The electronic version of this file/report should have the file name	ne:
--	-----

Type of document . Site Number . Y	Year-Month . File Year-Year or	Report name . pdf
letter	CorrespondenceFile	pdf
example: letter . Site Number . Yea	r-Month . CorrespondanceFile	Year-Year pdf
report. V00195 . 1999	8-05 Prélim Site As	sess Rpt pdf
example: report . Site Number . Yea	ar-Month . ReportName . pdf	; ;
if a non-foilable site: add ".nf.pdf"	' at end of file name	

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

ADDENDUM To The PRELIMINARY SITE ASSESSMENT REPORT.

For
THE MINERAL SPRINGS ROAD
FORMER MANUFACTURED GAS PLANT SITE
WEST SENECA, NEW YORK

Prepared For:

NATIONAL FUEL GAS DISTRIBUTION CORPORATION

10 Lafayette Square Buffalo, New York 14203

Prepared By:

REMEDIATION TECHNOLOGIES, INC.

1001 West Seneca Street Ithaca, New York 14850

RETEC Project No. 3-2075-680

May 5, 1998.

ADDENDUM To The PRELIMINARY SITE ASSESSMENT REPORT

For THE MINERAL SPRINGS ROAD FORMER MANUFACTURED GAS PLANT SITE WEST SENECA, NEW YORK

Prepared For:

NATIONAL FUEL GAS DISTRIBUTION CORPORATION

10 Lafayette Square Buffalo, New York 14203

Prepared By:

REMEDIATION TECHNOLOGIES, INC.

1001 West Seneca Street Ithaca, New York 14850

RETEC Project No. 3-2075-680

May 5, 1998

Prepared By:

Reviewed By:

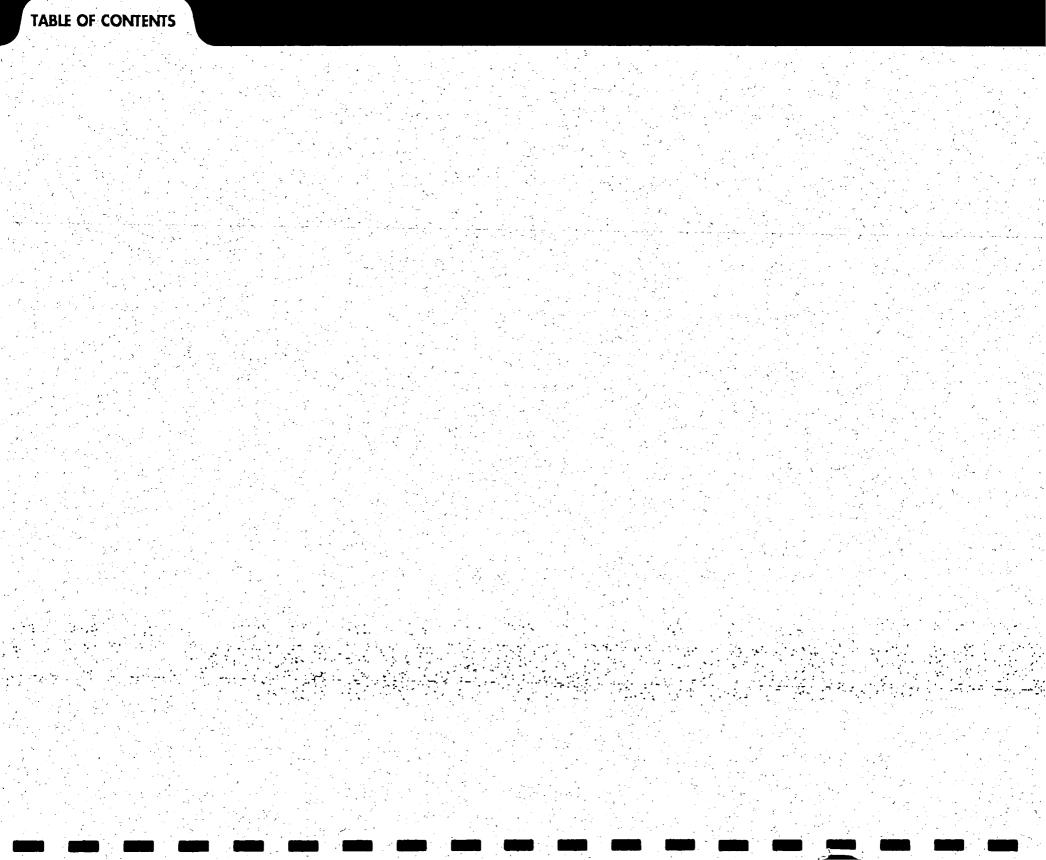
EXECUTIVE SUMMARY

Based on the recommendations of the Preliminary Site Assessment Report for the Mineral Springs Road Former Manufactured Gas Plant Site, RETEC conducted additional investigative work and IRMs at the site from December, 1997, through April, 1998.

The stratigraphy of the site was confirmed to consist of several feet of soil and fill, a nearly continuous upper confining clay layer (UCL), a groundwater bearing strata of silt, sand and gravel, and a lower confining clay layer (LCL).

Approximately 3.0 acres of subsurface purifier residuals and approximately 3.0 acres of subsurface NAPL impacted soils have been delineated above the UCL. Approximately 4.3 acres of subsurface NAPL impacted soils have been delineated between the UCL and LCL. Analytical results indicate that the NAPL materials are non-hazardous hydrocarbons except for the interior contents of Separator Pit 2 which is hazardous for benzene.

Groundwater concentrations at all perimeter wells were below detection limits for BTEX and PAHs. The majority of the on-site wells had detectable levels of BTEX, PAHs and total cyanide. Additional groundwater testing revealed low levels (less than 100 µg/L) of weak acid dissociable cyanide in all the wells previously tested for total cyanide. Groundwater is not known to be used for any purpose, on- or off-site. Though the regulatory limit, which is based on total cyanide, was exceeded in two of the three down gradient perimeter wells, it appears that the groundwater does not pose a risk to on- or off-site receptors. Groundwater elevations were found to be influenced by the eastern drainage ditch though the off-site flow direction was still to the northwest as anticipated.

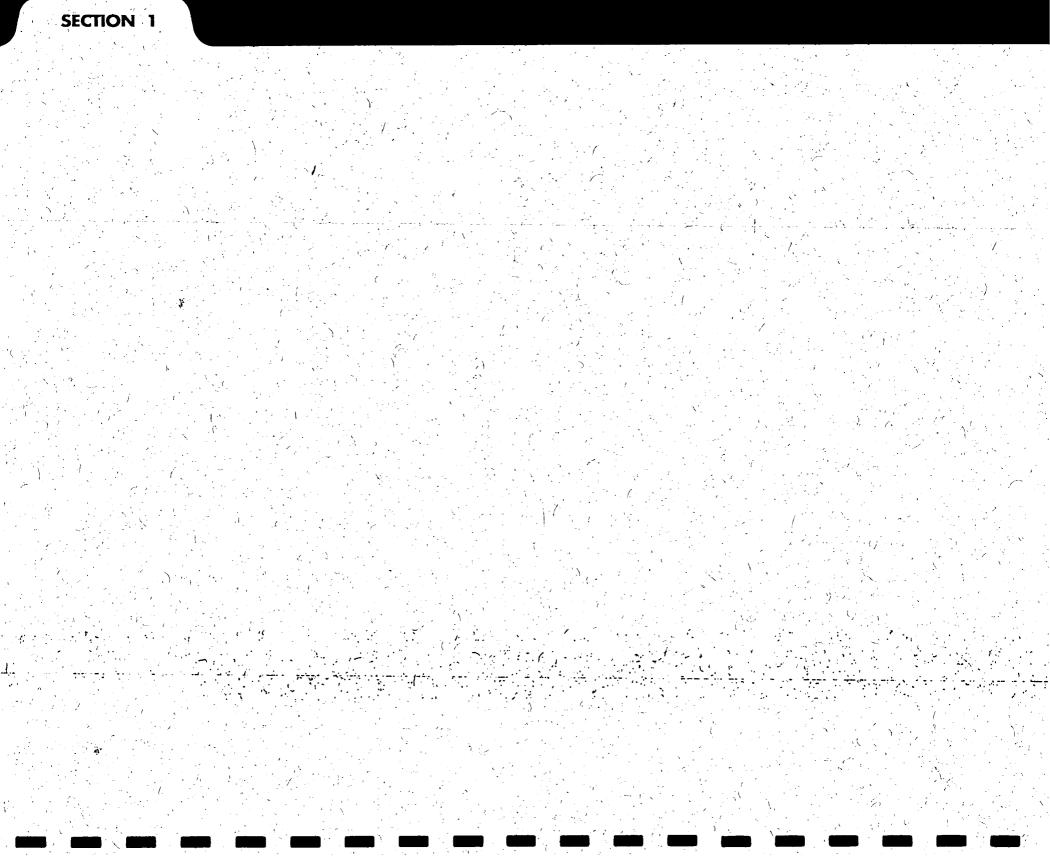

The hazardous materials from beneath the southwestern electric transmission tower (consisting of purifier box residuals and lead impacted soil) were excavated and disposed of off-site. Analysis of surface soil samples from under and around the remaining four towers identified isolated subareas of only slightly elevated lead concentrations (up to 890 mg/kg, total, and up to 0.24 µg/L, TCLP) below towers #2, #3 and #4. Lead concentrations are highest within the footprints of the towers and rapidly diminish radially. A composite sample of paint from the towers was 29% (290,000 mg/kg) lead.

Soil gas samples were analyzed from areas immediately adjacent to the routinely occupied building spaces of the site. The analytical results indicated the presence of MGP residuals but not in sufficient concentrations to warrant further action.

Except for on-site personnel performing excavations in impacted soil, the environmental risk associated with this site to on- and off-site receptors is negligible.

RETEC recommends the following remedial actions for the Mineral Springs Site:

- a. Excavation and removal of the tar boils identified in the PSA.
- b. Excavation and removal of the contents of Separator Pits 2 and 3 (approximately 400 cubic yards) and up to 1800 additional cubic yards of the most impacted surrounding soil from above the water table. This action is consistent with the work previously performed for Separator Pit 1.
- c. Though not an MGP related issue, NFG should pursue a dialog with Niagara Mohawk Power Corporation regarding future electric tower maintenance and the surface soils below the transmission towers which were found to have up to 890 mg/kg total lead.
- d. Excavate, cap or armor exposed purifier residuals near the Calais Avenue storm sewer inlet and around the Eastern Swale.
- e. Continue annual surface water and groundwater monitoring for a period of 5 years, after which time the need for continued monitoring will be reevaluated.
- f. Erect additional fence to further minimize site access by non-NFG personnel.
- g. Proceed with institutional controls and property deed restrictions relevant to NFG's intended/continued future use of the site as a service center.
- h. Due to the age, location and immobility of the NAPL residuals below the UCL, recovery is not recommended.
- i. Based on a review of environmental receptors and pathways, excavation and/or recovery of the remaining on-site MGP residuals is not recommended.


TABLE OF CONTENTS

SE	CTION	1	PAGE
EXE	ECUTIV	E SUMMARY	
1.0	INTRO	DUCTION	1-1
2.0	RESUL	TS OF ADDITIONAL SOIL BORINGS	2-1
	2.1	Scope of Work	
	2.2	Field Observations and Analytical Data	
		2.2.1 Revised Description of Site Stratigraphy	
		2.2.2 South of Building 3	
		2.2.3 Around Former Purifying Boxes	
		2.2.4 Separator Pits Area	
		2.2.5 Subsurface Hydrocarbon Area	
		2.2.6 Around Building 10	
		2.2.7 Eastern Gas Holder	
		2.2.8 South of Class D Stream	
	2.3	Summary of Findings	
3.0	RESUL	TS OF ADDITIONAL GROUNDWATER SAMPLING	3-1
	3.1	Scope of Work	3-1
	3.2	Results	
	3.3	Summary of Findings	
4.0	REVISI	ED EVALUATION OF POTENTIAL RISKS	4-1
	4.1	Site Setting	4-1
	4.2	Potential Sources, Migration Routes, Receptors and Exposure Pathways	
		4.2.1 Potential Sources and Migration Routes	
		4.2.2 Potential Receptors and Exposure Pathways	
		4.2.3 Evaluation of Groundwater Migration and Use	
5.0	REVISI	ED CONCLUSIONS	5-1
	5.1	Site Geology and Hydrogeology	
	5.2	Areas of Concern and Recommended Remedial Actions	
		5.2.1 Hydrocarbon COI in Separator Pits Area	5-2

	5.2.2	Lead and Purifier Box COI above Upper Confining Clay Laye	er 5-2
	5.2.3	Hydrocarbon COI above Upper Confining Clay Layer	5-3
	5.2.4	Hydrocarbon COI between Confining Clay Layers	5-3
	5.2.5	COI in Groundwater	5-3
6.0	REFERENCES .	· · · · · · · · · · · · · · · · · · ·	6-1
API	PENDICES		
Resi	ults of the Southv	vestern Tower IRM	Appendix A
		Under Electric Transmission Towers: Interim Results Under Electric Transmission Towers: Final Results	
Resi	ults of the Soil Ga	as Survey	Appendix C
Bore	elogs		Appendix D
Lab	oratory Reports :	Soil Borings	Appendix E
Lab	oratory Reports:	Groundwater	Appendix F
Figu	ire 1 Site P.	lan	Appendix G
Figu	ire 2 Upper	Confining Clay Layer	. Appendix G
Figu	ire 3 Lower	r Confining Clay Layer	Appendix G
Figu	ire 4 Groun	dwater Contours	. Appendix G

LIST OF TABLES

TABLE	PAGE
Table 2-1	Analytical Results Separator Pits and Subsurface Hydrocarbons Mineral Springs
	Gas Plant Site, February, 1998
Table 3-1	Monitoring Well Construction Summary - Mineral Springs Gas Plant Site 3-4
Table 3-2	Groundwater Field Parameters Summary - February 1998 3-5
Table 3-3	Groundwater Analytical Results - February 1998
Table 3-4	Groundwater Analytical Results - July 1997 3-7
Table 4-1	Current and Future Receptors

1.0 INTRODUCTION

On behalf of National Fuel Gas Distribution Company (NFG), Remediation Technologies, Inc. (RETEC) conducted a preliminary site assessment (PSA) at a former manufactured gas plant (MGP) site on Mineral Springs Road in the Town of West Seneca, Erie County, New York. The results of the PSA are presented in the *Preliminary Site Assessment Report for the Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, November 5, 1997).* The PSA recommended several interim remedial measures (IRMs) and additional investigation of the site, the results of which are presented in this Addendum to the PSA.

The objectives of the PSA were to:

- Identify the nature and extent of constituents of interest (COI);
- Determine if COI identified at the site constitute a significant threat to human health or the environment; and
- Determine whether interim remedial measures (IRMs) were appropriate at the site.

The significant observations and results of the PSA were:

- Subsurface hydrocarbon odors, sheens, or NAPL impacted soils were observed in several areas of the site.
- A surface deposit of purifier residuals and blue stained soil under the electric transmission tower in the southwest corner of the site was found to exhibit hazardous characteristics for corrosivity and lead.
- Other observed surface deposits of MGP residuals were limited to the eastern swale (purifier box residuals), the area south of Building 14 (purifier box residuals) and the vegetated area northeast of Building 14 (tar "boils").
- Subsurface lenses of purifier box residuals were observed in the Eastern Swale Area, in the area south of Building 14, and in the compressed natural gas fueling area south of Building 3.
- Subsurface NAPL was observed in the west bank of the eastern drainage ditch, inside (of and in the immediate vicinity of two former oil-water separators, and in one soil boring east of Building 10.

- Groundwater throughout the site was found to contain measurable levels of total cyanide.
- BTEX and PAHs were not detected in the groundwater at the downgradient property boundary except at MW13, which may have contained benzene below the laboratory's quantitation limit.
- Groundwater at the center of the site contained elevated levels of BTEX, PAHs, and total cyanide.
- The risks presented to on-site and off-site personnel are minimal with the exception of NFG workers who may conduct excavations in areas with MGP residuals; such personnel should avoid areas of known subsurface contamination.
- The surface deposits of purifier residuals in the eastern swale and under the southwestern tower should be addressed by IRMs.
- Additional surface and subsurface investigation was required to delineate the extent of the MGP residuals detected.

Based on the PSA's recommendations, from January to April, 1998, RETEC conducted the following additional investigative work and IRMs, the results of which are presented in this Addendum to the PSA:

- Additional <u>subsurface soil borings</u> were performed to further delineate the locations of MGP residuals. See Section 2.0 for text, Appendix E for lab reports, and Figures 1, 2 and 3 in Appendix G for boring locations and lateral extent of residuals.
- Two additional monitoring wells (MW17 and MW18) were installed. Additional groundwater testing was also performed to quantify the risk associated with the elevated concentrations of total cyanide previously measured at the site perimeter. See Section 3.0 for text, Appendix F for lab reports, and Figure 4 in Appendix G for groundwater contours.
- The <u>hazardous materials</u> from beneath the southwestern electric transmission tower (consisting of purifier box residuals and lead impacted soil) were excavated and disposed of off-site. See Appendix A for results of the IRM and the IRM Complete Report.
- Additional <u>surface soil sampling</u> was performed beneath the five electric transmission towers. See Appendix B for the Interim and Final Results.
- Soil gas samples were obtained from areas immediately adjacent to the routinely occupied building spaces of the site. See Appendix C for results of the survey.

• Based on these new findings, RETEC has revised the PSA's evaluation of potential risks to site receptors and the remedial conclusions. See Section 4.0 for the evaluation of risks and Section 5.0 for the conclusions.

A site history and a summary of previous site investigations were presented in the PSA and are not reiterated in this Addendum.

2.0 RESULTS OF ADDITIONAL SOIL BORINGS

This section presents additional environmental data gathered at the Mineral Springs Road MGP Site between January and April, 1998. The data supplements information presented in the Preliminary Site Assessment for the Mineral Springs Road Former Manufactured Gas Plant Site. West Seneca, New York (RETEC, November 5, 1997).

2.1 Scope of Work

As recommended by the PSA, additional Geoprobe and HSA (hollow stem auger) soil borings were completed to further define the nature, extent, depth and potential sources of NAPL and purifier box residuals found in several areas of the site. Several other areas which were not included in the original PSA were also investigated. The primary areas of interest were:

- South of Building 3.
- Around three former purifying boxes.
- Around and within the Separator Pits Area.
- Around and within the Subsurface Hydrocarbon Area.
- Within the footprint of former tanks to the east and west of Building 10.
- Within the footprint of the eastern gas holder.
- South and east of MW14.

The total number of borings, as specified in the field by the RETEC geologist, was 55 including 16 deep borings (see Figures 1, 2 and 3 in Appendix G; Borelogs in Appendix D). Two additional monitoring wells were also installed (see Section 3.0 of this report for groundwater analyses).

Drilling followed an "inside-out" approach, moving radially outward from the impacted area until field observations (visual, olfactory and PID readings) indicated that no significant contamination was present. Delineation of soils impacted by NAPL or purifier residuals (as shown in Figures 2 and 3) was based on field observations.

Northstar Drilling, Inc., of Cortland, New York was contracted to perform the borings. Galson Laboratories of Syracuse, New York, was contracted to complete the chemical analyses. RETEC's laboratory in Pittsburgh, Pennsylvania, completed the IR spectral analyses. RETEC's standard boring and sampling methods are presented in the Field Sampling and Analysis Plan (RETEC, 1997b) and the Site Specific Health and Safety Plan (RETEC, 1997c). The horizontal

location and ground surface elevation of 10 of the deep borings were surveyed by Douglas C. Myers, Professional Land Surveyor P.C., of Arcade, New York. The horizontal location and ground surface elevations of the other borings were surveyed by RETEC personnel.

All downhole equipment was pressure-washed between borings. Fluids generated during the decontamination were containerized on a lined bermed area and temporarily stored on-site in 55-gallon drums. Drill cuttings, PPE and sampling tubes were likewise containerized and temporarily stored. Analysis of the drummed water showed a hazardous level of benzene. The soil was non-hazardous. All drums were disposed of appropriately off-site.

2.2 Field Observations and Analytical Data

The following summarizes the field observations and analytical data from the additional subsurface soil borings performed between January and April, 1998.

2.2.1 Revised Description of Site Stratigraphy

Five stratigraphic units have been identified from soil borings completed at the site.

- A surface layer of <u>mixed fill</u> material was found on the majority of the site. The fill is comprised of silty clay, coal fragments, brick fragments, cinders, ashes and concrete fragments. The fill thickness is highly variable, ranging from 1 to 8 feet.
- Underlying the fill is a nearly continuous upper confining clay layer (UCL) comprised of dense silty clay. The UCL was observed in all of the borings completed at the site except near the Separator Pits. The UCL may also be absent in the eastern drainage ditch. The UCL was observed to range from 3 to 13 feet in thickness, at a typical top elevation of 584 to 580 feet above MSL.
- Underlying the UCL is a groundwater-bearing sand and gravel unit. Except near the Separator Pits and the eastern drainage ditch, the aquifer is confined under several feet of static head as evidenced during monitoring well installations. Static water elevation (above MSL) varies across the site, ranging from approximately 585.5 feet (3 feet bgs) at MW18 to approximately 579.2 feet (11 feet bgs) at MW14. Groundwater flow beneath the majority of the site is northwest towards Mineral Springs Road and the Buffalo River with a gradient (between MW11 and MW14) of 0.0016 feet/foot (July, 1997) to 0.0017 feet/foot (February, 1998). Due, presumably, to the influence of subsurface structures and the disturbed UCL, groundwater

is "mounded" in the Separator Pits Area. Groundwater also appears to be influenced by, and in direct contact with, the eastern drainage ditch.

- Underlying the groundwater-bearing sand and gravel unit is a <u>lower confining clay layer</u> (LCL) comprised (like the UCL) of tight silty clay. The LCL was encountered in all 16 deep borings (DBs) and appears to be continuous throughout the site. The elevation (above MSL) of the LCL varies from 567 feet to 562 feet in the Subsurface Hydrocarbon Area and from 568 feet to 565 feet in the Separator Pits Area.
- One deep boring (DB-3) was advanced to elevation 548 feet (39.5 feet bgs) where
 refusal was encountered, presumably on <u>bedrock</u>. Data from the Madison Wire
 investigations support the assumption that bedrock is at or near 40 feet bgs in this
 area of the Mineral Springs site. The LCL was approximately 13 feet thick at DB-3.

2.2.2 South of Building 3

The original PSA found an 18 inch thick subsurface lens of purifier residuals south of Building 3 at SB-51. Additional borings were conducted to delineate the lens.

The lens was found to be only 6 inches thick in boring SB-55 and to have tapered to 1 inch or less at SB-56. SB-54 and SB-57 did not contain purifier residuals (see Figure 2 in Appendix G).

2.2.3 Around Former Purifying Boxes

The original PSA located a 6 inch thick subsurface lens of purifier residuals north of Building 10 at SB-5. Additional borings were conducted to delineate the extent of the lens.

SB-58, SB-59, SB-60, SB-94 and SB-95 did not contain purifier residuals. SB-59 (near Building 10) did, however, contain an 8 inch lens of granular fill impacted by hydrocarbon NAPL. SB-60 was similarly impacted. SB-61, SB-63 and SB-68 did not contain visible hydrocarbons or purifier residuals except for a faint sheen at one interval in SB-68. A 4 inch thick lens of purifier materials was observed in SB-93.

2.2.4 Separator Pits Area

The original PSA roughly delineated the lateral impact of hydrocarbon residuals in and around the separator pits. Additional borings were conducted to determine the depth of the impact and to locate (and confirm the presence of) the LCL.

Deep boring DB-5, located midway between Separator Pits 2 and 3, revealed NAPL impacted soils extending to the LCL. DB-1 and DB-2, located down and cross gradient of the separator pits respectively, were free of NAPL. A 2 inch lens of granular fill with a hydrocarbon sheen was logged at DB-2 above the UCL.

Additional samples were also recovered from within the separator pits for TCLP analyses (see Table 2-1). The material in Separator Pit 2 was determined to be a hazardous petroleum and tar residual with 3.2 mg/L TCLP benzene. The material in Separator Pit 3 was determined to be a non-hazardous petroleum hydrocarbon with only 0.12 mg/L TCLP benzene.

2.2.5 Subsurface Hydrocarbon Area

During the PSA, Geoprobe borings in the Subsurface Hydrocarbon Area found hydrocarbon NAPL in the groundwater-bearing unit below the UCL. Based on field observations of the material and the IR Spectral analyses performed early in the scope of this additional work, 11 deep borings to the LCL (DB-3, DB-4, DB-16, and DB-6 through DB-13) were performed to confirm the presence, and lateral extent, of NAPL impacts in this area (see Figure 3 in Appendix E). Analysis of a sample of the hydrocarbon material, recovered from a fresh boring adjacent to SB-44, indicated it is a non-hazardous, weathered, carburetted water gas, DNAPL tar residual (see Table 2-1).

NAPL was also identified in several borings above the UCL, extending from the existing eastern fenceline towards Building 10 (see Figure 2 in Appendix E). Soil from one boring (SB-66) was observed in the field to have a "solvent-like" odor. Analysis of that material showed 8.6 mg/kg total benzene but no chlorinated constituents. Analysis of another NAPL-impacted sample (from SB-79) was non-detect for benzene.

2.2.6 Around Building 10

West of Building 10, in the footprint of several former MGP chemical tanks, MGP residuals were limited to a faint sheen on soil, at SB-68, between 8 feet and 10 feet bgs.

Northwest of Building 10, hydrocarbon NAPL was observed in two borings as described in Section 2.2.3. Northeast of Building 10 is the area of subsurface purifier residuals identified in the PSA as the Eastern Swale. Southeast of Building 10, hydrocarbon NAPL was observed in several borings as described in Section 2.2.5.

Table 2-1
Analytical Results
Separator Pits and Subsurface Hydrocarbons
Mineral Springs Gas Plant Site, February, 1998

Analyte	Separator Pit 2	Separator Pit 3	SB-44	
TCLP Benzene (mg/L)	3.200 *	0.120	ND	
Other TCLP VOAs (mg/L)	ND	ND	ND	
TCLP Cresol ** (mg/L)	0.056	ND	ND	
Other TCLP SVOAs (mg/L)	ND	ND	ND	
TCLP Barium (mg/L)	1.2	1.0	ND	
Other TCLP Metals (mg/L)	ND	ND	ND	
Reactive Cyanide (mg/kg)	ND	ND	ND	
Reactive Sulfide (mg/kg)	ND	ND	ND	
Corrosivity / pH	10.4	9.4	7.4	
Ignitability	negative	negative	negative	
IR Spectral Analysis	Mixture of Petroleum and CWG/Coal Tar	Petroleum Hydro- carbon, Asphaltic	Weathered CWG/Coal Tar	

Analyte	SB-66	SB-79	
	Medical Car		
Total Benzene , (mg/kg)	8.60	ND	
Total Other BTEX (mg/kg)	232.0	5740	
Total PAHs (mg/kg)	2679	1641	
Total Chlorinated VOAs (mg/kg)	ND		

- * Value grater than regulatory hazardous definition.
- ** Cresol as 2-Methylphenol

Full Laboratory Reports Are Attached In Appendix E.

2.2.7 Eastern Gas Holder

One soil boring (SB-63) was performed within the footprint of the eastern ("500 M", i.e. 500,000 cubic feet) gas holder. A hollow stem auger was used to drill through the 12 inch thick concrete slab which still exists at approximately 3 feet bgs. No significant contaminants were detected above or below the slab, to a depth of 20 feet bgs.

A 2 to 6 foot thick lens of NAPL impacted soil (above the UCL) was, however, encountered in soil borings SB-82 and SB-83, located to the southeast of the holder. Impacts at SB-87, SB-88 and SB-89 were limited to strong hydrocarbon odors.

2.2.8 South of Class D Stream

Three soil borings were performed in the triangular parcel between the Class D stream and the southern railroad tracks. No field indications of contamination were detected in the soil or the groundwater.

Three additional borings were performed along the northern bank of the Class D stream (south of the existing fence line). Again, no contamination was detected.

2.3 Summary of Findings

Hydrocarbon materials were found in several parts of the site. In the Separator Pits Investigation Area, NAPL was found in Separator Pits numbered 2 and 3, in soil around the separators, and on the lower confining clay layer immediately below the pits (deep boring DB-5). TCLP analyses indicated that the material in Separator Pit 2 is hazardous for benzene. An IR Spectral analysis of the material identified it as a mixture of MGP and petroleum based residuals. The material in Separator Pit 3 was identified as a non-bazardous petroleum residual.

NAPL was found between the upper and lower confining clay layers in the Subsurface Hydrocarbon Investigation Area, apparently concentrated in a band below the eastern drainage ditch from DB-4 to MW11. An IR Spectral analysis of the material identified it as a coal tar residual. A TCLP analysis indicated the material is non-hazardous.

NAPL impacted soils were found in several areas above the upper clay layer: a small area north of Building 10 (SB-59 and SB-60), a larger area east of Building 10 from SB-09 to SB-49 to DB-3 to SB-79, and around the separator pits with additional impacts around SB-82 and SB-83.

Localized tar "boils" were previously identified in surficial soils at SB-26 and confirmed at SB-90.

Purifier residuals were found at a number of locations. Purifier residuals have been found up to three feet thick in the Eastern Swale Area, primarily in the subsurface but with some surface exposure due to erosion. Thin subsurface layers of purifier residuals were also found in two areas between Building 3 and the Class D stream. The surface deposit of purifier residuals under the southwestern electric transmission tower, which had been analyzed as hazardous for lead and corrosivity (RETEC, 1997a), was excavated and removed from the site (see Appendix A of this report).

3.0 RESULTS OF ADDITIONAL GROUNDWATER SAMPLING

This section presents additional groundwater data gathered at the Mineral Springs Road MGP Site during February, 1998. The data supplements information presented in the Preliminary Site Assessment for the Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, November 5, 1997).

3.1 Scope of Work

Two new wells were installed at the site with the objective of further defining the nature, extent and potential source(s) of the COI in groundwater identified during the PSA. The well locations are (see also Figure 4):

- One new well (MW17) in the southeastern corner of the site.
- One new well (MW18) in the northeastern corner of the site.

Northstar Drilling, Inc., of Cortland, New York was contracted to install and develop the wells. Galson Laboratories of Syracuse, New York, was contracted to complete the chemical analysis of groundwater samples. Construction details, development procedures and sampling methods are presented in the *Field Sampling and Analysis Plan* (RETEC, 1997a) and the *Site Specific Health and Safety Plan* (RETEC, 1997b). The horizontal location, ground surface elevation, and the elevation of the PVC riser of the two new wells were measured by Douglas C. Myers, Professional Land Surveyor P.C., of Arcade, New York.

Groundwater testing consisted of:

- A complete round of depth-to-water measurements and verification of groundwater flow directions.
- Analysis of the two new wells for MGP indicators (BTEX, PAHs, TAL metals and total cyanide).
- Testing of all wells for weak-acid dissociable cyanide.
- Re-analysis of groundwater at MW13 for BTEX.

3.2 Results

During the installation of MW17 and MW18, no visible evidence of impacted soil or groundwater was encountered.

The groundwater-bearing sand unit is thin or absent at MW18 and the LCL and UCL appear to have nearly converged at this location. Consequently, recovery is slow in this well.

Table 3-1 presents the Monitoring Well Construction Summary and the groundwater elevations as measured on February 9, 1998. Table 3-2 presents a summary of the field parameters measured at that time.

Table 3-3 presents the Groundwater Analytical Results from February, 1998. For comparison, Table 3-4 presents the analytical results from July, 1997, which were originally presented in the PSA (RETEC, 1997a).

3.3 Summary of Findings

RETEC's review of the data reveals the following conclusions related to the groundwater at the site:

- BTEX and PAH compounds were found to exceed NYSDEC Groundwater Quality Standards in MW7, MW8, MW11, and MW12. These wells are all located in central areas of the site.
- BTEX and PAH compounds were below detection limits in MW10 and in all wells at the site perimeter.
- Detected metals concentrations exceeding NYSDEC Groundwater Standard Values were limited to iron, magnesium, manganese, sodium and thallium.
- Cyanide (total) was found in concentrations exceeding the NYSDEC Groundwater Standard (100 μg/L) in all 11 wells tested except MW15, MW17 and MW18.
- Cyanide (weak acid dissociable) was found in concentrations below 100 µg/L in all 11 monitoring wells tested. These data indicate that the groundwater does not pose a risk to off-site receptors (see Section 4.0).
- A single groundwater-bearing unit between the upper confining clay layer (UCL) and the lower confining clay layer (LCL) is present across the site except at MW18.

- Due to recent storm events at the time of the 1998 sampling, several soil samples taken from above the UCL were wet but did not appear to represent a contiguous aquifer.
- Except near the Separator Pits and the eastern drainage ditch, the groundwater aquifer is confined under several feet of static head as evidenced during monitoring well installations. Static water elevation (above MSL) varies across the site, ranging from approximately 585.5 feet (3 feet bgs) at MW18 to approximately 579.2 (11 feet bgs) at MW14. Groundwater flow beneath the majority of the site is northwest towards Mineral Springs Road and the Buffalo River with a gradient (between MW11 and MW14) of 0.0016 feet/foot (July, 1997) to 0.0017 feet/foot (February, 1998). Due, presumably, to the influence of subsurface structures and disturbances to the UCL, groundwater is "mounded" in the Separator Pits Area.
- Groundwater appears to be influenced by, and in direct contact with, the eastern drainage ditch. Sediment and surface water sampling and analysis conducted during the PSA indicates detectable levels of hydrocarbons and total cyanide, but no exceedences at the site perimeter.

Table 3-1
Monitoring Well Construction Summary
Mineral Springs Gas Plant Site

W ell Number	Ground Surface Elevation (Feet above MSL)	Top of PVC Riser (Feet above MSL)	Total Depth Drilled (Feet)	Top of Screen Elevation (Feet above MSL)	Bottom of Screen Elevation (Feet above MSL)	Depth to Water 2/98 (Feet)	Elevation of Water Measured 2/98 (Feet above MSL)
			i jaka i				
MW 3	587.93	587.81	12.0	585.81	575.81	6.32	581.49
MW 4	588.18	587.95	14.4	583.55	573.55	6.30	581.65
MW 5	587.95	587.74	14.0	583.95	573.95		
MW 6	588.77	588.55	15.0	583.77	573.77	4.00	584.55
MW 7	587.56	587.31	15.2	582.38	572.36	5.36	581.68
MW 8	588.14	587.90	14.2	583.94	573.94	6.49	581.41
MW 9	588.31	587.93	15.4	582.89	572.89	6.25	581.68
MW 10	587.97	587.71	15.0	582.97	572.97	6.27	581.44
MW 11	587.34	590.03	18.0	584.34	569.34	7.77	582.26
MW 12	588.74	591.40	15.0	583.74	573.74	10.33	581.07
MW 13	590.51	591.85	20.0	582.33	572.33	12.13	579.72
MW 14	590.02	589.81	20.0	580.02	570.02	10.62	579.19
MW 15	588.95	590.93	18.0	580.95	570.95	11.12	579.81
MW 16	586.46	588.99	18.0	578.46	568.46	7.50	581.49
MW 17	585.20	587.28	18.0	577.20	567.20	4.92	582.36
MW 18	589.00	591.64	26.0	575.00	565.00	6.18	585.46

Note: MW3 and MW4 installed by Empire Soils (ESI, 1995). MW5 through MW10 installed by RETEC in 1995. MW11 through MW16 installed by RETEC in 1997. MW17 and MW18 installed by RETEC in 1998. MW1 and MW2 have been decommissioned.

Table 3-2 Groundwater Field Parameters Summary February 1998

Well Number pH		Temperature (Degrees C)	Conductivity (µmho/cm)	Turbidity (NTU)	
MW 7	7.31	9.8	860	5	
MW 8	7.48	10.9	700	12	
MW 10	7.51	10.5	890	15	
MW 11	7.66	5.0 495		17	
MW 12	7.06	9.5	2730	112	
MW 13	7.44	12.0	389	5	
MW 14	7.09	09 10.6 655		19	
MW 15	6.87	9.7	755	52	
MW 16	6.85	11.3	1402	10	
MW 17	7.50	7.7	766	38	
MW 18	8.50	8.4	252	20	

Table 3.4 Groundwater Results Mineral Springs Road MGP Site

07/22-23/97

Sample ID Date Sampled	MW-07 07/22/97	MW-08 07/22/97	MW-10 07/22/97	MW-11 07/2 2/97	MW-12 07/22/97	MW-13 07/22-23/97	MW-14 07/22-23/97	MW-15 07/22-23/ 97	MW-16 07/2 2/97	. MW-17	MW-18	Groundwater Standard/ Guidance Value
Trv (m)	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result I.Q VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Guidance valu
<u>ΈΧ (</u> μg/L) nzene	4000	1200	:	Saka Saka Sa								
ene	4900	1200	5 U	3 5	17	4]	5 U	5 U	5 : U	'		0.7 s
benzene	750	62 U	5 U	.17	5 U	5 U	\$	5. U	5 U		;	5 s
	2900	220	5 U	94	5 U	5 U .	5 Ų	5 U	5 · U			5 s
(Total)	1200	230	5 U	83	5 · U ·	5 U	5 U	5. U	5 U			5 s (ea
s (μg/L) ithalene	2400 D J	2000 D	10 U	140	10 U	: 11 : U	3 J	: · 	10 : U			10
thylnaphthalene				- "1. 1.	,,,		٠, ١	1.,	10.0	,		10 g NL
phthylene .	2 · · 95 · U ·	120 U	10: U		. 10 ° U	י יוו	10 U	10 U	10 U			
phthene	180	15 J	10 U	7 j	10 U	11 · U	10 U	10 U	10 U	1		20 g
ne	45 J	120 U	10 U	10 : Ú	10 · U	ii Ŭ	10 U	10 U	10 U	:		20 g
inthrene	37 ; J	120 U	10 U	10 U	10 U	ii U	10 U	10 U	10 U	:		50 g
ic e ne	95 U	120 U	10 : U	10 U	10 U	ijΰ	10 U	10 U	10 U	·		50 g
nthene	95 U	120 U	10 : U	10 U	10 U	ii Ŭ	10 U	10 U	10 U		:	50 g
:	95 U	120 U	10 U	10 U	10 U	ii Ŭ	10 U	10 · U	10 U	:		50 g
a)Anthracene	95 U	120 U	10 U	10. U .	10 U	11 U	10 U	10 U		1		50 g
ene	95 U	120 U	10 U	10 U	10 U	ii Ŭ	10 U	10 U	1 0 U			0.002 g
b)Fluoranthene	95 U	120 U	10 U	10. U	10 U	11 · U	10 U	10 U	10 U	· 1		0.002 g
(k)Fluoranthene	95 LU	120 U	10 U	10 U	10 U	11 U	10 U	10, U	10 U			0.002 g
(a)Pyrene	95 U	120 U	10 U	10 U	10 U	. II U	10 U	10 U				0.002 g
o(1,2,3-cd)Pyrene	95 ' U	120 U	10 U	10 U	10 U	11 U	10 U :	10 U	10 U			0.002 or MD
z(a,h)Anthracene	95 U	120 U	10: U	10 U	10 U	11 U	10 U	10 U	10 U	ŀ		0.002 g
g,h,i)Perylene	95 U	120 U	10 U	10 Ų	10 U	II U	10 U	10 U	10 U 10 U		÷	NL 5 g
MS (μg/L)	; ·	:	· : [i	·	1				:		J 8
num	116 B	63 U	281	243	500	1200	242	245	105			
ony	9. U	9 U	9. U	9: U	9: U	9 U	9 U	, ,	495	İ		NL
c ´	5 U	5 U	5 U .	5 U	5 · U	5 : U	5 U	9. U 5. U	9 · U	1		3 g
m i	229	390	303	199 B	75.4 B	108 B	176 B		5 U	1		25 s
ium	I : U	ΙU	I U	I. U	1: U	I U	I U :	107 B	40.8 B	. 1		1000 s
ium	1 U	1 U	Î i Ü	i U	1 · U	I · U	I U	1 U	1. U		1	3 g
ım	184000	183000	192000	184000	290000	114000	139000		1 U	· · · · · · · · · · · · · · · · · · ·		10 s
nium	2 U	2 U	2 U	2 · U	2 U .	2 : U	2 U	98500	226000			NL
1	2 B	2.3 B	1.7 B	2.4 B	2.4 B	1.3 B		2 U	2 U			50 s
er	2 B U	1.9 B U	81.6	5.4 B U	6.5 B U	9.9 B U	3.5 B	2.8 B	4.5 . B			NL
	14600	34100	24400	23400	109000	2180	5.7 B U	5.4 B U	8.1 B U		April 1	200 s
Ţ	2 U	2 U	2 U	2 U	2 U			9330	146000			300 s
esium	28900	34400	31100	31500	1090001	2 . U 34800	2 U	2 · U	2 U			25 s
nese	1430	1520	3010	1650	15400	293	29300	34300	104000			35000 s
y I	0.1 U	0.1 U	0.1 U	U 1.0	0.1 U	0.1 U	2180	565	1970			300 s
´	2 : U	2 U	2.7 B	2.1 ; B	2. U	6.4 · B	0.1 U	0.1 U	0.1 U			2 s
ium	3310 · B	3870 B	1870 B	1780 B	6520	936 B	6.9 B	4.9 B	4.7 B			NL
um	4 U	4 U	4 U	4 U	4 U	930 B 4 U	2850 B	568 B	10400		1	NL
	I U	1.2 B	i U	i U	1 U		4 : U	4 U	4 U		;	10 s
n	98800	152000	99500	64300 J	150000	1 U	1 U	1 U	1 U			50 s
m l	6 U	6 U	6. U	6 U	7.4 B	13700	144000 J	16800 J	61900 J			20000 s
ium	i U	iÜ	i U	1 · U	6.3 B	6 U	6 U	6 U	6 U			4 g
	2 U	2 U	55 .	3.4 B U	2 U	1.4 B 14.3 B	1 U 9.4 B U	1 U 5.8 B U	1 U 2 U	i		NL 200
DAT ((T)	•	.	1		- · ·		<i>7.1.</i> 5 6	3.0 . 5 . 0	2 0			300 s
RAL (μg/L)	Name of the last	1 4.1.4				1		i	1		i	
de, total	189 J	236 J	334 J	1040 J	375 J	323 J	644 J	78.8 J	346 J			100 s
de, weak/dissoc.	Notes:											NL
I	Q - Laboratory Qualifier			•								
	VQ - Data Validation Qualifi											
ì	U - The material was analyzed - The associated numerical v	a for, our not detected. The	: associated numerical value i v	is the minimum attainable d	etection limit for the sample	1.				•		
,	B - Below the Contract Requi	red Quantitation Limit (CR)	CL), but above the Instrume	ent Detection Limit (IDL)	(Metals Analysis Only)						•	
ı	D - Indicates an analysis at a	secondary dilution.	,, accre die manung	Detection tanne (nDL).	(incrain triminal) Ollin)							
	g - Guidance											
	s - Standard											
ı	MDL - Method Detection Li	mit										

- MDL Method Detection Limit
- NL Not listed
- Concentrations exceeding Regulatory Limit

Table 3.3 Groundwater Results Mineral Springs Road MGP Site

02/05/98

Sample ID Date Sampled	MW-07 02/05/98	MW-08 02/05/98	MW-10 02/05/98	MW-11 02/05/98	MW-12 02/05/98	MW-13 02/05/98	MW-14 02/05/98	MW-15 02/05/98	MW-16 02/05/98	MW-17 02/05/98	MW-18 0 2/0 5/98	Groundwater Standard / Guidance Value
Daniel (1)	Result LQ VQ	Result I.Q VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	Result LQ:VQ	Result LQ VQ	Result LQ VQ	Result LQ VQ	
BTEX_(µg/L) Benzenc		:				5 : U :				5 U	5 U	0.7 s
Toluene						5 U				5 ¦ U	5 U :	5 s
Ethylbenzene		1				5 · U		;		5 · U	5 U	5 s
Xylene (Total)					.	5 Ü				5 ; U	5 U	5 s (ea.)
Aylene (Total)	:	į į	1		`	3 0 .				3,0		3 5 (62.7)
PAH's (μg/L)	:	<u> </u>										
Naphthalene		;			·					10 U	10 U	10 g NL
2-Methylnaphthalene		1		:				: i	. :	10 U	10 U	ŇL
Acenaphthylene					the state of the s		: :			10 U	10 U	20 g
Acenaphthene						:	:	· ·	•	10 · U	10 U	20 g
Fluorene			:			1		,		10 U	10 U	50 g
Phenanthrene							·			10 · U	10 : U	50 g
Anthracene				·				,	÷	10 U	10 U	50 g
Fluoranthene	:	<u> </u>								10 U	10 U	50 g
Pyrene					·					10 U	10 U	50 g
Benz(a)Anthracene Chrysene						. 1				10 . U £0 · U	U 01 U 01	0.002 g 0.002 g
Benzo(b)Fluoranthene	·			·	·			:	1	10 U	10 U .	0.002 g
Benzo(k)Fluoranthene	. ,	'	,				1	. 1		10 U	10 U	0.002 g
Benzo(a)Pyrene		·			:					10 U	10 U	0.002 g 0.002 or MDL
Indeno(1,2,3-cd)Pyrene		· i	·							10 U	10 U	0.002 g
Dibenz(a,h)Anthracene		: :			†	:				10 Ü	10 Ü	NL
Benzo(g,h,i)Perylene			·		:				1	10 U	10 U	5 g
l i i						1		;		•		· ·
METALS (μg/L)										·		
Aluminum	:		•	•			•			5600	7600	NL
Antimony						,				10 U	10 U	3 g
Arsenic										10 · U	17	25 s
Barium						:				. 95	230	1000 s
Beryllium Cadmium	·									5 U 5 U	5 U 5 U	3 g 10 s
Calcium Calcium										230000	53000	NL
Chromium		!						;		230000 10 U	10 Ü	50 s
Cobalt		1		·				i .		10 U	10 U	NL NL
Copper		1	•				·			14	19	200 s
Iron										29000	9500	300 s
Lead		· !			•	. 1		•		4.6	8.8	25 s
Magnesium				·	•					46000	15000	35000 s
Manganese	· 1	[920	210	300 s
Mercury				-	:	;				0.2 U	0.2 U	2 s
Nickel								. 1		20 U	20 U	NL
Potassium	[]	,			1 :				2800	4200	NL
Selenium						<i>j</i> , :				5 U	5 U	10 s
Silver		ł i		• 1		51				10 U	10 U	50 s
Sodium					l l		·			60000	43000	20000 s
Thallium Vanadium	:]	:		. , [1	,		10 U	10 U 14	4 g NL
Vanadium Zinc		1		:		:				12 40	31	· 300 s
ZinC			,		:				:	40)1	· 300 S
GENERAL (μg/L)						:			_		•	
Cyanide, total						:	:			34	10 U.	100 s
Cyanide, weak/dissoc.	24.2	26.6	40.3	31.4	63.5	26.6	79.5	11.6	93.7	34 10 U	10, U	NL

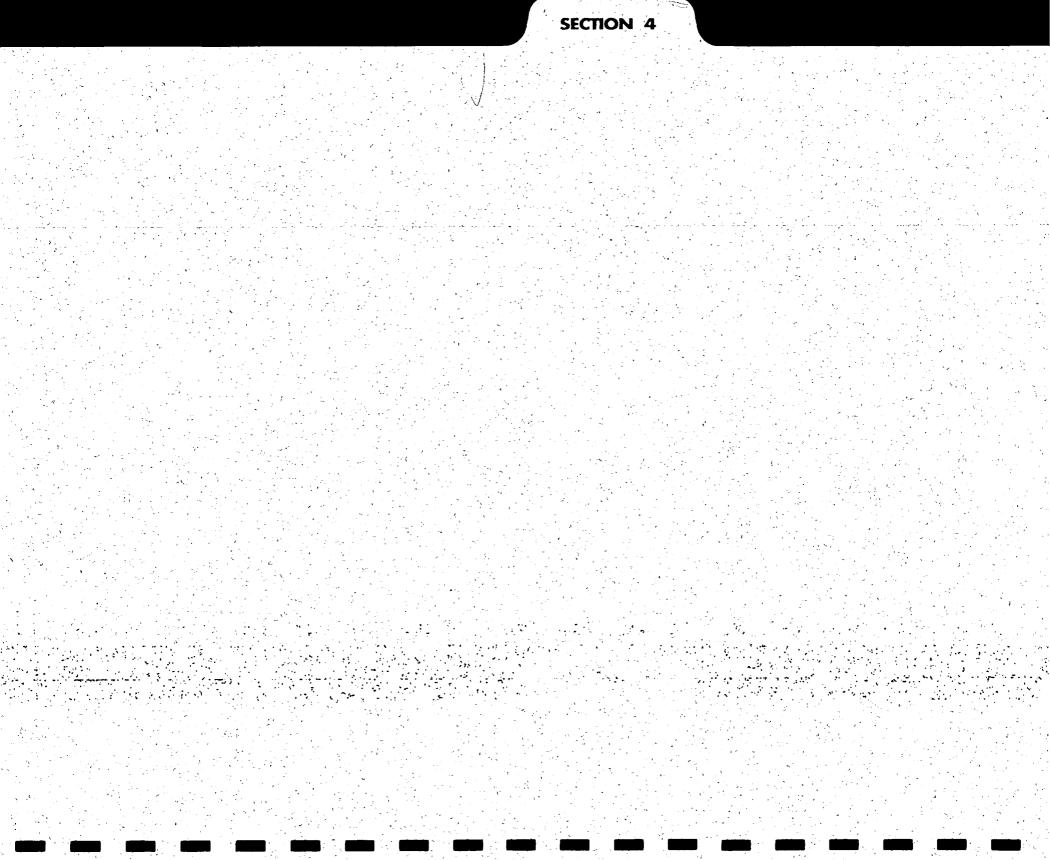
Full Laboratory Reports Are Attached In Appendix F.

