

2024 Second Semiannual Groundwater/Surface Water Quality Monitoring and Special Groundwater Quality Assessment Report

Mineral Springs Road Former MGP Site (NYSDEC #V00195), West Seneca, New York

Submitted to:

National Fuel Gas Distribution Corporation 6363 Main Street Williamsville, New York 14221

Submitted by:

GEI Consultants, Inc. 100 Sylvan Parkway, Suite 400 Amherst, New York 14228 716.204.7154

November 2024 (Revised March 2025) Project No. 2300298

> Richard H. Frappa, P.G. Senior Consultant

Michael Cummings, P.G. Project Hydrogeologist

Table of Contents

1.	Introduction	1
1.1.	Background	1
1.2.	Site Conditions	2
2.	MONITORING NETWORK AND SAMPLING METHODS	3
3.	LABORATORY METHODS AND QUALITY CONTROL	5
3.1.	Laboratory Methods	5
3.2.	Laboratory Quality Control	5
4.	CONTINUATION OF GROUNDWATER ASSESSMENT	7
4.1.	Groundwater Quality Assessment Sampling	7
4.2.	MW-7 Sampling Comparison	8
4.3.	MW-12 Sampling Comparison	8
4.4.	MW-16 Sampling Comparison	9
4.5.	MW-19 Sampling Comparison	9
4.6.	MW-20 Sampling Comparison	10
5 .	EVALUATION OF SEMIANNUAL MONITORING RESULTS	11
5.1.	Groundwater Elevations and Flow	11
5.2.	Constituents Detected in Groundwater	11
5.3.	Constituents Detected in Surface Water	12
5.4.	DNAPL Recovery Test Well	13
6.	SUMMARY AND RECOMMENDATIONS	14
6.1.	2024 Second Semiannual Sampling Event	14
6.2.	Groundwater Assessment Summary	15
6.3.	Recommendations	16

Tables

- Table 1. Semiannual Monitoring Water Sampling Summary
- Table 2. Groundwater and Surface Water Elevations
- Table 3. Field Measured Parameters- Second Semiannual 2024 Groundwater Sampling
- Table 4A. Groundwater Analytical Summary On-Site Areas Field Measured Parameters of
- MW-20 Redevelopment
- Table 4B. Groundwater Analytical Summary Perimeter Areas
- Table 5. Surface Water Analytical Summary

Figures

- Figure 1. Site Location Map
- Figure 2. Site Layout
- Figure 3. MW-7 Time Series Plot (BTEX, PAHs)
- Figure 4. MW-12 Time Series Plot (Total, Free Cyanide)
- Figure 5A. MW-16 Time Series Plot (Total Cyanide)
- Figure 5B. MW-16 Time Series Plot (Free Cyanide)
- Figure 6. MW-19 Time Series Plot (BTEX, PAHs)
- Figure 7. MW-20 Time Series Plot (Total, Free Cyanide)
- Figure 8. Potentiometric Surface Map August 2024

Appendices

Appendix A	Monitoring	Well Sam	pling Logs
------------	------------	----------	------------

Appendix B Category B Laboratory Analytical Package

Appendix C Data Usability Review

Appendix D Historic Time Series Concentration Plots

1. Introduction

This report presents a summary of groundwater and surface water quality monitoring results for the 2024 Second Semiannual monitoring event at the National Fuel Gas Mineral Springs Service Center at 365 Mineral Springs Road in West Seneca, New York (Site). The site is a former manufactured gas plant (MGP) and implements ongoing operations and maintenance which includes groundwater and surface water quality monitoring. The report also includes the presentation of results for an ongoing assessment of groundwater quality at four monitoring well locations requested by the New York State Department of Environmental Conservation (NYSDEC or Department) on February 27, 2023. This report also includes the findings from additional groundwater quality assessment monitoring completed at monitoring well MW-20 as recommended in the 2023 Periodic Review Report (PRR) for the facility. The purpose of the groundwater assessment is discussed with background information described in Section 1.1.

1.1. Background

The Site is currently an active National Fuel Gas service center consisting of approximately 81 acres and includes seven active buildings, numerous parking areas, pipeline equipment and staging areas, and undeveloped areas. The site location and site layout are shown in Figures 1 and 2, respectively.

National Fuel completed remedial construction which included source removal and containment in 2001 under a Voluntary Cleanup Agreement (VCA) No. B9-0538-98-08 between National Fuel and the New York State Department of Environmental Conservation (NYSDEC). Remedial and engineering control features include perimeter fencing, six asphalt caps, a clay cap, an HDPE cap, and a capped drainage feature consisting of both clay and HDPE caps. National Fuel performs operations and maintenance (O&M) activities for the remedy in accordance with the Final Engineering Report, Volume II – Operations and Maintenance (O&M) Plan, dated May 2002 (O&M Plan). The O&M Plan specifies groundwater and surface water quality monitoring conducted on a semiannual basis. An assessment of institutional and engineering controls is summarized each year in a Site Management Periodic Review Report (PRR). The most recent PRR was submitted to the NYSDEC on December 14, 2023, revised to address NYSDEC comments and re-submitted on March 28, 2024 (final PRR submitted on August 19, 2024) covering the reporting period from November 15, 2022 through November 15, 2023.

The ongoing on-site Groundwater Quality Assessment being implemented at the site is described in the Department-approved scope of work dated March 31, 2023. The scope of work addresses the concentrations of volatile organic compounds (VOCs) benzene-toluene-ethylbenzene-xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in groundwater at on-Site wells MW-7 and MW-19 and total and free cyanide at wells MW-12 and MW-16 (see Figure 2 for well locations) in groundwater, each below capped areas of the site. As recommended in the 2023 PRR, the groundwater quality assessment was expanded to include off-site well MW-20 for the evaluation of concentrations of total and free cyanide. The groundwater quality assessment activities are discussed in Section 4.0.

1.2. Site Conditions

The Site is relatively flat lying. An unnamed surface water drainage feature, classified as a Class D stream, is situated along the southern site boundary, and flows in a westward direction. The stream drains into a 72-inch diameter culvert pipe that connects to the 78-inch diameter storm sewer below Calais Street. This sewer eventually discharges stream flow with stormwater and Combined Sewer Overflows (CSOs) into the Buffalo River. The sewer system discharging to the Buffalo River is part of the City of Buffalo Sewer Authority's system located near the intersection of Mineral Springs Road and Ogden Street. The accumulation of floating debris at the entrance to culvert was restricting flow in the unnamed stream and was causing the backup of water and flooding conditions on the National Fuel property. In late April 2024, the accumulated debris was removed to restore pre-existing flow stream conditions through the culvert in the area of SW-01. During GEI's 2024 PRR inspection on May 14, 2024, a beaver dam located approximately 200 feet downstream of SW-02 was observed to be obstructing surface water flow causing water backup in the unnamed stream in the eastern portion of the property (see Figure 2 for location). A nuisance wildlife permit was obtained to remove the beavers and beaver dam. The beavers were removed in June 2024 and the dam removal occurred on August 12, 2024, approximately two weeks prior to the 2024 Second Semiannual event. This information will be documented in the 2024 PRR.

The stratigraphy of the site in order of occurrence is:

- soil fill (4 to 8 feet in thickness);
- approximately 10 feet of a laterally extensive clay (referred to as the upper confining clay layer {UCL});
- silt, sand, and gravel; and
- a lower confining clay layer (LCL), and bedrock.

Overburden groundwater is typically encountered 5 to 12 feet below ground surface and fluctuates approximately 2 feet seasonally. Overburden groundwater flow is generally to the north and northwest toward Mineral Springs Road, Calais Street, and the Buffalo River. Average overburden groundwater velocity across the site was calculated to be approximately 0.06 feet per day (22 feet per year).

2. MONITORING NETWORK AND SAMPLING METHODS

The O&M Plan specifies groundwater sample collection and analysis from 13 on-site and off-site monitoring wells. Groundwater monitoring well and surface water sampling locations are shown on Figure 2. The groundwater monitoring wells were installed during and following completion of remedial construction and are screened to monitor groundwater flowing in the lower UCL and the silt, sand, and gravel layer. In addition, the determination for accumulated Dense Non-Aqueous Phase Liquid (DNAPL) in Recovery Well #1 (RTW-1) and purging of accumulated liquid, if present, is included in the groundwater monitoring program. Consistent with the O&M Plan, groundwater samples were collected using low-flow sampling methods with peristaltic pumps.

Surface water sample locations identified in the O&M Plan include SW-01 and SW-02 situated downstream and upstream of the facility, respectively. On July 7, 2020, a staff gauge was installed at SW-02 to facilitate the collection of surface water elevation data at the upstream sampling location. The staff gauge was damaged during the winter of 2022-2023 and the surface water elevation at SW-02 was manually surveyed for the 2024 First Semiannual sampling event. The staff gauge was reinstalled and surveyed on August 26, 2024, after water levels in the unnamed stream receded and the soils adjacent to the stream were suitable to foot traffic.

Following NYSDEC notification of sampling on August 22, 2024, the GEI sampling team collected groundwater and surface water samples for the 2024 Second Semiannual monitoring event on August 26 and 27, 2024. The sampling event also included the Groundwater Quality Assessment activities as outlined in Sections 1.1 and 4.0. Monitoring was consistent with sampling procedures described in the O&M Plan. Table 1 summarizes sampling location, the established sample analysis for each monitoring well, Quality Control sample analysis, and current reference elevations. A synoptic round of water levels was measured in monitoring wells on August 26, 2024, and water levels were recorded prior to purging and sampling. Groundwater elevations are summarized in Table 2 which include historic groundwater elevation data. Groundwater elevations were generally between 0.5 to 2 feet lower during the August 2024 sampling event when compared to the May 2024 sampling event. When compared to the ground water elevations recorded during the Fall 2023 sampling event, groundwater elevations during the August 2024 event were generally two feet lower in wells situated closest to the unnamed stream. The lower groundwater levels reflect lower surface water elevations in the unnamed stream and the Eastern Swale following debris removal at the culvert inlet in late April 2024 and removal of a beaver dam located in the unnamed stream near SW-02 on August 12, 2024. The removal of the blockage at the culvert in April and the beaver dam in August 2024 eliminated the backup of surface water along the southern property boundary and the Eastern Swale.

Field measured parameters for wells sampled for the 2024 Second Semiannual event were periodically recorded during purging and include temperature, pH, Oxidation-Reduction Potential (ORP), electrical conductance, and turbidity. A summary of final field measured parameters is included in Table 3. All samples were placed in coolers and iced during same day transport under chain-of-custody to the analytical laboratory (Eurofins Test America) located in Amherst, New York. Final laboratory analytical data reports were made available to GEI on September 11, 2024, and subsequently evaluated for data

usability. Field sampling logs for the 2024 Second Semiannual sampling event are provided in Appendix A.

3. LABORATORY METHODS AND QUALITY CONTROL

Laboratory data usability for samples collected for both the Groundwater Assessment and 2024 Second Semiannual Monitoring event was conducted and is described below.

3.1. Laboratory Methods

Samples were analyzed for BTEX volatile organic compounds (VOCs) by SW-846 method 8260C, polycyclic aromatic hydrocarbon (PAH) semi-volatile organic compounds (SVOCs) by SW-846 Method 8270D, total cyanide by SW-846 Method 9012B, and free cyanide by SW 846 Method 9016 as specified in Table 1. Surface water samples and groundwater well MW-11A were analyzed for suspended solids (TSS) by Standard Test Methods to assess the influence of particulates on cyanide detections. Except for free cyanide, water samples were analyzed by Eurofins Test America Laboratories, Inc. (Eurofins) of Amherst, New York. Free cyanide analyses were performed by Eurofins Test America of Edison, New Jersey. Each laboratory maintains NYSDOH ELAP certifications.

3.2. Laboratory Quality Control

The laboratory data package (Category B laboratory analytical package) is included in Appendix B. A Level 4 data package was also provided and was reviewed during GEI data validation and preparation of the data usability report (DUSR). Overall quality assurance and quality control (QA/QC) measures were taken to ensure the reliability of the data generated during the sampling event. These measures include the submittal of trip blanks and the collection of a blind duplicate sample. Equipment blanks were not required since dedicated sampling equipment was used.

The specific methodologies employed in obtaining the analytical results refer to the following USEPA references.

- "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846), Third Edition,
 September 1994, USEPA Office of Solid Waste.
- 40CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act", October 26, 1984, USEPA.

The data validation was performed on the Level 4 data package based on the Standard Operating Procedure (SOP) HW-33 (Revision 3) Low/Medium Volatile Data Validation (March 2013), SOP HW-35 (Revision 2) Semivolatile Data Validation (March 2013), and SOP 2c (Revision 15), SOP for the Evaluation of Cyanide for the Contract Laboratory Program (December 2012), modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation

- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Internal Standard Results
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Blind duplicate samples were collected at sampling location well MW-23 and submitted for analyses with the sample delivery group to assess laboratory precision. Laboratory accuracy was assessed through analysis of surrogate spike recoveries.

The data usability review is provided in Appendix C. The free cyanide result for Assessment Monitoring sample MW-16 (LOW FLOW 2) (lab sample 480-222886-8) was anomalously high with a concentration of 547 ug/L. This concentration is an order of magnitude higher than the initial low flow sample collected a day earlier (31.1 ug/L) and also outside the historical range of concentrations detected at well MW-16 during routine and assessment monitoring by an order of magnitude. GEI requested Eurofins perform a Data Quality Review (DQR) of the data on sample MW-16 (LOW FLOW 2) for the free cyanide analysis and reported no errors during analysis. At the time of the DQR, reanalysis of the sample was not possible due to hold time constraints. The analytical result for free cyanide in sample MW-16 LOW (FLOW 2) is not considered representative of free cyanide concentrations at well MW-16, the analytical result is considered to be unreliable for decision making, and the result has been rejected ("R" qualified).

Free cyanide results were qualified (U qualified) for sample MW-11A and MW-21, due to equipment blank contamination. Total cyanide results were qualified for samples MW-17 (J qualified) and SW-01 (U qualified) due to method blank contamination.

Dilution was necessary in several samples due to high concentration of target analytes or foaming of the sample during purging. This resulted in elevated detection limits for several individual BTEX and PAH compounds as well as total cyanide. A summary of dilutions performed by the laboratory is provided in Appendix C. No deviations from analytic protocol that affected the acceptability of the results were reported by the laboratory.

4. CONTINUATION OF GROUNDWATER ASSESSMENT

The Groundwater Quality Assessment outlined in Section 1.1 and described in the scope of work was continued during the 2024 Second Semiannual monitoring event for wells MW-7, MW-12, MW-16 and MW-19. Assessment monitoring was continued at off-Site well MW-20 following the recommendations presented in the 2024 First Semiannual Groundwater Monitoring Report.

4.1. Groundwater Quality Assessment Sampling

The groundwater analytical results for wells sampled using a bailer after higher volume well purging and low flow sampling methods collected for the continued Groundwater Quality Assessment are summarized in Table 4A with the sample results for the 2024 First Semiannual Monitoring Event. Results for the Groundwater Quality Assessment event are compared to the NYSDEC Technical Operational and Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998) (herein referred to as GWQS/GVs, groundwater standards or water quality comparison criteria). Sampling results for the four on-site wells and one off-site well included in the Groundwater Quality Assessment are summarized by sampling method and COCs in the tables below (the order of field sample collection is presented in left to right sequence in each table).

	ВТЕ	X (μg/L)	PAHs (μg/L)			
Monitoring Well	Low Flow	Higher Purge Volume (Bailer)	Low Flow	Higher Purge Volume (Bailer)		
MW-07	1,630	1,450	1,494	1,196		
MW-19	4,020	4,155	4,013	4,534		

Notes:

Light petroleum odor was noted in wells MW-07.

	Total	CN (μg/L)	Free	CN (μg/L)
Monitoring Well	Low Flow	Higher Purge Volume (Bailer)	Low Flow	Higher Purge Volume (Bailer)
MW-12	840	790	5 U	5 U

Notes:

No odors or sheens present.

	Т	otal CN (μg/	L)	Free CN (μg/L)				
Monitoring Well	Low Flow #1	High Volume Purge (Bailer)	Low Flow #2	Low Flow #1	High Volume Purge (Bailer)	Low Flow #2		
MW-16	4,900	3,400	4,400	31.1	5 U	Rejected*		

Notes:

Musty odor reported.

*See explanation in Section 3.2

	Т	otal CN (μg/	L)	Free CN (μg/L)				
Monitoring Well	Low Flow #1	High Volume Purge (Bailer)	Low Flow #2	Low Flow #1	High Volume Purge (Bailer)	Low Flow #2		
MW-20	790	580	440	5 U	5 U	5U		

Notes:

No odors or sheens present.

4.2. MW-7 Sampling Comparison

A time-series concentration plot of historical Total BTEX and Total PAH concentrations in MW-7 is provided on Figure 3. The total BTEX concentrations for the bailer-collected sample (1,630 mg/L) were slightly higher than the low flow sample (1,450 mg/L). Similarly, PAH results for the high-volume purge bailer-collected sample (1,494 mg/L) were slightly higher than the sample collected using low-flow methods (1,196 mg/L). BTEX and PAH concentrations detected after well redevelopment in 2023 during the groundwater assessment sampling were similar to those detected over the past 10-year period. These results suggest that BTEX and PAH presence in groundwater in the vicinity of MW-7 is at near-steady state conditions and sampling method (low flow vs. higher volume purge) has minimal effect on sample concentrations. Monitoring well MW-10 which is located downgradient does not exhibit impacts from the elevated concentrations at MW-7 indicating a localized impact in the area of well MW-7.

4.3. MW-12 Sampling Comparison

A time-series concentration plot of historical total and free cyanide concentrations in MW-12 is provided on Figure 4. Results for total cyanide analysis were similar for both the high-volume purge bailer and low flow sampling (840 ug/L and 790 ug/L, respectively). The results for both sampling methods are similar to concentrations detected over the past 5-year period suggesting groundwater in the vicinity of MW 12 is at a near-steady state and sampling method has minimal effect on sample quality. Free cyanide was not detected in either sample.

4.4. MW-16 Sampling Comparison

The historic time-series concentration plots of total and free cyanide in well MW-16 are provided on Figures 5A and 5B, respectively. Total cyanide concentrations have exhibited an overall increasing concentration trend until 2021 on (Figure 5A). As previously described during the evaluation of the Groundwater Assessment for the 2023 monitoring period, the rise in concentration correlates with a rising water level condition in the adjacent un-named stream that parallels the southern boundary of the Site which began around 2013. The blockage of the stormwater culvert inlet adjacent to the railroad track embankment where the stream flows below ground to the Buffalo River has previously caused surface water to back up in the stream, causing "losing stream" conditions where surface water recharged Site groundwater in the vicinity of MW-16. It is believed that the elevated surface water condition directly influenced the cyanide concentrations detected at well MW-16. The debris in the stream was removed in late April 2024 and normal stream levels near the well were restored. Prior to the removal, maintenance records indicate that debris removal at the culvert entrance was last completed 2012 which correlates with the beginning of the increasing total cyanide concentration trend. The total cyanide concentration in low flow sample #1 (4,900 ug/L) (first sample collected during sampling event) was higher than the high-volume purge sample collected from the bailer (3,400 ug/L) (second sample collected during the sampling). The second low flow sample collected the following day (MW-16 LOW FLOW 2) was slightly higher than the bailer-collected sample, with a concentration of 4,400 ug/L. Free cyanide was detected in the initial low flow sample at a concentration of 31.1 ug/L. Free cyanide was not detected in the bailer-collected sample at a detection limit of 5 U ug/L (see Figure 5B. Reverse matrix diffusion effects are reduced with increased water removal from the well and concentrations of both total and free cyanide were lower in the bailer-collected sample when compared with the May 2024 sampling results. These results suggest continued improvement in the vicinity of MW-16 following clearing of the culvert debris earlier in 2024 and lower total cyanide concentrations following higher purge volumes.

4.5. MW-19 Sampling Comparison

Historical time-series concentration plots for total BTEX and total PAHs in well MW-19 are presented on Figure 6. During the August 2024 sampling event, the total BTEX concentration in the low flow sample was 4,020 ug/L which is the lowest low-flow sample concentration detected since 2012. The total BTEX concentration in the bailer-collected sample was slightly higher at 4,155 ug/L. The total PAH concentration in the low flow sample collected from MW-19 was 4,014 ug/L which is near the middle of the concentration range detected over the past several years. The total PAH concentration in the bailer sample was 4,534 ug/L which is also near the middle of the concentration range over the past several years. Total BTEX concentrations were lower during the August 2024 sampling event when compared to the May 2024 sampling event for low flow sample but were slightly higher for the bailer-collected sample. Total PAH concentrations were also lower for the low flow sample during the August 2024 event but higher total PAH concentrations were detected in the bailer-collected sample.

The variability in total PAH concentrations observed between sampling methods (high volume purge bailer and low-flow) and across sampling events during implementation of assessment monitoring suggests that COC concentrations in groundwater in the vicinity of well MW-19 may be influenced by differences in purge quantities during well development for low-flow and bailer-collected samples.

While the BTEX and PAH concentrations are variable between sampling methods, concentrations are within the range of historic values and all results are considered to be representative of COC concentrations in the vicinity of MW-19. It appears that following redevelopment of the well in 2023, the detected concentrations are not substantially influenced by sampling methods. The completion of an additional round of bailer and low-flow sampling will help to further understand any concentration trends between sampling methods. Recommendations for the continued Groundwater Assessment are presented in Section 6.3

4.6. MW-20 Sampling Comparison

Well MW-20 was added to the Groundwater Quality Assessment program beginning with the First 2024 Groundwater Sampling event. The recommendation for the addition of MW-20 was based on the observation that total cyanide concentrations in the well exhibited an increasing trend coinciding with the back-up of surface water in the unnamed stream at the culvert entrance upstream of Calais Street. Consistent with a recommendation provided in the First 2024 Groundwater Monitoring Report, the August 2024 sampling procedure consisted of a second low flow sample collected the day after the initial low flow and bailer samples were collected. Historical time-series concentration plots for total and free cyanide in well MW-20 are presented on Figure 7. For the Second 2024 sampling event cyanide levels (both total and free) were the lowest since 2022, suggesting that debris removal in April 2024 and lower heads upgradient of the culvert pipe had a direct impact on the lower cyanide levels observed at MW-20. Assessment monitoring showed decreasing total cyanide for each sample as higher volumes were purged from the well (i.e., initial [routine] low-flow sample was higher (790 ug/L) when compared to the bailer-collected sample (580 ug/L) and the second low flow sample (MW-20 LOW FLOW 2) collected the following day yielded the lowest concentration of 440 ug/L.) Continued assessment is warranted to evaluate longer term trends in groundwater quality following the lowering of surface water elevations in the unnamed stream.

5. EVALUATION OF SEMIANNUAL MONITORING RESULTS

The groundwater analytical results for samples collected during the August 2024 Second Semiannual Sampling Event are presented in Tables 5A and 5B. Surface water sample results are summarized in Table 6. Results for the monitoring event are compared to the NYSDEC Technical Operational and Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998) which are the GWQS/GVs. Historical time-series individual BTEX compounds and the PAH naphthalene and total PAH concentration plots for groundwater and surface water sample IDs are provided in Appendix D. Monitoring results are discussed below.

5.1. Groundwater Elevations and Flow

A potentiometric surface map of groundwater elevations for the upper water-bearing zone at the site is provided on Figure 8. The groundwater flow direction occurs predominantly to the north and northwest. The surface water elevation in the Class D stream at SW-02 was higher than the head in nearby well MW-11A (583.54 FASL and 581.34 FASL, respectively) indicating "losing stream conditions" where surface water is recharging groundwater infiltrating at the base grade of the stream at this location. The surface water elevation in the stream at SW-01 was higher than nearby well MW-16 (581.33 FASL and 581.17 FASL, respectively) indicating "losing stream conditions" at this location. Removal actions of the debris at the culvert inlet at sampling location SW-01 and removal of the beaver dam between sampling locations SW-01 and SW-02 has allowed stream levels to return to pre-blockage conditions.

5.2. Constituents Detected in Groundwater

Monitoring well locations provide groundwater quality data for on-site areas near former MGP residual remediation areas and near the site perimeter at both on-site and off-site monitoring locations. For purposes of evaluating the 2024 First Semiannual groundwater monitoring results, the low flow sampling analytical data obtained during the Groundwater Quality Assessment are used in the assessment of groundwater quality (i.e., results from low flow sampling methods are discussed in the summary below). Groundwater quality in each of these areas is described below. As established in the O&M Plan for the Mineral Springs Facility, the lists of analytes are specific to each well. The list of analytes is presented in Table 1.

On-Site Areas

A summary of groundwater analytical data for "On-Site" areas is provided in Table 5A. Monitoring wells MW-07, MW-10, MW-11A, and MW-19 assess on-site groundwater quality of subsurface soils impacted with hydrocarbon MGP residuals. BTEX compounds were not detected at MW-10. Benzene, ethylbenzene and xylenes were detected in wells MW-07 and MW-19. Benzene (1.8 J ug/L) was detected above the GWQS in well MW-11A. BTEX compound detections were similar to historical concentrations in each of these wells.

Individual PAH compounds were detected in well MW-07 (naphthalene and acenaphthene) well MW-11A (benzene) and well MW-19 (naphthalene) at concentrations above water quality comparison criteria. One PAH compound, benzo(k)fluoranthene was detected above GWQS/GVs in well MW-10 at a concentration of 0.2 J ug/L. This concentration is below the laboratory reporting limit of 0.5 ug/L and was qualified as a laboratory-estimated concentration. Well MW-11A monitors groundwater near the capped southern end of the drainage ditch and includes analysis for total and free cyanide, plus analysis for TSS in support of the assessment of past cyanide detections in surface water. Total cyanide was detected at 230 μ g/L which is above the NYS groundwater standard but is within the range of the last ten monitoring events. Free cyanide was not detected. The TSS concentration in well MW-11A was 45.6 mg/L indicating a low number of suspended solids in the sample.

Monitoring wells MW-12 and MW-16 assess on-site groundwater quality at locations below capped areas with known subsurface fill mixed with MGP purifier box residuals. Groundwater samples from these two wells were sampled using low flow sampling methods and analyzed for total and free cyanide. Total cyanide concentrations were 840 μ g/L at MW-12 and 4,900 μ g/L at MW-16; each is above GWQS/GVs. The concentration detected during this event at well MW-12 was within the range of concentrations detected in the well over the past several years. The total cyanide concentration at well MW-16 this event was lower than several historic higher concentrations with a decreasing trend. Free cyanide was not detected in well MW-12. The free cyanide concentration at well MW-16 was 31.1 μ g/L. A NYSDEC Groundwater Standard for free cyanide has not been established. Concentrations of free cyanide in both wells were within the range of prior detections. An assessment of the data trends will be presented and discussed in the 2024 Periodic Review Report (PRR).

Site Perimeter

A summary of groundwater analytical data for "Site perimeter" areas is provided in Table 5B. Monitoring well MW-17 assesses upgradient groundwater quality and wells MW-13, MW-14, MW-20, MW-21, MW-22, and MW-23 monitor downgradient water quality with MW-20 and MW-21 monitoring cyanide concentrations at off-site locations. Naphthalene was detected in upgradient monitoring well MW-17 at a laboratory estimated concentration of 0.45 J ug/L. Individual BTEX and PAHs were not detected at any other site perimeter area sampling locations (see Table 1 for list of wells inclusive of BTEX/PAHs).

Total cyanide was detected in upgradient well MW-17 at a laboratory estimate concentration of 25 J ug/L. Total cyanide was detected in downgradient wells MW-14, MW-20, MW-21 and MW-22 at concentrations above water quality comparison criteria (200 μ g/L) at concentrations ranging from 240 μ g/L to 790 μ g/L. As discussed in Section 4.6, the concentration of total cyanide is substantially lower this event. The total cyanide concentration detected in each of the other wells was within the range of historic concentrations and no increasing trends are noted.

Free cyanide was not detected in any perimeter monitoring well. An assessment of the data trends will be discussed in the 2024 PRR.

5.3. Constituents Detected in Surface Water

Two surface water samples (SW-01 and SW-02) were collected from the unnamed NYSDEC Class D Stream flowing along the south side of the site. These surface water sampling locations monitor the

effectiveness of the containment engineering controls of the Eastern Drainage Ditch Cap and monitor the concentrations of constituents of concern in surface water downstream of the Site. The collected samples were analyzed for BTEX and PAH compounds, as well as total and free cyanide. Samples were also collected at each surface water sampling location and analyzed for total suspended solids (TSS) to evaluate a potential correlation between suspended solids (TSS) and total/free cyanide results.

BTEX and PAH compounds and total and free cyanide were not detected in surface water samples. Total cyanide was not detected in either surface water sample. Total Suspended Solids were detected in the upstream or downstream sample at concentrations of 4.0 mg/L and 56.4 mg/L, respectively, indicating low TSS concentrations in both samples. No correlation between TSS and total/free cyanide concentrations has been identified.

5.4. DNAPL Recovery Test Well

On August 27, 2024, the Recovery System at RTW-1 was gauged using a threaded steel rod to assess whether DNAPL had accumulated since the May 2024 sampling event. No visual staining was observed on the rod bottom. Rigid tubing was lowered to the base of the well and pumped using peristaltic methods. Approximately two liters of water were evacuated. The water contained only trace DNAPL in the form of "blebs", visually estimated to be less than 1% of total volume. Based on the testing performed, passive DNAPL accumulation was not identified during the August 2024 monitoring event.

6. SUMMARY AND RECOMMENDATIONS

6.1. 2024 Second Semiannual Sampling Event

A summary of August 2024 groundwater quality monitoring of on-site remediated areas, perimeter areas and on-site surface water is provided below:

Groundwater:

• Groundwater elevations were generally 0.1 to 2.5 feet lower when compared to the Fall event monitored in 2023 (greatest change in wells near the unnamed stream) and 0.5 to 2.0 feet lower when compared to the May 2024 sampling event. The lower groundwater levels reflect lower surface water elevations in the unnamed stream and the Eastern Swall following debris removal at the culvert inlet in late April 2024 and removal of a beaver dam on August 12, 2024 near SW-02. The removal of the blockage in at the culvert in April 2024 and the beaver dam in August 2024 eliminated the backup of surface water along the southern property boundary and the Eastern Swale. Groundwater flow directions remained in a north and northwest direction.

On-Site Areas:

- Several individual BTEX compounds were detected above the regulatory comparison criteria at wells MW-07, MW-11A and MW-19. Total BTEX compound detections were consistent with historical levels.
- Low concentrations of total PAHs were detected in MW-7, MW-10 and MW-19 but several individual compounds were above GWQS/GVs. The detected concentrations were consistent with historical analytical data.
- Total cyanide concentrations at wells MW-12 (840 ug/L) and MW-16 (4,900 ug/L) were above GWQS/GVs. The concentration detected during this event at well MW-12 was within the range of concentrations detected in the well over the past several years. The groundwater quality assessment indicates sampling methods yield similar results. The concentration at well MW-16 is lower than levels detected in the past three years. Concentrations at each location were within the range of historic concentrations. As identified in surface water sampling results for the downstream sample location SW-01, the total and free cyanide concentrations at MW-16 do not appear to be significantly affecting surface water quality in the stream (see Section 4.3).

Perimeter Areas:

- Individual BTEX or PAH compounds were not detected in perimeter monitoring wells MW-13 or MW-23. Naphthalene was detected in upgradient well MW-17 at a laboratory estimated concentrations of 0.45 ug/L.
- Total cyanide was detected at upgradient well MW-17 at a laboratory estimated concentration of 25 J ug/L. Free cyanide was not detected in MW-17.

- Total cyanide was detected in downgradient wells MW-13, MW-14, MW-20, MW-21 and MW-22 at concentrations above the GWQS (200 μg/L) at concentrations ranging from 240 μg/L to 790 μg/L. Total cyanide was not detected in well MW-23. The total cyanide concentration detected in each of these wells was within or slightly below the lower range of historic concentrations and no increasing trends are noted. The total cyanide concentration at MW-20 is lower than the three previous sampling events. The high surface water elevation in the unnamed stream was mitigated in late April 2024 by removal of the debris at the culvert inlet.
- Free cyanide was not detected in perimeter monitoring wells.

Surface Water:

The surface water elevation of the Class D stream at SW-01 and SW-02 during the August 2024 sampling event was similar to historical normal levels following removal of the debris at the culvert inlet and the beave dam near SW-02.

- Individual BTEX and PAH compounds were not detected in either surface water sample.
- Total cyanide was not detected at either SW-01 or SW-02.
- Free cyanide was not detected at either surface water location.
- Testing results for this event indicate site groundwater has no significant impact on surface water quality.

DNAPL accumulation was not identified in RTW-1 during the May 2024 monitoring event.

A summary discussion of overall groundwater and surface water quality will be included in the 2024 PRR with the First and Second Semiannual sampling results and time-series concentration plots of detected constituents.

6.2. Groundwater Assessment Summary

The comparison of analytical results for bailer and low-flow sample collection methods identified comparable concentrations in well MW-7 (BTEX and PAHs) and MW-12 (Total and Free Cyanide). These results were consistent with prior testing, indicating generally stable constituent concentrations regardless of the sample collection method.

In well MW-16, free cyanide was detected at 31.1 μ g/L in the low-flow sample but was not detected in the bailer-collected sample. Total cyanide concentrations were comparable for the low-flow samples (4,900 μ g/L in Low-Flow 1 and 4,400 μ g/L in Low-Flow 2). The lowest total cyanide concentration was found in the bailer-collected sample at 3,400 μ g/L. These total cyanide concentrations are similar to those from previous Assessment Monitoring events and may show effects from lower groundwater elevations produced by removing the blockage at the opening to the storm sewer culvert.

At MW-19, total BTEX concentrations were lower in the low-flow sample (4,020 μ g/L) compared to the bailer sample (4,155 μ g/L). Similarly, total PAHs were lower in the low-flow sample (4,014 μ g/L) compared to the bailer sample (4,534 μ g/L). These results for both total BTEX and total PAHs fall within

the range of historic concentrations, suggesting that sampling methods do not substantially affect the results. No increasing concentration trend was identified.

The total cyanide concentration in MW-20 (790 $\mu g/L$) was lower than in the previous three sampling events for the routine low-flow sample. Assessment monitoring samples, including the bailer-collected sample (580 $\mu g/L$) and the second low-flow sample (Low-Flow Sample #2), showed successively lower concentrations as more water was purged from the well.

6.3. Recommendations

The continued Groundwater Assessment of on-Site wells performed in August 2024 indicates that the previous blockage of stream flow at the culvert pipe may have negatively affected on-Site groundwater quality near on-Site well MW-16 and off-Site well MW-20. The removal of the blockage at the culvert pipe was completed in late April 2024 and total and free cyanide concentrations for the August 2024 sampling event were lower in both wells when compared to the April 2024 sampling event. It is recommended that the Groundwater Assessment be continued for the 2025 First Semiannual sampling event tentatively scheduled to occur in the Second Quarter of 2025. At Groundwater Assessment monitoring locations MW-16 and MW-20 it is recommended that sampling of total and free cyanide consist of a minimum three-volume well purge using a bailer and subsequent sampling with a dedicated bailer. At these locations, bailer-collected samples following a high-volume purge are generally lower and appear to reduce effects from matrix diffusion and provide more representative groundwater samples. Sampling and analytical methods at other Groundwater Assessment locations will be consistent with those performed during the 2024 First Semiannual Groundwater Assessment event. Recommendations regarding the Groundwater Quality Assessment will be presented in the 2024 PRR following data review from the First and Second Semiannual Monitoring events.

Tables

- **Table 1. Semiannual Monitoring Water Sampling Summary**
- **Table 2. Groundwater and Surface Water Elevations**
- **Table 3. Field Measured Parameters- Second Semiannual 2024 Groundwater Sampling**
- Table 4A. Groundwater Analytical Summary On-Site Areas Field Measured Parameters of MW-20 Redevelopment
- **Table 4B. Groundwater Analytical Summary Perimeter Areas**
- **Table 5. Surface Water Analytical Summary**

Table 1. 2024 Second Semiannual Monitoring Water Sampling Summary Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, New York

Location	Cyanide, Total USEPA	Cyanide, Free USEPA	BTEX USEPA	PAHs USEPA	TSS	Specific Conductivity Field	Water Elevation	Benchmark Elevation
	SW846 9014	SW846 9016	SW846 8260C	SW846 8270D	SM2540D	Measurement		(ft. MSL, top of PVC casing)
Upgradient S	ite Perimete	r						
MW-17	Х	Х	Х	Х		х	Х	587.28
Downgradien	t Site Perim	eter						
MW-13	Х	Х	Х	Х		х	Х	591.85
MW-14	Х	Х				х	Х	589.53
MW-15							Х	590.93
MW-20	Х	Х				х	Х	587.06
MW-21	Х	Х				х	Х	587.84
MW-22	Х	Х				Х	Х	592.50
MW-23	Х	Х	Х	Х		Х	Х	589.28
Onsite Purific	r Residuals	Impacted A	reas					
MW-12	Х	Х				Х	Х	591.40
MW-16	Х	Х				Х	Х	588.99
Onsite Hydro	carbon Imp	acted Areas						
MW-07	<u> </u>		Х	Х		Х	Х	587.01
MW-10			Х	Х		Х	X	587.61
MW-11A	Х	Х	Х	Х	Х	Х	Х	589.78
MW-19			Х	Х		Х	Х	589.83
Onsite Surfac	e Water							
SW-01	х	Х	Х	х	х	Х	х	top of headwall = 587.0
SW-02	Х	Х	Х	Х	х	х	x ²	S G-2 "0" - 583.36
SW-03 ^{2,3}	x ²	x ²			x ²	x ²		
SW-04 ^{2,3}	X ²	x ²			x ²	x ²		
SW-05 ^{2,3}	X ²	X 2			x ²	x ²		
QA/QC Samp	les (frequer	ісу)						
Trip Blank			Х					(one per shipment)
Field Duplicate	Х	Х	Х	Х				(one per event)
Equipment Blank	Х	х	х	Х				(one per event)
DNAPL Reco	very							
RTW-1				No S	ample Collection			purge well of mulated DNAPL)
Total	17	17	12	11	12	18	16	
Container, Preservative	250 mL plastic, NaOH	250 mL plastic amber, NaOH	40 mL VOA vial, HCl (x3)	250 mL glass amber, NP (x2)	500 mL plastic, unpreserved			

Notes:

- 1. Elevations are from the 2007 survey, except for MW-20, which was resurveyed in August 2009 due to a repair.
- 2. Supplemental sampling at this location was conducted in August 2017, April 2018, August 2018, April 2019 and August 2019.
- 3. Supplemental sampling at this location discontinued in 2020 and thereafter.

GEI Consultants, Inc. Page 1 of 1

Table 2. Groundwater and Surface Water Elevations Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, New York

Well ID	TOR Elevation ⁽¹⁾		7, 2018 ANNUAL 2018)		15, 2018 IIANNUAL 2018)		7, 2019 ANNUAL 2019)	August 20, 2019 (SECOND SEMIANNUAL 2019)		
		Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	
MW-07	587.01	4.80	582.21	7.15	579.86	4.48	582.53	6.12	580.89	
MW-10	587.61	6.40	581.21	7.64	579.97	6.28	581.33	7.09	580.52	
MW-11A	589.78	8.15	581.63	9.02	580.76	6.43	583.35	7.67	582.11	
MW-12	591.40	10.06	581.34	11.65	579.75	11.63	579.77	10.80	580.60	
MW-13	591.85	10.56	581.29	13.54	578.31	11.40	580.45	13.20	578.65	
MW-14	589.53	10.70	578.83	11.93	577.60	10.48	579.05	11.77	577.76	
MW-15	590.93	10.40	580.53	11.60	579.33	9.37	581.56	10.79	580.14	
MW-16	588.99	8.70	580.29	9.65	579.34	5.80	583.19	7.05	581.94	
MW-17	587.28	3.98	583.30	6.69	580.59	3.98	583.30	5.28	582.00	
MW-19	589.83	7.58	582.25	9.80	580.03	7.73	582.10	8.94	580.89	
MW-20	587.06	6.38	580.68	10.16	576.90	7.14	579.92	9.70	577.36	
MW-21	587.84	8.42	579.42	11.06	576.78	9.27	578.57	10.85	576.99	
MW-22	592.50	10.41	582.09	12.95	579.55	11.42	581.08	12.24	580.26	
MW-23	589.28	10.22	579.06	11.53	577.75	10.18	579.10	11.22	578.06	
SW-01	587.0 (Top Headwall)	3.08	583.92	na ⁽²⁾	na	3.28	583.72	5.10	581.90	
SW-02	583.36	1.89	583.52	0.82	581.58	0.86	583.95	0.40	582.51	
RTW-1	na	8.98	na	10.52	na	8.35	na	10.28	na	

Notes

na = not available.

GEI Consultants, Inc., P.C.
Page 1 of 3

⁽¹⁾ TOR (top of riser for monitoring wells) measured in feet; distance above sea level.

⁽²⁾ location inaccessible due to debris at headwall measurement point.

⁽³⁾ Staff Gauge used for surface water elevation damaged during winter 2022-23 and replaced and resurveyed August 2024. May and September 2023 and May 2024 surface water elevation surveyed by CFI

Table 2. Groundwater and Surface Water Elevations Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, New York

Well ID	TOR Elevation ⁽¹⁾		5, 2020 ANNUAL 2020)		6, 2020 IIANNUAL 2020)		9, 2021 IANNUAL 2021)	April 19, 2022 (FIRST SEMIANNUAL 2022)		
		Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	
MW-07	587.01	4.53	582.48	5.96	581.05	5.76	581.25	4.60	582.41	
MW-10	587.61	5.61	582.00	7.00	580.61	7.05	580.56	5.85	581.76	
MW-11A	589.78	6.80	582.98	8.36	581.42	8.38	581.40	6.70	583.08	
MW-12	591.40	9.50	581.90	11.00	580.40	11.03	580.37	9.75	581.65	
MW-13	591.85	11.52	580.33	12.93	578.92	12.97	578.88	12.02	579.83	
MW-14	589.53	10.47	579.06	11.49	578.04	11.45	578.08	10.69	578.84	
MW-15	590.93	9.60	581.33	10.96	579.97	10.75	580.18	9.72	581.21	
MW-16	588.99	6.06	582.93	7.65	581.34	7.77	581.22	6.41	582.58	
MW-17	587.28	4.40	582.88	6.00	581.28	6.18	581.10	4.70	582.58	
MW-19	589.83	7.70	582.13	9.15	580.68	9.15	580.68	7.76	582.07	
MW-20	587.06	7.23	579.83	9.22	577.84	9.30	577.76	7.52	579.54	
MW-21	587.84	9.54	578.30	10.63	577.21	10.65	577.19	9.89	577.95	
MW-22	592.50	10.84	581.66	12.29	580.21	12.31	580.19	11.05	581.45	
MW-23	589.28	10.12	579.16	11.17	578.11	11.14	578.14	10.33	578.95	
SW-01	587.0 (Top Headwall)	4.25	582.75	6.20	580.80	na ⁽²⁾	na	4.20	582.80	
SW-02	583.36	0.06	582.92	0.14	581.81	dry	<581.67'	2.50	584.17	
RTW-1	na	8.73	na	8.30	na	8.64	na	7.75	na	

Notes

na = not available.

GEI Consultants, Inc., P.C.

⁽¹⁾ TOR (top of riser for monitoring wells) measured in feet; distance above sea level.

⁽²⁾ location inaccessible due to debris at headwall measurement point.

⁽³⁾ Staff Gauge used for surface water elevation damaged during winter 2022-23 and replaced and resurveyed August 2024. May and September 2023 and May 2024 surface water elevation surveyed by GFI

Table 2. Groundwater and Surface Water Elevations Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, New York

Well ID	TOR Elevation ⁽¹⁾		17, 2022 IANNUAL 2022)	May 2, 2023 (FIRST SEMIANNUAL 2023)		September 12, 2023 (SECOND SEMIANNUAL 2023)			5, 2024 ANNUAL 2024)	August 26, 2024 (SECOND SEMIANNUAL 2024)	
		Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
MW-07	587.01	6.99	580.02	3.70	583.31	4.23	582.78	4.76	582.25	6.11	580.90
MW-10	587.61	7.57	580.04	5.00	582.61	5.66	581.95	5.49	582.12	6.97	580.64
MW-11A	589.78	9.18	580.60	5.52	584.26	6.25	583.53	6.88	582.90	8.44	581.34
MW-12	591.40	11.97	579.43	8.57	582.83	10.02	581.38	9.72	581.68	11.30	580.10
MW-13	591.85	13.82	578.03	10.81	581.04	12.45	579.40	11.73	580.12	13.80	578.05
MW-14	589.53	12.11	577.42	10.25	579.28	11.42	578.11	10.86	578.67	11.78	577.75
MW-15	590.93	11.83	579.10	9.11	581.82	10.81	580.12	9.48	581.45	10.54	580.39
MW-16	588.99	8.60	580.39	4.86	584.13	5.58	583.41	6.45	582.54	7.82	581.17
MW-17	587.28	6.82	580.46	2.95	584.33	3.75	583.53	4.41	582.87	6.17	581.11
MW-19	589.83	10.16	579.67	6.99	582.84	7.80	582.03	7.94	581.89	9.28	580.55
MW-20	587.06	10.27	576.79	7.23	579.83	8.80	578.26	7.80	579.26	9.80	577.26
MW-21	587.84	11.20	576.64	9.44	578.40	10.80	577.04	10.03	577.81	10.90	576.94
MW-22	592.50	13.24	579.26	10.24	582.26	11.33	581.17	11.05	581.45	11.55	580.95
MW-23	589.28	11.69	577.59	10.83	578.45	10.98	578.30	10.46	578.82	11.35	577.93
SW-01	587.0 (Top Headwall)	na ⁽²⁾	na	1.05	585.95	1.25	585.75	6.08	580.92	5.67	581.33
SW-02	583.36	0.90	582.57		586.14		585.78	5.68	584.10	0.18	583.54
RTW-1	na	11.02	na	8.59	na	8.24	na	8.73	na	9.35	na

Notes:

na = not available.

GEI Consultants, Inc., P.C.

⁽¹⁾ TOR (top of riser for monitoring wells) measured in feet; distance above sea level.

⁽²⁾ location inaccessible due to debris at headwall measurement point.

⁽³⁾ Staff Gauge used for surface water elevation damaged during winter 2022-23 and replaced and resurveyed August 2024. May and September 2023 and May 2024 surface water elevation surveyed by CFI

Table 3. Field Measured Parameters-Second Semiannual 2024 Groundwater Sampling Event Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, New York

Well ID	Sample Date	Sample Time	Sample pH (standard units)	Sample Specific Conductance (mS/cm)	Sample Temperature (°C)	Sample Turbidity (ntu)	Sample Oxidation Reduction Potential	Sample Dissolved Oxygen (ppm)	Comments
Groundwater	Monitoring Wells								
MW-07	08/26/24	9:10	6.21	2.420	15.7	4.70	-93.4	1.14	slight petroleum-type odor, low flow sample
MW-07	08/26/24	9:30	6.24	2.600	16.0	4.00	-93.2	1.96	slight petroleum-type odor,high volume purge bailer sample
MW-10	08/26/24	8:40	6.70	0.744	18.8	2.47	51.9	0.82	·
MW-11A	08/26/24	11:50	6.71	1.430	13.9	1.08	-87.6	0.86	
MW-12	08/27/24	9:00	5.93	4.330	14.5	3.80	-77.4	1.60	low-flow sample
MW-12	08/27/24	9:25	5.86	4.390	14.4	4.30	-81.4	2.71	high volume purge bailer sample
MW-13	08/27/24	11:45	6.48	0.752	16.2	1.27	46.4	1.37	
MW-14	08/26/24	10:50	6.49	3.100	19.0	2.79	-93.4	2.48	
MW-16	08/26/24	13:20	4.28	3.510	15.3	3.70	-39.2	1.17	slight musty odor, low flow sample
MW-16	08/26/24	13:50	4.20	3.960	15.1	4.10	-51.6	2.34	slight musty odor, high volume purge bailer sample
MW-16	08/27/24	12:15	6.49	3.430	15.7	4.10	85.4	1.31	low flow sample #2
MW-17	08/27/24	10:40	6.48	1.754	12.8	3.14	-54.9	1.56	
MW-19	08/27/24	10:15	6.43	1.554	14.3	3.20	-70.9	1.31	low flow sample
MW-19	08/27/24	10:45	6.48	1.724	14.3	4.80	-78.7	2.37	high volume purge bailer sample
MW-20	08/26/24	10:30	6.48	2.700	16.8	4.60	-100.6	1.02	low flow sample
MW-20	08/26/24	11:00	6.49	2.820	16.9	4.90	-113.7	2.15	high volume purge bailer sample
MW-20	08/27/24	11:50	6.56	2.530	18.1	3.10	-76.0	1.10	low flow sample #2
MW-21	08/27/24	12:30	6.36	3.153	17.1	3.20	-63.7	1.20	
MW-22	08/26/24	11:45	6.80	2.230	18.7	2.08	-87.5	1.01	
MW-23	08/26/24	9:50	6.48	6.480	17.7	2.70	38.9	1.50	Field Duplicate
Surface Wate	r Sampling Locations								
SW-01	08/26/24	12:40		1.15					downstream
SW-02	08/26/24	11:15		0.98					upstream

GEI Consultants, Inc., P.C. Page 1 of 1

Table 4A. Groundwater Analytical Summary- On-Site Areas Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, NY

		Locat	ion Name	MW-07	MW-07	MW-10	MW-11A	MW-12	MW-12	MW-16	MW-16	MW-16	MW-19	MW-19
		Sam	ple Name	MW-07	MW-07 Bailer	MW-10	MW-11A	MW-12	MW-12 (BAILER)	MW-16	MW-16 Bailer	MW-16 (LOW FLOW 2)	MW-19	MW-19 (BAILER)
		St	art Depth	5	5	5	3	5	5	8	8	8	15	15
		E	nd Depth	15	15	15	18	15	15	18	18	18	25	25
		D	epth Unit	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft	ft
		Sar	nple Date	8/26/2024	8/26/2024	8/26/2024	8/26/2024	8/27/2024	8/27/2024	8/26/2024	8/26/2024	8/27/2024	8/27/2024	8/27/2024
			NYS											
,	Units	CAS No.	AWQS											
BTEX	ug/L													
Benzene		71-43-2	1	580	600	1 U	1.8 J						3500	3600
Toluene		108-88-3	5	20 U	20 U	1 U	2 U						100 U	50 U
Ethylbenzene		100-41-4	5	810	670	1 U	2 U						520	500
Total Xylene		1330-20-7	5	240	180	2 U	4 U						200 U	55 J
Total BTEX (ND=0)		TBTEX_ND0	NE	1630	1450	ND	1.8						4020	4155
PAH17	ug/L													
Acenaphthene		83-32-9	20*	120	130	0.5 U	3.2						3.7	4.2
Acenaphthylene		208-96-8	NE	2.1	2.9	0.5 U	0.95						0.5 U	0.5 U
Anthracene		120-12-7	50*	3.5	4.5	0.5 U	0.5 U						0.5 U	0.5 U
Benzo(a)anthracene		56-55-3	0.002*	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Benzo(b)fluoranthene		205-99-2	0.002*	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Benzo(k)fluoranthene		207-08-9	0.002*	0.5 U	0.5 U	0.2 J	0.5 U						0.5 U	0.5 U
Benzo(g,h,i)perylene		191-24-2	NE	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Benzo(a)pyrene		50-32-8	ND	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Chrysene		218-01-9	0.002*	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Dibenz(a,h)anthracene		53-70-3	NE	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
Fluoranthene		206-44-0	50*	0.51	0.49 J	0.72	0.48 J						0.5 U	0.5 U
Fluorene		86-73-7	50*	30	42	0.5 U	0.64						0.5 U	0.5 U
Indeno(1,2,3-cd)pyrene		193-39-5	0.002*	0.5 U	0.5 U	0.5 U	0.5 U						0.5 U	0.5 U
2-Methylnaphthalene		91-57-6	NE	15	16	0.5 U	0.5 U						110 J	130 J
Naphthalene		91-20-3	10*	1300	970	0.5 U	0.5 U						3900	4400
Phenanthrene		85-01-8	50*	22	29	0.5 U	0.5 U						0.5 U	0.5 U
Pyrene		129-00-0	50*	0.59	0.62	0.41 J	0.63						0.5 U	0.5 U
Total PAH (17) (ND=0)		TPAH17_ND0	NE	1493.7	1195.51	1.33	5.9						4013.7	4534.2
Cyanides	ug/L	_									1			
Free Cyanide		FREECN	NE				5 U	5 U	5 U	31.1	5 U	547 R		
Total Cyanide		57-12-5	200				230	840	790	4900	3400	4400		
Other														
Total Suspended Solids	ug/L	TSS	NE				45600							

Table 4B. Groundwater Analytical Summary- Perimeter Areas Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, NY

			Location Name Sample Name Start Depth End Depth Depth Unit Sample Date Parent Sample	MW-13 MW-13 10 20 ft 8/27/2024	MW-14 MW-14 10 20 ft 8/26/2024	MW-17 MW-17 7 17 ft 8/27/2024	MW-20 MW-20 10 20 ft 8/26/2024	MW-20 MW-20 Bailer 10 20 ft 8/26/2024	MW-20 MW-20 (LOW FLOW 2) 10 20 ft 8/27/2024	MW-21 MW-21 10 20 ft 8/27/2024	MW-22 MW-22 10 20 ft 8/26/2024	MW-23 MW-23 5 20 ft 8/26/2024	MW-23 Duplicate 5 20 ft 8/26/2024 MW-23
			·										
Analyte	Units	CAS No.	NYS AWQS										
BTEX	ug/L												
Benzene		71-43-2	1	1 U		2 U						1 U	1 U
Toluene		108-88-3	5	1 U		2 U						1 U	1 U
Ethylbenzene		100-41-4	5	1 U		2 U						1 U	1 U
Total Xylene		1330-20-7	5	2 U		4 U						2 U	2 U
Total BTEX (ND=0)		TBTEX_ND0	NE	ND		ND						ND	ND
PAH17	ug/L												
Acenaphthene		83-32-9	20*	0.5 U		0.5 U						0.5 U	0.5 U
Acenaphthylene		208-96-8	NE	0.5 U		0.5 U						0.5 U	0.5 U
Anthracene		120-12-7	50*	0.5 U		0.5 U						0.5 U	0.5 U
Benzo(a)anthracene		56-55-3	0.002*	0.5 U		0.5 U						0.5 U	0.5 U
Benzo(b)fluoranthene		205-99-2	0.002*	0.5 U		0.5 U						0.5 U	0.5 U
Benzo(k)fluoranthene		207-08-9	0.002*	0.5 U		0.5 U						0.5 U	0.5 U
Benzo(g,h,i)perylene		191-24-2	NE	0.5 U		0.5 U						0.5 U	0.5 U
Benzo(a)pyrene		50-32-8	ND	0.5 U		0.5 U						0.5 U	0.5 U
Chrysene		218-01-9	0.002*	0.5 U		0.5 U						0.5 U	0.5 U
Dibenz(a,h)anthracene		53-70-3	NE	0.5 U		0.5 U						0.5 U	0.5 U
Fluoranthene		206-44-0	50*	0.5 U		0.5 U						0.5 U	0.5 U
Fluorene		86-73-7	50*	0.5 U		0.5 U						0.5 U	0.5 U
Indeno(1,2,3-cd)pyrene		193-39-5	0.002*	0.5 U		0.5 U						0.5 U	0.5 U
2-Methylnaphthalene		91-57-6	NE	0.5 U		0.5 U						0.5 U	0.5 U
Naphthalene		91-20-3	10*	0.5 U		0.45 J						0.5 U	0.5 U
Phenanthrene		85-01-8	50*	0.5 U		0.5 U						0.5 U	0.5 U
Pyrene		129-00-0	50*	0.5 U		0.5 U						0.5 U	0.5 U
Total PAH (17) (ND=0)		TPAH17_ND0	NE	ND		0.45						ND	ND
Cyanides	ug/L												
Free Cyanide		FREECN	NE	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Total Cyanide		57-12-5	200	240	670	25 J	790	580	440	430	500	130	140

Table 4A and 4B. Groundwater Analytical Summary-Notes Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, NY

Notes:

Analytes in blue are not detected in any sample

ug/L = micrograms per liter or parts per billion (ppb)

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes PAH = Polycyclic Aromatic Hydrocarbon

Total BTEX and Total PAHs are calculated using detects only.

Total PAH17 is calculated using the list of analytes: Acenaphthene, Acenaphthylene, Anthracene, Benz[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g,h,i]perylene, Benzo[k]fluoranthene, Chrysene, Dibenz[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-cd]pyrene, Naphthalene, 2-Methylnaphthalene, Phenanthrene, and Pyrene

NYS AWQS = New York State Ambient Water Quality Standards and Guidance Values for GA groundwater * indicates the value is a guidance value and not a standard

CAS No. = Chemical Abstracts Service Number MGP = Manufactured Gas Plant ND = Not Detected

Bolding indicates a detected result concentration

Gray shading and bolding indicates that the detected result value exceeds the NYS AWQS

Validation Qualifiers:

J = The result is an estimated value.

U = The result was not detected above the reporting limit.

R = The result was rejected due to value being outside of historical analytical results

Table 5. Surface Water Analytical Summary Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, NY

		L	ocation Name	SW-01	SW-02
			Sample Name	SW-01	SW-02
			Sample Date	8/26/2024	8/26/2024
			Class D		
Analyte	Units	CAS No.	Stream		
BTEX	ug/L				
Benzene		71-43-2	10	1 U	1 U
Toluene		108-88-3	6000	1 U	1 U
Ethylbenzene		100-41-4	150	1 U	1 U
Total Xylene		1330-20-7	590	2 U	2 U
Total BTEX (ND=0)		TBTEX_ND0	NE	ND	ND
PAH17	ug/L				
Acenaphthene		83-32-9	48	0.5 U	0.5 U
Acenaphthylene		208-96-8	NE	0.5 U	0.5 U
Anthracene		120-12-7	35	0.5 U	0.5 U
Benzo(a)anthracene		56-55-3	0.23	0.5 U	0.5 U
Benzo(b)fluoranthene		205-99-2	NE	0.5 U	0.5 U
Benzo(k)fluoranthene		207-08-9	NE	0.5 U	0.5 U
Benzo(g,h,i)perylene		191-24-2	NE	0.5 U	0.5 U
Benzo(a)pyrene		50-32-8	0.0012	0.5 U	0.5 U
Chrysene		218-01-9	NE	0.5 U	0.5 U
Dibenz(a,h)anthracene		53-70-3	NE	0.5 U	0.5 U
Fluoranthene		206-44-0	NE	0.5 U	0.5 U
Fluorene		86-73-7	4.8	0.5 U	0.5 U
Indeno(1,2,3-cd)pyrene		193-39-5	NE	0.5 U	0.5 U
2-Methylnaphthalene		91-57-6	42	0.5 U	0.5 U
Naphthalene		91-20-3	110	0.5 U	0.5 U
Phenanthrene		85-01-8	45	0.5 U	0.5 U
Pyrene		129-00-0	42	0.5 U	0.5 U
Total PAH (17) (ND=0)		TPAH17_ND0	NE	ND	ND
Cyanides	ug/L				
Free Cyanide		FREECN	22	5 U	5 U
Total Cyanide		57-12-5	9000	10 U	10 U
Other					
Total Suspended Solids	mg/L	TSS	NE	56.4	4.0

Table 5. Surface Water Analytical Summary-Notes Mineral Springs Road MGP Site National Fuel Gas Distribution Corporation West Seneca, NY

Notes:

Analytes in blue are not detected in any sample

ug/L = micrograms per liter or parts per billion (ppb)

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes PAH = Polycyclic Aromatic Hydrocarbon

Total BTEX and Total PAHs are calculated using detects only.

Total PAH16 is calculated using the EPA16 list of analytes: Acenaphthene, Acenaphthylene, Anthracene, Benz[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g,h,i]perylene, Benzo[k]fluoranthene, Chrysene, Dibenz[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-cd]pyrene, Naphthalene, Phenanthrene, and Pyrene

Total PAH17 is calculated using the EPA16 list of analytes plus 2-Methylnaphthalene

NYS AWQS = New York State Ambient Water Quality Standards and Guidance Values for GA groundwater * indicates the value is a guidance value and not a standard

CAS No. = Chemical Abstracts Service Number MGP = Manufactured Gas Plant ND = Not Detected

Bolding indicates a detected result concentration

Validation Qualifiers:

U = The result was not detected above the reporting limit.

Figures

Figure 1. Site Location Map

Figure 2. Site Layout

Figure 3. MW-7 Time Series Plot (BTEX, PAHs)

Figure 4. MW-12 Time Series Plot (Total, Free Cyanide)

Figure 5A. MW-16 Time Series Plot (Total Cyanide)

Figure 5B. MW-16 Time Series Plot (Free Cyanide)

Figure 6. MW-19 Time Series Plot (BTEX, PAHs)

Figure 7. MW-20 Time Series Plot (Total, Free Cyanide)

Figure 8. Potentiometric Surface Map – August 2024

Notes: Aerial Imagery Sourced from Google Maps (http://www.maps.google.com) dated 2016.

1000

500

250

National Fuel Gas Corporation Mineral Springs Facility

West Seneca, New York

SITE LOCATION

Project 2300298

November 2024

Figure 1

National Fuel Gas Corporation Mineral Springs Facility

West Seneca, New York

GEI Consultants
Project 2300298

TIME-SERIES PLOTS MW-16

November 2024

Figure 5A

*the free cyanide result for Low-flow sample #2 collected in August 2024 was rejected due to data being outside of historical limits

National Fuel Gas Corporation Mineral Springs Facility

West Seneca, New York

TIME-SERIES PLOTS MW-16- Free Cyanide

November 2024

Figure 5B

National Fuel Gas Corporation Mineral Springs Facility

West Seneca, New York

TIME-SERIES PLOTS MW-19

November 2024

Figure 6

2024 Second Semiannual Groundwater/Surface Water Quality
Monitoring and Special Groundwater Quality Assessment
Report
Mineral Springs Road Former MGP Site (NYSDEC #V00195), West Seneca, New York
November 2024

Appendix A Monitoring Well Sampling Logs

							V			
	Site Name:	UNERN	Spewos	MGP			Well ID:	1-07		
	Date_ 8	/20/29	7					Well Depth (ft btoc	, 14.9	
	Field Personnel		Ne	(.		,		Depth to Water (ft I	otoc) 6.	
	Method of Purging	/ Sampling per	istalfic/	baller		r		Casing typeldia	Z ^u	
								Well Volume (g)	14.9-6.11 6.49	
	Time	Total Volume (g)	Temp (°F)	рН	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments	
(Ses	initia	165	6,0	5.80	-59.b	1'55	(8	dan sligt petro	
, \	830	0.5	16.2	6.15	17.5	-85.7	1.15	12	000-	
ww ?	840	60	16.0	6.17	2.65	-861	(,(3	7.4	At	
40~	8-20	1,5	15.9	6,20	2.54	-92,1	1, 13	5.6		
(900	2.0	15.7	6.21	2.42	-93.4	1.14	4.7	I fet light sheen	
							(
(910	1.4	15.8	6-25	2.64	-864	1.85	5.6	14-	
savez 2	915	2.8	15.9	6.27	2.68	-89.6	1.74	5.2		
	920	4.2	16.0	6.24	2.60	-93.2	1.94	4.0	d	
									P	
1						Squele d	un-07	ol bastal	910	
	The state of the s				Coulos		co ((whul	0 9	30	
						±	S-201-W 7 N			

Site Name:	VERAL Sp.	nzNG5				Well ID: MW	-20	
	26/24						Well Depth (ft btoo	
Field Personnel Method of Purgi	FRC ing/ Sampling <i>PEA</i>	et pump	/ LOW F	LOW			Depth to Water (ft Casing type/dia/ Well Volume (g)	ove /2-2NCH
Time	Total Volume (g)	Temp (°F)	рН	Cond (ss/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
0805	0.0	28.8	6.8	0.456	59.3	0.80	8.11	CLEAR, NO
0810	. 25	28.9	6.7	0.586	54.0	0.68	7.26	
08/5	. 5	28.7	6.6	0.624	54.2	0.74	5.23	
0820	. 75	18.7	6.6	0.726	53.6	0.77	4.62	
0825	1.0	18.7	6.6	0.774	54.7	0.79	3.16	
0830	2.25	18.9	6.6	0.752	54.5	0.82	2.56	
0832	2.50	28.9	6.7	0.748	52.1	0.84	2.50	
0840	2.75	18.8	6.7	0.744	51. 9	0.82	2.47	₩
								SAMPLE COLLECTION
								AT 0840, DTW 7.79

Site Name:						Well ID:		
	snal Spn:	INGS			M	W-11A	8	
Date 08	26/24	Well Depth (ft btoc) Depth to Water (ft b Casing type/dia						
Time	Total Volume (g)	Temp (°J')	pH	Cond (fis/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
1110	0	14.0	6.75	1.55	-85.6	0.88	4.37	CLEAR, NO OPOR.
1115	. 25	13.9	6.72	1.49	- 85.9	0.86	4.04	
1120	.50	13.9	6.70	1.47	-88.7	0.85	3.76	
1125	کډ.	13.9	6.72	1.44	-87.7	0.87	3.32	
1130	1.0	13.9	6.72	1.45	-87.6	0.86	1.08	V
								COLLECTED AT
								1150, FEWAL DIL
								8.53'

	Site Name:	, ,/	Vivor	Spewb	>		Well ID:	21-W			
	Date	8/27/2	4			¥1.		Well Depth (ft btoc)			
- 1	Field Personnel	w		[, \]	-		St. (1.30				
1	Method of Purging/	Sampling PCV	Saldic	bûlen		97 V			<u></u>		
	Time	Total Volume (g)	Temp (°F)	рН	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Well Volume (g)	Comments		
	CE B	inital	14.5	5,94	4.27	-69.6	1.64	6.4	dea no alay		
	840	0.5	14.3	5.90	4.31	-71.4	(1.35	3/5			
	850	6.0	,4.4	5.92	4.34	-806	1.64	4.7			
	900	1.5	14,5	5.93	4.33	-77.4	1.60	3,5	4		
	•					8					
1	900	1.0	14.4	5.90	4-41	-84.6	1.94	5.8	**		
\	ars	2.0	14.5	5.87	4.45	-87.6	2.68				
	9.50	3.0	14.4	5.86	4.39	-86.4	15.5	4.3	d		
Y											
						Sandre	Collection		0		
					Saile	e Sunde	collect	109	25		
						λ.					

Site Name:						Well ID:	. 5	
MI	NERAL SA	ra ngs				mw-	13	
Date_0 \$\frac{1}{2}\$ Field Personnel_							Well Depth (ft btoc	
C. C			1	—			Depth to water (it i	otoc) 3 3 . o
Method of Purgir	ng/ Sampling P & A	I pung	2 / LOW	FLOW			Casing type/dia.	OVE / 2- ZNCE
		,					Well Volume (g)	
Time	Total Volume (g)	Temp (°p)	pН	Cond (ps/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
1115	0	26.7	6.47	0.768	269.7	1.77	2.00	CLEAR, NO ODOR
知しひ	. ک	26.4	6.48	0.706	765.7	2.65	2.67	1
#15	. 5	26.2	6.49	0.707	362.3	2. 42	1.62	
123 0	.75	16.2	6.97	0.705	160.5	1.39	2.55	
1135	1.0	26.2	6.48	0.777	46.3	1.38	2.47	
2340	2.5	16.2	6.48	0.756	46.5	1.36	7.32	
1145	2.0	16.2	6.48	0.752	46.4	1.37	2.27	1
								COLLECTED SAMPL
								AT 2245 , FENAL
								DTL 23.82
							V	

						7		The state of the s	
Site Name:	enal Spr	LINGS				Well ID:	24		
Field Personnel	/26/24 FAC ng/ Sampling <u>PEA</u>	1 pump	/LOW FLO	in In			Well Depth (ft btoc) Depth to Water (ft bt Casing type/dia Well Volume (g)	otoc) 11. 7	
Time	Total Volume (g)	Temp (°)	рН	Cond (Jis/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Co	omments
2025	0.0	26.4	6.53	3.25	-91.1	2.36	7.32	CLEAR,	NOBBR
1030	0.5	16.4	6.52	3.15	-95.1	2.67	4.35		
2035	97.0	17.5	6.50	3.22	-79.1	2.55	3.25		
2040	1.5	18.5	6.49	3.22	-93.7	2.47	2.84		
2045	2.6	19.0	6.49	7.09	-93.6	2.45	2.82		
1050	2.5	19.0	6.49	3.20	-93.4	2.48	2.79	1	1
									COLLECTED , FENAL
								074 2	2.74
									9

Si	te Name:	Minter	M SPR	1) Aus	Mw-1b					
D	ate							Well Depth (ft btoc)	20.21	
Fi	eld Personnel				Depth to Water (ft btoc) 7.82					
M	ethod of Purging/	Sampling						Casing type/dia	0.240	
L								Well Volume (g)	20.2-7.82×16 Zg	
	Time	Total Volume (g)	Temp (%E)C	рН	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments	
	1250	inited	1311	432	3.50	-4912	1.62	5-2	dear struct and	
	1300	0.75	5.2	4,28	3.44	-436	1.57	42	(' ''	
	1310	1.5	15.2	4,25	3.42	-44.6	(25)	4.1	€	
	1320	2.5	15.3	4,28	3.51	_39.2	117	3.7	d	
Į										
	330	2.0	15,2	4.17	3.79	-50.7	1.85	5.7	AA	
	1340	4.0	15,(4.24	3.85	-52.4	2,16	4.2		
1	(ટેટ્ટો	6.3	15,1	4.20	3,96	-51.6	2.34	4. (4	
Ł				•		2			·	
1						Sanghe	collected	(a) (3	05	
					bala	e soute	CL	1	300	

Site Name:						Well ID:	v-16	
	ubical sp	13N95				///		
	127/24						Well Depth (ft btoo	
Field Personnel_	PRE						Depth to Water (ft	btoc)
Method of Purgir	ng/ Sampling PE	way pum	0 / 204	FLLW				HJUE-E/ JUCH
	η			n ₁	r	7	Well Volume (g)	
Time	Total Volume (g)	Temp (°F)	рН	Cond (pls/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
1200	6	26.5	6.97	3,16	88.5	4.22	6.4	CLEAR, NO ODOR
1205	.25	25.8	6.62	3.27	86.3	4.49	5.0	
1210	.50	25.7	6.52	3.33	86.0	3. 26	4.6	
1215	1.0	15.7	6.49	3.43	85.4	1.32	4.1	↓ ↓
	•							SAMPLED AT
								2125, FINAL
								10184 7.86
								(MW-16 LOW)
								FLOWA

Site Name:						12-12-12		
MI	NERAL SI	PRINGS				Well ID:	17	
Date O 8/	FRC PE	MAL					Well Depth (ft btoc Depth to Water (ft I Casing type/dia.	otoc) 6. 27 OVC /2-INCH
Time	Total Volume (g)	Temp (°F)	pH	Cond (pis/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
1020	0	13.6	6.72	2.025	-46.0	3.52	29.0	CLEAN, NO DOOR
1025		23.0	6.54	1.934	-46.2	2.36	22.8	
1030	1.0	22.7	6.49	1.820	-52.5	2.68	5.23	4
1035	1.5	12.9	6.48	1.765	-54.8	1.47	4.3 8	
1040	2.0	12.8	6.48	1. 754	-54.9	1.56	3.14	1
								SAMPCED AT 1040
								FINAL PTY 6.25'

Site Name:	MWERA	2 SPRING	ς,	Desire is a Constitution of States		Well ID:	W-19	
Date Field Personnel Method of Purging/	10 Ne	2 SPILNG 8(27/24 436/162/5					Casing typeroia	are
Time	Total Volume (g)	Temp (°5)	pH	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
940	instal	14,3	6.48	1.462	-61.9	(4)	15.6	del
950	0.5	14.2	6-44	1.578	-71.6	1.28	65	
1000	1,0	14.7	6.44	1,527	-72.3	1-30	5.0	
1000	1.5	14.3	6.43	1.554	-70.9	1-31	3.2	
			CIVII OI HE HON-					
1000		14.5	6.51	1.648	-748	15.5	5.7	
1030	6.0	14.4	6-57	1.690	-76.4	85.5	4.8	_
1040	9.0	14.3	6.48	1.724	-78.7	2.37	4.8	
				/	Sample	ollegal	0 100	4
				boulor 5	male iall	wa(0)	1045	
					-			

118										
	Site Name:	Mine	sen Spa	2000			Well ID:	U-20		
	Date	80	20/24					Well Depth (ft btoc)		
	Field Personnel	1.	Me	1				Depth to Water (ft b		
	Method of Purging	Sampling plev	philling a	balle.		e		Casing type/dia	Σ·,	
								Well Volume (g)	7.95-9.00+	1.18 1.35
0	Time	Total Volume (g)	Temp (°F)	pH	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comm	ents
	1005	ia if H	17.2	6.66	2.787	-96.2	1.49	28.2	clear or	adres
ر م	10 15	×0.5	16.8	6.57	2.77	-102.9	1.16	14.6	د (
./	1020	60	16.9	6.5)	2.74	-1012	1,08	4.7	ι(
A	10 26	1.6	6.8	6.48	2.70	-100-6	1.02	4.6	11	
						181				
(1040	1.5	16-7	6.47	2.65	-1007	6-78	15.4	٥(
	10 45	3.0	16-8	6.42	2.74	710.6	0).5	5.9		
36	1000	4,5	16.9	6.54	5.85	-112-6	2.(3	5,2		
	100	5.0	16.9	6:49	2.82	-((\$.7	2.15	4.9	0	
\										W.
						Sala	Le collat	00 10	30	
					God	TK Sun	le colle	MO I	100	
-						الا				
4										

						/	U W-	Consultants
Site Name:	Minery	Sprin) vo			Well ID:	14	[Low flow to
Date	8/24	124	0				Well Depth (ft btoc)	
Field Personnel_	me	, (Depth to Water (ft b	1.83
Method of Purging	Sampling	Low Ylow		Casing type/dla				
			1 0				Well Volume (g)	
Time	Total Volume (g)	Temp (°F)	рН	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
1(20	in Hd	18.4	6.58	2520	-64.7	1.3	5.6	dea no slow
1130	0.5	18.2	6.57	2.525	-70.9	1.06	4.2	
1140	1-0	18.7	6.56	7.26	-788	1.07	4-1	
1120	1.5	16.1	6.56	2.530	760	1.10	31	4
							A	
					garle	College	0) 110	>
					, 00 (10	(,,,,,		

Site Name:	MWE	2AL 59	R(1)19			Well ID:	w-21					
Date Field Personnel Method of Purging	Date Well Depth (ff btoc)											
Time	Total Volume (g)	Temp (°F)	рН	Cond (us/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments				
(200	inital	16-8	6.39	3.130	-60.9	1.41	5.4	drag no odons				
1210	0.5	(7.0	6.37	3.140	-61.7	15.]	4.3	·(
1220	1.0	(5.0)	6.87	3.147	-62.1	1.19	3.7	Cf B				
(2 32)	1.5	(7. (6201	3.153	-63.7	651	3.2	((- "				
							^	1				
					Sande	collected	@ (230					

Site Name:						Well ID:	-	
MIN	enal Spr	INGS				MW.	. 22	
Date08/	26/24		mp/Low	FLOW			Well Depth (ft btoo Depth to Water (ft Casing type/dia.) VC /2-INCH
Time	Total Volume (g)	Temp (°p)	pH	Cond (As/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
12:15	0.0	28.7	6.6	2.22	-81.4	. 38	6.56	CLEAR, NO OOGR
72:20	0.5	18.7	6.8	7.24	-80.3	2.07	4.39	
12:25	1.0	28.8	6.8	2.26	-77.2	2.22	4.55	
72:30	2.5	18.8	6.8	2.27	-35.3	1. 02	3.62	
12:35	2.0	18.6	6.8	2.25	-84.3	2.07	2.27	
11:40	2.5	18.7	6.8	2.29	-87.6	2.05	2.71	
72:45	3.0	48.7	6.8	2.23	-87.5	2.07	2.08	V
								SAMPLEO AT 12:4
								SAMPLED AT 12:4
	-					-	-	
				-				
	1							

Site Name:	NERAL SP	NINGS				Well ID:	-23	
ate 08/2			p / LOW 1	ELOV			Casing type/dla.	btoc) /1.35 DVC/ 2-INCH A 2-0-64;
Time	Total Volume (g)	Temp (%)	рН	Cond (ys/cm)	ORP (mV)	D.O. (mg/L)	Turbidity (NTU)	Comments
0930	0.0	17.8	6.49	6.42	36.2	1.54	10.6	CLEAR, NO OR OR
0935	0.5	17.8	6.49	6.42	38.4	1.52	3.2	
0945	1.0	17.7	6.47	6.47	39.3	1.49	3.0	
0945	1.5	17.7	6.47	6.49	39.2	1.51	2.9	
0950	2.0 *	17.7	6.48	6.48	38.9	1.50	2.7	V SAMPLET
								DUPITUATE COLLS
								AT 0950
								FINAL DTW
								11.45

2024 Second Semiannual Groundwater/Surface Water Quality
Monitoring and Special Groundwater Quality Assessment
Report
Mineral Springs Road Former MGP Site (NYSDEC #V00195), West Seneca, New York
November 2024

Appendix B Category B Laboratory Analytical Package

ANALYTICAL REPORT

PREPARED FOR

Attn: Richard Frappa GEI Consultants Inc 100 Sylvan Parkway Suite 400 Amherst NY 14228

Generated 09/11/2024

JOB DESCRIPTION

Semi Annual Sampling (August) GEI, Mineral Springs 222859

JOB NUMBER

480-222859-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 09/11/2024

Authorized for release by John R Schove, Project Manager II John.Schove@et.eurofinsus.com 716 504-9838

Table of Contents

Cover Page	1
Data Summaries	5
Report Narrative	5
Sample Summary	6
Detection Summary	7
Method Summary	11
Client Sample Results	12
Surrogate Summary	42
QC Sample Results	44
Definitions	51
QC Association	52
Chronicle	56
Certification Summary	62
Reagent Traceability	63
COAs	92
Organic Sample Data	175
GC/MS VOA	175
Method 8260C	175
Method 8260C QC Summary	176
Method 8260C Sample Data	189
Standards Data	268
Method 8260C ICAL Data	268
Method 8260C CCAL Data	437
Raw QC Data	458
Method 8260C Tune Data	458
Method 8260C Blank Data	470
Method 8260C LCS/LCSD Data	484
Method 8260C Run Logs	508
Method 8260C Prep Data	511
GC/MS Semi VOA	517
Method 8270D Low Level PAH	517
Method 8270D Low Level PAH QC Summary	518
Method 8270D Low Level PAH Sample Data	540
Standards Data	687
Method 8270D Low Level PAH ICAL Data	687
Method 8270D Low Level PAH Resolution Data	813
Method 8270D Low Level PAH CCAL Data	825
Raw QC Data	856
Method 8270D Low Level PAH Tune Data	856
Method 8270D Low Level PAH Blank Data	910
Method 8270D Low Level PAH LCS/LCSD Data	920

Table of Contents

Method 8270D Low Level PAH Run Logs	932
Method 8270D Low Level PAH Prep Data	938
Inorganic Sample Data	944
General Chemistry Data	944
Gen Chem Cover Page	945
Gen Chem Sample Data	947
Gen Chem QC Data	988
Gen Chem ICV/CCV	988
Gen Chem Blanks	990
Gen Chem MS/MSD/PDS	992
Gen Chem Duplicates	995
Gen Chem LCS/LCSD	996
Gen Chem MDL	1000
Gen Chem Preparation Log	1006
Gen Chem Analysis Run Log	1007
Gen Chem Raw Data	1013
Gen Chem Prep Data	1032
Subcontracted Data	1040
Shipping and Receiving Documents	1041
Client Chain of Custody	1042
Sample Receipt Checklist	1049

Job Narrative 480-222859-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 8/26/2024 2:30 PM and 8/27/2024 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 7.2°C, 19.2°C and 21.5°C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-07 (480-222859-6), MW-07 Bailer (480-222859-16), MW-19 (480-222886-3) and MW-19 (BAILER) (480-222886-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-17 (480-222886-7) and MW-11A (480-222859-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D_LL_PAH: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-723375.

Method 8270D_LL_PAH: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-19 (480-222886-3), MW-19 (BAILER) (480-222886-4), MW-07 (480-222859-6), MW-07 Bailer (480-222859-16). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 5 of 1052

Sample Summary

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs

480-222886-9

480-222886-10

MW-21

Lab Sample ID Client Sample ID Matrix Collected Received 480-222859-1 MW-14 **Ground Water** 08/26/24 10:50 08/26/24 14:30 MW-20 **Ground Water** 480-222859-2 08/26/24 10:30 08/26/24 14:30 480-222859-3 MW-22 **Ground Water** 08/26/24 12:45 08/26/24 14:30 MW-23 **Ground Water** 480-222859-4 08/26/24 09:50 08/26/24 14:30 480-222859-5 MW-16 **Ground Water** 08/26/24 13:20 08/26/24 14:30 480-222859-6 MW-07 **Ground Water** 08/26/24 09:10 08/26/24 14:30 MW-10 **Ground Water** 480-222859-7 08/26/24 08:40 08/26/24 14:30 480-222859-8 MW-11A **Ground Water** 08/26/24 11:50 08/26/24 14:30 SW-01 Surface Water 480-222859-9 08/26/24 12:40 08/26/24 14:30 SW-02 08/26/24 11:15 08/26/24 14:30 480-222859-10 Surface Water 480-222859-11 TB Water 08/26/24 00:00 08/26/24 14:30 480-222859-12 Water 08/26/24 12:00 08/26/24 14:30 480-222859-13 08/26/24 00:00 08/26/24 14:30 Duplicate **Ground Water** 480-222859-14 MW-20 Bailer Water 08/26/24 11:00 08/26/24 14:30 480-222859-15 MW-16 Bailer Water 08/26/24 13:50 08/26/24 14:30 MW-07 Bailer 480-222859-16 Water 08/26/24 09:30 08/26/24 14:30 480-222886-1 MW-12 **Ground Water** 08/27/24 09:00 08/27/24 14:00 Water 480-222886-2 MW-12 (BAILER) 08/27/24 09:25 08/27/24 14:00 480-222886-3 MW-19 **Ground Water** 08/27/24 10:15 08/27/24 14:00 MW-19 (BAILER) Water 08/27/24 10:45 08/27/24 14:00 480-222886-4 480-222886-5 MW-20 LOW FLOW 2) **Ground Water** 08/27/24 11:50 08/27/24 14:00 480-222886-6 MW-13 **Ground Water** 08/27/24 11:45 08/27/24 14:00 **Ground Water** 480-222886-7 MW-17 08/27/24 10:40 08/27/24 14:00 MW-16 (LOW FLOW 2) **Ground Water** 480-222886-8 08/27/24 12:15 08/27/24 14:00

Water

Ground Water

08/27/24 00:00 08/27/24 14:00

08/27/24 12:30 08/27/24 14:00

Job ID: 480-222859-1

SDG: 222859

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-14						Lab Sar	nple ID: 480	-222859-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	0.67		0.020	0.0082	mg/L		9012B	Total/NA
Client Sample ID: MW-20						Lab Sar	nple ID: 480	-222859-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	0.79		0.10	0.041	mg/L	10	9012B	Total/NA
Client Sample ID: MW-22						Lab Sar	nple ID: 480	-222859-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	0.50		0.020	0.0082	mg/L	2	9012B	Total/NA
Client Sample ID: MW-23						Lab Sar	nple ID: 480	-222859-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	0.13		0.010	0.0041	mg/L	1	9012B	Total/NA
Client Sample ID: MW-16						Lab Sar	nple ID: 480	-222859-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	4.9		0.20	0.082	mg/L	20	9012B	Total/NA
Cyanide, Free	31.1		5.0	2.3	ug/L	1	9016	Total/NA
Client Sample ID: MW-07						Lab Sar	nple ID: 480	-222859-6
Analyte	Result	Qualifier	RL	MDL		Dil Fac D	Method	Prep Type
Benzene	580		20		ug/L	20	8260C	Total/NA
Ethylbenzene	810		20		ug/L	20	8260C	Total/NA
Xylenes, Total	240		40		ug/L	20	8260C	Total/NA
2-Methylnaphthalene	15		0.50	0.38	_	1	8270D_LL_PAH	Total/NA
Acenaphthene	130	E	0.50	0.30	_	1	8270D_LL_PAH	Total/NA
Acenaphthylene	2.1		0.50		ug/L	1	8270D_LL_PAH	Total/NA
Anthracene	3.5		0.50	0.39	_	1	8270D_LL_PAH	Total/NA
Fluoranthene	0.51		0.50	0.36	_	1	8270D_LL_PAH	Total/NA
Fluorene	30		0.50	0 27	ug/L	1	8270D_LL_PAH	Total/NA
Naphthalene								
•	380	E	0.50	0.42	-	1	8270D_LL_PAH	Total/NA
Phenanthrene	22	Е	0.50 0.50	0.42 0.38	ug/L	1	8270D_LL_PAH	Total/NA
Phenanthrene Pyrene	22 0.59		0.50 0.50 0.50	0.42 0.38 0.36	ug/L ug/L	1	8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL	22 0.59 22		0.50 0.50 0.50 25	0.42 0.38 0.36 19	ug/L ug/L ug/L	1 1 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL	22 0.59 22 120		0.50 0.50 0.50 25 25	0.42 0.38 0.36 19	ug/L ug/L ug/L ug/L	1 1 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL	22 0.59 22 120 26		0.50 0.50 0.50 25 25 25	0.42 0.38 0.36 19 15	ug/L ug/L ug/L ug/L ug/L	1 1 50 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL	22 0.59 22 120 26 1300	J	0.50 0.50 0.50 25 25 25 25	0.42 0.38 0.36 19 15 19	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 50 50 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL Phenanthrene - DL	22 0.59 22 120 26	J	0.50 0.50 0.50 25 25 25	0.42 0.38 0.36 19 15 19	ug/L ug/L ug/L ug/L ug/L	1 50 50 50 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL	22 0.59 22 120 26 1300	J	0.50 0.50 0.50 25 25 25 25	0.42 0.38 0.36 19 15 19	ug/L ug/L ug/L ug/L ug/L ug/L	1 50 50 50 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL Phenanthrene - DL Client Sample ID: MW-10 Analyte	22 0.59 22 120 26 1300 24	J J Qualifier	0.50 0.50 0.50 25 25 25 25 25	0.42 0.38 0.36 19 15 19 21 19	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 50 50 50 50 50 50 Lab Sar	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Potal/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL Phenanthrene - DL Client Sample ID: MW-10 Analyte Benzo[k]fluoranthene	22 0.59 22 120 26 1300 24 Result 0.20	J J Qualifier	0.50 0.50 0.50 25 25 25 25 25 25 25	0.42 0.38 0.36 19 15 19 21 19 MDL 0.085	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 50 50 50 50 50 50	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH mple ID: 480 Method 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Potal/NA Total/NA Total/NA Total/NA
Phenanthrene Pyrene 2-Methylnaphthalene - DL Acenaphthene - DL Fluorene - DL Naphthalene - DL Phenanthrene - DL Client Sample ID: MW-10 Analyte	22 0.59 22 120 26 1300 24	J J Qualifier J	0.50 0.50 0.50 25 25 25 25 25	0.42 0.38 0.36 19 15 19 21 19 MDL 0.085 0.36	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 50 50 50 50 50 50 Lab Sar	8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH 8270D_LL_PAH	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Potal/NA Total/NA

This Detection Summary does not include radiochemical test results.

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-11	4					Lab Sa	am	ple ID: 480	-222859-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1.8	J	2.0	0.82	ug/L	2	_	8260C	Total/NA
Acenaphthene	3.2		0.50	0.30	ug/L	1		8270D_LL_PAH	Total/NA
Acenaphthylene	0.95		0.50	0.34	ug/L	1		8270D_LL_PAH	Total/NA
Fluoranthene	0.48	J	0.50	0.36	ug/L	1		8270D_LL_PAH	Total/NA
Fluorene	0.64		0.50	0.37	ug/L	1		8270D_LL_PAH	Total/NA
Pyrene	0.63		0.50	0.36	ug/L	1		8270D_LL_PAH	Total/NA
Cyanide, Total	0.23		0.010	0.0041	mg/L	1		9012B	Total/NA
Cyanide, Free	2.5	J	5.0	2.3	ug/L	1		9016	Total/NA
Total Suspended Solids	45.6		4.0	4.0	mg/L	1		SM 2540D	Total/NA
Client Sample ID: SW-01						Lab Sa	am	ple ID: 480	-222859-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.0092	J	0.010	0.0041	mg/L	1	_	9012B	Total/NA
Total Suspended Solids	56.4		4.0	4.0	mg/L	1		SM 2540D	Total/NA
Client Sample ID: SW-02						Lab Saı	mp	ole ID: 480-2	222859-1
 Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Total Suspended Solids	4.0		4.0	4.0	mg/L	1	_	SM 2540D	Total/NA
Client Sample ID: TB						Lab Sai	mr	ole ID: 480-2	222859-1 ²
No Detections.						l ab Car		Jo ID: 400 C	22250 4
Client Sample ID: EB						Lab Sai	mķ	ole ID: 480-2	222859-1
Analyte		Qualifier	RL		Unit		D	Method	Prep Type
Cyanide, Free	2.7	J	5.0	2.3	ug/L	1		9016	Total/NA
Client Sample ID: Duplica	ite					Lab Sai	mp	le ID: 480-2	222859-1
Analyte		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.14	В	0.010	0.0041	mg/L	1		9012B	Total/NA
Client Sample ID: MW-20	Bailer					Lab Saı	mp	le ID: 480-2	222859-14
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.58		0.050	0.021	mg/L	5	_	9012B	Total/NA
Client Sample ID: MW-16	Bailer					Lab Saı	mp	le ID: 480-2	222859-1
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	3.4		0.10	0.041	mg/L	10	_	9012B	Total/NA
Client Sample ID: MW-07	Bailer					Lab Saı	mp	le ID: 480-2	222859-10
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	600		20	8.2	ug/L	20	_	8260C	Total/NA
Ethylbenzene	670		20	15	ug/L	20		8260C	Total/NA
Xylenes, Total	180		40	13	ug/L	20		8260C	Total/NA
2-Methylnaphthalene	16		0.50	0.38	ug/L	1		8270D_LL_PAH	Total/NA
Acenaphthene	180	E	0.50	0.30	ug/L	1		8270D_LL_PAH	Total/NA
Acenaphthylene	2.9		0.50	0.34	ug/L	1		8270D_LL_PAH	Total/NA
•					· · · ·				

This Detection Summary does not include radiochemical test results.

4.5

Anthracene

8270D_LL_PAH Total/NA

0.50

0.39 ug/L

Client: GEI Consultants Inc

Job ID: 480-222859-1

	Bailer (Co	minaca)				Lab Sai	111	ole ID: 480-2	.22005-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	0.49	J	0.50	0.36	ug/L	1	_	8270D_LL_PAH	Total/NA
Fluorene	42		0.50	0.37	ug/L	1		8270D_LL_PAH	Total/NA
Naphthalene	360	E	0.50	0.42	ug/L	1		8270D_LL_PAH	Total/NA
Phenanthrene	29		0.50	0.38	ug/L	1		8270D_LL_PAH	Total/NA
Pyrene	0.62		0.50	0.36	ug/L	1		8270D_LL_PAH	Total/NA
2-Methylnaphthalene - DL	20		10	7.6	ug/L	20		8270D_LL_PAH	Total/NA
Acenaphthene - DL	130		10	6.0	ug/L	20		8270D_LL_PAH	Total/NA
Anthracene - DL	8.2	J	10	7.8	ug/L	20		8270D_LL_PAH	Total/NA
Fluorene - DL	33		10	7.4	ug/L	20		8270D_LL_PAH	Total/NA
Naphthalene - DL	970		10	8.4	ug/L	20		8270D_LL_PAH	Total/NA
Phenanthrene - DL	24		10	7.6	ug/L	20		8270D_LL_PAH	Total/NA
Client Sample ID: MW-12						Lab Sa	am	ple ID: 480-	-222886-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.84		0.050	0.021	mg/L	5		9012B	Total/NA
Client Sample ID: MW-12	(BAILER)					Lab Sa	am	ple ID: 480-	-222886-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.79		0.020	0.0082	mg/L	2	_	9012B	Total/NA
Client Sample ID: MW-19						Lab Sa	am	ple ID: 480-	-222886-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	3500		100	41	ug/L	100		8260C	Total/NA
Ethylbenzene	520		100	74	ug/L	100		8260C	Total/NA
2-Methylnaphthalene	110	E	0.50	0.38	ug/L	1		8270D_LL_PAH	Total/NA
Acenaphthene	3.7		0.50	0.30	ug/L	1		8270D_LL_PAH	Total/NA
Naphthalene	790	E	0.50	0.42	ug/L	1		8270D_LL_PAH	Total/NA
2-Methylnaphthalene - DL	83	J	100	76	ug/L	200		8270D_LL_PAH	Total/NA
Naphthalene - DL	3900		100	84	ug/L	200		8270D_LL_PAH	Total/NA
Client Sample ID: MW-19	(BAILER)					Lab Sa	am	ple ID: 480-	-222886-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	3600		50	21	ug/L	50	_	8260C	Total/NA
Ethylbenzene	500		50	37	ug/L	50		8260C	Total/NA
Xylenes, Total	55	J	100	33	ug/L	50		8260C	Total/NA
2-Methylnaphthalene	130	E	0.50	0.38	ug/L	1		8270D_LL_PAH	Total/NA
Acenaphthene	4.2		0.50	0.30	ug/L	1		8270D_LL_PAH	Total/NA
Naphthalene	830	E	0.50	0.42	ug/L	1		8270D_LL_PAH	Total/NA
2-Methylnaphthalene - DL	96	J	100	76	ug/L	200		8270D_LL_PAH	Total/NA
Naphthalene - DL	4400		100		ug/L	200		8270D_LL_PAH	Total/NA
Naprilialerie - DL	1100		100	0.1	g/ -			02700	

This Detection Summary does not include radiochemical test results.

Analyte

Cyanide, Total

Cyanide, Free

RL

5.0

0.050

MDL Unit

0.021 mg/L

2.3 ug/L

Dil Fac D Method

9012B

9016

5

1

Result Qualifier

0.44

3.1 J

Prep Type

Total/NA

Total/NA

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs

SDG: 222859

Lab Sample ID: 480-222886-8

Client Sample ID: MW-13	Lab Sample ID: 480-222886-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Cyanide, Total	0.24	0.010	0.0041 mg/L	1	9012B	Total/NA

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	0.45	J	0.50	0.42	ug/L	1		8270D_LL_PAH	Total/NA
Cyanide, Total	0.025		0.010	0.0041	mg/L	1		9012B	Total/NA

Client Sample ID: MW-16 (LOW FLOW 2)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Cyanide, Total	4.4	0.20	0.082 mg/L	20	9012B	Total/NA
Cyanide Free	547	50.0	23.2 ug/l	10	9016	Total/NA

Client Sample ID: TB Lab Sample ID: 480-222886-9

No Detections.

Client Sample ID: MW-21 Lab Sample ID: 480-222886-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cyanide, Total	0.43		0.010	0.0041	mg/L	1	_	9012B	Total/NA
Cyanide, Free	2.3	J	5.0	2.3	ug/L	1		9016	Total/NA

Method Summary

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D_LL_PAH	Semivolatile Organic Compounds (GC/MS) Low level PAH	SW846	EET BUF
9012B	Cyanide, Total and/or Amenable	SW846	EET BUF
9016	Cyanide, Free	SW846	EET EDI
SM 2540D	Solids, Total Suspended (TSS)	SM	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF
9016	Cyanide, Preparation	SW846	EET EDI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-14 Lab Sample ID: 480-222859-1

Date Collected: 08/26/24 10:50 Matrix: Ground Water

Date Received: 08/26/24 14:30

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.67	0.020	0.0082	mg/L			08/30/24 09:01	2
Cyanide, Free (SW846 9016)	5.0 U	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-20 Lab Sample ID: 480-222859-2

Date Collected: 08/26/24 10:30 Matrix: Ground Water

Date Received: 08/26/24 14:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.79		0.10	0.041	mg/L			08/30/24 09:04	10
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Job ID: 480-222859-1
Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-22 Lab Sample ID: 480-222859-3

Date Collected: 08/26/24 12:45 Matrix: Ground Water

Date Received: 08/26/24 14:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.50		0.020	0.0082	mg/L			08/30/24 09:31	2
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-23 Lab Sample ID: 480-222859-4

Date Collected: 08/26/24 09:50 Matrix: Ground Water

Date Received: 08/26/24 14:30

Analyte	olatile Organic Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/28/24 13:01	
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/28/24 13:01	
Toluene	1.0	U	1.0	0.51	ug/L			08/28/24 13:01	
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/28/24 13:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/28/24 13:01	
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 13:01	
Dibromofluoromethane (Surr)	86		75 - 123					08/28/24 13:01	
Toluene-d8 (Surr)	93		80 - 120					08/28/24 13:01	
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	nds (GC	:/MS) Lo	w leve	I PAH		
Analyte	_	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:31	-
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:31	
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 15:31	
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 15:31	
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 15:31	
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:31	
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:31	
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:31	
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 15:31	
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 15:31	
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:31	
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:31	•
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:31	
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 15:31	
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 15:31	
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:31	
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	110		48 - 120				08/28/24 13:06	08/29/24 15:31	
Nitrobenzene-d5 (Surr)	80		46 - 120				08/28/24 13:06	08/29/24 15:31	
p-Terphenyl-d14 (Surr)	56		24 - 136				08/28/24 13:06	08/29/24 15:31	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
O	- 10		0.040	0.0044				00/00/04 00 54	

08/30/24 08:54

09/04/24 10:48 09/04/24 20:26

0.010

5.0

0.13

5.0 U

0.0041 mg/L

2.3 ug/L

Cyanide, Total (SW846 9012B)

Cyanide, Free (SW846 9016)

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-16 Lab Sample ID: 480-222859-5

Date Collected: 08/26/24 13:20 Matrix: Ground Water

Date Received: 08/26/24 14:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	4.9		0.20	0.082	mg/L			08/30/24 09:34	20
Cyanide, Free (SW846 9016)	31.1		5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-07 Lab Sample ID: 480-222859-6

Date Collected: 08/26/24 09:10
Date Received: 08/26/24 14:30
Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	580		20	8.2	ug/L			08/27/24 14:45	20
Ethylbenzene	810		20	15	ug/L			08/27/24 14:45	20
Toluene	20	U	20	10	ug/L			08/27/24 14:45	20
Xylenes, Total	240		40	13	ug/L			08/27/24 14:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/27/24 14:45	20
4-Bromofluorobenzene (Surr)	102		73 - 120					08/27/24 14:45	20
Dibromofluoromethane (Surr)	92		75 - 123					08/27/24 14:45	20
Toluene-d8 (Surr)	93		80 - 120					08/27/24 14:45	20
Method: SW846 8270D_LL	_PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lo	w leve	el PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	15		0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:57	1
Acenaphthene	130	E	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:57	1
Acenaphthylene	2.1		0.50	0.34	ug/L		08/28/24 13:06	08/29/24 15:57	1
Anthracene	3.5		0.50	0.39	ug/L		08/28/24 13:06	08/29/24 15:57	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 15:57	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:57	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:57	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:57	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 15:57	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 15:57	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:57	1
Fluoranthene	0.51		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:57	1
Fluorene	30		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:57	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 15:57	1
Naphthalene	380	E	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 15:57	1
Phenanthrene	22		0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:57	1
Pyrene	0.59		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	93		48 - 120				08/28/24 13:06	08/29/24 15:57	1
Nitrobenzene-d5 (Surr)	52		46 - 120				08/28/24 13:06	08/29/24 15:57	1

Nitrobenzene-d5 (Surr)	52	46 - 120	08/28/24 13:06	08/29/24 15:57	1
p-Terphenyl-d14 (Surr)	62	24 - 136	08/28/24 13:06	08/29/24 15:57	1

Method: SW846 8270D_LL_	PAH - Semivo	H - Semivolatile Organic Compounds (GC/MS) Low level PAH - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac	
2-Methylnaphthalene	22	J	25	19	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Acenaphthene	120		25	15	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Acenaphthylene	25	U	25	17	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Anthracene	25	U	25	20	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Benzo[a]anthracene	25	U	25	20	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Benzo[a]pyrene	25	U	25	17	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Benzo[b]fluoranthene	25	U	25	15	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Benzo[g,h,i]perylene	25	U	25	19	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Benzo[k]fluoranthene	25	U	25	4.3	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Chrysene	25	U	25	16	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Dibenz(a,h)anthracene	25	U	25	17	ug/L	08/28/24 13:06	09/10/24 12:26	50	
Fluoranthene	25	U	25	18	ug/L	08/28/24 13:06	09/10/24 12:26	50	

Eurofins Buffalo

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs
Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-07

Date Collected: 08/26/24 09:10

Lab Sample ID: 480-222859-6

Matrix: Ground Water

Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	26		25	19	ug/L		08/28/24 13:06	09/10/24 12:26	50
Indeno[1,2,3-cd]pyrene	25	U	25	22	ug/L		08/28/24 13:06	09/10/24 12:26	50
Naphthalene	1300		25	21	ug/L		08/28/24 13:06	09/10/24 12:26	50
Phenanthrene	24	J	25	19	ug/L		08/28/24 13:06	09/10/24 12:26	50
Pyrene	25	U	25	18	ug/L		08/28/24 13:06	09/10/24 12:26	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	109		48 - 120				08/28/24 13:06	09/10/24 12:26	50
Nitrobenzene-d5 (Surr)	83		46 - 120				08/28/24 13:06	09/10/24 12:26	50
p-Terphenyl-d14 (Surr)	65		24 - 136				08/28/24 13:06	09/10/24 12:26	50

Client: GEI Consultants Inc

Job ID: 480-222859-1

Project/Site: GEI, Mineral Springs

SDG: 222859

Client Sample ID: MW-10 Lab Sample ID: 480-222859-7

Date Collected: 08/26/24 08:40
Date Received: 08/26/24 14:30
Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 15:07	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 15:07	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 15:07	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		77 - 120					08/27/24 15:07	1
4-Bromofluorobenzene (Surr)	99		73 - 120					08/27/24 15:07	1
Dibromofluoromethane (Surr)	87		75 - 123					08/27/24 15:07	1
Toluene-d8 (Surr)	89		80 - 120					08/27/24 15:07	1
Method: SW846 8270D_LL	_PAH - Semivo	latile Orga	ınic Compou	nds (GC	/MS) Lo	w leve	I PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 16:24	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:24	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 16:24	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[k]fluoranthene	0.20	J	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 16:24	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 16:24	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:24	1
Fluoranthene	0.72		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 16:24	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 16:24	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 16:24	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 16:24	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 16:24	1
Pyrene	0.41	J	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	94		48 - 120				08/28/24 13:06	08/29/24 16:24	1

46 - 120

24 - 136

68

54

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

08/28/24 13:06 08/29/24 16:24

08/28/24 13:06 08/29/24 16:24

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-11A Lab Sample ID: 480-222859-8

Date Collected: 08/26/24 11:50 Matrix: Ground Water Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.8	J	2.0	0.82	ug/L			08/27/24 15:29	2
Ethylbenzene	2.0	U	2.0	1.5	ug/L			08/27/24 15:29	2
Toluene	2.0	U	2.0	1.0	ug/L			08/27/24 15:29	2
Xylenes, Total	4.0	U	4.0	1.3	ug/L			08/27/24 15:29	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		77 - 120					08/27/24 15:29	2
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 15:29	2
Dibromofluoromethane (Surr)	91		75 - 123					08/27/24 15:29	2
Toluene-d8 (Surr)	93		80 - 120					08/27/24 15:29	2
Method: SW846 8270D_LL_F Analyte		latile Orga Qualifier	nic Compou RL	ınds (GC MDL		w leve	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50		0.50		ug/L	=	08/28/24 13:06	-	1
Acenaphthene	3.2	O	0.50		ug/L			08/29/24 16:50	1
Acenaphthylene	0.95		0.50	0.34	•			08/29/24 16:50	1
Anthracene	0.50		0.50	0.39				08/29/24 16:50	
Benzo[a]anthracene	0.50		0.50		ug/L			08/29/24 16:50	1
Benzo[a]pyrene	0.50		0.50	0.40	•			08/29/24 16:50	1
Benzo[b]fluoranthene	0.50		0.50	0.30				08/29/24 16:50	1
Benzo[g,h,i]perylene	0.50		0.50	0.37	-			08/29/24 16:50	1
Benzo[k]fluoranthene	0.50		0.50	0.085	Ū			08/29/24 16:50	1
	0.50		0.50	0.003				08/29/24 16:50	1
Chrysene Dibonz/o h)onthrocono	0.50		0.50	0.32	-			08/29/24 16:50	1
Dibenz(a,h)anthracene Fluoranthene			0.50		-			08/29/24 16:50	1
	0.48		0.50	0.36				08/29/24 16:50	
Fluorene	0.64 0.50		0.50	0.37	-			08/29/24 16:50	1
Indeno[1,2,3-cd]pyrene Naphthalene	0.50		0.50	0.44	•			08/29/24 16:50	
Phenanthrene	0.50		0.50		ug/L ug/L			08/29/24 16:50	1
Pyrene	0.63	U	0.50	0.36	-			08/29/24 16:50	1 1
ryiene			0.50	0.50	ug/L		00/20/24 10:00		'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	101		48 - 120				08/28/24 13:06		1
Nitrobenzene-d5 (Surr)	73		46 - 120					08/29/24 16:50	1
p-Terphenyl-d14 (Surr)	70		24 - 136				08/28/24 13:06	08/29/24 16:50	1
General Chemistry	_					_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.23		0.010	0.0041	-			08/30/24 09:22	1
Cyanide, Free (SW846 9016)	2.5	J	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:26	1
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

08/29/24 10:54

4.0

4.0 mg/L

45.6

Total Suspended Solids (SM

2540D)

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: SW-01 Lab Sample ID: 480-222859-9

Date Collected: 08/26/24 12:40 Matrix: Surface Water Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 15:52	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 15:52	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 15:52	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		77 - 120					08/27/24 15:52	1
4-Bromofluorobenzene (Surr)	102		73 - 120					08/27/24 15:52	1
Dibromofluoromethane (Surr)	94		75 - 123					08/27/24 15:52	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 15:52	1
Method: SW846 8270D_LL_F Analyte		latile Orga Qualifier	inic Compoι RL		(MS) Lo Unit	w leve	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Acenaphthene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Acenaphthylene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Anthracene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	
Benzo[a]anthracene	0.50		0.50		ug/L			08/29/24 17:16	1
Benzo[a]pyrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[b]fluoranthene	0.50		0.50		ug/L			08/29/24 17:16	1
Benzo[g,h,i]perylene	0.50		0.50		ug/L			08/29/24 17:16	1
Benzo[k]fluoranthene	0.50		0.50	0.085	Ū			08/29/24 17:16	1
Chrysene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Dibenz(a,h)anthracene	0.50		0.50		ug/L			08/29/24 17:16	1
Fluoranthene	0.50		0.50		ug/L			08/29/24 17:16	1
Fluorene	0.50		0.50		ug/L			08/29/24 17:16	1
Indeno[1,2,3-cd]pyrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Naphthalene	0.50		0.50		ug/L			08/29/24 17:16	1
Phenanthrene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Pyrene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 17:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	102		48 - 120				08/28/24 13:06	08/29/24 17:16	1
Nitrobenzene-d5 (Surr)	74		46 - 120				08/28/24 13:06	08/29/24 17:16	1
p-Terphenyl-d14 (Surr)	64		24 - 136				08/28/24 13:06	08/29/24 17:16	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.0092	J	0.010	0.0041	mg/L			08/30/24 09:37	1
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:26	1
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac

08/29/24 10:54

4.0

4.0 mg/L

56.4

Total Suspended Solids (SM

2540D)

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: SW-02 Lab Sample ID: 480-222859-10

Date Collected: 08/26/24 11:15

Date Received: 08/26/24 14:30

Matrix: Surface Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 16:15	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 16:15	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 16:15	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/27/24 16:15	1
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 16:15	1
Dibromofluoromethane (Surr)	90		75 - 123					08/27/24 16:15	1
Toluene-d8 (Surr)	90		80 - 120					08/27/24 16:15	1
Method: SW846 8270D_LL_		_	nic Compou			w leve			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50		0.50		ug/L		08/28/24 13:06		1
Acenaphthene	0.50		0.50		ug/L			08/29/24 17:43	1
Acenaphthylene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 17:43	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[a]pyrene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 17:43	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 17:43	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 17:43	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:43	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:43	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 17:43	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 17:43	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 17:43	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	104		48 - 120				08/28/24 13:06	08/29/24 17:43	1
Nitrobenzene-d5 (Surr)	75		46 - 120				08/28/24 13:06	08/29/24 17:43	1
p-Terphenyl-d14 (Surr)	57		24 - 136				08/28/24 13:06	08/29/24 17:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.010	U	0.010	0.0041	mg/L			08/30/24 09:41	1
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:26	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
T (10 11 10 11 10 11								00/00/04 40 = :	

08/29/24 10:54

4.0

4.0 mg/L

4.0

Total Suspended Solids (SM

2540D)

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs
Job ID: 480-222859-1
SDG: 222859

Client Sample ID: TB Lab Sample ID: 480-222859-11

Date Collected: 08/26/24 00:00 Matrix: Water Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 16:37	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 16:37	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 16:37	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		77 - 120					08/27/24 16:37	1
4-Bromofluorobenzene (Surr)	98		73 - 120					08/27/24 16:37	1
Dibromofluoromethane (Surr)	87		75 - 123					08/27/24 16:37	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 16:37	

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: EB Lab Sample ID: 480-222859-12

Date Collected: 08/26/24 12:00 Matrix: Water Date Received: 08/26/24 14:30

Method: SW846 8260C - Vo Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 16:59	
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 16:59	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 16:59	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/27/24 16:59	
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 16:59	1
Dibromofluoromethane (Surr)	90		75 - 123					08/27/24 16:59	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 16:59	1
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	nds (GC	(MS) Lo	w leve	el PAH		
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 18:09	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 18:09	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 18:09	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 18:09	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 18:09	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 18:09	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 18:09	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 18:09	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 18:09	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 18:09	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 18:09	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 18:09	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 18:09	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 18:09	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 18:09	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 18:09	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 18:09	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	97		48 - 120				08/28/24 13:06	08/29/24 18:09	1
Nitrobenzene-d5 (Surr)	70		46 - 120				08/28/24 13:06	08/29/24 18:09	1
p-Terphenyl-d14 (Surr)	76		24 - 136				08/28/24 13:06	08/29/24 18:09	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
O T. + - I (OMO 40 0040D)	0.040		0.040	0 00 4 4				00/00/04 00 44	

08/30/24 09:44

09/04/24 10:49 09/04/24 20:26

0.010

5.0

0.0041 mg/L

2.3 ug/L

0.010 U

2.7 J

Cyanide, Total (SW846 9012B)

Cyanide, Free (SW846 9016)

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: Duplicate

Cyanide, Free (SW846 9016)

Lab Sample ID: 480-222859-13 **Matrix: Ground Water** Date Collected: 08/26/24 00:00

Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 17:22	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 17:22	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 17:22	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120					08/27/24 17:22	1
4-Bromofluorobenzene (Surr)	108		73 - 120					08/27/24 17:22	1
Dibromofluoromethane (Surr)	93		75 - 123					08/27/24 17:22	1
Toluene-d8 (Surr)	94		80 - 120					08/27/24 17:22	1
Method: SW846 8270D_LL_F	PAH - Semivo	latile Orga	anic Compou	nds (GC	/MS) Lo	w leve	el PAH		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 18:36	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 18:36	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 18:36	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 18:36	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 18:36	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 18:36	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 18:36	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 18:36	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 18:36	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 18:36	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 18:36	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	107		48 - 120				08/28/24 13:06		1
Nitrobenzene-d5 (Surr)	76		46 - 120				08/28/24 13:06	08/29/24 18:36	1
p-Terphenyl-d14 (Surr)	59		24 - 136				08/28/24 13:06	08/29/24 18:36	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.14	В	0.010	0.0041	mg/L			08/30/24 10:14	1
Cyanida Fraa (CM046 0046)		1.1	F 0	2.2	/1		00/04/04 40:40	00/04/04 00:00	4

09/04/24 10:49 09/04/24 20:26

5.0

2.3 ug/L

5.0 U

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-20 Bailer Lab Sample ID: 480-222859-14

5.0 U

5.0

2.3 ug/L

09/04/24 10:49 09/04/24 20:27

1

Cyanide, Free (SW846 9016)

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-16 Bailer Lab Sample ID: 480-222859-15

Date Collected: 08/26/24 13:50 Matrix: Water Date Received: 08/26/24 14:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	3.4		0.10	0.041	mg/L			08/30/24 09:51	10
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-07 Bailer Lab Sample ID: 480-222859-16

Result Qualifier

Date Collected: 08/26/24 09:30 Matrix: Water

MDL Unit

D

Prepared

Analyzed

Dil Fac

Date Received: 08/26/24 14:30

Analyte

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	itesuit	Quanner	114	IVIDE	Oilit	D i l'epaiea	Allalyzea	טווו מכ
Benzene	600		20	8.2	ug/L		08/28/24 13:23	20
Ethylbenzene	670		20	15	ug/L		08/28/24 13:23	20
Toluene	20	U	20	10	ug/L		08/28/24 13:23	20
Xylenes, Total	180		40	13	ug/L		08/28/24 13:23	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120				08/28/24 13:23	20
4-Bromofluorobenzene (Surr)	101		73 - 120				08/28/24 13:23	20
Dibromofluoromethane (Surr)	91		75 - 123				08/28/24 13:23	20
Toluene-d8 (Surr)	91		80 - 120				08/28/24 13:23	20
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lov	w level PAH		
Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	16		0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:03	1
Acenaphthene	180	E	0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:03	1
Acenaphthylene	2.9		0.50	0.34	ug/L	08/28/24 13:06	08/29/24 19:03	1
Anthracene	4.5		0.50	0.39	ug/L	08/28/24 13:06	08/29/24 19:03	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L	08/28/24 13:06	08/29/24 19:03	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:03	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:03	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:03	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L	08/28/24 13:06	08/29/24 19:03	1
Chrysene	0.50	U	0.50	0.32	ug/L	08/28/24 13:06	08/29/24 19:03	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:03	1
Fluoranthene	0.49	J	0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:03	1
Fluorene	42		0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:03	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L	08/28/24 13:06	08/29/24 19:03	1
Naphthalene	360	E	0.50	0.42	ug/L	08/28/24 13:06	08/29/24 19:03	1
Phenanthrene	29		0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:03	1
Pyrene	0.62		0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	97		48 - 120			08/28/24 13:06	08/29/24 19:03	1
Nitrobenzene-d5 (Surr)	56		46 - 120			08/28/24 13:06	08/29/24 19:03	1
	49		24 - 136			08/28/24 13:06		1

Method: SW846 8270D	11.1	PAH - Semivolatile	Organic Compounds	(GC/MS) Low level PAH	- DI
WELLIOU. 344040 02/0D		FAIL - SEIIIIVUIALIIE	Organic Combounds	(GC/N3) LOW level FAIT	- 0L

Analyte	 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	20		10	7.6	ug/L		08/28/24 13:06	08/30/24 14:34	20
Acenaphthene	130		10	6.0	ug/L		08/28/24 13:06	08/30/24 14:34	20
Acenaphthylene	10	U	10	6.8	ug/L		08/28/24 13:06	08/30/24 14:34	20
Anthracene	8.2	J	10	7.8	ug/L		08/28/24 13:06	08/30/24 14:34	20
Benzo[a]anthracene	10	U	10	8.0	ug/L		08/28/24 13:06	08/30/24 14:34	20
Benzo[a]pyrene	10	U	10	6.6	ug/L		08/28/24 13:06	08/30/24 14:34	20
Benzo[b]fluoranthene	10	U	10	6.0	ug/L		08/28/24 13:06	08/30/24 14:34	20
Benzo[g,h,i]perylene	10	U	10	7.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Benzo[k]fluoranthene	10	U	10	1.7	ug/L		08/28/24 13:06	08/30/24 14:34	20
Chrysene	10	U	10	6.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Dibenz(a,h)anthracene	10	U	10	6.6	ug/L		08/28/24 13:06	08/30/24 14:34	20
Fluoranthene	10	U	10	7.2	ug/L		08/28/24 13:06	08/30/24 14:34	20

Eurofins Buffalo

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-07 Bailer Lab Sample ID: 480-222859-16

Date Collected: 08/26/24 09:30 Matrix: Water Date Received: 08/26/24 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	33		10	7.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Indeno[1,2,3-cd]pyrene	10	U	10	8.8	ug/L		08/28/24 13:06	08/30/24 14:34	20
Naphthalene	970		10	8.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Phenanthrene	24		10	7.6	ug/L		08/28/24 13:06	08/30/24 14:34	20
Pyrene	10	U	10	7.2	ug/L		08/28/24 13:06	08/30/24 14:34	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	78		48 - 120				08/28/24 13:06	08/30/24 14:34	20
Nitrobenzene-d5 (Surr)	68		46 - 120				08/28/24 13:06	08/30/24 14:34	20
p-Terphenyl-d14 (Surr)	37		24 - 136				08/28/24 13:06	08/30/24 14:34	20

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-12 Lab Sample ID: 480-222886-1

Date Collected: 08/27/24 09:00 **Matrix: Ground Water** Date Received: 08/27/24 14:00

General Chemistry

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.84		0.050	0.021	mg/L			08/30/24 11:54	5
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs
Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-12 (BAILER)

Lab Sample ID: 480-222886-2

Date Collected: 08/27/24 09:25 Matrix: Water

Date Collected: 08/27/24 09:25 Matrix: Water Date Received: 08/27/24 14:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.79		0.020	0.0082	mg/L			08/30/24 11:57	2
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-19 Lab Sample ID: 480-222886-3

Date Collected: 08/27/24 10:15 **Matrix: Ground Water** Date Received: 08/27/24 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	3500		100	41	ug/L			08/28/24 16:18	100
Ethylbenzene	520		100	74	ug/L			08/28/24 16:18	100
Toluene	100	U	100	51	ug/L			08/28/24 16:18	100
Xylenes, Total	200	U	200	66	ug/L			08/28/24 16:18	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		77 - 120					08/28/24 16:18	100
4-Bromofluorobenzene (Surr)	102		73 - 120					08/28/24 16:18	100
Dibromofluoromethane (Surr)	90		75 - 123					08/28/24 16:18	100
Toluene-d8 (Surr)	91		80 - 120					08/28/24 16:18	100
_ Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lo	w leve	I PAH		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	110		0.50	0.00	ug/L		08/28/24 13:06	08/29/24 19:30	

Dibromofluoromethane (Surr)	90		75 - 123				08/28/24 16:18	100
Toluene-d8 (Surr)	91		80 - 120				08/28/24 16:18	100
_ Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	ınds (GC	:/MS) Lov	v level PAH		
Analyte		Qualifier	RL	MDL	•	D Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	110	E	0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:30	1
Acenaphthene	3.7		0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:30	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L	08/28/24 13:06	08/29/24 19:30	1
Anthracene	0.50	U	0.50	0.39	ug/L	08/28/24 13:06	08/29/24 19:30	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L	08/28/24 13:06	08/29/24 19:30	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:30	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:30	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:30	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L	08/28/24 13:06	08/29/24 19:30	1
Chrysene	0.50	U	0.50	0.32	ug/L	08/28/24 13:06	08/29/24 19:30	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:30	1
Fluoranthene	0.50	U	0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:30	1
Fluorene	0.50	U	0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:30	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L	08/28/24 13:06	08/29/24 19:30	1
Naphthalene	790	E	0.50	0.42	ug/L	08/28/24 13:06	08/29/24 19:30	1
Phenanthrene	0.50	U	0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:30	1
Pyrene	0.50	U	0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	98		48 - 120			08/28/24 13:06	08/29/24 19:30	1
Nitrohenzene-d5 (Surr)	66		46 120			08/28/24 13:06	08/29/24 19:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	98		48 - 120	08/28/24 13:06	08/29/24 19:30	1
Nitrobenzene-d5 (Surr)	66		46 - 120	08/28/24 13:06	08/29/24 19:30	1
p-Terphenyl-d14 (Surr)	57		24 - 136	08/28/24 13:06	08/29/24 19:30	1

Method: SW846 8270D_LL	_PAH - Semivo	latile Organ	ic Compou	nds (GC	:/MS) Lo	w leve	PAH - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	83	J	100	76	ug/L		08/28/24 13:06	09/03/24 12:47	200
Acenaphthene	100	U	100	60	ug/L		08/28/24 13:06	09/03/24 12:47	200
Acenaphthylene	100	U	100	68	ug/L		08/28/24 13:06	09/03/24 12:47	200
Anthracene	100	U	100	78	ug/L		08/28/24 13:06	09/03/24 12:47	200
Benzo[a]anthracene	100	U	100	80	ug/L		08/28/24 13:06	09/03/24 12:47	200
Benzo[a]pyrene	100	U	100	66	ug/L		08/28/24 13:06	09/03/24 12:47	200
Benzo[b]fluoranthene	100	U	100	60	ug/L		08/28/24 13:06	09/03/24 12:47	200
Benzo[g,h,i]perylene	100	U	100	74	ug/L		08/28/24 13:06	09/03/24 12:47	200

100

100

100

100

17 ug/L

64 ug/L

66 ug/L

72 ug/L

100 U

100 U

100 U

100 U

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Chrysene

Fluoranthene

Eurofins Buffalo

200

200

200

200

08/28/24 13:06 09/03/24 12:47

08/28/24 13:06 09/03/24 12:47

08/28/24 13:06 09/03/24 12:47

08/28/24 13:06 09/03/24 12:47

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-19

Date Collected: 08/27/24 10:15

Lab Sample ID: 480-222886-3

Matrix: Ground Water

Date Received: 08/27/24 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	100	U	100	74	ug/L		08/28/24 13:06	09/03/24 12:47	200
Indeno[1,2,3-cd]pyrene	100	U	100	88	ug/L		08/28/24 13:06	09/03/24 12:47	200
Naphthalene	3900		100	84	ug/L		08/28/24 13:06	09/03/24 12:47	200
Phenanthrene	100	U	100	76	ug/L		08/28/24 13:06	09/03/24 12:47	200
Pyrene	100	U	100	72	ug/L		08/28/24 13:06	09/03/24 12:47	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)		S1-	48 - 120				08/28/24 13:06	09/03/24 12:47	200
Nitrobenzene-d5 (Surr)	125	S1+	46 - 120				08/28/24 13:06	09/03/24 12:47	200
p-Terphenvl-d14 (Surr)	38		24 - 136				08/28/24 13:06	09/03/24 12:47	200

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-19 (BAILER)

Lab Sample ID: 480-222886-4

Date Collected: 08/27/24 10:45
Date Received: 08/27/24 14:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	3600		50	21	ug/L			08/28/24 16:41	50
Ethylbenzene	500		50	37	ug/L			08/28/24 16:41	50
Toluene	50	U	50	26	ug/L			08/28/24 16:41	50
Xylenes, Total	55	J	100	33	ug/L			08/28/24 16:41	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/28/24 16:41	50
4-Bromofluorobenzene (Surr)	101		73 - 120					08/28/24 16:41	50
Dibromofluoromethane (Surr)	93		75 - 123					08/28/24 16:41	50
Toluene-d8 (Surr)	93		80 - 120					08/28/24 16:41	50

Dibromofluoromethane (Surr)	93		75 - 123				08/28/24 16:41	50
Toluene-d8 (Surr)	93		80 - 120				08/28/24 16:41	50
	PAH - Semivo	latile Orga	anic Compou	ınds (GC	(MS) Lov	v level PAH		
Analyte	_	Qualifier	RL	MDL	•	D Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	130	E	0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:57	1
Acenaphthene	4.2		0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:57	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L	08/28/24 13:06	08/29/24 19:57	1
Anthracene	0.50	U	0.50	0.39	ug/L	08/28/24 13:06	08/29/24 19:57	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L	08/28/24 13:06	08/29/24 19:57	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:57	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L	08/28/24 13:06	08/29/24 19:57	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:57	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L	08/28/24 13:06	08/29/24 19:57	1
Chrysene	0.50	U	0.50	0.32	ug/L	08/28/24 13:06	08/29/24 19:57	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L	08/28/24 13:06	08/29/24 19:57	1
Fluoranthene	0.50	U	0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:57	1
Fluorene	0.50	U	0.50	0.37	ug/L	08/28/24 13:06	08/29/24 19:57	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L	08/28/24 13:06	08/29/24 19:57	1
Naphthalene	830	E	0.50	0.42	ug/L	08/28/24 13:06	08/29/24 19:57	1
Phenanthrene	0.50	U	0.50	0.38	ug/L	08/28/24 13:06	08/29/24 19:57	1
Pyrene	0.50	U	0.50	0.36	ug/L	08/28/24 13:06	08/29/24 19:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	108		48 - 120			08/28/24 13:06	08/29/24 19:57	1
Nitrohenzene-d5 (Surr)	76		46 120			08/28/24 13:06	08/29/24 19:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	108		48 - 120	08/28/24 13:06	08/29/24 19:57	1
Nitrobenzene-d5 (Surr)	76		46 - 120	08/28/24 13:06	08/29/24 19:57	1
p-Terphenyl-d14 (Surr)	67		24 - 136	08/28/24 13:06	08/29/24 19:57	1

Method: SW846 8270D_LL_F	PAH - Semivo	latile Organ	ic Compour	nds (GC	(MS) Lo	w leve	PAH - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	96	J	100	76	ug/L		08/28/24 13:06	09/03/24 13:13	200
Acenaphthene	100	U	100	60	ug/L		08/28/24 13:06	09/03/24 13:13	200
Acenaphthylene	100	U	100	68	ug/L		08/28/24 13:06	09/03/24 13:13	200
Anthracene	100	U	100	78	ug/L		08/28/24 13:06	09/03/24 13:13	200
Benzo[a]anthracene	100	U	100	80	ug/L		08/28/24 13:06	09/03/24 13:13	200
Benzo[a]pyrene	100	U	100	66	ug/L		08/28/24 13:06	09/03/24 13:13	200
Benzo[b]fluoranthene	100	U	100	60	ug/L		08/28/24 13:06	09/03/24 13:13	200
Benzo[g,h,i]perylene	100	U	100	74	ug/L		08/28/24 13:06	09/03/24 13:13	200
Benzo[k]fluoranthene	100	U	100	17	ug/L		08/28/24 13:06	09/03/24 13:13	200
Chrysene	100	U	100	64	ug/L		08/28/24 13:06	09/03/24 13:13	200
Dibenz(a,h)anthracene	100	U	100	66	ug/L		08/28/24 13:06	09/03/24 13:13	200
Fluoranthene	100	U	100	72	ug/L		08/28/24 13:06	09/03/24 13:13	200

Eurofins Buffalo

Client: GEI Consultants Inc

Job ID: 480-222859-1

Project/Site: GEI, Mineral Springs

SDG: 222859

Client Sample ID: MW-19 (BAILER)

Lab Sample ID: 480-222886-4

Date Collected: 08/27/24 10:45 Matrix: Water Date Received: 08/27/24 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	100	U	100	74	ug/L		08/28/24 13:06	09/03/24 13:13	200
Indeno[1,2,3-cd]pyrene	100	U	100	88	ug/L		08/28/24 13:06	09/03/24 13:13	200
Naphthalene	4400		100	84	ug/L		08/28/24 13:06	09/03/24 13:13	200
Phenanthrene	100	U	100	76	ug/L		08/28/24 13:06	09/03/24 13:13	200
Pyrene	100	U	100	72	ug/L		08/28/24 13:06	09/03/24 13:13	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)		S1-	48 - 120				08/28/24 13:06	09/03/24 13:13	200
Nitrobenzene-d5 (Surr)	136	S1+	46 - 120				08/28/24 13:06	09/03/24 13:13	200
p-Terphenvl-d14 (Surr)	48		24 - 136				08/28/24 13:06	09/03/24 13:13	200

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-20 LOW FLOW 2) Lab Sample ID: 480-222886-5

Date Collected: 08/27/24 11:50 Matrix: Ground Water

Date Received: 08/27/24 14:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.44		0.050	0.021	mg/L			08/30/24 12:01	5
Cyanide, Free (SW846 9016)	3.1	J	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-13 Lab Sample ID: 480-222886-6

Date Collected: 08/27/24 11:45 **Matrix: Ground Water**

Method: SW846 8260C - Vo Analyte		Compoun Qualifier	ds by GC/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0		1.0	0.41	ug/L	=	Tropulcu	08/28/24 17:04	
Ethylbenzene	1.0		1.0		ug/L			08/28/24 17:04	
Toluene	1.0		1.0		ug/L			08/28/24 17:04	
Xylenes, Total	2.0		2.0	0.66				08/28/24 17:04	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	86		77 - 120					08/28/24 17:04	
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 17:04	
Dibromofluoromethane (Surr)	86		75 - 123					08/28/24 17:04	1
Toluene-d8 (Surr)	93		80 - 120					08/28/24 17:04	
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	ınic Compou	nds (GC	/MS) Lo	w leve	I PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 20:24	
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:24	•
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 20:24	•
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:24	
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 20:24	•
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 20:24	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:24	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 20:24	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:24	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 20:24	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 20:24	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 20:24	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 20:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	104		48 - 120				08/28/24 13:06	08/29/24 20:24	
Nitrobenzene-d5 (Surr)	74		46 - 120				08/28/24 13:06	08/29/24 20:24	1
p-Terphenyl-d14 (Surr)	62		24 - 136				08/28/24 13:06	08/29/24 20:24	•
, , , , , , ,									
General Chemistry									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
Cyanide, Total (SW846 9012B)	0.24		0.010	0.0041	mg/L			08/30/24 11:47	

5.0 U

Cyanide, Free (SW846 9016)

5.0

2.3 ug/L

09/04/24 10:49 09/04/24 20:27

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Date Collected: 08/27/24 10:40 Matrix: Ground Water Date Received: 08/27/24 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0	U	2.0	0.82	ug/L			08/28/24 17:26	2
Ethylbenzene	2.0	U	2.0	1.5	ug/L			08/28/24 17:26	2
Toluene	2.0	U	2.0	1.0	ug/L			08/28/24 17:26	2
Xylenes, Total	4.0	U	4.0	1.3	ug/L			08/28/24 17:26	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/28/24 17:26	
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 17:26	2
Dibromofluoromethane (Surr)	91		75 - 123					08/28/24 17:26	2
Toluene-d8 (Surr)	93		80 - 120					08/28/24 17:26	2
Method: SW846 8270D_LL_F	PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lo	w leve	el PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 20:50	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:50	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 20:50	
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:50	
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 20:50	
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 20:50	
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:50	1
Fluoranthene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 20:50	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:50	1
ndeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 20:50	1
Naphthalene	0.45	J	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 20:50	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 20:50	1
Pyrene	0.50	U	0.50		ug/L		08/28/24 13:06	08/29/24 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	102		48 - 120				08/28/24 13:06	08/29/24 20:50	1
Nitrobenzene-d5 (Surr)	71		46 - 120				08/28/24 13:06	08/29/24 20:50	1
p-Terphenyl-d14 (Surr)	57		24 - 136				08/28/24 13:06	08/29/24 20:50	•
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.025		0.010	0.0041	mg/L			08/30/24 12:04	1
Curride Free (CMO4C 004C)	F 0		5 0	0.0	/1		00/04/04 40 40	00/04/04 00 00	

09/04/24 10:49 09/04/24 20:28

5.0

2.3 ug/L

5.0 U

Cyanide, Free (SW846 9016)

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-16 (LOW FLOW 2)

Lab Sample ID: 480-222886-8

Date Collected: 08/27/24 12:15 Matrix: Ground Water

Date Received: 08/27/24 14:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	4.4		0.20	0.082	mg/L			08/30/24 12:07	20
Cyanide, Free (SW846 9016)	547		50.0	23.2	ug/L		09/04/24 10:49	09/04/24 20:28	10

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

Client Sample ID: TB Lab Sample ID: 480-222886-9

Date Collected: 08/27/24 00:00 Matrix: Water Date Received: 08/27/24 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/28/24 17:48	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/28/24 17:48	1
Toluene	1.0	U	1.0	0.51	ug/L			08/28/24 17:48	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/28/24 17:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		77 - 120					08/28/24 17:48	1
4-Bromofluorobenzene (Surr)	101		73 - 120					08/28/24 17:48	1
Dibromofluoromethane (Surr)	89		75 - 123					08/28/24 17:48	1
Toluene-d8 (Surr)	91		80 - 120					08/28/24 17:48	1

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs
Job ID: 480-222859-1
SDG: 222859

Client Sample ID: MW-21 Lab Sample ID: 480-222886-10

Date Collected: 08/27/24 12:30 Matrix: Ground Water

Date Received: 08/27/24 14:00

(General Chemistry									
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
7	Cyanide, Total (SW846 9012B)	0.43		0.010	0.0041	mg/L			08/30/24 12:11	1
L	Cyanide, Free (SW846 9016)	2.3	J	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:28	1

Surrogate Summary

Client: GEI Consultants Inc Job ID: 480-222859-1
Project/Site: GEI, Mineral Springs SDG: 222859

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-222859-4	MW-23	87	103	86	93
480-222859-6	MW-07	87	102	92	93
480-222859-7	MW-10	85	99	87	89
480-222859-8	MW-11A	91	103	91	93
480-222859-13	Duplicate	90	108	93	94
480-222886-3	MW-19	86	102	90	91
480-222886-6	MW-13	86	103	86	93
480-222886-7	MW-17	88	103	91	93

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Surface Water Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-222859-9	SW-01	89	102	94	92
480-222859-10	SW-02	87	103	90	90

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-222859-11	ТВ	86	98	87	92
480-222859-12	EB	88	103	90	92
480-222859-16	MW-07 Bailer	88	101	91	91
480-222886-4	MW-19 (BAILER)	88	101	93	93
480-222886-9	ТВ	85	101	89	91
LCS 480-723194/6	Lab Control Sample	87	101	90	94
LCS 480-723313/6	Lab Control Sample	86	100	86	91
LCSD 480-723194/31	Lab Control Sample Dup	86	101	93	92
LCSD 480-723313/29	Lab Control Sample Dup	88	105	89	96
MB 480-723194/8	Method Blank	87	101	92	94
MB 480-723313/8	Method Blank	90	103	94	91

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins Buffalo

Surrogate Summary

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs

TOL = Toluene-d8 (Surr)

Job ID: 480-222859-1

SDG: 222859

Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(24-136)
480-222859-4	MW-23	110	80	56
480-222859-6	MW-07	93	52	62
480-222859-6 - DL	MW-07	109	83	65
480-222859-7	MW-10	94	68	54
480-222859-8	MW-11A	101	73	70
480-222859-13	Duplicate	107	76	59
480-222886-3	MW-19	98	66	57
480-222886-3 - DL	MW-19	11 S1-	125 S1+	38
480-222886-6	MW-13	104	74	62
480-222886-7	MW-17	102	71	57

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH

Matrix: Surface Water Prep Type: Total/NA

			Pe	ercent Surro
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(24-136)
480-222859-9	SW-01	102	74	64
480-222859-10	SW-02	104	75	57
Surrogate Legend				

FBP = 2-Fluorobiphenyl (Surr) NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH

Matrix: Water Prep Type: Total/NA

				_	e Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(24-136)	
480-222859-12	EB	97	70	76	
480-222859-16	MW-07 Bailer	97	56	49	
480-222859-16 - DL	MW-07 Bailer	78	68	37	
480-222886-4	MW-19 (BAILER)	108	76	67	
480-222886-4 - DL	MW-19 (BAILER)	11 S1-	136 S1+	48	
LCS 480-723375/2-A	Lab Control Sample	101	83	90	
LCSD 480-723375/3-A	Lab Control Sample Dup	105	88	94	
MB 480-723375/1-A	Method Blank	100	73	84	

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-723194/8 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 723194

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 12:37	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 12:37	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 12:37	1
Xvlenes. Total	2.0	U	2.0	0.66	ug/L			08/27/24 12:37	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87	77 - 120		08/27/24 12:37	1
4-Bromofluorobenzene (Surr)	101	73 - 120		08/27/24 12:37	1
Dibromofluoromethane (Surr)	92	75 - 123		08/27/24 12:37	1
Toluene-d8 (Surr)	94	80 - 120		08/27/24 12:37	1

Lab Sample ID: LCS 480-723194/6

Matrix: Water

Analysis Batch: 723194

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	24.7		ug/L		99	71 - 124	
Ethylbenzene	25.0	25.8		ug/L		103	77 - 123	
Toluene	25.0	25.2		ug/L		101	80 - 122	
Xylenes, Total	50.0	50.7		ug/L		101	76 - 122	

LCS LCS %Recovery Qualifier Surrogate Limits 87 77 - 120 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 101 73 - 120 75 - 123 Dibromofluoromethane (Surr) 90 Toluene-d8 (Surr) 94 80 - 120

Lab Sample ID: LCSD 480-723194/31

Matrix: Water

Analysis Batch: 723194

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** D %Rec Added Result Qualifier Unit Limits **RPD** Limit **Analyte** 25.0 Benzene 24.6 ug/L 98 71 - 124 0 13 Ethylbenzene 25.0 24.6 ug/L 99 77 - 123 5 15 25.0 5 Toluene 23.9 ug/L 96 80 - 122 15 Xylenes, Total 50.0 95 76 - 122 47.5 ug/L 16

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	93		75 - 123
Toluene-d8 (Surr)	92		80 - 120

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-723313/8 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 723313

	MB	MB							
Α	nalyte Result	Qualifier	RL M	/IDL	Unit	D	Prepared	Analyzed	Dil Fac
B	enzene 1.0	U	1.0	0.41	ug/L			08/28/24 12:22	1
Et	hylbenzene 1.0	U	1.0	0.74	ug/L			08/28/24 12:22	1
To	oluene 1.0	U	1.0	0.51	ug/L			08/28/24 12:22	1
X	/lenes, Total 2.0	U	2.0	0.66	ug/L			08/28/24 12:22	1

	MB MB				
Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	77 - 120		08/28/24 12:22	1
4-Bromofluorobenzene (Surr)	103	73 - 120		08/28/24 12:22	1
Dibromofluoromethane (Surr)	94	75 - 123		08/28/24 12:22	1
Toluene-d8 (Surr)	91	80 - 120		08/28/24 12:22	1

Lab Sample ID: LCS 480-723313/6

Matrix: Water

Analysis Batch: 723313

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Recovery Qualifier Surrogate Limits 86 77 - 120 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 100 73 - 120 Dibromofluoromethane (Surr) 86 75 - 123 Toluene-d8 (Surr) 91 80 - 120

Lab Sample ID: LCSD 480-723313/29

Matrix: Water

Analysis Batch: 723313

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** D %Rec Added Result Qualifier Unit Limits **RPD** Limit **Analyte** 25.0 Benzene 24.3 ug/L 97 71 - 124 0 13 Ethylbenzene 25.0 24.6 ug/L 99 77 - 123 1 15 25.0 Toluene 24.6 ug/L 98 80 - 122 15 Xylenes, Total 50.0 96 76 - 122 48.1 ug/L 16

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		77 - 120
4-Bromofluorobenzene (Surr)	105		73 - 120
Dibromofluoromethane (Surr)	89		75 - 123
Toluene-d8 (Surr)	96		80 - 120

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH

Lab Sample ID: MB 480-723375/1-A

Matrix: Water

Analysis Batch: 723480

Client Sample ID: Method Blank

P	rep	Type:	Total/NA
F	rep	Batch:	723375

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 14:10	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 14:10	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 14:10	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 14:10	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 14:10	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 14:10	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 14:10	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 14:10	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 14:10	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 14:10	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 14:10	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 14:10	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 14:10	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 14:10	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 14:10	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 14:10	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 14:10	1

MB MB

LCS LCS

%Recovery Qualifier

101

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	100		48 - 120	08/28/24 13:06	08/29/24 14:10	1
Nitrobenzene-d5 (Surr)	73		46 - 120	08/28/24 13:06	08/29/24 14:10	1
p-Terphenyl-d14 (Surr)	84		24 - 136	08/28/24 13:06	08/29/24 14:10	1

Lab Sample ID: LCS 480-723375/2-A

Matrix: Water

Surrogate

2-Fluorobiphenyl (Surr)

Analysis Batch: 723480

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 723375

7 , 0.0	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	32.0	29.6		ug/L		92	48 - 120
Acenaphthene	32.0	33.7		ug/L		105	60 - 120
Acenaphthylene	32.0	33.6		ug/L		105	63 - 120
Anthracene	32.0	36.7		ug/L		115	69 - 131
Benzo[a]anthracene	32.0	31.7		ug/L		99	62 - 142
Benzo[a]pyrene	32.0	31.7		ug/L		99	46 - 156
Benzo[b]fluoranthene	32.0	37.2		ug/L		116	50 - 149
Benzo[g,h,i]perylene	32.0	29.8		ug/L		93	34 - 189
Benzo[k]fluoranthene	32.0	30.0		ug/L		94	47 - 147
Chrysene	32.0	32.2		ug/L		101	69 - 140
Dibenz(a,h)anthracene	32.0	32.3		ug/L		101	35 - 176
Fluoranthene	32.0	36.0		ug/L		113	67 - 133
Fluorene	32.0	36.5		ug/L		114	66 - 129
Indeno[1,2,3-cd]pyrene	32.0	31.7		ug/L		99	57 - 161
Naphthalene	32.0	30.3		ug/L		95	48 - 120
Phenanthrene	32.0	36.6		ug/L		114	67 - 130
Pyrene	32.0	33.5		ug/L		105	58 - 136

Eurofins Buffalo

Limits

48 - 120

Job ID: 480-222859-1 Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs SDG: 222859

Method: 8270D_LL_PAH - Semivolatile Organic Compounds (GC/MS) Low level PAH (Continued)

Lab Sample ID: LCS 480-723375/2-A

Matrix: Water

Analysis Batch: 723480

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 723375

LCS	LCS
-----	-----

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5 (Surr)	83	46 - 120
p-Terphenyl-d14 (Surr)	90	24 - 136

Lab Sample ID: LCSD 480-723375/3-A

Matrix: Water

Analysis Ratch: 723480

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 723375

Analysis Batch: 723480							Prep Ba	atcn: //	233/5
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Methylnaphthalene	32.0	31.1		ug/L		97	48 - 120	5	21
Acenaphthene	32.0	34.8		ug/L		109	60 - 120	3	24
Acenaphthylene	32.0	35.2		ug/L		110	63 - 120	5	18
Anthracene	32.0	39.1		ug/L		122	69 - 131	6	15
Benzo[a]anthracene	32.0	33.9		ug/L		106	62 - 142	6	15
Benzo[a]pyrene	32.0	34.6		ug/L		108	46 - 156	9	15
Benzo[b]fluoranthene	32.0	39.8		ug/L		124	50 - 149	7	15
Benzo[g,h,i]perylene	32.0	32.9		ug/L		103	34 - 189	10	15
Benzo[k]fluoranthene	32.0	32.7		ug/L		102	47 - 147	8	22
Chrysene	32.0	34.2		ug/L		107	69 - 140	6	15
Dibenz(a,h)anthracene	32.0	35.1		ug/L		110	35 - 176	8	15
Fluoranthene	32.0	38.6		ug/L		121	67 - 133	7	15
Fluorene	32.0	38.5		ug/L		120	66 - 129	5	15
Indeno[1,2,3-cd]pyrene	32.0	34.6		ug/L		108	57 - 161	9	15
Naphthalene	32.0	32.2		ug/L		101	48 - 120	6	29
Phenanthrene	32.0	38.3		ug/L		120	67 - 130	4	15
Pyrene	32.0	35.6		ug/L		111	58 - 136	6	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	105		48 - 120
Nitrobenzene-d5 (Surr)	88		46 - 120
p-Terphenyl-d14 (Surr)	94		24 - 136

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 480-723667/21 **Client Sample ID: Method Blank Matrix: Water**

Analysis Batch: 723667

Prep Type: Total/NA

Prepared

Analyzed

08/30/24 08:41

Prep Type: Total/NA

Dil Fac

0.010 **Client Sample ID: Method Blank**

RL

MDL Unit

0.0041 mg/L

Lab Sample ID: MB 480-723667/47

Matrix: Water

Analyte

Cyanide, Total

Analysis Batch: 723667

MB MB

MB MB

0.010 U

Result Qualifier

Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac 0.010 Cyanide, Total 0.00590 J 0.0041 mg/L 08/30/24 10:09

Client: GEI Consultants Inc Job ID: 480-222859-1
Project/Site: GEI, Mineral Springs SDG: 222859

Lab Sample ID: MB 480-72 Matrix: Water	3667/75								Cli	ent Sar	nple ID: Metho	
Analysis Batch: 723667											ricp type.	i Otali i i i
Analysis Buton: 120001		МВ	МВ									
Analyte	Re	sult	Qualifier		RL		/IDL Unit		D P	repared	Analyzed	Dil Fac
Cyanide, Total		0.010			0.010	0.0	041 mg/L				08/30/24 11:42	
_ Lab Sample ID: HLCS 480-	723667/22							Clie	ent Sa	mple II	D: Lab Control	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 723667												
				Spike		HLCS					%Rec	
Analyte				Added			Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total				0.400		0.412		mg/L		103	90 - 110	
Lab Sample ID: LCS 480-7	23667/23							Clie	ent Sa	mple II	D: Lab Control	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 723667												
				Spike		LCS	_				%Rec	
Analyte				Added			Qualifier	Unit	<u>D</u>	%Rec	Limits	
Cyanide, Total				0.250		0.253		mg/L		101	90 - 110	
Lab Sample ID: LCS 480-7: Matrix: Water	23667/48							Clie	ent Sa	mple II	D: Lab Control Prep Type:	
Analysis Batch: 723667												
				Spike		LCS					%Rec	
Analyte				Added			Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total				0.250		0.264		mg/L		105	90 - 110	
Lab Sample ID: LCS 480-7 Matrix: Water	23667/76							Clie	ent Sa	mple II	D: Lab Control Prep Type:	
Analysis Batch: 723667												
Acceleda				Spike		LCS		11!4	_	0/ 🗖	%Rec	
Analyte Cyanida Tatal		-		Added			Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total				0.250		0.258		mg/L		103	90 - 110	
Lab Sample ID: 480-22285	9-4 MS									Cli	ent Sample ID	: MW-23
Matrix: Ground Water											Prep Type:	Total/NA
Analysis Batch: 723667												
	Sample	Sam	ple	Spike		MS	MS				%Rec	
Analyte	Result	Qual	lifier	Added		Result	Qualifier	Unit	D	%Rec	Limits	
										400	00 110	
Cyanide, Total	0.13			0.100		0.230		mg/L		100	90 - 110	
=				0.100		0.230		mg/L				ΜW-11Δ
Lab Sample ID: 480-22285				0.100		0.230		mg/L			nt Sample ID:	
Lab Sample ID: 480-22285 Matrix: Ground Water				0.100		0.230		mg/L				
Lab Sample ID: 480-22285	9-8 MS	Sam	ple			0.230 MS	MS	mg/L			nt Sample ID:	
Lab Sample ID: 480-22285 Matrix: Ground Water				0.100 Spike Added		MS	MS Qualifier	mg/L Unit	D		nt Sample ID: Prep Type:	
Lab Sample ID: 480-22285 Matrix: Ground Water Analysis Batch: 723667	9-8 MS Sample			Spike		MS			<u>D</u>	Clie	nt Sample ID: Prep Type:	
Lab Sample ID: 480-222859 Matrix: Ground Water Analysis Batch: 723667 Analyte Cyanide, Total	Sample Result 0.23			Spike Added		MS Result		Unit	<u>D</u>	%Rec 91	nt Sample ID: Prep Type: %Rec Limits 90 - 110	Total/NA
Lab Sample ID: 480-22285 Matrix: Ground Water Analysis Batch: 723667 Analyte Cyanide, Total Lab Sample ID: 480-22285	Sample Result 0.23			Spike Added		MS Result		Unit	<u>D</u>	%Rec 91	nt Sample ID: Prep Type: %Rec Limits 90 - 110 t Sample ID: D	Total/NA
Lab Sample ID: 480-222859 Matrix: Ground Water Analysis Batch: 723667 Analyte Cyanide, Total Lab Sample ID: 480-222859 Matrix: Ground Water	Sample Result 0.23			Spike Added		MS Result		Unit	<u>D</u>	%Rec 91	nt Sample ID: Prep Type: %Rec Limits 90 - 110	Total/NA
Lab Sample ID: 480-222859 Matrix: Ground Water Analysis Batch: 723667 Analyte Cyanide, Total Lab Sample ID: 480-222859	Sample Result 0.23	Qual	lifier	Spike Added 0.100		MS Result 0.326	Qualifier	Unit	<u>D</u>	%Rec 91	nt Sample ID: Prep Type: %Rec Limits 90 - 110 t Sample ID: D Prep Type:	Total/NA
Lab Sample ID: 480-222859 Matrix: Ground Water Analysis Batch: 723667 Analyte Cyanide, Total Lab Sample ID: 480-222859 Matrix: Ground Water	Sample Result 0.23	Qual	lifier	Spike Added		MS Result 0.326	Qualifier	Unit	<u>D</u>	%Rec 91	nt Sample ID: Prep Type: %Rec Limits 90 - 110 t Sample ID: D	Total/NA

Eurofins Buffalo

Client: GEI Consultants Inc

Job ID: 480-222859-1

Project/Site: GEI, Mineral Springs

SDG: 222859

Project/Site: GEI, Mineral Springs	S								3	SDG: 2	22859
Method: 9012B - Cyanide,	Total	and/or Am	enable)							
Lab Sample ID: 480-222886-6 Matrix: Ground Water	MS							Clie	ent Sampl Prep Ty		
Analysis Batch: 723667											
	•	Sample	Spike		MS		_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Cyanide, Total	0.24		0.100	0.341		mg/L		105	90 - 110		
Lab Sample ID: 480-222859-8	DU							Clien	it Sample	ID: M	W-11A
Matrix: Ground Water									Prep Ty		
Analysis Batch: 723667											
,	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limi
Cyanide, Total	0.23			0.227	,	mg/L				3	15
Method: 9016 - Cyanide, F	roo										
	100										
Lab Sample ID: MB 460-99403	30/1-A						Clie	ent Sam	ple ID: M	ethod	Blank
Matrix: Water									Prep Ty		
Analysis Batch: 994113									Prep Ba		
·		MB MB									
Analyte	Re	esult Qualifier		RL	MDL Unit		D P	repared	Analy	zed	Dil Fac
Cyanide, Free		5.0 U		5.0	2.3 ug/L		09/0	04/24 10:4	8 09/04/24	20:26	1
	20/2 4					CI	iont Co	mala ID	ı I ah Car	otrol C	amala
Lab Sample ID: LCS 460-9940 Matrix: Water	30/2-A					Ci	ient Sai	ilible in	: Lab Cor		
									Prep Ty	-	
Analysis Batch: 994113			Snika	1.00	LCS				Prep Ba	aten: 9	94030
Analyta			Spike Added			l Init	n	9/ Boo			
Analyte			50.0	42.43	Qualifier	Unit	<u>D</u>	%Rec	51 - 132		
Cyanide, Free			50.0	42.43)	ug/L		85	31 - 132		
Lab Sample ID: 480-222859-1	MS							Clie	ent Sampl	le ID: N	/W-14
Matrix: Ground Water									Prep Ty		
Analysis Batch: 994113									Prep Ba	-	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Free	5.0		50.0	50.07		ug/L		100	51 - 132		
_ Lab Sample ID: 480-222859-1	MSD							Clie	ent Sampl	le ID: N	/W-1/
Matrix: Ground Water	55							3110	Prep Ty		
Analysis Batch: 994113									Prep Ba		
7 maryolo Datoli. 004110	Sample	Sample	Spike	MSD	MSD				%Rec	20011. 3	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Free	5.0		50.0	47.01		ug/L	<u>=</u>	94	51 - 132	6	31
_ Lab Sample ID: DLCK 460-994	1113/10					CI	iont Sa	mnle ID	: Lab Cor	ntrol S	ampla
Matrix: Water	+113/10					CI	ient oa	חו שוקווו	Prep Ty		
Analysis Batch: 994113									i iep iy	pe. 10	tai/IN/
Analysis Datell. 334113			On Hea	DI OY	DLCK				0/ Dag		

%Rec

Limits

50 - 150

D %Rec

134

Spike

Added

2.00

Analyte

Cyanide, Free

DLCK DLCK

2.67 J

Result Qualifier Unit

ug/L

Client: GEI Consultants Inc Job ID: 480-222859-1

Project/Site: GEI, Mineral Springs SDG: 222859

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-723503/1 **Client Sample ID: Method Blank Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 723503

MB MB

Result Qualifier RL RL Unit Dil Fac Analyte Prepared Analyzed 1.0 08/29/24 10:54 **Total Suspended Solids** 1.0 U 1.0 mg/L

Lab Sample ID: LCS 480-723503/2 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 723503

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 250 244.4 88 - 110 mg/L 98

Definitions/Glossary

Client: GEI Consultants Inc

Job ID: 480-222859-1

Project/Site: GEI, Mineral Springs

SDG: 222859

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description			
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.			

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

General Chemistry

TEQ

TNTC

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Qualifier	Qualifier Description Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

U	indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Eurofins Buffalo

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

GC/MS VOA

Analysis Batch: 723194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-6	MW-07	Total/NA	Ground Water	8260C	
480-222859-7	MW-10	Total/NA	Ground Water	8260C	
480-222859-8	MW-11A	Total/NA	Ground Water	8260C	
480-222859-9	SW-01	Total/NA	Surface Water	8260C	
480-222859-10	SW-02	Total/NA	Surface Water	8260C	
480-222859-11	ТВ	Total/NA	Water	8260C	
480-222859-12	EB	Total/NA	Water	8260C	
480-222859-13	Duplicate	Total/NA	Ground Water	8260C	
MB 480-723194/8	Method Blank	Total/NA	Water	8260C	
LCS 480-723194/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-723194/31	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 723313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-4	MW-23	Total/NA	Ground Water	8260C	
480-222859-16	MW-07 Bailer	Total/NA	Water	8260C	
480-222886-3	MW-19	Total/NA	Ground Water	8260C	
480-222886-4	MW-19 (BAILER)	Total/NA	Water	8260C	
480-222886-6	MW-13	Total/NA	Ground Water	8260C	
480-222886-7	MW-17	Total/NA	Ground Water	8260C	
480-222886-9	ТВ	Total/NA	Water	8260C	
MB 480-723313/8	Method Blank	Total/NA	Water	8260C	
LCS 480-723313/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-723313/29	Lab Control Sample Dup	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 723375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-4	MW-23	Total/NA	Ground Water	3510C	_
480-222859-6	MW-07	Total/NA	Ground Water	3510C	
480-222859-6 - DL	MW-07	Total/NA	Ground Water	3510C	
480-222859-7	MW-10	Total/NA	Ground Water	3510C	
480-222859-8	MW-11A	Total/NA	Ground Water	3510C	
480-222859-9	SW-01	Total/NA	Surface Water	3510C	
480-222859-10	SW-02	Total/NA	Surface Water	3510C	
480-222859-12	EB	Total/NA	Water	3510C	
480-222859-13	Duplicate	Total/NA	Ground Water	3510C	
480-222859-16	MW-07 Bailer	Total/NA	Water	3510C	
480-222859-16 - DL	MW-07 Bailer	Total/NA	Water	3510C	
480-222886-3 - DL	MW-19	Total/NA	Ground Water	3510C	
480-222886-3	MW-19	Total/NA	Ground Water	3510C	
480-222886-4 - DL	MW-19 (BAILER)	Total/NA	Water	3510C	
480-222886-4	MW-19 (BAILER)	Total/NA	Water	3510C	
480-222886-6	MW-13	Total/NA	Ground Water	3510C	
480-222886-7	MW-17	Total/NA	Ground Water	3510C	
MB 480-723375/1-A	Method Blank	Total/NA	Water	3510C	
_CS 480-723375/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-723375/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Client: GEI Consultants Inc

Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1

SDG: 222859

GC/MS Semi VOA

Analysis Batch: 723480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-4	MW-23	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222859-6	MW-07	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222859-7	MW-10	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222859-8	MW-11A	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222859-9	SW-01	Total/NA	Surface Water	8270D_LL_PAH	723375
480-222859-10	SW-02	Total/NA	Surface Water	8270D_LL_PAH	723375
480-222859-12	EB	Total/NA	Water	8270D_LL_PAH	723375
480-222859-13	Duplicate	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222859-16	MW-07 Bailer	Total/NA	Water	8270D_LL_PAH	723375
480-222886-3	MW-19	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222886-4	MW-19 (BAILER)	Total/NA	Water	8270D_LL_PAH	723375
480-222886-6	MW-13	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222886-7	MW-17	Total/NA	Ground Water	8270D_LL_PAH	723375
MB 480-723375/1-A	Method Blank	Total/NA	Water	8270D_LL_PAH	723375
LCS 480-723375/2-A	Lab Control Sample	Total/NA	Water	8270D_LL_PAH	723375
LCSD 480-723375/3-A	Lab Control Sample Dup	Total/NA	Water	8270D_LL_PAH	723375

Analysis Batch: 723618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-16 - DL	MW-07 Bailer	Total/NA	Water	8270D LL PAH	723375

Analysis Batch: 723782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222886-3 - DL	MW-19	Total/NA	Ground Water	8270D_LL_PAH	723375
480-222886-4 - DL	MW-19 (BAILER)	Total/NA	Water	8270D_LL_PAH	723375

Analysis Batch: 724525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-6 - DL	MW-07	Total/NA	Ground Water	8270D_LL_PAH	723375

General Chemistry

Analysis Batch: 723503

Lab Sample ID 480-222859-8	Client Sample ID MW-11A	Prep Type Total/NA	Matrix Ground Water	Method SM 2540D	Prep Batch
480-222859-9	SW-01	Total/NA	Surface Water	SM 2540D	
480-222859-10	SW-02	Total/NA	Surface Water	SM 2540D	
MB 480-723503/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-723503/2	Lab Control Sample	Total/NA	Water	SM 2540D	

Analysis Batch: 723667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-1	MW-14	Total/NA	Ground Water	9012B	
480-222859-2	MW-20	Total/NA	Ground Water	9012B	
480-222859-3	MW-22	Total/NA	Ground Water	9012B	
480-222859-4	MW-23	Total/NA	Ground Water	9012B	
480-222859-5	MW-16	Total/NA	Ground Water	9012B	
480-222859-8	MW-11A	Total/NA	Ground Water	9012B	
480-222859-9	SW-01	Total/NA	Surface Water	9012B	
480-222859-10	SW-02	Total/NA	Surface Water	9012B	
480-222859-12	EB	Total/NA	Water	9012B	

Eurofins Buffalo

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

General Chemistry (Continued)

Analysis Batch: 723667 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-13	Duplicate	Total/NA	Ground Water	9012B	<u> </u>
480-222859-14	MW-20 Bailer	Total/NA	Water	9012B	
480-222859-15	MW-16 Bailer	Total/NA	Water	9012B	
480-222886-1	MW-12	Total/NA	Ground Water	9012B	
480-222886-2	MW-12 (BAILER)	Total/NA	Water	9012B	
480-222886-5	MW-20 LOW FLOW 2)	Total/NA	Ground Water	9012B	
480-222886-6	MW-13	Total/NA	Ground Water	9012B	
480-222886-7	MW-17	Total/NA	Ground Water	9012B	
480-222886-8	MW-16 (LOW FLOW 2)	Total/NA	Ground Water	9012B	
480-222886-10	MW-21	Total/NA	Ground Water	9012B	
MB 480-723667/21	Method Blank	Total/NA	Water	9012B	
MB 480-723667/47	Method Blank	Total/NA	Water	9012B	
MB 480-723667/75	Method Blank	Total/NA	Water	9012B	
HLCS 480-723667/22	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-723667/23	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-723667/48	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-723667/76	Lab Control Sample	Total/NA	Water	9012B	
480-222859-4 MS	MW-23	Total/NA	Ground Water	9012B	
480-222859-8 MS	MW-11A	Total/NA	Ground Water	9012B	
480-222859-13 MS	Duplicate	Total/NA	Ground Water	9012B	
480-222886-6 MS	MW-13	Total/NA	Ground Water	9012B	
480-222859-8 DU	MW-11A	Total/NA	Ground Water	9012B	

Prep Batch: 994030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-1	MW-14	Total/NA	Ground Water	9016	
480-222859-2	MW-20	Total/NA	Ground Water	9016	
480-222859-3	MW-22	Total/NA	Ground Water	9016	
480-222859-4	MW-23	Total/NA	Ground Water	9016	
480-222859-5	MW-16	Total/NA	Ground Water	9016	
480-222859-8	MW-11A	Total/NA	Ground Water	9016	
480-222859-9	SW-01	Total/NA	Surface Water	9016	
480-222859-10	SW-02	Total/NA	Surface Water	9016	
480-222859-12	EB	Total/NA	Water	9016	
480-222859-13	Duplicate	Total/NA	Ground Water	9016	
480-222859-14	MW-20 Bailer	Total/NA	Water	9016	
480-222859-15	MW-16 Bailer	Total/NA	Water	9016	
480-222886-1	MW-12	Total/NA	Ground Water	9016	
480-222886-2	MW-12 (BAILER)	Total/NA	Water	9016	
480-222886-5	MW-20 LOW FLOW 2)	Total/NA	Ground Water	9016	
480-222886-6	MW-13	Total/NA	Ground Water	9016	
480-222886-7	MW-17	Total/NA	Ground Water	9016	
480-222886-8	MW-16 (LOW FLOW 2)	Total/NA	Ground Water	9016	
480-222886-10	MW-21	Total/NA	Ground Water	9016	
MB 460-994030/1-A	Method Blank	Total/NA	Water	9016	
LCS 460-994030/2-A	Lab Control Sample	Total/NA	Water	9016	
480-222859-1 MS	MW-14	Total/NA	Ground Water	9016	
480-222859-1 MSD	MW-14	Total/NA	Ground Water	9016	

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1
SDG: 222859

General Chemistry

Analysis Batch: 994113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-222859-1	MW-14	Total/NA	Ground Water	9016	994030
480-222859-2	MW-20	Total/NA	Ground Water	9016	994030
480-222859-3	MW-22	Total/NA	Ground Water	9016	994030
480-222859-4	MW-23	Total/NA	Ground Water	9016	994030
480-222859-5	MW-16	Total/NA	Ground Water	9016	994030
480-222859-8	MW-11A	Total/NA	Ground Water	9016	994030
480-222859-9	SW-01	Total/NA	Surface Water	9016	994030
480-222859-10	SW-02	Total/NA	Surface Water	9016	994030
480-222859-12	EB	Total/NA	Water	9016	994030
480-222859-13	Duplicate	Total/NA	Ground Water	9016	994030
480-222859-14	MW-20 Bailer	Total/NA	Water	9016	994030
480-222859-15	MW-16 Bailer	Total/NA	Water	9016	994030
480-222886-1	MW-12	Total/NA	Ground Water	9016	994030
480-222886-2	MW-12 (BAILER)	Total/NA	Water	9016	994030
480-222886-5	MW-20 LOW FLOW 2)	Total/NA	Ground Water	9016	994030
480-222886-6	MW-13	Total/NA	Ground Water	9016	994030
480-222886-7	MW-17	Total/NA	Ground Water	9016	994030
480-222886-8	MW-16 (LOW FLOW 2)	Total/NA	Ground Water	9016	994030
480-222886-10	MW-21	Total/NA	Ground Water	9016	994030
MB 460-994030/1-A	Method Blank	Total/NA	Water	9016	994030
DLCK 460-994113/10	Lab Control Sample	Total/NA	Water	9016	
LCS 460-994030/2-A	Lab Control Sample	Total/NA	Water	9016	994030
480-222859-1 MS	MW-14	Total/NA	Ground Water	9016	994030
480-222859-1 MSD	MW-14	Total/NA	Ground Water	9016	994030

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Lab Sample ID: 480-222859-1

Matrix: Ground Water

Client Sample ID: MW-14

Date Collected: 08/26/24 10:50 Date Received: 08/26/24 14:30

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
	Total/NA	Analysis	9012B		2	723667	CLT	EET BUF	08/30/24 09:01
	Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:48
L	Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Client Sample ID: MW-20

Date Collected: 08/26/24 10:30 Date Received: 08/26/24 14:30

Lab Sample ID: 480-222859-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		10	723667	CLT	EET BUF	08/30/24 09:04
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:48
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Client Sample ID: MW-22

Date Collected: 08/26/24 12:45 Date Received: 08/26/24 14:30

Lab Sample ID: 480-222859-3

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		2	723667	CLT	EET BUF	08/30/24 09:31
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:48
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Client Sample ID: MW-23

Date Collected: 08/26/24 09:50 Date Received: 08/26/24 14:30

Lab Sample ID: 480-222859-4

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723313	ERS	EET BUF	08/28/24 13:01
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 15:31
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 08:54
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:48
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Client Sample ID: MW-16

Date Collected: 08/26/24 13:20 Date Received: 08/26/24 14:30

Lab Sample ID: 480-222859-5

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		20	723667	CLT	EET BUF	08/30/24 09:34
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:48
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Client: GEI Consultants Inc

Date Received: 08/26/24 14:30

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Lab Sample ID: 480-222859-6 Client Sample ID: MW-07 Date Collected: 08/26/24 09:10

Matrix: Ground Water

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			723194	ERS	EET BUF	08/27/24 14:45
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 15:57
Total/NA	Prep	3510C	DL		723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH	DL	50	724525	JMM	EET BUF	09/10/24 12:26

Client Sample ID: MW-10 Lab Sample ID: 480-222859-7

Date Collected: 08/26/24 08:40 **Matrix: Ground Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194	ERS	EET BUF	08/27/24 15:07
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 16:24

Client Sample ID: MW-11A Lab Sample ID: 480-222859-8 **Matrix: Ground Water**

Date Collected: 08/26/24 11:50 Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	723194	ERS	EET BUF	08/27/24 15:29
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 16:50
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 09:22
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26
Total/NA	Analysis	SM 2540D		1	723503	AB	EET BUF	08/29/24 10:54

Client Sample ID: SW-01 Lab Sample ID: 480-222859-9 Date Collected: 08/26/24 12:40 **Matrix: Surface Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor		Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194	ERS	EET BUF	08/27/24 15:52
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 17:16
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 09:37
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26
Total/NA	Analysis	SM 2540D		1	723503	AB	EET BUF	08/29/24 10:54

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs

Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222859-10 Client Sample ID: SW-02

Date Collected: 08/26/24 11:15 **Matrix: Surface Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194	ERS	EET BUF	08/27/24 16:15
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 17:43
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 09:41
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26
Total/NA	Analysis	SM 2540D		1	723503	AB	EET BUF	08/29/24 10:54

Client Sample ID: TB Lab Sample ID: 480-222859-11

Date Collected: 08/26/24 00:00 Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194 ERS	EET BUF	08/27/24 16:37

Lab Sample ID: 480-222859-12 **Client Sample ID: EB**

Date Collected: 08/26/24 12:00 **Matrix: Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194	ERS	EET BUF	08/27/24 16:59
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 18:09
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 09:44
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Lab Sample ID: 480-222859-13 **Client Sample ID: Duplicate** Date Collected: 08/26/24 00:00 **Matrix: Ground Water**

Date Received: 08/26/24 14:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	723194	ERS	EET BUF	08/27/24 17:22
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 18:36
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 10:14
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:26

Lab Sample ID: 480-222859-14 Client Sample ID: MW-20 Bailer

Date Collected: 08/26/24 11:00 **Matrix: Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		5	723667	CLT	EET BUF	08/30/24 09:47

Eurofins Buffalo

Matrix: Water

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs

Date Received: 08/26/24 14:30

Job ID: 480-222859-1 SDG: 222859

Client Sample ID: MW-20 Bailer

Lab Sample ID: 480-222859-14 Date Collected: 08/26/24 11:00

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client Sample ID: MW-16 Bailer

Lab Sample ID: 480-222859-15

Date Collected: 08/26/24 13:50 **Matrix: Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		10	723667	CLT	EET BUF	08/30/24 09:51
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client Sample ID: MW-07 Bailer

Lab Sample ID: 480-222859-16

Date Collected: 08/26/24 09:30 **Matrix: Water** Date Received: 08/26/24 14:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		20	723313	ERS	EET BUF	08/28/24 13:23
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 19:03
Total/NA	Prep	3510C	DL		723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH	DL	20	723618	EMD	EET BUF	08/30/24 14:34

Client Sample ID: MW-12 Lab Sample ID: 480-222886-1 Date Collected: 08/27/24 09:00 **Matrix: Ground Water**

Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		5	723667	CLT	EET BUF	08/30/24 11:54
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client Sample ID: MW-12 (BAILER) Lab Sample ID: 480-222886-2

Date Collected: 08/27/24 09:25 **Matrix: Water**

Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		2	723667	CLT	EET BUF	08/30/24 11:57
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client: GEI Consultants Inc
Project/Site: GEI, Mineral Springs

Client Sample ID: MW-19 Lab Sample ID: 480-222886-3

Date Collected: 08/27/24 10:15 Matrix: Ground Water Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		100	723313	ERS	EET BUF	08/28/24 16:18
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 19:30
Total/NA	Prep	3510C	DL		723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH	DL	200	723782	EMD	EET BUF	09/03/24 12:47

Client Sample ID: MW-19 (BAILER)

Lab Sample ID: 480-222886-4

Date Collected: 08/27/24 10:45 Matrix: Water Date Received: 08/27/24 14:00

Batch Dilution **Batch** Batch Prepared Method **Prep Type** Type Run Factor Number Analyst or Analyzed Lab 08/28/24 16:41 8260C Total/NA Analysis 50 723313 ERS **EET BUF** Total/NA 3510C 723375 LSC **EET BUF** 08/28/24 13:06 Prep Total/NA Analysis 8270D_LL_PAH 1 723480 EMD **EET BUF** 08/29/24 19:57 Total/NA 723375 LSC Prep 3510C DL **EET BUF** 08/28/24 13:06 Total/NA Analysis 8270D_LL_PAH DL 200 723782 EMD EET BUF 09/03/24 13:13

Client Sample ID: MW-20 LOW FLOW 2) Lab Sample ID: 480-222886-5

Date Collected: 08/27/24 11:50 Matrix: Ground Water Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		5	723667	CLT	EET BUF	08/30/24 12:01
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client Sample ID: MW-13

Date Collected: 08/27/24 11:45

Date Received: 08/27/24 14:00

Lab Sample ID: 480-222886-6

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Type Analysis	- Method 8260C	Run	Factor 1	Number 723313		Lab EET BUF	or Analyzed 08/28/24 17:04
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 20:24
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 11:47
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:27

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Date Collected: 08/27/24 10:40 Matrix: Ground Water Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			723313	ERS	EET BUF	08/28/24 17:26

Job ID: 480-222859-1

SDG: 222859

Client: GEI Consultants Inc Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Date Collected: 08/27/24 10:40 **Matrix: Ground Water** Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3510C			723375	LSC	EET BUF	08/28/24 13:06
Total/NA	Analysis	8270D_LL_PAH		1	723480	EMD	EET BUF	08/29/24 20:50
Total/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 12:04
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:28

Client Sample ID: MW-16 (LOW FLOW 2)

Lab Sample ID: 480-222886-8 Date Collected: 08/27/24 12:15 **Matrix: Ground Water**

Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9012B		20	723667	CLT	EET BUF	08/30/24 12:07
Total/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total/NA	Analysis	9016		10	994113	VBG	EET EDI	09/04/24 20:28

Client Sample ID: TB Lab Sample ID: 480-222886-9

Date Collected: 08/27/24 00:00 **Matrix: Water**

Date Received: 08/27/24 14:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			723313	ERS	EET BUF	08/28/24 17:48

Lab Sample ID: 480-222886-10 Client Sample ID: MW-21 Date Collected: 08/27/24 12:30 **Matrix: Ground Water**

Date Received: 08/27/24 14:00

		Batch	Batch		Dilution	Batch			Prepared
Prep	Туре	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total	/NA	Analysis	9012B		1	723667	CLT	EET BUF	08/30/24 12:11
Total	/NA	Prep	9016			994030	AXP	EET EDI	09/04/24 10:49
Total	/NA	Analysis	9016		1	994113	VBG	EET EDI	09/04/24 20:28

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 EET EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: GEI Consultants Inc

Job ID: 480-222859-1 Project/Site: GEI, Mineral Springs SDG: 222859

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

Laboratory: Eurofins Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	gram	Identification Number	Expiration Date	
New York	NEL	.AP	11452	04-01-25	
0 ,		oes not offer certification: Matrix	ertified by New York NELAP 114 Analyte	102. THO HOL	
AHAIVSIS IVIELLIUU			Allaivie		
9016	9016	Ground Water	Cyanide, Free		
			<i></i>		

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagen	ıt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
10ppm CN MS 00433	09/02/24	08/26/24	Di Water, Lot Di Water	50 mL	WC CN 50int 00102	10 mL	Cyanide, Total	10 mg/L
.WC CN 50int 00102	09/02/24	08/26/24	DI Water, Lot na	100 mL	WC CN complex 00006		Cyanide, Total	50 mg/L
WC CN complex 00006	07/05/25		ABSOLUTE, Lot 070523		(Purchased Reage		Cyanide, Total	1000 mg/L
8260 CORP mix_00257	109/30/24	07/11/24	Methanol, Lot	20 mT.	2-CEVE 00229	800 11T.	2-Chloroethyl vinyl ether	100 ug/mL
5200 CORF MIX_00237	03/30/24	07/11/24	22C2362001	20 11111	_		-	
					Acrolein Mix_00502		Acrolein	500 ug/mL
					Ketones_00223	800 uL	2-Butanone (MEK)	500 ug/mL
							2-Hexanone	500 ug/mL
							4-Methyl-2-pentanone (MIBK)	500 ug/mL
					ManaMira 0000E	0.00	Acetone	500 ug/mL
					MegaMix_00225	800 ul	1,1,1,2-Tetrachloroethane	100 ug/mL 100 ug/mL
							1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluor	100 ug/mL 100 ug/mL
							oethane	100 ug/mi
							1,1,2-Trichloroethane	100 ug/mL
							1,1-Dichloroethane	100 ug/mL
							1,1-Dichloroethene	100 ug/mL
							1,1-Dichloropropene	100 ug/mL
							1,2,3-Trichlorobenzene	100 ug/mL
							1,2,3-Trichloropropane	100 ug/mL
							1,2,4-Trichlorobenzene	100 ug/mL
							1,2,4-Trimethylbenzene	100 ug/mL
							1,2-Dibromo-3-Chloropropane	100 ug/mL
							1,2-Dichlorobenzene	100 ug/mL
							1,2-Dichloroethane	100 ug/mL
							1,2-Dichloropropane	100 ug/mL
							1,3,5-Trimethylbenzene	100 ug/mL
							1,3-Dichlorobenzene	100 ug/mL
							1,3-Dichloropropane	100 ug/mL
							1,4-Dichlorobenzene	100 ug/mL
							1,4-Dioxane	2000 ug/mL
	1						2,2-Dichloropropane	100 ug/mL
							2-Chlorotoluene	100 ug/mL
							2-Methyl-2-propanol	1000 ug/mL
							3-Chloro-1-propene	100 ug/mL
							4-Chlorotoluene	100 ug/mL
							4-Isopropyltoluene	100 ug/mL
							Acrylonitrile	1000 ug/mL
							Benzene	100 ug/mL
	1						Bromobenzene	100 ug/mL
							Bromoform	100 ug/mL
							Carbon disulfide	100 ug/mL
							Carbon tetrachloride	100 ug/mL
							Chlorobenzene	100 ug/mL
							Chlorobromomethane	100 ug/mL
							Chlorodibromomethane	100 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagen	t		
	Exp	Prep	Dilutant	Final		Volume	_	
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Chloroform	100 ug/mL
							cis-1,2-Dichloroethene	100 ug/mL
							cis-1,3-Dichloropropene	100 ug/mL
							Cyclohexane	100 ug/mL
							Dibromomethane	100 ug/mL
							Dichlorobromomethane	100 ug/mL
							Ethyl ether	100 ug/mL
							Ethyl methacrylate	100 ug/mL
							Ethylbenzene	100 ug/mL
							Ethylene Dibromide	100 ug/mL
							Hexachlorobutadiene	100 ug/mL
							Hexane	100 ug/mL
							Iodomethane	100 ug/mL
							Isobutyl alcohol	2500 ug/mL
							Isopropylbenzene	100 ug/mL
							m-Xylene & p-Xylene	100 ug/mL
							Methyl acetate	200 ug/mL
							Methyl tert-butyl ether	100 ug/mL
							Methylcyclohexane	100 ug/mL
							Methylene Chloride	100 ug/mL
							n-Butylbenzene	100 ug/mL
							n-Heptane	100 ug/mL
							N-Propylbenzene	100 ug/mL
							Naphthalene	100 ug/mL
							o-Xylene	100 ug/mL
							sec-Butylbenzene	100 ug/mL
							Styrene	100 ug/mL
							tert-Butylbenzene	100 ug/mL
							Tetrachloroethene	100 ug/mL
							Tetrahydrofuran	200 ug/mL
							Toluene	100 ug/mL
							trans-1,2-Dichloroethene	100 ug/mL
							trans-1,3-Dichloropropene	100 ug/mL
							trans-1,4-Dichloro-2-butene	100 ug/mL
							Trichloroethene	100 ug/mL
					Vinyl Acetate 00357	800 uL	Vinyl acetate	200 ug/mL
.2-CEVE 00229	02/28/27		Restek, Lot A0208368		(Purchased Reage		2-Chloroethyl vinyl ether	2500 ug/mL
.Acrolein Mix 00502	09/30/25		Restek, Lot A0209476		(Purchased Reage		Acrolein	20000 ug/mL
.Ketones 00223	04/30/27		Restek, Lot A0201093		(Purchased Reage		2-Butanone (MEK)	12500 ug/mL
_						•	2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone (MIBK)	12500 ug/mL
							Acetone	12500 ug/mL
.MegaMix 00225	09/30/24		Restek, Lot A0183568		(Purchased Reage	ent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
-			,			•	1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor oethane	2500 ug/mL
							1,1,2-Trichloroethane	2500 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3,5-Trimethylbenzene	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							1,4-Dioxane	50000 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							2-Methyl-2-propanol	25000 ug/mL
							3-Chloro-1-propene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							4-Isopropyltoluene	2500 ug/mL
							Acrylonitrile	25000 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL
							Bromoform	2500 ug/mL
							Carbon disulfide	2500 ug/mL
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chlorobromomethane	2500 ug/mL
							Chlorodibromomethane	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Cyclohexane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Dichlorobromomethane	2500 ug/mL
							Ethyl ether	2500 ug/mL
							Ethyl methacrylate	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Ethylene Dibromide	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Hexane	2500 ug/mL
							Iodomethane	2500 ug/mL
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
1	1	1			I			1 2000 09/1111

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
				'		•	Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mI
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
							N-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
.Vinyl Acetate_00357	09/30/25		Restek, Lot A0209567		(Purchased Read	gent)	Vinyl acetate	5000 ug/mL
BFB_WRK_00164							1,2-Dichloroethene, Total	
							1,3-Dichloropropene, Total	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					MV_BFB_STK_00092	20 uL		50 ug/mL
.MV_BFB_STK_00092	09/30/24		Supelco, Lot LRAD0322		(Purchased Read	gent)	BFB	25000 ug/mL
BFB_WRK_00165							1,2-Dichloroethene, Total	
							1,3-Dichloropropene, Total	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					MV BFB STK 00095	20 uL		50 ug/mL
.MV BFB STK 00095	02/19/25		Supelco, Lot LRAD6467		(Purchased Read		BFB	25000 ug/mL
		00/12/24	Methanol, Lot EA832US	10	8260/624-Gas 00554	,	Bromomethane	100 ug/mL
GAS CORP mix_00632	00/20/24	00/13/24	riccination, but EA032US	TO IIIT	0200/024-Gas_00054	400 uL	Butadiene	100 ug/mL
							Chloroethane	100 ug/mL
							Chloromethane	100 ug/mL
							Dichlorodifluoromethane	100 ug/mL
							Dichlorofluoromethane	100 ug/mL
							Trichlorofluoromethane	100 ug/mL
							Vinyl chloride	100 ug/mL
.8260/624-Gas_00554	05/31/27		Restek, Lot A0211969		(Purchased Read	gent.)	Bromomethane	2500 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reager	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Dichlorofluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
			I					
MB_DFTPP_WRK_00438							3 & 4 Methylphenol	
							3-Methylphenol	
							4,4'-DDD	
							4,4'-DDE	
							Chlorobenzotrifluoride N.O.S	
							Chlorotoluene N.O.S	
							EPH Adjustment 1	
							Tentatively Identified	
							Compound	
							Total Cresols	
					MB DFTPP STK 00119	250 uL	4,4'-DDT	25 ug/mL
							Benzidine T	25 ug/mL
							DFTPP	25 ug/mL
							Pentachlorophenol T	25 ug/mL
.MB DFTPP STK 00119	12/31/25		Restek, Lot A0192631		(Purchased Reag	ent)	4,4'-DDT	1000 ug/mL
••••=================================	12/31/23		Redeem, Ede Holy2001		(Full eliabed Reag	CIIC)	Benzidine T	1000 ug/mL
							DFTPP	1000 ug/mL
		:					Pentachlorophenol T	1000 ug/mL
							_	1000 ug/IIII
MB_DFTPP_WRK_00441							3 & 4 Methylphenol	
							3-Methylphenol	
							4,4'-DDD	
							4,4'-DDE	
							Chlorobenzotrifluoride N.O.S	
							Chlorotoluene N.O.S	
							EPH Adjustment 1	
							Tentatively Identified	
							Compound	
							Total Cresols	
					MB DFTPP STK 00120	250 uL	4,4'-DDT	25 ug/mL
							Benzidine T	25 ug/mL
							DFTPP	25 ug/mL
							Pentachlorophenol T	25 ug/mL
.MB DFTPP STK 00120	06/14/25		Restek, Lot A0192631		(Purchased Reag	ent)	4,4'-DDT	1000 ug/mL
·:	00/14/20		1.0000., 100 110192031		(Lalonasca Reag	-110,	Benzidine T	1000 ug/mL
							DFTPP	1000 ug/mL
							Pentachlorophenol T	1000 ug/mL
								_
MB_L1LVI_WRK_00631	01/09/25	07/09/24	Methylene Chloride, Lo 63314	t 10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
			03311				Acenaphthene-d10	4 ug/mL 4 ug/mL
							Chrysene-d12	

