

AECOM 257 West Genesee Street Suite 400 Buffalo, NY 14202

November 6, 2017

Mr. David Szymanski Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue – 3rd Floor Buffalo, New York 14203

RE: 2017 Periodic Review Report Mineral Springs Road Former Manufactured Gas Plant Site NYSDEC Site #V00195

Dear Mr. Szymanski:

National Fuel Gas Distribution Corporation (National Fuel) completed construction on the remedial action for the Mineral Springs Road Former Manufactured Gas Plant (MGP) Site (Site) in 2001. Since then, National Fuel has performed operations and maintenance (O&M) activities for the remedy in accordance with the Final Engineering Report, Volume II – Operations and Maintenance (O&M) Plan, dated May 2002 (O&M Plan) for the project. Those activities have included preparation of annual O&M reports, which have been submitted since 2002. Because of changes in New York State Department of Environmental Conservation (NYSDEC) reporting requirements, AECOM has prepared this Periodic Review Report (PRR) on behalf of National Fuel rather than an O&M Report to meet the reporting requirements of the O&M Plan.

1. Introduction

The Former MGP was constructed in the early 1920s and operated until the 1960s. Coal and oil gasification wastes, specifically coal tar hydrocarbons and blue-stained purifier residuals, were generated during plant operation. Investigations were performed between 1990 and 1998 to evaluate environmental conditions at the site. Those investigations identified impacts to soil and groundwater by MGP residues, including organic constituents, dense non-aqueous phase liquids (DNAPL), and cyanide. Remedial activities including excavation, capping, DNAPL recovery, and institutional controls have been performed since 1997 to address these impacts.

This PRR presents and evaluates the results of annual O&M activities performed at the Site from September 16, 2016 to September 16, 2017, and analytical data from 2001 (remedial action completion) through August 2017. The annual O&M activities include annual inspections, groundwater and surface water monitoring, and maintenance and repair of engineering controls. In addition to the annual O&M activities, supplemental groundwater and surface monitoring was completed this reporting period, as further described below. Data collected during the performance of these activities and an evaluation of the remedy effectiveness is presented below.

2. Site Overview

The Site lies in a flat, mixed industrial and residential area of West Seneca (and Buffalo), New York. The Site is currently an active National Fuel service center. Figure 1 shows the facility layout.

AECOM

The stratigraphy of the site consists of 4- to 8-feet of soil and fill, approximately 10-feet of a nearly continuous upper confining clay layer (UCL), 10- to 15-feet of groundwater-bearing silt, sand, and gravel, a lower confining clay layer (LCL), and bedrock. Overburden groundwater is typically encountered 5- to 12-feet below ground surface and fluctuates seasonally approximately 2 feet. Overburden groundwater flow is generally to the northwest towards Mineral Springs Road, Calais Street, and the Buffalo River. Average overburden groundwater velocity across the site is calculated to be approximately 0.06 feet per day.

In 1990 and 1995, investigations and soil remediation activities were performed near an oil-water separator pit in the central area of the site. In 1997 and 1998, a Preliminary Site Assessment (PSA) and a follow-up PSA Addendum were conducted. The assessments concluded that soil and groundwater at the site were impacted by MGP residues including dense non-aqueous phase liquids (DNAPL) and cyanide.

An interim remedial measure (IRM) was conducted at the Site in December 1997. During the IRM, 407 tons of purifier residuals were removed from the southwest corner of the Site. On August 4, 1998 National Fuel submitted a Voluntary Cleanup Agreement (VCA) program application. VCA number B9-0538-98-08 was signed by National Fuel on June 2, 1999 and by NYSDEC on November 7, 1999. A Remedial Design Work Plan was subsequently developed by National Fuel and NYSDEC. From May 2000 to June 2001, the Remedial Design Work Plan was implemented and the following remedial tasks were completed:

- Excavation and offsite disposal of 32,200 tons of contaminated soil, rubble, and purifier waste.
- Construction of engineering controls including 39,369 square feet of clay cap, 76,144 square feet of geomembrane and 130,890 square feet of asphalt cap over areas where purifier waste was located.
- Capping of hydrocarbon seeps within the Eastern Drainage Ditch (EDD), including construction of 640 linear feet of geosynthetic cap and 750 linear feet of clay cap.
- Installation of additional chain link security fence around the site perimeter.
- Implementation of site use and deed restrictions.
- Collection, treatment, and disposal of 207,000 gallons of contaminated groundwater.

In January 1998, National Fuel performed a soil gas survey to evaluate potential exposures to workers inside buildings at the Site. The report concluded that the results did not indicate a significant potential for exposure by site workers to excessive concentrations of airborne constituents resulting from soil gas migration into occupied building spaces.

During the annual site inspection in April 2007, National Fuel identified a faint blue stain in surface gravel near Building 8. In July 2007, a soil investigation in the area identified a subsurface lens of bluish stained soils. Based on the results of the investigation, an IRM Work Plan was prepared describing an IRM to address the stained soil. The IRM Work Plan was submitted to NYSDEC in November 2008. The scope of the IRM included installation of a 24,000 square foot asphalt cap immediately to the east of the existing Building 3 East Asphalt Cap (B3EAC). Work to install the new cap took place in June and July 2008. The new cap is designated as the Building 8 West Asphalt Cap (B8WAC), as shown on Figure 1.

In July 2013, soil impacted with purifier wastes was observed in the southwestern corner of the site, outside of the perimeter fence on the western and southwestern site boundaries, near residential properties on Calais Street. National Fuel completed a series of Corrective Measure (CM) activities in the area where impacts were observed. CM activities to address purifier waste impacted soils in the southwest corner near the west property line were implemented in November 2013. CM

AECOM

activities to remove fill materials that exceeded the NYSDEC Residential Soil Cleanup Objectives were implemented in October 2014. CM activities area is designated CM, as shown on Figure 1.

3. 2017 Site Activities

Routine O&M activities performed during 2017 include the following:

- Annual inspection on April 18, 2017.
- Groundwater monitoring events on April 18, 2017 and August 9-10, 2017.
- Submittal of groundwater and surface water monitoring reports on May 31, 2017 and October 27, 2017.
- Cap maintenance activities:
 - Mowing of Eastern Swale High-Density Polyethylene (HDPE) Cap (ESHC) and Clay Cap (CC);
 - Trapping and relocating of woodchucks that have burrowed into the CC and filling of the animal burrows;
 - Repair to Building 3 South Asphalt Cap (B3SAC); and,
 - Repair to Building 10 Asphalt Cap (B10AC).

Other environmental activities which were completed at the Mineral Springs Site in the period covered by this report include the following:

- Removal of an old concrete slab and petroleum impacted soils encountered beneath it located off the southeast corner of Building #10. Excavated soils remain on Site, pending analysis and approval for disposal.
- As requested by NYSDEC in response to the free cyanide exceedance of the NYSDEC Class D Surface Water Standard in the April 2017 SW-02 surface water sample, a supplemental surface water level measurement was obtained and supplemental groundwater and surface water samples were collected and analyzed during the August 2017 monitoring event.

An activity not completed during 2017 was the repair, by Norfolk Southern (NS) Railroad, of the damaged storm sewer adjacent to, but just outside of, the southern property line and the CC area. Based on the results of an investigation that determined that the storm sewer was outside of the CC engineering control and the National Fuel property, AECOM submitted a letter to the NYSDEC on October 29, 2015 recommending that NS be allowed to perform repair activities provided that they did not damage the CC. On December 2, 2015, the NYSDEC provided AECOM with email approval of that action. To date, NS has not yet performed this repair.

4. Evaluation of Remedy Performance, Effectiveness, and Protectiveness

The objectives of the remedial action performed at the Site include the following:

- Preventing human contact with compounds of concern (COC) in purifier waste, soil, and sediment.
- Preventing human contact or ingestion of COC in groundwater.
- Preventing leaching of COC from purifier waste to groundwater.
- Preventing leaching of COC from coal tar impacted soil to surface water.

The first two objectives were addressed by excavating soil and purifier waste, capping areas where purifier waste was left in place, capping coal tar residues in the EDD, and implementing institutional controls to limit site use, prevent use of groundwater, and provide protection for excavation workers.

The remaining two objectives are addressed by excavating soil and purifier waste, capping areas where purifier waste was left in place, capping coal tar residues in the EDD, and removing DNAPL.

The effectiveness of these remedial actions in meeting these objectives is evaluated by 1) performing an annual inspection to verify that engineering controls remain intact and that site use has not changed, and 2) by implementing a groundwater and surface water monitoring program.

4.1 Analytical Results

Groundwater and surface water monitoring was performed at the Mineral Springs Site semiannually (in April and August) in 2017. The monitoring programs were performed in accordance with the 2002 O&M Plan. As part of the August 2017 monitoring event, a supplemental surface water level measurement was obtained and supplemental groundwater and surface water samples were collected and analyzed as described in the Revised Supplemental Groundwater and Surface Water Cyanide Monitoring letter submitted to NYSDEC on July 31, 2017.

An evaluation of the groundwater and surface water monitoring results from data collected during the 2017 monitoring events is presented in the following sections. The analytical data are compared to the NYSDEC Technical Operational and Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998). Details of the results of these monitoring events are presented in the April 2017 and August 2017 Groundwater and Surface Water Monitoring Reports, submitted to NYSDEC in May 2017 and October 2017, respectively.

The free cyanide results for the August 2017 sampling event were observed to be higher than the historic range of concentrations. National Fuel is currently conducting an independent third-party data validation for both the total and free cyanide analyses, as well as an audit at Pace Analytical Laboratories in Grand Rapids, Michigan. These independent investigations are being performed in an effort to determine if the free cyanide results are accurate or if other factors may have affected the total and free cyanide analytical results reported for the August 2017 sampling event. The unvalidated data are presented as reported from Pace Analytical in this report. Results of the data validation and any adjustments or qualification of the analytical results will be presented under separate cover.

Figures 2 and 3 provide groundwater contours indicating the direction of groundwater flow at the Site for April 2017 and August 2017, respectively. Appendix A presents the 2017 surface water and groundwater elevations and analytical results, as well as historic data from 1995 through 2016.

Upgradient Site Perimeter

Monitoring well MW-17 monitors groundwater quality upgradient of the Site remedial actions. The groundwater sample from this well is analyzed semi-annually for benzene, ethylbenzene, toluene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), total cyanide, and free cyanide. No BTEX compounds were detected in either of the two sampling events. A summary of the PAH and cyanide detections follows:

- April 2017:
 - No PAH compounds were detected.
 - $\circ~$ Total cyanide was detected at a concentration of 124 $\mu g/L$, below the NYSDEC Groundwater Standard of 200 $\mu g/L$. Free cyanide was not detected.

- August 2017:
 - \circ Naphthalene was detected at a concentration of 0.45 J μ g/L, below the NYSDEC Groundwater Guidance Value of 10 μ g/L.
 - Total cyanide was detected at a concentration of 173 J+ μg/L, below the NYSDEC Groundwater Standard of 200 μg/L. Free cyanide was not detected.

Downgradient Site Perimeter

Six "sentinel" wells monitor groundwater quality downgradient of the Site remedial actions. These wells include MW-13, MW-14, MW-22 and MW-23 located just inside the northern property boundary near Mineral Springs Road and MW-20 and MW-21 located downgradient of the western Site boundary on Calais Street. The groundwater samples from these six wells are analyzed semi-annually for total and free cyanide. The results of monitoring in these wells are summarized below:

- April 2017: Five of the six wells had total cyanide concentrations above the NYSDEC Groundwater Standard of 200 µg/L. Detected concentrations ranged from 236 µg/L at MW-23 to 874 µg/L at MW-20.
- August 2017: Five of the six wells had total cyanide concentrations above the NYSDEC Groundwater Standard of 200 μg/L. Detected concentrations ranged from 150 J+ μg/L at MW-13 to 1,000 μg/L J+ at MW-20.

Free cyanide was detected as summarized below; however, there is no NYSDEC Groundwater Standard for free cyanide:

- April 2017: Free cyanide was detected in one well (MW-22) at a concentration of 12 μg/L.
- August 2017: Free cyanide was detected in all six wells at concentrations ranging from 22.6 μg/L at MW-13 to 166 μg/L at MW-23.

Monitoring wells MW-13 and MW-23 are also sampled once annually during August for BTEX and PAHs. The BTEX compound benzene is regularly detected in MW-13. A summary of the BTEX and PAH analytical results from the August sampling event follows:

- August 2017:
 - o BTEX compounds were not detected in either MW-13 or MW-23.
 - Naphthalene was detected at a concentration of 0.44 J μg/L in well MW-13 and 0.46 J μg/L in well MW-23, below the NYSDEC Groundwater Guidance Value of 10 μg/L.

On-site Purifier Residuals Impacted Areas

Wells MW-12 and MW-16 monitor groundwater quality at the Eastern Swale HDPE Cap (ESHC) and the CC, respectively. These are locations of known subsurface deposits of purifier box residuals. These deposits were remediated by capping. Samples from these two wells are analyzed for total and free cyanide.

As summarized below, both wells had total cyanide groundwater concentrations above the NYSDEC Groundwater Standard of 200 μ g/L during each sampling event. A summary of exceedances follows:

- April 2017: Total cyanide concentrations were reported as 536 μ g/L at MW-12 and 1,570 μ g/L at MW-16.
- August 2017: Total cyanide concentrations were reported as 1,700 J- μg/L at MW-12 and 1,690 J+ μg/L at MW-16.

Free cyanide was detected as summarized below; however, there is no NYSDEC Groundwater Standard for free cyanide:

- April 2017: Free cyanide concentrations were reported as 6.8 $\mu g/L$ at MW-12 and 17 $\mu g/L$ at MW-16.
- August 2017: Free cyanide concentrations were reported as 7.2 $\mu g/L$ at MW-12 and 38.8 $\mu g/L$ at MW-16.

On-site Hydrocarbon Impacted Areas

Monitoring wells MW-07, MW-10, MW-11A, and MW-19 monitor on-site groundwater quality downgradient of subsurface soils impacted with hydrocarbon NAPL. Wells MW-07 and MW-10 are downgradient of the Separator Pits Excavation (SPE); well MW-11A is adjacent to the drainage ditch cap; and well MW-19 is downgradient of the Northern and Eastern Tar Boils Excavations. Samples from these wells are analyzed for BTEX and PAH compounds.

A summary of BTEX detections for wells MW-07, MW-10, MW-11A, and MW-19 follows:

- April 2017: In each well one or more BTEX compounds were detected above the respective NYSDEC Groundwater Standards.
- August 2017: One or more BTEX compounds were detected above the respective NYSDEC Groundwater Standards in each well at MW-07, MW-11A, and MW-19. BTEX compounds were not detected in well MW-10 during the August sampling event.