Notes: 1.Q - Laboratory Qualifier VQ - Data Validation Qualifier

U - The material was analyzed for, but not detected. The associated numerical value is the minimum attainable detection limit for the sample.

U - The material was analyzed for, but not detected. The associated numerical value is the minimum attainable detection limit for the sar] - The associated numerical value is an estimated quantity.

B - Below the Contract Required Quantitation Limit (CRQL), but above the Instrument Detection Limit (IDL). (Metals Analysis Only)


D - Indicates an analysis at a secondary dilution.

g - Guidance
s - Standard

MDL - Method Detection Limit

NL - Not listed

Concentrations exceeding Regulatory Limit.

4.0 REVISED EVALUATION OF POTENTIAL RISKS

This evaluation integrates existing data gathered at the Mineral Springs Road MGP Site and qualitatively identifies potential risks associated with impacted media. This evaluation is a revision to the Qualitative Evaluation of Potential Risks as presented in section 7.0 of the Preliminary Site Assessment for the Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, November 5, 1997). This evaluation is accomplished by identifying potential sources, migration routes, receptors and exposure pathways at the Mineral Springs Road Site.

4.1 Site Setting

The Mineral Springs Road Site is owned by NFG. The site is the location of an NFG service center, a construction and demolition debris landfill, and electrical transmission towers. These uses are consistent with the zoning of the site for commercial or light industrial use. NFG's intended future use of the site will continue to be as a service center.

The service center occupies much of the site, encompasses the former MGP process area, and is partially fenced, so access is restricted to all but NFG personnel. Most of the service center is covered with buildings, pavement, gravel or landscaped grass. The landfill is east of the service center, is active and is covered with fill and some vegetation. The transmission towers run along the southern boundary of the site. The surface beneath these towers is covered with grasses and shrubs that are infrequently cut.

The northern boundary of the site runs along Mineral Springs Road, from Calais Avenue to a raised abandoned railroad track. To the north of this boundary are residences and a facility that treats sewage sludge. The western boundary consists of residential lots located on Calais Avenue. The eastern boundary is the raised abandoned railroad track. Further east is the New York Thruway. The southern boundary is a raised active railroad track. Further south is an abandoned industrial property (formerly Madison Wire) and undeveloped, wooded land.

4.2 Potential Sources, Migration Routes, Receptors and Exposure Pathways.

The potential sources, migration routes, receptors and exposure pathways for the Mineral Springs site are discussed in this subsection.

4.2.1 Potential Sources and Migration Routes

There are principally two source materials for MGP constituents at the Mineral Springs site. One potential source material is hydrocarbon materials which were either used as feedstock or

generated during plant operation. The other potential source material is purifier residuals generated during the purification of the manufactured gas.

Lead in surface soil, while not necessarily an MGP constituent, has been found under the electric transmission towers along the southern property line.

Hydrocarbon materials were found in several parts of the site (see Section 2.0 and Appendix G of this report for text and drawings). In the Separator Pits Investigation Area, DNAPL was found in Separator Pits numbered 2 and 3, in soil around the separators, and on the lower confining clay layer immediately below the pits (deep boring DB-5). TCLP analyses indicated that the material in Separator Pit 2 is hazardous for benzene. An IR Spectral analysis of the material identified it as a mixture of MGP and petroleum based residuals. The material in Separator Pit 3 was identified as a non-hazardous petroleum residual.

DNAPL was found between the upper and lower confining clay layers in the Subsurface Hydrocarbon Investigation Area, apparently concentrated in a band below the eastern drainage ditch from DB-4 to MW11. An IR Spectral analysis of the material identified it as a coal tar residual. A TCLP analysis indicated the material is non-hazardous.

DNAPL was found in several areas above the upper clay layer, primarily a small area north of Building 10 (SB-59 and SB-60), a larger area east of Building 10 from SB-09 to SB-49 to DB-3 to SB-79, around the separator pits, and at SB-82 and SB-83.

Highly localized DNAPL impacts (consisting of tar "boils") were also found in surface and shallow subsurface soils in the Surface Hydrocarbon Investigation Area at SB-26.

Purifier residuals were found at a number of locations. Purifier residuals were found up to three feet thick in the Eastern Swale Area, primarily in the subsurface but with some surface exposure due to erosion. Thin subsurface layers of purifier residuals were also found in the Southern Investigation Area. Another thin subsurface layer was found between Building 3 and Building 14. The surface deposit of purifier residuals under the southwestern electric transmission tower, which had been analyzed as hazardous for lead and corrosivity, was excavated and removed from the site (see Section 4.0 of this report).

Based on these potential sources, the potential migration routes of the COI in the study area are summarized as follows:

- Emissions to air in the form of volatilized gases (primarily the lower molecular weight PAHs) and fugitive dust from surface soil.
- Volatilization of chemicals from subsurface soil to soil gas and subsequent intrusion of soil gas into a building.
- Erosion of surface soil during rainfall events, solubilization or desorption of COI to runoff water, and transport of eroded soil and dissolved COI with runoff to drainage ditches.
- Leaching of constituents from soil and tar-like materials to groundwater.
- Discharge of on-site groundwater to on-site drainage ditches.
- Transfer of constituents dissolved in on-site groundwater to off-site groundwater.

Emissions of volatilized gases and fugitive dust are unlikely to be significant for a variety of reasons. First, the most volatile constituents at MGP sites are BTEX. No surface soils had total BTEX concentrations exceeding 1 mg/Kg, so there is little BTEX available in surface soil to volatilize. Second, the PAH that is most volatile is naphthalene, which was present at concentrations of 2.8 mg/Kg or less in all surface soil samples except SS-1. Sample SS-1 was taken from a tar boil and is representative of a very small surface area of the site. There are, therefore, not enough tar boils at the surface to represent a significant source for volatile emissions of naphthalene. For fugitive dust emissions to be significant, a significant portion of the surface soil must be bare. However, little of the site surface has exposed, impacted soil, so fugitive contaminated dust emissions are unlikely to be significant at this site.

In addition to volatilization and release to the surface, chemicals can volatilize from subsurface soil into soil gas and then migrate into buildings through cracks in the building basement or foundation. This migration route is usually significant only if a building basement is built into NAPL impacted soil, or if there is LNAPL on the water table immediately beneath a building. A soil gas survey done by Buck Environmental Laboratories (see Section 6.0 of this report) quantified the concentrations of hydrocarbon vapors in the shallow soil around the continuously (workday) occupied buildings of the site. The vapor concentrations in the soil were below OSHA and NIOSH action levels for continuously occupied spaces and do not appear to present a risk to site occupants.

Surface water runoff occurs during rainfall events, where the COI are either attached to soil particles which are suspended in water flowing overland into drainage ditches or are dissolved into rainwater which flows overland into drainage ditches. If COI are present in groundwater and groundwater discharges to the drainage ditches, then COI can also be discharged into the drainage

ditches with groundwater. There is evidence that both migration mechanisms may be operating at the Mineral Springs site. The highest cyanide sediment concentrations occur near the two areas with purifier residuals at or near the surface. The cyanide concentration at SD-3 is 658 mg/Kg. This sample is located downstream of the Eastern Swale Investigation Area where purifier residuals were found. The next highest cyanide sediment concentration occurs at SD-1 (42.4 mg/Kg) which is adjacent to the Southern Investigation Area where purifier residuals were also observed. The highest BTEX and second highest PAH concentrations in sediment occur at SD-5 which is next to the Subsurface Hydrocarbon Investigation Area. DNAPL was found in the subsurface in this area and a sheen has been occasionally observed on the water at SW-5.

While BTEX, PAHs and cyanide have been detected in sediments, there is little evidence that these constituents impact surface water when it leaves the site and discharges to the Calais Avenue storm sewer. BTEX and PAHs were not detected above the analytical detection limits in any surface water samples. Total cyanide in the surface water appears to attenuate from the Eastern Swale Investigation Area, where the highest cyanide concentration was found (736 µg/L in SW-4), to the storm sewer inlet, where the lowest concentration was obtained (estimated 12.2 µg/L at SW-1). Also, the cyanide measured at this site is total cyanide and virtually all total cyanide at MGP sites is complexed cyanide. The most toxic form of cyanide is free cyanide, which is highly reactive. In contrast, complexed cyanide is very stable, unreactive and essentially nontoxic (GRI, 1996).

The potential for COI in groundwater to migrate off-site is addressed in Section 4.2.3.

4.2.2 Potential Receptors and Exposure Pathways

Potential current receptors for the Mineral Springs Road MGP Site are presented in Table 4-1. Under current site uses, possible receptors include indoor workers, outdoor workers, excavators and local residents. The site is expected to be used as a service center by NFG for the foreseeable future, therefore future receptors are the same as current receptors.

If there is LNAPL or DNAPL in the subsurface beneath a building, then constituents can partition from the NAPL to the soil water and then to the soil gas, and migrate with soil gas as it travels through cracks in the basement or foundation into the air within the building. As discussed previously, there is no evidence that such conditions exist at any buildings on the site and results of the recent soil gas survey indicated that soil gas does not present a risk to site occupants.

Table 4-1
Current and Future Receptors

Receptor	Source Medi um	Exposure Medium	Intake Route	Comments
Indoor Worker	Subsurface Soil and NAPL	Air	Inhalation	Soil gas measurements indicated concentrations are low, so this pathway is essentially incomplete.
Outdoor Work er	Surface Soil	Soil	Ingestion & Dermal	Pathways potentially complete. Partial soil cover and grass limits access to soil during grounds keeping activities.
		Air	Inhalation	Gravel cover limits access to soil during staging of construction material.
Excavator	Surface Soil	Soil	Ingestion & Dermal	Pathways potentially complete but direct exposure to soil is infrequent.
	Subsurface Soil and NAPL	Air & Soil	Inhalation & Ingestion & Dermal	Pathways potentially complete but excavation work is infrequent.
Local Resident	Surface Soil	Air & Soil	Inhalation & Ingestion & Dermal	Volatile and fugitive dust emissions are expected to be very low, so this pathway is essentially incomplete except for dermal exposure to lead impacted soil outside the existing fenceline.
	Subsurface Soil and NAPL	Ground- water	Ingestion	Local residences are on City water supply, so this pathway is incomplete.

Outdoor workers are individuals who maintain the grassy areas of the site or who deposit or retrieve items from areas of the site where construction materials and pipes are staged. These individuals may be potentially exposed to COI in surface soils via incidental ingestion, dermal contact and inhalation of volatilized constituents and fugitive dust. Grass cutting and lawn maintenance, however, are limited to the warmer months and the existence of the grass provides a barrier to direct contact with the soil. Much of construction material staging work is done on an area covered by gravel, so the opportunity to directly contact soil and be exposed via incidental ingestion and dermal contact is limited.

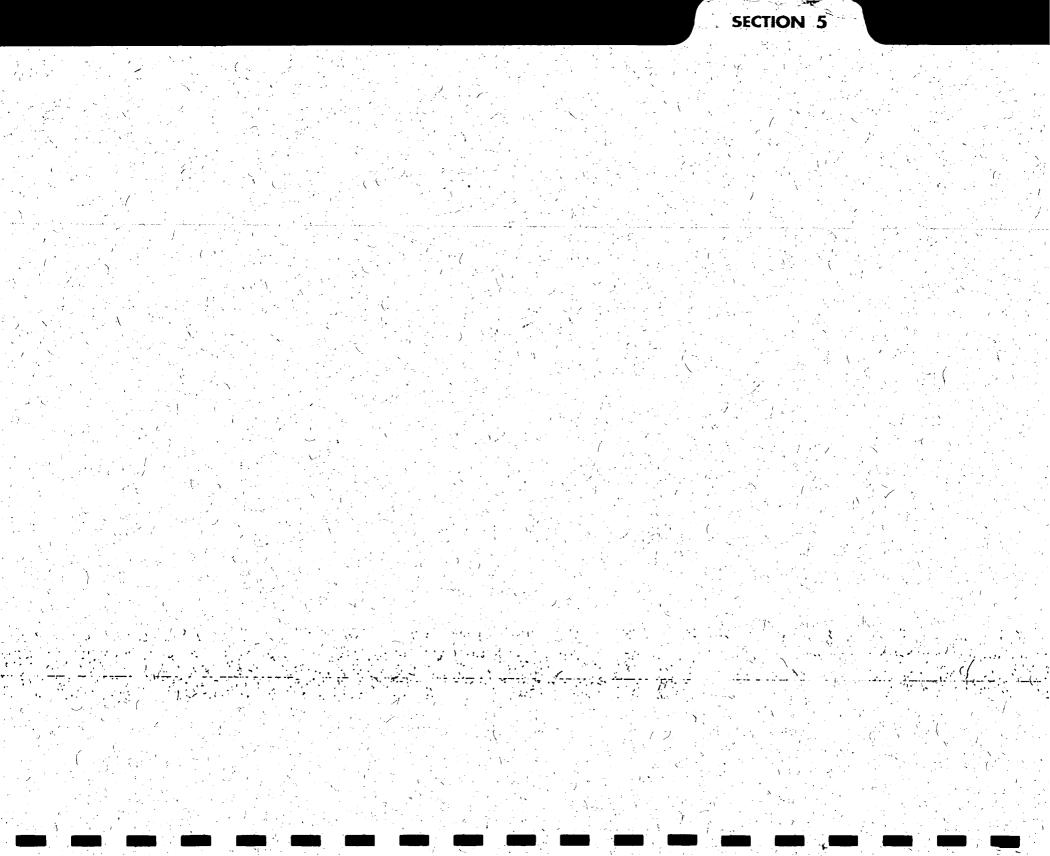
On a very infrequent basis, subsurface utility lines may require repair or new building construction may occur. In this case, excavators may handle impacted soil and be exposed to constituents from both the surface and subsurface. These exposures would be through incidental ingestion, dermal contact and inhalation of volatilized constituents and fugitive dust.

In theory, local residents can be indirectly exposed to constituents in surface soil through the processes of volatilization and fugitive dust emission and subsequent dispersion with wind to off-site areas. Exposure from these migration pathways are likely to be low. BTEX compounds were close to or below detection limits in all surface soil samples, so the only potentially volatile constituents are the low molecular weight PAHs (principally naphthalene) which have a much lower propensity to volatilize than BTEX and lower toxicities than benzene (i.e., the lower molecular weight PAHs are not considered carcinogenic). Also, the concentrations of naphthalene, the most volatile of the low molecular weight PAHs, were low in all the surface soil samples except the tar boil sample. Exposures from fugitive dust emissions are typically very low even at sites with high concentrations of constituents in surface soil and there are almost no residuals exposed to the surface at this site. Exposures to local residents from volatilization and fugitive dust emissions are thus likely to be essentially incomplete.

The concentration of lead in surface soils directly below three of the five on-site electric transmission towers is slightly above residential standards. Though the areas affected are vegetated, the towers are not, at this time, fenced so the soils could present a low level risk to trespassers from dermal contact and ingestion. The lead concentrations observed are low enough to be typically acceptable at commercial/industrial sites with limited access.

4.2.3 Evaluation of Groundwater Migration and Use

Groundwater on and near the site is currently not used as a source of drinking water. Since the Town of West Seneca and the City of Buffalo, including local residences, are serviced by a municipal water supply, the groundwater under the site is not expected to be used as a source of drinking water at any time in the foreseeable future.


Groundwater on the site either discharges to the drainage ditches or flows north toward the Buffalo River. The discharge of groundwater to the drainage ditches was discussed previously. The migration of COIs to the Buffalo River is not expected to be significant for a number of reasons, as discussed below.

The highest concentrations of BTEX and PAHs in groundwater occur in the central part of the site, such as MW7 (9,750 μ g/L and 2,660 μ g/L) and MW8 (1,650 μ g/L and 2,015 μ g/L), near

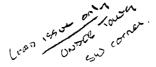
the Separator Pits Investigation Area. The concentrations in the down gradient site perimeter wells, MW13, MW14 and MW15, are below the detection limit. Likewise, BTEX and PAH concentrations in MW11 (229 μ g/L and 156 μ g/L) near the Subsurface Hydrocarbon Investigation Area are greater than MW12 (17 μ g/L and non-detect) which is down gradient of that area.

BTEX are relatively mobile in groundwater, but they are also biodegradable. The dramatic reduction of concentrations between the center of the site and the down gradient perimeter suggests that (1) groundwater is moving slowly (the water table is relatively flat), (2) biodegradation is occurring, or (3) both phenomena are operating simultaneously. PAHs are much less mobile than the BTEX, although these chemicals are also biodegradable. The absence of PAHs in the down gradient wells is consistent with these chemical properties. The low levels of BTEX and the non-detects for PAHs in the groundwater at the down gradient perimeter wells suggests that any off-site discharges of these constituents will be insignificant.

The situation for cyanide is not as straightforward. As discussed in the PSA, virtually all of the total cyanide at MGP sites is complexed cyanide (RETEC, 1997a). The most toxic form of cyanide is free cyanide (measured conservatively as "weak acid dissociable cyanide"), which is highly reactive, while complexed cyanide is very stable, unreactive and essentially nontoxic (GRI, 1996, and Theis, et al, 1994). Total cyanide concentrations at the Mineral Springs site exceed the NYSDEC groundwater standard of 100 µg/L in most of the downgradient and central wells. The concentration of weak acid dissociable cyanide, however, is below 100 µg/L in all 11 wells tested. Thus, while total cyanide is present in down gradient wells and may be leaving the site and eventually discharging to the Buffalo River, the form of cyanide in the groundwater is an unreactive, nontoxic complexed cyanide. Thus, the off-site environment is not expected to be impacted by any discharges of cyanide that may be occurring.

5.0 REVISED CONCLUSIONS

This section presents RETEC's conclusions based on environmental data gathered at the Mineral Springs Road MGP Site between July, 1997, and April, 1998. The conclusions presented are revisions to those presented in the *Preliminary Site Assessment for the Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, November 5, 1997)*. Recommendations for remedial actions are also presented.


5.1 Site Geology and Hydrogeology

The site geology and stratigraphy consists of:

- A surface layer of mixed fill (silty clay, top soil, coal fragments, brick fragments, cinders, ashes and concrete fragments).
- Underlying the fill is an upper confining clay layer (UCL) comprised of dense silty clay ranging from 3 to 13 feet thick. The UCL appears to be continuous across the site except at the Separator Pits and, possibly, in the eastern drainage ditch.
- Underlying the UCL is a groundwater-bearing sand and gravel unit. Groundwater flow beneath the majority of the site is northwest towards the Buffalo River. Groundwater also appears to be influenced by, and in direct contact with, the eastern drainage ditch.
- Underlying the groundwater-bearing sand and gravel unit is a lower confining clay layer (LCL) comprised (like the UCL) of dense silty clay. The LCL appears to be continuous across the site.
- Underlying the LCL is bedrock at approximately 40 feet bgs.

5.2 Areas of Concern and Recommended Remedial Actions

Six media were initially identified as being of potential concern at the site: surface water, sediments, surface soil, subsurface soil, groundwater and MGP residual products (NAPL and purifier box waste). Analytical results presented in the PSA (RETEC, 1997a) indicated surface water and sediments did not present a risk to receptors. Surface soil which had been identified as hazardous

and presenting a risk has been addressed by interim remedial measures. Concerns involving subsurface soil, groundwater and/or MGP residual products are addressed in the following subsections

5.2.1 Hydrocarbon COI in Separator Pits Area

The NAPL present in the bottom 3 feet of Separator Pit 2 has been determined hazardous for benzene and should be removed. The NAPL present in the bottom 1 foot of Separator Pit 3, while non-hazardous, should also be removed. Separator Pits 2 and 3 encompass a total volume of approximately 400 cubic yards.

The NAPL impacted soils around the Separator Pits extend downward to the LCL but are localized laterally. The material does not appear to be impacting off-site groundwater quality though excavation from above the water table of the most severely impacted soils (approximately 1800 cubic yards as determined by visible hydrocarbon NAPL saturation) would be consistent with the work previously conducted during the remediation of Separator Pit 1.

5.2.2 Lead and Purifier Box COI above Upper Confining Clay Layer

As described in Sections 2.2.2 and 2.2.3, purifier box residuals have been identified and roughly delineated in three areas of the site. Except for two sub-areas of surface exposure, the residuals do not appear to pose a risk to on- or off-site receptors. One sub-area (portions of the Eastern Swale) should be capped with clay or asphalt pavement, or armored with geo-fabric and anchor stone. The other sub-area (encompassing small sporadic patches of blue stained soil and wood chips near the Calais Avenue sewer inlet) should be similarly armored or capped.

Analyses of surface soils collected below the electric transmission towers along the southern property line indicate isolated concentrations of total lead up to 890 mg/kg (0.24 µg/L TCLP lead) with concentrations decreasing rapidly to less than 500 mg/kg outside the tower footprints. A sample of the tower paint was 29% lead. Though this does not appear to be an MGP related residual, NFG should pursue a dialog with Niagara Mohawk Power Corporation regarding future maintenance of the towers and the associated current and future impacts to surface soil.

Despite the minimal quantities of surface water and surface soil contamination at the site, NFG should erect additional chain link fence to further minimize site access by non-NFG personnel.

5.2.3 Hydrocarbon COI above Upper Confining Clay Layer

Approximately 3.0 acres of NAPL impacted subsurface soils (above the UCL) have been delineated. Analytical data so far indicate this material is non-hazardous though variable in constituency.

Because off-site groundwater is not adversely impacted, and based on a the review of environmental receptors and pathways, excavation and/or recovery of these MGP materials is not recommended.

Except for on-site personnel performing excavations in impacted soil, the environmental risk to on- and off-site receptors is negligible. To prevent worker exposure, however, institutional controls or deed restrictions should be implemented and excavation work in these areas should be performed by a certified remedial contractor.

5.2.4 Hydrocarbon COI between Confining Clay Layers

Approximately 4.3 acres of NAPL impacted subsurface soils (in the groundwater-bearing unit between the LCL and the UCL) have been delineated. The material is primarily located below the eastern drainage ditch and does not appear to emanate from the active landfill. Analytical data so far indicate this material is a non-hazardous, weathered, water gas tar. As mentioned in Section 5.2.1, another smaller plume is located directly below the Separator Pits but has limited lateral extent.

Due to its age, central location and immobility, the material does not appear to adversely impact off-site groundwater quality. Excavation of this material from below the water table would entail extensive water management, control of air emissions, and potentially adverse impacts to human health and the environment. Excavation is not recommended. Likewise, recovery of the material by pumping would have limited effect on overall risk reduction and is not recommended.

Additional surface water and groundwater monitoring, as per Section 5.2.5, is recommended to confirm that the NAPL is not migrating or causing a dissolved plume to go off-site.

5.2.5 COI in Groundwater

BTEX and PAH compounds were found to exceed NYSDEC Groundwater Quality Standards in MW7, MW8, MW11, and MW12. These wells are all located in central areas of the site. BTEX and PAH compounds were below the detection limits in MW10 and in all wells at the site perimeter.

Detected metals concentrations exceeding NYSDEC Groundwater Standard Values were limited to iron, magnesium, manganese, sodium and thallium.

Cyanide (total) was found in concentrations exceeding the NYSDEC Groundwater Standard (100 µg/L) in all 11 wells tested except MW15, MW17 and MW18. Free cyanide (measured conservatively as weak acid dissociable cyanide) was found in concentrations below 100 µg/L in all 11 monitoring wells tested. These data indicate that the total cyanide exceedences do not pose a risk to off-site receptors. Groundwater is not used by on- or off-site personnel.

Total and weak acid dissociable cyanide concentrations measured in MW14 are of the same magnitude as those seen in MW12 and MW16. Additional soil borings conducted in this area (DB-14 and SB-84 through SB-86) revealed no purifier residuals.

Additional annual groundwater monitoring of selected existing wells is recommended for a period of 5 years. After 5 years, the need to continue monitoring will be reevaluated based on any changes in the groundwater conditions. Due to the proximity of NAPL impacted soils below the eastern drainage ditch, surface water samples should also be included in the monitoring program.

6.0 REFERENCES

- Gas Research Institute (GRI), 1996, Management of Manufactured Gas Plant Sites, Amherst Scientific Publishers, Amherst, Massachusetts, 1996.
- RETEC, 1997a, Preliminary Site Assessment Report for the Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York.
- RETEC, 1997b, Field Sampling and Analysis Plan, Mineral Springs Road, West Seneca, New York.
- RETEC, 1997c, Health and Safety Plan, Mineral Springs Road, West Seneca, New York.
- Theis, T. L. et al, 1994, Leachate Characteristics and Composition of Cyanide-Bearing Wastes from Manufactured Gas Plants, Environmental Science and Technology, Vol. 28, No. 1.

1001 W. Seneca Street Suite 204 Ithaca, NY 14850 (607) 277-5716 FAX 16071 277-9057

January 23, 1998

Mr. Charles Burke National Fuel Gas Distribution Corporation Building 11 365 Mineral Springs Road Buffalo, NY 14210

RE: Project Complete Report Southwestern IRM: Excavation and Removal of Purifier Residuals
Mineral Springs Road MGP Site

West Seneca, New York

Dear Charlie:

Remediation Technologies, Inc. (RETEC) is pleased to submit this letter summarizing the work performed during the Southwestern Interim Remedial Measure (IRM) at 365 Mineral Springs Road in the month of December, 1997.

Background

The scope of work for this IRM was based on the recommendations of a Preliminary Site Assessment (PSA) completed by RETEC in October, 1997. The results of the PSA are reported in the document: Preliminary Site Assessment Report For The Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, 1997).

During the PSA, one surface sample of (apparent) MGP purifier box residuals was collected adjacent to the electrical transmission tower in the southwest corner of the site. Chemical analysis of the sample found, among other results, a corrosivity of 1.2 standard pH units, a total lead concentration of 2,650 mg/Kg and a TCLP lead concentration of 9.16 mg/L. The TCLP lead concentration and the corrosivity both indicated that the material was hazardous under RCRA Subtitle C rules. To prevent potential future exposure to site receptors, the PSA recommended (as an IRM) the excavation and proper disposal of approximately 45 cubic yards of the most impacted surface material from adjacent to, and beneath, the transmission tower. National Fuel Gas (NFG) requested RETEC to proceed with the proposed IRM.

Work Performed

Between December 3 and December 23, 1997, SLC Constructors, Inc. (SLC), excavated the material under the direction of a RETEC field engineer or geologist. The excavated material was placed in rolloffs or stockpiled on plastic. Rolloffs and stockpiles were covered.

All onsite personnel were up-to-date with their 40 hr OSHA HAZWOPER training and other requirements. All personnel operated under RETEC's site specific Health and Safety Plan for the Mineral Springs Road site.

Mr. Charles Burke January 23, 1998 Page - 2

The PSA had delineated a 20 foot by 24 foot area, 2.5-foot thick, as containing the most impacted materials. During excavation, it quickly became apparent that the delineated lens of surface material became deeper as it extended westward under the tower. On December 4th a small Bobcat trackhoe was also mobilized to the site in order to more effectively pursue the material below the tower. At that time NFG, in consultation with RETEC, determined to pro-actively pursue additional material (beyond that initially delineated) such as less impacted (though blue-stained) soils towards the south, east and west, and a significantly impacted subsurface lens towards the west and north.

Removal of visually delineated material from the south, east and west was substantially completed. Excavation to the north was halted within 15 feet of the assumed location of an underground 240 KVA electric transmission cable (see Figure 1) and 1 foot thick lens of blue stained material currently remains (at a depth of 4 feet) between the cable and the northern extent of the excavation. Geoprobe boring SB-53 taken north of the cable on January 8, 1998, by RETEC (see Figure 1) revealed no MGP residuals to a depth of 12 feet.

Decontamination of equipment was accomplished with a portable pressure-washer. A decontamination pad with a plastic liner collected the decontamination fluids which were containerized in drums. Dewatering of the excavation was required on several occasions. That water was also containerized. Disposal options for the containerized water are currently being considered.

Analytical Results and Disposal

The excavated material was tested for full RCRA hazardous characteristics to determine disposal options. Following receipt of the chemical analysis, the material was determined to be non-hazardous (TCLP lead 0.83 mg/L and corrosivity 3.99 units). It was transported to and disposed of at Modern Corporation's Model City landfill. Total weight disposed was 406.56 tons. Please find the attached copies of disposal weigh tickets.

Analysis of samples taken from the excavation bottom and sidewalls were likewise shown to be non-hazardous. The excavation bottom continues to exhibit a low pH (corrosivity 2.50 to 2.98) though all visually delineable source material was removed.

Significant analytical results are summarized in Table 1. Copies of the full reports are attached. See Figure 1 for sampling locations. Field sampling and analysis was conducted in accordance with the protocols established in RETEC's Field Sampling and Analysis Plan (RETEC, June 20, 1997).

Site restoration consisted of backfilling the excavation to original grade with uncompacted # 2 crushed stone.

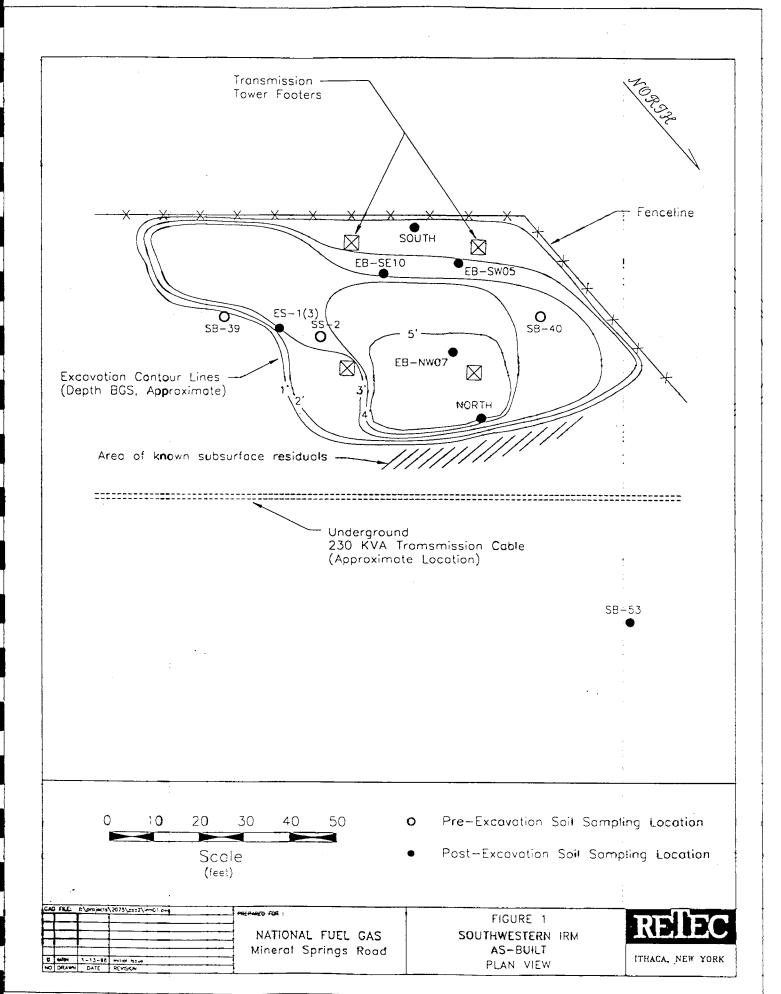
An associated IRM, as proposed in the PSA, was the regrading and armoring of an eroded swale northeast of Building 10. That work has been delayed until ground conditions allow access by heavy equipment. A section of temporary silt fence has been installed to prevent the possible migration of contaminated solids from the swale.

Should you have any questions or comments, please call me at (607) 277-5716:

Sincerely,

REMEDIATION TECHNOLOGIES, INC.

Mark Hofferbert


Project Engineer

cc: Tanya Alexander - National Fuel Gas

J. Edwards, B. Coulombe - RETEC

John Kuhn - SLC File: 3-2075-620

C:\nfg2075\swirm\SWIRM.DOC

TABLE 1

Summary of Sampling Results Southwestern IRM

National Fuel Gas, Mineral Springs Road Site, West Seneca, NY and RETEC, Ithaca, NY

SAMPLEID	SAMPLE TYPE	SAMPLE LOCATION	SIGNIFICANT_RESULTS
Pre-Excavation	on		
SB-39 SB-40 SS-2	Geoprobe Geoprobe Hand Auger/Composite	East of tower West of tower Center of surface deposit	No visual MGP residuals from 0 to 16 feet bgs. 2" lens of blue stained material (with faint hydrocarbon odor) at 3.5 feet bgs. Blue stained material from 0 to 2.5 feet bgs. Tested hazardous for TCLP lead (9.16 mg/L) and corrosivity (1.2 su).
Post-Excavat	ion		
South EB-se10 EB-sw05 EB-nw07 ES-1(3) North SB-53	Grab Grab Grab Grab Gomposite Geoprobe	Excavation bottom Excavation bottom Excavation bottom Excavation bottom Excavation sidewall/bottom Excavation sidewall North of 230 KVA cable	RCRA non-hazardous (corrosivity 6.9 su). * RCRA non-hazardous (corrosivity 2.75 su, lead 63 mg/Kg). * RCRA non-hazardous (corrosivity 2.50 su, lead 63 mg/Kg). * RCRA non-hazardous (corrosivity 2.98 su, lead 63 mg/Kg). RCRA non-hazardous (corrosivity 3.8 su). RCRA non-hazardous (corrosivity 7.2 su). No visual MGP residuals from 0 to 12 feet bgs.
Composite 1	Composite	Excavated material	RCRA non-hazardous (TCLP lead 0.83 mg/L, corrosivity 3.99 su).
Excav/Decon	Composite (water)	Excavation and decon water	RCRA non-hazardous except lead (25 mg/L, probably associated with suspended solids).

* Lead analysis performed on composite of three excavation bottom samples.

mrhlc:\nfg2075\psa2\swirm01

DIVISION OF SOLID AND HAZARDOUS WASTE + BUREAU OF HAZARDOUS WASTE OPERATIONS
50 WOLF ROAD, ALBANY, NEW YORK 12233-4017

APPLICATION FOR TREATMENT OR DISPOSAL OF AN INDUSTRIAL WASTE STREAM

SITE NO.	APPLICATION NO.	DATE RECEIVED
DEPARTMENT A	CTION: Disapproved	DATE

00%

- 23	
=	=

SEE APPLICATION INSTR	UCTIONS ON	REVERSE	SIDE						
1. NAME OF PROJECT/FACILITY		2. COUNT	Υ					3. SITE NU	MBER
MODERN LANDFILL INC		İ		NIAGARA	.			32N3	0
4. NAME OF OWNER		S. ADDRE	55 (Street, City	, State, Zip	Code)		, , ,	6. TELEPHO	
MODERN LANDFILL INC -		4746 M	DEL CIT	Y RD, 1	MODEL C	ITY. 1	44	(716)75	4-8226
7. NAME OF OPERATOR		& ADDRE	SS IStreet, Clay	, State, Zip	Code)		7	9. TELEPHO	
RICHARD WASHUTA		PLETCH	ER & HAR	OLD RD	MODEL	CITY.	NY	(716)75	4-8225
10. METHOD OF TREATMENT OR DISPOSAL							14107		
SANITARY LANDFILL - D90									
•									
			,				<u> </u>		
11. COMPANY CENERATING WASTE NATIONAL FLEL GAS			12ADDRES	S OF FACIL	LITY GENERA	TING WA	STE Street	re City, State,	Zip Code)
	1				INGS RD,	BUFFAL	J, NY	14210	
13. REPRESENTATIVE OF WASTE GENERATOR CHAPLES BURKE	SAME	ADDRESS (OF REPRESENT	ATIVE			: 1	15. TELEPHO	
16. DESCRIPTION OF PROCESS PRODUCING WA						-	<u></u> -1	716-827 - 2	ಯಾ
			•						
PURIFICATION OF COAL TEAS (MANUF	ACTURBU GAS)								
17. EXPECTED ANNUAL WASTE PRODUCTION	110	L WASTE H	AULED IN						
Tons/Year Cal	(Drums	Bulk Tank	X Roll	off Contains		Other	DUMP	
	b Physical State						19c pH R	ange	
19a, Average Percent Solids 60	Liquid [Slumy	Sludge	⊠ solid	Containe		•	3	5
19d COMPONE	ers .				ITRATION (D	y Weigh)	UNIT (OM	ck ane)
, SOIL				Upper	Lower	· Typ		Wt,%	PPM
· · · · · · · · · · · · · · · · · · ·						· —	29	lacktriangle	
2) FERRIC/FERROLS CYANIDE (NON	-REACTIVE)			<u> </u>			<u> </u>	\boxtimes	
n LEAD						0.8	33		X
41			•	•				$\overline{\Box}$	
20. IS AN ANALYSIS OF WASTE ATTACHED?	21. WAS AN EP				WASTET		TERIAL IS		
			Yes", attach			1	lazardous	Non-H	
23. DETAIL ALL HAZARD AND NUISANCE PROBI	EMS ASSOCIATED	WITH THE	WASTES. List	DOCESSELA TI	lety, handlin	ng treatm	enzand di	bazal buscans	ions.
SLIGHTLY ACTOIC.									
,									
•									
						•	i		
	•								1
24. WHERE WAS MATERIAL DISPOSED OF PREVI	OUSLYI								
N/A						٠.			
25. NAME OF WASTE TRANSPORTER	26. ADDRES	S CS beet, Cin	, State, Zip Co	de)	ZZ, NOSC	EC PERM	IT No.	28. TELEPHO	ONE NO.
BFC, TEC	BUFFALC		, 20010, 0,7 00	,	1	5; 9A-C			
29. CERTIFICATION									
I hereby affirm under penalty of perjury that	information provid	ed on this fo	rm and attach	rd statemen	u and exhibit	CE is true t	to the best	of my knowi	edge and
belief. False statements made herein are punishe	ione as a Class A m	1206Weyeot	pursuant to Se		of the Penal	LIW,			
& SIGNATURE AND TITLE OF REPRESENTATION	E OF WASTE CEN	IERATOR	P.1-	سمماه			DATE	1,10-	,
* (MANOS I Duene	4558	HCIATE	£N61	NOCK	·	} :	12	16/4/	
L SICHATURE AND TITLE OF REPRESENTATION								-	
X	e of treatment	OR DISPOS	SAL FACILITY				DATE		

The waste is at least 20% solid and con	tains no free liquid		Yes [X] No []
The Flashpoint of the waste is >140 F			Yes [X] No []
The pH level of the waste is between 2.	0 and 12.5		Yes [X] No []
s the waste reactive (Cyanide/Sulfide)?			Yes [] No [X]
s the waste free of PCBs?	••••		Yes [X] No []
Color: BROWN_BLUE	Odor: [] Strong	[] Wild	[X] None
			•

TCLP TESTING AND CERTIFICATION

14	Τ.	Δ	Ī	C

CONSTITUENT	NON-HAZARDOUS	PRESENT	NOT PRESENT
		111204	X
MASENIC	5.0	<u> </u>	
BARIUM	190.0		·
CADMIUM	1.0		' X
CHROMIUM	5.0		X
LEAD	5.0		0.83
MERCURY	0.2		X
SELENIUM	1.0		X
SILVER	\$.0		X

HERBICIDES/PESTICIDES

٠.	NON-HAZARDOUS		!
CONSTITUENT	LIMIT (mg/l)	PRESENT	NOT PRESENT
2,4-0	10.0		
2,4,5-TP (SILVEX)	1.0		
ENDRIN	50.0		
LINDANE	0.4		
METHOXYCHLOR	10.0		<u> </u>
TOXAPHÉNE	0.5		
CHLORDANE	0.03		
HEPTACHLOR	0.608		

ACID EXTRACTABLES

	NON-HAZARDOUB		
CONSTITUENT	LIMIT (ma/l)	PRESENT	NOT PRESENT
D-CREOSOL	500'6		
W-CRECSOL	500.0		
P-CREOBOL	200.0		
PENTACHLOROPHENOL	· 100.0		X
2.4.5-TRICHLOROPHENOL	400.6]	X
Z48-TRICHLOROPHENOL	2.0		X

BASE NEUTRALS EXTRACTABLES

CONSTITUENT	NON-HAZAROCUI	8	PRESENT	NOT PRESENT
1.4-DICHLOROBENZENE	7.5			Χ
2,4-DINITROTOLLIENE	0.13			Χ
HEXACHLOROBENZENE	0.10	1		X
HEXACHIOROBUTADIENE	0.6			X
HEXACHLOROETANE	a	1		X
NITROS ENZENE	2			X
PYRIDINE	0			X

VOLATILE ORGANICS

VOLATILE OTTO THE	NON-HAZARDOUS		
CONSTITUENT	니시키 (mp/n)	PRESENT	NOT PRESENT
1,1-DICHLOROETHYLENE	0.7		X
METHYL ETHYL KETONE	200.0		
TETRACHLOROETHYLENE	0.7		X
VINYL CHLORIDE	0.2		x
BENZENE	0.5		X
CARBON TETRACHLORIDE	0.5		X
CHLOROSENZENE	100.0		X
CHLOROFORM	8.0		
TRICHLORGETHYLENE	0.5		X
12-DICHLOROETHANE	0.6		X

CERTIFICATION

I CERTIFY THAT ALL INFORMATION CONTAINED WITHIN THIS GENERATOR WASTE CHARACTERIZATION REPORT, INCLUDING ALL ATTACHED INFORMATION, IS COMPLETE AND ACTUAL AND IS AN ACCURATE REPRESENTATION OF KNOWN OR SUSPECTED HAZARDS DESCRIBED HEREIN.

