

Report. V00213. 1998-06-01.
Site AR.

FILE COPY

SITE ASSESSMENT REPORT

500 Mamaroneck Avenue
Harrison, New York

June 1998

Prepared for:

500 Mamaroneck Avenue Associates
500 Mamaroneck Avenue
Harrison, NY

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT
175 Froehlich Farm Boulevard
Woodbury, NY 11797

EnviroClean's Commitment to Quality

Our Quality Policy

We will fully understand and document our client's requirements for each assignment.

We will confirm to those requirements at all times and satisfy the requirements in the most efficient and cost effective manner.

Our quality policy and procedures include an absolute commitment to provide superior service and responsiveness to our clients.

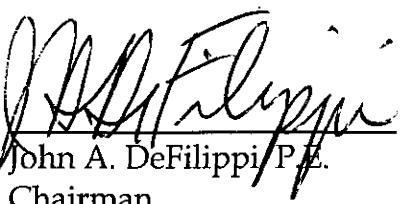
Our Quality Goals

To serve you.

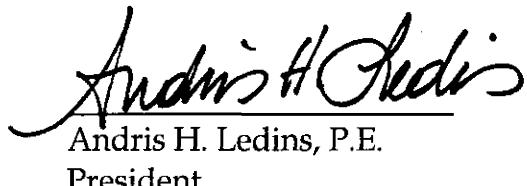
To serve you well.

To continually improve that service.

Our Quality Improvement Process


Train each employee.

Establish and implement requirements based on a preventative approach.


Maintain a standing Quality Improvement Team to ensure continuous improvement.

Empower Corrective Action Teams to analyze, correct and eliminate problems.

Continually strive to improve our client relationships.

John A. DeFilippi, P.E.
Chairman

Andris H. Ledins
President

SITE ASSESSMENT REPORT

*500 Mamaroneck Avenue
Harrison, New York*

June 1998

Prepared for:

500 Mamaroneck Avenue Associates
500 Mamaroneck Avenue
Harrison, NY

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT
175 Froehlich Farm Boulevard
Woodbury, NY 11797

14540018.084

Table of Contents

TABLE OF CONTENTS

1.0	INTRODUCTION	1 - 1
1.1	PURPOSE OF REPORT	1 - 1
1.2	BACKGROUND	1 - 2
1.2.1	<i>Study Area Description & History</i>	1 - 2
1.2.2	<i>Site Geology</i>	1 - 3
1.2.3	<i>Previous Investigations</i>	1 - 4
2.0	SITE INVESTIGATION	2 - 1
3.0	SAMPLING RESULTS	3 - 1
4.0	FATE AND TRANSPORT	4 - 1
4.1	POLYCYCLIC AROMATIC HYDROCARBONS	4 - 1
4.2	POLYCHLORINATED BIPHENYLS	4 - 3
5.0	FINDINGS AND RECOMMENDATIONS	5 - 1
5.1	RECOMMENDATIONS	5 - 2
6.0	REFERENCES	6 - 1

LIST OF FIGURES

1 *Site Location Map*

2 *Site Plan*

LIST OF TABLES

1 *Soil Sampling Results - 500 Mamaroneck Avenue, Harrison, NY, May 1998*

LIST OF APPENDICES

APPENDIX A *Previous Reports*

APPENDIX B *Field Notes*

Section 1

Environmental Resources Management (ERM) has prepared this Voluntary Cleanup Site Assessment Report on behalf of 500 Mamaroneck Avenue Associates (owner) to document conditions at their property located at 500 Mamaroneck Avenue, Harrison, New York (site). The site, a five-story office building, is being marketed by the Bank of Nova Scotia and title will pass to the new owner. AKRF, INC. (AKRF), completed a Phase I Environmental Investigation in April of 1997.

A potential purchaser engaged Dames and Moore, Inc. to collect soil and groundwater samples to assess potential impacts from past property usage. Dames and Moore produced preliminary sampling results which indicated residual soil concentrations of Resource Conservation Recovery Act (RCRA) metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in excess of regulatory standards or guidelines. Groundwater samples collected by Dames & Moore, however did not indicate any significant levels of contaminants.

In May 1998, the site owner retained ERM, to further evaluate conditions at the site retained ERM. ERM recommended the installation of additional soil borings to:

- Verify the presence and establish concentrations of PAHs and PCBs.
- More completely delineate the areal and vertical extent of any residual inorganic, PCB or PAH soil contamination.

This report details the results of sampling program carried out at 500 Mamaroneck Avenue, by ERM, evaluates the fate and transport of the residual contaminants detected and recommends a remedial alternative

consistent with the property usage. Additional groundwater sampling was not recommended because the Dames & Moore results did not indicate significant impacts.

1.2 ***BACKGROUND***

The site is located on the east side of Mamaroneck Avenue, approximately 2000 feet south of Union Avenue at 500 Mamaroneck Avenue in Harrison, New York, as shown on Figure 1. The Town of Harrison defines the property as Block 482, Lot 8. The current configuration is shown on Figure 2.

1.2.1 ***Study Area Description & History***

The site is approximately 34.5 acres and is occupied by a five-story commercial office. The building construction began in 1983, with tenant occupancy beginning around 1986. Approximately 14 acres of the site have been improved in conjunction with the construction of the office complex. This includes bituminous paved parking areas covering approximately 9 acres and a building foot print of approximately 1.5 acres. The remaining sections of the developed portion of the site include landscaped shrubbery and lawns. The undeveloped portion of the property is located to the east of the office complex and serves as a buffer for the adjacent residences.

Site topography has changed substantially as a result of construction activities. Approximately 340,000 cubic yards of soil and rock were removed during site development. This material was removed only from that portion of the site that was being developed (the portion closest to Mamaroneck Avenue) and it was disposed of off-site. Water is provided by the local municipal system and the site therefore has no drinking water

well(s). One shallow well supplies water to a decorative waterfall on the property. Septic waste is handled via the municipal sewer system.

The site rises gradually over the parking area, and then is relatively level over the eastern portion. A small wet area is located in the north-central portion of the property, immediately east of the northern portion of the parking area.

The surrounding properties are primarily commercial structures along Mamaroneck Avenue (to the south and north of the subject property) and single family residences to the east. To the west of the site is Saxon Woods Park. Saxon Woods Park is separated from the site by Mamaroneck Avenue. Non-residential buildings in the vicinity of the site include office complexes, a law office and a home and garden store.

Based on review of available aerial photographs, the site appears undeveloped until 1954. In the 1954, the Harrison Town incinerator is visible along Mamaroneck Avenue. From 1954 until 1980, there were no major changes at the site, i.e., the incinerator appears in all of the aerials. In the 1986 aerial, the office building on the site is under construction. This corresponds with Town records which list the date of construction of the building as 1986.

1.2.2 *Site Geology*

Based on the U.S.G.S. 1967 (photoinspected 1975) Topographic Map of the Mamaroneck, New York Quadrangle, site elevation ranges from approximately 130 feet at the eastern property line to 60 feet along the western side of the property. Based on the topography and general site features, groundwater beneath the study site is expected to flow west towards the Mamaroneck River, located approximately 200 feet west of the site boundary.

According to the September 1994 General Geology Map of Putnam and Westchester Counties, New York, the bedrock beneath the study site consists of Harrison Gneiss. Bedrock outcrops were observed along the eastern side of the property.

1.2.3 *Previous Investigations*

Previous investigations carried out at the site include: Goldberg Zoino and Associates (GZA), May 1986; Environmental Risk Limited (ERL), April 1988; U.S. Hydrogeological, Inc. (USHI), October, 1988; AKRF, Inc. (AKRF), April 1997 and Dames & Moore, Inc., 1998 (late February or early March). Except for the Dames & Moore sampling, these investigations are Phase I Environmental Assessments, however, GZA, ERL and USHI collected limited soil and/or groundwater samples as part of their work.

Specifically, GZA collected two soil samples from the southeastern portion of the developed portion of the property. The samples were collected from a berm constructed of material, which appeared to contain debris from past MSW operations (see Figure 2). The samples were composited and analyzed for priority pollutant metals after extraction following the EP Toxicity procedure. According to the GZA report, all metals results were at least an order of magnitude below (relevant standards.)

ERL collected a groundwater sample from the on-site production well (Figure 2). The sample was submitted for analysis for volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (USEPA) methods 601 and 602, EP Toxic metals and cyanide. None of the analyses performed revealed contaminants above method detection limits.

USHI collected two soil samples from the undeveloped eastern portion of the property (see Figure 2). The samples were analyzed for cadmium, chromium and lead. The results are: <1.41 and <1.56 milligrams/kilogram (mg/kg) for cadmium; 41.7 and 65.3 mg/kg for chromium; and 77.6 and 136 mg/kg for lead, respectively. These were total metals analyses and therefore cannot be compared to EP Toxicity values. However, USHI concluded that although the levels appear to be slightly elevated, they are consistent with typical soil metals concentrations from urban settings and do not indicate contamination from operation of the incinerator.

As discussed above, Dames & Moore collected soil and groundwater samples on behalf of a potential buyer. Initially they proposed the installation of 8 soil borings, however, 2 of their borings were not installed due to the presence of underground utilities. Figure 2 presents the locations of the Dames & Moore boring locations. The soil samples were analyzed for VOCs, PAH and PCB semi-volatile organic compounds (SVOCs) and RCRA metals. Only the results of the Dames & Moore sampling were supplied to the property owner, therefore, the analytical methodology is unknown. However, it is likely that standard USEPA analytical methods were used because the samples were collected as part of a due diligence investigation for a property transfer.

No VOCs exceeded regulatory guidelines in any of the six soil samples collected. Dames & Moore's report stated that the PAHs and PCBs exceed regulatory guidelines in one sample collected in the northeastern section of the property. The PAHs detected in this sample included benzo(a)pyrene at an estimated concentration of 320 micrograms/kilogram ($\mu\text{g}/\text{kg}$), chrysene at 670 $\mu\text{g}/\text{kg}$ and benzo(a)anthracene at 600 $\mu\text{g}/\text{kg}$. The PCB concentration in this sample was 13,000 $\mu\text{g}/\text{kg}$ of Aroclor 1242. The report also states that RCRA metals exceed regulatory guidelines in all of the samples. However, that

conclusion is based on a total metals analysis of the soils. Considering the proximity of bedrock at the site, it is likely that metal concentrations in the overburden soil would be abnormally elevated due to dissolution or weathering of the bedrock. Without a thorough analysis and understanding of background metals concentrations in the Harrison area, comparison of the Dames & Moore metals data to regulatory guidelines is premature.

Groundwater samples were collected from the existing on-site well and from borehole No 3. The groundwater samples were analyzed for VOCs and RCRA metals. No parameters were detected above its respective regulatory guidance criterion.

A copy of the previous investigation reports is presented in Appendix A.

Section 2

Section 2

To better understand and more completely define the extent of potential impacts from past activities at the site, ERM installed 21 soil borings at the 500 Mamaroneck Avenue site. Because more than 340,000 cubic yards of soil and bedrock were excavated from the site during construction, borings were located in areas suspected to contain the greatest thickness of overburden soil. Several borings were also collocated with borings installed by Dames & Moore and in the former location of the municipal incinerator.

~~As~~ As discussed in Section 1.2.3, contaminants have not been detected in any samples collected from the on-site well. Additionally, Dames & Moore collected a groundwater sample from boring No. 3. This sample also did not contain contaminants in excess of regulatory guidelines. Dames & Moore also analyzed soil samples for VOCs. Except for common laboratory contaminants, such as acetone and methylethyl ketone, VOCs were not detected in the Dames & Moore soil samples. ERM therefore concluded that collection of groundwater samples was not warranted.

ADT, INC of New Hyde Park, New York Park installed the borings using a GeoProbe™ under the supervision of an ERM geologist. Each boring was advanced to a total depth of ten feet or until refusal. Continuous 3-foot samples were collected using a MacroCore™ sampler and each sample screened for VOCs using a field instrument equipped with a photoionization detector (PID). The MacroCore™ sampler was decontaminated between borings using a detergent wash followed by distilled water rinse.

The initial round of boring installations was carried out on May 12, 1998. Borings GP-1 through GP-15 at the locations indicated on Figure 2. At several locations only a thin mantle of soil was observed. At other

borings, cinder-like material was observed. VOCs were not observed in any of the samples collected. The field notes from the boring installation are provided in Appendix B.

Because of the presence of numerous utilities including electric, water and sewer lines in the front of the building, it was necessary to conduct a Geophysical survey to clear boring locations. NAEVA Geophysics Inc. (NAEVA) of Tappan, New York conducted the survey. While on-site,

~~NAEVA also surveyed the area near Dames & Moore boring No. 8 where~~

~~PCBs were detected at a depth of 4 to 6- feet. Although the ground penetrating radar (GPR) survey identified a depression in the bedrock surface in this location, ERM was unsuccessful in collecting a sample at the same depth as indicated by the Dames & Moore data from this location.~~

On May 26, 1998, ADT returned to the site and installed borings at locations GP-16, GP-20 and GP-21 (Figure 2). The installation of these borings followed the protocol described above. Note that ERM boring location GP-16 was near Dames & Moore Boring No. 8.

Because of concerns regarding crossing sewer and water lines located in front of the building with the GeoProbe™ rig, borings GP-17, GP-18 and GP-19 were installed using a Tripod drilling apparatus. Soil samples were collected using a standard 2-foot split-barrel core sampler (split spoon), which was decontaminated as described above.

After collection, samples were stored on ice and shipped for immuno-assay screening for PCBs and PAHs. Ohmicron field immuno-assay screen kits were used because they provide the lowest detection limits of available immuno-assay screening kits. The Ohmicron kits also meet the requirements of USEPA SW-846 immuno-assay methodologies. Based on the results of the screening and sample location with respect to previously

selected samples were sent to the American Environmental Network (AEN) laboratory in Monroe Connecticut.

The soil samples were analyzed for PAHs using USEPA method 8270B, PCBs using USEPA method 8081, and RCRA metals after extraction using the Toxicity Characteristic Leaching Procedure (TCLP). After the preliminary results from the set of samples collected on May 12, 1998 were obtained, AEN was requested to reanalyze several samples for PAHs and PCBs after extraction of ~~the~~ samples using the TCLP leaching procedure. This additional analysis was undertaken to assess the mobility of the PAHs and PCBs, which were detected.

Section 3

Section 3

Immuno-assay screening results for the PAHs ranged from 8 to 888 $\mu\text{g}/\text{kg}$ with a method detection limit (mdl) of 4 $\mu\text{g}/\text{kg}$. PCB concentrations, as determined by immuno assay testing ranged from non-detect (ND) to 323 $\mu\text{g}/\text{kg}$ with an mdl of 500 $\mu\text{g}/\text{kg}$. After review of the field screening results, 14 samples were selected for laboratory analysis. The selected samples contained both low and high concentration samples and samples collected near previously sampled areas.

The data from the soil samples collected on May 12, 1998 was received by ERM and reviewed to determine the necessity for additional sampling collection or analysis. The results from the May 12th sampling indicated the presence of PAHs, and PCBs in several of the soil samples above applicable regulatory limits. Concentrations of PCBs ranged from 56 $\mu\text{g}/\text{kg}$ to 4,200 $\mu\text{g}/\text{kg}$. Concentrations of PAHs ranged from 110 to 7,800 $\mu\text{g}/\text{kg}$, with individual PAH concentrations of benzo(a)anthracene (Borings GP-12A, GP-12B, GP-13A), benzo(b)fluoranthene (Borings GP-12B, GP-13A), benzo(k)fluoranthene (Borings GP-12B, GP-13A), benzo(k)fluoranthene (Boring GP-12B), benzo(a)pyrene (Borings GP-12A, GP-12B, GP-13A), chrysene (Borings GP-12A, GP-12B, GP-13A) and dibenzo(a,h)anthracene (Boring GP-12B) exceeding the Clean-up Objectives of NYSDEC TAGM 4046. The total estimated PCB concentration of 4,200 $\mu\text{g}/\text{kg}$ obtained in ERM boring GP-11A exceeds the surficial total PCB clean-up criterion of 1,000 $\mu\text{g}/\text{kg}$.

Several RCRA metals were detected in the May 12th samples above the laboratory mdl. However, RCRA metal concentrations did not exceed regulatory criteria. As discussed in Section 3.0, the RCRA metals testing was carried out using the TCLP extraction procedure and the results indicate that although RCRA metals are present in the soil at 500 Mamaroneck Avenue, they are not mobile. Therefore, it was decided to

reanalyze several of the May 12th samples for PAHs ad PCBs using the TCLP extraction procedure. Soil samples from GP-11A, GP-12A, GP-12B and GP-13A were therefore reanalyzed to assess the mobility of these compounds.

The results of the TCLP leaching and reanalysis indicated that PCBs were not detected above the mdl. PAH concentrations in the TCLP extracted samples ranged from an estimated value of 0.2 µg/L to 4 µg/L. These concentrations are at least two orders of magnitude less than the applicable TAGM Clean-up Objective. Based on these TCLP data, it can be concluded that the PAHs in PCBs in the soil at the 500 Mamaroneck Avenue are not mobile.

Four samples from the May 26th and 27th sampling were sent for laboratory analysis. PCBs, above the mdl, were present in three of the samples (GP-19B/C, GP-19D/E/F and GP-21A), however, total PCB concentrations did not exceed regulatory recommended clean-up objectives. PAH concentrations ranged from 450 µg/kg to 22,000 µg/kg in the May 26th and 27th samples. The concentration of benzo(a)anthracene (Borings GP-19B/C, GP-19D/E/F, GP-20A), benzo(b)fluoranthene and benzo (k)fluoranthene (Boring GP-19D/E/F), benzo(a)pyrene (Borings GP-19B/C, GP-19D/E/F and GP-20A) and dibenz(a,h)anthracene (Boring GP-19D/E/F) exceed TAGM 4046 Soil Clean-up Objectives. As indicated above, if the TCLP extraction were used, PAH the concentrations in these samples would be expected to be at least 3 orders of magnitude lower, which would likely reduce the measured PAH concentrations below the applicable standard. Additionally, the PAH concentrations in the May 26th and 27th which exceeded standards were from samples collected at depths ranging from 3 to 12-feet below land surface. The TAGM 4046 clean-up criteria are based on direct contact with the PAH contaminated soil and it is unlikely for direct contact with these soils to occur.