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reager	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
					MB L1LVI INT 00048	12.5 uL	1-Methylnaphthalene	0.125 ug/mL
							2-Methylnaphthalene	0.125 ug/mL
							Acenaphthene	0.125 ug/mL
							Acenaphthylene	0.125 ug/mL
							Anthracene	0.125 ug/mL
							Benzo[a]anthracene	0.125 ug/mL
							Benzo[a]pyrene	0.125 ug/mL
							Benzo[b] fluoranthene	0.125 ug/mL
							Benzo[q,h,i]perylene	0.125 ug/mL
							Benzo[k]fluoranthene	0.125 ug/mL
							Chrysene	0.125 ug/mL
							Dibenz(a,h)anthracene	0.125 ug/mL
							Dibenzofuran	0.125 ug/mL
							Fluoranthene	0.125 ug/mL
							Fluorene	0.125 ug/mL
							Indeno[1,2,3-cd]pyrene	0.125 ug/mL
							Naphthalene	0.125 ug/mL
							Phenanthrene	0.125 ug/mL
							Pvrene	0.125 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741		(Purchased Reag	ent)	1,4-Dichlorobenzene-d4	2000 ug/mL
			,		, , , , , , , , , ,	,	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL	1-Methylnaphthalene	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL
							Benzo[b]fluoranthene	100 ug/mL
							Benzo[q,h,i]perylene	100 ug/mL
							Benzo[k]fluoranthene	100 ug/mL
							Chrysene	100 ug/mL
							Dibenz(a,h)anthracene	100 ug/mL
							Dibenzofuran	100 ug/mL
							Fluoranthene	100 ug/mL
							Fluorene	100 ug/mL
							Indeno[1,2,3-cd]pyrene	100 ug/mL
							Naphthalene	100 ug/mL
							Phenanthrene	100 ug/mL
							Pyrene	100 ug/mL
							TATEME	100 ug/IIIL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Parent Reager	nt		
	_		_			-	
	_			D TD		3 3 - 1 -	
	Date		Volume			_	Concentration
04/30/25		Restek, Lot A0213043		(Purchased Reag	ent)		1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
						11	1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
							1000 ug/mL
						Dibenzofuran	1000 ug/mL
						Fluoranthene	1000 ug/mL
						Fluorene	1000 ug/mL
						Indeno[1,2,3-cd]pyrene	1000 ug/mL
						Naphthalene	1000 ug/mL
						Phenanthrene	1000 ug/mL
						Pyrene	1000 ug/mL
01/09/25	07/09/24		10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
		03311				Acenaphthene-d10	4 ug/mL
							4 ug/mL
							4 ug/mL
							4 ug/mL
							4 ug/mL
				MB 1.11.VI INT 00048	50 uTi		0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
						Benzo[b]fluoranthene	0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
							0.5 ug/mL
	Exp Date 04/30/25	Date Date 04/30/25	Date Date Used 04/30/25 Restek, Lot A0213043	Date Date Used Volume 04/30/25 Restek, Lot A0213043	Exp Prep Dilutant Used Volume Reagent ID 04/30/25 Restek, Lot A0213043 (Purchased Reag 01/09/25 07/09/24 Methylene Chloride, Lot 10 mL MB_INTSTD_STK_00104	Exp Date Date Used Volume Reagent ID Volume Added 04/30/25 Restek, Lot A0213043 (Purchased Reagent) 01/09/25 07/09/24 Methylene Chloride, Lot 10 mL MB_INTSTD_STK_00104 20 uL 63314	Exp Date Date Used Used Final Reagent ID Added Analyte 04/30/25 Restek, Lot A0213043 (Furchased Reagent) 1-Methylnaphthalene 2-Methylnaphthalene 3-Methylnaphthalene Acenaphthylene Anthracene Benzo[a]antracene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[k]fluoranthene Chrysene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dibenzofuran Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene Naphthalene Phenanthrene Pyrene 01/09/25 07/09/24 Methylene Chloride, Lot 10 mL MB_INTSTD_STK_00104 20 uL 1,4-Dichlorobenzene-d4 Acenaphthylene Acenaphthylene Acenaphthylene Analyte 1-Methylnaphthalene Acenaphthylene Acenaphtylene Acenaphthylene Acenaphtylene Acen

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							p-Terphenyl-d14 (Surr)	0.5 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741		(Purchased Rea	gent)	1,4-Dichlorobenzene-d4	2000 ug/mL
							Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL	1-Methylnaphthalene	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL
							Benzo[b]fluoranthene	100 ug/mL
							Benzo[q,h,i]perylene	100 ug/mL
							Benzo[k]fluoranthene	100 ug/mL
							Chrysene	100 ug/mL
							Dibenz (a, h) anthracene	100 ug/mL
							Dibenzofuran	100 ug/mL
							Fluoranthene	100 ug/mL
							Fluorene	100 ug/mL
							Indeno[1,2,3-cd]pyrene	100 ug/mL
							Naphthalene	100 ug/mL
							Phenanthrene	100 ug/mL
							Pyrene	100 ug/mL
					MB SURR STK 00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mL
							Nitrobenzene-d5 (Surr)	100 ug/mL
							p-Terphenyl-d14 (Surr)	100 ug/mL
MB L1S1 STK 00087	04/30/25		Restek, Lot A0213043	1	(Purchased Rea	gent)	1-Methylnaphthalene	1000 ug/mL
							2-Methylnaphthalene	1000 ug/mL
							Acenaphthene	1000 ug/mL
							Acenaphthylene	1000 ug/mL
							Anthracene	1000 ug/mL
							Benzo[a]anthracene	1000 ug/mL
							Benzo[a]pyrene	1000 ug/mL
							Benzo[b]fluoranthene	1000 ug/mL
							Benzo[g,h,i]perylene	1000 ug/mL
							Benzo[k]fluoranthene	1000 ug/mL
							Chrysene	1000 ug/mL
							Dibenz(a,h)anthracene	1000 ug/mL
							Dibenzofuran	1000 ug/mL
							Fluoranthene	1000 ug/mL
							Fluorene	1000 ug/mL
							Indeno[1,2,3-cd]pyrene	1000 ug/mL
							Naphthalene	1000 ug/mL
							Phenanthrene	1000 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage:	nt		
5	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Pyrene	1000 ug/mL
MB_SURR_STK_00072	06/03/25		Restek, Lot A0172807		(Purchased Reag	gent)	2-Fluorobiphenyl (Surr)	5000 ug/mL
							Nitrobenzene-d5 (Surr)	5000 ug/mL
							p-Terphenyl-d14 (Surr)	5000 ug/mL
MB_L1LVI_WRK_00633	01/09/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
							Acenaphthene-d10	4 ug/mL
							Chrysene-d12	4 ug/mL
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
					MB_L1LVI_INT_00048	100 uL	1-Methylnaphthalene	1 ug/mL
							2-Methylnaphthalene	1 ug/mL
							Acenaphthene	1 ug/mL
							Acenaphthylene	1 ug/mL
							Anthracene	1 ug/mL
							Benzo[a]anthracene	1 ug/mL
							Benzo[a]pyrene	1 ug/mL
							Benzo[b]fluoranthene	1 ug/mL
							Benzo[g,h,i]perylene	1 ug/mL
							Benzo[k]fluoranthene	1 ug/mL
							Chrysene	1 ug/mL
							Dibenz(a,h)anthracene	1 ug/mL
							Dibenzofuran	1 ug/mL
							Fluoranthene	1 ug/mL
							Fluorene	1 ug/mL
							Indeno[1,2,3-cd]pyrene	1 ug/mL
							Naphthalene	1 ug/mL
							Phenanthrene	1 ug/mL
							Pyrene	1 ug/mL
							2-Fluorobiphenyl (Surr)	1 ug/mL
							Nitrobenzene-d5 (Surr)	1 ug/mL
							p-Terphenyl-d14 (Surr)	1 ug/mL
.MB_INTSTD_STK_00104	06/03/25		Restek, Lot A0208741		(Purchased Read	gent)	1,4-Dichlorobenzene-d4	2000 ug/mL
							Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL	1-Methylnaphthalene	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Benzo[b]fluoranthene	100 ug/mI
							Benzo[g,h,i]perylene	100 ug/mI
							Benzo[k]fluoranthene	100 ug/mI
							Chrysene	100 ug/mI
							Dibenz (a, h) anthracene	100 ug/mI
							Dibenzofuran	100 ug/mI
							Fluoranthene	100 ug/mI
							Fluorene	100 ug/mI
							Indeno[1,2,3-cd]pyrene	100 ug/mI
							Naphthalene	100 ug/mI
							Phenanthrene	100 ug/mI
							Pvrene	100 ug/mI
					MB SURR STK 00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mI
							Nitrobenzene-d5 (Surr)	100 ug/mI
							p-Terphenyl-d14 (Surr)	100 ug/mI
MB L1S1 STK 00087	04/30/25		Restek, Lot A0213043		(Purchased Reag	ent)	1-Methylnaphthalene	1000 ug/mI
	, , , , ,		,		, , , , , , , , ,	,	2-Methylnaphthalene	1000 ug/mI
							Acenaphthene	1000 ug/mI
							Acenaphthylene	1000 ug/mI
							Anthracene	1000 ug/mI
							Benzo[a]anthracene	1000 ug/mI
							Benzo[a]pyrene	1000 ug/mI
							Benzo[b]fluoranthene	1000 ug/mI
							Benzo[q,h,i]perylene	1000 ug/mI
							Benzo[k]fluoranthene	1000 ug/mI
							Chrysene	1000 ug/mI
							Dibenz(a,h)anthracene	1000 ug/mI
							Dibenzofuran	1000 ug/mI
							Fluoranthene	1000 ug/mI
							Fluorene	1000 ug/mI
							Indeno[1,2,3-cd]pyrene	1000 ug/mI
							Naphthalene	1000 ug/mI
							Phenanthrene	1000 ug/mI
							Pyrene	1000 ug/mI
MB SURR STK 00072	06/03/25		Restek, Lot A0172807		(Purchased Reag	ent)	2-Fluorobiphenyl (Surr)	5000 ug/mI
·: IID_001111_00072	00,03,23		Redeem, Lot HolyZoor		(Fureflased Reag	CIIC)	Nitrobenzene-d5 (Surr)	5000 ug/mI
							p-Terphenyl-d14 (Surr)	5000 ug/mI
	01/00/05	105/00/01	T	1 10 -				
MB_L1LVI_WRK_00634	01/09/25	07/09/24	Methylene Chloride, Lot 63314	= 10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mI
							Acenaphthene-d10	4 ug/mI
							Chrysene-d12	4 ug/mI
							Naphthalene-d8	4 ug/mI
							Perylene-d12	4 ug/mI
							Phenanthrene-d10	4 ug/mI
					MB_L1LVI_INT_00048	200 uL	1-Methylnaphthalene	2 ug/mI
							2-Methylnaphthalene	2 ug/mI
		1	1	1	İ	1	Acenaphthene	2 ug/mI

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Acenaphthylene	2 ug/mL
							Anthracene	2 ug/mL
							Benzo[a]anthracene	2 ug/mL
							Benzo[a]pyrene	2 ug/mL
							Benzo[b] fluoranthene	2 ug/mL
							Benzo[g,h,i]perylene	2 ug/mL
							Benzo[k]fluoranthene	2 ug/mL
							Chrysene	2 ug/mL
							Dibenz(a,h)anthracene	2 ug/mL
							Dibenzofuran	2 ug/mL
							Fluoranthene	2 ug/mL
							Fluorene	2 ug/mL
							Indeno[1,2,3-cd]pyrene	2 ug/mL
							Naphthalene	2 ug/mL
							Phenanthrene	2 ug/mL
							Pyrene	2 ug/mL
							2-Fluorobiphenyl (Surr)	2 ug/mL
							Nitrobenzene-d5 (Surr)	2 ug/mL
							p-Terphenyl-d14 (Surr)	2 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741		(Purchased Read	ent)	1,4-Dichlorobenzene-d4	2000 ug/mL
			,		, , , , , , , , , , , , , , , , , , , ,	,	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB L1LVI INT 00048	02/25/25	07/09/24	Methylene Chloride, Lot	10 mL	MB L1S1 STK 00087	1000 uL	1-Methylnaphthalene	100 ug/mL
			63314					
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL
							Benzo[b]fluoranthene	100 ug/mL
							Benzo[g,h,i]perylene	100 ug/mL
							Benzo[k]fluoranthene	100 ug/mL
							Chrysene	100 ug/mL
							Dibenz(a,h)anthracene	100 ug/mL
							Dibenzofuran	100 ug/mL
							Fluoranthene	100 ug/mL
							Fluorene	100 ug/mL
							Indeno[1,2,3-cd]pyrene	100 ug/mL
							Naphthalene	100 ug/mL
							Phenanthrene	100 ug/mL
							Pyrene	100 ug/mL
					MB_SURR_STK_00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mL
							Nitrobenzene-d5 (Surr)	100 ug/mL
				1			p-Terphenyl-d14 (Surr)	100 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage:	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
MB_L1S1_STK_00087	04/30/25		Restek, Lot A0213043		(Purchased Read	ent)	1-Methylnaphthalene	1000 ug/mL
							2-Methylnaphthalene	1000 ug/mL
							Acenaphthene	1000 ug/mL
							Acenaphthylene	1000 ug/mL
							Anthracene	1000 ug/mL
							Benzo[a]anthracene	1000 ug/mL
							Benzo[a]pyrene	1000 ug/mL
							Benzo[b]fluoranthene	1000 ug/mL
							Benzo[g,h,i]perylene	1000 ug/mL
							Benzo[k]fluoranthene	1000 ug/mL
							Chrysene	1000 ug/mL
							Dibenz(a,h)anthracene	1000 ug/mL
							Dibenzofuran	1000 ug/mL
							Fluoranthene	1000 ug/mL
							Fluorene	1000 ug/mL
							Indeno[1,2,3-cd]pyrene	1000 ug/mL
							Naphthalene	1000 ug/mL
							Phenanthrene	1000 ug/mL
							Pyrene	1000 ug/mL
MB SURR STK 00072	06/03/25		Restek, Lot A0172807		(Purchased Read	ent)	2-Fluorobiphenyl (Surr)	5000 ug/mL
			,		, , , , , , , , , , , , , , , , , , , ,	/	Nitrobenzene-d5 (Surr)	5000 ug/mL
							p-Terphenyl-d14 (Surr)	5000 ug/mL
B_L1LVI_WRK_00635	01/09/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
							Acenaphthene-d10	4 ug/mL
							Chrysene-d12	4 ug/mL
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
					MB L1LVI INT 00048	400 uL	1-Methylnaphthalene	4 ug/mL
							2-Methylnaphthalene	4 ug/mL
							Acenaphthene	4 ug/mL
							Acenaphthylene	4 ug/mL
							Anthracene	4 ug/mL
							Benzo[a]anthracene	4 ug/mL
							Benzo[a]pyrene	4 ug/mL
							Benzo[b]fluoranthene	4 ug/mL
							Benzo[g,h,i]perylene	4 ug/mL
							Benzo[k]fluoranthene	4 ug/mL
							Chrysene	4 ug/mL
							Dibenz(a,h)anthracene	4 ug/mL
							Dibenzofuran	4 ug/mL
							Fluoranthene	4 ug/mL
							Fluorene	4 ug/mL
							Indeno[1,2,3-cd]pyrene	4 ug/mL
							Naphthalene	4 ug/mL
		I .	T. Control of the Con	1	T. Control of the Con	1	,,	1 39/1111

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reag	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Pyrene	4 ug/mL
							2-Fluorobiphenyl (Surr)	4 ug/mL
							Nitrobenzene-d5 (Surr)	4 ug/mL
							p-Terphenyl-d14 (Surr)	4 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741		(Purchased Rea	agent)	1,4-Dichlorobenzene-d4	2000 ug/mL
							Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL	1-Methylnaphthalene	100 ug/mL
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL
							Benzo[b]fluoranthene	100 ug/mL
							Benzo[g,h,i]perylene	100 ug/mL
							Benzo[k]fluoranthene	100 ug/mL
							Chrysene	100 ug/mL
							Dibenz(a,h)anthracene	100 ug/mL
							Dibenzofuran	100 ug/mL
							Fluoranthene	100 ug/mL
							Fluorene	100 ug/mL
							Indeno[1,2,3-cd]pyrene	100 ug/mL
							Naphthalene	100 ug/mL
							Phenanthrene	100 ug/mL
							Pyrene	100 ug/mL
					MB_SURR_STK_00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mL
							Nitrobenzene-d5 (Surr)	100 ug/mL
							p-Terphenyl-d14 (Surr)	100 ug/mL
MB_L1S1_STK_00087	04/30/25		Restek, Lot A0213043		(Purchased Rea	agent)	1-Methylnaphthalene	1000 ug/mL
							2-Methylnaphthalene	1000 ug/mL
							Acenaphthene	1000 ug/mL
							Acenaphthylene	1000 ug/mL
							Anthracene	1000 ug/mL
							Benzo[a]anthracene	1000 ug/mL
							Benzo[a]pyrene	1000 ug/mL
							Benzo[b] fluoranthene	1000 ug/mL
							Benzo[g,h,i]perylene	1000 ug/mL
							Benzo[k]fluoranthene	1000 ug/mL
							Chrysene	1000 ug/mL
							Dibenz(a,h)anthracene Dibenzofuran	1000 ug/mL
								1000 ug/mL
							Fluoranthene	1000 ug/mL
		1					Fluorene	1000 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage:	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							<pre>Indeno[1,2,3-cd]pyrene</pre>	1000 ug/mL
							Naphthalene	1000 ug/mL
							Phenanthrene	1000 ug/mL
							Pyrene	1000 ug/mL
MB SURR STK 00072	06/03/25		Restek, Lot A0172807		(Purchased Read	gent)	2-Fluorobiphenyl (Surr)	5000 ug/mL
							Nitrobenzene-d5 (Surr)	5000 ug/mL
							p-Terphenyl-d14 (Surr)	5000 ug/mL
MB_L1LVI_WRK_00636	01/09/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
							Acenaphthene-d10	4 ug/mL
							Chrysene-d12	4 ug/mL
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
					MB L1LVI INT 00048	800 uL	1-Methylnaphthalene	8 ug/mL
							2-Methylnaphthalene	8 ug/mL
							Acenaphthene	8 ug/mL
							Acenaphthylene	8 ug/mL
							Anthracene	8 ug/mL
							Benzo[a]anthracene	8 ug/mL
							Benzo[a]pyrene	8 ug/mL
							Benzo[b]fluoranthene	8 ug/mL
							Benzo[g,h,i]perylene	8 ug/mL
							Benzo[k]fluoranthene	8 ug/mL
							Chrysene	8 ug/mL
							Dibenz (a, h) anthracene	8 ug/mL
							Dibenzofuran	8 ug/mL
							Fluoranthene	8 ug/mL
							Fluorene	8 ug/mL
							Indeno[1,2,3-cd]pyrene	8 ug/mL
							Naphthalene	8 ug/mL
							Phenanthrene	8 ug/mL
							Pyrene	8 ug/mL
							2-Fluorobiphenyl (Surr)	8 ug/mL
							Nitrobenzene-d5 (Surr)	8 ug/mL
							p-Terphenyl-d14 (Surr)	8 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741	1	(Purchased Read	rent)	1,4-Dichlorobenzene-d4	2000 ug/mL
.MD_INIBID_BIN_00104	00/03/23		Nescek, Loc 110200741		(Faremasea neag	,circ,	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL		100 ug/mL
			00011				2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
				1			Acenaphthylene	100 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Anthracene	100 ug/mI
							Benzo[a]anthracene	100 ug/mI
							Benzo[a]pyrene	100 ug/mI
							Benzo[b]fluoranthene	100 ug/mI
							Benzo[g,h,i]perylene	100 ug/mI
							Benzo[k]fluoranthene	100 ug/mI
							Chrysene	100 ug/mI
							Dibenz(a,h)anthracene	100 ug/mI
							Dibenzofuran	100 ug/mI
							Fluoranthene	100 ug/mI
							Fluorene	100 ug/mI
							Indeno[1,2,3-cd]pyrene	100 ug/mI
							Naphthalene	100 ug/mI
							Phenanthrene	100 ug/mI
							Pyrene	100 ug/mI
					MB SURR STK 00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mI
							Nitrobenzene-d5 (Surr)	100 ug/mI
							p-Terphenyl-d14 (Surr)	100 ug/mI
MB L1S1 STK 00087	04/30/25		Restek, Lot A0213043		(Purchased Read	gent)	1-Methylnaphthalene	1000 ug/mI
					_		2-Methylnaphthalene	1000 ug/mI
							Acenaphthene	1000 ug/mI
							Acenaphthylene	1000 ug/mI
							Anthracene	1000 ug/mI
							Benzo[a]anthracene	1000 ug/mI
							Benzo[a]pyrene	1000 ug/mI
							Benzo[b]fluoranthene	1000 ug/mI
							Benzo[q,h,i]perylene	1000 ug/mI
							Benzo[k]fluoranthene	1000 ug/mI
							Chrysene	1000 ug/mI
							Dibenz(a,h)anthracene	1000 ug/mI
							Dibenzofuran	1000 ug/mI
							Fluoranthene	1000 ug/mI
							Fluorene	1000 ug/mI
							Indeno[1,2,3-cd]pyrene	1000 ug/mI
							Naphthalene	1000 ug/mI
							Phenanthrene	1000 ug/mI
							Pyrene	1000 ug/mI
MB SURR STK 00072	06/03/25		Restek, Lot A0172807		(Purchased Read	rent)	2-Fluorobiphenyl (Surr)	5000 ug/mI
· · · · · · · · · · · · · · · · · · ·	00/03/23		Resear, Est Holyzoor		(Tarenasea neag	jene,	Nitrobenzene-d5 (Surr)	5000 ug/mI
							p-Terphenyl-d14 (Surr)	5000 ug/mI
MB_L1LVI_WRK_00637	01/09/25	07/09/24	Methylene Chloride, Lot	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mI
			63114				Acenaphthene-d10	4 ug/mI
							Chrysene-d12	4 ug/mI
							Naphthalene-d8	4 ug/mI
							Perylene-d12	4 ug/mI
	1	I	1	1	1	1	1	uy/IIII

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					MB L1LVI INT 00048		1-Methylnaphthalene	12 ug/mL
					HD_HHV1_HN1_00040	1200 41	2-Methylnaphthalene	12 ug/mL
							Acenaphthene	12 ug/mL
							Acenaphthylene	12 ug/mL
							Anthracene	12 ug/mL
							Benzo[a]anthracene	12 ug/mL
							Benzo[a]pyrene	12 ug/mL
							Benzo[b]fluoranthene	12 ug/mL
							Benzo[g,h,i]perylene	12 ug/mL
							Benzo[k]fluoranthene	12 ug/mL
							Chrysene	12 ug/mL
							Dibenz (a, h) anthracene	12 ug/mL
							Dibenzofuran	12 ug/mL
							Fluoranthene	12 ug/mL
							Fluorene	12 ug/mL
							Indeno[1,2,3-cd]pyrene	12 ug/mL
							Naphthalene	12 ug/mL
							Phenanthrene	12 ug/mL
							Pyrene	12 ug/mL
							2-Fluorobiphenyl (Surr)	12 ug/mL
							Nitrobenzene-d5 (Surr)	12 ug/mL
MB INTSTD STK 00104 0							p-Terphenyl-d14 (Surr)	12 ug/mL
	06/03/25		Restek, Lot A0208741		(Purchased Read	ent)	1,4-Dichlorobenzene-d4	2000 ug/mL
.FID_INISID_SIK_00104	00/03/23		Rester, Lot A0200741		(Turchaseu Keag	enc)	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
.MB L1LVI INT 00048	02/25/25	07/09/24	Methylene Chloride, Lot	10 mT	MB L1S1 STK 00087	1000 11	1-Methylnaphthalene	100 ug/mL
.MB_LILVI_INI_00040	02/23/23	07/09/24	63314	10 1111	MB_LISI_SIK_00007	1000 uh	<u> </u>	_
							2-Methylnaphthalene	100 ug/mL
							Acenaphthene	100 ug/mL
							Acenaphthylene	100 ug/mL
							Anthracene	100 ug/mL
							Benzo[a]anthracene	100 ug/mL
							Benzo[a]pyrene	100 ug/mL
							Benzo[b]fluoranthene	100 ug/mL
							Benzo[g,h,i]perylene	100 ug/mL
							Benzo[k]fluoranthene	100 ug/mL
							Chrysene	100 ug/mL
							Dibenz(a,h)anthracene	100 ug/mL
							Dibenzofuran	100 ug/mL
							Fluoranthene	100 ug/mL
							Fluorene	100 ug/mL
							Indeno[1,2,3-cd]pyrene	100 ug/mL
							Naphthalene	100 ug/mL
							Phenanthrene	100 ug/mL
							Pyrene	100 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					MB_SURR_STK_00072	200 uL	2-Fluorobiphenyl (Surr)	100 ug/mL
							Nitrobenzene-d5 (Surr)	100 ug/mL
							p-Terphenyl-d14 (Surr)	100 ug/mL
MB_L1S1_STK_00087	04/30/25		Restek, Lot A0213043		(Purchased Reag	rent)	1-Methylnaphthalene	1000 ug/mL
							2-Methylnaphthalene	1000 ug/mL
							Acenaphthene	1000 ug/mL
							Acenaphthylene	1000 ug/mL
							Anthracene	1000 ug/mL
							Benzo[a]anthracene	1000 ug/mL
							Benzo[a]pyrene	1000 ug/mL
							Benzo[b]fluoranthene	1000 ug/mL
							Benzo[q,h,i]perylene	1000 ug/mL
							Benzo[k]fluoranthene	1000 ug/mL
							Chrysene	1000 ug/mL
							Dibenz(a,h)anthracene	1000 ug/mL
							Dibenzofuran	1000 ug/mL
							Fluoranthene	1000 ug/mL
							Fluorene	1000 ug/mL
							Indeno[1,2,3-cd]pyrene	1000 ug/mL
							Naphthalene	1000 ug/mL
							Phenanthrene	1000 ug/mL
							Pyrene	1000 ug/mL
.MB SURR STK 00072	06/03/25		Restek, Lot A0172807		(Purchased Reag	rent)	2-Fluorobiphenyl (Surr)	5000 ug/mL
· • • • • • • • • • • • • • • • • • • •	00703723		Redeem, Ede Holyzoor		(Farehabea Reag	(0110)	Nitrobenzene-d5 (Surr)	5000 ug/mL
							p-Terphenyl-d14 (Surr)	5000 ug/mL
	01 /00 /05	07/00/04	Tarib lass Oblassias Ta	10	TAID TAIDEAD ONLY 00104	20 7		
MB_L1LVI_WRK_00638	01/09/25	07/09/24	Methylene Chloride, Lo 63314	L IO MI	MB_INTSTD_STK_00104	20 UL	1,4-Dichlorobenzene-d4	4 ug/mL
							Acenaphthene-d10	4 ug/mL
							Chrysene-d12	4 ug/mL
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
					MB_L1LVI_INT_00048	1600 uL	1-Methylnaphthalene	16 ug/mL
							2-Methylnaphthalene	16 ug/mL
							Acenaphthene	16 ug/mL
							Acenaphthylene	16 ug/mL
							Anthracene	16 ug/mL
							Benzo[a]anthracene	16 ug/mL
							Benzo[a]pyrene	16 ug/mL
							Benzo[b]fluoranthene	16 ug/mL
							Benzo[q,h,i]perylene	16 ug/mL
							Benzo[k]fluoranthene	16 ug/mL
							Chrysene	16 ug/mL
							Dibenz(a,h)anthracene	16 ug/mL
							Dibenzofuran	16 ug/mL
		1	T. Control of the Con			1		10 49/1111
							Fluoranthene	16 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Indeno[1,2,3-cd]pyrene	16 ug/mI
							Naphthalene	16 ug/mI
							Phenanthrene	16 ug/mI
							Pyrene	16 ug/mI
							2-Fluorobiphenyl (Surr)	16 ug/mI
							Nitrobenzene-d5 (Surr)	16 ug/mI
							p-Terphenyl-d14 (Surr)	16 ug/mI
.MB INTSTD STK 00104	06/03/25		Restek, Lot A0208741		(Purchased Read	gent)	1,4-Dichlorobenzene-d4	2000 ug/mI
							Acenaphthene-d10	2000 ug/mI
							Chrysene-d12	2000 ug/mI
							Naphthalene-d8	2000 ug/mI
							Perylene-d12	2000 ug/mI
							Phenanthrene-d10	2000 ug/ml
.MB_L1LVI_INT_00048	02/25/25	07/09/24	Methylene Chloride, Lot 63314	10 mL	MB_L1S1_STK_00087	1000 uL	1-Methylnaphthalene	100 ug/mI
							2-Methylnaphthalene	100 ug/mI
							Acenaphthene	100 ug/mI
							Acenaphthylene	100 ug/mI
							Anthracene	100 ug/mI
							Benzo[a]anthracene	100 ug/mI
							Benzo[a]pyrene	100 ug/mI
							Benzo[b]fluoranthene	100 ug/mI
							Benzo[g,h,i]perylene	100 ug/mI
							Benzo[k]fluoranthene	100 ug/mI
							Chrysene	100 ug/mI
							Dibenz (a, h) anthracene	100 ug/ml
							Dibenzofuran	100 ug/ml
							Fluoranthene	100 ug/ml
							Fluorene	100 ug/ml
							Indeno[1,2,3-cd]pyrene	100 ug/ml
							Naphthalene	100 ug/mI
							Phenanthrene	100 ug/mI
							Pyrene	100 ug/mi
					MB SURR STK 00072	200 117	2-Fluorobiphenyl (Surr)	100 ug/mi
					MB_30KK_31K_00072	200 ub	Nitrobenzene-d5 (Surr)	100 ug/mI
							p-Terphenyl-d14 (Surr)	
MB L1S1 STK 00087	04/30/25		Restek, Lot A0213043		(Purchased Read	1 ren+)	1-Methylnaphthalene	100 ug/mI 1000 ug/mI
MB_LISI_SIK_00007	04/30/23		Rester, Lot AU213043		(Fulchased Kead	genc)	2-Methylnaphthalene	1000 ug/mI
							Acenaphthene	1000 ug/mI
							Acenaphthylene	1000 ug/mI
							Anthracene	1000 ug/mI
							Benzo[a]anthracene	1000 ug/mI
							Benzo[a]pyrene	1000 ug/mI
							Benzo[b]fluoranthene	1000 ug/mI
							Benzo[g,h,i]perylene	1000 ug/mI
							Benzo[k]fluoranthene	1000 ug/ml
							Chrysene	1000 ug/ml
							Dibenz(a,h)anthracene	1000 ug/m

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

					Reagent	Parent Reage:	nt		
Reagent ID	Exp Date	Prep Date	Dilutar Used		Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					1			Dibenzofuran	1000 ug/mL
								Fluoranthene	1000 ug/mL
								Fluorene	1000 ug/mL
								Indeno[1,2,3-cd]pyrene	1000 ug/mL
								Naphthalene	1000 ug/mL
								Phenanthrene	1000 ug/mL
								Pyrene	1000 ug/mL
MB SURR STK 00072	06/03/25		Restek, Lot A	A0172807		(Purchased Read	rent.)	2-Fluorobiphenyl (Surr)	5000 ug/mL
	00,00,20		1.00001, 200 1	.101,200,		(rurenaseu neug	,01107	Nitrobenzene-d5 (Surr)	5000 ug/mL
								p-Terphenyl-d14 (Surr)	5000 ug/mL
	1 / /	1			1				<u> </u>
MB_L1SSLV_WRK_00054	09/30/24	07/11/24	Methylene Chlo 63314	ride, Lot	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
								Acenaphthene-d10	4 ug/mL
								Chrysene-d12	4 ug/mL
								Naphthalene-d8	4 ug/mL
								Perylene-d12	4 ug/mL
								Phenanthrene-d10	4 ug/mL
.MB INTSTD STK 00104	06/03/25		Restek, Lot A	A0208741		(Purchased Read	gent)	1,4-Dichlorobenzene-d4	2000 ug/mL
								Acenaphthene-d10	2000 ug/mL
								Chrysene-d12	2000 ug/mL
								Naphthalene-d8	2000 ug/mL
								Perylene-d12	2000 ug/mL
								Phenanthrene-d10	2000 ug/mL
MB_L1SSLV_WRK_00054	09/30/24	07/11/24	Methylene Chlo	ride, Lot	10 mL	MB_L1S1_SS_00045	40 uL		4 ug/mL
								Acenaphthene	4 ug/mL
								Acenaphthylene	4 ug/mL
								Anthracene	4 ug/mL
								Benzo[a]anthracene	4 ug/mL
								Benzo[a]pyrene	4 ug/mL
								Benzo[b] fluoranthene	4 ug/mL
								Benzo[g,h,i]perylene	4 ug/mL
								Benzo[k]fluoranthene	4 ug/mL
								Chrysene	4 ug/mL
								Dibenz(a,h)anthracene	4 ug/mL
								Fluoranthene	4 ug/mL
								Fluorene	4 ug/mL
								Indeno[1,2,3-cd]pyrene	4 ug/mL
								Naphthalene	4 ug/mL
								Phenanthrene	4 ug/mL
								Pyrene	4 ug/mL
.MB_L1S1_SS_00045	04/30/25		Restek, Lot A	A0212976		(Purchased Reag	rent)	2-Methylnaphthalene	1000 ug/mL
								Acenaphthene	1000 ug/mL
								Acenaphthylene	1000 ug/mL
								Anthracene	1000 ug/mL
								Benzo[a]anthracene	1000 ug/mL
		1						Benzo[a]pyrene	1000 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent . Final Volume	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used		Reagent ID	Volume Added	Analyte	Concentration
							Benzo[b]fluoranthene	1000 ug/mL
							Benzo[g,h,i]perylene	1000 ug/mL
							Benzo[k]fluoranthene	1000 ug/mL
							Chrysene	1000 ug/mL
							Dibenz(a,h)anthracene	1000 ug/mL
							Fluoranthene	1000 ug/mL
							Fluorene	1000 ug/mL
							Indeno[1,2,3-cd]pyrene	1000 ug/mL
							Naphthalene	1000 ug/mL
							Phenanthrene	1000 ug/mL
							Pyrene	1000 ug/mL
MB_L2LVI_WRK_00315	10/31/24	07/03/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00104	20 uL	1,4-Dichlorobenzene-d4	4 ug/mL
							Acenaphthene-d10	4 ug/mL
							Chrysene-d12	4 ug/mL
							Naphthalene-d8	4 ug/mL
							Perylene-d12	4 ug/mL
							Phenanthrene-d10	4 ug/mL
.MB_INTSTD_STK_00104	06/03/25		Restek, Lot A0208741	1	(Purchased Reage	ent)	1,4-Dichlorobenzene-d4	2000 ug/mL
			,		, , , , , , , , , , , , , , , , , , , ,	,	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Pervlene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
MB_LLIS_WRK_00279	02/16/25	08/16/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00105	1000 uL	1,4-Dichlorobenzene-d4	200 ug/mL
			00011				Acenaphthene-d10	200 ug/mL
							Chrysene-d12	200 ug/mL
							Naphthalene-d8	200 ug/mL
							Perylene-d12	200 ug/mL
							Phenanthrene-d10	200 ug/mL
.MB INTSTD STK 00105	07/18/25		Restek, Lot A0208741		(Purchased Reage	-nt)	1,4-Dichlorobenzene-d4	2000 ug/mL
	1 . , 10 , 20		22222, 230 110200711		(= == snassa neage	/	Acenaphthene-d10	2000 ug/mL
							Chrysene-d12	2000 ug/mL
							Naphthalene-d8	2000 ug/mL
							Pervlene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
MB_LLIS_WRK_00280	03/05/25	09/05/24	Methylene Chloride, Lot 63314	10 mL	MB_INTSTD_STK_00105	1000 uL	1,4-Dichlorobenzene-d4	200 ug/mL
			00011				Acenaphthene-d10	200 ug/mL
							Chrysene-d12	200 ug/mL
							Naphthalene-d8	200 ug/mL
							Perylene-d12	200 ug/mL
							Phenanthrene-d10	200 ug/mL 200 ug/mL
MD THEORE CON 0010E	07/18/25		Pogtok Tot 7000741		(Purchased Reage	\ \n+\	1,4-Dichlorobenzene-d4	200 ug/mL 2000 ug/mL
.MB_INTSTD_STK_00105	01/18/25		Restek, Lot A0208741		(ruichased keage	=116)	Acenaphthene-d10	2000 ug/mL 2000 ug/mL
							1	
							Chrysene-d12	2000 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent Final Volume	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used		Reagent ID	Volume Added	Analyte	Concentration
							Naphthalene-d8	2000 ug/mL
							Perylene-d12	2000 ug/mL
							Phenanthrene-d10	2000 ug/mL
N 8260 IS_00278	10/07/24	08/07/24	P&T Methanol, Lot EA832-US	20 mL	IS_STK_01775	1 mL	1,4-Dichlorobenzene-d4	125 ug/mL
			E11032 05				Chlorobenzene-d5	125 ug/mL
							Fluorobenzene (IS)	125 ug/mL
.IS STK 01775	02/28/29		Restek, Lot A0207291		(Purchased Read	rent.)	1,4-Dichlorobenzene-d4	2500 ug/mL
110_01770	02,20,23		100001, 200 11020 231		(,,	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene (IS)	2500 ug/mL
	1 2 / 2 = / 2 =	I	1	T		Т -	, ,	
N_8260_Surr_00474	10/07/24	08/07/24	P&T Methanol, Lot EA832-US	20 mL	SURR_STK_00553	1 mL	1,2-Dichloroethane-d4 (Surr)	125 ug/mL
							4-Bromofluorobenzene (Surr)	125 ug/mL
							Dibromofluoromethane (Surr)	125 ug/mL
							Toluene-d8 (Surr)	125 ug/mL
.SURR_STK_00553	01/30/25		Restek, Lot A0201943		(Purchased Read	gent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene (Surr)	2500 ug/mL
							Dibromofluoromethane (Surr)	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
O 8270LL LCS 00158	02/08/25	08/14/24	ACETONE, Lot 8004202	100 mL	O 8270/625LCS 00247	20 mL	3,3'-Dichlorobenzidine	8 ug/mL
1_1	, , , , ,		,				Benzidine	8 ug/mL
							Benzoic acid	64 ug/mL
							Indene	64 ug/mL
							Atrazine	16 ug/mL
							Benzaldehyde	16 ug/mL
							Caprolactam	16 ug/mL
							1,1'-Biphenyl	8 ug/mL
							1,2,4,5-Tetrachlorobenzene	8 ug/mL
							1,2,4-Trichlorobenzene	8 ug/mL
							1,2-Dichlorobenzene	8 ug/mL
							1,2-Diphenylhydrazine	8 ug/mL
							1,3-Dichlorobenzene	8 ug/mL
							1,3-Dinitrobenzene	8 ug/mL
							1,4-Dichlorobenzene	8 ug/mL
							1,4-Dichiologenzene	8 ug/mL
							1-Methylnaphthalene	8 ug/mL
							2,2'-oxybis[1-chloropropane]	8 ug/mL
							2,3,4,6-Tetrachlorophenol	8 ug/mL
							2,4,5-Trichlorophenol	8 ug/mL
							2,4,6-Trichlorophenol	8 ug/mL
							2,4-Dichlorophenol	8 ug/mL
							2,4-Dichiorophenol	8 ug/mL
							2,4-Dinitrophenol	16 ug/mL
							2,4-Dinitrotoluene	8 ug/mL
							2,6-Dichlorophenol	8 ug/mL
							2,6-Dinitrotoluene	8 ug/mL
							2-Chloronaphthalene	8 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date	-	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
							2-Chlorophenol	8 ug/m
							2-Methylnaphthalene	8 ug/m
							2-Methylphenol	8 ug/m
							2-Nitroaniline	8 ug/m
							2-Nitrophenol	8 ug/m
							3-Methylphenol	8 ug/m
							3-Nitroaniline	8 ug/m
							4,6-Dinitro-2-methylphenol	16 ug/m
							4-Bromophenyl phenyl ether	8 ug/m
							4-Chloro-3-methylphenol	8 ug/m
							4-Chloroaniline	8 ug/m
							4-Chlorophenyl phenyl ether	8 ug/m
							4-Methylphenol	8 ug/n
							4-Nitroaniline	8 ug/n
							4-Nitrophenol	16 ug/n
							Acenaphthene	8 ug/n
							Acenaphthylene	8 ug/m
							Acetophenone	8 ug/n
							Aniline	8 ug/m
							Anthracene	8 ug/m
							Azobenzene	8 ug/m
							Benzo[a]anthracene	8 ug/m
							Benzo[a]pyrene	8 ug/m
							Benzo[b] fluoranthene	8 ug/m
							Benzo[g,h,i]perylene	8 ug/n
							Benzo[k]fluoranthene	8 ug/n
							Benzyl alcohol	8 ug/n
							Bis (2-chloroethoxy) methane	8 ug/n
							Bis (2-chloroethyl) ether	8 ug/r
							Bis(2-ethylhexyl) phthalate	8 ug/r
							Butyl benzyl phthalate	8 ug/r
							Carbazole	8 ug/r
							Chrysene	8 ug/n
							Di-n-butyl phthalate	8 ug/n
							Di-n-octyl phthalate	8 ug/n
							Dibenz (a, h) anthracene	8 ug/r
							Dibenzofuran	8 ug/m
							Diethyl phthalate	8 ug/m
							Dimethyl phthalate	8 ug/m
							Diphenylamine	6.84 ug/m
							Fluoranthene	8 ug/m
							Fluorene	8 ug/m
							Hexachlorobenzene	8 ug/m
							Hexachlorobutadiene	8 ug/m
							Hexachlorocyclopentadiene	8 ug/m
							Hexachloroethane	8 ug/m
							Hexadecane	8 ug/m

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagen	ıt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Indeno[1,2,3-cd]pyrene	8 ug/mL
							Isophorone	8 ug/mL
							n-Decane	8 ug/mL
							N-Nitrosodi-n-propylamine	8 ug/mL
							N-Nitrosodimethylamine	8 ug/mL
							N-Nitrosodiphenylamine	8 ug/mL
							n-Octadecane	8 ug/mL
							Naphthalene	8 ug/mL
							Nitrobenzene	8 ug/mL
							Pentachlorophenol	16 ug/mL
							Phenanthrene	8 ug/mL
							Phenol	8 ug/mL
							Pyrene	8 ug/mL
							Pyridine	16 ug/mL
.O 8270/625LCS 00247	02/08/25	08/08/24	ACETONE, Lot 8004203	100 mL	8270 List 1/S 00157	2 mL	3,3'-Dichlorobenzidine	40 ug/mL
_					_		Benzidine	40 ug/mL
					8270 List1/10 00559	6 mL	Benzoic acid	320 ug/mL
					_		Indene	320 ug/mL
					8270 List1/10 00560	5 mL	Benzoic acid	320 ug/mL
					_		Indene	320 ug/mL
					8270 List1/10 00561	5 mL	Benzoic acid	320 ug/mL
					_		Indene	320 ug/mL
					8270 list1/11 00154	4 mL	Atrazine	80 ug/mL
					_		Benzaldehyde	80 ug/mL
							Caprolactam	80 ug/mL
					O 8270MegaMix 00193	4 mL	1,1'-Biphenyl	40 ug/mL
							1,2,4,5-Tetrachlorobenzene	40 ug/mL
							1,2,4-Trichlorobenzene	40 ug/mL
							1,2-Dichlorobenzene	40 ug/mL
							1,2-Diphenylhydrazine	40 ug/mL
							1,3-Dichlorobenzene	40 ug/mL
							1,3-Dinitrobenzene	40 ug/mL
							1,4-Dichlorobenzene	40 ug/mL
							1,4-Dioxane	40 ug/mL
							1-Methylnaphthalene	40 ug/mL
							2,2'-oxybis[1-chloropropane]	40 ug/mL
							2,3,4,6-Tetrachlorophenol	40 ug/mL
							2,4,5-Trichlorophenol	40 ug/mL
							2,4,6-Trichlorophenol	40 ug/mL
							2,4-Dichlorophenol	40 ug/mL
							2,4-Dimethylphenol	40 ug/mL
							2,4-Dinitrophenol	80 ug/mL
							2,4-Dinitrotoluene	40 ug/mL
							2,6-Dichlorophenol	40 ug/mL
							2,6-Dinitrotoluene	40 ug/mL
							2-Chloronaphthalene	40 ug/mL
							2-Chlorophenol	40 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent _	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							2-Methylnaphthalene	40 ug/n
							2-Methylphenol	40 ug/n
							2-Nitroaniline	40 ug/n
							2-Nitrophenol	40 ug/n
							3-Methylphenol	40 ug/n
							3-Nitroaniline	40 ug/r
							4,6-Dinitro-2-methylphenol	80 ug/r
							4-Bromophenyl phenyl ether	40 ug/i
							4-Chloro-3-methylphenol	40 ug/i
							4-Chloroaniline	40 ug/s
							4-Chlorophenyl phenyl ether	40 ug/r
							4-Methylphenol	40 ug/i
							4-Nitroaniline	40 ug/
							4-Nitrophenol	80 ug/
							Acenaphthene	40 ug/
								40 ug/
							Acenaphthylene	
							Acetophenone	40 ug/:
							Aniline	40 ug/
							Anthracene	40 ug/
							Azobenzene	40 ug/1
							Benzo[a]anthracene	40 ug/s
							Benzo[a]pyrene	40 ug/r
							Benzo[b]fluoranthene	40 ug/s
							Benzo[g,h,i]perylene	40 ug/:
							Benzo[k]fluoranthene	40 ug/
							Benzyl alcohol	40 ug/
							Bis(2-chloroethoxy)methane	40 ug/
							Bis(2-chloroethyl)ether	40 ug/
							Bis(2-ethylhexyl) phthalate	40 ug/
							Butyl benzyl phthalate	40 ug/
							Carbazole	40 ug/
							Chrysene	40 ug/
							Di-n-butyl phthalate	40 ug/
							Di-n-octyl phthalate	40 ug/
							Dibenz(a,h)anthracene	40 ug/
							Dibenzofuran	40 ug/
							Diethyl phthalate	40 ug/i
							Dimethyl phthalate	40 ug/i
							Diphenylamine	34.2 ug/i
							Fluoranthene	40 ug/i
							Fluorene	40 ug/i
							Hexachlorobenzene	40 ug/i
							Hexachlorobutadiene	40 ug/
							Hexachlorocyclopentadiene	40 ug/i
							Hexachloroethane	40 ug/1
							Hexadecane	40 ug/r
							Indeno[1,2,3-cd]pyrene	40 ug/r 40 ug/r

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date		Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Isophorone	40 ug/mL
							n-Decane	40 ug/mL
							N-Nitrosodi-n-propylamine	40 ug/mL
							N-Nitrosodimethylamine	40 ug/mL
							N-Nitrosodiphenylamine	40 ug/mL
							n-Octadecane	40 ug/mL
							Naphthalene	40 ug/mL
							Nitrobenzene	40 ug/mL
							Pentachlorophenol	80 ug/mL
							Phenanthrene	40 ug/mL
							Phenol	40 ug/mL
							Pyrene	40 ug/mL
							Pyridine	80 ug/mL
8270 List 1/S_00157	10/31/25		Restek, Lot A0210722		(Purchased Rea	agent.)	3,3'-Dichlorobenzidine	2000 ug/mL
	,,		,		(-9/	Benzidine	2000 ug/mL
8270 List1/10 00559	09/30/25		Restek, Lot A0209261		(Purchased Rea	agent)	Benzoic acid	2000 ug/mL
	03,00,20		nescen, Ecc nescessor		(1410114004 1100	2901107	Indene	2000 ug/mL
8270 List1/10 00560	09/30/25		Restek, Lot A0209261		(Purchased Rea	agent)	Benzoic acid	2000 ug/mL
	03/30/23		Resear, Loc Hozoszor		(Turchasea nec	igerre,	Indene	2000 ug/mL
8270 List1/10 00561	09/30/25		Restek, Lot A0209261		(Purchased Rea	agent)	Benzoic acid	2000 ug/mL
0270 HISCI/10_00501	03/30/23		Rester, Lot A0203201		(I uI chased hea	igerre)	Indene	2000 ug/mL
8270 list1/11 00154	02/28/25		Restek, Lot A0200906		(Purchased Rea	agent)	Atrazine	2000 ug/mL
02/0 11301/11_00134	02/20/23		Rester, Hot Mozousou		(Turenasea Reagene)		Benzaldehyde	2000 ug/mL
							Caprolactam	2000 ug/mL
0 8270MegaMix 00193	05/31/25		Restek, Lot A0213533		(Purchased Rea	ngon+\	1,1'-Biphenyl	1000 ug/mL
0_0270MegaMIX_00193	03/31/23		Rester, Lot AU213333		(Fulchased Kea	agenc)	1,1 -Biphenyi 1,2,4,5-Tetrachlorobenzene	1000 ug/mL
							1,2,4-Trichlorobenzene	1000 ug/mL
							1,2-Dichlorobenzene	1000 ug/mL
							1,2-Dichiologenzene 1,2-Diphenylhydrazine	1000 ug/mL
							1,3-Dichlorobenzene	1000 ug/mL
							•	
							1,3-Dinitrobenzene 1,4-Dichlorobenzene	1000 ug/mL
								1000 ug/mL
							1,4-Dioxane	1000 ug/mL
							1-Methylnaphthalene	1000 ug/mL
							2,2'-oxybis[1-chloropropane]	1000 ug/mL
							2,3,4,6-Tetrachlorophenol	1000 ug/mL
							2,4,5-Trichlorophenol	1000 ug/mL
							2,4,6-Trichlorophenol	1000 ug/mL
							2,4-Dichlorophenol	1000 ug/mL
							2,4-Dimethylphenol	1000 ug/mL
							2,4-Dinitrophenol	2000 ug/mL
							2,4-Dinitrotoluene	1000 ug/mL
							2,6-Dichlorophenol	1000 ug/mL
							2,6-Dinitrotoluene	1000 ug/mL
							2-Chloronaphthalene	1000 ug/mL
							2-Chlorophenol	1000 ug/mL
							2-Methylnaphthalene	1000 ug/mL

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
		<u> </u>					2-Methylphenol	1000 ug/m
							2-Nitroaniline	1000 ug/mi
							2-Nitrophenol	1000 ug/m
							3-Methylphenol	1000 ug/m
							3-Nitroaniline	1000 ug/m
							4,6-Dinitro-2-methylphenol	2000 ug/m
							4-Bromophenyl phenyl ether	1000 ug/m
							4-Chloro-3-methylphenol	1000 ug/m
							4-Chloroaniline	1000 ug/m
							4-Chlorophenyl phenyl ether	1000 ug/m
							4-Methylphenol	1000 ug/m
							4-Nitroaniline	1000 ug/mi
							4-Nitrophenol	2000 ug/mi
							Acenaphthene	1000 ug/m
							Acenaphthylene	1000 ug/m
							Acetophenone	1000 ug/m
							Aniline	1000 ug/m
							Anthracene	1000 ug/m
							Azobenzene	1000 ug/m
							Benzo[a]anthracene	1000 ug/m
							Benzo[a]pyrene	1000 ug/m
							Benzo[b]fluoranthene	1000 ug/mi
							Benzo[q,h,i]perylene	1000 ug/m
							Benzo[k]fluoranthene	1000 ug/m
							Benzyl alcohol	1000 ug/m
							Bis (2-chloroethoxy) methane	1000 ug/m
							Bis (2-chloroethyl) ether	1000 ug/mi
							Bis(2-ethylhexyl) phthalate	1000 ug/m
							Butyl benzyl phthalate	1000 ug/mi
							Carbazole	1000 ug/m
							Chrysene	1000 ug/m
							Di-n-butyl phthalate	1000 ug/m
							Di-n-octyl phthalate	1000 ug/m
							Dibenz (a, h) anthracene	1000 ug/m
							Dibenzofuran	1000 ug/m
							Diethyl phthalate	1000 ug/m
							Dimethyl phthalate	1000 ug/m
							Diphenylamine	855 ug/m
							Fluoranthene	1000 ug/m
							Fluorene	1000 ug/m
							Hexachlorobenzene	1000 ug/m
							Hexachlorobutadiene	1000 ug/m
							Hexachlorocyclopentadiene	1000 ug/m
							Hexachloroethane	1000 ug/m
							Hexadecane	1000 ug/m
							Indeno[1,2,3-cd]pyrene	1000 ug/m
							Isophorone	1000 ug/m

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							n-Decane	1000 ug/mL
							N-Nitrosodi-n-propylamine	1000 ug/mL
							N-Nitrosodimethylamine	1000 ug/mL
							N-Nitrosodimethylamine	1000 ug/mL
							n-Octadecane	1000 ug/mL
							Naphthalene	1000 ug/mL
							Nitrobenzene	1000 ug/mL
							Pentachlorophenol	2000 ug/mL
							Phenanthrene	1000 ug/mL
							Phenol	1000 ug/mL
							Pyrene	1000 ug/mL
							Pyridine	2000 ug/mL
O 8270LLsurr 00102	01/16/25 0	7/16/24 ACE	TONE, Lot 7962475	1000 mL	O 8270surr st 00133	1.6 mL	2,4,6 - Tribromophenol	8 ug/mL
							2,4,6-Tribromophenol	8 ug/mL
							2-Fluorobiphenyl (Surr)	8 ug/mL
							2-Fluorophenol	8 ug/mL
							Nitrobenzene-d5 (Surr)	8 ug/mL
							p-Terphenyl-d14 (Surr)	8 ug/mL
							Phenol-d5	8 ug/mL
							Terphenyl-d14	8 ug/mL
.0 8270surr st 00133	03/31/29	Re	estek, Lot A0209099		(Purchased Reag	ent)	2,4,6 - Tribromophenol	5000 ug/mL
	00,01,23				(raronassa noag	01107	2,4,6-Tribromophenol	5000 ug/mL
							2-Fluorobiphenyl (Surr)	5000 ug/mL
							2-Fluorophenol	5000 ug/mL
							Nitrobenzene-d5 (Surr)	5000 ug/mL
							p-Terphenyl-d14 (Surr)	5000 ug/mL
							Phenol-d5	5000 ug/mL
							Terphenyl-d14	5000 ug/mL
SS 8260 CORP_00116	10/12/24 0	8/12/24 Met	hanol, Lot EH471US	20 mL	SS_MegaMix_00132	800 uL	Benzene	100 mg/L
							Ethylbenzene	100 mg/L
							m-Xylene & p-Xylene	100 mg/L
							o-Xylene	100 mg/L
							Toluene	100 mg/L
.SS MegaMix 00132	08/31/25	Re	stek, Lot A0195252		(Purchased Reag	ent)	Benzene	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							o-Xylene	2500 ug/mL
							Toluene	2500 ug/mL
WC CN 0.400 00263	08/31/24 0	8/30/24 NAO	H 0.025N, Lot na	50 mT.	WC CN 50int 00102	400 117.	Cyanide, Total	0.4 mg/L
.WC CN 50int 00102			Water, Lot na		WC_CN SOTHE_00102		Cyanide, Total	50 mg/L
.WC CN complex 00006	07/05/25		SSOLUTE, Lot 070523	1 100 1111	(Purchased Reag		Cyanide, Total	1000 mg/L
WC_CN CCV/LCS_00459			Water, Lot na	200 mL	WC_CN 50int_00102		Cyanide, Total	0.25 mg/L as
	00/00/01	0/06/04 57	W					N
.WC_CN 50int_00102			Water, Lot na	100 mL	WC_CN complex_00006	5 mL		50 mg/L
WC_CN complex_00006	07/05/25		SSOLUTE, Lot 070523		(Purchased Reag	-	Cyanide, Total	1000 mg/L
WC_CN ICV_00260	08/31/24 0	8/30/24 NAO	H 0.025N, Lot na	50 mL	WC_CN50-2int_00103	250 uL	Cyanide, Total	0.25 mg/L

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

				Reagent	Parent Reagen	t		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
.WC CN50-2int 00103	09/02/24	08/26/24	DI Water, Lot na	100 mL	WC CN1000ppmS 00038	5 mL	Cyanide, Total	50 mg/L
WC_CN1000ppmS_00038	11/30/25		Agilent, Lot 0006766987		(Purchased Reage	ent)	Cyanide, Total	1000 mg/L
WC_TSS_DTErth_00016	06/07/27		Supelco, Lot 2023082906		(Purchased Reage	ent)	Total Suspended Solids	1 g/g

Lab Name: Eurofins Edison Job No.: 480-222859-1

				Reagent	Parent Reager	nt			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added		Analyte	Concentration
WT9016-2mg/1_00653	09/04/24	09/04/24	4.1 g/L NaOH, Lot C-3127-24	100 mL	WTcnSP1_00040	0.2 mL	Cyanide,	Free	2 mg/L
							Cyanide, Cyanide,	Non-amenable Total	2 mg/L 2 mg/L
.WTcnSP1_00040	09/30/24		RICCA, Lot 1404G63		(Purchased Reag	ent)	Cyanide, Cyanide, Cyanide,	Non-amenable	1000 mg/L 1000 mg/L 1000 mg/L
WT9016-2ppm2_00369	09/05/24	09/04/24	4.1 g/L NaOH, Lot C-3127-24	100 mL	WTCNstock2_00036	0.2 mL	Cyanide,	Free	2 mg/L
.WTCNstock2_00036	03/08/25		ERA, Lot 140324m	•	(Purchased Reag	ent)	Cyanide,	Free	1000 mg/L

8270 List 1/S_00157

110 Benner Circle Bellefonte, PA 16823-8812

Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

569730

Lot No.: A0210722

Description:

8270 List 1 / Std #9

8270 List 1 / Std #9 2,000 μg/mL, Methylene chloride, 5mL/ampul

Container Size:

Pkg Amt:

> 5 mL

Expiration Date:

October 31, 2025

10°C or colder

Handling:

Contains carcinogen/reproductive

Storage:

Ship: Ambient

toxin.

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2
1	Benzidine	92-87-5	S240206RSR	99%	2,011.1 μg/mL	+/- 37.1570
2	3,3'-Dichlorobenzidine	91-94-1	S240326RSR	99%	2,008.5 μg/mL	+/- 37.1085

* Expanded Uncertainty displayed in same units as Gray. Con

Solvent:

Methylene chloride

CAS#

75-09-2 99%

Purity

7915516

ID: 8270 List 1/S_00152 Еф: 10/31/25 Prpd: 8270 List 1/Std #9

ID: 8270 List 1/S_00153 Еф: 10/31/25 Prpd: 8270 List 1/Std #9

7915518

ID: 8270 List 1/S_00154 Exp: 10/31/26 Prpd: 8270 List 1/Std #9

11.01 **0**110.1101 1**0.1**511 11.01

ID: 8270 List 1/S_00155 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

7915520

ID: 8270 List 1/S_00156 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

ID: 8270 List 1/S_00157 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

7915522

ID: 8270 List 1/S_00158 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

7915523

ID: 8270 List 1/S_00159 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

ID: 8270 List 1/S_00160 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

7915526

ID: 8270 List 1/S_00161 Exp: 10/31/25 Prpd: 8270 List 1/Std #9

01-Nov-2022 rev.

1 of :

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psi.

Temp. Program: 75°C (hold 1 min.) to 330°C @ 20°C/min. (hold 10 min.)

Inj. Temp:

250°C

Det. Temp: 330°C

Det. Type:

Split Vent:

10 ml/min.

Inj. Vol 0.2µl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Penelope Riglin - Operations Tech I

Date Mixed:

24-Apr-2024

Balance Serial #

1122030677

Chiede Mile

Christie Mills - Operations Lead Tech - ARM QC

Date Passed:

07-May-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

2 of :

General Certified Reference Material Notes

Expiration Notes:

- · Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

 Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely
 dissolved.

3 (

8270 List1/10_00559

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

569731

Lot No.: A0209261

Description:

8270 List 1 / Std #10

8270 List 1 / Std #10 2,000 µg/mL, Methylene chloride, 5mL/ampul

Container Size :

Pkg Amt:

Expiration Date:

September 30, 2025

Storage:

10°C or colder

Handling:

This product is photosensitive.

Ship: **Ambient**

CERTIFIED VALUES

Elution Order		Compound	CAS#	CAS# Lot#		Grav. Conc. (weight/volume)	Expanded Uncertainty *
1	Indene		95-13-6	RD230927			(95% C.L.; K=2)
2	Benzoic acid		65 05 A				+/- 113.4524
			65-85-0	MKCR2694	99%	2,012.5 μg/mL	÷/- 113.0554

^{*} Expanded Uncertainty displayed in same units as Grav. Conc.

Soivent:

Methylene chloride

CAS# 75-09-2

Purity 99%

ID: 8270 List1/10_00655 Exp: 01/20/26 Prpd: OP_8270 List 1/Std10

ID: 8270 List1/10_00656 Exp: 08/00/25 Prod: OP_8270 List 1/Std10

ID: 8270 Llat1/10_00567 Exp: 08/00/26 Prod: OP_8270 List 1/Std 10

ID: 8270 List1/10_00658 Sep: 08496/28 Pripet: Op: 8270 List 1/Std 10

ID: 8270 List1/10_00559 2p: 09/30/25 Prpd: OP_8270 List 1/Std10

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25µm Rbx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psi.

Temp. Program:

75°C (hold 1 min.) to 330°C @ 20°C/min. (hold 10 min.)

inj. Temp: 250°C

Det. Temp:

330°C

Det. Type:

Split Vent:

10 mi/min.

Inj. Vol 0.2µl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Southwar Monday
Sem Moodler - Operations Yach T

Date Mixed:

20-Mar-2024

Balance Serial #

B442140311

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

22-Mar-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certifled Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k\sqrt{u_{gravimetric}^2 + u_{homogenetty}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

 Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

8270 List1/10_00560

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

569731

Lot No.: A0209261

Description:

8270 List 1 / Std #10

8270 List 1 / Std #10 2,000 µg/mL, Methylene chloride, 5mL/ampul

Container Size :

Pkg Amt:

Expiration Date:

September 30, 2025

Storage:

10°C or colder

Handling:

This product is photosensitive.

Ship: Ambient

CERTIFIED VALUES

Elution Order	Ç Compound	CAS #	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Indene	95-13-6	RD230927	99%	2,019.6 μg/mL	+/- 113.4524
2	Benzoic acid	65-85-0	MKCR2694	99%	2,012.5 μg/mL	+/- 113.0554

^{*} Expanded Uncertainty displayed in same units as Gray. Conc.

Solvent:

8013172

ID: 8270 List1/10 00560

Esp: **08/30/26** Prpd: OP_8270 List 1/Std10

Methylene chloride

CAS# 75-09-2

Purity 99%

8013173

ID: 8270 List1/10_00661 Exp: 08/30/25 Prpd: OP_8270 List 1/Std10

ID: 8270 List1/10_00562 Exp: 09/30/25 Prpd: OP 8270 List 1/Std10

CI KELON MENTO NI M

8013271

ID: 8270 List1/10_00663 Exp: 08/30/26 Prpd: OP_8270 List 1/Std 10

ID: 8270 List1/!0_00564 15g: 09/30/25 Prpd: OP 8270 List 1/Std10

Quality Confirmation Test

Column:

Jom x 0.25mm x 0.25µm htx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psl.

Temp, Program:

75°C (hold 1 min.) to 330°C

@ 20°C/mln. (hold 10 mln.)

inj. Temp: 250°C

Det. Temp:

130°C

Det. Type:

FID

Split Vent: 10 ml/min.

inj. Vol 0.2µl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

LOWWARD Modeling Tech I

Date Mixed:

20-Mar-2024

Balance Serial #

B442140311

Jermifer Polino - Operations Tech III - ARM QC

Date Passed:

issed: 22-Mar-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μΕCD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certifled Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely
 dissolved.

8270 List1/10_00561

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

569731

Lot No.: A0209261

Description:

8270 List 1 / Std #10

8270 List 1 / Std #10 2,000 µg/mL, Methylene chloride, 5mL/ampul

Container Size : **Expiration Date:**

Handling:

September 30, 2025

This product is photosensitive.

Pkg Amt:

Storage: 10°C or colder

> Ship: Ambient

CERTIFIED VALUES

Elution Order	Ç Compound	CAS #	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Indene	95-13-6	RD230927	99%	2,019.6 μg/mL	+/- 113.4524
2	Benzoic acid	65-85-0	MKCR2694	99%	2,012.5 μg/mL	+/- 113.0554

^{*} Expanded Uncertainty displayed in same units as Gray. Conc.

Solvent:

Methylene chloride

CAS# 75-09-2

Purity

99%

8013172

ID: 8270 List1/10 00560 Esp: **08/30/26** Prpd: OP_8270 List 1/Std10

8013173

ID: 8270 List1/10_00661 Exp: 08/30/25 Prpd: OP_8270 List 1/Std10

ID: 8270 List1/10_00562 Exp: 09/30/25 Prpd: OP 8270 List 1/Std10

CI KELON MENTO NI M

8013271

ID: 8270 List1/10_00663 Exp: 08/30/26 Prpd: OP_8270 List 1/Std 10

ID: 8270 List1/!0_00564 15g: 09/30/25 Prpd: OP 8270 List 1/Std10

Quality Confirmation Test

Column:

J0m x 0.25mm x 0.25µm #bt-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psl.

Temp, Program:

75°C (hold 1 mln.) to 330°C

@ 20°C/mln. (hold 10 mln.)

inj. Temp: 250°C

Det. Temp: 130°C

Det. Type:

Split Vent: 10 ml/min.

inj. Vol 0.2µl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Loweller - Operations Tech I

Date Mixed:

20-Mar-2024

Balance Serial #

B442140311

P-1866 Jerantier Politing - Operations Tech III - ARM QC

Date Passed:

22-Mar-2024

Manufactured under Restek's ISO 9001:2015 **Registered Quality System** Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μΕCD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certifled Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

8270 list1/11_00154

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

569732

Lot No.: A0200906

Description:

8270 List 1 / Std #11

8270 List 1 / Std #11 2,000µg/mL, Methylene chloride, 5mL/ampul

Container Size:

5 mL

Pkg Amt:

> 5 mL

Expiration Date:

February 28, 2025

Storage:

10°C or colder

Handling:

This product is photosensitive.

Ship: **Ambient**

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2
1	Benzaldehyde	100-52-7	RD230209RSRA	99%	2,007.8 μg/mL	+/- 58.9672
2	epsilon-Caprolactam	105-60-2	I16X016	99%	2,008.0 μg/mL	+/- 58.9746
3	Atrazine	1912-24-9	5FYWL	99%	2,003.5 μg/mL	+/- 58.8424

* Expanded Uncertainty displayed in same units as Grav. Cor

Solvent:

Methylene chloride

CAS#

75-09-2

Purity

99%

7919030

ID: 8270 list1/11 00152 Exp: 02/28/25 Prpd: 8270 list 1/ std11

7919031

ID: 8270 list1/11_00153 Exp: 02/28/25 Prpd: 8270 list 1/ std11

ID: 8270 list1/11_00154 Exp: 02/28/25 Prpd: 8270 list 1/ std11

ID: 8270 list1/11_00155 Exp: 02/28/25 Prpd: 8270 list 1/ std11

7919034

ID: 8270 list1/11_00156 Exp: 02/28/25 Prpd: 8270 list 1/ std11

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant flow 1.8 mL/min.

Temp. Program:

80°C (hold 0.1 min.) to 330°C @ 9.6°C/min. (hold 2.86 min.)

Inj. Temp:

250°C

Det. Temp:

340°C

Det. Type:

Split Vent:

100 ml/min.

inj. Vol 0.2μl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Laith Clemente - Operations Technician I

Date Mixed:

11-Aug-2023

Balance Serial #

1128360905

المهمان المثلث المثلث Dillan Murphy - Operations Technician I

Date Passed:

17-Aug-2023

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μΕCD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

 The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

MB_DFTPP_STK_00119

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

31615

Lot No.: A0192631

STK (2001/6-176

Description:

GC/MS Tuning Mixture

GC/MS Tuning Mixture 1,000µg/mL, Methylene Chloride, 1mL/ampul

Received 4/10/23

Container Size :

2 mL

toxin.

Pkg Amt:

> 1 mL

Expiration Date:

December 31, 2025

Storage:

ge: 10°C or colder

Handling:

Contains carcinogen/reproductive

Ship:

Ambient

BS

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * -{95% C.L.; K=2)
1	Pentachlorophenol	87-86-5	RP221012	99%	1,000.7 μg/mL	+/- 44.7189
2	DFTPP (Decafluorotriphenylphosphine)	5074-71-5	Q117-147	95%	1,002.3 μg/mL	+/- 44.7896
3	Benzidine	92-87-5	S221205RSR	99%	1,000.7 μg/mL	+/- 44.7189
4	4,4'-DDT	50-29-3	221025JLM	99%	1,004.0 μg/mL	+/- 44.8678

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent:

Methylene chloride

CAS # 75-09-2 Purity 99%

MB_DFTPP_STK_00120

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

chromatographic plus

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

31615

Lot No.: A0192631

Description:

GC/MS Tuning Mixture

GC/MS Tuning Mixture 1,000µg/mL, Methylene Chloride, 1mL/ampul

Received 4/10/23

Container Size:

Pkg Amt:

> 1 mL

Expiration Date:

December 31, 2025

Storage:

10°C or colder

Handling:

Contains carcinogen/reproductive toxin.

Ship:

Ambient

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * -{95% C.L.; K=2)
1	Pentachlorophenol	87-86-5	RP221012	99%	1,000.7 μg/mL	+/- 44.7189
2	DFTPP (Decafluorotriphenylphosphine)	5074-71-5	Q117-147	95%	1,002.3 μg/mL	+/- 44.7896
3	Benzidine	92-87-5	S221205RSR	99%	1,000.7 μg/mL	+/- 44.7189
4	4,4'-DDT	50-29-3	221025ЛLМ	99%	1,004.0 μg/mL	+/- 44.8678

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent:

Methylene chloride

CAS# 75-09-2 Purity 99%

MB_INTSTD_STK_00104

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

567684

Lot No.: A0208741

Description:

8270 Internal Standard

8270 Internal Standard 2,000µg/mL, Methylene chloride, 5mL/ampul

Container Size :

5 mL

Pkg Amt:

> 5 mL

Expiration Date:

March 31, 2029

Storage:

10°C or colder

Handling:

Sonication required. Mix is

photosensitive

Ship: **Ambient**

CERTIFIED VALUES

Elution		ESEMBLE SECTION			CE	RTIFIE	D V	ALUES
Order	Compound	CAS#	Lot#	Purity		. Conc.		Expanded neertainty #
11	1,4-Dichlorobenzene-d4	3855-82-1	DD 88445		(weign	t/votume)	(959	% C.L.; K=2)
2	Naphthalene-d8		PR-30447	99%	2,010.4	μg/mL	+/-	90.5496
3	Acenaphthene-d10	1146-65-2	M-2180	99%	2,008.6	μg/mL	+/-	90.4685
ä		15067-26-2	PR-33507	99%	2,003.4	μg/mL	_	
	Phenanthrene-d10	1517-22-2	PR-32303		_		7/-	90.2343
5:	Chrysene-d12			99%	2,015.6	μg/mL	+/-	90.7838
6	Perylene-d12	1719-03-5	PR-33506	99%	2,010.0	μg/mL	+/-	90.5316
	•	1520-96-3	PR-33205	99%	2,008.8	μg/mL	_	90,4776
Solvent:	Methylana ohlasida		* Expanded					30.47/6

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent:

Methylene chloride

CAS# 75-09-2 Purity 99%

MB_INTSTD_STK_00105

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

567684

Lot No.: A0208741

Description:

8270 Internal Standard

8270 Internal Standard 2,000µg/mL, Methylene chloride, 5mL/ampul

Container Size :

5 mL

Pkg Amt:

> 5 mL

Expiration Date:

March 31, 2029

Storage:

10°C or colder

Handling:

Sonication required. Mix is

photosensitive

Ship: **Ambient**

CERTIFIED VALUES

Elution			CERTIFIED VALUES					
Order	Compound 1,4-Dichlorobenzene-d4	CAS#	Lot#	Purity Gray. Conc. (weight/volume)		Expanded Uncertainty *		
2	Naphthalene-d8	3855-82-1	PR-30447	99%	2,010.4			% C.L.; K=2) 90.5496
3	Acenaphthene-d10	1146-65-2	M-2180	99%	2,008.6			90.4685
4	Phenanthrene-d10	15067-26-2	PR-33507	99%	2,003.4	μg/mL		90.2343
5	Chrysene-d12	1517-22-2	PR-32303	99%	2,015.6	μg/mL		90.7838
6	Perylene-d12	1719-03-5	PR-33506	99%	2,010.0	μg/mL		90.5316
	,	1520-96-3	PR-33205	99%	2,008.8	μg/mL	_	90.4776
Solvent:	Methylana aklauti	* Expanded Uncertainty displayed in server						

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent:

Methylene chloride

CAS# 75-09-2 Purity 99%

MB_L1S1_SS_00045

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

571995.SEC

Lot No.: A0212976

Description:

8270 List 1 / Std #1 MegaMix (2017)

8270 List 1 / Std #1 MegaMix (2017) 500-2,000 µg/mL, Methylene

chloride, 5mL/ampul

Container Size :

10 mL

Pkg Amt:

 $> 5 \, \text{mL}$

Expiration Date:

April 30, 2025

Storage:

Ship:

0°C or colder

Amblent

Handling:

Carcinogen/reproductive toxin.

Photosensitive Sonicate.

CERTIFIED VALUES

Elution Order	Compound	CAS# Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,4-Dioxane	123-91-1.SEC QHRWO	99%	1,006.3 μg/mL	+/- 18.5955
2	N-Nitrosodimethylamine	62-75-9.SEC 71L89	99%	1,008.3 μg/mL	+/- 18.6324
3	Pyridine	110-86-1.SEC QN8DK	99%	2,020.0 μg/mL	+/- 37.3295
4	Phenol	108-95-2.SEC EDPYN	99%	1,005.5 μg/mL	+/- 18.5816
5	Aniline	62-53-3.SEC ZCD3N	99%	1,005.0 μg/mL	+/- 18.5724
6	Bis(2-chloroethyl)ether	111-44-4.SEC FA010143	99%	1,007.3 μg/mL	+/- 18.6139
7	n-Decane (C10)	124-18-5.SEC UCVNN	99%	1,008.5 μg/mL	+/- 18.6370
8	2-Chlorophenol	95-57-8.SEC GJ01	99%	1,007.5 μg/mL	+/- 18.6186
9	1,3-Dichlorobenzene	541-73-1.SEC FMDFD	99%	1,009.0 μg/mL	+/- 18.6463
10	1,4-Dichlorobenzene	106-46-7.SEC J5GVD	99%	1,004.5 μg/mL	+/- 18.5631
(1)	Benzyl alcohol	100-51-6.SEC QZBUO	99%	1,006.3 μg/mL	+/- 18.5955
12	1,2-Dichlorobenzene	95-50-1.SEC R6QDM	99%	1,006.0 μg/mL	+/- 18.5908
13	2-Methylphenol (o-cresol)	95-48-7.SEC NC7HL	99%	1,004.5 μg/mL	+/- 18.5631
14	2,2'-oxybis(1-chloropropane)	108-60-1 * 29-MAR-45-5	99%	1,007.5 μg/mL	+/- 18.6186
15	Acetophenone	98-86-2.SEC NSGT1	99%	1,007.0 μg/mL	+/- 18.6093
16	3-Methylphenol (m-cresol)	108-39-4.SEC 6LHTM	99%	503.8 μg/mL	+/- 9.3093

17	4-Methylphenol (p-cresol)	106-44-5.SEC 65S2E	99%	504.8	μg/mL	+/- 9.3278
18	N-Nitroso-di-n-propylamine	621-64-7.SEC 13924400	99%	1,008.5	μg/mL	+/- 18.637
19	Hexachloroethane	67-72-1.SEC 10173016	99%	1,008.5	μg/mL	+/- 18.637
20	Nitrobenzene	98-95-3.SEC FLYIG	99%	1,003.8	μg/mL	+/- 18.549
21	Isophorone	78-59-1.SEC XHGJI	98%	1,007.2	μg/mL	+/- 18.612
22	2-Nitrophenol	88-75-5.SEC RP231023CTH	99%	1,006.5	μg/mL	+/- 18.600
23	2,4-Dimethylphenol	105-67-9.SEC MKBL3650V	99%	1,005.0	μg/mL	+/- 18.572
24	Bis(2-chloroethoxy)methane	111-91-1 * 15174900	99%	1,007.3	μg/mL	+/- 18.613
25	2,4-Dichlorophenol	120-83-2.SEC FHM01	99%	1,008.3	μg/mL	+/- 18.632
26	1,2,4-Trichlorobenzene	120-82-1.SEC IGLFA	99%	1,005.0	μg/mĽ	+/- 18.572
27	Naphthalene	91-20-3.SEC AM5NG	99%	1,008.3	μg/mL	+/- 18.632
28	2,6-Dichlorophenol	87-65-0.SEC SIDBB	99%	1,003.0	μg/mL	+/- 18.535
29	4-Chloroaniline	106-47-8.SEC 10171860	99%	1,005.5	μg/mL	+/- 18.581
30	Hexachlorobutadiene	87-68-3.SEC 13471600	97%	1,006.6	μg/mL	+/- 18.602
31	4-Chloro-3-methylphenot	59-50-7.SEC FDO02	99%	1,005.0	μg/mL	+/- 18.572
32	2-Methylnaphthalene	91-57-6.SEC 76023-1	99%	1,005.3	μg/mL	+/- 18.577
33	l-Methylπaphthalene	90-12-0.SEC OEE3F	98%	1,003.3	μg/mL	+/- 18.540
34	1,2,4,5-Tetrachlorobenzene	95-94-3.SEC AF02	99%	1,005.3	μg/mL	+/- 18.577
35	Hexachlorocyclopentadiene	77-47-4.SEC 14794200	98%	1,008.2	μg/mL	+/- 18.631
36	2,4,6-Trichlorophenol	88-06-2.SEC UUMYM	98%	1,004.7	μg/mL	+/- 18.567
37	2,4,5-Trichlorophenol	95-95-4.SEC MKBQ9937V	97%	1,009.0	μg/mL	+/- 18.647
38	2-Chloronaphthalene	91-58-7.SEC 15229800	99%	1,006.5	μg/mL	+/- 18.600
19	Biphenyl	92-52-4.SEC 33OQE	99%	1,007.5	μg/mL	+/- 18.618
40	2-Nitroaniline	88-74-4,SEC RP231006S	99%	1,008.3	μg/mL	+/- 18.632
‡1	Acenaphthylene	208-96-8.SEC 0012014	96%	1,007.8	μg/mL	+/- 18.623
12	1,3-Dinitrobenzene	99-65-0.SEC 3XXLB	99%	1,004.0	μg/mL	+/- 18.5539
43	Dimethylphthalate	131-11-3.SEC 483WC	99%	1,008.5	μg/mL	+/- 18.6370
14	2,6-Dinitrotoluene	606-20-2.SEC GE01	99%	1,007.3	μg/mL	+/- 18.6139
15	3-Nitroaniline	99-09-2.SEC RP230509B	99%	1,006.0	μg/mL	+/- 18.5908
16	Acenaphthene	83-32-9.SEC BWZJE	99%	1,008.8	μg/mL	+/- 18.641
17	2,4-Dinitrophenol	51-28-5.SEC YTR6B	99%	2,018.5	μg/mL	+/- 37.3018
18	Dibenzofuran	132-64-9.SEC Q5FOB	99%	1,005.3	μg/mL	+/- 18.5770
19	4-Nitrophenol	100-02-7.SEC RP240328RSRS	99%	2,015.3	μg/mL	+/- 37.2417
50	2,4-Dinitrotoluene	121-14-2.SEC SHRSA	99%	1,009.3	μg/mL	+/- 18.6509
51	2,3,4,6-Tetrachlorophenol	58-90-2.SEC B18W03261	99%	1,008.5	μg/mL	+/- 18.6370
52	Fluorene	86-73-7.SEC 14757200	98%	1,002.8		+/- 18.5314

53	n-Hexadecane (C16)	544-76-3.SEC A0328141	99%	1,006.5	μg/mL	÷/-	18.6001
54	Diethylphthalate	84-66-2.SEC UMBJC	99%	1,010.0	μg/mL	+/-	18.6648
55	4-Chlorophenyl phenyl ether	7005-72-3.SECP31G	98%	1,005.7	μg/mL	+/-	18.5858
56	4-Nitroaniline	100-01-6.SEC 5ITRC	99%	1,010.0	μg/mL	+/-	18.6648
57	4,6-Dinitro-2-methylphenol (Dinitro-o-cresol)	534-52-1.SEC DR15276900	99%	2,018.5	μg/mL	+/-	37.3018
58	Diphenylamine	122-39-4.SEC 10164691	99%	853.5	μg/mL	+/-	15.7726
59	Azobenzene	103-33-3.SEC JUWAG	99%	1,009.0	μg/mL	+/-	18.6463
60	4-Bromophenyl phenyl ether	101-55-3.SEC 84C6D	99%	1,009.3	μg/mL	+/-	18.6509
61	Hexachlorobenzene	118-74-1.SEC G996401	97%	1,004.0	μg/mL	+/-	18.5530
62	Pentachlorophenol	87-86-5.SEC 15277300	99%	2,007.5	μg/mL	+/-	37.0985
63	n-Octadecane (C18)	593-45-3.SEC G14U045	99%	1,004.0	μg/mL	+/-	18.5539
64	Phenanthrene	85-01-8.SEC 14992600	99%	1,004.5	μg/mL	+/-	18.5631
65	Anthracene	120-12-7.SEC WDFNJ	99%	1,008.3	μg/mL	+/-	18.6324
66	Carbazole	86-74-8.SEC LMIZB	99%	1,008.5	μg/mL	+/-	18.6370
67	Di-n-butylphthalate	84-74-2.SEC 42FSG	99%	1,005.0	μg/mL	+/-	18.5724
68	Fluoranthene	206-44-0.SEC FREGF	99%	1,007.5	μg/mĽ	+/-	18.6186
69	Pyrene	129-00-0.SEC ROVJC	99%	1,008.3	μg/mL	+/-	18.6324
70	Benzyl butyl phthalate	85-68-7.SEC TMXHI	99%	1,007.3	μg/mL	+/-	18.6139
31_	Benz(a)anthracene	56-55-3.SEC JIU7N	99%	1,006.5	μg/mĽ	÷/-	18.6001
72	chrysene	218-01-9.SEC RP231025RSRA	99%	1,007.5	μg/mL	+/-	18.6186
73	Bis(2-ethylhexyl)phthalate	117-81-7.SEC MT8AG	99%	1,009.0	μg/mL	+/-	18.6463
74	Di-n-octyl phthalate	117-84-0.SEC O8DLD	99%	1,006.5	μg/mL	+/-	18.6001
75	Benzo(b)fluoranthene	205-99-2.SEC I38AN	99%	1,007.0	μg/mL	+/-	18.6093
76	Benzo(k)fluoranthene	207-08-9.SEC 12876600	99%	1,005.3	μg/mL	+/-	18.5770
77	Benzo(a)pyrene	50-32-8.SEC ISLCP3775	97%	1,004.2	μg/mL	+/-	18.5574
78	Indeno(1,2,3-cd)pyrene	193-39-5.SEC 022013	99%	1,004.8	μg/mL	+/-	18.5677
79	Dibenz(a,h)anthracene	53-70-3.SEC 0012022	99%	1,005.3	μg/mL	+/-	18.5770
80	Benzo(g,h,i)perylene	191-24-2.SEC RP240610S	96%	1,004.6	μg/mL	+/-	18.5657

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent:

Methylene chloride

CAS # 75-09-2 Purity 99%

*Restek is unable to identify a reliable and/or acceptable second source for this material - the same batch of neat material may have been used to produce both the primary and secondary standard. The primary and secondary standards were prepared using different equipment and personnel.

MB_L1S1_STK_00087

CERTIFIED REFERENCE MATERIAL

lac MR

Circle (32220)

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :

571995

Lot No.: A0213043

Description:

8270 List 1 / Std #1 MegaMix (2017)

8270 List 1 / Std #1 MegaMix (2017) 500-2,000 µg/mL, Methylene

chloride, 5mL/ampul

Container Size:

10 mL

Pkg Amt: > 5 mL

Expiration Date:

April 30, 2025

storage: 0°C or colder

Handling:

Sonicate prior to use.

Storage: 0°C or co

Carcinogen/reproductive toxin.

Photosensitive. Sonicate.

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Cond (weight/volui	2. U	Expanded ncertainty * % C.L.; K=2)
4:	1,4-Dioxane	123-91-1	SHBQ2407	99%	1,005.3 μg/ı	nL +/	- 18.5785
2:	N-Nitrosodimethylamine	62-75-9	S240313RSR	99%	1,006.7 μg/1	nL +/	- 18.6032
3	Pyridine	110-86-1	SHBP6240	99%	2,010.3 μg/r	nL +/	- 37,1424
4	Phenol	108-95-2	MKCK1120	99%	1,006.3 μg/r	nL +/	- 18.5970
5	Aniline	62-53-3	X22F726	99%	1,001.0 μg/n	nL +/	- 18.4984
6	Bis(2-chloroethyl)ether	111-44-4	SHBL6942	99%	I,007.4 μg/n	nL +/-	- 18.7899
7	n-Decane (C10)	124-18-5	SHBQ1342	99%	1,007.3 μg/n		- 18,6155
8	2-Chlorophenol	95-57-8	STBJ3909	99%	1,002.0 μg/n		18.5169
9.	1,3-Dichlorobenzene	541-73-1	BCCD5315	99%	1,005.7 μg/n		18.5847
10	1,4-Dichlorobenzene	106-46-7	MKBS7929V	99%	1,003.7 μg/n		18.5477
11	Benzyl alcohol	100-51-6	SHBK5469	99%	1,007.8 μg/n		18.6247
12	1,2-Dichlorobenzene	95-50-1	SHBL6287		1,001.0 μg/m		18.4984
13	2-Methylphenol (o-cresol)	95-48-7	SHBN7598		1,001.8 μg/m		18.5138
14	2,2'-oxybis(1-chloropropane)	108-60-1	29-MAR-45-5		1,008.0 μg/m		18.8015
15	Acetophenone	98-86-2	STBH8205		1,004.3 μg/m		18.5600
16	3-Methylphenol (m-cresol)	108-39-4	STBJ0710	99%	502.7 μg/m		9.2893

17	4-Methylphenol (p-cresol)	106-44-5	SHBN3411	99%	500.8	μg/mL	+/-	9.2554
18	N-Nitroso-di-n-propylamine	621-64-7	N63MG	99%	1,005.7	μg/mL	+/-	18.5847
19	Hexachloroethane	67-72-1	DAXRI	99%	1,001.9	μg/mL	+/-	18.6873
20	Nitrobenzene	98-95-3	10224044	99%	1,006.8	μg/mL	+/-	18.7782
21	Isophorone	78-59-1	MKCC9506	99%	1,003.1	μg/mL	+/-	18.7106
32	2-Nitrophenol	88-75-5	RP230509C	99%	1,005.2	μg/mL	+/-	18.5754
23	2,4-Dimethylphenol	105-67-9	XW5GK	99%	1,002.3	μg/mL	÷/-	18,5231
24	Bis(2-chloroethoxy)methane	111-91-1	15174900	99%	1,008.5	μg/mL	+/-	18.8109
25	2,4-Dichlorophenol	120-83-2	BCBZ6787	99%	1,007.2	μg/mL	+/-	18.6124
26	1,2,4-Trichlorobenzene	120-82-1	SHBP5900	99%	1,006.7	μg/mL	÷/_	18.6032
37	Naphthalene	91-20-3	STBL1057	99%	1,007.3	μg/mL	+/-	18.7875
28	2,6-Dichlorophenol	87-65-0	MKCS9444	99%	1,007.7	μg/mL	+/-	18.6216
29	4-Chloroaniline	106-47-8	BCCJ3217	99%	1,003.8	μg/mL	+/-	18.5508
30	Hexachlorobutadiene	87-68-3	X05J	99%	1,004.9	μg/mL	+/-	18.7432
31	4-Chloro-3-methylphenol	59-50-7	BCCD4461	99%	1,000.7	μg/mL	+/-	18.4923
32	2-Methylnaphthalene	91-57-6	STBL3028	99%	1,001.0	μg/mL	+/-	18.4984
13	1-Methylnaphthalene	90-12-0	5234.00-8	98%	1,000.0	μg/mL	+/-	18.4800
14	1,2,4,5-Tetrachiorobenzene	95-94-3	MKCT9480	99%	1,002.7	μg/mL	+/-	18.5292
15	Hexachlorocyclopentadiene	77-47-4	099063I14L	98%	1,004.4	μg/mL	+/-	18.7340
36	2,4,6-Trichlorophenol	88-06-2	STBJ5914	99%	1,006.8	μg/mL	+/-	18.6062
37	2,4,5-Trichlorophenol	95-95-4	3YFRE	97%	1,001.7	μg/mL	+/-	18.5111
38	2-Chloronaphthalene	91-58-7	RPN7O	99%	1,002.5	μg/mL		18.6989
19	Biphenyl	92-52-4	MKCL6515	99%	1,005.8		+/-	18.5878
40	2-Nitroaniline	88-74-4	RP230531	99%	1,007.0	μg/mL	+/-	18.6093
41	Acenaphthylene	208-96-8	214935V16F	97%	1,000.1	μg/mL	+/-	18.6536
12	1,3-Dinitrobenzene	99-65-0	TRC3-1075941-2-1	99%	1,007.5	μg/mL		18.6186
¥3	Dimethylphthalate	131-11-3	358221L17K	99%	1,001.9	μg/mL		18.6873
14	2,6-Dinitrotoluene	606-20-2	BCCG1833	99%	1,001.9	μg/mL		18.6873
15	3-Nitroaniline	99-09-2	RP231103CTH-1	99%	1,004.8	μg/mL		18.5693
16	Acenaphthene	83-32-9	MKCR7169	99%		μg/mL		18.6523
17	2,4-Dinitrophenol	51-28-5	DR230417RSR	99%	2,007.8	μg/mL	_	37.0962
18	Dibenzofuran	132-64-9	MKCN1772	99%		μg/mL		18.5262
19	4-Nitrophenol	100-02-7	RP240328CTH	99%		μg/mL		37.0962
50	2,4-Dinitrotoluene	121-14-2	102869L10R	99%		μg/mL		18.7899
51	2,3,4,6-Tetrachlorophenol	58-90-2	PR-34476	99%		μg/mL	_	18.5323
2	Fluorene	86-73-7	10241100	99%		μg/mL		

53	n-Hexadecane (C16)	544-76-3	SHBR0669	99%	1,003.7	μg/mL	+/- 18	8.5477
54	Diethylphthalate	84-66-2	BCCJ6241	99%	1,007.0	μg/mL	+/- 1	8.7829
55	4-Chlorophenyl phenyl ether	7005-72-3	MKCT7248	99%	1,006.5	μg/mL	÷/- 18	8.7736
56	4-Nitroaniline	100-01-6	RP230111	99%	1,001.7	μg/mL	+/- 18	8.5108
57	4,6-Dinitro-2-methylphenol (Dinitro-o-cresol)	534-52-1	S240403RSR	99%	2,008.5	μg/mL	+/- 3	7.1085
58	Diphenylamine	122-39-4	MKCT1512	99%	855.0	μg/mL	+/- 1:	5.8004
59	Azobenzene	103-33-3	BCCK0887	99%	1,003.2	μg/mL	+/- 18	8.5385
60	4-Bromophenyl phenyl ether	101-55-3	STBH6361	99%	1,002.0	μg/mL	+/- 18	8.6896
61	Hexachlorobenzene	118-74-1	15277000	99%	1,005.1	μg/mL	+/- 18	8.7479
62	Pentachlorophenol	87-86-5	RP240411RSR	99%	2,014.7	μg/mL	+/- 3	7.2224
63	n-Octadecane (C18)	593-45-3	UE5NG	98%	1,005.3	μg/mL	+/- 18	8.5782
б4	Phenanthrene	85-01-8	MKCS5188	99%	1,006.0	μg/mL	+/- 18	8.7642
65	Anthracene	120-12-7	MKCR0570	99%	1,004.5	μg/mĽ	+/- 18	3.7362
66	Carbazole	86-74-8	15276700	99%	1,003.7	μg/mL	+/- 18	3.5477
67	Di-n-butylphthalate	84-74-2	MKCN4337	99%	1,008.3	μg/mL	+/- 18	3.8062
68	Fluoranthene	206-44-0	MKCQ4728	99%	1,005.0	μg/mL	+/- 18	3.7456
69	Ругеле	129-00-0	BCCK2592	99%	1,001.5	μg/mL	+/- 18	3.6803
70	Benzyl butyl phthalate	85-68-7	X12I018	99%	1,007.8	μg/mL	+/- 18	3.7969
71	Benz(a)anthracene	56-55-3	I20012022BAA	99%	1,008.4	μg/mL	+/- 18	3.8085
72	Chrysene	218-01-9	RP231206RSR	99%	1,005.5	μg/mL	+/- 18	3.7549
73	Bis(2-ethylhexyl)phthalate	117-81-7	MKCS8065	99%	1,006.4	μg/mL	+/- 18	3.7712
74	Di-n-octyl phthalate	117-84-0	15172900	99%	1,006.9	μg/mĽ	+/- 18	3.7805
75	Benzo(b)fluoranthene	205-99-2	012013B	99%	1,003.1	μg/mL	+/- 18	3.7106
76	Benzo(k)fluoranthene	207-08-9	012022K	99%	1,006.4	μg/mL	+/- 18	3.7712
77	Benzo(a)pyrene	50-32-8	O45GL	98%	1,002.7	μg/mL	+/- 18	3.7020
78	Indeno(1,2,3-cd)pyrene	193-39-5	12-JKL-118-9	97%	1,001.6	μg/mĽ	+/- 18	3.6830
79	Dibenz(a,h)anthracene	53-70-3	1-SLH-51-1	99%	1,001.8	μg/mL	+/- 18	3.6850
80	Benzo(g,h,i)perylene	191-24-2	RP240530RSR	98%	1,002.2	μg/mL	+/- 18	3.6928

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride

CAS # 75-09-2 Purity 99%

MB_SURR_STK_00072

CERTIFIED REFERENCE MATERIAL

110 Benner Circle Bellefonte, PA 16823-8812 Tel: (800)356-1688 Fax: (814)353-1309

Certificate of Analysis

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

<u>567685</u>

Lot No.: A0172807

Description:

8270 Surrogate Standard

MB_SURB_STK_00071-75

Received 11/5/21

8270 Surrogate Standard 5,000µg/mL, Methylene chloride, 5mL/ampul

Container Size:

5 mL

Pkg Amt:

> 5 mL

Expiration Date:

May 31, 2026

Storage:

10°C or colder

Handling:

Sonicate prior to use.

Ship: **Ambient**

CERTIFIED VALUES

Elution Order		Compound	Grav. Conc. (weight/volume)		Expanded (95% C.L.;	Uncertainty K=2)	
1	2-Fluorophenol CAS# 367-12-4 Purity 99%	(Lot STBJ2508)	5,004.6 μg/mL	+/- +/- +/-	29.0972 146.0510 177.2273	μg/mĽ μg/mL μg/mL	Gravimetric Unstressed Stressed
2	Phenol-d5 CAS # 4165-62-2 Purity 99%	(Lot CD-105)	5,011.4 μg/mL	+/- +/- +/-	29.1367 146.2494 177.4681	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
3	Nitrobenzene-d5 CAS # 4165-60-0 Purity 99%	(Lot PR-29940B)	5,003.0 µg/mL	+/- +/- +/-	29.0879 146.0043 177.1706	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
4	2-Fluorobiphenyl CAS # 321-60-8 Purity 99%	(Lot 00019169)	5,010.2 μg/mL	+/- +/- +/-	29.1297 146.2144 177.4256	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	2,4,6-Tribromophenol CAS # 118-79-6 Purity 99%	(Lot MKCJ7664)	5,003.9 µg/mL	+/- +/- +/-	29.0931 146.0306 177.2025	μg/mL μg/mL μg/mĽ	Gravimetric Unstressed Stressed
6	p-Terphenyl-d14 CAS# 1718-51-0 Purity 99%	(Lot PR-30504)	5,013.8 µg/mL	+/- +/- +/-	29.1507 146.3195 177.5531	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

MV_BFB_STK_00095

Supelco.

www.sigmaaldrich.com Document 20550009 Version 2.0

Certificate of Analysis - Certified Reference Material

4-Bromofluorobenzene solution

Product no.:

Lot no.:

Expiry Date:

Manufacturing Date:

Storage:

Solvent/Matrix:

Certificate version:

48800

LRAD6467

November 2026

November 2023

ROOM TEMPERATURE (2 °C to 30 °C)

METHANOL

LRAD6467.01 (Note: Certificates may be updated due to the availability of new data. Check our website at:

the availability of new data. Check our website at: www.sigma-aidrich.com for the most current version.)

Certified Values:

Analyte	Certified Value	Units	Raw Material Purity,%	Raw Material Lot
4-BROMOFLUOROBENZENE	25000 ± 786	ug/mL	99.9	LB48377

CAS# 460-00-4

ASSAY Method

METHOD: GC (IN-HOUSE)

Column: SPB-5, 30 m \times 0.53 mm I.D., 1.5 μ m film thickness

Carrier Gas: H2 Flow Rate: 4.0 mL/mln

Inlet Temperature: 160 °C Injection Volume: 1 µL

Injection Mode: Split Ratio: 35:1

Temperature Program: 120 °C (Hold 0 min) @ 20 °C/min to 180 °C (Hold 3 min)

Detector: FID Temperature: 280 °C

Elution details:

FO TIME ANALYTE
1 2.74 4-brømoffuorobenzene

Sigma-Aldrich RTC, 2931 Soldier Springs Rd. Laramle, WY 82070, USA; Tel. 1 307-742-5452; Fax 1 855-831-9211; www.sigma-aldrich.com Sigma-Aldrich RTC is a subsidiary of Merck KGaA, Darmstadt, Germany.

Certificate version 01

Metrological traceability:

Traceable to the SI and higher order standards from NIST through an unbroken chain of comparisons. The balance used to weigh raw materials is accurate to +/-0.0001 g and calibrated regularly using mass standards traceable to NIST. All dilutions were performed gravimetrically. Additionally, individual analytes are traceable to NIST SRMs where available and specified above.

Measurement method:

Where applicable, the assigned value is based on a purity determination by mass balance and gravimetrically prepared value.

Intended use:

Intended for R&D and Analytical Use only. Not for drug, household or other uses.

Minimum sample size:

Packaging:

Instructions for handling and correct use:

Health and safety Information:

Accreditation:

Certificate issue date:

1 µL

1 mL in amber ampule

Use on the as is basis. The internal pressure of the container may be slightly different from the atmospheric pressure at the user's location. Open slowly and carefully to avoid dispersion of the material.

All chemical reference materials should be considered potentially hazardous and should be used only by qualified laboratory personnel. Please refer to the Safety Data Sheet for detailed information about the nature of any hazard and appropriate precautions to be taken.

Sigma-Aldrich RTC is accredited by the US accreditation authority ANAB as a registered reference material producer AR-1470 in accordance with ISO 17034. 10 NOV 2023

Ulf Cap

Andy Ommen - QC Manager

Scott Stetler - QA Manager

This standard has been gravimetrically prepared using balances that have been fully qualified and calibrated to ISO 17025 requirements. All calibrations utilize NIST traceable weights which are calibrated externally by a qualified ISO 17025 accredited calibration laboratory to NIST standards. Qualification of each balance includes the assignment of a minimum weighing by a qualified and ISO 17025 accredited calibration vendor taking into consideration the balance and installed environmental conditions to ensure compliance with USP tolerances of NMT 0.10% relative error. Fill volume to predetermined specifications is gravimetrically verified throughout the dispensing process using qualified and calibrated balances. Further traceability to a corresponding Primary Standard may be achieved through a direct comparison assay. Where a Primary Standard is available, the assay value will be included in the specified section of the COA.

Details on metrological

traceabllity:

Associated uncertainty:

Ucrm - Uncertainty values in this document are expressed as Expanded Uncertainty (Ucrm) corresponding to the 95% confidence interval. Ucrm is derived from the combined standard uncertainty multiplied by the coverage factor k, which is obtained from a *t*-distribution and degrees of freedom. If k is not provided, assume a value of 2.0. The components of combined standard uncertainty include the uncertainties due to characterization, homogeneity, long term stability, and short term stability (transport). The components due to stability are generally considered to be negligible unless otherwise indicated by stability studies. The mathematical representation of the Ucrm calculation is as follows:

 $U_{crm} = \left(u_{characterisation}^2 + u_{homogeneity}^2 + u_{stability}^2 \right) \times k$

Homogeneity assessment:

Homogeneity was assessed in accordance with ISO Guide 35. Completed units were sampled using a random stratified sampling protocol. The results of chemical analysis were then compared by Single Factor Analysis of Variance (ANOVA). The uncertainty due to homogeneity was derived from the ANOVA. Heterogeneity was not detected under the conditions of the ANOVA.

Certificate Page 2 of 3

Certificate version 01

LRAD6467

Stability assessment:

Significance of the stability assessment will be demonstrated if the analytical result of the study and the range of values represented by the Expanded Uncertainty do not overlap the result of the original assay and the range of its values represented by the Expanded Uncertainty. The method employed will usually be the same method used to characterize the assay value in the initial evaluation.

Certificate of analysis revision history:

Certificate version	Date	Reason for version
LRAD6467.01	10 NOV 2023	Original release date

Disclaimer: The purchaser is required to determine the suitability of this product for any particular application. Sigma-Aldrich RTC makes no warranty of any kind, express or implied, other than its products meet all quality control standards set by Sigma-Aldrich RTC. We do not guarantee that the product can be used for any particular application.

The vibrant M, Supelco, TraceCERT and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources. © 2018 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada.

Certificate Page 3 of 3 Certificate version 01 LRAD6467

Page 133 of 1052 09/11/2024

O_8270/625LCS_00247

Organic Prep Ame Acetone

Organic Prep Spike / Surrogate Verification Form

Spike/Surrogate Method: 8070/625 Spike/Surrogate Code: A193	TALs Reagent ID: Description of the colored House Spice Minds:
Prepared By / Date: SP 88	94
Date Submitted for Analysis: 8964	
Solvent Exchanged? YES NO	
Solvent Used for Exchange:	
Final Concentrated Volume:	
Final Method Volume:	Final Method Volume Done by Prep? Yes No
Date of Analysis: 8/9/24	
Analyzed By:	
Compounds within range of expected recovery?	YES NO - 2,3 chyphas (1-chiluse)
Spike / Surrogate Verified for Preparation Use?	YES NO Horadeland Proposed High

^{*} Please return form with final concentration report to Organic Prep

Preliminary Report

Eurofins Buffalo

LCS, Lab Control Sample Report

Sample Path: \\chromfs\Buffalo\ChromData\HP5973X\20240809-119431.b\X00000032540.d

Lims ID: LCS
Worklist ID: 480-0119431-006

inj. Date: instrument: 09-Aug-2024 11:17:30 HP5973X

Method: X-8270

Compound	Amount Added	Amount Recovered	%Rec	Limits 1 3550C
1,4-Dioxane	40.0	44.2	110.5	23-120
16 N-Nitresodimethylamine	40.0	45.6	114.1	20-120
17 Pyridine	80.0	86.4	108.0	23-120
27 Bertzaldehyde	80.0	87.6	109.5	10-150
28 Phenol	40.0	40.6	101.4	53-120
20 Anilline	40.0	36.9	92.3	27-120
31 Bis(2-ghioroethyl)ether	40.0	42.9	107.3	45-120
22 2-Chlorophenol	40.0	39.0	97.5	53-120
35 n-Decane	40.0	46.0	115.0	34-120
36 1,3-Dichlorobenzene	40.0	36.7	91.8	47-120
37 1,4-Dichibrobenzena	40.0	37.0	92.6	48-120
38 Benzyl alcohol	40.0	40.2	100.5	49-120
39 1,2-Dichlorobenzene	40.0	36.3	90.8	49-120
#0'2-Mathylphenol	40.0	41.3	103.2	54-120
42.2,2-exybis[!-chiotopic	40.0	50.8	127.1	44-120*
229 Indente	320.0	346.3	108.2	41-120
45 4-Methylphenol	-40.0	41.4	103.5	55-120
N-Nirrosodl-n-propylami	40.0	45.2	113.0	52-120
45 Acettophenone	40.0	41.5	103.8	54-120
50:Hexaelfloroethane	40.0	43.0	107.5	41-120
SZ Nitrobenzene	40.0	43.2	108.1	54-120
.5Blisophorone	40.0	45.2	112.9	56-120
-58 2 Nitrophenol	40.0	37.6	94.0	56-120
592,4-Dimethylphenol	40.0	41.1	102.8	59-120
62 Bis(2-chloroethoxy)meth	40.0	41.6	104.0	55-120
64 Benzioloabid	320.0	294.9	92.1	44-120
.65:2,4-Dichlerophenol	40.0	38.7	96.8	61-120
67 1,2,4-1 Honlorobenzene	40.0	36.2	90.5	54-120
69-Naphthalene	40.0	38.9	97.4	55-120
74.4-Chloroeniline	40.0	28.2	70.4	38-120
76:2:6:Dichlorophenol	40.0	37.1	92.8	60-120
73 Hexachidrobutadiene	40.0	38.2	95.5	45-120
78 Caprollictam	80.0	83.6	104.5	47-120
79 4-Chitaro-3-methylphenol	40.0	40.0	100.0	61-120
88.2 West ylnaphthalene	40.0	39.5	98.6	59-120
831-Methylaaphthalene	40.0	39.5	98.8	54-120
84 Hiskachtoracyclopentadie	40.0	33.5	83.7	47-120
8#1,2,4,5 Petrachlorobenz	40.0	37.8	94.5	59-125
8812,4:6-Trichlorophenol	40.0	37.7	94.2	59-123
872,45 Trichlorophenol	40.0	38.4	96.0	59-126
90 1,1-8iphenyl	40.0	39.6	99.1	59-120

Report Date: 09-Aug-2024 11:45:12

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Preliminary Report
Sample Path: \\chromfs\Buffalo\ChromData\HP5973X\20240809-119431.b\X00000032540.d

Compound	Amount Added	Amount Recovered	%Rec	Limits 1 3550C
2912-Chlorchaphthalene	40.0	38.0	95.1	57-12
93 2-Nitroanline	40.0	47.0	117.4	61-12
496 Diplethyl phthalate	40.0	40.7	101.8	65-12
267 1,3-Dinitrobenzene	40.0	38.1	95.3	56-12
392,6-Dinitrotoluene	40.0	38.5	96.1	66-12
180 Acahaphthylene	40.0	42.4	105.9	58-12
KID1.3-Nitteraniline	40.0	34.6	86.5	48-12
102 Acenaphthene	40.0	39.9	99.6	62-12
103 2,4-Dinitrophenol	80.0	78.4	98.0	41-14
104 4-Nitrophenol	80.0	87.4	109.2	43-14
106 2,4-Dinitrotoluene	40.0	38.7	96.8	63-12
197 Dibenkofuran	40.0	39.7	99.3	63-12
10 2.3,4;6-Tetrachlorophen	40.0	39.1	97.8	64-120
138 Hexadecane	40.0	49.8	124.6	(54-120
112 Diethyl phthalate	40.0	43.6	109.1	66-12
16 4 Onlorophenyl phenyl e	40.0	38.9	97.3	63-124
145 Flübrene	40.0	41.1	102.6	63-120
184-Ninosidine	40.0	40.5	101.3	56-120
149 4,6 Biritro-2-methylphe	80.0	80.3	100.3	49-12
191 Dipriemytemine	34.2	33.7	98.6	52-120
120 N-Nitropodiphenylamine	40.0	39.4	98.6	51-128
123 (2-Diphenylhydrazine	40.0	47.8	119.5	55-130
122 Azobenzene	40.0	47.8	119.5	55-130
180 4-Eromophenyl phenyl et	40.0	38.8	97.0	58-120
181 Hexachlorobenzene	40.0	40.0	99.9	60-120
188 Atmizina	80.0	88.5	110.6	60-127
193'n-Gctatecane	40.0	47.9	119.7	48-136
154 Pentechiorophenol	80.0	74.2	92.7	10-120
TAT Phanarithrene	40.0	40.0	100.1	60-120
142 Anthracerie	40.0	40.9	102.3	62-120
148 Carbandia	40.0	57.6	143.9	Sch 10.7
Hib Oin buty phthalate	40.0	41.1	102.8	58-130
162Fldsfanthene	40.0	43.1	107.6	62-120
(54 Benzidine	40.0	29.1	72.7	10-120
165 Pyrene 🕒	40.0	39.5	98.6	61-133
162 Butyl berizyl phthalate	40.0	39.2	97.9	61-129
172 Bis(2-ethylhexyl) phtha	40.0	40.2	100.6	61-133
166 3 3 Digrilorobenzidine	40.0	47.6	119.1	54-120
187 Benzolajanthracene	40.0	41.2	103.1	65-120
189 Ohnysene	40.0	39.4	98.6	64-120
168 Dian-octyl phthalete	40.0	41.9	104.7	57-133
Benzo[b]fluoranthene	40.0	42.0	105.1	64-120
175 Benizo(k)/luoranthene	40.0	40.3	100.7	65-120
が本品enzlo(a)pyrene	40.0	40.1	100.2	64-120
18 i Diberiz(a,n)anthracene	40.0	42.0	105.0	54-132
180 Indeho 1,2,3-cd]pyrene	40.0	41.1	102.7	56-134

ή, •

Report Date: 09-Aug-2024 11:45:12 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Preliminary Report

Sample Path: \\chromfs\Buffalo\ChromData\HP5973X\20240809-119431.b\X00000032540.d

Trail Compound	Amount Added	Amount Recovered	%Rec	Limits 1 3550C
1782 Benzalon, I]perylene	40.0	39.1	97.8	45-145
6 238-3 Methylphenol	40.0	41.4	103.5	55-120

480-222279-E-9-B

Samples for Limit Group: 1, Lims Prep Method: 3550C 480-222214-A-9-C 480-222279-E-9-480-222279-G-15-B 480-222316-D-1-480-222316-D-1-A

480-222316-B-3-A 480-222316-B-4-A 480-222279-E-13-B

480-222316-D-2-A

13

 $\vec{\gamma}$

O_8270LL LCS_00158

20 mL > 100 mL Acetone.

Organic Prep Spike / Surrogate Verification Form

8038003

Spike/Surrogate Method: Spike/Surrogate Code: A302	SOSSOCS ID: O_8270LL LCS_00168 Exp: category Pripe: On: Serials 8270 LVVLL LCS spike @ 8
Prepared By / Date: SP 8 1412	4
Date Submitted for Analysis: 8/4/24	· · · · · · · · · · · · · · · · · · ·
Solvent Exchanged? YES NO	
Solvent Used for Exchange:	
Final Concentrated Volume:	
Final Method Volume:	Final Method Volume Done by Prep?
Date of Analysis: 8/19/24	
Analyzed By:	
Compounds within range of expected recovery?	
Spike / Surrogate Verified for Preparation Use?	YES NO Carba zele High
* Please return form with a	

* Please return form with final concentration report to Organic Prep

Report Date: 15-Aug-2024 08:48:09

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Preliminary Report

Eurofins Buffalo

LCS, Lab Control Sample Report

Sample Path: \\chromfs\Buffalo\ChromData\HP5973Y\20240814-119519.b\Y038238.D

LCS

480-0119519-005

Inj. Date:

15-Aug-2024 00:46:30

Worklist ID:

Instrument:

HP5973Y

Method: Y-	-LVI-8270	, 000		ແນນ
Compound	Amount Added	Amount Recovered	%Rec	Limits 1 3510C_LVI
13 1,4-Dloxane	8.00	7.05	88.1	10-120
14 N-Nitrosodimethylamine	8.00	7.63	95.3	10-120
15 Pyridine	16.0	13.2	82.2	10-120
35 Benzaldehyde	16.0	13.0	81.0	10-140
37 Phenot	8.00	7.81	97.6	17-120
36 Anillae "	8.00	6.02	75.3	12-120
39 Bls(2-d)(croethy)ether	8.00	8.69	108.6	44-120
41 n-Decane	8.00	7 27	02.1	02 404

8.00

8.00

8.00

9#2,4;5-Trichlorophenol

98 1,1 Blphenyl

8.05

8.35

8.11

100.7

104.3

101.4

64-120

65-126

59-120

30

The County

July Van July

Preport Date: 15-Aug-2024 08:48:09

Chrom Revision: 2.3 07-Aug-20

Preliminary Report

Sample Path: \\chromfs\Buffalo\ChromData\HP5973Y\20240814-119519.b\Y038238.D

Compound	Amount Added	Amount Recovered	%Rec	Limits 3510C_I
9 2 Chiloronaphthalana	8.00	8.29	103.7	58-1
100 2-Nitrognitine	8.00	8.20	102.5	54-1
105 Dimethyl phtholate	8.00	8.35	104,4	68-1
100 f.3-Distrobenzene	8.00	8.29	103.6	68-1
107 2.6-Ohttrotoluene	8.00	8.16	101.9	68-1
108 Aca sphthylene	8.00	8.26	103.2	63-1
A 3 Nittophiline	8.00	6.73	84.1	51-1
111 24 Dialtrophenol	16.0	15.7	98.2	31-1:
10 Acenaphthene	8.00	8.15	101.9	60-1
, 112 4-Nitrophenol	16.0	15.5	96.9	45-1
114 2,4-Pinitrotoluene	8.00	8.41	105.1	69-13
1.15 Dibinzofuran	8.00	8.23	102.8	66-12
A 2.34 B. Tetrachlorophen	8.00	8.35	104.4	63-12
12.1 Hexadecane	8.00	7.88	98.5	37-12
_120 DiethyCanthalate	8.00	8.08	100.9	59-12
12. 4-Chlorophenyl phenyl e	8.00	8.26	103.3	62-12
Lin Chijirgahiline	8.00	8.00	100.0	65-12
124Fluorena	8.00	8.32	104.0	66-12
1274[6]Dinlaro-2-methylphe	16.0	16.4	102.5	46-13
130 N-Nitrosadiphenylamine	8.00	8.60	107.5	61-12
129 Diphenylamine	6.84	7.35	107.5	61-12
132 Azobensene	8.00	8.41	105.1	41-13
181 1,2-Diphenylhydrazine	8.00	8.41	105.1	41-13
1294 Bitimophenyl phenyl et	8.00	8.24	103.0	65-12
14SAvazina	16.0	16.2	101.4	71-13
140 Hexachiprobenzene	8.00	8.10	101.3	61-12
148 n-Octavacane	8.00	7.94	99.2	41-12
14E Penjachibrophenol	16.0	13.5	84.5	10-13
1517Phenanthrens	8.00	8.73	109.1	68-12
162 Aathracene	8.00	8.75	109.3	67-12
753 Cartiazole	8.00	10.4	130.0	86-123
152 Dh-h-butyl phthalete	8.00	8.24	103.0	69-13
15% Fluoranthene	8.00	8.73	109.1	69-120
166 Benzidine	8.00	5.26	65.7	5-120
167 Pylenet	8.00	8.50	108.3	70-125
1745Bütyl bentyl phthelete	8.00	8.06	100.7	70-129
IE Elected and Indiana	8.00	8.00	100.0	63-139
103 5,3 Dichlorobenzidine	8.00	8.14	101.8	49-135
180 Benza(a)anthracene	8.00	8.33	104.1	70-121
182Chrysans	8.00	8.44	105.5	69-120
384351-in-outykphthalate	8.00	8.24	103.0	63-140
1888 Benzolo Muoranthene	8.00	8.60	107.5	66-126
1845Berizolkijiliuoranthene	8.00	7.92	99.1	65-124
IHA Běrizojá pyrene	8.00	8.49	106.2	60-123
1940 Dibenz(aih) anthracene	8.00	8.65	108.1	65-135
6.7				

uttier ic. Report Date: 15-Aug-2024 08:48:09

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Preliminary Report
Sample Path: \\chromfs\Buffalo\ChromData\HP5973Y\20240814-119519.b\Y038238.D

fig. in Geompound	Amount Added	Amount Recovered	%Rec	Limits 1 3510C_LVI
395 Bertzolg h.l]perylene	. 8.00	8.89	111.2	66-150
S 263 3 Wethylphenol	. 8.00	8.31	103.9	39-120

Semples for Limit Group: 1, Lims Prep Method: 3510C_LVI 480-222458-A-7-A

480-222500-O-5-A

STAR DE T

All transact 197 houseupli

A Company of Company o

College of the second

480-222458-A-9-A

480-222458-A-11-A

O_8270LLsurr_00102

1.6ml > 1000 ml. Acetone

Organic Prep Spike / Surrogate Verification Form

Spike/Surrogate Method: Spike/Surrogate Code:	3070 W. WI, 62	ALs Reagent ID:	7997416 ID: O_8270LLsurr_00102 Eq: 01/1605 Pipe: Cit Wileas 8270 LL surrogate @ 8.0 u
Prepared By / Date:	SP 7/16/2	4	
Date Submitted for Analysis	3 7 17 24		8
Solvent Exchanged?	YES NO		
Solvent Used for Exchange:	MeCla.		
Final Concentrated Volume:	1.0mL		
Final Method Volume:	1. Onl	Final Method Volume Yes	e Done by Prep? No
Date of Analysis:	7/17/24		
Analyzed By:	MC		
Compounds within range of ex	xpected recovery?	YES	NO
Spike / Surrogate Verified for i	Preparation Use?	YES	NO.

* Please return form with final concentration report to Organic Prep

Report Date: 17-Jul-2024 11:37:36

Chrom Revision: 2.3 26-Jun-2024 16:13:32

Preliminary Report

Eurofins Buffalo Recovery Report

Data File:

\\chromfs\Buffalo\ChromData\HP5973Y\20240717-119060.b\Y037856.D

Lims ID:

Surr

Client ID:

Sample Type: Client

Inject. Date:

17-Jul-2024 10:33:30

2.0 ul

ALS Bottle#:

Worklist Smp#:

Injection Vol: Sample Info:

480-0119060-004

Dil. Factor:

1.0000

Operator ID:

JM

Instrument ID:

HP5973Y

Method:

\\chromfs\Buffalo\ChromData\HP5973Y\20240717-119060.b\Y-LVI-8270.m

Limit Group:

MB - 8270D ICAL 17-Jul-2024 11:37:32

Internal Standard

Last Update:

Calib Date:

16-Jul-2024 04:48:30

integrator:

RTE

ID Type:

Deconvolution ID

Quant Method:

Quant By: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037850.D

Initial Calibration

Last | Cal File:

RXI-5Sil MS (0.25 mm)

Det: MS SCAN

Column 1: Process Host:

Hatery 1. 195.4 . Till A. S.

Mr. x

مرة ألقر

tags Mills or 7F ...

Brisch

CTX1683

Compound	Amount Added	Amount Recovered		0.0Y
\$ 2-Fluorophenol	8.00	7.98	99.79	241
\$ 8 Phenol-d5	8.00	7.39	92.42	4.5
\$ 9:Nitrobenzene-d5	8.00	6.74	84.30	
\$ 10 2-Fluorobiphenyl	8.00	7.66	95.69	- A/4
\$ 11 2,4,6-Tribromophenol	8.00	7.10	88.72	2
\$, 12 p-Terphenyl-d14	8.00	8.23	102.86	1

280

O_8270MegaMix_00193

CERTIFIED REFERENCE MATERIAL

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

571995

Lot No.: A0213533

Description:

8270 Llst 1 / Std #1 MegaMix (2017)

8270 List 1 / Std #1 MegaMix (2017) 500-2,000 µg/mL, Methylene

chloride, 5mL/ampul

Container Size :

10 mL

Expiration Date:

May 31, 2025

Handling:

Sonicate prior to use,

Carcinogen/reproductive toxin. Photosensitive. Sonicate,

> 5 mL Pkg Amt:

Storage: 0°C or colder

> Ship: **Ambient**

> > CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Image	inded tainty *
1	1,4-Dioxane	123-91-1	SHBR4317	99%	1,001.1 µg/mL	+/- 18	
2	N-Nitrosodimethylamine	62-75-9	S240313RSR	99%	1,000.0 μg/mL	+/- 18	
3	Pyridine	110-86-1	SHBP6240	99%	2,010.6 μg/mL		
4	Phenol	108-95-2	MKCK1120	99%		+/- 37	
5	Aniline	62-53-3	X22F726	99%	10	+/- 18	
6	Bis(2-chloroethyl)ether	111-44-4	SHBL6942		1,001.9 μg/mL	+/- 18	
7	n-Decane (C10)	124-18-5		99%	1,002.2 μg/mL	+/- 18	.6760
8	2-Chlorophenol		SHBQ1342	99%	1,002.3 μg/mL	+/- 18.	5215
9	1,3-Dichlorobenzene	95-57-8	STBJ3909	99%	1,009.3 μg/mL	+/- 18.	6509
10	1,4-Dichlorobenzene	541-73-1	BCCD5315	99%	1,000.1 μg/mL	+/- 18.	4823
11		106-46-7	MKBS7929V	99%	1,000.5 μg/mL	+/- 18.	4892
12	Benzyl alcohol	100-51-6	SHBK5469	99%	1,003.4 μg/mL	+/- 18.	5423
	1,2-Dichlorobenzene	95-50-1	SHBL6287	99%	1,006.3 μg/mL	+/- 18.:	5955
13	2-Methylphenol (o-cresol)	95-48-7	SHBN7598	99%	1,004.5 μg/mL	+/- 18.5	
14	2,2'-oxybis(1-chloropropane)	108-60-1	29-MAR-45-5	99%	1,002.1 μg/mL	+/- 18.6	
15	Acetophenone	98-86-2	STBH8205		1,006.5 μg/mL	+/- 18.6	
16	3-Methylphenol (m-cresol)	108-39-4 #11 851 # 1784 () #1	STBJ0710	nq ₉ / ₀	500.6 μg/mL	+/- 9.25	

7498744

ID: O_8270MegaMlx_00192 8270 List 1/Std#1 Mega MI

7996745

ID: O_8270MegaMix 00193 Esp: 0531/25 Pepd: 8270 List 1/Std#1 Mega MI

7998748

ID: O_8270MegaMb_00194

7996903

ID: O_8270MegaMix_00195 Equ: 8531/23 Print: Page M 48 of 10520 List 1/Stdif1 Mega MI

7990907

ID: O_8270MagaMbc_00196 Eq: 0501/25 Prpd: 8270 List 1/Std#1 Mega Mi

09/11/2024

	CLU COM HANDAN BY 11 CM. REI CHE WICHMAN CONT.	2181 200 may	SALE OF BE		, p	2 · · · · ·	+/- 18	0.0700
2	Fluorene	86-73-7	10241100			g/mL	_	
1	2,3,4,6-Tetrachlorophenol	58-90-2	PR-34476			ig/mL	+/- 18	8.6772
0	2,4-Dinitrotoluene	121-14-2	102869L10R			ıg/mL		
9	4-Nitrophenol	100-02-7	RP230627			ıg/mL		8.5123 7.1200
8	Dibenzofuran	132-64-9	MKCN1772			ug/mL		7.0092
7	2,4-Dinitrophenol	51-28-5	DR230417RSR			μg/mL ug/mL		8.6352
6	Acenaphthene	83-32-9	MKCR7169			μg/mL	_	8.5285
5	3-Nitroaniline	99-09-2	RP231103CTH-1	_		μg/mL		8.6807
4	2,6-Dinitrotoluene	606-20-2	BCCG1833			μg/mL		18.6737
13	Dimethylphthalate	131-11-3	358221L17K	99%		μg/mL	_	18.4938
12	1,3-Dinitrobenzene	99-65-0	TRC3-1075941-2-1			μg/mL		18.6286
41	Acenaphthylene	208-96-8	214935V16F	99%		μg/mL		18.5077
40	2-Nitroaniline	88-74-4	RP240418RSR	99%	1,005.6			18.5839
39	Biphenyl	92-52-4	MKCL6515	99%	1,001.8	μg/mL	_	18.6690
38	2-Chloronaphthalene	91-58-7	RPN70	97%	1,002.6			18.5283
37	2,4,5-Trichlorophenol	95-95-4	3YFRE	99%	1,001.9	μg/mL		18.5146
36	2,4,6-Trichlorophenol	88-06-2	099063I14L STBJ5914	98%	1,000.6	μg/mL	_	18.6461
35	Hexachlorocyclopentadiene	77-47-4	MKCT9480	99%	1,004.0	μg/mL	_	18.5539
34	1,2,4,5-Tetrachlorobenzene	95-94-3	5234.00-8	98%	1,002.3	μg/mL	+/-	18.5224
33	l-Methylnaphthalene	90-12-0	STBL3028	99%	1,002.8	μg/mL	+/-	18.5308
32	2-Methylnaphthalene	91-57-6	BCCD4461	99%	1,002.3		+/-	18.5215
31	4-Chloro-3-methylphenol	59-50-7	X05J	99%	1,002.1		+/-	18.6748
30	Hexachlorobutadiene	87-68-3	BCCJ3217	99%	1,000.5		+/-	18.4892
29	4-Chloroaniline	87-65-0 106-47-8	MKCP7682	99%			+/-	- 18.5978
28	2,6-Dichlorophenol	91-20-3	STBL1057	99%		β μg/mL	+/-	- `18.6679
27	Naphthalene	120-82-1	SHBP5900	99%			+/-	- 18.5031
26	1,2,4-Trichlorobenzene	120-83-2	BCBZ6787	99%			+/	- 18.5585
25	2,4-Dichlorophenol	111-91-1	15174900	99%	1,002.	6 μg/mL	+/	- 18.6842
24	Bis(2-chloroethoxy)methane	105-67-9	XW5GK	99%	1,003.	1 μg/mL	+/	/- 18.537°
23	2,4-Dimethylphenol	88-75-5	RP230710	99%	1,008.	0 μg/mL	+,	/- 18.627
22	2-Nitrophenol	78-59-1	MKCC9506	99%	6 1,001.	.8 μg/mL	+	/- 18.667
21	Isophorone	98-95-3	10224044	99%	6 1,001	.9 μ g /mL	+	/- 18.671
20	Nitrobenzene	67-72-1	DAXRI	999	6 1,001	.9 μg/mL	+	/- 18.670
19	Hexachloroethane	621-64-7	N63MG	999	6 1,002	.9 μg/mL	+	-/- 18.533
18	N-Nitreso-di-n-propylamine				% 502	.0 μg/mL		H- 9.2769

7996912

ID: O_8270MegaMix_00197 Esp: 05/31/25 Prpd: 8270 List 1/Std#1 Mega Mi 7896813

ID: O_8270MegaMb_00198 Exp: 06/81/85 Prpd: 8270 Liet 1/Std#1 Mega MI

ID: 0_8270MegeMbk_00199
Page 149 of 1052

53.	n-Hexadecane (C16)	544-76-3	SHBR0669	000				
54	Diethylphthalate	84-66-2		99%			+,	/- 18.5770
55	4-Chlorophenyl phenyl ether		BCCJ6241	99%			+,	- 18.6679
56	4-Nitroaniline	7005-72-3	MKCT7248	99%	1,002.	0 μg/mL	+/	- 18.6725
57	4,6-Dinitro-2-methylphenol (Dinitro-o-cresol)	100-01-6	RP240510RSR	99%	1,002.	4 μg/mL	+/	- 18.5238
58		534-52-1	S240403RSR	99%	2,012.	l μg/mL	+/	- 37.1755
59	Diphenylamine	122-39-4	MKCT1512	99%	853.:	β μg/mL	+/	- 15.7680
	Azobenzene	103-33-3	BCCK0887	99%	1,004.	μg/mL	+/-	18.5631
60	4-Bromophenyl phenyl ether	101-55-3	STBH6361	99%	1,001.6	μg/mL	_	18.6655
61	Hexachlorobenzene	118-74-1	15178300	99%	1,002.3			18.6772
62	Pentachlorophenol	87-86-5	RP240517RSR	99%	2,009.1		_	
63	n-Octadecane (C18)	593-45-3	UE5NG	98%	1,004.7			37.1200
64	Phenanthrene	85-01-8	MKCS5188					18.5676
65	Anthracene	120-12-7		99%	1,001.7		+/-	18.6667
66	Carbazole		MKCR0570	99%	1,002.5	μg/mL	+/-	18.6818
67	Di-n-butylphthalate	86-74-8	15276700	99%	1,000.1	μg/mL	+/-	18.4823
68	Fluoranthene	84-74-2	MKCN4337	99%	1,002.3	μg/mL	+/-	18.6772
69		206-44-0	MKCQ4728	99%	1,001.7	μg/mL	+/-	18.6667
_	Ругепе	129-00-0	BCCK2592	99%	1,001.6	μg/mL	+/-	18.6644
70	Benzyl butyl phthalate	85-68-7	X12I018	99%	1,001.8	μg/mL	+/-	18.6679
71	Benz(a)anthracene	56-55-3	I220012022BAA	99%	1,002.8	μg/mL		18.6877
72	Chrysene	218-01-9	RP240326CTH	99%	1,002.3	μg/mL		18.6772
73	Bis(2-ethylhexyl)phthalate	117-81-7	MKCS8065	99%	1,001.9			
74	Di-n-octyl phthalate	117-84-0	15276800	99%		μg/mL		18.6702
75	Benzo(b)fluoranthene	205-99-2			1,001.8	μg/mL		18.6679
76	Benzo(k)fluoranthene		012013B	99%		μg/mL	+/	18.6655
77	Benzo(a)pyrene	207-08-9	012022K	99%	1,001.7		+/-	18.6667
78	Indeno(1,2,3-cd)pyrene	50-32-8	O45GL	98%	1,001.5	μg/mL	+/-	8.6632
79		193-39-5	12-JKL-118-9	97%	1,001.5	μg/mL	+/-	8.6625
	Dibenz(a,h)anthracene	53-70-3	1-SLH-51-1	99%	1,001.6	μg/mL	+/-]	8.6655
80	Benzo(g,h,i)perylene	191-24-2	RP240530RSR	98%	1,002.2	μg/mL	+/-]	8.6757
					_			

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS# 75-09-2

Purity 99%

Specific Reference Material Notes:

N-nitrosodiphenylamine 1000 ug/mL equivalent when used for GC analysis. Actual formulation is diphenylamine 855 ug/mL. N-Nitrosodiphenylamine is prone to breakdown in the injection port and will be converted to diphenylamine.

N-Nitrosodiphenylamine is also a reactive species that can initiate premature decomposition of other compounds in the mix. For these reasons diphenylamine is used in the preparation of this mixture. When comparing the response of this compound to mixtures manufactured using N-nitrosodiphenylamine, a difference in response will be observed.

This lot was approved even though the %D for 4,6-DN-2-MP was greater than 10%.

Tech Tips:

N-Nitrosodiphenylamine (86-30-6) is prone to breakdown in the injection port and will be converted to Diphenylamine (122-39-4). When comparing the response of Diphenylamine to mixtures manufactured using N-Nitrosodiphenylamine, a difference in response will be observed. The ratio of the MW can be used to calculate the theoretical concentration of the N-Nitrosodiphenylamine.

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25µm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant flow 1.8 mL/min.

Temp. Program:

80°C (hold 0.1 min.) to 330°C

@ 9.6°C/min. (hold 2.85 min.)

Inj. Temp:

250°C

Det. Temp: 340°C

Det. Type:

Split Vent: 100 ml/mln.

Inj. Voi

1щ

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Date Mixed:

08-Jul-2024

Balance Serial #

B442140311

Christie Hills - Operations Lead Tech - ARM QC

Date Passed:

12-Jul-2024

Manufactured under Restek's ISO 9001:2015 **Registered Quality System** Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

 The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

 Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

O_8270surr_st_00133

CERTIFIED REFERENCE MATERIAL

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

567685

Lot No.: A0209099

Description:

8270 Surrogate Standard

8270 Surrogate Standard 5,000µg/mL, Methylene chloride, 5mL/ampul

Container Size:

5 mL

Pkg Amt:

> 5 mL

Expiration Date:

March 31, 2029

Storage:

10°C or colder

Handling:

Sonicate prior to use.

Ship: Ambient

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2
1	2-Fluorophenol	367-12-4	STBK1705	99%	5,007.3 μg/mL	+/- 151.4093
2	Phenol-d5	4165-62-2	НЈ-481	99%	5,031.1 μg/mL	+/- 152.1313
3	Nitrobenzene-d5	4165-60-0	PR-33424A	99%	5,009.4 μg/mL	+/- 151.4736
4	2-Fluorobiphenyl	321-60-8	00021384	99%	5,014.0 μg/mL	+/- 151.6134
5	2,4,6-Tribromophenol	118-79-6	RP230831RSR	99%	5,023.3 μg/mL	+/- 151.8931
6	p-Terphenyl-d14	1718-51-0	PR-32599	99%	5,003.3 μg/mL	+/- 151.2884
	LL.					

* Expanded Uncertainty displayed in same units as Grav. Con

Solvent:

Methylene chloride

CAS#

75-09-2

Purity

99%

7915532

ID: O_8270surr_st_00133 Exp: 03/31/29 Prpd: 8270 Surrogate Standard @ ID: O_8270surr_st_00134 Exp: 03/31/29 Prpd: 8270 Surrogate Standard @ 7915534

ID: O_8270surr_st_00135 Exp: 03/31/29 Prpd: 8270 Surrogate Standard @

ID: O_8270surr_st_00136 Exp: 03/31/29 Prpd: 8270 Surrogate Standard @ 7/ **8** / **8**/ **10 / 10 8**

7915536

ID: O_8270surr_st_00137 Exp: 03/31/29 Prpd: 8270 Surrogate Standard @

Tech Tips:

Due to the limited solubility of p-terphenyl-d14 in methanol, we do not recommend that this mixture be diluted in methanol.

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psi.

Temp. Program:

40°C (hold 2 min.) to 330°C @ 10°C/min. (hold 10 min.)

Inj. Temp:

250°C

Det. Temp:

330 C

Det. Type:

Split Vent:

2 ml/min.

Inj. Vol

0.2µl

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Michael Maye - Operations Tech I

Date Mixed:

14-Mar-2024

Balance Serial #

1128360905

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

21-Mar-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k\ \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

Vinyl Acetate_00357

110 Benner Circle Bellefrinte, PA 16823-8812

FET. 140 14-353-1300 Fa: 1-814-353-1309

Wyr v.rustek.com

List 1 /std#6 357-366 CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Re'erence Material is intended for Laboratory Use Only as a standard for the qualitative determination of the analyte(s) listed.

Catalog Vo.

569724

Lot No.: A0209567

Descripti. .1:

8260 List 1 / Std #6 Vinyl *Colon (2015)

3260 List 1 / Std #6 Vinyl Acetate (2015) 5,000µg/mL, P&T Methanol,

1mL/ampul

Container See:

Expiration Date

2 mL

September 30, 2025

Pkg Amt:

≥ 1 mL

Storage:

-20°C or colder

Handling:

This product is photosens tive.

Ship: Or ice

CERTIFIED VALUES

Elution Orde	· 中国	Compound	CAS#	Lote	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Vinyl acetate		108-05-4	RP231030CTH	98%	50349	
					70 /0	5,034.8 μg/mL	+/- 173. 9777

* Expanded Uncertainty displayed in same units as Grav. Conc.

Selver

P&T Methanol

CAS # 67-56-1

9.2%

Tech Ti

Vinyl acut and a volatile organic ester included in the target lists of several US EPA and other methods. Under acidic conditions, with alcohols to form new esters (transesterification). Methanol-based mixes containing halogenated compounds are slightly acidic, so it is important to minimize exposure of vinyl acetate to mixes of halogenated compounds in methanol. For this reason, was offer in year elate in individual solution, and suggest that it be introduced into the working level calibration solution immediate by the type. This will minimize problems and ensure more consistent results.

Quality Confirmation Test

This purmatugram represents a general set of testing purposes for product a septance. For optimal results in your lab, conditions should be adjusted for your set, notrument, method, and application.

anca Mile on offices Tech III - ARM OC

Date Passed:

Bill Mixed

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80387

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the ac

Purity Total

- Public and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, 37 FFS, LC/MS, FF, and/or melting perit.
- Occasiounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
- ing the isomers.
- "If the many size rounded to the ne and a more sense;

Certified Uncertainty Value Notes:

• The uncertainties are determined in secondarios with ISO 17034 and Guide 35. The certified expanded in relatinty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability and shipping stability uncertainty and were combined using the following formula:

uncertainty = the state of the

is a sessing of Indian of 2, which gives a level of confidence of approximately 95%.

the immunity is valid. The ampuls are over-filled to ensure

N 1.10 .:

or let trailon is based upon gravimet to preparate in using either a balance whose calibration has been verified daily and traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

If the unique of the product, who extored in compliance with the recommended conditions, is guaranteed through a fron original on the product is all and certificate. Contact Restek for additional opened product stability tron, with the I nowledge/understanding that open product stability is subject to the specific handling and sental conditions to which the i reduct is exposed. For your convenience Restek supplies deactivated vials with sards powerful named in a personal under deactivated vials are available through Restek as a custom DMDCS for the purpose of glassware deactivation as catalog number 31861,

empul, conicate no uncounted ampul until the macaning completely

Reagent

WC_CN complex_00006

ABSOLUTE STANDARDS, INC.

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties that are due to the analytical \ procedure (s) are \ within + /-5\% \ unless \ specifically \ stated on the \ Certified \ Wt. \ Report.$

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-scalable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-scalable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2

Absolute Standards, Inc. • 44 Rossotto Drive • Hamden, CT 06514 Voice: 800-368-1131 • Fax: 800-410-2577 • eMail: StephenArpie@AbsoluteStandards.com Document Identification: Certificate of Analysis Rev 14, Date Issued: 05/30/2019

Page 162 of 1052

ABSOLUTE STANDARDS, INC.

ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

Absolute Standards, Inc. • 44 Rossotto Drive • Hamden, CT 06514

Voice: 800-368-1131 • Fax: 800-410-2577 • eMail: StephenArpie@AbsoluteStandards.com

Document Identification: Certificate of Analysis Rev 14, Date Issued: 05/30/2019

Certified Reference Material CRM

www.absolutestandards.com

AR-1539 Certificate Number https://Absolutestandards.cam ANAB ISO 17034 Accredited

CERTIFIED WEIGHT REPORT:

Expiration Date: Part Number: Lot Number: Description: Simple and Complex Total Cyanide (CN') 070523

Nominal Concentration (µg/mL): Recommended Storage: 1000 Refrigerate (4 °C)

070525

Weights shown below were diluted to (mL): NIST Test Number: **BTUB** 1999.48 5E-05 Balance Uncertainty

0.058 Flask Uncertainty

Solvent: 070523 ASTM Type 1 Water

Lot#

Formulated By: Lawrence Barry

070523

Reviewed By:

Pedro L. Rentas

070523

	iviai cyailide (CN)	Total Conside /Osta	o. outlin nydroxide (NaOH)	O Collins Indian	E: Foldassium Ferricyanide (iii) (CN) N166 TS08427AR	O Dotocoine Ford	 Potassium cyanide (CN) 			Compodition		
			N340		N166	1000	2102			RW#		
		1000 / TONO	N340 MKC1 7860	1 10 4 4 mil man .	TSOR427AR	07000701			1 Periliper	N. T.	!	5
		MAI	NA		200	900	9		conc. (Jg/mc) (%)	Cono (mayor)	TACTITITI (GI	Nominal
		8.86	3	0.88	3	99.0	1		(4%)		runcy	D wife
		0.10 100.0		0.10	2	0.10			Purity (%)		runty Uncertainty Assay	I I
		100.0		47.5		40.0			8		ASSAV	
		2.96755		47.5 2.12822		2.52713			Weight (g)		Target	
		2.96768	10000	クーンのファ		2.52715		97.5.797	Weight (a)	IBMOAR	Actual	
1000.0	ı	1467 0	A'AA'A	250	l	700 o			Conc. (un/ml) +/- (un/ml)	Accudi	Action	
2.0	0.0	20	7,0	40	1.0	•		("SILVEN LA	I fam /mil)	uncertainty		Expanded
	1310-73-2	1010	13/46-66-2	10000	R-09-101	1		WCAN.	DACE.	(00)	ì	
	z mg/m3		Z		5 mg/m3			USHA PEL (TWA)		(Solvent Safety Info On Attached no)	The second second second	SDS Information
	orl-mus 6600mo/kg	By/Buto 107 parts 110	orl-mile 2970mole	Stuffing on the	orl-rat Smake			D50	cociica py.)	ttached po \		2
	Z	01410	2144	01410	21/10			SRM	ICIN	4011		

Page 164 of 1052

	* The certified value is the concentration calculated from grav
sé:	. ×
Ų	=
Ξ.	ā
5	<u>6</u>
٥	₫.
ť	E C
3	<
ö	음
J	Φ.
}	C)
í	je Je
ŕ	S
	ă
	ĕ
	5
	<u>.</u>
-	ĭ
. !	<u> </u>
1	5
-	3
i	2
3	7
3	ž
ď	2
200	<u> </u>
	3
È	Ť.
C	3
311	3
2	-
Ę	-
Ξ	}
Ξ	
ñ	
measurement and voluntation measurement	
SP	
Fe	
Ĭ	
וויי	,
ements u	

Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

^{*} All standard containers are meticulously cleaned prior to use.

^{*} Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). st Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.

Reagent

WC_CN1000ppmS_00038

ISO 17034

Reference Material Certificate Product Information Sheet

Product Name:Complex Cyanide StandardLot Number:0006766987Product Number:ICC-009Lot Issue Date:16-0ct-2023Storage Conditions:Store at Room Temperature (15° to 30°C). Light Sensitive.Expiration Date:30-Nov-2025

Component Name	Concentration	Uncertainty	CAS#	Analyte Lot
potassium ferricyanide (as cyanide)	1001 ±	5 μg/mL	013746-66-2	RM19446

Matrix: 0.1% sodium hydroxide in water

Description:

This document is prepared in accordance with ISO 17034 and Guide 31. This analytical reference material (RM) was manufactured and verified in accordance with an ISO 9001 registered quality system. The analyte concentration(s) were prepared and verified by an ISO 17034 / ISO 17025 accredited laboratory and compared to calibration standards independently prepared using NIST SRM(s) when available. The certified value and uncertainty value at the 95% confidence level for each analyte is determined gravimetrically.

Traceability:

The balances used for these measurements are calibrated with weights traceable to NIST in compliance with ANSI/NCSL Z540.3, ISO 9001, ISO 17025, and ISO 17034. Calibrated Class A glassware is used for volumetric measurements. Thermometers are calibrated against a NIST traceable thermometer in accordance with NIST Special Publication 1088.

Homogeneity:

This analytical reference standard was unitized according to an in-house procedure and is guaranteed to be homogeneous. There is no minimum sub-sample size required.

Instructions for Use:

Sample aliquots for analysis should be withdrawn at 20°C to 25°C immediately after opening the container and should be processed without delay for the certified values to be valid within the stated uncertainties.

Safety:

Refer to the Safety Data Sheet on www.agilent.com for information regarding this analytical reference material.

Intended Use:

This analytical reference standard is intended for the preparation of working reference samples for use in routine laboratory analyses, calibration of instruments, validation of analytical methods, assessments of measurement methods, and continuing calibration verification.

Expiration of Certification:

The certification of this analytical reference standard is valid until the expiration date specified above, provided the material is handled and stored in accordance with the instructions given in this certificate. This certification is nullified if the material is damaged, contaminated, or otherwise modified.

Page: 1 of 2

CSD-QA-040.1 ISO 17025

Maintenance of Certification:

If substantive changes are noted that affect the certification before the expiration of this certificate, Agilent will notify the purchaser.

Sample lot approver:

Monica Bourgeois QMS Representative

ISO 17034 Cert No. AR-1936 RM was produced in accordance with the TUV/SUD registered ISO 9001:2015 Quality Management System. Cert# 951215321

Page: 2 of 2

www.agilent.com/quality/ CSD-QA-040.1

ISO 17025

Reagent

WC_TSS_DTErth_00016

Certificate Of Analysis

Date of Release: 8/30/2023

Name: Celite ® 545

Diatomaceous Earth

Item No: **CX0574 All Sizes** Lot / Batch No: **2023082906** Country of Origin: **USA**

Item	Specifications	Analysis
Color	White to off-white	Passes Test
Form	Powder	Passes Test

Joe Schoellkopff

Quality Control Manager

This document has been produced electronically and is valid without a signature.

EMD Millipore is a division of Merck KGaA, Darmstadt, Germany

EMD Millipore Corporation

400 Summit Drive Burlington, MA 01803 U.S.A.

Form number: 00005624CA, Rev. 2.0

Reagent

WTcnSP1_00040

448 West Fork Dr Arlington, TX 76012 http://www.riccachemical.com 1-888-GO-RICCA

customerservice@riccachemical.com

Certificate of Analysis

Cyanide Standard, 1000 ppm CN

Lot Number: 1404G63 Product Number: 2543

Manufacture Date: APR 12, 2024

Expiration Date: SEP 2024

This standard is prepared using accurate volumetric techniques from material that has been assayed against Silver Nitrate solution certified traceable to NIST Standard Reference Material 999. The certified value reported is the prepared value based upon the method of preparation of the material. The uncertainty in the prepared value is the combined uncertainty based on the stability of the assayed Potassium Cyanide, and the uncertainty in the mass and volume measurements.

Use 0.16% (w/v) (0.04 N) Sodium Hydroxide or 0.225 % (w/v) (0.04 N) Potassium Hydroxide to make dilutions of this standard. Restandardize weekly if extreme accuracy is required.

Name	CAS#	Grade
Water	7732-18-5	ACS/ASTM/USP/EP
Potassium Cyanide	151-50-8	ACS
Sodium Hydroxide	1310-73-2	Reagent

Test	Specification	Result	
Appearance	Colorless liquid	Passed	
Cyanide (CN)	995-1005 ppm	1000 ppm	

Specification	Reference
Stock Standard Cyanide Solution	APHA (4500-CN- F)
Stock Cyanide Solution	APHA (4500-CN- E)
Stock Cyanide Solution	APHA (4500-CN- K)
Stock Cyanide Solution	APHA (4500-CN- H)
Cyanide Reference Solution (1000 mg/L)	EPA (SW-846) (7.3.3.2)
Cyanide Calibration Stock Solution (1,000 mg/L CN-)	EPA (SW-846) (9213)
Stock Cyanide Solution	EPA (335.3)
Stock Cyanide Solution	EPA (335.2)
Cyanide Solution Stock	ASTM (D 4282)
Simple Cyanide Solution, Stock (1.0 g/L CN)	ASTM (D 4374)

Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)			
2543-4	120 mL amber poly	6 months			

Recommended Storage: 2°C - 8°C (36°F - 46°F)

Version: 1.3 Lot Number: 1404G63 Product Number: 2543 Page 1 of 2

Operations Manager

This document is designed to comply with ISO Guide 31 "Reference Materials -- Contents of Certificates and Labels."

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

Reagent

WTCNstock2_00036

A Waters Company

Certificate of Analysis

rec 1 8/19/24

Product:

1000 mg/L Free Cyanide

Catalog Number:

048-125mL, 997-500mL

Lot No.

140324m

Starting Material:

Potassium Cyanide (KCN)

Polassium Cyanide (NCN)

Matrix:

18 megohm deionized water and 0.5% (v/v) NaOH

Density: Verification Method: 1.0086 \pm 0.0005 g/mL 22.0 $^{\circ}$ C and 765 mm Hg Spectrophotometry

Certificate Issue Date:

April 1, 2024

Expiration Date:

March 8, 2025

Revision Number:

Original

CERTIFICATION

Parameter	Certified Value ¹	Uncertainty ²	NIST Traceability	
	mg/L	%	SRM Number ³	Recovery %
Free Cyanide	1000	2,34	94	101

Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water Level: Low

GC Column (1): ZB-624 (20) ID: 0.18 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
MW-23	480-222859-4	86	87	93	103
MW-07	480-222859-6	92	87	93	102
MW-10	480-222859-7	87	85	89	99
MW-11A	480-222859-8	91	91	93	103
SW-01	480-222859-9	94	89	92	102
SW-02	480-222859-10	90	87	90	103
TB	480-222859-11	87	86	92	98
EB	480-222859-12	90	88	92	103
Duplicate	480-222859-13	93	90	94	108
MW-07 Bailer	480-222859-16	91	88	91	101
MW-19	480-222886-3	90	86	91	102
MW-19 (BAILER)	480-222886-4	93	88	93	101
MW-13	480-222886-6	86	86	93	103
MW-17	480-222886-7	91	88	93	103
TB	480-222886-9	89	85	91	101
	MB 480-723194/8	92	87	94	101
	MB 480-723313/8	94	90	91	103
	LCS 480-723194/6	90	87	94	101
	LCS 480-723313/6	86	86	91	100
	LCSD 480-723194/31	93	86	92	101
	LCSD 480-723313/29	89	88	96	105

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	75-123
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	73-120

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 N9266.d

 Lab ID:
 LCS 480-723194/6
 Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Benzene	25.0	24.7	99	71-124	
Ethylbenzene	25.0	25.8	103	77-123	
Toluene	25.0	25.2	101	80-122	
Xylenes, Total	50.0	50.7	101	76-122	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 N9297.d

 Lab ID:
 LCS 480-723313/6
 Client ID:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC	QC LIMITS REC	#
Benzene	25.0	24.3	97	71-124	
Ethylbenzene	25.0	24.9	100	77-123	
Toluene	25.0	24.4	98	80-122	
Xylenes, Total	50.0	47.9	96	76-122	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

	SPIKE	LCSD	LCSD	_	QC L	IMITS	
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Benzene	25.0	24.6	98	0	13	71-124	
Ethylbenzene	25.0	24.6	99	5	15	77-123	
Toluene	25.0	23.9	96	5	15	80-122	
Xylenes, Total	50.0	47.5	95	7	16	76-122	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

	SPIKE	LCSD	LCSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Benzene	25.0	24.3	97	0	13	71-124	
Ethylbenzene	25.0	24.6	99	1	15	77-123	
Toluene	25.0	24.6	98	1	15	80-122	
Xylenes, Total	50.0	48.1	96	0	16	76-122	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values FORM III 8260C

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: N9268.d Lab Sample ID: MB 480-723194/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: <u>HP5973N</u> Date Analyzed: <u>08/</u>27/2024 12:37

GC Column: ZB-624 (20) ID: 0.18 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 480-723194/6	N9266.d	08/27/2024 11:52
MW-07	480-222859-6	N9273.d	08/27/2024 14:45
MW-10	480-222859-7	N9274.d	08/27/2024 15:07
MW-11A	480-222859-8	N9275.d	08/27/2024 15:29
SW-01	480-222859-9	N9276.d	08/27/2024 15:52
SW-02	480-222859-10	N9277.d	08/27/2024 16:15
TB	480-222859-11	N9278.d	08/27/2024 16:37
EB	480-222859-12	N9279.d	08/27/2024 16:59
Duplicate	480-222859-13	N9280.d	08/27/2024 17:22
	LCSD 480-723194/31	N9291.d	08/27/2024 21:29

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: N9299.d Lab Sample ID: MB 480-723313/8

Matrix: Water Heated Purge: (Y/N) N

Instrument ID: <a href="https://example.com/html/memory.com/ht

GC Column: ZB-624 (20) ID: 0.18(mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 480-723313/6	N9297.d	08/28/2024 11:36
MW-23	480-222859-4	N9300.d	08/28/2024 13:01
MW-07 Bailer	480-222859-16	N9301.d	08/28/2024 13:23
MW-19	480-222886-3	N9308.d	08/28/2024 16:18
MW-19 (BAILER)	480-222886-4	N9309.d	08/28/2024 16:41
MW-13	480-222886-6	N9310.d	08/28/2024 17:04
MW-17	480-222886-7	N9311.d	08/28/2024 17:26
TB	480-222886-9	N9312.d	08/28/2024 17:48
	LCSD 480-723313/29	N9320.d	08/28/2024 20:47

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: N9146.d BFB Injection Date: 08/14/2024

Instrument ID: HP5973N BFB Injection Time: 13:50

Analysis Batch No.: 721747

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	33.8	
75	30.0 - 60.0 % of mass 95	49.9	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	7.0	
173	Less than 2.0 % of mass 174	0.2	(0.2) 1
174	Greater than 50% of mass 95	77.7	
175	5.0 - 9.0 % of mass 174	5.9	(7.5) 1
176	95.0 - 101.0 % of mass 174	77.4	(99.6) 1
177	5.0 - 9.0 % of mass 176	4.6	(5.9) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 480-721747/13		08/14/2024	14:35
	IC 480-721747/14	N9149.d	08/14/2024	14:57
	IC 480-721747/15	N9150.d	08/14/2024	15:20
	IC 480-721747/16	N9151.d	08/14/2024	15:43
	IC 480-721747/17	N9152.d	08/14/2024	16:05
	ICIS 480-721747/18	N9153.d	08/14/2024	16:28
	IC 480-721747/19	N9154.d	08/14/2024	16:50
	IC 480-721747/20	N9155.d	08/14/2024	17:12
	ICV 480-721747/34	N9169.d	08/14/2024	22:26

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: N9263.d BFB Injection Date: 08/27/2024

Instrument ID: HP5973N BFB Injection Time: 10:21

Analysis Batch No.: 723194

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	32.5	
75	30.0 - 60.0 % of mass 95	51.1	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	5.9	
173	Less than 2.0 % of mass 174	0.6	(0.7) 1
174	Greater than 50% of mass 95	79.7	
175	5.0 - 9.0 % of mass 174	6.8	(8.6) 1
176	95.0 - 101.0 % of mass 174	79.9	(100.3) 1
177	5.0 - 9.0 % of mass 176	4.3	(5.4) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-723194/4	N9264.d	08/27/2024	10:45
	LCS 480-723194/6		08/27/2024	11:52
	MB 480-723194/8	N9268.d	08/27/2024	12:37
MW-07	480-222859-6	N9273.d	08/27/2024	14:45
MW-10	480-222859-7	N9274.d	08/27/2024	15:07
MW-11A	480-222859-8	N9275.d	08/27/2024	15:29
SW-01	480-222859-9	N9276.d	08/27/2024	15:52
SW-02	480-222859-10	N9277.d	08/27/2024	16:15
TB	480-222859-11	N9278.d	08/27/2024	16:37
EB	480-222859-12	N9279.d	08/27/2024	16:59
Duplicate	480-222859-13	N9280.d	08/27/2024	17:22
	LCSD 480-723194/31	N9291.d	08/27/2024	21:29

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: N9294.d BFB Injection Date: 08/28/2024

Instrument ID: HP5973N BFB Injection Time: 10:12

Analysis Batch No.: 723313

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	31.3	
75	30.0 - 60.0 % of mass 95	54.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.3	
173	Less than 2.0 % of mass 174	0.8	(1.1) 1
174	Greater than 50% of mass 95	76.8	
175	5.0 - 9.0 % of mass 174	5.7	(7.4) 1
176	95.0 - 101.0 % of mass 174	74.9	(97.6) 1
177	5.0 - 9.0 % of mass 176	4.2	(5.6) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-723313/4	N9295.d	08/28/2024	10:36
	LCS 480-723313/6	N9297.d	08/28/2024	11:36
	MB 480-723313/8	N9299.d	08/28/2024	12:22
MW-23	480-222859-4	N9300.d	08/28/2024	13:01
MW-07 Bailer	480-222859-16	N9301.d	08/28/2024	13:23
MW-19	480-222886-3	N9308.d	08/28/2024	16:18
MW-19 (BAILER)	480-222886-4	N9309.d	08/28/2024	16:41
MW-13	480-222886-6	N9310.d	08/28/2024	17:04
MW-17	480-222886-7	N9311.d	08/28/2024	17:26
TB	480-222886-9	N9312.d	08/28/2024	17:48
	LCSD 480-723313/29	N9320.d	08/28/2024	20:47

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: ICIS 480-721747/18 Date Analyzed: 08/14/2024 16:28

Instrument ID: <u>HP5973N</u> GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

Lab File ID (Standard): N9153.d Heated Purge: (Y/N) N

Calibration ID: 47043

		FB	FB		CBNZd5		4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		203534	4.82	719397	7.77	406721	10.22
UPPER LIMIT		407068	4.99	1438794	7.94	813442	10.38
LOWER LIMIT	LOWER LIMIT		4.65	359699	7.60	203361	10.05
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCVIS 480-723194/4		211933	4.83	735460	7.77	418935	10.22
CCVIS 480-723313/4		223135	4.83	792962	7.77	422667	10.22

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.167 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723194/4 Date Analyzed: 08/27/2024 10:45

Instrument ID: <u>HP5973N</u> GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

Lab File ID (Standard): $\underline{\text{N9264.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47045

		FB		CBNZd!	5	DCBd4	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		211933	4.83	735460	7.77	418935	10.22
UPPER LIMIT		423866	4.99	1470920	7.94	837870	10.38
LOWER LIMIT		105967	4.66	367730	7.60	209468	10.05
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 480-723194/6		196581	4.83	668222	7.77	390486	10.22
MB 480-723194/8		198268	4.83	678779	7.77	401038	10.22
480-222859-6	MW-07	192530	4.83	663123	7.77	379172	10.22
480-222859-7	MW-10	208293	4.83	720853	7.77	398811	10.22
480-222859-8	MW-11A	198062	4.83	686480	7.77	393227	10.22
480-222859-9	SW-01	190780	4.83	661289	7.77	378713	10.22
480-222859-10	SW-02	196029	4.83	674148	7.77	384573	10.22
480-222859-11	TB	208833	4.83	706006	7.77	400673	10.22
480-222859-12	EB	198737	4.83	683932	7.77	383793	10.22
480-222859-13	Duplicate	189979	4.83	659498	7.77	388605	10.22
LCSD 480-723194/31		192521	4.83	664970	7.77	388613	10.22

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.167 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723313/4 Date Analyzed: 08/28/2024 10:36

Instrument ID: <u>HP5973N</u> GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

Lab File ID (Standard): N9295.d Heated Purge: (Y/N) N

Calibration ID: 47045

		FB		CBNZd!	5	DCBd4	1
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		223135	4.83	792962	7.77	422667	10.22
UPPER LIMIT		446270	4.99	1585924	7.94	845334	10.38
LOWER LIMIT		111568	4.66	396481	7.60	211334	10.05
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 480-723313/6		211492	4.83	708185	7.77	395805	10.22
MB 480-723313/8		191378	4.83	659214	7.77	381755	10.22
480-222859-4	MW-23	217119	4.82	734432	7.77	410533	10.22
480-222859-16	MW-07 Bailer	199192	4.82	667842	7.77	398285	10.22
480-222886-3	MW-19	199297	4.83	660516	7.77	377052	10.22
480-222886-4	MW-19 (BAILER)	201574	4.83	682628	7.77	386136	10.22
480-222886-6	MW-13	214237	4.83	714977	7.77	392409	10.22
480-222886-7	MW-17	193625	4.82	642754	7.77	371056	10.22
480-222886-9	TB	198996	4.83	658553	7.77	372668	10.22
LCSD 480-723313/29		209638	4.83	707891	7.77	399969	10.22

FB = Fluorobenzene (IS)
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.167 minutes of internal standard RT

Column used to flag values outside QC limits

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.: 222859
 Lab Sample ID: 480-222859-4

 Client Sample ID: MW-23
 Lab Sample ID: 480-222859-4

 Matrix: Ground Water
 Lab File ID: N9300.d

 Analysis Method: 8260C
 Date Collected: 08/26/2024 09:50

 Sample wt/vol: 5 (mL)
 Date Analyzed: 08/28/2024 13:01

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: ZB-624 (20) ID: 0.18 (mm)

Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH:

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 723313 Units: ug/L
Preparation Batch No.: Instrument ID: HP5973N

CAS NO. COMPOUND NAME RESULT O RI MI

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	86		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Report Date: 28-Aug-2024 14:00:58 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9300.d

Lims ID: 480-222859-G-4

Client ID: MW-23 Sample Type: Client

Inject. Date: 28-Aug-2024 13:01:30 ALS Bottle#: 9 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-G-4 Misc. Info.: 480-0119738-009

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 14:00:38Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:00:57

	RT	Adj RT	Dlt RT			OnCol Amt	
Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
70	4.820	4.820	0.000	97	217119	25.0	
117	7.771	7.771	0.000	92	734432	25.0	
152	10.222	10.222	0.000	96	410533	25.0	
)113	4.260	4.260	0.000	93	216051	21.4	
65	4.558	4.559	-0.001	97	298928	21.7	
98	6.311	6.311	0.000	95	760482	23.2	
174	9.024	9.030	-0.006	86	297774	25.7	
78		4.552			I	ND	
92		6.377			I	ND	
91		7.898			I	ND	
106		8.026			I	ND	
106		8.446			I	ND	
1		30.000			1	ND	7
	117 152)113 65 98 174 78 92 91 106	Sig (min.) 70 4.820 117 7.771 152 10.222)113 4.260 65 4.558 98 6.311 174 9.024 78 92 91 106	Sig (min.) (min.) 70 4.820 4.820 117 7.771 7.771 152 10.222 10.222)113 4.260 4.260 65 4.558 4.559 98 6.311 6.311 174 9.024 9.030 78 4.552 92 6.377 91 7.898 106 8.026 106 8.446	Sig (min.) (min.) (min.) 70 4.820 4.820 0.000 117 7.771 7.771 0.000 152 10.222 10.222 0.000 113 4.260 4.260 0.000 65 4.558 4.559 -0.001 98 6.311 6.311 0.000 174 9.024 9.030 -0.006 78 4.552 92 6.377 91 7.898 106 8.026 106 8.446	Sig (min.) (min.) (min.) Q 70 4.820 4.820 0.000 97 117 7.771 7.771 0.000 92 152 10.222 10.222 0.000 96)113 4.260 4.260 0.000 93 65 4.558 4.559 -0.001 97 98 6.311 6.311 0.000 95 174 9.024 9.030 -0.006 86 78 4.552 92 6.377 91 7.898 106 8.026 106 8.446	Sig (min.) (min.) (min.) Q Response 70 4.820 4.820 0.000 97 217119 117 7.771 7.771 0.000 92 734432 152 10.222 10.222 0.000 96 410533)113 4.260 4.260 0.000 93 216051 65 4.558 4.559 -0.001 97 298928 98 6.311 6.311 0.000 95 760482 174 9.024 9.030 -0.006 86 297774 78 4.552 92 6.377 91 7.898 106 8.026 106 8.446	Sig (min.) (min.) Q Response ug/L 70 4.820 4.820 0.000 97 217119 25.0 117 7.771 7.771 0.000 92 734432 25.0 152 10.222 10.222 0.000 96 410533 25.0)113 4.260 4.260 0.000 93 216051 21.4 65 4.558 4.559 -0.001 97 298928 21.7 98 6.311 6.311 0.000 95 760482 23.2 174 9.024 9.030 -0.006 86 297774 25.7 78 4.552 ND 92 6.377 ND 91 7.898 ND 106 8.026 ND 106 8.446 ND

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 28-Aug-2024 14:00:58 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240828-119738.b\\N9300.d

 Injection Date:
 28-Aug-2024 13:01:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-G-4
 Lab Sample ID:
 480-222859-4

Client ID: MW-23

Purge Vol: 5.000 mL

Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

9

9

Report Date: 28-Aug-2024 14:00:58 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9300.d

Lims ID: 480-222859-G-4

Client ID: MW-23 Sample Type: Client

Inject. Date: 28-Aug-2024 13:01:30 ALS Bottle#: 9 Worklist Smp#: 9

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-G-4 Misc. Info.: 480-0119738-009

Operator ID: RS Instrument ID: HP5973N

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 14:00:38Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:00:57

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	21.4	85.58
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.7	86.80
\$ 6 Toluene-d8 (Surr)	25.0	23.2	92.95
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.7	102.61

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.: 222859
 222859

 Client Sample ID: MW-07
 Lab Sample ID: 480-222859-6

 Matrix: Ground Water
 Lab File ID: N9273.d

 Analysis Method: 8260C
 Date Collected: 08/26/2024 09:10

Sample wt/vol: 5 (mL) Date Analyzed: 08/27/2024 14:45

Soil Aliquot Vol: _____ Dilution Factor: 20

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 723194 Units: ug/L

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	580		20	8.2
100-41-4	Ethylbenzene	810		20	15
108-88-3	Toluene	20	U	20	10
1330-20-7	Xylenes, Total	240		40	13

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	92		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Report Date: 27-Aug-2024 15:10:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9273.d

Lims ID: 480-222859-C-6

Client ID: MW-07 Sample Type: Client

Inject. Date: 27-Aug-2024 14:45:30 ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Sample Info: 480-222859-C-6 Misc. Info.: 480-0119725-013

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 15:07:20Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 15:10:17

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flags
'		, ,			1	•		
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	192530	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	92	663123	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	97	379172	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	206203	23.0	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	60	265066	21.7	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.001	94	686831	23.2	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	267658	25.5	
55 Benzene	78	4.558	4.552	0.006	91	937138	28.8	
73 Toluene	92	6.377	6.372	0.006	98	7112	0.3891	
88 Ethylbenzene	91	7.898	7.899	0.000	98	1436069	40.7	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	96	18059	1.28	
91 o-Xylene	106	8.446	8.440	0.006	98	159972	10.5	
S 126 Xylenes, Total	1				0		11.8	

QC Flag Legend

Processing Flags

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Report Date: 27-Aug-2024 15:10:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: Injection Date: 27-Aug-2024 14:45:30 Instrument ID: HP5973N Lims ID: 480-222859-C-6 Lab Sample ID: 480-222859-6

Client ID: MW-07

Purge Vol: 5.000 mL

Method: N-8260 Dil. Factor: 20.0000

Limit Group: MV - 8260C ICAL Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

13

13

Column: ZB-624 (0.18 mm)

Report Date: 27-Aug-2024 15:10:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9273.d

Lims ID: 480-222859-C-6

Client ID: MW-07 Sample Type: Client

Inject. Date: 27-Aug-2024 14:45:30 ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Sample Info: 480-222859-C-6 Misc. Info.: 480-0119725-013

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 15:07:20Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 15:10:17

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.0	92.11
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.7	86.79
\$ 6 Toluene-d8 (Surr)	25.0	23.2	92.98
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.5	102.15

Report Date: 27-Aug-2024 15:10:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: 27-Aug-2024 14:45:30 Injection Date: Instrument ID: HP5973N Lims ID: 480-222859-C-6 Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: RS ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Method: N-8260 MV - 8260C ICAL Limit Group:

Column: ZB-624 (0.18 mm) Detector MS SCAN

Report Date: 27-Aug-2024 15:10:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240827-119725.b\\N9273.d

 Injection Date:
 27-Aug-2024 14:45:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-C-6
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: RS ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9273.d

 Injection Date:
 27-Aug-2024 14:45:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-C-6
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: RS ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9273.d

 Injection Date:
 27-Aug-2024 14:45:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-C-6
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: RS ALS Bottle#: 13 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 20.0000

 SDG No.: 222859
 Lab Sample ID: 480-222859-7

 Client Sample ID: MW-10
 Lab Sample ID: 480-222859-7

 Matrix: Ground Water
 Lab File ID: N9274.d

 Analysis Method: 8260C
 Date Collected: 08/26/2024 08:40

 Sample wt/vol: 5(mL)
 Date Analyzed: 08/27/2024 15:07

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: ZB-624 (20) ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

Analysis Batch No.: 723194 Units: ug/L

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	87		75-123
2037-26-5	Toluene-d8 (Surr)	89		80-120

Report Date: 27-Aug-2024 16:10:40 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9274.d

Lims ID: 480-222859-C-7

Client ID: MW-10 Sample Type: Client

Inject. Date: 27-Aug-2024 15:07:30 ALS Bottle#: 14 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-C-7 Misc. Info.: 480-0119725-014

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:10:40

				2 4.10.			_/ / tag _0_ : 10:::0::0		
			RT	Adj RT	Dlt RT		_	OnCol Amt	
L	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
,	* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	208293	25.0	
,	* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	91	720853	25.0	
,	* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	398811	25.0	
,	\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	210324	21.7	
;	\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	96	282165	21.4	
;	\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.001	95	711843	22.2	
;	\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	88	281613	24.7	
	55 Benzene	78		4.552				ND	
	73 Toluene	92		6.371				ND	
	88 Ethylbenzene	91		7.898				ND	
	90 m-Xylene & p-Xylene	106		8.026				ND	
	91 o-Xylene	106		8.440				ND	
;	S 126 Xylenes, Total	1		30.000			I	ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 27-Aug-2024 16:10:40 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: 27-Aug-2024 15:07:30 Injection Date: Instrument ID: HP5973N Lims ID: 480-222859-C-7 Lab Sample ID: 480-222859-7

Dil. Factor:

Client ID: MW-10

5.000 mL Purge Vol:

N-8260 Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.18 mm)

1.0000

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

14

14

Report Date: 27-Aug-2024 16:10:40 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9274.d

Lims ID: 480-222859-C-7

Client ID: MW-10 Sample Type: Client

Inject. Date: 27-Aug-2024 15:07:30 ALS Bottle#: 14 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-C-7 Misc. Info.: 480-0119725-014

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:10:40

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	21.7	86.84
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.4	85.40
\$ 6 Toluene-d8 (Surr)	25.0	22.2	88.65
\$ 7 4-Bromofluorobenzene (Surr)	25.0	24.7	98.87

 SDG No.: 222859
 222859

 Client Sample ID: MW-11A
 Lab Sample ID: 480-222859-8

 Matrix: Ground Water
 Lab File ID: N9275.d

 Analysis Method: 8260C
 Date Collected: 08/26/2024 11:50

Sample wt/vol: 5(mL) Date Analyzed: 08/27/2024 15:29

Soil Aliquot Vol: Dilution Factor: 2

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 723194 Units: ug/L

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.8	J	2.0	0.82
100-41-4	Ethylbenzene	2.0	U	2.0	1.5
108-88-3	Toluene	2.0	U	2.0	1.0
1330-20-7	Xylenes, Total	4.0	U	4.0	1.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	91		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9275.d

Lims ID: 480-222859-F-8

Client ID: MW-11A Sample Type: Client

Inject. Date: 27-Aug-2024 15:29:30 ALS Bottle#: 15 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Sample Info: 480-222859-F-8 Misc. Info.: 480-0119725-015

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:11:02

t Flags
Flags
7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 27-Aug-2024 16:11:02 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9275.d

Lims ID: 480-222859-F-8

Client ID: MW-11A Sample Type: Client

Inject. Date: 27-Aug-2024 15:29:30 ALS Bottle#: 15 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Sample Info: 480-222859-F-8 Misc. Info.: 480-0119725-015

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:11:02

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.8	91.33
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.8	91.12
\$ 6 Toluene-d8 (Surr)	25.0	23.2	92.86
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.6	102.57

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9275.d

 Injection Date:
 27-Aug-2024 15:29:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-F-8
 Lab Sample ID:
 480-222859-8

Client ID: MW-11A

Operator ID: RS ALS Bottle#: 15 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 2.0000

SDG No.: 222859

Client Sample ID: SW-01

Lab Sample ID: 480-222859-9

Matrix: Surface Water

Lab File ID: N9276.d

Analysis Method: 8260C

Date Collected: 08/26/2024 12:40

Sample wt/vol: 5(mL)

Date Analyzed: 08/27/2024 15:52

Soil Aliquot Vol:

Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: ZB-624 (20)
 ID: 0.18 (mm)

 Purge Volume: 5.0 (mL)
 Heated Purge: (Y/N) N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

Analysis Batch No.: 723194 Units: ug/L

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	94		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Report Date: 27-Aug-2024 16:11:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9276.d

Lims ID: 480-222859-F-9

Client ID: SW-01 Sample Type: Client

Inject. Date: 27-Aug-2024 15:52:30 ALS Bottle#: 16 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-F-9 Misc. Info.: 480-0119725-016

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:11:20

Compound	Cia	RT (min.)	Adj RT	Dlt RT		Doonones	OnCol Amt	Floor
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	190780	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	92	661289	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	378713	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	92	208182	23.5	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	96	270524	22.3	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.001	95	675982	22.9	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	267753	25.6	
55 Benzene	78		4.552				ND	
73 Toluene	92		6.371				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.440				ND	
S 126 Xylenes, Total	1		30.000				ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 27-Aug-2024 16:11:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: Injection Date: 27-Aug-2024 15:52:30 Instrument ID: HP5973N Lims ID: 480-222859-F-9 Lab Sample ID: 480-222859-9

Client ID: SW-01

5.000 mL Dil. Factor: 1.0000 Purge Vol:

N-8260 Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

16

16

Report Date: 27-Aug-2024 16:11:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9276.d

Lims ID: 480-222859-F-9

Client ID: SW-01 Sample Type: Client

Inject. Date: 27-Aug-2024 15:52:30 ALS Bottle#: 16 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-F-9 Misc. Info.: 480-0119725-016

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 14:09:22Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:11:20

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.5	93.85
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.3	89.39
\$ 6 Toluene-d8 (Surr)	25.0	22.9	91.76
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.6	102.47

SDG No.: 222859 Client Sample ID: SW-02 Lab Sample ID: 480-222859-10 Matrix: Surface Water Lab File ID: N9277.d Analysis Method: 8260C Date Collected: 08/26/2024 11:15 Date Analyzed: 08/27/2024 16:15 Sample wt/vol: 5(mL)

Dilution Factor: 1 Soil Aliquot Vol:

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

GC Column: ZB-624 (20) ID: 0.18(mm) Soil Extract Vol.:

Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 723194 Units: ug/L

Purge Volume: 5.0(mL)

Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	90		75-123
2037-26-5	Toluene-d8 (Surr)	90		80-120

Report Date: 27-Aug-2024 16:51:53 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9277.d

Lims ID: 480-222859-F-10

Client ID: SW-02 Sample Type: Client

Inject. Date: 27-Aug-2024 16:15:30 ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-F-10 Misc. Info.: 480-0119725-017

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 27-Aug-2024 16:51:52 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:51:52

					- 3 -		
	RT	Adj RT	Dlt RT		_	OnCol Amt	
Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
70	4.826	4.826	0.000	97	196029	25.0	
117	7.770	7.770	0.000	92	674148	25.0	
152	10.216	10.222	-0.006	97	384573	25.0	
113	4.260	4.260	0.000	92	204979	22.5	
65	4.552	4.552	0.000	97	270395	21.7	
98	6.310	6.310	0.000	95	676621	22.5	
174	9.024	9.030	-0.006	86	273343	25.7	
78		4.552				ND	
92	6.377	6.377	0.006	94	1713	0.0922	а
91		7.898				ND	
106		8.026				ND	
106		8.440				ND	
1		30.000				ND	7
	117 152 113 65 98 174 78 92 91 106	Sig (min.) 70 4.826 117 7.770 152 10.216 113 4.260 65 4.552 98 6.310 174 9.024 78 92 91 106	Sig (min.) (min.) 70 4.826 4.826 117 7.770 7.770 152 10.216 10.222 113 4.260 4.260 65 4.552 4.552 98 6.310 6.310 174 9.024 9.030 78 4.552 92 6.377 6.377 91 7.898 106 8.026 106 8.440	Sig (min.) (min.) (min.) 70 4.826 4.826 0.000 117 7.770 7.770 0.000 152 10.216 10.222 -0.006 113 4.260 4.260 0.000 65 4.552 4.552 0.000 98 6.310 6.310 0.000 174 9.024 9.030 -0.006 78 4.552 92 6.377 0.006 91 7.898 106 8.026 106 8.440 8.440	Sig (min.) (min.) (min.) Q 70 4.826 4.826 0.000 97 117 7.770 7.770 0.000 92 152 10.216 10.222 -0.006 97 113 4.260 4.260 0.000 92 65 4.552 4.552 0.000 97 98 6.310 6.310 0.000 95 174 9.024 9.030 -0.006 86 78 4.552 92 6.377 6.377 0.006 94 91 7.898 106 8.026 106 8.440	Sig RT (min.) Adj RT (min.) Dlt RT (min.) Q Response 70 4.826 4.826 0.000 97 196029 117 7.770 7.770 0.000 92 674148 152 10.216 10.222 -0.006 97 384573 113 4.260 4.260 0.000 92 204979 65 4.552 4.552 0.000 97 270395 98 6.310 6.310 0.000 95 676621 174 9.024 9.030 -0.006 86 273343 78 4.552 92 6.377 6.377 0.006 94 1713 91 7.898 106 8.026 106 8.440	Sig RT (min.) Adj RT (min.) Dlt RT (min.) Q Response OnCol Amt ug/L 70 4.826 4.826 0.000 97 196029 25.0 117 7.770 7.770 0.000 92 674148 25.0 152 10.216 10.222 -0.006 97 384573 25.0 113 4.260 4.260 0.000 92 204979 22.5 65 4.552 4.552 0.000 97 270395 21.7 98 6.310 6.310 0.000 95 676621 22.5 174 9.024 9.030 -0.006 86 273343 25.7 78 4.552 ND 92 6.377 6.377 0.006 94 1713 0.0922 91 7.898 ND 106 8.026 ND ND

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Review Flags

a - User Assigned ID

Reagents:

Report Date: 27-Aug-2024 16:51:53 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9277.d Injection Date: 27-Aug-2024 16:15:30 Instrument ID: HP5973N Lims ID: 480-222859-F-10 Lab Sample ID: 480-222859-10

Client ID: SW-02

5.000 mL Purge Vol:

N-8260 Method:

Dil. Factor: 1.0000

Limit Group: MV - 8260C ICAL ALS Bottle#: 17

RS

17

Operator ID:

Worklist Smp#:

Report Date: 27-Aug-2024 16:51:53 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9277.d

Lims ID: 480-222859-F-10

Client ID: SW-02 Sample Type: Client

Inject. Date: 27-Aug-2024 16:15:30 ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-F-10 Misc. Info.: 480-0119725-017

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 16:51:52Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 16:51:52

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.5	89.93
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.7	86.96
\$ 6 Toluene-d8 (Surr)	25.0	22.5	90.10
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.7	102.62

Report Date: 27-Aug-2024 16:51:53 Chro

Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9277.d

 Injection Date:
 27-Aug-2024 16:15:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-F-10
 Lab Sample ID:
 480-222859-10

Client ID: SW-02

Operator ID: RS ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

73 Toluene, CAS: 108-88-3

Signal: 1

Not Detected

Expected RT: 6.37

Processing Integration Results

RT: 6.38
Area: 1713
Amount: 0.092184
Amount Units: ug/L

Reviewer: MHM2, 27-Aug-2024 16:51:48 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Poor chromatography

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: TB Lab Sample ID: 480-222859-11 Matrix: Water Lab File ID: N9278.d Analysis Method: 8260C Date Collected: 08/26/2024 00:00 Date Analyzed: 08/27/2024 16:37 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0(mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 723194 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		77-120
460-00-4	4-Bromofluorobenzene (Surr)	98		73-120
1868-53-7	Dibromofluoromethane (Surr)	87		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Report Date: 28-Aug-2024 10:25:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9278.d

Lims ID: 480-222859-A-11

Client ID: TB Sample Type: Client

Inject. Date: 27-Aug-2024 16:37:30 ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-A-11 Misc. Info.: 480-0119725-018

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:20

		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	208833	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	91	706006	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.222	10.222	0.000	96	400673	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	92	211565	21.8	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	96	284372	21.5	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.310	0.000	96	723951	23.0	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	92	273878	24.5	
55 Benzene	78		4.552				ND	
73 Toluene	92		6.371				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.440				ND	
S 126 Xylenes, Total	1		30.000				ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 28-Aug-2024 10:25:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9278.d

 Injection Date:
 27-Aug-2024 16:37:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-A-11
 Lab Sample ID:
 480-222859-11

Client ID: TB

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

18

18

Report Date: 28-Aug-2024 10:25:20 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9278.d

Lims ID: 480-222859-A-11

Client ID: TB Sample Type: Client

Inject. Date: 27-Aug-2024 16:37:30 ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-A-11 Misc. Info.: 480-0119725-018

Operator ID: RS Instrument ID: HP5973N

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:20

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	21.8	87.13
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.5	85.85
\$ 6 Toluene-d8 (Surr)	25.0	23.0	92.05
\$ 7 4-Bromofluorobenzene (Surr)	25.0	24.5	98.18

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: EB Lab Sample ID: 480-222859-12 Matrix: Water Lab File ID: N9279.d Analysis Method: 8260C Date Collected: 08/26/2024 12:00 Date Analyzed: 08/27/2024 16:59 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) Low Analysis Batch No.: 723194 Units: ug/L Preparation Batch No.:

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

Instrument ID: HP5973N

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	90		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Report Date: 28-Aug-2024 10:25:29 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9279.d

Lims ID: 480-222859-E-12

Client ID: EB Sample Type: Client

Inject. Date: 27-Aug-2024 16:59:30 ALS Bottle#: 19 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-E-12 Misc. Info.: 480-0119725-019

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:29

					_			
		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
								-
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	198737	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	91	683932	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	97	383793	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	207400	22.4	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	97	278079	22.1	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.310	0.001	95	704401	23.1	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	277584	25.7	
55 Benzene	78		4.552				ND	
73 Toluene	92		6.371				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.440				ND	
S 126 Xylenes, Total	1		30.000				ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 28-Aug-2024 10:25:29 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: Injection Date: 27-Aug-2024 16:59:30 Instrument ID: HP5973N Lims ID: 480-222859-E-12 Lab Sample ID: 480-222859-12

Client ID: ΕB

5.000 mL Dil. Factor: 1.0000 Purge Vol:

Limit Group: MV - 8260C ICAL Method: N-8260

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

19

19

Report Date: 28-Aug-2024 10:25:29 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9279.d

Lims ID: 480-222859-E-12

Client ID: EB Sample Type: Client

Inject. Date: 27-Aug-2024 16:59:30 ALS Bottle#: 19 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-E-12 Misc. Info.: 480-0119725-019

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:29

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.4	89.75
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.1	88.21
\$ 6 Toluene-d8 (Surr)	25.0	23.1	92.45
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.7	102.72

SDG No.: 222859

Client Sample ID: Duplicate

Lab Sample ID: 480-222859-13

Matrix: Ground Water

Lab File ID: N9280.d

Analysis Method: 8260C

Date Collected: 08/26/2024 00:00

Sample wt/vol: 5(mL)

Date Analyzed: 08/27/2024 17:22

Soil Aliquot Vol:

Dilution Factor: 1

Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm)

Units: ug/L

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

% Moisture: _____ % Solids: _____ Level: (low/med) Low

Analysis Batch No.: 723194

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	108		73-120
1868-53-7	Dibromofluoromethane (Surr)	93		75-123
2037-26-5	Toluene-d8 (Surr)	94		80-120

Report Date: 28-Aug-2024 10:25:38 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9280.d

Lims ID: 480-222859-E-13

Client ID: Duplicate Sample Type: Client

Inject. Date: 27-Aug-2024 17:22:30 ALS Bottle#: 20 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-E-13 Misc. Info.: 480-0119725-020

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:38

						- 3		
_		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	189979	25.0	
* 2 Chlorobenzene-d5	117	7.770	7.770	0.000	91	659498	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	388605	25.0	
\$ 148 Dibromofluoromethane (Surr)	113	4.260	4.260	0.000	93	204986	23.2	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	98	271665	22.5	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.310	0.000	95	689074	23.4	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.030	0.000	93	282683	27.1	
55 Benzene	78		4.552				ND	
73 Toluene	92		6.371				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.440				ND	
S 126 Xylenes, Total	1		30.000				ND	7
73 Toluene 88 Ethylbenzene 90 m-Xylene & p-Xylene 91 o-Xylene	92 91 106		6.371 7.898 8.026 8.440				ND ND ND ND	<u>.</u>

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

Report Date: 28-Aug-2024 10:25:38 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240827-119725.b\\N9280.d

