the Site do not pose a risk. Therefore, on behalf of HBI, Delta requests that a "No Further Action" letter be issued for the Site and that remediation be considered complete.


This report was prepared by **DELTA CONSULTANTS**.

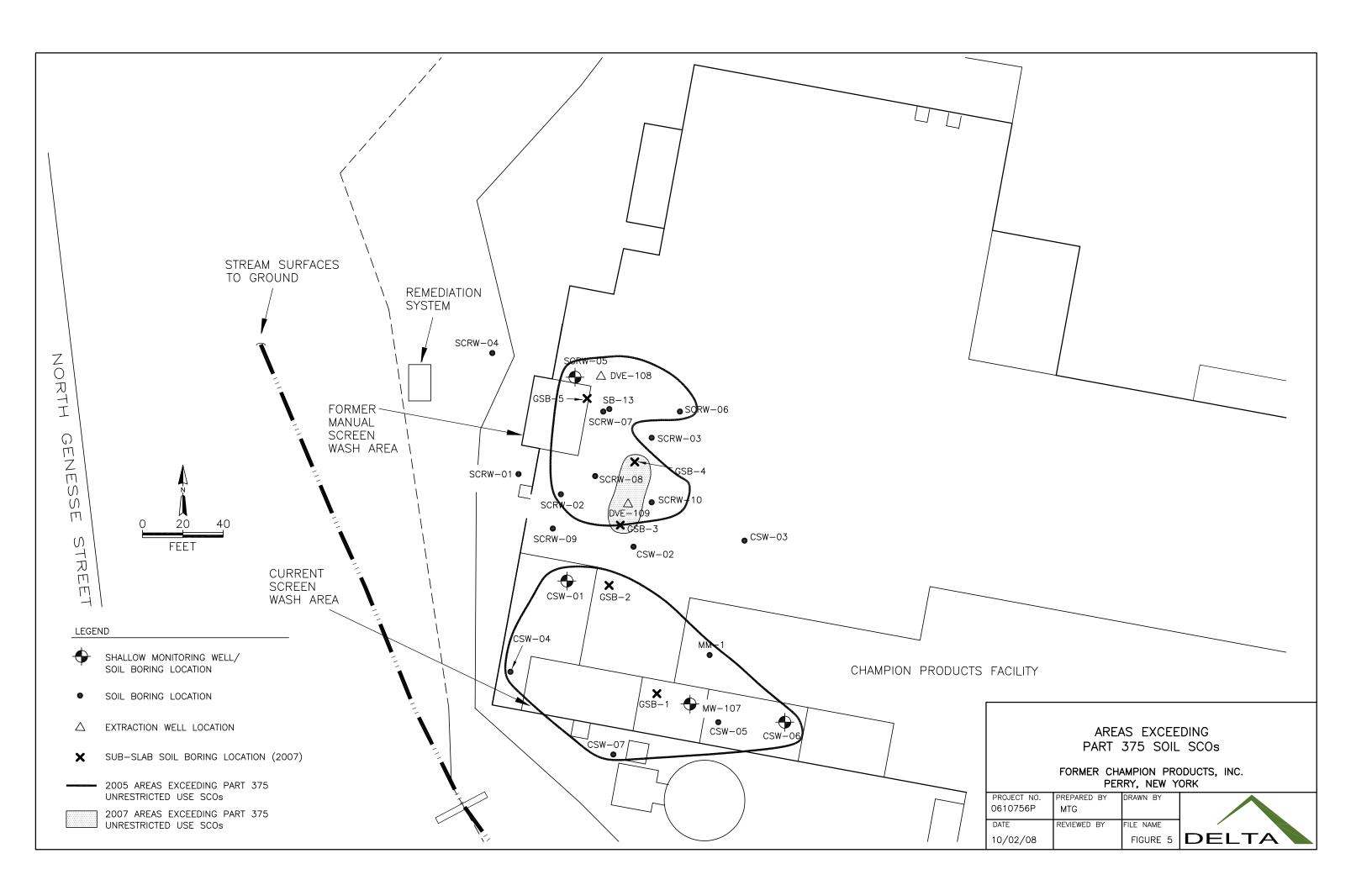


TABLE 1 May 2007 Soil Sample Analytical Results Volatile Organic Compounds Former Champion Products, Inc, Perry, NY

	Part 375		Part 375	- Restricted Use - So	oil Cleanup Object	ives (ppb)								SAMPLE	ID / Sample I	Depth (feet)						
	Unrestricted Use		Protection of l	Public Health																		
	Soil Cleanup		Restricted-			Protection of	GSB-1	GSB-1	GSB-2	GSB-2	GSB-2	GSB-3	GSB-3	GSB-6 (1)	GSB-3	GSB-4	GSB-4	GSB-4 RI*	GSB-4	GSB-5	GSB-5	GSB-5
PARAMETER	Objectives (ppb)	Residential	Residential	Commercial	Industrial	Groundwater	(10' - 12')	(12' - 14')	(8' - 10')	(10' - 12')	(12' - 14')	(8' - 10')	(10' - 12')	(10' - 12')	(14' - 16')	(8' - 10')	(10' - 12')	(10' - 12')	(12' - 15')	(8' - 10')	(10' - 12')	(12' - 14')
Volatile Organic Compounds (ppb)																						
Chloromethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Bromomethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Vinyl Chloride	20	210	900	13,000	27,000	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Chloroethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND J	2 J	ND	ND	ND
Methylene Chloride	50	51,000	100,000	500,000	1,000,000	50	25 B	ND	ND	27 B	ND	23 B	ND	86 B	ND	ND	ND	ND	ND	ND	22 B	ND
Acetone	50	100,000	100,000	500,000	1,000,000	50	ND	ND	ND	ND	ND	ND	29 J	53 J	ND	ND	ND J	ND	ND	ND	25 J	ND
Carbon Disulfide	NS	NS	NS	NS	NS	NS	ND	3 J	3 J	2 J	3 J	3 J	15 J	14 J	2 J	2 J	3 J	12 J	4 J	2 J	3 J	3 J
2-Butanone	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,1-Dichloroethene	330	100,000	100,000	500,000	1,000,000	330	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,1-Dichloroethane	270	19,000	26,000	240,000	480,000	270	ND	ND	18	ND	20	ND	ND	ND	ND	6	2 J	ND J	1 J	20	2 J	7
trans-1,2-Dichloroethene	190	100,000	100,000	500,000	1,000,000	190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	59,000	100,000	500,000	1,000,000	250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Chloroform	370	10,000	49,000	350,000	700,000	370	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,2-Dichloroethane	20	2,300	36,100	30,000	60,000	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,1,1-Trichloroethane	680	100,000	100,000	500,000	1,000,000	680	ND	ND	8	2 J	18	ND	ND	ND	ND	ND	ND J	ND J	ND	7	ND	3 J
Carbon Tetrachloride	760	1,400	2,400	22,000	44,000	760	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Bromodichloromethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,2-Dichloropropane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
cis-1,3-Dichloropropene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Trichloroethene	470	10,000	21,000	200,000	400,000	470	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Dibromochloromethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
1,1,2-Trichloroethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Benzene	60	2,900	4,800	44,000	89,000	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
trans-1,3-Dichloropropene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Bromoform	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
4-Methyl-2-Pentanone	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
2-Hexanone	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Tetrachloroethene	1,300	5,500	19,000	150,000	300,000	1,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND J	ND J	ND	1 J	ND	ND
1,1,2,2-Tetrachloroethane	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Toluene	700	100,000	100,000	500,000	1,000,000	700	ND	ND	ND	ND	2 J	ND	17 J	15 J	ND	81	67 J	50 J	17	89	ND	46
Chlorobenzene	1,100	100,000	100,000	500,000	1,000,000	1,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND J	ND	ND	ND	ND
Ethylbenzene	1,000	30,000	41,000	390,000	780,000	1,000	ND	ND	ND	ND	ND	ND	7 J	6 J	ND	ND	43 J	39 J	6	ND	ND	ND
Styrene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6 J	ND J	ND	ND	ND	ND
m/p-Xylenes	260	100,000	100,000	500,000	1,000,000	1,600	ND	ND	ND	ND	ND	ND	42	33 J	ND	4 J	280 J	300 J	42	ND	ND	ND
o-Xylene	260	100,000	100,000	500,000	1,000,000	1,600	ND	ND	ND	ND	ND	ND	95	77	ND	9	160 J	210 J	28	ND	ND	ND

Notes:	Organic Data Qualifers:		
ND: Compound not detected.	J: Estimated Value.	50	Analyte detected at a concentration in excess of Unrestricted Use SCO.
NS: No Standard.	B: Analyte identified in blank.		
		50	Analyte detected at a concentration in excess of Protection of Groundwater SCO.

(1): GSB-6 is a duplicate of sample GSB-3 (10' - 12').

Table 1 -May 07 ssi soil data.xls

^{*:} Sample GSB-4 RI (10' - 12') is a reanalysis of sample GSB-4 (10' - 12'), which was run by the laboratory due to a surrogate control limit issue. The reanalysis had the same issue, which is noted as being potentially the result of a matrix effect. Both results have been shown.

TABLE 2 Groundwater Sample Analytical Results May 2007 and March 2008 Former Champion Products, Inc. Perry, NY

											May 30, 200	7 Groundwate	r Sample Anal	ytical Results									
	NYSDEC		1	T		1	1		1		1	SAMI	PLE ID	1	1	ī	ı	1	ı		T		
PARAMETER	Class GA Groundwater Standard (ppb)	DVE-101	DVE-102	DVE-103	DVE-104	DVE-105	DVE-106	DVE-107	DVE-108	DVE-109	MW-101	MW-102	MW-103	MW-105	MW-106	MW-107	MW-108	MW-109	MW-201	MW-202	CSW-01	CSW-06	SCRW-05
Volatile Organic Compounds (ppb)																							
Chloroethane	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	11	ND	ND	NS	NS	NS	ND	ND	150
Methylene Chloride	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	3.2	ND	NS	NS	NS	ND	ND	33
Chloroform	7	ND	ND	NS	ND	NS	ND	1.3	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	2	ND	37	ND	NS	NS	NS	7.8	ND	13
1,1-Dichloroethane	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	3.4	7.8	28	ND	NS	NS	NS	12	ND	48
1,2,4-Trimethylbenzene	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	17	ND	ND	NS	NS	NS	ND	ND	180
1,3,5-Trimethylbenzene	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	12
cis-1,2-Dichloroethene	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND
m,p-Xylene	5	ND	ND	NS	ND	NS	ND	1.8	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND
n-Butylbenzene	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND
Tetrachloroethene	5	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND
Vinyl Chloride	2	ND	ND	NS	ND	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	ND	ND	11

											March 11, 200	08 Groundwat	er Sample Ana	alytical Results	}								
	NYSDEC					,	,					SAMI	PLE ID						,	,	_		
	Class GA Groundwater	DVE-101	DVE-102	DVE-103	DVE-104	DVE-105	DVE-106	DVE-107	DVE-108	DVE-109	MW-101	MW-102	MW-103	MW-105	MW-106	MW-107	MW-108	MW-109	MW-201	MW-202	CSW-01	CSW-06	SCRW-05
PARAMETER	Standard (ppb)	DVE-101	DV E-102	DVE-103	DVE-104	DVE-105	DVE-100	DVE-107	DVE-106	DVE-109	W1W-101	W1 W - 102	W1W-103	W1W-105	IVI VV -100	W1 W - 10 /	NI W-100	WIW-109	W1 W - 201	IVI VV - 2U2	CSW-01	CSW-00	SCKW-05
Volatile Organic Compounds (ppb)																							
Chloroethane	5	ND	NS	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND	ND	10							
Methylene Chloride	5	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chloroform	7	ND	NS	ND	ND	ND	ND	1.1	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	NS	ND	6.7	ND	ND	ND	ND	16	ND	ND	ND	ND	6.3	ND	10						
1,1-Dichloroethane	5	ND	NS	ND	2.8	ND	ND	1.8	17	20	ND	ND	ND	ND	8.2	ND	94						
1,2,4-Trimethylbenzene	5	ND	NS	ND	ND	ND	ND	73	ND	ND	ND	ND	ND	ND	ND	ND							
1,3,5-Trimethylbenzene	5	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
cis-1,2-Dichloroethene	5	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	40							
m,p-Xylene	5	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
n-Butylbenzene	5	ND	NS	ND	ND	ND	ND	6.4	ND	ND	ND	ND	ND	ND	ND	ND							
Tetrachloroethene	5	ND	NS	ND	3.9	ND	2.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Vinyl Chloride	2	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22							

Notes:

ND: Compound not detected.

NS: Not sampled.

5 Analyte detected at concentration in excess of NYSDEC Class GA Groundwater Standard.

Table 2 - GW 5-07 and 3-08.xls

TABLE 3 February 2003 Soil Sample Analytical Results Volatile Organic Compounds Former Champion Products, Inc, Perry, NY

				Part 375	- Restricted Use - S	oil Cleanup Objec	ctives (ppb)									SAMPLE I	ID / Sample	Depth (feet)								
	TAGM 4046	Part 375 Unrestricted Use		Protection of	Public Health		Protection of								(Current Scre	en Wash Arc	ea								anual Screen h Area
	Soil Cleanup	Soil Cleanup		Restricted-			Ecological	Protection of	CSW-01	CSW-01	CSW-02	CSW-02	CSW-03	CSW-03	CSW-04	CSW-04	CSW-05	CSW-05	CSW-06	CSW-06	CSW-07	CSW-07	MM-1	MM-1	SCRW-01	SCRW-01
PARAMETER	Objectives (ppb)	Objectives (ppb)	Residential	Residential	Commercial	Industrial	Resources	Groundwater	(9.5' - 10')	(11.5' - 12')	(5.5 ' - 6')	(9' - 9.5')	(7' - 7.5')	(9.5' - 10')	(10.2' -10.6')	(14' - 14.5')	(6' - 6.5')	(13' - 13.5')	(8.5' - 9')	(15' - 15.5')	(4' - 8')	(12' - 13')	(8' - 8.5')	(11' - 11.5')) (4.5 '- 5')	(14' - 15')
Volatile Organic Compounds (ppb)																										
Methylene Chloride	NA	50	51,000	100,000	500,000	1,000,000	12,000	50	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	13	ND
Acetone	NA	50	100,000	100,000	500,000	1,000,000	2,200	50	40	58	36	50	45	48	47	61	26	75	64	50	24	55	41	70	28	45
Carbon Disulfide	2,700	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichlorethane	NA	270	19,000	26,000	240,000	480,000	NS	270	ND	ND	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND
1,1,1-Trichloroethane	NA	680	100,000	100,000	500,000	1,000,000	NS	680	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	7	ND	ND
Tetrachloroethene	NA	1,300	5,500	19,000	150,000	300,000	2,000	1,300	ND	ND	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	4	ND	ND	ND	ND	ND
Toluene	NA	700	100,000	100,000	500,000	1,000,000	36,000	700	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND
Ethylbenzene	NA	1,000	30,000	41,000	390,000	780,000	NS	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	NA	260	100,000	100,000	500,000	1,000,000	260	1,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		Part 375		Part 375	- Restricted Use - S	oil Cleanup Objec	ctives (ppb)									SAMPLE I	ID / Sample	Depth (feet)								
	TAGM 4046	Unrestricted Use		Protection of	Public Health		Protection of									Form	er Manual S	Screem Wash	Area							
	Soil Cleanup	Soil Cleanup		Restricted-			Ecological	Protection of	SCRW-02	SCRW-02	SCRW-03	SCRW-03	SCRW-04	SCRW-04	SCRW-05	SCRW-05	SCRW-06	SCRW-06	SCRW-07	SCRW-07	SCRW-08	SCRW-08	SCRW-09	SCRW-10	SCRW-10	
PARAMETER	Objectives (ppb)	Objectives (ppb)	Residential	Residential	Commercial	Industrial	Resources	Groundwater	(9' - 9.5')	(14.5' - 15')	(7.5' - 8')	(10.7' - 11.2')	(6.5' - 7')	(9' - 9.5')	(9' - 9.5')	(10' - 10.5')	(9' - 9.5')	(14.5' - 15')	(10' - 10.5')	(14.5' - 15')	(8' - 8.5')	(10.5' - 11')	(6.5' - 7')	(9' - 9.5')	(10.5' - 11')	
Volatile Organic Compounds (ppb)																										
Methylene Chloride	NA	50	51,000	100,000	500,000	1,000,000	12,000	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Acetone	NA	50	100,000	100,000	500,000	1,000,000	2,200	50	ND	64	37	ND	19	30	ND	ND	86	46	110	39	49	ND	28	ND	ND	
Carbon Disulfide	2,700	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,800	ND	
1,1-Dichlorethane	NA	270	19,000	26,000	240,000	480,000	NS	270	ND	ND	10	ND	ND	ND	ND	ND	7	ND	ND	ND	22	ND	ND	ND	ND	
1,1,1-Trichloroethane	NA	680	100,000	100,000	500,000	1,000,000	NS	680	ND	ND	ND	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tetrachloroethene	NA	1,300	5,500	19,000	150,000	300,000	2,000	1,300	ND	ND	ND	ND	6	200	ND	ND	4	ND	ND	ND	10	ND	ND	ND	ND	
Toluene	NA	700	100,000	100,000	500,000	1,000,000	36,000	700	ND	8	ND	ND	8	ND	300	2,600	13	5	270	120	20	4,400	7	ND	13,000	
Ethylbenzene	NA	1,000	30,000	41,000	390,000	780,000	NS	1,000	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	ND	ND	ND	ND	ND	ND	610	
Xylenes, Total	NA	260	100,000	100,000	500,000	1,000,000	260	1,600	ND	5	ND	ND	5	ND	ND	ND	10	ND	ND	4	5	2,400	ND	ND	6,600	

Notes: Organic Data Qualifers:

ND: Compound not detected.

NS: No Standard.

B: Analyte identified in blank.

NA: Not applicable as a Part 375 SCO is available.

When a soil cleanup objective (SCO) is not available in 6NYCRR Part 375, NYSDEC recommends using a TAGM SCO for comparison purposes.

50 Analyte detected at a concentration in excess of Unrestricted Use SCO.

50 Analyte detected at a concentration in excess of Protection of Groundwater SCO.

50 Analyte detected at a concentration in excess of TAGM 4046 SCO.

TABLE 4 Groundwater Sample Analytical Results February 2003 Former Champion Products, Inc. Perry, NY

											February 200	3 Groundwat	er Sample Ana	lytical Results									
	NYSDEC											SAMI	PLE ID				,						
PARAMETER	Class GA Groundwater Standard (ppb)	DVE-101	DVE-102	DVE-103	DVE-104	DVE-105	DVE-106	DVE-107	DVE-108	DVE-109	MW-101	MW-102	MW-103	MW-105	MW-106	MW-107	MW-108	MW-109	MW-201	MW-202	CSW-01	CSW-06	SCRW-05
Volatile Organic Compounds (ppb)																							
Chloroethane	5	ND	NI	NI	ND	ND	ND	ND	27	ND	350												
Methylene Chloride	5	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chloroform	7	7	ND	ND	ND	ND	ND	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND
1,1,1-Trichloroethane	5	1	ND	ND	ND	ND	ND	ND	NI	NI	1	ND	ND	7	25	79	ND	ND	ND	ND	12	ND	ND
1,1-Dichloroethane	5	0.6	ND	ND	ND	ND	ND	0.9	NI	NI	3	ND	ND	14	340	410	ND	ND	ND	ND	26	ND	3,500
1,2,4-Trimethylbenzene	5	0.6	ND	ND	ND	ND	ND	ND	NI	NI	ND	ND	ND	ND	630	ND	ND	ND	ND	ND	3	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	1	ND	NI	NI	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	0.7	ND	ND
cis-1,2-Dichloroethene	5	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
m,p-Xylene	5	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Isopropyl benzene	5	ND	NI	NI	ND	ND	ND	ND	26	ND													
Tetrachloroethene	5	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Vinyl Chloride	2	ND	NI	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						

Notes:

ND: Compound not detected.

NS: Not sampled.

NI: Well not installed at date of sampling.

5

Analyte detected at concentration in excess of NYSDEC Class GA Groundwater Standard.

ATTACHMENT 1

SUPPORT DOCUMENTATION

RESULTS OF FEBRUARY 2003 SITE CHARACTERIZATION AND PROPOSED MODIFICATIONS TO FINAL REMEDIATION WORKPLAN

FORMER CHAMPION PRODUCTS, INC.
PERRY, NEW YORK
DELTA PROJECT NO.: S098-009

Prepared by:

Delta Environmental Consultants, Inc. 4068 Mt. Royal Boulevard Suite 225, Gamma Building Allison Park, PA 15101

4068 Mt. Royal Boulevard Suite 225-Gamma Allison Park, Pennsylvania 15101-2951 USA 412/487-7700 FAX: 412/487-9785

June 5, 2003

New York State Department of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Attention:

Maurice Moore

Project Manager

Subject:

Results of February 2003 Site Characterization and

Proposed Modifications to the Final Remediation Workplan

Former Champion Products, Inc.

Perry, New York

DEC Site No. V000189-9 Delta Project No. S098-009

Dear Mr. Moore:

On behalf of Champion Products, Inc., Delta Environmental Consultants, Inc. is submitting the referenced report, which presents results of the additional site characterization (SC) performed in February 2003. We are also proposing specific modifications to the Final Remediation Workplan.

The SC resulted in collection of 35 soil samples and installation of three monitoring wells in the former and current screen wash areas. This assessment was conducted to evaluate the effectiveness of on-going remedial activities and determine the remaining concentrations of volatile organic compounds in the subsurface soil and groundwater.

Based on the data obtained from this SC, significant progress has been made to date towards achieving the sitespecific cleanup goals. To further the remediation at the site, we are recommending implementation of specific modifications to the current configuration of the dual-phase vapor extraction system. We believe that these modifications will not only improve the remediation effort, but also move the project towards closure in the near future.

If you have any questions, please contact either of the undersigned.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Senior Consultant (914) 765-0258

Enclosure

cc:

George Johnson, Sara Lee
Ed Gagliardy, American Classic Outfitters
Maureen Crough, Sidley Austin Brown & Wood
Sam Gullo, SMG Development, Inc.
Paul Sylvestri, Harter Secrest & Emery, LLP
Harry Parker, Esq
Andrew English, NYSDEC
Gary Litwin, NYSDOH
Matt Forcucci, NYSDOH
John McMahon, NYSDEC

TABLE OF CONTENTS

1.0 SCO	PE OF WORK	1
2.0 SOII	ANALYTICAL RESU	Л.TS1
3.0 GRO	UND WATER ANALY	YTICAL RESULTS2
4.0 LIGI	HT NON-AQUEOUS P	HASE LIQUID3
5.0 REM	EDIAL GOALS	4
6.0 CON	CLUSIONS	4
		4
		5
		6
7,0 REE	11440	0
		TABLES
	Table 1	Soil Analytical Results, February 2003
	Table 2	Volatile Organic Compounds Soil Reduction, 1998-2003
	Table 3	Ground Water Analytical Results, February 2003
	Table 4	Percent Change in Dissolved Analyte Concentration
		FIGURES
	Figure 1	Site Map
	Figure 2	Area Exceeding TAGM Cleanup Criteria: 1998 vs. 2003
	Figure 3	Isoconcentration Map: Toluene
	Figure 4	Isoconcentration Map: DCA
	Figure 5	Isoconcentration Map: TCA
	Figure 6	Proposed Extraction Well Locations
		APPENDICES
	Appendix A	Laboratory Analytical Reports
	Appendix B	Soil Boring Logs

RESULTS OF FEBRUARY 2003 SITE CHARACTERIZATION AND PROPOSED MODIFICATIONS TO FINAL REMEDIATION WORKPLAN

FORMER CHAMPION PRODUCTS, INC. PERRY, NEW YORK DEC SITE NO. V000189-9 DELTA PROJECT NO. S098-009

1.0 SCOPE OF WORK

On February 4 and 5, 2003, eighteen Geoprobe borings were advanced to depths ranging from 12 to 16 feet below ground surface (bgs). Eleven Geoprobe borings (SCRW-1 though SCRW-10 and MM-1) were advanced in the former manual screen wash area at the locations shown on Figure 1. The purpose of advancing these Geoprobe borings was to obtain soil samples from locations proximate to impacted areas that were identified in <u>Final Remediation Workplan</u> (Delta 2000) and to better determine the current extent and magnitude of impacted soil. In addition, the soil sampling results were used also determine the effectiveness to date of the on site remediation system.

The additional sampling was proposed in our <u>Remediation Monitoring Report, October 2001 through September 2002</u> and the details of the sampling were presented in our <u>Proposed Scope of Work and Schedule</u>, which was submitted to the NYDEC on January 27, 2003.

Seven Geoprobe borings (CSW-1 through CSW-7) were advanced in the current screen wash area at the locations shown on Figure 1. These borings were advanced in order to obtain additional soil data to assist in determining if residual phase VOCs were present in the vicinity of monitoring well MW-107 and extraction well DVE-107.

Two soil samples were obtained from each Geoprobe boring (with the exception of SCRW-9) and submitted to Upstate Laboratories for analysis by EPA Method 8260. A copy of the laboratory report is presented as Appendix A. The soil sample from each boring that displayed the highest field organic vapor monitor (OVM) reading was submitted along with a second sample from the base of each boring. If elevated OVM readings were not observed at a Geoprobe boring, then a sample was collected from the higher permeable unit (sand/gravel) that occurs between 8 and 12 feet bgs.

2.0 SOIL ANALYTICAL RESULTS

Table 1 presents the sample depth and targeted volatile organic compounds (VOCs) reported above laboratory analytical method detection limits. Review of Table 1 indicates concentrations of carbon disulfide, toluene and total xylenes are present in concentrations above Technical Assistance Guidance Manual (TAGM) 4046 soil cleanup objectives at four of the 21 sample locations within the former manual screen wash area. The remaining targeted VOCs are one to two orders of magnitude below the TAGM levels within the current screen wash area.

To evaluate the effectiveness of the on-going remedial activities within the former manual screen wash area, four Geoprobe borings (SCRW-1 through SCRW-3 and SCRW-7) were advanced at locations proximate to previous soil samples obtained in 1998 and presented in the <u>Final Remediation Workplan</u>. Review of Table 2 indicates a reduction of targeted analyte soil concentrations. The magnitude of reduction ranges from 51% to 99% from concentrations observed at the initial start-up of the remediation system.

Figure 2 illustrates the extent of VOCs in soil at concentrations above the TAGM levels in 1998 as compared to February 2003. Review of Figure 2 indicates a shrinking area of impacted soil.

Analytical results of the 14 soil samples obtained from the current screen wash area did not indicate the presence of VOCs above the TAGM soil cleanup objectives. 1-1-dichloroethane (DCA) and 1,1,1-trichloroethane (TCA) were not detected in soil samples CSW-5 and CSW-6 (located proximate to monitoring well MW-107, which continues to display increasing concentrations of dissolved DCA and TCA). The NYSDEC requested that the depth of contamination in the current screen wash area be determined since DCA and TCA have a density greater than water, and would tend to migrate through the vadose zone and saturated portions of the aquifer.

To determine if DCA and TCA were present at depth beneath the water table, Geoprobe boring CSW-6 was advanced to a depth of 16 feet bgs and a sample was collected from 15 - 15.5 ft bgs. The soil sample obtained from this boring did not contain VOCs above the laboratory detection limit.

DCA soil concentrations within the current screen wash area have been centrally located around MW-107. Current concentrations of DCA within the screen wash area have been reduced by 93% to a concentration below the laboratory analytical detection limit.

3.0 GROUND WATER ANALYTICAL RESULTS

As part of the February 2003 SC, three additional monitoring wells (CSW-01, CSW-06 and SCRW-05) were installed at the areas shown on Figure 1. These wells were installed to determine the lateral extent of dissolved VOCs within both screen wash areas. Each monitoring well was advanced to a depth of approximately 15 feet bgs and completed with 10 feet of one-inch PVC slotted screen. Boring logs and monitoring well construction characteristics are presented as Appendix B.

In February 2003, ground water samples were collected from all site monitoring wells, as part of the quarterly ground water sampling event. Table 3 presents a summary of ground water analytical results from the 2003 quarterly sampling event and contains all VOCs reported above the analytical method detection limit. The NYSDEC Class GA Ground Water Standard is also listed for each analyte. A summary of the VOCs detected in the ground water is presented below:

Analyte	Frequency of Detection	Range of Concentration (ug/l)	Detections That Exceed Ground Water Standard	NYSDEC Ground Water Standard (ug/l)
TCA	5/21	<0.50 - 79	3	5
DCA	8/21	<0.50 - 3500	5	5
1,2,4-Trimethylbenzene	4/21	<0.50 - 630	1	5
1,3,5-Trimethylbenzene	2/21	<0.50 - 140	1	5
Cumene	1/21	<0.50 - 26	1	5
1,1-Dichloroethene (DCE)	3/21	<0.50 - 38	1	5
Ethylbenzene	1/21	<0.50 - 0.6	0	5
Methylene chloride	6/21	<0.50 - 51	6	5
Naphthalene	2/21	<0.50 - 56	1	10
n-Butylbenzene	3/21	<0.50 - 270	1	5
n-Propylbenzene	1/21	<0.50 - 71	1	5
p-Cymene	1/21	<0.50 - 54	1	5
sec-Butylbenzene	1/21	<0.50 - 55	1 .	5

Analyte	Frequency of Detection	Range of Concentration (ug/l)	Detections That Exceed Ground Water Standard	NYSDEC Ground Water Standard (ug/l)
tert-Butylbenzene	1/21	<0.50 - 0.8	0	5
Tetrachloroethene	6/21	<0.50 - 18	1	5
Toluene	3/21	<0.50 - 7200	2	5
Xylene (total)	2/21	<1.0 - 51	2	5
1,1,1,2-Tetrachloroethane	1/21	<0.50 - 0.9	0	N/S
1,2,4-Trichlorobenzene	1/21	<0.50 - 490	1	5
Benzene	1/21	<0.50 - 1	1	1
Bromoform	1/21	<0.50 - 0.9	0	N/S
Chloroethane	2/21	<0.50 - 350	2	5
Chloroform	3/21	<0.50 - 10	2	7
Methyl chloride	2/21	<0.50 - 3	0	5

NS = No standard has been established.

All targeted VOCs continue to be below the analytical method detection limit or the NYSDEC ground water standards at seven of the water table monitoring wells (MW-101, MW-102, MW-104, MW-105, MW-108, MW-110 and CSW-06) and both telescoping monitoring wells (MW-201 and MW-202).

The on-going remedial activities have successfully reduced the dissolved phase VOC within the manual screen wash area. Ground water at monitoring wells MW-106, DVE-106 and SCRW-05 continue to exhibit dissolved concentrations of chlorinated VOCs (and associated degradation products) and non-chlorinated VOCs (which are constituents of mineral spirits) in excess of the NYSDEC ground water standards.

Table 4 presents the change in dissolved analyte concentration for VOCs that have displayed the highest concentration at each monitoring and extraction well. Review of Table 4 indicates that dissolved toluene was present at 48,000 micrograms per liter (ug/l) in ground water at monitoring well MW-106 in August 1998. The February 2003 data indicates a 99.94% decrease of toluene at monitoring well MW-106 since that time.

Dissolved isoconcentrations maps for toluene, DCA and TCA are presented in Figures 3 through 5, respectively. Review of these figures indicates ground water at SCRW-05 (located proximate to the former manual screen wash area) currently displays the greatest dissolved phase concentrations of toluene and DCA.

Ground water within the current screen wash area at monitoring well MW-107 continues to exhibit dissolved concentrations of chlorinated VOCs (DCA, TCA and DCE) in excess of the NYSDEC ground water standards. The greatest VOC concentration continues to be DCA at a concentration of 410 ug/l from the February 2003 sampling round. Historically, dissolved DCA concentrations at monitoring well MW-107 have increased from 350 ug/l at start up to 580 ug/l as of August 2002. After August 2002, DCA has been reduced by 30% to the current concentration of 410 ug/l.

Ground water at monitoring well MW-105 continues to display concentrations of DCA (14 ug/l) and TCA (7 ug/l) in excess of the NYSDEC ground water standard of 5 ug/l. These dissolved concentrations have persisted in ground water at this location since monitoring well MW-105 was installed in June 1998.

4.0 LIGHT NON-AQUEOUS PHASE LIQUID

Light non-aqueous phase liquids (LNAPL) have been observed on the water table at monitoring well MW-106 since August 2002. The LNAPL thicknesses have ranged from approximately 0.08 to 0.12 feet and the LNAPL resembles weathered mineral spirits. This appearance is consistent with LNAPL observed in extraction well DVE-101 after system startup in July and August 2000. LNAPL has not been observed in other monitoring or extraction wells, other than MW-106, since August 2000.

5.0 REMEDIAL GOALS

As discussed in the <u>Final Remediation Workplan</u>, the proposed soil cleanup target is total VOCs less than 10 mg/kg. This recommendation was proposed in accordance with TAGM procedures for determination of soil cleanup objectives (Part B: Procedure for Determination of Soil Cleanup Objectives). Proposed specific analyte soil cleanup objectives are either: 1) the TAGM recommended soil cleanup objective, or 2) 1 mg/kg, whichever is greater. Champion also reserves the right to request alternative remedial goals if it is determined that achievement of the proposed remedial goals is not feasible.

After the soil objectives have been obtained or determined not feasible for the site, ground water quality will be evaluated to determine the affect that remedial activities have had on the ground water based on source removal of residual phase VOCs in the soil. Specific ground water cleanup objectives will be proposed, if necessary, after the soil remediation is complete.

6.0 CONCLUSIONS

Based on the results of the February 2003 additional SC, we offer the following conclusions:

- The DPVE system has removed approximately 51% to 99.9% of the VOCs from soil in both screen wash areas within the extraction wells radius of influence since start-up in July 2000.
- Toluene, total xylenes and carbon disulfide continue to be present in the soil beneath the former manual screen wash area at concentrations in excess of the soil cleanup objective at locations SCRW-5, SCRW-8 and SCRW-10.
- Total xylenes and toluene concentrations have been reduced in the soil beneath the former manual screen
 wash area to levels below the TAGM recommended soil cleanup objective at areas within the extraction
 wells radius of influence.
- Dissolved phase VOCs within the former manual screen wash area have been reduced approximately 78% to 100% at areas within the extraction wells radius of influence.
- Dissolved phase VOCs continue to be present in ground water proximate to the former manual screen wash
 area at monitoring wells SCRW-05 and MW-106 (at areas outside of the extraction wells radius of
 influence).
- LNAPL continues to be present on the water table surface at monitoring well MW-106.
- Quarterly ground water analytical results from extraction wells DVE-103, DVE-104 and DVE-105 continue to indicate all targeted VOC concentrations are below the NYSDEC ground water quality standards.
- The results of the soil data obtained from the current screen wash area does not indicate the presence of DCA and TCA above the soil cleanup objective, therefore, soil within this area is not a source of dissolved phase VOC present in the ground water at monitoring well MW-107.

 Dissolved DCA concentrations within the current screen wash area are not present at levels above the ground water quality standard with the exception of MW-107.

7.0 RECOMMENDATIONS

Based on the conclusions referenced above, we recommend the following modifications to <u>Final Remediation</u> Workplan:

- To enhance the removal of residual and dissolved phase VOCs utilizing the existing extraction and treatment system, the following modifications should be made to the extraction configuration:
 - Extraction wells DVE-103, 104 and 105 should be removed from the extraction process due to the continued absence of VOCs above the NYSDEC ground water objectives.
 - Two additional extraction wells (DVE-108 and DVE-109) should be installed within the former manual screen wash area at the locations shown in Figure 6 and connected to the DPVE system.
 - Monitoring well MW-107 should be converted into an extraction well and also connected to the DPVE system to increase removal of dissolved phase VOCs at this location.
- After the additional extraction wells are installed and brought on-line, we propose to operate the DPVE system in the new configuration for one year or until recoveries from the new extraction wells have become asymptotic with time, whichever occurs earlier. At the completion of the additional O&M and quarterly ground water monitoring for such system operation, supplemental soil sampling will be performed at the locations that currently display VOCs in excess of the TAGM soil objectives in order to determine if clean up objectives have been met.
- After the additional soil sampling is completed, recommendations will be made with respect to achieving the proposed soil and ground water objectives or developing alternatives based on current and future exposure pathways, as provided in the <u>Final Remediation Workplan</u>.

8.0 SCHEDULE

The proposed DPVE system modifications will be completed in accordance with the following schedule:

Task	Completed by:
Installation of additional DPVE wells.	30 days following NYSDEC approval of the proposed modifications.
Connect DVE-108, DVE-109 and MW-107 to the DPVE extraction system and initiate revised extraction activities.	45 days after NYSDEC approval of the proposed modifications.

9.0 REMARKS

The observations and recommendations contained in this document represent our professional opinions. These opinions were arrived at in accordance with currently accepted industry and engineering practices at this time for this location. Other than this, no other warranties are implied or intended.

This report was prepared by:

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Stephen A. Zbur P.G. Senior Consultant

Date

Reviewed by:

Anthony Savino Senior Consultant 6-5-0

Date

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS FEBRUARY 2003

Former Champion Products, Inc. Perry, New York Delta Project No. S098-009

FORMER MANUAL SCREEN WASH AREA

TOTAL	XYLENES	\$	8	<280	5	8	<280	5	8	<270	<280	10	₹	<16	4	5	2.040	8	<280	6,600	5	?	7 8	7 8
ETHYL	BENZENE	<3	\$	<280	8	8	<280	8	భ	<270	<280	8	₹	<16	83	8	<540	8	<280	610	8		<u>^</u>	4>
	TOLUENE	۸3	\$	<280	8	\$	<280	8	۶۶	300	2600	13	2	270	120	20	4400	7	<280	13000	₹		× ×	44
	PCE	♡	₹	<280	٧	8	<280	9	200	<270	<280	4	♡	<16	₹	10	<540	₽	<280	<550	8	77	†	7
	TCA	8	8	<280	8	8	<280	₹	2	<270	<280	₹	೪	<16	₹	₹	<540	₹	<280	<550	₹	7	-	
	DCA	£>	<3	<280	€>	10	<280	£>	€>	<270	<280	L	£>	<16	8	22	<540	8	<280	<550	٧	44	-	-
CARBON	DISULFIDE	3	<3	<280	8	<3	<280	<3	3	<270	<280	33	<3	<16	8	جع	<540	8	4800	<550	8	44		
	ACETONE	28	45	<950	64	37	<940	19	30	<920	<930	86	46	110	39	49	<180	28	<930	<1800	41	20	The second secon	
METHYLENE	CHLORIDE	13	Ϋ́	<280	<3	<3	<280	8	3	<270	<280	8	٣	<16	<3	<3	<540	<3	<280	<550	<3	\$		
100000	(FEET)	4.5 - 5.0	14 - 15	9.0 - 9.5	14.5 - 15.0	7.5 - 8.0	10.7 - 11.2	6.5 - 7.0	9.0 - 9.5	9.0 - 9.5	10.0 - 10.5	9.0 - 9.5	14.5 - 15.0	10.0 - 10.5	14.5 - 15.0	8.0 - 8.5	10.5 - 11.0	6.5 - 7.0	9.0 - 9.5	10.5 - 11.0	8.0 - 8.5	11.0 - 11.5		
	SAMPLEID	SCRW-1		SCRW-2		SCRW-3		SCRW-4		SCRW-5		SCRW-6		SCRW-7		SCRW-8		SCRW-9	SCRW-10		MM-1			

All values are reported as micrograms per kilogram.

DCA = 1,1-dichloroethane

TCA = 1,1,1-trichloroethane

PCE = tetrachloroethene

Determination of soil cleanup objectives and cleanup levels, TAGM #4046 Soil Cleanup Objective =

SOIL ANALYTICAL RESULTS FEBRUARY 2003

Former Champion Products, Inc. Perry, New York Delta Project No. S098-009

CURRENT SCREEN WASH AREA

TOTAL XYI ENES	S=1,1=5 <0>	g>	S S	9>	9>	87	9>	Ş	9>	Ş	Ş	, So	9	9		1200
ETHYL- BENZENE	1 23	33	\&	8	8	44	8	V	\$3	₹	3	₹	23	8)	5500
TOLUENE	5	8	8	భ	8	44	8	8	8	₹	₩	3	₹	\ \ \ \ \		1500
PCE	8	8	8	8	8	4	5	Q	8	8	8	8	4	8		1400
TCA	8	₹	₹	₹	♡	44	9	Ϋ	₩	₽	33	₹	8	\$		760
DCA	\$	₹	9	9	<3	4 >	8	♡	♡	♡	\$	\$	8	8		200
CARBON	\$	8	8	\$3	<3	<4	લ્ડ	₹3	<3	83	₹	8	₹	₹		2700
ACETONE	40	58	36	50	45	48	47	61	26	75	64	50	24	55		110
METHYLENE	<3	<3	<3	33	77	♡	♡	3	<3	₹3	<3	16	<3	જ		100
OEPTH (FEET)	9.5 - 10.0	11,5 - 12.0	5.5 - 6.0	9.0 - 9.5	7.0 - 7.5	9.5 - 10.0	10.2 - 10.6	14.0 - 14.5	6.0 - 6.5	13.0 - 13.5	8.5 - 9.0	15.0 - 15.5	4 - 8	12 - 13	SOIL CLEANUP	CTIVE
SAMPLEID	CSW-1		CSW-2		CSW-3		CSW-4		CSW-5		CSW-6		CSW-7		SOIL CL	OBJECTIVE

All values are reported as micrograms per kilogram.