Only two PAH compounds were detected above NYSDEC Groundwater Guidance Values in the wells summarized below:

- April 2017: PAH compound acenaphthene was detected in MW-07 at a concentration of 100 μg/L, above the NYSDEC Groundwater Guidance Value of 20 μg/L. Naphthalene was detected in MW-07 and MW-19 at 2,300 μg/L and 6,200 μg/L, respectively, above the NYSDEC Groundwater Guidance Value of 10 μg/L.
- August 2017: PAH compound acenaphthene was detected in MW-07 at a concentration of 100 μg/L, above the NYSDEC Guidance Value of 20 μg/L. Naphthalene was detected in MW-07 and MW-19 at 2,300 μg/L and 4,400 μg/L, respectively, above the NYSDEC Guidance Value of 10 μg/L.

Surface Water

Two surface water samples, SW-01 and SW-02, are collected from the NYSDEC Class D Stream running along the south side of the site. Sample SW-01 is collected near the storm sewer inlet near Building 14 to monitor concentrations of COC in surface water downgradient of the Site. Sample SW-02 is collected at the EDD near the Class D Stream to monitor surface water downgradient of the EDD Cap. Surface water samples are analyzed for BTEX, PAH, total and free cyanide. BTEX compounds were not detected in either surface water sample during either sampling event. PAH compounds were not detected in either surface water sample during either sampling event. A summary of total and free cyanide analytical results is presented below:

- April 2017:
 - \circ Total cyanide was detected in the SW-01 surface water sample at a concentration of 25.5 μg/L and in the SW-02 surface water sample at a concentration of 253 μg/L, below the NYSDEC Class D Surface Water Standard of 9,000 μg/L.
 - Free cyanide was detected in the SW-01 surface water sample at a concentration of 11 µg/L and in the SW-02 surface water sample at a concentration of 72 µg/L. The free cyanide concentration in the SW-02 sample was above the NYSDEC Class D Surface Water Standard of 22 µg/L.

- August 2017:
 - Total cyanide was detected in the SW-02 surface water sample at a concentration of 195 J+ µg/L, below the NYSDEC Class D Surface Water Standard of 9,000 µg/L. Total cyanide was not detected in the SW-01 surface water sample located downstream of SW-02.
 - Free cyanide was detected in the SW-02 surface water sample at a concentration of 24.6 µg/L, above the NYSDEC Class D Surface Water Standard of 22 µg/L. Free cyanide was not detected in the SW-01 surface water sample located downstream of SW-02.

Supplemental Groundwater and Surface Water

As summarized above, free cyanide was detected in the SW-02 surface water sample above the NYSDEC Class D Surface Water Standard during the April 2017 sampling round. In response to the free cyanide exceedance, supplemental groundwater and surface water samples were collected and analyzed for total cyanide, free cyanide, total dissolved solids (TDS), and specific conductance, as follows:

- Existing locations:
- MW-11A: A groundwater sample was collected for total cyanide, free cyanide, and TDS analyses at MW-11A. Specific conductance is already a standard parameter for groundwater samples.
- SW-01 and SW-02: A surface water sample for TDS and specific conductance analyses was collected at existing surface water sample locations SW-01 and SW-02. Total cyanide and free cyanide are already standard parameters for surface samples at these locations.
- Supplemental locations:
- SW-03, SW-04, and SW-05: Surface water samples for total cyanide, free cyanide, TDS, and specific conductance analyses were collected at new surface water monitoring locations SW-03, SW-04, and SW-05.

Sample Location	Total Cyanide (μg/L) [†]	Free Cyanide (µg/L) [†]	TDS (mg/L)	Specific Conductivity (mS/cm)
MW-11A	175	5.9	766	1.144*
SW-01	ND*	ND*	608	1.013
SW-02	195*	24.6*	554	0.839
SW-03	422	25.3	644	0.957
SW-04	ND	ND	876	1.527
SW-05	ND	ND	615	1.036
Notes:				

Analytical results for the supplemental samples are summarized as follows:

*Routine O&M Sample

TDS – total dissolved solids

 $\mu g/L - micrograms per liter$

mg/L – milligrams per liter

mS/cm – millisiemens per centimeter

[†] Results are being evaluated for accuracy through the data validation and laboratory audit.

Total cyanide was detected in groundwater at monitoring well MW-11A below the NYSDEC Groundwater Standard of 200 μ g/L. Total cyanide was detected in surface water samples SW-02 and SW-03 below the NYSDEC Class D Surface Water Standard of 9,000 μ g/L. Total cyanide was not detected in the upstream surface water samples SW-04 or SW-05 or the downstream surface water sample SW-01.

Free cyanide was detected in groundwater at monitoring well MW-11A. There is not a NYSDEC Groundwater Standard for free cyanide in groundwater. Free cyanide was detected in surface water samples SW-02 and SW-03 above the NYSDEC Class D Surface Water Standard of 22 μ g/L. Free cyanide was not detected in the upstream surface water samples SW-04 or SW-05 or the downstream surface water sample SW-01.

TDS and specific conductivity do not have a NYSDEC Groundwater or Surface Water Standard or Guidance Value.

4.2 Conclusions – 2017 Analytical Results

With the exception of the August 2017 total and free cyanide results, the results of routine O & M groundwater and surface water monitoring show that COC concentrations for this period are consistent with data collected since remediation was completed. Concentrations of free cyanide in groundwater in wells at the downgradient property boundary in April 2017 appeared to be stable. The analytical results for free cyanide in August 2017 are not consistent with the range of concentrations measured in past years and are being evaluated for accuracy through the data validation and laboratory audit. Concentrations of total cyanide in downgradient wells remain at levels higher than NYSDEC standards. National Fuel will continue to monitor the data.

4.3 Conclusions – August 2017 Supplemental Monitoring Results

The following conclusions were made from the supplemental groundwater and surface water monitoring conducted in August 2017:

• The concentration of total and free cyanide was observed to be greater in surface water (where detected, i.e. SW-02 and SW-03) than in groundwater at MW-11A.

As stated above, the reported total and free cyanide results are being evaluated for accuracy through the data validation and laboratory audit. If warranted, additional supplemental sampling recommendations will be made following the completion of the data validation and audit. These recommendations will be proposed under separate cover.

- The groundwater elevation at monitoring well MW-11A was observed to be higher than the surface water elevation at location SW-02. Data collected show that there is a potential that a small, local groundwater mound may exist in the vicinity of monitoring well MW-11A (Figure 3).
- The TDS and specific conductivity results measured in the groundwater at MW-11A were similar to the values measured at the adjacent surface water location SW-02, as well as the other supplemental surface water locations, providing no definitive indication of influence to or from groundwater.

5. **O&M Plan Compliance Report**

The components of the O&M program for the Mineral Springs Site are established in the 2002 O&M Plan. These include groundwater and surface water monitoring, DNAPL recovery, annual inspections, maintenance and repair of engineering controls, and reporting. Details of this program

are described in the O&M Plan and summarized in Table 1. Table 2, taken from the O&M Plan (with updated information), summarizes the groundwater and surface water monitoring program. O&M activities completed since the last PRR (dated October 14, 2016) include the following:

- Annual inspection on April 18, 2017.
- Groundwater and surface water monitoring events on April 18, 2017 and August 9 and 10, 2017.
- Continued evaluation of the DNAPL recovery well system with only trace amounts (estimated at less than 1%) of DNAPL observed in April 2017 and August 2017.
- Submittal of the Groundwater and Surface Water Monitoring Reports for the monitoring events performed in 2017.
- Performance of maintenance activities to address issues identified during the annual inspection.

During the April 2017 annual inspection, observations of site conditions were recorded. The inspection checklists are included as Appendix B. Photographs taken during the inspections are included in Appendix C, which also includes a photo location figure. An Institutional and Engineering Controls Certification Form is included in Appendix D.

5.1 2017 Annual Site Inspection

Clay Caps

Clay caps, designated CC on Figure 1, are located southeast of Building 14 and in the Eastern Drainage Ditch north of the northern culvert and south of the southern culvert, designated EDD.

As discussed previously, soil has been disturbed just beyond the southern edge of the CC southeast of Building 14 by the collapse of a storm sewer on adjacent property. A boring program performed as described in a Corrective Measure Work Plan determined the location of the clay cutoff wall and outer edge of the clay cap. Based on those borings, it was determined that the cut-off wall and clay cap are not in the area of soil disturbed by the damaged storm sewer, and both are intact. In April 2015, mechanical equipment was used to place stone in the area of the collapse to prevent any further loss of the overlying soils. During that work, the surface of the CC was disturbed. That area has since re-established a sufficient vegetative cover. This year's site inspection found that the engineering control is in place and effective.

The CC area has been mowed periodically to prevent tree growth. No blue-stained soils were observed during the inspection. The surface of the CC was intact and no sink holes were observed. An animal burrow was observed on the CC. The animal has been trapped and relocated, and the burrow has been filled.

In the clay-capped sections of the EDD, no erosion, animal burrows, or hydrocarbon sheen were observed. Warning signs were in place and no woody plants were observed near the clay portion of the cap.

HDPE Caps

Geomembrane caps, constructed of 40-mil HDPE and soil or stone cover, are located in the Eastern Swale and in the EDD between the culverts. These caps are designated ESHC and EDD cap, respectively.

The ESHC has been mowed periodically. No geotextile, rutting, or blue-stained surface soil were visible within the limits of the cap. A short length of corrugated drainage pipe is exposed within the

French drain portion of the ESHC, at the western end. The pipe is undamaged and its exposure does not impair the proper functioning of the ESHC. The pipe will be reset to proper grades.

The EDD cap includes an 18-inch diameter HDPE surface water drain pipe. There was no erosion, animal burrows, deep-rooted perennial plant species, or hydrocarbon sheen observed. The "no dig" signage was in place.

Asphalt Caps

Asphalt caps are located south and east of Building 3, designated B3SAC and B3EAC respectively; north and south of the Eastern Swale, designated ESNAC and ESSAC; to the north of Building 10, designated B10AC; and, west of Building 8, designated B8WAC.

One small area of significant cracking was observed in the B10AC and some areas of significant cracking were observed in the B3SAC. These areas have since been repaired and sealed since the inspection.

Other Areas

Throughout the remainder of the site, no tar boils or blue-stained soils were observed.

The compacted backfill placed in the various former Tar Boils and Separator Pit excavations has been maintained as necessary to assure run-off control. These areas showed no ponding of surface water.

No hydrocarbon sheens were observed in the Class D Stream or the EDD.

Groundwater and Surface Water Monitoring

Groundwater and surface water monitoring results for the April 2017 and August 2017 monitoring events are presented in the groundwater and surface water monitoring reports, prepared by AECOM and submitted to NYSDEC on May 31, 2017 and October 27, 2017, respectively. A summary of groundwater and surface water analytical results for the period between August 1995 and August 2017 is tabulated in Appendix A. Sampling locations are shown on Figures 2 and 3 for the April 2017 and August 2017 monitoring event, respectively. Discussions of the 2017 monitoring results for specific areas of the Site have been presented in Section 4 of this report.

5.2 Conclusions

Since the last PRR, O&M activities have been performed at the Site as specified in the O&M Plan. The deficiencies identified in the annual inspection have been addressed. Engineering controls are intact, and the combination of institutional and engineering controls are effective. Institutional and engineering controls implemented during past remedial actions are in place and effective.

With the exception of the August 2017 total and free cyanide results, the results of routine O & M groundwater and surface water monitoring show that COC concentrations for this period are consistent with data collected since remediation was completed. Concentrations of free cyanide in groundwater in wells at the downgradient property boundary in April 2017 appeared to be consistent with historical values. The analytical results for free cyanide in August 2017 are not consistent with the range of concentrations measured in past years and are being evaluated for accuracy through the data validation and laboratory audit. Concentrations of total cyanide in downgradient wells remain at concentrations higher than NYSDEC standards. National Fuel will continue to monitor the data.

6. Overall PRR Conclusions and Recommendations

As discussed above, the O&M program is being implemented in accordance with the provisions of the Site O&M Plan. The results of the site inspection indicate that the combination of institutional and engineering controls remain intact and continue to be effective in meeting remedial objectives.

With the exception of the August 2017 total and free cyanide results, the results of routine O & M groundwater and surface water monitoring show that COC concentrations for this period are consistent with data collected since remediation was completed. Concentrations of free cyanide in groundwater in wells at the downgradient property boundary in April 2017 were consistent with historic concentrations. The analytical results for free cyanide in August 2017 are not consistent with the range of concentrations measured in past years and are being evaluated for accuracy through the data validation and laboratory audit. Concentrations of total cyanide in downgradient wells remain at levels higher than NYSDEC standards. National Fuel will continue to monitor the data.

The results of the supplemental groundwater and surface water monitoring completed during the August 2017 monitoring event show the following:

• The concentration of total and free cyanide was observed to be greater in surface water (where detected, i.e., SW-02 and SW-03) than in groundwater at MW-11A.

As stated above, the reported total and free cyanide results are being evaluated for accuracy through the data validation and laboratory audit. Results of the data validation and laboratory audit will be presented under separate cover. If warranted, based on the results of the data validation and laboratory audit, additional supplemental sampling recommendations will subsequently be proposed.

- The groundwater elevation at monitoring well MW-11A was observed to be higher than the surface water elevation at location SW-02. Data collected show that there is a potential that a small, local groundwater mound may exist in the vicinity of monitoring well MW-11A, and that the Class D stream may be a gaining surface water body at the time the water elevation measurements were taken (Figure 3).
- The TDS and specific conductivity results measured in the groundwater at MW-11A were similar to the values measured at the adjacent surface water location SW-02, as well as the other supplemental surface water locations (SW-03, SW-04, and SW-05) located upstream, providing no definitive indication of influence to or from groundwater.

Please do not hesitate to call me with questions at 716-923-1222.