4.0

FATE AND TRANSPORT

Chemicals released into the environment are susceptible to several degradation pathways. These include chemical (i.e., hydrolysis, oxidation, reduction, etc.), photolysis or photooxidation and biodegradation. One or more of these processes may transform compounds. The transformation processes are controlled by the physical properties of the compound, i.e., a compound's ability to absorb light or the presence of functional groups that can be oxidized by naturally occurring environmental oxidants such as oxygen.

Chemicals entering the environment are dispersed through various physical process including volatilization, dissolution in ground or surface water, bioadsorption and transport by fish and birds. The physical properties of the specific compound released into the environment will control the transport.

4.1

POLYCYCLIC AROMATIC HYDROCARBONS

Polycyclic aromatic hydrocarbons (PAHs) are formed during the incomplete combustion of coal, oil, gas, wood, garbage or other organic substances. PAHs can either be man-made or occur naturally. Although a few of the PAHs are used to make dyes, pesticides and plastics, and others are contained in asphalt most of these chemicals are not widely used except in research. PAHs are found throughout the environment in the air, water and soil. There are more than 100 different PAH compounds.

As pure chemicals, PAHs generally exist as colorless, white or pale yellow-green solids. They have a faint, pleasant odor. Most PAHs do not occur alone in the environment, i.e., they generally part of a complex mixture, for example, in crude oil, coal tar, creosote, and road and roofing tars.

The movement of PAHs in the environment depends on properties like their water solubility, vapor pressure and molecular weight. PAHs, in general, do not easily dissolve in water. In soil they are tightly bound to soil particles. PAHs can breakdown in the air by photolysis or through reactions with other chemicals. This process generally takes a period of days to weeks. Decomposition in soil and water takes longer, from weeks to months and is due mostly to the actions of microorganisms.

Transport and partitioning of PAHs in soil can be evaluated by consideration of individual PAH octanol-water partitioning coefficient (K_{ow}) and organic carbon partitioning coefficient (K_{oc}). K_{oc} indicates the chemicals potential to bind to organic carbon in soil and sediment, K_{ow} is used to estimate the potential for an organic chemical to move from water, a polar environment into a more nonpolar environment such as bound to soil. Some of the transport and partitioning characteristics, such as K_{oc} and K_{ow} are roughly correlated to the PAH molecular weight. These properties can be grouped as follows:

- Low molecular weight compounds (152-178 grams/mole [g/mol]) - acenaphthene, acenaphthylene, anthracene, fluorene and phenanthrene.
- Medium molecular weight compounds (202 g/mol) - fluoranthene and pyrene.
- High molecular weight compounds (228-278 g/mol) - benzo(a)anthracene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(g,h,I)perylene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene and indeno(1,2,3,c,d)pyrene.

As described above, the K_{oc} indicates a chemical's potential to bind to organic carbon in sediment and soil. The low molecular weight PAHs have K_{oc} values in the range of 10^3 to 10^4 , which indicates a moderate potential to be adsorbed. The medium molecular weight compounds K_{oc} values in the 10^4 range and high molecular weight compounds have K_{oc}

values in the range of 10^5 to 10^6 , which indicate a strong tendency to adsorb to soil and sediment.

At the 500 Mamaroneck Avenue site, the high molecular weight compounds predominate suggesting that the PAHs present at the site will be strongly bound to the soil and will not be mobile. This is confirmed by the TCLP leaching data.

4.2 *POLYCHLORINATED BIPHENYLS*

Polychlorinated biphenyls (PCBs) are a class of nonpolar, chlorinated hydrocarbons with a biphenyl nucleus ($C_{12}H_{10}$) on which one to ten of the hydrogens have been replaced by chlorine. Commercial PCBs were manufactured and sold as mixtures containing multiple isomers with different degrees of chlorination. Most PCB congeners are colorless, odorless crystals; the commercial mixtures are clear viscous liquids (the more highly chlorinated mixtures are more viscous: for example Aroclor 1260 is a sticky resin). Although the physical and chemical properties vary widely across the class, PCBs have low water solubilities and low vapor pressures. PCBs are stable compounds and do not degrade easily.

Commercial PCB mixtures were used in a wide variety of applications, including dielectric fluids in capacitors and transformers, heat transfer fluids, hydraulic fluids, lubricating and cutting oils, and as additives in pesticides, paints, copying paper and carbonless copy (NRC) paper. By far, the preponderance of the PCBs were used in capacitors and transformers. The commercial utility was based largely on their chemical stability, including low flammability and desirable physical properties including electrical insulating properties. They are considered ubiquitous in the environment.

PCBs have low volatility and are highly lipophilic, i.e., PCBs prefer nonpolar environments, with the consequence that more than 99 percent of the environmental PCB mass found in soil. PCBs bind strongly to soil (Koc values likely in the 10^5 to 10^6) and may remain there for years or decades. PCBs will typically not travel deeply into the soil with rainwater. Specifically, the solubility of commercial mixtures of PCBs decreases in increasing chlorination, from a solubility of 420 $\mu\text{g}/\text{L}$ for Aroclor 1016 to 12 $\mu\text{g}/\text{L}$ for Arochlor 1260. The higher chlorinated species ~~predominate at the 500 Mamaroneck Avenue site, indicating low potential for migration. This is confirmed by the TCLP leaching testing, which did not reveal PCBs in the extract.~~

Section 5

The soil sampling carried out by ERM detected PAHs and PCBs above regulatory guidance criteria in only 6 soil samples out of the 46 collected at the 500 Mamaroneck Avenue site. Upon reanalysis of 4 of these samples, using the TCLP leaching procedure, the concentrations of PAHs and PCBs were below regulatory guidance, indicating that these compounds are not mobile. This observation is consistent with the transport phenomena associated with PAHs and PCBs. Impacts to groundwater from these compounds are therefore not likely.

The PAH and PCBs are associated with samples where there is a greater thicknesses of soil, specifically along the southern parking lot boundary and in front of the building. The PAHs and PCBs were generally detected in samples collect^d at depths greater than 3-feet below land surface. However, it must be pointed out that in general there is only a thin mantel of soil above the bedrock at the site. This is consistent with the observation that more than 340,000 cubic yards of soil and bedrock removed from the site during construction of the building complex.

WRONG - IMPACTED BY DEPOSITION FROM STACK
Sixty percent of the 500 Mamaroneck property is undeveloped and has not been impacted by past or present activities. The building complex and parking lots cover approximately sixty four percent of the developed portion of the property, the remaining land is landscaped. Therefore the PAHs and PCBs potentially contained in soil are isolated both from a direct contact and leaching perspective. Additionally, as discussed above, because more than 340,000 cubic yards of soil and bedrock were removed during construction and disposed of off-site, the potential amount of PAHs and PCBs remaining on-site is extremely limited.

ERM recommends that no further investigative or remedial activities be conducted at the site. This recommendation is based on:

- Isolation of the PAHs and PCBs potentially present in site soil by the building complex, bituminous paving and landscaping. Direct contact with these contaminants is not likely and an exposure pathway is therefore not present.
- TCLP leach testing indicates that the PAHs and PCBs present on site are not mobile. This finding is consistent with the physical properties of these classes of compounds. More importantly, contamination of other media is not likely, groundwater is not used on the site and ~~X~~ uRONG therefore, no exposure pathway through groundwater is possible.

Limited exceedances of recommended clean-up criteria. Only 4 borings contained soil exceeding criteria, therefore there is only a very limited area, which is potentially impacted.

Section 6

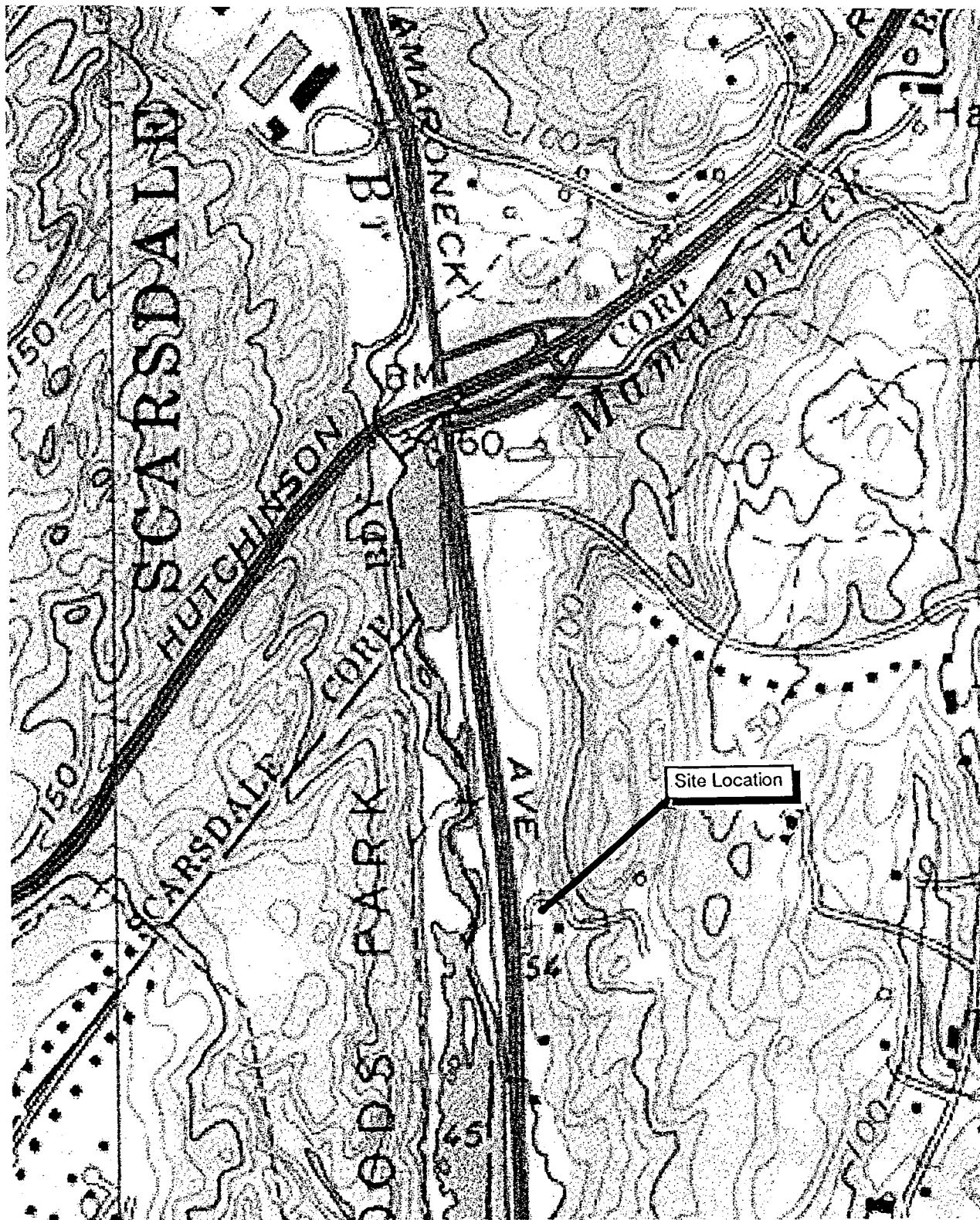
REFERENCES

Dames & Moore, 1998. Draft Soil Sampling Results

AKRF, Inc, 1997. Phase I Environmental Site Assessment, 500 Mamaroneck Avenue, Harrison, New York.

U.S. Hydrogeologic, Inc., 1989. Environmental Audit Town of Harrison, Westchester County Tax Block 428, Lot 8.

Environmental Risk Limited, 1988. Letter from Fredrick Johnson to Michael Curran re: Schulman Reality Property, 500 Mamaroneck Avenue, Harrison, New York.


GZA, Inc. 1986. Letter from Kathleen A. Cyr and Robert A Heller to Mike Curran re 500 Mamaroneck Avenue Property.

U.S. Department of Health & Human Services-Agency of Toxic Substances and Disease Registry, 1995. Toxicological Profile for Polychlorinated Biphenyls.

U.S. Department of Health & Human Services-Agency of Toxic Substances and Disease Registry, 1993. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs).

Erickson, Mitchell D., 1997. Analytical Chemistry of PCBs. Lewis Publishers, New York, New York.

FIGURES

Site Location

TITLE

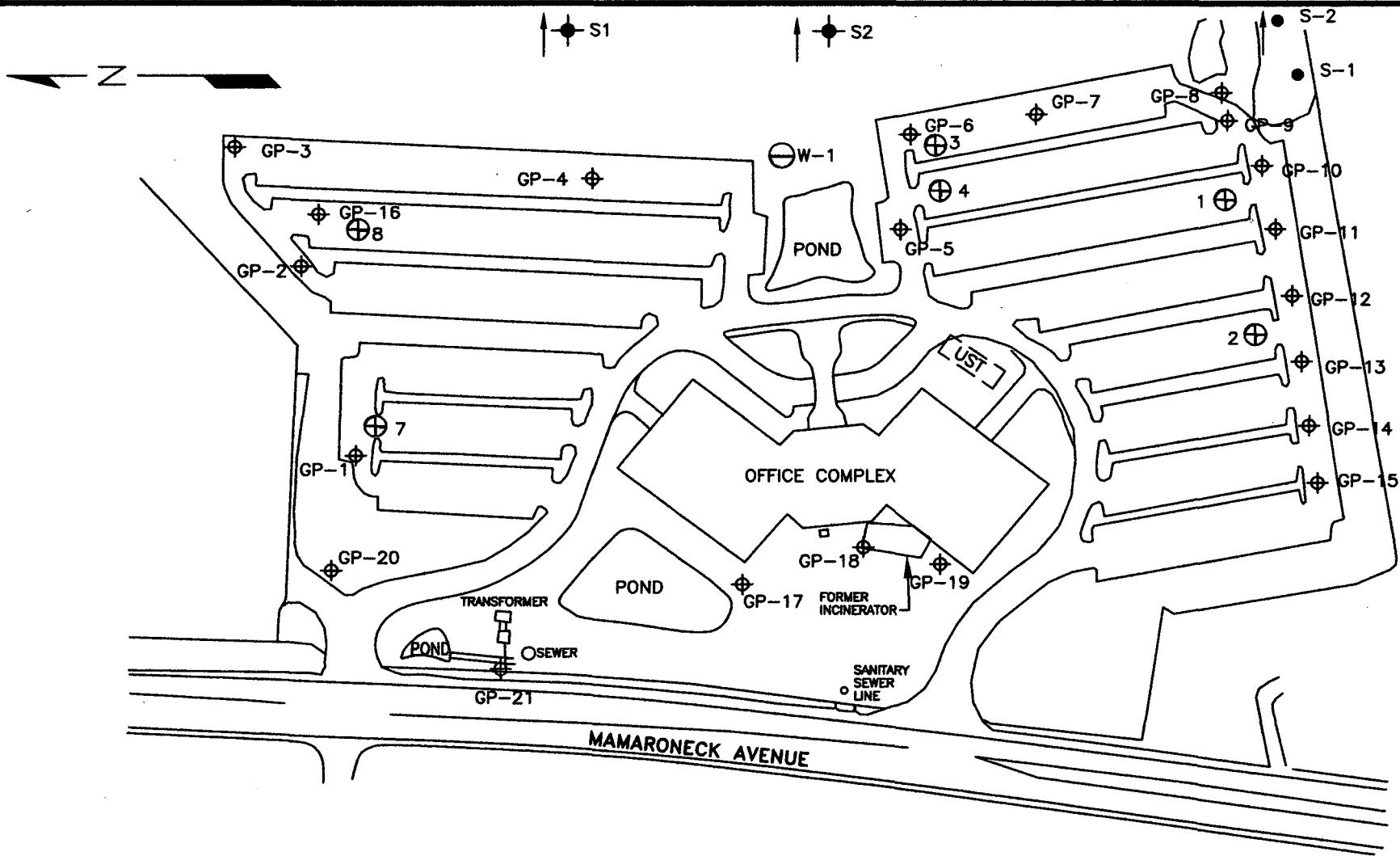
SITE LOCATION MAP

PREPARED FOR

500 MAMARONECK ASSOCIATES

ERM-Northeast

SCALE
NONE


DATE

DRAWN:

JOB NO.:

DRAWN:	JOB NO.:	FILE NAME:	DATE
E.M.F.	1454.001		6/18/98

1

- ◆ ERM BORING LOCATIONS - 1998
- ⊕ DAMES & MORE SAMPLING LOCATIONS - 1998
- U.S. HYDROGEOLOGIC, INC. SAMPLING LOCATIONS - 1989
- ⊖ GROUNDWATER SUPPLY WELL
- GZA SAMPLING LOCATIONS - 1986

TITLE	
SITE PLAN	
PREPARED FOR	
500 MAMARONECK AVENUE ASSOCIATES	
ERM-Northeast Environmental Resources Management	
SCALE NONE	FIGURE 2
DATE	
E.M.F.	JOB NO.: 14540001
FILE NAME: 14540001	6/18/98

TABLES

Table 1. Soil Sampling Results - 500 Mamaroneck Avenue, Harrison, New York - May, 1998