DCA ≈ 1,1-dichloroethane

TCA = 1,1,1-frichloroethane

PCE = tetrachloroethene Soil Cleanup Objective =

Determination of soil cleanup objectives and cleanup levels, TAGM #4046

VOLATILE ORGANIC COMPOUNDS SOIL REDUCTIONS 1998 - 2003 TABLE 2

Former Champion Products, Inc. Perry, New York Delta Project No. S098-009

		FORM	FORMER MANUAL SCREEN WASH AREA	N WASH ARE	A		
1998 SAMPLEID	1998 SAMPLE ID CONCENTRATION	2003 SAMPLE ID DEPTH 1	CONCENTRATION	REDUCTION	2003 SAMPLE ID DEPTH 2	CONCENTRATION	REDUCTION
SB-13		SCRW-07 (10.0 - 10.5)			SCRW-07 (14.5 - 15.0)		
TOTAL XYLENES	7500	TOTAL XYLENES	16	99.8%	TOTAL XYLENES	4	%6.66
TOLUENE	140000	TOLUENE	270	88.66	TOLUENE	120	39.9%
PCE	530	PCE	8	98.5%	PCE	1,5	99.7%
SB-15		SCRW-01 (4.5 - 5.0)			SCRW-01 (14 - 15)		
TOTAL XYLENES	1850	TOTAL XYLENES	3	88.66	TOTAL XYLENES	60	99.8%
TOLUENE	12000	TOLUENE	1.5	100.0%	TOLUENE	1.5	100.0%
PCE	57	PCE	1.5	97.4%	PCE	1.5	97.4%
MW-106		SCRW-03 (7.5 - 8.0)			SCRW-03 (10.7 - 11.2)		
TOTAL XYLENES	1390	TOTAL XYLENES	3	%8.66	TOTAL XYLENES	280	79.9%
TOLUENE	16000	TOLUENE	1.5	100.0%	TOLUENE	140	99.1%
PCE	23	PCE	1,5	93.5%	PCE	140	ΑN
MW-102		SCRW-02 (9.0 - 9.5)		i	SCRW-02 (14.5 - 15.0)		
TOTAL XYLENES	1660	TOTAL XYLENES	280	83.1%	TOTAL XYLENES	5	99.7%
TOLUENE	11000	TOLUENE	140	98.7%	TOLUENE	8	%6.9%
PCE	290	PCE	140	51.7%	PCE	1.5	99.5%

		J	CURRENT SCREEN WASH AREA	VASH AREA			
1998 SAMPLE ID CONCENTRATIO	CONCENTRATION	۵	CONCENTRATION REDUCTION	REDUCTION	2003 SAMPLE ID DEPTH 2	CONCENTRATION	REDIICTION
MW-107					હ્		
TOTAL XYLENES	2	TOTAL XYLENES	3	N/A	Γ	3	N/A
TOLUENE	2	TOLUENE	1,5	N/A	TOLUENE	1.5	N/A
PCE	2	PCE	1.5	N/A	PCE	1.5	N/A
DCA	22	DCA	1,5	93.2%	DCA	1.5	93.2%
MW-101		CSW-07 (4 - 8)			CSW-07 (12 - 13)		
TOTAL XYLENES	1.5	TOTAL XYLENES	၉	NA		3	N/A
TOLUENE	1.5	TOLUENE	1,5	N/A	TOLUENE	1.5	N/A
PCE	1.5	PCE	4	N/A	PCE	1.5	N/A
DCA	1.5	DCA	t.	N/A	DCA	1.5	N/A

All values are reported as micrograms per kilogram.

DCA = 1,1-dichloroethane

TCA = 1,1,1-trichloroethane

PCE = tetrachloroethene Red text indicates concentration is below the analytical detection limit.

Reported value is 1/2 the analytical detection limit.

N/A = % Reduction does not apply since the 1998 concentration for the selected analyte was below the analytical detection limit or the 2002 concentration was below the analytical detection limit, which is greater that the corresponding 1998 concentration

Page: 1 of 8 Date: 05/01/2003

TABLE 3
GROUND WATER ANALYTICAL RESULTS
FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive

SAMPLE TYPE: Water

		1,1,1-trichloro	1,1-Dichloro	1,2,4-Trimethyl	1,3,5-Trimethyl	Isopropyl		
STE	DATE	ethane (ug/l)	ethane (ug/l)	benzene (ug/l)	benzene (ua/l)	benzene (ua/l)	Chloroethane (ud/)	Chloroform
WQS		5	22	2	5	ic c	ريون)	(187)
CSW-01	02/05/2003	[12]	[26]	່ ຕ	0.7	<0.50	30 SO	701
CSW-06	02/06/2003	<5.0	<5.0	<5.0	<5.0	5.0 5.0	5 5.0	(
DVE-101	02/05/2003	~	0.6	9.0	<0.50	<0.50	<0.50	
DVE-102	02/05/2003	<3.0	<3.0	<3.0	<3.0	<3.0	3 .0	<3.0
DVE-103	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DVE-104	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DVE-105	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
DVE-106	02/05/2003	<0.50	<0.50	_	<0.50	<0.50	<0.50	<0.50
DVE-107	02/05/2003	<0.50	6.0.	<0.50	<0.50	<0.50	<0.50	<0.50
MW-101	02/05/2003	£~	ო	<0.50	<0.50	<0.50	<0.50	<0.50
MW-102	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-103	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-104	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2
MW-105	02/05/2003	E	[14]	<0.50	<0.50	<0.50	<0.50	<0.50
MW-106	02/05/2003	<25	[340]	[630]	[140]	[26]	[27]	<25
MW-107	02/05/2003	[67]	[410]	<10	<10	<10	- 10 - 10	, v
MW-108	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-109	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-110	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
WQS= Water Quality Star 703.5) If WQS empty, the	WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.		[x]=Grea	[x]=Greater than Action Level=Not analyzed	=Not analyzed			

TABLE 3
GROUND WATER ANALYTICAL RESULTS
FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive

SAMPLE TYPE: Water

SITE	рате	1,1,1-trichloro ethane (ug/l)	1,1-Dichloro ethane (ug/l)	1,2,4-Trimethyl benzene (ug/l)	1,3,5-Trimethyl benzene (ug/l)	Isopropyl benzene (ug/l)	Chloroethane (ug/l)	Chloroform (ug/l)
WQS		ಬ	വ	r.	5	5	5	2
Mvv-201	02/05/2003	<0,50	<0.50	<0.50	<0.50	<0.50	<0,50	<0.50
MW-202	02/05/2003	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
SCRW-05	02/05/2003	<250	[3200]	<250	<250	<250	[350]	<250
			i i i i i i i i i i i i i i i i i i i				4. *5. 23.	
WQS= Water Quality Standard (6NYRR, Table 4, cf. s 703.5) If WQS empty, then no standard promulgated.	WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.		[X]=Grc	[x]=Greater than Action Level=Not analyzed	el=Not analyzed			

Page: 3 of 8 Date: 05/01/2003

GROUND WATER ANALYTICAL RESULTS
FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009 TABLE 3

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive SAMPLE TYPE: Water

4-Isopropyl	(l/gu)	EC.	<0.50	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0,50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[54]	· . v	<0.50	<0.50	<0.50	
n-Propyl benzene	(ng/l)	5	<0.50	<5.0	<0.50	<3.0	<0.50	<0.50	<0,50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[74]	<10	<0,50	<0.50	<0.50	
n-Butylbenzene	(l/gu)	5	0.6	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[270]	<10	2.0	<0.50	<0.50	ed
Naphthalene	· (ng/J)	10		<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[56]	۸ 10	<0.50	<0.50	<0.50	[x]=Greater than Action LevelNot analyzed
Methylene chloride	(l/gn)	co.	[12]	<5.0	<0.50	<3.0	<0.50	[11]	[10]	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[51]	[26]	<0.50	[8]	<0.50	Greater than Action [
Ethylbenzene	(l/6n)	ર	9.0	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0,50	<25	<10	<0.50	<0.50	<0.50)=[X]
cis-1,2- Dichloro ethylene	(l/gu)	Ŋ	6.0	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	8	<25	[38]	<0.50	<0.50	<0.50	
DATE			02/05/2003	02/06/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) if WQS empty, then no standard promulgated.
SITE		WQS	CSW-01	CSW-06	DVE-101	DVE-102	DVE-103	DVE-104	DVE-105	DVE-106	DVE-107	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	MW-107	MW-108	MW-109	MW-110	WQS= Water Qu 703.5) If WQS er

FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009 TABLE 3 GROUND WATER ANALYTICAL RESULTS

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive SAMPLE TYPE: Water

	4-Isopropyl	(J/6n)	ດ	<0.50	<0.50	<250		· · · · · · · · · · · · · · · · · · ·
	n-Propyi	(l/gn)	5	<0.50	<0.50	<250		
	n-Butvihenzene	(l/gn)	5	<0.50	<0.50	<250		A CONTRACTOR OF THE CONTRACTOR
	Naphthalene	(l/gn)	10	<0.50	<0.50	<250		
	Methylene chloride	(ng/l)	ro	<0.50	<0.50	<250		=Not analyzed
,	Ethylbenzene	(l/bn)	5	<0.50	<0.50	<250		N=
	Dichloro ethylene	(l/gu)	5	<0.50	<0.50	<250	,	
	DATE		5 S	02/05/2003	02/05/2003	02/05/2003		WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.
	SITE		WQS	MW-201	MW-202	SCRW-05		WQS= Wate 703.5) If WC

Page: 5 of 8 Date: 05/01/2003

FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009 TABLE 3 GROUND WATER ANALYTICAL RESULTS

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive SAMPLE TYPE: Water

					<u> </u>																	
Вепхепе	(l/gn)	_	Ξ	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<25	۸ ۱ 0	<0,50	<0.50	<0.50	
1,2,4-Trichloro benzene	(l/gu)	5	<0.50	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<25	۸ ۲ 0	<0.50	<0.50	<0.50	
Xvlene (total)	(/gn)	5	[2]	×10	41.0	<6.0	<1.0	<1.0	41.0	۲.0 م.	0.1.0	0,1,0	4.0	41.0	4.0	41.0	[51]	<20	<1.0	0.1.0	<1.0	pe
Toluene	(l/gu)	ત્ય	ო	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[30]	410	<0.50	<0.50	<0.50	evel —=Not analyz
Tetrachloro ethylene	(l/gn)	2	<0.50	<5.0	<0.50	<3.0	<0.50	2	~	<0.50	<0.50	2	<0.50	[18]	<0.50	<0.50	<25	<10	0.6	6.0	<0.50	[x]=Greater than Action Level=Not analyzed
tert-Butyl	(l/gu)	S.	0.8	<5.0	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	. <0.50	<0.50	<25	<10	<0.50	<0.50	<0.50)=[X]
euezeue	(l/gu)	5	<0.50	<5.0	<0,50	<3.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	[52]	<10	<0.50	<0.50	<0.50	
DATE			02/05/2003	02/06/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	02/05/2003	WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.
SITE		WQS	CSW-01	CSW-06	DVE-101	DVE-102	DVE-103	DVE-104	DVE-105	DVE-106	DVE-107	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	MW-107	MW-108	MW-109	MW-110	WQS= Water (703.5) If WQS

Page: 6 of 8 Date: 05/01/2003

TABLE 3
GROUND WATER ANALYTICAL RESULTS
FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. 8088-009

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive

SAMPLE TYPE: Water

	Benzene	(l/gn)	τ-	<0.50	<0.50	<250			
1,2,4-Trichloro	penzene	(ng/l)	ល	<0.50	<0.50	[490]			
	Xylene (total)	(l/gn)	ഹ	4.0	<1.0	<750			yzed
	Toluene	(l/gn)	ಬ	<0.50	<0.50	[7200]			Level=Not anal
Tetrachloro	ethylene	(l/gu)	ស	<0.50	<0.50	<250			[x]=Greater than Action Level=Not analyzed
tert-Butyl	benzene	(l/gn)	ເລ	<0.50	<0.50	<250			<u>芝</u>
sec-Butyl	benzene	(ng/l)	ໝ	<0.50	<0.50	<250			
	DATE			02/05/2003	02/05/2003	02/05/2003			WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.
	SITE		WQS	MW-201	MW-202	SCRW-05			WQS= Wate 703.5) If WC

Page: 7 of 8 Date: 05/01/2003

TABLE 3
GROUND WATER ANALYTICAL RESULTS
FEBRUARY 2003
FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive

SAMPLE TYPE: Water

decision)			1,1,1,2-Tetra	
SITE	DATE	Chloromethane	chloroethane	Bromoform
		(ng/l)	(ng/l)	(ng/l)
WQS		ર		
CSW-01	02/05/2003	7.0	6.0	<0.50
CSW-06	02/06/2003	<5.0	<5.0	<5.0
DVE-101	02/05/2003	8	<0.50	<0.50
DVE-102	02/05/2003	<3.0	<3.0	<3.0
DVE-103	02/05/2003	<0.50	<0.50	<0.50
DVE-104	02/05/2003	<0.50	<0.50	<0.50
DVE-105	02/05/2003	<0.50	<0.50	<0.50
DVE-106	02/05/2003	<0.50	<0.50	<0.50
DVE-107	02/05/2003	<0.50	<0.50	6.0
MW-101	02/05/2003	<0.50	.<0.50	<0.50
MW-102	02/05/2003	<0.50	<0.50	<0.50
MW-103	02/05/2003	<0.50	<0.50	<0.50
MW-104	02/05/2003	<0.50	<0.50	<0.50
MW-105	02/05/2003	<0.50	<0.50	<0.50
MW-106	02/05/2003	<25	<25	~25
MW-107	02/05/2003	<10	<10	<10
MW-108	02/05/2003	<0.50	<0.50	<0.50
MW-109	02/05/2003	<0.50	<0.50	<0.50
MW-110	02/05/2003	<0.50	<0.50	<0.50
WQS= Water Quality Stan 703.5) If WQS empty, the	WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.	A transmission of the first of	Not	Not analyzed

Page: 8 of 8 Date: 05/01/2003

FORMER CHAMPION PRODUCTS COMPANY, INC.
PERRY, NEW YORK
DELTA PROJECT NO. S098-009 TABLE 3 GROUND WATER ANALYTICAL RESULTS FEBRUARY 2003

PERIOD: From 02/05/2003 thru 02/06/2003 - Inclusive SAMPLE TYPE: Water

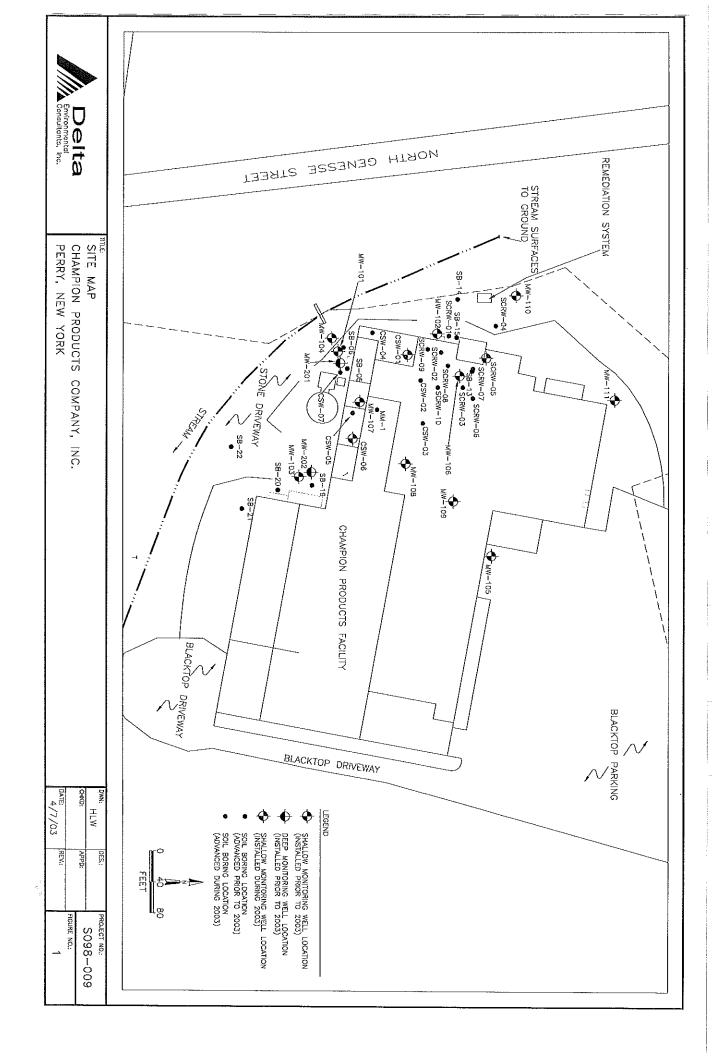
							the state of the s
							TOTAL COLUMN TO THE PARTY OF TH
ELG							and the state of t
Bromoform	(l/gn)		<0.50	<0.50	<250		=Not analyzed
1,1,1,2-Tetra chloroethane	(ng/l)		<0.50	<0.50	<250		t===
Chloromethane	(l/gu)	່ເດ	<0.50	<0.50	<250	•	
			203	500	203		WQS= Water Quality Standard (6NYRR, Table 4, cf. section 703.5) If WQS empty, then no standard promulgated.
DATE			02/05/2003	02/05/2003	02/05/2003		tandard (6NY then no stand
STE		Was	MW-201	MW-202	SCRW-05		WQS= Water Quality S 703.5) If WQS empty, t

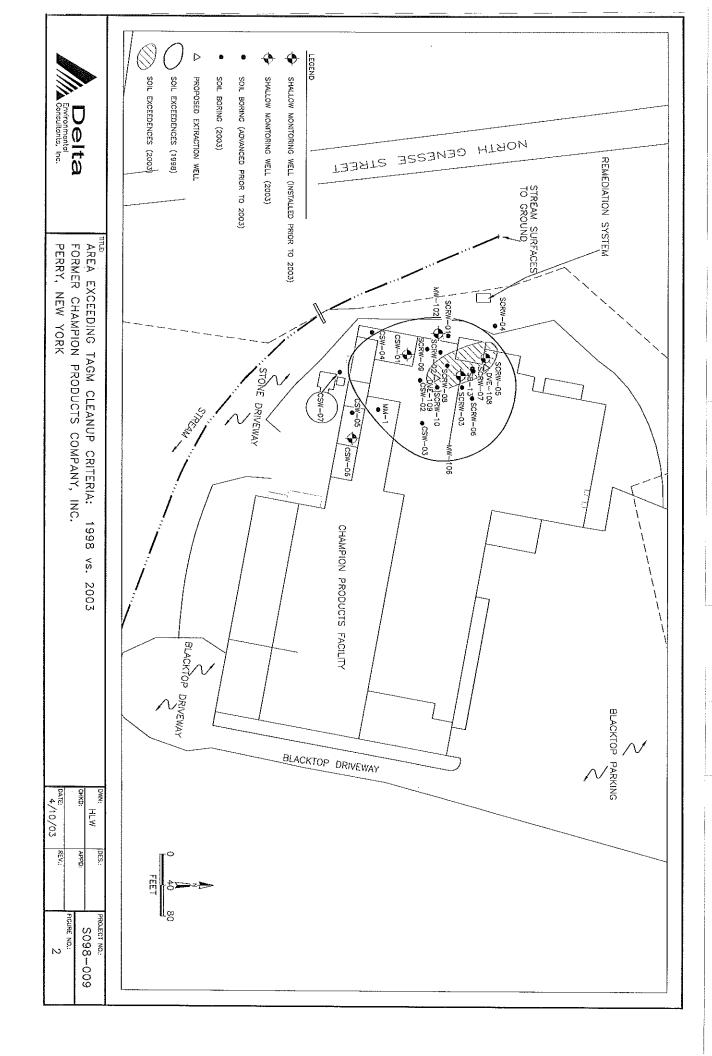
PERCENT CHANGE IN DISSOLVED ANALYTE CONCENTRATION Former Champion Products, Inc. TABLE 4

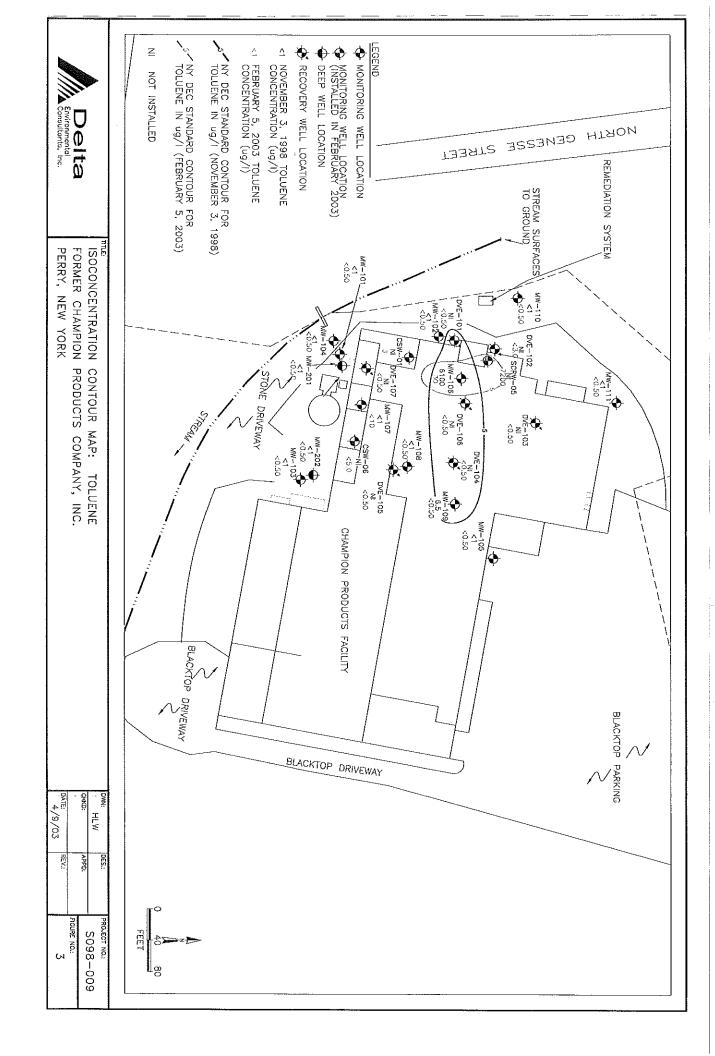
Perry, New York Delta Project No: S098-009-5

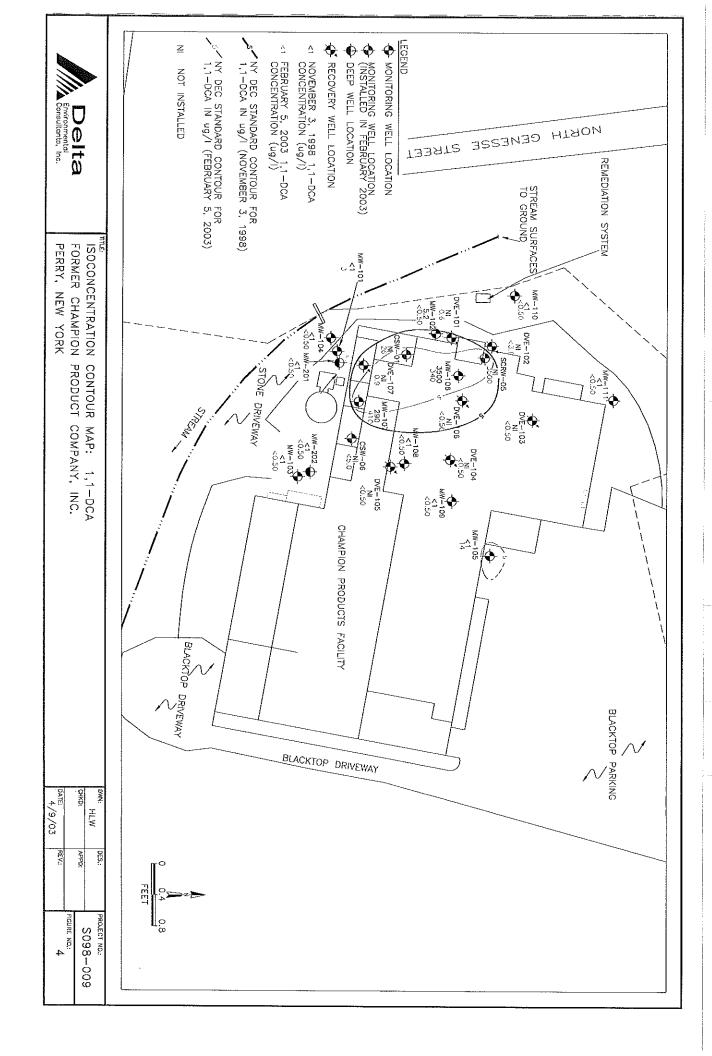
% change since	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease	dacrease	decrease	decrease	decrease	decrease	increase	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease	decrease				
% chan	100.00%	100.00%	100.00%	78.57%	88.89%	83,33%	86.84%	99.99%	91.00%	98.21%	98,96%	98.44%	98.53%	99.68%	99.94%	90.29%	17.14%	92.75%	83,33%	83.33%	96.15%	83.33%	83,33%	%00.06	83.33%	83.33%				
Feb. 03	0.25	9.0	0.25	75.	S	0.25	5	0.25	6.0	0.25	0.25	0.25	0.25	0.25	8	340	410	5	0.25	0.25	0.25	0.25	SZ SZ	ស	0.25	0.25	3500	7200	26	2.5
CO-voN	0.25	-	7.0	SN	\$	0.25	5	0.25	4	0.25	0.25	0.25	180	0.25	120	23	200	s.	0.25	0.6	0.25	0.25	s Z	33	0.25	0.25	Z	Z	z	Z
Aug-02		0.25	0.25	0.7	25	0.25	Ð	_	53	4	0.25	0.25	0.25	0.25	900	125	580	2	0.25	0.25	0.25	ო	0.25	ß	0.7	લ	Z	Z	Z	ž
artup Feb-02 Mav-02	<0.5	<0.5	ဖ	₹	۸10	<0.5	۸ 10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8	99	550	410	<0.5	<0.5	<0.5	40.5	<0.5	۲۱0 د	<0.5	<0.5	Ē	Z	z	z
artup Feb-02	v	₹	3.0	٥. ق	۸ 10	<0.5	<10	ů	0.8	<0.5	<0,5	<0.5	<0.5	40.5	670	125	540	410	<0.5	<0.5	8	<0.5	<0.5	8	۸ 1.0	<0.5 5	Z	z	z	Ī
After System Startup ug-01 Nov-01 Feb-	\$5	ნ	Ą		۸10	<0.5	۸ 10	œ	27	<0.5	<0.5	<0.5	34	<0.5	SN SN	SN	320	<50 <	9.0	9.0	SN	SZ	7.0	25	۸ ن.o	8.00	z	Z	Z	Z
After S Aug-01	610	55	4 25	130	۲ <u>۰</u>	25	۲ 10	2600	100	40.5	<0.5	<0.5	23	<0.5	1,700	120	250	<50	3.0	3.0	s N	s N	<0.5	8	٥. م. م.	40.5	Z	z	z	Z
May-01	999	29	×50	w	%	<0.5	<2.0	۸ ٥.	ო	<0.5	<0.5	<0.5	ო	<0.5	2,300	390	240	<4.0	۷۲ ۲۰	۸ 0.	42	۸ 0.	۸ 1.0	<4.0	0,1,0	۸ 0.	Z	Z	Z	Z
Feb-01	2,400	200	\$50	ဖ	۸10	<0.5	۸ 10	۷, 1,0	<0.5	40.5	~ 0.5	<0.5	5	40.5	11,000	2,300	380	<10	40.5	4	55	<0.5	40.5	۸ 10	<0.5	<0.5	z	Ē	Z	Z
Nov-00	880	320	84	<0.5	ΑĀ	<0.5	ΝΑ	75	37	<0.5	40.5	<0.5	æ	<0.5	22,000	570	NS	NA NA	۸0.5 م	<0,5	~	40.5	<0.5	A A	<0.5	0 0 2	Z	Z	ž	Z
Sep-00	15,000	15,000	15,000	SN	SN	SZ	SN	SN	SN	SN	SN	SN	SN	SS	s N	NS	NS	SZ	SN	SN	SN	SΝ	s S	SN	SN	SN	Z	Z	Ξ	Z
startup Jul-00	8,300	NA AN	A A	7	45	5.5	88	2,900	9	4	24	8	17	78	24,000	2,100	350	×10	1.5	1 α <u>7</u>	8	7,5	ر. ري	410	ر. دن	7.5	Z	ž	Z	= Z
Prior to System Startup g-98 Nov-98 Jul-00	Z	z	Z	Z	Z	Z	Z	: Z	Z	₹	₹	₹	₹	₹	6,100	3,500	290	ζ.	₹	₹	6.5	₹	₹	7.3	₹	V	Z	Z	ž	Z
Prior to S Aug-98 No	₹	Z	Z									16		33	48,000 6,	15 3,	130 2				۵ ۵			50 7	٧	٠ ٧				Ž
Ā	_				_	_	_			<u> </u>			·		48,		7		<u> </u>	<u> </u>	<u> </u>		<u> </u>	ις,	<u> </u>	v	_			_
Monitoring VOC with Highest Weli Dissolved Concentration	Toluene	1,2,4-Trimethylbenzene	n-Butylbenzene	Toluene	Methyl-ethyl-ketone	Toluene	Methyl-ethyl-ketone	Toluene	1,1-Dichloroethane	Chloromethane	Chloromethane	Methylene chloride	Chloromethane	Chloroethane	Toluene	1,1-Dichloroethane	1,1-Dichloroethane	Methyl-ethyl-ketone	1,1,1-Trichloroethane	1,1-Dichloroethane	Toluene	Tetrachloroethene	Chloroform	Methyl-ethyl-ketone	1,1-Dichloroethane	Chloroform	1,1-Dichloroethane	Toluene	1,1-Dichloroethane	1,1-Dichloroethane
Monitoring Well	DVE-101	DVE-101	DVE-101	DVE-102			DVE-105	DVE-106	DVE-107			MW-103				MW-106					MVV-109					MW-202	SCRW-05	·^		

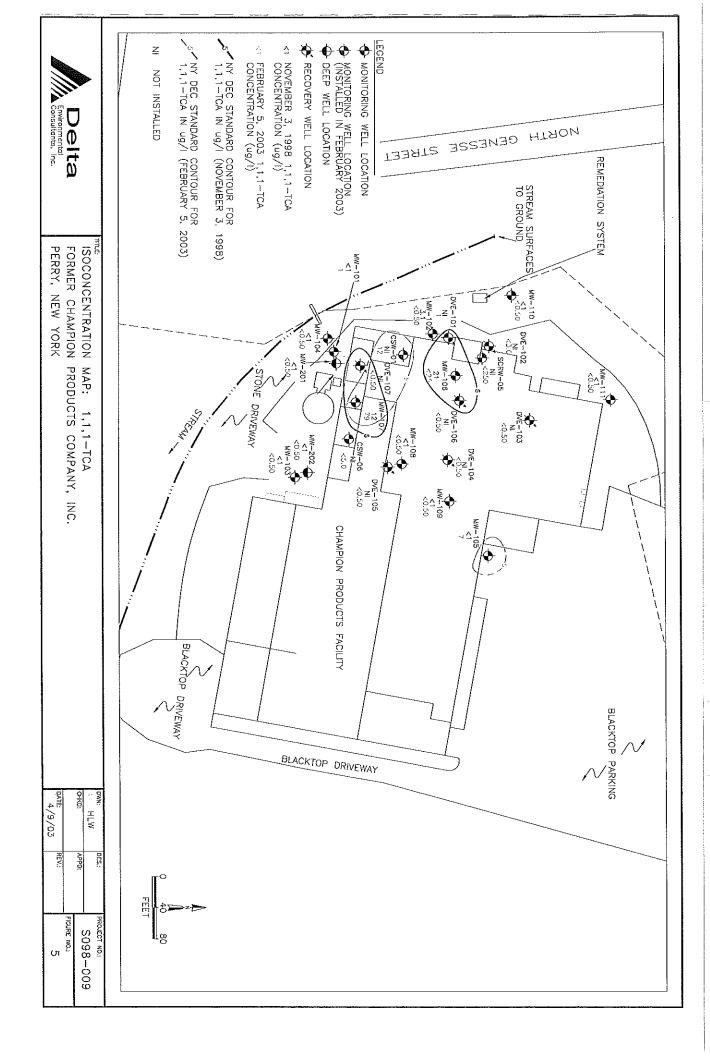
All concentrations reported in micrograms per liter.

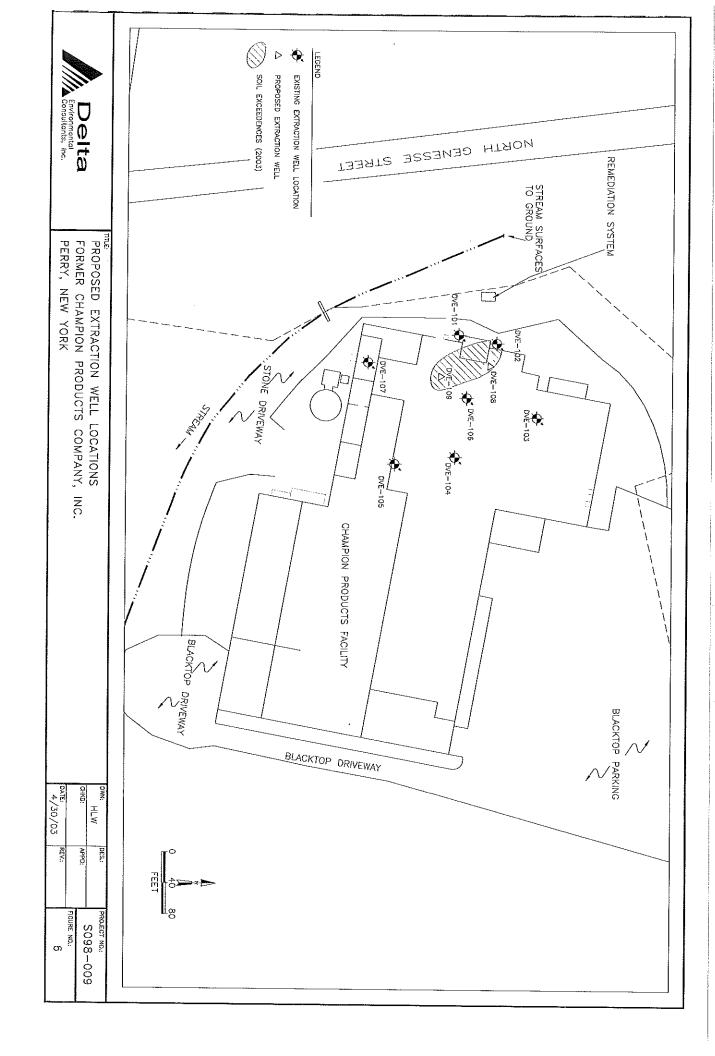

System startup occurred in July 2000.


Bold = Highest concentration reported for this analyte. NI = DVE-101 through DVE-107 were not installed until July 2000 and SCRW-05, CWS-01 and CSW-06 were not installed until February 2003.


Concentrations reported below the detection limit are assumed to be 1/2 the detection limit for calculation purposes.


 $NA \approx The$ ground water sample was not analyzed for this constituent. NS = No sample obtained for this date.


FIGURES



June 8, 2007

Mr. Matt Forcucci New York State Department of Health 584 Delaware Avenue Buffalo, New York 14202

Subject:

Baseline Soil Vapor Intrusion Report Former Champion Products Facility 200 North Main Street, Perry, New York

VCP No. V000189-9 Delta Project No. 0610756P

Dear Mr. Forcucci:

On behalf of the Hanesbrands, Inc., Delta Consultants (Delta) is presenting the following Baseline Soil Vapor Intrusion (SVI) Report for the above noted facility for review by the New York State Department of Health (NYSDOH).

SITE BACKGROUND

The former Champion Products facility was owned and operated from 1955 until 1998 by Champion, an affiliate of the Sara Lee Corporation. In 1998, the property was sold to SMG Development Corporation. Champion leased the building from SMG and continued operations until December 2001. American Classic Outfitters (ACO) was formed and commenced its operations in January 2002. The ACO operation is still ongoing. Irrespective of ownership, the facility has been primarily used since 1955 for the manufacture of print screen apparel for sports teams and retail sale.

Chlorinated and non-chlorinated solvents were identified in the soil and groundwater underlying the manufacturing and warehouse building. Champion Products entered into a Voluntary Cleanup Agreement in 2000 with the New York State Department of Environmental Conservation (NYSDEC) for the remediation of the site. Hanesbrands, Inc. is now performing the activities of Champion Products under the Agreement. Since 2000, several site investigations and remedial activities have occurred, including the design, installation and operation of a dual phase vapor extraction (DPVE) system.

The DPVE system was placed in operation in July 2000 and recently shutdown in February 2007, as significant reductions in volatile organic compound (VOC) levels have been achieved and it is unlikely that any additional benefit will be derived from the continued operation of the system. Site-wide dissolved phase VOC levels have decreased by an average of 87 percent since system start-up.

A Shutdown Plan for the DPVE system was submitted to NYSDEC on February 27, 2007. The Shutdown Plan was approved on March 5, 2007 and outlined activities envisioned for site closure, including the performance of a baseline survey to evaluate a potential for a SVI exposure pathway. This report was prepared pursuant to the Shutdown Plan.

SAMPLING PROGRAM DESCRIPTION

This evaluation was conducted consistent with a work plan prepared pursuant to the terms of the final NYSDOH Guidance for Evaluating Soil Vapor Intrusion in New York State, dated October 2006. The work plan was submitted to the NYSDOH on March 12, 2007 and approved on March 13, 2007. The tasks completed as part of this effort are summarized in the sections which follow.

Pre-Sampling Building Survey

A pre-sampling building inspection was conducted prior to the collection of soil vapor samples on March 23, 2007. The pre-sampling building inspection was conducted by Gregory Drumm, CIH (Delta) with assistance from Ms. Jan Newville (ACO). As part of this task, an evaluation was conducted of the building structure, floor layout, air flows and physical conditions; potential sources of indoor air contamination were identified, including an inventory of chemicals and products; a photoionization detector (PID) survey was conducted to evaluate potential sources, when discovered; and procedures established with ACO personnel to insure that optimum conditions would exist immediately prior to the collection of samples. As part of this task, the NYSDOH Indoor Air Quality & Building Inventory Form was completed (Appendix A).

Key results from the March 23, 2007 pre-sampling building survey were as follows:

- The building is a one-story industrial facility with an open floor plan production area (with mezzanine areas) and an attached office area. The structure is estimated to be approximately 50 years old.
- The facility is heated by natural gas with various ceiling-mounted duct works throughout the production area.
- Air discharges included large oven units, spray booths and exhaust ventilation in the southern area of the facility and bathroom ventilation discharges.
- Air infiltration was noted at the overhead door (raised several inches) in the screen wash/spray booth area, the north and south loading dock areas, and several wall openings (e.g., west men's restroom, custodial closet near offices).
- The facility appeared to have a slightly negative air balance.
- A variety of oils and lubricants, spray adhesives, spray silicone, and solvent-based materials were
 observed in use or in storage throughout the production areas. Gasoline-powered equipment was also
 observed inside the facility including a snowblower, chainsaw, and portable generator. A chemical
 inventory was performed of these materials (Appendix B).

ACO provided a set of Material Data Safety Sheets (MSDSs) that it identified as covering the materials used in the current ACO operations. Hanesbrand has not conducted an audit of the chemicals used in current operations. A review of the MSDSs Identified the presence of the following VOCs;

- Hexane
- Acetone
- Isobutane
- Propane
- Dimethyl ether
- Methylene chloride (aka: dichloromethane)
- Tetrachiroethylene (PCE)
- Mineral spirits
- Aliphatic distillates
- Aliphatic hydrocarbons
- Terpenes
- Glycol ethers

Percent compositions of these VOCs are also provided in Appendix B.

Sampling Collection

Soil vapor samples were collected from a total of 6 locations on March 29, 2007 as depicted in Figure 1:

- Upwind sample (UW-1). Assuming a prevailing westerly wind pattern, the sample was collected outdoors and away from any obvious wind obstructions and/or sources of volatile chemicals (i.e. motor vehicles, oil storage tank farm facilities, other industrial operations, etc.).
- Five Indoor air locations (IA-1 through IA-5)
- Five sub-slab locations (SS-1 through SS-5)

The indoor air and sub-slab samples were co-located as follows:

- One sample in the office area (IA-1/SS-1)
- One sample downgradient of the Former Manual Screen Wash Area (IA-2/SS-2). This area is also known as the Sewing Area.
- One sample downgradient of the Current Screen Wash Area (IA-3/SS-3). This area is also known as the Fabric Cut Area.
- One sample between monitoring wells CSW-01 and MW-107 and within the Current Screen Wash Area (IA-4/SS-4). This area is also known as the Storage Rack Area.
- One sample in the vicinity of monitoring well SCRW-05 and within the Former Manual Screen Wash Area (IA-5/SS-5). This area is also known as the T-Shirt Painting Area.

Sample collection procedures were as follows:

- The outdoor and indoor samples were collected at a height of approximately 4 feet.
- Sub-slab samples were collected consistent with the procedures for permanent sub-slab vapor probe
 installations as specified in NYSDOH SVI Guidance and the approved work plan. Sample locations
 were placed in areas mutually-agreed upon by Messrs. Matt Forcucci (NYSDOH) and Maurice Moore
 (NYSDEC) and site personnel. The designated sample locations closely matched with the locations
 proposed in the approved work plan.
- · The installations were performed as follows:
 - Approximately 4-inch diameter holes were bored into concrete floor of the building. Borings were located away from building footers and in areas so as to minimize disruption of facility operations and egress routes.
 - Each hole was installed to a depth of approximately two-inches beneath the floor into the subgrade bedding materials.
 - The bottom inch of each hole was filled with glass bead material to serve to decrease the likelihood of collecting particulate matter during sampling.
 - One-quarter inch stainless steel tubing was inserted into the glass beads within each borehole.
 - Non-shrink grout was placed around the stainless steel tubing to reduce the likelihood for the introduction of ambient air during sampling. Beeswax was also used at several borehole locations to further assist with sealing as needed.
 - o The top of the boreholes were fitted with a removal plug caps/covers.
- Helium was used as a tracer gas to confirm the integrity of the sub-slab vapor probe seal. A gas trap was made using plastic sheeting, duct taped to the floor. Teflon tubing was connected to the vapor probe outlet, threaded through the plastic and connected to a helium gas monitor. Tubing from a helium gas cylinder was placed beneath the plastic sheeting. When the sheet had visibly risen from the pressure supplied by the helium gas, the gas flow was shut off and the levels of helium were monitored for 5 minutes. If no helium was detected, the seal was considered satisfactory. If helium was detected, the seal was inspected and any cracks were sealed with beeswax and the seal retested until a satisfactory seal was confirmed.
- Prior to sample collection from the sub-slab probe locations, three sample volumes were purged from the sub-slab space at each location.

