Periodic Review Report (PRR)

Sovereign Specialty Chemicals, Inc.

710 Ohio Street Buffalo, NY 14203

February 21, 2011

Prepared for:

Mr. Jack Garavanta Henkel Corporation 32100 Strephenson Highway Madison Heights, Michigan 48071

Prepared by:

Jennifer Kotch Senior Project Geologist

Anna

Jeffrey R. Sotek, PE, CSP, CIH Senior Project Manager

Howard Hurd, LEP, CPG Principal HRP Associates. Inc.

1 Fairchild Square, Suite 110. Clifton Park, New York 12065 Phone: (518) 877-7101 / Fax: (518) 877-8561

TABLE OF CONTENTS

<u>Sectio</u>	on Page
LIST	OF ABBREVIATIONSi
1.0	INTRODUCTION1
2.0	SITE OVERVIEW
3.0	PERFORMANCE, EFFECTIVENESS, PROTECTIVENESS
4.0	IC/EC PLAN COMPLIANCE REPORT7
5.0	MONITORING PLAN COMPLIANCE REPORT8
6.0	OPERATION & MAINTENCE (O&M) PLAN COMPLIANCE REPORT11
7.0	CONCLUSIONS & RECOMMENTATIONS13
8.0	REFERENCES14

List of Tables

1	Summary of November 2010 Groundwater Analytical Results Fo	ollows T	Fext
2	Relative Groundwater ElevationsFo	ollows T	Гext

List of Figures

1	Site Location	Follows Text
2	Site Plan	Follows Text
3	Groundwater Flow Direction Site Map	Follows Text

List of Appendices

- A Historical Groundwater Analytical Results
- B Annual Certification of Institutional/Engineering Controls at Voluntary Clean-up Program Site
- C Laboratory Analytical Results
- D Photographs

LIST OF ABBREVIATIONS

ВСР	Brownfield Cleanup Program
bgs	below ground surface
сос	Contaminants of Concern
DUSR	Data Usability Summary Report
Henkel	Henkel Corporation
HRP	HRP Associates, Inc.
HVE	High Vacuum Extraction
mg/kg	milligram per kilogram
NYSDEC	New York State Department of Environmental Conservation
OM&M	Operations, Maintenance and Monitoring Plan
PID	Photoionization Detector
QC	Quality Control
RA	Remedial Action
RACR	Remedial Action Completion Report
RAP	Remedial Action Plan
Site	North Parcel of 710 Ohio Street; Buffalo, New York
Sovereign	Sovereign Specialty Chemicals, Inc.
тос	Total Organic Compound
TOGS	Technical and Operations Guidance Series
ug/L	Micro grams per liter or parts per billion
URS	URS Corporation
VCP	Voluntary Cleanup Program
VOC	Volatile Organic Compound

PERIODIC REVIEW REPORT (PRR)

Sovereign Specialty Chemicals, Inc. 177 Ohio Street Buffalo, Erie County, New York 14203 Site # V00215

1.0 INTRODUCTION

HRP Associates, Inc. (HRP) has prepared this Periodic Review Report (PRR) on behalf of Henkel Corporation (Henkel), formerly known as Sovereign Specialty Chemicals, Inc. (Sovereign), and formerly known as Pierce & Stevens Corporation. This report was prepared to document the implementation of and compliance with the site management requirements associated with Henkel's Buffalo Facility located at 710 Ohio Street, Buffalo, Erie County, New York (Site), Site # V00215, in 2010 (Figure 1). The Site is an anvil shaped parcel of land for which Henkel is seeking an Assignable Release (the Release) from the New York State Department of Environmental Conservation (NYSDEC) under the Voluntary Cleanup Program (VCP). This report is intended to meet the requirements of the Site's Operations, Monitoring and Maintenance (OM&M) Plan and Site Management Plan (SMP) (URS, 2006a; URS, 2006b) as defined in regulation 6 NYCRR 375-1.2.

Historically, on-site remedial activities began in May 2003 on three areas (Area A, Area B, and Area C) which were formerly occupied by above-ground storage tanks (ASTs) that were removed in 1999 as part of a tank farm rehabilitation project. In 2003, contaminated soils were excavated from Areas B and C. The remediation of Area B was completed in 2003 with the excavation. In 2004, a high vacuum extraction (HVE) system was installed along the west wall of the excavation in Area C, where contaminated soils remained due to the proximity of an aboveground tank farm. A HVE system was also installed as a standalone treatment for the impacts in Area A, which was not excavated due to the proximity to a nitrogen tank and piping system. Groundwater collection systems were installed in excavations in Areas B and C prior to backfilling with clean material as a measure: 1) to minimize recontamination of clean fill by potentially impacted perched groundwater and 2) to maintain groundwater levels below HVE well screen. According to Annual Current Status Reports, the HVE system and groundwater collection systems ran with limited interruption from 2005 to May 2010. Since 2005 several rounds of remediation effectiveness sampling that consisted of the advancement of soil borings and the collection and analysis of soil samples for volatile organic compounds (VOCs), as well as groundwater sampling and analysis (see Appendix A for Historical Groundwater Analytical Results) from five (5) existing groundwater monitoring wells, has occurred.

In March 2010, the NYSDEC approved the request to discontinue the operation of the Area C remedial system, but required the continuation of the groundwater monitoring program as defined in the Operations, Maintenance and Monitoring plan. The frequency of sampling was limited to annual sampling.

Annual remediation effectiveness sampling was completed on November 18, 2010 in accordance with the Site's OM&M Plan to evaluate current groundwater conditions.

Effectiveness of the Remedial Program – In 2004, a High Vacuum Extraction (HVE) system, located in Area C, and a groundwater collection system, located in Areas B and C, respectively,

that recovered groundwater from the north and south sumps, performed the remediation of VOC impacts in the soil and groundwater underlying the Site. An annual subsurface investigation was performed on November 22, 2009 to collect confirmatory soil samples to demonstrate the remediation systems effectiveness. The confirmatory soil sample results were below the site-specific total organic compounds (TOC)-adjusted Remedial Action Plan (RAP) cleanup objectives. On March 10, 2010 the NYSDEC approved the request to discontinue system operation, and operation of the systems was discontinued on May 17, 2010.

The November 2010 groundwater sampling event occurred approximately six months after the systems were discontinued. No adverse groundwater impacts were noted in the results of the sampling event and detected groundwater analytes were consistent or less than analytical results from groundwater sampling collected in 2008 and 2009.

Compliance – No areas of non compliance regarding major elements of the Site Management Plan (the Site's Operations, Monitoring and Maintenance (OM&M) Plan and Site Management Plan (SMP) (URS, 2006a; URS, 2006b)) were identified.

Recommendations – Based on our review of historic soil and groundwater analytical data, as well as, the November 2010 groundwater analytical data, rebounding of volatile organics in groundwater is not evident. We are recommending that annual sampling of monitoring wells be discontinued and Henkel be released from its VCP obligations.

2.0 SITE OVERVIEW

The Site is located at 710 Ohio Street, Buffalo, Erie County, New York 14203 (Figure 1). The Site consists of approximately 1.3 acres and is bounded on the south by an east-west line paralleling the northern wall of Building 29, on the north by Rigidized Metals Corp., on the east by railroad tracks, and on the west by Ohio Street. On-site manufacturing operations have ceased. The Site is located approximately 1.5 miles southeast of downtown Buffalo and is located in a highly industrialized corridor on Ohio Street.

Between 1996 and 2003, the Site underwent several site investigations. On-site remedial activities began in May 2003 on three areas (Area A, Area B, and Area C) which were formerly occupied by above-ground storage tanks (ASTs) which were removed in 1999 as part of a tank farm rehabilitation project. The remedial action (RA) was divided into underground and aboveground activities. Underground activities began on May 1, 2003 with site mobilization and continued until August 1, 2003.

Underground activities included excavation of contaminated soils from Areas B and C. An HVE system was installed along the west wall of the excavation in Area C, where contaminated soils remained due to the proximity of an aboveground tank farm. A HVE system was also installed as a stand-alone treatment for the impacts in Area A, which was not excavated due to the proximity to a nitrogen tank and piping system. Based on the pilot test of the HVE system conducted in Area A, five (5) extraction points were installed where necessary. Groundwater collection systems were installed in excavations associated with Areas B and C prior to backfilling with clean material as a measure: 1) to minimize recontamination of clean fill by potentially impacted perched groundwater and 2) to maintain groundwater levels below HVE well screen. Shallow subsurface water under the site is impacted in the areas where the overlaying soil was historically impacted.

Aboveground activities began at the completion of the underground activities and continued until November 2004. At that time the HVE treatment system was completed, the equipment was housed in a temporary shelter, and the electrical power was connected to the treatment building and system. The effluent from the groundwater collection and HVE treatment systems was discharged to the local sanitary sewer under Buffalo Sewer Authority Permit No. 08-03-BU108.

Based on our review of historical reports, URS maintained and monitored the HVE treatment systems in accordance with the Site's OM&M Plan (URS, 2006a). According to Annual Current Status Reports (URS 2007a, 2008a, 2009a, and 2010a), the HVE system and groundwater collection systems ran with limited interruption from 2005 through May 2010. Replacement sump pumps were installed as part of the maintenance of the groundwater collection system in the early part of 2009. Maintenance and monitoring records for the system were maintained by URS Corporation (URS) of Chicago, Illinois on behalf of Henkel.

Remediation effectiveness sampling, consisting of the installation of soil borings and the collection and analysis of soil samples for volatile organics, as well as, groundwater sampling and analysis from five (5) existing groundwater monitoring wells, was performed. The November 2009 remediation effectiveness sampling confirms the results of the May 2005, December 2007, and December 2008 remediation effectiveness sampling in Area A. Specifically, URS completed remediation effectiveness sampling in November 2009 in accordance with the Site's OM&M Plan (URS, 2006a) to evaluate the effectiveness of the HVE system on remaining volatile organic compound (VOC) impacts. Annual sampling locations

focused on "hot spot" areas from previous remediation effectiveness sampling and Area A due to requirements by NYSDEC.

A review of historical soil sampling results indicate that toluene is the primary contaminant of concern, which has remained above site-specific TOC adjusted RAP cleanup objectives in the western edge of Area C, but not in Area A. In order to evaluate whether the current system is remediating the impacted soil, URS collected soil samples in locations that had residual toluene and other VOCs remaining after the soil excavation project of 2003. Remediation effectiveness sampling included:

- The advancement of four soil borings along the western edge of Area C, one soil boring along the eastern edge of Area C and three soil borings along the center of Area A (which has not had detectable VOCs since 2003);
- 2) The collection of soil samples from these borings;
- 3) The collection of groundwater samples from monitoring wells MW-1, MW-2, MW-3R, MW-4 and MW-5 and the two existing sumps; and
- 4) The collection of a vapor sample from the HVE system.

A total of eight (8) soil samples were collected by URS on November 22, 2009. All soil samples were analyzed for VOCs, leachable sulfate, manganese, and TOC.

Soil samples were compared to the site-specific TOC-adjusted RAP cleanup objectives. These cleanup objectives were established during the RA as presented in the Remedial Action Completion Report (RACR) for Areas A, B, and C (URS, 2006b). In addition, soil samples were compared to soil cleanup objectives for industrial sites established under the Brownfield Cleanup Program (BCP). Results of the 2009 remediation effectiveness sampling event indicted that toluene remains above the site-specific TOC-adjusted cleanup objective, but below the BCP soil cleanup objective of 1,000 mg`kg in soil sample SB-4-09 located along the western edge of Area C. Methylcyclohexane concentrations were above site-specific TOC-adjusted cleanup objectives in soil samples SB-5-09 and SB-6-09. Soil sample SB-5-09 also had a level of cyclohexane above site-specific TOC-adjusted cleanup objectives. BCP soil cleanup objectives have not been established for methylcylcohexane and cyclohexane.

URS also collected groundwater samples on November 23 and 24, 2009 from monitoring wells MW-1, MW-2, MW-3R, MW-4, and MW-5 and the two sumps (See Appendix A for a Summary of Historical Groundwater Analytical Results). All groundwater samples were analyzed for VOCs and leachable sulfate. Groundwater samples were compared to NYSDEC's Division of Water Technical and Operations Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Water Class GA. VOCs were found at levels below ambient water quality standards.

In addition, a vapor sample was collected from the HVE system on January 18, 2010. The sample was analyzed for VOCs. Dichlorodifluoromethane, chloromethane, trichlorofluoromethane, acetone, isopropyl alcohol, methylene chloride, 1,1-dichloroethane, methyl ethyl ketone, benzene, and toluene were detected in the vapor sample. Mass removal calculations indicated 1.074 pounds of volatile organics were removed from the Site during 2009.

Based on the 2009 Remediation Effectiveness sampling event, on March 5, 2010, Henkel submitted a written request to the NYSDEC to discontinue the HVE system. In that letter, Henkel contended that:

- The results of the November 2009 sampling confirm the results of the May 2005, December 2007 and December 2008 Environmental Effectiveness Sampling for VOC impacts at Area A. Area A meets the established cleanup objectives, as such, Henkel requested that the HVE system associated with Area A and any future sampling be discontinued.
- Remediation was deemed complete in Area B after the 2003 remediation activities; therefore, no HVE system was installed in Area B.
- The HVE system continues to remediate toluene impacts at Area C; however, the system has not fully remediated the VOC impacts along the western edge of Area C to concentrations below the site-specific TOC-adjusted RAP cleanup objectives. However, the 2009 results show that toluene is below the Brownfield Cleanup Program (BCP) soil cleanup objective for industrial sites. As such, Henkel requested that the HVE system associated with Area C be discontinued.

In a March 10, 2010 letter to Henkel Corporation, Mr. Martin L. Doster, NYSDEC indicated that the Department approved of the following documents:

- Remedial Action Completion Report (2006)
- Operations, Maintenance and Monitoring Plan (2007)
- Annual Current Conditions Reports (2007, 2008, 2009, 2010)

However, the State noted that the Annual Certification of Institutional/Engineering Controls was not signed as part of the annual report.

Additionally, according to the latest monitoring report, URS has indicated that soil has been remediated to levels that have approached the Site Specific Action Levels. Based upon the representations made in the reports, including the latest groundwater data, the NYSDEC approved the request to discontinue the operation of the Area C remedial system. However, in order to monitor the effects of discontinuing the system, the NYSDEC required the continuation of the groundwater monitoring program as defined in the Operations, Maintenance and Monitoring plan. The frequency of sampling was limited to annual sampling.

3.0 <u>EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND</u> <u>PROTECTIVENESS</u>

As pursuant to the NYSDEC's March 10, 2010 letter to Henkel Corporation, soil has been remediated to levels that have approached the Site Specific Action Levels. Based upon representations made in past reports, the NYSDEC approved the request to discontinue the operation of HVE and groundwater recovery system in Area C. The groundwater monitoring frequency was reduced to annual sampling at that time, and the November 2010 groundwater sampling event was conducted as per the Operations, Maintenance and Monitoring Plan (URS 2006a). The November 2010 groundwater sampling event occurred approximately six months after the systems were discontinued. No adverse groundwater impacts were noted in the results of the sampling event and detected groundwater analytes were consistent or less than analytical results from groundwater sampling collected in 2008 and 2009. Based on our findings, the remedy has been effective and the conditions at the Site remain fully protective of public health and the environment.

4.0 INSTITUTIONAL AND/OR ENGINERING CONTROLS PLAN

This report was prepared in accordance with the Certification Guidance for the PRR for the site remedial programs undertaken pursuant to subdivisions 1.2(a) of DER-10, where institutional control/engineering control (IC/EC) certification is to be provided.

Pursuant to the requirements of the NYSDEC VCP and the Site's Declaration of Covenants and Restrictions (URS, 2006a), the Site's remedial system and institutional controls remained intact through 2010. It should be noted, however, as approved by NYSDEC, the HVE system, located in Area C, and a groundwater collection system, located in Areas B and C, was discontinued on May 17, 2010. The Annual Certification of Institutional/Engineering Controls at Voluntary Clean-up Program Site can be found in Appendix B. Conditions at the Site remain fully protective of public health and the environment.

5.0 MONITORING PLAN COMPLIANCE REPORT

Groundwater monitoring was conducted in November 2010 to satisfy the sampling frequency requirement as defined in the March 10, 2010 letter (NYSDEC 2010a) from the NYSDEC. Annual groundwater monitoring consists of the sampling of the five (5) existing monitoring wells (MW-1, MW-2, MW-3R, MW-4, and MW-5). Sampling the north and south sumps was ceased with the discontinuation of the operation of the HVE in Area C. The groundwater monitoring parameters and analytical methods are summarized as follows:

Groundwater

Schedule (1)	Matrix	Parameter	Method	Number of Samples
Annually	Groundwater	TCL VOCs	EPA Method 8260B	Five (5) – Plus one (1) field duplicate and one (1) trip blank
Annually	Groundwater	Water Elevation	NA	Five (5)

5.1 Summary of Monitoring

Groundwater monitoring was conducted on November 18, 2010 and included the collection of groundwater samples from monitoring wells MW-1, MW-2, MW-3R, and MW-5. Monitoring well MW-4 was found to be dry during the sampling event; a sample from MW-4 was not available for analysis. Prior to collecting the samples, depth to groundwater was measured from the notched point on the top of casing of each monitoring well. The water level data, well diameter and depth were used to calculate the volume of water in each well. The wells were then purged of at least three (3) well volumes and sampled following USEPA low-flow techniques, after the well was recharged to 90 percent of original depth to groundwater.

A Field duplicate was collected from MW-1. A trip blank was also submitted to the laboratory. All groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B. Groundwater samples were compared to NYSDEC's Division of Water Technical and Operations Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Water Class GA.

Table 1 (following text) provides a summary of the groundwater sample analytical results for the November 2010 event. Depth to groundwater was measured at the time of sample collection. Table 2 (follows text) provides a summary of groundwater elevations. Figure 2 (follows text) is a groundwater flow map based on the groundwater elevations. Laboratory analytical data can be found in Appendix C.

Groundwater flow was determined to be to the west in the unconsolidated saturated zone towards the Buffalo Outer Harbor. It should be noted that with MW-4 dry, the well array is linear in nature. In general, however, groundwater flow direction is consistent with previous flow direction measurements.

5.2 Comparisons to Remedial Objectives

As shown in Table 1, VOCs were found at levels below ambient water quality standards. MW-1 and the field duplicate of groundwater monitoring well MW-1 had levels of chloroethane above TOGS 1.1.1 groundwater effluent limitations. Concentrations of chloroethane were 7.1 ug/L and 6.8 ug/L, respectively.

5.3 Monitoring Deficiencies

No monitoring deficiencies were noted. However, The following should be noted:

- At some point after the 2009 groundwater monitoring event, a snow plow presumably damaged the collar of monitoring well MW-1. HRP inspected the well and determined it's integrity had not been compromised. The well was repaired on October 25, 2010 (see Appendix D for photograph)
- Monitoring well MW-4 was found to be dry during the sampling event and thus, a sample from MW-4 was not collected and submitted for analysis.

5.4 Quality Assurance / Quality Control Samples

A data review was completed in accordance with NYSDEC's guidance for the development of Data Usability Summary Reports (DUSRs). All analytical results are considered usable based on the Quality Control (QC) information provided by the laboratory. The laboratory followed industry-accepted test methods and performed standard QC analyses as required by the referenced methods (USEPA, 1998). Some sample results were reported with elevated reporting limits. These results are judged usable for quantitative purposes; however, the elevated reporting limits may prevent conclusive confirmation that the target contaminants of concern (COCs) are not present at a specific location if the reporting limit is above the associated risk screening level.

Based on the assessment some analytical results were qualified as estimated (flagged with a "J" (estimated) or "UJ" (estimated and below detection limits)) due to laboratory QC results outside of laboratory control limits. Additionally, some results were revised to non-detect results (flagged as "U" (below detection limits) at the reported value) due to the presence of the chemical in the associated method blank.

5.5 Conclusions and Recommendations for Improvements

The 2010 groundwater monitoring event indicated that low levels of VOCs were present in monitoring well MW-1 and the field duplicate taken from MW-1. VOC impacts were not present in the down gradient monitoring well MW-3R, indicating the impacts are not migrating off-site.

Based on our review of analytical data from groundwater monitoring events from 2005 to 2010, an overall decreasing trend in dissolved-phase targets compounds concentrations is observed at the Site due to the previously mentioned remedial efforts of Henkel, as well as presumed, ongoing natural attenuation. In addition, detected groundwater analytes in 2010 were consistent or less than analytical

results from groundwater sampling collected in 2008 and 2009. A historical summary of the groundwater impacts can be found in Appendix A.

No adverse groundwater impacts were noted in the results of the sampling event and Pursuant to the requirements of the NYSDEC VCP and the Site's Declaration of Covenants and Restrictions (URS, 2006a), the Site's remedial system and institutional controls remained intact, but shutdown starting in May 2010. The Annual Certification of Institutional: Engineering Controls at Voluntary Clean-up Program Site can be found in Appendix B. Conditions at the Site remain fully protective of public health and the environment.

Based of the latest round of groundwater monitoring (November 18, 2010) and historical soil and groundwater sample results all cleanup criteria relating to satisfactory VCP site-specific cleanup levels have been met. As such, we are recommending that annual sampling of monitoring wells be discontinued and Henkel be released from further VCP obligations.

6.0 OPERATIONS AND MAINTENANCE PLAN COMPLIANCE REPORT

6.1 Summary of O&M Completed During Reporting Period

As documented in their July 28, 2010 letter (URS 2010b) to Henkel Corporation, URS Corporation (URS) completed decommissioning activities to discontinue operation of the high vacuum extraction (HVE) and groundwater collection systems at the Site. A summary of closure activities as described by URS is provided below. Between May 17 and June 18, 2010, URS completed actions to permanently close the remediation system pending final closure from the NYSDEC. At that time, URS reported taking several steps necessary to ensure restart of the remediation system, if necessary, at a later date according to H2K, Inc., the system designer. The five (5) steps included:

- 1. Draining water from the remediation system to prevent freezing pipes,
- 2. Removing the north and south sumps located in Areas "B" and "C", respectively,
- 3. Cleaning of all equipment to prevent biogrowth
- 4. Removing and disposing of the liquid and vapor phase carbon, and
- 5. Turning the main disconnect switch to the off position.

URS completed a cleaning of the systems and a total of nineteen drums were filled and disposed of by ESG at the American Recyclers Corporation in Tonawanda, New York during the cleaning of the systems. While scraping the carbon out of the liquid phase carbon vessels ESG noted the presence of approximately one (1) millimeter thick slit like holes at the bottom of the vessels. URS has not observed leakage from these vessels and the holes appear to be from the wear and tear of the system. If Henkel elects to restart the system these holes may need to be repaired prior to placing carbon in the vessels.

URS removed the pumps from the sumps located in Areas B and C. (north and south sumps, respectively). Both pumps are functional and were placed inside the equipment trailer. On June 18, 2010 URS personnel completed the shutdown of the HVE and groundwater collection systems. The treatment trailer was cleaned and the oil was changed in the blower. The bag filter cages were left out of the housings and the housings were left open to prevent the accumulation of moisture. Pipe between the lead and lag vapor phase carbon vessels was reattached. The side hatches were left off of the liquid phase carbon vessels to prevent the accumulation of moisture. Some bolts remain off the tops of the carbon vessels. These bolts are difficult to attach and are only necessary if sealing the vessel shut. The vessels remain secured to the ground. The knockout pot was emptied. URS personnel confirmed that water is not present in the aboveground components of the systems. All trash and remedial waste has been removed from the site. The treatment trailer was locked.

6.2 Evaluation of Remedial Systems

Based on HRP's September 28, 2010 site inspection and November 18, 2010 groundwater monitoring event, the remedial system appears decommissioned and secure as previously described in the URS closure report (URS 2010b).

6.3 **O&M** Deficiencies

No O&M deficiencies were reported to Henkel during the reporting period.

6.4 Conclusions and Recommendations

As approved by the NYSDEC, HVE system and groundwater collection systems have been shutdown. The remedial system appears decommissioned and secure as previously described. Based on the November 2010 groundwater sampling event, re-activation on the HVE and groundwater collection systems is not recommended.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The November 18, 2010 remediation effectiveness sampling confirms the results of the May 2005, December 2007, December 2008, and November 2009 remediation effectiveness sampling across the site. Results from the sampling event indicate the majority of priority-target contaminants are non-detect in groundwater, with the exception of Chloroethane [7.1 micrograms per liter (ug/L)]. In addition, target contaminants of previous sampling events indicate residual contamination is below current cleanup objectives associated with industrial sites. An overall decreasing trend in dissolved-phase target compound concentrations is observed at the Site due to the previously mentioned remedial efforts of Henkel as well as presumed, ongoing natural attenuation and other processes. Groundwater was monitored for potential rebound in November 2010 following system shutdown. No evidence of rebound was noted during this sampling event.

Pursuant to the requirements of the NYSDEC VCP and the Site's Declaration of Covenants and Restrictions (URS, 2006a), the Site's remedial system and institutional controls remained intact for 2010. The Annual Certification of Institutional/Engineering Controls at Voluntary Clean-up Program Site can be found in Appendix B. Conditions at the Site remain fully protective of public health and the environment.

Based on our review of historic soil and groundwater analytical data, as well as the November 2010 groundwater analytical data, rebounding of volatile organics in groundwater is not evident. No adverse groundwater impacts were noted in the results of the 2010 groundwater sampling event and detected groundwater analytes were consistent or less than analytical results from groundwater sampling collected in 2008 and 2009. As such, we are recommending that annual sampling of monitoring wells be discontinued and Henkel be released for its VCP obligations.

8.0 REFERENCES

URS Corporation. 2002. Sovereign Packaging Group (Formerly Pierce & Stevens), Remedial Action Plan, 710 Ohio Street, Buffalo, New York. May. Chicago, Illinois.

URS Corporation. 2006a. Operations, Monitoring and Maintenance Plan, Sovereign Specialty Chemicals, 710 Ohio Street, Buffalo, New York. October. Chicago, Illinois.

URS Corporation. 2006b. Remedial Action Completion Report, Areas of Contamination "A", "B" and "C", Sovereign Specialty Chemicals, 710 Ohio Street, Buffalo, New York. October. Chicago, Illinois.

URS Corporation. 2007a. Annual Current Conditions Report – 2006, Henkel Corporation, Buffalo Facility. January. Chicago, Illinois.

URS Corporation. 2007b. Soil, Groundwater and Vapor Monitoring – 2007 Work Plan, Henkel Corporation, Buffalo Facility. October. Chicago, Illinois.

URS Corporation. 2008a. Annual Current Conditions Report – 2007, Henkel Corporation, Buffalo Facility. April. Chicago, Illinois.

URS Corporation. 2008b. Soil, Groundwater and Vapor Monitoring – 2008 Work Plan, Henkel Corporation, Buffalo Facility. December. Chicago, Illinois.

URS Corporation. 2009a. Annual Current Conditions Report – 2008, Henkel Corporation, Buffalo Facility. May. Chicago, Illinois.

URS Corporation. 2009b. Soil, Groundwater and Vapor Monitoring – 2009 Work Plan, Henkel Corporation, Buffalo Facility. November. Chicago, Illinois.

URS Corporation. 2010a. Annual Current Conditions Report – 2009, Henkel Corporation, Buffalo Facility. March. Chicago, Illinois.

URS Corporation. 2010b. *Shutdown of High Vaccuum Extraction and groundwater Collection Systems, HenkelBuffalo Facility*. July 27, 2010. Chicago, Illinois.

NYSDEC 2010a. Letter to Jack Garvanta, Henkel Corporation, Sovereign Specialty Chemicals, Inc., Site# V00215, Buffalo, New York. March 10, 2010.

Henkel Corporation 2010a, Letter to Martin Doster, NYSDEC, Henkel Corporation, VCP Project# V00215-9, March 5, 2010

Henkel Corporation 2010b, Email to <u>MLDoster@gw.dec.state.us.gov</u>, Sovereign Specialty Chemicals, Inc., Site# V00215, Buffalo, New York. March 15, 2010

TABLE 1 Summary of Groundwater Sample Analytical Results TCL VOCs by EPA Method 8260B Sovereign Specialty Chemicals, Inc. Buffalo, New York All values are in ug/L

Parameters	NYSDEC Class GA	MW-1	MW-2	MW-3R	MW-4	MW-5	X-1 (MW-1 Dup)	Trip Blank
	ontenia	1 1/18/2010	1/18/2010	1 1/18/2010	11/18/2010	1 1/18/2010	1 1/18/2010	1 1/18/2010
1 1 1 Trichloroothopo	6	ND	ND	ND	NS	ND	ND	ND
1,1,2,2 Totrashloroothano	5	ND	ND	ND	NS	ND	ND	ND
1,1,2,2=1etrachioroethane	1	ND	ND	ND	NS	ND	ND	ND
1.1.2-Trichlorotrifluoroethane (freon 113)	5	ND	ND	ND	NS	ND	ND	ND
1 1-Dichloroethane	5	ND	0.91.1	ND	NS	ND	ND	ND
1 1-Dichloroethene	5	ND	ND	ND	NS	ND	ND	ND
1 2 4-Trichlorobenzene	5	ND	ND	ND	NO	ND	ND	ND
1.2.4 -Trimethylbenzene	5	ND	ND	ND	NS	ND	ND	ND
1.2-Dibromo-3-chloropropage	0.04	ND	ND	ND	NS	ND	ND	ND
1.2-Dibromoethane (EDB)	NF	ND	ND	ND	NO	ND	ND	ND
1.2-Dichlorobenzene	4.7	ND	ND	ND	NS	ND	ND	ND
1.2-Dichloroethane	0.6	ND	ND	ND	NS	ND	ND	ND
1.2-Dichloropropage	1	ND	ND	ND	NO	ND	ND	ND
1 3 5 -Trimethylbenzene	5	ND	ND	ND	NS	ND	ND	ND
1 3-Dichlorobenzene	5	ND	ND	ND	NS	ND	ND	ND
1.4-Dichlorobenzene	5	ND	ND	ND	NS	ND	ND	ND
1 4 -Dioxane	NF	ND	ND	ND	NS	34 J	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	NS	ND	ND	ND
2-Hexanone (Methyl butyl ketone/MBK)	50	ND	ND	ND	NS	ND	ND	ND
4-Isopropyltoluene	5	ND	ND	ND	NS	ND	ND	ND
4-Methyl-2-Pentanone	NF	ND	ND	ND	NS	ND	ND	ND
Acetone	50	ND	ND	ND	NS	ND	ND	ND
Benzene	1	ND	ND	ND	NS	ND	ND	ND
Bromodichloromethane	50	ND	ND	ND	NS	ND	ND	ND
Bromoform	50	ND	ND	ND	NS	ND	ND	ND
Bromomethane	5	ND	ND	ND	NS	ND	ND	ND
Carbon disulfide	60	ND	ND	ND	NS	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	NS	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	NS	ND	ND	ND
Chlorodibromomethane	5	ND	ND	ND	NS	ND	ND	ND
Chloroethane	5	7.1	ND	ND	NS	0.77 J	6.8	ND
Chloroform	7	ND	ND	ND	NS	ND	ND	ND
Chloromethane	NE	ND	ND	ND	NS	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	NS	ND	ND	ND
cis-1,3-Dichloropropene	NE	ND	ND	ND	NS	ND	ND	ND
Cyclohexane	NE	ND	ND	ND	NS	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	NS	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	NS	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	NS	ND	ND	ND
Methyl Acetate	NE	ND	ND	ND	NS	ND	ND	ND
Methyl tert-Butyl Ether	5	ND	ND	ND	NS	ND	ND	ND
Methylcyclohexane	NE	7.0	ND	ND	NS	ND	7.5	ND
Methylene chloride	5	ND	ND	ND	NS	ND	ND	ND
Naphthalene	10	ND	ND	ND	NS	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	NS	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	NS	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	NS	ND	ND	ND
Styrene	5	ND	ND	ND	NS	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	NS	ND	ND	ND
Tetrachloroethene	0.7	ND	ND	ND	NS	ND	ND	ND
Toluene	5	ND	ND	ND	NS	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	NS	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	NS	ND	ND	ND
Trichloroethene	5	ND	ND	ND	NS	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	ND	NS	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	NS	ND	ND	ND
Xylenes, total	5	ND	ND	ND	NS	ND	ND	ND

 Kylenes, total
 5
 1

 A bold cell indicates the compound was detected above labortaory reporting limits
 A Highlighted cell indicates the compound was reported above guidance values

 NE
 Not Established
 NS = Not Sampled

 J = Analyte detected at level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL).
 Concentrations within this range are estimated

 µg/L = micrograms/Liter = ppb (parts per billion)
 For the Sampled
 For the Sampled

Table 2 Relative Groundwater Elevations Henkel Corporation Sovereign Specialty Chemicals, Inc. Buffalo, New York

			Decemb	per 2007	Decem	ber 2008	Novem	per 2009	Novem	per 2010
		Casing	Depth to	GW						
Well ID	Units	Elevation	Water ^[1]	Elevation	Water ^[2]	Elevation	Water ^[3]	Elevation	Water ^[4]	Elevation
MW-1	feet	580.95	3.31	577.64	2.93	578.02	3.24	577.71	5.08	575.87
MW-2	feet	581.27	4.33	576.94	3.86	577.41	4.15	577.12	5.90	575.37
MW-3R	feet	580.37	10.26	570.11	8.22	572.15	9.23	571.14	10.00	570.37
MW-4	feet	584.6	7.11	577.49	7.3	577.3	6.95	577.65	Dry	Dry
MW-5	feet	581.91	4.22	577.69	4.5	577.41	4.07	577.84	6.13	575.78

Notes:

^[1] Depth to water collected December 19-21, 2007 (URS)

^[2] Depth to water collected December 23-30, 2008 (URS)

^[3] Depth to water collected November 23-24, 2009 (URS)

^[4] Depth to water collected November 18, 2010 (HRP)

Dry - No groundwater found in the well

HRP Associates, Inc.

Creating the Right Solutions Together

Figure 1 - Site Location Henkel Corporation 710 Ohio Road Buffalo, New York

HRP Associates, Inc.

Creating the Right Solutions Together

11X17 LANDSCAPE, 2/3/2011 3:41:35 PM, Adobe PDF, Plot stamp

APPENDIX A HISTORICAL GROUNDWATER SAMPLING ANALYTICAL RESULTS

Table 1-2 Summary of Groundwater TOGS 1.1.1 Exceedances For the Period Beginning 2006 and Ending 2009 Annual Current Conditions Report Henkel Corporation Buffalo, New York

		T.O.G.S.										
PARAMETER	Units	1.1.1			MW-1			MW-2	North	Sump	South	Sump
			8/29/2006	12/19/2007	12/19/2007 - FD	12/29/2008	12/29/2008 - FD	8/29/2006	8/29/2006	12/29/2008	8/29/2006	12/19/2007
Chloromethane	ug/L	N.E.	1 U	<u>1 U</u>	1 U	0.3 U	0.3 U	1 U	5 U	0.3 U	1 U	10
Bromomethane	ug/L	5	1 UJ	1 U	10	0.3 U	0.3 U	1 UJ	5 UJ	0.3 U	1 UJ	10
Vinyl Chloride	ug/L	2	0.9 J	1 U	10	0.2 U	0.2 U	10	5 U	0.2 U	0.6 J	10
Chloroethane	ug/L	5	84 J	32	35	18	17	1 UJ	8 J	7	61 J	9
Methylene Chloride	ug/L	5	0.7 UJ	1 U	10	0.4 UJ	0.4 UJ	1 UJ	4 UJ	0.4 UJ	1 UJ	1 U
Acetone	ug/L	50	4 J	6	5	10	10	3 J	25 UJ	10	2 J	7
Carbon Disulfide	ug/L	N.E.	10	1 U	10	0.2 U	0.2 U	10	5 U	0.2 U	1 U	10
1,1-Dichloroethene	ug/L	5	10	1 U	10	0.3 U	0.3 U	10	5 U	0.3 U	1 U	10
1,1-Dichloroethane	ug/L	5	5	1	1	0.8 U	0.8 U	6	5 U	0.8 U	9	0.6 J
Chloroform	ug/L	7	10	10	10	0.3 U	0.3 U	10	5 U	0.3 U	10	10
1,2-Dichloroethane	ug/L	0.6	10	1 U	10	0.2 U	0.2 U	10	5 U	0.2 U	1 U	1 U
2-Butanone	ug/L	N.E.	5 U	7	5	10	10	5 U	25 U	10	5 U	5 U
1,1,1-Trichloroethane	ug/L	5	10	1 U	10	0.3 U	0.3 U	4	5 U	0.3 U	1 U	10
Carbon Tetrachloride	ug/L	5	10	10	10	0.3 U	0.3 U	10	5 U	0.3 U	10	1 U
Bromodichloromethane	ug/L	50	10	10	10	0.4 U	0.4 U	1 U	5 U	0.4 U	10	10
1,2-Dichloropropane	ug/L	1	10	10	10	0.1 U	0.1 U	10	5 U	0.1 U	10	1 U
cis-1,3-Dichloropropene	ug/L	N.E.	10	1 U	10	0.4 U	0.4 U	10	5 U	0.4 U	1 U	1 U
Trichloroethene	ug/L	5	10	1 U	10	0.2 U	0.2 U	10	5 U	0.2 U	1 U	10
Dibromochloromethane	ug/L	50	10	10	10	0.3 U	0.3 U	10	5 U	0.3 U	10	1 U
1,1,2-Trichloroethane	ug/L	1	10	1 U	1 U	0.2 U	0.2 U	10	5 U	0.2 U	1 U	1 U
Benzene	ug/L	1	12	3	3	0.7	0.7	10	5 U	0.2 U	2	1 U
trans-1,3-Dichloropropene ^[b]	ug/L	0.4	1 U	1 U	1 U	0.4 U	0.4 U	1 U	5 U	0.4 U	1 U	1 U
Bromoform	ug/L	50	1 UJ	1 U	1 U	0.2 U	0.2 U	1 UJ	5 UJ	0.2 U	1 UJ	1 U
4-Methyl-2-pentanone	ug/L	N.E.	5 U	5 U	5 U	0.9 U	0.9 U	5 U	25 U	0.9 U	5 U	5 U
2-Hexanone	ug/L	50	5 U	5 U	5 U	1 U	1 U	5 U	25 U	1 U	5 U	5 U
Tetrachloroethene	ug/L	5	1 U	1 U	1 U	0.4 U	0.4 U	1 U	5 U	0.4 U	1 U	1 U
Toluene	ug/L	5	2	1 U	1 U	0.5 U	0.5 U	1 U	5 U	0.5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	ug/L	5	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Clorobenzene	ug/L	5	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Ethylbenzene	ug/L	5	0.6 J	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Styrene	ug/L	5	10	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Total Xylenes ^[a]	ug/L	5	2 J	3 U	3 U	0.9 U	0.9 U	3 U	15 U	0.9 U	3 U	3 U
Dichlorodifluoromethane	uq/L	5	10	1 U	10	0.3 U	0.3 U	10	5 U	0.3 U	1 U	1 U
Trichlorofluoromethane	uq/L	5	1 UJ	1 U	1 U	0.2 U	0.2 U	1 UJ	5 UJ	0.2 U	1 UJ	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	uq/L	5	1 UJ	1 U	1 U	0.3 U	0.3 U	1 UJ	5 UJ	0.3 U	1 UJ	1 U
trans-1,2-Dichloroethene	ug/L	5	2	1 U	1 U	0.1 U	0.1 U	1 U	5 U	0.1 U	0.7 J	1 U
Methyl-t-Butyl Ether (MTBE)	ug/L	N.E.	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
cis-1,2-Dichloroethene	ug/L	5	3	0.5 J	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1	1 U
Cyclohexane	ug/L	N.E.	17	10	9	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Methylcyclohexane	ug/L	N.E.	25	16	15	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	3
1,2-Dibromoethane	uq/L	N.E.	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
Isopropylbenzene	ug/L	5	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
1,3-Dichlorobenzene	ug/L	3	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
1,4-Dichlorobenzene	ug/L	3	1 U	1 U	1 U	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
1,2-Dichlorobenzene	ug/L	3	1 U	1 U	10	0.2 U	0.2 U	1 U	5 U	0.2 U	1 U	1 U
1,2-Dibromo-3-chloropropane	ug/L	0.04	1 UJ	1 U	1 U	1 U	1 U	1 UJ	5 UJ	1 U	1 UJ	1 U
1,2,4-Trichlorobenzene	ug/L	5	1 U	1 U	1 U	0.4 U	0.4 U	1 U	5 U	0.4 U	1 U	1 U
Methyl Acetate	ug/L	N.E.	1 UJ	1 U	1 U	0.2 UJ	0.2 UJ	1 UJ	5 UJ	0.2 UJ	1 UJ	1 U

Notes: ^[8] Remediation objective for 1,2-Xylene; 1,3-Xylene; and 1,4-Xylene is used. ^[8] Remediation objective for 1,3-Dichloropropene is used. FD = Field Duplicate N.E. = Not Established ug/L = microgram per liter J = Indicates the compound concentration was estimated the result was below the sample reporting limit or quality control criteria were not met. U = Indicates the compound was not detected above the laboratory detection limit and/or was detected in the blank. A highlighted cell indicates the compound was reported

A highlighted cell indicates the compound was reported above T.O.G.S. 1.1.1 Ambient Water Quality Standards and Guidance Values.

A bold cell indicates the compound was detected above the laboratory reporting limit.

Table 3-2 Groundwater Analytical Results November 2009 Annual Current Conditions Report Henkel Corporation Buffalo, New York

		T.O.G.S.					
PARAMETER	Units	1.1.1	MW-1 ^[1]	MW-2 ^[1]	MW-3R ^[1]	MW-4 ^[2]	MW-5 ^[2]
1,1,1-Trichloroethane	ug/L	5	1.00 U	3.00	1.00 U	1.00 U	1.00 U
1,1,2,2-Tetrachloroethane	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-Trichloroethane	ug/L	1	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1-Dichloroethane	ug/L	5	1.00 U	3.60	1.00 U	1.00 U	0.79 J
1,1-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	ug/L	0.04	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromoethane	ug/L	N.E.	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichloroethane	ug/L	0.6	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
1,2-Dichloropropane	ug/L	1	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2-Butanone	ug/L	N.E.	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
2-Hexanone	ug/L	50	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
4-Methyl-2-pentanone	ug/L	N.E.	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Acetone	ug/L	50	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Benzene	ug/L	1	0.53 J	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	ug/L	50	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromoform	ug/L	50	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
Bromomethane	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon Disulfide	ug/L	N.E.	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon Tetrachloride	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroethane	ug/L	5	2.60	1.00 U	1.00 U	1.00 U	0.50 J
Chloroform	ug/L	7	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloromethane	ug/L	N.E.	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
cis-1,2-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	ug/L	N.E.	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Clorobenzene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Cyclohexane	ug/L	N.E.	1.80	1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	ug/L	50	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
Dichlorodifluoromethane	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Ethylbenzene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Isopropylbenzene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methyl Acetate	ug/L	N.E.	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
Methylcyclohexane	ug/L	N.E.	0.60 J	1.00 U	1.00 U	1.00 U	1.00 U
Methylene Chloride	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Methyl-t-Butyl Ether (MTBE)	ug/L	N.E.	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Styrene	ug/L	5	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ	1.00 UJ
Tetrachloroethene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
I otal Xylenes ^{es}	ug/L	5	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
trans-1,2-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
trans-1,3-Dichloropropene	ug/L	0.4	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
I richlorofluoromethane	ug/L	5	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
vinyi Unioride	ug/L	2	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Laashahla Sulfata	mc/		E 00 11	01.20	E 00 11	E 00 11	E 00 11
Leachable Sullate	mg/L	N.E.	0.00 U	91.20	0.00 U	5.00 U	5.UU U

Notes: ^[1] Groundwater sample collected November 24, 2009.

^[2] Groundwater sample collected November 23, 2009.

^[3] Duplicate sample collected from MW-4 on

December 29, 2008.

- ^[a] Remediation objective for 1,2-Xylene; 1,3-Xylene; and 1,4-Xylene is used.
- ^[b] Remediation objective for 1,3-Dichloropropene is used.
- N.E. = Not Established

ug/L = microgram per liter

- J = Indicates the compound concentration was estimated the result was below the sample reporting limit or quality control criteria were not met.
- U = Indicates the compound was not detected above the laboratory detection limit and/or was detected in the blank.
- A highlighted cell indicates the compound was reported above T.O.G.S. 1.1.1 Ambient Water Quality Standards and Guidance Values.
- A bold cell indicates the compound was detected above the laboratory method detection limit.

Table 3-2 Groundwater Analytical Results November 2009 Annual Current Conditions Report Henkel Corporation Buffalo, New York

		T.O.G.S.			Field
PARAMETER	Units	1.1.1	North Sump ^[1]	South Sump ^[1]	Duplicate ^[3]
1,1,1-Trichloroethane	ug/L	5	1.00 U	1.00 U	1.00 U
1,1,2,2-Tetrachloroethane	ug/L	5	1.00 U	1.00 U	1.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5	1.00 U	1.00 U	1.00 U
1,1,2-Trichloroethane	ug/L	1	1.00 U	1.00 U	1.00 U
1,1-Dichloroethane	ug/L	5	1.40	0.61 J	1.00 U
1,1-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	ug/L	5	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	ug/L	0.04	1.00 U	1.00 U	1.00 U
1,2-Dibromoethane	ug/L	N.E.	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U
1,2-Dichloroethane	ug/L	0.6	1.00 UJ	1.00 UJ	1.00 UJ
1,2-Dichloropropane	ug/L	1	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	ug/L	3	1.00 U	1.00 U	1.00 U
2-Butanone	ug/L	N.E.	5.00 U	5.00 U	5.00 U
2-Hexanone	ug/L	50	5.00 U	5.00 U	5.00 U
4-Methyl-2-pentanone	ug/L	N.E.	5.00 U	5.00 U	5.00 U
Acetone	ug/L	50	5.00 U	5.00 U	5.00 U
Benzene	ug/L	1	1.00 U	1.00 U	1.00 U
Bromodichloromethane	ug/L	50	1.00 U	1.00 U	1.00 U
Bromoform	ug/L	50	1.00 UJ	1.00 UJ	1.00 UJ
Bromomethane	ug/L	5	1.00 U	1.00 U	1.00 U
Carbon Disulfide	ug/L	N.E.	1.00 U	1.00 U	1.00 U
Carbon Tetrachloride	ug/L	5	1.00 U	1.00 U	1.00 U
Chloroethane	ug/L	5	1.00 U	1.00 U	1.00 U
Chloroform	ug/L	7	1.00 U	1.00 U	1.00 U
Chloromethane	ug/L	N.E.	1.00 UJ	1.00 UJ	1.00 UJ
cis-1,2-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	ug/L	N.E.	1.00 U	1.00 U	1.00 U
Clorobenzene	ug/L	5	1.00 U	1.00 U	1.00 U
Cyclohexane	ug/L	N.E.	1.00 U	1.00 U	1.00 U
Dibromochloromethane	ug/L	50	1.00 UJ	1.00 UJ	1.00 UJ
Dichlorodifluoromethane	ug/L	5	1.00 U	1.00 U	1.00 U
Ethylbenzene	ug/L	5	1.00 U	1.00 U	1.00 U
Isopropylbenzene	ug/L	5	1.00 U	1.00 U	1.00 U
Methyl Acetate	ug/L	N.E.	1.00 UJ	1.00 UJ	1.00 UJ
Methylcyclohexane	ug/L	N.E.	1.00 U	1.00 U	1.00 U
Methylene Chloride	ug/L	5	1.00 U	1.00 U	1.00 U
Methyl-t-Butyl Ether (MTBE)	ug/L	N.E.	1.00 U	1.00 U	1.00 U
Styrene	ug/L	5	1.00 UJ	1.00 UJ	1.00 UJ
Tetrachloroethene	ug/L	5	1.00 U	1.00 U	1.00 U
Toluene	ug/L	5	1.00 U	1.00 U	1.00 U
Total Xylenes ^{laj}	ug/L	5	2.00 U	2.00 U	2.00 U
trans-1,2-Dichloroethene	ug/L	5	1.00 U	1.00 U	1.00 U
trans-1,3-Dichloropropene ^[0]	ug/L	0.4	1.00 U	1.00 U	1.00 U
Trichloroethene	ug/L	5	1.00 U	1.00 U	1.00 Ū
Trichlorofluoromethane	ug/L	5	1.00 U	1.00 U	1.00 U
Vinyl Chloride	ug/L	2	1.00 U	1.00 U	1.00 U
Leachable Sulfate	mg/L	N.E.	131.00	59.40	5.00 U

Notes: ^[1] Groundwater sample collected November 24, 2009.

^[2] Groundwater sample collected November 23, 2009.

^[3] Duplicate sample collected from MW-4 on

December 29, 2008.

- ^[a] Remediation objective for 1,2-Xylene; 1,3-Xylene; and 1,4-Xylene is used.
- ^[b] Remediation objective for 1,3-Dichloropropene is used. N.E. = Not Established

ug/L = microgram per liter

- J = Indicates the compound concentration was estimated the result was below the sample reporting limit or quality control criteria were not met.
- $\mathsf{U} = \mathsf{Indicates}$ the compound was not detected above the laboratory detection limit and/or was detected in the blank.
- A highlighted cell indicates the compound was reported above T.O.G.S. 1.1.1 Ambient Water Quality Standards and Guidance Values.
- A bold cell indicates the compound was detected above the laboratory method detection limit.

APPENDIX B

ANNUAL CERTIFICATION OF INSTITUTIONAL/ENGINEERING CONTROLS AT VOLUNTARY CLEAN-UP PROGRAM SITE

Γ

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. V00215	Box 1	
Site Name Sovereign Specialty Chemicals, Inc.		
Site Address: 710 OHIO STREET Zip Code: 14203 City/Town: Buffalo County: Erie Site Acreage: 1.3		
Reporting Period: February 25, 2010 to February 25, 2011		
	YES	NO
1. Is the information above correct?		
If NO, include handwritten above or on a separate sheet.		
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 		
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5. Is the site currently undergoing development?		
	Boy 2	
	YES	NO
6. Is the current site use consistent with the use(s) listed below?		
7. Are all ICs/ECs in place and functioning as designed?		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM.	Ind	
A Corrective Measures Work Plan must be submitted along with this form to address t	nese issi	les.
Signature of Owner, Remedial Party or Designated Representative Date		

SITE NO. VO	0215				Box 3
Descript	tion of Institu	tional Controls			
Parcel		<u>Owner</u>	<u>Institutio</u>	nal Control	
122.18-2-2		Henkel Corporation	Ground Landuse Monitori O&M Pla Site Mar	Water Use Restric Restriction ng Plan an nagement Plan	tion
					Box 4
Descrint	tion of Engine	eering Controls			
None Requ	ired				
·		· · · · · · · · · · · · · · · · · · ·			
		Control Description for Site	e No. V00215	н 1	
Parcel: 122	2.18-2-2			•	
				. •	•
		· .			
	•				
				• • • •	
		,			
				·	
	•				
		. · · · ·			
· · ·					
	•	•			
		. · · · · · · · · · · · · · · · · · · ·			
					-
		· · · · · · · · · · · · · · · · · · ·			
			-		

			Box 5	
	Periodic Review Report (PRR) Certification Statements			
1.	I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 			
-	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generation program, and generation program, and generation program.	n this ce ally acc	ertification epted	
	engineering practices; and the information presented is accurate and compete.	YES	NO	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:	each In all of th	stitutional ne	
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Department	unchai nt;	nged since	
	(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	bublic h	ealth and	
	(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;	the ren	nedy,	
	(d) nothing has occurred that would constitute a violation or failure to comply with Management Plan for this Control; and	the Si	te	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	the site	e, the ment.	
		YES	NO	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM.			
	A Corrective Measures Work Plan must be submitted along with this form to address th	iese iss	ues.	
	Signature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. V00215

	SHE NO. 100213	Вох	6
SITE OWNER OR I certify that all information and stat statement made herein is punishab Penal Law.	DESIGNATED REPRESENTATIVE S ements in Boxes 2 and/or 3 are true. I le as a Class "A" misdemeanor, pursu	IGNATURE understand that a false ant to Section 210.45 of	the
IJack Garavanta	at 32100 Stephenson Hwy.	Madison Heights,	<u>M</u> I 4807
print name	print business addre	SS .	
am certifying as		(Owner or Remedial	Party)
for the Site named in the Site Detai	Is Section of this form.		•
A DA SE		- /r - /1]	
Signature of Owner or Remedial Ra	10/	<u>2/18/11</u> Date	-
			• • • • • • • • • • • • • • • • • • •
	and the second se		
	,		
			4
	•		
1			
			•
		· ·	
	· · · ·		
и.			
. ,			

Appendix C

LABORATORY ANALYTICAL RESULTS 2010 GROUNDWATER MONITORING EVENT

Analytical Report

Work Order: RTK1380

Project Description 710 Ohio Street, Buffalo, NY

For:

Cailyn Locci

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Deyo Melisa

Melissa Deyo For Paul Morrow Project Manager melissa.deyo@testamericainc.com Thursday, December 2, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CW A, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	N Y200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412 -08-TX
USDA	FOREIGN SOIL PERMIT	S -41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY Received: 11/18/10 Reported: 12/02/10 12:13

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY Received: 11/18/10 Reported: 12/02/10 12:13

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- **NR** Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY Received: 11/18/10 Reported: 12/02/10 12:13

Executive Summary - Detections											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RTK1380-0 [.]	1 (MW-1 - Wate	er)			Sam	pled: 11/	/18/10 11:20	Recy	/d: 11/18/10	0 13:45	
Volatile Organic Comp	ounds by EPA	8260B									
Chloroethane	7.1		1.0	0.32	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Methylcyclohexane	7.0		1.0	0.16	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Sample ID: RTK1380-02	2 (MW-2 - Wate	er)			Sam	pled: 11/	/18/10 12:30	Recy	/d: 11/18/10	0 13:45	
Volatile Organic Comp	ounds by EPA	8260B									
1,1-Dichloroethane	0.91	J	1.0	0.38	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Sample ID: RTK1380-04	4 (MW-5 - Wate	er)			Sam	pled: 11	/18/10 11:55	Recy	/d: 11/18/10	0 13:45	
Volatile Organic Comp	ounds by EPA	8260B									
1,4-Dioxane	34	J	40	9.3	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chloroethane	0.77	J	1.0	0.32	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Sample ID: RTK1380-0	5 (X-1 - Water)				Sam	pled: 11/	18/10	Recy	/d: 11/18/10	0 13:45	
Volatile Organic Comp	ounds by EPA	8260B									
Chloroethane	6.8		1.0	0.32	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Methylcyclohexane	7.5		1.0	0.16	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	

HRP Engineering, PC	Work Order: RTK1	380	Received:	11/18/10
1 Fairchild Square, Suite 110			Reported:	12/02/10 12:13
Clifton Park, NY 12065	Project: 710 Ohio S	Street, Buffalo, NY		
	Project Number:	710 Ohio Street, Buffalo, NY		

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
MW-1	RTK1380-01	Water	11/18/10 11:20	11/18/10 13:45	
MW-2	RTK1380-02	Water	11/18/10 12:30	11/18/10 13:45	
MW-3R	RTK1380-03	Water	11/18/10 13:15	11/18/10 13:45	
MW-5	RTK1380-04	Water	11/18/10 11:55	11/18/10 13:45	
X-1	RTK1380-05	Water	11/18/10	11/18/10 13:45	
TRIP BLANK	RTK1380-06	Water	11/18/10	11/18/10 13:45	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-01 (I	NW-1 - Wate	er)			Sam	pled: 11/	18/10 11:20	Recv	/d: 11/18/10	13:45	
Volatile Organic Compou	inds by EPA	8260B									
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
ane											
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
(EDB)											
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,3,5-I rimethylbenzene	ND		1.0	0.77	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
	ND		40	9.3	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
			5.0	1.2	ug/L	1.00	11/30/10 15:03		10K2074	8260B	
			1.0	0.31	ug/L	1.00	11/30/10 15:03		10K2674	8260B	
4-Methyl-2-pentanone	ND		5.U	2.1	ug/L	1.00	11/30/10 15.03	DHC	10K2074	020UB	
	ND		10	3.0	ug/l	1 00	11/30/10 15:03	рнс	101/2674	8260B	
Benzene			10	0.41	ug/L	1.00	11/30/10 15:03		101(2074	8260B	
Bromodichloromethane			1.0	0.41	ug/L	1.00	11/30/10 15:03	DHC	101(2074	8260B	
Bromoform			1.0	0.00	ug/L	1.00	11/30/10 15:03	DHC	101(2074	8260B	
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Carbon disulfide	ND		1.0	0.00	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/l	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Chloroethane	7.1		1.0	0.32	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Chloroform	ND		1.0	0.34	ug/L	1 00	11/30/10 15:03	DHC	10K2674	8260B	
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
cis-1 2-Dichloroethene	ND		1.0	0.81	ug/l	1.00	11/30/10 15:03	DHC	10K2674	8260B	
cis-1.3-Dichloropropene	ND		1.0	0.36	ua/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Cvclohexane	ND		1.0	0.18	ua/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Dichlorodifluoromethane	ND		1.0	0.68	ua/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Ethvlbenzene	ND		1.0	0.74	ua/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Methylcyclohexane	7.0		1.0	0.16	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Naphthalene	ND		1.0	0.43	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
n-Butylbenzene	ND		1.0	0.64	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
n-Propylbenzene	ND		1.0	0.69	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

11/18/10 Received: Reported:

12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

			A	nalytical F	Report						
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-01 (I	MW-1 - Wate	er) - cont.			Sampled: 11/18/10 11:20 Recvd: 11/18/10 13:45						
Volatile Organic Compou	inds by EPA	8260B - co	<u>nt.</u>								
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Styrene	ND		1.0	0.73	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Toluene	ND		1.0	0.51	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
e											
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/30/10 15:03	DHC	10K2674	8260B	
1,2-Dichloroethane-d4	109 %		Surr Limits:	(66-137%)			11/30/10 15:03	DHC	10K2674	8260B	
4-Bromofluorobenzene	103 %		Surr Limits:	(73-120%)			11/30/10 15:03	DHC	10K2674	8260B	
Toluene-d8	115 %		Surr Limits:	(71-126%)			11/30/10 15:03	DHC	10K2674	8260B	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RI	MDL	Unite	Dil Fac	Date Analyzed	Lab Tach	Batch	Mothod	
Sample ID: RTK1380-02 (I	WW-2 - Wate	Qualifiers			Some	n adi . 44/	Analy200	Beer	. 44/40/4/		
	www-z - wale	,, ,,			Sam	piea: 11/	18/10 12:30	Recv	Recva: 11/16/10 13:45		
Volatile Organic Compou	inds by EPA	8260B									
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
ane											
1,1-Dichloroethane	0.91	J	1.0	0.38	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,2,4-I rimethylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
ane	ND		10	0.73	ug/l	1 00	11/30/10 15:25	пнс	101/2674	8260B	
	ND		1.0	0.75	ug/L	1.00	11/30/10 13.23	DIIC	101/2074	02000	
1 2-Dichlorobenzene	ND		10	0 79	ua/l	1 00	11/30/10 15:25	DHC	10K2674	8260B	
1 2-Dichloroethane	ND		1.0	0.75	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1 2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1 3 5-Trimethylbenzene	ND		1.0	0.72	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1.3-Dichlorobenzene	ND		1.0	0.78	ua/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1.4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,4-Dioxane	ND		40	9.3	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
2-Hexanone	ND		5.0	1.2	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
4-Isopropyltoluene	ND		1.0	0.31	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
(MIBK)											
Acetone	ND		10	3.0	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Benzene	ND		1.0	0.41	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Bromoform	ND		1.0	0.26	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Chloroethane	ND		1.0	0.32	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Chloroform	ND		1.0	0.34	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
	ND		1.0	0.35	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
cis-1,2-Dichlerontene	ND		1.0	0.81	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Cis-1,3-Dichloroproperie			1.0	0.30	ug/L	1.00	11/30/10 15:25		10K2674	0200D	
Dichlorodifluoromothano			1.0	0.18	ug/L	1.00	11/30/10 15:25		10K2074	8260B	
Ethylbonzono			1.0	0.08	ug/L	1.00	11/30/10 15:25		10K2074	8260B	
Isopropylbenzene			1.0	0.74	ug/L	1.00	11/30/10 15:25		1012074	8260B	
Methyl Acetate	ND		1.0	0.70	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Methylcyclohexane	ND		1.0	0.16	ug/L	1 00	11/30/10 15:25	DHC	10K2674	8260B	
Methylene Chloride	ND		1.0	0 44	ua/l	1 00	11/30/10 15:25	DHC	10K2674	8260B	
Naphthalene	ND		1.0	0.43	ua/l	1.00	11/30/10 15:25	DHC	10K2674	8260B	
n-Butvlbenzene	ND		1.0	0.64	ua/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
n-Propylbenzene	ND		1.0	0.69	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

11/18/10 Received: Reported:

12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-02 (I	MW-2 - Wate	er) - cont.			Sampled: 11/18/10 12:30 Recvd: 11/18/10 13:45						
Volatile Organic Compou	unds by EPA	8260B - coi	<u>nt.</u>								
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Styrene	ND		1.0	0.73	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Toluene	ND		1.0	0.51	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
e											
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/30/10 15:25	DHC	10K2674	8260B	
1,2-Dichloroethane-d4	109 %		Surr Limits:	(66-137%)			11/30/10 15:25	DHC	10K2674	8260B	
4-Bromofluorobenzene	105 %		Surr Limits:	(73-120%)			11/30/10 15:25	DHC	10K2674	8260B	
Toluene-d8	115 %		Surr Limits:	(71-126%)			11/30/10 15:25	DHC	10K2674	8260B	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1380-03 (MW-3R - Wa	ter)			Sampled: 11/18/10 13:15			Recy	/d: 11/18/10	0 13:45
Volatile Organic Compou	unds by EPA	8260B								
1 1 1-Trichloroethane	ND		1.0	0.82	ua/l	1.00	11/30/10 15·46	DHC	10K2674	8260B
1.1.2.2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1.1.2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
ane					U					
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,2-Dibromo-3-chloroprop ane	ND		1.0	0.39	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
(EDB)			1.0	0.70	ug/l	1 00	11/20/10 15:46	рцс	101/2674	0260P
1,2-Dichloroothana			1.0	0.79	ug/L	1.00	11/30/10 15:40		10K2074	8260B
1 2-Dichloropropane			1.0	0.21	ug/L	1.00	11/30/10 15:40	DHC	10K2674	8260B
1 3 5-Trimethylbenzene			1.0	0.72	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1 3-Dichlorobenzene			1.0	0.77	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1 4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
1 4-Dioxane	ND		40	9.3	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
2-Hexanone	ND		5.0	1.2	ua/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
4-Isopropyltoluene	ND		1.0	0.31	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Acetone	ND		10	3.0	ua/l	1 00	11/30/10 15:46	DHC	10K2674	8260B
Benzene	ND		10	0.41	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Bromomethane	ND		1.0	0.69	ua/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
wetnylene Chloride	ND		1.0	0.44	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B
			1.0	0.43	ug/L	1.00	11/30/10 15:46	DHC	10K26/4	8260B
n-Butyibenzene			1.0	0.69	ug/L ua/l	1.00	11/30/10 15:46		10K2674	o∠oub 8260B
					- 9 -				······	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 11/18/10 Reported: 12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