Boring	GP-1A	GP-1B	GP-2A	GP-3A	GP-4A	GP-5A	GP-5B	GP-6A	GP-7A	GP-8A	GP-8B	GP-8C	GP-9A	GP-9B	GP-10A	GP-10B
Depth (feet below land surface)	0 - 4	4 - 7.5	0.5 - 2.25	0 - 1.75	0 - 2.25	0 - 3.5	3.5 - 6.5	0 - 1	0.25 - 2.25	0 - 3	3 - 6	6 - 8	0 - 3	3 - 5.5	0 - 3	3 - 6
Date Sampled	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98
Parameter																
Toxicity Characteristic Standards (ug/l)																
RCRA Metals (ug/L)																
Arsenic	5,000	3.8	U	38	U	38	U								38	U
Barium	100,000	318		961	681				1760						1190	
Cadmium	1,000	2	U	2	U	2	U		2	U					2.5	B
Chromium	5,000	5	U	5	U	5	U		5	U					5	U
Lead	5,000	49.6	B	58	B	43	B		27.9	B					266	
Mercury	200	2	U	2	U	2	U		2	U					2	U
Selenium	1,000	39	U	39	U	39	U		39	U					56.1	B
Silver	5,000	2	U	2	U	2	U		2	U					2	U
PCBs (ug/Kg)																
Recommended Soil Cleanup Objective (ug/kg)																
Aradclor-1016	47	U		37	U	35	U		35	U					38	U
Aradclor-1221	96	U		74	U	71	U		71	U					76	U
Aradclor-1232	47	U		37	U	35	U		35	U					38	U
Aradclor-1242	47	U		37	U	35	U		35	U					38	U
Aradclor-1248	47	U		37	U	35	U		35	U					22	J
Aradclor-1254	47	U		37	U	35	U		35	U					32	J
Aradclor-1260	47	U		37	U	35	U		35	U					16	J
Total PCBs	1,000 (surface)														70	
Total PCBs	10,000 (subsurface)															
PAHs (ug/Kg)																
Acenaphthene	50,000***	140	U	110	U	420	U		110	U					450	U
Acenaphthylene	41,000	140	U	110	U	420	U		110	U					450	U
Anthracene	50,000***	140	U	110	U	420	U		45	J					450	U
Benzo(a)anthracene	224 or MDL	140	U	110	U	420	U		110	J					450	U
Benzo(b)fluoranthene	1,100	140	U	140	U	420	U		120						450	U
Benzo(k)fluoranthene	1,100	140	U	110	U	420	U		47	J					450	U
Benzo(g,h,i)perylene	50,000***	140	U	110	U	420	U		47	J					450	U
Benzo(a)pyrene	61 or MDL	140	U	61	J	420	U		88	J					450	U
Chrysene	400	140	U	150	U	420	U		120						450	U
Dibenz(a,h)anthracene	14 or MDL	140	U	110	U	420	U		110	U					450	U
Fluoranthene	50,000***	140	U	110	U	420	U		110	U					450	U
Fluorene	50,000***	140	U	110	U	420	U		110	U					450	U
Indeno(1,2,3-cd)pyrene	3,200	140	U	110	U	420	U		49	J					450	U
Naphthalene	13,000	140	U	110	U	420	U		110	U					450	U
Phenanthrene	50,000***	140	U	110	U	420	U		150						450	U
Pyrene	50,000***	140	U	180	U	420	U		180						450	U
2-Methylnaphthalene	36,400															
Immuno Assay (UG/Kg)																
PAHs	MDL 4 ug/Kg	16	142	408	287	142	32	28	407	106	85	41	113	24	23	79
PCBs	500 ug/Kg	ND	ND	5	J	1	J	ND	105	J	ND	1	ND	ND	ND	ND

Notes:

Toxicity Characteristic Standards - taken from 40 CFR 261.24 Table 1 Maximum Concentration of Contaminants for the Toxicity Characteristic, revised 31 August 1993

Recommended Soil Cleanup Objective - from NYSDEC TAGM 4046, Division of Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, revised 24 January 1994

***As per TAGM 4046 total semi-volatiles < 500,000 ug/kg; individual semi-volatiles < 50,000 ug/kg

U - Analyzed for, but not detected

J - Compound determined to be present at an estimated value less than the specified minimum detection limit but greater than zero

B- Analyte detected in blanks as well as sample

Table 1. Soil Sampling Results - 500 Mamaroneck Avenue, Harrison, New York - May, 1998

Boring	GP-11A	GP-11A	GP-11B	GP-11C	GP-12A	GP-12A	GP-12B	GP-12B	GP-12B	GP-12C	GP-12C	GP-13A	GP-13A	GP-13C	GP-14A	GP-15A	GP-16A				
Depth (feet below land surface)	0 - 3	0 - 3	3 - 6	6 - 10	0 - 3	0 - 3	3 - 6	3 - 6	3 - 6	6 - 7	6 - 7	0 - 3	0 - 3	6 - 7	0 - 3	0 - 2	0 - 3				
Date Sampled	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	12-May-98	26-May-98				
Parameter																					
Toxicity Characteristic Standards (ug/l)																					
RCRA Metals (ug/L)																					
Arsenic	5,000	38	U	1430																	
Barium	100,000	2570		1610		856		900								20					
Cadmium	1,000	18.5		8.6		4.6	B	4.2	B						5	U					
Chromium	5,000	5	U	5	U	5	U	5	U						541						
Lead	5,000	1220		704		178		224							2.2						
Mercury	200	2	U	2	U	2	U	2	U						39	U					
Selenium	1,000	39	U	58.5	B	39	U	39	U						2	U					
Silver	5,000	2	U	2	U	2	U	2	U												
PCBs (ug/Kg)																					
Recommended Soil Cleanup Objective (ug/kg)																					
Aroclor-1016	800	U	1	U	38	U	41	U	1	U	37	U	1	U	33	U	1	U			
Aroclor-1221	1600	U	2	U	78	U	84	U	2	U	74	U	2	U	67	U	2	U			
Aroclor-1232	800	U	1	U	38	U	41	U	1	U	37	U	1	U	33	U	1	U			
Aroclor-1242	800	U	1	U	38	U	41	U	1	U	37	U	1	U	33	U	1	U			
Aroclor-1248	800	U	1	U	57		19	J	1	U	48		1	U	48	1	U				
Aroclor-1254	800	U	1	U	38	U	26	J	1	U	69		1	U	69	1	U				
Aroclor-1260	800	U	1	U	260		11	J	1	U	34	J	1	U	34	J	1	U			
Total PCBs	1,000 (surface)	4200		317		56		151							151			150			
Total PCBs	10,000 (subsurface)																	7,800			
PAHs (ug/Kg)																					
Acenaphthene	50,000***	120	U	10	U	120	U	120	J	10	U	700	710	D	4	J	1300	2	J		
Acenaphthylene	41,000	120	U	10	U	120	U	110	J	10	U	790	740	D	10	U	440	J	10		
Anthracene	50,000***	120	U	10	U	120	U	600	0.2	J	2200	2300	D	0.7	J	1200	0.2	J			
Benz(a)anthracene	224 or MDL	54	J	10	U	46	J	920	10	U	4500	5000	D	10	U	1600	10	U			
Benz(b)fluoranthene	1,100	72	J	10	U	83	J	1100	10	U	3800	5000	D	10	U	2600	10	U			
Benz(k)fluoranthene	1,100	46	J	10	U	110	J	440	10	U	1800	1500	D	10	U	910	10	U			
Benz(g,h,l)perylene	50,000***	120	U	10	U	120	U	260	10	U	650	930	D	10	U	340	J	10			
Benz(a)pyrene	61 or MDL	60	J	10	U	43	J	830	10	U	2900	3800	D	10	U	1200	10	U			
Chrysene	400	160	U	10	U	82	J	1100	10	U	4500	6000	D	10	U	2300	10	U			
Dibenz(a,h)anthracene	14 or MDL	120	U	10	U	120	U	120	U	10	U	250	150	J	10	U	440	U	10		
Fluoranthene	50,000***	120	U	10	U	98	J	1800	10	U	6500	7800	D	0.8	J	440	U	0.6	J		
Fluorene	50,000***	120	U	10	U	120	U	210	10	U	1400	1500	D	2	J	730	0.7	J			
Indeno(1,2,3-cd)pyrene	3,200	120	U	10	U	120	U	290	10	U	860	1200	D	10	U	400	J	10			
Naphthalene	13,000	120	U	10	U	120	U	60	J	10	U	1000	1200	D	10	U	440	U	10		
Phenanthrene	50,000***	93	J	10	U	120	U	1300	0.9	J	4700	5500	D	4	J	2000	0.8	J			
Pyrene	50,000***	92	J	10	U	81	J	1500	10	U	6200	6700	D	0.7	J	440	U	0.4	J		
2-Methylnaphthalene																					
Immuno Assay (UG/Kg)																					
PAHs	MDL	55		122		132	J	370		332		170	332		156	57	89	140			
PCBs	4 ug/Kg	323	J	162	J	82	J	105	J	45	J	82	J	62	J	1	J	11	J	ND	ND

Notes:

Toxicity Characteristic Standards - taken from 40 CFR 261.24 Table 1 Maximum Concentration of Contaminants for the Toxicity Characteristic, revised 31 August 1993

Recommended Soil Cleanup Objective - from NYSDEC TAGM 4046, Division of Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, revised 24 January 1994

***As per TAGM 4046 total semi-volatiles < 500,000 ug/kg; individual semi-volatiles < 50,000 ug/kg

U - Analyzed for, but not detected

J - Compound determined to be present at an estimated value less than the specified minimum detection limit but greater than zero

B- Analyte detected in blanks as well as sample

U -

60
70 - 13K

Table 1. Soil Sampling Results - 500 Mamaroneck Avenue, Harrison, New York - May, 1998

Boring	GP-17A/B	GP-17B/C	GP-17D/E	GP-18A/B	GP-18C/D	GP-18D/E	GP-19A/B	GP-19B/C	GP-19D/E/F	GP-20A	GP-20B	GP-21A	GP-21B	GP-21C
Depth (feet below land surface)	0 - 3	3 - 6	6 - 10	0 - 3	3 - 6	6 - 10	0 - 3	3 - 6	6 - 12	0 - 3	3 - 6	0 - 3	3 - 6	6 - 10
Date Sampled	27-May-98	27-May-98	27-May-98	27-May-98	27-May-98	27-May-98	27-May-98	27-May-98	27-May-98	26-May-98	26-May-98	26-May-98	26-May-98	26-May-98
Parameter														
Toxicity Characteristic Standards (ug/l)														
RCRA Metals (ug/l)														
Arsenic	5,000									300	U	300	U	300
Barium	100,000									1050	U	1070	U	1820
Cadmium	1,000									5.8	U	6.1	U	55.6
Chromium	5,000									11	15.7	10	U	10
Lead	5,000									311	U	104	653	588
Mercury	200									2	U	2	U	2
Selenium	1,000									500	U	500	U	500
Silver	5,000									10	U	10	U	10
PCBs (ug/Kg)														
Recommended Soil Cleanup Objective (ug/kg)														
Aroclor-1016										33	U	33	U	33
Aroclor-1221										67	U	67	U	67
Aroclor-1232										33	U	33	U	33
Aroclor-1242										33	U	33	U	33
Aroclor-1248										22	J	24	J	21
Aroclor-1254										42	U	74	U	62
Aroclor-1260										20	J	50	11	36
Total PCBs	1,000 (surface)									84	U	148	11	119
Total PCBs	10,000 (subsurface)													
PAHs (ug/Kg)														
Acenaphthene	50,000***									100	J	5500	J	38
Acenaphthylene	41,000									81	J	330	U	330
Anthracene	50,000***									150	J	12000	220	89
Benz(a)anthracene	224 or MDL									560	U	13000	920	290
Benz(b)fluoranthene	1,100									840	U	5700	J	210
Benz(k)fluoranthene	1,100									600	U	5500	J	230
Benz(g,h,l)perylene	50,000***									280	J	7000	J	230
Benz(a)pyrene	61 or MDL									1000	U	9700	850	260
Chrysene	400									680	U	13000	1100	300
Dibenz(a,h)anthracene	14 or MDL									300	J	5400	J	260
Fluoranthene	50,000***									1000	U	22000	1500	450
Fluorene	50,000***									78	J	7000	J	37
Indeno(1,2,3-cd)pyrene	3,200									400	J	7400	J	310
Naphthalene	13,000									32	J	4400	J	330
Phenanthrene	50,000***									350	J	42000	860	320
Pyrene	50,000***									1300	U	30000	1300	370
2-Methylnaphthalene	36,400									330	U	3900	J	330
Immuno Assay (UG/Kg)														
PAHs	MDL									222	42	26	36	444
PCBs	4 ug/Kg	ND	3	J	12	J	ND	90	J	42	J	121	J	244
	500 ug/Kg									8	19	888	494	7
										121	J	ND	618	99
											247	J	63	42
												ND	J	90

Notes:

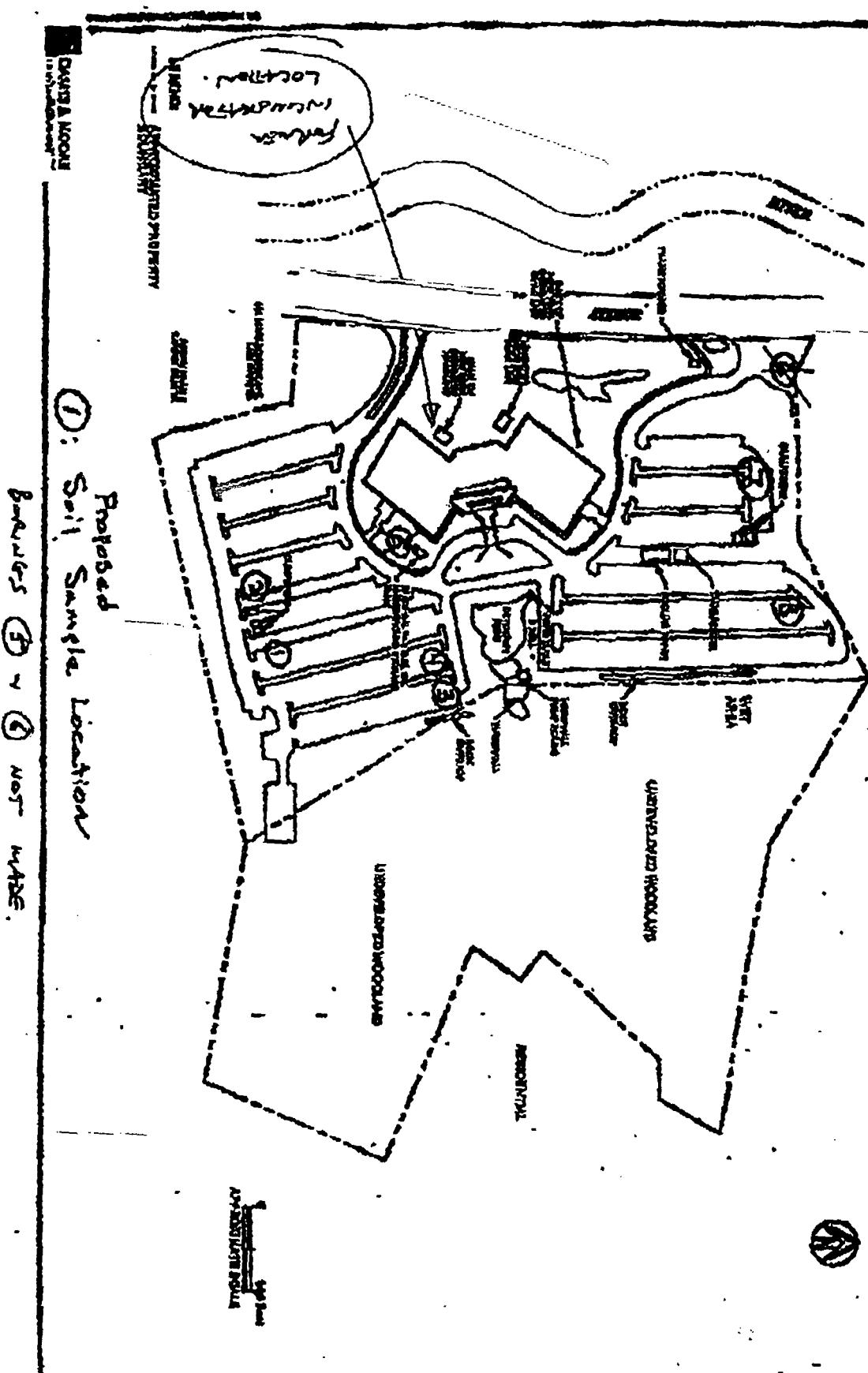
Toxicity Characteristic Standards - taken from 40 CFR 261.24 Table 1 Maximum Concentration of Contaminants for the Toxicity Characteristic, revised 31 August 1993

Recommended Soil Cleanup Objective - from NYSDEC TAGM 4046, Division of Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, revised 24

***As per TAGM 4046 total semi-volatiles < 500,000 ug/kg; individual semi-volatiles < 50,000 ug/kg

U - Analyzed for, but not detected

J - Compound determined to be present at an estimated value less than the specified minimum detection limit but greater than zero


B- Analyte detected in blanks as well as sample

Appendices

A

APPENDIX A

Previous Reports

DRAFT

Soil Sample ID Depth	SB-1A 6'-8'	SB-2 8'-10'	SB-3 10'-14'	SB-4 14'-17'	SB-7 17'-24'	SB-8 24'-36'	BS-1 1'	Regulatory Guidelines
PARAMETER DETECTED								
VOCs (ug/Kg)								
Acetone	190	NA	43	NA	NA	60	NA	220
2-Butanone	40	NA	19	NA	NA	18	NA	300
Ethylbenzene	6	NA	ND	NA	NA	ND	NA	1,500
Styrene	23	NA	ND	NA	NA	ND	NA	16,000,000
Naphthalene	283	NA	ND	NA	ND	160J	NA	13,000
2,6-di-tert-butylphenol	160	NA	ND	NA	ND	22J	NA	30,000
Acenaphthene	ND	NA	ND	NA	ND	48J	NA	41,000
Acenaphthylene	ND	NA	ND	NA	ND	68J	NA	50,000
Phenanthrene	443	NA	26J	NA	ND	ND	NA	50,000
Anthracene	ND	NA	6J	NA	ND	ND	NA	50,000
Di-2-butylphthalate	ND	NA	221B	NA	ND	ND	NA	NZ
Fluoranthene	493	NA	40J	NA	29J	650	NA	50,000
Pyrene	993	NA	37J	NA	25J	1,200	NA	50,000
Benz (a) anthracene	41J	NA	ND	NA	ND	600	NA	224
Chrysene	86J	NA	ND	NA	ND	670	NA	400
bi(2-Ethylhexyl) phthalate	1,500	NA	120J	NA	ND	15,000	NA	350*
Benz (b) fluoranthene	39J	NA	ND	NA	ND	300J	NA	300*
Benz (k) fluoranthene	34J	NA	ND	NA	ND	230J	NA	1,100
Benz (a) pyrene	ND	NA	ND	NA	ND	320J	NA	61
Indeno (1,2,3- <i>cd</i>) pyrene	ND	NA	ND	NA	ND	34J	NA	880*
Benz (e,h,i) pyrene	ND	NA	ND	NA	ND	55J	NA	50,000
PCBs (ug/Kg)								
Aroclor-1242	ND	NA	ND	ND	ND	13,000	NA	NZ
Aroclor-1260	4J	NA	4J	ND	ND	ND	NA	1,000*
Aroclor-1260	ND	NA	9J	ND	ND	ND	NA	NZ
Total PCBs	49J	NA	18J	ND	ND	13,000	NA	1,000/10,000**
8 RCRA Metals (ug/Kg)								
Antimony	23.1	4.3	14.1	5.6	7	8.4	8.3	7.5 or background
Boron	1000	349	312	410	243	198	133	300 or background
Cadmium	2.6	0.22U	0.24U	0.22U	0.23U	0.22U	0.37U	1.0 or background
Chromium	163	83.4	60.9	97.5	97.7	40.7	46.9	10 or background
Lead	1770	208	593	34	24.3	372	57.3	background
Mercury	1.17N	0.10UWN	0.12UWN	0.078UWN	0.092UWN	0.194N	0.337N	23*
Selenium	5.6	2	5.6	1.6	2.3	3.9	3.9	2.0 or background
Silver	62	0.22U	6.2	0.22U	0.23C	1.28	0.35U	390*

Notes:

Soil samples collected on March 5, 1998

ug/Kg: microgram per kilogram or part per billion.

mg/Kg: milligram per kilogram or parts per million.