- Outdoor air, indoor air, and sub-slab vapor samples were collected using clean and certified 6-liter Summa® canisters at each location for a period ranging from 10 to 13 hours.
- Twelve-hour flow rate controllers were used. Flow rates ranged from 7.4-7.8 milliliters per minute (ml/min).
- Sample log sheets were completed for each sample (Appendix C).
- Chain of custody forms were used to track canister and sample shipments (Appendix D).

Prior to sampling, arrangements were made with site personnel to insure that the following conditions existed prior to the collection of samples:

- The HVAC system was operated under normal conditions at normal indoor temperatures at least 24 hours prior to and during the sampling event in a manner that represented normal conditions and building occupancy conditions.
- Unnecessary building ventilation was avoided 24 hours prior to and during sampling.
- Maintenance activities were avoided prior to and during the sampling event (e.g. painting, vehicle maintenance, smoking in the building, etc.).

Sample Analysis

Sample analytical procedures differed slightly from the approved work plan in order to permit the analysis of a more complete list of site-related VOCs.

Prior to the collection of samples, a comparison was made between the list of parameters routinely monitored at the site, the EPA Method TO-15 list and the list provided in the work plan. The work plan list, referred to as the STL Burlington NYS VI Compound List, provides for low-level analytical procedures to measure VOCs [(i.e tetrachloroethene (PCE), trichloroethene (TCE), carbon tetrachloride (CCI4) and 1,1,1-trichloroethane (TCA)] at detection limits less than the action levels specified in the NYSDOH Decision Matrices. The comparison indicated that a more extensive list of VOCs (the TO-15 list plus naphthalene) would require analysis to insure that most of the parameters routinely monitored at the site were tested for in the SVI samples.

All samples were analyzed by EPA Method TO-15 with low-level analysis to provide lower detection limits for TCE and CCI₄. Severn Trent Laboratories (STL), Burlington, VT, a NYSDOH ELAP-certified laboratory, was retained by Delta to provided the canisters and perform the laboratory analyses.

The laboratory results from the sampling effort are provided in Appendix D.

Data Usability Summary Report

A data usability summary report (DUSR) was prepared and consists of an evaluation of the analytical data to determine if the data met the site and project-specific criteria for data quality and use. The DUSR report is provided in **Appendix E**.

Key findings of the DUSR report were as follows:

- The data package provided contained the documentation required by the NYSDEP Analytical Services Protocol (ASP).
- · Proper chain of custody procedures were followed.
- · The overall performance of the analyses was acceptable.

The followings data are considered usable, but were flagged as "J" or "estimated" as follows:

The positive result for dichlorodifluoromethane was flagged as "J" in sample UW-1 because the
percent difference (D) for this compound was above the allowable maximum in the associated initial
calibration and the percent recoveries were above the quality control (QC) limits in LCS/LCSD
CA041807LCS.

The non-detected results for 1,2,4-trimethlybenzene were flagged as "J" for samples UW-1, IA-2, IA-3, IA-5, SS-3, SS-4 and SS-5 since one of the 2 percent recoveries were below QC limits in LCS/LCSD CA041807LCS.

RESULTS

PID Readings

As part of the Pre-Sampling Building Survey, PID readings were obtained at various locations throughout the facility. These results are noted in Appendix B and ranged from zero to 8 parts per million (ppm). No PID readings were detected in Reception/Office Area or the Custodial Closet. PID readings between zero and 0.4 ppm were noted at the North Dock, Knitting Area, Embroidery Area, Sewing, Oven Areas, the Ink Room and the Mezzanine and Upstairs Office. PID readings between 0.5 and 1 ppm were observed in the Men's Restroom (west of the Production Area), the Pattern Making/Screen Wash, the Printing Area Flammable Cabinet, the Maintenance Area and the Maintenance Flammables Cabinet #1. The highest PID levels were detected in the Maintenance Flammable Cabinet #2 (3 to 8 ppm).

Odors

During the performance of the sampling effort, odors were observed and recorded in the sample logs (Appendix C) at the following locations:

- Location IA-4/SS-4 (Storage Rack Area) Faint paint smell
- Location IA-5/SS-5 (T-Shirt Painting Area) Chemical smell

Analytical Results

Analytical results from the sampling effort are summarized in Tables 1 through 3. Table 1 and Table 2 present the results in micrograms per cubic meter (ug/m³) and parts per billion by volume (ppbv), respectively. Table 3 presents the low-level analytical results for TCE and CCl₄.

Elevated levels of methylene chloride in indoor air resulted in sample dilution and elevated reporting limits. The elevated reporting limits made comparison to available NYSDOH criteria limited, since in many cases, the reporting limits, although non-detect, exceeded the available criteria.

The results Indicated the following:

- The outdoor air, upwind sample location (UW-1) showed low levels for only four compounds dichlorofluoromethane (3 ug/m³), chloromethane (1.1 ug/ m³), trichlorofluoromethane (1.3 ug/m³), and methylene chloride (2 ug/m³).
- Compounds Identified with notably higher Indoor air concentrations as compared to the corresponding sub-slab sample locations included methylene chloride and n-hexane.
- Four of the five indoor air sample locations exceeded the NYSDOH Indoor Air Guideline of 60 ug/m³ for methylene chloride (range 4900-8700 ug/m³).
- Sub-slab levels of methylene chloride were generally lower than indoor air levels by one to two orders
 of magnitude (range 31-900 ug/m³).
- Detectable indoor air levels of n-hexane (110 to 250 ug/m³) generally exceeded corresponding subslab levels by approximately an order of magnitude.
- Compounds identified with notably higher sub-slab sample levels than the corresponding indoor air levels included TCA, PCE, 1,1-dichloroethane (DCA), cyclohexane, and MEK.
- PCE levels for two indoor air sample locations, IA-3 and IA-5, exceeded the NYSDOH Air Guideline Value of 100 ug/m³ at 300 and 220 ug/m³, respectively.
- Sub-slab levels of PCE at the two corresponding sub-slab sample locations, SS-3 and SS-5, were higher than the indoor air at 630 and 1500 ug/m³, respectively. Other sub-slab levels of PCE were 81 ug/m³ at SS-1, 660 ug/m³ at SS-2 and 390 ug/m³ at SS-4.

CONCLUSIONS AND RECOMMENDATIONS

Based upon the findings of the baseline SVI survey conducted on March 29, 2007, the following conclusions are provided:

- No direct association is apparent between the compounds detected in the outdoor and indoor air samples.
- The indoor air results for methylene chloride and PCE exceeded the NYSDOH Air Guidelines for indoor air. However, the levels detected are well below the OSHA Permissible Exposure Limits of 87,750 ug/m³ (25 ppm) and 678,330 ug/m³ (100 ppm), respectively.
- Current ACO operations more than likely contributed to the detection of some compounds in the
 indoor air samples, most notably methylene chloride, n-hexane, and PCE. This is consistent with
 findings from the pre-sampling chemical inventory, a review of MSDSs of on-site products in use, and
 the chemical odors noted during sampling.
- Indoor air concentrations of methylene chloride and n-hexane generally exceeded corresponding subslab vapor concentration by at least an order of magnitude indicating the likely association with ACO operations.
- PCE was notably higher in sub-slab samples than corresponding indoor air samples. While some of
 the PCE in the indoor air samples may be associated with infiltration from the sub-slab, current
 manufacturing and production processes may also have contributed to PCE indoor air levels
 observed.
- Looking at the data set as a whole, several other compounds (TCA, DCA, cyclohexane, and MEK) were found at the same locations as the elevated sub-slab PCE observations. These compounds have elevated sub-slab vapor concentrations (up to 7600 ug/m³ for TCA); however, none of these compounds were noted in indoor air at the detection limits reported indicating a potential incomplete exposure pathway from sub-slab vapor.

The following recommendations are provided:

- Assessment of the SVI results should be considered in conjunction with the results of the pending Sub-Slab Soil Investigation work, also being conducted as part of the Shutdown Plan.
- The methylene chloride and PCE indoor air results should be considered in conjunction with the fact that those chemicals are used in the workplace and the indoor air results were well below the OSHA Permissible Exposure Limits.

CLOSING

We trust that the enclosed report is informative. Please do not hesitate to contact us with any questions at (914) 765-0258 or by e-mail at asavino@deltaenv.com.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Anthony Savino Senior Consultant

Enclosures:

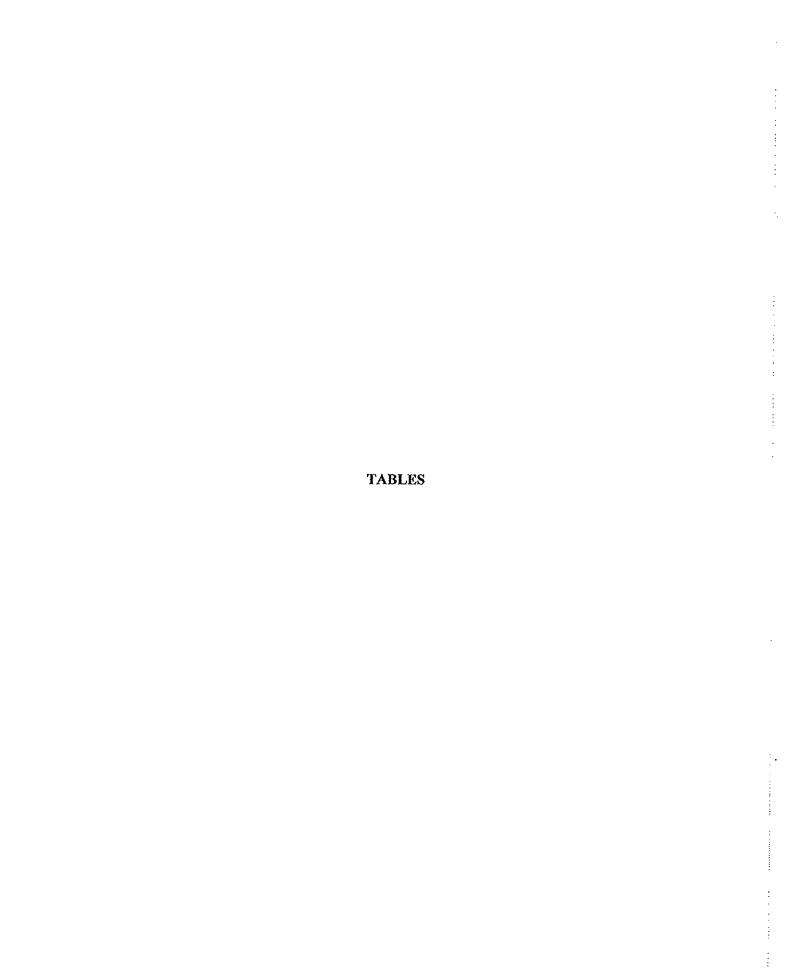
Table 1 SVI Sample Results (ug/m³)
Table 2 SVI Sample Results (ppbv)

Table 3 SVI Sample Results Low-Level TO-15 Analysis Figure 1 Soil Vapor Intrusion Sample Location Map

Appendix A NYSDOH Indoor Air Quality & Building Inventory Form

Appendix B Chemical Inventory
Appendix C SVI Sample Log Forms

Matt Forcucci New York State Department of Health June 8, 2007 Page 7


Appendix D Laboratory Report

Appendix E Data Usability Summary Report (DUSR)

cc: Tommy Thompson, Hanesbrands Maureen Crough, Sidley Austin LLP Sam Gullo, American Classic Outfitters

Paul Sylvestri, Harter Secrest & Emery, LLP

Martin Doster, NYSDEC
Maurice Moore, NYSDEC
Ed Belmore, NYSDEC
Jim Charles, NYSDEC
Gary Litwin, NYSDOH

Table 1 Hanesbrands, Perry, NY SVI Sample Results (ug/m³)

Sample ID	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	\$\$-1 Sub-slab 1.5 3.7 U 2.1 U 0.77 U 1.2 U 2 U 2 U 1.3 U 6.2 2.3 U 1.2 U 55	1A-2 Indoor 60.7 150 U 84 U 62 U 31 U 66 U 47 U 79 U 52 U 67 U	\$\$-2 \$ub-slab 4.0 9.9 U 5.6 U 4.1 U 2 U 4.4 U 3.1 U 5.3 U 3.5 U	IA-3 Indoor 79.9 200 U 110 U 83 U 41 U 88 U 62 U	\$S-3 \$ub-slab 3.0 7.4 U 4.2 U 3.1 U 1.5 U 3.3 U 2.3 U	1A-4 Indoor 84.0 210 U 120 U 87 U 43 U 93 U 66 U	\$\$-4 \$ub-slab 66.5 160 U 91 U 68 U 33 U 73 U	99 U 56 U 41 U 20 U	\$\$.5 \$ub-slab 5.93 15 U 8.4 U 6.2 U 3.1 U
Dilution Factor 0.8 Parameter	3.4 1.1 U 0.99 0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	1.5 3.7 U 2.1 U 1.5 U 0.77 U 1.2 U 2 U 1.3 U 1.3 U 6.2 2.3 U 1.2 U	60.7 150 U 84 U 62 U 31 U 66 U 47 U 79 U 52 U 67 U	4.0 9.9 U 5.6 U 4.1 U 2 U 4.4 U 3.1 U 5.3 U	79.9 200 U 110 U 83 U 41 U 88 U 62 U	3.0 7.4 U 4.2 U 3.1 U 1.5 U 3.3 U	84.0 210 U 120 U 87 U 43 U 93 U	66.5 160 U 91 U 68 U 33 U 73 U	40.0 99 U 56 U 41 U 20 U	5.93 15 U 8.4 U 6.2 U 3.1 U
Parameter	3.4 1.1 U 0.99 0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	3.7 U 2.1 U 1.5 U 0.77 U 1.7 U 1.2 U 2 U 1.3 U 6.2 2.3 U 1.2 U	150 U 84 U 62 U 31 U 66 U 47 U 79 U 52 U 67 U	9.9 U 5.6 U 4.1 U 2 U 4.4 U 3.1 U 5.3 U	200 U 110 U 83 U 41 U 88 U 62 U	7.4 U 4.2 U 3.1 U 1.5 U 3.3 U	210 U 120 U 87 U 43 U 93 U	160 U 91 U 68 U 33 U 73 U	99 U 56 U 41 U 20 U	15 U 8.4 U 6.2 U 3.1 U
Dichlorodifluoromethane	1.1 U 0.99 0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	2.1 U 1.5 U 0.77 U 1.7 U 1.2 U 2 U 1.3 U 6.2 2.3 U 1.2 U	84 U 62 U 31 U 66 U 47 U 79 U 52 U 67 U	5.6 U 4.1 U 2 U 4.4 U 3.1 U 5.3 U	110 U 83 U 41 U 88 U 62 U	4.2 U 3.1 U 1.5 U 3.3 U	120 U 87 U 43 U 93 U	91 U 68 U 33 U 73 U	56 U 41 U 20 U	8.4 U 6.2 U 3.1 U
1,2-Dichlorotetraffuorcethane 1,1 Chloromethane Chloromethane 1,1 Vinyl Chloride 0,41 L 1,3-Butadiene 0,88 L Bromomethane 0,62 L Chloroethane 1,1 L Bromoethene 0,7 L Trichlorofluoromethane 1,3 Freon TF 1,2 L 1,1-Dichloroethene 0,63 L Acelone 9,5 L Isopropyl Alcohol 9,8 L Carbon Disulfide 1,2 L	1.1 U 0.99 0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	2.1 U 1.5 U 0.77 U 1.7 U 1.2 U 2 U 1.3 U 6.2 2.3 U 1.2 U	84 U 62 U 31 U 66 U 47 U 79 U 52 U 67 U	5.6 U 4.1 U 2 U 4.4 U 3.1 U 5.3 U	110 U 83 U 41 U 88 U 62 U	4.2 U 3.1 U 1.5 U 3.3 U	120 U 87 U 43 U 93 U	91 U 68 U 33 U 73 U	56 U 41 U 20 U	8.4 U 6.2 U 3.1 U
Chloromethane	0.99 0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	1,5 U 0,77 U 1,7 U 1,2 U 2 U 1,3 U 6,2 2,3 U 1,2 U	62 U 31 U 66 U 47 U 79 U 52 U 67 U	4.1 U 2 U 4.4 U 3.1 U 5.3 U	83 U 41 U 88 U 62 U	3.1 U 1.5 U 3.3 U	87 U 43 U 93 U	68 U 33 U 73 U	41 U 20 U	6.2 U 3.1 U
1,3-Butadiene 0.88 t Bromomethane 0.62 t Chloroethane 1.1 t Bromoethene 0.7 t Trichlorofluoromethane 1.3 Freon TF 1.2 t 1,1-Dichloroethene 0.63 t Acetone 9.5 t Isopropyl Alcohol 9.8 t Carbon Disulfide 1.2 t	0.41 U 0.88 U 0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	0.77 U 1.7 U 1.2 U 2 U 1.3 U 6.2 2.3 U 1.2 U	31 U 66 U 47 U 79 U 52 U 67 U	2 U 4.4 U 3.1 U 5.3 U	41 U 88 U 62 U	1.5 U 3.3 U	43 U 93 U	33 U 73 U	20 U	3.1 U
Bromomethane 0.62 t	0.62 U 1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	1.2 U 2 U 1.3 U 6.2 2.3 U 1.2 U	47 U 79 U 52 U 67 U	4.4 U 3.1 U 5.3 U	88 U 62 U	3.3 U	93 U	73 U		
Chloroethane 1.1 t Bromoethene 0.7 t Trichlorofluoromethane 1.3 Freon TF 1.2 t 1,1-Dichloroethene 0.63 t Acetone 9.5 t Isopropyl Alcohol 9.8 t Carbon Disulfide 1.2 t	1.1 U 0.7 U 14 1.2 U 0.63 U 22 9.8 U	2 U 1.3 U 6.2 2.3 U 1.2 U	79 U 52 U 67 U	5.3 U						6.6 U
Bromoethene 0.7 t	0.7 U 14 1.2 U 0.63 U 22 9.8 U	1.3 U 6.2 2.3 U 1.2 U	52 U 67 U		440 11			50 U	31 U	4.7 U
Trichlorofluoromethene	14 1.2 U 0.63 U 22 9.8 U	6.2 2.3 U 1.2 U	67 U	3.5 U	110 U	ΑU	110 U	87 U	53 U	7.9 U
Freon TF 1.2 L 1,1-Dichloroethene 0.63 L Acetone 9.5 L Isopropyl Alcohol 9.8 L Carbon Disulfide 1.2 L	1.2 U 0.63 U 22 9.8 U	2.3 U 1.2 U			70 U	2.6 U	74 U	57 Ų	35 U	5.2 U
1,1-Dichloroethene 0.63 t Acetone 9.5 t Isopropyl Alcohol 9.8 t Carbon Disulfide 1.2 t	0.63 U 22 9.8 U	1.2 U	1 92 U	16	90 U	18	96 U	73 U	45	15
Acetone 9.5 t Isopropyl Alcohol 9.8 t Carbon Disulfide 1.2 t	22 9.8 U		48 U	6.1 U	120 U	4.6 U	130 U	100 U	61 U	9.2 U
Isopropyl Alcohol 9.8 L Carbon Disulfide 1.2 L	9.8 U		710 U	3.2 U 62	63 U 950 U	2.4 U 81	67 U 1000 U	59	32 U	4.8 U
Carbon Disulfide 1.2 L		18 U	740 U	49 U	980 U	37 U	1000 U	780 U 810 U	480 U 490 U	120 74 U
		3.7	93 U	6.2 U	120 U	4.7 Ú	130 U	100 U	62 U	9.3 U
	1.3 U	2.3 U	94 U	6.3 U	130 U	4.7 U	130 U	100 U	63 U	9.4 U
Methylene Chloride 2	35	31	5200	59	8700	270	5900	900	4900	120
tert-Butyl Alcohol 12 t		27	910 U	61 U	1200 U	45 U	1300 U	1000 U	610 U	91 U
Methyl tert-Butyl Ether 1.4 U		2.7 U	110 U	7.2 U	140 U	5.4 U	150 ป	120 U	72 U	11 U
trans-1,2-Dichloroethene 0.63 t		1,2 U	48 U	3.2 U	63 U	2.4 U	67 U	52 U	32 U	4.8 U
n-Hexane 1.4 L 1,1-Dichlorosthane 0.65 L		2.6 U	110	7 U	160	6.7	160	120 U	250	11 U
1,1-Dichloroethane 0.65 L 1,2-Dichloroethene (total) 0.63 L	0.65 U 0.63 U	1.2 U	49 U 48 U	3.2 U 3.2 U	65 U 63 U	2.4 U	69 U	1300	32 U	180
Methyl Ethyl Kelone 1.2 L	3.8	11	88 U	3.2 U	120 U	2.4 U 7.7	67 U 120 U	52 U 97 U	32 U 59 U	4.8 U
cls-1,2-Dichloroethene 0.63 L		1,2 U	48 U	3.2 U	63 U	2,4 U	67 U	52 U	32 U	4.8 U
Tetrahydrofuran 12 U	12 U	22 U	880 U	59 U	1200 U	44 U	1200 U	970 U	590 U	88 U
Chloroform 0.78 U	0.78 U	88	59 U	27	78 U	28	83 U	63 U	39 U	41
1,1,1-Trichloroethane 0.87 U	0.87 U	98	65 U	22	87 U	220	93 U	7600	44 U	1200
Cyclohexane 0.55 U	0.55 U	4.1	41 U	2.8 U	55 U	7.6	59 U	210	28 U	38
Carbon Tetrachloride 1 U	10	1.9 U	75 U	5 U	100 U	3.8 U	110 U	82 U	50 U	7.5 U
2,2,4-Trimethylpentane 0.75 U	0.75 U	1.4 U	56 U	3.7 U	75 U	2.8 U	79 U	61 U	37 U	5.6 U
Benzene 0.51 U 1,2-Dichlorcethane 0.65 U	0.51 U 0.65 U	2.6 1.2 U	38 U 49 U	2.6 U 3.2 U	51 U 65 U	2.8	54 U	42 U	26 U	3.8 U
n-Heptane 0.66 U	0.66 U	1.2 U	49 U	3.2 U	66 U	2.4 U 3.9	69 U 70 U	53 U 53 U	32 U 33 U	4.9 U
Trichlorgethene 0.86 U	0.86 U	16	64 U	4.3 U	86 U	3.9 3.2 U	91 U	70 U	43 U	4.9 24
1,2-Dichloropropane 0.74 U	0.74 U	1.4 U	55 U	3.7 U	74 U	2.8 U	79 U	60 U	37 U	5.5 U
1,4-Dioxane 14 U	14 U	27 U	1100 U	72 U	1400 U	54 U	1500 U	1200 U	720 U	110 U
Bromodichloromethane 1,1 U	1.1 U	5.1	80 U	5.4 U	110 U	4 U	110 U	87 U	54 U	8 U
cis-1,3-Dichloropropene 0.73 U	0.73 U	1.4 U	54 U	3.6 U	73 U	2.7 Ü	77 U	59 U	36 U	5.4 U
Methyl Isobutyl Ketone 1.6 U	1.6 U	86	120 U	82	160 U	45	170 U	140 U	82 U	140
Toluene 0.6 U	1.5	8.3	45 U	5.7	60 U	8.3	64 U	49 U	30 U	7.2
trans-1,3-Dichloropropene 0.73 U 1,1,2-Trichloroethane 0.87 U	0.73 U 0.87 U	1.4 U	54 U	3.6 U	73 U	2.7 U	77 U	59 U	36 U	5.4 U
Tetrachloroethene 1.1 U	1.7	1.6 U 81	65 U 81 U	4.4 U 660	87 U 300	3.3 U	93 U	71 U	44 U	6.5 U
Methyl Butyl Kelone 1.6 U	1.6 U	210	120 U	410	160 U	630 94	120 U	390 140 U	220 82 U	1500
Dibromochloromethane 1.4 U	1.4 U	2.6 U	100 U	6.8 U	140 U	5.1 U	140 U	110 U	68 U	940 10 U
1,2-Dibromoethane 1.2 U	1.2 U	2.3 U	92 U	6.1 U	120 U	4.6 U	130 U	100 U	61 U	9.2 U
Chlorobenzene 0.74 U	0.74 U	1.4 U	55 U	3.7 U	74 U	2.8 U	78 U	60 U	37 U	5.5 U
Ethylbenzene 0.69 U	0.69 U	2.3	52 U	4.8	69 U	2.7	74 U	56 U	35 U	5.2 U
Xylene (m.p) 1.7 U	1.7 U	4.8	130 U	8.7 U	170 U	7.8	180 U	140 U	87 U	13 U
Xylene (o) 0.69 U	0.69 U	1.5	52 U	3.5 U	69 U	2.6 U	74 U	56 U	35 U	5.2 U
Xylene (Iolal) 0.69 U		6.5	52 U	3.5 U	69 U	7.8	74 U	56 U	35 U	5.2 U
Styrene 0.68 U		1,3 U	51 U	3.4 U	68 U	2.6 U	72 U	55 U	34 U	5.1 U
Bromoform 1.7 U 1,1,2,2-Tetrachloroethane 1.1 U		3.1 U 2.1 U	120 U 82 U	8.3 U 5.5 U	170 U 110 U	6.2 U	180 U	130 U	83 U	12 U
4-Ethyltoluene 0.79 U	0.79 U	2.1	59 U	3.9 U	79 U	4.1 U 2.9 U	120 U 84 U	89 U 64 U	55 U 39 U	8.2 U
1,3,5-Trimethylbenzene 0.79 U		1.5 U	59 U	3.9 U	79 U	2.9 U	84 U	64 U	39 U	5.9 U 5.9 U
2-Chlorotoluene 0.83 U	0.83 U	1.6 U	62 U	4.1 U	83 U	3.1 U	88 U	67 U	41 U	6.2 U
1,2,4-Trimethylbenzene 0.79 U	0.79 U	3.1	59 U	3.9 Ü	79 U	2.9 U	84 U	64 U	39 U	5.9 U
1,3-Dichlorobenzene 0.96 U	0.96 U	1.8 U	72 U	4.8 U	96 U	3.6 U	100 U	78 U	48 U	7.2 U
1,4-Dichlorobenzene 0.96 U	0.96 U	3.9	72 U	5.1	96 U	3.6 U	100 U	78 U	48 U	7.2 U
1,2-Dichlorobenzene 0.96 U	0.96 U	1.8 U	72 U	4.8 U	96 U	3.6 U	100 U	78 U	48 U	7.2 U
1,2,4-Trichlorobenzene 3 U		5.6 U	220 UJ	15 U	300 UJ	11 UJ	310 Ú	240 UJ	150 UJ	22 UJ
Hexachlorobutadiene 1.7 U		3.2 U	130 U	8.5 U	170 U	6.4 U	180 U	140 U	85 U	13 U
Naphthalene 2.1 U	2,1 U	3.9 U	160 U	10 U	210 U	7.9 U	220 U	170 U	100 U	16 U

Noles:

- 1. All concentrations in micrograms per cubic meter (ug/m²) 2. U = Not detected at reporting limit 3. J = Estimated based upon DUSR

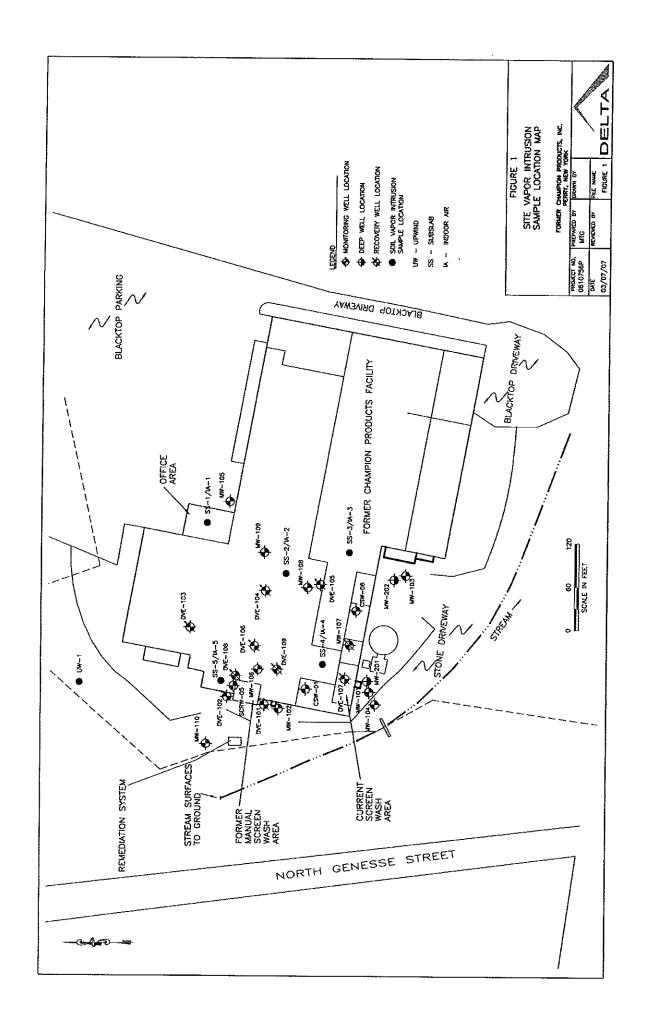
- 4. Bold value indicates exceedance of NYSDOH Indoor Air Guideline Value; methylene chloride = 60 ug/m³; tetrachloroethene = 100 ug/m²

Table 2 Hanesbrands, Perry, NY SVI Sample Results (ppbv)

	· · · · · · · · · · · · · · · · · · ·										
	UW-1	IA-1	SS-1	IA-2	55-2	IA-3	SS-3	IA-4	SS-4	IA-5	SS-5
Sample ID	Ouldoor	Indoor	Sub-slab	Indoor	Sub-slab	Indoor	Sub-slab	Indoor	Sub-slab	Indoor	Sub-slab
Disulon Factor	0.8	0.8	1.5	60.7	4.0	79.9	3.0	84.0	66.5	40.0	5.93
Parameter	0.0		1.0	50.7	1 7.0	13.5	3.0	04.0	00.0	40.0	0.93
Olchlorodifluoromethane	0.61 J	0.68	0.75 U	30 U	2 U	40 U	1.5 U	42 U	33 U	20 U	3 U
1,2-Dichloroletrafluoroethane	0.16 U	0.16 U	0.3 U	12 Ú	0.8 U	16 U	0.6 U	17 U	13 0	8 U	1.2 U
Chloromethane	0.52	0.48	0.75 U	30 U	2 U	40 U	1.5 U	42 U	33 U	20 U	3 U
Vinyl Chloride	0.16 U	0.16 U	0.7 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,3-Butadiene	0.4 U	0.10 U	0.75 U	30 U	2 U	40 U	1.5 U	42 U	33 U	20 U	3 U
Bromomethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Chlorcethane	0.4 U	0.4 U	0.75 U	30 U	2 U	40 U	1.5 U	42 U	33 U	20 U	3 U
Bromosthene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Trichlorofluoromethane	0.24	2.5	1.1	12 U	2.9	16 U	3.2	17 U	13 U	8	2.6
Freen TF	0.16 U	0.18 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	80	1.2 U
1,1-Dichloroethene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	15	8 U	1,2 U
Acelone	4 U	9.1	23	300 U	26	400 U	34	420 U	330 U	200 U	51
isopropyl Alcohol	4 U	4 U	7.5 U	300 U	20 U	400 U	15 U	420 U	330 U	200 U	30 U
Carbon Disulfide	0.4 U	0.4 U	1,2	30 U	2 U	40 U	1,5 U	42 U	33 U	20 U	3 U
3-Chloropropene	0.4 U	0.4 U	0.75 U	30 U	2 U	40 U	1,5 U	42 U	33 0	20 U	3 U
Methylene Chloride	0.59	10	8.9	1500	17	2500	77	1700	260	1400	34
tert-Butyl Alcohol	4 U	4 U	9	300 U	20 U	400 U	15 U	420 U	330 U	200 U	30 U
Methyl tert-Butyl Ether	0.4 U	0.4 U	0.75 U	30 U	2 U	40 U	1.5 U	420 U	33 U	20 U	300
trans-1,2-Dichloroethene	0.16 U	0.16 U	0.13 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
n-Hexane	0.4 U	0.10 U	0.75 U	32	2 U	46	1.9	45	33 U	71	3 U
1.1.Dichloroethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	330	8 U	
1,2-Dichloroethene (total)	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Methyl Ethyl Ketone	0.4 U	1.3	3.8	30 U	3.5	40 U	2.6	42 U	33 U	20 U	4.7
cis-1,2-Dichloroethene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Tetrahydrofuran	4 U	4 U	7.5 U	300 U	20 U	400 U	15 U	420 U	330 U	200 U	30 U
Chloroform	0.16 U	0.16 U	18	12 U	5.6	16 U	5.8	17 U	13 U	8 U	8.4
1,1,1-Trichloroethane	0.16 U	0.16 U	18	12 U	4	16 U	41	17 U	1400	80	220
Cyclohexane	0.16 U	0.16 U	1.2	12 U	0.8 U	16 U	2.2	17 U	62	8 U	11
Carbon Tetrachloride	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	80	1.2 U
2,2,4-Trimethylpentane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	80	1.2 U
Benzene	0.16 U	0.16 U	0.81	12 U	0.8 U	16 U	0.89	17 U	13 U	8 0	1.2 U
1,2-Dichloroethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
n-Heplane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.96	17 U	13 U	8 U	1.2
Trichloroethene	0.16 U	0.16 U	3	12 U	0.8 U	16 U	0.6 U	17 U	13 U	80	4.4
1,2-Dichloropropane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,4-Dioxane	4 U	4 U	7.5 U	300 U	20 U	400 U	15 U	420 U	330 Ü	200 U	30 U
Bromodichloromethane	0.16 U	0.16 U	0.76	12 U	0.8 U	18 U	0.6 U	17 U	13 U	8 U	1.2 U
cis-1,3-Dichloropropene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Methyl Isobutyl Ketone	0.4 U	0.4 U	21	30 U	20	40 U	11	42 U	33 U	20 U	33
Toluene	0.16 U	0.4	2.2	12 U	1.5	16 U	2.2	17 U	13 U	8 U	1.9
trans-1,3-Dichloropropane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,1,2-Trichloroethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Telrachioroethene	0.16 U	0.25	12	12 U	98	44	93	17 U	57	33	220
Methyl Bulyl Kelone	0.4 U	0.4 U	51	30 U	99	40 U	23	42 U	33 U	20 U	230
Dibromochloromethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,2-Dibromoethane	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 Ú	0.6 U	17 U	13 U	8 U	1.2 U
Chlorobenzene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 0	1.2 U
Ethylbenzene	0.16 U	0.16 U	0.53	12 U	1.1	16 U	0.63	17 U	13 U	8 U	1.2 U
Xylene (m,p)	0.4 U	0.4 U	1.1	30 U	2 U	40 U	1.8	42 U	33 U	20 U	3 U
Xylens (o)	0.16 U	0.16 U	0.35	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Xylene (total)	0.16 U	0.16 U	1.5	12 U	0.8 U	16 Ŭ	1.8	17 U	13 U	8 U	1.2 U
Styrene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 Ú	0.6 U	17 U	13 0	8 U	1.2 U
Bromoform	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 Ü	1.2 U
1,1,2,2-Tetrachloroethane	0.16 U	0.16 U	0,3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
4-Ethyltoluene	0.16 U	0.16 U	0.42	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 0	1.2 U
1,3,5-Trimethylbenzene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
2-Chiorololuene	0.16 U	0.16 U	0.3 U	12 U	0.8 0	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,2,4-Trimethylbenzene	0.16 U	0.16 U	0.63	12 U	0.8 U	16 U	0.6 U	17 U	13 0	8 U	1.2 U
1,3-Dichlorobenzene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,4-Dichlorobenzene	0.16 U	0.16 U	0.65	12 U	0.84	16 U	0.6 U	17 U	13 U	8 U	1.2 U
1,2-Dichlorobenzene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 0	8 0	1.2 U
1,2,4-Trichlorobenzene	0.4 UJ	0.4 U	0.75 U	30 UJ	2 U	40 UJ	1.5 UJ	42 U	33 UJ	20 UJ	3 UJ
Hexachlorobutadiene	0.16 U	0.16 U	0.3 U	12 U	0.8 U	16 U	0.6 U	17 U	13 U	8 U	1.2 U
Naphthalene	0.4 U	0.4 U	0.75 U	30 U	2 U	40 U	1.5 U	42 U	33 U	20 U	3 U
<u> </u>							··· · · · · · · · · · · · · · · · · ·			<u></u>	_ <u></u>

Notes:

- All concentrations in parts per billion by volume (ppbv)
 U = Not detected at reporting limit
 J = Estimated based upon DUSR


Table 3 Hanesbrands, Perry, NY SVI Sample Results Low-Level TO-15 Analysis

Sample ID	UW-1 Outdoor	IA-1 Indoor
Dilution Factor	4,0	4.0
Parameter (ppbv)		****
Carbon Tetrachloride	0.061	0.064
Trichloroethene	0,04 U	0.04 U
Provide the second seco	acasala makh	terita de la composición dela composición de la composición dela composición dela composición dela composición de la composición dela
. Parameter (ug/m³)	19 mid 20 19 1	
Carbon Tetrachloride	0.38	0.4
Trichloroethene	0.21 U	0.21 U

Notes:

1. U = Not detected at reporting limit

FIGURES

ATTACHMENT 2

SOIL BORING LOGS

A	Boring No.	GSB-1	Drilling Method:	
A Dolla			Geoprobe - Direct Push	
Delta	Contractor:	Lyons Drilling		
Environmental			Sampling Device:	
Consultants, Inc.			Macro-core sampler	
	Drill Crew:	Harry and Craig	<u> </u>	
Project Name and Location:				
Subslab Soil Investigation				
Hanesbrands - Perry, NY	Date/Time Started:		Date/Time Finished:	
-		5/19/07 - 7:30	5/19/07 - 7:55	
Ground Surface Elevation:	Logged by:	Scott Bryant	Protective cover:	
Top of Casing Elevation:			N/A	
Well Construction Information: Not applica	able		-	

Water Level at Completion: Not applicable

DEPTH	PID	RECOVERY	DRILLING		CORE	
ft bgs]		OBSERVATIONS	OBS	ERVATION	
(ft in tube)	(ppm)	(inches)		<u> </u>		SAMPLE DESCRIPTION / DRILLING CONDITIONS
(0)						
	0		No odor or staining			0 - 0.5' Concrete (cored)
0-4	0	3.3				0.5 - 1.2' Sand and gravel fill
	0					1.2 - 3.3' Sand (f-cs) little silt little gravel (f-m), brown, damp - reworked material
4-8	0	3.2	No odor or staining			Sand (f-cs) little gravel (f-m) little silt, brown, damp to wet at 7 feet, poorly sorted, loose
	0.2					
8-12	0.5	3.3	No odor or staining			0 - 1.0' Same as above 1.0 - 3.3' Sand (f-cs) little gravel (f-m) trace silt, brown-gray, saturated - gray clay at bottom 0.2'
	4.5					
12-16	4.7	1.7	No odor or staining			Sand (f-cs) little silt trace gravel (f-m) trace clay, tight, wet, brown-gray, like till
						Refusal @ ~13.9'

Acetate Tube: _____ of___ bgs_ = below ground surface

Concrete

Asphalt Patch

0.01 Slotted PVC Screen
Two inch diameter PVC casing grouted in place.

#5 Quartz Sand Filter Pack Bentonite Chips

			14	Borir	ng No.		GSB-2	Drilling Method: Geoprobe - Direct Push
	Delta Environmental Consultants, Inc.			Contractor: Lyons Drilling			Lyons Drilling	Sampling Device:
				Drill	Drill Crew: Harry and			Macro-core sampler
		d Location: estigation		1				
		erry, NY		Date	/Time	Star		Date/Time Finished:
round Su	ırface E	Elevation:		Logo	ged by:		5/19/07 - 10:05 Scott Bryant	5/19/07 - 10:40 Protective cover:
op of Cas	sing Ele	evation:		33	,,-			N/A
/ell Cons	tructior	n Information	n: Not applicable					
ater Lev	el at Co	ompletion: I	Not applicable					_
ater Lev	ci at o	ompiction. I	Not applicable					
DEPTH	PID	RECOVERY	DRILLING		CORE			
ft bgs (ft in tube)	(ppm)	(inches)	OBSERVATIONS	OBS	ERVAT	ION		SAMPLE DESCRIPTION / DRILLING CONDITIONS
10 11 1000)	(PP)	(1101100)						O'AMA EL DEGOTAL FIGURE GOLDENO
(0)								
	0		No odor or				0 - 0.5' Concrete (cored)	
			staining					
0-4		3.4						
	0						0.5 - 1.1' Sand and gravel fill	
							1.1 - 3.4' Sand (f-cs) little silt litt	le gravel (f-m) trace clay, brown, loose, damp - moist
					_			
	0.7		No odor or				Sand (f-cs) little silt little gravel (f-m) trace clay - more clay than above, brown-gray, wet - saturated at 7 feet
			staining				, ,	
4-8		3.2						
	1.7							
	1.7							
	180		No staining but				Sand (f-cs) little gravel (f-m) little	silt, coarser than above, saturated, coarse sand and gravel lenses at top
			Solvent-type odor				and bottom with finer lenses bet	· · · · · · · · · · · · · · · · · · ·
8-12		3						

0 - 1.8' Sand and gravel as above - saturated

Refusal @ ~15.8'

1.8 - 3.6' Sand (f-cs) little silt trace gravel (f) trace clay, gray grading to brown-gray, moist, hard, like till

10.4

68.7

3.8

12-16

Acetate Tube: ____of___ bgs = below ground surface

Concrete Asphalt Patch

0.01 Slotted PVC Screen

3.6

Two inch diameter PVC casing grouted in place.