1 Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP Engineering, PC

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-03 (I	MW-3R - Wa	ter) - cont.			Sampled: 11/18/10 13:15 Recvd: 11/18/10 13:45						
Volatile Organic Compou	unds by EPA	8260B - co	<u>nt.</u>								
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Styrene	ND		1.0	0.73	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Toluene	ND		1.0	0.51	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
e											
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/30/10 15:46	DHC	10K2674	8260B	
1,2-Dichloroethane-d4	111 %		Surr Limits:	(66-137%)			11/30/10 15:46	DHC	10K2674	8260B	
4-Bromofluorobenzene	103 %		Surr Limits:	(73-120%)			11/30/10 15:46	DHC	10K2674	8260B	
Toluene-d8	116 %		Surr Limits:	(71-126%)			11/30/10 15:46	DHC	10K2674	8260B	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-04 (I	MW-5 - Wate	er)			Sam	pled: 11/	18/10 11:55	Recv	/d: 11/18/10) 13:45	
Volatile Organic Compou	inds by EPA	8260B									
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
ane											
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
ane			4.0	0.70		4.00	10/01/10 00:00		40/0770	00000	
1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
(EDB)			10	0.70	110/	1 00	12/01/10 00.22		101/2779	0260P	
1,2-Dichloroothana			1.0	0.79	ug/L	1.00	12/01/10 00.22		1012770	0200D	
1,2-Dichloropropage			1.0	0.21	ug/L	1.00	12/01/10 00.22		1012778	8260B	
1 3 5-Trimethylbenzene			1.0	0.72	ug/L	1.00	12/01/10 00:22		101(2778	8260B	
1 3-Dichlorobenzene			1.0	0.78	ug/L	1.00	12/01/10 00:22		101(2778	8260B	
1 4-Dichlorobenzene	ND		1.0	0.70	ug/L	1.00	12/01/10 00:22		10K2778	8260B	
1 4-Dioxane	34	.1	40	9.3	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
2-Butanone (MEK)	ND	Ū	10	1.3	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
2-Hexanone	ND		50	1.2	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
4-Isopropyltoluene	ND		1.0	0.31	ua/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
(MIBK)					- 5						
Acetone	ND		10	3.0	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Benzene	ND		1.0	0.41	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Bromoform	ND		1.0	0.26	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Bromomethane	ND		1.0	0.69	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chloroethane	0.77	J	1.0	0.32	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chloroform	ND		1.0	0.34	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Chloromethane	ND		1.0	0.35	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Cyclohexane	ND		1.0	0.18	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Methylevels survey	ND		1.0	0.16	ug/L	1.00	12/01/10 00:22		10K2/78	8260B	
			1.0	0.16	ug/L	1.00	12/01/10 00:22		10K2778	8260B	
			1.0	0.44	ug/L	1.00	12/01/10 00:22		10K2//8	8260B	
naprimaiene			1.0	0.43	ug/L	1.00	12/01/10 00:22		101/2770	020UB	
n-Dulyidenzene			1.0	0.04	ug/L	1.00	12/01/10 00:22		10K2//0	020UB	
п-гторушенzепе	ND		1.0	0.09	ug/L	1.00	12/01/10 00:22		1UK2//0	0200B	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

11/18/10 Received: Reported:

12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RTK1380-04 (I	MW-5 - Wate	er) - cont.			Sampled: 11/18/10 11:55 Recvd: 11/18/10 13						
Volatile Organic Compou	unds by EPA	8260B - cor	<u>nt.</u>								
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Styrene	ND		1.0	0.73	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Toluene	ND		1.0	0.51	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
e											
Trichloroethene	ND		1.0	0.46	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
Xylenes, total	ND		2.0	0.66	ug/L	1.00	12/01/10 00:22	NMD	10K2778	8260B	
1,2-Dichloroethane-d4	112 %		Surr Limits:	(66-137%)			12/01/10 00:22	NMD	10K2778	8260B	
4-Bromofluorobenzene	105 %		Surr Limits:	(73-120%)			12/01/10 00:22	NMD	10K2778	8260B	
Toluene-d8	115 %		Surr Limits:	(71-126%)			12/01/10 00:22	NMD	10K2778	8260B	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
ے۔ Sample ID: RTK1380-05 (ک	K-1 - Water)				Sam	18/10	Recv	/d: 11/18/10) 13:45		
Volatile Organic Compou	inds by EPA	8260B									
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
ane											
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
(EDB)			1.0	0.70		1 00	11/20/10 16:20	DUC	101/2674	8260D	
1,2-Dichloroothana			1.0	0.79	ug/L	1.00	11/30/10 16:29		1062074	0200D	
1,2-Dichloropropage			1.0	0.21	ug/L	1.00	11/30/10 10:29		10K2674	8260B	
1 3 5-Trimethylbenzene			1.0	0.72	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1.3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1 4-Dichlorobenzene	ND		1.0	0.76	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
1 4-Dioxane	ND		40	93	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
2-Butanone (MEK)	ND		10	1.3	ua/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
2-Hexanone	ND		5.0	1.2	ua/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
4-Isopropyltoluene	ND		1.0	0.31	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Acetone	ND		10	3.0	ua/l	1.00	11/30/10 16·29	DHC	10K2674	8260B	
Benzene	ND		1.0	0.41	ua/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Bromoform	ND		1.0	0.26	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Chloroethane	6.8		1.0	0.32	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Chloroform	ND		1.0	0.34	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Wethyl tort But d Ether			1.0	0.50	ug/L	1.00	11/30/10 16:29	DHC	10K26/4	8260B	
wethylevelebevere			1.0	0.16	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	
Methylope Chloride	1.5		1.0	0.16	ug/L	1.00	11/30/10 16:29		101/20/4	020UB	
Nanhthalana			1.0	0.44	ug/L	1.00	11/30/10 10:29		10120/4	0200B	
n Butylbonzono			1.0	0.43	ug/L	1.00	11/30/10 10:29		10120/4	0200B	
n-Propylbenzene	ND		1.0	0.69	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 11/18/10 Reported: 12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report													
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method			
Sample ID: RTK1380-05 ()	K-1 - Water)	- cont.			Samj	oled: 11/	18/10	Recvd: 11/18/10 13:45					
Volatile Organic Compou	inds by EPA	8260B - cor	<u>nt.</u>										
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Styrene	ND		1.0	0.73	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Toluene	ND		1.0	0.51	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
e													
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/30/10 16:29	DHC	10K2674	8260B			
1,2-Dichloroethane-d4	111 %		Surr Limits:	(66-137%)			11/30/10 16:29	DHC	10K2674	8260B			
4-Bromofluorobenzene	104 %		Surr Limits:	(73-120%)			11/30/10 16:29	DHC	10K2674	8260B			
Toluene-d8	115 %		Surr Limits:	(71-126%)			11/30/10 16:29	DHC	10K2674	8260B			

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report												
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method		
Sample ID: RTK1380-06 (TRIP BLANK	- Water)			Sam	pled: 11/	18/10	Recv	/d: 11/18/10) 13:45		
Volatile Organic Compou	unds bv EPA	8260B										
1.1.1-Trichloroethane	ND		1.0	0.82	ua/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1.1.2.2-Tetrachloroethane	ND		1.0	0.21	ua/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1.1.2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1.1.2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
ane					U U							
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
(EDB)			1.0	0.70		1 00	44/20/40 40.50		401/0074	00000		
1,2-Dichloroothana			1.0	0.79	ug/L	1.00	11/30/10 16:50		1062074	0200D		
1,2-Dichloropropage			1.0	0.21	ug/L	1.00	11/30/10 16:50		1062074	0200D		
1,2-Dichloroproparie			1.0	0.72	ug/L	1.00	11/20/10 10:50		10K2074	0200D		
1,3,5-11iiietiiyibenzene			1.0	0.77	ug/L	1.00	11/30/10 10:50		10K2074	8260B		
			1.0	0.78	ug/L	1.00	11/30/10 10:50		1012074	8260B		
			1.0	0.04	ug/L	1.00	11/30/10 16:50		101(2074	8260B		
2-Butanone (MEK)			+0 10	3.3 1 3	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
2-Hexanone	ND		50	1.0	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
4-Isopropyltoluene	ND		1.0	0.31	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
4-Methyl-2-pentanone	ND		5.0	21	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
(MIBK)	ne -		0.0		ug/L	1.00		Brio	10112071	02008		
Acetone	ND		10	3.0	ua/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Benzene	ND		1.0	0.41	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Bromoform	ND		1.0	0.26	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Bromomethane	ND		1.0	0.69	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Chloroethane	ND		1.0	0.32	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Chloroform	ND		1.0	0.34	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Chloromethane	ND		1.0	0.35	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Cyclohexane	ND		1.0	0.18	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Naphthalene	ND		1.0	0.43	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
n-Butylbenzene	ND		1.0	0.64	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
n-Propylbenzene	ND		1.0	0.69	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 11/18/10 Reported: 12/02/10 12:13

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

Analytical Report												
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method		
Sample ID: RTK1380-06 (K - Water) - c	ont.		Sam	oled: 11/	18/10	Recv	rd: 11/18/1	0 13:45		
Volatile Organic Compou	unds by EPA	8260B - cor	<u>it.</u>									
sec-Butylbenzene	ND		1.0	0.75	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Styrene	ND		1.0	0.73	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
tert-Butylbenzene	ND		1.0	0.81	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Toluene	ND		1.0	0.51	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
e												
Trichloroethene	ND		1.0	0.46	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
Xylenes, total	ND		2.0	0.66	ug/L	1.00	11/30/10 16:50	DHC	10K2674	8260B		
1,2-Dichloroethane-d4	111 %		Surr Limits:	(66-137%)			11/30/10 16:50	DHC	10K2674	8260B		
4-Bromofluorobenzene	103 %		Surr Limits:	(73-120%)			11/30/10 16:50	DHC	10K2674	8260B		
Toluene-d8	117 %		Surr Limits:	(71-126%)			11/30/10 16:50	DHC	10K2674	8260B		

HRP Engineering, PC 1 Fairchild Square, Suite 110

Clifton Park, NY 12065

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Volatile Organic Compounds b	y EPA 8260B								
8260B	10K2674	RTK1380-01	5.00	mL	5.00	mL	11/30/10 11:28	DHC	5030B MS
8260B	10K2674	RTK1380-02	5.00	mL	5.00	mL	11/30/10 11:28	DHC	5030B MS
8260B	10K2674	RTK1380-03	5.00	mL	5.00	mL	11/30/10 11:28	DHC	5030B MS
8260B	10K2674	RTK1380-05	5.00	mL	5.00	mL	11/30/10 11:28	DHC	5030B MS
8260B	10K2674	RTK1380-06	5.00	mL	5.00	mL	11/30/10 11:28	DHC	5030B MS
8260B	10K2778	RTK1380-04	5.00	mL	5.00	mL	11/30/10 21:21	NMD	5030B MS

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY 710 Ohio Street, Buffalo, NY Project Number:

LABORATORY QC DATA

	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compour	nds by EP	<u> 48260B</u>									
Blank Analyzed: 11/30/10	(Lab Num	ber:10K26	6/4-BLK1,	Batch: 10K26/4)						
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND					
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND					
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND					
1,1,2-Trichlorotrifluoroeth ane			1.0	0.31	ug/L	ND					
1,1-Dichloroethane			1.0	0.38	ug/L	ND					
1,1-Dichloroethene			1.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND					
1,2,4-Trimethylbenzene			1.0	0.75	ug/L	ND					
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND					
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			1.0	0.79	ug/L	ND					
1,2-Dichloroethane			1.0	0.21	ug/L	ND					
1,2-Dichloropropane			1.0	0.72	ug/L	ND					
1,3,5-Trimethylbenzene			1.0	0.77	ug/L	ND					
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND					
1,4-Dioxane			40	9.3	ug/L	ND					
2-Butanone (MEK)			10	1.3	ug/L	ND					
2-Hexanone			5.0	1.2	ug/L	ND					
4-Isopropyltoluene			1.0	0.31	ug/L	ND					

4-Methyl-2-pentanone (MIBK)	5.0	2.1	ug/L	ND
Acetone	10	3.0	ug/L	ND
Benzene	1.0	0.41	ug/L	ND
Bromodichloromethane	1.0	0.39	ug/L	ND
Bromoform	1.0	0.26	ug/L	ND
Bromomethane	1.0	0.69	ug/L	ND
Carbon disulfide	1.0	0.19	ug/L	ND
Carbon Tetrachloride	1.0	0.27	ug/L	ND
Chlorobenzene	1.0	0.75	ug/L	ND
Chlorodibromomethane	1.0	0.32	ug/L	ND
Chloroethane	1.0	0.32	ug/L	ND
Chloroform	1.0	0.34	ug/L	ND
Chloromethane	1.0	0.35	ug/L	ND
cis-1,2-Dichloroethene	1.0	0.81	ug/L	ND

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Received: 11/18/10 12/02/10 12:13 Reported:

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY Received: 11/18/10 Reported: 12/02/10 12:13

			LÆ	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	inds by EP	A 8260B									
Blank Analvzed: 11/30/10	(Lab Num	ber:10K2	674-BLK1.	Batch: 10K2674	4)						
cis-1,3-Dichloropropene	、		1.0	0.36	, ug/L	ND					
Cyclohexane			1.0	0.18	ug/L	ND					
Dichlorodifluoromethane			1.0	0.68	ug/L	ND					
Ethylbenzene			1.0	0.74	ug/L	ND					
Isopropylbenzene			1.0	0.79	ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Naphthalene			1.0	0.43	ug/L	ND					
n-Butylbenzene			1.0	0.64	ug/L	ND					
n-Propylbenzene			1.0	0.69	ug/L	ND					
sec-Butylbenzene			1.0	0.75	ug/L	ND					
Styrene			1.0	0.73	ug/L	ND					
tert-Butylbenzene			1.0	0.81	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
trans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND					
Trichloroethene			1.0	0.46	ug/L	ND					
Trichlorofluoromethane			1.0	0.88	ug/L	ND					
Vinyl chloride			1.0	0.90	ug/L	ND					
Xylenes, total			2.0	0.66	ug/L	ND					
Surrogate: 1.2-Dichloroethane-d4					ug/L		114	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		102	73-120			
Surrogate: Toluene-d8					ug/L		117	71-126			
LCS Analyzed: 11/30/10	(Lab Numb	er:10K267	74-BS1, Bat	tch: 10K2674)							
1,1,1-Trichloroethane		25.0	1.0	0.82	ug/L	27.9	111	73-126			
1,1,2,2-Tetrachloroethane		25.0	1.0	0.21	ug/L	24.9	99	70-126			
1,1,2-Trichloroethane		25.0	1.0	0.23	ug/L	23.8	95	76-122			
1,1,2-Trichlorotrifluoroeth ane		25.0	1.0	0.31	ug/L	24.1	96	60-140			
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	23.8	95	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	23.5	94	65-138			
1,2,4-Trichlorobenzene		25.0	1.0	0.41	ug/L	24.9	100	70-122			

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

LABORATORY QC DATA										
Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers	
ds by EPA	A 8260B									
_ab Numbe	er:10K267	4-BS1, Bat	ch: 10K2674)		25.0	102	76 101			
	25.0	1.0	0.75	ug/L	20.0	103	70-121			
	25.0	1.0	0.39	ug/L	20.3	81	50-134			
	25.0	1.0	0.73	ug/L	25.0	100	77-120			
	25.0	1.0	0.79	ug/L	24.2	97	77-120			
	25.0	1.0	0.21	ug/L	24.5	98	75-127			
	25.0	1.0	0.72	ug/L	23.2	93	76-120			
	25.0	1.0	0.77	ug/L	25.4	102	77-121			
	25.0	1.0	0.78	ug/L	24.5	98	77-120			
	25.0	1.0	0.84	ug/L	23.6	95	75-120			
		40	9.3	ug/L	ND		49-146			
	125	10	1.3	ug/L	112	90	57-140			
	125	5.0	1.2	ug/L	128	102	65-127			
	25.0	1.0	0.31	ug/L	26.0	104	73-120			
	125	5.0	2.1	ug/L	124	99	71-125			
	125	10	3.0	ug/L	111	89	56-142			
	25.0	1.0	0.41	ug/L	23.4	94	71-124			
	25.0	1.0	0.39	ug/L	22.8	91	80-122			
	25.0	1.0	0.26	ug/L	19.7	79	66-128			
	25.0	1.0	0.69	ug/L	25.7	103	36-150			
	25.0	1.0	0.19	ug/L	20.4	81	59-134			
	25.0	1.0	0.27	ug/L	26.6	107	72-134			
	25.0	1.0	0.75	ug/L	24.0	96	72-120			
	25.0	1.0	0.32	ug/L	22.1	89	75-125			
	25.0	1.0	0.32	ug/L	31.5	126	69-136			
	25.0	1.0	0.34	ug/L	24.0	96	73-127			
	25.0	1.0	0.35	ug/L	21.9	88	49-142			
	25.0	1.0	0.81	ug/L	24.1	97	74-124			
	25.0	1.0	0.36	ug/L	21.9	87	74-124			
	25.0	1.0	0.18	ug/L	22.3	89	70-130			
	25.0	1.0	0.68	ug/L	22.5	90	33-157			
	25.0	1.0	0.74	ug/L	24.8	99	77-123			
	25.0	1.0	0.79	ug/L	25.7	103	77-122			
	25.0	1.0	0.50	ug/L	21.9	88	60-140			
	25.0	1.0	0.16	ug/L	25.0	100	64-127			
	25.0	1.0	0.16	ug/L	23.4	93	60-140			
	Source Result Ids by EP/ Lab Numb	Source Result Spike Level ids by EPA 8260B ids by EPA 8260B ab Number: 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 125 25.0 125 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Source Result Spike Level RL dds by EPA 8260B 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 125 5.0 125 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0 1.0 25.0	Source ResultSpike LevelRLMDLdis by E/J25001.00.7525.01.00.7525.01.00.7325.01.00.7925.01.00.7125.01.00.7225.01.00.7225.01.00.7225.01.00.7225.01.00.7425.01.00.7425.01.00.7425.01.00.7425.01.00.7425.01.00.7425.01.00.7425.01.00.7425.01.00.311255.01.225.01.00.311255.02.11255.01.225.01.00.3425.01.00.3425.01.00.3225.01.00.3225.01.00.3225.01.00.3225.01.00.3225.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.01.00.3425.0 <td>Source NetworkSpike LevelRMDLJunits1001000.750.9725.01.00.730.9725.01.00.790.9725.01.00.790.9725.01.00.710.9725.01.00.720.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.740.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.320.9725.01.00.320.9725.01.00.340.9725.01.00.340.9725.01.00.360.9725.01.00.340.9725.01.00.340.9725.01.00.360.9725.01.00.360.9725.01.00.360.9725.01.00.360.9725.01</td> <td>Source NeedSpike LevelR MDLUnitsResultUSVersionR NotMDLNetsResultUSVersionVersionVersionResultResultJS.01.00.75UgL25.025.01.00.73UgL24.025.01.00.71UgL24.025.01.00.72UgL24.025.01.00.72UgL24.025.01.00.72UgL25.025.01.00.77UgL24.525.01.00.77UgL24.525.01.00.78UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.0<!--</td--><td>Source ReadSpike LevelR MMDLUnits% Resul% ResulUse performed by the sectorUnits78%%%Use performed by the sector0.750.9L25.81.0325.01.00.750.9L25.01.0125.01.00.730.9L24.2925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.770.9L24.5925.01.00.780.9L24.5925.01.00.780.9L24.5925.01.00.740.9L24.5925.01.00.730.9L24.5925.01.00.730.9L24.5925.01.00.740.9L24.5925.01.00.310.9L24.5925.01.00.310.9L24.5925.01.00.390.9L23.61025.01.00.310.9L24.5925.01.00.320.9L24.5925.01.00.320.9L24.61025.01.00.320.9L24.61025.01.00.3</td><td>Source ReadSpike keyR keyMale keyNo </br></br></br></br></br></br></td><td>Source Result Spike Director Spike Result Spike Resu</td></td>	Source NetworkSpike LevelRMDLJunits1001000.750.9725.01.00.730.9725.01.00.790.9725.01.00.790.9725.01.00.710.9725.01.00.720.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.780.9725.01.00.740.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.310.9725.01.00.320.9725.01.00.320.9725.01.00.340.9725.01.00.340.9725.01.00.360.9725.01.00.340.9725.01.00.340.9725.01.00.360.9725.01.00.360.9725.01.00.360.9725.01.00.360.9725.01	Source NeedSpike LevelR MDLUnitsResultUSVersionR NotMDLNetsResultUSVersionVersionVersionResultResultJS.01.00.75UgL25.025.01.00.73UgL24.025.01.00.71UgL24.025.01.00.72UgL24.025.01.00.72UgL24.025.01.00.72UgL25.025.01.00.77UgL24.525.01.00.77UgL24.525.01.00.78UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.01.00.74UgL24.525.0 </td <td>Source ReadSpike LevelR MMDLUnits% Resul% ResulUse performed by the sectorUnits78%%%Use performed by the sector0.750.9L25.81.0325.01.00.750.9L25.01.0125.01.00.730.9L24.2925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.770.9L24.5925.01.00.780.9L24.5925.01.00.780.9L24.5925.01.00.740.9L24.5925.01.00.730.9L24.5925.01.00.730.9L24.5925.01.00.740.9L24.5925.01.00.310.9L24.5925.01.00.310.9L24.5925.01.00.390.9L23.61025.01.00.310.9L24.5925.01.00.320.9L24.5925.01.00.320.9L24.61025.01.00.320.9L24.61025.01.00.3</td> <td>Source ReadSpike keyR keyMale keyNo </br></br></br></br></br></br></td> <td>Source Result Spike Director Spike Result Spike Resu</td>	Source ReadSpike LevelR MMDLUnits% Resul% ResulUse performed by the sectorUnits78%%%Use performed by the sector0.750.9L25.81.0325.01.00.750.9L25.01.0125.01.00.730.9L24.2925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.720.9L24.5925.01.00.770.9L24.5925.01.00.780.9L24.5925.01.00.780.9L24.5925.01.00.740.9L24.5925.01.00.730.9L24.5925.01.00.730.9L24.5925.01.00.740.9L24.5925.01.00.310.9L24.5925.01.00.310.9L24.5925.01.00.390.9L23.61025.01.00.310.9L24.5925.01.00.320.9L24.5925.01.00.320.9L24.61025.01.00.320.9L24.61025.01.00.3	Source ReadSpike keyR keyMale keyNo keyNo keyNo keyNo keyNo keyNo keyNo keyNo keyNo 	Source Result Spike Director Spike Result Spike Resu	

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD I	RPD Limit	Data Qualifiers
Volatile Organic Compou	inds by EP	A 8260B									
LCS Analyzed: 11/30/10	(I ah Numh	or:10K267	4-BS1 Bat	ch: 10K2674)							
Methylene Chloride		25.0	4-D31, Da	0.44	ua/L	24.6	98	57-132			
Naphthalene		25.0	1.0	0.43	ua/L	21.5	86	54-140			
n-Butvlbenzene		25.0	1.0	0.64	ua/L	25.9	104	71-128			
n-Propylbenzene		25.0	1.0	0.69	ua/L	25.1	100	77-120			
sec-Butvlbenzene		25.0	1.0	0.75	ua/L	25.7	103	74-127			
Styrene		25.0	1.0	0.73	ug/L	25.6	102	70-130			
tert-Butylbenzene		25.0	1.0	0.81	ug/L	25.9	103	75-123			
Tetrachloroethene		25.0	1.0	0.36	ug/L	23.7	95	74-122			
Toluene		25.0	1.0	0.51	ug/L	23.7	95	70-122			
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	23.6	95	73-127			
trans-1.3-Dichloropropen		25.0	1.0	0.37	ug/L	22.0	88	72-123			
e		20.0			0						
Trichloroethene		25.0	1.0	0.46	ug/L	23.5	94	74-123			
Trichlorofluoromethane		25.0	1.0	0.88	ug/L	23.6	95	62-152			
Vinyl chloride		25.0	1.0	0.90	ug/L	26.5	106	65-133			
Xylenes, total		75.0	2.0	0.66	ug/L	75.0	100	76-122			
Surrogate:					ug/L		112	66-137			
1,2-Dichloroethane-d4					110/1		101	72 100			
4-Bromofluorobenzene					ug/L		104	75-720			
Surrogate: Toluene-d8					ug/L		116	71-126			
Volatile Organic Compou	inds by EP	A 8260B									
Blank Analyzed: 11/30/10) (Lab Num	ber:10K27	78-BLK1,	Batch: 10K2778	3)						
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND					
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND					
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND					
1,1,2-Trichlorotrifluoroeth ane			1.0	0.31	ug/L	ND					
1,1-Dichloroethane			1.0	0.38	ug/L	ND					
1,1-Dichloroethene			1.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND					
1,2,4-Trimethylbenzene			1.0	0.75	ug/L	ND					
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND					
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			1.0	0.79	ug/L	ND					
1,2-Dichloroethane			1.0	0.21	ug/L	ND					

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Styrene

Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	unds by EP	A 8260B									
Blank Analyzed: 11/30/10) (Lab Nun	nber:10K2	778-BLK1.	Batch: 10K2778	3)						
1,2-Dichloropropane	(1.0	0.72	ug/L	ND					
1,3,5-Trimethylbenzene			1.0	0.77	ug/L	ND					
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND					
1,4-Dioxane			40	9.3	ug/L	ND					
2-Butanone (MEK)			10	1.3	ug/L	ND					
2-Hexanone			5.0	1.2	ug/L	ND					
4-Isopropyltoluene			1.0	0.31	ug/L	ND					
4-Methyl-2-pentanone (MIBK)			5.0	2.1	ug/L	ND					
Acetone			10	3.0	ug/L	ND					
Benzene			1.0	0.41	ug/L	ND					
Bromodichloromethane			1.0	0.39	ug/L	ND					
Bromoform			1.0	0.26	ug/L	ND					
Bromomethane			1.0	0.69	ug/L	ND					
Carbon disulfide			1.0	0.19	ug/L	ND					
Carbon Tetrachloride			1.0	0.27	ug/L	ND					
Chlorobenzene			1.0	0.75	ug/L	ND					
Chlorodibromomethane			1.0	0.32	ug/L	ND					
Chloroethane			1.0	0.32	ug/L	ND					
Chloroform			1.0	0.34	ug/L	ND					
Chloromethane			1.0	0.35	ug/L	ND					
cis-1,2-Dichloroethene			1.0	0.81	ug/L	ND					
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND					
Cyclohexane			1.0	0.18	ug/L	ND					
Dichlorodifluoromethane			1.0	0.68	ug/L	ND					
Ethylbenzene			1.0	0.74	ug/L	ND					
Isopropylbenzene			1.0	0.79	ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Naphthalene			1.0	0.43	ug/L	ND					
n-Butylbenzene			1.0	0.64	ug/L	ND					
n-Propylbenzene			1.0	0.69	ug/L	ND					
sec-Butylbenzene			1.0	0.75	ug/L	ND					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

1.0

ug/L

ND

0.73

11/18/10 Received: Reported:

12/02/10 12:13

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Work Order: RTK1380

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY Received: 11/18/10 Reported: 12/02/10 12:13

			L/	BORATORY	' QC DATA						
Analyto	Source Result	Spike Level	RL	МОІ	Unite	Posult	% PEC	% REC	% RPD	RPD Limit	Data Qualifiors
Volatile Organic Compou	nds by FP	A 8260B			Units	Nesun	<u>KLU</u>	Liiiits		Linin	Quaimers
Volatile organie oompou		<u>A 0200D</u>									
Blank Analyzed: 11/30/10	(Lab Num	ber:10K2	778-BLK1,	Batch: 10K2778	3)						
tert-Butylbenzene			1.0	0.81	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
trans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen			1.0	0.37	ug/L	ND					
e Trichloroethene			1.0	0.46	ua/L	ND					
Trichlorofluoromethane			1.0	0.88	ug/L	ND					
Vinyl chloride			1.0	0.90	ug/L	ND					
Xylenes total			2.0	0.66	ug/L						
			2.0	0.00	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4					ug/L		113	66-137			
Surrogate: 4-Bromofluorobenzene					ug/L		106	73-120			
Surrogate: Toluene-d8					ug/L		118	71-126			
LCS Analyzed: 11/30/10	(Lab Numb	er:10K277	78-BS1, Bat	tch: 10K2778)							
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND		73-126			
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122			
1,1,2-Trichlorotrifluoroeth			1.0	0.31	ug/L	ND		60-140			
ane											
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	24.0	96	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	21.0	84	65-138			
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2,4-Trimethylbenzene		25.0	1.0	0.75	ug/L	26.0	104	76-121			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			1.0	0.73	ug/L	ND		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	24.8	99	77-120			
1,2-Dichloroethane		25.0	1.0	0.21	ug/L	24.7	99	75-127			
1,2-Dichloropropane			1.0	0.72	ug/L	ND		76-120			
1,3,5-Trimethylbenzene			1.0	0.77	ug/L	ND		77-121			
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND		75-120			
1,4-Dioxane			40	9.3	ug/L	ND		49-146			
2-Butanone (MEK)			10	1.3	ug/L	ND		57-140			
2-Hexanone			5.0	1.2	ug/L	ND		65-127			
4-Isopropyltoluene			1.0	0.31	ug/L	ND		73-120			

THE LEADER IN ENVIRONMENTAL TESTING

HRP Engineering, PC 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

Work Order: RTK1380

Received: 11/18/10 Reported: 12/02/10 12:13

Project: 710 Ohio Street, Buffalo, NY Project Number: 710 Ohio Street, Buffalo, NY

LABORATORY QC DATA											
	Source	Spike					%	% REC	% RPD	Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers	
Volatile Organic Compo	unds by EP	A 8260B									
LCS Analyzed: 11/30/10	(Lab Numb	er:10K27	78-BS1. Bat	ch: 10K2778)							
4-Methyl-2-pentanone (MIBK)	(5.0	2.1	ug/L	ND		71-125			
Acetone			10	3.0	ug/L	ND		56-142			
Benzene		25.0	1.0	0.41	ug/L	23.6	94	71-124			
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122			
Bromoform			1.0	0.26	ug/L	ND		66-128			
Bromomethane			1.0	0.69	ug/L	ND		36-150			
Carbon disulfide			1.0	0.19	ug/L	ND		59-134			
Carbon Tetrachloride			1.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.75	ug/L	25.9	104	72-120			
Chlorodibromomethane			1.0	0.32	ug/L	ND		75-125			
Chloroethane			1.0	0.32	ug/L	ND		69-136			
Chloroform			1.0	0.34	ug/L	ND		73-127			
Chloromethane			1.0	0.35	ug/L	ND		49-142			
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	24.0	96	74-124			
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124			
Cyclohexane			1.0	0.18	ug/L	ND		70-130			
Dichlorodifluoromethane			1.0	0.68	ug/L	ND		33-157			
Ethylbenzene		25.0	1.0	0.74	ug/L	26.5	106	77-123			
Isopropylbenzene			1.0	0.79	ug/L	ND		77-122			
Methyl Acetate			1.0	0.50	ug/L	ND		60-140			
Methyl tert-Butyl Ether		25.0	1.0	0.16	ug/L	25.1	100	64-127			
Methylcyclohexane			1.0	0.16	ug/L	ND		60-140			
Methylene Chloride			1.0	0.44	ug/L	ND		57-132			
Naphthalene			1.0	0.43	ug/L	ND		54-140			
n-Butylbenzene			1.0	0.64	ug/L	ND		71-128			
n-Propylbenzene			1.0	0.69	ug/L	ND		77-120			
sec-Butylbenzene			1.0	0.75	ug/L	ND		74-127			
Styrene			1.0	0.73	ug/L	ND		70-130			
tert-Butylbenzene			1.0	0.81	ug/L	ND		75-123			
Tetrachloroethene		25.0	1.0	0.36	ug/L	25.6	102	74-122			
Toluene		25.0	1.0	0.51	ug/L	25.6	102	70-122			
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	24.3	97	73-127			
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND		72-123			
Trichloroethene		25.0	1.0	0.46	ug/L	23.9	96	74-123			
Trichlorofluoromethane			1.0	0.88	ug/L	ND		62-152			
Vinyl chloride			1.0	0.90	ug/L	ND		65-133			

THE LEADER IN ENVIRONMENTAL TESTING

....

HRP Engineering, PC 1 Fairchild Square, Suite 110	Work Order: RTK1	380	Received: Reported:	11/18/10 12/02/10 12:13
Clifton Park, NY 12065	Project: 710 Ohio S Project Number:	Street, Buffalo, NY 710 Ohio Street, Buffalo, NY		
	LABORA	FORY QC DATA		

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limi	Data Data
Volatile Organic Compour	nds by EPA	8260B								
LCS Analyzed: 11/30/10 (I	Lab Numbe	er:10K2778-	BS1, Batch:	10K2778)						
Xylenes, total		75.0	2.0	0.66	ug/L	81.2	108	76-122		
Surrogate:					ug/L		113	66-137		
1,2-Dichloroethane-d4 Surrogate:					ug/L		108	73-120		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		119	71-126		

	the channel channel channel of the c	s (Attach list if acre is needed)	Conditions of Receipt	82403			(A fee mey be accessed if sempara are reterned thorits truper (han 1 month)	Date Date 18:10 Time 745		
	Project Annager Soft Sa Hell 12	Stephenser Stephenser Carnier Wayph Isumber of Carnier Wayph Isumber of	Mattrix Comaliters & Mattrix Comaliters & Mattrix Comaliters & Resource Presonatives & Alacon Comaliters & Resource Preson	20 L	3/5		Lintmann 🗌 Helum To Clear V Disposed By Leb 🔲 Atchive ForA	Date 1 15/10 Time 2 Accessed By Mal By altre 10	Date Time 3. Received by 4.	The Sample, Pinne Fredd Capy
Chain of Custody Record	Cherry Cherry Actives 12 A Server in two	City that Child Jane 2000 110 City Lan Port North NY Project Name and Location (State) 12. L. L. L. M. L. L.	ContractPurchase Onder/Duble No. Sample 1.0. No. and Description (Containers for each sample may be combined on one time). Date	MW-1	MW-3R	7 tippslank	Number of the province of the second seco	T. Addinguissed By SCULA	2. Paulinciaired By	FLW - T W/L WAY Substant

TestAmerica Buffalo					
SDG:	RTK1380				
CLASS:	VOA				
METHOD:	8260B				

.

ANALYSES DATA PACKAGE COVER PAGE

8260B

Laboratory:	TestAmerica Buffalo	SDG: RTK1380
Client:	HRP Engineering, PC	Project: 710 Ohio Street, Buffalo, NY
	Client Sample Id:	Lab Sample Id:
	MW-1	<u>RTK1380-01</u>
	MW-2	<u>RTK1380-02</u>
	MW-3R	<u>RTK1380-03</u>
	MW-5	<u>RTK1380-04</u>
	X- 1	<u>RTK1380-05</u>
	TRIP BLANK	<u>RTK1380-06</u>

Form 2 SURROGATE STANDARD RECOVERY AND RT SUMMARY 8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Sequence:	<u>T005434</u>	Instrument:	<u>HP5973S</u>
Matrix:	Water	Calibration:	<u>R10K091</u>

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
Blank (10K2674-BLK1)	Blank (10K2674-BLK1) Lab File ID: \$1796.D					: 11/30/10 11:1	1	
1,2-Dichloroethane-d4	25.0	114	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	102	73 - 120	8.07	8.07	0.0000	+/-1.0	1
Toluene-d8	25.0	117	71 - 126	6.02	6.018333	0.0017	+/-1.0	
LCS (10K2674-BS1)			Lab File ID: S	1795.D	Analyzed	: 11/30/10 10:5	0	
1,2-Dichloroethane-d4	25.0	112	66 - 137	4.63	4.63	0.0000	+/-1.0	1
4-Bromofluorobenzene	25.0	104	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.02	6.018333	0.0017	+/-1.0	
MW-1 (RTK1380-01)			Lab File ID: S	1805.D	Analyzed	: 11/30/10 15:0	3	
1,2-Dichloroethane-d4	25.0	109	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	103	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.02	6.018333	0.0017	+/-1.0	
MW-2 (RTK1380-02)			Lab File ID: S1806.D		Analyzed: 11/30/10 15:25			
1,2-Dichloroethane-d4	25.0	109	66 - 137	4.63	4.63	0.0000	+/-1.0	
4-Bromofluorobenzene	25.0	105	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.02	6.018333	0.0017	+/-1.0	
MW-3R (RTK1380-03)			Lab File ID: S1807.D		Analyzed: 11/30/10 15:4		6	
1,2-Dichloroethane-d4	25.0	111	66 - 137	4.64	4.63	0.0100	+/-1.0	T
4-Bromofluorobenzene	25.0	103	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	116	71 - 126	6.02	6.018333	0.0017	+/-1.0	
X-1 (RTK1380-05)			Lab File ID: S	1809.D	Analyzed	: 11/30/10 16:2	9	
1,2-Dichloroethane-d4	25.0	111	66 - 137	4.63	4.63	0.0000	+/-1.0	
4-Bromofluorobenzene	25.0	104	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.02	6.018333	0.0017	+/-1.0	
TRIP BLANK (RTK1380-06)			Lab File ID: S	1810.D	Analyzed	: 11/30/10 16:5	0	
1,2-Dichloroethane-d4	25.0	111	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	103	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	117	71 - 126	6.02	6.018333	0.0017	+/-1.0	

* Values outside of QC limits

Form 2 SURROGATE STANDARD RECOVERY AND RT SUMMARY 8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Sequence:	<u>T005455</u>	Instrument:	<u>HP5973S</u>
Matrix:	Water	Calibration:	<u>R10K091</u>

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
Blank (10K2778-BLK1)			Lab File ID: S	1825.D	Analyzed	l: 11/30/10 23:0	6	
1,2-Dichloroethane-d4	25.0	113	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	106	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	118	71 - 126	6.02	6.018333	0.0017	+/-1.0	
LCS (10K2778-BS1)			Lab File ID: S	1824.D	Analyzed: 11/30/10 22:44			
1,2-Dichloroethane-d4	25.0	113	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	108	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	119	71 - 126	6.02	6.018333	0.0017	+/-1.0	
MW-5 (RTK1380-04)			Lab File ID: S	1828.D	Analyzed	l: 12/01/10 00:2	2	
1,2-Dichloroethane-d4	25.0	112	66 - 137	4.64	4.63	0.0100	+/-1.0	
4-Bromofluorobenzene	25.0	105	73 - 120	8.07	8.07	0.0000	+/-1.0	
Toluene-d8	25.0	115	71 - 126	6.02	6.018333	0.0017	+/-1.0	

* Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Matrix:	Water	Spike standard:	<u>RT14555</u>
Batch:	<u>10K2674</u>	Laboratory ID:	<u>10K2674-BS1</u>
Preparation:	<u>5030B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
1,1,1-Trichloroethane	25.0	ug/L	27.9	111	73 - 126
1,1,2,2-Tetrachloroethane	25.0	ug/L	24.9	99	70 - 126
1,1,2-Trichloroethane	25.0	ug/L	23.8	95	76 - 122
1,1,2-Trichlorotrifluoroethane	25.0	ug/L	24.1	96	60 - 140
1,1-Dichloroethane	25.0	ug/L	23.8	95	71 - 129
1,1-Dichloroethene	25.0	ug/L	23.5	94	65 - 138
1,2,4-Trichlorobenzene	25.0	ug/L	24.9	100	70 - 122
1,2,4-Trimethylbenzene	25.0	ug/L	25.8	103	76 - 121
1,2-Dibromo-3-chloropropane	25.0	ug/L	20.3	81	56 - 134
1,2-Dibromoethane (EDB)	25.0	ug/L	25.0	100	77 - 120
1,2-Dichlorobenzene	25.0	ug/L	24.2	97	77 - 120
1,2-Dichloroethane	25.0	ug/L	24.5	98	75 - 127
1,2-Dichloropropane	25.0	ug/L	23.2	93	76 - 120
1,3,5-Trimethylbenzene	25.0	ug/L	25.4	102	77 - 121
1,3-Dichlorobenzene	25.0	ug/L	24.5	98	77 - 120
1,4-Dichlorobenzene	25.0	ug/L	23.6	95	75 - 120
1,4-Dioxane		ug/L	ND		49 - 146
2-Butanone (MEK)	125	ug/L	112	90	57 - 140
2-Hexanone	125	ug/L	128	102	65 - 127
4-Isopropyltoluene	25.0	ug/L	26.0	104	73 - 120
4-Methyl-2-pentanone (MIBK)	125	ug/L	124	99	71 - 125
Acetone	125	ug/L	111	89	56 - 142
Benzene	25.0	ug/L	23.4	94	71 - 124
Bromodichloromethane	25.0	ug/L	22.8	91	80 - 122
Bromoform	25.0	ug/L	19.7	79	66 - 128
Bromomethane	25.0	ug/L	25.7	103	36 - 150
Carbon disulfide	25.0	ug/L	20.4	81	59 - 134
Carbon Tetrachloride	25.0	ug/L	26.6	107	72 - 134
Chlorobenzene	25.0	ug/L	24.0	96	72 - 120
Chlorodibromomethane	25.0	ug/L	22.1	89	75 - 125

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Matrix:	Water	Spike standard:	<u>RT14555</u>
Batch:	<u>10K2674</u>	Laboratory ID:	10K2674-BS1
Preparation:	<u>5030B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
Chloroethane	25.0	ug/L	31.5	126	69 - 136
Chloroform	25.0	ug/L	24.0	96	73 - 127
Chloromethane	25.0	ug/L	21.9	88	49 - 142
cis-1,2-Dichloroethene	25.0	ug/L	24.1	97	74 - 124
cis-1,3-Dichloropropene	25.0	ug/L	21.9	87	74 - 124
Cyclohexane	25.0	ug/L	22.3	89	70 - 130
Dichlorodifluoromethane	25.0	ug/L	22.5	90	33 - 157
Ethylbenzene	25.0	ug/L	24.8	99	77 - 123
Isopropylbenzene	25.0	ug/L	25.7	103	77 - 122
Methyl Acetate	25.0	ug/L	21.9	88	60 - 140
Methyl tert-Butyl Ether	25.0	ug/L	25.0	100	64 - 127
Methylcyclohexane	25.0	ug/L	23.4	93	60 - 140
Methylene Chloride	25.0	ug/L	24.6	98	57 - 132
Naphthalene	25.0	ug/L	21.5	86	54 - 140
n-Butylbenzene	25.0	ug/L	25.9	104	71 - 128
n-Propylbenzene	25.0	ug/L	25.1	100	77 - 120
sec-Butylbenzene	25.0	ug/L	25.7	103	74 - 127
Styrene	25.0	ug/L	25.6	102	70 - 130
tert-Butylbenzene	25.0	ug/L	25.9	103	75 - 123
Tetrachloroethene	25.0	ug/L	23.7	95	74 - 122
Toluene	25.0	ug/L	23.7	95	70 - 122
trans-1,2-Dichloroethene	25.0	ug/L	23.6	95	73 - 127
trans-1,3-Dichloropropene	25.0	ug/L	22.0	88	72 - 123
Trichloroethene	25.0	ug/L	23.5	94	74 - 123
Trichlorofluoromethane	25.0	ug/L	23.6	95	62 - 152
Vinyl chloride	25.0	ug/L	26.5	106	65 - 133
Xylenes, total	75.0	ug/L	75.0	100	76 - 122

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Matrix:	Water	Spike standard:	<u>RT14328</u>
Batch:	<u>10K2778</u>	Laboratory ID:	<u>10K2778-BS1</u>
Preparation:	<u>5030B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
1,1,1-Trichloroethane		ug/L	ND		73 - 126
1,1,2,2-Tetrachloroethane		ug/L	ND		70 - 126
1,1,2-Trichloroethane		ug/L	ND		76 - 122
1,1,2-Trichlorotrifluoroethane		ug/L	ND		60 - 140
1,1-Dichloroethane	25.0	ug/L	24.0	96	71 - 129
1,1-Dichloroethene	25.0	ug/L	21.0	84	65 - 138
1,2,4-Trichlorobenzene		ug/L	ND		70 - 122
1,2,4-Trimethylbenzene	25.0	ug/L	26.0	104	76 - 121
1,2-Dibromo-3-chloropropane		ug/L	ND		56 - 134
1,2-Dibromoethane (EDB)		ug/L	ND		77 - 120
1,2-Dichlorobenzene	25.0	ug/L	24.8	99	77 - 120
1,2-Dichloroethane	25.0	ug/L	24.7	99	75 - 127
1,2-Dichloropropane		ug/L	ND		76 - 120
1,3,5-Trimethylbenzene		ug/L	ND		77 - 121
1,3-Dichlorobenzene		ug/L	ND		77 - 120
1,4-Dichlorobenzene		ug/L	ND		75 - 120
1,4-Dioxane		ug/L	ND		49 - 146
2-Butanone (MEK)		ug/L	ND		57 - 140
2-Hexanone		ug/L	ND		65 - 127
4-Isopropyltoluene		ug/L	ND		73 - 120
4-Methyl-2-pentanone (MIBK)		ug/L	ND		71 - 125
Acetone		ug/L	ND		56 - 142
Benzene	25.0	ug/L	23.6	94	71 - 124
Bromodichloromethane		ug/L	ND		80 - 122
Bromoform		ug/L	ND		66 - 128
Bromomethane		ug/L	ND		36 - 150
Carbon disulfide		ug/L	ND		59 - 134
Carbon Tetrachloride		ug/L	ND		72 - 134
Chlorobenzene	25.0	ug/L	25.9	104	72 - 120
Chlorodibromomethane		ug/L	ND		75 - 125

LCS / LCS DUPLICATE RECOVERY

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Matrix:	Water	Spike standard:	<u>RT14328</u>
Batch:	<u>10K2778</u>	Laboratory ID:	<u>10K2778-BS1</u>
Preparation:	5030B MS	Initial/Final:	<u>5 mL / 5 mL</u>

COMPOUND	SPIKE ADDED	UNITS	LCS CONCENTRATION	LCS % REC. #	QCLIMITS REC.
Chloroethane		ug/L	ND		69 - 136
Chloroform		ug/L	ND		73 - 127
Chloromethane		ug/L	ND		49 - 142
cis-1,2-Dichloroethene	25.0	ug/L	24.0	96	74 - 124
cis-1,3-Dichloropropene		ug/L	ND		74 - 124
Cyclohexane		ug/L	ND		70 - 130
Dichlorodifluoromethane		ug/L	ND		33 - 157
Ethylbenzene	25.0	ug/L	26.5	106	77 - 123
Isopropylbenzene		ug/L	ND		77 - 122
Methyl Acetate		ug/L	ND		60 - 140
Methyl tert-Butyl Ether	25.0	ug/L	25.1	100	64 - 127
Methylcyclohexane		ug/L	ND		60 - 140
Methylene Chloride		ug/L	ND		57 - 132
Naphthalene		ug/L	ND		54 - 140
n-Butylbenzene		ug/L	ND		71 - 128
n-Propylbenzene		ug/L	ND		77 - 120
sec-Butylbenzene		ug/L	ND		74 - 127
Styrene		ug/L	ND		70 - 130
tert-Butylbenzene		ug/L	ND		75 - 123
Tetrachloroethene	25.0	ug/L	25.6	102	74 - 122
Toluene	25.0	ug/L	25.6	102	70 - 122
trans-1,2-Dichloroethene	25.0	ug/L	24.3	97	73 - 127
trans-1,3-Dichloropropene		ug/L	ND		72 - 123
Trichloroethene	25.0	ug/L	23.9	96	74 - 123
Trichlorofluoromethane		ug/L	ND		62 - 152
Vinyl chloride		ug/L	ND		65 - 133
Xylenes, total	75.0	ug/L	81.2	108	76 - 122

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

PREPARATION BATCH SUMMARY

8260B

Laborato	ory: <u>T</u>	estAmerica Buf	falo			:	SDG:		RTK1	380	
Client:	H	RP Engineering.	PC]	Project:		<u>710 O</u>	<u>hio Street, Buffalo, NY</u>	
Batch:	<u>10</u>	<u>0K2674</u>	Batch Matri	x: <u>W</u>	<u>ater</u>]	Prepara	tion:	<u>5030E</u>	<u>B MS</u>	
	SAMPLE NA	AME	L	AB SAMPI	LEID	INITL	AL	FINA	L	DATE PREPARED	TOT/DIS
	Blank		1	0K2674-B	LK1	5.00	mL	5.00	mL	11/29/10 20:50	N/A
	LCS			10K2674-E	3S 1	5.00	mL	5.00	mL	11/29/10 20:50	N/A
	MW-1			RTK1380-	-01	5.00	mL	5.00	mL	11/30/10 11:28	N/A
	MW-2			RTK1380-	-02	5.00	mL	5.00	mL	11/30/10 11:28	N/A
	MW-3R			RTK1380-	-03	5.00	mL	5.00	mL	11/30/10 11:28	N/A
	X-1			RTK1380-	-05	5.00	mL	5.00	mL	11/30/10 11:28	N/A
	TRIP BLAN	NK		RTK1380-	-06	5.00	mL	5.00	mL	11/30/10 11:28	N/A

PREPARATION BATCH SUMMARY

8260B

Laborate	aboratory: <u>TestAmerica Buffalo</u>				SDG:		RTK1380				
Client:	ient: <u>HRP Engineering, PC</u>				Project:		710 Ohio Street, Buffalo, NY				
Batch:	atch: <u>10K2778</u> Batch Matrix: <u>Water</u>			Preparation:			<u>5030B MS</u>				
	SAMPLE	NAME		LAB S.	AMPLE ID	INITI	AL	FINA	L	DATE PREPARED	TOT/DIS
	Blank			10K27	78-BLK1	5.00	mL	5.00	mL	11/30/10 21:21	N/A
	LCS			10K2	778-BS1	5.00	mL	5.00	mL	11/30/10 21:21	N/A
	MW-5			RTK	1380-04	5.00	mL	5.00	mL	11/30/10 21:21	N/A

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK 8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380	
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY	
Lab File ID:	S1462.D	Injection Date:	11/19/10	
Instrument ID:	HP5973S	Injection Time:	23:07	
Sequence:	T005292	Lab Sample ID:	T005292-TUN1	
Calibration:	R10K091			
m/z	ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE	
50	15 - 40% of 95		18.54	PASS
75	30 - 60% of 95		49.209	PASS
95	Base peak, 100% relative abundance		100	PASS
96	5 - 9% of 95		7.0286	PASS
173	Less than 2% of 174		0	PASS
174	50 - 100% of 95	<u></u>	83.137	PASS
175	5 - 9% of 174		7.3685	PASS
176	95 - 101% of 174		95.06	PASS
177	5 - 9% of 176		6.1438	PASS

INITIAL CALIBRATION STANDARDS 8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380 710 Ohio Street, Buffalo, NY			
Client:	HRP Engineering, PC	Project:				
Sequence:	T005292	Instrument:	HP5973S			
Calibration:	R10K091					
Standard ID	Description	Lab Sample ID	Lab File ID	Analysis Date/Time		
RT12565	BFB Working Standard	T005292-TUN1	S1462.D	11/19/10 23:07		
RT14220	S CAL1 MIX 1PPB	T005292-CAL1	S1464.D	11/19/10 23:58		
RT14221	S CAL2 MIX 5PPB	T005292-CAL2	\$1465.D	11/20/10 00:19		
RT14223	S CAL3 MIX 10PPB	T005292-CAL3	S1466.D	11/20/10 00:41		
RT14224	S CAL4 MIX 25PPB	T005292-CAL4	\$1467.D	11/20/10 01:02		
RT14225	S CAL5 MIX 50PPB	T005292-CAL5	S1468.D	11/20/10 01:24		
RT14226	S CAL6 MIX 100PPB	T005292-CAL6	S1469.D	11/20/10 01:45		
RT13802	S Cal Mix 7 ADD 1ppb	T005292-CAL7	S1471.D	11/20/10 02:28		
RT13803	S Cal Mix 8 ADD 5ppb	T005292-CAL8	\$1472.D	11/20/10 02:50		
RT13804	S Cal Mix 9 ADD 10ppb	T005292-CAL9	\$1473.D	11/20/10 03:11		
RT13805	S Cal Mix A ADD 25ppb	T005292-CALA	S1474.D	11/20/10 03:33		
RT13806	S Cal Mix B ADD 50ppb	T005292-CALB	\$1475.D	11/20/10 03:54		
RT13807	S Cal Mix C ADD 50ppb	T005292-CALC	S1476.D	11/20/10 04:16		
MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Lab File ID:	<u>S1792.D</u>	Injection Date:	<u>11/30/10</u>
Instrument ID:	<u>HP5973S</u>	Injection Time:	<u>09:45</u>
Sequence:	<u>T005434</u>	Lab Sample ID:	<u>T005434-TUN1</u>

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE			
50	15 - 40% of 95	16.494	PASS		
75	30 - 60% of 95	50.102	PASS		
95	Base peak, 100% relative abundance	100	PASS		
96	5 - 9% of 95	7.298	PASS		
173	Less than 2% of 174	0	PASS		
174	50 - 100% of 95	80.664	PASS		
175	5 - 9% of 174	7.3235	PASS		
176	95 - 101% of 174	96.602	PASS		
177	5 - 9% of 176	7.047	PASS		

.

Form 5A

ANALYSIS BATCH (SEQUENCE) SUMMARY

Laboratory:	TestAmerica Buffal	<u>o</u>	SDG:	RTK1380
Client:	HRP Engineering, P	<u>c</u>	Project:	710 Ohio Street, Buffalo, NY
Sequence:	<u>T005434</u>		Instrument:	<u>HP5973S</u>
			Calibration:	<u>R10K091</u>
Sample Name		Lab Sample ID	Lab File ID	Analysis Date/Time
MS Tune		T005434-TUN1	S1792.D	11/30/10 09:45
Calibration Check		T005434-CCV1	S1793.D	11/30/10 10:08
Calibration Check		T005434-CCV2	S1794.D	11/30/10 10:29
LCS		10K2674-BS1	\$1795.D	11/30/10 10:50
Blank		10K2674-BLK1	S1796.D	11/30/10 11:11
MW-1		RTK1380-01	S1805.D	11/30/10 15:03
MW-2		RTK1380-02	S1806.D	11/30/10 15:25
MW-3R		RTK1380-03	S1807.D	11/30/10 15:46
X-1		RTK1380-05	S1809.D	11/30/10 16:29
TRIP BLANK		RTK1380-06	S1810.D	11/30/10 16:50

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Lab File ID:	<u>S1821.D</u>	Injection Date:	<u>11/30/10</u>
Instrument ID:	<u>HP5973S</u>	Injection Time:	<u>21:40</u>
Sequence:	<u>T005455</u>	Lab Sample ID:	<u>T005455-TUN1</u>

m/z	m/z ION ABUNDANCE CRITERIA % RELATIVE ABUNDANCE			
50	15 - 40% of 95	16.516	PASS	
75	30 - 60% of 95	45.27	PASS	
95	Base peak, 100% relative abundance	100	PASS	
96	5 - 9% of 95	6.5808	PASS	
173	Less than 2% of 174	0	PASS	
174	50 - 100% of 95	79.806	PASS	
175	5 - 9% of 174	7.1774	PASS	
176	95 - 101% of 174	95.073	PASS	
177	5 - 9% of 176	6.6967	PASS	

Form 5A

ANALYSIS BATCH (SEQUENCE) SUMMARY 8260B

Laboratory:	TestAmerica Bu	<u>iffalo</u>	SDG:	RTK1380
Client:	HRP Engineerin	ig <u>, PC</u>	Project:	710 Ohio Street, Buffalo, NY
Sequence:	<u>T005455</u>		Instrument:	<u>HP5973S</u>
			Calibration:	<u>R10K091</u>
Sample Name		Lab Sample ID	Lab File ID	Analysis Date/Time
MS Tune		T005455-TUN1	S1821.D	11/30/10 21:40
Calibration Che	ck	T005455-CCV1	S1822.D	11/30/10 22:02
Calibration Che	ck	T005455-CCV2	S1823.D	11/30/10 22:23
LCS		10K2778-BS1	S1824.D	11/30/10 22:44
Blank		10K2778-BLK1	S1825.D	11/30/10 23:06
MW-5		RTK1380-04	S1828.D	12/01/10 00:22

INTERNAL STANDARD AREA AND RT SUMMARY

8260B

Laboratory:	<u>TestAmerica Bu</u>	<u>iffalo</u>		SD	G:	RTK1380				
Client:	HRP Engineerin	P Engineering, PC Project:				710 Ohio S	Street, Buffal	0 <u>, NY</u>		
Sequence:	<u>T005434</u>			Ins	trument:	<u>HP5973S</u>				
Matrix:	Water			Cal	ibration:	<u>R10K091</u>				
Internal Standar	rd	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Ch	neck (T005434-CCV1)		Lab File ID: S	1793.D		Analyzed: 1	1/30/10 10:0	8	
1,4-Dichlorober	nzene-d4	271855	9				50 - 200		+/-0.50	
1,4-Difluorober	izene	567241	4.93				50 - 200		+/-0.50	
Chlorobenzene-	-d5	272887	7.13				50 - 200		+/-0.50	
LCS (10K2674	-BS1)	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	Lab File ID: S	1795.D	_	Analyzed: 1	1/30/10 10:5	0	
1,4-Dichlorober	nzene-d4	276508	9	271855	9	102	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	568725	4.93	567241	4.93	100	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	275305	7.13	272887	7.13	101	50 - 200	0.0000	+/-0.50	
Blank (10K267	'4-BLK1)			Lab File ID: S	1796.D		Analyzed: 1	1/30/10 11:1	1	
1,4-Dichlorober	nzene-d4	252495	9	271855	9	93	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	547766	4.93	567241	4.93	97	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	252618	7.13	272887	7.13	93	50 - 200	0.0000	+/-0.50	
MW-1 (RTK1	380-01)			Lab File ID: S	1805.D		Analyzed: 1	1/30/10 15:0	3	
1,4-Dichlorober	nzene-d4	303602	9	271855	9	112	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	655520	4.93	567241	4.93	116	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	305268	7.13	272887	7.13	112	50 - 200	0.0000	+/-0.50	
MW-2 (RTK1	380-02)			Lab File ID: S	1806.D		Analyzed: 1	1/30/10 15:2	.5	
1,4-Dichlorober	nzene-d4	296515	9	271855	9	109	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	638619	4.93	567241	4.93	113	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	290707	7.13	272887	7.13	107	50 - 200	0.0000	+/-0.50	
MW-3R (RTK	(1380-03)			Lab File ID: S	1807.D		Analyzed: 1	1/30/10 15:4	6	
1,4-Dichlorober	nzene-d4	288714	9	271855	9	106	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	629699	4.93	567241	4.93	111	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	291035	7.13	272887	7.13	107	50 - 200	0.0000	+/-0.50	
X-1 (RTK1380)-05)			Lab File ID: S	1809.D		Analyzed: 1	1/30/10 16:2	9	
1,4-Dichlorober	nzene-d4	292994	9	271855	9	108	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	643431	4.93	567241	4.93	113	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	299598	7.13	272887	7.13	110	50 - 200	0.0000	+/-0.50	
TRIP BLANK	(RTK1380-06)			Lab File ID: S	1810.D		Analyzed: 1	1/30/10 16:5	0	
1,4-Dichlorober	nzene-d4	284423	9	271855	9	105	50 - 200	0.0000	+/-0.50	
1,4-Difluorober	nzene	631132	4.93	567241	4.93	111	50 - 200	0.0000	+/-0.50	
Chlorobenzene-	-d5	287006	7.13	272887	7.13	105	50 - 200	0.0000	+/-0.50	

* Values outside of QC limits

INTERNAL STANDARD AREA AND RT SUMMARY

8260B

Laboratory:	TestAmerica Bi	<u>iffalo</u>		SD	G:	RTK1380				
Client:	HRP Engineerin	ng, PC		Pro	ject:	<u>710 Ohio S</u>	Street, Buffal	<u>o, NY</u>		
Sequence:	<u>T005455</u>			Inst	trument:	<u>HP5973S</u>				
Matrix:	Water			Cal	ibration:	<u>R10K091</u>				
Internal Standard		Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Chec	k (T005455-CCV1)		Lab File ID: S	1822.D		Analyzed: 1	1/30/10 22:0	2	
1,4-Dichlorobenze	me-d4	293655	9				50 - 200		+/-0.50	
1,4-Difluorobenze	ne	625254	4.93				50 - 200		+/-0.50	
Chlorobenzene-d5		298495	7.13				50 - 200		+/-0.50	
LCS (10K2778-B	S1)			Lab File ID: S	1824.D		Analyzed: 1	1/30/10 22:4	4	
1,4-Dichlorobenze	ene-d4	288001	9	293655	9	98	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenze	ne	616867	4.93	625254	4.93	99	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5		282682	7.13	298495	7.13	95	50 - 200	0.0000	+/-0.50	
Blank (10K2778-)	BLK1)			Lab File ID: S	1825.D		Analyzed: 1	1/30/10 23:0	6	
1,4-Dichlorobenze	ene-d4	274068	9	293655	9	93	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenze	ne	590980	4.93	625254	4.93	95	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5		270799	7.13	298495	7.13	91	50 - 200	0.0000	+/-0.50	
MW-5 (RTK1380	0-04)	<u></u>	<u> </u>	Lab File ID: S	1828.D		Analyzed: 1	2/01/10 00:2	2	
1,4-Dichlorobenze	ene-d4	278521	9	293655	9	95	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenze	ne	605806	4.93	625254	4.93	97	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5		278979	7.13	298495	7.13	93	50 - 200	0.0000	+/-0.50	

* Values outside of QC limits

METHOD DETECTION AND REPORTING LIMITS

8260B

Laboratory: <u>TestAmerica Buffalo</u>

Client: HRP Engineering, PC

Matrix: Water	

SDG:	RTK1380

Project: 710 Ohio Street, Buffalo, NY

Water		Instrumen			
Analyte	MDL	MRL	Units		
1,1,1-Trichloroethane	0.82	1.0	ug/L		
1,1,2,2-Tetrachloroethane	0.21	1.0	ug/L		
1,1,2-Trichloroethane	0.23	1.0	ug/L		
1,1,2-Trichlorotrifluoroethane	0.31	1.0	ug/L		
1,1-Dichloroethane	0.38	1.0	ug/L		
1,1-Dichloroethene	0.29	1.0	ug/L		
1,2,4-Trichlorobenzene	0.41	1.0	ug/L		
1,2,4-Trimethylbenzene	0.75	1.0	ug/L		
1,2-Dibromo-3-chloropropane	0.39	1.0	ug/L		
1,2-Dibromoethane (EDB)	0.73	1.0	ug/L		
1,2-Dichlorobenzene	0.79	1.0	ug/L		
1,2-Dichloroethane	0.21	1.0	ug/L		
1,2-Dichloropropane	0.72	1.0	ug/L		
1,3,5-Trimethylbenzene	0.77	1.0	ug/L		
1,3-Dichlorobenzene	0.78	1.0	ug/L		
1,4-Dichlorobenzene	0.84	1.0	ug/L		
1,4-Dioxane	9.3	40	ug/L		
2-Butanone (MEK)	1.3	10	ug/L		
2-Hexanone	1.2	5.0	ug/L		
4-Isopropyltoluene	0.31	1.0	ug/L		
4-Methyl-2-pentanone (MIBK)	2.1	5.0	ug/L		
Acetone	3.0	10	ug/L		
Benzene	0.41	1.0	ug/L		
Bromodichloromethane	0.39	1.0	ug/L		
Bromoform	0.26	1.0	ug/L		
Bromomethane	0.69	1.0	ug/L		
Carbon disulfide	0.19	1.0	ug/L		
Carbon Tetrachloride	0.27	1.0	ug/L		
Chlorobenzene	0.75	1.0	ug/L		
Chlorodibromomethane	0.32	1.0	ug/L		
Chloroethane	0.32	1.0	ug/L		
Chloroform	0.34	1.0	ug/L		
Chloromethane	0.35	1.0	ug/L		
cis-1.2-Dichloroethene	0.81	1.0	ug/L		
cis-1.3-Dichloropropene	0.36	1.0	ug/I.		
Cvclohexane	0.18	1.0	ug/ĭ.		
Dichlorodifluoromethane	0.68	1.0	ug/ĭ,		
Ethylbenzene	0.74	10			