B: Indicates compound was found in the associated blank.

J: Value is less than the laboratory reporting limit but greater than zero.

Regulatory Guidelines: "New York State Department of Environmental Conservation (NYSDEC) Hazardous Waste Remediation Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, HWR-92-4046", November 16, 1992.

* Federal Guidance - listed if more stringent than state guidance value or if no state guidance value published

Source: Smith, Roy L., Ph.D., Office of RCRA, Technical & Program Support Branch, US EPA Region III.

Risk-Based Concentration (RBC) Table, April 19, 1996. [Category: "soil ingestion-residential" (most stringent)]

** PCB Cleanup Guideline 1,000 ug/kg in surface soils, 10,000 ug/kg in subsurface soils

NA: Not Analyzed

ND: Not Detected above lab quantitation limits.

NE: None Exists

Exceeds Regulatory Guidance Limit

DRAFT

Groundwater Sample ID	PW-1	SB-3-GW	Regulatory Guideline
PARAMETER DETECTED			
VOCs (ug/L)	ND	ND	Varies
SVOCs (ug/L)			
Di-n-butylphthalate	ND	0.73	50
Di- α -butylphthalate	0.61B	ND	NE
bis(2-2'butylbenzyl) phthalate	0.81	ND	48*
8 RCRA Metals (ug/L)			
Arsenic	2.0U	2.0U	25
Boron	278	682	1,000
Cadmium	1.5B	1.5B	10
Chromium	1.6U	1.5B	50
Lead	1.1B	1.4B	25
Mercury	0.2U	0.3	2
.Selenium	2.0U	2.0U	10
Silver	1.0U	1.0U	50

Notes:

Groundwater samples collected on March 5, 1998

ug/L: microgram per liter or part per billion.

mg/L: milligram per liter or parts per million.

NA: Not Analyzed

ND: Not Detected above laboratory quantitation limits.

NE: None Found

I: Value is less than the laboratory reporting limit but greater than zero.

B: Indicates compound was found in the associated blank.

Samples collected from PW-1 collected in pre-preserved containers for total 8 RCRA Metals Analysis

Samples collected from SB-3-GW filtered prior to preservation for dissolved metals analysis

Regulatory Guideline: "Water Quality Regulations, Surface Water and Groundwater Classifications and Standards GNYCRR, Title 6, Chapter X, Parts 700-705", September 1991, amended October 7, 1993.

* Federal Guidance - listed if more stringent than state guidance value or if no state guidance value published

Source: Smith, Roy L., Ph.D., Office of RCRA, Technical & Program Support Branch, US EPA Region II, Risk-Based Concentration (RBC) Table, April 19, 1996. [Category: "tap water" (most stringent)]

AKRF, Inc.

ENVIRONMENTAL CONSULTANTS
149 Water Street • Norwalk, CT 06854

203/852-9322
FAX 203/858-9357

PHASE I ENVIRONMENTAL SITE ASSESSMENT
500 MAMARONECK AVENUE
HARRISON, NEW YORK
PROJECT NUMBER: 5235

Prepared for:
500 Mamaroneck Avenue Associates
500 Mamaroneck Avenue
Harrison, New York
10528-1600

Prepared by:
AKRF, Inc.
149 Water Street
Norwalk, Connecticut 06854

April 1997

Christopher J. Kopley
Vice President

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
1.0 INTRODUCTION	Page 1
2.0 PHYSICAL SITE DESCRIPTION	Page 2
2.1 General Site Conditions	Page 2
2.2 Topography and Hydrogeology	Page 3
2.3 Storage Tanks (USTs and ASTs)	Page 3
2.3.1 Underground Storage Tanks (USTs)	Page 3
2.3.2 Aboveground Storage Tanks (ASTs)	Page 4
2.4 Polychlorinated Biphenyls (PCBs)	Page 4
2.5 Utilities	Page 4
2.6 Waste Management and Chemical Handling	Page 4
3.0 ADJACENT LAND USE	Page 4
4.0 SITE HISTORY AND RECORDS REVIEW	Page 5
4.1 Prior Ownership and Usage	Page 5
4.1.1 Sanborn Mapping	Page 5
4.2 Regulatory Review	Page 5
4.2.1 Federal	Page 6
4.2.2 State	Page 7
4.2.3 Local	Page 9
5.0 CONCLUSIONS	Page 10
6.0 QUALIFICATIONS	Page 11
7.0 REFERENCES	Page 11

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site Plan

APPENDICES

Appendix A - Photographic Documentation

EXECUTIVE SUMMARY

AKRF, Inc. (AKRF) was retained by 500 Mamaroneck Avenue Associates to perform a Phase I Environmental Site Assessment of the property located at 500 Mamaroneck Avenue in Harrison, New York. The approximately 34.5 acre site consisted of a five-story office building with an approximately 52,000 square foot footprint. The remaining portions of the study site included bituminous paved tenant parking areas and landscaped shrubbery, lawns, and two ponds. The eastern portion of the study site contained undeveloped wooded land. Construction of the structure began in 1984, and tenants began occupancy around 1987. Prior to its current usage, the northern portion of the study site was used as a domestic refuse transfer station (from 1970 to the early 1980's) and a domestic refuse incinerator (from 1954 to 1969).

No on-site leaks, discharges, or evidence of spillage of hazardous materials were observed at the study site. No current uses indicated potential environmental concerns. No off-site sources of contamination were identified. The following conditions were noted:

- Historical research indicates that prior study site uses include a solid waste transfer station, and a domestic refuse incinerator.
- One water supply well was identified on-site. The well was reported to be used to fill the eastern pond twice a year subsequent to draining and cleaning the pond, and is not used as a potable water source. Water pumped out of the pond is discharged to the Westchester County storm sewers.
- The study site utilizes a 20,000-gallon fuel oil underground storage tank. The fiberglass reinforced tank, installed in 1982, is permitted until January 18, 1999, and appears to meet current New York State Department of Environmental Conservation (NYSDEC) and Environmental Protection Agency (EPA) tank regulations.

Past usage of the study site as a transfer station and incinerator may have affected soil and groundwater beneath the study site.

1.0 INTRODUCTION

AKRF, Inc. (AKRF) was retained by 500 Mamaroneck Avenue Associates to perform a Phase I Environmental Site Assessment of the property located at 500 Mamaroneck Avenue in Harrison, New York, as shown on Figure 1 - Site Location Map. The study site is defined by the Town of Harrison as Block 482, Lot 8 and is shown on Figure 2 - Site Plan. The approximately 34.5 acre study site is currently occupied by one five-story commercial office building with a sub-basement. The building was originally constructed in 1983, with tenant occupancy beginning around 1986. The remaining portions of the study site include bituminous paved parking areas and landscaped shrubbery and lawns. Properties abutting the site include: 550 Mamaroneck Avenue, an office building, to the north; residential buildings to the east; 450 Mamaroneck Avenue, an office building, to the south; law offices and the Acorn Farm & Garden Center to the east along the southern parking area; and the Mamaroneck River to the east across Mamaroneck Avenue.

The scope of services for this assessment included the following:

- A review of published geological and groundwater information to determine the possibility of contamination from off-site sources.
- A review of historical Sanborn Fire Insurance Maps for the study site and adjacent properties.
- The following federal regulatory databases were reviewed to determine the regulatory status of the site, adjacent properties, and properties within a predetermined study area: National Priority List (NPL); Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS); Emergency Response Notification System (ERNS); Toxic Chemical Release Inventory System (TRIS); and the US EPA Civil Enforcement Docket.
- The following state regulatory databases were reviewed to determine the regulatory status of the site, adjacent properties, and properties within a predetermined study area: hazardous material spills (SPILLS); Resource Conservation and Recovery Act Notifiers (RCRA); Chemical Bulk Storage (CBS); Solid Waste Facilities (SWF); Petroleum Bulk Storage (PBS); and Major Oil Storage Facilities (MOSF).
- A review of available local Building Department, Engineering Department, Health Department, Fire Department, and Tax Assessor's records was conducted to obtain any information pertinent to the assessment of the environmental condition of the study site. Specifically, records regarding past and present on-site fuel oil tanks and historical uses were requested and reviewed.

2.0 PHYSICAL SITE DESCRIPTION

Visual inspection of the site and adjacent areas was performed on February 12, 1997 by Mr. Timothy J. Groninger of AKRF, accompanied by Mr. John Stilgebauer, building superintendent. The inspection was conducted at 8:00 a.m. At the time of the inspection, the weather was fair (55° F) and overcast. Photographs documenting the site inspection are included in Appendix A.

2.1 General Site Conditions

The study site contained of a four-story office building and associated parking. The site consisted of approximately 34.5 acres, including approximately 17 acres of undeveloped woodland located along the eastern side parcel. The building was originally constructed in 1983, with tenant occupancy beginning in 1986. Bituminous paved parking areas were located north, east, and south of the building. One artificial pond with an artificial waterfall was located east of the building, and one smaller pond was located west of the building. The waterfall was supplied water via an on-site well located along the northern edge of the pond. The pump for the waterfall was located within a pump house. A 5-gallon bucket of antifreeze was observed in the pump house, which Mr. Stilgebauer used as coolant for the pump. According to Mr. Stilgebauer, water in the pond is replaced twice a year when the pond is cleaned. Study site stormwater, including storm drains located throughout the parking lot, and the outflow from the pond, discharge to county storm sewers located along Mamaroneck Avenue. A fill cap and access vault cover for an underground fuel oil storage tank were noted between the southeastern wall and the sidewalk. Mr. Stilgebauer stated that the tank had a 20,000 gallon capacity.

The western side of the study site was landscaped with lawn areas and a small pond surrounded by taller grasses and other vegetation. Several air conditioning units were noted along the western edge of the building. No unusual staining, odors, or storage of hazardous materials were observed over the study site exterior.

The building consisted of five stories and a sub-basement. The building was constructed of a lift-slab on steel frame with a glass facade and contained offices for the following tenants: Advantis, American Express Financial Services, Bank of New York, Canada Life Insurance Company of New York, Castle Oil Corporation, Food City Markets, Frenchrail, Tom Julius, Metric Tours, Rail Europe Group, Rich Worldwide, and Schulman Realty. Tenants occupied each floor, and maintenance/facilities and a cafeteria occupied the second floor.

The sub-basement utilities included: five fuel oil boilers, two 300-ton Trane air conditioning units, four Graham blower control units, four 40-hp air supply fans, four 20-hp air return fans, and the pneumatic control system compressor. The compressor blow-out piping was connected to a floor drain. According to Mr. Stilgebauer, the floor drain was connected to the County sanitary sewer. Sub-basement chemical storage included six 55-gallon drums labeled "EGI Coolant," used as

antifreeze for the boiler cooling water, and several bags of asphalt mix. The drums were empty, and Mr. Stilgebauer informed AKRF that he was in the process of switching coolant brands.

The fire control system for the building was located in the central portion of the basement, which was referred to as the first floor by the building owners. The fire control system consisted of ceiling-mounted water sprinkler units. Chemical storage in the fire control room included paints, thinners, and motor oil, which were observed to be neatly stored in a combustion cabinet.

The elevator room, located east of the elevator shaft on the basement ("first") floor included five hydraulic units that appeared to be in good condition. No staining or other evidence of leakage was noted. Mr. Stilgebauer informed AKRF that maintenance for these components was contracted off-site; no on-site oil storage was necessary. One partially empty five-gallon pail of #27 hydraulic oil was observed in the elevator room. The electric and telephone rooms, located on the basement ("first") floor, were observed to be clean and free of debris. The cafeteria, located in the northern portion of the basement ("first") floor, included a full kitchen, several refrigeration units, stoves, and a dishwashing machine. Dishwashing wastewater was discharged to a floor drain, which was reported to be connected to County sanitary sewer.

2.2 Topography and Hydrogeology

The site elevation ranges from approximately 130 feet at the eastern property line to 60 feet along the western side of the study site, based on the National Geodetic Vertical Datum (NGVD) of 1929, according to the U.S.G.S. 1967 (photoinspected 1975) Topographic Map of the Mamaroneck, New York Quadrangle. Based on topographic mapping and features, groundwater beneath the study site is expected to flow west towards the Mamaroneck River, located approximately 200 feet west of the study site.

According to the September 1994 General Geology Map of Putnam and Westchester Counties, New York, the bedrock beneath the study site consists of Harrison Gneiss. Bedrock outcrops were observed along the eastern side of the property, as shown on Figure 2.

2.3 Storage Tanks (USTs and ASTs)

2.3.1 Underground Storage Tanks (USTs)

One registered underground storage tank was located on-site, approximately 50 feet southeast of the southeastern corner of the building. The 20,000 gallon tank, containing No. 2 fuel oil, is used to heat the building.

Off-site USTs are discussed in Section 4.2.2.

2.3.2 Aboveground Storage Tanks (ASTs)

No aboveground storage tanks were noted during the site inspection.

2.4 Polychlorinated Biphenyls (PCBs)

Two concrete pad-mounted electric transformers were identified on-site. One of the transformers, located on the northwestern corner of the study site, was owned by Consolidated Edison. The second transformer, located north of the building between rows of parking, was owned by 500 Mamaroneck Avenue Associates. Both transformers were observed to be in good condition with no visible signs of staining.

2.5 Utilities

Consolidated Edison (ConEd) supplies electricity and Westchester County provides potable water and sanitary sewer service to the study site. According to representatives from the Harrison Building Department, water and sewer service were connected at the time of the building's construction.

2.6 Waste Management and Chemical Handling

Five dumpsters were located on the study site; three were located in the southern parking area and two were located in the northern parking area. No hazardous materials or staining were noted around the dumpsters. The dumpsters were reported to be emptied daily by A-1 Compaction. Waste paper for recycling was observed in a room on the eastern side of the second floor. Floor drains were connected to the sanitary sewer system, and site drainage discharged to Westchester County storm sewers, located along Mamaroneck Avenue.

Maintenance-related chemicals, such as cleaning agents, paints, oils, antifreeze, and deicing agents were stored in sufficient quantity for short term use. Observed chemicals were neatly stored in clearly marked containers. No long term storage of these chemicals was observed.

3.0 ADJACENT LAND USE

According to the Town of Harrison Building Department, the subject property is located in an area zoned SB-1, Special Business, which allows for commercial office space. The study site is abutted by: 550 Mamaroneck Avenue to the north (multi-story commercial office building); residential areas to the east; 450 Mamaroneck Avenue (multi-story commercial office building housing Citicorp North America), the Law Offices of Clune, Hayes, Frey, Bentzen, & Cline, P.C. (single-story converted office space) and Acorn Farm & Garden Center (retail) to the west; and the Mamaroneck River to the west across Mamaroneck Avenue.

36

$$\begin{array}{r} 10 \\ 7 \\ \hline 31 \end{array}$$

$$\begin{array}{r} 8 \\ 215 \\ 215 \\ \hline 12 \end{array}$$

4.0 SITE HISTORY AND RECORDS REVIEW

4.1 Prior Ownership and Usage

4.1.1 Sanborn Mapping

Maps of the study site and vicinity were requested from the Sanborn Mapping and Geographical Information Service. Sanborn maps dated 1996, 1995, 1994, 1993, 1992, 1990, 1950, and 1934 were available and were reviewed. Details from the maps are as follows:

- 1996 The subject property and surrounding areas appeared similar to present conditions. The study site was identified on the map as a glass office building constructed in 1987. Two office buildings were mapped north of the study site, beyond which was the Kentucky Riding Stables. Harrison High School and a utility substation were located northeast of the study site, beyond a row of houses on Union Avenue. Additional residential areas were identified to the east and southeast. No coverage was available to the south and west.
- 1995 - 1990 The study site and surrounding areas appeared similar to the 1996 map.
- 1950 The study site was undeveloped. Property boundaries in this vicinity appeared different to the property lines noted in later maps. North-adjacent office buildings shown in later maps were not present. The Kentucky Riding Stables was labeled the Kentucky Riding Academy. The utility substation and Harrison High School were not present. None of the residences shown in later maps along Union Avenue were present. Residential areas located to the east and southeast of the study site were noted to be less densely developed.
- 1934 The study site and surrounding areas appeared similar to the 1950 map. Residential areas located southeast of the study site were noted to be less densely developed than in the 1950 map.

4.2 Regulatory Review

AKRF reviewed federal, state, and local records to identify the use, generation, storage, treatment, and/or disposal of hazardous materials and chemicals, or releases of such materials which may impact the subject site. AKRF personnel reviewed databases maintained by the US EPA and New York State Department of Environmental Conservation (NYS DEC) for the study site and adjacent areas.

4.2.1 Federal

The federal records reviewed included the National Priority List (NPL) Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS); Emergency Response Notification System (ERNS); Toxic Chemical Release Inventory System (TRIS); and the Civil Enforcement Docker.

National Priority List (NPL)

The NPL is the US EPA's database of hazardous waste sites identified for probable remedial action under the Superfund Program.

No NPL sites were identified within a one-mile radius of the study site.

Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS)

CERCLIS is a compilation of known or suspected, uncontrolled or abandoned hazardous waste sites which the EPA has investigated, or plans to investigate, for a release or threatened release of hazardous substances pursuant to the Superfund Act of 1980 (CERCLA).

No CERCLIS sites were identified within a one-half mile radius of the site

Emergency Response Notification System (ERNS)

This federal database is compiled from the Emergency Response Notification System records and stores information on reported releases of petroleum and other potentially hazardous substances.

The subject property is not currently listed as an ERNS site.

Toxic Chemical Release Inventory System (TRIS)

The TRIS contains information reported to the US EPA and/or NYS DEC by a variety of industries on their annual estimated releases of certain chemicals to the environment. Data includes the maximum amount stored on-site; the estimated quantity emitted into the air, discharged into bodies of water, injected underground, or released to land; methods used in waste treatment and their efficiency; and data on transfer of chemicals off-site.

No TRIS sites were identified within a one-quarter mile radius of the project site.

United States Environmental Protection Agency Civil Enforcement Docket

This database is the US EPA's system for tracking civil judiciary cases filed on behalf of the agency by the Department of Justice.