Little to no odor

and no staining

#5 Quartz Sand Filter Pack Bentonite Chips

_				Borii	ng No.	GSB-3	Drilling Method:
4		Del	ta	Con	tractor:	Lyons Drilling	Geoprobe - Direct Push
	////	Environ	nental ants, Inc.			_,g	Sampling Device:
		_ Oonsuit	arres, me.	Deill	Crew:	Howa and Crain	Macro-core sampler
roiect Na	me and	d Location:		Drill	Crew:	Harry and Craig	
ubslab S	oil Inve	estigation					
lanesbrar	nds - P	erry, NY		Date	e/Time Sta		Date/Time Finished:
Ground St	ırface F	Elevation:		Logo	ged by:	5/19/07 - 11:00 Scott Bryant	5/19/07 - 11:20 Protective cover:
op of Cas	sing Ele	evation:			jou by.	oodii Biyani	N/A
Vell Cons	tructior	n Information	n: Not applicable				•
/ater Lev	al at C	ompletion: N	lot applicable				
valer Lev	ei at O	Jilipielioli. N	ot applicable				
DEPTH	PID	RECOVERY	DRILLING		CORE		
ft bgs (ft in tube)	(ppm)	(inches)	OBSERVATIONS	OBS	SERVATION		SAMPLE DESCRIPTION / DRILLING CONDITIONS
(it iii tabe)	(PPIII)	(monco)					O WILL DESCRIPTION PRINCE CONDITIONS
(0)							
	0		No odor or			0 - 0.5' Concrete (cored)	
			staining				
0-4		3.6				0.5 - 1.3' Sand and gravel fill	
	0.7					Sand (f-cs) little gravel (f-m) trad	e silt, brown, damp, loose
	1.2		Weak sewage			Sand (f-cs) little gravel (f-m) trace	e silt, brown - gray-brown, moist to wet near bottom
4-8		3.5	odor at bottom				
4-0		5.5					
	6						
	85		Strong solvent			Sand (f-cs) little gravel (f), uniform	m, coarse, saturated material, gray
8-12		3.2	odor, no staining				
- · -		- · -	,, o.aig				
	4000			1			
	1082						

0 - 2.2' Same as above - coarser

2.2 - 3.6' Sand (f-cs) little silt little gravel (f-m) trace clay, gray grading to brown, damp - moist

Acetate Tube: __ of _

420

38

12-16

bgs = below ground surface Concrete

Asphalt Patch

3.6

0.01 Slotted PVC Screen
Two inch diameter PVC casing grouted in place.

Weak solvent

odor, no staining

Little to no odor and no staining at bottom

#5 Quartz Sand Filter Pack

Bentonite Chips

	lack			Borii	ng No.	GSB-4	Drilling Method:
		De Environi Consulta	ta mental ants, Inc.	Con	tractor:	Lyons Drilling	Geoprobe - Direct Push Sampling Device: Macro-core sampler
				Drill	Crew:	Harry and Craig	Macro-core sampler
		d Location: estigation					
anesbrar				Date	/Time Sta		Date/Time Finished:
round Su	ırface l	Elevation:		Logg	ged by:	5/19/07 - 11:25 Scott Bryant	5/19/07 - 11:45 Protective cover:
op of Cas	sing Ele	evation:	n: Not applicable				N/A
ater Lev	el at C	ompletion: N	lot applicable				
DEPTH ft bgs	PID	RECOVERY	DRILLING OBSERVATIONS		CORE SERVATION		CAMPLE DESCRIPTION (DRILLING CONDITIONS
ft in tube)	(ppm)	(inches)					SAMPLE DESCRIPTION / DRILLING CONDITIONS
(0)							
	1.6		No odor or staining			0 - 0.5' Concrete (cored)	
0-4		3.5	o.cg			0.5 - 1.3' Sand and gravel fill	
	0.7					Sand (f-cs) little gravel (f-m) trac	e silt, brown, damp, loose
	2.9		Weak sewage odor at bottom			Sand (f-cs) little gravel (f-m) trac	e silt, brown - gray-brown, moist to wet near bottom
4-8		2.4					
	3.5						
	1189		Strong solvent			Sand (f-cs) little gravel (f), unifor	m, coarse, saturated material, gray
8-12		3.4	odor, no staining				
	1313						
			Weak solvent			0 - 1.7' Same as above - coarse	•
12-16	336	3.2	odor, no staining			1.7 - 3.2' Sand (f-cs) little silt little	e gravel (f-m), gray, damp to moist, medium hard, like till
			Little to ne oder				
			Little to no odor and no staining at bottom				
						Refusal @ ~14.8'	
cetate Tu	ıbe:	of		<u> </u>			
<u>s = b</u> el	ow gro	und surface					
	Concr Aspha	ete ilt Patch					
		Slotted PVC	0				

Bentonite Chips

⊿	\overline{lack}	D-I	4_	Boring No.	GSB-5	Drilling Method:	Geoprobe - Direct Push		
		Dei	ta mental ants, Inc.	Contractor:	Lyons Drilling		,		
		Environi Consult	mental ants. Inc.			Sampling Device:			
	, , . <u> </u>			Daill Casses	Hammi and Oneig	Macro-core sampler			
Project Na	me an	d Location:		Drill Crew:	Harry and Craig			ŀ	
11 '								ŀ	
II .	Subslab Soil Investigation Hanesbrands - Perry, NY			Date/Time Started	:	Date/Time Finished:			
					5/19/07 - 11:50		5/19/07 - 12:15		
Ground Su				Logged by:	Scott Bryant	Protective cover:			
Top of Cas							N/A		
Well Cons	tructior	1 Information	n: Not applicable						
Water Lev	el at C	ompletion: N	Not applicable						
DEPTH	PID	RECOVERY	DRILLING	CORE					
ft bgs	(ppm)		OBSERVATIONS	OBSERVATION					
(ft in tube)		(inches)				SAMPLE DESCRIPTION /			

DEPTH	PID	RECOVERY	DRILLING		CORE	
ft bgs			OBSERVATIONS	OBS	ERVATION	
(ft in tube)	(ppm)	(inches)				SAMPLE DESCRIPTION / DRILLING CONDITIONS
(0)						
0-4	0	3.5	No odor or staining			0 - 0.5' Concrete (cored) 0.5 - 1.31 Sand and gravel fill Sand (f-cs) little silt little gravel (f-m), brown, damp, loose
4-8	0.5 2.2	3.2	No odor or staining			Sand (f-cs) little gravel (f-m) trace silt, brown - gray-brown, moist to wet near bottom
8-12	32 25	2.7	Little to no odor and no staining			Sand (f-cs) little gravel (f), uniform, coarse, saturated material, gray
12-16	36	3.1	Little to no odor and no staining			0 - 1.5' Same as above - coarser 1.5 - 3.1' Sand (f-cs) little silt little gravel (f-m), gray, damp to moist, medium hard, like till

Acetate Tube: _____ of ____ bgs = below ground surface Concrete Asphalt Patch

0.01 Slotted PVC Screen
Two inch diameter PVC casing grouted in place.
#5 Quartz Sand Filter Pack
Bentonite Chips

ATTACHMENT 3

SOIL SAMPLING ANALYTICAL DATA

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A07-5534

STL Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

Task: Perry, NY

Mr. Tony Savino Delta Environmental 84 Business Park Dr., Ste 107 Armonk, NY 10504

STL Buffalo

Brian JAFischer Project Manager

06/04/2007

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

STL Buffalo Current Certifications

As of 9/28/2006

OT A TE	Program	Cert # / Lab ID
STATE	AFCEE	
AFCEE	SDWA, CWA, RCRA, SOIL	88-0686
Arkansas	NELAP CWA, RCRA	01169CA
California	SDWA, CWA, RCRA, SOIL	PH-0568
Connecticut	NELAP CWA, RCRA	E87672
Florida	SDWA,NELAP CWA, RCRA	956
Georgia	NELAP SDWA, CWA, RCRA	200003
Illinois	SW/CS	374
lowa	NELAP SDWA, CWA, RCRA	E-10187
Kansas	SDWA	90029
Kentucky	UST	30
Kentucky UST	NELAP CWA, RCRA	2031
Louisiana	SDWA, CWA	NY044
Maine	SDWA	294
Maryland	SDWA, CWA	M-NY044
Massachusetts	SDWA SDWA	9937
Michigan	SDWA, CWA, RCRA	036-999-337
Minnesota	NELAP SDWA, CWA	233701
New Hampshire	SDWA, CWA, RCRA, CLP	NY455
New Jersey	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
New York	CWA, RCRA	9421
Oklahoma	NELAP CWA,RCRA	68-00281
Pennsylvania	RCRA	91013
South Carolina	SDWA	02970
Tennessee	FOREIGN SOIL PERMIT	S-41579
USDA	Department of Energy	DOECAP-STB
USDOE	SDWA	278
Virginia	CWA,RCRA	C1677
Washington	CWA,RCRA CWA,RCRA	. 252
West Virginia		998310390
Wisconsin	CWA, RCRA	

Sample Data Summary Package

SAMPLE SUMMARY

				SAMPI	ED	RECEIVE	\odot
LAB SAMPLE ID	CLTE	NT SAMPLE ID	MATRIX	DATE	TIME_		TIME
A7553401		(10-12)	SOIL	05/19/2007	08:05	05/22/2007	08:40
A7553402		(12-14)	SOIL			05/22/2007	
A7553402MS	GSB-1	(12-14)	SOIL	05/19/2007	08:10	05/22/2007	08:40
A7553402SD		(12-14)	SOIL	05/19/2007	08:10	05/22/2007	08:40
A7553404	GSB-2	(10-12)	SOIL	05/19/2007	10:50	05/22/2007	08:40
A7553405	GSB-2	(12-14)	SOIL	05/19/2007	10:55	05/22/2007	08:40
A7553403	GSB-2	(8-10)	SOIL	05/19/2007	10:45	05/22/2007	08:40
A7553407	GSB-3	(10-12)	SOIL	05/19/2007	11:30	05/22/2007	08:40
A7553408	GSB-3	(14-16)	SOIL	05/19/2007	11:35	05/22/2007	08:40
A7553406	GSB-3	(8-10)	SOIL			05/22/2007	
A7553410	GSB-4	(10-12)	SOIL	05/19/2007	11:55	05/22/2007	08:40
A7553411	GSB-4	(12-15)	SOIL			05/22/2007	
A7553409	GSB-4	(8-10)	SOIL			05/22/2007	
A7553413	GSB-5	(10-12)	SOIL	05/19/2007	12:30	05/22/2007	08:40
A7553414	GSB-5	(12-14)	SOIL	05/19/2007	12:35	05/22/2007	08:40
A7553412	GSB-5	(8-10)	SOIL			05/22/2007	08:40
A7553415	GSB-6	(10-12)	SOIL	05/19/2007		05/22/2007	08:40

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: <u>A07-5534</u>

STL Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

PARAMETER ANALYTICAL METHOD

DELITA/PERRY-METHOD 8260 - VOLATILE ORGANICS SW8463 8260

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A07-5534

STL Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-5534

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

The recovery of surrogate p-Bromofluorobenzene for sample GSB-4 (10-12) fell below control limits. The sample was reanalyzed within holding time with the surrogate still below control limits, thus indicating a potential matrix effect. Due to high concentrations of non-target analytes approximately one gram of this sample was analyzed for the reanalysis. Both sets of results are reported.

Initial calibration standard curve A7I0000369-1 exhibited a percent Relative Standard Deviation (%RSD) of greater than 15% for the compounds Methylene Chloride, Carbon Tetrachloride and Bromoform. However, the overall mean RSD of all compounds is 7.90%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Initial calibration standard curve A7I0000390-1 exhibited a percent Relative Standard Deviation (%RSD) of greater than 15% for the compound Methylene Chloride. However, the overall mean RSD of all compounds is 8.63%.

Due to the high concentration of non-target analytes approximately one gram of samples GSB-6 (10-12) and GSB-3 (10-12) were analyzed instead of the required 5 grams.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manader

FO-4-07

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the Instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Client No.

GSB-1	(10-12)	
t e		

Lab Name: <u>STL Buffalo</u>	Contract:		005 1 (10 12)
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A7553401</u>
Sample wt/vol: $\underline{5.00}$ (g/m	nL) <u>G</u>	Lab File ID:	F6213.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. <u>14</u> Hea	ated Purge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u>	5 (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL))	Soil Aliquot Volu	ume: (uL)

CONCENTRATION UNITS: <u>UG/KG</u> Q (ug/L or ug/Kg) CAS NO. COMPOUND IJ 6 74-87-3----Chloromethane 74-83-9-----Bromomethane 6 U 12 U 75-01-4-----Vinyl chloride U 75-00-3-----Chloroethane 6 В 25 75-09-2-----Methylene chloride 9 BJ 67-64-1----Acetone 3 75-15-0-----Carbon Disulfide J 75-35-4----1,1-Dichloroethene 6 IJ 6 U 75-34-3----1,1-Dichloroethane 6 U 156-60-5----trans-1,2-Dichloroethene 6 U 156-59-2----cis-1,2-Dichloroethene 6 U 67-66-3-----Chloroform U 6 107-06-2----1,2-Dichloroethane 29 U 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane 6 U 6 U 56-23-5----Carbon Tetrachloride 6 U 75-27-4----Bromodichloromethane 78-87-5----1,2-Dichloropropane 6 U 10061-01-5---cis-1,3-Dichloropropene 6 U 6 U 79-01-6----Trichloroethene 6 U 124-48-1----Dibromochloromethane U 6 79-00-5----1,1,2-Trichloroethane 6 U 71-43-2-----Benzene 10061-02-6---trans-1,3-Dichloropropene 6 U 6 U 75-25-2-----Bromoform 108-10-1----4-Methyl-2-pentanone 29 U 29 U 591-78-6----2-Hexanone 127-18-4----Tetrachloroethene 6 U 79-34-5----1,1,2,2-Tetrachloroethane 6 Ū 108-88-3----Toluene 6 U 108-90-7----Chlorobenzene 6 U 6 U 100-41-4----Ethylbenzene 6 U 100-42-5----Styrene ----m/p-Xylenes U 12

Client No.

			GSB-T (10-17)
Lab Name: <u>STL Buffa</u>	alo Contract:		
Lab Code: <u>RECNY</u>	Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water	c) <u>soil</u>	Lab Sample ID:	<u>A7553401</u>
Sample wt/vol:	<u>5.00</u> (g/mĽ) <u>G</u>	Lab File ID:	F6213.RR
Level: (low/med)	LOW	Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec	c. <u>14</u> Heated Purge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume	e: (uL)	Soil Aliquot Vol	ume: (uL)
CAS NO.	COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg)	
95-47-6	o-Xvlene		6 U

(Not Reviewed)

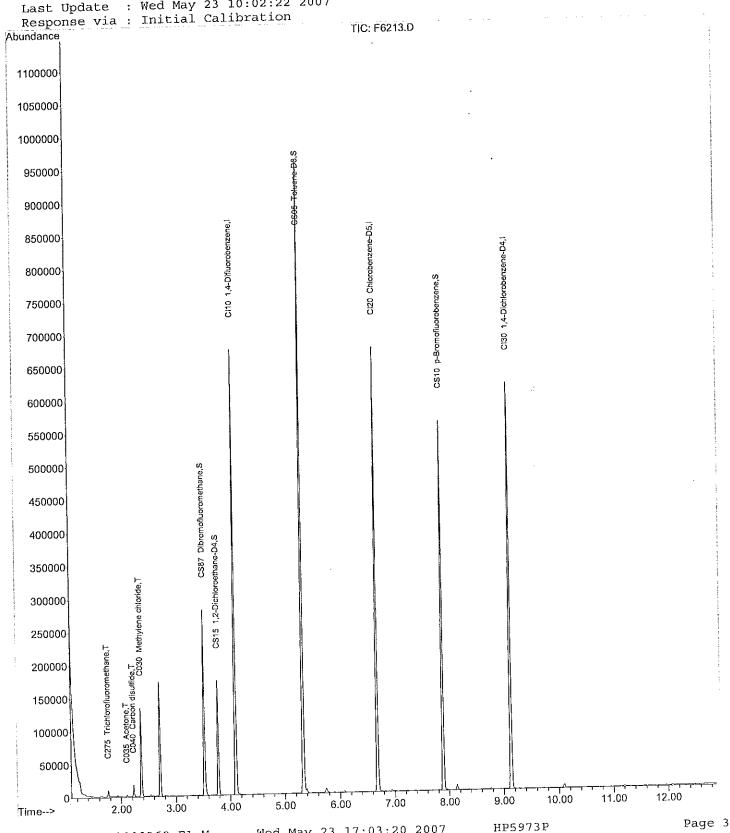
Data File : H:\GCMS_VOA\F\052307\F6213.D

: 23 May $\frac{1}{2}$ 007 12:49 Acq On

: A7553401 Sample

Misc MS Integration Params: RTEINT.P Quant Time: May 23 17:03 2007

Operator: TRB : HP5973F Inst 5.009 Multiplr: 1.00


Quant Results File: A7I0000369_E1.RES

Vial: 6

: C:\MSDCHEM\2\METHODS\F8260\A7I0000369_E1.M (RTE Integrator) Method

: 8260 SOILS ENCON Title

Last Update : Wed May 23 10:02:22 2007

Vial: 6 Data File : H:\GCMS_VOA\F\052307\F6213.D Operator: TRB Acq On : 23 May 2007 12:49 Sample : A7553401 Inst : HP5973F Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Results File: A7I0000369_E1.RES Quant Time: May 23 17:03:16 2007

Quant Method : C:\MSDCHEM\2...\A7I0000369_E1.M (RTE Integrator)

Title : 8260 SOILS ENCON

Last Update : Wed May 23 10:02:22 2007

Response via : Initial Calibration

DataAcq Meth : VOA

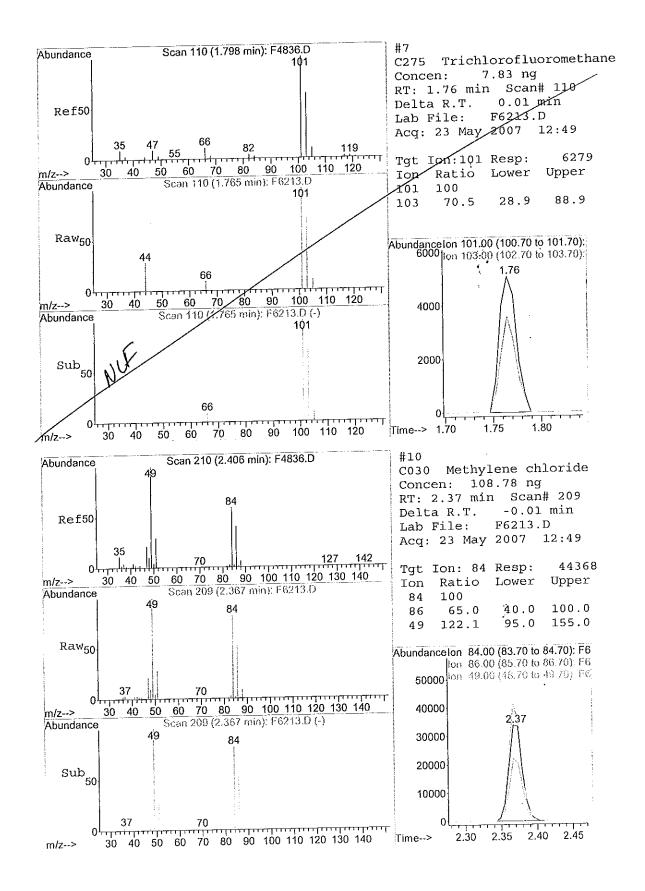
IS QA File : H:\GCMS_VOA\F\052307\F6208.D (23 May 2007 9:44)

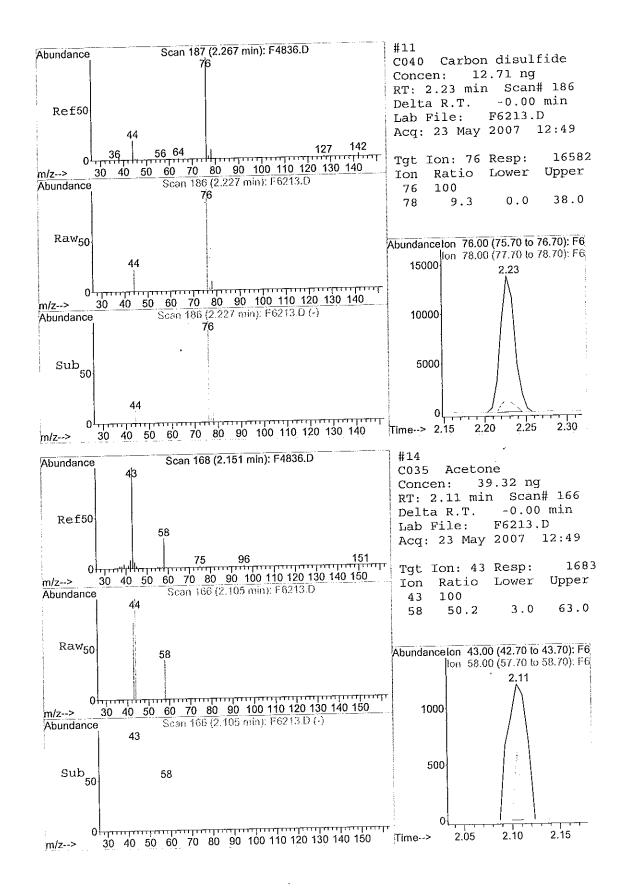
nternal Stan					Conc Units	KCA (AT
1) CT10 1.	4-Difluorobenzene					
1) 0110 -/						
43) CI20 Ch	lorobenzene-D5	6.69	82	182938	250.00 ng	0.00 85.24 ⁹
63) CI30 1,	4-Dichlorobenzene-	9.13	152	185539	250.00 ng	77.83
ystem Monito	oring Compounds			121207	218.78 ng	0.0
27) CS87 Di	bromofluoromethane	3,53	111		216.76 ng erv = 87	'.51%
Spiked Amou	int 250.000 Rang	ge 70	- 130	Recove	219.89 ng	0.0
1 1	a picklaroethane-D	3.78	65	94354	erv = 87	7.96%
Spiked Amou	int 250.000 Rang	ge 64	- 126	Recove 582869	2	
44) CS05 To	oluene-D8	5.55	70	505002		9.61%
Spiked Amou	int 250.000 Ran		- 125		-1	
62) CS10 p-		7.89				5.87%
Spiked Amou	int 250.000 Ran	ge <i>12</i>	- 120	Recove	,	Qvalue
arget Compo	ands			0035	N.D.	Qvarae
2) C290 D:	ichlorodifluorometh	1.16	85	2235	N.D.	
3) C010 C	nloromethane	0.00	50	0	N.D.	
4) C020 V	inyl chloride	0.00		0	N.D.	
	romomethane	0.00	94	0	N.D.	
<u>6</u>) C025 C	hloroethane	0.00	64	6279	7.83 ng	J/ 1/2 8
7) C275 T	richlorofluorometha	1.76	101	0279	N.D.	VCP
	,1,2-Trichloro-1,2,	0.00	101	0	N.D.	
	,1-Dichloroethene	0.00	96 84	44368	108.78 ng	, 9
	ethylene chloride	2.37		16582	12.71 ng	
	arbon disulfide	0.00		0	N.D.	
,	crolein	0.00		Ö	N.D.	
	crylonitrile	2.11		1683	39.32 ng	. 6
	cetone	0.00		0	N.D.	
	cetonitrile	0.00		0	N.D.	
16) C276 I	odomethane ethyl Acetate	0.00		0	N.D.	
17) C255 M	-butyl Methyl Ether	0.00		0	N.D.	
	rans-1,2-Dichloroet	0.00		0	N.D.	
	,1-Dichloroethane	2.81		1237	N.D.	
	inyl Acetate	0.00		0	N.D.	
	,2-Dichloropropane	0.00		0	N.D.	
22) C051 2 23) C056 C	is-1,2-Dichloroethe	0.00		0	N.D.	
24) C272 T	etrahydrofuran	0.00		0	N.D.	
25) C222 F	romochloromethane	0.00		0	N.D.	
	hloroform	3.42		472	И. D.	
		0.00			N.D.	
26) C060 C	velohexane	0.00			N.D.	
26) C060 C 28) C256 C	Cyclohexane	3.55	97	3926		
26) C060 C 28) C256 C 29) C115 3	,1,1-Trichloroethan			0	N.D.	
26) C060 C 28) C256 C 29) C115 3	Cyclohexane .,1,1-Trichloroethan Carbon tetrachloride 1,1-Dichloropropene	3,55) 117	0		

^{(#) =} qualifier out of range (m) = manual integration F6213.D A7I0000369_E1.M Wed May 23 17:03:18 2007 HP5973P

Vial: 6 Data File : H:\GCMS_VOA\F\052307\F6213.D Operator: TRB Acq On : 23 May 2007 12:49 Sample : A7553401 Inst : HP5973F Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Results File: A7I0000369_E1.RES Quant Time: May 23 17:03:16 2007


Quant Method : C:\MSDCHEM\2...\A710000369_E1.M (RTE Integrator)


Title : 8260 SOILS ENCON

Last Update : Wed May 23 10:02:22 2007 Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
		1,2-Dichloroethane	0.00	62	0	N.D.	
	C065	2-Butanone	0.00	43	0	N.D.	
	C110	Trichloroethene	0.00	95	0	N.D.	
	C150	2-Chloroethylvinyl E	0.00	63	0	N.D.	
	C161	Methylcyclohexane	0.00	83	0	N.D.	
	C012	1,2-Dichloropropane	0.00	63	0	N.D.	
	C140	Dibromomethane	0.00	93	0	N.D.	
	C278 C130	Bromodichloromethane	0.00	83	0	N.D.	
	C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.	
	C230	Toluene	5.39		3081	N.D.	
	C170	trans-1,3-Dichloropr	0.00		0	N.D.	
		Ethyl Methacrylate	0.00	69	0	N.D.	
47)		1,1,2-Trichloroethan	0.00	83	0	N.D.	
	C160	4-Methyl-2-pentanone	5.32	43	1847	N.D.	
49)		Tetrachloroethene	5.90		408	N.D.	
50)		1,3-Dichloropropane	0.00	76	0	N.D.	
51)		Dibromochloromethane	0.00	129	0	N.D.	
52)	C155 C163	1,2-Dibromoethane	0.00		0	N.D.	
53)		2-Hexanone	0.00	43	0	N.D.	
54)		Chlorobenzene	6.72		669	N.D.	
55)		1,1,1,2-Tetrachloroe	0.00		0	N.D.	
56)		Ethylbenzene	6.83	91	397	N.D.	
57)	C246	m,p-Xylene	6.94		563	N.D.	
		o-Xylene	0.00		0	N.D.	
59)		Styrene	0.00	104	0	N.D.	
60)		Bromoform	0.00	173	0	N.D.	
61) 64)		Isopropylbenzene	0.00		0	и.р.	
	C301	Bromobenzene	0.00) 156	0	И.D.	
66)		1,1,2,2-Tetrachloroe	0.00	83	0	N.D	
67)		1,2,3-Trichloropropa	0.00) 110	0	И.Д.	
68)		t-1,4-Dichloro-2-But	0.00		0	N.D.	
69)		n-Propylbenzene	0.00) 91	0	N.D.	
70)		0 2-Chlorotoluene	0.00	126	0	и.р.	
71)		P 4-Chlorotoluene	0.00	126	0	N.D.	
72)		1,3,5-Trimethylbenze	0.0		0	N.D.	
73)		tert-Butylbenzene	0.0	0 134	0	N.D.	
74)		1,2,4-Trimethylbenze	8.7	6 105	1164	N.D.	
75)		sec-Butylbenzene	8.7	6 105	1164	N.D.	
76		1,3-Dichlorobenzene	9.1		383	N.D.	
	C309	p-Cymene (4-Isopropy	0.0	0 119	0	N.D.	
78		1,4-Dichlorobenzene	9.1		383	N.D.	
) C249	1,2-Dichlorobenzene	0.0		_	N.D.	
80		n-Butvlbenzene	0.0			N.D.	
81		1,2-Dibromo-3-Chloro	0.0			N.D.	
82	-	1,2,4-Trichlorobenze	0.0			N.D.	
83	•		0.0			N.D.	
84	•	Naphthalene	11.2			N.D.	
85	-		0.0	0 180	0	N.D.	

Client No.

GSB-1	(12-14)	

GC Column: $\underline{ZB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG_	Q
74-87-3	Chloromethane		5	ប
74~83-9	Bromomethane		5	บ
75-01-4	Vinyl chloride		1.1	ט
	Chloroethane		5	U
75-09-2	Methylene chloride		17	В
67-64-1	Acetone		13	BJ
75-15-0	Carbon Disulfide		3	J
	1,1-Dichloroethene		5	U
	1,1-Dichloroethane		5	U
156-60-5	trans-1,2-Dichloroethene		5	U
156-59-2	cis-1,2-Dichloroethene		5	U
67-66-3	Chloroform		5	U
107-06-2	1,2-Dichloroethane		5	U
78-93-3	2-Butanone		26	U
71-55-6	1,1,1-Trichloroethane		5	U
56-23-5	Carbon Tetrachloride		5	U
	Bromodichloromethane		5	U
78-87-5	1,2-Dichloropropane		5	ប
10061-01-5	cis-1,3-Dichloropropene		5	U
79-01-6	Trichloroethene		5	U
	Dibromochloromethane		5	U
79-00-5	1,1,2-Trichloroethane		5	U
71-43-2			5	U :
	trans-1,3-Dichloropropene_		5	U
75-25-2	Bromoform		5	U
	4-Methyl-2-pentanone		26	U
591-78-6	2-Hexanone		26	U
	Tetrachloroethene		5	U
	1,1,2,2-Tetrachloroethane		5	U
108-88-3			5	U
	Chlorobenzene		5	U
	Ethylbenzene		5	U
100-42-5			5	U
	m/p-Xylenes		11	U

Client No.

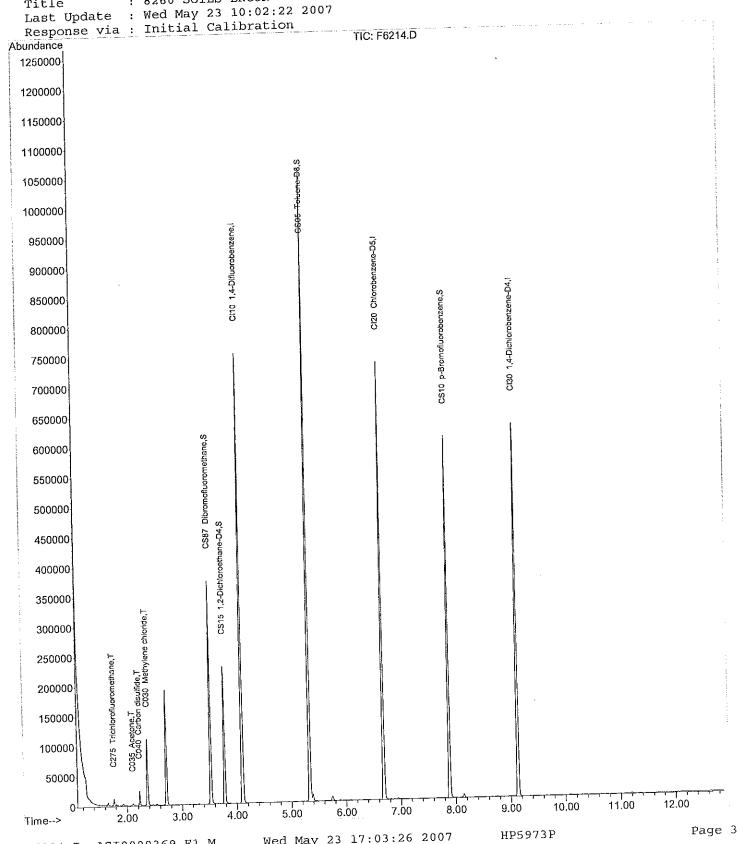
	GSB-1 (12-14)
Lab Name: STL Buffalo Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A7553402</u>
Sample wt/vol: $\underline{5.12}$ (g/mL) \underline{G}	Lab File ID: <u>F6214.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>
% Moisture: not dec. <u>8</u> Heated Purge: Y	Date Analyzed: <u>05/23/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
	5 111

Data File : H:\GCMS_VOA\F\052307\F6214.D

: 23 May 2007 13:20

Acq On : A7553402 Sample

Misc


Vial: 7 Operator: TRB : HP5973F Inst Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: May 23 17:03 2007

Quant Results File: A7I0000369_E1.RES

: C:\MSDCHEM\2\METHODS\F8260\A710000369_E1.M (RTE Integrator) Method

: 8260 SOILS ENCON Title

Data File : H:\GCMS_VOA\F\052307\F6214.D Vial: 7 Acq On : 23 May 2007 13:20
Sample : A7553402 Operator: TRB Inst : HP5973F Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Quant Results File: A7I0000369_E1.RES Quant Time: May 23 17:03:22 2007

Quant Method : C:\MSDCHEM\2...\A7I0000369_E1.M (RTE Integrator)

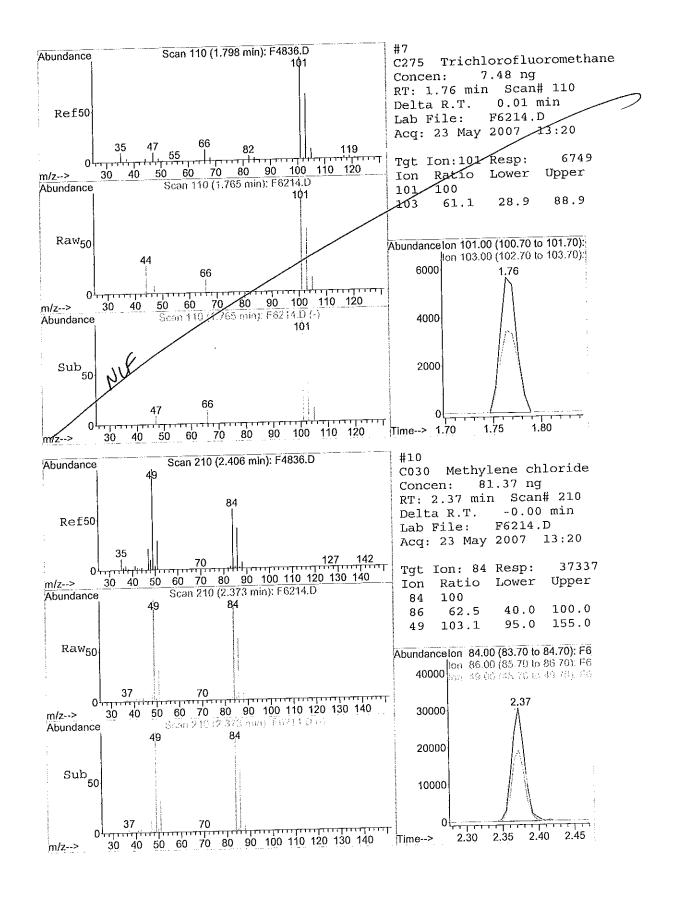
Title : 8260 SOILS ENCON

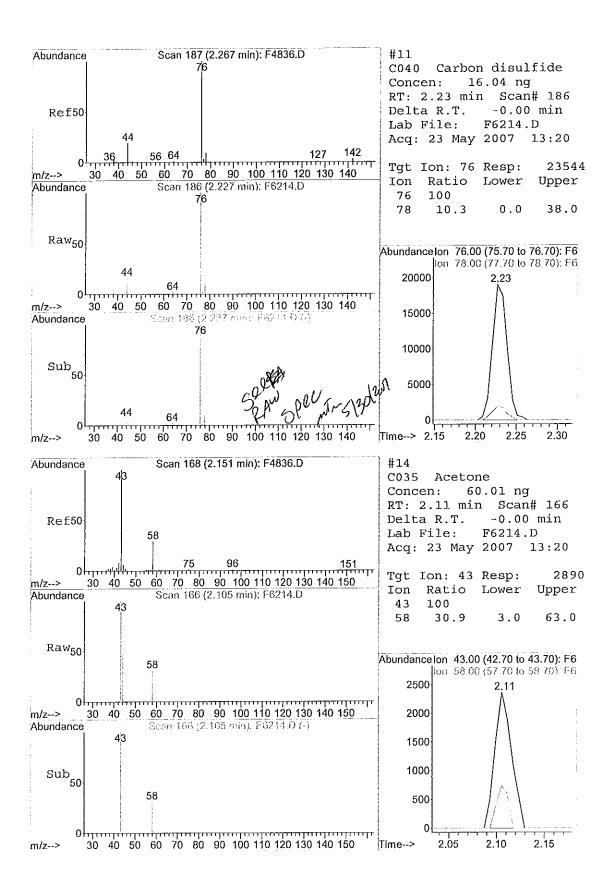
Last Update : Wed May 23 10:02:22 2007 Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : H:\GCMS_VOA\F\052307\F6208.D (23 May 2007 9:44)

Incornar boards				·Conc Units I	CV (AL /
1) CI10 1,4-Difluorobenzene		114	541448	250.00 ng	0.00
1) CI10 1,4-Diffuorobenzene	4.10				93.31%
43) CI20 Chlorobenzene-D5	6.69	82	197588	250.00 ng	0.00
43) CI20 Chloropenzene-D3	0.05	-			92.07%
63) CI30 1,4-Dichlorobenzene-	9.14	152	189030	250.00 ng	0.00
63) C130 1,4-DICHIOTODEHZERE	* · – -				79.30%
				•	
System Monitoring Compounds					0.00
	3.53	111	172423	255.22 ng	
grading Amount 250,000 Kang	e /v	- T20	10000	ery = 102.0	0.00
					0.00 ce&
and the second Range	e 64	~ 1Z0	Recov	ery = 102.	0.00
		70	012000	_	
				ery = 101.	0.00
> gg10 ~ Bromot DIOYODEDZEDE	1.07	J. 1 J		236.59 lig erv = 94.	
Spiked Amount 250.000 Rang	re 72	- 126	Recov	ery = 94.	0.7.0
					Ovalue
Target Compounds	1 16	85	1962	N.D.	-
2) C290 Dichlorodifluorometh	1.16		0	_	
3) C010 Chloromethane	0.00		Ö	N.D.	
4) C020 Vinyl chloride			0	N.D.	
5) C015 Bromomethane	0.00		ō	N.D	<i>f</i>
6) C025 Chloroethane	1.76		6749	N.D. N.D. 7.48 ng V	W 97
(7) C275 Trichlorofluorometha	0.00		0	N.D.	
8) C291 1,1,2-Trichloro-1,2,	0.00		0	N.D.	
9) C045 1,1-Dichloroethene	2.37		37337	81.37 ng•	84
10 C030 Methylene chloride (11) C040 Carbon disulfide	2.23		23544	16.04 ng•	94
_ ,	0.00		0	N.D.	
	0.00		0		
	2.11		2890		96
	0.00		0	N.D.	
15) C300 Acetonitrile 16) C276 Iodomethane	0.00	142	0	N,D.	
coss Mathyl Acetate	0.00	43		N.D.	
18) C962 T-butyl Methyl Ether	0.00	73		N.D.	
19) C057 trans-1,2-Dichloroet	0.00	ט כ נ		N.D.	
20) C050 1,1-Dichloroethane	0.00			N.D.	
21) C125 Vinvl Acetate	0.00			N.D.	
221 C051 2.2-Dichloropropane	0.00		0	N.D. N.D.	
23) C056 cis-1,2-Dichloroethe	0.0		_	N.D.	
24) C272 Tetrahydrofuran	0.0		_	N.D.	
25) C222 Bromochloromethane	0.0	_		N.D.	
26) C060 Chloroform	0.0	_	_	N.D.	
28) C256 Cyclohexane	0.0		_	N.D.	
29) C115 1.1.1-Trichloroethan	0.0			N.D.	
30) C120 Carbon tetrachloride	0.0			N.D.	
31) C116 1,1-Dichloropropene	0.0			_	
33) C165 Benzene					


Data File : H:\GCMS_VOA\F\052307\F6214.D
Acq On : 23 May 2007 13:20
Sample : A7553402 Vial: 7 Operator: TRB Inst : HP5973F Multiplr: 1.00 Misc


MS Integration Params: RTEINT.P Quant Time: May 23 17:03:22 2007 Quant Results File: A7I0000369_E1.RES

DataAcq Meth : VOA

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
34) C065 1,2-Dichloroethane	0.00	62	0	N.D.	
	0.00	43	0	N.D.	
337 6220	0.00	95	0	N.D.	
	0.00	63	0	N.D.	
	0.00	83	0	N.D.	
	0.00	63	0	N.D.	
39) C140 1,2-Dichloropropane 40) C278 Dibromomethane	0.00	93	0	N.D.	
41) C130 Bromodichloromethane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloroprop	0.00	75	0	N.D.	
45) C230 Toluene	5.39	92	4573	N.D.	
46) C170 trans-1,3-Dichloropr	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroethan	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentanone	5.32	43	2423	N.D.	
50) C220 Tetrachloroethene	5.90	166	761	N.D.	
51) C221 1,3-Dichloropropane	0.00	76	0	N.D.	
52) C155 Dibromochloromethane	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	и.р.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachloroe	0.00	131	0	N.D.	
57) C240 Ethylbenzene	6.83	91	348	· N.D.	
58) C246 m,p-Xylene	6.95	106	819	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00		0	N.D.	
61) C180 Bromoform	0.00		0	N.D.	
64) C966 Isopropylbenzene	0.00		0	N.D.	
65) C301 Bromobenzene	0.00		0	N.D.	
66) C225 1,1,2,2-Tetrachloroe	0.00		0	N.D.	
67) C282 1,2,3-Trichloropropa	0.00		0	N.D.	
68) C283 t-1,4-Dichloro-2-But	0.00		0	N.D.	
69) C302 n-Propylbenzene	8.16		183	N.D.	
70) C303 O 2-Chlorotoluene	0.00		0	N.D.	
71) C289 P 4-Chlorotoluene	0.00		0	N.D.	
72) C304 1,3,5-Trimethylbenze	e 0.00		0	N.D.	
73) C306 tert-Butylbenzene	0.00		0	N.D.	
74) C307 1,2,4-Trimethylbenze	e 8.76		783	N.D.	
75) C308 sec-Butylbenzene	8.76	_	783	N.D.	
761 C260 1.3-Dichlorobenzene	9.10		151	N.D.	
77) C309 p-Cymene (4-Isoprop	y 0.0		0	N.D. N.D.	
78) C267 1.4-Dichlorobenzene	9.1			N.D.	
79) C249 1,2-Dichlorobenzene	0.0		_	N.D.	
gn) C310 n-Butylbenzene	0.0			N.D.	
81) C286 1,2-Dibromo-3-Chlor	0.0			N.D.	
82) C313 1.2.4-Trichlorobenz	e 0.0			N.D.	
83) C316 Hexachlorobutadiene	0.0			N.D.	
94) C314 Naphthalene	11.2		_	N.D.	
85) C934 1,2,3-Trichlorobenz	e 0.0	0 180	0	N.D.	