SIGNATURE:

PRINTED NAME:

CHARLES

BURKE

TITLE:

ASSOCIATE ENGINEER,

COMPANY:

NATIONAL FUEL GA

DATE:

12/10/97

Generator Waste Characterization Form

Page 3

D

GENERATOR WASTE CHARACTERIZATION REPORT

INSTRUCTIONS: The following form is required for disposal of nonhazardous industrial/commercial wastes at Modern Landfill. Please complete all sections of this report. Send completed report along with the analytical, chain of custody and the Application for Disposal of an Industrial Waste Stream (47-19-7) to this office. A separate form is required for each waste stream.

GENERATOR INFORMAT	ion:	•	
Generator Name:	NATIONAL FUEL GAS		
Generating Facility Addres	s: 365 MINERAL SPRINGS RD BUFFALD, NY 14210		
Technical Contact:	CHAPLES BLEKE	Phone: (716) 827-2359
Alternate Contact:	TANYA ALEXANDER	Phone: (716	857-7410
INVOICING INFORMATIO	N: .		
Contracting Firm:	SLC CONSTRUCTORS, INC.		
Contact:	JOHN KUHN	Phone: (716) 433-0776 EXT. 227
Do you have an existing ac	count with Modern Landfill? [X] Y	es [] No	
Billing Address:	295 MBLL STREET LOOKPORT, NY 14094		
	. 	NYSDEC Permit N	.9A-545 _{2.} 9A-080
Contact Person: M Is Modern Landfill currently	WE REYNOLDS IKE MAYER on your Transporter Permit: [X] Your Places and as a Park C Application	Phone: (716)	•
WASTE INFORMATION:	no, please enclose a Part C Applica	non to cover this waste stream.	
Common name of waste:	PURIFIER BOX WASTE	. ·	•
Description of process gene	rating this waste: OBAL GASTFICATI	ON (MANUFACTURED GAS)	
•	er US EPA Guidelines & 6NYCRR Pa	nt 371 (d)? { } Yes [X] No	
[X] Industrial William Household Volumential	aste [] (Construction & Demolition Debr Other (Please Specify)	İs

VOLATILE ANALYTICAL REPORT

Laboratories

Excavated Material

: Remediation Technologies, Inc.

: 12013 Account #

: Mineral Springs Site

Date Received: 06-DEC-97 Date Sampled : 05-DEC-97 Matrix : Leachate

Method: SW846/1311/8260-TCLP

Units : UG/L

<pre>Galson ID: Client ID:</pre>	L40438-1 COMPOSITE 1	QCB120897-1 Method Blank	QCB120897-1TP TCLP Blank		
Vinyl Chloride	<100	<10	<100		
1,1-Dichloroethene	<50	<5	<50		
1,2-Dichloroethane	<50	<5	<50		
2-Butanone	<100	<10	<100		
Carbon Tetrachloride	<50	<5	<50		
Crichloroethene	<50	<5	<50		
Benzene	<50	<5	<50		
Tetrachloroethene	<50	<5	<50		
Chlorobenzene	<50	< 5	<50		
1,4-Dichlorobenzene	<50	<5	<50		
Dilution Factor	10	1	10		
Analysis Date	12/08/97	12/08/97	12/08/97		

Approved by : PJT

Date : 09-DEC-97

QC by

: 707 : 12-1297 Date NYS DOH # : 11626

Footnotes:

Sample run in accordance with ASP 95-1 Methodology.

LEACHATE VOLATILE SURROGATE RECOVERY

Client : Remediation Technologies, Inc. Login # : L40438

SAMPLE NO.	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT
Method Blank-QCB120897-1 TCLP Blank COMPOSITE 1	91 90 87	94 91 90	88 88 94	BA1208 BA1208 BA1208	1

QC LIMITS SMC1 (TOL) = Toluene-d8 SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 (54-114) (50-128) (54-123)

page 1 of 1

FORM II-CLP-1

[#] Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

SEMIVOLATILE ANALYTICAL REPORT

client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 06-DEC-97

Date Sampled : 05-DEC-97

Date Extracted: 08-DEC-97

Matrix : Leachate

Method: SW846/1311/3510/8270-TCLP

Units : UG/L

Galson ID: Client ID:	L40438-1 COMPOSITE 1	Q-5168 SBLK5168	Q-5168TP SBLK5168TP
Pyridine	<100	<100	<100
1,4-Dichlorobenzene	<10	<10	< 10
2-Methylphenol	<10	<10	· < 10
3 & 4-Methylphenol	<20	<20	<20
Hexachloroethane	<100	<100	<100
Nitrobenzene	<10	<10	. <10
Hexachlorobutadiene	<10	<10	. <10
2,4,6-Trichlorophenol	<10	<10	<10
2,4,5-Trichlorophenol	<10	<10	<10
2,4-Dinitrotoluene	<10	<10	: <10
Hexachlorobenzene	<10	<10	; <1 0
Pentachlorophenol	<5	<5	<5
Dilution Factor	1	1	1
Analysis Date	12/08/97	12/08/97	12/08/97

Approved by : PJT

Date : 10-DEC-97

QC by : 7 Date : 12-12-17 NYS DOH # : 11626

Footnotes:

TCLP extraction performed on 12/7/97.

Analysis performed in accordance with ASP 95-2 Methodology.

LEACHATE SEMIVOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES Contract:

Lab Code: Case No.: 1 SAS No.:

SDG No.: L40438

SAMPLE NO.	S1 (2FP)#	S2 (PHL)#	S3 (NBZ)#	S4 (FBP)#	S5 (TBP)#	S6 (TPH)#	S7 (2CP)#	\$8 (DCB)#	TOT
SBLK5168 SBLK5168TP COMPOSITE 1	41 43 44	23 24 25	66 65 72	61 62 62	53 58 56	84 86 89	63 63 64	56 57 57	0 0
							:		
							<u> </u>		

			QC LIMITS	
S1	(2FP) =	2-Fluorophenol	(21-110)	
S2	(PHL) =	Phenol-d6	(10-110)	
S3	(NBZ) =	Nitrobenzene-d5	(35-114)	
S4	(F BP) =	2-Fluorobiphenyl	(43-116)	
S5	(TBP) =	2,4,6-Tribromophenol	(10-123)	
S6	(TPH) =	Terphenyl-d14	(33-141)	
S7	(2 CP) =	2-Chlorophenol-d4	(33-110):	(advisory)
S8	(DCB) =	1,2-Dichlorobenzene-d4	(16-110)	(advisory)

[#] Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

Lab Name: GALSON LABORATORIES Contract: Remediation

Lab Code: Case No.: 2 SAS No.: SDG No.: L40438

Matrix: (soil/water) SOIL Lab Sample ID: L40438-1

Sample wt/vol: 30.6 (g/mL) g Lab File ID: HP13A\C121212

% Moisture: 43 decanted: (Y/N) N Date Received: 12/06/97

Extraction: (SepF/Cont/Sonc) SONC Date Extracted:12/11/97

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/12/97

Injection Volume: 1.0 (uL) Dilution Factor: 10.0 *

GPC Cleanup: (Y/N) Y pH: 5.0 Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/Kg Q

12674-11-2Aroclor-1016 11104-28-2Aroclor-1221 11141-16-5Aroclor-1232	570 1100 570	U U
53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254	570 570 570	U U
11096-82-5Aroclor-1260	570	Ü

* Oilvited due to matrix interference

(VK)
12/15/97

FORM I PEST

PBLK 5172

Lab Name: GALSON LABORATORIES

Contract: Remediation

Lab Code:

Case No.: 2

SAS No.:

SDG No.: L40438

Matrix: (soil/water) SOIL

Lab Sample ID: Q-5172

Sample wt/vol: 30

Lab File ID: HP13A\C121207

% Moisture: 0

decanted: (Y/N) N

Date Received: 00/00/00

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/11/97

Concentrated Extract Volume: 5000 (uL)

Date Analyzed: 12/12/97

Injection Volume: 1.0 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 7.0

Sulfur Cleanup: (Y/N) N

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/Kg | Q

CONCENTRATION UNITS:

33	1 11
—	† Ŭ
33	ָּט וֹי
 33	ט וי
33	U
 33	T U
33	ט וי
	33 33 33 33 33

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET SAMPLE NO.

FLBLK 5172

Lab Name: GALSON LABORATORIES

Contract: Remediation

Lab Code:

Case No.: 2

SAS No.:

SDG No.: L40438

Matrix: (soil/water) SOIL

Lab Sample ID: Q-5172FLB

Sample wt/vol: 30

(g/mL) g

Lab File ID: HP13A\C121210

% Moisture: 0

decanted: (Y/N) N

Date Received: 00/00/00

Extraction:

(SepF/Cont/Sonc) SONC Date Extracted: 12/11/97

Concentrated Extract Volume: 10000(uL)

Date Analyzed: 12/12/97

Injection Volume: 1.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH: 7.0

Sulfur Cleanup: (Y/N) N

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg: Q

33 67 33	U U
	U
. 33	
2.7	U
33	់ ប
33	Ü
33	Įυ
33	ן ט
	33 33

FORM I PEST

PESTICIDE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

GPCBLK 5172

SDG No.: L40438

Lab Name: GALSON LABORATORIES

Case No.: 2

Lab Code:

Contract: Remediation

SAS No.:

Lab Sample ID: Q-5172GPC Matrix: (soil/water) SOIL

Lab File ID: HP13A\C121208 Sample wt/vol: 30 (q/mL)q

0 % Moisture: decanted: (Y/N) N Date Received: 00/00/00

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/11/97

Concentrated Extract Volume: 5000 (uL) Date Analyzed: 12/12/97

Injection Volume: 1.0 (uL) Dilution Factor:

GPC Cleanup: pH: 7.0 Sulfur Cleanup: (Y/N) N (Y/N) Y

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/Kg

U 12674-11-2----Aroclor-1016 33 11104-28-2-----Aroclor-1221 11141-16-5-----Aroclor-1232 67 U 33 U 53469-21-9-----Aroclor-1242 33 U 12672-29-6-----Aroclor-1248 33 U 11097-69-1-----Aroclor-1254 U 33 11096-82-5-----Aroclor-1260 U 33

METALS ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 06-DEC-97 Matrix: Leachate Date Sampled: 05-DEC-97 Method: CLP-M

Galson ID: Client ID:		L40438-1 COMPOSITE 1	QM971208-1 TCLP Blank	<u> </u>
Arsenic TCLP	mg/l	<0.2	<0.2	
Barium TCLP	mg/1	<1	<1	
Cadmium TCLP	mg/l	<0.005	<0.005	•
Chromium TCLP	mg/l	<0.01	<0.01	•
Lead TCLP	mg/1	0.83	<0.1	1
Mercury TCLP	mg/1	<0.0005	<0.0005	
-	- '.	<0.1	<0.1	1
Silver TCLP	mg/l	<0.5	<0.5	1
Selenium TCLP	mg/1 mg/1			1 1

Approved by : Karen S. Becker

Date : 09-DEC-97

QC by : 57
Date : 11(1)(1)
NYS DOH # : 11626

Footnotes:

INORGANIC ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-DEC-97

Date Sampled : 05-DEC-97

Excavated Material

Excavated Material

Confirmation samples

Confirmation bottom.

from Excavation bottom.

Matrix : Soil

Galson ID: Client ID:	Method	Units	L40438-1 COMPOSITE 1	L40438-2 EB (NW7)	L40438-3 EB (SE10)
Reactive Cyanide	SW846		<100	NR	NR
Reactive Sulfide	SW846		<100	NR	NR
Corrosivity/pH	SW846 9045		3.99	2.98	2.75
Ignitability	SW846 1030		NEG	NR	NR

Approved by : LM

Date: 11

: 11-DEC-97

QC by Date : 12-12.97

NYS DOH # : 11626

Footnotes:

- * The bulk pH was performed using SW846 method 9045.

 A sample is corrosive if pH is less than or equal to

 2, or greater than or equal to 12.5 Standard Units(SU).

 Under these conditions, the samples are not corrosive.
- * The samples do not ignite or support combustion.
 Under these conditions the sample is non-ignitable.
- * The sample does not exceed the USEPA action levels of 250 mg HCN/kg waste and/or 500 mg H2S/kg waste as stated in SW846; therefore it is not reactive.

INORGANIC ANALYTICAL REPORT

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-DEC-97

Date Sampled : 05-DEC-97

Method

Matrix : Soil

Galson ID: Client ID:

L40438-4

EB (SW5)

NR

NR

NR

2.50

Reactive Cyanide Reactive Sulfide Corrosivity/pH

Ignitability

SW846 mg/kg SW846 mg/kg

Units

SW846 9045 SU SW846 1030

Approved by : LM

Date : 11-DEC-97

QC by Date

: 500 : 12-12-7

NYS DOH #

: 11626

Footnotes:

* The bulk pH was performed using SW846 method 9045. A sample is corrosive if pH is less than or equal to 2, or greater than or equal to 12.5 Standard Units(SU). Under these conditions, the samples are not corrosive.

* The samples do not ignite or support combustion. Under these conditions the sample is non-ignitable.

* The sample does not exceed the USEPA action levels of 250 mg HCN/kg waste and/or 500 mg H2S/kg waste as stated in SW846; therefore it is not reactive.

TEMEDIATION TEOMINGLOGICO 1001 W. Seneca Street, Sulte 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0645

TECHNOLOGIES INC	Fax (607) 277	- 9 057					(* ./	5									
PROJECT NAME: MINEYAL SPRINGS IRM	PROJECT NU 3 - SAMPLER (F	IMBER: 2075 -	680				/	37	1	7	7	7	//	7	/	7777		///
SEND REPORT TO: HOFTER BE- +	SAMPLER (F	RINT NAME)	D () A	0 (3.4.\ 									PA	IGE LOFL
LADDRESS.	SAMPLER (P	RINT NAME)	, vw-, v			ć	5/1	٧/	Ι.					/ ,				
Asove	SHIPMENT N	ETHOD: Fe				Jo.	/ 2 /	/	\°\	/ > /	/ ,	/ ,	/ /	5 /	· /	/ / /		
	Albort Will	Fe	9 Ex			5/_		./	1/	\ <i>*</i> ./:	<i>}</i> /		1. P. J. J. J. J. J. J. J. J. J. J. J. J. J.	ř/				
	AIRBILL NUM	BER: 36-7	50 5 l	39.	22	3/1	ر آنم	ช์/ :	r / 'r	·/ s	:/		ر في ا	/ ,				
PHONE:	LABORATORY	RECEIVING:						وں لا	/ 4	/ ii	/ ,	00/	/		,	/ /		
FAX:		<u> </u>				#/		9/			-/	00/	1					
FIELD SAMPLE ID	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	NUMBER	OF /W	Ŧ <i>f</i>	3/3	//-	3/	9' '	4	J/ K	-/	/ /		COMMENTS, SPECIAL INSTRUCTIONS, ETC.	LAB	SAMPLE ID
HALLES ALL & PARTS LAND		1			IERS / /		f			-		/ -	/_/		 1		1	
composite!	12/5/97	1000	Soil	4		X	X	X	X	X	*	4				(X) NO HERB:	CIDES	/ Pesticio
			100	movdiai.	ion fec	Onti	Loui	e	11:	Lite	4 35-	1 .l,				FOR SAMPLE	Co-	iposite,
			T is	706/57	logii 🗀		ČÜ	ijΡÓ	5116	i						corplete AL	12	
	1-107		+ ,	1 ,			1		1			 				11.	, , ,	<u> </u>
EB(NW7)		1446	29,1										L~04.		-	HAZA-DOUS C	14-40	Gens NO
ES (SE 10)	12 4 197	1542	Joil						X	gie: 150 i	,)	n L.	1043)	i,		testing e	XCEP	+
FB (SW5)	(215197	1305	1:02	l i					Х	H.M. I	(ivi; l v :	ull To t	4043			Hersicine à	Pest	- S
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	J - 0,						<i>J.</i> `	1391.0	(SW	5)				extav sa	• [
			1								1					` \ `	Ple	00 10 m.
											ļ					include D	<u> </u>	<u></u>
				}							}							
	- 		 	1					<u> </u>			l			-	Y. D. JC II	 X	
			-				L							_		X RUSH		·
																TURNARO	UND	
																Time		
		 	 						 -							7.00.1	1,1	•
									<u> </u>							ΓΕΟ	1 01	
			1															
		<u>L</u>			,	1	الليا				1/0 /5	0145: 5	W0 ==	1455		<u> </u>		
	ceived by: 7(Signatu		t t	ate:	Time:				•	KEMAR.			TED BY	LABO	KAIO	(Y): SAMPLE RECEIF	ot .	······································
James id. Edward	Fed e,	X	/	600	12/5/9	7	-	C LE				NAROU		TOTA		CONTAINERS RECEIVED ?		7
Reinquished by: (Signature)	ceived by: (Signatu	re)	D	ate:	Time:		LEVEL			- 1	ROUTII					LS PRESENT ?	•	+
Υ Ι			İ			1	LEVEL.	II		2	24 HO	UR						1
Relinquished by: (Signature) Re-	ceived by: (Signatu	re)	20 0	ate:	Time:	\dashv	LEVEL.	III	D		1 WEE	ж 、	/ ^[]			LS INTACT ?		
E. L.	seived by: (Signatu	_	<i>JJ</i> -K 1		14:00		OTHER			-	OTHER 2	, ,		-		CONTAINERS INTACT ?	•	1120
100 LX M	D. Buchana	'n		· · / · · ·	I ,					X	<u> </u>	SH		TEMP	PERA	TURE ?		14°C

6601 Kirkville Road E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

December 18, 1997

DOH ELAP# 11626

Mr. Mark Hofferbert Remediation Technologies, Inc. 1001 West Seneca Street Ithaca, NY 14850

Re:

Client Account# 12013

Login# L40438

Dear Mr. Hofferbert:

Enclosed is the revised report for the samples received by our laboratory December 6, 1997. We have reported chloroform for 8260 TCLP for sample COMPOSITE 1 (Galson ID L40438-1) as requested.

Please contact our Client Services Department at (315) 437-7252, extension 116, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

F. Joseph Unangst Laboratory Director

Enclosure(s)

6601 Kirkville Road P.O. Box 369 E. Syracuse, NY 13057 (315) 437-7252

Phone:

(315) 437-7252

extension_116

Fax:

(315) 437-0571

TELECOPY

NUMBER OF PAGES SENT (INC	LUDING THIS COVER):_	
TO: Mark to Herbert	DATE: 12/17/97	<u>i</u>
COMPANY: RETEC	FROM: By WEAL	
FAX#: 607-277-9057	SUBJECT: MINNER S	Springs_
MESSAGE:	. 1	
Mark- MEK is reported Choroform < 50 ppb.	- 2- butanone.	
	hanks	
	Pan	
MEK < Chloroform < "Cresol" = "Meth,	100 mg/L	!
. Chloroform <	50 ppb	:
(resol" = "Meth,	y/phenol" all	N/D
HARD COPY TO FOLLOW: YES	NO	
This facsimile transmission from Galson Laboratories form. Disclosure, distribution, copying or use of the co Laboratories is prohibited. Please contact us immedia	ntents of this facsimile without the co	usent of Galson

calling (315) 437-7252, extension 135.

IF THERE IS A PROBLEM WITH THIS TRANSMITTAL, OR IF YOU HAVE ANY QUESTIONS, PLEASE CALL (315) 437-7252, EXTENSION 135. THANK YOU!

VOLATILE ANALYTICAL REPORT

: Remediation Technologies, Inc.

: 12013 Account #

: Mineral Springs Site

Date Received: 06-DEC-97 Date Sampled : 05-DEC-97 Matrix : Leachate

Method: SW846/1311/8260-TCLP

Units : UG/L

Galson ID: Client ID:	L40438-1 COMPOSITE 1	QCB120897-1 Method Blank	QCB120897-1TP TCLP Blank			
Vinyl Chloride	<100	<10	<100			
1,1-Dichloroethene	<50	< 5	< 50			
1,2-Dichloroethane	<50	< 5	;< 50			
2-Butanone	<100	<10	<100			
Chloroform	<50	< 5	< 50			
Carbon Tetrachloride	<50	< 5	< 50			
Trichloroethene	<50	< 5	;< 50			
Benzene	<50	< 5	< 50			
Tetrachloroethene	<50	< 5	< 50			
Chlorobenzene	< 50	< 5	;< 50			
1,4-Dichlorobenzene	<50	< 5	< 50			
Dilution Factor	10	1	10			
Analysis Date	12/08/97	12/08/97	12/08/97			

Approved by : PJT

Date : 09-DEC-97

QC by : 5% : 12-18-57 Date NYS DOH # : 11626

Footnotes:

Sample run in accordance with ASP 95-1 Methodology.

INORGANIC ANALYTICAL REPORT

Exercation 30 Homes

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 12-DBC-97 Date Sampled : 11-DEC-97 Matrix : Soil

Galson ID:

L40540-2

L40540-3

L40540-4

Client ID:

Units

ES-1 (3)

SOUTH

Corrosivity/pH

SW846 9045 SU

Method

7.2

NORTH

3.8

6.9

Approved by : LM

Date

: 16-DEC-97

QC by Date

: 12/17/97

NYS DOH #

: 11626

Footnotes:

* The bulk pH was performed using SW846 method 9045. A sample is corrosive if pH is less than or equal to 2, or greater than or equal to 12.5 Standard Units(SU). Under these conditions, the samples are not corrosive.

METALS ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

: 12013 Account #

: Mineral Springs Site

Date Received: 06-DEC-97 Matrix : Soil

Date Sampled : 05-DEC-97 Method: SW846 6010A

Galson ID: Client ID: L40531-1

QM971217-1

EB NW7, SE10, SW5

BLANK

Units

Inorganic Lead

mg/kg 63

<0.3

Approved by : Karen S. Becker

Date : 17-DEC-97 : E-4 QC by : 12/17/97 Date NYS DOH # : 11626

Footnotes:

Results are reported on a dry wieght basis. See enclosed sheet for percent

moisture values.

SOIL MOISTURE ANALYSIS

LOGIN: L40531 QC BATCH: LAB GROUP: INORGANIC REF. #: 2204

GALSON ID	SAMPLE DESC	DCT	PAN WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	SOLID
L40531-1 L40531-1D		N N	0.99	6.86 5.41	4.55 4.23	3.56 3.24	48.1	51.9 59.9
						:'		
				·				
						:		
						· · · · · · · · · · · · · · · · · · ·	:	

(net wet weight) - (net dry weight)

Percent Moisture = ----- x 100 net wet weight

12/17/97 15:45

MED NOTE LOG 1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0345

Crietnely dwn

THERROTOGIES THE	rax (607) 277	-9057						(Fe)	7									
PROJECT NAME A JURIAL Sprisbs IRM	PROJECT NUMBER: 3-2075-680						·	33	1	7	7	7	//	7	7	7777		<u> </u>
SEND REPORT TO: MA-16 HOFTE, P.e. +	SAMPLER (PRINT NAME) FOWALDS				7	5.) 1-	9/	67/									PA	GE LOFL
ADDRESS:	1 DVM/ LFI/ /I	IVIIII IVAME)			7	í	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~/	/ ,		10			/.				• • • • •
	SHIPMENT A	AETHOD:	ワ た×		1	PEO.	12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	/ /	70/	/ <u> </u>	/ _ /	/ /	/ /	/5 zz /	/ /			**
	AIRBILL NUM	MBER: 36 7	Fo C 3	291	1	\$	- 77	ر ا	_'/:	\/.	7/		7,2				•	•
PHONE:	LABUKATUKT	RECEIVING:	<u> </u>		- *	3/V	<u>-</u> }	3/ 3		1 00	/	/ 5				/ /		
FAX:		<u> </u>			- /-	= ;/	3	\ a/	\ \ \	' 3/	-/	8/	\ \frac{1}{2}					
FIELD SAMPLE ID	SAMPLE DATE	SAMPLE 1 TIME	SAMPLE MATRIX	NUMBER OF			r]	ž/	3/ -	4	7	7				COMMENTS, SPECIAL INSTRUCTIONS, ETC.	LAB (to be co	SAMPLE ID
composite 1	12/5/97	T. A T.	50:1	4	-	×	X	×	×	×	×	+				(x) NO HERB.	T	
				1	1	;		-		-						FOR SAMPLE		
· ·						,		-							-	corplate AL		
EB(NW7) 7	12/5/97	1446	Soil	1	-				X	-		-	-		-	HAZA-DOUS C		
EB (SE 10)		1542	50:1			1			X				-			testino e		
ER (SUE)	1-1-197	17.5	C · 1	1	1		.		X						†	HE-BICIOS I		
Remediat (12/06/97	on Techn	ologies,	In L40	0531-1	†~~		1		•••	-						extrav sa	1]	
Spor Mark 1411/17	JULL:	FR WE	M, $SE10$, SW5			ve le	0.1	1		1	لحا		lea	<i>\\</i>	INClude D	1	
- per volume in frage	1	TICULA	- نىس-	p = -	74-	100	1	17		<u> </u>	 \	W	17	11/		(30,000	·	
		<u> </u>		+ ;	+	.> -%	1	1		 	1		7	y	/			
			- N	//	╁	-	1/-	-		+			-			X DICH	 X	
		1	<u> </u>	1		· Com				-	-					7 -0511	+	
	,	 		1		 		7								TURNARO	40D	
	4	ļ. · ·	 	ļ.	-	-			ļ							Time	 	
and the second of	 		ļ	ļ	ļ. <u>.</u> .	-		· .							ļ	Reque	<u> </u>	
		1.//	ļ, ————		-												<u> </u>	
				<u>'</u>		1	ļ									==		
						1.											1	
	ed by: ¡(Signatu	ıre)	Do	te: Tii	me:	SA	MPLE	CUSTO	DIAN	REMAR	KS (C	OMPLE	TED B	Y LAE	ORATO	RY):		
fame of Edward F				000 12	12/5/9		QA/	QC LE	VEL		TURNAROUND:			SAMPLE RECEIPT				T
Relinquished by: (Signature) Received by: (Signature)		Da	t e : Tir	ne:	-	LEVEL	. I		1	ROUTINE			\vdash		AL # CONTAINERS RECEIVED ?			
	ļ			†			LEVEL	. II		24	24 HO	UR		\vdash	• • •	ALS PRESENT ?		
Relinquished by: (Signature) Receip	ed by: (Signatu	ire) // ^	Da Da	te: Tii	ne:	-		III	D		1 WEE	`	/	- +		ALS INTACT ? CONTAINERS INTACT ?		-
	ed by: (Signatu	•	1		1:00		OTHER	₹	מ	-	OTHER 2 US	SH	_		*	TURE ?		400
1/7-2	~<011/17/11/11	· *)	1	1		- 1				1 1		1		1		-		

December 18, 1997

6601 Kirkville Road E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

DOH ELAP# 11626

Mr. Mark Hofferbert Remediation Technologies, Inc. 1001 West Seneca Street Ithaca, NY 14850

Excavation and Decontumination Water

Re: Client Account# 12013

Login#-L40438- L40 5 40

Dear Mr. Hofferbert:

Enclosed are the analytical results of the samples received by our laboratory December 12, 1997. Samples submitted for TOC were subcontracted to Buck Environmental Laboratories, Inc. Their report is enclosed in its entirety.

Please contact our Client Services Department at (888) 577-5227, extension 116, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

F. Joseph Unangst Laboratory Director

Enclosure(s)

VOLATILE ANALYTICAL REPORT

Galson

Laboratories

Laboratories : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received : 12-DEC-97

Date Sampled : 11-DEC-97 Method : SW846 8260

Units : UG/L

Matrix : Water

Galson ID: L40540-1 QCC121497-1 Client ID: EXCAVATION/DECON Method Blank

Benzene <5 <5

Dilution Factor 1 1
Analysis Date 12/14/97 12/14/97

Approved by : PJT

Date : 16-DEC-97
QC by : 12/17/47
NYS DOH # : 11626

Footnotes:

WATER VOLATILE SURROGATE RECOVERY

Client : Remediation Technologies, Inc. Login # : L40540

SAMPLE NO.	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT
Method Blank-QCC121497-1 EXCAVATION/DECON	102	96 100	92 89	CA1214 CA1214	0

QC LIMITS SMC1 (TOL) = Toluene-d8
SMC2 (BFB) = Bromofluorobenzene
SMC3 (DCE) = 1,2-Dichloroethane-d4 (54-114) (50-128)(54-123)

page 1 of 1 FORM II-CLP-1

[#] Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

PESTICIDE ANALYTICAL REPORT

: Remediation Technologies, Inc. Client

: 12013 Account #

: Mineral Springs

Date Received: 12-DEC-97 Matrix : Water Date Sampled : 11-DEC-97 Method: SW846 8080

Date Extracted: 14-DEC-97 Units : ug/L

Galson ID: Client ID:	L40540-1 EXCAVATION/DECON	Q-5176 PBLK 5176	• !
Aroclor-1016	<0.48	<0.5	;
Aroclor-1221	<0.48	<0.5	1
Aroclor-1232	<0.48	<0.5	- 1
Aroclor-1242	<0.48	<0.5	1
Aroclor-1248	<0.48	<0.5	:
Aroclor-1254	<0.48	<0.5	:
Aroclor-1260	<0.48	<0.5	;
Analysis Date	12/17/97	12/17/97	!
Dilution Factor	1	1	
Surrogate Recovery	5 % *	93 %	į
Control Limits (24-154)			

Approved by : Oommen Kappil

: 17-DEC-97 Date

: 12/17/97 QC by

NYS DOH #

Footnotes:

*Results may be biased low.

Surrogate recovery below acceptable control limits

(may be due to matrix interferences).

Printed: 12/17/97 15:54 Report Reference # : 95411

: Remediation Technologies, Inc. Client

Account # : 12013

Site : Mineral Springs

Date Received: 12-DEC-97

Matrix : Water Date Sampled : 11-DEC-97 Method: SW846 6010A/7470A

Galson ID: Client ID:	Units	L40540-1 EXCAVATION/DECON	QM971216-1 BLANK	: !
Arsenic	mg/1	0.83	<0.01	
Barium	mg/l	7.4	<0.01	1
Cadmium	mg/1	0.018	<0.005	
Chromium	mg/1	0.048	<0.01	,
Lead	mg/l	25	<0.003	•
Mercury	mg/l	0.066	<0.0002	•
Selenium	mg/l	0.0073	<0.005	
Silver	mg/l	0.092	<0.01	

Approved by : Karen S. Becker

Date : 16-DEC-97
QC by : [7] [7]
Date : 17-[4] NYS DOH # : 11626

Footnotes:

INORGANIC ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 12-DEC-97 Matrix: Water

Date Sampled : 11-DEC-97

Galson ID: L40540-1

Client ID: EXCAVATION/DECON

	Method	Units	
Reactive Cyanide	SW846	mg/kg	<100
Reactive Sulfide	SW846	mg/kg	<100
pH *	EPA 150.1	SU	2.30
T. Dissolved Solids	160.1	mg/L	2250

Approved by : LM

Date : 17-DEC-97
QC by
Date : 1/7/97
NYS DOH # : 11626

Footnotes:

* "Overaged"; sample analyzed after 15 minute hold time.

* The sample does not exceed the USEPA action levels of 250 mg HCN/kg waste and/or 500 mg H2S/kg waste as stated in SW846; therefore it is not reactive.

BUCH FAYERNMENTAL

384**5 R**OUTE 11 SOUTH,

CORT**LAND**, N.Y. 13045

P.D. BOX 5150 607-753-3403

607-753-340.

Client:

GALSON LABORATORIES 6601 KIRKVILLE ROAD

EAST SYRACUSE NY 13057

Site:

L40540

Report Date: 12/17/97

Laboratory Report Lab Log No: 9712209

Sampling Date: 12/11/97 Sampled By: CLIENT

Date Received: 12/15/97

Sample ID:	EXCAVATION / DI

ANALYTE	METHOD	ANALYZED	BY	UNITS	DL	:	RESULTS	
Total Organic Carbon	415.2/9060	12/16/97	JEC	mg/L	0 .5	•	24.4	

This laboratory analysis has been performed in accordance with generally accepted taboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

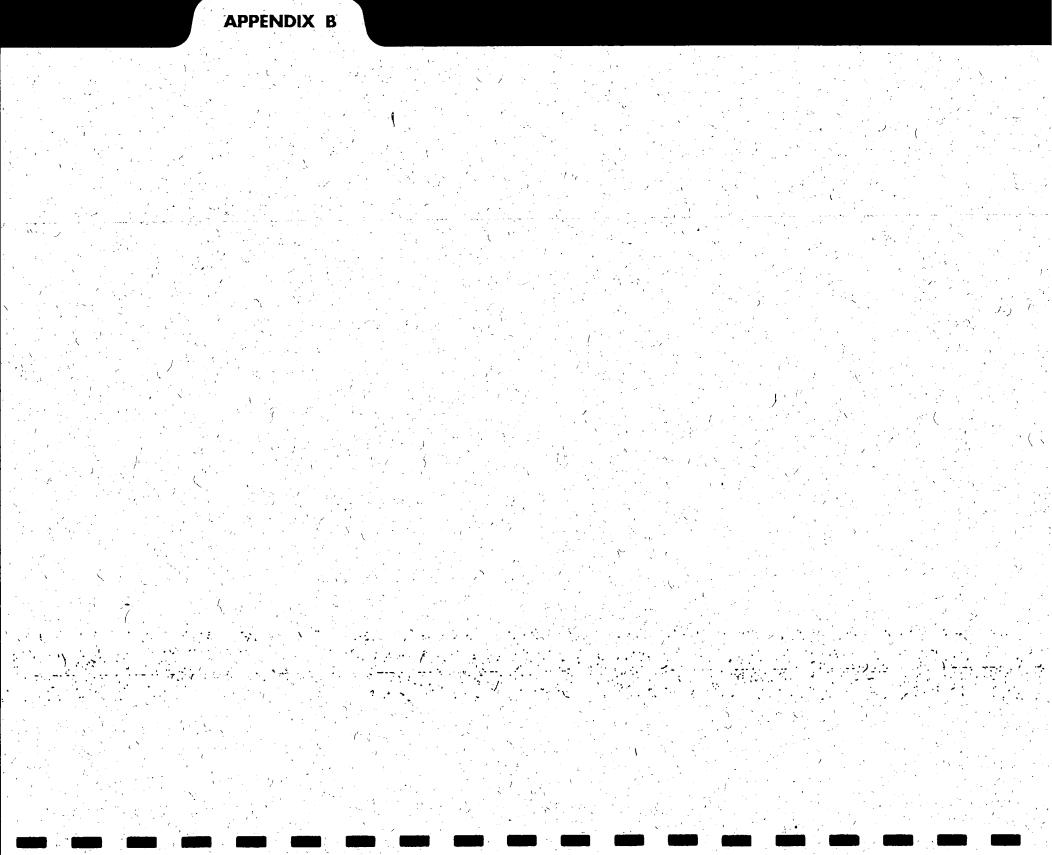
(DL => detection limit)

(mg/L => ppm in water)

(ug/g => ppm in solid)

Inorganic.In

John H. Buck, P.E. Laboratory Director


ELAP ID: 10795

MED. N T. DLO 1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716 Fay (607) 277-9057

CHAIN OF CUSTODY RECORD 0500

REMEDIATION TECHNOLOGIES INC	Fax (607) 277-9057								tre						4
PROJECT NAME: Mineril) Spr. nu	S PROJECT NUMBER:	3-2075-621	<u> </u>	•	7	7	7 7	75		7	7	7 7	77		A
SEND REPORT TO: MULLY HOffer	SAMPLER (PRINT NAME	•		æ/	/		\checkmark /	(or/	J.Y				/ /	PA	.GEOF
ADDRESS: RETE	SAMPLER (PRINT NAME	.)		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Tex /	1/Q)	/ /1	$\sqrt{2}$	3/	دلم	$\sqrt{}$	/ /			
J- theseu	SHIPMENT METHOD:)		Y	/() 'ol	⁷ /	(2)	۸ /				
	AIRBILL NUMBER:		ĪŠ			X	/ 4	V	/5	3			•		
PHONE: 6072775711	UABORATORY RECEIVING		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(k)	/4/			\searrow	/ 8	1/	/ ,	/ /			
FAX:			350	/ن/ر	19/1	S)	4	/							
FIELD SAMPLE ID	SAMPLE SAMPL DATE TIME	E SAMPLE NUMBER OF MATRIX CONTAINERS			\sum_{i}	X		_/`	٤/ ﴿		/	COMM	IENTS, SPECIAL RUCTIONS, ETC.	LAB (to be co	SAMPLE ID ompleted by lab
Execuation and Deconwat	e- 12/11	Wate 7	~/	- W	V		1300	→ - 12	Cincol	167)	.ua	i ostana	logies, EXCAUA	(n ladin	
								1 1	j 12	<u> </u>	W5		EXEAUN	<u>E</u> fonzie	
Worth	12/11	15011 1				1		'/	7	j	1 '		a .	1 (71)	
									\$0.00G	13.5	, Cali	- per DYM Ca	riegh e. Reith	1	
ES-1(3)	12/9	50.11	1					ーレ	1771	i					
			1	1				-			()))	jino. S∵-Lii	n Lactar		
[6	1279	500				~		450	*		'	خنا ا	<u> </u>		
			1						 						
SOUTH	12/11	50:1	++-		1 1			V							-4
9001774	- 1 = 1 / 1 · · · · ·	70,1			-			+	-	-1110	iogi	on, In	L40540-	4	
			+-+							ļ ———	<u> </u>	11/11		1	
			1					ļ							
								<u> </u>					~~		
				ŀ											
					† †			1	†						
		<u> </u>	1	 -				1	<u> </u>					1	
			1					-	-						
								1	ļ						
Relingsished by (Signature)	eceived by: (Signature)		me:				EMARKS (-	Y LAB	ORATO		SAMPLE RECE	nt	
		17/11		1	QC LEV		1	RNARO		TO	TAI #		SAMPLE RECE RS RECEIVED		10
Relinquished by: (Signature) Re	eceived by: (Signature)	Date: Tin	ne:		. I		ROUT		0	_		LS PRESE		-	405
				1	. II . III		24 H		ם			LS INTACT			yec
Relinquished by: (Signature)	eceived by (Signature)		ne:	OTHER		a n	1 WE		D	<u> </u>			RS INTACT ?		
	1-1Kr	12-12-47/	050	JIIICK	· • ····-	<u></u>		-\ _		TE	MPERA	TURE ?			yes 4°C
	1								_		_			-	

1001 W. Seneco Street Suite 204 Ithaco, NY 14850 (607) 277-5716 FAX (607) 277-9057

March 3, 1998

Mr. Charles Burke
National Fuel Gas Distribution Corporation
10 Lafayette Place
Buffalo, NY 14203

RE: Surface Soil Quality Under Electric Transmission Towers
Interim Results
Mineral Springs Road, West Seneca, New York

Dear Charlie:

On February 17 and 18, 1998, RETEC performed surface soil sampling for total lead beneath the five electrical transmission towers at the NFG Mineral Springs Road site. The scope of that work, the analytical results and RETEC's conclusions and recommendations are attached.

SCOPE OF WORK

The scope of this work was based on recommendations made by RETEC in the Preliminary Site Assessment Report for the Mineral Springs Road Site, my proposal to you dated November 19, 1997, and our subsequent meeting on November 25, 1997, with NYSDEC in Buffalo.

A single composite surface (and a single composite subsurface) soil sample was collected beneath four of the five electrical transmission towers. Other samples were collected around Tower #1 to confirm complete remediation of the previously hazardous level of lead detected there (see the Project Complete Report - Southwestern IRM, January 23, 1998). One composite paint sample was also collected.

The towers were arbitrarily labeled sequentially across the site, moving from the southwest corner (Tower #1) to the southeast corner (Tower #5). The sampling sub-areas were labeled as shown in the attached sketch.

RESULTS

Only the surface samples and the paint were initially analyzed. The sub-surface samples were held by the laboratory. Results are summarized in the following table. The laboratory's reports are also attached.

Lead Concentrations in Surface Soil

Sample Identification	Tower Number	Subarea Number	Lead Concentration (mg/Kg)	Comments
T1-SW (0-0.5)	. 1	SW	64	Field observations indicate that soil is a fill material associated with adjacent railroad bed.
T1-S (0-0.5)	. 1	S	290	Field observations indicate that soil is a fill material associated with adjacent railroad bed.
T1-SE (0-0.5)	1	SE	260	Field observations indicate that soil is a fill material associated with adjacent railroad bed.
T1-W (0-0.5)	1	w	110	Field observations indicate that soil is a topsoil; no industrial fill material noted
T1-NW (0-0.5)	1	NW	19	Field observations indicate that soil is a topsoil; no industrial fill material noted
T2-X (0-0.5)	2	х	890*	Field observations indicate the surface soil is mixed with industrial fill material. Some blue stained soils were found to be mixed with fill.
T3-X (0-0.5)	3	Х	850*	Field observations indicate that soil is a topsoil; no industrial fill material noted.
T4-X (0-0.5)	4	Х	54	Field observations indicate that soil is a topsoil; no industrial fill material noted.
T5-X (0-0.5)	5	х	. 3 0 0	Field observations indicate that soil is a topsoil; no industrial fill material noted.
Tower Paint	1, 2, 3, 4 and 5		290,000	Paint sample encompassed all layer present.