Sincerely yours,

Rady West

Randolph West, P.E. Senior Engineer

cc: B. Walker - National Fuel

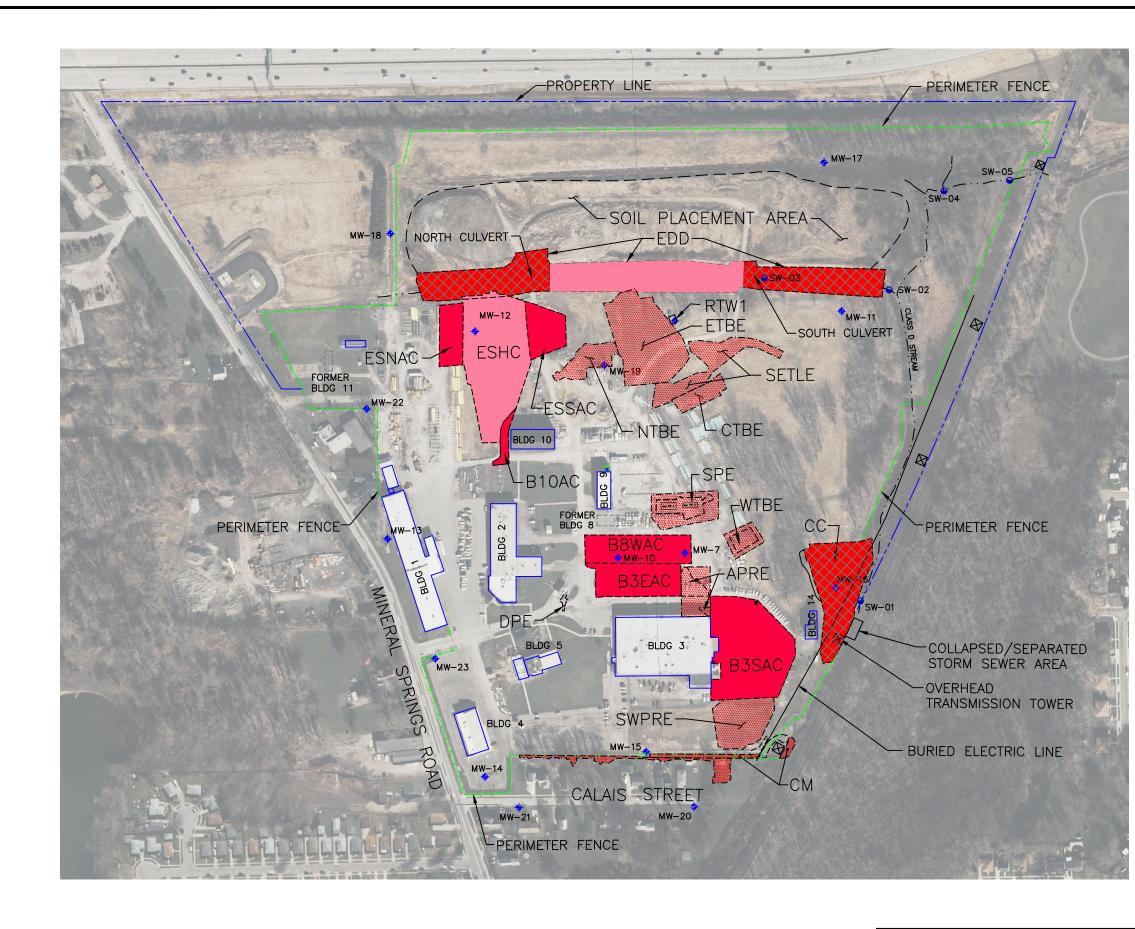
- T. Alexander National Fuel (electronic submittal)
- S. McLaughlin NYSDOH (electronic submittal)
- R. Jones NYSDOH Project Manager (electronic submittal)
- C. Bethoney NYSDOH Region 9 Chief (electronic submittal)
- T. Raby AECOM

Tables

Table 1Operations, Maintenance, and Monitoring Scope of WorkMineral Springs Former MGP Site

	Frequency	Description	Notes
Groundwater and Surface Water Monitoring	Twice a year	Groundwater and surface water monitoring as specified in Table 2. Monitoring typically takes place in April and August.	Scope in 2002 included monitoring three times a year. The frequency was modified in 2005 with NYSDEC approval.
DNAPL Recovery Test Well	Twice a year	DNAPL recovery from well RTW-1.	Continuous operations of RTW-1 were halted in 2002 with NYSDEC approval since only de minimis amount of DNAPL was being recovered.
Site Inspections	Annual	 Inspection of the following: Clay, geomembrane, and asphalt caps Ground surface for signs of tar or purifier residues Fencing Stream 	
Maintenance and Repair	As needed	Activities determined based on inspection results	
Depending	Twice a year	Groundwater Monitoring Report	
Reporting	Annually	O&M Report	As of October 2011, a Periodic Review Report (PRR) is submitted annually to meet current NYSDEC requirements.

				Table		4		
					Summary Ta ad MGP Site			
Location	Cyanide, Total USEPA	Cyanide, Free USEPA	BTEX USEPA	PAHs USEPA	TDS	Specific Conductivity Field	Wate Elevati	
	SW846 9014	SW846 9016	SW846 8260C	SW846 8270D	SM 2540C	Measurement		(ft. MSL, top of PVC casing)
Upgradient S	ite Perimete	r						
MW-17	х	х	х	х		х	х	587.28
Downgradien	t Site Perim	eter						
MW-13	х	х	х	х		х	х	591.85
MW-14	х	х				х	х	589.53
MW-15							х	590.93
MW-20	х	х				х	х	587.06
MW-21	х	х				x	х	587.84
MW-22	х	х				x	х	592.50
MW-23	х	х	х	х		х	х	589.28
Onsite Purifie	er Residuals	Impacted A	reas					
MW-12	х	х				х	х	591.40
MW-16	х	х				х	х	588.99
Onsite Hydro	carbon Impa	acted Areas						
MW-07			х	х		х	х	587.01
MW-10			х	х		х	х	587.61
MW-11A ²	x ²	x ²	х	х	x ²	х	х	589.78
MW-19			х	х		х	х	589.83
Onsite Surfac	e Water							
SW-01 ²	х	x	х	х	x ²	x ²	x	top of headwall = 587.0
SW-02 ²	х	х	х	х	x ²	x ²	x ²	MW-11A ref. pt
SW-03 ²	x ²	x ²			x ²	x ²		
SW-04 ²	x ²	x ²			x ²	x ²		
SW-05 ²	x ²	x ²			x ²	x ²		
QA/QC Samp	les (frequer	ncy)						
Trip Blank			х					(one per shipment)
Field Duplicate	x	x	Х	x				(one per event)
Equipment Blank	х	х	х	х				(one per event)
DNAPL Reco	very							
RTW-1								(purge well of ccumulated DNAPL)
Total	17	17	12	11	6	18	16	
Container, Preservative	250 mL plastic, NaOH	250 mL plastic amber, NaOH	40 mL VOA vial, HCl (x3)	250 mL glass amber, NP (x2)	500 mL plastic, unpreserved			


Notes:

1. Sample methods and containers have been updated to the most current information. Benchmark elevations have been updated to reflect the 2007 survey, except for MW-20, which was resurveyed in August 2009 due to a repair.

2. Supplemental sampling at this location was conducted in August 2017.

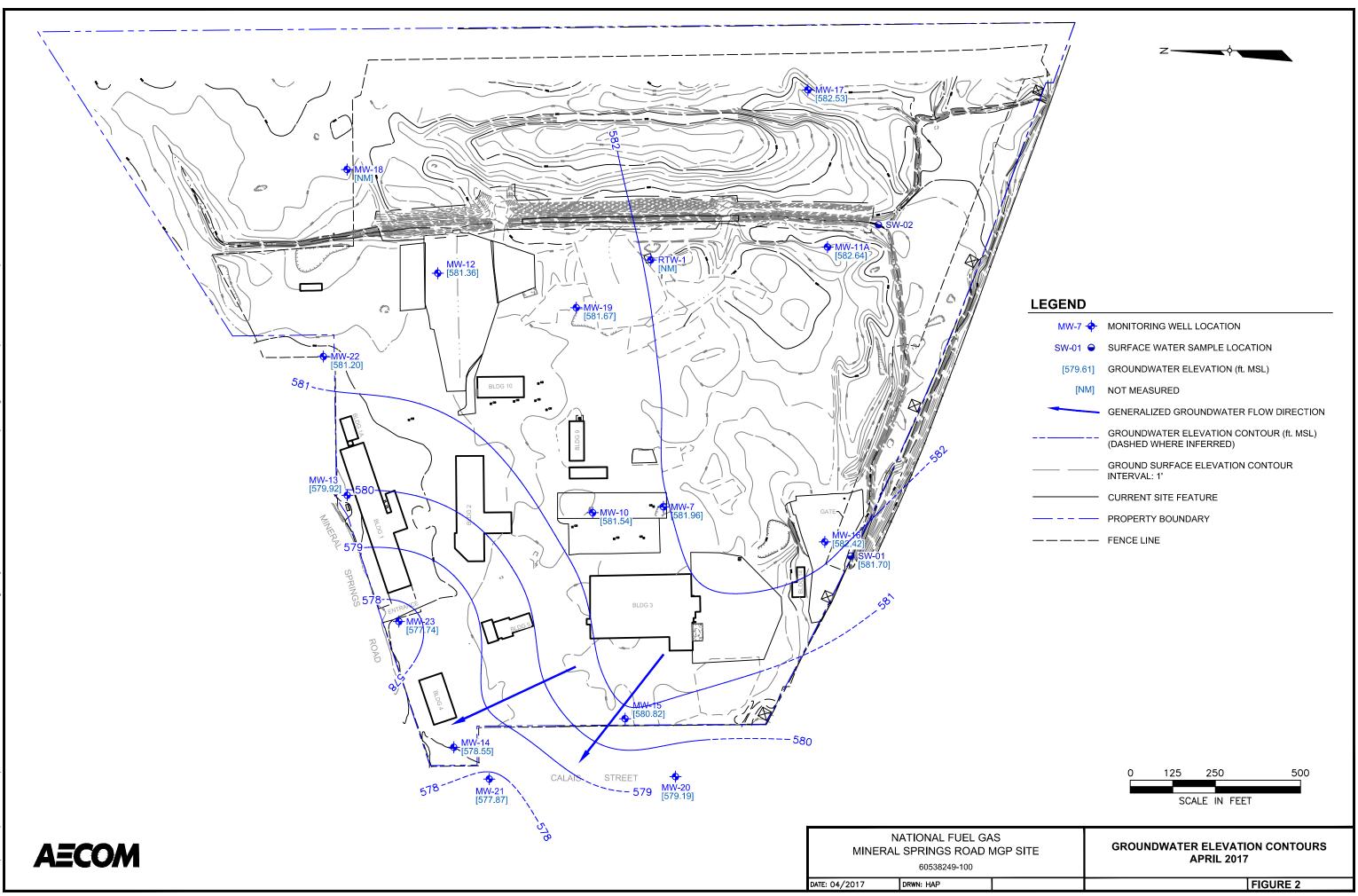
Figures

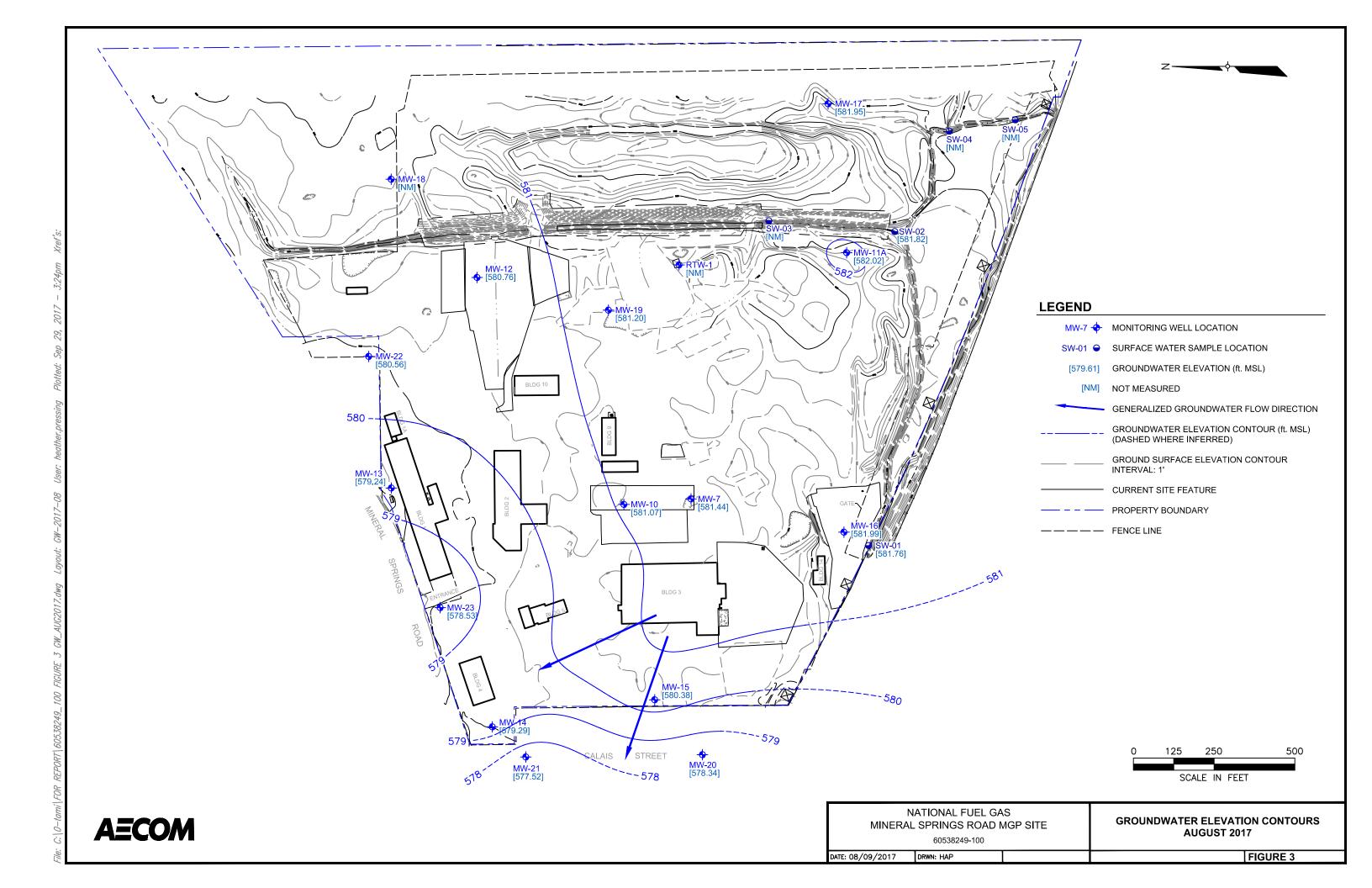
AECOM

MINERAL SPRINGS ROAD FACILITY NATIONAL FUEL GAS 60538249-100 DATE: 6/23/15 DRWN: GRI

GRAPHI	C SCALE IN FEET
<u>LE</u>	<u>IGEND</u>
	EXISTING STRUCTURE
	REMEDIAL CONSTRUCTION
	FORMER STRUCTURE
	EXISTING EXCAVATION LIMITS
MW-7 🔶	MONITORING WELLS
SW-01 👄	SURFACE WATER SAMPLE LOCATION
APRE	ADDITIONAL PURIFIER RESIDUALS EXCAVATION
B3EAC	BUILDING 3 EAST ASPHALT CAP
B3SAC	BUILDING 3 SOUTH ASPHALT CAP
B8WAC	BUILDING 8 WEST ASPHALT CAP
B10AC	BUILDING 10 ASPHALT CAP
CC	CLAY CAP
CM	CORRECTIVE MEASURE WEST PROPERTY LINE
CTBE	CENTRAL TAR BOILS EXCAVATION
DPE	DIESEL PAD EXCAVATION
EDD	EASTERN DRAINAGE DITCH
ESHC	EASTERN SWALE HDPE CAP
ESNAC	EASTERN SWALE NORTH ASPHALT CAP
ESSAC	EASTERN SWALE SOUTH ASPHALT CAP
ETBE	EASTERN TAR BOILS EXCAVATION
NTBE RTW1	NORTHERN TAR BOILS EXCAVATION RECOVERY TEST WELL AND
	DNAPL SHED
SETLE	SOUTHEASTERN TAR LENSES EXCAVATION
SPE	SEPARATOR PITS EXCAVATION
SWPRE	SOUTHWEST RESIDUALS EXCAVATION
WTBE	WESTERN TAR BOILS EXCAVATION