METHOD DETECTION AND REPORTING LIMITS

8260B

Laboratory: <u>TestAmerica Buffalo</u>

Client:	<u>HRP</u>	Engine	ering,	PC
----------------	------------	--------	--------	----

Matrix:	Water	

SDG:	RTK1380

Project: 710 Ohio Street, Buffalo, NY

Water		Instrument: <u>HP5973S</u>				
Analyte	MDL	MRL	Units			
Isopropylbenzene	0.79	1.0	ug/L			
Methyl Acetate	0.50	1.0	ug/L			
Methyl tert-Butyl Ether	0.16	1.0	ug/L			
Methylcyclohexane	0.16	1.0	ug/L			
Methylene Chloride	0.44	1.0	ug/L			
Naphthalene	0.43	1.0	ug/L			
n-Butylbenzene	0.64	1.0	ug/L			
n-Propylbenzene	0.69	1.0	ug/L			
sec-Butylbenzene	0.75	1.0	ug/L			
Styrene	0.73	1.0	ug/L			
tert-Butylbenzene	0.81	1.0	ug/L			
Tetrachloroethene	0.36	1.0	ug/L			
Toluene	0.51	1.0	ug/L			
trans-1,2-Dichloroethene	0.90	1.0	ug/L			
trans-1,3-Dichloropropene	0.37	1.0	ug/L			
Trichloroethene	0.46	1.0	ug/L			
Trichlorofluoromethane	0.88	1.0	ug/L			
Vinyl chloride	0.90	1.0	ug/L			
Xylenes, total	0.66	2.0	ug/L			

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo		SDG:	RTK1380		
Client:	HRP Engineering, PC		Project:	710 Ohio Street, Bu	uffalo, NY	
Matrix:	Water	Laboratory ID:	<u>RTK1380-01</u>	File ID:	<u>S1805.D</u>	
Sampled:	<u>11/18/10 11:20</u>	Prepared:	<u>11/30/10 11:28</u>	Analyzed:	<u>11/30/10 15:03</u>	
Solids:		Preparation:	5030B MS	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequence	e: T005434	Calibration:	R10K091	Instrument:	HP5973S
CAS NO.			DILUTION	CONC	(ug/L)	0
71-55-6	1.1.1-Trichloroethane		1	1	.0	U
79-34-5	1.1.2.2-Tetrachloroethane		1	1.	.0	U
79-00-5	1,1,2-Trichloroethane		1	1.	.0	U
76-13-1	1,1,2-Trichlorotrifluoroetha	ine	1	1.	.0	U
75-34-3	1.1-Dichloroethane		1	1.	.0	U
75-35-4	1,1-Dichloroethene		1	1.	.0	U
120-82-1	1,2,4-Trichlorobenzene		1	1.	.0	U
95-63-6	1,2,4-Trimethylbenzene		1	1.	.0	U
96-12-8	1,2-Dibromo-3-chloroprop	ane	1	1.	.0	U
106-93-4	1,2-Dibromoethane (EDB)		1	1.	.0	U
95-50-1	1,2-Dichlorobenzene		1	1.	.0	U
107-06-2	1,2-Dichloroethane	······································	1	1.	.0	U
78-87-5	1,2-Dichloropropane		1	1.	.0	U
108-67-8	1,3,5-Trimethylbenzene		1	1.	.0	U
541-73-1	1,3-Dichlorobenzene		1	1.	.0	U
106-46-7	1,4-Dichlorobenzene		1	1.	.0	U
123-91-1	1,4-Dioxane		1	4	0	U
78-93-3	2-Butanone (MEK)		1	1	0	U
591-78-6	2-Hexanone		1	5.	.0	U
99-87-6	4-Isopropyltoluene		1	1.	.0	U
108-10-1	4-Methyl-2-pentanone (MI	BK)	1	5.	.0	U
67-64-1	Acetone	·	1	1	0	U
71-43-2	Benzene		1	1.	.0	U
75-27-4	Bromodichloromethane		1	1.	.0	U
75-25-2	Bromoform		1	1.	.0	U
74-83-9	Bromomethane		1	1.	.0	U
75-15-0	Carbon disulfide		1	1.	.0	U
56-23-5	Carbon Tetrachloride		1	1.	.0	U
108-90-7	Chlorobenzene		1	1.	.0	<u> </u>
124-48-1	Chlorodibromomethane		1	1	.0	U
75-00-3	Chloroethane		1	7.	.1	
67-66-3	Chloroform	······	1	1.	.0	U
74-87-3	Chloromethane		1	1	.0	<u> </u>
156-59-2	cis-1,2-Dichloroethene		1	1	.0	<u> </u>
10061-01-5	cis-1,3-Dichloropropene		1	1.	.0	<u> </u>
110-82-7	Cyclohexane		1	1	.0	U
75-71-8	Dichlorodifluoromethane		1	1	.0	<u> </u>
100-41-4	Ethylbenzene		1	1	.0	<u> </u>
98-82-8	Isopropylbenzene		1	1	.0	U

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC		Project:	710 Ohio Street, B	<u>uffalo, NY</u>		
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	<u>80-01</u>	File ID:	<u>S1805.D</u>	
Sampled:	<u>11/18/10 11:20</u>	Prepared:	<u>11/30/10</u>	11:28	Analyzed:	<u>11/30/10 15:03</u>	
Solids:		Preparation:	<u>5030B N</u>	<u> 4S</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequence:	<u>T005434</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND			DILUTION	CONC	. (ug/L)	Q
79-20-9	Methyl Acetate			1	1	.0	U
1634-04-4	Methyl tert-Butyl Ether			1	1	.0	U
108-87-2	Methylcyclohexane			1	7	.0	
75-09-2	Methylene Chloride			1	1	.0	U
91-20-3	Naphthalene			1	1	.0	U
104-51-8	n-Butylbenzene			1	1	.0	U
103-65-1	n-Propylbenzene			1	1	U	
135-98-8	sec-Butylbenzene			1	1	.0	U
100-42-5	Styrene			1	1	.0	U
98-06-6	tert-Butylbenzene			1	1	.0	U
127-18-4	Tetrachloroethene			1	1.0		U
108-88-3	Toluene			1	1.0		U
156-60-5	trans-1,2-Dichloroethene			1	1.0		U
10061-02-6	trans-1,3-Dichloropropene			1	1.0		U
79-01-6	Trichloroethene			1	1.0		U
75-69-4	Trichlorofluoromethane			1	1	.0	U
75-01-4	Vinyl chloride			1	1.0		U
1330-20-7	Xylenes, total			1	2	.0	U
SYSTEM MONI	TORING COMPOUND	ADDED) (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4	25	.0	27.3	109	66 - 137	
4-Bromofluorobe	enzene	25	.0	25.7	103	73 - 120	
Toluene-d8		25	.0	28.7	115	71 - 126	
INTERNAL STA	ANDARD	AR	EA	RT	REF AREA	REF RT	Q
1,4-Dichlorobenz	zene-d4	303	602	9	271855	9	
1,4-Difluorobenz	zene	655	520	4.93	567241	4.93	
Chlorobenzene-d	15		268	7.13	272887	7.13	

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1805.D Vial: 14 Acq On : 30 Nov 2010 15:03 Sample : RTK1380-01 Misc : Operator: DHC Inst : HP5973S Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:01 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ ______ 4.93 114 655520 25.00 ug/L 0.00 1) CI10 1,4-Difluorobenzene 115.56% 7.13 82 305268 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 111.87% 62) CI30 1,4-Dichlorobenzene- 9.00 152 25.00 ug/L 0.00 303602 111.68% System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D 4.64 65 251267 27.29 ug/L 0.00
 Spiked Amount
 25.000
 Range
 66 - 137

 3) CS05
 Toluene-D8
 6.02
 98
 Recovery = 109.16% 781352 28.71 ug/L 0.00 43) CS05 Toluene-D8 Recovery = $1\overline{1}4.84\%$ Spiked Amount 25.000 Range 71 - 126 237083 ^{25.74} ug/L 61) CS10 p-Bromofluorobenzene 8.07 174 0.00 Recovery = 102.96% Spiked Amount 25.000 Range 73 - 120 Target Compounds Qvalue 0 N.D. 0 N.D. 2) C290 Dichlorodifluorome 0.00 85

 2)
 C290
 Dichlorodiffuoronie
 0.00
 50
 0

 3)
 C010
 Chloromethane
 0.00
 50
 0

 4)
 C020
 Vinyl chloride
 1.50
 62
 1824

 5)
 C015
 Bromomethane
 0.00
 94
 0

 6)
 C025
 Chloroethane
 1.89
 64
 32951

 7)
 C275
 Trichlorofluoromet
 0.00
 101
 0

 N.D. N.D. N.D. 7.10 ug/L 87 0 0 N.D. 8) C045 1,1-Dichloroethene 0.00 96 N.D. 9) C030 Methylene chloride 3.02 84 136 N.D. 76 10) C040 Carbon disulfide 2.71 128 N.D. 0 56 0.00 N.D. 11) CO36 Acrolein 0 N.D. 0,00 53 12) C038 Acrylonitrile 43 13) CO35 Acetone 2.65 2.93 2441 0.73 ug/l= # -4-3 35.62 ug/L·# 48 Acetonitrile 49482 14) C300 Iodomethane N.D. 0 15) C276 0.00 142 1,1,2-Trichloro-1,0.00T-butyl Methyl Eth0.00trans-1,2-Dichloro3.17 0 N.D. 16) C291 101 0 73 N.D. 17) C962 3.17 529 18) C057 trans-1,2-Dichloro 96 N.D. 2.92 56 124370 11.1619) C255 Methyl Acetate ua 63 2114 N.D. 20) C050 3.54 1,1-Dichloroethane 21) C125 Vinyl Acetate 3.55 43 506 N.D. 2,2-Dichloropropan 0.00 77 22) C051 0 N.D. 23) C056 cis-1,2-Dichloroet 4.00 96 1972 N.D. 24) C272 3551 1.08 1 Tetrahydrofuran 4.23 Bromochloromethane 0.00 128 0 N.D. 25) C222 26) C060 Chloroform 0.00 83 0 N.D. 0 1,1,1-Trichloroeth 0.00 97 N.D. 27) C115 0 Carbon tetrachlori 0.00 117 N.D. 28) C120 1,1-Dichloropropen 0.00 75 0 N.D. 29) C116 78 4.63 3015 N.D. 31) C165 Benzene 62 32) C065 4.69 323 N.D. 1,2-Dichloroethane 831 4.08 43 N.D. 33) C110 2-Butanone 4.37 5.17 25 34) C256 Cyclohexane 93601 -5:95 ug/L # 0.86 uu/L # 1 35) C150 Trichloroethene -95 8184 5.39 5.39 63 882 N.D. 36) C140 1,2-Dichloropropan 506 N.D. 93 37) C278 Dibromomethane 1.05 ոզ/Ի 5.49 8 1201738) C130 Bromodichloromethane 63 2391 N.D. 39) C161 2-Chloroethylvinyl 5.76 51/223

Page: 1

R10K091-SIXPT.M Tue Nov 30 16:46:02 2010 HP5973

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1805.D Vial: 14 Operator: DHC Acq On : 30 Nov 2010 15:03 Sample : RTK1380-01 Inst : HP5973S Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:01 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08)

 Internal Standards
 R.T. Qion Response
 Conc Units Dev (Min) Rev (Ar)

 (1)
 C12
 Methylcyclohexame
 5.17
 83
 113417
 7.05 ug/L #
 35

 (41)
 C145
 cis-1,3-Dichlorop
 0.00
 75
 0
 N.D.
 N.D.

 (41)
 C10
 trans-1,3-Dichloro
 0.00
 75
 0
 N.D.
 N.D.

 (45)
 C170
 trans-1,3-Dichloro
 0.00
 75
 0
 N.D.
 N.D.

 (46)
 C224
 Ethyl Methacrylate
 6.20
 9587
 0.75 ug/L #
 40

 (47)
 C160
 1,1,2-Trichloroethan
 0.00
 166
 0
 N.D.

 (51)
 C152
 Dibromochlorometha
 0.00
 170
 0
 N.D.

 (53)
 C215
 2-Hexanone
 6.62
 43
 1993
 N.D.

 (54)
 C235
 Chlorobenzene
 7.31
 16
 172
 N.D.

 (54)
 C235
 Styrene
 0.00
 104
 N.D.
 0

 (56)
 C240
 Ethylbenzene
 7.31
 16
 72
 < R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation R	eport TA	Buffal	.o (Not	Reviewed)	
Data File : D:\MSDCHEM\S\D Acq On : 30 Nov 2010 1 Sample : RTK1380-01 Misc : MS Integration Params: LST	ATA\113010\S 5:03 INT.P	1805.D	O I M	Vial: 14 perator: DHC nst : HP5 ultiplr: 1.0	59735 00
Quant Time: Nov 30 22:05:5	1 2010	Resul	ts File:	R10K091-ADD.	RES
Quant Method : D:\MSDCHEM\ Title : 8260 ADD (2 Last Update : Mon Nov 29 Response via : Initial Cal DataAcq Meth : VOA IS QA File : 50 level fo	S\R10K091 5ml purge) 22:23:07 201 ibration r IS QA unkn	-ADD.M O own. No	(RTE Inte	grator) es calculate	ed.
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluoroben	zene 4.93	114	655520	25.00 ug/I	J 0.00
23) CI20 D5-Chlorobenzen	e 7.13	117	566386	25.00 ug/I	NA 8 J 0.00
25) CI30 D4-1,4-Dichloro	benze 9.00	152	303602	25.00 ug/I	, 0.00 NA%
Target Compounds 2) C297 Chlorodifluorom 3) C294 Dichlorofluorom 4) C271 Ethyl Ether C 2-Propanol 6) C959 t-Butyl Alcohol 7) C277 Allyl Chloride 8) C279 Chloroprene 9) E678 Ethyl tert-buty 10) C305 Propionitrile 11) C258 Ethyl Acetate 12) C266 Methacrylonitri 13) C264 Isopropyl ether 14) C200 Isobutanol 15) E677 2-Methoxy-2-met 16) C252 Heptane 17) C273 Propylene Oxide 20) C270 Epichlorohydrin 21) C251 1,1-Dimethoxyet 22) C261 Hexane	eth 0.00 eth 0.00 2.32 0.00 3.15 0.00 1 e 0.00 1 e 0.00 1 e 4.20 hyl 0.00 1 e 5.17 late 5.36 0.00 5.88 han 0.00 0.00	51 67 59 45 59 54 43 73 43 73 43 56 41 58 57 75 57	$ \begin{array}{r} 0 \\ 0 \\ 523 \\ 0 \\ 6421 \\ 0 \\ 0 \\ 0 \\ 0 \\ 9545 \\ 1160 \\ 72540 \\ 0 \\ 0 \\ 139175 \\ 60028 \\ 0 \\ 1960 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	N.D. N.D. N.D. 5.89 ug/I N.D. N.D. N.D. N.D. N.D. 1.56 ug/I N.D. 136.74 ug/I N.D. 369.66 ug/I - 7.88 ug/I N.D. 1.71 ug/I N.D. N.D.	Qvalue Qvalue 100 47 47 58 72 70 74 55
24) C268 1,4 Dioxane 26) C292 2-Nitropropane 27) C511 2-Methylthiopen 28) C512 3-Methylthiopen 29) C969 3-Chlorobenzotr 30) C970 4-Chlorobenzotr 31) C968 2-Chlorobenzotr 32) C287 3-Chlorotoluene	$\begin{array}{ccc} 0.00 \\ 5.75 \\ e & 6.02 \\ e & 6.29 \\ ifl & 0.00 \\ ifl & 0.00 \\ ifl & 0.00 \\ 0.00 \\ \end{array}$	88 <u>43</u> 97 	0 	N.D. <u>2.30.ug/I</u> <u>1.12 ug/I</u> <u>1.29 ug/I</u> N.D. N.D. N.D. N.D. N.D. N.D.	+ 32 + 1 + 43
<pre>33) C285 Cyclohexanone 34) C799 Dicyclopentadie 35) C801 1,2,3-Trimethyl 36) C285 Pentachloroetha 37) C 1,3,5-Trichloroben</pre>	8.06 ne 9.00 ben 9.05 ne 0.00 zen 0.00	55 66 105 167 180	1917 5439 907 0 0	1.00 ug/I N.D. N.D. N.D. N.D. N.D.	. 4 23

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1805.D Acq On : 30 Nov 2010 15:03 Sample : RTK1380-01 Vial: 14 Operator: DHC Inst : HP5973S Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:01 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title: 82605ML WATERLast Update: Tue Nov 3016:45:08Response via: Initial CalibrationDataAcq Meth: VOA

Abundance						TIC:	S1805.D					
1700000								te-D4,I				
1600000								ilorobenzer				
1500000					98,S	ene-D5,l		30 1,4-Dict				
1400000					5 Toluene-	Chlorobenz	S.	5				
1300000				cene, ¹	CSO	CI20	orobenzene					
1200000				Difluorobenz			p-Bromoflu					
1100000		I		Ci10 1,4-1			CS10					
1000000												
900000												
800000				ne-D4,S								
700000				Dichtoroetha								
600000				CS15 1,2-I bleseatine,T oromethane								
500000				Rethydoget								
400000		E,T	E,	C130	ettherite, T							
300000	T, Pr	athyni@dei3	uran,T Cyclohexan		13-Methiano							
200000	Chloroetha	c200 N	Tetrahydrof C256		C266 E#							
100000	. C025	C035 Ac	C272									
0 	2 00	↓↓\ _{↓ →} - 3 00 8	4 00	<u>4444444444444444444444444444444444444</u>	W VN	للم الم 00 ح	10 8 00	ال م ممجمرا ل ۵ ۵	 ، سب المعامر ال	 	13 00	
				1000		54/2	23	0.0	 	 		••••

HP5973

Page 1

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	0-02	File ID:	<u>S1806.D</u>	
Sampled:	<u>11/18/10_12:30</u>	Prepared:	<u>11/30/10</u>	11:28	Analyzed:	<u>11/30/10 15:25</u>	
Solids:		Preparation:	5030B N	4S	Initial/Final:	5 mL / 5 mL	
Batch:	10K2674 Sequen	ce: T005434		Calibration:	R10K091	Instrument:	HP5973S
CASNO				DILUTION	CON	[C. (ng/[.)	0
71-55-6	1.1.1-Trichloroethane			1		1.0	 U
79-34-5	1,1,2,2-Tetrachloroethane			1		1.0	U
79-00-5	1,1,2-Trichloroethane			1		1.0	U
76-13-1	1,1,2-Trichlorotrifluoroeth	ane		1		1.0	U
75-34-3	1,1-Dichloroethane			1		0.91	J
75-35-4	1,1-Dichloroethene			1		1.0	U
120-82-1	1,2,4-Trichlorobenzene			1		1.0	U
95-63-6	1,2,4-Trimethylbenzene			1		1.0	U
96-12-8	1,2-Dibromo-3-chloroprop	ane		1		1.0	<u> </u>
106-93-4	1,2-Dibromoethane (EDB)			1		1.0	<u> </u>
95-50-1	1,2-Dichlorobenzene			1		1.0	
107-06-2	1,2-Dichloroethane			1		1.0	
/8-8/-5	1,2-Dichloropropane			1		1.0	<u> </u>
541-73-1	1,3,5-1 Hinethyldenzene			1		1.0	<u> </u>
106-46-7	1,5-Dichlorobenzene			1	-	1.0	<u> </u>
123-91-1	1.4-Dioxane			1		40	<u> </u>
78-93-3	2-Butanone (MEK)		-	1		10	U
591-78-6	2-Hexanone			1		5.0	U
99-87-6	4-Isopropyltoluene			1		1.0	U
108-10-1	4-Methyl-2-pentanone (M	(BK)		1		5.0	U
67-64-1	Acetone			1		10	U
71-43-2	Benzene			1		1.0	<u> </u>
75-27-4	Bromodichloromethane			1		1.0	U
75-25-2	Bromoform			1		1.0	<u> </u>
74-83-9	Bromomethane			1		1.0	U
75-15-0	Carbon disulfide			1		1.0	<u> </u>
56-23-5	Carbon Tetrachloride			1	_	1.0	<u> </u>
108-90-7	Chlorobenzene			1		1.0	
75 00 3	Chloroothono			1		1.0	
67-66-3	Chloroform			1		1.0	
74-87-3	Chloromethane			1		10	
156-59-2	cis-1.2-Dichloroethene			1		1.0	U
10061-01-5	cis-1,3-Dichloropropene			1		1.0	U
110-82-7	Cyclohexane			1	_	1.0	U
75-71-8	Dichlorodifluoromethane			1		1.0	U
100-41-4	Ethylbenzene			1		1.0	U
98-82-8	Isopropylbenzene			1		1.0	U

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC P			Project:	710 Ohio Street, B	uffalo, NY	
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	<u>80-02</u>	File ID:	<u>S1806.D</u>	
Sampled:	<u>11/18/10 12:30</u>	Prepared:	<u>11/30/10</u>	<u>) 11:28</u>	Analyzed:	<u>11/30/10 15:25</u>	
Solids:		Preparation:	<u>5030B N</u>	<u> 4S</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequenc	e: <u>T005434</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND			DILUTION	CONC	C. (ug/L)	Q
79-20-9	Methyl Acetate			1	1	.0	U
1634-04-4	Methyl tert-Butyl Ether			1	1	.0	U
108-87-2	Methylcyclohexane			1	1	.0	U
75-09-2	Methylene Chloride			1	1	.0	U
91-20-3	Naphthalene			1	1	.0	U
104-51-8	n-Butylbenzene			1	1	.0	U
103-65-1	n-Propylbenzene			1	1	.0	U
135-98-8	sec-Butylbenzene			1	1	.0	U
100-42-5	Styrene			1	1	.0	U
98-06-6	tert-Butylbenzene			1	1	.0	U
127-18-4	Tetrachloroethene			1	1	.0	U
108-88-3	Toluene			1	1	.0	U
156-60-5	trans-1,2-Dichloroethene			1	1	U	
10061-02-6	trans-1,3-Dichloropropene			1	1	U	
79 - 01-6	Trichloroethene			1	1	.0	U
75-69-4	Trichlorofluoromethane			1	1.0		U
75-01-4	Vinyl chloride			1	1	.0	U
1330-20-7	Xylenes, total			1	2	.0	U
SYSTEM MON	TORING COMPOUND	ADDEI	D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4	25	5.0	27.3	109	66 - 137	
4-Bromofluorobe	enzene	25	5.0	26.4	105	73 - 120	
Toluene-d8		25	5.0	28.7	115	71 - 126	
INTERNAL STA	NDARD	AF	REA	RT	REF AREA	REF RT	Q
1,4-Dichlorobenz	zene-d4	296	515	9	271855	9	
1,4-Difluorobenz	ene	638	619	4.93	567241	4.93	
Chlorobenzene-d	15	290	707	7.13	272887	7.13	

Quantitation Report TA Buffalo (Not Reviewed) Vial: 15 Data File : D:\MSDCHEM\S\DATA\113010\S1806.D Acq On : 30 Nov 2010 15:25 Sample : RTK1380-02 Operator: DHC Inst : HP5973S Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:07 2010 Results File: R10K091-SIXPT.RES S# 3100 11/30/00 NOKOD Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 4.93 114 638619 25.00 ug/L 0.00 1) CI10 1,4-Difluorobenzene 112.58% 7.13 82 290707 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 106.53% 106.53% 62) CI30 1,4-Dichlorobenzene- 9.00 152 296515 25.00 ug/L 0.00 109.07% System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D 4.63 65 244820 27.29 ug/L 0.00

 S0) CS15
 1,2-Dichloroethane-D
 4.63
 65
 244820
 27.29 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 109.16%

 43) CS05
 Toluene-D8
 6.02
 98
 742782
 28.66 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 114.64%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 231244
 26.36 ug/L
 0.00

 Spiked Amount 25.000 Range 73 - 120 Recovery = 105.44% Target Compounds2) C290Dichlorodifluorome0.00850N.D.3) C010Chloromethane0.00500N.D.4) C020Vinyl chloride0.00620N.D.5) C015Bromomethane0.00940N.D.6) C025Chloroethane0.00640N.D.7) C275Trichlorofluoromet0.00960N.D.8) C0451,1-Dichloroethene0.00960N.D.9) C030Methylene chloride0.00840N.D.10) C040Carbon disulfide2.7176137N.D.11) C036Acrolein0.00530N.D.12) C038Acrylonitrile0.001410N.D.13) C035Acetone2.654320130.6114) C300Acetonitrile0.001010N.D.15) C276Iodomethane0.001420N.D.16) C2911,1,2-Trichloro-1,0.001010N.D.17) C962T-butyl Methyl Eth0.00730N.D.18) C057trans-1,2-Dichloro0.00960N.D.10) C0501,1-Dichloroethane3.5463139120.9121) C125Vinyl Acetate3.55431333N.D.22) C0512,2-Dichloropropan0.00770N.D.24) C272Tetrahydrofuran4.234 Target Compounds Qvalue 43 -ug/I 0.91 ug/L 98 0 299 0 0 0 0 0 0 0 0 N.D. 24)C272Tetrahydrofuran4.234225)C222Bromochloromethane0.00128 N.D. N.D. 26) C060 Chloroform 0.00 83

 27) C115
 1,1,1-Trichloroeth
 0.00
 97

 28) C120
 Carbon tetrachlori
 0.00
 117

 29) C116
 1,1-Dichloropropen
 0.00
 75

 31) C165
 Benzene
 0.00
 78

 32) C065
 1.2-Dichloropthare
 0.00
 78

 N.D. N.D. N.D. N.D.

 31) C165
 Benzene
 0.00
 78
 0
 N.D.

 32) C065
 1,2-Dichloroethane
 0.00
 62
 0
 N.D.

 33) C110
 2-Butanone
 0.00
 43
 0
 N.D.

 34) C256
 Cyclohexane
 0.00
 56
 0
 N.D.

 35) C150
 Trichloroethene
 0.00
 95
 0
 N.D.

 36) C140
 1,2-Dichloropropan
 0.00
 63
 0
 N.D.

 37) C278
 Dibromomethane
 0.00
 83
 0
 N.D.

 38) C130
 Bromodichlorometha
 0.00
 83
 0
 N.D.

 39) C161
 2-Chloroethylvinyl
 5.76
 63
 2064
 N.D.

 58/223

		Quantitation	Report	ΤZ	A Buffa	lo (No	t Reviewe	d)
Data Fil Acq On Sample Misc MS Inter	.e : : : :	D:\MSDCHEM\S 30 Nov 2010 RTK1380-02	\DATA\11 15:25	3010\\$	51806.D		Vial: Operator: Inst : Multiplr:	15 DHC HP5973S 1.00
Quant Ti	me:	Nov 30 16:46	:07 2010)	Resu	lts File:	R10K091-	SIXPT.RES
Quant Me Title Last Upo Response DataAcq IS QA Fi	ethc late vi Met le	d : D:\MSDCHE : 8260 5ML : Tue Nov 3 a : Initial C h : VOA : D:\MSDCHE	M\S\F WATER 0 16:45: alibrati M\S\DATA	810K091 08 201 .on 8\11301	L-SIXPT LO LO\S179	9.M (RTE I 3.D (30 N	ntegrator ov 2010) 10:08)
Interna	al S	tandards		R.T.	QIon	Response	Conc Un	its Dev(Min) Rcv(Ar)
40) C01	.2	Methylcyclohe	xane	0.00	83	0	N.D.	
41) C14	15	cis-1,3-Dichl	oropr	0.00	75	0	N.D.	
44) C23	30	Toluene		6.06	92	2318	N.D.	
45) C17	0	trans-1,3-Dic	hloro	0.00	75	0	N.D.	
46) C28	34 50	Ethyl Methacr	ylate rooth	0.00	69 03	0	N.D.	
47 C16 48 C21	0	4-Methyl-2-ne	ntano	6 01	03 43	2796	N.D.	
49) C22	20	Tetrachloroet	hene	0.00	166	2750	N.D.	
50) C22	21	1.3-Dichlorop	ropan	0.00	76	õ	N.D.	
51) C15	55	Dibromochloro	metha	0.00	129	0	N.D.	
52) C16	53	1,2-Dibromoet	hane	0.00	107	0	N.D.	
53) C21	5	2-Hexanone		0.00	43	0	N.D.	
54) C23	35	Chlorobenzene		0.00	112	0	N.D.	
55) C28	31	1,1,1,2-Tetra	chlor	0.00	131	0	N.D.	
56) C24	10	Ethylbenzene		7.31	91	1011	N.D.	
57) C24	6	m,p-Xylene		7.31	106	394	N.D.	
58) C24		o-Xylene		0.00	106	0	N.D.	
59) C24	10	Styrene		0.00	173	0	N.D.	
63) C16	50	Isopropylbopz	000	0.00	105	0	N.D.	
64) C3C	1	Bromobenzene	ene	0.00	156	0	N.D.	
65) C22	25	1.1.2.2-Tetra	chlor	0.00	83	õ	N.D.	
66) C28	32	1,2,3-Trichlo	ropro	0.00	110	Ō	N.D.	
67) C28	33	t-1,4-Dichlor	0-2-B	0.00	51	0	N.D.	
68) C30)2	n-Propylbenze	ne	8.06	91	746	N.D.	
69) C3C)3	2-Chlorotolue	ne	0.00	126	0	N.D.	
70) C28	39	4-Chlorotolue	ne	0.00	126	0	N.D.	
71) C30)4	1,3,5-Trimeth	ylben	8.39	105	137	N.D.	
72) C30)6	tert-Butylben	zene	0.00	134	1000	N.D.	
73) C30)7	1,2,4-Trimeth	y⊥ben	8.69	105	1930	N.D.	
74) C3C	28	sec-Butylbenz	ene	8.69	105	1930	N.D.	
75) C26	0	1,3-Dichiorop	enzen	8.94	140	005	N.D.	
70) C30	79 57	1 A-Dichlorob	anzen	8 94	146	885	N D	
78) C24	19	1,4 Dichlorob	enzen	0.00	146	0	N.D.	
79) C31	0	n-Butylbenzen	e	0.00	91	õ	N.D.	
80) C28	36	1,2-Dibromo-3	-Chlo	0.00	75	Ō	N.D.	
81) C31	. 3	1,2,4-Trichlo	roben	0.00	180	0	N.D.	
82) C31	. 6	Hexachlorobut	adien	0.00	225	0	N.D.	
83) C31	_ 4	Naphthalene	1	0.86	128	1741	N.D.	
84) C93	34	1,2,3-Trichlo	roben	0.00	180	0	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		Quantitation	Report	ТА	Buffal	o (Not	Reviewe	ed)
Data Acq O Sampl Misc MS In Ouant	File n e tegra Time	: D:\MSDCHEM\S\ : 30 Nov 2010 : RTK1380-02 : tion Params: LS : Nov 30 22:05:	DATA\113 15:25 TINT.P 56 2010	3010\S:	Resul	ts File:	Vial: Dperator: Inst : Multiplr: R10K091-	15 DHC HP5973S 1.00 ADD.RES
guune	I I MC		00 2010		10042			
Quant Title Last Respo DataA IS QA	Meth Updat nse v cq Me File	nod : D:\MSDCHEM : 8260 ADD (e : Mon Nov 29 ria : Initial Ca eth : VOA : 50 level f	\S\R 25ml pu: 22:23:0 libratio or IS Q2	10K091- rge) 07 201(on A unkno	-ADD.M) own. No	(RTE Inte	egrator) .es calcu	lated.
Inte	rnal	Standards		R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobe	nzene	4.93	114	638619	25.00	ug/L 0.00 NA%
23)	CI20	D5-Chlorobenze	ne	7.13	117	544929	25.00	ug/L 0.00
25)	CI30	D4-1,4-Dichlor	obenze	9.00	152	296515	25.00	ug/L 0.00 NA%
Targ 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 24) 26) 27) 28)	et Cc C297 C294 C271 C2959 C2779 E6705 C2267 C2267 C2266 C2264 C2264 C2270 C2261 C2272 C2271 C2272 C2251 C2512 C25	ompounds Chlorodifluoro Dichlorofluoro Ethyl Ether Propanol t-Butyl Alcoho Allyl Chloride Chloroprene Ethyl tert-but Propionitrile Ethyl Acetate Methacrylonitr Isopropyl ethe Isobutanol 2-Methoxy-2-me Heptane n-Butanol Methyl Methacr Propylene Oxid Epichlorohydri 1,1-Dimethoxye Hexane 1,4 Dioxane 2-Methylthiope 3-Methylthiope	meth meth l yl e ile r thyl ylat e n than	0.00 0.00 2.32 0.00	51 67 59 45 45 54 43 54 43 54 45 57 57 57 57 843 97	$ \begin{array}{c} 0 \\ 0 \\ 1045 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Qvalue
28) 29) 30) 31) 32) 33) 34) 35) 36) 37) 	C512 C969 C970 C968 C287 C285 C799 C801 C285 C 1,	3-Methylthiope 3-Chlorobenzot 4-Chlorobenzot 2-Chlorobenzot 3-Chlorotoluen Cyclohexanone Dicyclopentadi 1,2,3-Trimethy Pentachloroeth 3,5-Trichlorobe	ne rifl rifl e ene lben ane nzen	0.00 0.00 0.00 0.00 8.06 8.99 9.05 0.00	97 180 180 126 55 66 105 167 180	0 0 0 525 5409 511 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	-

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1806.D Acq On : 30 Nov 2010 15:25 Sample : RTK1380-02 Vial: 15 Operator: DHC Inst : HP5973S : Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:07 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA

oundance	· · · · · · · · · · · · · · · · · · ·				TIC: S18	06.D			
							-D4,I		
1600000							benzene		
1500000				(0)	5,1		1,4-Dichlord		
1400000				oluene-D 8,S	obenzene-D5	ſ	C130		
1300000			ene,l	- 	CI20 Chlore	probenzene,			
1200000			Difluorobenz		1	p-Bromofluc			
1100000			Ci10 1,4-			CS10			
1000000									
900000									
800000									
700000			sthane-D4,S						
600000			, 2-Dichloroe						
500000			CS15 1						
400000							1		
300000		thane,T							
200000	etone,T	,1-Dichloroe							
100000	C035 Ac	C050 1							
n ,			11 H	11	11		rt –		

HP5973

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street, 1	<u>Buffalo, NY</u>	
Matrix:	Water	Laboratory ID:	<u>RTK13</u>	<u>80-03</u>	File ID:	<u>S1807.D</u>	
Sampled:	<u>11/18/10 13:15</u>	Prepared:	<u>11/30/1</u>	0 11:28	Analyzed:	<u>11/30/10 15:46</u>	
Solids:		Preparation:	5030B I	MS	Initial/Final:	5 mL / 5 mL	
Batch:	10K2674 Seque	nce: T005434		Calibration:	R10K091	Instrument:	HP5973S
CAS NO.				DILUTION	CON	C. (ng/L)	0
71-55-6	1.1.1-Trichloroethane			1		1.0	U
79-34-5	1,1,2,2-Tetrachloroethan	e		1		1.0	U
79-00-5	1,1,2-Trichloroethane			1		1.0	U
76-13-1	1,1,2-Trichlorotrifluoroe	thane		1		1.0	U
75-34-3	1,1-Dichloroethane			1		1.0	U
75-35-4	1,1-Dichloroethene			1		1.0	U
120-82-1	1,2,4-Trichlorobenzene			1		1.0	U
95-63-6	1,2,4-Trimethylbenzene			1		1.0	U
96-12-8	1,2-Dibromo-3-chloropro	opane		1		1.0	U
106-93-4	1,2-Dibromoethane (EDI	3)		11		1.0	U
95-50-1	1,2-Dichlorobenzene			1		1.0	U
107-06-2	1,2-Dichloroethane		·····	1		1.0	U
78-87-5	1,2-Dichloropropane		-	1		1.0	U
108-67-8	1,3,5-Trimethylbenzene			1		1.0	U
541-73-1	1,3-Dichlorobenzene			1		1.0	<u> </u>
106-46-7	1,4-Dichlorobenzene			1		1.0	<u>U</u>
123-91-1	1,4-Dioxane			1		40	<u> </u>
/8-93-3	2-Butanone (MEK)			1		10	U
<u> </u>	2-Hexanone			1		5.0 1.0	
108-10-1	4-Isopropynomene 4-Methyl-2-pentanone (N			1		5.0	<u> </u>
67-64-1	A cetone			1		10	11
71-43-2	Benzene			1		10	<u>U</u>
75-27-4	Bromodichloromethane	· · · · · · · · · · · · · · · · · · ·		1		1.0	U
75-25-2	Bromoform			1		1.0	U
74-83-9	Bromomethane			1		1.0	U
75-15-0	Carbon disulfide			1		1.0	U
56-23-5	Carbon Tetrachloride			1		1.0	U
108-90-7	Chlorobenzene			1		1.0	U
124-48-1	Chlorodibromomethane			1		1.0	U
75-00-3	Chloroethane			1		1.0	U
67-66-3	Chloroform	-		1		1.0	U
74-87-3	Chloromethane			1		1.0	U
156-59-2	cis-1,2-Dichloroethene			1		1.0	U
10061-01-5	cis-1,3-Dichloropropene			1		1.0	U
110-82-7	Cyclohexane			1		1.0	<u> </u>
75-71-8	Dichlorodifluoromethane	;		1		1.0	U
100-41-4	Ethylbenzene			1		1.0	U
98-82-8	Isopropylbenzene			1		1.0	U

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street, I	Buffalo, NY	
Matrix:	Water	Laborator	y ID: <u>RTK</u>	<u>1380-03</u>	File ID:	<u>S1807.D</u>	
Sampled:	<u>11/18/10 13:15</u>	Prepared:	<u>11/3</u>	<u>)/10 11:28</u>	Analyzed:	<u>11/30/10 15:46</u>	
Solids:		Preparatio	m: <u>5030</u>	<u>B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	<u>10K2674</u> Seque	ence:	<u>T005434</u>	Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND			DILUTION	CON	C. (ug/L)	Q
79-20-9	Methyl Acetate			1		U	
1634-04-4	Methyl tert-Butyl Ether			1		1.0	U
108-87-2	Methylcyclohexane			1		1.0	U
75-09-2	Methylene Chloride			1		1.0	U
91-20-3	Naphthalene			1		1.0	U
104-51-8	n-Butylbenzene			1		U	
103-65-1	n-Propylbenzene			1		1.0	U
135-98-8	sec-Butylbenzene			1		1.0	U
100-42-5	Styrene			1		1.0	U
98-06-6	tert-Butylbenzene			1		1.0	U
127-18-4	Tetrachloroethene			11		1.0	U
108-88-3	Toluene			1		U	
156-60-5	trans-1,2-Dichloroethene	•		1		U	
10061-02-6	trans-1,3-Dichloroproper	ne		1		U	
79-01-6	Trichloroethene			1		U	
75-69-4	Trichlorofluoromethane			1		1.0	U
75-01-4	Vinyl chloride			11		1.0	<u> </u>
1330-20-7	Xylenes, total	<u></u>		1		2.0	U
SYSTEM MON	ITORING COMPOUND		ADDED (ug/I	.) CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ane-d4		25.0	27.9	111	66 - 137	
4-Bromofluorob	enzene		25.0	25.8	103	73 - 120	
Toluene-d8			25.0	29.0	116	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		288714	9	271855	9	
1,4-Difluoroben	zene		629699	4.93	567241	4.93	
Chlorobenzene-	d5		291035	7.13	272887	7.13	

Quantitation Report TA Buffalo (Not Reviewed) Vial: 16 Data File : D:\MSDCHEM\S\DATA\113010\S1807.D Acq On : 30 Nov 2010 15:46 Sample : RTK1380-03 Misc : Operator: DHC Inst : HP5973S Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:13 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) NTC NORMOD Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) ______ 4.93 114 629699 25.00 ug/L 0.00 1) CI10 1,4-Difluorobenzene 111.018 7.13 82 291035 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 106.65% 106.65% 62) CI30 1,4-Dichlorobenzene- 9.00 152 288714 25.00 ug/L 0.00 106.20% System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.64
 65
 246406
 27.86 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 111.44%

 43) CS05 Toluene-D8
 6.02
 98
 752665
 29.01 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 116.04%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 226804
 25.83 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 = 103.34

 Target Compounds
 0.00
 85
 0
 N.D.

 3) CO10
 Chloromethane
 0.00
 50
 0
 N.D.

 4) C020
 Vinyl chloride
 0.00
 62
 0
 N.D.

 5) C015
 Bromomethane
 0.00
 64
 0
 N.D.

 6) C025
 Chloroethane
 0.00
 64
 0
 N.D.

 7) C275
 Trichlorofluoromet
 0.00
 76
 0
 N.D.

 9) C030
 Methylene chloride
 3.02
 84
 274
 N.D.

 10) C040
 Carbon disulfide
 0.00
 76
 0
 N.D.

 11) C036
 Acrolein
 0.00
 53
 0
 N.D.

 13) C030
 Acetone
 2.65
 43
 3079
 0.95
 ug/L

 14) C300
 Acetonitrile
 0.00
 10
 N.D.
 11
 C36
 0
 N.D.

 15) C276
 Iodmethane
 0.00
 10
 N.D.
 11
 C36
 0
 N.D.
 </tr Spiked Amount 25.000 Range 73 - 120 Recovery = 103.32% Qvalue 92

Quantitation Report TA Buffalo (Not Reviewed) Vial: 16 Operator: DHC Data File : D:\MSDCHEM\S\DATA\113010\S1807.D Acq On : 30 Nov 2010 15:46 Sample : RTK1380-03 Inst : HP5973S Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:13 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min)

 Internal Standards
 R.T. QIon Response Conc U

 40) C012 Methylcyclohexane
 0.00 83 0
 N.D.

 41) C145 cis-1,3-Dichloropr
 0.00 75 0
 N.D.

 44) C230 Toluene
 6.07 92
 1180 N.D.

 45) C170 trans-1,3-Dichloro 0.00 75 0
 N.D.

 47) C160 1,1,2-Trichloroeth 0.00 83 0
 N.D.

 48) C220 Tetrachloroethene 0.00 166 0
 N.D.

 49) C220 Tetrachloroethane 0.00 129 0
 N.D.

 50) C221 1,3-Dichlorop 0.00 76 0
 N.D.

 51) C155 Dibromochlorometha 0.00 129 0
 N.D.

 52) C163 1,2-Dibromoethane 0.00 107 0
 N.D.

 53) C215 2-Hexanone 0.00 112 0
 N.D.

 54) C235 Chlorobenzene 0.00 106 0
 N.D.

 55) C246 m,p-Xylene 7.31 91 612 N.D.
 N.D.

 58) C247 o-Xylene 0.00 106 0
 N.D.

 59) C245 Styrene 0.00 106 0
 N.D.

 60) C180 Bromoform 0.00 173 0
 N.D.

 610 C301 Bromobenzene 0.00 105 0
 N.D.

 621 C325 1,2,2-Tetrachlor 0.00 131 0
 N.D.

 631 C302 n-Propylbenzene 0.00 105 0
 N.D.

 661 C322 1,2,3-Trichloropro 0.00 110 0
 N.D.

 671 C283 t-1,4-Dichloro-2-B 0.00 51 0
 N.D.

 683 Internal Standards Rcv(Ar) ______ _ _ _ _ _ _ _ _ _ _ _ _

(#) = qualifier out of range (m) = manual integration (+) = signals summed

	Quantitation Report	TA	Buffa	lo (Not	Reviewe	ed)
Data File : Acq On : Sample : Misc : MS Integrat Quant Time:	D:\MSDCHEM\S\DATA\1 30 Nov 2010 15:46 RTK1380-03 ion Params: LSTINT.P Nov 30 22:06:01 2010	13010\s 0	Resu	C I M lts File:	Vial: perator: nst : ultiplr: R10K091-	: 16 : DHC : HP5973S : 1.00 -ADD.RES
Quant Metho Title Last Update Response vi DataAcq Met IS QA File	<pre>d : D:\MSDCHEM\S\I : 8260 ADD (25ml pr : Mon Nov 29 22:23 a : Initial Calibrat: h : VOA : 50 level for IS (</pre>	R10K091 urge) :07 201 ion QA unkr	-ADD.M 10 nown. Ne	(RTE Inte o recoveri	grator) es calcu	lated.
Internal S	tandards	R.T.	QIon	Response	Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	4.93	3 114	629699	25.00	ug/L 0.00
23) CI20	D5-Chlorobenzene	7.13	3 117	541728	25.00	ug/L 0.00
25) CI30	D4-1,4-Dichlorobenze	9.00) 152	288714	25.00	NA% ug/L 0.00 NA%
Target Com 2) C297 3) C294 4) C271 5) C 2-P 6) C959 7) C277 8) C279 9) E678 10) C305 11) C258 12) C266 13) C264 14) C200 15) E677 16) C252 17) C911 18) C293 19) C273 20) C270 21) C251 22) C261 24) C268 26) C292 27) C511	pounds Chlorodifluorometh Dichlorofluorometh Ethyl Ether ropanol t-Butyl Alcohol Allyl Chloride Chloroprene Ethyl tert-butyl e Propionitrile Ethyl Acetate Methacrylonitrile Isobutanol 2-Methoxy-2-methyl Heptane n-Butanol Methyl Methacrylat Propylene Oxide Epichlorohydrin 1,1-Dimethoxyethan Hexane 1,4 Dioxane 2-Methylthiopene	$\begin{array}{c} 0.00\\$	51 67 595 459 413 594 415 415 415 575 575 575 583 575 583 575 575 583 575 583 575 575 583 575 575 583 575 755 75		N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Qvalue
27) C511 28) C512 29) C969 30) C970 31) C968 32) C287 33) C285 34) C799 35) C801 36) C285 37) C 1,3	2-Methylthiopene 3-Methylthiopene 3-Chlorobenzotrifl 4-Chlorobenzotrifl 2-Chlorobenzotrifl 3-Chlorotoluene Cyclohexanone Dicyclopentadiene 1,2,3-Trimethylben Pentachloroethane ,5-Trichlorobenzen	6.02 0.00 0.00 0.00 0.00 8.07 9.00 9.04 0.00 0.00	97 97 180 180 126 55 66 105 167 180	26794 0 0 0 0 0 609 5506 272 0 0	1.11 N.D. N.D. N.D. N.D. N.D. N.D. N.D.	<u>ug/L #</u> 1

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation ReportTA Buffalo(Not Reviewed)Data File : D:\MSDCHEM\S\DATA\113010\S1807.DVial: 16Acq On : 30 Nov 2010 15:46Operator: DHCSample : RTK1380-03Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: RTEINT.PMultiplr: 1.00Quant Time: Nov 30 16:46:13 2010Results File: R10K091-SIXPT.RESQuant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator)Title : 8260 5ML WATERLast Update : Tue Nov 30 16:45:08 2010Response via : Initial CalibrationDataAcq Meth : VOA

Abundance						TIC: S1	807.D					
1700000												
1600000								bbenzene-D4,I				
1500000					S S	35,I		1,4-Dichlorc				
1400000					Toluene-Di	obenzene-C		C130				
1300000				sne,l	6505	CI20 Chlor	obenzene,S					
1200000				ifluorobenze			-Bromofluon					
1100000				CI10 1,4-D			CS10 p					
1000000												
900000												
800000				6								
700000				ethane-D4,S								
600000				1,2-Dichloro								
500000				CS15								
400000												
300000												
200000		etone,T										
100000		C035 Ac										
Time>	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00
						68/223						_

HP5973

Page 1

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffa	alo			SDG:	RTK1380		
Client:	HRP Engineering,	<u>PC</u>			Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Labora	atory ID:	<u>RTK138</u>	<u>30-04</u>	File ID:	<u>S1828.D</u>	
Sampled:	<u>11/18/10 11:55</u>	Prepar	ed:	<u>11/30/1</u>	0 21:21	Analyzed:	<u>12/01/10 00:22</u>	
Solids:		Prepar	ation:	5030B I	MS	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2778	Sequence:	T005455		Calibration:	R10K091	Instrument:	HP5 <u>973S</u>
CAS NO.	COMPOUND	•			DILUTION	CON	NC. (ug/L)	0
71-55-6	1,1,1-Trichloroeth	ane			1		1.0	U
79-34-5	1,1,2,2-Tetrachlor	oethane			1		1.0	U
79-00-5	1,1,2-Trichloroeth	ane			1		1.0	U
76-13-1	1,1,2-Trichlorotrif	luoroethane			1		1.0	U
75-34-3	1,1-Dichloroethan	e			1		1.0	U
75-35-4	1,1-Dichloroethen	e			1		1.0	U
120-82-1	1,2,4-Trichlorober	nzene			1		1.0	U
95-63-6	1,2,4-Trimethylber	nzene			1		1.0	U
96-12-8	1,2-Dibromo-3-ch	loropropane			1		1.0	U
106-93-4	1,2-Dibromoethan	e (EDB)			1		1.0	U
95-50-1	1,2-Dichlorobenze	ne			1		1.0	U
107-00-2	1,2-Dichloropeinan				1		1.0	
108-67-8	1.3.5-Trimethylbe	nzene			1		1.0	U U
541-73-1	1 3-Dichlorobenze	me			1		1.0	U
106-46-7	1,4-Dichlorobenze	me			1		1.0	U
123-91-1	1,4-Dioxane				1		34	J
78-93-3	2-Butanone (MEK	.)			1		10	U
591-78-6	2-Hexanone				1		5.0	U
99-87-6	4-Isopropyltoluene	e			1		1.0	U
108-10-1	4-Methyl-2-pentar	none (MIBK)			1		5.0	U
67-64-1	Acetone				1		10	U
71-43-2	Benzene				1		1.0	U
75-27-4	Bromodichlorome	thane			1		1.0	U
75-25-2	Bromoform				1		1.0	<u> </u>
74-83-9	Bromomethane				1		1.0	U
/3-13-U	Carbon disuifide	ida			1		1.0	<u>U</u> 11
108_00_7	Chlorobenzene				1		1.0	<u> </u>
124-48-1	Chlorodibromome	thane			1		1.0	<u>и</u>
75-00-3	Chloroethane				1		0.77	J
67-66-3	Chloroform				1		1.0	U
74-87-3	Chloromethane				1		1.0	U
156-59-2	cis-1,2-Dichloroet	hene			1		1.0	U
10061-01-5	cis-1,3-Dichloropr	opene			1		1.0	U
110-82-7	Cyclohexane				1		1.0	U
75-71-8	Dichlorodifluorom	nethane			1		1.0	U
100-41-4	Ethylbenzene				1		1.0	U
98-82-8	Isopropylbenzene			70	1		1.0	U

8260B

Laboratory: TestAmerica Buffalo SDG: **RTK1380** Client: HRP Engineering, PC 710 Ohio Street, Buffalo, NY Project: File ID: S1828.D Matrix: Water Laboratory ID: RTK1380-04 Sampled: 11/18/10 11:55 Prepared: 11/30/10 21:21 Analyzed: 12/01/10 00:22 Solids: Preparation: 5030B MS Initial/Final: 5 mL / 5 mL R10K091 HP5973S Batch: 10K2778 Sequence: T005455 Calibration: Instrument: CAS NO. COMPOUND DILUTION CONC. (ug/L) Q 79-20-9 1 U Methyl Acetate 1.0 1634-04-4 Methyl tert-Butyl Ether 1 1.0 U 108-87-2 1 1.0 U Methylcyclohexane U 75-09-2 Methylene Chloride 1 1.0 91-20-3 Naphthalene 1 1.0 U 104-51-8 U n-Butylbenzene 1 1.0 103-65-1 1 U n-Propylbenzene 1.0 135-98-8 sec-Butylbenzene 1 U 1.0 100-42-5 Styrene 1 1.0 U 98-06-6 tert-Butylbenzene 1 1.0 U U 127-18-4 Tetrachloroethene 1 1.0 1 108-88-3 Toluene 1.0 U trans-1,2-Dichloroethene 156-60-5 U 1 1.0 trans-1,3-Dichloropropene 10061-02-6 1 1.0 U Trichloroethene 1 U 79-01-6 1.0 75-69-4 Trichlorofluoromethane 1 1.0 U 75-01-4 Vinyl chloride 1 1.0 U U 1330-20-7 Xylenes, total 1 2.0 SYSTEM MONITORING COMPOUND ADDED (ug/L) CONC (ug/L) % REC QC LIMITS Q 1,2-Dichloroethane-d4 25.0 28.0 112 66 - 137 73 - 120 4-Bromofluorobenzene 25.0 26.2 105 <u>71 - 126</u> Toluene-d8 25.0 28.8 115 INTERNAL STANDARD AREA RT **REF AREA** REF RT Q 1,4-Dichlorobenzene-d4 278521 9 293655 9 4.93 625254 4.93 1,4-Difluorobenzene 605806 Chlorobenzene-d5 278979 7.13 298495 7.13

Form Rev: 9/21/10

		Qu	antitation	Report	ТА	Buffa	lo (No	t Reviewe	d)	
Data Acq (Samp] Misc	File : Dn : Le :	D: 1 RT	\MSDCHEM\S\ Dec 2010 K1380-04	DATA\11 00:22	3010\S1	828.D	(I	Vial: Dperator: Inst : Multiplr:	8 NMD HP5973 1.00	S
MS Ir Quant	ntegrat : Time:	cion De	Params: R1 c 01 09:33:	FEINT.P 10 2010		Resu	lts File:	R10K091-	SIXPT.R	ES
Quant Title Last Respo Data IS QA	: Metho e Update onse vi Acq Met A File	od : : : : : : : : : :	D:\MSDCHEN 8260 5ML Wed Dec 01 Initial Ca VOA D:\MSDCHEN	4\S\R WATER L 09:32: alibrati 4\S\DATA	10K091- 47 2010 on \113010	-SIXPT))\S182:	.M (RTE I	Add Add ov 2010)	121/W
Inte	ernal S	Stan	dards		R.T.	QIon	Response	Conc Un	its Dev Rcv	(Min) (Ar)
1)	CI10	1,4	-Difluorobe	enzene	4.93	114	605806	25.00	ug/L 9	0.00
42)	CI20	Chl	orobenzene-	-D5	7.13	82	278979	25.00	ug/L 9	0.00
62)	CI30	1,4	-Dichlorobe	enzene-	9.00	152	278521	25.00	ug/L 9	0.00 4.85%
Syst 30) 5pi 43) 5pi 61) 5pi	cem Mor CS15 iked An CS05 iked An CS10 iked An	nito 1,2 noun Tol noun p-B noun	ring Compou -Dichloroet t 25.00 uene-D8 t 25.00 romofluorok t 25.00	inds chane-D 00 Ran 00 Ran 00 Ran 00 Ran	4.64 ge 66 6.02 ge 71 8.07 ge 73	65 - 137 98 - 126 174 - 120	237926 Recove 715543 Recove 220616 Recove	27.96 ery = 28.77 ery = 26.21 ery =	ug/L 111.84% ug/L 115.08% ug/L 104.84%	0.00 0.00 0.00
Tarc	get Con	npou	nds		<u> </u>				Qv	alue
2) 3) 4) 5) 8) 9) 10) 11)	C290 C010 C020 C015 C025 C275 C045 C030 C040 C036	Dic Chl Vin Bro Chl Tri 1,1 Met Car Acr	hlorodifluc oromethane yl chloride momethane oroethane chlorofluor -Dichloroet hylene chlo bon disulfi olein	comet comet chene oride ide	0.00 0.00 1.50 0.00 1.89 0.00 1 0.00 3.03 0.00 0.00 0.00	85 50 62 94 64 01 96 84 76 56	0 0 618 0 3284 0 0 480 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	ug/L /	84
12 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23)	C038 C035 C300 C276 C291 C962 C057 C255 C050 C125 C051 C056	Acr Ace Iod 1,1 T-b tra Met 1,1 Vin 2,2	ylonitrile tone tonitrile omethane ,2-Trichlon utyl Methyl ns-1,2-Dich hyl Acetate -Dichloroet yl Acetate -Dichloropu	co-1, L Eth aloro chane	2.65 2.91 0.00 1 0.00 1 0.00 0.00 2.92 3.54 0.00 0.00 4.00	53 43 41 42 01 73 96 43 63 43 77 96	2547 420 0 0 0 1864 4353 0 0 2070	N.D. O.82 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ug/L /	81
25) 26) 27) 28) 29) 31) 32) 33) 34) 35) 36) 37) 38)	C272 C222 C060 C115 C120 C116 C165 C065 C110 C256 C150 C140 C278 C130	Tet Bro Chl 1,1 Car 1,1 Ben 1,2 2-B Cyc Tri 1,2 Dib Bro	rahydrofura mochloromet oroform ,1-Trichlon bon tetrach -Dichloroph zene -Dichloroet utanone lohexane chloroether -Dichloroph romomethane modichloror	thane coeth nlori copen thane ne ropan e netha	4.23 0.00 1 0.00 0.00 1 0.00 1 0.00 1 0.00 4 4.64 0.00 4 4.08 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	42 28 83 97 17 75 78 62 43 56 95 63 93 83	3213 0 0 0 413 0 142 0 0 0 0 0	1.05 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	ug/L n ^l	(Wry 20/2)
39)	C161	2-C	hloroethylv	vinyl	5.76	63	1533	N.D.		-

Quantitation Report TA Buffalo (Not Reviewed) Vlar. C Operator: NMD Data File : D:\MSDCHEM\S\DATA\113010\S1828.D Acq On : 1 Dec 2010 00:22 Sample : RTK1380-04 Misc : Inst : HP5973S Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Dec 01 09:33:10 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Wed Dec 01 09:32:47 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1822.D (30 Nov 2010 22:02)

 Internal Standards
 R.T. QIon Response Conc U

 40) C012 Methylcyclohexane
 5.17 83 2590 N.D.

 41) C145 cis-1,3-Dichloropr 0.00 75 0 N.D.
 44) C230 Toluene

 6.07 92 1454 N.D.

 45) C170 trans-1,3-Dichloro 0.00 75 0 N.D.

 47) C160 1,1,2-Trichloroeth 0.00 83 0 N.D.

 48) C220 Tetrachloroethene 0.00 166 0 N.D.

 49) C220 Tetrachloroethene 0.00 166 0 N.D.

 50) C221 1,3-Dichlorop 0.00 76 0 N.D.

 51) C155 Dibromochlorometha 0.00 129 0 N.D.

 52) C163 1,2-Dibromoethane 0.00 107 0 N.D.

 53) C215 2-Hexanone 0.00 107 0 N.D.

 54) C220 Tetrachloroethene 7.16 112 296 N.D.

 55) C240 Ethylbenzene 7.31 91 737 N.D.

 57) C246 m,p-Xylene 7.31 106 168 N.D.

 58) C247 o-Xylene 0.00 104 0 N.D.

 59) C245 Styrene 0.00 105 0 N.D.

 60) C180 Bromoberzene 0.00 105 0 N.D.

 61) C282 1,2,3-Trichloropro 0.00 110 0 N.D.

 62) C303 2-Chlorotoluene 0.00 126 0 N.D.

 63) C304 1,3,5-Trimethylben 8.34 105 131 N.D.

 73) C304 1,3,5-Trimethylben 8.69 105 570 N.D.

 74) C308 sec-Butylbenzene 8.00 114 0 N.D.

 75) C304 t-Hototoluene 0.00 126 0 N.D.

 76) C309 4-Chlorotoluene 0.00 126 0 N.D.

 77) C304 t,3,5-Trimethylben 8.69 105 570 N.D.