CONCLUSIONS

The paint used on the towers contains 29% lead (290,000 mg/kg) and is the likely source of the lead impacts to the surface soils, either as it chips off or due to overspray during application:

Total lead concentrations in the surface soils around the Southwestern Tower (in the non-excavated areas) were found to be below 500 mg/Kg. The other four sub-areas were comprised of clean fill placed during the IRM.

Mr. Charles Burke March 3, 1998 Page - 3

Likewise, lead concentrations in the surface soil directly beneath Towers #4 and #5 were found to be below 500 mg/Kg.

Lead concentrations in surface soils beneath Towers #2 and #3, however, were found to be greater than 500 mg/Kg.

RETEC has asked the analytical laboratory, Galson Labs of Syracuse, NY, to perform TCLP analyses on the samples from Towers #2 and #3 (additional material had been submitted for this contingency). Based on the total lead results tabulated above, the soils are not anticipated to be hazardous. The laboratory will also analyze, for total lead, the subsurface samples from these towers.

As proposed, sampling of the remaining 8 quadrants beneath these towers will be performed when weather permits.

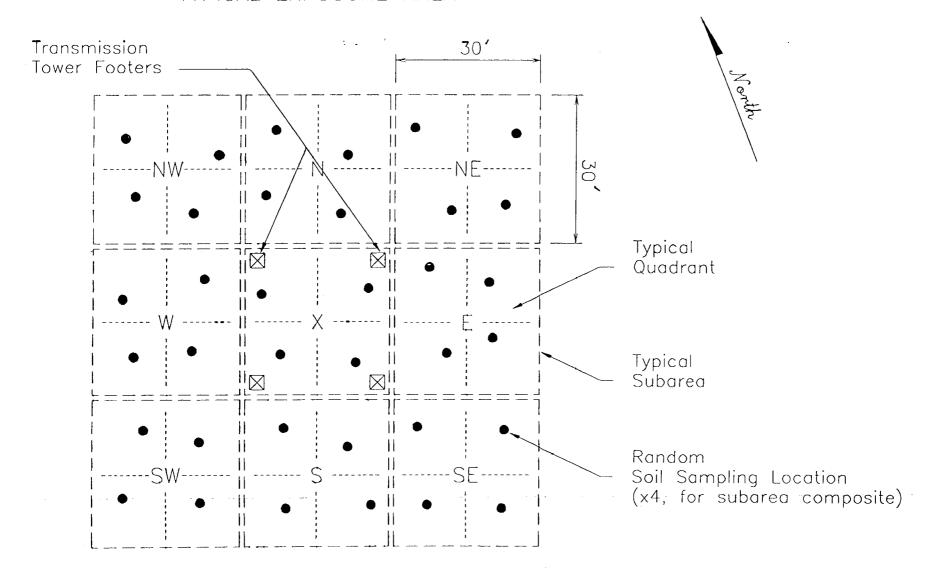
It appears likely that, should total lead be detected at concentrations greater than 500 mg/kg outside of the proposed site perimeter fenceline, then remedial actions may be required.

Should you have any questions, comments or require any additional information, please call me at (607) 277-5716.

Sincerely,

REMEDIATION TECHNOLOGIES, INC.

Mark Hofferbert Project Engineer


Enclosure

cc: T. Alexander - NFG

J. Edwards, B. Coulombe - RETEC

File: 3**-2**075-650

TYPICAL EXPOSURE AREA

6601 Kirkville Road E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

February 25, 1998

DOH ELAP# 11626

Mr. Mark Hofferbert Remediation Technologies, Inc. 1001 W. Seneca Street Ithaca, NY 14850

Client Account# 12013

Login# L41489 & L41499

Dear Mr. Hofferbert:

Enclosed are the analytical results of the samples received by our laboratory February 19, 1998.

Results in this report are based on the sampling data provided by the client. Unless otherwise requested, all samples will be discarded two weeks from the date of this report.

Please contact Pamela Weaver at (888) 577-5227, extension 116, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

Gale G. Sutton, CIH Laboratory Director

Enclosure(s)

LABORATORY ANALYSIS REPORT

Client: Remediation Technologies, Inc.

: MINERAL SPRINGS Site Date Sampled : 17-FEB-98

Date Received: 19-FEB-98

Project No.: 3-2075-620

Account No.: 12013 Login No. : L41499

Inorganic Lead

Sample ID

Lab ID

mg/kg

TOWER PAINT

L41499-1

290000

Level of quantitation: 50 mg/kg

Analytical Method : EPA Pb 92-114172 Mod; ICP

OSHA PEL (TWA)

Collection Media

: Paint

Submitted by: LK

Approved by : Karen S. Becker

Date: 25-FEB-98

QC by: // 11626

< -Less Than

> -Greater Than

NA -Not Applicable

mg -Milligrams

: NA

ug -Micrograms ND -Not Detected m3 -Cubic Meters

-Liters 1

ppm -Parts per Million

kg:-Kilograms

NS -Not Specified

Client : Remediation Technologies, Inc. Account # : 12013

Site : Mineral Springs

Date Received: 18-FEB-98 - 19-FEB-98 Matrix : Soil

Date Sampled : 18-FEB-98 Method: SW846 6010B

Galson ID:

L41489-1

L41489-2

L41489-3

Client ID:

T1SW (0-0.5)

T1S (0-0.5)

T1SE (0-0.5)

Units

Inorganic Lead

mg/kg 64

290

260

Approved by : Karen S. Becker

Date QC by

: 25-FEB-98

Date NYS DOH #

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

: Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 18-FEB-98 - 19-FEB-98

Matrix : Soil

Date Sampled : 18-FEB-98 Method: SW846 6010B

Galson ID:

L41489-4

L41489-5

L41489-6

Client ID:

T1W (0-0.5)

T1NW (0-0.5)

T2X (0-0.5)

Units

Inorganic Lead

mg/kg 110

19

890

Approved by : Karen S. Becker

Date QC by

: 25/FEB-98

Date

NYS DOH #

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 18-FEB-98 - 19-FEB-98 Matrix: Soil

Date Sampled: 18-FEB-98 Method: SW846 6010B

Galson ID:

L41489-7

L41489-8

L41489-9

Client ID:

T3X (0-0.5)

T4X (0-0.5)

T5X (0-0.5)

Units

Inorganic Lead

mg/kg 850

54

300

Approved by : Karen S. Becker

Date QC by

: ,25-FEB-98

QC by Date

19 7

NYS DOH #

11626

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 18-FEB-98 - 19-FEB-98 Matrix: Soil

Date Sampled: 18-FEB-98 Method: SW846 6010B

Galson ID:

QM980223-1

Client ID:

BLANK

Units

Inorganic Lead

mg/kg < 0.3

Approved by : Karen S. Becker

Date QC by : 25-FEB-98

Date
NYS DOH #

737379

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

:

LOGIN: L41489 QC BATCH: LAB GROUP: INORGANIC REF. #: 2240

Wet Weight by: PH
Date : 23 FEB-98
Time : 09:15

Dry Weight by: PH
Date : 24-FEB-98
Time : 08:30

		_						
GALSON ID	SAMPLE DESC	DOT	PAN WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	% SOLID
L41489-1 L41489-2 L41489-3 L41489-4 L41489-5 L41489-6 L41489-7 L41489-8 L41489-9	T1SW (0-0.5) T1S (0-0.5) T1SE (0-0.5) T1W (0-0.5) T1NW (0-0.5) T2X (0-0.5) T3X (0-0.5) T4X (0-0.5) T5X (0-0.5)	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	1.00 1.00 1.00 1.01 1.01 1.00 1.00	6.27 7.15 6.47 5.75 7.81 5.63 6.60 6.32 6.70	5.42 4.36 4.23 4.76 7.22 4.67 4.01 3.99 5.79	4.42 3.36 3.23 3.76 6.21 3.67 3.01 2.99 4.80	29.5 53.0 50.1 34.6 20.5 34.8 54.4 52.7 28.4	70.5 47.0 49.9 65.4 79.5 65.2 45.6 47.3
			·					
								,

(net wet weight) - (net dry weight) Percent Moisture = -----x 100 net wet weight

02/25/98 09:55 ;

REMEDIATION TECHNOLOGIES

1001 W. Seneca Street, Sulte 204 Ithaca, NY 14850 (607) 277-5718 Fax (607) 277-9057 CHAIN OF CUSTODY RECORD 0644

TECHNOLOGIES INC	Fax (607) 277-9057	``			7	_ 0	r)				
PROJECT NAME: MINERAL SPRINGS SEND REPORT TO: HARZY HOFFER BERT ADDRESS:	PROJECT NUMBER: 3-2075-62(SAMPLER (PRINT NAME) SAMPLER (PRINT NAME)	D ARDS		 []/		- X/					PAGE OF_
ADDRESS: A BOVE	SHIPMENT METHOD:		٠ .			//		///	///		
PHONE:	LABORATORY RECEIVING:)	22			/ /		///	///		
FIELD SAMPLE ID	SAMPLE SAMPLE SAM DATE TIME MAT	PLE NUMBER OF RIX CONTAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/*/	_/ ,	/ ,	/ /	/ /		COMMENTS, SPECIAL INSTRUCTIONS, ETC.	LAB SAMPLE ID (to be completed by Id
TISW (0-0.5)	2/18 9:10 50.		X	۸		,		. Francis		* Archive	
TIS (0-0.5)	2/18 9:20 So.		X	*	1090	培.	In Late	143-5			
TISE (0-0.5)	2/18 9:30 Soi		X	×	1: 51	75.	(n Litte	£th. ↑		(1) Upon Re	cipt of
TIW (0-0.5)	2/18 9:40 Soi	1 1	X	7		٠, ٤, ١	te Latin	25 sa .		total 1ego	results
TINW (0-0,5)	2/18 9:45 10:	1 1	X.	*	ł		i Talija			RETEC W	
T2X (0-0.5)	2117 1300 501	1 1	X	7	1		[n [41]			balson to	Į.
T3X (0-0.5)	2/17 1400 501	1 1	X	X		•	. (° , °,)				
T4x(0-0.5)	102 9031 7115		x ;	X			41			(3) complex	e
T5 X (0-0,5)	21.7 1600 501		*	Х						1 .	AP V/A
TOWER PAINT	1 2 17 1700 Sei	+ 1	X =	SI	16		+ 3 T T	, ,		SW 846 7	
	Riv	(, ,	191								
		raintely	770								
				-							
										, , , , , , , , , , , , , , , , , , , ,	2-6
Relinquished by: (Signature)	Received by: (Signature)	Date: Time		SAMPLE	CUSTOD	IAN RE	MARKS (CO	MPLETED BY	Y LABORATO	L DRY):	4-14-
James J. Edward	FEO EX	2 18 98 17			QC LEVE		T	WROUND:		SAMPLE RECEIP	Ţ
Refinquished by: (Signature)	Received by: (Signature)	Data: Time		1	a i		ROUTINE			CONTAINERS RECEIVED ?	10
	•			LEVE	l II ı	ב	24 HOU			ALS PRESENT ?	yes
Relinquished by: (Signature)	Received by: (Signature)	Date: / 7 am Time		ī	l III 1	כ	1 WEEK			ALS INTACT ?	
,	1- Km-	Data: 1798 Time 2>12-10	030	ОТНЕ	iR t	כ	OTHER		TEMPERA	CONTAINERS INTACT ?	400
<u></u>	() - V	1 1 /		L.,	····		L		LIEMPERA	TONE I	17.0

1001 W. Seneca Street Suite 204 Ithaca, NY 14850 (607) 277-5716 FAX (607) 277-9057

April 13, 1998

Mr. Charles Burke
National Fuel **G**as Distribution Corporation
10 Lafayette Place
Buffalo, NY 14203

RE: Surface Soil Quality Under Electric Transmission Towers Final Results

Mineral Springs Road, West Seneca, New York

Dear Charlie:

On April 2, 1998, RETEC completed surface soil sampling for total lead beneath the five electrical transmission towers at the NFG Mineral Springs Road site. The scope of that work, the analytical results, and RETEC's conclusions and recommendations are attached.

SCOPE OF WORK

The scope of this work was based on recommendations made by RETEC in the Preliminary Site Assessment Report for the Mineral Springs Road Site, my proposal to you dated November 19, 1997, our subsequent meeting on November 25, 1997 with NYSDEC in Buffalo, and my March 3, 1998 Interim Results letter to you.

The towers were arbitrarily labeled sequentially across the site, moving from the southwest corner (Tower #1) to the southeast corner (Tower #5). The sampling subareas were labeled as shown in the attached Summary.

In February, 1998, RETEC collected a single composite surface (and a single composite subsurface) soil sample beneath Towers #2, #3, #4 and #5. Two of the four surface samples had total lead concentrations greater than 500 mg/kg. Five other samples collected at that time around Tower #1 confirmed complete remediation of the previously elevated level of lead detected there. These data are presented in my March 3, 1998, Interim Results letter to you.

In March and April of 1998, RETEC collected composite surface (and composite subsurface) soil samples from the previously unsampled subareas around Towers #2, #3, #4 and #5. The analytical laboratory was also asked to proceed with the analysis of the subsurface samples submitted in February. Surface samples were collected between 0 and 6 inches below grade; subsurface samples were collected between 6 and 12 inches below grade.

RESULTS and CONCLUSIONS

The tower paint contains 29% lead (290,000 mg/kg) and is the likely source of the lead impacts to the surface soils, either as it flakes or due to overspray during application.

Total lead concentrations in the surface and subsurface soils around Tower #1 were found to be below 500 mg/Kg. This area had been remediated during the Southwestern Tower IRM.

Lead concentrations greater than 500 mg/kg were detected within the footprints of Towers #2, #3 and #4. As you can see in the attached summary figure, however, the depths and lateral extents of these impacts are minimal. (There is some indication that the samples from subarea X under tower #4 were mislabeled, hence the apparent incongruity.)

TCLP analyses indicate the most impacted soils, Tower #2 - subarea X, and Tower #3 - subarea X, are non-hazardous.

RECOMMENDATIONS

The lead concentrations identified herein are typically acceptable at commercial/industrial sites with limited access such as Mineral Springs. RETEC recommends, however, that NFG proceed with construction of the proposed perimeter fence at the earliest convenience.

RETEC also recommends that NFG open a dialog with Niagara Mohawk Power Corporation to ensure that future maintenance of the towers does not lead to additional impacts.

Should you have any questions, comments or require any additional information, please call me at (607) 277-5716.

Sincerely,

REMEDIATION TECHNOLOGIES, INC.

Mark Hofferbert Project Engineer

Enclosure

cc: T. Alexander - NFG

J. Edwards, B. Coulombe - RETEC

File: **3-**2075-650

SUMMARY OF LEAD CONCENTRATIONS IN SOIL BELOW ELECTRIC TRANSMISSION TOWERS National Fuel Gas, Mineral Springs Road Site

	<u>KEY</u>		1	OWER #	<u>#1</u>		TOWER #	¥ 2		
Towe	er Footers	7		Surface			TOWER #2 Surface 81 77 : 130 160 890 : 210 230 180 : 210 Subsurface NA NA : NA NA NA : NA NA NA : NA			
NW	N	NE	19	clean fill	dean fill	81	77	130		
W	X	E	110	dean fill	dean fill	160) *.89 0 *.	210		
SW	s	SE	64	290	260	230	180	210		
	,			Subsurfac	e		Subsurfac	e		
500 mg/l	(g	North	NA	dean fill	dean fill	NA NA	NA :	NA		
بريندين NA : no t a	analyzed		. NA	dean fill	dean fill	NA NA	. 170	NA		
Anal ytic al	results in m	g/kg (dry weight)	NA	NA.	NA	NA.	NA I	. NA		
- -	TOWER	#3	<u> </u>	OWER #	#4		TOWER #	¥ 5		
-	TOWER :		1	OWER #	#4		TOWER :	‡ 5		
370	Surface	(1560 k	71		44 68	67	Surface	#5		
	Surface 4590 2	350		Surface		67	Surface 92			
370	Surface	350	71	Surface 140	68		92 m 300	200		
370 2 20 2 10	Surface 4590	350 150	71 220 260	Surface 140 54	68 57 89	strea	Surface 92	200 76 180		
370 2 20 2 10	Surface 4590 850 230	350 150	71 220 260	Surface 140 54 230	68 57 89	strea	Surface 92 m 300 subsurface	200 76 180		
370 220 210	Surface 1590 850 230 Subsurface	350 150	71 220 260	Surface 140 54 230 Subsurface	68 57 89	strea	Surface 92 m 300 Subsurface	200 76 180		

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 19-FEB-98
Date Sampled: 17-FEB-98

Matrix : Soil

Method : SW846 6010B

Galson ID:

L41623-1

L41623-2

L41623-3

Client ID:

Inorganic Lead

T2X (0.5-1)

T3X (0.5-1)

T4X (0.5-1)

Units

mg/kg 170

73

760

Approved by : Karen S. Becker

Date : 06-MAR-98
QC by : 11626
NYS DOH # : 11626

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture values,

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 19-FEB-98

Matrix : Soil

Date Sampled : 17-FEB-98

Method: SW846 6010B

Galson ID:

L41623-4

QM980305-1

Client ID:

T5X (0.5-1)

BLANK

Units

Inorganic Lead

mg/kg 17

<0.3

Approved by : Karen S. Becker

Date

: 06-MAR-98.

QC by Date

NYS DOH # Footnotes:

> Results are reported on a dry weight basis. See enclosed sheet for percent moisture values,

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 19-FEB-98

Matrix : Leachate

Date Sampled : 17-FEB-98

Method : SW846 6010B

Reanalyze

Galson ID: Client ID:

L41623-1

gamples 141623-2

QM980303-1

T2X (0.5-1)

T3X(0.5-1)

TCLP Blank

Units

<0.02

<0.02

Lead TCLP

mg/l

0.15

Approved by : Karen S. Becker

∵ Date QC by

Date

NYS DOH #

: 11626

Footnotes:

SOIL MOISTURE ANALYSIS

LOGIN: L41623 QC BATCH: LAB GROUP: INORGANIC REF. #: 2247

Wet Weight by: PH

Date : 028MAR-98 Time : 14:00

Dry Weight by: PH
Date : 03 MAR 98
Time : 07:10

l							-		
GALSON I	D SAI	MPLE ESC	D C T	PA N WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	% SOLID
L41623-1 L41623-2 L41623-3 L41623-4	T3X (0.5-1) 0.5-1) 0.5-1) 0.5-1)	N N N	0.99 0.99 1.00 0.98	5.54 7.53 8.31 9.64	5.07 4.91 4.15 8.91	4.08 3.92 3.15 7.93	26.4 47.9 62.1 17.7	73.6 52.1 37.9 82.3
							•		
						-	:		
								vi Silvini	

(net wet weight) - (net dry weight) Percent Moisture = ---------- x 100 net wet weight

03/06/98 13:12

1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0714

TREHINDLOGIES ING F	ax (607) 277																		
PROJECT NAME: HOFFERBERT SEND REPORT TO:	PROJECT N	UMBER:	620					5/	7 🔨	7	7	7	7	7	7	77	//		A F
ABOVE	SAMPLER (PRINT NAME) PRINT NAME)	EDW	APOS		,		y // .									/ /	PA	GEOF
ADDRESS.	1					4 D / February 0 1		70,		η,	/ ,	/	/ /	/ ,	/ ,	/ /			
	AIRBILL NU	METHOD: PD E MBER:	<u>*</u>		_	\$\ \\$\	57	Q) T	I								/		
PHONE:	LABORATORY	MBER: 3.5091 RECEIMING:	0386	,		9/0	$\sqrt{-1}$		<u>)</u>							/ /			
FAX:	Lea	RECEIVING:			$\dashv \chi$	0/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4				/							
FIELD SAMPLE ID	SAMPLE DATE	SAMPLE	SAMPLE MATRIX	NUMBER	UP I /	5/)									COM	MENTS, SPECIAL	LAB	SAMPLE ID
- PARILL HALLOCK	1	SAMPLE TIME		CONTAIN	ERS /		/ /			_			/ 	<u>/</u>		/ INST	RUCTIONS, ETC.	(to be co	mpleted by lab)
TISW (0.5-1)	2/18	900	50:1	1 1 1	1		 -											111	
TIS (0.5-1)	2/18	1	50.1	1	+									-	-		TECL		
+15 = (015-1)	2/18	925	50.	1_1_						. _	·	·				-	TIFY	I	. 1
401 TIW (0.5-1)	5/18	935	20:1		ابد اید		 - -							-	•	,	_	1 (FORMIN
TINW (0.5-1)	2/18	950	Soil									ı	1	ł	ł		tralez	 	
· · · · · · · · · · · · · · · · · · ·	21,7	1230		1 '	<u>بد</u>		i -:16() - 1 '					1.0	· · · · · · · · · · · · · · · · · · ·	iai . c. :	_415 : *			ļ	
	2117	1330	501	1			agie					_			_	<u>U1</u>	TOTAL	LEA	0
T4x (0,5-1) **	2117	1430	50:1	1	ا بد	i	ede.	. "1	n : 🌵	1						(2)	TCLP	ltA	D
T5 x (0,5-1) **	2117	15 30	50.1	1	\ \	3	tomosi.	166	111	Con-	hno l	oai.	£≓.,	(n '.	a little	. 131 g	•		
	ļ	<u> </u>	<u> </u>			- ()) 1/1	2000)	Sol	. !			<u>Y. (0</u>						-1-9-11
# Per Jim Edwards and			P Pb	77			1				_/	- j							
* * Per Jim Educado	drate	e tw	Tot	I F	bonl	5.		_9	AL	ر ,	/20	19							
		1								4		1							
														. [
													,						
																· · · · · · · · · · · · · · · · · · ·			
Ratinquished by: (Signature) Received	l by: (Signati	re)	lo 7	te:	Time:	SA	MPLE C	USTO	DIAN F	REMAR	KS (C	OMPLE	TED 8	Y LABO	DRATO	₹Y):		+	
Hami st. Edward Fed Ex		21	18/19	1700		QA/QC	C TEV	ÆL		TUR	NAROL	JND:				SAMPLE RECEI			
IT 1	by: (Signatu	ire)	Dat	• •	Time:		LEVEL			ı	ROUTIN			⊢ →		CONTAINE LS PRESE	RS RECEIVED 1	•	1
			1				LEVEL			- 1	4 HO			→		LS INTACT			401
Relinquished by: (Signature) Receives	by: (Signatu	ıre)	Dat		Time:		LEVEL : OTHER	111		- 1	1 WEE OTHER		0	-			ERS INTACT ?		4
	K		. 2.	19-98	1030	<u>L</u> `	·				~ IT ILI\		·	TEN	(PERA)	URE ?			44
	•																		~

Laboratories
Remediation Technologies, Inc.

1001 W. Seneca St. Ithaca,, NY 14850

Attn : Mr. Mark Hofferbert

Account #

: 12013

Laboratory No. : L42325

Report Date

: 04/07/98

SAMPLE INFORMATION

Sample Date

: 03/31/98 - 04/01/98

Date Received : 04/02/98

Site

Matrix

: Soil

: Mineral Springs

		Inorganic Lead sw846 6010B		
CLIENT ID	LAB#	mg/kg 🔅	4979	
T3E(0.0.5)	1	350		
T3NE(0.0.5)	2	560		
T3N(0.0.5)	3	590		
T3SE(0.0.5)	4	150	4	
T3W(0.0.5)	5	220		
T3NW(0.0.5)	6	370		
T3S(0.0.5)	7	230		
T3SW(0.0.5)	8	210		
T4SW(0.0.5)	9	260	t .	
T4SE(0.0.5)	10	89		
T4NW(0.0.5)	11	71		
T4E(0.0.5)	12	57		
T4NE(0.0.5)	13	68		
T4W(0.0.5)	14	220	I .	
T4N(0.0.5)	15	140		
T4S(0.0.5)	. 16	230		
Method Blank	1.	< 0.3		

Approved by : Karen S. Becker Date: 04/07/98 QC by

moisture values.

Footnotes:

Date: 4/7/97

NYS DOH # : 11626

Results are reported on a dry weight basis. See enclosed sheet for percent

SOIL MOISTURE ANALYSIS

LOGIN: L42325 QC BATCH: LAB GROUP: INORGANIC REF. #: 2272

GALSON ID	SAMPLE DESC	DOH	PAN WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	% SOLID
L42325-1 L42325-2 L42325-3 L42325-4 L42325-6 L42325-6 L42325-7 L42325-8 L42325-9 L42325-10 L42325-11 L42325-12 L42325-13 L42325-14 L42325-15 L42325-16		NANADADADADADA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	6.10 6.73 5.40 5.41 6.47 5.76 5.59 5.81 6.72 5.55 5.55 5.95 6.09	4.23 5.01 4.00 4.77 5.11 4.44 3.87 3.88 3.58 4.72 4.34 4.85 4.55 3.25 4.51 3.37	3.23 4.01 3.77 4.11 3.44 2.88 2.58 3.85 3.85 3.95 2.53	47.0 40.4 44.4 30.3 36.3 48.7 50.4 61.8 39.8 34.0 362.6 61.1	53.0 59.6 59.7 63.7 59.3 49.4 60.0 64.0 64.0 64.3 59.3 59.3

(net wet weight) - (net dry weight) Percent Moisture = -----100 net wet weight

04/07/98 14:02

1001 W. Seneca Street, Suite 204 ithaca, NY 14850 (607) 277-5716

CHAIN OF CUSTODY RECORD 0706

HEMEDIATION TECHNOLOGIES INC	(607) 277-5716 Fax (607) 277-9057		
PROJECT NAME: MINERAL Springs	PROJECT NUMBER: 3 - 207	5-650	
SEND REPORT TO: HOFFERBERT	SAMPLER (PRINT NAME)	ES FOWAIR	OS PAGEOF
ADDRESS:	SAMPLER (PRINT NAME)		
	SHIPMENT METHOD:		
		916375	
PHONE:	LABORATORY RECEIVING:		
FAX:			OF COMMENTS, SPECIAL LAB SAMPLE 10
FIELD SAMPLE ID	SAMPLE SA	AMPLE NUMBER O IATRIX CONTAINER	OF RS COMMENTS, SPECIAL LAB SAMPLE 1D INSTRUCTIONS, ETC. (to be completed by lab
T3E(0-0.5)	411 310 5	0:1	XRemediation Technologies, In L42305-1 AVALUZE For TOTAL
T3NE (0-0.5)	4/1 320 3	ا اه	X Remediation Technologies, In £42325-2 Lead Theo Archive
T3N (0-0.5)	411 325 5	1 1:0	Xemediation Technologies, In L42325-3 MAINING SOIL IN
T35E(0-0.5)	411 255 5	0,1	Remediation Technologies, In L42325-4 LABOLATORY - PETEC
T3W(0-0.5)	411 217 5	0:11	X Remediation Technologies, In L42325-5 Jill NOTIFY (0ALSON
T3NW (0-0.5)	411 340 5	011. 1	X Remediation Technologies, In L42325-6 0 200 TC-P LEAD
て35曲(0-0.5)	411 245 S	01/1	X Remediation Technologies, In L42325-7 ひ <mark>ン Soiし</mark>
T35W (0-0.5)	4/1 240 5	0:1 1	X 34 Remediation Technologies, In 1.42325-8
T 45W (0-0,5)	4/1/98/1205 3	0.11	λ Remediation Technologies, In L42325-9
T45E(0-0,5)	4/1/98 1640 5	1 1:00	X Remediation Technologies, In L42325-10
T4NW (0-0.5)	4/1/98 1040 5	0.1	X Remediation Technologies, In L42325-11
T 4E (0-6.5)	3/1/98/1309 5	1 1:8	★ Remediation Technologies, In L42325-12
T4NE(0-0,5)	4/1/98 920 5	10:11	Remediation Technologies, In L42325-13
T4W (0-0.5)	411 98 1/20	50.]	Remediation Technologies, In L42325-14
T4N (0-0.5)	4/1/98 959 5	0:11	O'Remediation Technologies, In L42325-15
T4S (0-0.5)	3/31/98 1608 5	611	Remediation Technologies, In L42325-16.
			04/02/98 Soil T4S(0.0.5)
Relinquished by: (Signature) Receiv	ved by: (Signature)	Date:	Time: SAMPLE CUSTODIAN REMARKS (COMPLETED BY LABORATORY):
	sed ex	17/1/90	1760 QA/QC LEVEL TURNAROUND: SAMPLE RECEIPT TOTAL # CONTAINERS RECEIVED ? 32
4	ved by (Signature)	1	Time: LEVEL I CI ROUTINE COC SEALS PRESENT ?
Υ /	1-Km	4-2-78	10/0 LEVEL II U 24 HOUR U COC SFAIS INTACT 2
Relinquished by: (Signature) Receiv	ved by: (Signature)		Time: OTHER OTHER OTHER OTHER OTHER OTHER TWEEK RECEIVED CONTAINERS INTACT ? Ye)
			TEMPERATURE ? 4°C

Laboratories
Remediation Technologies, Inc.

1001 W. Seneca St. Ithaca,, NY 14850

Attn : Mr. Mark Hofferbert

Account #

: 12013

Laboratory No. : L42352

Report Date : 04/09/98

SAMPLE INFORMATION

Sample Date Site

: 04/02/98

: Mineral Springs

Date Received : 04/03/98

Matrix : Soil

		SW846 6010B		
CLIENT ID	LAB#	mq/kq		
T2SW (0.0-0.5)	1	210	:	
T2E (0.0-0.5)	2	. 210		
T2NE (0.0-0.5)	3	130		
T2N (0.0-0.5)	4	77		
T2S (0.0-0.5)	5	180	4	
T2SW (0.0-0.5)	6	230		
T2W (0.0-0.5)	` 7	160		
T2NW (0.0-0.5)	8 .	81		
T5E (0.0-0.5)	9	76		
T5NW (0.0-0.5)	10	62		
T5SE (0.0-0.5)	11	180	1	
T5S (0.0-0.5)	12	270		
T5N (0.0-0.5)	13	92	•	
T5NE (0.0-0.5)	14	200		
Method Blank	· 1	< 0.3	 i i	

Approved by : Karen S. Becker Date : 04/09/98 QC by : Proof Date : 4/9/98

NYS DOH # : 11626

Footnotes:

Results are reported on a dry weight basis. See enclosed sheet for percent moisture analysis.

SOIL MOISTURE ANALYSIS

LOGIN: L42352 QC BATCH: LAB GROUP: INORGANIC REF. #: 2275

Wet Weight by: JK

Dry Weight by: MB
Date : 09 APR-98
Time : 08:00 Date : 08-APR-98

Time : 09:05

GALSON ID	S A MPLE DESC	HOU	PA N WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	% SOLID
L42352-1 L42352-2 L42352-3 L42352-4 L42352-6 L42352-7 L42352-8 L42352-9 L42352-10 L42352-11 L42352-11 L42352-11	T2SW (0.0-0.5 T2NE (0.0-0.5 T2NE (0.0-0.5 T2S (0.0-0.5 T2SW (0.0-0.5 T2SW (0.0-0.5 T2NW (0.0-0.5 T5NW (0.0-0.5 T5NW (0.0-0.5 T5NW (0.0-0.5 T5N (0.0-0.5 T5N (0.0-0.5 T5NE (0.0-0.5	ZZZZZZZZZ	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.31 5.71 5.70 5.76 5.45 6.10 6.10 6.110 9	4.51 4.51 4.12 120 130 130 130 130 130 130 130 130 130 13	3.61 3.51 4.11 5.22 4.01 3.29 4.69 5.35 4.09 3.54 4.25 4.32	34.7 33.9 28.0 13.3 30.4 39.6 29.2 12.4 32.1 27.1 27.3 30.3	5.1 662.6 6786 6775 6775 6776 7767

(net wet weight) - (net dry weight) Percent Moisture = ----x 100 net wet weight

04/09/98 09:28

1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0710

	Tax (001) 211		_			_													
PROJECT NAME: Mineral Serie	PROJECT NU	MBER: 3-3	1075-6	50			Τ,	7	7	7	7	7	/	,	7 7 7		<u> </u>		1
Mark Hofferber	SAMPLER (P.	RINT NAME)	1 4-0	Likait	3	æ/											₽.	AGE 1	.0F <u>.</u>
ADDRESS:	`					\$5/		/ ,		/	/ .	/ /	/ ,		/ / /	/			
	SHIPMENT M	Fede	~					' /		' /				/	' / /				
	AIRBILL NUM	BER:																	
PHONE:	LABORATORY	RECEIVING:	alson		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	/ ,	/ /	/	/ /	/ /	/ /	′ /	,	/ /				
FAX:						v/ /													
FIELD SAMPLE ID	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	NUMBER CONTAIN		/ /		/ ,		/		/_/		/		S, SPECIAL IONS, ETC.	to be o	SAMPLE completed	
T2 5 w (0.0-0.5)	4/2/98	10:40	50.1		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	emediat	ion	Tecl	mel	ogie	es,	[n L₄	42:3F	C=1	X And	dyre	for-	total)	•
T2 E (0.0.0.5)		11:00													'ead.				
TING (0.0-0.5)		11:20		1	l l										amai		L		
T2N(0.0-0.5)	(11:40		}	1			*							1 -66 -	- //	1	_	
T25(0,0-0,5)		12:00		1	JRe₁	mediat:	ion	Tech	no] e	ogle	s, I	n L4	2353	3 5	and	-RE	TEC	uil	\
T25W(0.11-0.5)		13:30)	√ Re	emediat	ion	Tech	mol	ogie	s,]	n L4	1235	2-3	=41				
T2 W (0,0-0.5)		10:00		1	04 ب	/(Remed	liat	ion :	Tecl	hnot	ogie	s, I	n t	1031	52-7 <u>·</u>				
T2 NW(0.0-0.5)		10:23		,	7.	- Reme	diat	ion	Tec	hnol	oqie	:5.,]	In L	423	52- 8				
T5@ (0,0-0,5)		8.30		1	۷	ORem	edia	itior	1 Te	echno	olog	ies,	In	142	352-9	•			
T5 NW (0.0-0.5)		8:00		1	7										R52 -10				
T556 (0,0-0,5)		8:40		1	x										52-11				
T55(00-0.5)		9 00 P		1	7										52-12 <u> </u>				
T5 N(00-0.5)		9:30		1	*										352-13				
T5 NG (0.0-0.5)	V	9:40	じ)	آ د آ	 Reme	diat	ion	Tec	:hno1	oqie	:8.	In L	423	 52-14				
						04/0						ĭE ((
	4																		
Relinquished by: (Signature)	Received by: (Signatur	1 × 1 · · · · · · · · · · · · · · · · · 	Dat	:¢:	Time:	SAMPLE	CUSTO	DIAN F	REMAR	KS (C	OMPLE	ED BY	LABC	RATO					
12 A Kllw/						QA/	QC LE	√EL		TURNAROUND:				SAMPLE RECEIPT			 	,	
Relinquished by: (Signature)	Received by: (\$ignatur	(e)	Dat	: d :	Time:		FEAST I D			ROUTINE					CONTAINERS		r	14	
			ţ	1		1	II		- 1	24 HO			-	COC SEALS PRESENT? COC SEALS INTACT? Yet					
Relinquished by: (Signature)	Received by: (Signatur	eived by: (Signature)			Time:	- LEVEL	III		- 1	1 WEE			-		CONTAINERS	INTACT ?		γ.	7
			†			Collect	•			UINER	-		TEM	PERA	TURE ?		-	1 4	4

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 19-FEB-98 - 09-APR-98

Matrix : Soil

Date Sampled: 17-FEB-98 - 01-APR-98

Method: SW846 6010B

Galson ID: Client ID: L42455-1

T3N (0.5-1)

L42455-2 T3NE (0.5-1) L42455-3 T4X (0.-0.5)

Units

Inorganic Lead

mg/kg 210

110

42

Approved by : Karen S. Becker

Date QC by

Date

NYS DOH # Footnotes:

> Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

METALS ANALYTICAL REPORT

: Remediation Technologies, Inc.

Account # .

: 12013

Site

: Mineral Springs

Date Received: 19-FEB-98 - 09-APR-98

Matrix : Soil

Date Sampled : 17-FEB-98 - 01-APR-98

Method: SW846 6010B

Galson ID:

L42455-4

QM980413-1

Client ID:

T4X (0.5-1)

BLANK

Units

Inorganic Lead

mg/kg 720

<0.3

Approved by : Karen S. Becker

Date QC by

Date

: 11626

NYS DOH # Footnotes:

> Results are reported on a dry weight basis. See enclosed sheet for percent moisture values.

METALS ANALYTICAL REPORT

: Remediation Technologies, Inc.

Account # : 12013

: Mineral Springs

Date Received: 19-FEB-98 Matrix : Leachate Date Sampled : 17-FEB-98 Method: SW846 6010B

Galson ID: Client ID: L42455-5 T3X (0.-0.5) L42455-6

QM980413-1

T2X (0.-0.5) TCLP Blank

Units

ead TCLP

mg/l0.056 0.24

<0.02

Approved by : Karen S. Becker

Date : 13/APR 98

QC by Date

NYS DOH #

Footnotes:

SOIL MOISTURE ANALYSIS

LOGIN: L42455 QC BATCH: LAB GROUP: INORGANIC REF. #: 2280

Wet Weight by: PH

Dry Weight by: MB : 09=APR-98 : 12100 Date Time : 10-APR=98 : 13:50

Time

GALSON ID	SAMPLE DESC	DCH	PAN WT (gm)	NET WET WT (gm)	GROSS DRY WT (gm)	NET DRY WT (gm)	% MOIST	% SOLID
L42455-1 L42455-2 L42455-3 L42455-4 L42455-5 L42455-6	T3N (0.5-1) T3NE (0.5-1) T4X (00.5) T4X (0.5-1) T3X (00.5) T2X (00.5)	NNNNN	1.00 0.99 0.99 0.99	8.62 5.03 6.25 8.18	7.02 4.05 3.92 4.46	6.02 3.06 2.93 3.47	30.2 39.2 53.1 57.6	69.8 60.8 46.9 42.4
				• .				
	·			,				
						· · · · · · · · · · · · · · · · · · ·		,

(net wet weight) - (net dry weight) Percent Moisture = x 100 net wet weight

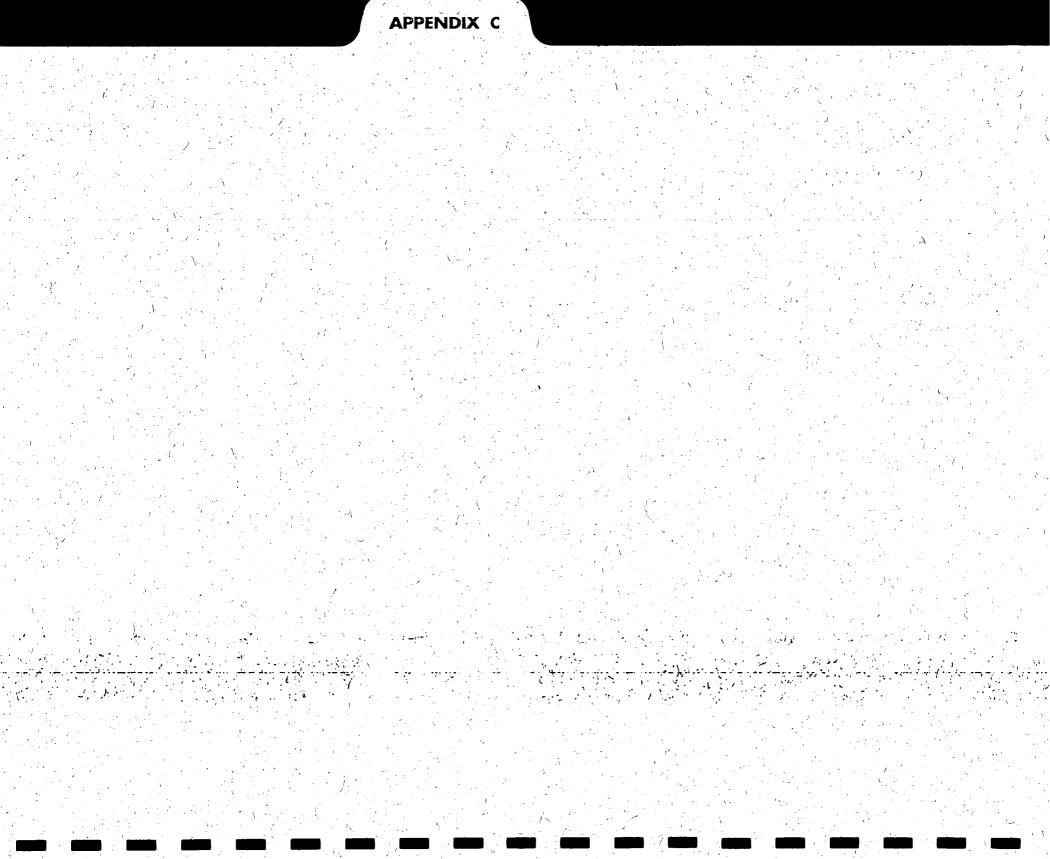
04/13/98 10:29

1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0705

Cuete du dura

PROJECT NAME MINERAL Springs PROJECT NUMBER: 3-2075- 450 SAMPLER (PRINT NAME) SEND REPORT TO: MARK HOFFersert PAGE ___OF__ SAMPLER (PRINT NAME) ADDRESS: LBOVE SHIPMENT METHOD: FeD ex ARBILL NUMBER: 53500 Le3-5
UBORATORY RECEMING: PHONE: VALUON FAX: COMMENTS, SPECIAL LAB SAMPLE ID SAMPLE NUMBER OF SAMPLE FIELD SAMPLE ID TIME (to be completed by lab) DATE MATRIX CONTAINERS INSTRUCTIONS, ETC. T35E (0.5-1 41198 50.1 300 X 50:1 T3NE(0.5-1) / 4/1198 * Archive 1:02 315 oi**es**. In L42455-2 samples in LABORAtory Tane (0.5-1) 735(0.5-1) soil 4/1/98 250 Retec will NotiFY T3E (0,5-1) 41,198 soil 305 大 1,02 T3NW (0.5-1) CALSON to 4/1/98 3 35 X ANALLZE T3N (0,5-1) 411 198 Fur total 301 LCA.D 330 L _nologies, In L42455-1 $\pm 3N (0.5-1)$ t35w (p.5-1) 411198 50:1 ANDIOR 235 TCLD T3W (n. 5-1) 69114 230 50:1 X Le.A.D T4NE(0.5-1) 411198 四9 (Soil 74W(0.5-1) V= sample to be avalenzed 4/1/98 1135 1102 T45W (0,5-1) 4/1/98 ኢ for total lead per Mark Soil 1215 Hofferbet 10 PAN 4/8/48 T4S (0,5-1) \$120 50.1 13/31/98 ٨ 74NN (0,5-1) 4/1/92 Sail 1055 T4E (0,5-1) 50. 14/31/98 X 1720 T4N (8.5-1) 4/1/18 X 1015 So. 745 (0.5-1) 3/3/198 Y 1650 Soi SAMPLE CUSTODIAN REMARKS (COMPLETED BY LABORATORY): Relinquished by: (Signature) Received by: (Signature) Time: 4/1/98 Federo SAMPLE RECEIPT 1700 TURNAROUND: QA/QC LEVEL TOTAL # CONTAINERS RECEIVED ? LEVEL I D ROUTINE Relinquished by: (Signature) Received by: [Signature] COC SEALS PRESENT ? 4-2-48 1010 24 HOUR LEVEL II COC SEALS INTACT ? 1 WEEK LEVEL III D Relinquished by: (Signature) Received by: (Signature) Date: RECEIVED CONTAINERS INTACT ? OTHER OTHER \Box TEMPERATURE ?