 Injection Date:
 27-Aug-2024 17:22:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-E-13
 Lab Sample ID:
 480-222859-13

Client ID: Duplicate

Purge Vol: 5.000 mL Dil. Factor: 1.0000 ALS Bottle#:

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

Worklist Smp#:

RS

20

20

Report Date: 28-Aug-2024 10:25:38 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9280.d

Lims ID: 480-222859-E-13

Client ID: Duplicate Sample Type: Client

Inject. Date: 27-Aug-2024 17:22:30 ALS Bottle#: 20 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222859-E-13 Misc. Info.: 480-0119725-020

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 19:45:39Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:25:38

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.2	92.79
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.5	90.15
\$ 6 Toluene-d8 (Surr)	25.0	23.4	93.79
\$ 7 4-Bromofluorobenzene (Surr)	25.0	27.1	108.48

 SDG No.: 222859

 Client Sample ID: MW-07 Bailer
 Lab Sample ID: 480-222859-16

 Matrix: Water
 Lab File ID: N9301.d

 Analysis Method: 8260C
 Date Collected: 08/26/2024 09:30

 Sample wt/vol: 5(mL)
 Date Analyzed: 08/28/2024 13:23

 Soil Aliquot Vol:
 Dilution Factor: 20

 Soil Extract Vol.:
 GC Column: ZB-624 (20) ID: 0.18 (mm)

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N) N pH:

 % Moisture:
 % Solids:
 Level: (low/med) Low

Analysis Batch No.: 723313 Units: ug/L

Preparation Batch No.: Instrument ID: HP5973N

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	600		20	8.2
100-41-4	Ethylbenzene	670		20	15
108-88-3	Toluene	20	U	20	10
1330-20-7	Xylenes, Total	180		40	13

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	91		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9301.d

Lims ID: 480-222859-E-16 Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 28-Aug-2024 13:23:30 ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Sample Info: 480-222859-E-16 Misc. Info.: 480-0119738-010

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 12:25:37Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:40:27

		DT	A d: DT	DILDT			On Cal Area	
		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.820	4.820	0.000	97	199192	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	667842	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	398285	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.266	0.000	92	210599	22.7	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.559	-0.007	58	276905	21.9	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	679225	22.8	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	267083	25.3	
55 Benzene	78	4.552	4.552	0.000	91	1015378	30.2	
73 Toluene	92	6.377	6.377	0.000	97	6050	0.3287	
88 Ethylbenzene	91	7.898	7.898	0.000	98	1196919	33.7	
90 m-Xylene & p-Xylene	106	8.032	8.026	0.006	97	17325	1.22	
91 o-Xylene	106	8.440	8.446	-0.006	97	126951	8.25	
S 126 Xylenes, Total	1				0		9.47	

QC Flag Legend

Processing Flags

Reagents:

Eurofins Buffalo

Data File: Injection Date: 28-Aug-2024 13:23:30 Instrument ID: HP5973N Lims ID: 480-222859-E-16 Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Dil. Factor: 20.0000 10 Purge Vol: 5.000 mL ALS Bottle#:

N-8260 Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.18 mm)

Operator ID:

Worklist Smp#:

RS

10

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9301.d

Lims ID: 480-222859-E-16 Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 28-Aug-2024 13:23:30 ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Sample Info: 480-222859-E-16 Misc. Info.: 480-0119738-010

Operator ID: RS Instrument ID: HP5973N

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 12:25:37Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:40:27

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.7	90.93
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.9	87.64
\$ 6 Toluene-d8 (Surr)	25.0	22.8	91.30
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.3	101.21

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9301.d Injection Date: 28-Aug-2024 13:23:30 Instrument ID: HP5973N Lims ID: 480-222859-E-16 Lab Sample ID: 480-222859-16

MW-07 Bailer Client ID:

Operator ID: RS ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

MV - 8260C ICAL Method: N-8260 Limit Group:

Column: ZB-624 (0.18 mm) Detector MS SCAN

Data File: Injection Date: 28-Aug-2024 13:23:30 Instrument ID: HP5973N Lims ID: 480-222859-E-16 Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: RS ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Method: N-8260 MV - 8260C ICAL Limit Group:

Detector

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9301.d

 Injection Date:
 28-Aug-2024 13:23:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222859-E-16
 Lab Sample ID:
 480-222859-16

Client ID: MW-07 Bailer

Operator ID: RS ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Data File: Injection Date: 28-Aug-2024 13:23:30 Instrument ID: HP5973N Lims ID: 480-222859-E-16 Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: RS ALS Bottle#: 10 Worklist Smp#: 10

Purge Vol: 5.000 mL Dil. Factor: 20.0000

N-8260 MV - 8260C ICAL Method: Limit Group:

Detector MS SCAN

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

SDG No.: 222859 Client Sample ID: MW-19 Lab Sample ID: 480-222886-3 Matrix: Ground Water Lab File ID: N9308.d Analysis Method: 8260C Date Collected: 08/27/2024 10:15 Date Analyzed: 08/28/2024 16:18 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 100

GC Column: ZB-624 (20) ID: 0.18(mm) Soil Extract Vol.:

Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 723313 Units: ug/L

Purge Volume: 5.0(mL)

Preparation Batch No.: Instrument ID: HP5973N

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	3500		100	41
100-41-4	Ethylbenzene	520		100	74
108-88-3	Toluene	100	U	100	51
1330-20-7	Xylenes, Total	200	U	200	66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	90		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9308.d

Lims ID: 480-222886-E-3

Client ID: MW-19 Sample Type: Client

Inject. Date: 28-Aug-2024 16:18:30 ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 100.0000

Sample Info: 480-222886-E-3 Misc. Info.: 480-0119738-017

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 16:41:18Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 16:41:18

T 113t ECVCITYCVICWCI. WITHVIZ			Date.			20-Aug-202+ 10.+1.10		
0	0:	RT (min)	Adj RT	Dlt RT		D	OnCol Amt	Flores
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	199297	25.0	
* 2 Chlorobenzene-d5	117	7.770	7.771	-0.001	92	660516	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	377052	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.266	0.000	92	208571	22.5	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.558	4.559	-0.001	56	273030	21.6	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.310	-0.001	95	671332	22.8	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	266654	25.5	
55 Benzene	78	4.552	4.552	0.000	91	1189437	35.3	
73 Toluene	92	6.365	6.365	-0.012	34	1284	0.0705	а
88 Ethylbenzene	91	7.904	7.898	0.006	99	183213	5.22	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	93	3152	0.2247	
91 o-Xylene	106	8.446	8.446	0.000	95	7935	0.5213	
S 126 Xylenes, Total	1				0		0.7460	

QC Flag Legend

Processing Flags

Review Flags

a - User Assigned ID

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9308.d

 Injection Date:
 28-Aug-2024 16:18:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-E-3
 Lab Sample ID:
 480-222886-3

Client ID: MW-19

Purge Vol: 5.000 mL Dil. Factor: 100.0000 ALS Bottle#: 17

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

Worklist Smp#:

RS

17

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9308.d

Lims ID: 480-222886-E-3

Client ID: MW-19 Sample Type: Client

Inject. Date: 28-Aug-2024 16:18:30 ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 100.0000

Sample Info: 480-222886-E-3 Misc. Info.: 480-0119738-017

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 16:41:18Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 16:41:18

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.5	90.00
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.6	86.37
\$ 6 Toluene-d8 (Surr)	25.0	22.8	91.24
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.5	102.17

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9308.d

 Injection Date:
 28-Aug-2024 16:18:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-E-3
 Lab Sample ID:
 480-222886-3

Client ID: MW-19

Operator ID: RS ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 100.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9308.d Injection Date: 28-Aug-2024 16:18:30 Instrument ID: HP5973N Lims ID: 480-222886-E-3 Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: RS ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 100.0000

MV - 8260C ICAL Method: N-8260 Limit Group:

Detector

Report Date: 28-Aug-2024 16:41:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240828-119738.b\\N9308.d

 Injection Date:
 28-Aug-2024 16:18:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-E-3
 Lab Sample ID:
 480-222886-3

Client ID: MW-19

Operator ID: RS ALS Bottle#: 17 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 100.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

73 Toluene, CAS: 108-88-3

Signal: 1

Not Detected

Expected RT: 6.38

Processing Integration Results

RT: 6.37
Area: 1284
Amount: 0.070524
Amount Units: ug/L

Reviewer: MHM2, 28-Aug-2024 16:41:09 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Poor chromatography

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.: 222859
 Lab Sample ID: 480-222886-4

 Client Sample ID: MW-19 (BAILER)
 Lab File ID: N9309.d

 Matrix: Water
 Lab File ID: N9309.d

 Analysis Method: 8260C
 Date Collected: 08/27/2024 10:45

 Sample wt/vol: 5(mL)
 Date Analyzed: 08/28/2024 16:41

Soil Aliquot Vol: _____ Dilution Factor: 50

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

 Soil Extract Vol.:
 GC Column: ZB-624 (20)
 ID: 0.18 (mm)

 Purge Volume: 5.0 (mL)
 Heated Purge: (Y/N) N
 pH:

% Moisture: _____ % Solids: ____ Level: (low/med) Low

Analysis Batch No.: 723313 Units: ug/L

Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	3600		50	21
100-41-4	Ethylbenzene	500		50	37
108-88-3	Toluene	50	U	50	26
1330-20-7	Xylenes, Total	55	J	100	33

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	93		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Eurofins Buffalo

Target Compound Quantitation Report

\\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d Data File:

Lims ID: 480-222886-C-4 Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 28-Aug-2024 16:41:30 ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Sample Info: 480-222886-C-4 Misc. Info.: 480-0119738-018

Operator ID: RS Instrument ID: HP5973N

\\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m Method:

Limit Group: MV - 8260C ICAL

Last Update: 29-Aug-2024 11:11:00 Calib Date: 14-Aug-2024 21:18:30 Deconvolution ID Integrator: **RTE** ID Type: Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File:

ZB-624 (0.18 mm) Column 1: Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 29-Aug-2024 11:11:00 Date:

T HOU ECVOIT (OVIOWOT: WITHIN)			Bato.			20 7 tag 2021 11:11:00		
_		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
								<u> </u>
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	201574	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	682628	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	386136	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.266	0.000	92	217385	23.2	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.558	4.559	-0.001	49	282149	22.1	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.311	-0.001	95	710860	23.4	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	87	272270	25.2	
55 Benzene	78	4.558	4.552	0.006	93	2417887	71.0	
73 Toluene	92	6.377	6.377	0.000	86	2606	0.1385	а
88 Ethylbenzene	91	7.904	7.898	0.006	98	362284	9.98	
90 m-Xylene & p-Xylene	106	8.032	8.026	0.006	95	5442	0.3753	
91 o-Xylene	106	8.446	8.446	0.000	96	17313	1.10	
S 126 Xylenes, Total	1				0		1.48	

QC Flag Legend

Processing Flags

Review Flags

a - User Assigned ID

Reagents:

N 8260 IS 00278 Amount Added: 1.00 Units: uL Run Reagent N 8260 Surr 00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d

 Injection Date:
 28-Aug-2024 16:41:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-C-4
 Lab Sample ID:
 480-222886-4

Client ID: MW-19 (BAILER)

Purge Vol: 5.000 mL Dil. Factor: 50.0000 ALS Bottle#:

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

Worklist Smp#:

RS

18

18

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9309.d

Lims ID: 480-222886-C-4 Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 28-Aug-2024 16:41:30 ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Sample Info: 480-222886-C-4 Misc. Info.: 480-0119738-018

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:11:00Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:11:00

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.2	92.75
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.1	88.24
\$ 6 Toluene-d8 (Surr)	25.0	23.4	93.48
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.2	100.94

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d

 Injection Date:
 28-Aug-2024 16:41:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-C-4
 Lab Sample ID:
 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: RS ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d Injection Date: 28-Aug-2024 16:41:30 Instrument ID: HP5973N Lims ID: 480-222886-C-4 Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: RS ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

MV - 8260C ICAL Method: N-8260 Limit Group:

Column: ZB-624 (0.18 mm) Detector MS SCAN

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d

 Injection Date:
 28-Aug-2024 16:41:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-C-4
 Lab Sample ID:
 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: RS ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9309.d

 Injection Date:
 28-Aug-2024 16:41:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-C-4
 Lab Sample ID:
 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: RS ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240828-119738.b\\N9309.d

 Injection Date:
 28-Aug-2024 16:41:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-C-4
 Lab Sample ID:
 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: RS ALS Bottle#: 18 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 50.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

73 Toluene, CAS: 108-88-3

Signal: 1

Not Detected Expected RT: 6.38

Processing Integration Results

RT: 6.38
Area: 2606
Amount: 0.138499
Amount Units: ug/L

Reviewer: MHM2, 29-Aug-2024 11:10:51 -04:00:00 (UTC)

Audit Action: Assigned Compound ID

Audit Reason: Peak assignment corrected

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: MW-13 Lab Sample ID: 480-222886-6 Matrix: Ground Water Lab File ID: N9310.d Analysis Method: 8260C Date Collected: 08/27/2024 11:45 Sample wt/vol: 5(mL) Date Analyzed: 08/28/2024 17:04 Soil Aliquot Vol: Dilution Factor: 1 GC Column: ZB-624 (20) ID: 0.18 (mm) Soil Extract Vol.: Heated Purge: (Y/N) N pH: Purge Volume: 5.0(mL) % Moisture: _____ % Solids: _____ Level: (low/med) Low

RESULT Q COMPOUND NAME CAS NO. RL MDL 71-43-2 1.0 U Benzene 1.0 0.41 100-41-4 Ethylbenzene 1.0 U 1.0 0.74 108-88-3 Toluene 1.0 U 1.0 0.51 1330-20-7 Xylenes, Total 2.0 U 2.0 0.66

Units: ug/L

Instrument ID: HP5973N

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	86		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Analysis Batch No.: 723313

Preparation Batch No.:

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9310.d

Lims ID: 480-222886-G-6

Client ID: MW-13 Sample Type: Client

Inject. Date: 28-Aug-2024 17:04:30 ALS Bottle#: 19 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222886-G-6 Misc. Info.: 480-0119738-019

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:11:00Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:13:35

	_							
		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
								-
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	214237	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	92	714977	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	392409	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.266	0.000	92	214701	21.5	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.559	4.559	0.000	97	292507	21.5	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	744210	23.4	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	87	291164	25.8	
55 Benzene	78	4.552	4.552	0.000	40	13444	0.3715	
73 Toluene	92		6.377				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.446				ND	
S 126 Xylenes, Total	1		30.000				ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9310.d

 Injection Date:
 28-Aug-2024 17:04:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-G-6
 Lab Sample ID:
 480-222886-6

Client ID: MW-13

Purge Vol: 5.000 mL Dil. Factor:

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

1.0000

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

19

19

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9310.d

Lims ID: 480-222886-G-6

Client ID: MW-13 Sample Type: Client

Inject. Date: 28-Aug-2024 17:04:30 ALS Bottle#: 19 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222886-G-6 Misc. Info.: 480-0119738-019

Operator ID: RS Instrument ID: HP5973N

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:11:00Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:13:35

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	21.5	86.19
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.5	86.07
\$ 6 Toluene-d8 (Surr)	25.0	23.4	93.44
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.8	103.07

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.: 222859
 Lab Sample ID: 480-222886-7

 Client Sample ID: MW-17
 Lab Sample ID: 480-222886-7

 Matrix: Ground Water
 Lab File ID: N9311.d

 Analysis Method: 8260C
 Date Collected: 08/27/2024 10:40

 Sample wt/vol: 5(mL)
 Date Analyzed: 08/28/2024 17:26

 Soil Aliquot Vol:
 Dilution Factor: 2

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u>

 Purge Volume:
 5.0 (mL)
 Heated Purge: (Y/N)
 N
 pH:

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

% Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 723313 Units: ug/L

Preparation Batch No.: ____ Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	2.0	U	2.0	0.82
100-41-4	Ethylbenzene	2.0	U	2.0	1.5
108-88-3	Toluene	2.0	U	2.0	1.0
1330-20-7	Xylenes, Total	4.0	U	4.0	1.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	91		75-123
2037-26-5	Toluene-d8 (Surr)	93		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9311.d

Lims ID: 480-222886-G-7

Client ID: MW-17 Sample Type: Client

Inject. Date: 28-Aug-2024 17:26:30 ALS Bottle#: 20 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Sample Info: 480-222886-G-7 Misc. Info.: 480-0119738-020

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:14:09Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:14:08

That Eaver Reviewer: William			Dato. 20 7 tag			20 / lug 202	_ 1 11.11.00	
		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.820	4.820	0.000	97	193625	25.0	
 2 Chlorobenzene-d5 	117	7.771	7.771	0.000	91	642754	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	371056	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.266	0.000	93	205016	22.8	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.559	4.559	0.000	96	269701	22.0	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	96	667039	23.3	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	260937	25.7	
55 Benzene	78		4.552			I	ND	U
73 Toluene	92		6.377			1	ND	
88 Ethylbenzene	91	7.898	7.898	0.000	1	2128	0.0622	а
90 m-Xylene & p-Xylene	106		8.026			1	ND	
91 o-Xylene	106		8.446			1	ND	
S 126 Xylenes, Total	1		30.000			I	ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Review Flags

U - Marked Undetected

a - User Assigned ID

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \\chromfs\\Buffalo\\ChromData\\HP5973N\\20240828-119738.b\\N9311.d

 Injection Date:
 28-Aug-2024 17:26:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-G-7
 Lab Sample ID:
 480-222886-7

Client ID: MW-17

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

20

20

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9311.d

Lims ID: 480-222886-G-7

Client ID: MW-17 Sample Type: Client

Inject. Date: 28-Aug-2024 17:26:30 ALS Bottle#: 20 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Sample Info: 480-222886-G-7 Misc. Info.: 480-0119738-020

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:14:09Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:14:08

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.8	91.06
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.0	87.81
\$ 6 Toluene-d8 (Surr)	25.0	23.3	93.16
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.7	102.74

Report Date: 29-Aug-2024 11:14:09 Chrom Revision: 2.3 20-Aug-2024 19:34:52 User Disabled Compound Report

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9311.d

 Injection Date:
 28-Aug-2024 17:26:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-G-7
 Lab Sample ID:
 480-222886-7

Client ID: MW-17

Operator ID: RS ALS Bottle#: 20 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

55 Benzene, CAS: 71-43-2

Processing Results

Reviewer: MHM2, 29-Aug-2024 11:13:56 -04:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9311.d Injection Date: 28-Aug-2024 17:26:30 Instrument ID: HP5973N 480-222886-G-7 Lims ID: Lab Sample ID: 480-222886-7

Client ID: MW-17

ALS Bottle#: 20 20 Operator ID: RS Worklist Smp#:

Purge Vol: 5.000 mL Dil. Factor: 2.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) MS SCAN Detector

88 Ethylbenzene, CAS: 100-41-4

Signal: 1

Not Detected

Expected RT: 7.90

Processing Integration Results

RT: 7.90 Area: 2128 0.062247 Amount: Amount Units: ug/L

Reviewer: MHM2, 29-Aug-2024 11:14:03 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: TB Lab Sample ID: 480-222886-9 Matrix: Water Lab File ID: N9312.d Analysis Method: 8260C Date Collected: 08/27/2024 00:00 Date Analyzed: 08/28/2024 17:48 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: GC Column: ZB-624 (20) ID: 0.18(mm) Soil Extract Vol.: Purge Volume: 5.0(mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 723313 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	89		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9312.d

Lims ID: 480-222886-A-9

Client ID: TB Sample Type: Client

Inject. Date: 28-Aug-2024 17:48:30 ALS Bottle#: 21 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222886-A-9 Misc. Info.: 480-0119738-021

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:14:09Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:14:53

		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	198996	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	658553	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	372668	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.267	4.266	0.006	92	205645	22.2	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.559	-0.007	97	268882	21.3	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	671252	22.9	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	262357	25.2	
55 Benzene	78		4.552				ND	
73 Toluene	92		6.377				ND	
88 Ethylbenzene	91		7.898				ND	
90 m-Xylene & p-Xylene	106		8.026				ND	
91 o-Xylene	106		8.446				ND	
S 126 Xylenes, Total	1		30.000				ND	7

QC Flag Legend

Processing Flags

7 - Failed Limit of Detection

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9312.d

 Injection Date:
 28-Aug-2024 17:48:30
 Instrument ID:
 HP5973N

 Lims ID:
 480-222886-A-9
 Lab Sample ID:
 480-222886-9

Client ID: TB

Purge Vol: 5.000 mL Dil. Factor:

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

1.0000

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

21

21

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9312.d

Lims ID: 480-222886-A-9

Client ID: TB Sample Type: Client

Inject. Date: 28-Aug-2024 17:48:30 ALS Bottle#: 21 Worklist Smp#: 21

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 480-222886-A-9 Misc. Info.: 480-0119738-021

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:14:09Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:14:53

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.2	88.87
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.3	85.18
\$ 6 Toluene-d8 (Surr)	25.0	22.9	91.50
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.2	100.83

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 480-721747/13	N9148.d
Level 2	IC 480-721747/14	N9149.d
Level 3	IC 480-721747/15	N9150.d
Level 4	IC 480-721747/16	N9151.d
Level 5	IC 480-721747/17	N9152.d
Level 6	ICIS 480-721747/18	N9153.d
Level 7	IC 480-721747/19	N9154.d
Level 8	IC 480-721747/20	N9155.d

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	# MAX	, R··Z	 MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE	/RSI	I UK CUD	OR COD
Dichlorodifluoromethane	+++++	1.2906		1.3003	1.2013	Δττο		1 100		0.1000	7.2	20.	n	
Dieniologiiluolomeenane	1.2163			1.3003	1.2013	1100		1.193		0.1000	/ • 2	20.		
Chloromethane	2.4074			2.9471	2.6663	Ave		2.639		0.1000	9.5	20.	0	
	2.6152	2.4989						2.055						
Vinyl chloride	1.2211	1.5661	1.3478	1.6582	1.6131	Ave		1.472		0.1000	10.0	20.	0	
	1.5328	1.4370	1.4069					9						
Butadiene	+++++	2.6137	2.2316	2.6650	2.4507	Ave		2.379			8.6	20.	0	
	2.3475							0						
Bromomethane	+++++	1.0532		0.8085	0.7307	Lin1	0.394	0.671		0.1000	8.2		0.9980	0.9900
	0.7414						2.	9						1
Chloroethane	1.0900			1.0165	0.9572	Ave		0.970		0.1000	10.1	20.	0	
	0.9060							0						
Trichlorofluoromethane	+++++			1.6177	1.5517	Ave		1.553		0.1000	8.7	20.	0	
	1.6140							5						
Dichlorofluoromethane	2.0968			2.4269	2.2994	Ave		2.203			9.4	20.	0	
	2.1129							5						
Ethyl ether	++++			1.5807	1.5685	Ave		1.565			9.6	20.	0	ŀ
	1.4843							6						ŀ
Acrolein	0.2870			0.2267	0.2249	Ave		0.243			11.8	20.	0	ŀ
	0.2310							5						
1,1,2-Trichloro-1,2,2-trifluoroeth	+++++			1.1748	1.0707	Ave		0.965		0.1000	15.6	20.	0	ŀ
ane	1.0508	0.9917	0.8685					3						ŀ
1,1-Dichloroethene	+++++	1.1030	0.7771	1.0508	0.9668	Ave		0.944		0.1000	12.6	20.	0	
	0.9830	0.9138	0.8136					0						
Acetone	1.1401	1.1161		0.8995	0.9311	Ave		0.951		0.1000	12.0	20.	0	
	0.8735	0.8572	0.8491					0						ŀ

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/14/2024 14:35 Calibration End Date: 08/14/2024 17:12 Calibration ID: 47043

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	1 # 1	ÍAX RSD	R^2		IN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE	1 1	RSE	OR COD	С	OR COD
Iodomethane	1.4911 1.7669	1.8914 1.7116		1.9884	1.8770	Ave		1.752			9.3		20.0			
Carbon disulfide	+++++ 3.4968	3.8496 3.2896		3.9448	3.5720	Ave		3.464		0.1000	10.3		20.0			
Allyl chloride	3.2668 3.5344	4.2580 3.3294		3.9437	3.7799	Ave		3.589			10.5		20.0			
Methyl acetate	2.4057 2.2387	2.6123 2.1726		2.3321	2.2484	Ave		2.296		0.1000	6.6		20.0			
Methylene Chloride	+++++ 1.1766	1.9970 1.1057		1.4177	1.2464	Lin1	1.016	1.081		0.1000	9.4			0.9980		0.9900
2-Methyl-2-propanol	+++++ 0.1786	0.1849 0.1992		0.1585	0.1806	Ave	. 1	0.182			9.7		20.0			
Methyl tert-butyl ether	4.1436 3.8348	4.7974 3.7783		4.2318	3.9727	Ave		4.058		0.1000	8.4		20.0			
trans-1,2-Dichloroethene	++++ 1.1052	1.3138 1.0701		1.2906	1.1399	Ave		1.133		0.1000	11.0		20.0			
Acrylonitrile	1.3237 1.2002	1.3714 1.1592		1.2576	1.2433	Ave		1.242			6.1		20.0			
Hexane	+++++ 2.7557	2.3589 2.5478		2.8140	2.7977	Ave		2.463			16.3		20.0			
1,1-Dichloroethane	2.0526 2.6617			2.8332	2.7877	Ave		2.568		0.2000	11.2		20.0			
Vinyl acetate	+++++ 3.5474	3.2135 3.8143		2.8209	3.2590	Ave		3.340			15.8		20.0			
2,2-Dichloropropane	0.7625 0.9920			1.1068	1.0306	Ave		0.986			11.5		20.0			
cis-1,2-Dichloroethene	1.1121	1.2142		1.3451	1.2866	Ave		1.200		0.1000	7.2		20.0			
2-Butanone (MEK)	1.3665 1.4015	1.5593 1.3312		1.3934	1.4378	Ave		1.398		0.1000	5.3		20.0			
Chlorobromomethane	0.5378 0.6040			0.6396	0.6154	Ave		0.603			11.2		20.0			
Tetrahydrofuran	1.6445 1.0415	1.5123	1.1406	1.1326	1.0728	Lin1	0.842	0.984			9.8			0.9990		0.9900
Chloroform	+++++ 2.0462	2.5695 1.9071	2.0094	2.1686	2.1571	Ave		2.101		0.2000	11.3		20.0			

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/14/2024 14:35 Calibration End Date: 08/14/2024 17:12 Calibration ID: 47043

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF		# MAX %RSD	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			/RSE	/RSE	OR COD	OR COD
1,1,1-Trichloroethane	+++++ 1.4648		1.3564					1.387			0.1000	9.9	20.0		
Cyclohexane	+++++ 3.3957	3.3225 3.2750		3.7486	3.6411	Ave		3.263			0.1000	13.0	20.0		
Carbon tetrachloride	0.7907 0.9499	0.7841	0.6607 0.9857	0.9642	0.9916	Ave		0.891			0.1000	14.4	20.0		
1,1-Dichloropropene	+++++ 1.5565	1.6339 1.4699	1.2556 1.3478	1.5486	1.5673	Ave		1.482				9.1	20.0		
Benzene	3.5845 4.3193	5.0215 4.1064		4.4703	4.4882	Ave		4.222			0.5000	10.7	20.0		
Isobutyl alcohol	0.0584 0.0786	0.0661 0.0921	0.0626	0.0624	0.0718	Ave		0.070				16.7	20.0		
1,2-Dichloroethane	1.9105 2.0119	2.2719		1.9984	2.1251	Ave		2.015			0.1000	6.4	20.0		
n-Heptane	+++++ 3.1596	2.8302 2.9758		3.2883	3.1973	Ave		2.880				14.6	20.0		
Trichloroethene	+++++ 1.0419	1.0989		1.0661	1.1072	Ave		1.035			0.2000	6.0	20.0		
Methylcyclohexane	+++++ 2.1530	1.7867 1.9942	1.5376 1.8250	2.3233	2.2331	Ave		1.979			0.1000	14.1	20.0		
1,2-Dichloropropane	1.2711 1.2949		1.0956 1.2238	1.3134	1.3856	Ave		1.278			0.1000	7.6	20.0		
Dibromomethane	0.6349 0.6970	0.7997 0.6499		0.7291	0.7452	Ave		0.698			0.1000	8.0	20.0		
1,4-Dioxane	0.0012 0.0023	0.0014		0.0023	0.0024	Lin1	-0.00	0.002				9.7		0.9990	0.9900
Bromodichloromethane	1.1463 1.2594	1.2559 1.2259		1.1512	1.2475	Ave	•	1.194			0.2000	7.0	20.0		
2-Chloroethyl vinyl ether	0.8489 0.8869	0.9525 0.8719		0.8330	0.9121	Ave		0.860				7.8	20.0		
cis-1,3-Dichloropropene	1.2492 1.5146	1.5940 1.4812		1.3408	1.4940	Ave		1.423			0.2000	10.1	20.0		
4-Methyl-2-pentanone (MIBK)	0.2541 0.2702		0.2493	0.2718	0.2781	Ave		0.269			0.1000	5.1	20.0		
Toluene	+++++ 0.6893	0.7183	0.6409	0.7041	0.7291	Ave		0.689			0.4000	4.8	20.0		

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/14/2024 14:35 Calibration End Date: 08/14/2024 17:12 Calibration ID: 47043

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF		MAX %RSD	R^2		IIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE	RSE	OR COD	С	OR COD
trans-1,3-Dichloropropene	0.2790 0.3554	0.2690 0.3745		0.3003	0.3342	Ave		0.320		0.1000	15.4	20.0			
Ethyl methacrylate	++++ 0.3190	0.2647 0.3465		0.2514	0.2973	Ave		0.295			16.9	20.0			
1,1,2-Trichloroethane	0.1857 0.2198	0.2416 0.2170		0.2252	0.2240	Ave		0.215		0.1000	7.9	20.0			
Tetrachloroethene	+++++ 0.3040	0.2906 0.2925		0.3136	0.3142	Ave		0.288		0.2000	9.1	20.0			
1,3-Dichloropropane	0.4166 0.4485	0.4319 0.4329		0.4610	0.4498	Ave		0.432			4.8	20.0			
2-Hexanone	0.5143 0.5714	0.6133 0.5498		0.5779	0.6015	Ave		0.560		0.1000	6.5	20.0			
Dibromochloromethane	0.1979 0.2220	0.2164		0.2139	0.2038	Ave		0.210		0.1000	13.5	20.0			
1,2-Dibromoethane	0.2110 0.2705	0.2649		0.2375	0.2553	Ave		0.249			9.5	20.0			
Chlorobenzene	0.7153 0.8028	0.9262 0.7980		0.8288	0.7947	Ave		0.793		0.5000	8.5	20.0			
Ethylbenzene	1.0784 1.3948	1.4680 1.3613		1.4431	1.3884	Ave		1.329		0.1000	9.8	20.0			
1,1,1,2-Tetrachloroethane	0.1927 0.2265	0.1854 0.2507		0.2303	0.2162	Ave		0.216			13.9	20.0			
m,p-Xylene	0.4188 0.5466	0.5895 0.5336		0.6013	0.5533	Ave		0.531		0.1000	10.9	20.0			
o-Xylene	0.5197 0.5691	0.6941 0.5605		0.6159	0.5791	Ave		0.576		0.3000	9.8	20.0			
Styrene	0.6680 0.9149	0.8718 0.8909		0.9274	0.9440	Ave		0.864		0.3000	10.1	20.0			
Bromoform	+++++ 0.1498	0.0981 0.1582	0.1005	0.1227	0.1310	Lin1	-0.09	0.155		0.1000	13.4		0.9970		0.9900
Isopropylbenzene	+++++ 2.6451	2.4108 2.6103		2.6005	2.6628	Ave		2.493		0.1000	8.1	20.0			
Bromobenzene	0.5601 0.6422	0.6728 0.6174		0.6585	0.6676	Ave		0.614			9.7	20.0			
1,1,2,2-Tetrachloroethane	0.7053 0.7836	0.8776 0.7616		0.7561	0.8221	Ave		0.766		0.3000	8.3	20.0			

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/14/2024 14:35 Calibration End Date: 08/14/2024 17:12 Calibration ID: 47043

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF		# MAX %RSD	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE	/RSE	OR COD	OR COD
N-Propylbenzene	+++++ 3.0988	2.9501 3.0233		3.1674	3.1981	Ave		2.975			7.5	20.0		
1,2,3-Trichloropropane	0.2244 0.2540	0.2986 0.2351		0.2286	0.2610	Ave		0.245			10.2	20.0		
trans-1,4-Dichloro-2-butene	+++++ 0.3537	0.2648 0.3807		0.3152	0.3679	Ave		0.340			13.6	20.0		
2-Chlorotoluene	0.5049 0.6065	0.6761 0.5990		0.5938	0.6398	Ave		0.580			11.6	20.0		
1,3,5-Trimethylbenzene	+++++ 2.2528			2.2681	2.3200	Ave		2.171			8.2	20.0		
4-Chlorotoluene	1.6137 2.0895	2.1604 2.0342		2.0537	2.1695	Ave		1.982			9.6	20.0		
tert-Butylbenzene	+++++	0.4424		0.4771	0.4879	Ave		0.451			9.4	20.0		
1,2,4-Trimethylbenzene	+++++ 2.3551	2.3735 2.2902		2.2769	2.4062	Ave		2.257			7.1	20.0		
sec-Butylbenzene	+++++ 2.9398	2.9106 2.8965		2.9638	3.0761	Ave		2.799			11.0	20.0		
1,3-Dichlorobenzene	1.0277 1.2673	1.4153 1.2191		1.3554	1.3122	Ave		1.242		0.6000	9.9	20.0		
4-Isopropyltoluene	+++++ 2.5006	2.3760 2.4564		2.4615	2.5669	Ave		2.362			8.8	20.0		
1,4-Dichlorobenzene	1.0043	1.4525 1.2597		1.2980	1.3810	Ave		1.263		0.5000	10.7	20.0		
n-Butylbenzene	+++++ 2.2366			2.2774	2.3402	Ave		2.139			9.3	20.0		
1,2-Dichlorobenzene	0.9752 1.2268	1.4597 1.2094		1.2824	1.3052	Ave		1.221		0.4000	11.6	20.0		
1,2-Dibromo-3-Chloropropane	+++++	0.1238 0.1529		0.0965	0.0955	Ave		0.116		0.0500	19.8	20.0		
1,2,4-Trichlorobenzene	0.6843 0.7910	0.8664	0.6842	0.8165	0.8392	Ave		0.782		0.2000	8.8	20.0		
Hexachlorobutadiene	+++++	0.2963	0.2493	0.3542	0.3863	Ave		0.326			15.7	20.0		
Naphthalene	2.2233 2.5510	2.7616	2.2388	2.4185	2.5479	Ave		2.481			7.4	20.0		

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/14/2024 14:35 Calibration End Date: 08/14/2024 17:12 Calibration ID: 47043

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX %RSD	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	TYPE	В	М1	М2			/RSE		/RSE	OR COD		OR COD
1,2,3-Trichlorobenzene	0.5398 0.7176	0.7963 0.7554		0.7160	0.7980	Ave		0.710				12.2		20.0			
Dibromofluoromethane (Surr)	1.1950 1.1569	1.1784 1.1651	1.1583 1.1349	1.1496	1.1641	Ave		1.162				1.6		20.0			
1,2-Dichloroethane-d4 (Surr)	1.6081 1.5774	1.6256 1.5554	1.5647 1.5711	1.5909	1.5969	Ave		1.586				1.5		20.0			
Toluene-d8 (Surr)	1.1239 1.1153	1.1030 1.1422	1.1217 1.1012	1.1011	1.1035	Ave		1.114				1.3		20.0			
4-Bromofluorobenzene (Surr)	0.4046 0.3986	0.3933 0.3965	0.4025 0.3891	0.3892	0.3873	Ave		0.395				1.6		20.0			

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:]	LAB SAMPLE ID:	LAB FILE ID:
Level :	1 :	IC 480-721747/13	N9148.d
Level 2	2	IC 480-721747/14	N9149.d
Level 3	3	IC 480-721747/15	N9150.d
Level	4	IC 480-721747/16	N9151.d
Level	5	IC 480-721747/17	N9152.d
Level	6	ICIS 480-721747/18	N9153.d
Level '	7	IC 480-721747/19	N9154.d
Level	8 :	IC 480-721747/20	N9155.d

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Ave	+++++ 247550	10221 483216	16761 939331	50229	97744	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
Chloromethane	FB	Ave	9146 532292	24431 1042412	38247 2061613	113839	216951	0.500 25.0	1.00 50.0	2.00 100	5.00	10.0
Vinyl chloride	FB	Ave	4639 311975	12403 599450	21246 1175426	64054	131256	0.500 25.0	1.00 50.0	2.00 100	5.00	10.0
Butadiene	FB	Ave	+++++ 477799	20699 918487	35179 1790033	102944	199403	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
Bromomethane	FB	Lin1	+++++ 150910	8341 269175	12367 565290	31230	59452	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
Chloroethane	FB	Ave	4141 184396	8810 360151	15221 709078	39267	77880	0.500 25.0	1.00 50.0	2.00 100	5.00	10.0
Trichlorofluoromethane	FB	Ave	+++++ 328496	13291 658401	19914 1312800	62489	126255	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
Dichlorofluoromethane	FB	Ave	7966 430044	20387 856734	31567 1722143	93745	187095	0.500 25.0	1.00 50.0	2.00 100	5.00	10.0
Ethyl ether	FB	Ave	+++++ 302100	14765 599757	25239 1188320	61059	127626	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
Acrolein	FB	Ave	5452 235052	11270 474552	16685 1064490	43782	91497	2.50 125	5.00 250	10.0 500	25.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroetha ne	FB	Ave	+++++	6846	11601	45382	87122	+++++	1.00	2.00	5.00	10.0
1,1-Dichloroethene	FB	Ave	213876 ++++ 200066	413700 8735 381193	725625 12250 679766	40590	78661	25.0 ++++ 25.0	50.0 1.00 50.0	100 2.00 100	5.00	10.0
Acetone	FB	Ave	21656 888950	44195 1787901	74183 3546980	173735	378810	2.50 125	5.00	10.0	25.0	50.0
Iodomethane	FB	Ave	5665 359627	14979 713974	26532 1344256	76807	152722	0.500 25.0	1.00	2.00	5.00	10.0
Carbon disulfide	FB	Ave	+++++	30487	48743	152380	290637	+++++	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5
			711724	1372247	2513412			25.0	50.0	100		
Allyl chloride	FB	Ave	12411 719379	33721 1388812	54496 2628746	152336	307557	0.500 25.0	1.00	2.00	5.00	10.0
Methyl acetate	FB	Ave	18279 911293	41376 1812542	68019 3682431	180166	365883	1.00 50.0	2.00	4.00	10.0	20.0
Methylene Chloride	FB	Lin1	+++++ 239486	15815 461227	23039 891298	54761	101419	+++++ 25.0	1.00 50.0	2.00	5.00	10.0
2-Methyl-2-propanol	FB	Ave	+++++ 363549	14640 831127	26396 1756609	61209	146931	++++ 250	10.0 500	20.0	50.0	100
Methyl tert-butyl ether	FB	Ave	15742 780513	37993 1576108	61685 3172647	163467	323248	0.500 25.0	1.00 50.0	2.00	5.00	10.0
trans-1,2-Dichloroethene	FB	Ave	+++++ 224939	10405 446398	16193 827532	49854	92747	+++++ 25.0	1.00 50.0	2.00	5.00	10.0
Acrylonitrile	FB	Ave	50289 2442759	108609 4835564	193209 9659575	485778	1011614	5.00 250	10.0 500	20.0 1000	50.0	100
Hexane	FB	Ave	+++++ 560885	18681 1062782	26735 1899841	108700	227635	+++++ 25.0	1.00	2.00	5.00	10.0
1,1-Dichloroethane	FB	Ave	7798 541738	22973 1066195	36689 2026427	109439	226825	0.500 25.0	1.00	2.00	5.00	10.0
Vinyl acetate	FB	Ave	+++++ 1444018	50898 3182191	82459 6871530	217929	530345	+++++ 50.0	2.00	4.00	10.0	20.0
2,2-Dichloropropane	FB	Ave	2897 201906	8686 426371	13990 832378	42754	83858	0.500 25.0	1.00	2.00	5.00	10.0
cis-1,2-Dichloroethene	FB	Ave	4225 252808	9616 484284	18082 918436	51957	104690	0.500 25.0	1.00	2.00	5.00	10.0
2-Butanone (MEK)	FB	Ave	25958 1426270	61743 2776573	107672 5563408	269118	584924	2.50 125	5.00 250	10.0 500	25.0	50.0
Chlorobromomethane	FB	Ave	2043 122934	5927 238552	8727 467770	24708	50069	0.500 25.0	1.00 50.0	2.00	5.00	10.0
Tetrahydrofuran	FB	Lin1	12495 423958	23953 821962	35959 1630019	87504	174580	1.00 50.0	2.00	4.00 200	10.0	20.0
Chloroform	FB	Ave	+++++ 416469	20349 795535	31675 1549325	83768	175517	+++++ 25.0	1.00 50.0	2.00	5.00	10.0
1,1,1-Trichloroethane	FB	Ave	+++++ 298145	10171 596787	18009 1133269	58422	123542	+++++ 25.0	1.00 50.0	2.00	5.00	10.0
Cyclohexane	FB	Ave	+++++ 691145	26313 1366144	39473 2467852	144799	296260	+++++ 25.0	1.00 50.0	2.00	5.00	10.0
Carbon tetrachloride	FB	Ave	3004 193341	6210 418807	10415 823500	37244	80680	0.500 25.0	1.00	2.00	5.00	10.0
1,1-Dichloropropene	FB	Ave	+++++ 316804	12940 613151	19793 1126056	59820	127527	+++++ 25.0	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5
Benzene	FB	Ave	13618 879120	39768 1712962	60232 3316644	172678	365192	0.500 25.0	1.00	2.00	5.00	10.0
Isobutyl alcohol	FB	Ave	5548 399885	13086 960272	24686	60219	146126	12.5 625	25.0 1250	50.0	125	250
1,2-Dichloroethane	FB	Ave	7258 409498	17992 800357	31700 1567285	77193	172909	0.500 25.0	1.00	2.00	5.00	10.0
n-Heptane	FB	Ave	+++++ 643093	22414 1241342	32723 2199720	127019	260152	+++++ 25.0	1.00	2.00	5.00	10.0
Trichloroethene	FB	Ave	+++++ 212072	8703 420353	15549 783321	41182	90088	+++++ 25.0	1.00	2.00	5.00	10.0
Methylcyclohexane	FB	Ave	+++++ 438206	14150 831874	24238 1524795	89743	181696	+++++ 25.0	1.00	2.00	5.00	10.0
1,2-Dichloropropane	FB	Ave	4829 263565	11108 517352	17270 1022449	50733	112738	0.500 25.0	1.00	2.00	5.00	10.0
Dibromomethane	FB	Ave	2412 141866	6333 271121	10642 550046	28164	60631	0.500 25.0	1.00	2.00	5.00	10.0
1,4-Dioxane	CBNZd 5	Lin1	323	774	2350	6226	14236	10.0	20.0	40.0	100	200
Bromodichloromethane	FB	Ave	33112 4355	63136 9946	127523 16085	44467	101504	500 0.500	1000	2000	5.00	10.0
2-Chloroethyl vinyl ether	FB	Ave	256336 3225	511363 7543	1042932 11395	32179	74216	25.0 0.500	50.0	100	5.00	10.0
cis-1,3-Dichloropropene	FB	Ave	180514 4746	363688 12624	713867 18865	51791	121560	25.0 0.500	50.0	100	5.00	10.0
4-Methyl-2-pentanone (MIBK)	CBNZd	Ave	308265 17099	617877 40665	1269057 66965	184819	404521	25.0 2.50	50.0	100	25.0	50.0
	5		971778	1915272	3861400			125	250	500		
Toluene	CBNZd 5	Ave	+++++	19908	34434	95735	212118	+++++	1.00	2.00	5.00	10.0
trans-1,3-Dichloropropene	CBNZd	Ave	495846 3755	979789 7456	1874627 14138	40832	97219	25.0 0.500	50.0	100	5.00	10.0
	ODNE 1		255661	529740	1119993	24177	0.6470	25.0	50.0	100	5.00	
Ethyl methacrylate	CBNZd 5	Ave	+++++	7338 490165	12215	34177	86479	+++++	1.00	2.00	5.00	10.0
1,1,2-Trichloroethane	CBNZd	Ave	229495 2499	6696	1042419	30619	65160	25.0 0.500	50.0	2.00	5.00	10.0
Matural laurathana	ODNE 1	7	158088	306887	596491	42642	01200	25.0	50.0	100	E 00	10.0
Tetrachloroethene	CBNZd 5	Ave	+++++	8056	13126	42642	91392	+++++	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

ANALYTE	IS CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5
		218695	413682	757639			25.0	50.0	100		
1,3-Dichloropropane	CBNZd Ave 5	5607	11972	21220	62684	130858	0.500	1.00	2.00	5.00	10.0
		322643	612289	1229060			25.0	50.0	100		
2-Hexanone	CBNZd Ave	34611	84990	139865	392882	874975	2.50	5.00	10.0	25.0	50.0
		2055270	3888634	7768163			125	250	500		
Dibromochloromethane	CBNZd Ave 5	2664	5997	8115	29081	59297	0.500	1.00	2.00	5.00	10.0
0.0.0.0		159701	328352	709967	22225	5.4050	25.0	50.0	100		10.0
1,2-Dibromoethane	CBNZd Ave	2840	7343	11807	32295	74278	0.500	1.00	2.00	5.00	10.0
	GD375 1 -	194595	380535	776111	11000	001100	25.0	50.0	100		100
Chlorobenzene	CBNZd Ave 5	9627	25673	38866	112697	231182	0.500	1.00	2.00	5.00	10.0
Dalla de la compania	CDME d A	577507 14514	1128821 40688	2179835 65411	196217	403905	25.0 0.500	50.0	100	5.00	10.0
Ethylbenzene	CBNZd Ave 5				196217	403905				5.00	10.0
1,1,1,2-Tetrachloroethane	CDME d A	1003442 2593	1925598 5140	3712424 9414	31309	62892	25.0 0.500	50.0	2.00	5.00	10.0
1,1,1,2-Tetrachloroethane	CBNZd Ave 5				31309	62892				5.00	10.0
m,p-Xylene	CBNZd Ave	162931 5637	354556 16340	742455 26742	81761	160972	25.0 0.500	50.0	100	5.00	10.0
m,p-xylene	5	393205	754706	1463606	81/61	160972	25.0	50.0	100	5.00	10.0
o-Xylene	CBNZd Ave	6995	19239	28872	83747	168474	0.500	1.00	2.00	5.00	10.0
0-Aylene	5	409437	792770	1537838	03/4/	1004/4	25.0	50.0	100	3.00	10.0
Styrene	CBNZd Ave	8991	24164	44730	126098	274618	0.500	1.00	2.00	5.00	10.0
Styrene	5	658159	1260196	2488921	120030	274010	25.0	50.0	100	3.00	10.0
Bromoform	CBNZd Lin1	++++	2719	5401	16688	38108	+++++	1.00	2.00	5.00	10.0
		107738	223710	+++++			25.0	50.0	+++++		
Isopropylbenzene	DCBd4 Ave	+++++	39569	68743	212587	435901	+++++	1.00	2.00	5.00	10.0
1 11		1075798	2095353	4000720			25.0	50.0	100		
Bromobenzene	DCBd4 Ave	4588	11043	16479	53829	109284	0.500	1.00	2.00	5.00	10.0
		261216	495614	974377			25.0	50.0	100		
1,1,2,2-Tetrachloroethane	DCBd4 Ave	5778	14404	22135	61812	134575	0.500	1.00	2.00	5.00	10.0
		318716	611310	1231182			25.0	50.0	100		
N-Propylbenzene	DCBd4 Ave	+++++ 1260328	48422 2426844	83794 4666610	258930	523530	+++++ 25.0	1.00 50.0	2.00 100	5.00	10.0
1,2,3-Trichloropropane	DCBd4 Ave	1838	4901	7474	18688	42725	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5
			103290	188751	387175			25.0	50.0	100		
trans-1,4-Dichloro-2-butene	DCBd4	Ave	+++++	4346	10053	25771	60225	+++++	1.00	2.00	5.00	10.0
			143857	305577	648529			25.0	50.0	100		
2-Chlorotoluene	DCBd4	Ave	4136	11097	15563	48539	104740	0.500	1.00	2.00	5.00	10.0
			246667	480789	903309			25.0	50.0	100		
1,3,5-Trimethylbenzene	DCBd4	Ave	+++++	36400	58975	185419	379780	+++++	1.00	2.00	5.00	10.0
			916255	1799730	3455356			25.0	50.0	100		
4-Chlorotoluene	DCBd4	Ave	13219	35460	59368	167888	355152	0.500	1.00	2.00	5.00	10.0
			849843	1632903	3171396			25.0	50.0	100		
tert-Butylbenzene	DCBd4	Ave	++++	7261	12018	38999	79878	++++	1.00	2.00	5.00	10.0
1,2,4-Trimethylbenzene	DGD 14	7	192935	384712 38958	713143 63928	186133	393900	25.0	50.0	2.00	F 00	10.0
1,2,4-Trimethylbenzene	DCBd4	Ave	957860	1838348	3535498	186133	393900	25.0	50.0	100	5.00	10.0
sec-Butylbenzene	DCBd4	7110	+++++	47773	70829	242287	503564	25.0	1.00	2.00	5.00	10.0
Sec-ButyIbenzene	DCBQ4	Ave	1195671	2325057	4364912	242201	303364	25.0	50.0	100	3.00	10.0
1,3-Dichlorobenzene	DCBd4	Δττο	8419	2323037	38700	110806	214811	0.500	1.00	2.00	5.00	10.0
1,3 Dieniolobenzene	DCDQ4	1100	515452	978578	1910293	110000	214011	25.0	50.0	100	3.00	10.0
4-Isopropyltoluene	DCBd4	Ave	+++++	38999	64586	201224	420201	+++++	1.00	2.00	5.00	10.0
ribopropyreoraene	Boba i	1100	1017056	1971761	3630745	201221	120201	25.0	50.0	100	3.00	10.0
1,4-Dichlorobenzene	DCBd4	Ave	8227	23840	40130	106107	226072	0.500	1.00	2.00	5.00	10.0
,			532738	1011205	1944281			25.0	50.0	100		
n-Butylbenzene	DCBd4	Ave	+++++	35072	58339	186173	383091	+++++	1.00	2.00	5.00	10.0
1			909656	1799121	3231997			25.0	50.0	100		
1,2-Dichlorobenzene	DCBd4	Ave	7989	23959	39367	104833	213667	0.500	1.00	2.00	5.00	10.0
			498962	970792	1834373			25.0	50.0	100		
1,2-Dibromo-3-Chloropropane	DCBd4	Ave	++++	2032	3297	7891	15638	+++++	1.00	2.00	5.00	10.0
			52867	122773	++++			25.0	50.0	++++		
1,2,4-Trichlorobenzene	DCBd4	Ave	5606	14221	22410	66750	137374	0.500	1.00	2.00	5.00	10.0
			321704	662201	1243552			25.0	50.0	100		
Hexachlorobutadiene	DCBd4	Ave	+++++	4864	8164	28959	63238	+++++	1.00	2.00	5.00	10.0
			138182	300746	464923			25.0	50.0	100		
Naphthalene	DCBd4	Ave	18213	45328	73326	197714	417088	0.500	1.00	2.00	5.00	10.0
		_	1037551	2095849	4123340	50504	10000	25.0	50.0	100	5 00	
1,2,3-Trichlorobenzene	DCBd4	Ave	4422	13070	20669	58534	130632	0.500	1.00	2.00	5.00	10.0
D'1	770		291870	606393	1198813 228232	222028	236800	25.0	50.0 25.0	100 25.0	25.0	25.0
Dibromofluoromethane (Surr)	FB	Ave	226994 235471	233301 243006	228232	222028	236800	25.0 25.0	25.0	25.0	25.0	25.0
1,2-Dichloroethane-d4 (Surr)	FB	Ave	305462	321843	308312	307258	324829	25.0	25.0	25.0	25.0	25.0
1,2-Dichiofoethane-u4 (Suff)	LD.	Ave	321047	321843	328151	301238	324029	25.0	25.0	25.0	23.0	23.0
Toluene-d8 (Surr)	CBNZd	Δττο	756325	764297	753305	748583	802602	25.0	25.0	25.0	25.0	25.0
TOTACHE GO (DUIT)	5	1100	, 50525	104231	, 55505	740505	002002	25.0	23.0	23.0	23.0	23.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20 ID: 0.18 (mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE		RESPONSE						CONCENTRATION (UG/L)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5			
			TAT 0	LVL /	LVL 8			LVL 6	ГАГ /	LVL 8					
			802312	807800	794737			25.0	25.0	25.0					
4-Bromofluorobenzene (Surr)	CBNZd 5	Ave	272290	272503	270288	264606	281657	25.0	25.0	25.0	25.0	25.0			
			286716	280448	280782			25.0	25.0	25.0					

Curve Type Legend:

Ave = Average ISTD

Lin1 = Linear 1/conc ISTD

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 480-721747/13	N9148.d
Level 2	IC 480-721747/14	N9149.d
Level 3	IC 480-721747/15	N9150.d
Level 4	IC 480-721747/16	N9151.d
Level 5	IC 480-721747/17	N9152.d
Level 6	ICIS 480-721747/18	N9153.d
Level 7	IC 480-721747/19	N9154.d
Level 8	IC 480-721747/20	N9155.d

ANALYTE			PERCEN	T ERROR			PERCENT ERROR LIMIT					
	LVL 1 #		LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6
Dichlorodifluoromethane	++++	8.1						30				
Chloromethane	-8.8						30					
Vinyl chloride	-17.1						30					
Butadiene	++++	9.9						30				
Bromomethane	+++++	-1.9						30				
Chloroethane	12.4						30					
Trichlorofluoromethane	+++++	8.0						30				
Dichlorofluoromethane	-4.8						30					
Ethyl ether	+++++	19.1						30				
Acrolein	17.9						30					
1,1,2-Trichloro-1,2,2-trifluoroethane	++++	-10.4						30				
1,1-Dichloroethene	++++	16.8						30				
Acetone	19.9						30					
Iodomethane	-14.9						30					
Carbon disulfide	+++++	11.1						30				

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE		PERCEN	I ERROR			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 # LVL 3 # LVL 8 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6	
Allyl chloride	-9.0					30						
Methyl acetate	4.8					30						
Methylene Chloride	++++	-9.3					30					
2-Methyl-2-propanol	++++	1.1					30					
Methyl tert-butyl ether	2.1					30						
trans-1,2-Dichloroethene	++++	15.9					30					
Acrylonitrile	6.6					30						
Hexane	++++	-4.2					30					
1,1-Dichloroethane	-20.1					30						
Vinyl acetate	++++	-3.8					30					
2,2-Dichloropropane	-22.7					30						
cis-1,2-Dichloroethene	-7.4					30						
2-Butanone (MEK)	-2.3					30						
Chlorobromomethane	-10.9					30						
Tetrahydrofuran	-18.5					30						
Chloroform	++++	22.3					30					
1,1,1-Trichloroethane	++++	-7.4					30					
Cyclohexane	+++++	1.8					30					
Carbon tetrachloride	-11.3					30						
1,1-Dichloropropene	++++	10.2					30					
Benzene	-15.1					30						

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE		PERO	CENT ERROR			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 # LVL 3 LVL 8 #	# LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6	
Isobutyl alcohol	-16.9	++++				30						
1,2-Dichloroethane	-5.2					30						
n-Heptane	++++	-1.7					30					
Trichloroethene	++++	6.2					30					
Methylcyclohexane	++++	-9.7					30					
1,2-Dichloropropane	-0.6					30						
Dibromomethane	-9.1					30						
1,4-Dioxane	-6.3					30						
Bromodichloromethane	-4.0					30						
2-Chloroethyl vinyl ether	-1.3					30						
cis-1,3-Dichloropropene	-12.3					30						
4-Methyl-2-pentanone (MIBK)	-5.7					30						
Toluene	++++	4.2					30					
trans-1,3-Dichloropropene	-12.9					30						
Ethyl methacrylate	++++	-10.4					30					
1,1,2-Trichloroethane	-13.7					30						
Tetrachloroethene	++++	0.6					30					
1,3-Dichloropropane	-3.7					30						
2-Hexanone	-8.3					30						
Dibromochloromethane	-5.9					30						
1,2-Dibromoethane	-15.5					30						

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			PERCENT	Γ ERROR						PI	ERCENT E	RROR LIM	IT	
	LVL 1 #	LVL 2 # LVL 8 #	LVL 3 #	LVL 4	# LV	L 5 #	LVL	6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6
Chlorobenzene	-9.8								30					
Ethylbenzene	-18.9								30					
1,1,1,2-Tetrachloroethane	-11.1								30					
m,p-Xylene	-21.1								30					
o-Xylene	-9.8								30					
Styrene	-22.7								30					
Bromoform	++++	22.3								30				
Isopropylbenzene	++++	-3.3								30				
Bromobenzene	-8.8								30					
1,1,2,2-Tetrachloroethane	-7.9								30					
N-Propylbenzene	++++	-0.8								30				
1,2,3-Trichloropropane	-8.6								30					
trans-1,4-Dichloro-2-butene	++++	-22.2								30				
2-Chlorotoluene	-13.0								30					
1,3,5-Trimethylbenzene	++++	2.1								30				
4-Chlorotoluene	-18.6								30					
tert-Butylbenzene	++++	-2.0								30				
1,2,4-Trimethylbenzene	++++	5.2								30				
sec-Butylbenzene	++++	4.0								30				
1,3-Dichlorobenzene	-17.3								30					
4-Isopropyltoluene	++++	0.6								30				

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 721747

SDG No.: 222859

Instrument ID: HP5973N GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			PERCEN'	r error				PI	ERCENT E	RROR LIM	IT	
	LVL 1 # LVL 7 #	LVL 2 # LVL 8 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6
1,4-Dichlorobenzene	-20.5						30					
n-Butylbenzene	+++++	-0.1						30				
1,2-Dichlorobenzene	-20.2						30					
1,2-Dibromo-3-Chloropropane	+++++	6.2						30				
1,2,4-Trichlorobenzene	-12.6						30					
Hexachlorobutadiene	++++	-9.1						30				
Naphthalene	-10.4						30					
1,2,3-Trichlorobenzene	-24.0						30					
Dibromofluoromethane (Surr)	2.8						30					
1,2-Dichloroethane-d4 (Surr)	1.4						30					
Toluene-d8 (Surr)	0.9						30					
4-Bromofluorobenzene (Surr)	2.4						30					

Report Date: 15-Aug-2024 11:40:38 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d

Lims ID: IC 0.5

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 14-Aug-2024 14:35:30 ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 0.5

Misc. Info.: 480-0119522-013

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:40:37 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: WLL8 Date: 14-Aug-2024 15:33:05

First Level Reviewer: WLL8			D	ate:		14-Aug-202	24 15:33:05		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	189955	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	93	672959	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	96	409596	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr	,	4.260	4.260	0.000	92	226994	25.0	25.7	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	96	305462	25.0	25.3	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	96	756325	25.0	25.2	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	87	272290	25.0	25.6	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	42	2715	0.5000	0.2994	
13 Chloromethane	50	1.194	1.188	0.006	99	9146	0.5000	0.4561	
14 Vinyl chloride	62	1.267	1.261	0.006	70	4639	0.5000	0.4145	
144 Butadiene	54	1.267	1.267	0.000	98	6050	0.5000	0.3347	
15 Bromomethane	94	1.505	1.505	0.000	29	3449	0.5000	0.0890	М
16 Chloroethane	64	1.571	1.565	0.006	23	4141	0.5000	0.5619	
18 Trichlorofluoromethane	101	1.736	1.742	-0.006	5	2915	0.5000	0.2470	M
17 Dichlorofluoromethane	67	1.754	1.748	0.006	86	7966	0.5000	0.4758	
19 Ethyl ether	59	1.991	1.985	0.006	89	7710	0.5000	0.6481	
20 Acrolein	56	2.149	2.149	0.000	63	5452	2.50	2.95	Ma
22 1,1-Dichloroethene	96	2.186	2.180	0.006	48	2749	0.5000	0.3833	M
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.174	2.180	-0.006	1	1834	0.5000	0.2501	M
23 Acetone	43	2.289	2.289	0.000	97	21656	2.50	3.00	M
24 Iodomethane	142	2.326	2.326	0.000	68	5665	0.5000	0.4255	M
25 Carbon disulfide	76	2.356	2.350	0.006	95	8990	0.5000	0.3415	
27 3-Chloro-1-propene	41	2.527	2.521	0.006	86	12411	0.5000	0.4551	
28 Methyl acetate	43	2.563	2.563	0.000	93	18279	1.00	1.05	M
30 Methylene Chloride	84	2.660	2.654	0.006	86	8465	0.5000	0.0902	
31 2-Methyl-2-propanol	59	2.825	2.825	0.000	41	4744	5.00	3.42	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	93	15742	0.5000	0.5105	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	61	2447	0.5000	0.2840	M
34 Acrylonitrile	53	2.928	2.922	0.006	100	50289	5.00	5.33	
35 Hexane	57	3.068	3.062	0.006	90	4993	0.5000	0.2668	

Data File: \\cnromfs\Buf	raio\Cr				14-115	9522.D\N9148.d		T =	
0	0:	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt	El
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.263	0.006	92	7798	0.5000	0.3996	
•	63 43	3.324	3.330	-0.006	92 95	19197	1.00	0.3996	
39 Vinyl acetate 42 2,2-Dichloropropane	43 77	3.774	3.768	0.006	95 1	2897	0.5000	0.7364	_
43 cis-1,2-Dichloroethene	96	3.774	3.798	0.006	84	4225	0.5000	0.3664	а
	43	3.847	3.796	0.006	96	25958	2.50	2.44	
44 2-Butanone (MEK) 47 Chlorobromomethane	43 128	4.023	4.029	-0.006	82	2043	0.5000	2.44 0.4453	
	42	4.023	4.029	0.006	95	2043 12495	1.00	0.4455	
49 Tetrahydrofuran 50 Chloroform	83	4.047	4.108	0.006	92	10109	0.5000	0.6330	
	97	4.114	4.106	0.000	16	3400	0.5000	0.0330	
51 1,1,1-Trichloroethane	56	4.200	4.212	0.000	53	6010	0.5000	0.3220	
52 Cyclohexane	56 117	4.224	4.212	-0.001	28	3004	0.5000	0.2424	
53 Carbon tetrachloride		4.358	4.358	0.000					
54 1,1-Dichloropropene	75 70				80	3680	0.5000	0.3266	
55 Benzene	78	4.558	4.552	0.006	38	13618	0.5000	0.4244	
56 Isobutyl alcohol	43	4.607	4.613	-0.006	43	5548	12.5	10.4	_
57 1,2-Dichloroethane	62	4.625	4.625	0.000	1	7258 5475	0.5000	0.4740	a M
59 n-Heptane	43 05	4.759	4.747 5.161	0.012	70	5475	0.5000	0.2502	М
60 Trichloroethene	95 93	5.167	5.161	0.006	85 97	2729	0.5000	0.3470	
62 Methylcyclohexane	83	5.270	5.270	0.000	87	3632	0.5000	0.2415	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	87	4829	0.5000	0.4971	
64 Dibromomethane	93	5.526	5.520	0.006	30	2412	0.5000	0.4544	
66 1,4-Dioxane	88	5.550	5.538	0.012	1	323	10.0	9.37	М
67 Dichlorobromomethane	83	5.690	5.684	0.006	92	4355	0.5000	0.4799	
69 2-Chloroethyl vinyl ether	63	5.982	5.976	0.006	74	3225	0.5000	0.4934	
71 cis-1,3-Dichloropropene	75 50	6.098	6.098	0.000	73	4746	0.5000	0.4387	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	96	17099	2.50	2.36	
73 Toluene	92	6.371	6.378	-0.007	93	6857	0.5000	0.3697	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	38	3755	0.5000	0.4353	
77 Ethyl methacrylate	69	6.724	6.724	0.000	20	2093	0.5000	0.2633	
78 1,1,2-Trichloroethane	83	6.852	6.846	0.006	25	2499	0.5000	0.4316	М
79 Tetrachloroethene	166	6.895	6.895	0.000	79	2787	0.5000	0.3585	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	95	5607	0.5000	0.4814	
82 2-Hexanone	43	7.089	7.083	0.006	98	34611	2.50	2.29	M
83 Chlorodibromomethane	129	7.229	7.235	-0.006	1	2664	0.5000	0.4704	
84 Ethylene Dibromide	107	7.333	7.327	0.006	42	2840	0.5000	0.4227	
85 Chlorobenzene	112	7.795	7.801	-0.006	81	9627	0.5000	0.4510	
88 Ethylbenzene	91	7.898	7.898	0.000	97	14514	0.5000	0.4055	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	42	2593	0.5000	0.4444	
90 m-Xylene & p-Xylene	106	8.020	8.026	-0.006	53	5637	0.5000	0.3944	M
91 o-Xylene	106	8.446	8.440	0.006	92	6995	0.5000	0.4511	
92 Styrene	104	8.476	8.476	0.000	78	8991	0.5000	0.3866	
93 Bromoform	173	8.714	8.714	0.000	1	2298	0.5000	1.14	
95 Isopropylbenzene	105	8.829	8.829	0.000	95	12423	0.5000	0.3041	
97 Bromobenzene	156	9.176	9.170	0.006	81	4588	0.5000	0.4560	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.261	-0.006	87	5778	0.5000	0.4603	
100 N-Propylbenzene	91	9.273	9.273	0.000	97	15599	0.5000	0.3200	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	62	1838	0.5000	0.4568	
101 trans-1,4-Dichloro-2-butene	53	9.298	9.304	-0.006	1	779	0.5000	0.1397	
102 2-Chlorotoluene	126	9.377	9.371	0.006	93	4136	0.5000	0.4349	
104 1,3,5-Trimethylbenzene	105	9.474	9.468	0.006	91	12424	0.5000	0.3493	
105 4-Chlorotoluene	91	9.492	9.492	0.000	95	13219	0.5000	0.4070	
106 tert-Butylbenzene	134	9.796	9.803	-0.007	95	2036	0.5000	0.2752	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	96	13297	0.5000	0.3596	
- , , ,		- · ·					-	.	

Data File: \\chromfs\Buf	talo\Cl	nromData\	HP59/3N	\2024081	4-119	522.b\N9148.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
109 sec-Butylbenzene	105	10.022	10.022	0.000	94	14189	0.5000	0.3093	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	89	8419	0.5000	0.4137	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	97	13249	0.5000	0.3423	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	82	8227	0.5000	0.3973	
115 n-Butylbenzene	91	10.569	10.569	0.000	97	10486	0.5000	0.2992	
116 1,2-Dichlorobenzene	146	10.599	10.600	-0.001	89	7989	0.5000	0.3991	
117 1,2-Dibromo-3-Chloropropan	e 75	11.348	11.354	-0.006	1	841	0.5000	0.4403	
119 1,2,4-Trichlorobenzene	180	12.041	12.035	0.006	90	5606	0.5000	0.4372	
120 Hexachlorobutadiene	225	12.163	12.157	0.006	69	1203	0.5000	0.2252	
121 Naphthalene	128	12.248	12.248	0.000	96	18213	0.5000	0.4479	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	87	4422	0.5000	0.3800	
S 123 1,3-Dichloropropene, Total	1				0			0.8741	
S 125 Total BTEX	1				0			2.05	
S 126 Xylenes, Total	1				0			0.8455	
S 124 1,2-Dichloroethene, Total	1				0			0.7470	
QC Flag Legend Processing Flags Review Flags M - Manually Integrated a - User Assigned ID									

Reagents:

8260 CORP mix_00257	Amount Added: 0.50	Units: uL	
GAS CORP mix_00632	Amount Added: 0.50	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS 00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:40:38 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

Lims ID: IC 0.5

Client ID:

Purge Vol: 5.000 mL Dil. Fa

Dil. Factor: 1.0000

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

13

10

Method: N-8260 Limit Group: MV - 8260C ICAL

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

15 Bromomethane, CAS: 74-83-9

Signal: 1

Not Detected

Expected RT: 1.50

Processing Integration Results

RT: 1.50
Area: 3449
Amount: 0.088961
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:15:57 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

18 Trichlorofluoromethane, CAS: 75-69-4

Signal: 1

Not Detected

Expected RT: 1.74

Processing Integration Results

RT: 1.74
Area: 2915
Amount: 0.246953
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:04 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 290 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

20 Acrolein, CAS: 107-02-8

Signal: 1

Not Detected

Expected RT: 2.15

Processing Integration Results

RT: 2.15
Area: 5452
Amount: 2.946438
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:14 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report Report Date: 15-Aug-2024 11:40:38

Eurofins Buffalo

Data File: Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

IC 0.5 Lims ID:

Client ID:

ALS Bottle#: 10 Operator ID: LH Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: Detector MS SCAN ZB-624 (0.18 mm)

21 1,1,2-Trichloro-1,2,2-trifluoroe, CAS: 76-13-1

Signal: 1

Not Detected

Expected RT: 2.18

RT: 2.17 Area: 1834 Amount: 0.250052 Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:20 -04:00:00 (UTC)

Audit Action: Manually Integrated

Audit Reason: Poor chromatography

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

22 1,1-Dichloroethene, CAS: 75-35-4

Signal: 1

Not Detected

Expected RT: 2.18

Processing Integration Results

RT: 2.19
Area: 2749
Amount: 0.383258
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:17 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 293 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

23 Acetone, CAS: 67-64-1

Signal: 1

Not Detected

Expected RT: 2.29

RT: 2.29
Area: 21656
Amount: 2.997077
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:39 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 294 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

24 Iodomethane, CAS: 74-88-4

Signal: 1

Not Detected

Expected RT: 2.33

Processing Integration Results

RT: 2.33
Area: 5665
Amount: 0.425480
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:43 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 295 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

28 Methyl acetate, CAS: 79-20-9

Signal: 1

Not Detected Expected RT: 2.56

Processing Integration Results

RT: 2.56
Area: 18279
Amount: 1.047615
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:50 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 296 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

33 trans-1,2-Dichloroethene, CAS: 156-60-5

Signal: 1

Not Detected Expected RT: 2.87

Processing Integration Results

RT: 2.87
Area: 2447
Amount: 0.284018
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:16:58 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 297 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

42 2,2-Dichloropropane, CAS: 594-20-7

Signal: 1

Not Detected Expected RT: 3.77

Processing Integration Results

RT: 3.77
Area: 2897
Amount: 0.386362
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:17:04 -04:00:00 (UTC)

Audit Action: Assigned Compound ID

Audit Reason: Poor chromatography

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

57 1,2-Dichloroethane, CAS: 107-06-2

Signal: 1

Not Detected

Expected RT: 4.63

Processing Integration Results

RT: 4.63
Area: 7258
Amount: 0.473964
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:17:11 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Poor chromatography

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

59 n-Heptane, CAS: 142-82-5

Signal: 1

RT: 4.75
Area: 3757
Amount: 0.468123
Amount Units: ug/L

Processing Integration Results

RT: 4.76
Area: 5475
Amount: 0.250197
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:17:24 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 300 of 1052

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9148.d \\Injection Date: \\14-Aug-2024 14:35:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

Not Detected

Expected RT: 5.54

Processing Integration Results

RT: 5.55 Area: 323 Amount: 9.366833

Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:17:35 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 301 of 1052

Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report Report Date: 15-Aug-2024 11:40:38

Eurofins Buffalo

Data File: Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

IC 0.5 Lims ID:

Client ID:

Operator ID: ALS Bottle#: 10 Worklist Smp#: LH 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) MS SCAN Detector

78 1,1,2-Trichloroethane, CAS: 79-00-5

Signal: 1

Not Detected Expected RT: 6.85

RT: 6.85 Area: 2499 Amount: 0.431575 Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:17:50 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

82 2-Hexanone, CAS: 591-78-6

Signal: 1

RT: 7.09
Area: 33482
Amount: 2.225952
Amount Units: ug/L

Processing Integration Results

RT: 7.09
Area: 34611
Amount: 2.292407
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:18:02 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 303 of 1052

Report Date: 15-Aug-2024 11:40:38 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9148.d Injection Date: 14-Aug-2024 14:35:30 Instrument ID: HP5973N

Lims ID: IC 0.5

Client ID:

Operator ID: LH ALS Bottle#: 10 Worklist Smp#: 13

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

90 m-Xylene & p-Xylene, CAS: 179601-23-1

Signal: 1

Not Detected

Expected RT: 8.03

Processing Integration Results

RT: 8.02
Area: 5637
Amount: 0.394382
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:18:07 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 304 of 1052

Report Date: 15-Aug-2024 11:40:49 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9149.d

Lims ID: IC

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 14-Aug-2024 14:57:30 ALS Bottle#: 11 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC

Misc. Info.: 480-0119522-014

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:40:48 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: WLL8 Date: 14-Aug-2024 15:36:33

First Level Reviewer: WLL8			D	ate:		14-Aug-202	24 15:36:33		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	197988	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.770	7.771	-0.001	92	692931	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	96	410339	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)	113	4.260	4.260	0.000	93	233301	25.0	25.3	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	95	321843	25.0	25.6	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.311	-0.001	95	764297	25.0	24.8	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.024	0.006	89	272503	25.0	24.9	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	96	10221	1.00	1.08	
13 Chloromethane	50	1.188	1.188	0.000	97	24431	1.00	1.17	
14 Vinyl chloride	62	1.261	1.261	0.000	69	12403	1.00	1.06	
144 Butadiene	54	1.267	1.267	0.000	96	20699	1.00	1.10	
15 Bromomethane	94	1.510	1.505	0.005	82	8341	1.00	0.9809	
16 Chloroethane	64	1.565	1.565	0.000	89	8810	1.00	1.15	
18 Trichlorofluoromethane	101	1.766	1.742	0.024	60	13291	1.00	1.08	
17 Dichlorofluoromethane	67	1.742	1.748	-0.006	94	20387	1.00	1.17	
19 Ethyl ether	59	1.991	1.985	0.006	88	14765	1.00	1.19	
20 Acrolein	56	2.149	2.149	0.000	98	11270	5.00	5.84	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	91	8735	1.00	1.17	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	71	6846	1.00	0.8955	
23 Acetone	43	2.295	2.289	0.006	98	44195	5.00	5.87	
24 Iodomethane	142	2.320	2.326	-0.006	97	14979	1.00	1.08	
25 Carbon disulfide	76	2.356	2.350	0.006	98	30487	1.00	1.11	
27 3-Chloro-1-propene	41	2.520	2.521	-0.001	88	33721	1.00	1.19	
28 Methyl acetate	43	2.569	2.563	0.006	99	41376	2.00	2.28	а
30 Methylene Chloride	84	2.660	2.654	0.006	89	15815	1.00	0.9065	
31 2-Methyl-2-propanol	59	2.837	2.825	0.012	73	14640	10.0	10.1	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	90	37993	1.00	1.18	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	85	10405	1.00	1.16	
34 Acrylonitrile	53	2.922	2.922	0.000	94	108609	10.0	11.0	
35 Hexane	57	3.062	3.062	0.000	95	18681	1.00	0.9576	

Data File: \\chromfs\Buf	talo\Ct		\HP59/3N		4-119	522.b\N9149.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.263	0.006	95	22973	1.00	1.13	
39 Vinyl acetate	43	3.329	3.330	-0.001	96	50898	2.00	1.92	
42 2,2-Dichloropropane	77	3.767	3.768	-0.001	76	8686	1.00	1.11	
43 cis-1,2-Dichloroethene	96	3.804	3.798	0.006	88	9616	1.00	1.01	
44 2-Butanone (MEK)	43	3.840	3.841	-0.001	96	61743	5.00	5.57	
47 Chlorobromomethane	128	4.035	4.029	0.006	81	5927	1.00	1.24	
49 Tetrahydrofuran	42	4.047	4.041	0.006	92	23953	2.00	2.22	
50 Chloroform	83	4.114	4.108	0.006	95	20349	1.00	1.22	
51 1,1,1-Trichloroethane	97	4.212	4.206	0.006	66	10171	1.00	0.9259	
52 Cyclohexane	56	4.218	4.212	0.006	88	26313	1.00	1.02	
53 Carbon tetrachloride	117	4.345	4.340	0.005	95	6210	1.00	0.8797	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	82	12940	1.00	1.10	
55 Benzene	78	4.558	4.552	0.006	43	39768	1.00	1.19	
56 Isobutyl alcohol	43	4.613	4.613	0.000	91	13086	25.0	23.5	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	95	17992	1.00	1.13	
59 n-Heptane	43	4.747	4.747	0.000	92	22414	1.00	0.9827	
60 Trichloroethene	95	5.155	5.161	-0.006	84	8703	1.00	1.06	
62 Methylcyclohexane	83	5.270	5.270	0.000	92	14150	1.00	0.9029	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	87	11108	1.00	1.10	
64 Dibromomethane	93	5.526	5.520	0.006	92	6333	1.00	1.14	
66 1,4-Dioxane	88	5.550	5.538	0.012	7	774	20.0	16.4	М
67 Dichlorobromomethane	83	5.690	5.684	0.006	93	9946	1.00	1.05	
69 2-Chloroethyl vinyl ether	63	5.982	5.976	0.006	77	7543	1.00	1.11	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	87	12624	1.00	1.12	
72 4-Methyl-2-pentanone (MIBK)	58	6.256	6.250	0.006	97	40665	5.00	5.45	
73 Toluene	92	6.371	6.378	-0.007	96	19908	1.00	1.04	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	86	7456	1.00	0.8395	
77 Ethyl methacrylate	69	6.724	6.724	0.000	84	7338	1.00	0.8964	
78 1,1,2-Trichloroethane	83	6.852	6.846	0.006	90	6696	1.00	1.12	Ma
79 Tetrachloroethene	166	6.894	6.895	-0.001	91	8056	1.00	1.01	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	82	11972	1.00	1.00	
82 2-Hexanone	43	7.089	7.083	0.006	97	84990	5.00	5.47	
83 Chlorodibromomethane	129	7.235	7.235	0.000	89	5997	1.00	1.03	
84 Ethylene Dibromide	107	7.326	7.327	-0.001	96	7343	1.00	1.06	
85 Chlorobenzene	112	7.801	7.801	0.000	93	25673	1.00	1.17	
88 Ethylbenzene	91	7.904	7.898	0.006	97	40688	1.00	1.10	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	41	5140	1.00	0.8555	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	16340	1.00	1.11	
91 o-Xylene	106	8.446	8.440	0.006	94	19239	1.00	1.20	
92 Styrene	104	8.476	8.476	0.000	91	24164	1.00	1.01	
93 Bromoform	173	8.713	8.714	-0.001	82	2719	1.00	1.22	
95 Isopropylbenzene	105	8.829	8.829	0.000	97	39569	1.00	0.9668	
97 Bromobenzene	156	9.170	9.170	0.000	92	11043	1.00	1.10	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.261	-0.006	91	14404	1.00	1.15	
100 N-Propylbenzene	91	9.273	9.273	0.000	97	48422	1.00	0.99	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	59	4901	1.00	1.22	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.304	0.006	62	4346	1.00	0.7779	
102 2-Chlorotoluene	126	9.377	9.371	0.006	95	11097	1.00	1.16	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	36400	1.00	1.10	
105 4-Chlorotoluene	91	9.408	9.400	0.000	94 97	35460	1.00	1.02	
106 tert-Butylbenzene	134	9.802	9.803	-0.001	95 07	7261	1.00	0.9798	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	97	38958	1.00	1.05	

ug-2024 11:40:49 Chrom Revision: 2.3 07-Aug-2024 17:44:18 \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9149.d Report Date: 15-Aug-2024 11:40:49

Data File:

Data File. //Ciliottis/builalo/CiliottiData/HP5973N/20240814-119322.D/N9149.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
109 sec-Butylbenzene	105	10.021	10.022	-0.001	95	47773	1.00	1.04	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	23230	1.00	1.14	
111 4-Isopropyltoluene	119	10.173	10.174	-0.001	97	38999	1.00	1.01	
113 1,4-Dichlorobenzene	146	10.240	10.241	-0.001	91	23840	1.00	1.15	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	35072	1.00	1.00	
116 1,2-Dichlorobenzene	146	10.599	10.600	-0.001	96	23959	1.00	1.19	
117 1,2-Dibromo-3-Chloropropan	e 75	11.354	11.354	0.000	58	2032	1.00	1.06	
119 1,2,4-Trichlorobenzene	180	12.041	12.035	0.006	93	14221	1.00	1.11	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	91	4864	1.00	0.9088	
121 Naphthalene	128	12.248	12.248	0.000	97	45328	1.00	1.11	
122 1,2,3-Trichlorobenzene	180	12.449	12.455	-0.006	90	13070	1.00	1.12	
S 123 1,3-Dichloropropene, Total	1				0			1.96	
S 125 Total BTEX	1				0			5.65	
S 126 Xylenes, Total	1				0			2.32	
S 124 1,2-Dichloroethene, Total	1				0			2.17	
QC Flag Legend									

Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

8260 CORP mix_00257	Amount Added: 1.00	Units: uL	
GAS CORP mix_00632	Amount Added: 1.00	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS 00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:40:49 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9149.d 14-Aug-2024 14:57:30 Instrument ID: HP5973N Injection Date:

Lims ID: IC

Client ID:

Purge Vol: N-8260 Method:

5.000 mL Dil. Factor: 1.0000 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

14

Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report Report Date: 15-Aug-2024 11:40:49

Eurofins Buffalo

Data File: Injection Date: 14-Aug-2024 14:57:30 Instrument ID: HP5973N

Lims ID: IC

Client ID:

ALS Bottle#: Worklist Smp#: Operator ID: LH 11 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

28 Methyl acetate, CAS: 79-20-9

Signal: 1

Not Detected

Expected RT: 2.56

RT: 2.57 41376 Area: 2.275148 Amount: Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:18:36 -04:00:00 (UTC)

Audit Action: Assigned Compound ID

Audit Reason: Poor chromatography

Report Date: 15-Aug-2024 11:40:49 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9149.d \\Injection Date: \\14-Aug-2024 14:57:30 \\Instrument ID: \HP5973\\\

Lims ID: IC

Client ID:

Operator ID: LH ALS Bottle#: 11 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

Not Detected

Expected RT: 5.54

Processing Integration Results

RT: 5.55 Area: 774

Amount: 16.435954

Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:18:57 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 310 of 1052

Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report Report Date: 15-Aug-2024 11:40:49

Eurofins Buffalo

Data File: Injection Date: 14-Aug-2024 14:57:30 Instrument ID: HP5973N

Lims ID: IC

Client ID:

ALS Bottle#: Worklist Smp#: Operator ID: LH 11 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) MS SCAN Detector

78 1,1,2-Trichloroethane, CAS: 79-00-5

Signal: 1

Not Detected Expected RT: 6.85

RT: 6.85 Area: 6696 1.123062 Amount: Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:19:12 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 311 of 1052

Report Date: 15-Aug-2024 11:40:59 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d

Lims ID: IC 2

Client ID:

Sample Type: IC Calib Level: 3

Inject. Date: 14-Aug-2024 15:20:30 ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 2

Misc. Info.: 480-0119522-015

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:40:58 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: WLL8 Date: 14-Aug-2024 15:54:42

First Level Reviewer: WLL8			D	ate:		14-Aug-202	24 15:54:42		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	197047	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	671550	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	96	409397	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr	,	4.260	4.260	0.000	92	228232	25.0	24.9	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	94	308312	25.0	24.7	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	753305	25.0	25.2	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	95	270288	25.0	25.5	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	16761	2.00	1.78	
13 Chloromethane	50	1.188	1.188	0.000	99	38247	2.00	1.84	
14 Vinyl chloride	62	1.255	1.261	-0.006	76	21246	2.00	1.83	
144 Butadiene	54	1.267	1.267	0.000	97	35179	2.00	1.88	
15 Bromomethane	94	1.498	1.505	-0.007	91	12367	2.00	1.75	
16 Chloroethane	64	1.571	1.565	0.006	97	15221	2.00	1.99	
18 Trichlorofluoromethane	101	1.736	1.742	-0.006	57	19914	2.00	1.63	M
17 Dichlorofluoromethane	67	1.742	1.748	-0.006	94	31567	2.00	1.82	
19 Ethyl ether	59	1.985	1.985	0.000	88	25239	2.00	2.05	
20 Acrolein	56	2.143	2.149	-0.006	99	16685	10.0	8.69	Ma
22 1,1-Dichloroethene	96	2.186	2.180	0.006	88	12250	2.00	1.65	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	56	11601	2.00	1.52	
23 Acetone	43	2.289	2.289	0.000	97	74183	10.0	9.90	
24 lodomethane	142	2.320	2.326	-0.006	98	26532	2.00	1.92	
25 Carbon disulfide	76	2.356	2.350	0.006	99	48743	2.00	1.78	
27 3-Chloro-1-propene	41	2.527	2.521	0.006	85	54496	2.00	1.93	
28 Methyl acetate	43	2.569	2.563	0.006	99	68019	4.00	3.76	Ma
30 Methylene Chloride	84	2.654	2.654	0.000	88	23039	2.00	1.76	
31 2-Methyl-2-propanol	59	2.831	2.825	0.006	96	26396	20.0	18.3	M
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	91	61685	2.00	1.93	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	88	16193	2.00	1.81	
34 Acrylonitrile	53	2.922	2.922	0.000	98	193209	20.0	19.7	
35 Hexane	57	3.056	3.062	-0.006	91	26735	2.00	1.38	

RT	Data File: \\chromfs\Buf	raio\Ch				4-119	522.b\N9150.d			
36 1,1-Dichloroethane		Cia	RT		Dlt RT		Deciron		OnCol Amt	П
33 Vinyl acetate	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
33 Vinyl acetate	36.1.1 Dichloroothane	63	3 260	3 263	0.006	96	36680	2.00	1 Q1	
A2 2_2-Dichloropropane										
43 cis-12-Dichloroethene 96 3.798 3.798 0.000 89 18082 2.00 1.91 44 2-Butanone (MEK) 43 3.841 3.841 0.000 84 8727 2.00 1.83 49 Tetrahydrofuran 42 4.048 4.041 0.000 92 31675 2.00 1.91 51 1,1-Trichloroethane 97 4.212 4.206 0.006 70 18009 2.00 1.55 52 Cyclohexane 56 4.218 4.212 0.006 94 39473 2.00 1.48 53 Carbon tetrachloride 117 4.346 4.340 0.006 92 10415 2.00 1.18 54 1,1-Dichloropropene 75 4.358 4.358 0.000 84 19793 2.00 1.81 56 Isobutyl alcohol 43 4.607 4.613 0.006 92 24686 50.0 446 57 1,2-Dichloroethane 63 5.275 0.000 93 32723 2.00	•									
44 2-Butanone (MEK)										
47 Chlorobromomethane 128 4.029 4.029 0.000 84 8727 2.00 1.83 40 Tetrahydrofuran 42 4.048 4.041 0.007 93 35959 4.00 3.78 50 Chloroform 83 4.108 4.108 0.000 70 18009 2.00 1.65 51 1,1-Trichloroethane 56 4.218 4.212 0.006 94 39473 2.00 1.65 52 Cyclobrexane 75 4.348 4.340 0.006 92 10415 2.00 1.48 54 1,1-Dichloropropene 75 4.358 4.358 0.000 84 19793 2.00 1.81 55 Benzene 78 4.552 4.552 0.000 94 31700 2.00 1.81 56 Isobutyl alcohol 43 4.607 4.613 -0.006 92 24686 500 446 571,2-Dichlorobromethane 93 5.525 5.101 0.000 81 24238 2.00 1.9										
49 Tetrahydrofuran 42 4,048 4,041 0,007 93 35959 4,00 3,78	· · ·									
SO Chloroform										
51 1,1.1-Trichloroethane 97 4,212 4,206 0,006 70 18009 2.00 1,65 52 Cyclohexane 56 4,218 4,212 0.006 94 39473 2.00 1,68 54 1,1-Dichloropropene 75 4,358 4,358 0.000 84 19793 2.00 1,69 55 Benzene 78 4,558 4,552 4,502 4,000 47 60232 2.00 1,81 56 Isobutyl alcohol 43 4,607 4,613 -0,006 92 24686 50.0 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 1,91 4,66 571/20 2,00 1,91 4,66 5,01 4,416 60 7,17 4,00 3,02 2,00 1,91 4,62 4,62 5,00 9,00 85 12,72 2,00 1,51 6 6,61 4,10 4,00										
S2 Cyclohexane										
53 Carbon tetrachloride 117 4.346 4,340 0.006 92 10415 2.00 1.48 54 1,1-Dichloropropene 75 4.358 4.358 4.000 84 19793 2.00 1.69 55 Benzene 78 4.552 2.000 47 60232 2.00 1.81 56 Isobutyl alcohol 43 4.607 4.613 0.006 92 24686 50.0 44.6 57 1,2-Dichloropthane 62 4.625 4.000 94 31700 2.00 1.91 60 Tirchloroethene 95 5.155 5.161 -0.006 96 15549 2.00 1.91 62 Methylcychekane 83 5.526 5.520 0.006 85 17270 2.00 1.71 63 1,2-Dichloropropane 63 5.526 5.520 0.006 82 10642 2.00 1.71 66 1,4-Dioxane 83 5.586 5.584 0.00 92 16682 2.00 1.71 <										
Setant S										
55 Isobutyl alcohol 78 4.552 4.552 0.000 47 60.322 2.00 1.81 56 Isobutyl alcohol 62 4.625 4.625 0.000 92 24686 50.0 44.6 57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 31700 2.00 2.00 59 n-Heptane 43 4.747 4.747 0.000 93 32723 2.00 1,44 60 Trichloropropane 63 5.392 5.270 0.000 85 15549 2.00 1.55 63 1,2-Dichloropropane 63 5.392 5.392 0.000 85 17270 2.00 1.71 64 Dibromomethane 83 5.566 5.538 0.018 27 2350 40.0 42.9 Ma 67 Dichlorobromomethane 83 5.684 5.684 0.000 81 11395 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.098 1.098										
56 Isobutyl alcohol 43 4.607 4.613 -0.006 92 2.4686 50.0 44.6 57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 31700 2.00 1.44 60 Trichloroethane 95 5.155 5.161 -0.006 96 15549 2.00 1.55 63 1,2-Dichloropropane 63 5.270 5.270 0.000 91 24238 2.00 1.55 63 1,2-Dichloropropane 63 5.392 5.000 85 17270 2.00 1.71 64 Dibromomethane 88 5.556 5.530 0.006 92 10642 2.00 1.93 66 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 67 Dichloropromomethane 63 5.970 5.976 -0.006 84 11395 2.00 1.71 69 2-Chloroethyl vinyl ether 63 6.996 6.989 0.000 81 18865 <td></td>										
57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 31700 2.00 2.00 59 n-Heptane 43 4.747 4.747 0.000 93 32723 2.00 1.94 60 Trichloroethene 95 5.155 5.161 0.000 96 15549 2.00 1.91 62 Methylcyclohexane 83 5.270 5.270 0.000 85 17270 2.00 1.55 63 1,2-Dichloropropane 63 5.392 5.520 0.006 92 10642 2.00 1.93 66 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 67 Dichlorobromomethane 83 5.566 5.588 0.008 82 11395 2.00 1.68 76 Dichlorobromomethane 83 5.684 5.684 0.000 81 18865 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.693 6.695 0.000 81										
59 n-Heptane 43 4.747 4.747 0.000 93 3.2723 2.00 1.44 60 Trichloroethene 95 5.155 5.161 -0.006 96 15549 2.00 1.55 63 1,2-Dichloropropane 63 5.392 5.392 0.000 85 17270 2.00 1.71 64 Dibromomethane 83 5.526 5.520 0.006 92 10642 2.00 1.71 64 Dibromomethane 83 5.684 5.684 0.008 92 10685 2.00 1.93 67 Dichlorobromomethane 83 5.684 5.684 0.000 82 16085 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 86 66965 10.0 9.25 73 Toluene 75 6.663 6.663 0.000 87 12215	•									
60 Trichloroethene										
62 Methylcyclohexane	•									
63 1,2-Dichloropropane 63 5.392 5.392 0.000 85 17270 2.00 1.71 64 Dibromomethane 93 5.526 5.520 0.006 92 10642 2.00 1.93 66 1,4-Dioxane 88 5.556 5.530 0.018 27 2350 40.0 42.9 Ma 61 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 61 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 61 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 61 1,4-Dioxane 61 1,4-Dioxane 61 1,4-Dioxane 62 1,5-Dichloropromenthane 63 5.970 5.976 0.006 84 11395 2.00 1.68 171 cis-1,3-Dichloropropene 75 6.698 6.098 0.000 81 18865 2.00 1.68 172 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 0.006 96 66965 10.0 9.25 173 Toluene 92 6.371 6.378 0.007 96 34434 2.00 1.86 186 175 187 187 187 187 187 187 187 187 187 187										
64 Dibromomethane 83 5.526 5.520 0.006 92 10642 2.00 1.93 66 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 67 Dichlorobromomethane 83 5.584 5.684 0.000 92 16085 2.000 1.71 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 84 11395 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 6.806 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 811807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylene & p-Xylene 106 8.026 8.026 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.400 8.440 0.000 95 26742 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.89 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 91 9.273 9.273 0.000 98 8.3794 2.00 1.76 90 1.72-Tetrachloroethane 156 9.170 9.170 0.000 95 68743 2.00 1.64 98 1,1,2,2-Tetrachloroethane 53 9.304 9.304 0.000 94 10053 2.00 1.86 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.66 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 94 10053 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 126 9.371 9.371 0.000 95 58975 2.00 1.66 105 4-Chlorotoluene 91 9.482 9.492 9.400 98 59368 2.00 1.63 106 tet-Butylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 106 tet-Butylbenzene 105 9										
66 1,4-Dioxane 88 5.556 5.538 0.018 27 2350 40.0 42.9 Ma 67 Dichlorobromomethane 83 5.684 5.684 0.000 92 16085 2.00 1.71 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 84 11395 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.89 80 1,3-9bichloropropane 76 7.004 7.004 0.000										
67 Dichlorobromomethane 83 5.684 5.684 0.000 92 16085 2.00 1.71 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 84 11395 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 93 10805 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.897 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 0.001 42 9414 2.00 1.62 90 m-Xylene 8 p-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 91 0-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 91 0-Xylene 106 8.440 8.440 0.000 95 68743 2.00 1.87 92 Styrene 105 8.829 8.829 0.000 95 68743 2.00 1.89 91 Sopropylbenzene 156 9.170 9.170 0.000 95 68743 2.00 1.68 97 Bromoform 173 8.708 8.714 0.000 92 22135 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.371 9.371 0.000 98 3379 2.00 1.68 99 1.23-Trichloropropane 110 9.279 9.279 0.000 98 3398 3000 1.64 99 1.23-Trichloropropane 110 9.279 9.279 0.000 98 5874 2.00 1.66 1.64 104 1,3,5-Trimethylbenzene 154 9.489 9.492 0.000 98 58956 2.00 1.83 106 tetr-Butylbenzene 154 9.492 0.400 98 58956 2.00 1.68 106 tetr-Butylbenzene 154 9.492 0.000 98 58958 2.00 1.68 106 tetr-Butylbenzene 154 9.492 0.000 98 58958 2.00 1.68 106 tetr-Butylbenzene 154 9.492 0.000 98 5895										Mo
69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 84 11395 2.00 1.68 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>IVIA</td>										IVIA
71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 81 18865 2.00 1.68 72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83										
72 4-Methyl-2-pentanone (MIBK) 58 6.244 6.250 -0.006 96 66965 10.0 9.25 73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethane 166 6.895 6.895 0.000 92 13126 2.00 1.89 80 1,3-Dichloropropane 76 7.004 7.004 7.004 9.00 98 13226 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 13865 10.0 9.28 83 Chlorodibromomethane 129 7.227 7.327 7.327										
73 Toluene 92 6.371 6.378 -0.007 96 34434 2.00 1.86 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.237 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 <td></td>										
75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 82 14138 2.00 1.64 77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 91 7.898 7.898 0.000 97 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
77 Ethyl methacrylate 69 6.718 6.724 -0.006 87 12215 2.00 1.54 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 89 139865 10.0 928 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 91 7.897 7.891 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411										
78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 93 10805 2.00 1.87 79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742										
79 Tetrachloroethene 166 6.895 6.895 0.000 92 13126 2.00 1.69 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodifromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742										
80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 21220 2.00 1.83 82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 <										
82 2-Hexanone 43 7.083 7.083 0.000 98 139865 10.0 9.28 83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 c-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 <										
83 Chlorodibromomethane 129 7.229 7.235 -0.006 83 8115 2.00 1.44 84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170										
84 Ethylene Dibromide 107 7.327 7.327 0.000 98 11807 2.00 1.76 85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 91 o-Xylene 104 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 </td <td></td>										
85 Chlorobenzene 112 7.807 7.801 0.006 90 38866 2.00 1.82 88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
88 Ethylbenzene 91 7.898 7.898 0.000 97 65411 2.00 1.83 89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.93 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
89 1,1,1,2-Tetrachloroethane 131 7.905 7.905 -0.001 42 9414 2.00 1.62 90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.93 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.3										
90 m-Xylene & p-Xylene 106 8.026 8.026 0.000 95 26742 2.00 1.87 91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.93 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.64 104 1,3,5-Trimethylbenzene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
91 o-Xylene 106 8.440 8.440 0.000 96 28872 2.00 1.87 92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.93 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.4										
92 Styrene 104 8.476 8.476 0.000 93 44730 2.00 1.93 93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468										
93 Bromoform 173 8.708 8.714 -0.006 92 5401 2.00 1.89 95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.83 105 tert-Butylbenzene 134 9.803	•									
95 Isopropylbenzene 105 8.829 8.829 0.000 95 68743 2.00 1.68 97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
97 Bromobenzene 156 9.170 9.170 0.000 95 16479 2.00 1.64 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 92 22135 2.00 1.76 100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
100 N-Propylbenzene 91 9.273 9.273 0.000 98 83794 2.00 1.72 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 58 7474 2.00 1.86 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 49 10053 2.00 1.80 102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
102 2-Chlorotoluene 126 9.371 9.371 0.000 93 15563 2.00 1.64 104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63										
104 1,3,5-Trimethylbenzene 105 9.468 9.468 0.000 94 58975 2.00 1.66 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63	101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	0.000	49	10053	2.00	1.80	
105 4-Chlorotoluene 91 9.492 9.492 0.000 98 59368 2.00 1.83 106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63	102 2-Chlorotoluene	126	9.371	9.371	0.000	93	15563	2.00	1.64	
106 tert-Butylbenzene 134 9.803 9.803 0.000 94 12018 2.00 1.63	104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	58975	2.00	1.66	
•	105 4-Chlorotoluene	91	9.492	9.492	0.000	98	59368	2.00	1.83	
·	106 tert-Butylbenzene	134	9.803	9.803	0.000	94	12018	2.00	1.63	
	108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	63928	2.00	1.73	

Report Date: 15-Aug-2024 11:40:59 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d

Data File. \\Cilioniis\Du	Data File: //ciriofilis/builaio/ciriofilbata/i iF 397314202400 14-119322.b/(49150.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags	
109 sec-Butylbenzene	105	10.022	10.022	0.000	94	70829	2.00	1.54		
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	96	38700	2.00	1.90		
111 4-Isopropyltoluene	119	10.174	10.174	0.000	97	64586	2.00	1.67		
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	92	40130	2.00	1.94		
115 n-Butylbenzene	91	10.575	10.569	0.006	97	58339	2.00	1.67		
116 1,2-Dichlorobenzene	146	10.606	10.600	0.006	95	39367	2.00	1.97		
117 1,2-Dibromo-3-Chloropropan	ie 75	11.348	11.354	-0.006	58	3297	2.00	1.73		
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	93	22410	2.00	1.75		
120 Hexachlorobutadiene	225	12.157	12.157	0.000	89	8164	2.00	1.53		
121 Naphthalene	128	12.248	12.248	0.000	96	73326	2.00	1.80		
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	94	20669	2.00	1.78		
S 123 1,3-Dichloropropene, Total	1				0			3.32		
S 125 Total BTEX	1				0			9.24		
S 126 Xylenes, Total	1				0			3.74		
S 124 1,2-Dichloroethene, Total	1				0			3.72		
QC Flag Legend										

Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

8260 CORP mix_00257	Amount Added: 2.00	Units: uL	
GAS CORP mix_00632	Amount Added: 2.00	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS_00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:40:59 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d 14-Aug-2024 15:20:30 Instrument ID: HP5973N Injection Date:

Lims ID: IC 2

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

N-8260 Limit Group: MV - 8260C ICAL Method:

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

15

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d Injection Date: 14-Aug-2024 15:20:30 Instrument ID: HP5973N

Lims ID: IC 2

Client ID:

Operator ID: LH ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

18 Trichlorofluoromethane, CAS: 75-69-4

Signal: 1

RT: 1.74
Area: 19541
Amount: 1.737337
Amount Units: ug/L

RT: 1.74
Area: 19914
Amount: 1.626354
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:19:44 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Report Date: 15-Aug-2024 11:40:59

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9150.d \\Injection Date: \\14-Aug-2024 \15:20:30 \\Instrument ID: \HP5973\\\

Lims ID: IC 2

Client ID:

Operator ID: LH ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

20 Acrolein, CAS: 107-02-8

Signal: 1

Not Detected

Expected RT: 2.15

RT: 2.14
Area: 16685
Amount: 8.692577
Amount Units: ug/L

2.2

Min

Reviewer: R3QB, 15-Aug-2024 10:19:52 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

1.8

RT

Manual Integration Results

Page 317 of 1052

2.0

2.4

Report Date: 15-Aug-2024 11:40:59 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d Injection Date: 14-Aug-2024 15:20:30 Instrument ID: HP5973N

Lims ID: IC 2

Client ID:

Operator ID: LH ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

28 Methyl acetate, CAS: 79-20-9

Signal: 1

Not Detected Expected RT: 2.56

Processing Integration Results

RT: 2.57
Area: 68019
Amount: 3.758032
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:20:10 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 318 of 1052

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d Injection Date: 14-Aug-2024 15:20:30 Instrument ID: HP5973N

Lims ID: IC 2

Client ID:

Operator ID: LH ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

31 2-Methyl-2-propanol, CAS: 75-65-0

Signal: 1

RT: 2.83
Area: 22452
Amount: 16.975372
Amount Units: ug/L

RT: 2.83
Area: 26396
Amount: 18.322341
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:20:19 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 319 of 1052

Report Date: 15-Aug-2024 11:40:59

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9150.d Injection Date: 14-Aug-2024 15:20:30 Instrument ID: HP5973N

Lims ID: IC 2

Client ID:

Operator ID: LH ALS Bottle#: 12 Worklist Smp#: 15

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

Not Detected

Expected RT: 5.54

Processing Integration Results

RT: 5.56 Area: 2350

Amount: 42.873370

Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:20:35 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 320 of 1052

Report Date: 15-Aug-2024 11:41:10 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9151.d

Lims ID: IC 3

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 14-Aug-2024 15:43:30 ALS Bottle#: 13 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 3

Misc. Info.: 480-0119522-016

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:41:08 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:21:38

First Level Reviewer: R3QB			D	ate:		15-Aug-202	24 10:21:38		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.820	4.820	0.000	97	193140	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	679861	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	408747	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)	,	4.260	4.260	0.000	92	222028	25.0	24.7	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	91	307258	25.0	25.1	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.310	0.000	95	748583	25.0	24.7	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	87	264606	25.0	24.6	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	97	50229	5.00	5.45	
13 Chloromethane	50	1.188	1.188	0.000	99	113839	5.00	5.58	
14 Vinyl chloride	62	1.261	1.261	0.000	53	64054	5.00	5.63	
144 Butadiene	54	1.267	1.267	0.000	95	102944	5.00	5.60	
15 Bromomethane	94	1.504	1.504	0.000	93	31230	5.00	5.43	
16 Chloroethane	64	1.565	1.565	0.000	94	39267	5.00	5.24	
18 Trichlorofluoromethane	101	1.742	1.742	0.000	58	62489	5.00	5.21	
17 Dichlorofluoromethane	67	1.742	1.742	0.000	95	93745	5.00	5.51	
19 Ethyl ether	59	1.985	1.985	0.000	91	61059	5.00	5.05	
20 Acrolein	56	2.149	2.149	0.000	100	43782	25.0	23.3	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	40590	5.00	5.57	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	58	45382	5.00	6.09	
23 Acetone	43	2.289	2.289	0.000	99	173735	25.0	23.6	
24 lodomethane	142	2.320	2.320	0.000	99	76807	5.00	5.67	
25 Carbon disulfide	76	2.350	2.350	0.000	98	152380	5.00	5.69	
27 3-Chloro-1-propene	41	2.520	2.520	0.000	87	152336	5.00	5.49	
28 Methyl acetate	43	2.569	2.569	0.000	99	180166	10.0	10.2	
30 Methylene Chloride	84	2.654	2.654	0.000	88	54761	5.00	5.61	
31 2-Methyl-2-propanol	59	2.825	2.825	0.000	91	61209	50.0	43.3	M
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	92	163467	5.00	5.21	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	90	49854	5.00	5.69	
34 Acrylonitrile	53	2.922	2.922	0.000	97	485778	50.0	50.6	
35 Hexane	57	3.056	3.056	0.000	95	108700	5.00	5.71	

Data File: \\chromfs\Buf	talo\Cl		1		4-119	522.b\N9151.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	109439	5.00	5.52	
39 Vinyl acetate	43	3.330	3.330	0.000	96	217929	10.0	8.44	
42 2,2-Dichloropropane	77	3.768	3.768	0.000	71	42754	5.00	5.61	
43 cis-1,2-Dichloroethene	96	3.804	3.804	0.000	87	51957	5.00	5.60	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	269118	25.0	24.9	
47 Chlorobromomethane	128	4.023	4.023	0.000	82	24708	5.00	5.30	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	87504	10.0	10.7	
50 Chloroform	83	4.108	4.108	0.000	93	83768	5.00	5.16	
51 1,1,1-Trichloroethane	97	4.212	4.212	0.000	95	58422	5.00	5.45	
52 Cyclohexane	56	4.212	4.212	0.000	92	144799	5.00	5.74	
53 Carbon tetrachloride	117	4.339	4.339	0.000	92	37244	5.00	5.41	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	84	59820	5.00	5.22	
55 Benzene	78	4.558	4.558	0.000	66	172678	5.00	5.29	
56 Isobutyl alcohol	43	4.613	4.613	0.000	95	60219	125.0	110.9	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	77193	5.00	4.96	
59 n-Heptane	43	4.747	4.747	0.000	95	127019	5.00	5.71	
60 Trichloroethene	95	5.155	5.155	0.000	94	41182	5.00	5.15	
62 Methylcyclohexane	83	5.264	5.264	0.000	91	89743	5.00	5.87	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	86	50733	5.00	5.14	
64 Dibromomethane	93	5.526	5.526	0.000	91	28164	5.00	5.22	
66 1,4-Dioxane	88	5.538	5.538	0.000	27	6226	100.0	105.7	М
67 Dichlorobromomethane	83	5.690	5.690	0.000	93	44467	5.00	4.82	
69 2-Chloroethyl vinyl ether	63	5.976	5.976	0.000	83	32179	5.00	4.84	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	84	51791	5.00	4.71	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	184819	25.0	25.2	
73 Toluene	92	6.371	6.371	0.000	95	95735	5.00	5.11	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	91	40832	5.00	4.69	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	34177	5.00	4.26	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	93	30619	5.00	5.23	
79 Tetrachloroethene	166	6.895	6.895	0.000	94	42642	5.00	5.43	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	90	62684	5.00	5.33	
82 2-Hexanone	43	7.083	7.083	0.000	98	392882	25.0	25.8	
83 Chlorodibromomethane	129	7.235	7.235	0.000	88	29081	5.00	5.08	
84 Ethylene Dibromide	107	7.326	7.326	0.000	99	32295	5.00	4.76	
85 Chlorobenzene	112	7.801	7.801	0.000	93	112697	5.00	5.23	
88 Ethylbenzene	91	7.904	7.904	0.000	97	196217	5.00	5.43	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.904	0.000	42	31309	5.00	5.31	
90 m-Xylene & p-Xylene	106	8.020	8.020	0.000	97	81761	5.00	5.66	
91 o-Xylene	106	8.446	8.446	0.000	96	83747	5.00	5.35	
92 Styrene	104	8.476	8.476	0.000	92	126098	5.00	5.37	
	173			0.000			5.00		
93 Bromoform		8.707	8.707		94	16688		4.55	
95 Isopropylbenzene	105	8.829	8.829	0.000	96	212587	5.00	5.21	
97 Bromobenzene	156	9.170	9.170	0.000	89	53829	5.00	5.36	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.261	0.000	96	61812	5.00	4.93	
100 N-Propylbenzene	91	9.273	9.273	0.000	99	258930	5.00	5.32	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	55	18688	5.00	4.65	
101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	0.000	54	25771	5.00	4.63	
102 2-Chlorotoluene	126	9.371	9.371	0.000	94	48539	5.00	5.12	
104 1,3,5-Trimethylbenzene	105	9.474	9.474	0.000	94	185419	5.00	5.22	
105 4-Chlorotoluene	91	9.492	9.492	0.000	97	167888	5.00	5.18	
106 tert-Butylbenzene	134	9.796	9.796	0.000	96	38999	5.00	5.28	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	186133	5.00	5.04	

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9151.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
		10.001				0.4000=			
109 sec-Butylbenzene	105	10.021	10.021	0.000	95	242287	5.00	5.29	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	110806	5.00	5.46	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	201224	5.00	5.21	
113 1,4-Dichlorobenzene	146	10.240	10.240	0.000	91	106107	5.00	5.14	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	186173	5.00	5.32	
116 1,2-Dichlorobenzene	146	10.599	10.599	0.000	96	104833	5.00	5.25	
117 1,2-Dibromo-3-Chloropropan	e 75	11.354	11.354	0.000	64	7891	5.00	4.14	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	95	66750	5.00	5.22	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	94	28959	5.00	5.43	
121 Naphthalene	128	12.248	12.248	0.000	97	197714	5.00	4.87	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	93	58534	5.00	5.04	
S 123 1,3-Dichloropropene, Total	1				0			9.39	
S 125 Total BTEX	1				0			26.8	
S 126 Xylenes, Total	1				0			11.0	
S 124 1,2-Dichloroethene, Total	1				0			11.3	
QC Flag Legend									
Processing Flags									
Review Flags									
M - Manually Integrated									
Reagents:									
8260 CORP mix 00257		Amount	Added: 5	5.00	ι	Jnits: uL			

8260 CORP mix_00257	Amount Added:	5.00	Units: uL	
GAS CORP mix_00632	Amount Added:	5.00	Units: uL	
N_8260_Surr_00474	Amount Added:	1.00	Units: uL	Run Reagent
N 8260 IS_00278	Amount Added:	1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:41:10 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9151.d Injection Date: 14-Aug-2024 15:43:30 Instrument ID: HP5973N

Lims ID: IC 3

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

16

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9151.d \\Injection Date: \\14-\Aug-2024\\15:43:30 \qquad \Instrument \ID: \qquad \HP5973\\\

Lims ID: IC 3

Client ID:

Operator ID: LH ALS Bottle#: 13 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

31 2-Methyl-2-propanol, CAS: 75-65-0

Signal: 1

RT: 2.82 Area: 53523 Amount: 40.530575 Amount Units: ug/L

RT: 2.82 Area: 61209 Amount: 43.346669 Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:21:07 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 325 of 1052

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9151.d \\Injection Date: \\14-\Aug-2024\\15:43:30 \qquad \Instrument \ID: \qquad \HP5973\\\

Lims ID: IC 3

Client ID:

Operator ID: LH ALS Bottle#: 13 Worklist Smp#: 16

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.54
Area: 5125
Amount: 90.303951
Amount Units: ug/L

Processing Integration Results

RT: 5.54
Area: 6226
Amount: 105.6650
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:21:23 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 326 of 1052

Report Date: 15-Aug-2024 11:41:20 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9152.d

Lims ID: IC 4

Client ID:

Sample Type: IC Calib Level: 5

Inject. Date: 14-Aug-2024 16:05:30 ALS Bottle#: 14 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 4

Misc. Info.: 480-0119522-017

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:41:19 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:23:00

First Level Reviewer: R3QB			D	ate:		15-Aug-202			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.820	4.820	0.000	97	203416	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	727294	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	409254	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr	,	4.260	4.260	0.000	93	236800	25.0	25.0	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	84	324829	25.0	25.2	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.310	0.001	95	802602	25.0	24.8	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.024	0.006	91	281657	25.0	24.5	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	97	97744	10.0	10.1	
13 Chloromethane	50	1.188	1.188	0.000	98	216951	10.0	10.1	
14 Vinyl chloride	62	1.261	1.261	0.000	96	131256	10.0	11.0	
144 Butadiene	54	1.267	1.267	0.000	97	199403	10.0	10.3	
15 Bromomethane	94	1.511	1.504	0.007	90	59452	10.0	10.3	
16 Chloroethane	64	1.565	1.565	0.000	95	77880	10.0	9.87	
17 Dichlorofluoromethane	67	1.742	1.742	0.000	97	187095	10.0	10.4	
18 Trichlorofluoromethane	101	1.736	1.742	-0.006	86	126255	10.0	9.99	
19 Ethyl ether	59	1.985	1.985	0.000	91	127626	10.0	10.0	
20 Acrolein	56	2.149	2.149	0.000	100	91497	50.0	46.2	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	88	78661	10.0	10.2	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	57	87122	10.0	11.1	
23 Acetone	43	2.289	2.289	0.000	97	378810	50.0	49.0	
24 lodomethane	142	2.320	2.320	0.000	98	152722	10.0	10.7	
25 Carbon disulfide	76	2.350	2.350	0.000	99	290637	10.0	10.3	
27 3-Chloro-1-propene	41	2.521	2.520	0.001	87	307557	10.0	10.5	
28 Methyl acetate	43	2.569	2.569	0.000	99	365883	20.0	19.6	
30 Methylene Chloride	84	2.654	2.654	0.000	87	101419	10.0	10.6	
31 2-Methyl-2-propanol	59	2.831	2.825	0.006	97	146931	100.0	98.8	M
32 Methyl tert-butyl ether	73	2.861	2.855	0.006	93	323248	10.0	9.79	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	88	92747	10.0	10.1	
34 Acrylonitrile	53	2.922	2.922	0.000	99	1011614	100.0	100.1	
35 Hexane	57	3.062	3.056	0.006	96	227635	10.0	11.4	

Sig Compound Sig Comin. Comin. Comin. Compound Com	Data File: \\chromfs\Buf	raio\Ch				14-119	522.b\N9152.d			
36 1,1-Dichloroethane	Compound	Cir	RT (min.)		Dlt RT		Document		OnCol Amt	Пост
39 Vinyl acetate	Compound	Sig	(min.)	(min.)	(min.)	Q	Kesponse	ug/L	ug/L	Flags
39 Vinyl acetate	36.1.1 Dichloroothane	63	3 260	3 260	0.000	96	226825	10.0	10.0	
42 2_Dichloropropane										
43 cis-12-Dichloroethene 96 3.804 3.804 0.000 87 104690 10.0 10.7 44 2-Butanone (MEK) 43 3.841 3.841 0.00 83 50069 10.0 10.2 49 Tetrahydrofuran 42 4.041 4.041 0.000 96 175517 10.0 10.3 51 1,1-Trichloroethane 97 4.212 4.212 0.000 62 123542 10.0 10.9 52 Cyclohexane 56 4.212 4.212 0.000 92 296260 10.0 11.1 53 Carbon tetrachloride 117 4.340 4.339 0.001 93 80680 10.0 11.1 54 1.1-Dichloroptopene 75 4.3588 4.358 0.000 84 127527 10.0 10.6 55 Benzene 78 4.552 4.558 0.000 84 127527 10.0 10.6 56 Isobutyl alcohol 43 4.747 7.747 0.000 95 260152	•									
44 Chlorobromomethane 128 4.029 4.023 0.006 85 584924 50.0 51.4 47 Chlorobromomethane 128 4.029 4.023 0.006 83 50069 10.0 10.2 20.9 9 10.0 10.2 49 Tetrahydrofuran 42 4.041 4.041 0.000 92 174580 20.0 20.9 50 Chlorobrom 83 4.108 4.108 0.000 96 175517 10.0 10.3 51 1.1,1-Trichloroethane 97 4.212 4.212 0.000 62 123542 10.0 10.9 52 Cyclohexane 56 4.212 4.212 0.000 62 123542 10.0 10.9 52 Cyclohexane 56 4.212 4.212 0.000 62 123542 10.0 11.1 54 1,1-Dichloropropene 75 4.358 4.358 0.000 84 127527 10.0 10.6 55 Benzene 78 4.552 4.558 0.000 84 127527 10.0 10.6 55 Benzene 78 4.552 4.558 0.000 84 127527 10.0 10.6 55 Benzene 78 4.552 4.558 0.000 96 146126 250.0 255.5 57 1,2-Dichloroethane 62 4.625 4.625 0.000 96 146126 250.0 255.5 57 1,2-Dichloroethane 93 5.5155 5.155 0.000 96 146126 250.0 255.5 57 1.00 11.1 60										
47 Chlorobromomethane 128 4.029 4.023 0.006 83 500699 10.0 10.2 48 Tetrahydrofuran 42 4.041 4.041 0.000 92 174580 2.00 20.9 50 Chloroform 83 4.108 4.108 0.000 96 175517 10.0 10.3 51 1,1-Trichloroethane 56 4.212 4.212 0.000 62 225842 10.0 10.9 52 Cyclohexane 56 6.212 4.212 0.000 92 296260 10.0 11.1 53 Carbon tetrachloride 117 4.340 4.339 0.001 93 80680 10.0 11.6 55 Benzene 78 4.552 4.588 0.006 81 146128 250.0 255.5 57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 172999 10.0 10.5 60 Trichloroethane 95 5.555 5.155 5.155 0.000 92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
49 Tetrahydrofuran	` ,									
SO Chloroform										
551 1,1,1-Trichloroethane 97 4,212 4,212 0,000 62 123542 10.0 10.9 52 Cyclohexane 56 4,212 4,212 0,000 92 296260 10.0 11.2 53 Carbon tetrachloride 117 4,340 4,339 0,000 81 127527 10.0 10.6 55 Benzene 78 4,528 4,588 0,000 81 127527 10.0 10.6 56 Isobutyl alcohol 43 4,613 4,613 0,000 96 146126 250.0 255.5 57 1,2-Dichloroethane 62 4,625 4,625 0,000 94 172909 10.0 10.5 59 n-Heptane 43 4,747 7,474 0,000 95 260152 10.0 10.5 60 Phelptane 43 5,270 5,264 0,000 92 181696 10.0 10.7 62 Methylocylochexane 83 5,526 5,526 0,000 99 181298										
S2 Cyclohexane										
53 Carbon tetrachloride 117 4.340 4.339 0.001 93 80680 10.0 11.1 54 1,1-Dichloropropene 75 4.358 4.358 0.000 84 127527 10.0 10.6 55 Benzene 78 4.552 4.558 0.006 83 365192 10.0 10.6 56 Isobutyl alcohol 43 4.613 4.663 0.000 94 172909 10.0 10.5 57 1,2-Dichloroptenane 43 4.747 4.747 0.000 95 260152 10.0 11.1 60 Trichloroptopane 63 5.270 5.526 0.000 89 181696 10.0 11.3 63 1,2-Dichloropropane 63 5.526 5.526 0.000 89 112738 10.0 10.8 64 Dibromomethane 83 5.538 5.538 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 0.006 84										
Setant S										
55 Benzene 78 4.552 4.558 -0.006 83 365192 10.0 10.6 56 Isobutyl alcohol 43 4.613 4.613 0.000 96 146126 250.0 255.5 57 57 1.2-Dichloroethane 62 4.625 4.625 0.000 95 260152 10.0 11.1 60 Trichloroethane 43 4.747 4.747 0.000 95 260152 10.0 11.7 62 Methylcyclohexane 83 5.270 5.264 0.006 92 181696 10.0 11.3 63 1,2-Dichloropropane 63 5.392 5.390 0.000 89 112738 10.0 10.8 45 Dibromomethane 83 5.526 5.526 0.000 94 60631 10.0 10.7 66 1,4-Dioxane 83 5.584 5.580 -0.006 84 101504 10.0 10.4 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 81										
56 Isobutyl alcohol 43 4.613 4.613 0.000 96 146126 250.0 255.5 57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 172909 10.0 11.1 60 Trichloroethane 95 5.155 5.155 0.000 95 90088 10.0 11.7 62 Methylcyclohexane 83 5.270 5.264 0.006 92 181696 10.0 11.3 63 1,2-Dichloropropane 63 5.392 5.5026 0.000 89 112738 11.0 10.8 64 Dibromomethane 88 5.538 5.538 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 -0.006 94 101504 10.0 10.4 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 81 74216 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.093 0.000<										
57 1,2-Dichloroethane 62 4.625 4.625 0.000 94 172909 10.0 10.5 59 n-Heptane 43 4.747 4.747 0.000 95 260152 10.0 11.1 60 Trichloroethene 95 5.155 5.000 95 260152 10.0 11.1 62 Methylcyclohexane 83 5.270 5.264 0.006 92 181696 10.0 11.3 63 1,2-Dichloropropane 63 5.392 5.526 0.000 94 60631 10.0 10.7 66 1,4-Dioxane 88 5.538 5.588 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 -0.006 81 74216 10.0 10.6 67 Dichlorobromomethane 83 5.684 5.690 -0.006 81 74216 10.0 10.6 71 cis-1,3-Dichloropropene 75 6.683 6.295 0.000 82 121818 <td></td>										
59 n-Heptane 43 4,747 4,747 0.000 95 260152 10.0 11.1 60 Trichloroethene 95 5.155 5.155 0.000 95 90088 10.0 10.7 62 Methyloyclohexane 83 5.270 5.264 0.006 92 181696 10.0 11.3 63 1,2-Dichloropropane 63 5.392 5.392 0.000 89 112738 10.0 10.8 64 Dibromomethane 83 5.584 5.590 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 -0.006 81 74216 10.0 10.6 71 cls-1,3-Dichloropropene 75 6.098 6.098 0.000 82 121560 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 75 6.663 6.663 0.000 97										
60 Tricnloroethene										
62 Methylcyclohexane	•									
63 1,2-Dichloropropane 63 5.392 5.392 0.000 89 112738 10.0 10.8 64 Dibromomethane 93 5.526 5.526 0.000 94 60631 10.0 10.7 66 1,4-Dioxane 88 5.538 5.538 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 -0.006 94 101504 10.0 10.4 69 2-Chloroethyl vinyl ether 63 5.970 5.976 0.006 81 74216 10.0 10.6 71 cis-1,3-Dichloropropene 75 6.698 6.098 0.000 82 121580 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.668 0.6663 0.000 90 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethane 83 6.846 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 97 160972 10.0 10.4 88 Ethylene Dibromide 107 7.327 7.326 0.001 97 160972 10.0 10.4 81 11.2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene 8 p-Xylene 106 8.446 8.446 0.000 97 160972 10.0 10.4 91 0.4 91 0.4 81 1.7-Tetrachloroethane 159 8.829 8.829 0.000 97 160972 10.0 10.4 91 0.4 91 0.5 ylene 106 8.446 8.446 0.000 97 160972 10.0 10.4 91 0.4 91 0.5 ylene 106 8.446 8.446 0.000 97 160972 10.0 10.7 99 78 promoberzene 156 9.700 9.700 90 109284 10.0 10.7 99 12.3-Trichloropropane 110 9.273 9.273 0.000 99 523530 10.0 10.7 99 12.3-Trichloropropane 110 9.273 9.279 0.000 88 42755 10.0 10.6 10.7 99 12.3-Trichloropropane 110 9.279 9.279 0.000 88 355150 10.0 10.7 10.7 99 12.3-Trichloropropane 110 9.48 9.446 0.000 95 104740 10.0 10.7 10.7 10.0 N-Propylbenzene 91 9.488 9.474 0.000 95 104740 10.0 10.7 10.6 101 trans-1,4-Dichloro-2-buttene 53 9.304 9.304 0.000 95 104740 10.0 10.0 10.6 101 trans-1,4-Dichloro-2-buttene 53 9.										
64 Dibromomethane 83 5.526 5.526 0.000 94 60631 10.0 10.7 661.4-Dioxane 88 5.538 5.538 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 0.006 94 101504 10.0 10.4 10.0 10.4 10.0 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5										
66 1,4-Dioxane 88 5.538 5.538 0.000 27 14236 200.0 221.3 M 67 Dichlorobromomethane 83 5.684 5.690 -0.006 94 101504 10.0 10.4 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 81 74216 10.0 10.6 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 82 121560 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 Erans-1,3-Dichloropropane 75 6.663 6.663 0.000 99 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 75 Ethyl methacrylate 66 6.895 0.001 94										
67 Dichlorobromomethane 83 5.684 5.690 -0.006 94 101504 10.0 10.4 69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 81 74216 10.0 10.6 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 82 121560 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.891 7.891 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene 8 p-Xylene 106 8.446 8.446 0.000 97 166874 10.0 10.1 9.9 91 0.0 38 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 10.1 9.9 91 0.0 91 0										N/I
69 2-Chloroethyl vinyl ether 63 5.970 5.976 -0.006 81 74216 10.0 10.6 71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 82 121560 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 77 Ethyl methacylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethane 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>IVI</td></td<>										IVI
71 cis-1,3-Dichloropropene 75 6.098 6.098 0.000 82 121560 10.0 10.5 72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethane 166 6.895 6.895 0.001 94 91392 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 <										
72 4-Methyl-2-pentanone (MIBK) 58 6.250 6.250 0.000 97 404521 50.0 51.6 73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethane 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 7.004 9.00 89 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 </td <td></td>										
73 Toluene 92 6.378 6.371 0.007 96 212118 10.0 10.6 75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 74278										
75 trans-1,3-Dichloropropene 75 6.663 6.663 0.000 90 97219 10.0 10.4 77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 91 7.898 7.904 -0.006 97										
77 Ethyl methacrylate 69 6.724 6.724 0.000 87 86479 10.0 10.1 78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 88 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 91 7.891 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 </td <td></td>										
78 1,1,2-Trichloroethane 83 6.846 6.846 0.000 94 65160 10.0 10.4 79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,2,2-Tetrachloroethane 131 7.905 7.904 0.000 88 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
79 Tetrachloroethene 166 6.895 6.895 0.001 94 91392 10.0 10.9 80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodifromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 <td></td>										
80 1,3-Dichloropropane 76 7.004 7.004 0.000 89 130858 10.0 10.4 82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 168474 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476										
82 2-Hexanone 43 7.083 7.083 0.000 98 874975 50.0 53.6 83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.1 93 Bromoform 173 8.714 8.707										
83 Chlorodibromomethane 129 7.229 7.235 -0.006 89 59297 10.0 9.69 84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108										
84 Ethylene Dibromide 107 7.327 7.326 0.001 100 74278 10.0 10.2 85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 9.170 9.170 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
85 Chlorobenzene 112 7.801 7.801 0.000 91 231182 10.0 10.0 88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 156 9.170 9.170 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.261 0.000 95 134575 10.0<										
88 Ethylbenzene 91 7.898 7.904 -0.006 97 403905 10.0 10.4 89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 997 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575	•									
89 1,1,1,2-Tetrachloroethane 131 7.905 7.904 0.000 88 62892 10.0 9.97 90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530										
90 m-Xylene & p-Xylene 106 8.020 8.020 0.000 97 160972 10.0 10.4 91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 10.7 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 10.9 10.6 10.6 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8										
91 o-Xylene 106 8.446 8.446 0.000 97 168474 10.0 10.1 92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.3										
92 Styrene 104 8.476 8.476 0.000 92 274618 10.0 10.9 93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 <td></td>										
93 Bromoform 173 8.714 8.707 0.007 96 38108 10.0 9.04 95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•									
95 Isopropylbenzene 105 8.829 8.829 0.000 97 435901 10.0 10.7 97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134										
97 Bromobenzene 156 9.170 9.170 0.000 90 109284 10.0 10.9 98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 <										
98 1,1,2,2-Tetrachloroethane 83 9.261 9.261 0.000 95 134575 10.0 10.7 100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8										
100 N-Propylbenzene 91 9.273 9.273 0.000 99 523530 10.0 10.7 99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8	97 Bromobenzene									
99 1,2,3-Trichloropropane 110 9.279 9.279 0.000 88 42725 10.0 10.6 101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8										
101 trans-1,4-Dichloro-2-butene 53 9.304 9.304 0.000 62 60225 10.0 10.8 102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8										
102 2-Chlorotoluene 126 9.371 9.371 0.000 95 104740 10.0 11.0 104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8										
104 1,3,5-Trimethylbenzene 105 9.468 9.474 -0.006 93 379780 10.0 10.7 105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8	101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	0.000	62	60225	10.0	10.8	
105 4-Chlorotoluene 91 9.492 9.492 0.000 98 355152 10.0 10.9 106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8	102 2-Chlorotoluene	126	9.371	9.371	0.000	95	104740	10.0	11.0	
106 tert-Butylbenzene 134 9.803 9.796 0.007 97 79878 10.0 10.8	104 1,3,5-Trimethylbenzene	105	9.468	9.474	-0.006	93	379780	10.0	10.7	
•	105 4-Chlorotoluene	91	9.492	9.492	0.000	98	355152	10.0	10.9	
108 1,2,4-Trimethylbenzene 105 9.857 9.857 0.000 98 393900 10.0 10.7	106 tert-Butylbenzene	134	9.803	9.796	0.007	97	79878	10.0	10.8	
	108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	393900	10.0	10.7	

Report Date: 15-Aug-2024 11:41:20 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Data File: \chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9152.d

Data File: \\chromfs\But	talo\C	hromData	NHP59/3N	1\2024081	4-119	522.b\N9152.c	<u></u>		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
100	405	40.000	10.001	0.004	٥.5	500504	400	44.0	
109 sec-Butylbenzene	105	10.022	10.021	0.001	95	503564	10.0	11.0	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	96	214811	10.0	10.6	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	97	420201	10.0	10.9	
113 1,4-Dichlorobenzene	146	10.241	10.240	0.001	95	226072	10.0	10.9	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	383091	10.0	10.9	
116 1,2-Dichlorobenzene	146	10.600	10.599	0.001	97	213667	10.0	10.7	
117 1,2-Dibromo-3-Chloropropan	e 75	11.354	11.354	0.000	65	15638	10.0	8.19	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	95	137374	10.0	10.7	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	95	63238	10.0	11.8	
121 Naphthalene	128	12.248	12.248	0.000	97	417088	10.0	10.3	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	92	130632	10.0	11.2	
S 123 1,3-Dichloropropene, Total	1				0			20.9	
S 125 Total BTEX	1				0			52.1	
S 126 Xylenes, Total	1				0			20.5	
S 124 1,2-Dichloroethene, Total	1				0			20.8	
OC Flog Logand									
QC Flag Legend Processing Flags									
Review Flags									
_									
M - Manually Integrated									
Reagents:									
8260 CORP mix 00257		Amount	Added: 5	5.00	ι	Jnits: uL			

8200 CORP MIX_00257	Amount Added: 5.0	onits: ul	
GAS CORP mix_00632	Amount Added: 5.0	00 Units: uL	
N_8260_Surr_00474	Amount Added: 1.0	00 Units: uL	Run Reagent
N 8260 IS 00278	Amount Added: 1.0	00 Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:41:20 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9152.d 14-Aug-2024 16:05:30 HP5973N Injection Date: Instrument ID: Lims ID: IC 4

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Limit Group: MV - 8260C ICAL Method: N-8260

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

17

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9152.d Injection Date: 14-Aug-2024 16:05:30 Instrument ID: HP5973N

Lims ID: IC 4

Client ID:

Operator ID: LH ALS Bottle#: 14 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

31 2-Methyl-2-propanol, CAS: 75-65-0

Signal: 1

RT: 2.83 Area: 133125 Amount: 94.344225 Amount Units: ug/L

RT: 2.83
Area: 146931
Amount: 98.796372
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:22:11 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 331 of 1052

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9152.d Injection Date: 14-Aug-2024 16:05:30 Instrument ID: HP5973N

Lims ID: IC 4

Client ID:

Operator ID: LH ALS Bottle#: 14 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.54
Area: 14616
Amount: 232.6740
Amount Units: ug/L

Processing Integration Results

RT: 5.54
Area: 14236
Amount: 221.2543
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:22:47 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 332 of 1052

Report Date: 15-Aug-2024 11:41:31 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9153.d

Lims ID: ICIS 5

Client ID:

Sample Type: ICIS Calib Level: 6

Inject. Date: 14-Aug-2024 16:28:30 ALS Bottle#: 15 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ICIS 5

Misc. Info.: 480-0119522-018

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:41:30 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:15:33

First Level Reviewer: R3QB		Date:				15-Aug-202			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.820	4.820	0.000	97	203534	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	90	719397	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	406721	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	235471	25.0	24.9	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	65	321047	25.0	24.9	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	802312	25.0	25.0	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	87	286716	25.0	25.2	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	247550	25.0	25.5	
13 Chloromethane	50	1.188	1.188	0.000	99	532292	25.0	24.8	
14 Vinyl chloride	62	1.261	1.261	0.000	97	311975	25.0	26.0	
144 Butadiene	54	1.267	1.267	0.000	96	477799	25.0	24.7	
15 Bromomethane	94	1.505	1.505	0.000	92	150910	25.0	27.0	
16 Chloroethane	64	1.565	1.565	0.000	95	184396	25.0	23.4	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	97	430044	25.0	24.0	
18 Trichlorofluoromethane	101	1.742	1.742	0.000	95	328496	25.0	26.0	
19 Ethyl ether	59	1.985	1.985	0.000	90	302100	25.0	23.7	
20 Acrolein	56	2.149	2.149	0.000	98	235052	125.0	118.6	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	200066	25.0	26.0	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	58	213876	25.0	27.2	
23 Acetone	43	2.289	2.289	0.000	98	888950	125.0	114.8	
24 Iodomethane	142	2.326	2.326	0.000	98	359627	25.0	25.2	
25 Carbon disulfide	76	2.350	2.350	0.000	99	711724	25.0	25.2	
27 3-Chloro-1-propene	41	2.521	2.521	0.000	87	719379	25.0	24.6	
28 Methyl acetate	43	2.563	2.563	0.000	99	911293	50.0	48.7	
30 Methylene Chloride	84	2.654	2.654	0.000	88	239486	25.0	26.3	
31 2-Methyl-2-propanol	59	2.825	2.825	0.000	94	363549	250.0	244.3	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	92	780513	25.0	23.6	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	89	224939	25.0	24.4	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2442759	250.0	241.6	
35 Hexane	57	3.062	3.062	0.000	96	560885	25.0	28.0	

Data File: \\chromfs\Buf	talo\Ct				4-119	522.b\N9153.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.263	3.263	0.000	96	541738	25.0	25.9	
39 Vinyl acetate	43	3.330	3.330	0.000	96	1444018	50.0	53.1	
42 2,2-Dichloropropane	77	3.768	3.768	0.000	78	201906	25.0	25.1	
43 cis-1,2-Dichloroethene	96	3.798	3.798	0.000	86	252808	25.0	25.9	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1426270	125.0	125.3	
47 Chlorobromomethane	128	4.029	4.029	0.000	82	122934	25.0	25.0	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	423958	50.0	52.0	
50 Chloroform	83	4.108	4.108	0.000	96	416469	25.0	24.3	
51 1,1,1-Trichloroethane	97	4.206	4.206	0.000	64	298145	25.0	26.4	
52 Cyclohexane	56	4.212	4.212	0.000	94	691145	25.0	26.0	
53 Carbon tetrachloride	117	4.340	4.340	0.000	93	193341	25.0	26.6	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	316804	25.0	26.2	
55 Benzene	78	4.552	4.552	0.000	89	879120	25.0	25.6	
56 Isobutyl alcohol	43	4.613	4.613	0.000	95	399885	625.0	698.8	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	409498	25.0	25.0	
59 n-Heptane	43	4.747	4.747	0.000	94	643093	25.0	27.4	
60 Trichloroethene	95	5.161	5.161	0.000	94	212072	25.0	25.2	
62 Methylcyclohexane	83	5.270	5.270	0.000	92	438206	25.0	27.2	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	88	263565	25.0	25.3	
64 Dibromomethane	93	5.520	5.520	0.000	96	141866	25.0	24.9	
66 1,4-Dioxane	88	5.538	5.538	0.000	89	33112	500.0	514.8	М
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	256336	25.0	26.4	
69 2-Chloroethyl vinyl ether	63	5.976	5.976	0.000	83	180514	25.0	25.8	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	84	308265	25.0	26.6	
72 4-Methyl-2-pentanone (MIBK)	58	6.250	6.250	0.000	97	971778	125.0	125.4	
73 Toluene	92	6.378	6.378	0.000	96	495846	25.0	25.0	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	91	255661	25.0	27.7	
77 Ethyl methacrylate	69	6.724	6.724	0.000	86	229495	25.0	27.0	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	93	158088	25.0	25.5	
79 Tetrachloroethene	166	6.895	6.895	0.000	95	218695	25.0	26.3	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	89	322643	25.0	25.9	
82 2-Hexanone	43	7.083	7.083	0.000	97	2055270	125.0	127.3	
83 Chlorodibromomethane	129	7.235	7.235	0.000	88	159701	25.0	26.4	
84 Ethylene Dibromide	107	7.327	7.327	0.000	96	194595	25.0	27.1	
85 Chlorobenzene	112	7.801	7.801	0.000	91	577507	25.0	25.3	
88 Ethylbenzene	91	7.898	7.898	0.000	98	1003442	25.0	26.2	
89 1,1,1,2-Tetrachloroethane	131	7.905	7.905	0.000	86	162931	25.0	26.1	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	393205	25.0	25.7	
91 o-Xylene	106	8.440	8.440	0.000	98	409437	25.0	24.7	
92 Styrene	104	8.476	8.476	0.000	91	658159	25.0	26.5	
93 Bromoform	173	8.714	8.714	0.000	96	107738	25.0	24.7	
95 Isopropylbenzene	105	8.829	8.829	0.000	97	1075798	25.0	26.5	
97 Bromobenzene	156	9.170	9.170	0.000	90	261216	25.0	26.1	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.261	0.000	96	318716	25.0	25.6	
100 N-Propylbenzene	91	9.273	9.273	0.000	99	1260328	25.0	26.0	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	89	103290	25.0	25.9	
101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	0.000	66	143857	25.0	26.0	
102 2-Chlorotoluene	126	9.371	9.371	0.000	95	246667	25.0	26.1	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	95	916255	25.0	25.9	
105 4-Chlorotoluene	91	9.492	9.492	0.000	98	849843	25.0	26.4	
106 tert-Butylbenzene	134	9.803	9.803	0.000	96	192935	25.0	26.3	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	957860	25.0	26.1	
100 1,2,7-11IIIGHIYDEHZEHE	100	9.007	9.007	0.000	30	337000	20.0	۷. ۱	

Report Date: 15-Aug-2024 11:41:31 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9153.d

244.45.									
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
109 sec-Butylbenzene	105	10.022	10.022	0.000	95	1195671	25.0	26.3	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	515452	25.0	25.5	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	1017056	25.0	26.5	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	93	532738	25.0	25.9	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	909656	25.0	26.1	
116 1,2-Dichlorobenzene	146	10.600	10.600	0.000	96	498962	25.0	25.1	
117 1,2-Dibromo-3-Chloropropa	ane 75	11.354	11.354	0.000	92	52867	25.0	27.9	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	95	321704	25.0	25.3	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	95	138182	25.0	26.0	
121 Naphthalene	128	12.248	12.248	0.000	97	1037551	25.0	25.7	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	94	291870	25.0	25.3	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

Reagents:

8260 CORP mix_00257	Amount Added: 12.50	Units: uL	
GAS CORP mix_00632	Amount Added: 12.50	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS_00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:41:31 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9153.d

 Injection Date:
 14-Aug-2024 16:28:30
 Instrument ID:
 HP5973N

Lims ID: ICIS 5

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

18

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9153.d Injection Date: 14-Aug-2024 16:28:30 Instrument ID: HP5973N

Lims ID: ICIS 5

Client ID:

Operator ID: LH ALS Bottle#: 15 Worklist Smp#: 18

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.54
Area: 26964
Amount: 443.9016
Amount Units: ug/L

Processing Integration Results

RT: 5.54
Area: 33112
Amount: 514.8114
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:12:38 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Report Date: 15-Aug-2024 11:41:43 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9154.d

Lims ID: IC 6

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 14-Aug-2024 16:50:30 ALS Bottle#: 16 Worklist Smp#: 19

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 6

Misc. Info.: 480-0119522-019

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:41:42 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:23:46

First Level Reviewer: R3QB	First Level Reviewer: R3QB			ate:		15-Aug-202	24 10:23:46		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
								-	
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	208571	25.0	25.0	
2 Chlorobenzene-d5	117	7.771	7.771	0.000	90	707241	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	401358	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)	113	4.260	4.260	0.000	92	243006	25.0	25.0	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	55	324416	25.0	24.5	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	807800	25.0	25.6	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	86	280448	25.0	25.1	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	483216	50.0	48.5	
13 Chloromethane	50	1.188	1.188	0.000	99	1042412	50.0	47.3	
14 Vinyl chloride	62	1.261	1.261	0.000	98	599450	50.0	48.8	
144 Butadiene	54	1.267	1.267	0.000	97	918487	50.0	46.3	
15 Bromomethane	94	1.517	1.505	0.012	93	269175	50.0	47.4	
16 Chloroethane	64	1.565	1.565	0.000	94	360151	50.0	44.5	
18 Trichlorofluoromethane	101	1.736	1.742	-0.006	97	658401	50.0	50.8	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	97	856734	50.0	46.6	
19 Ethyl ether	59	1.985	1.985	0.000	92	599757	50.0	45.9	
20 Acrolein	56	2.149	2.149	0.000	98	474552	250.0	233.6	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	381193	50.0	48.4	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	92	413700	50.0	51.4	
23 Acetone	43	2.289	2.289	0.000	98	1787901	250.0	225.4	
24 Iodomethane	142	2.320	2.326	-0.006	98	713974	50.0	48.8	
25 Carbon disulfide	76	2.350	2.350	0.000	98	1372247	50.0	47.5	
27 3-Chloro-1-propene	41	2.521	2.521	0.000	87	1388812	50.0	46.4	
28 Methyl acetate	43	2.569	2.563	0.006	99	1812542	100.0	94.6	
30 Methylene Chloride	84	2.654	2.654	0.000	87	461227	50.0	50.2	
31 2-Methyl-2-propanol	59	2.837	2.825	0.012	98	831127	500.0	545.0	
32 Methyl tert-butyl ether	73	2.861	2.855	0.006	93	1576108	50.0	46.5	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	88	446398	50.0	47.2	
34 Acrylonitrile	53	2.922	2.922	0.000	98	4835564	500.0	466.6	
35 Hexane	57	3.062	3.062	0.000	95	1062782	50.0	51.7	

Data File: \\chromfs\Buf	raio\Ch		1		4-119)522.b\N9154.d			
	<u>.</u>	RT	Adj RT	Dlt RT		Б	Cal Amt	OnCol Amt	E.
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
00445:11	00	0.000	0.000	0.000	00	1000105	50.0	40.0	
36 1,1-Dichloroethane	63	3.269	3.263	0.006	96	1066195	50.0	49.8	
39 Vinyl acetate	43	3.330	3.330	0.000	96	3182191	100.0	114.2	
42 2,2-Dichloropropane	77	3.762	3.768	-0.006	78	426371	50.0	51.8	
43 cis-1,2-Dichloroethene	96	3.798	3.798	0.000	86	484284	50.0	48.3	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	2776573	250.0	238.0	
47 Chlorobromomethane	128	4.029	4.029	0.000	83	238552	50.0	47.4	
49 Tetrahydrofuran	42	4.041	4.041	0.000	92	821962	100.0	99.2	
50 Chloroform	83	4.108	4.108	0.000	95	795535	50.0	45.4	
51 1,1,1-Trichloroethane	97	4.212	4.206	0.006	96	596787	50.0	51.6	
52 Cyclohexane	56	4.212	4.212	0.000	93	1366144	50.0	50.2	
53 Carbon tetrachloride	117	4.340	4.340	0.000	95	418807	50.0	56.3	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	613151	50.0	49.6	
55 Benzene	78	4.552	4.552	0.000	91	1712962	50.0	48.6	
56 Isobutyl alcohol	43	4.613	4.613	0.000	95	960272	1250.0	1637.6	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	800357	50.0	47.6	
59 n-Heptane	43	4.747	4.747	0.000	95	1241342	50.0	51.7	
60 Trichloroethene	95	5.155	5.161	-0.006	92	420353	50.0	48.7	
62 Methylcyclohexane	83	5.270	5.270	0.000	92	831874	50.0	50.4	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	87	517352	50.0	48.5	
64 Dibromomethane	93	5.526	5.520	0.006	95	271121	50.0	46.5	
66 1,4-Dioxane	88	5.538	5.538	0.000	86	63136	1000.0	994.7	
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	511363	50.0	51.3	
69 2-Chloroethyl vinyl ether	63	5.970	5.976	-0.006	85	363688	50.0	50.7	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	84	617877	50.0	52.0	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	1915272	250.0	251.3	
73 Toluene	92	6.371	6.378	-0.007	96	979789	50.0	50.3	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	92	529740	50.0	58.4	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	490165	50.0	58.7	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	93	306887	50.0	50.4	
79 Tetrachloroethene	166	6.895	6.895	0.000	94	413682	50.0	50.6	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	89	612289	50.0	50.0	
82 2-Hexanone	43	7.083	7.083	0.000	98	3888634	250.0	245.1	
83 Chlorodibromomethane	129	7.235	7.235	0.000	89	328352	50.0	55.2	
84 Ethylene Dibromide	107	7.327	7.327	0.000	99	380535	50.0	53.9	
85 Chlorobenzene	112	7.801	7.801	0.000	91	1128821	50.0	50.3	
88 Ethylbenzene	91	7.898	7.898	0.000	98	1925598	50.0	51.2	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	90	354556	50.0	57.8	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	754706	50.0	50.2	
91 o-Xylene	106	8.446	8.440	0.006	97	792770	50.0	48.6	
92 Styrene	104	8.476	8.476	0.000	93	1260196	50.0	51.6	
93 Bromoform	173	8.714	8.714	0.000	95	223710	50.0	51.6	
95 Isopropylbenzene	105	8.829	8.829	0.000	97	2095353	50.0	52.3	
97 Bromobenzene	156	9.170	9.170	0.000	92	495614	50.0	50.3	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.261	-0.006	94	611310	50.0	49.7	
100 N-Propylbenzene	91	9.273	9.273	0.000	99	2426844	50.0	50.8	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	89	188751	50.0	47.9	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.304	0.006	72	305577	50.0	55.9	
102 2-Chlorotoluene	126	9.377	9.371	0.006	95	480789	50.0	51.6	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	1799730	50.0	51.6	
105 4-Chlorotoluene	91	9.492	9.492	0.000	99	1632903	50.0	51.3	
106 tert-Butylbenzene	134	9.796	9.803	-0.007	96	384712	50.0	53.1	
-	105	9.857	9.857	0.000	98	1838348	50.0	50.7	
108 1,2,4-Trimethylbenzene	105	5.00/	ჟ.00/	0.000	90	1030348	50.0	50.7	

ug-2024 11:41:43 Chrom Revision: 2.3 07-Aug-2024 17:44:18 \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9154.d Report Date: 15-Aug-2024 11:41:43

Amount Added: 1.00

Amount Added: 1.00

Data File:

N_8260_Surr_00474

N 8260 IS_00278

Data File. //ciliomis/builalo/CiliomData/HP5973N/20240814-119522.b/N9154.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
109 sec-Butylbenzene	105	10.022	10.022	0.000	95	2325057	50.0	51.7	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	978578	50.0	49.1	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	1971761	50.0	52.0	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	93	1011205	50.0	49.8	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	1799121	50.0	52.4	
116 1,2-Dichlorobenzene	146	10.600	10.600	0.000	97	970792	50.0	49.5	
117 1,2-Dibromo-3-Chloropropan	e 75	11.354	11.354	0.000	73	122773	50.0	65.6	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	94	662201	50.0	52.7	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	96	300746	50.0	57.4	
121 Naphthalene	128	12.248	12.248	0.000	97	2095849	50.0	52.6	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	96	606393	50.0	53.2	
S 123 1,3-Dichloropropene, Total	1				0			110.5	
S 125 Total BTEX	1				0			249.0	
S 126 Xylenes, Total	1				0			98.9	
S 124 1,2-Dichloroethene, Total	1				0			95.5	
00 Flandanad									
QC Flag Legend									
Processing Flags									
Reagents:									
8260 CORP mix_00257			Added: 2			Units: uL			
GAS CORP mix_00632		Amount	Added: 2	5.00		Units: uL			

Units: uL

Units: uL

Run Reagent

Run Reagent

Report Date: 15-Aug-2024 11:41:43 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9154.d Injection Date: 14-Aug-2024 16:50:30 Instrument ID: HP5973N

Lims ID: IC 6

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

19

16

Report Date: 15-Aug-2024 11:41:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9155.d

Lims ID: IC 7

Client ID:

Sample Type: IC Calib Level: 8

Inject. Date: 14-Aug-2024 17:12:30 ALS Bottle#: 17 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: IC 7

Misc. Info.: 480-0119522-020

Operator ID: LH Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:41:54 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:25:03

First Level Reviewer: R3QB			D	ate:		15-Aug-202	24 10:25:03		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	208871	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	90	721689	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	96	412044	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr))113	4.260	4.260	0.000	93	237050	25.0	24.4	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	47	328151	25.0	24.8	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	794737	25.0	24.7	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	86	280782	25.0	24.6	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	939331	100.0	94.2	
13 Chloromethane	50	1.188	1.188	0.000	99	2061613	100.0	93.5	
14 Vinyl chloride	62	1.261	1.261	0.000	97	1175426	100.0	95.5	
144 Butadiene	54	1.267	1.267	0.000	95	1790033	100.0	90.1	
15 Bromomethane	94	1.505	1.505	0.000	92	565290	100.0	100.1	
16 Chloroethane	64	1.565	1.565	0.000	94	709078	100.0	87.5	
18 Trichlorofluoromethane	101	1.742	1.742	0.000	97	1312800	100.0	101.1	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	97	1722143	100.0	93.5	
19 Ethyl ether	59	1.991	1.985	0.006	92	1188320	100.0	90.8	
20 Acrolein	56	2.149	2.149	0.000	100	1064490	500.0	523.2	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	88	679766	100.0	86.2	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.180	0.000	57	725625	100.0	90.0	
23 Acetone	43	2.289	2.289	0.000	98	3546980	500.0	446.4	
24 lodomethane	142	2.320	2.326	-0.006	98	1344256	100.0	91.8	
25 Carbon disulfide	76	2.356	2.350	0.006	99	2513412	100.0	86.8	
27 3-Chloro-1-propene	41	2.521	2.521	0.000	87	2628746	100.0	87.7	
28 Methyl acetate	43	2.569	2.563	0.006	99	3682431	200.0	191.9	
30 Methylene Chloride	84	2.660	2.654	0.006	87	891298	100.0	97.7	
31 2-Methyl-2-propanol	59	2.831	2.825	0.006	99	1756609	1000.0	1150.3	
32 Methyl tert-butyl ether	73	2.861	2.855	0.006	94	3172647	100.0	93.6	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	88	827532	100.0	87.4	
34 Acrylonitrile	53	2.928	2.922	0.006	98	9659575	1000.0	930.8	
35 Hexane	57	3.062	3.062	0.000	96	1899841	100.0	92.3	

Data File: \\chromfs\Buf	raio\Ch				4-119	522.b\N9155.d			
	C:-	RT	Adj RT	Dlt RT		Decree	Cal Amt	OnCol Amt	П
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
26.1.1 Diablara athana	63	3.269	3.263	0.006	96	2026427	100.0	94.4	
36 1,1-Dichloroethane 39 Vinyl acetate	43	3.330	3.330	0.000	96	6871530	200.0	94.4 246.2	
42 2,2-Dichloropropane	43 77	3.762	3.768	-0.006	81	832378	100.0	101.0	
43 cis-1,2-Dichloroethene	96	3.804	3.798	0.006	87	918436	100.0	91.5	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	5563408	500.0	476.2	
47 Chlorobromomethane	128	4.029	4.029	0.000	82	467770	100.0	92.7	
49 Tetrahydrofuran	42	4.029	4.029	0.000	92	1630019	200.0	197.3	
50 Chloroform	83	4.108	4.108	0.000	95	1549325	100.0	88.2	
51 1,1,1-Trichloroethane	97	4.108	4.106	0.006	95 95	1133269	100.0	97.8	
52 Cyclohexane	56	4.212	4.212	0.006	93	2467852	100.0	90.5	
53 Carbon tetrachloride	117	4.216	4.212	0.006	95 95	823500	100.0	110.6	
	75	4.358	4.340	0.000	95 85	1126056	100.0	90.9	
54 1,1-Dichloropropene	73 78	4.559	4.552	0.000	93	3316644	100.0	94.0	
55 Benzene	76 43	4.559	4.552 4.613	0.007	95 95	2160107	2500.0	3678.4	
56 Isobutyl alcohol	43 62	4.625	4.625	0.000	95 94	1567285	100.0	93.1	
57 1,2-Dichloroethane	43	4.025	4.025 4.747	0.000	94 94	2199720	100.0	93.1 91.4	
59 n-Heptane 60 Trichloroethene		4.753 5.161		0.000	94 94		100.0		
	95 83	5.101	5.161 5.270		94 92	783321 1524795	100.0	90.6	
62 Methylcyclohexane				0.000				92.2	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	88	1022449	100.0 100.0	95.7 94.2	
64 Dibromomethane	93	5.526	5.520	0.006	96	550046			N 4
66 1,4-Dioxane	88	5.538	5.538	0.000	88	127523	2000.0	1964.9	M
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	1042932	100.0	104.5	
69 2-Chloroethyl vinyl ether	63	5.976	5.976	0.000	83	713867	100.0	99.3	
71 cis-1,3-Dichloropropene	75 50	6.098	6.098	0.000	84	1269057	100.0	106.7	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	3861400	500.0	496.5	
73 Toluene	92	6.378	6.378	0.000	96	1874627	100.0	94.2	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	92	1119993	100.0	121.1	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	1042419	100.0	122.3	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	94	596491	100.0	96.1	
79 Tetrachloroethene	166	6.895	6.895	0.000	93	757639	100.0	90.9	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	89	1229060	100.0	98.4	
82 2-Hexanone	43	7.083	7.083	0.000	97	7768163	500.0	479.8	
83 Chlorodibromomethane	129	7.235	7.235	0.000	89	709967	100.0	116.9	
84 Ethylene Dibromide	107	7.327	7.327	0.000	98	776111	100.0	107.7	
85 Chlorobenzene	112	7.801	7.801	0.000	90	2179835	100.0	95.2	
88 Ethylbenzene	91	7.898	7.898	0.000	98	3712424	100.0	96.7	
89 1,1,1,2-Tetrachloroethane	131	7.905	7.905	0.000	92	742455	100.0	118.7	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	98	1463606	100.0	95.5	
91 o-Xylene	106	8.446	8.440	0.006	97	1537838	100.0	92.5	
92 Styrene	104	8.476	8.476	0.000	93	2488921	100.0	99.8	
93 Bromoform	173	8.714	8.714	0.000	97	519980	100.0	116.7	
95 Isopropylbenzene	105	8.829	8.829	0.000	96	4000720	100.0	97.3	
97 Bromobenzene	156	9.170	9.170	0.000	92	974377	100.0	96.3	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.261	0.000	93	1231182	100.0	97.5	
100 N-Propylbenzene	91	9.279	9.273	0.006	100	4666610	100.0	95.2	
99 1,2,3-Trichloropropane	110	9.286	9.279	0.007	91	387175	100.0	95.6	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.304	0.006	77	648529	100.0	115.6	
102 2-Chlorotoluene	126	9.377	9.371	0.006	95	903309	100.0	94.4	
104 1,3,5-Trimethylbenzene	105	9.474	9.468	0.006	94	3455356	100.0	96.6	
105 4-Chlorotoluene	91	9.492	9.492	0.000	99	3171396	100.0	97.1	
106 tert-Butylbenzene	134	9.803	9.803	0.000	96	713143	100.0	95.8	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	3535498	100.0	95.0	
. 55 1,2, 1 11111001131001120110	. 55	5.557	0.007	5.000	55	3330-30	. 55.5	30.0	

Data File: \\chromfs\But	iaio\Ci	nompata	MP59/31	1/2024081	4-119	522.b\N9155.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
109 sec-Butylbenzene	105	10.022	10.022	0.000	95	4364912	100.0	94.6	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	1910293	100.0	93.3	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	3630745	100.0	93.3	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	92	1944281	100.0	93.3	
115 n-Butylbenzene	91	10.569	10.569	0.000	99	3231997	100.0	91.7	
116 1,2-Dichlorobenzene	146	10.600	10.600	0.000	96	1834373	100.0	91.1	
117 1,2-Dibromo-3-Chloropropan	e 75	11.354	11.354	0.000	76	257181	100.0	133.9	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	94	1243552	100.0	96.4	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	96	464923	100.0	86.5	
121 Naphthalene	128	12.248	12.248	0.000	97	4123340	100.0	100.8	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	95	1198813	100.0	102.4	
S 123 1,3-Dichloropropene, Total	1				0			227.8	
S 125 Total BTEX	1				0			472.9	
S 126 Xylenes, Total	1				0			188.0	
S 124 1,2-Dichloroethene, Total	1				0			178.9	
QC Flag Legend Processing Flags Review Flags M - Manually Integrated									

Reagents:

8260 CORP mix_00257	Amount Added: 50.00	Units: uL	
GAS CORP mix_00632	Amount Added: 50.00	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS 00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:41:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9155.d Injection Date: 14-Aug-2024 17:12:30 Instrument ID: HP5973N

Lims ID: IC 7

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

20

17

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\20240814-119522.b\\N9155.d \\Injection Date: 14-Aug-2024 17:12:30 \\Instrument ID: \HP5973\\

Lims ID: IC 7

Client ID:

Operator ID: LH ALS Bottle#: 17 Worklist Smp#: 20

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.54
Area: 120472
Amount: 1912.9135
Amount Units: ug/L

Processing Integration Results

RT: 5.54
Area: 127523
Amount: 1964.9056
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:24:46 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 346 of 1052

Calibration

/ Dichlorodifluoromethane

7.2

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0
Slope:	1.193

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.357321	25.0	189955.0	0.714643	N
2	IC 480-721747/14	1.0	1.290609	25.0	197988.0	1.290609	Υ
3	IC 480-721747/15	2.0	2.126523	25.0	197047.0	1.063262	Υ
4	IC 480-721747/16	5.0	6.501631	25.0	193140.0	1.300326	Υ
5	IC 480-721747/17	10.0	12.012821	25.0	203416.0	1.201282	Υ
6	ICIS 480-721747/18	25.0	30.406468	25.0	203534.0	1.216259	Υ
7	IC 480-721747/19	50.0	57.919845	25.0	208571.0	1.158397	Υ
8	IC 480-721747/20	100.0	112.429562	25.0	208871.0	1.124296	Υ

Calibration / Chloromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	2.639

Error Coefficients

9.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.203706	25.0	189955.0	2.407412	Υ
2	IC 480-721747/14	1.0	3.084909	25.0	197988.0	3.084909	Υ
3	IC 480-721747/15	2.0	4.852522	25.0	197047.0	2.426261	Υ
4	IC 480-721747/16	5.0	14.735296	25.0	193140.0	2.947059	Υ
5	IC 480-721747/17	10.0	26.663463	25.0	203416.0	2.666346	Υ
6	ICIS 480-721747/18	25.0	65.381214	25.0	203534.0	2.615249	Υ
7	IC 480-721747/19	50.0	124.946901	25.0	208571.0	2.498938	Υ
8	IC 480-721747/20	100.0	246.75673	25.0	208871.0	2.467567	Υ

Calibration / Vinyl chloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients					
Intercept:	0				
Slope:	1.473				

Error Coefficients

10.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.610539	25.0	189955.0	1.221079	Υ
2	IC 480-721747/14	1.0	1.56613	25.0	197988.0	1.56613	Υ
3	IC 480-721747/15	2.0	2.69555	25.0	197047.0	1.347775	Υ
4	IC 480-721747/16	5.0	8.291136	25.0	193140.0	1.658227	Υ
5	IC 480-721747/17	10.0	16.131474	25.0	203416.0	1.613147	Υ
6	ICIS 480-721747/18	25.0	38.319765	25.0	203534.0	1.532791	Υ
7	IC 480-721747/19	50.0	71.852031	25.0	208571.0	1.437041	Υ
8	IC 480-721747/20	100.0	140.688032	25.0	208871.0	1.40688	Υ

Calibration / Butadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 2.379

Error Coefficients

Relative Standard Deviation:

8.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.796241	25.0	189955.0	1.592482	N
2	IC 480-721747/14	1.0	2.613669	25.0	197988.0	2.613669	Υ
3	IC 480-721747/15	2.0	4.463275	25.0	197047.0	2.231638	Υ
4	IC 480-721747/16	5.0	13.325049	25.0	193140.0	2.66501	Υ
5	IC 480-721747/17	10.0	24.506799	25.0	203416.0	2.45068	Υ
6	ICIS 480-721747/18	25.0	58.687861	25.0	203534.0	2.347514	Υ
7	IC 480-721747/19	50.0	110.092846	25.0	208571.0	2.201857	Υ
8	IC 480-721747/20	100.0	214.251021	25.0	208871.0	2.14251	Υ

Calibration / Bromomethane

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficie	ents
Intercept:	0.3942
Slope:	0.6719

Error Coefficients

8.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.453923	25.0	189955.0	0.907847	N
2	IC 480-721747/14	1.0	1.05322	25.0	197988.0	1.05322	Υ
3	IC 480-721747/15	2.0	1.569042	25.0	197047.0	0.784521	Υ
4	IC 480-721747/16	5.0	4.042404	25.0	193140.0	0.808481	Υ
5	IC 480-721747/17	10.0	7.306702	25.0	203416.0	0.73067	Υ
6	ICIS 480-721747/18	25.0	18.536215	25.0	203534.0	0.741449	Υ
7	IC 480-721747/19	50.0	32.264193	25.0	208571.0	0.645284	Υ
8	IC 480-721747/20	100.0	67.660183	25.0	208871.0	0.676602	Y

Calibration / Chloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.97

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.544997	25.0	189955.0	1.089995	Υ
2	IC 480-721747/14	1.0	1.112441	25.0	197988.0	1.112441	Υ
3	IC 480-721747/15	2.0	1.931138	25.0	197047.0	0.965569	Υ
4	IC 480-721747/16	5.0	5.082712	25.0	193140.0	1.016542	Υ
5	IC 480-721747/17	10.0	9.571518	25.0	203416.0	0.957152	Υ
6	ICIS 480-721747/18	25.0	22.649287	25.0	203534.0	0.905971	Υ
7	IC 480-721747/19	50.0	43.168873	25.0	208571.0	0.863377	Υ
8	IC 480-721747/20	100.0	84.870327	25.0	208871.0	0.848703	Υ

Calibration / Trichlorofluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.554

Error Coefficients

8.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.383643	25.0	189955.0	0.767287	N
2	IC 480-721747/14	1.0	1.678258	25.0	197988.0	1.678258	Υ
3	IC 480-721747/15	2.0	2.526555	25.0	197047.0	1.263277	Υ
4	IC 480-721747/16	5.0	8.088563	25.0	193140.0	1.617713	Υ
5	IC 480-721747/17	10.0	15.516847	25.0	203416.0	1.551685	Υ
6	ICIS 480-721747/18	25.0	40.349033	25.0	203534.0	1.613961	Υ
7	IC 480-721747/19	50.0	78.91809	25.0	208571.0	1.578362	Υ
8	IC 480-721747/20	100.0	157.130478	25.0	208871.0	1.571305	Υ

Calibration / Dichlorofluoromethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	i
Intercept:	0
Slope:	2.203

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.048406	25.0	189955.0	2.096812	Υ
2	IC 480-721747/14	1.0	2.574272	25.0	197988.0	2.574272	Υ
3	IC 480-721747/15	2.0	4.005009	25.0	197047.0	2.002504	Υ
4	IC 480-721747/16	5.0	12.134333	25.0	193140.0	2.426867	Υ
5	IC 480-721747/17	10.0	22.994135	25.0	203416.0	2.299414	Υ
6	ICIS 480-721747/18	25.0	52.822133	25.0	203534.0	2.112885	Υ
7	IC 480-721747/19	50.0	102.69093	25.0	208571.0	2.053819	Υ
8	IC 480-721747/20	100.0	206.125192	25.0	208871.0	2.061252	Υ

Calibration / Ethyl ether

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.566

Error Coefficients

9.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.014714	25.0	189955.0	2.029428	N
2	IC 480-721747/14	1.0	1.864381	25.0	197988.0	1.864381	Υ
3	IC 480-721747/15	2.0	3.202155	25.0	197047.0	1.601077	Υ
4	IC 480-721747/16	5.0	7.903464	25.0	193140.0	1.580693	Υ
5	IC 480-721747/17	10.0	15.685344	25.0	203416.0	1.568534	Υ
6	ICIS 480-721747/18	25.0	37.106822	25.0	203534.0	1.484273	Υ
7	IC 480-721747/19	50.0	71.888829	25.0	208571.0	1.437777	Υ
8	IC 480-721747/20	100.0	142.231329	25.0	208871.0	1.422313	Υ

Calibration / Acrolein

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.2435

Curve Coefficients

Error Coefficients

11.8

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	2.5	0.717538	25.0	189955.0	0.287015	Υ
2	IC 480-721747/14	5.0	1.423066	25.0	197988.0	0.284613	Υ
3	IC 480-721747/15	10.0	2.116881	25.0	197047.0	0.211688	Υ
4	IC 480-721747/16	25.0	5.667133	25.0	193140.0	0.226685	Υ
5	IC 480-721747/17	50.0	11.245059	25.0	203416.0	0.224901	Υ
6	ICIS 480-721747/18	125.0	28.871343	25.0	203534.0	0.230971	Υ
7	IC 480-721747/19	250.0	56.88135	25.0	208571.0	0.227525	Υ
8	IC 480-721747/20	500.0	127.40998	25.0	208871.0	0.25482	Υ

15.6

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.9653

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.241373	25.0	189955.0	0.482746	N
2	IC 480-721747/14	1.0	0.864446	25.0	197988.0	0.864446	Υ
3	IC 480-721747/15	2.0	1.471857	25.0	197047.0	0.735928	Υ
4	IC 480-721747/16	5.0	5.874236	25.0	193140.0	1.174847	Υ
5	IC 480-721747/17	10.0	10.707368	25.0	203416.0	1.070737	Υ
6	ICIS 480-721747/18	25.0	26.270304	25.0	203534.0	1.050812	Υ
7	IC 480-721747/19	50.0	49.587431	25.0	208571.0	0.991749	Υ
8	IC 480-721747/20	100.0	86.850855	25.0	208871.0	0.868509	Υ

Calibration / 1,1-Dichloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficie	ents
Intercept:	0 0 944
Slope:	0.944

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.361796	25.0	189955.0	0.723592	N
2	IC 480-721747/14	1.0	1.102971	25.0	197988.0	1.102971	Υ
3	IC 480-721747/15	2.0	1.554198	25.0	197047.0	0.777099	Υ
4	IC 480-721747/16	5.0	5.253961	25.0	193140.0	1.050792	Υ
5	IC 480-721747/17	10.0	9.667504	25.0	203416.0	0.96675	Υ
6	ICIS 480-721747/18	25.0	24.574027	25.0	203534.0	0.982961	Υ
7	IC 480-721747/19	50.0	45.691036	25.0	208571.0	0.913821	Υ
8	IC 480-721747/20	100.0	81.361941	25.0	208871.0	0.813619	Υ

Calibration / Acetone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficie	ents
Intercept:	0
Slope:	0.951

Error Coefficients

47/13 2.5					
	2.850149	25.0	189955.0	1.140059	Υ
47/14 5.0	5.580515	25.0	197988.0	1.116103	Υ
47/15 10.0	9.411841	25.0	197047.0	0.941184	Υ
47/16 25.0	22.488221	25.0	193140.0	0.899529	Υ
47/17 50.0	46.556072	25.0	203416.0	0.931121	Υ
1747/18 125.0	109.189374	25.0	203534.0	0.873515	Υ
47/19 250.0	214.303642	25.0	208571.0	0.857215	Υ
47/20 500.0	424.541942	25.0			
	47/17 50.0 1747/18 125.0 47/19 250.0	47/17 50.0 46.556072 1747/18 125.0 109.189374 47/19 250.0 214.303642	47/17 50.0 46.556072 25.0 1747/18 125.0 109.189374 25.0 47/19 250.0 214.303642 25.0	47/17 50.0 46.556072 25.0 203416.0 1747/18 125.0 109.189374 25.0 203534.0 47/19 250.0 214.303642 25.0 208571.0	47/17 50.0 46.556072 25.0 203416.0 0.931121 1747/18 125.0 109.189374 25.0 203534.0 0.873515 47/19 250.0 214.303642 25.0 208571.0 0.857215

Calibration / Iodomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.752

Error Coefficients

9.3

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.745571	25.0	189955.0	1.491143	Υ
2	IC 480-721747/14	1.0	1.891403	25.0	197988.0	1.891403	Υ
3	IC 480-721747/15	2.0	3.366202	25.0	197047.0	1.683101	Υ
4	IC 480-721747/16	5.0	9.941882	25.0	193140.0	1.988376	Υ
5	IC 480-721747/17	10.0	18.769664	25.0	203416.0	1.876966	Υ
6	ICIS 480-721747/18	25.0	44.172841	25.0	203534.0	1.766914	Υ
7	IC 480-721747/19	50.0	85.579251	25.0	208571.0	1.711585	Υ
8	IC 480-721747/20	100.0	160.895481	25.0	208871.0	1.608955	Υ

Calibration / Carbon disulfide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	3.465

Error Coefficients

10.3

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	0.5	1.183175	25.0	189955.0	2.36635	N
IC 480-721747/14	1.0	3.849602	25.0	197988.0	3.849602	Υ
IC 480-721747/15	2.0	6.184184	25.0	197047.0	3.092092	Υ
IC 480-721747/16	5.0	19.724034	25.0	193140.0	3.944807	Υ
IC 480-721747/17	10.0	35.719535	25.0	203416.0	3.571954	Υ
ICIS 480-721747/18	25.0	87.420775	25.0	203534.0	3.496831	Υ
IC 480-721747/19	50.0	164.481999	25.0	208571.0	3.28964	Υ
IC 480-721747/20	100.0	300.83305	25.0	208871.0	3.008331	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 0.5 IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/13 0.5 1.183175 IC 480-721747/14 1.0 3.849602 IC 480-721747/15 2.0 6.184184 IC 480-721747/16 5.0 19.724034 IC 480-721747/17 10.0 35.719535 ICIS 480-721747/18 25.0 87.420775 IC 480-721747/19 50.0 164.481999	IC 480-721747/13 0.5 1.183175 25.0 IC 480-721747/14 1.0 3.849602 25.0 IC 480-721747/15 2.0 6.184184 25.0 IC 480-721747/16 5.0 19.724034 25.0 IC 480-721747/17 10.0 35.719535 25.0 ICIS 480-721747/18 25.0 87.420775 25.0 IC 480-721747/19 50.0 164.481999 25.0	IC 480-721747/13 0.5 1.183175 25.0 189955.0 IC 480-721747/14 1.0 3.849602 25.0 197988.0 IC 480-721747/15 2.0 6.184184 25.0 197047.0 IC 480-721747/16 5.0 19.724034 25.0 193140.0 IC 480-721747/17 10.0 35.719535 25.0 203416.0 ICIS 480-721747/18 25.0 87.420775 25.0 203534.0 IC 480-721747/19 50.0 164.481999 25.0 208571.0	IC 480-721747/13 0.5 1.183175 25.0 189955.0 2.36635 IC 480-721747/14 1.0 3.849602 25.0 197988.0 3.849602 IC 480-721747/15 2.0 6.184184 25.0 197047.0 3.092092 IC 480-721747/16 5.0 19.724034 25.0 193140.0 3.944807 IC 480-721747/17 10.0 35.719535 25.0 203416.0 3.571954 ICIS 480-721747/18 25.0 87.420775 25.0 203534.0 3.496831 IC 480-721747/19 50.0 164.481999 25.0 208571.0 3.28964

Calibration /3-Chloro-1-propene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
Intercept:	0
Slope:	3.589

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.633413	25.0	189955.0	3.266826	Υ
2	IC 480-721747/14	1.0	4.25796	25.0	197988.0	4.25796	Υ
3	IC 480-721747/15	2.0	6.914086	25.0	197047.0	3.457043	Υ
4	IC 480-721747/16	5.0	19.718339	25.0	193140.0	3.943668	Υ
5	IC 480-721747/17	10.0	37.799018	25.0	203416.0	3.779902	Υ
6	ICIS 480-721747/18	25.0	88.361036	25.0	203534.0	3.534441	Υ
7	IC 480-721747/19	50.0	166.467534	25.0	208571.0	3.329351	Υ
8	IC 480-721747/20	100.0	314.637504	25.0	208871.0	3.146375	Υ

Calibration / Methyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	ients
Intercept:	0
Slope:	2.296

Error Coefficients

6.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	1.0	2.405701	25.0	189955.0	2.405701	Υ
2	IC 480-721747/14	2.0	5.224559	25.0	197988.0	2.61228	Υ
3	IC 480-721747/15	4.0	8.629794	25.0	197047.0	2.157448	Υ
4	IC 480-721747/16	10.0	23.320648	25.0	193140.0	2.332065	Υ
5	IC 480-721747/17	20.0	44.967333	25.0	203416.0	2.248367	Υ
6	ICIS 480-721747/18	50.0	111.933756	25.0	203534.0	2.238675	Υ
7	IC 480-721747/19	100.0	217.257193	25.0	208571.0	2.172572	Υ
8	IC 480-721747/20	200.0	440.754222	25.0	208871.0	2.203771	Υ

Calibration / Methylene Chloride

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	1.017
Slope:	1.082

Error Coefficients

9.4

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.11408	25.0	189955.0	2.228159	N
2	IC 480-721747/14	1.0	1.996964	25.0	197988.0	1.996964	Υ
3	IC 480-721747/15	2.0	2.923034	25.0	197047.0	1.461517	Υ
4	IC 480-721747/16	5.0	7.088252	25.0	193140.0	1.41765	Υ
5	IC 480-721747/17	10.0	12.464482	25.0	203416.0	1.246448	Υ
6	ICIS 480-721747/18	25.0	29.41597	25.0	203534.0	1.176639	Υ
7	IC 480-721747/19	50.0	55.284172	25.0	208571.0	1.105683	Υ
8	IC 480-721747/20	100.0	106.680439	25.0	208871.0	1.066804	Υ

Calibration / 2-Methyl-2-propanol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	oefficients
Intercept:	0
Slope:	0.1828

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	5.0	0.624358	25.0	189955.0	0.124872	N
2	IC 480-721747/14	10.0	1.848597	25.0	197988.0	0.18486	Υ
3	IC 480-721747/15	20.0	3.348947	25.0	197047.0	0.167447	Υ
4	IC 480-721747/16	50.0	7.92288	25.0	193140.0	0.158458	Υ
5	IC 480-721747/17	100.0	18.057945	25.0	203416.0	0.180579	Υ
6	ICIS 480-721747/18	250.0	44.654579	25.0	203534.0	0.178618	Υ
7	IC 480-721747/19	500.0	99.621592	25.0	208571.0	0.199243	Υ
8	IC 480-721747/20	1000.0	210.250466	25.0	208871.0	0.21025	Υ

8.4

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	fficients
Intercept:	0
Slope:	4.059

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	2.071806	25.0	189955.0	4.143613	Υ
2	IC 480-721747/14	1.0	4.797387	25.0	197988.0	4.797387	Υ
3	IC 480-721747/15	2.0	7.826179	25.0	197047.0	3.913089	Υ
4	IC 480-721747/16	5.0	21.159133	25.0	193140.0	4.231827	Υ
5	IC 480-721747/17	10.0	39.727455	25.0	203416.0	3.972746	Υ
6	ICIS 480-721747/18	25.0	95.8701	25.0	203534.0	3.834804	Υ
7	IC 480-721747/19	50.0	188.917443	25.0	208571.0	3.778349	Υ
8	IC 480-721747/20	100.0	379.737613	25.0	208871.0	3.797376	Υ

11.0

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.134

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.32205	25.0	189955.0	0.6441	N
2	IC 480-721747/14	1.0	1.313842	25.0	197988.0	1.313842	Υ
3	IC 480-721747/15	2.0	2.054459	25.0	197047.0	1.02723	Υ
4	IC 480-721747/16	5.0	6.453091	25.0	193140.0	1.290618	Υ
5	IC 480-721747/17	10.0	11.398685	25.0	203416.0	1.139869	Υ
6	ICIS 480-721747/18	25.0	27.629168	25.0	203534.0	1.105167	Υ
7	IC 480-721747/19	50.0	53.50672	25.0	208571.0	1.070134	Υ
8	IC 480-721747/20	100.0	99.048216	25.0	208871.0	0.990482	Y

Calibration / Acrylonitrile

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	fficients
Intercept:	0
Slope:	1.242

Error Coefficients

6.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	5.0	6.618541	25.0	189955.0	1.323708	Y
2	IC 480-721747/14	10.0	13.714089	25.0	197988.0	1.371409	Υ
3	IC 480-721747/15	20.0	24.51306	25.0	197047.0	1.225653	Υ
4	IC 480-721747/16	50.0	62.879	25.0	193140.0	1.25758	Υ
5	IC 480-721747/17	100.0	124.328224	25.0	203416.0	1.243282	Υ
6	ICIS 480-721747/18	250.0	300.043113	25.0	203534.0	1.200172	Υ
7	IC 480-721747/19	500.0	579.606465	25.0	208571.0	1.159213	Υ
8	IC 480-721747/20	1000.0	1156.165169	25.0	208871.0	1.156165	Υ

Calibration / Hexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	2.463

Curve Coefficients

Error Coefficients

16.3

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.657129	25.0	189955.0	1.314259	N
2	IC 480-721747/14	1.0	2.358855	25.0	197988.0	2.358855	Υ
3	IC 480-721747/15	2.0	3.391957	25.0	197047.0	1.695979	Υ
4	IC 480-721747/16	5.0	14.070105	25.0	193140.0	2.814021	Υ
5	IC 480-721747/17	10.0	27.976536	25.0	203416.0	2.797654	Υ
6	ICIS 480-721747/18	25.0	68.893281	25.0	203534.0	2.755731	Υ
7	IC 480-721747/19	50.0	127.388515	25.0	208571.0	2.54777	Υ
8	IC 480-721747/20	100.0	227.394061	25.0	208871.0	2.273941	Y

Calibration / 1,1-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	2.568

Error Coefficients

11.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.026296	25.0	189955.0	2.052591	Υ
2	IC 480-721747/14	1.0	2.900807	25.0	197988.0	2.900807	Υ
3	IC 480-721747/15	2.0	4.654854	25.0	197047.0	2.327427	Υ
4	IC 480-721747/16	5.0	14.165761	25.0	193140.0	2.833152	Υ
5	IC 480-721747/17	10.0	27.876986	25.0	203416.0	2.787699	Υ
6	ICIS 480-721747/18	25.0	66.541462	25.0	203534.0	2.661658	Υ
7	IC 480-721747/19	50.0	127.797608	25.0	208571.0	2.555952	Υ
8	IC 480-721747/20	100.0	242.545279	25.0	208871.0	2.425453	Υ

Calibration / Vinyl acetate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	3.34

Error Coefficients

2 526519	
2.020010	N
3.213452	Υ
2.615461	Υ
2.820868	Υ
3.258993	Υ
3.547363	Υ
3.814278	Υ
4.112305	Υ
	2.615461 2.820868 3.258993 3.547363 3.814278

11.5

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffi	cients
Intercept: Slope:	0 0.9868

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.381275	25.0	189955.0	0.762549	Υ
2	IC 480-721747/14	1.0	1.096784	25.0	197988.0	1.096784	Υ
3	IC 480-721747/15	2.0	1.774957	25.0	197047.0	0.887479	Υ
4	IC 480-721747/16	5.0	5.534069	25.0	193140.0	1.106814	Υ
5	IC 480-721747/17	10.0	10.30622	25.0	203416.0	1.030622	Υ
6	ICIS 480-721747/18	25.0	24.800033	25.0	203534.0	0.992001	Υ
7	IC 480-721747/19	50.0	51.106218	25.0	208571.0	1.022124	Υ
8	IC 480-721747/20	100.0	99.628239	25.0	208871.0	0.996282	Υ

Calibration / cis-1,2-Dichloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
Intercept:	0
Slope:	1.201

Error Coefficients

ι	RRF	IS Response	IS Amount	Rel. Resp.	Concentration	Level	ID
Υ	1.112105	189955.0	25.0	0.556053	0.5	IC 480-721747/13	1
Υ	1.214215	197988.0	25.0	1.214215	1.0	IC 480-721747/14	2
Υ	1.147061	197047.0	25.0	2.294123	2.0	IC 480-721747/15	3
Υ	1.345061	193140.0	25.0	6.725303	5.0	IC 480-721747/16	4
Υ	1.286649	203416.0	25.0	12.86649	10.0	IC 480-721747/17	5
Υ	1.242092	203534.0	25.0	31.052306	25.0	ICIS 480-721747/18	6
Υ	1.160957	208571.0	25.0	58.047859	50.0	IC 480-721747/19	7
Υ	1.099286	208871.0	25.0	109.928616	100.0	IC 480-721747/20	8
	1.099286	208871.0	25.0	109.928616	100.0	IC 480-721747/20	8

Calibration / 2-Butanone (MEK)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	1.398

Error Coefficients

5.3

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	2.5	3.416335	25.0	189955.0	1.366534	Y
IC 480-721747/14	5.0	7.796306	25.0	197988.0	1.559261	Υ
IC 480-721747/15	10.0	13.6607	25.0	197047.0	1.36607	Υ
IC 480-721747/16	25.0	34.834576	25.0	193140.0	1.393383	Υ
IC 480-721747/17	50.0	71.887659	25.0	203416.0	1.437753	Υ
ICIS 480-721747/18	125.0	175.188175	25.0	203534.0	1.401505	Υ
IC 480-721747/19	250.0	332.809091	25.0	208571.0	1.331236	Υ
IC 480-721747/20	500.0	665.89043	25.0	208871.0	1.331781	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 2.5 IC 480-721747/14 5.0 IC 480-721747/15 10.0 IC 480-721747/16 25.0 IC 480-721747/17 50.0 ICIS 480-721747/18 125.0 IC 480-721747/19 250.0	IC 480-721747/13 2.5 3.416335 IC 480-721747/14 5.0 7.796306 IC 480-721747/15 10.0 13.6607 IC 480-721747/16 25.0 34.834576 IC 480-721747/17 50.0 71.887659 ICIS 480-721747/18 125.0 175.188175 IC 480-721747/19 250.0 332.809091	IC 480-721747/13 2.5 3.416335 25.0 IC 480-721747/14 5.0 7.796306 25.0 IC 480-721747/15 10.0 13.6607 25.0 IC 480-721747/16 25.0 34.834576 25.0 IC 480-721747/17 50.0 71.887659 25.0 ICIS 480-721747/18 125.0 175.188175 25.0 IC 480-721747/19 250.0 332.809091 25.0	IC 480-721747/13 2.5 3.416335 25.0 189955.0 IC 480-721747/14 5.0 7.796306 25.0 197988.0 IC 480-721747/15 10.0 13.6607 25.0 197047.0 IC 480-721747/16 25.0 34.834576 25.0 193140.0 IC 480-721747/17 50.0 71.887659 25.0 203416.0 ICIS 480-721747/18 125.0 175.188175 25.0 203534.0 IC 480-721747/19 250.0 332.809091 25.0 208571.0	IC 480-721747/13 2.5 3.416335 25.0 189955.0 1.366534 IC 480-721747/14 5.0 7.796306 25.0 197988.0 1.559261 IC 480-721747/15 10.0 13.6607 25.0 197047.0 1.36607 IC 480-721747/16 25.0 34.834576 25.0 193140.0 1.393383 IC 480-721747/17 50.0 71.887659 25.0 203416.0 1.437753 ICIS 480-721747/18 125.0 175.188175 25.0 203534.0 1.401505 IC 480-721747/19 250.0 332.809091 25.0 208571.0 1.331236

Calibration / Chlorobromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficien	its
Intercept:	0
Slope:	0.6038

Error Coefficients

11.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.268879	25.0	189955.0	0.537759	Υ
2	IC 480-721747/14	1.0	0.748404	25.0	197988.0	0.748404	Υ
3	IC 480-721747/15	2.0	1.107223	25.0	197047.0	0.553612	Υ
4	IC 480-721747/16	5.0	3.198198	25.0	193140.0	0.63964	Υ
5	IC 480-721747/17	10.0	6.153523	25.0	203416.0	0.615352	Υ
6	ICIS 480-721747/18	25.0	15.099934	25.0	203534.0	0.603997	Υ
7	IC 480-721747/19	50.0	28.59362	25.0	208571.0	0.571872	Υ
8	IC 480-721747/20	100.0	55.987906	25.0	208871.0	0.559879	Υ

Calibration / Tetrahydrofuran

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0.8422
Slope:	0.9844

Error Coefficients

9.8

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	1.0	1.644468	25.0	189955.0	1.644468	Υ
IC 480-721747/14	2.0	3.024552	25.0	197988.0	1.512276	Υ
IC 480-721747/15	4.0	4.562236	25.0	197047.0	1.140559	Υ
IC 480-721747/16	10.0	11.326499	25.0	193140.0	1.13265	Υ
IC 480-721747/17	20.0	21.456031	25.0	203416.0	1.072802	Υ
ICIS 480-721747/18	50.0	52.074592	25.0	203534.0	1.041492	Υ
IC 480-721747/19	100.0	98.523045	25.0	208571.0	0.98523	Υ
IC 480-721747/20	200.0	195.098769	25.0	208871.0	0.975494	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 1.0 IC 480-721747/14 2.0 IC 480-721747/15 4.0 IC 480-721747/16 10.0 IC 480-721747/17 20.0 ICIS 480-721747/18 50.0 IC 480-721747/19 100.0	IC 480-721747/13 1.0 1.644468 IC 480-721747/14 2.0 3.024552 IC 480-721747/15 4.0 4.562236 IC 480-721747/16 10.0 11.326499 IC 480-721747/17 20.0 21.456031 ICIS 480-721747/18 50.0 52.074592 IC 480-721747/19 100.0 98.523045	IC 480-721747/13 1.0 1.644468 25.0 IC 480-721747/14 2.0 3.024552 25.0 IC 480-721747/15 4.0 4.562236 25.0 IC 480-721747/16 10.0 11.326499 25.0 IC 480-721747/17 20.0 21.456031 25.0 ICIS 480-721747/18 50.0 52.074592 25.0 IC 480-721747/19 100.0 98.523045 25.0	IC 480-721747/13 1.0 1.644468 25.0 189955.0 IC 480-721747/14 2.0 3.024552 25.0 197988.0 IC 480-721747/15 4.0 4.562236 25.0 197047.0 IC 480-721747/16 10.0 11.326499 25.0 193140.0 IC 480-721747/17 20.0 21.456031 25.0 203416.0 ICIS 480-721747/18 50.0 52.074592 25.0 203534.0 IC 480-721747/19 100.0 98.523045 25.0 208571.0	IC 480-721747/13 1.0 1.644468 25.0 189955.0 1.644468 IC 480-721747/14 2.0 3.024552 25.0 197988.0 1.512276 IC 480-721747/15 4.0 4.562236 25.0 197047.0 1.140559 IC 480-721747/16 10.0 11.326499 25.0 193140.0 1.13265 IC 480-721747/17 20.0 21.456031 25.0 203416.0 1.072802 ICIS 480-721747/18 50.0 52.074592 25.0 203534.0 1.041492 IC 480-721747/19 100.0 98.523045 25.0 208571.0 0.98523

Calibration / Chloroform

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 2.102

Error Coefficients

11.3

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.330447	25.0	189955.0	2.660893	N
2	IC 480-721747/14	1.0	2.569474	25.0	197988.0	2.569474	Υ
3	IC 480-721747/15	2.0	4.018711	25.0	197047.0	2.009356	Υ
4	IC 480-721747/16	5.0	10.842912	25.0	193140.0	2.168582	Υ
5	IC 480-721747/17	10.0	21.571189	25.0	203416.0	2.157119	Υ
6	ICIS 480-721747/18	25.0	51.154721	25.0	203534.0	2.046189	Υ
7	IC 480-721747/19	50.0	95.355419	25.0	208571.0	1.907108	Υ
8	IC 480-721747/20	100.0	185.440415	25.0	208871.0	1.854404	Υ

Calibration / 1,1,1-Trichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	1.387			

Error Coefficients

9.9

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.447474	25.0	189955.0	0.894949	N
2	IC 480-721747/14	1.0	1.284295	25.0	197988.0	1.284295	Υ
3	IC 480-721747/15	2.0	2.284861	25.0	197047.0	1.14243	Υ
4	IC 480-721747/16	5.0	7.562131	25.0	193140.0	1.512426	Υ
5	IC 480-721747/17	10.0	15.183417	25.0	203416.0	1.518342	Υ
6	ICIS 480-721747/18	25.0	36.621031	25.0	203534.0	1.464841	Υ
7	IC 480-721747/19	50.0	71.532835	25.0	208571.0	1.430657	Υ
8	IC 480-721747/20	100.0	135.642215	25.0	208871.0	1.356422	Υ

Calibration / Cyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	3.263

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.790977	25.0	189955.0	1.581954	N
2	IC 480-721747/14	1.0	3.32255	25.0	197988.0	3.32255	Υ
3	IC 480-721747/15	2.0	5.008069	25.0	197047.0	2.504035	Υ
4	IC 480-721747/16	5.0	18.742751	25.0	193140.0	3.74855	Υ
5	IC 480-721747/17	10.0	36.410607	25.0	203416.0	3.641061	Υ
6	ICIS 480-721747/18	25.0	84.893065	25.0	203534.0	3.395723	Υ
7	IC 480-721747/19	50.0	163.750473	25.0	208571.0	3.275009	Υ
8	IC 480-721747/20	100.0	295.379923	25.0	208871.0	2.953799	Υ

Calibration

/ Dibromofluoromethane (Surr)

Curve Type:AverageWeighting:Conc_SqOrigin:ForceDependency:ResponseCalib Mode:ISTDResponse Base:AREARF Rounding:0

Curve Coefficients				
Intercept:	0			
Slope:	1.163			

Error Coefficients

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	25.0	29.874707	25.0	189955.0	1.194988	Υ
IC 480-721747/14	25.0	29.458982	25.0	197988.0	1.178359	Υ
IC 480-721747/15	25.0	28.956543	25.0	197047.0	1.158262	Υ
IC 480-721747/16	25.0	28.739256	25.0	193140.0	1.14957	Υ
IC 480-721747/17	25.0	29.102922	25.0	203416.0	1.164117	Υ
ICIS 480-721747/18	25.0	28.922809	25.0	203534.0	1.156912	Υ
IC 480-721747/19	25.0	29.127491	25.0	208571.0	1.1651	Υ
IC 480-721747/20	25.0	28.372776	25.0	208871.0	1.134911	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 25.0 IC 480-721747/14 25.0 IC 480-721747/15 25.0 IC 480-721747/16 25.0 IC 480-721747/17 25.0 ICIS 480-721747/18 25.0 IC 480-721747/19 25.0	IC 480-721747/13 25.0 29.874707 IC 480-721747/14 25.0 29.458982 IC 480-721747/15 25.0 28.956543 IC 480-721747/16 25.0 28.739256 IC 480-721747/17 25.0 29.102922 ICIS 480-721747/18 25.0 28.922809 IC 480-721747/19 25.0 29.127491	IC 480-721747/13 25.0 29.874707 25.0 IC 480-721747/14 25.0 29.458982 25.0 IC 480-721747/15 25.0 28.956543 25.0 IC 480-721747/16 25.0 28.739256 25.0 IC 480-721747/17 25.0 29.102922 25.0 IC 480-721747/18 25.0 28.922809 25.0 IC 480-721747/19 25.0 29.127491 25.0	IC 480-721747/13 25.0 29.874707 25.0 189955.0 IC 480-721747/14 25.0 29.458982 25.0 197988.0 IC 480-721747/15 25.0 28.956543 25.0 197047.0 IC 480-721747/16 25.0 28.739256 25.0 193140.0 IC 480-721747/17 25.0 29.102922 25.0 203416.0 ICIS 480-721747/18 25.0 28.922809 25.0 203534.0 IC 480-721747/19 25.0 29.127491 25.0 208571.0	IC 480-721747/13

Calibration / Carbon tetrachloride

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.8914

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.395357	25.0	189955.0	0.790714	Υ
2	IC 480-721747/14	1.0	0.784138	25.0	197988.0	0.784138	Υ
3	IC 480-721747/15	2.0	1.321385	25.0	197047.0	0.660693	Υ
4	IC 480-721747/16	5.0	4.820855	25.0	193140.0	0.964171	Υ
5	IC 480-721747/17	10.0	9.915641	25.0	203416.0	0.991564	Υ
6	ICIS 480-721747/18	25.0	23.747998	25.0	203534.0	0.94992	Υ
7	IC 480-721747/19	50.0	50.199572	25.0	208571.0	1.003991	Υ
8	IC 480-721747/20	100.0	98.565622	25.0	208871.0	0.985656	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	1.483			

Error Coefficients

9.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.484325	25.0	189955.0	0.96865	N
2	IC 480-721747/14	1.0	1.633937	25.0	197988.0	1.633937	Υ
3	IC 480-721747/15	2.0	2.511203	25.0	197047.0	1.255601	Υ
4	IC 480-721747/16	5.0	7.743088	25.0	193140.0	1.548618	Υ
5	IC 480-721747/17	10.0	15.673177	25.0	203416.0	1.567318	Υ
6	ICIS 480-721747/18	25.0	38.912909	25.0	203534.0	1.556516	Υ
7	IC 480-721747/19	50.0	73.494278	25.0	208571.0	1.469886	Υ
8	IC 480-721747/20	100.0	134.778883	25.0	208871.0	1.347789	Υ

1.5

Calibration

Curve Type:AverageWeighting:Conc_SqOrigin:ForceDependency:ResponseCalib Mode:ISTDResponse Base:AREARF Rounding:0

Curve Coefficients					
Intercept:	0				
Slope:	1.586				

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	25.0	40.20189	25.0	189955.0	1.608076	Υ
2	IC 480-721747/14	25.0	40.639205	25.0	197988.0	1.625568	Υ
3	IC 480-721747/15	25.0	39.116556	25.0	197047.0	1.564662	Υ
4	IC 480-721747/16	25.0	39.771409	25.0	193140.0	1.590856	Υ
5	IC 480-721747/17	25.0	39.921761	25.0	203416.0	1.59687	Υ
6	ICIS 480-721747/18	25.0	39.434075	25.0	203534.0	1.577363	Υ
7	IC 480-721747/19	25.0	38.885559	25.0	208571.0	1.555422	Υ
8	IC 480-721747/20	25.0	39.276755	25.0	208871.0	1.57107	Υ

Calibration / Benzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	4.223

Curve Coefficients

Error Coefficients

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	0.5	1.792267	25.0	189955.0	3.584533	Υ
IC 480-721747/14	1.0	5.021516	25.0	197988.0	5.021516	Υ
IC 480-721747/15	2.0	7.641832	25.0	197047.0	3.820916	Υ
IC 480-721747/16	5.0	22.351403	25.0	193140.0	4.470281	Υ
IC 480-721747/17	10.0	44.882408	25.0	203416.0	4.488241	Υ
ICIS 480-721747/18	25.0	107.981959	25.0	203534.0	4.319278	Υ
IC 480-721747/19	50.0	205.32121	25.0	208571.0	4.106424	Υ
IC 480-721747/20	100.0	396.972773	25.0	208871.0	3.969728	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/19	IC 480-721747/13 0.5 IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/13 0.5 1.792267 IC 480-721747/14 1.0 5.021516 IC 480-721747/15 2.0 7.641832 IC 480-721747/16 5.0 22.351403 IC 480-721747/17 10.0 44.882408 ICIS 480-721747/18 25.0 107.981959 IC 480-721747/19 50.0 205.32121	IC 480-721747/13 0.5 1.792267 25.0 IC 480-721747/14 1.0 5.021516 25.0 IC 480-721747/15 2.0 7.641832 25.0 IC 480-721747/16 5.0 22.351403 25.0 IC 480-721747/17 10.0 44.882408 25.0 ICIS 480-721747/18 25.0 107.981959 25.0 IC 480-721747/19 50.0 205.32121 25.0	IC 480-721747/13 0.5 1.792267 25.0 189955.0 IC 480-721747/14 1.0 5.021516 25.0 197988.0 IC 480-721747/15 2.0 7.641832 25.0 197047.0 IC 480-721747/16 5.0 22.351403 25.0 193140.0 IC 480-721747/17 10.0 44.882408 25.0 203416.0 ICIS 480-721747/18 25.0 107.981959 25.0 203534.0 IC 480-721747/19 50.0 205.32121 25.0 208571.0	IC 480-721747/13 0.5 1.792267 25.0 189955.0 3.584533 IC 480-721747/14 1.0 5.021516 25.0 197988.0 5.021516 IC 480-721747/15 2.0 7.641832 25.0 197047.0 3.820916 IC 480-721747/16 5.0 22.351403 25.0 193140.0 4.470281 IC 480-721747/17 10.0 44.882408 25.0 203416.0 4.488241 ICIS 480-721747/18 25.0 107.981959 25.0 203534.0 4.319278 IC 480-721747/19 50.0 205.32121 25.0 208571.0 4.106424

Calibration / Isobutyl alcohol

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Cur	ve Coefficients
Intercept:	0
Slope:	0.07029

Error Coefficients

Relative Standard Deviation:

16.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	12.5	0.730173	25.0	189955.0	0.058414	Υ
2	IC 480-721747/14	25.0	1.652373	25.0	197988.0	0.066095	Υ
3	IC 480-721747/15	50.0	3.131994	25.0	197047.0	0.06264	Υ
4	IC 480-721747/16	125.0	7.794734	25.0	193140.0	0.062358	Υ
5	IC 480-721747/17	250.0	17.95901	25.0	203416.0	0.071836	Υ
6	ICIS 480-721747/18	625.0	49.117715	25.0	203534.0	0.078588	Υ
7	IC 480-721747/19	1250.0	115.101332	25.0	208571.0	0.092081	Υ
8	IC 480-721747/20	2500.0	258.545586	25.0	208871.0	0.103418	N

Calibration / 1,2-Dichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients					
Intercept:	0				
Slope:	2.015				

Error Coefficients

6.4

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.955226	25.0	189955.0	1.910452	Υ
2	IC 480-721747/14	1.0	2.271855	25.0	197988.0	2.271855	Υ
3	IC 480-721747/15	2.0	4.021883	25.0	197047.0	2.010942	Υ
4	IC 480-721747/16	5.0	9.991845	25.0	193140.0	1.998369	Υ
5	IC 480-721747/17	10.0	21.250664	25.0	203416.0	2.125066	Υ
6	ICIS 480-721747/18	25.0	50.298476	25.0	203534.0	2.011939	Υ
7	IC 480-721747/19	50.0	95.933399	25.0	208571.0	1.918668	Υ
8	IC 480-721747/20	100.0	187.590068	25.0	208871.0	1.875901	Υ

Calibration / n-Heptane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 2.88

Error Coefficients

14.6

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	0.5	0.720565	25.0	189955.0	1.441131	N
IC 480-721747/14	1.0	2.830222	25.0	197988.0	2.830222	Υ
IC 480-721747/15	2.0	4.151674	25.0	197047.0	2.075837	Υ
IC 480-721747/16	5.0	16.441312	25.0	193140.0	3.288262	Υ
IC 480-721747/17	10.0	31.972903	25.0	203416.0	3.19729	Υ
ICIS 480-721747/18	25.0	78.990857	25.0	203534.0	3.159634	Υ
IC 480-721747/19	50.0	148.791299	25.0	208571.0	2.975826	Υ
IC 480-721747/20	100.0	263.286909	25.0	208871.0	2.632869	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 0.5 IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/13 0.5 0.720565 IC 480-721747/14 1.0 2.830222 IC 480-721747/15 2.0 4.151674 IC 480-721747/16 5.0 16.441312 IC 480-721747/17 10.0 31.972903 ICIS 480-721747/18 25.0 78.990857 IC 480-721747/19 50.0 148.791299	IC 480-721747/13 0.5 0.720565 25.0 IC 480-721747/14 1.0 2.830222 25.0 IC 480-721747/15 2.0 4.151674 25.0 IC 480-721747/16 5.0 16.441312 25.0 IC 480-721747/17 10.0 31.972903 25.0 ICIS 480-721747/18 25.0 78.990857 25.0 IC 480-721747/19 50.0 148.791299 25.0	IC 480-721747/13	IC 480-721747/13

Calibration / Trichloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.035

Error Coefficients

6.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.359164	25.0	189955.0	0.718328	N
2	IC 480-721747/14	1.0	1.09893	25.0	197988.0	1.09893	Υ
3	IC 480-721747/15	2.0	1.972753	25.0	197047.0	0.986376	Υ
4	IC 480-721747/16	5.0	5.330589	25.0	193140.0	1.066118	Υ
5	IC 480-721747/17	10.0	11.071892	25.0	203416.0	1.107189	Υ
6	ICIS 480-721747/18	25.0	26.048719	25.0	203534.0	1.041949	Υ
7	IC 480-721747/19	50.0	50.384881	25.0	208571.0	1.007698	Υ
8	IC 480-721747/20	100.0	93.756553	25.0	208871.0	0.937566	Υ

Calibration / Methylcyclohexane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	s
Intercept:	0
Slope:	1.979

Error Coefficients

14.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.478008	25.0	189955.0	0.956016	N
2	IC 480-721747/14	1.0	1.786724	25.0	197988.0	1.786724	Υ
3	IC 480-721747/15	2.0	3.075155	25.0	197047.0	1.537577	Υ
4	IC 480-721747/16	5.0	11.616315	25.0	193140.0	2.323263	Υ
5	IC 480-721747/17	10.0	22.330593	25.0	203416.0	2.233059	Υ
6	ICIS 480-721747/18	25.0	53.824668	25.0	203534.0	2.152987	Υ
7	IC 480-721747/19	50.0	99.71113	25.0	208571.0	1.994223	Υ
8	IC 480-721747/20	100.0	182.504393	25.0	208871.0	1.825044	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.278

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.635545	25.0	189955.0	1.271091	Υ
2	IC 480-721747/14	1.0	1.40261	25.0	197988.0	1.40261	Υ
3	IC 480-721747/15	2.0	2.191102	25.0	197047.0	1.095551	Υ
4	IC 480-721747/16	5.0	6.566869	25.0	193140.0	1.313374	Υ
5	IC 480-721747/17	10.0	13.855596	25.0	203416.0	1.38556	Υ
6	ICIS 480-721747/18	25.0	32.373584	25.0	203534.0	1.294943	Υ
7	IC 480-721747/19	50.0	62.011497	25.0	208571.0	1.24023	Υ
8	IC 480-721747/20	100.0	122.378047	25.0	208871.0	1.22378	Υ

Calibration / Dibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

(Curve Coefficients
Intercept:	0
Slope:	0.6987

Error Coefficients

8.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.317444	25.0	189955.0	0.634887	Υ
2	IC 480-721747/14	1.0	0.79967	25.0	197988.0	0.79967	Υ
3	IC 480-721747/15	2.0	1.350185	25.0	197047.0	0.675093	Υ
4	IC 480-721747/16	5.0	3.645542	25.0	193140.0	0.729108	Υ
5	IC 480-721747/17	10.0	7.451602	25.0	203416.0	0.74516	Υ
6	ICIS 480-721747/18	25.0	17.425344	25.0	203534.0	0.697014	Υ
7	IC 480-721747/19	50.0	32.497447	25.0	208571.0	0.649949	Υ
8	IC 480-721747/20	100.0	65.835611	25.0	208871.0	0.658356	Υ

Calibration / 1,4-Dioxane

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficie	nts
Intercept:	-0.009103
Slope:	0.002253

Error Coefficients

9.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	10.0	0.011999	25.0	672959.0	0.0012	Υ
2	IC 480-721747/14	20.0	0.027925	25.0	692931.0	0.001396	Υ
3	IC 480-721747/15	40.0	0.087484	25.0	671550.0	0.002187	Υ
4	IC 480-721747/16	100.0	0.228944	25.0	679861.0	0.002289	Υ
5	IC 480-721747/17	200.0	0.489348	25.0	727294.0	0.002447	Υ
6	ICIS 480-721747/18	500.0	1.150686	25.0	719397.0	0.002301	Υ
7	IC 480-721747/19	1000.0	2.231771	25.0	707241.0	0.002232	Υ
8	IC 480-721747/20	2000.0	4.417519	25.0	721689.0	0.002209	Υ

Calibration / Dichlorobromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	s
Intercept:	0
Slope:	1.194

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.573162	25.0	189955.0	1.146324	Υ
2	IC 480-721747/14	1.0	1.255884	25.0	197988.0	1.255884	Υ
3	IC 480-721747/15	2.0	2.040757	25.0	197047.0	1.020378	Υ
4	IC 480-721747/16	5.0	5.755799	25.0	193140.0	1.15116	Υ
5	IC 480-721747/17	10.0	12.474928	25.0	203416.0	1.247493	Υ
6	ICIS 480-721747/18	25.0	31.485649	25.0	203534.0	1.259426	Υ
7	IC 480-721747/19	50.0	61.293636	25.0	208571.0	1.225873	Υ
8	IC 480-721747/20	100.0	124.82968	25.0	208871.0	1.248297	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.8603

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.424443	25.0	189955.0	0.848885	Υ
2	IC 480-721747/14	1.0	0.952457	25.0	197988.0	0.952457	Υ
3	IC 480-721747/15	2.0	1.445721	25.0	197047.0	0.722861	Υ
4	IC 480-721747/16	5.0	4.165243	25.0	193140.0	0.833049	Υ
5	IC 480-721747/17	10.0	9.12121	25.0	203416.0	0.912121	Υ
6	ICIS 480-721747/18	25.0	22.172463	25.0	203534.0	0.886899	Υ
7	IC 480-721747/19	50.0	43.592829	25.0	208571.0	0.871857	Υ
8	IC 480-721747/20	100.0	85.443527	25.0	208871.0	0.854435	Υ

10.1

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
Intercept: Slope:	0 1.424
·	

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.624622	25.0	189955.0	1.249243	Υ
2	IC 480-721747/14	1.0	1.594036	25.0	197988.0	1.594036	Υ
3	IC 480-721747/15	2.0	2.393465	25.0	197047.0	1.196732	Υ
4	IC 480-721747/16	5.0	6.703816	25.0	193140.0	1.340763	Υ
5	IC 480-721747/17	10.0	14.939828	25.0	203416.0	1.493983	Υ
6	ICIS 480-721747/18	25.0	37.864067	25.0	203534.0	1.514563	Υ
7	IC 480-721747/19	50.0	74.060751	25.0	208571.0	1.481215	Υ
8	IC 480-721747/20	100.0	151.89483	25.0	208871.0	1.518948	Υ

5.1

Υ

Υ

Y Y

Υ

Υ

Calibration

ID Level

2

3

4

5

6

7

8

IC 480-721747/13

IC 480-721747/14

IC 480-721747/15

IC 480-721747/16

IC 480-721747/17

IC 480-721747/19

IC 480-721747/20

ICIS 480-721747/18

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Concentration Rel. Resp.