⁻⁻⁻⁻⁻(#) = qualifier out of range (m) = manual integration F6214.D A7I0000369_E1.M Wed May 23 17:03:25 2007 HP5973P

Client No.

GSB-1.	(10-12)
--------	---------

 Lab Name:
 STL Buffalo
 Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: A7553401

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{G} Lab File ID: $\underline{F6213.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>14</u> Heated Purge: Y Date Analyzed: <u>05/23/2007</u>

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
	d.]		6	U
	Chloromethane		6	บ
	Bromomethane		12	ŭ
75-01-4	Vinyl chloride		6	U
75-00-3	Chloroethane		25	В
75-09-2	Methylene chloride		25 9	PO U
67-64-1	Acetone		3	J
	Carbon Disulfide		5 6	U
75-35-4	1,1-Dichloroethene			Ū
75-34-3	1,1-Dichloroethane		6	U
	trans-1,2-Dichloroethene		6	_
	cis-1,2-Dichloroethene		6	U
	Chloroform		6	U
107-06-2	1,2-Dichloroethane		6	U
	2-Butanone		29	ŭ
71-55-6	1,1,1-Trichloroethane		6	U
	Carbon Tetrachloride		6	U
75-27-4	Bromodichloromethane		6	U
	1,2-Dichloropropane		6	U
10061-01-5	cis-1,3-Dichloropropene		6	U
79-01-6	Trichloroethene		6	U
124-48-1	Dibromochloromethane		6	U
79-00-5	1,1,2-Trichloroethane		6	U
71-43-2			6	U
10061-02-6	trans-1,3-Dichloropropene		6	U
	Bromoform		6	U
108-10-1	4-Methyl-2-pentanone		29	U
	2-Hexanone		29	Ŭ
	Tetrachloroethene		6	U
	1,1,2,2-Tetrachloroethane		6	U
108-88-3			6	U
	Chlorobenzene		6	υ
	Ethylbenzene		6	Ū
100-41-4			6	U
	m/p-Xylenes		12	IJ
	III D-y Areries			

Client No.

			GSB-1 (10-12)	
Lab Name: <u>STL Buffalo</u>	Contract:			
Lab Code: <u>RECNY</u> Case No.: _	SAS No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7553401	
Sample wt/vol: $\underline{5.00}$ (g	n/mL) <u>G</u>	Lab File ID:	<u>F6213.RR</u>	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/2	2/2007
% Moisture: not dec. <u>14</u> H	leated Purge: <u>Y</u>	Date Analyzed:	05/23/2007	
GC Column: <u>ZB-624</u> ID: <u>0</u> .	<u>25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (u	ъ)	Soil Aliquot Volu	ume: (u	L)
CAS NO. COMPOUN	ID	CONCENTRATION UNITS: (ug/L or ug/Kg)		
95-47-6o-Xylen	ie .		6 U	

95-47-6----o-Xylene_____

Client No.

GSB-1	(12-14)
-------	---------

Lab Name: STL Buffalo Contract: _____

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: A7553402

Sample wt/vol: $\underline{5.12}$ (g/mL) \underline{G} Lab File ID: $\underline{F6214.RR}$

Level: (low/med) <u>IOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. 8 Heated Purge: \underline{Y} Date Analyzed: $\underline{05/23/2007}$

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION INTES:

CAC NO	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)		Q
CAS NO.	COMPOND		00/100_	
74-87-3	Chloromethane		5	U
	Bromomethane		5	U
75-01-4	Vinyl chloride		11	U
	Chloroethane		5	U
75-09-2	Methylene chloride		17	BU
67-64-1	Acetone		13	pot U
75-15-0	Carbon Disulfide		3	J
75-35-4	1,1-Dichlorcethene	· ·	5	U
75-34-3	1,1-Dichloroethane		5	U
156-60-5	trans-1,2-Dichloroethene		5	U
156-59-2	cis-1,2-Dichloroethene		5	U
	Chloroform		5	U
107-06-2	1,2-Dichloroethane		5	U
	2-Butanone		26	ט
71-55-6	1,1,1-Trichloroethane		5	ប
56-23-5	Carbon Tetrachloride		5	U
75-27-4	Bromodichloromethane		5	U
78-87-5	1,2-Dichloropropane		5	U
10061-01-5	cis-1,3-Dichloropropene		5	U
79-01-6	Trichloroethene		5	U
124-48-1	Dibromochloromethane		5	U
79-00-5	1,1,2-Trichloroethane		5	υ
71-43-2			5	U
10061-02-6	trans-1,3-Dichloropropene		5	ש
ł .	Bromoform		5	U
108-10-1	4-Methyl-2-pentanone		26	ט
	2-Hexanone		26	U
127-18-4	Tetrachloroethene		5	U
	1,1,2,2-Tetrachloroethane		5	U
108-88-3			5	ប
	Chlorobenzene		5	U
	Ethylbenzene		5	U
100-42-5			5	U
	m/p-Xylenes		11	U
	L			

Client No.

				GSB-1 (GSB-1 (12-14)		
Lab Name: <u>S</u>	STL Buffalo C	ontract:		I			
Lab Code: <u>R</u>	RECNY Case No.:	SAS No.:	SDG No.:	_			
Matrix: (sc	oil/water) <u>SOIL</u>		Lab Sample ID:	A7553402	****		
Sample wt/v	$vol: _5.12 (g/mL) G$	<u>;</u>	Lab File ID:	F6214.RR			
Level: (1	Low/med) <u>LOW</u>		Date Samp/Recv:	05/19/20	<u>07 05/2</u>	2/2007	
% Moisture:	not dec. 8 Heated	Purge: Y	Date Analyzed:	05/23/20	<u>07</u>		
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)			Dilution Factor:1.00				
Soil Extract Volume: (uL)			Soil Aliquot Volume: (uL)				
CI.	AS NO. COMPOUND		NCENTRATION UNITS (ug/L or ug/Kg)		Q		
95	5-47-6o-Xylene			5	U		

Client No.

GSB-2	(10-12)

Lab Name: STL Buffalo Contract: _____

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: A7553404

Sample wt/vol: $\underline{5.10}$ (g/mL) \underline{G} Lab File ID: $\underline{F6218.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>10</u> Heated Purge: Y Date Analyzed: <u>05/23/2007</u>

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: (uq/L or uq/Kg) UG/KG Q CAS NO. COMPOUND U 5 74-87-3-----Chloromethane 5 U 74-83-9-----Bromomethane U 11 75-01-4-----Vinyl chloride 5 U 75-00-3-----Chloroethane 27 В 75-09-2----Methylene chloride \mathbb{R}^d 6 67-64-1-----Acetone J 2 75-15-0-----Carbon Disulfide 5 U 75-35-4----1,1-Dichloroethene 5 U 75-34-3-----1,1-Dichloroethane_ 5 156-60-5----trans-1,2-Dichloroethene U 5 U 156-59-2----cis-1,2-Dichloroethene 5 U 67-66-3-----Chloroform 5 U 107-06-2----1, 2-Dichloroethane U 27 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane 2 J 5 U 56-23-5-----Carbon Tetrachloride 5 75-27-4----Bromodichloromethane U 5 U 78-87-5-----1,2-Dichloropropane_ 5 U 10061-01-5---cis-1,3-Dichloropropene 5 U 79-01-6----Trichloroethene 124-48-1----Dibromochloromethane 5 U 5 U 79-00-5----1,1,2-Trichloroethane_ 5 U 71-43-2----Benzene 10061-02-6----trans-1,3-Dichloropropene 5 U 5 U 75-25-2----Bromoform 27 U 108-10-1----4-Methyl-2-pentanone U 27 591-78-6----2-Hexanone 5 U 127-18-4----Tetrachloroethene U 79-34-5----1,1,2,2-Tetrachloroethane 5 5 U 108-88-3-----Toluene 5 U 108-90-7----Chlorobenzene 5 IJ 100-41-4-----Ethylbenzene U 100-42-5----Styrene 5 11 IJ ----m/p-Xylenes

Client No.

				GSB-2 (GSB-2 (10-12)	
Lab Name	: STL Buffalo	C	Contract:			
Lab Code	: <u>RECNY</u> Ca	se No.:	SAS No.:	SDG No.:		
Matrix:	(soil/water)	SOIL		Lab Sample II): <u>A7553404</u>	<u>: </u>
Sample wt	t/vol:	5.10 (g/mL) <u>G</u>	3_	Lab File ID:	F6218,RR	2
Level:	(low/med)	LOW		Date Samp/Rec	v: <u>05/19/20</u>	05/22/2007
% Moistu	re: not dec.	10 Heated	Purge: Y	Date Analyzed	d: <u>05/23/20</u>	007
GC Colum	n: <u>ZB-624</u>	ID: <u>0.25</u> (mm	n)	Dilution Fact	or:1.00)
Soil Extract Volume: (uL)		Soil Aliquot Volume: (uL)				
	CAS NO.	COMPOUND		CONCENTRATION UNI (ug/L or ug/Kg)		Q
	95-47-6	o-Xylene			5	U

Client No.

GSB-2	(12-14)
1000 2	(12 11)

Lab Name: STL Buffalo Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Lab Sample ID: <u>A7553405</u> Matrix: (soil/water) SOIL

Lab File ID: Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} F6219.RR

Date Samp/Recv: 05/19/2007 05/22/2007 Level: (low/med) LOW

% Moisture: not dec. <u>12</u> Heated Purge: <u>Y</u> Date Analyzed: 05/23/2007

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: 1.00

Soil Extract Volume: (uL) Soil Aliquot Volume: _____ (uL)

CONCENIRATION UNITS: UG/KG (ug/L or ug/Kg) Q CAS NO. COMPOUND 74-87-3-----Chloromethane 6 U U 74-83-9-----Bromomethane 6 U 75-01-4-----Vinyl chloride 11 75-00-3-----Chloroethane 6 U BU 75-09-2----Methylene chloride 20 BJÜ 67-64-1----Acetone 9 75-15-0----Carbon Disulfide 3 J 75-35-4----1,1-Dichloroethene 6 U 75-34-3-----1,1-Dichloroethane 20 156-60-5----trans-1,2-Dichloroethene 6 U 156-59-2----cis-1,2-Dichloroethene U 6 67-66-3-----Chloroform 6 U 107-06-2----1,2-Dichloroethane 6 U U 78-93-3----2-Butanone 28 71-55-6----1,1,1-Trichloroethane 18 56-23-5-----Carbon Tetrachloride U 6 U 75-27-4----Bromodichloromethane 6 78-87-5----1,2-Dichloropropane_ 6 U 10061-01-5---cis-1,3-Dichloropropene 6 U U 79-01-6----Trichloroethene 6 124-48-1-----Dibromochloromethane 6 U 79-00-5----1,1,2-Trichloroethane 6 U IJ 71-43-2----Benzene 6 10061-02-6----trans-1,3-Dichloropropene 6 U 75-25-2----Bromoform 6 U 108-10-1----4-Methyl-2-pentanone 28 U U 591-78-6----2-Hexanone 28 U 127-18-4----Tetrachloroethene 6 U 79-34-5----1,1,2,2-Tetrachloroethane 6 108-88-3----Toluene 2 J 108-90-7----Chlorobenzene U 6 100-41-4----Ethylbenzene U 6 100-42-5----Styrene 6 U -----m/p-Xylenes____ U

11

Client No.

	Claustern at .		GSB-	GSB-2 (12-14)		
Lab Name: <u>STL Buffalo</u>	Contract:		-			
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: _				
Matrix: (soil/water) <u>SOIL</u>		Lab Sample	ID: <u>A7553</u>	405		
Sample wt/vol: $\underline{5.07}$ (g/mL)	<u>G</u>	Lab File ID	: <u>F6219</u>	.RR		
Level: (low/med) <u>LOW</u>		Date Samp/Re	ecv: <u>05/19</u>	<u>/2007</u> <u>05/2</u>	22/2007	
% Moisture: not dec. <u>12</u> Heate	d Purge: Y	Date Analyz	ed: <u>05/23</u>	/2007		
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (1	mm)	Dilution Fa	ctor:1	.00		
Soil Extract Volume: (uL)		Soil Aliquo	Soil Aliquot Volume: (uL)			
CAS NO. COMPOUND		CONCENTRATION U (ug/L or ug/Kg		Q	_	
95-47-6o-Xylene			6	U		

Client No.

	GSB-2	(8-10)	
--	-------	--------	--

Lab Name: STL Buffalo Contract: _____

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: A7553403

Sample wt/vol: $\underline{5.18}$ (g/mL) \underline{G} Lab File ID: $\underline{F6217.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>11</u> Heated Purge: Y Date Analyzed: <u>05/23/2007</u>

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q CAS NO. COMPOUND 5 U 74-87-3-----Chloromethane 5 U 74-83-9----Bromomethane U 1.1. 75-01-4-----Vinyl chloride 75-00-3-----Chloroethane 5 U XU 19 75-09-2-----Methylene chloride BOU 67-64-1----Acetone 6 75-15-0-----Carbon Disulfide 3 J 5 U 75-35-4----1,1-Dichloroethene 18 75-34-3----1,1-Dichloroethane 156-60-5----trans-1,2-Dichloroethene 5 U 5 U 156-59-2----cis-1,2-Dichloroethene 5 U 67-66-3-----Chloroform 5 U 107-06-2----1,2-Dichloroethane 27 U 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane 8 5 U 56-23-5-----Carbon Tetrachloride 5 Ũ 75-27-4----Bromodichloromethane 5 78-87-5-----1,2-Dichloropropane_ IJ 5 U 10061-01-5---cis-1,3-Dichloropropene 5 Ū 79-01-6----Trichloroethene 5 U 124-48-1----Dibromochloromethane 5 U 79-00-5-----1,1,2-Trichloroethane 5 Ũ 71-43-2----Benzene 10061-02-6---trans-1,3-Dichloropropene 5 U 5 U 75-25-2----Bromoform 27 U 108-10-1----4-Methyl-2-pentanone 27 IJ 591-78-6----2-Hexanone U 5 127-18-4----Tetrachloroethene 5 U 79-34-5-----1,1,2,2-Tetrachloroethane 5 U 108-88-3----Toluene 5 U 108-90-7-----Chlorobenzene_____ 5 U 100-41-4----Ethylbenzene 5 U 100-42-5----Styrene ----m/p-Xylenes 11 U

			GSB-2 (8-1	LO)
Lab Name: <u>STL Buffalo</u>	Contract:			
Lab Code: <u>RECNY</u> Case No	o.: SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL		Lab Sample ID:	A7553403_	
Sample wt/vol: 5.1	<u>8</u> (g/mL) <u>G</u>	Lab File ID:	F6217.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007	05/22/2007
% Moisture: not dec. <u>11</u>	Heated Purge: Y	Date Analyzed:	05/23/2007	
GC Column: <u>ZB-624</u> ID:	0.25 (mm)	Dilution Factor:	1.00	
Soil Extract Volume:	_ (uL)	Soil Aliquot Vol	.ume:	(uL)
CAS NO. CON	APOUND	CONCENIRATION UNITS: (ug/L or ug/Kg)		Q
95-47-60-}	(ylene		5 U	

Client No.

GSB-3 (10-12	2)
--------------	----

Lab Name: <u>STL Buffalo</u>	Contract:		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A7553407</u>
Sample wt/vol: 1.38 (g/mL)	<u>G</u>	Lab File ID:	P8827.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. <u>12</u> Heated	l Purge: <u>Y</u>	Date Analyzed:	05/24/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG_ CAS NO. COMPOUND Q 74-87-3-----Chloromethane 21 U 74-83-9----Bromomethane 21 U U 75-01-4-----Vinyl chloride 41 75-00-3-----Chloroethane U 21 75-09-2----Methylene chloride BU59 J 67-64-1----Acetone 29 75-15-0-----Carbon Disulfide 15 J 75-35-4----1,1-Dichloroethene 21 U U 75-34-3----1,1-Dichloroethane 21 156-60-5----trans-1,2-Dichloroethene 21 U Ū 156-59-2----cis-1,2-Dichloroethene 21 67-66-3-----Chloroform 21 U 107-06-2----1,2-Dichloroethane U 21 100 U 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane U 21 56-23-5----Carbon Tetrachloride 21 IJ U 75-27-4----Bromodichloromethane 21 78-87-5----1,2-Dichloropropane 21. U U 10061-01-5---cis-1,3-Dichloropropene 21 79-01-6----Trichloroethene 21 U 124-48-1----Dibromochloromethane 21 U 21 U 79-00-5----1,1,2-Trichloroethane 71-43-2----Benzene 21 U U 10061-02-6---trans-1,3-Dichloropropene 21 U 75-25-2----Bromoform 21 U 108-10-1----4-Methyl-2-pentanone 100 591-78-6----2-Hexanone 100 U Ū 127-18-4----Tetrachloroethene 21 U 79-34-5----1,1,2,2-Tetrachloroethane 21 108-88-3----Toluene 17 J 108-90-7----Chlorobenzene 21 U 100-41-4----Ethylbenzene 7 J U 100-42-5----Styrene 21 ----m/p-Xylenes 42

	GSB-3 (10-12)
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A7553407</u>
Sample wt/vol: $\underline{1.38}$ (g/mL) \underline{G}	Iab File ID:P8827.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>
% Moisture: not dec. <u>12</u> Heated Purge: \underline{Y}	Date Analyzed: 05/24/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
05 47 6 O-Yvlene	95

Client No.

GSB-3 (14-16)	
---------------	--

Soil Aliquot Volume: (uL)

Contract: Lab Name: STL Buffalo Case No.: _____ SDG No.: ____ Lab Code: RECNY Lab Sample ID: A7553408 Matrix: (soil/water) SOIL Lab File ID: F6222.RR Sample wt/vol: 5.18 (g/mL) GDate Samp/Recv: 05/19/2007 05/22/2007 Level: (low/med) LOW 05/23/2007 Date Analyzed: % Moisture: not dec. <u>11</u> Heated Purge: Y Dilution Factor: ____1.00 GC Column: ZB-624 ___ ID: _0.25 (mm)

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG_ 0 COMPOUND CAS NO. 5 U 74-87-3-----Chloromethane 5 U 74-83-9-----Bromomethane 11 IJ 75-01-4-----Vinyl chloride____ 5 U 75-00-3-----Chloroethane BO 18 75-09-2----Methylene chloride ₽đV 8 67-64-1----Acetone 2 ıΤ 75-15-0-----Carbon Disulfide 5 U 75-35-4-----1,1-Dichloroethene 5 IJ 75-34-3-----1,1-Dichloroethane 5 U 156-60-5----trans-1,2-Dichloroethene 5 IJ 156-59-2----cis-1,2-Dichloroethene 5 U 67-66-3-----Chloroform 5 IJ 107-06-2----1,2-Dichloroethane 27 U 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane 5 U 5 56-23-5----Carbon Tetrachloride U 5 U 75-27-4----Bromodichloromethane 5 U 78-87-5----1,2-Dichloropropane 5 U 10061-01-5---cis-1,3-Dichloropropene 5 U 79-01-6----Trichloroethene 5 U 124-48-1----Dibromochloromethane 5 U 79-00-5----1,1,2-Trichloroethane 5 U 71-43-2----Benzene 5 U 10061-02-6---trans-1,3-Dichloropropene 5 U 75-25-2-----Bromoform IJ 27 108-10-1----4-Methyl-2-pentanone 27 U 591-78-6----2-Hexanone 5 U 127-18-4----Tetrachloroethene 5 U 79-34-5----1,1,2,2-Tetrachloroethane 5 U 108-88-3----Toluene 5 IJ 108-90-7----Chlorobenzene 5 U 100-41-4----Ethylbenzene 5 U 100-42-5----Styrene ----m/p-Xylenes U 11

			GSB-3	(14-16)	
Lab Name: <u>STL Buffalo</u>	Contract:		<u> </u>		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:			
Matrix: (soil/water) <u>SOIL</u>		Lab Sample I	D: <u>A755340</u>	08	
Sample wt/vol: $\underline{5.18}$ (g/mL	ı) <u>G</u>	Lab File ID:	<u>F6222.</u> I	RR	
Level: (low/med) <u>LOW</u>		Date Samp/Re	cv: <u>05/19/2</u>	2007 <u>05/22/</u>	<u> 2007</u>
% Moisture: not dec. <u>11</u> Heat	ed Purge: Y	Date Analyze	d: <u>05/23/2</u>	2007	
GC Column: <u>ZB-624</u> ID: <u>0.25</u>	(mm)	Dilution Fac	tor: <u>1.(</u>	<u>00</u>	
Soil Extract Volume: (uL)		Soil Aliquot	Volume:	(uL)	
CAS NO. COMPOUND		CONCENTRATION UN (ug/L or ug/Kg)		Q	
95-47-6o-Xylene_			5	U	

Client No.

GSB-3	(8-10)		

Lab Name: STL Buffalo Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: A7553406

Sample wt/vol: $\underline{5.09}$ (g/mL) \underline{G} Lab File ID: $\underline{F6220.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. 12 Heated Purge: Y Date Analyzed: 05/23/2007

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENIRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
74-87-3	Chloromethane		6	U
74-83-9	Bromomethane		. 6	U
75-01-4	Vinyl chloride		11	ן ש
	Chloroethane		6	U
75-09-2	Methylene chloride		23	В
67-64-1	Acetone		28	ט
75-15-0	Carbon Disulfide		3	J
	1,1-Dichloroethene		6	U
75-34-3	1,1-Dichloroethane		6	U
156-60-5	trans-1,2-Dichloroethene		6	U
156-59-2	cis-1,2-Dichloroethene		6	U
67-66-3	Chloroform		6	U
107-06-2	1,2-Dichloroethane		6	U
78-93-3			28	U
71-55-6	1,1,1-Trichloroethane		6	ן ט
56-23-5	Carbon Tetrachloride		6	ע
75-27-4	Bromodichloromethane		6	U
78-87-5	1,2-Dichloropropane		6	ע
10061-01-5	cis-1,3-Dichloropropene		6	ע
79-01-6	Trichloroethene		6	ע
	Dibromochloromethane		6	U
79-00-5	1,1,2-Trichloroethane		6	U
71-43-2	Benzene		6	U
10061-02-6	trans-1,3-Dichloropropene_		6	U
75-25-2	Bromoform		6	U
	4-Methyl-2-pentanone		28	ט
591-78-6			28	U
	Tetrachloroethene		6	U
	1,1,2,2-Tetrachloroethane		6	U
108-88-3			6	ט
	Chlorobenzene		6	U
	Ethylbenzene		6	U
100-42-5			6	U
	im/p-Xylenes		11	ט
	, A A A			

Tah Nama, STT. Buffalo	Contract:		G5B-3 (6	3-10)
ran Natie. Din natiato	<u></u>			
Lab Code: <u>RECNY</u> Cas	e No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>s</u>	OIL	Lab Sample ID:	A7553406	
Sample wt/vol:	<u>5.09</u> (g/mL) <u>G</u>	Lab File ID:	F6220.RR	**************************************
Level: (low/med) \underline{I}	<u>OW</u>	Date Samp/Recv:	05/19/200	05/22/2007
% Moisture: not dec	12 Heated Purge: Y	Date Analyzed:	05/23/200	<u>)7</u>
GC Column: ZB-624	ID: <u>0.25</u> (mm)	Dilution Factor	: <u>1.00</u>	
Soil Extract Volume: _	(uL)	Soil Aliquot Vo	olume:	(นไ.)
	·	ONCENTRATION UNITS	5:	
CAS NO.	_	(ug/L or ug/Kg)	-	Q
95-47-6	-o-Xylene		6	U

Client No.

GSB-4	(10-12)	
-------	---------	--

Lab Name: STL Buffalo Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: A7553410

Sample wt/vol: $\underline{5.02}$ (g/mL) \underline{G} Lab File ID: $\underline{F6224.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>11</u> Heated Purge: \underline{Y} Date Analyzed: $\underline{05/23/2007}$

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
74-87-3	Chloromethane		6	n.2
	Bromomethane		6	U 3
	Vinyl chloride		11	n 🗓
	Chloroethane		2	J 3
75-09-2	Methylene chloride	·	20	BU 2
67-64-1	Acetone		34	BUZ
75-15-0	Carbon Disulfide		3	JJ
75-35-4	1,1-Dichloroethene		6	ប្ប
75-34-3	1,1-Dichloroethane		2	J 3
156-60-5	trans-1,2-Dichloroethene		6	ո շ
156-59-2	cis-1,2-Dichloroethene		6	n.2
67-66-3	Chloroform		6	uΣ
107-06-2	1,2-Dichloroethane		6	n2
78-93-3	2-Butanone		28	n 2
71-55-6	1,1,1-Trichloroethane		6	Ω.2
56-23-5	Carbon Tetrachloride		6	กฐ
	Bromodichloromethane		6	u T
78-87-5	1,2-Dichloropropane		6	υŢ
10061-01-5	cis-1,3-Dichloropropene		6	υZ
	Trichloroethene		6	n2
124-48-1	Dibromochloromethane		6	n2
79-00-5	1,1,2-Trichloroethane		6	n 2
71-43-2	Benzene		6	ប្រ
10061-02-6	trans-1,3-Dichloropropene		6	บว
	Bromoform		6	UZ
108-10-1	4-Methyl2-pentanone		28	ប្រី
	2-Hexanone		28	ប្ប
127-18-4	Tetrachloroethene		6	UJ
79-34-5	1,1,2,2-Tetrachloroethane		6	UJ
108-88-3			67	3
	Chlorobenzene		6	U 3
	Ethylbenzene		43	5.
100-42-5	* <u> </u>		6	υĴ
	m/p-Xylenes_		280	J

Tab Nome	OTT DAFF	210	Contract.				GSB-4 (1	.0-12)	
Lao Name:	DIT BULL	<u>ato</u>	Contract:		-				
Lab Code:	RECNY	Case No.:	SAS No.:	···	SDG No.:	***			
Matrix: ((soil/wate	r) <u>SOIL</u>			Lab Sample	e ID:	<u>A7553410</u>	_	•
Sample wt	:/vol:	<u>5.02</u> (g/mL)	<u>G</u>		Lab File I	D:	F6224.RR		
Level:	(low/med)	LOW			Date Samp/	'Recv:	05/19/200	<u> 05/2</u>	22/2007
% Moistur	re: not dec	c. <u>11</u> Heate	ed Purge: Y		Date Analy	zed:	05/23/200	<u>97</u>	
GC Column	n: <u>ZB-624</u>	ID: <u>0.25</u>	(mm)		Dilution F	actor:	1.00		
Soil Extr	ract Volum	e: (ul)			Soil Aliqu	ot Vol	ume:	(1	ىلد)
	CAS NO.	COMPOUND			ENIRATION g/L or ug/k			Q	
	95-47-6	o-Xylene					160	\mathcal{I}	

Client No.

GSB-4 (10-12) RI

Lab Name: STL Buffalo Contract:

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: A7553410RI

Sample wt/vol: 1.10 (g/mL) G Lab File ID: P8828.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>11</u> Heated Purge: Y Date Analyzed: <u>05/24/2007</u>

GC Column: ZB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
74-87-3	Chloromethane		26	n: 1
	Bromomethane		26	บี่วี
	Vinyl chloride		51	U
	Chloroethane		26	U T
	Methylene chloride		74	E UIT
67-64-1			65	JŢ
	Carbon Disulfide	,	12	JJ
	1,1-Dichloroethene		26	บร
	1,1-Dichloroethane		26	ו בֿטו
	trans-1,2-Dichloroethene		26	บร
	cis-1,2-Dichloroethene		26	บร้
67-66-3			26	บว
107-06-2	1,2-Dichloroethane		26	UJ
78-93-3	2-Butanone		130	0.2
71-55-6	1,1,1-Trichloroethane		26	บร
56-23-5	Carbon Tetrachloride		26	n 2 n 2
75-27-4	Bromodichloromethane		26	U 3
78-87-5	1,2-Dichloropropane		26	UJ
10061-01-5	cis-1,3-Dichloropropene		26	uI
79-01-6	Trichloroethene		26	UT
124-48-1	Dibromochloromethane		26	UI
79-00-5	1,1,2-Trichloroethane		26	UJ
71-43-2	Benzene		26	U T
10061-02-6	trans-1,3-Dichloropropene		26	U.1
75-25-2	Bromoform		26	T U J
108-10-1	4-Methyl-2-pentanone		130	UJ
591-78-6	2-Hexanone		1.30	111 3
127-18-4	Tetrachloroethene		26	UJ
79-34-5	1,1,2,2-Tetrachloroethane		26	ր շ
108-88-3	Toluene		50	J J
108-90-7	Chlorobenzene		26	u J
100-41-4	Ethylbenzene		39	13
100-42-5	Styrene		26	U S
	m/p-Xylenes		300	3

					GSB	-4 (10-12)	RI
Lab Name:	STL Buffalo	<u>o</u> Cor	ntract:				
Lab Code:	<u>RECNY</u> C	ase No.:	SAS No.:	SDG No.:			
Matrix: ((soil/water)	SOIL		Lab Sample ID): <u>A755</u>	<u>3410RI</u>	
Sample wt	:/vol:	1.10 (g/mL) <u>G</u>		Lab File ID:	P882	8.RR	
Level:	(low/med)	LOW		Date Samp/Rec	v: <u>05/1</u>	9/2007 05/	22/2007
% Moistur	re: not dec.	11 Heated Po	urge: <u>Y</u>	Date Analyzed	l: <u>05/2</u>	4/2007	
GC Column	ı: <u>ZB-624</u>	_ ID: <u>0.25</u> (mm)		Dilution Fact	or:	1.00	
Soil Extr	act Volume:	(uL)		Soil Aliquot	Volume:	(uL)
	CAS NO.	COMPOUND	α	ONCENIRATION UNI (ug/L or ug/Kg)	· •	<u>Q</u>	
Ī	95-47-6	o-Xylene			210	7]

Client No.

f		
GSB-4	(12-15)	

				GOD-4 (14-10)
Lab	Name:	SIL Buffalo	Contract:	

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: A7553411

Sample wt/vol: $\underline{5.03}$ (g/mL) \underline{G} Lab File ID: $\underline{F6225.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>05/19/2007</u> <u>05/22/2007</u>

% Moisture: not dec. <u>10</u> Heated Purge: Y Date Analyzed: <u>05/23/2007</u>

GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
	Chloromethane	1	6	U
74-83-9	Bromomethane		6	U
	Vinyl chloride		11	U
	Chloroethane		2	J
75-09-2	Methylene chloride		16	BU
67-64-1			13	.₽Œ
75-15-0	Carbon Disulfide		4	J
75-35-4	1,1-Dichloroethene		6	U
75-34-3	1,1-Dichloroethane		1	J
	trans-1,2-Dichloroethene		6	U
	cis-1,2-Dichloroethene		6	U
	Chloroform		6	U,
	1,2-Dichloroethane		6	U
	2-Butanone		28	U
71-55-6	1,1,1-Trichloroethane		6	U
	Carbon Tetrachloride		6	U
	Bromodichloromethane		6	U
	1,2-Dichloropropane		6	U
	cis-1,3-Dichloropropene		6	U
1	Trichloroethene		6	U
124-48-1	Dibromochloromethane		6	U
79-00-5	1,1,2-Trichloroethane		6	U
71-43-2			6	U
10061-02-6-	trans-1,3-Dichloropropene_		6	U
	Bromoform		6	U
	4-Methyl-2-pentanone		28	U
591-78-6	2-Hexanone		28	U
127-18-4	Tetrachloroethene		6	U
79-34-5	1,1,2,2-Tetrachloroethane		6	U
108-88-3			17	
108-90-7	Chlorobenzene		6	U
	Ethylbenzene		6	
100-42-5			6	U
	m/p-Xylenes_		42	

				GSB-4	(12-15)
Lab Name: <u>STL Bu</u>	<u>uffalo</u>	Contract:	<u> </u>	<u> </u>	
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/wa	iter) <u>SOIL</u>		Lab Sample	e ID: <u>A75534</u>	11
Sample wt/vol:	5.03 (g/mL) <u>(</u>	<u>G</u>	Lab File I	ID: <u>F6225.</u>	RR
Level: (low/me	ed) <u>LOW</u>		Date Samp,	/Recv: <u>05/19/</u>	<u> 2007</u> <u>05/22/2007</u>
% Moisture: not	dec. <u>10</u> Heated	Purge: Y	Date Analy	yzed: <u>05/23/</u>	2007
GC Column: <u>ZB-62</u>	24 ID: <u>0.25</u> (m	m)	Dilution H	Factor: <u>1.</u>	00
Soil Extract Vol	ume: (uL)		Soil Aliq	uot Volume:	(uL)
CAS NO.	COMPOUND		CONCENTRATION (ug/L or ug/L	UNITS: Kg) <u>UG/KG</u>	Q
95-47-6	5o-Xylene			28	

Client No.

GSB-4 (8-10)

Lab Name: <u>STL Buffalo</u>	Contract:		ODD 4 (0 10)
Lab Naile. Sin Buriare		MIN	
Lab Code: <u>RECNY</u> Case No.: _	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7553409
Sample wt/vol: 5.23 (c	g/mL) <u>G</u>	Lab File ID:	F6223.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. 9	Heated Purge: Y	Date Analyzed:	05/23/2007
GC Column: ZB-624 ID: 0.	.25 (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

Soil Aliquot Volume: ____ (uL)

CIN CI NICO	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
CAS NO.	COMECOND	(49/11 01 49/199/	<u> </u>	
74-87-3	Chloromethane		5	U
74-83-9	Bromomethane		5	U
	Vinyl chloride		10	u
75-00-3	Chloroethane		5	U,
75-09-2	Methylene chloride		14	þ g ∪
57-64-1	Acetone		26	U
75-15-0	Carbon Disulfide		2	J
75-35-4	1,1-Dichloroethene		5	ū
	1,1-Dichloroethane		6	
L56-60-5	trans-1,2-Dichloroethene		5	υ
	cis-1,2-Dichloroethene		5	U
57-66-3	Chloroform		5	Ü
107-06-2	1,2-Dichloroethane		5	U
78-93-3	2-Butanone		26	U
71-55-6	1,1,1-Trichloroethane		5	U
 56-23-5	Carbon Tetrachloride		5	U
	Bromodichloromethane		5	U
	1,2-Dichloropropane		5	U
	cis-1,3-Dichloropropene		5	U
	Trichloroethene		5	U
	Dibromochloromethane		5	ט
79-00-5	1,1,2-Trichloroethane		5	U
71-43-2			5	ប
, <u>, 13 2</u> 10061-02-6-	trans-1,3-Dichloropropene_		5	U
75-25-2	Bromoform		5	ប
	4-Methyl-2-pentanone		26	U
	2-Hexanone		26	U
	Tetrachloroethene		1	J
70_31_5	1,1,2,2-Tetrachloroethane		5	U
108-88-3			81	
	Chlorobenzene		5	ט
	Ethylbenzene		5	Ū
	Styrene		5	Ū
	m/p-Xylenes		4	J
	iii b-vàteres			

			GSB-4 (8-10)
Lab Name: <u>STL Buff</u> a	alo Contract:		
Lab Code: <u>RECNY</u>	Case No.: SAS No.:	_ SDG No.:	
Matrix: (soil/wate:	r) <u>SOIL</u>	Lab Sample ID:	A7553409
Sample wt/vol:	<u>5.23</u> (g/mL) <u>G</u>	Lab File ID:	F6223.RR
Level: (low/med)	TOM	Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not de	c. <u>9</u> Heated Purge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volum	e: (uL)	Soil Aliquot Volu	ume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	OG/KG Q
	y]		a

Client No.

GSB-5 (10-12)

r 1 27 GUT 12.66-1-0	Contract.		333 3 (33 3)
Lab Name: <u>STL Buffalo</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	_ SAS No.:	_ SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7553413
Sample wt/vol: $\underline{5.19}$ (g/mL	ı) <u>G</u>	Lab File ID:	P8826.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec9 Heat	ted Purge: <u>Y</u>	Date Analyzed:	05/24/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor:	1.00
Soil Extract Volume:(uL)		Soil Aliquot Vol	ume:(uL)

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
74-87-3	Chloromethane		5	U
74-83-9	Bromomethane		5	U
75-01-4	Vinyl chloride		10	U
	Chloroethane		5	U
75-09-2	Methylene chloride		22	B
67-64-1			25	J
	Carbon Disulfide		3	J
	1,1-Dichloroethene		5	U
75-34-3	1,1-Dichloroethane		2	J
	trans-1,2-Dichloroethene		5	ן ט
	cis-1,2-Dichloroethene		5	U
67-66-3			5	U
107-06-2	1,2-Dichloroethane		5	U
78-93-3			26	U
	1,1,1-Trichloroethane	-	5	U
	Carbon Tetrachloride		5	U
	Bromodichloromethane		5	U
	1,2-Dichloropropane		5	U
	cis-1,3-Dichloropropene		5	U
	Trichloroethene		5	U
	Dibromochloromethane		5	U
79-00-5	1,1,2-Trichloroethane		5	U
71-43-2			5	U
	trans-1,3-Dichloropropene_		5	U
75-25-2			5	U
	4-Methyl-2-pentanone		26	ן ט
591-78-6			26	U
	Tetrachloroethene		5	U
79-34-5	1,1,2,2-Tetrachloroethane_		5	[U]
108-88-3	Toluene		5	U
108-90-7	Chlorobenzene		5	U
100-41-4	Ethylbenzene		5	U
100-42-5			5	U
	m/p-Xylenes_		10	U

	GSB-5 (10-12)
Lab Name: STL Buffalo Contract:	<u></u>
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A7553413</u>
Sample wt/vol: $\underline{5.19}$ (g/mL) \underline{G}	Lab File ID: P8826.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 05/19/2007 05/22/2007
% Moisture: not dec. 9 Heated Purge: Y	Date Analyzed: <u>05/24/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
95-47-6o-Xylene	5 U

Client No.

F			
G	SB-5	(12-14)	

Lab Name: <u>STL Buffalo</u>	Contract:		GDB 3 (12 11)
hab hanc. bill barraro		<u>.</u>	
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7553414
Sample wt/vol: $\underline{5.14}$ (g/mL)	<u>G</u> _	Lab File ID:	F6228.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. <u>10</u> Heate	ed Purge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> ((mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS:

Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
74-87-3	Chloromethane		5	ט
74-83-9	Bromomethane		5	U
75-01-4	Vinyl chloride		11	U
	Chloroethane		5	U
75-09-2	Methylene chloride		12	ASU
67-64-1			27	U
75-15-0	Carbon Disulfide		3	J
75-35-4	1,1-Dichloroethene		5	U
75-34-3	1,1-Dichloroethane		7	
156-60-5	trans-1,2-Dichloroethene		5	ប
156-59-2	cis-1,2-Dichloroethene		5	U
	Chloroform		5	ט
107-06-2	1,2-Dichloroethane		5	U
78-93-3	2-Butanone		27	U
71-55-6	1,1,1-Trichloroethane		3	J
56-23-5	Carbon Tetrachloride		5	U
75-27-4	Bromodichloromethane		5	U
	1,2-Dichloropropane		5	U
10061-01-5	cis-1,3-Dichloropropene		5	U
79-01-6	Trichloroethene		5	U
124-48-1	Dibromochloromethane		5	U
79-00-5	1,1,2-Trichloroethane		5	U
71-43-2	Benzene		5	ש
10061-02-6	trans-1,3-Dichloropropene		5	U
75-25-2	Bromoform		5	U
108-10-1	4-Methyl-2-pentanone		27	U
591-78-6	2-Hexanone		27	U
127-18-4	Tetrachloroethene		5	U
79-34-5	1,1,2,2-Tetrachloroethane		5	U
108-88-3			46	
	Chlorobenzene		5	U
	Ethylbenzene		5	U
100-42-5			5	U
	m/p-Xylenes		11	บ

			GSB-5 (1	l2-14)	
Lab Name: STL Buffalo Contra	ct:	-			
Lab Code: RECNY Case No.: SAS	No.:	SDG No.:	_		
Matrix: (soil/water) <u>SOIL</u>	I	Lab Sample ID:	<u>A7553414</u>	_	
Sample wt/vol: 5.14 (g/mL) G	I	Lab File ID:	F6228.RR		
Level: (low/med) <u>LOW</u>	Ι	Date Samp/Recv	: <u>05/19/200</u>	<u>05/22</u>	2/2007
% Moisture: not dec. <u>10</u> Heated Purge	e: <u>Y</u> I	Date Analyzed:	05/23/200	<u> 27</u>	
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	I	Dilution Factor	c: <u>1.00</u>		
Soil Extract Volume: (uL)	5	Soil Aliquot Vo	olume:	(นเ	L)
CAS NO. COMPOUND		ENTRATION UNITS /L or ug/Kg)		Q	
95-47-6o-Xylene_			5	U	

Client No.