The subject property is not currently included on the US EPA's Civil Enforcement Docket.

4.2.2 State

The state regulatory databases reviewed included the listings of hazardous material spills (SPILLS), Leaking Storage Tanks (LRST), Resource Conservation and Recovery Act Notifiers (RCRA), Chemical Bulk Storage (CBS), Solid-Waste Facilities (SWF), Petroleum Bulk Storage (PBS), and Major Oil Storage Facilities (MOSF).

New York SPILLS Database

The New York SPILLS database includes a list of toxic spills, which are divided into six groups: Active Status - Tank Failures, Active Status - Tank Test Failures, Active Status - Other Spills, Closed Status - Tank Failures, Closed Status - Tank Test Failures, and Closed Status - Other Spills.

New York Leaking Storage Tanks

The New York Leaking Storage Tanks (LRST) database includes a list of tank test failures and a list of tank failures that have not yet been resolved.

No leaking storage tanks were recorded within a one-half mile radius of the site.

Resource Conservation and Recovery Act (RCRA) Notifiers Listings

The NYS DEC's Bureau of Hazardous Waste Facility Compliance regulates hazardous waste from the point of generation to the point of disposal. The identified sites tracked on this list are those which have filed notification forms in accordance with the Resource Conservation and Recovery Act requirements regarding their hazardous waste activity. These sites include treatment, storage and disposal facilities (TSDs); small-quantity and large-quantity generators; and transporters of hazardous waste regulated under RCRA.

No RCRA Treatment, Storage, and Disposal facilities were identified within a one-mile radius of the study site. No RCRA generator/transporter sites were reported within a one-quarter mile of the property.

Chemical Bulk Storage (CBS) Database

The New York CBS is a list of facilities that store regulated non-petroleum substances in aboveground tanks with capacities greater than 185 gallons and/or in underground tanks of any size.

No chemical bulk storage facilities are listed within a one-quarter mile radius of the site.

Solid Waste Facilities (SWF)

This database includes a listing of landfills, incinerators, transfer stations, recycling centers and other sites that manage solid waste.

No solid waste facilities are listed within a one-mile radius of the subject property.

Petroleum Bulk Storage (PBS) Database

The New York State PBS lists commercial facilities with registered petroleum tanks located either above or below ground and less than 400,000 gallons.

The study site and three other petroleum bulk storage sites are listed as containing storage tanks. Details of these facilities are as follows:

Facility/Address	Capacity (gallons)	Contents	Date Installed	Status	Approximate Distance/ Hydrogeologic Direction
500 Mamaroneck Avenue	20,000	fuel oil	12/82	in use	study site
Mendik Realty Company, Inc./ 550-600 Mamaroneck Avenue	15,000	fuel oil	1/69	in use	570 feet south/ lateral gradient
Citicorp North America Inc./ 450 Mamaroneck Ave.	5,000	fuel oil	10/80	in use	580 feet north/ lateral gradient
The Bank of New York/ 440 Mamaroneck Avenue	6,000	gasoline	3/80	in use	
	6,000	gasoline	3/80	in use	
	7,500	fuel oil	12/79	in use	718 feet north/ lateral gradient
	7,500	fuel oil	12/79	in use	
	275	fuel oil	12/79	in use	

Major Oil Storage Facilities (MOSF) Database

These facilities may be on-shore facilities or vessels with petroleum storage capacities of 400,000 gallons or more.

No Major Oil Storage Facilities were recorded within a one-quarter mile radius of the study site.

4.2.3 Local

Records maintained by the Tax Assessor, Fire Marshal, Health, Building and Engineering Departments were investigated to determine the potential presence of hazardous materials. These records typically include fuel oil, gasoline and used oil tank installation applications and permits and records of prior uses. Available files pertaining to this property were obtained and reviewed.

Tax Assessor

According to the Village-Town of Harrison Tax Assessor's property card, the property, referred to as Block 482, Lot 8, is listed as a developed lot owned by 500 Mamaroneck Avenue Associates. This property was combined from Lots 26, 26.1, and 8 in two transactions in 1983. The current study site parcel comprises 34.54 acres. Previous site owners, as documented in the Tax Assessor's office, are as follows:

<u>Owner of Record</u>	<u>Date Purchased</u>
500 Mamaroneck Avenue	May 16, 1985***
Lowell M. Schulman	July 6*, July 28, 1983**
Arthur Martos	January 14, 1953**
Peter Panousis	prior to 1940**
Town of Harrison	prior to 1940*

Notes: *Lots 26 and 26.1

**original Lot 8

***new Lot 8, incorporating the original Lot 8, and Lots 26 and 26.1

Building Department

According to records maintained by the Building Department, no complaints or violations were on file for the study site or surrounding areas. According to a zoning map viewed by AKRF personnel in the Building Department, the site is located in an SB-1 Zone, Special Business. The areas north and south of the study site are also zoned SB-1. The area east of the study site is zoned for residential use.

According to Building Department records, the study site was used as a municipal refuse

incinerator from 1954 to 1970 and a municipal refuse transfer station from 1970 to 1983. Construction for the foundation of the present structure began in October 1984, and construction of the main four-story office building began in April 1985.

Engineering Department

According to Ms. Carol McGowan of the Village-Town of Harrison Engineering Department, 500 Mamaroneck Avenue is connected to municipal sanitary sewer and potable water services. The study site is within the Mamaroneck Valley Water District of the Westchester Joint Water Works.

Health Department

A Freedom of Information Letter was sent to the Westchester County Department of Health. At the time of release of this report, no information had been provided by this agency.

Fire Marshal

According to an employee of the Village-Town of Harrison Fire Department, the Fire Marshal of the Village-Town of Harrison transferred all records to the Village-Town of Harrison Building Department. No information regarding underground storage tanks, oil and/or chemical spills, storage of hazardous materials or fires was on file for the study site property.

5.0 CONCLUSIONS

AKRF, Inc. (AKRF) was retained by 500 Mamaroneck Avenue Associates to perform a Phase I Environmental Site Assessment of the property located at 500 Mamaroneck Avenue in Harrison, New York. The approximately 34.5 acre site consisted of a five-story office building with an approximately 52,000 square foot footprint. The remaining portions of the study site included bituminous paved tenant parking areas and landscaped shrubbery, lawns, and two ponds. The eastern portion of the study site contained undeveloped wooded land. Construction of the structure began in 1984, and tenants began occupancy around 1987. Prior to its current usage, the northern portion of the study site was used as a domestic refuse transfer station (from 1970 to the early 1980's) and a domestic refuse incinerator (from 1954 to 1969).

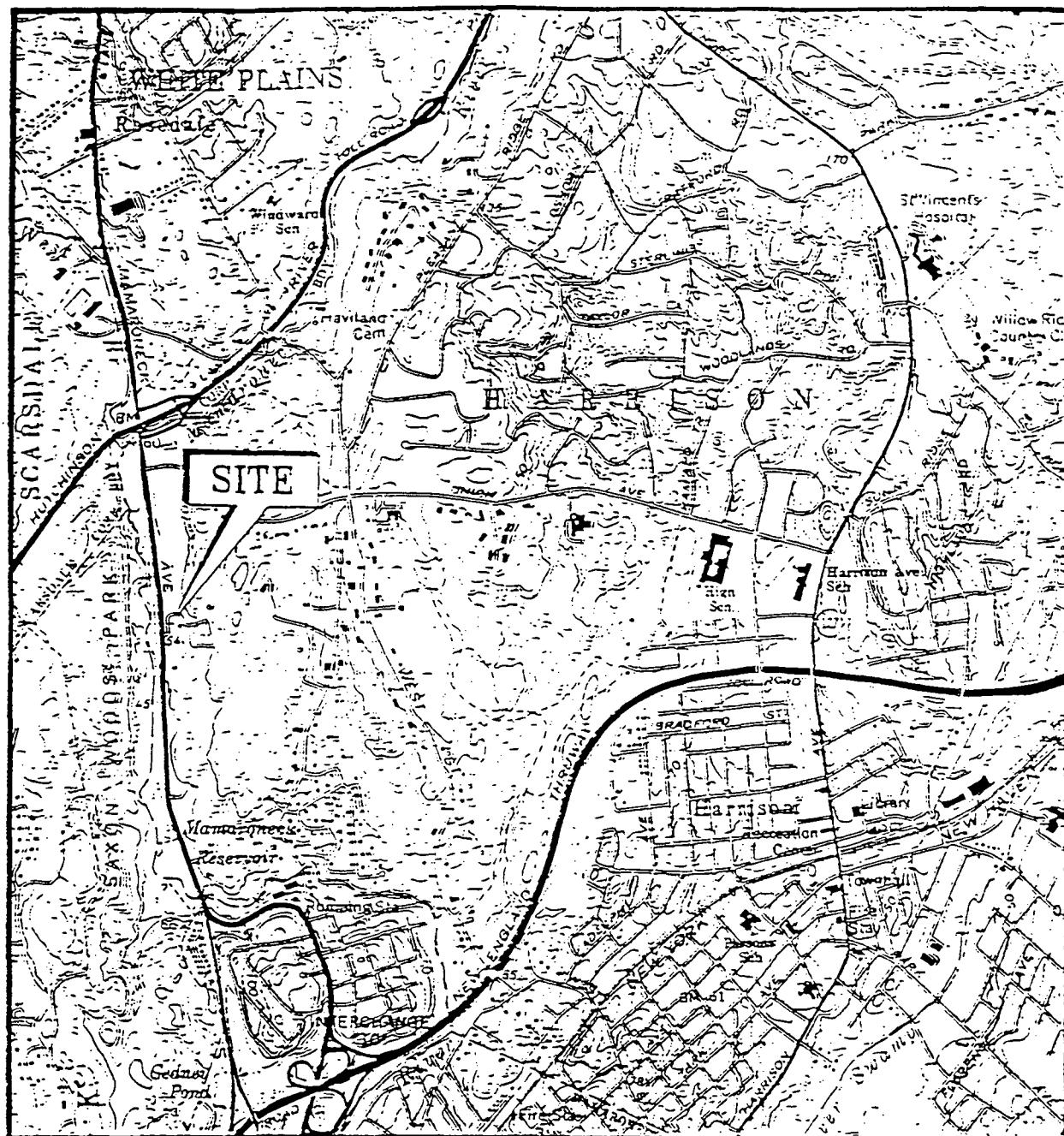
No on-site leaks, discharges, or evidence of spillage of hazardous materials were observed at the study site. No current uses indicated potential environmental concerns. No off-site sources of contamination were identified. The following conditions were noted:

- Historical research indicates that prior study site uses include a solid waste transfer station,

and a domestic refuse incinerator.

- One water supply well was identified on-site. The well was reported to be used to fill the eastern pond twice a year subsequent to draining and cleaning the pond, and is not used as a potable water source. Water pumped out of the pond is discharged to the Westchester County storm sewers.
- The study site utilizes a 20,000-gallon fuel oil underground storage tank. The fiberglass reinforced tank, installed in 1982, is permitted until January 18, 1999, and appears to meet current New York State Department of Environmental Conservation (NYSDEC) and Environmental Protection Agency (EPA) tank regulations.

Past usage of the study site as a transfer station and incinerator may have affected soil and groundwater beneath the study site.

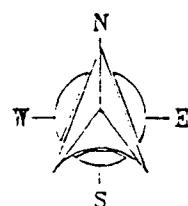

6.0 QUALIFICATIONS

The purpose of this assessment was to convey a professional opinion about the potential presence or absence of contamination, or possible sources of contamination on the property, and to identify existing and/or potential environmental problems associated with the property. The work was performed by AKRF personnel in accordance with our February 5, 1997 proposal and is subject to AKRF's General Terms and Conditions. The assessment was performed in accordance with customary principles and practices in the environmental consulting industry, and in accordance with ASTM Standard E 1527-94, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Practice. It is intended for use as a guide in determining the presence or absence of hazardous materials on the subject property at the time of the inspection. Environmental characteristics at this site and surrounding sites will change.

This Phase I Assessment is not, and should not be construed as, a guarantee, warranty, or certification of the presence or absence of hazardous substances.

7.0 REFERENCES

1. U.S. Geological Survey; Mamaroneck Quadrangle - N.Y. - Conn.; 7.5 Minute Series (Topographic); Scale 1:24,000.
2. Environmental Risk Information & Imaging Services; 500 Mamaroneck Avenue, Harrison, New York: ERIIS Custom Detail Radius Report; February 12, 1997.
3. United States Department of Agriculture, Soil Conservation Service; Soil Survey of Putnam and Westchester Counties, New York; September 1994.


© 1997 AKRF, Inc. Environmental Consultants C:\5235\F1

QUADRANGLE LOCATION

SCALE IN FEET
0' 500' 1000' 1500' 2000' 3000' 4000'

SOURCE:
USGS TOPOGRAPHIC MAP - MAMARONECK, N.Y.-CONN.
QUADRANGLE - DATED 1967 PHOTOREVISED 1975.

500 MAMARONECK AVENUE
MAMARONECK, NEW YORK

SITE LOCATION MAP

AKRF, Inc.

Environmental Consultants
149 Water Street Norwalk, Connecticut 06854

DATE
2/12/97

PROJECT No.
5235

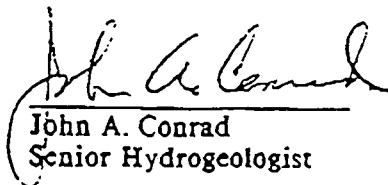
FIGURE No.

1

ENVIRONMENTAL

AUDIT

October 26, 1989


Prepared By:

U.S. Hydrogeologic, Inc.
328 Main Mall
Poughkeepsie, NY 12601

Prepared For:

Henry M. Celestino
Schulman Management
925 Westchester Ave.
White Plains, NY 10604

Project Manager:

John A. Conrad
Senior Hydrogeologist

This preliminary investigation assesses the likelihood that contamination from hazardous or regulated materials stored, used or disposed of is present on the property described herein. This report has been prepared in conformance with reasonable investigation practices, including the review of public records, inspection of site vegetative and topographic features and such other analytic procedures as we considered necessary in the circumstance.

October 26, 1989

Job Number: SH90200

Site Identification: **Town of Harrison, Westchester County**
Tax Block 428, Lot 8, (formerly Lots 8, 26, and 26.1)

Property Size: **34.65 acres**

Environmental Audit
SH90200
October 26, 1989
Page 2

1.0 Introduction

This Environmental Audit is intended to identify potential environmental risks associated with the storage, use, transport, or disposal of hazardous or regulated materials on a 34.65 acre parcel in the Town of Harrison, Westchester County, New York, Tax Block 428 Lot 8, (formerly lots 8, 26, and 26.1).

The specific components of this investigation are as follows:

1. Investigation of the site's history, including a review from readily available sources that document changes or activities of concern on the subject property and adjacent properties. For this analysis, aerial photographs taken during the years 1947 - 1986 were reviewed in addition to road maps, USGS topographic maps, Town of Harrison tax maps, assessment records, and interviews with current facility owner/operators. A complete list of sources and personal communications are provided in Section 5.0 of this report.
2. Review of records maintained by state and local environmental agencies, including NYSDEC petroleum and chemical bulk storage records, the USEPA National Priority List and the NYSDEC list of inactive hazardous waste sites, Westchester County Health Department records.
3. Site inspection of the property, with particular concern for topographic or vegetative indications of surface or subsurface contamination.
4. Laboratory analysis of soil and groundwater samples.

This written analysis is an assessment of the 34.65 acre site in the Town of Harrison, New York, and is not valid for any other property or location. It is a representation of the property analyzed as of the dates of record reviews and the site inspection. This report cannot be held accountable for activities or events resulting in contamination after the date of site inspection or historic research.

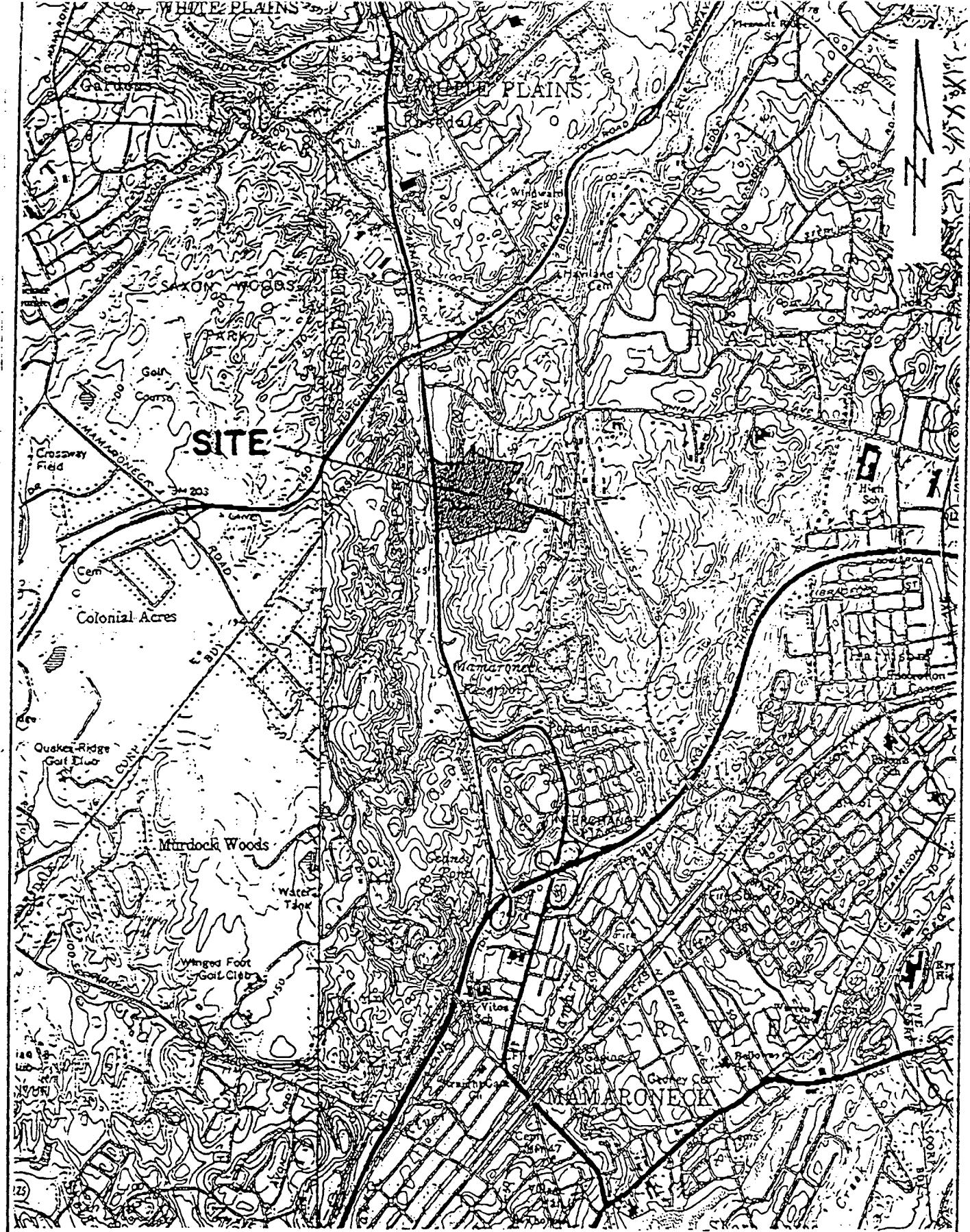
This Audit was performed in accordance with generally accepted practices. The findings and conclusions contained herein must be considered not as scientific certainties, but as probabilities based on our professional judgement concerning the significance of the limited data gathered during the course of this study. Specifically, this assessment does not and cannot represent that the site contains no contamination from hazardous materials.