0.635217

1.467137

2.492927

6.796205

13.905003

33.770575

67.70224

133.762604

2.5

5.0

10.0

25.0

50.0

125.0

250.0

500.0

	Curve Coefficients
Intercept:	0
Slope:	0.2694

Error Coefficients

692931.0

671550.0

679861.0

727294.0

719397.0

707241.0

721689.0

Relative Standard Deviation:

IS Amount

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

IS Response	RRF	Used
672959.0	0.254087	Υ

0.293427

0.249293

0.271848

0.270165

0.270809

0.267525

0.2781

Calibration / Toluene-d8 (Surr)

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeff	ficients
Intercept:	0
Slope:	1.114

Error Coefficients

1.3

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	25.0	28.096994	25.0	672959.0	1.12388	Υ
IC 480-721747/14	25.0	27.574787	25.0	692931.0	1.102991	Υ
IC 480-721747/15	25.0	28.043519	25.0	671550.0	1.121741	Υ
IC 480-721747/16	25.0	27.527061	25.0	679861.0	1.101082	Υ
IC 480-721747/17	25.0	27.588637	25.0	727294.0	1.103545	Υ
ICIS 480-721747/18	25.0	27.881406	25.0	719397.0	1.115256	Υ
IC 480-721747/19	25.0	28.554623	25.0	707241.0	1.142185	Υ
IC 480-721747/20	25.0	27.530453	25.0	721689.0	1.101218	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 25.0 IC 480-721747/14 25.0 IC 480-721747/15 25.0 IC 480-721747/16 25.0 IC 480-721747/17 25.0 ICIS 480-721747/18 25.0 IC 480-721747/19 25.0	IC 480-721747/13 25.0 28.096994 IC 480-721747/14 25.0 27.574787 IC 480-721747/15 25.0 28.043519 IC 480-721747/16 25.0 27.527061 IC 480-721747/17 25.0 27.588637 ICIS 480-721747/18 25.0 27.881406 IC 480-721747/19 25.0 28.554623	IC 480-721747/13 25.0 28.096994 25.0 IC 480-721747/14 25.0 27.574787 25.0 IC 480-721747/15 25.0 28.043519 25.0 IC 480-721747/16 25.0 27.527061 25.0 IC 480-721747/17 25.0 27.588637 25.0 ICIS 480-721747/18 25.0 27.881406 25.0 IC 480-721747/19 25.0 28.554623 25.0	IC 480-721747/13 25.0 28.096994 25.0 672959.0 IC 480-721747/14 25.0 27.574787 25.0 692931.0 IC 480-721747/15 25.0 28.043519 25.0 671550.0 IC 480-721747/16 25.0 27.527061 25.0 679861.0 IC 480-721747/17 25.0 27.588637 25.0 727294.0 ICIS 480-721747/18 25.0 27.881406 25.0 719397.0 IC 480-721747/19 25.0 28.554623 25.0 707241.0	IC 480-721747/13 25.0 28.096994 25.0 672959.0 1.12388 IC 480-721747/14 25.0 27.574787 25.0 692931.0 1.102991 IC 480-721747/15 25.0 28.043519 25.0 671550.0 1.121741 IC 480-721747/16 25.0 27.527061 25.0 679861.0 1.101082 IC 480-721747/17 25.0 27.588637 25.0 727294.0 1.103545 ICIS 480-721747/18 25.0 27.881406 25.0 719397.0 1.115256 IC 480-721747/19 25.0 28.554623 25.0 707241.0 1.142185

Calibration / Toluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curv	e Coefficients
Intercept:	0
Slope:	0.6891

Error Coefficients

4.8

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.254733	25.0	672959.0	0.509466	N
2	IC 480-721747/14	1.0	0.718253	25.0	692931.0	0.718253	Υ
3	IC 480-721747/15	2.0	1.281885	25.0	671550.0	0.640943	Υ
4	IC 480-721747/16	5.0	3.520389	25.0	679861.0	0.704078	Υ
5	IC 480-721747/17	10.0	7.291343	25.0	727294.0	0.729134	Υ
6	ICIS 480-721747/18	25.0	17.231306	25.0	719397.0	0.689252	Υ
7	IC 480-721747/19	50.0	34.634198	25.0	707241.0	0.692684	Υ
8	IC 480-721747/20	100.0	64.938879	25.0	721689.0	0.649389	Υ

15.4

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.3204			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.139496	25.0	672959.0	0.278992	Υ
2	IC 480-721747/14	1.0	0.269002	25.0	692931.0	0.269002	Υ
3	IC 480-721747/15	2.0	0.52632	25.0	671550.0	0.26316	Υ
4	IC 480-721747/16	5.0	1.501483	25.0	679861.0	0.300297	Υ
5	IC 480-721747/17	10.0	3.341805	25.0	727294.0	0.334181	Υ
6	ICIS 480-721747/18	25.0	8.884559	25.0	719397.0	0.355382	Υ
7	IC 480-721747/19	50.0	18.725583	25.0	707241.0	0.374512	Υ
8	IC 480-721747/20	100.0	38.797633	25.0	721689.0	0.387976	Υ

Calibration / Ethyl methacrylate

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept: Slope:	0 0.2953			
Glope.	0.2300			

Error Coefficients

16.9

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.077754	25.0	672959.0	0.155507	N
2	IC 480-721747/14	1.0	0.264745	25.0	692931.0	0.264745	Υ
3	IC 480-721747/15	2.0	0.454732	25.0	671550.0	0.227366	Υ
4	IC 480-721747/16	5.0	1.256764	25.0	679861.0	0.251353	Υ
5	IC 480-721747/17	10.0	2.972629	25.0	727294.0	0.297263	Υ
6	ICIS 480-721747/18	25.0	7.975256	25.0	719397.0	0.31901	Υ
7	IC 480-721747/19	50.0	17.326661	25.0	707241.0	0.346533	Υ
8	IC 480-721747/20	100.0	36.110395	25.0	721689.0	0.361104	Υ

Calibration / 1,1,2-Trichloroethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients			
Intercept:	0		
Slope:	0.2151		

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.092836	25.0	672959.0	0.185673	Υ
2	IC 480-721747/14	1.0	0.241582	25.0	692931.0	0.241582	Υ
3	IC 480-721747/15	2.0	0.402241	25.0	671550.0	0.201121	Υ
4	IC 480-721747/16	5.0	1.125929	25.0	679861.0	0.225186	Υ
5	IC 480-721747/17	10.0	2.239809	25.0	727294.0	0.223981	Υ
6	ICIS 480-721747/18	25.0	5.493768	25.0	719397.0	0.219751	Υ
7	IC 480-721747/19	50.0	10.848035	25.0	707241.0	0.216961	Υ
8	IC 480-721747/20	100.0	20.663021	25.0	721689.0	0.20663	Υ

Calibration / Tetrachloroethene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.2888			

Error Coefficients

9.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.103535	25.0	672959.0	0.207071	N
2	IC 480-721747/14	1.0	0.290649	25.0	692931.0	0.290649	Υ
3	IC 480-721747/15	2.0	0.488646	25.0	671550.0	0.244323	Υ
4	IC 480-721747/16	5.0	1.568041	25.0	679861.0	0.313608	Υ
5	IC 480-721747/17	10.0	3.141508	25.0	727294.0	0.314151	Υ
6	ICIS 480-721747/18	25.0	7.599941	25.0	719397.0	0.303998	Υ
7	IC 480-721747/19	50.0	14.623092	25.0	707241.0	0.292462	Υ
8	IC 480-721747/20	100.0	26.245343	25.0	721689.0	0.262453	Υ

Intercept: 0
Slope: 0.4327

Error Coefficients

/ 1,3-Dichloropropane

4.8

Dependency:ResponseCalib Mode:ISTDResponse Base:AREARF Rounding:0

Average

Conc_Sq

Force

Curve Type:

Weighting:

Origin:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.208296	25.0	672959.0	0.416593	Υ
2	IC 480-721747/14	1.0	0.431933	25.0	692931.0	0.431933	Υ
3	IC 480-721747/15	2.0	0.789964	25.0	671550.0	0.394982	Υ
4	IC 480-721747/16	5.0	2.30503	25.0	679861.0	0.461006	Υ
5	IC 480-721747/17	10.0	4.498112	25.0	727294.0	0.449811	Υ
6	ICIS 480-721747/18	25.0	11.212272	25.0	719397.0	0.448491	Υ
7	IC 480-721747/19	50.0	21.643577	25.0	707241.0	0.432872	Υ
8	IC 480-721747/20	100.0	42.575819	25.0	721689.0	0.425758	Υ

Calibration / 2-Hexanone

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

C	urve Coefficients
Intercept:	0
Slope:	0.5609

Error Coefficients

6.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	2.5	1.285777	25.0	672959.0	0.514311	Υ
2	IC 480-721747/14	5.0	3.066323	25.0	692931.0	0.613265	Υ
3	IC 480-721747/15	10.0	5.206798	25.0	671550.0	0.52068	Υ
4	IC 480-721747/16	25.0	14.447144	25.0	679861.0	0.577886	Υ
5	IC 480-721747/17	50.0	30.076386	25.0	727294.0	0.601528	Υ
6	ICIS 480-721747/18	125.0	71.423359	25.0	719397.0	0.571387	Υ
7	IC 480-721747/19	250.0	137.457882	25.0	707241.0	0.549832	Υ
8	IC 480-721747/20	500.0	269.096626	25.0	721689.0	0.538193	Υ

Calibration / Chlorodibromomethane

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients					
Intercept: Slope:		0 0.2104			
•		-			

Error Coefficients

13.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.098966	25.0	672959.0	0.197932	Υ
2	IC 480-721747/14	1.0	0.216364	25.0	692931.0	0.216364	Υ
3	IC 480-721747/15	2.0	0.3021	25.0	671550.0	0.15105	Υ
4	IC 480-721747/16	5.0	1.069373	25.0	679861.0	0.213875	Υ
5	IC 480-721747/17	10.0	2.038275	25.0	727294.0	0.203827	Υ
6	ICIS 480-721747/18	25.0	5.549822	25.0	719397.0	0.221993	Υ
7	IC 480-721747/19	50.0	11.606793	25.0	707241.0	0.232136	Υ
8	IC 480-721747/20	100.0	24.593939	25.0	721689.0	0.245939	Υ

Calibration / Ethylene Dibromide

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.2496			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.105504	25.0	672959.0	0.211008	Υ
2	IC 480-721747/14	1.0	0.264925	25.0	692931.0	0.264925	Υ
3	IC 480-721747/15	2.0	0.439543	25.0	671550.0	0.219771	Υ
4	IC 480-721747/16	5.0	1.187559	25.0	679861.0	0.237512	Υ
5	IC 480-721747/17	10.0	2.553232	25.0	727294.0	0.255323	Υ
6	ICIS 480-721747/18	25.0	6.762434	25.0	719397.0	0.270497	Υ
7	IC 480-721747/19	50.0	13.451391	25.0	707241.0	0.269028	Υ
8	IC 480-721747/20	100.0	26.88523	25.0	721689.0	0.268852	Υ

Calibration / Chlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients
Intercept:	0
Slope:	0.793

Error Coefficients

8.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.357637	25.0	672959.0	0.715274	Υ
2	IC 480-721747/14	1.0	0.926247	25.0	692931.0	0.926247	Υ
3	IC 480-721747/15	2.0	1.446877	25.0	671550.0	0.723438	Υ
4	IC 480-721747/16	5.0	4.144119	25.0	679861.0	0.828824	Υ
5	IC 480-721747/17	10.0	7.946649	25.0	727294.0	0.794665	Υ
6	ICIS 480-721747/18	25.0	20.069134	25.0	719397.0	0.802765	Υ
7	IC 480-721747/19	50.0	39.902275	25.0	707241.0	0.798046	Υ
8	IC 480-721747/20	100.0	75.511578	25.0	721689.0	0.755116	Υ

Calibration / Ethylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.33

Error Coefficients

9.8

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.539186	25.0	672959.0	1.078372	Υ
2	IC 480-721747/14	1.0	1.467967	25.0	692931.0	1.467967	Υ
3	IC 480-721747/15	2.0	2.435076	25.0	671550.0	1.217538	Υ
4	IC 480-721747/16	5.0	7.215335	25.0	679861.0	1.443067	Υ
5	IC 480-721747/17	10.0	13.883828	25.0	727294.0	1.388383	Υ
6	ICIS 480-721747/18	25.0	34.870941	25.0	719397.0	1.394838	Υ
7	IC 480-721747/19	50.0	68.06725	25.0	707241.0	1.361345	Υ
8	IC 480-721747/20	100.0	128.601932	25.0	721689.0	1.286019	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.2168

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.096328	25.0	672959.0	0.192657	Υ
2	IC 480-721747/14	1.0	0.185444	25.0	692931.0	0.185444	Υ
3	IC 480-721747/15	2.0	0.350458	25.0	671550.0	0.175229	Υ
4	IC 480-721747/16	5.0	1.151302	25.0	679861.0	0.23026	Υ
5	IC 480-721747/17	10.0	2.161849	25.0	727294.0	0.216185	Υ
6	ICIS 480-721747/18	25.0	5.662068	25.0	719397.0	0.226483	Υ
7	IC 480-721747/19	50.0	12.533069	25.0	707241.0	0.250661	Υ
8	IC 480-721747/20	100.0	25.719354	25.0	721689.0	0.257194	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeff	icients
Intercept:	0 0.531
Slope:	0.551

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.209411	25.0	672959.0	0.418822	Υ
2	IC 480-721747/14	1.0	0.589525	25.0	692931.0	0.589525	Υ
3	IC 480-721747/15	2.0	0.995533	25.0	671550.0	0.497766	Υ
4	IC 480-721747/16	5.0	3.006534	25.0	679861.0	0.601307	Υ
5	IC 480-721747/17	10.0	5.533251	25.0	727294.0	0.553325	Υ
6	ICIS 480-721747/18	25.0	13.664395	25.0	719397.0	0.546576	Υ
7	IC 480-721747/19	50.0	26.677823	25.0	707241.0	0.533556	Υ
8	IC 480-721747/20	100.0	50.700717	25.0	721689.0	0.507007	Υ

Calibration / o-Xylene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.5761

Error Coefficients

9.8

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	0.5	0.25986	25.0	672959.0	0.51972	Υ
IC 480-721747/14	1.0	0.694117	25.0	692931.0	0.694117	Υ
IC 480-721747/15	2.0	1.074827	25.0	671550.0	0.537413	Υ
IC 480-721747/16	5.0	3.079563	25.0	679861.0	0.615913	Υ
IC 480-721747/17	10.0	5.791124	25.0	727294.0	0.579112	Υ
ICIS 480-721747/18	25.0	14.228479	25.0	719397.0	0.569139	Υ
IC 480-721747/19	50.0	28.023333	25.0	707241.0	0.560467	Υ
IC 480-721747/20	100.0	53.272185	25.0	721689.0	0.532722	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 0.5 IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/13	IC 480-721747/13	IC 480-721747/13	IC 480-721747/13

Calibration / Styrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.864

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.33401	25.0	672959.0	0.66802	Υ
2	IC 480-721747/14	1.0	0.871804	25.0	692931.0	0.871804	Υ
3	IC 480-721747/15	2.0	1.665178	25.0	671550.0	0.832589	Υ
4	IC 480-721747/16	5.0	4.636904	25.0	679861.0	0.927381	Υ
5	IC 480-721747/17	10.0	9.439718	25.0	727294.0	0.943972	Υ
6	ICIS 480-721747/18	25.0	22.871898	25.0	719397.0	0.914876	Υ
7	IC 480-721747/19	50.0	44.546201	25.0	707241.0	0.890924	Υ
8	IC 480-721747/20	100.0	86.218614	25.0	721689.0	0.862186	Υ

Calibration / Bromoform

Curve Type: Linear
Weighting: Conc
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	-0.09156			
Slope:	0.1551			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.085369	25.0	672959.0	0.170738	N
2	IC 480-721747/14	1.0	0.098098	25.0	692931.0	0.098098	Υ
3	IC 480-721747/15	2.0	0.201065	25.0	671550.0	0.100532	Υ
4	IC 480-721747/16	5.0	0.613655	25.0	679861.0	0.122731	Υ
5	IC 480-721747/17	10.0	1.309924	25.0	727294.0	0.130992	Υ
6	ICIS 480-721747/18	25.0	3.744038	25.0	719397.0	0.149762	Υ
7	IC 480-721747/19	50.0	7.907842	25.0	707241.0	0.158157	Υ
8	IC 480-721747/20	100.0	18.012607	25.0	721689.0	0.180126	N

Calibration / Isopropylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients		
Intercept:	0	
Slope:	2.494	

Error Coefficients

Relative Standard Deviation:

8.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.758247	25.0	409596.0	1.516494	N
2	IC 480-721747/14	1.0	2.410751	25.0	410339.0	2.410751	Υ
3	IC 480-721747/15	2.0	4.19782	25.0	409397.0	2.09891	Υ
4	IC 480-721747/16	5.0	13.002358	25.0	408747.0	2.600472	Υ
5	IC 480-721747/17	10.0	26.627779	25.0	409254.0	2.662778	Υ
6	ICIS 480-721747/18	25.0	66.126288	25.0	406721.0	2.645052	Υ
7	IC 480-721747/19	50.0	130.516459	25.0	401358.0	2.610329	Υ
8	IC 480-721747/20	100.0	242.736213	25.0	412044.0	2.427362	Υ

Calibration

/ 4-Bromofluorobenzene (Surr)

1.6

Curve Type:AverageWeighting:Conc_SqOrigin:ForceDependency:ResponseCalib Mode:ISTDResponse Base:AREARF Rounding:0

Curve Coefficients				
Intercept:	0			
Slope:	0.3951			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	25.0	10.115401	25.0	672959.0	0.404616	Υ
2	IC 480-721747/14	25.0	9.831534	25.0	692931.0	0.393261	Υ
3	IC 480-721747/15	25.0	10.062095	25.0	671550.0	0.402484	Υ
4	IC 480-721747/16	25.0	9.730151	25.0	679861.0	0.389206	Υ
5	IC 480-721747/17	25.0	9.681676	25.0	727294.0	0.387267	Υ
6	ICIS 480-721747/18	25.0	9.963761	25.0	719397.0	0.39855	Υ
7	IC 480-721747/19	25.0	9.913452	25.0	707241.0	0.396538	Υ
8	IC 480-721747/20	25.0	9.726558	25.0	721689.0	0.389062	Υ

Calibration / Bromobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	ients
Intercept:	0
Slope:	0.6141

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.280032	25.0	409596.0	0.560064	Υ
2	IC 480-721747/14	1.0	0.672797	25.0	410339.0	0.672797	Υ
3	IC 480-721747/15	2.0	1.006297	25.0	409397.0	0.503149	Υ
4	IC 480-721747/16	5.0	3.292318	25.0	408747.0	0.658464	Υ
5	IC 480-721747/17	10.0	6.675805	25.0	409254.0	0.667581	Υ
6	ICIS 480-721747/18	25.0	16.056215	25.0	406721.0	0.642249	Υ
7	IC 480-721747/19	50.0	30.871068	25.0	401358.0	0.617421	Υ
8	IC 480-721747/20	100.0	59.118504	25.0	412044.0	0.591185	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.7661			

Error Coefficients

Relative Standard Deviation:

8.3

IC 480-721747/13					RRF	Used
10 400-121141/13	0.5	0.352665	25.0	409596.0	0.705329	Υ
IC 480-721747/14	1.0	0.877567	25.0	410339.0	0.877567	Υ
IC 480-721747/15	2.0	1.351683	25.0	409397.0	0.675842	Υ
IC 480-721747/16	5.0	3.780578	25.0	408747.0	0.756116	Υ
IC 480-721747/17	10.0	8.22075	25.0	409254.0	0.822075	Υ
ICIS 480-721747/18	25.0	19.590579	25.0	406721.0	0.783623	Υ
IC 480-721747/19	50.0	38.077602	25.0	401358.0	0.761552	Υ
IC 480-721747/20	100.0	74.699668	25.0	412044.0	0.746997	Υ
	IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/14 1.0 0.877567 IC 480-721747/15 2.0 1.351683 IC 480-721747/16 5.0 3.780578 IC 480-721747/17 10.0 8.22075 ICIS 480-721747/18 25.0 19.590579 IC 480-721747/19 50.0 38.077602	IC 480-721747/14 1.0 0.877567 25.0 IC 480-721747/15 2.0 1.351683 25.0 IC 480-721747/16 5.0 3.780578 25.0 IC 480-721747/17 10.0 8.22075 25.0 ICIS 480-721747/18 25.0 19.590579 25.0 IC 480-721747/19 50.0 38.077602 25.0	IC 480-721747/14 1.0 0.877567 25.0 410339.0 IC 480-721747/15 2.0 1.351683 25.0 409397.0 IC 480-721747/16 5.0 3.780578 25.0 408747.0 IC 480-721747/17 10.0 8.22075 25.0 409254.0 ICIS 480-721747/18 25.0 19.590579 25.0 406721.0 IC 480-721747/19 50.0 38.077602 25.0 401358.0	IC 480-721747/14 1.0 0.877567 25.0 410339.0 0.877567 IC 480-721747/15 2.0 1.351683 25.0 409397.0 0.675842 IC 480-721747/16 5.0 3.780578 25.0 408747.0 0.756116 IC 480-721747/17 10.0 8.22075 25.0 409254.0 0.822075 ICIS 480-721747/18 25.0 19.590579 25.0 406721.0 0.783623 IC 480-721747/19 50.0 38.077602 25.0 401358.0 0.761552

Calibration / N-Propylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 2.975

Error Coefficients

7.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.952097	25.0	409596.0	1.904193	N
2	IC 480-721747/14	1.0	2.950122	25.0	410339.0	2.950122	Υ
3	IC 480-721747/15	2.0	5.116916	25.0	409397.0	2.558458	Υ
4	IC 480-721747/16	5.0	15.836813	25.0	408747.0	3.167363	Υ
5	IC 480-721747/17	10.0	31.98075	25.0	409254.0	3.198075	Υ
6	ICIS 480-721747/18	25.0	77.46883	25.0	406721.0	3.098753	Υ
7	IC 480-721747/19	50.0	151.164546	25.0	401358.0	3.023291	Υ
8	IC 480-721747/20	100.0	283.137845	25.0	412044.0	2.831378	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.2456			

Error Coefficients

Relative Standard Deviation:

10.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.112184	25.0	409596.0	0.224367	Υ
2	IC 480-721747/14	1.0	0.298595	25.0	410339.0	0.298595	Υ
3	IC 480-721747/15	2.0	0.456403	25.0	409397.0	0.228201	Υ
4	IC 480-721747/16	5.0	1.143005	25.0	408747.0	0.228601	Υ
5	IC 480-721747/17	10.0	2.609932	25.0	409254.0	0.260993	Υ
6	ICIS 480-721747/18	25.0	6.348947	25.0	406721.0	0.253958	Υ
7	IC 480-721747/19	50.0	11.757022	25.0	401358.0	0.23514	Υ
8	IC 480-721747/20	100.0	23.49112	25.0	412044.0	0.234911	Υ

13.6

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeff	icients
Intercept: Slope:	0 0.3404

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.047547	25.0	409596.0	0.095094	N
2	IC 480-721747/14	1.0	0.264781	25.0	410339.0	0.264781	Υ
3	IC 480-721747/15	2.0	0.613891	25.0	409397.0	0.306945	Υ
4	IC 480-721747/16	5.0	1.57622	25.0	408747.0	0.315244	Υ
5	IC 480-721747/17	10.0	3.67895	25.0	409254.0	0.367895	Υ
6	ICIS 480-721747/18	25.0	8.842487	25.0	406721.0	0.353699	Υ
7	IC 480-721747/19	50.0	19.033942	25.0	401358.0	0.380679	Υ
8	IC 480-721747/20	100.0	39.348286	25.0	412044.0	0.393483	Υ

Calibration / 2-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0
Slope:	0.5804

Error Coefficients

11.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.252444	25.0	409596.0	0.504888	Υ
2	IC 480-721747/14	1.0	0.676087	25.0	410339.0	0.676087	Υ
3	IC 480-721747/15	2.0	0.950361	25.0	409397.0	0.475181	Υ
4	IC 480-721747/16	5.0	2.968768	25.0	408747.0	0.593754	Υ
5	IC 480-721747/17	10.0	6.398227	25.0	409254.0	0.639823	Υ
6	ICIS 480-721747/18	25.0	15.161929	25.0	406721.0	0.606477	Υ
7	IC 480-721747/19	50.0	29.94764	25.0	401358.0	0.598953	Υ
8	IC 480-721747/20	100.0	54.806586	25.0	412044.0	0.548066	Υ

8.2

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve	Coefficients
Intercept: Slope:	0 2.171

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.758308	25.0	409596.0	1.516616	N
2	IC 480-721747/14	1.0	2.217679	25.0	410339.0	2.217679	Υ
3	IC 480-721747/15	2.0	3.601333	25.0	409397.0	1.800667	Υ
4	IC 480-721747/16	5.0	11.340695	25.0	408747.0	2.268139	Υ
5	IC 480-721747/17	10.0	23.199529	25.0	409254.0	2.319953	Υ
6	ICIS 480-721747/18	25.0	56.319627	25.0	406721.0	2.252785	Υ
7	IC 480-721747/19	50.0	112.102537	25.0	401358.0	2.242051	Υ
8	IC 480-721747/20	100.0	209.647271	25.0	412044.0	2.096473	Υ

Calibration / 4-Chlorotoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.982

Error Coefficients

9.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.806832	25.0	409596.0	1.613663	Υ
2	IC 480-721747/14	1.0	2.160409	25.0	410339.0	2.160409	Υ
3	IC 480-721747/15	2.0	3.625332	25.0	409397.0	1.812666	Υ
4	IC 480-721747/16	5.0	10.268455	25.0	408747.0	2.053691	Υ
5	IC 480-721747/17	10.0	21.695084	25.0	409254.0	2.169508	Υ
6	ICIS 480-721747/18	25.0	52.237467	25.0	406721.0	2.089499	Υ
7	IC 480-721747/19	50.0	101.711128	25.0	401358.0	2.034223	Υ
8	IC 480-721747/20	100.0	192.418528	25.0	412044.0	1.924185	Υ

Calibration / tert-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.4515

Error Coefficients

9.4

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.124269	25.0	409596.0	0.248538	N
2	IC 480-721747/14	1.0	0.442378	25.0	410339.0	0.442378	Υ
3	IC 480-721747/15	2.0	0.733884	25.0	409397.0	0.366942	Υ
4	IC 480-721747/16	5.0	2.385277	25.0	408747.0	0.477055	Υ
5	IC 480-721747/17	10.0	4.879488	25.0	409254.0	0.487949	Υ
6	ICIS 480-721747/18	25.0	11.859174	25.0	406721.0	0.474367	Υ
7	IC 480-721747/19	50.0	23.963145	25.0	401358.0	0.479263	Υ
8	IC 480-721747/20	100.0	43.268619	25.0	412044.0	0.432686	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	2.257			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.811592	25.0	409596.0	1.623185	N
2	IC 480-721747/14	1.0	2.373525	25.0	410339.0	2.373525	Υ
3	IC 480-721747/15	2.0	3.90379	25.0	409397.0	1.951895	Υ
4	IC 480-721747/16	5.0	11.384365	25.0	408747.0	2.276873	Υ
5	IC 480-721747/17	10.0	24.062074	25.0	409254.0	2.406207	Υ
6	ICIS 480-721747/18	25.0	58.87697	25.0	406721.0	2.355079	Υ
7	IC 480-721747/19	50.0	114.507995	25.0	401358.0	2.29016	Υ
8	IC 480-721747/20	100.0	214.509737	25.0	412044.0	2.145097	Υ

Calibration / sec-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	pefficients
Intercept:	0
Slope:	2.8

Error Coefficients

11.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.866036	25.0	409596.0	1.732073	N
2	IC 480-721747/14	1.0	2.910581	25.0	410339.0	2.910581	Υ
3	IC 480-721747/15	2.0	4.325203	25.0	409397.0	2.162601	Υ
4	IC 480-721747/16	5.0	14.818886	25.0	408747.0	2.963777	Υ
5	IC 480-721747/17	10.0	30.761092	25.0	409254.0	3.076109	Υ
6	ICIS 480-721747/18	25.0	73.494545	25.0	406721.0	2.939782	Υ
7	IC 480-721747/19	50.0	144.824384	25.0	401358.0	2.896488	Υ
8	IC 480-721747/20	100.0	264.832882	25.0	412044.0	2.648329	Υ

Calibration / 1,3-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	s
Intercept:	0
Slope:	1.242

Error Coefficients

9.9

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.51386	25.0	409596.0	1.02772	Υ
2	IC 480-721747/14	1.0	1.415293	25.0	410339.0	1.415293	Υ
3	IC 480-721747/15	2.0	2.363232	25.0	409397.0	1.181616	Υ
4	IC 480-721747/16	5.0	6.777175	25.0	408747.0	1.355435	Υ
5	IC 480-721747/17	10.0	13.122108	25.0	409254.0	1.312211	Υ
6	ICIS 480-721747/18	25.0	31.68339	25.0	406721.0	1.267336	Υ
7	IC 480-721747/19	50.0	60.954186	25.0	401358.0	1.219084	Υ
8	IC 480-721747/20	100.0	115.903459	25.0	412044.0	1.159035	Υ

Calibration / 4-Isopropyltoluene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	2.362

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.808663	25.0	409596.0	1.617325	N
2	IC 480-721747/14	1.0	2.376023	25.0	410339.0	2.376023	Υ
3	IC 480-721747/15	2.0	3.943971	25.0	409397.0	1.971986	Υ
4	IC 480-721747/16	5.0	12.307369	25.0	408747.0	2.461474	Υ
5	IC 480-721747/17	10.0	25.668717	25.0	409254.0	2.566872	Υ
6	ICIS 480-721747/18	25.0	62.515582	25.0	406721.0	2.500623	Υ
7	IC 480-721747/19	50.0	122.818095	25.0	401358.0	2.456362	Υ
8	IC 480-721747/20	100.0	220.288671	25.0	412044.0	2.202887	Υ

Calibration / 1,4-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept: Slope:	0 1.264

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.502141	25.0	409596.0	1.004282	Υ
2	IC 480-721747/14	1.0	1.452458	25.0	410339.0	1.452458	Υ
3	IC 480-721747/15	2.0	2.450555	25.0	409397.0	1.225278	Υ
4	IC 480-721747/16	5.0	6.489772	25.0	408747.0	1.297954	Υ
5	IC 480-721747/17	10.0	13.810006	25.0	409254.0	1.381001	Υ
6	ICIS 480-721747/18	25.0	32.745912	25.0	406721.0	1.309836	Υ
7	IC 480-721747/19	50.0	62.986473	25.0	401358.0	1.259729	Υ
8	IC 480-721747/20	100.0	117.965618	25.0	412044.0	1.179656	Υ

Calibration / n-Butylbenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	2.139

Error Coefficients

9.3

			IS Amount	IS Response	RRF	Used
)-721747/13	0.5	0.640021	25.0	409596.0	1.280042	N
)-721747/14	1.0	2.13677	25.0	410339.0	2.13677	Υ
)-721747/15	2.0	3.562496	25.0	409397.0	1.781248	Υ
)-721747/16	5.0	11.386811	25.0	408747.0	2.277362	Υ
)-721747/17	10.0	23.401787	25.0	409254.0	2.340179	Υ
80-721747/18 2	25.0	55.914005	25.0	406721.0	2.23656	Υ
)-721747/19	50.0	112.064603	25.0	401358.0	2.241292	Υ
)-721747/20	100.0	196.095381	25.0	412044.0	1.960954	Υ
֡	1-721747/14 1-721747/15 1-721747/16 1-721747/17 80-721747/18	1-721747/14 1.0 1-721747/15 2.0 1-721747/16 5.0 1-721747/17 10.0 1-721747/18 25.0 1-721747/19 50.0	1-721747/14 1.0 2.13677 1-721747/15 2.0 3.562496 1-721747/16 5.0 11.386811 1-721747/17 10.0 23.401787 80-721747/18 25.0 55.914005 1-721747/19 50.0 112.064603	1-721747/14 1.0 2.13677 25.0 1-721747/15 2.0 3.562496 25.0 1-721747/16 5.0 11.386811 25.0 1-721747/17 10.0 23.401787 25.0 1-721747/18 25.0 55.914005 25.0 1-721747/19 50.0 112.064603 25.0	1-721747/14 1.0 2.13677 25.0 410339.0 1-721747/15 2.0 3.562496 25.0 409397.0 1-721747/16 5.0 11.386811 25.0 408747.0 1-721747/17 10.0 23.401787 25.0 409254.0 1-721747/18 25.0 55.914005 25.0 406721.0 1-721747/19 50.0 112.064603 25.0 401358.0	1-721747/14 1.0 2.13677 25.0 410339.0 2.13677 1-721747/15 2.0 3.562496 25.0 409397.0 1.781248 1-721747/16 5.0 11.386811 25.0 408747.0 2.277362 1-721747/17 10.0 23.401787 25.0 409254.0 2.340179 180-721747/18 25.0 55.914005 25.0 406721.0 2.23656 1-721747/19 50.0 112.064603 25.0 401358.0 2.241292

Calibration / 1,2-Dichlorobenzene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept: Slope:	0 1.222			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.487615	25.0	409596.0	0.975229	Υ
2	IC 480-721747/14	1.0	1.459708	25.0	410339.0	1.459708	Υ
3	IC 480-721747/15	2.0	2.403962	25.0	409397.0	1.201981	Υ
4	IC 480-721747/16	5.0	6.411851	25.0	408747.0	1.28237	Υ
5	IC 480-721747/17	10.0	13.052224	25.0	409254.0	1.305222	Υ
6	ICIS 480-721747/18	25.0	30.669796	25.0	406721.0	1.226792	Υ
7	IC 480-721747/19	50.0	60.469207	25.0	401358.0	1.209384	Υ
8	IC 480-721747/20	100.0	111.297155	25.0	412044.0	1.112972	Υ

19.8

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept: Slope:		0 0.1166		

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.051331	25.0	409596.0	0.102662	N
2	IC 480-721747/14	1.0	0.1238	25.0	410339.0	0.1238	Υ
3	IC 480-721747/15	2.0	0.201333	25.0	409397.0	0.100666	Υ
4	IC 480-721747/16	5.0	0.482634	25.0	408747.0	0.096527	Υ
5	IC 480-721747/17	10.0	0.955275	25.0	409254.0	0.095527	Υ
6	ICIS 480-721747/18	25.0	3.249586	25.0	406721.0	0.129983	Υ
7	IC 480-721747/19	50.0	7.64735	25.0	401358.0	0.152947	Υ
8	IC 480-721747/20	100.0	15.603977	25.0	412044.0	0.15604	N

8.8

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.7826			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.342166	25.0	409596.0	0.684333	Υ
2	IC 480-721747/14	1.0	0.866418	25.0	410339.0	0.866418	Υ
3	IC 480-721747/15	2.0	1.368476	25.0	409397.0	0.684238	Υ
4	IC 480-721747/16	5.0	4.082599	25.0	408747.0	0.81652	Υ
5	IC 480-721747/17	10.0	8.391732	25.0	409254.0	0.839173	Υ
6	ICIS 480-721747/18	25.0	19.774243	25.0	406721.0	0.79097	Υ
7	IC 480-721747/19	50.0	41.247527	25.0	401358.0	0.824951	Υ
8	IC 480-721747/20	100.0	75.450195	25.0	412044.0	0.754502	Υ

Calibration / Hexachlorobutadiene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.3261			

Error Coefficients

15.7

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-721747/13	0.5	0.073426	25.0	409596.0	0.146852	N
IC 480-721747/14	1.0	0.29634	25.0	410339.0	0.29634	Υ
IC 480-721747/15	2.0	0.498538	25.0	409397.0	0.249269	Υ
IC 480-721747/16	5.0	1.771206	25.0	408747.0	0.354241	Υ
IC 480-721747/17	10.0	3.863004	25.0	409254.0	0.3863	Υ
ICIS 480-721747/18	25.0	8.49366	25.0	406721.0	0.339746	Υ
IC 480-721747/19	50.0	18.733026	25.0	401358.0	0.374661	Υ
IC 480-721747/20	100.0	28.208335	25.0	412044.0	0.282083	Υ
	IC 480-721747/13 IC 480-721747/14 IC 480-721747/15 IC 480-721747/16 IC 480-721747/17 ICIS 480-721747/18 IC 480-721747/19	IC 480-721747/13 0.5 IC 480-721747/14 1.0 IC 480-721747/15 2.0 IC 480-721747/16 5.0 IC 480-721747/17 10.0 ICIS 480-721747/18 25.0 IC 480-721747/19 50.0	IC 480-721747/13 0.5 0.073426 IC 480-721747/14 1.0 0.29634 IC 480-721747/15 2.0 0.498538 IC 480-721747/16 5.0 1.771206 IC 480-721747/17 10.0 3.863004 ICIS 480-721747/18 25.0 8.49366 IC 480-721747/19 50.0 18.733026	IC 480-721747/13 0.5 0.073426 25.0 IC 480-721747/14 1.0 0.29634 25.0 IC 480-721747/15 2.0 0.498538 25.0 IC 480-721747/16 5.0 1.771206 25.0 IC 480-721747/17 10.0 3.863004 25.0 ICIS 480-721747/18 25.0 8.49366 25.0 IC 480-721747/19 50.0 18.733026 25.0	IC 480-721747/13 0.5 0.073426 25.0 409596.0 IC 480-721747/14 1.0 0.29634 25.0 410339.0 IC 480-721747/15 2.0 0.498538 25.0 409397.0 IC 480-721747/16 5.0 1.771206 25.0 408747.0 IC 480-721747/17 10.0 3.863004 25.0 409254.0 ICIS 480-721747/18 25.0 8.49366 25.0 406721.0 IC 480-721747/19 50.0 18.733026 25.0 401358.0	IC 480-721747/13 0.5 0.073426 25.0 409596.0 0.146852 IC 480-721747/14 1.0 0.29634 25.0 410339.0 0.29634 IC 480-721747/15 2.0 0.498538 25.0 409397.0 0.249269 IC 480-721747/16 5.0 1.771206 25.0 408747.0 0.354241 IC 480-721747/17 10.0 3.863004 25.0 409254.0 0.3863 ICIS 480-721747/18 25.0 8.49366 25.0 406721.0 0.339746 IC 480-721747/19 50.0 18.733026 25.0 401358.0 0.374661

Calibration / Naphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	2.482			

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	1.111644	25.0	409596.0	2.223288	Υ
2	IC 480-721747/14	1.0	2.761619	25.0	410339.0	2.761619	Υ
3	IC 480-721747/15	2.0	4.477683	25.0	409397.0	2.238842	Υ
4	IC 480-721747/16	5.0	12.092688	25.0	408747.0	2.418538	Υ
5	IC 480-721747/17	10.0	25.478554	25.0	409254.0	2.547855	Υ
6	ICIS 480-721747/18	25.0	63.775352	25.0	406721.0	2.551014	Υ
7	IC 480-721747/19	50.0	130.547354	25.0	401358.0	2.610947	Υ
8	IC 480-721747/20	100.0	250.175952	25.0	412044.0	2.50176	Υ

12.2

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.7102

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-721747/13	0.5	0.2699	25.0	409596.0	0.5398	Υ
2	IC 480-721747/14	1.0	0.796293	25.0	410339.0	0.796293	Υ
3	IC 480-721747/15	2.0	1.262161	25.0	409397.0	0.631081	Υ
4	IC 480-721747/16	5.0	3.580087	25.0	408747.0	0.716017	Υ
5	IC 480-721747/17	10.0	7.979885	25.0	409254.0	0.797989	Υ
6	ICIS 480-721747/18	25.0	17.940431	25.0	406721.0	0.717617	Υ
7	IC 480-721747/19	50.0	37.771329	25.0	401358.0	0.755427	Υ
8	IC 480-721747/20	100.0	72.735739	25.0	412044.0	0.727357	Υ

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: ICV 480-721747/34 Calibration Date: 08/14/2024 22:26

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

Lab File ID: N9169.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.193	1.164	0.1000	24.4	25.0	-2.5	50.0
Chloromethane	Ave	2.639	2.592	0.1000	24.5	25.0	-1.8	30.0
Vinyl chloride	Ave	1.473	1.492	0.1000	25.3	25.0	1.3	30.0
Butadiene	Ave	2.379	2.289		24.1	25.0	-3.8	30.0
Bromomethane	Lin1		0.7405	0.1000	27.0	25.0	7.9	50.0
Chloroethane	Ave	0.9700	0.9135	0.1000	23.5	25.0	-5.8	50.0
Dichlorofluoromethane	Ave	2.203	2.152		24.4	25.0	-2.3	30.0
Trichlorofluoromethane	Ave	1.554	1.562	0.1000	25.1	25.0	0.5	30.0
Ethyl ether	Ave	1.566	1.508		24.1	25.0	-3.7	30.0
Acrolein	Ave	0.2435	0.2737		141	125	12.4	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.9653	1.013	0.1000	26.2	25.0	5.0	30.0
1,1-Dichloroethene	Ave	0.9440	0.9561	0.1000	25.3	25.0	1.3	30.0
Acetone	Ave	0.9510	0.9838	0.1000	129	125	3.4	50.0
Iodomethane	Ave	1.752	1.833		26.2	25.0	4.6	30.0
Carbon disulfide	Ave	3.465	3.461	0.1000	25.0	25.0	-0.1	30.0
Allyl chloride	Ave	3.589	3.617		25.2	25.0	0.8	30.0
Methyl acetate	Ave	2.296	2.305	0.1000	50.2	50.0	0.4	50.0
Methylene Chloride	Lin1		1.212	0.1000	27.1	25.0	8.3	30.0
2-Methyl-2-propanol	Ave	0.1828	0.2325		318	250	27.2	50.0
Methyl tert-butyl ether	Ave	4.059	4.028	0.1000	24.8	25.0	-0.7	30.0
trans-1,2-Dichloroethene	Ave	1.134	1.127	0.1000	24.8	25.0	-0.6	30.0
Acrylonitrile	Ave	1.242	1.250		252	250	0.6	30.0
Hexane	Ave	2.463	2.536		25.7	25.0	2.9	30.0
1,1-Dichloroethane	Ave	2.568	2.637	0.2000	25.7	25.0	2.7	30.0
Vinyl acetate	Ave	3.340	3.569		53.4	50.0	6.8	30.0
2,2-Dichloropropane	Ave	0.9868	1.094		27.7	25.0	10.9	30.0
cis-1,2-Dichloroethene	Ave	1.201	1.217	0.1000	25.3	25.0	1.3	30.0
2-Butanone (MEK)	Ave	1.398	1.379	0.1000	123	125	-1.4	30.0
Chlorobromomethane	Ave	0.6038	0.6129		25.4	25.0	1.5	30.0
Tetrahydrofuran	Lin1		1.044		52.2	50.0	4.3	30.0
Chloroform	Ave	2.102	2.019	0.2000	24.0	25.0	-3.9	30.0
1,1,1-Trichloroethane	Ave	1.387	1.515	0.1000	27.3	25.0	9.2	30.0
Cyclohexane	Ave	3.263	3.278	0.1000	25.1	25.0	0.5	30.0
Carbon tetrachloride	Ave	0.8914	1.041	0.1000	29.2	25.0	16.8	30.0
1,1-Dichloropropene	Ave	1.483	1.493		25.2	25.0	0.7	30.0
Benzene	Ave	4.223	4.169	0.5000	24.7	25.0	-1.3	30.0
Isobutyl alcohol	Ave	0.0703	0.0971		864	625	38.2	50.0
1,2-Dichloroethane	Ave	2.015	1.962	0.1000	24.3	25.0	-2.7	30.0
n-Heptane	Ave	2.880	2.969		25.8	25.0	3.1	30.0
Trichloroethene	Ave	1.035	1.004	0.2000	24.2	25.0	-3.0	30.0

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: ICV 480-721747/34 Calibration Date: 08/14/2024 22:26

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

Lab File ID: N9169.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.979	2.008	0.1000	25.4	25.0	1.5	30.0
1,2-Dichloropropane	Ave	1.278	1.290	0.1000	25.2	25.0	0.9	30.0
Dibromomethane	Ave	0.6987	0.6606	0.1000	23.6	25.0	-5.5	30.0
1,4-Dioxane	Lin1		0.0022		495	500	-1.1	50.0
Bromodichloromethane	Ave	1.194	1.223	0.2000	25.6	25.0	2.4	30.0
2-Chloroethyl vinyl ether	Ave	0.8603	0.8225		23.9	25.0	-4.4	30.0
cis-1,3-Dichloropropene	Ave	1.424	1.443	0.2000	25.3	25.0	1.4	30.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2694	0.2807	0.1000	130	125	4.2	30.0
Toluene	Ave	0.6891	0.6877	0.4000	24.9	25.0	-0.2	30.0
trans-1,3-Dichloropropene	Ave	0.3204	0.3507	0.1000	27.4	25.0	9.4	30.0
Ethyl methacrylate	Ave	0.2953	0.3261		27.6	25.0	10.4	30.0
1,1,2-Trichloroethane	Ave	0.2151	0.2172	0.1000	25.2	25.0	1.0	30.0
Tetrachloroethene	Ave	0.2888	0.2888	0.2000	25.0	25.0	-0.0	30.0
1,3-Dichloropropane	Ave	0.4327	0.4498		26.0	25.0	3.9	30.0
2-Hexanone	Ave	0.5609	0.5609	0.1000	125	125	0.0	30.0
Dibromochloromethane	Ave	0.2104	0.2185	0.1000	26.0	25.0	3.9	30.0
1,2-Dibromoethane	Ave	0.2496	0.2664		26.7	25.0	6.7	30.0
Chlorobenzene	Ave	0.7930	0.7765	0.5000	24.5	25.0	-2.1	30.0
Ethylbenzene	Ave	1.330	1.359	0.1000	25.5	25.0	2.2	30.0
1,1,1,2-Tetrachloroethane	Ave	0.2168	0.2421		27.9	25.0	11.7	30.0
m,p-Xylene	Ave	0.5310	0.5421	0.1000	25.5	25.0	2.1	30.0
o-Xylene	Ave	0.5761	0.5785	0.3000	25.1	25.0	0.4	30.0
Styrene	Ave	0.8640	0.9013	0.3000	26.1	25.0	4.3	30.0
Bromoform	Lin1		0.1449	0.1000	23.9	25.0	-4.2	50.0
Isopropylbenzene	Ave	2.494	2.525	0.1000	25.3	25.0	1.3	30.0
Bromobenzene	Ave	0.6141	0.5978		24.3	25.0	-2.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.7661	0.7645	0.3000	24.9	25.0	-0.2	30.0
N-Propylbenzene	Ave	2.975	2.931		24.6	25.0	-1.5	30.0
1,2,3-Trichloropropane	Ave	0.2456	0.2488		25.3	25.0	1.3	30.0
trans-1,4-Dichloro-2-butene	Ave	0.3404	0.3552		26.1	25.0	4.3	50.0
2-Chlorotoluene	Ave	0.5804	0.5712		24.6	25.0	-1.6	30.0
1,3,5-Trimethylbenzene	Ave	2.171	2.193		25.3	25.0	1.0	30.0
4-Chlorotoluene	Ave	1.982	2.002		25.2	25.0	1.0	30.0
tert-Butylbenzene	Ave	0.4515	0.4593		25.4	25.0	1.7	30.0
1,2,4-Trimethylbenzene	Ave	2.257	2.305		25.5	25.0	2.1	30.0
sec-Butylbenzene	Ave	2.800	2.822		25.2	25.0	0.8	30.0
1,3-Dichlorobenzene	Ave	1.242	1.225	0.6000	24.6	25.0	-1.4	30.0
4-Isopropyltoluene	Ave	2.362	2.413		25.5	25.0	2.2	30.0
1,4-Dichlorobenzene	Ave	1.264	1.229	0.5000	24.3	25.0	-2.8	30.0
n-Butylbenzene	Ave	2.139	2.191		25.6	25.0	2.4	30.0
1,2-Dichlorobenzene	Ave	1.222	1.203	0.4000	24.6	25.0	-1.5	30.0

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: ICV 480-721747/34 Calibration Date: 08/14/2024 22:26

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9169.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1166	0.1476	0.0500	31.7	25.0	26.6	50.0
1,2,4-Trichlorobenzene	Ave	0.7826	0.8247	0.2000	26.3	25.0	5.4	30.0
Hexachlorobutadiene	Ave	0.3261	0.3591		27.5	25.0	10.1	30.0
Naphthalene	Ave	2.482	2.558		25.8	25.0	3.1	30.0
1,2,3-Trichlorobenzene	Ave	0.7102	0.7518		26.5	25.0	5.9	30.0
Dibromofluoromethane (Surr)	Ave	1.163	1.119		24.1	25.0	-3.8	30.0
1,2-Dichloroethane-d4 (Surr)	Ave	1.586	1.534		24.2	25.0	-3.3	30.0
Toluene-d8 (Surr)	Ave	1.114	1.073		24.1	25.0	-3.7	30.0
4-Bromofluorobenzene (Surr)	Ave	0.3951	0.3764		23.8	25.0	-4.7	30.0

Report Date: 15-Aug-2024 11:43:58 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9169.d

Lims ID: ICV

Client ID:

Sample Type: ICV

Inject. Date: 14-Aug-2024 22:26:30 ALS Bottle#: 31 Worklist Smp#: 34

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ICV

Misc. Info.: 480-0119522-034

Operator ID: LH Instrument ID: HP5973N

Sublist:

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 15-Aug-2024 11:42:44 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: R3QB Date: 15-Aug-2024 10:30:45

First Level Reviewer: R3QB		Date:			15-Aug-202	24 10:30:45			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	203362	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.770	7.771	-0.001	90	690860	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	406848	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr))113	4.266	4.260	0.006	92	227596	25.0	24.1	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.558	4.552	0.006	66	312020	25.0	24.2	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.311	-0.001	95	741011	25.0	24.1	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.024	0.000	87	260070	25.0	23.8	
11 Dichlorodifluoromethane	85	1.054	1.048	0.006	98	236665	25.0	24.4	
13 Chloromethane	50	1.188	1.188	0.000	99	527055	25.0	24.5	
14 Vinyl chloride	62	1.267	1.261	0.006	98	303508	25.0	25.3	
144 Butadiene	54	1.273	1.267	0.006	96	465511	25.0	24.1	
15 Bromomethane	94	1.504	1.505	-0.001	92	150583	25.0	27.0	
16 Chloroethane	64	1.571	1.565	0.006	94	185770	25.0	23.5	
18 Trichlorofluoromethane	101	1.748	1.742	0.006	57	317558	25.0	25.1	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	96	437576	25.0	24.4	
19 Ethyl ether	59	1.991	1.985	0.006	91	306738	25.0	24.1	
20 Acrolein	56	2.149	2.149	0.000	99	278337	125.0	140.5	
22 1,1-Dichloroethene	96	2.186	2.180	0.006	89	194433	25.0	25.3	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.186	2.180	0.006	57	206054	25.0	26.2	
23 Acetone	43	2.289	2.289	0.000	98	1000303	125.0	129.3	
24 lodomethane	142	2.326	2.326	0.000	99	372786	25.0	26.2	
25 Carbon disulfide	76	2.356	2.350	0.006	99	703738	25.0	25.0	
27 3-Chloro-1-propene	41	2.526	2.521	0.005	87	735627	25.0	25.2	
28 Methyl acetate	43	2.569	2.563	0.006	99	937440	50.0	50.2	
30 Methylene Chloride	84	2.660	2.654	0.006	87	246524	25.0	27.1	
31 2-Methyl-2-propanol	59	2.831	2.825	0.006	98	472821	250.0	318.0	
32 Methyl tert-butyl ether	73	2.861	2.855	0.006	93	819231	25.0	24.8	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	88	229181	25.0	24.8	
34 Acrylonitrile	53	2.928	2.922	0.006	97	2541253	250.0	251.5	
35 Hexane	57	3.062	3.062	0.000	97	515722	25.0	25.7	

Data File: \\cnromfs\Buff	iaio\Cr				4-119	1522.B\N9169.d			
Compared	Cia	RT	Adj RT	Dlt RT		Doctors	Cal Amt	OnCol Amt	Eleca
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.263	0.006	96	536265	25.0	25.7	
39 Vinyl acetate	43	3.329	3.330	-0.001	96	1451480	50.0	53.4	
42 2,2-Dichloropropane	43 77	3.767	3.768	-0.001	82	222519	25.0	27.7	
43 cis-1,2-Dichloroethene	96	3.804	3.798	0.006	87	247393	25.0 25.0	25.3	
44 2-Butanone (MEK)	43	3.840	3.841	-0.001	96	1402323	125.0	123.3	
47 Chlorobromomethane	128	4.029	4.029	0.000	82	124648	25.0	25.4	
49 Tetrahydrofuran	42	4.029	4.023	0.000	93	424610	50.0	52.2	
50 Chloroform	83	4.114	4.108	0.006	95 95	410663	25.0	24.0	
51 1,1,1-Trichloroethane	97	4.114	4.108	0.006	95 95	308007	25.0	27.3	
52 Cyclohexane	56	4.212	4.212	0.000	93	666652	25.0	27.3 25.1	
53 Carbon tetrachloride	117	4.212	4.212	0.005	93 94	211772	25.0	29.2	
54 1,1-Dichloropropene	75	4.358	4.358	0.003	85	303661	25.0	25.2 25.2	
55 Benzene	73 78	4.558	4.552	0.006	89	847843	25.0 25.0	23.2 24.7	
	43	4.613	4.613	0.000	95	493797	625.0	24.7 863.7	
56 Isobutyl alcohol 57 1,2-Dichloroethane	43 62	4.625	4.625	0.000	93 94	398900	25.0	24.3	
•	43	4.023	4.025 4.747	0.006	94 94	603699	25.0 25.0	24.3 25.8	
59 n-Heptane 60 Trichloroethene	43 95	5.161	5.161	0.000	94 94	204139	25.0 25.0	24.2	
	95 83	5.101	5.161	0.000	94 92	408350	25.0 25.0	24.2 25.4	
62 Methylcyclohexane	63	5.270	5.392	0.000	92 88	262375	25.0 25.0	25.4 25.2	
63 1,2-Dichloropropane 64 Dibromomethane	93	5.526	5.520	0.006	95	134332	25.0 25.0	23.6	
									N 4
66 1,4-Dioxane	88	5.538	5.538	0.000	86	30538	500.0	494.6	М
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	248636	25.0	25.6	
69 2-Chloroethyl vinyl ether	63	5.976	5.976	0.000	83	167270	25.0	23.9	
71 cis-1,3-Dichloropropene	75 50	6.097	6.098	-0.001	84 97	293450	25.0	25.3	
72 4-Methyl-2-pentanone (MIBK)	58	6.250 6.377	6.250	0.000		969663	125.0	130.2	
73 Toluene	92 75		6.378	-0.001	96	475100	25.0	24.9	
75 trans-1,3-Dichloropropene	75 60	6.663	6.663	0.000	92	242282	25.0	27.4	
77 Ethyl methacrylate	69	6.724	6.724	0.000	86	225284	25.0	27.6	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	93	150056	25.0	25.2	
79 Tetrachloroethene	166	6.894	6.895	-0.001	94	199515	25.0	25.0	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	91	310720	25.0	26.0	
82 2-Hexanone	43	7.083	7.083	0.000	98	1937605	125.0	125.0	
83 Chlorodibromomethane	129	7.235	7.235	0.000	89	150958	25.0	26.0	
84 Ethylene Dibromide	107	7.326	7.327	-0.001	98	184067	25.0	26.7	
85 Chlorobenzene	112	7.801	7.801	0.000	91	536461	25.0	24.5	
88 Ethylbenzene	91	7.898	7.898	0.000	98	938694	25.0	25.5	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	91	167244	25.0	27.9	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	374488	25.0	25.5	
91 o-Xylene	106	8.446	8.440	0.006	97	399678	25.0	25.1	
92 Styrene	104	8.476	8.476	0.000	93	622644	25.0	26.1	
93 Bromoform	173	8.713	8.714	-0.001	95	100118	25.0	23.9	
95 Isopropylbenzene	105	8.829	8.829	0.000	97	1027440	25.0	25.3	
97 Bromobenzene	156	9.170	9.170	0.000	93	243218	25.0	24.3	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.261	0.000	94	311027	25.0	24.9	
100 N-Propylbenzene	91	9.273	9.273	0.000	98	1192356	25.0	24.6	
99 1,2,3-Trichloropropane	110	9.285	9.279	0.006	89	101241	25.0	25.3	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.304	0.006	68	144493	25.0	26.1	
102 2-Chlorotoluene	126	9.377	9.371	0.005	94	232383	25.0	24.6	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	892246	25.0	25.3	
105 4-Chlorotoluene	91	9.492	9.492	0.000	99	814339	25.0	25.2	
106 tert-Butylbenzene	134	9.802	9.803	-0.001	96	186872	25.0	25.4	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	937886	25.0	25.5	

Report Date: 15-Aug-2024 11:43:58 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9169.d

24.2									
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
·			, ,	,					
109 sec-Butylbenzene	105	10.021	10.022	-0.001	95	1148157	25.0	25.2	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	98	498272	25.0	24.6	
111 4-Isopropyltoluene	119	10.173	10.174	-0.001	98	981769	25.0	25.5	
113 1,4-Dichlorobenzene	146	10.240	10.241	-0.001	92	499849	25.0	24.3	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	891432	25.0	25.6	
116 1,2-Dichlorobenzene	146	10.599	10.600	-0.001	96	489371	25.0	24.6	
117 1,2-Dibromo-3-Chloropropa	ne 75	11.354	11.354	0.000	71	60063	25.0	31.7	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	94	335509	25.0	26.3	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	96	146089	25.0	27.5	
121 Naphthalene	128	12.248	12.248	0.000	97	1040689	25.0	25.8	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	95	305858	25.0	26.5	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

Reagents:

SS GAS CORP_00589	Amount Added: 12.50	Units: uL	
SS 8260 CORP_00116	Amount Added: 12.50	Units: uL	
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent
N 8260 IS_00278	Amount Added: 1.00	Units: uL	Run Reagent

Report Date: 15-Aug-2024 11:43:58 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9169.d

 Injection Date:
 14-Aug-2024 22:26:30
 Instrument ID:
 HP5973N

Lims ID: ICV

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

34

31

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9169.d Injection Date: 14-Aug-2024 22:26:30 Instrument ID: HP5973N

Lims ID: ICV

Client ID:

Operator ID: LH ALS Bottle#: 31 Worklist Smp#: 34

Purge Vol: 5.000 mL Dil. Factor: 1.0000

5.2

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm) Detector MS SCAN

66 1,4-Dioxane, CAS: 123-91-1

Signal: 1

RT: 5.54
Area: 27130
Amount: 439.8223
Amount Units: ug/L

5.6

5.8

6.0

RT: 5.54
Area: 30538
Amount: 494.5641
Amount Units: ug/L

Reviewer: R3QB, 15-Aug-2024 10:30:31 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Poor chromatography

Page 444 of 1052

5.4

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723194/4 Calibration Date: 08/27/2024 10:45

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

Lab File ID: N9264.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.193	1.063	0.1000	22.3	25.0	-10.9	50.0
Chloromethane	Ave	2.639	2.345	0.1000	22.2	25.0	-11.1	20.0
Vinyl chloride	Ave	1.473	1.415	0.1000	24.0	25.0	-3.9	20.0
Butadiene	Ave	2.379	2.167		22.8	25.0	-8.9	20.0
Bromomethane	Lin1		0.6997	0.1000	25.4	25.0	1.8	50.0
Chloroethane	Ave	0.9700	0.8761	0.1000	22.6	25.0	-9.7	50.0
Dichlorofluoromethane	Ave	2.203	2.089		23.7	25.0	-5.2	20.0
Trichlorofluoromethane	Ave	1.554	1.592	0.1000	25.6	25.0	2.5	20.0
Ethyl ether	Ave	1.566	1.471		23.5	25.0	-6.1	20.0
Acrolein	Ave	0.2435	0.3563		183	125	46.3	50.0
1,1-Dichloroethene	Ave	0.9440	0.8881	0.1000	23.5	25.0	-5.9	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.9653	0.995	0.1000	25.8	25.0	3.1	20.0
Acetone	Ave	0.9510	1.108	0.1000	146	125	16.5	50.0
Iodomethane	Ave	1.752	1.673		23.9	25.0	-4.5	20.0
Carbon disulfide	Ave	3.465	3.341	0.1000	24.1	25.0	-3.6	20.0
Allyl chloride	Ave	3.589	3.462		24.1	25.0	-3.6	20.0
Methyl acetate	Ave	2.296	2.314	0.1000	50.4	50.0	0.8	50.0
Methylene Chloride	Lin1		1.169	0.1000	26.1	25.0	4.3	20.0
2-Methyl-2-propanol	Ave	0.1828	0.2472		338	250	35.2	50.0
Methyl tert-butyl ether	Ave	4.059	3.820	0.1000	23.5	25.0	-5.9	20.0
trans-1,2-Dichloroethene	Ave	1.134	1.082	0.1000	23.9	25.0	-4.5	20.0
Acrylonitrile	Ave	1.242	1.287		259	250	3.6	20.0
Hexane	Ave	2.463	2.749		27.9	25.0	11.6	20.0
1,1-Dichloroethane	Ave	2.568	2.540	0.2000	24.7	25.0	-1.1	20.0
Vinyl acetate	Ave	3.340	3.765		56.4	50.0	12.7	20.0
2,2-Dichloropropane	Ave	0.9868	1.069		27.1	25.0	8.4	20.0
cis-1,2-Dichloroethene	Ave	1.201	1.191	0.1000	24.8	25.0	-0.8	20.0
2-Butanone (MEK)	Ave	1.398	1.566	0.1000	140	125	12.0	20.0
Chlorobromomethane	Ave	0.6038	0.5855		24.2	25.0	-3.0	20.0
Tetrahydrofuran	Lin1		1.120		56.0	50.0	12.1	20.0
Chloroform	Ave	2.102	1.959	0.2000	23.3	25.0	-6.8	20.0
1,1,1-Trichloroethane	Ave	1.387	1.519	0.1000	27.4	25.0	9.5	20.0
Cyclohexane	Ave	3.263	3.354	0.1000	25.7	25.0	2.8	20.0
Carbon tetrachloride	Ave	0.8914	1.233	0.1000	34.6	25.0	38.3*	20.0
1,1-Dichloropropene	Ave	1.483	1.521		25.6	25.0	2.6	20.0
Benzene	Ave	4.223	4.224	0.5000	25.0	25.0	0.0	20.0
Isobutyl alcohol	Ave	0.0703	0.1220		1090	625	73.6*	50.0
1,2-Dichloroethane	Ave	2.015	1.961	0.1000	24.3	25.0	-2.7	20.0
n-Heptane	Ave	2.880	3.165		27.5	25.0	9.9	20.0
Trichloroethene	Ave	1.035	1.048	0.2000	25.3	25.0	1.2	20.0

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723194/4 Calibration Date: 08/27/2024 10:45

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9264.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.979	2.090	0.1000	26.4	25.0	5.6	20.0
1,2-Dichloropropane	Ave	1.278	1.259	0.1000	24.6	25.0	-1.5	20.0
Dibromomethane	Ave	0.6987	0.6913	0.1000	24.7	25.0	-1.0	20.0
1,4-Dioxane	Lin1		0.0041		922	500	84.5*	50.0
Bromodichloromethane	Ave	1.194	1.284	0.2000	26.9	25.0	7.5	20.0
2-Chloroethyl vinyl ether	Ave	0.8603	0.9350		27.2	25.0	8.7	20.0
cis-1,3-Dichloropropene	Ave	1.424	1.546	0.2000	27.1	25.0	8.6	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2694	0.2866	0.1000	133	125	6.4	20.0
Toluene	Ave	0.6891	0.7014	0.4000	25.4	25.0	1.8	20.0
trans-1,3-Dichloropropene	Ave	0.3204	0.3653	0.1000	28.5	25.0	14.0	20.0
Ethyl methacrylate	Ave	0.2953	0.3387		28.7	25.0	14.7	20.0
1,1,2-Trichloroethane	Ave	0.2151	0.2216	0.1000	25.8	25.0	3.0	20.0
Tetrachloroethene	Ave	0.2888	0.2888	0.2000	25.0	25.0	0.0	20.0
1,3-Dichloropropane	Ave	0.4327	0.4383		25.3	25.0	1.3	20.0
2-Hexanone	Ave	0.5609	0.5772	0.1000	129	125	2.9	20.0
Dibromochloromethane	Ave	0.2104	0.2406	0.1000	28.6	25.0	14.4	20.0
1,2-Dibromoethane	Ave	0.2496	0.2705		27.1	25.0	8.4	20.0
Chlorobenzene	Ave	0.7930	0.7769	0.5000	24.5	25.0	-2.0	20.0
Ethylbenzene	Ave	1.330	1.345	0.1000	25.3	25.0	1.1	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2168	0.2462		28.4	25.0	13.6	20.0
m,p-Xylene	Ave	0.5310	0.5189	0.1000	24.4	25.0	-2.3	20.0
o-Xylene	Ave	0.5761	0.5510	0.3000	23.9	25.0	-4.3	20.0
Styrene	Ave	0.8640	0.8636	0.3000	25.0	25.0	-0.0	20.0
Bromoform	Lin1		0.1719	0.1000	28.3	25.0	13.2	50.0
Isopropylbenzene	Ave	2.494	2.528	0.1000	25.3	25.0	1.4	20.0
Bromobenzene	Ave	0.6141	0.5892		24.0	25.0	-4.0	20.0
1,1,2,2-Tetrachloroethane	Ave	0.7661	0.7527	0.3000	24.6	25.0	-1.8	20.0
N-Propylbenzene	Ave	2.975	2.931		24.6	25.0	-1.5	20.0
1,2,3-Trichloropropane	Ave	0.2456	0.2434		24.8	25.0	-0.9	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3404	0.3738		27.5	25.0	9.8	50.0
2-Chlorotoluene	Ave	0.5804	0.5676		24.5	25.0	-2.2	20.0
1,3,5-Trimethylbenzene	Ave	2.171	2.138		24.6	25.0	-1.5	20.0
4-Chlorotoluene	Ave	1.982	1.948		24.6	25.0	-1.7	20.0
tert-Butylbenzene	Ave	0.4515	0.4654		25.8	25.0	3.1	20.0
1,2,4-Trimethylbenzene	Ave	2.257	2.249		24.9	25.0	-0.3	20.0
sec-Butylbenzene	Ave	2.800	2.838		25.3	25.0	1.4	20.0
1,3-Dichlorobenzene	Ave	1.242	1.187	0.6000	23.9	25.0	-4.5	20.0
4-Isopropyltoluene	Ave	2.362	2.399		25.4	25.0	1.5	20.0
1,4-Dichlorobenzene	Ave	1.264	1.206	0.5000	23.9	25.0	-4.6	20.0
n-Butylbenzene	Ave	2.139	2.190		25.6	25.0	2.4	20.0
1,2-Dichlorobenzene	Ave	1.222	1.141	0.4000	23.4	25.0	-6.6	20.0

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723194/4 Calibration Date: 08/27/2024 10:45

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9264.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1166	0.1604	0.0500	34.4	25.0	37.6	50.0
1,2,4-Trichlorobenzene	Ave	0.7826	0.7959	0.2000	25.4	25.0	1.7	20.0
Hexachlorobutadiene	Ave	0.3261	0.3512		26.9	25.0	7.7	20.0
Naphthalene	Ave	2.482	2.545		25.6	25.0	2.6	20.0
1,2,3-Trichlorobenzene	Ave	0.7102	0.7192		25.3	25.0	1.3	20.0
Dibromofluoromethane (Surr)	Ave	1.163	1.053		22.6	25.0	-9.5	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	1.586	1.387		21.9	25.0	-12.6	20.0
Toluene-d8 (Surr)	Ave	1.114	1.050		23.6	25.0	-5.7	20.0
4-Bromofluorobenzene (Surr)	Ave	0.3951	0.4023		25.5	25.0	1.8	20.0

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9264.d

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 27-Aug-2024 10:45:30 ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: CCVIS

Misc. Info.: 480-0119725-004

Operator ID: RS Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 27-Aug-2024 11:47:29 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 11:47:29

First Level Reviewer: MHM2		Date: 21-P			27-Aug-202	27-Aug-2024 11:47:29			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
			•		•				
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	211933	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	90	735460	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	418935	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	92	223070	25.0	22.6	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	63	293979	25.0	21.9	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	772413	25.0	23.6	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.030	0.000	86	295911	25.0	25.5	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	225255	25.0	22.3	
13 Chloromethane	50	1.188	1.188	0.000	99	496981	25.0	22.2	
14 Vinyl chloride	62	1.261	1.261	0.000	97	299984	25.0	24.0	
144 Butadiene	54	1.267	1.267	0.000	96	459275	25.0	22.8	
15 Bromomethane	94	1.505	1.505	0.000	92	148285	25.0	25.4	
16 Chloroethane	64	1.572	1.572	0.000	95	185670	25.0	22.6	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	97	442717	25.0	23.7	
18 Trichlorofluoromethane	101	1.766	1.766	0.000	97	337349	25.0	25.6	
19 Ethyl ether	59	1.985	1.985	0.000	92	311709	25.0	23.5	
20 Acrolein	56	2.143	2.143	0.000	100	377556	125.0	182.9	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	188219	25.0	23.5	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.186	2.186	0.000	93	210885	25.0	25.8	
23 Acetone	43	2.289	2.289	0.000	98	1173770	125.0	145.6	
24 Iodomethane	142	2.320	2.320	0.000	98	354612	25.0	23.9	
25 Carbon disulfide	76	2.350	2.350	0.000	98	708103	25.0	24.1	
27 3-Chloro-1-propene	41	2.521	2.521	0.000	88	733623	25.0	24.1	
28 Methyl acetate	43	2.563	2.563	0.000	99	980690	50.0	50.4	
30 Methylene Chloride	84	2.654	2.654	0.000	88	247651	25.0	26.1	
31 2-Methyl-2-propanol	59	2.831	2.831	0.000	98	523888	250.0	338.1	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	94	809539	25.0	23.5	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	88	229380	25.0	23.9	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2726626	250.0	258.9	
35 Hexane	57	3.062	3.062	0.000	97	582575	25.0	27.9	

Data File: \\chromfs\Buf	talo\Cl	nromData	\HP59/3N	1\2024082	27-119	725.b\N9264.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	538291	25.0	24.7	
39 Vinyl acetate	43	3.324	3.324	0.000	96	1596063	50.0	56.4	
42 2,2-Dichloropropane	77	3.762	3.762	0.000	78	226642	25.0	27.1	
43 cis-1,2-Dichloroethene	96	3.798	3.798	0.000	87	252434	25.0	24.8	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1659558	125.0	140.0	
47 Chlorobromomethane	128	4.023	4.023	0.000	82	124097	25.0	24.2	
49 Tetrahydrofuran	42	4.041	4.041	0.000	94	474851	50.0	56.0	
50 Chloroform	83	4.108	4.108	0.000	95	415179	25.0	23.3	
51 1,1,1-Trichloroethane	97	4.212	4.212	0.000	95	321831	25.0	27.4	
52 Cyclohexane	56	4.212	4.212	0.000	92	710740	25.0	25.7	
53 Carbon tetrachloride	117	4.340	4.340	0.000	94	261260	25.0	34.6	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	322345	25.0	25.6	
55 Benzene	78	4.552	4.552	0.000	90	895224	25.0	25.0	
56 Isobutyl alcohol	43	4.613	4.613	0.000	96	646651	625.0	1085.3	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	415639	25.0	24.3	
59 n-Heptane	43	4.747	4.747	0.000	95	670736	25.0	27.5	
60 Trichloroethene	95	5.161	5.161	0.000	94	222005	25.0	25.3	
62 Methylcyclohexane	83	5.270	5.270	0.000	93	443039	25.0	26.4	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	90	266823	25.0	24.6	
64 Dibromomethane	93	5.526	5.526	0.000	95	146519	25.0	24.7	
66 1,4-Dioxane	88	5.538	5.538	0.000	88	60863	500.0	922.4	
67 Dichlorobromomethane	83	5.684	5.684	0.000	96	272198	25.0	26.9	
69 2-Chloroethyl vinyl ether	63	5.970	5.970	0.000	86	198162	25.0	27.2	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	85	327583	25.0	27.1	
72 4-Methyl-2-pentanone (MIBK)	58	6.250	6.250	0.000	97	1053817	125.0	133.0	
73 Toluene	92	6.371	6.371	0.000	96	515863	25.0	25.4	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	93	268643	25.0	28.5	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	249076	25.0	28.7	
78 1,1,2-Trichloroethane	83	6.852	6.852	0.000	93	162972	25.0	25.8	
79 Tetrachloroethene	166	6.895	6.895	0.000	94	212430	25.0	25.0	
80 1,3-Dichloropropane	76	6.998	6.998	0.000	89	322335	25.0	25.3	
82 2-Hexanone	43	7.083	7.083	0.000	97	2122372	125.0	128.6	
83 Chlorodibromomethane	129	7.235	7.235	0.000	90	176938	25.0	28.6	
84 Ethylene Dibromide	107	7.327	7.327	0.000	97	198948	25.0	27.1	
85 Chlorobenzene	112	7.801	7.801	0.000	91	571391	25.0	24.5	
88 Ethylbenzene	91	7.898	7.898	0.000	98	988951	25.0	25.3	
89 1,1,1,2-Tetrachloroethane	131	7.905	7.905	0.000	89	181048	25.0	28.4	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	381665	25.0	24.4	
91 o-Xylene	106	8.440	8.440	0.000	97	405252	25.0	23.9	
92 Styrene	104	8.476	8.476	0.000	93	635180	25.0	25.0	
93 Bromoform	173	8.714	8.714	0.000	94	126458	25.0	28.3	
95 Isopropylbenzene	105	8.829	8.829	0.000	97	1059147	25.0	25.3	
97 Bromobenzene	156	9.170	9.170	0.000	95	246856	25.0	24.0	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.261	0.000	95	315317	25.0	24.6	
100 N-Propylbenzene	91	9.273	9.273	0.000	99	1227796	25.0	24.6	
99 1,2,3-Trichloropropane	110	9.285	9.285	0.000	91	101985	25.0	24.8	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.310	0.000	66	156615	25.0	27.5	
102 2-Chlorotoluene	126	9.371	9.371	0.000	95	237803	25.0	24.5	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	895769	25.0	24.6	
105 4-Chlorotoluene	91	9.492	9.492	0.000	99	816205	25.0	24.6	
106 tert-Butylbenzene	134	9.797	9.797	0.000	96	194966	25.0	25.8	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	942387	25.0	24.9	
	. 55	2.557	5.557	2.000	-	5 .255,	_0.0		

Report Date: 27-Aug-2024 11:47:30 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9264.d

Data File. \(\text{\tensor}\) \(
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
					•				
109 sec-Butylbenzene	105	10.022	10.022	0.000	95	1189031	25.0	25.3	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	98	497181	25.0	23.9	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	1004822	25.0	25.4	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	92	505175	25.0	23.9	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	917305	25.0	25.6	
116 1,2-Dichlorobenzene	146	10.600	10.600	0.000	97	478078	25.0	23.4	
117 1,2-Dibromo-3-Chloroprop	ane 75	11.354	11.354	0.000	74	67190	25.0	34.4	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	94	333427	25.0	25.4	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	97	147114	25.0	26.9	
121 Naphthalene	128	12.248	12.248	0.000	97	1066233	25.0	25.6	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	95	301288	25.0	25.3	
QC Flag Legend Processing Flags Reagents:									

Reagents:

8260 CORP mix_00257	Amount Added: 12.50	Units: uL	
GAS CORP mix_00637	Amount Added: 12.50	Units: uL	
N 8260 IS_00278	Amount Added: 1.00	Units: uL	Run Reagent
N_8260_Surr_00474	Amount Added: 1.00	Units: uL	Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9264.d 27-Aug-2024 10:45:30 Instrument ID: HP5973N Injection Date:

Lims ID: **CCVIS**

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Limit Group: MV - 8260C ICAL Method: N-8260

Column: ZB-624 (0.18 mm)

RS

4

4

Operator ID:

ALS Bottle#:

Worklist Smp#:

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723313/4 Calibration Date: 08/28/2024 10:36

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9295.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.193	1.400	0.1000	29.3	25.0	17.3	50.0
Chloromethane	Ave	2.639	2.825	0.1000	26.8	25.0	7.0	20.0
Vinyl chloride	Ave	1.473	1.650	0.1000	28.0	25.0	12.0	20.0
Butadiene	Ave	2.379	2.489		26.2	25.0	4.6	20.0
Bromomethane	Lin1		0.7405	0.1000	27.0	25.0	7.9	50.0
Chloroethane	Ave	0.9700	0.9648	0.1000	24.9	25.0	-0.5	50.0
Dichlorofluoromethane	Ave	2.203	2.343		26.6	25.0	6.3	20.0
Trichlorofluoromethane	Ave	1.554	1.784	0.1000	28.7	25.0	14.8	20.0
Ethyl ether	Ave	1.566	1.349		21.5	25.0	-13.8	20.0
Acrolein	Ave	0.2435	0.3265		168	125	34.1	50.0
1,1-Dichloroethene	Ave	0.9440	0.8445	0.1000	22.4	25.0	-10.5	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.9653	0.9401	0.1000	24.3	25.0	-2.6	20.0
Acetone	Ave	0.9510	1.062	0.1000	140	125	11.7	50.0
Iodomethane	Ave	1.752	1.539		22.0	25.0	-12.2	20.0
Carbon disulfide	Ave	3.465	3.013	0.1000	21.7	25.0	-13.0	20.0
Allyl chloride	Ave	3.589	3.113		21.7	25.0	-13.3	20.0
Methyl acetate	Ave	2.296	2.158	0.1000	47.0	50.0	-6.0	50.0
Methylene Chloride	Lin1		1.103	0.1000	24.6	25.0	-1.8	20.0
2-Methyl-2-propanol	Ave	0.1828	0.2302		315	250	25.9	50.0
Methyl tert-butyl ether	Ave	4.059	3.531	0.1000	21.7	25.0	-13.0	20.0
trans-1,2-Dichloroethene	Ave	1.134	1.003	0.1000	22.1	25.0	-11.5	20.0
Acrylonitrile	Ave	1.242	1.188		239	250	-4.4	20.0
Hexane	Ave	2.463	2.538		25.8	25.0	3.0	20.0
1,1-Dichloroethane	Ave	2.568	2.349	0.2000	22.9	25.0	-8.5	20.0
Vinyl acetate	Ave	3.340	3.616		54.1	50.0	8.3	20.0
2,2-Dichloropropane	Ave	0.9868	1.037		26.3	25.0	5.1	20.0
cis-1,2-Dichloroethene	Ave	1.201	1.097	0.1000	22.8	25.0	-8.7	20.0
2-Butanone (MEK)	Ave	1.398	1.557	0.1000	139	125	11.3	20.0
Chlorobromomethane	Ave	0.6038	0.5425		22.5	25.0	-10.2	20.0
Tetrahydrofuran	Lin1		1.078		53.9	50.0	7.8	20.0
Chloroform	Ave	2.102	1.843	0.2000	21.9	25.0	-12.3	20.0
1,1,1-Trichloroethane	Ave	1.387	1.450	0.1000	26.1	25.0	4.6	20.0
Cyclohexane	Ave	3.263	3.084	0.1000	23.6	25.0	-5.5	20.0
Carbon tetrachloride	Ave	0.8914	1.167	0.1000	32.7	25.0	30.9*	20.0
1,1-Dichloropropene	Ave	1.483	1.419		23.9	25.0	-4.3	20.0
Benzene	Ave	4.223	4.023	0.5000	23.8	25.0	-4.7	20.0
Isobutyl alcohol	Ave	0.0703	0.1146		1020	625	63.1*	50.0
1,2-Dichloroethane	Ave	2.015	1.854	0.1000	23.0	25.0	-8.0	20.0
n-Heptane	Ave	2.880	2.963		25.7	25.0	2.9	20.0
Trichloroethene	Ave	1.035	0.999	0.2000	24.1	25.0	-3.5	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723313/4 Calibration Date: 08/28/2024 10:36

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9295.d Conc. Units: ng/L Heated Purge: ng/L Meated Purge: ng/L Conc. Units: ng/L Conc. Units: ng/L Conc. Units: ng/L Meated Purge: ng/L Conc. Units: ng/L Meated Purge: ng/L Meated Purg

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.979	1.934	0.1000	24.4	25.0	-2.3	20.0
1,2-Dichloropropane	Ave	1.278	1.252	0.1000	24.5	25.0	-2.0	20.0
Dibromomethane	Ave	0.6987	0.6762	0.1000	24.2	25.0	-3.2	20.0
1,4-Dioxane	Lin1		0.0036		801	500	60.2*	50.0
Bromodichloromethane	Ave	1.194	1.283	0.2000	26.9	25.0	7.4	20.0
2-Chloroethyl vinyl ether	Ave	0.8603	0.9403		27.3	25.0	9.3	20.0
cis-1,3-Dichloropropene	Ave	1.424	1.543	0.2000	27.1	25.0	8.4	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2694	0.2668	0.1000	124	125	-1.0	20.0
Toluene	Ave	0.6891	0.6802	0.4000	24.7	25.0	-1.3	20.0
trans-1,3-Dichloropropene	Ave	0.3204	0.3799	0.1000	29.6	25.0	18.6	20.0
Ethyl methacrylate	Ave	0.2953	0.3336		28.2	25.0	12.9	20.0
1,1,2-Trichloroethane	Ave	0.2151	0.2171	0.1000	25.2	25.0	0.9	20.0
Tetrachloroethene	Ave	0.2888	0.2846	0.2000	24.6	25.0	-1.5	20.0
1,3-Dichloropropane	Ave	0.4327	0.4331		25.0	25.0	0.1	20.0
2-Hexanone	Ave	0.5609	0.5694	0.1000	127	125	1.5	20.0
Dibromochloromethane	Ave	0.2104	0.2454	0.1000	29.2	25.0	16.7	20.0
1,2-Dibromoethane	Ave	0.2496	0.2703		27.1	25.0	8.3	20.0
Chlorobenzene	Ave	0.7930	0.7473	0.5000	23.6	25.0	-5.8	20.0
Ethylbenzene	Ave	1.330	1.288	0.1000	24.2	25.0	-3.1	20.0
1,1,1,2-Tetrachloroethane	Ave	0.2168	0.2366		27.3	25.0	9.2	20.0
m,p-Xylene	Ave	0.5310	0.4951	0.1000	23.3	25.0	-6.8	20.0
o-Xylene	Ave	0.5761	0.5175	0.3000	22.5	25.0	-10.2	20.0
Styrene	Ave	0.8640	0.8517	0.3000	24.6	25.0	-1.4	20.0
Bromoform	Lin1		0.1685	0.1000	27.7	25.0	11.0	50.0
Isopropylbenzene	Ave	2.494	2.544	0.1000	25.5	25.0	2.0	20.0
Bromobenzene	Ave	0.6141	0.6125		24.9	25.0	-0.3	20.0
1,1,2,2-Tetrachloroethane	Ave	0.7661	0.7719	0.3000	25.2	25.0	0.8	20.0
N-Propylbenzene	Ave	2.975	2.991		25.1	25.0	0.5	20.0
1,2,3-Trichloropropane	Ave	0.2456	0.2541		25.9	25.0	3.5	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3404	0.3667		26.9	25.0	7.7	50.0
2-Chlorotoluene	Ave	0.5804	0.5798		25.0	25.0	-0.1	20.0
1,3,5-Trimethylbenzene	Ave	2.171	2.152		24.8	25.0	-0.9	20.0
4-Chlorotoluene	Ave	1.982	1.999		25.2	25.0	0.8	20.0
tert-Butylbenzene	Ave	0.4515	0.4652		25.8	25.0	3.0	20.0
1,2,4-Trimethylbenzene	Ave	2.257	2.191		24.3	25.0	-2.9	20.0
sec-Butylbenzene	Ave	2.800	2.789		24.9	25.0	-0.4	20.0
1,3-Dichlorobenzene	Ave	1.242	1.187	0.6000	23.9	25.0	-4.5	20.0
4-Isopropyltoluene	Ave	2.362	2.376		25.1	25.0	0.6	20.0
1,4-Dichlorobenzene	Ave	1.264	1.204	0.5000	23.8	25.0	-4.7	20.0
n-Butylbenzene	Ave	2.139	2.131		24.9	25.0	-0.4	20.0
1,2-Dichlorobenzene	Ave	1.222	1.147	0.4000	23.5	25.0	-6.1	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723313/4 Calibration Date: 08/28/2024 10:36

Instrument ID: HP5973N Calib Start Date: 08/14/2024 14:35

GC Column: $\underline{\text{ZB-624 (20)}}$ ID: $\underline{\text{0.18 (mm)}}$ Calib End Date: $\underline{\text{08/14/2024}}$ 17:12

Lab File ID: N9295.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1166	0.1655	0.0500	35.5	25.0	41.9	50.0
1,2,4-Trichlorobenzene	Ave	0.7826	0.7716	0.2000	24.6	25.0	-1.4	20.0
Hexachlorobutadiene	Ave	0.3261	0.3599		27.6	25.0	10.4	20.0
Naphthalene	Ave	2.482	2.525		25.4	25.0	1.8	20.0
1,2,3-Trichlorobenzene	Ave	0.7102	0.7327		25.8	25.0	3.2	20.0
Dibromofluoromethane (Surr)	Ave	1.163	1.013		21.8	25.0	-12.8	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	1.586	1.422		22.4	25.0	-10.3	20.0
Toluene-d8 (Surr)	Ave	1.114	1.045		23.5	25.0	-6.2	20.0
4-Bromofluorobenzene (Surr)	Ave	0.3951	0.3933		24.9	25.0	-0.5	20.0

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9295.d

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 28-Aug-2024 10:36:30 ALS Bottle#: 4 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: CCVIS

Misc. Info.: 480-0119738-004

Operator ID: RS Instrument ID: HP5973N

Sublist: chrom-N-8260*sub38

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 28-Aug-2024 13:55:33 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 13:55:33

First Level Reviewer: MHM2	Date: 28-A			28-Aug-202	28-Aug-2024 13:55:33				
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	223135	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	90	792962	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.216	0.000	95	422667	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	226146	25.0	21.8	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	65	317357	25.0	22.4	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	828665	25.0	23.5	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.030	0.000	92	311899	25.0	24.9	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	312433	25.0	29.3	
13 Chloromethane	50	1.188	1.188	0.000	99	630337	25.0	26.8	
14 Vinyl chloride	62	1.261	1.261	0.000	97	368248	25.0	28.0	
144 Butadiene	54	1.267	1.267	0.000	95	555331	25.0	26.2	
15 Bromomethane	94	1.511	1.511	0.000	91	165232	25.0	27.0	
16 Chloroethane	64	1.565	1.565	0.000	94	215284	25.0	24.9	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	96	522769	25.0	26.6	
18 Trichlorofluoromethane	101	1.766	1.766	0.000	98	398048	25.0	28.7	
19 Ethyl ether	59	1.985	1.985	0.000	94	301019	25.0	21.5	
20 Acrolein	56	2.143	2.143	0.000	98	364288	125.0	167.6	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	188437	25.0	22.4	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.186	2.186	0.000	59	209778	25.0	24.3	
23 Acetone	43	2.289	2.289	0.000	98	1184788	125.0	139.6	
24 Iodomethane	142	2.320	2.320	0.000	99	343401	25.0	22.0	
25 Carbon disulfide	76	2.350	2.350	0.000	98	672337	25.0	21.7	
27 3-Chloro-1-propene	41	2.520	2.520	0.000	88	694717	25.0	21.7	
28 Methyl acetate	43	2.563	2.563	0.000	99	963018	50.0	47.0	
30 Methylene Chloride	84	2.654	2.654	0.000	87	246159	25.0	24.6	
31 2-Methyl-2-propanol	59	2.831	2.831	0.000	98	513635	250.0	314.8	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	95	787888	25.0	21.7	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	89	223867	25.0	22.1	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2650772	250.0	239.1	
35 Hexane	57	3.056	3.056	0.000	97	566324	25.0	25.8	

Data File: \\chromfs\Bufl	talo\C			1\2024082	28-119	738.b\N9295.d		_	
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	524237	25.0	22.9	
39 Vinyl acetate	43	3.323	3.323	0.000	97	1613864	50.0	54.1	
42 2,2-Dichloropropane	77	3.761	3.761	0.000	80	231350	25.0	26.3	
43 cis-1,2-Dichloroethene	96	3.804	3.804	0.000	86	244787	25.0	22.8	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1736634	125.0	139.1	
47 Chlorobromomethane	128	4.023	4.023	0.000	84	121049	25.0	22.5	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	481281	50.0	53.9	
50 Chloroform	83	4.108	4.108	0.000	95	411332	25.0	21.9	
51 1,1,1-Trichloroethane	97	4.206	4.206	0.000	94	323594	25.0	26.1	
52 Cyclohexane	56	4.212	4.212	0.000	92	688171	25.0	23.6	
53 Carbon tetrachloride	117	4.339	4.339	0.000	94	260373	25.0	32.7	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	316692	25.0	23.9	
55 Benzene	78	4.552	4.552	0.000	90	897574	25.0	23.8	
56 Isobutyl alcohol	43	4.613	4.613	0.000	94	639440	625.0	1019.3	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	413762	25.0	23.0	
59 n-Heptane	43	4.747	4.747	0.000	95	661063	25.0	25.7	
60 Trichloroethene	95	5.161	5.161	0.000	93	222887	25.0	24.1	
62 Methylcyclohexane	83	5.270	5.270	0.000	93	431438	25.0	24.4	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	90	279427	25.0	24.4	
64 Dibromomethane	93	5.526	5.526	0.000	90 95	150880	25.0 25.0	24.5 24.2	
66 1,4-Dioxane	88	5.532	5.532	0.000	56	56961	500.0	801.2	
67 Dichlorobromomethane	83	5.684	5.684	0.000	96	286354	25.0	26.9	
69 2-Chloroethyl vinyl ether	63	5.970	5.970	0.000	85	209813	25.0	27.3	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	85	344313	25.0	27.1	
72 4-Methyl-2-pentanone (MIBK)	58	6.250	6.250	0.000	97	1057995	125.0	123.8	
73 Toluene	92	6.377	6.377	0.000	97	539346	25.0	24.7	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	93	301259	25.0	29.6	
77 Ethyl methacrylate	69	6.724	6.724	0.000	88	264513	25.0	28.2	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	93	172173	25.0	25.2	
79 Tetrachloroethene	166	6.895	6.895	0.000	95	225673	25.0	24.6	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	90	343431	25.0	25.0	
82 2-Hexanone	43	7.083	7.083	0.000	98	2257474	125.0	126.9	
83 Chlorodibromomethane	129	7.235	7.235	0.000	90	194617	25.0	29.2	
84 Ethylene Dibromide	107	7.326	7.326	0.000	99	214371	25.0	27.1	
85 Chlorobenzene	112	7.801	7.801	0.000	91	592552	25.0	23.6	
88 Ethylbenzene	91	7.898	7.898	0.000	97	1021424	25.0	24.2	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.904	0.000	90	187629	25.0	27.3	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	392557	25.0	23.3	
91 o-Xylene	106	8.446	8.446	0.000	97	410344	25.0	22.5	
92 Styrene	104	8.476	8.476	0.000	93	675375	25.0	24.6	
93 Bromoform	173	8.707	8.707	0.000	95	133606	25.0	27.7	
	105	8.829	8.829	0.000	97	1075097	25.0	25.5	
95 Isopropylbenzene									
97 Bromobenzene	156	9.170	9.170	0.000	92	258895	25.0	24.9	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.255	0.000	94	326267	25.0	25.2	
100 N-Propylbenzene	91	9.273	9.273	0.000	99	1264227	25.0	25.1	
99 1,2,3-Trichloropropane	110	9.279	9.279	0.000	91	107395	25.0	25.9	
101 trans-1,4-Dichloro-2-butene	53	9.310	9.310	0.000	74	155003	25.0	26.9	
102 2-Chlorotoluene	126	9.377	9.377	0.000	95	245057	25.0	25.0	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	909695	25.0	24.8	
105 4-Chlorotoluene	91	9.492	9.492	0.000	99	844902	25.0	25.2	
106 tert-Butylbenzene	134	9.802	9.802	0.000	96	196644	25.0	25.8	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	926001	25.0	24.3	

ug-2024 13:55:35 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9295.d Report Date: 28-Aug-2024 13:55:35

Amount Added: 12.50

Amount Added: 1.00

Amount Added: 1.00

Data File:

GAS CORP mix_00638

N 8260 IS_00278

N_8260_Surr_00474

Data File. \\Chiromis\bi	Data File. \(\cinomis\bullato\cinombata\psi\psi\psi\psi\cino\cinombata\psi\psi\psi\psi\cino\cino\cinombata\psi\psi\psi\cino\cino\cinombata\psi\psi\psi\cino\cino\cinombata\psi\psi\psi\cino\cinombata\ci										
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt			
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags		
109 sec-Butylbenzene	105	10.021	10.021	0.000	95	1178778	25.0	24.9			
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	501561	25.0	23.9			
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	1004227	25.0	25.1			
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	94	508972	25.0	23.8			
115 n-Butylbenzene	91	10.569	10.569	0.000	98	900871	25.0	24.9			
116 1,2-Dichlorobenzene	146	10.599	10.599	0.000	96	484999	25.0	23.5			
117 1,2-Dibromo-3-Chloropropa	ne 75	11.354	11.354	0.000	71	69935	25.0	35.5			
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	95	326139	25.0	24.6			
120 Hexachlorobutadiene	225	12.157	12.157	0.000	96	152113	25.0	27.6			
121 Naphthalene	128	12.248	12.248	0.000	97	1067397	25.0	25.4			
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	96	309705	25.0	25.8			
QC Flag Legend Processing Flags Reagents:											
8260 CORP mix_00257		Amount	Added: 1	2.50	ι	Jnits: uL					

Units: uL

Units: uL

Units: uL

Run Reagent

Run Reagent

Page 457 of 1052

Report Date: 15-Aug-2024 11:44:36 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9146.d

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 14-Aug-2024 13:50:30 ALS Bottle#: 8 Worklist Smp#: 11

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0119522-011

Operator ID: LH Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:15-Aug-2024 11:44:36Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1601

First Level Reviewer: WLL8 Date: 14-Aug-2024 13:57:58

	Compound	Sig	RT (min.)	Adj RT (min.)		Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
-	\$ 4 RFR	95	<i>4</i> 315	<i>4</i> 315	0.000	84	257587	NR	NR	а

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Review Flags

a - User Assigned ID

Reagents:

BFB_WRK_00164 Amount Added: 1.00 Units: uL

Report Date: 15-Aug-2024 11:44:36 Chrom Revision: 2.3 07-Aug-2024 17:44:18

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9146.d Injection Date: 14-Aug-2024 13:50:30 Instrument ID: HP5973N

Lims ID: BFB

Client ID:

Operator ID: LH ALS Bottle#: 8 Worklist Smp#: 11

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

\$ 4 BFB

m/z	Ion Abundance Criteria	% Relative Abundance
95	Base peak, 100% relative abundance	100.0
50	15 to 40% of m/z 95	33.8
75	30 to 60% of m/z 95	49.9
96	5 to 9% of m/z 95	7.0
173	Less than 2% of m/z 174	0.2 (0.2)
174	50 to 120% of m/z 95	77.7
175	5 to 9% of m/z 174	5.9 (7.5)
176	Greater than 95% but less than 101% of m/z 174	77.4 (99.6)
177	5 to 9% of m/z 176	4.6 (5.9)

Report Date: 15-Aug-2024 11:44:36 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9146.d\N-8260.rslt\spectra.d

Injection Date: 14-Aug-2024 13:50:30

Spectrum: Tune Spec :Average 398-400(4.30-4.31) Bgrd 388(4.24)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 62

m/z	Y	m/z	Υ	m/z	Υ	m/z	Υ
36.00	1397	61.00	5870	80.00	513	119.00	361
37.00	8259	62.00	5334	81.00	2586	128.00	214
38.00	7030	63.00	3424	82.00	509	130.00	174
39.00	1850	64.00	401	87.00	4489	135.00	204
45.00	1237	67.00	145	88.00	4125	137.00	140
47.00	3054	68.00	8989	92.00	2476	141.00	1189
48.00	831	69.00	9030	93.00	3773	143.00	973
49.00	6728	70.00	818	94.00	11532	155.00	349
50.00	30656	72.00	777	95.00	90776	159.00	155
51.00	9847	73.00	4217	96.00	6336	173.00	148
52.00	345	74.00	16384	97.00	455	174.00	70560
55.00	638	75.00	45288	104.00	614	175.00	5312
56.00	1674	76.00	3445	106.00	156	176.00	70264
57.00	3725	77.00	674	116.00	174	177.00	4177
58.00	157	78.00	578	117.00	587		
60.00	1242	79.00	2335	118.00	260		

Report Date: 15-Aug-2024 11:44:36 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: 14-Aug-2024 13:50:30 Injection Date: HP5973N

Instrument ID: BFB

Lims ID: Client ID:

1.0 uL Dil. Factor: 1.0000 Injection Vol:

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

LH

11

8

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9263.d

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 27-Aug-2024 10:21:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0119725-003

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 27-Aug-2024 10:30:31 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 10:30:31

Comp	oound Siç	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
\$ 4 BFB	95	4.290	4.290	0.000	84	212671	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB_WRK_00165 Amount Added: 1.00 Units: uL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9263.d Injection Date: 27-Aug-2024 10:21:30 Instrument ID: HP5973N

Lims ID: BFB

Client ID:

Operator ID: RS ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

\$ 4 BFB

m/z	Ion Abundance Criteria	% Relative Abundance
95	Base peak, 100% relative abundance	100.0
50	15 to 40% of m/z 95	32.5
75	30 to 60% of m/z 95	51.1
96	5 to 9% of m/z 95	5.9
173	Less than 2% of m/z 174	0.6 (0.7)
174	50 to 120% of m/z 95	79.7
175	5 to 9% of m/z 174	6.8 (8.6)
176	Greater than 95% but less than 101% of m/z 174	79.9 (100.3)
177	5 to 9% of m/z 176	4.3 (5.4)

Data File: \chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9263.d\N-8260.rslt\spectra.d

Injection Date: 27-Aug-2024 10:21:30

Spectrum: Tune Spec :Average 395-397(4.28-4.30) Bgrd 386(4.23)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 66

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
36.00	982	60.00	1190	79.00	2060	119.00	262
37.00	7602	61.00	5338	80.00	479	128.00	307
38.00	5189	62.00	5268	81.00	2252	130.00	390
39.00	3099	63.00	3778	82.00	318	131.00	166
40.00	92	64.00	200	87.00	3301	135.00	140
44.00	729	65.00	140	88.00	3651	141.00	614
45.00	1042	67.00	168	91.00	188	143.00	865
47.00	2136	68.00	9794	92.00	2469	155.00	172
48.00	728	69.00	8584	93.00	3286	157.00	170
49.00	6334	70.00	811	94.00	10580	173.00	520
50.00	28928	72.00	218	95.00	88944	174.00	70848
51.00	8098	73.00	4766	96.00	5262	175.00	6060
52.00	204	74.00	15313	104.00	432	176.00	71080
55.00	370	75.00	45408	105.00	169	177.00	3819
56.00	2031	76.00	3849	106.00	527	178.00	171
57.00	3625	77.00	401	116.00	161		
59.00	147	78.00	633	117.00	504		

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9263.d Injection Date: 27-Aug-2024 10:21:30 Instrument ID: HP5973N

nstrument ID: HP5973N Operator ID: Worklist Smp#:

RS

3

3

ALS Bottle#:

Lims ID: BFB

Client ID:

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9294.d

Lims ID: BFB

Client ID:

Sample Type: BFB

Inject. Date: 28-Aug-2024 10:12:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Sample Info: BFB

Misc. Info.: 480-0119738-003

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 10:21:00Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:21:00

(Compound	Sig	RT (min.)	Adj RT (min.)		Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
\$ 4 BFB		95	4.290	4.290	0.000	84	193650	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

BFB_WRK_00165 Amount Added: 1.00 Units: uL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9294.d Injection Date: 28-Aug-2024 10:12:30 Instrument ID: HP5973N

Lims ID: BFB

Client ID:

Operator ID: RS ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 1.0 uL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Tune Method: BFB Method 8260

\$ 4 BFB

m/z	Ion Abundance Criteria	% Relative Abundance
95	Base peak, 100% relative abundance	100.0
50	15 to 40% of m/z 95	31.3
75	30 to 60% of m/z 95	54.2
96	5 to 9% of m/z 95	6.3
173	Less than 2% of m/z 174	0.8 (1.1)
174	50 to 120% of m/z 95	76.8
175	5 to 9% of m/z 174	5.7 (7.4)
176	Greater than 95% but less than 101% of m/z 174	74.9 (97.6)
177	5 to 9% of m/z 176	4.2 (5.6)

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9294.d\N-8260.rslt\spectra.d

Injection Date: 28-Aug-2024 10:12:30

Spectrum: Tune Spec :Average 395-397(4.28-4.30) Bgrd 388(4.24)

Base Peak: 95.00 Minimum % Base Peak: 0 Number of Points: 58

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
36.00	1372	60.00	1346	80.00	554	119.00	390
37.00	6470	61.00	4094	81.00	2030	141.00	765
38.00	5020	62.00	5166	82.00	499	143.00	820
39.00	2148	63.00	3235	87.00	3006	148.00	162
40.00	445	67.00	144	88.00	2834	155.00	152
44.00	1668	68.00	8607	91.00	154	161.00	155
45.00	1789	69.00	9330	92.00	2036	168.00	155
47.00	1731	70.00	935	93.00	3235	173.00	637
48.00	765	72.00	328	94.00	8712	174.00	60640
49.00	5514	73.00	3793	95.00	78952	175.00	4482
50.00	24688	74.00	13361	96.00	4974	176.00	59168
51.00	8085	75.00	42800	97.00	146	177.00	3284
55.00	447	76.00	3462	106.00	193	207.00	153
56.00	1883	77.00	404	115.00	141		
57.00	3259	79.00	1999	117.00	503		

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9294.d 28-Aug-2024 10:12:30 Injection Date:

Instrument ID: HP5973N Operator ID: RS Worklist Smp#: 3

3

ALS Bottle#:

Lims ID: Client ID:

1.0 uL Injection Vol:

BFB

Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: MB 480-723194/8 Lab File ID: N9268.d Matrix: Water Date Collected: Analysis Method: 8260C Date Analyzed: 08/27/2024 12:37 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: _____ GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) Low Analysis Batch No.: 723194 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	92		75-123
2037-26-5	Toluene-d8 (Surr)	94		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9268.d

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 27-Aug-2024 12:37:30 ALS Bottle#: 8 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 480-0119725-008

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 13:23:52Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 13:23:52

First Level Reviewer: MHM2			D	ate:		27-Aug-202	24 13:23:52		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	198268	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.770	7.770	0.000	91	678779	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.222	10.222	0.000	96	401038	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)		4.260	4.260	0.000	93	213226	25.0	23.1	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.558	4.552	0.006	96	274999	25.0	21.9	
\$ 6 Toluene-d8 (Surr)	98	6.310	6.310	0.000	94	708581	25.0	23.4	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	271818	25.0	25.3	
11 Dichlorodifluoromethane	85		1.048					ND	
12 Chlorodifluoromethane	51		1.066					ND	
13 Chloromethane	50		1.188					ND	
14 Vinyl chloride	62		1.261					ND	
144 Butadiene	54		1.267					ND	
15 Bromomethane	94		1.505					ND	
16 Chloroethane	64		1.572					ND	
17 Dichlorofluoromethane	67		1.748					ND	
18 Trichlorofluoromethane	101		1.766				I	ND	
19 Ethyl ether	59		1.985					ND	
141 Ethanol	45		1.997				I	ND	
81 Propene oxide	58		2.064				I	ND	
20 Acrolein	56		2.143				I	ND	
22 1,1-Dichloroethene	96		2.180					ND	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101		2.186				I	ND	
23 Acetone	43		2.289					ND	
24 Iodomethane	142		2.320					ND	
25 Carbon disulfide	76		2.350					ND	
26 Isopropyl alcohol	45		2.472					ND	
27 3-Chloro-1-propene	41		2.521					ND	
28 Methyl acetate	43		2.563					ND	
29 Acetonitrile	40		2.575					ND	
30 Methylene Chloride	84		2.654					ND	
31 2-Methyl-2-propanol	59		2.831					ND	
· · ·			_						

Data File: \\cnromts\Buti	alo	romData\HP5973N		/-119	/25.D\IN9268.U		1	
Compound	Sig	RT Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
22 Mathyl tart hytul athar	73	2 055					ND	
32 Methyl tert-butyl ether 33 trans-1,2-Dichloroethene	73 96	2.855 2.867					ND ND	
34 Acrylonitrile	53	2.922					ND	
35 Hexane	55 57	3.062					ND	
36 1,1-Dichloroethane	63	3.269					ND	
37 Isopropyl ether	45	3.287					ND	
38 2-Chloro-1,3-butadiene	53	3.323					ND	
39 Vinyl acetate	43	3.324					ND	
40 1,1-Dimethoxyethane	75	3.360					ND	
41 Tert-butyl ethyl ether	59	3.615					ND	
42 2,2-Dichloropropane	77	3.762					ND	
43 cis-1,2-Dichloroethene	96	3.798					ND	
44 2-Butanone (MEK)	43	3.841					ND	
45 Ethyl acetate	43	3.877					ND	
46 Propionitrile	54	3.938					ND	
47 Chlorobromomethane	128	4.023					ND	
49 Tetrahydrofuran	42	4.041					ND	7
48 Methacrylonitrile	67	4.047					ND	•
50 Chloroform	83	4.108					ND	
51 1,1,1-Trichloroethane	97	4.212					ND	
52 Cyclohexane	56	4.212					ND	
53 Carbon tetrachloride	117	4.340					ND	
54 1,1-Dichloropropene	75	4.358					ND	
55 Benzene	78	4.552					ND	
146 Isooctane	57	4.558					ND	
56 Isobutyl alcohol	43	4.613					ND	
57 1,2-Dichloroethane	62	4.625					ND	
58 Tert-amyl methyl ether	73	4.650					ND	
140 t-Amyl alcohol	59	4.656					ND	
59 n-Heptane	43	4.747					ND	
1 1,4-Difluorobenzene	114	4.942					ND	
60 Trichloroethene	95	5.161					ND	
61 n-Butanol	56	5.221					ND	
62 Methylcyclohexane	83	5.270					ND	
145 Ethyl acrylate	55	5.301					ND	
63 1,2-Dichloropropane	63	5.392					ND	
65 Methyl methacrylate	41	5.513					ND	
64 Dibromomethane	93	5.526					ND	
66 1,4-Dioxane	88	5.538					ND	
67 Dichlorobromomethane	83	5.684					ND	
68 2-Nitropropane	43	5.933					ND	
69 2-Chloroethyl vinyl ether	63	5.970					ND	
70 Epichlorohydrin	57	6.055					ND	
71 cis-1,3-Dichloropropene	75	6.098					ND	
72 4-Methyl-2-pentanone (MIBK)		6.250					ND	
73 Toluene	92	6.371					ND	
74 2-Methylthiophene	97	6.505					ND	
75 trans-1,3-Dichloropropene	75	6.663					ND	
76 3-Methylthiophene	97	6.669					ND	
77 Ethyl methacrylate	69	6.724					ND	
78 1,1,2-Trichloroethane	83	6.852					ND	
79 Tetrachloroethene	166	6.895					ND	
	•	5.550					_	

Data File. \\Ciliotilis\bu					7-113	723.0(119206.0		0-0-1 4	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
80 1,3-Dichloropropane	76		6.998					ND	
82 2-Hexanone	43		7.083					ND	
149 n-Butyl acetate	43		7.205					ND	
83 Chlorodibromomethane	129		7.235					ND	
84 Ethylene Dibromide	107		7.327					ND	
139 1-Chlorohexane	55		7.770					ND	U
86 3-Chlorobenzotrifluoride	180		7.795					ND	
85 Chlorobenzene	112		7.801					ND	
87 4-Chlorobenzotrifluoride	180		7.862					ND	
88 Ethylbenzene	91		7.898					ND	
89 1,1,1,2-Tetrachloroethane	131		7.905					ND	
90 m-Xylene & p-Xylene	106		8.026					ND	
91 o-Xylene	106		8.440					ND	
92 Styrene	104		8.476					ND	
93 Bromoform	173		8.714					ND	
94 2-Chlorobenzotrifluoride	180		8.762					ND	
95 Isopropylbenzene	105		8.829					ND	
96 Cyclohexanone	55		8.993					ND	U
97 Bromobenzene	156		9.170					ND	
98 1,1,2,2-Tetrachloroethane	83		9.261					ND	
100 N-Propylbenzene	91		9.273					ND	
99 1,2,3-Trichloropropane	110		9.285					ND	
101 trans-1,4-Dichloro-2-butene	53		9.310					ND	
102 2-Chlorotoluene	126		9.371					ND	
103 3-Chlorotoluene	126		9.443					ND	
104 1,3,5-Trimethylbenzene	105		9.468					ND	
105 4-Chlorotoluene	91		9.492					ND	
106 tert-Butylbenzene	134		9.797					ND	
107 Pentachloroethane	167		9.851					ND	
108 1,2,4-Trimethylbenzene	105		9.857					ND	
109 sec-Butylbenzene	105		10.022					ND	
110 1,3-Dichlorobenzene	146		10.149					ND	
111 4-Isopropyltoluene	119		10.174					ND	
112 Dicyclopentadiene	66		10.216					ND	
113 1,4-Dichlorobenzene	146		10.241					ND	7
114 1,2,3-Trimethylbenzene	105		10.277					ND	
143 Benzyl chloride	126		10.399					ND	
115 n-Butylbenzene	91		10.569					ND	
116 1,2-Dichlorobenzene	146		10.600					ND	
117 1,2-Dibromo-3-Chloropropan			11.354					ND	
118 1,3,5-Trichlorobenzene	180		11.488					ND	
119 1,2,4-Trichlorobenzene	180		12.035					ND	
120 Hexachlorobutadiene	225		12.157					ND	
121 Naphthalene	128		12.248					ND	
122 1,2,3-Trichlorobenzene	180		12.455					ND	
142 2-Methylnaphthalene	142	13.173	13.173	0.000	1	974		0.0403	
138 1-Bromopropane	1		0.000					ND	
131 Aziridine TIC	1		0.000					ND	
133 Halothane	1		0.000					ND	
136 Ethylene oxide TIC	1		0.000					ND	
S 123 1,3-Dichloropropene, Total	1		30.000					ND	7
S 125 Total BTEX	1		30.000					ND	7

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9268.d									
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
S 126 Xylenes, Total S 124 1,2-Dichloroethene, Total S 151 Trihalomethanes, Total	1 1 1		30.000 30.000 0.000					ND ND ND	7 7
QC Flag Legend Processing Flags									

7 - Failed Limit of Detection

Review Flags

U - Marked Undetected

Reagents:

N 8260 IS_00278 Run Reagent Amount Added: 1.00 Units: uL N_8260_Surr_00474 Run Reagent Amount Added: 1.00 Units: uL

Eurofins Buffalo

Data File: 27-Aug-2024 12:37:30 HP5973N Injection Date: Instrument ID:

MB

Lims ID: Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

RS

8

8

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9268.d

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 27-Aug-2024 12:37:30 ALS Bottle#: 8 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 480-0119725-008

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 13:23:52Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 13:23:52

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.1	92.49
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.9	87.44
\$ 6 Toluene-d8 (Surr)	25.0	23.4	93.71
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.3	101.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: MB 480-723313/8 Lab File ID: N9299.d Matrix: Water Date Collected: Analysis Method: 8260C Date Analyzed: 08/28/2024 12:22 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: ___ GC Column: ZB-624 (20) ID: 0.18(mm) Heated Purge: (Y/N) N pH: Purge Volume: 5.0 (mL) % Moisture: _____ % Solids: ____ Level: (low/med) Low Analysis Batch No.: 723313 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	1.0	U	1.0	0.41
100-41-4	Ethylbenzene	1.0	U	1.0	0.74
108-88-3	Toluene	1.0	U	1.0	0.51
1330-20-7	Xylenes, Total	2.0	U	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	94		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9299.d

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 28-Aug-2024 12:22:30 ALS Bottle#: 8 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 480-0119738-008

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 14:00:38Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:00:38

First Level Reviewer: MHM2	Date:			28-Aug-2024 14:00:38					
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	191378	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	659214	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	96	381755	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)		4.266	4.260	0.006	93	208739	25.0	23.5	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.559	-0.007	97	272842	25.0	22.5	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	671685	25.0	22.9	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.030	9.030	0.000	87	268312	25.0	25.8	
11 Dichlorodifluoromethane	85		1.048					ND	
12 Chlorodifluoromethane	51		1.067					ND	
13 Chloromethane	50		1.188					ND	
14 Vinyl chloride	62		1.261					ND	
144 Butadiene	54		1.267					ND	
15 Bromomethane	94		1.511					ND	
16 Chloroethane	64		1.565					ND	
17 Dichlorofluoromethane	67		1.748					ND	
18 Trichlorofluoromethane	101		1.766					ND	
19 Ethyl ether	59		1.985					ND	
141 Ethanol	45		1.997					ND	
81 Propene oxide	58		2.064					ND	
20 Acrolein	56		2.143					ND	
22 1,1-Dichloroethene	96		2.180					ND	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101		2.186					ND	
23 Acetone	43		2.289					ND	
24 Iodomethane	142		2.320					ND	
25 Carbon disulfide	76		2.350					ND	
26 Isopropyl alcohol	45		2.472					ND	
27 3-Chloro-1-propene	41		2.520					ND	
28 Methyl acetate	43		2.563					ND	
29 Acetonitrile	40		2.575					ND	
30 Methylene Chloride	84	2.660	2.654	0.006	91	9623		0.2224	
31 2-Methyl-2-propanol	59		2.831					ND	
			_						

Data File: \\cnromts\Buti	iaio\Ch	romData\HP59/31		5-119	/ 38.D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Compound	Sig	RT Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
22 Mathyl tart hutul athar	73	2.855					ND	
32 Methyl tert-butyl ether 33 trans-1,2-Dichloroethene	73 96	2.867					ND	
34 Acrylonitrile	53	2.922					ND	
35 Hexane	55 57	3.056					ND	
36 1,1-Dichloroethane	63	3.269					ND	
37 Isopropyl ether	45	3.287					ND	
39 Vinyl acetate	43	3.323					ND	
38 2-Chloro-1,3-butadiene	53	3.324					ND	
40 1,1-Dimethoxyethane	75	3.360					ND	
41 Tert-butyl ethyl ether	59	3.616					ND	
42 2,2-Dichloropropane	77	3.761					ND	
43 cis-1,2-Dichloroethene	96	3.804					ND	
44 2-Butanone (MEK)	43	3.841					ND	
45 Ethyl acetate	43	3.877					ND	
46 Propionitrile	54	3.938					ND	
47 Chlorobromomethane	128	4.023					ND	
49 Tetrahydrofuran	42	4.041					ND	7
48 Methacrylonitrile	67	4.048					ND	,
50 Chloroform	83	4.108					ND	
51 1,1,1-Trichloroethane	97	4.206					ND	
52 Cyclohexane	56	4.212					ND	
53 Carbon tetrachloride	117	4.339					ND	
54 1,1-Dichloropropene	75	4.358					ND	
55 Benzene	78	4.552					ND	
146 Isooctane	57	4.559					ND	
56 Isobutyl alcohol	43	4.613					ND	
57 1,2-Dichloroethane	62	4.625					ND	
58 Tert-amyl methyl ether	73	4.644					ND	
140 t-Amyl alcohol	59	4.656					ND	
59 n-Heptane	43	4.747					ND	
1 1,4-Difluorobenzene	114	4.942					ND	
60 Trichloroethene	95	5.161					ND	
61 n-Butanol	56	5.222					ND	
62 Methylcyclohexane	83	5.270					ND	
145 Ethyl acrylate	55	5.301					ND	
63 1,2-Dichloropropane	63	5.392					ND	
65 Methyl methacrylate	41	5.514					ND	
64 Dibromomethane	93	5.526					ND	
66 1,4-Dioxane	88	5.532					ND	
67 Dichlorobromomethane	83	5.684					ND	
68 2-Nitropropane	43	5.933					ND	
69 2-Chloroethyl vinyl ether	63	5.970					ND	
70 Epichlorohydrin	57	6.055					ND	
· · · · · · · · · · · · · · · · · · ·	75	6.098					ND	
71 cis-1,3-Dichloropropene 72 4-Methyl-2-pentanone (MIBK)	75 58	6.250					ND ND	U
73 Toluene	92	6.377					ND	U
73 Toluene 74 2-Methylthiophene	92 97	6.505					ND ND	
• •	97 75	6.663					ND ND	
75 trans-1,3-Dichloropropene	75 97	6.670					ND ND	
76 3-Methylthiophene	97 69	6.724						
77 Ethyl methacrylate							ND	
78 1,1,2-Trichloroethane	83	6.846					ND	
79 Tetrachloroethene	166	6.895					ND	

Data File: \\cnromts\But	naio\Cr	nromData\HP5973N		-119	/38.D\N9299.0		1	
Compound	Sig	RT Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
90 1 3 Dichloropropago	76	7.004					ND	
80 1,3-Dichloropropane 82 2-Hexanone	43	7.004					ND	
149 n-Butyl acetate	43	7.205					ND	
83 Chlorodibromomethane	129	7.205					ND	
84 Ethylene Dibromide	107	7.233					ND	
139 1-Chlorohexane	55	7.320					ND	U
86 3-Chlorobenzotrifluoride	180	7.795					ND	U
85 Chlorobenzene	112	7.793					ND	
87 4-Chlorobenzotrifluoride	180	7.862					ND	
88 Ethylbenzene	91	7.898					ND	
89 1,1,1,2-Tetrachloroethane	131	7.904					ND	
90 m-Xylene & p-Xylene	106	8.026					ND	
91 o-Xylene	106	8.446					ND	
92 Styrene	104	8.476					ND	
93 Bromoform	173	8.707					ND	
94 2-Chlorobenzotrifluoride	180	8.762					ND	
95 Isopropylbenzene	105	8.829					ND	
96 Cyclohexanone	55	8.993					ND	U
97 Bromobenzene	156	9.170					ND	U
98 1,1,2,2-Tetrachloroethane	83	9.255					ND	
100 N-Propylbenzene	91	9.273					ND	
99 1,2,3-Trichloropropane	110	9.279					ND	
101 trans-1,4-Dichloro-2-butene	53	9.310					ND	
102 2-Chlorotoluene	126	9.377					ND	
103 3-Chlorotoluene	126	9.444					ND	
104 1,3,5-Trimethylbenzene	105	9.468					ND	
105 4-Chlorotoluene	91	9.492					ND	
106 tert-Butylbenzene	134	9.802					ND	
108 1,2,4-Trimethylbenzene	105	9.857					ND	
107 Pentachloroethane	167	9.857					ND	
109 sec-Butylbenzene	105	10.021					ND	
110 1,3-Dichlorobenzene	146	10.149					ND	7
111 4-Isopropyltoluene	119	10.174					ND	,
112 Dicyclopentadiene	66	10.216					ND	U
113 1,4-Dichlorobenzene	146	10.241					ND	7
114 1,2,3-Trimethylbenzene	105	10.277					ND	,
143 Benzyl chloride	126	10.399					ND	
115 n-Butylbenzene	91	10.569					ND	
116 1,2-Dichlorobenzene	146	10.599					ND	
117 1,2-Dibromo-3-Chloropropan		11.354					ND	
118 1,3,5-Trichlorobenzene	180	11.488					ND	
119 1,2,4-Trichlorobenzene	180	12.035					ND	
120 Hexachlorobutadiene	225	12.157					ND	
121 Naphthalene	128	12.248					ND	
122 1,2,3-Trichlorobenzene	180	12.455					ND	
142 2-Methylnaphthalene	142	13.173					ND	
138 1-Bromopropane	1	0.000					ND	
131 Aziridine TIC	1	0.000					ND	
133 Halothane	1	0.000					ND ND	
136 Ethylene oxide TIC	1	0.000					ND ND	
-	1	30.000					ND ND	7
S 123 1,3-Dichloropropene, Total	1							7
S 125 Total BTEX	1	30.000					ND	7

Data File: \\chromfs\Buffalo\ChromData\HP59/3N\20240828-119/38.b\N9299.d									
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
S 126 Xylenes, Total S 124 1,2-Dichloroethene, Total S 151 Trihalomethanes, Total	1 1 1		30.000 30.000 0.000					ND ND ND	7 7
QC Flag Legend Processing Flags	·								

7 - Failed Limit of Detection

Review Flags

U - Marked Undetected

Reagents:

N 8260 IS_00278 Amount Added: 1.00 Units: uL Run Reagent N_8260_Surr_00474 Amount Added: 1.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: 28-Aug-2024 12:22:30 HP5973N Injection Date: Instrument ID:

Operator ID: RS Worklist Smp#: 8

ALS Bottle#:

8

Lims ID: Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

N-8260 Limit Group: MV - 8260C ICAL Method:

MB

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9299.d

Lims ID: MB

Client ID:

Sample Type: MB

Inject. Date: 28-Aug-2024 12:22:30 ALS Bottle#: 8 Worklist Smp#: 8

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: MB

Misc. Info.: 480-0119738-008

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 14:00:38Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 14:00:38

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.5	93.80
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.5	89.88
\$ 6 Toluene-d8 (Surr)	25.0	22.9	91.47
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.8	103.01

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: LCS 480-723194/6 Lab File ID: N9266.d Matrix: Water Date Collected: Analysis Method: 8260C Date Analyzed: 08/27/2024 11:52 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 723194 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL	
71-43-2	Benzene	24.7		1.0	0.41	
100-41-4	Ethylbenzene	25.8		1.0	0.74	
108-88-3	Toluene	25.2		1.0	0.51	
1330-20-7	Xylenes, Total	50.7		2.0	0.66	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	90		75-123
2037-26-5	Toluene-d8 (Surr)	94		80-120

Report Date: 27-Aug-2024 12:20:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File:

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 27-Aug-2024 11:52:30 ALS Bottle#: 6 Worklist Smp#: 6

Purge Vol: 5.000 mL 1.0000 Dil. Factor:

Sample Info: LCS

Misc. Info.: 480-0119725-006

Operator ID: RS Instrument ID: HP5973N

Method:

Limit Group: MV - 8260C ICAL

Last Update: 27-Aug-2024 10:09:46 Calib Date: 14-Aug-2024 21:18:30 Integrator: **RTE** ID Type: Deconvolution ID Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

N 41 1N 40 0004400044

First Level Reviewer: MHM2			Date:			27-Aug-2024 12:20:44			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	196581	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.770	0.001	90	668222	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	95	390486	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr	•	4.260	4.260	0.000	95	204883	25.0	22.4	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	64	272508	25.0	21.8	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.001	95	696188	25.0	23.4	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	266231	25.0	25.2	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	219815	25.0	23.4	
13 Chloromethane	50	1.188	1.188	0.000	99	502966	25.0	24.2	
14 Vinyl chloride	62	1.261	1.261	0.000	97	300572	25.0	26.0	
144 Butadiene	54	1.267	1.267	0.000	96	478379	25.0	25.6	
15 Bromomethane	94	1.505	1.505	0.000	92	157145	25.0	29.2	
16 Chloroethane	64	1.565	1.572	-0.007	94	179377	25.0	23.5	
17 Dichlorofluoromethane	67	1.742	1.748	-0.006	97	446749	25.0	25.8	
18 Trichlorofluoromethane	101	1.742	1.766	-0.024	96	346269	25.0	28.3	
19 Ethyl ether	59	1.985	1.985	0.000	93	298538	25.0	24.3	
20 Acrolein	56	2.143	2.143	0.000	99	325862	125.0	170.2	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	190944	25.0	25.7	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.186	-0.006	61	212509	25.0	28.0	
23 Acetone	43	2.289	2.289	0.000	98	899956	125.0	120.4	
24 lodomethane	142	2.326	2.320	0.006	98	361390	25.0	26.2	
25 Carbon disulfide	76	2.350	2.350	0.000	98	700616	25.0	25.7	
27 3-Chloro-1-propene	41	2.520	2.521	-0.001	87	725673	25.0	25.7	
28 Methyl acetate	43	2.569	2.563	0.006	99	898776	50.0	49.8	
30 Methylene Chloride	84	2.654	2.654	0.000	88	233465	25.0	26.5	
31 2-Methyl-2-propanol	59	2.825	2.831	-0.006	98	350533	250.0	243.9	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	94	783453	25.0	24.5	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	88	224972	25.0	25.2	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2401355	250.0	245.9	
35 Hexane	57	3.062	3.062	0.000	97	538157	25.0	27.8	
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	522257	25.0	25.9	
•				_					

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9266.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
39 Vinyl acetate	43	3.330	3.324	0.006	97	1439054	50.0	54.8	
42 2,2-Dichloropropane	77	3.762	3.762	0.000	81	249258	25.0	32.1	
43 cis-1,2-Dichloroethene	96	3.804	3.798	0.006	86	243191	25.0	25.8	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1380956	125.0	125.6	
47 Chlorobromomethane	128	4.029	4.023	0.006	83	122349	25.0	25.8	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	410338	50.0	52.2	
50 Chloroform	83	4.114	4.108	0.006	94	391886	25.0	23.7	
51 1,1,1-Trichloroethane	97	4.212	4.212	0.000	95	329717	25.0	30.2	
52 Cyclohexane	56	4.212	4.212	0.000	92	702993	25.0	27.4	
53 Carbon tetrachloride	117	4.339	4.340	-0.001	96	258688	25.0	36.9	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	299050	25.0	25.6	
55 Benzene	78	4.552	4.552	0.000	90	819344	25.0	24.7	
56 Isobutyl alcohol	43	4.613	4.613	0.000	95	520973	625.0	942.6	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	385376	25.0	24.3	
59 n-Heptane	43	4.747	4.747	0.000	96	621179	25.0	27.4	
60 Trichloroethene	95	5.155	5.161	-0.006	93	203778	25.0	25.0	
62 Methylcyclohexane	83	5.270	5.270	0.000	93	428334	25.0	27.5	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	89	242586	25.0	24.1	
64 Dibromomethane	93	5.526	5.526	0.000	95	129098	25.0	23.5	
66 1,4-Dioxane	88	5.538	5.538	0.000	53	29553	500.0	494.8	
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	248112	25.0	26.4	
69 2-Chloroethyl vinyl ether	63	5.970	5.970	0.000	85	160436	25.0	23.7	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	85	283717	25.0	25.3	
72 4-Methyl-2-pentanone (MIBK)	58	6.250	6.250	0.000	97	945288	125.0	131.3	
73 Toluene	92	6.377	6.372	0.006	96	464741	25.0	25.2	
75 trans-1,3-Dichloropropene	75	6.663	6.664	0.000	93	236293	25.0	27.6	
77 Ethyl methacrylate	69	6.724	6.724	0.000	88	239305	25.0	30.3	
78 1,1,2-Trichloroethane	83	6.846	6.852	-0.006	93	140579	25.0	24.4	
79 Tetrachloroethene	166	6.895	6.895	0.000	94	194826	25.0	25.2	
80 1,3-Dichloropropane	76	7.004	6.998	0.006	90	286688	25.0	24.8	
82 2-Hexanone	43	7.083	7.083	0.000	98	1912586	125.0	127.6	
83 Chlorodibromomethane	129	7.235	7.235	0.000	89	162225	25.0	28.8	
84 Ethylene Dibromide	107	7.320	7.327	-0.007	97	175347	25.0	26.3	
85 Chlorobenzene	112	7.801	7.801	0.000	91	526822	25.0	24.9	
88 Ethylbenzene	91	7.898	7.899	0.000	98	918570	25.0	25.8	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	88	178785	25.0	30.9	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	98	370078	25.0	26.1	
91 o-Xylene	106	8.440	8.440	0.000	98	378573	25.0	24.6	
92 Styrene	104	8.476	8.477	0.000	92	578171	25.0	25.0	
93 Bromoform	173	8.707	8.714	-0.007	95	113746	25.0	28.0	
95 Isopropylbenzene	105	8.829	8.824	0.000	97	1012653	25.0	26.0	
97 Bromobenzene	156	9.170	9.165	0.000	91	227868	25.0	23.8	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.256	-0.006	96	289817	25.0	24.2	
100 N-Propylbenzene	91	9.273	9.268	0.000	99	1167401	25.0	25.1	
99 1,2,3-Trichloropropane	110	9.279	9.280	-0.006	87	93995	25.0	24.5	
101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	-0.006	68	119795	25.0	22.5	
102 2-Chlorotoluene	126	9.377	9.365	0.006	95	220772	25.0	24.4	
104 1,3,5-Trimethylbenzene	105	9.468	9.463	0.000	94	852236	25.0 25.0	25.1	
105 4-Chlorotoluene	91	9.492	9.463 9.487	0.000	94 99	767788	25.0 25.0	24.8	
106 tert-Butylbenzene	134	9.492	9.467 9.791	0.000	99 96	175119	25.0 25.0	24.8 24.8	
-					96 98		25.0 25.0		
108 1,2,4-Trimethylbenzene	105	9.857	9.852	0.000		885594		25.1	
109 sec-Butylbenzene	105	10.022	10.016	0.000	95	1110303	25.0	25.4	

ug-2024 12:20:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9266.d Report Date: 27-Aug-2024 12:20:45

Amount Added: 1.00

Amount Added: 1.00

N 8260 IS_00278

N_8260_Surr_00474

Data File: \\cnromfs\Bi	Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9266.d								
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
110 1,3-Dichlorobenzene	146	10.149	10.143	0.000	97	468363	25.0	24.1	
111 4-Isopropyltoluene	119	10.174	10.168	0.000	97	954280	25.0	25.9	
113 1,4-Dichlorobenzene	146	10.241	10.235	0.000	93	475716	25.0	24.1	
115 n-Butylbenzene	91	10.569	10.563	0.000	98	855197	25.0	25.6	
116 1,2-Dichlorobenzene	146	10.599	10.593	-0.001	97	464220	25.0	24.3	
117 1,2-Dibromo-3-Chloropropa	ne 75	11.354	11.347	0.000	73	65092	25.0	35.7	
119 1,2,4-Trichlorobenzene	180	12.035	12.028	0.000	93	320780	25.0	26.2	
120 Hexachlorobutadiene	225	12.157	12.150	0.000	96	125710	25.0	24.7	
121 Naphthalene	128	12.248	12.241	0.000	97	1045405	25.0	27.0	
122 1,2,3-Trichlorobenzene	180	12.455	12.448	0.000	95	287973	25.0	26.0	
QC Flag Legend									
Processing Flags									
Reagents:									
8260 CORP mix 00257		Amount	Added: 1	2.50	Į	Jnits: uL			
GAS CORP mix 00637		Amount	Added: 1	2.50	ι	Jnits: uL			
_									

Run Reagent

Run Reagent

Units: uL

Units: uL

Report Date: 27-Aug-2024 12:20:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9266.d

 Injection Date:
 27-Aug-2024 11:52:30
 Instrument ID:
 HP5973N

LCS

Lims ID: Client ID:

Purge Vol: 5.000 mL Dil Method: N-8260 Lir

Dil. Factor: 1.0000

Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

RS

6

6

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 27-Aug-2024 12:20:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9266.d

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 27-Aug-2024 11:52:30 ALS Bottle#: 6 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 480-0119725-006

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:27-Aug-2024 10:09:46Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: MHM2 Date: 27-Aug-2024 12:20:44

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.4	89.63
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.8	87.39
\$ 6 Toluene-d8 (Surr)	25.0	23.4	93.52
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.2	100.83

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: LCS 480-723313/6 Lab File ID: N9297.d Matrix: Water Date Collected: Analysis Method: 8260C Date Analyzed: 08/28/2024 11:36 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 723313 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	24.3		1.0	0.41
100-41-4	Ethylbenzene	24.9		1.0	0.74
108-88-3	Toluene	24.4		1.0	0.51
1330-20-7	Xylenes, Total	47.9		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		77-120
460-00-4	4-Bromofluorobenzene (Surr)	100		73-120
1868-53-7	Dibromofluoromethane (Surr)	86		75-123
2037-26-5	Toluene-d8 (Surr)	91		80-120

Report Date: 28-Aug-2024 13:56:49 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9297.d

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 28-Aug-2024 11:36:30 ALS Bottle#: 6 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 480-0119738-006

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 13:56:06Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 13:56:48

First Level Reviewer: MHM2			Date:				28-Aug-2024 13:56:48		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	211492	25.0	25.0	
2 Chlorobenzene-d5	117	7.771	7.771	0.000	89	708185	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	95	395805	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	95	211138	25.0	21.5	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.559	-0.007	64	288596	25.0	21.5	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	719688	25.0	22.8	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	85	279172	25.0	24.9	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	300657	25.0	29.8	
13 Chloromethane	50	1.188	1.188	0.000	99	617078	25.0	27.6	
14 Vinyl chloride	62	1.267	1.261	0.006	97	352612	25.0	28.3	
144 Butadiene	54	1.273	1.267	0.006	95	567006	25.0	28.2	
15 Bromomethane	94	1.511	1.511	0.000	91	171069	25.0	29.5	
16 Chloroethane	64	1.565	1.565	0.000	94	214740	25.0	26.2	
17 Dichlorofluoromethane	67	1.748	1.748	0.000	97	525662	25.0	28.2	
18 Trichlorofluoromethane	101	1.766	1.766	0.000	94	409359	25.0	31.1	
19 Ethyl ether	59	1.985	1.985	0.000	92	299022	25.0	22.6	
20 Acrolein	56	2.149	2.143	0.006	100	354340	125.0	172.0	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	190303	25.0	23.8	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.186	-0.006	59	206869	25.0	25.3	
23 Acetone	43	2.289	2.289	0.000	98	1049566	125.0	130.5	
24 lodomethane	142	2.326	2.320	0.006	99	349585	25.0	23.6	
25 Carbon disulfide	76	2.350	2.350	0.000	98	680268	25.0	23.2	
27 3-Chloro-1-propene	41	2.520	2.520	0.000	88	700139	25.0	23.1	
28 Methyl acetate	43	2.569	2.563	0.006	99	933095	50.0	48.0	
30 Methylene Chloride	84	2.654	2.654	0.000	88	251144	25.0	26.5	
31 2-Methyl-2-propanol	59	2.831	2.831	0.000	97	531852	250.0	344.0	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	93	791808	25.0	23.1	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	88	219757	25.0	22.9	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2531092	250.0	240.9	
35 Hexane	57	3.062	3.056	0.006	97	541822	25.0	26.0	
36 1,1-Dichloroethane	63	3.263	3.269	-0.006	97	529473	25.0	24.4	

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9297.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
39 Vinyl acetate	43	3.330	3.323	0.007	96	1517567	50.0	53.7	
42 2,2-Dichloropropane	77	3.761	3.761	0.000	80	240186	25.0	28.8	
43 cis-1,2-Dichloroethene	96	3.804	3.804	0.000	86	247668	25.0	24.4	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1507949	125.0	127.5	
47 Chlorobromomethane	128	4.023	4.023	0.000	82	117687	25.0	23.0	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	437573	50.0	51.7	
50 Chloroform	83	4.114	4.108	0.006	95	404421	25.0	22.7	
51 1,1,1-Trichloroethane	97	4.212	4.206	0.006	93	325510	25.0	27.7	
52 Cyclohexane	56	4.212	4.212	0.000	92	691052	25.0	25.0	
53 Carbon tetrachloride	117	4.346	4.339	0.007	95	263188	25.0	34.9	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	86	308933	25.0	24.6	
55 Benzene	78	4.552	4.552	0.000	90	867083	25.0	24.3	
56 Isobutyl alcohol	43	4.613	4.613	0.000	95	658456	625.0	1107.4	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	397348	25.0	23.3	
59 n-Heptane	43	4.747	4.747	0.000	95	636549	25.0	26.1	
60 Trichloroethene	95	5.155	5.161	-0.006	93	209839	25.0	24.0	
62 Methylcyclohexane	83	5.264	5.270	-0.006	92	426311	25.0	25.5	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	89	255959	25.0	23.7	
64 Dibromomethane	93	5.526	5.526	0.000	96	137128	25.0	23.2	
66 1,4-Dioxane	88	5.538	5.532	0.006	85	47146	500.0	742.8	
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	270134	25.0	26.7	
69 2-Chloroethyl vinyl ether	63	5.970	5.970	0.000	84	170692	25.0	23.5	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	85	304461	25.0	25.3	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	972862	125.0	127.5	
73 Toluene	92	6.377	6.377	0.000	96	475902	25.0	24.4	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	92	259933	25.0	28.6	
77 Ethyl methacrylate	69	6.724	6.724	0.000	88	243763	25.0	29.1	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	94	148928	25.0	24.4	
79 Tetrachloroethene	166	6.895	6.895	0.000	95	204834	25.0	25.0	
80 1,3-Dichloropropane	76	7.004	7.004	0.000	90	300967	25.0	24.6	
82 2-Hexanone	43	7.083	7.083	0.000	97	1962882	125.0	123.5	
83 Chlorodibromomethane	129	7.235	7.235	0.000	88	171734	25.0	28.8	
84 Ethylene Dibromide	107	7.326	7.326	0.000	100	178520	25.0	25.2	
85 Chlorobenzene	112	7.801	7.801	0.000	91	537755	25.0	23.9	
88 Ethylbenzene	91	7.898	7.898	0.000	98	937939	25.0	24.9	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.904	0.000	90	180454	25.0	29.4	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	98	367112	25.0	24.4	
91 o-Xylene	106	8.440	8.446	-0.006	97	383762	25.0	23.5	
92 Styrene	104	8.476	8.476	0.000	93	596783	25.0	24.4	
93 Bromoform	173	8.707	8.707	0.000	95	115038	25.0	26.8	
95 Isopropylbenzene	105	8.829	8.829	0.000	96	1028365	25.0	26.0	
97 Bromobenzene	156	9.170	9.170	0.000	93	236813	25.0	24.4	
98 1,1,2,2-Tetrachloroethane	83	9.261	9.255	0.006	94	304289	25.0	25.1	
100 N-Propylbenzene	91	9.273	9.233	0.000	98	1187069	25.0	25.1	
								25.2	
99 1,2,3-Trichloropropane	110 53	9.279	9.279	0.000	89 78	98375 120154	25.0 25.0		
101 trans-1,4-Dichloro-2-butene	53	9.304	9.310	-0.006	78 05	120154	25.0	22.3	
102 2-Chlorotoluene	126	9.371	9.377	-0.006	95 04	232443	25.0	25.3	
104 1,3,5-Trimethylbenzene	105	9.468	9.468	0.000	94	871596	25.0	25.4	
105 4-Chlorotoluene	91	9.492	9.492	0.000	98	787139	25.0	25.1	
106 tert-Butylbenzene	134	9.802	9.802	0.000	96	183232	25.0	25.6	
108 1,2,4-Trimethylbenzene	105	9.857	9.857	0.000	98	901665	25.0	25.2	
109 sec-Butylbenzene	105	10.022	10.021	0.001	95	1136381	25.0	25.6	

ug-2024 13:56:49 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9297.d Report Date: 28-Aug-2024 13:56:49

Data File: \(\cnrom\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ug/L	OnCol Amt ug/L	Flags
•		, ,	, ,	\ /			<u> </u>	<u> </u>	
110 1,3-Dichlorobenzene	146	10.149	10.149	0.000	97	470232	25.0	23.9	
111 4-Isopropyltoluene	119	10.174	10.174	0.000	98	964138	25.0	25.8	
113 1,4-Dichlorobenzene	146	10.241	10.241	0.000	93	477491	25.0	23.9	
115 n-Butylbenzene	91	10.569	10.569	0.000	98	879317	25.0	26.0	
116 1,2-Dichlorobenzene	146	10.599	10.599	0.000	96	472576	25.0	24.4	
117 1,2-Dibromo-3-Chloropropa	ane 75	11.354	11.354	0.000	72	69204	25.0	37.5	
119 1,2,4-Trichlorobenzene	180	12.035	12.035	0.000	95	329380	25.0	26.6	
120 Hexachlorobutadiene	225	12.157	12.157	0.000	96	146967	25.0	28.5	
121 Naphthalene	128	12.248	12.248	0.000	97	1060299	25.0	27.0	
122 1,2,3-Trichlorobenzene	180	12.455	12.455	0.000	96	306954	25.0	27.3	
QC Flag Legend Processing Flags Reagents:									
8260 CORP mix_00257		Amount	Added: 1	2.50	ι	Jnits: uL			

GAS CORP mix_00638 Amount Added: 12.50 Units: uL N 8260 IS_00278 Run Reagent Amount Added: 1.00 Units: uL N_8260_Surr_00474 Run Reagent Amount Added: 1.00 Units: uL

Report Date: 28-Aug-2024 13:56:49 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9297.d

 Injection Date:
 28-Aug-2024 11:36:30
 Instrument ID:
 HP5973N

Lims ID: LCS

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

RS

6

6

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 28-Aug-2024 13:56:49 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240828-119738.b\\\N9297.d

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 28-Aug-2024 11:36:30 ALS Bottle#: 6 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 480-0119738-006

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 13:56:06Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 13:56:48

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	21.5	85.86
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.5	86.03
\$ 6 Toluene-d8 (Surr)	25.0	22.8	91.23
\$ 7 4-Bromofluorobenzene (Surr)	25.0	24.9	99.77

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: LCSD 480-723194/31 Lab File ID: N9291.d Matrix: Water _____ Date Collected: Analysis Method: 8260C Date Analyzed: 08/27/2024 21:29 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: ___ GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 723194 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	24.6		1.0	0.41
100-41-4	Ethylbenzene	24.6		1.0	0.74
108-88-3	Toluene	23.9		1.0	0.51
1330-20-7	Xylenes, Total	47.5		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		77-120
460-00-4	4-Bromofluorobenzene (Surr)	101		73-120
1868-53-7	Dibromofluoromethane (Surr)	93		75-123
2037-26-5	Toluene-d8 (Surr)	92		80-120

Report Date: 28-Aug-2024 10:33:36 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9291.d

Lims ID: LCSD

Client ID:

Sample Type: LCSD

Inject. Date: 27-Aug-2024 21:29:30 ALS Bottle#: 31 Worklist Smp#: 31

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCSD

Misc. Info.: 480-0119725-031

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update: 28-Aug-2024 10:33:05 Calib Date: 14-Aug-2024 21:18:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:33:34

First Level Reviewer: MHM2			Date:			28-Aug-202	24 10:33:34		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.826	0.000	97	192521	25.0	25.0	
2 Chlorobenzene-d5	117	7.771	7.770	0.001	91	664970	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	95	388613	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr)113	4.260	4.260	0.000	93	208066	25.0	23.2	
\$ 5 1,2-Dichloroethane-d4 (Surr)	65	4.552	4.552	0.000	64	262324	25.0	21.5	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.310	0.001	95	680807	25.0	23.0	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	87	264180	25.0	25.1	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	97	216929	25.0	23.6	
13 Chloromethane	50	1.188	1.188	0.000	99	495057	25.0	24.4	
14 Vinyl chloride	62	1.261	1.261	0.000	98	301627	25.0	26.6	
144 Butadiene	54	1.267	1.267	0.000	95	518641	25.0	28.3	
15 Bromomethane	94	1.504	1.505	-0.001	91	152045	25.0	28.8	
16 Chloroethane	64	1.565	1.572	-0.007	94	176992	25.0	23.7	
17 Dichlorofluoromethane	67	1.742	1.748	-0.006	97	442298	25.0	26.1	
18 Trichlorofluoromethane	101	1.742	1.766	-0.024	91	332917	25.0	27.8	
19 Ethyl ether	59	1.985	1.985	0.000	90	294896	25.0	24.5	
20 Acrolein	56	2.149	2.143	0.006	98	317993	125.0	169.6	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	192600	25.0	26.5	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.186	2.186	0.000	89	206069	25.0	27.7	
23 Acetone	43	2.289	2.295	0.000	97	1004138	125.0	137.1	
24 lodomethane	142	2.326	2.320	0.006	99	353812	25.0	26.2	
25 Carbon disulfide	76	2.350	2.350	0.000	98	670001	25.0	25.1	
27 3-Chloro-1-propene	41	2.520	2.521	-0.001	88	680153	25.0	24.6	
28 Methyl acetate	43	2.569	2.563	0.006	99	930544	50.0	52.6	
30 Methylene Chloride	84	2.654	2.648	0.000	88	235718	25.0	27.4	
31 2-Methyl-2-propanol	59	2.831	2.831	0.000	98	449925	250.0	319.6	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	95	790792	25.0	25.3	
33 trans-1,2-Dichloroethene	96	2.867	2.867	0.000	89	225041	25.0	25.8	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2410450	250.0	252.0	
35 Hexane	57	3.062	3.062	0.000	97	477699	25.0	25.2	
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	526850	25.0	26.6	

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9291.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
39 Vinyl acetate	43	3.330	3.324	0.006	96	1240454	50.0	48.2	
42 2,2-Dichloropropane	77	3.768	3.762	0.006	80	219559	25.0	28.9	
43 cis-1,2-Dichloroethene	96	3.798	3.798	0.000	87	238121	25.0	25.7	
44 2-Butanone (MEK)	43	3.841	3.841	0.000	96	1430604	125.0	132.8	
47 Chlorobromomethane	128	4.029	4.023	0.006	83	120107	25.0	25.8	
49 Tetrahydrofuran	42	4.041	4.041	0.000	94	396135	50.0	51.4	
50 Chloroform	83	4.114	4.108	0.006	95	391358	25.0	24.2	
51 1,1,1-Trichloroethane	97	4.212	4.212	0.000	94	298589	25.0	28.0	
52 Cyclohexane	56	4.212	4.212	0.000	93	656534	25.0	26.1	
53 Carbon tetrachloride	117	4.346	4.340	0.006	94	225859	25.0	32.9	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	86	277514	25.0	24.3	
55 Benzene	78	4.558	4.552	0.006	90	800350	25.0	24.6	
56 Isobutyl alcohol	43	4.613	4.613	0.000	94	490858	625.0	906.9	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	367612	25.0	23.7	
59 n-Heptane	43	4.747	4.747	0.000	95	552220	25.0	24.9	
60 Trichloroethene	95	5.155	5.161	-0.006	93	193999	25.0	24.3	
62 Methylcyclohexane	83	5.270	5.270	0.000	92	402152	25.0	26.4	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	90	246428	25.0	25.0	
64 Dibromomethane	93	5.526	5.526	0.000	97	129188	25.0	24.0	
66 1,4-Dioxane	88	5.538	5.538	0.000	58	43044	500.0	722.4	
67 Dichlorobromomethane	83	5.684	5.684	0.000	95	235046	25.0	25.6	
69 2-Chloroethyl vinyl ether	63	5.976	5.970	0.006	85	152283	25.0	23.0	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	83	256737	25.0	23.4	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	974710	125.0	136.0	
73 Toluene	92	6.371	6.365	0.000	96	438973	25.0	23.9	
75 trans-1,3-Dichloropropene	75	6.663	6.664	0.000	92	206544	25.0	24.2	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	219415	25.0	27.9	
78 1,1,2-Trichloroethane	83	6.846	6.852	-0.006	94	135188	25.0	23.6	
79 Tetrachloroethene	166	6.901	6.895	0.006	92	182223	25.0	23.7	
80 1,3-Dichloropropane	76	7.004	6.998	0.006	90	276910	25.0	24.1	
82 2-Hexanone	43	7.083	7.083	0.000	98	1941868	125.0	130.2	
83 Chlorodibromomethane	129	7.235	7.235	0.000	88	143133	25.0	25.6	
84 Ethylene Dibromide	107	7.320	7.327	-0.007	98	169947	25.0	25.6	
85 Chlorobenzene	112	7.801	7.807	0.000	91	493724	25.0	23.4	
88 Ethylbenzene	91	7.904	7.899	0.006	98	871416	25.0	24.6	
89 1,1,1,2-Tetrachloroethane	131	7.904	7.905	-0.001	89	155592	25.0	27.0	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	97	337899	25.0	23.9	
91 o-Xylene	106	8.446	8.440	0.006	97	361689	25.0	23.6	
92 Styrene	104	8.476	8.476	0.000	93	565086	25.0	24.6	
93 Bromoform	173	8.714	8.714	0.000	95	91476	25.0	22.8	
95 Isopropylbenzene	105	8.829	8.824	0.000	97	954656	25.0	24.6	
97 Bromobenzene	156	9.170	9.165	0.000	93	218601	25.0	22.9	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.256	-0.006	94	289702	25.0	24.3	
100 N-Propylbenzene	91	9.273	9.268	0.000	98	1111562	25.0	24.0	
99 1,2,3-Trichloropropane	110	9.279	9.280	-0.006	56	93679	25.0	24.5	
101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	-0.006	50	61012	25.0	11.5	
102 2-Chlorotoluene	126	9.377	9.365	0.006	95	217558	25.0	24.1	
104 1,3,5-Trimethylbenzene	105	9.474	9.462	0.006	94	812871	25.0	24.1	
105 4-Chlorotoluene	91	9.498	9.487	0.006	99	737182	25.0	23.9	
106 tert-Butylbenzene	134	9.802	9.791	0.005	96	168284	25.0	24.0	
108 1,2,4-Trimethylbenzene	105	9.857	9.852	0.000	98	852266	25.0	24.3	
109 sec-Butylbenzene	105	10.022	10.016	0.000	95	1047727	25.0	24.3	
109 Sec-Dutymenzene	100	10.022	10.010	0.000	30	104//2/	20.0	4 4. l	

ug-2024 10:33:36 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9291.d Report Date: 28-Aug-2024 10:33:36

Data File:

Data File. \(\text{\tension}\tension\t									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
110 1,3-Dichlorobenzene	146	10.149	10.143	0.000	97	445807	25.0	23.1	
111 4-Isopropyltoluene	119	10.174	10.168	0.000	98	903870	25.0	24.6	
113 1,4-Dichlorobenzene	146	10.241	10.235	-0.001	91	444695	25.0	22.6	
115 n-Butylbenzene	91	10.569	10.563	0.000	98	827497	25.0	24.9	
116 1,2-Dichlorobenzene	146	10.599	10.593	-0.001	96	458675	25.0	24.2	
117 1,2-Dibromo-3-Chloropropa	ne 75	11.354	11.347	0.000	71	59422	25.0	32.8	
119 1,2,4-Trichlorobenzene	180	12.035	12.028	0.000	95	308328	25.0	25.3	
120 Hexachlorobutadiene	225	12.157	12.150	0.000	96	129468	25.0	25.5	
121 Naphthalene	128	12.248	12.241	0.000	97	1046791	25.0	27.1	
122 1,2,3-Trichlorobenzene	180	12.455	12.448	0.000	96	299180	25.0	27.1	
QC Flag Legend									
Processing Flags									
Reagents:									
8260 CORP mix 00257		Amount	Added: 1	2.50		Jnits: uL			
0200 CONF IIIIX_00207		Amount	Auueu. I	2.50	(ກາແຈ. uL			

GAS CORP mix_00637 Amount Added: 12.50 Units: uL N 8260 IS_00278 Run Reagent Amount Added: 1.00 Units: uL N_8260_Surr_00474 Run Reagent Amount Added: 1.00 Units: uL

Report Date: 28-Aug-2024 10:33:36 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N9291.d

 Injection Date:
 27-Aug-2024 21:29:30
 Instrument ID:
 HP5973N

Lims ID: LCSD

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Method: N-8260 Limit Group: MV - 8260C ICAL

Column: ZB-624 (0.18 mm)

RS

31

31

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 28-Aug-2024 10:33:36 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\\20240827-119725.b\\\N9291.d

Lims ID: LCSD

Client ID:

Sample Type: LCSD

Inject. Date: 27-Aug-2024 21:29:30 ALS Bottle#: 31 Worklist Smp#: 31

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCSD

Misc. Info.: 480-0119725-031

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240827-119725.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:28-Aug-2024 10:33:05Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1604

First Level Reviewer: MHM2 Date: 28-Aug-2024 10:33:34

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	23.2	92.95
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	21.5	85.90
\$ 6 Toluene-d8 (Surr)	25.0	23.0	91.91
\$ 7 4-Bromofluorobenzene (Surr)	25.0	25.1	100.55

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 SDG No.: 222859 Client Sample ID: Lab Sample ID: LCSD 480-723313/29 Lab File ID: N9320.d Matrix: Water Date Collected: Analysis Method: 8260C Date Analyzed: 08/28/2024 20:47 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Purge Volume: 5.0 (mL) Heated Purge: (Y/N) N pH: % Moisture: _____ % Solids: _____ Level: (low/med) <u>Low</u> Analysis Batch No.: 723313 Units: ug/L Preparation Batch No.: Instrument ID: HP5973N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	24.3		1.0	0.41
100-41-4	Ethylbenzene	24.6		1.0	0.74
108-88-3	Toluene	24.6		1.0	0.51
1330-20-7	Xylenes, Total	48.1		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	105		73-120
1868-53-7	Dibromofluoromethane (Surr)	89		75-123
2037-26-5	Toluene-d8 (Surr)	96		80-120

Report Date: 29-Aug-2024 11:28:28 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File:

Lims ID: **LCSD**

Client ID:

Sample Type: **LCSD**

Inject. Date: 28-Aug-2024 20:47:30 ALS Bottle#: 29 Worklist Smp#: 29

Purge Vol: 5.000 mL 1.0000 Dil. Factor:

Sample Info: LCSD

Misc. Info.: 480-0119738-029

Operator ID: RS Instrument ID: HP5973N

Method:

Limit Group: MV - 8260C ICAL

Last Update: 29-Aug-2024 11:27:55 Calib Date: 14-Aug-2024 21:18:30 Integrator: **RTE** ID Type: Deconvolution ID Quant By: Quant Method: Internal Standard **Initial Calibration** Last ICal File:

Column 1: ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

N 41 1N 40 000444000

First Level Reviewer: MHM2			Date:			29-Aug-202			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
* 147 Fluorobenzene (IS)	70	4.826	4.820	0.006	97	209638	25.0	25.0	
* 2 Chlorobenzene-d5	117	7.771	7.771	0.000	91	707891	25.0	25.0	
* 3 1,4-Dichlorobenzene-d4	152	10.216	10.222	-0.006	95	399969	25.0	25.0	
\$ 148 Dibromofluoromethane (Surr		4.260	4.266	0.000	94	217425	25.0	22.3	
\$ 51,2-Dichloroethane-d4 (Surr)	65	4.552	4.559	-0.007	64	294200	25.0	22.1	
\$ 6 Toluene-d8 (Surr)	98	6.311	6.311	0.000	95	759367	25.0	24.1	
\$ 7 4-Bromofluorobenzene (Surr)	174	9.024	9.030	-0.006	86	292968	25.0	26.2	
11 Dichlorodifluoromethane	85	1.048	1.048	0.000	98	315681	25.0	31.5	
13 Chloromethane	50	1.188	1.188	0.000	99	602239	25.0	27.2	
14 Vinyl chloride	62	1.261	1.261	0.000	97	361963	25.0	29.3	
144 Butadiene	54	1.273	1.269	0.006	96	587740	25.0	29.5	
15 Bromomethane	94	1.511	1.511	0.000	93	169438	25.0	29.5	
16 Chloroethane	64	1.565	1.565	0.000	94	217851	25.0	26.8	
17 Dichlorofluoromethane	67	1.754	1.748	0.006	97	531418	25.0	28.8	
18 Trichlorofluoromethane	101	1.766	1.766	0.000	97	413487	25.0	31.7	
19 Ethyl ether	59	1.985	1.985	0.000	93	301377	25.0	23.0	
20 Acrolein	56	2.149	2.143	0.006	100	279713	125.0	137.0	
22 1,1-Dichloroethene	96	2.180	2.180	0.000	89	186837	25.0	23.6	
21 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.180	2.186	-0.006	92	209061	25.0	25.8	
23 Acetone	43	2.289	2.289	0.000	98	947394	125.0	118.8	
24 lodomethane	142	2.320	2.320	0.000	99	351212	25.0	23.9	
25 Carbon disulfide	76	2.350	2.350	0.000	98	681912	25.0	23.5	
27 3-Chloro-1-propene	41	2.521	2.520	0.001	88	691155	25.0	23.0	
28 Methyl acetate	43	2.569	2.563	0.006	99	941120	50.0	48.9	
30 Methylene Chloride	84	2.654	2.660	0.000	88	244257	25.0	26.0	
31 2-Methyl-2-propanol	59	2.831	2.831	0.000	98	608924	250.0	397.3	
32 Methyl tert-butyl ether	73	2.855	2.855	0.000	94	804373	25.0	23.6	
33 trans-1,2-Dichloroethene	96	2.873	2.867	0.006	89	228410	25.0	24.0	
34 Acrylonitrile	53	2.922	2.922	0.000	98	2492910	250.0	239.3	
35 Hexane	57	3.056	3.056	0.000	97	510360	25.0	24.7	
36 1,1-Dichloroethane	63	3.269	3.269	0.000	96	539672	25.0	25.1	