0


150


300

CLAY CAP ASPHALT CAP HDPE CAP REMEDIAL EXCAVATION PREVIOUSLY REMEDIATED AREAS ARE SHADED RED

SITE FIGURE

FIGURE 1

Appendix A

Groundwater and Surface Water Monitoring Results

(All Units in µg/L)

	MW-07	MW-07	MW-07 MW-07	7 MW-07	7 MW-0	7 MW-0	7 MW-	07 MW-	07 MW	-07 MW	-07 MW-0	7 MW-0	7 MW-0	7 MW-07	MW-07	MW-07	MW-0	7 MW-07	/ MW-07	/ MW-07	MW-07	/ MW-07	7 MW-07	MW-07	MW-07	7 MW-07	/ MW-07	7 MW-07	MW-07	/ MW-07	MW-07	MW-07	MW-07	MW-07	MW-07	MW-07	MW-07	MW-07	MW-07	7 MW-07	/ MW-0	7 MW-07	′ MW-0
DATE	Aug-95	May-96	Jul-97 Feb-98	3 Jun-99	Apr-0) Apr-0'	1 Jul-0	01 Nov-	01 Apr	-02 Jun	-02 Nov-0	2 Apr-03	3 Jul-03	3 Nov-03	Mar-04	Jun-04	Nov-0	4 Apr-05	Jul-05	Apr-06	Aug-06	6 Apr-07	Aug-07	Apr-08	Sep-08	3 Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	5 Apr-16	Aug-16	6 Apr-17	Aug-1
Benzene	3320	1210	4900	5100	5200	4800	390	0 330	0 27	00 22	00 3000	2100	1900	3200	2800	2000	1700	2800	2000	2900	2600	2000	1900	490	1100	780	850	330	840	690	600	690	420	660	450	620	570	1,100	1,100	660	1,100) 710	1,100
Toluene	389	20	750	2000	2700	2500	340	0 170	0 15	00 12	00 1400	1200	930	1700	1800	1300	930	1100	840	1100	570	620	100	270	590	420	250	96	44	210	37	77	6.9	210	9.2	94	14	110	30	32	14	36	39
Ethylbenzene	2400	410	2900	3700	3600	3300	200	0 210	0 23	00 19	00 2200	1900	1900	2700	2500	2500	1800	2700	2200	3100	2500	2500	2000	410	1500	1100	1000	520	1200	1200	800	1000	470	1000	600	1800	870	1,900	1,600	1,100	1,300	0 1,000	1,600
Xylene (sum of isomers)	1038	63	1200	1800	1900	1800	160	0 110	0 12	00 11	00 1100	1100	1000	1400	1200	1400	1000	1600	1300	1800	1500	1400	1100	270	910	820	700	360	820	770	510	660	270	680	440	980	590	1,400	1,200	660	780	650	940
Total BTEX	7147	1703	9750	12600	13400	12400	0 1090	0 820	0 77	00 64	00 7700	6300	5730	9000	8300	7200	5430	8200	6340	8900	7170	6520	5100	1440	4100	3120	2800	1,306	2,904	2,870	1,947	2,427	1,167	2,550	1,499	3,494	2,044	4,510	3,930	2,452	3,194	4 2,396	3,679
Acenaphthene	240	150	180	180	180	150	140) 160) 8	0 13	20 150	nd	160	120	160	180	160	130	220	120	130	nd	130	19	69	32	36	15	60	76	49	64	49	64	63	100	74	130	120	93	78	100	100
Acenaphthylene	nd	nd		nd		nd	2.2		, o			nd	nd	nd	nd	3	nd	nd	nd	nd	nd	nd	nd	2.5	nd	0.63	nd	nd	nd	nd	nd	nd	nd	2.0	0.83	nd	nd	nd	nd	nd	nd	nd	nd
Anthracene	nd	nd	nd	nd	nd	nd	3.6		n			nd	nd	nd	nd	nd	nd	nd	nd	5.4	3.9	nd	3	2.5	1.5	nd	nd	0.23	1.4	nd	0.98	1.5	1.3	1.6	1.7	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Anthracene	nd	nd	nd	nd	nd	nd	nd		n			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Pyrene	nd	nd	nd	nd		nd	nd		n			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd
Benzo(b)Fluoranthene	nd	nd	nd	nd	nd	nd	nd		n			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	nd
Benzo(g,h,i)Perylene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)Fluoranthene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)Anthracene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	0.47	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.2	0.27	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluorene	nd	28	45	nd	nd	nd	28	nd	n	d n	d 33	nd	nd	27	nd	42	nd	24	46	32	24	nd	25	7.6	13	6.4	6.2	2.7	12	13	9.6	11	11	13	12	nd	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)Pyrene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Naphthalene	3270	3000	2400	4100	5900	3400	340	0 360	0 22	00 26	00 5000	3100	3800	3200	3700	2700	4600	3500	3600	3000	3600	3700	3100	430	1000	1600	1400	650	1700	2100	1500	1700	870	1,700	1,100	2,500	1,600	3,400	3,000	2,200	1,600	2,300	2,300
Phenanthrene	nd	nd	37	nd	nd	nd	32	nd	n	d n	d 30	nd	nd	nd	nd	38	nd	nd	nd	33	28	nd	25	2.5	12	4.3	4.6	2.1	11	16	9.5	11	9.1	12	11	nd	nd	nd	nd	nd	nd	nd	nd
Pyrene	nd	nd	nd	nd	nd	nd	nd	nd	n	d n	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.28	nd	nd	nd	0.17	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene						180	190	200) 10	00 18	30 230	nd	280	170	270	320	300	230	400	350	250	270	230	24	120	73	84	33	110	160	90	120	66	130	82	260	110	300	250	170	120	190	190
Total PAHs	3510	3178	2662	4280	6080	3730	379	6 396	0 23	80 29	00 5443	3100	4240	3517	4130	3283	5060	3884	4266	3541	4036	3970	3513	488	1215.5	1684.33	3 1495	688.23	1834.95	5 2365	1610.08	1843.5	1006.57	1,922.6	1,270.53	2,860	1,784	3,830	3,370	2,463	1,798	3 2,590	2,590
Cyanide, total (Exygen/ Te	st America)		189																																								
Cyanide, total (Clarkson U	niv.)																																										
Cyanide, free (Exygen/ Tes	st America)																																										
Cyanide, free (Clarkson Ur	niv.)																																										
																	<u> </u>																										
Nater Elevation (feet)			580.13 581.68	3 579.84	581.7	581.50	0 579.9	98 580.	58 582	.01 580	.96 580.2	6 581.66	6 580.3	1 580.32	582.45	581.24	581.3	6 582.28	579.76	581.90	579.24	582.58	578.21	581.99	580.83	581.93	581.01	582.26	580.00	583.60	579.76	581.56	578.61	582.22	581.02	582.41	579.61	582.17	580.15	5 582.36	578.0	J9 581.9	6 581.

Notes:

nd - non-detect

(All Units in µg/L)

MW-10	MW-10	MW-10 MV	/-10 MW-10	MW-10	MW-10 MV	V-10 M	IW-10	MW-10	MW-10	MW-10	MW-10) MW-10	0 MW-1	0 MW-10	MW-10	MW-10	MW-10	0 MW-1	0 MW-10) MW-10) MW-10	MW-10	MW-10	0 MW-10	MW-10	MW-10	MW-1	0 MW-10	MW-10	MW-1	10 MW	/-10 MW	-10 M	W-10	MW-10	0 MW-1	0 MW-1	0 MW-						
DATE	Aug-95	May-96 Ju	-97 Feb-98	Jun-99	Apr-00 Ap	or-01 J	lul-01 I	Nov-01	Apr-02	Jun-02	Nov-02	2 Apr-03	Jul-03	3 Nov-03	Mar-04	Jun-04	Nov-04	4 Apr-0	5 Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	7 Apr-08	Sep-08	Apr-09	Aug-0	9 Apr-10	Aug-10) Apr-1	1 Sep	o-11 Apr	-12 A	ug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	6 Aug-1	6 Apr-1	7 Aug-
Benzene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	1.2	nd	nd	nd	nd	nd	0.83	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	nd	nd r	d	nd	nd r	nd	nd	nd	0.89	nd	nd	0.81	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	0.9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.3	nd	nd	nd	nd	nd	nd	nd	n	id n	Ł	nd	nd	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Xylene (sum of isomers)	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.66	nd	nd	nd	nd	nd	nd	nd	n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Total BTEX	0	0	0	0	0	0	0	0	0.89	0	0	2.91	0	0	0	0	0	0.83	0	0	0	0	1.96	0	0	0	0	0	0	0	(D C		0	0	1.0	0	0	0	0	0	0	0	0
Acenaphthene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	d l	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Anthracene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id ni	3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Anthracene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.27	nd	n	id n	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Pyrene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	t	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(b)Fluoranthene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.18	3 n	id ni	t	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(g,h,i)Perylene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.28	nd	n	id ni	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)Fluoranthene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id ni	d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.41	nd	n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)Anthracene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.77	'n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	0.34	nd	nd
Fluorene	nd	nd r	d	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)Pyrene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.35	nd	n	id n	ł	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Naphthalene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	2.1	nd	nd	nd	nd	nd	nd	0.78	nd	43	nd	nd	2.3	nd	nd	nd	nd	nd	nd	nd	n	id n	b	nd	nd	0.65	2.2	nd	nd	1.0	1.6	0.91	0.68	3 nd
Phenanthrene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.69) n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Pyrene	nd	nd r	ıd	nd	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.53	3 n	id n	Ł	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene					r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	3.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	id n	b	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Total PAHs	0	0	0	0	0	0	0	0	0	0	2.1	0	0	0	0	0	0	0.78	0	46.8	0	0	2.3	0	0	0	0	0	1.31	2.17	, (D C		0	0	0.65	2.2	0	0	1.0	1.6	0.9	0.68	3 0
Cyanide, total (Exygen/ Te	est America)	3	34																		-																							
Cyanide, total (Clarkson L	Jniv.)																									1																		
Cyanide, free (Exygen/Te	est America)																																											
Cyanide, free (Clarkson U	Jniv.)																																											
Water Elevation (feet)		57	9.87 581.44	579.33	581.19 58	1.07 5	79.64	580.10	581.61	580.51	579.51	581.23	579.9	3 579.16	581.92	580.80	580.90	581.7	3 579.53	581.15	580.04	582.06	578.19	581.51	580.45	581.10	580.8	2 580.49	580.56	583.3	9 579	9.53 581	.05 5	79.85	581.63	580.40	581.76	579.31	581.64	580.15	581.81	1 578.2	9 581.5	4 581.0
Notes:																																												
nd - non-detect																																												
open space - no data																																												

(All Units in µg/L)

MW-11 / MW-11A	MW-11	MW-11 M	4W-11 MW-11 MW-	11 MV	N-11 MW-1	1 MW	/-11 MW-11 MW-1	11 MW-1	11 MW-11	MW-1	1 MW-11	IA MW-11A	A MW-11A	MW-11	A MW-11A	۰ MW-11																									
DATE	Aug-95	May-96	Jul-97 Feb-98 Jun-9	99 Ap	or-00 Apr-0	1 Jul-	-01 Nov-01 Apr-0)2 Jun-0	02 Nov-02	2 Apr-03	3 Jul-03	3 Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	6 Apr-17	Apr-17
Benzene			35 nd		nd nd	nc	d nd	nd	nd	nd	350	80	50	270	150	140	250	67	140	100	180	230	210	190	200	77	150	15	170	31	85	20	32	nd	7.3	nd	12	8.8	44	12	11
Toluene			17 nd		nd nd	68				nd	230	1.2	0.7	35	nd	1.2	7	0.56	1.2	0.99	nd	5.5	nd	nd	nd	0.78	1.9	nd	nd	nd	1.4	nd	0.74	1	nd						
Ethylbenzene			94 nd		nd nd	no	· · · · · · · · · · · · · · · · · · ·			nd	650		6.9	30	5.4	9.6	38	2.5	8.7	2.8	5.5	69	71	67	80	35	56	5.7	63	7.1	34	7.3	5.7	nd	nd	nd	nd	nd	2.3	0.34	nd
Xylene (sum of isomers)			83 7	-	nd nd			-	-	nd	410		9.2	38	16	16	30	8.1	14	5.5	29	41	30	24	28	21	27	3.5	25	4.3	15	5.4	4.6	nd	nd	nd	1.4	nd	2	0.77	nd
Total BTEX			229 7	-	0 0	68				0	1640		67	373	171	167	325	78	164	109	215	346	311	281	308	133.78		24.2	258	42.4	135.4	32.7	42.3	0	7.3	0	13.4	8.8	49.04	14.11	_
									-																																
Acenaphthylene			9 2		nd nd	no	d nd	nd	nd	nd	12	8.4	nd	7.9	9.4	2.8	8.9	5.1	nd	5.8	0.93	6.9	3.4	3.7	4.6	2.4	3.8	0.72	2.8	1.3	2.2	2.9	4.7	nd	4	nd	3.4	2.9	3.3	2.6	2.8
Acenaphthene			7 nd		nd nd	no	id nd	nd	nd	nd	4.4	3.1	1.2	4.5	5.9	4.5	5.6	nd	nd	nd	2.7	5.6	5	4.1	6.1	3.1	5.1	2.6	4.6	2.0	3.8	1.4	2.1	nd	2.0	nd	1.8	1.7	2.0	1.5	1.4
Anthracene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	0.5	1.6	nd	nd	nd	nd	nd	nd	2.2	nd	nd	nd	nd	0.3	0.24	nd	nd	nd	nd	0.43	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Anthracene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Pyrene			nd nd		nd nd	no	id nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(b)Fluoranthene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(g,h,i)Perylene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)Fluoranthene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene			nd nd	1	nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)Anthracene			nd nd	1	nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene			nd nd		nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	0.3	nd	nd	nd	nd	0.57	nd	nd	0.32	0.52	0.24	0.51	0.45	0.42	nd	0.40	0.36	0.95	nd	nd	nd	0.70	nd	0.48	nd	0.67
Fluorene			nd nd		nd nd	no	d nd	nd	nd	nd	2.2	nd	nd	1.9	2.3	1.3	1.7	1.5	nd	nd	nd	5.1	0.86	0.89	1.6	0.72	1.2	0.83	nd	nd	0.91	0.52	1.4	nd	0.73	nd	0.64	0.6	0.53	0.46	0.49
Indeno(1,2,3-cd)Pyrene			nd nd	1	nd nd	no	d nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Naphthalene			140 12		nd nd	no	d nd	nd	nd	nd	150	130	nd	39	31	nd	20	2.9	nd	nd	0.79	7.1	2.5	4.1	9.3	0.78	2.6	0.28	4	nd	0.81	0.29	0.57	0.6	nd	1.4	1.20	nd	nd	nd	0.74
Phenanthrene			nd nd		nd nd	no	id nd	nd	nd	nd	2.7	2.2	nd	3.7	6.4	nd	2	nd	nd	nd	nd	1.5	nd	nd	2.8	nd	0.56	nd	nd	nd	nd										
Pyrene			nd nd		nd nd	no	id nd	nd	nd	nd	nd	nd	nd	0.3	0.73	0.46	0.33	nd	nd	nd	1.2	nd	nd	0.36	0.75	0.27	0.52	0.71	0.56	nd	0.51	0.58	1.3	nd	1	nd	1	0.66	0.73	0.63	0.96
2-Methylnaphthalene					nd	no	d nd	nd	nd	nd	31	4.4	nd	0.26	nd	nd	0.15	nd	nd	nd	nd																				
Total PAHs			156 14		0 0	0	0 0	0	0	0	202	148	1	58	57	9	39	10	0	6	6	28	11.76	13.47	25.67	7.51	14.59	5.83	12.38	3.3	8.63	6.05	11.45	0.64	7.73	1.40	8.74	5.86	7.04	5.19	7.06
Cyanide, total (Exygen/ Test	t America)		1040				1340																																		175
Cyanide, total (Clarkson Univ	v.)																																								
Cyanide, free (Exygen/ Test	America)						nd																																		5.9
Cyanide, free (Clarkson Univ	v.)																																								<u> </u>
Vater Elevation (feet)			580.28 582.26 579.8	82 58	3 55 583 8	5 579	20 501 20 502 0	5 591 2	591.03	592.07	7 590 70	0 591 11	592.02	591 54	504.07	500.74	500.00	500.00			570.40	500.40	504.00	500.05	504.40		500.07	504.05	500.00	500.07	570.00	500 70		500.00	570.00	500.74	590.62	592.02	570.40	592.64	592.0