 76) C309 4-L R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) ______

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		Quantitation Report	TA	Buffa	lo (Not	: Reviewe	d)	
Data F Acq On Sample Misc	ile :	D:\MSDCHEM\S\DATA\1 1 Dec 2010 00:22 RTK1380-04	13010\s	1828.D	C T P	Vial: Dperator: Inst : Aultiplr:	8 NMD HP59 1.00	973S)
Quant	egrat Time:	Dec 01 13:19:42 201	0	Resu	lts File:	R10K091-	ADD.F	RES
Quant Title Last U Respon DataAc IS QA	Metho pdate se vi q Met File	<pre>bd : D:\MSDCHEM\S\</pre>	R10K091 urge) :07 201 ion QA unkno	-ADD.M 0 own. N	(RTE Inte	egrator) ies calcu	lated	1.
Inter	nal S	Standards	R.T.	QIon	Response	Conc Un	its [F	Dev(Min) Rcv(Ar)
1) C	110	1,4-Difluorobenzene	4.93	114	605806	25.00	ug/L	0.00 NA%
23) C	120	D5-Chlorobenzene	7.14	117	516578	25.00	ug/L	0.00
25) C	130	D4-1,4-Dichlorobenze	9.00	152	278521	25.00	ug/L	0.00 NA%
Targe 2) C 3) C 4) C 5) C 6) C 7) C 9) E 10) C 11) C 12) C 13) C 14) C 15) E 16) C	t Con 297 294 271 959 277 279 678 205 266 266 264 200 677 251	npounds Chlorodifluorometh Dichlorofluorometh Ethyl Ether Propanol t-Butyl Alcohol Allyl Chloride Chloroprene Ethyl tert-butyl e Propionitrile Ethyl Acetate Methacrylonitrile Isopropyl ether Isobutanol 2-Methoxy-2-methyl Heptane	$\begin{array}{c} 0.00\\ 0.00\\ 2.32\\ 0.00\\ 0.00\\ 2.91\\ 0.00\\ 0.00\\ 0.00\\ 4.08\\ 4.23\\ 3.56\\ 0.00\\$	51 67 59 45 59 41 53 59 54 43 41 45 43 73 43	$ \begin{array}{c} 0\\ 206\\ 0\\ 420\\ 0\\ 142\\ 1752\\ 324\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		Qvalue
17) C 18) C 19) C 20) C 21) C 22) C	911 293 273 270 251 261	n-Butanol Methyl Methacrylat Propylene Oxide Epichlorohydrin 1,1-Dimethoxyethan Hexane	5.17 0.00 0.00 0.00 0.00 0.00 0.00	56 41 58 57 75 57 88	2741 0 0 0 0 0 3294	N.D. N.D. N.D. N.D. N.D. 34 15	ug/L	# 53
20) C	292	2-Nitropropane 2-Methvlthiopene	5.60	43 97	264 27855	N.D. 1.19	ug/L	# 1
28) C 29) C 30) C 31) C 32) C 33) C 33) C 34) C 35) C 36) C 37) C	512 969 970 968 287 285 285 2801 285 285 285	3-Methylthiopene 3-Chlorobenzotrifl 4-Chlorobenzotrifl 2-Chlorobenzotrifl 3-Chlorotoluene Cyclohexanone Dicyclopentadiene 1,2,3-Trimethylben Pentachloroethane 3,5-Trichlorobenzen	0.00 0.00 0.00 0.00 8.06 9.00 0.00 0.00 0.00 0.00	97 180 180 126 55 66 105 167 180	0 0 0 0 0 0 0 5156 0 0 0	N D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1828.D Vial: 8 Acq On : 1 Dec 2010 00:22 Sample : RTK1380-04 Operator: NMD Inst : HP5973S Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Quant Time: Dec 01 09:33:10 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Wed Dec 01 09:32:47 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance						TI	C: S1	828.D					
1600000									4, L,				
1500000									orobenzene-Dv				
1400000					3 QC 000		-05,1		130 1,4-Dichlo				
1300000				7		5	orobenzene	benzene,S	ō				
1200000				norobenzene			CI20 Chi	-Bromofluorc					
1100000				C110 1,4-Difl				CS10 p					
1000000													
900000													
800000				0									
700000				bethane-D4,									
600000				1,2-Dichlor									
500000				CS15									
400000													
300000	F.		an T					-					
200000	Chloroethane,	Acetone,T	Tetrahydrofur			1							
100000	C025	C035 /	C272 [·]										
0 Time>	2.00	3.00	<u>4.00</u>	الـ الـ م. 5.00	ہ ۔۔۔۔ 6.(<u> </u>	00	8.00	9.00	10.00	11.00	12.00	13.00

76/223 S1828.D R10K091-SIXPT.M Acq : 1 Dec 2010 00:22 Sample = RTK1380-04Misc =

HP5973

Page 1

HP5973

8260B

Laboratory:	TestAmerica Buffalo		1	SDG:	RTK1380		
Client:	HRP Engineering, PC		j	Project:	710 Ohio Street, H	Buffalo, NY	
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	<u>0-05</u>	File ID:	<u>S1809.D</u>	
Sampled:	<u>11/18/10 00:00</u>	Prepared:	<u>11/30/10</u>	11:28	Analyzed:	<u>11/30/10 16:29</u>	
Solids:		Preparation:	<u>5030B M</u>	<u>1S</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	<u>10K2674</u> Sequenc	e: <u>T005434</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND	······································		DILUTION	CONC	C. (ug/L)	Q
71-55-6	1.1.1-Trichloroethane			1		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane			1		1.0	U
79-00-5	1,1,2-Trichloroethane			1		1.0	U
76-13-1	1,1,2-Trichlorotrifluoroetha	ne		1		1.0	U
75-34-3	1,1-Dichloroethane			1		1.0	U
75-35-4	1,1-Dichloroethene			1		1.0	U
120-82-1	1.2.4-Trichlorobenzene			1		1.0	U
95-63-6	1.2.4-Trimethylbenzene			1		1.0	U
96-12-8	1.2-Dibromo-3-chloropropa	ine		1		1.0	U
106-93-4	1.2-Dibromoethane (EDB)			1		1.0	U
95-50-1	1.2-Dichlorobenzene			1		1.0	U
107-06-2	1.2-Dichloroethane			1		1.0	Ŭ
78-87-5	1.2-Dichloropropane			1		1.0	U
108-67-8	1 3 5-Trimethylbenzene			1		1.0	<u> </u>
541-73-1	1 3-Dichlorobenzene			1		1.0	U U
106-46-7	1,5-Dichlorobenzene	<u> </u>		1		1.0	<u> </u>
123-01-1	1 4 Diorane	<u> </u>		1		40	U U
78-03-3	2-Butanone (MEK)			1		10	U U
591-78-6	2-Hevenone			1		50	<u> </u>
99-87-6	4-Isopropultoluene			1		1.0	<u> </u>
108 10 1	4-Isopropynolucite 4 Methyl 2 pentanone (MII			1	·	5.0	<u> </u>
67.64.1	A setone	<u> </u>		1		10	<u> </u>
71 42 2	Accione Demano	· · · · · · · · · · · · · · · · · · ·		1		10	
71-43-2	Bromedichloromethene			1		1.0	U
75-27-4	Bromotionemane			1		1.0	
74.93.0	Bromomothene			1		1.0	U U
75 15 0	Corbon disulf de			1		1.0	
75-13-0 56 02 5	Carbon disunde			1		1.0	
108.00.7	Carbon Tetrachioride			1		1.0	
108-90-7	Chlorobenzene			1		1.0	
124-48-1	Chlorodibromomethane			1		1.0	0
/5-00-3	Chioroetnane			1		0.8	
07-00-3	Chlorotorm			1		1.0	
14-8/-5	chioromethane	······		1		1.0	U
156-59-2	cis-1,2-Dichloroethene			1		1.0	U
10061-01-5	cis-1,3-Dichloropropene			1		1.0	U
110-82-7	Cyclohexane			1		1.0	<u> </u>
75-71-8	Dichlorodifluoromethane			1	+	1.0	<u> </u>
100-41-4	Ethylbenzene			1		1.0	U
98-82-8	Isopropylbenzene			1		1.0	U

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street, H	Buffalo, NY	
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	0-05	File ID:	<u>S1809.D</u>	
Sampled:	<u>11/18/10 00:00</u>	Prepared:	<u>11/30/10</u>	11:28	Analyzed:	<u>11/30/10 16:29</u>	
Solids:		Preparation:	<u>5030B N</u>	<u>1S</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequence	e: <u>T005434</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND			DILUTION	CONC	C. (ug/L)	Q
79-20-9	Methyl Acetate			1]	1.0	U
1634-04-4	Methyl tert-Butyl Ether			1	1	1.0	U
108-87-2	Methylcyclohexane			1		7.5	
75-09-2	Methylene Chloride			1	1	1.0	U
91-20-3	Naphthalene			1		1.0	U
104-51-8	n-Butylbenzene			1	1	1.0	U
103-65-1	n-Propylbenzene			1	1	1.0	U
135-98-8	sec-Butylbenzene			1	1	1.0	U
100-42-5	Styrene			1	1	1.0	U
98-06-6	tert-Butylbenzene			1	1	1.0	U
127-18-4	Tetrachloroethene			1	1	U	
108-88-3	Toluene			1	1	U	
156-60-5	trans-1,2-Dichloroethene			1	1	1.0	U
10061-02-6	trans-1,3-Dichloropropene		<u></u>	1	1	U	
79-01-6	Trichloroethene			1	1	1.0	U
75-69-4	Trichlorofluoromethane			1	1	1.0	U
75-01-4	Vinyl chloride		·····	1	1	1.0	U
1330-20-7	Xylenes, total			1	2	2.0	U
SYSTEM MON	ITORING COMPOUND	ADDEI) (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4	25	.0	27.8	111	66 - 137	
4-Bromofluorob	enzene	25	5.0	26.0	104	73 - 120	
Toluene-d8	25.0		.0	28.7	115	71 - 126	
INTERNAL STA	STANDARD AREA		EA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	-Dichlorobenzene-d4 292994			9	271855	9	
1,4-Difluorobenz	uorobenzene 643431			4.93	567241	4.93	
Chlorobenzene-c	15	299	598	7.13	272887	7.13	1

Quantitation Report TA Buffalo (Not Reviewed) Vial: 18 Data File : D:\MSDCHEM\S\DATA\113010\S1809.D Acq On : 30 Nov 2010 16:29 Sample : RTK1380-05 Operator: DHC Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:25 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev (Min) Internal Standards Rcv(Ar) _____ ______ 4.93 114 643431 25.00 ug/L 0.00 1) CI10 1,4-Difluorobenzene 113.438 42) CI20 Chlorobenzene-D5 7.13 82 299598 25.00 ug/L 0.00 109.79% 62) CI30 1,4-Dichlorobenzene- 9.00 152 25.00 ug/L 0.00 292994 107.78% System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D 4.63 65 250980 27.77 ug/L 0.00
 Spiked Amount
 25.000
 Range
 66 - 137

 3) CS05
 Toluene-D8
 6.02
 98
 Recovery = 111.08% 767284 28.73 ug/L 0.00 43) CS05 Toluene-D8 Spiked Amount 25.000 Range 71 - 126 Recovery = 114.92% 51) CS10 p-Bromofluorobenzene 8.07 174 234582 25.95 ug/L 0.00 61) CS10 p-Bromofluorobenzene 8.07 174 Spiked Amount 25.000 Range 73 - 120 Recovery = 103.80%

 Target Compounds
 0.00
 85
 0
 N.D.

 3) C010
 Chloromethane
 0.00
 50
 0
 N.D.

 4) C020
 Vinyl chloride
 1.50
 62
 1835
 N.D.

 5) C015
 Bromomethane
 0.00
 94
 0
 N.D.

 6) C025
 Chloroethane
 1.89
 64
 31166
 6.85
 ug/L

 7) C275
 Trichlorofluoromet
 0.00
 96
 0
 N.D.

 8) C045
 1,1-Dichloroethene
 0.00
 96
 0
 N.D.

 9) C030
 Methylene chloride
 3.02
 84
 356
 N.D.

 10) C040
 Carbon disulfide
 2.72
 76
 158
 N.D.

 11) C036
 Acrylonitrile
 0.00
 53
 0
 N.D.

 13) C035
 Acetone
 2.65
 43
 2755
 0.83 ug/L

 14) C300
 Acetonitrile
 9.92
 41
 49368
 36.21 ug/L

 15) C276
 Iodomethane
 0.00
 142
 0
 N.D.

 16) C291
 1,1,2-Trichloro-1,
 0.00
 Target Compounds Qvalue 95 N.D. 0.83 ug/L 89 36.21 ug/L-# 47 22796 Methyl Acetate ug/L # 56 19) C255 2.92 $\frac{11.22}{11.22}$ 1,1-Dichloroethane 3.54 63 2003 20) C050 N.D. 21) C125 Vinyl Acetate 3.56 43 153 N.D. 2,2-Dichloropropan 4.04 77 cis-1,2-Dichloroet 4.00 96 22) C051 1164 N.D. N.D. 23) C056 1967 4.23 42 3498 -1.08-ug/L # 1 24) C272 Tetrahydrofuran 0 25) C222 Bromochloromethane 0.00 128 N.D. 4.36 83 1202 N.D. 26) C060 Chloroform 1,1,1-Trichloroeth 0.00 97 0 N.D. 27) C115 0 0 Carbon tetrachlori 0.00 117 N.D. 28) C120 1,1-Dichloropropen0.0075Benzene4.64781,2-Dichloroethane4.69622-Butanone4.0643Cyclobeyape4.26 29) C116 N.D. 3345 N.D. 31) C165 139 32) C065 N.D. 1536 N.D. 33) C110 Cyclohexane 4.36 5 Trichloroethene 5.10 95 1,2-Dichloropropan 5.38 63 Dibromomethane 5.39 93 Bromodichloromethane 5.39 63 94873 26 34) C256 ----56 -6.14-ug/b # N.D. 144 35) C150 N.D. 999 36) C140 523 N.D. 37) C278 1.03 ug/L - 83 11540 38) C130 1602 N.D. 5.76 63 39) C161 2-Chloroethylvinyl 80/223

R10K091-SIXPT.M Tue Nov 30 16:46:26 2010 HP5973

Quantitation Report TA Buffalo (Not Reviewed) Vial: 18 Data File : D:\MSDCHEM\S\DATA\113010\S1809.D Vial: 10 Operator: DHC Acq On : 30 Nov 2010 16:29 Sample : RTK1380-05 Inst : HP5973S Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 16:46:25 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal StandardsR.T. Qion ResponseConc Units Dev(Min)
Rcv(Ar)40C012Methylcyclohexane5.17831179147.46 ug/L #3641C230Toluene0.00750N.D.44C230Toluene6.07921498N.D.45C170trans-1,3-Dichloro6.00750.78 ug/L #4147C1601,1/2-Trichloroeth6.33831701N.D.48C2104-Methyl-2-pentano5.93431511N.D.49C220Tetrachlorobthene0.001290N.D.50C2211,3-Dichloropropan0.001290N.D.51C155Dibromochloromethan0.00100NN53C2152-Hexanone6.61431906NN54C235Chlorobenzene7.31911156NN57C240Ethylbenzene7.31911156NN58C247-Xylene0.00104NN59C245Styrene0.00106NN50C2251,1,2,2-Tetrachlor0.0083NN50C2261,2,2,3-Trichloropzene0.00156NN60Romoform0.00126< Internal Standards Rcv(Ar) _____

(#) = gualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\\ Acq On : 30 Sample : RTK Misc : MS Integration Quant Time: Nov	MSDCHEM\S\DATA\11 Nov 2010 16:29 1380-05 Params: LSTINT.P 30 22:06:06 2010 D:\MSDCHEM\S\F 8260 ADD (25ml p)	.3010\5:	1809.D	O I M	Vial: perator: nst : ultiplr:	18 DHC HP5973	S
	D:\MSDCHEM\S\F 8260 ADD (25ml p)		nesu	lts File:	R10K091-	ADD.RES	
Quant Method : Title : Last Update : I Response via : DataAcq Meth : IS QA File :	Mon Nov 29 22:23: Initial Calibrati VOA 50 level for IS Q	210K091- 1rge) 07 2010 .on 2A unkno	-ADD.M D Dwn. N	(RTE Inte o recoveri	grator) es calcu	lated.	
Internal Stand	ards	R.T.	QIon	Response	Conc Un	nits Dev Rcv	(Min) (Ar)
1) CI10 1,4-	Difluorobenzene	4.93	114	642697	25.00	ug/L	0.00
23) CI20 D5-C	hlorobenzene	7.13	117	558616	25.00	NA ug/L	0.00
25) CI30 D4-1	,4-Dichlorobenze	9.00	152	292994	25.00	NA ug/L NA	४ ०.०० १
Target Compound 2) C297 Chlo 3) C294 Dich 4) C271 Ethy 5) C 2-Propas 6) C959 t-Bu 7) C277 Ally 8) C279 Chlo 9) E678 Ethy 10) C305 Prop 11) C258 Ethy 12) C266 Meth 13) C264 Isop 14) C200 Isob 15) E677 2-Me 16) C252 Hept 17) C911 n-Bu 18) C293 Meth 19) C273 Prop 20) C270 Epic 21) C251 1,1- 22) C261 Hexa 24) C268 1,4 26) C292 2-Ni 27) C511 2-Me 28) C512 3-Me 29) C969 3-Ch 30) C970 4-Ch 31) C968 2-Ch 32) C287 3-Ch 33) C285 Cycl 34) C799 Dicy 35) C801 1,2, 36) C285 Pent	ds rodifluorometh lorofluorometh lEther nol tyl Alcohol lChloride roprene ltert-butyl e ionitrile Acetate acrylonitrile ropyl ether utanol thoxy-2-methyl ane tanol yl Methacrylate ylene Oxide hlorohydrin Dimethoxyethan ne Dioxane tropropane thylthiopene thylthiopene thylthiopene lorobenzotrifl lorobenzotrifl lorotoluene ohexanone clopentadiene 3-Trimethylben achloroethane	$\begin{array}{c} 0.00\\ 0.00\\ 2.32\\ 0.00\\ 3.15\\ \hline 2.92\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \hline 3.55\\ 4.60\\ 0.00\\ \hline 5.06\\ \hline 5.38\\ 0.00\\ \hline 5.66\\ \hline 5.38\\ 0.00\\ \hline 5.75\\ \hline 6.02\\ \hline 6.29\\ 0.00\\ 0.00\\ \hline 0.00\\ \hline 0.00\\ 0.00\\ \hline 0.00\\ 0.00\\ \hline 0.00\\$	51 67 59 45 59 54 43 43 43 56 41 58 57 75 57 88 43 56 41 58 57 75 57 88 43 97 97 180 180 180 126 55 66 105 167	$\begin{array}{c} 0\\ 0\\ 291\\ 0\\ 5707\\ 49368\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 9859\\ 838\\ 72210\\ 0\\ 0\\ 2375\\ 63354\\ 0\\ 0\\ 2375\\ 63354\\ 0\\ 0\\ 0\\ 0\\ 0\\ 53565\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1586\\ 5284\\ 580\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	N.D. N.D. N.D. 5.34 3.94 N.D. N.D. N.D. N.D. 1.64 N.D. 138.84 N.D. 138.84 N.D. 1.41 N.D. 1.41 N.D. N.D. 1.41 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	Qv ug/L // ug/L # ug/L # ug/L # ug/L # ug/L # ug/L # ug/L # ug/L # ug/L #	alue f 100 58 51 <i>A</i> [<i>f</i> 61 f 92 71 57 41 1 42 23

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Vial: 18 Data File : D:\MSDCHEM\S\DATA\113010\S1809.D : 30 Nov 2010 16:29 Operator: DHC Acq On Sample : RTK1380-05 Inst : HP5973S Misc Multiplr: 1.00 MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 30 16:46:25 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 16:45:08 2010 Response via : Initial Calibration DataAcq Meth : VOA

TA Buffalo

Quantitation Report

(Not Reviewed)

84/223 S1809.D R10K091-SIXPT.M Acq :30 Nov 2010 16:29 Sample = RTK1380-05 Misc =

HP5973

Page 1

HP5973

Page 1

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo		SDG:		RTK1380		
Client:	HRP Engineering, PC		Project:		710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Laboratory ID:	RTK1380-06		File ID:	<u>S1810.D</u>	
Sampled:	<u>11/18/10 00:00</u>	Prepared:	<u>11/30/10 11:28</u>		Analyzed:	<u>11/30/10 16:50</u>	
Solids:		Preparation:	5030B MS		Initial/Final:	5 mL / 5 mL	
Batch:	10K2674 Sequence	T005434	Calibrati	on:	R10K091	Instrument:	HP5973S
CASNO		<u> </u>					0
71-55-6	1 1 1 Trichloroethane			1		10	
79-34-5	1,1,2,2-Tetrachloroethane			1		1.0	
79-00-5	1,1,2,2-1 chaemoroethane			1		1.0	U U
75-00-5	1,1,2-Trichlorotrifluoroetha			1		1.0	
75 24 2	1.1 Dichloroethane			1		1.0	U
75-34-3	1,1-Dichloroethene			1		1.0	
120.92.1	1,1-Dichlorobencene			1		1.0	U
120-82-1	1,2,4-Trimetralbergene			1		1.0	
95-03-0	1,2,4-1 filmethyldenzene			1		1.0	
96-12-8	1,2-Dibromo-3-chloropropa	ne		1		1.0	
106-93-4	1,2-Dibromoethane (EDB)					1.0	U
95-50-1	1,2-Dichlorobenzene			1		1.0	<u> </u>
107-06-2	1,2-Dichloroethane			1		1.0	0
78-87-5	1,2-Dichloropropane			1		1.0	<u> </u>
108-67-8	1,3,5-Trimethylbenzene			1		1,0	U
541-73-1	1,3-Dichlorobenzene			1		1.0	<u> </u>
106-46-7	1,4-Dichlorobenzene			1		1.0	<u> </u>
123-91-1	1,4-Dioxane			1			<u> </u>
78-93-3	2-Butanone (MEK)			1		10	U
591-78-6	2-Hexanone			1		5.0	UU
<u>99-87-6</u>	4-Isopropyltoluene			1		1.0	U
108-10-1	4-Methyl-2-pentanone (MIE	BK)		1		5.0	<u> </u>
67-64-1	Acetone			1		10	U
71-43-2	Benzene			1		1.0	U
75-27-4	Bromodichloromethane			1		1.0	U
75-25-2	Bromoform			1		1.0	U
74-83-9	Bromomethane			1		1.0	UU
75-15-0	Carbon disulfide			1	_	1.0	U
56-23-5	Carbon Tetrachloride			1		1.0	U
108-90-7	Chlorobenzene			1	-	1.0	U
124-48-1	Chlorodibromomethane			1		1.0	U
75-00-3	Chloroethane			1		1.0	U
67-66-3	Chloroform			1		1.0	U
74-87-3	Chloromethane			1		1.0	υ
156-59-2	cis-1,2-Dichloroethene			1		1.0	U
10061-01-5	cis-1,3-Dichloropropene			1		1.0	U
110-82-7	Cyclohexane			1		1.0	U
75-71-8	Dichlorodifluoromethane			1		1.0	U
100-41-4	Ethylbenzene			1		1.0	U
98-82-8	Isopropylbenzene			1		1.0	U

TRIP BLANK

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380			
Client:	HRP Engineering, PC			Project:	710 Ohio Street, B	uffalo, NY		
Matrix:	Water	Laboratory ID:	<u>RTK138</u>	<u>80-06</u>	File ID:	<u>S1810.D</u>		
Sampled:	<u>11/18/10 00:00</u>	Prepared:	<u>11/30/10</u>	<u>) 11:28</u>	Analyzed:	<u>11/30/10 16:50</u>		
Solids:		Preparation:	<u>5030B N</u>	<u>4S</u>	Initial/Final:	<u>5 mL / 5 mL</u>		
Batch:	10K2674 Sequence	e: <u>T005434</u>	<u>1</u>	Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>	
CAS NO.	COMPOUND			DILUTION	CONC	C. (ug/L)	Q	
79-20-9	Methyl Acetate			1	1	.0	U	
1634-04-4	Methyl tert-Butyl Ether			1	1	.0	U	
108-87-2	Methylcyclohexane			1	1	.0	U	
75-09-2	Methylene Chloride	· · · · · · · · · · · · · · · · · · ·		1	1	.0	U	
91-20-3	Naphthalene			1	1	.0	U	
104-51-8	n-Butylbenzene			1	1	.0	U	
103-65-1	n-Propylbenzene			1	1	.0	U	
135-98-8	sec-Butylbenzene			1	1	.0	U	
100-42-5	Styrene			1	1	.0	U	
98-06-6	tert-Butylbenzene			1	1	.0	U	
127-18-4	Tetrachloroethene			1 1.0			U	
108-88-3	Toluene			1	1	.0	U	
156-60-5	trans-1,2-Dichloroethene			1	1	.0	U	
10061-02-6	trans-1,3-Dichloropropene			1	1	.0	U	
79-01-6	Trichloroethene			1	1	.0	U	
75-69-4	Trichlorofluoromethane			1	1	.0	U	
75-01-4	Vinyl chloride			1	1	.0	U	
1330-20-7	Xylenes, total			1	2	2.0	U	
SYSTEM MONI	TORING COMPOUND	ADD	E D (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroetha	ne-d4		25.0	27.8	111	66 - 137		
4-Bromofluorobe	enzene		25.0	25.9	103	73 - 120		
Toluene-d8	25.0			29.3	117 71 - 126			
INTERNAL ST	TANDARD AREA			RT	REF AREA	REF RT	Q	
1,4-Dichloroben:	enzene-d4 284423			9	271855	9		
1,4-Difluorobenz	zene	31132	4.93	567241	4.93			
Chlorobenzene-d	15	28	87006	7.13	272887	7.13		

Quantitation Report TA Buffalo (Not Reviewed) Acq On : 30 Nov 2010 16:50 Sample : RTK1380-06 Misc : Vial: 19 Data File : D:\MSDCHEM\S\DATA\113010\S1810.D Operator: DHC Inst : HP5973S Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 17:43:37 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) 11/30/10 11/30/10 Title : 8260 5ML WATER Last Update : Tue Nov 30 17:43:20 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDChem\S\Data\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ -------1) CI10 1,4-Difluorobenzene 4.93 114 631132 25.00 ug/L 0.00 111.26% 111.26%

 42) CI20 Chlorobenzene-D5
 7.13
 82
 287006
 25.00 ug/L
 0.00

 62) CI30 1,4-Dichlorobenzene 9.00
 152
 284423
 25.00 ug/L
 0.00

 104.62% System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.64
 65
 246187
 27.77 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 111.08%

 43) CS05 Toluene-D8
 6.02
 98
 749643
 29.30 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 117.20%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 223987
 25.87 ug/L
 0.00

 Spiked Amount
 25.000
 Parazz
 72
 120
 Parazz
 120
 100

 Spiked Amount 25.000 Range 73 - 120 Recovery = 103.48%
 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =

 Target Compounds
 0.00
 85
 0
 N.D.

 2) C290
 Dichlorodifluorome
 0.00
 50
 0
 N.D.

 4) C020
 Vinyl chloride
 0.00
 62
 0
 N.D.

 5) C015
 Bromomethane
 0.00
 64
 0
 N.D.

 6) C025
 Chloroethane
 0.00
 64
 0
 N.D.

 7) C275
 Trichlorofluoromet
 0.00
 64
 0
 N.D.

 9) C030
 Methylene chloride
 3.03
 84
 1395
 N.D.

 10) C040
 Carbon disulfide
 2.71
 76
 612
 N.D.

 11) C036
 Acrylonitrile
 0.00
 53
 0
 N.D.

 12) C038
 Acrylonitrile
 0.00
 43
 0
 N.D.

 13) C037
 trans-1,2-Dichloro-1,
 0.00
 101
 0
 N.D.

 13) C276
 Iodomethane
 0.00
 43
 0 Qvalue Target Compounds 88/223

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1810.D Vial: 19 Operator: DHC Vial: 19 Acq On : 30 Nov 2010 16:50 Sample : RTK1380-06 Misc : Inst : HP5973S Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 30 17:43:37 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title: 82605ML WATERLast Update: Tue Nov 3017:43:20 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDChem\S\Data\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min)

 Internal Standards
 R.T. QIon Response Conc U

 40) C012 Methylcyclohexane
 0.00
 83
 0
 N.D.

 41) C145 cis-1, 3-Dichloropr
 0.00
 92
 0
 N.D.

 44) C230 Toluene
 0.00
 92
 0
 N.D.

 45) C170 trans-1, 3-Dichloro
 0.00
 92
 0
 N.D.

 46) C284 Ethyl Methacrylate
 0.00
 69
 0
 N.D.

 47) C160 1,1,2-Trichloroeth
 0.00
 62
 0
 N.D.

 48) C220 Tetrachloroethene
 0.00
 166
 0
 N.D.

 50) C221 1,3-Dichloropropan
 0.00
 76
 0
 N.D.

 51) C155 Dibromochlorometha
 0.00
 129
 0
 N.D.

 53) C215 2-Hexanone
 0.00
 131
 0
 N.D.

 54) C235 Chlorobenzene
 0.00
 131
 0
 N.D.

 55) C246 m,p-Xylene
 0.00
 106
 0
 N.D.

 57) C246 m,p-Xylene
 0.00
 106
 N.D.

 60
 C32
 1,2,2-Tetrachlor
 0.00
 106
 N.D.

 63) C966 Isopropylbenzene
 0.0 Internal Standards Rcv(Ar) _____ ______ ______

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		Quantitation	Report	ТА	Buffal	o (Not	Reviewe	ed)	
Data Acq (Samp] Misc MS Ir Quant	File : On : Le : ntegrat Time:	D:\MSDCHEM\S 30 Nov 2010 RTK1380-06 tion Params: L Nov 30 22:06	\DATA\11 16:50 STINT.P :11 2010	3010\S	1810.D Resul	C I M ts File:	Vial: Operator: Inst : Multiplr: R10K091-	19 DHC HP59 1.00	973S) RES
Quant	Methc	d : D:\MSDCHE	M\S\R	10K091	-ADD.M	(RTE Inte	grator)		
Title Last	e Update	: 8260 ADD e : Mon Nov 2	(25ml pu 9 22:23:	rge) 07 201	0				
Respo Data	onse vi Acq Met	a : Initial Ca ch : VOA	alibrati	on				1	
IS QA	A File	: 50 level :	tor IS Q	A unkn	own. No	recoveri	es calcu	ilated	1.
Int€	ernal S	Standards		R.T.	QIon	Response	Conc Un	nits L F	ev(Min) Rev(Ar)
1)	CI10	1,4-Difluorob	enzene	4.93	114	631132	25.00	ug/L	0.00 NA%
23)	CI20	D5-Chlorobenzo	ene	7.13	117	538333	25.00	ug/L	0.00
25)	CI30	D4-1,4-Dichlo:	robenze	9.00	152	284423	25.00	ug/L	0.00 NA%
Tarq	get Com	ipounds							Qvalue
2) 3)	C297 C294	Chlorodifluor Dichlorofluor	ometh ometh	0.00 0.00	51 67	0 0	N.D. N.D.		
4) 5)	C271	Ethyl Ether		0.00	59 45	0	N.D. N D		
6)	C959	t-Butyl Alcoh	ol	0.00	59	Ő	N.D.		
7)	C277	Allyl Chloride	9	0.00	41 52	0	N.D.		
8) 9)	E678	Ethyl tert-bu	tyl e	0.00	59	0	N.D.		
10)	C305	Propionitrile	-	0.00	54	0	N.D.		
11) 12)	C258	Ethyl Acetate	rile	0.00	43 41	0	N.D. N.D.		
13)	C264	Isopropyl ethe	er	0.00	45	õ	N.D.		
14)	C200	Isobutanol		0.00	43	0	N.D.		
15) 16)	E677 C252	2-Methoxy-2-me	ethyi	0.00	73 43	0	N.D. N.D.		
17)	C911	n-Butanol		0.00	56	0	N.D.		
18) 10)	C293	Methyl Methac:	rylat	0.00	41	0	N.D.		
20)	C273 C270	Epichlorohvdr:	in	0.00	58 57	0	N.D.		
21)	C251	1,1-Dimethoxy	ethan	0.00	75	0	N.D.		
22)	C261	Hexane		0.00	57	0	N.D.		
24) 26)	C208 C292	2-Nitropropane	е	0.00	43	0	N.D.		
27)	C511	2-Methylthiop	ene	6.02	97	27866	<u> </u>	ug/L	<u> </u>
28)	C512	3-Methylthiop	ene trifl	6.16	97 180	260	N.D. N.D.		
30)	C970	4-Chlorobenzo	trifl	0.00	180	õ	N.D.		
31)	C968	2-Chlorobenzo	trifl	0.00	180	0	N.D.		
32) 33)	C287 C285	S-Chiorotolue Cyclohexanone	ne	8.06	120 55	470	N.D.		
34)	C799	Dicyclopentad.	iene	9.00	66	5238	N.D.		
35)	C801	1,2,3-Trimeth	ylben	0.00	105	0	N.D.		
36) 37)	C 1,3	,5-Trichlorob	enzen	0.00	180	0	N.D.		
		· · · · · · · · · · · · · · · · · · ·							

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (Not Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1810.D Acq On : 30 Nov 2010 16:50 Sample : RTK1380-06 Vial: 19 Operator: DHC Inst : HP5973S : Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 30 17:43:37 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 17:43:20 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance						TIC:	S1810.D						
1700000													
1600000								enzene-D4,I					
1500000					Ð8,S			4-Dichlorob					
1400000					05 Toluene	anzene-D5,l		CI30 1,					
1300000				nzene,l	S.	20 Chlorobe	Jenzene, S						
1200000				4-Difluorobe		5	sromofluorot						
1100000				CI10 1,			CS10 P-E						
1000000													
900000													
800000				N.									
700000				roethane-D4									
600000				1,2-Dichlo									
500000				CS15									
400000													
300000													
200000													
100000													
0 Time>	2.00	3.00	4.00	<u> </u> _ 5.00	6.0	,-		l 9.00	10.00	11.00	12.00	13.00	
				17.4	2 . 41	91/22	23					Daga	

Please disregard the calculated values for the (COD) and the linear regression (linear r) on the form 6. Due to computer programming limitations they are stated incorrectly on this form. For correct values view the Response Factor Report from the instrument directly behind form 6. Test America's IT group is working to resolve the situation

INITIAL CALIBRATION DATA

8260B

 Laboratory:
 TestAmerica Buffalo

 Client:
 HRP Engineering, PC

SDG: Project: Instrument:

710 Ohio Street, Buffalo, NY

٦

Calibration:

<u>R10K091</u>

Calibration Date:

<u>11/19/10 22:42</u>

RTK1380

HP5973S

	L	evel 01	L	evel 02		evel 03	L	evel 04	L	evel 05	L	evel 06
Compound	ug/L	RF										
1,1,1,2-Tetrachloroethane	1	0.5572176	5	0.5779468	10	0.5861926	25	0.6578082	50	0.7079158	100	0.6386686
1,1,1-Trichloroethane	1	0.3174777	5	0.3643299	10	0.367992	25	0.4077192	50	0.3834335	100	0.3862287
1,1,2,2-Tetrachloroethane	1	0.8318889	5	0.853992	10	0.8662196	25	0.9418046	50	0.9896067	100	0.9376607
1,1,2-Trichloroethane	1	0.5403351	5	0.5535861	10	0.539354	25	0.5583077	50	0.5711009	100	0.5428771
1,1,2-Trichlorotrifluoroethane	1	0.3355193	5	0.364799	10	0.3050935	25	0.3231003	50	0.3327697	100	0.3212693
1,1-Dichloroethane	1	0.5977503	5	0.5899671	10	0.5783004	25	0.6143184	50	0.6281112	100	0.5797761
1,1-Dichloroethene	1	0.3607864	5	0.3587194	10	0.3209236	25	0.3630012	50	0.3588243	100	0.3413852
1,1-Dichloropropene	1	0.4170653	5	0.4509497	10	0.4491617	25	0.4894125	50	0.5039841	100	0.4595214
1,2,3-Trichlorobenzene	1	0.9350914	5	1.049289	10	1.02769	25	1.20965	50	1.210481	100	1.158315
1,2,3-Trichloropropane	1	0.2646382	5	0.275262	10	0.2597505	25	0.2788102	50	0.287646	100	0.2604714
1,2,4-Trichlorobenzene	1	0.9151958	5	1.030226	10	1.047313	25	1.274706	50	1.299598	100	1.246605
1,2,4-Trimethylbenzene	1	2.239568	5	2.844398	10	2.851551	25	3.10691	50	3.216999	100	3.006265
1,2-Dibromo-3-chloropropane	1	8.993884E-02	5	0.119407	10	0.130201	25	0.1631582	50	0.186158	100	0.1911357
1,2-Dibromoethane (EDB)	1	0.5817397	5	0.6166683	10	0.6131868	25	0.6598682	50	0.701141	100	0.6577261
1,2-Dichlorobenzene	1	1.637614	5	1.699706	10	1.641369	25	1.70109	50	1.739169	100	1.615636
1,2-Dichloroethane	1	0.4859105	5	0.4739599	10	0.4565589	25	0.4788789	50	0.4832531	100	0.4439044
1,2-Dichloroethane-d4	1	0.8280271	5	0.3794837	10	0.3745712	25	0.3169055	50	0.3434537	100	0.3549046
1,2-Dichloroethene, Total	2	0.354795	10	0.3553144	20	0.3456087	50	0.3772405	100	0.3806627	200	0.3482803
1,2-Dichloropropane	1	0.3420717	5	0.3422217	10	0.333351	25	0.3595904	50	0.3687646	100	0.344562
1,3,5-Trimethylbenzene	1	2.260463	5	2.791935	10	2.759372	25	3.03381	50	3.195108	100	2.976318
1,3-Dichlorobenzene	1	1.654511	5	1.715811	10	1.677102	25	1.751195	50	1.777139	100	1.585865
1,3-Dichloropropane	1	1.122263	5	1.141476	10	1.10832	25	1.145872	50	1.193412	100	1.127039
1,3-Dichloropropene, Total	2	0.3067964	10	0.385234	20	0.420952	50	0.496892	100	0.5469617	200	0.5309302
1,4-Dichlorobenzene	1	1.952127	5	1.809519	10	1.716153	25	1.801959	50	1.865263	100	1.702301
2,2-Dichloropropane	1	0.1829738	5	0.1820883	10	0.1806194	25	0.202898	50	0.2160451	100	0.1993103
2-Butanone (MEK)	5	0.1948489	25	0.1964843	50	0.1906596	125	0.2010572	250	0.2095057	500	0.2021774
2-Chloroethyl vinyl ether	5	0.179904	25	0.2131516	50	0.221313	125	0.2400936	250	0.2544157	500	0.2422004
2-Chlorotoluene	1	0.7376802	5	0.7905643	10	0.79942	25	0.835051	50	0.8758562	100	0.8169404
2-Hexanone	5	0.465354	25	0.5276577	50	0.5141547	125	0.5489326	250	0.5722543	500	0.5567372
4-Bromofluorobenzene	1	1.598181	5	0.7641672	10	0.7572643	25	0.6292293	50	0.7169639	100	0.7713322
4-Chlorotoluene	1	0.7172395	5	0.8273549	10	0.8226872	25	0.8624328	50	0.8971309	100	0.8351418
4-Isopropyltoluene	1	2.370479	5	2.973507	10	3.033076	25	3.33411	50	3.460884	100	3.160639
4-Methyl-2-pentanone (MIBK)	5	0.6956354	25	0.7588214	50	0.7259874	125	0.7687883	250	0.7967792	500	0.7712844
Acetone	5	0.1476985	25	0.1274952	50	0.1204988	125	0.125586	250	0.1279536	500	0.1204334
Acetonitrile	40	0.0580438	200	5.612562E-02	400	4.893321E-02	1000	5.340312E-02	2000	5.192839E-02	4000	4.942934E-02
Acrolein	20	0.027565	100	2.661283E-02	200	2.586822E-02	500	2.751885E-02	1000	2.872997E-02	2000	2.764002E-02
Acrylonitrile	5	0.1609738	25	0.1646687	50	0.1585285	125	0.1662293	250	0.1714368	500	0.1622094
Benzene	1	1.452077	5	1.491605	10	1.417037	25	1.514073	50	1.517529	100	1.380778
Bromobenzene	1	0.7709303	5	0.8217281	10	0.8053975	25	0.858419	50	0.902725	100	0.8426057
Bromochloromethane	1	0.1749404	5	0.1848935	10	0.1742403	25	0.183191	50	0.1854935	100	0.1707726
Bromodichloromethane	1	0.288306	5	0.3492393	10	0.3519095	25	0.4182155	50	0.4536153	100	0.4332687
Bromoform	1	0.2047698	5	0.2644592	10	0.2953688	25	0.3799196	50	0.4570947	100	0.4734231
Bromomethane	1	0.1270988	5	0.1087911	10	0.1084482	25	0.1131841	50	0.116234	100	9.394896E-02
Carbon disulfide	1	0.407506	5	0.5241025	10	0.551196	25	0.6661413	50	0.7871227	100	0.7915459

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory: TestAmerica Buffalo HRP Engineering, PC Client:

<u>R10K091</u>

Calibration:

SDG: RTK1380 Project: Instrument: <u>HP5973S</u> <u>11/19/10 22:42</u>

710 Ohio Street, Buffalo, NY

Calibration Date:

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	L	Level 06	
Compound	ug/L	RF											
Carbon Tetrachloride	1	0.3151888	5	0.3503488	10	0.357118	25	0.4142468	50	0.4523006	100	0.4148155	
Chlorobenzene	1	2.156813	5	2.035229	10	1.95392	25	2.013192	50	2.06681	100	1.924635	
Chlorodibromomethane	1	0.4046147	5	0.4783799	10	0.5131885	25	0.5980613	50	0.6831988	100	0.6781672	
Chloroethane	1	0.1878208	5	0.1578513	10	0.1855364	25	0.1604964	50	0.2000222	100	0.1695036	
Chloroform	1	0.6376033	5	0.6002591	10	0.5796711	25	0.6123367	50	0.6157169	100	0.5649668	
Chloromethane	1	0.3869512	5	0.3574296	10	0.3369235	25	0.3524642	50	0.356295	100	0.3248856	
cis-1,2-Dichloroethene	1	0.35199	5	0.3647358	10	0.3567525	25	0.3893103	50	0.3916137	100	0.3613138	
cis-1,3-Dichloropropene	1	0.331525	5	0.4193163	10	0.450119	25	0.5235898	50	0.5619648	100	0.546737	
Cyclohexane	1	0.5668732	5	0.6123009	10	0.5725828	25	0.61293	50	0.636518	100	0.6010207	
Dibromomethane	1	0.1967967	5	0.206199	10	0.2033768	25	0.2206852	50	0.2252152	100	0.2104976	
Dichlorodifluoromethane	1	0.2933774	5	0.3222964	10	0.2962603	25	0.3276569	50	0.3254759	100	0.2903995	
Ethyl Methacrylate	1	0.6449313	5	0.786949	10	0.8188871	25	0.9205879	50	1.039967	100	1.052138	
Ethylbenzene	1	3.278416	5	3.398978	10	3.287	25	3.521337	50	3.684851	100	3.34059	
Hexachlorobutadiene	1	0.5877821	5	0.6164403	10	0.543807	25	0.6661789	50	0.6473826	100	0.6228812	
Iodomethane	1	0.368775	5	0.3385505	10	0.3374282	25	0.3636866	50	0.3897777	100	0.361508	
Isopropylbenzene	1	2.643839	5	3.118036	10	3.214107	25	3.524183	50	3.746115	100	3.483441	
Methyl Acetate	1	0.4456087	5	0.413796	10	0.4164745	25	0.425	50	0.4342306	100	0.4161178	
Methyl tert-Butyl Ether	1	0.8554933	5	0.838362	10	0.8517598	25	0.9210623	50	1.002803	100	0.982455	
Methylcyclohexane	1	0.5891783	5	0.6080704	10	0.5862068	25	0.6194382	50	0.6590833	100	0.6214787	
Methylene Chloride	1	0.5891334	5	0.4144455	10	0.3831346	25	0.3682751	50	0.3809358	100	0.3422752	
m-Xylene & p-Xylene	2	1.190831	10	1.336278	20	1.266217	50	1.365878	100	1.389539	200	1.315642	
Naphthalene	1	1.785967	5	2.56946	10	2.826849	25	3.584312	50	3.703823	100	3.598982	
n-Butylbenzene	1	2.290897	5	2.773395	10	2.796504	25	3.14103	50	3.317558	100	3.108052	
n-Propylbenzene	1	3.259874	5	4.039568	10	4.07618	25	4.470848	50	4.677161	100	4.313642	
o-Xylene	1	1.04832	5	1.191194	10	1.196232	25	1.346859	50	1.369033	100	1.271673	
sec-Butylbenzene	1	2.900391	5	3.623113	10	3.634483	25	3.972967	50	4.157381	100	3.835888	
Styrene	1	1.717962	5	2.02912	10	1.979547	25	2.239397	50	2.293166	100	2.154989	
tert-Butylbenzene	1	0.4550542	5	0.5845011	10	0.5932288	25	0.6668687	50	0.7068667	100	0.6493291	
Tetrachloroethene	1	0.7853675	5	0.8111029	10	0.7546548	25	0.7850446	50	0.7957989	100	0.7298763	
Tetrahydrofuran	5	0.1122886	25	0.1231403	50	0.122899	125	0.1307904	250	0.1364041	500	0.1303019	
Toluene	1	1.870848	5	1.933914	10	1.787	25	1.879109	50	1.935707	100	1.765797	
Toluene-d8	1	4.999585	5	2.417783	10	2.267402	25	2.02902	50	2.158756	100	2.257178	
trans-1,2-Dichloroethene	1	0.3576	5	0.3458929	10	0.334465	25	0.3651706	50	0.3697117	100	0.3352467	
trans-1,3-Dichloropropene	1	0.5927747	5	0.7317614	10	0.7937619	25	0.9365423	50	1.041802	100	1.022412	
trans-1,4-Dichloro-2-butene	5	0.1154851	25	0.1253873	50	0.1247852	125	0.135899	250	0.1435554	500	0.1334659	
Trichloroethene	1	0.3755967	5	0.3606046	10	0.3430806	25	0.3713052	50	0.3800998	100	0.3514045	
Trichlorofluoromethane	1	0.1958093	5	0.3095239	10	0.3142748	25	0.3753677	50	0.3934703	100	0.3613324	
Vinyl acetate	5	0.4989794	25	0.5904488	50	0.6257613	125	0.6849182	250	0.727925	500	0.6860939	
Vinyl chloride	1	0.3987994	5	0.3360971	10	0.3113377	25	0.3405245	50	0.3408192	100	0.3063	
Xylenes, total	3	1.143327	15	1.287916	30	1.242889	75	1.359538	150	1.382704	300	1.300986	

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
		Calibration Date:	<u>11/19/10 22:42</u>

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	L	evel 12
Compound	ug/L,	RF	ug/L	RF								
1,1-Dimethoxyethane	5	0.0047435	25	0.0104653	50	1.455453E-02	125	0.0236372	250	3.362729E-02	500	4.145803E-02
1,2,3-Trimethylbenzene	1	2.87473	5	3.134639	10	3.055882	25	3.179006	50	3.329932	100	3.172458
1,3,5-Trichlorobenzene	1	1.179339	5	1.219491	10	1.186779	25	1.241682	50	1.348159	100	1.32105
1,4-Dioxane	40	4.501898E-03	200	4.604194E-03	400	4.879593E-03	1000	4.557487E-03	2000	4.962403E-03	4000	4.49897E-03
2-Methylthiophene	1	2.146054	5	2.048643	10	2.12422	25	2.023213	50	2.095791	100	2.13861
2-Nitropropane	5	0.108908	25	0.1273394	50	0.1526753	125	0.1821335	250	0.2125712	500	0.2363875
3-Chlorotoluene	1	0.7775137	5	0.8396024	10	0.7948739	25	0.8631618	50	0.8800857	100	0.8638902
3-Methylthiophene	1	2.22754	5	2.157459	10	2.093361	25	2.153377	50	2.164494	100	2.213623
Allyl chloride	1	0.5726082	5	0.4424351	10	0.454698	25	0.4656949	50	0.5121945	100	0.4742236
Chlorodifluoromethane	1	0.1699414	5	0.1895582	10	0.2014971	25	0.2258485	50	0.2829955	100	0.2893595
Chloroprene	1	0.4636955	5	0.4848711	10	0.512249	25	0.52577	50	0.5862893	100	0.5451421
Cyclohexanone	10	0.1717187	50	0.1715542	100	0.170111	250	0.1520778	500	0.1484156	1000	0.1343501
Dichlorofluoromethane	1	0.3429853	5	0.3135696	10	0.3495829	25	0.3807172	50	0.4044287	100	0.4091768
Dicyclopentadiene	1	3.299346	5	3.286871	10	3.137254	25	3.454838	50	3.701734	100	3.603505
Diethyl ether	1	0.35862	5	0.3026355	10	0.3197683	25	0.3305303	50	0.3451992	100	0.2976237
Epichlorohydrin	20	3.719688E-02	100	0.042516	200	4.292084E-02	500	4.595003E-02	1000	4.842185E-02	2000	4.582828E-02
Ethyl Acetate	1	0.3462102	5	0.3326049	10	0.340404	25	0.3561476	50	0.3901451	100	0.3797241
Ethyl tert-Butyl Ether	1	0.832276	5	0.8977592	10	0.907751	25	0.9909851	50	1.067951	100	1.032023
Heptane	1	0.4716149	5	0.5063335	10	0.4803313	25	0.5037359	50	0.5411019	100	0.4912735
Hexane	1	0.4772892	5	0.5152631	10	0.4792027	25	0.5251987	50	0.5675739	100	0.510887
Isobutanol	40	1.712069E-02	200	1.783549E-02	400	1.956156E-02	1000	2.070606E-02	2000	2.329462E-02	4000	2.287151E-02
Isopropyl alcohol	20	2.171111E-02	100	2.359869E-02	200	2.278134E-02	500	2.525523E-02	1000	0.0278379	2000	2.631941E-02
Isopropyl ether	1	1.037079	5	1.002685	10	1.035876	25	1.080637	50	1.17952	100	1.112218
Methacrylonitrile	1	0.2256224	5	0.2224518	10	0.2286421	25	0.236731	50	0.2494603	100	0.2380657
Methyl Methacrylate	1	0.2479928	5	0.2768574	10	0.2735701	25	0.2926602	50	0.3295939	100	0.3215167
m-Monochlorobenzotrifluoride	1	1.023511	5	1.031738	10	0.9639477	25	1.004079	50	1.067023	100	1.049634
n-Butanol	40	0.0114985	200	1.283912E-02	400	1.391058E-02	1000	1.505584E-02	2000	1.685728E-02	4000	0.0159906
o-Monochlorobenzotrifluoride	1	0.9980067	5	1.073025	10	0.9994965	25	1.063355	50	1.094312	100	1.066756
Pentachloroethane	1	0.3280263	5	0.3123958	10	0.3315432	25	0.3395319	50	0.3755956	100	0.3750233
p-Monochlorobenzotrifluoride	1	0.9798282	5	1.01868	10	0.9429642	25	0.9744132	50	1.030896	100	0.9954509
Propionitrile	10	6.585382E-02	50	6.370628E-02	100	6.455587E-02	250	6.361838E-02	500	6.798849E-02	1000	6.423693E-02
Propylene Oxide	5	7.858208E-02	25	8.263725E-02	50	8.411129E-02	125	9.490572E-02	250	9.840226E-02	500	8.342025E-02
t-Butanol	20	3.823783E-02	100	3.684557E-02	200	3.884388E-02	500	4.177959E-02	1000	4.733437E-02	2000	4.630266E-02
Tert-Amyl Methyl Ether	1	0.7253636	5	0.793976	10	0.7926824	25	0.861965	50	0.9531635	100	0.9473237

INITIAL CALIBRATION DATA (Continued)

8260B

SDG:

RTK1380

Client: <u>HRP Engineering, PC</u>				Pro	ject:	710 Ohio Street, Buffalo, NY			
Calibration:	<u>R10K091</u>			Inst	rument:	<u>HP5973S</u>			
				Cal	ibration Date:	<u>11/19/10 22</u>	2:42		
Compound		Mean RF	RF RSD	Mean RT	RT RSD	r^2 or COD	LIMIT	Q	
1,1,1,2-Tetrachloroethan		0.6209583	9.210293	7.228333	5.471407E-02		15		
1,1,1-Trichloroethane		0.3711968	8.217993	4.34	1.752687E-02		15		
1,1,2,2-Tetrachloroethan	10	0.9035287	6.825738	8.22	1.162864E-02		SPCC (0.3)		
1,1,2-Trichloroethane		0.5509268	2.266295	6.42	1.557442E-02		15		
1,1,2-Trichlorotrifluoroe	thane	0.3304252	6.040967	2.548333	0.1591504		15		
1,1-Dichloroethane		0.5980372	3.308745	3.54	1.603628E-02		SPCC (0.1)		
1,1-Dichloroethene		0.3506067	4.698273	2.548333	0.2949708		CCC (30)		
1,1-Dichloropropene		0.4616824	6.729034	4.468333	9.037621E-02		15		
1,1-Dimethoxyethane		2.141431E-02	66.06376	3.625	0.1504767	0.9967762	0.99		
1,2,3-Trichlorobenzene		1.098419	10.18753	11.05	1.800804E-02		15		
1,2,3-Trichloropropane		0.2710964	4.153941	8.256667	5.898787E-02		15		
1,2,3-Trimethylbenzene		3.124441	4.846925	9.04	2.281919E-02		15		
1,2,4-Trichlorobenzene		1.135607	13.98133	10.65	1.081857E-02		15		
1,2,4-Trimethylbenzene		2.877615	11.96964	8.69	1.917574E-02		15		
1,2-Dibromo-3-chloropr	opane	0.1466665	27.34304	10	0	0.9962591	0.99		
1,2-Dibromoethane (ED	B)	0.6383883	6.678707	6.801667	5.813025E-02		15		
1,2-Dichlorobenzene	<u> </u>	1.672431	2.857797	9.33	0.0156945		15	_	
1,2-Dichloroethane		0.4704109	3.536677	4.69	2.144103E-02		15		
1,2-Dichloroethane-d4		0.432891	45.02165	4.63	4.285375E-03	0.9985038	0.99		
1,2-Dichloroethene, Tot	al	0.3603169	4.148327	4	0		15		
1,2-Dichloropropane		0.3484269	3.762626	5.31	1.893756E-02		CCC (30)		
1,3,5-Trichlorobenzene		1.249417	5.622132	10.12	7.727578E-03		15		
1,3,5-Trimethylbenzene		2.836168	11.44509	8.381667	5.061678E-02		15		
1,3-Dichlorobenzene		1.693604	4.107489	8.94	1.151735E-02		15		
1,3-Dichloropropane		1.13973	2.595476	6.543333	7.897972E-02		15		
1,3-Dichloropropene, To	otal	0.4479611	20.86271	6.27	1.545382E-02	0.9984418	0.99		
1,4-Dichlorobenzene		1.807887	5.171045	9.02	2.202767E-02		CCC (20)		
1,4-Dioxane		4.667424E-03	4.326474	5.423333	9.363947E-02		15		
2,2-Dichloropropane		0.1939892	7.419748	3.97	1.434498E-02		15		
2-Butanone (MEK)		0.1991222	3.313995	4.05	1.941031E-02		15		
2-Chloroethyl vinyl ethe	я	0.2251797	11.87703	5.74	6.91334E-03		15		
2-Chlorotoluene		0.809252	5.7242	8.33	0.018727		15		
2-Hexanone		0.5308484	7.193013	6.6	1.804918E-02		15		
2-Methylthiophene		2.096088	2.400391	6.17	6.164233E-03		15		
2-Nitropropane		0.1700025	29.07903	5.73	0.0169102	0.9908429	0.99		
3-Chlorotoluene		0.8365213	4.952741	8.38	1.581306E-02		15		
3-Methylthiophene		2.168309	2.214991	6.29	1.877306E-02		15	ļ	
4-Bromofluorobenzene		0.8728563	41.15579	8.07	1.864174E-02	0.9958726	0.99		
4-Chlorotoluene		0.8269978	7.316597	8.421667	4.668378E-02		15		
4-Isopropyltoluene		3.055449	12.50117	8.94	1.151735E-02		15	L	
4-Methyl-2-pentanone (MIBK)	0.7528827	4.808991	5.963333	0.0833306		15		
Acetone		0.1282776	7.851339	2.65	4.036868E-03		15	1	
Acetonitrile		5.297725E-02	6.847885	2.931667	0.141288		15		
Acrolein		2.732248E-02	3.585184	2.495	0.2193029		15		

Bromochloromethane

Bromodichloromethane

Acrylonitrile

Allyl chloride

Bromobenzene

Benzene

0.1640078

0.4869757

1.462183

0.8336343

0.1789219

0.3824257

2.767676

9.895235

3.794138

5.454818

3.545858

16.46547

3.24

2.85

4.633333

8.19

4.19

5.52 96/223 2.293239E-02

3.753579E-03

0.1110654

0.0209545

1.581306E-02

5.142069E-03

0.9985584

Laboratory:

TestAmerica Buffalo

15

15

15

15

15

0.99

INITIAL CALIBRATION DATA (Continued)

8260B

Laboratory:	TestAmerica Buffalo			SD	G:	RTK1380		
Client:	HRP Engineering, PC			Proj	ject:	<u>710 Ohio Si</u>	treet, Buffalo, NY	<u>(</u>
Calibration:	<u>R10K091</u>			Inst	rument:	<u>HP5973S</u>		
				Cal	ibration Date:	<u>11/19/10 22</u>	2:42	
Compound		Mean RF	RF RSD	Mean RT	RT RSD	r^2 or COD	LIMIT	Q
Bromoform		0.3458392	31.37994	7.84	9.702376E-03	0.9939799	SPCC (0.1)	1
Bromomethane		0.1112842	9.785932	1.77	1.603628E-02		15	
Carbon disulfide		0.6212691	24.78603	2.75	0.3250793	0.9962506	0.99	
Carbon Tetrachlorie	de	0.3840031	13.33947	4.45	1.630458E-02		15	
Chlorobenzene		2.0251	4.101395	7.156667	7.267954E-02		SPCC (0.3)	
Chlorodibromomet	hane	0.5592684	20,16372	6.72	1.146183E-02	0.9976667	0.99	
Chlorodifluorometh	nane	0.2265334	21,92315	1.303333	0.395897	0.9942919	0.99	
Chloroethane		0.1768718	9.5116	1.871667	0.4022773	†	15	
Chloroform		0.601759	4.355885	4.25	0		CCC (30)	
Chloromethane		0.3524915	5,992286	1,391667	0.2931343		SPCC (0.1)	
Chloroprene		0.5196695	8.398129	3.58	1.062383E-02	·	15	
cis-1.2-Dichloroeth	ene	0.369286	4.595525	4	0		15	
cis-1.3-Dichloropro	mene	0.4722086	18.78161	5.843333	8.964018E-02	0.9989345	0.99	
Cyclohexane	<u></u>	0.6003709	4.407696	4 34	1.752687E-02		15	+
Cyclohexanone		0 1580379	9 822411	8 061667	5 161016E-02		15	+
Dibromomethane		0 2104618	5 105476	5.41	1 406038F-02		15	+
Dichlorodifluorome	ethane	0 3097444	5 690397	1 273333	0.6412351		15	+
Dichlorofluorometh	Jane	0 3667434	10 27675	2 083333	0 2484081		15	
Dicyclopentadiene		3 413925	6,231192	9	0		15	
Diethyl ether		0.3257295	7.320222	2 321667	0 1752766		15	
Enichlorohydrin		380565E-02	8 907084	5.82	8 269379E-03		15	+
Ethyl Acetate		0 3575393	6 37906	4 066667	0 1261096		15	
Ethyl Methacrylate		0.8772434	17 98593	631	2.326782E-02	0.9978154	0.99	+
Ethyl tert-Butyl Eth	Det	0.9547909	9 432572	3 836667	0 1355332		15	+
Ethylbenzene		3 418529	4 623057	7.22	2 085746F-02			+
Hentane		0.4990652	4 913815	4 761667	8 573842E-02		15	+
Herachlorobutadie	ne	0 6140787	7 111807	10.76	1 356797E-02		CCC (20)	
Hexane		0 5125691	6 501739	3 341667	0 1224399		15	+
Iodomethane		0.3500543	5 485159	2 706667	0.1904501		15	+
Isobutanol		073165E-07	12 5008	4.65	1 642944E-02		15	-
Isopropyl alcohol		4583056-02	9 368771	2 816667	0 1834784		15	+
Isopropyl atter		1 074669	5 963861	3 55	1 6912885-02		15	
Isopropylene		3 288287	11 80275	7.92	1.031203E-02		15	
Methacrylonitrile		0 2334956	4 255807	4.22	2 511571E-02	1	15	+
Methyl Acetate		0.4252046	2 950161	29	1 880959E-02		15	
Methyl Methacrylat	te	0.2003652	10 64231	5 38	1.356797E-02		15	+
Methyl tert-Butyl E	ther	0.9086559	7 85449	3 171667	0 128897		15	+
Methylcyclobeyane		0.6130003	4 335271	52	2 015686F_02		15	
Methylene Chloride	·	0.4130333	21 64085	3.026667	0 1695596	0.9961113	0.00	+
m-Monochlorobenz	zotrifluoride	1 023322	3 541026	7 12	0.1093390	0.3301115	15	+
m-Xylene & n-Yul	ene	1 310731	5 52178	7 21	1 3756788-02		15	+
Nanhthalana		3 011566	25 2195	10.97	1.00024E.02	0 9987665	<u>15</u>	+
n-Butano!		4358650 03	12 05744	5 14	0.0003046-02	0.3387003	15	
n-Butulhangana		2 004572	12 62442	0.14	1 710456E 02		15	
n Dronulbarran		A 120546	11.01791	9.20	1.0001220.00		15	+
n-rropyidenzene	otrifluoride	1 040150	2 96067	<u> </u>	1.070133E-02		13	+
o-wionocniorobenzo		1.049139	0.6679992	7.60	1.333934E-02		15	+
Pentachlarathara		1.45/218	7.30/885	/.03 8 c01444	1.903084E-02		15	

Form Rev: 9/21/10

Propionitrile

p-Monochlorobenzotrifluoride

0.9903721

6.499329E-02

3.219304

2.576659

5.304507E-03

5.801038E-03

7.17

15

15

INITIAL CALIBRATION DATA (Continued)

8260B

				<u> </u>						
					Cali	bration Date:	<u>11/19/10 22</u>	::42		
Calibration:	<u>R10K091</u>	<u>R10K091</u>				rument:	<u>HP5973S</u>			
Client:	HRP Engineering,	<u>PC</u>			Proj	ect:	<u>710 Ohio Si</u>	treet, Buffalo, NY		
Laboratory:	TestAmerica Buffa	lo			SDO	3:	RTK1380			

Compound	Mean RF	RF RSD	Mean RT	RT RSD	r^2 or COD	LIMIT	Q
Propylene Oxide	8.700981E-02	8.955162	2.408333	0.1683106		15	
sec-Butylbenzene	3.68737	11.8261	8.823333	5.859935E-02		15	
Styrene	2.06903	10.12663	7.65	1.718374E-02		15	
t-Butanol	4.155732E-02	10.5727	3.15	3.396095E-03		15	
Tert-Amyl Methyl Ether	0.8457457	10.85061	4.7	4.552213E-03		15	
tert-Butylbenzene	0.6093081	14.51345	8.65	1.331998E-02		15	
Tetrachloroethene	0.7769742	3.805415	6.46	1.874711E-02		15	
Tetrahydrofuran	0.1259707	6.693607	4.218333	0.17753		15	
Toluene	1.862062	3.86185	6.07	3.845082E-03		CCC (30)	
Toluene-d8	2.688287	42.39087	6.018333	6.464839E-02	0.9984853	0.99	
trans-1,2-Dichloroethene	0.3513478	4.300305	3.17	1.199789E-02		15	
trans-1,3-Dichloropropene	0.8531757	20.78611	6.27	1.545382E-02	0.9982613	0.99	
trans-1,4-Dichloro-2-butene	0.129763	7.624044	8.26	2.545302E-02		15	
Trichloroethene	0.3636819	3.992668	5.105	0.105706		15	
Trichlorofluoromethane	0.3249631	22.01482	2.103333	1.74463	0.9974215	0.99	
Vinyl acetate	0.6356878	13.03042	3.59	1.633769E-02		15	
Vinyl chloride	0.3389797	9.716771	1.501667	0.5010189		CCC (30)	
Xylenes, total	1.286227	6.706232	7.63	1.965684E-02		15	

			Res	ponse E	actor	Report	HP597	35			
Method Path : D:\MSDCHEM\S\METHODS\82605MLLOW\ Method File : R10K091-SIXPT.M Title : 8260 5ML WATER Last Update : Sat Nov 20 09:30:04 2010 Response Via : Initial Calibration											.J
Cal 1 4	ibr	ation 1 =S1464 =S1465	Files 4.D 2 7.D 5	=S146 =S146	55.D 58.D	3 6	## 5 == 5	51466.D 51469.D))
		Compour	nd	1	2	3	4	5	6	Avg	*RSD
1) 2) 34) 56) 7 8) 9 10 12) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 13) 12) 12) 12) 12) 12) 12) 12) 12	ΙΤΤΤΤΤΤ ΤΤ Τ ΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤ	$\begin{array}{c} CI10\\ C290\\ C010\\ C020\\ C025\\ C275\\ C030\\ C040\\ C036\\ C030\\ C030\\$	1,4-Difluorob Dichlorodiflu Chloromethane Vinyl chlorid Bromomethane Chloroethane Trichlorofluc 1,1-Dichloroe Methylene chl Carbon disulf Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichlo T-butyl Methy trans-1,2-Dic Methyl Acetat 1,1-Dichloroe Vinyl Acetate 2,2-Dichloroe Chloroform 1,1,1-Trichlo Carbon tetrao Chloroform 1,1,2-Dichloroe Benzene 1,2-Dichloroe Benzene 1,2-Dichloroe Z-Butanone Cyclohexane Trichloroetho	en 0.293 0.387 0.399 0.127 0.188 0.196 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.369 0.336 0.3365 0.369 0.3366 0.358 0.358 0.446 0.3598 0.352 0.312 0.1125 0.315 0.317 0.315 0.4486 0.493 0.315 0.4175 0.328 1.452 0.486 0.5676 0.372	0.322 0.357 0.336 0.109 0.158 0.310 0.359 0.414 0.524 0.524 0.027 0.165 0.127 0.056 0.339 0.365 0.365 0.346 0.414 0.590 0.590 0.182 0.365 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.185 0.123 0.364 0.379 1.492 0.474 0.512 0.361 0.342	0.296 0.337 0.311 0.108 0.314 0.321 0.383 0.551 0.026 0.120 0.049 0.305 0.416 0.578 0.416 0.578 0.123 0.368 0.357 0.123 0.368 0.357 0.343 0.333	ISTD 0.328 0.352 0.341 0.113 0.160 0.375 0.363 0.368 0.666 0.028 0.166 0.028 0.166 0.028 0.166 0.028 0.363 0.364 0.323 0.364 0.323 0.365 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.428 0.389 0.131 0.389 0.131 0.389 0.131 0.389 0.131 0.389 0.131 0.389 0.131 0.389 0.131 0.389 0.317 0.363 0.363 0.365 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.361 0.365 0.425 0.425 0.425 0.389 0.131 0.361 0.361 0.365 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.363 0.363 0.364 0.425 0.457 0.457 0.457 0.457 0.25710 0.45710 0.45710 0.457100 0.4571000000000000000000000000000000000000	0.325 0.356 0.341 0.116 0.200 0.393 100 0.359 0.381 100 0.787 100 0.299 0.171 0.029 0.128 0.333 1.003 0.370 0.333 1.003 0.370 0.434 0.628 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.3728 0.383 0.3616 0.383 0.452 0.504 0.3433 1.5188 0.4833 0.2100 0.380 0.369	0.290 0.325 0.306 0.94 0.170 0.361 0.341 0.342 M= 0 0.342 0.792 0.362 0.120 0.362 0.321 0.362 0.321 0.362 0.321 0.365 0.366 0.586 0.130 0.361 0.365 0.361 0.362 0.365 0.365 0.365 0.381 0.202 0.355 M= 0 0.355	0.309 0.352 0.339 0.111 0.177 	5.69 5.99 9.72 9.79 9.51 2=0.997 4.70 2=0.997 2=0.998 3.59 2.77 7.85 6.85 5.49 6.04 7.85 4.30 2.955 3.31 13.03 7.42 4.60 6.69 3.55 4.36 8.22 13.34 6.73 2=0.998 3.79 3.54 3.79 3.54 3.79 3.54 3.79 3.76
37) 38) 39) 40) 41)	T T T T	C278 C130 C161 C012 C145	Dibromomethan Bromodichloro 2-Chloroethy: Methylcyclohe cis-1,3-Dich	n 0.197 5 0.288 L 0.180 ≙ 0.589 L 0.332	0.206 0.349 0.213 0.608 0.419	0.203 0.352 0.221 0.586 0.450	0.221 0.418 0.240 0.619 0.524	0.225 0.454 LO 0.254 0.659 0.562 LO	0.210 0.433 M= 0 0.242 0.621 0.547 M= 0	0.210 .435 R 0.225 0.614 .546 R	5.11 ^2=0.999 11.88 4.34 ^2=0.999
42) 43) 44) 45) 46)	IS TT T	CI20 CS05 C230 C170 C284	Chlorobenzene Toluene-D8 Toluene trans-1,3-Die Ethyl Methac:	D 5.000 1.871 c 0.593 r 0.645	2.418 1.934 0.732 0.787	2.267 1.787 0.794 0.819	-ISTD- 2.029 1.879 0.937 0.921	2.159 LO 1.936 1.042 LO 1.040 LO	2.257 M= 2 1.766 1.022 M= 1 1.052 M= 1	.219 R 1.862 .016 R	 ^2=0.998 3.86 ^2=0.999 ^2=0.999
R10K	091	-SIXPT.	M Sat Nov 20	09:29:1	7 2010	HP597	3		•	P	age: 1