;		W. Seneca Stre Ithaca, NY 14 (607) 277-5 Fax (607) 277	et. Suite 204					CHA	11/		OF N	C	UST	ODY	' RECORD	01/	14
	PROJECT NAME: MINTRAL SPRINGS SEND REPORT TO: MARY HOFFER BERT ADDRESS: ABOVE	SAMPLER (P	RINI NAME)	DWAL	کړه .		100	${\mathbb Z}_{\alpha}$, ,		,			7 <i>7</i>		P#	AGEOF_
- [PHONE:	LO.AL	ETHOD: EX BER: S 1 6 3 RECEMNG: S 0 N			*		A CE CE	Y /	//							
	FIELD SAMPLE ID	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	NUMBER OF CONTAINERS	1	7	(/		_	<u>_</u> ,				COMMENTS, SPECIAL INSTRUCTIONS, ETC.	(to be c	SAMPLE ID ompleted by Id
	TISW (0-0.5)	2 18	9:10	50.1		X		ļ							* ArcHive	51	mple
	715 (0-0.5)	1118	9:20	Soil		X	X	-		ļ	,	ļ	 	ļ ļ.			
	TISE (0-0.5)	2 18	9:30	Soil	1	X	X	ļ		-					(1) Upon 1		
	TIW (0-0.5)		9:40	Soil	1	X	X	ļ						.	total lea	1	
	TINN (0-015)		9:45	1	 	X.	X	-		 	il iare	i in	L49455	ends .	PFTFC U		NotiF
-	T2X (0-0.5)	2117	1300	Soil		1	Ŋ.		\ <u>\</u>	- 1	17.7	(() "	0.5)	-	balson t	0	
	T3X (0-0.5)	21:7	1400	1001	}	X	X		У		20.62	1	1.4245) 0.53				
	T4x(0-0.5).	P	1560	100	1_1	X	X			X:	les,	in	L42455	•3 <u> </u>	(S) comple	1	
	T5 X (0-0,5)	2/17	1600	Soil	<u> </u>	X	X			— í	+ <i>i</i> (00 	- 	1		en D	
}	TOWER PAINT	2),7	1700	1		X	1	14	<u>e</u> _		·			-	SW 846 -	1240)
	France Le			paint	Bu 2/1	1/9	<u>k</u>	 	 							_	
	Remodiation Technolog 02/19/98 Paint To	, l		<u> </u>		<u>/</u>	ļ	<u> </u>							V- TCLP 100	id per	Mark
ļ		Mark Paln	41499_1		<u> </u>	ļ	ļ.,	<u> </u>							to Pan 4/	1/13x	
		, MIN	r '	<u> </u>		ļ	ļ					 			· ·	*	^
		·	ļ	<u> </u>		ļ	,	<u>.</u>							X-total lea	dpr	Wark
					ļ	ļ	<u> </u>	ļ						<u> </u>	to Para 4/	5/58	
		- 5			·		l										
	Λ	lved by: (Signatu	•	Da		ne:					REMAR	KS (C	OMPLETED	BY LABO			
	-James 11.	FEN E		. 1	18/18/1			•	QC LE				NAROUND:	TOTA	SAMPLE RECEIVED		10
]/	Relinquished by: (Signature) Rece	lved by: (Signatu	те)	Do	te: Tin	ne:		LEVEL			- 1	ROUTIN 24 HOI		——	SEALS PRESENT 7	.	4/5
	J								. III		- 1	1 WEE		<u> </u>	SEALS INTACT ?		14
	Relinquished by: (Signature) Rece	ived by: (Signatu	ife)	2:	18-1798 tin	ne: In 2:		OTHER		ם	1	OTHER		<u> </u>	EVED CONTAINERS INTACT ?		400
Į		~ / V	Υ	<u> </u>	"	03		<u> </u>						IEMI	PERATURE ?		170

RELEC

REMLEDATION TECHNOLOGIES 1001 W. Senece Street, Suite 204 Ithace, NY 14850 (607) 277-5716

CHAIN OF CUSTODY RECORD 0714

PROJECT NAME:	Fax (607) 277-9057 PROJECT NUMBER:					<u> </u>		-)	, ,	•	
SEND REPORT TO:	SAUPLER (PRINT NAME	-610	ļ.,		/5/	J.	/ .	/ /	/:		PAGE _CF_
ADDRESS: A BOY &	SAMPLER (PROTT NAME)	S. EDWARDS	∤	E /		7.	/:/		/	/ /	PAGE _CI_
	SHIPMEN METHOD:			# 3	4	F)	/.	//			
	AIRBILL NUMBER	10301-	- 6	3/5/	7	7	/ /	/· */:	/ :	/ /	
PHONE	LABORATORY RECEMBO	10 >06	3/	0/	1/ 3/				/ /		
			1/3	3/2/			//	/			
FIELD SAMPLE ID	SAMPLE SAMPLE OATE TIME	SAMPLE NUMBER OF MATRIX CONTAINERS	17	1 1	/:/	/ /		//	/ /		COMMENTS, SPECIAL LAB SAMPLE ID INSTRUCTIONS, ETC. (to be completed by its
TISW (0,5-1)	2/18 900	Sail	34:	Adam Program					****		to be compared by
TIS (0,5-1)	7/10 915	Soil 1	*	3,7							REIFE WILL
+15 F (015-1)	2/18 925	30.1	4								NOTIFY GALSON
400 TIW(0.5-1)	2118 935	59. 1	-			·					prior to perform
TINW (0,5-1)	2118 950	Soil	~								ANALYSES
T 2x (0.5-1)	7/17 1230	1 1:02	-								
T3X (0.5-1)	2117 1330	50.1	~								(11) TOTAL (12AD
T4x (0,5-1)	21,7 1430	50:1	2			$\underline{I}_{(0)}$ (រដ្ឋ es	, lír	1.424	55 4	12) TCLD LEAD
T.5 x (0.5-1)	21.7 15 30	So.1 /	4			, 	T4X	(0.5 ₋	1)	. 1. :	7
			<u> </u>								V-total land pe
				i i	, , , , , , , , , , , , , , , , , , ,			\$ 2 / 2 / 2 / 3			Mark to Pan 4/1/51
						, i			,		
ZHOW TO THE STATE OF			4. 7								
			14,								
										•	
Angulahad by: (Signature) Rocci	ivea by: (Signoture)	Doles Ilm	Ja:	SAMPLE	-		ARKS (C	OMPLETE	D BY L	ABORAT	
	ed cx	, , , , , ,	700	T .	OC LEVE	- 1		INAROUNI		TOTAL A	SAMPLE RECEIPT CONTAINERS RECEIVED ?
ediquished by: (Signature) Reco	kved by: (Skinature):	Date: Tim	ec.		I O	. /.1	24 HO	VE C	r		ALS PRESENT ?
	lved by: (Signature)	Doto: Tim		•	III D	,	. AT NO	•	1		ALS INTACT 2
	and following	nord.		OTHER			OTHER		_		D CONTAINERS INTACT ?
WILL I YOUNDA ACITUM	DIA CORV BIALL	FELDOODY						•		EMPER	ATURE ?

1001 W. Seneco Street Suite 204 Ithaca, NY 14850 (607) 277-5716 FAX (607) 277-9057

February 5, 1998 ·

Mr. Charles Burke
National Fuel Gas Distribution Corporation
10 Lafayette Place
Buffalo, NY 14203

RE: Soil Gas Sampling and Analysis Results
Mineral Springs Road MGP Site
West Seneca, New York

Dear Charlie:

On January 14, 1998, Buck Environmental Laboratories, Inc., performed soil gas sampling and analysis at NFG's Mineral Springs Road Site. Their Laboratory Reports and Narrative is attached. Also included is a Soil Gas Sample Locations sketch. The locations sampled are the areas of the site which are adjacent to continuously occupied (8 hours per day) building spaces, such as offices.

RESULTS

Naphthalene was detected in none of the samples. BTEX constituents were detected in all but one sample. The trip blank consisted of an unopened sample tube which was carried to and from the site. The field blank consisted of an opened tube placed in the sample train but without a vacuum being drawn.

The highest (and only) detection of benzene was in sample B-1-South and measured 11.6 ug/m³. The NIOSH time weighted average exposure limit (TWA) for benzene is 325 ug/m³ over a 10 hour day or a 40 hour week.

The highest detection of toluene was in sample B-9 and measured 24,400 ug/m³. The NIOSH TWA for toluene is 375,000 ug/m³.

The highest (and only) detection of ethyl-benzene was also in sample B-9 and measured 15.3 ug/m³. The NIOSH TWA for ethyl-benzene is 435,000 ug/m³.

The highest detection of xylene was also in sample B-9 and measured 14.4 ug/m³ for o-xylene and 23 ug/m³ for m- and p-xylene. The NIOSH TWA for xylene is 435,000 ug/m³.

All of the NIOSH TWA's quoted above are equal to, or lower than, the corresponding OSHA permissible exposure limits.

CONCLUSIONS

The results outlined above indicate the presence of varying concentrations of subsurface hydrocarbon residuals. They do not, however, indicate a significant potential for exposure by site workers to excessive concentrations of airborne constituents resulting from soil gas migration into occupied building spaces. Airborne concentrations of soil gas constituents are typically much lower within a building than in the adjacent soils. The construction of the buildings, all of which have slab-ongrade foundations (rather than full basements), further limits the potential for exposure.

It is RETEC's opinion that no further work, such as indoor air sampling, is required.

The scope of work for this soil gas survey was based on recommendations by RETEC in the Preliminary Site Assessment Report For The Mineral Springs Road Former Manufactured Gas Plant Site, West Seneca, New York (RETEC, 1997).

Should you have any questions, comments or require any additional information, please give me a call at (607) 277-5716.

Sincerely,

REMEDIATION TECHNOLOGIES, INC.

Mark Hofferbert Project Engineer

Enclosure

cc: T. Alexander - NFG

B. Coulombe - RETEC

File: 3-2075-620

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045

P.O. BOX 5150 607-753-3403

LABORATORY NARRATIVE

Client:

Mr. Mark Hofferbert

Lab Log No:

9801164

RETEC

1001 West Seneca Street

Suite 204

Ithaca, NY 14850

Date:

January 27, 1998

INTRODUCTION

The data in this package represent the results of a soil vapor survey at the National Fuel Gas Distribution Corporation, Mineral Springs Road facility, located in Buffalo, New York. Soil vapor samples were collected from eight (8) locations around the facility. The sampling event was conducted on January 14, 1998 by Ernest Spencer and Brian Jones of Buck Environmental Laboratories.

Mr. Charlie Burke of RETEC was on-site for the duration of the sampling event to assist Buck personnel in locating sample points and provide on-site support for identifying and avoiding underground utilities.

SCOPE OF WORK

The soil vapor survey was conducted for RETEC to measure concentrations of volatile organic compounds (BTEX and naphthalene) in soil vapor samples collected from eight (8) locations around the National Fuel Gas facility as follows:

Sample I.D.#	Sample Depth	Sample Location	
B-1, north	3 feet	Adjacent to Building #1, North side	
B-1, south	3 feet	Adjacent to Building #1, South side	
B-2	3 feet	Adjacent to Building #2, South west corner	
B-3	3 feet	Adjacent to Building #3, West side	
B-5	3 feet	Adjacent to Building #5, Southeast corner	
B-9	3 feet	Adjacent to Building #9, North side	
B-10	3 feet	Adjacent to Building #10, Northeast comer	
B-11	3 feet	Adjacent to Building #11, East side	
Field Blank	N/A	Sample trap installed in B-2 sample set-up prior to samplin	g
Trip Blank	N/A	N/A	

ANALYTICAL AND SAMPLING PROTOCOLS

The collection of soil vapor samples was conducted by following the company standard operating procedure for soil vapor sampling. Hollow steel probe section(s) are driven into the ground to the desired depth using an electric impact hammer. All soil vapor samples were collected from 3' below the ground at locations designated by RETEC. Soil vapors were extracted from the ground by creating a vacuum in the soil probe using an electric vane pump. Soil vapors extracted from the ground were collected on an absorbent tube (Porpak-N) specifically prepared for the collection of

volatile organic compounds. Prior to sampling the pump flow rate was set at one (1) liter per minute as established in the field using a taboratory calibrated rotameter. Soil vapor samples were collected over a 20 minute period for a total flow of 20 titers at each sample location. Vacuum readings were monitored throughout the sample collection period to ensure that vacuum did not exceed 15 in/Hg.

Soil vapor samples were analyzed for BTEX and Naphthalene.

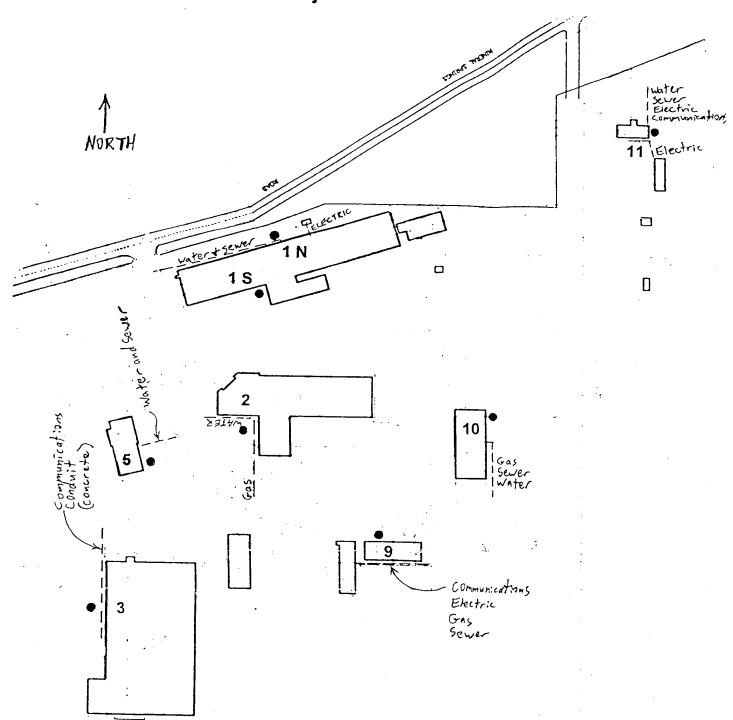
RESULTS

Laboratory reports of the analyses on soil vapor samples are attached. Results are summarized on the following table for convenience.

Sample I.D. #	Total BTEX	Naphthalene
B-1, north	28.2	0
B-1, south	483	0
B-2	3,920	0
B3	6,640	0
B-5	9,500	0
B-9	24,500	0
B-10	8,370	0
B-11	0	0
Field blank	3 9.8	0
Trip blank	0	0

Thank you for the opportunity to provide these services and please let me know if there are questions.

Singerely,


John H. Buck, P.E. Laboratory Director

n:\office\air\retec.sg

SOIL GAS SAMPLE LOCATIONS

National Fuel Gas
Mineral Springs Road Site

Sampled January 14, 1998, by Buck Environmental Laboratories, Cortland, NY RETEC Project Number 3-2075

W 12/0

EEEE ENVERNMENTAL

ACCREDITED ENVIRONMENTAL ANALY

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045 P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client: RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J. Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

ole ID: B-11	BTEXN IN AIR						
ANALYTE	CAS#	UNITS	DL	RESULTS			
Benzene	71-43-2	ug/m3	10	ND			
Ethylbenzene	100-41-4	ug/m3	10	ND			
Naphthalene	91-20-3	ug/m3	10	ND .			
Toluene	108-88-3	ug/m3	10	ND			
o-Xylene	108-38-3	ug/m3	10	ND			
m,p-Xylene	95-47-6	ug/m3	10	ND			
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	108			

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

(NEG => not detected)

TEXT.FRX

John H. Buck, P.E. Laboratory Director

June

EUCH FNYBRAMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045 P.O. 80X 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client: RETEC-

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J.

Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

ple ID: B-1 NORTH		В	TEXN IN AIR	
ANALYTE	CAS#	UNITS	DL	RESULTS
Benzene	71-43-2	ug/m3	10	ND
Ethylbenzene	100-41-4	ug/m3	10	ND
Naphthalene	91-20-3	ug/m3	10	ND
Toluene	108-88-3	ug/m3	10	14.2
o-Xylene	108-38-3	ug/m3	10	ŅD
m,p-Xylene	95-47-6	ug/m3	10	14.6
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	118

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Leboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

(NEG => not detected)

STEX1.FRX

John H. Buck, P.E. Laboratory Director ELAP ID 10795

ACCRED TED ENVIRO

3845 ROUTE 11 SOUTH. CORTLAND, N.Y. 13045

P.O. BOX 5150 607-753-3403 **Laboratory Report** Lab Log No: 9801164

Client:

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J. Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

le ID: B-1 SOUTH		В	TEXN IN AIR	
ANALYTE	CAS#	UNITS	DL	RESULTS
Benzene	71-43-2	ug/m3	10	11.6
Ethylbenzene	100-41-4	ug/m3	10	ND
Naphthalene	91-20-3	ug/m3	10	ND
Toluene	108-88-3	ug/m3	10	446
o-Xylene	108-38-3	ug/m3	10	ND
m,p-Xylene	95-47-6	ug/m3	10	25.4
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	106

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated) (NEG ⇒ not detected)

John H. Buck, P.E. Laboratory Director

EUCE FAYERNMENTAL

ACCPEDITED ENVIRONMENTAL AL

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045

P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client: RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J. Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/21/98

mple ID: B-2		В	TEXN IN AIR	•	
ANALYTE	CAS#	UNITS	DL	RESULTS	
Benzene	71-43-2	ug/m3	120	ND	
Ethylbenzene	100-41-4	ug/m3	120	ND	
Naphthalene	91-20-3	ug/m3	120	ND	
Toluene	108-88-3	ug/m3	120	3920	
o-Xylene	108-38-3	ug/m3	120	ND	
m,p-Xylene	95-47-6	ug/m3	120	ND	
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	111	
				4	

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable formany action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

(NEG => not detected)

TEX1.FRX

John H. Buck, P.E. Laboratory Director

ACCREDITED ENVIRONMENTAL ANALYSIS

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045 P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client: RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J. Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

ole ID: B-3	BTEXN IN AIR						
ANALYTE	CAS#	UNITS	DL	RESULTS			
Benzene	71-43-2	ug/m3	10	ND			
Ethylbenzene	100-41-4	ug/m3	10	ND			
Naphthalene	91-20-3	ug/m3	10	ND			
Toluene	108-88-3	ug/m3	10	6640			
o-Xylene	108-38-3	ug/m3	10	ND			
m,p-Xylene	95-47-6	ug/m3	10	11.9			
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	107			

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

(NEG => not detected)

TEXT.FRX

John H. Buck, P.E. . Laboratory Director

BUCE ENVIRONMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045

P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client:

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J.

Date Received: 01/15/98 Analyzed By: SS

Analyzed: 01/16/98

Sample ID:

B-5

BT	EXN	IN	ΑI	R
----	-----	----	----	---

-43-2 -41-4	ug/m3 ug/m3	DL 10 10	RESULTS ND ND
)-41-4	•		
	ug/m3	10	ND
<i>-</i> 20-3	ug/m3	10	ND
3-88-3	ug/m3	10	9490
3-38-3	ug/m3	10	ND
-47-6	ug/m3	10 .	13.6
	, ,	0	122
,	5-47-6 	6-47-6 ug/m3 BCB ug/m3	Ü

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Leboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action for the consequences of any action taken in connection with this report.

(ND ⇒ not detected above DL indicated)

(NEG => not detected)

STEX1.FRX

John H. Buck, P.E. Laboratory Director

ENVERNMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

3845 ROUTE 11 SOUTH. CORTLAND, N.Y. 13045 P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client:

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J.

Date Received: 01/15/98 Analyzed By: SS

Analyzed: 01/16/98

iple ID: B-9		E	STEXN IN AIR	
ANALYTE	CAS#	UNITS	DL	RESULTS
Benzene	71-43-2	ug/m3	10	ND
Ethylbenzene	100-41-4	ug/m3	10	15.3
Naphthalene	91-20-3	ug/m3	10	ND
Toluene	108-88-3	ug/m3	10	24400
o-Xylene	108-38-3	ug/m3	10	14.4
m,p-Xylene	95-47-6	ug/m3	10	23
Z_SURROGATE1 (75%-130%)	всв	ug/m3	0	121

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Leboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

(ND ⇒ not detected above DL indicated)
(NEG ⇒ not detected)

TEX1.FRX

John H. Buck, P.E. Laboratory Director ELAP ID 10795

June

THE ENVIRONMENTAL AND ASSESSED TO SERVICE OF THE PROPERTY OF T

3845 ROUTE 11 SOUTH. CORTLAND, N.Y. 13045 P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client: RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J.

Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

Sample ID:	B-10	BTEXN IN AIR
------------	------	--------------

ANALYTE	CAS#	UNITS	DL	RESULTS
Benzene	71-43-2	ug/m3	10	ND
Ethylbenzene	100-41-4	ug/m3	10	ND
Naphthalene	91-20-3	ug/m3	10	N D
Toluene	108-88-3	ug/m3	10	8350
o-Xylene	108-38-3	ug/m3	10	ND
n,p-Xylene	95-47-6	ug/m3	10	17.6
Z_SURROGAT E 1 (7 5%-130%)	BCB	ug/m3	0	115

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Leboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any laction or the consequences of any action taken in connection with this report.

(ND => not detected above DL indicated)

(NEG => not detected)

STEX1.FRX

John H. Buck, P.E. Laboratory Director ELAP ID 10795

seul

EUCH ENYIERNMENTAL

ACCREDITED ENVIRONMENTAL ANAL

3845 ROUTE 11 SOUTH, CORTLAND, N.Y. 13045 P.O. BOX 5150 607-753-3403 Laboratory Report Lab Log No: 9801164

Client:

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98 Sampled By: E.S., B.J.

Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

le ID: FIELD BLANK		В	TEXN IN AIR	
ANALYTE	CAS#	UNITS	DL	RESULTS
Benzene	71-43-2	ug/m3	10	ND
Ethylbenzene	100-41-4	ug/m3	10	ND
Naphthalene	91-20-3	ug/m3	10	ND
Toluene	108-88-3	ug/m3	10	39.8
o-Xylene .	108-38-3	ug/m3	10	ND
m,p-Xylene	95-47-6	ug/m3	10	ND
Z_SURROGATE 1 (7 5%-130%)	BCB	ug/m3	О	112

This laboratory analysis has been performed in accordance with generally accepted taboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Leboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action taken in connection with this report.

(ND => not detected above DL indicated)
(NEG => not detected)

TEX1.FRX

John H. Buck, P.E. Laboratory Director ELAP ID 10795

3845 R**OUT**E 11 SOUTH, CORTLAN**D**, N.Y. 13045

P.O. BOX 5150 607-753-3403 **Laboratory Report** Lab Log No: 9801164

Client:

RETEC-REMEDIATION TECHNOLOGIES

1001 WEST SENECA STREET

SUITE 204

ITHACA NY 14850-

Site:

NATIONAL FUEL GAS

Report Date: 01/28/98

Sampling Date: 01/14/98

Sampled By: E.S., B.J.

Date Received: 01/15/98

Analyzed By: SS

Analyzed: 01/16/98

ample ID: TRIP BLANK		E	TEXN IN AIR		
ANALYTE	CAS#	UNITS	DL	RESULTS	
Benzene	71-43-2	ug/m3	10	ND	
Ethylbenzene	10 0-41-4	ug/m3	10	ND	
Naphthalene	91-20-3	ug/m3	10	ND	
Toluene	108-88-3	ug/m3	10	ND	
o-Xylene	108-38-3	ug/m3	10	ND	
m,p-Xylene	95-47-6	ug/m3	10	ND	
Z_SURROGATE1 (75%-130%)	BCB	ug/m3	0	109	

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratores, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any agriculture. consequences of any action taken in connection with this report.

(ND => not detected above DL indicated) (NEG => not detected)

BTEXTIFEX

John H. Buck, P.E. Laboratory Director **ELAP ID 10795**

PROJECT NO.: 3-2075-680
CLIENT: NATIONAL FUEL GAS

WELL INSTALLATION LOG BORING: MW-17

REMEDIATION TECHNOLOGIES, INC.

DRILLING CO.: NORTHSTAR

DRILLER: JEFF THEW

SURFACE ELEVATION: 587.28

WETHOD: HSA

WATER LEVEL DURING DRILLING:

LOCATION: MINERAL SPRINGS ROAD METHOD: HSA START DATE: 1-22-98 CASING LD.: STICK-UP: 2 V2' AUGER 0.D./1.D. 4.25" ID GEOLOGIST: MARK HOFFERBERT TOTAL DEPTH: 18 Headspace (ppm) BLOW COUNTS (fee SOIL CLASS RECOVERY SAMPLE Depth SAMPLE **WELL CONSTRUCTION** DEPTH DESCRIPTION 8 FILL 0 - 0.5 Topsoil CLAY α Grey, firm, low plasticity, moist, no odor. 3.5 2-4 5. 2.1 4-6 Becomes wet at 5.0. 3.1 6-8 At 7.5 yo 8.0 - 6-inch lense of peat, no odor. 8-10 **-10** 10-Z PVC 0.02 slot screen 10-12 1,7 At 11.0 becomes sandy day, wet, no odor. 2.6 12-14 Grey, fine grained, loose, uniform, well sorted. SANDY GRAVEL 15-3.0 14-16 Grey, loose, poorly sorted, wet, no odor. 16-18 3.2 End of boring. ٠; 20--20 25 -25 30--30 35 -35

REMARKS:

40-

-40

WELL INSTALLATION LOG

REME	DIATION	TECHN	OLO GIE	S. INC.				BORING: MW-18			
PROJE	CT NO.: 3-2	075-680						ING CO.: NORTHSTAR	MP ELEVATION: 59		
	T: NATIONA							ER: JEFF THEM	SURFACE ELEVAT WATER LEVEL DUR		TNC
	ION: MINER DATE: 1-2		S MUAU					00: HSA VG I.D.:	STICK-UP: 2 1/2"	TING DRILL	ING:
	GIST: MARK		ERT					L DEPTH: 26	AUGER 0.D./I.D. 4.	.25" ID	
DEPTH (feet)	SAMPLE TIME	BLOM COUNTS	RECOVERY	PID Headspace (ppm)	SAMPLE DEPTH	SOIL CLASS	LITHOLOGY	DESCRIPTION		W 	IELL CONSTRUCTION
		· · · · · · · · · · · · · · · · · · ·		0.3	0-2	FILL Q.	<u>, </u>	0 - 0.5 Topsoil SILTY CLAY			
-				0.3	2-4			Grey, fir s, s oist, no ador.		1	
5-				0.7	4-6	SP	000	SAND		-5	concrete seal
				0.4	6-8	α		Grey, loose, poorly sorted, wet, ne odor.		·	§ 13 13
				0.5	8-10			Grey, firm, uniform, low plasticity, moist, no odor.			CYCYCY CONTROL OF THE Seal Dentomile Seal
10-				0.7	10-12					H0	
				0.6	12-14			·			
15-				0.4	14-16			At 14.5 - becomes gravely clay		- 1 5	
				0.5	16-18			At 16,0 - Decomes soft			2 slot screen -
20-				0.5	18-20					-20	PVC 0.02 slot screen
20				0.5	20-22			Grey, soft, medium plasticity, moist, no edor.		20	- 2" PVC
				0.5	22-24					_	
25-				0.5					· · · · · · · · · · · · · · · · · · ·	-25	
-								End of boring.		} }	
30-										-30	
										<u>-</u>	
										<u> </u>	
35-										-3 5	i
											: {
40-	MARKS:									40	
l us	mann 3		•								•
,											Page 1 of 1

REMEDIATION TECHNOLOGIES, INC.

PROJECT NO.: 3-2075-680 DRILLING CO.: NORTHSTAR NP ELEVATION:

CLIENT: NATIONAL FUEL GAS DRILLER: JEFF THEV SURFACE ELEVATION 588

LOCATION: NINERAL SPRINGS ROAD NETHOR: GEOPROBE VATER LEVEL DURING DRILLING, NA

START DATE 1-08-98 CASING LD.: STICK-UP, NA

START	DATE: 1-08-	-98	· · · · · · · · · · · · · · · · · · ·			CASIN	G LO.:	STICK-UP: NA	
ļ		OFFERBERT				TOTAL	BEP TH: 12	AUGER O.D./LO: 2"	
DEPTH (feet)	RECOVERY (11)	SANPLE DEPTH	PID HEADSPACE [DDIII]	BLOW	SOIL CLASS	LETHOLOGY		DESCRIPTION	
			0.5		a 8		0-0.5 CLAY mixed with gravet SAND Black, loose, no odor, moist		
5-		,	27		oL a		SILT Grey, firm, low plasticity, moist, no oder		
10-			ti ti				End of boring.	;	
15-									
20-									
25-									
30-									
35-							·		
40 REN	ARKS:	l	<u> </u>	1	<u>l</u>			<u> </u>	
								i i	

REMEDIATION TECHNOLOGIES, INC.

TIETREBIATION TEGRITOCOURED, INTER			- 1
PROJECT NO.: 3-2075-880	DRILLING CO.: NORTHSTAR	NP ELEVATION:	٦
CLIENT: NATIONAL FUEL GAS	ORDLER: JEFF THEW	SURFACE ELEVATION: 588	3
LOCATION: NINERAL SPRINGS ROAD	NETHOR: GEOPROBE	WATER LEVEL DURING DRILLING: NA	٦
START DATE: 1-08-98	CASING LD.:	STICK-UP: NA	٦
GEOLOGIST: NARK HOFFERRERT	TOTAL DEPTH 8	AUGERADIZED 2"	⇉

GEOLOG	IST: NARK H	OF FERBERT				TOTAL	DEPTH: 8	AUGER O.D./LD: 2'		
DEPTH (feet)	RECOVERY (II)	SAMPLE DEPTH	PID HEADSPACE (ppir)	BLOW		LETHOLOGY		DESCRIPTION		
			0.5 5.2		GP	000000000000000000000000000000000000000	GRAYEL. Grey, poorly sorted, loose, moist, no odor		į	
5-	:		f1.8 - f1.6		a.		CLAY Grey, firm, uniform, moist, no odor		:	
10							End of boring.			
15-		-					•			
20-	-									
25-										
30-										
35-										
40 REN	ARKS:								:	

BORING LOG

BORING SB-55 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-680 CLIENT; NATIONAL FUEL GAS DRELLING CO.: NORTHSTAR NP ELEVATION: ORLLER: JEFF THEY SURFACE ELEVATION 588 LOCATION MINERAL SPRINGS ROAD START DATE: 1-08-98 NETHOD GEOPROBE WATER LEVEL DURING DRILLING: NA CASING LD.: STICK-UP: NA GEOLOGIST: NARK HOFFERBERT TOTAL DEPTH: 7 AUGER O.D./LD: 2" PID | HEADSPACE | (ppm) DEPTH (feet) LETHOLOGY BLOW RECOVERY SANPLE DEPTH SOIL DESCRIPTION GRAVEL 8.8 FILL Grey, poorly sarted α Fill material consisting of: blue stained sand and gravet slight hydrocarbon odor 3.3 Grey, firm, low plasticity, moist, no oder 5-42 End of boring. 10-15-20 25-30-35-REMARKS: Page 1 of 1

BORING LOG

BORING SB-56 REMEDIATION TECHNOLOGIES, INC. DRULLING CO.: NORTHSTAR PROJECT NO.: 3-2075-880 NP ELEVATION: CLIENT: NATIONAL FUEL GAS SURFACE ELEVATION: 588 LOCATION MINERAL SPRINGS ROAD START DATE: 1-08-98 NETHOD: GEOPROBE CASING LD.: WATER LEVEL DURING DRILLING: NA STICK-UP: NA GEOLOGIST: MARK HOFFERBERT TOTAL BEPTH: 7 AUGER O.D./LD: 2" Ξ PID HEADSPACE [ppm] LETHOLOGY BLOW COVERY SANPLE SOIL CLASS DESCRIPTION FILL Fill material consisting of: sit, gravel, ash. At 10 - 1-inch lense of thue stained sitt. 19 α QAY 5-Grey, firm, uniform, moist, no odor End of boring. 10-15-20-25-30-35-40 RENARKS: Page 1 of 1

BORING LOG

BORING SB-57 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-680 DRELLING CO.: NORTHSTAR NP ELEVATION: CLIENT: NATIONAL FUEL GAS DAILLER: JEFF THEW SURFACE ELEVATION: 587.5 LOCATION: MINERAL SPRINGS ROAD START DATE: 1-08-98 NETHOR GEOPROSE WATER LEVEL DURING DRILLING: NA CASING LO.: STICK-UP: NA GEOLOGIST: NARK HOFFERBERT FOTAL BEPTH: 8 AUGER O.D./LD.: 2" PIO PEADSPACE (poin) Ξ DEPTH (feet) LETHOLOGY BLOW SANPLE DEPTH SOIL CLASS RECOVERY DESCRIPTION FЩ Fill material consisting of: grey gravel mixed with ash, moist, no ador 5.3 20 5-3.0 At 5.0 gravel becomes fine grained. At 8.0 becomes clay. End of boring. 10-15-20-25-30-35-40 RENARKS

BORING SB-58 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-880 DROLLING CO.: NORTHSTAR NP ELEVATION: CLIENT: NATIONAL FUEL GAS DADLER: JEFF THEY SURFACE ELEVATION: 589.8 LOCATION: MINERAL SPRINGS ROAD HETHOD GEOPROBE MATER LEVEL DURING DRILLING: NA STICK-UP: NA START DATE: 1-08-98 CASING LD.: GEOLOGIST: MARK HOFFERBERT TOTAL DEPTH: 20 AUGER O.D./LD.; 2" PTD HEADSPACE (ppm) (feet) LITHOLOGY BLO# COUNTS SAMPLE DEPTH **SOR** CLASS RECOVERY DEPTH DESCRIPTION FILL Fill material consisting of 50% silt and 50% gravel. 29 At 2.0 - lense of very fine coal fragments mixed with sity clay. 3.8 α CLAY 5. 2.3 Grey, firm, uniform, trace orange staining in notified pattern, no odor. 23 2.4 10 24 27 15-24 4.4 SP SAND Grey, well sorted, wet, slight hydrocarbon odor. 3.8 GP GRAVEL 20 Subround, grey, bose End of boring. 25-30-35-40 L RENARKS:

REMEDIATION TECHNOLOGIES, INC.

ROJECT	NO.: 3-207		SIES, INC	1		DARID	IG CO.: NORTHSTAR	NP ELEVATION:
LIENT;	NATIONAL F	UEL GAS	40			DRILLE	R: JEFF THEW	SURFACE ELEVATION 589
O TRATE	<u>n nineral</u> ATE: 1-08-	SPRINGS RO 98	AU		-	CASING	LD.:	MATER LEYEL DURING DRILLING: NA STICK-UP: NA
EOLOGI	ST. MARK H	OF FERBERT				TOTAL	DEPTH: 8	AUGER O.D./LD.: 2'
DEPTH (feet)	RECOVERY [11]	SANPLE DEPTH	PTO HEADSPACE [ppm]	BLOW	SOIL CLASS	LTTHOLOGY		DESCRIPTION
-			6.0 40.0		GP	000000000000000000000000000000000000000	Topsoil then gravel Grey, rounded, trace sity day. At 3.2 becomes saturated with hydrocarbo	on graduel
5-			49.9		α	0000	CAY	in product.
			no e				Grey, firm, low plasticity, hydroca rbon odd 	с.
,]	-			:			End of boring.	
10-								
15-								
,,_								
20-								
25-								
30-								
		·						
35-								
40 RENAR	łks:							

REMEDIATION TECHNOLOGIES, INC.

OJECT	NO.: 3-20	75-880				DRILLI	NG CO.: NORTHSTAR	NP ELEVATION:	
ENT:	NATIONAL N. NINGO (I	FUEL GAS SPRINGS RO				DRDLE	R: JEFF THEY	SURFACE ELEVATIO	
	i <u>n minehal</u> 1408-1314		V61/			CASIN	D: GEOPROBE	STICK-UP: NA	NG UNILLING: NA
OLOGI	ST: NARK F	OFFERBERT				HATOT	0EPTH: 8	AUGER O.D./LD: 2"	
		LIUENI		Τ	T	1.012	www.m.v	ACCENTULUITEU. 2	
UEPIH (TEET)	RECOVERY (ft)	ш	PID HEADSPACE (ppm)	_ gs	,,,) je			
<u> </u>	VER	SAMPLE DEPTH	日韓島	BLOW	SOIL CLASS	LITHOLOGY		DESCRIPTION	
	ECO	35 25	HEA	1 8	3, 8	5			
			†	 	a		Topsoil then gravely clay		
-			3.5		GP	0000	~		
4	,				a	10,0	Silty gravel		
-			8.0		1		GRAVELLY CLAY		
							Trace hydrocarbon staining		
5-			11.8				At 4.0 becomes saturated with h	vdmcamon nrøduct.	•
3			11.0					, at course in processes	
1			İ				C ay		'
1			4.7						
+							End of heri-		
4				1			End of boring.		:
0-	i		Ī		-				
1			ļ						
]				
]									1
_ 1									
5-									
+			1						
4									
-									
			ļ						
2-			1.					•	
7									1
1									
+			1						
+									
4									
5-			į						
4] :		1		•		:
			ļ						
1									
1			İ					i e	
1									
o⊢				}					
4									
+].						
4			1						
			1						
5-			1	1					
٦٦	İ]						
1			1						
4	'								•
4									
- 4			1						
له		L	<u> </u>	<u> </u>	<u> </u>				:
ENA!	rks:								
			•						

							BORING BORING SE		
PROJEC CLIENT	T NO.: 3-20 NATIONAL	75-880	OGIES, INC.	. <u> </u>		DRILL	NG CO.: NORTHSTAR ER: LEFF THEW ER: GEOPROSE	NP ELEVATION: SURFACE ELEVATION: 530 WATER LEVEL DURING DRILLING: NA	
START GEOLOG	DATE: 1-09- IST: NARK I	-98 HOFFERBERT				CASIN	G LO.: Dep th: 20	STICK-UP: NA AUGER O.D./LD: 2'	
DEPTH (feet)	RECOVERY (ft)	SAMPLE DEPTH	PID HEADSPACE (ppm)	BLOW COUNTS	SOIL CLASS	LITHOLOGY	DE	SCRIPTION	
			16		FILL	, , , , , , , , , , , , , , , , , , ,	Asphalt (2") Fill naterial consisting of: sand and gravel	,	
			2.7		α		At 18 - 2-inch lense of organic debris, trace by CLAY	drocarbon odor	\mathcal{J}
5-			25		GP	10000	Grey, fire, low plasticity, moist	·	/
	i		Q.5		a		Coarse grained, poorly sorted, wet, stight hydrox	carbon odor	\int
10-			13				Clay Grey, firm, low plasticity, wet		
			10						
15-			4.1						
20-			18		GP	0000			
							End of boring.		:
25-									
30-									
						-			
35-									
-									
RENA	RKS:	<u> </u>		L	1	1			
								Page 1 of 1	

REMEDIATION TECHNOLOGIES, INC.					BORING LOG BORING SB-62								
PROJECT NO.: 3-2075-880 CLIENT, NATIONAL FUEL GAS LOCATION, MINERAL SPRINGS ROAD START DATE: 1-09-98						DAILL METH CASIN	ING CO.: NORTHSTAR ER: JEFF THEW IG GFOPROBE G LD.:	MP ELEVATION: SURFACE ELEVATION 588 WATER LEVEL DURING DRILLING NA STICK-UP: NA					
GEPTH (feet) GEOTOG	RECOVERY (#)	SANPLE SANPLE DEPTH	PID HEADSPACE (pp.m)	BLOW	SOIL CLASS	TOTAL DOCUMENTOTAL	DEP TH: 12	AUGER 0.D./LD: 2"					
TLG0	RECOVE	SAM	3.3 HEACK R	18 DO	FIIT 88 S	X () () () () () () () () () (0 - 0.5 feet Asphalt pavement Fill material consisting of: Sand and gravel.	DESCRIPTION :					
5-			5.5 2.5		α		At 3.2 - Driller reports refusal 4-Inch lense hydrocarbon odor. From 3.2 to 4.2 - Concrete slab CLAY Grey, firm, uniform, moist, no odor	of sandy gravet trace hydrocarbon staining, trace					
10-			3.5		a a		At 8.0 - 8-inch sand lense, no oder Clay						
15-							End of boring.	:					
20-		-					*						
25-													
30-		,											
35-													
40 REMA	aks:		:	<u> </u>	1	<u> </u>							
L								Page 1 of 1					

REMEDIATION TECHNOLOGIES, INC.						BORING LOG BORING SB-63					
			XGIES, INC.			репт					
PROJECT NO.: 3-2075-680 CLIENT; NATIONAL FUEL GAS LOCATION MINERAL SPRINGS ROAD START DATE: 1-19-98 GEOLOGIST: MARK HOFFERBERT						BRILLING CO.: NORTHSTAR MP ELEVATION: DRILLER: JEFF THEY SURFACE ELEVA			589.5		
						NETHO	B GEOPROBE	WATER LEVEL DURING	ORDLING: NA		
						CASING LD.: STICK-UP: NA TOTAL DEPTH: 20 AUGER Q.D./LD.: 2					
DEPTH (feet)	RECOVERY (ft)	SAMPLE DEPTH	PIO HEADSPACE (ppm)	BLOW	SOR	LITHOLOGY		DESCRIPTION	:		
			0.3		FILL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Fill material consisting of: gravel mixed with as	hes, no eder, muist.	· i		
_ [0.5		a.		CLAY Grey, firm, slight plasticity, moist, no oder.				
5-			12								
10-			0.3				At 912 CH content incremes have desired				
-			· t1	•	SP		At 12.2 - Silt content increases, trace gravel.		<u>.</u>		
15-			0.2 : 0.4				SANO Grey, fine grained, well sorted, well, no odor.				
20-	1				GP	0000	Trace gravel from 19.0 to 20.0				
							End of boring.				
25-											
30-											
35					-						
-									•		
40 RENA	RKS:			L	J	.l					

			NG LOG S SB-64	
REMEDIATION TECHNOLOGIES, INC.			 	
PROJECT NO.: 3-2075-880 CLIENT: NATIONAL FUEL GAS		IG CO.: NORTHSTAR L. JEFF THEW	NP ELEVATION: SURFACE ELEVATION: 588	
LOCATION: NINERAL SPRINGS ROAD	NETHOL	GEOPROBE	WATER LEVEL DURING DRIE	
START DATE: 1-19-98	CASING		STICK-UP: NA	
GEOLOGIST: NARK HOFFERBERT	TOTAL	3EPTH: 18	AUGER O.D./LD.: 2"	
DEPTH (feet) RECOVERY (ff) SANPLE DEPTH PID HEADSPACE [DDm]	COUNTS SOIL CLASS LITHOLOGY		DESCRIPTION	
20	FILL AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Fill material consisting of gravel and m	etal frag nents	
	GP 0000	GRAVEL Grey, wet, slight hydrocarbon oder.		
5-		CLAY Grey, firm, maist, no odor.		: .
10-		Sity clay, firm, wet, no ador.		
	GP COO			
15-	GP 0000	SANDY GRAVEL Poorly sorted, loose, slight hydrocarb	on edor.	
25-		End of boring.		
REMARKS				
				Page 1 of 1

REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-880 DRILLING CO.: NORTHSTAR NP ELEVATION: CLIENT: NATIONAL FUEL GAS DRILLER: JEFF THEW SURFACE ELEVATION 588 LOCATION NINERAL SPRINGS ROAD NETHOD: GEOPROBE WATER LEVEL DURING DRILLING," NA START DATE: 1-19-98 CASING LD.: STICK-UP: NA GEOLOGIST: MARK HOFFERBERT TOTAL BEPTH: 18 AUGER O.D./LD: 2" PID HEADSPACE (ppm) Ξ LITHOLOGY BLOW SANPLE DEPTH SOIL RECOVERY DEPTH DESCRIPTION FШ Fill material consisting of gravel and sand. 9.0 58.0 At 3.5 - 8-inch lense of ashes and sand, strong hydrocarbon odor. CLAY 5-Grey, firm, low plasticity, no odor. 20 10 10 At 11.0 becomes silty clay, wet, no odor, 50 SAND Grey, the grained, loose, well sorted, wet. 15-13 End of boring. 20 25 30-35-REKARKS: Page 1 of 1

REME	DIATION	TECHNOLO	GIES, INC	.]			BORING	SB-66	•
PROJEC	T NO.: 3-207	5-680				GRALI	NG CO.: NORTHSTAR	KP ELEVATION:	
	NATIONAL					DATLE	8: JEFF THEW	SURFACE ELEVATION: 589	· · · · · · · · · · · · · · · · · · ·
LOCATION	ON NINERAL	SPRINGS RO	A D			NETHO	O GEOPROBE	WATER LEYEL DURING DRILLIN	G: NA
	DATE: 1-19-9		 		-	CASIN	3 LD.:	STICX-UP: NA	
GEOLOG	IST: NARK H	OFFERBERT				TOTAL	DEPTH: 18	AUGER O.D./LD: 2"	
DEPTH (feet)	RECOVERY (ft)	SANPLE DEPTH	PID HEADSPACE (ppm)	BLOW COUNTS	500. CLASS	LETHOLOGY		DESCRIPTION	
			3.5		FILL	× < × < × < × < × < × < × < × < × < × <	Fil naterial consisting of clay mixed with a	ashes, no odor .	:
5-			144			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	At 4.0 – becomes wet, sight hydrocarbon	n odor.	
[]			129		α		CLAY	* 	:
10-			ta.i				Grey, firm, low plasticity.		:
		-	10.0				At 11.0 - becomes sity		
1 1					SP		SANO		
15-			5.4				Grey, fine grained, well sorted, wet, no od	or.	•
]							End of boring.		
20-									
									i
25-									:
30-									
							,		
35-									•
1-40-			<u> </u>	1	<u>.</u>	<u> </u>			
REMA	rks:								

DEN#	DIATION	TECHNOL	•				BORING L BORING SB		
PROJECT CLEENT: LOCATIO START D	I NO: 3-20 NATIONAL DN: MINERAL DATE: 1-19-	75-680 FUEL GAS SPRINGS RO	OGIES, INC	- 1		DRILLI METH CASIN	NG CO.: NORTHSTAR R: JEFF THEW D: GEOPROBE	MP ELEVATION: SURFACE ELEVATION 587 WATER LEVEL DURING DRILLING NA STICK-UP: NA	
DEPTH (feet)	RECOVERY (ft)	SAMPLE DEPTH	PID HEADSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY		AUGER O.D./LD: 2"	
5-	20	,	0.4		FILL		Fill material consisting of gravet and clay, no odor. CLAY Grey, firm, low plasticity, no odor.		
10-			 25		25		Becomes wet at 9.0 SAND Grey, bose, fine grained, well sorted, slight hydrod End of boring.	carbon edor.	
15									
20-			:						
25-									
30-								:	
35									
RE NA	rks:							,	Page 1 of 1

ļ							BORING BORING SE		
	DIATION T NO: 3-20		OGIES, INC.	-		Daner	****	T	
CLIENT	NATIONAL	FUEL GAS				DRILLE	NG CO.: NORTHSTAR R: JEFF THEY	MP ELEVATION: SURFACE ELEVATION: 589	
LOCATI	ON MINERAL DATE: 1-19-:	SPRINGS RO	AD			NETHO	DE GEÓPROBE	WATER LEYEL DURING DRILLIN	IG. NA
GEOLOG	IST: MARK H	10FFERBERT				TOTAL	DEPTH: 18	STICK-UP: NA AUGER O.D./I.D.: 2"	
(feet)	(E)	ш	ACE)		(0	1			
DEPTH (feet)	RECOVERY (ft)	SANPLE	PIĎ HEADSPACE [ppm]	BLOW	5011 CLASS	LETHOLOGY	OE	ESCRIPTION	
	<u>ac</u>		20		FILL		Topsoil then fill material consisting of black sand	d and gravel, no eder.	
			0.7			× × × × × × × × × × × × × × × × × × ×			
5-			8.3		α		CLAY		
							Black, sight hydrocarbon staining and odor, trae	oe hydrocarbon sheen	t
								,	
10-			, 1 5.5						
							Becomes wet at 12.0.		· -
			7.8		SP		SANI		
15-							Grey, loose, fine grained, wet.		
						• • •	End of boring.		
1							EIN OF DOING.		
									:
20-									
25-		_							1
30-									
									T.
								,	
35-				^					:
									:
RENJ	irks:	1	1	L	1	1 1			
									Page 1 of 1

							BORING		;
REME	MOLTAID	TECHNOL (GIES, INC.				BORING SE	3-69	
PROJECT	NO.: 3-20	75-680				DRILLI	NG CO.: NORTHSTAR	NP ELEVATION:	i .
CLIENT:	NATIONAL	FUEL GAS					R: JEFF THEY	SURFACE ELEVATION: 588	-
STARTO	<u>ini munehal</u> DATE: 1–20-	SPRINGS RO	<u> </u>			CASIN	DE GEOPROBE	WATER LEVEL DURING DRILLING STICK-UP: NA	ì NA
		OFFERBERT				TOTAL	GEPTH: 18	AUGER O.D./LD.: 2"	
 						1			
DEPTH (feet)	Recovery (11)	SAMPLE DEPTH	PTD HEADSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY	DE	SCRIPTION	. ,
					FILL	1 > Y >	0 - 0.5 - Tapsail		
5-	10		0.5		α		CLAY Grey, fire, low plasticity.		
10-							At 7.0 - Trace fine gravel, wet. At 9.0 - Sit content increases.		
			1.7						
15-							End of boring.		
20-									
25-		,							
30-									<i>f</i>
35-	`								
40									
RENA	RKS:	<u>:</u>							Page (of (

DJECT	NO: 3-207	5-680				DARLI	IG CO.: NORTHSTAR	NP ELEVATION:	
	NATIONAL I	FUEL GAS Springs r o	.AD				R: JEFF THEW	SURFACE ELEVATI	ON: 584
	IN MUNERAL IATE: 1-20-		AU			CASING	: GEOPROBE	WATER LEVEL DUR STICK-UP: NA	NG DRILLING: NA
		OFFERBERT					BEPTH: 18	AUGER O.D./LD.: 2	
חביות וונפון	RECOVERY [ff]	SANPLE DEPTH	PID HEADSPACE (ppm)	BLO# COUNTS	SOIL CLASS	LETHOLOGY		DESCRIPTION	- 44 to
4	Œ		0.5		FILL		0 - 0.5 - Topsøl		
5-			0.5				Grey, firm, low plasticity, moist Becomes wet at 3.5.		
					SP		Trace organic peat at 6.0.		
0-			15		32		SANO Grey, loose, fine grained, wet, no odor		
			0.5		GP		SANDY GRAYEL		·
15-						00,0	Loose, wet, poorly sorted, no odor. End of boring.		
0-									
5-									
1								·	
0-								./	•
5-									
EM.									

