BAYVILLE VILLAGE CLEANERS SITE NUMBER: V00220 290 BAYVILLE AVENUE

BAYVILLE, NASSAU COUNTY, NEW YORK 11709

Periodic Review Report

Prepared for:

Thomas Ryan, Volunteer

Voluntary Cleanup Agreement: W1-0848-9903

Prepared by:

CASHIN TECHNICAL SERVICES, INC. 1200 VETERANS MEMORIAL HIGHWAY HAUPPAUGE, NEW YORK 11788 (631) 348-7600

November 1, 2022

Revised March 22, 2023

TABLE OF CONTENTS

1.0	PURPOSE	1
2.0	IDENTIFICATION, ASSESSMENT AND CERTIFICATION OF ALL ECS/ICS	3
2.1	Engineering Controls (ECs):	3
2.2	Institutional Controls (ICs)	4
2.3	Site Evaluation	5
3.0	SAMPLING SCOPE OF WORK AND RESULTS	6
3.1	Interior Vacuum Test Point and VOC Gas Measurements	6
3.2	Sub-Slab Depressurization (SSD) System Air Sampling	8
3.3	Indoor and Outdoor Ambient Air Sampling	10
3.4	Subsurface Soil Vapor Gas Sampling	13
4.0 SLAB	INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AS DEPRESSURIZATION SITE MANAGEMENT FORM	
5.0	CONCLUSIONS AND RECOMMENDATIONS	22

LIST OF TABLES

- Table 1 Interior Vacuum Test Points and VOC Gas Measurements
- Table 2 Influent Port and Effluent Port Vapor Gas Sample Results
- Table 3 Indoor and Outdoor Ambient Air Sampling Results
- Table 4 Subsurface Soil Vapor Gas Sampling Results

LIST OF FIGURES

- Figure 1 Site Sampling Sketch
- Figure 2 SSDS Site Sampling Sketch
- Figure 3 Water Table Elevation Contour Map

LIST OF APPENDICES

- Appendix A: Vapor Gas Sampling Results
- Appendix B: Indoor Air Quality Questionnaire and Building Inventory for the Subject Site
- Appendix C: Sub-slab Depressurization Site Management Form
- Appendix D: NYSDEC Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

CERTIFICATION STATEMENT

I, Francis Cashin III, P.E., certify that I am currently a registered professional engineer in the State of New York and that this Periodic Review Report (PRR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the Site is compliant with the Declaration of Covenants and Restrictions;

- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program [and generally accepted engineering practices]; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Francis Cashin III P.E., of Cashin Technical Services, Inc. located at 1200 Veterans Memorial Highway, Hauppauge, New York 11788, am certifying as Remedial Party's Designated Site Representative that I been authorized and designated by the Site Remedial Party to sign this certification for the Site."

November 1, 2022 DATE

1.0 PURPOSE

Cashin Technical Services, Inc. (CTS) on behalf of our client Mr. Thomas Ryan has prepared this Periodic Review Report (PRR) in accordance with the approved Site Management Plan (SMP) dated June 22, 2018. Sampling and monitoring activities were performed on September 20, 2022 at the former Bayville Village Cleaners located at 290 Bayville Avenue, New York (Voluntary Cleanup Agreement # W1-0848-9903, Site # V00220).

It should be noted that on or about December 1, 2020, the dry cleaner business/tenant (Bayville Village Cleaners) has no longer been in operation at the subject Site. All associated dry-cleaning equipment and chemicals have been removed from the subject building and properly disposed of.

Currently, the subject building is occupied by Tri-County Installations Plumbing & Heating, Inc. (commercial use). The subject building is used as an office space, plumbing parts/supply warehouse, and plumbing workshop. There are no significant quantities of hazardous materials stored, used, or generated at the property. All of the existing engineering controls are still in operation at the Site and no modifications or disruption of the SSD system occurred during tenant transfers. The existing institutional controls still comply with 6 NYCRR 375-1.8(g)(2)(iii) for commercial uses.

It should also be noted that no groundwater sampling was performed during this third annual PRR sampling event as analytical data results from on historical groundwater data (2017, 2019, & 2021) showed no Volatile Organic Compounds (VOC's) above the NYSDEC Part 703 groundwater standards. Furthermore, no VOCs were detected in any of the on-site monitoring wells during the last (May 27, 2021) sampling event. In an email dated August 3, 2022, The Department approved the elimination of groundwater sampling from the scope of work.

The scope of work performed at the Site included the following as required by the approved Site Management Plan (SMP): 1) Interior vacuum test points and VOC gas measurements; 2) Sub-

Slab Depressurization (SSD) System air sampling; 3) Indoor and outdoor ambient air sampling; and 4) Exterior subsurface soil vapor gas sampling.