Response Factor Report HP5973S Method Path : D:\MSDCHEM\S\METHODS\82605MLLOW\ Method File : R10K091-SIXPT.M Title : 8260 5ML WATER Last Update : Sat Nov 20 09:30:04 2010 Response Via : Initial Calibration Calibration Files 1 =S1464.D 2 4 =S1467.D 5 =S1465.D 3 =S1466.D =S1468.D 6 =S1469.D 1,1,2-Trichlo 0.540 0.554 0.539 0.558 0.571 0.543 0.551 2.27 47) T C160 4-Methyl-2-pe 0.696 0.759 0.726 0.769 0.797 0.771 0.753 4.81 48) T C210 C220 Tetrachloroet 0.785 0.811 0.755 0.785 0.796 0.730 0.777 C221 1,3-Dichlorop 1.122 1.141 1.108 1.146 1.193 1.127 1.140 3.81 49) T 2.60 50) T 51) T Dibromochloro 0.405 0.478 0.513 0.598 0.683 0.678 ----C155 LO M= 0.670 R^2=0.999 C163 1,2-Dibromoet 0.582 0.617 0.613 0.660 0.701 0.658 0.638 6.68 52) T C215 2-Hexanone 0.465 0.528 0.514 0.549 0.572 0.557 0.531 C235 Chlorobenzene 2.157 2.035 1.954 2.013 2.067 1.925 2.025 C281 1,1,1,2-Tetra 0.557 0.578 0.586 0.658 0.708 0.639 0.621 7.19 53) T 54) T 55) T 56) T 4.10 9.21 C240 Ethylbenzene 3.278 3.399 3.287 3.521 3.685 3.341 3.419 4.62 C246m,p-Xylene1.1911.3361.2661.3211.3001.3161.3115.53C247o-Xylene1.0481.1911.1961.3471.3691.2721.2379.57C245Styrene1.7182.0291.9802.2392.2932.1552.06910.13 57) T 58) T 59) T 60) T Styrene1.7182.0291.9802.2392.2932.1552.069Bromoform0.2130.2760.2960.3850.4520.466-----C180 LO M= 0.454 R^2=0.998 CS10 p-Bromofluoro 1.598 0.764 0.757 0.629 0.717 0.771 -----61) S LO M= 0.749 R^2=0.995 CI30 1,4-Dichloroben -----ISTD----ISTD-----C966 Isopropylbenz 2.644 3.118 3.214 3.524 3.746 3.483 3.288 11.80 62) I 63) T C301 Bromobenzene 0.771 0.822 0.805 0.858 0.903 0.843 0.834 5.45 64) T C225 1,1,2,2-Tetra 0.832 0.854 0.866 0.942 0.990 0.938 0.904 C282 1,2,3-Trichlo 0.265 0.275 0.260 0.279 0.288 0.260 0.271 C283 t-1,4-Dichlor 0.115 0.125 0.125 0.136 0.144 0.133 0.130 6.83 65) T 66) T 67) T 68) T 4.15 7.62 C302 n-Propylbenze 3.260 4.040 4.076 4.471 4.677 4.314 4.140 11.92 C303 2-Chlorotolue 0.738 0.791 0.799 0.835 0.876 0.817 0.809 5.72 69) T C2894-Chlorotolue0.7170.8270.8230.8620.8970.8350.8277.32C3041,3,5-Trimeth2.2602.7922.7593.0343.1952.9762.83611.45C306tert-Butylben0.4550.5850.5930.6670.7070.6490.60914.51C3071,2,4-Trimeth2.2402.8442.8523.1073.2173.0062.87811.97 70) T 71) T 72) T 73) T C3071,2,4-Trimeth2.2402.8442.8523.1073.2173.0062.87811.97C308sec-Butylbenz2.9003.6233.6343.9734.1573.8363.68711.83C2601,3-Dichlorob1.6551.7161.6771.7511.7771.5861.6944.11C3094-Isopropylto2.3702.9743.0333.3343.4613.1613.05512.50C2671,4-Dichlorob1.9521.8101.7161.8021.8651.7021.8085.17C2491,2-Dichlorob1.6381.7001.6411.7011.7391.6161.6722.86C310n-Butylbenzen2.2912.7732.7973.1413.3183.1082.90512.63 74) Ť 75) T 76) T 77) T 78) T 79) T 1,2-Dibromo-3 0.090 0.119 0.130 0.163 0.186 0.191 -----80) T C286 LO M= $0.187 \text{ R}^2=0.999$ C313 1,2,4-Trichlo 0.915 1.030 1.047 1.275 1.300 1.247 1.136 13.98 C316 Hexachlorobut 0.588 0.616 0.544 0.666 0.647 0.623 0.614 7.11 C314 Naphthalene 1 786 2.560 2.827 2.564 2.867 81) T 82) T C314 Naphthalene 1.786 2.569 2.827 3.584 3.704 3.599 -----83) T LO M= 3.609 R^2=0.999 C934 1,2,3-Trichlo 0.935 1.049 1.028 1.210 1.210 1.158 1.098 10.19 84) T Total Average %RSD 6.89 _______ L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef(#) = Out of Range R10K091-SIXPT.M Sat Nov 20 09:33:15 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:29:17 2010 HP5973

	Quantitation Report	TA	Buffal	Lo (QT	Reviewed)
Data File : Acq On : Sample : Misc :	D:\MSDCHEM\S\DATA\111 19 Nov 2010 23:58 T005292-CAL1	910\ S1	464.D	C L M	Vial: perator: Inst : Aultiplr:	2 CDC HP5973S 1.00
MS Integrat. Quant Time:	ion Params: RTEINT.P Nov 20 09:25:35 2010		Resul	lts File:	R10K091-	SIXPT.RES
Quant Methor Title Last Update Response vi DataAcq Met IS QA File	d : D:\MSDCHEM\S\R1 : 8260 5ML WATER : Sat Nov 20 09:20:3 a : Initial Calibratic h : VOA : D:\MSDCHEM\S\DATA`	LOKO91- 38 2010 on \111910	SIXPT.	.M (RTE Ir 7.D (20 No	ntegrator ov 2010) 1:02)
Internal S	tandards	R.T.	QIon	Response	Conc Un	its Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	4.93	114	557047	25.00	ug/L 0.00 98.65%
42) CI20	Chlorobenzene-D5	7.13	82	265067	25.00	ug/L 0.00 93.50%
62) CI30	1,4-Dichlorobenzene-	9.00	152	275187	25.00	ug/L 0.00 95.88%
System Mon 30) CS15 Spiked Am 43) CS05 Spiked Am 61) CS10 Spiked Am	itoring Compounds 1,2-Dichloroethane-D ount 25.000 Rand Toluene-D8 ount 25.000 Rand p-Bromofluorobenzene count 25.000 Rand	4.63 ge 66 6.01 ge 71 8.07 ge 73	65 - 137 98 - 126 174 - 120	18450 Recove 53009 Recove 16945 Recove	1.91 ery = 1.86 ery = 1.83 ery =	ug/L 0.00 7.64%# ug/L 0.00 7.44%# ug/L 0.00 7.32%#
Target Com 2) C290 3) C010 4) C020 5) C015 6) C025 7) C275 8) C045 9) C030 10) C040 11) C036 12) C038 13) C035 14) C300 15) C276 16) C291 17) C962 18) C057 19) C255 20) C050 21) C125 22) C051 23) C056 24) C272 26) C050 27) C115 28) C120 29) C116 31) C165 32) C065 33) C110 34) C256 35) C150 36) C140 37) C278 38) C130	pounds Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1,2, T-butyl Methyl Ether trans-1,2-Dichloroet Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane cis-1,2-Dichloroethe Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroethan Carbon tetrachloride 1,2-Dichloropropene Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane	$\begin{array}{c} 1.26\\ 1.39\\ 1.49\\ 1.77\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 3.59\\ 3.59\\ 3.59\\ 7.4\\ 4.45\\ 4.46\\ 4.63\\ 9.5\\ 4.34\\ 5.34\\ 1.11\\ 1.25\\ 5.55\\ 5$	850244164663312136333762837758236533333 1098755444079464794289177764596986 11179464794289177764596986	6537 8622 8886 2832 4185 4363m 8039 13127 9080 12284 17934 16455 51733 8217 7476 19062 7968 9929 13319 55591 4077 7843 12510 3898 14207 7074 7023 9293 32355 10827 21708 12631 8369 7622 43854 20043	$\begin{array}{c} 0.95\\ 1.10\\ 1.18\\ 1.06\\ 0.60\\ 1.03\\ 1.41\\ 0.668\\ 4.91\\ 5.832\\ 1.01\\ 0.94\\ 1.05\\ 1.002\\ 1.05\\ 1.002\\ 0.945\\ 4.46\\ 0.98\\ 1.08\\ 0.994\\ 1.03\\ 0.994\\ 1.03\\ 0.994\\ 1.03\\ 0.994\\ 1.03\\ 0.994\\ 1.03\\ 0.94\\ 0.94\\ 1.03\\ 0.94\\ 0$	Qvalue ug/L # 100 ug/L 85 ug/L 94 ug/L 97 ug/L 97 ug/L 87 ug/L 83 ug/L 90 ug/L 93 ug/L 91 ug/L 93 ug/L 93 ug/L 93 ug/L 93 ug/L 95 ug/L 922 ug/L 93 ug/L<

R10K091-SIXPT.M Sat Nov 20 09:28:51 2010 HP5973

	Quantitation R	eport TA	Buffa	lo (QT	Reviewed)		
Data File : Acq On : Sample : Misc : MS Integrat: Quant Time:	D:\MSDCHEM\S\D. 19 Nov 2010 2 T005292-CAL1 ion Params: RTE Nov 20 09:25:3	ATA\111910\S 3:58 INT.P 5 2010	1464.D Resu	(] Its File:	Vial: 2 Operator: C Inst : H Multiplr: 1 R10K091-SI	DC P5973S .00 XPT.RES	
Quant Method Title Last Update Response via DataAcq Meth IS QA File	d : D:\MSDCHEM\ : 8260 5ML W : Sat Nov 20 a : Initial Cal h : VOA : D:\MSDCHEM\	S\R10K091 ATER 09:20:38 201 ibration S\DATA\11191	-SIXPT .0 .0\S146	.M (RTE In 7.D (20 No	ntegrator) ov 2010 1	:02)	
Internal S [.]	tandards	R.T.	QIon	Response	Conc Unit	.s Dev(Min) Rcv(Ar)	
$\begin{array}{c} 40) & C012 & 1\\ 41) & C145 \\ 44) & C230 \\ 45) & C170 \\ 46) & C284 \\ 47) & C160 \\ 48) & C210 \\ 49) & C220 \\ 50) & C221 \\ 51) & C155 \\ 52) & C163 \\ 53) & C215 \\ 54) & C235 \\ 55) & C281 \\ 56) & C240 \\ 57) & C246 \\ 58) & C247 \\ 59) & C245 \\ 60) & C180 \\ 63) & C966 \\ 64) & C301 \\ 65) & C225 \\ 66) & C282 \\ 67) & C283 \\ 68) & C302 \\ 69) & C303 \\ 70) & C289 \\ 71) & C304 \\ 72) & C306 \\ 73) & C307 \\ 74) & C308 \\ 75) & C260 \\ 76) & C309 \\ 77) & C267 \\ 78) & C249 \\ 79) & C310 \\ 80) & C286 \\ 61) & C282 \\ 61) & C284 \\ 721 & C308 \\ 75) & C260 \\ 76) & C309 \\ 77) & C267 \\ 78) & C249 \\ 79) & C310 \\ 80) & C286 \\ 61) & C284 \\ 70) & C286 \\ 70) & C2$	Methylcyclohexa cis-1,3-Dichlor Toluene trans-1,3-Dichlor Ethyl Methacryl 1,1,2-Trichloro 4-Methyl-2-pent Tetrachloroethe 1,3-Dichloropro Dibromochlorome 1,2-Dibromoetha 2-Hexanone Chlorobenzene 1,1,1,2-Tetrach Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzen 1,2,3-Trichloro t-1,4-Dichloro- n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethyl tert-Butylbenzen 1,3-Dichloroben 4-Isopropyltolu 1,4-Dichloroben 1,2-Dichloroben 1,2-Dichloroben 1,2-Dichloroben 1,2-Dichloroben 1,2-Dichloroben 1,2-Dichloroben	ne 5.20 oprop 5.84 foropr 5.84 oropr 6.27 ate 6.31 ethan 6.42 anone 5.97 ine 6.46 pane 6.54 thane 6.72 ne 6.60 7.10 foroe 7.23 7.31 7.63 7.65 7.84 e 7.92 aloroe 8.22 propa 8.25 c 8.15 aloroe 8.22 bpropa 8.25 c 8.15 aloroe 8.22 for 8.15 aloroe 8.25 c 8.15 c 8.		$\begin{array}{c} 13128\\ 7387\\ 19836\\ 6285\\ 6838\\ 5729\\ 36878\\ 8327\\ 11899\\ 4290\\ 6168\\ 24670\\ 22868\\ 5908\\ 34760\\ 22868\\ 5908\\ 34760\\ 25252\\ 11115\\ 18215\\ 2254\\ 29102\\ 8486\\ 9157\\ 2913\\ 6356\\ 35833\\ 8120\\ 7895\\ 24882\\ 5009\\ 24652\\ 31926\\ 18212\\ 26093\\ 21488\\ 18026\\ 25217\\ 990\\ 10074\\ \end{array}$	0.96 ug 0.70 ug 0.70 ug 0.69 ug 0.74 ug 0.98 ug 4.62 ug 1.01 ug 0.98 ug 0.91 ug 1.07 ug 0.91 ug 1.07 ug 0.96 ug 0.85 ug 0.92 ug 0.92 ug 0.92 ug 0.92 ug 0.92 ug 0.93 ug 0.92 ug 0.92 ug 0.93 ug 0.93 ug 0.94 ug 0.92 ug 0.92 ug 0.92 ug 0.92 ug 0.93 ug 0.93 ug 0.93 ug 0.75 ug 0.73 ug 0.78 ug 0.78 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.98 ug 0.78 ug 0.98 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.98 ug 0.98 ug 0.98 ug 0.98 ug 0.98 ug 0.98 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.78 ug 0.98 ug 0.61 ug 0.61 ug	/L 95 /L 92 /L 92 /L 92 /L 93 /L 95 //L 96 //L 97 96 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97	
82) C316 83) C314 84) C934	Hexachlorobutad Naphthalene 1,2,3-Trichloro	liene 10.7 10.8 benze 11.0	6 225 7 128 5 180	6470 19659 10293	0.96 u 0.59 u 0.85 u	J/L 82 J/L 97 J/L 95	2 7 5

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-SIXPT.M Sat Nov 20 09:28:51 2010 HP5973

,

....

R10K091-SIXPT.M Sat Nov 20 09:25:33 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:25:38 2010 HP5973

TA Buffalo Quantitation Report Data File : D:\MSDCHEM\S\DATA\111910\S1464.D Acq On : 19 Nov 2010 23:58 Vial: 2 Operator: CDC : HP5973S : T005292-CAL1 Inst Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 20 09:25:35 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) 5ML WATER Title : 8260 Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA

(QT Reviewed)

			Quanti	tation	Repor	ŧ	TA	Buffa	10	(QT F	Reviewe	d)	
Data Acq C Sampl Misc	File)n .e	::	D:\MSD 20 Nov T00529	CHEM\S\ 2010 2-CAL2	DATA\: 00:19	11191(o∖sı	1465.D		Or Ir Mu	Vial perator hst ultiplr	: 3 : CDC : HP5! : 1.0	973S D
MS Ir Quant	tegra Time	ti :	on Par Nov 20	ams: R1 09:26:	EINT. 06 20	P 10		Resu	lts Fi	le: Æ	R10K091	-SIXP	r.RES
Quant Title Last Respo Data IS QA	Meth Updat Onse v Acg Me File	od e ia th	: D:\\ : 826 : Sat : Ini : VOA : D:\\	MSDCHEN 0 5ML Nov 20 tial Ca MSDCHEN	A\S WATER 0 09:2 Alibra A\S\DA	\R10K(0:38 2 tion TA\113	091- 2010 1910	-SIXPT D D\S146	.M (RT	E Int	r 2010	r) 1:0	2)
Inte	ernal	st	andard	s		R	.T.	QIon	Respo	nse	Conc U	nits	Dev(Min) Rcv(Ar)
1)	CI10	1	,4-Dif	luorobe	enzene	4	.93	114	5543	19	25.00	ug/L	0.00
42)	CI20	С	hlorob	enzene-	-D5	7	.13	82	2660	02	25.00	ug/L	0.00 93.83%
62)	CI30	1	,4-Dic	hlorobe	enzene	- 9	.00	152	2772	45	25.00	ug/L	0.00 96.60%
Syst 30) 5p: 43) 5p: 61) Sp:	cem Mc CS15 iked A CS05 iked A CS10 iked A	ni 1 Mo T Mo P	toring ,2-Dic ount oluene ount -Bromo ount	Compor hloroet 25.00 -D8 25.00 fluorol 25.00	unds thane- 00 R 00 R 0enzen 00 R	D 4 ange 6 ange e 8 ange	.63 66 .02 71 .07 73	65 - 137 98 - 126 174 - 120	420 Re 1286 Re 406 Re	71 27 27 54 54 20ve:	4.38 ry = 4.50 ry = 4.38 ry =	ug/L 17. ug/L 18. ug/L 17.	0.00 52%# 0.00 00%# 0.00 52%#
Targ	get Co	gmc	ounds										Qvalue
2) 3) 4) 5) 6)	C290 C010 C020 C015 C025		ichlor hlorom inyl c romome hloroe	odiflue ethane hloride thane thane	e rometh	h 1 1 1 2 2	.28 .39 .50 .77 .87	85 50 62 94 64 101	357 396 372 120 175 343	31 26 61 61 600 15m	5.21 5.07 4.96 4.89 4.46 4.77	ug/L ug/L ug/L ug/L ug/L ug/L	# 100 92 85 79 90 85
8) 9) 10) 11) 12)	C045 C030 C040 C036 C038		,1-Dic lethyle arbon crolei	hloroe ne chlo disulf n itrile	thene oride ide	- 2 3 2 2 3	.55 .03 .74 .49 .24	96 84 76 56 53	397 459 581 590 912	69 47 .04 08 79	5.12 4.97 4.21 97.40 25.10	ug/L ug/L ug/L ug/L ug/L	91 90 96 97 94
13) 14) 15) 16) 17)	C035 C300 C276 C291 C962		cetone cetoni odomet .,1,2-T -butyl	trile hane richlo Methy	ro-1,2 1 Ethe	2 2 2 2 2 2 2	.65 .93 .71 .55 .17	43 41 142 101 73	2488 375 404 929	92 333 43 44	24.85 211.89 4.70 5.47 4.61	ug/L ug/L ug/L ug/L	100 99 88 93
18) 19) 20) 21) 22)	C057 C255 C050 C125 C051		rans-1 lethyl ,1-Dic Vinyl A 2,2-Dic	Acetat Acetat hloroe cetate	nioroe e thane ropane	2 3 3 3	.90 .54 .59 .97	90 43 63 43 77	458 654 3272 201	375 106 297 187	4.93 4.93 23.22 4.69	ug/L ug/L ug/L ug/L ug/L	92 98 95 100
23) 24) 25) 26) 27)	C056 C272 C222 C060 C115		etrahy Fetrahy Fomoch Chlorof	drofur drofur lorome orm richlo	oroetn an thane roetha	4 4 4 1 1 1	.00 .22 .19 .25 .34	96 42 128 83 97	404 682 204 665 403	259 198 547 391	4.94 24.44 5.17 4.99 4.91	ug/L ug/L ug/L ug/L ug/L	92 92 91 98 98
28) 29) 31) 32) 33)	C120 C116 C165 C065 C110		Carbon L,1-Dic Benzene L,2-Dic 2-Butar	tetrac hlorop hloroe	hlorid ropene thane	le 4 9 4 4 4 4	.45 .47 .64 .69	117 75 78 62 43	388 499 1653 525 1089	341 994 365 545 915	4.56 4.88 5.10 5.04 24.67	o ug/l ug/l ug/l ug/l ug/l	92 99 97 97 96
34) 35) 36) 37)	C256 C150 C140 C278 C130	2 7 1 1	Cyclohe Trichlc 1,2-Dic Dibromc	exane proethe chlorop methan	ne ropane e methar	4 5 5 5	.34 .10 .31 .41	56 95 63 93 83	678 399 379 228 38	382 978 940 360 718	5.10 4.96 4.91 4.90 4.57) ug/I 5 ug/I . ug/I) ug/I / ug/I	98 94 98 99 91 100
39)	C161	2	2~Chlor	coethyl	vinyl	E 5	.74	63	118:	154	23.66	5 ug/I	, 93

R10K091-SIXPT.M Sat Nov 20 09:28:56 2010 HP5973

		Quantitation Re	eport	TA	Buffa.	10 (QT	Reviewed)		
Data Acq (Samp] Misc MS Tr	File : In : Le :	: D:\MSDCHEM\S\D; : 20 Nov 2010 04 : T005292-CAL2 : :	ATA\11191 0:19 INT P	.0\s1	1465.D) - I	Vial: Operator: Inst : Multiplr:	3 CDC HP59 1.00	735	
Quant	: Time:	Nov 20 09:26:0	6 2010	•	Resu.	lts File:	R10K091-	SIXPT	.RES	3
Quant Title Last Respo Data IS Of	t Metho 9 Update onse v: Acq Met A File	Dd : D:\MSDCHEM\ : 8260 5ML W : Sat Nov 20 ia : Initial Cal th : VOA : D:\MSDCHEM\	S\R10F ATER 09:20:38 ibration S\DATA\11	(091- 201(.191(-SIXPT D D\S146	.M (RTE I) 7.D (20 N	ntegrator ov 2010	1:02		
Inte	ernal S	Standards	F	к.т.	QIon	Response	Conc Un	its C R)ev (1 .cv (2	∮in) Ar)
40)	 C012	Methylcyclohexa	ne 5	5.20	83	67413	4.95	ug/L		 97
41)	C145	cis-1,3-Dichlor	oprop 5	5.84	75	46487	4.44	ug/L		99
44)	C230	Toluene	e	5.07	92	102885	5.19	ug/L		96
45)	C170	trans-1,3-Dichl	oropr 6	5.27	75	38930	4.29	ug/L		98
46)	Ç284	Ethyl Methacryl	ate 6	5.31	69	41866	4.49	ug/L	#	89
47)	C160	1,1,2-Trichloro	ethan 6	5.42	83	29451	5.02	ug/L		97
48)	C210	4-Methyl-2-pent	anone 5	5.97	43	201848	25.20	ug/L		93
49)	C220	Tetrachloroethe	ne 6	5.46	166	43151	5.22	ug/L		99
50)	C221	1,3-Dichloropro	pane (5.55	76	60727	5.01	ug/L		99
51)	C155	Dibromochlorome	thane e	5.72	129	25450	4.28	ug/L		98
52)	C163	1.2-Dibromoetha	ne (5.80	107	32807	4.83	ug/L		99
53)	C215	2-Hexanone		5.60	43	140358	24.85	ug/L		89
54)	C235	Chlorobenzene	-	1.15	112	108275	5.03	ug/L	•	99
551	C281	1.1.1.2-Tetrach	loroe 5	1.22	131	30747	4.65	uq/L		99
56)	C240	Ethylbenzene		1.22	91	180827	4.97	uq/L		100
57)	C246	m.n-Xvlene	-	7.31	106	142181	10.19	ug/L		98
58)	C247	o-Xylene		7.63	106	63372	4.81	uq/L		95
501	C247	Styrepe	· ·	7 65	104	107950	4.90	ug/L		90
597	C190	Bromoform	-	7 84	173	14664	3.96	$n\alpha/L$		99
607	CIBU	Feenzepulbenzen		7 92	105	172892	4.74	u_{σ}/t_{c}		94
63)	C966	Isopropythenzen		2 10	156	45564	1.03	$u \sigma / T$		99
. 64)	C301	Bromobenzene	10000	ン・⊥ ジ ン つつ	100	47353	1 73	ug/L		99
65)	0225	1,1,2,2-Tetrach	TOLOG (2.22	110	15262	5 08	ug/L		100
66)	C282	1,2,3-TEICHIOFO	propa d	2.20	110 E1	24763	24 16	ug/L	#	52
67)	. C283	t-1,4-Dienioro-	Z-BUL C	2.20	51	24703	24.10	ug/I	. Ψ	<u>a</u> ñ
68)	0302	n-Propyidenzene		3.24	120	420350	4.00	ug/D		100
69)	C303	2-Chlorotoluene		5.33	120	43030	4.00			100
. 70)	C289	4-Chlorotoluene		3.42	120	43876	5.00	ug/L		100
71)	C304	1,3,5-Trimethyl	benze 3	3.38	105	154810	4.92	ug/L		20
72)	C306	tert-Butylbenze	ne a	3.65	134	32410	4.80	ug/L		99
73)	C307	1,2,4-Trimethyl	benze	3.69	105	157719	4.94	ug/L		90
74)	C308	sec-Butylbenzen	e	3.82	105	200898	4.91	ug/L		22
75)	C260	1,3-Dichloroben	zene	3.94	146	95140	5.07	ug/L		22
76)	C309	4-Isopropyltolu	ene d	3.94	119	164878	4.8/	ug/L		96
77)	C267	1,4-Dichloroben	zene	9.02	146	100336	5.00	ug/L		30
78)	C249	1,2-Dichloroben	zene !	9.33	146	94247	5.08	nd/r		97
79)	C310	n-Butylbenzene	:	9.28	91	153782	4.77	ug/L		95
80)	C286	1,2-Dibromo-3-C	hloro 1	0.00	75	6621	4.07	ug/L		/9
81)	C313	1,2,4-Trichloro	benze 1	0.65	180	57125	4.54	ug/L		99
82)	C316	Hexachlorobutad	liene 1	0.76	225	34181	5.02	ug/L		97
83)	C314	Naphthalene	1	0.87	128	142474	4.27	ug/L		98
84)	C934	1,2,3-Trichloro	benze 1	1.05	180	58182	4.78	ug/L		99
						• • • • • • • • • • • • • • • • • • •				

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-SIXPT.M Sat Nov 20 09:28:56 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:03 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:10 2010 HP5973

TA Buffalo Quantitation Report Vial: 3 Data File : D:\MSDCHEM\S\DATA\111910\S1465.D Operator: CDC : 20 Nov 2010 00:19 Acq On : HP5973S Inst : T005292-CAL2 Sample Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 20 09:26:06 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) : 8260 5ML WATER Title Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA

(QT Reviewed)

	Quantitation	Report TA	Buffa	lo (QT	Reviewed	>	
Data File : Acq On : Sample : Misc :	D:\MSDCHEM\S\ 20 Nov 2010 T005292-CAL3	DATA\111910\S 00:41	1466.D	(- 1	Vial: Operator: Inst : Multiplr:	4 CDC HP59 1.00	735
MS Integrat Quant Time:	ion Params: RT Nov 20 09:26:	EINT.P 33 2010	Resu	lts File:	R10K091-	SIXPT	RES
Quant Metho Title Last Update Response vi DataAcq Met IS QA File	od : D:\MSDCHEM : 8260 5ML : Sat Nov 20 a : Initial Ca ch : VOA : D:\MSDCHEM	NS\R10K091 WATER 0 09:20:38 201 Llibration NS\DATA\11191	-SIXPT 0 .0\S146	.M (RTE 11 7.D (20 No	ntegrator ov 2010) 1:02	>
Internal S	Standards	R.T.	QIon	Response	Conc Un	its D R	ev(Min) cv(Ar)
1) CI10	1,4-Difluorobe	enzene 4.93	114	574537	25.00	ug/L	0.00 101.75%
42) CI20	Chlorobenzene-	-D5 7.13	82	283580	25.00	ug/L	0.00
62) CI30	1,4-Dichlorobe	enzene- 9.00) 152	283984	25.00	ug/L	0.00 98.94%
System Mon 30) CS15 Spiked An 43) CS05 Spiked An 61) CS10 Spiked An	nitoring Compound 1,2-Dichloroet mount 25.00 Toluene-D8 mount 25.00 p-Bromofluorob mount 25.00	inds thane-D 4.63 00 Range 66 6.02 00 Range 71 Denzene 8.07 00 Range 73	8 65 5 - 137 2 98 1 - 126 7 174 3 - 120	86082 Recov 257196 Recov 85898 Recov	8.65 ery = 8.43 ery = 8.68 ery =	ug/L 34.6 ug/L 33.7 ug/L 34.7	0.00 50%# 2%# 0.00 2%#
1arget Col 2) C290 3) C010 4) C020 5) C015 6) C025 7) C275 8) C045 9) C030 10) C040 11) C036 12) C038 13) C035 14) C300 15) C276 16) C291 17) C962 18) C057 19) C255 20) C050 21) C125	Dichlorodifluc Chloromethane Vinyl chloride Bromomethane Trichlorofluor 1,1-Dichloroet Methylene chlor Carbon disulfi Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichlor T-butyl Methyl trans-1,2-Dich Methyl Acetate Vinyl Acetate	brometh 1.28 1.39 1.50 1.77 1.86 rometha 2.12 thene 2.54 oride 3.02 ide 2.75 2.50 2.99 2.70 ro-1,2, 2.51 1 Ether 3.17 hloroet 3.17 e 2.99 thane 3.55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68085 77430 71550 24923 42639 72225m 73753 88050 126673 118898 182161 138462 449823 77546 70115 195747 76865 95712 132902 719046	9.58 9.56 9.18 9.75 10.49 9.69 9.15 9.19 8.86 189.35 48.33 46.97 9.37 9.37 9.14 9.37 9.52 9.79 9.67 49.22	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	# 100 93 87 92 91 91 87 95 93 96 100 99 92 94 97 95 98 95
22) C051 22) C056 24) C272 25) C222 26) C060 27) C115 28) C120 29) C116 31) C165 32) C065 33) C110 34) C256 35) C150 36) C140 37) C278 38) C130 39) C161	2,2-Dichloropi cis-1,2-Dichlor Tetrahydrofura Bromochloromet Chloroform 1,1,1-Trichlo: Carbon tetrach 1,1-Dichloropi Benzene 1,2-Dichloroe Cyclohexane Trichloroethet 1,2-Dichloropi Dibromomethan Bromodichlorom 2-Chloroethyl	ropane 3.9 oroethe 4.01 an 4.23 thane 4.13 hloride 4.4 ropene 4.4 thane 4.6 thane 4.6 thane 4.6 4.0 4.3 ne 5.1 ropane 5.3 e 5.4 methane 5.7	77 96 428 97 54 97 54 117 782 39 54 95 41 96 93 93 63 93 63 93 63 93 63 93 63 93 63 93	$\begin{array}{r} 41509\\ 81987\\ 141220\\ 40043\\ 133217\\ 84570\\ 82071\\ 103224\\ 325656\\ 104924\\ 219082\\ 131588\\ 78845\\ 76609\\ 46739\\ 80874\\ 254305\end{array}$	9.31 9.66 48.78 9.74 9.63 9.91 9.30 9.73 9.73 9.79 47.88 9.54 9.54 9.54 9.57 9.66 9.20 49.14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 95 89 98 98 98 99 95 98 90 96 98 96 95 98

R10K091-SIXPT.M Sat Nov 20 09:29:01 2010 HP5973

ç	Quantitation Re	eport TA	Buffa	lo (QT	Reviewed)		
Data File : I Acq On : 2 Sample : T Misc : MS Integratic Quant Time: N	D:\MSDCHEM\S\DA 20 Nov 2010 00 1005292-CAL3 on Params: RTEI Nov 20 09:26:33	ATA\111910\S):41 ENT.P 3 2010	Resu	lts File:	Vial: Operator: Inst : Multiplr: R10K091-	4 CDC HP59 1.00 SIXP1	9735) .RES	
Quant Method Title Last Update Response via DataAcg Meth	: D:\MSDCHEM\S : 8260 5ML WA : Sat Nov 20 0 : Initial Cali : VOA	S\R10K091 ATER)9:20:38 201 .bration	-SIXPT 0	.M (RTE I	ntegrator)		
IS QA File	: D:\MSDCHEM\S	S\DATA\11191	.0\\$146	7.D (20 N	ov 2010	1:02	2)	
Internal Sta	andards	R.T.	QIon	Response	Conc Un	its I H	Dev (M Rcv (A	in) r)
$\begin{array}{c} 40 & C012 & Me \\ 41 & C145 & Ci \\ 44 & C230 & Tc \\ 45 & C170 & tr \\ 46 & C284 & Et \\ 47 & C160 & 1, \\ 48 & C210 & 4- \\ 49 & C220 & Te \\ 50 & C221 & 1, \\ 51 & C155 & Di \\ 52 & C163 & 1, \\ 53 & C215 & 2- \\ 54 & C235 & Cl \\ 55 & C281 & 1, \\ 56 & C240 & Et \\ 57 & C246 & m, \\ 58 & C247 & c- \\ 59 & C245 & St \\ 60 & C180 & Bi \\ 63 & C966 & Ii \\ 64 & C301 & Bi \\ 65 & C225 & 1, \\ 66 & C282 & 1, \\ 66 & C302 & m \\ 71 & C304 & 1, \\ 72 & C306 & tr \\ 73 & C307 & 1, \\ 74 & C308 & sr \\ 75 & C260 & 1, \\ 76 & C309 & 4, \\ 77 & C267 & 1, \\ 76 & C309 & 4, \\ 77 & C267 & 1, \\ 78 & C249 & 1, \\ 79 & C310 & m \\ 80 & C288 & 1, \\ 81 & C313 & 1 \\ \end{array}$	ethylcyclohexar is-1,3-Dichloro oluene rans-1,3-Dichloro thyl Methacryla ,1,2-Trichloroe -Methyl-2-penta etrachloroether ,3-Dichloroprof ibromochloromet ,2-Dibromoethar -Hexanone hlorobenzene ,1,1,2-Tetrach thylbenzene ,1,1,2-Tetrach thylbenzene ,2,2-Tetrach ,2,3-Trichloro -1,4-Dichloroe -Propylbenzene -Chlorotoluene ,3,5-Trimethyll ert-Butylbenzene ,2,4-Trimethyll ec-Butylbenzene ,2-Dichloroben -Butylbenzene ,2-Dichloroben -Butylbenzene ,2-Dichloroben -Butylbenzene ,2-Dichloroben -Butylbenzene ,2-Dichloroben -Butylbenzene ,2-Dichloroben	ne 5.20 oprop 5.85 oropr 6.07 otoropr 6.27 ate 6.31 ate 6.32 ate 6.32 ate 6.32 ate 6.32 ate 6.42 anone 5.96 othe 6.46 othe 6.57 thane 6.72 thane 6.60 7.16 7.22 7.33 7.65 7.62 7.32 thoroe 8.22 propa 8.22 propa 8.22 benze 8.33 thenze 8.33 thenze 8.63 benze 8.63 pene 8.99 ene 8.92 ene 9.33	83 7 83 7 93 7 93 93 93 93 93 93 93 93 93 93 93 93 94 100 113 100 113 100 113 100 113 110 113 110 113 100 110	134719 103444 202703 90038 92888 61180 411751 85602 125719 58212 69555 291608 221637 66493 372851 287259 135691 224544 33552 365102 91488 98397 29506 70874 463028 90809 93452 313447 67387 323918 412854 190508 344538 194944 1864495 14790 148968	9.55 9.53 9.60 9.339 48.21 9.721 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.613 9.653 9.5576 9.5588 9.5085 9.538 9.6939 9.6939 9.6939 9.682 9.6939 9.682 9.5588 9.6999 9.5885 9.5999 9.6999 9.5939 9.6939 9.682 9.6939 9.682 9.5939 9.5939 9.6939 9.682 9.682 9.5939 9.682 9.6939 9.682 9.682 9.6939 9.682 9.682 9.682 9.682 9.6939 9.682 9.682 9.682 9.6939 9.682	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	#	
82) C316 H 83) C314 N 84) C934 1	exachlorobutad aphthalene ,2,3-Trichloro	iene 10.7 10.8 benze 11.0	6 225 7 128 5 180	61773 321112 116739	8.86 9.39 9.36	ug/L ug/L ug/L		99 98 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

.

.

R10K091-SIXPT.M Sat Nov 20 09:29:01 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:29 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:36 2010 HP5973

Vial: 4 Data File : D:\MSDCHEM\S\DATA\111910\S1466.D Operator: CDC : 20 Nov 2010 00:41 Acq On : HP5973S Inst : T005292-CAL3 Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 20 09:26:33 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) 5ML WATER : 8260 Title Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA

Quantitation Report

TA Buffalo

(QT Reviewed)

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\111910\S1467.D Vial: 5 Viai. Operator: CDC • HP5 Acq On : 20 Nov 2010 1:02 Inst : HP5973S : T005292-CAL4 Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P MS Integration Params: RTEINT.P Quant Time: Nov 20 09:26:55 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\111910\S1467.D (20 Nov 2010 1:02) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 564673 25.00 ug/L 0.00 100.00% 42) CI20 Chlorobenzene-D5 7.13 82 283496 25.00 ug/L 0.00 100.00% 62) CI30 1,4-Dichlorobenzene- 9.00 152 287016 25.00 ug/L 0.00 100.00%

 30) CS15 1,2-Dichloroethane-D
 4.63
 65
 178948
 18.30 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 73.20%

 43) CS05 Toluene-D8
 6.02
 98
 575219
 18.87 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 75.48%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 178384
 18.02 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 72.08%#

System Monitoring Compounds
 Splked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 72.08#

 Target Compounds
 Cvalue

 2) C290
 Dichlorodifluorometh
 1.27
 85
 185019
 26.48
 ug/L
 #
 100

 3) C010
 Chloromethane
 1.39
 50
 199027
 25.00
 ug/L
 97

 4) C020
 Vinyl chloride
 1.50
 62
 192285
 25.11
 ug/L
 90

 5) C015
 Bormomethane
 1.77
 94
 63912
 25.43
 ug/L
 85

 6) C025
 Chloroethane
 2.55
 96
 204977
 25.88
 ug/L
 86

 9) C030
 Methylene chloride
 3.03
 84
 27.1
 100

 10) C040
 Carbon disulfide
 2.75
 76
 376152
 26.77
 ug/L
 96

 12) C038
 Acetone
 2.65
 43
 354575
 122.38
 ug/L
 93

 13) C035
 Acetone
 2.67
 11
 1206221
 10.0

R10K091-SIXPT.M Sat Nov 20 09:29:05 2010 HP5973

		Quantitation Report	TA	Buffa	10 (QT	Reviewed	3)		
Data Acq C Sampl Misc MS In Quant	File Dn .e tegra : Time	: D:\MSDCHEM\S\DATA\11 : 20 Nov 2010 1:02 : T005292-CAL4 : tion Params: RTEINT.P : Nov 20 09:26:55 2010	1910\S1	L467.D Resu	C I M lts File:	Vial: perator: nst : ultiplr: R10K091-	5 CDC HP5 1.0	973: 0 F .RI	S Es
-									
Quant Title Last Respo Data IS QA	: Meth Updat onse v Acq Me A File	<pre>od : D:\MSDCHEM\S\R</pre>	10K091- 38 2010 on \111910	-SIXPT D D\S146	.M (RTE In 7.D (20 No	v 2010	1:0	2)	
Inte	ernal	Standards	R.T.	QIon	Response	Conc Ur	nits	Dev Rcv	(Min) (Ar)
40)		Mathylayalahayana	5 20	83	349780	25 23	ug/L		 - 97
40)	C145	cis-1.3-Dichloroprop	5.84	75	295657	27.72	uq/L		99
44)	C230	Toluene	6.07	92	532720	25.23	ug/L		93
45)	C170	trans-1,3-Dichloropr	6.27	75	265506	27.44	ug/L		· 96
46)	C284	Ethyl Methacrylate	6.31	69	260983	26.24	ug/L	#	88
47)	C160	1,1,2-Trichloroethan	6.42	83	158278	25.33	ug/L		99
48)	C210	4-Methyl-2-pentanone	5.96	.43	1089742	127.64	ug/L		93
49)	C220	Tetrachloroethene	6.46	166	222557	25.26	ug/L		99
50)	C221	1,3-Dichloropropane	6.54	76	324850	25.13	ug/L		99
51)	C155	Dibromochloromethane	6.72	129	169548	26.73	ug/L		99
52)	C163	1,2-Dibromoethane	6.80	107	187070	25.84	ug/L		99
53)	C215	2-Hexanone	6.60	43	778101	129.26	ug/L		90
54)	C235	Chlorobenzene	7.16	112	570732	24.85	ug/L		99
55)	C281	1,1,1,2-Tetrachloroe	7.23	131	186486	26.48	ug/L		100
56)	C240	Ethylbenzene	7.22	91	998285	25.75	ug/L		100
57)	C246	m,p-Xylene	7.31	106	774442	52.10	ug/L		98
58)	C247	o-Xylene	7.63	106	381829	27.22	ug/L		99
59)	C245	Styrene	7.65	104	634860	27.06	ug/L		92
60)	C180	Bromoform	7.84	1/3	109043	27.66	ug/L		21
63)	C966	Isopropylbenzene	7.92	105	1011497	26.79	ug/L		90
64)	C301	Bromobenzene	8.19	126	246380	25.74	ug/L		90
65)	C225	1,1,2,2-Tetrachloroe	8.22	110	270313	20.00	ug/L		100
66)	0282	1,2,3-Trichloropropa	0.20	TTO E 1	105025	120.01	ug/L	#	100
67)	C283	E-1,4-Dichloro-2-But	0.20	01	1293205	27 00	ug/D	π	94
60)	C302	n-propyidenzene	0.24	126	1203203	25.80	ug/L		100
עפט. רסד	C303	2-Chiorotoluene	8 42	126	247532	26.07	ug/L		100
70)	C209	1 3 5-Trimethylbenze	8 38	105	870752	26 74	ug/L		96
721	C304	tert-Butylbenzene	8 65	134	191402	27.36	ug/L	#	89
731	C307	1 2 4-Trimethylbenze	8.69	105	891733	26.99	ug/L		98
74)	C308	sec-Butylbenzene	8.82	105	1140305	26.94	uq/L		93
75)	C260	1.3-Dichlorobenzene	8.94	146	502621	25.85	ug/L		98
76)	C309	4-Isopropyltoluene	8.94	119	956943	27.28	ug/L		98
77)	C267	1.4-Dichlorobenzene	9.02	146	517191	24.92	ug/L		98
78)	C249	1,2-Dichlorobenzene	9.33	146	488240	25.43	ug/L		97
79)	C310	n-Butylbenzene	9.28	91	901526	27.04	ug/L		93
80)	C286	1,2-Dibromo-3-Chloro	10.00	75	46829	27.81	ug/L		84
81)	C313	1,2,4-Trichlorobenze	10.65	180	365861 [.]	28.06	ug/L	1	100
82)	C316	Hexachlorobutadiene	10.76	225	191204	27.12	ug/L	•	98
83)	C314	Naphthalene	10.87	128	1028755	29.75	ug/L	1	99
84)	C934	1,2,3-Trichlorobenze	11.05	180	347189	27.53	ug/L	ŀ	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-SIXPT.M Sat Nov 20 09:29:05 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:53 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:26:59 2010 HP5973

Quantitation Report Data File : D:\MSDCHEM\S\DATA\111910\S1467.D Vial: 5 Operator: CDC : 20 Nov 2010 1:02 Acq On : HP5973S Inst Sample : T005292-CAL4 Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 20 09:26:55 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) : 8260 5ML WATER Title Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA

TA Buffalo

(QT Reviewed)

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\111910\S1468.D Vial: 6 Operator: CDC HP5 Acq On : 20 Nov 2010 1:24 Sample : T005292-CAL5 Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 20 09:27:20 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\111910\S1467.D (20 Nov 2010 1:02) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) 1) CI10 1,4-Difluorobenzene 4.93 114 584945 25.00 ug/L 0.00 103.59% 42) CI20 Chlorobenzene-D5 7.13 82 298681 25.00 ug/L 0.00 105.36% 62) CI30 1,4-Dichlorobenzene- 9.00 152 295045 25.00 ug/L 0.00 102.80%

 System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.63
 65
 401803
 39.67 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 158.68%#

 43) CS05 Toluene-D8
 6.02
 98
 1289559
 40.15 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 160.60%#

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 428287
 41.07 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 164.28%#

System Monitoring Compounds
 Spiked Amount
 25.000
 Range
 /3 - 120
 Recovery
 = 164.20%#

 2) C200
 Dichlorodifluorometh
 1.27
 85
 380771
 52.60
 ug/L
 #
 100

 3) C010
 Chloromethane
 1.39
 50
 416626
 50.54
 ug/L
 #
 100

 4) C020
 Vinyl chloride
 1.51
 62
 398721
 50.27
 ug/L
 #

 5) C015
 Bromomethane
 1.77
 94
 135981
 52.2
 ug/L
 #

 6) C025
 Chloroethane
 1.87
 64
 234004
 56.54
 ug/L
 #

 7) C275
 Trichlorofluorometha
 2.12
 101
 46633
 45.66
 ug/L
 #

 100
 C040
 Carbon disulfide
 2.76
 76
 920847
 63.27
 ug/L
 95

 12) C038
 Acrylonitrile
 3.24
 53
 1002811
 261.32
 ug/L
 93

 13) C035
 Acetone
 2.65
 43
 748455
 94.14</td Qvalue

R10K091-SIXPT.M Sat Nov 20 09:29:10 2010 HP5973

Data File : D:\MSDCHEM\S\DATA\111910\S1468.D Vial: 6 Acq On : 20 Nov 2010 1:24 Operator: CDC Sample : T005292-CAL5 Inst : HP5973S Misc : Multiplr: 1.00 Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 20 09:27:20 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA Internal Standards R.T. QIon Response Conc Units Dev(Min) Rcv(Ar) Rcv(Ar) Rcv(Ar) 40) C012 Methylcyclohexane 5.20 83 771055 53.68 ug/L 95 95 41) C145 cis-1,3-Dichloroprop 5.84 75 657437 59.50 ug/L 95 95 42) C220 Toluene 6.07 92 1156318 51.98 ug/L 95 95 43) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 95 95 44) C220 Tetrachloropthene 6.46 166 475380 51.21 ug/L 95 95 53) C221 1, 3-Dichloropropane 6.54 76 71289 52.36 ug/L 95 95 54) C215 Dibromochloromethane 6.72 129 408117 61.08 ug/L 95 95 55) C263 1,2-Dibromocethane 6.80 107 418635 54.91 ug/L 95 95 56) C221 1,3-1,2-Dichloropropane 6.54 76 71289 52.36 ug/L 95
Quant Method : D:\MSDCHEM\S\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA Is QA File : D:\MSDCHEM\S\DATA\111910\S1467.D (20 Nov 2010 1:02) Internal Standards R.T. QIon Response Conc Units Dev(Min) Rev(Ar) 40) C012 Methylcyclohexane 5.20 83 771055 53.68 ug/L 97 41) C145 cis-1,3-Dichloroprop 5.84 75 657437 59.50 ug/L 95 44) C230 Toluene 6.07 92 1156318 51.98 ug/L 95 45) C170 trans-1,3-Dichloropr 6.27 75 622333 61.05 ug/L 95 46) C284 Ethyl Methacrylate 6.31 69 621237 59.27 ug/L 87 47) C160 1,1,2-Trichloroethan 6.42 83 341154 51.83 ug/L 95 48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 51) C155 Dibromochloromethane 6.72 129 408117 61.08 ug/L 95 52) C163 1,2-Dibromoethane 6.60 107 418835 54.91 ug/L 95 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 95 54) C235 Chlorobenzene 7.23 131 422882 57.00 ug/L 95 55) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m.p-Xylene 7.31 106 1660116 106.01 ug/L 95 57) C246 m.p-Xylene 7.31 106 1660116 106.01 ug/L 95 573 C246 m.p-Xylene 7.31 106 1660116 106.01 ug/L 95 573 C245 Chlorobenzene 7.22 91 2201190 53.90 ug/L 95 573 C246 m.p-Xylene 7.31 106 1660116 106.01 ug/L 95 573 C246 m.p-Xylene 7.42 91 2201190 53.90 ug/L 95 573 C246 m.p-Xylene 7.42 91 2201190 53.90 ug/L 95 574 C246 m.p-Xylene 7.42 91 2201190 53.90 ug/L 95 574 C246 m.p-Xylene 7.42 91 2201190
Quant Method : D:\MSDCHEM\S\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\111910\S1467.D (20 Nov 2010 1:02) Internal Standards R.T. QIon Response Conc Units Dev(Min) Adv (Ar) 40) C012 Methylcyclohexane 5.20 83 771055 53.68 ug/L 97 41) C145 cis-1,3-Dichloroprop 5.84 75 657437 59.50 ug/L 95 44) C230 Toluene 6.07 92 1156318 51.98 ug/L 95 45) C170 trans-1,3-Dichloroprof 6.27 75 622333 61.05 ug/L 95 46) C284 Ethyl Methacrylate 6.31 69 621237 59.27 ug/L 87 47) C160 1,1,2-Trichloroethan 6.42 83 341154 51.83 ug/L 95 48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 91 49) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 51) C155 Dibromochloromethane 6.72 129 408117 61.08 ug/L 95 52) C163 1,2-Dibromoethane 6.60 43 1709215 269.50 ug/L 87 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 87 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 95 55) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 <
Internal Standards R.T. QIon Response Conc Units Dev(Min) Rev(Ar) 40) C012 Methylcyclohexane 5.20 83 771055 53.68 ug/L 97 41) C145 cis-1,3-Dichloroprop 5.84 75 657437 59.50 ug/L 95 44) C230 Toluene 6.07 92 1156318 51.98 ug/L 95 45) C170 trans-1,3-Dichloropr 6.27 75 622333 61.05 ug/L 95 46) C284 Ethyl Methacrylate 6.31 69 621237 59.27 ug/L 95 47) C160 1,1,2-Trichloroethan 6.42 63 341154 51.83 ug/L 95 48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 51) C155 Dibromochloromethane 6.20 107 418835 54.91 ug/L 95 52) C163 1,2-Dibromoethane 6.60 43 1709215<
40)C012Methylcyclohexane5.208377105553.68ug/L9741)C145cis-1,3-Dichloroprop5.847565743759.50ug/L9544)C230Toluene6.0792115631851.98ug/L9545)C170trans-1,3-Dichloropr6.277562233361.05ug/L9546)C284Ethyl Methacrylate6.316962123759.27ug/L8747)C1601,1,2-Trichloroethan6.428334115451.83ug/L9548)C2104-Methyl-2-pentanone5.96432379828264.58ug/L9149)C220Tetrachloroethene6.4616647538051.21ug/L9550)C2211,3-Dichloropropane6.547671289952.36ug/L9551)C155Dibromochloromethane6.8010741883554.91ug/L9552)C1631,2-Dibromoethane6.60431709215269.50ug/L9553)C2152-Hexanone6.60431709215269.50ug/L9554)C235Chlorobenzene7.16112123463451.03ug/L9555)C2811,1,1,2-Tetrachloroe7.2313142288257.00ug/L9556)C240Ethylbenzene7.2291220119053.90
40) C012 Methylcyclonexane 5.20 G3 77433 53.00 Gy/L 94 41) C145 cis-1,3-Dichloroprop 5.84 75 657437 59.50 Ug/L 95 44) C230 Toluene 6.07 92 1156318 51.98 Ug/L 95 45) C170 trans-1,3-Dichloropr 6.27 75 622333 61.05 Ug/L 95 46) C284 Ethyl Methacrylate 6.31 69 621237 59.27 Ug/L 87 47) C160 1,1,2-Trichloroethan 6.42 83 341154 51.83 Ug/L 95 48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 Ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 Ug/L 95 51) C155 Dibromochloromethane 6.80 107 418835 54.91 Ug/L 95 52) C163 1,2-Dibromoethane 6.60 43 1709
41) C130 C13 1, 3 Dichloroprop 6.07 92 1156318 51.98 ug/L 95 44) C230 Toluene 6.07 92 1156318 51.98 ug/L 95 45) C170 trans-1, 3-Dichloropr 6.27 75 622333 61.05 ug/L 95 46) C284 Ethyl Methacrylate 6.31 69 621237 59.27 ug/L 87 47) C160 1,1,2-Trichloroethan 6.42 83 341154 51.83 ug/L 95 48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 91 49) C220 Tetrachloroethene 6.46 166 475380 51.21 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 96 51) C155 Dibromochloromethane 6.80 107 418835 54.91 ug/L 95 52) C163 1,2-Dibromoethane 6.60 43 1709215 269.50 ug/L 95 53) C215 2-Hexano
41)C170trans-1, 3-Dichloropr6.277562233361.05ug/L9546)C284Ethyl Methacrylate6.316962123759.27ug/L8747)C1601,1,2-Trichloroethan6.428334115451.83ug/L9548)C2104-Methyl-2-pentanone5.96432379828264.58ug/L9149)C220Tetrachloroethene6.4616647538051.21ug/L9550)C2211,3-Dichloropropane6.547671289952.36ug/L9551)C155Dibromochloromethane6.7212940811761.08ug/L9552)C1631,2-Dibromoethane6.8010741883554.91ug/L9553)C2152-Hexanone6.60431709215269.50ug/L9554)C235Chlorobenzene7.16112123463451.03ug/L9555)C2811,1,1,2-Tetrachloroe7.2313142288257.00ug/L9556)C240Ethylbenzene7.2291220119053.90ug/L9557)C246m,p-Xylene7.311061660116106.01ug/L9657)C246m,p-Xylene7.6210691760955339297
46)C284Ethyl Methacrylate6.316962123759.27 ug/L8747)C1601,1,2-Trichloroethan6.428334115451.83 ug/L9548)C2104-Methyl-2-pentanone5.96432379828264.58 ug/L9149)C220Tetrachloroethene6.4616647538051.21 ug/L9550)C2211,3-Dichloropropane6.547671289952.36 ug/L9551)C155Dibromochloromethane6.7212940811761.08 ug/L9552)C1631,2-Dibromoethane6.8010741883554.91 ug/L9553)C2152-Hexanone6.60431709215269.50 ug/L9554)C235Chlorobenzene7.16112123463451.03 ug/L9555)C2811,1,1,2-Tetrachloroe7.2313142288257.00 ug/L9556)C240Ethylbenzene7.2291220119053.90 ug/L9557)C246m,p-Xylene7.311061660116106.01 ug/L9557)C246m,p-Xylene7.621069160116106.01 ug/L95
47)C1601,1,2-Trichloroethan6.428334115451.83ug/L9548)C2104-Methyl-2-pentanone5.96432379828264.58ug/L9149)C220Tetrachloroethene6.4616647538051.21ug/L9550)C2211,3-Dichloropropane6.547671289952.36ug/L9551)C155Dibromochloromethane6.7212940811761.08ug/L9552)C1631,2-Dibromoethane6.8010741883554.91ug/L9553)C2152-Hexanone6.60431709215269.50ug/L9554)C235Chlorobenzene7.16112123463451.03ug/L9555)C2811,1,1,2-Tetrachloroe7.2313142288257.00ug/L9556)C240Ethylbenzene7.2291220119053.90ug/L9557)C246m,p-Xylene7.311061660116106.01ug/L96
48) C210 4-Methyl-2-pentanone 5.96 43 2379828 264.58 ug/L 91 49) C220 Tetrachloroethene 6.46 166 475380 51.21 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 51) C155 Dibromochloromethane 6.72 129 408117 61.08 ug/L 96 52) C163 1,2-Dibromoethane 6.80 107 418835 54.91 ug/L 95 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 97 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 95 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 ug/L 97 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96 57) C246 m,p-Xylene 7.62 106 917009 55 33.90 ug/L 95 57) C246 <
49) C220 Tetrachloroethene 6.46 166 475380 51.21 ug/L 95 50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 95 51) C155 Dibromochloromethane 6.72 129 408117 61.08 ug/L 95 52) C163 1,2-Dibromoethane 6.80 107 418835 54.91 ug/L 95 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 95 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 95 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96
50) C221 1,3-Dichloropropane 6.54 76 712899 52.36 ug/L 93 51) C155 Dibromochloromethane 6.72 129 408117 61.08 ug/L 96 52) C163 1,2-Dibromoethane 6.80 107 418835 54.91 ug/L 95 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 95 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 95 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96
51) C155 Dibromochloromethane 6.72 129 408117 81.06 0g/L 96 52) C163 1,2-Dibromoethane 6.80 107 418835 54.91 0g/L 95 53) C215 2-Hexanone 6.60 43 1709215 269.50 0g/L 95 54) C235 Chlorobenzene 7.16 112 1234634 51.03 0g/L 95 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 0g/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 0g/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 0g/L 96 50) C247 where 7.62 106 91700 53.90 0g/L 95
52) C163 1,2-Dibromoethane 5.80 107 418833 54.91 4g/L 31 53) C215 2-Hexanone 6.60 43 1709215 269.50 ug/L 92 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 92 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96 50 C247 xWlene 7.63 106 96 97 97
53) C215 2-Hexanone 6.60 43 1709213 205.00 ug/L 95 54) C235 Chlorobenzene 7.16 112 1234634 51.03 ug/L 95 55) C281 1,1,1,2-Tetrachloroe 7.23 131 422882 57.00 ug/L 95 56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 95 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96 50) C247 Xulare 7.63 106 91700 53.30 ug/L 95
54) C235 Childibbenzene 7.10 112 125101 12112 125101
56) C240 Ethylbenzene 7.22 91 2201190 53.90 ug/L 99 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96 57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96
57) C246 m,p-Xylene 7.31 106 1660116 106.01 ug/L 96 57) C246 m,p-Xylene 7.63 106 1660116 106.01 ug/L 96
- 281 CZ4/ O-XVIENE /.03 IOO 01/000 00.00 UQ/D 94
59) C245 Styrene 7.65 104 1369850 55.42 ug/L 92
60) C180 Bromoform 7.84 173 269727 64.94 ug/L 96
63) C966 Isopropylbenzene 7.92 105 2210545 56.96 ug/L 96
64) C301 Bromobenzene 8.19 156 532689 54.14 ug/L 100
65) C225 1,1,2,2-Tetrachloroe 8.22 83 583957 54.76 ug/L 9
66) C282 1,2,3-Trichloropropa 8.26 110 169/3/ 53.05 Ug/L 4
$ \begin{array}{c} 67 \\ \hline \\ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
39 (305 2-Chlorotoluene 8.42 126 529388 54.24 ug/L 100
71 $C304$ 1 3 5-Trimethylbenze 8 38 105 1885401 56.33 ug/L 99
72) C306 tert-Butylbenzene 8.65 134 417115 58.01 ug/L 94
73) C307 1.2.4-Trimethylbenze 8.69 105 1898319 55.90 ug/L 9'
74) C308 sec-Butylbenzene 8.83 105 2453229 56.37 ug/L 90
75) C260 1,3-Dichlorobenzene 8.94 146 1048672 52.47 ug/L 100
76) C309 4-Isopropyltoluene 8.94 119 2042233 56.63 ug/L 99
77) C267 1,4-Dichlorobenzene 9.02 146 1100673 51.59 ug/L 9
78) C249 1,2-Dichlorobenzene 9.33 146 1026266 52.00 ug/L 9
79) C310 n-Butylbenzene 9.28 91 1957658 57.11 ug/L 9
80) C286 1,2-Dibromo-3-Chloro 10.00 75 109850 63.46 ug/L 8.
81) C313 1,2,4~Trichlorobenze 10.65 180 /66880 57.22 ug/L 96
32) C316 Hexachioroputadiene 10.76 225 362014 52.71 U975 5.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
04/ 0304 1/2/3-111011010Denze 11.00 100 /14200 00.10 kg/h 100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-SIXPT.M Sat Nov 20 09:29:10 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:27:17 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:27:23 2010 HP5973

Quantitation Report Vial: 6 Data File : D:\MSDCHEM\S\DATA\111910\S1468.D Operator: CDC Acq On : 20 Nov 2010 1:24 : HP5973S Inst : T005292-CAL5 Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 20 09:27:20 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) : 8260 5ML WATER Title Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcq Meth : VOA

TA Buffalo

(QT Reviewed)

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\111910\S1469.D Viai. Operator: CDC That : HP5 Vial: 7 Acq On : 20 Nov 2010 1:45 Inst : HP5973S : T005292-CAL6 Sample Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P MS Integration Params: RTEINT.P Quant Time: Nov 20 09:28:05 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\111910\S1467.D (20 Nov 2010 1:02) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) 1) CI10 1,4-Difluorobenzene 4.93 114 606425 25.00 ug/L 0.00 107.39% 42) CI20 Chlorobenzene-D5 7.13 82 305536 25.00 ug/L 0.00 107.77% 62) CI30 1,4-Dichlorobenzene- 9.00 152 300581 25.00 ug/L 0.00 104.73% System Monitoring Compounds30) CS15 1,2-Dichloroethane-D4.636586089281.98ug/L0.00Spiked Amount25.000Range66- 137Recovery=327.92%#43) CS05 Toluene-D86.0298275859783.96ug/L0.00Spiked Amount25.000Range71- 126Recovery=335.84%#61) CS10p-Bromofluorobenzene8.0717494267988.37ug/L0.00Spiked Amount25.000Range73- 120Recovery=353.48%# System Monitoring Compounds
 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 353.488#