REME	DIATION	TECHNOLI	OGIES, INC				BORING S		ļ
PROJECT	T NO.: 3-20	75-880				ORBII	NG CO.: NORTHSTAR	NP ELEVATION:	
	NATIONAL NATIONAL	FUEL GAS L SPRINGS RO	MAD.		-	DRILLE	ER: LEFF THEN NO. GEOPROBE	SURFACE ELEVATION 584	
STARTE	DATE: 1-20-	-98				EASIN		STICK-UP: NA	
GEOLOG	IST: NARK I	HOFFERBERT				TOTAL	DEPTH: 18	AUGER O.D./LD.: 2'	
DEPTH (feet)	RECOVERY (ft)	SANPLE DEPTH	PID HEADSPACE (ppm)	BLOW	5011 CL.ASS	LETHOLOGY		DESCRIPTION	
			0.8		FILL		0 - 0.5 - Tapsoil		
]			0.a		a.		CLAY	1	
							Grey, firm, no odor.		
		ĺ	l ·				At 2.0 trace gravel, wet.		
5-			0.5				At 4.0 ~ 8-inch lense of black peat material	•	
]]			Becomes sitty clay at 7.0.		
			-		50				
			0.9		3		SAND		
10-			ļ				Grey, fine grained, loose, wet, no odor.		
						· · · · :			
		İ	1						
-			8.3						
				ļ	GP	0000	SANDY GRAVEL		
15-						0000	Poorly sorted, wet, no odor.		
						10,19	End of boring.		
1							End of boileg.		
1									
1									
20-									
1							,		
]									
25-									
[]									
30-				ļ				•	!
					1		,		
			1					•	
				-					
35-									,
-		1	Ī						•
			1	1					
								•	
40 RENA	IRKS:		l		1	1	<u> </u>		·
					, -				
L									Page 1 of 1

ROJECT NO.: 3	IAL FUEL GAS				ORILLE	NG CO.: NORTHSTAR R: JEFF THEM	MP ELEVATION: SURFACE ELEVATION:	587.5
CATION NIM	RAL SPRINGS RO)AO				& SEOPROBE	WATER LEVEL DURING	
	RK HOFFERBERT	-				DEPTH: 18	STICK-UP: NA AUGER O.D./LD: 2"	
DEPTH (feet) RECOVERY [ft]	SANPLE	PIO HEACSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY		DESCRIPTION	
		. 13.4		FILL	*	Fil material consisting of: sandy grav	vel, fin.	
6		23.2		α		At 3.8 - 4-inch lense of sandy gravi	el with hydrocarbon sheen and odor.	· · · · · · · · · · · · · · · · · · ·
5-		7.1				Grey, firm, low plasticity, moist.		
10-		2.3		SP		Becomes wet at 12.0.		:
15-				GP	0000	Grey, fine grained, loose, no odor, we SANDY GRAYEL	eł.	i
-			-			Poorly sorted, loose, wel, no odor. End of baring.		
20-							·	
25-								\$
30-								
								:
35-								:
40 REMARKS:								

							BORING		•
			OGIES, INC.			1	BORING SE		·
PROJECT	NO.: 3-207	5-680				DRILLI	NG CO.: NORTHSTAR	NP ELEVATION:	:
	NATIONAL I	SPRINGS RO	AD				R: JEFF_THEW B: GEOPROBE	SURFACE ELEVATION 587.5 WATER LEVEL DURING DRILLIN	3 NA
STARTE	IATE: 1-20-	98				CASIN	- 181		
GEOLOG	***************************************	OFFERBERT	·		,	TOTAL	BEPTH: 18	AUGER O.D./LD.: 2"	
OEPTH (feet)	RECOVERY [III]	SAMPLE DEPTH	PID HEADSPACE [ppm]	BLO% COUNTS	SOIL CLASS	LETHOLOGY		SESCRIPTION	
			2.4		FILL	*	Fill material consisting of sand and gravel.		
			4.8			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	At 3.8 - 4-inch lense of gravel, trace hydroca	than evice seet chann	1 1 1
_ 1	}		ļ		α		CLAY	ANUA DATA GIRA STICCIA	-;
5-			 				Grey, firm, low plasticity.		i
1			0.4						
10-					-				÷
1			3.2				Clay becomes silty and wet at 13.0.		
15-		· !			gp	4000	¬		
							Grey, poorly sorted, wet, no odor. End of boring.		<u>. :</u>
									1
20-									•
1									
25-									
1								`	
30-									
							•		
35-			, 				,		•
			l						
40 REN	IRKS:	<u> </u>	_	<u> </u>	l	<u> </u>			
									Page 1 of 1

DJECT NO.: 3-2075-680 TENT: NATIONAL FUEL GAS CATTON: NINERAL SPRINGS RO	AC			DRILLE	NG CO.: NORTHSTAR R. JEFF THEW D. GEOPROBE	NP ELEVATION: SURFACE ELEVATION: 5 WATER LEVEL DURING DE	
ART DATE: 1-20-98 OLOGIST: NARK HOFFERBERT				CASINI		STICK-UP: NA	
SANPLE DEPTH HEED	PID HEAUGPACE (ppm)	BLOY	SOIL CLASS	LETHOLOGY	вертн: 18	AUGER O.D./LD.: 2' DESCRIPTION	
184	4.8		FILL	**************************************	Fill material consisting of sand and grave At 30 - 4-inch lense of gravel, with hy		; ;
5-	10.7		α		CLAY Grey, (I'm, low plasticity, moist.		
10-							
15-	8.8		Sp.		Becomes sitty at 13.0. GRAYELLY SAND	·-	
					Poorly sorted, bose, wet. End of boring.	, ,	
20	·						
25-							:
30-							
35-							
						•	
REMARKS	<u>. </u>			1	<u> </u>		<u>:</u> :

BORING SB-75 REMEDIATION TECHNOLOGIES, INC. DRELLING CO.: NORTHSTAR NP ELEVATION: PROJECT NO.: 3-2075-680 SURFACE ELEVATION: 588 CLIENT; NATIONAL FUEL GAS DRILLER: JEFF THEY NETHOR GEOPROBE WATER LEVEL DURING DRILLING. NA LOCATION NINERAL SPRINGS ROAD START DATE: 1-20-98 CASING LO.: STICK-UP: NA AUGER O.D./LD.: 2" GEOLOGIST: NARK HOFFERBERT TOTAL DEPTH: 18 PID HEADSPACE (pom) Ξ LETHOLOGY BLOW COUNTS SANPLE **501.** COVERY DESCRIPTION DEPTH FΪΙ Fill material consisting of sand and grave. 2.0 34.0 At 3.6 - 4-inch lense of sandy gravel with hydrocarbon odor and sheen, wet. α CLAY 5 10 Grey, firm, low plasticity, moist. Becomes sitty clay at 8.0. 0.5 10-SP SAND 28 Grey, fine grained, loose, wet, trace fine gravel. 15-End of boring. 20-25-30-35-40 RENARKS Page 1 of 1

BORING SB-76 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-880 DRELLING CO.: NORTHSTAR KP ELEVATION: CLIENT; NATIONAL FUEL GAS SURFACE ELEVATION: 588 DAILLER: JEFF THEY LOCATION: NINERAL SPRINGS ROAD NETHOD GEOPROBE WATER LEVEL DURING DRILLING: NA START DATE: 1-21-98 CASING LD.: STICK-UP: NA GEOLOGIST: MARK HOFFERBERT TOTAL DEPTH: 18 AUGER O.D./LD: 2" PID | HEADSPACE | | (poin) (feet) LITHOLOGY SANPLE DEPTH BLOW SOIL CLASS RECOVERY DEPTH (DESCRIPTION FILL > 7 > 0 - 0.5 Topsol 0.5 α SANDY CLAY Trace organic debris consisting of peat, foots, noist, no odor. CLAY 5-0.9 Grey, frm, low plasticity. Becomes wet at 8.0. 16 Becomes silty clay at 9.0. 10-SAND 0.2 Grey, fine grained, loose, trace fine gravel. 15-End of boring. 20-25 30-35 40 L RE**na**rks:

BORING SB-77 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-880 DRILLING CO.: NORTHSTAR NP ELEVATION: DRILLER: JEFF THEY CLIENT, NATIONAL FUEL GAS SURFACE ELEVATION: 585 LOCATION: NINERAL SPRINGS ROAD NETHOD: GEOPROBE WATER LEVEL DURING DRILLING: NA START DATE: 1-21-98 CASING LD.: STICK-UP: NA GEOLOGIST: MARK HOFFERBERT TOTAL DEPTH: 18 AUGER O.D./LD: 2" (feet) Ξ PTD HEADSPACE [DDIII] LETHOLOGY BLOW COUNTS RECOVERY SANPLE DEPTH **50II** DEPTH (DESCRIPTION FЩ > / > 0 - 0.5 Tapsol 0.9 α CLAY Grey, firm, low plasticity, no odor. 5-12 Becomes wet at 6.5. Increasing sit content at 7.0. 10 10-SANDY GRAVEL Grey, poorly sorted, loose, wet, no odor. 8.0 15-End of boring. 20-25-30-35-RENARKS:

REME	DIATION	TECHNOL	OGIES, INC.				BORING SE	3-18	
	NO.: 3-20						G CO.: NORTHSTAR .	NP ELEVATION:	
CLIENT:	NATIONAL NE NINCRAL	FUEL GAS SPRINGS RO					R: JEFF THEW R: GEOPROBE	SURFACE ELEVATION: 585 KATER LEVEL DURING DRILLI	JC NA
STARTO	ATE: 1-21-	98				CASING	LD.:	STECX-UP: NA	100, 100
GEOLOGI	IST: MARK H	OFFERBERT				FOTAL	DEPTH: 18	AUGER O.D./LD.: 2"	
DEPTH (feet)	RECOVERY (11)	SAMPLE DEPTH	PID HEADSPACE (ppm)	BLOW	5011. CLASS	LETHOLOGY	C	DESCRIPTION	
			0.3		FILL	***** ****** ******	0 - 2.0 Topsoil and clay, no odor		
5-			20		α		SILTY CLAY Grey, firm, low plasticity, moist, no odor.		
-		·.	_		SP		SANO		
10-		-	17				Grey, fine grained, loose, wet, no odor.		
15-			17		GP	0000000	SANDY GRAVEL Grey, loose, poorly sorted, wet, no odor.		;
20-							End of boring.		
25-									
30-									·
35-								•	
40 RENJ	ARKS:	1				.1			Page 1 of 1

BORING LOG BORING SB-79 REMEDIATION TECHNOLOGIES, INC. DRILLING CO.: NORTHSTAR PROJECT NO.: 3-2075-680 NP ELEVATION: CLIENT; NATIONAL FUEL GAS DRILLER: JEFF THEY SURFACE ELEVATION 587.5 LOCATION: MINERAL SPRINGS ROAD NETHOR GEOPROBE WATER LEVEL DURING DRILLING NA START DATE: 1-21-98 CASING LD.: STICK-UP: NA GEOLOGIST: MARK HOFFERBERT AUGER O.D./LD: 2" TOTAL BEPTH: 18 Ξ PID Headspace (**Dota)** LITHOLOGY BLOW RECOVERY SANPLE DEPTH SOIL CLASS DESCRIPTION FILL Fill material consisting of gravel and ashes. 9.8 280 At 3.8 - 4.8 sandy gravel nixed with hydrocarbon product. 5-5.8 α Grey, firm, low plasticity, moist. Becomes wet at 8.0. 3.9 10-5.€ SAND 15 Grey, fine grained, loose, wet, no odor. End of boring. 20-25 30-35-REMARKS:

IOJECT NO.: 3-2075-680 LENT: NATIONAL FUEL GA ICATION: NINERAL SPRING IART DATE: 1-21-98	S ROAD			METHO: CASING	ig Co.: Northstar R: Jeff They I: Geop robe LD.:	**************************************	SURFACE ELEVATION: 587.5 WATER LEVEL DURING DRILLING: NA STICK-UP: NA	
OLOGIST: NARK HOFFERI	ŒRT ————————————————————————————————————		1	TOTAL	DEPTH: 18	AUGER O.D./LD: 2"		
DEPTH ((eet) RECOVERY (!!) SAMPLE	PID PID HEADSPACE [Opin]	BLOK	501.	LETHOLOGY		DESCRIPTION		
5	0.2		α	**************************************	Fil material consisting of sand, gravet, or CLAY Grey, firm, low plasticity, no odor.	clay and ashes, moist, no odor.		
15-	. 14.8	·	\$		Sitty clay become wet at 13.0. SAND Grey, fine grained, loose, wet, sight hyse End of boring.	dracarban edor.	;	
20-								
30-								
35- TEMARKS					·		· : :	

	DIATION TE		1 6123, 1110	- }		Done	NO CO - NOOTI CO	AM CI DIATE			
IENT:	NO.: 3-2075- NATIONAL FUI	EL GAS			BRILLING CO.: NORTHSTAR NP ELEVATION: DRILLER: JEFF THEY SURFACE ELEVATION				588		
CATTO	Y MINERAL ST		AD .			NETHO	DRILLING NA				
ARTO	ATE: 1-21-98					CASIN		STICK-UP: NA			
	T: NARK HOF	FERBERT				TOTAL DEPTH: 16 ALCER Q.D./L.D.: 2'					
DEPTH (feet)	RECOVERY (ft)	SANPLE DEPTH	PTD HEADSPACE [DDM]	BLOW	SOIL CLASS	LETHOLOGY		DESCRIPTION			
5-	<u>at:</u>	,	18		FILL	**************************************	Fil material consisting of sand, gra	nei and ashes, moist, no odor.	- - - - -		
0			14		α		CLAY Grey, firm, low plasticity, moist, no a Becomes wet at 9.0.	odor.	:		
			2.6		SP		SANO	•	· · · · · · · · · · · · · · · · · · ·		
15-							Grey, fine grained, loose, wet, no o	dor.	į.		
20-							End of boring.				
25-							,				
30-											
35-			-								

BORING SB-82 REMEDIATION TECHNOLOGIES, INC. PROJECT NO.: 3-2075-680 DRILLING CO.: NORTHSTAR NP ELEVATION: CLIENT: NATIONAL FUEL GAS DRILLER, JEFF THEY SURFACE ELEVATION: 588 LOCATION: NINERAL SPRINGS ROAD NETHOD GEOPROBE WATER LEVEL DURING DRILLING NA START DATE: 1-28-98 CASING LD.: STICK-UP: NA AUGER O.D./LD: 2" GEOLOGIST: NARK HOFFERBERT TOTAL DEPTH: 18 \equiv OEPTH (feet) PTD HEADSPACE [IDOM] LITHOLOGY BLOW SAMPLE OEPTH RECOVERY SOIL CLASS DESCRIPTION FIII Fill material consisting of sand and gravel, noist. 28 43.0 3.0 to 7.0 sand with hydrocarbon product. 5-11.5 10.7 α CLAY SP Grey, firm. 8.8 SAND 10 α Grey, loose, saturated with hydrocarbon product. 3.9 Grey, firm, wet, trace sit, trace sand, no odor. 4.0 15-0.3 End of boring. 20-25 30-35-40 RENARKS Page 1 of 1

					BORING LOG								
REME	DIATION	TECHNOL	OGIES, INC	.			BORING SB-83						
PROJEC	T NO.: 3-207	'5-880				GRBLING CO.: NORTHSTAR NP ELEVATION:							
LOCATIO	NATIONAL ON: MINERAL	SPRINGS RO	AD			NETH	LER: LEFF THEY SURFACE ELEVATION 588 KOD GEOPROPE WATER LEVEL DURING DRILLING: NA						
START	DATE: 1-28-	98				CASING LD.: STLCX-UP: NA							
	IST: NARK H	OFFERBERT				TOTAL	AUGER O.D./I.D.: 2"						
DEPTH (feet)	RECOVERY (ft)	SANPLE	PID HEADSPACE (ppm)	BLO# COUNTS	501. CLASS	LITHOLOGY	DESCRIPTION						
			2.4		FILL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Fill material consisting of sand and grave.						
			55.2			**************************************	At 3.0 – 5.0 fill mixed with hydrocarbon product.						
5-			523		α		QAY :						
			. 5.1				Grey, fin low plasticity, wet.						
10-		• .	5.1		-		End of boring.						
1							EIN OF BOTTON						
15-													
20-													
25-													
30-			-										
35-													
	1												
					i								
40 REMA	IRKS:	<u>. </u>	<u> </u>	1		<u> </u>	1						

							BORING LOG		÷			
REME	DIATION	TECHNOLO	O GIES, INC.				BORING SB-84	:				
	NO.: 3-20					DRILLI	NG CO.: NAXIN NP ELEVA	TION:				
CLIENT:	NATIONAL	FUEL GAS				DRILLER: STEVE BOCHENEK SURFACE ELEVATION: 589						
LOCATIO	<u>IN: MINERAI</u> DATE: 3-31-	SPRINGS RO	A 0			METHO		YEL DURING DRILLING: NA	.			
		YUDIKATTIS					CASING LD.: STICK-UP: NA TOTAL DEPTH: 18 AUGER 0.D./LD. 2'					
	Ξ	-				1		·				
DEPTH (feet)	RECOVERY (SANPLE	PID HEADSPACE [DD11]	BLOW	SOIL	LITHOLOGY	DESCRIPTION	:				
	60		5.8		FILL	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 - 0.5 Asphalt pavement Fill material consisting of mixed gravel, stit and sand, light brown	a				
1			4.2		a	v > v >	Sitty clay - Gray and brown, firm, wet, no odor	· · · · · · · · · · · · · · · · · · ·				
5	70		5.2				Sitly clay - Grey firm, wet					
							Gravetierse, wet	1				
		_	5.8				Obstruction at 7.0 - gravel plug in core tip	:				
10-	100		4.1				Sitty clay - Grey firm, orange staining in notitled pattern	•				
			7.0									
	100		5.5									
15-			6.0				Sitty clay – Grey with orange staining in mottled pattern, firm,					
			İ				End of boring.	4.81diis, #21				
			! :									
20-			:									
207												
1 1												
1												
25-												
						-		1				
			ŀ					•				
30-												
35-							,					
RENA	RKS:	··· -		·		•						

REMEDIATION TECHNOLOGIES, INC.

METHOD: DIRECT PLPS MATER LEVEL DIGHTS DRILLING IN START DATE 3-9-88 CASHS (D) STOCK-P, NA AUGER COLVED. 2"		NP ELEVATION:	CO.: MAXIN	DAULD				75-690	NO.: 3-207	PROJECT
START DATE: 3-31-98 CEDIOGIST: DAYLD TUDIOLATIS TOTAL DEPTH 19 ALER OD/LD: 7' DESCRIPTION TO 3.5 FILL A2.0 - 6' lense of black chiefers Sity clay - Grey, with orange staining in noticed pattern, first, uniform TO 8.1 TO 8.5 Sity sand - Grey, losse, trace gravel Sity sand - Grey, losse, trace gravel Sity sand - Grey, losse, trace cobbles End of boring		SURFACE ELEVATION: 589 VATER LEVEL DURING DRILLIN								
File Section File	ELHIGA IM).;	CASING				98	ATE: 3-31-	T RATE
FILL O - 0.5 Asphalt parenent Fill naterial consisting of nixed rock fragrents, brown silt and sand At 20 - 8" lense of black cinders Sity clay - Grey, with orange staining in notited pattern, dry Driter reports obstruction at 7.0 feet Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey, with orange staining in notited pattern, firm, uniform Sity sand - Grey, loose, trace gravel Sity sand - Grey Sity sand - Grey, trace cobbles End of boring.	·	AUGER O.D./LD: 2"	TH: 18	TOTAL			,	YUDIKAITIS	ST: DAVID	E0L0G
Fit naterial consisting of nixed rock fragments, brown silt and sand At 20 - 8" lense of black cinders Sity clay - Grey, uniform Sity clay - Grey with orange staining in notited pattern, dry Differ reports costruction at 7.0 feet Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey with orange staining in notited pattern, firm, uniform Sity clay - Grey, losse, trace gravel Sity sand - Grey, losse, trace gravel Sity sand - Grey, trace cobbles End of boring.		DESCRIPTION				BLO# COUNTS	PIO HEADSPACE (ppm)	SANPLE DEPTH	RECOVERY [ft]	OEPTH (feet)
Sity clay – Grey, uniform Sity clay – Grey with orange staining in notited pattern, dry Driter reports obstruction at 7.0 feet Sity clay – Grey with orange staining in notited pattern, dry Driter reports obstruction at 7.0 feet Sity clay – Grey with orange staining in notited pattern, firm, uniform Sity clay – Grey with orange staining in notited pattern, firm, uniform Sity clay – Grey with orange staining in notited pattern, dry Sity clay – Grey with orange		ents, brown silt and sawd	Fill material consisting of mixed rock frag	\$\$\\ \$\$\\ \$\$\\ \$\$\\ \$\$\\	FILL.		3.5		70	1
Driter reports obstruction at 7.0 feet Sity clay - Grey with orange staining in actited pattern, fitth, unwiorn Sity sand - Grey, losse, trace gravel Sity sand - Grey 6.8 GP 6 6 6 6 Gravel - Grey, trace coubles End of boring.					α	-	4.5			1
To Etty clay - Grey vith orange staining in anothed pattern, firm, uniform Sity sand - Grey, loose, trace gravel Sity sand - Grey Sity sand - Grey B.8 GP COAC Gravel - Grey, trace coobles End of boring.		ottled pattern, dry	Silty clay - Grey with orange staining in a				5.0	:	80	5-
100 6.0 Sity sand - Grey, loose, trace gravel Sity sand - Grey 150 GP Gravel - Grey 150 Grav							4.3			
Sity sand – Grey, losse, trace gravel Sity sand – Grey Sity sand – Grey GP A OA G Gravel – Grey, trace coubles End of boring.	•	otted pattern, firm, undom	Stity clay — Grey with orange stai ning in :				6.1		70	10-
8.8 GP COCC Gravel - Grey, trace coobles End of boring.	:		Sitty sand - Grey, loose, trace gravel		SP					1
End of boring.			Sitty sand - Grey						100	1
20— 25—			Gravel - Grey, trace cobbles	200	GP		6.6			15-
										20-
										25-
										30-
35—						,				35-
40 RENARKS:						<u> </u>			rks:	40 RENA

REMEDIATION TECHNOLOGIES, INC.

ROJEC	T NO.: 3-20	75-890	OGIES, INC				IG CO.: NAXIN	NP ELEVATION:	
	NATIONAL						R: STEVE BOCHENEK	SURFACE ELEVATION: 50	
		SPRINGS RO	AO .				DIRECT PUSH	WATER LEVEL DURING DR	ILLING: NA
	DATE: 3-31- IST: JANES					CASING	DEPTH: 18	STICX-UP: NA AUGER O.D./LD; 2'	·
		LU DAILLA	_		T	1.017	DG: 111. 10	AOSER O.U., LLL. Z	
DEPTH (feet)	RECOVERY (#)	SANPLE DEPTH	PID HEADSPACE [ppm]	BLOW	. 501 . CLASS	LITHOLOGY		DESCRIPTION	
	90	-	3.0		FILL	X	0 - 0.5 Asphalt pavement Fill material consisting of rock	r fragments, coal chips and brown sand	
- 1			•		a				•
1			3.8				Silty clay - Black, firm, unifor Becomes grey at 3.0, trace b	rown staining in mottled pattern	:
5-	100		3.8				Clay - Grey with crange stair	ing in mottled pattern, firm, moist, no odor	1
			. 6.1						
	100	-	6.6				Clay - Grey and brown		
10-			5.8		SN		Silty sand - Brown and grey,	firm, very fine, no odor, wet	· · · · · · · · · · · · · · · · · · ·
-			Ī.				Becomes coarse at 11.7		•
1	100	:	8.9				Sity sand - Grey, loose, wet.	20% rounded gravet, trace cobble, no odor	:
15-			6.1		GP	0000	Sandy gravel - Grey, loose, s	ret, poorly sorted, no odgr	
1		}	1			7 1 4	End of boring.		
1							End of borning.		
1									ı
20-									1
-						1			
25-									
1			Ē						*
-									
30-									
207									
-									•
{									
35-									
-									
}									
1									
40 RENA		L		L					:
rl NA	MV7.								
							•		

REMEDIATION TECHNOLOGIES, INC.

IENT:	NO.: 3-207 NATIONAL	FUEL GAS				DRELLE	NG CO.: MAXIN R: STEVE BOCHENEK	NP ELEVATION: SURFACE ELEVATION 588
CATIO	N MINERAL	SPRINGS RO	AD			NETHO	DIRECT PUSH	MATER LEVEL DURING DRILLING: NA
	ATE: 3-31-		_			CASIN	LD.:	STICK-UP: NA
EOLO G I	ST: JANES	EDWARD\$,	TOTAL	DEPTH: 18	AUGER O.D./LD.: 2'
DEPTH (feet)	RECOVERY (11)	SANPLE DEPTH	PID HEADSPACE [cpm]	BLOW COUNTS	501. CLASS	LITHOLOGY		DESCRIPTION
	80		22.1		FILL	* > Y > Y	Fill material consisting of brown, silty gravel a	an é san d
}	aU .					*	Becomes brown and black cinders and ash fr	a grients
1			568		α	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Becomes black, wet, strong hydrocarbon odd	ir !
5-	100		77				Grey sity day Sity clay - Grey, trace orange staining in no	ottled pattern, slight hydrocarbon odor; moist, uniform, film
			54.8					
10-	70		75.7				Sity clay - Grey, trace orange staining in mo	ottled pattern, slight hydrocarbon odor, tirm, uniform, moist
10-4			59.7				Lense 2" – Gravel with strong hydrocarbon o	rdor
]	100		51				Becomes soft	
-	20				SP		Sand - Grey, loose, well sorted, wet, slight h	ydracarbon ador
15-			25.2					
1							End of boring.	
1								
20-								
1								
25-								
30-								
1								
1								
_								
35-								
1								
1								
RE NAF			<u> </u>					
LENAF	UKS:							

ROJECT	NO.: 3-20	75-890				DAILL	NG CO.: NAXIN	NP ELEVATION:			
	NATIONAL		-				RE STEVE BOCHENEK	SURFACE ELEVATION 588			
LATIC LABT D	<u>IN: MINERAL</u> IATE: 3-31-	SPRINGS RO	PAL)			CASTA	DE DEPRECT PUSH	WATER LEYEL DURING DRILLING NA			
	ST: JANES					CASING LO.: STICK-UP: NA TOTAL SEPTH: 8 AUGER O.D./LO.: 2"					
$\overline{}$						10					
OSPTH (feet)	RECOVERY (ft)	SANPLE	PTD HEADSPACE [DOM]	BLOW	SOIL	LITHOLOGY		DESCRIPTION			
	70		28.1		FILL	*	Fill material consisting of black, sifty	clay nixed with rock fragments and debris			
-			33.2			× × × × × × × × × × × × × × × × × × ×	At 3.2 becomes broken red brick fra	gnents and broken rock fragments			
5-	40		32.7			2 × × ×	Brick fragments mixed with grey clay	ev slt			
4					ļ .	5 V A V V					
]			1	-			Driller reports refusal at 8.0 concret	*** - *			
}		-					End of boring.	√.			
10-								•			
5-											
1											
20-								•			
-											
25-			,								
]											
30-			ŀ								
1											
35-											
O I	DKG:			·							

REMEDIATION TECHNOLOGIES, INC.

PROJECT	T NO.: 3-207 NATIONAL	75-890					NG CO.: NAXIN	NP ELEVATION:
		SPRINGS RO	An .				RE STEVE BOCHENEK DE DIRECT PUSH	SURFACE ELEVATION 588 WATER LEVEL DURING DRILLING NA
	DATE: 3-31-					CASINO		STICK-LP: NA
GEOLOG	IST: JAMES	EDWARDS				TOTAL	D EPTH: 18	AUGER O.D./LD.: 2'
OEPTH (feet)	RECOVERY (ft)	SAMPLE DEPTH	PTD HEADSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY		ESCRIPTION
-	70		Ю.1		FILL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Fill material consisting of black cinders and grad Brown dayey silt	rel
-			18.2			*****	Black tine grained silt and ash Black ashes, cinders, silt mixture	
5-	100		24.7			*		wet, hydrocarbon odor, spots of sheen in water
			8.4		a		Silty clay — Grey, uniform	
10-	100		29.0					Epattern, enifern, film, no odor
107			44.5		SP		Sitty sand – Loose, grey, uniform, wet, well sorte	ed, slight hydrocarbon odor
	100		18.0				Silty sand - Grey, uniform, loose well sorted, we	el sfight hydrocarbon ador
15-			37.0					i, signi ayuncaduni odel
							End of boring.	
20-								
-								
25-		:						
-			·					
30-								
-								
35-								
-								
40		L						
40 REM	RKS:							
1								

REMEDIATION TECHNOLOGIES, INC.

IDEA LATION CALLS OF STATES AND SAFE CONTROL SAFE CONTR	OJECT NO.: 3-207	5-690	JGIES, INC.			DRBLI	NG CO.: NAXDI	MP ELEVATION:
ANTICALS CHARGES TO ALL EPP 12 A	IENT: NATIONAL F	UEL GAS	AD.			DRILLE	R: STEVE BOCHENEK	SURFACE ELEVATION 587
TO Control To	<u>ILATION MINEHAL</u> LARTIDATE: 3-31-0	18 25.417 47 2 60	e ri		_			
Solution Secti	OLOGIST: JANES E	DWARDS	-			TOTAL	DEPTH: 12	AUSER O.D./LD: 2"
Fill naterial constring of titly day also with graves 5- 100 288 5- 100 288 10- 100 41				ļ	<u> </u>	1	··· ·-	1 1000000 50000 50000
8-inch lense of far-like material, har denset, black, strong ador 9P	DEPTH (fee	SANPLE	PID HEAOSPACE (ppm)	BLOW		11	2 *	
5- 100 26.6 CD 20.6 CD	08		19.2		FILL	***** ***** *****		
Sity clay - Gray, writing, fine, trace arrange staking in notities pattern, no adar, assist Sity clay - Gray and tan, noist, wet, writing, sight hydrocarbon odur, is creasing sitty content End of boring.			38.8		GP	33 63		II, HOUNGEROU, DICOCK, SHIPEY COUN
Sity clay - Grey and fart, notal, wet, wifford, skight hydrocarton odd, increasing sity content End of borng.	5- 100		26.6		a	,°0°,°0	Silty clay - Grey, uniform, firm,	trace erange staining in motilied pattern, no odor, moist
Sity clay - Grey and tan moist, wet, wilforn, Sight hydrocarbon odor, noreasing silly content End of boring. End of boring.			B.2 —					
End of boring. End of boring.	+ 1	,	41				Sity clay - Grey and tan, noist	, wet, wiform, sight hydrocarbon odor, increasing silty content
25-	1		48				End of boring	
25-								· ·
25-	15-							· .
25-								
35-	20-	-						
35-								
35-	25-							
35-				:				
35-								
	10-	ļ						1
								•
	35-							· · · · · · · · · · · · · · · · · · ·
		. i						
10 1	10 RENARKS:							•

REMEDIATION TECHNOLOGIES, INC.

CATIO ART D	IENT; NATIONAL FUEL GA\$ CATION, NINERAL SPRINGS ROAD ART DATE: 4-1-98 OLOGIST: JANES EDWARDS						R: STEVE BOCHENEK 2 DIRECT PUSH LID.: DEPTH: 16	SURFACE ELEVATION: 588 WATER LEYEL DURING DRILLING: NA STICK-UP: NA AUGER O.D./LD: 2"	
DEPTH (feet)	RECOVERY (#)	SANPLE	PID HEACSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY		DESCRIPTION	
	œ		13.3		FILL	* * * * * * * * * * * * * * * * * * *	Fill material consisting of brown slifty s Black ashes, cinders, wood fragments, Grey slifty day Mood fragments	and . module of white paste, trace blue staining	
5-			30,1 17.8		α		Sitty clay	in mottled pattern, uniform, stiff, moist, no odor	
10-			19.8	_			-		
			3.2 28.2				Sitty clay – Grey and orange in motte	ed pattern, uniform, stiff, moist, no oder	
15	:		19.5		SP GP	0000	Sity sand - Grey, loose, uniform, well Sity grave - Grey, rounded, coarse,	sorted, slight hydrocarbon ador poorly sorted, slight hydrocarbon odor	
							End of boring.		
20									
25-									
-									
30-	ļ								
4									
35-									
40 RENA		•							

									; •
REMEDIA	TION T	ECHNO •	GIES, INC.	1.			BORING SI	B-92	:
			0120, 1110.			Dore	NC CO. MAYEN	MD F1 D/47TA	· · · · · · · · · · · · · · · · · · ·
PROJECT NO.	. 3-20/5 TIONAL FI	15 6 45	-			DATE	NG CO MAXIN R: STEVE BOCHENEK	MP ELEVATION. SURFACE ELEVATION: 588	
LOCATION: 1	(INERAL S	PRINGS ROA	40				C CURECT PUSH	WATER LEVEL DURING DRILLD	NG: NA
START DATE	4-1-98					CASIN	S L.D.:	STICK-UP: NA	
GEOLOGIST:	JANES E					TOTAL	9PTH: 18	AUGER O.D./LD: 2'	
OEPTH (feet)	RECOVERY (ff)	SANPLE OBPTH	PID HEADSPACE [DDM]	BLOW	501L CLASS	LITHOLOGY	τ	DESCRIPTION	:
I 1	00		8.1		FILL	*	Fil material consisting of topsoil then		
			8.1		α	****** *****	Grey and brown sitty clay and gravel, trace as Sitty clay - Grey, firm, uniform, moist	hes, coat fragments	
5-	100		9.2				Silty clay - Grey, uniform, firm, notified orange	staining on oder	
			10.1				any step of the property and the state of th	attiring to out	:
	70		-						
10-	ιο .		8.0		20		Silty sand — Grey, loose, uniform, no odor, wet		:
			- 9.1						
	1000		5.1				Sity sand - Grey, loose, uniform, wet	4	
15			6.2		GP	00,0	Sitty gravel - Round, poorly sorted, loose, wet		
			•				End of boring.	,	
20-									
			E .						
25-									
30-									•
35-									
40 REMARKS:							· 		

REMEDIATIO	ои теснио г	OGIES, INC			,		5 SB-93 ; .
PROJECT NO.: 3-	-2075-890				DRILLI	NG CO.: NAXIN	MP ELEVATION:
CLIENT: NATION		A40				R STEVE BOCHENEK	SURFACE ELEVATION: 588
LOCATION: NINE START DATE: 4-	-1-08 'YAL 25.UTUPZ II	VAU			CASIN	D: DIRECT PUSH	WATER LEYEL DURING DRILLING. NA STICK-UP: NA
GEOLOGIST: JAN					TOTAL	SEPTH: 18	AUGER O.D./LD: 2'
DEPTH (feet)	SANPLE	PID HEADGSPACE (ppm)	BLOW COUNTS	SOIL CLASS	LITHOLOGY	GE THE TO	DESCRIPTION
		14.0		FILL	X	Fill material consisting of grey, gravel	rçad base :
]		12.8		a		4" Lense of blue stained wood chips	/
4						Grey clay, stiff, uniform, trace blue st	ele n g :
5-		3.4				Silty clay – Grey and orange mot ized	pattern, whitera, firm, maist, no oder
		4.2				-	
10-		13.5				Sitty clay - Grey, orange stain in moti	iled pattern, firm, uniform, moist
1		11.0					
1		12.1		3P			ose sand, trace gravefin spoon core tip, slight hydrocarbon odor,
15-	į					wet	
						End of boring.	
20-							
1							
25-							
<u>.</u>							
30-							
35-							
1							
1							
REMARKS:			L	<u> </u>	.1		
	•						
						·	Page 1 of 1

REMEDIATION TECHNOL	OGIES, INC.		BORING SB-94					
ROJECT NO.: 3-2075-690			DRELL	NG CO.: NAXIN	MP ELEVATION:			
LIENT: NATIONAL FUEL GAS	A4D		DRILLI	A: STEVE BOCHENEK	SURFACE ELEVATION 588			
<mark>ocation: Nineral Springs R</mark> Tart Date: 4-1-98	VAU		CASIN	D: DIRECT PUSH	WATER LEVEL DURING DRILLING: NA STICX-UP: NA			
EOLOGIST: JANES EDWARDS			TOTAL	S EPTH: 8	AUGER O.D./I.D: 2'			
DEPTH (feet) RECOVERY (ft) SANPLE DEPTH	PID HEADESPACE (ppm)	SOIL CLASS	LITHOLOGY		DESCRIPTION			
90	1 0.2	FILL	× × × × × × × × × × × × × × × × × × ×	Fill material consisting of broken rock trag	eents, sitt and sand			
	18.2	a		2" lense of black circlers Sitty clay - Grey, firm, uniform				
5- 00	18.2			Grey sitty clay, uniform, firm, no oder, maist	:			
	11.2							
				End of boring.				
10-				,	•			
15—								
20-								
					·			
25—								
					•			
30-								
35-								
40 REMARKS								
					Page 1 of 1			

REME	DIATION	TECHNOLO	GIES, INC.				BORING LOG BORING SB-95		
CLIENT; NATIONAL FUEL GAS LOCATION: MINERAL SPRINGS ROAD START DATE: 4-1-98							ING CO.: NAXIN ER: STEVE BOCHENEK SURFACE ELEVATION: 587 OB. DIRECT PUSH G LD:: STICK-UP: NA STICK-UP: NA MATER-UP: NA STICK-UP: NA MATER-UP: NA STICK-UP: NA MATER-UP: NA STICK-UP: NA MATER-UP: NA M		
a E						<u> </u>	TOTAL DEPTH: 18 AUGER O.D./LD.: 2'		
ОБРТН (RECOVERY	SANPLE DEPTH	PTD HEADSPACE (ppm)	BLOW	SOIL CLASS	LITHOLOGY	DESCRIPTION		
-	90		12.2		FILL	× × × × × × × × × × × × × × × × × × ×	Fill material consisting of sift and gravel mixture froad base)		
_					α	<u> </u>	At 3.8 - 2' lense of blue stained wood chips, strong odor :		
5-	ю		6.2				Silty clay - Grey uniform, stiff Silty clay - Grey and orange in motited pattern, stift, uniform, no odor		
			3.3				·		
10-	100		7.8						
	40.0		11.2		SP		Increasing sit content Silty sand - Grey, loose, well sorted		
	100		11.8				Becomes coarse		
15-			ft.5		GP	100,0	Gravel - Round to subround, poorly sorted, sight hydrocarbon odor End of boring.		
1									
20-									
25-		:							
25									
30-		-							
35-							,		
						!			
-40- RENA	RKS:	- 1			l	<u> </u>			

REMEDIATION TECHNOLOGIES, INC. BRELLING CO.: NORTHSTAR PROJECT NO.: 3-2075-680 HP ELEVATION: CLIENT: NATIONAL FUEL GAS DRILLER: JEFF THEY SURFACE ELEVATION 587.9 LOCATION: NINERAL SPRINGS ROAD NETHOR HSA WATER LEVEL DURING DRILLING: NA START DATE: 1-21-98 CASING LD.: NA STICK-UP: NA GEOLOGIST: JAMES EDWARDS TOTAL DEPTH: 30.0 Feet AUGER Q.D./L.D.: 4.25 ID PID | HEADSPACE | (poin) Ξ LITHOLOGY BLOY COUNTS SAMPLE Depth SOIL CLASS RECOVERY DEPTH (DESCRIPTION FШ Fill material consisting of sandy gravel. 21 At 2.0 fill consists of wood fragments mixed with clay. At 4.0 slight hydrocarbon odor and Finch lense of blue stained soit. α 5-12 CLAY Grey, firm, low plasticity, moist, no occr. 13 10-SAND 0.4 Grey, loose, fine grained, wet, no odor. Becomes coarse at 13.0. 15-Grey, fine grained, poorly sorted, wet, no odor. 10 20-23 29 α Grey, soft, medium plasticity, wet, no odor. 25-20 0.5 8.0 30-End of boring. 35-40 Renarks:

REMEDIATION	TECHNOL	OG1ES	INC.
HEREDIALION		. ~	1170.