Data File: \\chromfs\Buf	talo\C	hromData	\HP59/3N	1\2024082	28-119	738.b\N9320.d			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/L	ug/L	Flags
39 Vinyl acetate	43	3.330	3.323	0.007	96	1469103	50.0	52.4	
42 2,2-Dichloropropane	77	3.762	3.761	0.001	79	222064	25.0	26.8	
43 cis-1,2-Dichloroethene	96	3.804	3.804	0.000	86	250573	25.0	24.9	
44 2-Butanone (MEK)	43	3.841	3.871	0.000	96	1424165	125.0	121.4	
47 Chlorobromomethane	128	4.029	4.023	0.006	83	123272	25.0	24.3	
49 Tetrahydrofuran	42	4.041	4.041	0.000	93	432610	50.0	51.6	
50 Chloroform	83	4.114	4.114	0.006	95	404686	25.0	23.0	
51 1,1,1-Trichloroethane	97	4.206	4.206	0.000	94	313778	25.0	27.0	
52 Cyclohexane	56	4.212	4.212	0.000	93	681782	25.0	24.9	
53 Carbon tetrachloride	117	4.340	4.339	0.001	95	243334	25.0	32.6	
54 1,1-Dichloropropene	75	4.358	4.358	0.000	85	307316	25.0	24.7	
55 Benzene	78	4.552	4.552	0.000	90	859873	25.0	24.3	
56 Isobutyl alcohol	43	4.613	4.613	0.000	94	657108	625.0	1114.9	
57 1,2-Dichloroethane	62	4.625	4.625	0.000	94	405861	25.0	24.0	
59 n-Heptane	43	4.747	4.747	0.000	95	559525	25.0	23.2	
60 Trichloroethene	95	5.155	5.161	-0.006	95	220415	25.0	25.4	
62 Methylcyclohexane	83	5.270	5.270	0.000	93	417662	25.0	25.2	
63 1,2-Dichloropropane	63	5.392	5.392	0.000	88	260541	25.0	24.3	
64 Dibromomethane	93	5.526	5.526	0.000	96	143269	25.0	24.5	
66 1,4-Dioxane	88	5.538	5.532	0.006	67	63572	500.0	1000.6	
67 Dichlorobromomethane	83	5.684	5.684	0.000	94	257292	25.0	25.7	
69 2-Chloroethyl vinyl ether	63	5.970	5.970	0.000	83	175523	25.0	24.3	
71 cis-1,3-Dichloropropene	75	6.098	6.098	0.000	84	305733	25.0	25.6	
72 4-Methyl-2-pentanone (MIBK)		6.250	6.250	0.000	97	950522	125.0	124.6	
73 Toluene	92	6.371	6.371	-0.006	96	480458	25.0	24.6	
75 trans-1,3-Dichloropropene	75	6.663	6.663	0.000	93	256400	25.0	28.3	
77 Ethyl methacrylate	69	6.724	6.724	0.000	87	256012	25.0	30.6	
78 1,1,2-Trichloroethane	83	6.846	6.846	0.000	92	150160	25.0	24.7	
79 Tetrachloroethene	166	6.895	6.895	0.000	94	203439	25.0	24.9	
80 1,3-Dichloropropane	76	6.998	7.004	-0.006	89	305313	25.0	24.9	
82 2-Hexanone	43	7.083	7.083	0.000	98	1908957	125.0	120.2	
83 Chlorodibromomethane	129	7.235	7.235	0.000	88	158898	25.0	26.7	
84 Ethylene Dibromide	107	7.321	7.326	-0.006	97	192274	25.0	27.2	
85 Chlorobenzene	112	7.801	7.801	0.000	92	537761	25.0	23.9	
88 Ethylbenzene	91	7.898	7.898	0.000	98	927609	25.0	24.6	
89 1,1,1,2-Tetrachloroethane	131	7.905	7.904	0.001	88	174503	25.0	28.4	
90 m-Xylene & p-Xylene	106	8.026	8.026	0.000	98	368587	25.0	24.5	
91 o-Xylene	106	8.446	8.446	0.000	97	384870	25.0	23.6	
92 Styrene	104	8.476	8.476	0.000	92	608013	25.0	24.9	
93 Bromoform	173	8.714	8.707	0.007	94	100975	25.0	23.6	
95 Isopropylbenzene	105	8.829	8.824	0.000	97	1020125	25.0	25.6	
97 Bromobenzene	156	9.170	9.164	0.000	93	239432	25.0	24.4	
98 1,1,2,2-Tetrachloroethane	83	9.255	9.249	0.000	95	289948	25.0	23.7	
100 N-Propylbenzene	91	9.273	9.268	0.000	99	1169690	25.0	24.6	
99 1,2,3-Trichloropropane	110	9.279	9.274	0.000	92	98824	25.0	25.2	
101 trans-1,4-Dichloro-2-butene	53	9.304	9.304	-0.006	71	96046	25.0	17.6	
102 2-Chlorotoluene	126	9.371	9.371	-0.006	95	236770	25.0	25.5	
104 1,3,5-Trimethylbenzene	105	9.468	9.462	0.000	94	863402	25.0	24.9	
105 4-Chlorotoluene	91	9.492	9.487	0.000	99	790949	25.0	24.9	
106 tert-Butylbenzene	134	9.797	9.797	-0.005	96	186500	25.0	25.8	
108 1,2,4-Trimethylbenzene	105	9.857	9.851	0.000	98	894760	25.0	24.8	
109 sec-Butylbenzene	105	10.022	10.016	0.001	95	1129130	25.0	25.2	
			.						

ug-2024 11:28:28 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9320.d Report Date: 29-Aug-2024 11:28:28

Amount Added: 1.00

Amount Added: 1.00

Data File:

N 8260 IS_00278

N_8260_Surr_00474

Data File. \(\text{\tension}\tension\t								
Col Amt								
ug/L Flags								
23.5								
25.4								
23.6								
25.2								
23.8								
34.6								
24.8								
27.3								
25.8								
25.9								

Run Reagent

Run Reagent

Units: uL

Units: uL

Report Date: 29-Aug-2024 11:28:28 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9320.d 28-Aug-2024 20:47:30 Instrument ID: HP5973N Injection Date:

Lims ID: **LCSD**

Client ID:

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Limit Group: MV - 8260C ICAL Method: N-8260

Column: ZB-624 (0.18 mm)

RS

29

29

Operator ID:

ALS Bottle#:

Worklist Smp#:

Report Date: 29-Aug-2024 11:28:28 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N9320.d

Lims ID: LCSD

Client ID:

Sample Type: LCSD

Inject. Date: 28-Aug-2024 20:47:30 ALS Bottle#: 29 Worklist Smp#: 29

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCSD

Misc. Info.: 480-0119738-029

Operator ID: RS Instrument ID: HP5973N

Method: \\chromfs\Buffalo\ChromData\HP5973N\20240828-119738.b\N-8260.m

Limit Group: MV - 8260C ICAL

Last Update:29-Aug-2024 11:27:55Calib Date:14-Aug-2024 21:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973N\20240814-119522.b\N9166.d

Column 1 : ZB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1639

First Level Reviewer: MHM2 Date: 29-Aug-2024 11:28:26

Compound	Amount Added	Amount Recovered	% Rec.
\$ 148 Dibromofluoromethane (Surr)	25.0	22.3	89.20
\$ 51,2-Dichloroethane-d4 (Surr)	25.0	22.1	88.47
\$ 6 Toluene-d8 (Surr)	25.0	24.1	96.30
\$ 7 4-Bromofluorobenzene (Surr)	25.0	26.2	104.74

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973N Start Date: 08/14/2024 13:50

Analysis Batch Number: 721747 End Date: 08/14/2024 22:49

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 480-721747/11		08/14/2024 13:50	1	N9146.d	ZB-624 (20) 0.18(mm)
IC 480-721747/13		08/14/2024 14:35	1	N9148.d	ZB-624 (20) 0.18(mm)
IC 480-721747/14		08/14/2024 14:57	1	N9149.d	ZB-624 (20) 0.18(mm)
IC 480-721747/15		08/14/2024 15:20	1	N9150.d	ZB-624 (20) 0.18(mm)
IC 480-721747/16		08/14/2024 15:43	1	N9151.d	ZB-624 (20) 0.18(mm)
IC 480-721747/17		08/14/2024 16:05	1	N9152.d	ZB-624 (20) 0.18(mm)
ICIS 480-721747/18		08/14/2024 16:28	1	N9153.d	ZB-624 (20) 0.18(mm)
IC 480-721747/19		08/14/2024 16:50	1	N9154.d	ZB-624 (20) 0.18(mm)
IC 480-721747/20		08/14/2024 17:12	1	N9155.d	ZB-624 (20) 0.18(mm)
ZZZZZ		08/14/2024 17:57	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/14/2024 18:19	1		ZB-624 (20) 0.18(mm)
IC 480-721747/25		08/14/2024 19:04	1		ZB-624 (20) 0.18(mm)
IC 480-721747/26		08/14/2024 19:26	1		ZB-624 (20) 0.18(mm)
IC 480-721747/27		08/14/2024 19:49	1		ZB-624 (20) 0.18(mm)
IC 480-721747/28		08/14/2024 20:11	1		ZB-624 (20) 0.18(mm)
IC 480-721747/29		08/14/2024 20:34	1		ZB-624 (20) 0.18(mm)
IC 480-721747/30		08/14/2024 20:56	1		ZB-624 (20) 0.18(mm)
IC 480-721747/31		08/14/2024 21:18	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/14/2024 22:04	1		ZB-624 (20) 0.18(mm)
ICV 480-721747/34		08/14/2024 22:26	1	N9169.d	ZB-624 (20) 0.18(mm)
ICV 480-721747/35		08/14/2024 22:49	1		ZB-624 (20) 0.18(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973N Start Date: 08/27/2024 10:21

Analysis Batch Number: 723194 End Date: 08/27/2024 21:29

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 480-723194/3		08/27/2024 10:21	1	N9263.d	ZB-624 (20) 0.18 (mm)
CCVIS 480-723194/4		08/27/2024 10:45	1	N9264.d	ZB-624 (20) 0.18(mm)
CCV 480-723194/5		08/27/2024 11:30	1		ZB-624 (20) 0.18(mm)
LCS 480-723194/6		08/27/2024 11:52	1	N9266.d	ZB-624 (20) 0.18(mm)
RL 480-723194/7		08/27/2024 12:15	1		ZB-624 (20) 0.18(mm)
MB 480-723194/8		08/27/2024 12:37	1	N9268.d	ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 13:15	2		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 13:37	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 14:00	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 14:22	2		ZB-624 (20) 0.18(mm)
480-222859-6	MW-07	08/27/2024 14:45	20	N9273.d	ZB-624 (20) 0.18(mm)
480-222859-7	MW-10	08/27/2024 15:07	1	N9274.d	ZB-624 (20) 0.18(mm)
480-222859-8	MW-11A	08/27/2024 15:29	2	N9275.d	ZB-624 (20) 0.18(mm)
480-222859-9	SW-01	08/27/2024 15:52	1	N9276.d	ZB-624 (20) 0.18(mm)
480-222859-10	SW-02	08/27/2024 16:15	1	N9277.d	ZB-624 (20) 0.18(mm)
480-222859-11	TB	08/27/2024 16:37	1	N9278.d	ZB-624 (20) 0.18(mm)
480-222859-12	EB	08/27/2024 16:59	1	N9279.d	ZB-624 (20) 0.18(mm)
480-222859-13	Duplicate	08/27/2024 17:22	1	N9280.d	ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 17:44	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 18:06	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 18:29	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 18:51	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 19:14	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 19:37	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 19:59	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 20:21	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 20:44	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/27/2024 21:06	4		ZB-624 (20) 0.18(mm)
LCSD 480-723194/31		08/27/2024 21:29	1	N9291.d	ZB-624 (20) 0.18(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973N Start Date: 08/28/2024 10:12

Analysis Batch Number: 723313 End Date: 08/28/2024 20:47

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 480-723313/3		08/28/2024 10:12	1	N9294.d	ZB-624 (20) 0.18 (mm)
CCVIS 480-723313/4		08/28/2024 10:36	1	N9295.d	ZB-624 (20) 0.18(mm)
CCV 480-723313/5		08/28/2024 11:14	1		ZB-624 (20) 0.18(mm)
LCS 480-723313/6		08/28/2024 11:36	1	N9297.d	ZB-624 (20) 0.18(mm)
RL 480-723313/7		08/28/2024 11:59	1		ZB-624 (20) 0.18(mm)
MB 480-723313/8		08/28/2024 12:22	1	N9299.d	ZB-624 (20) 0.18(mm)
480-222859-4	MW-23	08/28/2024 13:01	1	N9300.d	ZB-624 (20) 0.18(mm)
480-222859-16	MW-07 Bailer	08/28/2024 13:23	20	N9301.d	ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 13:46	10		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 14:08	40		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 14:31	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 14:54	10		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 15:34	20		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 15:56	1		ZB-624 (20) 0.18(mm)
480-222886-3	MW-19	08/28/2024 16:18	100	N9308.d	ZB-624 (20) 0.18(mm)
480-222886-4	MW-19 (BAILER)	08/28/2024 16:41	50	N9309.d	ZB-624 (20) 0.18(mm)
480-222886-6	MW-13	08/28/2024 17:04	1	N9310.d	ZB-624 (20) 0.18(mm)
480-222886-7	MW-17	08/28/2024 17:26	2	N9311.d	ZB-624 (20) 0.18(mm)
480-222886-9	TB	08/28/2024 17:48	1	N9312.d	ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 18:11	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 18:33	1		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 18:55	1		ZB-624 (20) 0.18 (mm)
ZZZZZ		08/28/2024 19:17	4		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 19:39	100		ZB-624 (20) 0.18 (mm)
ZZZZZ		08/28/2024 20:02	20		ZB-624 (20) 0.18(mm)
ZZZZZ		08/28/2024 20:24	20		ZB-624 (20) 0.18 (mm)
LCSD 480-723313/29		08/28/2024 20:47	1	N9320.d	ZB-624 (20) 0.18(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 721747 Batch Start Date: 08/14/24 13:50 Batch Analyst: Kiwan, Ahmad x

Batch Method: 8260C Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	InitialAmount	FinalAmount	8260 CORP mix 00257	BFB_WRK 00164	GAS CORP mix 00632	N 8260 IS 00278
BFB 480-721747/11		8260C			1 uL	1 uL		1 uL		
IC 480-721747/13		8260C			5 mL	5 mL	0.5 uL		0.5 uL	1 uL
IC 480-721747/14		8260C			5 mL	5 mL	1 uL		1 uL	1 uL
IC 480-721747/15		8260C			5 mL	5 mL	2 uL		2 uL	1 uL
IC 480-721747/16		8260C			5 mL	5 mL	5 uL		5 uL	1 uL
IC 480-721747/17		8260C			5 mL	5 mL	5 uL		5 uL	1 uL
ICIS 480-721747/18		8260C			5 mL	5 mL	12.5 uL		12.5 uL	1 uL
IC 480-721747/19		8260C			5 mL	5 mL	25 uL		25 uL	1 uL
IC 480-721747/20		8260C			5 mL	5 mL	50 uL		50 uL	1 uL
ICV 480-721747/34		8260C			5 mL	5 mL				1 uL

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	N_8260_Surr 00474	SS 8260 CORP 00116	SS GAS CORP 00589		
BFB 480-721747/11		8260C							
IC 480-721747/13		8260C			1 uL				
IC 480-721747/14		8260C			1 uL				
IC 480-721747/15		8260C			1 uL				
IC 480-721747/16		8260C			1 uL				
IC 480-721747/17		8260C			1 uL				
ICIS 480-721747/18		8260C			1 uL				
IC 480-721747/19		8260C			1 uL				
IC 480-721747/20		8260C			1 uL				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8260C

Lab Name: Eurofins Buffalo	Job No.: 480-222859-1
----------------------------	-----------------------

SDG No.: 222859

Batch Number: 721747 Batch Start Date: 08/14/24 13:50 Batch Analyst: Kiwan, Ahmad x

Batch Method: 8260C _____ Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	N_8260_Surr 00474	SS 8260 CORP 00116	SS GAS CORP 00589		
ICV 480-721747/34		8260C			1 uL	12.5 uL	12.5 uL		

Bat	ch Notes

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

FinalAmount

1 uL

Initial pH

8260 CORP mix

00257

BFB WRK 00165

1 uL

GAS CORP mix

00637

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID

BFB

Batch Number: 723194 Batch Start Date: 08/27/24 10:21 Batch Analyst: Santillano, Ray

1 uL

Batch Method: 8260C Batch End Date:

Client Sample | Method Chain | Matrix | Basis | InitialAmount

8260C

8260C

8260C

480-723194/3		02000			ı uı	I ul			ı uı	
CCVIS 480-723194/4		8260C			5 mL	5 mL		12.5 uL		12.5 uL
LCS 480-723194/6		8260C			5 mL	5 mL		12.5 uL		12.5 uL
MB 480-723194/8		8260C			5 mL	5 mL				
480-222859-C-6	MW-07	8260C	Water	T	5 mL	5 mL	<2 SU			
480-222859-C-7	MW-10	8260C	Water	T	5 mL	5 mL	<2 SU			
480-222859-F-8	MW-11A	8260C	Water	T	5 mL	5 mL	<2 SU			
480-222859-F-9	SW-01	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222859-F-10	SW-02	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222859-A-11	TB	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222859-E-12	EB	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222859-E-13	Duplicate	8260C	Water	T	5 mL	5 mL	<2 SU			
LCSD 480-723194/31		8260C			5 mL	5 mL		12.5 uL		12.5 uL
		-								
Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	N 8260 IS 00278	N_8260_Surr 00474	AnalysisCommen t			
BFB 480-723194/3		8260C								
CCVIS 480-723194/4		8260C			1 uL	1 uL				
LCS 480-723194/6		8260C			1 uL	1 uL				
MB 480-723194/8		8260C			1 uL	1 uL				
480-222859-C-6	MW-07	8260C	Water	T	1 uL	1 uL	Target			
480-222859-C-7	MW-10	8260C	Water	Т	1 uL	1 uL				
480-222859-F-8	MW-11A	8260C	Water	T	1 uL	1 uL	Foam			
480-222859-F-9	SW-01	8260C	Water	T	1 uL	1 uL				
480-222859-F-10	SW-02	8260C	Water	Т	1 uL	1 uL				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

1 uL

1 uL

1 uL

1 uL

Т

Т

Water

Water

8260C

480-222859-A-11 TB

480-222859-E-12 EB

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723194 Batch Start Date: 08/27/24 10:21 Batch Analyst: Santillano, Ray

Batch Method: 8260C _____ Batch End Date: ____

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	N 8260 IS 00278	N_8260_Surr 00474	AnalysisCommen t		
480-222859-E-13	Duplicate	8260C	Water	T	1 uL	1 uL			
LCSD 480-723194/31		8260C			1 uL	1 uL			

Batch Notes	

Basis	Basis	Description
Т	Total/NA	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Sample ID | Client Sample | Method Chain | Matrix | Basis | InitialAmount | FinalAmount | Initial pH | 8260 CORP mix | BFB WRK 00165 | GAS CORP mix

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

MW-17

TB

480-222886-G-7

480-222886-A-9

480-723313/29

LCSD

Batch Start Date: 08/28/24 10:12 Batch Analyst: Santillano, Ray Batch Number: 723313

Batch Method: 8260C Batch End Date:

Water

Water

Τ

Τ

8260C

8260C

8260C

	ID ID	Income charm	11001111	20010	1111010111111001110	1 1110 1111110 0110	Intotat pii	00257	BIB_Mat 00100	00638
BFB 480-723313/3		8260C			1 uL	1 uL			1 uL	
CCVIS 480-723313/4		8260C			5 mL	5 mL		12.5 uL		12.5 uL
LCS 480-723313/6		8260C			5 mL	5 mL		12.5 uL		12.5 uL
MB 480-723313/8		8260C			5 mL	5 mL				
480-222859-G-4	MW-23	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222859-E-16	MW-07 Bailer	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222886-E-3	MW-19	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222886-C-4	MW-19 (BAILER)	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222886-G-6	MW-13	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222886-G-7	MW-17	8260C	Water	Т	5 mL	5 mL	<2 SU			
480-222886-A-9	TB	8260C	Water	Т	5 mL	5 mL	<2 SU			
LCSD 480-723313/29		8260C			5 mL	5 mL		12.5 uL		12.5 uL
Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	N 8260 IS 00278	N_8260_Surr 00474	AnalysisCommen t			
BFB 480-723313/3		8260C								
CCVIS 480-723313/4		8260C			1 uL	1 uL				
LCS 480-723313/6		8260C			1 uL	1 uL				
MB 480-723313/8		8260C			1 uL	1 uL				
480-222859-G-4	MW-23	8260C	Water	Т	1 uL	1 uL				
480-222859-E-16	MW-07 Bailer	8260C	Water	Т	1 uL	1 uL	Target			
480-222886-E-3	MW-19	8260C	Water	Т	1 uL	1 uL	Target			
480-222886-C-4	MW-19 (BAILER)	8260C	Water	Т	1 uL	1 uL	Target			
480-222886-G-6	MW-13	8260C	Water	Т	1 uL	1 uL				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

1 uL

1 uL

1 uL

Foam

1 uL

1 uL

1 uL

8260C Page 1 of 2

Lab Name: Euro	ofins Buffalo	Job No.: 480-23	22859-1		
SDG No.: 2228	59				
Batch Number:	723313	Batch Start Da	te: <u>08/28/24 10:12</u>	Batch Analyst:	Santillano, Ray
Batch Method:	8260C	Batch End Date	:		
		Batch Notes			

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Method 8270D Low Level PAH

Polynuclear Aromatic Hydrocarbons by Method 8270D Low Level

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water Level: Low

GC Column (1): RXI-5Sil MS ID: 0.25(mm)

Client Sample ID	Lab Sample ID	NBZ #	FBP #	TPHd14 #
MW-23	480-222859-4	80	110	56
MW-07	480-222859-6	52	93	62
MW-07 DL	480-222859-6 DL	83	109	65
MW-10	480-222859-7	68	94	54
MW-11A	480-222859-8	73	101	70
SW-01	480-222859-9	74	102	64
SW-02	480-222859-10	75	104	57
EB	480-222859-12	70	97	76
Duplicate	480-222859-13	76	107	59
MW-07 Bailer	480-222859-16	56	97	49
MW-07 Bailer DL	480-222859-16 DL	68	78	37
MW-19	480-222886-3	66	98	57
MW-19 DL	480-222886-3 DL	125 S1+	11 S1-	38
MW-19 (BAILER)	480-222886-4	76	108	67
MW-19 (BAILER) DL	480-222886-4 DL	136 S1+	11 S1-	48
MW-13	480-222886-6	74	104	62
MW-17	480-222886-7	71	102	57
	MB 480-723375/1-A	73	100	84
	LCS 480-723375/2-A	83	101	90
	LCSD 480-723375/3-A	88	105	94

	QC LIMITS
NBZ = Nitrobenzene-d5 (Surr)	46-120
FBP = 2-Fluorobiphenyl (Surr)	48-120
TPHd14 = p-Terphenyl-d14 (Surr)	24-136

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 W100259869.d

 Lab ID:
 LCS 480-723375/2-A
 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	8	LIMITS	#
					#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
2-Methylnaphthalene	32.0	29.6	92	48-120	
Acenaphthene	32.0	33.7	105	60-120	
Acenaphthylene	32.0	33.6	105	63-120	
Anthracene	32.0	36.7	115	69-131	
Benzo[a]anthracene	32.0	31.7	99	62-142	
Benzo[a]pyrene	32.0	31.7	99	46-156	
Benzo[b]fluoranthene	32.0	37.2	116	50-149	
Benzo[g,h,i]perylene	32.0	29.8	93	34-189	
Benzo[k]fluoranthene	32.0	30.0	94	47-147	
Chrysene	32.0	32.2	101	69-140	
Dibenz(a,h)anthracene	32.0	32.3	101	35-176	
Fluoranthene	32.0	36.0	113	67-133	
Fluorene	32.0	36.5	114	66-129	
Indeno[1,2,3-cd]pyrene	32.0	31.7	99	57-161	
Naphthalene	32.0	30.3	95	48-120	
Phenanthrene	32.0	36.6	114	67-130	
Pyrene	32.0	33.5	105	58-136	

[#] Column to be used to flag recovery and RPD values FORM III 8270D_LL_PAH

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 W100259870.d

 Lab ID:
 LCSD 480-723375/3-A
 Client ID:

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olo	QC L1	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	#
2-Methylnaphthalene	32.0	31.1	97	5	21	48-120	
Acenaphthene	32.0	34.8	109	3	24	60-120	
Acenaphthylene	32.0	35.2	110	5	18	63-120	
Anthracene	32.0	39.1	122	6	15	69-131	
Benzo[a]anthracene	32.0	33.9	106	6	15	62-142	
Benzo[a]pyrene	32.0	34.6	108	9	15	46-156	
Benzo[b]fluoranthene	32.0	39.8	124	7	15	50-149	
Benzo[g,h,i]perylene	32.0	32.9	103	10	15	34-189	
Benzo[k]fluoranthene	32.0	32.7	102	8	22	47-147	
Chrysene	32.0	34.2	107	6	15	69-140	
Dibenz(a,h)anthracene	32.0	35.1	110	8	15	35-176	
Fluoranthene	32.0	38.6	121	7	15	67-133	
Fluorene	32.0	38.5	120	5	15	66-129	
Indeno[1,2,3-cd]pyrene	32.0	34.6	108	9	15	57-161	
Naphthalene	32.0	32.2	101	6	29	48-120	
Phenanthrene	32.0	38.3	120	4	15	67-130	
Pyrene	32.0	35.6	111	6	25	58-136	

[#] Column to be used to flag recovery and RPD values FORM III 8270D_LL_PAH

FORM IV GC/MS SEMI VOA METHOD BLANK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: W100259868.d Lab Sample ID: MB 480-723375/1-A

Matrix: Water Date Extracted: 08/28/2024 13:06

Instrument ID: HP5973W Date Analyzed: 08/29/2024 14:10

Level: (Low/Med) Low

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALY	YZED
	LCS 480-723375/2-A	W100259869.	08/29/2024	14:38
	LCSD 480-723375/3-A	W100259870.	08/29/2024	15:04
MW-23	480-222859-4	W100259871.	08/29/2024	15:31
MW-07	480-222859-6	W100259872.	08/29/2024	15:57
MW-10	480-222859-7	W100259873.	08/29/2024	16:24
MW-11A	480-222859-8	W100259874.	08/29/2024	16:50
SW-01	480-222859-9	W100259875.	08/29/2024	17:16
SW-02	480-222859-10	W100259876.	08/29/2024	17:43
ЕВ	480-222859-12	W100259877.	08/29/2024	18:09
Duplicate	480-222859-13	W100259878.	08/29/2024	18:36
MW-07 Bailer	480-222859-16	W100259879.	08/29/2024	19:03
MW-19	480-222886-3	W100259880.	08/29/2024	19:30
MW-19 (BAILER)	480-222886-4	W100259881.	08/29/2024	19:57
MW-13	480-222886-6	W100259882.	08/29/2024	20:24
MW-17	480-222886-7	W100259883.	08/29/2024	20:50
MW-07 Bailer DL	480-222859-16 DL	W100259892.	08/30/2024	14:34
MW-19 DL	480-222886-3 DL	W100259917.	09/03/2024	12:47
MW-19 (BAILER) DL	480-222886-4 DL	W100259918.	09/03/2024	13:13
MW-07 DL	480-222859-6 DL	Y038679.D	09/10/2024	12:26

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: W100259728.d DFTPP Injection Date: 08/16/2024

Instrument ID: HP5973W DFTPP Injection Time: 13:47

Analysis Batch No.: 722078

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10-80% of Base Peak	44.9	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	44.2	
70	Less than 2% of mass 69	0.2	(0.6) 1
127	10-80% of Base Peak	51.2	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	6.9	
275	10-60% of Base Peak	27.0	
365	Greater than 1% of mass 198	4.6	
441	present but less than 24% of mass 442	15.9	(16.0) 2
442	Greater than 50% of mass 198	99.9	
443	15-24% of mass 442	19.4	(19.5) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 480-722078/3	W100259729.d	08/16/2024	14:14
	IC 480-722078/4	W100259730.d	08/16/2024	14:41
	IC 480-722078/5	W100259731.d	08/16/2024	15:07
	IC 480-722078/6	W100259732.d	08/16/2024	15:34
	ICIS 480-722078/7	W100259733.d	08/16/2024	16:01
	IC 480-722078/8	W100259734.d	08/16/2024	16:28
	IC 480-722078/9	W100259735.d	08/16/2024	16:54
	IC 480-722078/10	W100259736.d	08/16/2024	17:21
	ICV 480-722078/11	W100259737.d	08/16/2024	17:48

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: W100259865.d DFTPP Injection Date: 08/29/2024

Instrument ID: HP5973W DFTPP Injection Time: 12:43

Analysis Batch No.: 723480

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10-80% of Base Peak	46.9	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	43.6	
70	Less than 2% of mass 69	0.3	(0.6) 1
127	10-80% of Base Peak	54.1	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	6.8	
275	10-60% of Base Peak	25.8	
365	Greater than 1% of mass 198	4.2	
441	present but less than 24% of mass 442	14.4	(15.5) 2
442	Greater than 50% of mass 198	93.2	
443	15-24% of mass 442	19.0	(20.4) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-723480/4	W100259867.d	08/29/2024	13:44
	MB 480-723375/1-A	W100259868.d	08/29/2024	14:10
	LCS 480-723375/2-A	W100259869.d	08/29/2024	14:38
	LCSD 480-723375/3-A	W100259870.d	08/29/2024	15:04
MW-23	480-222859-4	W100259871.d	08/29/2024	15:31
MW-07	480-222859-6	W100259872.d	08/29/2024	15:57
MW-10	480-222859-7	W100259873.d	08/29/2024	16:24
MW-11A	480-222859-8	W100259874.d	08/29/2024	16:50
SW-01	480-222859-9	W100259875.d	08/29/2024	17:16
SW-02	480-222859-10	W100259876.d	08/29/2024	17:43
EB	480-222859-12	W100259877.d	08/29/2024	18:09
Duplicate	480-222859-13	W100259878.d	08/29/2024	18:36
MW-07 Bailer	480-222859-16	W100259879.d	08/29/2024	19:03
MW-19	480-222886-3	W100259880.d	08/29/2024	19:30
MW-19 (BAILER)	480-222886-4	W100259881.d	08/29/2024	19:57
MW-13	480-222886-6	W100259882.d	08/29/2024	20:24
MW-17	480-222886-7	W100259883.d	08/29/2024	20:50

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: W100259886.d DFTPP Injection Date: 08/30/2024

Instrument ID: HP5973W DFTPP Injection Time: 11:22

Analysis Batch No.: 723618

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10-80% of Base Peak	45.9	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	42.9	
70	Less than 2% of mass 69	0.2	(0.5) 1
127	10-80% of Base Peak	54.2	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	6.7	
275	10-60% of Base Peak	26.6	
365	Greater than 1% of mass 198	4.3	
441	present but less than 24% of mass 442	14.5	(15.3) 2
442	Greater than 50% of mass 198	94.2	
443	15-24% of mass 442	18.9	(20.1) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-723618/3	W100259887.d	08/30/2024	12:20
	CCV 480-723618/6	W100259890.d	08/30/2024	13:40
MW-07 Bailer DL	480-222859-16 DL	W100259892.d	08/30/2024	14:34

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: W100259913.d DFTPP Injection Date: 09/03/2024

Instrument ID: HP5973W DFTPP Injection Time: 10:48

Analysis Batch No.: 723782

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10-80% of Base Peak	44.8	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	41.4	
70	Less than 2% of mass 69	0.3	(0.7) 1
127	10-80% of Base Peak	54.0	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	6.8	
275	10-60% of Base Peak	26.3	
365	Greater than 1% of mass 198	4.4	
441	present but less than 24% of mass 442	15.3	(14.9) 2
442	Greater than 50% of mass 198	102.8	
443	15-24% of mass 442	19.5	(19.0) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-723782/3	W100259914.d	09/03/2024	11:28
MW-19 DL	480-222886-3 DL	W100259917.d	09/03/2024	12:47
MW-19 (BAILER) DL	480-222886-4 DL	W100259918.d	09/03/2024	13:13

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: Y037826.D DFTPP Injection Date: 07/15/2024

Instrument ID: HP5973Y DFTPP Injection Time: 17:46

Analysis Batch No.: 718508

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10-80% of Base Peak	33.6	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	37.4	
70	Less than 2% of mass 69	0.2	(0.6) 1
127	10-80% of Base Peak	45.1	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	6.8	
275	10-60% of Base Peak	26.5	
365	Greater than 1% of mass 198	3.5	
441	present but less than 24% of mass 442	15.0	(15.6) 2
442	Greater than 50% of mass 198	95.7	
443	15-24% of mass 442	18.7	(19.6) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 480-718508/3	Y037827.D	07/15/2024	18:14
	IC 480-718508/4	Y037828.D	07/15/2024	18:41
	IC 480-718508/5	Y037829.D	07/15/2024	19:09
	IC 480-718508/6	Y037830.D	07/15/2024	19:37
	ICIS 480-718508/7	Y037831.D	07/15/2024	20:04
	IC 480-718508/8	Y037832.D	07/15/2024	20:32
	IC 480-718508/9	Y037833.D	07/15/2024	21:00
	IC 480-718508/10	Y037834.D	07/15/2024	21:27
	ICV 480-718508/11	Y037835.D	07/15/2024	21:55

GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab File ID: Y038676.D DFTPP Injection Date: 09/10/2024

Instrument ID: HP5973Y DFTPP Injection Time: 11:01

Analysis Batch No.: 724525

M/E	ION ABUNDANCE CRITERIA	· ·	ATIVE DANCE
51	10-80% of Base Peak	40.4	
68	Less than 2% of mass 69	0.0	(0.0) 1
69	Mass 69 Relative abundance	42.9	
70	Less than 2% of mass 69	0.2	(0.5) 1
127	10-80% of Base Peak	52.2	
197	Less than 2% of mass 198	0.0	
198	Base peak	100.0	
199	5-9% of mass 198	7.0	
275	10-60% of Base Peak	28.3	
365	Greater than 1% of mass 198	3.8	
441	present but less than 24% of mass 442	13.4	(14.9) 2
442	Greater than 50% of mass 198	89.8	
443	15-24% of mass 442	16.9	(18.8) 2

1-Value is % mass 69

2-Value is % mass 442

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-724525/3	Y038677.D	09/10/2024	11:29
MW-07 DL	480-222859-6 DL	Y038679.D	09/10/2024	12:26

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: ICIS 480-722078/7 Date Analyzed: 08/16/2024 16:01

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259733.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47111

		DCBd4	1	NPT		ANT	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	ID-POINT	179311	6.62	673899	8.03	379240	9.72
UPPER LIMIT		358622	7.12	1347798	8.53	758480	10.22
LOWER LIMIT		89656	6.12	336950	7.53	189620	9.22
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 480-722078/11		181386	6.62	687726	8.03	392572	9.72
CCVIS 480-723480/4		138281	6.54	517898	7.97	290976	9.66
CCVIS 480-723618/3		132036	6.54	493121	7.97	276567	9.66
CCVIS 480-723782/3		115286	6.54	441405	7.97	249897	9.66

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: ICIS 480-722078/7 Date Analyzed: 08/16/2024 16:01

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259733.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47111

		PHN		CRY		PRY	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	D-POINT	609105	11.03	531293	13.49	579039	15.18
UPPER LIMIT		1218210	11.53	1062586	13.99	1158078	15.68
LOWER LIMIT		304553	10.53	265647	12.99	289520	14.68
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 480-722078/11		642320	11.03	545938	13.49	606531	15.18
CCVIS 480-723480/4		458480	10.96	407499	13.42	444799	15.08
CCVIS 480-723618/3		438492	10.96	402184	13.42	412779	15.08
CCVIS 480-723782/3		368770	10.96	360078	13.42	369670	15.08

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723480/4 Date Analyzed: 08/29/2024 13:44

Instrument ID: $\underline{\text{HP5973W}}$ GC Column: $\underline{\text{RXI-5Sil MS}}$ ID: $\underline{\text{0.25 (mm)}}$

Lab File ID (Standard): $\underline{\text{W100259867.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		DCBd4	Į.	NPT		ANT	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		138281	6.54	517898	7.97	290976	9.66
UPPER LIMIT		276562	7.04	1035796	8.47	581952	10.16
LOWER LIMIT		69141	6.04	258949	7.47	145488	9.16
LAB SAMPLE ID	CLIENT SAMPLE ID						
MB 480-723375/1-A		126604	6.54	488043	7.97	266199	9.66
LCS 480-723375/2-A		135574	6.54	512255	7.97	284369	9.66
LCSD 480-723375/3-A		132685	6.54	487403	7.97	273103	9.66
480-222859-4	MW-23	118800	6.54	437722	7.96	240597	9.66
480-222859-6	MW-07	129791	6.55	705301	7.98	293565	9.66
480-222859-7	MW-10	138077	6.54	515705	7.97	281438	9.66
480-222859-8	MW-11A	137288	6.54	505418	7.97	279201	9.66
480-222859-9	SW-01	131107	6.54	483140	7.96	263701	9.66
480-222859-10	SW-02	131055	6.54	494619	7.96	268296	9.66
480-222859-12	EB	131152	6.54	480695	7.97	266481	9.66
480-222859-13	Duplicate	125769	6.54	466103	7.97	255314	9.66
480-222859-16	MW-07 Bailer	129124	6.54	708986	7.98	293356	9.66
480-222886-3	MW-19	130814	6.55	613865	8.00	283667	9.66
480-222886-4	MW-19 (BAILER)	127245	6.55	597715	8.00	273809	9.66
480-222886-6	MW-13	125362	6.54	464679	7.96	250303	9.66
480-222886-7	MW-17	132008	6.54	500070	7.96	267942	9.65

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8
ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723480/4 Date Analyzed: 08/29/2024 13:44

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259867.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		PHN		CRY		PRY	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		458480	10.96	407499	13.42	444799	15.08
UPPER LIMIT		916960	11.46	814998	13.92	889598	15.58
LOWER LIMIT		229240	10.46	203750	12.92	222400	14.58
LAB SAMPLE ID	CLIENT SAMPLE ID						
MB 480-723375/1-A		395644	10.96	379720	13.42	417710	15.08
LCS 480-723375/2-A		463061	10.96	434231	13.43	448777	15.08
LCSD 480-723375/3-A		443199	10.96	419341	13.43	430950	15.08
480-222859-4	MW-23	379235	10.96	345426	13.42	391893	15.08
480-222859-6	MW-07	451614	10.96	380472	13.42	407523	15.08
480-222859-7	MW-10	409497	10.96	413054	13.42	463898	15.08
480-222859-8	MW-11A	412969	10.96	400114	13.42	457561	15.08
480-222859-9	SW-01	382611	10.96	379419	13.42	427177	15.08
480-222859-10	SW-02	425201	10.96	389126	13.42	434566	15.08
480-222859-12	EB	383145	10.96	372235	13.42	418923	15.08
480-222859-13	Duplicate	363533	10.96	362139	13.42	412374	15.08
480-222859-16	MW-07 Bailer	456355	10.96	387788	13.42	413408	15.08
480-222886-3	MW-19	451296	10.96	387492	13.42	428620	15.08
480-222886-4	MW-19 (BAILER)	435418	10.96	376356	13.42	409951	15.08
480-222886-6	MW-13	418767	10.96	369044	13.42	410249	15.08
480-222886-7	MW-17	407611	10.96	385363	13.42	434534	15.08

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723618/3 Date Analyzed: 08/30/2024 12:20

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259887.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		DCBd4	1	NPT		ANT	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		132036	6.54	493121	7.97	276567	9.66
UPPER LIMIT		264072	7.04	986242	8.47	553134	10.16
LOWER LIMIT		66018	6.04	246561	7.47	138284	9.16
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 480-723618/6		134888	6.54	515174	7.97	290785	9.66
480-222859-16 DL	MW-07 Bailer DL	134886	6.54	520743	7.97	281378	9.66

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723618/3 Date Analyzed: 08/30/2024 12:20

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259887.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		PHN		CRY		PRY	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		438492	10.96	402184	13.42	412779	15.08
UPPER LIMIT		876984	11.46	804368	13.92	825558	15.58
LOWER LIMIT		219246	10.46	201092	12.92	206390	14.58
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 480-723618/6		455654	10.96	405045	13.42	432566	15.08
480-222859-16 DL	MW-07 Bailer DL	379956	10.96	378684	13.42	413556	15.08

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723782/3 Date Analyzed: 09/03/2024 11:28

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259914.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		DCBd4	1	NPT		ANT	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		115286	6.54	441405	7.97	249897	9.66
UPPER LIMIT		230572	7.04	882810	8.47	499794	10.16
LOWER LIMIT		57643	6.04	220703	7.47	124949	9.16
LAB SAMPLE ID	CLIENT SAMPLE ID						
480-222886-3 DL	MW-19 DL	104417	6.54	411113	7.97	210134	9.66
480-222886-4 DL	MW-19 (BAILER) DL	107194	6.54	418983	7.97	215336	9.65

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-723782/3 Date Analyzed: 09/03/2024 11:28

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{W100259914.d}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47119

		PHN		CRY		PRY	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		368770	10.96	360078	13.42	369670	15.08
UPPER LIMIT		737540	11.46	720156	13.92	739340	15.58
LOWER LIMIT		184385	10.46	180039	12.92	184835	14.58
LAB SAMPLE ID	CLIENT SAMPLE ID						
480-222886-3 DL	MW-19 DL	269949	10.96	248693	13.42	285165	15.08
480-222886-4 DL	MW-19 (BAILER) DL	258366	10.96	257734	13.42	280939	15.08

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: ICIS 480-718508/7 Date Analyzed: 07/15/2024 20:04

Instrument ID: $\frac{\text{HP5973Y}}{}$ GC Column: $\frac{\text{RXI-5Sil MS}}{}$ ID: $\frac{0.25 \text{ (mm)}}{}$

Lab File ID (Standard): $\underline{\text{Y037831.D}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 46869

		DCBd4	1	NPT		ANT	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	ID-POINT	167819	6.76	627436	8.15	8.15 365505	
UPPER LIMIT		335638	7.26	1254872	8.65	731010	10.34
LOWER LIMIT	LOWER LIMIT		6.26	313718	7.65	182753	9.34
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 480-718508/11		161310	6.76	595344	8.15	360775	9.84
CCVIS 480-724525/3		142271	6.44	513912	7.87	282920	9.58

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: ICIS 480-718508/7 Date Analyzed: 07/15/2024 20:04

Instrument ID: $\frac{\text{HP5973Y}}{}$ GC Column: $\frac{\text{RXI-5Sil MS}}{}$ ID: $\frac{0.25 \text{ (mm)}}{}$

Lab File ID (Standard): $\underline{\text{Y037831.D}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 46869

		PHN		CRY		PRY	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	ID-POINT	634399	11.15	582998	13.66	644462	15.44
UPPER LIMIT		1268798	11.65	1165996	14.16	1288924	15.94
LOWER LIMIT		317200	10.65	291499	13.16	322231	14.94
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 480-718508/11		631982	11.15	571928	13.66	626279	15.44
CCVIS 480-724525/3		509423	10.89	463525	13.35	506875	14.99

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-724525/3 Date Analyzed: 09/10/2024 11:29

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{Y038677.D}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47127

		DCBd4		NPT		ANT	
		AREA #	RT # AREA # RT # AREA		AREA #	RT #	
12/24 HOUR STD	2/24 HOUR STD 142		6.44	513912	7.87	282920	9.58
UPPER LIMIT		284542	6.94	1027824	8.37	565840	10.08
LOWER LIMIT	IT		5.94	256956	7.37	141460	9.08
LAB SAMPLE ID	CLIENT SAMPLE ID						
480-222859-6 DL	MW-07 DL	135598	6.44	508046	7.87	289092	9.58

DCBd4 = 1,4-Dichlorobenzene-d4

NPT = Naphthalene-d8

ANT = Acenaphthene-d10

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Sample No.: CCVIS 480-724525/3 Date Analyzed: 09/10/2024 11:29

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID (Standard): $\underline{\text{Y038677.D}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration ID: 47127

		PHN		CRY		PRY		
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
12/24 HOUR STD		509423	10.89	463525	13.35	506875	14.99	
UPPER LIMIT		1018846	11.39	927050	13.85	1013750	15.49	
LOWER LIMIT		254712	10.39	231763	12.85	253438	14.49	
LAB SAMPLE ID	CLIENT SAMPLE ID							
480-222859-6 DL	MW-07 DL	506023	10.89	428845	13.35	491942	14.99	

PHN = Phenanthrene-d10

CRY = Chrysene-d12

PRY = Perylene-d12

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-23 Lab Sample ID: 480-222859-4

Matrix: Ground Water Lab File ID: W100259871.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 09:50

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 15:31

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	110		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	80		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	56		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259871.d

Lims ID: 480-222859-B-4-A

Client ID: MW-23 Sample Type: Client

Inject. Date: 29-Aug-2024 15:31:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-008

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:38:01

Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flags
	_				•		
152	6.544	6.544	0.000	96	118800	4.00	
		7.965	-0.005	99	437722	4.00	
164	9.658	9.658	0.000		240597	4.00	
188	10.962	10.962	0.000	97	379235	4.00	
240	13.419	13.419	0.000	99	345426	4.00	
264	15.075	15.075	0.000	99	391893	4.00	
82	7.169	7.174	-0.005	87	338283	6.40	
172	9.007	9.012	-0.005	100	719991	8.77	
244	12.324	12.324	0.000	98	437056	4.51	
128		7.986			I	ND	
142		8.675			1	ND	
152		9.535			I	ND	
153		9.690			1	ND	
166		10.144			1	ND	
178		10.983			1	ND	
178		11.026			1	ND	
202		12.030			1	ND	
202		12.249			1	ND	
228		13.408			1	ND	
228		13.446			1	ND	
252		14.578			1	ND	
252		14.610			1	ND	
252		15.006			1	ND	
278		16.726			1	ND	
276		16.731			1	ND	
276		17.244			1	ND	
	240 264 82 172 244 128 142 153 166 178 178 202 202 228 252 252 252 278 276	Sig (min.) 152 6.544 136 7.960 164 9.658 188 10.962 240 13.419 264 15.075 82 7.169 172 9.007 244 12.324 128 142 152 153 166 178 178 202 202 228 228 252 252 252 278 276	Sig (min.) (min.) 152 6.544 6.544 136 7.960 7.965 164 9.658 9.658 188 10.962 10.962 240 13.419 13.419 264 15.075 15.075 82 7.169 7.174 172 9.007 9.012 244 12.324 12.324 128 7.986 142 142 8.675 152 153 9.690 166 10.144 178 10.983 178 11.026 202 12.030 202 12.249 228 13.408 228 13.446 252 14.610 252 15.006 278 16.726 276 16.731	Sig (min.) (min.) (min.) 152 6.544 6.544 0.000 136 7.960 7.965 -0.005 164 9.658 9.658 0.000 188 10.962 10.962 0.000 240 13.419 13.419 0.000 264 15.075 15.075 0.000 82 7.169 7.174 -0.005 172 9.007 9.012 -0.005 144 12.324 12.324 0.000 128 7.986 142 8.675 152 9.535 153 9.690 166 10.144 178 10.983 178 11.026 202 12.030 202 12.249 228 13.446 252 14.578 252 14.610 252 15.006 278 16.726 276 16.731 16.726 16.731	Sig (min.) (min.) (min.) Q 152 6.544 6.544 0.000 96 136 7.960 7.965 -0.005 99 164 9.658 9.658 0.000 92 188 10.962 10.962 0.000 97 240 13.419 13.419 0.000 99 82 7.169 7.174 -0.005 87 172 9.007 9.012 -0.005 100 244 12.324 12.324 0.000 98 128 7.986 42 8.675 152 9.535 153 9.690 166 10.144 178 10.983 178 11.026 202 12.030 202 12.249 228 13.446 252 14.578 252 14.610 252 15.006 278 16.726 278 16.726 276 16.731 16.726 276 16.731 16.726 16.731	Sig (min.) (min.) (min.) Q Response 152 6.544 6.544 0.000 96 118800 136 7.960 7.965 -0.005 99 437722 164 9.658 9.658 0.000 92 240597 188 10.962 10.962 0.000 97 379235 240 13.419 13.419 0.000 99 345426 264 15.075 15.075 0.000 99 391893 82 7.169 7.174 -0.005 87 338283 172 9.007 9.012 -0.005 100 719991 244 12.324 12.324 0.000 98 437056 128 7.986 142 8.675 153 9.690 166 10.144 178 11.026 202 12.030 202 12.249 228 13.446	Sig (min.) (min.) (min.) Q Response ng/uL 152 6.544 6.544 0.000 96 118800 4.00 136 7.960 7.965 -0.005 99 437722 4.00 164 9.658 9.658 0.000 92 240597 4.00 188 10.962 10.962 0.000 97 379235 4.00 240 13.419 13.419 0.000 99 345426 4.00 264 15.075 15.075 0.000 99 391893 4.00 82 7.169 7.174 -0.005 87 338283 6.40 172 9.007 9.012 -0.005 100 719991 8.77 244 12.324 12.324 0.000 98 437056 4.51 128 7.986 ND ND ND 152 9.535 ND ND 153 9.690

QC Flag Legend
Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259871.d

Client ID: MW-23

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259871.d

Lims ID: 480-222859-B-4-A

Client ID: MW-23 Sample Type: Client

Inject. Date: 29-Aug-2024 15:31:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-008

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:38:01

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	6.40	79.96
\$ 10 2-Fluorobiphenyl	8.00	8.77	109.68
\$ 12 p-Terphenyl-d14	8.00	4.51	56.40

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-07 Lab Sample ID: 480-222859-6

Matrix: Ground Water Lab File ID: W100259872.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 09:10

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 15:57

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	15		0.50	0.38
83-32-9	Acenaphthene	130	E	0.50	0.30
208-96-8	Acenaphthylene	2.1		0.50	0.34
120-12-7	Anthracene	3.5		0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.51		0.50	0.36
86-73-7	Fluorene	30		0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	380	E	0.50	0.42
85-01-8	Phenanthrene	22		0.50	0.38
129-00-0	Pyrene	0.59		0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	93		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	52		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	62		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Lims ID: 480-222859-A-6-A

Client ID: MW-07 Sample Type: Client

Inject. Date: 29-Aug-2024 15:57:30 ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-009

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:05:06

						I			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags	
Compound	Oig	(111111)	(111111)	(111111)		Пооролоо	rig/uL	1 lugo	
* 1 1,4-Dichlorobenzene-d4	152	6.549	6.544	0.005	96	129791	4.00		
* 2 Naphthalene-d8	136	7.976	7.965	0.011	98	705301	4.00		
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	92	293565	4.00		
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	451614	4.00		
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	380472	4.00		
* 6 Perylene-d12	264	15.075	15.075	0.000	99	407523	4.00		
\$ 9 Nitrobenzene-d5	82	7.174	7.174	0.000	88	356951	4.20		
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	744235	7.43		
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	531270	4.98		
76 Naphthalene	128	8.013	7.986	0.027	92	18280505	96.0	E	
89 2-Methylnaphthalene	142	8.681	8.675	0.006	91	428955	3.74		
111 Acenaphthylene	152	9.530	9.535	-0.005	98	69361	0.5327		
114 Acenaphthene	153	9.690	9.690	0.000	96	2765079	32.7	E	
129 Fluorene	166	10.145	10.144	0.000	94	720027	7.57		
156 Phenanthrene	178	10.983	10.983	0.000	98	680551	5.48		
157 Anthracene	178	11.026	11.026	0.000	97	108285	0.8854		
168 Fluoranthene	202	12.025	12.030	-0.005	97	15090	0.1286		
172 Pyrene	202	12.244	12.249	-0.005	97	18536	0.1471		
190 Benzo[a]anthracene	228		13.408			I	ND		
191 Chrysene	228		13.446			I	ND		
196 Benzo[b]fluoranthene	252		14.578			ND			
197 Benzo[k]fluoranthene	252		14.610			ND			
201 Benzo[a]pyrene	252		15.006			ND			
205 Dibenz(a,h)anthracene	278		16.726			ND			
204 Indeno[1,2,3-cd]pyrene	276		16.731			I	ND		
206 Benzo[g,h,i]perylene	276		17.244				ND		

QC Flag Legend

Processing Flags

E - Exceeded Maximum Amount

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Lims ID: 480-222859-A-6-A

Client ID: MW-07 Sample Type: Client

Inject. Date: 29-Aug-2024 15:57:30 ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-009

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:05:06

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	4.20	52.48
\$ 10 2-Fluorobiphenyl	8.00	7.43	92.87
\$ 12 p-Terphenyl-d14	8.00	4.98	62.25

Eurofins Buffalo

 $\hfill \hfill Data File:

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

2.0 ul Dil. Factor: 1.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

 $\hfill \hfill Data File:

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 Limit Group: MB - 8270D ICAL Method:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

 $\hfill \hfill Data File:

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259872.d

Injection Date: 29-Aug-2024 15:57:30 Instrument ID: HP5973W Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

2.0 ul Dil. Factor: 1.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Column: Detector MS SCAN

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-07 DL Lab Sample ID: 480-222859-6 DL

Matrix: Ground Water Lab File ID: Y038679.D

Analysis Method: 8270D_LL_PAH Date Collected: 08/26/2024 09:10

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 09/10/2024 12:26

Con. Extract Vol.: 1 (mL) Dilution Factor: 50

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 724525 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973Y

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	22	J	25	19
83-32-9	Acenaphthene	120		25	15
208-96-8	Acenaphthylene	25	U	25	17
120-12-7	Anthracene	25	U	25	20
56-55-3	Benzo[a]anthracene	25	U	25	20
50-32-8	Benzo[a]pyrene	25	U	25	17
205-99-2	Benzo[b]fluoranthene	25	U	25	15
191-24-2	Benzo[g,h,i]perylene	25	U	25	19
207-08-9	Benzo[k]fluoranthene	25	U	25	4.3
218-01-9	Chrysene	25	U	25	16
53-70-3	Dibenz(a,h)anthracene	25	U	25	17
206-44-0	Fluoranthene	25	U	25	18
86-73-7	Fluorene	26		25	19
193-39-5	Indeno[1,2,3-cd]pyrene	25	U	25	22
91-20-3	Naphthalene	1300		25	21
85-01-8	Phenanthrene	24	J	25	19
129-00-0	Pyrene	25	U	25	18

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	109		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	83		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	65		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

Lims ID: 480-222859-A-6-A

Client ID: MW-07 Sample Type: Client

Inject. Date: 10-Sep-2024 12:26:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Sample Info: 480-0119937-005

Operator ID: JM Instrument ID: HP5973Y

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:10-Sep-2024 12:48:07Calib Date:23-Aug-2024 16:26:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240823-119674.b\Y038426.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1641

First Level Reviewer: IZ8L Date: 10-Sep-2024 12:47:56

- 1131 23131 13110W01. 1202						10 00p 2021 12:17:00		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags
Composite.		()	()	()			1.3.5.	10.90
* 1 1,4-Dichlorobenzene-d4	152	6.439	6.442	-0.003	96	135598	4.00	
* 2 Naphthalene-d8	136	7.874	7.871	0.003	99	508046	4.00	
* 3 Acenaphthene-d10	164	9.575	9.579	-0.004	94	289092	4.00	
* 4 Phenanthrene-d10	188	10.886	10.889	-0.003	96	506023	4.00	
* 5 Chrysene-d12	240	13.346	13.350	-0.004	99	428845	4.00	
* 6 Perylene-d12	264	14.988	14.992	-0.004	98	491942	4.00	
\$ 9 Nitrobenzene-d5	82	7.079	7.077	0.002	88	6746	0.1321	
\$ 10 2-Fluorobiphenyl	172	8.923	8.927	-0.004	99	17410	0.1751	
\$ 12 p-Terphenyl-d14	244	12.249	12.253	-0.004	98	11977	0.1047	
74 Naphthalene	128	7.897	7.895	0.002	97	896591	6.46	
87 2-Methylnaphthalene	142	8.591	8.589	0.002	91	8982	0.1103	
108 Acenaphthylene	152		9.448			I	ND	
110 Acenaphthene	153	9.605	9.608	-0.003	95	55270	0.6242	
124 Fluorene	166	10.061	10.065	-0.004	97	10879	0.1279	
151 Phenanthrene	178	10.903	10.907	-0.004	96	16600	0.1214	
152 Anthracene	178	10.951	10.948	0.003	94	2377	0.0326	
164 Fluoranthene	202		11.950			I	ND	
167 Pyrene	202		12.176			I	ND	
180 Benzo[a]anthracene	228		13.338			I	ND	
182 Chrysene	228		13.379			I	ND	
186 Benzo[b]fluoranthene	252		14.500			I	ND	
187 Benzo[k]fluoranthene	252		14.529			1	ND	
189 Benzo[a]pyrene	252		14.921			ND		
194 Dibenz(a,h)anthracene	278		16.622			ND		
193 Indeno[1,2,3-cd]pyrene	276		16.634			ND		
195 Benzo[g,h,i]perylene	276		17.138			J	ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00280 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

 Injection Date:
 10-Sep-2024 12:26:30
 Instrument ID:
 HP5973Y

 Lims ID:
 480-222859-A-6-A
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Injection Vol: 2.0 ul

Dil. Factor: 50.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

5

5

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

Lims ID: 480-222859-A-6-A

Client ID: MW-07 Sample Type: Client

Inject. Date: 10-Sep-2024 12:26:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Sample Info: 480-0119937-005

Operator ID: JM Instrument ID: HP5973Y

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:10-Sep-2024 12:48:07Calib Date:23-Aug-2024 16:26:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240823-119674.b\Y038426.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1641

First Level Reviewer: IZ8L Date: 10-Sep-2024 12:47:56

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	0.1321	82.55
\$ 10 2-Fluorobiphenyl	8.00	0.1751	109.41
\$ 12 p-Terphenyl-d14	8.00	0.1047	65.47

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

 Injection Date:
 10-Sep-2024 12:26:30
 Instrument ID:
 HP5973Y

 Lims ID:
 480-222859-A-6-A
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: JM ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

 Injection Date:
 10-Sep-2024 12:26:30
 Instrument ID:
 HP5973Y

 Lims ID:
 480-222859-A-6-A
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: JM ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

\\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D Data File: Injection Date: 10-Sep-2024 12:26:30 Instrument ID: HP5973Y Lims ID: 480-222859-A-6-A Lab Sample ID: 480-222859-6

Client ID: MW-07

Operator ID: JM ALS Bottle#: Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Y-LVI-8270 Limit Group: MB - 8270D ICAL Method:

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

 Injection Date:
 10-Sep-2024 12:26:30
 Instrument ID:
 HP5973Y

 Lims ID:
 480-222859-A-6-A
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: JM ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

 Data File:
 \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038679.D

 Injection Date:
 10-Sep-2024 12:26:30
 Instrument ID:
 HP5973Y

 Lims ID:
 480-222859-A-6-A
 Lab Sample ID:
 480-222859-6

Client ID: MW-07

Operator ID: JM ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 50.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-10 Lab Sample ID: 480-222859-7

Matrix: Ground Water Lab File ID: W100259873.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 08:40

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 16:24

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.20	J	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.72		0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.41	J	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	94		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	68		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	54		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Lims ID: 480-222859-A-7-A

Client ID: MW-10 Sample Type: Client

Inject. Date: 29-Aug-2024 16:24:30 ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-010

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:06:23

		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	Flags
* 4 4 4 5:11	450	0.544	0.544	0.000	00	400077	4.00	
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	138077	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	515705	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	281438	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	96	409497	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	413054	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	98	463898	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	87	339963	5.46	
\$ 10 2-Fluorobiphenyl	172	9.006	9.012	-0.006	100	718504	7.48	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	498397	4.30	
76 Naphthalene	128		7.986				ND	
89 2-Methylnaphthalene	142		8.675				ND	
111 Acenaphthylene	152		9.535				ND	
114 Acenaphthene	153		9.690				ND	
129 Fluorene	166		10.144				ND	
156 Phenanthrene	178	10.983	10.983	0.000	93	8781	0.0761	
157 Anthracene	178		11.026]	ND	
168 Fluoranthene	202	12.025	12.030	-0.005	97	20026	0.1812	
172 Pyrene	202	12.249	12.249	0.000	98	13690	0.1021	
190 Benzo[a]anthracene	228		13.408			1	ND	MU
191 Chrysene	228	13.446	13.446	0.000	95	8172	0.0551	М
196 Benzo[b]fluoranthene	252	14.568	14.578	-0.010	97	8163	0.0620	М
197 Benzo[k]fluoranthene	252	14.594	14.610	-0.016	1	4589	0.0499	Ma
201 Benzo[a]pyrene	252	15.000	15.006	-0.006	75	3691	0.0481	
205 Dibenz(a,h)anthracene	278		16.726	0.000	. •		ND	
204 Indeno[1,2,3-cd]pyrene	276	16.721	16.731	-0.010	88	4267	0.0429	
206 Benzo[g,h,i]perylene	276	17.228	17.244	-0.016	76	4562	0.0458	
200 201120[9,11,1]porytotio	2,0	17.220	17.277	0.010	, 0	-100L	3.0∓00	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated U - Marked Undetected a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Lims ID: 480-222859-A-7-A

Client ID: MW-10 Sample Type: Client

Inject. Date: 29-Aug-2024 16:24:30 ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-010

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:06:23

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.46	68.26
\$ 10 2-Fluorobiphenyl	8.00	7.48	93.52
\$ 12 p-Terphenyl-d14	8.00	4.30	53.79

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

 Injection Date:
 29-Aug-2024 16:24:30
 Instrument ID:
 HP5973W

 Lims ID:
 480-222859-A-7-A
 Lab Sample ID:
 480-222859-7

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

 $\hfill \hfill Data File:

29-Aug-2024 16:24:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222859-A-7-A Lab Sample ID: 480-222859-7

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

29-Aug-2024 16:24:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222859-A-7-A Lab Sample ID: 480-222859-7

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector

User Disabled Compound Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Injection Date: 29-Aug-2024 16:24:30 Instrument ID: HP5973W Lims ID: 480-222859-A-7-A Lab Sample ID: 480-222859-7

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

190 Benzo[a]anthracene, CAS: 56-55-3

Processing Results

RT	Mass	Response	Amount
13.40	228.00	3266	0.022288
13.45	229.00	3924	
13.45	226.00	3624	

Reviewer: QN8S, 03-Sep-2024 11:05:50 -04:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\\W100259873.d

Injection Date: 29-Aug-2024 16:24:30 Instrument ID: HP5973W 480-222859-A-7-A Lims ID: Lab Sample ID: 480-222859-7

Client ID: MW-10

ALS Bottle#: 10 Operator ID: ED Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) MS SCAN Detector

196 Benzo[b]fluoranthene, CAS: 205-99-2

Signal: 1

RT: 14.57 Area: 11853 Amount: 0.089727 Amount Units: ng/uL

Processing Integration Results

RT: 14.57 Area: 8163 Amount: 0.062040 Amount Units: ng/uL

Reviewer: QN8S, 03-Sep-2024 11:06:03 -04:00:00 (UTC)

Audit Action: Split an Integrated Peak Audit Reason: Split Peak

Page 578 of 1052

Report Date: 03-Sep-2024 11:24:17 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Injection Date: 29-Aug-2024 16:24:30 Instrument ID: HP5973W Lims ID: 480-222859-A-7-A Lab Sample ID: 480-222859-7

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

197 Benzo[k]fluoranthene, CAS: 207-08-9

Signal: 1

Not Detected

Expected RT: 14.61

Processing Integration Results

RT: 14.59
Area: 4589
Amount: 0.049871
Amount Units: ng/uL

Reviewer: QN8S, 03-Sep-2024 11:06:12 -04:00:00 (UTC)

Audit Action: Split an Integrated Peak Audit Reason: Split Peak

Page 579 of 1052

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259873.d

Client ID: MW-10

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

191 Chrysene, CAS: 218-01-9

Signal: 1

RT: 13.45
Area: 11475
Amount: 0.082643
Amount Units: ng/uL

Processing Integration Results

RT: 13.45
Area: 8172
Amount: 0.055061
Amount Units: ng/uL

Reviewer: QN8S, 03-Sep-2024 11:05:56 -04:00:00 (UTC)

Audit Action: Split an Integrated Peak Audit Reason: Split Peak

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-11A Lab Sample ID: 480-222859-8

Matrix: Ground Water Lab File ID: W100259874.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 11:50

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 16:50

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	Ū	0.50	0.38
83-32-9	Acenaphthene	3.2		0.50	0.30
208-96-8	Acenaphthylene	0.95		0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.48	J	0.50	0.36
86-73-7	Fluorene	0.64		0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.63		0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	101		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	73		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	70		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259874.d

Lims ID: 480-222859-B-8-A

Client ID: MW-11A Sample Type: Client

Inject. Date: 29-Aug-2024 16:50:30 ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-011

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:10:23

0	0	RT	Adj RT	Dlt RT		D	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	Flags
* 11,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	137288	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	505418	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	279201	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	412969	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	400114	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	457561	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	88	356255	5.84	
\$ 10 2-Fluorobiphenyl	172	9.007	9.012	-0.005	100	772513	8.11	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	627167	5.59	
76 Naphthalene	128		7.986			1	ND	
89 2-Methylnaphthalene	142		8.675			I	ND	
111 Acenaphthylene	152	9.530	9.535	-0.005	97	28917	0.2382	
114 Acenaphthene	153	9.685	9.690	-0.005	96	64413	0.7969	
129 Fluorene	166	10.139	10.144	-0.005	97	13984	0.1592	
156 Phenanthrene	178		10.983			1	ND	
157 Anthracene	178	11.026	11.026	0.000	89	2263	0.0255	
168 Fluoranthene	202	12.025	12.030	-0.005	97	12617	0.1189	
172 Pyrene	202	12.249	12.249	0.000	97	21019	0.1581	
190 Benzo[a]anthracene	228		13.408			I	ND	
191 Chrysene	228		13.446			I	ND	
196 Benzo[b]fluoranthene	252		14.578			I	ND	
197 Benzo[k]fluoranthene	252		14.610		ND			
201 Benzo[a]pyrene	252		15.006		ND			
205 Dibenz(a,h)anthracene	278		16.726		ND			
204 Indeno[1,2,3-cd]pyrene	276		16.731	ND				
206 Benzo[g,h,i]perylene	276		17.244			I	ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259874.d

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259874.d

Lims ID: 480-222859-B-8-A

Client ID: MW-11A Sample Type: Client

Inject. Date: 29-Aug-2024 16:50:30 ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-011

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:10:23

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.84	72.96
\$ 10 2-Fluorobiphenyl	8.00	8.11	101.39
\$ 12 p-Terphenyl-d14	8.00	5.59	69.87

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259874.d Data File:

Injection Date: 29-Aug-2024 16:50:30 Instrument ID: HP5973W Lims ID: 480-222859-B-8-A Lab Sample ID: 480-222859-8

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Eurofins Buffalo

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259874.d Data File:

Injection Date: 29-Aug-2024 16:50:30 Instrument ID: HP5973W Lims ID: 480-222859-B-8-A Lab Sample ID: 480-222859-8

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259874.d Data File:

Injection Date: 29-Aug-2024 16:50:30 Instrument ID: HP5973W Lims ID: 480-222859-B-8-A Lab Sample ID: 480-222859-8

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259874.d

 Injection Date:
 29-Aug-2024 16:50:30
 Instrument ID:
 HP5973W

 Lims ID:
 480-222859-B-8-A
 Lab Sample ID:
 480-222859-8

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\\W100259874.d

Injection Date: 29-Aug-2024 16:50:30 Instrument ID: HP5973W Lims ID: 480-222859-B-8-A Lab Sample ID: 480-222859-8

Client ID: MW-11A

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: SW-01 Lab Sample ID: 480-222859-9

Matrix: Surface Water Lab File ID: W100259875.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 12:40

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 17:16

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	102		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	74		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	64		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240829-119764.b\\W100259875.d

Lims ID: 480-222859-B-9-A

Client ID: SW-01 Sample Type: Client

Inject. Date: 29-Aug-2024 17:16:30 ALS Bottle#: 12 Worklist Smp#: 12

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-012

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:10:58

Adj RT (min.) Dlt F (mir.) 6.544 0.00 7.965 -0.00	n.) Q 00 96	Response	OnCol Amt ng/uL	Flags
6.544 0.00	00 96		J	•
		131107		
7.965 -0.00			4.00	
	05 100	483140	4.00	
9.658 0.00	00 93	263701	4.00	
10.962 0.00	00 97	382611	4.00	
13.419 0.00	00 99	379419	4.00	
15.075 0.00	00 99	427177	4.00	
7.174 -0.00	05 89	344335	5.90	
9.012 -0.00	05 99	733537	8.15	
12.324 0.00	00 98	548808	5.16	
7.986		1	ND	
8.675		1	ND	
9.535		1	ND	
9.690		1	ND	
10.144		1	ND	
10.983		1	ND	
11.026		1	ND	
12.030 -0.00	05 96	3983	0.0506	
12.249 0.00	00 76	2479	0.0253	
13.408		1	ND	
13.446		1	ND	
14.578		1	ND	
14.610		ND		
15.006		ND		
16.726		ND		
16.731		1	ND	
17.244		1	ND	
	9.658	9.658 0.000 93 0.962 0.000 97 3.419 0.000 99 5.075 0.000 99 7.174 -0.005 89 9.012 -0.005 99 2.324 0.000 98 7.986 3.675 9.535 9.690 0.144 0.983 1.026 2.030 -0.005 96 2.249 0.000 76 3.408 3.446 4.578 4.610 5.006 6.726 6.731	9.658 0.000 93 263701 0.962 0.000 97 382611 3.419 0.000 99 379419 5.075 0.000 99 427177 7.174 -0.005 89 344335 9.012 -0.005 99 733537 2.324 0.000 98 548808 7.986 18 3.675 19 9.535 10 9.690 10 0.144 10 0.983 1 1.026 1 2.030 -0.005 96 3.408 1 3.446 1 4.578 1 4.610 5 5.006 6 6.726 6 6.731 1	9.658 0.000 93 263701 4.00 0.962 0.000 97 382611 4.00 3.419 0.000 99 379419 4.00 5.075 0.000 99 427177 4.00 7.174 -0.005 89 344335 5.90 9.012 -0.005 99 733537 8.15 2.324 0.000 98 548808 5.16 7.986 ND 3.675 ND ND 9.535 ND ND 0.144 ND ND 0.983 ND ND 1.026 ND ND 2.249 0.000 76 2479 0.0253 3.408 ND 3.446 ND ND 4.578 ND ND 4.610 ND ND 5.006 ND ND 6.726 ND ND

QC Flag Legend
Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259875.d

Injection Date: 29-Aug-2024 17:16:30 Instrument ID: HP5973W Lims ID: 480-222859-B-9-A Lab Sample ID: 480-222859-9

Client ID: SW-01

Operator ID: ED ALS Bottle#: 12 Worklist Smp#: 12

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240829-119764.b\\W100259875.d

Lims ID: 480-222859-B-9-A

Client ID: SW-01 Sample Type: Client

Inject. Date: 29-Aug-2024 17:16:30 ALS Bottle#: 12 Worklist Smp#: 12

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-012

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:10:58

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.90	73.77
\$ 10 2-Fluorobiphenyl	8.00	8.15	101.93
\$ 12 p-Terphenyl-d14	8.00	5.16	64.48

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: SW-02 Lab Sample ID: 480-222859-10

Matrix: Surface Water Lab File ID: W100259876.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 11:15

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 17:43

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	104		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	75		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	57		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259876.d

Lims ID: 480-222859-C-10-A

Client ID: SW-02 Sample Type: Client

Inject. Date: 29-Aug-2024 17:43:30 ALS Bottle#: 13 Worklist Smp#: 13

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-013

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:30

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flags
								· ·
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	97	131055	4.00	
* 2 Naphthalene-d8	136	7.960	7.965	-0.005	100	494619	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	94	268296	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	425201	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	389126	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	434566	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	87	359218	6.01	
\$ 10 2-Fluorobiphenyl	172	9.007	9.012	-0.005	100	761050	8.32	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	498592	4.57	
76 Naphthalene	128		7.986				ND	
89 2-Methylnaphthalene	142		8.675				ND	
111 Acenaphthylene	152		9.535				ND	
114 Acenaphthene	153		9.690				ND	
129 Fluorene	166		10.144				ND	
156 Phenanthrene	178		10.983				ND	
157 Anthracene	178		11.026				ND	
168 Fluoranthene	202	12.025	12.030	-0.005	94	2406	0.0344	
172 Pyrene	202		12.249				ND	
190 Benzo[a]anthracene	228		13.408				ND	
191 Chrysene	228		13.446			1	ND	
196 Benzo[b]fluoranthene	252		14.578			I	ND	
197 Benzo[k]fluoranthene	252		14.610			I	ND	
201 Benzo[a]pyrene	252		15.006			I		
205 Dibenz(a,h)anthracene	278		16.726			I		
204 Indeno[1,2,3-cd]pyrene	276		16.731			I	ND	
206 Benzo[g,h,i]perylene	276		17.244			1	ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259876.d

Injection Date: 29-Aug-2024 17:43:30 Instrument ID: HP5973W Lims ID: 480-222859-C-10-A Lab Sample ID: 480-222859-10

Client ID: SW-02

Operator ID: ED ALS Bottle#: 13 Worklist Smp#: 13

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259876.d

Lims ID: 480-222859-C-10-A

Client ID: SW-02 Sample Type: Client

Inject. Date: 29-Aug-2024 17:43:30 ALS Bottle#: 13 Worklist Smp#: 13

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-013

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:30

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	6.01	75.16
\$ 10 2-Fluorobiphenyl	8.00	8.32	103.95
\$ 12 p-Terphenyl-d14	8.00	4.57	57.12

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: EB Lab Sample ID: 480-222859-12

Matrix: Water Lab File ID: W100259877.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 12:00

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 18:09

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	97		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	70		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	76		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259877.d

Lims ID: 480-222859-A-12-A

Client ID: EB Sample Type: Client

Inject. Date: 29-Aug-2024 18:09:30 ALS Bottle#: 14 Worklist Smp#: 14

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-014

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:44

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flags
•								<u> </u>
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	131152	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	100	480695	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	266481	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	383145	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	372235	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	418923	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	87	327219	5.64	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	708774	7.80	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	631912	6.05	
76 Naphthalene	128	7.986	7.986	0.000	92	2407	0.0168	
89 2-Methylnaphthalene	142		8.675				ND	
111 Acenaphthylene	152		9.535				ND	
114 Acenaphthene	153		9.690				ND	
129 Fluorene	166		10.144			1	ND	
156 Phenanthrene	178		10.983			1	ND	
157 Anthracene	178		11.026			1	ND	
168 Fluoranthene	202		12.030			1	ND	
172 Pyrene	202		12.249			I	ND	
190 Benzo[a]anthracene	228		13.408			I	ND	
191 Chrysene	228		13.446			I	ND	
196 Benzo[b]fluoranthene	252		14.578				ND	
197 Benzo[k]fluoranthene	252		14.610				ND	
201 Benzo[a]pyrene	252		15.006		ND			
205 Dibenz(a,h)anthracene	278		16.726		ND			
204 Indeno[1,2,3-cd]pyrene	276		16.731	ND				
206 Benzo[g,h,i]perylene	276		17.244				ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259877.d

Injection Date: 29-Aug-2024 18:09:30 Instrument ID: HP5973W Lims ID: 480-222859-A-12-A Lab Sample ID: 480-222859-12

Client ID: EB

Operator ID: ED ALS Bottle#: 14 Worklist Smp#: 14

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259877.d

Lims ID: 480-222859-A-12-A

Client ID: EB Sample Type: Client

Inject. Date: 29-Aug-2024 18:09:30 ALS Bottle#: 14 Worklist Smp#: 14

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-014

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:44

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.64	70.47
\$ 10 2-Fluorobiphenyl	8.00	7.80	97.45
\$ 12 p-Terphenyl-d14	8.00	6.05	75.68

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: Duplicate Lab Sample ID: 480-222859-13

Matrix: Ground Water Lab File ID: W100259878.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 00:00

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 18:36

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	107		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	76		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	59		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259878.d

Lims ID: 480-222859-B-13-A

Client ID: Duplicate Sample Type: Client

Inject. Date: 29-Aug-2024 18:36:30 ALS Bottle#: 15 Worklist Smp#: 15

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-015

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:56

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags
Compound	Olg	(111111.)	(11111.)	(111111.)	<u> </u>	Пооролоо	I ligrat	i lugo
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	125769	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	466103	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	94	255314	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	363533	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	362139	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	412374	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	88	343938	6.11	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	742109	8.52	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	482921	4.76	
76 Naphthalene	128		7.986				ND	
89 2-Methylnaphthalene	142		8.675			ND		
111 Acenaphthylene	152		9.535				ND	
114 Acenaphthene	153		9.690				ND	
129 Fluorene	166		10.144				ND	
156 Phenanthrene	178		10.983				ND	
157 Anthracene	178		11.026				ND	
168 Fluoranthene	202		12.030				ND	
172 Pyrene	202		12.249				ND	
190 Benzo[a]anthracene	228		13.408				ND	
191 Chrysene	228		13.446				ND	
196 Benzo[b]fluoranthene	252		14.578				ND	
197 Benzo[k]fluoranthene	252		14.610			ND		
201 Benzo[a]pyrene	252		15.006			ND		
205 Dibenz(a,h)anthracene	278		16.726			ND		
204 Indeno[1,2,3-cd]pyrene	276		16.731			1	ND	
206 Benzo[g,h,i]perylene	276		17.244			I	ND	

QC Flag Legend Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259878.d

Client ID: Duplicate

Operator ID: ED ALS Bottle#: 15 Worklist Smp#: 15

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259878.d

Lims ID: 480-222859-B-13-A

Client ID: Duplicate Sample Type: Client

Inject. Date: 29-Aug-2024 18:36:30 ALS Bottle#: 15 Worklist Smp#: 15

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-015

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:11:56

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	6.11	76.36
\$ 10 2-Fluorobiphenyl	8.00	8.52	106.53
\$ 12 p-Terphenyl-d14	8.00	4.76	59.45

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-07 Bailer Lab Sample ID: 480-222859-16

Matrix: Water Lab File ID: W100259879.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 09:30

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 19:03

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	16		0.50	0.38
83-32-9	Acenaphthene	180	E	0.50	0.30
208-96-8	Acenaphthylene	2.9		0.50	0.34
120-12-7	Anthracene	4.5		0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.49	J	0.50	0.36
86-73-7	Fluorene	42		0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	360	E	0.50	0.42
85-01-8	Phenanthrene	29		0.50	0.38
129-00-0	Pyrene	0.62		0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	97		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	56		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	49		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Lims ID: 480-222859-B-16-A

Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 29-Aug-2024 19:03:30 ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-016

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:43:32

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flags	
Compound	Oig	(111111.)	(111111.)	(111111.)	Q	Пезропас	Tig/uL	1 lags	
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	97	129124	4.00		
* 2 Naphthalene-d8	136	7.975	7.965	0.010	99	708986	4.00		
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	92	293356	4.00		
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	456355	4.00		
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	387788	4.00		
* 6 Perylene-d12	264	15.075	15.075	0.000	99	413408	4.00		
\$ 9 Nitrobenzene-d5	82	7.174	7.174	0.000	88	381252	4.46		
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	776437	7.76		
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	422766	3.89		
76 Naphthalene	128	8.013	7.986	0.027	89	17365717	90.8	E	
89 2-Methylnaphthalene	142	8.681	8.675	0.006	92	462368	4.01		
111 Acenaphthylene	152	9.530	9.535	-0.005	97	93934	0.7190		
114 Acenaphthene	153	9.696	9.690	0.006	95	3764135	44.6	Е	
129 Fluorene	166	10.144	10.144	0.000	94	997850	10.5		
156 Phenanthrene	178	10.983	10.983	0.000	98	902842	7.20		
157 Anthracene	178	11.026	11.026	0.000	97	139498	1.13		
168 Fluoranthene	202	12.025	12.030	-0.005	97	14564	0.1235		
172 Pyrene	202	12.244	12.249	-0.005	98	19791	0.1538		
190 Benzo[a]anthracene	228		13.408				ND		
191 Chrysene	228		13.446				ND		
196 Benzo[b]fluoranthene	252		14.578			1	ND		
197 Benzo[k]fluoranthene	252		14.610		ND				
201 Benzo[a]pyrene	252		15.006		ND				
205 Dibenz(a,h)anthracene	278		16.726		ND				
204 Indeno[1,2,3-cd]pyrene	276		16.731			I	ND		
206 Benzo[g,h,i]perylene	276		17.244		ND				

QC Flag Legend Processing Flags

E - Exceeded Maximum Amount

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Lims ID: 480-222859-B-16-A

Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 29-Aug-2024 19:03:30 ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-016

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:43:32

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	4.46	55.74
\$ 10 2-Fluorobiphenyl	8.00	7.76	96.97
\$ 12 p-Terphenyl-d14	8.00	3.89	48.60

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259879.d Data File:

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259879.d Data File:

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259879.d Data File:

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

2.0 ul Dil. Factor: 1.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259879.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259879.d Data File:

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

\\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240829-119764.b\\W100259879.d Data File:

Injection Date: 29-Aug-2024 19:03:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 16 Worklist Smp#: 16

2.0 ul Dil. Factor: 1.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Detector MS SCAN

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-07 Bailer DL Lab Sample ID: 480-222859-16 DL

Matrix: Water Lab File ID: W100259892.d

Analysis Method: 8270D LL PAH Date Collected: 08/26/2024 09:30

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/30/2024 14:34

Con. Extract Vol.: 1 (mL) Dilution Factor: 20

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723618 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	20		10	7.6
83-32-9	Acenaphthene	130		10	6.0
208-96-8	Acenaphthylene	10	U	10	6.8
120-12-7	Anthracene	8.2	J	10	7.8
56-55-3	Benzo[a]anthracene	10	U	10	8.0
50-32-8	Benzo[a]pyrene	10	U	10	6.6
205-99-2	Benzo[b]fluoranthene	10	U	10	6.0
191-24-2	Benzo[g,h,i]perylene	10	U	10	7.4
207-08-9	Benzo[k]fluoranthene	10	U	10	1.7
218-01-9	Chrysene	10	U	10	6.4
53-70-3	Dibenz(a,h)anthracene	10	U	10	6.6
206-44-0	Fluoranthene	10	U	10	7.2
86-73-7	Fluorene	33		10	7.4
193-39-5	Indeno[1,2,3-cd]pyrene	10	U	10	8.8
91-20-3	Naphthalene	970		10	8.4
85-01-8	Phenanthrene	24		10	7.6
129-00-0	Pyrene	10	U	10	7.2

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	78		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	68		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	37		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259892.d

Lims ID: 480-222859-B-16-A

Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 30-Aug-2024 14:34:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Sample Info: 480-0119787-008

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 13:29:19Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 12:23:05

		RT	Adj RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	Flags
* 11,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	134886	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	100	520743	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	281378	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	379956	4.00	
* 5 Chrysene-d12	240	13.419	13.424	-0.005	99	378684	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	413556	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.169	0.000	88	15515	0.2735	
\$ 10 2-Fluorobiphenyl	172	9.007	9.012	-0.005	100	32571	0.3132	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	97	15741	0.1485	
76 Naphthalene	128	7.986	7.986	0.000	98	1709871	12.2	
89 2-Methylnaphthalene	142	8.675	8.670	0.000	93	21178	0.2528	
111 Acenaphthylene	152	0.070	9.535	0.000			ND	U
114 Acenaphthene	153	9.685	9.685	0.000	96	133253	1.64	J
129 Fluorene	166	10.139	10.144	-0.005	94	36779	0.4079	
156 Phenanthrene	178	10.983	10.983	0.000	96	31776	0.3025	
157 Anthracene	178	11.026	11.026	0.000	96	10096	0.1029	
168 Fluoranthene	202		12.030				ND	
172 Pyrene	202		12.249				ND	U
190 Benzo[a]anthracene	228		13.408				ND	
191 Chrysene	228		13.451			1	ND	
196 Benzo[b]fluoranthene	252		14.578			1	ND	
197 Benzo[k]fluoranthene	252		14.610			1		
201 Benzo[a]pyrene	252		15.006			ND		
205 Dibenz(a,h)anthracene	278		16.731			ND		
204 Indeno[1,2,3-cd]pyrene	276		16.737				ND	
206 Benzo[g,h,i]perylene	276		17.244			!	ND	

QC Flag Legend

Processing Flags

Review Flags

U - Marked Undetected

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259892.d

Injection Date: 30-Aug-2024 14:34:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259892.d

Lims ID: 480-222859-B-16-A

Client ID: MW-07 Bailer

Sample Type: Client

Inject. Date: 30-Aug-2024 14:34:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Sample Info: 480-0119787-008

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 13:29:19Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 12:23:05

Compound	Amount Added	Amount Recovered	% Rec.	
\$ 9 Nitrobenzene-d5	8.00	0.2735	68.37	
\$ 10 2-Fluorobiphenyl	8.00	0.3132	78.30	
\$ 12 p-Terphenyl-d14	8.00	0.1485	37.12	

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\\W100259892.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

 $\hfill \hfill Data File:

30-Aug-2024 14:34:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

2.0 ul Dil. Factor: 20.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

 $\hfill \hfill Data File:

30-Aug-2024 14:34:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: Worklist Smp#: 8

2.0 ul Dil. Factor: 20.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259892.d

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Eurofins Buffalo

 $\hfill \hfill Data File:

30-Aug-2024 14:34:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\\W100259892.d

Injection Date: 30-Aug-2024 14:34:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: Worklist Smp#: 8

2.0 ul Dil. Factor: 20.0000 Injection Vol:

MB - 8270D ICAL Method: W-LVI-8270 Limit Group:

Detector MS SCAN

Chrom Revision: 2.3 20-Aug-2024 19:34:52 Report Date: 03-Sep-2024 13:30:36

User Disabled Compound Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\\W100259892.d

Injection Date: 30-Aug-2024 14:34:30 Instrument ID: HP5973W 480-222859-B-16-A Lims ID: Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

ALS Bottle#: 8 Operator ID: ED Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL Column: MS SCAN RXI-5Sil MS (0.25 mm) Detector

111 Acenaphthylene, CAS: 208-96-8

Processing Results

9.52 153.00 2212

Reviewer: QN8S, 03-Sep-2024 12:22:52 -04:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

User Disabled Compound Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259892.d

Injection Date: 30-Aug-2024 14:34:30 Instrument ID: HP5973W Lims ID: 480-222859-B-16-A Lab Sample ID: 480-222859-16

Client ID: MW-07 Bailer

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 20.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

172 Pyrene, CAS: 129-00-0

Processing Results

RT	Mass	Response	Amount
12.24	202.00	846	0.012903
12.24	101.00	372	
12.24	100.00	139	

Reviewer: QN8S, 03-Sep-2024 12:23:00 -04:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-19 Lab Sample ID: 480-222886-3

Matrix: Ground Water Lab File ID: W100259880.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 10:15

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 19:30

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	110	E	0.50	0.38
83-32-9	Acenaphthene	3.7		0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	790	E	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	98		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	66		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	57		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259880.d

Lims ID: 480-222886-B-3-A

Client ID: MW-19 Sample Type: Client

Inject. Date: 29-Aug-2024 19:30:30 ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-017

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:45:29

						10.9	= : :::::	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags
Compound	Oig	(111111)	(111111.)	(111111.)	<u> </u>	Пооролос	iig/uL	i lugo
* 1 1,4-Dichlorobenzene-d4	152	6.549	6.544	0.005	95	130814	4.00	
* 2 Naphthalene-d8	136	7.997	7.965	0.032	89	613865	4.00	а
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	283667	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	451296	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	387492	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	428620	4.00	
\$ 9 Nitrobenzene-d5	82	7.179	7.174	0.005	88	392839	5.30	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	760666	7.86	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	494405	4.55	
76 Naphthalene	128	8.050	7.986	0.064	92	32702143	197.4	EMa
89 2-Methylnaphthalene	142	8.681	8.675	0.006	91	2749559	27.5	E
111 Acenaphthylene	152	9.530	9.535	-0.005	69	5762	0.0534	
114 Acenaphthene	153	9.685	9.690	-0.005	93	76065	0.9270	
129 Fluorene	166		10.144				ND	
156 Phenanthrene	178		10.983				ND	
157 Anthracene	178		11.026				ND	
168 Fluoranthene	202		12.030				ND	
172 Pyrene	202		12.249]	ND	
190 Benzo[a]anthracene	228		13.408				ND	
191 Chrysene	228		13.446				ND	
196 Benzo[b]fluoranthene	252		14.578			ND		
197 Benzo[k]fluoranthene	252		14.610			ND		
201 Benzo[a]pyrene	252		15.006			ND		
205 Dibenz(a,h)anthracene	278		16.726		ND			
204 Indeno[1,2,3-cd]pyrene	276		16.731		ND			
206 Benzo[g,h,i]perylene	276		17.244			J	ND	

QC Flag Legend

Processing Flags

E - Exceeded Maximum Amount

Review Flags

M - Manually Integrated a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259880.d

Injection Date: 29-Aug-2024 19:30:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259880.d

Lims ID: 480-222886-B-3-A

Client ID: MW-19 Sample Type: Client

Inject. Date: 29-Aug-2024 19:30:30 ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-017

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:45:29

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.30	66.27
\$ 10 2-Fluorobiphenyl	8.00	7.86	98.25
\$ 12 p-Terphenyl-d14	8.00	4.55	56.88

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259880.d

Injection Date: 29-Aug-2024 19:30:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

 $\hfill \hfill Data File:

Injection Date: 29-Aug-2024 19:30:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

 $\hfill \hfill Data File:

29-Aug-2024 19:30:30 Injection Date: Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: Detector MS SCAN

Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259880.d

Client ID: MW-19

Operator ID: ED ALS Bottle#: 17 Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

76 Naphthalene, CAS: 91-20-3

Signal: 1

Not Detected

Expected RT: 7.99

Processing Integration Results

RT: 8.05
Area: 32702143
Amount: 197.3940
Amount Units: ng/uL

Reviewer: QN8S, 30-Aug-2024 08:43:50 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Incomplete Integration

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\\W100259880.d

Injection Date: 29-Aug-2024 19:30:30 Instrument ID: HP5973W 480-222886-B-3-A Lims ID: Lab Sample ID: 480-222886-3

Client ID: MW-19

ALS Bottle#: 17 Operator ID: ED Worklist Smp#: 17

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) MS SCAN Detector

2 Naphthalene-d8, CAS: 1146-65-2

Signal: 1

Not Detected

Expected RT: 7.96

RT: 8.00 Area: 613865 4.000000 Amount: Amount Units: ng/uL

Reviewer: QN8S, 30-Aug-2024 08:43:39 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

Page 647 of 1052

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-19 DL Lab Sample ID: 480-222886-3 DL

Matrix: Ground Water Lab File ID: W100259917.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 10:15

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 09/03/2024 12:47

Con. Extract Vol.: 1(mL) Dilution Factor: 200

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723782 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	83	J	100	76
83-32-9	Acenaphthene	100	U	100	60
208-96-8	Acenaphthylene	100	U	100	68
120-12-7	Anthracene	100	U	100	78
56-55-3	Benzo[a]anthracene	100	U	100	80
50-32-8	Benzo[a]pyrene	100	U	100	66
205-99-2	Benzo[b]fluoranthene	100	U	100	60
191-24-2	Benzo[g,h,i]perylene	100	U	100	74
207-08-9	Benzo[k]fluoranthene	100	U	100	17
218-01-9	Chrysene	100	U	100	64
53-70-3	Dibenz(a,h)anthracene	100	U	100	66
206-44-0	Fluoranthene	100	U	100	72
86-73-7	Fluorene	100	U	100	74
193-39-5	Indeno[1,2,3-cd]pyrene	100	U	100	88
91-20-3	Naphthalene	3900		100	84
85-01-8	Phenanthrene	100	U	100	76
129-00-0	Pyrene	100	U	100	72

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	11	S1-	48-120
4165-60-0	Nitrobenzene-d5 (Surr)	125	S1+	46-120
1718-51-0	p-Terphenyl-d14 (Surr)	38		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Lims ID: 480-222886-B-3-A

Client ID: MW-19 Sample Type: Client

Inject. Date: 03-Sep-2024 12:47:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Sample Info: 480-0119815-006

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:12Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 04-Sep-2024 08:32:09

	<u> </u>	RT	Adj RT	Dlt RT			OnCol Amt	-
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	97	104417	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	411113	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	94	210134	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	269949	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	248693	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	98	285165	4.00	
\$ 9 Nitrobenzene-d5	82	7.179	7.174	0.005	37	1099	0.0500	а
\$ 10 2-Fluorobiphenyl	172	9.006	9.007	-0.001	95	2253	0.004281	
\$ 12 p-Terphenyl-d14	244	12.329	12.324	0.005	1	1055	0.0154	а
76 Naphthalene	128	7.986	7.986	0.000	98	538257	4.85	
89 2-Methylnaphthalene	142	8.675	8.675	0.000	87	6764	0.1041	
111 Acenaphthylene	152		9.530				ND	
114 Acenaphthene	153		9.685				ND	
129 Fluorene	166		10.139				ND	
156 Phenanthrene	178		10.983				ND	
157 Anthracene	178		11.026				ND	
168 Fluoranthene	202		12.025				ND	
172 Pyrene	202		12.249				ND	
190 Benzo[a]anthracene	228		13.409				ND	
191 Chrysene	228		13.446				ND	
196 Benzo[b]fluoranthene	252		14.573			ND		
197 Benzo[k]fluoranthene	252		14.605			ND		
201 Benzo[a]pyrene	252		15.006			ND		
205 Dibenz(a,h)anthracene	278		16.726			ND		
204 Indeno[1,2,3-cd]pyrene	276		16.732			ND		
206 Benzo[g,h,i]perylene	276		17.244				ND	
	_, 5							

QC Flag Legend
Processing Flags

Review Flags

a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Injection Date: 03-Sep-2024 12:47:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Lims ID: 480-222886-B-3-A

Client ID: MW-19 Sample Type: Client

Inject. Date: 03-Sep-2024 12:47:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Sample Info: 480-0119815-006

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:12Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 04-Sep-2024 08:32:09

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	0.0500	124.93
\$ 10 2-Fluorobiphenyl	8.00	0.004281	10.70
\$ 12 p-Terphenyl-d14	8.00	0.0154	38.44

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Injection Date: 03-Sep-2024 12:47:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: Worklist Smp#: 6

2.0 ul Dil. Factor: 200.0000 Injection Vol:

MB - 8270D ICAL W-LVI-8270 Method: Limit Group:

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Injection Date: 03-Sep-2024 12:47:30 Instrument ID: HP5973W Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Injection Date: 03-Sep-2024 12:47:30 Instrument ID: HP5973W
Lims ID: 480-222886-B-3-A Lab Sample ID: 480-222886-3

Client ID: MW-19

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

\$ 9 Nitrobenzene-d5, CAS: 4165-60-0

Signal: 1

Not Detected Expected RT: 7.17

Processing Integration Results

RT: 7.18
Area: 1099
Amount: 0.049974
Amount Units: ng/uL

Reviewer: QN8S, 04-Sep-2024 08:32:46 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259917.d

Client ID: MW-19

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

\$ 12 p-Terphenyl-d14, CAS: 1718-51-0

Signal: 1

Not Detected

Expected RT: 12.32

Processing Integration Results

RT: 12.33
Area: 1055
Amount: 0.015375
Amount Units: ng/uL

Reviewer: QN8S, 04-Sep-2024 08:32:44 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-19 (BAILER) Lab Sample ID: 480-222886-4

Matrix: Water Lab File ID: W100259881.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 10:45

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 19:57

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	130	E	0.50	0.38
83-32-9	Acenaphthene	4.2		0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	830	E	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	108		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	76		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	67		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Lims ID: 480-222886-A-4-A Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 29-Aug-2024 19:57:30 ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-018

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:46:42

							= : ::::: :		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags	
Compound	Oig	(111111.)	(111111.)	(111111.)	Q	ПСЭРОПЭС	Tig/uL	i lugs	
* 11,4-Dichlorobenzene-d4	152	6.554	6.544	0.010	95	127245	4.00		
* 2 Naphthalene-d8	136	7.997	7.965	0.032	94	597715	4.00	а	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	273809	4.00		
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	97	435418	4.00		
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	376356	4.00		
* 6 Perylene-d12	264	15.075	15.075	0.000	99	409951	4.00		
\$ 9 Nitrobenzene-d5	82	7.179	7.174	0.005	88	436546	6.05		
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	808223	8.65		
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	562776	5.33		
76 Naphthalene	128	8.050	7.986	0.064	73	33380769	206.9	EM	
89 2-Methylnaphthalene	142	8.681	8.675	0.006	97	3080757	31.7	E	
111 Acenaphthylene	152	9.530	9.535	-0.005	92	5523	0.0531		
114 Acenaphthene	153	9.685	9.690	-0.005	95	82549	1.04		
129 Fluorene	166		10.144			ND			
156 Phenanthrene	178		10.983			ND			
157 Anthracene	178		11.026			ND			
168 Fluoranthene	202		12.030			ND			
172 Pyrene	202		12.249			ND			
190 Benzo[a]anthracene	228		13.408			ND			
191 Chrysene	228		13.446			ND			
196 Benzo[b]fluoranthene	252		14.578			ND			
197 Benzo[k]fluoranthene	252		14.610			ND			
201 Benzo[a]pyrene	252		15.006			ND			
205 Dibenz(a,h)anthracene	278		16.726			ND			
204 Indeno[1,2,3-cd]pyrene	276		16.731			ND			
206 Benzo[g,h,i]perylene	276		17.244			ND			

QC Flag Legend

Processing Flags

E - Exceeded Maximum Amount

Review Flags

M - Manually Integrated a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Injection Date: 29-Aug-2024 19:57:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Lims ID: 480-222886-A-4-A Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 29-Aug-2024 19:57:30 ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-018

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:46:42

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	6.05	75.59
\$ 10 2-Fluorobiphenyl	8.00	8.65	108.19
\$ 12 p-Terphenyl-d14	8.00	5.33	66.66

Eurofins Buffalo

 $\hfill \hfill Data File:

Injection Date: 29-Aug-2024 19:57:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ALS Bottle#: 18 Worklist Smp#: 18

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Injection Date: 29-Aug-2024 19:57:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ALS Bottle#: 18 Worklist Smp#: 18

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Injection Date: 29-Aug-2024 19:57:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Report Date: 03-Sep-2024 11:24:41 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Injection Date: 29-Aug-2024 19:57:30 Instrument ID: HP5973W
Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

76 Naphthalene, CAS: 91-20-3

Signal: 1

Not Detected

Expected RT: 7.99

Processing Integration Results

RT: 8.05
Area: 33380769
Amount: 206.9345
Amount Units: ng/uL

Reviewer: QN8S, 30-Aug-2024 08:45:46 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Incomplete Integration

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259881.d

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 18 Worklist Smp#: 18

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

* 2 Naphthalene-d8, CAS: 1146-65-2

Signal: 1

Not Detected Expected RT: 7.96

RT: 8.00
Area: 597715
Amount: 4.000000
Amount Units: ng/uL

Reviewer: QN8S, 30-Aug-2024 08:45:36 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-19 (BAILER) DL Lab Sample ID: 480-222886-4 DL

Matrix: Water Lab File ID: W100259918.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 10:45

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 09/03/2024 13:13

Con. Extract Vol.: 1(mL) Dilution Factor: 200

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723782 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	96	J	100	76
83-32-9	Acenaphthene	100	U	100	60
208-96-8	Acenaphthylene	100	U	100	68
120-12-7	Anthracene	100	U	100	78
56-55-3	Benzo[a]anthracene	100	U	100	80
50-32-8	Benzo[a]pyrene	100	U	100	66
205-99-2	Benzo[b]fluoranthene	100	U	100	60
191-24-2	Benzo[g,h,i]perylene	100	U	100	74
207-08-9	Benzo[k]fluoranthene	100	U	100	17
218-01-9	Chrysene	100	U	100	64
53-70-3	Dibenz(a,h)anthracene	100	U	100	66
206-44-0	Fluoranthene	100	U	100	72
86-73-7	Fluorene	100	U	100	74
193-39-5	Indeno[1,2,3-cd]pyrene	100	U	100	88
91-20-3	Naphthalene	4400		100	84
85-01-8	Phenanthrene	100	U	100	76
129-00-0	Pyrene	100	U	100	72

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	11	S1-	48-120
4165-60-0	Nitrobenzene-d5 (Surr)	136	S1+	46-120
1718-51-0	p-Terphenyl-d14 (Surr)	48		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Lims ID: 480-222886-A-4-A Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 03-Sep-2024 13:13:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Sample Info: 480-0119815-007

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:12Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 04-Sep-2024 08:32:40

Compound	Cie	RT (min.)	Adj RT	Dlt RT		Doonance	OnCol Amt	Floor
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	Flags
* 11,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	97	107194	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	418983	4.00	
* 3 Acenaphthene-d10	164	9.653	9.658	-0.005	93	215336	4.00	
* 4 Phenanthrene-d10	188	10.962	10.962	0.000	96	258366	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	98	257734	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	98	280939	4.00	
\$ 9 Nitrobenzene-d5	82	7.163	7.174	-0.011	39	1335	0.0542	а
\$ 10 2-Fluorobiphenyl	172	9.006	9.007	-0.001	96	2316	0.004380	
\$ 12 p-Terphenyl-d14	244	12.335	12.324	0.011	1	1379	0.0193	а
76 Naphthalene	128	7.986	7.986	0.000	98	627234	5.55	
89 2-Methylnaphthalene	142	8.675	8.675	0.000	95	7953	0.1197	
111 Acenaphthylene	152		9.530				ND	
114 Acenaphthene	153		9.685			I	ND	
129 Fluorene	166		10.139			I	ND	
156 Phenanthrene	178		10.983			I	ND	
157 Anthracene	178		11.026			1	ND	
168 Fluoranthene	202		12.025			1	ND	
172 Pyrene	202		12.249			1	ND	
190 Benzo[a]anthracene	228		13.409				ND	
191 Chrysene	228		13.446				ND	
196 Benzo[b]fluoranthene	252		14.573				ND	
197 Benzo[k]fluoranthene	252		14.605			ND		
201 Benzo[a]pyrene	252		15.006			ND		
205 Dibenz(a,h)anthracene	278		16.726			ND		
204 Indeno[1,2,3-cd]pyrene	276		16.732			ND		
206 Benzo[g,h,i]perylene	276		17.244				ND	

QC Flag Legend Processing Flags

Review Flags

a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Lims ID: 480-222886-A-4-A Client ID: MW-19 (BAILER)

Sample Type: Client

Inject. Date: 03-Sep-2024 13:13:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Sample Info: 480-0119815-007

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:12Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 04-Sep-2024 08:32:40

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	0.0542	135.50
\$ 10 2-Fluorobiphenyl	8.00	0.004380	10.95
\$ 12 p-Terphenyl-d14	8.00	0.0193	48.32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Injection Date: 03-Sep-2024 13:13:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ALS Bottle#: 7 Worklist Smp#: 7

2.0 ul Dil. Factor: 200.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Injection Date: 03-Sep-2024 13:13:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ALS Bottle#: 7 Worklist Smp#: 7

2.0 ul Dil. Factor: 200.0000 Injection Vol:

MB - 8270D ICAL W-LVI-8270 Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

Eurofins Buffalo

\\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d Data File:

Injection Date: 03-Sep-2024 13:13:30 Instrument ID: HP5973W Lims ID: 480-222886-A-4-A Lab Sample ID: 480-222886-4

Client ID: MW-19 (BAILER)

Operator ID: ALS Bottle#: 7 Worklist Smp#: ED 7

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

9 Nitrobenzene-d5, CAS: 4165-60-0

Signal: 1

Not Detected

Expected RT: 7.17

RT: 7.16 Area: 1335 Amount: 0.054202 Amount Units: ng/uL

Reviewer: QN8S, 04-Sep-2024 08:32:34 -04:00:00 (UTC)

Audit Action: Assigned Compound ID

Report Date: 05-Sep-2024 11:51:18 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259918.d

Client ID: MW-19 (BAILER)

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 200.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

\$ 12 p-Terphenyl-d14, CAS: 1718-51-0

Signal: 1

Not Detected

Expected RT: 12.32

RT: 12.33
Area: 1379
Amount: 0.019327
Amount Units: ng/uL

Reviewer: QN8S, 04-Sep-2024 08:32:37 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

RT

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-13 Lab Sample ID: 480-222886-6

Matrix: Ground Water Lab File ID: W100259882.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 11:45

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 20:24

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	104		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	74		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	62		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259882.d

Lims ID: 480-222886-A-6-A

Client ID: MW-13 Sample Type: Client

Inject. Date: 29-Aug-2024 20:24:30 ALS Bottle#: 19 Worklist Smp#: 19

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-019

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:13:27

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags
•		,						<u> </u>
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	125362	4.00	
* 2 Naphthalene-d8	136	7.959	7.965	-0.006	100	464679	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	94	250303	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	418767	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	369044	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	410249	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	88	332260	5.92	
\$ 10 2-Fluorobiphenyl	172	9.006	9.012	-0.006	100	712791	8.35	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	509987	4.93	
76 Naphthalene	128		7.986				ND	
89 2-Methylnaphthalene	142		8.675				ND	
111 Acenaphthylene	152		9.535				ND	
114 Acenaphthene	153		9.690				ND	
129 Fluorene	166		10.144				ND	
156 Phenanthrene	178		10.983				ND	
157 Anthracene	178		11.026				ND	
168 Fluoranthene	202		12.030				ND	
172 Pyrene	202		12.249				ND	
190 Benzo[a]anthracene	228		13.408			I	ND	
191 Chrysene	228		13.446			I	ND	
196 Benzo[b]fluoranthene	252		14.578				ND	
197 Benzo[k]fluoranthene	252		14.610				ND	
201 Benzo[a]pyrene	252		15.006			1	ND	
205 Dibenz(a,h)anthracene	278		16.726			1	ND	
204 Indeno[1,2,3-cd]pyrene	276		16.731			1	ND	
206 Benzo[g,h,i]perylene	276		17.244			1	ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259882.d

Injection Date: 29-Aug-2024 20:24:30 Instrument ID: HP5973W Lims ID: 480-222886-A-6-A Lab Sample ID: 480-222886-6

Client ID: MW-13

Operator ID: ED ALS Bottle#: 19 Worklist Smp#: 19

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259882.d

Lims ID: 480-222886-A-6-A

Client ID: MW-13 Sample Type: Client

Inject. Date: 29-Aug-2024 20:24:30 ALS Bottle#: 19 Worklist Smp#: 19

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-019

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:13:27

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.92	74.01
\$ 10 2-Fluorobiphenyl	8.00	8.35	104.36
\$ 12 p-Terphenyl-d14	8.00	4.93	61.60

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Matrix: Ground Water Lab File ID: W100259883.d

Analysis Method: 8270D LL PAH Date Collected: 08/27/2024 10:40

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250 (mL) Date Analyzed: 08/29/2024 20:50

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: % Solids: GPC Cleanup: (Y/N) N

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.45	J	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	102		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	71		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	57		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259883.d

Lims ID: 480-222886-B-7-A

Client ID: MW-17 Sample Type: Client

Inject. Date: 29-Aug-2024 20:50:30 ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-020

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:14:03

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/uL	Flags
						·		
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	132008	4.00	
* 2 Naphthalene-d8	136	7.959	7.965	-0.006	99	500070	4.00	
* 3 Acenaphthene-d10	164	9.653	9.658	-0.005	94	267942	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	407611	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	385363	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	434534	4.00	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	88	341125	5.65	
\$ 10 2-Fluorobiphenyl	172	9.006	9.012	-0.006	100	749118	8.20	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	492105	4.55	
76 Naphthalene	128	7.981	7.986	-0.005	97	15555	0.1135	
89 2-Methylnaphthalene	142		8.675			I	ND	
111 Acenaphthylene	152		9.535			I	ND	
114 Acenaphthene	153		9.690			I	ND	
129 Fluorene	166		10.144			I	ND	
156 Phenanthrene	178		10.983			ļ	ND	
157 Anthracene	178		11.026			I	ND	
168 Fluoranthene	202		12.030			ļ	ND	
172 Pyrene	202		12.249			I	ND	
190 Benzo[a]anthracene	228		13.408			ļ	ND	
191 Chrysene	228		13.446			I	ND	
196 Benzo[b]fluoranthene	252		14.578			I	ND	
197 Benzo[k]fluoranthene	252		14.610			I	ND	
201 Benzo[a]pyrene	252		15.006			I	ND	
205 Dibenz(a,h)anthracene	278		16.726			ND		
204 Indeno[1,2,3-cd]pyrene	276		16.731			1	ND	
206 Benzo[g,h,i]perylene	276		17.244			1	ND	

QC Flag Legend

Processing Flags

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259883.d

Client ID: MW-17

Operator ID: ED ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259883.d

Lims ID: 480-222886-B-7-A

Client ID: MW-17 Sample Type: Client

Inject. Date: 29-Aug-2024 20:50:30 ALS Bottle#: 20 Worklist Smp#: 20

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-020

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:14:03

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.65	70.62
\$ 10 2-Fluorobiphenyl	8.00	8.20	102.45
\$ 12 p-Terphenyl-d14	8.00	4.55	56.93

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259883.d

Injection Date: 29-Aug-2024 20:50:30 Instrument ID: HP5973W Lims ID: 480-222886-B-7-A Lab Sample ID: 480-222886-7

Client ID: MW-17

Operator ID: ED ALS Bottle#: 20 Worklist Smp#: 20

2.0 ul Dil. Factor: 1.0000 Injection Vol:

W-LVI-8270 MB - 8270D ICAL Method: Limit Group:

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

FORM VI GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 480-722078/3	W100259729.d	
Level 2	IC 480-722078/4	W100259730.d	
Level 3	IC 480-722078/5	W100259731.d	
Level 4	IC 480-722078/6	W100259732.d	
Level 5	ICIS 480-722078/7	W100259733.d	
Level 6	IC 480-722078/8	W100259734.d	
Level 7	IC 480-722078/9	W100259735.d	
Level 8	IC 480-722078/10	W100259736.d	

ANALYTE			RRF			CURVE		COEFFICIE	IT #	MIN RRF	%RSD	# MAX			MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	11115	В	M1	M2		/RSE	/RS		'	OR COD
Naphthalene	1.0762	1.1303	1.1119	1.1308	1.1115	Lin2	0.001	1.079		0.7000	5.4	20	.0 0.9970		0.9900
2-Methylnaphthalene	0.6291 0.6477	0.6703 0.6407	0.6479 0.6345	0.6609	0.6556	Lin2	-0.00	0.651		0.4000	2.1	20	.0 1.0000		0.9900
1-Methylnaphthalene	0.6175 0.6539	0.6770 0.6504	0.6628 0.6362	0.6753	0.6623	Ave		0.654		0.0100	3.0	20	.0		
Acenaphthylene	1.6796 1.8019	1.7928 1.7893	1.7454 1.7700	1.8331	1.8248	Lin2	-0.01	1.802		0.9000	1.7	20	.0 1.0000)	0.9900
Acenaphthene	1.1854 1.1481	1.1874 1.1274	1.1573 1.1179	1.1879	1.1635	Lin2	0.005	1.151		0.9000	2.2	20	.0 1.0000)	0.9900
Dibenzofuran	1.6182 1.5672	1.6553 1.5632		1.6372	1.6130	Lin2	0.005	1.586		0.8000	2.6	20	.0 0.9990)	0.9900
Fluorene	1.2354 1.2926	1.3280 1.2732	1.3043 1.2529	1.2986	1.3143	Lin2	-0.00	1.296		0.9000	2.2	20	.0 0.9990)	0.9900
Phenanthrene	1.1025 1.1118	1.1540 1.0866	1.1013 1.0417	1.1104	1.1087	Lin2	0.002	1.099		0.7000	3.0	20	.0 0.9990		0.9900
Anthracene	1.0355 1.1073	1.0868 1.0422	1.1043 1.0291	1.1205	1.1220	Lin2	-0.00 6	1.089		0.7000	3.6	20	.0 0.9990		0.9900
Fluoranthene	1.0313 1.1886	1.1569 1.1551	1.1424 1.1364	1.2029	1.1997	Lin2	-0.01	1.178		0.6000	2.4	20	.0 0.9990		0.9900
Pyrene	1.3105 1.4132	1.3786 1.3721	1.3591 1.3188	1.4135	1.4095	Lin2	-0.00	1.385		0.6000	2.6	20	.0 0.9990		0.9900
Benzo[a]anthracene	1.3185 1.2920	1.2895 1.3105	1.2671 1.2333	1.3715	1.3076	Lin2	0.002	1.294		0.8000	3.3	20	.0 0.9990		0.9900
Chrysene	1.2686 1.1997	1.2388 1.1238	1.1711 1.0929	1.1959	1.1703	Lin2	0.015	1.159		0.7000	3.7	20	.0 0.9990		0.9900

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type. RSD is calculated for Ave curve types. RSE is used for all other types.

FORM VI GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/16/2024 14:14 Calibration End Date: 08/16/2024 17:21 Calibration ID: 47111

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	1 # 1	MAX %RSD	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE	1 1	RSE	OR COD		OR COD
Benzo[b]fluoranthene	1.1265 1.0982	1.2004 1.1032	1.1727	1.1553	1.1371	Lin2	-0.00	1.149		0.7000	3.6		20.0	0.9990		0.9900
Benzo[k]fluoranthene	1.0625 1.2979	1.1022 1.2584	1.1553 1.1120	1.2147	1.2333	Lin2	-0.02	1.210		0.7000	5.5		20.0	0.9970		0.9900
Benzo[a]pyrene	0.9041 1.0603	0.9797 1.0558		1.0429	1.0353	Lin2	-0.01	1.042		0.7000	1.7		20.0	1.0000		0.9900
Dibenz(a,h)anthracene	1.0471 1.2068	1.0937 1.1953	1.1400 1.1487	1.1726	1.1830	Lin2	-0.01	1.174		0.4000	2.5		20.0	0.9990		0.9900
<pre>Indeno[1,2,3-cd]pyrene</pre>	1.2213 1.4274	1.3180 1.4138	1.3429 1.3562	1.4186	1.4047	Lin2	-0.02	1.397		0.5000	2.3		20.0	0.9990		0.9900
Benzo[g,h,i]perylene	1.0250 1.1323	1.0570 1.1281	1.0940 1.0576	1.1272	1.1283	Lin2	-0.01	1.111		0.5000	2.7		20.0	0.9990		0.9900
Nitrobenzene-d5 (Surr)	0.4770	0.4603 0.4892	0.4680 0.4877	0.4784	0.4826	Lin2	-0.01	0.485		0.0100	0.9		20.0	1.0000		0.9900
2-Fluorobiphenyl (Surr)	1.3405	1.4340 1.3576	1.3835 1.3556	1.3986	1.3988	Lin2	0.037	1.359		0.0100	1.5		20.0	1.0000		0.9900
p-Terphenyl-d14 (Surr)	1.1510	1.1146 1.1054	1.1142 1.0633	1.1485	1.1535	Lin2	0	1.121		0.0100	3.2		20.0	0.9990		0.9900

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type. RSD is calculated for Ave curve types. RSE is used for all other types.

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil M ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LA	B SAMPLE ID:	LAB FILE ID:
Level 1	1 IC	480-722078/3	W100259729.d
Level 2	2 IC	480-722078/4	W100259730.d
Level 3	3 IC	480-722078/5	W100259731.d
Level 4	4 IC	480-722078/6	W100259732.d
Level 5	5 IC	IS 480-722078/7	W100259733.d
Level 6	6 IC	480-722078/8	W100259734.d
Level	7 IC	480-722078/9	W100259735.d
Level 8	8 IC	480-722078/10	W100259736.d

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (N	NG/UL)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Naphthalene	NPT	Lin2	23618 1157833	101289 2016530	195962 2909688	410178	749038	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
2-Methylnaphthalene	NPT	Lin2	13806 694793	60063 1333201	114190 1759231	239717	441837	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
1-Methylnaphthalene	NPT	Ave	13552 701398	60662 1353446	116817 1763892	244937	446354	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Acenaphthylene	ANT	Lin2	20824 1106506	89791 2109225	172939 2740353	373987	692039	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Acenaphthene	ANT	Lin2	14697 704986	59471 1328959	114666 1730737	242353	441264	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Dibenzofuran	ANT	Lin2	20062 962367	82904 1842667	154644 2390568	334025	611714	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Fluorene	ANT	Lin2	15317 793749	66514 1500879	129238 1939715	264931	498452	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Phenanthrene	PHN	Lin2	21515 1094350	92279 2115699	170732 2694132	359546	675333	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Anthracene	PHN	Lin2	20208 1089874	86911 2029141	171201 2661560	362841	683437	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Fluoranthene	PHN	Lin2	20127 1169990	92516 2249046	177097 2939082	389515	730757	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Pyrene	CRY	Lin2	21626 1193333	96005 2298266	185163 2999836	398835	748845	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[a]anthracene	CRY	Lin2	21757 1091033	89803 2195200	172629 2805459	386968	694724	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Chrysene	CRY	Lin2	20934 1013091	86270 1882354	159547 2485977	337422	621753	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[b]fluoranthene	PRY	Lin2	20682 1029364	92137 2042272	172555 2987580	358889	658424	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[k]fluoranthene	PRY	Lin2	19506 1216545	84604 2329590	169990 2794134	377330	714109	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil M ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE	RESPONSE						CONCENTRATION (NG/UL)						
	REF	TYPE	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5			
			LVL 6	LVL 7	LVL 8			LVL 6	LVL 7	LVL 8					
Benzo[a]pyrene	PRY	Lin2	16598	75196	147736	323977	599502	0.125	0.500	1.00	2.00	4.00			
			993855	1954652	2612862			8.00	12.0	16.0					
Dibenz(a,h)anthracene	PRY	Lin2	19224	83950	167732	364271	685023	0.125	0.500	1.00	2.00	4.00			
			1131122	2212900	2886377			8.00	12.0	16.0					
Indeno[1,2,3-cd]pyrene	PRY	Lin2	22423	101163	197598	440669	813352	0.125	0.500	1.00	2.00	4.00			
			1337910	2617405	3407631			8.00	12.0	16.0					
Benzo[g,h,i]perylene	PRY	Lin2	18819	81133	160964	350172	653310	0.125	0.500	1.00	2.00	4.00			
			1061296	2088339	2657323			8.00	12.0	16.0					
Nitrobenzene-d5 (Surr)	NPT	Lin2		41245	82474	173510	325246		0.500	1.00	2.00	4.00			
			511680	1018065	1352049			8.00	12.0	16.0					
2-Fluorobiphenyl (Surr)	ANT	Lin2		71824	137077	285332	530473		0.500	1.00	2.00	4.00			
			823126	1600337	2098865			8.00	12.0	16.0					
p-Terphenyl-d14 (Surr)	CRY	Lin2		77625	151800	324065	612863		0.500	1.00	2.00	4.00			
			971909	1851583	2418773			8.00	12.0	16.0					

Curve Type Legend:

Ave = Average ISTD

Lin2 = Linear 1/conc^2 ISTD

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 480-722078/3	W100259729.d	
Level 2	IC 480-722078/4	W100259730.d	
Level 3	IC 480-722078/5	W100259731.d	
Level 4	IC 480-722078/6	W100259732.d	
Level 5	ICIS 480-722078/7	W100259733.d	
Level 6	IC 480-722078/8	W100259734.d	
Level 7	IC 480-722078/9	W100259735.d	
Level 8	IC 480-722078/10	W100259736.d	

ANALYTE			PERCENT	' ERROR				PI	ERCENT EF	ROR LIMI	Т	
	LVL 1 # LVL 7 #	LVL 2 # LVL 8 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6
Naphthalene	-1.7 -10.2	4.4 -2.8	2.8	4.7	2.9	0.0	30 30	30 30	30	30	30	30
2-Methylnaphthalene	-0.9 -1.6	3.5 -2.6	-0.2	1.6	0.7	-0.5	30 30	30 30	30	30	30	30
1-Methylnaphthalene	-5.6 -0.6	3.4 -2.8	1.3	3.2	1.2	-0.1	30 30	30 30	30	30	30	30
Acenaphthylene	-0.2 -0.6	1.1 -1.7	-2.3	2.1	1.5	0.1	30 30	30 30	30	30	30	30
Acenaphthene	-0.7 -2.1	2.2 -2.9	0.0	2.9	0.9	-0.3	30 30	30 30	30	30	30	30
Dibenzofuran	-0.8 -1.5	3.6 -2.7	-2.0	3.0	1.6	-1.3	30 30	30 30	30	30	30	30
Fluorene	-1.0 -1.8	3.4 -3.3	1.1	0.4	1.5	-0.2	30 30	30 30	30	30	30	30
Phenanthrene	-1.2 -1.1	4.6 -5.2	0.0	0.9	0.8	1.1	30 30	30 30	30	30	30	30
Anthracene	-0.7 -4.3	0.8 -5.5	1.9	3.1	3.1	1.7	30 30	30 30	30	30	30	30
Fluoranthene	-0.3 -1.9	1.2 -3.5	-1.6	2.8	2.2	1.0	30 30	30 30	30	30	30	30
Pyrene	-0.2 -0.9	0.8 -4.8	-1.2	2.4	1.9	2.1	30 30	30 30	30	30	30	30
Benzo[a]anthracene	0.1 1.2	-0.8 -4.7	-2.3	5.8	1.0	-0.2	30 30	30 30	30	30	30	30
Chrysene	-1.1 -3.2	4.2 -5.8	-0.3	2.5	0.6	3.3	30 30	30 30	30	30	30	30
Benzo[b]fluoranthene	-1.3 -4.0	4.6 3.5	2.1	0.6	-1.0	-4.4	30 30	30 30	30	30	30	30
Benzo[k]fluoranthene	1.5 4.1	-5.5 -8.1	-2.9	1.2	2.3	7.4	30 30	30 30	30	30	30	30

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 722078

SDG No.: 222859

Instrument ID: HP5973W GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			PERCEN'	r error				PE	ERCENT E	RROR LIMI	Т	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
	LVL 7 #	LVL 8 #					LVL 7	LVL 8				
Benzo[a]pyrene	0.8	-2.5	-2.0	0.9	-0.3	1.9	30	30	30	30	30	30
	1.4	-0.2					30	30				
Dibenz(a,h)anthracene	1.0	-3.9	-1.5	0.6	1.1	2.9	30	30	30	30	30	30
	1.9	-2.1					30	30				
Indeno[1,2,3-cd]pyrene	0.7	-2.4	-2.3	2.3	0.9	2.3	30	30	30	30	30	30
	1.3	-2.9					30	30				
Benzo[g,h,i]perylene	0.6	-2.8	-0.5	2.0	1.8	2.0	30	30	30	30	30	30
	1.6	-4.7					30	30				
Nitrobenzene-d5 (Surr)		0.4	-0.8	-0.1	0.1	-1.4		30	30	30	30	30
	1.0	0.6					30	30				
2-Fluorobiphenyl (Surr)		0.0	-1.0	1.5	2.2	-1.8		30	30	30	30	30
	-0.4	-0.5					30	30				
p-Terphenyl-d14 (Surr)		-0.6	-0.6	2.4	2.8	2.6		30	30	30	30	30
	-1.4	-5.2					30	30				

Report Date: 19-Aug-2024 14:53:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259729.d

Lims ID: IC - List 1 - 0.125

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 16-Aug-2024 14:14:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-003

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:53:53Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 07:58:01

THIST ECVEL TICVICATE OF COLUMN		Date.			15 / tug-202	27 07.00.01			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	97	185519	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	702246	4.00	4.00	
* 3 Acenaphthene-d10	164	9.717	9.722	-0.005	92	396738	4.00	4.00	
4 Phenanthrene-d10	188	11.020	11.026	-0.006	97	624495	4.00	4.00	
* 5 Chrysene-d12	240	13.489	13.494	-0.005	99	528050	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	98	587500	4.00	4.00	
76 Naphthalene	128	8.050	8.050	0.000	97	23618	0.1250	0.1229	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	88	13806	0.1250	0.1238	
91 1-Methylnaphthalene	142	8.835	8.841	-0.006	90	13552	0.1250	0.1180	
111 Acenaphthylene	152	9.594	9.594	0.000	98	20824	0.1250	0.1248	
114 Acenaphthene	153	9.749	9.749	0.000	94	14697	0.1250	0.1241	
118 Dibenzofuran	168	9.899	9.899	0.000	97	20062	0.1250	0.1239	
129 Fluorene	166	10.203	10.203	0.000	93	15317	0.1250	0.1238	
156 Phenanthrene	178	11.042	11.047	-0.005	97	21515	0.1250	0.1235	
157 Anthracene	178	11.085	11.090	-0.005	97	20208	0.1250	0.1242	
168 Fluoranthene	202	12.089	12.094	-0.005	98	20127	0.1250	0.1246	
172 Pyrene	202	12.313	12.313	0.000	96	21626	0.1250	0.1247	
190 Benzo[a]anthracene	228	13.478	13.478	0.000	97	21757	0.1250	0.1252	
191 Chrysene	228	13.515	13.521	-0.006	97	20934	0.1250	0.1236	
196 Benzo[b]fluoranthene	252	14.664	14.664	0.000	97	20682	0.1250	0.1233	
197 Benzo[k]fluoranthene	252	14.691	14.696	-0.005	98	19506	0.1250	0.1269	
201 Benzo[a]pyrene	252	15.102	15.102	0.000	77	16598	0.1250	0.1260	
205 Dibenz(a,h)anthracene	278	16.859	16.870	-0.011	76	19224	0.1250	0.1263	
204 Indeno[1,2,3-cd]pyrene	276	16.859	16.876	-0.017	94	22423	0.1250	0.1258	а
206 Benzo[g,h,i]perylene	276	17.388	17.405	-0.017	97	18819	0.1250	0.1257	

QC Flag Legend

Processing Flags

Report Date: 19-Aug-2024 14:53:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Review Flags

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00631 Amount Added: 1.00 Units: mL

Report Date: 19-Aug-2024 14:53:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259729.d

Injection Date: 16-Aug-2024 14:14:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 0.125

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Report Date: 19-Aug-2024 14:53:55 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259729.d

Injection Date: 16-Aug-2024 14:14:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 0.125

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: Detector MS SCAN

204 Indeno[1,2,3-cd]pyrene, CAS: 193-39-5

Signal: 1

Not Detected

Expected RT: 16.88

Processing Integration Results

RT: 16.86
Area: 22423
Amount: 0.125848
Amount Units: ng/uL

Reviewer: QN8S, 19-Aug-2024 07:55:58 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

Report Date: 19-Aug-2024 14:54:03 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259730.d

Lims ID: IC - List 1 - 0.5

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 16-Aug-2024 14:41:30 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-004

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:54:01Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 07:59:28

First Level Reviewer: QN8S			ט	ate:		19-Aug-202	24 07:59:28		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	97	190777	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	716885	4.00	4.00	
* 3 Acenaphthene-d10	164	9.717	9.722	-0.005	94	400679	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	97	639731	4.00	4.00	
* 5 Chrysene-d12	240	13.489	13.494	-0.005	99	557130	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	99	614051	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	95	30427	0.5000	0.5032	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	40633	0.5000	0.4983	
\$ 9 Nitrobenzene-d5	82	7.238	7.238	0.000	90	41245	0.5000	0.5021	
\$ 10 2-Fluorobiphenyl	172	9.071	9.071	0.000	99	71824	0.5000	0.5000	
\$ 11 2,4,6-Tribromophenol	330	10.411	10.417	-0.006	94	8607	0.5000	0.5123	
\$ 12 p-Terphenyl-d14	244	12.388	12.388	0.000	96	77625	0.5000	0.4971	
13 1,4-Dioxane	88	3.680	3.670	0.010	93	16968	0.5000	0.4801	M
14 N-Nitrosodimethylamine	42	3.942	3.937	0.005	92	17957	0.5000	0.5147	
15 Pyridine	52	3.985	3.974	0.011	97	44342	1.00	1.01	
33 Benzaldehyde	77	6.106	6.106	0.000	94	69926	1.00	0.9779	
34 Phenol	94	6.127	6.127	0.000	98	42435	0.5000	0.4890	
36 Aniline	93	6.223	6.223	0.000	96	53427	0.5000	0.5508	
37 Bis(2-chloroethyl)ether	93	6.261	6.261	0.000	95	36984	0.5000	0.4905	
39 2-Chlorophenol	128	6.373	6.373	0.000	96	31681	0.5000	0.4871	
40 n-Decane	57	6.378	6.378	0.000	91	39324	0.5000	0.4996	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	96	38166	0.5000	0.5033	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	91	37410	0.5000	0.5005	
43 Benzyl alcohol	108	6.741	6.741	0.000	92	22250	0.5000	0.5056	
45 1,2-Dichlorobenzene	146	6.827	6.827	0.000	96	35912	0.5000	0.4985	
46 2-Methylphenol	108	6.843	6.848	-0.005	97	30341	0.5000	0.4983	
47 2,2'-oxybis[1-chloropropane]	45	6.886	6.891	-0.005	93	48948	0.5000	0.5119	
48 Indene	115	6.923	6.928	-0.005	89	314853	2.50	2.39	
51 4-Methylphenol	108	7.014	7.019	-0.005	96	31781	0.5000	0.5031	
50 N-Nitrosodi-n-propylamine	70	7.035	7.041	-0.006	86	23350	0.5000	0.5009	
52 Acetophenone	105	7.057	7.057	0.000	96	46586	0.5000	0.5050	
·									

Data File: \\chromfs\But	ffalo\Ch	romData	\HP5973V	V\202408	16-119	9562.b\W1002	59730.d		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
57 Hexachloroethane	117	7.211	7.217	-0.006	95	14451	0.5000	0.4943	
58 Nitrobenzene	77	7.260	7.260	0.000	88	39715	0.5000	0.5039	
62 Isophorone	82	7.511	7.511	0.000	100	65379	0.5000	0.4792	
65 2-Nitrophenol	139	7.612	7.612	0.000	94	15266	0.5000	0.4999	
66 2,4-Dimethylphenol	107	7.612	7.618	-0.006	95	33623	0.5000	0.4964	
69 Bis(2-chloroethoxy)methane	93	7.714	7.714	0.000	99	40317	0.5000	0.4970	
70 Benzoic acid	105	7.660	7.730	-0.070	86	42774	2.50	4.35	M
72 2,4-Dichlorophenol	162	7.858	7.858	0.000	95	25690	0.5000	0.4998	
74 1,2,4-Trichlorobenzene	180	7.959	7.959	0.000	94	28360	0.5000	0.5194	
76 Naphthalene	128	8.050	8.050	0.000	98	101289	0.5000	0.5218	
78 4-Chloroaniline	127	8.077	8.082	-0.005	95	34886	0.5000	0.5060	
79 2,6-Dichlorophenol	162	8.098	8.098	0.000	95	25957	0.5000	0.4983	
81 Hexachlorobutadiene	225	8.173	8.168	0.005	97	16366	0.5000	0.4894	
85 Caprolactam	113	8.397	8.430	-0.033	81	21680	1.00	1.01	
86 4-Chloro-3-methylphenol	107	8.542	8.547	-0.005	96	26003	0.5000	0.5082	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	94	60063	0.5000	0.5176	
91 1-Methylnaphthalene	142	8.835	8.841	-0.006	92	60662	0.5000	0.5172	
92 Hexachlorocyclopentadiene	237	8.894	8.894	0.000	97	18495	0.5000	0.5034	
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	98	28511	0.5000	0.5050	
96 2,4,6-Trichlorophenol	196	8.996	8.996	0.000	94	17322	0.5000	0.5009	
97 2,4,5-Trichlorophenol	196	9.033	9.033	0.000	93	17093	0.5000	0.5083	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	96	74608	0.5000	0.4970	
102 2-Chloronaphthalene	162	9.204	9.210	-0.006	97	59166	0.5000	0.5199	
104 2-Nitroaniline	65	9.279	9.279	0.000	79	17690	0.5000	0.5101	а
108 Dimethyl phthalate	163	9.412	9.418	-0.006	98	67910	0.5000	0.5211	
109 1,3-Dinitrobenzene	168	9.461	9.461	0.000	88	9098	0.5000	0.5135	
110 2,6-Dinitrotoluene	165	9.482	9.487	-0.005	95	14728	0.5000	0.5060	
111 Acenaphthylene	152	9.594	9.594	0.000	99	89791	0.5000	0.5057	
112 3-Nitroaniline	138	9.648	9.648	0.000	95	12928	0.5000	0.5126	а
113 2,4-Dinitrophenol	184	9.733	9.738	-0.005	75	7255	1.00	1.20	
114 Acenaphthene	153	9.749	9.749	0.000	98	59471	0.5000	0.5110	
115 4-Nitrophenol	109	9.760	9.765	-0.005	93	11818	1.00	1.06	
116 2,4-Dinitrotoluene	165	9.845	9.851	-0.006	90	17171	0.5000	0.5081	
118 Dibenzofuran	168	9.899	9.899	0.000	96	82904	0.5000	0.5182	
121 2,3,4,6-Tetrachlorophenol	232	9.995	10.000	-0.005	76	11114	0.5000	0.5144	
122 Hexadecane	57	10.027	10.027	0.000	95	42039	0.5000	0.5036	
124 Diethyl phthalate	149	10.032	10.032	0.000	97	63532	0.5000	0.5034	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	96	31541	0.5000	0.5235	
130 4-Nitroaniline	138	10.187	10.193	-0.005	83	14015	0.5000	0.6074	
129 Fluorene	166	10.203	10.203	0.000	93	66514	0.5000	0.5168	
131 4,6-Dinitro-2-methylphenol	198	10.208	10.214	-0.006	84	13197	1.00	1.05	
133 N-Nitrosodiphenylamine	169	10.267	10.273	-0.006	62	45582	0.5000	0.4971	
132 Diphenylamine	169	10.267	10.273	-0.006	95	45582	0.4275	0.4250	
134 Azobenzene	77	10.310	10.310	0.000	99	72189	0.5000	0.4928	
135 1,2-Diphenylhydrazine	77	10.310	10.310	0.000	41	72224	0.5000	0.4904	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	69	18081	0.5000	0.5014	u
147 Atrazine	200	10.689	10.695	-0.006	92	40585	1.00	0.9626	
146 Hexachlorobenzene	284	10.695	10.695	0.000	94	21529	0.5000	0.4939	
148 n-Octadecane	57	10.893	10.893	0.000	9 4	42071	0.5000	0.4939	
	266	10.850	10.857	0.000	90 91	42071 14277	1.00	0.4632 1.09	
152 Pentachlorophenol 156 Phenanthrene	200 178	11.042	11.047	-0.005	91 98	92279	0.5000	0.5231	
157 Anthracene	178	11.090	11.090	0.000	98	86911	0.5000	0.5040	

Report Date: 19-Aug-2024 14:54:03 Chrom Revision: 2.3 07-Aug-2024 17:44:18 \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259730.d Data File:

		DT	A d: DT	DI DT			Cal Area	On Cal Area	
Compound	Sign	RT (min.)	Adj RT	Dlt RT		Dooponeo	Cal Amt	OnCol Amt	Flogs
Compound	Sig	(111111.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
450 O. J I.	407	44.000	44.000	0.000	00	70005	0.5000	0.0010	
158 Carbazole	167	11.202	11.202	0.000	96	78335	0.5000	0.6018	
161 Di-n-butyl phthalate	149	11.416	11.416	0.000	100	102147	0.5000	0.4878	
168 Fluoranthene	202	12.089	12.094	-0.005	98	92516	0.5000	0.5060	
170 Benzidine	184	12.158	12.164	-0.006	99	52916	1.00	1.61	M
172 Pyrene	202	12.313	12.313	0.000	96	96005	0.5000	0.5040	
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	40046	0.5000	0.5028	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	98	54760	0.5000	0.5045	
189 3,3'-Dichlorobenzidine	252	13.403	13.403	0.000	74	60637	1.00	1.18	
190 Benzo[a]anthracene	228	13.478	13.478	0.000	99	89803	0.5000	0.4959	
191 Chrysene	228	13.515	13.521	-0.006	97	86270	0.5000	0.5209	
193 Di-n-octyl phthalate	149	13.991	13.991	0.000	99	89594	0.5000	0.5075	
196 Benzo[b]fluoranthene	252	14.659	14.664	-0.005	97	92137	0.5000	0.5231	
197 Benzo[k]fluoranthene	252	14.691	14.696	-0.005	99	84604	0.5000	0.4724	
201 Benzo[a]pyrene	252	15.097	15.102	-0.005	77	75196	0.5000	0.4873	
205 Dibenz(a,h)anthracene	278	16.860	16.870	-0.010	88	83950	0.5000	0.4804	
204 Indeno[1,2,3-cd]pyrene	276	16.865	16.876	-0.011	97	101163	0.5000	0.4881	
206 Benzo[g,h,i]perylene	276	17.388	17.405	-0.017	98	81133	0.5000	0.4861	
S 253 Total Cresols	1				0			1.00	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00632 Amount Added: 1.00 Units: mL Report Date: 19-Aug-2024 14:54:03 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259730.d

Injection Date: 16-Aug-2024 14:41:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 0.5

Client ID:

Operator ID: ED ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICA

Report Date: 19-Aug-2024 14:54:26 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259731.d

Lims ID: IC - List 1 - 1

Client ID:

Sample Type: IC Calib Level: 3

Inject. Date: 16-Aug-2024 15:07:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-005

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 19-Aug-2024 14:54:24 Calib Date: 17-Aug-2024 00:29:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration Last ICal File: \chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 08:00:10

First Level Reviewer: QN8S			D	ate:		19-Aug-202	24 08:00:10		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.619	6.619	0.000	98	189585	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	704961	4.00	4.00	
* 3 Acenaphthene-d10	164	9.717	9.722	-0.005	94	396330	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	98	620098	4.00	4.00	
* 5 Chrysene-d12	240	13.489	13.494	-0.005	99	544953	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	98	588554	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	93	62706	1.00	0.9873	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	83220	1.00	1.00	
\$ 9 Nitrobenzene-d5	82	7.238	7.238	0.000	88	82474	1.00	0.99	
\$ 10 2-Fluorobiphenyl	172	9.071	9.071	0.000	100	137077	1.00	0.99	
\$ 11 2,4,6-Tribromophenol	330	10.412	10.417	-0.005	94	17245	1.00	0.9564	
\$ 12 p-Terphenyl-d14	244	12.388	12.388	0.000	96	151800	1.00	0.99	
13 1,4-Dioxane	88	3.680	3.670	0.010	94	34911	1.00	1.04	M
14 N-Nitrosodimethylamine	42	3.942	3.937	0.005	95	34197	1.00	0.99	
15 Pyridine	52	3.985	3.974	0.011	97	88348	2.00	1.96	
33 Benzaldehyde	77	6.106	6.106	0.000	96	135653	2.00	2.01	
34 Phenol	94	6.127	6.127	0.000	99	85679	1.00	0.99	
36 Aniline	93	6.223	6.223	0.000	97	101217	1.00	0.9777	
37 Bis(2-chloroethyl)ether	93	6.261	6.261	0.000	92	65316	1.00	0.9409	
39 2-Chlorophenol	128	6.373	6.373	0.000	92	63545	1.00	0.9832	
40 n-Decane	57	6.378	6.378	0.000	89	77026	1.00	0.9848	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	96	73051	1.00	0.9826	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	94	74001	1.00	1.00	
43 Benzyl alcohol	108	6.741	6.741	0.000	92	43957	1.00	0.9707	
45 1,2-Dichlorobenzene	146	6.822	6.827	-0.005	95	70886	1.00	1.01	
46 2-Methylphenol	108	6.848	6.848	0.000	96	62273	1.00	1.00	
47 2,2'-oxybis[1-chloropropane]	45	6.891	6.891	0.000	94	95059	1.00	1.00	
48 Indene	115	6.923	6.928	-0.005	89	617777	5.00	5.21	
51 4-Methylphenol	108	7.014	7.019	-0.005	97	62609	1.00	0.9755	
50 N-Nitrosodi-n-propylamine	70	7.035	7.041	-0.006	90	44403	1.00	0.9585	
52 Acetophenone	105	7.057	7.057	0.000	93	88444	1.00	0.9674	
-								_	

Data File: \\chromfs\Buf	falo\Cr		1		16-119	9562.b\W10025			
		RT	Adj RT	Dlt RT		_	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
E711	447	7.047	7.047	0.000	0.5	20055	1.00	1.00	
57 Hexachloroethane	117	7.217	7.217	0.000	95	30055	1.00	1.02	
58 Nitrobenzene	77	7.260	7.260	0.000	87	76209	1.00	0.9857	
62 Isophorone	82	7.511	7.511	0.000	100	129586	1.00	0.9659	
65 2-Nitrophenol	139	7.612	7.612	0.000	87	31687	1.00	0.99	
66 2,4-Dimethylphenol	107	7.612	7.618	-0.006	92	68300	1.00	1.01	
69 Bis(2-chloroethoxy)methane	93 105	7.714	7.714	0.000	99	79271	1.00	1.00	N //
70 Benzoic acid	105	7.676	7.730	-0.054	90	110970	5.00	5.76	M
72 2,4-Dichlorophenol	162	7.858	7.858	0.000	95	51331	1.00	1.00	
74 1,2,4-Trichlorobenzene	180	7.959	7.959	0.000	93	53254	1.00	0.99	
76 Naphthalene	128	8.050	8.050	0.000	98	195962	1.00	1.03	
78 4-Chloroaniline	127	8.077	8.082	-0.005	96	67616	1.00	0.9784	
79 2,6-Dichlorophenol	162	8.098	8.098	0.000	97	51402	1.00	1.00	
81 Hexachlorobutadiene	225	8.168	8.168	0.000	95	33528	1.00	1.02	
85 Caprolactam	113	8.403	8.430	-0.027	80	42443	2.00	1.96	
86 4-Chloro-3-methylphenol	107	8.542	8.547	-0.005	95	51612	1.00	0.9710	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	91	114190	1.00	1.00	
91 1-Methylnaphthalene	142	8.841	8.841	0.000	93	116817	1.00	1.01	
92 Hexachlorocyclopentadiene	237	8.894	8.894	0.000	97	36824	1.00	0.99	
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	98	52496	1.00	0.9714	
96 2,4,6-Trichlorophenol	196	8.996	8.996	0.000	94	36156	1.00	0.99	
97 2,4,5-Trichlorophenol	196	9.033	9.033	0.000	93	33521	1.00	0.9632	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	96	144831	1.00	0.99	
102 2-Chloronaphthalene	162	9.204	9.210	-0.006	99	113913	1.00	1.01	
104 2-Nitroaniline	65	9.279	9.279	0.000	82	35314	1.00	0.9706	а
108 Dimethyl phthalate	163	9.413	9.418	-0.005	98	126687	1.00	0.9828	
109 1,3-Dinitrobenzene	168	9.455	9.461	-0.006	87	18424	1.00	0.9593	
110 2,6-Dinitrotoluene	165	9.482	9.487	-0.005	93	28485	1.00	0.9776	
111 Acenaphthylene	152	9.594	9.594	0.000	99	172939	1.00	0.9768	
112 3-Nitroaniline	138	9.648	9.648	0.000	93	26212	1.00	0.9884	а
113 2,4-Dinitrophenol	184	9.733	9.738	-0.005	82	17460	2.00	1.85	
114 Acenaphthene	153	9.749	9.749	0.000	96	114666	1.00	1.00	
115 4-Nitrophenol	109	9.760	9.765	-0.005	93	27269	2.00	1.86	
116 2,4-Dinitrotoluene	165	9.845	9.851	-0.006	91	35178	1.00	0.9598	
118 Dibenzofuran	168	9.899	9.899	0.000	96	154644	1.00	0.9803	
121 2,3,4,6-Tetrachlorophenol	232	9.995	10.000	-0.005	76	23778	1.00	0.9625	
122 Hexadecane	57	10.027	10.027	0.000	95	82165	1.00	0.9768	
124 Diethyl phthalate	149	10.032	10.032	0.000	98	122053	1.00	0.9826	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	96	59013	1.00	0.99	
130 4-Nitroaniline	138	10.187	10.193	-0.005	80	22269	1.00	0.9125	
129 Fluorene	166	10.203	10.203	0.000	94	129238	1.00	1.01	
131 4,6-Dinitro-2-methylphenol	198	10.214	10.214	0.000	81	29019	2.00	1.84	
132 Diphenylamine	169	10.267	10.273	-0.006	94	87484	0.8550	0.8529	
133 N-Nitrosodiphenylamine	169	10.267	10.273	-0.006	63	87484	1.00	1.00	
134 Azobenzene	77	10.310	10.310	0.000	99	145217	1.00	1.02	
135 1,2-Diphenylhydrazine	77	10.310	10.310	0.000	41	145130	1.00	1.00	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	70	33390	1.00	0.9552	
147 Atrazine	200	10.689	10.695	-0.006	92	77735	2.00	2.05	
146 Hexachlorobenzene	284	10.695	10.695	0.000	93	40004	1.00	1.00	
148 n-Octadecane	57	10.807	10.807	0.000	96	83537	1.00	0.9898	
152 Pentachlorophenol	266	10.850	10.850	0.000	92	34006	2.00	1.93	
156 Phenanthrene	178	11.042	11.047	-0.005	98	170732	1.00	1.00	
157 Anthracene	178	11.085	11.090	-0.005	98	171201	1.00	1.02	
107 / WIGHTGOOFFC	170	11.000	11.030	0.000	50	171201	1.00	1.02	

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
158 Carbazole	167	11.202	11.202	0.000	95	152142	1.00	1.21	М
161 Di-n-butyl phthalate	149	11.416	11.416	0.000	100	201474	1.00	0.99	141
168 Fluoranthene	202	12.089	12.094	-0.005	99	177097	1.00	0.9845	
170 Benzidine	184	12.158	12.164	-0.006	99	67664	2.00	2.02	М
172 Pyrene	202	12.313	12.313	0.000	97	185163	1.00	0.9875	
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	83845	1.00	0.9795	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	97	116134	1.00	0.9769	
189 3,3'-Dichlorobenzidine	252	13.403	13.403	0.000	74	103534	2.00	2.05	
190 Benzo[a]anthracene	228	13.478	13.478	0.000	99	172629	1.00	0.9766	
191 Chrysene	228	13.515	13.521	-0.006	97	159547	1.00	1.00	
193 Di-n-octyl phthalate	149	13.991	13.991	0.000	100	186286	1.00	0.9607	
196 Benzo[b]fluoranthene	252	14.664	14.664	0.000	96	172555	1.00	1.02	
197 Benzo[k]fluoranthene	252	14.696	14.696	0.000	99	169990	1.00	0.9713	
201 Benzo[a]pyrene	252	15.102	15.102	0.000	77	147736	1.00	0.9804	
205 Dibenz(a,h)anthracene	278	16.860	16.870	-0.010	87	167732	1.00	0.9853	
204 Indeno[1,2,3-cd]pyrene	276	16.865	16.876	-0.011	98	197598	1.00	0.9774	
206 Benzo[g,h,i]perylene	276	17.394	17.405	-0.011	98	160964	1.00	1.00	
S 253 Total Cresols	1				0			1.98	

QC Flag Legend Processing Flags

Processing Flags Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00633 Amount Added: 1.00 Units: mL

Report Date: 19-Aug-2024 14:54:26 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259731.d

Injection Date: 16-Aug-2024 15:07:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 1

Client ID:

Operator ID: ED ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Report Date: 19-Aug-2024 14:54:32 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259732.d

Lims ID: IC - List 1 - 2

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 16-Aug-2024 15:34:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-006

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:54:30Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 08:01:00

First Level Reviewer: QN8S			D	ate:		19-Aug-202	24 08:01:00		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	98	190633	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	725447	4.00	4.00	
* 3 Acenaphthene-d10	164	9.717	9.722	-0.005	93	408032	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	97	647615	4.00	4.00	
* 5 Chrysene-d12	240	13.494	13.494	0.000	99	564307	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	98	621291	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	94	130388	2.00	1.99	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	172493	2.00	2.03	
\$ 9 Nitrobenzene-d5	82	7.238	7.238	0.000	89	173510	2.00	2.00	
\$ 10 2-Fluorobiphenyl	172	9.070	9.071	-0.001	100	285332	2.00	2.03	
\$ 11 2,4,6-Tribromophenol	330	10.411	10.417	-0.006	95	39390	2.00	1.98	
\$ 12 p-Terphenyl-d14	244	12.388	12.388	0.000	96	324065	2.00	2.05	
13 1,4-Dioxane	88	3.680	3.670	0.010	93	71968	2.00	2.17	M
14 N-Nitrosodimethylamine	42	3.942	3.937	0.005	94	70437	2.00	2.04	
15 Pyridine	52	3.985	3.974	0.011	96	188091	4.00	4.07	
33 Benzaldehyde	77	6.106	6.106	0.000	96	281693	4.00	4.28	
34 Phenol	94	6.127	6.127	0.000	99	175531	2.00	2.02	
36 Aniline	93	6.223	6.223	0.000	97	215113	2.00	1.98	
37 Bis(2-chloroethyl)ether	93	6.260	6.261	-0.001	93	132762	2.00	1.99	
39 2-Chlorophenol	128	6.373	6.373	0.000	96	131367	2.00	2.02	
40 n-Decane	57	6.378	6.378	0.000	93	155104	2.00	1.97	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	97	149532	2.00	2.01	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	92	149809	2.00	2.01	
43 Benzyl alcohol	108	6.741	6.741	0.000	92	94455	2.00	2.03	
45 1,2-Dichlorobenzene	146	6.821	6.827	-0.006	96	140941	2.00	2.00	
46 2-Methylphenol	108	6.848	6.848	0.000	97	129197	2.00	2.03	
47 2,2'-oxybis[1-chloropropane]	45	6.891	6.891	0.000	94	193505	2.00	2.03	
48 Indene	115	6.923	6.928	-0.005	89	1262746	10.0	10.8	
51 4-Methylphenol	108	7.014	7.019	-0.005	97	133509	2.00	2.04	
50 N-Nitrosodi-n-propylamine	70	7.035	7.041	-0.006	88	94409	2.00	2.03	
52 Acetophenone	105	7.056	7.057	-0.001	95	188080	2.00	2.05	
·			_					_	

Data File: \\chromfs\But	ttalo\Cr			1	16-119	9562.b\W1002			
		RT	Adj RT	Dlt RT		_	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
E711	447	7.047	7.047	0.000	0.5	50007	0.00	0.01	
57 Hexachloroethane	117	7.217	7.217	0.000	95	59687	2.00	2.01	
58 Nitrobenzene	77	7.259	7.260	-0.001	86	157389	2.00	1.98	
62 Isophorone	82	7.511	7.511	0.000	100	278334	2.00	2.02	
65 2-Nitrophenol	139	7.612	7.612	0.000	91	68823	2.00	2.03	
66 2,4-Dimethylphenol	107	7.612	7.618	-0.006	94	141344	2.00	2.01	
69 Bis(2-chloroethoxy)methane	93 105	7.714	7.714	0.000	98	163482	2.00	2.02	N //
70 Benzoic acid	105	7.698	7.730	-0.032	88	308807	10.0	9.64	M
72 2,4-Dichlorophenol	162	7.858	7.858	0.000	96	107461	2.00	2.01	
74 1,2,4-Trichlorobenzene	180	7.959	7.959	0.000	93	111577	2.00	2.02	
76 Naphthalene	128	8.050	8.050	0.000	98	410178	2.00	2.09	
78 4-Chloroaniline	127	8.077	8.082	-0.005	95	142060	2.00	1.98	
79 2,6-Dichlorophenol	162	8.098	8.098	0.000	96	107658	2.00	2.03	
81 Hexachlorobutadiene	225	8.168	8.168	0.000	98	67102	2.00	1.98	
85 Caprolactam	113	8.413	8.430	-0.017	81	88961	4.00	3.95	
86 4-Chloro-3-methylphenol	107	8.542	8.547	-0.005	97	111047	2.00	1.97	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	92	239717	2.00	2.03	
91 1-Methylnaphthalene	142	8.841	8.841	0.000	92	244937	2.00	2.06	
92 Hexachlorocyclopentadiene	237	8.894	8.894	0.000	97	76408	2.00	1.97	
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	98	110425	2.00	2.02	
96 2,4,6-Trichlorophenol	196	8.996	8.996	0.000	94	77666	2.00	2.01	
97 2,4,5-Trichlorophenol	196	9.033	9.033	0.000	94	74527	2.00	2.03	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	95	309058	2.00	2.07	
102 2-Chloronaphthalene	162	9.204	9.210	-0.006	99	233242	2.00	2.01	
104 2-Nitroaniline	65	9.279	9.279	0.000	82	75443	2.00	1.95	а
108 Dimethyl phthalate	163	9.418	9.418	0.000	98	272046	2.00	2.05	
109 1,3-Dinitrobenzene	168	9.460	9.461	-0.001	87	40620	2.00	1.95	
110 2,6-Dinitrotoluene	165	9.482	9.487	-0.005	94	60187	2.00	1.99	
111 Acenaphthylene	152	9.594	9.594	0.000	99	373987	2.00	2.04	
112 3-Nitroaniline	138	9.647	9.648	-0.001	92	54276	2.00	1.93	а
113 2,4-Dinitrophenol	184	9.733	9.738	-0.005	82	48604	4.00	3.72	
114 Acenaphthene	153	9.749	9.749	0.000	96	242353	2.00	2.06	
115 4-Nitrophenol	109	9.760	9.765	-0.005	92	63309	4.00	3.64	а
116 2,4-Dinitrotoluene	165	9.850	9.851	-0.001	91	80982	2.00	2.04	
118 Dibenzofuran	168	9.899	9.899	0.000	96	334025	2.00	2.06	
121 2,3,4,6-Tetrachlorophenol	232	10.000	10.000	0.000	75	53017	2.00	1.93	
122 Hexadecane	57	10.027	10.027	0.000	95	178084	2.00	2.04	
124 Diethyl phthalate	149	10.032	10.032	0.000	98	256823	2.00	2.01	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	97	123265	2.00	2.01	
130 4-Nitroaniline	138	10.192	10.193	0.000	81	50846	2.00	1.90	а
129 Fluorene	166	10.203	10.203	0.000	93	264931	2.00	2.01	
131 4,6-Dinitro-2-methylphenol	198	10.214	10.214	0.000	86	73584	4.00	3.86	
133 N-Nitrosodiphenylamine	169	10.267	10.273	-0.006	63	185944	2.00	2.04	
132 Diphenylamine	169	10.267	10.273	-0.006	94	185944	1.71	1.75	
134 Azobenzene	77	10.310	10.310	0.000	99	299815	2.00	2.02	
135 1,2-Diphenylhydrazine	77	10.310	10.310	0.000	41	299161	2.00	1.99	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	69	75045	2.00	2.06	
147 Atrazine	200	10.695	10.695	-0.001	91	162747	4.00	4.36	
146 Hexachlorobenzene	284	10.695	10.695	-0.001	75	85649	2.00	2.10	
148 n-Octadecane	57	10.807	10.807	0.000	95	181307	2.00	2.06	
152 Pentachlorophenol	266	10.849	10.850	-0.001	92	82411	4.00	3.81	
156 Phenanthrene	178	11.042	11.047	-0.005	98	359546	2.00	2.02	
157 Anthracene	178	11.090	11.090	0.000	98	362841	2.00	2.06	
				5.555					

Report Date: 19-Aug-2024 14:54:32 Chrom Revision: 2.3 07-Aug-2024 17:44:18 \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259732.d Data File:

			A II DT	DI: DT			0.14	0.014	
0	0.	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt	-1
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
158 Carbazole	167	11.202	11.202	0.000	96	231824	2.00	1.76	М
161 Di-n-butyl phthalate	149	11.416	11.416	0.000	100	436321	2.00	2.06	
168 Fluoranthene	202	12.094	12.094	0.000	98	389515	2.00	2.06	
170 Benzidine	184	12.164	12.164	0.000	99	99784	4.00	2.77	M
172 Pyrene	202	12.313	12.313	0.000	97	398835	2.00	2.05	
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	188269	2.00	2.02	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	97	261291	2.00	2.01	
189 3,3'-Dichlorobenzidine	252	13.403	13.403	0.000	74	186454	4.00	3.56	
190 Benzo[a]anthracene	228	13.478	13.478	0.000	99	386968	2.00	2.12	
191 Chrysene	228	13.521	13.521	0.000	97	337422	2.00	2.05	
193 Di-n-octyl phthalate	149	13.996	13.991	0.005	100	430933	2.00	2.02	
196 Benzo[b]fluoranthene	252	14.664	14.664	0.000	97	358889	2.00	2.01	
197 Benzo[k]fluoranthene	252	14.696	14.696	0.000	99	377330	2.00	2.02	
201 Benzo[a]pyrene	252	15.102	15.102	0.000	78	323977	2.00	2.02	
205 Dibenz(a,h)anthracene	278	16.865	16.870	-0.005	88	364271	2.00	2.01	
204 Indeno[1,2,3-cd]pyrene	276	16.870	16.876	-0.006	98	440669	2.00	2.05	
206 Benzo[g,h,i]perylene	276	17.399	17.405	-0.006	98	350172	2.00	2.04	
S 253 Total Cresols	1				0			4.08	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00634 Amount Added: 1.00 Units: mL Report Date: 19-Aug-2024 14:54:32 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259732.d

Injection Date: 16-Aug-2024 15:34:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 2

Client ID:

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Report Date: 19-Aug-2024 14:54:39 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259733.d

Lims ID: ICIS - List 1- 4

Client ID:

Sample Type: ICIS Calib Level: 5

Inject. Date: 16-Aug-2024 16:01:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-007

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:54:36Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 12:26:53

First Level Reviewer: QN8S			D:	ate:		19-Aug-202	24 12:26:53		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.619	6.619	0.000	97	179311	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	673899	4.00	4.00	
* 3 Acenaphthene-d10	164	9.722	9.722	0.000	93	379240	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	97	609105	4.00	4.00	
* 5 Chrysene-d12	240	13.494	13.494	0.000	99	531293	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	98	579039	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	94	253365	4.00	4.05	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	322621	4.00	4.01	
\$ 9 Nitrobenzene-d5	82	7.238	7.238	0.000	90	325246	4.00	4.01	
\$ 10 2-Fluorobiphenyl	172	9.071	9.071	0.000	100	530473	4.00	4.09	
\$ 11 2,4,6-Tribromophenol	330	10.417	10.417	0.000	95	75756	4.00	3.94	
\$ 12 p-Terphenyl-d14	244	12.388	12.388	0.000	96	612863	4.00	4.11	
13 1,4-Dioxane	88	3.670	3.670	0.000	95	127616	4.00	4.12	М
14 N-Nitrosodimethylamine	42	3.937	3.937	0.000	93	126642	4.00	3.91	
15 Pyridine	52	3.974	3.974	0.000	95	357231	8.00	8.16	
33 Benzaldehyde	77	6.106	6.106	0.000	96	499582	8.00	8.17	
34 Phenol	94	6.127	6.127	0.000	99	328255	4.00	4.02	
36 Aniline	93	6.223	6.223	0.000	97	400594	4.00	3.84	
37 Bis(2-chloroethyl)ether	93	6.261	6.261	0.000	95	254304	4.00	4.15	
39 2-Chlorophenol	128	6.373	6.373	0.000	97	248814	4.00	4.07	
40 n-Decane	57	6.378	6.378	0.000	89	299771	4.00	4.05	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	97	278057	4.00	4.00	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	91	280660	4.00	4.00	
43 Benzyl alcohol	108	6.741	6.741	0.000	92	174718	4.00	3.97	
45 1,2-Dichlorobenzene	146	6.827	6.827	0.000	95	262387	4.00	3.98	
46 2-Methylphenol	108	6.848	6.848	0.000	97	239936	4.00	3.99	
47 2,2'-oxybis[1-chloropropane]	45	6.891	6.891	0.000	94	359486	4.00	4.00	
48 Indene	115	6.928	6.928	0.000	89	2302596	20.0	21.6	
51 4-Methylphenol	108	7.019	7.019	0.000	94	248523	4.00	4.02	
50 N-Nitrosodi-n-propylamine	70	7.041	7.041	0.000	88	175497	4.00	4.01	
52 Acetophenone	105	7.057	7.057	0.000	95	345901	4.00	4.01	
			_						

Data File: \\chromfs\But	falo\Cr			1	16-119	9562.b\W1002			
	1	RT	Adj RT	Dlt RT		_	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
	447	7.047	7.047		0.5	100000	4.00	0.00	
57 Hexachloroethane	117	7.217	7.217	0.000	95	109888	4.00	3.93	
58 Nitrobenzene	77	7.260	7.260	0.000	87	299047	4.00	4.05	
62 Isophorone	82	7.511	7.511	0.000	100	521756	4.00	4.07	
65 2-Nitrophenol	139	7.612	7.612	0.000	97	128407	4.00	4.02	
66 2,4-Dimethylphenol	107	7.618	7.618	0.000	97	259868	4.00	3.97	
69 Bis(2-chloroethoxy)methane	93	7.714	7.714	0.000	98	304306	4.00	4.07	
70 Benzoic acid	105	7.730	7.730	0.000	90	675603	20.0	18.0	M
72 2,4-Dichlorophenol	162	7.858	7.858	0.000	96	203378	4.00	4.07	
74 1,2,4-Trichlorobenzene	180	7.959	7.959	0.000	94	205263	4.00	4.00	
76 Naphthalene	128	8.050	8.050	0.000	98	749038	4.00	4.12	
78 4-Chloroaniline	127	8.082	8.082	0.000	95	266456	4.00	3.97	
79 2,6-Dichlorophenol	162	8.098	8.098	0.000	96	199986	4.00	4.05	
81 Hexachlorobutadiene	225	8.168	8.168	0.000	97	128246	4.00	4.08	
85 Caprolactam	113	8.430	8.430	0.000	80	170590	8.00	8.10	
86 4-Chloro-3-methylphenol	107	8.547	8.547	0.000	96	212479	4.00	4.00	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	91	441837	4.00	4.03	
91 1-Methylnaphthalene	142	8.841	8.841	0.000	92	446354	4.00	4.05	
92 Hexachlorocyclopentadiene	237	8.894	8.894	0.000	97	147078	4.00	4.06	
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	98	204583	4.00	4.07	
96 2,4,6-Trichlorophenol	196	8.996	8.996	0.000	94	148977	4.00	4.08	
97 2,4,5-Trichlorophenol	196	9.033	9.033	0.000	94	135323	4.00	3.92	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	96	566539	4.00	4.10	
102 2-Chloronaphthalene	162	9.210	9.210	0.000	98	431350	4.00	4.00	
104 2-Nitroaniline	65	9.279	9.279	0.000	81	145261	4.00	3.98	а
108 Dimethyl phthalate	163	9.418	9.418	0.000	98	492911	4.00	4.00	
109 1,3-Dinitrobenzene	168	9.461	9.461	0.000	87	77834	4.00	3.92	
110 2,6-Dinitrotoluene	165	9.487	9.487	0.000	94	112483	4.00	4.00	
111 Acenaphthylene	152	9.594	9.594	0.000	98	692039	4.00	4.06	
112 3-Nitroaniline	138	9.648	9.648	0.000	93	93526	4.00	3.52	а
113 2,4-Dinitrophenol	184	9.738	9.738	0.000	85	102897	8.00	7.51	
114 Acenaphthene	153	9.749	9.749	0.000	96	441264	4.00	4.04	
115 4-Nitrophenol	109	9.765	9.765	0.000	94	135481	8.00	7.78	а
116 2,4-Dinitrotoluene	165	9.851	9.851	0.000	91	149205	4.00	3.96	
118 Dibenzofuran	168	9.899	9.899	0.000	96	611714	4.00	4.06	
121 2,3,4,6-Tetrachlorophenol	232	10.000	10.000	0.000	75	101884	4.00	3.86	
122 Hexadecane	57	10.027	10.027	0.000	95	327081	4.00	4.00	
124 Diethyl phthalate	149	10.032	10.032	0.000	98	475272	4.00	4.01	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	98	229953	4.00	4.03	
130 4-Nitroaniline	138	10.193	10.193	0.000	82	93039	4.00	3.63	а
129 Fluorene	166	10.203	10.203	0.000	94	498452	4.00	4.06	
131 4,6-Dinitro-2-methylphenol	198	10.214	10.214	0.000	84	153146	8.00	8.02	
132 Diphenylamine	169	10.273	10.273	0.000	94	348828	3.42	3.50	
133 N-Nitrosodiphenylamine	169	10.273	10.273	0.000	63	348828	4.00	4.09	
134 Azobenzene	77	10.310	10.310	0.000	99	564363	4.00	4.05	
135 1,2-Diphenylhydrazine	77	10.310	10.310	0.000	41	567322	4.00	4.07	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	69	139401	4.00	4.06	
147 Atrazine	200	10.695	10.695	0.000	91	288025	8.00	8.48	
146 Hexachlorobenzene	284	10.695	10.695	0.000	77	155378	4.00	4.10	
148 n-Octadecane	57	10.807	10.807	0.000	96	337457	4.00	4.07	
152 Pentachlorophenol	266	10.850	10.850	0.000	92	173394	8.00	7.90	
156 Phenanthrene	178	11.047	11.047	0.000	98	675333	4.00	4.03	
157 Anthracene	178	11.090	11.090	0.000	98	683437	4.00	4.12	
				5.500					

Report Date: 19-Aug-2024 14:54:39 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\\W100259733.d

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
158 Carbazole	167	11.202	11.202	0.000	96	404130	4.00	3.26	М
	149	11.416	11.416	0.000	100	831001	4.00	3.20 4.17	IVI
161 Di-n-butyl phthalate									
168 Fluoranthene	202	12.094	12.094	0.000	98	730757	4.00	4.09	
170 Benzidine	184	12.164	12.164	0.000	99	176865	8.00	4.99	М
172 Pyrene	202	12.313	12.313	0.000	97	748845	4.00	4.08	
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	361437	4.00	4.04	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	97	505880	4.00	4.02	
189 3,3'-Dichlorobenzidine	252	13.403	13.403	0.000	74	352303	8.00	7.14	
190 Benzo[a]anthracene	228	13.478	13.478	0.000	99	694724	4.00	4.04	
191 Chrysene	228	13.521	13.521	0.000	97	621753	4.00	4.02	а
193 Di-n-octyl phthalate	149	13.991	13.991	0.000	100	836252	4.00	4.05	
196 Benzo[b]fluoranthene	252	14.664	14.664	0.000	97	658424	4.00	3.96	
197 Benzo[k]fluoranthene	252	14.696	14.696	0.000	98	714109	4.00	4.09	
201 Benzo[a]pyrene	252	15.102	15.102	0.000	77	599502	4.00	3.99	
205 Dibenz(a,h)anthracene	278	16.870	16.870	0.000	91	685023	4.00	4.04	
204 Indeno[1,2,3-cd]pyrene	276	16.876	16.876	0.000	99	813352	4.00	4.04	
206 Benzo[g,h,i]perylene	276	17.405	17.405	0.000	92	653310	4.00	4.07	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL Report Date: 19-Aug-2024 14:54:39 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File:

Injection Date: 16-Aug-2024 16:01:30 Instrument ID: HP5973W

Lims ID: ICIS - List 1-4

Client ID:

0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

10.0

11.0

12.0

13.0

15.0

14.0

16.0

17.0

18.0

19.0

Report Date: 19-Aug-2024 14:54:39 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259733.d

Injection Date: 16-Aug-2024 16:01:30 Instrument ID: HP5973W

Lims ID: ICIS - List 1- 4

Client ID:

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

196 Benzo[b]fluoranthene - 197 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 178869

H1(196 Benzo[b]fluoranthen) = 492867 H2(197 Benzo[k]fluoranthen) = 534886

Version D: %R = 34.8 <= 50.0

Passed

Report Date: 19-Aug-2024 14:54:40 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240816-119562.b\\W100259733.d

Injection Date: 16-Aug-2024 16:01:30 Instrument ID: HP5973W

Lims ID: ICIS - List 1-4

Client ID:

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: Detector MS SCAN

191 Chrysene, CAS: 218-01-9

Signal: 1

Not Detected

Expected RT: 13.52

Processing Integration Results

RT: 13.52 Area: 621753 Amount: 4.023403 Amount Units: ng/uL

Reviewer: QN8S, 19-Aug-2024 07:55:17 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Peak assignment corrected

Report Date: 19-Aug-2024 14:54:46 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259734.d

Lims ID: IC - List 1 - 8

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 16-Aug-2024 16:28:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-008

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:54:43Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 08:20:08

First Level Reviewer: QN8S			D	ate:		19-Aug-202	24 08:20:08		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	97	140392	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	536349	4.00	4.00	
* 3 Acenaphthene-d10	164	9.722	9.722	0.000	92	307031	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	98	492151	4.00	4.00	
* 5 Chrysene-d12	240	13.494	13.494	0.000	99	422213	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	99	468645	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.112	5.123	-0.011	94	398651	8.00	8.08	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	503357	8.00	7.97	
\$ 9 Nitrobenzene-d5	82	7.238	7.238	0.000	89	511680	8.00	7.89	
\$ 10 2-Fluorobiphenyl	172	9.070	9.071	-0.001	99	823126	8.00	7.86	
\$ 11 2,4,6-Tribromophenol	330	10.417	10.417	0.000	95	126715	8.00	8.06	
\$ 12 p-Terphenyl-d14	244	12.393	12.388	0.005	96	971909	8.00	8.21	
13 1,4-Dioxane	88	3.611	3.670	-0.059	95	193510	8.00	8.03	M
14 N-Nitrosodimethylamine	42	3.905	3.937	-0.032	93	190665	8.00	7.53	
15 Pyridine	52	3.937	3.974	-0.037	96	519207	16.0	15.1	
33 Benzaldehyde	77	6.106	6.106	0.000	96	781967	16.0	16.4	
34 Phenol	94	6.127	6.127	0.000	98	512136	8.00	8.02	
36 Aniline	93	6.223	6.223	0.000	97	602858	8.00	7.30	
37 Bis(2-chloroethyl)ether	93	6.260	6.261	-0.001	94	414167	8.00	8.73	
39 2-Chlorophenol	128	6.373	6.373	0.000	97	388818	8.00	8.12	
40 n-Decane	57	6.378	6.378	0.000	89	466413	8.00	8.05	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	97	435882	8.00	8.02	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	92	438519	8.00	7.97	
43 Benzyl alcohol	108	6.741	6.741	0.000	92	275469	8.00	7.95	
45 1,2-Dichlorobenzene	146	6.821	6.827	-0.006	96	412131	8.00	8.01	
46 2-Methylphenol	108	6.848	6.848	0.000	97	375022	8.00	7.94	
47 2,2'-oxybis[1-chloropropane]	45	6.891	6.891	0.000	94	559082	8.00	7.95	
48 Indene	115	6.928	6.928	0.000	90	3435028	40.0	40.9	
51 4-Methylphenol	108	7.019	7.019	0.000	95	390074	8.00	8.04	
50 N-Nitrosodi-n-propylamine	70	7.040	7.041	-0.001	87	271893	8.00	7.93	
52 Acetophenone	105	7.062	7.057	0.005	94	538008	8.00	7.97	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259734.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
57 Hexachloroethane	117	7.211	7.217	-0.006	96	176807	8.00	8.06	
58 Nitrobenzene	77	7.259	7.260	-0.001	87	468666	8.00	7.99	
62 Isophorone	82	7.511	7.511	0.000	100	827775	8.00	8.11	
65 2-Nitrophenol	139	7.612	7.612	0.000	96	205011	8.00	8.01	
66 2,4-Dimethylphenol	107	7.617	7.618	-0.001	97	417395	8.00	7.99	
69 Bis(2-chloroethoxy)methane	93	7.719	7.714	0.005	99	468132	8.00	7.87	
70 Benzoic acid	105	7.767	7.730	0.037	89	1226273	40.0	36.6	M
72 2,4-Dichlorophenol	162	7.863	7.858	0.005	96	316118	8.00	7.93	
74 1,2,4-Trichlorobenzene	180	7.965	7.959	0.006	93	321558	8.00	7.87	
76 Naphthalene	128	8.050	8.050	0.000	98	1157833	8.00	8.00	
78 4-Chloroaniline	127	8.082	8.082	0.000	94	448049	8.00	8.37	
79 2,6-Dichlorophenol	162	8.098	8.098	0.000	96	312152	8.00	7.94	
81 Hexachlorobutadiene	225	8.168	8.168	0.000	98	198968	8.00	7.95	
85 Caprolactam	113	8.445	8.430	0.015	80	266566	16.0	15.9	
86 4-Chloro-3-methylphenol	107	8.547	8.547	0.000	96	345676	8.00	8.13	
89 2-Methylnaphthalene	142	8.739	8.739	0.000	91	694793	8.00	7.96	
91 1-Methylnaphthalene	142	8.841	8.841	0.000	92	701398	8.00	7.99	
92 Hexachlorocyclopentadiene	237	8.894	8.894	0.000	97	229045	8.00	7.79	
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	99	320676	8.00	7.91	
96 2,4,6-Trichlorophenol	196	8.996	8.996	0.000	94	228472	8.00	7.68	
97 2,4,5-Trichlorophenol	196	9.038	9.033	0.005	93	223953	8.00	7.96	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	96	878470	8.00	7.88	
102 2-Chloronaphthalene	162	9.209	9.210	-0.001	99	677319	8.00	7.77	
104 2-Nitroaniline	65	9.279	9.279	0.000	80	236601	8.00	7.95	а
108 Dimethyl phthalate	163	9.418	9.418	0.000	98	783607	8.00	7.85	
109 1,3-Dinitrobenzene	168	9.460	9.461	-0.001	87	128049	8.00	8.01	
110 2,6-Dinitrotoluene	165	9.487	9.487	0.000	92	179936	8.00	7.88	
111 Acenaphthylene	152	9.599	9.594	0.005	98	1106506	8.00	8.01	
112 3-Nitroaniline	138	9.653	9.648	0.005	93	169074	8.00	7.80	а
113 2,4-Dinitrophenol	184	9.738	9.738	0.000	82	179106	16.0	15.3	
114 Acenaphthene	153	9.749	9.749	0.000	96	704986	8.00	7.97	
115 4-Nitrophenol	109	9.770	9.765	0.005	95	221269	16.0	15.2	а
116 2,4-Dinitrotoluene	165	9.850	9.851	-0.001	91	244866	8.00	7.93	
118 Dibenzofuran	168	9.899	9.899	0.000	96	962367	8.00	7.90	
121 2,3,4,6-Tetrachlorophenol	232	10.000	10.000	0.000	76	172683	8.00	7.94	
122 Hexadecane	57	10.027	10.027	0.000	96	527584	8.00	7.96	
124 Diethyl phthalate	149	10.037	10.032	0.005	97	761567	8.00	7.95	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	97	358454	8.00	7.76	
130 4-Nitroaniline	138	10.198	10.193	0.006	82	163256	8.00	7.75	
129 Fluorene	166	10.203	10.203	0.000	94	793749	8.00	7.98	
131 4,6-Dinitro-2-methylphenol	198	10.219	10.214	0.005	83	256406	16.0	16.2	
133 N-Nitrosodiphenylamine	169	10.273	10.273	-0.001	64	550879	8.00	8.01	
132 Diphenylamine	169	10.273	10.273	-0.001	94	550879	6.84	6.85	
134 Azobenzene	77	10.315	10.310	0.005	99	917161	8.00	8.14	
135 1,2-Diphenylhydrazine	77	10.315	10.310	0.005	41	917729	8.00	8.13	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	69	226616	8.00	8.17	~
147 Atrazine	200	10.700	10.695	0.005	93	438191	16.0	16.1	
146 Hexachlorobenzene	284	10.695	10.695	0.000	93	242298	8.00	7.97	
148 n-Octadecane	57	10.807	10.807	0.000	95	544712	8.00	8.13	
152 Pentachlorophenol	266	10.849	10.850	-0.001	91	293835	16.0	16.0	
156 Phenanthrene	200 178	11.049	11.047	0.000	99	1094350	8.00	8.09	
157 Anthracene	178	11.090	11.090	0.000	99	1089874	8.00	8.13	

Report Date: 19-Aug-2024 14:54:46 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259734.d

		DT	A II DT	DI: DT			0.14	0 0 1 4 .	
0	0:	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt	FI
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
158 Carbazole	167	11.202	11.202	0.000	96	679428	8.00	6.79	М
161 Di-n-butyl phthalate	149	11.421	11.416	0.005	100	1325360	8.00	8.23	
168 Fluoranthene	202	12.094	12.094	0.000	98	1169990	8.00	8.08	
170 Benzidine	184	12.164	12.164	0.000	99	396409	16.0	13.6	M
172 Pyrene	202	12.319	12.313	0.006	97	1193333	8.00	8.17	
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	583241	8.00	8.12	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	98	836242	8.00	8.25	
189 3,3'-Dichlorobenzidine	252	13.408	13.403	0.005	75	595978	16.0	15.2	
190 Benzo[a]anthracene	228	13.483	13.478	0.005	99	1091033	8.00	7.98	
191 Chrysene	228	13.521	13.521	0.000	97	1013091	8.00	8.26	
193 Di-n-octyl phthalate	149	13.996	13.991	0.005	100	1373147	8.00	8.25	
196 Benzo[b]fluoranthene	252	14.669	14.664	0.005	97	1029364	8.00	7.65	
197 Benzo[k]fluoranthene	252	14.701	14.696	0.005	99	1216545	8.00	8.59	
201 Benzo[a]pyrene	252	15.107	15.102	0.005	78	993855	8.00	8.15	
205 Dibenz(a,h)anthracene	278	16.876	16.870	0.006	91	1131122	8.00	8.23	
204 Indeno[1,2,3-cd]pyrene	276	16.886	16.876	0.010	99	1337910	8.00	8.19	
206 Benzo[g,h,i]perylene	276	17.415	17.405	0.010	98	1061296	8.00	8.16	
S 253 Total Cresols	1				0			16.0	

Units: mL

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00636 Amount Added: 1.00 Report Date: 19-Aug-2024 14:54:46 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File:

Injection Date: 16-Aug-2024 16:28:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 8

Client ID:

Operator ID: ED ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Report Date: 19-Aug-2024 14:54:53 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240816-119562.b\\W100259735.d

Lims ID: IC - List 1 - 12

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 16-Aug-2024 16:54:30 ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-009

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:54:50Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 08:20:45

First Level Reviewer: QN8S		Date:				19-Aug-202			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	97	182880	4.00	4.00	
* 2 Naphthalene-d8	136	8.034	8.029	0.005	100	693648	4.00	4.00	
* 3 Acenaphthene-d10	164	9.722	9.722	0.000	92	392935	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	97	649018	4.00	4.00	
* 5 Chrysene-d12	240	13.499	13.494	0.005	99	558347	4.00	4.00	
* 6 Perylene-d12	264	15.182	15.177	0.005	98	617088	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	94	762284	12.0	11.8	
\$ 8 Phenol-d5	99	6.122	6.111	0.011	0	988095	12.0	12.0	
\$ 9 Nitrobenzene-d5	82	7.244	7.238	0.006	89	1018065	12.0	12.1	
\$ 10 2-Fluorobiphenyl	172	9.076	9.071	0.005	99	1600337	12.0	12.0	
\$ 11 2,4,6-Tribromophenol	330	10.417	10.417	0.000	95	253479	12.0	12.2	
\$ 12 p-Terphenyl-d14	244	12.393	12.388	0.005	96	1851583	12.0	11.8	
13 1,4-Dioxane	88	3.675	3.670	0.005	97	358544	12.0	11.4	
14 N-Nitrosodimethylamine	42	3.947	3.937	0.010	94	403768	12.0	12.2	
15 Pyridine	52	3.985	3.974	0.011	95	1103035	24.0	24.6	
33 Benzaldehyde	77	6.111	6.106	0.005	94	1453766	24.0	23.5	
34 Phenol	94	6.138	6.127	0.011	99	1010468	12.0	12.1	
36 Aniline	93	6.228	6.223	0.005	97	1330053	12.0	12.3	
37 Bis(2-chloroethyl)ether	93	6.266	6.261	0.005	93	748894	12.0	12.2	
39 2-Chlorophenol	128	6.378	6.373	0.005	97	752203	12.0	12.1	
40 n-Decane	57	6.378	6.378	0.000	89	918602	12.0	12.2	
41 1,3-Dichlorobenzene	146	6.565	6.560	0.005	96	856686	12.0	12.1	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	91	864418	12.0	12.1	
43 Benzyl alcohol	108	6.752	6.741	0.011	91	545300	12.0	12.1	
45 1,2-Dichlorobenzene	146	6.827	6.827	0.000	95	808651	12.0	12.1	
46 2-Methylphenol	108	6.854	6.848	0.006	98	742883	12.0	12.1	
47 2,2'-oxybis[1-chloropropane]	45	6.896	6.891	0.005	94	1094627	12.0	11.9	
48 Indene	115	6.934	6.928	0.006	90	6169310	60.0	56.9	
51 4-Methylphenol	108	7.024	7.019	0.005	95	759778	12.0	12.0	
50 N-Nitrosodi-n-propylamine	70	7.051	7.041	0.010	88	548681	12.0	12.3	
52 Acetophenone	105	7.067	7.057	0.010	94	1054827	12.0	12.0	
•									

Data File: \\cnromis\Bui	Taio\Ci		1		10-11	9562.D\VV 1002		T =	
0	0	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
57 Hexachloroethane	117	7.217	7.217	0.000	95	342424	12.0	12.0	
58 Nitrobenzene	77	7.265	7.260	0.005	93 87	912834	12.0	12.0	
62 Isophorone	82	7.521	7.511	0.003	100	1621661	12.0	12.3	
65 2-Nitrophenol	139	7.612	7.612	0.000	97	394285	12.0	11.9	
66 2,4-Dimethylphenol	107	7.623	7.618	0.005	96	810004	12.0	12.0	
69 Bis(2-chloroethoxy)methane	93	7.719	7.714	0.005	98	929174	12.0	12.0	
70 Benzoic acid	105	7.820	7.730	0.000	89	2784910	60.0	61.6	М
72 2,4-Dichlorophenol	162	7.863	7.750	0.005	96	619067	12.0	12.0	IVI
74 1,2,4-Trichlorobenzene	180	7.865	7.858	0.005	93	630384	12.0	11.9	
76 Naphthalene	128	8.056	8.050	0.006	98	2016530	12.0	10.8	
78 4-Chloroaniline	127	8.088	8.082	0.006	95	846824	12.0	12.2	
79 2,6-Dichlorophenol	162	8.104	8.098	0.006	95 95	608535	12.0	12.2	
81 Hexachlorobutadiene	225	8.173	8.168	0.005	98	388226	12.0	12.0	
	113	8.472	8.430	0.003	96 81	527916	24.0	24.3	М
85 Caprolactam	107	8.558	8.547	0.042	95	675981	12.0	12.3	IVI
86 4-Chloro-3-methylphenol	142	8.745	8.739	0.006	93 91	1333201	12.0	12.3	
89 2-Methylnaphthalene	142		8.841	0.000	92		12.0	11.6	
91 1-Methylnaphthalene	237	8.841 8.894	8.894	0.000	92 97	1353446 460370	12.0	12.2	
92 Hexachlorocyclopentadiene	237 216	8.905	8.905	0.000	97 98				
94 1,2,4,5-Tetrachlorobenzene						621597	12.0	12.0 12.1	
96 2,4,6-Trichlorophenol	196	9.001	8.996	0.005	94	461438	12.0		
97 2,4,5-Trichlorophenol	196	9.039	9.033	0.005	92	443744	12.0	12.3	
101 1,1'-Biphenyl	154	9.177	9.172	0.005	98	1696127	12.0	11.9	
102 2-Chloronaphthalene	162	9.209	9.210	-0.001	99	1319871	12.0	11.8	
104 2-Nitroaniline	65	9.284	9.279	0.005	80	467153	12.0	12.2	а
108 Dimethyl phthalate	163	9.423	9.418	0.005	99	1528820	12.0	12.0	
109 1,3-Dinitrobenzene	168	9.466	9.461	0.005	85	255713	12.0	12.3	
110 2,6-Dinitrotoluene	165	9.493	9.487	0.006	92	353354	12.0	12.1	
111 Acenaphthylene	152	9.599	9.594	0.005	98	2109225	12.0	11.9	
112 3-Nitroaniline	138	9.658	9.648	0.010	92	362905	12.0	13.0	а
113 2,4-Dinitrophenol	184	9.744	9.738	0.006	82	380644	24.0	24.9	
114 Acenaphthene	153	9.754	9.749	0.005	96	1328959	12.0	11.7	
115 4-Nitrophenol	109	9.776	9.765	0.011	94	485917	24.0	25.8	
116 2,4-Dinitrotoluene	165	9.856	9.851	0.005	91	483528	12.0	12.2	
118 Dibenzofuran	168	9.904	9.899	0.005	95	1842667	12.0	11.8	
121 2,3,4,6-Tetrachlorophenol	232	10.000	10.000	0.000	79	347071	12.0	12.4	
122 Hexadecane	57	10.027	10.027	0.000	95	1020993	12.0	12.0	
124 Diethyl phthalate	149	10.043	10.032	0.011	97	1460564	12.0	11.9	
126 4-Chlorophenyl phenyl ether	204	10.176	10.171	0.005	97	704365	12.0	11.9	
130 4-Nitroaniline	138	10.203	10.193	0.011	81	329019	12.0	12.1	
129 Fluorene	166	10.208	10.203	0.005	94	1500879	12.0	11.8	
131 4,6-Dinitro-2-methylphenol	198	10.224	10.214	0.010	83	520679	24.0	24.7	
132 Diphenylamine	169	10.278	10.273	0.005	94	1072468	10.3	10.1	
133 N-Nitrosodiphenylamine	169	10.278	10.273	0.005	64	1072468	12.0	11.8	
134 Azobenzene	77	10.315	10.310	0.005	99	1753229	12.0	11.8	
135 1,2-Diphenylhydrazine	77	10.315	10.310	0.005	41	1727805	12.0	12.0	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	70	435440	12.0	11.9	
147 Atrazine	200	10.705	10.695	0.010	92	797647	24.0	23.0	
146 Hexachlorobenzene	284	10.700	10.695	0.005	93	465752	12.0	11.6	
148 n-Octadecane	57	10.812	10.807	0.005	96	1055981	12.0	12.0	
152 Pentachlorophenol	266	10.855	10.850	0.005	91	590860	24.0	24.1	
156 Phenanthrene	178	11.047	11.047	0.000	99	2115699	12.0	11.9	
157 Anthracene	178	11.047	11.090	0.005	99	2029141	12.0		
157 Anunacene	1/6	11.095	11.090	0.005	99	2029141	12.U	11.5	