This Audit is based in part on certain information provided by state and local officials and other parties referenced herein, and on information contained in the files of state and/or local agencies available at the time of this Audit. No attempt was made to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.

It is intended for the sole use of Schulman Management and must be used in its entirety.

Environmental Audit
SH90200
October 26, 1989
Page 3

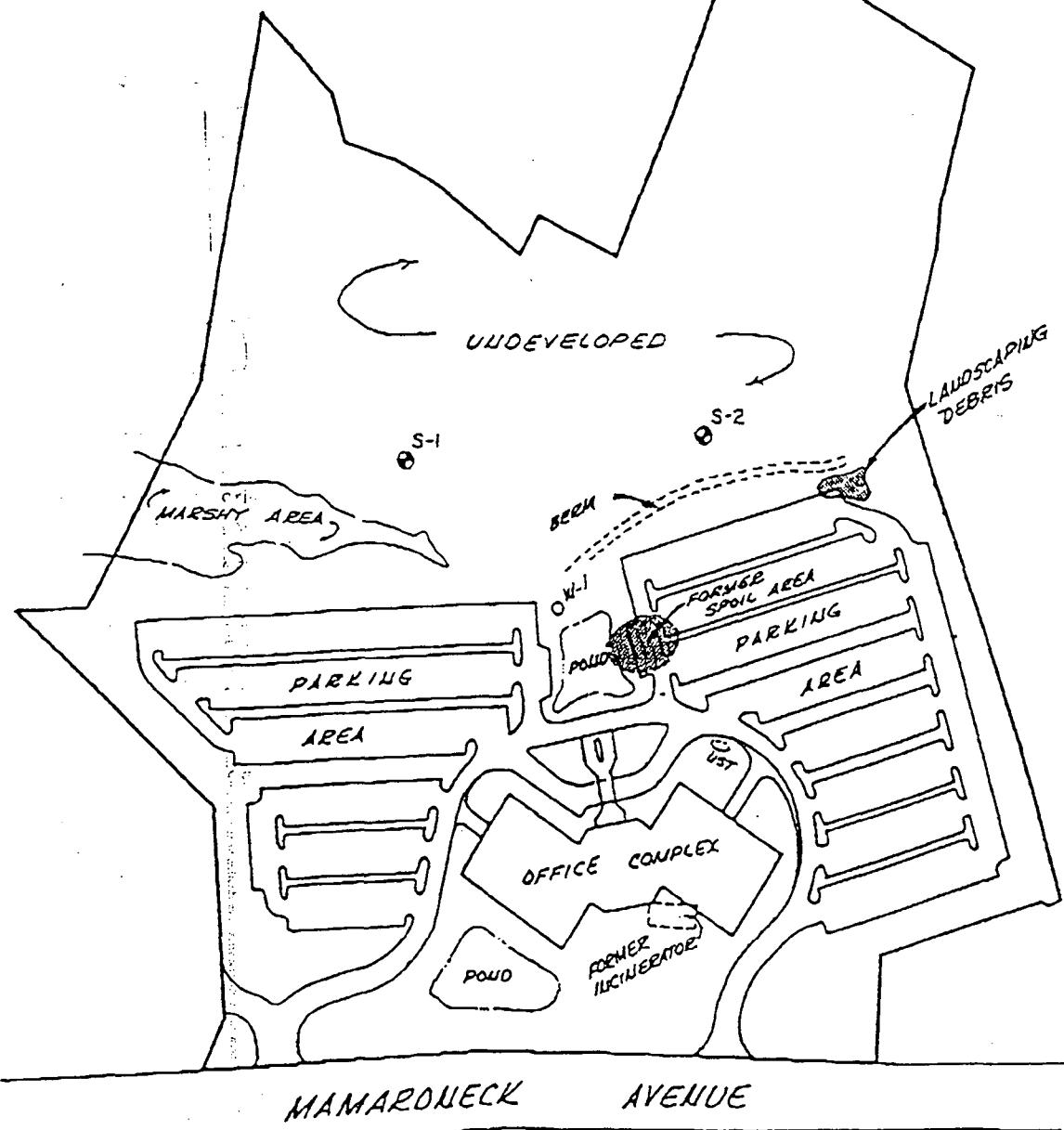
2.0 Site Location and Description


The subject property consists of 34.65 acres in the Town of Harrison, Westchester County, New York. The property is located on the east side of Mamaroneck Avenue, approximately 2000 feet south of Union Avenue (Location Map). The entire site is comprised of one tax parcel, Lot 8 (formerly Lots 8, 26, and 26.1), and has approximately 1000 linear feet of frontage along Mamaroneck Avenue. The property also has 25 feet of frontage on Winfield Avenue.

Approximately 14 acres of the site have been improved in conjunction with the construction of one five-story office complex, totalling 275,000 square feet. Each story contains 55,000 square feet in gross floor area. The parking area covers approximately 9 acres. Water is provided by the municipal system. The site has no drinking water wells. One shallow well supplies water to a decorative waterfall on the property. Septic waste is handled via the municipal sewer system. Site features are shown on the Site Features Map.

Site topography has changed substantially as a result of on-site construction activities. Approximately 200,000 cubic yards of soil and rock were removed during site development. This material was removed only from that portion of the site that was being developed (the portion closest to Mamaroneck Avenue) and it was disposed of off-site.

The site currently rises gradually over the parking area, and then is relatively level over the eastern portion. A small wet area is located in the north-central portion of the property, immediately east of the northern portion of the parking area.


The surrounding properties are primarily commercial structures along Mamaroneck Avenue (to the south and north of the subject property) and single family residences to the east. To the west of the site is Saxon Woods Park. Non-residential buildings in the vicinity of the site include office complexes, a law office and a home and garden store. All adjacent parcels are down-gradient of the undeveloped portion of the subject property.

BASE MAP: USGS Topographic Quadrangles - Mamaroneck, 1967, photoinspected 1975 & Mount Vernon, 1966, photorevised 1979

SITE LOCATION	DATE: 10/89
	SCALE: 1"=2000'
	JOB NO. SH90200
U.S. HYDROGEOLOGIC, INC.	PAGE NO. 4

- SOIL SAMPLE LOCATION
- 20K GAL. UNDERGROUND FUEL OIL STORAGE TANK
- WELL

NOTE: All locations are approximate.

BASE MAP: Compiled from Westchester County Tax Maps & GZA Environmental Assessment - Figure 2, Site Plan, May 1986

SELECTED SITE FEATURES & SAMPLE LOCATIONS	DATE: 10/89
	SCALE: N/A
U.S. HYDROGEOLOGIC, INC.	JOB NO. SH90200
	PAGE NO. 5

Environmental Audit
SH90200
October 26, 1989
Page 6

3.0 Background Investigation

3.1 Site History

Subject Property: Tax Map Town of Harrison
Block 428, Lot 8 (formerly Lots 8, 26, and 26.1)

<u>Date of Purchase</u>		
Current Owners¹:	Schulman, Lowell M.	1983 to present
Previous Owners¹:	Lot 8: Arthur Marros	to 1983
	Lot 26: Town of Harrison	to 1983
	Lot 26-1: Richard Harmony	to 1983

The site currently contains one primary structure: a five-story office building (275,000 square feet) and associated paved parking and landscaping. Tax records list one office building, built in 1986, and one receiving dish of steel and aluminum construction installed in 1989. Records also show that this site is provided with municipal water and sewer.

A series of aerial photographs showing the subject property and surrounding property during the years 1947-1986 were reviewed in order to assess changes on the subject property and surrounding area.

Tax records show that the site is the former location of the Town of Harrison incinerator. This incinerator was reportedly built in 1954, and demolished in 1984.

A review of aerial photographs shows that up until 1954 the subject property appeared to be vacant land. In the 1954 aerial, the Town incinerator is clearly visible. From 1954 until 1980, the aerials show no major changes on the site. The incinerator appears in all of these aerials. In several of the aerials, a faint path or roadway is visible leading from the incinerator to the rear of the property. Also consistently visible in these aerials is a small area of soil disturbance located near Mamaroneck Avenue, north of the incinerator, on the subject property. No additional large scale soil disturbance or debris was noted on the subject property during this time period.

In the 1986 aerial, the current building on the site is under construction. This corresponds with Town records which list the date of construction of the building as 1986.

From 1947 to 1960, there were signs of soil disturbance on properties located adjacent to and north of the subject property. This did not appear to be associated with construction of buildings which later occurred on the sites. In the 1960 aerial, which is of poor resolution, there is no sign of continued soil disturbance. A 1971 aerial of the area shows two buildings located on those adjacent sites which formerly showed signs of soil disturbance.

¹Information on current or former property ownership is gathered from property cards and/or Westchester County records. This does not constitute a title search.

Environmental Audit
SH90200
October 26, 1989
Page 7

Two previous environmental assessments have been conducted. Copies of these reports are included in Appendix B. The first study is dated May 1986 and included limited soil and groundwater analysis. No areas of environmental concern were identified. A second study dated April 1988 again identified no environmental concerns.

3.2 Regulatory Review

A routine check of state and federal documents and sources was performed to identify recorded hazardous waste or regulated substance activities on the subject property.

The property is not listed with state or federal agencies as an inactive hazardous waste site. The nearest inactive hazardous waste site is Mamaroneck Senior Citizens Housing (Site Code 36002) in the Village of Mamaroneck, approximately 2.2 miles southeast of the subject property. Sampling of soil and wastes in May 1988 confirmed the presence of hazardous industrial waste resulting from activities in the 1950s to the early 1970s on the 7.85 acre Mamaroneck Senior Citizen's Housing site.

One underground storage tank is currently registered with the NYSDEC for this property. The tank is used for storing heating oil. Tank capacity is 20,000 gallons. The tank registration number is 494429.

The property is not currently registered with federal or state governmental agencies as a small quantity generator of hazardous waste, nor are the adjacent properties.

3.3 Site Investigation

The site inspection was conducted on October 12, 1989 in order to address any potential concerns raised during the investigations of historical records and regulatory agency records (above, Section 3.1 and 3.2) and to identify any additional indications of contamination from the storage, use and/or disposal of hazardous or regulated materials. An unoccupied portion of the facility was inspected, as well as the surrounding developed and undeveloped property. A visual inspection of adjacent and nearby properties was performed in conjunction with this inspection.

Structures

The site contains a 275,000 square foot office structure, constructed in 1986 by the current property owners. The building is a concrete and glass structure. There was no evidence of asbestos containing materials (ACM) in the walls or ceilings and there was no ACM visible on the hot water heating pipes inspected during the course of the internal inspection.

Internal areas inspected appeared to be free of lead paint, consistent with the age of construction. There is no evidence of older painted material in the building.

One transformer is present on the site, identification number 44W77W83. The transformer is the property of Consolidated Edison Company and is installed during construction of the existing facility, in 1986. Con Ed has verified that this transformer contains no PCBs. The transformer is stationed on concrete pads and secured; there was no evidence of oil leakage around the transformer.

Environmental Audit
SH90200
October 26, 1989
Page 8

Internal areas currently occupied by building lessees was not inspected; however, both tenants utilize the building for office purposes or for computer disassembly and reassembly. No chemicals are reported stored in these areas by the facility maintenance engineer, and no hazardous waste is generated by activities on the site.

The 20,000-gallon underground fuel oil storage tank is situated along the edge of the south parking area. The tank was installed in May 1986 and is constructed of fiberglass-reinforced plastic with steel piping. A vapor monitor leak detection system is in place. According to the facility engineer, product inventory is updated daily and there have been no leak or spill incidents. The tank was precision-tested following installation.

The area surrounding the bulk petroleum underground storage tank was relatively free of discoloration. Minor spillage, likely occurring during the course of filling the tank, was evident. The stained area was restricted to immediately around the fill pipe, and is not considered an indication of soil contamination.

Property

The property surrounding the building is comprised of a portion which is developed as parking and landscaping for the building, and a portion which is currently undeveloped. Both areas were physically inspected.

There was no indication of site contamination in the developed portion of the property. There was no surface staining in the parking area or the landscaped portion of the property. Drainage culverts did not appear to be stained, and the storm water detention area was generally free of foreign material (small amounts of leaves and other natural debris were present in the upper portion of the water detention area). Standing water in the lower portion of the detention area appeared to be slightly murky but was not discolored in any way. Further, there was no evidence of a sheen or oily film on this water.

At the extreme southeastern portion of the parking lot was a small landscaping debris area. The debris consisted of discarded plants, grass clippings, wooden baskets, and a few empty one to five gallon oil cans. There was no surface staining evident in this area. Slight turbidity of the standing water is likely the result of a sand pile present up-gradient of the water.

There was no evidence of contamination in the undeveloped portion of the site. This portion of the property is generally well-vegetated with mature hardwoods, indicative of an area undisturbed for a long period of time. The understory on the site appeared healthy, and consistent with the surrounding woodlands. There were no indications of vegetative stress in the trees or the understory, particularly in low-lying areas.

There is a sizable wet area in the northern portion of the property, immediately east of the parking area. This water was free of foreign material, and there was no evidence of water discoloration or sheens.

Environmental Audit
SH90200
October 26, 1989
Page 9.

There is an elongate topographic high, or berm, immediately east of the south parking lot. This berm extends from the southeastern corner of the parking area to the beginning of the waterfall. White pines have been planted at regular intervals along its length. Vegetation along the berm is thick and healthy.

There was no evidence that material had been buried or disposed of in the undeveloped portion of the property. No berms, sinkholes, trenches or other evidence of buried material were identified. Further, there was no evidence of access roads or paths entering the undeveloped portion of the property, with the exception of the above mentioned construction road.

Prior reports on the property identified a berm located in the south-central portion of the property (see GZA report, Appendix B) and a "spoil area (misc. debris)" (EIS on 500 Mamaroneck Avenue, map on page C-2).

Those two areas are located entirely within the area disturbed during site development. It is assumed that a substantial amount of soil from the spoil area was removed from the site. The elevation of the current parking area is approximately 12-16 feet lower than the spoil areas, as estimated from a comparison of a map of 1983 site conditions and proposed site plan drawing.

Soil Samples

Two soil samples were collected from the site for laboratory analysis. The locations of these samples, S-1 and S-2, are shown on the Sample Location Map. Each sample was analyzed for cadmium, chromium and lead. The results of the analysis are summarized below:

<u>Test</u>	<u>Sample S-1</u>	<u>Sample S-2</u>
Cadmium	<1.41	<1.56
Chromium	65.4	41.7
Lead	136	77.6

* concentrations are mg/kg

Although each sample showed slightly elevated levels of the three metals, neither sample location exhibited high concentrations indicative of incinerator residue. Higher than normal metal concentrations are to be expected in industrial/urban settings. Analytical results are included in Appendix A.

Water Sample

One water sample (W-1) was analyzed from the single on-site well. The sample was collected from a tap near the wellhead and analyzed for volatile organic compounds (VOCs) according to EPA Method 602. No VOCs were detected. Analytical results are included in Appendix A.

Environmental Audit
SH90200
October 26, 1989
Page 10

4.0 Conclusions and Recommendations

Based on the records review, site inspection, and soil and groundwater analysis, no evidence of soil or groundwater contamination has been identified on the subject property. Although municipal waste was handled and incinerated at the site for several years, there appear to be no residual contaminants in the soil or water as a result of this activity. Large amounts of soil were reportedly removed from the site during development of the present office complex.

No potential areas of environmental concern were identified as a result of this study, and no additional investigations are recommended.

Environmental Audit
SH90200
October 26, 1989
Page 11

5.0 Sources of Information

Documents

Aerial photographs dated 1947, 1954, 1960, 1980, and 1986, various scales and resolution. Available at Westchester County Department of Planning, White Plains, NY. 1971 aerial photograph from Town of Harrison Building Department.

Environmental Impact Statement for 500 Mamaroneck Avenue, November, 1983.
Prepared by J. Michael Divney Associates.

Environmental Risk Ltd., 1988, Site inspection report provided to Schulman Realty, Co., 9 p.

Goldberg, Zoino & Assoc., 1986, Environmental Assessment Report provided to Schulman Management Corporation, 5 p.

Inactive Hazardous Waste Disposal Sites in New York State, April, 1989, New York State Department of Environmental Conservation (NPL Reference).

Personal Communications

Montciro, James. Town of Harrison Building and Maintenance Department.

APPENDIX A: LABORATORY ANALYTICAL RESULTS

CHEMTECH
CONSULTING GROUP, INC.

380 West 11th Street / New York, New York 10014 (212) 255-9100

October 17, 1989

Rudikoff & Rohde Inc.
328 Main Mall
Poughkeepsie, New York 12601

PROJECT NO.: 8910023

Attn: Mr. Paul H. Ciminello

Ref.:

SAMPLE NO.: 1 DESCRIPTION: S1

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
Cadmium	mg/kg	<1.41
Chromium	mg/kg	65.4
Lead	mg/kg	136

DATE RECEIVED: 10/17/89

SAMPLE NO.: 2 DESCRIPTION: S2

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
Cadmium	mg/kg	<1.56
Chromium	mg/kg	41.7
Lead	mg/kg	77.6

DATE RECEIVED: 10/17/89 DATE SAMPLED: 10/16/89

SAMPLE NO.: 3 DESCRIPTION:

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
-------------	--------------	----------------

DATE RECEIVED: 10/17/89 DATE SAMPLED: 10/16/89

Dr. Jayant Mehta
Laboratory Manager

CAMO LOG NO.: 89-10-4767

AROMATICS

EPA METHOD 602

PARAMETERS	(01) W-1 Well Sample
Benzene	<1
Toluene	<1
Ethylbenzene	<1
Xylene, Total	<3
Chlorobenzene	<1
1,4-Dichlorobenzene	<1
1,3-Dichlorobenzene	<1
1,2-Dichlorobenzene	<1

NOTE: All results expressed in ug/L unless noted otherwise.