CLIENT: NA LOCATION START DATE GEOLOGIST:	O.: 3-2075-880 ATIONAL FUEL GAS NINERAL SPRINGS E: 1-28-98 : JANES EDWARDS				DEDLE	NG CO.: NORTHSTAR R: JEFF THEW	NP ELEVATION:	
START DATE GEOLOGIST:	MINERAL SPRINGS E: 1-28-98				1 DAD (E			
START DATE GEOLOGIST:	E: 1-28-98	NO AU					SURFACE ELEVATION 587.9	
GEOLOGIST:	: JANES EDWARDS				NETHOR HSA CASING LD.: NA		MATER LEYEL DURING DRILLING. NA STICK-UP: NA	
}						BEPTH: 30.0 Feet	AUGER Q.D./LD: 4.25 ID	
OEPTH (feet)	RECOVERY (II) SAMPLE DEPTH	PTD HEADSPACE (DDIN)	BLOW	SOIL CLASS	LITHOLOGY		DESCRIPTION	
		12		FILL	**************************************	Fil material consisting of gravel and clay.		
5-		19			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	At 5.8 - 2-inch lense of sandy gravet hydroc	arthon sheen	
		20		a.		CLAY	,	
10-		12				Grey, firm, low plasticity, moist, no odor ,		
15-		0.8				At 13.0 increasing sand content.	:	
				29		SANO		
20-		0.7		GP	0	Grey, fine grahed, loose, wet, on odor.		
		13		U.	0000	SANDY GRAVEL Grey, poorly sorted, loose, wet, no odar.		
25-		. 18		α	00,00	CLAY Grey, soft, moist, trace gravel.		
30		0.9				فيو ع المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد		
30-						End of boring.		
35-								
40 REMARKS							·	
HENARK	<i>≊</i> .							

REMEDIATION TE	ao Ionhc	TES IN	C
----------------	----------	--------	---

PROJECT NO.: 3-2075-680 CLIENT: NATIONAL FUEL GAS						BABLING CO.: NORTHSTAR DROLLER: JEFF THEW		MP ELEVATION: SURFACE ELEVATION: 588.53	
LOCATION MINERAL SPRINGS ROAD						NETHOR HSA		WATER LEVEL DURING DRILLING: NA	
	DATE: 1-27-			-			LD.: NA	STICK-UP: NA	
	IST: JANES						DEPTH: 39.5 Feet	AUGER Q.D./LD.: 4.25 ID	
DEPTH (feet)	RECOVERY (ft)	SANPLE DEPTH	PTD HEACKSPACE [1901]	BLO# COUNTS	SOIL CLASS	LETHOLOGY		SCRIPTION	
			9.1		FILL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	O - 0.5 Topsol.		
			19.0				Fill material consisting of day and debris. At 20 ~ 3-inch lense of blue stained wood chips	<u>.</u>	
				:	GP	4004	SANDY GRAYEL		
5-			310			0000	Nixed with hydrocarbon product.		
			513			0000	At 8.0 - becomes saturated with hydrocarbon p	roduct, non-elscious.	
1 1			84.5		α		CLAY		
10-			44.0				Grey, firm, low plasticity, strong hydrocarbon od	or.	
			28.5					• •	
15-			48.2				At 15.0 - increasing gravel content.		
			43.0						
			- 24.6		GP	000	SANDY GRAVEL		
20-			13.6			0000	Grey, loose, poorly sorted, trace trydrocarbon s Slight hydrocarbon sheen, wet	heen.	
			14.2			0000			
25			39.3			0000	At 25.0 strong hydrocarbon sheen.		
			5.8		α		CLAY Grey, soft, nedium plasficity, trace hydrocarboi	odar and sheen.	
30-			7.3					•	
			2.0						
			10					:	
35-			2.3						
			23						
			2.7		GP	0000	At 38.0 - Becomes sandy gravel, no odos	:	
40	L	l	<u> </u>	1		10-009	At 39.5 – Driller reports refusat		
REN	ARKS:		•				End of boring.		

BORING LOG BORING DR4

BORING DB4 REMEDIATION TECHNOLOGIES, INC. PROJECT NO: 3-2075-680 DRILLING CO.: NORTHSTAR NP ELEVATION: CLIENT: NATIONAL FUEL GAS DRILLER: JEFF THEY SURFACE ELEVATION 587.27 LOCATION NINERAL SPRINGS ROAD HETHOR HSA WATER LEVEL DURING DRILLING. NA START DATE 1-29-98 CASING LD.: NA STIDX-UP: NA GEOLOGIST: JANES EDWARDS TOTAL DEPTH: 24 Feet AUGER O.D./LD: 4.25 ID Ξ PTD HEADSPACE [ppm] LETHOLOGY BLOW RECOVERY SAMPLE DEPTH SOIL CLASS DEPTH DESCRIPTION FILL Fill material consisting of sand and gravel, ashes and brick tragments, moist, no odor. 15 7.8 α CLAY 5-0.7 Grey, firm, moist, no odor. 8.0 12 10-13 Becomes wet at 120. 0.9 SP SAND Grey, fine, loose, no odor. 15 ٤ſ GP SANDY GRAVEL 8.8 Grey, loose, poorly sorted. At 18.0 - Slight hydrocarbon odor. 10.3 20 At 210 - 12-inch lense of hydrocarbon product. α 15.4 Grey, soft, medium plasticity, no odor. End of boring. 25 30-35 RENARKS:

REME	NOITAID	TECHNOL	OGIES, INC			-,	5011110 555
	NO.: 3~207						LING CO.: NORTHSTAR NP ELEVATION:
	NATIONAL						LER: JEFF THEY SURFACE ELEVATION 589
STARTO	<u>nt minehal</u> IATE: 1-30-	SPRINGS RO	AD				100: HSA MATER LEYEL DURING DRILLING: NA NG LO.: NA STICK-UP: NA
	ST: JANES						NG LO.: NA STIDX-UP: NA LOEPTH: 24 Feet AUGER O.D./LD: 4.25 ID
DEPTH (feet)	RECOVERY [fil]	SAMPLE DEPTH	PID HEADGSPACE [ppm]	BLO% COUNTS	501 L	ГТНОГОСУ	DESCRIPTION
	82		8.5		FILL	**** **** **** ****	Printalización consistration and grave, no ocou, mossi.
5-			53.0		α		CLAY Grey, firm, moist. At 5.0 – 1-Inch lense of sand, trace trydrocarbon sheen.
10-			12.2				At 8.0 - 10.0 - trace hydrocarbon product in thin lenses in clay.
			18.0 29.7		SP		SAND Grey, tine grained, loose, trace hydrocarbon sheen.
15-			38.4		GP	00000	SANDY GRAVEL Poorly sorted, loose, strong hydrocarbon sheen. At 18.0 to 21.5 gravel ribbed with hydrocarbon product.
20-			30.8			00000000	
			8.3		α	604	CLAY Grey, soft, medium plasticity, wet.
25-							End of boring.
30-		}					
35-							
-							
REMA	RKS:	1	.	L		1	

REME	NOITAIC	TECHNOL	OGIES, INC				BONINO BI	
PROJECT	NO.: 3-207	75-680				ORBLI	NG CO.: NORTHSTAR	NP ELEVATION:
LIENT:	NATIONAL	FUEL GAS SPRINGS RO	\ <u>\</u>				R: JEFF THEY	SURFACE ELEVATION 588.38
STARTO	ATE: 1-29-	<u>. Sprungs ku</u> 48) AU			METHO	E ISA ELD.: NA	WATER LEVEL DURING DRILLING, NA
GEOLOGI	ST: JANES	EDWARDS .				TOTAL	DEPTH: 28 Feet	STICK-UP: NA AUGER O.D./LD: 4.25 ID
DEPTH (feet)	RECOVERY (ft)	SAMPLE DEPTH	PTD HEADSPACE [DDIR]	BLOW	SOIL CLASS	LITHOLOGY	, , , , , , , , , , , , , , , , , , ,	DESCRIPTION
			0.8		FIL	**************************************	0 - 0.5 Topsoil Fili material consisting of 3-foot thick layer of	blue stained wood chips, slight hydrocarbon odor.
5-			5.3		a.		CLAY Grey, firm, moist, no odor.	
			20					
10-			LI					-
4			3.0		SP		SANO Grey, fine grained, loose, wet, no odor.	
15-			10		GP	0000	SANDY GRAVEL Loose, poorly sorted, well, no odar.	
			15			20000		
20-			0.5			00000		
			13		α,		CLAY Grey, soft, uniform, wet, no odar.	
25-			13					
							End of boring.	
30-								
35-								
40 RENA							···	:
, 4_144								

REME	EDIATION	TECHNOL	OGIES, INC.	.			DOKING UB	<u> </u>
PROJEC	T NO.: 3-20	75-680	·			DRALL	NG CO.: NORTHSTAR	NP ELEVATION:
CLENT	NATIONAL	FUEL GAS	40				R: JEFF THEW	SURFACE ELEVATION: 587,52
	ON: MINEHAL DATE: 1—29—	SPRINGS RO	AD				IR HSA G LD.: NA	MATER LEYEL DURING DRILLING NA STICK-UP: NA
GEOLOG	IST. JANES	EDWARDS				TOTAL	DEPTH: 28 Feet	AUGER O.D./LD.: 4.25 ID
DEPTH (feet)	RECOVERY [ft]	SANPLE DEPTH	PTD HEADSPACE [DDIN]	BLOY COUNTS	5011. CLASS	LITHOLOGY		CRIPTION
			O.6		FILL	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Fill material consisting of sand and gravel mixed wi	lth ashes, no odor, noist.
5-			0.8		a.		CLAY Grey, firm, law plasticity, moist, no oder.	
			11					· 4
10-	_		0.5					
			ti				Increasing sit content at 12.0.	
15			0.8		59		SAND	:
			3.0		GP	0000	Grey, fine grained, loose, unitorn, wet, no odor. SANDY GRAYEL	:
20-			5.1		,	00000	Grey, poorly sarted, loose, wet, no odos.	
-			0.9			0000		
-			0.4		α	0.30	CLAY Grey, soft, nedium plasticity, trace gravet.	
25			. 14				End of boring.	
30-								
30-								
35-								
40- REN	ARKS			<u> </u>	1	1	<u></u>	:

	NO.: 3-20 NATIONAL					FORILLE	R: JEFF THEY	SURFACE ELEVATION
CATIC	N NINERA	SPRINGS RO	AD			NETHO	A HSA	WATER LEYEL DURING DRILLING: NA
	ATE 2-2-						LD.: NA	STICK-UP: NA
· · · · · · · · · · · · · · · · · · ·	IST: JANES	FTIMAKITS	_	1 -	1	IUIAL	DEPTH: 34 Feet	AUGER O.D./LD: 4.25 ID
OEPTH (feet)	AECOVERY [ft]	SANPLE	PTD HEADSPACE (cp.m)	BLOW	SOIL CLASS	LETHOLOGY		DESCRIPTION
1	ю				FILL		FILL NATERIAL 50% angular gravel chips, 50% clay ~ brown,	molet no eder
1	70		21				90% sity clay - brown, moist, no odar, trace	
5-	30		. 5.2				70% slity clay + brown, moist, no odor, nixed	with 30% concrete fragments
1	70		42			***** ***** *****	90% sity clay and 10% gravel, brick fragment	s, trace concrete fragments
	50		3.9				50% brick fragments trace (nodule) coaffra	gnents and 50% gray sity day, moist
0- 	70		42			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90% sity clay, brown, moist, trace rounded g	
1	85		' 20			**************************************	At 11.7 Netal screen, sight hydrocarbon odor Gravel chips, concrete fragments, brick frag	nents, wood plug in spoon tip, refusal at 13.5
5-	75		3.3		α		CLAY	luba at arma atribina na ador
1	80		10.8				Dark grey, firm, moist, trace roots, trace not Dark grey, uniform, moist, trace hydrocarbon	
	100		28				Dark grey, uniform, moist, slight hydrocarbon	odor :
>-	08		72		29		SAND	
]			. "			<u> </u> ::::	Very fine, wet, 2-inch lense of hydrocarbon Grey, coarse, poorly sorted, hydrocarbon or	
1	80		14.0				Grey, coarse, poorly sorted at 23.8 become naterial)	fine, t-inch tense of hydrocarbon product, (black tar-tike
5-	70		28		GP	2000	Grey, coarse, poorly sorted	-
	80		32			0000	GRAYEL Grey, rounded, poorly sorted, wet, strong by	drocarbon odor, hydrocarbon sheen
0-	40		172			0000		ht hydrocarbon odor 29.8 becomes saturated with bydrocarbon product,
ر ا	70		371		a	60,00	nonviscous Saturated with tar-like material from 30.0 to	30.8
1	30		38				CLAY Grey, soft, uniform and moist	
5-							Grey, soft, uniform and moist	
								•
-								
G I	RKS:		<u> </u>		<u> </u>			
L NA	المرا							

BORING LOG BORING DB9

REME	EDIATION	TECHNOL	061 ES, INC				BOKING DR	. · · · · · · · · · · · · · · · · · · ·	
	T NO.: 3-20						NG CO.: NORTHSTAR	MP ELEVATION:	一
	: NATIONAL						R: JEFF THEY	SURFACE ELEVATION	二
	ON LANDFIL							WATER LEYEL DURING DRILLING: NA	\Box
	DATE: 2-2-5 SIST: JANES							STIDX-UP: NA	_
1	1	CURANIA	γ	· -	· · · · ·	IUIA	9 만개: 34.0 Feet	AUGER 6.0./LD.: 4.25 ID	_
OEPTH (feet)	RECOVERY (ff)	SANPLE DEPTH	PTD . HEADSPACE [pp.n]	BLOW	SOIL CLASS	LITHOLOGY	0ESCI	RIPTION .	
	ю				FIIL	×	FILL MATERIAL 90% brown sity day and 10% gravel, angular, wet, in	a ador	
	80		13			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90% brown sity day and 10% gravet, angular, wet, a		
5	40		14			\$ \$	50% brown slity clay, well and 50% broken rock frag		
	70		2.2			× × × × × × × × × × × × × × × × × × ×	60% grey gravel, 20% concrete fragments, and 20%	grey sitt, trace cool in nodule, trace spots of sheen	
	40		1.8			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	80% day - brown, stiff, mixed with 40% rounded gra	ivel, wet, no adar	
10-	70		18			\$ 000 CO	Gravel and clay mixture, wet, no odor. At 11.8 becom	ies red and tan brick fragments - broken, no odor	
	10		18			\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Refusal at 13.0, fill material – grey skty gravel, comp	pact, wet, no odor	
15-	70		19		NL a		Grey gravel mixed with tan clay		4
			20				Black organic sitt lense, 2-inches thick CLAY		/
20-	`		18				Grey, no odor, wet, trace roots Grey, uniform, wet, no odor		
	10		19				Trace brown sit in horizontal partings. At 19.7 trac Poor recovery, day in spoon tip	e orange peat/organic debris in lense	
	30		18		SH		CLAYEY SAND Very fine, uniform, wet, soft, no odor		
25-	70		2.4		GP		Very fine, uniform, well sorted, well, no odor		
	30		12		J G	0000	GRAYEL. Medium, poorly sorted, round to subrounded, wet, for	- ·	
30-	100		: 10		α	1000	Coarse, poorly sorted, wet, loose, no odor. At 29.8 CLAY	pecomes died cen	_
	60		18				Uniform, grey, soft, wet, no odor		
35	70		19				Uniform, trace gravel, wet, no odor		
35-									
40-	1	<u> </u>							!
REN	ARKS:	-							

BORING DB10

	T NO.: 3-20						IG CO.: NORTHSTAR	MP ELEVATION:
	NATIONAL.						R. JEFF THEW	SURFACE ELEVATION
	<u>da: ninehal</u> Date: 2-3-:	SPRINGS RO	AU		-	HETHOE	t hsa LD.: Na	WATER LEVEL DURING DRILLING, NA
	IST: JANES						DEPTH: 38.0 Feet	STICK-UP: NA AUGER Q.D./L.D.: 4.25 ID
			_	ι -		1 70122	11. 30.01 &t	ALLER GENTLES. 4.20 ED
DEPTH (reet)	RECOVERY (ft)	SAMPLE DEPTH	PTD HEADSPACE (pp.m)	BLOW	5011. CLASS	LITHOLOGY	. DE	SCRIPTION :
					FILL.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	FILL NATERIAL	;
	50 30		17			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50% concrete fragments and 50% sifty clay, brow	
5-	40		12				90% clay, brown, firm, maist, no oder and 10% bris	ck and concrete fragments
	10		0				90% rock fragments and 10% grey sift, wet, no od	
10-	0		0				No sample due to poor recovery - driver reports 70% broken rock fragments, 10% brown ckey, sit	
	70		- 10			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90% day - brown, firm, moist, no oder and 10% re	
15-	60 20		12			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	50% broken bricks and 50% black sit, no odor, w	et :
-	40		. 24		α		CLAY	
-	0		3.1				Grey, firm, uniform, moist, no odor No recovery, day plug in spoon tip	
20-	30		2.2		Sp		Grey, firm, wel, no oda	
	50		2.8		J		SAND Very fine, grey, loose, uniform, no odor	:
	50		2.0		GP		Very fine, aniform, well sorted, wet, hoose, no odi	OK .
25-	50		12			0000	GRAVEL Nedium, loose, poorly sorted, rounded, no odor	
	40		20			0000	Loose, poorly sorted, rounded, sight hydrocarbo	
30-	90		2.1			0000	Poorly sorted, rounded, slight hydrocarbon odor	•
30-	40		3.2			0000	Poorly sorted, rounded, wet, loose, very slight h	ydrocarbon oder :
-	80		3.6		α		CLAY Grey, soft, uniform, slight hydrocarbon odor	. 1
35-	30		3.0				Grey, soft, uniform, wet, sight hydrocarbon odo	· .
-								
ميا	<u></u>		1				<u> </u>	
REN	ARKS:							:

	NO.: 3-207						IG CO.: NORTHSTAR	NP ELEVATION:
	NATIONAL N. LANDFIL					NETHO	R: JEFF THEW	SURFACE ELEVATION: VATER LEVEL DURING DRILLING: NA
	ATE: 2-3-9						LD.: NA	STICK-UP: NA
EOLOGI	ST: JANES	EDWARDS					DEPTH: 34.0 Feet	AUCER 0.0./LD: 4.25 ID
DEPTH (feet)	RECOVERY [11]	SANPLE DEPTH	PtD : HEADSPACE (ppm)	BLOM	5011 CL ASS	LETHOLOGY	DES	CRIPTION
	20	_	. 12		FILL		FILL NATERIAL 90% sity clay and 10% broken rock fragments, firm	a point og nønr
1	50		3.2				90% sity clay - firm, brown, no odor and 10 % rock	
5-	80		4.8				80% day - brown, firm, no odor and 20% wood frag	gments .
-	100		7.1				90% day – brown, firm, no odor, niked with 10% roo odor	ck tragments, coal chips, concrete fragments, moist, no
	40		7.8			***** *****	90% day - grey and brown, firm, mixed with 10% to	ock fragments, trace coal chips, moist, no odor
10-	10		. 5.1			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Limited recovery due to concrete ping in spoon tip	
							SOX sity clay mixed with 10% brick and rock fragme	ents - solst, ne odar
15	30		811				At 15.0 - Hinch lense of black organic sitt.	
15-	70		9.8		a		CLAY Grey, uniform, stiff, moist, no odor	
	60		13.0				Grey, firm, uniform, nottled with orange stain in no	dales, notst, no odor
20-	08	,	. 29.0		3 °		SAND Grey, uniform, well sorted, loose, at 19.7 saturated	sith hydrocarbon product
	20		53.0		GP	000	Grey, loose, wet, strong hydrocarbon odor and sh	een :
4	100		· 820		or .	0000	GRAVEL. Poorly sorted, loose, well, strong hydrocarbon odd	or and hydrocarbon sheen
25-	100		49.0			3030	Sandy, poorly sorted, angular, trace cobbles, hyde	
	70		48.0			0000	Sandy, poorly sorted, loose, trace cobbles, wet a hydrocarbon sheen	,
30-	70		97.5			0000	Sandy, poorly sorted, bose, hydrocarbon sheer, s	strong odor, becomes firm at 23.6.
	70		30.1		a	40.4	CLAY	
1	0		t1.9				Grey, soft, unitorn, moist, strong hydrocarbon odo Grey, soft, unitorn, slight hydrocarbon odor	· '
35-								
1								•
RENA	RKS:	<u> </u>	<u> </u>	*	1	.1		

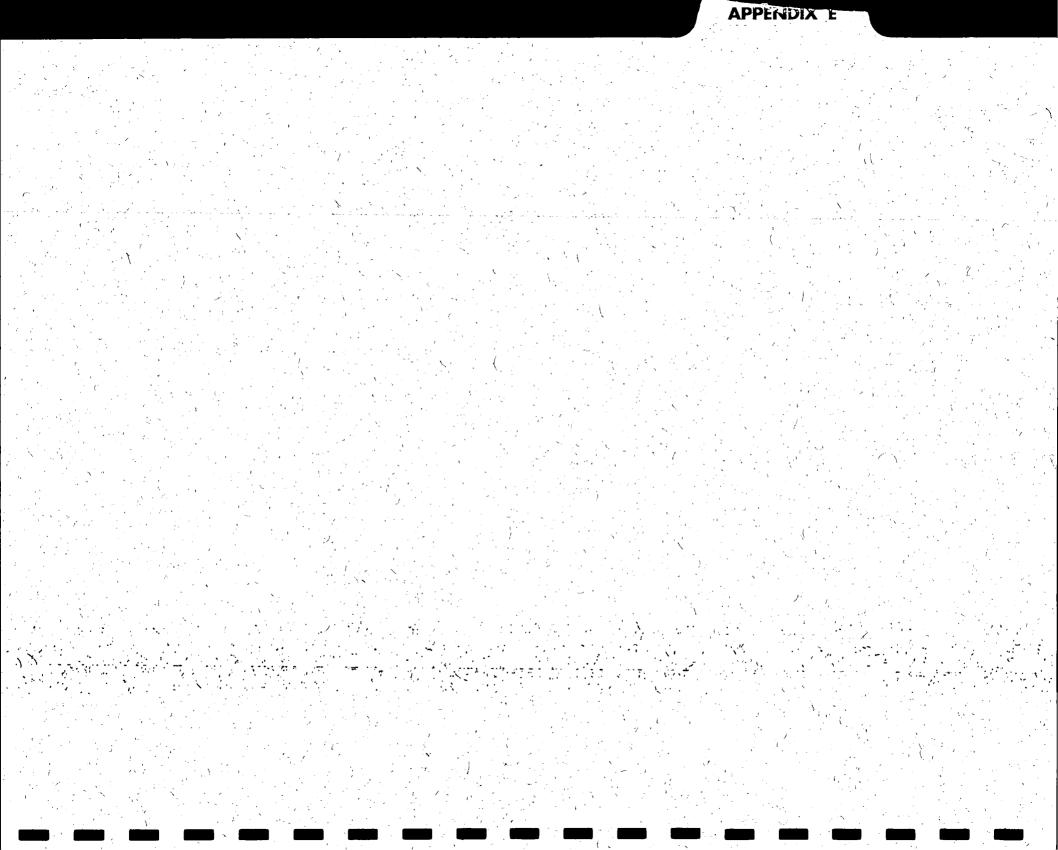
	T NO.: 3-20 NATIONAL						NG CO.: NORTHSTAR	NP ELEVATION:				
		LANDFILL/E	AST				R: JEFF THEN D: HSA	SURFACE ELEVATION				
	DATE: 2-3-						S LD.: NA	KATER LEYEL DURING DRILLING NA STICK-UP: NA				
GEOLOG	IST: JANES	EDWARDS					DEPTH: 38.0 Feet	AUGER Q.D./L.D.: 4.25 III				
DEPTH (feet)	RECOVERY [ff]	SAMPLE DEPTH	PID HEADSPACE: (pp/18)	BLO# COUNTS	501. Cl. ASS	LTTHOLOGY		DESCRIPTION				
	70				FILL	22.42	FILL NATERIAL					
	10		7.3			^	95% clay - brown, firm, moist, no odor and 5% gr	rave) – rounded				
	20		0.2			X	90% day - brown, firm, wet and 10% gravel - roa	unded .				
5-	40		2.9				90% day - brown, stiff, moist, no odor nixed wit	th 10% broken rock fragments				
-	20		6.4				90% day – brown, stiff, wet, no odor, and $10%$	mck fragments, trace coat chips				
	0		0				No sample, auger through concrete, brick, wood	and metal tence				
10-	100		3.1 •			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	odor in wood	ragments, wood fragments at 11.0 — strong hydrocarbon				
	30		2.1			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		stiff, trace hydrocarbon stain and odor from 13.6 to 13.8				
15-	20		5.2			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90% day - brown, soft, black staining and hydro					
	60		42		α		Brown, firm. At 17.2 - 2-inch lense of black orga	anic si i				
20-	40		3.5				Grey, stliff, moist, no odar					
	ю		42				Grey, stiff, low plasticity Poor recovery, grey, no odor					
	20		9.7				Grey, soft, no odor. At 24.0 san ć – grey, we i s	oorled, unitiona, wel, no oder				
25-	30		34.4		GP	0000	SANDY GRAYEL					
-						0000	Poorly sorted, angular and rounded, loose, wet, Poorly sorted, angular to subround, loose, wet, s					
	60		8.8			0000	Poorly sorted, angular to subround, firm, wet, sig					
30-	100		H.3				Paorly sorted, loose, wet, rounded, stight hydroc	carbon edor .				
	0		3.4			00000	Poorly sorted, rounded, sight hydrocarbon odor	· · · · · · · · · · · · · · · · · · ·				
35-	0		3.2		α		CLAY Grey, soft, medium plasticity					
	^		5.2				Soft, grey, medium plasticity, slight hydrocarbon	n odor				
			·.									
REN	RKS:											

	T NO.: 3-20						ING CO.: NORTHSTAR	NP ELEVATION:
	LANOITAN :	FUEL GAS SPRINGS RO	An .				ER. JEFF THEW DD. HSA	SURFACE ELEVATION WATER LEVEL DURING DRILLING: NA
START	DATE: 2-4-	98					G LD.: NA	STICK-UP: NA
GEOLOG	IST: JANES	EDWARDS					.8EPTH: 28.0 Feet	AUGER OD/LD: 4.25 ID
DEPTH (feet)	RECOVERY (11)	SAMPLE DEPTH	PTD HEADSPACE (DDIM)	BLOY	SOIL CLASS	LTTHOLOGY	DES.	SCRIPTION SCRIPTION
	50		2.0		FILL	12 12 50 45 51	FILL NATERIAL consisting of:	
	00		20			***	90% brown clay - dry, firm, no oder, mixed with 10	W broken concrete fragments
	50		4.0			\$3,53 \$3,63 \$3,63	90% clay – brown, ਗਿਜ, moist, no exter, mixed ਅਬੋਨ	10% brick fragments, gravel, naits
5-	30		21				90% brown clay and rock tragments	}
†					α		CLAY	
	50		4.4				Grey, firm, black silt lense 2-inches thick	
	30		3.4				Grey, firm, high silt content, low placelicity	
10-							Grey, firm, uniform, low placticity, maist, no odor Grey, firm, uniform, low placticity, maist, no odor	
	45		5.1				Grey, loose, low placticity	
	50		2.1		SP		SAND	
15-	60		2.2				Very fine, grey, wet, loose, no odor	
			2.2				Grey, loose, wat, no odar	
	60		2.8				Loose, poorly sorted, no odor, wet, 10% gravel co	unded .
	40		3.6		GP			
20-	50		5.2			0000	Rounded to subrounded, loose, 20% grey sand, we Grey, loose, rounded, poorly sorted, wet, no odor	į –
	<u></u>					000	Poor recovery due to cabble ping in spoan tip — (Driler reports change at 23.0'
	10		5.0		ä		CLAY	
25-	70		5.0				Grey, soft, high sitt content, 10% grey pebbles an	d cobbles in random pattern, no odor
	60		20				Grey, soft, medium plasticity, 15% grey ro unded pr	ebbies in random unsorted pattern, wet, no odor
-								
30-	·							
-								
	ļ							
35-								
			ļ ·					
40								<u> </u>
REN	ARKS:							

REMEDIATION TECHNOLOGIES, INC.

			OGIES, INC.			T		
	NO.: 3-20						NG CO.: MAXIN	NP ELEVATION:
	NATIONAL NE MINERAL	SPRINGS RO)AD			NETHO	R: RON BROWN B: HSA	SURFACE ELEVATION 590 MATER LEYEL DURING DRILLING NA
STARTE	DATE: 4-2-	98			-	CASING	LD.: NA	STICK-UP: NA
GEOLOG!	IST: JANES	EDWARD S		,		TOTAL	DEPTH: 30.0 Feet	AUGER Q.D./L.D.: 4.25 ID
DEPTH (feet)	RECOVERY (II)	SANPLE	PTD HEADSPACE (CDM)	BLOW	SOIL CLASS	LTTHOLOGY		DESCRIPTION
-	10	•	0.0		FILL	12 12 12 12 12 12 12 12 13 12 14 12 15 12 16 16 1	Fill material consisting of road base	gravel fil – loose, wet
]	90		3.0		α		SILTY CLAY Grey, trace black staining at 3.0, to	race brown silt in pockets, no odor, molst
5-	70		2.3				Grey, trace orange staining, firm, w	भेरतक, no odor, noist
	10		4.4					pattern, fina, unlitom, recist, no odor :
10-	80		6.1		Sp.		Increasing sand content	
1	85		7.2				No oder, moist Grey and brown, fine grained, loose	, whitern, ma ist, n a odar
-	50		13.1				Becomes all grey at 13.7	
15-	90		2.1		ĞP	0000	Grey, uniform very fine grained GRAYEL	
1	100		42			00000	Round, grey, maist, no odor Very loose, poorly sorted, round to	subround, wet, no odar
20-	80		4.1				Grey, base, poorly sorted, wet, no	odar
]	80		4.5			0000	Grey, bosse, poorly sorted, trace co	abbles, wet, no odor
25	70		12.7 6.8		α	3000	Grey, bose, poorly sorted, trace of CLAY	abbles, wet, no odor
27	100		1. 0.0 1. 11.1				Grey to tan, soft, uniform, thin seam	•
	ю0]. II.1 8.1				Grey with tan, soft, uniform, medium	
30-							Brey and tan, soft, uniform, no oder End of boring.	• MEI
35-								;
1								
40			!					
RENA	PKS							}
			•					
			•					

Page Boof O


REMEDIATION	TECHNIN	OCTEC.	TNIC
- DEWEDTALION	I E G TINUE	. U U123.	JING.

CALENT: NATIONAL FUEL GAS DRILLER RON BROWN SURFACE ELEVATION SOCIOLOGIST MATCH LEVEL DURING DRIL START DATE 4-2-98 CASING LD.: NA STICX-UP: NA STICX-U	
START DATE 4-2-98 GEOLOGIST: JANES EDWARDS TOTAL DEPTH: 30.0 Feet AUGER QD./LD: 4.25 ID DESCRIPTION O - 6" asphalt Unable to sample due to obsturction, augered to 4.0 Black sit lense, no odor SIL TY CLAY Grey and brown in notited pattern, first, moist, no odor Grey and orange in notitled pattern, first, uniform, no odor Orange and grey, uniform, first, moist, no odor Increasing sand content SIL TY SANO Grey and orange SIL TY SANO Grey and orange	120
TOTAL DEPTH: 30.0 Feet AUGER QD./LD: 4.25 ID DESCRIPTION 1 SS VD 1 SILTY CLAY Grey and orange in notitled pattern, firm, moist, no odor Orange and grey, uniform, firm, moist, no odor Increasing sand content SILTY SAND SILTY SAND SILTY SAND Silty SAND	
Back sit lense, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Grey and brown in mottled pattern, firm, moist, no odor Sill Y CLAY Si	
Unable to sample due to obsturction, augered to 4.0 80 3.1 CL Black sit lense, no odor SILTY CLAY Grey and brown in nottled pattern, firm, moist, no odor Grey and orange in nottled pattern, firm, moist, no odor Orange and grey, uniform, firm, moist, no odor Increasing sand content SP SILTY SAND Grey and orange	
SILTY CLAY Srey and brown in mottled pattern, firm, moist, no odor Grey and orange in nottled pattern, firm, moist, no odor Orange and grey, uniform, firm, moist, no odor Increasing sand content SP SILTY SAND Grey and orange Silty SAND Grey and orange Silty SAND Grey and orange	· ·
6 Grey and orange in nottled pattern, firm, uniform, no order 80 4.1 Orange and grey, uniform, firm, moist, no order Increasing sand content SP SILTY SAND Grey and orange in nottled pattern, firm, uniform, no order Encreasing sand content SP SILTY SAND Grey and orange	ŧ
Orange and grey, uniform, firm, moist, no edor Increasing sand content SP SILTY SAND Grey and grappe	
Increasing sand content SDLTY SAND Grey and prame	
SIL TY SAND	
1 (0 1 21 1 1 - 4	
Loose, moist, poorly sorted, no odor, 20% rounded graves GP SILTY GRAVEL	
Loose, poorly sorted, wet, slight hydrocarbon odor	
Do po	
20-	
biey, putary softed, coarse, angular and founded, signa my discarding door	
25 80	:
CL AY CLAY Grey to tan, soft, uniform, wet, no odor, trace rounded coobles	
90 3.8	
End of boring	· · · · · · · · · · · · · · · · · · ·
35-	
40	
REMARKS:	

Page Boof B

REMEDIATION	TECHNOLOGIES,	INC.

REME	DIATION	TECHNOL	OGIES, INC.					ORING DB16 ,					
	T NO.: 3-20						NG CO.: NAXIN	MP ELEVATION:					
	NATIONAL ON A MINISTRA						ER: RON BROWN DE HISA	SURFACE ELEVATION 590	THO HA				
	DATE: 4-2-	. SPRING S RO 98	<u></u>				G LD.: NA	STICK-UP: NA	ING. NA				
	IST: JANES					TOTAL	AUGER O.D./LD: 4.25 ID						
DEPTH (feet)	RECOVERY [ft]	SANPLE DEPTH	PID HEADSPACE (ppm)	BLOW COUNTS	50ft CLASS	LITHOLOGY		DESCRIPTION					
	10		10		FILL	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Fil material consisting of mixture of	broken rock fragments, brown clayey sitt and	sand, moist, no edor				
-	40		8.1			**************************************	Black cinders and ash fragments, tra	ace coal fragments, dry, no oder	:				
5-	10		5.1			**************************************	Black cinders and ash fragments, pa	or recovery due to cobble in spoon tip	1				
	10		7.1		a		No recovery due to plug in spoon the	(cobble)					
10-	90		8.2		Sp		Grey and orange in nottled pattern. SIL TY SAND	no odar	·				
	80		4.5 8.0		GP	0000	Grey, uniform, fine, well sorted, slight Grey, fine, uniform, wet	hydrocarbon odor					
15-	70		7.1			0000	GRAYEL Grey, poorly sorted, round to subrou	und, wet, loose, slight hydrocarbon odor					
	100		8.8			00000	Increasing sand content SILTY SPLAYEL						
20-	100		7.2			00000	Grey, loose, round to subround, poor	ly sorted, slight hydrocarbon ador, wet					
	50		14.0			0000	GRAVEL Brey mooth sorted loose abouter to	o subround, stight hydrocarbon odor, wet	!				
	50		7.8		a	0000	Grey, poorly sorted, wet, sight hydr						
25-	100	i	42				Uniform, grey (light), medium plastici	ty, acist to wet, slight odor	:				
	. 100		5.8		-		CLAY Grey, uniform, soft, medium plasticity	V-101-2-11					
30-							End of boring.		: :				
35-	,												
40									·				
REMA	irks:												
									Page Boof 0				

VOLATILE ANALYTICAL REPORT

Laboratories : Remediation Technologies, Inc.

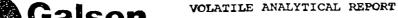
Account # : 12013

Site : Mineral Springs

Date Received: 13-JAN-98

Matrix : Leachate Date Sampled : 09-JAN-98

Method: SW846 1311/8260-TCLP Units : UG/L


L40900-2 L40900-3 *L40900-1 Galson ID: SEPARATOR PIT 3 SS HYDROCARBON SEPARATOR PIT 2 Client ID: Vinyl Chloride <100 <100 <100 <50 <50 1,1-Dichloroethene <50 <50 <50 < 50 Chloroform <50 1,2-Dichloroethane <100 <50 <100 <100 <100 2-Butanone <50 Carbon Tetrachloride <50 <50 <50 Trichloroethene <50 <50 <50 Benzene 3200 120 Tetrachloroethene <50 <50 <50 <50 <50 <50 Chlorobenzene Dilution Factor 10 10 , 10 01/16/98 01/16/98 01/16/98 Analysis Date

Approved by : PJT

Date QC by Date NYS DOH #

Footnotes:

* : Benzene result reported from 20x dilution of sample. Elevated detection limit for 1,2-dichloroethane due to intereference from benzene peak.

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 13-JAN-98
Date Sampled: 09-JAN-98

Matrix : Leachate

Method: SW846 1311/8260-TCLP

Units : UG/L

Galson ID: Client ID:	QCB011698-2 VBLK1	QCB011698-2TP TCLP Blank	QCB011698-3TP TCLP Blank
Vinyl Chloride	<10	<100	<100
1,1-Dichloroethene	<5	<50	< \$0
Chloroform	< 5	< 50	<5 0
1,2-Dichloroethane	<5	< 50	<5 0
2-Butanone	<10	<100	<100
Carbon Tetrachloride	< 5	<50	< 5 0
Trichloroethene	<5	< 50	<5 0
Benzene	<5	< 50	<5 0
Tetrachloroethene	<\$	< 50	<5 0
Chlorobenzene	<5	< 50	<5 0
			N.
Dilution Factor	1	10	10
Analysis Date	01/16/98	01/16/98	01/16/98

Approved by : PJT

Date : 19-JAN-98
QC by : E//
Date : 1/20/98
NYS DOH # : 11626

Footnotes:

LEACHATE VOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES

Contract:

Lab Code:

Case No.: 1

SAS No.:

SDG No.: L40900

_ 	01/01		01100	Lomiton	mam
	SMC1	SMC2	SMC3	OTHER	TOT
SAMPLE NO.	(TOL)#	(BFB)#	(DCE) #	1	OUT
	= ======				===
VBLK1	91	88	82	BA0116	0
SEPARATOR PIT 2	95	92	86	BA0116	0
SEPARATOR PIT 3	94	90	84	BA0116	ŏ
SS HYDROCARBON	94	94	86	BA0116	ő
					0
TCLP Blank	92	89	84	BA0116	
TCLP Blank	95	89	84	BA0116	0
		•	_		
	-			i — —	
1.4.				l ———	
· · · · · · · · · · · · · · · · · · ·	-	 			
		· · · · · · · · · · · · · · · · · · ·			
	- f 	ļ 		·	
		l		ļ	
	_	l <u></u>	l	l	
	_1				
· · · · · · · · · · · · · · · · · · ·	-		 	l ——	
	-	 		 -	
				 	
				ļ	
	- 			j	
		l	<u> </u>		
				l	
	_1			İ	
	-			ļ -	
				·	
		 		ļ ———	
		ļ	ļ		
1		l ———		 	
	_	<u> </u>	İ	1	l
				I	
		ī ——	I ———	1	
		· ———	· ———	·	٠

QC LIMITS SMC1 (TOL) = Toluene-d8 (54-114) SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 (50-128)(54-123)

D Surrogate diluted out

page 1 of 1

FORM II-CLP-1

[#] Column to be used to flag recovery values
* Values outside of QC limits

SEMIVOLATILE ANALYTICAL REPORT

Galson Laboratories

Laboratories
: Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 13-JAN-98 Matrix: Leachate

Date Sampled : 09-JAN-98 Method : SW846 1311/3510/8270-TCLP

Date Extracted: 15-JAN-98 Units : UG/L

Galson ID: Client ID:	*L40900-1 SEPARATOR PIT 2	L40900-2 SEPARATOR PIT 3	L40900-3 SS HYDROCARBON
Pyridine	<50	<10	<10
1,4-Dichlorobenzene	< 50	<10	<10
2-Methylphenol	56.	<10	<10
3 & 4-Methylphenol	<100	<20	<20
Hexachloroethane	<50	<10	<10
Nitrobenzene	<50	<10	<10
Hexachlorobutadiene	<50	<10	<10
2,4,6-Trichlorophenol	<50	<10	<10
2,4,5-Trichlorophenol	<50	<10	<10
2,4-Dinitrotoluene	<50	<10	<10
Hexachlorobenzene	<50	<10	<10
Pentachlorophenol	<120	<25	<25
Dilution Factor	5	1	• 1
Analysis Date	01/19/98	01/15/98	01/19/98

Approved by : PJT

Date : 20-JAN-98
QC by : 20/99
Date : 1/20/99
NYS DOH # : 11626

Footnotes:
 * : Elevated detection limit due to high level of naphthalene in sample.