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
158 Carbazole	167	11.207	11.202	0.005	96	1601348	12.0	12.1	M
161 Di-n-butyl phthalate	149	11.421	11.416	0.005	100	2494256	12.0	11.7	•••
168 Fluoranthene	202	12.094	12.094	0.000	99	2249046	12.0	11.8	
170 Benzidine	184	12.164	12.164	0.000	99	1023947	24.0	26.3	М
172 Pyrene	202	12.319	12.313	0.006	96	2298266	12.0	11.9	
183 Butyl benzyl phthalate	149	12.810	12.805	0.005	97	1145287	12.0	12.0	
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	98	1626741	12.0	12.1	
189 3,3'-Dichlorobenzidine	252	13.414	13.403	0.011	75	1295213	24.0	24.9	
190 Benzo[a]anthracene	228	13.483	13.478	0.005	98	2195200	12.0	12.1	
191 Chrysene	228	13.526	13.521	0.005	97	1882354	12.0	11.6	а
193 Di-n-octyl phthalate	149	13.996	13.991	0.005	100	2660882	12.0	12.0	
196 Benzo[b]fluoranthene	252	14.675	14.664	0.011	97	2042272	12.0	11.5	
197 Benzo[k]fluoranthene	252	14.707	14.696	0.011	98	2329590	12.0	12.5	
201 Benzo[a]pyrene	252	15.113	15.102	0.011	78	1954652	12.0	12.2	
205 Dibenz(a,h)anthracene	278	16.897	16.870	0.027	89	2212900	12.0	12.2	
204 Indeno[1,2,3-cd]pyrene	276	16.902	16.876	0.026	99	2617405	12.0	12.2	
206 Benzo[g,h,i]perylene	276	17.426	17.405	0.021	98	2088339	12.0	12.2	
S 253 Total Cresols	1				0			24.1	

QC Flag Legend Processing Flags

Processing Flags Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00637 Amount Added: 1.00 Units: mL

Report Date: 19-Aug-2024 14:54:53 Chrom Revision: 2.3 07-Aug-2024 17:44:18

 $\label{lem:buffalo} Eurofins Buffalo $$ \operatorname{Buffalo}\ChromData\HP5973W\20240816-119562.b\W100259735.d $$$ Data File:

Injection Date: 16-Aug-2024 16:54:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 12

Client ID:

9 Operator ID: ED ALS Bottle#: Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Report Date: 19-Aug-2024 14:54:53

Chrom Revision: 2.3 07-Aug-2024 17:44:18

Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240816-119562.b\\W100259735.d

Injection Date: 16-Aug-2024 16:54:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 12

Client ID:

Operator ID: ED ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: Detector MS SCAN

191 Chrysene, CAS: 218-01-9

Signal: 1

Not Detected

Expected RT: 13.52

Processing Integration Results

RT: 13.53 Area: 1882354 Amount: 11.615417 Amount Units: ng/uL

Reviewer: QN8S, 19-Aug-2024 08:21:33 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

Page 723 of 1052

Report Date: 19-Aug-2024 14:55:18 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259736.d

Lims ID: IC - List 1 - 16

Client ID:

Sample Type: IC Calib Level: 8

Inject. Date: 16-Aug-2024 17:21:30 ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-010

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:55:15Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: QN8S Date: 19-Aug-2024 08:23:14

First Level Reviewer: QN8S		Date:				19-Aug-202			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 11,4-Dichlorobenzene-d4	152	6.624	6.619	0.005	95	182155	4.00	4.00	
* 2 Naphthalene-d8	136	8.034	8.029	0.005	99	693137	4.00	4.00	
* 3 Acenaphthene-d10	164	9.722	9.722	0.000	92	387059	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	98	646562	4.00	4.00	
* 5 Chrysene-d12	240	13.499	13.494	0.005	98	568675	4.00	4.00	
* 6 Perylene-d12	264	15.182	15.177	0.005	99	628162	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.123	5.123	0.000	95	1033959	16.0	16.1	
\$ 8 Phenol-d5	99	6.122	6.111	0.011	0	1297221	16.0	15.8	
\$ 9 Nitrobenzene-d5	82	7.249	7.238	0.011	89	1352049	16.0	16.1	
\$ 10 2-Fluorobiphenyl	172	9.076	9.071	0.005	99	2098865	16.0	15.9	
\$ 11 2,4,6-Tribromophenol	330	10.422	10.417	0.005	94	339625	16.0	16.3	
\$ 12 p-Terphenyl-d14	244	12.393	12.388	0.005	96	2418773	16.0	15.2	
13 1,4-Dioxane	88	3.680	3.670	0.010	96	464915	16.0	14.9	
14 N-Nitrosodimethylamine	42	3.953	3.937	0.016	93	534062	16.0	16.3	
15 Pyridine	52	3.985	3.974	0.011	94	1442301	32.0	32.3	
33 Benzaldehyde	77	6.116	6.106	0.010	93	1804750	32.0	29.3	
34 Phenol	94	6.143	6.127	0.016	99	1320442	16.0	15.9	
36 Aniline	93	6.234	6.223	0.011	97	1783096	16.0	16.5	
37 Bis(2-chloroethyl)ether	93	6.266	6.261	0.005	94	922017	16.0	15.0	
39 2-Chlorophenol	128	6.378	6.373	0.005	87	986863	16.0	15.9	
40 n-Decane	57	6.378	6.378	0.000	87	1197171	16.0	15.9	
41 1,3-Dichlorobenzene	146	6.565	6.560	0.005	96	1119979	16.0	15.9	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	91	1140443	16.0	16.0	
43 Benzyl alcohol	108	6.757	6.741	0.016	91	727141	16.0	16.1	
45 1,2-Dichlorobenzene	146	6.827	6.827	0.000	95	1060221	16.0	15.9	
46 2-Methylphenol	108	6.859	6.848	0.011	98	974026	16.0	15.9	
47 2,2'-oxybis[1-chloropropane]	45	6.896	6.891	0.005	93	1423270	16.0	15.6	
48 Indene	115	6.934	6.928	0.006	90	7569235	80.0	70.0	
51 4-Methylphenol	108	7.030	7.019	0.011	95	991644	16.0	15.7	
50 N-Nitrosodi-n-propylamine	70	7.057	7.041	0.015	89	719991	16.0	16.2	
52 Acetophenone	105	7.067	7.057	0.010	94	1402398	16.0	16.0	
•			_		_				

Sig Min	Data File: \\chromfs\But	ffalo\Cr				16-119	9562.b\W1002			
S7 Hexachloroethane			RT	Adj RT	Dlt RT		_	Cal Amt	OnCol Amt	
SB Nitrobenzene	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
SB Nitrobenzene	E711	447	7.047	7.047	0.000	0.5	454007	10.0	45.0	
62 Isophorone 82 7.521 7.511 0.010 00 2138110 16.0 15.9 66 2.4-Dimethylphenol 107 7.623 7.618 0.005 95 1083272 16.0 15.7 70 Benzoic acid 105 7.447 7.730 0.117 88 3228814 80.0 83.4 Ma 72 2.4-Dichlorophenol 162 7.859 7.858 0.011 95 818150 16.0 15.7 76 Naphthalene 128 8.056 8.050 0.006 93 2999688 16.0 15.4 79 2.6-Dichlorophenol 162 8.088 8.020 0.006 99 2999688 16.0 15.4 79 2.6-Dichlorophenol 162 8.104 8.098 0.006 96 803927 16.0 15.8 81 Hexachlorobutadiene 225 8.173 8.188 0.005 98 515321 16.0 15.8 82 -Metryinphthalene 142 8.41 8.441 0.000 92 </td <td></td>										
65 2.4. Nitrophenol 139 7.617 7.621 2.015 94 527930 16.0 15.9 66 2.4. Dimethylphenol 105 7.623 7.618 0.005 95 1083272 16.0 16.0 15.7 70 Benzoic acid 105 7.847 7.730 0.117 88 3828814 80.0 83.4 Ma 72 2.4-Dichlorophenol 162 7.869 7.858 0.011 98 219188 16.0 15.9 74 1.2.4-Trichlorobenzene 128 8.056 8.050 0.006 99 2999888 16.0 15.6 78 4.Chloroaniline 127 8.088 8.082 0.006 94 1066836 16.0 15.4 81 Hexachlorobutadiene 132 8.494 8.008 0.006 98 803927 16.0 15.8 81 Hexachlorocyclopentadiene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 94 1.2.4.5-Trichlorophenol 196 9.044 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
66 2.4-Dimethylphenol 107 7.623 7.618 0.005 95 1083272 16.0 16.0 18.7 7.00 18.0 18.0 15.7 7.00 18.0 18.0 15.7 15.7 18.0 15.7 18.0 15.7 18.0 15.7 18.0 15.7 18.0 15.7 18.0 18.0 18.0 18.0 18.0 18.0 7.955 7.959 0.00 93 2999688 16.0 15.6 15.7 76 Naphthalene 128 8.056 8.050 0.006 99 2999688 16.0 15.6 15.6 79 2.6-Dichlorophenol 162 8.104 8.098 0.006 96 803927 16.0 15.8 15.8 18 Hexachlorobutadiene 225 8.173 8.188 0.006 98 803927 16.0 15.8 18 Hexachlorocyclopentalene 142 8.44 8.400 0.06 98 8181920 16.0 15.8 11 Hexachlorocyclopentalene 142 8.41 8.841 0.000 92										
69 Bis(2-chloroethoxymethane) 33 7.724 7.714 0.010 88 1207569 16.0 15.7 70 Benzoic acid 105 7.847 7.730 0.117 88 3828814 80.0 83.4 Ma 72 2,4-Dichlorophenol 162 7.869 7.858 0.011 95 818150 16.0 15.7 76 Naphthalene 128 8.056 8.050 0.006 99 2909683 16.0 15.6 78 4-Chloroaniline 127 8.088 8.082 0.006 94 1066836 16.0 15.4 81 Hexachlorobutadiene 225 8.173 8.168 0.005 98 515321 16.0 15.8 81 Hexachloro-3-methylphenol 107 8.553 8.547 0.016 95 871800 16.0 15.6 89 2-Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.0										
70 Benzoic acid										
72 2.4-Dichlorophenol 162 7.869 7.858 0.011 95 818150 16.0 15.9	*									N/a
74 1,2.4-Tirchlorobenzene										ivia
78 Naphthalene 128 8.056 8.050 0.006 94 2090588 16.0 15.6 78 4-Chloroaniline 127 8.088 8.082 0.006 94 1066836 16.0 15.4 79 2,6-Dichlorophenol 162 8.104 8.098 0.006 96 803927 16.0 15.8 81 Hexachlorobutadiene 225 8.173 8.168 0.005 98 515321 16.0 15.8 85 Caprolactam 113 8.494 8.44 0.064 80 698981 32.0 32.1 M 86 4-Chloro-3-methylphenol 107 8.563 8.547 0.016 95 871800 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.000 92 1763892 16.0 15.6 92 Hexachlorocyclopertadidine 237 8.900 8.895 0.005 98 817130 16.0 16.1 94 1.2.4,5-Trichlorophenol 196 9.006 8.996 0.010										
78 4-Chloropaniline										
78 2.6-Dichlorophenol 162 8.104 8.098 0.006 96 80.9927 16.0 15.8 81 Hexachlorobutadiene 225 8.173 8.168 0.005 98 515321 16.0 15.9 85 Caprolactam 113 8.494 8.430 0.064 80 698981 32.0 32.1 M 86 4.Chloro-3-methylphenol 107 8.563 8.547 0.016 95 871800 16.0 15.8 89 2.Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1.Methylnaphthalene 142 8.841 8.841 0.000 92 1763892 16.0 15.6 92 Hexachlorocyclopentadiene 237 8.900 8.894 0.006 98 597655 16.0 16.1 94 1.2.4,5 Tetrachlorobenzene 268 8.995 0.005 98 817130 16.0 16.0 96 2.4,6 Trichlorophenol 196 9.006 8.996 0.010 94 609713 16.0 16.2 97 2.4,5 Trichlorophenol 196 9.044 9.033 0.011 92 573179 16.0 16.1 911 1.1 Eliphenyl 154 9.177 9.172 0.005 97 2194257 16.0 15.6 102 2.Chloronaphthalene 162 9.215 9.210 0.005 97 2194257 16.0 15.6 103 2.Hitroaniline 65 9.290 9.279 0.011 79 616966 16.0 16.4 a 104 2.Phitrotoluene 165 9.493 9.487 0.006 92 470707 16.0 16.3 111 Acenaphthylene 152 9.599 9.594 0.005 98 2740353 16.0 15.5 112 3.Phitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4.Phitrophenol 168 9.861 9.871 0.005 95 2390568 16.0 15.6 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 129 Huorene 169 0.278 10.207 0.006 96 138685 16.0 15.6 129 Huorene 169 10.278 10.207 0.005 96 138685 16.0 15.5 131 4.Phitrophenol 198 10.230 10.214 0.016 81 695229 32.0 35.3 143 4.Phitrophenol 198 10.230 10.273 0.005 93 1393915 16.0 16.2 129 Huorene 166 10.208 10.203 0.005 93 1393915 16.0 15.5 131 4.Phitrophenol 198 10.230 10.										
81 Hexachlorobutadiene 225 8.173 8.188 0.005 98 515321 16.0 15.9 85 Caprolactam 113 8.494 8.430 0.064 80 698981 32.0 32.1 M 86 4-Chloro-3-methylphenol 107 8.563 8.547 0.016 95 871800 16.0 15.6 91 1-Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.000 98 597655 16.0 16.1 94 1,2.4,5-Tetrachlorobenzene 216 8.910 8.905 0.005 98 817130 16.0 16.0 97 2,4,5-Trichlorophenol 196 9.004 9.903 0.011 92 573179 16.0 16.1 101 2,-Christophenol 166 9.291 9.217 9.210 0.005 99 1732018 16.0 15.6 102 2-Chloroaphthalene 163 9.428										
85 Caprolactam 113 8.494 8.430 0.064 80 698881 32.0 32.1 M 86 4-Chloro-3-methylphenol 107 8.563 8.547 0.016 95 871800 16.0 15.6 91 1-Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.006 98 597655 16.0 16.0 94 1.2,4,5-Tetrachlorophenol 196 9.006 8.996 0.010 94 609713 16.0 16.0 96 2.4,6-Trichlorophenol 196 9.006 8.996 0.010 94 609713 16.0 16.1 101 1,1-Biphenyl 154 9.177 9.172 0.005 97 2194257 16.0 15.6 102 2-Chloronaphthalene 162 9.215 9.219 0.011 79 1960258 16.0 15.6 102 3-Chioronaphthalene 163 9.428 9.418 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
86 4-Chloro-3-methylphenol 107 8.563 8.547 0.016 95 871800 16.0 15.8 89 2-Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.000 92 1763892 16.0 15.6 92 Hexachlorocyclopentadiene 216 8.910 8.905 0.005 98 817130 16.0 16.0 96 2.4,6-Trichlorophenol 196 9.004 9.033 0.011 92 573179 16.0 16.2 97 2.4,5-Trichlorophenol 196 9.044 9.033 0.011 92 573179 16.0 15.6 104 2-Nitroaniline 162 9.215 0.005 99 1732018 16.0 15.8 104 2-Nitroaniline 163 9.428 9.418 0.010 85 342888 16.0 16.5 109 1,3-Dinitrobluene 165 9.493 9.487 0.006 92										N.A
89 2-Methylnaphthalene 142 8.745 8.739 0.006 91 1759231 16.0 15.6 91 1-Methylnaphthalene 142 8.841 8.841 0.000 92 1753892 16.0 15.6 92 Hexachlorocyclopentadiene 27 8.900 8.894 0.006 98 877655 16.0 16.1 16.1 94 1.2.4,5-Tetrachlorobenzene 216 8.910 8.995 0.005 98 817130 16.0 16.0 96 2.4,6-Trichlorophenol 196 9.004 9.033 0.010 94 609713 16.0 16.2 97 2.4,5-Trichlorophenol 196 9.044 9.033 0.011 92 573179 16.0 16.1 101 1,1-Biphenyl 154 9.177 9.172 0.005 97 2.194257 16.0 15.6 102 2-Chloronaphthalene 162 9.215 9.210 0.005 97 1732018 16.0 15.8 104 2-Nitroaniline 65 9.290 9.279 0.011 79 616966 16.0 15.8 108 104 2-Nitroaniline 65 9.290 9.279 0.011 79 616966 16.0 15.6 10.3 101 1,3-Bintrobenzene 168 9.471 9.461 0.010 85 342888 16.0 16.5 110 2,6-Dinitrotoluene 165 9.493 9.887 0.006 92 470707 16.0 16.3 111 Acenaphthylene 152 9.599 9.594 0.005 98 2740353 16.0 15.7 112 3-Nitroaniline 138 9.658 9.648 0.010 92 4708353 16.0 15.7 113 2.4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 165 9.861 9.861 9.861 0.010 95 303250 16.0 15.1 115 1-Nitrotoluene 165 9.861 9.861 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 16.1 122 12,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.1 16.1 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 15.8 131 4,6-Dinitro-2-methylphenol 188 10.208 10.293 10.005 93 1939715 16.0 16.5 15.8 132 14.6-Dinitro-2-methylphenol 188 10.208 10.203 0.005 93 1939715 16.0 15.5 133 1.4-Diphenylamine 169 10.278 10.273 0.005 94 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 141 2263391 16.0 15.5 135 1.2-Diphenylphydrazine 77 10.321 10.310 0.011 141 2263391 16.0 15.5 148 H-Octadecane 57 10.812 10.807 0.005 93 168507 16.0 15.5 148 H-Octadecane 57 10.812 10.807 0.005 93 618507 16.0 15.5 15.5 148 H-Octadecane 57 10.812 10.807 0.005 99 2694132 16.0 15.5 15.6 15.6 15.6 15.6 15.5 15.5 15.5										IVI
91 1-Methylnaphthalene	· · · · · · · · · · · · · · · · · · ·									
92 Hexachlorocyclopentadiene 237 8,900 8,894 0,006 98 597655 16.0 16.1 94 1,2,4,5-Tetrachlorobenzene 216 8,910 8,905 0,005 98 817130 16.0 16.0 16.0 96 2,4,6-Trichlorophenol 196 9,004 9,033 0,011 92 573179 16.0 16.1 101 1,1-Biphenyl 154 9,177 9,172 0,005 97 2194257 16.0 15.6 102 2-Chloronaphthalene 162 9,215 9,210 0,005 97 1732018 16.0 15.8 104 2-Nitroaniline 65 9,290 9,279 0,011 79 616966 16.0 16.4 a 108 Dimethyl phthalate 163 9,428 9,418 0,010 97 1960258 16.0 15.6 109 1,3-Dinitrobenzene 168 9,471 9,461 0,010 85 342888 16.0 16.5 110 2,6-Dinitrotoluene 165 9,493 9,487 0,006 92 470707 16.0 16.3 111 Acenaphthylene 152 9,599 9,594 0,005 98 2740353 16.0 15.7 112 3-Nitroaniline 138 9,658 9,648 0,010 92 474825 16.0 17.3 a 133 2,4-Dinitrophenol 184 9,749 9,738 0,011 78 494069 32.0 32.6 114 Acenaphthene 153 9,754 9,749 0,005 94 1730737 16.0 15.5 115 4-Nitrophenol 168 9,904 9,899 0,005 94 1730737 16.0 15.5 115 2-Dinitrotoluene 165 9,861 9,861 9,861 0,010 95 665659 32.0 35.3 116 2,4-Dinitrotoluene 165 9,861 9,861 0,010 95 665659 32.0 35.3 116 2,2-Dinitrotoluene 165 9,861 9,861 0,010 90 630250 16.0 16.1 18 Dibenzofuran 168 9,904 9,899 0,005 95 2390568 16.0 15.6 121 2,3 4,6-Tetrachlorophenol 232 10,005 10,000 0,005 78 465039 16.0 16.1 18 Dibenzofuran 168 9,904 9,899 0,005 95 2390568 16.0 16.0 16.1 18 Dibenzofuran 168 9,904 9,899 0,005 95 2390568 16.0 16.0 16.1 12 Dipenyl phthalate 149 10,043 10,032 0,011 97 1957915 16.0 16.5 12 12 4 Diethyl phthalate 149 10,043 10,032 0,011 97 1957915 16.0 16.5 15.8 131 4,6-Dinitro-2-methylphenol 198 10,273 0,005 98 918685 16.0 15.5 131 4,6-Dinitro-2-methylphenol 169 10,278 10,273 0,005 93 1411227 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10,273 0,005 94 1730737 16.0 15.5 131 4,6-Dinitro-2-methylphenol 199 10,278 10,273 0,005 94 1730737 16.0 15.5 131 4,6-Dinitro-2-methylphenol 199 10,278 10,273 0,005 94 1730737 16.0 15.5 131 4,6-Dinitro-2-methylphenol 199 10,278 10,273 0,005 93 1411227 16.0 15.5 131 4,6-Dinitro-2-methylphenol 199 10,278 10,273 0,005 93 1411227 16.0 15.5 131 4,7-Dinitro-2	· ·									
94 1,2.4,5-Tetrachlorobenzene 216 8,910 8,905 0,005 98 817130 16,0 16,0 96 2,4,6-Trichlorophenol 196 9,006 8,996 0,010 94 609713 16,0 16,1 16,1 11,1-Biphenyl 154 9,177 9,172 0,005 97 2194257 16,0 15,6 102 2-Chloronaphthalene 162 9,215 9,210 0,005 99 1732018 16,0 15,8 104 2-Nitroaniline 65 9,290 9,279 0,011 79 616966 16,0 16,4 a 108 Dimethyl phthalate 163 9,428 9,418 0,010 97 1960258 16,0 15,6 109 1,3-Dinitrobenzene 168 9,471 9,461 0,010 85 342888 16,0 16,5 110 2,6-Dinitrotoluene 165 9,493 9,487 0,006 92 470707 16,0 16,3 111 Acenaphthylene 152 9,599 9,594 0,005 98 2740353 16,0 15,7 112 3-Nitroaniline 138 9,658 9,648 0,010 92 474825 16,0 17,3 a 113 2,4-Dinitrophenol 184 9,749 9,738 0,011 78 494069 32,0 32,0 32,6 114 Acenaphthene 153 9,754 9,749 9,738 0,011 78 494069 32,0 32,0 32,6 114 Acenaphthene 165 9,861 9,749 9,738 0,011 78 494069 32,0 35,3 116 2,4-Dinitrotoluene 165 9,861 9,891 0,005 94 1730737 16,0 15,5 115 4-Nitrophenol 109 9,781 9,765 0,016 95 656509 32,0 35,3 116 2,4-Dinitrotoluene 165 9,861 9,891 0,005 95 2390568 16,0 16,1 15,6 118 Dibenzofuran 168 9,904 9,899 0,005 95 2390568 16,0 16,1 15,6 121 2,3,4,6-Tetrachlorophenol 232 10,005 10,000 0,005 78 465039 16,0 16,1 15,6 121 2,3,4,6-Tetrachlorophenol 198 10,203 10,005 10,000 0,005 78 465039 16,0 16,2 126 4-Chlorophenyl phenyl ether 149 10,043 10,032 0,011 97 1957915 16,0 16,2 126 4-Chlorophenyl phenyl ether 149 10,043 10,032 0,011 97 1957915 16,0 16,5 132 129 Fluorene 166 10,208 10,203 10,214 0,016 81 695229 32,0 32,9 32,9 133 N-Nitrosodiphenylamine 169 10,278 10,273 0,005 93 1411227 16,0 15,5 135 1,2-Diphenylhydrazine 77 10,321 10,310 0,011 100 2293420 16,0 15,5 135 1,2-Diphenylhydrazine 77 10,321 10,310 0,011 100 2293420 16,0 15,5 143 Azobenzene 284 10,700 10,695 0,005 93 618507 16,0 15,5 143 N-Octadecane 57 10,815 10,807 0,005 94 173032 16,0 15,5 15,8 143 Azobenzene 284 10,700 10,695 0,005 93 618507 16,0 15,5 148 N-Octadecane 57 10,815 10,807 0,005 99 2694132 16,0 15,5 15,8 156 Phenanthrene 178 11,053 11,047 0,005 99 2694132 16,0 15,5 15,8 156 Phenanth										
96 2,4,6-Trichlorophenol 196 9.046 8.996 0.010 94 609713 16.0 16.2 972,4,5-Trichlorophenol 196 9.044 9.033 0.011 92 573179 16.0 15.6 16.1 101.1,1-Biphenyl 154 9.177 9.172 0.005 97 2194257 16.0 15.6 102 2-Chloronaphthalene 162 9.215 9.210 0.005 99 1732018 16.0 15.8 104 2-Nitroaniline 65 9.290 9.279 0.011 79 616966 16.0 16.4 a 108 Dimethyl phthalate 163 9.428 9.418 0.010 97 1960258 16.0 15.6 109 1,3-Dinitrobenzene 168 9.471 9.461 0.010 85 342888 16.0 16.5 110 2,6-Dinitrotoluene 165 9.493 9.487 0.006 92 470707 16.0 16.3 111 Acenaphthylene 152 9.599 9.594 0.005 98 2740353 16.0 15.7 112 3-Nitroaniline 138 9.658 9.648 0.010 92 474825 16.0 17.3 a 113 2,4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 32.0 32.1 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 78 465039 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.3 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.2 126 4-Chlorophenyl phenyl ether 138 10.208 10.203 0.015 93 19389715 16.0 16.2 126 4-Chlorophenyl phenyl ether 138 10.208 10.203 0.015 93 19389715 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 19389715 16.0 16.5 132 Diphenylamine 169 10.278 10.273 0.005 93 19389715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.203 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 93 19389715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.203 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylphydrazine 77 10.321 10.310 0.011 100 2293420 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1388675 16.0 15.5 15.8 148 n-Octadecane 57 10.812 10.807 0.005 97 87858 32.0 32.1 15.5 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 15.5 15.8 156 Pentachlorophenol 266 10.855 10.850										
97 2,4,5-Trichlorophenol 196 9.044 9.033 0.011 92 573179 16.0 16.1 101 1,1'-Biphenyl 154 9.177 9.172 0.005 97 2194257 16.0 15.6 15.6 102 2-Chlorophthalene 162 9.215 9.210 0.005 99 1732018 16.0 15.8 104 2-Nitroaniline 65 9.290 9.279 0.011 79 616966 16.0 16.4 a 108 Dimethyl phthalate 163 9.428 9.418 0.010 97 1960258 16.0 15.6 109 1,3-Dinitrobenzene 168 9.471 9.461 0.010 85 34288 16.0 15.6 109 1,3-Dinitrobenzene 165 9.493 9.487 0.006 92 470707 16.0 16.3 111 Acenaphthylene 152 9.599 9.594 0.005 98 2740353 16.0 15.7 112 3-Nitroaniline 138 9.658 9.648 0.010 92 474825 16.0 15.7 113 2,4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 17330737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.861 9.851 0.010 90 630250 16.0 16.1 18.1 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 16.1 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 122 46 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.5 131 4,6-Dinitroz-methylphenol 188 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitroz-methylphenol 189 10.238 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitroz-methylphenol 189 10.238 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitroz-methylphenol 198 10.239 10.214 0.016 81 695229 32.0 32.9 32.9 33 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 131 4,6-Dinitroz-methylphenol 189 10.230 10.214 0.016 81 695229 32.0 32.9 32.9 32.9 33 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 100 2293420 16.0 15.5 134 A-Dotachene 284 10.700 10.695 0.005 93 1411227 13.7 13.4 134 Azobenzene 284 10.700 10.695 0.005 90 787258 32.0 32.1 15.6 15.6 15.6 15.6 15.6 1										
101 1,1'-Bipheny	•									
102 2-Chloronaphthalene	•									
104 2-Nitroaniline										
108 Dimethyl phthalate	•									_
109 1,3-Dinitroblenzene										а
110 2,6-Dinitrotoluene										
1111 Acenaphthylene 152 9.599 9.594 0.005 98 2740353 16.0 15.7 112 3-Nitroaniline 138 9.658 9.648 0.010 92 474825 16.0 17.3 a 113 2,4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 124 Diethyl phthalate 149 10.027 10.027 0.000										
112 3-Nitroaniline 138 9.658 9.648 0.010 92 474825 16.0 17.3 a 113 2,4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011										
113 2,4-Dinitrophenol 184 9.749 9.738 0.011 78 494069 32.0 32.6 114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 <										_
114 Acenaphthene 153 9.754 9.749 0.005 94 1730737 16.0 15.5 115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.5 130 4-Nitroaniline 138 10.208 10.203 0.005 93 1939715 16.0 16.5 129 Fluorene 166 <										а
115 4-Nitrophenol 109 9.781 9.765 0.016 95 656509 32.0 35.3 116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.002 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016<	•									
116 2,4-Dinitrotoluene 165 9.861 9.851 0.010 90 630250 16.0 16.1 118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.007 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitrosniline 138 10.208 10.203 0.005 93 1939715 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine										
118 Dibenzofuran 168 9.904 9.899 0.005 95 2390568 16.0 15.6 121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitrosniline 138 10.208 10.203 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 13.7 13.4 134 Azobenzene										
121 2,3,4,6-Tetrachlorophenol 232 10.005 10.000 0.005 78 465039 16.0 16.8 122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene										
122 Hexadecane 57 10.027 10.027 0.000 96 1338535 16.0 16.0 124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine										
124 Diethyl phthalate 149 10.043 10.032 0.011 97 1957915 16.0 16.2 126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.8 147 Atrazine <	•									
126 4-Chlorophenyl phenyl ether 204 10.176 10.171 0.005 98 918685 16.0 15.8 130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8										
130 4-Nitroaniline 138 10.208 10.193 0.016 56 442429 16.0 16.5 129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 148 n-Octadecane <td></td>										
129 Fluorene 166 10.208 10.203 0.005 93 1939715 16.0 15.5 131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.8 152 Pentachlorop										
131 4,6-Dinitro-2-methylphenol 198 10.230 10.214 0.016 81 695229 32.0 32.9 133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phen										
133 N-Nitrosodiphenylamine 169 10.278 10.273 0.005 64 1411227 16.0 15.6 132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene										
132 Diphenylamine 169 10.278 10.273 0.005 93 1411227 13.7 13.4 134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2										
134 Azobenzene 77 10.321 10.310 0.011 100 2293420 16.0 15.5 135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	• •									
135 1,2-Diphenylhydrazine 77 10.321 10.310 0.011 41 2263391 16.0 15.9 a 143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2										
143 4-Bromophenyl phenyl ether 248 10.604 10.604 0.000 70 575457 16.0 15.8 147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2										
147 Atrazine 200 10.705 10.695 0.010 91 978961 32.0 28.7 146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	135 1,2-Diphenylhydrazine						2263391			а
146 Hexachlorobenzene 284 10.700 10.695 0.005 93 618507 16.0 15.5 148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	70	575457	16.0	15.8	
148 n-Octadecane 57 10.812 10.807 0.005 96 1386725 16.0 15.8 152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	147 Atrazine	200	10.705	10.695	0.010	91	978961	32.0	28.7	
152 Pentachlorophenol 266 10.855 10.850 0.005 90 787258 32.0 32.1 156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	146 Hexachlorobenzene	284	10.700	10.695	0.005	93	618507	16.0	15.5	
156 Phenanthrene 178 11.053 11.047 0.005 99 2694132 16.0 15.2	148 n-Octadecane	57	10.812	10.807	0.005	96	1386725	16.0	15.8	
	152 Pentachlorophenol	266	10.855	10.850	0.005	90	787258	32.0	32.1	
157 Anthracene 178 11.095 11.090 0.005 99 2661560 16.0 15.1	156 Phenanthrene	178	11.053	11.047	0.005	99	2694132	16.0	15.2	
	157 Anthracene	178	11.095	11.090	0.005	99	2661560	16.0	15.1	

			A !! D.T.	DI: DT			0.14		
0	0.	RT	Adj RT	Dlt RT		B	Cal Amt	OnCol Amt	-1
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
158 Carbazole	167	11.207	11.202	0.005	96	2181957	16.0	16.6	М
161 Di-n-butyl phthalate	149	11.421	11.416	0.005	100	3227861	16.0	15.3	
168 Fluoranthene	202	12.100	12.094	0.006	99	2939082	16.0	15.4	
170 Benzidine	184	12.169	12.164	0.005	99	1422526	32.0	35.7	M
172 Pyrene	202	12.324	12.313	0.011	96	2999836	16.0	15.2	
183 Butyl benzyl phthalate	149	12.810	12.805	0.005	97	1519999	16.0	15.6	
187 Bis(2-ethylhexyl) phthalate	149	13.344	13.339	0.005	98	2128595	16.0	15.5	
189 3,3'-Dichlorobenzidine	252	13.414	13.403	0.011	75	1742689	32.0	33.0	
190 Benzo[a]anthracene	228	13.489	13.478	0.011	98	2805459	16.0	15.2	
191 Chrysene	228	13.531	13.521	0.010	97	2485977	16.0	15.1	
193 Di-n-octyl phthalate	149	14.001	13.991	0.010	100	3505954	16.0	15.5	
196 Benzo[b]fluoranthene	252	14.680	14.664	0.016	97	2987580	16.0	16.6	
197 Benzo[k]fluoranthene	252	14.712	14.696	0.016	98	2794134	16.0	14.7	
201 Benzo[a]pyrene	252	15.118	15.102	0.016	78	2612862	16.0	16.0	
205 Dibenz(a,h)anthracene	278	16.902	16.870	0.032	90	2886377	16.0	15.7	
204 Indeno[1,2,3-cd]pyrene	276	16.918	16.876	0.042	99	3407631	16.0	15.5	а
206 Benzo[g,h,i]perylene	276	17.436	17.405	0.031	98	2657323	16.0	15.2	
S 253 Total Cresols	1				0			31.6	

QC Flag Legend Processing Flags

Processing Flags Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00638 Amount Added: 1.00 Units: mL

Report Date: 19-Aug-2024 14:55:18 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Data File:

Injection Date: 16-Aug-2024 17:21:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 16

Client ID:

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000 Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Report Date: 19-Aug-2024 14:55:18 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Manual Integration/User Assign Peak Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259736.d

Injection Date: 16-Aug-2024 17:21:30 Instrument ID: HP5973W

Lims ID: IC - List 1 - 16

Client ID:

Operator ID: ED ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: Detector MS SCAN

204 Indeno[1,2,3-cd]pyrene, CAS: 193-39-5

Signal: 1

Not Detected

Expected RT: 16.88

Processing Integration Results

RT: 16.92 Area: 3407631 Amount: 15.540468 Amount Units: ng/uL

Reviewer: QN8S, 19-Aug-2024 08:23:07 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

Calibration / Nitrobenzene-d5

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficier	nts
Intercept:	-0.01356
Slope:	0.4854

Error Coefficients

0.9

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/4	0.5	0.230135	4.0	716885.0	0.460269	Υ
2	IC 480-722078/5	1.0	0.467963	4.0	704961.0	0.467963	Υ
3	IC 480-722078/6	2.0	0.956707	4.0	725447.0	0.478353	Υ
4	ICIS 480-722078/7	4.0	1.930533	4.0	673899.0	0.482633	Υ
5	IC 480-722078/8	8.0	3.816023	4.0	536349.0	0.477003	Υ
6	IC 480-722078/9	12.0	5.870787	4.0	693648.0	0.489232	Υ
7	IC 480-722078/10	16.0	7.802492	4.0	693137.0	0.487656	Υ

Calibration / Naphthalene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	ts
Intercept:	0.00188
Slope:	1.08

Error Coefficients

Relative Standard Deviation: 5.4

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.134528	4.0	702246.0	1.076227	Υ
2	IC 480-722078/4	0.5	0.565162	4.0	716885.0	1.130324	Υ
3	IC 480-722078/5	1.0	1.111903	4.0	704961.0	1.111903	Υ
4	IC 480-722078/6	2.0	2.261657	4.0	725447.0	1.130828	Υ
5	ICIS 480-722078/7	4.0	4.445996	4.0	673899.0	1.111499	Υ
6	IC 480-722078/8	8.0	8.634922	4.0	536349.0	1.079365	Υ
7	IC 480-722078/9	12.0	11.628549	4.0	693648.0	0.969046	Υ
8	IC 480-722078/10	16.0	16.791416	4.0	693137.0	1.049464	Υ

Calibration / 2-Methylnaphthalene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	ients
Intercept:	-0.002026
Slope:	0.6514

Error Coefficients

2.1

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.078639	4.0	702246.0	0.629113	Υ
2	IC 480-722078/4	0.5	0.335133	4.0	716885.0	0.670267	Υ
3	IC 480-722078/5	1.0	0.647922	4.0	704961.0	0.647922	Υ
4	IC 480-722078/6	2.0	1.321762	4.0	725447.0	0.660881	Υ
5	ICIS 480-722078/7	4.0	2.622571	4.0	673899.0	0.655643	Υ
6	IC 480-722078/8	8.0	5.181649	4.0	536349.0	0.647706	Υ
7	IC 480-722078/9	12.0	7.688055	4.0	693648.0	0.640671	Υ
8	IC 480-722078/10	16.0	10.152284	4.0	693137.0	0.634518	Υ

Calibration / 1-Methylnaphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.6544

Error Coefficients

Relative Standard Deviation: 3.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.077192	4.0	702246.0	0.617539	Υ
2	IC 480-722078/4	0.5	0.338475	4.0	716885.0	0.676951	Υ
3	IC 480-722078/5	1.0	0.662828	4.0	704961.0	0.662828	Υ
4	IC 480-722078/6	2.0	1.350544	4.0	725447.0	0.675272	Υ
5	ICIS 480-722078/7	4.0	2.649382	4.0	673899.0	0.662346	Υ
6	IC 480-722078/8	8.0	5.230907	4.0	536349.0	0.653863	Υ
7	IC 480-722078/9	12.0	7.8048	4.0	693648.0	0.6504	Υ
8	IC 480-722078/10	16.0	10.179182	4.0	693137.0	0.636199	Υ

Calibration / 2-Fluorobiphenyl

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficie	nts
Intercept:	0.03707
Slope:	1.36

Error Coefficients

Relative Standard Deviation: 1.5

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/4	0.5	0.717023	4.0	400679.0	1.434046	Υ
2	IC 480-722078/5	1.0	1.383463	4.0	396330.0	1.383463	Υ
3	IC 480-722078/6	2.0	2.797153	4.0	408032.0	1.398577	Υ
4	ICIS 480-722078/7	4.0	5.595117	4.0	379240.0	1.398779	Υ
5	IC 480-722078/8	8.0	10.723686	4.0	307031.0	1.340461	Υ
6	IC 480-722078/9	12.0	16.291112	4.0	392935.0	1.357593	Υ
7	IC 480-722078/10	16.0	21.690388	4.0	387059.0	1.355649	Υ

Calibration / Acenaphthylene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients					
Intercept:	-0.01496				
Slope:	1.802				

Error Coefficients

1.7

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.209952	4.0	396738.0	1.679617	Υ
2	IC 480-722078/4	0.5	0.896388	4.0	400679.0	1.792777	Υ
3	IC 480-722078/5	1.0	1.745404	4.0	396330.0	1.745404	Υ
4	IC 480-722078/6	2.0	3.666252	4.0	408032.0	1.833126	Υ
5	ICIS 480-722078/7	4.0	7.299219	4.0	379240.0	1.824805	Υ
6	IC 480-722078/8	8.0	14.415561	4.0	307031.0	1.801945	Υ
7	IC 480-722078/9	12.0	21.47149	4.0	392935.0	1.789291	Υ
8	IC 480-722078/10	16.0	28.319745	4.0	387059.0	1.769984	Υ

Calibration / Acenaphthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients					
Intercept:	0.005289				
Slope:	1.151				

Error Coefficients

Relative Standard Deviation: 2.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.148178	4.0	396738.0	1.185427	Υ
2	IC 480-722078/4	0.5	0.593702	4.0	400679.0	1.187404	Υ
3	IC 480-722078/5	1.0	1.157278	4.0	396330.0	1.157278	Υ
4	IC 480-722078/6	2.0	2.375823	4.0	408032.0	1.187912	Υ
5	ICIS 480-722078/7	4.0	4.654193	4.0	379240.0	1.163548	Υ
6	IC 480-722078/8	8.0	9.184558	4.0	307031.0	1.14807	Υ
7	IC 480-722078/9	12.0	13.528538	4.0	392935.0	1.127378	Υ
8	IC 480-722078/10	16.0	17.886028	4.0	387059.0	1.117877	Υ

Calibration / Dibenzofuran

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0.005647
Slope:	1.586

Error Coefficients

2.6

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.20227	4.0	396738.0	1.618156	Y
2	IC 480-722078/4	0.5	0.827635	4.0	400679.0	1.65527	Υ
3	IC 480-722078/5	1.0	1.56076	4.0	396330.0	1.56076	Υ
4	IC 480-722078/6	2.0	3.274498	4.0	408032.0	1.637249	Υ
5	ICIS 480-722078/7	4.0	6.451999	4.0	379240.0	1.613	Υ
6	IC 480-722078/8	8.0	12.537718	4.0	307031.0	1.567215	Υ
7	IC 480-722078/9	12.0	18.757983	4.0	392935.0	1.563165	Υ
8	IC 480-722078/10	16.0	24.704947	4.0	387059.0	1.544059	Υ

Calibration / Fluorene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	Curve Coefficients					
Intercept:	-0.006011					
Slope:	1.296					

Error Coefficients

Relative Standard Deviation: 2.2

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-722078/3	0.125	0.154429	4.0	396738.0	1.235435	Υ
IC 480-722078/4	0.5	0.664013	4.0	400679.0	1.328026	Υ
IC 480-722078/5	1.0	1.304347	4.0	396330.0	1.304347	Υ
IC 480-722078/6	2.0	2.597159	4.0	408032.0	1.29858	Υ
ICIS 480-722078/7	4.0	5.257378	4.0	379240.0	1.314344	Υ
IC 480-722078/8	8.0	10.340962	4.0	307031.0	1.29262	Υ
IC 480-722078/9	12.0	15.278649	4.0	392935.0	1.273221	Υ
IC 480-722078/10	16.0	20.045678	4.0	387059.0	1.252855	Υ
	IC 480-722078/3 IC 480-722078/4 IC 480-722078/5 IC 480-722078/6 ICIS 480-722078/7 IC 480-722078/8 IC 480-722078/9	IC 480-722078/3 0.125 IC 480-722078/4 0.5 IC 480-722078/5 1.0 IC 480-722078/6 2.0 ICIS 480-722078/7 4.0 IC 480-722078/8 8.0 IC 480-722078/9 12.0	IC 480-722078/3 0.125 0.154429 IC 480-722078/4 0.5 0.664013 IC 480-722078/5 1.0 1.304347 IC 480-722078/6 2.0 2.597159 ICIS 480-722078/7 4.0 5.257378 IC 480-722078/8 8.0 10.340962 IC 480-722078/9 12.0 15.278649	IC 480-722078/3 0.125 0.154429 4.0 IC 480-722078/4 0.5 0.664013 4.0 IC 480-722078/5 1.0 1.304347 4.0 IC 480-722078/6 2.0 2.597159 4.0 ICIS 480-722078/7 4.0 5.257378 4.0 IC 480-722078/8 8.0 10.340962 4.0 IC 480-722078/9 12.0 15.278649 4.0	IC 480-722078/3 0.125 0.154429 4.0 396738.0 IC 480-722078/4 0.5 0.664013 4.0 400679.0 IC 480-722078/5 1.0 1.304347 4.0 396330.0 IC 480-722078/6 2.0 2.597159 4.0 408032.0 ICIS 480-722078/7 4.0 5.257378 4.0 379240.0 IC 480-722078/8 8.0 10.340962 4.0 307031.0 IC 480-722078/9 12.0 15.278649 4.0 392935.0	IC 480-722078/3 0.125 0.154429 4.0 396738.0 1.235435 IC 480-722078/4 0.5 0.664013 4.0 400679.0 1.328026 IC 480-722078/5 1.0 1.304347 4.0 396330.0 1.304347 IC 480-722078/6 2.0 2.597159 4.0 408032.0 1.29858 ICIS 480-722078/7 4.0 5.257378 4.0 379240.0 1.314344 IC 480-722078/8 8.0 10.340962 4.0 307031.0 1.29262 IC 480-722078/9 12.0 15.278649 4.0 392935.0 1.273221

Calibration / Phenanthrene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0.002096
Slope:	1.099

Error Coefficients

Relative Standard Deviation: 3.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.137807	4.0	624495.0	1.102459	Υ
2	IC 480-722078/4	0.5	0.576986	4.0	639731.0	1.153973	Υ
3	IC 480-722078/5	1.0	1.101323	4.0	620098.0	1.101323	Υ
4	IC 480-722078/6	2.0	2.220739	4.0	647615.0	1.11037	Υ
5	ICIS 480-722078/7	4.0	4.43492	4.0	609105.0	1.10873	Υ
6	IC 480-722078/8	8.0	8.894425	4.0	492151.0	1.111803	Υ
7	IC 480-722078/9	12.0	13.039386	4.0	649018.0	1.086615	Υ
8	IC 480-722078/10	16.0	16.667432	4.0	646562.0	1.041714	Υ

Calibration / Anthracene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	-0.005888
Slope:	1.09

Error Coefficients

3.6

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.129436	4.0	624495.0	1.035486	Υ
2	IC 480-722078/4	0.5	0.543422	4.0	639731.0	1.086844	Υ
3	IC 480-722078/5	1.0	1.104348	4.0	620098.0	1.104348	Υ
4	IC 480-722078/6	2.0	2.241091	4.0	647615.0	1.120545	Υ
5	ICIS 480-722078/7	4.0	4.488139	4.0	609105.0	1.122035	Υ
6	IC 480-722078/8	8.0	8.858046	4.0	492151.0	1.107256	Υ
7	IC 480-722078/9	12.0	12.505915	4.0	649018.0	1.04216	Υ
8	IC 480-722078/10	16.0	16.465923	4.0	646562.0	1.02912	Υ
6 7	IC 480-722078/8 IC 480-722078/9	8.0 12.0	8.858046 12.505915	4.0 4.0	492151.0 649018.0	1.107256 1.04216	ī

Calibration / Fluoranthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	-0.01794
Slope:	1.179

Error Coefficients

2.4

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.128917	4.0	624495.0	1.031336	Υ
2	IC 480-722078/4	0.5	0.578468	4.0	639731.0	1.156936	Υ
3	IC 480-722078/5	1.0	1.142381	4.0	620098.0	1.142381	Υ
4	IC 480-722078/6	2.0	2.405843	4.0	647615.0	1.202921	Υ
5	ICIS 480-722078/7	4.0	4.79889	4.0	609105.0	1.199723	Υ
6	IC 480-722078/8	8.0	9.509195	4.0	492151.0	1.188649	Υ
7	IC 480-722078/9	12.0	13.861224	4.0	649018.0	1.155102	Υ
8	IC 480-722078/10	16.0	18.182832	4.0	646562.0	1.136427	Υ

Calibration / Pyrene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficient	Curve Coefficients				
Intercept:	-0.008939				
Slope:	1.385				

Error Coefficients

Relative Standard Deviation: 2.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.163818	4.0	528050.0	1.310543	Υ
2	IC 480-722078/4	0.5	0.689283	4.0	557130.0	1.378565	Υ
3	IC 480-722078/5	1.0	1.359112	4.0	544953.0	1.359112	Υ
4	IC 480-722078/6	2.0	2.827078	4.0	564307.0	1.413539	Υ
5	ICIS 480-722078/7	4.0	5.637906	4.0	531293.0	1.409477	Υ
6	IC 480-722078/8	8.0	11.305507	4.0	422213.0	1.413188	Υ
7	IC 480-722078/9	12.0	16.464786	4.0	558347.0	1.372066	Υ
8	IC 480-722078/10	16.0	21.10053	4.0	568675.0	1.318783	Υ

Calibration / p-Terphenyl-d14

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	-0.000277
Slope:	1.122

Error Coefficients

3.2

Relative Standard Deviation:

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-722078/4	0.5	0.557321	4.0	557130.0	1.114641	Υ
IC 480-722078/5	1.0	1.114225	4.0	544953.0	1.114225	Υ
IC 480-722078/6	2.0	2.297083	4.0	564307.0	1.148541	Υ
ICIS 480-722078/7	4.0	4.614124	4.0	531293.0	1.153531	Υ
IC 480-722078/8	8.0	9.20776	4.0	422213.0	1.15097	Υ
IC 480-722078/9	12.0	13.264748	4.0	558347.0	1.105396	Υ
IC 480-722078/10	16.0	17.013394	4.0	568675.0	1.063337	Υ
	IC 480-722078/4 IC 480-722078/5 IC 480-722078/6 ICIS 480-722078/7 IC 480-722078/8 IC 480-722078/9	IC 480-722078/4 0.5 IC 480-722078/5 1.0 IC 480-722078/6 2.0 ICIS 480-722078/7 4.0 IC 480-722078/8 8.0 IC 480-722078/9 12.0	IC 480-722078/4 0.5 0.557321 IC 480-722078/5 1.0 1.114225 IC 480-722078/6 2.0 2.297083 ICIS 480-722078/7 4.0 4.614124 IC 480-722078/8 8.0 9.20776 IC 480-722078/9 12.0 13.264748	IC 480-722078/4 0.5 0.557321 4.0 IC 480-722078/5 1.0 1.114225 4.0 IC 480-722078/6 2.0 2.297083 4.0 ICIS 480-722078/7 4.0 4.614124 4.0 IC 480-722078/8 8.0 9.20776 4.0 IC 480-722078/9 12.0 13.264748 4.0	IC 480-722078/4 0.5 0.557321 4.0 557130.0 IC 480-722078/5 1.0 1.114225 4.0 544953.0 IC 480-722078/6 2.0 2.297083 4.0 564307.0 ICIS 480-722078/7 4.0 4.614124 4.0 531293.0 IC 480-722078/8 8.0 9.20776 4.0 422213.0 IC 480-722078/9 12.0 13.264748 4.0 558347.0	IC 480-722078/4 0.5 0.557321 4.0 557130.0 1.114641 IC 480-722078/5 1.0 1.114225 4.0 544953.0 1.114225 IC 480-722078/6 2.0 2.297083 4.0 564307.0 1.148541 ICIS 480-722078/7 4.0 4.614124 4.0 531293.0 1.153531 IC 480-722078/8 8.0 9.20776 4.0 422213.0 1.15097 IC 480-722078/9 12.0 13.264748 4.0 558347.0 1.105396

Calibration / Benzo[a]anthracene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffici	ents
Intercept:	0.002773
Slope:	1.295

Error Coefficients

Relative Standard Deviation: 3.3

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.16481	4.0	528050.0	1.318481	Υ
2	IC 480-722078/4	0.5	0.644754	4.0	557130.0	1.289509	Υ
3	IC 480-722078/5	1.0	1.267111	4.0	544953.0	1.267111	Υ
4	IC 480-722078/6	2.0	2.742961	4.0	564307.0	1.37148	Υ
5	ICIS 480-722078/7	4.0	5.23044	4.0	531293.0	1.30761	Υ
6	IC 480-722078/8	8.0	10.336328	4.0	422213.0	1.292041	Υ
7	IC 480-722078/9	12.0	15.726421	4.0	558347.0	1.310535	Υ
8	IC 480-722078/10	16.0	19.733303	4.0	568675.0	1.233331	Υ

Calibration / Chrysene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0.01529
Slope:	1.16

Error Coefficients

Relative Standard Deviation: 3.7

		IS Amount	IS Response	RRF	Used
0.125	0.158576	4.0	528050.0	1.268607	Υ
0.5	0.619389	4.0	557130.0	1.238777	Υ
1.0	1.171088	4.0	544953.0	1.171088	Υ
2.0	2.391762	4.0	564307.0	1.195881	Υ
4.0	4.681055	4.0	531293.0	1.170264	Υ
8.0	9.597914	4.0	422213.0	1.199739	Υ
12.0	13.485191	4.0	558347.0	1.123766	Υ
16.0	17.4861	4.0	568675.0	1.092881	Υ
1 2 4	0.5 .0 2.0 3.0 3.0 2.0	0.5 0.619389 .0 1.171088 2.0 2.391762 3.0 4.681055 3.0 9.597914 2.0 13.485191	0.5 0.619389 4.0 .0 1.171088 4.0 2.0 2.391762 4.0 4.0 4.0 4.0 5.0 4.681055 4.0 6.0 9.597914 4.0 2.0 13.485191 4.0	0.5 0.619389 4.0 557130.0 0.0 1.171088 4.0 544953.0 2.0 2.391762 4.0 564307.0 3.0 4.681055 4.0 531293.0 3.0 9.597914 4.0 422213.0 2.0 13.485191 4.0 558347.0	0.5 0.619389 4.0 557130.0 1.238777 0.0 1.171088 4.0 544953.0 1.171088 0.0 2.391762 4.0 564307.0 1.195881 0.0 4.681055 4.0 531293.0 1.170264 0.0 9.597914 4.0 422213.0 1.199739 2.0 13.485191 4.0 558347.0 1.123766

Calibration / Benzo[b]fluoranthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficien	ts
Intercept:	-0.0009083
Slope:	1.149

Error Coefficients

3.6

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.140814	4.0	587500.0	1.126509	Υ
2	IC 480-722078/4	0.5	0.600191	4.0	614051.0	1.200382	Υ
3	IC 480-722078/5	1.0	1.172739	4.0	588554.0	1.172739	Υ
4	IC 480-722078/6	2.0	2.310602	4.0	621291.0	1.155301	Υ
5	ICIS 480-722078/7	4.0	4.548391	4.0	579039.0	1.137098	Υ
6	IC 480-722078/8	8.0	8.785874	4.0	468645.0	1.098234	Υ
7	IC 480-722078/9	12.0	13.238125	4.0	617088.0	1.103177	Υ
8	IC 480-722078/10	16.0	19.024264	4.0	628162.0	1.189017	Υ

Calibration / Benzo[k]fluoranthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	-0.02081
Slope:	1.211

Error Coefficients

5.5

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.132807	4.0	587500.0	1.062454	Υ
2	IC 480-722078/4	0.5	0.55112	4.0	614051.0	1.102241	Υ
3	IC 480-722078/5	1.0	1.155306	4.0	588554.0	1.155306	Υ
4	IC 480-722078/6	2.0	2.429329	4.0	621291.0	1.214664	Υ
5	ICIS 480-722078/7	4.0	4.933063	4.0	579039.0	1.233266	Υ
6	IC 480-722078/8	8.0	10.38351	4.0	468645.0	1.297939	Υ
7	IC 480-722078/9	12.0	15.100537	4.0	617088.0	1.258378	Υ
8	IC 480-722078/10	16.0	17.792442	4.0	628162.0	1.112028	Υ

Calibration / Benzo[a]pyrene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	-0.01838
Slope:	1.043

Error Coefficients

Relative Standard Deviation: 1.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.113008	4.0	587500.0	0.904061	Υ
2	IC 480-722078/4	0.5	0.489836	4.0	614051.0	0.979671	Υ
3	IC 480-722078/5	1.0	1.004061	4.0	588554.0	1.004061	Υ
4	IC 480-722078/6	2.0	2.085831	4.0	621291.0	1.042915	Υ
5	ICIS 480-722078/7	4.0	4.141358	4.0	579039.0	1.03534	Υ
6	IC 480-722078/8	8.0	8.482796	4.0	468645.0	1.06035	Υ
7	IC 480-722078/9	12.0	12.670167	4.0	617088.0	1.055847	Υ
8	IC 480-722078/10	16.0	16.638141	4.0	628162.0	1.039884	Υ

/ Dibenz(a,h)anthracene

Calibration

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

 Intercept:
 -0.01748

 Slope:
 1.175

Error Coefficients

Relative Standard Deviation:

2.5

ID	Level	Concentration Rel. Resp.		IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.130887	4.0	587500.0	1.047094	Υ
2	IC 480-722078/4	0.5	0.54686	4.0	614051.0	1.09372	Υ
3	IC 480-722078/5	1.0	1.13996	4.0	588554.0	1.13996	Υ
4	IC 480-722078/6	2.0	2.345252	4.0	621291.0	1.172626	Υ
5	ICIS 480-722078/7	4.0	4.732137	4.0	579039.0	1.183034	Υ
6	IC 480-722078/8	8.0	9.654404	4.0	468645.0	1.2068	Υ
7	IC 480-722078/9	12.0	14.344145	4.0	617088.0	1.195345	Υ
8	IC 480-722078/10	16.0	18.379826	4.0	628162.0	1.148739	Υ

2.3

Calibration

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Cui ve Coemcients	Curve	Coefficients
-------------------	-------	--------------

Intercept:	-0.02324
Slope:	1.398

Error Coefficients

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.152667	4.0	587500.0	1.221338	Υ
2	IC 480-722078/4	0.5	0.658988	4.0	614051.0	1.317975	Υ
3	IC 480-722078/5	1.0	1.342939	4.0	588554.0	1.342939	Υ
4	IC 480-722078/6	2.0	2.837118	4.0	621291.0	1.418559	Υ
5	ICIS 480-722078/7	4.0	5.618634	4.0	579039.0	1.404658	Υ
6	IC 480-722078/8	8.0	11.41939	4.0	468645.0	1.427424	Υ
7	IC 480-722078/9	12.0	16.96617	4.0	617088.0	1.413848	Υ
8	IC 480-722078/10	16.0	21.699059	4.0	628162.0	1.356191	Υ

Calibration / Benzo[g,h,i]perylene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coef	ficients
Intercept:	-0.01153
Slope:	1.111

Error Coefficients

Relative Standard Deviation: 2.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-722078/3	0.125	0.128129	4.0	587500.0	1.025035	Υ
2	IC 480-722078/4	0.5	0.52851	4.0	614051.0	1.05702	Υ
3	IC 480-722078/5	1.0	1.093962	4.0	588554.0	1.093962	Υ
4	IC 480-722078/6	2.0	2.25448	4.0	621291.0	1.12724	Υ
5	ICIS 480-722078/7	4.0	4.513064	4.0	579039.0	1.128266	Υ
6	IC 480-722078/8	8.0	9.058422	4.0	468645.0	1.132303	Υ
7	IC 480-722078/9	12.0	13.536734	4.0	617088.0	1.128061	Υ
8	IC 480-722078/10	16.0	16.921259	4.0	628162.0	1.057579	Υ

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/15/2024 18:14 Calibration End Date: 07/15/2024 21:27 Calibration ID: 46869

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 480-718508/3	Y037827.D	
Level 2	IC 480-718508/4	Y037828.D	
Level 3	IC 480-718508/5	Y037829.D	
Level 4	IC 480-718508/6	Y037830.D	
Level 5	ICIS 480-718508/7	Y037831.D	
Level 6	IC 480-718508/8	Y037832.D	
Level 7	IC 480-718508/9	Y037833.D	
Level 8	IC 480-718508/10	Y037834.D	

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	#	AX RSD	R^2	 MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	TYPE	В	M1	M2		/RSE		RSE	OR COD	OR COD
Naphthalene	1.1214	1.1103 1.0727	1.0997 1.0857	1.1192	1.0600	Ave		1.092		0.7000	2.2	2	0.0		
2-Methylnaphthalene	0.6155 0.6367	0.6269 0.6603	0.6376 0.6788	0.6442	0.6302	Ave		0.641		0.4000	3.1	2	0.0		
1-Methylnaphthalene	0.6395 0.6686	0.6593 0.6678		0.6577	0.6639	Ave		0.664		0.0100	2.9	2	0.0		
Acenaphthylene	1.6080 1.8113	1.7142 1.8550		1.7863	1.8057	Ave		1.769		0.9000	4.6	2	0.0		
Acenaphthene	1.1663 1.2300	1.2043 1.2893		1.1792	1.2196	Ave		1.225		0.9000	4.9	2	0.0		
Dibenzofuran	1.5133 1.5794	1.5707 1.6208		1.5695	1.5839	Ave		1.572		0.8000	2.0	2	0.0		
Fluorene	1.2103 1.3779	1.2205 1.4550		1.2921	1.3161	Lin2	-0.02 4	1.365		0.9000	6.8	2	0.0	0.9950	0.9900
Phenanthrene	1.0740 1.0690	1.0350 1.1094		1.0645	1.0866	Ave		1.081		0.7000	3.0	2	0.0		
Anthracene	0.9831 1.1068	1.0350 1.1496		1.0633	1.1080	Lin2	-0.01 7	1.106		0.7000	3.1	2	0.0	0.9990	0.9900
Fluoranthene	1.0023 1.1540	1.0335 1.1797	1.1163 1.2005	1.1365	1.1773	Lin2	-0.02 2	1.158		0.6000	3.6	2	0.0	0.9990	0.9900
Pyrene	1.1946 1.3198	1.2357 1.2974		1.2904	1.3170	Ave		1.282		0.6000	3.6	2	0.0		
Benzo[a]anthracene	1.2675 1.3137	1.2994 1.3177		1.2611	1.3234	Ave		1.298		0.8000	2.7	2	0.0		
Chrysene	1.2265 1.2120	1.1716 1.2236		1.1971	1.2225	Ave		1.210		0.7000	1.7	2	0.0		

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type. RSD is calculated for Ave curve types. RSE is used for all other types.

FORM VI GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/15/2024 18:14 Calibration End Date: 07/15/2024 21:27 Calibration ID: 46869

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			/RSE	/RSE	OR COD	OR COD
	LVL 6	LVL 7	LVL 8												
Benzo[b]fluoranthene	1.0208 1.1732	1.0767 1.2542	1.0591 1.2948	1.1019	1.1840	Lin2	-0.02	1.181			0.7000	6.7	20.0	0.9960	0.9900
Benzo[k]fluoranthene	1.1416	1.0936	1.0809	1.0983	1.1663	Ave	4	1.213			0.7000	12.4	20.0		
	1.2556	1.3826	1.4905					7							
Benzo[a]pyrene	0.8653 1.0624	0.9759 1.0984		1.0193	1.0471	Lin2	-0.02	1.063			0.7000	4.4	20.0	0.9980	0.9900
Dibenz(a,h)anthracene	0.9086 1.0871	0.9586 1.1233		1.0591	1.1073	Lin2	-0.02	1.092			0.4000	5.4	20.0	0.9970	0.9900
Indeno[1,2,3-cd]pyrene	1.1677	1.2646	1.2667	1.3260	1.3675	Lin2	-0.02	1.359			0.5000	3.8	20.0	0.9990	0.9900
Benzo[g,h,i]perylene	0.9159 1.0178	0.9806	0.9918	1.0239	1.0451	Ave	<u> </u>	1.005			0.5000	4.2	20.0		
Nitrobenzene-d5 (Surr)	0.4079	0.3886	0.3894	0.4001	0.3964	Ave		0.402			0.0100	3.0	20.0		
2-Fluorobiphenyl (Surr)		1.3455	1.3532	1.3639	1.3765	Ave		1.376			0.0100	1.7	20.0		
p-Terphenyl-d14 (Surr)	1.3892	1.3889	1.0313	1.0407	1.0745	Ave		1.066			0.0100	3.0	20.0		
	1.0687	1.1206	1.0892					5							

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type. RSD is calculated for Ave curve types. RSE is used for all other types.

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil M ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 480-718508/3	Y037827.D	
Level 2	IC 480-718508/4	Y037828.D	
Level 3	IC 480-718508/5	Y037829.D	
Level 4	IC 480-718508/6	Y037830.D	
Level 5	ICIS 480-718508/7	Y037831.D	
Level 6	IC 480-718508/8	Y037832.D	
Level 7	IC 480-718508/9	Y037833.D	
Level 8	IC 480-718508/10	Y037834.D	

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (N	NG/UL)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5
Naphthalene	NPT	Ave	18906 1317779	79533 2032475	165238 2754170	339133	665072	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
2-Methylnaphthalene	NPT	Ave	10377 785114	44904 1251000	95801 1721925	195196	395440	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
1-Methylnaphthalene	NPT	Ave	10781 824402	47229 1265220	98279 1790607	199287	416573	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Acenaphthylene	ANT	Ave	16065 1307230	72986 2034070	155560 2789242	323841	659982	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Acenaphthene	ANT	Ave	11652 887728	51277 1413782	105713 2024369	213772	445768	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Dibenzofuran	ANT	Ave	15119 1139832	66877 1777286	139074 2418070	284526	578925	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Fluorene	ANT	Lin2	12092 994435	51966 1595480	113021 2278225	234251	481049	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Phenanthrene	PHN	Ave	18563 1376603	77115 2193158	163151 3062501	335771	689316	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Anthracene	PHN	Lin2	16993 1425320	77121 2272605	161486 3064247	335388	702884	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Fluoranthene	PHN	Lin2	17325 1486060	77008 2332220	170348 3217498	358481	746850	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Pyrene	CRY	Ave	18662 1558257	82444 2409190	178081 3396069	373777	767782	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[a]anthracene	CRY	Ave	19801 1550995	86699 2447028	174892 3449713	365289	771536	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Chrysene	CRY	Ave	19160 1431000	78169 2272228	167412 3148235	346741	712728	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[b]fluoranthene	PRY	Lin2	17813 1506248	78394 2461532	164722 3373796	351145	763066	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00
Benzo[k]fluoranthene	PRY	Ave	19922 1612128	79630 2713380	168102 3883852	349998	751640	0.125 8.00	0.500 12.0	1.00 16.0	2.00	4.00

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil M ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE		CONCENTRATION (NG/UL)								
	REF	TYPE	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5
			LVL 6	LVL 7	LVL 8			LVL 6	LVL 7	LVL 8		
Benzo[a]pyrene	PRY	Lin2	15100	71061	152152	324823	674825	0.125	0.500	1.00	2.00	4.00
			1364037	2155699	2968854			8.00	12.0	16.0		
Dibenz (a, h) anthracene	PRY	Lin2	15856	69800	155738	337497	713610	0.125	0.500	1.00	2.00	4.00
			1395762	2204503	3071377			8.00	12.0	16.0		
Indeno[1,2,3-cd]pyrene	PRY	Lin2	20377	92077	197005	422553	881301	0.125	0.500	1.00	2.00	4.00
			1736884	2675843	3786050			8.00	12.0	16.0		
Benzo[g,h,i]perylene	PRY	Ave	15983	71402	154255	326285	673518	0.125	0.500	1.00	2.00	4.00
			1306763	2008825	2719872			8.00	12.0	16.0		
Nitrobenzene-d5 (Surr)	NPT	Ave		27834	58510	121235	248723		0.500	1.00	2.00	4.00
			502962	776501	1071974			8.00	12.0	16.0		
2-Fluorobiphenyl (Surr)	ANT	Ave		57286	121584	247261	503129		0.500	1.00	2.00	4.00
			1002595	1522967	2144450			8.00	12.0	16.0		
p-Terphenyl-d14 (Surr)	CRY	Ave		69441	144197	301451	626408		0.500	1.00	2.00	4.00
			1261762	2080865	2777157			8.00	12.0	16.0		

Curve Type Legend:

Ave = Average ISTD

Lin2 = Linear 1/conc^2 ISTD

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	TAD CAMPLE ID.	IND EITE ID.
LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 480-718508/3	Y037827.D
Level 2	IC 480-718508/4	Y037828.D
Level 3	IC 480-718508/5	Y037829.D
Level 4	IC 480-718508/6	Y037830.D
Level 5	ICIS 480-718508/7	Y037831.D
Level 6	IC 480-718508/8	Y037832.D
Level 7	IC 480-718508/9	Y037833.D
Level 8	IC 480-718508/10	Y037834.D

ANALYTE			PERCEN'	r error			PERCENT ERROR LIMIT						
	LVL 1 # LVL 7 #	LVL 2 # LVL 8 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2 LVL 8	LVL 3	LVL 4	LVL 5	LVL 6	
Naphthalene	2.7	1.7 -0.6	0.7	2.5	-3.0	-2.2	30 30	30 30	30	30	30	30	
2-Methylnaphthalene	-4.0 3.0	-2.2 5.8	-0.6	0.5	-1.7	-0.7	30 30	30 30	30	30	30	30	
1-Methylnaphthalene	-3.8 0.5	-0.8 6.2	-1.6	-1.0	-0.1	0.6	30 30	30 30	30	30	30	30	
Acenaphthylene	-9.1 4.9	-3.1 4.0	-2.1	1.0	2.1	2.4	30 30	30 30	30	30	30	30	
Acenaphthene	-4.8 5.2	-1.7 9.0	-4.0	-3.8	-0.5	0.4	30 30	30 30	30	30	30	30	
Dibenzofuran	-3.8 3.1	-0.1 1.5	-1.6	-0.2	0.7	0.4	30 30	30 30	30	30	30	30	
Fluorene	2.7 6.7	-7.1 10.2	-6.1	-4.5	-3.2	1.1	30 30	30 30	30	30	30	30	
Phenanthrene	-0.7 2.6	-4.3 5.7	-1.1	-1.5	0.5	-1.1	30 30	30 30	30	30	30	30	
Anthracene	1.3 4.0	-3.4 3.4	-2.8	-3.2	0.5	0.2	30 30	30 30	30	30	30	30	
Fluoranthene	1.9 2.0	-6.9 3.7	-1.7	-0.9	2.1	-0.1	30 30	30 30	30	30	30	30	
Pyrene	-6.9 1.2	-3.7 3.8	-0.7	0.6	2.7	2.9	30 30	30 30	30	30	30	30	
Benzo[a]anthracene	-2.4 1.5	0.1 4.2	-3.7	-2.9	1.9	1.2	30 30	30 30	30	30	30	30	
Chrysene	1.3 1.1	-3.2 2.0	-1.1	-1.1	1.0	0.1	30 30	30 30	30	30	30	30	
Benzo[b]fluoranthene	2.4 6.4	-4.8 9.7	-8.3	-5.7	0.7	-0.4	30 30	30 30	30	30	30	30	
Benzo[k]fluoranthene	-5.9 13.9	-9.9 22.8	-10.9	-9.5	-3.9	3.5	30 30	30 30	30	30	30	30	

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Buffalo Job No.: 480-222859-1 Analy Batch No.: 718508

SDG No.: 222859

Instrument ID: HP5973Y GC Column: RXI-5Sil MS ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			PERCEN'	r error			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
	LVL 7 #	LVL 8 #					LVL 7	LVL 8					
Benzo[a]pyrene	1.6	-3.2	-5.5	-2.9	-0.9	0.2	30	30	30	30	30	30	
	3.5	7.3					30	30					
Dibenz(a,h)anthracene	2.6	-7.4	-5.9	-1.9	1.9	-0.2	30	30	30	30	30	30	
	3.0	8.0					30	30					
Indeno[1,2,3-cd]pyrene	1.4	-3.1	-4.9	-1.5	1.0	-0.3	30	30	30	30	30	30	
	0.4	7.0					30	30					
Benzo[g,h,i]perylene	-8.9	-2.5	-1.3	1.9	4.0	1.2	30	30	30	30	30	30	
	1.8	3.8					30	30					
Nitrobenzene-d5 (Surr)		-3.4	-3.2	-0.5	-1.4	1.4		30	30	30	30	30	
	1.9	5.1					30	30					
2-Fluorobiphenyl (Surr)		-2.2	-1.7	-0.9	0.0	1.0		30	30	30	30	30	
	0.9	2.8					30	30					
p-Terphenyl-d14 (Surr)		-2.4	-3.3	-2.4	0.7	0.2		30	30	30	30	30	
	5.1	2.1					30	30					

Report Date: 16-Jul-2024 11:55:47 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037827.D

Lims ID: IC - List 1 - 0.125

Client ID:

Sample Type: IC Calib Level: 1

Inject. Date: 15-Jul-2024 18:14:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-003

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:55:46 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:51:50

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
		, ,							
* 1 1,4-Dichlorobenzene-d4	152	6.760	6.760	0.000	95	150216	4.00	4.00	
* 2 Naphthalene-d8	136	8.153	8.154	-0.001	99	539511	4.00	4.00	
* 3 Acenaphthene-d10	164	9.843	9.843	0.000	94	319705	4.00	4.00	
* 4 Phenanthrene-d10	188	11.153	11.154	-0.001	96	553108	4.00	4.00	
* 5 Chrysene-d12	240	13.655	13.662	-0.007	99	499897	4.00	4.00	
* 6 Perylene-d12	264	15.439	15.440	-0.001	98	558416	4.00	4.00	
74 Naphthalene	128	8.177	8.177	0.000	96	18906	0.1250	0.1283	
87 2-Methylnaphthalene	142	8.858	8.859	-0.001	91	10377	0.1250	0.1200	
89 1-Methylnaphthalene	142	8.959	8.960	-0.001	94	10781	0.1250	0.1203	
108 Acenaphthylene	152	9.718	9.719	-0.001	98	16065	0.1250	0.1136	
110 Acenaphthene	153	9.872	9.873	-0.001	95	11652	0.1250	0.1190	
115 Dibenzofuran	168	10.020	10.021	-0.001	97	15119	0.1250	0.1203	
124 Fluorene	166	10.323	10.330	-0.007	93	12092	0.1250	0.1284	
151 Phenanthrene	178	11.171	11.171	0.000	97	18563	0.1250	0.1242	
152 Anthracene	178	11.218	11.219	-0.001	97	16993	0.1250	0.1266	
164 Fluoranthene	202	12.238	12.239	-0.001	99	17325	0.1250	0.1274	
167 Pyrene	202	12.463	12.464	-0.001	97	18662	0.1250	0.1164	
180 Benzo[a]anthracene	228	13.643	13.644	-0.001	99	19801	0.1250	0.1220	
182 Chrysene	228	13.684	13.685	-0.001	96	19160	0.1250	0.1266	
186 Benzo[b]fluoranthene	252	14.888	14.895	-0.007	98	17813	0.1250	0.1281	
187 Benzo[k]fluoranthene	252	14.918	14.930	-0.012	98	19922	0.1250	0.1176	
189 Benzo[a]pyrene	252	15.356	15.363	-0.007	78	15100	0.1250	0.1270	
194 Dibenz(a,h)anthracene	278	17.248	17.266	-0.018	71	15856	0.1250	0.1282	
193 Indeno[1,2,3-cd]pyrene	276	17.254	17.272	-0.018	93	20377	0.1250	0.1268	
195 Benzo[g,h,i]perylene	276	17.817	17.841	-0.024	96	15983	0.1250	0.1139	

QC Flag Legend Processing Flags Report Date: 16-Jul-2024 11:55:47 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Reagents:

MB_L1LVI_WRK_00631 Amount Added: 1.00 Units: mL

Report Date: 16-Jul-2024 11:55:47 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037827.D

Injection Date: 15-Jul-2024 18:14:30 Instrument ID: HP5973Y Lims ID: IC - List 1 - 0.125

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

3

3

Report Date: 16-Jul-2024 11:55:56 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037828.D

Lims ID: IC - List 1 - 0.50

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 15-Jul-2024 18:41:30 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-004

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:55:54 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:54:05

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:54:05		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.758	6.760	-0.002	95	153395	4.00	4.00	
* 2 Naphthalene-d8	136	8.152	8.154	-0.002	99	573039	4.00	4.00	
* 3 Acenaphthene-d10	164	9.841	9.843	-0.002	93	340620	4.00	4.00	
4 Phenanthrene-d10	188	11.152	11.154	-0.002	97	596077	4.00	4.00	
* 5 Chrysene-d12	240	13.659	13.662	-0.003	99	533762	4.00	4.00	
* 6 Perylene-d12	264	15.438	15.440	-0.002	98	582499	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.258	5.260	-0.002	92	22316	0.5000	0.4783	
\$ 8 Phenol-d5	99	6.248	6.251	-0.003	92	27431	0.5000	0.5106	
\$ 9 Nitrobenzene-d5	82	7.363	7.365	-0.002	88	27834	0.5000	0.4832	
\$ 10 2-Fluorobiphenyl	172	9.189	9.191	-0.002	100	57286	0.5000	0.4889	
\$ 11 2,4,6-Tribromophenol	330	10.535	10.537	-0.002	95	6010	0.5000	0.5167	
\$ 12 p-Terphenyl-d14	244	12.533	12.535	-0.002	97	69441	0.5000	0.4879	
13 1,4-Dioxane	88	3.800	3.796	0.004	95	9311	0.5000	0.5056	
14 N-Nitrosodimethylamine	42	4.061	4.057	0.004	89	12109	0.5000	0.5155	
15 Pyridine	52	4.108	4.104	0.004	95	27754	1.00	0.9458	
35 Benzaldehyde	77	6.254	6.256	-0.002	95	45732	1.00	0.9724	
37 Phenol	94	6.266	6.268	-0.002	98	28787	0.5000	0.4756	
36 Aniline	93	6.367	6.369	-0.002	97	38199	0.5000	0.5015	
39 Bis(2-chloroethyl)ether	93	6.397	6.399	-0.002	95	23603	0.5000	0.4903	
40 2-Chlorophenol	128	6.515	6.517	-0.002	91	23881	0.5000	0.4705	
41 n-Decane	57	6.515	6.517	-0.002	89	25101	0.5000	0.4900	
43 1,3-Dichlorobenzene	146	6.699	6.701	-0.002	99	29632	0.5000	0.5157	
44 1,4-Dichlorobenzene	146	6.776	6.778	-0.002	94	30461	0.5000	0.5160	
45 Benzyl alcohol	108	6.871	6.879	-0.008	92	14623	0.5000	0.4614	
46 1,2-Dichlorobenzene	146	6.960	6.962	-0.002	95	27623	0.5000	0.4978	
48 2-Methylphenol	108	6.972	6.980	-0.008	96	21280	0.5000	0.4759	
49 2,2'-oxybis[1-chloropropane]	45	7.019	7.021	-0.002	92	32931	0.5000	0.5102	
47 Indene	115	7.055	7.063	-0.008	88	238587	2.50	2.46	
57 4-Methylphenol	108	7.138	7.146	-0.008	96	22097	0.5000	0.4724	
53 N-Nitrosodi-n-propylamine	70	7.167	7.170	-0.003	88	16186	0.5000	0.4756	
52 Acetophenone	105	7.185	7.187	-0.002	96	32905	0.5000	0.4910	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037828.D

Data File: \\cnromts\\but	Iaio\C			r	J-119	UZO.U\1U3/6Z0		
	0.	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL Flags
F0	447	7 0 4 5	7047	0.000	00	11000	0.5000	0.4070
58 Hexachloroethane	117	7.345	7.347	-0.002	92	11090	0.5000	0.4878
59 Nitrobenzene	77	7.387	7.389	-0.002	87	24596	0.5000	0.4839
62 Isophorone	82	7.636	7.638	-0.002	99	44280	0.5000	0.4836
66 2,4-Dimethylphenol	107	7.737	7.739	-0.002	90	23075	0.5000	0.5127
64 2-Nitrophenol	139	7.737	7.739	-0.002	70	10676	0.5000	0.5206
69 Bis(2-chloroethoxy)methane	93	7.837	7.839	-0.002	99	28443	0.5000	0.4817
70 Benzoic acid	105	7.772	7.857	-0.085	89	16148	2.50	4.47
72 2,4-Dichlorophenol	162	7.980	7.982	-0.002	93	18133	0.5000	0.5057
73 1,2,4-Trichlorobenzene	180	8.086	8.088	-0.002	94	24082	0.5000	0.5012
74 Naphthalene	128	8.175	8.177	-0.002	97	79533	0.5000	0.5083
76 4-Chloroaniline	127	8.199	8.201	-0.002	97	31469	0.5000	0.5393
77 2,6-Dichlorophenol	162	8.217	8.219	-0.002	97	19415	0.5000	0.5072
79 Hexachlorobutadiene	225	8.294	8.290	0.004	96	13857	0.5000	0.4973
84 Caprolactam	113	8.519	8.551	-0.032	79	14471	1.00	1.01
85 4-Chloro-3-methylphenol	107	8.656	8.664	-0.008	94	16756	0.5000	0.5026
87 2-Methylnaphthalene	142	8.857	8.859	-0.002	92	44904	0.5000	0.4888
89 1-Methylnaphthalene	142	8.958	8.960	-0.002	93	47229	0.5000	0.4961
90 Hexachlorocyclopentadiene	237	9.011	9.013	-0.002	94	15739	0.5000	0.5184
91 1,2,4,5-Tetrachlorobenzene	216	9.023	9.025	-0.002	97	24398	0.5000	0.4806
93 2,4,6-Trichlorophenol	196	9.112	9.114	-0.002	93	12640	0.5000	0.5065
94 2,4,5-Trichlorophenol	196	9.154	9.156	-0.002	94	12840	0.5000	0.5172
96 1,1'-Biphenyl	154	9.290	9.292	-0.002	95	60089	0.5000	0.4900
97 2-Chloronaphthalene	162	9.325	9.328	-0.003	96	47660	0.5000	0.4906
100 2-Nitroaniline	65	9.397	9.399	-0.002	85	9618	0.5000	0.5098
105 Dimethyl phthalate	163	9.533	9.535	-0.002	99	49743	0.5000	0.4741
106 1,3-Dinitrobenzene	168	9.574	9.577	-0.003	85	4647	0.5000	0.5249
107 2,6-Dinitrotoluene	165	9.598	9.600	-0.002	95	9107	0.5000	0.5038
108 Acenaphthylene	152	9.717	9.719	-0.002	98	72986	0.5000	0.4845
109 3-Nitroaniline	138	9.764	9.766	-0.002	95	8299	0.5000	0.5172
111 2,4-Dinitrophenol	184	9.853	9.855	-0.002	77	3397	1.00	1.94
110 Acenaphthene	153	9.871	9.873	-0.002	96	51277	0.5000	0.4915
112 4-Nitrophenol	109	9.877	9.879	-0.002	90	7004	1.00	1.04
114 2,4-Dinitrotoluene	165	9.966	9.968	-0.002	93	10860	0.5000	0.5133
115 Dibenzofuran	168	10.019	10.021	-0.002	97	66877	0.5000	0.4994
118 2,3,4,6-Tetrachlorophenol	232	10.120	10.122	-0.002	71	9010	0.5000	0.5207
121 Hexadecane	57	10.138	10.140	-0.002	96	28128	0.5000	0.5149
120 Diethyl phthalate	149	10.150	10.152	-0.002	98	50651	0.5000	0.5112
123 4-Chlorophenyl phenyl ether	204	10.292	10.294	-0.002	91	26223	0.5000	0.4756
126 4-Nitroaniline	138	10.310	10.312	-0.002	86	11557	0.5000	0.6274
124 Fluorene	166	10.327	10.330	-0.003	92	51966	0.5000	0.4646
127 4,6-Dinitro-2-methylphenol	198	10.333	10.336	-0.003	88	7947	1.00	1.24
129 Diphenylamine	169	10.387	10.389	-0.002	95	37540	0.4275	0.4062
130 N-Nitrosodiphenylamine	169	10.387	10.389	-0.002	62	37540	0.5000	0.4751
132 Azobenzene	77	10.434	10.436	-0.002	99	50260	0.5000	0.4817
131 1,2-Diphenylhydrazine	77	10.434	10.436	-0.002	41	50260	0.5000	0.4817
139 4-Bromophenyl phenyl ether	248	10.434	10.430	-0.002	65	14876	0.5000	0.5015
143 Atrazine	200	10.725	10.727	-0.002 -0.008	94	32150	1.00	0.9523
140 Hexachlorobenzene	284	10.820	10.822	-0.002	95 06	17345	0.5000	0.5175
148 n-Octadecane	57 266	10.926	10.928	-0.002	96 04	28647	0.5000	0.5079
145 Pentachlorophenol	266	10.974	10.976	-0.002	94	12734	1.00	1.22
151 Phenanthrene	178	11.169	11.171	-0.002	98	77115	0.5000	0.4786
152 Anthracene	178	11.217	11.219	-0.002	97	77121	0.5000	0.4832

Report Date: 16-Jul-2024 11:55:56 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037828.D

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.329	11.332	-0.003	96	63797	0.5000	0.5537	
157 Di-n-butyl phthalate	149	11.543	11.545	-0.002	100	78311	0.5000	0.4997	
164 Fluoranthene	202	12.237	12.239	-0.003	98	77008	0.5000	0.4653	
166 Benzidine	184	12.302	12.304	-0.002	99	60640	1.00	1.10	а
167 Pyrene	202	12.462	12.464	-0.002	97	82444	0.5000	0.4817	
174 Butyl benzyl phthalate	149	12.954	12.956	-0.002	98	32766	0.5000	0.5122	
181 Bis(2-ethylhexyl) phthalate	149	13.493	13.496	-0.003	96	44878	0.5000	0.5127	
179 3,3'-Dichlorobenzidine	252	13.565	13.567	-0.002	74	54533	1.00	0.9513	
180 Benzo[a]anthracene	228	13.642	13.644	-0.002	99	86699	0.5000	0.5004	
182 Chrysene	228	13.683	13.685	-0.002	97	78169	0.5000	0.4839	
184 Di-n-octyl phthalate	149	14.169	14.171	-0.002	99	73878	0.5000	0.5141	
186 Benzo[b]fluoranthene	252	14.887	14.895	-0.008	97	78394	0.5000	0.4758	
187 Benzo[k]fluoranthene	252	14.922	14.930	-0.008	99	79630	0.5000	0.4505	
189 Benzo[a]pyrene	252	15.361	15.363	-0.002	78	71061	0.5000	0.4841	
194 Dibenz(a,h)anthracene	278	17.252	17.266	-0.014	89	69800	0.5000	0.4629	
193 Indeno[1,2,3-cd]pyrene	276	17.252	17.272	-0.020	98	92077	0.5000	0.4844	
195 Benzo[g,h,i]perylene	276	17.821	17.841	-0.020	96	71402	0.5000	0.4877	
S 261 Total Cresols	1				0			0.9483	

QC Flag Legend Processing Flags

Processing Flag
Review Flags

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00632 Amount Added: 1.00 Units: mL

Report Date: 16-Jul-2024 11:55:56 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037828.D \\Injection Date: 15-Jul-2024 18:41:30 \\Instrument ID: \text{HP5973Y}

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

4

4

Report Date: 16-Jul-2024 11:56:19 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037829.D

Lims ID: IC - List 1 - 1

Client ID:

Sample Type: IC Calib Level: 3

Inject. Date: 15-Jul-2024 19:09:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-005

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:56:17 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:54:37

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	4 08:54:37		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.757	6.760	-0.003	95	162777	4.00	4.00	
* 2 Naphthalene-d8	136	8.156	8.154	0.002	99	601016	4.00	4.00	
* 3 Acenaphthene-d10	164	9.840	9.843	-0.003	93	359385	4.00	4.00	
4 Phenanthrene-d10	188	11.150	11.154	-0.004	96	610394	4.00	4.00	
* 5 Chrysene-d12	240	13.658	13.662	-0.004	99	559260	4.00	4.00	
* 6 Perylene-d12	264	15.437	15.440	-0.003	98	622106	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.257	5.260	-0.003	91	48525	1.00	0.9800	
\$ 8 Phenol-d5	99	6.247	6.251	-0.004	91	59364	1.00	0.9754	
\$ 9 Nitrobenzene-d5	82	7.368	7.365	0.003	88	58510	1.00	0.9684	
\$ 10 2-Fluorobiphenyl	172	9.188	9.191	-0.003	100	121584	1.00	0.9834	
\$ 11 2,4,6-Tribromophenol	330	10.534	10.537	-0.003	95	14597	1.00	0.9705	
\$ 12 p-Terphenyl-d14	244	12.538	12.535	0.003	98	144197	1.00	0.9670	
13 1,4-Dioxane	88	3.799	3.796	0.003	92	19932	1.00	1.02	
14 N-Nitrosodimethylamine	42	4.059	4.057	0.002	92	25084	1.00	1.01	
15 Pyridine	52	4.107	4.104	0.003	95	60533	2.00	1.94	
35 Benzaldehyde	77	6.253	6.256	-0.003	96	95587	2.00	2.05	
37 Phenol	94	6.265	6.268	-0.003	98	61164	1.00	0.9523	
36 Aniline	93	6.366	6.369	-0.003	95	78135	1.00	0.9667	
39 Bis(2-chloroethyl)ether	93	6.401	6.399	0.002	94	51733	1.00	1.01	
40 2-Chlorophenol	128	6.514	6.517	-0.003	95	51233	1.00	0.9513	
41 n-Decane	57	6.520	6.517	0.003	89	53369	1.00	0.9817	
43 1,3-Dichlorobenzene	146	6.704	6.701	0.003	98	60034	1.00	0.9845	
44 1,4-Dichlorobenzene	146	6.775	6.778	-0.003	95	61845	1.00	0.9872	
45 Benzyl alcohol	108	6.876	6.879	-0.003	93	32163	1.00	0.9564	
46 1,2-Dichlorobenzene	146	6.959	6.962	-0.003	97	58943	1.00	1.00	
48 2-Methylphenol	108	6.976	6.980	-0.004	96	45499	1.00	0.9589	
49 2,2'-oxybis[1-chloropropane]	45	7.018	7.021	-0.003	93	68103	1.00	0.99	
47 Indene	115	7.059	7.063	-0.004	89	495299	5.00	4.82	
57 4-Methylphenol	108	7.142	7.146	-0.004	96	47795	1.00	0.9628	
53 N-Nitrosodi-n-propylamine	70	7.166	7.170	-0.004	88	34989	1.00	0.9688	
52 Acetophenone	105	7.190	7.187	0.003	96	69375	1.00	0.9756	
•								_	

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037829.D

Data File: \\chromfs\Buf	talo\C		\HP59/3Y		5-119	028.b\Y037829).D		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
58 Hexachloroethane	117	7.344	7.347	-0.003	94	23765	1.00	0.9851	
59 Nitrobenzene	77	7.386	7.389	-0.003	87	52897	1.00	0.99	
62 Isophorone	82	7.635	7.638	-0.003	99	94997	1.00	0.9891	
66 2,4-Dimethylphenol	107	7.735	7.739	-0.004	89	47948	1.00	0.9581	
64 2-Nitrophenol	139	7.735	7.739	-0.004	70	23703	1.00	0.9446	
69 Bis(2-chloroethoxy)methane	93	7.836	7.839	-0.003	100	60802	1.00	0.9818	
70 Benzoic acid	105	7.795	7.857	-0.062	88	67510	5.00	5.80	M
72 2,4-Dichlorophenol	162	7.984	7.982	0.002	93	40482	1.00	0.9807	
73 1,2,4-Trichlorobenzene	180	8.085	8.088	-0.003	94	49535	1.00	0.9830	
74 Naphthalene	128	8.174	8.177	-0.003	97	165238	1.00	1.01	
76 4-Chloroaniline	127	8.198	8.201	-0.003	96	60379	1.00	0.9866	
77 2,6-Dichlorophenol	162	8.221	8.219	0.002	97	41390	1.00	0.9730	
79 Hexachlorobutadiene	225	8.293	8.290	0.003	96	28434	1.00	0.9729	
84 Caprolactam	113	8.524	8.551	-0.027	79	32563	2.00	1.97	
85 4-Chloro-3-methylphenol	107	8.660	8.664	-0.004	96	38469	1.00	1.00	
87 2-Methylnaphthalene	142	8.862	8.859	0.003	92	95801	1.00	0.99	
89 1-Methylnaphthalene	142	8.957	8.960	-0.003	93	98279	1.00	0.9842	
90 Hexachlorocyclopentadiene	237	9.016	9.013	0.003	95	33024	1.00	0.9491	
91 1,2,4,5-Tetrachlorobenzene	216	9.022	9.025	-0.003	97	50477	1.00	0.9424	
93 2,4,6-Trichlorophenol	196	9.117	9.114	0.003	92	30670	1.00	0.99	
94 2,4,5-Trichlorophenol	196	9.152	9.156	-0.004	95	29216	1.00	0.9543	M
96 1,1'-Biphenyl	154	9.289	9.292	-0.003	96	125541	1.00	0.9702	
97 2-Chloronaphthalene	162	9.330	9.328	0.002	95	101354	1.00	0.9888	
100 2-Nitroaniline	65	9.395	9.399	-0.004	86	23201	1.00	0.9779	
105 Dimethyl phthalate	163	9.532	9.535	-0.003	99	107653	1.00	0.9725	
106 1,3-Dinitrobenzene	168	9.573	9.577	-0.004	85	12065	1.00	0.9387	
107 2,6-Dinitrotoluene	165	9.597	9.600	-0.003	95	22552	1.00	0.99	
108 Acenaphthylene	152	9.716	9.719	-0.003	98	155560	1.00	0.9787	
109 3-Nitroaniline	138	9.763	9.766	-0.003	96	21293	1.00	0.9821	
111 2,4-Dinitrophenol	184	9.852	9.855	-0.003	72	11450	2.00	2.40	
110 Acenaphthene	153	9.870	9.873	-0.003	96	105713	1.00	0.9604	
112 4-Nitrophenol	109	9.876	9.879	-0.003	89	19295	2.00	1.85	
114 2,4-Dinitrotoluene	165	9.965	9.968	-0.003	95	27415	1.00	0.9628	
115 Dibenzofuran	168	10.018	10.021	-0.003	97	139074	1.00	0.9843	
118 2,3,4,6-Tetrachlorophenol	232	10.119	10.122	-0.003	71	21620	1.00	0.9458	
121 Hexadecane	57	10.142	10.140	0.002	96	59902	1.00	0.9593	
120 Diethyl phthalate	149	10.148	10.152	-0.004	98	107694	1.00	0.9714	
123 4-Chlorophenyl phenyl ether	204	10.291	10.294	-0.003	93	56048	1.00	0.9635	
126 4-Nitroaniline	138	10.308	10.312	-0.004	88	24024	1.00	1.01	
124 Fluorene	166	10.326	10.330	-0.004	94	113021	1.00	0.9390	
127 4,6-Dinitro-2-methylphenol	198	10.332	10.336	-0.004	87	23263	2.00	1.94	
129 Diphenylamine	169	10.391	10.389	0.002	93	78238	0.8550	0.8267	
130 N-Nitrosodiphenylamine	169	10.391	10.389	0.002	63	78238	1.00	0.9669	
132 Azobenzene	77	10.433	10.436	-0.003	99	104255	1.00	0.9757	
131 1,2-Diphenylhydrazine	77	10.433	10.436	-0.003	41	104249	1.00	0.9756	
139 4-Bromophenyl phenyl ether	248	10.723	10.727	-0.004	65	32936	1.00	1.02	
143 Atrazine	200	10.812	10.816	-0.004	95	68773	2.00	1.93	
140 Hexachlorobenzene	284	10.818	10.822	-0.004	96	37246	1.00	0.9666	
148 n-Octadecane	57	10.925	10.928	-0.003	95	61289	1.00	0.9845	
145 Pentachlorophenol	266	10.972	10.976	-0.004	94	31673	2.00	1.92	
151 Phenanthrene	178	11.174	11.171	0.003	97	163151	1.00	0.9888	
152 Anthracene	178	11.216	11.219	-0.003	98	161486	1.00	0.9717	
				2.200	J J				

Report Date: 16-Jul-2024 11:56:19 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File:

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.328	11.332	-0.004	96	120880	1.00	1.02	
157 Di-n-butyl phthalate	149	11.542	11.545	-0.003	100	176590	1.00	1.00	
164 Fluoranthene	202	12.235	12.239	-0.004	98	170348	1.00	0.9828	
166 Benzidine	184	12.300	12.304	-0.004	99	102593	2.00	1.78	а
167 Pyrene	202	12.461	12.464	-0.003	97	178081	1.00	0.99	
174 Butyl benzyl phthalate	149	12.953	12.956	-0.003	98	71806	1.00	0.9612	
181 Bis(2-ethylhexyl) phthalate	149	13.492	13.496	-0.004	96	101455	1.00	0.9615	
179 3,3'-Dichlorobenzidine	252	13.563	13.567	-0.004	73	105919	2.00	1.76	
180 Benzo[a]anthracene	228	13.646	13.644	0.002	99	174892	1.00	0.9634	
182 Chrysene	228	13.682	13.685	-0.003	97	167412	1.00	0.9890	
184 Di-n-octyl phthalate	149	14.168	14.171	-0.003	99	167128	1.00	0.9593	
186 Benzo[b]fluoranthene	252	14.885	14.895	-0.010	97	164722	1.00	0.9167	
187 Benzo[k]fluoranthene	252	14.921	14.930	-0.009	99	168102	1.00	0.8906	
189 Benzo[a]pyrene	252	15.360	15.363	-0.003	78	152152	1.00	0.9450	
194 Dibenz(a,h)anthracene	278	17.251	17.266	-0.015	88	155738	1.00	0.9405	
193 Indeno[1,2,3-cd]pyrene	276	17.257	17.272	-0.015	98	197005	1.00	0.9509	
195 Benzo[g,h,i]perylene	276	17.820	17.841	-0.021	97	154255	1.00	0.9866	
S 261 Total Cresols	1				0			1.92	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00633 Amount Added: 1.00 Units: mL Report Date: 16-Jul-2024 11:56:19 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037829.D Injection Date: 15-Jul-2024 19:09:30 Instrument ID: HP5973Y

Lims ID: IC - List 1 - 1

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

5

5

Report Date: 16-Jul-2024 11:56:43 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037830.D

Lims ID: IC - List 1 - 2

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 15-Jul-2024 19:37:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-006

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:56:40 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:55:03

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:55:03		
_		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.760	6.760	0.000	95	161631	4.00	4.00	
* 2 Naphthalene-d8	136	8.153	8.154	-0.001	99	606003	4.00	4.00	
* 3 Acenaphthene-d10	164	9.843	9.843	0.000	93	362580	4.00	4.00	
4 Phenanthrene-d10	188	11.153	11.154	-0.001	97	630835	4.00	4.00	
* 5 Chrysene-d12	240	13.661	13.662	-0.001	99	579301	4.00	4.00	
* 6 Perylene-d12	264	15.439	15.440	-0.001	98	637317	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.260	5.260	0.000	91	100746	2.00	2.05	
\$ 8 Phenol-d5	99	6.250	6.251	-0.001	91	121713	2.00	1.95	
\$ 9 Nitrobenzene-d5	82	7.364	7.365	-0.001	88	121235	2.00	1.99	
\$ 10 2-Fluorobiphenyl	172	9.190	9.191	-0.001	100	247261	2.00	1.98	
\$ 11 2,4,6-Tribromophenol	330	10.536	10.537	-0.001	95	32158	2.00	1.86	
\$ 12 p-Terphenyl-d14	244	12.534	12.535	-0.001	98	301451	2.00	1.95	
13 1,4-Dioxane	88	3.801	3.796	0.005	94	40109	2.00	2.07	
14 N-Nitrosodimethylamine	42	4.062	4.057	0.005	91	51300	2.00	2.07	
15 Pyridine	52	4.110	4.104	0.006	97	122073	4.00	3.95	
35 Benzaldehyde	77	6.256	6.256	0.000	96	190592	4.00	4.25	
37 Phenol	94	6.268	6.268	0.000	98	127850	2.00	2.00	
36 Aniline	93	6.362	6.369	-0.007	98	165266	2.00	2.06	
39 Bis(2-chloroethyl)ether	93	6.398	6.399	-0.001	92	100651	2.00	1.98	
40 2-Chlorophenol	128	6.517	6.517	0.000	96	106674	2.00	1.99	
41 n-Decane	57	6.517	6.517	0.000	89	107510	2.00	1.99	
43 1,3-Dichlorobenzene	146	6.700	6.701	-0.001	98	123100	2.00	2.03	
44 1,4-Dichlorobenzene	146	6.777	6.778	-0.001	95	126382	2.00	2.03	
45 Benzyl alcohol	108	6.872	6.879	-0.007	94	68055	2.00	2.04	
46 1,2-Dichlorobenzene	146	6.961	6.962	-0.001	97	117708	2.00	2.01	
48 2-Methylphenol	108	6.973	6.980	-0.007	97	94895	2.00	2.01	
49 2,2'-oxybis[1-chloropropane]	45	7.021	7.021	0.000	93	138311	2.00	2.03	
47 Indene	115	7.056	7.063	-0.007	89	1007416	10.0	9.88	
57 4-Methylphenol	108	7.139	7.146	-0.007	96	98574	2.00	2.00	
53 N-Nitrosodi-n-propylamine	70	7.169	7.170	-0.001	86	71925	2.00	2.01	
52 Acetophenone	105	7.187	7.187	0.000	97	141814	2.00	2.01	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037830.D

Data File: \\cnromts\But	IIdIU\C				10-119	U28.b\YU3783(
0	C	RT	Adj RT	Dlt RT		Decree	Cal Amt	OnCol Amt	П
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
58 Hexachloroethane	117	7.347	7.347	0.000	93	47100	2.00	1.97	
59 Nitrobenzene	77	7.388	7.389	-0.001	93 87	106805	2.00	1.99	
62 Isophorone	82	7.637	7.638	-0.001	99	194836	2.00	2.01	
66 2,4-Dimethylphenol	107	7.738	7.739	-0.001	89	102628	2.00	1.97	
64 2-Nitrophenol	139	7.738	7.739	-0.001	71	52491	2.00	1.91	
69 Bis(2-chloroethoxy)methane	93	7.833	7.839	-0.006	99	124943	2.00	2.00	
70 Benzoic acid	105	7.821	7.857	-0.036	89	208852	10.0	9.47	
72 2,4-Dichlorophenol	162	7.981	7.982	-0.001	93	87606	2.00	2.01	
73 1,2,4-Trichlorobenzene	180	8.088	8.088	0.000	94	101211	2.00	1.99	
74 Naphthalene	128	8.177	8.177	0.000	98	339133	2.00	2.05	
76 4-Chloroaniline	127	8.200	8.201	-0.001	97	121008	2.00	1.96	
77 2,6-Dichlorophenol	162	8.218	8.219	-0.001	98	89423	2.00	2.02	
79 Hexachlorobutadiene	225	8.289	8.290	-0.001	95	58885	2.00	2.00	
84 Caprolactam	113	8.532	8.551	-0.019	80	69428	4.00	3.96	
85 4-Chloro-3-methylphenol	107	8.657	8.664	-0.007	95	81453	2.00	1.99	
87 2-Methylnaphthalene	142	8.858	8.859	-0.001	92	195196	2.00	2.01	
89 1-Methylnaphthalene	142	8.959	8.960	-0.001	93	199287	2.00	1.98	
90 Hexachlorocyclopentadiene	237	9.013	9.013	0.000	96	69720	2.00	1.90	
91 1,2,4,5-Tetrachlorobenzene	216	9.024	9.025	-0.001	98	103676	2.00	1.92	
93 2,4,6-Trichlorophenol	196	9.113	9.114	-0.001	94	65787	2.00	1.96	
94 2,4,5-Trichlorophenol	196	9.155	9.156	-0.001	96	64597	2.00	1.93	
96 1,1'-Biphenyl	154	9.291	9.292	-0.001	95	258978	2.00	1.98	
97 2-Chloronaphthalene	162	9.327	9.328	-0.001	95	205365	2.00	1.99	
100 2-Nitroaniline	65	9.398	9.399	-0.001	88	50441	2.00	1.94	
105 Dimethyl phthalate	163	9.534	9.535	-0.001	99	214922	2.00	1.92	
106 1,3-Dinitrobenzene	168	9.576	9.577	-0.001	86	28369	2.00	1.86	
107 2,6-Dinitrotoluene	165	9.600	9.600	0.000	94	48602	2.00	1.97	
108 Acenaphthylene	152	9.718	9.719	-0.001	98	323841	2.00	2.02	
109 3-Nitroaniline	138	9.766	9.766	0.000	95	42942	2.00	1.77	
111 2,4-Dinitrophenol	184	9.855	9.855	-0.001	84	35191	4.00	3.79	
110 Acenaphthene	153	9.872	9.873	-0.001	96	213772	2.00	1.92	
112 4-Nitrophenol	109	9.878	9.879	-0.001	87	49712	4.00	3.89	
114 2,4-Dinitrotoluene	165	9.967	9.968	-0.001	95	62324	2.00	1.93	
114 2,4-Dillitotolderie 115 Dibenzofuran	168	10.021	10.021	0.000	93 97	284526	2.00	2.00	
	232	10.021	10.021	-0.001	97 71	49154	2.00	1.90	
118 2,3,4,6-Tetrachlorophenol 121 Hexadecane	232 57	10.121	10.122	-0.001	96	127972	2.00	1.90	
120 Diethyl phthalate	149	10.159	10.140	-0.001	98	223608	2.00	1.94	
		10.131	10.132	-0.001	90	113700	2.00	1.94	
123 4-Chlorophenyl phenyl ether			10.294						
124 Flyerane	138	10.311		-0.001	88	43913	2.00	1.64	
124 Fluorene	166	10.329	10.330	-0.001	94	234251	2.00	1.91	
127 4,6-Dinitro-2-methylphenol	198	10.335	10.336	-0.001	91	60456	4.00	3.55	
129 Diphenylamine	169	10.388	10.389	-0.001	94	163064	1.71	1.67	
130 N-Nitrosodiphenylamine	169	10.388	10.389	-0.001	63	163064	2.00	1.95	
132 Azobenzene	77 	10.436	10.436	0.000	99	223440	2.00	2.02	
131 1,2-Diphenylhydrazine	77	10.436	10.436	0.000	41	223440	2.00	2.02	
139 4-Bromophenyl phenyl ether		10.726	10.727	-0.001	66	65683	2.00	1.91	
143 Atrazine	200	10.815	10.816	-0.001	95	143609	4.00	4.00	
140 Hexachlorobenzene	284	10.821	10.822	-0.001	96	79267	2.00	1.88	
148 n-Octadecane	57	10.928	10.928	0.000	95	129625	2.00	1.94	
145 Pentachlorophenol	266	10.975	10.976	-0.001	94	79584	4.00	3.63	
151 Phenanthrene	178	11.171	11.171	0.000	98	335771	2.00	1.97	
152 Anthracene	178	11.218	11.219	-0.001	98	335388	2.00	1.94	

Report Date: 16-Jul-2024 11:56:43 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037830.D

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.331	11.332	-0.001	96	175651	2.00	1.44	
157 Di-n-butyl phthalate	149	11.544	11.545	-0.001	100	379357	2.00	1.99	
164 Fluoranthene	202	12.238	12.239	-0.001	98	358481	2.00	1.98	
166 Benzidine	184	12.303	12.304	-0.001	99	182812	4.00	3.07	
167 Pyrene	202	12.463	12.464	-0.001	97	373777	2.00	2.01	
174 Butyl benzyl phthalate	149	12.955	12.956	-0.001	97	159777	2.00	1.95	
181 Bis(2-ethylhexyl) phthalate	149	13.495	13.496	-0.001	96	228247	2.00	1.94	
179 3,3'-Dichlorobenzidine	252	13.566	13.567	-0.001	73	203908	4.00	3.28	
180 Benzo[a]anthracene	228	13.643	13.644	-0.001	100	365289	2.00	1.94	
182 Chrysene	228	13.685	13.685	0.000	97	346741	2.00	1.98	
184 Di-n-octyl phthalate	149	14.171	14.171	0.000	99	373016	2.00	1.92	
186 Benzo[b]fluoranthene	252	14.888	14.895	-0.007	98	351145	2.00	1.89	
187 Benzo[k]fluoranthene	252	14.924	14.930	-0.006	99	349998	2.00	1.81	
189 Benzo[a]pyrene	252	15.356	15.363	-0.007	78	324823	2.00	1.94	
194 Dibenz(a,h)anthracene	278	17.254	17.266	-0.012	86	337497	2.00	1.96	
193 Indeno[1,2,3-cd]pyrene	276	17.266	17.272	-0.006	92	422553	2.00	1.97	
195 Benzo[g,h,i]perylene	276	17.829	17.841	-0.012	96	326285	2.00	2.04	
S 261 Total Cresols	1				0			4.01	

QC Flag Legend Processing Flags Reagents:

MB_L1LVI_WRK_00634 Amount Added: 1.00 Units: mL

Report Date: 16-Jul-2024 11:56:43 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037830.D Injection Date: 15-Jul-2024 19:37:30 Instrument ID: HP5973Y

Lims ID: IC - List 1 - 2

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

6

6

Report Date: 16-Jul-2024 11:57:07 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037831.D

Lims ID: ICIS - List 1 - 4

Client ID:

Sample Type: ICIS Calib Level: 5

Inject. Date: 15-Jul-2024 20:04:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-007

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:57:04 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:55:37

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:55:37		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.760	6.760	0.000	95	167819	4.00	4.00	
* 2 Naphthalene-d8	136	8.154	8.154	0.000	99	627436	4.00	4.00	
* 3 Acenaphthene-d10	164	9.843	9.843	0.000	94	365505	4.00	4.00	
4 Phenanthrene-d10	188	11.154	11.154	0.000	97	634399	4.00	4.00	
* 5 Chrysene-d12	240	13.662	13.662	0.000	99	582998	4.00	4.00	
* 6 Perylene-d12	264	15.440	15.440	0.000	98	644462	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.260	5.260	0.000	92	203143	4.00	3.98	
\$ 8 Phenol-d5	99	6.251	6.251	0.000	92	254772	4.00	3.86	
\$ 9 Nitrobenzene-d5	82	7.365	7.365	0.000	88	248723	4.00	3.94	
\$ 10 2-Fluorobiphenyl	172	9.191	9.191	0.000	100	503129	4.00	4.00	
\$ 11 2,4,6-Tribromophenol	330	10.537	10.537	0.000	95	71119	4.00	3.86	
\$ 12 p-Terphenyl-d14	244	12.535	12.535	0.000	97	626408	4.00	4.03	
13 1,4-Dioxane	88	3.796	3.796	0.000	95	78490	4.00	3.90	
14 N-Nitrosodimethylamine	42	4.057	4.057	0.000	92	103155	4.00	4.01	
15 Pyridine	52	4.104	4.104	0.000	97	249239	8.00	7.76	
35 Benzaldehyde	77	6.256	6.256	0.000	95	374452	8.00	8.17	
37 Phenol	94	6.268	6.268	0.000	98	261968	4.00	3.96	
36 Aniline	93	6.369	6.369	0.000	98	337523	4.00	4.05	
39 Bis(2-chloroethyl)ether	93	6.399	6.399	0.000	96	206433	4.00	3.92	
40 2-Chlorophenol	128	6.517	6.517	0.000	93	220650	4.00	3.97	
41 n-Decane	57	6.517	6.517	0.000	88	218541	4.00	3.90	
43 1,3-Dichlorobenzene	146	6.701	6.701	0.000	98	246884	4.00	3.93	
44 1,4-Dichlorobenzene	146	6.778	6.778	0.000	95	252099	4.00	3.90	
45 Benzyl alcohol	108	6.879	6.879	0.000	94	138497	4.00	3.99	
46 1,2-Dichlorobenzene	146	6.962	6.962	0.000	98	240033	4.00	3.95	
48 2-Methylphenol	108	6.980	6.980	0.000	96	193559	4.00	3.96	
49 2,2'-oxybis[1-chloropropane]	45	7.021	7.021	0.000	93	279479	4.00	3.96	
47 Indene	115	7.063	7.063	0.000	88	2128511	20.0	20.1	
57 4-Methylphenol	108	7.146	7.146	0.000	96	201105	4.00	3.93	
53 N-Nitrosodi-n-propylamine	70	7.170	7.170	0.000	87	148552	4.00	3.99	
52 Acetophenone	105	7.187	7.187	0.000	96	286560	4.00	3.91	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037831.D

Data File: \\chromfs\Buf	taio\Cr				5-119	028.b\Y037831			
0	G.	RT	Adj RT	Dlt RT		Dec	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
EQ Hayaablaraathana	117	7 2 4 7	7.347	0.000	0.4	07549	4.00	3.92	
58 Hexachloroethane 59 Nitrobenzene	117 77	7.347 7.389	7.347 7.389	0.000 0.000	94 86	97548 224073	4.00 4.00	3.92 4.03	
62 Isophorone	82	7.638	7.569	0.000	99	402282	4.00	4.03 4.01	
66 2,4-Dimethylphenol	107	7.038	7.739	0.000	91	216361	4.00	3.95	
64 2-Nitrophenol	139	7.739	7.739	0.000	72	114142	4.00	3.85	
69 Bis(2-chloroethoxy)methane	93	7.739	7.739	0.000	99	259249	4.00	4.01	
70 Benzoic acid	105	7.853	7.85 3 7.857	0.000	93	557626	20.0	18.1	
72 2,4-Dichlorophenol	162	7.837	7.037	0.000	93	180351	4.00	3.91	
73 1,2,4-Trichlorobenzene	180	8.088	8.088	0.000	94	206828	4.00	3.93	
74 Naphthalene	128	8.177	8.177	0.000	9 7	665072	4.00	3.88	а
76 4-Chloroaniline	127	8.201	8.201	0.000	97	247632	4.00	3.88	а
77 2,6-Dichlorophenol	162	8.219	8.219	0.000	97	180395	4.00	3.88	
79 Hexachlorobutadiene	225	8.290	8.290	0.000	96	118313	4.00	3.88	
84 Caprolactam	113	8.551	8.551	0.000	80	147211	8.00	7.92	
85 4-Chloro-3-methylphenol	107	8.664	8.664	0.000	95	169496	4.00	3.92	
87 2-Methylnaphthalene	142	8.859	8.859	0.000	90	395440	4.00	3.93	
89 1-Methylnaphthalene	142	8.960	8.960	0.000	92	416573	4.00	4.00	
90 Hexachlorocyclopentadiene	237	9.013	9.013	0.000	96	150142	4.00	3.95	
91 1,2,4,5-Tetrachlorobenzene	216	9.015	9.015	0.000	90 97	216419	4.00	3.97	
93 2,4,6-Trichlorophenol	196	9.023	9.023	0.000	92	135435	4.00	3.85	
- ·	196	9.114	9.114	0.000	96	133433	4.00	3.79	
94 2,4,5-Trichlorophenol	154	9.130	9.130	0.000	96	519423	4.00	3.79 3.95	
96 1,1'-Biphenyl	162	9.292	9.292	0.000	96	413916	4.00	3.95	
97 2-Chloronaphthalene	65	9.326						3.97 3.92	
100 2-Nitroaniline		9.535	9.399 9.535	0.000	88 99	106985	4.00 4.00	3.92 4.01	
105 Dimethyl phthalate	163	9.535 9.577			99 86	451035	4.00	3.79	
106 1,3-Dinitrobenzene	168		9.577	0.000		64335			
107 2,6-Dinitrotoluene	165	9.600	9.600	0.000	95	101787 659982	4.00	3.94	
108 Acenaphthylene	152	9.719	9.719	0.000	98		4.00	4.08	
109 3-Nitroaniline	138	9.766	9.766	0.000	96 95	103192	4.00	3.95	
111 2,4-Dinitrophenol	184	9.855	9.855	0.000	85	89345	8.00	6.93	
110 Acenaphthene	153	9.873	9.873	0.000	96	445768	4.00	3.98	
112 4-Nitrophenol	109	9.879	9.879	0.000	91	109791	8.00	7.89	
114 2,4-Dinitrotoluene	165	9.968	9.968	0.000	95	135371	4.00	3.94	
115 Dibenzofuran	168	10.021	10.021	0.000	97	578925	4.00	4.03	
118 2,3,4,6-Tetrachlorophenol	232	10.122	10.122	0.000	71	106049	4.00	3.85	
121 Hexadecane	57	10.140	10.140	0.000	96	262586	4.00	3.88	
120 Diethyl phthalate	149	10.152	10.152	0.000	98	463125	4.00	3.92	
123 4-Chlorophenyl phenyl ether		10.294	10.294	0.000	91	234163	4.00	3.96	
126 4-Nitroaniline	138	10.312	10.312	0.000	89	107062	4.00	3.62	
124 Fluorene	166	10.330	10.330	0.000	93	481049	4.00	3.87	
127 4,6-Dinitro-2-methylphenol	198	10.336	10.336	0.000	89	144916	8.00	7.27	
129 Diphenylamine	169	10.389	10.389	0.000	94	340398	3.42	3.46	
130 N-Nitrosodiphenylamine	169	10.389	10.389	0.000	64	340398	4.00	4.05	
132 Azobenzene	77	10.436	10.436	0.000	99	444548	4.00	4.00	
131 1,2-Diphenylhydrazine	77	10.436	10.436	0.000	41	444548	4.00	4.00	
139 4-Bromophenyl phenyl ether	248	10.727	10.727	0.000	65	136419	4.00	3.89	
143 Atrazine	200	10.816	10.816	0.000	94	294477	8.00	8.13	
140 Hexachlorobenzene	284	10.822	10.822	0.000	94	168104	4.00	3.84	
148 n-Octadecane	57	10.928	10.928	0.000	95	271357	4.00	3.96	
145 Pentachlorophenol	266	10.976	10.976	0.000	94	179389	8.00	7.22	
151 Phenanthrene	178	11.171	11.171	0.000	98	689316	4.00	4.02	
152 Anthracene	178	11.219	11.219	0.000	98	702884	4.00	4.02	

Report Date: 16-Jul-2024 11:57:07 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File:

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.332	11.332	0.000	96	439590	4.00	3.58	
157 Di-n-butyl phthalate	149	11.545	11.545	0.000	100	789365	4.00	4.03	
164 Fluoranthene	202	12.239	12.239	0.000	99	746850	4.00	4.03	
166 Benzidine	184	12.239	12.239	0.000	99	430032	8.00	4.06 7.17	•
									а
167 Pyrene	202	12.464	12.464	0.000	96	767782	4.00	4.11	
174 Butyl benzyl phthalate	149	12.956	12.956	0.000	98	338922	4.00	4.00	
181 Bis(2-ethylhexyl) phthalate	149	13.496	13.496	0.000	96	490010	4.00	4.00	
179 3,3'-Dichlorobenzidine	252	13.567	13.567	0.000	73	459207	8.00	7.33	
180 Benzo[a]anthracene	228	13.644	13.644	0.000	100	771536	4.00	4.08	
182 Chrysene	228	13.685	13.685	0.000	97	712728	4.00	4.04	
184 Di-n-octyl phthalate	149	14.171	14.171	0.000	99	814432	4.00	4.01	
186 Benzo[b]fluoranthene	252	14.895	14.895	0.000	98	763066	4.00	4.03	
187 Benzo[k]fluoranthene	252	14.930	14.930	0.000	99	751640	4.00	3.84	
189 Benzo[a]pyrene	252	15.363	15.363	0.000	78	674825	4.00	3.96	
194 Dibenz(a,h)anthracene	278	17.266	17.266	0.000	89	713610	4.00	4.08	
193 Indeno[1,2,3-cd]pyrene	276	17.272	17.272	0.000	97	881301	4.00	4.04	
195 Benzo[g,h,i]perylene	276	17.841	17.841	0.000	96	673518	4.00	4.16	

QC Flag Legend Processing Flags

Review Flags

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL Report Date: 16-Jul-2024 11:57:08 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973Y\\20240715-119028.b\\Y037831.D \\Injection Date: \\15-Jul-2024 20:04:30 \\Instrument ID: \\HP5973Y

Lims ID: ICIS - List 1 - 4

Client ID:

Injection Vol: 2.0 ul

Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

7

7

Report Date: 16-Jul-2024 11:57:08 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973Y\\20240715-119028.b\\Y037831.D

Injection Date: 15-Jul-2024 20:04:30 Instrument ID: HP5973Y

Lims ID: ICIS - List 1 - 4

Client ID:

Operator ID: JM ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

186 Benzo[b]fluoranthene - 187 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 166753

H1(186 Benzo[b]fluoranthen) = 513869 H2(187 Benzo[k]fluoranthen) = 579446

Version D: %R = 30.5 <= 50.0

Passed

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973Y\\20240715-119028.b\\Y037831.D \\Injection Date: \\15-Jul-2024 \\20:04:30 \\Instrument ID: \\HP5973Y

Lims ID: ICIS - List 1 - 4

Client ID:

Operator ID: JM ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

74 Naphthalene, CAS: 91-20-3

Signal: 1

Not Detected

Expected RT: 8.18

Processing Integration Results

RT: 8.18
Area: 665072
Amount: 3.881951
Amount Units: ng/uL

Reviewer: IZ8L, 16-Jul-2024 08:55:28 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

Report Date: 16-Jul-2024 11:57:36 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037832.D

Lims ID: IC - List 1 - 8

Client ID:

Sample Type: IC Calib Level: 6

Inject. Date: 15-Jul-2024 20:32:30 ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-008

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:57:31 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:56:04

First Level Reviewer: IZ8L			D	ate:		16-Jui-2024	1 08:56:04		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
		, ,							
* 1 1,4-Dichlorobenzene-d4	152	6.757	6.760	-0.003	94	162502	4.00	4.00	
* 2 Naphthalene-d8	136	8.156	8.154	0.002	99	616528	4.00	4.00	
* 3 Acenaphthene-d10	164	9.840	9.843	-0.003	92	360851	4.00	4.00	
* 4 Phenanthrene-d10	188	11.151	11.154	-0.004	96	643871	4.00	4.00	
* 5 Chrysene-d12	240	13.664	13.662	0.002	99	590334	4.00	4.00	
* 6 Perylene-d12	264	15.443	15.440	0.003	98	641965	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.263	5.260	0.003	92	398699	8.00	8.07	
\$ 8 Phenol-d5	99	6.259	6.251	0.008	89	514706	8.00	7.98	
\$ 9 Nitrobenzene-d5	82	7.368	7.365	0.003	88	502962	8.00	8.12	
\$ 10 2-Fluorobiphenyl	172	9.194	9.191	0.003	99	1002595	8.00	8.08	
\$ 11 2,4,6-Tribromophenol	330	10.540	10.537	0.003	94	153154	8.00	7.99	
\$ 12 p-Terphenyl-d14	244	12.538	12.535	0.003	97	1261762	8.00	8.02	
13 1,4-Dioxane	88	3.799	3.796	0.003	95	150786	8.00	7.73	
14 N-Nitrosodimethylamine	42	4.060	4.057	0.003	92	196242	8.00	7.89	
15 Pyridine	52	4.107	4.104	0.003	97	512736	16.0	16.5	
35 Benzaldehyde	77	6.259	6.256	0.003	95	701939	16.0	15.9	
37 Phenol	94	6.271	6.268	0.003	99	528759	8.00	8.25	
36 Aniline	93	6.372	6.369	0.003	98	657963	8.00	8.15	
39 Bis(2-chloroethyl)ether	93	6.402	6.399	0.003	94	406811	8.00	7.98	
40 2-Chlorophenol	128	6.520	6.517	0.003	93	436260	8.00	8.11	
41 n-Decane	57	6.520	6.517	0.003	89	435001	8.00	8.02	
43 1,3-Dichlorobenzene	146	6.704	6.701	0.003	98	488101	8.00	8.02	
44 1,4-Dichlorobenzene	146	6.781	6.778	0.003	94	498282	8.00	7.97	
45 Benzyl alcohol	108	6.882	6.879	0.003	94	279207	8.00	8.32	
46 1,2-Dichlorobenzene	146	6.959	6.962	-0.003	97	469473	8.00	7.99	
48 2-Methylphenol	108	6.983	6.980	0.003	96	386537	8.00	8.16	
49 2,2'-oxybis[1-chloropropane]	45	7.024	7.021	0.003	93	544556	8.00	7.96	
47 Indene	115	7.066	7.063	0.003	88	4252520	40.0	41.5	
57 4-Methylphenol	108	7.149	7.146	0.003	96	408437	8.00	8.24	
53 N-Nitrosodi-n-propylamine	70	7.172	7.170	0.002	89	289790	8.00	8.04	
52 Acetophenone	105	7.196	7.187	0.009	97	571680	8.00	8.05	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037832.D

Data File. \\Cilioniis\Dui	T				1	1		100	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
58 Hexachloroethane	117	7.344	7.347	-0.003	95	195445	8.00	8.12	
59 Nitrobenzene	77	7.344	7.347	0.003	95 86	435031	8.00	7.96	
62 Isophorone	82	7.5 92 7.641	7.638	0.003	99	791313	8.00	8.03	
66 2,4-Dimethylphenol	107	7.741	7.739	0.003	89	430047	8.00	7.92	
64 2-Nitrophenol	139	7.741	7.739	-0.002	73	235576	8.00	7.92	
69 Bis(2-chloroethoxy)methane	93	7.736	7.739	-0.003	100	510525	8.00	7.93 8.04	
70 Benzoic acid	105	7.902	7.857	0.045	89	1305876	40.0	37.5	М
72 2,4-Dichlorophenol	162	7.985	7.982	0.003	93	360389	8.00	7.86	IVI
73 1,2,4-Trichlorobenzene	180	8.085	8.088	-0.003	94	402170	8.00	7.78	
74 Naphthalene	128	8.180	8.177	0.003	97	1317779	8.00	7.83	а
76 4-Chloroaniline	127	8.204	8.201	0.003	96	522937	8.00	8.33	u
77 2,6-Dichlorophenol	162	8.222	8.219	0.003	98	358808	8.00	7.80	
79 Hexachlorobutadiene	225	8.293	8.290	0.003	97	241091	8.00	8.04	
84 Caprolactam	113	8.571	8.551	0.020	81	294054	16.0	15.9	
85 4-Chloro-3-methylphenol	107	8.666	8.664	0.002	94	336170	8.00	7.82	
87 2-Methylnaphthalene	142	8.862	8.859	0.003	91	785114	8.00	7.94	
89 1-Methylnaphthalene	142	8.963	8.960	0.003	93	824402	8.00	8.05	
90 Hexachlorocyclopentadiene	237	9.016	9.013	0.003	96	304967	8.00	8.05	
91 1,2,4,5-Tetrachlorobenzene	216	9.028	9.025	0.003	98	439590	8.00	8.17	
93 2,4,6-Trichlorophenol	196	9.117	9.114	0.003	92	278573	8.00	7.88	
94 2,4,5-Trichlorophenol	196	9.158	9.156	0.002	95	289322	8.00	8.18	
96 1,1'-Biphenyl	154	9.295	9.292	0.003	96	1043516	8.00	8.03	
97 2-Chloronaphthalene	162	9.330	9.328	0.002	96	816201	8.00	7.93	
100 2-Nitroaniline	65	9.402	9.399	0.003	87	218478	8.00	7.95	
105 Dimethyl phthalate	163	9.538	9.535	0.003	99	913669	8.00	8.22	
106 1,3-Dinitrobenzene	168	9.585	9.577	0.008	86	138132	8.00	7.99	
107 2,6-Dinitrotoluene	165	9.603	9.600	0.003	94	207261	8.00	7.97	
108 Acenaphthylene	152	9.722	9.719	0.003	98	1307230	8.00	8.19	
109 3-Nitroaniline	138	9.769	9.766	0.003	96	218264	8.00	8.25	
111 2,4-Dinitrophenol	184	9.864	9.855	0.009	90	218915	16.0	14.7	
110 Acenaphthene	153	9.876	9.873	0.003	95	887728	8.00	8.03	
112 4-Nitrophenol	109	9.888	9.879	0.009	86	225270	16.0	15.8	а
114 2,4-Dinitrotoluene	165	9.971	9.968	0.003	96	282386	8.00	8.11	
115 Dibenzofuran	168	10.024	10.021	0.003	97	1139832	8.00	8.03	
118 2,3,4,6-Tetrachlorophenol	232	10.119	10.122	-0.003	74	220875	8.00	7.91	
121 Hexadecane	57	10.143	10.140	0.003	96	526222	8.00	7.79	
120 Diethyl phthalate	149	10.154	10.152	0.002	98	942651	8.00	8.02	
123 4-Chlorophenyl phenyl ether	204	10.297	10.294	0.003	89	477789	8.00	8.18	
126 4-Nitroaniline	138	10.320	10.312	0.008	90	228988	8.00	7.58	
124 Fluorene	166	10.326	10.330	-0.004	93	994435	8.00	8.09	
127 4,6-Dinitro-2-methylphenol	198	10.344	10.336	0.008	93	321637	16.0	14.9	
129 Diphenylamine	169	10.392	10.389	0.003	94	699691	6.84	7.01	
130 N-Nitrosodiphenylamine	169	10.392	10.389	0.003	62	699691	8.00	8.20	
132 Azobenzene	77	10.439	10.436	0.003	99	920705	8.00	8.17	
131 1,2-Diphenylhydrazine	77	10.439	10.436	0.003	41	920705	8.00	8.17	
139 4-Bromophenyl phenyl ether	248	10.730	10.727	0.003	65	283172	8.00	7.91	
143 Atrazine	200	10.818	10.816	0.002	95	578497	16.0	16.2	
140 Hexachlorobenzene	284	10.824	10.822	0.002	91	344709	8.00	7.64	
148 n-Octadecane	57	10.931	10.928	0.002	97	545865	8.00	7.79	
145 Pentachlorophenol	266	10.979	10.976	0.003	94	399753	16.0	15.0	
151 Phenanthrene	178	11.174	11.171	0.003	98	1376603	8.00	7.91	
152 Anthracene	178	11.174	11.219	0.003	98	1425320	8.00	8.02	
104 AHUHACEHE	170	11.222	11.213	0.003	30	1723320	0.00	0.02	

Report Date: 16-Jul-2024 11:57:36 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File:

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.334	11.332	0.002	96	1113495	8.00	8.95	
157 Di-n-butyl phthalate	149	11.548	11.545	0.003	100	1612244	8.00	8.03	
164 Fluoranthene	202	12.241	12.239	0.002	99	1486060	8.00	7.99	
166 Benzidine	184	12.307	12.304	0.003	99	1085172	16.0	17.9	
167 Pyrene	202	12.467	12.464	0.003	96	1558257	8.00	8.23	
174 Butyl benzyl phthalate	149	12.959	12.956	0.003	98	703249	8.00	8.08	
181 Bis(2-ethylhexyl) phthalate	149	13.492	13.496	-0.004	96	998487	8.00	7.92	
179 3,3'-Dichlorobenzidine	252	13.569	13.567	0.002	74	1134972	16.0	17.9	
180 Benzo[a]anthracene	228	13.652	13.644	0.008	99	1550995	8.00	8.09	
182 Chrysene	228	13.694	13.685	0.009	97	1431000	8.00	8.01	
184 Di-n-octyl phthalate	149	14.174	14.171	0.003	99	1703439	8.00	8.14	
186 Benzo[b]fluoranthene	252	14.898	14.895	0.003	98	1506248	8.00	7.97	
187 Benzo[k]fluoranthene	252	14.933	14.930	0.003	99	1612128	8.00	8.28	
189 Benzo[a]pyrene	252	15.366	15.363	0.003	79	1364037	8.00	8.02	
194 Dibenz(a,h)anthracene	278	17.275	17.266	0.009	94	1395762	8.00	7.98	
193 Indeno[1,2,3-cd]pyrene	276	17.287	17.272	0.015	97	1736884	8.00	7.98	
195 Benzo[g,h,i]perylene	276	17.856	17.841	0.015	97	1306763	8.00	8.10	
S 261 Total Cresols	1				0			16.4	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00636 Amount Added: 1.00 Units: mL Report Date: 16-Jul-2024 11:57:37 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037832.D Injection Date: 15-Jul-2024 20:32:30 Instrument ID: HP5973Y

Lims ID: IC - List 1 - 8

Client ID:

Injection Vol: 2.0 ul Dil. Factor:

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

1.0000

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

8

8

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973Y\\20240715-119028.b\\Y037832.D \\Injection Date: \15-Jul-2024 20:32:30 \Instrument ID: \HP5973Y

Lims ID: IC - List 1 - 8

Client ID:

Operator ID: JM ALS Bottle#: 8 Worklist Smp#: 8

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

74 Naphthalene, CAS: 91-20-3

Signal: 1

RT: 8.21
Area: 58377
Amount: 0.392668
Amount Units: ng/uL

Processing Integration Results

RT: 8.18
Area: 1317779
Amount: 7.827815
Amount Units: ng/uL

Reviewer: IZ8L, 16-Jul-2024 08:57:37 -04:00:00 (UTC)

Audit Action: Assigned Compound ID Audit Reason: Incomplete Integration

Report Date: 16-Jul-2024 11:58:06 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037833.D

Lims ID: IC - List 1 - 12

Client ID:

Sample Type: IC Calib Level: 7

Inject. Date: 15-Jul-2024 21:00:30 ALS Bottle#: 9 Worklist Smp#: 9

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-009

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:58:04 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:56:21

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:56:21		
_		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.765	6.760	0.005	94	167473	4.00	4.00	
* 2 Naphthalene-d8	136	8.158	8.154	0.004	99	631570	4.00	4.00	
* 3 Acenaphthene-d10	164	9.848	9.843	0.005	92	365507	4.00	4.00	
4 Phenanthrene-d10	188	11.158	11.154	0.004	96	658972	4.00	4.00	
* 5 Chrysene-d12	240	13.666	13.662	0.004	99	618992	4.00	4.00	
* 6 Perylene-d12	264	15.445	15.440	0.004	98	654193	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.265	5.260	0.005	92	616366	12.0	12.1	
\$ 8 Phenol-d5	99	6.261	6.251	0.010	91	812766	12.0	12.2	
\$ 9 Nitrobenzene-d5	82	7.375	7.365	0.010	87	776501	12.0	12.2	
\$ 10 2-Fluorobiphenyl	172	9.196	9.191	0.005	99	1522967	12.0	12.1	
\$ 11 2,4,6-Tribromophenol	330	10.541	10.537	0.004	94	241494	12.0	12.2	
\$ 12 p-Terphenyl-d14	244	12.539	12.535	0.004	97	2080865	12.0	12.6	
13 1,4-Dioxane	88	3.800	3.796	0.004	94	236323	12.0	11.8	
14 N-Nitrosodimethylamine	42	4.067	4.057	0.010	92	297689	12.0	11.6	
15 Pyridine	52	4.109	4.104	0.005	97	795840	24.0	24.8	
35 Benzaldehyde	77	6.261	6.256	0.005	96	1051714	24.0	23.2	
37 Phenol	94	6.279	6.268	0.011	99	812856	12.0	12.3	
36 Aniline	93	6.373	6.369	0.004	98	964216	12.0	11.6	
39 Bis(2-chloroethyl)ether	93	6.409	6.399	0.010	94	648799	12.0	12.3	
40 2-Chlorophenol	128	6.522	6.517	0.005	97	680632	12.0	12.3	
41 n-Decane	57	6.522	6.517	0.005	90	688456	12.0	12.3	
43 1,3-Dichlorobenzene	146	6.705	6.701	0.004	98	742428	12.0	11.8	
44 1,4-Dichlorobenzene	146	6.783	6.778	0.005	94	763873	12.0	11.9	
45 Benzyl alcohol	108	6.883	6.879	0.004	94	429576	12.0	12.4	
46 1,2-Dichlorobenzene	146	6.966	6.962	0.004	97	730232	12.0	12.1	
48 2-Methylphenol	108	6.984	6.980	0.004	97	600810	12.0	12.3	
49 2,2'-oxybis[1-chloropropane]	45	7.026	7.021	0.005	93	828238	12.0	11.8	
47 Indene	115	7.067	7.063	0.004	90	6534274	60.0	61.8	
57 4-Methylphenol	108	7.156	7.146	0.010	96	630032	12.0	12.3	
53 N-Nitrosodi-n-propylamine	70	7.180	7.170	0.010	89	456450	12.0	12.3	
52 Acetophenone	105	7.198	7.187	0.011	96	890609	12.0	12.2	
•									

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037833.D

Data File: \\chromfs\But	talo\C				5-119	028.b\Y037833			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt	OnCol Amt	Flage
Compound	Sig	(111111.)	(111111.)	(11111.)	Q	rresponse	ng/uL	ng/uL	Flags
58 Hexachloroethane	117	7.352	7.347	0.005	94	299124	12.0	12.1	
59 Nitrobenzene	77	7.393	7.389	0.004	86	677045	12.0	12.1	
62 Isophorone	82	7.648	7.638	0.010	99	1223451	12.0	12.1	
66 2,4-Dimethylphenol	107	7.743	7.739	0.004	89	674587	12.0	12.1	
64 2-Nitrophenol	139	7.743	7.739	0.004	73	373997	12.0	12.2	
69 Bis(2-chloroethoxy)methane	93	7.844	7.733	0.005	100	792203	12.0	12.2	
70 Benzoic acid	105	7.933	7.857	0.076	90	2225269	60.0	59.8	М
72 2,4-Dichlorophenol	162	7.986	7.982	0.004	93	561021	12.0	11.9	141
73 1,2,4-Trichlorobenzene	180	8.087	8.088	-0.001	93	646207	12.0	12.2	
74 Naphthalene	128	8.182	8.177	0.005	98	2032475	12.0	11.8	
76 4-Chloroaniline	127	8.211	8.201	0.000	97	731527	12.0	11.4	
77 2,6-Dichlorophenol	162	8.223	8.219	0.004	98	566040	12.0	12.0	
79 Hexachlorobutadiene	225	8.294	8.290	0.004	96	376924	12.0	12.3	
84 Caprolactam	113	8.597	8.551	0.046	81	453622	24.0	23.9	
85 4-Chloro-3-methylphenol	107	8.674	8.664	0.040	96	533134	12.0	12.1	
87 2-Methylnaphthalene	142	8.864	8.859	0.015	92	1251000	12.0	12.1	
89 1-Methylnaphthalene	142	8.964	8.960	0.003	93	1265220	12.0	12.4	
90 Hexachlorocyclopentadiene	237	9.018	9.013	0.004	94	481443	12.0	12.5	
91 1,2,4,5-Tetrachlorobenzene	216	9.030	9.015	0.005	97	687393	12.0	12.5	
93 2,4,6-Trichlorophenol	196	9.124	9.023	0.003	92	450312	12.0	12.5	
94 2,4,5-Trichlorophenol	196	9.160	9.114	0.010	96	447665	12.0	12.3	
96 1,1'-Biphenyl	154	9.296	9.130	0.004	96	1614660	12.0	12.4	
97 2-Chloronaphthalene	162	9.332	9.328	0.004	90 97	1278847	12.0	12.3	
100 2-Nitroaniline	65	9.403	9.399	0.004	88	344904	12.0	12.3	
105 Dimethyl phthalate	163	9.545	9.535	0.004	99	1419452	12.0	12.5	
106 1,3-Dinitrobenzene	168	9.587	9.533	0.010	88	222825	12.0	12.4	
107 2,6-Dinitrotoluene	165	9.611	9.600	0.010	95	327414	12.0	12.4	
107 2,0-Dillitrotolderie	152	9.723	9.719	0.004	98	2034070	12.0	12.4	
109 3-Nitroaniline	138	9.723	9.766	0.004	97	331295	12.0	12.3	
	184	9.777	9.855	0.011	97 84	380175		23.9	
111 2,4-Dinitrophenol	153	9.800	9.873	0.011	96	1413782	24.0 12.0	23.9 12.6	
110 Acenaphthene									
112 4-Nitrophenol	109	9.895	9.879	0.016	88	364264	24.0	24.9	
114 2,4-Dinitrotoluene	165	9.978	9.968	0.010	95	438487	12.0	12.3	
115 Dibenzofuran	168	10.026	10.021	0.005	96	1777286	12.0	12.4	
118 2,3,4,6-Tetrachlorophenol	232	10.126	10.122	0.004	71	358998	12.0	12.6	
121 Hexadecane	57	10.144	10.140	0.004	96	839464	12.0	12.2	
120 Diethyl phthalate	149	10.162	10.152	0.010	99	1467542	12.0	12.3	
123 4-Chlorophenyl phenyl ether		10.298	10.294	0.004	90	741342	12.0	12.5	
126 4-Nitroaniline	138	10.328	10.312	0.016	92	374667	12.0	12.1	
124 Fluorene	166	10.334	10.330	0.004	92	1595480	12.0	12.8	
127 4,6-Dinitro-2-methylphenol	198	10.346	10.336	0.010	89	540233	24.0	23.9	
129 Diphenylamine	169	10.399	10.389	0.010	94	1072415	10.3	10.5	
130 N-Nitrosodiphenylamine	169	10.399	10.389	0.010	63	1072415	12.0	12.3	
132 Azobenzene	77	10.441	10.436	0.005	98	1374419	12.0	11.9	
131 1,2-Diphenylhydrazine	77	10.441	10.436	0.005	41	1374419	12.0	11.9	
139 4-Bromophenyl phenyl ether	248	10.731	10.727	0.004	64	453166	12.0	12.3	
143 Atrazine	200	10.826	10.816	0.010	95	895168	24.0	24.7	
140 Hexachlorobenzene	284	10.826	10.822	0.004	85	585806	12.0	12.6	
148 n-Octadecane	57	10.933	10.928	0.005	97	869786	12.0	12.1	
145 Pentachlorophenol	266	10.980	10.976	0.004	94	677482	24.0	24.3	
151 Phenanthrene	178	11.176	11.171	0.005	98	2193158	12.0	12.3	
152 Anthracene	178	11.223	11.219	0.004	98	2272605	12.0	12.5	

Report Date: 16-Jul-2024 11:58:06 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File:

		DT	A d: DT	DI DT			Cal Amst	On Cal Area	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
Compound	Sig	(111111.)	(111111.)	(111111.)	Q	nesponse	Hg/uL	TIG/UL	riays
153 Carbazole	167	11.336	11.332	0.004	96	1732629	12.0	13.6	
157 Di-n-butyl phthalate	149	11.549	11.545	0.004	100	2489613	12.0	12.1	
• •			12.239			2332220	12.0	12.1	
164 Fluoranthene	202	12.243		0.004	99				
166 Benzidine	184	12.314	12.304	0.010	99	1871014	24.0	29.4	
167 Pyrene	202	12.468	12.464	0.004	95	2409190	12.0	12.1	
174 Butyl benzyl phthalate	149	12.960	12.956	0.004	99	1085579	12.0	11.9	
181 Bis(2-ethylhexyl) phthalate	149	13.500	13.496	0.004	96	1614809	12.0	12.2	
179 3,3'-Dichlorobenzidine	252	13.577	13.567	0.010	74	1852345	24.0	27.9	
180 Benzo[a]anthracene	228	13.654	13.644	0.010	99	2447028	12.0	12.2	
182 Chrysene	228	13.696	13.685	0.011	96	2272228	12.0	12.1	
184 Di-n-octyl phthalate	149	14.176	14.171	0.005	99	2708115	12.0	12.3	
186 Benzo[b]fluoranthene	252	14.905	14.895	0.010	98	2461532	12.0	12.8	
187 Benzo[k]fluoranthene	252	14.941	14.930	0.011	98	2713380	12.0	13.7	
189 Benzo[a]pyrene	252	15.373	15.363	0.010	79	2155699	12.0	12.4	
194 Dibenz(a,h)anthracene	278	17.294	17.266	0.028	90	2204503	12.0	12.4	
193 Indeno[1,2,3-cd]pyrene	276	17.300	17.272	0.028	99	2675843	12.0	12.1	
195 Benzo[g,h,i]perylene	276	17.869	17.841	0.028	96	2008825	12.0	12.2	
S 261 Total Cresols	1				0			24.6	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

Reagents:

MB_L1LVI_WRK_00637 Amount Added: 1.00 Units: mL Report Date: 16-Jul-2024 11:58:06 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037833.D

Oli - - t ID:

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

9

9

Report Date: 16-Jul-2024 11:58:34 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037834.D

Lims ID: IC - List 1 - 16

Client ID:

Sample Type: IC Calib Level: 8

Inject. Date: 15-Jul-2024 21:27:30 ALS Bottle#: 10 Worklist Smp#: 10

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-010

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update: 16-Jul-2024 11:58:31 Calib Date: 16-Jul-2024 04:48:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration \\chromfs\\Buffalo\ChromData\\HP5973Y\20240715-119028.b\\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:56:41

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:56:41		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.763	6.760	0.003	94	169681	4.00	4.00	
* 2 Naphthalene-d8	136	8.156	8.154	0.002	98	634213	4.00	4.00	
* 3 Acenaphthene-d10	164	9.846	9.843	0.003	91	378826	4.00	4.00	
4 Phenanthrene-d10	188	11.156	11.154	0.002	96	670020	4.00	4.00	
* 5 Chrysene-d12	240	13.664	13.662	0.002	99	637453	4.00	4.00	
* 6 Perylene-d12	264	15.449	15.440	0.009	98	651425	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.263	5.260	0.003	92	848547	16.0	16.4	
\$ 8 Phenol-d5	99	6.265	6.251	0.014	93	1136839	16.0	16.8	
\$ 9 Nitrobenzene-d5	82	7.374	7.365	0.009	88	1071974	16.0	16.8	
\$ 10 2-Fluorobiphenyl	172	9.194	9.191	0.003	99	2144450	16.0	16.5	
\$ 11 2,4,6-Tribromophenol	330	10.546	10.537	0.009	94	350517	16.0	17.4	
\$ 12 p-Terphenyl-d14	244	12.544	12.535	0.009	97	2777157	16.0	16.3	
13 1,4-Dioxane	88	3.799	3.796	0.003	95	330966	16.0	16.2	
14 N-Nitrosodimethylamine	42	4.071	4.057	0.014	92	402924	16.0	15.5	
15 Pyridine	52	4.107	4.104	0.003	97	1099666	32.0	33.9	
35 Benzaldehyde	77	6.265	6.256	0.009	98	1398446	32.0	30.5	
37 Phenol	94	6.283	6.268	0.015	99	1123749	16.0	16.8	
36 Aniline	93	6.378	6.369	0.009	98	1351237	16.0	16.0	
39 Bis(2-chloroethyl)ether	93	6.407	6.399	0.008	95	860059	16.0	16.1	M
40 2-Chlorophenol	128	6.526	6.517	0.009	96	968985	16.0	17.3	
41 n-Decane	57	6.520	6.517	0.003	90	943226	16.0	16.6	
43 1,3-Dichlorobenzene	146	6.704	6.701	0.003	98	1014318	16.0	16.0	
44 1,4-Dichlorobenzene	146	6.781	6.778	0.003	94	1050790	16.0	16.1	
45 Benzyl alcohol	108	6.888	6.879	0.009	93	577180	16.0	16.5	
46 1,2-Dichlorobenzene	146	6.965	6.962	0.003	97	987785	16.0	16.1	
48 2-Methylphenol	108	6.988	6.980	0.008	96	829108	16.0	16.8	
49 2,2'-oxybis[1-chloropropane]	45	7.030	7.021	0.009	93	1147586	16.0	16.1	
47 Indene	115	7.071	7.063	0.008	89	8477866	80.0	79.2	
57 4-Methylphenol	108	7.160	7.146	0.014	95	871001	16.0	16.8	
53 N-Nitrosodi-n-propylamine	70	7.184	7.170	0.014	88	633236	16.0	16.8	
52 Acetophenone	105	7.202	7.187	0.015	98	1233416	16.0	16.6	

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037834.D

Data File: \\chromfs\But	πalo\C				5-119	028.b\Y037834			
Compound	Qi~	RT (min.)	Adj RT	Dlt RT		Doctores	Cal Amt	OnCol Amt	Elogo
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
58 Hexachloroethane	117	7.350	7.347	0.003	95	425326	16.0	16.9	
59 Nitrobenzene	77	7.398	7.389	0.009	86	933988	16.0	16.6	
62 Isophorone	82	7.652	7.638	0.003	99	1654616	16.0	16.3	
66 2,4-Dimethylphenol	107	7.741	7.739	0.002	94	940188	16.0	16.8	
64 2-Nitrophenol	139	7.741	7.739	0.002	96	538674	16.0	17.5	
69 Bis(2-chloroethoxy)methane	93	7.842	7.733	0.002	99	1080221	16.0	16.5	
70 Benzoic acid	105	7.967	7.857	0.110	92	3220501	80.0	84.4	М
72 2,4-Dichlorophenol	162	7.990	7.982	0.008	92	799577	16.0	16.9	141
73 1,2,4-Trichlorobenzene	180	8.091	8.088	0.003	94	890125	16.0	16.7	
74 Naphthalene	128	8.180	8.177	0.003	98	2754170	16.0	15.9	
76 4-Chloroaniline	127	8.210	8.201	0.009	96	1029355	16.0	15.9	
77 2,6-Dichlorophenol	162	8.228	8.219	0.009	98	802880	16.0	16.9	
79 Hexachlorobutadiene	225	8.293	8.290	0.003	97	511209	16.0	16.6	
84 Caprolactam	113	8.613	8.551	0.062	81	633097	32.0	33.1	а
85 4-Chloro-3-methylphenol	107	8.678	8.664	0.002	95	738820	16.0	16.6	a
87 2-Methylnaphthalene	142	8.868	8.859	0.009	92	1721925	16.0	16.9	
89 1-Methylnaphthalene	142	8.963	8.960	0.003	93	1721923	16.0	17.0	
90 Hexachlorocyclopentadiene	237	9.016	9.013	0.003	95	658858	16.0	16.5	
91 1,2,4,5-Tetrachlorobenzene	216	9.028	9.015	0.003	97	966950	16.0	17.1	
93 2,4,6-Trichlorophenol	196	9.123	9.023	0.003	93	615117	16.0	16.4	
94 2,4,5-Trichlorophenol	196	9.164	9.114	0.003	95	625290	16.0	16.7	
96 1,1'-Biphenyl	154	9.104	9.130	0.008	97	2279816	16.0	16.7	
97 2-Chloronaphthalene	162	9.336	9.328	0.003	96	1782149	16.0	16.7	
100 2-Nitroaniline	65	9.407	9.399	0.008	86	482114	16.0	16.5	
105 Dimethyl phthalate	163	9.544	9.535	0.008	99	1936040	16.0	16.6	
106 1,3-Dinitrobenzene	168	9.591	9.533	0.009	88	316881	16.0	17.5	
107 2,6-Dinitrotoluene	165	9.615	9.600	0.014	96	442363	16.0	16.1	
107 2,0-Dillitotolderie 108 Acenaphthylene	152	9.722	9.719	0.013	98	2789242	16.0	16.6	
109 3-Nitroaniline	138	9.722	9.766	0.003	97	474497	16.0	16.9	
	184	9.781	9.855	0.015	97 85	579510	32.0	34.3	
111 2,4-Dinitrophenol	153	9.876 9.876	9.873	0.013	96	2024369	32.0 16.0	34.3 17.4	
110 Acenaphthene				0.003					
112 4-Nitrophenol	109	9.899	9.879		88	508791	32.0	33.4	
114 2,4-Dinitrotoluene	165	9.982	9.968	0.014	96	602351	16.0	16.3	
115 Dibenzofuran	168	10.030	10.021	0.009	96	2418070	16.0	16.2	
118 2,3,4,6-Tetrachlorophenol	232	10.125	10.122	0.003	73	506788	16.0	17.1	
121 Hexadecane	57	10.143	10.140	0.003	96	1231790	16.0	17.3	
120 Diethyl phthalate	149	10.160	10.152	0.008	98	2038607	16.0	16.5	
123 4-Chlorophenyl phenyl ether		10.297	10.294	0.003	92	1040438	16.0	17.0	
126 4-Nitroaniline	138	10.332	10.312	0.020	52	547068	16.0	16.9	
124 Fluorene	166	10.332	10.330	0.002	93	2278225	16.0	17.6	
127 4,6-Dinitro-2-methylphenol	198	10.350	10.336	0.014	90	797998	32.0	34.3	
129 Diphenylamine	169	10.397	10.389	0.008	93	1489517	13.7	14.3	
130 N-Nitrosodiphenylamine	169	10.397	10.389	0.008	63	1489517	16.0	16.8	
132 Azobenzene	77	10.439	10.436	0.003	98	1941936	16.0	16.6	
131 1,2-Diphenylhydrazine	77	10.439	10.436	0.003	45	1941936	16.0	16.6	
139 4-Bromophenyl phenyl ether	248	10.729	10.727	0.002	65	617446	16.0	16.5	
143 Atrazine	200	10.830	10.816	0.014	96	1233781	32.0	32.9	
140 Hexachlorobenzene	284	10.824	10.822	0.002	96	829605	16.0	17.5	
148 n-Octadecane	57	10.931	10.928	0.003	97	1240210	16.0	16.9	
145 Pentachlorophenol	266	10.979	10.976	0.002	94	961627	32.0	33.7	
151 Phenanthrene	178	11.180	11.171	0.009	98	3062501	16.0	16.9	
152 Anthracene	178	11.222	11.219	0.003	99	3064247	16.0	16.5	

Report Date: 16-Jul-2024 11:58:34 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File:

		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
·						•			
153 Carbazole	167	11.340	11.332	0.008	96	2512059	16.0	19.4	
157 Di-n-butyl phthalate	149	11.548	11.545	0.003	100	3310604	16.0	15.8	
164 Fluoranthene	202	12.241	12.239	0.002	99	3217498	16.0	16.6	
166 Benzidine	184	12.312	12.304	0.008	99	2790912	32.0	42.6	
167 Pyrene	202	12.473	12.464	0.009	95	3396069	16.0	16.6	
174 Butyl benzyl phthalate	149	12.959	12.956	0.003	98	1576700	16.0	16.7	
181 Bis(2-ethylhexyl) phthalate	149	13.498	13.496	0.002	96	2279385	16.0	16.6	
179 3,3'-Dichlorobenzidine	252	13.581	13.567	0.014	74	2521567	32.0	36.8	
180 Benzo[a]anthracene	228	13.652	13.644	0.008	99	3449713	16.0	16.7	
182 Chrysene	228	13.700	13.685	0.015	96	3148235	16.0	16.3	
184 Di-n-octyl phthalate	149	14.180	14.171	0.009	99	3692122	16.0	16.2	
186 Benzo[b]fluoranthene	252	14.909	14.895	0.014	98	3373796	16.0	17.6	
187 Benzo[k]fluoranthene	252	14.945	14.930	0.015	98	3883852	16.0	19.6	
189 Benzo[a]pyrene	252	15.378	15.363	0.015	79	2968854	16.0	17.2	
194 Dibenz(a,h)anthracene	278	17.305	17.266	0.039	91	3071377	16.0	17.3	
193 Indeno[1,2,3-cd]pyrene	276	17.310	17.272	0.038	98	3786050	16.0	17.1	
195 Benzo[g,h,i]perylene	276	17.880	17.841	0.039	97	2719872	16.0	16.6	
S 261 Total Cresols	1				0			33.6	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00638 Amount Added: 1.00 Units: mL Report Date: 16-Jul-2024 11:58:34 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: Injection Date: 15-Jul-2024 21:27:30 Instrument ID: HP5973Y

Lims ID:

IC - List 1 - 16

Client ID:

Injection Vol: 2.0 ul

Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

10

10

Calibration / Nitrobenzene-d5

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	0.4021

Curve Coefficients

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/4	0.5	0.19429	4.0	573039.0	0.388581	Υ
2	IC 480-718508/5	1.0	0.389407	4.0	601016.0	0.389407	Υ
3	IC 480-718508/6	2.0	0.800227	4.0	606003.0	0.400114	Υ
4	ICIS 480-718508/7	4.0	1.585647	4.0	627436.0	0.396412	Υ
5	IC 480-718508/8	8.0	3.26319	4.0	616528.0	0.407899	Υ
6	IC 480-718508/9	12.0	4.917909	4.0	631570.0	0.409826	Υ
7	IC 480-718508/10	16.0	6.760971	4.0	634213.0	0.422561	Υ

Calibration / Naphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffi	cients
Intercept:	0
Slope:	1.092

Error Coefficients

2.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.140171	4.0	539511.0	1.121371	Υ
2	IC 480-718508/4	0.5	0.555166	4.0	573039.0	1.110333	Υ
3	IC 480-718508/5	1.0	1.099724	4.0	601016.0	1.099724	Υ
4	IC 480-718508/6	2.0	2.238491	4.0	606003.0	1.119245	Υ
5	ICIS 480-718508/7	4.0	4.239935	4.0	627436.0	1.059984	Υ
6	IC 480-718508/8	8.0	8.549678	4.0	616528.0	1.06871	Υ
7	IC 480-718508/9	12.0	12.872524	4.0	631570.0	1.07271	Υ
8	IC 480-718508/10	16.0	17.370631	4.0	634213.0	1.085664	Υ

Calibration / 2-Methylnaphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.6413

Error Coefficients

3.1

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.076936	4.0	539511.0	0.615491	Υ
2	IC 480-718508/4	0.5	0.313445	4.0	573039.0	0.626889	Υ
3	IC 480-718508/5	1.0	0.637594	4.0	601016.0	0.637594	Υ
4	IC 480-718508/6	2.0	1.288416	4.0	606003.0	0.644208	Υ
5	ICIS 480-718508/7	4.0	2.52099	4.0	627436.0	0.630248	Υ
6	IC 480-718508/8	8.0	5.093777	4.0	616528.0	0.636722	Υ
7	IC 480-718508/9	12.0	7.923112	4.0	631570.0	0.660259	Υ
8	IC 480-718508/10	16.0	10.860231	4.0	634213.0	0.678764	Υ

Calibration / 1-Methylnaphthalene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Co	efficients
Intercept:	0
Slope:	0.6646

Error Coefficients

2.9

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.079932	4.0	539511.0	0.639453	Υ
2	IC 480-718508/4	0.5	0.329674	4.0	573039.0	0.659348	Υ
3	IC 480-718508/5	1.0	0.654086	4.0	601016.0	0.654086	Υ
4	IC 480-718508/6	2.0	1.315419	4.0	606003.0	0.65771	Υ
5	ICIS 480-718508/7	4.0	2.655716	4.0	627436.0	0.663929	Υ
6	IC 480-718508/8	8.0	5.348675	4.0	616528.0	0.668584	Υ
7	IC 480-718508/9	12.0	8.013174	4.0	631570.0	0.667764	Υ
8	IC 480-718508/10	16.0	11.293411	4.0	634213.0	0.705838	Υ

Calibration / 2-Fluorobiphenyl

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffi	icients
Intercept:	0
Slope:	1.376

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/4	0.5	0.672726	4.0	340620.0	1.345452	Υ
2	IC 480-718508/5	1.0	1.353245	4.0	359385.0	1.353245	Υ
3	IC 480-718508/6	2.0	2.727795	4.0	362580.0	1.363898	Υ
4	ICIS 480-718508/7	4.0	5.506124	4.0	365505.0	1.376531	Υ
5	IC 480-718508/8	8.0	11.113673	4.0	360851.0	1.389209	Υ
6	IC 480-718508/9	12.0	16.666898	4.0	365507.0	1.388908	Υ
7	IC 480-718508/10	16.0	22.643113	4.0	378826.0	1.415195	Υ

Calibration / Acenaphthylene

4.0

4.0

4.0

4.0

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

ID Level

2

3

4

5

6

7

8

IC 480-718508/3

IC 480-718508/4

IC 480-718508/5

IC 480-718508/6

IC 480-718508/8

IC 480-718508/9

IC 480-718508/10

ICIS 480-718508/7

Concentration Rel. Resp.