			GSB-5 (8-10)
Lab Name: <u>STL Buffalo</u>	Contract:	···	
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	A7553412
Sample wt/vol: $\underline{5.13}$ (g/mL)	<u>G</u> _	Lab File ID:	F6226.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. <u>11</u> Heate	d Purge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

Soil Aliquot Volume: ____ (uL)

		CONCENIRATION UNITS:				
CAS NO.	COMPOUND	(ug/L or ug/K	[g) <u> </u>	UG/KG_	Q	
74-87-3	-Chloromethane			5	U	
	-Bromomethane			5	U	
75-01-4	-Vinyl chloride			11	U	
	-Chloroethane			5	U	
75-09-2	-Methylene chloride			15	BU	
67-64-1	-Acetone			27	U	
75-15-0	-Carbon Disulfide			2	J	
75-35-4	-1,1-Dichloroethene			5	U	
75-34-3	-1,1-Dichloroethane			20		
156-60-5	-trans-1,2-Dichloroethene			5	U	
156-59-2	-cis-1,2-Dichloroethene			5	U	
67-66-3				5	U	
107-06-2	-1,2-Dichloroethane			5	U	
78-93-3				27	U	
71-55-6	-1,1,1-Trichloroethane			7		
56-23-5	-Carbon Tetrachloride			5	U	
75-27-4	-Bromodichloromethane			5	U	
78-87-5	-1,2-Dichloropropane	-		5	U	
10061-01-5	-cis-1,3-Dichloropropene			5	U	
	-Trichloroethene			5	U	
124-48-1	-Dibromochloromethane			5	U	
79-00-5	-1,1,2-Trichloroethane			5	U	
71-43-2				5	U	
10061-02-6	-trans-1,3-Dichloropropene			5	U	
75-25-2				5	U	
108-10-1	-4-Methyl-2-pentanone			27	U	
591-78-6				27	U	
127-18-4	-Tetrachloroethene			1	J	
79-34-5	-1,1,2,2-Tetrachloroethane			5	U	
108-88-3				89		
108-90-7	-Chlorobenzene	"		5	U	
100-41-4	-Ethylbenzene			5	U	
100-42-5				5	Ū	
	-m/p-Xylenes			11	U	

	Good to see the		GSB-5 (8-10)
Lab Name: <u>STL Buffalo</u>	Contract:	Account of the Accoun	
Lab Code: <u>RECNY</u> Cas	se No.: SAS No.:	_ SDG No.:	
Matrix: (soil/water) <u>S</u>	OIL	Lab Sample ID:	<u>A7553412</u>
Sample wt/vol:	<u>5.13</u> (g/mL) <u>G</u>	Lab File ID:	F6226.RR
Level: (low/med) L	<u>OW</u>	Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec	11 Heated Purge: Y	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: _	(uL)	Soil Aliquot Volu	ume: (uL)
CAS NO.		CONCENTRATION UNITS: (ug/L or ug/Kg)	
05.45.6	- V-lone		E IT

Client No.

GSB-6 (10-12)

Tab Nama, CTT Duffalo	Contract:		332 3 (23 22)
Lab Name: <u>STL Buffalo</u>	Concract.		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	-
Matrix: (soil/water) SOIL		Lab Sample ID:	A7553415
Sample wt/vol: 1.16 (g/mL)	<u>G</u>	Lab File ID:	P8829.RR
Level: (low/med) <u>LOW</u>	•	Date Samp/Recv:	05/19/2007 05/22/2007
% Moisture: not dec. <u>14</u> Heate	ed Purge: <u>Y</u>	Date Analyzed:	05/24/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS: UG/KG Q (ug/L or ug/Kg) CAS NO. COMPOUND 74-87-3-----Chloromethane 25 U 25 U 74-83-9----Bromomethane U 50 75-01-4-----Vinyl chloride 75-00-3-----Chloroethane 25 U В 75-09-2----Methylene chloride 86 J 67-64-1----Acetone 53 14 J 75-15-0-----Carbon Disulfide U 25 75-35-4----1,1-Dichloroethene U 25 75-34-3----1,1-Dichloroethane 156-60-5----trans-1,2-Dichloroethene 25 U U 25 156-59-2----cis-1,2-Dichloroethene 67-66-3----Chloroform 25 U 25 U 107-06-2----1,2-Dichloroethane 120 U 78-93-3----2-Butanone U 71-55-6----1,1,1-Trichloroethane 25 25 U 56-23-5-----Carbon Tetrachloride U 75-27-4----Bromodichloromethane 25 25 U 78-87-5----1,2-Dichloropropane U 25 10061-01-5---cis-1,3-Dichloropropene U 25 79-01-6----Trichloroethene 124-48-1----Dibromochloromethane U 25 25 U 79-00-5-----1,1,2-Trichloroethane 25 U 71-43-2----Benzene 25 U 10061-02-6---trans-1,3-Dichloropropene 25 IJ 75-25-2----Bromoform U 108-10-1----4-Methyl-2-pentanone 120 591-78-6----2-Hexanone 120 U U 25 127-18-4----Tetrachloroethene U 25 79-34-5----1,1,2,2-Tetrachloroethane 15 J 108-88-3----Toluene U 108-90-7----Chlorobenzene 25 6 J 100-41-4----Ethylbenzene 25 U 100-42-5----Styrene ----m/p-Xylenes_ J 33

A Complete			GDD-0 (1	0-12)
Lab Name: <u>STL Buffalo</u> Contr	act:			
Lab Code: <u>RECNY</u> Case No.: SA	S No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A7553415	_
Sample wt/vol: 1.16 (g/mL) G		Lab File ID:	P8829.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	05/19/200	7 05/22/2007
% Moisture: not dec. <u>14</u> Heated Purg	e: <u>Y</u>	Date Analyzed:	05/24/200	<u>7</u>
3C Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND		CENTRATION UNITS: g/L or ug/kg)		Q
95-47-6o-Xylene			77	

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS SOIL SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:	

Level (low/med): LOW

	Client Sample ID	Lab Sample ID		#	DCE %REC	#	TOL %REC	#						TOT OUT	
	=======================================	=======================================	=====	=	=====	==	=====	==	======	======	======	=====		0	
1	GSB-1 (10-12)	A7553401	97	-	88		100			·]			0	
2	GSB-1 (12-14)	A7553402	95	ļ	103		102							0	
3	GSB-1 (12-14)	A7553402MS	97		86		110							0	
4	GSB-1 (12-14)	A7553402SD	116		88		98							0	
5	GSB-2 (10-12)	A7553404	96	ŀ	87		96		1		1			0	
6	GSB-2 (12-14)	A7553405	90	- 1	93		92						į	n	
7	GSB-2 (8-10)	A7553403	92		94		92		Į.		ļ		<u> </u>	0	
8	GSB-3 (10-12)	A7553407	91	ļ	95		97				1			n	
9	GSB-3 (14-16)	A7553408	104	i	87		104					1		0	Į
10	GSB-3 (8-10)	A7553406	100		102		100						[1	
11	GSB-4 (10-12)	A7553410	1 34	*	72		115		1	ļ	1	ļ		1	i
12	GSB-4 (10-12) RI	A7553410RI	1 00	*	''		93							6	
13	GSB-4 (12-15)	A7553411	99		85		101					ļ	Į.	0	
14	GSB-4 (8-10)	A7553409	85		98		90			1				0	l
15	GSB-5 (10-12)	A7553413	118		101		98]			0	l
16	GSB-5 (12-14)	A7553414	98		83		97			1]		0	ı
17	GSB-5 (8-10)	A7553412	103		82		99		ļ	1		1	İ	ő	l
18	GSB-6 (10-12)	A7553415	92		89		98				Ì			n	İ
19	MSB34	A7B0795301	98		111		99					1		0	ĺ
20	MSB54	A7B0804101	115		96		96		}		1			ľ	ĺ
21	VBLK34	A7B0795302	85		97		88		1					l o	ĺ
22	VBLK54	A7B0804102	116		93		95				1		<u> </u>		1

QC LIMITS

72-126) 54-126)	
71~125)	
7	1~125)

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogates diluted out

DELITA/PERRY-METHOD 8260 - VOLATILE ORGANICS SOIL MATRIX SPIKE BLANK RECOVERY

Lab Name: SII, Buffalo		Contract: Lab Sam		ID: <u>A7B0795302</u>	
Lab Code: <u>RECNY</u> Case No	·:	SAS No.: _		SDG	No.:
Matrix Spike - Client Sample	e No.: <u>VBLK34</u>	·	Level:(lo	ow/med) <u>LOV</u>	ī
COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50.0 50.0 50.0 50.0 50.0	62.3 50.1 50.9 47.7 49.6	125 100 102	70 - 142 79 - 121 78 - 122 74 - 123 79 - 118	
# Column to be used to flag * Values outside of QC limi		PD values with a	n asteri:	sk.	
Spike recovery: 0 out o					

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS SOIL MATRIX SPIKE BLANK RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab Samp	D: <u>A7B0804102</u>
Lab Code: <u>RECNY</u> Case No	·:	SAS No.: _		SDG	No.:
Matrix Spike - Client Sampl	e No.: <u>VBLK54</u>	I	evel:(lo	ow/med) <u>LOW</u>	!
COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50.0 50.0 50.0 50.0 50.0 50.0	56.4 49.2 51.5 43.9 45.7	113 98 103 88 91	70 - 142 79 - 121 78 - 122 74 - 123 79 - 118	
# Column to be used to flag * Values outside of QC lim		PD values with a	n asteri	sk .	
Spike recovery:0 out	of <u>5</u> outside	e limits			

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>STL Buffalo</u>		Contract:		Lab s	Samp ID:	<u>A7553402</u>
Lab Code: <u>RECNY</u> Case No).:	SAS No.: _		Š	EDG No.:	:
Matrix Spike - Client Sampl	e No.: <u>GSB-1 (12</u>	<u>2-14)</u> I	Level:(low	n/med)	<u>IOW</u>	
COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	MS CONCENTA UG/F	RATION G	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	53.4 53.4 53.4 53.4 53.4 53.4	0 0 0 0 0	69 50 53 51	9.4 9.6 3.8 1.3	130 95 101 96 90	70 - 142 79 - 121 78 - 122 74 - 123 79 - 118
COMPOUNID	SPIKE ADDED UG/KG	MSD CONCENTRATION UG/KG	MSD % REC #	۶ RPD :	# RPD	C LIMITS
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	52.9 52.9 52.9 52.9 52.9 52.9	68.2 54.5 59.3 49.3 47.8	129 103 112 93 90	0 8 10 3 0	22 24 25 25 25 25	79 - 121 78 - 122 74 - 123
# Column to be used to flag * Values outside of QC limit RPD:0 out of5 out Spike recovery:0 out of	tside limits		n asteris	ς	<u> </u>	

Comments:

DELTA/PERRY-METHÓD 8260 - VOLATILE ORGANICS METHOD BLANK SUMMARY

Client No.

			VBLK34
Lab Name: <u>STL Buffalo</u>	Contra	nct:	
Lab Code: RECNY Case No.:	S	GAS No.:	SDG No.:
Lab File ID: <u>F6210.RR</u>		Lab Sample ID:	A7B0795302
Date Analyzed: 05/23/2007		Time Analyzed:	10:45
GC Column: ZB-624 ID: 0.25	(mm)	Heated Purge: (Y/N) <u>Y</u>
Instrument ID: HP5973F			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
	=========================]========		========
1	GSB-1 (10-12)	A7553401	F6213.RR	12:49
2	GSB-1 (12-14)	A7553402	F6214.RR	13:20
3	GSB-1 (12-14)	A7553402MS	F6215.RR	13:51
4	GSB-2 (10-12)	A7553404	F6218.RR	15:24
5	GSB-2 (12-14)	A7553405	F6219.RR	15:55
6	GSB-2 (8-10)	A7553403	F6217.RR	14:53
7	GSB-3 (14-16)	A7553408	F6222.RR	17:28
8	GSB-3 (8-10)	A7553406	F6220.RR	16:26
9	GSB-4 (10-12)	A7553410	F6224.RR	18:30
10	GSB-4 (12-15)	A7553411	F6225.RR	19:01
11	GSB-4 (8-10)	A7553409	F6223.RR	17:59
12	GSB-5 (12-14)	A7553414	F6228.RR	20:34
1.3	GSB-5 (8-10)	A7553412	F6226.RR	19:32
14	MSB34	A7B0795301	F6211.RR	11:47
		1	1	1

Comments:	

Client No.

U

U

U

IJ

U

U

5

5

5

5

25

5

VBLK34
SDG No.:
Lab Sample ID: <u>A7B0795302</u>
Lab File ID: <u>F6210.RR</u>
Date Samp/Recv:
Date Analyzed: <u>05/23/2007</u>
Dilution Factor: 1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
5 U 5 U 10 U 5 U 2 J 6 J 5 U 5 U

156-60-5----trans-1,2-Dichloroethene

156-59-2----cis-1,2-Dichloroethene

71-55-6----1,1,1-Trichloroethane

107-06-2----1,2-Dichloroethane

67-66-3-----Chloroform

78-93-3----2-Butanone

			VBLK34
Lab Name: <u>STL Buffalo</u> Cont	tract:	_	
Lab Code: <u>RECNY</u> Case No.:	GAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A7B0795302</u>
Sample wt/vol: 5.00 (g/mL) \underline{G}		Lab File ID:	F6210.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated Pur	rge: <u>Y</u>	Date Analyzed:	05/23/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)
CAS NO. COMPOUND		NCENTRATION UNITS:	
95-47-6o-Xv]ene			5 U

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS METHOD BLANK SUMMARY

Client No.

	VBLK54
Lab Name: <u>STL Buffalo</u>	Contract:
Lab Code: RECNY Case No.: _	SAS No.: SDG No.:
Lab File ID: P8822.RR	Lab Sample ID: <u>A7B0804102</u>
Date Analyzed: 05/24/2007	Time Analyzed: 11:08
GC Column: <u>ZB-624</u> ID: <u>0.2</u>	25 (mm) Heated Purge: (Y/N) \underline{Y}
Instrument ID: HP5973P	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3 4 5	GSB-1 (12-14) GSB-3 (10-12) GSB-4 (10-12) RI GSB-5 (10-12) GSB-6 (10-12) MSB54	A7553402SD A7553407 A7553410RI A7553413 A7553415 A780804101	P8825.RR P8827.RR P8828.RR P8826.RR P8829.RR P8829.RR	12:33 13:29 13:57 13:01 14:25 10:40

Comments:			

	VBLK54
Lab Name: STL Buffalo Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A7B0804102
Sample wt/vol: 5.00 (g/mL) G	Lab File ID: <u>P8822.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: Y	Date Analyzed: <u>05/24/2007</u>
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane 74-83-9Bromomethane	5 U 5 U 10 U

CAS NO.	COMPOUND	(ug/L or ug/kg)	Us/Ns	<u> </u>
74 07 3	Chloromethane		5	U
74-87-3	Bromomethane		5	U
74-83-9	Vinyl chloride		10	U
75-01-4	Chloroethane		5	U
75-00-3	Methylene chloride		2	J
75-09-2	A-stone		25	U
67-64-1	Carbon Disulfide		5	U
75-15-0	1 1 Diablomethere		5	ប
75-35-4	1,1-Dichloroethene		5	U
75-34-3	1,1-Dichloroethane		5	ប
156-60-5	trans-1,2-Dichloroethene		5	U
156-59-2	cis-1,2-Dichloroethene		5	lυ
67-66-3	Chloroform		5	U
107-06-2	1,2-Dichloroethane		25	υ
78-93-3	2-Butanone		5	U
71-55-6	1,1,1-Trichloroethane		5	Ū
56-23-5	Carbon Tetrachloride		5	U
75-27-4	Bromodichloromethane		5	Ū
78-87-5	1,2-Dichloropropane		5	υ
10061-01-5-	cis-1,3-Dichloropropene		5	U
79-01-6	Trichloroethene		5	บ
124-48-1	Dibromochloromethane		5 5	U
79-00-5	1,1,2-Trichloroethane		5 5	Ü
71-43-2				U
10061-02-6	trans-1,3-Dichloropropene		5	1 -
75-25-2	Bromoform		5	U
108-10-1			25	U
591-78-6	2-Hexanone		25	U
127-18-4	Tetrachlorcethene		5	U
79-34-5	1,1,2,2-Tetrachloroethane		5	U
108-88-3	Toluene		5	U
100-00-3	Chlorobenzene		5	U
100-90-7	Ethylbenzene	-	5	U
100-41-4	Styrene		5	U
	m/p-Xylenes		10	U

			VBLK54
Lab Name: <u>STL Buffalo</u>	Contract:		
Lab Code: RECNY Case No.:	SAS No.:	_ SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A7B0804102</u>
Sample wt/vol: 5.00 (g/mL)	<u>G</u> _	Lab File ID:	P8822.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	Purge: Y	Date Analyzed:	05/24/2007
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/Kg)	
95-47-60-Xv] ene			5 U

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo	€on	tract:	Labsampid	A7C0001396
Lab Code: RECNY	Case No.:	SAS No.:	SDG I	lo.:
Lab File ID (Standard):	F6208.RR	Date	Analyzed:	05/23/2007
Instrument ID: <u>HP5973F</u>		Time	Analyzed:	09:44
GC Column(1): ZB-624	ID: <u>0.250</u> (mm)	Heat	ed Purge:	(Y/N) <u>Y</u>

			IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT		214608 429216 107304	6.69 7.19 6.19	238379 476758 119190	9.14 9.64 8.64	580271 1160542 290136	4.10 4.60 3.60
	CLIENT SAMPLE	Lab Sample ID	#########	======	=======================================	======	222222222	
1 2 3	GSB-1 (10-12) GSB-1 (12-14) GSB-1 (12-14)	A7553401 A7553402 A7553402MS	182938 197588 178209	6.69 6.69 6.69	185539 189030 172481	9.13 9.14 9.14	481300 541448 512482	4.10 4.10 4.10
5	GSB-2 (10-12) GSB-2 (12-14)	A7553404 A7553405	200664 247047	6.69 6.69 6.69	209857 280002	9.13 9.14 9.14	523520 641317 580308	4.10 4.10 4.10
6 7 8	GSB-2 (8-10) GSB-3 (14-16) GSB-3 (8-10)	A7553403 A7553408 A7553406	220638 212170 190829	6.69	231169 201317	9.13 9.13	606018 522533	4.10 4.10
9 10 11	GSB-4 (10-12) GSB-4 (12-15) GSB-4 (8-10)	A7553410 A7553411 A7553409	176950 208357 201854	6.69 6.69 6.69		9.10 9.14 9.15	521754 573699 489898	4.10 4.10 4.10
12 13 14	GSB-5 (12-14) GSB-5 (8-10) MSB34	A7553414 A7553412 A780795301	227468 211349 197883	6.69 6.69 6.69	238214	9.13 9.14 9.13	643142 599702 532311	4.10 4.10 4.10
15	VBLK34	A780795302	207058	6.69	206758	9.13	554748	4.10

AREA UNIT	RT
QC LIMITS	QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.5 IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.5 IS3 (DEB) = 1 4-Diffuorobenzene (50-200) -0.50 / +0.5	0 min
	0 min
IS3 (DFB) = $1,4$ -Difluorobenzene ($50-200$) $-0.50 / +0.5$	0 min

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>	Cont	tract:	Labsampid:	A7C0001417
Lab Code: RECNY	Case No.:	SAS No.:	SDG N	o.:
Lab File ID (Standard):	P8820.RR	Date	Analyzed:	05/24/2007
Instrument ID: HP5973P		Time	Analyzed:	<u>10:08</u>
GC Column(1): <u>ZB-624</u>	ID: <u>0.250</u> (mm)	Heat	ed Purge:	<u>Y</u> (א/ץ)

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT		542038 1084076 271019	13.73 14.23 13.23	569329 1138658 284665	17.11 17.61 16.61	671733 1343466 335867	9.84 10.34 9.34
CLIENT SAMPLE ===================================	Lab Sample ID	500109 490202 542248 503595 526220 532777 510173	13.73 13.74 13.74 13.73 13.74 13.73 13.73	518077 450494 375887 535656 488824 557528 542740	17.11 17.12 17.12 17.12 17.11 17.11 17.11	T	9.84 9.84 9.84 9.84 9.84 9.84 9.84

AREA UNIT RT QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

				SAMPI	ED	RECEIVE	<u>I</u> D
LAB SAMPLE ID	CLIE	INT SAMPLE ID	MATRIX	DATE	TIME_	DATE	TIME
A7553401	GSB-1	(10-12)	SOIL	05/19/2007	08:05	05/22/2007	08:40
A7553402	GSB-1	(12-14)	SOIL			05/22/2007	
A7553402MS	GSB-1	(12-14)	SOIL			05/22/2007	
A7553402SD	GSB-1	(12-14)	SOIL			05/22/2007	
A7553404	GSB-2	(10-12)	SOIL			05/22/2007	
A7553405	GSB-2	(12-14)	SOIL			05/22/2007	
A7553403	GSB-2	(8-10)	SOIL	, ,		05/22/2007	
A7553407	GSB-3	(10-12)	SOIL			05/22/2007	
A7553408	GSB-3	(14-16)	SOIL			05/22/2007	
A7553406	GSB-3	(8-10)	SOIL			05/22/2007	
A7553410	GSB-4	(10-12)	SOIL			05/22/2007	
A7553411	GSB-4	(12-15)	SOIL			05/22/2007	
A7553409	GSB-4	(8-10)	SOIL			05/22/2007	
A7553413	GSB-5	(10-12)	SOIL			05/22/2007	
A7553414	GSB-5	(12-14)	SOIL			05/22/2007	
A7553412	GSB-5	(8-10)	SOIL	05/19/2007	12:25	05/22/2007	08:40
A7553415	GSB-6	(10-12)	SOIL	05/19/2007		05/22/2007	08:40

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: A07-5534

STL Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

ANALYTICAL PARAMETER METHOD SW8463 8260

DELTA/PERRY-METHOD 8260 - VOLATILE ORGANICS

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A07-5534

STL Project#: NY4A9341

Site Name: Delta Environmental Consultants, Inc.

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-5534

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

The recovery of surrogate p-Bromofluorobenzene for sample GSB-4 (10-12) fell below control limits. The sample was reanalyzed within holding time with the surrogate still below control limits, thus indicating a potential matrix effect. Due to high concentrations of non-target analytes approximately one gram of this sample was analyzed for the reanalysis. Both sets of results are reported.

Initial calibration standard curve A7I0000369-1 exhibited a percent Relative Standard Deviation (%RSD) of greater than 15% for the compounds Methylene Chloride, Carbon Tetrachloride and Bromoform. However, the overall mean RSD of all compounds is 7.90%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Initial calibration standard curve A7I0000390-1 exhibited a percent Relative Standard Deviation (%RSD) of greater than 15% for the compound Methylene Chloride. However, the overall mean RSD of all compounds is 8.63%.

Due to the high concentration of non-target analytes approximately one gram of samples GSB-6 (10-12) and GSB-3 (10-12) were analyzed instead of the required 5 grams.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

6-4-07

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

Chain of Custody Record

SEVERN STL TRENT Severn Trent Laboratories, Inc.

S1L-4124 (09U1)			750	Chain of Custody Mumber
Cilient	Project Manager	0000	10-12-5	
CHA ENV ONCHUCANID	Color of the Color	odel/Fax Nimber	Lab Number	
Address Address On Drive St	J91 +16	0258 /See 914 765 0350	250	Page
City Arman (State Zip Code S	Site Contact Bruent	FISCA	Analysis (Attach list if more space is needed)	
Project Name and Logation (State) Project Name and Logation (State)	V Carrier/Waybill Nunfber			Special Instructions/
8	Matrix	Containers & Preservatives		Conditions of Receipt
(6	Date Time Air Sed.	NGOH ZUYCI NGOH HCI HCI HSOS		
(55R-1 (10-12) 5-19-07	Sogo	_		
	0810			
	0180			
	0190			
1 _ı	Shol			
"	eso)			
7	72201			
	571)			
]	//30			
	1132			
(8.8-4 (8-10)	(CS)			
1	1132	>		
Identification		inst M Disposed Bull ab Archive For	(A fee may be a Months ionger than 1 m	(A fee may be assessed if samples are retained Months longer than 1 month)
Non-Hazard Flammable Skin Irritant Poison B	nown I new	OC Requirements (Sp	(0)	111.
rs	1 21 Days JOhner 10 DAY		(12 La Cay 6 12	(werest
dBy J. HTR		1. Received By		12/05 1084D
2. Relinquished By	┥ ─┈	2. Received By		Date
3. Relinquished By	Date	3. Received By		Date Time
Comments 177 0718 2 JULy	A Tost Darfo	Detta Perry lict	0.0	
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Fleid Copy	Y - Stays with the Sample; PINK - Field Co			

10 Hazelwood Drive STL Buffalo

	88
	14288
	. .
	£
106	Š,
5	unherst,
Suite 1	Ā

10 Hazelwood Drive Suite 106 Amberst, NY 14288 phone 716-691-2600 fax 716-691-7991			Chain of Custody Record	Pg 29 2	Severn Trent Laboratories, Inc.
	Project Manager: Tony Savino		Site Contact: Scott Bryant	Date: 5-21-07	COC No:
	Tel/Fax: 914-765-0258/914-765-0250		Lab Contact: Brian Fisher	Carrier:	of COCs
	Calendar (C) or Work Dave CM	ound time			Job No.
	TAT if different from Below	•			
	2 weeks		AGM CO		SDG No.
	_				
	1 day		S)		
	Sample Sample Sample Date Time Type	# of Watrix Cont.	NO.		Sammle Sesentia Meses
	5-19-07 1200 Soil	رڊ ک			Garage objects
1	1 1225 1	-			
	1230				The state of the s
	(235				
	A	*	7		
			•		and the state of t
•	2= HCl; 3= H2SO4; 4=HNO3; 5=N2OH; 6= Other				
\sim	Non-Hazard Planmable Skin Irritant Poison	Poison B		Sample Lisposai (A ree may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Monti	d longer than 1 month) e For Months
	VOR T	h.yal		List h	ASP Cadron S
	Company:	Date/Time:	e:/ oReceived by:	Company:	Date/Time:
	Company:	Date/Tiple:	Received by:	Company:	S (22/6) 684K Date/Time:
	Company:	Date/Time:	Received by:	Company:	Date/Time:
_					

Doc. Login/ARRF - Side A Rev 4 May 11, 2007

SAMPLE LOGIN	JOB#	534
Shipment ID	Strict Internal COC:	YES NO
	Residual Chlorine Check:	
	Radiation Check < 0.02 mR/	hr: YES / NO
AC 2242 Project / Task	NY4A5341	126
TAT OBD/ CD # OF SAMPLE	ES TRIP BLANK	(YAN # (
SHIPPED BY Feder	ATTACH SHIPPING	G TAGS
RECEIVED DATE / TIME:	5/22/07	08:46
		-
COOLER TEMP 2 CO °C (4+1-2°C	c) OK	NO
Cooler Custody Seal intact? YES/NO NON	NE SEAL#	
If NO to cooler temp or seal, PM notified? YES	(PM	Name)
SUBCONTRACT YES(NO LAB	SM#	
COMMENTS: SAMPLE TIME ACTUAL	+1HR +2 HR +3 HR	NONE
Sample received outside hold time		
Headspace in VOA vials		
Problems with bottle labels		
OTHER SAMPLE RECEIPT COMMENTS (Fill out	ARRF, see reverse)	
-		
	NONA_	Initials
ARE SAMPLE DATES AND TIMES CORRECT?	<i>,</i>	Initials
WERE ALL THE APPROPRIATE TESTS ASSIGN	NED?	Initials \mathcal{D} \mathcal{C}

Page: 1 Rept: AN0383

STL Buffalo Sample Inventory

Date: 05/22/2007 Time: 12:29:21

9 풊 ₩ ₩ Pres Code 0100 9999999 9999999 0100 RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY RECNY <u>Б</u> Cooler Temperature: 2.0°C Parameters ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASPOO ASP00 ASP00 ASP00 ASP00 ASP00 ASP00 ASPOO 4SP00 1-402GW -40ZGM Bottles -402GW 9999 1-402GW -40ZGM -40ZGW 1-402GW -40ZGW -40ZGM -40ZGM MDZO7-4-40ZGW -402GW -402GW -402GW -4ozew -40mLv -40ZGJ -40m(v Custody Seal: Chain of Custody: Sample Tag Numbers: Sample Tags: Radiation Check: SMO Forms: CLSIS: Condition Good 600d 600d 600d 600d Good 600d 600d Good 600d 600d 600d A7553402 A7553402MS A7553403 A7553404 A7553407 A7553407 A7553407 A7553411 A7553411 A7553412 A7553412 A7553413 A7553413 A7553414 A7553416 A7553417 A7553401 Lab 絽 Volatile Holding Client Sample (8-10) (10-12) (12-14) GSB-5 (10-12) GSB-5 (12-14) GSB-6 (10-12) A07-5534 Delta Environmental Consultants, Inc. (12-14) (8-10) (10-12) (12-15) (10-12) (14-16) (8-10)(8-10)8 ank GSB-2 GSB-2 GSB-2 GSB-3 GSB-3 GSB-3 GSB-4 GSB-1 **GSB-5** GSB-1 GSB-4 **GSB-4** 08:40 Trip 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 08:40 Receive 05/22/2007 (05/22/2007 (05/22/2007 (05/22/2007 (05/22/2007 (05/22/2007 05/22/2007 05/22/2007 05/22/2007 05/22/2007 05/22/2007 05/22/2007 05/22/2007 05/22/2007 Client: Delta En Project: NY4A9341 05/19/2007 08:10 05/19/2007 10:45 05/19/2007 10:50 05/19/2007 10:55 05/19/2007 11:25 05/19/2007 11:25 05/19/2007 11:35 05/19/2007 11:35 05/19/2007 11:30 0 05/19/2007 11:35 0 05/19/2007 11:55 0 05/19/2007 11:55 0 05/19/2007 12:25 0 05/19/2007 12:25 0 05/19/2007 12:30 0 12:25 12:25 12:35 12:35 08:10 08:10 7 Sample 05/19/2007 05/19/2007 Job No: 05/19/2007 05/19/2007 Case: Samps: 05/19/2007 SDG: SMO No: 05/22/2007 2

DC 5,22,200

Sample Custodian:

Analytical Services Coordinator:

20

Preservation Code References:

First Digit: Sample Filtration; 1=Filtered, D=Unfiltered Second Digit: Sample Requires Cooling; (4°) 1=Cooled, D=Not Cooled

Third, Fourth Digits - Preservation Types: 00=Nothing added, 01=HNO3, 02=H2SO4, 03=HCl, 04=Sodium Thiosulfate 05=NaOH, 06=NaOH+Zinc Acetate, 07=Sodium Thiosulfate+HCl, 08=MeOH 09=MCAA (Mono chloroacetic acid) 8260 Volatiles

ATTACHMENT 4

DUSR

Hydrology

Remediation

Water Supply

June 8, 2007

Mr. Tony Savino Delta Environmental Consultants, Inc. 84 Business Park Drive, Suite 107 Armonk, New York 10504

Re:

Data Validation Report Hanesbrand Project May 2007 Soil Sampling Event

Dear Mr. Savino:

The data usability summary report and QA/QC review are attached to this letter for the Hanesbrand Project, May 2007 soil sampling event. The data for STL Buffalo, job no. A07-5534 were acceptable with some minor issues that are identified and discussed in the validation summaries. There were no data that were flagged unusable (R) in this data pack.

A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Delta Environmental Consultants, Inc.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2007\07600 - 07620\07612-hanesbrand\hanesbrand-2,ltr,wpd

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit

CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Hydrology

Remediation

Water Supply

Data Usability Summary Report for STL Buffalo, Job #: A07-5534

15 Soil Samples Collected May 19, 2007

Prepared by: Donald Anné June 8, 2007

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 15 soil samples analyzed for volatiles.

The overall performances of the analyses are acceptable. STL Buffalo did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• The positive results for methylene chloride were flagged as "not detected" (U) in the following samples because the concentrations of methylene chloride in the samples were not significantly greater (more than ten times) than the highest level in the associated blanks.

GSB-1(12-14)	GSB-2(12-14)	GSB-2(8-10)	GSB-3(10-12)
GSB-3(14-16)	GSB-4(10-12)	GSB-4(10-12)RI	GSB-4(12-15)
GSB-4(8-10)	GSB-5(12-14)	GSB-5(8-10)	

• The positive results for acetone were flagged as "not detected" (U) in the following samples because the concentrations of acetone in the samples were not significantly greater (more than ten times) than the level in the method blank.

GSB-1(10-12)	GSB-1(12-14)	GSB-2(10-12)	GSB-2(12-14)
GSB-2(8-10)	GSB-3(14-16)	GSB-4(10-12)	GSB-4(12-15)

• The positive and "not detected" results for target compounds were flagged as "estimated" (J) in samples GSB-4(10-12) and GSB-4(10-12)RI because 1 of 3 surrogate recoveries for these samples was below control limits, but was not less than 10%

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2007\07600 - 07620\07612-hanesbrand\a07-5534,dus.wpd

Hydrology

Remediation

Water Supply

QA/QC Review of Volatiles Data for STL Buffalo, Job #: A07-5534

15 Soil Samples Collected May 19, 2007

Prepared by: Donald Anné June 8, 2007

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8260B criteria.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8260B criteria.

The RRF50s for target compounds were above the allowable minimum (0.010), as required.

The %D for trans-1,2-dichloroethene (30.7%) was above the allowable maximum (30%) for HP5973Q on 01-18-06. Positive results for trans-1,2-dichloroethene should be considered estimates (J) in associated samples.

Blanks: Method blank VBLK34 contained traces of methylene chloride (2 ug/kg) and acetone (6 ug/kg). Method blank VBLK54 contained a trace of methylene chloride (2 ug/kg). Results for methylene chloride and acetone that are less than ten times the rinse blank level should be reported as not detected (U) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: One of three surrogate recoveries for samples GSB-4(10-12) and GSB-4(10-12)RI was below control limits, but was not below 10%. All results for samples GSB-4(10-12) and GSB-4(10-12)RI should be considered estimated (J).

Page 1 of 2

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums and the percent recoveries were within control limits for the MS/MSD sample GSB-1(12-14).
- Matrix Spike Blank: The percent recoveries were within QC limits for samples VBLK34 and VBLK54.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Hydrology

Remediation

Water Supply

June 7, 2007

Mr. Tony Savino Delta Environmental Consultants, Inc. 84 Business Park Drive, Suite 107 Armonk, New York 10504

Re:

Proposal for Data Validation Services

Hanesbrand Perry, New York

Delta Job No: 0610756P

Dear Mr. Savino:

Alpha Geoscience (Alpha) is pleased to present this letter containing the scope of work and cost for performing data validation for the Hanesbrand project, Perry, New York. Alpha bases its cost on 15 soil samples analyzed for volatiles. The laboratory will provide the data in New York State ASP category B deliverables package. A data usability summary report and summary QA/QC review will be provided for the data pack, and the applicable data will be flagged on the hard copy. The cost to perform the work is \$370. If the scope of work or the number of data packs change, the cost would change accordingly. You will be notified before any additional work is initiated.

If you have any questions concerning the work to be performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Delta Environmental Consultants, Inc.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca

ATTACHMENT 5

GROUNDWATER SAMPLING ANALYTICAL DATA

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209

Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533

Rochester (866) 437-0255 * New Jersey (908) 892-1807

Anthony Savino, Senior Consultant Delta Consultants 84 Business Park Dr. Suite 107 Armonk, NY 10504-1706

Wednesday, May 30, 2007

RE: Semi Annual Perry

Order No.: U0705355

Dear Anthony Savino, Senior Consultant:

Upstate Laboratories, Inc. received 15 sample(s) on 5/16/2007 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Orthony J. Scala Anthony I. Scala

President/CEO

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

NY Lab ID 10170 NJ Lab ID NY750 PA Lab ID 68375

Delta Consultants

Lab Order: U0705355

Project:

CLIENT:

Semi Annual Perry

Lab ID:

U0705355-001

Date: 30-May-07

Client Sample ID: DVE-101

Collection Date: 5/15/2007 5:20:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
4-isopropyltoluene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Benzene	ND	0.50	μg/L	1	5/21/2007 8:33:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Bromoform	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Bromomethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Chloroethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Chloroform	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Chloromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM

Approved By: DE

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

5-30-07 Date:

Page 1 of 30

- Value exceeds Maximum Contaminant Value **
- Value above quantitation range E
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits S

Delta Consultants

Lab Order: U0705355

Semi Annual Perry

Project: Lab ID:

CLIENT:

U0705355-001

Date: 30-May-07

Client Sample ID: DVE-101

Collection Date: 5/15/2007 5:20:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Naphthalene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
o-Xylene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Styrene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
tert-Butylbenzene	ND	1,0	μg/L	1	5/21/2007 8:33:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Toluene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/21/2007 8:33:00 PM
VOLATILES IN WATER (EXTRA COMP	וצחאוור	SW8021	IB		Analyst: LEF
2-Butanone	ND ND	10	μ g /L	1	5/21/2007 8:33:00 PM

Approved	By:	<u>P</u>	<u></u>

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 2 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-002

Date: 30-May-07

Client Sample ID: DVE-102

Collection Date: 5/15/2007 5:45:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
4-isopropyltoluene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Benzene	ND	0.50	μg/L	1	5/23/2007 6:17:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Bromoform	ND	1.0	µg/L	1	5/23/2007 6:17:00 PM
Bromomethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Chloroethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Chloroform	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Chloromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/∟	1	5/23/2007 6:17:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM

Approved	Du.	\Box	J
Approved	Dy.		-

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 3 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-002

Client Sample ID: DVE-102

Collection Date: 5/15/2007 5:45:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 6:17:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 6:17:00 PM

Approved	Ву: _	PE
Qualifiers:	*	Low Level
	В	Analyte detected in the associated Method Blank
	Н	Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value
E Value above quantitation range

5-30-07

he associated Method Blank E Value above quantitation range eparation or analysis exceeded J Analyte detected below quantitation limits

Date:

S Spike Recovery outside accepted recovery limits

Page 4 of 30

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-003

Date: 30-May-07

Client Sample ID: DVE-104

Collection Date: 5/15/2007 2:25:00 PM

Matrix: WATER

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	******	SW8021E	3		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 3;27:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	5/23/2007 3:27:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
4-Chlorotoluene	ND	1.0	µg/L	1	5/23/2007 3:27:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Benzene	ND	0.50	μg/L	1	5/23/2007 3:27:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Bromoform	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Bromomethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Chloroethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Chloroform	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Chloromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM

Approved By: DE

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 5 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-003

Client Sample ID: DVE-104

Collection Date: 5/15/2007 2:25:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		\$W8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 3:27:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 3:27:00 PM

Approved I	Ву: _	PF	Date:	5-30-07	Page 6 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminan	t Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation li	mits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery	very limits

Delta Consultants

Client Sample ID: DVE-106

CLIENT: Lab Order:

U0705355

Collection Date: 5/15/2007 2:55:00 PM

Project:

Semi Annual Perry

Lab ID:

U0705355-004

Matrix: WATER

Date: 30-May-07

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1,2,2-Tetrachioroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/21/2007 5:43:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
1,4-Dichlorobenzene	ND	1.0	μ g /L	1	5/21/2007 5:43:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Benzene	ND	0.50	µg/L	1	5/21/2007 5:43:00 PM
Bromobenzene	ND	1.0	μ g/L	1	5/21/2007 5:43:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Bromoform	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Bromomethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Chloroethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Chloroform	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Chloromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/21/2007 5:43:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM

Approved By: DE

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 7 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Semi Annual Perry

Project: Lab ID:

U0705355-004

Client Sample ID: DVE-106

Collection Date: 5/15/2007 2:55:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	· · · · · · · · · · · · · · · · · · ·	SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Isopropylbenzene	ND	1.0	µg/L	1	5/21/2007 5:43:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Naphthalene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
o-Xylene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
sec-Buiylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Styrene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Toluene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/21/2007 5:43:00 PM
VOLATILES IN WATER (EXTRA COMPC	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/21/2007 5:43:00 PM

Approved	By:	PE
ripprorea	- -j.	1-

Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

Date:

5-30-07

Page 8 of 30

Value exceeds Maximum Contaminant Value

Value above quantitation range Е

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-005

Client Sample ID: DVE-107

Collection Date: 5/15/2007 1:35:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80)21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Benzene	ND	0.50	μg/L	1	5/23/2007 7:00:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Bromoform	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Bromomethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Chloroethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Chloroform	1.3	1.0	µg/L	1	5/23/2007 7:00:00 PM
Chloromethane	ND	1.0	µg/L	1	5/23/2007 7:00:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM

Approved By: \bigcirc / \square

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit

5-30-07 Date:

Page 9 of 30

- Value exceeds Maximum Contaminant Value
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

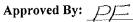
Delta Consultants

Lab Order:

U0705355

Client Sample ID: DVE-107
Collection Date: 5/15/2007 1:35:00 PM

Project:


Semi Annual Perry

Lab ID:

U0705355-005

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	21B		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Methylene chloride	1.8	1.0	μg/L	1	5/23/2007 7:00:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
sec-Butylbenzene	ND	1.0	µg/L	1	5/23/2007 7:00:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 7:00:00 PM
OLATILES IN WATER (EXTRA COMPO	UNDS)	SW80	21B		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 7:00:00 PM

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 10 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Delta Consultants

Client Sample ID: DVE-108

Lab Order:

U0705355

Collection Date: 5/15/2007 4:25:00 PM

Project: Lab ID: Semi Annual Perry

U0705355-006

Matrix: WATER

Date: 30-May-07

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2,3-Trichloropropane	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
2-Chlorotoluene	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Benzene	ND	0.50	μg/L	1	5/23/2007 7:42:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Bromodichloromethane	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
Bromoform	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Bromomethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Chloroethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Chloroform	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Chloromethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM

Approved By: P

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 11 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Client Sample ID: DVE-108

Matrix: WATER

Lab Order:

U0705355

Collection Date: 5/15/2007 4:25:00 PM

Project:

Semi Annual Perry

Lab ID:

U0705355-006

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
n-Butylbenzene	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
n-Propylbenzene	ND	1.0	µg/L	1	5/23/2007 7:42:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Trichlorgethene	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 7:42:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021B			Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 7:42:00 PM

Approved By	y: _	PF	Date:
Qualifiers:	*	Low Level	**
	В	Analyte detected in the associated Method Blank	E

- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

5-30-07

Page 12 of 30

- Value exceeds Maximum Contaminant Value
- Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: Delta Consultants

Lab Order: U0705355

Project: Semi Annual Perry

Lab ID: U0705355-007

Date: 30-May-07

Client Sample ID: DVE-109

Collection Date: 5/15/2007 3:25:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	·	SW802	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/21/2007 6:25:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
1.4-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
2-Chlorotoluene	ND	1.0	µg/L	1	5/21/2007 6:25:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Benzene	ND	0.50	μg/L	1	5/21/2007 6:25:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Bromoform	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Bromomethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Carbon tetrachloride	ND	1.0	µg/L	1	5/21/2007 6:25:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Chloroethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Chloroform	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Chloromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM

Approved By: P

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 13 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-007

Date: 30-May-07

Client Sample ID: DVE-109

Collection Date: 5/15/2007 3:25:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Naphthalene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
o-Xylene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Styrene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Tetrachloroethene	ND	1.0	μģ/L	1	5/21/2007 6:25:00 PM
Toluene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
trans-1,2-Dichloroethene	ND	1.0	μ g/ L	1	5/21/2007 6:25:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/21/2007 6:25:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/21/2007 6:25:00 PM

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 14 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-008

Date: 30-May-07

Client Sample ID: MW-105

Collection Date: 5/15/2007 4:20:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1,1-Trichloroethane	2.0	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1,2,2-Tetrachioroethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1-Dichloroethane	3.4	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1.2-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Benzene	ND	0.50	μg/L	1	5/21/2007 7:07:00 PM
Bromobenzene	ND	1.0	μg/L	1.1	5/21/2007 7:07:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Bromoform	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Bromomethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Chloroethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Chloroform	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Chloromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM

Approved By: DE

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 15 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-008 Date: 30-May-07

Client Sample ID: MW-105

Collection Date: 5/15/2007 4:20:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Naphthalene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
o-Xylene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Styrene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Toluene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/21/2007 7:07:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/21/2007 7:07:00 PM

Approved B	y: _	PE	Date:	5-30-07	Page 16 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contamina	nt Value
_	ъ	Applied defeated in the appealated Mathed Blank	E	Value above quantitation range	

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

Semi Annual Perry

Project: Lab ID:

CLIENT:

U0705355-009

Date: 30-May-07

Client Sample ID: MW-106

Collection Date: 5/15/2007 3:40:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1-Dichloroethane	7.8	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,1-Dichloropropene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2,3-Trichloropropane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2,4-Trimethylbenzene	17	5.0	μg/L	. 5	5/21/2007 2:11:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,2-Dichloropropane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1.3-Dichlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,3-Dichloropropane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
2,2-Dichloropropane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
2-Chlorotoluene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
4-Chlorotoluene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
4-Isopropyltoluene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Benzene	ND	2.5	μg/L	5	5/21/2007 2:11:00 PM
Bromobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Bromochloromethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Bromodichloromethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Bromoform	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Bromomethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Carbon tetrachloride	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Chlorobenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Chloroethane	11	5.0	μg/L	5	5/21/2007 2:11:00 PM
Chloroform	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Chloromethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Dibromochloromethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Dibromomethane	ND	5.0	µg/L	5	5/21/2007 2:11:00 PM

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 17 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-009

Client Sample ID: MW-106

Collection Date: 5/15/2007 3:40:00 PM

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD	8260	SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Ethylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Isopropylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
m,p-Xylene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Methylene chloride	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
n-Butylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
n-Propylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Naphthalene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
o-Xylene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
sec-Butylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Styrene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
tert-Butylbenzene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Tetrachloroethene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Toluene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Trichloroethene	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
Trichlorofluoromethane	ND	5.0	µg/L	5	5/21/2007 2:11:00 PM
Vinyl chloride	ND	5.0	μg/L	5	5/21/2007 2:11:00 PM
NOTES:					
The reporting limits were raised due t	to matrix interference.				
VOLATILES IN WATER (EXTRA C	OMPOUNDS)	SW8021	IB		Analyst: LEF
2-Butanone	ND	50	µg/L	5	5/21/2007 2:11:00 PM

Approved E	y:	PF .	Date:	5-30-07	Page 18 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contamin	nant Value
_		and the second second and the second	E	Volve chave quantitation range	

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: Delta Consultants

Lab Order: U0705355

Project: Semi Annual Perry

Lab ID: U0705355-010

Date: 30-May-07

Client Sample ID: MW-107

Collection Date: 5/15/2007 12:58:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachioroethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,1,1-Trichloroethane	37	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μ g/ L	2	5/23/2007 4:10:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,1-Dichloroethane	28	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	2	5/23/2007 4:10:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2-Dichlorobenzene	ND	2.0	µg/L	2	5/23/2007 4:10:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Benzene	ND	1.0	μg/L	2	5/23/2007 4:10:00 PM
Bromobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Bromochloromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Bromoform	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Bromomethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Carbon tetrachloride	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Chlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Chloroethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Chloroform	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Chloromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
cis-1,2-Dichloroethene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Dibromochloromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Dibromomethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM

A	pproved	Rv.	17	<i></i>
. 1	DBLOVEU	. IJY.	1	í

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 19 of 30

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

55 Collec

Project:

Semi Annual Perry

Lab ID:

U0705355-010

Client Sample ID: MW-107

Collection Date: 5/15/2007 12:58:00 PM

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Ethylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
m,p-Xylene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Methylene chloride	3.2	2.0	μg/L	2	5/23/2007 4:10:00 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Naphthalene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
o-Xylene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Styrene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Tetrachloroethene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Toluene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Trichloroethene	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
Vinyl chloride	ND	2.0	μg/L	2	5/23/2007 4:10:00 PM
NOTES:					
The reporting limits were raised due to the h	igh concentration	on of target com	pounds.		
VOLATILES IN WATER (EXTRA COMPO	OUNDS)	SW802	1B		Analyst: LEF
2-Butanone	ND	20	μg/L	2	5/23/2007 4:10:00 PM

Approved	By:	PE	Date:	5-30-07	Page 20 of 30
Oualisiers:	*	Low Level	**	Value exceeds Maximum Contaminant V	'alue
C	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recover	y limits

CLIENT: Delta Consultants

Lab Order: U0705355

Project: Semi Annual Perry

Lab ID: U0705355-011

Date: 30-May-07

Client Sample ID: MW-108

Collection Date: 5/15/2007 12:15:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8	021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,1,1-Trichtoroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0		µg/L	1	5/23/2007 8:25:00 PM
1,1,2-Trichloroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,1-Dichloroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,1-Dichloroethene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,1-Dichloropropene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2,3-Trichloropropane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	5/23/2007 8:25:00 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2-Dibromoethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2-Dichlorobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2-Dichloroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,2-Dichloropropane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,3-Dichlorobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,3-Dichloropropane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
1,4-Dichlorobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
2,2-Dichloropropane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
2-Chlorotoluene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
4-Chlorotoluene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
4-Isopropyltoluene	ND	1.0		µg/L	1	5/23/2007 8:25:00 PM
Benzene	ND	0.50		µg/L	1	5/23/2007 8:25:00 PM
Bromobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Bromochloromethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Bromodichloromethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Bromoform	ND	1.0		µg/L	1	5/23/2007 8:25:00 PM
Bromomethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Carbon tetrachloride	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Chlorobenzene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Chloroethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Chloroform	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Chloromethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
cis-1,2-Dichloroethene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Dibromochloromethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM
Dibromomethane	ND	1.0		μg/L	1	5/23/2007 8:25:00 PM

Approved By: P

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 21 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Delta Consultants

Lab Order:

U0705355

Semi Annual Perry

Project: Lab ID:

U0705355-011

Date: 30-May-07

Client Sample ID: MW-108

Collection Date: 5/15/2007 12:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 8:25:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 8:25:00 PM

Approved	By:	PE	Da
Qualifiers:	*	Low Level	
	В	Analyte detected in the associated Method Blank	
	Н	Holding times for preparation or analysis exceeded	
	ND	Not Detected at the Reporting Limit	

Date: <u>5-30-07</u>

Page 22 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-012

Date: 30-May-07

Client Sample ID: CSW-01

Collection Date: 5/15/2007 1:55:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	2.0	μg/ L	2	5/23/2007 4:52:00 PM
1,1,1-Trichloroethane	7.8	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,1-Dichloroethane	12	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	5/23/2007 4:52:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	2	5/23/2007 4:52:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2-Dibromo-3-chioropropane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,2-Dichloropropane	ND	2.0	µg/L	2	5/23/2007 4:52:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
2-Chlorotoluene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
4-Chlorotoluene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Benzene	ND	1.0	μg/L	2	5/23/2007 4:52:00 PM
Bromobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Bromochloromethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Bromodichloromethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Bromoform	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Bromomethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Carbon tetrachloride	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Chlorobenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Chloroethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Chloroform	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Chloromethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
cis-1,2-Dichloroethene	ND ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Dibromochloromethane Dibromomethane	ND	2.0	μg/L μg/L	2	5/23/2007 4:52:00 PM

Approved By: D

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: <u>5-30-07</u>

Page 23 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Semi Annual Perry

Project: Lab ID:

U0705355-012

Client Sample ID: CSW-01

Collection Date: 5/15/2007 1:55:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD	3260	SW802	IB		Analyst: LEF
Dichlorodifluoromethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Ethylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Isopropylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
m,p-Xylene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Methylene chloride	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
n-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
n-Propylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Naphthalene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
o-Xylene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
sec-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Styrene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
tert-Butylbenzene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Tetrachloroethene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Toluene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Trichloroethene	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
Vinyl chloride	ND	2.0	μg/L	2	5/23/2007 4:52:00 PM
NOTES:					
The reporting limits were raised due to	matrix interference.				
VOLATILES IN WATER (EXTRA CO	OMPOUNDS)	SW802	IB		Analyst: LEF
2-Butanone	ND	20	μg/L	2	5/23/2007 4:52:00 PM

Approved B	y:_	PE	Date:	5-30-07	Page 24 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant	Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	

В

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

CLIENT: Delta Consultants

Lab Order: U0705355

Project: Semi Annual Perry

Lab ID: U0705355-013

Date: 30-May-07

Client Sample ID: CSW-06

Collection Date: 5/15/2007 12:35:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	5/21/2007 7:50:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
4-isopropyltoluene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Benzene	ND	0.50	μg/L	1	5/21/2007 7:50:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Bromoform	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Bromomethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Chloroethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Chloroform	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Chloromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 25 of 30

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-013

Date: 30-May-07

Client Sample ID: CSW-06

Collection Date: 5/15/2007 12:35:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	****	SW802	IB		Analyst: LE F
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Naphthalene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
o-Xylene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Styrene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Toluene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/21/2007 7:50:00 PM
Vinyl chloride	ND	1.0	µg/L	1	5/21/2007 7:50:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW802	1B		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/21/2007 7:50:00 PM

Approved	By:	\mathcal{P}	<u> </u>
----------	-----	---------------	----------

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 26 of 30

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Delta Consultants

Lab Order: U0705355

CLIENT:

Project: Semi Annual Perry

Lab ID: U0705355-014

Date: 30-May-07

Client Sample ID: SCRW-05

Collection Date: 5/15/2007 4:55:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,1,1-Trichloroethane	13	10	μg/L	10	5/23/2007 5:35:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,1-Dichloroethane	48	10	μg/L	10	5/23/2007 5:35:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,1-Dichloropropene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2,3-Trichlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2,3-Trichloropropane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2,4-Trimethylbenzene	180	10	μg/L	10	5/23/2007 5:35:00 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2-Dibromoethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2-Dichloroethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,2-Dichloropropane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,3,5-Trimethylbenzene	12	10	μg/L	10	5/23/2007 5:35:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,3-Dichloropropane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
2,2-Dichloropropane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
2-Chlorotoluene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
4-Chlorotoluene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
4-Isopropyltoluene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Benzene	ND	5.0	μg/L	10	5/23/2007 5:35:00 PM
Bromobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Bromochloromethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Bromodichloromethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Bromoform	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Bromomethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Carbon tetrachloride	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Chlorobenzene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Chloroethane	150	10	μg/L	10	5/23/2007 5:35:00 PM
Chloroform	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Chloromethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	5/23/2007 5:35:00 PM
Dibromochloromethane	ND	10	µg/L	10	5/23/2007 5:35:00 PM
Dibromomethane	ND	10	μg/L	10	5/23/2007 5:35:00 PM

Approved	By:	D	Ι_,

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 5-30-07

Page 27 of 30

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-May-07

CLIENT:

Delta Consultants

Lab Order:

U0705355

Semi Annual Perry

Project: Lab ID:

U0705355-014

Client Sample ID: SCRW-05

Collection Date: 5/15/2007 4:55:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8	021B			Analyst: LEF
Dichlorodifluoromethane	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Ethylbenzene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Hexachlorobutadiene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Isopropylbenzene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
m,p-Xylene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Methylene chloride	33	10		μg/L	10	5/23/2007 5:35:00 PM
n-Butylbenzene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
n-Propylbenzene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Naphthalene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
o-Xylene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
sec-Butylbenzene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Styrene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
tert-Butylbenzene	ND	10		µg/L	10	5/23/2007 5:35:00 PM
Tetrachloroethene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Toluene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
trans-1,2-Dichloroethene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
trans-1,3-Dichloropropene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Trichloroethene	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Trichlorofluoromethane	ND	10		μg/L	10	5/23/2007 5:35:00 PM
Vinyl chloride NOTES:	11	10		μg/L	10	5/23/2007 5:35:00 PM
The reporting limits were raised due to the hig	th concentration	on of target o	ompour	nds.		
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8	021B			Analyst: LEF
2-Butanone	ND	100		μg/L	10	5/23/2007 5:35:00 PM

Approved l	Ву:	PF	Date:	5-30-07	Page 28 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant	Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation lin	nits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recov	ery limits

Delta Consultants

U0705355 Lab Order:

CLIENT:

Project: Semi Annual Perry

U0705355-015 Lab ID:

Date: 30-May-07

Client Sample ID: ULI Trip Blank 20070405A

Collection Date: 5/15/2007

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,1-Dichloroethene	ND	1.0	µg/∟	1	5/23/2007 9:08:00 PM
1,1-Dichloropropene	ND	1.0	μg/L_	1	5/23/2007 9:08:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Benzene	ND	0.50	μg/L	1	5/23/2007 9:08:00 PM
Bromobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Bromochloromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Bromoform	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Bromomethane	ND	1.0	µg/L	1	5/23/2007 9:08:00 PM
Carbon tetrachloride	ND	1.0	µg/L	1	5/23/2007 9:08:00 PM
Chlorobenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Chloroethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Chloroform	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Chloromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Dibromomethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM

Approved By: D

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

5-30-07 Date:

Page 29 of 30

Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

CLIENT:

Delta Consultants

Lab Order:

U0705355

Project:

Semi Annual Perry

Lab ID:

U0705355-015

Date: 30-May-07

Client Sample ID: ULI Trip Blank 20070405A

Collection Date: 5/15/2007

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	•	SW802	1B		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Ethylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Isopropyibenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
m,p-Xylene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Methylene chloride	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Naphthalene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
o-Xylene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Styrene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Toluene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Trichloroethene	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
Vinyl chloride	ND	1.0	μg/L	1	5/23/2007 9:08:00 PM
OLATILES IN WATER (EXTRA COMPO	JNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	5/23/2007 9:08:00 PM

Approved 1	By: _	PE	Date:	5-30-07	Page 30 of 30
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant	: Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation lin	nits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accented recov	ery limits

Client:		vironmental C emi-Annual Po		ts	- עוווט	No. (ente	r bv lab)	
Project: Well ID.:		DUE-10			- 02,70	(01.112.		
		300 10			-		•	
Condition of	Well:	G00 D			Locked:		NO	
Method of E	vacuation:	PERISTAUTIC	Punp		Lock ID:		NO.	
Method of S	ampling:	Pump/T	URE					
A A A	<u></u>	.A.	. Diame	eter of Well			4	inches
TTT	ТОР	В		epth Measi	ured	·	17,40	feet
Ċ		E		to Water		·	7.44	feet
		D	•	n of Water 0	Column (ca	lculated)	4.96	feet
↓ ↓	WATER			ersion Facto		el	55 843Pn	
E	1 1	;	Well \	/olume (cal	culated)		6.47	gallon
D		!		Volumes to		ated	3	
			Total '	Volume to b	e Evacuate	ed	19.41	gallor
↓				l Volume Ev			219	_ gallor
+	SILT	E	. Install	ed Well De _l	pth (if knov	חי)	N/A	feet
1	7	F	. Depth	of Silt (calc	culated		N/A	feet
Field	Initial	i	Final			% Recha	rge:	
Measurements		į	Sampling	i	•.	Lutter Dan	ult to Winton	7.49
Date	5/15/0	77	.5	115/07	* • *	Initial Dep	oth to Water	<u> </u>
Time		00		1720	····	Recharge D	epth to Water	7,58
EH	n/a	1		n/a	_ mV			911
Temperature	<u> </u>	i		11.7	_ C	21	r column height	
pН	7,			1.40	_ SU	1st water	column height	
Specific Cond.	9 } n/a			920 n/a	umh NTU	Elevation(T	op of Casing)	n/a
Turbidity				n/a		G.W. Ele		n/a
Dissolved Oxyg Appearance	gen <u>n/a</u> <u>C\<i>C</i>\<i>y</i></u>			lear	<u></u>		ion =Top of Case El	
Weather:		300F, Brees	7 14			Sampler:	n n<	ا تاکما بالانکاد
Observations:				<u> </u>		Signature	Pete Rup	dejr/OLI
		:			·	·	HIII	/
		-			•			

lient:	Delta Environmen				
roject:	Semi-Annu		ULI ID	No. (enter by lab)	
Vell ID.:	<u> </u>	<u> + 102</u>			
Condition of Well	. G00	DI/ Missing Interes	Locked:	ND	
Method of Evacua		21stactic Pump	√ <i>P</i> Lock ID:	NO	
Method of Sampli		Junp / 7085	2001.		
would of Campi		1		11	
* * * *	— A —	A. Diameter of V	/ell	<u>4"</u>	inches
- - - - - - - - -	TOP	B. Well Depth M	easured	17,50	feet
Ċ		C. Depth to Wate	er	7.49	feet
	E	1	ter Column (cal	. (— feet
			•	.65	
. 1 1 1	WATER	Conversion Fa		<u> </u>	
		Well Volume	calculated)	6.5	gallons
	::	No. of Volume	s to be Evacua	ited 3	
		Total Volume	to be Evacuate	d 19.5	gailons
* *		Actual Volume	e Evacuated	219	gallons
F	SILT	E. Installed Well	Depth (if know	n) N/A	feet
		F. Depth of Silt (ralculated	N/A	— feet
▼ ▼ 数数数		1. Deput of one (
	nitial	Final		% Recharge:	. A.
easurements E	Evacuation	Sampling	43	Initial Depth to Water	7,49 fee
ite ne	5/15/07	5/15/0		Recharge Depth to Water	7,57 fee
	n/a	n/a	mV	_	
mperature _	12.6	11.5	C	2nd water column height	t <u>99 %</u>
	7,26	7,35	su	1st water column height	
ecific Cond.	879	867	umh		
rbidity _	n/a	n/a		Elevation(Top of Casing)	n/a fee
ssolved Oxygen pearance	n/a	n/a Clear		G.W. Elevation= G.W.Elevation =Top of Case E	n/a fee
<u> </u>	UNY 700F, Breez				POAL LOIG! COOK!!
samer: <u>50.</u> servations:	UN, 900F, Breez	7		Sampler: Pete Ru	ndeli / ULI

Client:		ronmental C mi-Annual Po			- ULI	ID No. (enter by	/ lab)		
Well ID.:		Duğ-1			<u> </u>		ĺ	•		
O BALL ENAL				.	Locked	•		UO		
Condition of We			<u> </u>					NO		
Method of Evac		<i>i</i> i		C Bump	Lock ID): 				
Method of Sam	pling: Pu	mp/tublu	<u>(</u>							
★	<u>_ A</u> →	.A.		.Diameter of Well				4	incl	nes
	TOP	В.		Well Depth Meas	ured			18.80	_ fee	t
¢		C .	·	Depth to Water				7,71	_ fee	ŧ
		D		Length of Water	Column (calculate	d)	11.09	fee	t
▼	WATER	,		Conversion Facto			·	165		
Ë	LEVEL	;		Well Volume (cal	culated)			٦, ٦	 gall	ons
D				No, of Volumes to		cuated		3	_	_
				Total Volume to t			=	21,6	– gall	lons
↓ ↓ ↓ ↓				Actual Volume Ev				~ 21	_ gal	
	OU T	E		Installed Well De		ours)		N/A	– gan fee	
F	SILT	*				טעעוו)	<u> </u>	N/A	- fee	
		F.	٠.	Depth of Silt (calc	Julated			N/A	_ 100	L
Field Measurements	Initial Evacuation		Fir Sa	nal Impling		% Re	charge:			
			00	5/15/07		Initial	Depth t	o Water _	7,71	fe
Date Time	5/15/0			1435	_	Recha	ge Depth	to Water	7,79	fe
EH	n/a			n/a	_ mV				90	
Temperature	19,1			18.8	_ C SU	·		lumn height umn height		
pH Specific Cond.	7,4 70	- ;		<u>7.32</u> 854	umh	1-St W	alei coi	amir neight		
Turbidity	n/a_	<u>. </u>		n/a	_ NTU	Elevati	on(Top of	f Casing)	n/a	fe
Dissolved Oxygen	n/a		-	n/a	:		Elevation		n/a	f€
Appearance	Clen		-	Clear	- ·	-		Top of Case El	ev-Total D	eptn
Weather: <u>S</u> Observations:	SULLY, 800F	, BREEZY				Samp	ler:	Pete Run	dellym	i
Observations.		:				Signa	ture:	18/		
						· 		15	<i>-</i>	
•								y	•	

Client: Project:		mental Consultants Annual Perry	ULI ID No.	(enter by lab)	
Well ID.:		DUE-106		·	
Condition of Wel	ll:	6000	Locked:	NO.	
Method of Evacu		PERISTALTIC PLAP	Lock ID:	NO	
Method of Samp		TORINA			
.	<u> </u>	A, Diameter of	Mali	Ÿ	inches
	ТОР	B. Well Depth		17.40	feet
Ç		C. Depth to Wa		7.52	feet
		·	ater Column (calcula	$\overline{}$	feet
В ♠	WATER	Conversion	·	65	
	LEVEL	Î	e (calculated)	6.42	- gallons
D			nes to be Evacuated	3	
			e to be Evacuated	19.27	- gallons
* * * *			me Evacuated	~ 19	- gallons
	SILT		ell Depth (if known)	N/A	- feet
	OI21	i	t (calculated	N/A	feet
Field	Initial	Final	% F	Recharge:	
Measurements	Evacuation	Sampling	Initi	al Depth to Water	7.5% fe
Date Time	<u>5/15/67</u>	<u>5/15/07</u> 1455	Rec	harge Depth to Water	7.81 fe
EH	n/a	n/a	mV	-	(4.1
Temperature	15.4	15.2		l water column height	96
pH	7.39	7,18	·	water column height	
Specific Cond. Turbidity	<u>851</u> n/a	%6/ <u>%</u> n/a		vation(Top of Casing)	n/a fe
Dissolved Oxygen Appearance	n/a Cleur	n/s		W. Elevation= V.Elevation =Top of Case Ele	n/a fe ev-Total Depth
Weather:	SUNUY, 700F			mpler: Pete Rung	riail/IIII
Observations:			Sig	nature:	
				770	

Client:	oratories, Inc. Delta Environme	Ground water Fiental Consultants	to Log Fil	e: TS-30-01 Rev	rised: 2/97
Project:		nual Perry		No. (enter by lab)	
Well ID.:	DUE	-107		• •	
Condition of We	il:	G000	Locked:	NO	
,	<u></u>		Lock ID:		
Method of Evac		RISTACTIC PUMP	LOCK ID.	νο	
Method of Samp	oling: Yu	MP/TUBE			
↑ ↑ ↑	— A →	A. Diameter o	of Well	4	inches
	TOP	B. Well Depth	Measured	17.0	<u>∤</u> feet
		C. Depth to V	Vater	8.6	feet
		D. Length of \	Water Column (ca	alculated) 8.5	ि feet
B ★	WATER	Conversion	i Factor	6	5
E	LEVEL	Well Volun	ne (calculated)	5.5	gallons
D		No. of Volu	ımes to be Evacu	ated3	
		Total Volui	me to be Evacuate	ed1 <i>6.0</i>	gallons
* *		Actual Volu	ume Evacuated	_ ~16	gallons
F,	SILT	E. Installed W	/ell Depth (if know	vn) <u>N/A</u>	feet
↓ ↓		F. Depth of S	ilt (calculated	N/A	feet
mi_tul	Initial	Final		% Recharge:	
Field Measurements	Evacuation	Sampling		,	V 100 5-4
Date	5/15/07	5/1	5/07	Initial Depth to Water	G n/
Time	1305	(33	:	Recharge Depth to Water	9.01 feet
EH	n/a	n/a	mV	,	eight 96 %
Temperature	16.5	16.0		2nd water column he	
pH	7,5	7.2		1st water column hei	gnt
Specific Cond. Turbidity	<u>856</u> n/a		3 umh NTU	Elevation(Top of Casing)	n/a feet
Dissolved Oxygen	n/a		/a	G.W. Elevation=	n/a feet
Appearance	Clear Sichway	Clear	151. Cloudy	G.W.Elevation =Top of Ca	
Weather:	SOUNY, BOOF, B	REEZY		Sampler:	
Observations:					Rundelly-ULI
		:		Signature:	WIM

Upstate Lal	`	/ironmental		d water Field Log nsultants		e: TS-30-0°	f Revised	*
Project:	S	emi-Annual	Per	гу	ULIJE	No. (enter	by lab)	
Well ID.:		DUE - 1	08		-			:
Condition of W	ell:	God	20		Locked:	···	<i>UO</i>	
Method of Evad	cuation:	PERISTAL	T.C.	Punp	Lock ID:		UO	
Method of Sam	pling:	TUBIL	1×					
↑ ↑ ↑ □	—— A →►		·A.	Diameter of Well			4	inches
	TOP	;	В.	Well Depth Measu	ıred	_	17,50	feet
C		Ī	C.	Depth to Water		_	7.10	feet
	es veneral de la company de la company de la company de la company de la company de la company de la company d		D.	Length of Water C	olumn (ca	culated) _	10.40	_ feet
В	WATER	:		Conversion Factor		_	.65	ĝia sile sile lan serven,
H	LEVEL	į		Well Volume (calc	ulated)	_	6.76	gallons
	The state of the s			No. of Volumes to	be Evacua	ited _	3	_
				Total Volume to be	e Evacuate	d _	20.28	_ gallons
				Actual Volume Eva	acuated	<u></u>	~ 20	gallons
F	SILT		E.	Installed Well Dept	th (if know	n) _	N/A	feet
→ →			F.	Depth of Silt (calcu	lated		N/A	_ feet
Field	Initial	} 		nal	1 ⁴ .	% Recharg	e:	•
Measurements	Evacuation	-	5	ampling		Initial Depth	to Water	フ.(<i>0</i> fe
Date Time	5/15/0			5/15/07 1625		Recharge Dep	oth to Water	7,82 fe
EH Temperature	n/a			n/a 13∘1	mV C	and water o	oluma bojaht	9/
о Н	7			12/17.34			olumn height olumn height	
Specific Cond.	87:			898	umh		- min noight	
Furbidity	n/a		_	n/a		Elevation(Top		n/a fe
Dissolved Oxygen Appearance	n/a <u>Cloudy</u>			n/a Clouds		G.W. Eleva G.W.Elevation	tion= =Top of Case Ele	n/a fe ev-Total Depth
Weather: Observations:	SUDUY, 80	°F, BREEZ	Υ			Sampler:	Data Dum	
Juseivations		i r			 .	Signature:	Pete Runo	IEIL/ ULI

Client:	oratories, In Delta Enviro	nmental Consultant	Field Log I s	No. of the second secon			
Project:	Semi	-Annual Perry	ULI	ID No. (enter b	y lab)		
Well ID.:		DUE-109	Market and the state of the sta				
Condition of We	ell:	Goon	Locked	: <u>\(\nu\)</u>	0		
Method of Evac	uation:	PERISTALTIC PLUMP	Lock	י. ע <u>י</u>	<u>) </u>		
Method of Sam	oling:	Tubluc					
↑ ↑ ↑	— A →	A. Diamete	er.of Well		2 "	inch	nes
	TOP	B. Well De	pth Measured		20.50	feet	t
C		C. Depth to	Water		7.29	feet	ŧ
		D. Length	of Water Column (d	calculated)	13,21	feet	t
B • E	WATER LEVEL	Convers	ión Factor		.16	_	
D		Well Vo	ume (calculated)		2.11	_ gall	ons
		No. of V	olumes to be Evac	uated	_3		~
		Total Vo	lume to be Evacua	ited	6-33	_ gall	ons
		Actual V	olume Evacuated	<u>~</u>	6.5	_ gallo	ons
F	SILT	E. Installed	Well Depth (if kno	wn)	N/A	_ feet	:
★ ★ ③		F. Depth of	Silt (calculated		N/A	_ feet	:
Field Measurements	Initial Evacuation	Final Sampling		% Recharge:			
	5/15/07		1	Initial Depth t	o Water	7.29	fee
Date Time	1500	<u>5/15</u>		Recharge Depth	to Water	7,39	fee
EH	n/a	n/a	mV		_		
Temperature	14.0	13	<u>3</u> C	2nd water col	umn height	99	%
pН	7.36		.31 su	1st water colu	ımn height		
Specific Cond. Turbidity	중31 n/a		<u>,45</u> umh NTU	Elevation(Top of	Casing)	n/a	fee
Dissolved Oxygen	n/a		n/a	G.W. Elevation	on=	n/a	fee
Appearance	Clour		lear	G.W.Elevation =	Top of Case El	ev-Total De	:pth

Project:		nental Consultants nnual Perry	ULI ID No. (en		
Well ID.:	· · · · · · · · · · · · · · · · · · ·	W-105	ULI ID No. (en	ter by lab)	
Condition of		Good	Locked:	NO	· · · · · · · · · · · · · · · · · · ·
Method of E	vacuation: Dispussible		Lock ID:	NO	
Method of S		HUS BAILER	LOCK 1B.		
	← A →	TIO 3 INTERIOR			
† †	TOP	A. Diameter of V	/ell	۷"	inches
	I IOP	B. Well Depth M	easured	14.70	feet
C		C. Depth to Wate	er	8.22	feet
		D. Length of War	er Column (calculated)	6.48	feet
₽ ↑	WATER	Conversion Fa	actor	.16	
E	LEVEL	Well Volume (calculated)	1.04	_ gallons
		No. of Volume	s to be Evacuated	3	
		Total Volume	to be Evacuated	3.12	– gallons
* * *		Actual Volume		3,5	gallons
F	SILT		Depth (if known)	N/A	feet
+		F. Depth of Silt (c	, ,	N/A	feet
ield	Initial	Final			-
easurements	Evacuation	Sampling	% Recha		
ate	5/15/07	5/15/07			8.22 feet
me H	1 4 35 n/a	1620	Recharge E mV	Depth to Water	हे.बेडे feel
emperature	18.8	18.3		r column height	99.9 %
H Decific Cond.	7.4 <u> </u> 850	7,35		column height	
urbidity	n/a	<u>867</u> n/a	umh NTU Elevation(To	op of Casing)	n/a feet
ssolved Oxyge p <mark>earance</mark>	n <u>n/a</u> Cloudy	n/a Cloudy	G.W. Ele	vation= ioπ =Top of Case Ele	n/a feet
eather: oservations:		SREEZY	Sampler:		
JSEI VALIDIIS.			Signature	Pete Rund	ieli / ULI
		!	. ·	HG	

Client:		nental Consultant					
Project:		nnual Perry	ULI	ID No. (ent	er by lab)		
Well ID.:	W	w-106	<u> </u>				.:
Condition of We	ell:	6000	Locked	: 	_DO		
Method of Evac	uation: M	toro purse	Lock):	NO.		
Method of Sam	oling: T	<u> 1819 - </u>	-				
↑ ↑ ↑ ↑	A →	A. Diamete	er of Well		1.25	inche	s
	TOP	B. Well De	pth Measured		13.50	feet	
C		C. Depth to	· Water		7.74	feet	
		D. Length	of Water Column (d	calculated)	5.76	feet	
B A	WATER	Convers	ion Factor		0,06		
	LEVEL	Well Vo	lume (calculated)		.35	gallor	18
D		No. of V	olumes to be Evac	uated	3 t.05 pm	_	
		Total Vo	olume to be Evacua	ated		gallor	ıs
* † * !		Actual V	olume Evacuated		~	_ gallor	15
F	SILT	E. Installed	l Well Depth⁻(if⁻kno	wn)	N/A	_ feet	
↓ ↓		F. Depth o	f Silt (calculated		N/A	feet	
Field	initial	Final		% Recha	irge:		
Measurements	Evacuation	Sampling		Initial De	pth to Water	7.74	feet
Date Time	5/15/07	<i>5/15,</i>		Recharge I	Depth to Water	7.95	feet
EH	n/a	<u></u>				07	
Temperature	16.5		C		r column height	9/	%
pH	7.48		SU	1st water	column height	,	
Specific Cond. Turbidity	BOY n/a		umh a NTU	Elevation(T	op of Casing)	n/a	feet
Dissolved Oxygen Appearance	n/a Solvat odor / BIAC	K Beservation	n/a / saluratodon	G.W. Ele	vation= tion =Top of Case El		feet th
Weather:		Breezr		Sampler:			

Project:	Semi	Annual Po	erry	·	ULI I	D No. (ente	er by lab)	
Well ID.:		MW-10	7		_		•	
Condition of W	/ell·	6,00	· · ·		Locked:	·	NO	, ,
Method of Eva		micro P		-	Lock ID:	·	NO	
Method of San	,, 	Pump/		-			,	
≤	——A →			-			1 .	
$\uparrow \uparrow \uparrow$	ТОР	А.	Diamete	r of Well			1.25	inches
C		В.	Well Dep	oth Measi	ured		12.55	_ feet
		E.	Depth to	Water			7.41	_ feet
		D.	Length o	f Water 0	Column (c	alculated)	4.69	feet
B A E	WATER LEVEL	; 	Conversi	ion Facto	r		0.06	20.000 Total
			Well Vol	ume (calo	culated)		. રજ	_ gallon
		4	No. of Vo	olumes to	be Evacı	uated	3	
		: ! !	Total Vol	ume to b	e Evacuat	ted	084	gallon
▼ ▼ 		1	Actual Vo	olume Ev	acuated		~ 1	_ gallon
F.	SILT	Ē.	Installed	Well Dep	oth (if⁻knov	wn)	N/A	feet
↓ ↓		F.	Depth of	Silt (calc	ulated		N/A	_ feet
Field	Initial		Final		Santa L	% Recha	rae:	
neasurements	Evacuation		Sampling		js		th to Water	7,91 f
Date	5/15/07		5/15		. ·	•		8.03 f
ime H	<u>しみ45</u> n/a		<u> </u>		_ mV .	Recharge D	eptil to vvatei	<u> </u>
emperature	18.2	1	۲٦,	6	С	2nd water	column height	98.5
H	7.55			49	_ SU	1st water	column height	
Specific Cond. Turbidity	910 n/a		9 n/a		umh NTU	Elevation(To	op of Casing)	n/a f
Dissolved Oxygen				n/a	_	G.W. Elev		n/a f
ppearance	Cloudy		St. Cloud	14	-	G.W.Elevati	on =Top of Case El	ev-Total Depth
Veather: <u>5</u> Observations:	UNNY, TOUF, BI	ZEEZY				Sampler:	Pete Run	deli / ULI
						Signature		

Client:	Delta Environm					
Project:		nual Perry	UL	IID No. (ente	r by lab)	
Well ID.:	MW.	-108				
Condition of We	ell:	GOOD	Locke	d:		· ·
Method of Evac	uation:M	ICIRO PUVGE	Lock T	D:		
Method of Sam	pling: Pi	MP/TUBE				
↑ ↑ ↑	— A →	A. Dia	ameter of Well		1.25	inches
	TOP	B. We	ell Depth Measured		17.20	feet
C		C. De	pth to Water	_	7,55	feet
		D. Le	ngth of Water Column	(calculated)	9.65	feet
₽ ↑	WATER	Có	nversion Factor	-	0.06	
E	LEVEL	We	ell Volume (calculated)	-	. 58	gallons
D		No	. of Volumes to be Eva	cuated		
		To	ial Volume to be Evacu	uated _	1.74	gallons
		Ac	ual Volume Evacuated	· _	~1,75	gallons
F	SILT	E. Ins	talled Well Depth (if kn	own)	N/A	feet
★ ★		F. De	pth of Silt (calculated	-	N/A	feet
Field	Initial	Final	and the second of the second o	% Rechar	је:	
Measurements	Evacuation	Sampl	ng	Initial Dept	h to Water	7, 35 fee
Date Time	5/15/07	<u> </u>	5/15/07 1215	Recharge De		7.60 fee
EH	n/a		n/a mV		parto volter	<u> </u>
Temperature	20.3		19.4 C	2nd water	column height	99 %
p H	7.65	i	7,3g SU		column height	
Specific Cond. Turbidity	911 n/a		833 umh n/a NTU	Elevation(Top		n/a fee
Dissolved Oxygen Appearance	n/a Brown/silty		n/a	G.W. Elev		n/a fee
Weather:	SUNUY, BREEZY,	XOOF ISK	ownish /cloudy	Sampler:	· · · · · · · · · · · · · · · · · · ·	**
Observations:	· · · · · · · · · · · · · · · · · · ·			Signature:	Pete Runde	31/01

Upstate Client:	Laboratories,	Inc. Ground water Fi	eld Log I	File: TS-30-	01 Revise	ed: 2/97	
Project:	· · ·	mi-Annual Perry	ULI	ID No. (ent	er by lab)		
Well ID,:		CSW-01					
Condition (of Well:	Good	Locked	:	NO	· ·	
Method of	Evacuation:	MICRO PURCE	Lock ID): 	NO		
Method of	Sampling:	Pump/TUBE					
† †	TOP TOP	A. Diameter	of Well		1.25	inc	hes
		B. Well Dept	h Measured		11.25	fee	et
		C. Depth to	Vater		7.91	fee	nt
		D. Length of	Water Column (d	calculated)	3,34	fee	et
В ↑.	WATER	Conversion	in Factor		.06		·==
	E LEVEL	Well Volu	me (calculated)		-20	gal	llons
D		No. of Vol	umes to be Evac	uated	3		_
		Total Volu	me to be Evacua	ited	.60	gal	lons
* *		Actual Vol	ume Evacuated		2,75	gal	lons
F,	SILT	E. Installed V	Vell Depth (if kno	wn)	N/A	fee	t
•	7	F. Depth of S	Silt (calculated		N/A	fee	t
Field	Initial	Final		% Recha	rge:		4 + 4 A - 5
Measurements		Sampling		Initial Dep	oth to Water	7.91	feet
Date Time	<u> 5/15/07</u> 1340	<u>5/15/</u>		Recharge D	epth to Water	8.80	feet
EH	n/a	n/a	mV	- N	•		
Temperature	17.5	16.		2nd water	column heigh	t <u>90</u>	%
pH	7,59	7,5		1st water	column height		
Specific Cond. Turbidity	794 n/a		umh NTU	Elevation(To	op of Casing)	n/a	feet
Dissolved Oxy			/a	G.W. Ele	vation=	n/a	feet
Appearance Weather: Observations:	Sund , 8008	F. BREFFY		G.W.Elevati Sampler:	on =Top of Case	Elev-Total De Indell / LJL	

tion:	A. Diameter of B. Well Depth 1	Locked: Lock ID:	No. (enter by lab)	
	LOOK A. CORD PURGE PUMP / TUBE A. Diameter of	Lock ID:	0	
fion:	Pump/TUBE A. Diameter of	Lock ID:	0	
og: —A →	Pump / TUBE A. Diameter of		,	
<u>-A</u> →	A. Diameter of	Weli		
	1	Well	:	
OP	ī Į		1025	inches
	P Well Depth I	Measured	13.70	
	C. Depth to Wa	ter	9.70	feet
	D. Length of W	ater Column (calc		feet
,	Conversion I	actor		
:VCL	Well Volume	(calculated)	_e 24	gallons
	No. of Volum	es to be Evacuate	ed <u>3</u>	
	Total Volume	to be Evacuated	. 72	gallons
	Actual Volum	e Evacuated	2.5	gallons
LT	E. Installed Wel	Depth (if known)	N/A	_ feet
	F. Depth of Silt	calculated	N/A	feet
	Final	%	Recharge:	
	Sampling	ln	itial Denth to Water	9.70 feet
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	1000
			charge Depth to Water	10, 49 feet
			ad water column height	92 "
7.63				<u> 70 %</u>
858	894		t water oblains neight	
	n/a		vation(Top of Casing)	n/a feet
	n/a			n/a feet
			impler:	•
	858 n/a n/a B110n~	D. Length of Wall Volume No. of Volume No. of Volume Actual Volume Actual Volume F. Depth of Silt (tial acuation	D. Length of Water Column (calculater Conversion Factor Well Volume (calculated) No. of Volumes to be Evacuated Total Volume to be Evacuated Actual Volume Evacuated E. Installed Well Depth (if known) F. Depth of Silt (calculated Sampling In Sampling In Sampling In S/15/07 1235 Re n/a n/a mV 17.9 C 2n 7.63 7.46 SU 1s 864 umh n/a NTU Elemontal States Installed Ins	D. Length of Water Column (calculated) Conversion Factor Well Volume (calculated) No. of Volumes to be Evacuated Total Volume to be Evacuated Actual Volume Evacuated F. Depth of Silt (calculated) N/A F. Depth of Silt (calculated) N/A Final Sampling Solution Solution Solution Solution 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 18.5 19.6

Upstate La	aboratories, Inc	. Ground water Fie mental Consultants	ld Log File:	TS-30-01 Revise	d: 2/97
Project:		Annual Perry		o. (enter by lab)	
Well ID.:	SCRW			o. (Cinci by lab)	
Condition of	Well:	Goob	Locked:	· NO	
Method of Ev	acuation:	MILLO Duge	Lock ID:	NO	
Method of Sa	impling:	Tune/Pump			
† †	← A →	A. Diameter o	f Well	1.25	inches
C		B. Well Depth	Measured	10.65	feet
.		C. Depth to W	ater	5.72	feet
		D. Length of W	√ater Column (calcul	ated) 4.93	feet
В ▲	WATER LEVEL	Conversion	Factor	0.06	- u u u
		Well Volum	e (calculated)	630	gallons
		No. of Volum	nes to be Evacuated	33	
		Total Volum	e to be Evacuated	90	gallons
* * * *		Actual Volur	me Evacuated	DRYQ . d!	gallons
F	SILT	E. Installed We	ell Depth (if known)	N/A	feet
		F. Depth of Silt	·	N/A	feet
F. (.)				<u></u>	
Field Measurements	Initial Evacuation	Final Sampling	% I	Recharge:	•
Date	5/15/07	5/15/07	Init	ial Depth to Water _	5.72 feet
Time	645	1655		harge Depth to Water	8.50 feet
EH Temperature	n/a 17,4		mV	1	/ 🗀
pH	7,19	7,27		water column height water column height	6/ %
Specific Cond.	886	880	umh	Tracel Column Height	
Turbidity Dissolved Oxygen	n/a n/a	n/a	· ·	ation(Top of Casing)	n/a feet
Appearance	Clarky Spirat Odor	BLACKISH / SH	 ,	V. Elevation= .Elevation =Top of Case Ele	n/a feet ev-Total Depth
Weather:	30F°, Surch was B	REER	San	npler:	
			Sigr	Pete Rum	delly ULI
				HH (

Upstate Laboratories, Inc. 6034 Corporate Drive E. Syracuse New York 13057 (315) 437 0255

Chain of Custody Record

(310) 437 0200	Fax 437 1209	503													
Client		Project #/ Project Name	Name				F		F		\mid	-			
Delta Environmental Consultants	ultants	Semi Annual Perr	al Perry			Ž	····							í	
Client Contact:	Phone #	Location (clty/state) Address	e) Address			<u>;</u>						-		Kemarks	
Anthony Savino	914-765-0258	Perry, NY				Ĵ						-			
Sample ID	Date	Time	Matrix	GRAB or COMP	ULI Internal Use Only	Conta					 -				
7/12	L	4			358-512.07	iners	1) 2)	3)	4)	ဖ်	7	6 (8	10)		
DVE - 101	5/15/07	1730	Water	Grab	1	7	×		_		\vdash	╄	+-		Γ
DVE - 102	_	1745	Water	Grab	3	L	×				╁	\perp			T
DVE - 104		1435	Water	Grab	2-7	2	×	L	╁		\dagger	+			T
DVE - 106		1455	Water	Grab	17	1	 ×		1		+-	_			
DVE - 107		1335	Water	Grab	<u> </u>	0	 ×		-		+	\bot			T
DVE - 108		1625.	Water	Grab		١	 ×	_	-		-	-			
DVE - 109		1525	Water	Grab	9 []	10	 ×	1	+		+	\perp	1	***************************************	
MW - 105		1620	Water	Grab	- 0		 ×	\bot	+-		+	- -			T
<u>MW - 106</u>		0h51	Water	Grab	0		 ×		+		+	+	1		T
MW - 107		13.50	Water	Grab		1 0	(>		-		-				Ī
MW - 108		1215	Water	Grab		10	 ×		_		+				
CSW - 01		1355	Water	Grab		1	 ×		\perp		1			HART COLUMN	
CSW - 06		1235	Water	Grab	7	1 0	 ×		+		+	1			
SCRW - 05		14.65	Water	Grah	77	1,	 		_		+	1	+		T
Trip Blank (JLI - 200702487	777		Water)		ų ,	< >		+		+]	\dagger		
ر چتا					4	-	<u> </u>		+		+		+		\neg
Parameter and Method	Samp	Sample bottle:	Type	Size	Preservative (Sampled by (Print)	Same	- Pa	/Print	_ _		\dashv				
1) EPA 8021 + MEK (low level)			Glass	(2) 40 ml	1:1 HCL			Pete	(: ''''t) Pete Rundell	<u>—</u>			<u>-</u>	Mairie oi Courier	
2)						Company:	any:	_	Upstate Laboratories Inc	Lab	orato	ries I		+	
(5)						Relinc	Relinquished by (Slap)	S S	Sept.	۲	ate	i u	+-	Received/hw (eign)	T
4)						\'		M	Ñ	Ó	10		<u>'</u> ,	((() () () () () () () ()	
5)						H			A		5. T.	1230	왕 ,	1	
(9)						Reling	Misbed hyr/sign)		(ap)	<u> </u>) of ell	<u> </u>	0		T
(2)						-		÷	5	1 6	ָּעַ ד פֿ	<u> </u>	<u>८</u> บ	received by: (sign)	
8)						1				á' <u> </u>	11/2/2	J/4/ . 14/6	<u> </u>		
(6						Relin	Relinquished by (cian))./.k	200	†		1	- 0		1
10)						2			<u>.</u>	<u> </u>	ר מ ר	2 -		Rec'd for Lab by:	
		file		Date						<u>~</u>	<u>이</u> 펠	110 P1 44	\$	WIN MA	
Syracuse	Rochester		Buffalo		Albany	1	Binghamton	Į,		יי ב	$-\frac{1}{2}$	- 3	1	1 100	T
					Ž	<u>'</u>	200	<u>.</u>		-	ali Lav	rair Lawn (NJ)	_	•	_

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (866) 437-0255 * New Jersey (908) 892-1807

Mr. Mark Schumacher Delta Consultants 104 Jamesville Rd. Syracuse, NY 13214-

APR 02 2008

Monday, March 24, 2008

RE: Analytical Report:

Hanesboro, Perry, NY

Order No.: U0803243

Dear Mr. Mark Schumacher:

Upstate Laboratories, Inc. received 22 sample(s) on 3/12/2008 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES)INC.