Notes:

nd - non-detect

(All Units in µg/L)

MW-12	MW-12		MW-12 MW-12			_	_						MW-12	MW-12 N	W-12	MW-12	MW-12	MW-12	MVV-12	WW-12	WW-12	MW-12	MW-12	MW-12	WW-12	MVV-12	IVIVV-12	MVV-12	MW-12	MVV-12	MW-12	MW-12	MW-12	MW-12	MW-12 MW-						
DATE	Aug-95	May-96	Jul-97 Feb-98	Jun-99 Ap	r-00 Apr-	01 Jul-0	1 Nov-	01 Apr	-02 Jun-02	Nov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06 A	pr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	Apr-17 Aug-
Benzene			17																																						
Toluene			nd																																						
Ethylbenzene			nd																																						
Xylene (sum of isomers)			nd																																						
Total BTEX			17																																						
Acenaphthylene			nd																																						
Acenaphthene			nd																																						
Anthracene			nd																																						
Benzo(a)Anthracene			nd																																						
Benzo(a)Pyrene			nd																																						
Benzo(b)Fluoranthene			nd																																						
Benzo(g,h,i)Perylene			nd																																						
Benzo(k)Fluoranthene			nd																																						
Chrysene			nd																																						
Dibenzo(a,h)Anthracene			nd																																						
Fluoranthene			nd																																						
Fluorene			nd																																						
Indeno(1,2,3-cd)Pyrene			nd																																						
Naphthalene			nd																																						
Phenanthrene			nd																																						
Pyrene			nd																																						
2-Methylnaphthalene																																									
Total PAHs		_	0																																						
Cyanide, total (Exygen/ Te	est America)		375	294 3	80 43	4 184	393	3 52	2 2020	438	440	384	437	134	458	514	2110											708	837	720	670	480	530	540	526	580	570	890	640	790	536 1,70
Cyanide, total (Clarkson U	Jniv.)														461	491	425	413	440	415	459	454	473	550	472	449	550														
Cyanide, free (Exygen/ Te		_			nd no	d nd	nd	l no	d 58	7	nd	88	57	19	6	5	817											6.0	7.0	nd	10	23	10	14	7.5	10	nd	9	6	nd	6.8 7.2
Cyanide, free (Clarkson U	niv.)					_	_							6.7	nd	nd	3.3	2.9	2.6	nd	nd	6.8	25	7.2	4.1	4.7	nd											<u> </u>			<u> </u>
Water Elevation (feet)			579.45 581.07								-																									 		+			L

Notes:

nd - non-detect

(All Units in µg/L)

DATE	Aug-95	May-96	Jul-97 Fe	b-98 Jur	00-rqA 99-	Apr-01 Jul-01	Nov-01	Apr-02 Jun-0	2 Nov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04 N	lov-04	Apr-05	Jul-05	Apr-06	Aua-06	Apr-07	Aug-07	Apr-08 S	ep-08	Apr-09	Aug-09	Apr-10 A	Ja-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-1	3 Apr-14	Aug-14	Apr-15	Aug-1!	5 Apr-16	Aug-16	6 Apr-17	7 Au
																					g						- 3														
Benzene			4	nd					1.8			3.7			1.2				1.9		2.1	nd			1).44		0.72		1.6		2.8	+	1.3		0.91		1.8		r
Toluene			nd	nd					nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Ethylbenzene			nd	nd					nd			nd			nd				nd		0.38	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Xylene (sum of isomers)			nd	nd			1		nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Total BTEX		_	4	0					1.8			3.7			1.2				1.9		2.48	0			1	().44		0.72		1.6		2.8		1.3		0.91		1.8		
Acenaphthene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Acenaphthylene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Anthracene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Benzo(a)Anthracene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Benzo(a)Pyrene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Benzo(b)Fluoranthene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Benzo(g,h,i)Perylene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Benzo(k)Fluoranthene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Chrysene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Dibenzo(a,h)Anthracene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Fluoranthene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Fluorene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Indeno(1,2,3-cd)Pyrene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Naphthalene			nd						nd			nd			nd				2.8		0.88	nd			nd		nd		nd		nd		nd		nd		nd		nd		0.
Phenanthrene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Pyrene			nd						nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
2-Methylnaphthalene									nd			nd			nd				nd		nd	nd			nd		nd		nd		nd		nd		nd		nd		nd		r
Total PAHs			0						0			0			0				2.8		0.88	0			0		0		0		0		0		0		0		0		0.
Cyanide, total (Exygen/ Te	st America)		323	3	56 280	129 465	716	nd 157	399	142	423	528	175	108	280	103											449	nd	620	10	670	nd	530	nd	500	nd	400	nd	400	nd	1
Cyanide, total (Clarkson U	niv.)													145	234	55	363	61	300	3	664	54	467	27	327	nd									ļ						
Cyanide, free (Exygen/ Te	st America)				nd	33 119	nd	nd 96	13	nd	51	22	22	nd	nd	45											nd	nd	nd	0.87	21	nd	5.7	nd	nd	nd	7.4	nd	nd	nd	22
Cyanide, free (Clarkson Ur	niv.)												5.3	nd	nd	nd	3	nd	nd	nd	5.3	2.3	8.2	nd	nd	nd									<u> </u>		_				
																																		1	1				1		

Notes:

nd - non-detect

(All Units in µg/L)

MW-14	MW-14	MW-14	MW-14 MW-14 MW-1	4 MW-1	4 MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14 N	1W-14	MW-14	MW-14	MW-14	MW-	14 MW-14	4 MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14 MW-									
DATE	Aug-95	May-96	Jul-97 Feb-98 Jun-99	9 Apr-0	0 Apr-01	Jul-01	Nov-01	Apr-02	Jun-02	Nov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-0	04 Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	Apr-17 Aug-
Benzene			nd																								-														
Toluene			nd													-							-				-														
Ethylbenzene			nd	-												-							-																		
Xylene (sum of isomers)			nd																																						
Total BTEX			0																																						
Acenaphthene			nd															-			-			-																	
Acenaphthylene			nd																																						
Anthracene			nd																																						
Benzo(a)Anthracene			nd																																						
Benzo(a)Pyrene			nd																																						
Benzo(b)Fluoranthene			nd																																						
Benzo(g,h,i)Perylene			nd																																						
Benzo(k)Fluoranthene			nd																																						
Chrysene			nd																																						
Dibenzo(a,h)Anthracene			nd																																						
Fluoranthene			nd																																						
Fluorene			nd																																						
Indeno(1,2,3-cd)Pyrene			nd																																						
Naphthalene			nd																																						
Phenanthrene			nd																																						
Pyrene			nd																																						
2-Methylnaphthalene																																									
Total PAHs			0																																						
Cyanide, total (Exygen/ Test	t America)		644 427	800	914	378	449	886	416	487	664	962	583	nd	503	537												541	623	670	610	610	640	600	610	720	610	740	240	560	508 578
Cyanide, total (Clarkson Univ	iv.)														514	571		423	305	281	404	422	374	486	425	422	480														
Cyanide, free (Exygen/ Test	America)			nd	nd	nd	nd	nd	17	12	nd	9	7	nd	14	13												nd	nd	nd	1.7	nd	nd	nd	nd	nd	nd	5.7	nd	nd	nd 38.9
Cyanide, free (Clarkson Univ														nd	nd	nd		nd	nd	nd	nd	nd	4	2.5	4.1	nd	nd														
Water Elevation (feet)			577.36 579.19 577.03	3 578.4	4 578.21	577.21	577.31	578.56	577.61	576.76	577.92 5	77.23	577.11	578.15	577.55	577.4	46	577.07	577.99	577 29	577 89	577 43	577.87	576.48	577 57	577 15	578.05	577 27	579.98	577.05	577 85	576.63	578.43	577 55	578.66	577 73	577.85	577.63	578.74	576 87	578.55 579.2

Notes:

nd - non-detect

(All Units in µg/L)

MW-15	MW-15											MW-15 MW-15 MW-15	5 MW-15	6 MW-15 MW-	-15 MW-15 MW-15	MW-15	MW-15 MW-15 M	/W-15 MV	V-15 I	MW-15 MW-15 MW-15	MW-15	MW-15	MW-15 MW-15 MW-15	5 MW-15	MW-
DATE	Aug-95	May-96 Jul	-97 Feb-98 Jun-	99 Apr-00 Apr-01	Jul-01 Nov-01 Apr-02	Jun-02 Nov-02	Apr-03 Jul-03 Nov-03	Mar-04	Jun-04 Nov-0	4 Apr-05 Jul-0	5 Apr-06	Aug-06 Apr-07 Aug-07	7 Apr-08	Sep-08 Apr-	09 Aug-09 Apr-10	Aug-10	Apr-11 Sep-11 A	Apr-12 Au	g-12	Apr-13 Aug-13 Apr-14	Aug-14	Apr-15	Aug-15 Apr-16 Aug-16	6 Apr-17	Aug
Benzene		n	d																						
oluene		n	d													-									
Ethylbenzene			d																						
Kylene (sum of isomers)		n	d																						-
Total BTEX)																						
Naphthalene		n	d																						
Acenaphthylene			d																						+
Acenaphthene			d																						
Fluorene		n	d										-												
Phenanthrene		n	d																						
Anthracene		n	d																						
luoranthene		n	d																						
yrene		n	d																						
Benzo(a)Anthracene		n	d																						
Chrysene		n	d																						
Benzo(b)Fluoranthene		n	d																						
Benzo(k)Fluoranthene		n	d																						
Benzo(a)Pyrene		n	d																						
ndeno(1,2,3-cd)Pyrene		n	d																						
Dibenzo(a,h)Anthracene		n	d																						
Benzo(g,h,i)Perylene		n	d																						
2-Methylnaphthalene																									
Fotal PAHs)																						
Cyanide, total (Exygen/ Test	t America)	78	3.8																						
Cyanide, total (Clarkson Univ	iv.)																								
Cyanide, free (Exygen/ Test	t America)																								
Cyanide, free (Clarkson Univ	iv.)																								
Water Elevation (feet)		570	11 579 81 578	70 580 15 580 55	578 98 579 49 580 98	579 48 578 88	580.40 579.11 579.30	581.04	579.99	580 54 579 4	5 590 5/	579.36 577.80	580.60	570.65 590	61 570 65 590 97	570.19	582 58 578 76	NM 57	6.00	590.02 570.55 591.19	578 77	580.85	579.34 581.1 577.9	580.82	580

Notes:

nd - non-detect

(All Units in µg/L)

MW-16	MW-16	MW-16 M	/W-16 MW-16 MW-1	6 MW-	16 MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16 N	1W-16 N	/W-16	MW-16	WW-16	MW-16 MW-																									
DATE	Aug-95	May-96	Jul-97 Feb-98 Jun-9	9 Apr-	00 Apr-01	Jul-01	Nov-01	Apr-02	Jun-02 I	Nov-02	Apr-03	Jul-03 N	lov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	Apr-17 Aug-
enzene			nd																																						
oluene			nd																																						
thylbenzene			nd																																						
(ylene (sum of isomers)			nd														1										1														
Total BTEX			0																																						
Vaphthalene			nd																																						
Acenaphthylene			nd																																						
Acenaphthene			nd																																						
Fluorene			nd																																						
Phenanthrene			nd																																						
Anthracene			nd																																						
luoranthene			nd																																						
Pyrene			nd																																						
Benzo(a)Anthracene			nd																																						
Chrysene			nd																																						
Benzo(b)Fluoranthene			nd																																						
Benzo(k)Fluoranthene			nd																																						
Benzo(a)Pyrene			nd																																						
ndeno(1,2,3-cd)Pyrene			nd																																						
Dibenzo(a,h)Anthracene			nd																																						
Benzo(g,h,i)Perylene			nd																																						
2-Methylnaphthalene																																									
Total PAHs			0																																						
Cyanide, total (Exygen/ Test	t America)		346 459	360) 214	214	138	174	23	187	203	130	220	254	297	293	307											602	617	700	840	750	880	740	730	1300	1100	1500	1700	1700	1570 169
Cyanide, total (Clarkson Univ	iv.)														332	297	305	299	266	368	317	429	467	540	531	504	566														
Cyanide, free (Exygen/ Test	t America)			nd	nd	147	nd	nd	17	13	nd	89	20	95	12	104	nd											7.0	9.0	7.0	9.5	37	32.0	9.5	7.2	20	13.0	20	11	8	17 38.
Cyanide, free (Clarkson Univ	v.)													3.4	2.8	nd	nd	nd	nd	nd	nd	4	6.9	5.0	5.5	4.4	2.4														
Nater Elevation (feet)			580.17 581.49 579.6	6 581	81 581 50	580.06	580 77	582.08	580.23	590.24	591 02 5	90 42 F	80.95	502.02	591 25	591 72	591.09	570.01	592.14	590 FC	500.07	570.05	504.00	504.7	500.00	504.00	500.04	500.00	594.06	590.04	592.00	570.00	500 50	500 70	500.07	570.61	500 50	590.40	592 97	E70 04	592.42 591

Notes:

nd - non-detect

(All Units in µg/L)