0.200998

0.857096

1.731402

3.572629

7.222686

14.490524

22.260258

29.451432

0.125

0.5

1.0

2.0

4.0

8.0

12.0

16.0

Curve Coeff	icients
Intercept:	0
Slope:	1.769

Error Coefficients

Relative Standard Deviation:

IS Amount	IS Response	RRF	Used
4.0	319705.0	1.607982	Υ
4.0	340620.0	1.714192	Υ
4.0	359385.0	1.731402	Υ
4.0	362580.0	1.786315	Υ

365505.0

360851.0

365507.0

378826.0

1.805672

1.811315

1.855021

1.840714

4.6

Υ

Υ

Υ

Calibration / Acenaphthene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	1.225

Curve Coefficients

Error Coefficients

4.9

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.145784	4.0	319705.0	1.166275	Υ
2	IC 480-718508/4	0.5	0.602161	4.0	340620.0	1.204322	Υ
3	IC 480-718508/5	1.0	1.176599	4.0	359385.0	1.176599	Υ
4	IC 480-718508/6	2.0	2.358343	4.0	362580.0	1.179171	Υ
5	ICIS 480-718508/7	4.0	4.878379	4.0	365505.0	1.219595	Υ
6	IC 480-718508/8	8.0	9.840383	4.0	360851.0	1.230048	Υ
7	IC 480-718508/9	12.0	15.47201	4.0	365507.0	1.289334	Υ
8	IC 480-718508/10	16.0	21.375185	4.0	378826.0	1.335949	Υ

Calibration / Dibenzofuran

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	fficients
Intercept:	0
Slope:	1.573

Error Coefficients

2.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.189162	4.0	319705.0	1.513295	Υ
2	IC 480-718508/4	0.5	0.785356	4.0	340620.0	1.570712	Υ
3	IC 480-718508/5	1.0	1.547911	4.0	359385.0	1.547911	Υ
4	IC 480-718508/6	2.0	3.138905	4.0	362580.0	1.569452	Υ
5	ICIS 480-718508/7	4.0	6.335618	4.0	365505.0	1.583904	Υ
6	IC 480-718508/8	8.0	12.634932	4.0	360851.0	1.579367	Υ
7	IC 480-718508/9	12.0	19.45009	4.0	365507.0	1.620841	Υ
8	IC 480-718508/10	16.0	25.53225	4.0	378826.0	1.595766	Υ

Calibration / Fluorene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	eients
Intercept:	-0.02406
Slope:	1.365

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.151289	4.0	319705.0	1.210316	Υ
2	IC 480-718508/4	0.5	0.610252	4.0	340620.0	1.220504	Υ
3	IC 480-718508/5	1.0	1.257938	4.0	359385.0	1.257938	Υ
4	IC 480-718508/6	2.0	2.584268	4.0	362580.0	1.292134	Υ
5	ICIS 480-718508/7	4.0	5.264486	4.0	365505.0	1.316122	Υ
6	IC 480-718508/8	8.0	11.02322	4.0	360851.0	1.377903	Υ
7	IC 480-718508/9	12.0	17.460459	4.0	365507.0	1.455038	Υ
8	IC 480-718508/10	16.0	24.055635	4.0	378826.0	1.503477	Υ

Calibration / Phenanthrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coe	efficients
Intercept:	0
Slope:	1.081

Error Coefficients

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 480-718508/3	0.125	0.134245	4.0	553108.0	1.07396	Υ
IC 480-718508/4	0.5	0.517483	4.0	596077.0	1.034967	Υ
IC 480-718508/5	1.0	1.069152	4.0	610394.0	1.069152	Υ
IC 480-718508/6	2.0	2.129058	4.0	630835.0	1.064529	Υ
ICIS 480-718508/7	4.0	4.346262	4.0	634399.0	1.086565	Υ
IC 480-718508/8	8.0	8.552042	4.0	643871.0	1.069005	Υ
IC 480-718508/9	12.0	13.312602	4.0	658972.0	1.109384	Υ
IC 480-718508/10	16.0	18.283042	4.0	670020.0	1.14269	Υ
	IC 480-718508/3 IC 480-718508/4 IC 480-718508/5 IC 480-718508/6 ICIS 480-718508/7 IC 480-718508/8 IC 480-718508/9	IC 480-718508/3 0.125 IC 480-718508/4 0.5 IC 480-718508/5 1.0 IC 480-718508/6 2.0 ICIS 480-718508/7 4.0 IC 480-718508/8 8.0 IC 480-718508/9 12.0	IC 480-718508/3 0.125 0.134245 IC 480-718508/4 0.5 0.517483 IC 480-718508/5 1.0 1.069152 IC 480-718508/6 2.0 2.129058 ICIS 480-718508/7 4.0 4.346262 IC 480-718508/8 8.0 8.552042 IC 480-718508/9 12.0 13.312602	IC 480-718508/3 0.125 0.134245 4.0 IC 480-718508/4 0.5 0.517483 4.0 IC 480-718508/5 1.0 1.069152 4.0 IC 480-718508/6 2.0 2.129058 4.0 ICIS 480-718508/7 4.0 4.346262 4.0 IC 480-718508/8 8.0 8.552042 4.0 IC 480-718508/9 12.0 13.312602 4.0	IC 480-718508/3 0.125 0.134245 4.0 553108.0 IC 480-718508/4 0.5 0.517483 4.0 596077.0 IC 480-718508/5 1.0 1.069152 4.0 610394.0 IC 480-718508/6 2.0 2.129058 4.0 630835.0 ICIS 480-718508/7 4.0 4.346262 4.0 634399.0 IC 480-718508/8 8.0 8.552042 4.0 643871.0 IC 480-718508/9 12.0 13.312602 4.0 658972.0	IC 480-718508/3 0.125 0.134245 4.0 553108.0 1.07396 IC 480-718508/4 0.5 0.517483 4.0 596077.0 1.034967 IC 480-718508/5 1.0 1.069152 4.0 610394.0 1.069152 IC 480-718508/6 2.0 2.129058 4.0 630835.0 1.064529 ICIS 480-718508/7 4.0 4.346262 4.0 634399.0 1.086565 IC 480-718508/8 8.0 8.552042 4.0 643871.0 1.069005 IC 480-718508/9 12.0 13.312602 4.0 658972.0 1.109384

Calibration / Anthracene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	-0.01728
Slope:	1.107

Curve Coefficients

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.122891	4.0	553108.0	0.983128	Υ
2	IC 480-718508/4	0.5	0.517524	4.0	596077.0	1.035047	Υ
3	IC 480-718508/5	1.0	1.058241	4.0	610394.0	1.058241	Υ
4	IC 480-718508/6	2.0	2.126629	4.0	630835.0	1.063314	Υ
5	ICIS 480-718508/7	4.0	4.43181	4.0	634399.0	1.107953	Υ
6	IC 480-718508/8	8.0	8.854693	4.0	643871.0	1.106837	Υ
7	IC 480-718508/9	12.0	13.79485	4.0	658972.0	1.149571	Υ
8	IC 480-718508/10	16.0	18.293466	4.0	670020.0	1.143342	Υ

Calibration / Fluoranthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	-0.02226
Slope:	1.158

Curve Coefficients

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.125292	4.0	553108.0	1.002336	Υ
2	IC 480-718508/4	0.5	0.516765	4.0	596077.0	1.033531	Υ
3	IC 480-718508/5	1.0	1.116315	4.0	610394.0	1.116315	Υ
4	IC 480-718508/6	2.0	2.273057	4.0	630835.0	1.136529	Υ
5	ICIS 480-718508/7	4.0	4.709024	4.0	634399.0	1.177256	Υ
6	IC 480-718508/8	8.0	9.232036	4.0	643871.0	1.154004	Υ
7	IC 480-718508/9	12.0	14.156717	4.0	658972.0	1.179726	Υ
8	IC 480-718508/10	16.0	19.20837	4.0	670020.0	1.200523	Υ

Calibration / Pyrene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Intercept:	0
Slope:	1.283

Curve Coefficients

Error Coefficients

3.6

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.149327	4.0	499897.0	1.194614	Υ
2	IC 480-718508/4	0.5	0.617833	4.0	533762.0	1.235667	Υ
3	IC 480-718508/5	1.0	1.27369	4.0	559260.0	1.27369	Υ
4	IC 480-718508/6	2.0	2.580883	4.0	579301.0	1.290441	Υ
5	ICIS 480-718508/7	4.0	5.267819	4.0	582998.0	1.316955	Υ
6	IC 480-718508/8	8.0	10.558477	4.0	590334.0	1.31981	Υ
7	IC 480-718508/9	12.0	15.568473	4.0	618992.0	1.297373	Υ
8	IC 480-718508/10	16.0	21.310239	4.0	637453.0	1.33189	Υ

Calibration / p-Terphenyl-d14

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.067

Error Coefficients

3.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/4	0.5	0.520389	4.0	533762.0	1.040778	Υ
2	IC 480-718508/5	1.0	1.031341	4.0	559260.0	1.031341	Υ
3	IC 480-718508/6	2.0	2.081481	4.0	579301.0	1.04074	Υ
4	ICIS 480-718508/7	4.0	4.29784	4.0	582998.0	1.07446	Υ
5	IC 480-718508/8	8.0	8.549479	4.0	590334.0	1.068685	Υ
6	IC 480-718508/9	12.0	13.446797	4.0	618992.0	1.120566	Υ
7	IC 480-718508/10	16.0	17.426584	4.0	637453.0	1.089161	Υ

Calibration / Benzo[a]anthracene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.298

Error Coefficients

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.158441	4.0	499897.0	1.267525	Υ
2	IC 480-718508/4	0.5	0.64972	4.0	533762.0	1.299441	Υ
3	IC 480-718508/5	1.0	1.250882	4.0	559260.0	1.250882	Υ
4	IC 480-718508/6	2.0	2.522274	4.0	579301.0	1.261137	Υ
5	ICIS 480-718508/7	4.0	5.293576	4.0	582998.0	1.323394	Υ
6	IC 480-718508/8	8.0	10.509271	4.0	590334.0	1.313659	Υ
7	IC 480-718508/9	12.0	15.812986	4.0	618992.0	1.317749	Υ
8	IC 480-718508/10	16.0	21.646854	4.0	637453.0	1.352928	Υ

Calibration / Chrysene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeff	ficients
Intercept:	0
Slope:	1.211

Error Coefficients

1.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.153312	4.0	499897.0	1.226493	Υ
2	IC 480-718508/4	0.5	0.585797	4.0	533762.0	1.171593	Υ
3	IC 480-718508/5	1.0	1.197382	4.0	559260.0	1.197382	Υ
4	IC 480-718508/6	2.0	2.394203	4.0	579301.0	1.197101	Υ
5	ICIS 480-718508/7	4.0	4.890089	4.0	582998.0	1.222522	Υ
6	IC 480-718508/8	8.0	9.696206	4.0	590334.0	1.212026	Υ
7	IC 480-718508/9	12.0	14.683408	4.0	618992.0	1.223617	Υ
8	IC 480-718508/10	16.0	19.755088	4.0	637453.0	1.234693	Υ

Calibration / Benzo[b]fluoranthene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffi	cients
Intercept:	-0.02366
Slope:	1.181

Error Coefficients

6.7

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.127597	4.0	558416.0	1.020773	Υ
2	IC 480-718508/4	0.5	0.538329	4.0	582499.0	1.076658	Υ
3	IC 480-718508/5	1.0	1.059125	4.0	622106.0	1.059125	Υ
4	IC 480-718508/6	2.0	2.203895	4.0	637317.0	1.101948	Υ
5	ICIS 480-718508/7	4.0	4.736143	4.0	644462.0	1.184036	Υ
6	IC 480-718508/8	8.0	9.385234	4.0	641965.0	1.173154	Υ
7	IC 480-718508/9	12.0	15.0508	4.0	654193.0	1.254233	Υ
8	IC 480-718508/10	16.0	20.716405	4.0	651425.0	1.294775	Υ

Calibration / Benzo[k]fluoranthene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.214

Error Coefficients

Relative Standard Deviation: 12.4

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.142704	4.0	558416.0	1.141629	Υ
2	IC 480-718508/4	0.5	0.546816	4.0	582499.0	1.093633	Υ
3	IC 480-718508/5	1.0	1.080858	4.0	622106.0	1.080858	Υ
4	IC 480-718508/6	2.0	2.196696	4.0	637317.0	1.098348	Υ
5	ICIS 480-718508/7	4.0	4.665225	4.0	644462.0	1.166306	Υ
6	IC 480-718508/8	8.0	10.044959	4.0	641965.0	1.25562	Υ
7	IC 480-718508/9	12.0	16.5907	4.0	654193.0	1.382558	Υ
8	IC 480-718508/10	16.0	23.848345	4.0	651425.0	1.490522	Υ

Calibration / Benzo[a]pyrene

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	-0.02693
Slope:	1.064

Error Coefficients

4.4

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.108163	4.0	558416.0	0.865305	Υ
2	IC 480-718508/4	0.5	0.487973	4.0	582499.0	0.975947	Υ
3	IC 480-718508/5	1.0	0.978303	4.0	622106.0	0.978303	Υ
4	IC 480-718508/6	2.0	2.03869	4.0	637317.0	1.019345	Υ
5	ICIS 480-718508/7	4.0	4.188455	4.0	644462.0	1.047114	Υ
6	IC 480-718508/8	8.0	8.499136	4.0	641965.0	1.062392	Υ
7	IC 480-718508/9	12.0	13.180814	4.0	654193.0	1.098401	Υ
8	IC 480-718508/10	16.0	18.229905	4.0	651425.0	1.139369	Υ

/ Dibenz(a,h)anthracene

Calibration

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

Intercept:	-0.02654
Slope:	1.093

Error Coefficients

Relative Standard Deviation:

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.113578	4.0	558416.0	0.908627	Υ
2	IC 480-718508/4	0.5	0.479314	4.0	582499.0	0.958628	Υ
3	IC 480-718508/5	1.0	1.00136	4.0	622106.0	1.00136	Υ
4	IC 480-718508/6	2.0	2.118236	4.0	637317.0	1.059118	Υ
5	ICIS 480-718508/7	4.0	4.429183	4.0	644462.0	1.107296	Υ
6	IC 480-718508/8	8.0	8.696811	4.0	641965.0	1.087101	Υ
7	IC 480-718508/9	12.0	13.479221	4.0	654193.0	1.123268	Υ
8	IC 480-718508/10	16.0	18.859436	4.0	651425.0	1.178715	Υ

Calibration

Curve Type: Linear
Weighting: Conc_Sq
Origin: None
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coefficients

 Intercept:
 -0.02641

 Slope:
 1.36

Error Coefficients

Relative Standard Deviation:

,.0

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.145963	4.0	558416.0	1.167703	Υ
2	IC 480-718508/4	0.5	0.632289	4.0	582499.0	1.264579	Υ
3	IC 480-718508/5	1.0	1.266697	4.0	622106.0	1.266697	Υ
4	IC 480-718508/6	2.0	2.652074	4.0	637317.0	1.326037	Υ
5	ICIS 480-718508/7	4.0	5.469995	4.0	644462.0	1.367499	Υ
6	IC 480-718508/8	8.0	10.822297	4.0	641965.0	1.352787	Υ
7	IC 480-718508/9	12.0	16.361184	4.0	654193.0	1.363432	Υ
8	IC 480-718508/10	16.0	23.247803	4.0	651425.0	1.452988	Υ

Calibration / Benzo[g,h,i]perylene

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: ISTD
Response Base: AREA
RF Rounding: 0

Curve Coeff	icients
Intercept:	0
Slope:	1.005

Error Coefficients

Relative Standard Deviation: 4.2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 480-718508/3	0.125	0.114488	4.0	558416.0	0.915905	Υ
2	IC 480-718508/4	0.5	0.490315	4.0	582499.0	0.98063	Υ
3	IC 480-718508/5	1.0	0.991825	4.0	622106.0	0.991825	Υ
4	IC 480-718508/6	2.0	2.047866	4.0	637317.0	1.023933	Υ
5	ICIS 480-718508/7	4.0	4.180343	4.0	644462.0	1.045086	Υ
6	IC 480-718508/8	8.0	8.142269	4.0	641965.0	1.017784	Υ
7	IC 480-718508/9	12.0	12.282767	4.0	654193.0	1.023564	Υ
8	IC 480-718508/10	16.0	16.70106	4.0	651425.0	1.043816	Υ

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b] fluoranthene	14.90	30.50

Report Date: 16-Jul-2024 11:57:08 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037831.D Injection Date: 15-Jul-2024 20:04:30 Instrument ID: HP5973Y

Lims ID: ICIS - List 1 - 4

Client ID:

Operator ID: JM ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

186 Benzo[b]fluoranthene - 187 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 166753

H1(186 Benzo[b]fluoranthen) = 513869 H2(187 Benzo[k]fluoranthen) = 579446

Version D: %R = 30.5 <= 50.0

Passed

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b]fluoranthene	14.66	34.80

Report Date: 19-Aug-2024 14:54:39 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\\W100259733.d

Injection Date: 16-Aug-2024 16:01:30 Instrument ID: HP5973W

Lims ID: ICIS - List 1- 4

Client ID:

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

196 Benzo[b]fluoranthene - 197 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 178869

H1(196 Benzo[b]fluoranthen) = 492867 H2(197 Benzo[k]fluoranthen) = 534886

Version D: %R = 34.8 <= 50.0

Passed

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b]fluoranthene	14.58	34.60

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259867.d

Injection Date: 29-Aug-2024 13:44:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

196 Benzo[b]fluoranthene - 197 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 143318

H1(196 Benzo[b]fluoranthen) = 406808 H2(197 Benzo[k]fluoranthen) = 421781

Version D: %R = 34.6 <= 50.0

Passed

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b] fluoranthene	14.58	31.50

Report Date: 03-Sep-2024 13:30:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973\\W20240830-119787.b\\W100259887.d

Injection Date: 30-Aug-2024 12:20:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

196 Benzo[b]fluoranthene - 197 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 128477

H1(196 Benzo[b]fluoranthen) = 384287 H2(197 Benzo[k]fluoranthen) = 430188

Version D: %R = 31.5 <= 50.0

Passed

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b]fluoranthene	14.57	29.40

Report Date: 05-Sep-2024 11:51:07 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259914.d

Injection Date: 03-Sep-2024 11:28:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

196 Benzo[b]fluoranthene - 197 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 104662

H1(196 Benzo[b]fluoranthen) = 338764 H2(197 Benzo[k]fluoranthen) = 373088

Version D: %R = 29.4 <= 50.0

Passed

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

ANALYTE	RT	RESOLUTION (%)
Benzo[b]fluoranthene	14.50	29.60

Report Date: 10-Sep-2024 12:48:11 Chrom Revision: 2.3 26-Aug-2024 17:14:48

Resolution Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973Y\\20240910-119937.b\\Y038677.D

Injection Date: 10-Sep-2024 11:29:30 Instrument ID: HP5973Y

Lims ID: CCVIS

Client ID:

Operator ID: JM ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

186 Benzo[b]fluoranthene - 187 Benzo[k]fluoranthene

SW-846 Method

Version D: %R = (V / ((H1 + H2)/2)) * 100

V (Valley Height) = 152460

H1(186 Benzo[b]fluoranthen) = 476687 H2(187 Benzo[k]fluoranthen) = 553223

Version D: %R = 29.6 <= 50.0

Passed

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: ICV 480-722078/11 Calibration Date: 08/16/2024 17:48

Instrument ID: <u>HP5973W</u> Calib Start Date: 08/16/2024 14:14

GC Column: RXI-5Sil MS ID: 0.25 (mm) Calib End Date: 0.8/16/2024 17:21

Lab File ID: $\underline{\text{W100259737.d}}$ Conc. Units: $\underline{\text{ug/L}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Lin2		1.094	0.7000	4050	4000	1.3	30.0
2-Methylnaphthalene	Lin2		0.6912	0.4000	4250	4000	6.2	30.0
1-Methylnaphthalene	Ave	0.6544	0.6631	0.0100	4050	4000	1.3	30.0
Acenaphthylene	Lin2		1.868	0.9000	4150	4000	3.8	30.0
Acenaphthene	Lin2		1.180	0.9000	4090	4000	2.3	30.0
Dibenzofuran	Lin2		1.602	0.8000	4040	4000	0.9	30.0
Fluorene	Lin2		1.297	0.9000	4010	4000	0.1	30.0
Phenanthrene	Lin2		1.101	0.7000	4010	4000	0.1	30.0
Anthracene	Lin2		1.082	0.7000	3980	4000	-0.6	30.0
Fluoranthene	Lin2		1.169	0.6000	3980	4000	-0.4	30.0
Pyrene	Lin2		1.398	0.6000	4040	4000	1.0	30.0
Benzo[a]anthracene	Lin2		1.297	0.8000	4000	4000	0.1	30.0
Chrysene	Lin2		1.163	0.7000	4000	4000	-0.0	30.0
Benzo[b]fluoranthene	Lin2		1.102	0.7000	3840	4000	-4.1	30.0
Benzo[k]fluoranthene	Lin2		1.227	0.7000	4070	4000	1.8	30.0
Benzo[a]pyrene	Lin2		1.053	0.7000	4060	4000	1.4	30.0
Dibenz(a,h)anthracene	Lin2		1.164	0.4000	3980	4000	-0.5	30.0
Indeno[1,2,3-cd]pyrene	Lin2		1.324	0.5000	3800	4000	-4.9	30.0
Benzo[g,h,i]perylene	Lin2		1.097	0.5000	3960	4000	-1.0	30.0

Report Date: 19-Aug-2024 14:52:17 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259737.d

Lims ID: ICV - List 1 - 4

Client ID:

Sample Type: ICV

Inject. Date: 16-Aug-2024 17:48:30 ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-011

Operator ID: ED Instrument ID: HP5973W

Sublist:

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 14:52:16Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: Det: MS SCAN

Process Host: CTX1662

First Level Reviewer: O0RH Date: 19-Aug-2024 14:52:16

First Level Reviewer: 00RH			ט	ate:		19-Aug-202	24 14:52:16		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.618	6.619	-0.001	97	181386	4.00	4.00	
* 2 Naphthalene-d8	136	8.029	8.029	0.000	100	687726	4.00	4.00	
* 3 Acenaphthene-d10	164	9.722	9.722	0.000	93	392572	4.00	4.00	
4 Phenanthrene-d10	188	11.026	11.026	0.000	97	642320	4.00	4.00	
* 5 Chrysene-d12	240	13.494	13.494	0.000	99	545938	4.00	4.00	
* 6 Perylene-d12	264	15.177	15.177	0.000	98	606531	4.00	4.00	
13 1,4-Dioxane	88	3.675	3.670	0.005	95	115812	4.00	3.70	
14 N-Nitrosodimethylamine	42	3.942	3.937	0.005	94	130028	4.00	3.97	
15 Pyridine	52	3.985	3.974	0.011	96	300438	8.00	6.80	
33 Benzaldehyde	77	6.106	6.106	0.000	96	462045	8.00	7.46	
34 Phenol	94	6.127	6.127	0.000	99	326908	4.00	3.96	
36 Aniline	93	6.223	6.223	0.000	97	396872	4.00	3.76	
37 Bis(2-chloroethyl)ether	93	6.260	6.261	-0.001	95	245098	4.00	3.95	
39 2-Chlorophenol	128	6.373	6.373	0.000	97	249561	4.00	4.04	
40 n-Decane	57	6.378	6.378	0.000	96	292890	4.00	3.91	
41 1,3-Dichlorobenzene	146	6.560	6.560	0.000	96	281395	4.00	4.00	
42 1,4-Dichlorobenzene	146	6.640	6.640	0.000	91	282752	4.00	3.98	
43 Benzyl alcohol	108	6.741	6.741	0.000	91	173199	4.00	3.89	
45 1,2-Dichlorobenzene	146	6.821	6.827	-0.006	96	264958	4.00	3.98	
46 2-Methylphenol	108	6.848	6.848	0.000	97	242521	4.00	3.99	
47 2,2'-oxybis[1-chloropropane]	45	6.891	6.891	0.000	94	353766	4.00	3.89	
48 Indene	115	6.928	6.928	0.000	89	2272368	20.0	20.9	
51 4-Methylphenol	108	7.019	7.019	0.000	95	247798	4.00	3.97	
50 N-Nitrosodi-n-propylamine	70	7.040	7.041	-0.001	87	176639	4.00	3.99	
52 Acetophenone	105	7.056	7.057	-0.001	97	352584	4.00	4.04	
57 Hexachloroethane	117	7.217	7.217	0.000	97	110831	4.00	3.92	
58 Nitrobenzene	77	7.259	7.260	-0.001	87	293205	4.00	3.90	
62 Isophorone	82	7.511	7.511	0.000	100	520669	4.00	3.98	
65 2-Nitrophenol	139	7.612	7.612	0.000	94	130493	4.00	4.01	
66 2,4-Dimethylphenol	107	7.617	7.618	-0.001	95	262947	4.00	3.93	
69 Bis(2-chloroethoxy)methane	93	7.714	7.714	0.000	99	299206	4.00	3.92	
` ,									

Data File: \\cnromis\But	rraio\Ci			r	10-11	9562.D\VV 1002:			
	٥.	RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
70 Danzaia asid	105	7 705	7 720	0.005	01	720202	20.0	10.0	N 4
70 Benzoic acid	105 162	7.735 7.858	7.730 7.858	0.005 0.000	91 96	738292 204550	20.0 4.00	19.0 4.01	М
72 2,4-Dichlorophenol		7.858 7.959	7.858 7.959	0.000		204550	4.00	4.01	
74 1,2,4-Trichlorobenzene	180 128	7.959 8.050	7.959 8.050	0.000	93 98	752327	4.00	4.06 4.05	
76 Naphthalene 78 4-Chloroaniline	120	8.082	8.082	0.000		270886	4.00	4.05 3.96	
	162	8.098	8.098	0.000	95 97	198389	4.00	3.96 3.94	
79 2,6-Dichlorophenol	225	8.173	8.168	0.000		128632	4.00	3.94 4.01	
81 Hexachlorobutadiene	113		8.430	-0.005	97 80		4.00 8.00	4.01 7.24	
85 Caprolactam		8.429		0.000	80 05	155334 222171	4.00	7.24 4.10	
86 4-Chloro-3-methylphenol	107 142	8.547 8.739	8.547 8.739	0.000	95 91	475326	4.00	4.10 4.25	
89 2-Methylnaphthalene				0.000		475326 456029	4.00		
91 1-Methylnaphthalene	142 237	8.841 8.894	8.841 8.894	0.000	93	136393	4.00	4.05 3.64	
92 Hexachlorocyclopentadiene				0.000	98	203521			
94 1,2,4,5-Tetrachlorobenzene	216	8.905	8.905	0.000	98		4.00	3.91	
96 2,4,6-Trichlorophenol	196	8.996	8.996		94	152485	4.00	4.04	
97 2,4,5-Trichlorophenol	196	9.033	9.033	0.000	93	138527	4.00	3.87	
101 1,1'-Biphenyl	154	9.172	9.172	0.000	96	576725	4.00	4.04	
102 2-Chloronaphthalene	162	9.209	9.210	-0.001	98	438611	4.00	3.93	_
104 2-Nitroaniline	65	9.279	9.279	0.000	80	153552	4.00	4.06	а
108 Dimethyl phthalate	163	9.418	9.418	0.000	98	501297	4.00	3.93	
109 1,3-Dinitrobenzene	168	9.460	9.461	-0.001	86	82817	4.00	4.09	
110 2,6-Dinitrotoluene	165	9.487	9.487	0.000	94	117753	4.00	4.04	
111 Acenaphthylene	152	9.594	9.594	0.000	98	733182	4.00	4.15	
112 3-Nitroaniline	138	9.647	9.648	-0.001	92	105176	4.00	3.82	а
113 2,4-Dinitrophenol	184	9.738	9.738	0.000	84	104015	8.00	7.35	
114 Acenaphthene	153	9.749	9.749	0.000	95	463145	4.00	4.09	
115 4-Nitrophenol	109	9.765	9.765	0.000	94	135970	8.00	7.56	а
116 2,4-Dinitrotoluene	165	9.850	9.851	-0.001	91	151970	4.00	3.90	
118 Dibenzofuran	168	9.899	9.899	0.000	97	628836	4.00	4.04	
121 2,3,4,6-Tetrachlorophenol	232	10.000	10.000	0.000	75	108439	4.00	3.97	
122 Hexadecane	57	10.027	10.027	0.000	95	333505	4.00	3.94	
124 Diethyl phthalate	149	10.037	10.032	0.005	98	489182	4.00	3.99	
126 4-Chlorophenyl phenyl ether	204	10.171	10.171	0.000	98	234579	4.00	3.97	
130 4-Nitroaniline	138	10.198	10.193	0.006	83	110043	4.00	4.14	
129 Fluorene	166	10.203	10.203	0.000	94	509017	4.00	4.01	
131 4,6-Dinitro-2-methylphenol	198	10.214	10.214	0.000	84	158908	8.00	7.90	
133 N-Nitrosodiphenylamine	169	10.272	10.273	-0.001	64	355988	4.00	3.96	
132 Diphenylamine	169	10.272	10.273	-0.001	94	355988	3.42	3.38	
134 Azobenzene	77	10.315	10.310	0.005	99	645740	4.00	4.39	
135 1,2-Diphenylhydrazine	77	10.315	10.310	0.005	41	593773	4.00	4.12	а
143 4-Bromophenyl phenyl ether	248	10.604	10.604	0.000	69	144964	4.00	4.00	
147 Atrazine	200	10.695	10.695	-0.001	91	256397	8.00	7.27	
146 Hexachlorobenzene	284	10.695	10.695	-0.001	82	166197	4.00	4.16	
148 n-Octadecane	57	10.807	10.807	0.000	96	344958	4.00	3.95	
152 Pentachlorophenol	266	10.849	10.850	-0.001	92	170040	8.00	7.38	
156 Phenanthrene	178	11.047	11.047	0.000	98	707248	4.00	4.01	
157 Anthracene	178	11.090	11.090	0.000	98	694874	4.00	3.98	
158 Carbazole	167	11.202	11.202	0.000	96	439690	4.00	3.36	M
161 Di-n-butyl phthalate	149	11.421	11.416	0.005	100	833523	4.00	3.96	
168 Fluoranthene	202	12.094	12.094	0.000	98	751049	4.00	3.98	
170 Benzidine	184	12.164	12.164	0.000	99	207506	8.00	5.66	М
172 Pyrene	202	12.313	12.313	0.000	97	763010	4.00	4.04	•••
183 Butyl benzyl phthalate	149	12.805	12.805	0.000	97	373103	4.00	4.06	
100 Dutyi benzyi pililalate	143	12.000	12.000	0.000	31	3/3103	₹.00	₹.00	

Report Date: 19-Aug-2024 14:52:17 Chrom Revision: 2.3 07-Aug-2024 17:44:18 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259737.d

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
187 Bis(2-ethylhexyl) phthalate	149	13.339	13.339	0.000	98	522251	4.00	4.04	
189 3,3'-Dichlorobenzidine	252	13.408	13.403	0.005	75	423876	8.00	8.35	
190 Benzo[a]anthracene	228	13.483	13.478	0.005	98	707846	4.00	4.00	
191 Chrysene	228	13.521	13.521	0.000	97	634730	4.00	4.00	
193 Di-n-octyl phthalate	149	13.996	13.991	0.005	100	853739	4.00	4.02	
196 Benzo[b]fluoranthene	252	14.669	14.664	0.005	97	668547	4.00	3.84	
197 Benzo[k]fluoranthene	252	14.701	14.696	0.005	98	744100	4.00	4.07	
201 Benzo[a]pyrene	252	15.107	15.102	0.005	77	638800	4.00	4.06	
205 Dibenz(a,h)anthracene	278	16.870	16.870	0.000	90	706125	4.00	3.98	
204 Indeno[1,2,3-cd]pyrene	276	16.881	16.876	0.005	99	802810	4.00	3.80	
206 Benzo[g,h,i]perylene	276	17.404	17.405	-0.001	98	665517	4.00	3.96	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1SSLV_WRK_00054 Amount Added: 1.00 Units: mL Report Date: 19-Aug-2024 14:52:17 Chrom Revision: 2.3 07-Aug-2024 17:44:18

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259737.d

Injection Date: 16-Aug-2024 17:48:30 Instrument ID: HP5973W

Lims ID: ICV - List 1 - 4

Client ID:

Operator ID: ED ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723480/4 Calibration Date: 08/29/2024 13:44

Instrument ID: <u>HP5973W</u> Calib Start Date: 08/16/2024 14:14

GC Column: RXI-5Sil MS ID: 0.25 (mm) Calib End Date: 0.8/16/2024 17:21

Lab File ID: $\underline{\text{W100259867.d}}$ Conc. Units: $\underline{\text{ug/L}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Lin2		1.061	0.7000	3930	4000	-1.8	20.0
2-Methylnaphthalene	Lin2		0.6474	0.4000	3980	4000	-0.5	20.0
1-Methylnaphthalene	Ave	0.6544	0.6602	0.0100	4040	4000	0.9	20.0
Acenaphthylene	Lin2		1.738	0.9000	3870	4000	-3.3	20.0
Acenaphthene	Lin2		1.189	0.9000	4130	4000	3.1	20.0
Dibenzofuran	Lin2		1.550	0.8000	3900	4000	-2.4	20.0
Fluorene	Lin2		1.314	0.9000	4060	4000	1.5	20.0
Phenanthrene	Lin2		1.157	0.7000	4210	4000	5.2	20.0
Anthracene	Lin2		1.078	0.7000	3960	4000	-1.0	20.0
Fluoranthene	Lin2		1.196	0.6000	4080	4000	1.9	20.0
Pyrene	Lin2		1.386	0.6000	4010	4000	0.2	20.0
Benzo[a]anthracene	Lin2		1.373	0.8000	4240	4000	6.0	20.0
Chrysene	Lin2		1.180	0.7000	4060	4000	1.4	20.0
Benzo[b]fluoranthene	Lin2		1.134	0.7000	3950	4000	-1.3	20.0
Benzo[k]fluoranthene	Lin2		1.292	0.7000	4280	4000	7.1	20.0
Benzo[a]pyrene	Lin2		1.038	0.7000	4000	4000	-0.0	20.0
Dibenz(a,h)anthracene	Lin2		1.167	0.4000	3990	4000	-0.3	20.0
Indeno[1,2,3-cd]pyrene	Lin2		1.403	0.5000	4030	4000	0.8	20.0
Benzo[g,h,i]perylene	Lin2		1.041	0.5000	3760	4000	-6.1	20.0
Nitrobenzene-d5 (Surr)	Lin2		0.4327	0.0100	3590	4000	-10.2	20.0
2-Fluorobiphenyl (Surr)	Lin2		1.384	0.0100	4040	4000	1.1	20.0
p-Terphenyl-d14 (Surr)	Lin2		1.166	0.0100	4160	4000	3.9	20.0

Report Date: 03-Sep-2024 11:23:56 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259867.d

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 29-Aug-2024 13:44:30 ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-004

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:22:54

First Level Reviewer: QN8S			Date: 03-Sep-2024 11:22:54						
		RT	Adj RT	DIt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	138281	4.00	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	517898	4.00	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	92	290976	4.00	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	458480	4.00	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	407499	4.00	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	444799	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.096	5.096	0.000	91	178972	4.00	3.71	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	224471	4.00	3.62	а
\$ 9 Nitrobenzene-d5	82	7.174	7.174	0.000	89	224103	4.00	3.59	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	99	402770	4.00	4.04	
\$ 11 2,4,6-Tribromophenol	330	10.358	10.358	0.000	94	59315	4.00	4.10	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	97	475090	4.00	4.16	
13 1,4-Dioxane	88	3.605	3.605	0.000	92	81687	4.00	3.42	
14 N-Nitrosodimethylamine	42	3.878	3.878	0.000	92	90977	4.00	3.64	
15 Pyridine	52	3.921	3.921	0.000	95	213300	8.00	6.33	
33 Benzaldehyde	77	6.031	6.031	0.000	95	315989	8.00	6.68	
34 Phenol	94	6.127	6.127	0.000	97	248785	4.00	3.95	а
36 Aniline	93	6.148	6.148	0.000	97	307555	4.00	3.82	Ma
37 Bis(2-chloroethyl)ether	93	6.186	6.186	0.000	98	207803	4.00	4.40	
40 n-Decane	57	6.298	6.298	0.000	88	177207	4.00	3.11	
39 2-Chlorophenol	128	6.330	6.330	0.000	95	186846	4.00	3.96	
41 1,3-Dichlorobenzene	146	6.485	6.485	0.000	98	211246	4.00	3.94	
42 1,4-Dichlorobenzene	146	6.565	6.565	0.000	93	215985	4.00	3.99	
43 Benzyl alcohol	108	6.683	6.683	0.000	94	112249	4.00	3.31	
45 1,2-Dichlorobenzene	146	6.752	6.752	0.000	97	200548	4.00	3.95	
47 2,2'-oxybis[1-chloropropane]	45	6.821	6.821	0.000	92	219866	4.00	3.17	
46 2-Methylphenol	108	6.827	6.827	0.000	95	181573	4.00	3.92	
48 Indene	115	6.854	6.854	0.000	89	2086647	20.0	25.5	
50 N-Nitrosodi-n-propylamine	70	6.971	6.971	0.000	88	112545	4.00	3.33	
52 Acetophenone	105	6.992	6.992	0.000	94	254419	4.00	3.82	
51 4-Methylphenol	108	6.998	6.998	0.000	96	178145	4.00	3.74	
• •			D	04 - (405	-0			0.4	2/4.4/000.4

Data File: \\chromfs\Buf	talo\Cr		\HP59/3V	V\202408:	29-119	9764.b\W1002	9867.d		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
57 Herrich Lands and Control of the Control of th	447	7 4 40	7.440	0.000	0.4	05500	4.00	0.07	
57 Hexachloroethane	117	7.142	7.142	0.000	94	85563	4.00	3.97	
58 Nitrobenzene	77	7.195	7.195	0.000	86	191339	4.00	3.38	
62 Isophorone	82	7.447	7.447	0.000	99	340785	4.00	3.46	
65 2-Nitrophenol	139	7.548	7.548	0.000	94	94463	4.00	3.85	
66 2,4-Dimethylphenol	107	7.580	7.580	0.000	95	176720	4.00	3.51	
69 Bis(2-chloroethoxy)methane	93	7.655	7.655	0.000	98	206567	4.00	3.59	
70 Benzoic acid	105	7.692	7.692	0.000	88	342675	20.0	13.1	
72 2,4-Dichlorophenol	162	7.837	7.837	0.000	93	148778	4.00	3.88	
74 1,2,4-Trichlorobenzene	180	7.895	7.895	0.000	93	160906	4.00	4.08	
76 Naphthalene	128	7.986	7.986	0.000	98	549280	4.00	3.93	
78 4-Chloroaniline	127	8.024	8.024	0.000	97	195256	4.00	3.79	M
79 2,6-Dichlorophenol	162	8.045	8.045	0.000	98	150333	4.00	3.96	
81 Hexachlorobutadiene	225	8.104	8.104	0.000	98	95386	4.00	3.95	
85 Caprolactam	113	8.376	8.376	0.000	83	118394	8.00	7.32	
86 4-Chloro-3-methylphenol	107	8.531	8.531	0.000	96	131355	4.00	3.23	
89 2-Methylnaphthalene	142	8.675	8.675	0.000	92	335269	4.00	3.98	
91 1-Methylnaphthalene	142	8.777	8.777	0.000	93	341913	4.00	4.04	
92 Hexachlorocyclopentadiene	237	8.830	8.830	0.000	97	92862	4.00	3.35	
94 1,2,4,5-Tetrachlorobenzene	216	8.841	8.841	0.000	98	162868	4.00	4.22	
96 2,4,6-Trichlorophenol	196	8.953	8.953	0.000	93	99228	4.00	3.55	
97 2,4,5-Trichlorophenol	196	9.028	9.028	0.000	95	101601	4.00	3.83	
101 1,1'-Biphenyl	154	9.108	9.108	0.000	96	426545	4.00	4.03	
102 2-Chloronaphthalene	162	9.145	9.145	0.000	97	333939	4.00	4.04	
104 2-Nitroaniline	65	9.226	9.226	0.000	86	81259	4.00	2.92	Ма
108 Dimethyl phthalate	163	9.359	9.359	0.000	99	356728	4.00	3.77	
109 1,3-Dinitrobenzene	168	9.407	9.407	0.000	92	55655	4.00	3.66	
110 2,6-Dinitrotoluene	165	9.429	9.429	0.000	95	82061	4.00	3.80	
111 Acenaphthylene	152	9.535	9.535	0.000	98	505775	4.00	3.87	
112 3-Nitroaniline	138	9.599	9.599	0.000	96	47440	4.00	2.35	а
113 2,4-Dinitrophenol	184	9.685	9.685	0.000	83	66491	8.00	6.44	
114 Acenaphthene	153	9.690	9.690	0.000	95	345971	4.00	4.13	
116 2,4-Dinitrotoluene	165	9.792	9.792	0.000	92	102646	4.00	3.56	
115 4-Nitrophenol	109	9.808	9.808	0.000	92	84269	8.00	6.39	а
118 Dibenzofuran	168	9.840	9.840	0.000	97	450929	4.00	3.90	
121 2,3,4,6-Tetrachlorophenol	232	9.952	9.952	0.000	75	78458	4.00	3.87	
122 Hexadecane	57	9.963	9.963	0.000	96	204114	4.00	3.26	
124 Diethyl phthalate	149	9.973	9.973	0.000	98	365308	4.00	4.02	
126 4-Chlorophenyl phenyl ether	204	10.112	10.112	0.000	93	174246	4.00	3.98	
130 4-Nitroaniline	138	10.144	10.144	0.000	82	65643	4.00	3.35	
129 Fluorene	166	10.144	10.144	0.000	94	382344	4.00	4.06	
131 4,6-Dinitro-2-methylphenol	198	10.160	10.160	0.000	88	111696	8.00	7.79	
133 N-Nitrosodiphenylamine	169	10.214	10.214	0.000	63	253907	4.00	3.96	
132 Diphenylamine	169	10.214	10.214	0.000	94	253907	3.42	3.38	
135 1,2-Diphenylhydrazine	77	10.251	10.251	0.000	41	377356	4.00	3.53	а
134 Azobenzene	77	10.251	10.251	0.000	99	375656	4.00	3.58	
143 4-Bromophenyl phenyl ether	248	10.540	10.540	0.000	67	109249	4.00	4.23	
146 Hexachlorobenzene	284	10.636	10.636	0.000	93	128858	4.00	4.53	
147 Atrazine	200	10.641	10.641	0.000	93	250632	8.00	9.65	
148 n-Octadecane	57	10.748	10.748	0.000	96	198646	4.00	3.18	
152 Pentachlorophenol	266	10.801	10.801	0.000	92	98190	8.00	6.07	
156 Phenanthrene	178	10.983	10.983	0.000	98	530443	4.00	4.21	
157 Anthracene	178	11.026	11.026	0.000	98	494229	4.00	3.96	
107 / WIGHT GOOD	170	11.020	11.020	0.000	50	757223	7.00	3.30	

Report Date: 03-Sep-2024 11:23:56 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\\W100259867.d

Data File. Nethoris Data Como in Data in 1007044 2025-110704. BW 100203007. d										
Compound	Sig	RT (min.)	Adj RT	Dlt RT	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags	
Compound	Sig	(111111.)	(min.)	(min.)	Q	Nesponse	TIG/UL	Hg/uL	riays	
158 Carbazole	167	11.149	11.149	0.000	96	433785	4.00	4.65		
161 Di-n-butyl phthalate	149	11.357	11.357	0.000	100	607223	4.00	4.05		
168 Fluoranthene	202	12.030	12.030	0.000	98	548508	4.00	4.08		
170 Benzidine	184	12.105	12.105	0.000	99	111725	8.00	4.15		
172 Pyrene	202	12.249	12.249	0.000	97	564659	4.00	4.01		
183 Butyl benzyl phthalate	149	12.741	12.741	0.000	98	258025	4.00	3.77		
187 Bis(2-ethylhexyl) phthalate	149	13.270	13.270	0.000	96	368692	4.00	3.82		
189 3,3'-Dichlorobenzidine	252	13.339	13.339	0.000	73	263102	8.00	6.95		
190 Benzo[a]anthracene	228	13.408	13.408	0.000	98	559594	4.00	4.24		
191 Chrysene	228	13.446	13.446	0.000	96	480699	4.00	4.06		
193 Di-n-octyl phthalate	149	13.921	13.921	0.000	99	610010	4.00	3.85		
196 Benzo[b]fluoranthene	252	14.578	14.578	0.000	96	504456	4.00	3.95		
197 Benzo[k]fluoranthene	252	14.610	14.610	0.000	98	574478	4.00	4.28		
201 Benzo[a]pyrene	252	15.006	15.006	0.000	76	461729	4.00	4.00		
205 Dibenz(a,h)anthracene	278	16.726	16.726	0.000	90	519063	4.00	3.99		
204 Indeno[1,2,3-cd]pyrene	276	16.731	16.731	0.000	98	623917	4.00	4.03		
206 Benzo[g,h,i]perylene	276	17.244	17.244	0.000	98	462968	4.00	3.76		

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL Report Date: 03-Sep-2024 11:23:57 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259867.d

Injection Date: 29-Aug-2024 13:44:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 4 Worklist Smp#: 4

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723618/3 Calibration Date: 08/30/2024 12:20

Instrument ID: <u>HP5973W</u> Calib Start Date: 08/16/2024 14:14

GC Column: RXI-5Sil MS ID: 0.25 (mm) Calib End Date: 0.8/16/2024 17:21

Lab File ID: $\underline{\text{W100259887.d}}$ Conc. Units: $\underline{\text{ug/L}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Lin2		1.093	0.7000	4050	4000	1.2	20.0
2-Methylnaphthalene	Lin2		0.6470	0.4000	3980	4000	-0.6	20.0
1-Methylnaphthalene	Ave	0.6544	0.6524	0.0100	3990	4000	-0.3	20.0
Acenaphthylene	Lin2		1.760	0.9000	3920	4000	-2.1	20.0
Acenaphthene	Lin2		1.216	0.9000	4220	4000	5.5	20.0
Dibenzofuran	Lin2		1.567	0.8000	3950	4000	-1.3	20.0
Fluorene	Lin2		1.342	0.9000	4150	4000	3.7	20.0
Phenanthrene	Lin2		1.163	0.7000	4230	4000	5.8	20.0
Anthracene	Lin2		1.177	0.7000	4320	4000	8.1	20.0
Fluoranthene	Lin2		1.192	0.6000	4060	4000	1.5	20.0
Pyrene	Lin2		1.341	0.6000	3880	4000	-3.1	20.0
Benzo[a]anthracene	Lin2		1.310	0.8000	4040	4000	1.1	20.0
Chrysene	Lin2		1.181	0.7000	4060	4000	1.5	20.0
Benzo[b]fluoranthene	Lin2		1.247	0.7000	4340	4000	8.6	20.0
Benzo[k]fluoranthene	Lin2		1.241	0.7000	4120	4000	2.9	20.0
Benzo[a]pyrene	Lin2		1.065	0.7000	4100	4000	2.5	20.0
Dibenz(a,h)anthracene	Lin2		1.216	0.4000	4150	4000	3.9	20.0
Indeno[1,2,3-cd]pyrene	Lin2		1.439	0.5000	4140	4000	3.4	20.0
Benzo[g,h,i]perylene	Lin2		1.062	0.5000	3830	4000	-4.2	20.0
Nitrobenzene-d5 (Surr)	Lin2		0.4368	0.0100	3630	4000	-9.3	20.0
2-Fluorobiphenyl (Surr)	Lin2		1.402	0.0100	4100	4000	2.4	20.0
p-Terphenyl-d14 (Surr)	Lin2		1.130	0.0100	4030	4000	0.7	20.0

Report Date: 03-Sep-2024 13:30:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259887.d

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 30-Aug-2024 12:20:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119787-003

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 13:30:41Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 12:06:37

First Level Reviewer: QN8S			D:	ate:		03-Sep-202	24 12:06:37		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	96	132036	4.00	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	493121	4.00	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	94	276567	4.00	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	438492	4.00	4.00	
* 5 Chrysene-d12	240	13.424	13.424	0.000	99	402184	4.00	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	412779	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.096	5.096	0.000	92	172742	4.00	3.75	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	0	216498	4.00	3.66	
\$ 9 Nitrobenzene-d5	82	7.169	7.169	0.000	88	215371	4.00	3.63	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	387777	4.00	4.10	
\$ 11 2,4,6-Tribromophenol	330	10.358	10.358	0.000	94	50695	4.00	3.67	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	97	454430	4.00	4.03	
13 1,4-Dioxane	88	3.600	3.600	0.000	92	81311	4.00	3.56	
14 N-Nitrosodimethylamine	42	3.878	3.878	0.000	92	92766	4.00	3.89	
15 Pyridine	52	3.915	3.915	0.000	97	219095	8.00	6.81	
33 Benzaldehyde	77	6.025	6.025	0.000	95	314464	8.00	6.97	
34 Phenol	94	6.127	6.127	0.000	99	238904	4.00	3.98	
36 Aniline	93	6.148	6.148	0.000	98	270564	4.00	3.53	Ma
37 Bis(2-chloroethyl)ether	93	6.186	6.186	0.000	98	223217	4.00	4.96	
40 n-Decane	57	6.298	6.298	0.000	88	176157	4.00	3.23	
39 2-Chlorophenol	128	6.325	6.325	0.000	96	183097	4.00	4.07	
41 1,3-Dichlorobenzene	146	6.480	6.480	0.000	98	201695	4.00	3.94	
42 1,4-Dichlorobenzene	146	6.560	6.560	0.000	94	207769	4.00	4.02	
43 Benzyl alcohol	108	6.683	6.683	0.000	93	111086	4.00	3.43	
45 1,2-Dichlorobenzene	146	6.752	6.752	0.000	96	191114	4.00	3.94	
47 2,2'-oxybis[1-chloropropane]	45	6.821	6.821	0.000	92	222237	4.00	3.36	
46 2-Methylphenol	108	6.827	6.827	0.000	91	173298	4.00	3.91	
48 Indene	115	6.853	6.853	0.000	89	2032429	20.0	26.1	
50 N-Nitrosodi-n-propylamine	70	6.971	6.971	0.000	87	109534	4.00	3.40	
52 Acetophenone	105	6.987	6.987	0.000	96	245758	4.00	3.87	
51 4-Methylphenol	108	6.992	6.992	0.000	95	169038	4.00	3.72	

Data File: \\chromfs\But	πalo\Ch				30-119	9787.b\W10025			
	.	RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
E7 Harrish Landbarra	447	7.440	7 4 40	0.000	00	00000	4.00	4.00	
57 Hexachloroethane	117	7.142	7.142	0.000	93	83066	4.00	4.03	
58 Nitrobenzene	77	7.190	7.190	0.000	86	188651	4.00	3.50	
62 Isophorone	82	7.446	7.446	0.000	99	331495	4.00	3.53	
65 2-Nitrophenol	139	7.543	7.543	0.000	94	96296	4.00	4.12	
66 2,4-Dimethylphenol	107	7.575	7.575	0.000	96	174041	4.00	3.63	
69 Bis(2-chloroethoxy)methane	93	7.649	7.649	0.000	99	197262	4.00	3.60	
70 Benzoic acid	105	7.692	7.692	0.000	88	323546	20.0	13.0	
72 2,4-Dichlorophenol	162	7.836	7.836	0.000	93	140408	4.00	3.84	
74 1,2,4-Trichlorobenzene	180	7.895	7.895	0.000	94	155690	4.00	4.15	
76 Naphthalene	128	7.986	7.986	0.000	98	539008	4.00	4.05	
78 4-Chloroaniline	127	8.023	8.023	0.000	97	148667	4.00	3.03	
79 2,6-Dichlorophenol	162	8.045	8.045	0.000	97	144393	4.00	4.00	
81 Hexachlorobutadiene	225	8.104	8.104	0.000	97	90668	4.00	3.94	
85 Caprolactam	113	8.371	8.371	0.000	83	117362	8.00	7.62	
86 4-Chloro-3-methylphenol	107	8.531	8.531	0.000	95	127978	4.00	3.31	
89 2-Methylnaphthalene	142	8.675	8.675	0.000	91	319029	4.00	3.98	
91 1-Methylnaphthalene	142	8.777	8.777	0.000	92	321728	4.00	3.99	
92 Hexachlorocyclopentadiene	237	8.830	8.830	0.000	97	79372	4.00	3.01	
94 1,2,4,5-Tetrachlorobenzene	216	8.841	8.841	0.000	98	154201	4.00	4.21	
96 2,4,6-Trichlorophenol	196	8.948	8.948	0.000	94	97239	4.00	3.66	
97 2,4,5-Trichlorophenol	196	9.028	9.028	0.000	94	98812	4.00	3.92	
101 1,1'-Biphenyl	154	9.108	9.108	0.000	96	406543	4.00	4.04	
102 2-Chloronaphthalene	162	9.145	9.145	0.000	97	316779	4.00	4.03	
104 2-Nitroaniline	65	9.225	9.225	0.000	85	78973	4.00	2.98	а
108 Dimethyl phthalate	163	9.359	9.359	0.000	99	343446	4.00	3.82	
109 1,3-Dinitrobenzene	168	9.402	9.402	0.000	88	52009	4.00	3.59	
110 2,6-Dinitrotoluene	165	9.428	9.428	0.000	94	76392	4.00	3.72	
111 Acenaphthylene	152	9.535	9.535	0.000	98	486856	4.00	3.92	
112 3-Nitroaniline	138	9.599	9.599	0.000	96	41282	4.00	2.16	а
113 2,4-Dinitrophenol	184	9.685	9.685	0.000	84	67399	8.00	6.82	
114 Acenaphthene	153	9.685	9.685	0.000	93	336381	4.00	4.22	
116 2,4-Dinitrotoluene	165	9.792	9.792	0.000	92	99968	4.00	3.64	
115 4-Nitrophenol	109	9.802	9.802	0.000	94	78852	8.00	6.30	
118 Dibenzofuran	168	9.840	9.840	0.000	97	433432	4.00	3.95	
121 2,3,4,6-Tetrachlorophenol	232	9.952	9.952	0.000	73	70623	4.00	3.68	
122 Hexadecane	57	9.963	9.963	0.000	95	196654	4.00	3.30	
124 Diethyl phthalate	149	9.973	9.973	0.000	98	346693	4.00	4.02	
126 4-Chlorophenyl phenyl ether	204	10.112	10.112	0.000	94	167147	4.00	4.02	
130 4-Nitroaniline	138	10.144	10.144	0.000	87	74110	4.00	3.96	
129 Fluorene	166	10.144	10.144	0.000	95	371275	4.00	4.15	
131 4,6-Dinitro-2-methylphenol	198	10.160	10.160	0.000	88	103322	8.00	7.55	
133 N-Nitrosodiphenylamine	169	10.214	10.214	0.000	63	242736	4.00	3.95	
132 Diphenylamine	169	10.214	10.214	0.000	94	242736	3.42	3.38	
134 Azobenzene	77	10.251	10.251	0.000	99	368058	4.00	3.67	
135 1,2-Diphenylhydrazine	77	10.251	10.251	0.000	41	369782	4.00	3.64	а
143 4-Bromophenyl phenyl ether	248	10.540	10.540	0.000	70	101008	4.00	4.09	
146 Hexachlorobenzene	284	10.636	10.636	0.000	93	121001	4.00	4.44	
147 Atrazine	200	10.641	10.641	0.000	94	234894	8.00	9.51	
148 n-Octadecane	57	10.748	10.748	0.000	96	190602	4.00	3.19	
152 Pentachlorophenol	266	10.801	10.801	0.000	92	90682	8.00	5.88	
156 Phenanthrene	178	10.983	10.983	0.000	98	509980	4.00	4.23	
157 Anthracene	178	11.026	11.026	0.000	98	516033	4.00	4.32	
137 AlluliaCelle	1/0	11.020	11.020	0.000	30	510055	4.00	4.32	

Report Date: 03-Sep-2024 13:30:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\\W100259887.d

Data File. //cilioilii3/Da		поправа				7707.0(11002			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
Compound	Olg	(111111.)	(111111.)	(111111.)	Q	Поэропас	TIG/UL	TIG/UL	i lags
158 Carbazole	167	11.149	11.149	0.000	96	332107	4.00	3.72	
161 Di-n-butyl phthalate	149	11.362	11.362	0.000	100	568385	4.00	3.96	
168 Fluoranthene	202	12.030	12.030	0.000	98	522632	4.00	4.06	
170 Benzidine	184	12.105	12.105	0.000	99	82838	8.00	3.19	
172 Pyrene	202	12.249	12.249	0.000	97	539235	4.00	3.88	
183 Butyl benzyl phthalate	149	12.741	12.741	0.000	98	242718	4.00	3.59	
187 Bis(2-ethylhexyl) phthalate	149	13.270	13.270	0.000	96	343917	4.00	3.62	
189 3,3'-Dichlorobenzidine	252	13.339	13.339	0.000	74	240506	8.00	6.44	
190 Benzo[a]anthracene	228	13.408	13.408	0.000	98	526735	4.00	4.04	
191 Chrysene	228	13.451	13.451	0.000	96	475080	4.00	4.06	
193 Di-n-octyl phthalate	149	13.921	13.921	0.000	99	565067	4.00	3.62	а
196 Benzo[b]fluoranthene	252	14.578	14.578	0.000	96	514929	4.00	4.34	
197 Benzo[k]fluoranthene	252	14.610	14.610	0.000	99	512212	4.00	4.12	
201 Benzo[a]pyrene	252	15.006	15.006	0.000	76	439524	4.00	4.10	
205 Dibenz(a,h)anthracene	278	16.731	16.731	0.000	88	501869	4.00	4.15	
204 Indeno[1,2,3-cd]pyrene	276	16.737	16.737	0.000	99	594097	4.00	4.14	
206 Benzo[g,h,i]perylene	276	17.244	17.244	0.000	98	438193	4.00	3.83	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL Report Date: 03-Sep-2024 13:30:45 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240830-119787.b\\W100259887.d

Injection Date: 30-Aug-2024 12:20:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-723782/3 Calibration Date: 09/03/2024 11:28

Instrument ID: <u>HP5973W</u> Calib Start Date: 08/16/2024 14:14

GC Column: RXI-5Sil MS ID: 0.25 (mm) Calib End Date: 0.8/16/2024 17:21

Lab File ID: $\underline{\text{W100259914.d}}$ Conc. Units: $\underline{\text{ug/L}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Lin2		1.087	0.7000	4020	4000	0.6	20.0
2-Methylnaphthalene	Lin2		0.6585	0.4000	4050	4000	1.2	20.0
1-Methylnaphthalene	Ave	0.6544	0.6601	0.0100	4030	4000	0.9	20.0
Acenaphthylene	Lin2		1.689	0.9000	3760	4000	-6.0	20.0
Acenaphthene	Lin2		1.231	0.9000	4270	4000	6.8	20.0
Dibenzofuran	Lin2		1.480	0.8000	3730	4000	-6.8	20.0
Fluorene	Lin2		1.319	0.9000	4070	4000	1.8	20.0
Phenanthrene	Lin2		1.213	0.7000	4410	4000	10.3	20.0
Anthracene	Lin2		1.183	0.7000	4350	4000	8.6	20.0
Fluoranthene	Lin2		1.189	0.6000	4050	4000	1.2	20.0
Pyrene	Lin2		1.264	0.6000	3660	4000	-8.6	20.0
Benzo[a]anthracene	Lin2		1.362	0.8000	4210	4000	5.1	20.0
Chrysene	Lin2		1.163	0.7000	4000	4000	-0.0	20.0
Benzo[b]fluoranthene	Lin2		1.166	0.7000	4060	4000	1.5	20.0
Benzo[k]fluoranthene	Lin2		1.294	0.7000	4290	4000	7.3	20.0
Benzo[a]pyrene	Lin2		1.002	0.7000	3860	4000	-3.5	20.0
Dibenz(a,h)anthracene	Lin2		1.206	0.4000	4120	4000	3.0	20.0
Indeno[1,2,3-cd]pyrene	Lin2		1.415	0.5000	4070	4000	1.6	20.0
Benzo[g,h,i]perylene	Lin2		1.061	0.5000	3830	4000	-4.2	20.0
Nitrobenzene-d5 (Surr)	Lin2		0.4275	0.0100	3550	4000	-11.2	20.0
2-Fluorobiphenyl (Surr)	Lin2		1.334	0.0100	3900	4000	-2.6	20.0
p-Terphenyl-d14 (Surr)	Lin2		1.072	0.0100	3820	4000	-4.4	20.0

Report Date: 05-Sep-2024 11:51:07 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259914.d

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 03-Sep-2024 11:28:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119815-003

Operator ID: ED Instrument ID: HP5973W

Sublist: chrom-W-LVI-8270*sub55

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:02Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 05-Sep-2024 11:48:39

First Level Reviewer: QN8S			Da	ate:		05-Sep-202	24 11:48:39		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
 1 1,4-Dichlorobenzene-d4 	152	6.544	6.544	0.000	95	115286	4.00	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	441405	4.00	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	249897	4.00	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	368770	4.00	4.00	
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	360078	4.00	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	369670	4.00	4.00	
\$ 7 2-Fluorophenol	112	5.107	5.107	0.000	91	151876	4.00	3.78	
\$ 8 Phenol-d5	99	6.111	6.111	0.000	100	189712	4.00	3.67	
\$ 9 Nitrobenzene-d5	82	7.174	7.174	0.000	88	188720	4.00	3.55	
\$ 10 2-Fluorobiphenyl	172	9.007	9.007	0.000	100	333258	4.00	3.90	
\$ 11 2,4,6-Tribromophenol	330	10.358	10.358	0.000	94	38515	4.00	3.33	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	97	385918	4.00	3.82	
13 1,4-Dioxane	88	3.600	3.600	0.000	94	68633	4.00	3.44	
14 N-Nitrosodimethylamine	42	3.878	3.878	0.000	90	85530	4.00	4.11	
15 Pyridine	52	3.916	3.916	0.000	97	209020	8.00	7.44	
33 Benzaldehyde	77	6.026	6.026	0.000	95	280948	8.00	7.13	
34 Phenol	94	6.127	6.127	0.000	98	210917	4.00	4.02	
36 Aniline	93	6.181	6.181	0.000	97	247647	4.00	3.69	Ma
37 Bis(2-chloroethyl)ether	93	6.186	6.186	0.000	99	185869	4.00	4.73	
40 n-Decane	57	6.298	6.298	0.000	92	162551	4.00	3.42	
39 2-Chlorophenol	128	6.330	6.330	0.000	97	156158	4.00	3.97	
41 1,3-Dichlorobenzene	146	6.485	6.485	0.000	97	170687	4.00	3.82	
42 1,4-Dichlorobenzene	146	6.565	6.565	0.000	93	178813	4.00	3.96	
43 Benzyl alcohol	108	6.683	6.683	0.000	92	94960	4.00	3.36	
45 1,2-Dichlorobenzene	146	6.752	6.752	0.000	95	160373	4.00	3.79	
47 2,2'-oxybis[1-chloropropane]	45	6.822	6.822	0.000	91	219615	4.00	3.80	
46 2-Methylphenol	108	6.827	6.827	0.000	96	166308	4.00	4.30	
48 Indene	115	6.854	6.854	0.000	89	2007839	20.0	28.9	
50 N-Nitrosodi-n-propylamine	70	6.971	6.971	0.000	90	104807	4.00	3.72	
52 Acetophenone	105	6.987	6.987	0.000	93	224643	4.00	4.05	
51 4-Methylphenol	108	6.993	6.993	0.000	95	158029	4.00	3.98	

Data File: \\cnromfs\But	Taio\Ci				03-118	98 15.D\VV 1002:		1	
0	0	RT	Adj RT	Dlt RT		D	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
57 Hexachloroethane	117	7.142	7.142	0.000	94	73432	4.00	4.08	
58 Nitrobenzene	77	7.142	7.142	0.000	87	164256	4.00	3.40	
62 Isophorone	82	7.190	7.130	0.000	99	291010	4.00	3.46	
65 2-Nitrophenol	139	7.543	7.543	0.000	96	86863	4.00	4.15	
66 2,4-Dimethylphenol	107	7.575	7.575	0.000	98	156723	4.00	3.66	
69 Bis(2-chloroethoxy)methane	93	7.650	7.650	0.000	100	184970	4.00	3.77	
70 Benzoic acid	105	7.698	7.698	0.000	89	294094	20.0	13.1	
72 2,4-Dichlorophenol	162	7.831	7.831	0.000	94	120193	4.00	3.67	
74 1,2,4-Trichlorobenzene	180	7.896	7.896	0.000	92	135688	4.00	4.04	
76 Naphthalene	128	7.836	7.836	0.000	98	479658	4.00	4.04	
78 4-Chloroaniline	127	8.024	8.024	0.000	98	121345	4.00	2.77	М
79 2,6-Dichlorophenol	162	8.045	8.045	0.000	96	125334	4.00	3.88	IVI
81 Hexachlorobutadiene	225	8.104	8.104	0.000	90 97	77156	4.00	3.75	
	113	8.371	8.371	0.000	97 81	106556	8.00	3.73 7.73	
85 Caprolactam	107	8.531	8.531	0.000	95	100330	4.00	7.73 3.17	
86 4-Chloro-3-methylphenol	142	8.675	8.675	0.000	93 94	290656	4.00	4.05	
89 2-Methylnaphthalene	142	8.777	8.777	0.000		290000		4.03	
91 1-Methylnaphthalene	237	8.830	8.830	0.000	93 97	73298	4.00 4.00		
92 Hexachlorocyclopentadiene	237 216			0.000			4.00	3.08	
94 1,2,4,5-Tetrachlorobenzene		8.841	8.841		99	132295		3.99	
96 2,4,6-Trichlorophenol	196	8.948	8.948	0.000	94	79389	4.00	3.31	
97 2,4,5-Trichlorophenol	196	9.023	9.023	0.000	92	81151	4.00	3.57	
101 1,1'-Biphenyl	154	9.108	9.108	0.000	96	352414	4.00	3.87	
102 2-Chloronaphthalene	162	9.146	9.146	0.000	97	277091	4.00	3.90	
104 2-Nitroaniline	65	9.226	9.226	0.000	83	65439	4.00	2.74	Ma
108 Dimethyl phthalate	163	9.359	9.359	0.000	99	286983	4.00	3.53	
109 1,3-Dinitrobenzene	168	9.407	9.407	0.000	88	44167	4.00	3.41	М
110 2,6-Dinitrotoluene	165	9.429	9.429	0.000	93	64520	4.00	3.48	
111 Acenaphthylene	152	9.530	9.530	0.000	98	422162	4.00	3.76	
112 3-Nitroaniline	138	9.600	9.600	0.000	96	23510	4.00	1.38	а
113 2,4-Dinitrophenol	184	9.685	9.685	0.000	81	57269	8.00	6.46	
114 Acenaphthene	153	9.685	9.685	0.000	95	307520	4.00	4.27	
116 2,4-Dinitrotoluene	165	9.792	9.792	0.000	91	81465	4.00	3.29	M
115 4-Nitrophenol	109	9.803	9.803	0.000	95	75407	8.00	6.64	M
118 Dibenzofuran	168	9.835	9.835	0.000	97	369734	4.00	3.73	
121 2,3,4,6-Tetrachlorophenol	232	9.952	9.952	0.000	76	56869	4.00	3.29	
122 Hexadecane	57	9.963	9.963	0.000	96	196120	4.00	3.65	
124 Diethyl phthalate	149	9.974	9.974	0.000	98	318358	4.00	4.08	
126 4-Chlorophenyl phenyl ether	204	10.113	10.113	0.000	95	140172	4.00	3.73	
129 Fluorene	166	10.139	10.139	0.000	94	329513	4.00	4.07	
130 4-Nitroaniline	138	10.145	10.145	0.000	88	56603	4.00	3.36	M
131 4,6-Dinitro-2-methylphenol	198	10.155	10.155	0.000	86	84554	8.00	7.35	
133 N-Nitrosodiphenylamine	169	10.214	10.214	0.000	63	197280	4.00	3.82	
132 Diphenylamine	169	10.214	10.214	0.000	94	197280	3.42	3.27	
135 1,2-Diphenylhydrazine	77	10.251	10.251	0.000	41	337549	4.00	3.68	а
134 Azobenzene	77	10.251	10.251	0.000	99	332022	4.00	3.93	
143 4-Bromophenyl phenyl ether	248	10.540	10.540	0.000	72	78186	4.00	3.76	
146 Hexachlorobenzene	284	10.631	10.631	0.000	95	113318	4.00	4.96	М
147 Atrazine	200	10.641	10.641	0.000	93	212924	8.00	9.54	
148 n-Octadecane	57	10.748	10.748	0.000	95	186338	4.00	3.71	
152 Pentachlorophenol	266	10.748	10.746	0.000	91	68867	8.00	5.35	
156 Phenanthrene	178	10.802	10.802	0.000	98	447323	4.00	4.41	
								4.41	
157 Anthracene	178	11.026	11.026	0.000	98	436078	4.00	4.33	

Report Date: 05-Sep-2024 11:51:07 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259914.d

Data File. (ICHIOTHIS/Da		поправа	00,01	1 1202 100		7010.01011002			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	D	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
Compound	Sig	(111111.)	(111111.)	(111111.)	Q	Nesponse	ilg/uL	TIG/UL	i lays
158 Carbazole	167	11.149	11.149	0.000	96	261689	4.00	3.49	
161 Di-n-butyl phthalate	149	11.357	11.357	0.000	100	516805	4.00	4.28	
168 Fluoranthene	202	12.025	12.025	0.000	98	438304	4.00	4.05	
170 Benzidine	184	12.105	12.105	0.000	99	52520	8.00	2.33	
172 Pyrene	202	12.249	12.249	0.000	97	455067	4.00	3.66	
183 Butyl benzyl phthalate	149	12.736	12.736	0.000	97	216967	4.00	3.59	
187 Bis(2-ethylhexyl) phthalate	149	13.270	13.270	0.000	97	321569	4.00	3.77	
189 3,3'-Dichlorobenzidine	252	13.339	13.339	0.000	74	181493	8.00	5.43	
190 Benzo[a]anthracene	228	13.409	13.409	0.000	99	490359	4.00	4.21	
191 Chrysene	228	13.446	13.446	0.000	98	418888	4.00	4.00	
193 Di-n-octyl phthalate	149	13.922	13.922	0.000	100	512203	4.00	3.67	
196 Benzo[b]fluoranthene	252	14.573	14.573	0.000	96	431169	4.00	4.06	
197 Benzo[k]fluoranthene	252	14.605	14.605	0.000	99	478432	4.00	4.29	
201 Benzo[a]pyrene	252	15.006	15.006	0.000	77	370507	4.00	3.86	
205 Dibenz(a,h)anthracene	278	16.726	16.726	0.000	88	445685	4.00	4.12	
204 Indeno[1,2,3-cd]pyrene	276	16.732	16.732	0.000	98	522975	4.00	4.07	
206 Benzo[g,h,i]perylene	276	17.244	17.244	0.000	98	392390	4.00	3.83	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

a - User Assigned ID

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259914.d

Injection Date: 03-Sep-2024 11:28:30 Instrument ID: HP5973W

Lims ID: CCVIS

Client ID:

Operator ID: ED ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: ICV 480-718508/11 Calibration Date: 07/15/2024 21:55

GC Column: RXI-5Sil MS ID: $0.25 \, (mm)$ Calib End Date: 0.7/15/2024 21:27

Lab File ID: Y037835.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Ave	1.092	1.068	0.7000	3910	4000	-2.2	30.0
2-Methylnaphthalene	Ave	0.6413	0.6972	0.4000	4350	4000	8.7	30.0
1-Methylnaphthalene	Ave	0.6646	0.6564	0.0100	3950	4000	-1.2	30.0
Acenaphthylene	Ave	1.769	1.811	0.9000	4100	4000	2.4	30.0
Acenaphthene	Ave	1.225	1.206	0.9000	3940	4000	-1.5	30.0
Dibenzofuran	Ave	1.573	1.544	0.8000	3930	4000	-1.8	30.0
Fluorene	Lin2		1.303	0.9000	3830	4000	-4.1	30.0
Phenanthrene	Ave	1.081	1.043	0.7000	3860	4000	-3.5	30.0
Anthracene	Lin2		1.057	0.7000	3840	4000	-4.1	30.0
Fluoranthene	Lin2		1.123	0.6000	3900	4000	-2.6	30.0
Pyrene	Ave	1.283	1.266	0.6000	3950	4000	-1.3	30.0
Benzo[a]anthracene	Ave	1.298	1.271	0.8000	3920	4000	-2.1	30.0
Chrysene	Ave	1.211	1.195	0.7000	3950	4000	-1.3	30.0
Benzo[b]fluoranthene	Lin2		1.168	0.7000	3980	4000	-0.6	30.0
Benzo[k]fluoranthene	Ave	1.214	1.151	0.7000	3790	4000	-5.2	30.0
Benzo[a]pyrene	Lin2		1.058	0.7000	4000	4000	0.1	30.0
Dibenz(a,h)anthracene	Lin2		1.078	0.4000	3970	4000	-0.8	30.0
Indeno[1,2,3-cd]pyrene	Lin2		1.279	0.5000	3780	4000	-5.5	30.0
Benzo[g,h,i]perylene	Ave	1.005	1.031	0.5000	4100	4000	2.5	30.0

Report Date: 16-Jul-2024 12:02:21 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037835.D

Lims ID: ICV - List 1 - 4

Client ID:

Sample Type: ICV

Inject. Date: 15-Jul-2024 21:55:30 ALS Bottle#: 11 Worklist Smp#: 11

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-011

Operator ID: JM Instrument ID: HP5973Y

Sublist:

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Jul-2024 12:02:17Calib Date:16-Jul-2024 04:48:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:57:18

First Level Reviewer: IZ8L			D	ate:		16-Jul-2024	1 08:5/:18		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.759	6.754	0.005	94	161310	4.00	4.00	
* 2 Naphthalene-d8	136	8.152	8.153	-0.001	99	595344	4.00	4.00	
* 3 Acenaphthene-d10	164	9.842	9.843	-0.001	93	360775	4.00	4.00	
* 4 Phenanthrene-d10	188	11.152	11.153	-0.001	96	631982	4.00	4.00	
* 5 Chrysene-d12	240	13.660	13.655	0.005	99	571928	4.00	4.00	
* 6 Perylene-d12	264	15.439	15.446	-0.007	98	626279	4.00	4.00	
13 1,4-Dioxane	88	3.795	3.796	-0.001	95	76756	4.00	3.96	
14 N-Nitrosodimethylamine	42	4.056	4.057	-0.001	91	98633	4.00	3.99	
15 Pyridine	52	4.103	4.104	-0.001	96	215382	8.00	6.98	
35 Benzaldehyde	77	6.255	6.256	-0.001	94	317771	8.00	7.20	
37 Phenol	94	6.267	6.268	-0.001	99	250718	4.00	3.94	
36 Aniline	93	6.368	6.369	-0.001	98	311791	4.00	3.89	
39 Bis(2-chloroethyl)ether	93	6.403	6.399	0.004	96	195677	4.00	3.86	
40 2-Chlorophenol	128	6.516	6.517	-0.001	92	213658	4.00	4.00	
41 n-Decane	57	6.516	6.517	-0.001	88	212114	4.00	3.94	
43 1,3-Dichlorobenzene	146	6.700	6.701	-0.001	98	238704	4.00	3.95	
44 1,4-Dichlorobenzene	146	6.777	6.778	-0.001	94	244312	4.00	3.94	
45 Benzyl alcohol	108	6.878	6.879	-0.001	93	130730	4.00	3.92	
46 1,2-Dichlorobenzene	146	6.961	6.962	-0.001	98	230782	4.00	3.95	
48 2-Methylphenol	108	6.979	6.980	-0.002	96	188235	4.00	4.00	
49 2,2'-oxybis[1-chloropropane]	45	7.020	7.021	-0.001	93	265123	4.00	3.91	
47 Indene	115	7.062	7.063	-0.001	88	2024400	20.0	19.9	
57 4-Methylphenol	108	7.145	7.146	-0.002	95	197342	4.00	4.01	
53 N-Nitrosodi-n-propylamine	70	7.168	7.170	-0.002	90	137063	4.00	3.83	
52 Acetophenone	105	7.186	7.187	-0.001	97	280917	4.00	3.99	
58 Hexachloroethane	117	7.346	7.347	-0.001	97	91717	4.00	3.84	
59 Nitrobenzene	77	7.388	7.389	-0.001	87	207615	4.00	3.93	
62 Isophorone	82	7.637	7.638	-0.001	99	381321	4.00	4.01	
66 2,4-Dimethylphenol	107	7.737	7.739	-0.002	88	201269	4.00	3.87	
64 2-Nitrophenol	139	7.737	7.739	-0.002	73	112948	4.00	4.01	
69 Bis(2-chloroethoxy)methane	93	7.838	7.839	-0.001	99	247608	4.00	4.04	

Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037835.D											
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt			
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags		
70 D	105	7.050	7.057	0.001	00	F00040	00.0	10.1			
70 Benzoic acid	105	7.856	7.857	-0.001	89	566649	20.0	19.1	М		
72 2,4-Dichlorophenol	162	7.986	7.982	0.004	93	174093	4.00	3.97			
73 1,2,4-Trichlorobenzene	180	8.087	8.088	-0.001	94	202592	4.00	4.06			
74 Naphthalene	128	8.176	8.177	-0.001	98	635637	4.00	3.91			
76 4-Chloroaniline	127	8.200	8.201	-0.001	97	241099	4.00	3.98			
77 2,6-Dichlorophenol	162	8.218	8.219	-0.001	98	174288	4.00	3.95			
79 Hexachlorobutadiene	225	8.295	8.290	0.005	96	117149	4.00	4.05			
84 Caprolactam	113	8.550	8.551	-0.001	80	122804	8.00	6.99			
85 4-Chloro-3-methylphenol	107	8.662	8.664	-0.002	96	167841	4.00	4.09			
87 2-Methylnaphthalene	142	8.864	8.859	0.005	93	415059	4.00	4.35			
89 1-Methylnaphthalene	142	8.959	8.960	-0.001	92	390779	4.00	3.95			
90 Hexachlorocyclopentadiene	237	9.012	9.013	-0.001	96	127722	4.00	3.42			
91 1,2,4,5-Tetrachlorobenzene	216	9.024	9.025	-0.001	97	206594	4.00	3.84			
93 2,4,6-Trichlorophenol	196	9.119	9.114	0.005	93	132720	4.00	3.83			
94 2,4,5-Trichlorophenol	196	9.154	9.156	-0.002	96	134244	4.00	3.87	M		
96 1,1'-Biphenyl	154	9.291	9.292	-0.001	96	508094	4.00	3.91			
97 2-Chloronaphthalene	162	9.326	9.328	-0.002	95	403019	4.00	3.92			
100 2-Nitroaniline	65	9.397	9.399	-0.002	86	106888	4.00	3.96			
105 Dimethyl phthalate	163	9.534	9.535	-0.001	99	436756	4.00	3.93			
106 1,3-Dinitrobenzene	168	9.581	9.577	0.004	89	67194	4.00	4.15			
107 2,6-Dinitrotoluene	165	9.605	9.600	0.005	94	100165	4.00	3.93			
108 Acenaphthylene	152	9.718	9.719	-0.001	98	653464	4.00	4.10			
109 3-Nitroaniline	138	9.765	9.766	-0.001	96	99055	4.00	3.85			
111 2,4-Dinitrophenol	184	9.854	9.855	-0.001	84	93379	8.00	7.24			
110 Acenaphthene	153	9.872	9.873	-0.001	96	435218	4.00	3.94			
112 4-Nitrophenol	109	9.878	9.879	-0.001	88	106690	8.00	7.78			
114 2,4-Dinitrotoluene	165	9.967	9.968	-0.001	96	132665	4.00	3.91			
115 Dibenzofuran	168	10.020	10.021	-0.001	97	556982	4.00	3.93			
118 2,3,4,6-Tetrachlorophenol	232	10.121	10.122	-0.001	72	107876	4.00	3.96			
121 Hexadecane	57	10.144	10.140	0.004	96	253880	4.00	3.80			
120 Diethyl phthalate	149	10.150	10.152	-0.002	98	440412	4.00	3.78			
123 4-Chlorophenyl phenyl ether		10.130	10.132	-0.002	92	222557	4.00	3.81			
126 4-Nitroaniline	138	10.233	10.234	0.004	90	108985	4.00	3.73			
							4.00	3.73 3.83			
124 Fluorene	166	10.328	10.330	-0.002	94	470005					
127 4,6-Dinitro-2-methylphenol	198	10.334	10.336	-0.002	90	143466	8.00	7.23			
129 Diphenylamine	169	10.393	10.389	0.004	94	330490	3.42	3.37			
130 N-Nitrosodiphenylamine	169	10.393	10.389	0.004	62	330490	4.00	3.94			
132 Azobenzene	77	10.435	10.436	-0.001	99	441180	4.00	3.99			
131 1,2-Diphenylhydrazine	77	10.435	10.436	-0.001	41	441180	4.00	3.99			
139 4-Bromophenyl phenyl ether	248	10.726	10.727	-0.001	65	133066	4.00	3.81			
143 Atrazine	200	10.814	10.816	-0.002	94	243499	8.00	6.81			
140 Hexachlorobenzene	284	10.820	10.822	-0.002	95	163965	4.00	3.76			
148 n-Octadecane	57	10.927	10.928	-0.001	96	259436	4.00	3.81			
145 Pentachlorophenol	266	10.975	10.976	-0.002	94	166613	8.00	6.79			
151 Phenanthrene	178	11.176	11.171	0.005	98	659136	4.00	3.86			
152 Anthracene	178	11.218	11.219	-0.001	98	667998	4.00	3.84			
153 Carbazole	167	11.330	11.332	-0.002	96	462960	4.00	3.79			
157 Di-n-butyl phthalate	149	11.544	11.545	-0.001	100	752310	4.00	3.86			
164 Fluoranthene	202	12.237	12.239	-0.002	98	709478	4.00	3.90			
166 Benzidine	184	12.303	12.304	-0.001	99	439057	8.00	7.46			
167 Pyrene	202	12.463	12.464	-0.001	96	723988	4.00	3.95			
174 Butyl benzyl phthalate	149	12.405	12.404	-0.001	98	327148	4.00	3.93			
174 Dutyi belizyi pilifidiale	149	12.900	12.900	-0.001	30	JZ/ 140	4.00	5.35			

Report Date: 16-Jul-2024 12:02:21 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037835.D

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
181 Bis(2-ethylhexyl) phthalate	149	13.494	13.496	-0.002	96	467986	4.00	3.90	
179 3.3'-Dichlorobenzidine	252	13.565	13.567	-0.002	74	541525	8.00	8.82	
180 Benzo[a]anthracene	228	13.648	13.644	0.004	99	726838	4.00	3.92	
182 Chrysene	228	13.690	13.685	0.005	97	683583	4.00	3.95	
184 Di-n-octyl phthalate	149	14.170	14.171	-0.001	99	791680	4.00	3.97	
186 Benzo[b]fluoranthene	252	14.893	14.895	-0.002	98	731797	4.00	3.98	
187 Benzo[k]fluoranthene	252	14.929	14.930	-0.001	98	720786	4.00	3.79	
189 Benzo[a]pyrene	252	15.362	15.363	-0.001	79	662813	4.00	4.00	
194 Dibenz(a,h)anthracene	278	17.265	17.266	-0.001	90	675010	4.00	3.97	
193 Indeno[1,2,3-cd]pyrene	276	17.271	17.272	-0.001	98	800722	4.00	3.78	
195 Benzo[g,h,i]perylene	276	17.834	17.841	-0.007	96	645520	4.00	4.10	

QC Flag Legend Processing Flags

Processing Flag
Review Flags

M - Manually Integrated

Reagents:

MB_L1SSLV_WRK_00054 Amount Added: 1.00 Units: mL

Report Date: 16-Jul-2024 12:02:21 Chrom Revision: 2.3 26-Jun-2024 16:13:32

Eurofins Buffalo

Data File: Injection Date: 15-Jul-2024 21:55:30 Instrument ID:

HP5973Y

Operator ID: JM 11

11

Lims ID:

ICV - List 1 - 4

Worklist Smp#:

Client ID:

Dil. Factor: 1.0000 ALS Bottle#:

Injection Vol: Method:

2.0 ul Y-LVI-8270

Limit Group:

MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Page 849 of 1052

09/11/2024

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Lab Sample ID: CCVIS 480-724525/3
Calibration Date: 09/10/2024 11:29

GC Column: RXI-5Sil MS ID: $0.25 \, (mm)$ Calib End Date: 0.7/15/2024 21:27

Lab File ID: Y038677.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Naphthalene	Ave	1.092	1.039	0.7000	3810	4000	-4.8	20.0
2-Methylnaphthalene	Ave	0.6413	0.6301	0.4000	3930	4000	-1.7	20.0
1-Methylnaphthalene	Ave	0.6646	0.6370	0.0100	3830	4000	-4.1	20.0
Acenaphthylene	Ave	1.769	1.808	0.9000	4090	4000	2.2	20.0
Acenaphthene	Ave	1.225	1.247	0.9000	4070	4000	1.8	20.0
Dibenzofuran	Ave	1.573	1.655	0.8000	4210	4000	5.2	20.0
Fluorene	Lin2		1.329	0.9000	3910	4000	-2.3	20.0
Phenanthrene	Ave	1.081	1.077	0.7000	3980	4000	-0.4	20.0
Anthracene	Lin2		1.073	0.7000	3890	4000	-2.7	20.0
Fluoranthene	Lin2		1.165	0.6000	4040	4000	1.0	20.0
Pyrene	Ave	1.283	1.284	0.6000	4010	4000	0.2	20.0
Benzo[a]anthracene	Ave	1.298	1.328	0.8000	4090	4000	2.3	20.0
Chrysene	Ave	1.211	1.175	0.7000	3880	4000	-2.9	20.0
Benzo[b]fluoranthene	Lin2		1.185	0.7000	4030	4000	0.8	20.0
Benzo[k]fluoranthene	Ave	1.214	1.239	0.7000	4080	4000	2.1	20.0
Benzo[a]pyrene	Lin2		1.026	0.7000	3880	4000	-2.9	20.0
Dibenz(a,h)anthracene	Lin2		1.114	0.4000	4100	4000	2.5	20.0
Indeno[1,2,3-cd]pyrene	Lin2		1.379	0.5000	4080	4000	1.9	20.0
Benzo[g,h,i]perylene	Ave	1.005	1.047	0.5000	4160	4000	4.1	20.0
Nitrobenzene-d5 (Surr)	Ave	0.4021	0.4072	0.0100	4050	4000	1.3	20.0
2-Fluorobiphenyl (Surr)	Ave	1.376	1.417	0.0100	4120	4000	3.0	20.0
p-Terphenyl-d14 (Surr)	Ave	1.067	1.070	0.0100	4010	4000	0.4	20.0

Report Date: 10-Sep-2024 12:48:10 Chrom Revision: 2.3 26-Aug-2024 17:14:48

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038677.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 10-Sep-2024 11:29:30 ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119937-003

Operator ID: JM Instrument ID: HP5973Y

Sublist: chrom-Y-LVI-8270*sub36

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:10-Sep-2024 12:48:07Calib Date:23-Aug-2024 16:26:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240823-119674.b\Y038426.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1641

First Level Reviewer: IZ8L Date: 10-Sep-2024 12:17:19

First Level Reviewer: IZ8L	Date: 10-Sep-2024 12:17:19								
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.442	6.442	0.000	94	142271	4.00	4.00	
* 2 Naphthalene-d8	136	7.871	7.871	0.000	99	513912	4.00	4.00	
* 3 Acenaphthene-d10	164	9.579	9.579	0.000	94	282920	4.00	4.00	
4 Phenanthrene-d10	188	10.889	10.889	0.000	96	509423	4.00	4.00	
* 5 Chrysene-d12	240	13.350	13.350	0.000	99	463525	4.00	4.00	
* 6 Perylene-d12	264	14.992	14.992	0.000	98	506875	4.00	4.00	
\$ 7 2-Fluorophenol	112	4.966	4.966	0.000	90	176841	4.00	4.09	
\$ 8 Phenol-d5	99	5.950	5.950	0.000	95	210628	4.00	3.77	
\$ 9 Nitrobenzene-d5	82	7.077	7.077	0.000	87	209287	4.00	4.05	М
\$ 10 2-Fluorobiphenyl	172	8.927	8.927	0.000	99	400802	4.00	4.12	
\$ 11 2,4,6-Tribromophenol	330	10.278	10.278	0.000	95	55631	4.00	3.77	
\$ 12 p-Terphenyl-d14	244	12.253	12.253	0.000	97	496159	4.00	4.01	
13 1,4-Dioxane	88	3.502	3.502	0.000	94	69503	4.00	4.07	
14 N-Nitrosodimethylamine	42	3.786	3.786	0.000	90	88567	4.00	4.07	
15 Pyridine	52	3.828	3.828	0.000	97	200138	8.00	7.35	
35 Benzaldehyde	77	5.921	5.921	0.000	94	280723	8.00	7.21	
37 Phenol	94	5.968	5.968	0.000	98	211989	4.00	3.78	
36 Aniline	93	6.039	6.039	0.000	98	257816	4.00	3.65	
39 Bis(2-chloroethyl)ether	93	6.081	6.081	0.000	95	168126	4.00	3.77	
41 n-Decane	57	6.199	6.199	0.000	90	171889	4.00	3.62	
40 2-Chlorophenol	128	6.199	6.199	0.000	94	187868	4.00	3.99	
43 1,3-Dichlorobenzene	146	6.383	6.383	0.000	99	209598	4.00	3.93	
44 1,4-Dichlorobenzene	146	6.460	6.460	0.000	95	215507	4.00	3.94	
45 Benzyl alcohol	108	6.579	6.579	0.000	93	105154	4.00	3.58	
46 1,2-Dichlorobenzene	146	6.650	6.650	0.000	96	197980	4.00	3.85	
48 2-Methylphenol	108	6.697	6.697	0.000	94	156364	4.00	3.77	
49 2,2'-oxybis[1-chloropropane]	45	6.721	6.721	0.000	90	219984	4.00	3.67	
47 Indene	115	6.757	6.757	0.000	89	1962238	20.0	21.9	
57 4-Methylphenol	108	6.869	6.869	0.000	95	168642	4.00	3.89	
53 N-Nitrosodi-n-propylamine	70	6.875	6.875	0.000	87	117821	4.00	3.73	
52 Acetophenone	105	6.899	6.899	0.000	97	232604	4.00	3.74	
•								_	

Data File:

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038677.D										
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags	
FO III. a chila continue	447	7.047	7.047	0.000	00	00050	4.00	2.00		
58 Hexachloroethane	117	7.047	7.047	0.000	93	82656	4.00	3.92		
59 Nitrobenzene	77	7.101	7.101	0.000	86	180703	4.00	3.96		
62 Isophorone	82	7.356	7.356	0.000	99	301246	4.00	3.67		
64 2-Nitrophenol	139	7.456	7.456	0.000	92	96570	4.00	3.97		
66 2,4-Dimethylphenol	107	7.468	7.468	0.000	93	170362	4.00	3.80		
69 Bis(2-chloroethoxy)methane	93	7.563	7.563	0.000	99	204204	4.00	3.86		
70 Benzoic acid	105	7.593	7.593	0.000	88	411279	20.0	16.7	М	
72 2,4-Dichlorophenol	162	7.711	7.711	0.000	92	145815	4.00	3.86		
73 1,2,4-Trichlorobenzene	180	7.806	7.806	0.000	94	171943	4.00	3.99		
74 Naphthalene	128	7.895	7.895	0.000	98	534189	4.00	3.81		
76 4-Chloroaniline	127	7.937	7.937	0.000	97	200934	4.00	3.84		
77 2,6-Dichlorophenol	162	7.948	7.948	0.000	97	153673	4.00	4.04		
79 Hexachlorobutadiene	225	8.014	8.014	0.000	96	101685	4.00	4.07		
84 Caprolactam	113	8.286	8.286	0.000	79	106467	8.00	7.02		
85 4-Chloro-3-methylphenol	107	8.417	8.417	0.000	93	128006	4.00	3.62		
87 2-Methylnaphthalene	142	8.589	8.589	0.000	92	323806	4.00	3.93		
89 1-Methylnaphthalene	142	8.690	8.690	0.000	92	327377	4.00	3.83		
90 Hexachlorocyclopentadiene	237	8.743	8.743	0.000	94	81854	4.00	2.81		
91 1,2,4,5-Tetrachlorobenzene	216	8.755	8.755	0.000	97	173823	4.00	4.12		
93 2,4,6-Trichlorophenol	196	8.856	8.856	0.000	92	109803	4.00	4.03		
94 2,4,5-Trichlorophenol	196	8.903	8.903	0.000	95	112936	4.00	4.14		
96 1,1'-Biphenyl	154	9.027	9.027	0.000	96	420201	4.00	4.13		
97 2-Chloronaphthalene	162	9.063	9.063	0.000	95	332726	4.00	4.12		
100 2-Nitroaniline	65	9.140	9.140	0.000	89	79682	4.00	3.78		
105 Dimethyl phthalate	163	9.282	9.282	0.000	99	343812	4.00	3.95		
106 1,3-Dinitrobenzene	168	9.330	9.330	0.000	86	53755	4.00	3.86		
107 2,6-Dinitrotoluene	165	9.348	9.348	0.000	94	80652	4.00	4.03		
108 Acenaphthylene	152	9.448	9.448	0.000	98	511590	4.00	4.09		
109 3-Nitroaniline	138	9.514	9.514	0.000	96	74051	4.00	3.68		
110 Acenaphthene	153	9.608	9.608	0.000	92	352918	4.00	4.07		
111 2,4-Dinitrophenol	184	9.608	9.608	0.000	64	73865	8.00	7.29		
112 4-Nitrophenol	109	9.650	9.650	0.000	89	84595	8.00	7.86		
114 2,4-Dinitrotoluene	165	9.715	9.715	0.000	95	104476	4.00	3.93		
115 Dibenzofuran	168	9.757	9.757	0.000	98	468154	4.00	4.21		
118 2,3,4,6-Tetrachlorophenol	232	9.863	9.863	0.000	71	83841	4.00	3.92		
121 Hexadecane	57	9.887	9.887	0.000	96	182567	4.00	3.49		
120 Diethyl phthalate	149	9.899	9.899	0.000	98	360734	4.00	3.95		
123 4-Chlorophenyl phenyl ether	204	10.035	10.035	0.000	89	183226	4.00	4.00		
126 4-Nitroaniline	138	10.059	10.059	0.000	80	86567	4.00	3.77		
124 Fluorene	166	10.065	10.065	0.000	96	375865	4.00	3.91		
127 4,6-Dinitro-2-methylphenol	198	10.083	10.083	0.000	91	116479	8.00	7.28		
129 Diphenylamine	169	10.136	10.136	0.000	94	258875	3.42	3.28		
130 N-Nitrosodiphenylamine	169	10.136	10.136	0.000	62	258875	4.00	3.83		
132 Azobenzene	77	10.172	10.172	0.000	98	343195	4.00	3.85		
131 1,2-Diphenylhydrazine	77	10.172	10.172	0.000	41	343195	4.00	3.85		
139 4-Bromophenyl phenyl ether	248	10.462	10.462	0.000	66	105849	4.00	3.76		
140 Hexachlorobenzene	284	10.557	10.557	0.000	96	134959	4.00	3.84		
143 Atrazine	200	10.563	10.563	0.000	94	231410	8.00	8.25		
148 n-Octadecane	57	10.676	10.676	0.000	93	174130	4.00	3.18		
145 Pentachlorophenol	266	10.717	10.717	0.000	93	115099	8.00	5.92		
151 Phenanthrene	178	10.717	10.717	0.000	97	548554	4.00	3.98		
					98					
152 Anthracene	178	10.948	10.948	0.000	90	546470	4.00	3.89		

Report Date: 10-Sep-2024 12:48:10 Chrom Revision: 2.3 26-Aug-2024 17:14:48

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038677.D

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
153 Carbazole	167	11.073	11.073	0.000	96	268532	4.00	2.73	
157 Di-n-butyl phthalate	149	11.286	11.286	0.000	100	589491	4.00	3.76	
164 Fluoranthene	202	11.950	11.950	0.000	98	593427	4.00	4.04	
166 Benzidine	184	12.027	12.027	0.000	99	181827	8.00	3.81	
167 Pyrene	202	12.176	12.176	0.000	97	595393	4.00	4.01	
174 Butyl benzyl phthalate	149	12.668	12.668	0.000	97	255611	4.00	3.80	
181 Bis(2-ethylhexyl) phthalate	149	13.201	13.201	0.000	95	364236	4.00	3.75	
179 3,3'-Dichlorobenzidine	252	13.267	13.267	0.000	73	360194	8.00	7.24	
180 Benzo[a]anthracene	228	13.338	13.338	0.000	99	615652	4.00	4.09	
182 Chrysene	228	13.379	13.379	0.000	96	544630	4.00	3.88	
184 Di-n-octyl phthalate	149	13.853	13.853	0.000	99	598159	4.00	3.71	
186 Benzo[b]fluoranthene	252	14.500	14.500	0.000	97	600667	4.00	4.03	
187 Benzo[k]fluoranthene	252	14.529	14.529	0.000	99	627885	4.00	4.08	
189 Benzo[a]pyrene	252	14.921	14.921	0.000	79	519900	4.00	3.88	
194 Dibenz(a,h)anthracene	278	16.622	16.622	0.000	89	564712	4.00	4.10	
193 Indeno[1,2,3-cd]pyrene	276	16.634	16.634	0.000	99	699056	4.00	4.08	
195 Benzo[g,h,i]perylene	276	17.138	17.138	0.000	97	530528	4.00	4.16	

QC Flag Legend Processing Flags

Review Flags

M - Manually Integrated

Reagents:

MB_L1LVI_WRK_00635 Amount Added: 1.00 Units: mL Report Date: 10-Sep-2024 12:48:11 Chrom Revision: 2.3 26-Aug-2024 17:14:48

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038677.D Injection Date: 10-Sep-2024 11:29:30 Instrument ID: HP5973Y

Injection Date: 10-Sep-2024 11:29:30 Instrument ID: Lims ID: CCVIS

Client ID:

Injection Vol: 2.0 ul

Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

3

3

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038677.D Injection Date: 10-Sep-2024 11:29:30 Instrument ID: HP5973Y

Lims ID: CCVIS

Client ID:

Operator ID: JM ALS Bottle#: 3 Worklist Smp#: 3

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

\$ 9 Nitrobenzene-d5, CAS: 4165-60-0

Signal: 1

RT: 7.08
Area: 185864
Amount: 3.597636
Amount Units: ng/uL

Processing Integration Results

RT: 7.08
Area: 209287
Amount: 4.051018
Amount Units: ng/uL

Reviewer: IZ8L, 10-Sep-2024 12:39:14 -04:00:00 (UTC)

Audit Action: Manually Integrated Audit Reason: Incomplete Integration

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 16-Aug-2024 13:47:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119562-002

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:19-Aug-2024 13:55:52Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1 : Det: MS SCAN

Process Host: CTX1628

First Level Reviewer: QN8S Date: 16-Aug-2024 14:54:50

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
243 Pentachlorophenol_T 244 DFTPP	266	10.850	10.850	0.000	91	538186	NR	NR	
245 Benzidine_T	184	12.169	12.169	0.000	99	1865495	NR	NR	
247 4,4'-DDD	235	12.650	12.650	0.000	95	19921		NR	
246 4,4'-DDE	246	12.698	12.698	0.000	58	658		NR	а
248 4,4'-DDT	235	12.955	12.955	0.000	95	1434685	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Review Flags

a - User Assigned ID

Reagents:

MB_DFTPP_WRK_00441 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d

Injection Date: 16-Aug-2024 13:47:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

244 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance
198	base peak, or >50% of 442	100.0 (100.1)
51	10-80% of the base peak	44.9
68	<2% of mass 69	0.0 (0.0)
69	Present	44.2
70	<2% of mass 69	0.2 (0.6)
127	10-80% of the base peak	51.2
197	<2% of mass 198	0.0
199	5-9% of mass 198	6.9
275	10-60% of the base peak	27.0
365	>1% of mass 198	4.6
441	present but <24% of mass 442	15.9 (16.0)
442	base peak, or >50% of 198	99.9
443	15-24% of mass 442	19.4 (19.5)

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d\W-LVI-8270.rslt\spectra.d

Injection Date: 16-Aug-2024 13:47:30

Spectrum: Tune Spec :Average 1511-1513(11.15-11.16) Bgrd 1507(11.13)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 374

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
35.00	44	138.00	1027	235.00	3207	336.00	343
36.00	274	139.00	630	236.00	2427	337.00	88
37.00	1125	140.00	1716	237.00	3061	339.00	181
38.00	3492	141.00	16704	238.00	511	340.00	356
39.00	18768	142.00	5476	239.00	1939	341.00	1993
40.00	919	143.00	3851	240.00	1482	342.00	499
41.00	405	144.00	1292	241.00	2760	343.00	43
42.00	54	145.00	892	242.00	5021	346.00	3848
45.00	522	146.00	2990	243.00	3384	347.00	849
46.00	34	147.00	8666	244.00	75936	348.00	103
48.00	177	148.00	22248	245.00	10154	350.00	277
49.00	105	149.00	4607	246.00	15680	351.00	101
50.00	76680	150.00	1191	247.00	3499	352.00	5121
51.00	271232	151.00	2021	248.00	669	353.00	3727
52.00	12813	152.00	1215	249.00	2204	354.00	5323
53.00	514	153.00	5386	250.00	525	355.00	1140
54.00	100	154.00	3890	251.00	844	356.00	199
55.00	1188	155.00	9046	252.00	993	357.00	52
56.00	7549	156.00	13594	253.00	2183	358.00	155
57.00	17600	157.00	2795	255.00	360256	359.00	534
58.00	786	158.00	3028	256.00	52360	360.00	181
59.00	274	159.00	2196	257.00	4472	361.00	128
60.00	314	160.00	5372	258.00	25184	363.00	254
61.00	3051	161.00	7807	259.00	3725	365.00	27576
62.00	3786	162.00	2582	260.00	690	366.00	3998
63.00	10647	163.00	680	261.00	739	367.00	237
64.00	1637	164.00	998	262.00	124	370.00	660
65.00	5402	165.00	6240	263.00	268	371.00	1540
66.00	403	166.00	5553	264.00	110	372.00	9421
67.00	263	167.00	39280	265.00	9898	373.00	2439
69.00	266944	168.00	17856	266.00	1569	374.00	297
70.00	1501	169.00	3355	267.00	25	375.00	38
71.00	76	170.00	1422	268.00	154	377.00	278

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d\W-LVI-8270.rslt\spectra.d

Injection Date: 16-Aug-2024 13:47:30

Spectrum: Tune Spec :Average 1511-1513(11.15-11.16) Bgrd 1507(11.13)

Base Peak: 198. Minimum % Base Peak: 0 Number of Points: 374

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
72.00	67	171.00	1611	269.00	28	378.00	113
73.00	2524	172.00	3120	270.00	532	381.00	34
74.00	31432	173.00	3773	271.00	1050	383.00	2623
75.00	46896	174.00	7297	272.00	454	384.00	718
76.00	9439	175.00	13372	273.00	11606	385.00	130
77.00	341120	176.00	3598	274.00	32296	386.00	38
78.00	22688	177.00	5524	275.00	163392	389.00	129
79.00	20256	178.00	736	276.00	21464	390.00	1252
80.00	15923	179.00	24832	277.00	15239	391.00	924
81.00	22448	180.00	15978	278.00	2772	392.00	604
82.00	5540	181.00	7321	279.00	628	393.00	160
83.00	4564	182.00	1315	281.00	276	395.00	36
84.00	363	183.00	557	282.00	374	396.00	88
85.00	3628	184.00	2527	283.00	1483	397.00	96
86.00	5625	185.00	13479	284.00	1187	399.00	34
87.00	2728	186.00	86032	285.00	2788	401.00	763
88.00	1078	187.00	25032	286.00	631	402.00	4071
89.00	690	188.00	2571	287.00	102	403.00	5576
90.00	57	189.00	5542	288.00	138	404.00	2000
91.00	4906	190.00	1024	289.00	657	405.00	232
92.00	5220	191.00	3030	290.00	650	406.00	35
93.00	36848	192.00	8201	291.00	462	408.00	84
94.00	2402	193.00	9094	292.00	694	410.00	41
95.00	532	194.00	2063	293.00	3376	410.00	168
96.00	1938	195.00	458	294.00	956	411.00	55
98.00	29904	196.00	18088	296.00	53912	412.00	52
99.00	21672	198.00	604480	297.00	7703	414.00	104
100.00	1896	199.00	41800	298.00	719	415.00	346
101.00	12316	200.00	3283	299.00	105	416.00	40
102.00	822	202.00	2623	301.00	803	417.00	101
103.00	3613	202.00	196	302.00	1158	418.00	116
104.00	7620	203.00	4758	303.00	5980	419.00	149
105.00	7464	204.00	24416	304.00	1787	420.00	152
107.00	97864	205.00	42600	305.00	244	421.00	5088

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d\W-LVI-8270.rslt\spectra.d

Injection Date: 16-Aug-2024 13:47:30

Spectrum: Tune Spec :Average 1511-1513(11.15-11.16) Bgrd 1507(11.13)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 374

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
108.00	14988	206.00	160512	307.00	137	422.00	5011
110.00	167808	207.00	21040	308.00	848	423.00	34728
111.00	25328	208.00	5896	309.00	498	424.00	7130
112.00	3529	209.00	1981	310.00	743	425.00	652
113.00	990	210.00	2573	311.00	156	426.00	106
114.00	313	211.00	6341	312.00	237	427.00	225
116.00	1766	212.00	1038	313.00	471	428.00	129
117.00	96376	213.00	565	314.00	2646	429.00	322
118.00	6339	214.00	77	315.00	6564	430.00	243
119.00	736	215.00	2083	316.00	3056	431.00	302
120.00	1230	216.00	1062	317.00	672	432.00	380
121.00	87	217.00	45256	318.00	102	433.00	242
122.00	6219	218.00	6142	319.00	192	434.00	243
123.00	9803	219.00	752	320.00	277	435.00	428
124.00	4097	221.00	27672	321.00	1769	436.00	469
125.00	4001	222.00	4758	323.00	17232	437.00	395
127.00	309504	223.00	11502	324.00	3209	438.00	798
128.00	25128	224.00	92712	325.00	302	439.00	1927
129.00	127104	225.00	23800	326.00	87	441.00	96344
130.00	10729	227.00	41952	327.00	3512	442.00	603712
131.00	2144	228.00	6220	328.00	1858	443.00	117536
132.00	1058	229.00	8567	329.00	289	444.00	11324
133.00	481	230.00	1066	330.00	132	445.00	706
134.00	3723	231.00	3302	332.00	1408	461.00	37
135.00	10008	232.00	574	333.00	1802	492.00	38
136.00	4165	233.00	739	334.00	10782		
137.00	5432	234.00	2574	335.00	2780		

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d

Injection Date: 16-Aug-2024 13:47:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Breakdown Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259728.d

Injection Date: 16-Aug-2024 13:47:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

248 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) * 100

248 4,4'-DDT, Area = 1434685 247 4,4'-DDD, Area = 19921 246 4,4'-DDE, Area = 658

%Breakdown: 1.41%, <= 20.00%

Passed

Peak Tailing Report

Eurofins Buffalo

 $\hfill \hfill Data File:

Injection Date: 16-Aug-2024 13:47:30 Instrument ID: HP5973W

DFTPP Lims ID:

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: Dil. Factor: 1.0000 2.0 ul

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

243 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.013 (min.) Front Width = 0.011 (min.)

Tailing Factor = 1.18, Max. Tailing <= 2.00

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973\\W\20240816-119562.b\\W100259728.d

Injection Date: 16-Aug-2024 13:47:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

245 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.019 (min.) Front Width = 0.018 (min.)

Tailing Factor = 1.06, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240829-119764.b\\W100259865.d

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 29-Aug-2024 12:43:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-002

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:24:45Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 29-Aug-2024 13:15:21

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
243 Pentachlorophenol_T 244 DFTPP	266	10.802	10.802	0.000	90	359305	NR	NR	
245 Benzidine_T	184	12.105	12.105	0.000	99	1235297	NR	NR	
246 4,4'-DDE	246	12.629	12.629	0.000	53	884		NR	
247 4,4'-DDD	235	12.634	12.634	0.000	90	3215		NR	
248 4,4'-DDT	235	12.890	12.890	0.000	97	1488302	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB_DFTPP_WRK_00441 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d

Injection Date: 29-Aug-2024 12:43:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

244 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance
198	base peak, or >50% of 442	100.0 (107.3)
51	10-80% of the base peak	46.9
68	<2% of mass 69	0.0 (0.0)
69	Present	43.6
70	<2% of mass 69	0.3 (0.6)
127	10-80% of the base peak	54.1
197	<2% of mass 198	0.0
199	5-9% of mass 198	6.8
275	10-60% of the base peak	25.8
365	>1% of mass 198	4.2
441	present but <24% of mass 442	14.4 (15.5)
442	base peak, or >50% of 198	93.2
443	15-24% of mass 442	19.0 (20.4)

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d\W-LVI-8270.rslt\spectra.d

Injection Date: 29-Aug-2024 12:43:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 387

m/z	Υ	m/z	Υ	m/z	Y	m/z	Y
36.00	106	141.00	17024	242.00	5749	341.00	2267
37.00	1122	142.00	5521	243.00	6486	342.00	607
38.00	4144	143.00	3827	244.00	75504	343.00	135
39.00	21072	144.00	1230	245.00	10021	344.00	120
40.00	1141	145.00	981	246.00	15645	345.00	57
41.00	800	146.00	3247	247.00	3593	346.00	4107
43.00	156	147.00	8833	248.00	614	347.00	577
44.00	422	148.00	24504	249.00	2674	349.00	120
45.00	717	149.00	4831	250.00	664	350.00	291
46.00	141	150.00	1173	251.00	931	351.00	51
47.00	184	151.00	2163	252.00	1230	352.00	5333
48.00	234	152.00	1133	253.00	2656	353.00	3564
50.00	79888	153.00	5078	255.00	373120	354.00	4966
51.00	297792	154.00	4205	256.00	55272	355.00	1158
52.00	15617	155.00	9905	257.00	4148	356.00	196
53.00	448	156.00	14673	258.00	25088	357.00	112
55.00	135	157.00	2843	259.00	3959	358.00	73
55.00	1026	158.00	2846	260.00	811	359.00	467
56.00	7256	159.00	2538	261.00	718	360.00	188
57.00	18200	160.00	5455	262.00	124	361.00	174
58.00	685	161.00	8378	263.00	193	362.00	181
59.00	300	162.00	2732	264.00	794	363.00	197
60.00	149	163.00	756	265.00	10745	364.00	240
61.00	3494	164.00	955	266.00	1743	365.00	26680
62.00	3832	165.00	6137	267.00	401	366.00	3772
63.00	11692	166.00	5821	268.00	309	367.00	299
64.00	1468	167.00	45848	269.00	128	368.00	44
65.00	5699	168.00	22512	270.00	535	370.00	667
66.00	566	169.00	3285	271.00	1101	371.00	1569
67.00	549	170.00	1109	272.00	1513	372.00	9291
69.00	276544	171.00	1452	273.00	12720	373.00	2525
70.00	1589	172.00	2946	274.00	32960	374.00	246
71.00	195	173.00	4417	275.00	163776	377.00	277

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d\W-LVI-8270.rslt\spectra.d

Injection Date: 29-Aug-2024 12:43:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 387

m/z	Y	m/z	Υ	m/z	Υ	m/z	Υ
72.00	317	174.00	7447	276.00	22896	381.00	40
73.00	3150	175.00	13875	277.00	15603	382.00	133
74.00	31832	176.00	3969	278.00	2807	383.00	2804
75.00	49944	177.00	5657	279.00	566	384.00	974
76.00	22160	178.00	2428	280.00	96	385.00	299
77.00	391424	179.00	25832	281.00	166	386.00	37
78.00	25840	180.00	17984	282.00	529	388.00	56
79.00	19168	181.00	7810	283.00	1740	389.00	128
80.00	15850	182.00	1330	284.00	1133	390.00	1343
81.00	24648	183.00	854	285.00	3025	391.00	978
82.00	6845	184.00	2238	286.00	595	392.00	670
83.00	5914	185.00	13376	287.00	119	393.00	154
84.00	506	186.00	95832	288.00	271	395.00	67
85.00	4051	187.00	26976	289.00	429	395.00	41
86.00	6731	188.00	3105	290.00	604	396.00	68
87.00	3274	189.00	5252	291.00	562	397.00	118
88.00	1020	190.00	1020	292.00	795	398.00	37
89.00	672	191.00	2861	293.00	3541	399.00	34
91.00	4738	192.00	9211	294.00	1273	400.00	62
92.00	5657	193.00	9549	295.00	230	401.00	610
93.00	37336	194.00	2273	296.00	55512	402.00	3771
94.00	2539	196.00	20320	297.00	7998	403.00	5526
95.00	630	198.00	634944	298.00	630	404.00	1911
96.00	2043	199.00	43144	299.00	141	405.00	330
98.00	31752	200.00	3310	300.00	37	408.00	53
99.00	22160	202.00	3005	301.00	677	410.00	51
100.00	2038	202.00	270	302.00	983	410.00	198
101.00	13933	203.00	4806	303.00	6691	411.00	117
102.00	502	204.00	27136	304.00	1863	412.00	34
103.00	3654	205.00	43952	305.00	250	413.00	90
104.00	8006	206.00	171264	306.00	85	415.00	449
105.00	7844	207.00	24096	307.00	185	416.00	191
107.00	109336	208.00	5856	308.00	717	417.00	49
108.00	16792	209.00	1926	309.00	538	418.00	112

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\\W100259865.d\\W-LVI-8270.rslt\spectra.d

Injection Date: 29-Aug-2024 12:43:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198. Minimum % Base Peak: 0 Number of Points: 387

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
110.00	174464	210.00	2828	310.00	688	419.00	88
111.00	27280	211.00	7253	311.00	143	421.00	4997
112.00	3479	212.00	597	312.00	129	422.00	5343
113.00	1089	213.00	429	313.00	527	423.00	33408
114.00	331	214.00	187	314.00	2912	424.00	6750
115.00	610	215.00	2504	315.00	5738	425.00	851
116.00	4554	216.00	2341	316.00	3205	426.00	293
117.00	103400	217.00	45944	317.00	632	427.00	313
118.00	7035	218.00	5645	318.00	143	429.00	295
119.00	1065	219.00	560	319.00	228	429.00	360
120.00	1285	221.00	31048	320.00	293	430.00	481
121.00	372	223.00	11944	321.00	1916	431.00	379
122.00	6817	224.00	99912	322.00	1084	432.00	416
123.00	10487	225.00	25784	323.00	17600	433.00	400
124.00	4370	226.00	1054	324.00	2982	434.00	518
125.00	4487	227.00	43960	325.00	388	435.00	714
127.00	343360	228.00	5890	326.00	517	436.00	945
128.00	27896	229.00	9117	327.00	3093	437.00	735
129.00	137280	230.00	1432	328.00	1472	438.00	1368
130.00	10931	231.00	3084	329.00	405	439.00	1727
131.00	2294	232.00	588	330.00	153	441.00	91624
132.00	924	233.00	702	331.00	50	442.00	591488
133.00	461	234.00	2774	332.00	1423	443.00	120832
134.00	3763	235.00	2943	333.00	1634	444.00	10227
135.00	11125	236.00	2000	334.00	11259	445.00	632
136.00	4629	237.00	2944	335.00	2872	446.00	67
137.00	5921	238.00	364	336.00	383	461.00	48
138.00	1436	239.00	1993	338.00	36	463.00	79
139.00	429	240.00	1388	339.00	373	477.00	34
140.00	1732	241.00	2286	340.00	338		

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d

Injection Date: 29-Aug-2024 12:43:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Breakdown Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d

Injection Date: 29-Aug-2024 12:43:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

248 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) * 100

248 4,4'-DDT, Area = 1488302 247 4,4'-DDD, Area = 3215 246 4,4'-DDE, Area = 884

%Breakdown: 0.27%, <= 20.00%

Passed

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259865.d

Injection Date: 29-Aug-2024 12:43:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

243 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.015 (min.) Front Width = 0.010 (min.)

Tailing Factor = 1.50, Max. Tailing <= 2.00

Passed

Peak Tailing Report

Eurofins Buffalo

 $\hfill \hfill Data File:

29-Aug-2024 12:43:30 Injection Date: Instrument ID: HP5973W

DFTPP Lims ID:

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

245 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.018 (min.) Front Width = 0.014 (min.)

Tailing Factor = 1.29, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 30-Aug-2024 11:22:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119787-002

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 13:30:49Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 12:13:15

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
243 Pentachlorophenol_T 244 DFTPP	266	10.802	10.802	0.000	91	311999	NR	NR	
245 Benzidine_T	184	12.105	12.105	0.000	99	1293838	NR	NR	
247 4,4'-DDD	235	12.586	12.586	0.000	94	8365		NR	
246 4,4'-DDE	246		12.623					ND	
248 4,4'-DDT	235	12.885	12.885	0.000	96	1396605	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB_DFTPP_WRK_00441 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d

Injection Date: 30-Aug-2024 11:22:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

244 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance
198	base peak, or >50% of 442	100.0 (106.2)
51	10-80% of the base peak	45.9
68	<2% of mass 69	0.0 (0.0)
69	Present	42.9
70	<2% of mass 69	0.2 (0.5)
127	10-80% of the base peak	54.2
197	<2% of mass 198	0.0
199	5-9% of mass 198	6.7
275	10-60% of the base peak	26.6
365	>1% of mass 198	4.3
441	present but <24% of mass 442	14.5 (15.3)
442	base peak, or >50% of 198	94.2
443	15-24% of mass 442	18.9 (20.1)

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d\W-LVI-8270.rslt\spectra.d

Injection Date: 30-Aug-2024 11:22:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 384

m/z	Υ	m/z	Υ	m/z	Y	m/z	Υ
36.00	325	140.00	1636	238.00	494	336.00	269
37.00	1094	141.00	15910	239.00	1492	337.00	39
38.00	2852	142.00	5220	240.00	1193	339.00	334
39.00	19736	143.00	3627	241.00	2507	340.00	340
40.00	980	144.00	982	242.00	5886	341.00	1993
41.00	459	145.00	720	243.00	6101	342.00	662
42.00	40	146.00	2870	244.00	71440	343.00	42
43.00	338	147.00	8745	245.00	10001	346.00	3425
44.00	434	148.00	23672	246.00	14690	347.00	703
45.00	418	149.00	4488	247.00	3054	348.00	33
47.00	18	150.00	1288	248.00	965	349.00	35
48.00	123	151.00	1611	249.00	2665	350.00	289
49.00	539	152.00	984	250.00	730	351.00	437
50.00	73032	153.00	4514	251.00	678	352.00	4794
51.00	270336	154.00	4187	252.00	973	353.00	3530
52.00	14084	155.00	9506	253.00	2434	354.00	4655
53.00	488	156.00	13971	255.00	354304	355.00	1205
55.00	1329	157.00	2738	256.00	52152	356.00	195
56.00	6299	158.00	2302	257.00	4564	357.00	192
57.00	16357	159.00	1916	258.00	23536	358.00	131
58.00	724	160.00	4663	259.00	3792	359.00	460
59.00	161	161.00	7729	260.00	638	360.00	136
60.00	1	162.00	2247	261.00	750	361.00	136
61.00	2475	163.00	559	262.00	44	362.00	163
62.00	3860	164.00	986	263.00	216	363.00	231
63.00	9988	165.00	5795	264.00	745	365.00	25400
64.00	1477	166.00	5132	265.00	9585	366.00	3482
65.00	4887	167.00	42608	266.00	1316	367.00	221
66.00	360	168.00	21360	267.00	418	368.00	47
67.00	463	169.00	2671	268.00	260	369.00	42
69.00	252416	170.00	1077	269.00	281	370.00	645
70.00	1385	171.00	1385	270.00	635	371.00	1216
71.00	280	172.00	2605	271.00	844	372.00	9480

Data File: \chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d\W-LVI-8270.rslt\spectra.d

Injection Date: 30-Aug-2024 11:22:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 384

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
72.00	177	173.00	3893	272.00	252	373.00	2342
73.00	2854	174.00	7169	273.00	11522	374.00	345
74.00	30616	175.00	13764	274.00	31968	377.00	59
75.00	43800	176.00	3733	275.00	156416	378.00	86
76.00	20056	177.00	4798	276.00	20344	379.00	53
77.00	364032	178.00	2206	277.00	15507	380.00	35
78.00	24976	179.00	23712	278.00	2662	383.00	2287
79.00	17744	180.00	16528	279.00	496	384.00	746
80.00	14510	181.00	7557	280.00	116	385.00	235
81.00	20936	182.00	1296	281.00	359	386.00	85
82.00	5716	183.00	728	282.00	634	387.00	45
83.00	5264	184.00	1774	283.00	1363	389.00	111
84.00	602	185.00	11771	284.00	1189	390.00	1172
85.00	3349	186.00	89624	285.00	2707	391.00	778
86.00	5923	187.00	24120	286.00	467	392.00	676
87.00	2928	188.00	2792	287.00	150	393.00	61
88.00	1271	189.00	5369	288.00	177	394.00	80
89.00	617	190.00	626	289.00	691	395.00	132
91.00	4043	191.00	3102	290.00	516	397.00	103
92.00	4886	192.00	8653	291.00	502	400.00	75
93.00	35896	193.00	9511	292.00	912	401.00	623
94.00	2535	194.00	2296	293.00	3552	402.00	3759
95.00	797	195.00	995	294.00	798	403.00	5291
96.00	2005	196.00	18008	296.00	49656	404.00	1802
98.00	27552	198.00	588672	297.00	7428	405.00	270
99.00	20048	199.00	39544	298.00	562	406.00	44
100.00	1544	200.00	3071	299.00	29	408.00	51
101.00	12317	202.00	2841	300.00	58	409.00	42
102.00	790	202.00	191	301.00	823	410.00	186
103.00	3283	203.00	4567	302.00	1226	413.00	37
104.00	7475	204.00	23680	303.00	6089	415.00	380
105.00	7321	205.00	40816	304.00	1486	416.00	108
107.00	102912	206.00	159936	305.00	270	418.00	222
108.00	15583	207.00	21272	306.00	46	418.00	91

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\\W100259886.d\\W-LVI-8270.rslt\spectra.d

Injection Date: 30-Aug-2024 11:22:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1491(11.05)

Base Peak: 198. Minimum % Base Peak: 0 Number of Points: 384

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
110.00	161216	208.00	4973	307.00	84	419.00	115
111.00	24656	209.00	2201	308.00	847	420.00	261
112.00	3150	210.00	2355	309.00	521	421.00	5029
113.00	1018	211.00	6567	310.00	736	422.00	4731
114.00	276	212.00	740	311.00	235	423.00	31928
115.00	407	213.00	675	312.00	266	424.00	7564
116.00	2580	214.00	323	313.00	589	425.00	861
117.00	97712	215.00	1969	314.00	2402	426.00	196
118.00	6736	216.00	4166	315.00	5926	427.00	60
119.00	920	217.00	42816	316.00	3073	428.00	246
120.00	1203	218.00	5787	317.00	649	429.00	210
121.00	582	219.00	648	318.00	179	430.00	206
122.00	6015	221.00	28104	319.00	180	431.00	427
123.00	9107	222.00	1668	320.00	193	433.00	432
124.00	4445	223.00	10219	321.00	1667	434.00	489
125.00	4532	224.00	94128	322.00	470	434.00	315
127.00	319232	225.00	23344	323.00	16544	435.00	269
128.00	24616	226.00	585	324.00	2804	436.00	827
129.00	125688	227.00	39792	325.00	446	437.00	1180
130.00	11063	228.00	5615	326.00	473	438.00	1191
131.00	2451	229.00	9440	327.00	3431	439.00	1760
132.00	1193	230.00	1055	328.00	1584	440.00	971
133.00	308	231.00	2933	329.00	395	441.00	85112
134.00	3118	232.00	683	330.00	107	442.00	554560
135.00	10116	233.00	769	331.00	183	443.00	111424
136.00	3931	234.00	2432	332.00	1549	444.00	10024
137.00	5581	235.00	3136	333.00	1522	445.00	502
138.00	1038	236.00	2347	334.00	10073	461.00	36
139.00	663	237.00	2963	335.00	2761	493.00	52

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d

Injection Date: 30-Aug-2024 11:22:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Breakdown Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d

Injection Date: 30-Aug-2024 11:22:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

248 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) * 100

248 4,4'-DDT, Area = 1396605 247 4,4'-DDD, Area = 8365

246 4,4'-DDE, Area = 0

%Breakdown: 0.60%, <= 20.00%

Passed

Peak Tailing Report

Eurofins Buffalo

\\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d Data File:

30-Aug-2024 11:22:30 Injection Date: Instrument ID: HP5973W

DFTPP Lims ID:

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

245 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.020 (min.) Front Width = 0.014 (min.)

Tailing Factor = 1.43, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240830-119787.b\W100259886.d

Injection Date: 30-Aug-2024 11:22:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

243 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.014 (min.) Front Width = 0.010 (min.)

Tailing Factor = 1.40, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 03-Sep-2024 10:48:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119815-002

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:05-Sep-2024 11:51:12Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1650

First Level Reviewer: QN8S Date: 03-Sep-2024 11:21:34

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
243 Pentachlorophenol_T 244 DFTPP	266	10.801	10.801	0.000	91	286570	NR	NR	
245 Benzidine_T	184	12.105	12.105	0.000	99	994911	NR	NR	
247 4,4'-DDD	235	12.586	12.586	0.000	94	4916		NR	
246 4,4'-DDE	246		12.623				I	ND	
248 4,4'-DDT	235	12.885	12.885	0.000	96	1478990	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB_DFTPP_WRK_00441 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Injection Date: 03-Sep-2024 10:48:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

244 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance		
198	base peak, or >50% of 442	100.0 (97.3)		
51	10-80% of the base peak	44.8		
68	<2% of mass 69	0.0 (0.0)		
69	Present	41.4		
70	<2% of mass 69	0.3 (0.7)		
127	10-80% of the base peak	54.0		
197	<2% of mass 198	0.0		
199	5-9% of mass 198	6.8		
275	10-60% of the base peak	26.3		
365	>1% of mass 198	4.4		
441	present but <24% of mass 442	15.3 (14.9)		
442	base peak, or >50% of 198	102.8		
443	15-24% of mass 442	19.5 (19.0)		

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d\W-LVI-8270.rslt\spectra.d

Injection Date: 03-Sep-2024 10:48:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1496(11.07)

Base Peak: 442.00 Minimum % Base Peak: 0 Number of Points: 385

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
36.00	118	139.00	575	240.00	1068	341.00	2074
37.00	1027	140.00	1779	241.00	2534	342.00	717
38.00	3040	141.00	15083	242.00	5725	343.00	58
39.00	19088	142.00	4851	243.00	6575	344.00	39
40.00	680	143.00	3867	244.00	74776	346.00	4012
41.00	405	144.00	893	245.00	10218	347.00	865
42.00	68	145.00	1147	246.00	14237	348.00	101
43.00	285	146.00	3285	247.00	3320	350.00	251
44.00	551	147.00	9050	248.00	718	351.00	188
45.00	499	148.00	22824	249.00	2454	352.00	5566
46.00	144	149.00	4091	250.00	537	353.00	3582
47.00	273	150.00	1039	251.00	1091	354.00	5172
48.00	189	151.00	1909	252.00	929	355.00	1291
49.00	126	152.00	1221	253.00	2573	356.00	199
50.00	71968	153.00	4557	255.00	362816	357.00	140
51.00	269504	154.00	3603	256.00	52096	358.00	198
52.00	14034	155.00	9672	257.00	4159	359.00	595
53.00	538	156.00	13223	258.00	24424	360.00	207
55.00	1301	157.00	2573	259.00	4020	361.00	250
56.00	6551	158.00	2847	260.00	661	362.00	166
57.00	16260	159.00	2274	261.00	686	363.00	193
58.00	730	160.00	5212	262.00	111	364.00	85
59.00	272	161.00	7843	263.00	345	365.00	26656
60.00	523	162.00	2152	264.00	996	366.00	3947
61.00	2969	163.00	516	265.00	9483	367.00	231
62.00	3484	164.00	1058	266.00	1924	369.00	72
63.00	10405	165.00	5397	267.00	203	370.00	634
64.00	1377	166.00	5540	268.00	118	371.00	1290
65.00	5221	167.00	43344	269.00	260	372.00	8984
66.00	522	168.00	20224	270.00	740	373.00	2377
67.00	329	169.00	2809	271.00	815	374.00	291
69.00	249024	170.00	1131	272.00	1668	377.00	203
70.00	1662	171.00	1131	273.00	13151	379.00	36

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d\W-LVI-8270.rslt\spectra.d

Injection Date: 03-Sep-2024 10:48:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1496(11.07)

Base Peak: 442.00

Minimum % Base Peak: 0 Number of Points: 385

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
71.00	390	172.00	2623	274.00	33032	381.00	92
72.00	147	173.00	4067	275.00	158400	383.00	2736
73.00	2552	174.00	7631	276.00	21176	384.00	859
74.00	30728	175.00	13335	277.00	15597	385.00	265
75.00	45296	176.00	3396	278.00	2652	387.00	53
76.00	19840	177.00	5260	279.00	605	389.00	34
77.00	364160	178.00	2088	281.00	356	390.00	1239
78.00	24192	179.00	23440	282.00	598	391.00	824
79.00	17848	180.00	15963	283.00	2082	392.00	507
80.00	13741	181.00	7374	284.00	1287	393.00	99
81.00	20944	182.00	1365	285.00	2494	395.00	188
82.00	5305	183.00	652	286.00	418	396.00	41
83.00	5580	184.00	2021	287.00	61	397.00	122
84.00	796	185.00	12510	288.00	212	398.00	78
85.00	3571	186.00	87408	289.00	597	399.00	115
86.00	5427	187.00	24224	290.00	736	400.00	83
87.00	2718	188.00	2757	291.00	330	401.00	756
88.00	1086	189.00	5240	292.00	880	402.00	3841
89.00	341	190.00	842	293.00	3182	403.00	6101
90.00	79	191.00	2840	294.00	1089	404.00	1951
91.00	4604	192.00	8448	296.00	50832	405.00	299
92.00	5220	193.00	8903	297.00	7718	406.00	100
93.00	34472	194.00	2208	298.00	730	408.00	126
94.00	2552	195.00	430	299.00	70	409.00	33
95.00	762	196.00	18712	300.00	40	410.00	224
96.00	1949	198.00	602048	301.00	957	413.00	83
98.00	26888	199.00	41160	302.00	1173	415.00	258
99.00	19472	200.00	3459	303.00	6251	416.00	170
100.00	1955	202.00	2291	304.00	1487	418.00	133
101.00	12360	203.00	4690	305.00	315	418.00	172
102.00	890	204.00	26192	306.00	53	419.00	237
103.00	3310	205.00	41088	307.00	147	420.00	217
104.00	7215	206.00	159744	308.00	771	421.00	5214
105.00	6740	207.00	22192	309.00	598	422.00	4439

Data File: \chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d\W-LVI-8270.rslt\spectra.d

Injection Date: 03-Sep-2024 10:48:30

Spectrum: Tune Spec :Average 1500-1502(11.10-11.11) Bgrd 1496(11.07)

Base Peak: 442.00

Minimum % Base Peak: 0 Number of Points: 385

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
107.00	100928	208.00	5641	310.00	819	423.00	34832
108.00	15148	209.00	2096	311.00	152	424.00	7438
110.00	163776	210.00	2943	312.00	159	425.00	856
111.00	24392	211.00	6889	313.00	541	426.00	245
112.00	3072	212.00	1010	314.00	2619	427.00	216
113.00	1016	213.00	424	315.00	6020	428.00	316
114.00	250	215.00	1942	316.00	3246	429.00	361
115.00	161	216.00	4263	317.00	628	430.00	295
116.00	5623	217.00	43616	318.00	35	431.00	397
117.00	93672	218.00	5864	319.00	142	432.00	288
118.00	6659	219.00	536	320.00	246	433.00	429
119.00	870	221.00	30168	321.00	1900	434.00	695
120.00	1051	222.00	2981	322.00	1149	435.00	637
121.00	488	223.00	10937	323.00	16960	436.00	305
122.00	5704	224.00	95168	324.00	2858	438.00	1160
123.00	9064	225.00	24072	325.00	384	438.00	1539
124.00	4456	226.00	496	326.00	556	439.00	1595
125.00	4341	227.00	40800	327.00	3542	441.00	91928
127.00	324928	228.00	5517	328.00	1543	442.00	618688
128.00	24472	229.00	8844	329.00	527	443.00	117480
129.00	123888	230.00	1213	330.00	44	444.00	11085
130.00	11185	231.00	3086	331.00	77	445.00	763
131.00	2029	232.00	759	332.00	1338	448.00	43
132.00	1188	233.00	876	333.00	1709	449.00	33
133.00	500	234.00	2529	334.00	10572	459.00	51
134.00	3237	235.00	2810	335.00	3073	463.00	48
135.00	11074	236.00	2339	336.00	326	467.00	34
136.00	3796	237.00	3254	337.00	82		
137.00	5529	238.00	705	339.00	313		
138.00	1081	239.00	1585	340.00	216		

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Injection Date: 03-Sep-2024 10:48:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Breakdown Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Injection Date: 03-Sep-2024 10:48:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

248 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) * 100

248 4,4'-DDT, Area = 1478990

247 4,4'-DDD, Area = 4916 246 4,4'-DDE, Area = 0

%Breakdown: 0.33%, <= 20.00%

Passed

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Injection Date: 03-Sep-2024 10:48:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

243 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.010 (min.) Front Width = 0.011 (min.)

Tailing Factor = 0.91, Max. Tailing <= 2.00

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240903-119815.b\W100259913.d

Injection Date: 03-Sep-2024 10:48:30 Instrument ID: HP5973W

Lims ID: DFTPP

Client ID:

Operator ID: ED ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

245 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.017 (min.) Front Width = 0.015 (min.)

Tailing Factor = 1.13, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 15-Jul-2024 17:46:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119028-002

Operator ID: JM Instrument ID: HP5973Y

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:16-Jul-2024 12:02:17Calib Date:16-Jul-2024 04:48:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037850.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1678

First Level Reviewer: IZ8L Date: 16-Jul-2024 08:51:35

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
250 Pentachlorophenol_T 251 DFTPP	266	10.973	10.973	0.000	94	434182	NR	NR	
252 Benzidine_T	184	12.307	12.307	0.000	99	1990089	NR	NR	
253 4,4'-DDE	246	12.473	12.473	0.000	90	1986		NR	
254 4,4'-DDD	235	12.799	12.799	0.000	96	5388		NR	
255 4,4'-DDT	235	13.113	13.113	0.000	99	1350089	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB_DFTPP_WRK_00438 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D Injection Date: 15-Jul-2024 17:46:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

251 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance
198	base peak, or >50% of 442	100.0 (104.5)
51	10-80% of the base peak	33.6
68	<2% of mass 69	0.0 (0.0)
69	Present	37.4
70	<2% of mass 69	0.2 (0.6)
127	10-80% of the base peak	45.1
197	<2% of mass 198	0.0
199	5-9% of mass 198	6.8
275	10-60% of the base peak	26.5
365	>1% of mass 198	3.5
441	present but <24% of mass 442	15.0 (15.6)
442	base peak, or >50% of 198	95.7
443	15-24% of mass 442	18.7 (19.6)

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 15-Jul-2024 17:46:30

Spectrum: Tune Spec :Average 1381-1383(11.28-11.29) Bgrd 1374(11.23)

Base Peak: 197.90 Minimum % Base Peak: 0 Number of Points: 335

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
31.00	3881	131.00	1445	219.00	438	313.00	414
32.00	190	132.00	818	221.00	28768	314.00	1755
36.00	114	133.00	357	223.00	7519	315.00	3885
37.00	720	134.00	2428	224.00	66048	316.00	2245
38.00	2236	135.00	6590	225.00	16832	317.00	402
39.00	12743	136.00	2565	226.00	269	319.00	51
40.00	427	137.00	3389	227.00	26992	320.00	151
41.00	463	138.00	809	228.00	3819	321.00	1127
45.00	368	139.00	392	229.00	5636	322.00	494
48.00	84	140.00	1064	230.00	861	323.00	11336
49.00	163	141.00	9895	231.00	2369	324.00	2072
50.00	44096	142.00	3492	232.00	483	325.00	241
51.00	156672	143.00	2496	233.00	502	326.00	261
52.00	8120	144.00	682	234.00	1586	327.00	2105
53.00	279	145.00	688	235.00	1923	328.00	1086
55.00	693	146.00	2050	236.00	1418	329.00	224
56.00	4599	147.00	5604	237.00	2340	332.00	881
57.00	10868	148.00	12621	238.00	397	333.00	1211
58.00	556	149.00	2477	239.00	974	334.00	7572
59.00	163	150.00	731	240.00	952	335.00	1874
60.00	132	151.00	1472	241.00	1602	336.00	252
61.00	1993	152.00	807	242.00	4069	339.00	122
62.00	2310	153.00	3417	243.00	4504	340.00	181
63.00	6235	154.00	2746	244.00	55264	341.00	1452
64.00	887	155.00	6180	245.00	7666	342.00	337
65.00	3010	156.00	8998	246.00	9659	346.00	2450
66.00	216	157.00	1802	247.00	1908	347.00	437
67.00	139	158.00	2128	248.00	485	350.00	58
69.00	174400	159.00	1354	249.00	1843	351.00	271
70.00	1000	160.00	3497	250.00	497	352.00	3429
71.00	233	161.00	4859	251.00	620	353.00	2441
73.00	1722	162.00	1501	252.00	659	354.00	3697
74.00	18600	163.00	401	253.00	1529	355.00	681

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 15-Jul-2024 17:46:30

Spectrum: Tune Spec :Average 1381-1383(11.28-11.29) Bgrd 1374(11.23)

Base Peak: 197.90 Minimum % Base Peak: 0 Number of Points: 335

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
75.00	28304	164.00	690	255.00	261568	359.00	197
76.00	1212	165.00	3850	256.00	38592	360.00	55
77.00	196544	166.00	3536	257.00	3258	361.00	132
78.00	13657	167.00	24200	258.00	14944	363.00	139
79.00	11734	168.00	11295	259.00	2561	365.00	16384
80.00	9665	169.00	1911	260.00	442	366.00	2340
81.00	13683	170.00	654	261.00	494	367.00	157
82.00	3433	171.00	996	262.00	74	370.00	440
83.00	3078	172.00	1926	263.00	185	371.00	994
84.00	467	173.00	2495	264.00	305	372.00	5937
85.00	2341	174.00	4941	265.00	6061	373.00	1528
86.00	3587	175.00	8745	266.00	1027	374.00	112
87.00	1694	176.00	2660	267.00	213	377.00	136
88.00	741	177.00	4027	268.00	28	383.00	1669
89.00	289	178.00	816	270.00	478	384.00	479
91.00	2830	179.00	16480	271.00	607	385.00	52
92.00	3285	180.00	11198	272.00	1026	390.00	909
93.00	21464	181.00	5484	273.00	9187	391.00	615
94.00	1687	182.00	1011	274.00	23392	392.00	452
95.00	525	183.00	561	275.00	123672	401.00	366
96.00	1085	184.00	1444	276.00	16840	402.00	2564
97.00	64	185.00	8802	277.00	9627	403.00	3482
98.00	16183	186.00	62576	278.00	1668	404.00	1239
99.00	12768	187.00	18064	279.00	302	405.00	158
100.00	1118	188.00	1891	281.00	130	410.00	62
101.00	7861	189.00	3797	282.00	308	415.00	203
102.00	402	190.00	651	283.00	1073	421.00	3591
103.00	2559	191.00	1993	284.00	857	422.00	3103
104.00	4831	192.00	5516	285.00	1631	423.00	22896
105.00	4702	193.00	5881	286.00	329	424.00	4546
107.00	60456	194.00	1415	288.00	73	425.00	490
108.00	9273	196.00	16161	289.00	439	427.00	58
110.00	106984	198.00	465856	290.00	361	428.00	56
111.00	16704	199.00	31792	291.00	330	428.00	67

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 15-Jul-2024 17:46:30

Spectrum: Tune Spec :Average 1381-1383(11.28-11.29) Bgrd 1374(11.23)

Base Peak: 197.90

Minimum % Base Peak: 0 Number of Points: 335

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
112.00	2196	200.00	2397	292.00	628	430.00	136
113.00	777	202.00	2717	293.00	2404	430.00	201
114.00	155	203.00	3398	294.00	637	431.00	195
115.00	195	204.00	16944	296.00	33152	432.00	233
117.00	50888	205.00	28776	297.00	4849	433.00	252
118.00	3878	206.00	116856	298.00	407	434.00	307
119.00	475	207.00	14761	301.00	521	435.00	327
120.00	708	208.00	3526	302.00	628	436.00	483
121.00	296	209.00	1234	303.00	4270	437.00	627
122.00	4224	211.00	4604	304.00	1049	438.00	451
123.00	6196	212.00	153	305.00	95	439.00	956
124.00	2804	213.00	321	307.00	52	441.00	69728
125.00	2662	214.00	90	308.00	555	442.00	445760
127.00	210240	215.00	1319	309.00	371	443.00	87272
128.00	16816	216.00	2854	310.00	441	444.00	8768
129.00	82912	217.00	29488	311.00	79	445.00	499
130.00	7033	218.00	3702	312.00	113		

Eurofins Buffalo

Data File: Injection Date:

15-Jul-2024 17:46:30 Instrument ID: HP5973Y

DFTPP Lims ID:

Client ID:

Dil. Factor: 2.0 ul 1.0000 Injection Vol:

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

2

2

Breakdown Report

Eurofins Buffalo

Injection Date: 15-Jul-2024 17:46:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

255 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/

Total Area Breakdown Cpnds) * 100

255 4,4'-DDT, Area = 1350089

254 4,4'-DDD, Area = 5388 253 4,4'-DDE, Area = 1986

%Breakdown: 0.54%, <= 20.00%

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D

Injection Date: 15-Jul-2024 17:46:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

252 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.017 (min.) Front Width = 0.014 (min.)

Tailing Factor = 1.21, Max. Tailing <= 2.00

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240715-119028.b\Y037826.D

Injection Date: 15-Jul-2024 17:46:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

250 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.015 (min.) Front Width = 0.011 (min.)

Tailing Factor = 1.36, Max. Tailing <= 2.00

Passed

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D

Lims ID: DFTPP

Client ID:

Sample Type: DFTPP

Inject. Date: 10-Sep-2024 11:01:30 ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119937-002

Operator ID: JM Instrument ID: HP5973Y

Method: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:10-Sep-2024 12:48:03Calib Date:23-Aug-2024 16:26:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973Y\20240823-119674.b\Y038426.D

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1641

First Level Reviewer: IZ8L Date: 10-Sep-2024 11:39:18

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
250 Pentachlorophenol_T 251 DFTPP	266	10.714	10.714	0.000	93	434146	NR	NR	
252 Benzidine_T	184	12.030	12.030	0.000	99	2368118	NR	NR	
253 4,4'-DDE	246	12.190	12.190	0.000	90	1047		NR	
254 4,4'-DDD	235	12.552	12.552	0.000	92	2749		NR	
255 4,4'-DDT	235	12.813	12.813	0.000	98	1548674	NR	NR	

QC Flag Legend

Processing Flags

NR - Missing Quant Standard

Reagents:

MB_DFTPP_WRK_00441 Amount Added: 1.00 Units: mL

MS Tune Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D Injection Date: 10-Sep-2024 11:01:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Tune Method: DFTPP Method 8270D, BP 198

251 DFTPP

m/z	Ion Abundance Criteria	% Relative Abundance
198	base peak, or >50% of 442	100.0 (111.4)
51	10-80% of the base peak	40.4
68	<2% of mass 69	0.0 (0.0)
69	Present	42.9
70	<2% of mass 69	0.2 (0.5)
127	10-80% of the base peak	52.2
197	<2% of mass 198	0.0
199	5-9% of mass 198	7.0
275	10-60% of the base peak	28.3
365	>1% of mass 198	3.8
441	present but <24% of mass 442	13.4 (14.9)
442	base peak, or >50% of 198	89.8
443	15-24% of mass 442	16.9 (18.8)

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 10-Sep-2024 11:01:30

Spectrum: Tune Spec :Average 1338-1340(11.02-11.03) Bgrd 1330(10.98)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 360

m/z	Υ	m/z	Υ	m/z	Y	m/z	Y
31.00	4510	130.00	8935	225.00	20616	322.00	523
32.00	944	131.00	1872	227.00	33424	323.00	13960
33.00	57	132.00	1082	228.00	4707	324.00	2261
36.00	285	133.00	359	229.00	7104	325.00	221
37.00	1010	134.00	2555	230.00	975	326.00	334
38.00	2746	135.00	8121	231.00	2778	327.00	2402
39.00	16293	136.00	3316	232.00	508	328.00	1179
40.00	854	137.00	3857	233.00	624	329.00	226
41.00	410	138.00	906	234.00	2053	331.00	113
42.00	56	139.00	499	235.00	2667	332.00	925
43.00	233	140.00	1282	236.00	1747	333.00	1515
44.00	211	141.00	12655	237.00	3054	334.00	8631
45.00	505	142.00	4358	238.00	433	335.00	2037
47.00	56	143.00	2865	239.00	1531	336.00	172
48.00	88	144.00	839	240.00	1042	339.00	230
49.00	446	145.00	772	241.00	1810	340.00	262
50.00	57136	146.00	2542	242.00	4849	341.00	1530
51.00	201216	147.00	6569	243.00	5844	342.00	451
52.00	10148	148.00	18152	244.00	64696	346.00	2854
53.00	538	149.00	3255	245.00	8349	347.00	618
55.00	1024	150.00	948	246.00	12020	348.00	59
56.00	5604	151.00	1879	247.00	2497	349.00	51
57.00	12748	152.00	1131	248.00	694	350.00	89
58.00	658	153.00	4290	249.00	2300	351.00	152
59.00	231	154.00	3212	250.00	637	352.00	3915
60.00	229	155.00	7199	251.00	769	353.00	2807
61.00	2159	156.00	11250	252.00	951	354.00	3985
62.00	2978	157.00	2311	253.00	1562	355.00	625
63.00	7598	158.00	2433	255.00	315200	356.00	116
64.00	962	159.00	1853	256.00	46328	357.00	92
65.00	3849	160.00	4210	257.00	3656	359.00	348
66.00	332	161.00	6030	258.00	19064	360.00	117
67.00	378	162.00	1838	259.00	3101	361.00	151

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 10-Sep-2024 11:01:30

Spectrum: Tune Spec :Average 1338-1340(11.02-11.03) Bgrd 1330(10.98)

Base Peak: 198.00 Minimum % Base Peak: 0 Number of Points: 360

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
69.00	213440	163.00	559	260.00	533	363.00	58
70.00	1106	164.00	764	261.00	568	364.00	187
71.00	191	165.00	4720	262.00	59	365.00	19056
72.00	82	166.00	4206	263.00	216	366.00	2632
73.00	2134	167.00	32584	264.00	735	367.00	247
74.00	23640	168.00	14918	265.00	7352	369.00	55
75.00	35288	169.00	2504	266.00	1132	370.00	434
76.00	14331	170.00	903	267.00	262	371.00	1106
77.00	255296	171.00	1297	268.00	439	372.00	6767
78.00	17480	172.00	2420	270.00	510	373.00	1449
79.00	14340	173.00	3220	271.00	891	374.00	164
80.00	11681	174.00	5806	272.00	1264	377.00	218
81.00	16968	175.00	11167	273.00	11094	382.00	52
82.00	4234	176.00	3129	274.00	26904	383.00	2047
83.00	3794	177.00	4538	275.00	140928	384.00	513
84.00	528	178.00	1217	276.00	18496	385.00	144
85.00	3081	179.00	19520	277.00	11768	390.00	1026
86.00	4983	180.00	13895	278.00	1954	391.00	713
87.00	2117	181.00	6563	279.00	556	392.00	397
88.00	848	182.00	1030	280.00	55	393.00	124
89.00	422	183.00	690	281.00	118	401.00	372
90.00	132	184.00	1641	282.00	513	402.00	2642
91.00	3280	185.00	10500	283.00	1443	403.00	3656
92.00	4145	186.00	74320	284.00	902	404.00	1258
93.00	28408	187.00	21328	285.00	2204	405.00	247
94.00	1879	188.00	2268	286.00	478	408.00	53
95.00	534	189.00	4531	287.00	51	410.00	147
96.00	1365	190.00	943	288.00	128	415.00	231
98.00	21384	191.00	2161	289.00	527	416.00	135
99.00	15816	192.00	7402	290.00	562	418.00	114
100.00	1456	193.00	7525	291.00	268	419.00	211
101.00	9559	194.00	1672	292.00	640	420.00	180
102.00	654	196.00	19040	293.00	2912	421.00	3545
103.00	3132	198.00	497664	294.00	848	422.00	2950

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D\Y-LVI-8270.rslt\spectra.d

Injection Date: 10-Sep-2024 11:01:30

Spectrum: Tune Spec :Average 1338-1340(11.02-11.03) Bgrd 1330(10.98)

Base Peak: 198. Minimum % Base Peak: 0 Number of Points: 360

m/z	Υ	m/z	Υ	m/z	Υ	m/z	Υ
104.00	5859	199.00	34656	296.00	42272	423.00	22016
105.00	5707	200.00	2841	297.00	6206	424.00	5179
107.00	73936	202.00	3098	298.00	417	425.00	735
108.00	11554	203.00	3878	299.00	51	426.00	175
110.00	120552	204.00	20880	301.00	627	427.00	163
111.00	18648	205.00	34856	302.00	697	428.00	177
112.00	2583	206.00	138688	303.00	4931	429.00	208
113.00	830	207.00	18704	304.00	1112	430.00	229
114.00	321	208.00	4742	305.00	132	431.00	260
115.00	423	209.00	1616	307.00	50	432.00	387
116.00	3089	210.00	2843	308.00	598	433.00	401
117.00	71872	211.00	6147	309.00	500	434.00	435
118.00	5034	212.00	294	310.00	512	435.00	198
119.00	532	213.00	479	311.00	103	436.00	588
120.00	1094	214.00	144	312.00	142	438.00	805
121.00	376	215.00	1687	313.00	427	439.00	983
122.00	4927	216.00	3654	314.00	1970	439.00	490
123.00	7316	217.00	35304	315.00	4916	440.00	730
124.00	3218	218.00	5064	316.00	2592	441.00	66464
125.00	3402	219.00	477	317.00	477	442.00	446912
127.00	259904	221.00	32112	319.00	61	443.00	84112
128.00	18872	223.00	9495	320.00	169	444.00	8246
129.00	101296	224.00	80336	321.00	1130	445.00	433

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D Injection Date:

10-Sep-2024 11:01:30 HP5973Y Instrument ID:

DFTPP Lims ID:

Client ID:

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Operator ID:

ALS Bottle#:

Worklist Smp#:

JM

2

2

Breakdown Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973Y\20240910-119937.b\Y038676.D Injection Date: 10-Sep-2024 11:01:30 Instrument ID: HP5973Y

Injection Date: 10-Sep-20 Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

255 4,4'-DDT, Detector: MS SCAN

SW-846 Method

%Breakdown =

(Area Breakdown Cpnds/ Total Area Breakdown Cpnds) * 100

255 4,4'-DDT, Area = 1548674 254 4,4'-DDD, Area = 2749

253 4,4'-DDE, Area = 1047

%Breakdown: 0.24%, <= 20.00%

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973Y\\20240910-119937.b\\Y038676.D

Injection Date: 10-Sep-2024 11:01:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

252 Benzidine_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.012 (min.) Front Width = 0.013 (min.)

Tailing Factor = 0.92, Max. Tailing <= 2.00

Passed

Peak Tailing Report

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\\ChromData\\HP5973Y\\20240910-119937.b\\Y038676.D

Injection Date: 10-Sep-2024 11:01:30 Instrument ID: HP5973Y

Lims ID: DFTPP

Client ID:

Operator ID: JM ALS Bottle#: 2 Worklist Smp#: 2

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: Y-LVI-8270 Limit Group: MB - 8270D ICAL

250 Pentachlorophenol_T, Detector: MS SCAN

Peak Tailing Factor =

BackWidth/FrontWidth @ 10% Peak Height

Back Width = 0.016 (min.) Front Width = 0.010 (min.)

Tailing Factor = 1.60, Max. Tailing <= 2.00

Passed

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: Lab Sample ID: MB 480-723375/1-A

Matrix: Water Lab File ID: W100259868.d

Analysis Method: 8270D LL PAH Date Collected:

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 14:10

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	0.50	U	0.50	0.38
83-32-9	Acenaphthene	0.50	U	0.50	0.30
208-96-8	Acenaphthylene	0.50	U	0.50	0.34
120-12-7	Anthracene	0.50	U	0.50	0.39
56-55-3	Benzo[a]anthracene	0.50	U	0.50	0.40
50-32-8	Benzo[a]pyrene	0.50	U	0.50	0.33
205-99-2	Benzo[b]fluoranthene	0.50	U	0.50	0.30
191-24-2	Benzo[g,h,i]perylene	0.50	U	0.50	0.37
207-08-9	Benzo[k]fluoranthene	0.50	U	0.50	0.085
218-01-9	Chrysene	0.50	U	0.50	0.32
53-70-3	Dibenz(a,h)anthracene	0.50	U	0.50	0.33
206-44-0	Fluoranthene	0.50	U	0.50	0.36
86-73-7	Fluorene	0.50	U	0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44
91-20-3	Naphthalene	0.50	U	0.50	0.42
85-01-8	Phenanthrene	0.50	U	0.50	0.38
129-00-0	Pyrene	0.50	U	0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	100		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	73		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	84		24-136

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259868.d

Lims ID: MB 480-723375/1-A

Client ID:

Sample Type: MB

Inject. Date: 29-Aug-2024 14:10:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-005

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:08:04

First Level Reviewer: QN8S			D	ate:		30-Aug-202	24 08:08:04	4 08:08:04		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags	
			•		•					
 1 1,4-Dichlorobenzene-d4 	152	6.544	6.544	0.000	96	126604	4.00	4.00		
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	488043	4.00	4.00		
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	266199	4.00	4.00		
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	395644	4.00	4.00		
* 5 Chrysene-d12	240	13.419	13.419	0.000	99	379720	4.00	4.00		
* 6 Perylene-d12	264	15.075	15.075	0.000	99	417710	4.00	4.00		
\$ 7 2-Fluorophenol	112		5.096				ND	ND		
\$ 8 Phenol-d5	99		6.111				ND	ND		
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	87	345304	8.00	5.86		
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	729140	8.00	8.03		
\$ 11 2,4,6-Tribromophenol	330		10.358				ND	ND		
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	714730	8.00	6.71		
13 1,4-Dioxane	88		3.605					ND		
14 N-Nitrosodimethylamine	42		3.878					ND		
15 Pyridine	52		3.921					ND		
17 2-Picoline	93		4.551					ND		
18 N-Nitrosomethylethylamine	88		4.626					ND		
16 1-Methylcyclopentanol	71		4.736					ND		
22 Acrylamide	44		4.839					ND	U	
23 Methyl methanesulfonate	80		4.882					ND		
19 2-Chlorobenzotrifluoride	180		5.270					ND		
27 N-Nitrosodiethylamine	102		5.294					ND		
24 4-Chloropyridine	78		5.324					ND		
20 4-Chlorobenzotrifluoride	180		5.340					ND		
25 3-Chloropyridine	78		5.388					ND		
21 n,n'-Dimethylacetamide	87		5.398					ND		
29 Ethyl methanesulfonate	79		5.582					ND		
28 2-Chloropyridine	78		5.751					ND		
26 3-Chlorobenzotrifluoride	180		5.790					ND		
33 Benzaldehyde	77		6.031					ND		
34 Phenol	94		6.127					ND		
36 Aniline	93		6.148					ND		
-										

Data File: \\chromfs\Buf	falo∖Ch	<u>romData</u>	\HP5973W	<u> </u>	<u> 29-119</u>	9764.b\W1002	59868.d		
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
			0.4==						
30 2-Chlorotoluene	91		6.173					ND	
37 Bis(2-chloroethyl)ether	93		6.186					ND	
31 3-Chlorotoluene	91		6.194					ND	
38 Pentachloroethane	167		6.212					ND	
32 4-Chlorotoluene	91		6.227					ND	
35 p-Fluoroaniline	111		6.242					ND	
40 n-Decane	57		6.298					ND	
39 2-Chlorophenol	128		6.330					ND	
41 1,3-Dichlorobenzene	146		6.485					ND	
42 1,4-Dichlorobenzene	146		6.565					ND	
43 Benzyl alcohol	108		6.683					ND	
45 1,2-Dichlorobenzene	146		6.752					ND	
47 2,2'-oxybis[1-chloropropane]	45		6.821					ND	
46 2-Methylphenol	108		6.827					ND	
48 Indene	115		6.854					ND	
54 2,6-Dichloropyridine	112		6.899					ND	
44 N-Methylaniline	106		6.948					ND	
49 N-Nitrosopyrrolidine	100		6.955					ND	
50 N-Nitrosodi-n-propylamine	70		6.971					ND	
53 N-Nitrosomorpholine	56		6.987					ND	
52 Acetophenone	105	6.987	6.992	-0.005	94	5936		0.0946	
51 4-Methylphenol	108		6.998					ND	
55 2-Toluidine	106		7.030					ND	
56 4-Methylbenzenamine	106		7.035					ND	
61 2,4-Dichlorotoluene	125		7.124					ND	
57 Hexachloroethane	117		7.142					ND	
58 Nitrobenzene	77		7.195					ND	
64 1,3,5-Trichlorobenzene	180		7.209					ND	
60 N-Nitrosopiperidine	114		7.350					ND	
59 Benzeneacetonitrile	117		7.370					ND	
73 4-Chlorophenol	128		7.423					ND	
62 Isophorone	82		7.447					ND	
63 2-Chloroaniline	127		7.500					ND	
65 2-Nitrophenol	139		7.548					ND	
66 2,4-Dimethylphenol	107		7.580					ND	
67 o,o',o"-Triethylphosphorothioa	t198		7.617					ND	
68 Tetraethyl lead	237		7.628					ND	
69 Bis(2-chloroethoxy)methane	93		7.655					ND	
70 Benzoic acid	105		7.692					ND	
71 alpha,alpha-Dimethyl pheneth	ıy l5a8 m		7.799					ND	
72 2,4-Dichlorophenol	162		7.837					ND	
74 1,2,4-Trichlorobenzene	180		7.895					ND	
77 Benzeneacetic acid (TIC)	91		7.899					ND	
75 Alpha-Terpineol	59		7.959					ND	
76 Naphthalene	128		7.986					ND	
78 4-Chloroaniline	127		8.024					ND	
79 2,6-Dichlorophenol	162		8.045					ND	
80 Hexachloropropene	213		8.077					ND	
81 Hexachlorobutadiene	225		8.104					ND	
88 2,4,5-Trichlorotoluene	159		8.150					ND	
82 Quinoline	129		8.317					ND	
83 N-Nitrosodi-n-butylamine	84		8.339					ND	
oo m-miiiosoui-n-butyianiine	04		0.339					שאו	

Data File: \\chromfs\Buf	talo\Ct	nromData	\HP59/3V	V\2024082	29-119	764.b\W1002	59868.d		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
0.4 a Dhamalana diamina	100		0.071					ND	
84 p-Phenylene diamine	108		8.371					ND	
85 Caprolactam	113		8.376					ND	
86 4-Chloro-3-methylphenol	107		8.531					ND	
87 Safrole, Total	162 216		8.563 8.588					ND ND	
100 1,2,3,4 -Tetrachlorobenzene	142		8.675					ND	
89 2-Methylnaphthalene	104		8.713					ND ND	
90 Phthalic anhydride 91 1-Methylnaphthalene	142		8.777					ND ND	
	237		8.830					ND ND	
92 Hexachlorocyclopentadiene									
94 1,2,4,5-Tetrachlorobenzene 93 Isosafrole Peak 1	216 162		8.841					ND ND	
	161		8.846 8.942					ND ND	
95 2,3-Dichlorobenzenamine			8.953					ND ND	
96 2,4,6-Trichlorophenol 97 2,4,5-Trichlorophenol	196 196		6.953 9.028					ND ND	
99 Isosafrole Peak 2	162		9.060					ND	
98 Isosafrole	162		9.060					ND	
101 1,1'-Biphenyl	154		9.000					ND ND	
102 2-Chloronaphthalene	162		9.108					ND	
•	162		9.143					ND	
103 1-Chloronaphthalene 104 2-Nitroaniline	65		9.172					ND ND	
106 1,4-Naphthoquinone	158		9.290					ND	
105 Dicyclohexylamine	138		9.306					ND	
107 1,4-Dinitrobenzene	168		9.327					ND	
108 Dimethyl phthalate	163		9.359					ND	
109 1,3-Dinitrobenzene	168		9.407					ND	
110 2,6-Dinitrotoluene	165		9.429					ND	
111 Acenaphthylene	152		9.535					ND	
112 3-Nitroaniline	138		9.599					ND	
113 2,4-Dinitrophenol	184		9.685					ND	
114 Acenaphthene	153		9.690					ND	
116 2,4-Dinitrotoluene	165		9.792					ND	
117 Pentachlorobenzene	250		9.808					ND	
115 4-Nitrophenol	109		9.808					ND	
118 Dibenzofuran	168		9.840					ND	
119 1-Naphthylamine	143		9.899					ND	
120 2,3,5,6-Tetrachlorophenol	232		9.899					ND	
121 2,3,4,6-Tetrachlorophenol	232		9.952					ND	
122 Hexadecane	57		9.963					ND	U
123 2-Naphthylamine	143		9.968					ND	
124 Diethyl phthalate	149		9.973					ND	
125 Thionazin	97		10.048					ND	
126 4-Chlorophenyl phenyl ether	204		10.112					ND	
150 CBF-400	214		10.126					ND	
128 N-Nitro-o-toluidine	152		10.128					ND	
127 Tributyl phosphate	99		10.128					ND	
130 4-Nitroaniline	138		10.144					ND	
129 Fluorene	166		10.144					ND	
131 4,6-Dinitro-2-methylphenol	198		10.160					ND	
133 N-Nitrosodiphenylamine	169		10.214					ND	
132 Diphenylamine	169		10.214					ND	
135 1,2-Diphenylhydrazine	77		10.251					ND	
134 Azobenzene	77		10.251					ND	

Data File: \\chromfs\Buf	talo\Cl				29-119	9764.b\W1002			
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
12C Culfatana	222		10 200					ND	
136 Sulfotepp	322		10.299					ND	
137 1,3,5-Trinitrobenzene	213		10.401					ND	
140 Phorate	75 108		10.417					ND	
141 Phenacetin	108		10.443					ND	
138 Diallate	86 86		10.443					ND	
139 Diallate Peak 1	86		10.443					ND	
142 Diallate Peak 2			10.524					ND	
143 4-Bromophenyl phenyl ether	248	10 577	10.540	0.007	4	36		ND NC	
162 2-Methylanthracene 144 Dimethoate	192 87	10.577	10.570 10.604	0.007	1	30		ND NC	
145 Simazine	201		10.604					ND	
146 Hexachlorobenzene	284		10.614					ND	
147 Atrazine	200		10.636					ND	
148 n-Octadecane	200 57		10.041					ND	
	169		10.748					ND	
149 4-Aminobiphenyl 151 Pronamide	173		10.764					ND	
153 Pentachloronitrobenzene	237		10.775					ND	
	266		10.801					ND	
152 Pentachlorophenol 154 Disulfoton	200 88		10.801					ND	
155 Dinoseb	oo 211		10.898					ND	
156 Phenanthrene	178		10.903					ND	
157 Anthracene	178		11.026					ND	
157 Antinacene 158 Carbazole	167		11.026					ND	
159 Alachlor	160		11.149					ND	
	100		11.216					ND	
160 Methyl parathion	149		11.223					ND	
161 Di-n-butyl phthalate	97		11.544					ND	
163 Ethyl Parathion 171 CAG-800	149		11.608					ND	
164 4-Nitroquinoline-1-oxide	190		11.629					ND	
165 Methapyrilene	58		11.645					ND	
166 Anthraquinone	180		11.661					ND	
167 Isodrin	193		11.897					ND	
180 CBF-500	161							ND	U
168 Fluoranthene	202		11.897 12.030					ND	U
179 NVF-400	82		12.030					ND	
169 1-Hydroxyanthraquinone	oz 224		12.036					ND	
170 Benzidine	184		12.040					ND	
174 Aramite Peak 1	185		12.103						
	202							ND	
172 Pyrene	202 185		12.249 12.313					ND ND	
173 Aramite, Total									
175 Aramite Peak 2	185		12.313					ND	U
176 p-Dimethylamino azobenzeno			12.447					ND	
178 Chlorobenzilate	139		12.473					ND	
177 1,4-Dihydroxyanthraquinone	240		12.484					ND	
181 Famphur	218		12.709					ND	
182 9-Octadecenamide	72 140		12.719					ND	
183 Butyl benzyl phthalate	149		12.741					ND	
184 3,3'-Dimethylbenzidine	212		12.773					ND	
185 Kepone	272		12.896					ND	
186 2-Acetylaminofluorene	181		13.029					ND	
187 Bis(2-ethylhexyl) phthalate	149		13.270					ND	
188 4,4'-Methylene bis(2-chloroar	ni ⊉ 31		13.318					ND	

Data File: \\chromfs\Buf	ttalo\Cl	nromData	\HP59/3V	V\2024082	29-119	9764.b\W1002	59868.d		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
400 0 01 Birth and a cities	050		10 000					ND	
189 3,3'-Dichlorobenzidine	252		13.339					ND	
190 Benzo[a]anthracene	228		13.408					ND	
191 Chrysene	228		13.446					ND	
192 6-Methylchrysene	242		13.900					ND	
193 Di-n-octyl phthalate	149		13.921					ND	
195 7,12-Dimethylbenz(a)anthrac			14.568					ND	
200 Benzo[e]pyrene	252		14.573					ND	
196 Benzo[b]fluoranthene	252 252		14.578 14.610					ND ND	
197 Benzo[k]fluoranthene	252 196		14.717					ND ND	
194 Hexachlorophene 198 CN-500	112		14.717					ND	
199 CU-600	58		14.931					ND	
	252		15.006					ND	
201 Benzo[a]pyrene	252		15.438					ND	
202 3-Methylcholanthrene	279		16.283					ND	U
203 Dibenz[a,h]acridine	279		16.726					ND	U
205 Dibenz(a,h)anthracene	276 276		16.726					ND ND	U
204 Indeno[1,2,3-cd]pyrene	276		17.244					ND	
206 Benzo[g,h,i]perylene	302		21.337					ND	
207 Dibenzo[a,e]pyrene 208 Lidocaine	302 1		0.000					ND	
209 1-Bromo-2-chloroethane TIC	•		0.000					ND	
210 1,3-Dibromobenzene TIC	1		0.000					ND	
211 1-Bromo-3-fluorobenzene TIC	-		0.000					ND	
			0.000					ND	
212 1-Bromo-4-ethylbenzene TIC	; 1 1		0.000					ND ND	
213 3'-Bromoacetophenone TIC 214 4-Bromofluorobenzene TIC	1		0.000					ND	
215 1,2-dichloro-4-(trifluoromethy	•		0.000					ND	
216 3-Nitro-4-Chlorobenzotrifluor			0.000					ND	
217 Fluorobenzene TIC	1		0.000					ND	
218 3-Amino-4-Chlorobenzotrifluo	ı oridlo		0.000					ND	
219 Ethylene Dibromide TIC) IUIC 1		0.000					ND	
220 1,4-Dibromobenzene TIC	1		0.000					ND	
	1								
221 2-Bromopyridine TIC	1		0.000					ND	
222 trans Azobenzene (TIC)	1		0.750					ND	
223 Tetramethyl lead TIC	1		0.750					ND	
224 2,3-Dichlorophenol	1		0.750					ND	
225 1-Bromopropane	1		0.750					ND	
226 2-Chlorobenzotrifluoride TIC	1		0.750					ND	
227 Pendimethalin	1		0.750					ND	
228 Dibenz(a,i)pyrene	1		0.750					ND	
229 Prometryn (TIC)	070		0.750					ND	
230 Dibenz[a,j]acridine	279		0.750					ND	
231 2,4-Toluene diamine	1		0.750					ND	
232 Phenylmercaptan	110		0.750					ND	
233 7H-Dibenzo[c,g]carbazole	1		0.750					ND	
234 Phenylacetic Acid	1		0.750					ND	
235 5-Methyl-o-Anisidine	1		0.750					ND	
236 Dibenzo[a,h]pyrene	1		0.750					ND	
237 Benefin (TIC)	1		0.750					ND	
238 2,6-Dichlorotoluene TIC	1		0.750					ND	
239 4-Chlorobenzotrifluoride TIC	1		0.750					ND	
240 Pendimethalin (TIC)	1		0.750					ND	

Report Date: 03-Sep-2024 11:24:02 Chrom Revision: 2.3 20-Aug-2024 19:34:52 Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259868.d

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
241 3-Chlorobenzotrifluoride TIC 242 Hexamethyldisiloxane TIC	1 1		0.750 0.750					ND ND	
247 4,4'-DDD	235		12.634					ND	7
S 249 Chlorobenzotrifluoride N.O.S S 254 3-Methylphenol	5 T 1		0.750 0.750					ND ND	7 7
S 250 EPH Adjustment 1	1		0.750				I	ND	7
S 253 Total Cresols	1		0.750					ND	7
S 252 Chlorotoluene N.O.S S 251 3 & 4 Methylphenol	1 108		0.750 0.750					ND ND	<i>7</i> 7

QC Flag Legend Processing Flags

NC - Not Calibrated

ND - Not Detected or Marked ND

7 - Failed Limit of Detection

Review Flags

U - Marked Undetected

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent Report Date: 03-Sep-2024 11:24:02 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259868.d

Injection Date: 29-Aug-2024 14:10:30 Instrument ID: HP5973W

Lims ID: MB 480-723375/1-A

Client ID:

Operator ID: ED ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Report Date: 03-Sep-2024 11:24:02 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259868.d

Lims ID: MB 480-723375/1-A

Client ID:

Sample Type: MB

Inject. Date: 29-Aug-2024 14:10:30 ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-005

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:08:04

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	5.86	73.23
\$ 10 2-Fluorobiphenyl	8.00	8.03	100.37
\$ 12 p-Terphenyl-d14	8.00	6.71	83.91

Report Date: 03-Sep-2024 11:24:03 Chrom Revision: 2.3 20-Aug-2024 19:34:52

User Disabled Compound Report

Eurofins Buffalo

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259868.d

Injection Date: 29-Aug-2024 14:10:30 Instrument ID: HP5973W

Lims ID: MB 480-723375/1-A

Client ID:

Operator ID: ED ALS Bottle#: 5 Worklist Smp#: 5

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL Column: RXI-5Sil MS (0.25 mm) Detector MS SCAN

205 Dibenz(a,h)anthracene, CAS: 53-70-3

Processing Results

RT	Mass	Response	Amount
16.78	278.00	215	0.016635
16.76	139.00	415	
16.78	279.00	407	

Reviewer: QN8S, 30-Aug-2024 08:07:57 -04:00:00 (UTC)

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: LCS 480-723375/2-A

Matrix: Water Lab File ID: W100259869.d

Analysis Method: 8270D LL PAH Date Collected:

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 14:38

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	29.6		0.50	0.38
83-32-9	Acenaphthene	33.7		0.50	0.30
208-96-8	Acenaphthylene	33.6		0.50	0.34
120-12-7	Anthracene	36.7		0.50	0.39
56-55-3	Benzo[a]anthracene	31.7		0.50	0.40
50-32-8	Benzo[a]pyrene	31.7		0.50	0.33
205-99-2	Benzo[b]fluoranthene	37.2		0.50	0.30
191-24-2	Benzo[g,h,i]perylene	29.8		0.50	0.37
207-08-9	Benzo[k]fluoranthene	30.0		0.50	0.085
218-01-9	Chrysene	32.2		0.50	0.32
53-70-3	Dibenz(a,h)anthracene	32.3		0.50	0.33
206-44-0	Fluoranthene	36.0		0.50	0.36
86-73-7	Fluorene	36.5		0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	31.7		0.50	0.44
91-20-3	Naphthalene	30.3		0.50	0.42
85-01-8	Phenanthrene	36.6		0.50	0.38
129-00-0	Pyrene	33.5		0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	101		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	83		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	90		24-136

Report Date: 03-Sep-2024 11:24:04 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259869.d

Lims ID: LCS 480-723375/2-A

Client ID:

Sample Type: LCS

Inject. Date: 29-Aug-2024 14:38:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-006

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:09:54

First Level Reviewer: QN8S	First Level Reviewer: QN8S Date: 30-Aug-2024 08:09:54								
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	95	135574	4.00	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	512255	4.00	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	284369	4.00	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	96	463061	4.00	4.00	
* 5 Chrysene-d12	240	13.425	13.419	0.006	99	434231	4.00	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	448777	4.00	4.00	
\$ 7 2-Fluorophenol	112		5.096				ND	ND	
\$ 8 Phenol-d5	99		6.111				8.00	ND	
\$ 9 Nitrobenzene-d5	82	7.169	7.174	-0.005	88	412777	8.00	6.67	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	786898	8.00	8.11	
\$ 11 2,4,6-Tribromophenol	330		10.358				ND	ND	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	872449	8.00	7.17	
13 1,4-Dioxane	88	3.691	3.605	0.086	94	63626	8.00	2.71	а
14 N-Nitrosodimethylamine	42	3.931	3.878	0.053	91	82993	8.00	3.39	
15 Pyridine	52	3.985	3.921	0.064	97	241745	16.0	7.31	
33 Benzaldehyde	77	6.026	6.031	-0.005	96	543326	16.0	11.8	
34 Phenol	94		6.127				8.00	ND	
36 Aniline	93	6.148	6.148	0.000	98	474961	8.00	5.97	
37 Bis(2-chloroethyl)ether	93	6.186	6.186	0.000	98	378671	8.00	8.26	
40 n-Decane	57	6.303	6.298	0.005	87	212493	8.00	3.80	
39 2-Chlorophenol	128		6.330				ND	ND	
41 1,3-Dichlorobenzene	146	6.485	6.485	0.000	98	349305	8.00	6.65	
42 1,4-Dichlorobenzene	146	6.565	6.565	0.000	93	365562	8.00	6.88	
43 Benzyl alcohol	108	6.683	6.683	0.000	92	175633	8.00	5.26	
45 1,2-Dichlorobenzene	146	6.752	6.752	0.000	96	342508	8.00	6.89	
47 2,2'-oxybis[1-chloropropane]	45	6.822	6.821	0.001	91	404133	8.00	5.95	
46 2-Methylphenol	108		6.827				ND	ND	
48 Indene	115	6.859	6.854	0.005	90	6225330	64.0	78.0	
50 N-Nitrosodi-n-propylamine	70	6.971	6.971	0.000	88	237206	8.00	7.16	
52 Acetophenone	105	6.987	6.992	-0.005	95	496235	8.00	7.61	
51 4-Methylphenol	108	7.003	6.998	0.005	86	4905	8.00	0.1266	а
57 Hexachloroethane	117	7.142	7.142	0.000	94	130566	8.00	6.17	
								_	

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259869.d							
RT Adj RT Dlt RT		al Amt OnCol Am					
Compound Sig (min.) (min.) Q	Response n	g/uL ng/uL	Flags				
50 NP 1 77 7 400 7 405 0 004 00	070000	0.70					
58 Nitrobenzene 77 7.196 7.195 0.001 86		6.76					
62 Isophorone 82 7.441 7.447 -0.006 99		3.00 7.45					
65 2-Nitrophenol 139 7.548		ND ND					
66 2,4-Dimethylphenol 107 7.580 7.580 0.000 95 69 Bis(2-chloroethoxy)methane 93 7.650 7.655 -0.005 99		3.00 0.6779 3.00 7.20					
69 Bis(2-chloroethoxy)methane 93 7.650 7.655 -0.005 99 70 Benzoic acid 105 7.692		ND ND	U				
70 Benzoic acid 105 7.692 72 2,4-Dichlorophenol 162 7.837		ND ND	U				
72 2,4-Dictioropherior 102 7.837 74 1,2,4-Trichlorobenzene 180 7.895 7.895 0.000 93		3.00 7.05					
76 Naphthalene 128 7.986 7.986 0.000 98		3.00 7.03 3.00 7.58					
78 4-Chloroaniline 127 8.024 8.024 0.000 96		3.00 7.38 3.00 7.37					
79 2,6-Dichlorophenol 162 8.045		ND ND					
81 Hexachlorobutadiene 225 8.104 8.104 0.000 97		3.00 6.02					
85 Caprolactam 113 8.339 8.376 -0.037 84		6.0 2.52					
86 4-Chloro-3-methylphenol 107 8.531		ND ND					
89 2-Methylnaphthalene 142 8.675 8.675 0.000 91		3.00 7.39					
91 1-Methylnaphthalene 142 8.777 8.777 0.000 92		3.00 7.64					
92 Hexachlorocyclopentadiene 237 8.830 8.830 0.000 97		3.00 4.14					
94 1,2,4,5-Tetrachlorobenzene 216 8.841 8.841 0.000 99		3.00 7.59					
96 2,4,6-Trichlorophenol 196 8.953		ND ND					
97 2,4,5-Trichlorophenol 196 9.028		ND ND					
101 1,1'-Biphenyl 154 9.108 9.108 0.000 96		3.00 8.09					
102 2-Chloronaphthalene 162 9.145 9.145 0.000 97		3.00 7.87					
104 2-Nitroaniline 65 9.226 9.226 0.000 85		6.00 6.19	а				
108 Dimethyl phthalate 163 9.359 9.359 0.000 99		3.00 2.76	_				
109 1,3-Dinitrobenzene 168 9.407 9.407 0.000 89		3.00 7.32					
110 2,6-Dinitrotoluene 165 9.429 9.429 0.001 96		8.00 8.05					
111 Acenaphthylene 152 9.535 9.535 0.000 98		8.00 8.39					
112 3-Nitroaniline 138 9.600 9.599 0.001 96		6.00 6.91	а				
113 2,4-Dinitrophenol 184 9.685		ND ND					
114 Acenaphthene 153 9.690 9.690 0.000 96	689151 8	8.00 8.41					
116 2,4-Dinitrotoluene 165 9.797 9.792 0.005 93	216279 8	3.00 7.57					
115 4-Nitrophenol 109 9.808		ND ND					
118 Dibenzofuran 168 9.840 9.840 0.000 96	926751 8	3.00 8.21					
121 2,3,4,6-Tetrachlorophenol 232 9.952		ND ND					
122 Hexadecane 57 9.963 9.963 0.000 96	376254 8	6.13					
124 Diethyl phthalate 149 9.974 9.973 0.001 98	560625 8	6.32					
126 4-Chlorophenyl phenyl ether 204 10.112 10.112 0.000 95	363812 8	3.00 8.51					
130 4-Nitroaniline 138 10.144 10.144 0.000 56	193953 8	3.00 9.92					
129 Fluorene 166 10.144 10.144 0.000 94	841510 8	9.13					
131 4,6-Dinitro-2-methylphenol 198 10.160		ND ND					
133 N-Nitrosodiphenylamine 169 10.214 10.214 0.000 63	531576 8	3.00 8.21					
132 Diphenylamine 169 10.214 10.214 0.000 94	531576 6	5.84 7.02					
135 1,2-Diphenylhydrazine 77 10.251 10.251 0.000 41	812293 8	3.00 7.77	а				
134 Azobenzene 77 10.251 10.251 0.000 100	800246 8	.00 7.55					
143 4-Bromophenyl phenyl ether 248 10.540 10.540 0.000 69		8.00 8.46					
146 Hexachlorobenzene 284 10.636 10.636 0.000 95	284298 8	.00 9.95					
147 Atrazine 200 10.641 10.641 0.000 92	555511 1	6.0 22.1					
148 n-Octadecane 57 10.748 10.748 0.000 96		6.50					
152 Pentachlorophenol 266 10.801		ND ND					
156 Phenanthrene 178 10.983 10.983 0.000 98		.00 9.15					
157 Anthracene 178 11.026 11.026 0.000 99		.00 9.17					
158 Carbazole 167 11.149 11.149 0.000 96		.00 10.5					

Report Date: 03-Sep-2024 11:24:04 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259869.d Data File:

Data File. //Ciliotiiis/Datialo/CiliotiiData/iii 0575W/20240025-115704.b/W100255005.d									
	0:	, RT	Adj RT	Dlt RT		1	Cal Amt	OnCol Amt	-
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
161 Di-n-butyl phthalate	149	11.357	11.357	0.000	100	1182014	8.00	7.80	
168 Fluoranthene	202	12.030	12.030	0.000	98	1226609	8.00	9.00	
170 Benzidine	184	12.100	12.105	-0.005	99	344873	8.00	11.5	
172 Pyrene	202	12.249	12.249	0.000	97	1259694	8.00	8.38	
183 Butyl benzyl phthalate	149	12.741	12.741	0.000	97	396596	8.00	5.40	
187 Bis(2-ethylhexyl) phthalate	149	13.270	13.270	0.000	97	757904	8.00	7.28	
189 3,3'-Dichlorobenzidine	252	13.339	13.339	0.000	74	438289	8.00	10.9	
190 Benzo[a]anthracene	228	13.409	13.408	0.001	99	1115444	8.00	7.93	
191 Chrysene	228	13.451	13.446	0.005	97	1016100	8.00	8.06	
193 Di-n-octyl phthalate	149	13.921	13.921	0.000	99	1221560	8.00	7.15	
196 Benzo[b]fluoranthene	252	14.579	14.578	0.001	96	1198258	8.00	9.29	
197 Benzo[k]fluoranthene	252	14.611	14.610	0.001	99	1016567	8.00	7.50	
201 Benzo[a]pyrene	252	15.006	15.006	0.000	77	925453	8.00	7.93	
205 Dibenz(a,h)anthracene	278	16.737	16.726	0.011	90	1062047	8.00	8.07	
204 Indeno[1,2,3-cd]pyrene	276	16.742	16.731	0.011	99	1239676	8.00	7.92	
206 Benzo[g,h,i]perylene	276	17.250	17.244	0.006	98	926446	8.00	7.44	
S 254 3-Methylphenol	1				0		8.00	0.1266	

QC Flag Legend Processing Flags

ND - Not Detected or Marked ND

Review Flags

U - Marked Undetected

a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent Report Date: 03-Sep-2024 11:24:04 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240829-119764.b\\W100259869.d

Injection Date: 29-Aug-2024 14:38:30 Instrument ID: HP5973W

Lims ID: LCS 480-723375/2-A

Client ID:

Operator ID: ED ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Report Date: 03-Sep-2024 11:24:04 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259869.d

Lims ID: LCS 480-723375/2-A

Client ID:

Sample Type: LCS

Inject. Date: 29-Aug-2024 14:38:30 ALS Bottle#: 6 Worklist Smp#: 6

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-006

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 30-Aug-2024 08:09:54

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	6.67	83.36
\$ 10 2-Fluorobiphenyl	8.00	8.11	101.40
\$ 12 p-Terphenyl-d14	8.00	7.17	89.56

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Client Sample ID: LCSD 480-723375/3-A

Matrix: Water Lab File ID: W100259870.d

Analysis Method: 8270D LL PAH Date Collected:

Extract. Method: 3510C Date Extracted: 08/28/2024 13:06

Sample wt/vol: 250(mL) Date Analyzed: 08/29/2024 15:04

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: RXI-5Sil MS ID: 0.25(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) $\underline{\text{N}}$

Cleanup Factor: Level: (low/med) Low

Analysis Batch No.: 723480 Units: ug/L

Preparation Batch No.: 723375 Instrument ID: HP5973W

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
91-57-6	2-Methylnaphthalene	31.1	i	0.50	0.38
83-32-9	Acenaphthene	34.8		0.50	0.30
208-96-8	Acenaphthylene	35.2		0.50	0.34
120-12-7	Anthracene	39.1		0.50	0.39
56-55-3	Benzo[a]anthracene	33.9		0.50	0.40
50-32-8	Benzo[a]pyrene	34.6		0.50	0.33
205-99-2	Benzo[b]fluoranthene	39.8		0.50	0.30
191-24-2	Benzo[g,h,i]perylene	32.9		0.50	0.37
207-08-9	Benzo[k]fluoranthene	32.7		0.50	0.085
218-01-9	Chrysene	34.2		0.50	0.32
53-70-3	Dibenz(a,h)anthracene	35.1		0.50	0.33
206-44-0	Fluoranthene	38.6		0.50	0.36
86-73-7	Fluorene	38.5		0.50	0.37
193-39-5	Indeno[1,2,3-cd]pyrene	34.6		0.50	0.44
91-20-3	Naphthalene	32.2		0.50	0.42
85-01-8	Phenanthrene	38.3		0.50	0.38
129-00-0	Pyrene	35.6		0.50	0.36

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl (Surr)	105		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	88		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	94		24-136

Report Date: 03-Sep-2024 11:24:09 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Target Compound Quantitation Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259870.d

Lims ID: LCSD 480-723375/3-A

Client ID:

Sample Type: LCSD

Inject. Date: 29-Aug-2024 15:04:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-007

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:04:24

First Level Reviewer: QN8S			D	ate:		03-Sep-2024 11:04:24			
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
* 1 1,4-Dichlorobenzene-d4	152	6.544	6.544	0.000	95	132685	4.00	4.00	
* 2 Naphthalene-d8	136	7.965	7.965	0.000	99	487403	4.00	4.00	
* 3 Acenaphthene-d10	164	9.658	9.658	0.000	93	273103	4.00	4.00	
4 Phenanthrene-d10	188	10.962	10.962	0.000	97	443199	4.00	4.00	
* 5 Chrysene-d12	240	13.425	13.419	0.006	99	419341	4.00	4.00	
* 6 Perylene-d12	264	15.075	15.075	0.000	99	430950	4.00	4.00	
\$ 7 2-Fluorophenol	112		5.096				ND	ND	
\$ 8 Phenol-d5	99		6.111					ND	
\$ 9 Nitrobenzene-d5	82	7.174	7.174	0.000	88	416592	8.00	7.07	
\$ 10 2-Fluorobiphenyl	172	9.012	9.012	0.000	100	780734	8.00	8.38	
\$ 11 2,4,6-Tribromophenol	330		10.358				ND	ND	
\$ 12 p-Terphenyl-d14	244	12.324	12.324	0.000	98	880168	8.00	7.49	
13 1,4-Dioxane	88		3.605				ND	ND	
14 N-Nitrosodimethylamine	42	3.931	3.878	0.053	92	84017	8.00	3.51	
15 Pyridine	52	3.985	3.921	0.064	97	242769	16.0	7.50	
33 Benzaldehyde	77	6.026	6.031	-0.005	95	541232	16.0	12.0	
34 Phenol	94		6.127				ND	ND	U
36 Aniline	93	6.148	6.148	0.000	98	479029	8.00	6.15	
37 Bis(2-chloroethyl)ether	93	6.186	6.186	0.000	96	374351	8.00	8.35	
40 n-Decane	57	6.303	6.298	0.005	87	204390	8.00	3.73	
39 2-Chlorophenol	128		6.330				ND	ND	
41 1,3-Dichlorobenzene	146	6.485	6.485	0.000	98	354431	8.00	6.90	
42 1,4-Dichlorobenzene	146	6.565	6.565	0.000	94	363420	8.00	6.99	
43 Benzyl alcohol	108	6.683	6.683	0.000	93	178180	8.00	5.45	
45 1,2-Dichlorobenzene	146	6.752	6.752	0.000	96	342333	8.00	7.03	
47 2,2'-oxybis[1-chloropropane]	45	6.822	6.821	0.001	91	401276	8.00	6.03	
46 2-Methylphenol	108		6.827				ND	ND	
48 Indene	115	6.859	6.854	0.005	90	6097676	64.0	80.3	Е
50 N-Nitrosodi-n-propylamine	70	6.971	6.971	0.000	87	233798	8.00	7.21	
52 Acetophenone	105	6.987	6.992	-0.005	97	510466	8.00	8.00	
51 4-Methylphenol	108	7.009	6.998	0.011	87	4162	8.00	0.1127	
57 Hexachloroethane	117	7.142	7.142	0.000	93	128331	8.00	6.20	
					-			-	

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259870.d									
		RT	Adj RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ng/uL	ng/uL	Flags
FO NEL		7.400	7.405	0.004	00	001001	0.00	7.40	
58 Nitrobenzene	77	7.196	7.195	0.001	86	381934	8.00	7.16	
62 Isophorone	82	7.441	7.447	-0.006	99	733453	8.00	7.91	
65 2-Nitrophenol	139	7 500	7.548	0.000	02	20411	ND	ND	
66 2,4-Dimethylphenol	107	7.580	7.580	0.000	93	30411	8.00	0.6552	
69 Bis(2-chloroethoxy)methane	93 105	7.650	7.655	-0.005	99	412058	8.00	7.62	
70 Benzoic acid	105		7.692				ND	ND	
72 2,4-Dichlorophenol	162	7 005	7.837	0.000	0.4	270007	ND	ND	
74 1,2,4-Trichlorobenzene	180	7.895	7.895	0.000	94	270087	8.00	7.28	
76 Naphthalene	128	7.986	7.986	0.000	98	1060420	8.00	8.06	
78 4-Chloroaniline	127	8.024	8.024	0.000	96	391824	8.00	8.06	
79 2,6-Dichlorophenol	162	0 104	8.045	0.000	00	120077	ND 8 00	ND 6.07	
81 Hexachlorobutadiene	225	8.104	8.104	0.000	98	138077	8.00	6.07	
85 Caprolactam	113	8.339	8.376	-0.037 0.005	83	39347	16.0	2.62	
86 4-Chloro-3-methylphenol	107	8.536	8.531		95 01	2230	8.00	0.1111	
89 2-Methylnaphthalene	142	8.675	8.675	0.000	91	616215	8.00	7.77	
91 1-Methylnaphthalene	142	8.777	8.777	0.000	92	651068	8.00	8.16	
92 Hexachlorocyclopentadiene	237	8.830	8.830	0.000	98	108583	8.00	4.16	
94 1,2,4,5-Tetrachlorobenzene	216	8.841	8.841	0.000	98	278815	8.00	7.73	
96 2,4,6-Trichlorophenol	196		8.953				ND	ND	
97 2,4,5-Trichlorophenol	196	0.400	9.028	0.000	00	000000	ND	ND	
101 1,1'-Biphenyl	154	9.108	9.108	0.000	96	833360	8.00	8.40	
102 2-Chloronaphthalene	162	9.145	9.145	0.000	97	635977	8.00	8.20	
104 2-Nitroaniline	65	9.226	9.226	0.000	85	179368	8.00	6.79	а
108 Dimethyl phthalate	163	9.359	9.359	0.000	99	244774	8.00	2.76	
109 1,3-Dinitrobenzene	168	9.407	9.407	0.000	89	116983	8.00	8.05	
110 2,6-Dinitrotoluene	165	9.429	9.429	0.001	95	176844	8.00	8.71	
111 Acenaphthylene	152	9.535	9.535	0.000	98	1081075	8.00	8.79	
112 3-Nitroaniline	138	9.600	9.599	0.001	96	145052	8.00	7.52	а
113 2,4-Dinitrophenol	184	0.000	9.685	0.000	0.5	00.4700	ND	ND	
114 Acenaphthene	153	9.690	9.690	0.000	95	684720	8.00	8.71	
116 2,4-Dinitrotoluene	165	9.797	9.792	0.005	93	223471	8.00	8.14	
115 4-Nitrophenol	109		9.808				ND	ND	
118 Dibenzofuran	168	9.840	9.840	0.000	96	948737	8.00	8.76	
121 2,3,4,6-Tetrachlorophenol	232		9.952				ND	ND	
122 Hexadecane	57	9.963	9.963	0.000	96	367109	8.00	6.23	
124 Diethyl phthalate	149	9.973	9.973	0.000	98	554791	8.00	6.51	
126 4-Chlorophenyl phenyl ether	204	10.112	10.112	0.000	95	363863	8.00	8.86	
130 4-Nitroaniline	138	10.144	10.144	0.000	57	178306	8.00	9.50	
129 Fluorene	166	10.144	10.144	0.000	93	850965	8.00	9.62	
131 4,6-Dinitro-2-methylphenol	198		10.160				ND	ND	
133 N-Nitrosodiphenylamine	169	10.214	10.214	0.000	63	553463	8.00	8.94	
132 Diphenylamine	169	10.214	10.214	0.000	94	553463	6.84	7.64	
135 1,2-Diphenylhydrazine	77		10.251				ND	ND	
134 Azobenzene	77	10.251	10.251	0.000	100	814724	8.00	8.03	
143 4-Bromophenyl phenyl ether	248	10.545	10.540	0.005	69	229131	8.00	9.17	
146 Hexachlorobenzene	284	10.636	10.636	0.000	95	295062	8.00	10.8	
147 Atrazine	200	10.641	10.641	0.000	93	570620	16.0	23.7	
148 n-Octadecane	57	10.748	10.748	0.000	96	420682	8.00	6.97	
152 Pentachlorophenol	266		10.801				ND	ND	
156 Phenanthrene	178	10.983	10.983	0.000	99	1164625	8.00	9.56	
157 Anthracene	178	11.031	11.026	0.005	98	1180546	8.00	9.78	
158 Carbazole	167	11.149	11.149	0.000	96	1028244	8.00	11.4	
	-					= '		•	

Report Date: 03-Sep-2024 11:24:09 Chrom Revision: 2.3 20-Aug-2024 19:34:52 \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259870.d Data File:

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	Cal Amt ng/uL	OnCol Amt ng/uL	Flags
161 Din butul abthalata	140	11.357	11.357	0.000	100	1209395	9.00	0.24	
161 Di-n-butyl phthalate	149				100		8.00	8.34	
168 Fluoranthene	202	12.030	12.030	0.000	98	1258522	8.00	9.65	
170 Benzidine	184	12.100	12.105	-0.005	99	354493	8.00	12.3	
172 Pyrene	202	12.249	12.249	0.000	97	1293424	8.00	8.91	
183 Butyl benzyl phthalate	149	12.741	12.741	0.000	98	408811	8.00	5.75	
187 Bis(2-ethylhexyl) phthalate	149	13.270	13.270	0.000	97	789721	8.00	7.85	
189 3,3'-Dichlorobenzidine	252	13.339	13.339	0.000	74	454520	8.00	11.7	
190 Benzo[a]anthracene	228	13.409	13.408	0.001	99	1149407	8.00	8.47	
191 Chrysene	228	13.451	13.446	0.005	96	1039747	8.00	8.54	
193 Di-n-octyl phthalate	149	13.921	13.921	0.000	100	1274814	8.00	7.71	
196 Benzo[b]fluoranthene	252	14.578	14.578	0.000	97	1230384	8.00	9.94	
197 Benzo[k]fluoranthene	252	14.611	14.610	0.001	99	1062959	8.00	8.17	
201 Benzo[a]pyrene	252	15.006	15.006	0.000	77	969217	8.00	8.64	
205 Dibenz(a,h)anthracene	278	16.737	16.726	0.011	89	1109128	8.00	8.78	
204 Indeno[1,2,3-cd]pyrene	276	16.742	16.731	0.011	97	1300266	8.00	8.65	
206 Benzo[g,h,i]perylene	276	17.255	17.244	0.011	98	983379	8.00	8.23	
S 254 3-Methylphenol	1				0		8.00	0.1127	

QC Flag Legend Processing Flags

ND - Not Detected or Marked ND

E - Exceeded Maximum Amount

Review Flags

U - Marked Undetected

a - User Assigned ID

Reagents:

MB_LLIS_WRK_00279 Amount Added: 20.00 Units: uL Run Reagent Report Date: 03-Sep-2024 11:24:09 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo

Data File: \\chromfs\\Buffalo\ChromData\\HP5973\\W20240829-119764.b\\W100259870.d

Injection Date: 29-Aug-2024 15:04:30 Instrument ID: HP5973W

Lims ID: LCSD 480-723375/3-A

Client ID:

Operator ID: ED ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Method: W-LVI-8270 Limit Group: MB - 8270D ICAL

Column: RXI-5Sil MS (0.25 mm)

Report Date: 03-Sep-2024 11:24:09 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Buffalo Recovery Report

Data File: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W100259870.d

Lims ID: LCSD 480-723375/3-A

Client ID:

Sample Type: LCSD

Inject. Date: 29-Aug-2024 15:04:30 ALS Bottle#: 7 Worklist Smp#: 7

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 480-0119764-007

Operator ID: ED Instrument ID: HP5973W

Method: \\chromfs\Buffalo\ChromData\HP5973W\20240829-119764.b\W-LVI-8270.m

Limit Group: MB - 8270D ICAL

Last Update:03-Sep-2024 11:23:51Calib Date:17-Aug-2024 00:29:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Buffalo\ChromData\HP5973W\20240816-119562.b\W100259752.d

Column 1: RXI-5Sil MS (0.25 mm) Det: MS SCAN

Process Host: CTX1615

First Level Reviewer: QN8S Date: 03-Sep-2024 11:04:24

Compound	Amount Added	Amount Recovered	% Rec.
\$ 9 Nitrobenzene-d5	8.00	7.07	88.40
\$ 10 2-Fluorobiphenyl	8.00	8.38	104.77
\$ 12 p-Terphenyl-d14	8.00	7.49	93.57

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973W Start Date: 08/16/2024 13:47

Analysis Batch Number: 722078 End Date: 08/17/2024 00:29

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-722078/2		08/16/2024 13:47	1	W100259728.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/3		08/16/2024 14:14	1	W100259729.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/4		08/16/2024 14:41	1	W100259730.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/5		08/16/2024 15:07	1	W100259731.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/6		08/16/2024 15:34	1	W100259732.d	RXI-5Sil MS 0.25(mm)
ICIS 480-722078/7		08/16/2024 16:01	1	W100259733.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/8		08/16/2024 16:28	1	W100259734.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/9		08/16/2024 16:54	1	W100259735.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/10		08/16/2024 17:21	1	W100259736.d	RXI-5Sil MS 0.25(mm)
ICV 480-722078/11		08/16/2024 17:48	1	W100259737.d	RXI-5Sil MS 0.25(mm)
IC 480-722078/12		08/16/2024 18:15	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/13		08/16/2024 18:42	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/14		08/16/2024 19:08	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/15		08/16/2024 19:35	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/16		08/16/2024 20:01	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/17		08/16/2024 20:28	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/18		08/16/2024 20:55	1		RXI-5Sil MS 0.25(mm)
ICV 480-722078/19		08/16/2024 21:21	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/20		08/16/2024 21:48	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/21		08/16/2024 22:15	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/22		08/16/2024 22:42	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/23		08/16/2024 23:09	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/24		08/16/2024 23:35	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/25		08/17/2024 00:02	1		RXI-5Sil MS 0.25(mm)
IC 480-722078/26		08/17/2024 00:29	1		RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973W Start Date: 08/29/2024 12:43

Analysis Batch Number: 723480 End Date: 08/29/2024 20:50

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-723480/2		08/29/2024 12:43	1	W100259865.d	RXI-5Sil MS 0.25(mm)
CCVIS 480-723480/4		08/29/2024 13:44	1	W100259867.d	RXI-5Sil MS 0.25(mm)
MB 480-723375/1-A		08/29/2024 14:10	1	W100259868.d	RXI-5Sil MS 0.25(mm)
LCS 480-723375/2-A		08/29/2024 14:38	1	W100259869.d	RXI-5Sil MS 0.25(mm)
LCSD 480-723375/3-A		08/29/2024 15:04	1	W100259870.d	RXI-5Sil MS 0.25(mm)
480-222859-4	MW-23	08/29/2024 15:31	1	W100259871.d	RXI-5Sil MS 0.25(mm)
480-222859-6	MW-07	08/29/2024 15:57	1	W100259872.d	RXI-5Sil MS 0.25(mm)
480-222859-7	MW-10	08/29/2024 16:24	1	W100259873.d	RXI-5Sil MS 0.25(mm)
480-222859-8	MW-11A	08/29/2024 16:50	1	W100259874.d	RXI-5Sil MS 0.25(mm)
480-222859-9	SW-01	08/29/2024 17:16	1	W100259875.d	RXI-5Sil MS 0.25(mm)
480-222859-10	SW-02	08/29/2024 17:43	1	W100259876.d	RXI-5Sil MS 0.25(mm)
480-222859-12	EB	08/29/2024 18:09	1	W100259877.d	RXI-5Sil MS 0.25(mm)
480-222859-13	Duplicate	08/29/2024 18:36	1	W100259878.d	RXI-5Sil MS 0.25(mm)
480-222859-16	MW-07 Bailer	08/29/2024 19:03	1	W100259879.d	RXI-5Sil MS 0.25(mm)
480-222886-3	MW-19	08/29/2024 19:30	1	W100259880.d	RXI-5Sil MS 0.25(mm)
480-222886-4	MW-19 (BAILER)	08/29/2024 19:57	1	W100259881.d	RXI-5Sil MS 0.25(mm)
480-222886-6	MW-13	08/29/2024 20:24	1	W100259882.d	RXI-5Sil MS 0.25(mm)
480-222886-7	MW-17	08/29/2024 20:50	1	W100259883.d	RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973W Start Date: 08/30/2024 11:22

Analysis Batch Number: 723618 End Date: 08/30/2024 22:34

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-723618/2		08/30/2024 11:22	1	W100259886.d	RXI-5Sil MS 0.25(mm)
CCVIS 480-723618/3		08/30/2024 12:20	1	W100259887.d	RXI-5sil MS 0.25(mm)
CCV 480-723618/6		08/30/2024 13:40	1	W100259890.d	RXI-5sil MS 0.25(mm)
480-222859-16 DL	MW-07 Bailer DL	08/30/2024 14:34	20	W100259892.d	RXI-5sil MS 0.25(mm)
ZZZZZ		08/30/2024 15:00	50		RXI-5sil MS 0.25(mm)
ZZZZZ		08/30/2024 15:27	50		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 15:53	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 16:20	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 16:46	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 17:13	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 17:40	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 18:07	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 18:34	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 19:00	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 19:27	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 19:54	200		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 20:21	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 20:48	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 21:15	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 21:41	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 22:08	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		08/30/2024 22:34	1		RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973W Start Date: 09/03/2024 10:48

Analysis Batch Number: 723782 End Date: 09/03/2024 22:03

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-723782/2		09/03/2024 10:48	1	W100259913.d	RXI-5Sil MS 0.25(mm)
CCVIS 480-723782/3		09/03/2024 11:28	1	W100259914.d	RXI-5Sil MS 0.25(mm)
480-222886-3 DL	MW-19 DL	09/03/2024 12:47	200	W100259917.d	RXI-5Sil MS 0.25(mm)
480-222886-4 DL	MW-19 (BAILER) DL	09/03/2024 13:13	200	W100259918.d	RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 13:40	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 14:07	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 14:34	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 15:00	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 15:27	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 15:53	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 16:20	1		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 16:46	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 17:13	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 17:39	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 18:06	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 18:32	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 18:58	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 19:25	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 19:51	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 20:18	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 20:44	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 21:10	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 21:37	100		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/03/2024 22:03	100		RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973Y Start Date: 07/15/2024 17:46

Analysis Batch Number: 718508 End Date: 07/16/2024 04:48

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-718508/2		07/15/2024 17:46	1	Y037826.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/3		07/15/2024 18:14	1	Y037827.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/4		07/15/2024 18:41	1	Y037828.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/5		07/15/2024 19:09	1	Y037829.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/6		07/15/2024 19:37	1	Y037830.D	RXI-5Sil MS 0.25(mm)
ICIS 480-718508/7		07/15/2024 20:04	1	Y037831.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/8		07/15/2024 20:32	1	Y037832.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/9		07/15/2024 21:00	1	Y037833.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/10		07/15/2024 21:27	1	Y037834.D	RXI-5Sil MS 0.25(mm)
ICV 480-718508/11		07/15/2024 21:55	1	Y037835.D	RXI-5Sil MS 0.25(mm)
IC 480-718508/12		07/15/2024 22:22	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/13		07/15/2024 22:50	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/14		07/15/2024 23:17	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/15		07/15/2024 23:45	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/16		07/16/2024 00:13	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/17		07/16/2024 00:40	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/18		07/16/2024 01:08	1		RXI-5Sil MS 0.25(mm)
ICV 480-718508/19		07/16/2024 01:35	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/20		07/16/2024 02:03	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/21		07/16/2024 02:31	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/22		07/16/2024 02:58	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/23		07/16/2024 03:26	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/24		07/16/2024 03:53	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/25		07/16/2024 04:21	1		RXI-5Sil MS 0.25(mm)
IC 480-718508/26		07/16/2024 04:48	1		RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: HP5973Y Start Date: 09/10/2024 11:01

Analysis Batch Number: 724525 End Date: 09/10/2024 13:21

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 480-724525/2		09/10/2024 11:01	1	Y038676.D	RXI-5Sil MS 0.25(mm)
CCVIS 480-724525/3		09/10/2024 11:29	1	Y038677.D	RXI-5Sil MS 0.25(mm)
480-222859-6 DL	MW-07 DL	09/10/2024 12:26	50	Y038679.D	RXI-5Sil MS 0.25(mm)
ZZZZZ		09/10/2024 12:53	20		RXI-5Sil MS 0.25(mm)
ZZZZZ		09/10/2024 13:21	5		RXI-5Sil MS 0.25(mm)

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 718508 Batch Start Date: 07/15/24 17:46 Batch Analyst: Marshall, Joseph M