Anthony J. Scale

President/CEO

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

Analytical Report

CLIENT:

Delta Consultants

Lab Order: Project:

U0803243

i i oject.

Hanesboro, Perry, NY

Lab ID:

U0803243-001

Date: 24-Mar-08

Client Sample ID: DVE-101

Collection Date: 3/11/2008 4:02:00 PM

Matrix: WATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/Ĺ	1	3/14/2008 6:48:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
4-Chlorotoluene	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Benzene	ND	0.50	μg/L	1	3/14/2008 6:48:00 PM
Bromobenzene	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Bromoform	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Bromomethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Chloroethane	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
Chloroform	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
Chloromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM

Аp	pr	ov	ed	By:
----	----	----	----	-----

AB

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 1 of 44

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order: U0803243

Project: Hanesboro, Perry, NY

Lab ID: U0803243-001

Date: 24-Mar-08

Client Sample ID: DVE-101

Collection Date: 3/11/2008 4:02:00 PM

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	iB		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
m.p-Xylene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Naphthalene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
o-Xylene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Styrene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
tert-Butylbenzene	ND	1.0	µg/L	1	3/14/2008 6:48:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Toluene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/14/2008 6:48:00 PM
OLATILES IN WATER (EXTRA COMPOL	JNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/14/2008 6:48:00 PM

Approved I	3y:	AB	Date:	3-24-08	Page 2 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant V	alue
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	ts
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recover	y limits

Analytical Report

CLIENT: Delta Consultants

U0803243

Lab Order: Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-002

Date: 24-Mar-08

Client Sample ID: DVE-104

Collection Date: 3/11/2008 2:21:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
Benzene	ND	0.50	μg/L	1	3/14/2008 7:32:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Bromoform	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
Bromomethane	ND	1,0	μg/L	1	3/14/2008 7:32:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Chloroethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Chloroform	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Chloromethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
cis-1,2-Dichloroethene	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM

Qualifier	's:

Approved By:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 3 of 44

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Delta Consultants

Lab Order: U080

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-002

Date: 24-Mar-08

Client Sample ID: DVE-104

Collection Date: 3/11/2008 2:21:00 PM

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	1B		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	µg/L	1	3/14/2008 7:32:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Naphthalene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
o-Xylene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Styrene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Toluene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/14/2008 7:32:00 PM
OLATILES IN WATER (EXTRA COMPO	JNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/14/2008 7:32:00 PM

Approved By:		<u> </u>	Date:	3-24-0Y Page 4 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ИD	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: DVE-106

Lab Order:

U0803243

Project:

Collection Date: 3/11/2008 2:35:00 PM

Date: 24-Mar-08

Hanesboro, Perry, NY

Lab ID:

U0803243-003

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	3/14/2008 8:15:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Benzene	ND	0.50	μg/L	1	3/14/2008 8:15:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Bromoform	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Bromomethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Chloroethane	ND	1.0	μg/L.	1	3/14/2008 8:15:00 PM
Chloroform	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Chloromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
cis-1,3-Dichloropropene	ND	1.0	. υ μg/L	1	3/14/2008 8:15:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM

Approved By:

Qualifiers:

AB

Low Level

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Not Detected at the Reporting Limit

Date: 3.24-08 Page 5 of 44

** Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits J

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-003

Date: 24-Mar-08

Client Sample ID: DVE-106

Collection Date: 3/11/2008 2:35:00 PM

Matrix: WATER

Analyses	Result	Limit Qւ	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Methylene chloride	ND	1.0	µg/L	1	3/14/2008 8:15:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
n-Propylbenzene	ND	1.0	µg/L	1	3/14/2008 8:15:00 PM
Naphthalene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
o-Xylene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Styrene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Toluene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/14/2008 8:15:00 PM
OLATILES IN WATER (EXTRA COMPOL	INDS)	SW8021	3		Analyst: LEF
2-Butanone	ND	10	µg/L	1	3/14/2008 8:15:00 PM

Approved B	y: _	A B
Qualifiers:	*	Low Level
	В	Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 6 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Client Sample ID: DVE-107

Collection Date: 3/11/2008 1:47:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-004

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	3/14/2008 8:58:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	3/14/2008 8:58:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
2-Chlorotoluene	ND	1.0	µg/L	1	3/14/2008 8:58:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Benzene	ND	0.50	μg/L	1	3/14/2008 8:58:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Bromoform	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Bromomethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Chloroethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Chloroform	1.1	1.0	μg/L	1	3/14/2008 8:58:00 PM
Chloromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM

Approved By:

Qualifiers: Low Level

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND

Date:

3-24-08

Page 7 of 44

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Lab Order: Delta Consultants

.

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-004

Date: 24-Mar-08

Client Sample ID: DVE-107

Collection Date: 3/11/2008 1:47:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Naphthalene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
o-Xylene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Styrene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Toluene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/14/2008 8:58:00 PM
Vinyl chloride	ND	1.0	µg/L	1	3/14/2008 8:58:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/14/2008 8:58:00 PM

Approved B	y:	AB.
Qualifiers:	*	Low Level
	ъ	A t. A.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 8 of 44

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

Lab ID:

CLIENT: Delta Consultants

Lab Order: U0803243

Project: Hanesboro, Perry, NY

U0803243-005

Client Sample ID: DVE-108

Collection Date: 3/11/2008 3:20:00 PM

Date: 24-Mar-08

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1.2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Benzene	ND	0.50	μg/L	1	3/14/2008 9:41:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Bromoform	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Bromomethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Chloroethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Chloroform	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Chloromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Dibromomethane	ND	1.0	µg/L	1	3/14/2008 9:41:00 PM

Approved By:

Qualifiers:

vel

Low Level

B Analyte detected in the associated Method Blank

AB

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 9 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: DVE-108

Lab Order:

U0803243

Collection Date: 3/11/2008 3:20:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-005

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Naphthalene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
o-Xylene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Styrene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Toluene	ND	1.0	µg/L	1	3/14/2008 9:41:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/14/2008 9:41:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/14/2008 9:41:00 PM

- Holding times for preparation or analysis exceeded
- Н
- Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

Page 10 of 44

- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: DVE-109

Lab Order:

U0803243

Collection Date: 3/11/2008 2:50:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-006

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	1B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1.2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1.2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
4-Chlorotoluene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 12:39:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Bromoform	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Dibromorethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Date:

3-24-08

Page 11 of 44

Value exceeds Maximum Contaminant Value

Value above quantitation range Ε

Analyte detected below quantitation limits J

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-006

Date: 24-Mar-08

Client Sample ID: DVE-109

Collection Date: 3/11/2008 2:50:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Ísopropylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
n-Butylbenzene	ND	1.0	µg/L	1	3/18/2008 12:39:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/18/2008 12:39:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 12:39:00 PM

Approved 1	By: _	AB	Date:	3-24-08 Page 12 of 44	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits	

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-007

Date: 24-Mar-08

Client Sample ID: MW-105

Collection Date: 3/11/2008 2:20:00 PM

Matrix: WATER

Analyses	Result	Limit Qı	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1-Dichloroethane	1.8	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
4-Isopropyltoluene	ND	1,0	μg/L	1	3/18/2008 1:22:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 1:22:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM

Approved By:
Qualifiers: *

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 13 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

I Analyte detected below quantitation limits

Analytical Report

CLIENT: Delta Consultants

ants Client Sample ID: MW-105

Lab Order: U0803243
Project: Hanesboro, Perry, NY

Collection Date: 3/11/2008 2:20:00 PM

Date: 24-Mar-08

Lab ID: U0803243-007

Matrix: WATER

Analyses	Result	Limit Q	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Naphthalene	ND	1.0	µg/L	1	3/18/2008 1:22:00 PM
o-Xylene	ND	1.0	µg/L	1	3/18/2008 1:22:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/18/2008 1:22:00 PM
VOLATILES IN WATER (EXTRA COMPO	JNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 1:22:00 PM

Approved By:
Qualifiers: *

Low Level

B Analyte detected in the associated Method Blank

AB

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 14 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-106

Lab Order:

U0803243

Collection Date: 3/11/2008 2:55:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-008

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	-	SW8021	B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1-Dichloroethane	17	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,1-Dichloropropene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2,3-Trichloropropane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2,4-Trimethylbenzene	73	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2-Dibromoethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2-Dichloroethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,2-Dichloropropane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,3-Dichlorobenzene	ND	5.0	µg/L	5	3/18/2008 2:03:00 PM
1,3-Dichloropropane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
2,2-Dichloropropane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
2-Chlorotoluene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
4-Chlorotoluene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
4-Isopropyltoluene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Benzene	ND	2,5	μg/L	5	3/18/2008 2:03:00 PM
Bromobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Bromochloromethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Bromodichloromethane	ND	5,0	hg/L	5	3/18/2008 2:03:00 PM
Bromoform	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Bromomethane	ND	5.0	hā\r ha\r	5	3/18/2008 2:03:00 PM
Carbon tetrachloride	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Chlorobenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Chloroethane	12	5.0	μg/L	5	3/18/2008 2:03:00 PM
Chloroform	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Chloromethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
cis-1,2-Dichloroethene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Dibromochloromethane	ND	5.0	μg/L μg/L	5	3/18/2008 2:03:00 PM
Dibromomethane	ND	5.0	hã/r hã/r	5	3/18/2008 2:03:00 PM

Approved By:

Qualifiers:

_AB

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 15 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-008

Date: 24-Mar-08

Client Sample ID: MW-106

Collection Date: 3/11/2008 2:55:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260)	SW802	21B		Analyst: LEF
Dichlorodifluoromethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Ethylbenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Hexachlorobutadiene	ND	5.0	µg/∟	5	3/18/2008 2:03:00 PM
Isopropylbenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
m,p-Xylene	ИD	5.0	μg/L	5	3/18/2008 2:03:00 PM
Methylene chloride	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
n-Butylbenzene	6.4	5.0	μg/L	5	3/18/2008 2:03:00 PM
n-Propylbenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Naphthalene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
o-Xylene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
sec-Butylbenzene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Styrene	ND	5.0	µg/L	5	3/18/2008 2:03:00 PM
tert-Butylbenzene	ND	5.0	µg/L	5	3/18/2008 2:03:00 PM
Tetrachloroethene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Toluene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
trans-1,2-Dichloroethene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Trichloroethene	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
Vinyl chloride	ND	5.0	μg/L	5	3/18/2008 2:03:00 PM
NOTES:				J	5/ 10/2000 2.03.00 PW
The reporting limits were raised due to the hi	igh concentration	of target com	pounds.		
OLATILES IN WATER (EXTRA COMPO	OUNDS)	SW8021	B		Analyst: LEF
2-Butanone	ND	50	μg/L	5	3/18/2008 2:03:00 PM

Approved :	By: _	AB	Date:	3-24-08	Page 16 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminar	•
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
		Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation li	mits
	ND	Not Detected at the Reporting Limit		Spike Recovery outside accepted reco	

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-107

Lab Order:

U0803243

Collection Date: 3/11/2008 1:30:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-009

Matrix: WATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,1,1-Trichloroethane	16	2.0	µg/L	2	3/18/2008 2:44:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,1-Dichloroethane	20	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2-Dibromoethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2-Dichloroethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	2	3/18/2008 2:44:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
2-Chlorotoluene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
4-Chlorotoluene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Benzene	ND	1.0	μg/L	2	3/18/2008 2:44:00 PM
Bromobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Bromochloromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Bromodichloromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Bromoform	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Bromomethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Carbon tetrachloride	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Chlorobenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Chloroethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Chloroform	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Chloromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
cis-1,2-Dichloroethene	ND	2.0	µg/L	2	3/18/2008 2:44:00 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Dibromochloromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Dibromomethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM

Approved By:

Qualifiers:

_AB

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 2

3-24-08

Page 17 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Lab Order:

Delta Consultants

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-009

Date: 24-Mar-08

Client Sample ID: MW-107

Collection Date: 3/11/2008 1:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Ethylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Isopropylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
m,p-Xylene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Methylene chloride	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
n-Butylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
n-Propylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Naphthalene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
o-Xylene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
sec-Butylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Styrene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
tert-Butylbenzene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Tetrachloroethene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Toluene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
trans-1,2-Dichloroethene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Trichloroethene	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
Vinyl chloride	ND	2.0	μg/L	2	3/18/2008 2:44:00 PM
NOTES:					
The reporting limits were raised due to the h	nigh concentration	n of target com	oounds.		
VOLATILES IN WATER (EXTRA COMP	OUNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	20	μg/L	2	3/18/2008 2:44:00 PM

Approved I	Ву: _	AB	Date:	3-24-08 Page 18 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-108

Lab Order:

U0803243

Collection Date: 3/11/2008 12:30:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-010

Matrix: WATER

Analyses	Result	Limit Qua	I Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260	SW8021B	,		Analyst: LEF	
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2-Dibromoethane	ND	1.0	µg/L	1	3/18/2008 3;29:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
2,2-Dichloropropane	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 3:29:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Bromochioromethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Bromodichloromethane	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Chloroethane	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM

Approved By:

Qualifiers:

Low Level

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND

Date: 3-24-08

Page 19 of 44

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

Analytical Report

Delta Consultants

Lab Order:

CLIENT:

Project:

Lab ID:

U0803243

Hanesboro, Perry, NY

U0803243-010

Date: 24-Mar-08

Client Sample ID: MW-108

Collection Date: 3/11/2008 12:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Isopropylbenzene	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 3:29:00 PM
Vinyl chloride	ND	1.0	µg/L	1	3/18/2008 3:29:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	, ND	10	μg/L	1	3/18/2008 3:29:00 PM

Approved I	3y:	<i>A</i> 12	Date:	3-2.4-08 Page 20 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
-	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order: U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-011

Date: 24-Mar-08

Client Sample ID: CSW-01

Collection Date: 3/11/2008 2:02:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B		•	Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,1,1-Trichloroethane	6.3	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,1-Dichloroethane	8.2	1.0	µg/L	1	3/18/2008 4:12:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2,3-Trichloropropane	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,3,5-Trimethylbenzeпе	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 4:12:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Carbon tetrachloride	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
Chlorobenzene	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
Chloroethane	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM

App	roved	By:
-----	-------	-----

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 21 of 44

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

U0803243-011

Client Sample ID: CSW-01

Lab Order:

U0803243

Collection Date: 3/11/2008 2:02:00 PM

Date: 24-Mar-08

Project: Lab ID: Hanesboro, Perry, NY

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Isopropylbenzene	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
n-Butylbenžene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Naphthalene	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
trans-1,2-Dichloroethene	ND	1.0	µg/L	1	3/18/2008 4:12:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/18/2008 4:12:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021E	}		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 4:12:00 PM

Approved	By:	AB	Date:	3-24-08
Qualifiers:	*	Low Level	**	Value exceeds Maximum Co
•	В	Analyte detected in the associated Method Blank	Е	Value above quantitation ran
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quan

ND Not Detected at the Reporting Limit

- Maximum Contaminant Value
- antitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Page 22 of 44

Analytical Report

CLIENT: Lab Order: Delta Consultants

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-012

Date: 24-Mar-08

Client Sample ID: CSW-06

Collection Date: 3/11/2008 1:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1.2,3-Trichloropropane	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,2-Dibromoethane	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1.2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
2.2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 4:55:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Chloroform	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM

Qualifiers	š:

Approved By:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

AB

ND Not Detected at the Reporting Limit

Date: 3-24-08

Page 23 of 44

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-012

Date: 24-Mar-08

Client Sample ID: CSW-06

Collection Date: 3/11/2008 1:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	3		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
m,p-Xylene	ND	1.0	µg/L	1	3/18/2008 4:55:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
Trichlorofluoromethane	NĐ	1.0	μg/L	1	3/18/2008 4:55:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/18/2008 4:55:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW80211	3		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 4:55:00 PM

Approved B	y: _	AB	Date:	3-24-08 Page 24 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Client Sample ID: SCRW-05

Collection Date: 3/11/2008 3:37:00 PM

Date: 24-Mar-08

Project: Lab ID:

Hanesboro, Perry, NY

U0803243-013

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,1,1-Trichloroethane	10	10	μg/L	10	3/18/2008 5:37:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,1-Dichloroethane	94	10	μg/L	10	3/18/2008 5:37:00 PM
1,1-Dichloroethene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,1-Dichloropropene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2,3-Trichlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2,3-Trichloropropane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2,4-Trimethylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2-Dibromoethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2-Dichloroethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,2-Dichloropropane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,3,5-Trimethylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,3-Dichloropropane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
2,2-Dichloropropane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
2-Chlorotoluene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
4-Chlorotoluene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
4-Isopropyitoluene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Benzene	ND	5.0	μg/L	10	3/18/2008 5:37:00 PM
Bromobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Bromochloromethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Bromodichloromethane	ND	10	µg/L	10	3/18/2008 5:37:00 PM
Bromoform	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Bromomethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Carbon tetrachloride	ND	10	µg/L	10	3/18/2008 5:37:00 PM
Chlorobenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Chloroethane	10	10	μg/L	10	3/18/2008 5:37:00 PM
Chloroform	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Chloromethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
cis-1,2-Dichloroethene	40	10	μg/L	10	3/18/2008 5:37:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Dibromochloromethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Dibromomethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM

Approved By: Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

AB

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Date: 3-24-08 Page 25 of 44

Value exceeds Maximum Contaminant Value

Value above quantitation range Е

Analyte detected below quantitation limits

Analytical Report

Delta Consultants

U0803243-013

Client Sample ID: SCRW-05

CLIENT: Lab Order:

U0803243

Collection Date: 3/11/2008 3:37:00 PM

Date: 24-Mar-08

Project: Lab ID: Hanesboro, Perry, NY

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
Dichlorodifluoromethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Ethylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Hexachlorobutadiene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Isopropylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
m,p-Xylene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Methylene chloride	ND	10	μg/L	10	3/18/2008 5:37:00 PM
n-Butylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
n-Propylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Naphthalene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
o-Xylene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
sec-Butylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Styrene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
tert-Butylbenzene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Tetrachloroethene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Toluene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Trichloroethene	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Trichlorofluoromethane	ND	10	μg/L	10	3/18/2008 5:37:00 PM
Vinyl chloride	22	10	μg/L	10	3/18/2008 5:37:00 PM
NOTES:					
The reporting limits were raised due to the h	igh concentration	n of target compo	ınds.		
VOLATILES IN WATER (EXTRA COMPO	OUNDS)	SW8021B			Analyst: LEF
2-Butanone	ND	100	μg/L	10	3/18/2008 5:37:00 PM

Approved B	y: _	AB	Date:	3-24-08	Page 26 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant	l Value
	R	Analyte detected in the associated Method Blank	E	Value above quantitation range	

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: DVE-103

Lab Order:

U0803243

U0803243-014

Collection Date: 3/11/2008 11:40:00 AM

Date: 24-Mar-08

Project: Lab ID: Hanesboro, Perry, NY

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/Ľ	1	3/18/2008 6:20:00 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,1-Dichloropropene	ND	1.0	μ g/ L	1	3/18/2008 6:20:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	µg/L	1	3/18/2008 6:20:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
4-Chlorotoluene	ND	1.0	µg/L	1	3/18/2008 6:20:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 6:20:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM

Approved By: Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

AB

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

Date: 3-24-08 Page 27 of 44

Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits J

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: DVE-103

Lab Order:

U0803243

Project:

Collection Date: 3/11/2008 11:40:00 AM

Date: 24-Mar-08

Lab ID:

Hanesboro, Perry, NY U0803243-014

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021E	.		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
n-Butylbenzene	ND	1.0	µg/L	1	3/18/2008 6:20:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 6;20:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 6:20:00 PM
Vinyl chloride	ND	1.0	µg/L	1	3/18/2008 6:20:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	3		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 6:20:00 PM

Approved By: Low Level Qualifiers: Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Date: 3-24-08

Page 28 of 44

Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order: U

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-015

Date: 24-Mar-08

Client Sample ID: DVE-105

Collection Date: 3/11/2008 12:50:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
1.4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 7:03:00 PM
Bromobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
cis-1,2-Dichloroethene	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM

Approved By:
Qualifiers: *

Low Level

B Analyte detected in the associated Method Blank

A-B

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 29 of 44

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT: Lab Order: Delta Consultants

U0803243

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-015

Date: 24-Mar-08

Client Sample ID: DVE-105

Collection Date: 3/11/2008 12:50:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Methylene chloride	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Styrene	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Tetrachloroethene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
Trichloroethene	ND	1.0	µg/L	1	3/18/2008 7:03:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
Vinyl chtoride	ND	1.0	μg/L	1	3/18/2008 7:03:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 7:03:00 PM

Approved	Ву: _	AB
Qualifiers:	*	Low Level
	В	Analyte detected in the associated Method Blank
	Н	Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit

3-24-08 Date:

Page 30 of 44

- Value exceeds Maximum Contaminant Value
- Value above quantitation range E
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-101

Lab Order:

U0803243

Project:

Collection Date: 3/11/2008 2:40:00 PM

Date: 24-Mar-08

Hanesboro, Perry, NY

Lab ID:

U0803243-016

Matrix: WATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1,1-Trichloroethane	6.7	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1-Dichloroethane	2.8	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Benzene	ND	0.50	μg/L	1	3/18/2008 11:21:00 PM
Bromobenzene	ИD	1.0	μg/L	1	3/18/2008 11:21:00 PM
Bromochloromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Bromoform	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Bromomethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Carbon tetrachloride	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Chlorobenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Chloroethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Chloroform	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Chloromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Dibromomethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM

Approved By:

AB

Date:

Page 31 of 44

- Qualifiers:
- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

- 3-24-08 Value exceeds Maximum Contaminant Value
- Value above quantitation range E
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT:

Delta Consultants

U0803243-016

Client Sample ID: MW-101

Lab Order:

U0803243

Collection Date: 3/11/2008 2:40:00 PM

Project: Lab ID:

Hanesboro, Perry, NY

Matrix: WATER

Date: 24-Mar-08

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
m,p-Xylene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Methylene chloride	ND	1,0	μg/L	1	3/18/2008 11:21:00 PM
n-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Naphthalene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
o-Xylene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Styrene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Tetrachloroethene	3.9	1.0	μg/L	1	3/18/2008 11:21:00 PM
Toluene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Trichloroethene	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
Vinyl chloride	ND	1.0	μg/L	1	3/18/2008 11:21:00 PM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/18/2008 11:21:00 PM

Approved By: Qualifiers:

Low Level

В Analyte detected in the associated Method Blank

AB

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Date:

3-24-08

Page 32 of 44

Value exceeds Maximum Contaminant Value

Value above quantitation range E

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-102

Lab Order:

U0803243

Collection Date: 3/11/2008 2:45:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-017

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	3/19/2008 12:04:00 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	3/19/2008 12:04:00 AM
Benzene	ND	0.50	μg/L	1	3/19/2008 12:04:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Bromoform	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Chloroethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Chloroform	1.6	1.0	μg/L	1	3/19/2008 12:04:00 AM
Chloromethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Dibromomethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM

Approved By:

Qualifiers:

AB

Low Level

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit Date:

3-24-08

Page 33 of 44

Value exceeds Maximum Contaminant Value

Value above quantitation range Е

Analyte detected below quantitation limits J

Analytical Report

CLIENT:

Delta Consultants

U0803243

Lab Order: Project:

00003243

Lab ID:

Hanesboro, Perry, NY

U0803243-017

Date: 24-Mar-08

Client Sample ID: MW-102

Collection Date: 3/11/2008 2:45:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Isopropylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
n-Propylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Naphthalene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
o-Xylene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
sec-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Styrene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Tetrachloroethene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Toluene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	3/19/2008 12:04:00 AM
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 12:04:00 AM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF
2-Butanone	, ND	10	μg/L	1	3/19/2008 12:04:00 AM

Approved By:

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 34 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT: Lab Order: Delta Consultants

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-018

Date: 24-Mar-08

Client Sample ID: MW-103

Collection Date: 3/11/2008 2:25:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	3/19/2008 12:47:00 AN
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1.2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AN
Benzene	ND	0.50	μg/L	1	3/19/2008 12:47:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Bromoform	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 A
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 All
Chloroethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
Chloroform	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
Chloromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:47:00 Al
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af
Dibromomethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 Af

Approved By:

Qualifiers:

_A/:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 35 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Client Sample ID: MW-103

Collection Date: 3/11/2008 2:25:00 PM

Date: 24-Mar-08

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-018

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	IB		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Isopropylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
n-Propylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Naphthalene	ND	1,0	μg/L	1	3/19/2008 12:47:00 AM
o-Xylene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
sec-Butylbenzene	ND	1.0	µg/L	1	3/19/2008 12:47:00 AM
Styrene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Tetrachloroethene	2.6	1.0	μg/L	1	3/19/2008 12:47:00 AM
Toluene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 12:47:00 AM
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW802	1B		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/19/2008 12:47:00 AM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

AB

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

Date:

3-24-08

Page 36 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits J

Analytical Report

CLIENT:

Delta Consultants

Lab Order: U0803

U0803243

Project: Lab ID: Hanesboro, Perry, NY

U0803243-019

Date: 24-Mar-08

Client Sample ID: MW-109

Collection Date: 3/11/2008 12:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		\$W8021B			Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2-Dibromo-3-chloropropane	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1.2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
Benzene	ND	0.50	μg/L	1	3/19/2008 1:30:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
Bromoform	ND	1.0	µg/L	1	3/19/2008 1:30:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Chloroethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Chloroform	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Chloromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN
Dibromomethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AN

Approved By:
Qualifiers: *

. . .

Low Level

B Analyte detected in the associated Method Blank

AB

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 37 of 44

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

Client Sample ID: MW-109

Lab Order:

U0803243

Project:

Collection Date: 3/11/2008 12:15:00 PM

Date: 24-Mar-08

Lab ID:

Hanesboro, Perry, NY U0803243-019

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
EPA 8021 LIST BY EPA METHOD 8260		SW8021B			Analyst: LEF	
Dichlorodiffuoromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Hexachlorobutadiene	ND	1.0	µg/L_	1	3/19/2008 1:30:00 AM	
Isopropylbenzene	ND	1.0	μg/Ľ	1	3/19/2008 1:30:00 AM	
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
n-Propylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Naphthalene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
o-Xylene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
sec-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Styrene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Tetrachloroethene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Toluene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
trans-1,2-Dichloroethene	ND	1,0	μg/L	1	3/19/2008 1:30:00 AM	
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Trichlorofluoromethane	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 1:30:00 AM	
VOLATILES IN WATER (EXTRA COMPO	UNDS)	SW8021	В		Analyst: LEF	
2-Butanone	ND	10	μg/L	1	3/19/2008 1:30:00 AM	

Approved 2	Ву:	AB
Qualifiers:	*	Low Level
	В	Analyte detected in the associated Method Blank
	Н	Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 38 of 44 Date: 3-24-08 Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

Analytical Report

CLIENT: Lab Order: Delta Consultants

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-020

Date: 24-Mar-08

Client Sample ID: MW-201

Collection Date: 3/11/2008 2:38:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	nal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	3/19/2008 2:13:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
1,3-Dichloropropane	ND	1,0	μg/L	1	3/19/2008 2:13:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Benzene	ND	0.50	μg/L	1	3/19/2008 2:13:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Bromodichloromethane	ND	1.0	µg/L	1	3/19/2008 2:13:00 AM
Bromoform	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Chloroethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Chloroform	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Chloromethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
cis-1,2-Dichloroethene	ND	1.0	µg/L	1	3/19/2008 2:13:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Dibromomethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM

Approved By:

Qualifiers:

AB

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

324-08

Page 39 of 44

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT: Delta Consultants

Lab Order:

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-020

Date: 24-Mar-08

Client Sample ID: MW-201

Collection Date: 3/11/2008 2:38:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80211	3		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Isopropylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
n-Propylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Naphthalene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
o-Xylene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
sec-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Styrene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Tetrachloroethene	ND	1.0	µg/L	1	3/19/2008 2:13:00 AM
Toluene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 2:13:00 AM
VOLATILES IN WATER (EXTRA COMPO	OUNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/19/2008 2:13:00 AM

Approved By: ___

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 3

3-24-08

Page 40 of 44

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

U0803243

Client Sample ID: MW-202

Lab Order:

Hanesboro, Perry, NY

Project: Lab ID:

U0803243-021

Matrix: WATER

Date: 24-Mar-08

Collection Date: 3/11/2008 2:27:00 PM

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW8021	В		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Benzene	ND	0.50	μg/L	1	3/19/2008 2:56:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Bromoform	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Chloroethane	ΝD	1.0	μg/L	1	3/19/2008 2:56:00 AM
Chloroform	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Chloromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Dibromomethane	ND	1.0	µg/L	1	3/19/2008 2:56:00 AM

Approved By:

Qualifiers:

Low Level

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date:

3-24-08

Page 41 of 44

Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

J Analyte detected below quantitation limits

Analytical Report

CLIENT:

Delta Consultants

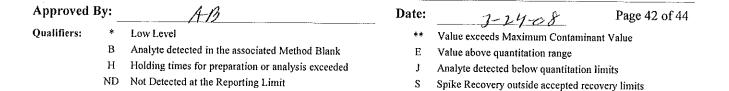
Lab Order:

U0803243

Project: Lab ID:

Hanesboro, Perry, NY

U0803243-021


Date: 24-Mar-08

Client Sample ID: MW-202

Collection Date: 3/11/2008 2:27:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8	3260	SW802	1B		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Isopropylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
n-Propylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Naphthalene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
o-Xylene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
sec-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Styrene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Tetrachloroethene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Toluene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 2:56:00 AM
OLATILES IN WATER (EXTRA CO	MPOUNDS)	SW8021	В		Analyst: LEF
2-Butanone	ND	10	μg/L	1	3/19/2008 2:56:00 AM

Analytical Report

CLIENT:

Delta Consultants

Lab Order:

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-022

Date: 24-Mar-08

Client Sample ID: ULI Trip Blank 20080117A

Collection Date: 3/11/2008

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW80	21B		Analyst: LEF
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	3/19/2008 3:40:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/Ľ	1	3/19/2008 3:40:00 AM
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2,3-Trichloropropane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2-Dibromo-3-chloropropane	ND	1,0	μg/L	1	3/19/2008 3:40:00 AM
1,2-Dibromoethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	3/19/2008 3:40:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
2,2-Dichloropropane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Benzene	ND	0.50	μg/L	1	3/19/2008 3:40:00 AM
Bromobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Bromochloromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Bromoform	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Bromomethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Carbon tetrachloride	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Chlorobenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Chloroethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Chloroform	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Chloromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
cis-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Dibromochloromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Dibromomethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM

Approved By:

Qualifiers:

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

3-24-08

Page 43 of 44

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: Delta Consultants

Lab Order:

U0803243

Project:

Hanesboro, Perry, NY

Lab ID:

U0803243-022

Date: 24-Mar-08

Client Sample ID: ULI Trip Blank 20080117A

Collection Date: 3/11/2008

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
EPA 8021 LIST BY EPA METHOD 8260		SW802	1B		Analyst: LEF
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Isopropyibenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
m,p-Xylene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Methylene chloride	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
n-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
n-Propylbenzene	ND	1,0	μg/L	1	3/19/2008 3:40:00 AM
Naphthalene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
o-Xylene	ND	1.0	µg/L	1	3/19/2008 3:40:00 AM
sec-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Styrene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Tetrachloroethene	ND	1.0	ha\r	1	3/19/2008 3:40:00 AM
Toluene	ND	1.0	μg/L	, 1	3/19/2008 3:40:00 AM
trans-1,2-Dichloroethene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Trichloroethene	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
Vinyl chloride	ND	1.0	μg/L	1	3/19/2008 3:40:00 AM
OLATILEO IN MATER (EVER				•	3/13/2006 3:40:00 AW
OLATILES IN WATER (EXTRA COMPO		SW8021	В		Analyst: LEF
2-Butanone	ND	10	µg/L	1	3/19/2008 3:40:00 AM

Approved	By: _	AB	Date:	3-24-08	Page 44 of 44
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contamina	ant Value
	В	Analyte detected in the associated Method Blank		Value above quantitation range	
		Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation	limits
	ND	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted rec	

	•						**************************************	
Opsiate Laboratories, Inc. 6034 Corporate Drive E. Syracuse New York 13057 (315) 437 0255	IOTIES, 11 se New York 130 Fax 437 1209	nc. 3057			Chain	Chain of Custody Record	ecora	
Client:	1	Project #/ Project Name	ame					
Delta Consultants		Hanesboro, Perry, NY	Perry, NY			No.		Remarks
Client Contact:	Phone #	Location (city/state) Address) Address			-		
Mark Schumacher	315-445-0224	Perry, NY				of.		-
Sample ID	Date	Time	Matrix	GRAB or COMP	ULI Internal Use Only	Conta (1) 2) 3) 4) 5) 6	6) 7) 8) 9) 10)	
DVE - 101	3/11/08	kg 1	Water	Grab		×		
DVE - 102	NOSAMP	27	Water	Grab		×		Coldust Octors
DVE - 104		1621	Water	Grab	Ş	2 X		
DVE - 106	-	1435	Water	Grab	-3	2 X		
DVE - 107		1347	Water	Grab	7			
DVE - 108		1520	Water	Grab	5	2 X		
DVE - 109		1450	Water	Grab	مار			
MW - 105		1420	Water	Grab		2 X		
MW - 106		1 455	Water	Grab	8-	\Box		
MW - 107		1330	Water	Grab	32	X		
MW - 108		1250	Water	Grab	01-			
CSW - 01		1402	Water	Grab		2 X		
CSW - 06		1315	Water	Grab	C -	2 X		
SCRW - 05	—	1537	Water	Grab	S1~	2 X		
And the second s								
Parameter and Method	Sam	Sample bottle:	Туре	Size	Į.	Sampled by (Print) Peter Rudent /6457	m&11/645T	Name of Courier
2)			Gidso	2 (40 IIII)	1.1 1701	Company: Upstate	المstate Laboratories	
3)						Rel/hgulshed by:(sign)	Date Time	Received by: (sign)
5)							3/2/ 1508	
6)						Relinquished by:(sign)	Date Time	Received by: (sign)
7						•		(
8)								
9)						Relinquished by:(sign)	Date Time	Rec'd_fgrJ_ab by:
10)							3021 801218	X _
900000	Dashasta	file	D. #25	Date	All			
Sylacuse	Nocilestei		builaio		Albany	Bingnamion	Fair Lawn (NJ)	delta ann coc 1 2008

Upstate Laboratories, Inc. 6034 Corporate Drive E. Syracusė New York 13057 (315) 437 0255 Fax 437 1209

Chain of Custody Record

Binghamton) Fair Lawn (NJ) delta ann coc 2 2008	Bing	Albany		Buffalo		Rochester	sylacuse
というで大二)		Date		file		
1 18	-						10)
	linguis	7					9)
							8)
Relinquished by: (sign) Date Time Received by: (sign)	dinqui	7					7)
11/4 508	X	7					5)
Date Time Received by: (sign)	Kelinga:						4)
y: Upstate Laboratories	Company:	200					3)
		1:1 HCL	2 (40 ml)	Glass			2)
Sampled by (Print) Day 1 Name of Courier	ample	Preservative S	Size	Type	Sample bottle:	Samp	1) EPA 8260 (8021 List)
							Darameter and Mathed
(20001174)	1 ×	ري س			(30/11/5	11 P Cici IIX (4 1 F 13)
							Trin Blank (17) 10.A
	2 ×	-21	Grab	Water	1447	ス 三 原	1111 EOF
	2 ×	20	Grab	water	35 20	2111/2	N/N/ 202
Coold vot location	×		Grab	Water	WPC6	~~	MW - 201
344	2 ×	-19	Grab	Water	19 15	. 7	MW - 110
Coold in his	×		Grab	Water	WAG E	NO 54	M/M/ 100
	2 X	81-	Grab	Water	አማሪካ		NAVA - 100
	2 X		Grab	Water	1445		NAM - 10Z
	-	عا ٦	Grab	Water	1440		MW - 101
	-	()	Grab	Water	12 <i>50</i>		DVE - 105
1	2 X		Grab	Water	OH11 52471	3/11/08	1
2) 21 21 21 21 21 21 21 21 21 21 21 21 21	Conta	ULI Internal Use Only	GRAB or COMP	Matrix	200	Č	
	2			Moter	Time	מונגר	Sample ID
	h				Perry NY	315-445-0224	Mark Schumacher
Remarks	Ç) Address	Location (city/state) Address	Phone #	Client Contact:
	<u>-</u>	<u>.</u>		. Perry N	Hanesboro Perry NY		Delta Consultants
	$\frac{1}{2}$			Vame	Project #/ Project Name		Client:
					200	1 104 101 1	