MW-17	MW-17	MW-17	7 MW-17 MW-17	MW-17	7 MW-17	/ MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	7 MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	7 MW-17	MW-17	7 MW-	17 MW-1												
DATE	Aug-95	May-96	3 Jul-97 Feb-98	Jun-99	Apr-00	Apr-01	Jul-01	Nov-01	Apr-02	Jun-02	Nov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	5 Apr-16	Aug-16	6 Apr-1	17 Aug-1
															0.00																												
Benzene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.32	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Toluene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Ethylbenzene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd								
Xylene (sum of isomers)			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.63	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd							
Total BTEX			0	0	0	0	0	0	0	0	0	0	0	0	0.32	0	0	0	0	0	0	0	1.73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Acenaphthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd
Acenaphthylene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd
Anthracene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd
Benzo(a)Anthracene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.61	nd	1.3	nd	nd	nd	l nd								
Benzo(a)Pyrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.50	nd	1.80	nd	nd	nd	l nd								
Benzo(b)Fluoranthene		ĺ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.54	nd	2	nd	nd	nd	l nd								
Benzo(g,h,i)Perylene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.7	nd	1.6	nd	nd	nd	l nd								
Benzo(k)Fluoranthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.59	nd	1.5	nd	nd	nd	l nd								
Chrysene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.63	nd	1.3	nd	nd	nd	l nd								
Dibenzo(a,h)Anthracene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.83	nd	4.7	nd	nd	nd	l nd								
Fluoranthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.73	nd	nd	nd	l nd								
Fluorene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd
Indeno(1,2,3-cd)Pyrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.76	nd	4.4	nd	nd	nd	l nd								
Naphthalene			nd	nd	nd	nd	3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.75	nd	nd	nd	nd	1.5	0.5	no	0.45										
Phenanthrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd
Pyrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.75	nd	nd	nd	l nd								
2-Methylnaphthalene						nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l nd												
Total PAHs			0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5.16	0	20.08	0	0	0	0.75	0	0	0	0	1.5	0.53		
Cyanide, total (Exygen/ Test	t America)		34	nd	27	65	38	74	185	127	108	185	50	66	378	106	160	217											93	297	230	210	81	160	98	198	160	220	89	240	60	124	4 173
Cyanide, total (Clarkson Univ					+											142	162	260	161	263	183	369	148	285	144	279	148	242		1	-	-						-					
Cyanide, free (Exygen/ Test	· · · · · · · · · · · · · · · · · · ·				nd	13	nd	nd	nd	nd	nd	nd	16	nd	nd	nd	nd	61											nd	4	nd	0.98	nd	1.20	nd	nd	nd	nd	9.5	nd	nd	nd	l nd
Cyanide, free (Clarkson Univ														1	nd	nd	nd	nd	nd	5.2	nd	nd	nd	5.9	nd	5.0	nd	nd								1							
Water Elevation (feet)			582.36	579.73	3 581.90	581.96	580.12	580.88	582.38	579.86	580.48	582 01	580.46	580.96	582 40	581 27	581 72	582 71	579.96	582 14	580.62	592.97	579.26	583.02	581 13	582 30	591 26	592.61	580 18	583.08	NM	581 93	578 92	582.68	590 77	582.86	579.68	582 58	580.46	582.89	578 43	3 582 5	53 581.95

Notes:

nd - non-detect

(All Units in µg/L)

MW-18 MW-18	MW-18 MW-18	MW-18 MW-18	BMW-18 MW	-18 MW	-18 MW-	18 MW	-18											
DATE Aug-95	May-96 Jul-97	Feb-98 Jun-99	Apr-00 Apr-	-01 Jul-	01 Nov-	01 Apr	-02											
Benzene		nd nd	nd no	d no	d nd	l n	d											-
Toluene		nd nd	nd no	d 1.	1 nd	l n	d											
Ethylbenzene		nd nd	nd no	d no	d nd	l n	d											
Xylene (sum of isomers)		nd nd	nd no	d no	d nd	i n	d											
Total BTEX		0 0	0 0) 1.1	1 0	()											
Naphthalene		nd nd	nd no					 			 	 					 	
Acenaphthylene		nd nd	nd no	d no	d nd	l n	b	 		 	 							_
Acenaphthene		nd nd	nd no					 		 	 							
Fluorene		nd nd	nd no	d no	d nd	l n	d											
Phenanthrene		nd nd	nd no	d no	d nd	l n	d											
Anthracene		nd nd	nd no	d no	d nd	l n	d											
Fluoranthene		nd nd	nd no	d no	d nd	l n	d											
Pyrene		nd nd	nd no	d no	d nd	l n	d											
Benzo(a)Anthracene		nd nd	nd no	d no	d nd	l n	d											
Chrysene		nd nd	nd no	d no	d nd	i n	d											
Benzo(b)Fluoranthene		nd nd	nd no	d no	d nd	l n	d											
Benzo(k)Fluoranthene		nd nd	nd no	d no	d nd	l n	d											
Benzo(a)Pyrene		nd nd	nd no	d no	d nd	l n	d											
Indeno(1,2,3-cd)Pyrene		nd nd	nd no	d no	d nd	l n	d											
Dibenzo(a,h)Anthracene		nd nd	nd no	d no	d nd	l n	d											
Benzo(g,h,i)Perylene		nd nd	nd no	d no	d nd	l n	d											
2-Methylnaphthalene			no	d no	d nd	i n	d											
Total PAHs		0 0	0 0) 0	0	()											
				_				 		 	 							
Cyanide, total (Exygen/ Test America)		nd nd	nd 13	3 no	i nd	l n		 		 	 							_
Cyanide, total (Clarkson Univ.)								 		 	 							_
Cyanide, free (Exygen/ Test America)			nd no	d 24	l nd	l n	d	 		 	 						 	_
Cyanide, free (Clarkson Univ.)				_	_							-						
Water Elevation (feet)		585.46 582.65	5 585 06 585	40 583	84 583	84 582	74	 		 	 							

Notes:

nd - non-detect

(All Units in µg/L)

MW-19	MW-19	MW-19	0 MW-19 MW-1	9 MW-	19 MW-1	19 MW-1	9 MW-	19 MW-	-19 MV	W-19 M\	N-19 MV	V-19 MV	W-19 MW-1	9 MW-1	9 MW-	19 MW-1	9 MW-	19 MW-19	MW-19	MW-19	9 MW-1	19 MW-19	MW-19	9 MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	9 MW-	19 MW
DATE	Aug-95	May-96	3 Jul-97 Feb-9	98 Jun-9	99 Apr-0	00 Apr-0	1 Jul-(01 Nov-	-01 Ap	or-02 Ju	in-02 No	v-02 Ap	or-03 Jul-03	3 Nov-0	B Mar-)4 Jun-0	4 Nov-	04 Apr-05	Jul-05	Apr-06	6 Aug-0	06 Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	6 Apr-1	17 Aug
Benzene				470	0 5700	0 6000	460	0 470	00 4	800 3	800 42	200 46	600	5300	490	6000	580	0 7500	5800	5800	5600	0 6700	4500	5200	3700	3700	3700	4300	4700	4400	4200	3800	4300	4000	4800	5200	5800	5300	5400	4700	4900	400	0 530
Toluene				nd	nd	nd	16) nc	d	nd	nd r	nd r	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	2.9	nd	nd	nd	nd	nd	100	nd	l no
Ethylbenzene				nd	280	260	nd	l no	d 1	160 1	150 1	40 1	170	130	170	330	180	350	270	260	200	220	100	210	120	180	170	290	230	280	170	190	130	210	300	550	310	400	430	370	270	410	0 50
Xylene (sum of isomers)				150	0 2200	0 1500) 93	0 66	i0 5	580 4	470 5	40 5	560	400	440	1000	660	950	770	730	810	710	470	780	510	470	450	340	190	nd	nd	nd	nd	nd	75	nd	nd	nd	nd	nd	200	84	n
Total BTEX				620	0 8180	7760	569	0 536	60 5	540 4	420 48	380 53	330	5830	551	0 7330	664	0088 0	6840	6790	6610	7630	5070	6190	4330	4350	4320	4930	5120	4680	4370	3990	4430	4210	5178	5750	6110	5700	5830	5070	5170	441	0 580
Acenaphthene				nd	nd	nd	nd	l nc	d I	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd	nd	nd	nd	0.27	nd	nd	nd	nd	nd	nd	0.74	nd	nd	nd	nd	nd	nd	n
Acenaphthylene				nd	nd	nd	nd	l no	d	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Anthracene				nd	nd	nd	nd	l no	d l	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Benzo(a)Anthracene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Benzo(a)Pyrene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Benzo(b)Fluoranthene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Benzo(g,h,i)Perylene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Benzo(k)Fluoranthene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Chrysene				nd	nd	nd	nd	l no	l b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n
Dibenzo(a,h)Anthracene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Fluoranthene				nd	nd	nd	nd	l no	d	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Fluorene				nd	nd	nd	nd	l no	d I	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Indeno(1,2,3-cd)Pyrene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n
Naphthalene				1,90	00 2,20	0 2,200	2,00	0 2,1	100 2,	,300 2,	,000 2	,100 2,4	,400 2,10	0 2,00	2,7	00 2,90	0 2,8	3,000	2,600	2,800	3,60	3,100	4,600	4,100	2,600	3,600	3,600	3,300	3,700	3,300	2,700	3,200	2,900	2,600	4,200	5,500	5,400	4,600	5,700	3,900	2,900	0 6,20	00 4,4
Phenanthrene				nd	nd	nd	nd	l no	d	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
Pyrene				nd	nd	nd	nd	l no	b	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	l no
2-Methylnaphthalene						nd	0.8	2 nc	d	nd	nd r	nd r	nd nd	nd	nd	nd	nd	nd	nd	5.5	4.8	nd	5.5	4.7	3.5	6.2	6.7	7.2	7.6	9.3	6.1	6.2	11	9.5	nd	210	nd	nd	11	nd	nd	nd	l no
Total PAHs				190	0 2200	2200	200	1 210	00 2	300 2	000 21	100 24	400 2100	2000	270	2900	280	3000	2600	2806	3605	5 3100	4606	4106	2603.5	3606.2	3606.7	3307.2	3707.87	3309.3	2706.1	3206.2	2911	2609.5	4,200	5,711	5,400	4,600	5,711	3,900	2,900	0 6,20	00 4,4
Cyanide, total (Exygen/ Te	est America)			110	0																																						
Cyanide, total (Clarkson U	Jniv.)																																										
Cyanide, free (Exygen/ Te	est America)																																										
Cyanide, free (Clarkson U	Iniv.)																																										
Water Elevation (feet)				577.4	13 581 3	86 581 1	3 579	63 580	12 58	1 73 57	0 73 570	0.83 58	31.24 580.0	1 590.10	582 (0 590 7	0 590 (591.00	570.57	504.40	500.4	5 500 00	570.0	504.0	500 50	504.40	500 70	504.0	570 70	502.45	570 54	504.04	570.00	504.47		504.00	570.00	504.00	500.04	504.00	570.40	501 6	07 504

Notes:

nd - non-detect

(All Units in µg/L)

MW-20	MW-20	MW-20	MW-20 MW-20	MW-20 MW-20 MV	/-20 MW	-20 MV	V-20 MV	V-20 MW	-20 MW-2	20 MW-20	0 MW-20	1W-20	MW-20	MVV-20	MW-20	WW-20	WW-20	MW-20	WW-20	MW-20	10100-20	MW-20	WW-20	WW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MM									
DATE	Aug-95	May-96	Jul-97 Feb-98	Jun-99 Apr-00 Ap	r-01 Jul-	-01 No	v-01 Ap	r-02 Jun	-02 Nov-0	02 Apr-03	3 Jul-03	Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	ug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	Apr-17	Aug
Benzene				nd																																					+
oluene				nd																																					
Ethylbenzene				nd																																					
Kylene (sum of isomers)				nd																																					
Total BTEX				0																																					
Acenaphthene				nd																																					+
Acenaphthylene				nd																																[]					1
Anthracene				nd																																					-
Benzo(a)Anthracene				nd																																					
Benzo(a)Pyrene				nd																																					
Benzo(b)Fluoranthene				nd																																					
Benzo(g,h,i)Perylene				nd																																					
Benzo(k)Fluoranthene				nd																																					
Chrysene				nd																																					
Dibenzo(a,h)Anthracene				nd																																					
Fluoranthene				nd																																					
Fluorene				nd																																					
ndeno(1,2,3-cd)Pyrene				nd																																					
Naphthalene				nd																																					
Phenanthrene				nd																																					
Pyrene				nd																																					
2-Methylnaphthalene																																									
Total PAHs				0																																					—
yanide, total (Exygen/ Te	est America)	-		344 450 2	95 43	39 4	46 4	55 36	61 8	506	399	21	501	242	387	644											139	690	560	790	280	730	390	660	150	890	640	1000	560	874	10
Cyanide, total (Clarkson U	Jniv.)													242	444	402	160	429	172	469	337	494	115	418	268	495															
Cyanide, free (Exygen/ Te	est America)			nd 1	3 no	d I	nd r	nd 1	0 9	nd	44	14	nd	nd	53	13											nd	6	nd	2.2	6.0	4.9	nd	2.0	nd	nd	5.9	nd	nd	nd	33
Syanide, free (Clarkson U	Iniv.)												nd	2.6	3.2	nd	nd	nd	nd															_							
				576.67 579.24 578																																ļ	· · · · · · · · · · · · · · · · · · ·			 	

Notes:

nd - non-detect

(All Units in µg/L)

MW-21	MW-21	MW-21	MW-21 MW-21	MW-21 MW-2'	1 MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MVV-21	MW-21	WW-21	MW-21	MW							
DATE	Aug-95	May-96	Jul-97 Feb-98	Jun-99 Apr-00	Apr-01	Jul-01	Nov-01	Apr-02	Jun-02	Nov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07	Aug-07	Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16	Aug-16	Apr-17	Auç
enzene				nd																																		+				
oluene				nd													-																						++			1
Ethylbenzene				nd																																						
ylene (sum of isomers)				nd																																						-
otal BTEX				0																																		1				1
Naphthalene				nd																																		+				
Acenaphthylene				nd																																			++			+
Acenaphthene				nd																																			++			+
Fluorene				nd	-																																	+	++			+
henanthrene				nd																																						-
nthracene				nd																																						-
luoranthene				nd													-																									
yrene				nd																																					1	
enzo(a)Anthracene				nd																																						
Chrysene				nd																																						
enzo(b)Fluoranthene				nd																																						
Benzo(k)Fluoranthene				nd																																						
senzo(a)Pyrene				nd																																						
ndeno(1,2,3-cd)Pyrene				nd																																						
Dibenzo(a,h)Anthracene				nd																																						
enzo(g,h,i)Perylene				nd																																						
-Methylnaphthalene																																										
otal PAHs				0																																						
yanide, total (Exygen/ Te	est America)			511 560	898	558	535	756	674	670	637	708	569	714	741	740	664											433	539	420	480	420	490	460	453	430	500	440	430	320	371	94
yanide, total (Clarkson U	Jniv.)														749	709	688	545	404	448	574	560	543	417	485	441	508												1			
yanide, free (Exygen/ Te	est America)			nd	14	nd	nd	24	12	13	nd	11	nd	nd	nd	7	20											nd	6	nd	1.6	nd	nd	nd	2.1	nd	nd	5.5	nd	nd	nd	26
yanide, free (Clarkson U	niv.)													nd	nd	nd	nd	2.6	nd	nd	nd	nd	18.5	4.2	nd	nd	nd															
																																									L	