 Target Compounds
 Ovalue

 2) C290
 Dichlorodifluorometh
 1.28
 85
 704422
 93.86
 ug/L
 #
 100

 3) C010
 Chloromethane
 1.40
 50
 788075
 92.17
 ug/L
 100

 4) C020
 Vinyl chloride
 1.51
 62
 742992
 90.36
 ug/L
 87

 5) C015
 Bromomethane
 1.88
 64
 411165
 95.83
 ug/L
 89

 6) C025
 Chloroethane
 2.56
 96
 828098
 97.37
 ug/L
 98

 10) C040
 Carbon disulfide
 2.76
 76
 1920053
 127.25
 ug/L
 99

 12) C036
 Acrolein
 2.49
 56
 1340928
 2023.24
 ug/L
 97

 13) C35
 Acetone
 2.65
 43
 1460677
 469.43
 ug/L
 97

 13) C35
 Acetone
 2.65
 1406

R10K091-SIXPT.M Sat Nov 20 09:29:15 2010 HP5973

	Quantitation Report	TA	Buffa	lo (QT	Reviewed)	
Data File : Acq On : Sample : Misc : MS Integrat Quant Time:	D:\MSDCHEM\S\DATA\11 20 Nov 2010 1:45 T005292-CAL6 ion Params: RTEINT.P Nov 20 09:28:05 2010	1910\51	.469.D Resu	C I M lts File:	Vial: perator: nst : ultiplr: R10K091-S	7 CDC HP5973S 1.00 IXPT.RES
Quant Metho Title Last Update Response vi DataAcq Met IS QA File	<pre>d : D:\MSDCHEM\S\R : 8260 5ML WATER : Sat Nov 20 09:20:3 a : Initial Calibratio h : VOA : D:\MSDCHEM\S\DATA</pre>	10K091- 38 2010 5n \111910	-SIXPT))\S146	.M (RTE In 7.D (20 No	tegrator) ov 2010	1:02)
Internal S	tandards	R.T.	QIon	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
$\begin{array}{c} 40) & C012\\ 41) & C145\\ 44) & C230\\ 45) & C170\\ 46) & C284\\ 47) & C160\\ 48) & C210\\ 49) & C220\\ 50) & C221\\ 51) & C155\\ 52) & C163\\ 53) & C215\\ 54) & C235\\ 55) & C281\\ 56) & C240\\ 57) & C246\\ 58) & C247\\ 59) & C245\\ 60) & C180\\ 63) & C966\\ 64) & C301\\ 65) & C225\\ 66) & C282\\ 67) & C283\\ 68) & C302\\ 69) & C303\\ 70) & C289\\ 71) & C304\\ 72) & C306\\ 73) & C307\\ 74) & C308\\ 75) & C260\\ 76) & C309\\ 77) & C267\\ 78) & C249\\ 79) & C310\\ 80) & C286\\ 81) & C313\\ 82) & C316\\ 83) & C314\\ 84) & C934\\ \end{array}$	Methylcyclohexane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloropr Ethyl Methacrylate 1,1,2-Trichloroethan 4-Methyl-2-pentanone Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 2-Hexanone Chlorobenzene 1,1,1,2-Tetrachloroe Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromobenzene 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa t-1,4-Dichloro-2-But n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenze tert-Butylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze Hexachlorobenzene Naphthalene 1,2,3-Trichlorobenze	5.8077122665 5.0271266522133336564299226643339599.00577777777777777777777777777777777	$\begin{array}{c} 83\\ 752\\ 769\\ 83\\ 1669\\ 9759\\ 83\\ 1669\\ 102\\ 113\\ 1066\\ 107\\ 158\\ 115\\ 92265\\ 105\\ 120\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105\\ 10$	$\begin{array}{c} 1507521\\ 1326220\\ 2158058\\ 1249535\\ 1285864\\ 663474\\ 4713103\\ 892014\\ 1377404\\ 828818\\ 803836\\ 3402065\\ 2352181\\ 780545\\ 2352181\\ 780545\\ 2352181\\ 780545\\ 2352181\\ 780545\\ 1013085\\ 1554167\\ 2633707\\ 569208\\ 4188225\\ 1013085\\ 1127372\\ 313171\\ 802346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 5186395\\ 902346\\ 127372\\ 313171\\ 802346\\ 5186395\\ 9004111\\ 3578499\\ 780704\\ 3614504\\ 4611980\\ 1906724\\ 3800112\\ 2046717\\ 1942518\\ 3736886\\ 229807\\ 1498823\\ 748905\\ 4327143\\ 1392670\\ \end{array}$	$\begin{array}{c} 101.23 \\ 115.78 \\ u \\ 115.78 \\ u \\ 145.78 \\ u \\ 19.84 \\ u \\ 98.54 \\ u \\ 98.54 \\ u \\ 98.89 \\ u \\ 121.26 \\ u \\ 98.89 \\ u \\ 103.03 \\ u \\ 95.04 \\ u \\ 103.03 \\ u \\ 97.72 \\ u \\ 97.72 \\ u \\ 102.78 \\ u \\ 104.15 \\ u \\ 104.15 \\ u \\ 104.15 \\ u \\ 105.93 \\ u \\ 105.93 \\ u \\ 105.93 \\ u \\ 104.21 \\ u \\ 106.57 \\ u \\ 104.21 \\ u \\ 104.21 \\ u \\ 104.21 \\ u \\ 104.47 \\ u \\ 93.64 \\ u \\ 94.16 \\ u \\ 96.60 \\ u \\ 103.44 \\ u \\ 94.16 \\ u \\ 96.60 \\ u \\ 103.44 \\ u \\ 96.51 \\ u \\ 105.45 \\ u \\ u \\ u \\ 105.45 \\ u \\ u \\ u \\ u \\ 105.45 \\ u \\ $	g/L 97 g/L 99 g/L 99 g/L 93 g/L 93 g/L 93 g/L 93 g/L 93 g/L 99 g/L 99 g/

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-SIXPT.M Sat Nov 20 09:29:15 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:27:45 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:27:52 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:28:03 2010 HP5973

R10K091-SIXPT.M Sat Nov 20 09:28:08 2010 HP5973

Vial: 7 Data File : D:\MSDCHEM\S\DATA\111910\S1469.D Operator: CDC : 20 Nov 2010 1:45 Acq On : HP5973S : T005292-CAL6 Inst Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Results File: R10K091-SIXPT.RES Quant Time: Nov 20 09:28:05 2010 Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) : 8260 5ML WATER Title Last Update : Sat Nov 20 09:20:38 2010 Response via : Initial Calibration

Quantitation Report

TA Buffalo

(QT Reviewed)

	Response Factor Report HP5973S													
Met Met Tit Las Res	Method Path : D:\MSDCHEM\S\METHODS\82605MLADDLOW\ Method File : R10K091-ADD.M Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:55:16 2010 Response Via : Initial Calibration													
Ca] 1 4	Libr	ation =S147 =S147	Files 1.D 4.D	2 5	=S147 =S147	2.D 5.D	3 6	=5	51473.E 51476.E)	5	,		
		Compou	nd		1	2	3	4	5	6	Avg	%RSD		
1) 2)	I T	CI10 C297	1,4-Di Chloro	lfluorobe difluor	0.170	0.190	0.201	-ISTD 0.226	0.283 LO	0.289 M= 0	 282 R^	 `2=0.996		
3) 4) 5)	T T	C294 C271 C 2-	Dichlo Ethyl Propano	orofluor Ether Sl	0.343 0.359 0.022	0.314 0.303 0.024	0.350 0.320 0.023	0.381 0.331 0.025	0.404 0.345 0.028	0.409 0.298 0.026	0.367 0.326 0.025	10.28 7.32 9.37		
6) 7) 8) 0\	T T T	C959 C277 C279 F678	t-Buty Allyl Chloro	Alcoh Chlorid prene	0.038 0.573 0.464 0.832	0.037 0.442 0.485 0.898	0.039 0.455 0.512 0.908	0.042 0.466 0.526 0.991	0.047 0.512 0.586 1.068	0.046 0.474 0.545 1.032	0.042 0.487 0.520 0.955	10.57 9.90 8.40 9.43		
10) 11) 12)	T T T	C305 C258 C266	Propio Ethyl Methad	Acetate crylonit	0.066 0.346 0.226	0.064 0.333 0.222	0.065 0.340 0.229	0.064 0.356 0.237	0.068 0.390 0.249	0.064 0.380 0.238	0.065 0.358 0.233	2.58 6.38 4.26		
13) 14) 15)	T T	C264 C200 E677	Isopro Isobut 2-Metl	bpyl eth tanol hoxy-2-m	1.037 0.017 0.725	1.003 0.018 0.794	1.036 0.020 0.793	1.081 0.021 0.862	1.180 0.023 0.953	1.112 0.023 0.947	1.075 0.020 0.846	5.96 12.59 10.85		
17) 18) 19) 20)	T T	C252 C911 C293 C273 C270	n-Buta Methy Propy Epich	anol Methac Lene Oxi Lorohydr	0.472 0.011 0.248 0.079 0.037	0.013 0.277 0.083 0.043	0.014 0.274 0.084 0.043	0.015 0.293 0.095 0.046	0.017 0.330 0.098 0.048	0.016 0.322 0.083 0.046	0.014 0.290 0.087 0.044	13.96 10.64 8.96 8.91		
21)		C251	1,1-D:	imethoxy	0.005	0.010	0.015	0.024	0.034 QO	0.041 A= 0 B= 0	.001 R' .021	2=0.998		
22)	_	C261	Hexand	3	0.4//	0.515	0.4/9	0.525	0.500	0.511	0.313	0.50		
23) 24)	I	C120 C268	D5-Ch. 1,4 D	lorobenze ioxane	0.005	0.005	0.005	0.005	0.005	0.004	0.005	4.33		
25) 26)	I T	CI30 C292	D4-1, 2-Nit:	4-Dichlon ropropan	0.109	0.127	0.153	-ISTD 0.182	0.213 LO	0.236 M= 0	.226 R	 ^2=0.996		
27) 28) 29) 30) 31)		C511 C512 C969 C970	2-Met 3-Met 3-Chl 4-Chl	hylthiop hylthiop probenzo probenzo	2.146 2.228 1.024 0.980	2.049 2.157 1.032 1.019	2.124 2.093 0.964 0.943	2.023 2.153 1.004 0.974	2.096 2.164 1.067 1.031 1.094	2.139 2.214 1.050 0.995 1.067	2.096 2.168 1.023 0.990 1.049	2.40 2.22 3.54 3.22 3.86		
32) 33) 34) 35)	т	C287 C285 C799 C801	3-Chl Cyclo Dicyc 1,2,3	orotolue hexanone lopentad -Trimeth	0.778 0.172 3.299 2.875	0.840 0.172 3.287 3.135	0.795 0.170 3.137 3.056	0.863 0.152 3.455 3.179	0.880 0.148 3.702 3.330	0.864 0.134 3.604 3.172	0.837 0.158 3.414 3.124	4.95 9.82 6.23 4.85		
36) 37) 	т 	C285 C 1,	Penta 3,5-Tr	chloroet ichlorob	0.328	0.312 1.219	0.332	0.340	0.376 1.348	0.375	0.344 1.249	7.58 5.62		
			·				_~~	'l'ota	1 Aver	age %R	su 7	• ↓ ↓ 		
L ≒ (#)	Li: = (near LC Out of) = Lin Range	ear+Orig:	in Q =	Quad (QO == Q	uad+Or	igin R	= Cor	r. Coe:	Ê		
		R10) к091–а	DD.M	Sa	t Nov	20 09:	56:39	2010	HP597	3			

Quantitation Report	TA B	uffalo	(QT	Reviewed)	
Data File : D:\MSDCHEM\S\DATA\1119 Acq On : 20 Nov 2010 2:28 Sample : T005292-CAL7 Misc : MS Integration Params: LSTINT.P Quant Time: Nov 20 09:51:57 2010	910\S14	71.D Results	O I M s File:	Vial: 9 Dperator: CDC Inst : HP5 Multiplr: 1.0 R10K091-ADD.	973S 0 RES
Quant Method : D:\MSDCHEM\S\R10 Title : 8260 ADD (25ml purg Last Update : Sat Nov 20 09:48:55 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA	0K091-A ge) 1 2010 n unknow	NDD.M (F	RTE Inte	egrator) .es calculate	d.
Internal Standards	R.T. Ç	lon R€	esponse	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	4.93	114 6	51241 7	25.00 ug/L	0.00
23) CI20 D5-Chlorobenzene	7.13	117 5	524501	25.00 ug/L	0.00
25) CI30 D4-1,4-Dichlorobenze	9.00	152 2	276426	25.00 ug/L	NA* 0.00 NA*
Target Compounds 2) C297 Chlorodifluoromethan 3) C294 Dichlorofluoromethan 4) C271 Ethyl Ether 5) C 2-Propanol 6) C959 t-Butyl Alcohol 7) C277 Allyl Chloride 8) C279 Chloroprene 9) E678 Ethyl tert-butyl eth 10) C305 Propionitrile 11) C258 Ethyl Acetate 12) C266 Methacrylonitrile 13) C264 Isopropyl ether 14) C200 Isobutanol 15) E677 2-Methoxy-2-methyl-b 16) C252 Heptane 17) C911 n-Butanol 18) C293 Methyl Methacrylate 19) C273 Propylene Oxide 20) C270 Epichlorohydrin 21) C251 1,1-Dimethoxyethane 22) C261 Hexane 24) C268 1,4 Dioxane 26) C292 2-Nitropropane 27) C511 2-Methylthiopene 28) C512 3-Methylthiopene 29) C969 3-Chlorobenzotrifluo 30) C970 4-Chlorobenzotrifluo 31) C268 2-Chlorobenzotrifluo 32) C287 3-Chlorotoluene 33) C285 Cyclohexanone 34) C799 Dicyclopentadiene 35) C801 1,2,3-Trimethylbenze 36) C285 Pentachloroethane 37) C 1,3,5-Trichlorobenzene	1.30 2.32 3.85 3.44 4.35 5.33 4.02 5.33 4.25 5.33 5.56 6.77 7.88 9.00 4.12 5.33 5.56 6.77 7.88 9.00 4.12 1.15 8.00 4.12 1.15 8.00 4.12 1.15 8.00 4.00 1.25 5.00 5.15 5.00 5.00	51 579591394315333618755783770000656570 111111111111111111111111111111111111	4163m 8402 8785 10637 18734 14027m 11359 20388 16132 8481 5527 25405 16776 17769 11553 11267 6075 9625 18224 581 11692 3778 6021 23729 24630 11317 10834 5997 18987 36481 31786 3627 13040	0.75 ug/L 0.94 ug/L 1.10 ug/L 17.57 ug/L 18.40 ug/L 1.26 ug/L 0.89 ug/L 0.87 ug/L 10.13 ug/L 0.97 ug/L 0.97 ug/L 0.97 ug/L 0.97 ug/L 0.97 ug/L 33.85 ug/L 0.86 ug/L 0.93 ug/L 32.03 ug/L 1.11 ug/L 1.98 ug/L 1.11 ug/L 1.02 ug/L 1.02 ug/L 1.03 ug/L 1.03 ug/L 1.03 ug/L 1.03 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L 0.95 ug/L	Qvalue # 58 # 98 95 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Ì.

.

Quantitation ReportTA Buffalo(QT Reviewed)Data File : D:\MSDCHEM\S\DATA\111910\S1471.DVial: 9Acq On : 20 Nov 20102:28Operator: CDCSample : T005292-CAL7Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: LSTINT.PResults File: R10K091-ADD.RESQuant Time: Nov 20 09:51:57 2010Results File: R10K091-ADD.RESQuant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator)Title: 8260 ADD (25ml purge)Last Update : Sat Nov 20 09:48:51 2010Response via : Initial CalibrationDataAcq Meth : VOA

Abundance						TIC: S1	471.D	.						
1500000														
1400000						(,anzene,			ETRONZ GITG, I					
1300000					Į	D5-Chlorobi		1	eystepantaou					-
1200000			lenzene, l			CI20	F.		CK310-104					
1100000			1,4-Difluorob			ttriftetoride	rclohexanone							,
1000000			C110			Ghlorebenze	C2B5 C)							·
900000														
800000														
700000														
600000														
500000			ol,T											
400000	nethaner T		çê (Tjeşo)terjan						au					
300000	hlorodiftuoror ethane, T le	.T Maife Mether e,T	-methyl-buck	rylate,T iĥ	opene	<u>rzourkkior</u> ide	zotrifluoride	luene thane, T	methylbenze	penzene				
200000	therefuercem	ศาชท์ทอกสุด, T Butyl Alcohol, Hexane ประการสุด Ethyl tert-buty ไปสืบไปไปได้เกิญ	Crupelinery-2	etini, Mehac Etickussiya	3-Methyllh	- 4-Cmorobel	2-Chiaraben	17 3-Chioroto Pentachioroe	801-1,2,3-1 1	,3,5-Trichlord				
100000	C294 Dic C294 Dic	C25781791 C2559 14 C2647844 C2647844 E678 14	6 <u>85</u> 2	1,94293 1,942 1,943 1,943 1,943 1,944 1,94	831	¥69	C968	- C28 C285		0 -				÷
0	1	~ AAAA	_M/L	<u>, , , , , , , , , , , , , , , , , , , </u>	Į II.	┯┯╢	╷╷╷╷	<u>, </u>	1	┟╴╴╷┞╴╴	~~~~~~		· · · · · · · · · · · · · · · · · · ·	, , , ,
Time>	2.00	3.00 4.00	5.00	<u>) 6</u> .	00	7.00	8.0	0 9	.00	10.00	11.00	12.00	13.00	

R10K091-ADD.M Sat Nov 20 09:54:13 20103925973

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\111910\S1472.D Vial: 10 Operator: CDC Acq On : 20 Nov 2010 2:50 Inst : HP5973S : T005292-CAL8 Sample Multiplr: 1.00 Misc MS Integration Params: LSTINT.P Quant Time: Nov 20 09:52:26 2010 Results File: R10K091-ADD.RES Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA unknown. No recoveries calculated. Internal Standards R.T. QIon Response Conc Units Dev(Min) Rcv(Ar) 4.93 114 603614 25.00 ug/L 0.00 1) CI10 1,4-Difluorobenzene NAS 7.13 117 520368 25.00 ug/L 0.00 23) CI20 D5-Chlorobenzene NAS 25) CI30 D4-1,4-Dichlorobenze 9.00 152 281806 25.00 ug/L 0.00 NAS

 NA%

 Qvalue

 2) C297 Chlorodifluoromethan
 1.31
 51
 22884
 4.18
 ug/L #
 90

 3) C294 Dichlorofluoromethan
 2.09
 67
 37855
 4.26
 ug/L #
 98

 4) C271
 Ethyl Ether
 2.32
 59
 3653
 4.65
 ug/L #
 95

 5) C 2-Propanol
 2.81
 45
 56978
 95.49
 ug/L #
 95

 6) C959
 t-Butyl Alcohol
 3.15
 59
 88962
 88.66
 ug/L #
 94

 8) C279
 Chloroprene
 3.58
 53
 58535
 4.67
 ug/L #
 94

 9) E678
 Ethyl tert-butyl eth
 3.64
 59
 10830
 4.70
 ug/L #
 1

 11) C258
 Ethyl Acetate
 4.07
 43
 40153
 4.65
 ug/L #
 98

 12) C264
 Isopropyl ether
 3.55
 45
 121047
 4.67
 ug/L #
 90

 16) C252
 Heptanol
 5.14
 56
 139
 ug/L #
 90

 16) C252
 Heptanol
 5.14
 <

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report TA Buffalo (QT Reviewed) Vial: 10 Data File : D:\MSDCHEM\S\DATA\111910\S1472.D Operator: CDC Inst : HP5973S Acq On : 20 Nov 2010 2:50 : T005292-CAL8 Sample Multiplr: 1.00 Misc : MS Integration Params: LSTINT.P Results File: R10K091-ADD.RES Quant Time: Nov 20 09:52:26 2010 Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA .

Abundance							TIC: S1	472.D				<u></u>		
1800000														
1700000										ne,l				
1600000										h ilacitiz tenze:				
1500000							orobenzene			Electrone in the second				
1400000	1						20 D5-CNK	ne,T				- . ·		
1300000						Į	trifluorideCI	dohexano						
1200000				obenzene,l			hloro benzo	C285 C)						
1100000				1,4-Difluor			- 6363 3 6	ļ						
1000000				CHO										
900000														
800000														
700000										enzene				
600000				Hangelaime)			Bittle	ride	œ	-Thmediyld	ane			·
500000				R209,16013		lopene Nopene	benzotritoc	oenzotrifhuo	hlorrototuen 2,T	2801-1,2,3	chlorobenza		,	
400000	nethane, 1 me, T	.T oowhether.1	ert-butyl elt	apanev-2-4	crylate,T Johydrin	3-Mathyl	0 -4- Chioro	8 2-Chlorol	C2B7 3-C		0 1,3,5-Tri			
300000	orodiftuoroi lucrometha	Chloride,T [.] ityl Alcohol, H Hexane 13644/sous	ar Berry to Berry to Berry to Berry to Berry to Berry to Berry Berry Berry to Berry to Berry Berry Berry to Berry Berry Berry to Berry to Berry Berry Berry to Berr	E62527	eltyd Metha 1990-eggang	ŝ.	C91	Sei	385 Pentac		J			
200000	-C297-Chi 4 Dichlorol 373 FHBU	E2(132) 19(1)		Cell	aa c729 0 ikh .c292 2-Ni				5 1					
100000		ö	5 8		8									
0- Time>	2.00	1/4/11 3.00	4.00	<u> </u> <u>5.00</u>	<u>А М</u> 6	ЩЦ .00	7.00	8.0	<u> </u>	9.00	10.00	11.00	12.00	13.00

R10K091-ADD.M Sat Nov 20 09:54:17 20104325973

Data File : D:\MSDCHEM\S\DATA\111910\S1473.DVial: 11Acq On : 20 Nov 2010 3:11Operator: CDCSample : T005292-CAL9Inst : HP5Misc :Multiplr: 1.CMS Integration Params: LSTINT.PQuant Time: Nov 20 09:52:46 2010Results File: R10K091-ADD.	9735 00 RES
Quant Method : D:\MSDCHEM\S\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA unknown. No recoveries calculate	ed.
Internal Standards R.T. QIon Response Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene 4.93 114 600294 25.00 ug/J	0.00
23) CI20 D5-Chlorobenzene 7.13 117 508918 25.00 ug/J	NA* 0.00
25) CI30 D4-1,4-Dichlorobenze 9.00 152 282007 25.00 ug/J	NA% . 0.00
	NA%
Target Compounds	Qvalue
2) C297 Chlorodifluoromethan 1.30 51 48383 8.89 ug/	J 92
3) C294 Dichlorofluoromethan 2.08 67 83941 9.53 ug/	J# 98
4) C271 Ethyl Ether 2.32 59 76782 9.82 ug/l	J 94.
5) C 2-Propanol 2.82 45 109404 184.3/ ug/	J # 90
6) C959 t-Butyl Alcohol 3.15 59 186542 186.94 ug/l	- TOÔ
7) C277 Allyl Chloride 2.85 41 109181m 9.98 ug/l	- 91 91
8) C279 Chloroprene 3.58 53 123000 9.86 ug/	_ <u>95</u>
9) E678 Ethyl tert-butyl eth 3.83 59 217967 9.51 ug/l	95
10) C305 Propionitrile 4.14 54 155010 99.33 ug/	- # _
11) C258 Ethyl Acetate 4.07 43 81737 9.52 ug/	5 # 93
12) C266 Methacrylonitrile 4.22 41 54901 9.79 ug/l	<u> </u>
13) C264 Isopropyl ether 3.55 45 248732 9.64 ug/l	97
14) C200 Isobutanol 4.65 43 187883 386.75 ug/	L # 99
15) E677 2-Methoxy-2-methyl-b 4.70 73 190337 9.37 ug/	J# 92
16) C252 Heptane 4.76 43 115336 9.48 ug/	L# 90
17) C911 n-Butanol 5.14 56 133607 387.52 ug/	u 95
18) C293 Methyl Methacrylate 5.38 41 65689 9.42 ug/	
19) C273 Propylene Oxide 2.41 58 100983 48.33 ug/	μ∰ /4 Γ ΟΕ.
20) C270 Epichlorohydrin 5.82 57 206121 195.96 ug/	ы 50°
21) C251 1,1-Dimethoxyethane 3.63 /5 1/4/4 33.96 ug/	L # 04
22) C261 Hexane 3.34 57 115065 9.35 Ug/	L 34 7 7 7
24) C268 1,4 Dioxane 5.42 88 39/33 416.10 Ug/	с 4 оз
26) C292 2-Nitropropane 5.73 43 00111 44.90 ug/	L # 96
27) C511 2-Methylthiopene 6.1/ 97 239616 10.13 Ug/	r# 90
28) C512 3-Methylthiopene 5.29 97 236137 9.03 ug/	с да
29) C959 3-Cnioropenzotriliuo 7.12 180 105755 9.42 ug/.	L 09
30) Cy/U 4-Cnioropenzotriliuo 7.17 100 100309 9.52 ug/.	ц. 97 Г. 96
$\frac{1}{20} \frac{1}{200} \frac{2}{20} \frac{1}{20} \frac{1}{200} \frac{1}{20$	r. 98
32) $C287$ $3-Cniorotoinene 8.38 120 09004 9.50 ug/$	с. 9 <u>4</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	г. 9́я
54) (733) = Dicyclopentalitene 9.00 = 00000000000000000000000000000000	r. 98
35) USUI 1,2,3-Trimetnyidenze 9.04 105 544/12 9.70 ug/	. # 84
36) U205 Pentachioroethane 8.70 167 37333 9.65 ug/	

(#) = qualifier out of range $(m) \approx$ manual integration (+) = signals summed

1

÷

TA Buffalo (QT Reviewed) Quantitation Report Data File : D:\MSDCHEM\S\DATA\111910\S1473.D Vial: 11 Acq On : 20 Nov 2010 3:11 Sample : T005292-CAL9 Operator: CDC Inst : HP5973S Multiplr: 1.00 Misc : MS Integration Params: LSTINT.P Quant Time: Nov 20 09:52:46 2010 Results File: R10K091-ADD.RES Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) : 8260 ADD (25ml purge) Title Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance						TIC: S	1473.D						
2100000													
2000000													
1900000									l,ene,l				
1800000									teiniodottet				
1700000						-,	T, and		mej steb				
1600000						obenzene	/clohexan						
1500000						UDSvæteor	C285 C)						
1400000						arob et20 1	I						
1300000				le,l		369 -3 -Chl							
1200000				yrobénzen		5							
1100000				1,4-Difluc					nzene				·
1000000				C110				·	metriyital				
900000				Ω					1,2,3-11				
800000				and tam	ę	ficontole	fluoride	otoluene	580	openzene			
700000				1994)aoshi	Athyluhiope Athopene	robenzour	robenzotr	17 3-Chlor		,5-Trichlor			
600000			pyl ether, ¹ outyl ether	13-volu	rt S13-Methy 213-Methy	ro -4-Ch ioi	BB 2-Chlo	C28 bethane,T		C 1,3			
500000		ol,T ane	Rishkeeneru Ethyl tert-t [_T	252 Halp! Intanol,T	hacrylate, "Epichlorc C51	C9	<u>8</u>	entachlorc					
400000	ncronneti methane,	lorida,T tutyl Alcoh 1261 Hexo	sydenafee Eere e Bydittilen	C911 n-B	Vitroegy/3			C285 P					
300000	Chloradi Vorofluoro	Partagly Chi COSO 4-B C	-Dimeth&		C292 24								
200000		c 2-ðæn	C251 1,1 C258 E		C268 1,4								
100000													
	200	300		U			<u>ן ון ו</u> ממ	ᡪ᠊ᢔ _᠇ ᢔ _᠇ ᠈ ᡘ	<u>Ц</u> .00	_الال 10.00	11.00	12.00	13.00
Line	2.00	0.00	7.00	0.00	0.00	1.00	0.00	×					

R10K091-ADD.M Sat Nov 20 09:54:21 201047H25973

Data File : D: \MSDCHEM\S\DTA\111910\S1474.D Vial: 12 Acq On : 20 Nov 2010 3:33 Operator: CDC Sample : T003292-CALA Inst : HPS973S Mis Integration Params: LSTINT.P Multiplr:1.00 Quant Time: Nov 20 09:53:06 2010 Results File: R10K091-ADD.RES Quant Time: S260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Math : VOA Is QA File : 50 level for IS QA unknown. No recoveries Calculated. Internal Standards R.T. QIon Response Conc Units Dev(Min) C120 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.0.00 23) C120 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.0.00 24) C224 Dichlorofluoromethan 1.31 51 130851 24.92 ug/L 94 21) C207 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 22 C27 Chlorodifluoromethan 2.08 67 220578 25.95 ug/L 96 23 C226 Choroprometan 2.31 55 484121 52.28 ug/L 94 22 C27 Chlorodifluoromethan 2.46 59 574152 25.29 ug/L 95 23 C264 Bichlorofluoromethan 2.66 67 220578 25.35 ug/L 95 24 C21 Ebyl Echer 2.32 59 131501 25.35 ug/L 95 25 C2 C1 Corophrese 2.94 54 53 51.28 ug/L 95			Quantitation R	eport	ТА	Buffal	Lo (QT	Reviewed	.)	
MS Integration Params: LSTINT.P Quant Time: Nov 20 09:53:06 2010 Results File: R10K091-ADD.RES Quant Method : D:\MSDCHEM\S\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:151 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA unknown. No recoveries calculated. Internal Standards R.T. QIon Response Conc Units Dev(Min) Rev(Ar) 1) CI10 1,4-Difluorobenzene 4.93 114 579375 25.00 ug/L 0.00 NA& 23) CI20 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.00 NA& 24) C2297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 94) C271 Ethyl Ether 2.32 59 191501 25.37 ug/L 94 94) C271 Ethyl Ether 2.32 59 191501 25.37 ug/L 94 94) C271 Thyl Alcohol 3.15 59 404121 502.67 ug/L 94 95) C359 t-Hutyl Alcohol 3.15 59 404121 502.67 ug/L 93 80 C279 Chloroprene 3.58 53 304618 25.29 ug/L 93 81 C279 Chloroprene 3.58 53 304618 25.29 ug/L 95 10) C305 Propionitrile 4.14 54 386569 24.71 ug/L # 14 11) C258 Ethyl Acetate 4.07 43 206343 24.90 ug/L # 95 12) C266 Methacrylonitrile 4.22 41 137156 25.35 ug/L 95 13) C258 Ethyl Acetate 4.07 43 20634 24.90 ug/L # 95 14) C266 Methacrylonitrile 4.22 41 137156 25.35 ug/L 95 15) C252 Heptane 4.76 43 291852 24.86 ug/L 95 14) C266 Methacrylonitrile 4.22 41 137156 25.35 ug/L 95 15) C252 Heptane 4.76 43 291852 24.86 ug/L 95 16) C252 Heptane 4.76 43 291852 24.86 ug/L 95 16) C252 Heptane 4.76 43 291852 24.86 ug/L 95 16) C252 Heptane 5.73 53246 524.04 25.48 ug/L 95 16) C252 Heptane 5.73 53 44 137.98 ug/L # 95 17) C210 n-Butanol 5.82 57 53246 524.04 137.99 ug/L # 95 18) C273 Propylee 0x/de 2.41 58 274930 136.31 ug/L # 97 29) C266 Methacrylate 5.38 41 169560 25.20 ug/L 95 19) C270 Epichlorohydrin 5.82 57 53246 524.94 ug/L 95 19) C270 Epichlorohydrin 5.82 57 53246 532.0 ug/L # 95 19) C270 Spichlorohydrin 5.82 57 53246 524.94 ug/L 95 19	Data Acq C Sampl Misc	File)n .e	: D:\MSDCHEM\S\D : 20 Nov 2010 : T005292-CALA :	ATA\11191 3:33	.0\S1	.474.D	C I	Vial: Operator: Inst : Aultiplr:	12 CDC HP59 1.00	973S
Quant Method : D:\MSDCHEM\S\RlOK091-ADD.M (RTE Integrator) Title : 9260 ADD (25ml purge) NataAcq Meth : VOA Is QA File : Sol level for IS QA unknown. No recoveries calculated. Internal Standards R.T. Qion Response Conc Units Dev(Min) Rcv(Ar) 1) CIIO 1,4-Difluorobenzene 4.93 114 579375 25.00 ug/L 0.00 NA# 23) CI2O D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.00 NA# 25) CI3O D4-1,4-Dichlorobenzene 7.13 117 508301 25.00 ug/L 0.00 NA# 25) CI3O D4-1,4-Dichlorobenzen 9.00 152 284365 25.00 ug/L 0.00 NA# 20 C297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 3) C294 Dichlorofluoromethan 2.00 67 220578 25.95 ug/L 94 4) C277 Rihyl Ether 2.32 59 191501 25.37 ug/L 94 5) C 2-Propanol 2.81 45 292645 510.98 ug/L 49 6) C359 t-Butyl Alcohol 3.15 59 484121 502.67 ug/L 95 9) E678 Ethyl tert-butyl eth 3.64 59 574152 25.95 ug/L 95 9) E678 Ethyl Acetate 4.07 43 20633 244.790 ug/L 95 10) C217 7 Allyl Chloride 3.58 54 626094 25.14 ug/L 95 12) C226 Isoputanol 5.14 65 34 479863 1023.44 ug/L 95 13) C264 Isopropyl ether 3.55 45 626094 25.14 ug/L 95 14) C253 Ethyl Acetate 4.07 43 20633 1023.44 ug/L 95 15) E677 2-Methoxy-2-methyl-b 4.70 73 499401 25.48 ug/L 95 16) C239 Methyl Methacrylate 5.38 41 169560 25.20 ug/L 95 16) C273 Propyle	MS In Quant	tegra Time	tion Params: LST : Nov 20 09:53:0	INT.P 6 2010		Resul	Lts File:	R10K091-	ADD.R	ES
Internal Standards R.T. Qion Response Conc Units Dev(Min) Rcv(Ar) 1) CI10 1,4-Difluorobenzene 4.93 114 579375 25.00 ug/L 0.00 23) CI20 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.00 25) CI30 D4-1,4-Dichlorobenze 9.00 152 284365 25.00 ug/L 94 21 C297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 3) C294 Dichlorofluoromethan 2.08 67 220578 25.95 ug/L 94 5) C 2-Propanol 2.08 59 191501 25.37 ug/L 94 6) C259 t-Dirutyl Alcohol 3.15 59 484121 502.67 ug/L 93 6) C279 Chloroprene 3.58 53 304618 25.29 ug/L 95 9) E678 Ethyl Acetate 4.07 43 206	Quant Title Last Respo Data IS QA	: Meth Updat onse v Acq Me A File	od : D:\MSDCHEM\ : 8260 ADD (2 e : Sat Nov 20 ia : Initial Cal th : VOA : 50 level fo	S\R10K 5ml purge 09:48:51 ibration or IS QA u	(091- 2010 2010	ADD.M)))))))	(RTE Inte	egrator) ies calcu	lated	1.
1) CI10 1,4-Difluorobenzene 4.93 114 579375 25.00 ug/L 0.00 23) CI20 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.00 25) CI30 D4-1,4-Dichlorobenze 9.00 152 264365 25.00 ug/L 94 25) CI30 D4-1,4-Dichlorobenze 9.00 152 264365 25.00 ug/L 94 3) C294 Dichlorofluoromethan 2.08 67 220578 25.95 ug/L 99 4) C271 Ethyl Ether 2.32 59 191501 25.37 ug/L 94 6) C959 t-Butyl Alcohol 3.15 59 484121 50.26.77 ug/L 100 7) C277 Allyl Chloride 2.85 1269812m 25.55 ug/L 93 6) C279 Chloroprene 3.58 53 304618 25.29 ug/L 95 10) C305 Propionitrile 4.14 54 368589 244.71 ug/L 94 13) C264 Isopropyl ether 3.55 45 626094 25.14 ug/L 95 16) C273 Propylene	Inte	ernal	Standards	F	R.T.	QIon	Response	Conc Un	nits C R	ev(Min) Cv(Ar)
23) CI20 D5-Chlorobenzene 7.13 117 508301 25.00 ug/L 0.00 25) CI30 D4-1,4-Dichlorobenze 9.00 152 284365 25.00 ug/L 0.00 7arget Compounds Cvalue Qvalue Qvalue 2) C297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 3) C294 Dichlorofluoromethan 2.08 67 220578 25.95 ug/L 94 6) C297 Chlorodifluoromethan 2.08 67 220578 25.95 ug/L 94 6) C295 t-Butyl Alcohol 3.15 59 44121 50.267 100 7) C277 Allyl Chloroprene 3.58 53 304618 25.95 ug/L 95 9) E678 Ethyl tert-butyl eth 3.64 59 574152 2.95 ug/L 95 10) C305 Propionitrile 4.22 41 137156 25.35 ug/L 94 11) C258 Ethyl Acetate 4.07 43 291623 24.61 94 12) C264 Methacrylonitrile 4.22 41 137156 25.35 ug/L 94 13) C264 Isopropyl ether 5.14 56 626094	1)	CI10	1,4-Difluoroben	zene 4	.93	114	579375	25.00	ug/L	0.00 NA%
25) CI30 D4-1,4-Dichlorobenze 9.00 152 284365 25.00 ug/L 0.00 NA\$ Target Compounds Qvalue 2) C297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 3) C294 Dichlorofluoromethan 2.08 67 220578 25.95 ug/L 94 6) C2-Propanol 2.81 45 222645 510.98 ug/L 94 6) C959 t-Butyl Alcohol 3.15 59 484121 502.67 ug/L 93 7) C277 Allyl Chloroprene 3.58 53 304618 25.95 ug/L 95 9) E678 Ethyl tert-butyl eth 3.84 59 574152 25.95 ug/L 94 11) C258 Ethyl Acctate 4.07 43 206343 24.90 ug/L 94 13) C264 Isopropyl ether 3.55 45 626094 25.14 ug/L 95 14) C200 Isobutanol 4.65 43 479863 1023.45 ug/L 95 16) C252 Heptane 4.76 43 201852 24.86 ug/L 95 18) C273 Propylenc Oxide 2.41 56 3429101 25.48 ug/L 95	23)	CI20	D5-Chlorobenzen	ie 7	7.13	117	508301	25.00	ug/L	0.00 NA%
Target Compounds Qvalue 2) C297 Chlorodifluoromethan 1.31 51 130851 24.92 ug/L 94 3) C294 Dichlorofluoromethan 2.08 67 220578 25.95 ug/L 94 4) C271 Ethyl Ether 2.32 59 191501 25.37 ug/L 94 6) C959 t-Butyl Alcohol 3.15 59 484121 502.67 ug/L 100 7) C277 Allyl Chloride 2.85 41 269812m 25.55 ug/L 93 6) C305 Propionitrile 3.58 53 304618 25.29 ug/L 95 10) C305 Propionitrile 4.14 54 36889 244.71 ug/L 94 13) C264 Isopropyl ether 3.55 45 62694 25.14 ug/L 95 16) C252 Heptane 4.70 73 499401 25.48 ug/L 95 16) C252 Heptane 4.70 73 499401 25.48 ug/L 95 18) C293 Methyl Methacrylate <td< td=""><td>25)</td><td>CI30</td><td>D4-1,4-Dichlord</td><td>benze g</td><td>9.00</td><td>152</td><td>284365</td><td>25.00</td><td>uġ/L</td><td>0.00 NA%</td></td<>	25)	CI30	D4-1,4-Dichlord	benze g	9.00	152	284365	25.00	uġ/L	0.00 NA%
34) C799Dicyclopentadiene9.006698243525.30 ug/L9735) C8011,2,3-Trimethylbenze9.0410590399825.44 ug/L9836) C285Pentachloroethane8.691679655124.70 ug/L #9037) C1,3,5-Trichlorobenzene10.1218035309124.85 ug/L98	a2) (a2) (a2) (a2) (a2) (a2) (a2) (a2) (C_{297} C_{297} C_{297} C_{297} C_{297} C_{279} C_{279} C_{279} C_{279} C_{257} C_{256} C_{266} C_{266} C_{252} C_{2511} C_{268} C_{297} C_{2511} C_{268} C_{297} C_{2511} C_{297} C_{2512} C_{297} C_{297} C_{251} C_{297} C_{2512} C_{297} C_{2512} C_{297} C_{2512} C_{297} C_{2512} C_{297} C_{2512} C_{297} C_{2512} C_{297} C_{2512} C_{297}	Chlorodifluorom Dichlorofluorom Ethyl Ether Propanol t-Butyl Alcohol Allyl Chloride Chloroprene Ethyl tert-buty Propionitrile Ethyl Acetate Methacrylonitri Isopropyl ether Isobutanol 2-Methoxy-2-met Heptane n-Butanol Methyl Methacry Propylene Oxide Epichlorohydrin 1,1-Dimethoxyet Hexane 1,4 Dioxane 2-Nitropropane 2-Methylthioper 3-Chlorobenzotr 4-Chlorobenzotr 3-Chlorotoluene Cyclohexanone	ethan het	. 318 2. 321 3. 815 3. 815 3. 102 3. 815 3. 102 3. 102 5.	51795913943153336187578377000065 1111155	130851 220578 191501 292645 484121 269812m 304618 574152 368589 206343 137156 626094 479863 499401 291852 348919 169560 274930 532446 68474 304287 92663 258962 575331 612345 285525 277089 302381 245453 432456	24.92 25.95 25.37 510.98 502.67 25.29 24.71 24.90 25.35 25.14 1023.45 25.48 24.86 1048.55 25.20 136.34 524.48 137.98 25.62 976.45 133.92 24.83 24.60 25.34 25.80 240.57	ug/LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	# 94 99 994 994 994 995 95 95 95 95 95 95 95 95 95 95 95 95
	35) 36) 37)	C801 C285 C 1,	Pentachloroetha 3,5-Trichlorober	Denze S ane S azene 10	B.69 D.12	167 180	96551 353091	23.44 24.70 24.85	ug/L ug/L ug/L	# 90 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo (QT Reviewed) Quantitation Report Vial: 12 Data File : D:\MSDCHEM\S\DATA\111910\S1474.D Operator: CDC Inst : HP5973S Acq On : 20 Nov 2010 3:33 : T005292-CALA Sample Multiplr: 1.00 Misc : MS Integration Params: LSTINT.P Results File: R10K091-ADD.RES Quant Time: Nov 20 09:53:06 2010 Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) : 8260 ADD (25ml purge) Title Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance	··			<u> </u>		TIC: S1	474.D					
5200000												•
3000000								_				
2800000								ladidre nzene,				
2600000								-सिर्भ्यु व्यक्ती को			•	
2400000						<u>0</u>	lohexanone,T	sylbenzefitett				
2200000						viecezolaitie lbrid	C285 Cyc	-1,2,3-171Med				
2000000						EB (36CDMood		CB01-		·		
1800000						B	ide	Chlorotoluene	lorobenzene			
1600000				(Brie ^T (TAME) }	njopene Nopene	Denzotrikuan	openzotrifiua	C287 3-C	c 1,3,5-Trich			
1400000			er T	izon, dirighuja iorobenzene,	5-Matry	170-4-Chikiro	968 2-Chlon		1			
1200000			propyi ether, I tert-butyl ett	Z 74-Malhoxy 2110 1,4-DMu anol.T	chlorohydrin	ö		yoethane, T				
1000000		xhol,T Hexane	hlord öfðrie i f r E678 Ethy	C311 n-But	operet Epi			85 Pentachi				
800000	lhane, T ıane, T l'Óxide	ide,T 9 t-Butyl Alcc C261	zyentazzo c. Egyantitika T	X Method Me	292 2-Nitropi			8				
600000	rodinuoromet profluorometri 13 FilogyFeths	Panglyl Chlori C95	-1-1=Dimetro									
400000	C294 Dichic	C 2-Ber	C251- C258 E		C-268 1,4 L							
200000												
Time>	2.00	<u>, , , , , , , , , , , , , , , , , , , </u>	4.00	<u>나무무</u> 5.00	<u>6.00</u>	7.00	<u>- און ועוי</u> 8.00	ـــــــــــــــــــــــــــــــــــــ	+µ+ + + + + + + + + + + + + + + + + + +	11.00	12.00	13.00

R10K091-ADD.M Sat Nov 20 09:54:25 201051025973

		Quantitation H	Report	ТА	Buffal	.0 (QT	Reviewed	l)		
Data Acq C Sampl Misc MS Ir	File : Dn : Le : integrat	D:\MSDCHEM\S\I 20 Nov 2010 T005292-CALB ion Params: LST	DATA\1119 3:54 CINT.P	910\S1	.475.D	C I M	Vial: perator: inst : Multiplr:	13 CDC HP59 1.00	973S	
Quant	: Time:	Nov 20 09:53:2	24 2010		Resul	ts File:	R10K091-	ADD.F	RES	
Quant Title Last Respo Data IS QA	Metho Update Onse vi Acq Met A File	d : D:\MSDCHEM\ : 8260 ADD (2 : Sat Nov 20 a : Initial Cal h : VOA : 50 level fo	\S\R10 25ml purg 09:48:51 Libration or IS QA)K091- Je) 2010 unkno	-ADD.M) own. No	(RTE Inte	egrator) Les calcu	lated	1.	
Inte	ernal S	tandards		R.T.	QIon	Response	Conc Ur	hits I I)ev (1 Rov (1	Min) Ar)
1)	CI10	1,4-Difluorober	nzene	4.93	114	581822	25.00	ug/L	NA&	0.00
23)	ÇI20	D5-Chlorobenzer	ne	7.13	117	517189	25.00	ug/L	NA&	0.00
25)	CI30	D4-1,4-Dichloro	obenze	9.00	152	291087	25.00	ug/L	NAS	0.00
Tarq	get Com	pounds							Qva	lue
2)	C297	Chlorodifluoron	nethan	1.30	51	329306	62.46	ug/L		93
3)	C294	Dichlorofluoror	nethan	2.08	67	470611	55.14	ug/L		98
4)	C271	Ethyl Ether		2.32	59	401689	52.99	ug/L		95
5)	C 2-F	ropanol	_	2.82	45	647868	1126.48	ug/L	Ħ	100
6)	C959	t-Butyl Alcohol	1	3.15	59	1101607	1139.01	ug/L		100
7)	C277	Allyl Chloride		2.85	41	596012m	56.21	ug/L		93
8)	C279	Chloroprene		3.58	53	682232	56.41	ug/L		94
9)	E678	Ethyl tert-but	yl eth	3.83	59	1242715	55.93	ug/L	#	30
10)	C305	Propionitrile		4.14	54	/91144	523.04	ug/L	π	96
11)	C258	Ethyl Acetate	:] _	4.06	43	433990	54.00	ug/L		90
12)	C266	Methacrylonitr:	ite ~	4.22	41	290203	54 88	ug/L		95
13)	C264	Isopropyl etne.	Ľ	3.33	43	109/266	2302 79	ug/L	#	93
14)	C200	2-Mothoyy-2-me	-hvl-h	4.03	. 43	1109143	56.35	$\frac{ug}{L}$	34	99
16)	C252	Hentane	cityr D	4 76	43	629650	53.41	ug/L	#	89
17)	C911	n-Butanol		5.14	56	784635	2348.03	uq/L		94
18)	C293	Methyl Methacr	vlate	5.38	41	383530	56.76	ug/L	#	81
19)	C273	Propylene Oxid	9	2.40	58	572526	282.73	ug/L	#	73
20)	C270	Epichlorohydri	n	5.82	57	1126916	1105.38	ug/L		96
21)	C251	1,1-Dimethoxye	thane	3.62	75	195651	392.58	ug/L	#	54
22)	C261	Hexane		3.34	57	660454	55.37	ug/L		92
24)	C268	1,4 Dioxane		5.42	88	205320	2126.40	ug/L		88
26)	C292	2-Nitropropane		5.73	43	618767	312.60	ug/L		98
27)	C511	2-Methylthioper	ne	6.17	97	1220115	49.99	ug/L	# 	97
28)	C512	3-Methylthiope	ne	6.29	97	1260112	49.91	ug/L	邗业	96
29)	C969	3-Chlorobenzot	rifluo	7.12	180	621193	52.14	ug/L	#	09 07
30)	C970	4-Chlorobenzot:	riiluo	7.1/	180	637080	52.05	ug/b		96
31)	C207	2-Unioropenzot:	LILLUO	1.00	100	512262	52.13	100/T		100
52)	C207	Cycloberspore	5	8 08	120 55	864037	469 56	uα/T.		93
33)	C200 C799	Dicyclopentedi	ene	9,00	66	2155053	54.22	ug/L		97
351	C801	1.2.3-Trimethy	lbenze	9.04	105	1938600	53.29	ug/L		97
36)	C285	Pentachloroeth	ane	8.69	167	218662	54.64	ug/L	#	91
37)	c 1,3	3,5-Trichlorobe	nzene :	10.12	180	784863	53.95	ug/L		99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

R10K091-ADD.M Sat Nov 20 09:53:27 201054HP5973

	Quantitation R	eport TA	Buffalo (QT Reviewed)
Data File : Acq On : Sample : Misc : MS Integrat	D:\MSDCHEM\S\D 20 Nov 2010 T005292-CALB ion Params: LST	DATA\111910\S 3:54 'INT.P	1475.D	Vial: 13 Operator: CDC Inst : HP5973S Multiplr: 1.00
Quant Time: Quant Method Title Last Update Response via DataAcq Met	Nov 20 09:53:2 d : D:\MSDCHEM\ : 8260 ADD (2 : Sat Nov 20 a : Initial Cal h : VOA	24 2010 S\R10K091 Sml purge) 09:48:51 201 ibration	Results Fil -ADD.M (RTE I 0	e: R10K091-ADD.RES ntegrator)

Abundance						TIC: S14	75.D					
5200000												
5000000								Ð				
4800000								1986 zen				
4600000								Whitemy				
4400000												
4200000												
4000000							T,anc	35			•	
3800000	ſ					kybride	ohexanc		BUBZ			
3600000	1						85 Cycl	atoluenk	hloroben			
3400000						(U)	Ğ	3-Chlor	3,5-Tric			
3200000					Q		cotriftuoi	C287	0			
3000000				PRAME	ithiopen liopene	hlorobel	laroberi	,	I			
2800000				- bseebilde	G-Mettry	70 4 =Cl	8 2-Ch					
2600000			er,T er	in for the second second	512 34	បី	CB					
2400000			opyl eth vutyl eth	etteparin ol. T	ydrin C			Te.T				
2200000			fi Isopri syl tert-t	77C258	ichlaroh			oroetha				
2000000		ane	oprefikion 678 Eth	Ca11 r	276 ^T Epi			lentachi				
1800000		hol,T 161 Hex	P-Chlore	Zerre,}	Bardar			C285 P			•	
1600000		tyl Alcol C2	lane.27	Method	22 2-NH							
1400000		ide,T 59 t-Bu	croxyat Coplonit	1,4-Dift	Č							
1200000	methane, Alattero	IJ Chio		C 40								
1000000	antuoro oftuoror 73 Ffby	N 460	Ethyl A C26									
800000	Chloro Dichlor	2-Prope	CZ55			l.						
600000	C294	9			897.0							
400000												
200000												
0 Time>	2.00	<u>17 17 17 17 17 17 17 17 17 17 17 17 17 1</u>	<u>4.00</u>	<u>-1-947</u> 5.00	<u>6.00</u>	7.00	<u>אן ועון (</u> 8.00	, ۱۱,۸۴۱, ۲۵,۸۴۲ 9.00	<u>, 비, 비, 기기</u> 씨, 10.00	11.00	12.00	13.00

R10K091-ADD.M Sat Nov 20 09:54:29 2010 HP5973

(QT Reviewed) Quantitation Report TA Buffalo Data File : D:\MSDCHEM\S\DATA\111910\S1476.D Vlai, -Operator: CDC - HP5 Vial: 14 Acq On : 20 Nov 2010 4:16 Sample : T005292-CALC Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: LSTINT.P Quant Time: Nov 20 09:53:45 2010 Results File: R10K091-ADD.RES Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA unknown. No recoveries calculated. R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ _____ 1) CI10 1,4-Difluorobenzene 4.93 114 603450 25.00 ug/L 0.00 NA 🗞 7.13 117 541549 25.00 ug/L 0.00 23) CI20 D5-Chlorobenzene NAS 25) CI30 D4-1,4-Dichlorobenze 9.00 152 283905 25.00 ug/L 0.00 NA 🕏

 Target Compounds
 Qvalue

 2) C297 Chlorodifluoromethan
 1.30
 51
 698456
 127.73
 ug/L
 96

 3) C294 Dichlorofluoromethan
 2.09
 67
 987671
 111.57
 ug/L
 96

 4) C271 Ethyl Ether
 2.32
 59
 718404
 91.37
 ug/L
 94

 5) C
 2-Propanol
 2.82
 45
 1270596
 2130.06
 ug/L
 #
 88

 6) C959 t-Butyl Alcohol
 3.15
 59
 2235307
 2228.38
 ug/L
 100

 7) C277 Allyl Chloride
 2.85
 41
 144681m
 104.08
 ug/L
 93

 60) C305
 Propionitrile
 4.14
 54
 15551
 98.36
 ug/L
 95

 10) C266
 Methacrylonitrile
 4.22
 41
 574643
 101.96
 ug/L
 94

 11) C266
 Methacrylonitrile
 4.22
 41
 574643
 101.96
 ug/L
 93

 12) C266
 Methacrylonitrile
 4.65
 43
 2208290
 4521.93
 ug/L
 #93

 13) C261
 Isopropyl ether
 3.55 Qvalue Target Compounds 2) C297 Chlorodifluoromethan 1.30 51 698456 127.73 ug/L 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

TA Buffalo (QT Reviewed) Quantitation Report Data File : D:\MSDCHEM\S\DATA\111910\S1476.D Acq On : 20 Nov 2010 4:16 Vial: 14 Operator: CDC Inst : HP5973S Sample : T005292-CALC Multiplr: 1.00 Misc MS Integration Params: LSTINT.P Results File: R10K091-ADD.RES Quant Time: Nov 20 09:53:45 2010 Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Sat Nov 20 09:48:51 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance		TIC: \$1476.D		
8500000			L, bita esta en e , l	
8000000			त्र्य स् रिक्ति व्यक्त ित्व	
7500000			ानसंसम्भे <i>स्टिभे स्टिभ्</i>	
7000000			010 luene 8 01-1, 2,3-1	•
6500000		Bedde 3.T	287 3- Chio	• • • • •
6000000	2	shiteen filler		
5500000	Ranęt AmE)	iffyffriapen Bry Brither Brooten 2-Chlorober C285 Cyr		
5000000	T T T T T T T T T T T T T T T T T T T	C512 3-146		
4500000	ropyl either, butyl either 道明我祝父~2 ⁵ i,T		5	
4000000	,6264 isop 8 Ethyl tert 169262-4 1 n-Butano .T		hioroethane	
3500000	kkarne Hikkarne Chloroprene Ee7 Johnopyahe Johnopyahe		285 Perutac	
3000000	N Alcohol T C261 J Kyerkare HT N Methyl N 33 Methyl N		3	
2500000	is orida, T Co559 t-Bui T-T-EDmfeatrit Haleoyoothida Haleoyoothida Fane, J Co26			
2000000	omethane.1 nomethane.1 tigylafattesti tigylafattesti c261 C266 %e			
1500000	Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor Contractinuor			
1000000	C2391 C			
500000				· · · · · · · · · · · · · · · · · · ·
Time->	200 300 400 500 6.00	0 7.00 8.00	9.00 10.00 1	1.00 12.00 13.00

R10K091-ADD.M Sat Nov 20 09:54:33 2010,985973

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>\$1793.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005434</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005434-CCV1</u>	Injection Time:	<u>10:08</u>

		CON	C. (ug/L)	RES	PONSE FACT	OR	% DIFI	F / DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,1,1,2-Tetrachloroethane	Α	25.0	27.2	0.6209583	0.6756789		8.8	100
1,1,1-Trichloroethane	Α	25.0	28.2	0.3711968	0.4182032		12.7	100
1,1,2,2-Tetrachloroethane	Α	25.0	26.5	0.9035287	0.9564547	0.3	5.9	100
1,1,2-Trichloroethane	A	25.0	25.0	0.5509268	0.5515616		0.1	100
1,1,2-Trichlorotrifluoroethane	Α	25.0	23.9	0.3304252	0.3161126		-4.3	100
1,1-Dichloroethane	Α	25.0	24.4	0.5980372	0.5848079	0.1	-2.2	100
1,1-Dichloroethene	Α	25.0	24.8	0.3506067	0.3484233		-0.6	20
1,1-Dichloropropene	Α	25.0	25.7	0.4616824	0.474673		2.8	100
1,2,3-Trichlorobenzene	A	25.0	26.8	1.098419	1.1752		7.0	100
1,2,3-Trichloropropane	Α	25.0	26.9	0.2710964	0.2915194		7.5	100
1,2,4-Trichlorobenzene	A	25.0	27.4	1.135607	1.242913		9.4	100
1,2,4-Trimethylbenzene	Α	25.0	26.9	2.877615	3.099557		7.7	100
1,2-Dibromo-3-chloropropane	LO	25.0	23.1	0.1466665	0.1736514		-7.8	100
1,2-Dibromoethane (EDB)	Α	25.0	26.2	0.6383883	0.669343		4.8	100
1,2-Dichlorobenzene	A	25.0	25.4	1.672431	1.699601		1.6	100
1,2-Dichloroethane	Α	25.0	25.8	0.4704109	0.4848116		3.1	100
1,2-Dichloroethane-d4	LO	25.0	28.6	0.432891	0.4015983		14.4	100
1,2-Dichloroethene, Total	Α	50.0	50.0	0.3603169	0.3604835		0.05	100
1,2-Dichloropropane	A	25.0	24.0	0.3484269	0.335078		-3.8	20
1,3,5-Trimethylbenzene	A	25.0	26.7	2.836168	3.024561		6.6	100
1,3-Dichlorobenzene	Α	25.0	25.6	1.693604	1.733759		2.4	100
1,3-Dichloropropane	Α	25.0	25.0	1.13973	1.138882		-0.07	100
1,3-Dichloropropene, Total	LO	50.0	46.0	0.4479611	0.4775554		-7.9	100
1,4-Dichlorobenzene	Α	25.0	24.7	1.807887	1.78863		-1,1	100
2,2-Dichloropropane	Α	25.0	27.1	0.1939892	0.2101294		8.3	100
2-Butanone (MEK)	Α	125	119	0.1991222	0.1888488		-5.2	100
2-Chloroethyl vinyl ether	Α	125	122	0.2251797	0.2200123		-2.3	100
2-Chlorotoluene	Α	25.0	25.6	0.809252	0.8271873		2.2	100
2-Hexanone	Α	125	131	0.5308484	0.5545035		4.5	100

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>S1793.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005434</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005434-CCV1</u>	Injection Time:	<u>10:08</u>

		CONC	. (ug/L)	RESI	PONSE FACTO	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	ccv	MIN (#)	CCV	LIMIT (#)
4-Bromofluorobenzene	L0	25.0	26.1	0.8728563	0.7876704		4.4	100
4-Chlorotoluene	Α	25.0	25.7	0.8269978	0.8505012		2.8	100
4-Isopropyltoluene	Α	25.0	27.0	3.055449	3.300454		8.0	100
4-Methyl-2-pentanone (MIBK)	Α	125	128	0.7528827	0.772618		2.6	100
Acetone	Α	125	120	0.1282776	0.1227214		-4.3	100
Acetonitrile	Α	1000	933	5.297725E-02	4.941643E-02		-6.7	100
Acrolein	Α	500	440	2.732248E-02	2.402762E-02		-12.1	100
Acrylonitrile	A	125	. 117	0.1640078	0.1533468		-6.5	100
Benzene	A	25.0	24.5	1.462183	1.433107		-2.0	100
Bromobenzene	Α	25.0	25.9	0.8336343	0.8650531		3.8	100
Bromochloromethane	A	25.0	25.2	0.1789219	0.1802126		0.7	100
Bromodichloromethane	LO	25.0	24.1	0.3824257	0.4202147		-3.5	100
Bromoform	LO	25.0	21.8	0.3458392	0.4004782	0.1	-12.8	100
Bromomethane	Α	25.0	22.2	0.1112842	9.864414E-02		-11.4	100
Carbon disulfide	L0	25.0	20.5	0.6212691	0.6407788		-18.1	100
Carbon Tetrachloride	Α	25.0	27.5	0.3840031	0.4225453		10.0	100
Chlorobenzene	Α	25.0	24.5	2.0251	1.985617	0.3	-1.9	100
Chlorodibromomethane	LO	25.0	24.0	0.5592684	0.6458314		-4.1	100
Chloroethane	Α	25.0	18.9	0.1768718	0.1336381		-24.4	100
Chloroform	Α	25.0	25.2	0.601759	0.6058659		0.7	20
Chloromethane	A	25.0	22.0	0.3524915	0.3108238	0.1	-11.8	100
cis-1,2-Dichloroethene	Α	25.0	25.3	0.369286	0.3743471		1.4	100
cis-1,3-Dichloropropene	LO	25.0	22.7	0.4722086	0.4963834		-9.4	100
Cyclohexane	Α	25.0	22.1	0.6003709	0.5310159		-11.6	100
Dibromomethane	Α	25.0	25.5	0.2104618	0.2144274		1.9	100
Dichlorodifluoromethane	Α	25.0	20.8	0.3092444	0.2567551		-17.0	100
Ethyl Methacrylate	L0	25.0	22.7	0.8772434	0.9455086		-9.2	100
Ethylbenzene	Α	25.0	25.4	3.418529	3.478352		1.7	20
Hexachlorobutadiene	Α	25.0	25.8	0.6140787	0.6341175		3.3	100

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>S1793.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005434</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005434-CCV1</u>	Injection Time:	<u>10:08</u>

		CONC	C. (ug/L)	RESI	PONSE FACT	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	ccv	MIN (#)	CCV	LIMIT (#)
Iodomethane	Α	25.0	23.6	0.3599543	0.340432		-5.4	100
Isopropylbenzene	Α	25.0	26.8	3.288287	3.518839		7.0	100
Methyl Acetate	Α	25.0	22.8	0.4252046	0.3873521		-8.9	100
Methyl tert-Butyl Ether	Α	25.0	25.0	0.9086559	0.9073886		-0.1	100
Methylcyclohexane	Α	25.0	22.9	0.6139093	0.5617136		-8.5	100
Methylene Chloride	LO	25.0	23.5	0.4130333	0.3304645		-5.9	100
m-Xylene & p-Xylene	Α	50.0	51.4	1.310731	1.346673		2.7	100
Naphthalene	LO	25.0	24.5	3.011566	3.543209		-1.8	100
n-Butylbenzene	Α	25.0	27.1	2.904573	3.145802		8.3	100
n-Propylbenzene	Α	25.0	26.4	4.139546	4.366287		5.5	100
o-Xylene	Α	25.0	26.2	1.237218	1.297328		4.9	100
sec-Butylbenzene	Α	25.0	26.7	3.68737	3.934899		6.7	100
Styrene	Α	25.0	26.4	2.06903	2.188924		5.8	100
tert-Butylbenzene	A	25,0	27.1	0.6093081	0.6601387		8.3	100
Tetrachloroethene	Α	25.0	24.9	0.7769742	0.7739907		-0.4	100
Tetrahydrofuran	Α	125	120	0.1259707	0,1213029		-3.7	100
Toluene	Α	25.0	25.1	1.862062	1.866883		0.3	20
Toluene-d8	LO	25.0	29.2	2.688287	2.59791		16.6	100
trans-1,2-Dichloroethene	Α	25.0	24.7	0.3513478	0.3466199		-1.3	100
trans-1,3-Dichloropropene	LO	25.0	23.4	0.8531757	0.9535412		-6.5	100
trans-1,4-Dichloro-2-butene	Α	125	116	0.129763	0.120014		-7.5	100
Trichloroethene	Α	25.0	24.5	0.3636819	0.3558364		-2.2	100
Trichlorofluoromethane	LO	25.0	24.2	0.3249631	0.3555067		-3.3	100
Vinyl acetate	A	125	131	0.6356878	0.6672603		5.0	100
Vinyl chloride	Α	25.0	25.8	0.3389797	0.3495357		3.1	20
Xylenes, total	Α	75.0	77.6	1.286227	1.330225		3.4	100