SEMIVOLATILE ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Matrix : Leachate Date Received: 13-JAN-98

Method: SW846 1311/3510/8270-TCLP Units: UG/L Date Sampled : 09-JAN-98

Date Extracted: 15-JAN-98

Galson ID: Client ID:	Q-5240 SBLK5240	Q-5240TP SBLK5240TP	:	
Pyridine	<10	<10		
1,4-Dichlorobenzene	<10	<10		
2-Methylphenol	<10	<10	4	
3 & 4-Methylphenol	<20	<20		
Hexachloroethane	<10	<10	1	
Nitrobenzene	<10	<10		
Hexachlorobutadiene	<10	<10		
2,4,6-Trichlorophenol	<10	<10		
2,4,5-Trichlorophenol	<10	<10		
2,4-Dinitrotoluene	<10	<10	0	
Hexachlorobenzene	<10	<10		
Pentachlorophenol	<25	<25		
Dilution Factor	1	1		
Analysis Date	01/15/98	01/15/98		•

Approved by : PJT

Date : 20-JAN-98

: 74 QC by

Date : 1/20/97 NYS DOH # : 11626

Footnotes:

LEACHATE SEMIVOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES Contract:

Lab Code: Case No.: 1 SAS No.: SDG No.: L40900

	S1	S2	\$3	S4	S5	S6 `	S 7	\$8	TOT
SAMPLE NO.	(2FP)#1	(PHL)#	(NBZ)#	(FBP)#:	(TBP)#	(TPH)#	(2CP)#	(DCB)#	OUT
=======================================	=====	=====		=====	=====	=====	=====	=====	===
SBLK5240	56	26	60	48	62	78	69	6 6	0
SBLK5240TP	37	15	41	46	46	70	48	46	Ö
				5 6	54	76	63	5 9	Ö
SEPARATOR PIT 3	47	2 3	48						
SEPARATOR PIT 2	25	2 6	48	64	73	77	65	56	0
SS HYDROCARBON	6 3	32	61	7 8	82	81	85	74	0
		·							
									
									
		l							
									l
							_		
-									
									†
						·			
		ļ .				·			
			l						
			l						
						<u> </u>			
							 		·
								·	
	 -		<u> </u>			 	 		
						l ———	·	ļ ———	
		<u> </u>	l			l	l	l	
l						İ			1
			I						
		1	1	1					
l ————————————————————————————————————			1				·		
	1	 	 		 	 	 		
		 	 	ļ 	 	 	ļ ————	ļ ———	ļ ——
ļ			l	l	1		l	ļ	
l	l		l				1	l	1

			QC LIMITS	
S1	(2 FP) =	2-Fluorophenol	(21-100)	
S2	(P HL) =	Phenol-d6	(10- 94)	
S3	(NBZ) =	Nitrobenzene-d5	(35-114)	
		2-Fluo ro biphenyl	(43-116)	
S5	$(\mathbf{T}BP) =$	2,4,6-Tribromophenol	(10-123)	
S6	$(\mathbf{T}PH) =$	Terphenyl-d14	(33-141)	
		2-Chlorophenol-d4	(25-125)	(advisory)
S8	(DCB) =	1,2-Dichlorobenzene-d4	(25-125)	(advisory)

[#] Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

METALS ANALYTICAL REPORT

: Remediation Technologies, Inc. Client

Account # . : 12013

Site : Mineral Springs

Date Received: 13-JAN-98

Matrix : Leachate

Method: SW846 6010B/7470A Date Sampled: 09-JAN-98

Galson ID: Client ID:	Units	L40900-1 SEPARATOR PIT 2	L40900-2 SEPARATOR PIT 3	L40900-3 SS HYDROCARBON
Arsenic TCLP	mg/l	<0.2	<0.2	<0.2
Barium TCLP	mg/l	1.2	1.0	<1
Cadmium TCLP	mg/l	<0.005	<0.005	<0.005
Chromium TCLP	mg/l	<0.01	<0.01	<0.01
Lead TCLP	mg/l	<0.1	<0.1	<0.1
Mercury TCLP	mg/l	<0.0005	<0.0005	<0.0005
Selenium TCLP	mq/1	<0.1	<0.1	<0.1
Silver TCLP	mg/l	<0.5	<0.5	<0.5

Approved by : Karen S. Becker

: 20-JAN-98 Date QC by : 11626 Date

NYS DOH #

Footnotes:

METALS ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 13-JAN-98 Matrix: Leachate

Date Sampled : 09-JAN-98 Method : SW846 6010B/7470A

Galson ID: QM980120-1 Client ID: TCLP Blank

Units

<0.2 Arsenic TCLP mg/1Barium TCLP mg/l<1 Cadmium TCLP mg/1<0.005 Chromium TCLP mg/1<0.01 <0.1 Lead TCLP mg/1<0.0005 Mercury TCLP mg/1<0.1 Selenium TCLP mg/1<0.5 Silver TCLP mg/1

Approved by : Karen S. Becker

Date : 20-JAN-98
QC by : 70-70
Date : //30/78

NYS DOH # : 11626

Footnotes:

INORGANIC ANALYTICAL REPORT

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 13-JAN-98

Matrix : Soil

Date Sampled : 09-JAN-98

Galson ID: Client ID:	Method	Units	L40900-1 SEPARATOR PIT 2	L40900-2 SEPARATOR PIT 3	L40900-3 SS HYDROCARBON
Reactive Cyanide	SW846		<100	<100	<100
Reactive Sulfide	SW846		<100	<100	<100
Corrosivity/pH	SW846 9045		10.4	9.4	7.4
Ignitability	SW846 1030		NEG	NEG	NEG

Approved by : LM

Date

: 20-JAN-98

QC by Date

: 8/1/20/98

NYS DOH #

: 11626

Footnotes:

* Actual result for PIT 3 (L40900-2) is 19.8 mg HCN/kg waste. When corrected for average spike recovery of 8.42%, result is 235 mg HCN/kg. The corrected result is below the EPA guidance level of 250 mg HCN/kg waste.

* The bulk pH was performed using SW846 method 9045. A sample is corrosive if pH is less than or equal to 2, or greater than or equal to 12.5 Standard Units(SU). Under these conditions, the samples are not corrosive.

* The samples do not ignite or support combustion. Under these conditions the samples are non-ignitable.

CHAIN OF CUSTODY RECORD

PROJ. N 3-20 SAMPLE RECEIVIN	175-62 RS:	PR	Min.	ame syring Vofferboart	-\$		NO. OF CONTAINERS	C. 25/1	XX	Xi.	/		/						
SAMPLE NO.		TIME	G-1				10. OF CO	of of		/			//						
NO.		· · · · · · · · · · · · · · · · · · ·		SAMPLE LOCAT			<u> </u>		/	/		/	/	_		REMAR	RKS		
	1/9/98		Sept	rator 857	# 2		3	~										es, In L40	
	"		Sep	souter Pit	<u>#3</u>		3											es, In L40	
	"		Subs	nator fit mater fit inface Hyd	rocarbon	7	3							Remed 01/1:	diatic 3/98 E	n Techno Bulk Pre	ologie	s, In L40 HYDROCARB	900-3 ON
Religions	had by	(Signaturi	ş)	Date/Time	Received by:	(Signatu	ire)		Reling							Date/Time	Rece	pived by: (Sig	gnature)
Relinquis	hed by:	(Signatur	e)	Date/Time	Received by:	(Signatul	re)		Relinq	uishe	d by:	: (Sig	gnatu	re)		Date/Time	Rece	eived by: (Sig	neture)
Relinquis				Date/Time	Received for la	aboratory	by:		1-13		te/Tin 3 <i>9</i> .		!	REME				W. Seneca Str Iths (6	ECHNOLOGIES reet, Suite 204 eca, NY 14850 507) 277-5716

Fax (607) 277-9057

REMEDIATION TECHNOLOGIES, INC.

MEMORANDUM

TO:

Mark Hofferbert

FROM:

John Flaherty Solf

DATE:

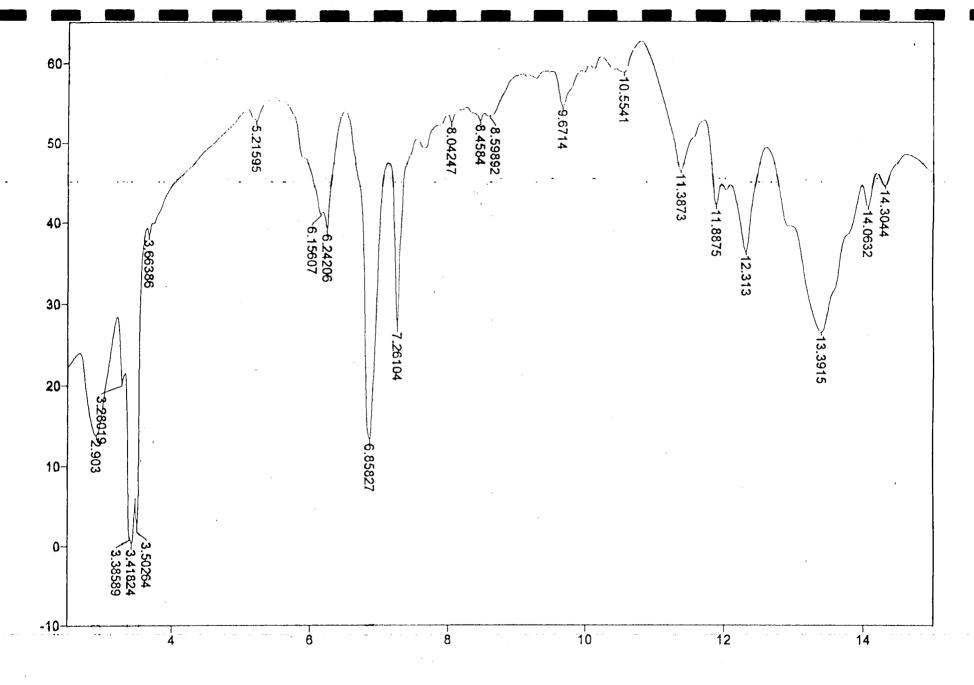
January 15, 1998

RE:

Analytical Results - Mineral Springs (3-2075-620)

Your samples from the above referenced site have been examined by a carbon disulfide (CS₂) extraction - infrared spectral (FT-IR) technique for identification of the organic material present in each, as requested. Prior to instrumental analysis, the samples were first extracted into CS₂ in order to isolate the organic material from the soil matrix. The amounts of extractable material obtained from each sample are as follows:

Sample Identification	CS_2 Extractables (mg/Kg);
Separator Pit #2	16,780
Separator Pit #3	73,330
Subsurface Hydrocarbons	5200

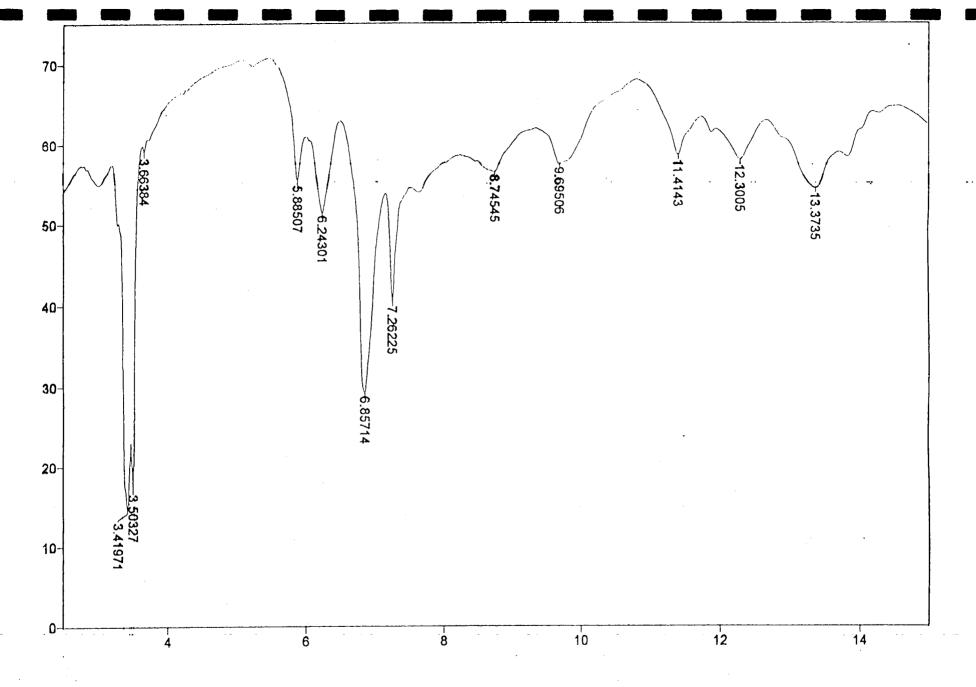

The CS₂ extracts from Separator Pit #2 exhibit IR absorptions characteristic of "heavy" polynuclear aromatic hydrocarbons (PAHs) and an oxidized petroleum hydrocarbon. The components observed here and the ratios of each are consistent for a mixture of a weathered petroleum oil and a carburetted water gas (CWG) or coal carbonization tar.

The CS₂ extracts from Separator Pit #3 consist primarily of an oxidized "heavy" petroleum hydrocarbon. The absorption pattern observed for this sample is consistent for an asphalt or similar residuum. A small amount of PAHs were also detected, although the source of these could not be identified.

The CS₂ extracts from the Subsurface Hydrocarbon sample consist mainly of "heavy" PAHs containing a small amount of oxidized petroleum products. The components observed and the ratios of each are consistent for a weathered/devolatilized CWG tar.

Copies of the IR spectra are enclosed with this report for your reference.

As always, please contact me if you have any questions concerning these results.

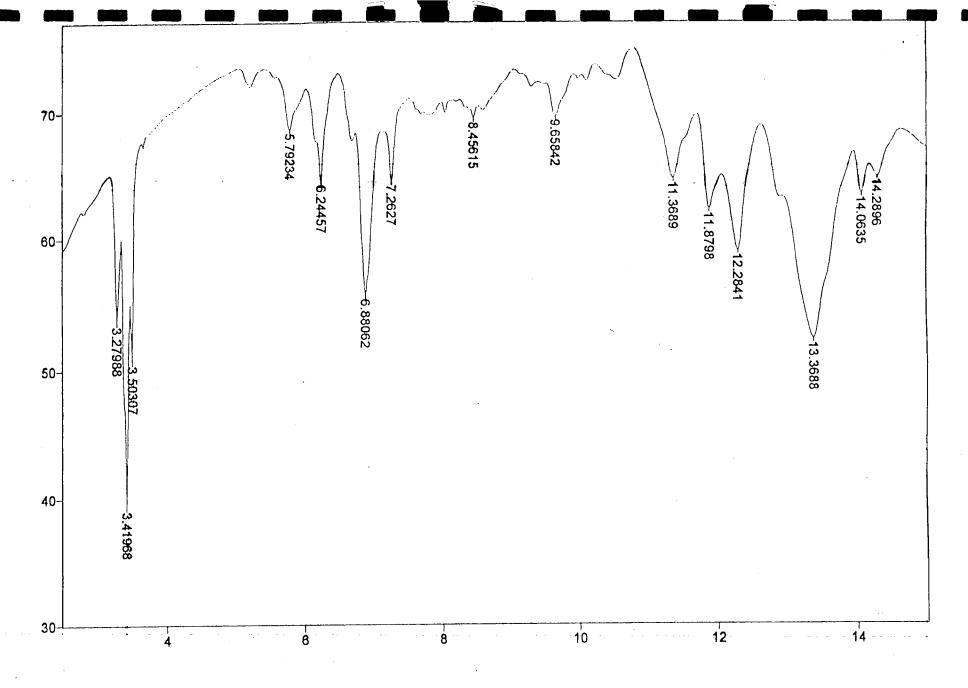

Transmittance / Micrometers

File # 1 : AL-28423

Separator Plt #2 (CS2 Extracts)

Number of Scans= 32 Apodization= Strong

1/14/98 9:18 AM Res=4 cm-1


Transmittance / Micrometers

File # 1 : AL-28424

Separator Plt #3 (CS2 Extracts)

Number of Scans= 32 Apodization= Strong

1/14/98 9:51 AM Res=4 cm-1

Transmittance / Micrometers

File # 1 : AL-28425

"Subsurface Hydrocarbon" (CS2 Extracts)

Number of Scans= 32 Apodization= Strong

1/14/98 10:11 AM Res=4 cm-1

No.

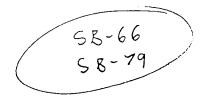
CHAIN OF CUSTODY RECORD

SAMPLE	RS:	MATORY:	RETEC (Pittsburgs)	TAINERS		Ser.			///		
AMPLE NO.	DATE	TIME	SAMPLE LOCATION	NO. OF CONTAINERS	47		//	///	//		
	1/9/98		I _		1	-	-			REMAR	BKS
	11		Separator PIZ #3	i	1.		-		ļ		
	'/		Separator PI+ # Z Separator PI+ # 3 Subsurface Hydrocarb	07 1	1	4	-	-			
							-				
									De/	Ner 70:	
									3	elner to: Sohn Flaherty	
						_ _	+		-		
										Call me	when you
										get these.	
						-	 -			12	
										Thanks	11
		-									Track.
								11			
	S Asi	gnature)	Date/Time Received by: (5)	Sigglature)	Rei	ngulah	d hv	(Signatu	ral		
gulatied	by: (Si	gnature)	Date/Time Received by: (Si	M				•		1/13/18 10/5	Received by: (Signature)
-					Reli	nquishe	d by:	(Signature	e)	Date/Time	Received by: (Signature)
4u15[]6(]	by: (Sig	nature)	Date/Time Received for labor (Signature)	ratory by:		Dat	e/Time				

YELLOW COPY - Laboratory

Ithaca, NY 14850

R E M E D I A T I O N (607) 277-5716


TECHNOLOGIES INC Fax (607) 277-9057

PINK COPY - Sampler

6601 Kirkville Road E. Syracuse, NY 1305**7-**0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

February 11, 1998

DOH ELAP# 11626

Mr. Mark Hofferbert Remediation Technologies, Inc. 1001 West Seneca Street Ithaca, NY 14850

Re: Client Account# 12013

Login# L41160

Dear Mr. Hofferbert:

Enclosed are the analytical results of the samples received by our laboratory January 30, 1998.

GCMS Semivolatiles

Due to dilutions performed on the sample extracts during GPC cleanup and instrumental analyses, surrogate recovery data is unavailable for both samples.

Please contact our Client Services Department at (315) 437-7252, extension 305 or 116, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

Holm Su

F. Joseph Unangst Laboratory Director

Enclosure(s)

VOLATILE ANALYTICAL REPORT

Client Laboratories : Remediation Technologies, Inc.

Account # : 12013

site : Mineral Springs

Date Received: 30-JAN-98 Matrix: Soil

Date Sampled: 19-JAN-98 - 21-JAN-98 Method: NYSDEC ASP 95-1

Units : UG/KG

Galson ID: Client ID:	*L 41 160-1 SB-66 (5.5-7)	*L41160-2 \$B-79 (3.5-4.5)	QCB020698-1 METHOD BLANK
		<u> </u>	1000
Chloromethane	<7700	NR	<1200
Bromomethane	<7700	NR	<1200
Vinyl Chloride	<7700	NR	<1200
Chloroethane	<7700	NR	<1200
Methylene Chloride	1400 J B	NR	230 Ј
Acetone	<7700	NR	<1200
Carbon Disulfide	<770 0	NR	<1200
1,1-Dichloroethene	<7700	NR	<1200
1,1-Dichloroethane	<7700	NR	<1200
1,2-Dichloroethene (Total)	<7700	NR	<1200
Chloroform	<7700	NR	<1200
1,2-Dichloroethane	<7700	NR	<1200
2-Butanone	<7700	NR	630 J
1,1,1-Trichloroethane	<7700	NR	<1200
Carbon Tetrachloride	<7700	NR	<1200
Bromodichloromethane	<7700	NR	<1200
1,2-Dichloropropane	<7700	NR	<1200
cis-1,3-Dichloropropene	<7700	NR	<1200
Trichloroethene	<77 00	NR	<1200
Dibromochloromethane	<7700	NR	<1200
1,1,2-Trichloroethane	<7700	NR	<1200
Benzene	8600	<9300	<620
trans-1,3-Dichloropropene	<7700	NR	<1200
Bromoform	<7700	NR	· < 1200
4-Methyl-2-Pentanone	<7700	NR	<1200
2-Hexanone	<7700	NR	<1200
Tetrachloroethene	<7700	NR	<1200
1,1,2,2-Tetrachloroethane	<7700	NR	<1200
Toluene	7100 J	36000	<620
Chlorobenzene	<7700	NR	<1200
Ethylbenzene	1000 J	38000	<620
Styrene	3100 J	NR	<1200
Xylene (total)	12000	500000	<620
Percent Moisture (%)	35	33	NA
Dilution Factor	4	10	1
Analysis Date	02/06/98	02/06/98	02/06/98

Approved by : PJT

Date : 11-FEB-98
QC by : $11 - \frac{1}{9} = \frac{1}{9}$ NYS DOH # : 11626

Footnotes:

* : Sample analyzed as a medium level extract.

J: Estimated value. Value is below quantitation limit.

B: This compound was also detected in the method blank.

Results are reported on a dry weight basis.

SOIL VOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES

Contract:

Lab Code: Case No.: 1 SAS No.: SDG No.: L41160

Level: (low/med) MED

	SMC1	SMC2	SMC3	OTHER	TOT
SAMPLE NO.	(TOL)#	(BFB)#	(DCE)#		OUT
	= ======		######################################	======	===
VBLK1 SB-79 (3.5-4.5)	105 103	91 94	102 108	BA0206	0:
SB-66 (5.5-7)	101	97	101	BA0206	0
-					
	_	· 			
	_			ļ	ļ
	-			 	
	- 	. —		·	 -
	-				
	_				
				ļ ———	
	_			 	
	_				
l	_ \			l	l

QC LIMITS (84-138) SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4 (59-113) (70-121)

SMC1 (TOL) = Toluene-d8

page 1 of 1

FORM II-CLP-1

[#] Column to be used to flag recovery values
* Values outside of QC limits

D Surrogate diluted out

SEMIVOLATILE ANALYTICAL REPORT

Galson Laboratories

Client Laboratories : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 30-JAN-98 Matrix: Soil

Date Sampled: 19-JAN-98 - 21-JAN-98 Method: NYSDEC ASP 95-2

Date Extracted: 04-FEB-98 Units : UG/KG

Galson ID:	L41160-1	L41160-2 SB-79 (3.5-4.5)	Q-5268 SBLK5268
Client ID:	SB-66 (5.5-7)	86-73 (3.5-4.5)	, ODDROZOG
Naphthalene	420000	780000	<330
2-Methylnaphthalene	120000	2700 00	<330
Acenaphthylene	220000	50000 J	· <330
Acenaphthene	. 36000 J	<99000	<330
Fluorene	160000	36000 J	<330
Phenanthrene	480000	140000	<330
Anthracene	140000	42000 J	<330)
Fluoranthene	300000	100000	<330
Pyrene	290000	80000 J	<330
Benzo(a) anthracene	100000	32000 J	<330
Chrysene	85000	3000 0 J	<330
Benzo(b) fluoranthene	61000	24000 J	<330
Benzo(k) fluoranthene	98000	2600 0 J	<330
Benzo(a)pyrene	92000	3100 0 J	<330
Indeno(1,2,3-cd)pyrene	38000 J	<99000	<330
Dibenzo(a,h)anthracene	<51000	<99000	<330
Benzo(g,h,i)perylene	39000 J	<99000	<330
Percent Moisture (%)	35	33	NA
Dilution Factor	10	20	. 1
Analysis Date	02/09/98	02/09/98	02/08/98

Approved by : PJT

Date : 11-FEB-98
QC by : E///98

NYS DOH # : 11626
Footnotes:

J : Estimated value. Value is below quantitation limit.

Results are reported on a dry weight basis.

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES

Contract:

Lab Code:

Case No.: 1

SAS No.:

SDG No.: L41160

Level: (low/med) LOW

	S1	S2	\$3	\$4	S 5	S 6	S 7	\$8	TOT
SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#	(DCB)#	()#	()#	()#	()#	OUT
SBLK5268	96	102	109	105					0
SB-79 (3.5-4.5)		D	D	D					ŏ
SB-79 (3.5-4.5) SB-66 (5.5-7)	D D	ā	Ď	Ď					ő
***************************************						· ——-			
		ļ				. ———			
									 -
							ļ	ļ 	
									
									
						·	<u> </u>		
								ļ	
									
			ļ						
								ļ	
								ļ- 	
	l	l	l	l	l	l	l	l	1

QC LIMITS S1 (NBZ) = Nitrobenzene-d5
S2 (FBP) = 2-Fluorobiphenyl
S3 (TPH) = Terphenyl-d14
S4 (DCB) = 1,2-Dichlorobenzene-d4 (23-120)(30-115)(18-137)(20-130)

Column to be used to flag recovery values

* Values outside of QC limits
D Surrogate diluted out

page 1 of 1

FORM II-CLP-1

CHAIN OF CUSTODY RECORD No. PROJECT NAME PROJ. NO. 3-2075-620 OF CONTAINERS Mark Hofferbers RECEIVING LABORATORY: GALSON DATE TIME SAMPLE . 0 NO. SAMPLE LOCATION REMARKS Remediation Technologies, In L41160-1 01/30/98 Soil SB-66 (5 5 7) 1/21 Remediation Technologies, In L41160-2 SB-79 (3.5-4.5) 01/30/98 Soil Routine TAT requested, Date/Time Relinquished by: (Signature) (Signature) Received by: (Signature) Date/Time Received by: (Signature) Relinguished by: Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Received by: (Signature) Relinguished by: (Signature) Received for laboratory by: Date/Time Relinquished by: (Signature) Date/Time (Signature) REMEDIATION TECHNOLOGIES 1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 REMARKS: (607) 277-5716

PINK COPY - Sampler

YELLOW COPY - Laboratory

WHITE COPY - RETEC

Fax (607) 277-9057

REMEDIATION

TECHNOLOGIESINC

VOLATILE ANALYTICAL REPORT

Galson

Laboratories : Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-FEB-98

Date Sampled : 05-FEB-98

Matrix : Leachate

Method: SW846/1311/8260-TCLP

Drill cuttings Decon water

Units : UG/L

Galson ID:	L41284-1	QCB020998-1	QCB020998-1TP
Client ID:	DRUM COMPOSITE SOIL	Method Blank	TCLP Blank
Benzene	<50	<5	<50
Dilution Factor	10	1	10
Analysis Date	02/09/98	02/09/98	02/09/ 98

Approved by : PJT

: 10-EEB-98 Date

QC by Date : 1/1626 NYS DOH #

Footnotes:

LEACHATE VOLATILE SURROGATE RECOVERY

Client : Remediation Technologies, Inc.

SAMPLE NO.	SMC1 (DCE)#	SMC2 ()#	SMC3 ()#	OTHER	TOT
Method Blank-QCB020998-1 TCLP Blank	86 90	=====	======	BA0209	0
DRUM COMPOSITE SOIL	92		. .	BA0209	0

SMC1 (DCE) = 1,2-Dichloroethane-d4

QC LIMITS (54-123)

Login # : L41284

- # Column to be used to flag recovery values
 * Values outside of QC limits
 D Surrogate diluted out

page 1 of 1

FORM II-CLP-1

VOLATILE ANALYTICAL REPORT

Laboratories Remediation Technologies, Inc.

: 12013 Account #

: Mineral Springs Site

Date Received: 06-FEB-98 Date Sampled : 05-FEB-98 Matrix : Water

Method: SW846 8260

Units : UG/L

Galson ID: Client ID:	L41284-2	L41284-3	QCB020998-1
	DRUM COMPOSITE WATER	TRIP BLANK	Method Blank
Benzene	790	<5	< 5
Dilution Factor	10	1	02/09/98
Analysis Date	02/09/98	02/09/98	

Approved by : PJT

WATER VOLATILE SURROGATE RECOVERY

Client : Remediation Technologies, Inc.

Login # : L41284

SAMPLE NO.	SMC1 (DCE)#	SMC2 ()#	SMC3 ()#	l	TOT
Method Blank-QCB020998-1 DRUM COMPOSITE WATER TRIP BLANK	86 90 87			BA0209 BA0209 BA0209	0 0

SMC1 (DCE) = 1,2-Dichloroethane-d4

QC LIMITS (76-107)

- # Column to be used to flag recovery values
 * Values outside of QC limits
 D Surrogate diluted out

page 1 of 1

FORM II-CLP-1

HEMEDIATION TECHNOLOGIES 1001 W. Seneca Street, Sulte 204 Ithaca, NY 14850 (607) 277-5716 Fax (607) 277-9057

CHAIN OF CUSTODY RECORD 0715

I TERROTOGIES INC	1 AX (001) E11-8031									
PROJECT NAME: nimeral Springs	PROJECT NUMBER: 3-2071 SAMPLER (PRINT NAME)	5 620	1			77		77	7//	1
SEND REPORT TO: MANK HOFFER BONT	SAMPLER (PRINT NAME) JA	Mes EDWA	705	8/.0/		/ /			/ / /	PAGEOF
ADDRESS: ABOVR	SAMPLER (PRINT NAME)				/_U/		' / /	' / /	′ / /	
73012	SHIPMENT METHOD:				3 9/					
	AIRBILL NUMBER:	913573			/ /	///	/ /	///	/ /	•
PHONE:	LABORATORY RECEIMNO:	SON	- 1 43g	1						
FAX:			- / c							
FIELD SAMPLE ID	SAMPLE SAMPLE DATE TIME	SAMPLE NUMBER MATRIX CONTAINE	OF S	12 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 /			/ /	/ / /	COMMENTS, SPECIAL INSTRUCTIONS, ETC.	LAB SAMPLE ID (to be completed by la
Drum Couposite Soil	215198 252	loiL 1	X		Pen	edistic	on Techr	etgofar	, ln L41284-1	
bruy coupos. le WATER		AQ 2		X					; [p [41284-2	
Trip BLANKS		2			WY	MAZOR I	dat av	rimin.	COMPOSITE 14.7	
14.6 014442					ikun Maz	980 ENU : 704798 -	on enwa Weter	LEST:	BLANK	
					1	1 1		1 [
									- 	
		~ 2/18/9V								
TCLP Benzene onle	on 501) +1	WATER OUR	Mart	to Park	2/1	0/98				
JENYZOVE ONCE	7 00 1	PV			7	1.0				
			_							<u> </u>
		7.								
3 day TAT pr M	cute of to	An w	2/6/	$\frac{78}{}$						
			1 "							
	ed by: (Signature)	Date:	Time:	SAMPLE CUSTODI				LABORATORY		•
Jamy A. Edwardy -	Tik	2-6-16	1055	QA/QC LEVE			ROUND:	TOTAL & C	SAMPLE RECEIPT ONTAINERS RECEIVED ?	
	ed by: (Signature)	Date:	Time:	LEVEL 1		ROUTINE	•		PRESENT ?	,
				LEVEL II C		24 HOUR		COC SEALS		
Relinquished by: (Signature) Receive	ed by: (Signature)	Date:	Time:	LEVEL III C	- 1	1 WEEK	D		CONTAINERS INTACT ?	
		1		OTHER D	۱ ا	OTHER		TEMPERATIO		

VOLATILE ANALYTICAL REPORT

Galson Laboratories

Laboratories : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 06-FEB-98
Date Sampled: 05-FEB-98

Matrix: Water
Method: ASP10/95

Units : UG/L

Galson ID: Client ID:	L41285-6 MW-13	L41285-10 MW-17	L41285-11 - MW-18
Benzene	<5	<5	<5
Toluene	<5	<5	< 5
Ethylbenzene	<5	<5	<5
Xylene (total)	< 5	< 5	< 5
Dilution Factor Analysis Date	1 02/10/98	1 02/10/98	1 02/10/98

Approved by : PJT

Date : 18-FEB-98

QC by Date

NYS DOH # : 11626

VOLATILE ANALYTICAL REPORT

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-FEB-98 Date Sampled : 05-FEB-98 Matrix : Water Method: ASP10/95

Units : UG/L

Galson ID: Client ID:	L41285-12 TRIP BLANK	QCB021098-2 VBLK1	
Benzene	<5	< 5	
Toluene	< 5	< 5	
Ethylbenzene	< 5	< 5	·
Xylene (total)	. <5	< 5	
Dilution Factor	1	1	:
Analysis Date	02/10/98	02/10/98	

Approved by : PJT

Date : 18-FEB-98
QC by
Date : 18-FEB-98

: 11626

NYS DOH # Footnotes:

2A WATER VOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES

Contract:

Lab Code:

Case No.: 1

SAS No.:

SDG No.: L41285

SAMPLE NO.	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT
VBLK1 TRIP BLANK MW-13 MW-17	102 103 102 100	90 93 92 94	103 105 104 107	BA0210 BA0210 BA0210 BA0210	0 0 0
MW-18	100	94	103	BA0210	0

QC LIMITS SMC1 (TOL) = Toluene-d8
SMC2 (BFB) = Bromofluorobenzene
SMC3 (DCE) = 1,2-Dichloroethane-d4 (88-110)(86-115) (76-114)

[#] Column to be used to flag recovery values
* Values outside of QC limits

D Surrogate diluted out

SEMIVOLATILE ANALYTICAL REPORT

Galson Laboratories

Laboratories : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 06-FEB-98 Matrix: Water
Date Sampled: 05-FEB-98 Method: ASP10/95
Date Extracted: 10-FEB-98 Units: UG/L

Galson ID:	L41285-10	L41285-11	Q-5290
Client ID:	MW-17	MW-18	SBLK5290
Naphthalene	<10	<10	<10
2-Methylnaphthalene	<10	<10	<10
Acenaphthylene	<10	<10	<10
Acenaphthene	<10	<10	<10
Fluorene	<10	<10	<10
Phenanthrene	<10	<10	<10
Anthracene	<10	<10	<10
Fluoranthene	<10	<10	<10
Pyrene	<10	<10	<10
Benzo(a)anthracene	<10	<10	<10
Chrysene	<10	<10	<10
Benzo(b) fluoranthene	<10	<10	<10
Benzo(k)fluoranthene	<10	<10	<10
Benzo(a)pyrene	<10	<10	<10
Indeno(1,2,3-cd)pyrene	<10	<10	<10
Dibenzo(a,h)anthracene	<10	<10	<10
Benzo(g,h,i)perylene	<10	<10	<10
Dilution Factor	1	1	1
Analy sis Date	02/13/98	02/13/98	02/13/98

Approved by : PJT

Date : 18-FEB-98
QC by Date : 100/98

NYS DOH # : 11626

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: GALSON LABORATORIES

Contract:

Lab Code: Case No.: 1

SAS No.:

SDG No.: L41285

SAMPLE NO.	S1 (NBZ)#	S2 (FBP)#	S3 (TPH)#	S4 (DCB)#	S5	S6 ()#	S7 ()#	S8 ()#	TOT
SBLK5290 MW-17 MW-18	96 93 100	101 96 101	116 63 43	106 107 109					0 0 0
·									

QC LIMITS S1 (NBZ) = Nitrobenzene-d5 (35-114)S2 (FBP) = 2-Fluorobiphenyl
S3 (TPH) = Terphenyl-d14
S4 (DCB) = 1,2-Dichlorobenzene-d4 (43-116)(33-141)(16-110)

page 1 of 1

FORM II-CLP-1

[#] Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

METALS ANALYTICAL REPORT

Client : Remediation Technologies, Inc.

Account # : 12013

Site : Mineral Springs

Date Received: 06-FEB-98 Matrix: Water
Date Sampled: 05-FEB-98 Method: CLP-M

Galson ID: Client ID:		L41285-10 MW-17	L41285-11 MW-18	QM980209-2 BLANK	
7220110 201	Units				
Aluminum	mg/l	5.6	7.6	<0.1	
Antimony	mg/l	<0.01	<0.01	<0.01	
Arsenic	mg/l	<0.01	0.017	<0.01	
Barium	mg/l	0.095	0.23	<0.005	
Beryllium	mg/1	<0.005	<0.005	<0.005	
Cadmium	mg/l	<0.005	<0.005	<0.005	
Calcium	mg/l	230	53	<0.1	
Chromium	mg/1	<0.01	<0.01	<0.01	
Cobalt	mg/l	<0.01	<0.01	<0.01	
Copper	mg/1	0.014	0.019	<0.01	
Iron	mg/1	29	9.5	<0.05	
Lead	mg/l	0.0046	0.0088	<0.003	
Magnesium	mg/l	46	16	<0.1	
Manganese	mg/l	0.92	0.21	<0. 0 05	
Mercury	mg/1	<0.0002	<0.0002	<0.0002	
Nickel	mg/l	<0.02	<0.02	<0.02	
Potassium	mg/l	2.8	4.2	<1	
Selenium	mg/l	<0.005	<0.005	<0.005	
Silver	mg/1	<0.01	<0.01	<0.01	
Sodium	mg/l	60	43	<2	
Thallium	mg/1	<0.01	<0.01	<0.01	
Vanadium	mg/1	0.012	0.014	<0.01	
Zinc	mg/1	0.040	0.031	<0.01	

Approved by : Karen S. Becker

Date : 11-FEB-98

QC by : 10-FEB-98

NYS DOH # : 11626

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-FEB-98

Date Sampled : 05-FEB-98

Matrix : Water

Galson ID:

L41285-1

L41285-2

L41285-3

Client ID:

MW-7

8-WM

MW-10

Method

Units

mg/L

NR

NR

Cyanide, Total WEAK & DISSOCIABLE C SM 4500

CLP-M

mg/L

NR 0.0242

0.0266

0.0403

Approved by : LM

Date

: 20-FEB-98

QC by Date

NYS DOH # Footnotes:

Client

: Remediation Technologies, Inc.

Account #

: 12013

: Mineral Springs

Date Received: 06-FEB-98

Matrix : Water

Date Sampled : 05-FEB-98

Galson ID:

L41285-4

L41285-5

L41285-6

Client ID:

MW-11

MW-12

MW-13

Method

Units

NR

Cyanide, Total WEAK & DISSOCIABLE C SM 4500

CLP-M

mg/L mg/L NR 0.0314 NR 0.0635

0.0266

Approved by : LM

Date QC by

Date

NYS DOH #.

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-FEB-98

Matrix : Water

Date Sampled: 05-FEB-98

Galson ID:

L41285-7

L41285-8

L41285~9

Client ID:

MW-14

MW-15

MW-16

Method

Units

NR

NR

Cyanide, Total WEAR & DISSOCIABLE C SM 4500

CLP-M

mg/L mg/L NR 0.0795

0.0116

0.0937

Approved by : LM

Date : 20-FEB-98
QC by : 770/98
Date : 370/98

NYS DOH #

: 11626

Client

: Remediation Technologies, Inc.

Account #

: 12013

Site

: Mineral Springs

Date Received: 06-FEB-98

Date Sampled : 05-FEB-98

Matrix : Water

Galson ID:

L41285-10

L41285-11

Client ID:

Cyanide, Total

MW-17

MW-18

Method Units

CLP-M

mg/L

0.034

<0.01

WEAK & DISSOCIABLE C SM 4500

mg/L

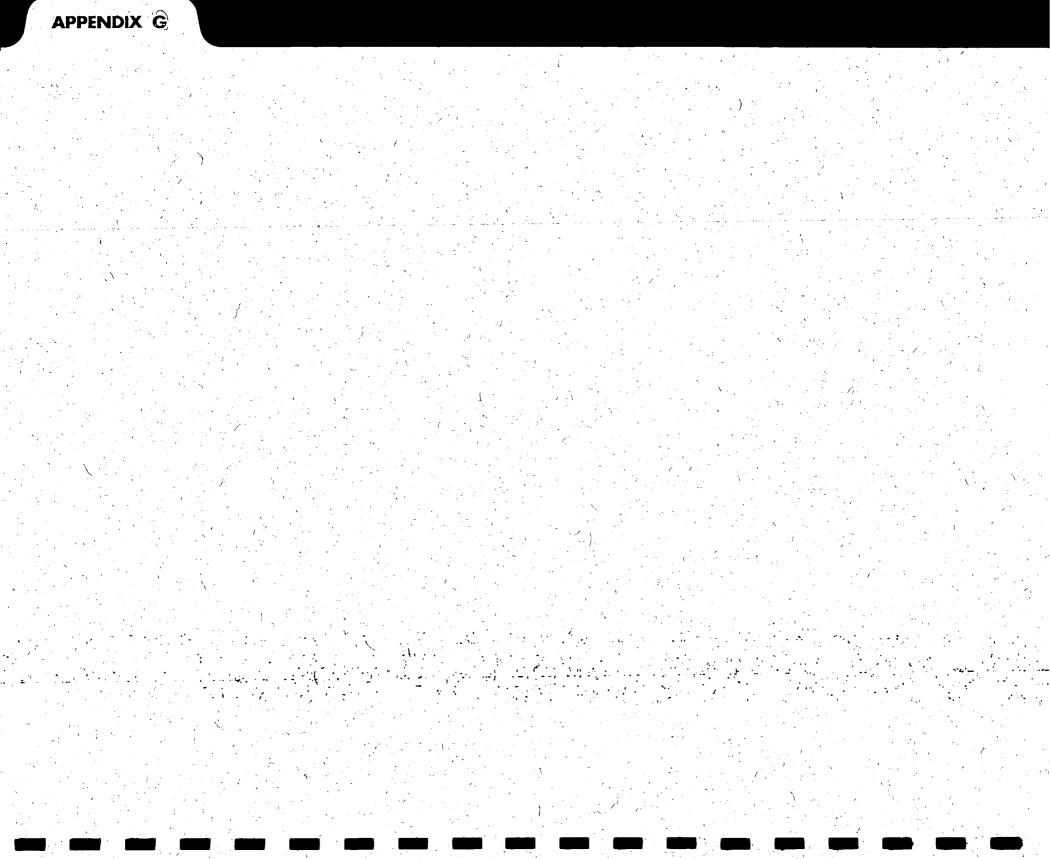
<0.01

<0.01

Approved by : LM

Date QC by

Date NYS DOH #



1001 W. Seneca Street, Suite 204 Ithaca, NY 14850 (607) 277-5716

CHAIN OF CUSTODY RECORD 0716

Curtodo dua

	Fax (607) 277	-9 057								
PROJECT NAME: MINERAL Spris65	PROJECT NU	> 1	5 - b2	۸.				7	7	1//2///////////////////////////////////
SEND REPORT TO: MARK HOFFE BET	SAMPLER (P	RINT NAME) <	3 5 . 0 .	257	,		8/	/چ <u>ر</u>	/-	0 / PAGEOF_
ADDRESS:	oram zerr (1444	7 n	AU	š	97. 18		/;	
	SHIPMENI M	ETHOD: Fe	D EX			. E.	/ ~ /	$^{\prime}\sim^{\prime}$	/ g/	
	AIRBILL NOW	BEK:				\$/2	5/4	//		
PHONE:	LABORATORY	RECEIVING:	(ALL)	<i>N</i>	4	3/	2/0	تى 🖔	7/5	
FAX:						\ \\\	=/	4	• / /	*.*/ / / / / / / / /
FIELD SAMPLE ID	SAMPLE DATE	SAMPLE TIME	· SAMPLE MATRIX	NUMBER CONTAIN	OF /			É/1	3	COMMENTS, SPECIAL LAB SAMPLE ID ted by lot
MW7	2 5 98	130	A6						X	Remodiation Technologies, in L41285-1
MW 8 .	215/98	1245	AQ	1					X	Remediation Technologies, In L41285-2
ηω 10	2/5/98	135	AQ	}					X	Remodiation Technologies, in L41285-2
MW 11	215198	1115	AQ	1					Χ	Remodiation Technologies, In L41995-3
Mw 12	215198	1145	AQ	1					Х	Pemediation Technologies, In 1.41285-5
MW 13	215198	0915	Aφ	4	X				Χ	Remediation Tachcatogies, In Laires
MW14	2/5/98	229	AQ						Χ	Remediation technologies, in 141 2007
MW 15	215198	1014	,						Х	Percentiation to be degles, in this end
4w 16	2/5/98		AQ						χ	to recreating the factor of the particle of the continuence of
mw 17	2 4198	- 1.1. T	40	7	X	X	X	χ	X	Pemp halion Tuchon bester, in 141791-10
Mw 18	215198	821	40	م	X	X	X	X	Х	Remodiation to banlogies, In (41985-);
TB			,		X			ļ		0.200298 Water MW-IS
						<u> </u>				Remediation feeboologies, in 141785-12
				ļ						02/06/98 Water TRIP BLANK
				<u> </u>						
·										
Relinquished by: (Signature) Receive	d by: (Signatur	re)	Dal	te:	Time:	S/	MPLE	custo	MAID	REMARKS (COMPLETED BY LABORATORY):
Jam A. Edward	II K	~	2-	6-92	1055	• [QA/(C LE	√EL	TURNAROUND: SAMPLE RECEIPT
Relinquished by: (Signature) Receive	d by: (Signatur	e)	Dat	: 6 :	Time:	7		I		ROUTINE TOTAL # CONTAINERS RECEIVED ? 27
							LEVEL			COC CELLS INTERES S
Relinquished by: (Signature) Receive	d by: (Signatur	e)	Dat	c:	Time:		LEVEL OTHER		D	1 WEEK D COC SEAS INTACT 7 YES OTHER RECEIVED CONTAINERS INTACT ? YES
	····································	· · · · · · · · · · · · · · · · · · ·					4750			TEMPERATURE ? Y' T'M