Batch Method: 8270D_LL_PAH Batch End Date: ____

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis	FinalAmount	CalcMsg	MB_DFTPP_WRK 00438	MB_L1LVI_WRK 00631	MB_L1LVI_WRK 00632	MB_L1LVI_WRK 00633
DEMEN	1 15	10050				L 5 6		00001	1 00032	00000
DFTPP		8270D_LL_PAH			1 mL	Perform	1 mL			
480-718508/2						Calculation				
						left blank				
IC 480-718508/3		8270D_LL_PAH			1 mL	Perform		1 mL		
						Calculation				
						left blank				
IC 480-718508/4		8270D_LL_PAH			1 mL	Perform			1 mL	
						Calculation				
						left blank				
IC 480-718508/5		8270D_LL_PAH			1 mL	Perform				1 mL
						Calculation				
						left blank				
IC 480-718508/6		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
ICIS		8270D LL PAH			1 mL	Perform				
480-718508/7						Calculation				
						left blank				
IC 480-718508/8		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
IC 480-718508/9		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
IC		8270D_LL_PAH			1 mL	Perform				
480-718508/10						Calculation				
						left blank				
ICV		8270D_LL_PAH			1 mL	Perform				
480-718508/11					<u> </u>	Calculation				
,,						left blank				
	I.	1				1 TOTO DIGITA	I	I	I	I

Lab Sample ID	Client Sample	Method Chain	Matrix Basi	MB L1LVI WRK	MB L1SSLV WRK				
	ID			00634	00635	00636	00637	00638	00054
DFTPP 480-718508/2		8270D_LL_PAH							
IC 480-718508/3		8270D_LL_PAH							
IC 480-718508/4		8270D_LL_PAH							
IC 480-718508/5		8270D_LL_PAH							
IC 480-718508/6		8270D_LL_PAH		1 mL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Buffalo	Job No.: 480-222859-1	
SDG No.: 222859		
Batch Number: 718508	Batch Start Date: 07/15/24 17:46	Batch Analyst: Marshall, Joseph M
Batch Method: 8270D_LL_PAH	Batch End Date:	

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis		MB L1LVI WRK	MB L1LVI WRK	MB L1LVI WRK	MB L1LVI WRK	MB L1SSLV WRK
	ID				00634	00635	00636	00637	00638	00054
ICIS 480-718508/7		8270D_LL_PAH				1 mL				
IC 480-718508/8		8270D_LL_PAH					1 mL			
IC 480-718508/9		8270D_LL_PAH						1 mL		
IC 480-718508/10		8270D_LL_PAH							1 mL	
ICV 480-718508/11		8270D_LL_PAH								1 mL

Batc	h Notes

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 722078 Batch Start Date: 08/16/24 13:47 Batch Analyst: Dojka, Elissa M

Batch Method: 8270D_LL_PAH Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	FinalAmount	CalcMsg	MB_DFTPP_WRK 00441	MB_L1LVI_WRK 00631	MB_L1LVI_WRK 00632	MB_L1LVI_WRK 00633
DFTPP		8270D_LL_PAH			1 mL	Perform	1 mL			
480-722078/2						Calculation				
						left blank				
IC 480-722078/3		8270D_LL_PAH			1 mL	Perform		1 mL		
						Calculation				
						left blank				
IC 480-722078/4		8270D_LL_PAH			1 mL	Perform			1 mL	
						Calculation				
						left blank				
IC 480-722078/5		8270D_LL_PAH			1 mL	Perform				1 mL
						Calculation				
						left blank				
IC 480-722078/6		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
ICIS		8270D_LL_PAH			1 mL	Perform				
480-722078/7						Calculation				
						left blank				
IC 480-722078/8		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
IC 480-722078/9		8270D_LL_PAH			1 mL	Perform				
						Calculation				
						left blank				
IC		8270D_LL_PAH			1 mL	Perform				
480-722078/10						Calculation				
						left blank				
ICV		8270D_LL_PAH			1 mL	Perform				
480-722078/11						Calculation				
						left blank				

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis	MB L1LVI WRK	MB L1SSLV WRK				
	ID				00634	00635	00636	00637	00638	00054
DFTPP		8270D_LL_PAH								
480-722078/2										
IC 480-722078/3		8270D_LL_PAH								
IC 480-722078/4		8270D_LL_PAH								
IC 480-722078/5		8270D_LL_PAH								
IC 480-722078/6		8270D_LL_PAH			1 mL					

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Buffalo	Job No.: 480-222859-1	
SDG No.: 222859		
Batch Number: 722078	Batch Start Date: 08/16/24 13:47	Batch Analyst: Dojka, Elissa M
Batch Method: 8270D LL PAH	Batch End Date:	

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis	MB_L1LVI_WRK 00634	MB_L1LVI_WRK 00635	MB_L1LVI_WRK 00636	MB_L1LVI_WRK 00637	MB_L1LVI_WRK 00638	MB_L1SSLV_WRK 00054
	1.0				00031		00030	00037	00030	00001
ICIS		8270D LL PAH				1 mL				
480-722078/7										
IC 480-722078/8		8270D_LL_PAH					1 mL			
IC 480-722078/9		8270D_LL_PAH						1 mL		
IC 480-722078/10		8270D_LL_PAH							1 mL	
ICV 480-722078/11		8270D_LL_PAH								1 mL

Bat	ch Notes

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723375 Batch Start Date: 08/28/24 13:06 Batch Analyst: Capelli, Lane S

Batch Method: 3510C Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	InitialAmount	FinalAmount	ReceivedpH	FirstAdjustpH	O_8270LL LCS 00158	0_8270LLsurr 00102
MB 480-723375/1		3510C, 8270D LL PAH			250 mL	1 mL	6 SU	>11 SU		1 mL
LCS 480-723375/2		3510C, 8270D LL PAH			250 mL	1 mL	6 SU	>11 SU	1 mL	1 mL
LCSD 480-723375/3		3510C, 8270D LL PAH			250 mL	1 mL	6 SU	>11 SU	1 mL	1 mL
480-222859-B-4	MW-23	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-A-6	MW-07	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-A-7	MW-10	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-B-8	MW-11A	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-B-9	SW-01	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-C-10	SW-02	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-A-12	EB	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-B-13	Duplicate	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222859-B-16	MW-07 Bailer	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222886-B-3	MW-19	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222886-A-4	MW-19 (BAILER)	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222886-A-6	MW-13	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL
480-222886-B-7	MW-17	3510C, 8270D LL PAH	Water	Т	250 mL	1 mL	7 SU	>11 SU		1 mL

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723375 Batch Start Date: 08/28/24 13:06 Batch Analyst: Capelli, Lane S

Batch Method: 3510C Batch End Date:

Bato	h Notes
Method/Fraction	3510C_LVI/8270D_LL_PAH
Balance is Level? (Y/N)	no
pH Indicator ID	HC325179
Analyst ID - Extraction	LC
Analyst ID - Spike Analyst	LC
Analyst ID - Spike Witness Analyst	LC
Sufficient Volume for Batch QC	No
Base Used to Adjust pH ID	8044302
Prep Solvent ID	8052785
Prep Solvent Volume Used	60 mL
Glass Wool ID	34021999
Na2SO4 ID	8038697
Analyst ID - Concentration	LC
Vial Lot Number	00259742

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

8270D_LL_PAH Page 2 of 2

GENERAL CHEMISTRY

COVER PAGE GENERAL CHEMISTRY

Lab Name	e: Eurofins Buffalo	Job Number: 480-222859-1	
SDG No.:	222859		
Project:	GEI, Mineral Springs		
	Client Sample ID	Lab Sample ID	
	MW-14	480-222859-1	
	MW-20	480-222859-2	
	MW-22	480-222859-3	
	MW-23	480-222859-4	
	MW-16	480-222859-5	
	MW-11A	480-222859-8	
	SW-01	480-222859-9	
	SW-02	480-222859-10	
	EB	480-222859-12	
	Duplicate	480-222859-13	
	MW-20 Bailer	480-222859-14	
	MW-16 Bailer	480-222859-15	
	MW-12	480-222886-1	
	MW-12 (BAILER)	480-222886-2	
	MW-20 LOW FLOW 2)	480-222886-5	
	MW-13	480-222886-6	
	MW-17	480-222886-7	
	MW-16 (LOW FLOW 2)	480-222886-8	
	MW-21	480-222886-10	

Comments:

COVER PAGE GENERAL CHEMISTRY

Lab Name	e: Eurofins Edison	Job Number: 480-222859-1
SDG No.:	222859	
Project:	GEI, Mineral Springs	
	Client Sample ID	Lab Sample ID
	MW-14	480-222859-1
	MW-20	480-222859-2
	MW-22	480-222859-3
	MW-23	480-222859-4
	MW-16	480-222859-5
	MW-11A	480-222859-8
	SW-01	480-222859-9
	SW-02	480-222859-10
	EB	480-222859-12
	Duplicate	480-222859-13
	MW-20 Bailer	480-222859-14
	MW-16 Bailer	480-222859-15
	MW-12	480-222886-1
	MW-12 (BAILER)	480-222886-2
	MW-20 LOW FLOW 2)	480-222886-5
	MW-13	480-222886-6
	MW-17	480-222886-7
	MW-16 (LOW FLOW 2)	480-222886-8
	MW-21	480-222886-10

Comments:

Client Sample ID: MW-14 Lab Sample ID: 480-222859-1

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 10:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.67	0.020	0.0082	mg/L			2	9012B

Client Sample ID: MW-20 Lab Sample ID: 480-222859-2

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 10:30

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.79	0.10	0.041	mg/L			10	9012B

Client Sample ID: MW-22 Lab Sample ID: 480-222859-3

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 12:45

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.50	0.020	0.0082	mg/L			2	9012B

Client Sample ID: MW-23 Lab Sample ID: 480-222859-4

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 09:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.13	0.010	0.0041	mg/L			1	9012B

Lab Sample ID: 480-222859-5 Client Sample ID: MW-16 Job No.: 480-222859-1

Lab Name: Eurofins Buffalo

SDG ID.: 222859

Date Sampled: 08/26/2024 13:20 Matrix: Ground Water

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	4.9	0.20	0.082	mg/L			20	9012B

Client Sample ID: MW-11A Lab Sample ID: 480-222859-8

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 11:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.23	0.010	0.0041	mg/L			1	9012B

CAS No. Analyte Result RL Units C Q DIL Method

Total Suspended 45.6 4.0 mg/L 1 SM 2540D

Instrument ID: Balance-1

Preparation Batch Number:

Solids

Client Sample ID: SW-01 Lab Sample ID: 480-222859-9

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Surface Water Date Sampled: 08/26/2024 12:40

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.0092	0.010	0.0041	mg/L	J		1	9012B

Client Sample ID: SW-01

Lab Name: Eurofins Buffalo

SDG ID.: 222859

Matrix: Surface Water

Date Sampled: 08/26/2024 12:40

Reporting Basis: WET

Lab Sample ID: 480-222859-9

Job No.: 480-222859-1

Date Sampled: 08/26/2024 12:40

Date Received: 08/26/2024 14:30

Preparation Batch Number: Instrument ID: Balance-1

CAS No.	Analyte	Result	RL	Units	С	Q	DIL	Method
	Total Suspended Solids	56.4	4.0	mg/L			1	SM 2540D

Client Sample ID: SW-02 Lab Sample ID: 480-222859-10

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Surface Water Date Sampled: 08/26/2024 11:15

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.010	0.010	0.0041	mg/L	U		1	9012B

Client Sample ID: SW-02

Lab Sample ID: 480-222859-10

Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Surface Water

Date Sampled: 08/26/2024 11:15

Reporting Basis: WET

Date Received: 08/26/2024 14:30

Preparation Batch Number:

Instrument ID: Balance-1

CAS No.	Analyte	Result	RL	Units	С	Q	DIL	Method
	Total Suspended Solids	4.0	4.0	mg/L			1	SM 2540D

Client Sample ID: EB Lab Sample ID: 480-222859-12

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/26/2024 12:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.010	0.010	0.0041	mg/L	Ū		1	9012B

Client Sample ID: Duplicate Lab Sample ID: 480-222859-13

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 00:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.14	0.010	0.0041	mg/L		В	1	9012B

Client Sample ID: MW-20 Bailer Lab Sample ID: 480-222859-14

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/26/2024 11:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.58	0.050	0.021	mg/L			5	9012B

Client Sample ID: MW-16 Bailer	Lab Sample ID: 480-222859-15
Lab Name: Eurofins Buffalo	Job No.: 480-222859-1
SDG ID.: 222859	
Matrix: Water	Date Sampled: 08/26/2024 13:50
Reporting Basis: WET	Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	3.4	0.10	0.041	mg/L			10	9012B

Client Sample ID: MW-12 Lab Sample ID: 480-222886-1

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 09:00

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.84	0.050	0.021	mg/L			5	9012B

Client Sample ID: MW-12 (BAILER) Lab Sample ID: 480-222886-2

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/27/2024 09:25

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.79	0.020	0.0082	mg/L			2	9012B

Client Sample ID: MW-20 LOW FLOW 2) Lab Sample ID: 480-222886-5

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 11:50

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.44	0.050	0.021	mg/L			5	9012B

Client Sample ID: MW-13 Lab Sample ID: 480-222886-6

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 11:45

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.24	0.010	0.0041	mg/L			1	9012B

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 10:40

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.025	0.010	0.0041	mg/L			1	9012B

Client Sample ID: MW-16 (LOW FLOW 2) Lab Sample ID: 480-222886-8

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 12:15

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	4.4	0.20	0.082	mg/L			20	9012B

Client Sample ID: MW-21 Lab Sample ID: 480-222886-10

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 12:30

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
57-12-5	Cyanide, Total	0.43	0.010	0.0041	mg/L			1	9012B

Client Sample ID: MW-14 Lab Sample ID: 480-222859-1

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 10:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-20 Lab Sample ID: 480-222859-2

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 10:30

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-22 Lab Sample ID: 480-222859-3

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 12:45

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-23 Lab Sample ID: 480-222859-4

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 09:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CA	S No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
		Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-16 Lab Sample ID: 480-222859-5

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 13:20

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	31.1	5.0	2.3	ug/L			1	9016

Client Sample ID: MW-11A Lab Sample ID: 480-222859-8

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 11:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	2.5	5.0	2.3	ug/L	J		1	9016

Client Sample ID: SW-01 Lab Sample ID: 480-222859-9

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Surface Water Date Sampled: 08/26/2024 12:40

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: SW-02 Lab Sample ID: 480-222859-10

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Surface Water Date Sampled: 08/26/2024 11:15

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: EB Lab Sample ID: 480-222859-12

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/26/2024 12:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	2.7	5.0	2.3	ug/L	J		1	9016

Client Sample ID: Duplicate Lab Sample ID: 480-222859-13

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/26/2024 00:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-20 Bailer Lab Sample ID: 480-222859-14

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/26/2024 11:00

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-16 Bailer Lab Sample ID: 480-222859-15

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/26/2024 13:50

Reporting Basis: WET Date Received: 08/26/2024 14:30

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-12 Lab Sample ID: 480-222886-1

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 09:00

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-12 (BAILER) Lab Sample ID: 480-222886-2

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Water Date Sampled: 08/27/2024 09:25

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-20 LOW FLOW 2) Lab Sample ID: 480-222886-5

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 11:50

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	3.1	5.0	2.3	ug/L	J		1	9016

Client Sample ID: MW-13 Lab Sample ID: 480-222886-6

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 11:45

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-17 Lab Sample ID: 480-222886-7

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 10:40

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	5.0	5.0	2.3	ug/L	U		1	9016

Client Sample ID: MW-16 (LOW FLOW 2) Lab Sample ID: 480-222886-8

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 12:15

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	547	50.0	23.2	ug/L			10	9016

Client Sample ID: MW-21 Lab Sample ID: 480-222886-10

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG ID.: 222859

Matrix: Ground Water Date Sampled: 08/27/2024 12:30

Reporting Basis: WET Date Received: 08/27/2024 14:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Cyanide, Free	2.3	5.0	2.3	ug/L	J		1	9016

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Analyst: CLT Batch Start Date: 08/30/2024

Reporting Units: mg/L Analytical Batch No.: 723667

Sample Number		Time	Analyte	Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent
15	ICV	08:22	Cyanide, Total	0.252	0.250	101	90-110		WC_CN ICV_00260
16	ICB	08:24	Cyanide, Total	0.010				U	
19	CCV	08:35	Cyanide, Total	0.241	0.250	96	90-110		WC_CN CCV/LCS 00459
20	CCB	08:37	Cyanide, Total	0.010				U	-
29	CCV	09:07	Cyanide, Total	0.266	0.250	107	90-110		WC_CN CCV/LCS 00459
30	CCB	09:11	Cyanide, Total	0.010				U	
43	CCV	09:54	Cyanide, Total	0.263	0.250	105	90-110		WC_CN CCV/LCS 00459
44	CCB	09:57	Cyanide, Total	0.010				U	
57	CCV	10:41	Cyanide, Total	0.263	0.250	105	90-110		WC_CN CCV/LCS 00459
58	CCB	10:44	Cyanide, Total	0.010				U	
71	CCV	11:27	Cyanide, Total	0.255	0.250	102	90-110		WC_CN CCV/LCS 00459
72	CCB	11:31	Cyanide, Total	0.010				U	
85	CCV	12:14	Cyanide, Total	0.257	0.250	103	90-110		WC_CN CCV/LCS 00459
86	CCB	12:17	Cyanide, Total	0.010				U	

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Analyst: VBG Batch Start Date: 09/04/2024

Reporting Units: ug/L Analytical Batch No.: 994113

Sample Number	~	Time	Analyte	Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent
8	ICV	20:26	Cyanide, Free	48.53	50.0	97	85-115		WT9016-2ppm2_00369
9	ICB	20:26	Cyanide, Free	5.0				U	
11	CCV	20:26	Cyanide, Free	51.05	50.0	102	85-115		WT9016-2mg/1_00653
12	CCB	20:26	Cyanide, Free	5.0				U	
23	CCV	20:26	Cyanide, Free	51.05	50.0	102	85-115		WT9016-2mg/1_00653
24	CCB	20:26	Cyanide, Free	5.0				U	
35	CCV	20:27	Cyanide, Free	51.05	50.0	102	85-115		WT9016-2mg/1_00653
36	CCB	20:27	Cyanide, Free	5.0				U	
45	CCV	20:28	Cyanide, Free	51.05	50.0	102	85-115		WT9016-2mg/1_00653
46	CCB	20:28	Cyanide, Free	5.0				U	

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Method Lab	Sample ID Analyte		Result	Qual U	Jnits	RL	Dil
Batch ID: 72	3667 Date: 08/30/202	1 08:41					
9012B MB	480-723667/21 Cyanide	, Total	0.010	U n	ng/L	0.010	1
Batch ID: 72	3667 Date: 08/30/202	10:09					
9012B MB	480-723667/47 Cyanide	, Total	0.00590	J m	ng/L	0.010	1
Batch ID: 723	3667 Date: 08/30/202	11:42					
9012B MB	480-723667/75 Cyanide	, Total	0.010	U m	ng/L	0.010	1
Batch ID: 723	3503 Date: 08/29/202	1 10:54					
SM 2540D MB	480-723503/1 Total S	uspended Solids	1.0	U n	ng/L	1.0	1

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Method	Lab Sample ID	Analyte	Result Qual Units	RL	Dil
Batch ID:	994113 Date:	09/04/2024 20:26	Prep Batch: 994030 Date: 09/04/2024 1	.0:48	
9016	MB 460-994030/1	-A Cyanide, Free	5.0 U ug/L	5.0	1

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method	Lab Sample ID	Analyte	Result	C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch	ID: 723667 D	ate: 08/30/2024	1 08:57						
9012B	480-222859-4	Cyanide, Tota	0.13	mg/L					
9012B	480-222859-4 MS	Cyanide, Tota	0.230	mg/L	0.100	100	90-110		
Batch	ID: 723667 D	ate: 08/30/2024	1 09:27						
9012B	480-222859-8	Cyanide, Tota	0.23	mg/L					
9012B	480-222859-8 MS	Cyanide, Tota	0.326	mg/L	0.100	91	90-110		
Batch	ID: 723667 D	ate: 08/30/2024	1 10:17						
9012B	480-222859-13	Cyanide, Tota	0.14	mg/L					В
9012B	480-222859-13 MS	Cyanide, Tota	0.236	mg/L	0.100	94	90-110		
Batch	ID: 723667 D	ate: 08/30/2024	11:51						
9012B	480-222886-6	Cyanide, Tota	0.24	mg/L					
9012B	480-222886-6 MS	Cyanide, Tota	0.341	mg/L	0.100	105	90-110		

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method	Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch	ID: 994113 Date: 09/04/2024 20:26	Prep Batch: 994030	Date: 09/04/2024 10:48
9016	480-222859-1 Cyanide, Free	5.0 U ug/L	
9016	480-222859-1 Cyanide, Free MS	50.07 ug/L	50.0 100 51-132

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch ID: 994113 Date: 09/04/2024 20:26 9016 480-222859-1 Cyanide, Free MSD	Prep Batch: 994030 47.01 ug/L	Date: 09/04/2024 10:48 50.0 94 51-132 6 31

6-IN DUPLICATE GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method	Client Sample ID	Lab Sample ID	Analyte	Result Unit	RPD RPD Limit Qual
Batch ID:	723667 Date:	08/30/2024 09:24			
9012B	MW-11A	480-222859-8	Cyanide, Total	0.23 mg/L	
9012B	MW-11A	480-222859-8 DU	Cyanide, Total	0.227 mg/L	3 15

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method	Lab Sample ID	Analyte	Result	C Unit	Spike F Amount F	Pct. Rec.	Limits	RPD]	RPD Limit	Q
Batch	ID: 723667	Date: 08/30/2024 08:47								
				LO	CS Source: WC_	_CN CCV	/LCS_004	159		
9012B	LCS 480-723667/23	Cyanide, Total	0.253	mg/L	0.250	101	90-110			
Batch	ID: 723667	Date: 08/30/2024 10:10								
				LO	CS Source: WC_	_CN CCV	/LCS_004	159		
9012B	LCS 480-723667/48	Cyanide, Total	0.264	mg/L	0.250	105	90-110			
Batch	ID: 723667	Date: 08/30/2024 11:44								
				LO	CS Source: WC_	CN CCV	/LCS_004	159		
9012B	LCS 480-723667/76	Cyanide, Total	0.258	mg/L	0.250	103	90-110			
Batch	ID: 723503	Date: 08/29/2024 10:54								
				LO	CS Source: WC_	TSS_DT	Erth_000	016		
SM 2540D	LCS 480-723503/2	Total Suspended Solids	244.4	mg/L	250	98	88-110			

7A-IN HIGH LEVEL CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Result C Unit Spike Pct. RPD Amount Rec. Limits RPD Limit Q Method Lab Sample ID Analyte

Batch ID: 723667 Date: 08/30/2024 08:44

LCS Source: WC_CN 0.400_00263

HLCS Cyanide, Total 0.412 mg/L 0.400 103 90-110 480-723667/22 9012B HLCS

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Method	Lab Sample ID) Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits RF	RPD D Limit	Q
Batch	ID: 994113	Date: 09/04/2024 20:26	Prep Batch: 994030	Date:	09/04/	2024 10:48		
			LCS S	ource: V	VT9016-	2mg/l_00653		
9016	LCS 460-994030/2- A	Cyanide, Free	42.43 ug/L	50.0	85	51-132		

7A-IN DETECTION LIMIT CHECK STANDARD GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Matrix: Water

Result C Unit Spike Pct. RPD Amount Rec. Limits RPD Limit Q Method Lab Sample ID Analyte

Batch ID: 994113 Date: 09/04/2024 20:26

LCS Source: WT9016-2mg/1_00653

DLCK Cyanide, Free 2.67 J ug/L 2.00 134 50-150 460-994113/10 9016 DLCK

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Skalar_San+

Method: 9012B MDL Date: 09/16/2022 12:49

Analyte	Wavelength/	RL	MDL
	Mass	(mg/L)	(mg/L)
Cyanide, Total		0.01	0.0041

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Skalar_San+

Method: 9012B XMDL Date: 09/16/2022 12:48

Analyte	Wavelength/	XRL	XMDL
	Mass	(mg/L)	(mg/L)
Cyanide, Total		0.01	0.0041

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Balance-1

Method: SM 2540D RL Date: 09/14/2009 17:05

Analyte	Wavelength/ Mass	RL (mg/L)	
Total Suspended Solids		4	

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Buffalo Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Balance-1

Method: SM 2540D XMDL Date: 05/19/2023 10:39

Analyte	Wavelength/	XRL	XMDL
	Mass	(mg/L)	(mg/L)
Total Suspended Solids		4	2

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Wet9016

Method: 9016 MDL Date: 12/09/2021 09:38

Prep Method: 9016

Analyte	Wavelength/	RL	MDL
	Mass	(ug/L)	(ug/L)
Cyanide, Free		5	2.32

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job Number: 480-222859-1

SDG Number: 222859

Matrix: Water Instrument ID: Wet9016

Method: 9016 XMDL Date: 12/09/2021 09:37

Analyte	Wavelength/	XRL	XMDL
	Mass	(ug/L)	(ug/L)
Cyanide, Free		5	2.32

12-IN PREPARATION LOG GENERAL CHEMISTRY

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Prep Method: 9016

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume (mL)	Final Volume (mL)
150 460 004000/1	00/04/0004 10 40	004000		, ,	, ,
MB 460-994030/1-A	09/04/2024 10:48	994030		3.0	1.3
LCS 460-994030/2-A	09/04/2024 10:48	994030		3.0	1.3
480-222859-1	09/04/2024 10:48	994030		3.0	1.3
480-222859-1 MS	09/04/2024 10:48	994030		3.0	1.3
480-222859-1 MSD	09/04/2024 10:48	994030		3.0	1.3
480-222859-2	09/04/2024 10:48	994030		3.0	1.3
480-222859-3	09/04/2024 10:48	994030		3.0	1.3
480-222859-4	09/04/2024 10:48	994030		3.0	1.3
480-222859-5	09/04/2024 10:48	994030		3.0	1.3
480-222859-8	09/04/2024 10:49	994030		3.0	1.3
480-222859-9	09/04/2024 10:49	994030		3.0	1.3
480-222859-10	09/04/2024 10:49	994030		3.0	1.3
480-222859-12	09/04/2024 10:49	994030		3.0	1.3
480-222859-13	09/04/2024 10:49	994030		3.0	1.3
480-222859-14	09/04/2024 10:49	994030		3.0	1.3
480-222859-15	09/04/2024 10:49	994030		3.0	1.3
480-222886-1	09/04/2024 10:49	994030		3.0	1.3
480-222886-2	09/04/2024 10:49	994030		3.0	1.3
480-222886-5	09/04/2024 10:49	994030		3.0	1.3
480-222886-6	09/04/2024 10:49	994030		3.0	1.3
480-222886-7	09/04/2024 10:49	994030		3.0	1.3
480-222886-8	09/04/2024 10:49	994030		3.0	1.3
480-222886-10	09/04/2024 10:49	994030		3.0	1.3

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Start Date: 08/30/2024 07:32 End Date: 08/30/2024 13:42

								А	nal	.yt	es				
Lab Sample ID	D / F	T Y p e	Time	C N											
ZZZZZZ			07:32												
ZZZZZZ			07:35												
ZZZZZZ			07:41												
ZZZZZZ			07:44												
IC 480-723667/5			07:49	Х											
IC 480-723667/6			07:51	Х											
IC 480-723667/7			07:54	Х											
IC 480-723667/8			07:57	Х											
IC 480-723667/9			08:01	Х											
IC 480-723667/10			08:04	Х											
IC 480-723667/11			08:07	Х											
IC 480-723667/12			08:11	Х											
ZZZZZZ			08:14												
ZZZZZZ			08:17												
ICV 480-723667/15	1		08:22	Х											
ICB 480-723667/16	1		08:24	Х											
ZZZZZZ			08:27												
ZZZZZZ			08:31												
CCV 480-723667/19	1		08:35	Х											
CCB 480-723667/20	1		08:37	Х											
MB 480-723667/21	1	Т	08:41	Х											
HLCS 480-723667/22	1	Т	08:44	Х											
LCS 480-723667/23	1	Т	08:47	Х											
ZZZZZZ			08:51												
480-222859-4	1	Т	08:54	Х											
480-222859-4 MS	1	Т	08:57	Х											
480-222859-1	2	Т	09:01	Х											
480-222859-2	10	Т	09:04	Х											
CCV 480-723667/29	1		09:07	Х											
CCB 480-723667/30	1		09:11	Х											
ZZZZZZ			09:14												
ZZZZZZ			09:17												
480-222859-8	1	Т	09:22	Х											
480-222859-8 DU	1	Т	09:24	Х											
480-222859-8 MS	1	Т	09:27	Х											
480-222859-3	2	Т	09:31	Х											
480-222859-5	20	Т	09:34	Х											
480-222859-9	1	Т	09:37	Х											
480-222859-10	1	Т	09:41	Х											
480-222859-12	1	Т	09:44	Х											
480-222859-14	5	Т	09:47	Х											

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: Skalar_San+ Method: 9012B

Start Date: 08/30/2024 07:32 End Date: 08/30/2024 13:42

								А	nal	yt	es				
Lab	D	T		C N											
Sample ID	F	У р e	Time												
480-222859-15	10	Т	09:51	Х											
CCV 480-723667/43	1		09:54	Х											
CCB 480-723667/44	1		09:57	Х											
ZZZZZZ			10:01												
ZZZZZZ			10:04												
MB 480-723667/47	1	Т	10:09	Х											
LCS 480-723667/48	1	Т	10:10	Х											
480-222859-13	1	Т	10:14	Х											
480-222859-13 MS	1	Т	10:17	Х											
ZZZZZZ			10:21												
ZZZZZZ			10:24												
ZZZZZZ			10:27												
ZZZZZZ			10:31												
ZZZZZZ			10:34												
ZZZZZZ			10:37												
CCV 480-723667/57	1		10:41	Х											
CCB 480-723667/58	1		10:44	Х											
ZZZZZZ			10:47												
ZZZZZZ			10:51												
ZZZZZZ			10:55												
ZZZZZZ			10:57												
ZZZZZZ			11:00												
ZZZZZZ			11:04												
ZZZZZZ			11:07												
ZZZZZZ			11:11												
ZZZZZZ			11:14												
ZZZZZZ			11:17												
ZZZZZZ			11:21												
ZZZZZZ			11:24												
CCV 480-723667/71	1		11:27	Х											
CCB 480-723667/72	1		11:31	Х											
ZZZZZZ			11:34												
ZZZZZZ			11:38												
MB 480-723667/75	1	Т	11:42	Х											
LCS 480-723667/76	1	Т	11:44	Х											
480-222886-6	1	Т	11:47	Х											
480-222886-6 MS	1	Т	11:51	Х											
480-222886-1	5	Т	11:54	Х											
480-222886-2	2	Т	11:57	Х											
480-222886-5	5	Т	12:01	Х											
480-222886-7	1	Т	12:04	Х											

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: Skalar_San+ Method: 9012B

Start Date: 08/30/2024 07:32 End Date: 08/30/2024 13:42

															—
								 A	nal	yt	es				
				С											
Lab	D	Т		N											
Sample	_	У													
ID	F	p e	Time												
															Ш
480-222886-8	20	Т	12:07	Х											
480-222886-10	1	Т	12:11	Х											
CCV 480-723667/85	1		12:14	Х											
CCB 480-723667/86	1		12:17	Х											
ZZZZZZ			12:21												
ZZZZZZ			12:24												
ZZZZZZ			12:29												
ZZZZZZ			12:30												
ZZZZZZ			12:34												
ZZZZZZ			12:37												
ZZZZZZ			12:41												
ZZZZZZ			12:44												
ZZZZZZ			12:47												
ZZZZZZ			12:51												
ZZZZZZ			12:54												
ZZZZZZ			12:58												
CCV 480-723667/99			13:01												
CCB 480-723667/100			13:04												
ZZZZZZ			13:08												
ZZZZZZ			13:11												
ZZZZZZ			13:15												
ZZZZZZ			13:17												
ZZZZZZ			13:21												
ZZZZZZ			13:24												
CCV 480-723667/107			13:28												
CCB 480-723667/108			13:31												
ZZZZZZ			13:34												
ZZZZZZ			13:38												
ZZZZZZ			13:42												

Prep Types

T = Total/NA

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: Balance-1 Method: SM 2540D

Start Date: 08/29/2024 10:54 End Date: 08/29/2024 10:54

			I	I											
								 A	nal	.yte	es				
Lab Sample ID	D / F	T Y p	Time	T S S											
MB 480-723503/1	1	Т	10:54	Х											
LCS 480-723503/2	1	Т	10:54	Х											
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
480-222859-8	1	Т	10:54	Х											
480-222859-9	1	Т	10:54	Х											
480-222859-10	1	Т	10:54	Х											
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												
ZZZZZZ			10:54												

Prep Types

T = Total/NA

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: Wet9016 Method: 9016

Start Date: 09/04/2024 20:26 End Date: 09/04/2024 20:28

									А	.na]	yt	es					
Lab Sample ID	D / F	T Y p e	Time	C N F r e e													
TO 400 004112/1		<u> </u>		<u> </u>	<u> </u>							<u> </u>					
IC 460-994113/1	_		20:26	X													
IC 460-994113/2			20:26	X													<u> </u>
IC 460-994113/3			20:26	X													<u> </u>
IC 460-994113/4			20:26	X													<u> </u>
IC 460-994113/5			20:26	X										+			
IC 460-994113/6			20:26	X										+			
IC 460-994113/7			20:26	X										_			<u> </u>
ICV 460-994113/8	1		20:26	X		1								+			<u> </u>
ICB 460-994113/9	1		20:26	X		1								+			<u> </u>
DLCK 460-994113/10	1	Т	20:26	X		1								\perp			<u> </u>
CCV 460-994113/11	1		20:26	Х										\perp			<u> </u>
CCB 460-994113/12	1		20:26	X										_			<u> </u>
ZZZZZZ			20:26														<u> </u>
ZZZZZZ			20:26														<u> </u>
ZZZZZZ			20:26											_			
ZZZZZZ			20:26														<u> </u>
ZZZZZZ			20:26														
MB 460-994030/1-A	1	Т	20:26	X													
LCS 460-994030/2-A	1	Т	20:26	Х													
480-222859-1	1	Т	20:26	Х													
480-222859-1 MS	1	Т	20:26	Х													
480-222859-1 MSD	1	Т	20:26	Х													
CCV 460-994113/23	1		20:26	Х													
CCB 460-994113/24	1		20:26	Х													
480-222859-2	1	Т	20:26	Х													
480-222859-3	1	Т	20:26	Х													
480-222859-4	1	Т	20:26	Х													
480-222859-5	1	Т	20:26	Х													
480-222859-8	1	Т	20:26	Х													
480-222859-9	1	Т	20:26	Х													
480-222859-10	1	Т	20:26	Х										\top			
480-222859-12	1	Т	20:26	Х										\top			
480-222859-13	1	Т	20:26	Х													
480-222859-14	1	Т	20:27	Х													
CCV 460-994113/35	1		20:27	Х										\top			
CCB 460-994113/36	1		20:27	Х										\top			
480-222859-15	1	Т	20:27	Х										\top			
480-222886-1	1	Т	20:27	X										\top			
480-222886-2	1	Т	20:27	X										+			
480-222886-5	1	Т	20:27	X										+			
480-222886-6	1	Т	20:27	X										+			

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Instrument ID: Wet9016 Method: 9016

Start Date: 09/04/2024 20:26 End Date: 09/04/2024 20:28

								A	nal	yt	es				
Lab Sample ID	D / F	T Y p e	Time	C N F r e											
480-222886-7	1	Т	20:28	Х											
480-222886-8	10	Т	20:28	Х											
480-222886-10	1	Т	20:28	Х											
CCV 460-994113/45	1		20:28	Х											
CCB 460-994113/46	1		20:28	Х											

Prep Types

T = Total/NA

Batch: 723503

Job ID: 480-222859-1

Analyst Initials: AB

SDG: 222859

							rument: E	
Lab Sample ID: MB 480-723503/1						Analysis Da	te: Aug 29, Final	2024 10:54
Analyte	Detector	Dilution	Raw Result			Amount	Amount	
Total Suspended Solids	None	1	-5.5999999999994	mg/L		1000 mL	250 mL	
Lab Sample ID: LCS 480-723503/2	!					Analysis Da	te: Aug 29, Final	2024 10:54
Analyte	Detector	Dilution	Raw Result	Unit		Amount	Amount	
Total Suspended Solids	None	1	244.400000000001	mg/L		250 mL	250 mL	
Lab Sample ID: 480-222859-A-8						Analysis Da	te: Aug 29, Final	2024 10:54
Analyte	Detector	Dilution	Raw Result	Unit		Amount	Amount	
Total Suspended Solids	None	1	45.60000000000004			250 mL	250 mL	
Lab Sample ID: 480-222859-A-9						Analysis Da	te: Aug 29, Final	2024 10:54
Analyte	Detector	Dilution	Raw Result	Unit		Amount	Amount	
Total Suspended Solids	None	1		mg/L		250 mL	250 mL	
Lab Sample ID: 480-222859-A-10						Analysis Da	te: Aug 29, Final	2024 10:54
Analyte	Detector	Dilution	Raw Result	Unit		Amount	Amount	
Total Suspended Solids	None	1	4.0000000000132	mg/L		250 mL	250 mL	
Batch: 994113 Method: 9016			lı	nstrument	:: He	An exChrom S	nalyst Init	
			lı	nstrument			pectroph	otomete 2024 20:26
Method: 9016 Lab Sample ID: ICV 460-994113/8	Detector	Dilution				exChrom S	pectroph	2024 20:26 Final
Method: 9016	Detector UV	Dilution 1	Response	Raw Result 48.52940	Unit	exChrom S	pectroph	otomete 2024 20:26
Method: 9016 Lab Sample ID: ICV 460-994113/8 Analyte			Response	Raw Result	Unit ug/L	exChrom S	spectroph te: Sep 04,	2024 20:20 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9		1	Response 0.098	Raw Result 48.52940	Unit ug/L	exChrom S Analysis Da	spectroph te: Sep 04,	2024 20:26 Final Amount 100 mL 2024 20:26 Final
Method: 9016 Lab Sample ID: ICV 460-994113/8 Analyte Cyanide, Free	ŪV		Response	Raw Result	Unit ug/L	exChrom S Analysis Da	spectroph te: Sep 04,	2024 20:26 Final Amount 100 mL
Method: 9016 Lab Sample ID: ICV 460-994113/8 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte	Detector UV	1 Dilution	Response 0.098 Response	Raw Result 48.52940 Raw Result	Unit ug/L Unit ug/L	exChrom S Analysis Da	te: Sep 04,	2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL
Analyte Cyanide, Free Analyte Cyanide, Free Cyanide, Free Cyanide, Free Cyanide, Free	Detector UV	1 Dilution	Response 0.098 Response	Raw Result 48.52940 Raw Result	Unit ug/L Unit ug/L	Analysis Da Analysis Da	te: Sep 04,	2024 20:20 Final Amount 100 mL 2024 20:20 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113	Detector UV	Dilution 1	Response 0.098 Response 0.001	Raw Result 48.52940 Raw Result -0.3489000	Unit ug/L Unit ug/L	Analysis Da Analysis Da	te: Sep 04,	2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL 2024 20:26 Final Final
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113 Analyte	Detector UV /10 Detector UV	Dilution 1	Response 0.098 Response 0.001 Response	Raw Result 48.52940 Raw Result -0.3489000 Raw Result	Unit ug/L Unit ug/L	Analysis Da Analysis Da	te: Sep 04,	2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113 Analyte Cyanide, Free	Detector UV /10 Detector UV	Dilution 1	Response 0.098 Response 0.001 Response	Raw Result 48.52940 Raw Result -0.3489000 Raw Result	Unit ug/L Unit ug/L	Analysis Da Analysis Da Analysis Da	te: Sep 04,	2024 20:26 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113 Analyte Cyanide, Free Lab Sample ID: CCV 460-994113/1	Detector UV /10 Detector UV	Dilution 1 Dilution 1	Response	Raw Result -0.3489000 Raw Result -0.347500	Unit ug/L Unit ug/L Unit ug/L	Analysis Da Analysis Da Analysis Da	te: Sep 04,	2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL 2024 20:26 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113 Analyte Cyanide, Free Lab Sample ID: CCV 460-994113/1 Analyte	Detector UV /10 Detector UV 1 Detector UV	Dilution 1 Dilution 1	Response 0.098 Response 0.001 Response 0.007	Raw Result -0.3489000 Raw Result 2.674500	Unit ug/L Unit ug/L Unit ug/L	Analysis Da Analysis Da Analysis Da	te: Sep 04, te: Sep 04, te: Sep 04,	2024 20:26 Final Amount 100 mL
Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: ICB 460-994113/9 Analyte Cyanide, Free Lab Sample ID: DLCK 460-994113 Analyte Cyanide, Free Lab Sample ID: CCV 460-994113/1 Analyte Cyanide, Free Cyanide, Free	Detector UV /10 Detector UV 1 Detector UV	Dilution 1 Dilution 1	Response 0.098 Response 0.001 Response 0.007	Raw Result -0.3489000 Raw Result 2.674500	Unit ug/L Unit ug/L Unit ug/L	Analysis Da Analysis Da Analysis Da Analysis Da	te: Sep 04, te: Sep 04, te: Sep 04,	2024 20:26 Final Amount 100 mL

Job ID: 480-222859-1

SDG: 222859

Batch: 994113 (Continued) Method: 9016				Instrument	t: He	Analyst Init exChrom Spectroph	
- Lob Comple ID: MD 400 00402014	A					Amelysis Date: San 04	2024 20.20
Lab Sample ID: MB 460-994030/1-	A					Analysis Date: Sep 04	, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV		0.006	2.170600	ug/L	3.0 mL	1.3 mL
Lab Sample ID: LCS 460-994030/2	?-A					Analysis Date: Sep 04	, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.196	97.91160	ug/L	3.0 mL	1.3 mL
 Lab Sample ID: 480-222859-B-1-A						Analysis Date: Sep 04	
Analyte	Detector	Dilution	Response	Raw Result	Unit	Initial Amount	Final Amount
Cyanide, Free	UV	1	0.005	1.666700	-	3.0 mL	1.3 mL
 Lab Sample ID: 480-222859-B-1-D	MS					Analysis Date: Sep 04	
Analyto	Detector	Dilution	Response	Raw Result	Unit	Initial Amount	Final Amount
Analyte Cyanide, Free	UV	1	0.231	115.5481		3.0 mL	1.3 mL
_					3/		
Lab Sample ID: 480-222859-B-1-E	MSD					Analysis Date: Sep 04	
Analysis	Detector	Dilution	Baananaa	Dow Booult	l lmi4	Initial	Final
Analyte Cyanide, Free	UV	Dilution 1	Response 0.217	108.4935		3.0 mL	Amount 1.3 mL
Analyte Cookida France	Detector UV	Dilution _	Response	Raw Result	-		Amount
Cyanide, Free	UV	1	0.103	51.04890	ug/L		100 mL
Lab Sample ID: CCB 460-994113/2	24					Analysis Date: Sep 04	2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result			Amount
Cyanide, Free	UV	1	0.000	-0.8528000	ug/L		100 mL
Lab Sample ID: 480-222859-B-2-A						Analysis Date: Sep 04	2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	1	0.007	2.674500	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222859-B-3-A						Analysis Date: Sep 04	, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.005	1.666700		3.0 mL	1.3 mL
 Lab Sample ID: 480-222859-D-4-A						Analysis Date: Sep 04	, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.010	4.186200	ug/L	3.0 mL	1.3 mL
 Lab Sample ID: 480-222859-B-5-A						Analysis Date: Sep 04	, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV		0.144	71.70880		3.0 mL	1.3 mL

Job ID: 480-222859-1

SDG: 222859

Batch: 994113 (Continued) Method: 9016				Instrument	: He	Analyst Ini exChrom Spectrop	
Lab Sample ID: 480-222859-E-8-A						Analysis Date: Sep 04	l, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.013	5.697900	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222859-E-9-A						Analysis Date: Sep 04	l, <mark>2024 20:26</mark> Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.008	3.178400	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222859-E-10-	4					Analysis Date: Sep 04	I, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.006	2.170600	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222859-D-12-	A					Analysis Date: Sep 04	I, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.014	6.201800	ug/L	3.0 mL	1.3 mL
 Lab Sample ID: 480-222859-D-13-	A					Analysis Date: Sep 04	I, 2024 20:26 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.009	3.682300			1.3 mL
Lab Sample ID: 480-222859-B-14-	A					Analysis Date: Sep 04	I, <mark>2024 20:27</mark> Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	1	0.008	3.178400	ug/L	3.0 mL	1.3 mL
Lab Sample ID: CCV 460-994113/3	35					Analysis Date: Sep 04	I, <mark>2024 20:27</mark> Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.103	51.04890	ug/L		100 mL
Lab Sample ID: CCB 460-994113/3	36					Analysis Date: Sep 04	I, 2024 20:27 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.001	-0.3489000			100 mL
Lab Sample ID: 480-222859-B-15-	A					Analysis Date: Sep 04	I, <mark>2024 20:27</mark> Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.006	2.170600	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-A-1-A						Analysis Date: Sep 04	I, <mark>2024 20:27</mark> Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.005	1.666700	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-A-2-A						Analysis Date: Sep 04	I, 2024 20:27 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.011	4.690100	ug/L	3.0 mL	1.3 mL

Eurofins Edison

Job ID: 480-222859-1

SDG: 222859

Batch: 994113 (Continued) Method: 9016				Instrument	:: H	Analyst Init exChrom Spectroph	
Lab Sample ID: 480-222886-A-5-A						Analysis Date: Sep 04,	2024 20:27 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	1	0.016	7.209600	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-C-6-A						Analysis Date: Sep 04,	2024 20:27 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.008	3.178400	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-C-7-A						Analysis Date: Sep 04,	2024 20:28 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	1	0.010	4.186200	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-A-8-A						Analysis Date: Sep 04,	2024 20:28 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	10	0.252	126.1300	ug/L	3.0 mL	1.3 mL
Lab Sample ID: 480-222886-A-10-	4					Analysis Date: Sep 04,	2024 20:28 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit	Amount	Amount
Cyanide, Free	UV	1	0.012	5.194000	ug/L	3.0 mL	1.3 mL
Lab Sample ID: CCV 460-994113/4	5					Analysis Date: Sep 04,	2024 20:28 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV	1	0.103	51.04890	ug/L		100 mL
Lab Sample ID: CCB 460-994113/4	16					Analysis Date: Sep 04,	2024 20:28 Final
Analyte	Detector	Dilution	Response	Raw Result	Unit		Amount
Cyanide, Free	UV		0.000	-0.8528000	ua/l		100 mL

CN Solutions-Skalar:

8054589	Ехр:	09/14/2024
8054218	Ехр:	09/28//2024
8053376	Exp:	09//28/2024
8051115	Exp:	
8051129	Exp:	09/26/2024
8048555	Exp:	09/23/2024
8047771	Exp:	09/14/2024
8054593	Exp:	09/28/2024
8050754	•	09/02/2024
8056812	•	08/31/2024
8050755	•	09/02/2024
8056813	•	08/31/2024
8056814		08/31/2024
8056815		08/31/2024
8050756	•	09/02/2024
	8054218 8053376 8053376 8051115 8051129 8048555 8047771 8054593 8050754 8056812 8050755 8056813 8056814 8056815	8054218 Exp: 8053376 Exp: 8051115 Exp: 8051129 Exp: 8048555 Exp: 8047771 Exp: 8054593 Exp: 8050754 Exp: 8056812 Exp: 8056814 Exp: 8056814 Exp: 8056815 Exp:

$$\begin{split} LCS &= 0.4 mg/L, \, 0.25 mg/L \\ CCV &= 0.25 mg/L \\ MS/MSD &= 0.1 mg/L \end{split}$$

Cyanide Curve Skalar : Daily Curve Standard (50 ppm): 8050754

ICV (0.250 ppm): 8056816 Exp: 08/31/2024

Test for sulfide in samples (Lead Acetate) Manufacturer Date: 02-05-2024
Test for oxidizers in samples (Potassium Iodine) Lot number: 05-10-2024

FlowAccessV3

Date: 2024-08-30 13:43:25

RSD = 0.00985744402755 a = -0.00635184224672 b = 3.69465606020855

r = 0.99991404042275 R2 = 0.99982808823455

Run Name: TABUF20240830A1CN08302024,.. Run Db Ref: TABUF20240830A1

User Name: Administrator

Operator Name: Administrator

DateTime:2024-08-30 13:44:21

830A1 Run Name: TABUF202408

	Administrator	Operator Name: Administrator	User Name : Administrator
: TABUF2024083	Run Database Ref	A1CN08302024A, 13	Date Time : 2024-08-30 07:19:13

InitialWash	SampleType SampleIdentity Comments ExternalDility (DN) Total Cyanide (DN) Comments (DN) Comm	Cyanide- CorrectedHe PeakPickingTime	0.0000 2024-08-30 07-32-00	00.0%.	1.67 10: 2024-08-30-07-35-00	1.8738.2024.08-30.07.41:00	0.0000 2024-08-30.07:44:00	-0.0013 2024-08-30 07:49:00	0.0344 2024-08-30:07:51:00	0.1785 2024-08-30 07:54:00	0.3536 2024-08-30 07 57:00	0.7192 2024-08-30 08:01:00	1.1183 2024-08-30 08:04:00	1.4721 2024-08-30 08:07:00	1.8379 2024-08-30 08:11:00	1.9122, 2024-08-30.08:14:00	0.0000 2024-08-30 08:17:00	0.9248 2024-08-30 08:22:00	0.0009 2024-08-30 08:24:00	1,8961, 2024-08-30.08:27.00	0.0000 2024-08-30 08:31.00	0.8836 2024-08-30 08:35:00	0.0013 2024-08-30 08:37:00	0.0000 2024-08-30 08:41:00	1.5166 2024-08-30 08:44:00	0.9284 2024-08-30 08:47:00	0.0382 2024-08-30 08:51:00	0.4723 2024-08-30 08:54:00	0 8421 3024 00 20 00 r 20
SampleType SampleIdentity Comments ExternalDII InitiatWash 1,0000 InitiatWash 1,0000 Wash 1,0000 0.2 1,0000 0.3 1,0000 0.4 1,0000 0.5 1,0000 0.4 1,0000 0.5 1,0000 0.7 1,0000 0.8 1,0000 0.7 1,0000 0.7 1,0000 0.7 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.5 1,0000 0.0 1,0000 0.0 1,0000 0.0 1,0000 0.0 1,0000 0.0 1,0000 0.0 1,0000 0.0	Position SampleType SampleIdentity Comments ExternalDIII ution N InitialWash 1,0000 T Wesh 1,0000 T ST 0,01 1,0000 T ST 0,01 1,0000 T ST 0,01 1,0000 T ST 0,01 1,0000 T ST 0,04 1,0000 T ST 0,04 1,0000 T W Wesh 1,0000 T CCV CCX 1,0000 T W Wesh 1,0000 T W Wesh 1,0000 T CCX <td></td> <td></td> <td>16115 C</td> <td>IBOPIO</td> <td>689¢n</td> <td></td> <td></td> <td></td> <td></td> <td>jaran Egyan Jaran</td> <td>1</td> <td></td> <td>0</td> <td></td> <td></td> <td></td>			16115 C	IBOPIO	689¢n					jaran Egyan Jaran	1														0			
InitialWash	Position SampleType SampleIdentity Comment N IV InitialWash Comment T8 D Diff T7 W Wash T4 S3 0.01 T5 S2 0.01 T4 S4 0.1 T5 S5 0.2 T6 S6 0.3 T6 S6 0.3 T7 W Wash T6 S7 0.4 T7 W Wash T6 S6 0.3 T7 W Wash T6 CCV CCV T7 W Wash T6 CCV CCV T7 LCS HLCS T6 CCV CCVL T7 LCS CCV T6 CCV CCVL T7 LCS CCVL T7 LCS CCVL T6 <td></td> <td>1.0000</td> <td>1.0000</td> <td>4 0000</td> <td>OCCUPATION OF THE PROPERTY OF</td> <td>0000</td> <td>900n i</td> <td>1.0000</td> <td>0,0000</td> <td></td> <td>;4 .</td> <td>1.0000</td> <td>1,0000</td> <td>1,0000</td> <td>1,0000</td> <td>1,0000</td> <td>1.0000</td> <td>0000</td>		1.0000	1.0000	4 0000	OCCUPATION OF THE PROPERTY OF	0000	900n i	1.0000	0,0000		;4 .	1.0000	1,0000	1,0000	1,0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000
Initial	Position SampleType Initial 7 IW Initial 18 T Tracs 18 D Drift 17 W Wash 17 S1 0 17 S1 0 17 S2 0.01 17 S3 0.05 17 S3 0.01 16 S6 0.3 16 S6 0.3 16 S6 0.3 17 S7 0.4 18 S8 0.5 19 ICV ICV 1 ICB ICV 1 ICB ICV 1 ICB ICV 1 ICB ICB 1 ICB ICB 1 ICB ICCB 1 ICB ICCB 1 ICB ICCB 1 ICCB ICCB	Comments															and the second s	The state of the s	7			V 4	to the second of		The relative state contribute that, such as the statements of a	Constitution and the state of t	W TMC-11		
SampleType	Position SampleType N IW 15 T 17 W 17 S1 17 S2 17 S3 17 S3 16 S6 17 S7 18 S6 17 S7 18 D 1 ICB 1 ICB 1 ICB 1 ICB 1 ICB 1 ICB 1 ICCB 1 ICCB 1 ICCB 1 ICCS	SampleIdentity	HINDRINGS	Tracer	Drift	Wash	0	0.07	0.05	0.1	0.2	0.3		50			, N	: S	Odff	Wash	SCV	COB	TB	ECS.	201	SCVI.	80-222859-c-4	1S 480-222859-c-4	
	Position N N 12 12 12 12 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	SampleType			0	W											7	and the street of the street o			4	7 000 117	allow and property com-		£	,			

Run Name: TABUF20240830A1CN08302024A, Run Database Ref: TABUF20240830A1
DateTime: 2024-08-30 07:19:13
User Name: Administrator Operator Name: Administrator

Run Name: TABUF20240830A1CN08302024A, Run Database Ref: TABUF20240830A1 DateTime: 2024-08-30 07:19:13 User Name: Administrator Operator Name: Administrator

Total Cyanide-	Silbest individual	0.0014	0.0014	0.2626	0.0037	UGEF U	0.0017	0.0058	0.0036	0 1051	0.0024	0.0014	0.0019	9600:0	0.0057	0.0033	0.0663	0.2553	0.0026	0.4884	21000	4100.0	0.0030	6/62.0	0.2362	0.3408	0.1674	0.3933
Total Cyanide- PeakPickinoTime		-0.0012 2024-08-30 10:34:00	-0.0012 2024-08-30 10:37:00	0.9639 2024-08-30 10:41:00	0.0072 2024-08-30 10:44:00	1 7606 2024-08-30 10:47-00	0.0000 2024-08-30 10:51:00	0.0152 2024-08-30 10:55:00	0.0000 2024-08-30 10:57:00	0.3820 2024-08-30 11:00:00	0.0023 2024-08-30 11:04:00	-0.0011 2024-08-30 11:07:00	0.0006 2024-08-30 11:11:00	0.0291 2024-08-30 11:14:00	0.0146 2024-08-30 11:17:00	0.0059 2024-08-30 11:21:00	0.2387 2024-08-30 11:24:00	0.9368 2024-08-30 11:27:00	0.0033 2024-08-30 11:31:00	1.7979 2024-08-30 11.34.00	0.0000 2024-08-30 11:38:00	0.0070 2024-08-30 11:42:00	0.9463 2024-08-30 11:44:00	0.8662 2024-08 30 11-42-00	024-09-50 11,47,00	1.2529 2024-08-30 11:51:00	0.6122 2024-08-30 11:54:00	1.4466 2024-08-30 11:57:00
Cyanide- CorrectedHe	inht	-0.0012	-0.0012	0.9639	0.0072	1,7606	0:0000	0.0152	0:0000	0.3820	0.0023	-0.0011	0.0006	0.0291	0.0146 2	0.0059 2	0.2387 2	0.9368	0.0033 2	1.7979 2		0.0070 2	0.9463 2	0.8662.2	10000	2 6262.1	0.6122 2	1.4466 20
Total Cyanide- Results[mg/I CN]	N LUU U	10000	0.0014	0.2626	0.0037	0,4782	0.0017	0.0058	0.0017	0.1051	0.0024	0.0014	0.0019	9600.0	0.0057	0.0033	0.0663	0.2553	0.0026	0,4884	0.0017	0.0036	0.2579	0.2362	0.3408	00400	1/0000	0.7865
ExternalDil	1.0000	1,0000	2000	0000.1	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5.0000	2,0000	5.0000
Comments	Villateria quantum		1	244											200		5	ę								0	CHOI CHANG	Smale long
SampleIdentity	480-222865-f-2	480-222865-f-3	CCV	, acc			wash	480-222866-1-1 Dillog googe	DO 480-222866-1-1	MIS 460-222805-1-1	480-222866.£3	480-222866 £ 4	480-222879 0.2	480-222878 c 2	480-222878-e-5	480-222885-a-2	CCV		Die	Weeh		<u> </u>	3	480-222886-d-6	MS 480-222886-d-6	480-222886-b-1	480-222886-b-2	480-222886-b-5
ampleType		3	CCV	CCB													200					ų.	Ş					
osition		A22	ST10	ST11	ST12							A28	A29		A31 U	A32 U	ST10 C	ST11	ST12 D		ST11 B	distribution and distri		The same of the sa	A34 U	A35 U	A36 U	A37 U
-		26	-	T	20	3	3 5		20 20		T	1	67 A	14	T	A	S	S	(O	15	S	(0)) 4	3	T	X	⋖	¥

\BUF20240830A1

Run Database Ref ; TAI	: Administrator
Kun Name: TABUF20240830A1CN08302024A, Run Database Ref: TAE DateTime: 2024-08-30 07:19:13	User Name : Administrator Operator Name : Administrator

č,	SampleType	SampleIdentity	Comments	ExternatDil ution	Total Cyanide- Results[mg/l CN]	Cyanide- CorrectedHe	Total Cyanide- PeakPickingTime	Total Cyanide-
		480-222886-d-7		1 0000	0.000		all Billion and	Rawresults
		480-222886-b-8		C	0.0248	0.0851	2024-08-30 12:04:00	0.0248
		480-222886-b-1n	500mg =10mg	V	4.4456	0.8149	0.8149 2024-08-30 12:07:00	0.2223
CCV		COV		1.0000	0.4320	1.5898	1.5898 2024-08-30 12:11:00	0.4320
CCB				1.0000	0.2569	0.9427	0.9427 2024-08-30 12:14:00	0.2569
6		O D		1.0000	0.0030	0.0048	0.0048 2024-08-30 12:17:00	0.0030
1		MAKER		1,0000	0.4879	1,7964 ;	1.7954 2024 08-30 12:21:00	0.4870
		Wash		1,0000	2100.0	0.0000	0.0000 2024-08-30 12:24:00	71000
		480-222908-c-1		1.0000	0.0054	0.0135	0.0135 2024-08-30 12:29:00	V-100.0
		DU 480-222908-c-1		1.0000	0.0035	0.0066	0.0066 2024-08-30 12:30:00	0.0035
		MIS 460-222908-C-1		1.0000	0.1018	0.3698 2	0.3698 2024-08-30 12:34:00	0.000
		400-222908-C-3		1.0000	0,0020	0.0012 2	0.0012 2024-08-30 12:37:00	0.0020
		480-222308-C-0		1.0000	0.0016	-0.0006 2	-0.0006 2024-08-30 12:41:00	0.0016
		480 202024 - 0-1		1.0000	0.0101	0.0309 2	0.0309 2024-08-30 12:44:00	0.0101
		490-222924-C-3		1.0000	0.0029	0.0044 2	0.0044 2024-08-30 12:47:00	0.0029
		480-222924-C-5		1.0000	0.0028	0.0041 2	0.0041 2024-08-30 12:51:00	0.0028
		480, 222789 A 4 MEN O		1.0000	0.0015	-0.0006 2	-0.0006 2024-08-30 12:54:00	0.0015
		+00-222700-A-1 MDLS		1.0000	0.0014	-0.0010 2	-0.0010 2024-08-30 12:58:00	0.0014
			5	1.0000	0.2531	0.9286 2	0.9286 2024-08-30 13:01:00	0.2531
٥			NO CONTRACTOR OF THE PARTY OF T	1.0000	0.0024	0.0024 2	0.0024 2024-08-30 13:04:00	0.0024
		Wash		1,0000	0.4981	1,8341 2	1.8341 2024-08-30 13:08:00	0.4981
		MB		1.0000	0.0017	0.0000 20	0.0000 2024-08-30 13:11:00	0.0017
16	- 1-		ç	1.0000	0.0030	0.0048 20	0.0048 2024-08-30 13:15:00	0.0030
	- 7	180 202700 A F MADE O		1.0000	0.2614	0.9596 20	0.9596 2024-08-30 13:17:00	0.2614
		480-222768-A-5 MDLS		1.0000	0.0128	0.0408 20	0.0408 2024-08-30 13:21:00	0.0128
	, (400-222708-A-0 MDLS		1.0000	0.0117	0.0367 20	0.0367 2024-08-30 13:24:00	0.0117
		30,00		1.0000	0.2586	0.9492 20	0.9492 2024-08-30 13:28:00	0.2586
	,			1,0000		**		0007:0

Page:4 /5

FlowAccessV3 Results Report

Run Name: TABUF20240830A1CN08302024A, Run Database Ref: TABUF20240830A1 DateTime:2024-08-30 07:19:13

Operator Name: Administrator User Name: Administrator

Total Cyanide- RawResults	Sipon in the	0.4861	7100 O	0.004
Total Cyanide- PeakPickingTime		2024-08-30 13:34:00	0:0000 2024-08-30 13:38:00	0.0000 2024-08-30 13:42:00
Lotal Cyanide- CorrectedHe	ioht	1 7896	0.0000	0.0000
ExternalDil Total Cyanide- Cyanide- ution Results[mg/l CN] CorrectedHe P		0.4861	0.0017	0.0017
ExternalDil ution	4.0000	nonne	1.0000	1.0000
Comments				
SampleIdentity		Wash		EUGRODA, A.
SampleType			ń	
Position	3	WT	ou.	
100	501	110	111	

Historical Data Summary Report For Batch 723667

47
Fail Client Limits 0.176-0.845 Ø 1.36-2.04 1.36-2.04 0.136-2.04 0.137-1.68 0.035-1.152 0.035-1.152 0.004-0.012 0.004-0.012 0.004-0.013 0.004-0.131 0.004-0.131 0.004-0.131 0.004-0.131 0.004-0.033 0.004-0.043 0.004-0.043 0.004-0.043 0.006-0.005 0.006-0.006 0.007-0.006 0.007-0.006 0.007-0.006 0.007-0.008 0.274-0.588 0.0576-1.68 0.197-1.68 0.197-1.68
Fail 3-Sigma Limits □ 0.028 - 1.008 ☑ 1.7 - 1.7 □ 0 - 7.1 □ 0 - 1.967 □ 0.126 - 1.193 □ 0.126 - 1.193 □ 0.9174 □ 0.002 - 0.015 □ 0.003 - 0.077 □ 0.0047 □ 0.0047 □ 0.0047 □ 0.0047 □ 0.0047 □ 0.0047 □ 0.006 □ 0.007 □ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.006 ☑ 0.007 □ 0.007
Result 0.67 0.58 3.4 0.79 0.79 0.010 0.014 0.013 0.0092 ND ND ND ND ND ND ND ND ND N
2.0000 5.0000 10.0000 10.0000 10.0000 1.0000
mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
Prep Type Total/NA
Analyte Cyanide, Total
Method 9012B_NP
MW-14 MW-20 Bailer MW-20 Bailer MW-20 MW-22 MW-22 MW-16 EB Duplicate MW-13 SW-01 R105 B107 G114 MW-11A SW-02 MW-11A SW-01 R105 B107 G114 MW-11A SW-01 MW-11A SW-02 MW-11A SW-01 MW-11A SW-01 MW-11A SW-01 MW-11A MW-12 MW-12 MW-12 MW-12 MW-13 MW-13 MW-13
Lab Sample ID 480-222859-A-14 480-222859-A-2 480-222859-A-5 480-222859-A-5 480-222859-A-5 480-222859-C-12 480-222859-D-9 480-222859-D-9 480-222869-E-2 480-222869-E-2 480-222865-F-2 1480-222866-F-2 1480-222866-F-4 480-222866-F-4 480-222886-B-5 480-222886-B-6 480-222886-B-6 480-222886-B-7 480-222886-B-6

Historical Data Summary Report

For Batch 723503

						Data				
Lab Sample ID	Client Sample	Method	Analyte	Prep Type	Unit	Points	Dilution	Result	Fail 3-Sigma Limits	Fail Client Limits
480-222740-A-13	P29C	2540D	Total Suspended Solids	Total/NA	mg/L	6	1.0	44.8	☑ 0-0	☑ 0-0
480-222740-A-3	MW30	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	22.8	☑ 0 - 18.643	☑ 0 - 16.08
480-222740-A-4	MW32	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	113	☑ 0 - 33.248	☑ 4.48 - 34.08
480-222787-D-2	MH21_Comp	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	10.8	□ 0 - 11.371	☑ 0 - 8.64
480-222833-A-15	P28C	2540D	Total Suspended Solids	Total/NA	mg/L	6	1.0	ND	□ 0 - 1.932	□ 0 - 1.44
480-222833-A-16	P33B	2540D	Total Suspended Solids	Total/NA	mg/L	6	1.0	ND	□ 0 - 2.569	□ 0 - 2.4
480-222833-A-17	P40D	2540D	Total Suspended Solids	Total/NA	mg/L	6	1.0	ND	□ 0 - 1.285	□ 0 - 1.2
480-222859-A-10	SW-02	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	4.0	□ 0 - 29.99	1.28 - 30.24
480-222859-A-8	MW-11A	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	45.6	□ 0 - 64.869	□ 5.76 - 55.68
480-222859-A-9	SW-01	2540D	Total Suspended Solids	Total/NA	mg/L	8	1.0	56.4	□ 0 - 56.913	✓ 1.28 - 48.96

General Chemistry Worksheet

Batch Number: 480-723503

Method: SM 2540D Analyst: Blenman, Alanna Date Open: Aug 29 2024 10:54AM

Batch End:

Lab ID	Client ID	Method Chain	Basis	CrucibleID	Tare Weight	Initial weight/volume of sample	First Weighing	Second Weighing	Percent different between 1st & 2nd
MB~480-723503/1		2540D		mb	2.7089 g	1000 mL	2.7077 g	2.7075 g	PASS <0.5mg
LCS~480-723503/2		2540D		Ics	2.6850 g	250 mL	2.7457 g	2.7461 g	PASS < 0.5mg
240-210295-C-1	OUTFALL 145	2540D	Т	3	2.6700 g	250 mL	2.6694 g	2.6694 g	PASS < 0.5mg
240-210295-C-1~DU	J	2540D	Т	4	2.6708 g	250 mL	2.6700 g	2.6699 g	PASS < 0.5mg
480-222740-A-3	MW30	2540D	Т	5	2.6816 g	250 mL	2.6871 g	2.6873 g	PASS < 0.5mg
480-222740-A-4	MW32	2540D	Т	6	2.6907 g	250 mL	2.7190 g	2.7190 g	PASS < 0.5mg
480-222740-A-13	P29C	2540D	Т	7	2.7122 g	250 mL	2.7236 g	2.7234 g	PASS < 0.5mg
480-222787-D-2	MH21_Comp	2540D	Т	8	2.6887 g	250 mL	2.6916 g	2.6914 g	PASS < 0.5mg
480-222833-A-15	P28C	2540D	Т	9	2.6793 g	250 mL	2.6786 g	2.6784 g	PASS < 0.5mg
480-222833-A-16	P33B	2540D	Т	10	2.6784 g	250 mL	2.6779 g	2.6775 g	PASS < 0.5mg
480-222833-A-17	P40D	2540D	Т	11	2.6700 g	250 mL	2.6691 g	2.6693 g	PASS < 0.5mg
480-222859-A-8	MW-11A	2540D	Т	12	2.6863 g	250 mL	2.6980 g	2.6977 g	PASS < 0.5mg
480-222859-A-9	SW-01	2540D	Т	13	2.7070 g	250 mL	2.7211 g	2.7211 g	PASS < 0.5mg
480-222859-A-10	SW-02	2540D	Т	14	2.6866 g	250 mL	2.6875 g	2.6876 g	PASS < 0.5mg
480-222875-B-1	Effluent 082624	2540D	Т	15	2.6896 g	250 mL	2.6890 g	2.6890 g	PASS < 0.5mg
480-222878-A-4	25-00153	2540D	Т	16	2.6738 g	250 mL	2.6736 g	2.6739 g	PASS < 0.5mg
480-222878-A-6	25-00151	2540D	Т	17	2.6953 g	250 mL	2.6950 g	2.6953 g	PASS < 0.5mg
480-222900-B-3	01A - COMPOSITE	2540D	Т	18	2.6860 g	250 mL	2.6845 g	2.6848 g	PASS < 0.5mg
480-222914-C-1	OUTFALL 003A-073124	2540D	Т	19	2.7022 g	250 mL	2.7008 g	2.7011 g	PASS <0.5mg
480-222921-D-1	25-00162	2540D	T	20	2.6901 g	250 mL	2.6968 g	2.6970 g	PASS < 0.5mg
480-222924-A-4	25-00155	2540D	Т	21	2.6758 g	250 mL	2.6748 g	2.6751 g	PASS < 0.5mg
480-222924-A-6	25-00157	2540D	Т	22	2.7018 g	250 mL	2.7021 g	2.7023 g	PASS < 0.5mg
480-222900-B-4	001 - COMPOSITE	2540D	Т	23	2.6981 g	250 mL	2.6969 g	2.6971 g	PASS < 0.5mg
480-222900-B-4~DL	J	2540D	T	24	2.6727 g	250 mL	2.6718 g	2.6719 g	PASS <0.5mg

Page 1026 of 1052

General Chemistry Worksheet

Batch Number: 480-723503

Method: SM 2540D Analyst: Blenman, Alanna Date Open: Aug 29 2024 10:54AM Batch End:

Lab ID	Client ID	Method Chain	Basis	RawResidue	Weight of Residue 2	Final weight/volume of sample	Weight of Residue and Dish	Empty Dish Weight	WC_TSS_DTErth_0 0016
MB~480-723503/1		2540D		-0.0012 g	-0.0014 g	250 mL	2.7075 g	2.7089 g	
LCS~480-723503/2		2540D		0.0607 g	0.0611 g	250 mL	2.7461 g	2.685 g	0.0626 g
240-210295-C-1	OUTFALL 145	2540D	Т	-0.0006 g	-0.0006 g	250 mL	2.6694 g	2.67 g	
240-210295-C-1~D	U	2540D	Т	-0.0008 g	-0.0009 g	250 mL	2.6699 g	2.6708 g	
480-222740-A-3	MW30	2540D	Т	0.0055 g	0.0057 g	250 mL	2.6873 g	2.6816 g	
480-222740-A-4	MW32	2540D	Т	0.0283 g	0.0283 g	250 mL	2.719 g	2.6907 g	
480-222740-A-13	P29C	2540D	Т	0.0114 g	0.0112 g	250 mL	2.7234 g	2.7122 g	
480-222787-D-2	MH21_Comp	2540D	Т	0.0029 g	0.0027 g	250 mL	2.6914 g	2.6887 g	
480-222833-A-15	P28C	2540D	Т	-0.0007 g	-0.0009 g	250 mL	2.6784 g	2.6793 g	
480-222833-A-16	P33B	2540D	Т	-0.0005 g	-0.0009 g	250 mL	2.6775 g	2.6784 g	
480-222833-A-17	P40D	2540D	Т	-0.0009 g	-0.0007 g	250 mL	2.6693 g	2.67 g	
480-222859-A-8	MW-11A	2540D	Т	0.0117 g	0.0114 g	250 mL	2.6977 g	2.6863 g	
480-222859-A-9	SW-01	2540D	Т	0.0141 g	0.0141 g	250 mL	2.7211 g	2.707 g	
480-222859-A-10	SW-02	2540D	Т	0.0009 g	0.0010 g	250 mL	2.6876 g	2.6866 g	
480-222875-B-1	Effluent 082624	2540D	Т	-0.0006 g	-0.0006 g	250 mL	2.689 g	2.6896 g	
480-222878-A-4	25-00153	2540D	Т	-0.0002 g	0.0001 g	250 mL	2.6739 g	2.6738 g	
480-222878-A-6	25-00151	2540D	Т	-0.0003 g	0.0000 g	250 mL	2.6953 g	2.6953 g	
480-222900-B-3	01A - COMPOSITE	2540D	Т	-0.0015 g	-0.0012 g	250 mL	2.6848 g	2.686 g	
480-222914-C-1	OUTFALL 003A-073124	2540D	Т	-0.0014 g	-0.0011 g	250 mL	2.7011 g	2.7022 g	
480-222921-D-1	25-00162	2540D	T	0.0067 g	0.0069 g	250 mL	2.697 g	2.6901 g	
480-222924-A-4	25-00155	2540D	Т	-0.0010 g	-0.0007 g	250 mL	2.6751 g	2.6758 g	
480-222924-A-6	25-00157	2540D	Т	0.0003 g	0.0005 g	250 mL	2.7023 g	2.7018 g	
480-222900-B-4	001 - COMPOSITE	2540D	Т	-0.0012 g	-0.0010 g	250 mL	2.6971 g	2.6981 g	
480-222900-B-4~D	U	2540D	Т	-0.0009 g	-0.0008 g	250 mL	2.6719 g	2.6727 g	

Perform Calculation (0=No, 1=Yes):	1
Nominal Amount Used:	250 mL
Balance ID:	1
Oven ID:	105-BG
Thermometer ID:	105-BG
Date/Time - In:	08/29/2024 17:41
Temperature - Start - Uncorrected:	105.1 Celsius
Temperature - Start - Corrected:	105.1 Celsius
Date/Time - Out:	08/31/2024 10:43
Temperature - End - Uncorrected:	106.2 Celsius
Temperature - End - Corrected:	106.2 Celsius

 Date/Time - In - CW (WT2):
 08/31/2024 11:38

 Temperature - Start-CW(WT2) - Uncorrected:
 105.2 Celsius

 Temperature - Start - CW (WT2) - Correct:
 105.2 Celsius

 Date/Time - Out - CW (WT2):
 08/31/2024 12:47

 Temperature - End-CW(WT2) - Uncorrected:
 105.9 Celsius

 Temperature - End - CW (WT2) - Correct:
 105.9 Celsius

Page 1027 of 1052 09/11/2024

50		Continue	d from Page	الــٰ 09/11/٪
PROJECT 9015				- 8
3adch	NO 99413			_
		Setz	Aug	
Pamoles dil	matrix sell	983	Aug	
Samples air	733	1 480		
			0.001	
	0.001	0.00	0,007	
2 5	0 006	0.014	20:010	
	00/3		0.014	
	0.028	0.023	0.051	
10	0,040	0.056	0.100	<u> . </u>
23	0/04	0.108	0 298	
100	0.29	0 0.306	0.098	
10 25 150 10V	0.096	5 0'/02	0.00	
	0.000	0007	0007	
103	0,006	0007	0103	23
DICK	8.10		0,000	1 9
	8,00	5 0.005	0'005	78.6
Ces	Extrat	55 0.573	0 264	Page 1028 of 1052
mr	0,2		0.006	age
	G·2	10 000	0.286	
310437-1 ms	3'2	10 0.229	0 508	
1 1 1 1 1 1 1 1	6.2	- 	0.006	
	moder 3.00		0.186	
MB + + + + +	\ \ <u>I</u>	90 0:191	0003	
222859-1	0,00	000-	0.26	
- 1 ms	0.2		8.217	
- m30	\		9,103	
CON	· · · · · · · · · · · · · · · · · · ·	0/ 0:105 Du 0.000	0,000	
cers	1 I I I I I I I I I I I I I I I I I I I		0,000	
222859-2			1000	
-3)	005 6.000	0.00	
	\ \ <u>\I</u>	009 0:010 m 0 0:138	0.144	
l lat	0'	and it	0.013	
	0	0 0 0	^- · · · ·	
	4 0			
1 19	Rea	d and Understood By		

Signed

Date

Curve Type: Linear **Curve Coefficients** Weighting: None Intercept: -0.8528 Origin: None Slope: 503.9 Dependency: Concentration

Calib Mode: **ESTD** Response Base: **AREA** Relative Standard Deviation: 23.5 0 RF Rounding: 0.999 Correlation Coefficient:

ID	Level	Concentration	Response	IS Amount	IS Response	RF	Used
1	IC 460-994113/1	0.0	0.001			60	Υ
2	IC 460-994113/2	2.0	0.007			0.0035	Υ
3	IC 460-994113/3	5.0	0.014			0.0028	Υ
4	IC 460-994113/4	15.0	0.025			0.001667	Υ
5	IC 460-994113/5	25.0	0.051			0.00204	Υ
6	IC 460-994113/6	50.0	0.106			0.00212	Υ
7	IC 460-994113/7	150.0	0.298			0.001987	Υ

Error Coefficients

4
Š
0
Ŋ
=
÷
`>
0
()

Method No.:	9016	Analyst: $\sqrt{\zeta}$
Prep Batch:	.,	Analysis Date: 09 04 24
Analytical Batch:	994113	

donenthis googes.	<u>lingilo</u> g Factor	Sample Volume (mi).		en gelet field Golde event de prosphieto de elemente una la significa accomentario
nonemula kaname.	[F316(0)]	same volume (mi).	स्तरका द्रशासक (विद्यो).	
222886-8	10	0.1	10	47 N MODY
		·		
				<i>i'</i>
	•	:		· ·
			·	
· .				
			4	
		· ·		
-				
				3.
	· ·		*	
				•

EDS-WI-101, Rev 1 9/15/23

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723667 Batch Start Date: 08/30/24 07:32 Batch Analyst: Thomas, Christine L

Batch Method: 9012B Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	InitialAmount	FinalAmount	10ppm CN MS 00433	WC_CN 0.400 00263	WC_CN CCV/LCS 00459	WC_CN ICV 00260
ICV 480-723667/15		9012B			10 mL	10 mL				# mL
ICB 480-723667/16		9012B			10 mL	10 mL				
CCV 480-723667/19		9012B			10 mL	10 mL			# mL	
CCB 480-723667/20		9012B			10 mL	10 mL				
MB 480-723667/21		9012B			10 mL	10 mL				
HLCS 480-723667/22		9012B			10 mL	10 mL		# mL		
LCS 480-723667/23		9012B			10 mL	10 mL			# mL	
480-222859-C-4	MW-23	9012B	Water	Т	10 mL	10 mL				
480-222859-C-4 MS	MW-23	9012B		Т	10 mL	10 mL	100 uL			
480-222859-A-1	MW-14	9012B	Water	Т	10 mL	10 mL				
480-222859-A-2	MW-20	9012B	Water	Т	10 mL	10 mL				
CCV 480-723667/29		9012B			10 mL	10 mL			# mL	
CCB 480-723667/30		9012B			10 mL	10 mL				
480-222859-D-8	MW-11A	9012B	Water	Т	10 mL	10 mL				
480-222859-D-8 DU	MW-11A	9012B		Т	10 mL	10 mL				
480-222859-D-8 MS	MW-11A	9012B		Т	10 mL	10 mL	100 uL			
480-222859-A-3	MW-22	9012B	Water	Т	10 mL	10 mL				
480-222859-A-5	MW-16	9012B	Water	Т	10 mL	10 mL				
480-222859-D-9	SW-01	9012B	Water	Т	10 mL	10 mL				
480-222859-D-10	SW-02	9012B	Water	Т	10 mL	10 mL				
480-222859-C-12	EB	9012B	Water	Т	10 mL	10 mL				
480-222859-A-14	MW-20 Bailer	9012B	Water	Т	10 mL	10 mL				
480-222859-A-15	MW-16 Bailer	9012B	Water	Т	10 mL	10 mL				
CCV 480-723667/43		9012B			10 mL	10 mL			# mL	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9012B

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723667 Batch Start Date: 08/30/24 07:32 Batch Analyst: Thomas, Christine L

Batch Method: 9012B Batch End Date:

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis	InitialAmount	FinalAmount	10ppm CN MS	WC CN 0.400	WC CN CCV/LCS	WC_CN ICV
	ID						00433	00263	00459	00260
CCB		9012B			10 mL	10 mL				
480-723667/44										
MB		9012B			10 mL	10 mL				
480-723667/47		00105			10 7	10 -			" -	
LCS 480-723667/48		9012B			10 mL	10 mL			# mL	
480-222859-C-13	Duplicate	9012B	Water	Т	10 mL	10 mL				
480-222859-C-13 MS	Duplicate	9012B		Т	10 mL	10 mL	100 uL			
CCV 480-723667/57		9012B			10 mL	10 mL			# mL	
CCB 480-723667/58		9012B			10 mL	10 mL				
CCV 480-723667/71		9012B			10 mL	10 mL			# mL	
CCB 480-723667/72		9012B			10 mL	10 mL				
MB 480-723667/75		9012B			10 mL	10 mL				
LCS 480-723667/76		9012B			10 mL	10 mL			# mL	
480-222886-D-6	MW-13	9012B	Water	Т	10 mL	10 mL				
480-222886-D-6 MS	MW-13	9012B		Т	10 mL	10 mL	100 uL			
480-222886-B-1	MW-12	9012B	Water	Т	10 mL	10 mL				
480-222886-B-2	MW-12 (BAILER)	9012B	Water	Т	10 mL	10 mL				
480-222886-B-5	MW-20 LOW FLOW 2)	9012B	Water	Т	10 mL	10 mL				
480-222886-D-7	MW-17	9012B	Water	Т	10 mL	10 mL				
480-222886-B-8	MW-16 (LOW FLOW 2)	9012B	Water	Т	10 mL	10 mL				
480-222886-B-10	MW-21	9012B	Water	Т	10 mL	10 mL				
CCV 480-723667/85		9012B			10 mL	10 mL			# mL	
CCB 480-723667/86		9012B			10 mL	10 mL				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9012B

Lab Name: Euro	ofins Buffalo		
SDG No.: 22285	59		
Batch Number:	723667	Batch Start Date: 08/30/24 07:32	Batch Analyst: Thomas, Christine L
Batch Method:	9012B	Batch End Date:	
		Batch Notes	

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9012B

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723503 Batch Start Date: 08/29/24 10:54 Batch Analyst: Blenman, Alanna

Batch Method: SM 2540D Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	CrucibleID	TareWeight	InitialAmount	Weight1	Weight2	WeightOne%Diff
	1			-						
MB 480-723503/1		SM 2540D			mb	2.7089 g	1000 mL	2.7077 g	2.7075 g	PASS <0.5mg
LCS		SM 2540D			lcs	2.6850 g	250 mL	2.7457 g	2.7461 g	PASS <0.5mg
480-723503/2								<u> </u>		
480-222859-A-8	MW-11A	SM 2540D	Water	Т	12	2.6863 g	250 mL	2.6980 g	2.6977 g	PASS <0.5mg
480-222859-A-9	SW-01	SM 2540D	Water	Т	13	2.7070 g	250 mL	2.7211 g	2.7211 g	PASS <0.5mg
480-222859-A-10	SW-02	SM 2540D	Water	Т	14	2.6866 g	250 mL	2.6875 g	2.6876 g	PASS <0.5mg

Lab Sample ID	Client Sample	Method Chain	Matrix	Basis	Residue	Residue2	FinalAmount	ResDishWt	DishWeight	WC_TSS_DTErth
	ID									00016
MB 480-723503/1		SM 2540D			-0.0012 g	-0.0014 g	250 mL	2.7075 g	2.7089 g	
LCS 480-723503/2		SM 2540D			0.0607 g	0.0611 g	250 mL	2.7461 g	2.685 g	0.0626 g
480-222859-A-8	MW-11A	SM 2540D	Water	Т	0.0117 g	0.0114 g	250 mL	2.6977 g	2.6863 g	
480-222859-A-9	SW-01	SM 2540D	Water	Т	0.0141 g	0.0141 g	250 mL	2.7211 g	2.707 g	
480-222859-A-10	SW-02	SM 2540D	Water	Т	0.0009 g	0.0010 g	250 mL	2.6876 g	2.6866 g	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

SM 2540D

Lab Name: Eurofins Buffalo Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 723503 Batch Start Date: 08/29/24 10:54 Batch Analyst: Blenman, Alanna

Batch Method: SM 2540D _____ Batch End Date: _____

В	atch Notes
Perform Calculation (0=No, 1=Yes)	1
Nominal Amount Used	250 mL
Balance ID	1
Oven ID	105-BG
Thermometer ID	105-BG
Date/Time - In	08/29/2024 17:41
Temperature - Start - Uncorrected	105.1 Celsius
Temperature - Start - Corrected	105.1 Celsius
Date/Time - Out	08/31/2024 10:43
Temperature - End - Uncorrected	106.2 Celsius
Temperature - End - Corrected	106.2 Celsius
Date/Time - In - CW (WT2)	08/31/2024 11:38
Temperature - Start-CW(WT2) -Uncorrected	105.2 Celsius
Temperature - Start - CW (WT2) - Correct	105.2 Celsius
Date/Time - Out - CW (WT2)	08/31/2024 12:47
Temperature - End-CW(WT2) -Uncorrected	105.9 Celsius
Temperature - End - CW (WT2) - Correct	105.9 Celsius

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 994030 Batch Start Date: 09/04/24 10:48 Batch Analyst: Patel, Amitkumar X

Batch Method: 9016 Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	InitialAmount	FinalAmount	ResidualChloCh eck	SulfideCheck	WT9016-2mg/l 00653	
MB 460-994030/1		9016, 9016			3.0 mL	1.3 mL				
LCS 460-994030/2		9016, 9016			3.0 mL	1.3 mL			0.075 mL	
480-222859-B-1	MW-14	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222859-B-1 MS	MW-14	9016, 9016		Т	3.0 mL	1.3 mL	N	N	0.075 mL	
480-222859-B-1 MSD	MW-14	9016, 9016		Т	3.0 mL	1.3 mL	N	N	0.075 mL	
480-222859-B-2	MW-20	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222859-B-3	MW-22	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-D-4	MW-23	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-B-5	MW-16	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-E-8	MW-11A	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-E-9	SW-01	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-E-10	SW-02	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-D-12	EB	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-D-13	Duplicate	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222859-B-14	MW-20 Bailer	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222859-B-15	MW-16 Bailer	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222886-A-1	MW-12	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222886-A-2	MW-12 (BAILER)	9016, 9016	Water	T	3.0 mL	1.3 mL	N	N		
480-222886-A-5	MW-20 LOW FLOW 2)	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222886-C-6	MW-13	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222886-C-7	MW-17	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222886-A-8	MW-16 (LOW FLOW 2)	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		
480-222886-A-10	MW-21	9016, 9016	Water	Т	3.0 mL	1.3 mL	N	N		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9016 Page 1 of 2

Lab Name: Eurofins Edison Job No.: 480-222859-1

SDG No.: 222859

Batch Number: 994030 Batch Start Date: 09/04/24 10:48 Batch Analyst: Patel, Amitkumar X

Batch Method: 9016 Batch End Date:

Batch Notes							
Sodium Hydroxide ID	4.1g/L NaOH C-3127-24 exp 11/03/24						
Potassium Phosphate ID	Potassium phosphate solution (190g/L) C-3494-24						
Lead Carbonate ID	Acros/A0402599 exp 08/12/26						
Batch Comment	2.05g/L NaOH C-3376-24 exp 01/08/25 / Start time						

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9016 Page 2 of 2

Lab	Name:	Eurofins	Edison	Job	No.:	480-222859-1

SDG No.: 222859

Batch Number: 994113 Batch Start Date: 09/04/24 20:26 Batch Analyst: Govekar, Vipul B

Batch Method: 9016 Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Matrix	Basis	WT9016-2mg/l 00653	WT9016-2ppm2 00369		
IC 460-994113/2		9016			0.1 mL			
IC 460-994113/3		9016			0.25 mL			
IC 460-994113/4		9016			0.75 mL			
IC 460-994113/5		9016			1.25 mL			
IC 460-994113/6		9016			2.5 mL			
IC 460-994113/7		9016			7.5 mL			
ICV 460-994113/8		9016				2.5 mL		
DLCK 460-994113/10		9016			0.1 mL			
CCV 460-994113/11		9016			2.5 mL			
CCV 460-994113/23		9016			2.5 mL			
CCV 460-994113/35		9016			2.5 mL			
CCV 460-994113/45		9016			2.5 mL			

Batch	Notes
Acidified Pot Phosphate Buffer ID	C - 3000 - 24 EXP. 09/29/24
Chloramine-T ID	C - 3591 - 24 EXP. 09/05/24
Pyridine-Barbituric Acid ID	C - 3592 - 24 EXP. 09/05/24

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

9016 Page 1 of 1

Subcontract Data

Shipping and Receiving Documents

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Eurofins Buffalo

10 Hazelwood Drive

🔅 eurofins

Environment Testing

Chain of Custody Record

Special Instructions/Note: Ver: 05/06/2024 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Mon Preservation Codes:
B - NaOH
N - None
A - HCL Page 1 of 2 480-222859 Chain of Custody 200 N 480 N Total Number of containers Carrier Tracking No(s) State of Origin **Analysis Requested** Special Instructions/QC Requirements MACACO Lab PM: Schove, John R E-Mail John.Schove@et.eurofinsus.com 9012B - Cyanide, Total 2540D - Total Suspended Solids ×××× Received by Received by Received by 8270D_LL_PAH - PAH - 8270 (oN to -- aRM/RM more) BT=Tissue, A=Arr) Preservation Code: Water Water Matrix Water Water Water Water Water Water Water Water Water Company 735 Radiological Type (C=comp, G=grab) Sample 9 Marral 1 (0.50) 0,40 020 9 50 05 S. S. S. 8 Sample d So Date Unknown TAT Requested (days) Due Date Requested Compliance Project: PM: Brad Walker Sample Date Project Name: Project Wineral Springs/ Event Desc: Semi Annual Sampling (April) 48008324 Date/Time Poison B Mw-07 ba; to Mar-16 bailer MW-20 bailt Skin Imtant Deliverable Requested: I, III, IV, Other (specify) M~~!!& MW-22 MW-23 るーシー Mw-10 Custody Seal No MW-16 MW-2 MW-14 National Fuel Gas Supply Corporation Flammable Possible Hazard Identification Empty Kit Relinquished by: Custody Seals Intact:

Δ Yes Δ No Client Information Sample Identification walkerb@natfuel.com 716-857-7247(Tel) Non-Hazard 5363 Main Street State, Zip: NY, 14221-5887 Client Contact: Brad Walker nduished by Williamsville New York 1 AW-16 DC 7M

Eurofins Buffalo

💸 eurofins Environment Testing

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-891-3600 Fax: 716-691-7991	Chain of	hain of Custody Record	ecord		eurofins Environment Testing
Client Information	Sampler	Lab PN Schov	Lab PM Schove, John R	Carrier Tracking No(s)	A80-199042-33139.2
Clent Contact Brad Walker	Phone:	E-Mail. John.	Schove@et.eurofinsus.com	State of Origin:	Page 2 af 2
Company National Fuel Gas Supply Corporation	M	PWSID	Analysis	Analysis Requested	, # qor
Address 6363 Main Street	Due Date Requested:		West.		Preservation Godes:
City Williamsville	TAT Requested (days):		28/28		A - HCL
State, Zip NY, 14221-5887	Compliance Project: A Yes A No	٥			
Phone 716-857-7247(Tel)	Po# PM: Brad Walker		(c		6130
Email walkerb@naffuel.com	WO#		(c)		8.
Project Name GEI, Mineral Springs/ Event Desc: Semi Annual Sampling (April) 48008324	Project #:		0728 -		ienistr
Site. New York	SSOW#		9017 HAG - 03S8 Dneq2u		of cor
Sample Identification	Sample Date Time G	Sample (Matrix Type Second: Cacomp, Oransecond)	Field Filtered : Warn MS/M = 0016 - Cyanide, EZEK -		Total Mumber
	X	ation Code:	X X		
10-00°	8/21/240	6 Water	XXX		
2W-0)	511.	Water	XXXXX		
ST CELANT	1	Water	×		
MINU-T7	1200	Water	XXXX		
MINIST CONTRACTOR	1	Water	××××		
Oupricate		Water			
		Water			
		Water			
		Water			. 1
	}	1			
Possible Hazard Identification Non-Hazard Elammable Skin Irriant Dou	Poison B	Radiological	Sample Disposal (A fee may	he assessed if samples a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Months
ested 1, II, III, IV, Other (specify)			Special Instructions/QC Requirements	ements:	
Empty Kit Relinquished by:	Date.		Time	Method of Shipment	
Reimquished by	Date/Time 143	D Company	Received by MAA (W	L / Date/Time	S 26, 24 143
Relinquished by	Date/Time	Opmpany	Received by U V V V V	Date/Time	1 122
Relinquished by	Date/Time:	Company	Received by:	Date/Time	Company
Custody Seals Intact: Custody Seal No.			Cooler Temperature(s) °C and Other Remarks	er Remarks.	
					Ver. 05/06/2024

Chain of Custody Record

Environment Testing

eurofins |

10 Hazelwood Drive

Eurofins Buffalo

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Information (Sub Contract Lab) Bact WReceiving Environment Testing Northeast L V Durham Road,	npler ne:			Schove, John R	John R			<u> </u>	arrier Trac	Carrier Tracking No(s)		480-89	COC No: 480-89191 1
rceiving vironment Testing Northeast L urham Road,	ine.			E.Mail:									
ceiving vironment Testing Northeast L urham Road,	į								State of Origin:	zin:		Page:	
any: ofins Environment Testing Northeast L sss: New Durham Road,				John.Sc	hove@et.	John.Schove@et.eurofinsus.com	IS.COM	<u></u>	New York			Page 1 of 2	1 of 2
Jany. Ses: New Durham Road,				1000	aditation 5	(aton oo?) beginning	10,000,00		-			# 40	
sss: New Durham Road, Son				2 2	NELAP New York	w York	ee role).					480-2	480-222859-1
UO:	Due Date Requested: 9/9/2024						Analysis Requested	is Req	pested		_	Jeseid -	Preservation Codes:
	TAT Requested (days):												
State, 2.p.: N.J. 08817				Section 1									
Phone: PO #: 732-549-3679(Fax)	#			§ _ (c									
Email: WO#:	**(N 10	(0)							9)	
Project Name: Project # Pr	Project #: 48008324			66Y) 0	98 OF 614, 66					•		enladn	
Site: Springs Springs	OW# <u>:</u>			dma8	X) as							oo to A	
		Š	Sample Ma		Main							18dm	
	Sa	Sample (C:		(Warwater, E. Sawoike, E. Conventition)	moh							uM (s)	
Sample Identification Client ID (Lab ID)	Sample Date T			Ļ	оd				-			01	Special Instructions/Note:
	N	X	Preservation Code:	Sode: 💢	X		1		1				1.00
MW-14 (480-222859-1)	8/26/24 Ea	1:50 stem	≯	Water	×							9	
MW-20 (480-222859-2)	8/26/24 Ea	10:30 Eastern	× თ	Water	×								
MW-22 (480-222859-3)	8/26/24 Ea	12:45 Eastern	0	Water	×							4	
MW-23 (480-222859-4)	8/26/24 Ea	09:50 Eastern	§ ⊗	Water	×							red.	
MW-16 (480-222859-5)	8/26/24 Ea	13:20 Eastern	<i>≶</i> 	Water	×				-				
MW-11A (480-222859-8)	8/26/24 Ea	11:50 Eastem	N O	Water	×							Yagen I	
SW-01 (480-222859-9)	8/26/24 Ea	12:40 Eastern	N S	Water	×						-	(
SW-02 (480-222859-10)	8/26/24 T	11 15 Eastern	м В	Water	×							· +-	Constitution of the Consti
EB (480-222859-12)	8/26/24 F	12:00 Fastern	<u>ج</u> ق	Water	×				-				

Note: Since aboratory are subject to change, Lucinos Environment I testing of Ordina Environment I testing of Ordina Environment I testing of Ordin Environment I testing of Ordin Interest and State of Ordin Interest Interest I LiC alterial Environment I testing of Ordin Interest Interest I LiC alterial Environment I testing of Ordin Interest I LiC alterial Environment I testing of Ordin Interest I LiC alterial Environment I Testing Northeast, LLC attention immediately. If all requested accreditation is a current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Northeast, LLC. Months Company Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 0 Archive For Date/Time: 9 Method of Shipment Disposal By Lab Return To Client Disp Special Instructions/QC Requirements: Time: Сотралу Primary Deliverable Rank: 2 Date; S 27 24 Unconfirmed
Deliverable Requested: I II, III IV Other (specify) Possible Hazard Identification Empty Kit Relinquished by dinguished by: elinguished by:

Ver 05/06/2024

Cooler Temperature(s) °C and Other Remarks:

Received by:

Date/Time:

telinquished by:

Custody Seal No.

Custody Seals Intact:

201.5c

Ч

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298	Chain of C	of Custody Record	ord				🔅 eurofins	Ofins Environment Testing	sting
Phone: /16-691-2600 Fax: /16-691 /991	Sampler	Lab PM:		8	Carrier Tracking No(s)	(o(s)	COC No:		Γ
ormation (Sub Contract Lab)		Schove, John R	John R		,		480-89191.2	191.2	
Client Contact Shipping/Receiving	Phone;	E-Mail: John.Sch	E-Mail; John.Schove@et.eurofinsus.com	₿Ž	State of Origin: New York	. <u></u>	Page 2 of 2	of 2	
Company: Eurofins Environment Testing Northeast L		Acg	Accreditations Required (See note): NELAP New York				Job #: 480-222859-1	2859-1	
	Due Date Requested: 9/9/2024		Analysis	sis Requested	ested		Preserv	Preservation Codes:	
httiskinismussussessessessessessessessessessessesse	TAT Requested (days):						Section Sectio		
State, Zp. NJ, 08317						-241000-53331			
00(Tel) 732-549-3679(Fax)	PO#;								.
	WO#.	Party of the Party of the	SINDALLANDING/EDIA				in in the second		
ct Name: Mineral Springs	Project #. 48008324	gas,, tar, c, 275,	observation of the second				enlet		
	SSOW#:	runear parentain	attention of the late of the l				os lo Official		777
		Matrix (mmater,	M\&M mmq qərq_8t00				vedmuN.		
Sample Identification Client ID (Lab ID)	6	DIBIT	communication		-			Special Instructions/Note:	
	X	Preservation Code: 💢	X				X		
Duplicate (480-222859-13)	c	G Water	×				4		
								- Annual Control of the Control of t	
					-		3		
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/test/stative being analysis/test the samples must be shipped back to the Eurofine Environment Testing Northeast and Peritor Northeast LLC attention immediately. If all requires provided, the state of Origin is accreditation in the State of Origin Stating Northeast LLC.	Testing Northeast, LLC places the owner lysis/fests/matrix being analyzed, the sarr inmadiately if all requested accreditation	ship of method, analyte & acciples must be shipped back to	creditation compliance upon our so the Eurofins Environment Testing the signed Chain of Custody attentions.	subcontract lab ng Northeast, L esting to said o	oratories. This LC laboratory	sample shipme or other instruct	ons will be provi	under chain-of-custody. If the laided. Any changes to accreditatischeast. LLC.	xoratory n
Possible Hazard Identification			Sample Disposal (A fee	may be ass	essed if sa	mples are r	etained long	er than 1 month)	Τ
			Return To Client Disposal By Lab Archive For Mon	O sia	posal By La		Archive For	Months	
Deliverable Requested: I, II, III IV Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements:	equirements	14				
Empty Kit Relinquished by:	Date:	Time:	je:		Method of Shipment	Shipment	200	 	
Relinquished by:	Date/Time:	Company	Received by:	100 ·		Date Time:	me. 128174 10	و	
Relinquished by:	Date/Time:	Company	Received by:			3	1	Сопрапу	
Relinquished by:	Date/Time:	Company	Received by:			Date/Time:		Company	
Custody Seals Intact: Custody Seal No.			Cooler Temperature(s) °C and Other Remarks:	nd Other Rema	arks:		<u> </u>		
1 -1								Ver 05/06/2024]

Chain of Custody Record

🕻 eurofins

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax 716-691-7991

Client Information	M. CUMMENGS F. CLONGROW	SCHOVE, JOHN	Carrier Tracking No(s): COC No	No
SARO WALKER			State of Ongin.	.63
N'91491 OL TIPE CAC		Accreditations Required (See note)		
Address	Due Date Requested:	91		
63 (3 MAZN ST.		Analysis Re		des:
タファエル 5~を上つってへ	TAT Requested (days):	10 9: -6 2.		CL N - Hexane aOH N - None
State Zip V . I VLLI - SWRT	570	1 ' 5		
-00	PO#PM: B.UA)LKER			F - NaHSU4 R - Na2S203 F - MeOH S - H2SO4 G - Amchior Acid T - TSP Dodecahydrate
Enail Walker of nat Avel. Con,	#OM	ION 3	918	
Site	mvic33	0 20/	ntaine	DA Y - Trizma Z - other (specify)
NY		() USV		
Sample Haviffication	Sample (wwwater. Type Seolid. Sample (C=Comp.)	M/SM Filtered Filtered Form MS/N For	al Number	
cample rectification	Sample Date Time G=grab) BT-TISSUE, A=AI) I	Pa		Special Instructions/Note:
21-22	8/73/24 0900 G	>		
MW-12 (BASLER)	5260			
MW-19	5/0/	×		
MN-19 (BAZIER)	1045			
M W-20 (LOW FLOW L)	1150	× ×		
	1,45	× × × ×		
mv - 17	040/	× × × ×		
MW - 16 (LOW FLOW 2)	121/5			
78	> · · · ·	×	480-222886 Chain of Custody	Custody
Note Since laboratory accreditations are subject to change. Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This supplies the samples must be shipped back to the Eurofins Environment Testing Northeast, LLC advances or other instructions will be provided. Any changes to accreditation safe current to date, return the signed Chain of Custody aftesting to said compliance in Eurofins Environment Testing Northeast. LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody aftesting to said compliance to Eurofins.	onment Testing Northeast, LLC places the ownership of method, analyte & for analysis/tests/matrix being analyzed, the samples must be shipped bac attention immediately. If all requested accreditations are current to date, rel	accreditation compliance upon our subcontrack to the Eurofins Environment Testing Northes furnt he signed Chain of Custody attesting to s.	Haboratories This sempre compressions will be progressionally and the progression of the	. ator
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Inknown Dadiclasical	Sample Disposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	nger than 1 month)
Other (specify)		Special Instructions/QC Requirements	Disposal By Lab Archive Fo	or Months
Empty Kit Relinquished by	Date.	Time:	Method of Shipment	
Keindunged by Deliconscience by	Date/Ime Company O G65	Received by M (rh/	Vala Date/Time 8 12×12V	Kusto PA Ki
Reinmusted by		Received by	Date/Time	Company
Cuesado Casta labada Dout 4 C	Date/Time Company	Received by	Date/Time	Сомрапу
		Cooler Temperature(s) °C and Other Remarks	emarks. 7, L IF (TUE
				Ver: 06/08/2021

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

	570		Preservation Codes:		N - None N - None O - AsNaO2 c Acid P - Na2O4S C Acid Q - Na2SO3	3	2	Y - I ⊓zma Z - other (specify)		Special Instructions/Note:							This sample shipment is forwarded under chain-of-custody. If the laborato toy or other instructions will be provided. Any changes to accreditation to Eurofins Environment Testing Northeast, LLC.	er than 1 month)	Months		Company	Company	Company		Var. 06/08 2021
Carrier Tracking No(s).	State of Origin	# qof					819	contain	to hedmuN le3	01				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			it laboratories. This sample shipment is forwarded sst. LLC laboratory or other instructions will be provided compliance to Eurofins Environment Testing No.	Sample Disposal (A fee may to assessed if samples are retained longer than 1 month)	Disposal By Lab Archive For ents:	Method of Shipment) Date/Time:	Date/Time.	Date/Time	lemarks	
SCHOVE TONN	/ail:	Accreditations Required (See note)	2 Sandard	- K	1924 112 124 124	-H0	0 I/	77 - VØX	leld Filtered Sa erform MS/MS	8	×						te & accrediation compliance upon our subcontrac I back to the Eurofins Environment Testing Northea e, return the signed Chain of Custody attesting to s.	Sample Disposal (A fee may to	Special Instructions/QC Requirements	Time:	Received by Sege Oc	Received by	Received by	Cooler Temperature(s) °C and Other Remarks	
M. LVmaswes F. CLaveau	Phone (716) 425-2465 E-Mail		Due Date Requested:	TAT Requested (days):	CYD	# Od	WO#	*MOSS		$\langle \rangle$	8/23/24/1230 6 6	•					ment Testing Northeast, LLC places the ownership of method, analysis/testis/matrix being analyzed, the samples must be shipped inton immediately. If all requested accreditations are current to dain			Date:	Date/Time Company Company	Date/Time Confipany	Date/Time Company		
Client Information	Command Commad	NATZONAL FUELGAS	6363 MAIN STIFET	City	State, Zp. 11/22 - 5887	Phone 153-3247	EMAIL WALLED SWATSEL. COM.	Site	Sample Identification		MW-22			C	1		Note Since laboratory accreditations are subject to change. Eurofins Environment Testing Northeast, LLC places the ownership of method analyze & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory and the state of Ongon listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Northeast. LLC attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Northeast. LLC.	Possible Hazard Identification Non-Hazard	V, Other (specify)	Empty Kit Relinquished by:	Kelingurhed by	Reinquished by	Г	Custody Seals Intact: Custody Seal No.: △ Yes △ No	

Eurofins Buffalo

10 Hazelwood Drive

Chain of Custody Record

eurofins Environment Testing

Phone: 716-691-2600 Fax: 716-691-7991 Amherst, NY 14228-2298

Preservation Codes: COC No: 480-89203.1 480-222859-Page 1 of 1 amer Tracking No(s) State of Origin: New York **Analysis Requested** John.Schove@et.eurofinsus.com Accreditations Required (See note): NELAP New York Lab PM: Schove, John R fered Sample (Yes of No) E-Mail: (AT Requested (days): Due Date Requested: 9/6/2024 Project #: 48008324 SSOW#: Phone: ₩O₩ Client Information (Sub Contract Lab) Eurofins Environment Testing Northeast L 732-549-3900(Tel) 732-549-3679(Fax) 77 New Durham Road GEI, Mineral Springs Shipping/Receiving NJ, 08817 Edison

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compilance upon our subcontract laboratory or other instructions will be provided. Any changes to accreditation does not currently maintain accreditation in the State of Origin listed above for analysis/bests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Northeast, LLC aboratory or other instructions will be provided. Any changes to accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Northeast, LLC. Special Instructions/Note: Total Number of containers -1 9016/9016_Prep Cyanide, Free × × × × × × × (oN to seY) GRMSM mrohed 87-Tissue, A.Air. (Wewater, Sesolid, Oewaste/of, Preservation Code: Water Water Water Water Matrix Water Water Water (C=Comp, G=qrab) Sample Type Ø O Ø Ø Ø O Ø Eastern 12:15 Eastern 11.50 09:00 Eastern 09:25 Eastern 12:30 Sample Eastern 11:45 Eastern 10;40 Eastern Sample Date 8/27/24 8/27/24 8/27/24 8/27/24 8/27/24 8/27/24 8/27/24 Sample Identification Client ID (Lab ID) MW-16 (LOW FLOW 2) (480-222886-8) WW-20 LOW FLOW 2) (480-222886-5) MW-12 (BAILER) (480-222886-2) MW-21 (480-222886-10) JW-12 (480-222886-1) MW-13 (480-222886-6) MW-17 (480-222886-7)

Months ompany ompany Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Method of Shipment: 17 07 PM KUDUS. Special Instructions/QC Requirements: Return To Client Received by: Company <u>ප</u> Primary Deliverable Rank: 2 Date: \$ (78 H Date/Time: Deliverable Requested. I II, III, IV Other (specify) Custody Seal No. ossible Hazard Identification Empty Kit Relinquished by Custody Seals Intact: nquished by: quished by: slinquished by: Inconfirmed

Cooler Temperature(s) °C and Other Remarks:

Mineral Springs

91.6211.82

7

Client: GEI Consultants Inc Job Number: 480-222859-1

SDG Number: 222859

List Source: Eurofins Buffalo

Login Number: 222859

List Number: 1

Creator: Stapleton, Kaitlyn

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	19.2, 21.5 #1 ice
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	NFG Supply Corporation
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Client: GEI Consultants Inc Job Number: 480-222859-1

SDG Number: 222859

List Source: Eurofins Edison
List Number: 2
List Creation: 08/28/24 11:46 AM

Creator: Armbruster, Chris

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.5/1.7°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Client: GEI Consultants Inc Job Number: 480-222859-1

SDG Number: 222859

List Source: Eurofins Buffalo

Login Number: 222886

List Number: 1

Creator: Yeager, Brian A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GEI
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Client: GEI Consultants Inc Job Number: 480-222859-1

SDG Number: 222859

List Source: Eurofins Edison
List Number: 2
List Creation: 08/29/24 11:37 AM

Creator: Armbruster, Chris

MS/MSDs

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Containers requiring zero headspace have no headspace or bubble is

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.6/1.8°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested	True	

True

True

True

N/A

2024 Second Semiannual Groundwater/Surface Water Quality
Monitoring and Special Groundwater Quality Assessment
Report
Mineral Springs Road Former MGP Site (NYSDEC #V00195), West Seneca, New York
November 2024

Appendix C Data Usability Review

Site: Mineral Springs MGP Laboratory: Eurofins, Amherst, NY

Report Number: 480-222859 (includes 480-222886) **Reviewer:** Bethany Russell/GEI Consultants

Date: September 23, 2024

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-14	480-222859-1	Total/Free Cyanide
MW-20	480-222859-2	Total/Free Cyanide
MW-22	480-222859-3	Total/Free Cyanide
MW-23	480-222859-4	Total/Free Cyanide, BTEX, PAH
MW-16	480-222859-5	Total/Free Cyanide
MW-07	480-222859-6	BTEX, PAH
MW-10	480-222859-7	BTEX, PAH
MW-11A	480-222859-8	Total/Free Cyanide, TSS, BTEX, PAH
SW-01	480-222859-9	Total/Free Cyanide, TSS, BTEX, PAH
SW-02	480-222859-10	Total/Free Cyanide, TSS, BTEX, PAH
TB	480-222859-11	BTEX
EB	480-222859-12	Total/Free Cyanide, BTEX, PAH
Duplicate	480-222859-13	Total/Free Cyanide, BTEX, PAH
MW-20 Bailer	480-222859-14	Total/Free Cyanide
MW-16 Bailer	480-222859-15	Total/Free Cyanide
MW-07 Bailer	480-222859-16	BTEX, PAH
MW-12	480-222886-1	Total/Free Cyanide
MW-12 (BAILER)	480-222886-2	Total/Free Cyanide
MW-19	480-222886-3	BTEX, PAH
MW-19 (BAILER)	480-222886-4	BTEX, PAH
MW-20 (LOW FLOW 2)	480-222886-5	Total/Free Cyanide
MW-13	480-222886-6	Total/Free Cyanide, BTEX, PAH
MW-17	480-222886-7	Total/Free Cyanide, BTEX, PAH
MW-16 (LOW FLOW 2)	480-222886-8	Total/Free Cyanide
TB	480-222886-9	BTEX
MW-21	480-222886-10	Total/Free Cyanide

Associated QC Samples:

Equipment blank/Trip blanks: TB, EB, TB Field duplicate pair: MW-23/Duplicate

The above-listed aqueous samples, equipment blank, and trip blank samples were collected on August 26 and 27, 2024 and were analyzed for BTEX volatile organic compounds (VOCs) by SW-846 method 8260C, polynuclear aromatic hydrocarbon (PAH) semivolatile organic compounds (SVOCs) by SW-846 method 8270D, total cyanide by SW-846 method 9012B, free cyanide by SW-846 method 9016, and total suspended solids (TSS) by Standard Methods SM2540D. The data validation was performed based on the following USEPA Region 2 Documents: Standard Operating Procedure (SOP) HW-35A (Revision 1) *Semivolatile Data*

Report Number: 480-222859, 480-222886

Date: September 23, 2024

Validation (September 2016), SOP HW-33A (Revision 1) Low/Medium Volatile Data Validation (September 2016), and SOP 3c (Revision 1), and SOP for the Evaluation of Cyanide for the Contract Laboratory Program (September 2016), as well as by the methods referenced by the data package and professional and technical judgment.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Internal Standard Results
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
- Quantitation Limits
- Sample Quantitation and Compound Identification

In general, all data appear usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers. Select results were qualified due to laboratory and equipment blank contamination and uncertainty for levels below the reporting limit and above the calibration limit. These results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information.

Data Completeness

The data package was complete as received by the laboratory. It should be noted that the ID for sample MW-20 (LOW FLOW 2) was not correct in the data report and EDD and corrected during the validation process.

Holding Times and Sample Preservation

All hold time and preservative criteria were met except where noted below.

The coolers for all samples in 480-222859 were received at 19.2 and 21.5 degrees Celsius, exceeding the maximum temperature of 6.0 degrees Celsius. Action was not taken on this basis as the samples were received by the laboratory the same day they were collected, on ice, and the cooling process had begun.

Report Number: 480-222859, 480-222886

Date: September 23, 2024

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met.

Blanks

Contamination was not detected in the associated method and instrument blank samples and equipment and trip blank samples except where noted below. Evaluation was performed before the application of dilution factors.

Free Cyanide EB				
-	2.7 ug/L	5.4 ug/L	27 ug/L	Qualify the results for free cyanide in samples MW-11A, MW-21, and MW-20 (LOW FLOW
				2) as nondetect (U) at the reporting limit.
Associated samples: MV	V-14, MW-20, MW-22,	MW-23, MW-16,	, MW-11A, SV	W-01, SW-02, EB, Duplicate, MW-20 Bailer,
MW-16 Bailer, MW-12.	MW-12 (BAILER), MV	W-20 (LOW FLO	W 2), MW-13	3, MW-17, MW-16 (LOW FLOW 2), MW-21
Total Cyanide MB 480 723667/		g/L 0.0118 mg/L	0.0590 mg/L	Qualify the result for total cyanide in sample SW-01 as nondetect (U) at the reporting limit. Estimate (J) the positive result for total cyanide in sample MW-17; High bias.

MW-16 Bailer, MW-12, MW-12 (BAILER), MW-20 (LOW FLOW 2), MW-13, MW-17, MW-16 (LOW FLOW 2), MW-21

Surrogate Recoveries

All surrogate recovery criteria were met for samples analyzed at dilutions less than 10.

MS/MSD Results

An MS was performed on samples MW-23, MW-11A, and MW-13 for total cyanide and an MS/MSD was performed on sample MW-14 for free cyanide. All validation recovery and precision criteria were met.

A batch (non-project) MS was reported for total cyanide. Results from these analyses were not used to qualify project samples due to differences in sample type, matrix, etc.

Laboratory Duplicate Results

A laboratory duplicate was performed on samples MW-11A for total cyanide. All validation precision criteria were met.

Blank Actions: If the sample result is < RL; report the result as nondetect (U) at the reporting limit (RL).

If the sample result is > RL and 2x Blank contamination; professional judgement was taken to report the result as nondetect (U) at the reported value.

If the sample result is \geq RL and < 10x Action Level; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x Action Level; validation action is not required.

Report Number: 480-222859, 480-222886

Date: September 23, 2024

Internal Standard Results

All criteria were met.

LCS/LCSD Results

All recovery and precision criteria were met.

Field Duplicate Results

Samples MW-23 and Duplicate were submitted as the field duplicate pair. The following table summarizes the RPD of the detected analyte in the field duplicate pair, which was within the acceptance criteria.

Analyte	MW-23 (mg/L)	Duplicate (mg/L)	RPD (%)		
Total Cyanide	0.13	0.14	7.4		
NC – Not calculable Criteria: When both results are ≥5x the RL, RPDs must be <30%. When results are < 5x the RL, professional judgement was taken to estimate results if the absolute difference between the original and field duplicate > 2xRL.					

Quantitation Limits

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL). If detected, these results were qualified as estimated (J) by the laboratory. The direction of the bias is indeterminate for these results.

The following table lists the sample dilutions and analyses which were performed and reported.

Sample	VOC Analysis Reported	SVOC Analysis Reported	Total Cyanide Analysis Reported	Free Cyanide Analysis Reported
MW-14	NR	NR	A 2-fold dilution was performed due to high analyte level.	NR
MW-20	NR	NR	A 10-fold dilution was performed due to high analyte level.	NR
MW-22	NR	NR	A 2-fold dilution was performed due to high analyte level.	NR
MW-16	NR	NR	A 20-fold dilution was performed due to high analyte level.	NR

Site: Mineral Springs Report Number: 480-222859, 480-222886 Date: September 23, 2024

Sample	VOC Analysis Reported	SVOC Analysis Reported	Total Cyanide Analysis Reported	Free Cyanide Analysis Reported
MW-07	A 20-fold dilution was performed due to high analyte level.	Report the results for acenaphthene and naphthalene from the 50-fold dilution. Report all other analytes from the undiluted analysis.	NR	NR
MW-11A	A 2-fold dilution was performed due to foaming at the time of purging during the original sample analysis.	NR	NR	NR
MW-20 Bailer	NR	NR	A 5-fold dilution was performed due to high analyte level.	NR
MW-16 Bailer	NR	NR	A 10-fold dilution was performed due to high analyte level.	NR
MW-07 Bailer	A 20-fold dilution was performed due to high analyte level.	Report the results for acenaphthene and naphthalene from the 20-fold dilution. Report all other analytes from the undiluted analysis.	NR	NR
MW-12	NR	NR	A 5-fold dilution was performed due to high analyte level.	NR
MW-12 (BAILER)	NR	NR	A 2-fold dilution was performed due to high analyte level.	NR
MW-19	A 100-fold dilution was performed due to high analyte level.	Report the result for naphthalene from the 200-fold dilution. Report the overcalibrated result for 2-methylnapthalene from the undiluted analysis and qualify it as estimated (J), as the 200-fold diluted result was below the RL. Report all other analytes from the undiluted analysis.	NR	NR
MW-19 (BAILER)	A 50-fold dilution was performed due to high analyte level.	Report the result for naphthalene from the 200-fold dilution. Report the overcalibrated result for 2-methylnapthalene from the undiluted analysis and qualify it as estimated (J), as the 200-fold diluted result was below the RL. Report all other analytes from the undiluted analysis.	NR	NR

Report Number: 480-222859, 480-222886

Date: September 23, 2024

Sample	VOC Analysis Reported	SVOC Analysis Reported	Total Cyanide Analysis Reported	Free Cyanide Analysis Reported
MW-20 (LOW FLOW 2)	NR	NR	A 5-fold dilution was performed due to high analyte level.	NR
MW-17	A 2-fold dilution was performed due to foaming at the time of purging during the original sample analysis.	NR	NR	NR
MW-16 (LOW FLOW 2)	NR	NR	A 20-fold dilution was performed due to high analyte level.	A 10-fold dilution was performed due to high analyte level.
NR – Dilution was not required or analysis not performed on sample.				

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted. A comparison of total and free cyanide results was performed. All sample total cyanide results exceeded those of the free cyanide.

Site: Mineral Springs

Report Number: 480-222859, 480-222886

Date: September 23, 2024

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- NJ The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-14 Date Collected: 08/26/24 10:50 Lab Sample ID: 480-222859-1

Matrix: Ground Water

Date Collected: 08/26/24 10:50 Date Received: 08/26/24 14:30

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.67		0.020	0.0082	mg/L			08/30/24 09:01	2
Cvanide, Free (SW846 9016)	5.0	U	5.0	2.3	ua/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-20
Date Collected: 08/26/24 10:30

Lab Sample ID: 480-222859-2

Matrix: Ground Water

Date Collected: 08/26/24 10:30 Date Received: 08/26/24 14:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.79		0.10	0.041	mg/L			08/30/24 09:04	10
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-22 Date Collected: 08/26/24 12:45 Lab Sample ID: 480-222859-3

Matrix: Ground Water

Date Collected: 08/26/24 12:45 Date Received: 08/26/24 14:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.50		0.020	0.0082	mg/L			08/30/24 09:31	2
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-23

Date Collected: 08/26/24 09:50

Lab Sample ID: 480-222859-4

Matrix: Ground Water

Date Received: 08/26/24 14:30

Method: SW846 8260C - Vola		Qualifier	RL		Unit	D	Droporod	Analyzed	Dil Fac
Analyte	1.0		1.0			D	Prepared	08/28/24 13:01	DII Fac
Benzene	0.475	7			ug/L			08/28/24 13:01	-
Ethylbenzene	1.0	15 m	1.0 1.0		ug/L			08/28/24 13:01	1
Toluene	1.0	-		0.51	-			08/28/24 13:01	1
Xylenes, Total	2.0	U	2.0	0.00	ug/L			06/26/24 13.01	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/28/24 13:01	1
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 13:01	1
Dibromofluoromethane (Surr)	86		75 - 123					08/28/24 13:01	1
Toluene-d8 (Surr)	93		80 - 120					08/28/24 13:01	1
Method: SW846 8270D_LL_P	AH - Semivo	latile Orga	inic Compou	nds (GC	/MS) Lo	w leve	el PAH		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:31	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:31	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 15:31	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 15:31	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 15:31	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:31	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 15:31	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:31	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 15:31	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 15:31	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 15:31	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:31	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:31	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 15:31	1
Naphthalene	0.50	U	0.50	0.42	ug/L		08/28/24 13:06	08/29/24 15:31	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:31	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	110	quanno	48 - 120					08/29/24 15:31	1
Nitrobenzene-d5 (Surr)	80		46 - 120				08/28/24 13:06	08/29/24 15:31	1
p-Terphenyl-d14 (Surr)	56		24 - 136				08/28/24 13:06	08/29/24 15:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.13		0.010	0.0041	mg/L			08/30/24 08:54	1
Cyanice, Itiai (544040 30120)	5.0		5.0		ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-16

Lab Sample ID: 480-222859-5

Date Collected: 08/26/24 13:20 Date Received: 08/26/24 14:30 **Matrix: Ground Water**

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	4.9	0.20	0.082	mg/L			08/30/24 09:34	20
Cyanide, Free (SW846 9016)	31.1	5.0	2.3	ug/L		09/04/24 10:48	09/04/24 20:26	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Lab Sample ID: 480-222859-6 Client Sample ID: MW-07

Date Collected: 08/26/24 09:10 Date Received: 08/26/24 14:30

Matrix: Ground Water

Method: SW846 8260C - Vo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	580		20		ug/L			08/27/24 14:45	20
Ethylbenzene	810		20		ug/L			08/27/24 14:45	20
Toluene	20	U	20		ug/L			08/27/24 14:45	20
Xylenes, Total	240		40	13	ug/L			08/27/24 14:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/27/24 14:45	20
4-Bromofluorobenzene (Surr)	102		73 - 120					08/27/24 14:45	20
Dibromofluoromethane (Surr)	92		75 - 123					08/27/24 14:45	20
Toluene-d8 (Surr)	93		80 - 120					08/27/24 14:45	20
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compoun	ds (GC	/MS) Lo	w leve	I PAH		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	15		0.50	0.38	ug/L		08/28/24 13:06		1
Acenaphthene	130	E	0.50	0.30	ug/L			08/29/24 15:57	
Acenaphthylene	2.1		0.50	0.34	ug/L			08/29/24 15:57	1
Anthracene	3.5		0.50	0.39	ug/L			08/29/24 15:57	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L			08/29/24 15:57	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06		1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06		Ì
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06		1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L			08/29/24 15:57	1
Chrysene	0.50	U	0.50	0.32	ug/L			08/29/24 15:57	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L			08/29/24 15:57	
Fluoranthene	0.51		0.50	0.36	ug/L			08/29/24 15:57	
Fluorene	30		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 15:57	
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 15:57	
Naphthalene	380		0.50	0.42	ug/L		08/28/24 13:06	08/29/24 15:57	_
Phenanthrene	22		0.50	0.38	ug/L		08/28/24 13:06	08/29/24 15:57	
Pyrene	0.59		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 15:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	93		48 - 120					08/29/24 15:57	
Nitrobenzene-d5 (Surr)	52		46 - 120					08/29/24 15:57	
p-Terphenyl-d14 (Surr)	62		24 - 136				08/28/24 13:06	08/29/24 15:57	
Method: SW846 8270D_LL	_PAH - Semivo	latile Orga	anic Compoun	ds (GC	C/MS) Lo	ow leve	IPAH - DL	a walamad	Dil Fa
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed 09/10/24 12:26	5
2-Methylnaphthalene		J	25		ug/L			09/10/24 12:26	5
Acenaphthene	120		25		ug/L				5
Acenaphthylene	25	U	25		ug/L			09/10/24 12:26	5
Anthracene		U	25		ug/L			09/10/24 12:26	5
Benzo[a]anthracene	25	U	25		ug/L			09/10/24 12:26	5
Benzo[a]pyrene	25	U	25		ug/L			09/10/24 12:26	
Benzo[b]fluoranthene	25	U	25		ug/L			09/10/24 12:26	5
Benzo[g,h,i]perylene	25	U	25		ug/L			09/10/24 12:26	5
Benzo[k]fluoranthene	25	U	25		ug/L			09/10/24 12:26	5
Chrysene	25	U	25		ug/L			09/10/24 12:26	5
Dibenz(a,h)anthracene	25	U	25	17	ug/L			09/10/24 12:26	
Diberiz(a,ri)aritiraccine			25		ug/L			09/10/24 12:26	5

Eurofins Buffalo

09/11/2024

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-07

Lab Sample ID: 480-222859-6

Date Collected: 08/26/24 09:10 Date Received: 08/26/24 14:30 **Matrix: Ground Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	26		25	19	ug/L		08/28/24 13:06	09/10/24 12:26	50
Indeno[1,2,3-cd]pyrene	25	U	25	22	ug/L		08/28/24 13:06	09/10/24 12:26	50
Naphthalene	1300		25	21	ug/L		08/28/24 13:06	09/10/24 12:26	50
Phenanthrene	24	J	25	19	ug/L		08/28/24 13:06	09/10/24 12:26	50
Pyrene	25	U	25	18	ug/L		08/28/24 13:06	09/10/24 12:26	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	109		48 - 120				08/28/24 13:06	09/10/24 12:26	50
Nitrobenzene-d5 (Surr)	83		46 - 120				08/28/24 13:06	09/10/24 12:26	50
p-Terphenyl-d14 (Surr)	65		24 - 136				08/28/24 13:06	09/10/24 12:26	50

BUR 9/23/24/

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-10

Lab Sample ID: 480-222859-7

Date Collected: 08/26/24 08:40 Date Received: 08/26/24 14:30 **Matrix: Ground Water**

Method: SW846 8260C - Vo		Compound Qualifier	ds by GC/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Benzene	1.0		1.0		ug/L			08/27/24 15:07	1
Ethylbenzene	1.0		1.0		ug/L			08/27/24 15:07	1
Toluene	1.0		1.0		ug/L			08/27/24 15:07	1
Xylenes, Total	2.0		2.0		ug/L			08/27/24 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	85		77 - 120					08/27/24 15:07	1
4-Bromofluorobenzene (Surr)	99		73 - 120					08/27/24 15:07	1
Dibromofluoromethane (Surr)	87		75 - 123					08/27/24 15:07	1
Toluene-d8 (Surr)	89		80 - 120					08/27/24 15:07	1
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	inic Compou	nds (GC	/MS) Lo	w leve	I PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 16:24	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:24	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 16:24	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 16:24	1
Benzo[k]fluoranthene	0.20	J	0.50	0.085	ug/L		08/28/24 13:06	08/29/24 16:24	1
Chrysene	0.50	U	0.50	0.32	ug/L		08/28/24 13:06	08/29/24 16:24	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:24	1
Fluoranthene	0.72		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 16:24	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 16:24	1
Indeno[1,2,3-cd]pyrene	0.50		0.50	0.44	ug/L			08/29/24 16:24	1
Naphthalene	0.50		0.50		ug/L			08/29/24 16:24	1
Phenanthrene	0.50		0.50	0.38	ug/L			08/29/24 16:24	1
Pyrene	0.41	J	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	94	an entertainment of the control of t	48 - 120				08/28/24 13:06	08/29/24 16:24	1
Nitrobenzene-d5 (Surr)	68		46 - 120				08/28/24 13:06		1
Mill Ober 12 erie-do (Odri)	54		24 - 136				08/28/24 13:06	08/29/24 16:24	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Lab Sample ID: 480-222859-8

Matrix: Ground Water

Client Sample ID: MW-11A Date Collected: 08/26/24 11:50 Date Received: 08/26/24 14:30

Method: SW846 8260C - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.8		2.0	0.82	ug/L			08/27/24 15:29	2
Ethylbenzene	2.0		2.0	1.5				08/27/24 15:29	2
Toluene	2.0		2.0		ug/L			08/27/24 15:29	2
Xylenes, Total	4.0		4.0		ug/L			08/27/24 15:29	2
Aylones, retai								Analysis	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed 08/27/24 15:29	Dii rac
1,2-Dichloroethane-d4 (Surr)	91		77 - 120					08/27/24 15:29	2
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 15:29	2
Dibromofluoromethane (Surr)	91		75 - 123						2
Toluene-d8 (Surr)	93		80 - 120					08/27/24 15:29	2
Method: SW846 8270D_LL_P	AH - Semivo	latile Orga	nic Compoun	ds (GC	/MS) Lov	w leve	I PAH	No Tree to the Sec	1201212000
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 16:50	1
Acenaphthene	3.2		0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:50	1
Acenaphthylene	0.95		0.50	0.34	ug/L		08/28/24 13:06	08/29/24 16:50	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 16:50	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 16:50	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:50	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 16:50	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 16:50	1
	0.50		0.50	0.085	ug/L		08/28/24 13:06	08/29/24 16:50	1
Benzo[k]fluoranthene	0.50		0.50	0.32	ug/L		08/28/24 13:06	08/29/24 16:50	1
Chrysene	0.50		0.50	0.33	ug/L		08/28/24 13:06	08/29/24 16:50	1
Dibenz(a,h)anthracene	0.48		0.50	0.36			08/28/24 13:06	08/29/24 16:50	1
Fluoranthene	0.48	3	0.50	0.37			08/28/24 13:06	08/29/24 16:50	1
Fluorene	0.50	11	0.50	0.44			08/28/24 13:06	08/29/24 16:50	1
Indeno[1,2,3-cd]pyrene	0.50		0.50	1000000	ug/L		08/28/24 13:06	08/29/24 16:50	1
Naphthalene			0.50		ug/L			08/29/24 16:50	1
Phenanthrene	0.50	U	0.50		ug/L			08/29/24 16:50	1
Pyrene	0.63		0.50	0.00	ag-				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	101		48 - 120					08/29/24 16:50	1
Nitrobenzene-d5 (Surr)	73		46 - 120				08/28/24 13:06		1
p-Terphenyl-d14 (Surr)	70		24 - 136				08/28/24 13:06	08/29/24 16:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.23	waterment and	0.010	0.0041	mg/L			08/30/24 09:22	1
Cyanide, Free (SW846 9016)	S. ()23		5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:26	1
State of the state	The state of the s	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total Suspended Solids (SM	45.6	aguainioi	4.0	4.0	mg/L			08/29/24 10:54	1

BLR 1/87/24

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: SW-01

Lab Sample ID: 480-222859-9

Date Collected: 08/26/24 12:40 Date Received: 08/26/24 14:30 Matrix: Surface Water

Wethod: SW846 8260C - Vol Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0		1.0	0.41			•	08/27/24 15:52	1
Ethylbenzene		U	1.0	0.74	32.70			08/27/24 15:52	1
Toluene	1.0		1.0		ug/L			08/27/24 15:52	1
Kylenes, Total	2.0		2.0		ug/L			08/27/24 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	400	77 - 120					08/27/24 15:52	1
1-Bromofluorobenzene (Surr)	102		73 - 120					08/27/24 15:52	1
Dibromofluoromethane (Surr)	94		75 - 123					08/27/24 15:52	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 15:52	1
Method: SW846 8270D_LL_	PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lov	w leve	I PAH		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 17:16	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 17:16	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 17:16	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[a]pyrene	0.50		0.50	0.33	ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[g,h,i]perylene	0.50		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:16	1
Benzo[k]fluoranthene	0.50		0.50	0.085	ug/L		08/28/24 13:06	08/29/24 17:16	1
Chrysene	0.50		0.50	0.32	ug/L		08/28/24 13:06	08/29/24 17:16	1
Dibenz(a,h)anthracene	0.50		0.50	0.33	ug/L			08/29/24 17:16	1
Fluoranthene	0.50		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:16	1
Fluorene	0.50		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:16	1
Indeno[1,2,3-cd]pyrene	0.50		0.50	0.44	ug/L		08/28/24 13:06	08/29/24 17:16	1
Naphthalene	0.50		0.50	0.42	ug/L		08/28/24 13:06	08/29/24 17:16	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 17:16	1
Pyrene	0.50		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	102		48 - 120				08/28/24 13:06	08/29/24 17:16	1
Nitrobenzene-d5 (Surr)	74		46 - 120				08/28/24 13:06	08/29/24 17:16	1
p-Terphenyl-d14 (Surr)	64		24 - 136				08/28/24 13:06	08/29/24 17:16	1
General Chemistry	20 000			MPI	I lmié	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL		Unit	U	riehaiea	08/30/24 09:37	1
Cyanicle, Total (SW846 9012B) Cyanide, Free (SW846 9016)	0.0\0.0092 5.0	n 1	0.010 5.0	0.0041 2.3	mg/L ug/L		09/04/24 10:49	09/04/24 20:26	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (SM	56.4		4.0	4.0	mg/L			08/29/24 10:54	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1 SDG: 222859

3DG. 222039

Client Sample ID: SW-02 Date Collected: 08/26/24 11:15 Lab Sample ID: 480-222859-10 Matrix: Surface Water

Date Received: 08/26/24 14:30

Total Suspended Solids (SM

2540D)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 16:15	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 16:15	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 16:15	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		77 - 120					08/27/24 16:15	1
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 16:15	1
Dibromofluoromethane (Surr)	90		75 - 123					08/27/24 16:15	1
Toluene-d8 (Surr)	90		80 - 120					08/27/24 16:15	. 1
Method: SW846 8270D_LL	PAH - Semivo	latile Orga	nic Compou	ınds (GC	/MS) Lo	w leve	I PAH		E-Cura NA GEO
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 17:43	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 17:43	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 17:43	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:43	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L			08/29/24 17:43	1
Chrysene	0.50	U	0.50	0.32	ug/L			08/29/24 17:43	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L		08/28/24 13:06	08/29/24 17:43	1
Fluoranthene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:43	1
Fluorene	0.50	U	0.50	0.37	ug/L		08/28/24 13:06	08/29/24 17:43	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L		08/28/24 13:06	08/29/24 17:43	1
Naphthalene	0.50	U	0.50	0.42	ug/L			08/29/24 17:43	1
Phenanthrene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 17:43	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 17:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	104		48 - 120				08/28/24 13:06	08/29/24 17:43	1
Nitrobenzene-d5 (Surr)	75		46 - 120				08/28/24 13:06	08/29/24 17:43	1
p-Terphenyl-d14 (Surr)	57		24 - 136				08/28/24 13:06	08/29/24 17:43	1
General Chemistry								95 S V	D
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.010	U	0.010	0.0041	0.00			08/30/24 09:41	1
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:26	1
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
			4.0	4.0	ma/l			08/29/24 10:54	1

08/29/24 10:54

4.0

4.0

4.0 mg/L

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: TB

Lab Sample ID: 480-222859-11

Date Collected: 08/26/24 00:00 Date Received: 08/26/24 14:30 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			08/27/24 16:37	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			08/27/24 16:37	1
Toluene	1.0	U	1.0	0.51	ug/L			08/27/24 16:37	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			08/27/24 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	86		77 - 120					08/27/24 16:37	1
4-Bromofluorobenzene (Surr)	98		73 - 120					08/27/24 16:37	1
Dibromofluoromethane (Surr)	87		75 - 123					08/27/24 16:37	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 16:37	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: EB

Lab Sample ID: 480-222859-12

Matrix: Water

Date Collected: 08/26/24 12:00 Date Received: 08/26/24 14:30

Method: SW846 8260C - Vol		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	1.0		1.0	0.41	27 P.		•	08/27/24 16:59	1
Benzene	1.0	STOCK	1.0	0.74				08/27/24 16:59	1
Ethylbenzene	1.0		1.0		ug/L			08/27/24 16:59	1
Toluene	2.0	7.3	2.0	0.66				08/27/24 16:59	1
Xylenes, Total	2.0	U	2.0	0.00	ugr				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/27/24 16:59	1
4-Bromofluorobenzene (Surr)	103		73 - 120					08/27/24 16:59	1
Dibromofluoromethane (Surr)	90		75 - 123					08/27/24 16:59	1
Toluene-d8 (Surr)	92		80 - 120					08/27/24 16:59	1
Method: SW846 8270D_LL_	DAU Samina	lotilo Oras	nic Compour	nds (GC	/MS) Lo	w leve	IPAH		
	Pacult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte 2-Methylnaphthalene	0.50	Salar sanar sanar sa	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 18:09	1
사회 - 이	0.50		0.50	0.30	•		08/28/24 13:06	08/29/24 18:09	1
Acenaphthene	0.50		0.50	0.34	•		08/28/24 13:06	08/29/24 18:09	1
Acenaphthylene	0.50		0.50	0.39			08/28/24 13:06	08/29/24 18:09	1
Anthracene	0.50		0.50	0.40	-		08/28/24 13:06	08/29/24 18:09	1
Benzo[a]anthracene	0.50		0.50	0.33	-		08/28/24 13:06	08/29/24 18:09	1
Benzo[a]pyrene			0.50		ug/L			08/29/24 18:09	1
Benzo[b]fluoranthene	0.50		0.50		ug/L			08/29/24 18:09	1
Benzo[g,h,i]perylene	0.50		0.50	0.085				08/29/24 18:09	1
Benzo[k]fluoranthene	0.50			P177.77	ug/L			08/29/24 18:09	1
Chrysene	0.50		0.50 0.50		ug/L			08/29/24 18:09	1
Dibenz(a,h)anthracene	0.50						08/28/24 13:06		1
Fluoranthene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 18:09	1
Fluorene	0.50		0.50		ug/L ug/L		08/28/24 13:06		1
Indeno[1,2,3-cd]pyrene	0.50		0.50				08/28/24 13:06	08/29/24 18:09	1
Naphthalene	0.50		0.50		ug/L		08/28/24 13:06		1
Phenanthrene	0.50		0.50		ug/L		08/28/24 13:06		1
Pyrene	0.50	U	0.50	0.30	ug/L		08/20/24 10:00	00/20/21 10:00	
Currente	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2-Fluorobiphenyl (Surr)	97		48 - 120				08/28/24 13:06	08/29/24 18:09	1
	70		46 - 120				08/28/24 13:06	08/29/24 18:09	1
Nitrobenzene-d5 (Surr)	76		24 - 136				08/28/24 13:06	08/29/24 18:09	1
p-Terphenyl-d14 (Surr)	,,								
General Chemistry				pars.	Umić	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL	MDL		D	riepaieu	08/30/24 09:44	1
Cyanide, Total (SW846 9012B)	0.010		0.010	0.0041			09/04/24 10:49		1
Cyanide, Free (SW846 9016)	2.7	J	5.0	2.3	ug/L		09/04/24 10.49	00/04/24 20:20	

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222859-13

Matrix: Ground Water

Client Sample ID: Duplicate

Date Collected: 08/26/24 00:00 Date Received: 08/26/24 14:30

ate Received: 08/26/24 14:3	0								
Method: SW846 8260C - Vol	atile Organic (Compound	ls by GC/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	1.0	0.41		_	3.10,2	08/27/24 17:22	1
Benzene	1.0		ALCO CONTROL	0.74				08/27/24 17:22	1
Ethylbenzene	1.0		1.0 1.0	0.74	•			08/27/24 17:22	1
Toluene	1.0		2.0	0.66	-			08/27/24 17:22	1
Xylenes, Total	2.0	U	2.0	0.00	ugri				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120					08/27/24 17:22	1
4-Bromofluorobenzene (Surr)	108		73 - 120					08/27/24 17:22	1
Dibromofluoromethane (Surr)	93		75 - 123					08/27/24 17:22	1
Toluene-d8 (Surr)	94		80 - 120					08/27/24 17:22	7
Method: SW846 8270D_LL_	PAH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lov	w leve	I PAH		20022000
Analyte	Result	Qualifier	RL	MDL	Unit	D		Analyzed	Dil Fac
2-Methylnaphthalene	0.50		0.50	0.38	ug/L		00/20/21 10:00	08/29/24 18:36	1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 18:36	1
Acenaphthylene	0.50		0.50	0.34	ug/L		08/28/24 13:06	08/29/24 18:36	1
Anthracene	0.50		0.50	0.39	ug/L		08/28/24 13:06	08/29/24 18:36	1
	0.50		0.50	0.40	ug/L		08/28/24 13:06	08/29/24 18:36	1
Benzo[a]anthracene	0.50		0.50	0.33	ug/L		08/28/24 13:06		1
Benzo[a]pyrene	0.50		0.50	0.30	ug/L			08/29/24 18:36	1
Benzo[b]fluoranthene	0.50		0.50	0.37	ug/L			08/29/24 18:36	1
Benzo[g,h,i]perylene	0.50		0.50	0.085	ug/L			08/29/24 18:36	1
Benzo[k]fluoranthene	0.50		0.50	0.32	ug/L			08/29/24 18:36	1
Chrysene	0.50		0.50	0.33	ug/L			08/29/24 18:36	1
Dibenz(a,h)anthracene	0.50	10.400	0.50	0.36	ug/L			08/29/24 18:36	1
Fluoranthene	0.50		0.50	0.37	ug/L			08/29/24 18:36	1
Fluorene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 18:36	1
Indeno[1,2,3-cd]pyrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 18:36	1
Naphthalene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 18:36	1
Phenanthrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 18:36	1
Pyrene							Prepared	Analyzed	Dil Fac
Surrogate	%Recovery		Limits					08/29/24 18:36	1
2-Fluorobiphenyl (Surr)	107		48 - 120					08/29/24 18:36	1
Nitrobenzene-d5 (Surr)	76		46 - 120					08/29/24 18:36	1
p-Terphenyl-d14 (Surr)	59	E _	24 - 136				00/20/27 10:00		
General Chemistry					l lmi4	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL		. Unit	U	riepaiou	08/30/24 10:14	1
Cyanide, Total (SW846 9012B) Cyanide, Free (SW846 9016)		U B	0.010 5.0		mg/L g ug/L		09/04/24 10:49		

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-20 Bailer

Date Collected: 08/26/24 11:00 Date Received: 08/26/24 14:30 Lab Sample ID: 480-222859-14

Matrix: Water

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.58		0.050	0.021	mg/L			08/30/24 09:47	5
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-16 Bailer

Date Collected: 08/26/24 13:50 Date Received: 08/26/24 14:30 Lab Sample ID: 480-222859-15

Matrix: Water

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	34.00	Qualitio	0.10	0.041	ma/l			08/30/24 09:51	10
Cyanide, Total (SW846 9012B)	3.4		0.10	0.041	mg/L			00/04/04 20:27	4
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222859-16

Matrix: Water

Client Sample ID: MW-07 Bailer

Date Collected: 08/26/24 09:30 Date Received: 08/26/24 14:30

Dibenz(a,h)anthracene

Chrysene

Fluoranthene

Method: SW846 8260C - Vo	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	600		20	8.2	ug/L			08/28/24 13:23	20
	670		20		ug/L			08/28/24 13:23	20
Ethylbenzene Teluppe	20	U	20		ug/L			08/28/24 13:23	20
Toluene Visiones Total	180	•	40		ug/L			08/28/24 13:23	20
Xylenes, Total	100								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/28/24 13:23	20
4-Bromofluorobenzene (Surr)	101		73 - 120					08/28/24 13:23	20
Dibromofluoromethane (Surr)	91		75 - 123					08/28/24 13:23	
Toluene-d8 (Surr)	91		80 - 120					08/28/24 13:23	20
Method: SW846 8270D_LL	DALL Comiss	lotilo Oran	nic Compoun	de IGC	:/MS\Lo	w leve	PAH		
	_PAH - Semivo	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	16	quanno	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 19:03	1
2-Methylnaphthalene	180	_	0.50		ug/L		08/28/24 13:06	08/29/24 19:03	1
Ac enaphthene =	2.9	lin	0.50		ug/L			08/29/24 19:03	1
Acenaphthylene	1,550		0.50		ug/L			08/29/24 19:03	1
Anthracene	4.5		0.50		ug/L			08/29/24 19:03	1
Benzo[a]anthracene	0.50		0.50		ug/L			08/29/24 19:03	1
Benzo[a]pyrene	0.50				ug/L		08/28/24 13:06	08/29/24 19:03	1
Benzo[b]fluoranthene	0.50		0.50		ug/L ug/L				1
Benzo[g,h,i]perylene	0.50		0.50				OULDIE! ICIC		1
Benzo[k]fluoranthene	0.50		0.50	0.085			00,20,2	08/29/24 19:03	
Chrysene	0.50		0.50		ug/L			08/29/24 19:03	1
Dibenz(a,h)anthracene	0.50		0.50		ug/L			08/29/24 19:03	
Fluoranthene	0.49	J	0.50		ug/L			08/29/24 19:03	
Fluorene	42		0.50		ug/L			08/29/24 19:03	
Indeno[1,2,3-cd]pyrene	0.50	U	0.50		ug/L			08/29/24 19:03	
Naphthalene	360	E	0.50		ug/L				
Phenanthrene	29		0.50		ug/L			08/29/24 19:03	
Pyrene	0.62		0.50	0.36	ug/L		08/28/24 13:06	08/29/24 19:03	
	8/ D	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrogate	%Recovery		48 - 120					08/29/24 19:03	
2-Fluorobiphenyl (Surr)	97 56		46 - 120					08/29/24 19:03	
Nitrobenzene-d5 (Surr)	49		24 - 136					08/29/24 19:03	
p-Terphenyl-d14 (Surr)									
Method: SW846 8270D_LL	PAH - Semivo	olatile Orga	anic Compour	ids (G	C/MS) Lo	w leve	PAH - DL	March merchanister read	
Analyte	Result	Qualifier	RL	MDL	Unit	D		Analyzed	Dil Fa
2-Methylnaphthalene	20		10	7.6	ug/L			08/30/24 14:34	
	130		10	6.0	ug/L			08/30/24 14:34	
Acenaphthene Acenaphthylene		U	10	6.8	ug/L			08/30/24 14:34	
Anthracene		J	10	7.8	ug/L			08/30/24 14:34	
		Ū	10	8.0	ug/L			08/30/24 14:34	
Benzo[a]anthracene		Ū	10		ug/L			08/30/24 14:34	
Benzo[a]pyrene		U	10		ug/L			08/30/24 14:34	
Benzo[b]fluoranthene		U	10		ug/L			08/30/24 14:34	
Benzo[g,h,i]perylene) U	10		ug/L			08/30/24 14:34	2
Benzo[k]fluoranthene	10	, 0			ug/l			08/30/24 14:34	

Eurofins Buffalo 09/11/2024

08/28/24 13:06 08/30/24 14:34

08/28/24 13:06 08/30/24 14:34

08/28/24 13:06 08/30/24 14:34

20

20

10

10

10

10 U

10 U

10 U

6.4 ug/L

6.6 ug/L

7.2 ug/L

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-07 Bailer

Lab Sample ID: 480-222859-16

Date Collected: 08/26/24 09:30 Date Received: 08/26/24 14:30 Matrix: Water

Method: SW846 8270D_I		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluorene -	33		10	7.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Indeno[1,2,3-cd]pyrene	10	U	10	8.8	ug/L		08/28/24 13:06	08/30/24 14:34	20
Naphthalene	970		10	8.4	ug/L		08/28/24 13:06	08/30/24 14:34	20
Phenanthrene	24		10	7.6	ug/L		08/28/24 13:06	08/30/24 14:34	_ 20
Pyrene	10	U	10	7.2	ug/L		08/28/24 13:06	08/30/24 14:34	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	78		48 - 120				08/28/24 13:06	08/30/24 14:34	20
Nitrobenzene-d5 (Surr)	68		46 - 120				08/28/24 13:06	08/30/24 14:34	20
p-Terphenyl-d14 (Surr)	37		24 - 136				08/28/24 13:06	08/30/24 14:34	2

Br d/33/34

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-12

Lab Sample ID: 480-222886-1

Date Collected: 08/27/24 09:00 Date Received: 08/27/24 14:00 Matrix: Ground Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanicle, Total (SW846 9012B)	0.84		0.050	0.021	mg/L			08/30/24 11:54	5
Cyanide, Free (SW846 9016)	5.0		5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	1

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-12 (BAILER)

Lab Sample ID: 480-222886-2

Date Collected: 08/27/24 09:25 Date Received: 08/27/24 14:00 Matrix: Water

General Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		4	0.000	0.0082	ma/l			08/30/24 11:57	2
Cyanide, Total (SW846 9012B)	0.79		0.020					**************************************	
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:27	

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs

Client Sample ID: MW-19

Date Collected: 08/27/24 10:15

Job ID: 480-222859-1

SDG: 222859

Lab Sample ID: 480-222886-3

Matrix: Ground Water

ate Received: 08/27/24 14:00	0								
Method: SW846 8260C - Vol					I I m la	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL 100	MDL		D	Prepared	08/28/24 16:18	100
Benzene	3500		100	41				08/28/24 16:18	100
Ethylbenzene	520		100		ug/L			08/28/24 16:18	100
Toluene	100		100	51	ug/L ug/L			08/28/24 16:18	100
Xylenes, Total	200	U	200	00	ug/L			00/20/24 10.10	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		77 - 120					08/28/24 16:18	100
4-Bromofluorobenzene (Surr)	102		73 - 120					08/28/24 16:18	100
Dibromofluoromethane (Surr)	90		75 - 123					08/28/24 16:18	100
Toluene-d8 (Surr)	91		80 - 120					08/28/24 16:18	100
Method: SW846 8270D_LL_I	PAH - Semivo	latile Organ	nic Compou	nds (GC	/MS) Lo	w leve	PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
2-Methylnaphthalene	110	E-2	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 19:30	1
Acenaphthene	3.7		0.50	0.30	ug/L		08/28/24 13:06	08/29/24 19:30	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 19:30	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 19:30	1
Benzo[a]anthracene	0.50	U	0.50	0.40	ug/L			08/29/24 19:30	1
Benzo[a]pyrene	0.50	U	0.50	0.33	ug/L			08/29/24 19:30	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L			08/29/24 19:30	1
Benzo[g,h,i]perylene	0.50	U	0.50	0.37	ug/L			08/29/24 19:30	1
Benzo[k]fluoranthene	0.50	U	0.50	0.085	ug/L			08/29/24 19:30	1
Chrysene	0.50	U	0.50	0.32	ug/L			08/29/24 19:30	1
Dibenz(a,h)anthracene	0.50	U	0.50	0.33	ug/L			08/29/24 19:30	1
Fluoranthene	0.50	U	0.50	0.36	ug/L			08/29/24 19:30	1
Fluorene	0.50	U	0.50	0.37	ug/L			08/29/24 19:30	1
Indeno[1,2,3-cd]pyrene	0.50	U	0.50	0.44	ug/L			08/29/24 19:30	1
Naphthalene	790	E	0.50	0.42	ug/L			08/29/24 19:30	1
Phenanthrene	0.50	U	0.50	0.38	ug/L			08/29/24 19:30	1
Pyrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 19:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	98		48 - 120				08/28/24 13:06	08/29/24 19:30	1
Nitrobenzene-d5 (Surr)	66		46 - 120				08/28/24 13:06	08/29/24 19:30	1
p-Terphenyl-d14 (Surr)	57		24 - 136				08/28/24 13:06	08/29/24 19:30	1
Method: SW846 8270D_LL_	DAU Samius	Jatila Organ	nic Compou	nde IGC	:/MS) Lo	ow leve	PAH - DL		
	PATI - Sellilvi	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			100		ug/L		08/28/24 13:06	09/03/24 12:47	200
	0.2		100		-		00/00/04 40:00	00/00/04 40:47	
2-Methylnaphthalene		JERL	100	60	ua/L		08/28/24 13:06	09/03/24 12:47	200
2-Methylnaphthalene Acenaphthene	100	U	100		ug/L ug/L		08/28/24 13:06	09/03/24 12:47	
2-Methylnaphthalene Acenaphthene Acenaphthylene	100 100	U	100	68	ug/L				200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	100 100 100	UUUUU	100 100	68 78	ug/L ug/L		08/28/24 13:06 08/28/24 13:06	09/03/24 12:47	200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene	100 100 100 100	U U U U	100 100 100	68 78 80	ug/L ug/L ug/L		08/28/24 13:06	09/03/24 12:47 09/03/24 12:47	200 200 200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene	100 100 100 100 100	U U U U	100 100 100 100	68 78 80 66	ug/L ug/L ug/L ug/L		08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06	09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47	200 200 200 200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	100 100 100 100 100 100	U U U U U U U U U	100 100 100 100 100	68 78 80 66 60	ug/L ug/L ug/L ug/L ug/L		08/28/24 13:06 08/28/24 13:06 08/28/24 13:06	09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47	200 200 200 200 200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	100 100 100 100 100 100	U U U U U U U U U U U U U U U U U U U	100 100 100 100 100	68 78 80 66 60 74	ug/L ug/L ug/L ug/L ug/L ug/L		08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06	09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47	200 200 200 200 200 200
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene	100 100 100 100 100 100 100	U U U U U U U U U U U U U	100 100 100 100 100 100	68 78 80 66 60 74	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06	09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47	200 200 200 200 200 200 200 200
Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100	68 78 80 66 60 74 17 64	ug/L ug/L ug/L ug/L ug/L ug/L		08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06 08/28/24 13:06	09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47 09/03/24 12:47	200 200 200 200 200 200 200 200 200 200

Eurofins Buffalo

09/11/2024

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-19

Date Collected: 08/27/24 10:15 Date Received: 08/27/24 14:00 Lab Sample ID: 480-222886-3

Matrix: Ground Water

Method: SW846 8270D_L Analyte	Result	Qualifier	RL	MDL	Unit	D	riepaica	,	Dil Fac
	100	U	100	74	ug/L		08/28/24 13:06	09/03/24 12:47	200
Flüorene	100	- R.,	100	88	ug/L		08/28/24 13:06	09/03/24 12:47	200
ndeno[1,2,3-cd]pyrene	3900	U	100		ug/L		08/28/24 13:06	09/03/24 12:47	200
Naphthalene	100	н	100		ug/L		08/28/24 13:06	09/03/24 12:47	200
Phenanthrene Pyrene	100		100		ug/L		08/28/24 13:06	09/03/24 12:47	200
rylene								Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	09/03/24 12:47	200
2-Fluorobiphenyl (Surr)	11	S1-	48 - 120						
Nitrobenzene-d5 (Surr)	125	S1+	46 - 120					09/03/24 12:47	200
p-Terphenyl-d14 (Surr)	38		24 - 136				08/28/24 13:06	09/03/24 12:47	200

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222886-4

Matrix: Water

Client Sample ID: MW-19 (BAILER)

Date Collected: 08/27/24 10:45 Date Received: 08/27/24 14:00

Fluoranthene

Wethod: SW846 8260C				1001	11=16		Drenerad	Analyzad	Dil Fa
Inalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	
enzene	3600		50	21	ug/L			08/28/24 16:41	5
thylbenzene	500		50	37	ug/L			08/28/24 16:41	5
oluene	50	U	50	26	ug/L			08/28/24 16:41	5
ylenes, Total	55	J	100	33	ug/L			08/28/24 16:41	5
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Dichloroethane-d4 (Surr)	88		77 - 120					08/28/24 16:41	5
Bromofluorobenzene (Surr)	101		73 - 120					08/28/24 16:41	
ibromofluoromethane (Surr)	93		75 - 123					08/28/24 16:41	
oluene-d8 (Surr)	93		80 - 120					08/28/24 16:41	,
lethod: SW846 8270D_	LL_PAH - Semivo	latile Organ	ic Compou	nds (GC	/MS) Lo	w leve	I PAH		
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
-Methylnaphthalene	130	E- 5	0.50	0.38	ug/L		08/28/24 13:06	08/29/24 19:57	
cenaphthene	4.2		0.50	0.30	ug/L		08/28/24 13:06	08/29/24 19:57	
cenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 19:57	
nthracene	0.50		0.50	0.39	ug/L		08/28/24 13:06	08/29/24 19:57	
enzo[a]anthracene	0.50		0.50	0.40	ug/L		08/28/24 13:06	08/29/24 19:57	
	0.50		0.50	0.33	ug/L		08/28/24 13:06	08/29/24 19:57	
enzo[a]pyrene	0.50		0.50		327.77		08/28/24 13:06	08/29/24 19:57	
enzo[b]fluoranthene	0.50		0.50	0.37			08/28/24 13:06		
enzo[g,h,i]perylene	0.50		0.50	0.085			08/28/24 13:06		
enzo[k]fluoranthene	0.50		0.50	0.32				08/29/24 19:57	
nrysene				0.32			08/28/24 13:06		
benz(a,h)anthracene	0.50		0.50		-			08/29/24 19:57	
uoranthene	0.50		0.50	0.36				08/29/24 19:57	
uorene	0.50		0.50		ug/L			08/29/24 19:57	
deno[1,2,3-cd]pyrene	0.50	U	0.50		ug/L			08/29/24 19:57	
aphthalene	830	E	0.50		ug/L				
henanthrene	0.50	U	0.50		ug/L			08/29/24 19:57	
yrene	0.50	U	0.50	0.36	ug/L		08/28/24 13:06	08/29/24 19:57	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Fluorobiphenyl (Surr)	108		48 - 120					08/29/24 19:57	
itrobenzene-d5 (Surr)	76		46 - 120					08/29/24 19:57	
Terphenyl-d14 (Surr)	67		24 - 136				08/28/24 13:06	08/29/24 19:57	
lethod: SW846 8270D	LL_PAH - Semivo	latile Organ	ic Compou	nds (GC	/MS) Lo	w leve	PAH -DL	2 2 3V	D.: F
nalyte	Result	Qualifier	RL	MDL	Unit	D	riepaieu	Analyzed	Dil F
-Methylnaphthalene	96	JEBL	100	76	ug/L		08/28/24 13:06		2
cenaphthene	100		100	60	ug/L		08/28/24 13:06		2
cenaphthylene	100	U	100	68	ug/L			09/03/24 13:13	2
nthracene	100	U	100	78	ug/L		08/28/24 13:06	09/03/24 13:13	2
enzo[a]anthracene	100		100	80	ug/L		08/28/24 13:06	09/03/24 13:13	2
	100		100		ug/L		08/28/24 13:06	09/03/24 13:13	2
enzo[a]pyrene	100		100		ug/L		08/28/24 13:06		2
enzo[b]fluoranthene			100		ug/L		08/28/24 13:06		2
enzo[g,h,i]perylene	100		100		ug/L			09/03/24 13:13	2
enzo[k]fluoranthene	100				ug/L ug/L			09/03/24 13:13	2
thrysene	100		100		-		08/28/24 13:06		2
ibenz(a,h)anthracene	100		100		ug/L ug/L			09/03/24 13:13	
	100	L1	100	12	LIO/L		00/20/27 10.00		

Eurofins Buffalo

09/11/2024

100

100 U

72 ug/L

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-19 (BAILER)

Date Collected: 08/27/24 10:45 Date Received: 08/27/24 14:00 Lab Sample ID: 480-222886-4

Matrix: Water

Method: SW846 8270D_L	Result	Qualifier	RL	MDL	Unit	D	1 Topaloa	Analyzed	Dil Fac
Analyte	100	4.777	100	74	ug/L		08/28/24 13:06	09/03/24 13:13	200
Fluorene			100		ug/L		08/28/24 13:06	09/03/24 13:13	200
Indeno[1,2,3-cd]pyrene	100	U	100		ug/L		08/28/24 13:06	09/03/24 13:13	200
Naphthalene	4400		100		ug/L		08/28/24 13:06		200
Phenanthrene	100		7.5		ug/L		08/28/24 13:06		200
Pyrene	100	U	100	12	ug/L		00/20/21 10:00		
	W D	Ovelifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery		48 - 120				08/28/24 13:06	09/03/24 13:13	200
2-Fluorobiphenyl (Surr)	11							09/03/24 13:13	200
Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)	136 48	S1+	46 - 120 24 - 136					09/03/24 13:13	200

BUR 9/23/34

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

5

1

Client Sample ID: MW-20 LOW FLOW 2)

Lab Sample ID: 480-222886-5

Date Collected: 08/27/24 11:50 Date Received: 08/27/24 14:00

Matrix: Ground Water

General Chemistry

Analyte Cyanide, Total (SW846 9012B) Cyanide, Free (SW846 9016)

Result Qualifier

MDL Unit RL 0.021 mg/L 0.050 2.3 ug/L 5.0

Dil Fac Analyzed Prepared 08/30/24 12:01 09/04/24 10:49 09/04/24 20:27

Client: GEI Consultants Inc

Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222886-6

Matrix: Ground Water

Project/Site: GEI, Mineral Springs Client Sample ID: MW-13

Date Collected: 08/27/24 11:45 Date Received: 08/27/24 14:00

ate Received: 08/27/24 14:00		•							
Method: SW846 8260C - Vola	tile Organic	Compound Qualifier	ds by GC/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	1.0	Series Control of the	1.0	0.41	ug/L			08/28/24 17:04	1
Benzene	1.0	100	1.0	0.74	ug/L			08/28/24 17:04	1
Ethylbenzene	1.0		1.0	0.51	•			08/28/24 17:04	1
Toluene	2.0		2.0	0.66	-			08/28/24 17:04	1
Xylenes, Total	2.0	U	2.0	-					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	86		77 - 120					08/28/24 17:04	
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 17:04	1
Dibromofluoromethane (Surr)	86		75 - 123					08/28/24 17:04	1
Toluene-d8 (Surr)	93		80 - 120					08/28/24 17:04	1
Method: SW846 8270D_LL_F	All Combin	latila Oras	mic Compou	nde (GC	/MS) Lo	w leve	I PAH		
	AH - Semivo	Qualifier	RL	MDL	Unit	D		Analyzed	Dil Fac
Analyte	0.50		0.50	0.38			08/28/24 13:06	08/29/24 20:24	1
2-Methylnaphthalene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Acenaphthene			0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Acenaphthylene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Anthracene	0.50		0.50		ug/L			08/29/24 20:24	1
Benzo[a]anthracene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[a]pyrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Benzo[b]fluoranthene	0.50		0.50		ug/L			08/29/24 20:24	1
Benzo[g,h,i]perylene	0.50		0.50	0.085			08/28/24 13:06		1
Benzo[k]fluoranthene	0.50		0.50		ug/L		08/28/24 13:06	Committee and a second committee of	1
Chrysene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:24	1
Dibenz(a,h)anthracene	0.50		200		ug/L			08/29/24 20:24	1
Fluoranthene	0.50		0.50		ug/L			08/29/24 20:24	1
Fluorene	0.50		0.50 0.50		ug/L ug/L			08/29/24 20:24	1
Indeno[1,2,3-cd]pyrene	0.50		1000		ug/L		08/28/24 13:06	08/29/24 20:24	1
Naphthalene	0.50		0.50		ug/L			08/29/24 20:24	1
Phenanthrene	0.50		0.50					08/29/24 20:24	1
Pyrene	0.50	U	0.50	0.30	ug/L		00/20/21 10:00		
	%Recovery	Ouglifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery		48 - 120				08/28/24 13:06		1
2-Fluorobiphenyl (Surr)	74		46 - 120					08/29/24 20:24	1
Nitrobenzene-d5 (Surr)	1000		24 - 136				08/28/24 13:06	08/29/24 20:24	1
p-Terphenyl-d14 (Surr)	62	fi .	24 - 130						
General Chemistry			6454560	77.2		D	Prepared	Analyzed	Dil Fac
Analyte	Resul	Qualifier	RL		Unit	U	Frepared	08/30/24 11:47	1
Cyanide, Total (SW846 9012B)	0.24	I	0.010		mg/L		09/04/24 10:49		1
Cyanide, Free (SW846 9016)	5.0	U	5.0	2.3	ug/L		U3/U4/24 10.43	00/01/21/20/2/	0.00

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1 SDG: 222859

Lab Sample ID: 480-222886-7

Matrix: Ground Water

Client Sample ID: MW-17

Date Collected: 08/27/24 10:40 Date Received: 08/27/24 14:00

Method: SW846 8260C - Vola Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0	U	2.0	0.82	ug/L			08/28/24 17:26	2
Ethylbenzene	2.0	U	2.0		ug/L			08/28/24 17:26	2
Toluene	2.0		2.0		ug/L			08/28/24 17:26	2
Xylenes, Total	4.0		4.0		ug/L			08/28/24 17:26	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	88		77 - 120					08/28/24 17:26	2
4-Bromofluorobenzene (Surr)	103		73 - 120					08/28/24 17:26	2
Dibromofluoromethane (Surr)	91		75 - 123					08/28/24 17:26	2
Toluene-d8 (Surr)	93		80 - 120					08/28/24 17:26	2
Method: SW846 8270D_LL_P	AH - Semivo	latile Orga	nic Compou	nds (GC	/MS) Lo	w leve	I PAH		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	0.50	U	0.50	0.38	ug/L		08/28/24 13:06		1
Acenaphthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:50	1
Acenaphthylene	0.50	U	0.50	0.34	ug/L		08/28/24 13:06	08/29/24 20:50	1
Anthracene	0.50	U	0.50	0.39	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[a]anthracene	0.50		0.50	0.40	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[a]pyrene	0.50		0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[b]fluoranthene	0.50	U	0.50	0.30	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[g,h,i]perylene	0.50		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:50	1
Benzo[k]fluoranthene	0.50		0.50	0.085	ug/L		08/28/24 13:06	08/29/24 20:50	1
Chrysene	0.50		0.50	0.32	ug/L		08/28/24 13:06	08/29/24 20:50	1
Dibenz(a,h)anthracene	0.50		0.50	0.33	ug/L		08/28/24 13:06	08/29/24 20:50	1
Fluoranthene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:50	1
	0.50		0.50	0.37	ug/L		08/28/24 13:06	08/29/24 20:50	1
Fluorene	0.50		0.50	0.44	ug/L		08/28/24 13:06	08/29/24 20:50	1
Indeno[1,2,3-cd]pyrene	0.45		0.50		ug/L		08/28/24 13:06	08/29/24 20:50	1
Naphthalene	0.50		0.50	0.38	ug/L		08/28/24 13:06	08/29/24 20:50	1
Phenanthrene Pyrene	0.50		0.50		ug/L		08/28/24 13:06	08/29/24 20:50	1
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	102	Quanner	48 - 120				08/28/24 13:06	08/29/24 20:50	1
2-Fluorobiphenyl (Surr)	71		46 - 120				08/28/24 13:06	08/29/24 20:50	1
Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)	57		24 - 136				08/28/24 13:06	08/29/24 20:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	0.025	5	0.010	0.0041	mg/L			08/30/24 12:04	1
Cyanide, Free (SW846 9016)	5.0		5.0	2.3	ug/L		09/04/24 10:49	09/04/24 20:28	1

BCR 9/23/24

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-16 (LOW FLOW 2)

Lab Sample ID: 480-222886-8

Date Collected: 08/27/24 12:15 Date Received: 08/27/24 14:00 Matrix: Ground Water

General Chemistry	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Nesult Qualifier	1,5,500	0.000				08/30/24 12:07	20
Cyanide, Total (SW846 9012B)	4.4	0.20	0.082	mg/L			00/30/24 12:01	10 10 10
Cyanide, Iolai (34646 30125)		FO 0	22.2	uall		09/04/24 10:49	09/04/24 20:28	10
Cyanide, Free (SW846 9016)	547	50.0	23.2	ug/L		03/04/24 10:10	00.0	

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: TB

Lab Sample ID: 480-222886-9

Date Collected: 08/27/24 00:00 Date Received: 08/27/24 14:00 Matrix: Water

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.41	ug/L			08/28/24 17:48	1
		1.0	0.74	ug/L			08/28/24 17:48	1
1000	1914)		0.51	ug/L			08/28/24 17:48	1
		2.0					08/28/24 17:48	1
% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	Qualifici						08/28/24 17:48	1
							08/28/24 17:48	1
'원중앙'							08/28/24 17:48	1
89		15-123					08/28/24 17:48	1
	1.0 1.0 1.0 2.0	101	1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 2.0 U 2.0 %Recovery Qualifier Limits 85 77 - 120 101 73 - 120	1.0 U 1.0 0.41 1.0 U 1.0 0.74 1.0 U 1.0 0.51 2.0 U 2.0 0.66 %Recovery Qualifier Limits 85 77 - 120 101 73 - 120	1.0 U 1.0 0.41 ug/L 1.0 U 1.0 0.74 ug/L 1.0 U 1.0 0.51 ug/L 2.0 U 2.0 0.66 ug/L **Recovery Qualifier Limits** 85 77 - 120 101 73 - 120	1.0 U 1.0 0.41 ug/L 1.0 U 1.0 0.74 ug/L 1.0 U 1.0 0.51 ug/L 2.0 U 2.0 0.66 ug/L %Recovery Qualifier Limits 85 77 - 120 101 73 - 120	1.0 U 1.0 0.41 ug/L 1.0 U 1.0 0.74 ug/L 1.0 U 1.0 0.51 ug/L 2.0 U 2.0 0.66 ug/L **Recovery Qualifier Limits Prepared** 85 77 - 120 101 73 - 120	1.0 U 1.0 0.41 ug/L 08/28/24 17:48 1.0 U 1.0 0.74 ug/L 08/28/24 17:48 1.0 U 1.0 0.51 ug/L 08/28/24 17:48 2.0 U 2.0 0.66 ug/L 08/28/24 17:48 **Recovery Qualifier Limits Prepared Nalyzed 08/28/24 17:48 101 73 - 120 08/28/24 17:48 89 75 - 123 08/28/24 17:48

Client: GEI Consultants Inc Project/Site: GEI, Mineral Springs Job ID: 480-222859-1

SDG: 222859

Client Sample ID: MW-21

Lab Sample ID: 480-222886-10

Matrix: Ground Water

Date Collected: 08/27/24 12:30 Date Received: 08/27/24 14:00

Cyanicle, Total (SW846 9012B) Cyanicle, Free (SW846 9016)

General Chemistry

Analyte

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.43	0.010	0.0041	ma/L			08/30/24 12:11	1
5.0 23 J U	5.0		ug/L		09/04/24 10:49	09/04/24 20:28	1

BLR 9/27/24

Eurofins Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

& eurofins

Client Information	Sample: M. Chamber	5	Schove, John R			Carner Tracking No(s)	vo(s)	480/199442-33139 1
Client Contact Brad Walker	Phore 716 57	2/43/2	E-Mail John.Schove@et.eurofinsus.com	et eurofinsus.	com	State of Origin		Page 1 of 2
Company National Fuel Gas Supply Corporation		PWSID		,	Analysis Requested	quested		% dor
Address 6363 Main Street	Due Date Requested:	\(\)/	7		4			Preservation Codes: B - NaCH
City Williamsville	TAT Requested (days):	7			_			A - HCL
State, Zip NY, 14221-5887	Compliance Project: A Yes			_				
Phone 716-857-7247(Tel)	PO# PM Brad Walker							
Emad	# OW		_	_		_	_	
walkerb@nattuel.com	2					_	_	ers.
Project Name GEI, Mineral Springs/ Event Desc. Semi Annual Sampling (April)	Project # 48008324		e (Ye			_		dalne
Site Nion Vari	SSOW#			PAH -				feon
New York			d Sa	AH - P		_		er of
	Samole	Sample Matrix Type (www.str.,	d Filtered	DD_LL_PA	28 - Cyanio			al Numbe
Sample identification	Sample Uate	Preservation Code:	X F	Z 82	-	+		Special instructions/Note:
MW-IH	0501 112/18				X			
MW-20	(L) (1)) Water	ater		×			
MW-20 bailer	No.N	Water	ater	X	X			
	1 1245	Water	ater	^	X			
S-NW	os b	Water	ater	X ×	×			
MW-16	(3)	Water	ater	X .	X	480	480-222859 Chain of Custody	n of Custock
muse MN-16 by 1/4R	(350		Water	~	×		- -	
S 13	٥١٥	W	Water	X ×				
MW-07 ba: ku	900		Water	××				
01-MW	840		Water					
Mrs-IIR	1/38	9	Water	×	X X			
tant	Poison B Unknown	Radiological	Samp		A fee may be	fee may be assessed if sam	imples are reta	Issessed if samples are retained longer than 1 month)
ested I, II, III, IV, Other (specify)			Speci	Special Instructions/Qu	OC Requirem	ents:		
Empty Kit Relinquished by:	Date		Time			Method of Shipment	Shipment	
Reinquisiped by	O82624 //	1430 Company	-4	Received by	mynn	(Noll)	2 Burnated	ン1 82m ト2 02
Reinquished by	,			Received by		1	Date/fire	Company
Reinquished by	Date/Time	Company		Received by			Date/Time	Company
Custody Seals Intact: Custody Seal No:			Ω	Cooler Temperature(s)	Strangon Strangon	Temantis C.C.		
								Ver: 05/06/2024

Chain of Cus

cn.	
9.	
=	
Q	
0	
1	
-	
-	
A	
m	
OB	
63	
0	
-	

10 Hazelwood Drive Amherst, NY 14228-2298 Phone 716-691-2600 Fax 716-691-7991	c	Chain of Custody Record	ustody R	ecord		es eurofins
Client Information	Sampler		Lab PM Schove,	we, John R	Carrier Tracking No(s)	480-199043 33139 2
Crient Contact Brad Walker	Phone		John John	E.Mail John.Schove@et.eurofinsus. com	State of Ongin	Page Page 2.ar 2
Company National Fuel Gas Supply Corporation		DISMA		VS.	Requested	Job #
Address 6363 Main Street	Due Date Requested:			The state of the s	- I	Preservation Godes:
Cry Williamsville	TAT Requested (days):	(6):				N - Mone A - HCL
State, Zlp NY, 14221-5887	Compliance Project	A Yes A No				
Phone 716-857-7247(Tel)	PO# PM Brad Walker					
Email walkerb@natfuel.com	WO #			b)		
Project Name GEI, Mineral Springs/ Event Desc: Semi Annual Sampling (April)	Project #			8270		almen
	SSOW			PAH - 260		Oer son
Sample Identification	Sample Date	Sample Type Sample (C=comp,	ple Matrix ple (washer e Sacold, mp, Ownsould, ab) ST-Tours Arder)	Field Filtered S Ferferm MS/M 9016 - Cyanide, I 8270D_LL_PAH 8260C - BTEX - 8 2540D - Total Su 9012B - Cyanide		Special Instructions/Note:
	V	4		XB N A N		Î
SW-0	12/02/3	124 6	Water	メススズ		
Sw-02	١,		Water	XXXX		*
TB		1	Water	\rightarrow		
MAA-11		100C	Water	××× ×××		
Service Comme		1,	Water	XXXX		
Dupheate			Water			
100			Water			*
			Water			
		_	Water			
		4				
Possible Hazard Identification Non-Hazard	Poison B Unknown	Radiological	poical	Sample Disposal (A fee may be a	assessed if samples are	fee may be assessed if samples are retained longer than 1 month)
Other (specify)				Requirem	nts	
Empty Kit Relinquished by:		Date.		Time	A Method of Shipment	
Reimquished by Class	OgleTime	95H/ A	Company 687 Company	Received by WAA W. SAA	Date/Time	326241480 Company
Reimquished by	Date/Time		Company	Received by	Date/Time	Company
Custody Seal No · Δ Yes Δ No				Cooler Temperature(s) ⁹ C and Other Remarks	emarks	

Ver: 06/08/2021

10 Hazelwood Drive Amherst. NY 14228-2298 Phone 716-691-2600 Fax 716-691-7991

Constitution of the Consti		Allegan and a party of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
COMPANY CONCRET	(716) 475- 24	53	,	State of Ongin Page	2
WATER OF FUEL GAS			Accreditations Required (See note)	Job #	- 1
G363 MATN ST.	Due Data Requested:		alvsis	Preser	Preservation Codes:
STILL SECTION	TAT Requested (days):		9-8	A - HCL B - NaOH	
4185 - F77h 'NN	570		PRE PRIS	C-Zn D- Nitr	C - Zn Acetate
4KZE -45& (914)	" PM: B.W	. WALKER	۶ ، ۶ ۹ <i>۲</i> -	F - MeOH G - AmcNor	
Walker a O natfort. con	WO#		TO PE		Valer
Site	200		AN LL	taine - EDA	
NY	SOWW		SD (Y	of con	
		-	MS/M	mber o	
Sample Identification	Sample Date Time	(C=comp,	ield F	otal Nu	
		1	X	1	Special Instructions/Note:
21 - Mu	8/23/24 0900	M 5 00	×		
MH-IL (BAJLER)	2260	5	×		
MW-19	2005	_	×		
MN - 19 (BAZLER)	5601	25	_		
12 MO- 20 (LOW & LOW ()	1150	0,	*		
MW-78	1145	5	X X X		
45	1040	0	× × × ×		
MW - 16 (LOW FLOW 2)	215		×		
Note Since laboration	*	•	×	480-222886 Chain of Custody	Custody
does not currently maintain accreditation in the State of Origin lated above for analysisticities through the sample accreditation compliance upon our subcontract laborationes. The unique subcontract laborationes is a subcontract laboration of the sample of the samples of the Eurofines Environment Testing Northests LLC laborations will be provided. Any changes to accreditation in the signed Chain of Custody attention to the Eurofines Environment Testing Northests LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attention to the Eurofines Environment Testing Northests.	we for analysis/tests/matrix being analysts attention immediately if all requestes	55 the ownership of method, analyzed, the samples must be shipped accreditations are current to dail	yte & accreditation compliance upon our subcontract is disact to the Eurofins Environment Testing Northeast is return the signed Chain of Custody attesting to sain	ur subcontract laboratories Trau unique empresant laboratories Trau unique empresant laboratories de laborator	ovided. Any changes to accreditation
Non-Hazard Flammable Skin Imitant	Poison B Unknown	Radiological	Sample Disposal (A fee may be a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ger than 1 month)
Empty Kit Relinquished by			Requireme	ents:	WOMINS
Relinguis@ed by	Date		Time: A	Method of Shipment	
Reinquished by	083 2 24/1	400 Company	Received by MM (W	2421 Barring 9 00	Ludens 20 hi Ki
Reinquished by	Date/Time	Company	Received by	Date/Time	Company
Custody Seals Intact: Custody Seal No		Company	Received by	Date/Time	Company
			Cooler Temperature(s) *C and Other Remarks	コオ った stum	TUE

Ver 06:08 2021

10 Hszelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Custody Seal No A Yes A No Custody Seal No	semidonaries by	school pu	Reinquished by	selinguithed by	Empty Kit Relinguished by	ile Skin Imtant U	does not currently maintain accreditation in the State of Ongin Isted above for analysis/lests/matrix being analysed, the samples must be shoped back to the Eurofins Environment. Testing Northeast, LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custor Pays/fible Hazard Identification.	vicie Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast 11 C places the concentrations are subject to change.		Pr	\ \ \				WM-22		Sample Identification	W		EMALITER OF MARALICAM.	th 22-25 (T)	NY, 1422-5889	Williams valle	6363 MARN SHREET	NATIONAL EVELOWS	-	123
	Date/Time	Continue	08232			Poison B Unknown	analysis/tests/matrix be	ment Testing Northeast	1						hy 22/8		Sample Date	SOCWAR	0000	WO#	PO .**	570	TAT Requested (days):	Due Date Requested		1	M. LVMANCS
		,	1/1400	Date:			ing analyzed, the requested accredi	C places the cu				/			1230	X	Sample (ays):	ed:		1978- 5462	*
	Co	C				Radiological	samples must b			1					r o		Sample Type (C=comp, G=grab) er-									ĺ.	E. CLANG
	Company	Company	S&Z	11			e shipped back			1	1				-	Code	Matrix (W-water Should Connistents) Britisue, A-Air) Eleid	Samp	le (res or N	lo)				Ac	E-Mail	Lab PM
Coole	Recen	Received by	Received by	Time.	opecial	Sample	ccreditation to the Eurof rn the signer	E							×	X	9016, 8276 A				F, P	rs	F		Accreditations Required (See note)		V SCAPY 6
Cooler Temperature(s)	Received by	ed by	5		opecial instructions/Q	Return To Client	ns Environn Chain of C	E									82600		87	TEX	-8	26		72	Quired (Se		NWOLY
റീ			S.S.		C	1 m				/-	\exists			1	×		9012	B ~	5	YAN	200	,7	OTA	Analysis	e note)		
and Other Remarks			22		Requirements	tee may be ass	Northeast L Northeast L ting to said o	F						_										is Requested		us.	٠ د
urks			1	Method		assessed if san Disposal By Lab	ioratories T LC laborato compliance t		1					+										heted		State of Origin	Camer Tracking No(s)
1	Date/Time	Date/Time	Date/Time	Method of Shipment		samples :	his sample s ry or other in a Eurofins E		/			1				_											g No(s)
	ě	ō	4			are retain	structions w	7			1	1	H	1		X.	Total Number	of con	-	San in a							
						*assessed if samples are retained longer than 1 Disposal By Lab Archive For	our subcontract laboratories. This sample shipment is forwarded under chain-di-custody Testing Northeast, LLC laboratory or other instructions will be provided. Any changes to as dy attesting to said compliance to Eurofins Environment Testing Northeast. LLC.						V			100	s a	Other:	L- EDA	J. DI Water K. EDTA	F - MeOH G - Amchlor H - Ascorbic Acid	D - Nitric Acid E - NaHSO4	A - HCL B- NaOH	Preservation Codes:	Job #	Page 201	COC No
	0	0	0			than 1 m	ter chain-of- d Any chan- east LLC										netr		2		ă			on Codes:		27	
	Company	Company	Company			month) Months	our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory Testing Northeast, LLC laboratory or other instructions will be provided. Any changes to accreditation by attesting to said compliance to Eurofins Environment Testing Northeast. LLC.									Special medical control works.	ctions/N		other (specify)		- NaZSZO3 - HZSO4 - TSP Dodecahydrate	P . Na204S Q - Na2SQ3	None				

2024 Second Semiannual Groundwater/Surface Water Quality
Monitoring and Special Groundwater Quality Assessment
Report
Mineral Springs Road Former MGP Site (NYSDEC #V00195), West Seneca, New York
November 2024

Appendix D Historic Time Series Concentration Plots

Note: NYS AWQS = New York State Ambient Water Quality Standards and Guidance Values for Class GA groundwater

National Fuel Gas Mineral Springs Facility

GEI Consultants