Notes:

nd - non-detect

(All Units in µg/L)

MW-22	MW-22	MW-22 MW-22 MW-22	MW-22 MW-22	MW-22 MW-22	2 MW-22	MW-22 MW-2	2 MW-22	MW-22	MW-22	MW-22	MW-22 N	1W-22 MV	/-22 N	1W-22	MW-22 M	IW-22 MV	V-22 MW-2	2 MW-2	2 MW-22	2 MW-22	MW-22	MW-22	MW-22	MW-22 N	/W-22	MW-22	MW-22 N	1W-22 N	IW-22	MW-22 MW-2							
DATE	Aug-95	May-96 Jul-97 Feb-98	Jun-99 Apr-00	Apr-01 Jul-01	Nov-01	Apr-02 Jun-0	2 Nov-02	Apr-03	Jul-03	Nov-03	Mar-04 J	un-04 No	v-04 A	Apr-05	Jul-05 A	pr-06 Au	g-06 Apr-0	Aug-0	7 Apr-08	3 Sep-08	Apr-09	Aug-09	Apr-10	Aug-10 A	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-15	Apr-16 A	.ug-16	Apr-17 Aug-1
Benzene			6																																		
Toluene			nd				-											-	-																		
Ethylbenzene			nd															-																			
Xylene (sum of isomers)			nd																																		
Total BTEX			6																																		
Naphthalene			nd				-																														
Acenaphthylene			nd																																		
Acenaphthene			nd																																		
Fluorene			nd																																		
Phenanthrene			nd		1																																
Anthracene			nd																																		
Fluoranthene			nd																																		
Pyrene			nd																																		
Benzo(a)Anthracene			nd																																		
Chrysene			nd																																		
Benzo(b)Fluoranthene			nd																																		
Benzo(k)Fluoranthene			nd																																		
Benzo(a)Pyrene			nd																																		
Indeno(1,2,3-cd)Pyrene			nd																																		
Dibenzo(a,h)Anthracene			nd																																		
Benzo(g,h,i)Perylene			nd																																		
2-Methylnaphthalene																																					
Total PAHs			0																																		
Cyanide, total (Exygen/ To	est America)		487 600	1010 734	460	703 1570	467	604	560	1080	741	504 8	03	941						-				778	1030	860	1000	870	1100	770	746	790	770	990	1600	760	676 830
Cyanide, total (Clarkson L	Jniv.)											676 7	59	628	534	587 5	642	641	666	785	704	690	771														
Cyanide, free (Exygen/ Te	est America)		nd	nd 201	nd	nd 49	231	267	88	49	132	nd 2	07	99										nd	7	nd	5.5	26	9.2	14.1	24.0	11.6	11.2	6.5	8.3	nd	12.0 24.6
Cyanide, free (Clarkson L	Jniv.)										nd	8 r	nd	3.1	2.4	nd i	nd nd	4.3	5.9	3.3	3.1	3.4	nd														
Water Elevation (feet)			578.80 580.70	580.51 579.09	9 579 50	581.25 580.0	5 579 10	580.62	579 42	579 47	581 27 5	80.05 580	122 5	81 28	579 13 5	80.69 57	9 60 581 7	579.0	591.03	2 570.02	590.96	590.02	591 10	570.20 5	02 12	579.00	590 56	579.26	591 17	570.60	581 51	578 85	581 18	570 53 P	81 37	77 93	581 20 580 5

Notes:

nd - non-detect

(All Units in µg/L)

MW-23	MW-23	MW-23 MW-23	MW-23 MW-23	3 MW-23 MW-23	3 MW-2	-23 MW-23 MW-2	23 MW-2	3 MW-23	MW-23	MW-23 MW-23	MW-23	MW-23	MW-23	3 MW-23	MW-23	MW-23	MW-23	MW-23 N	W-23	MW-23	MW-23	/W-23 M	V-23 M	W-23	MW-23	MW-23 M	W-23 MV	W-23 N	W-23	MW-23	/W-23 M	W-23	MW-23	MW-23	/W-23 N	/W-23 N	W-23	MW-23 MW
DATE	Aug-95	May-96 Jul-97	Feb-98 Jun-99	Apr-00 Apr-01	1 Jul-0	01 Nov-01 Apr-02	2 Jun-02	2 Nov-02	Apr-03	Jul-03 Nov-03	Mar-04	Jun-04	Nov-04	Apr-05	Jul-05	Apr-06	Aug-06	Apr-07 A	ug-07	Apr-08	Sep-08	Apr-09 Au	g-09 Ap	pr-10	Aug-10	Apr-11 S	ep-11 Ap	or-12 A	ug-12	Apr-13	Aug-13 A	or-14	Aug-14	Apr-15	Aug-15 /	Apr-16 A	ug-16	Apr-17 Aug
Benzene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	n
Toluene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Ethylbenzene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Xylene (sum of isomers)				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Total BTEX				0				0		0			0				0				0		0		0		0		0		0		0		0		0	0
Acenaphthene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Acenaphthylene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Anthracene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Benzo(a)Anthracene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Benzo(a)Pyrene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Benzo(b)Fluoranthene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Benzo(g,h,i)Perylene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Benzo(k)Fluoranthene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Chrysene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Dibenzo(a,h)Anthracene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Fluoranthene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Fluorene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Indeno(1,2,3-cd)Pyrene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Naphthalene				nd				nd		nd			nd				3.6				nd		nd		nd		nd		nd		1.2		1.5		0.52		nd	0.4
Phenanthrene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Pyrene				nd				nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
2-Methylnaphthalene								nd		nd			nd				nd				nd		nd		nd		nd		nd		nd		nd		nd		nd	no
Total PAHs				0				0		0			0				3.6				0		0		0		0		0		1.2		1.5		0.52		0	0.4
Cyanide, total (Exygen/ Te	est America)			480 658	469	9 654 480	425	728	356	620 729	587	446	437	274											299	307	360 2	220	330	570	780	684	670	490	480	120	300	236 32
Cyanide, total (Clarkson U	lniv.)											493	560	359	325	267	321	326	374	252	344	276	320 2	277														
Cyanide, free (Exygen/ Te Cyanide, free (Clarkson U				nd nd	nd	d nd nd	12	10	nd	15 6	5 nd	9 nd	5 nd	57 nd	nd	nd	nd	nd	nd	3.2	11.7	nd	nd	nd	nd	6	4 2	2.4	nd	0.7	8.1	nd	nd	nd	22.3	nd	nd	nd 166
, , , , , , , , , , , , , , , , , , , ,	· ·			+					+																													
Water Elevation (feet)				578 66 578 30	0 577 4	.40 577.58 578.69	9 577 8	3 577 18	578 11	577 40 577 29	578 54	577 92	577.01	579.61	577 44	579 10	577.62	579 OF 5	77.10	570.07	577.92	-70 1C E	7 05 57	70 4 4	577 50	500.40 5	77.00 57	0 02 5	76 79	579 50	77.07 5	0.05	577.40	570.00	77 75 8	79 96 5	76.06	577 74 579

Notes:

nd - non-detect

(All Units in µg/L)

SW-01	SW-01	SW-01	SW-01 SW-01 SW-0	01 SW-01 S	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	I SW-01	SW-01	SW-01	SW-0	1 SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-01	SW-0	1 SW-01	SW-0	1 SW-0	01 SW-01
DATE	Aug-95	May-96	Jul-97 Feb-98 Jun-9	99 Apr-00 A	Apr-01	Jul-01	Nov-01	Apr-02	Jun-02	Nov-02	2 Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-0	4 Apr-05	Jul-05	Apr-06	Aug-06	6 Apr-07	Aug-07	/ Apr-08	Sep-08	Apr-09	Aug-09	Apr-10	Aug-10	Apr-11	Sep-11	Apr-12	Aug-12	Apr-13	Aug-13	Apr-14	Aug-14	Apr-15	Aug-1	5 Apr-16	Aug-1	6 Apr-1	17 Aug-17
Benzene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	0.44	nd	nd	nd	nd	nd	nd	nd	Dry	nd	nd	nd	nd	nd	nd	nd	0.15	nd	nd	nd	nd								
Toluene			nd		nd	nd	nd	nd	2	nd	nd	nd	nd	0.38	nd	nd	nd	0.47	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	0.22	nd	nd	nd	nd								
Ethylbenzene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.23	nd		nd	nd	nd	nd	nd	nd	nd	0.6	nd	nd	nd	nd								
Xylene (sum of isomers)			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	0.54	nd	nd	nd	nd								
Total BTEX			0		0	0	0	0	2	0	0	0	0	0.82	0	0	0	0.47	0	0.23	0		0	0	0	0	0	0	0	1.51	0	0	0	0	0	0	0	0	0	0	0	0
Acenaphthene			nd		nd	1.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Anthracene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Anthracene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)Pyrene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.61	nd	nd	nd	nd	nd	nd	nd
Benzo(b)Fluoranthene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1	nd	nd	nd	nd	nd	nd	nd
Benzo(g,h,i)Perylene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.53	nd	nd	nd	nd	nd	nd	nd
Benzo(k)Fluoranthene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.56	nd	nd	nd	nd	nd	nd	nd
Chrysene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)Anthracene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.8	nd	nd	nd	nd	nd	nd	nd
Fluorene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)Pyrene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Naphthalene			nd		nd	2.9	nd	nd	nd	1.6	nd	nd	nd	nd	nd	nd	nd	nd	32	nd	nd		2.3	nd	1.2	nd	nd	nd	0.76	nd	nd	nd										
Phenanthrene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.64	nd	nd	nd	nd	nd	nd	nd
Pyrene			nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.4	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.3	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene					nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Total PAHs			0		0	4	0	0	0	1.6	0	0	0	0	0	0	0	0.9	32	0	0		2.3	0	0	0	0	0	0	0	0	0	0	0	7.64	0	0	0	0.76	0	0	0
Cyanide, total (Exygen/ Test	t America)		12.2		21	55	35	8	405	21	13	88	36	989	40	38	9											12.6	30.3	11	16	96	14	nd	11	25	7.2	5.2	nd	92	25.5	5 nd
Cyanide, total (Clarkson Uni	iv.)														46	53	10	5	4	24	nd		14	5	25	23	3.6			-												
Cyanide, free (Exygen/ Test	America)				nd	16	nd	nd	29	6	nd	10	nd	86	6	19	nd			1			-	1	1		-	nd	6	nd	1.5	21	2.5	nd	nd	6	nd	7	nd	33	11	nd
Cyanide, free (Clarkson Univ	v.)													98.1	nd	nd	3.2	2.4	2.3	2.4	5		nd	nd	nd	nd	2.6															
Water Elevation (feet)			579.8	30 580.40 5	580.10 5	580.00	580.10	581.00	579.60	579.80	580.70	581.40	0 582.00	582.30	580.60	581.3	0 581.30	579.90	581.60	580.20	582.80		581.57	581.80	581.55	580.83	582.25	580.19	580.19	580.19	581.6	580.6	581.95	581.65	582.5	581.35	NM	581.23	3 583.12	NM	581.	7 581.76

Notes:

nd - non-detect

Appendix A - Groundwater and Surface Water Monitoring Results 2017 Periodic Review Report Mineral Springs Road Former Manufactured Gas Plant Site

(All Units in µg/L)

SW-02	SW-02	SW-02	SW-02 SW-02 SW	W-02	SW-02 SN	V-02 S	W-02	SW-02	SW-0	2 SW-02	SW-02	SW-02	SW-0	02 SW-	-02 SW-	02 SW-0)2 SI	W-02 S	W-02 S	SW-02	SW-02	SW-02	SW-02	2 SW-02	2 SW-02	SW-02	2 SW-02	SW-0	2 SW-02	SW-0	2 SW-02	SW-0	2 SW-02	2 SW-0	02 SV	V-02 SW-0								
DATE	Aug-95	May-96	Jul-97 Feb-98 Ju	ın-99	Apr-00 Ap	or-01 J	lul-01	Nov-01	Apr-02	Jun-02	lov-02	Apr-03	Jul-03	Nov-03	Mar-04	Jun-04	Nov-0	4 Apr-05	Jul-05	Apr-06	Aug-C	06 Apr-	07 Aug-	07 Apr-0	08 Se	ep-08 A	pr-09 A	ug-09	Apr-10	Aug-10	Apr-11	I Sep-1	1 Apr-12	Aug-1	2 Apr-13	Aug-1	3 Apr-14	Aug-1	4 Apr-15	i Aug-1	5 Apr-16	6 Aug-1	16 Ap	or-17 Aug-
Benzene			nd	nd	6	2	nd	nd	1.2	nd	nd	nd	nd	nd	nd	no	d Dry	/ nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd						
Toluene			nd	nd	8	2	nd	nd	0.25	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	0.23	0.18	7.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd						
Ethylbenzene			nd	nd	15	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd
Xylene (sum of isomers)			nd	nd	24	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd
Total BTEX			0	0	53	4	0	0	1.45	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0.23	0.18	7.2	0	0	0	0	0	0	0	0	0	0	0	0		0 0
Acenaphthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	4	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd
Acenaphthylene				nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd			nd			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd		nd nd
Anthracene				nd			nd	nd	nd	nd	nd	nd			nd			nd	nd	nd	0.19	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd		nd nd									
Benzo(a)Anthracene			++	nd			nd	nd	nd	nd	nd	nd			nd				0.49	nd	1.5	nd	nd	nd	0.26	nd	nd	nd	2.7	nd	nd		nd		nd nd									
Benzo(a)Pyrene				nd			nd	nd	nd	nd	nd	nd			nd				0.63	nd	1.1	nd	nd	nd	nd	nd	nd	nd	4.2	nd	nd		nd		nd nd									
Benzo(b)Fluoranthene			+ + +	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		ł	nd	_	nd	nd	1.2	nd	1.3	nd	1.7	nd	nd	nd	nd	1.4	8.3	nd	3.1		nd		nd nd
Benzo(g,h,i)Perylene				nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	ł	nd		nd	nd	0.55	nd	1.5	nd	nd	nd	nd	nd	nd	nd	2.2	nd	nd	nd	nd		nd nd
Benzo(k)Fluoranthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	n	d l	nd		nd	nd	nd	nd	1.2	nd	nd	nd	nd	nd	nd	0.69	nd	nd	nd	nd	nd	r	nd nd
Chrysene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	0.85	nd	1.2	nd	nd	nd	0.30	nd	nd	nd	4.70	nd	nd	nd	nd	r	nd nd
Dibenzo(a,h)Anthracene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	1.3	nd	nd	nd	nd	nd	nd	nd	0.45	nd	nd	nd	nd	r	nd nd
Fluoranthene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	1.2	nd	0.63	nd	1.2	nd	0.50	nd	nd	2.40	8.20	nd	3.3	nd	nd	r	nd nd
Fluorene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd
Indeno(1,2,3-cd)Pyrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	1.3	nd	nd	nd	nd	nd	nd	nd	1.9	nd	nd	nd	nd	r	nd nd
Naphthalene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	0.94	1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	2.2	nd	nd	nd	nd	r	nd nd
Phenanthrene			nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	0.72	nd	nd	nd	nd	nd	nd	nd	nd	nd	2.4	nd	nd	nd	nd	r	nd nd
Pyrene			nd	nd	nd	nd (0.77	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	1.1	nd	0.55	nd	0.92	nd	0.33	nd	nd	1.8	6.5	nd	nd	nd	nd	r	nd nd								
2-Methylnaphthalene						nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	no	ł	nd		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	r	nd nd
Total PAHs			0	0	0	0	0.77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.94	1	0	0	1.82	0	11.77	0	3.82	0	1.39	0	0	6	43.75	0	6.4	0.0	0.0		0 0
Cyanide, total (Exygen/ Test	st America)		77.5	nd	380	21	nd	7	130	nd	1440	17	30	62	48	nd	24	nd												369	nd	93	45	14	95	nd	11	15	96	160	12	nd	2	253 195
Cyanide, total (Clarkson Uni																nd	50	nd	nd	3	nd	n	4	86		86	16	141	4.4					+										100
Cyanide, free (Exygen/ Test					111	nd	nd	nd	16	nd	42	nd	nd	nd	20	nd	12	nd	10	5	nu	п	-				.0		7.7	nd	6	11	11	nd	26	0.76	1.6	nd	30.1	7.2	nd	nd		72 24.6
Cyanide, free (Clarkson Uni								nu	10	nu	-72	nu	nu	nu	19.2	nd	6.2	nd	nd	2.3	nd	8.	6	50.7	7 4	10.1	nd	3.0	nd	nu				- nu	20	0.70	1.0	na	50.1	1.2	10	iu		, 2 24.0
															13.2	nu	0.2	nu	nu	2.3	nu	0.		50.7			iiu	3.0	nu															
Water Elevation (feet, appro:	oximate)		5	80.3	580.9 5	30.6 5	580.5	580.6	581.5	580.1	580.3	581.1	581.8	582.4	582.7	581.0	581.7	581.7	580.3	582.0	580.0	6 583	.2																				-	581.