APPENDIX B: PREVIOUS ENVIRONMENTAL REPORTS

ENVIRONMENTAL RISK LIMITED
20 Mountain Avenue Bloomfield, CT 06002 (203) 242-9933

April 11, 1988

Mr. Michael Curran
Schulman Realty Co.
925 Westchester Avenue
White Plains, NY 10604

RE: Schulman Realty Property, 500 Mamaroneck Avenue, Harrison, NY
ERL Project No. 7920-C85-88

Dear Mike:

Pursuant to your request, Environmental Risk Limited (ERL) has conducted a site inspection and limited environmental sampling as an update to the May 30, 1986 environmental assessment of the above referenced location prepared by Goldberg Zoino Associates of New York, PC (GZA).

The scope of ERL's assessment update included a review of the May, 1986 GZA environmental assessment, a site inspection by an ERL environmental scientist and the sampling and analysis of groundwater from an existing, on site bedrock well. A copy of the May, 1986 GZA report has been included as Attachment I.

On March 29, 1988, Gary Iadorola of ERL visited the subject property to observe site conditions and collect environmental samples. Observations from the site visit follow.

The property development is essentially the same as that reported by GZA in 1986, with the major exception being that construction of the building is complete. In summary, approximately ten acres of the site is developed into an office building with a 55,000 square foot footprint. The building is currently vacant, and there are no manufacturing or other commercial establishments observed on this property that generate any known hazardous wastes. In consideration of the proposed building use as office space, the only wastes that may be generated are those associated with operation and maintenance of an office facility. Surrounding the building on three sides are paved parking areas. Mamaroneck Avenue borders the front of the building to the west. The developed, ten acre parcel is surrounded on three sides by approximately 24 acres of undeveloped wooded open space and wetland.

The building is serviced by city water and sewers. The heat source is supplied by an on site boiler. Number two heating fuel used for the boiler is stored on site in a buried, 20,000-gallon steel tank. This tank was reported by Schulman Management to have been installed during 1986 with a protective coating and cathodic protection. It is generally recommended that this tank be integrity tested at least every five years.

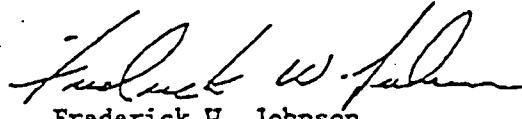
The property was reported by GZA and Schulman personnel to be the former location of the Town incinerator and waste transfer station. It was further reported by GZA that during construction, most debris associated with the former incinerator and transfer station was removed as part of the construction site development. A soil berm at the south end of the parking area was identified as the only area that contained debris that may have been associated with the former incinerator and transfer station (e.g., glass, metal, plastic, and slag). Two samples of these soils were collected by GZA and analyzed for the E.P. Toxic heavy metals. The results of the analysis were reported to be an order of magnitude lower than the hazardous concentrations. Hard copies of the past laboratory analysis were not included in the GZA report.

ERL also reviewed the site in regards to the need, feasibility, and/or the practicality to install groundwater monitoring wells at this property.

During construction, the original grade was lowered by approximately eighteen feet, with an estimated 330,000 cubic yards of soil and rock removed from the site. As a result of this extensive site work, the building and the majority of the developed area are underlain by bedrock with little or no soil mantle. Therefore, if monitoring wells were installed, they would be installed into bedrock.

Through discussions with Schulman personnel, ERL learned that a bedrock production well exists near the center of the site downslope of the former incinerator. The primary purpose of the well is to supply water to an on-site waterfall. This well provides an ideal point to access groundwater in the bedrock under the site. Because the well is and has been under pumping conditions (approximately ten GPM), it is probable that the groundwater obtained is from a larger area than groundwater that may have been obtained by monitoring a static monitoring well.

On March 29, 1988, ERL obtained a groundwater sample from the on site production well. The sample was submitted to Connecticut Testing Laboratories of Meriden, Connecticut for analysis. The analysis included the EPA Method 601 and 602 volatile organic compounds (characteristic of petroleum hydrocarbons and chlorinated solvents), the E.P. Toxic metals, and cyanide. The results of these analysis show none of the analyzed compounds were found above the laboratory detection limits. Subsequently, the analyzed parameters meet currently established USEPA action limits and standards for drinking water quality. Copies of the laboratory analysis are included in Attachment II.


The results of the groundwater analysis provide further confidence to the May, 1986 conclusion made by GZA that there is no on-site indication of the presence of hazardous materials or oils in the environment at the 500 Mamaroneck Avenue site. Furthermore, based upon the past and recent history of the site and the environmental data collected to date, additional groundwater monitoring at this site does not appear warranted.

Mr. M. Curran
April 11, 1988
Page 3

If you have any questions concerning this matter, please call me or
Gary Iadorola at (203) 242-9933.

Very truly yours,

ENVIRONMENTAL RISK LIMITED

Frederick W. Johnson
Senior Associate

FWJ/dc
Attachments (2)
cc: H. Guy Liebler, Schulman

ENVIRONMENTAL RISK LIMITED

Attachment II

Laboratory Analysis of Groundwater
Samples Collected March 29, 1988

WATER

April 7, 1988

SOIL

Environmental Risk LTD.
120 Mountain Ave.
Bloomfield, Ct. 06002

AIR

Att: Fred Johnson

RE: Lab. No. 38-305-1
P.O. No. 7920
Inv. No. 3228

Dear Mr. Johnson:

The following is a report of analysis on samples received
March 29, 1988.

WP-1

Arsenic - mg/l	ND<0.05
Barium - mg/l	ND<0.5
Cadmium - mg/l	ND<0.01
Chromium, Total - mg/l	ND<0.05
Lead - mg/l	ND<0.05
Mercury - mg/l	ND<0.002
Selenium - mg/l	ND<0.01
Silver - mg/l	ND<0.01
Cyanide, Total - mg/l	ND<0.05

Please contact me if you have any questions.

Very truly yours,

Stephen J. Franco

Stephen J. Franco
Laboratory Director

SJF:hc

CONNECTICUT TESTING LABORATORIES, INC.

140 Gracey Avenue
Meriden, Connecticut 06450
(203) 634-3731

Environmental Risk Ltd.
Lab. No. 38-286-1
P.O. No. 7920
Inv. No. 3200
Page 3
March 31, 1988

EPA METHOD 602/8020/8015-ppb

WP-1

Benzene	_____	_____	_____	_____
Toluene	_____	_____	_____	_____
Ethyl Benzene	_____	_____	_____	_____
P-Xylene	_____	_____	_____	_____
M-Xylene	_____	_____	_____	_____
O-Xylene	_____	_____	_____	_____
1,4-Dichlorobenzene	_____	_____	_____	_____
1,3-Dichlorobenzene	_____	_____	_____	_____
1,2-Dichlorobenzene	_____	_____	_____	_____
Methyl Ethyl Ketone*	_____	_____	_____	_____
Methyl Isobutyl Ketone*	_____	_____	_____	_____
Acrylamide*	---	---	---	---
Carbon Disulfide*	---	---	---	---
Diethyl Ether*	---	---	---	---
Paraldehyde*	---	---	---	---

Blanks indicate the analyte was tested and found to be below the minimum detectable level.

The minimum detectable level was less than 1 ppb.

The minimum detectable level for these () parameters was 50 ppb.

CTL, Inc.

EPA METHOD 601/8010-ppb

WP-1

Chloromethane				
Bromomethane				
Vinylchloride*				
Chloroethane				
Methylenechloride				
Trichlorofluoromethane				
11-Dichloroethylene				
11-Dichloroethane				
112-Dichloroethylene				
Chloroform				
12-Dichloroethane				
111-Trichloroethane				
Carbontetrachloride				
Bromodichloromethane				
12-Dichloropropane				
113-Dichloropropylene				
Trichloroethylene				
Dibromochloromethane				
112-Trichloroethane				
Cis13-Dichloropropylene				
2-Chlorethylvinylether*				
Bromoform				
1122-Tetrachloroethane				
Tetrachloroethylene				
Chlorobenzene				
Benzyl Chloride				
Bis (2-chloroethoxy)methane*				
Bis(2-chloroisopropyl)ether*				
Bromobenzene				
Chloroacetaldehyde*				
1-Chlorohexane				
Chloromethyl methyl ether*				
Chlorotoluene				
Dibromomethane				
12-Dichlorobenzene				
13-Dichlorobenzene				
14-Dichlorobenzene				
Trichloropropane				

Blanks indicate the analyte was tested and found to be below the minimum detectable level.

The minimum detectable level was less than 1 ppb.

The minimum detectable level for these () parameters was 10 ppb.

CTL, Inc.

WATER

March 31, 1988

SOIL

Environmental Risk Ltd.
120 Mountain Ave.
Bloomfield, Ct. 06002

Att: Fred Johnson

RE: Lab. No. 38-286-1
P.O. No. 7920
Inv. No. 3200

Dear Mr. Johnson:

The attached report are results of analysis for samples received March 29, 1988.

The samples were analyzed by Gas Chromatography and results are reported in ppb.

Please contact me if you have any questions.

Very truly yours,

Stephen J. France

Stephen J. Franco
Laboratory Director

SJF:bco

CONNECTICUT TESTING LABORATORIES, INC.

140 Gracey Avenue
Meriden, Connecticut 06450
(203) 634-3731

25 L

CHAIN OF CUSTODY RECORD

CHEMTECH
CONSULTING GROUP, INC.

380 West 11th Street / New York, New York 10014 (212) 255-2100

October 17, 1989

Rudikoff & Rohde Inc.
328 Main Mall
Poughkeepsie, New York 12601

PROJECT NO.: 8910023

Attn: Mr. Paul H. Ciminello

Ref.:

SAMPLE NO.: 1DESCRIPTION: S1

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
Cadmium	mg/kg	<1.41
Chromium	mg/kg	65.4
Lead	mg/kg	136

DATE RECEIVED: 10/17/89

SAMPLE NO.: 2DESCRIPTION: S2

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
Cadmium	mg/kg	<1.56
Chromium	mg/kg	41.7
Lead	mg/kg	77.6

DATE RECEIVED: 10/17/89

DATE SAMPLED: 10/16/89

SAMPLE NO.: 3DESCRIPTION:

<u>TEST</u>	<u>UNITS</u>	<u>RESULTS</u>
-------------	--------------	----------------

DATE RECEIVED: 10/17/89

DATE SAMPLED: 10/16/89

Dr. Rajit Manta
Laboratory Manager

CAMO LOG NO.: 89-10-4767

AROMATICS

EPA METHOD 602

PARAMETERS	(01) W-1 Well Sample
Benzene	<1
Toluene	<1
Ethylbenzene	<1
Xylene, Total	<3
Chlorobenzene	<1
1,4-Dichlorobenzene	<1
1,3-Dichlorobenzene	<1
1,2-Dichlorobenzene	<1

NOTE: All results expressed in ug/L unless noted otherwise.

OF NEW YORK, 10

GOLDSBERG-ZONIO ASSOCIATES OF NEW YORK, P.C.
ESTATE PLANNING • BUSINESS PLANNING • COMMERCIAL LITIGATION

وَالْمُؤْمِنُونَ إِنَّمَا يَنْهَا عَنِ الْمُنْكَرِ

Schulman Management Corporation
JAMES H. REYNOLDS, 925 Westchester Avenue
GENERAL MANAGER White Plains NY
SUITE 1000 RAND BUILDING
BUFFALO, NY 14203
716-255-0860

May 30, 1986
File No. H-6437 A

፩፭፻፭ ዓ.ም.

ROBERT A. HELLO
DISTRICT MANAGER
58° LAFAYETTE BLVD.
BROOKFIELD, CT 06801
203/334-8593

Actn: Mr. Mike Cheeza

Gentlemen:

Per the request of Schulman Management Corporation, Goldberg-Zaino & Associates Inc., (GZA/Hellar) has performed a site visit at a 34 acre piece of property at 500 Mamaroneck Avenue in Harrison, NY. The purpose of our site visit was to observe the site for evidence of the presence of oil or hazardous material in the environment at the site.

The subsequent sections of this letter contain GZA/Heller's observations at the site.

Field Visit

On May 15, 1986 Mr. David Greene of GZA/Heller met with Mr. Mike Curran of Schulman Management Corporation to observe site conditions and discuss site history with respect to land use and hazardous materials and oil. Observations from that site visit follow.

A site plan is attached for reference.

An office building with a footprint of 55,000+ square feet is currently under construction at the site. Associated parking areas are also in the process of development.

Approximately 10 $\frac{1}{2}$ acres of the site are developed or in the process of development. The remaining 24 $\frac{1}{2}$ acres primarily on the east side of the property were observed to be undisturbed woodlands, marshy areas or are planned for open space.

According to Mr. Curran, the site was formerly the town incinerator/waste transfer station. The incinerator was apparently located where the office building is being constructed.

Based on visual observation and conversation with Mr. Curran all soil and large volumes of bedrock have been removed from the building area and adjacent future parking areas. The land surface has apparently been lowered by approximately eighteen feet and it is our understanding that 330,000 \pm cubic yards of soil and rock have been removed.

NEWTON UPPER FALLS, MA • BUFFALO • MANCHESTER, NH • PROVIDENCE, RI • VERMONT • SPARTACUS, CT • TAMPA, FL

According to personnel of DeLaurentis Excavating there was debris on the site prior to site development. Debris reportedly consisted of scrap metal, old cars and other non-burnable material from operation of the incinerator. Apparently the majority of this material was removed prior to the start of excavation. No evidence of significant deposits of any debris or residue from the incinerators were observed.

The only potential evidence of past site usage as an incinerator/transfer station was seen in the soils used to construct a ±15 ft. x 12 ft. x 10 foot berm on the southeast corner of the site. This soil consists of a grey silt with fragments of glass, metal, slag, ash and small amounts of plastic. Two soil samples were obtained from this berm area and were made into a single composite for the analysis of priority pollutant metals by EP toxicity methods. Samples were taken to confirm that contamination of these soils has not occurred. Verbal results of the laboratory analysis indicate that the composite soil sample did not exhibit the characteristics of hazardous soils using EP Toxicity Methods. All metal results were at least an order of magnitude below relevant standards.

Summary and Conclusions

A limited environmental assessment was conducted at 500 Mamaroneck Avenue in Harrison, New York. The assessment included a site visit and analysis of one composite soil sample for priority pollutant metals (results pending). No background research or subsurface explorations were performed. Based on studies conducted and observation made as part of the present assessment, it is GZA's opinion that there is no on-site indication of the presence of hazardous materials or oils in the environment at the site.

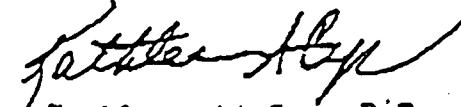
The laboratory report will be forwarded upon receipt by GZA/Heller.

Limitation

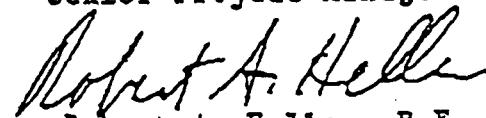
This report is subject to the attached limitations.

This study and report have been prepared on behalf of and for the exclusive use of our client solely for use in an environmental evaluation of the site. This report and the findings contained herein shall not, in whole or part, be disseminated or conveyed to any other party, nor used by any other party, without the prior written consent of GZA/Heller. However, GZA/Heller acknowledges and agrees that the report and attached Statement of Terms and Conditions may be conveyed to potential tenants associated with the site.

GZA

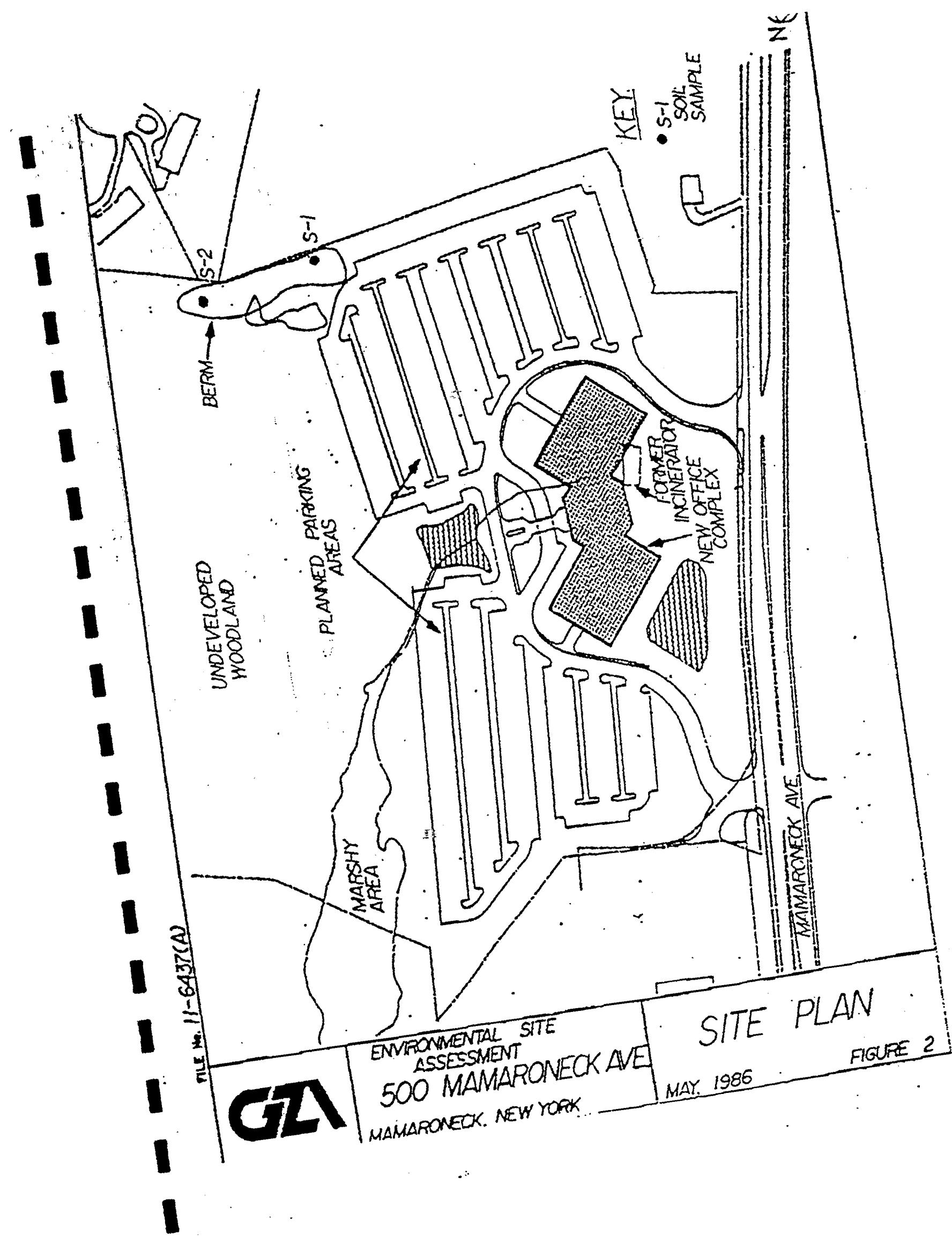

Mamaroneck Avenue - May 30, 1986 - File No. H-6437A - Page Three

The report has been prepared in accordance with the Statement of Terms and Conditions set forth in the following section. No other warranty, expressed or implied, is made.