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF L: Linear through Intercept Q: Quadratic L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept L2: 1/x2 Weighted Linear through Intercept L01: 1/x Weighted Linear forced through Zero L02: 1/x2 Weighted Linear forced through Zero

(QT Reviewed) Quantitation Report TA Buffalo Data File : D:\MSDChem\S\Data\113010\S1793.D Vial: 2 Acq On : 30 Nov 2010 10:08 Sample : T005434-CCV1 Misc Operator: JRS Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: RTEINT.P MS Integration Params: RTEINT.P Quant Time: Nov 30 10:22:52 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 08:46:07 2010 Response via : Initial Calibration DataAcq Meth : VOA IS OA File : D:\MSDCHEM\S\DATA\112910\S1764.D (29 Nov 2010 21:29) R.T. QION Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 567241 25.00 ug/L 0.00 105.04% 42) CI20 Chlorobenzene-D5 7.13 82 272887 25.00 ug/L 0.00 102.32% 62) CI30 1,4-Dichlorobenzene- 9.00 152 271855 25.00 ug/L 0.00 102.32% 101.34% System Monitoring Compounds

 System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.63
 65
 227803
 28.59 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 114.36%

 43) CS05 Toluene-D8
 6.02
 98
 708936
 29.15 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 116.60%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 214945
 26.11 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 104.44%

 Spirked Amount
 25.000
 Range
 7.3 - 120
 Recovery
 = 104.444

 Target Compounds
 Qvalue

 2) C290
 Dichlorodifluorometh
 1.27
 85
 145642
 20.76
 ug/L
 100

 4) C020
 Vinyl Chloride
 1.50
 62
 198271
 25.78
 ug/L
 90

 5) C015
 Bromomethane
 1.78
 94
 55955
 22.16
 ug/L
 85

 6) C025
 Chloroethane
 1.87
 64
 75005
 18.89
 ug/L
 86

 1) C030
 Methylene chloride
 2.55
 96
 197640
 24.84
 ug/L
 98

 1) C030
 Actolein
 3.02
 84
 187453
 23.52
 ug/L
 98

 11) C036
 Acrolein
 2.55
 96
 197640
 24.84
 ug/L
 98

 12) C038
 Acrylonitrile
 3.24
 53
 434923
 116.87
 ug/L
 99

 13) C276
 Iodomethane
 2.71
 142
 193107
 Qvalue

R10K091-SIXPT.M Tue Nov 30 10:23:07 2010,HP5973

	Quantitation Report	TA	Buffa	lo (QT	Reviewed)	
Data File : Acq On : Sample : Misc : MS Integrat Quant Time:	D:\MSDChem\S\Data\113 30 Nov 2010 10:08 T005434-CCV1 ion Params: RTEINT.P Nov 30 10:22:52 2010	8010\\$1	Resu	O I M lts File:	Vial: perator: nst : ultiplr: R10K091-	2 JRS HP59733 1.00 SIXPT.R	S
Quant Metho Title Last Update Response vi DataAcq Met IS QA File	d : D:\MSDCHEM\S\R1 : 8260 5ML WATER : Tue Nov 30 08:46:0 a : Initial Calibratio h : VOA : D:\MSDCHEM\S\DATA\	.0K091- 07 2010 0n (112910	-SIXPT))\S176	.M (RTE In 4.D (29 No	tegrator v 2010) 21:29)	
Internal S	tandards	R.T.	QIon	Response	Conc Un	its Dev Rcv	(Min) (Ar)
$\begin{array}{c} 40) & C012\\ 41) & C145\\ 44) & C230\\ 45) & C170\\ 46) & C284\\ 47) & C160\\ 48) & C210\\ 49) & C220\\ 50) & C221\\ 51) & C155\\ 52) & C163\\ 53) & C215\\ 54) & C235\\ 55) & C281\\ 56) & C240\\ 57) & C246\\ 58) & C247\\ 59) & C245\\ 60) & C180\\ 63) & C966\\ 64) & C301\\ 65) & C225\\ 66) & C282\\ 67) & C283\\ 68) & C302\\ 69) & C303\\ 70) & C289\\ 71) & C304\\ 72) & C306\\ 73) & C307\\ 74) & C308\\ 75) & C267\\ 78) & C249\\ 79) & C310\\ \end{array}$	Methylcyclohexane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloropr Ethyl Methacrylate 1,1,2-Trichloroethan 4-Methyl-2-pentanone Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane 2-Hexanone Chlorobenzene 1,1,2-Tetrachloroe Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromobenzene 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa t-1,4-Dichloro-2-But n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenze tert-Butylbenzene 1,2,4-Trimethylbenze sec-Butylbenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	5.20 5.847 6.271 6.271 6.426 6.552 6.66552 6.666552 6.6666552 6.6666552 6.6666552 7.2221 7.66342 8.226432 8.2944232 8.226432 8.226432 8.22232 8.226632 8.22432 8.226432 8.222432 8.226432 8.222432 8.222532 8.222632 8.222432 8.222632 8.222432 8.222632 8.232322 8.23232 8.23232 8.23	$\begin{array}{c} 83\\75\\92\\75\\69\\83\\43\\166\\76\\129\\107\\43\\112\\131\\91\\106\\104\\173\\105\\156\\83\\110\\51\\126\\105\\134\\105\\146\\146\\146\\91\end{array}$	318627 281569 509448 260209 258017 150514 1054187 211212 310786 176239 182655 756584 541849 184384 949197 734979 354024 597329 108872 956614 235169 260017 79251 163132 1186997 224875 231213 822242 179462 842630 1069722 471331 897245 486248 462045 855202	$\begin{array}{c} 22.87\\ 22.66\\ 25.06\\ 23.38\\ 22.70\\ 25.28\\ 24.99\\ 24.99\\ 26.27\\ 25.24\\ 25.27\\ 25.44\\ 51.27\\ 25.44\\ 51.26\\ 25.57\\ 26.48\\ 15.65\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.571\\ 26.69\\ 25.59\\ 25.$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	96 100 95 97 99 108 98 99709826787055000547588899775 1009947588899775
80) C286 81) C313 82) C316 83) C314 84) C934	1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenze	10.00 10.65 10.76 10.87 11.05	75 180 225 128 180	47208 337892 172388 963239 319484	23.06 27.36 25.82 24.54 26.75	ug/L ug/L ug/L ug/L ug/L	81 97 99 99 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation ReportTA Buffalo(QT Reviewed)Data File : D:\MSDChem\S\Data\113010\S1793.DVial: 2Acq On : 30 Nov 2010 10:08Operator: JRSSample : T005434-CCV1Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: RTEINT.PResults File: R10K091-SIXPT.RESQuant Time: Nov 30 10:22:52 2010Results File: R10K091-SIXPT.RESQuant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator)1111Title : 8260 5ML WATER1000 08:46:07 2010Last Update : Tue Nov 30 08:46:07 2010Response via : Initial CalibrationDataAcq Meth : VOAVoa

Abundance					T	IC: S17	93.D					
3800000												
3600000												
0000000	· ·											
0.400000								H				
3400000	l							guéa				
						Ŀ,	「「「「」	bhí ein				
3200000						Jrsu j	E C C C C C C C C C C C C C C C C C C C					
	ļ						genog					i
3000000							Delet	8				
								8				
2800000					L	MICE	282 H					
					cue,1	뮵	88					
2600000				I	her,T entan	C2	-					
					4 E8		Sene	L.				
2400000					nylvin Aethy		hen	ene ene				
					1 - A - A		nethy					
2200000			S.		C21C		enzer 5-Trin					
2200000			ane-C		61 2		ne.T pyłb 1,3,					
2000000		F	c, I oeths				× vo te			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
2000000		100			the,T					thak trak		
					Perce	L al				naber Napt rober		
1800000		E S	5 10 6 10		215 215	P	12:5					
		jêne,	5 8		0					13-TI-C1		
1600000		21 (peet)	Ŀ,			20				30buf 4 1,2		
		alloyi10		ane,1 e,T		8	See			8		
1400000			detha detha	exan		120				Texe		
		fluroe Fabrus	F 調			1				318		
1200000		b /2Ftri 962 1	hene									
		theit C		hane point.		111	EES I		н			
100000				5000		. III	2.2		Jano,			
100000	- L'a			5.25					oprot			
									Chlon			
800000	Tame.			目器	E C				0-3-(
	T Service								prom			
600000	hiero histo					3	ы На на на на на на на на на на на на на на		2-0			
			B				3		186 1			
400000									3			
		B										
200000									1			
0	I WYWY	11/11	<u>ſ</u> Ţ <u>ŀ</u> (<u></u> ĮĮ	<u>L A NUNI</u>				<u>,↓↓</u> ₩ <u>↓</u> ↓↓,~	╶╌╷╢╌╌╸	NI		
Time>	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00

R10K091-SIXPT.M Tue Nov 30 10:23:10 2010, HP5973

CONTINUING CALIBRATION CHECK

8260B

		CONC. (ug/L)	RESP	PONSE FACTOR	%
Lab Sample ID:	T005434-CCV2	Injec	ction Time:	<u>10:29</u>	_
Sequence:	<u>T005434</u>	Injec	ction Date:	<u>11/30/10</u>	
Lab File ID:	<u>\$1794.D</u>	Calil	bration Date:	<u>11/19/10 22:42</u>	
Instrument ID:	<u>HP5973S</u>	Calil	bration:	<u>R10K091</u>	
Client:	HRP Engineering, PC	Proje	ect:	710 Ohio Street, Buffalo, N	Y
Laboratory:	TestAmerica Buffalo	SDG	i:	RTK1380	

		CONC	. (ug/L)	RESI	PONSE FACTO	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,2,3-Trimethylbenzene	Α	25.0	26.3	3.124441	3.284956		5.1	100
1,3,5-Trichlorobenzene	A	25.0	26.2	1.249417	1.307423		4.6	100
1,4-Dioxane	A	1000	991	4.667424E-03	4.624258E-03		-0.9	100
2-Methylthiophene	Α	25.0	1.06	2.096088	8.905499E-02		-95.8	100
2-Nitropropane	L0	125	115	0.1700025	0.2097696		-8.2	100
3-Chlorotoluene	Α	25.0	26.1	0.8365213	0.8743687		4.5	100
3-Methylthiophene	Α	25.0	23.6	2.168309	2.050916		-5.4	100
Allyl chloride	Α	25.0	17.9	0.4869757	0.3486317		-28.4	100
Chlorodifluoromethane	LO	25.0	23.0	0.2265334	0.2610087		-8.2	100
Chloroprene	Α	25.0	25.9	0.5196695	0.5389124		3.7	100
Cyclohexanone	Α	250	416	0.1580379	0.2632565		66.6	100
Dichlorofluoromethane	Α	25.0	29.2	0.3667434	0.4288919		16.9	100
Dicyclopentadiene	Α	25.0	25.3	3.413925	3.457279		1.3	100
Diethyl ether	A	25.0	25.9	0.3257295	0.3378728		3.7	100
Epichlorohydrin	A	500	506	4.380565E-02	4.428869E-02		1.1	100
Ethyl Acetate	Α	25.0	23.2	0.3575393	0.3313496		-7.3	100
Ethyl tert-Butyl Ether	Α	25.0	24.7	0.9547909	0.9439269		-1.1	100
Heptane	A	25.0	26.0	0.4990652	0.5195697		4.1	100
Hexane	Α	25.0	25.3	0.5125691	0.5178786		1.0	100
Isobutanol	Α	1000	1040	2.023165E-02	2.107242E-02		4.2	100
Isopropyl alcohol	Α	500	486	2.458395E-02	2.388065E-02		-2.9	100
Isopropyl ether	Α	25.0	23.4	1.074669	1.007894		-6.2	100
Methacrylonitrile	A	25.0	23.4	0.2334956	0.2182267		-6.5	100
Methyl Methacrylate	Α	25.0	24.7	0.2903652	0.2864524		-1.3	100
m-Monochlorobenzotrifluoride	Α	25.0	25.8	1.023322	1.054932		3.1	100
n-Butanol	Α	1000	1050	1.435865E-02	1.505466E-02		4.8	100
o-Monochlorobenzotrifluoride	Α	25.0	25.7	1.049159	1.079574		2.9	100
Pentachloroethane	A	25.0	31.6	0.343686	0.4349105		26.5	100
p-Monochlorobenzotrifluoride	Α	25.0	26.2	0.9903721	1.037897		4.8	100

CONTINUING CALIBRATION CHECK

8260B

Laboratory:	TestAmerica B	<u>uffalo</u>		SI	G:	RTK1380			
Client:	HRP Engineeri	<u>ng, PC</u>		Pr	oject:	<u>710 Ohio Str</u>	eet, Buffalo,	<u>NY</u>	
Instrument ID:	<u>HP5973S</u>			Ca	libration:	<u>R10K091</u>			
Lab File ID:	<u>S1794.D</u>			Ca	libration Date:	<u>11/19/10 22:42</u>			
Sequence:	<u>T005434</u>			Inj	ection Date:				
Lab Sample ID:	ample ID: <u>T005434-CCV2</u>			Inj	ection Time:	10:29			
			CONC. (ug/L)						
			CONC	2. (ug/L)	RES	PONSE FACT	OR	% DIFI	F / DRIFT
COMPOUND		ТУРЕ	CONC	C. (ug/L)	ICAL	PONSE FACTO	OR MIN (#)	% DIFI CCV	F / DRIFT LIMIT (#)
COMPOUND Propionitrile		TYPE A	CONC STD 250	C. (ug/L)	RES	PONSE FACT CCV 5.900126E-02	OR MIN (#)	% DIFF CCV -9.2	F / DRIFT LIMIT (#) 100
COMPOUND Propionitrile Propylene Oxide		TYPE A A	CONC <u>STD</u> 250 125	2. (ug/L) CCV 227 124	RES ICAL 6.499329E-02 8.700981E-02	PONSE FACTO CCV 5.900126E-02 8.618347E-02	OR MIN (#)	% DIFI CCV -9.2 -0.9	7 / DRIFT LIMIT (#) 100 100
COMPOUND Propionitrile Propylene Oxide t-Butanol		TYPE A A A	CONC <u>STD</u> 250 125 500	2. (ug/L) CCV 227 124 487	RES ICAL 6.499329E-02 8.700981E-02 4.155732E-02	PONSE FACTO CCV 5.900126E-02 8.618347E-02 0.0404476	OR MIN (#)	% DIFI <u>CCV</u> -9.2 -0.9 -2.7	7 / DRIFT LIMIT (#) 100 100

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF L: Linear through Intercept Q: Quadratic L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept L2: 1/x2 Weighted Linear through Intercept L01: 1/x Weighted Linear forced through Zero L02: 1/x2 Weighted Linear forced through Zero

Quantitation Report TA Buffalo (Not Reviewed)

 Data File : D:\MSDChem\S\Data\113010\S1794.D
 Vial: 3

 Acq On : 30 Nov 2010 10:29
 Operator: JRS

 Sample : T005434-CCV2
 Inst : HP59

 Misc :
 Multiplr: 1.00

Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: LSTINT.P Quant Time: Nov 30 11:37:47 2010 Results File: R10K091-ADD.RES Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator) Title : 8260 ADD (25ml purge) Last Update : Mon Nov 29 22:23:07 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : 50 level for IS QA unknown. No recoveries calculated. R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 568276 25.00 ug/L 0.00

 23) CI20 D5-Chlorobenzene
 7.13 117 499745
 25.00 ug/L
 0.00 NA%

 25) CI30 D4-1,4-Dichlorobenze
 9.00 152 272663
 25.00 ug/L
 0.00 NA%

 Qvalue

 Qvalue

 2) C297 Chlorodifluoromethan
 1.31
 51
 148325
 22.95
 ug/L
 97

 3) C294 Dichlorofluoromethan
 2.09
 67
 243729
 29.24
 ug/L
 98

 4) C271 Ethyl Ether
 2.32
 59
 192005
 25.93
 ug/L
 95

 5) C
 2-Propanol
 2.81
 45
 271416
 485.70
 ug/L
 94

 6) C959
 t-Butyl Alcohol
 3.15
 59
 459708
 486.65
 ug/L
 100

 7) C277 Allyl Chloroprene
 3.58
 53
 306251
 25.93
 ug/L
 95

 6) C258
 Ethyl tert-butyl eth
 3.84
 59
 536411
 24.72
 ug/L
 95

 10) C356
 Ethyl Acetate
 4.07
 43
 18298
 23.17
 ug/L
 95

 12) C264
 Isopropyl ether
 3.55
 45
 572762
 2.3.45
 ug/L
 97

 13) E677
 2-Methoxy-2-methyl-b
 4.76
 43
 295259
 26.03
 ug/L #
 97

 14) E200
 Isobutano Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation ReportTA Buffalo(Not Reviewed)Data File : D:\MSDChem\S\Data\113010\S1794.DVial: 3Acq On : 30 Nov 2010 10:29Operator: JRSSample : T005434-CCV2Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: LSTINT.PQuant Time: Nov 30 11:37:47 2010Quant Method : D:\MSDCHEM\S...\R10K091-ADD.M (RTE Integrator)Title : 8260 ADD (25ml purge)Last Update : Mon Nov 29 22:23:07 2010Response via : Initial CalibrationDataAcq Meth : VOA

Abundance						TIC: S1	794.D					
3400000												
3200000								rátarence.				
3000000							халопе,Т	HeydeDichta				
2800000							2 85-Gy elohe	CKAD				
2600000							6					
2400000						daifit ajbride		វេហ្គែងទាន				
2200000						Contrabiena		-1,2,3-17mm				
2000000					ane	C680 14		sne CB01	ana			
1800000	1			ME)	Methylthiope	zotrifiuarida	itrifluoride	- Chlarotolue	ichlorobenz.			
1600000				Pelutane (TA ne,1	C511 2- pene	t-Chioroben	Chlorobenza	C287 3	¢ 1,3,5-Tr			
1400000			ether	100, 21 seletiti) Arie Aluorobenze	3-Methylthic	C970-	C968 2-(iroethana, T	I			
1200000			raarpoyl ethe yi tert-butyl	CZ552 Mabili C110 1,4-Di anol,T a.T	Khiorohydri C512			5 Pentachio				
1000000		hol,T 31 Hexana	g Chiðfrýrt i E678 Eth a,T	C011 n-But	Ultrepp?#Paul			C28				
800000	rometriane, T ometriane, T Faborate	Chioride,T t-Butyl Aicol C26	<u>xyetna 6877</u> <u></u>	283 Methyt	C292 2-h							
600000	Chilorodinuo Ichlorofuori 737 b.Ethyle	6360 AIN 779080	T.T=DIMBIN	t Dioxana C								
400000	C297 (C. 2-Prop	C258	2.1. KBCC								
200000												
0· Time>	2.00	<u>, , , , ,</u> 3.00	<u>4.00</u>	5.00	<u>- 6.00</u>	7.00	רן אייייייי 8.00	9.00	<u>10.00</u>	11.00	12.00	13.00

R10K091-ADD.M Tue Nov 30 11:37:51 2010 HP5973

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>S1822.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005455</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005455-CCV1</u>	Injection Time:	<u>22:02</u>

		CONC	. (ug/L)	RES	PONSE FACT	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	ccv	MIN (#)	ccv	LIMIT (#)
1,1,1,2-Tetrachloroethane	A	25.0	26.6	0.6209583	0.6611267		6.5	100
1,1,1-Trichloroethane	Α	25.0	25.6	0.3711968	0.3805445		2.5	100
1,1,2,2-Tetrachloroethane	Α	25.0	26.2	0.9035287	0.9483203	0.3	5.0	100
1,1,2-Trichloroethane	Α	25.0	25.1	0.5509268	0.5522538	-	0.2	100
1,1,2-Trichlorotrifluoroethane	Α	25.0	22.9	0.3304252	0.3031536		-8.3	100
1,1-Dichloroethane	Α	25.0	23.6	0.5980372	0.5635246	0.1	-5.8	100
1,1-Dichloroethene	Α	25.0	24.2	0.3506067	0.3386512		-3.4	20
1,1-Dichloropropene	Α	25.0	24.4	0.4616824	0.4508872		-2.3	100
1,2,3-Trichlorobenzene	Α	25.0	25.8	1.098419	1.134481		3.3	100
1,2,3-Trichloropropane	Α	25.0	26.2	0.2710964	0.2842281		4.8	100
1,2,4-Trichlorobenzene	Α	25.0	26.9	1.135607	1.22348		7.7	100
1,2,4-Trimethylbenzene	Α	25.0	26.7	2.877615	3.073351		6.8	100
1,2-Dibromo-3-chloropropane	L0	25.0	22.6	0.1466665	0.1700976		-9.6	100
1,2-Dibromoethane (EDB)	Α	25.0	26.1	0.6383883	0.6672943		4.5	100
1,2-Dichlorobenzene	Α	25.0	25.0	1.672431	1.671628		-0.05	100
1,2-Dichloroethane	Α	25.0	25.1	0.4704109	0.4722481		0.4	100
1,2-Dichloroethane-d4	L0	25.0	28.0	0.432891	0.3937824		12.1	100
1,2-Dichloroethene, Total	Α	50.0	48.6	0.3603169	0.3506415		-2.7	100
1,2-Dichloropropane	Α	25.0	23.2	0.3484269	0.3237788		-7.1	20
1,3,5-Trimethylbenzene	Α	25.0	26.6	2.836168	3.019441		6.5	100
1,3-Dichlorobenzene	Α	25.0	25.2	1.693604	1.706206		0.7	100
1,3-Dichloropropane	Α	25.0	24.8	1.13973	1.132294		-0.7	100
1,3-Dichloropropene, Total	L0	50.0	45.4	0.4479611	0.469482		-9.1	100
1,4-Dichlorobenzene	Α	25.0	24.5	1.807887	1.769818		-2.1	100
2,2-Dichloropropane	Α	25.0	23.9	0.1939892	0.1851552		-4.6	100
2-Butanone (MEK)	Α	125	118	0.1991222	0.1885077		-5.3	100
2-Chloroethyl vinyl ether	A	125	122	0.2251797	0.2201937		-2.2	100
2-Chlorotoluene	Α	25.0	25.7	0.809252	0.8333316		3.0	100
2-Hexanone	Α	125	135	0.5308484	0.5727459		7.9	100

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDC	3:	RTK1380	
Client:	HRP Engineering, PC	Proj	ect:	710 Ohio Street, Buffalo,	NY
Instrument ID:	<u>HP5973S</u>	Cali	bration:	<u>R10K091</u>	
Lab File ID:	<u>S1822.D</u>	Cali	bration Date:	<u>11/19/10 22:42</u>	
Sequence:	<u>T005455</u>	Inje	ction Date:	<u>11/30/10</u>	
Lab Sample ID:	<u>T005455-CCV1</u>	Inje	ction Time:	<u>22:02</u>	
		CONC. (ug/L)	RES	PONSE FACTOR	%

		CONC	. (ug/L)	RESI	PONSE FACTO	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
4-Bromofluorobenzene	LO	25.0	26.1	0.8728563	0.7883683		4.5	100
4-Chlorotoluene	A	25.0	26.0	0.8269978	0.8607005		4.1	100
4-Isopropyltoluene	Α	25.0	26.8	3.055449	3.27408	1	7.2	100
4-Methyl-2-pentanone (MIBK)	Α	125	130	0.7528827	0.783721		4.1	100
Acetone	Α	125	120	0.1282776	0.1234839		-3.7	100
Acetonitrile	Α	1000	894	5.297725E-02	4.736919E-02		-10.6	100
Acrolein	Α	500	413	2.732248E-02	0.0225482		-17.5	100
Acrylonitrile	Α	125	115	0.1640078	0.1509102		-8.0	100
Benzene	Α	25.0	23.7	1.462183	1.385138		-5.3	100
Bromobenzene	Α	25.0	25.9	0.8336343	0.8646473		3.7	100
Bromochloromethane	Α	25.0	24.7	0.1789219	0.1767698		-1.2	100
Bromodichloromethane	LO	25.0	23.4	0.3824257	0.4086451		-6.2	100
Bromoform	L0	25.0	21.2	0.3458392	0.3951508	0.1	-15.0	100
Bromomethane	Α	25.0	19.8	0.1112842	8.831451E-02		-20.6	100
Carbon disulfide	L0	25.0	19.8	0.6212691	0.6186382		-20.9	100
Carbon Tetrachloride	Α	25.0	25.0	0.3840031	0.3848388		0.2	100
Chlorobenzene	A	25.0	24.3	2.0251	1.970844	0.3	-2.7	100
Chlorodibromomethane	L0	25.0	23.4	0.5592684	0.6294343		-6.6	100
Chloroethane	A	25.0	23.9	0.1768718	0.169344		-4.3	100
Chloroform	Α	25.0	24.3	0.601759	0.5847448		-2.8	20
Chloromethane	A	25.0	22.3	0.3524915	0.3149616	0.1	-10.6	100
cis-1,2-Dichloroethene	A	25.0	24.8	0.369286	0.3664191		-0.8	100
cis-1,3-Dichloropropene	L0	25.0	22.4	0.4722086	0.4905302		-10.4	100
Cyclohexane	Α	25.0	21.9	0.6003709	0.5255528		-12.5	100
Dibromomethane	Α	25.0	24.6	0.2104618	0.2072774		-1.5	100
Dichlorodifluoromethane	A	25.0	22.1	0.3092444	0.2739207		-11.4	100
Ethyl Methacrylate	L0	25.0	24.0	0.8772434	0.9979363		-4.2	100
Ethylbenzene	Α	25.0	25.1	3.418529	3.428021		0.3	20
Hexachlorobutadiene	Α	25.0	25.0	0.6140787	0.6150755		0.2	100

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>S1822.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005455</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005455-CCV1</u>	Injection Time:	<u>22:02</u>

		CONC	C. (ug/L)	RES	PONSE FACT	OR	% DIFI	F / DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Iodomethane	A	25.0	22.6	0.3599543	0.3257828		-9.5	100
Isopropylbenzene	Α	25.0	26.8	3.288287	3.525872		7.2	100
Methyl Acetate	Α	25.0	22.6	0.4252046	0.3850883		-9.4	100
Methyl tert-Butyl Ether	A	25.0	25.5	0.9086559	0.9274055		2.1	100
Methylcyclohexane	Α	25.0	23.1	0.6139093	0.5667441		-7.7	100
Methylene Chloride	LO	25.0	24.8	0.4130333	0.3478778		-1.0	100
m-Xylene & p-Xylene	A	50.0	50.5	1.310731	1.324052		1.0	100
Naphthalene	LO	25.0	23.8	3.011566	3.441797		-4.7	100
n-Butylbenzene	Α	25.0	26.6	2.904573	3.090691		6.4	100
n-Propylbenzene	Α	25.0	26.2	4.139546	4.334304		4.7	100
o-Xylene	A	25.0	25.8	1.237218	1.278544		3.3	100
sec-Butylbenzene	Α	25.0	26.5	3.68737	3.9116		6.1	100
Styrene	A	25.0	26.1	2.06903	2.161808		4.5	100
tert-Butylbenzene	A	25.0	26.9	0.6093081	0.6545777		7.4	100
Tetrachloroethene	A	25.0	24.5	0.7769742	0.7627029		-1.8	100
Tetrahydrofuran	Α	125	119	0.1259707	0.1194817		-5.2	100
Toluene	Α	25.0	24.6	1.862062	1.83061		-1.7	20
Toluene-d8	LO	25.0	29.4	2.688287	2.619588		17.6	100
trans-1,2-Dichloroethene	A	25.0	23.8	0.3513478	0.3348639		-4.7	100
trans-1,3-Dichloropropene	LO	25.0	23.0	0.8531757	0.939329		-7.9	100
trans-1,4-Dichloro-2-butene	A	125	118	0.129763	0.1228121		-5.4	100
Trichloroethene	A	25.0	23.6	0.3636819	0.342608		-5.8	100
Trichlorofluoromethane	LO	25.0	22.1	0.3249631	0.3255957		-11.4	100
Vinyl acetate	Α	125	130	0.6356878	0.6604065		3.9	100
Vinyl chloride	A	25.0	24.9	0.3389797	0.3370646		-0.6	20
Xylenes, total	Α	75.0	76.4	1.286227	1.308883		1.8	100

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF L: Linear through Intercept Q: Quadratic L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept L2: 1/x2 Weighted Linear through Intercept L01: 1/x Weighted Linear forced through Zero L02: 1/x2 Weighted Linear forced through Zero

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1822.D Vial: 2 Acq On : 30 Nov 2010 22:02 Sample : T005455-CCV1 Operator: NMD Inst : HP5973S Multiplr: 1.00 Misc . MS Integration Params: RTEINT.P Quant Time: Nov 30 22:54:09 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 20:59:53 2010 Response via : Initial Calibration DataAcg Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ _____ 1) CI10 1,4-Difluorobenzene 4.93 114 625254 25.00 ug/L 0.00 110.23% 1 7.13 82 298495 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 109.38% 109.38% 62) CI30 1,4-Dichlorobenzene- 9.00 152 293655 25.00 ug/L 0.00 108.02% System Monitoring Compounds

 System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.63
 65
 246214
 28.03 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 112.12%

 43) CS05 Toluene-D8
 6.02
 98
 781934
 29.39 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 117.56%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 235324
 26.13 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 104.52%

 Spired Amount
 25.000
 Range
 7.3 - 120
 Recovery
 = 104.52%

 2) C290
 Dichlorodifluorometh
 1.28
 85
 171270
 22.14 ug/L #
 100

 3) C010
 Chloromethane
 1.40
 50
 196331
 22.34 ug/L
 99

 4) C020
 Vinyl chloride
 1.51
 62
 210751
 24.86 ug/L
 87

 5) C015
 Bromethane
 1.77
 94
 55219
 19.84 ug/L
 85

 6) C025
 Chloroethane
 2.55
 96
 211743
 24.15 ug/L
 88

 9) C030
 Methylene chloride
 3.03
 84
 217512
 24.76
 ug/L
 95

 10) C040
 Carbon disulfide
 2.76
 76
 386060
 19.77
 ug/L
 99

 11) C036
 Accoleni
 2.94
 3471786
 115.02
 ug/L
 92

 12) C038
 Acctonitrile
 2.93
 41
 1184711
 894.14
 14
 91

 17) C362
 T-butyl Methyl Ether
 3.17
 <t Qvalue

		Quantitation Repor	t !	ΓA	Buffa	lo (QT	Reviewed	1)		
Data Acq O Sampl Misc MS In Quant	File on .e .tegrat : Time	: D:\MSDCHEM\S\DATA\ : 30 Nov 2010 22:02 : T005455-CCV1 : tion Params: RTEINT. : Nov 30 22:54:09 20	113010 P 10	\S1	.822.D Resu	lts File:	Vial: Operator: Inst : Multiplr: R10K091-	2 NMD HP59 1.00	73S	s
~										
Quant Title Last Respo DataA	Metho Updato Snse Vi Acq Met	od : D:\MSDCHEM\S : 8260 5ML WATER = : Tue Nov 30 20:5 ia : Initial Calibra th : VOA	\R10K0: 9:53 2 tion	91- 010	SIXPT	.M (RTE I	ntegrator	;)		
IS QA	File	: D:\MSDCHEM\S\DA	TA\113	010	0\S179	3.D (30 N	ov 2010	10:08	3)	
Inte	rnal :	Standards	R.'	т.	QIon	Response	Conc Ur	nits I F)ev () Rcv ()	Min) Ar)
40)	C012	Mathulcuclobeware		 20	83	354359	23 08			95
41)	C145	cis-1,3-Dichloropro	ъ 5.	85	75	306706	22.40	ug/L		99
44)	C230	Toluene	6.	07	92	546428	24.58	ug/L		93
45)	C170	trans-1,3-Dichlorop	r 6.	27	75	280385	23.03	ug/L		96
46)	C284	Ethyl Methacrylate	6.	31	69	2978 7 9	23.96	ug/L	#	86
47)	C160	1,1,2-Trichloroetha	n 6.	42	83	164845	25.06	ug/L		99
48)	C210	4-Methyl-2-pentanon	e 5.	96	43	1169684	130.12	ug/L		90
49)	C220	Tetrachloroethene	б. С	46	166	22/663	24-54	ug/L		98
50)	C221	1,3-Dichioropropane	0. c	33 72	120	197993	24.04	ug/L		100
52)	C163	1 2-Dibromoethane	e 0. 6	80	107	199184	26.13	ug/L		98
53)	C_{215}	2-Hexanone	6	60	43	854809	134.87	ug/L		88
54)	C235	Chlorobenzene	7.	16	112	588287	24.33	ug/L		100
55)	C281	1,1,1,2-Tetrachloro	e 7.	23	131	197343	26.62	ug/L		98
56)	C240	Ethylbenzene	7.	22	91	1023247	25.07	ug/L		99
57)	C246	m,p-Xylene	7.	31	106	790446	50.51	ug/L		99
58)	C247	o-Xylene	7.	63	106	381639	25.84	ug/L		97
59)	C245	Styrene	7.	65	104	645289	26.12	ug/L		92
60)	C180	Bromoform	7.	84	173	116038	21.24	ug/L		98
63)	C966	Isopropylbenzene	7.	92	105	1035390	26.81	ug/L		97
64) (E)	C301	Bromobenzene	. 8.	19	156	253908	25.93	ug/L		97
65)	C225	1,1,2,2-Tetrachioro	е в.	22	110	2/84/9	20.24	ug/L		100
671	C283	t-1 A-Dichloro-2-Bu	a o. + 9	20	51	180322	118 30	ug/L	#	100
68)	C302	n-Propylbenzene	с U. Я	20	91	1272790	26 18	ug/L	п	96
69)	C303	2-Chlorotoluene	8.	33	126	244712	25.74	ug/L		100
70)	C289	4-Chlorotoluene	8.	42	126	252749	26.02	ug/L		100
71)	C304	1,3,5-Trimethylbenz	e 8.	38	105	886674	26.62	ug/L		95
72)	C306	tert-Butylbenzene	8.	65	134	192220	26.86	ug/L		91
73)	C307	1,2,4-Trimethylbenz	e 8.	69	105	902505	26.70	ug/L		99
74)	C308	sec-Butylbenzene	8.	83	105	1148661	26.52	ug/L		98
75)	C260	1,3-Dichlorobenzene	8.	94	146	501036	25.19	ug/L		100
76)	C309	4-Isopropyltoluene	8.	94	119	961450	26.79	ug/L		98
77)	C267	1,4-Dichlorobenzene	9.	02	146	519716	24.47	ug/L		97
78)	C249	1,2-Dichiorobenzene	9.	33	140	490882	24.99	ug/L		99
19) 801	C286	1 2-Dibromo-3-Chlor	9.	20 00	91 75	20/39/ Aqqsn	20.00	110/T		80
811	C313	1,2,4-Trichlorobenz	e 10.	65	180	359281	26.93			97
82)	C316	Hexachlorobutadiene	10.	76	225	180620	25.04	ug/L		98
83)	C314	Naphthalene	10.	87	128	1010701	23.83	ug/L		99
84)	C934	1,2,3-Trichlorobenz	e 11.	05	180	333146	25.82	ug/L		98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

:

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDCHEM\S\DATA\113010\S1822.D Acq On : 30 Nov 2010 22:02 Sample : T005455-CCV1 Vial: 2 Operator: NMD Inst : HP5973S. Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Quant Time: Nov 30 22:54:09 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) : 8260 5ML WATER Title Last Update : Tue Nov 30 20:59:53 2010 Response via : Initial Calibration DataAcq Meth ; VOA

Abundance			<u> </u>			TIC: S1	822.D		······································			
4000000												:
3800000												
3600000						L	щIJ	denazaeçið, T				
3400000						\$t\$y&ne.1	and Brogerse	Belipichiprist				
3200000					F.		t of the second s	-6300-44				
3000000					pentanone,	Ethylizañ	1306.282.7d					
2800000					Ether,T Methyl-2- ₁	C2 80	. 1.	1,a	·			
2600000					oethylvinyl C210 4-		ine,T ithylbenze	thytbenzer ene,T nzene,T				
2400000			8 20	5	1 2-Chlor	-	e,T opylbenze 1,3,5-Trime	Butylbenze ne,T n-Butylbenze				
2200000		tratata T			C16	Hexanone	le (F-Xylen) 966 Isopr 311878-1	tertaBartyli 1308 sec- 10054342 1,T C310		lene,T lene,T ne,T		·
2000000		25 Vinul A			50%-480%	CZ15 Z-I	45 SQR	CINATURES		zhorobenz Naphthal Iorobenzei		
1800000		iliane,T C3			100 L 60S:		C2 C288	130 1028		utađetnic utađetje 1,2,3-Trich		
1600000		a, T Noyli Erberh	Rang T.	benzene,l ane,T	le T Biffene.T	120 Chies	offumber	C249		cest 13 Cest 1		
1400000		eç21trifiurros Frabuahy , Bhé	thene, T offuran, T social team	4-Difluoro	P,T Coproperte, Mensoperte		A C Broom			C316 He		
1200000		hitrinechérs mitrile,T Iurile,962 t T	Rightloroel Rightloroel C126 Cal	mme.1 CI10 1	Contrethence 1.3-Dichlor	hethane.T			Jane,T			
1000000	ethane,T	s 1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PERINA Pronting		Simodicitio C145 cis-1 C145 cis-1	moethalm.			Chloropros			
800000	odifictor trans. Lande, T Lande, T romethan	olein Taa Bêj Alfhykkê Alfhykkê Co3	-Dichinger - C222.0%	7.8 Dibro		155-Dibros	emotorm.		ibromo-3-(
600000	D Diction C Viny C O Viny C ionethane	COSO A	6051-2,2			ငျရင်	C180 Br		286 1.2-Di			
400000	000 000 005 005 005 005 005 005 005 005	Co46 ² 76							ರ			
200000	M											
0- Time>	2.00	3.00	4.00	5.00	<u>11, 11, 1, 11, 1</u> 6.00	7.00	8.00	<u>, 11,0,1,1,.</u> 9.00	10.00		12.00	13.00

R10K091-SIXPT.M Tue Nov 30 22:54:36 291022HP5973

CONTINUING CALIBRATION CHECK

Laboratory:	TestAmerica Buffalo	SDG:	RTK1380
Client:	HRP Engineering, PC	Project:	710 Ohio Street, Buffalo, NY
Instrument ID:	<u>HP5973S</u>	Calibration:	<u>R10K091</u>
Lab File ID:	<u>S1823.D</u>	Calibration Date:	<u>11/19/10 22:42</u>
Sequence:	<u>T005455</u>	Injection Date:	<u>11/30/10</u>
Lab Sample ID:	<u>T005455-CCV2</u>	Injection Time:	<u>22:23</u>

		CONC	. (ug/L)	RESPONSE FACTOR		% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,2,3-Trimethylbenzene	Α	25.0	26.1	3.124441	3.266841		4.6	100
1,3,5-Trichlorobenzene	Α	25.0	25.9	1.249417	1.296586		3.8	100
1,4-Dioxane	Α	1000	1020	4.667424E-03	4.769985E-03		2.2	100
2-Methylthiophene	A	25.0	1.08	2.096088	9.093724E-02		-95.7	100
2-Nitropropane	L0	125	112	0.1700025	0.2049891		-10.3	100
3-Chlorotoluene	Α	25.0	26.2	0.8365213	0.8762654		4.8	100
3-Methylthiophene	Α	25.0	23.6	2.168309	2.04522		-5.7	100
Allyl chloride	Α	25.0	17.3	0.4869757	0.3376943		-30.7	100
Chlorodifluoromethane	L0	25.0	19.5	0.2265334	0.2219704		-21.9	100
Chloroprene	Α	25.0	24.7	0.5196695	0.5139277		-1.1	100
Cyclohexanone	Α	250	363	0.1580379	0.2295761		45.3	100
Dichlorofluoromethane	Α	25.0	23.5	0.3667434	0.3446505		-6.0	100
Dicyclopentadiene	Α	25.0	24.6	3.413925	3.356213		-1.7	100
Diethyl ether	A	25.0	25.4	0.3257295	0.3311433		1.7	100
Epichlorohydrin	Α	500	497	4.380565E-02	4.357769E-02		-0.5	100
Ethyl Acetate	Α	25.0	22.6	0.3575393	0.322912		-9.7	100
Ethyl tert-Butyl Ether	Α	25.0	25.0	0.9547909	0.9553074		0.05	100
Heptane	Α	25.0	23.9	0.4990652	0.4772484		-4.4	100
Hexane	Α	25.0	24.0	0.5125691	0.4918561		-4.0	100
Isobutanol	Α	1000	943	2.023165E-02	1.908507E-02		-5.7	100
Isopropyl alcohol	Α	500	460	2.458395E-02	2.261877E-02		-8.0	100
Isopropyl ether	Α	25.0	23.1	1.074669	0.9921084		-7.7	100
Methacrylonitrile	A	25.0	22.8	0.2334956	0.2126276		-8.9	100
Methyl Methacrylate	Α	25.0	24.9	0.2903652	0.2897229		-0.2	100
m-Monochlorobenzotrifluoride	A	25.0	26.1	1.023322	1.06654		4.2	100
n-Butanol	Α	1000	958	1.435865E-02	1.375412E-02		-4.2	100
o-Monochlorobenzotrifluoride	Α	25.0	25.5	1.049159	1.070461		2.0	100
Pentachloroethane	Α	25.0	30.6	0.343686	0.4203172		22.3	100
p-Monochlorobenzotrifluoride	Α	25.0	26.2	0.9903721	1.035786		4.6	100

CONTINUING CALIBRATION CHECK

8260B

		CONC. (ug/L)	RES	PONSE FACTOR	% I
Lab Sample ID:	T005455-CCV2	Inje	ection Time:	22:23	
Sequence:	<u>T005455</u>	Inje	ction Date:	<u>11/30/10</u>	
Lab File ID:	<u>S1823.D</u>	Cali	ibration Date:	<u>11/19/10_22:42</u>	
Instrument ID:	<u>HP5973S</u>	Cali	ibration:	<u>R10K091</u>	
Client:	HRP Engineering, PC	Proj	ject:	710 Ohio Street, Buffalo,	NY
Laboratory:	TestAmerica Buffalo	SDO	G:	RTK1380	

		CONC. (ug/L)		RESPONSE FACTOR			% DIFF / DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Propionitrile	Α	250	222	6.499329E-02	5.761815E-02		-11.3	100
Propylene Oxide	A	125	120	8.700981E-02	8.344964E-02		-4.1	100
t-Butanol	A	500	472	4.155732E-02	3.921758E-02		-5.6	100
Tert-Amyl Methyl Ether	Α	25.0	26.2	0.8457457	0.8880834		5.0	100

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

Calibration Type Legend:

A: Average RF

- L: Linear through Intercept Q: Quadratic
- L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero L02: 1/x2 Weighted Linear forced through Zero

	Quantitation Report	TA	Buffa	lo (Not	: Reviewe	d)	
Data File Acq On Sample Misc MS Integri	: D:\MSDCHEM\S\DATA\11 : 30 Nov 2010 22:23 : T005455-CCV2 :	3010\S1	823.D	C I M	Vial: Dperator: Inst : Multiplr:	3 NMD HP59 1.00	735
Quant Time	e: Nov 30 22:55:08 2010		Resu	lts File:	R10K091-	ADD.R	ES
Quant Met] Title Last Upda Response DataAcq Me IS QA File	hod : D:\MSDCHEM\S\R : 8260 ADD (25ml pu te : Mon Nov 29 22:23: via : Initial Calibrati eth : VOA e : 50 level for IS Q	10K091- rge) 07 2010 on A unkno	ADD.M	(RTE Inte o recoveri	egrator) les calcu	lated	•
Internal	Standards	R.T.	QIon	Response	Conc Un	its D R	ev(Min) cv(Ar)
1) CI10	1,4-Difluorobenzene	4.93	114	624331	25.00	ug/L	0.00 NA%
23) CI20	D5-Chlorobenzene	7.13	117	549226	25.00	ug/L	0.00 NA%
25) CI30	D4-1,4-Dichlorobenze	9.00	152	297128	25.00	ug/L	0.00 NA%
Target C	ompounds						Qvalue
2) C297	Chlorodifluoromethan	1.31	51	138583	19.52	ug/L	98
.3) C294	Dichlorofluoromethan	2.09	67	215176	23.49	ug/L	# 98
4) C271	Ethyl Ether	2.32	59	206743	25.42	ug/L	# 95
5) C 2	-Propanol	2.81	45	282432	460.03	ug/L	# 90 100
6) C959	t-Butyl Alconol	3.15	59 ∦1	489695	4/1.00	ug/L	100
7) CZ77	Chloroprepe	2.05	41 53	320861	24 72	ug/L	94
9) E678	Ethyl tert-butyl eth	3.83	59	596428	25.01	ug/L	94
10) C305	Propionitrile	4.14	54	359728	221.63	ug/L	# 1
11) C258	Ethyl Acetate	4.07	43	201604	22.58	ug/L	
12) C266	Methacrylonitrile	4.22	41	132750	22.77	ug/L	8 9 [:]
13) C264	Isopropyl ether	3.55	45	619404	23.08	ug/L	95
14) C200	Isobutanol	4.65	43	476616	943.33	ug/L	# 95
15) E677	2-Methoxy-2-methyl-b	4.70	73	554458	26.25	ug/L	4 99 4 99
16) C252	Heptane	4.76	43	297961	23.91	ug/L	# 83
19) C911	n-Butanol Mothwl Motheorylato	5 39	20 /1	180883	24 94	ug/L	± 78
10) C293	Propylene Oxide	2.40	58	260501	119.89	ug/L	# 74
20) C270	Epichlorohydrin	5.82	57	544138	497.40	ug/L	96
21) C251	1,1-Dimethoxyethane	3.62	75	53040	84.96	ug/L	# 49
22) C261	Hexane	3.34	57	307081	23.99	ug/L	93
24) C268	1,4 Dioxane	5.42	88	104792	1021.97	ug/L	86
26) C292	2-Nitropropane	5.73	43	304540	112.14	ug/L	98
27) C511	2-Methylthiopene	6.02	97	27020	1.08	ug/L	# 1
28) C512	3-Methylthiopene	6.29	197	607692 216800	23.08	ug/L	# 90
29) (969	4-Chlorobonzotrifluo	7.17	180	307761	26.00	ug/Σ υσ/Τ.	" 0 <i>9</i>
31) C968	2-Chlorobenzotrifluo	7.85	180	318064	25.51	ug/L	96
32) C287	3-Chlorotoluene	8.38	126	260363	26.19	ug/L	100
33) C285	Cyclohexanone	8.06	55	682135	363.17	ug/L	91
34) C799	Dicyclopentadiene	9.00	66	997225	24.58	ug/L	96
35) C801	1,2,3-Trimethylbenze	9.04	105	970670	26.14	ug/L	98
36) C285	Pentachloroethane	8.70	167	124888	30.57	ug/L	# 90
37) C 1	, 3, 5-Tricniorobenzene	10.12		303252	23.94 		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

;

÷
	(Quantitation	Report	TA	Buffalo	(Not	Reviewed	1)
Data File Acq On Sample Misc MS Integra	: ; ; ; ;	D:\MSDCHEM\S [\] 30 Nov 2010 T005455-CCV2 on Params: LS	DATA\113010 22:23 STINT.P)\s:	1823.D	C I N	Vial: Dperator: Inst : Aultiplr:	3 NMD HP5973S 1.00
Quant Time Quant Meth Title Last Updat Response v DataAcq Me	e: 1 od le ia th	Nov 30 22:55 : D:\MSDCHEN : 8260 ADD : Mon Nov 29 : Initial Ca : VOA	:08 2010 4\S\R10K((25ml purge) 9 22:23:07 2 alibration)91-) 201(Results Fi -ADD.M (RTE)	le: Inte	R10K091-A	ADD.RES

Abundance						TIC: St	823.D						
3400000								tene,					
3200000								isionitation Sector					
3000000							kanone,T	CRB BAck					
2800000							8 6 - Cycloh a	}					
2600000						ide	8						
2400000				,		ieczekilk jbri		attaine attaine 1995	a function - c				
2200000						9 (36CDHood							
2000000					anaqoir			irotokuene	Į	robenzene			
1800000				AME)	2-Methyl	mzotriñuorid	cotrificuonide	:287 3-Chlo		,3,5-Trichlor			
1600000				yl-butane (T .ene,l	C511 thiopene	4-Chioroba	Chiorobenz	0		ö			
1400000			er,T ether	ilikorobenz Diliuorobenz	2 3-Methyli	C970	C968 2	ethane,T					
1200000			şqpropyl eth ıyi tert-butyl	6735741994 6735741994 cl10 1,4-1 6.T	chlorohydrin C51			Pentachloro					
1000000		Hexane	Chlofoggifenk E678 Etti	n-Butanol,T Methacryla	Inde 2970 angle			C285					
800000	lethane, T chane, T Oxide	hloride,T M Alcohol,T C261	atnane ²²⁷⁹ Edylöhtlue,	C911 293 Methyl	C292 2-N								
600000	iorratiluoron arofluoromet 7. P. EKVI ER	J277 Allyl C C959 t-Bul	-Dimethoxy	C QXX8Ve QX									
400000	-C297-Ch C294 Dichk C273	2-Propart	C258 E	.268 1,4 D									
200000													
Time>	2.00	<u>17,77,71</u> 3.00	4.00	<u>- 1 'UL IU</u> 5.00	6.00	7.00	<u>المالي</u> 8.00	ام ال _ الم ∂.9	00	اہ ہے۔ 10.00	11.00	12.00	13.00

R10K091-ADD.M Tue Nov 30 22:55:11 2010 HP5973

	BFB Tune Evaluation		
Data File	: D:\MSDCHEM\S\DATA\111910\S1462.D	Vial:	1
Acq On	: 19 Nov 2010 23:07	Operator:	CDC
Sample	: T005292-TUN1	Inst :	HP5973S
Misc	:	Multiplr:	1.00
MS Integra	ation Params: RTEINT.P		

S1462.D R10K091-SIXPT.M S

ł

5

5

95

174

174

176

175

176

177

Sat Nov 20 00:03:46 2010 HP5973

7.4 |

6.1 |

1

95.1

1432

1135

18474

PASS

PASS

PASS

l

9

9

101

Average of 3.867 to 3.879 min.: S1462.D T005292-TUN1 Modified:subtracted

1100222000000						,	
m/z	abund.	m/z	abund.	m/z	. abund.	m/z	abund.
37.00	1121	68.00	2306	92.95	1025		
38.00	900	69.00	2223	94.00	2682		
39.00	450	73.00	1054	95.00	23376		
47.00	129	74.00	3952	96.00	1643		
49.00	942	75.00	11503	140.90	121		
50.00	4334	76.00	969	173.90	19434		
51.00	1313	78.90	545	174.90	1432		
57.00	613	80.90	632	175.90	18474		
61.00	969	86.95	1003	176.90	1135		
62.00	996	87.90	869				
63.00	869	91.95	650				

.

	BFB Tune Evaluation		
Data File	: D:\MSDChem\S\Data\113010\S1792.D	Vial:	1
Acq On	: 30 Nov 2010 9:45	Operator:	JRS
Sample	: T005434-TUN1	Inst :	HP5973S
Misc	:	Multiplr:	1.00
MS Integra	ation Params: RTEINT.P		

Method : D:\MSDCHEM\S\MET...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER

100

100

101

9

2

9

9

S1792.D R10K091-SIXPT.M

95

95

95

174

174

176

.174

100

5

0

50

95

5

5

1

ł

95

96

173

174

175

176

177

Tue Nov 30 09:53:57 2010 # HP5973

100.0

7.3

80.7

96.6

0.0 |

7.3 |

7.0 |

1

ł

1

9852

719

7947 |

7677

582 |

541 |

0 1

1

PASS

PASS

PASS

PASS

PASS

PASS

PASS

L

Average of 3.867 to 3.879 min.: S1792.D T005434-TUN1 Modified:subtracted

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
37.00	516	75.00	4936	176.90	541		
38.05	282	76.00	403				
48.95	399	86.95	343				
50.00	1625	87.90	118				
51.00	557	92.95	420				
61.00	271	94.00	1122				
61.95	448	95.00	9852				
68.00	918	96.00	719				
69.00	1048	173.90	7947				
73.00	401	174.85	582				
74.00	1439	175.90	7677				

	BFB TUNE EVALUATION		
Data File	: D:\MSDChem\S\Data\113010\S1821.D	Vial:	1
Acq On	: 30 Nov 2010 21:40	Operator:	NMD
Sample	: T005455-TUN1	Inst :	HP5973S
Misc	:	Multiplr:	1.00
MS Integra	ation Params: RTEINT.P		

Method : D:\MSDCHEM\S\MET...\R10K091-SIXPT.M (RTE Integrator)
Title : 8260 5ML WATER

Wed Dec 01 00:27:38 2010 HP5973 190/223 Average of 3.873 to 3.885 min.: S1821.D T005455-TUN1 Modified:subtracted

÷

HOUTTION DU	<i>p</i> craccea						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
37.00	1775	59.95	456	78.90	1016	174.90	2727
38.00	1642	61.00	1837	80.85	1074	175.90	36122
39.00	626	62.00	1984	86.95	1659	176.90	2419
44.00	531	63.00	1440	87.90	1730	•	
45.05	273	68.00	4151	92.00	1266		
46.95	546	69.00	4353	93.00	1864		
49.00	1624	69.95	267	94.00	5314		
50.00	7863	73.00	1856	95.00	47608		
51.00	2392	74.00	7162	96.00	3133		
55.95	648	75.00	21552	140.85	481		
56.95	1061	76.00	1993	173.90	37994		

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC	2		Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Laboratory	ID: <u>10K26</u>	74-BLK1	File ID:	<u> 81796.D</u>	
Sampled:		Prepared:	<u>11/29/</u>	<u>10 20:50</u>	Analyzed:	<u>11/30/10 11:11</u>	
Solids:	x	Preparation	: <u>5030</u> E	MS	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Se	quence: T	005434	Calibration:	R10K091	Instrument:	HP5973S
CAS NO.	COMPOUND			DILUTION	CON	C. (ug/L)	0
71-55-6	1.1.1-Trichloroethane	•		1		1.0	U
79-34-5	1,1,2,2-Tetrachloroet	hane		1		1.0	U
79-00-5	1,1,2-Trichloroethane	•		1		1.0	U
76-13-1	1,1,2-Trichlorotrifluo	roethane		1		1.0	U
75-34-3	1,1-Dichloroethane			1		1.0	U
75-35-4	1,1-Dichloroethene	· · · · · · · · · · · · · · · · · · ·		1		1.0	U
120-82-1	1,2,4-Trichlorobenzer	ne		1		1.0	U
95-63-6	1,2,4-Trimethylbenze	ene		1		1.0	U
96-12-8	1,2-Dibromo-3-chloro	opropane		1		1.0	U
106-93-4	1,2-Dibromoethane (l	EDB)		1		1.0	U
95-50-1	1,2-Dichlorobenzene	<u></u>		1		1.0	U
107-06-2	1,2-Dichloroethane			1		1.0	U
78-87-5	1,2-Dichloropropane			11		1.0	U
108-67-8	1,3,5-Trimethylbenze	ene		1		1.0	U
541-73-1	1,3-Dichlorobenzene			1		1.0	U
106-46-7	1,4-Dichlorobenzene			1		1.0	U
123-91-1	1,4-Dioxane			1		40	U
78-93-3	2-Butanone (MEK)			1		10	U
591-78-6	2-Hexanone			1		5.0	U
99-87-6	4-Isopropyltoluene		· · · · · · · · · · · · · · · · · · ·	1		1.0	U
108-10-1	4-Methyl-2-pentanon	e (MIBK)		1		5.0	U
67-64-1	Acetone			1		10	U
71-43-2	Benzene			1		1.0	U
75-27-4	Bromodichlorometha	ne		1		1.0	U
75-25-2	Bromoform			1		1.0	U
74-83-9	Bromomethane			1		1.0	U
75-15-0	Carbon disulfide		······	1		1.0	
56-23-5	Carbon Tetrachloride	;		1		1.0	
108-90-7	Chlorobenzene			1		1.0	
124-48-1	Chlorodibromometha	ine				1.0	
/2-00-3	Chlorof			<u>I</u>		1.0	
0/-00-3	Chlorom	<u> </u>	- <u></u>	1		1.0	
156 50 0	chioromethane		· · · · · · · · · · · · · · · · · · ·	<u>I</u>		1.0	U
10061 01 5	cis-1,2-Dichloroether			1		1.0	
110 92 7	Cuelchovers	CIIC				1.0	
75 71 9	Dichlorodiflygerer	2220		1		1.0	
100_41_4	Ethylbenzene			1		1.0	
00 02 0	Isopropulbangene		<u> </u>	<u>I</u>		1.0	
70-02-0	rsopropyioenzene			92/223	<u> </u>	1.0	U

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo		SDG:	RTK1380		
Client:	HRP Engineering, PC		Project:	710 Ohio Street, H	Buffalo, NY	
Matrix:	<u>Water</u> Labora	atory ID: <u>10K2</u>	<u>674-BLK1</u>	File ID:	<u>S1796.D</u>	
Sampled:	Prepar	red: <u>11/29</u>	/10 20:50	Analyzed:	<u>11/30/10 11:11</u>	
Solids:	Prepar	ration: <u>5030</u>	<u>B MS</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequence:	<u>T005434</u>	Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND		DILUTION	CONC	C. (ug/L)	Q
79-20-9	Methyl Acetate		1		1.0	U
1634-04-4	Methyl tert-Butyl Ether		1	,	1.0	U
108-87-2	Methylcyclohexane	<u></u>	1		1.0	U
75-09-2	Methylene Chloride	<u></u>	1	-	1.0	U
91-20-3	Naphthalene		1		1.0	U
104-51-8	n-Butylbenzene		1		1.0	U
103-65-1	n-Propylbenzene		1		1.0	U
135-98-8	sec-Butylbenzene		1		1.0	U
100-42-5	Styrene		1		1.0	U
98-06-6	tert-Butylbenzene		1		1.0	U
127-18-4	Tetrachloroethene	_	1		1.0	U
108-88-3	Toluene		1		1.0	U
156-60-5	trans-1,2-Dichloroethene		1		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1		1.0	U
79-01-6	Trichloroethene		1		1.0	U
75-69-4	Trichlorofluoromethane		1		1.0	U
75-01-4	Vinyl chloride		1		1.0	U
1330-20-7	Xylenes, total		1		2.0	U
SYSTEM MON	ITORING COMPOUND	ADDED (ug/I) CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4	25.0	28.4	114	66 - 137	
4-Bromofluorob	enzene	25.0	25.4	102	73 - 120	
Toluene-d8	······································	25.0	29.3	117	71 - 126	1
INTERNAL ST	ANDARD	AREA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4	252495	9	271855	9	
1,4-Difluorobenz	zene	547766	4.93	567241	4.93	
Chlorobenzene-o	15	252618	7.13	272887	7.13	

		Qua	ntitation	Report		ТА	Buffal	10 (No	ot Reviewe	ed)		
Data Acq (Samp) Misc MS Ir Quant	File : On : Le : ntegrat t Time:	D:\ 30 10K ion Nov	MSDChem\S Nov 2010 2674-BLK1 Params: R 30 11:40	\Data\11 11:11 TEINT.P :58 2010	.301	0\s: (Resul	lts File:	Vial: Operator: Inst Multiplr: R10K091-	5 JRS HP597 1.00 -SIXPT.	3S RES	
Quant Title Last Respo Data IS QA	t Metho e Update onse vi Acq Met A File	d : : a : h :	D:\MSDCHE 8260 5ML Tue Nov 3 Initial C VOA D:\MSDChe	M\S\F WATER O 11:37: alibrati m\S\Data	38 .on	091- 2010 3010	-SIXPT 0 0\S179:	.M (RTE 3	Integrator No Tr No A Nov 2010	r) iC id (10:08)	ST IVSI	TC M
Inte	ernal S	tand	lards		R	.т.	QIon	Response	e Conc Ur	nits De Rc	v(Min) v(Ar)	
 1)	CI10	1,4-	Difluorob	enzene	<u>-</u> 4	.93	114	547766	25.00	ug/L	0.00	
42)	CT20	Chle	robenzene	- D5	7	.13	82	252618	25.00	ug/L	96.57% 0.00	r
	0120	7 4	Dichlanch		0	00	150	252405	25 00	ng/T	92.57%	
62)	CT30	1,4-	DICNIOLOD	enzene-	9	.00	152	202490	25.00	ug/h	92.88%	
Sys; 30) Sp: 43) Sp: 61) Sp:	tem Mon CS15 iked Am CS05 iked Am CS10 iked Am	itor 1,2- ount Tolu ount p-Br	ring Compo Dichloroe 25.0 lene-D8 25.0 comofluoro 25.0	unds thane-D 00 Rar 00 Rar benzene 00 Rar	4 nge 6 nge 8 nge	.64 66 .02 71 .07 73	65 - 137 98 - 126 174 - 120	218840 Reco 660048 Reco 193823 Reco	28.44 very = 29.31 very = 25.43 very =	ug/L 113.76 ug/L 117.24 ug/L 101.72	0.00 % 0.00 %	
Tar	get Com	pour	nds			_				Q	value	
2) 3)	C290 C010	DichChlo	lorodiflu promethane	orome	0.0	0	85 50	0 <u>.</u> 0	N.D. N.D.			
4)	C020	Viny	l chlorid	e	0.0	0	62	0	N.D.			
5) 6)	C015 C025	Chlo	oroethane		0.0	0	94 64	0	N.D. N.D.			
7)	C275	Tric	chlorofluo	romet	0.0	0	101	0	N.D.			
8) 9)	C045 C030	1,⊥- Met]	-Dichioroe Nylene chl	thene oride	3.0	4	96 84	1398	N.D. N.D.			
10)	C040	Cark	oon disulf	ide	0.0	0	76	0	N.D.			
11)	C036	Acro	olein Nomitrile		0.0	0	56 53	0	N.D. N.D.			
13)	C035	Acet	cone	•	2.6	5	43	145	N.D.			
14) 15)	C300	Acet	onitrile-	-	2	95	- <u>41</u> - 142	1730		ug/L-	- 76	
16)	C291	1,1,	2-Trichlo	ro-1,	0.0	ŏ	101	ŏ	N.D.			
17)	C962	T-bi	ityl Methy	1 Eth	0.0	0	73	0	N.D.			
19)	C255	Meth	nyl Acetat	:e	0.0		43	ŏ	N.D.			
20)	C050	1,1.	-Dichloroe	thane	0.0	0	63	0	N.D.			
21)	C125 C051	Viny 2 2	yl Acetate	ronan	0.0	0 0	43	0	N.D.			
23)	C056	cis.	-1,2-Dichl	oroet	0.0	õ	96	õ	N.D.			
24)	C272	Tet	rahydrofur	an	0.0	00	42	0	N.D.			
25)	C222 C060	Chl	nocniorome proform	thane	4.2	25	83	363	N.D. N.D.			
27)	C115	1,1	,1-Trichlo	broeth	0.0	0	97	0	N.D.			
28)	C120	Carl	oon tetrac	hlori	0.0	0	117	0	N.D.			
2 <i>9)</i> 31)	C165	Ben:	zene	ropen	0.0	00	78	ŏ	N.D.			
32)	C065	1,2	-Dichloroe	thane	0.0	00	62	0	N.D.			
33) 34∖	C110 C256	2-Bi	lohexane		0.0	00	43 56	0	N.D. N.D.			JM'
35)	C150	Tri	chloroethe	ene	0.0	50	95	ŏ	N.D.			Ś,
36)	C140	1,2	-Dichlorop	ropan	0.0	00	63	. 0	N.D.			<u>ک</u>
37) 381	C278 C130	D1D: Broi	romomethar	ne metha	0.0	00	93 83	U 0	N.D. N.D.		C.H	h
39)	C161	2-0	hloroethyl	vinyl	0.0	00	63	õ	N.D.		(h	