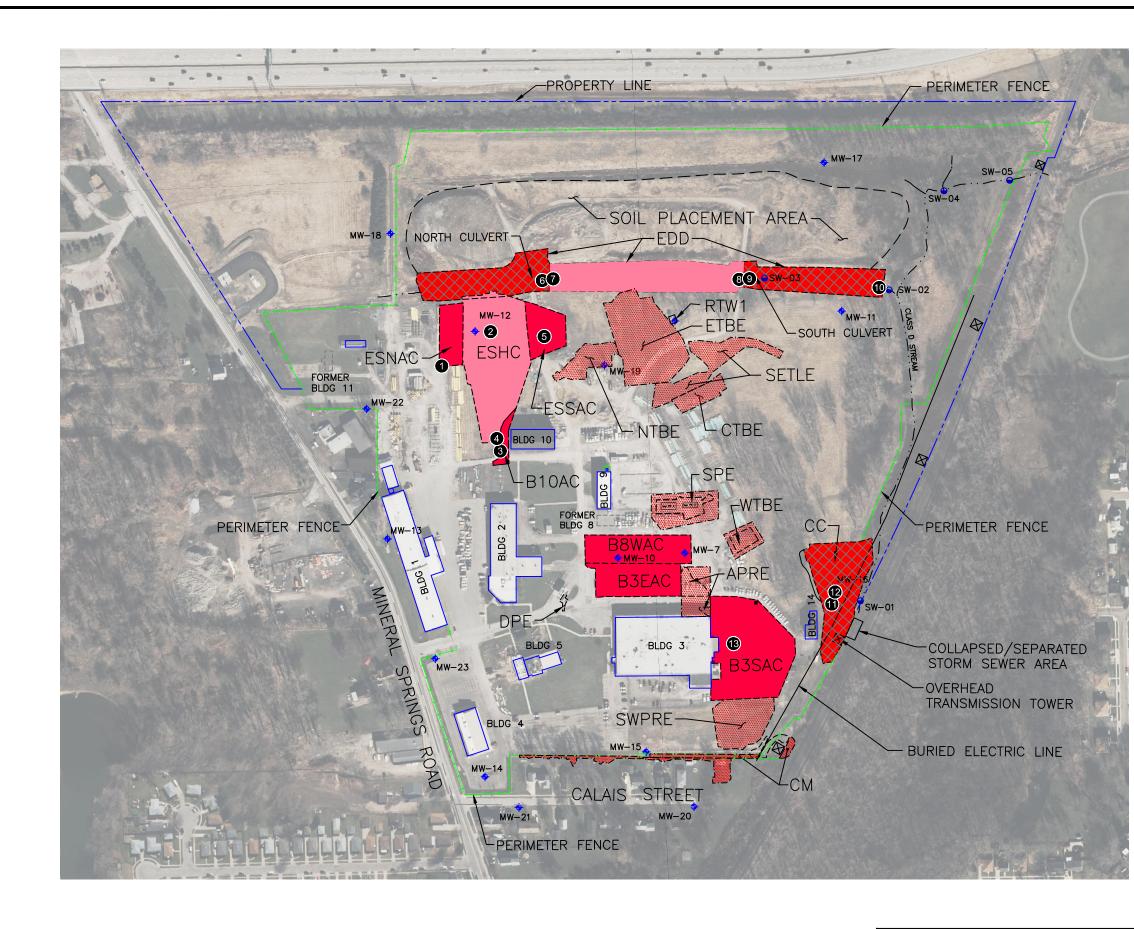
Notes:

nd - non-detect

open space - no data

Appendix B

Annual Site Inspection Form


Annual Site Inspection Form Mineral Springs Road Former MGP

Inspection by: Randolph West	Affiliation: AECOM
Signature:	Date: April 18, 2017
ASPHALT CAP SOUTH OF BUILDING #3	CLAY CAP BEHIND BUILDING #14
Cracks or ruts ? Erosion at edges ? Blue-stained soil ? Comments: Some areas of significant cracking. ASPHALT CAP EAST OF BUILDING #3 Also B8WAC, B10AC Cracks or ruts ? Erosion at edges ? Blue-stained soil ? Comments:	Animal dens ? Erosion ? Trees ? Blue-stained soil ? Comments: EASTERN DRAINAGE DITCH Animal dens ? Erosion ? Trees ? Yes No Erosion ? Yes No Ko Ko Ko Ko Ko Ko Ko Ko Ko K
B10AC - One small area of significant cracking; otherwise acceptable. ASPHALT CAP NORTH OF EASTERN SWALE ESNAC	Blue-stained soil ? Yes No Hydrocarbon sheen ? Yes No Inadequate Signage ? Yes No Trash / Debris ? Yes No
Cracks or ruts ? Yes No Erosion at edges ? Yes No Blue-stained soli ? Yes No Comments:	Comments: High water levels in stream create standing water in south portion of EDD. Some standing water observed in mid-section. BACKFILLED EXCAVATIONS
ASPHALT CAP SOUTH OF EASTERN SWALE ESSAC Cracks or ruts ? Yes No Erosion at edges ? Yes No Blue-stained soil ? Yes No Comments:	Excessive settlement ? Yes No Ponding of surface water ? Yes No Tar boils ? Yes No Blue-stained soil ? Yes No Comments:
HDPE/SOIL CAP IN EASTERN SWALE ESHC Cracks or ruts ? Yes No Erosion at edges ? Yes No	CLASS D STREAM Hydrocarbon sheen ? Yes No Comments:
Blue-stained soil ? Yes No	SITE FENCE Damage / Holes ? Yes No Comments:

Appendix C

Photographs

AECOM

MINERAL SPRINGS ROAD FA NATIONAL FUEL GAS 60538249-100 DATE: 6/23/15 DRWN: GRI

		<u>. 77 </u>		7	
150	0			300	
	GRAPHIC	SCALE	IN	FEET	

	<u>LEGEND</u>
	EXISTING STRUCTURE
	REMEDIAL CONSTRUCTION
	FORMER STRUCTURE
	EXISTING EXCAVATION LIMITS
MW-7 🔶	MONITORING WELLS
SW-01 👄	SURFACE WATER SAMPLE LOCATION
APRE	ADDITIONAL PURIFIER RESIDUALS EXCAVATION
B3EAC	BUILDING 3 EAST ASPHALT CAP
B3SAC	BUILDING 3 SOUTH ASPHALT CAP
B8WAC	BUILDING 8 WEST ASPHALT CAP
B10AC	BUILDING 10 ASPHALT CAP
CC	CLAY CAP
СМ	CORRECTIVE MEASURE WEST PROPERTY LINE
CTBE	CENTRAL TAR BOILS EXCAVATION
DPE	DIESEL PAD EXCAVATION
EDD	EASTERN DRAINAGE DITCH
ESHC	EASTERN SWALE HDPE CAP
ESNAC	EASTERN SWALE NORTH ASPHALT CAP
ESSAC	EASTERN SWALE SOUTH ASPHALT CAP
ETBE	EASTERN TAR BOILS EXCAVATION
NTBE	NORTHERN TAR BOILS EXCAVATION
RTW1	RECOVERY TEST WELL AND DNAPL SHED
SETLE	SOUTHEASTERN TAR LENSES EXCAVATION
SPE	SEPARATOR PITS EXCAVATION
SWPRE	SOUTHWEST RESIDUALS EXCAVATION
WTBE	WESTERN TAR BOILS EXCAVATION
$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	CLAY CAP
	ASPHALT CAP
	HDPE CAP
	REMEDIAL EXCAVATION
10	PHOTO LOCATION

PREVIOUSLY REMEDIATED AREAS ARE SHADED RED

ACILI	TΥ

PHOTOGRAPH LOCATION FIGURE

FIGURE

Looking east at Eastern Swale North Asphalt Cap (ESNAC), in good condition.

Looking west at French drain in Eastern Swale HDPE Cap (ESHC), in good condition.

PHOTOGRAPH NO. 2

Look east at portion of the Building 10 Asphalt Cap (B10AC) observed with significant cracking that requires patching or repaying.

Looking east at stable portion of the Building 10 Asphalt Cap (B10AC).

Looking east at Eastern Swale South Asphalt Cap (ESSAC), in good condition.

The outlet to the north culvert to the mid-section (HDPE cap) of the Eastern Drainage Ditch (EDD).

Looking south at the mid-section (HDPE cap) of the Eastern Drainage Ditch (EDD).

Looking north at the mid-section (HDPE cap) of the Eastern Drainage Ditch (EDD).

PHOTOGRAPH NO. 8

The outlet of the south culvert to the southern portion (clay cap) of the Eastern Drainage Ditch (EDD).

Looking north at the southern portion (clay cap) of the Eastern Drainage Ditch (EDD), just upstream of connection with unnamed tributary.

Looking east at the Clay Cap (CC) area. No issues noted.

Looking west at the Clay Cap (CC) area. No issues noted. Animal burrow noted last year at the foot of the electrical tower (left edge of picture) has been filled.

Looking northwest at a portion of the Building 3 South Asphalt Cap (B3SAC) showing an area with some significant cracking that needs to be sealed or patched.

Appendix D

Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. V00195	Box 1		
Sit	e Name NFG - Mineral Springs MGP			
Cit Co	e Address: 365 Mineral Springs Road Zip Code: 14210 y/Town: West Seneca unty: Erie e Acreage: 80.0			
Re	porting Period: September 16, 2016 to September 16, 2017			
		YES	NO	
1.	Is the information above correct?	X		
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X	
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		Ň	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.			
5.	Is the site currently undergoing development?		X	
		÷		
		Box 2		
		YES	NO	
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X		
7.	Are all ICs/ECs in place and functioning as designed?	X		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	,	
A	Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.	
		· ·		
Się	nature of Owner, Remedial Party or Designated Representative Date			

SITE NO. V00195

Description of Institutional Controls

Parcel 123.16-2-8 Owner National Fuel Gas Distribution Corp. Institutional Control

Ground Water Use Restriction Landuse Restriction

i. All identified capped areas shall continue to be protective of public health and the environment, and shall continue to be maintained and monitored to be consistent with industrial/commercial use.

ii. The owner of the Property shall prohibit the Property from ever being used for purposes other than for an industrial/commercial operation, office, warehouse and garage facility and for the services associated with such use without the express written waiver of such prohibition by the Relevant Agency.

iii. The owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Box 4

Description of Engineering Controls

Parcel 123.16-2-8 Engineering Control

Cover System Fencing/Access Control

Periodic Review Report (PRR) Certification Statements		
I certify by checking "YES" below that:		
a) the Periodic Review report and all attachments were prepared under reviewed by, the party making the certification;	the direction of,	and
 b) to the best of my knowledge and belief, the work and conclusions desare in accordance with the requirements of the site remedial program, ar engineering practices; and the information presented is accurate and competition 	nd generally acc	
engineering practices, and the mormation presented is accurate and compe	YES	NO
	X	
If this site has an IC/EC Plan (or equivalent as required in the Decision Docum or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" b following statements are true:		
(a) the Institutional Control and/or Engineering Control(s) employed at the since the date that the Control was put in-place, or was last approved by		
(b) nothing has occurred that would impair the ability of such Control, to the environment;	protect public h	ealth and
(c) access to the site will continue to be provided to the Department, to remedy, including access to evaluate the continued maintenance of this		
(d) nothing has occurred that would constitute a violation or failure to co Site Management Plan for this Control; and	mply with the	
(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose establis		
	YES	NO
	X	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date belo DO NOT COMPLETE THE REST OF THIS FORM. Otherwise c		• ·
Corrective Measures Work Plan must be submitted along with this form to a	ddress these is	sues.
ignature of Owner, Remedial Party or Designated Representative	Date	

1.

2.

Box 5

	·	IC CERTIFIC SITE NO.				
					Во	x 6
l certify that all statement mad Penal Law.	information and st	R DESIGNATED R atements in Boxes able as a Class "A"	1,2, and 3 are true. misdemeanor, purs	I understand uant to Section	d that a fais	e of the
			FIONAL FUE			
I CRAIC	K. JWI	<u>ECH at 365</u>			<u>Ro</u> E	UFFA
pri	int name 入		print business add	ress	N	<u>714</u>
am certifying a	s <u> </u>	ER		(Owner	or Remedi	al Party)
for the Site na	ned in the Site Det	ails Section of this t	form			
	Nain A	alls Section of this f		 Date	/17	
Signature of O	Nain A	inech		 Date	/17	
Signature of O	Nain A	inech		 Date	/17	
Signature of O	Nain A	inech		 Date	/17	
Signature of O	Nain A	inech		Date	/17	
Signature of O	Nain A	inech		Date	/17	
Signature of O	Nain A	inech		Date	/17	· · · · · · · · · · · · · · · · · · ·
Signature of O	Nain A	inech		Date	/17	

IC/EC CERTIFICATIONS

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a faise statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Randolph West at AECOM; 257 W. Genesee St., Buffalo, NY 14202, print business address print name am certifying as a Professional Engineer for the <u>National Fuel Gas</u> (Owner or Remedial Party) STATE OF NEW ANDO S Lice Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification (Result