We trust the report presented herein satisfies your current requirements. The undersigned will be contacting you in several days to discuss any questions you may have. We have appreciated the opportunity to work with you on this project.

Very truly yours,

GOLDBERG - ZOINO & ASSOCIATES


Kathleen A. Cyr, P.E.
Senior Project Manager

Robert A. Heller
Associate-in-Charge

KAC, RAH/gin

GZA

APPENDIX A

LIMITATIONS

1. The observations described in this Report were made under the conditions stated therein. The conclusions presented in the Report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by Client. The work described in this report was carried out in accordance with the attached Statement of Terms and Conditions.
2. In preparing this Report, GZA has relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to GZA at the time of the site assessment. Although there may have been some degree of overlap in the information provided by these various sources, GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
3. Observations were made of the site and of structures on the site as indicated within the Report. Where access to portions of the site or to structures on the site was unavailable or limited, GZA renders no opinion as to the presence of hazardous material or oil, or to the presence of indirect evidence relating to a structure. In addition, GZA renders no opinion as to the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a site was obstructed by objects or coverings on or over these surfaces.
4. Unless otherwise specified in the Report, GZA did not perform testing or analyses to determine the presence or concentration of asbestos or polychlorinated biphenyls (PCB's) at the site or in the environment at the site.
5. The purpose of this report was to assess the physical characteristics of the subject site with respect to the presence in the environment of hazardous material or oil, as defined in Connecticut General Statutes Section 22a-452. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.

GZA

B

APPENDIX B

Field Notes

TU 15/12/98

moor, near, Norway.

500' Florastroneck Ave, Harris

ERM/ADT onsite @ 08:00

Soil Boring Scope:

Due to the presence of shallow bedrock plan to make $\frac{1}{2}$ attempts for a ~~vertical~~ soil boring at each previously selected area. If unable to penetrate past 2' b/s, will move to next location.

Calibrated Photovac PID_g using 100ppm isobutylene standard. Measurement 100ppm = 100 ppm

GP-1

attempt ① Drill rod encountered refusal (a) 1' b/s

attempt ② Drill rod encountered refusal (a) 1' b/s

attempt ③ A 0-4" Re 806 PID 10.2 Time 1026

Fine to Med Sand; Gravel; Med Brown
Odorless

B 40-7.5 b/s 90% PID 0.0 Time 1042

Silty sand & Gravel. Med Dark Brown

Odorless Silt = 30% of matrix

Note: Hit void in borehole from 6.5-7'

Refusal @ 7.5 b/s.

10/15/12/98

Cuddy, Feder, Worby / Harrison
1262.002

GP-3

attempt ① Refusal @ 4" b/s
attempt ② " @ 12" b/s
attempt ③ " @ 9" b/s
attempt ④ " @ 15" b/s
attempt ⑤ " @ 22" b/s Sample Taken

A 0-17.5', ^{Rec 80%} P1D 0.2 ppm Time ~~1020~~ 1113

Same description as GP-1 (0-4') except
they are 2 layers of sandy
clay (moderate plasticity, med brown)
Refusal @ 22" b/s

GP-2

attempt ① Refusal @ 24" (2.0')
attempt ② Refusal @ 27" (2.25') Sample Taken

A 0-25.25' P1D - 0.3 ppm ^{Rec 80%} Time 1124
Silt w/ Gravel (0⁶); Med/Dark Brown
odorless

7/15/12/98

Cudby, Foster, Worthy / Harrison

GP-4

attempt ① Refusal @ 2.2' BLS

attempt ② Refusal @ 2.25 BLS

A 0-2.25 Rec 90% PID 0.0 ppm Time 1148

silty (5%) sand (70%) w/ gravel (15%), Med/lnk
brown, Odorless.

- Refusal @ 2.25 BLS.

GP-5 A 0-3.5' Rec 90% PID 0.0 ppm Time 1237

~~attempt ①~~ sand w/ gravel; color and texture

attempt ② appear to be similar to pulverized

This sample bedrock ^{Color} white + gray component,
from the "spars" area

B 3.5-6.5 Rec 90% PID 0.0 ppm Time 1238

Same description as A (0-3.5'). White
components are granular & the
is an increase % of fine, powder-like
material; Refusal @ 6.5' BLS

GP-6

attempt ① Refusal @ 11"

" ② " @ 6"

" ③ " @ 10"

A 0-1' BLS Rec 68% PID 0.0 ppm Time 1306

7/15/12 98 Cudby, Feder, Worby/Harrison

GP-GA (continued)

Granular Coarse Sand & Gravel; Gravel
comprises 30% of soil matrix. Red Brown.
Refusal @ 1" BCS

GP-7

attempt ① Refusal @ 13"

" ② " @ 13"

attempt ③ Refusal @ 27" (2.25' b/s)

A 0.25-2.25' Rec 9% PID-0.0001 Time 1419

Silty sand w/ Gravel (30%). Med Brown.
Odorless; Refusal @ 2.5' b/s

GP-S (location chosen because of red staining where GW ^{was} _{was} at)

A 0-3' Rec 60% PID 0.0001 Time 1426

Moist; Silty sand w/ Gravel, sand
components are fine to very fine grained &
comprise 80% of soil matrix; med/dark
brown; odorless;

B 3-6' Rec 40% PID-0.0001 Time 1435

Top 9" Wet sand w/ Gravel; sand is med. to
coarse grained; Gravel is angular to
1" diam & comprises 3-40% of matrix
color, black & white

7/15/12 108

Cuddy, Feder, Worby / Harrison

GP-8B (3-6' b/s): Bottom 9" ^{"Wet"} clay; moderate plasticity, medium brown; slight odor of sewage or organic decay.

C 6-8' Rec 50% PID - 0.0ppm

Time 144

Top 8" same description as 8B (Top 9")

Bot 4" same description as 8B (Bot 9")

Refusal @ 8' b/s

GP-9

A 0-3' Rec 50% PID - 0.0ppm

Time 1514

Same description as GP-7A

B 3-5.5' Rec 50% PID 0.0ppm

Time 1531

Same description as GP-7A

Refusal @ 5.5' b/s

GP-10

A 0-3' Rec 80% PID 0.0ppm

Time 1544

Same description as GP-7A

B - 3-6' Rec 30% PID 0.0ppm

Time 1605

Same description as GP-7A except soil matrix was moist

Refusal @ 6' b/s

TO (512) 98: Cuddy, Feder, Worby / Harrison

GP-11

A 0-3' Rec 60% PID 0.0 ppm Time 1623

Same description as GP-7A except:

- ① soil matrix is moist
- ② 30% of matrix is composed of unnatural material such as shard of glass & tile, wood chips, wood cinders, etc.

B 3-6' Rec 60% PID- 0.0 ppm Time 1631

Same description as A(0-3' BIS) interval except interval 3-6' BIS also contains plastic and wire strands/metal scraps

C 6-10' Rec 30% PID-0.0 ppm Time 1638

Wet same description as interval B of this sample

NO REFUSAL @ 12' BLS

GP-12

A 0-3' Rec 70% PID- 0.0 ppm Time 1653

Same description as GP-11A(0-3') except 5-10% unnatural materials

B) 3-6' Rec 60% PID ppm Time 1658

Same description as GP-12A(0-3') except soil matrix is moist.

70/5/12/98

Cuddy, Feder, Worby/Harrison

GP-12 C (6-7' vs) Rec 20% AD 0.0ppm Type 7
Moist, Silty sand w/ gravel.
Gravel comprises 40% of soil matrix.
Odor - Odor Unknown/unidentifiable
Wood fragments comprised 20%
of matrix.

GP 13

A(0-3') Rec % AD 0.0ppm Time 1717
Same description as GP-12 C
except dry.

B(3-6') VOID ENCOUNTERED
- No Recovery

C(6-7') - Rec 100% AD 0.0ppm Time 1723
Top 6" (wet) sandy clay sand w/ gravel
High porosity, light brown
Bot 6" Moist. Fines to coarse sand
w/ gravel. Color med brown
and dark brown/black; Gravel
comprises 30% of matrix

106
Tris
17
3
1
row
ed
in
1
row
ed
10/5/2/98 Cuddy, Feder, Worby/Harrison

GP-14

attempt ① refusal @ 1' BLS

attempt ② refusal @ 3' BLS

A(0-3) Rec 50% PD - 0.0ppm Time 1754

Same description as GP-13C (6-7")

Bot 6" except that soil color
is medium brown & soil matrix
is relatively dry.

GP-15A Rec 60% PD 0.0ppm Time 1809

attempt ① refusal @ 2' BLS

attempt ② refusal @ 2' BLS

Same description as GP-14

- All boreholes were abandoned by
backfilling using #2 Gravel pack to
6" bls followed by 3 to 4" of bentonite
chips and surfaced with asphalt cold patch

- Due to the unusual virtually complete
absence of VOCs, the AD was periodically tested
through the day to ensure that it was
continuing to operate properly

- ADT offsite @ 1900

- ERM offsite @ 2015 / FedEx NY @ 2100 / Office 2225 hrs

Tu 5/20/98 500 Mamaroneck Ave Bronx/Harrison.

ERM started @ 0630 hrs / on-site at 0800

ADT opposite @ 0800 w/ truck mounted
GeoProbe.

Discussed work scope w/ ADT and
toured drilling areas. Due to
extremely heavy precipitation
during previous couple of days the
drilling areas in front of the 'bul-
ding are relatively soggy. As such
will start GP-16 to allow for further drying time
^{at Thomas}
Contacted John Stillgebauer who indicated
all was in order relative to Certif-
icate of Insurance for ADT.

Set up @ GP-16.

Joe Thomas came to drilling area to
discuss work scope, indicated that
he did not want GeoProbe truck
to drive over any underground
utilities in front of the building.

TU/5/26/98 500 Ramaroneck Ave (Assoc) Harrison
- 1454.001

I indicated that the GeoProbe truck would likely not be able to ascend the slope up to the well boring location with the moist conditions at present, and that the specific lines he is concerned with, the water/sewer are likely ~~4"~~ BLS (to be below the frostline) and 12" (based on observation of the discharge trap). Never-the-less, he requested that we do not cross the building frontage.

Contact Greg Shpuda to discuss. Decided to rework on a different day with manual equipment (tripod + split barrel samplers arranged).

Though Joe Thomas considers this to be a failure on the underground utility locating service, because they did not mark out the entire utility runs. I indicated that their work scope was limited to check individual locations. To minimize costs, decided to take samples at the ^{only} 3 location where Joe Thomas has no concerns (CP-1620, 2)

Tu/5/28/98 - 500 Mamaroneck Ave, ^{Aug} Harrison
- 1454.001

GP-16A

attempt 1 Refusal @ 26" BLS Time 0931

attempt 2 Refusal @ 19" BLS Time 0959

attempt 3 Refusal @ 22" BLS Time 1016

attempt 4 Refusal @ 22" BLS Time 1107

A (0.25-2.0) Rec 100% PID 0.0 ppm Time 0937

Sandy silt with trace gravel; sand components are fine to med grained. Gravel is subrounded, color - dark brown. Matrix contain approx 5-10% wood splinters

GP-21A (0-3') Rec 80% PID 0.0 ppm Time 1153

Silty sand with little gravel. Gravel is subrounded to subangular & ranges to 2.5cm; Dark brown. Sand components are fine (60%), med (20%) & coarse (10%).

GP-21B (3-7) Rec 60% PID 0.1 ppm Time 1159

Silty sand with little gravel; sand component is med grained. Gravel is subrounded & ranges to 1.5cm in size; Color - med dark brown. Soil matrix is dryer than previous interval.

Tal 5/26/98

500 Mamaroneck Ave Assoc // Harrison

GP-27c (7-10') Rec 95% PID options 1207

Soil description is the same as

GP-21B (3-7' BLS)

• Mob to GP-20. Due to a visual change in landscaping, requested for Thomas confirm that boring location was actually part of the subject property. He indicated that it was in an easement area, but to proceed w/ drilling.

GP-20A (0-3') Rec 80% PID 0.1 Tins 1254

Silty Sand with ~~large~~ Gravel; sand component are very fine ^(50%) medium ^(50%) gravel ^(20%). Gravel is subrounded to angular and ranges to 2.0 cm in size; Color - Dark brown; soil matrix is moist.

GP-20B (3-5.5') Rec 9% PID 0.04 Tins 1305

Soil description is the same as previous interval for this drilling location (GP-20A (0-3' BLS))

ADT decontaminated downhole tool & began breakdown of drilling equipment

Tu/5/20/98

500 Mamaroneck Ave Assoc. Harrison
-1454.001

ERMA & ADT offsite @ 1340 hrs

All samples collected have been
preserved with ice and will
be retained until remaining
3 borings can be completed.
At that time samples will
be forwarded to Brent Mongells
for PCB immunoassay testing

Returned to office @ 1510 hrs.

7/5/27/98 500 Mamaroneck Ave Bronx/Harrison

1144
refel
GP-17A(0-2' BLS) BC 3,3,4,5 Rec 60% PID ppm T_{ans} 1256
Top 8" Same description as GP-19B(2-4')
Bottom 8" Same description as GP-19(4-6') Bot 7"

1152
-2)
el;
and
own,
1159
LS) Bts
78"
210
we
21
823
GP-17 B(2-4' BLS) BC 5,6,7,9 Rec 60% PID ppm T_{ans} 1304
Top 6" Moist Silt; Compact; Color - Med Brown
odorless
Bottom 9" Dry Silt ~~w/ gravel~~ w/ ~~little~~ little gravel;
Same description as GP-19C(Bot 7")

GP-17C(4-6' BLS) BC 4,5,5,6 Rec 20% PID ppm T_{ans} 1376
Sandy Silt w/ some Gravel; Sand
complements compose 5% of soil matrix
and are fine to medium grained; Gravel
is angular to subangular and ranges to
3 cm; Color - Red/Dark Brown.

GP-17D(6-8' BLS) BC 12,11,10,9 Rec 20% PID ppm T_{ans} 1324
Same description as GP-17C

GP-17E(8-9' BLS) BC 7,10,10 Rec 15% PID ppm T_{ans} 1330
Same description as GP-17C
Refusal @ 19.0' BLS

Sample ID GP-17 A/B (0-2' BLS) @ 1304
GP-17 B/C (3-6' BLS) @ 1316
GP-17 D,E (5-10' BLS) @ 1330

w/5/27/98 500 Mamaroneck Ave Assoc. (Harrison, NY)

GP-18 A (0-2' BLS) BC 3,6,6,8 Rec 60% PID ppm Time 1144
Same description as GP-19 A except
soil matrix is very dry.

GP-18-B (2-4' BLS) BC 7,8,8,12 Rec 1% PID ppm Time 1152
Top 8" Same description as GP-18 A (0-2')
Bottom 8" Very Fine Sand w/ little Gravel;
Gravel is subrounded to angular and
ranges to 2.5 cm; Color light tan brown,
Oderless.

GP-18 C (4-6' BLS) BC 3,3,2,2 Rec 40% PID ppm Time 1159
Top 6" Same description as GP-18 B (2-4' BLS) Bt 8"
Bottom 8" Same description as GP-18 B (2-4' BLS) Bt 8"
except Color is dark brown

GP-18 D (6-8' BLS) BC 8,8,7,6 Rec 40% PID ppm Time 1210
Very Fine sand w/ some Gravel; same
description as GP-18 C (Bottom 8") except
for gravel content.

GP-18 E (8-10' BLS) BC 6,8,9,9% Rec 50% PID ppm Time 1223
Same description as GP-19 D (3-4' BLS)

Sample ID : GP-18 A/B (0-3' BLS) @ 1152
GP-18 B/C (3-6' BLS) @ 1159
GP-18 D,E (6-10' BLS) @ 1223

1/27/98 500 Mamaroneck Assoc / Harrison

WLS

GP-19A^(0-2') BC 2222 Rec 60% PID Oppn Time 1001
Silt with little Gravel. Gravel
is angular to subangular. Color - Med Dark
brown; Odorless; Soil matrix is
moist

GP-19B^(2-4' BLS) BC 6777 Rec 30% PID Oppn Time 1008
Moist Clayey silt with Gravel; ~~Gravel~~
Traces of Clay; little Gravel; Gravel
is subangular to angular & ranges to
2cm in size. Color - pink brown; Odorless

No

GP-19C^(4-6' BLS) BC 7781 Rec 50% PID Oppn Time 1015
Top 5" same description as 19B
Bt 7" Silt w/ little Gravel and Rock fragments.
Gravel content is subrounded to angular,
Rock fragments due to cobble pulverized by the sample
Med dark brown; Odorless

GP

GP-19D^(6-8' BLS) BC 30,1176 Rec 10% PID - oppn Time 1026
Fine to Coarse sand w/ little Gravel and
Rock Fragments. Rock Fragments due to
pulverized by sampler. Color - Grayish
brown; Odorless; Matrix very dry

100

61

GP

GH

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
199

6/5/27/98 500 Mamaroneck Ave Axse/Harrison

ADT broke down & off loaded equipment
to vehicle. /Offsite @ 1400 hrs

ERM offsite @ 1440 hrs/

EdEx - Westbury @ 1615 hrs.

Office @ 1640 hrs.