		Quantitation Report	: ta	Buffa	lo (Not	Reviewed	>
Data Acq C Sampl Misc MS In Quant	File : On : .e : ntegrat Time:	D:\MSDChem\S\Data\3 30 Nov 2010 11:11 10K2674-BLK1 ion Params: RTEINT.1 Nov 30 11:40:58 203	13010\S P 10	1796.D Resu	Op In Mu lts File: 1	Vial: perator: nst : ultiplr: R10K091-S	5 JRS HP5973S 1.00 IXPT.RES
Quant Title Last Respo Data IS QA	Metho Update Onse vi Acq Met File	od : D:\MSDCHEM\S` : 8260 5ML WATER : Tue Nov 30 11:3 a : Initial Calibrat :h : VOA : D:\MSDChem\S\Dat	\R10K091 7:38 201 tion ta\11301	-SIXPT .0 .0\S179	.M (RTE In 3.D (30 No	tegrator) v 2010 1	0:08)
Inte	ernal S	Standards	R.T.	QION	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
$\begin{array}{c} 40\\ 41\\ 45\\ 46\\ 10\\ 51\\ 52\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 56\\ 66\\ 66$	$\begin{array}{c} \text{C012} \\ \text{C145} \\ \text{C230} \\ \text{C170} \\ \text{C284} \\ \text{C160} \\ \text{C220} \\ \text{C221} \\ \text{C155} \\ \text{C2235} \\ \text{C240} \\ \text{C247} \\ \text{C245} \\ \text{C246} \\ \text{C247} \\ \text{C245} \\ \text{C246} \\ \text{C247} \\ \text{C282} \\ \text{C282} \\ \text{C302} \\ \text{C308} $	Methylcyclohexane cis-1,3-Dichloropr Toluene trans-1,3-Dichloro Ethyl Methacrylate 1,1,2-Trichloroeth 4-Methyl-2-pentano Tetrachloroethene 1,3-Dichloropropan Dibromochlorometha 1,2-Dibromoethane 2-Hexanone Chlorobenzene 1,1,1,2-Tetrachlor Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromobenzene 1,1,2,2-Tetrachlor 1,2,3-Trichloropro t-1,4-Dichloro-2-B n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylben tert-Butylbenzene 1,2,4-Trimethylben sec-Butylbenzene	0.00 0.00	8797593366973211666435563011665545560 11011111111111111111111111111111111	0 0 0 0 2641 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
76) 77) 78) 79) 80) 81) 82) 83) 83) 84)	C309 C267 C249 C310 C286 C313 C316 C314 C934	1,4-Dichlorobenzen 1,2-Dichlorobenzen n-Butylbenzene 1,2-Dibromo-3-Chlo 1,2,4-Trichloroben Hexachlorobutadien Naphthalene 1,2,3-Trichloroben	9.02 0.00 9.29 0.00 10.65 10.76 10.87 11.05	146 146 91 75 180 225 128 180	128 0 631 0 988 824 3477 1502	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

:

	Quantitation Report	TA	Buffa	lo (Not	: Reviewe	ed)	
Data File Acq On Sample Misc	: D:\MSDChem\S\Data\1 : 30 Nov 2010 11:11 : 10K2674-BLK1	13010\s	1796.D) [] [] [] []	Vial: Dperator: Inst : Multiplr:	5 JRS HP5973S 1.00	
Quant Time	1011 Params. ESTINI.P Nov 30 11:41:20 2010	0 .	Resu	lts File:	R10K091-	ADD.RES	
Quant Metho Title Last Update Response v DataAcq Met IS QA File	od : D:\MSDCHEM\S\ : 8260 ADD (25ml pr : Mon Nov 29 22:23) : Initial Calibrat: : VOA : 50 level for IS (R10K091 urge) :07 201 ion QA unkn	-ADD.M 0 own. N	(RTE Inte	egrator) ies calcu	lated.	
Internal S	Standards	R.T.	QIon	Response	Conc Ur	nits Dev(M Rcv(A	(in) Ar)
1) CI10	1,4-Difluorobenzene	4.93	114	547229	25.00	ug/L (NA%	0.00
23) CI20	D5-Chlorobenzene	7.13	117	472514	25.00	ug/L (NA%	0.00
25) CI30	D4-1,4-Dichlorobenze	9.00	152	252495	25.00	ug/L (NA%	0.00
Target Cor 2) C297 3) C294 4) C271 5) C 2-1 6) C959 7) C277 8) C279 9) E678 10) C305 11) C258 12) C266 13) C264 14) C200 15) E677 16) C252 17) C911 18) C293 19) C273 20) C270 21) C251 22) C261 24) C268 26) C292 27) C511 28) C512	npounds Chlorodifluorometh Dichlorofluorometh Ethyl Ether Propanol t-Butyl Alcohol Allyl Chloride Chloroprene Ethyl tert-butyl e Propionitrile Ethyl Acetate Methacrylonitrile Isopropyl ether Isobutanol 2-Methoxy-2-methyl Heptane n-Butanol Methyl Methacrylat Propylene Oxide Epichlorohydrin 1,1-Dimethoxyethan Hexane 1,4 Dioxane 2-Methylthiopene	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	51795913945155543153361875757883970	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Qva]	lue 1
29) C969 30) C970 31) C968 32) C287 33) C285 34) C799 35) C801 36) C285 37) C 1,	3-Chlorobenzotrifl 4-Chlorobenzotrifl 2-Chlorobenzotrifl 3-Chlorotoluene Cyclohexanone Dicyclopentadiene 1,2,3-Trimethylben Pentachloroethane 3,5-Trichlorobenzen	0.00 0.00 0.00 8.06 9.00 0.00 0.00 0.00	180 180 126 55 66 105 167 180	0 0 368 4837 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		;

(#) = qualifier out of range (m) = manual integration (+) = signals summed

•

÷

Quantitation ReportTA Buffalo(Not Reviewed)Data File : D:\MSDChem\S\Data\113010\S1796.DVial: 5Acq On : 30 Nov 2010 11:11Operator: JRSSample : 10K2674-BLK1Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Nov 30 11:40:58 2010Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator)Title : 8260 5ML WATERLast Update : Tue Nov 30 11:37:38 2010Response via : Initial CalibrationDataAcq Meth : VOA

Abundance				~		TIC: S	61796.D]
1500000								т Т					
1400000								orobenzene-D					
1300000					Hene-B8,S	P5,I		130 1.4-Dichle	-				
1200000				-		ໍ່ກ່າວຄວ້ອກຂອກຍ	Ø	ہ ا	1				
1100000				luorobanzene		CI20 C	uorobenzene,						
1000000				CI10 1,4-Dif			10 p-Bromofi						
900000							S						
800000													
700000			٥										
600000			an diamandan an diamandan										
500000			10 10 10 10 10 10 10 10 10 10 10 10 10 1					-					
400000													
300000							-						
200000		etonitrile,T											
100000		C300 Ac											
01 Time>	2.00	3.00	4.00	<u>, , , ,</u> 5.00	<u> </u>	7.00	8.00	9.	00	10.00	11.00	12.00	13.00

R10K091-SIXPT.M Tue Nov 30 11:41:01 201023HP5973

ORGANIC ANALYSIS DATA SHEET

8260B

Błank

Laboratory:	TestAmerica Buffalo		SDG:	RTK1380				
Client:	HRP Engineeri	ng, PC			Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Labo	ratory ID:	<u>10K277</u>	8-BLK1	File ID:	<u>S1825.D</u>	
Sampled:		Prepa	red:	<u>11/30/1</u>	<u>0 21:21</u>	Analyzed:	<u>11/30/10 23:06</u>	<u>.</u>
Solids:		Prepa	tration:	<u>5030B I</u>	MS	Initial/Final: <u>5 mL / 5 mL</u>		
Batch:	<u>10K2778</u>	Sequence:	<u>T005455</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND		- 1 ₁₁ 11		DILUTION	CON	NC. (ug/L)	Q
71-55-6	1,1,1-Trichloro	ethane			1		1.0	U
79-34-5	1,1,2,2-Tetrach	loroethane			1		1.0	U
79-00-5	1,1,2-Trichloro	ethane			1		1.0	U
76-13-1	1,1,2-Trichloro	trifluoroethane			1		1.0	U
75-34-3	1,1-Dichloroeth	hane			11		1.0	U
75-35-4	1,1-Dichloroet	hene			11		1.0	U
120-82-1	1,2,4-Trichloro	benzene			1		1.0	U
95-63-6	1,2,4-Trimethy	lbenzene		·····	1		1.0	U
96-12-8	1,2-Dibromo-3	-chloropropane			1		1.0	U
106-93-4	1,2-Dibromoet	hane (EDB)			11		1.0	U
95-50-1	1,2-Dichlorobe	nzene			1		1.0	U
107-06-2	1,2-Dichloroet	hane			1		1.0	U
78-87-5	1,2-Dichloropr	opane			11		1.0	U
108-67-8	1,3,5-Trimethy	lbenzene		· · · · · · · · · · · · · · · · · · ·	11		1.0	<u> </u>
541-73-1	1,3-Dichlorobe	nzene			1		1.0	U
106-46-7	1,4-Dichlorobe	mzene			1		1.0	U
123-91-1	1,4-Dioxane				1		40	<u> </u>
78-93-3	2-Butanone (M	EK)			1		10	U
591-78 - 6	2-Hexanone				1		5.0	U
<u>99-87-6</u>	4-Isopropyltolu	iene			1		1.0	<u> </u>
108-10-1	4-Methyl-2-per	ntanone (MIBK)			1		5.0	U
67-64-1	Acetone				1		10	<u>U</u>
71-43-2	Benzene				1		1.0	U
75-27-4	Bromodichloro	methane			1		1.0	Ŭ
75-25-2	Bromoform				1		1.0	U
74-83-9	Bromomethane	<u> </u>			1		1.0	<u> </u>
75-15-0	Carbon disulfic	le			1		1.0	0
56-23-5	Carbon Tetrach	loride			1		1.0	<u> </u>
108-90-7	Chlorobenzene				1		1.0	
124-48-1	Chlorodibromo	omethane		· · · · · · · · · · · · · · · · · · ·	1		1.0	
75-00-3	Chloroethane				1		1.0	U
67-00-3	Chloroform				1		1.0	U
14-8/-3	chioromethane	;			1		1.0	
10061 01 5	cis-1,2-Dichlor	ocurene			1		1.0	
110 02 7	Cyclohevene	opropene	<u> </u>		1		1.0	
75_71 9	Dichlorodifluo	romethane			1		1.0	
100_41 4	Fthylhonzonc	i oniculane			1		1.0	
08-87-8	Isopropulberge			<u></u>	1		1.0	
70-02-0	Isopropytoenze			19	8/223	<u> </u>	1.0	

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380			
Client:	HRP Engineering, PC			Project:	710 Ohio Street, B	uffalo, NY		
Matrix:	Water	Laboratory ID:	<u>10K2778</u>	<u>3-BLK1</u>	File ID:	<u>S1825.D</u>		
Sampled:		Prepared:	<u>11/30/10</u>	21:21	Analyzed:	<u>11/30/10 23:06</u>		
Solids:		Preparation:	5030B N	<u>15</u>	Initial/Final:	<u>5 mL / 5 mL</u>		
Batch:	<u>10K2778</u> Sequence	: <u>T005455</u>		Calibration:	R10K091 Instrument:		<u>HP5973S</u>	
CAS NO.	COMPOUND			DILUTION	CONC	Q		
79-20-9	Methyl Acetate			1	1	U		
1634-04-4	Methyl tert-Butyl Ether			1	1	.0	U	
108-87-2	Methylcyclohexane			1	1	.0	U	
75-09-2	Methylene Chloride			1	1	.0	U	
91-20-3	Naphthalene			1	1	.0	U	
104-51-8	n-Butylbenzene		<u> </u>	1	1	U		
103-65-1	n-Propylbenzene			1	1	U		
135-98-8	sec-Butylbenzene			1	1	.0	U	
100-42-5	Styrene			1	1	.0	U	
98-06-6	tert-Butylbenzene			1	1	.0	U	
127-18-4	Tetrachloroethene			1	1.0		U	
108-88-3	Toluene			1	1.0		U	
156-60-5	trans-1,2-Dichloroethene			1	1	.0	U	
10061-02-6	trans-1,3-Dichloropropene			1	1	.0	<u> </u>	
79-01-6	Trichloroethene			1	1	.0	U	
75-69-4	Trichlorofluoromethane			1	1	.0	U	
75-01-4	Vinyl chloride			1	1	.0	U	
1330-20-7	Xylenes, total			1	2	2.0	U	
SYSTEM MON	NITORING COMPOUND ADDED () (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
1,2-Dichloroetha	nane-d4 25.0		5.0	28.3	113	66 - 137		
4-Bromofluorob	benzene 25.0		5.0	26.4	106	73 - 120		
Toluene-d8		25	5.0	29.5	118	71 - 126		
INTERNAL ST	ANDARD	AR	EA	RT	REF AREA	REF RT	Q	
1,4-Dichloroben	zene-d4	274	068	9	293655	9		
1,4-Difluoroben:	luorobenzene 590980			4.93	625254	4.93		
Chlorobenzene-o	d5 270799			7.13	298495	7.13		

Quantitation Report TA Buffalo (Not Reviewed) Vial: 5 Data File : D:\MSDCHEM\S\DATA\113010\S1825.D Acq On : 30 Nov 2010 23:06 Sample : 10K2778-BLK1 Operator: NMD Inst : HP5973S Multiplr: 1.00 Misc . MS Integration Params: RTEINT.P Quant Time: Nov 30 23:20:54 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 23:20:20 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1822.D (30 Nov 2010 22:02) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 590980 25.00 ug/L 0.00 94.52% 7.13 82 270799 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 90.72% 62) CI30 1,4-Dichlorobenzene- 9.00 152 274068 25.00 ug/L 0.00 93.33% System Monitoring Compounds 30) CS15 1,2-Dichloroethane-D4.646523519328.33 ug/L0.00Spiked Amount25.000Range66 - 137Recovery=113.32%43) CS05 Toluene-D86.029871173029.49 ug/L0.00Spiked Amount25.000Range71 - 126Recovery=117.96%61) CS10p-Bromofluorobenzene8.0717421551626.38 ug/L0.00Spiked Amount25.000Range73 - 120Recovery=105.52% Target Compounds2) C290 Dichlorodifluorome0.00 653) C010 Chloromethane0.00 504) C020 Vinyl chloride0.00 625) C015 Bromomethane0.00 647) C275 Trichlorofluoromet0.00 1018) C045 1,1-Dichloroethene0.00 969) C030 Methylene chloride3.02 84 510) C040 Carbon disulfide0.00 5611) C036 Acrolein0.00 5612) C038 Acrylonitrile0.00 4115) C276 Iodomethane0.00 4116) C291 1,1,2-Trichloro-1,0.00 10117) C962 T-butyl Methyl Eth0.00 7318) C057 trans-1,2-Dichloro0.00 4320) C050 1,1-Dichloroethane0.00 4321) C125 Vinyl Acetate0.00 4322) C051 2,2-Dichloropropan0.00 7723) C056 cis-1,2-Dichloroet0.00 4225) C222 Bromochloromethane0.00 12826) C060 Chloroform4.26 83 427) C115 1,1,1-Trichloroeth0.00 97 Qvalue Target Compounds 0 N.D. 0 N.D. 0 N.D. 0 N.D. 0 N.D. 0 N.D. 500 N.D. 0 N.D. N.D. N.D. 0 N.D. N.D. 0 0 0 N.D. N.D. N.D. 0 0 N.D. N.D. 0 N.D. 0 N.D. 0 N.D. 0 N.D. 0 N.D. N.D. 0 26) C060 Chloroform 4.26 83 N.D. 467 0 0 0 0 27) C1151,1,1-Trichloroeth0.009728) C120Carbon tetrachlori0.0011729) C1161,1-Dichloropropen0.0075 N.D. N.D. 75 N.D. 0.00 75 0.00 78 Benzene N.D. 31) C165 0.00 62 1,2-Dichloroethane 0 N.D. 32) CO65 33) C110 2-Butanone 34) C256 Cyclohexane 0.00 43 0 N.D.
 34)
 C256
 Cyclohexane
 0.00
 56

 35)
 C150
 Trichloroethene
 0.00
 95
 0 N.D. 0 N.D. 0 N.D. 36) C140 1,2-Dichloropropan 0.00 63 0 N.D. 37) C278 Dibromomethane 0.00 93 0.00 83 0.00 63 0 N.D. 38) C130 Bromodichlorometha ō N.D. 39) C161 2-Chloroethylvinyl

Page: 1

Qı	uantitation Report	TA	Buffalo	o (Not	Reviewed	
Data File : D: Acq On : 30 Sample : 10 Misc : MS Integration Quant Time: No	:\MSDCHEM\S\DATA\1 0 Nov 2010 23:06 0K2778-BLK1 n Params: RTEINT.F ov 30 23:20:54 201	.13010\s: .0	1825.D Result	Op In Mu ts File: R	Vial: 9 erator: 1 st : 1 ltiplr: 3 10K091-S	5 NMD HP5973S L.00 LXPT.RES
Quant Method : Title : Last Update : Response via : DataAcq Meth : IS OA File :	: D:\MSDCHEM\S\ : 8260 5ML WATER : Tue Nov 30 23:20 : Initial Calibrat : VOA : D:\MSDCHEM\S\DAT	R10K091. 20 2010 ion A\113010	-SIXPT.N 0 0\S1822.	4 (RTE Int .D (30 Nov	egrator) 2010 2	2:02)
Internal Star	ndards	R.T.	QIon H	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
40) C012 Met 41) C145 cis 44) C230 To 45) C170 tra 46) C284 Et 47) C160 1, 48) C210 4-1 49) C220 Te 50) C221 1, 51) C155 Dil 52) C163 1, 53) C215 2-1 54) C235 Ch 55) C281 1, 56) C240 Et 57) C246 m, 56) C240 Et 57) C246 m, 58) C247 o-2 59) C245 St 60) C180 Bro 63) C966 Is 64) C301 Bro 63) C966 Is 64) C301 Bro 65) C225 1, 66) C282 1, 67) C283 t- 68) C302 n- 69) C303 2-0 70) C289 4-0 71) C304 1, 72) C306 te 73) C307 1, 74) C308 se 75) C260 1, 76) C309 4- 77) C267 1, 78) C249 1, 79) C310 n- 80) C286 1, 81) C313 1, 82) C314 Na 84) C934 1.	thylcyclohexane s-1,3-Dichloropr luene ans-1,3-Dichloro hyl Methacrylate 1,2-Trichloroeth Methyl-2-pentano trachloroethene 3-Dichloropropan bromochlorometha 2-Dibromoethane Hexanone lorobenzene 1,2-Tetrachlor hylbenzene p-Xylene Xylene yrene omoform opropylbenzene 1,2,2-Tetrachlor 2,3-Trichloropro 1,4-Dichloro-2-B Propylbenzene Chlorotoluene 3,5-Trimethylben rt-Butylbenzene 2,4-Trimethylben c-Butylbenzene 3-Dichlorobenzen Isopropyltoluene 4-Dichlorobenzen Butylbenzene 2-Dibromo-3-Chlo 2,4-Trichloroben kachlorobutadien phthalene 2-3-Trichloroben	0.00 0.00	83 75 92 75 69 43 166 729 127 121 121 106 107 1297 121 121 106 107 1207 121 125 1105 126 125 126 126 126 126 126 126 126 126 126 126	0 0 0 2764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		Quantitation	Report	TA	Buffa	lo (Not	: Reviewe	d)	
Data Acq C Sampl Misc MS Ir	File)n .e ntegrat	: D:\MSDCHEM\S\ : 30 Nov 2010 : 10K2778-BLK1 : : tion Params: LS	DATA\11 23:06	13010\S	1825.D	C I M	Vial: Dperator: Inst : Multiplr:	5 NMD HP59 1.00	973S)
Quant	: Time:	: Nov 30 23:21:	18 2010)	Resu	lts File:	R10K091-	ADD.F	ES
Quant Title Last Respo Data IS QA	: Metho Update onse v: Acq Met A File	od : D:\MSDCHEN : 8260 ADD e : Mon Nov 29 ia : Initial Ca th : VOA : 50 level 1	4\S\F (25ml pu 9 22:23: alibrati For IS (R10K091- arge) 207 201 200 20 unkno	-ADD.M 0 own. N	(RTE Inte o recoveri	egrator) les calcu	lated	1.
Inte	ernal :	Standards		R.T.	QIon	Response	Conc Ur	nits I F	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobe	enzene	4.93	114	589651	25.00	ug/L	0.00 NA%
23)	CI20	D5-Chlorobenze	ene	7.13	117	506304	25.00	ug/L	0.00 NA%
25)	CI30	D4-1,4-Dichlos	robenze	9.00	152	274068	25.00	ug/L	Q.00 NA&
Targ	get Co	mpounds							Qvalue
2)	C297	Chlorodifluor	ometh	0.00	51	0	N.D.		
3)	C294	Dichlorofluor	ometh	0.00	67	0	N.D.		
4)	C271	Etnyi Etner		0.00	29	0	N.D.		
5)	C 2~.	Propanol	-1 ·	0.00	40 50	0			
(0) 7)	C959	Allyl Chloride	2 7	0,00	41	õ	N.D.		
8)	C279	Chloroprene	5	0.00	53	õ	N.D.		
· 9)	E678	Ethyl tert-but	tvl e	0.00	59	ō	N.D.		
10)	C305	Propionitrile	- 4	0.00	54	0	N.D.		
11)	C258	Ethyl Acetate		0.00	43	0	N.D.		
12)	C266	Methacrylonit:	rile	0.00	41	0	N.D.		
13)	C264	Isopropyl ethe	er	0.00	45	0	N.D.		
14)	C200	Isobutanol		0.00	43	0	N.D.		
15)	E677	2-Methoxy-2-me	ethy⊥	0.00	73	U	N.D.		
16)	C252	Heptane		0.00	43	0	N.D.		
1/)	C203	Methyl Methac	rvlat	0.00	<u>41</u>	0	N D		
19)	C273	Propylene Oxid	de	0.00	58	õ	N.D.		
20)	C270	Epichlorohydr	in	0.00	57	Ó	N.D.		
21)	C251	1,1-Dimethoxy	ethan	0.00	75	0	N.D.		
22)	C261	Hexane		0.00	57	0	N.D.		
24)	C268	1,4 Dioxane		0.00	88	0	N.D.		
26)	C292	2-Nitropropan	e	0.00	43	0	N.D.	<i>.</i> _	
27)	C511	2-Methylthiop	ene	6-02	97_			-ug-	# 1
28)	C512	3-Methylthiop	ene	0.00	9/ 190	0	N.D.		
29)	C969	3-Chlorobenzo	CELEL traif?	0.00	180	0	N D		
30)	C970	2-Chlorobenzo	6£111 +~;f]	0.00	180	0	N.D.		
321	C287	3-Chlorotolue	ne	0.00	126	õ	N.D.		
33)	C285	Cvclohexanone		8.07	55	520	N.D.		
34)	C799	Dicyclopentad	iene	9.00	66	5198	N.D.		
35)	C801	1,2,3-Trimeth	ylben	0.00	105	0	N.D.		
36)	C285	Pentachloroet	hane	0.00	167	0	N.D.		
37)	C 1,	3,5-Trichlorob	enzen	0.00	180	0	N.D.		

;

ł

(#) = qualifier out of range (m) = manual integration (+) = signals summed

.

Quantitation ReportTA Buffalo(Not Reviewed)Data File : D:\MSDCHEM\S\DATA\113010\S1825.DVial: 5Acq On : 30 Nov 2010 23:06Operator: NMDSample : 10K2778-BLK1Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: RTEINT.PResults File: R10K091-SIXPT.RESQuant Time: Nov 30 23:20:54 2010Results File: R10K091-SIXPT.RESQuant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator)1112Title : 8260 5ML WATER23:20:20 2010Last Update : Tue Nov 30 23:20:20 2010Response via : Initial CalibrationDataAcq Meth : VOAVoa

Abundance	<u></u>					TIC: S1	825.D]
1600000								Ļ				
1500000								obenzene-D*				
1400000					e 1 28,S	2		0 1,4-Dichlor				
1300000					3606 Tolu an	abenzene-Df	ş	CIR				
1200000				anzane,l		CI20 Chion	uorobenzene					
1100000				l,4-Difluorobs			0 p-Bromofi					
1000000				C110 1			CS1					
900000												
800000												
700000				0'F								
600000				-Decinoidae								
500000				1								
400000												
300000												
200000												
100000												
0 Time>	2.00	3.00	4.00	5,00	6.00	7.00		9.00	10.00	11.00	12.00	13.00

R10K091-SIXPT.M Tue Nov 30 23:20:58 2010 HP5973

,

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Bu	<u>iffalo</u>			SDG:	RTK1380		
Client:	HRP Engineerii	ng, PC			Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Labor	atory ID:	<u>10K2674</u>	<u>4-BS1</u>	File ID:	<u>S1795.D</u>	
Sampled:		Prepa	red:	11/29/10	20:50	Analyzed:	<u>11/30/10 10:50</u>	
- Solids:		Prepa	ration:	5030B N	AS	Initial/Final:	5 mL / 5 mL	
Batch:	10K2674	Sequence:	T005434		 Calibration:	R10K091	Instrument:	HP5973S
CAS NO	COMPOUND			- <u>-</u>	DILUTION		NC. (ng/L)	0
71-55-6	1.1.1-Trichloro	ethane			1		27.9	
79-34-5	1,1,2,2-Tetrach	loroethane		······	1		24.9	
79-00-5	1,1,2-Trichloro	ethane			1		23.8	
76-13-1	1,1,2-Trichlorot	rifluoroethane			1		24.1	
75-34-3	1,1-Dichloroeth	ane		- <u>-</u>	1		23.8	
75-35-4	1,1-Dichloroeth	ene			1		23.5	
120-82-1	1,2,4-Trichlorol	benzene			1		24.9	
95-63-6	1,2,4-Trimethyl	benzene			1		25.8	
96-12-8	1,2-Dibromo-3-	chloropropane			1		20.3	
106-93-4	1,2-Dibromoeth	ane (EDB)			1		25.0	
95-50-1	1,2-Dichlorober	nzene			1		24.2	
107-06-2	1,2-Dichloroeth	ane			1		24.5	
78-87-5	1,2-Dichloropro	opane			11		23.2	
108-67-8	1,3,5-Trimethyl	benzene	·····		1		25.4	
541-73-1	1,3-Dichlorober	nzene			1		24.5	
106-46-7	1,4-Dichlorobe	nzene			1		23.6	
123-91-1	1,4-Dioxane			- <u></u>	1		40	<u> </u>
78-93-3	2-Butanone (M	EK)			1		112	
591-78-6	2-Hexanone		· · · · · · · · · · · · · · · · · · ·		1		128	
99-8/-6	4-Isopropyltolu	ene () (IDK)			1		20.0	
108-10-1	4-Methyl-2-pen	tanone (MIBK)			1		111	
71 42 2	Acetone		· · · · · · · · · · · · · · · · · · ·		1		22.4	
71-43-2	Bromodichloro				1		23.4	
75 25 2	Bromoform	шешаце			1		10 7	
75-25-2	Bromomethane				1		25.7	
75-15-0	Carbon disulfid	e	<u> </u>		1		20.4	
56-23-5	Carbon Tetrach	loride			1		26.6	
108-90-7	Chlorobenzene				1		24.0	
124-48-1	Chlorodibromo	methane			1		22.1	
75-00-3	Chloroethane				1		31.5	
67-66-3	Chloroform				1		24.0	
74-87-3	Chloromethane				1		21.9	
156-59-2	cis-1,2-Dichlor	oethene			1		24.1	
10061-01-5	cis-1,3-Dichlor	opropene			1		21.9	
110-82-7	Cyclohexane				1		22.3	
75-71-8	Dichlorodifluor	omethane			1		22.5	
100-41-4	Ethylbenzene				1		24.8	
98-82-8	Isopropylbenze	ne			1		25.7	

Form Rev: 9/21/10

ORGANIC ANALYSIS DATA SHEET

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street, B	uffalo, NY	
Matrix:	Water I	aboratory ID:	<u>10K2674</u>	4-BS1	File ID:	<u>S1795.D</u>	
Sampled:	F	repared:	11/29/10	20:50	Analyzed:	<u>11/30/10 10:50</u>	
Solids:	F	Preparation:	<u>5030B N</u>	<u>1S</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10K2674 Sequence:	<u>T005434</u>		Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND			DILUTION	CONC	:. (ug/L)	Q
79-20-9	Methyl Acetate			1	2		
1634-04-4	Methyl tert-Butyl Ether			1	2:		
108-87-2	Methylcyclohexane			1	2:	3.4	
75-09-2	Methylene Chloride			1	24		
91-20-3	Naphthalene			1	2	1.5	
104-51-8	n-Butylbenzene			1	2:		
103-65-1	n-Propylbenzene			1	2:		
135-98-8	sec-Butylbenzene			1	2:	5.7	
100-42-5	Styrene			1	2:	5.6	
98-06-6	tert-Butylbenzene			1	2:	5.9	
127-18-4	Tetrachloroethene			1	2		
108-88-3	Toluene			1	2		
156-60-5	trans-1,2-Dichloroethene			1	2	3.6	
10061-02-6	trans-1,3-Dichloropropene			1	2:		
79-01-6	Trichloroethene			1	2	3.5	
75-69-4	Trichlorofluoromethane			1	2	3.6	
75-01-4	Vinyl chloride			1	20	5.5	
1330-20-7	Xylenes, total			1	7:	5.0	
SYSTEM MONI	TORING COMPOUND	ADDED	(ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ane-d4		.0	28.0	112	66 - 137	
4-Bromofluorobe	orobenzene 2:		.0	26.1	104	73 - 120	
Toluene-d8	oluene-d8 25.0		.0	29.0	116	71 - 126	
INTERNAL STA	NDARD	AR	EA	RT	REF AREA	REF RT	Q
1,4-Dichlorobenzene-d4 276508			9	271855	9		
1,4-Difluorobenz	1,4-Difluorobenzene 568725			4.93	567241	4.93	
Chlorobenzene-d	Chlorobenzene-d5 275305			7.13	272887		

Quantitation Report TA Buffalo (QT Reviewed) Data File : D:\MSDChem\S\Data\113010\S1795.D Acq On : 30 Nov 2010 10:50 Sample : 10K2674-BS1 Misc : Vial: 4 Operator: JRS Inst : HP5973S Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Nov 30 11:39:01 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 11:37:38 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDChem\S\Data\113010\S1793.D (30 Nov 2010 10:08) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 568725 25.00 ug/L 0.00 42) CI20 Chlorobenzene-D5 7.13 82 275305 25.00 ug/L 0.00 100.89% 100.89% 62) CI30 1,4-Dichlorobenzene- 9.00 152 276508 25.00 ug/L 0.00 101.71% System Monitoring Compounds

 System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.63
 65
 224118
 28.05 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 112.20%

 43) CS05 Toluene-D8
 6.02
 98
 712216
 29.02 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 116.08%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 216751
 26.09 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 104.36%

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 = 104.308

 Target Compounds
 Ovalue

 2) C290
 Dichlorodifluorometh
 1.28
 85
 158417
 22.52
 ug/L
 #
 100

 3) C010
 Chloromethane
 1.40
 50
 175691
 21.91
 ug/L
 97

 4) C020
 Vinyl Chloride
 1.50
 62
 204242
 26.49
 ug/L
 87

 5) C015
 Bromomethane
 1.87
 64
 12605
 31.51
 ug/L
 83

 6) C025
 Chloroethane
 2.55
 96
 187205
 23.47
 ug/L
 97

 8) C030
 Methylene chloride
 3.03
 84
 196273m
 24.56
 ug/L
 95

 12) C038
 Acrylonitrile
 3.24
 53
 411307
 110.24
 ug/L
 93

 13) C305
 Acetone
 2.65
 43
 323918
 111.00
 ug/L
 95

 14) C300
 Acetonitrile
 2.90
 41
 998370
 828.40
 ug/L
 96

 12) C255
 Icdomethane Qvalue 98

ann 12/3/2

	Quantitation Report	ТA	Buffal	lo (QT	Reviewed)	
Data File : Acq On : Sample : Misc : MS Integrat: Quant Time:	D:\MSDChem\S\Data\113 30 Nov 2010 10:50 10K2674-BS1 ion Params: RTEINT.P Nov 30 11:39:01 2010	010\51	.795.D Resul	C I M lts File:	Vial: perator: inst : Multiplr: R10K091-	4 JRS HP597 1.00 SIXPT.	73S .RES
Quant Method Title Last Update Response via DataAcq Meth IS QA File	d : D:\MSDCHEM\S\R1 : 8260 5ML WATER : Tue Nov 30 11:37:3 a : Initial Calibratic h : VOA : D:\MSDChem\S\Data\	.0K091- 38 2010 2n (113010	-SIXPT))\S179:	.M (RTE Ir 3.D (30 Nc	ntegrator ov 2010	10:08))
Internal S	tandards	R.T.	QION	Response	Conc Ur	nits De Ro	≥v(Min) cv(Ar)
$\begin{array}{c} 40) & C012 \\ 41) & C145 \\ 44) & C230 \\ 45) & C170 \\ 46) & C284 \\ 47) & C160 \\ 48) & C210 \\ 49) & C220 \\ 50) & C221 \\ 51) & C155 \\ 52) & C163 \\ 53) & C215 \\ 54) & C235 \\ 55) & C281 \\ 56) & C240 \\ 57) & C246 \\ 58) & C247 \\ 59) & C245 \\ 60) & C180 \\ 63) & C966 \\ 64) & C301 \\ 65) & C225 \\ 66) & C282 \\ 67) & C283 \\ 68) & C302 \\ 69) & C303 \\ 70) & C289 \\ 71) & C304 \\ 72) & C306 \\ 73) & C307 \\ 74) & C308 \\ 75) & C260 \\ 76) & C309 \\ 77) & C267 \\ 78) & C249 \\ 79) & C310 \\ 80) & C286 \\ 81) & C313 \\ 82) & C316 \\ \end{array}$	Methylcyclohexane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloropr Ethyl Methacrylate 1,1,2-Trichloroethan 4-Methyl-2-pentanone Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 2-Hexanone Chlorobenzene 1,1,1,2-Tetrachloroe Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromobenzene 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa t-1,4-Dichloro-2-But n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenze tert-Butylbenzene 1,2,4-Trimethylbenze 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	5.20 5.847 6.271 6.312 5.966 6.425.966 6.522 6.466 6.522 7.2221 7.6542 8.2256 8.485 8.692 8.692 8.692 8.6944 9.0338 8.692 8.6944 9.0338 8.692 8.6944 9.0338 8.692 8.602 9.002 10.652 10.6	$\begin{array}{c} 83\\75\\92\\75\\69\\3\\43\\166\\76\\129\\107\\43\\131\\106\\104\\173\\105\\106\\104\\173\\105\\106\\105\\126\\105\\149\\146\\146\\146\\146\\185\\185\\125\end{array}$	326363 272439 486788 246644 260762 144647 1029822 202743 301552 164158 175935 746977 535803 177990 932981 718336 343034 583219 99334 934101 228369 248531 73612 133368 1148580 222617 232145 797367 174346 820171 1046604 458918 877927 472989 448454 831758 42342 312522 158704	23.37 21.874 21.974 22.74 23.841 24.03 22.13 25.031 24.03 24.03 25.031 25.601 127.78 25.601 125.601 25.602 25.601 25.602 25.802	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	95 99 93 96 87 100 91 98 98 99 99
83) C314 84) C934	Naphthalene 1,2,3-Trichlorobenze	11.05	180	294732	24.26	ug/L ug/L	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation ReportTA Buffalo(QT Reviewed)Data File : D:\MSDChem\S\Data\113010\S1795.DVial: 4Acq On : 30 Nov 2010 10:50Operator: JRSSample : 10K2674-BS1Inst : HP5973SMisc :Multiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Nov 30 11:39:01 2010Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator)Title : 8260 5ML WATERLast Update : Tue Nov 30 11:37:38 2010Response via : Initial CalibrationDataAcq Meth : VOA

÷

İ

Abundance						TIC: S17	795.D					
3600000												
3400000				•				F				
3200000						Ĩ, T		Ibidica:200,76,7				
3000000						ndiger of the	Ţġamaşt					
2800000					le,T		<mark>tijtitelen</mark> sebei	C399				
2600000					ryi Ether,T -2-pentarror	C280 E	1983 1.9 84	E				
2400000					nloroethylvír 0 4-Methyl-			ytbenzene, zene, F ne, T				
2200000				ν.	C161 2-C1 C21		benzene,T 1,3,5-Trim	Perpenset C-Butylbenz 38,1 Butylbenzer				
2000000			state, T	proeutane-i	T Xanone, T		ne Mylene, T 3 Isopropyl 19808,4394	5 testightry C308 se C308 se secpato n-		le,T le,T		
1800000		H-	5 Viriyi Act	6 (5(4))7(9)(9)	0 ¹⁴ 161.LERES	THINGTON	245 (1991) C961	Elfertotenze		liorobenzen hithalene,T liprobenzen		
1600000		((Gilbeth)Ene		e,1 5,1		Marchhores	C C C C C C C C C C C C C C C C C C C	CI302		1.2.3-Trich 1.2.3-Trich		
1400000		ke, T brasyl, BHERhof	thur (Jethan	orobenzen Trobenzen	e,T pene,T Ølenhere,T	C12002	omofluorob (AB)AD/PDZ/B			C313 lexachiorob C934		
1200000		sterzentiuro C962 Tra	oethene,T Matrian,T	(0 1,4-Diflu logcollaria	ne,T Keleneroo		CS10 PBr effection Brook			C316 H		
1000000		orički kontenda: odpitrile, T imitrile, T č	And Fiction	C150 Trich	hiorometha cis-1,3-Dict	arre, I			sropane,T			
800000	organethana bride, T thane, T	Caes 1.1.4 17 1960 Chang	- Dicement	1,2°Dichion	C145 - C145 - C221		T.mX		o-3-Chioras			
000000	ichlorodiffian Brone T Mane, T rofluoromet	6. Acroletin. 66%6984443	061 2,2{0	C065 C278	Citit	C163 T,2-I	80 Bramets		1,2-Dibrom			
400000	COTO COTO 26 PCARATA		3				Cit		C286			
200000	B B											
Time->	200	11111	4,00	<u>₽</u> Ҷ_ <u></u> ЦЩЩ 5,00	6.00 6.00	7.00	_ <u>IL ML/II II</u> 8.00	 	10.00	 11.00	12.00	13.00

R10K091-SIXPT.M Tue Nov 30 11:39:17 2010 HP5973

ORGANIC ANALYSIS DATA SHEET

8260B

LCS

Laboratory:	TestAmerica Buffalo		SDG:	RTK1380		
Client:	HRP Engineering, PC		Project:	710 Ohio Street,	Buffalo, NY	
Matrix:	Water	Laboratory ID:	<u>10K2778-BS1</u>	File ID:	<u>S1824.D</u>	
Sampled:		Prepared:	<u>11/30/10 21:21</u>	Analyzed:	<u>11/30/10 22:44</u>	
Solids:		Preparation:	5030B MS	Initial/Final:	5 mL / <u>5 mL</u>	
Batch:	10K2778 Sequen	ce: <u>T005455</u>	Calibration:	<u>R10K091</u>	Instrument:	<u>HP5973S</u>
CAS NO.	COMPOUND		DILUTION	COl	NC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	· ·	1		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	1		1.0	U
79-00-5	1,1,2-Trichloroethane		1		1.0	U
76-13-1	1,1,2-Trichlorotrifluoroeth	ane	1		1.0	U
75-34-3	1,1-Dichloroethane		1		24.0	
75-35-4	1,1-Dichloroethene	······	1		21.0	
120-82-1	1,2,4-Trichlorobenzene		1		1.0	U
95-63-6	1,2,4-Trimethylbenzene		1		26.0	
96-12-8	1,2-Dibromo-3-chloroprop	pane	1		1.0	U
106-93-4	1,2-Dibromoethane (EDB))	1		1.0	U
95-50-1	1,2-Dichlorobenzene		1		24.8	
107-06-2	1,2-Dichloroethane		1		24.7	
78-87-5	1,2-Dichloropropane		1		1.0	U
108-67-8	1,3,5-Trimethylbenzene		1		1.0	U
541-73-1	1,3-Dichlorobenzene		1		1.0	U
106-46-7	1,4-Dichlorobenzene		1		1.0	U
123-91-1	1,4-Dioxane		1		40	U
78-93-3	2-Butanone (MEK)		1		10	U
591-78-6	2-Hexanone		1		5.0	U
99-87-6	4-Isopropyltoluene		1		1.0	<u> </u>
108-10-1	4-Methyl-2-pentanone (M	IBK)	1		5.0	U
67-64-1	Acetone				10	U
71-43-2	Benzene		1		23.6	TT
75-27-4	Bromodichloromethane		1		1.0	
75-25-2	Bromotorm		1		1.0	
75 15 0	Bromomeunane		1		1.0	<u> </u>
56-23-5	Carbon Tetrachloride		1		1.0	U
108-90-7	Chlorobenzene		1		25.9	
124-48-1	Chlorodibromomethane		1		10	U
75-00-3	Chloroethane		1		1.0	U
67-66-3	Chloroform	<u> </u>	1		1.0	U
74-87-3	Chloromethane		1		1.0	U
156-59-2	cis-1.2-Dichloroethene		1		24.0	
10061-01-5	cis-1,3-Dichloropropene		1		1.0	U
110-82-7	Cyclohexane		1		1.0	U
75-71-8	Dichlorodifluoromethane		1		1.0	U
100-41-4	Ethylbenzene		1		26.5	
98-82-8	Isopropylbenzene		1		1.0	U
		· · · · · · · · · · · · · · · · · · ·	213/223			

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:	TestAmerica Buffalo			SDG:	RTK1380		
Client:	HRP Engineering, PC			Project:	710 Ohio Street, B		
Matrix:	<u>Water</u> La	boratory ID:	<u>10K277</u>	<u>8-BS1</u>	File ID:	<u>S1824.D</u>	
Sampled:	Pro	epared:	11/30/10) 21:21	Analyzed:	11/30/10 22:44	
Salida.	De	-r	5020D N	45	Initial/Final:	5 mI / 5 mI	
Solids.	1000000 0		<u> 3030B N</u>		Diotani	<u>5 mil / 5 mil</u>	11060720
Batch:	<u>10K2778</u> Sequence:	1005455		Calibration:	<u>KIUKU91</u>	Instrument:	<u>HP59735</u>
CAS NO.	COMPOUND			DILUTION	CONC	C. (ug/L)	Q
79-20-9	Methyl Acetate			1	1	.0	U
1634-04-4	Methyl tert-Butyl Ether			1	2	5.1	
108-87-2	Methylcyclohexane			1	1	.0	U
75-09-2	Methylene Chloride			1	1	.0	U
91-20-3	Naphthalene			1	1	.0	U
104-51-8	n-Butylbenzene			1	1	.0	U
103-65-1	n-Propylbenzene	· · · · · ·		11	1	.0	U
135-98-8	sec-Butylbenzene			1	1	.0	U
100-42-5	Styrene			1	1	.0	U
98-06-6	tert-Butylbenzene			1	1	.0	U
127-18-4	Tetrachloroethene			1	2	5.6	
108-88-3	Toluene			1	2	5.6	
156-60-5	trans-1,2-Dichloroethene			1	2	4.3	
10061-02-6	trans-1,3-Dichloropropene			1	1	.0	U
79-01-6	Trichloroethene			1	2	3.9	
75-69-4	Trichlorofluoromethane			1	1	.0	U
75-01-4	Vinyl chloride			1	1	.0	U
1330-20-7	Xylenes, total			1	8	1.2	
SYSTEM MON	TORING COMPOUND	ADDEL) (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroetha	ne-d4	25	.0	28.3	113	66 - 137	
4-Bromofluorobe	enzene	25	.0	26.9	108	73 - 120	
Toluene-d8		25	.0	29.7	119	71 - 126	
INTERNAL STA	ANDARD	AR	EA	RT	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4	288	001	9	293655	9	
1,4-Difluorobenz	zene	616	867	4.93	625254		
Chlorobenzene-c	15	282	682	7.13	298495		

TA Buffalo (Not Reviewed) Quantitation Report Data File : D:\MSDCHEM\S\DATA\113010\S1824.D Vial: 4 Acq On : 30 Nov 2010 22:44 Sample : 10K2778-BS1 Operator: NMD Inst : HP5973S Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Quant Time: Nov 30 23:20:33 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 23:20:20 2010 Response via : Initial Calibration DataAcq Meth : VOA IS QA File : D:\MSDCHEM\S\DATA\113010\S1822.D (30 Nov 2010 22:02) R.T. QIon Response Conc Units Dev(Min) Internal Standards Rcv(Ar) _____ 1) CI10 1,4-Difluorobenzene 4.93 114 616867 25.00 ug/L 0.00 98.66% 7.13 82 282682 0.00 42) CI20 Chlorobenzene-D5 25.00 ug/L 94.70% 62) CI30 1,4-Dichlorobenzene- 9.00 152 288001 25.00 ug/L 0.00 98.07% System Monitoring Compounds

 System Monitoring Compounds

 30) CS15 1,2-Dichloroethane-D
 4.64
 65
 244920
 28.26 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 66 - 137
 Recovery
 =
 113.04%

 43) CS05 Toluene-D8
 6.02
 98
 749331
 29.74 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 71 - 126
 Recovery
 =
 118.96%

 61) CS10
 p-Bromofluorobenzene
 8.07
 174
 229778
 26.94 ug/L
 0.00

 Spiked Amount
 25.000
 Range
 73 - 120
 Recovery
 =
 107.76%

 Qvalue

 Target Compounds
 Qx

 2) C290 Dichlorodifluorome
 0.00 85 0 N.D.

 3) C010 Chloromethane
 0.00 50 0 N.D.

 4) C020 Vinyl chloride
 0.00 62 0 N.D.

 5) C015 Bromomethane
 0.00 64 0 N.D.

 6) C025 Chloroethane
 0.00 101 0 N.D.

 7) C275 Trichlorofluoromet
 0.00 101 0 N.D.

 8) C045 1,1-Dichloroethene
 2.56 96 181706 21.00 ug/L

 9) C030 Methylene chloride
 3.04 84 3118 N.D.

 10) C040 Carbon disulfide
 0.00 56 0 N.D.

 11) C036 Acrolein
 0.00 56 0 N.D.

 12) C038 Acrylonitrile
 3.17 53 7233 1.79 ug/E #

 13) C035 Acetone
 2.65 43 1261 N.D.

 14) C300 Acetonitrile
 0.00 41 0 N.D.

 Target Compounds - 88 12)CO38Acrylonitrile3.175372331.79ug/L#13)CO35Acetone2.65431261N.D.14)C300Acetonitrile0.00410N.D.15)C276Iodomethane0.001420N.D.16)C2911, 1, 2-Trichloro-1,0.001010N.D.17)C962T-butylMethylEther3.177356321825.12ug/L18)C057trans-1, 2-Dichloroet3.189621057524.29ug/L19)C255MethylAcetate0.00430N.D.20)C0501, 1-Dichloroethane3.546335458224.03ug/L21)C125VinylAcetate0.00430N.D.22)C0512, 2-Dichloropropan0.00770N.D.23)C056cis-1, 2-Dichloroethe4.009621897324.03ug/L24)C272Tetrahydrofuran0.00420N.D.25)C222Bromochloromethane0.001280N.D.26)C060Chloroform4.2583604N.D.27)C1151, 1-Trichloroeth0.00970N.D.28)C120Carbon tetrachlori0.00117< 19 1261 N.D. 97 93 - 99 95

 C105
 Benzene
 0.00
 75
 0
 N.D.

 C065
 1,2-Dichloroethane
 4.64
 78
 850906
 23.58
 ug/L

 33)
 C110
 2-Butanone
 0.00
 43
 0
 N.D.

 34)
 C256
 Cyclohexane
 0.00
 56
 0
 N.D.

 35)
 C150
 Trichloroethene
 5.11
 95
 214427
 23.89
 ug/L

 36)
 C140
 1,2-Dichloropropan
 0.00
 63
 0
 N.D.

 37)
 C278
 Dibromomethane
 0.00
 83
 0
 N.D.

 38)
 C130
 Bromodichlorometha
 0.00
 83
 0
 N.D.

 39)
 C161
 2-Chloroethylvinyl
 0.00
 63
 0
 N.D.

 100 - 98 98

		Quantitation Report		TA	Buffa	lo (Not	: Reviewe	d)	
Data Acq C Sampl Misc MS In	File : on : .e : tegrat	D:\MSDCHEM\S\DATA\1 30 Nov 2010 22:44 10K2778-BS1 tion Params: RTEINT.P	130	10\s1	1824.D	C I M	Vial: perator: inst : fultiplr:	4 NMD HP5973 1.00	35
Quant	: Time:	Nov 30 23:20:33 2010	C		Resu	lts File:	R10K091-	SIXPT.F	RES
Quant Title Last Respo DataA IS QA	Metho Update onse vi Acq Met File	od : D:\MSDCHEM\S\ : 8260 5ML WATER : Tue Nov 30 23:20 : Initial Calibrat: : VOA : D:\MSDCHEM\S\DAT.	R10 :20 ion A\1	к091- 2010 13010	-SIXPT))\S182	.M (RTE Ir 2.D (30 Nc	ntegrator ov 2010	22:02)	
Inte	ernal S	Standards		R.T.	QIon	Response	Conc Ur	nits Dev Rov	7(Min) 7(Ar)
40)	C012	Methylcyclohexane	5.	11	83	2528	N.D.		
41	C145	cis-1,3-Dichloropr	0.	00 6 07	75 92	0 539038	N.D. 25.60	ug/L	93
44	C170	trans-1,3-Dichloro	ο.	00	75	0	N.D.	~9/ -	
46)	C284	Ethyl Methacrylate	Ο.	00	69	0	N.D.	6_ N	· ·
47)	C160	1,1,2-Trichloroethan	~	6-46		<u>3505</u>		ug/L− #	23
	C210	4-Methyl-2-pentano	6.	02 6 16	43	2733	N.D. 25 60	na/L	97
	C220	1.3-Dichloropropan	ο.	00	76	0	N.D.	ug/ ii	-
51)	C155	Dibromochlorometha	ō.	00 :	129	ō	N.D.		
52)	C163	1,2-Dibromoethane	Ο.	00	107	0	N.D.		
537.	C215	2-Hexanone	0.	00	43	0	N.D.	4-	
(54)	C235	Chlorobenzene	~	7.16	112	592686	25.88	ug/L	99
55)	C281	1,1,1,2-Tetrachlor	0.	200	131	1025559	N.D. 26 53	ng/T	100
	C240	Etnyibenzene		7 31	91 106	799544	53.95	ug/L	96
	C240	o-Xvlene		7.63	106	381466	27.27	ug/L	95
59)	C245	Styrene		7-63	1.04_	18243-	0.78	ug/L #	1
60)	C180	Bromoform	Ο.	00	173	0	N.D.		
63)	C966	Isopropylbenzene	7.	92	105	1625	N.D.		
64)	C301	Bromobenzene	0.	00	156	127	N.D.		
65) 66)	C225	1,1,2,2-Tetrachlor	8.	07	110	137	N.D.		
67)	C283	t=1, 4-Dichloro-2-B	0.	00	51	õ	N.D.		
68)	C302	n-Propylbenzene	8.	06	91	693	N.D.		
69)	C303	2-Chlorotoluene	Ο.	00	126	0	N.D.		
70)	C289	4-Chlorotoluene	Ο.	00	126	0	N.D.		
71)	C304	1,3,5-Trimethylben	8.	38	105	2486	N.D.		
12	C306	tert-Butylbenzene	υ.	00	105	961179	N.D. 25 98	ng/T	98
	C307	1,2,4-Trimethyldenze	8	82	105	1059	N.D.	ug/ L	50
75)	C260	1.3-Dichlorobenzen	9.	02	146	2189	N.D.		
76)	C309	4-Isopropyltoluene	8.	91	119	775	N.D.		
772	C267	1,4-Dichlorobenzen	9.	02	146	2189	N.D.	-	
(78)	C249	1,2-Dichlorobenzene	_	9.33	146	477928	24.81	ug/L	96
79)	C310	n-Butylbenzene	0.	00	91 75	U	N.D.		
80) Q1\	C280	1,2-DIDIOMO-3-CHIO	10.	65	180	162	N.D.		
82)	C316	Hexachlorobutadien	0.	00	225	0	N.D.		
83)	C314	Naphthalene	10.	87	128	770	N.D.		
84)	C934	1,2,3-Trichloroben	Ο.	00	180	O	N.D.		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ł

TA Buffalo (Not Reviewed) Quantitation Report Vial: 4 Data File : D:\MSDCHEM\S\DATA\113010\S1824.D : 30 Nov 2010 22:44 : 10K2778-BS1 Operator: NMD Acq On Inst : HP5973S Sample Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Quant Time: Nov 30 23:20:33 2010 Results File: R10K091-SIXPT.RES Quant Method : D:\MSDCHEM\S...\R10K091-SIXPT.M (RTE Integrator) Title : 8260 5ML WATER Last Update : Tue Nov 30 23:20:20 2010 Response via : Initial Calibration DataAcq Meth : VOA

Abundance							TIC: S18	24.D					
3800000													
3600000													
3400000							ь. Т					·	
3200000							m.p-Xyion						
3000000							6248						
2800000													
2600000									rrzene, T		. •		
2400000					s,t		L.		rimethylbe				
2200000					oethane-D4		thylbenzen) (demodi	07 1,2,4-1				
2000000					Brthcaldfr	ଖ୍ୟକ୍ଷିନ୍ତି,T	enep40 El	C248 83	C3 nzene-D4,1 berzene,T				
1800000			ine,T		C\$85 B	05 cZałten	CANG-UNEA/2	S ei	Dichlarober 2-Dichlaro				
1600000			ký ttě thethi		enzene, l	CS ettenile,T	Chionalgend	uorobenze	CI30 1,4-I C249 1,				
1400000			Stan (ngage) and a	F	4-Difluorob Unene, T	adrictiveth	CI20 (p-Bromofi			Ň		
1200000			C963 1	oroethene,	6,1 Ci10 1, Trichloroe	C380 Tat		CS10					
1000000		ene,T	oethane,T	s-1,2-Dichi	TIONOBITIZIN								
800000		Dichloroeth	1,1-Dichlor	C056 cls	22-010								
600000		045 1,1-C	COSO	ł	ŝ								
400000		,											
200000													
0 Time>	2.00	<u>,4 , ,</u> 3.0	ю 11-11	4.00	<u>, 11,11,11, ,</u> 5.00	<u> </u> 6.00	7.00	8.00	<u> </u> 9.00	10.00	11.00	12.00	13.00

R10K091-SIXPT.M Tue Nov 30 23:20:36 2010 HP5973

HOLDING TIME SUMMARY 8260B

Laboratory:	TestAmerica Buffa	<u>lo</u>			SDG:	R	TK1380			
Client:	HRP Engineering,	<u>PC</u>			Project:	7	<u>Y</u>			
Sample Name		Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
MW-1		11/18/10 11:20	11/18/10 13:45	11/30/10 11:28	12	14	11/30/10 15:03	12	14	
MW-2		11/18/10 12:30	11/18/10 13:45	11/30/10 11:28	12	14	11/30/10 15:25	12	14	
MW-3R		11/18/10 13:15	11/18/10 13:45	11/30/10 11:28	12	14	11/30/10 15:46	12	14	
MW-5		11/18/10 11:55	11/18/10 13:45	11/30/10 21:21	12	14	12/01/10 00:22	13	14	
X-1		11/18/10 00:00	11/18/10 13:45	11/30/10 11:28	12	14	11/30/10 16:29	12	14	
TRIP BLANK		11/18/10 00:00	11/18/10 13:45	11/30/10 11:28	12	14	11/30/10 16:50	12	14	

* Indicates a Holding Time violation.

GCIMS VOLATILE INJECTION LOG Logbook # A10-05-05 Fav. 1 1109	IS/SS MIX # Reftwr pH <2 Comments		BMS V × PV SACOL		V X RA Creat	X	$ \langle X X \langle M - \lambda u \rangle c_{u} \rangle$	1 X Krishi ant				× ×	T X X T		Kiningy Jars		6960	RIOKOH)					(W) (JA) (A) (A)					LUNER NOT WEN	
	STD #	2												3950122)	Fel 14210	211241	PY HUJH	Stehlad	XI (IM)	<u> </u>	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	HONELLA	21200	971851 72	INT W	The second se		4 800
)	ľ				P			ĺ	ľ						<mark>H</mark>				Ĵ	
LE INJECTION LOG k# A10-05-06 v.1. 1105	Job# Inj. Vol. Ext. Wt. D.F.	0-RLK1 Q1, 5ml 7 -	$90 - 03 + k_{1100} + 1 + 1$	12-01 KIIAS 1 4				DS Contraction of the second sec				$53 = 0$ 10^{-1} 10^{-1}		92. Thui lea L 11.0 h 1	- Att C. 1 Sul 1					ČA46		JWS I I I I I I I I I I I I I I I I I I I	-ČHC9	0-04A	$-\frac{1}{\sqrt{WB}}$				

MS VOLATILE INJECTION LOG Legbook # A10-05-06	Is/ss MIX # RePure pH <2 Comments		1348 4 × 124 - 225 1226							VXX4-Crewt		× ×	XX							Con c	$\left[\right] \left[\left[\right] \right] \left[\left[\right] \right] \left[\left[\left[\right] \right] \right] \left[\left[\left[\left[\right] \right] \right] \left[$						(A) (A)						LINES NOT WEEK							
3	STD #																(95,01,2)))))))))	Fel 14210	1441			2410111		27/3802	<u> </u>	FUXE I	Land Land							REUD.					
VOLATILE INJECTION LOG Logbook # A10-05-06 Rev. 1, 11/09	Sample ID Job# Inj. Vol. Ext. Wt. D.F.	K1970-BLK1 QU 13m1 7 1-	27K(100 - 09 K1100 1 1 1	TK 145-01 KIUS 4	TK 1190 - 61 K1170 L L L			04				0		CTK(DS3 - 0) ki253 1 10	Ø 1 1 10		1002392 Town CAL 140 D 7	Tar - City Chi / Sull /	(2)5553-CALI WWW					L JAVS		I TALS	Curo I	●-OKA	-Cur B	t CALC	FILL S I I I I I I I I I I I I I I I I I	MDLV N N N N N N N N N N N N N N N N N N N		LODDO						
GCIMS	n⊶ee ≷ ∛ Time Analvst File #	Inan INT TOK Syun DI	1 Sh I I have in	1 1 1 1 1 1 1 1 1 K	 1 14mg 1 1 41 K	11470 H151 149	TH6(1 15th 20	121 121 21	(8)4 Prov 1 1 5.2	(<u>5</u> , <u>1</u> , <u>1</u> , <u>5</u>)					09 88	19 T T 181 T.) 134(S) (M 15)461 (2351 SHE	ED SHOT		Clark DY (c)				TLNS 0900	0311 SW7?	035 1 SH74	OBSY CNYF	12HIST 19HO	Child -		DS20 JNA V		RE					
GCIMS VOLATILE INJECTION LOG Logbook # A10-05-05 Rev 1, 1100	# IS/SS MIX # RePEARS PH <2 Comments	KUMY28	×	X	×:		X XIXMV. DMI	asta X	MCI X				(PRA 11.0 YOLA) PPY QICLI			mr)		N Not recipied!			4 RACO10X	V PER 20X		*	×	×		×	× -	×	×			× `;		< 5		××		
--	--------------------------------------	------------	------------	----------	--------	--------	--------------	---------	----------	----------	---------------	--------	---------------------------	--------------	---------	------------------	----------------	-----------------	--------	---------------	-----------	----------------	----------------	------------	--------	--------	-----------------------	-------------	--------	-----------	------	--------	------	------	-------------	------	------	------	---------	------------
	STD#										1471050	KTHUS	KT14160		C CTTTT	K114118 (1)																								
GC/MS VOLATILE INJECTION LOG Logbook # A10-05-06 Rev. 1, 11/09	Wt. D.F.	~	-	~	,	-		`		-)	1.)	1	1	1 0)))	04	03 (月	1 0	1 00	- 8						-		-			-	-	-				Cennn
	nj. Vol. Ext. V	L Jug						_		7	4		-+		-1	5.0		15 10	12:1	12.0	15	15	50				2	,' 												PAGE U
	Job#	KIYIS								<u> </u>	9C	-+					7	(Marin)	1	KI440	->	Kr520	K1433	K1380	202111		C RT KINII			KIJIT	1			7	FI388		_	-+		
	Sample ID	H-SHIXL	13	В	æ	t al	KALES - NSI	I HSDI	MSZ	L HUDI	COS434 - TUNI	CCUI	Ccvj	X.2644 - 051	BLKI	(m) 151 - 00EXX0	Crel (r)	TK1433-12 10 1	18 her	UTKIND - OF R	128 40	138 HI-OCSIYUZ	RTK H73-19 BEI	Ktk 1380-M	200	Win 20	THIN 72-13 -04- AEI M	05	90	RK1387-01	ģ	ß	ĥQ	05	RTH. B88-01	6	£J	DV	0S	EVIEWED BY
	File #	1783 R	poel.	1785°	1786	(13) A	1788 19	3841	51790	5 1791	L WELIG	83	96	95 10	96	1 tb	5 ⁸	1 66 T	51800	1 0/ 1	g	e	52	12		3¢		E S			0	ų l	3	5	191	Ŀ	\$	S	R	ΩĽ.
	Time Analyst	S 11-1 290	5 1 2 2540	CONS 1 S	S 9650	058 15	069 1 5	2 NAU 2	070, 1 5	1 1,640	OPHS TOR 5	1 8001	1009	1050		100	2001	1756	1.1.2	1330	1253	10711	Cupi	1.502	1000	154	17.00	5641	1/10/1	1712	1733	1154	1816	1837	1.658	1919	Huhi	2002	r tranz	
	Date	ONOFIL						-			OVOU)	_		22	1/2	23		┝			-	┞	-	-		+-	╀	-											-1	L.

Volatile Organic Example Calculation METHOD 8260/624/OLM04.3 Aqueous Matrix

Amt (ug/L) X DF = ug/l

Amt = ug/L on column DF=Dilution Factor (no units)

METHOD 8260/OLM04.3 Medium-Level Soil Matrix

FV inj Vol DF <u>X</u> X Amt (UG/L 1000 Х ug/kg = X DDW SW $(ug/L \times 5 = ng)$ Amt = Amount on column DF=Dilution Factor (no units) (FV /50) FV= Final Volume (ml) Inj Vol= injection volume(ul) SW = Sample Weight (g) DDW = Decimal Dry Weight (no units, dry wgt/100)

METHOD 8260/OLM04.3 Low-Level Soil Matrix

Amt (ng) X DF = ug/kg

Amt = ng on column DF=Dilution Factor (no units) SW = Sample Weight (g) DDW = Decimal Dry Weight (no units, dry wgt/100)

THE LEADER IN ENVIRONMENTAL TESTING

APPENDIX D

PHOTOGRAPHS

Repaired Monitoring Well Casing – MW-1

AST Tank Farm

4

HVE Shed

Interior of HVE Shed

Interior of HVE Shed

Monitoring Well MW-4