Extracted soil vapors were monitored to evaluate the effectiveness of the SSD System and to check for carbon vessel breakthrough. Monitoring included screening the influent and effluent air sampling ports with a photoionization detector (PID) and collecting influent and effluent samples using 6-liter Summa® canisters with eight-hour regulators.

CTS performed previous PRR sampling on May 27, 2021 and additional sampling/monitoring on October 22, 2019, December 27, 2017 and May 18, 2018 as part of the Final SMP. Those results are included in this PRR for the inception of trends in contaminant levels.

This PRR includes discussions, charts, maps, and associated appendices detailing the following:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site;
- Results of the required annual Site inspections;
- Completed Site management forms;
- Data summary result tables along with the applicable standards;
- Copies of all laboratory data sheets; and
- Overall Site evaluation.

2.0 IDENTIFICATION, ASSESSMENT AND CERTIFICATION OF ALL ECS/ICS

2.1 Engineering Controls (ECs):

- 1. Vapor Mitigation System: The SSD System was installed with the following components:
 - a. A RadonAway fan (Model RP265c) was installed to induce negative pressure to the sub-slab region beneath the one-story building.
 - b. The extraction point for PCE vapors was installed in the center of the building, beneath the building slab, to capture all vapors.
 - c. Interconnecting piping consisting of three and four-inch diameter schedule 40 PVC was utilized to install the SSD System. Four-inch PVC piping was installed from the sub-slab extraction point, extending to above the suspended ceiling, and then connected to the fan utilizing flexible couplings. The four-inch piping was then extended from the fan to the southern exterior wall. The piping then penetrates the wall whereby a reducer fitting extends three-inch PVC piping into a 55-gallon drum containing granular activated carbon (GAC). The GAC Vessel is located outside the building along the south side. The purpose of the GAC Vessel is to treat the effluent gas prior to discharge to the atmosphere through a three-inch exterior mounted stack pipe. Sampling/monitoring ports were installed on the extraction piping (influent side) and after the GAC vessel (effluent side) for monitoring vacuum, flow and contaminant concentrations.
- 2. Other Engineering Controls: Sealing of the concrete floor The concrete floor was evaluated to eliminate any other sub-slab transport pathway (i.e. cracks in the building floor). All possible routes were sealed off to prevent the entrance of soil gas and to enhance the sub-slab negative pressure field of the SSD System.
- 3. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the declaration of covenants and restrictions (DCR), which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

4. Periodic certification of the institutional and engineering controls listed above.

2.2 Institutional Controls (ICs)

- 1. Declaration of Covenants and Restrictions Current and Future Use of the Site: Permitted future uses (commercial and industrial) must comply with 6 NYCRR 375-1.8(g)(2)(iii) for commercial uses; and 6 NYCRR 375-1.8(g)(2)(iv) for industrial uses A copy of the Declaration of Covenants and Restrictions (DCR) and its recording page was recorded with the Nassau County Clerk's office on March 17, 2017; The property may be used for: commercial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- 2. All ECs must be operated and maintained as specified in this SMP;
- 3. All ECs must be inspected at a frequency and in a manner defined in the SMP;
- 4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Nassau County Department of Health to render it safe for use as drinking water or for commercial purposes, and the user must first notify and obtain written approval to do so from the Department;
- 5. Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- 6. Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in this SMP;
- 7. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- 8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- 9. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- 10. Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure

compliance with the restrictions identified by the Declaration of Covenants and Restrictions;

- 11. The potential for vapor intrusion must be evaluated for any buildings developed on the Site, specifically within the IC boundaries; and any potential impacts that are identified must be monitored or mitigated. The IC boundaries for this Site encompasses the entire subject lot as depicted on the survey map provided in Figure 7; and
- 12. Vegetable gardens and farming on the Site are prohibited.

2.3 Site Evaluation

During the annual sampling PRR event, CTS inspected the discharge pipe of the SSD System and it was clear of obstruction. The general system piping was also observed to be in good working condition and the RadonAway fan was properly running. CTS disconnected the negative pressure tube and the alarm sounded as appropriate. Negative pressure was recorded indicating that the active fan is operating properly. The subject Site building inventory questionnaire was completed and all chemical products inventoried with website links for associated Safety Data Sheets (SDS) sheets provided.

3.0 SAMPLING SCOPE OF WORK AND RESULTS

3.1 Interior Vacuum Test Point and VOC Gas Measurements

CTS measured four interior vacuum test points for negative pressure below the building slab utilizing a Magnehelic Differential Pressure gauge. The SSD System extraction port was also measured for negative pressure to monitor the effectiveness of the active radon fan (RadonAway RPc Series Fan Model RP265c) which draws 334 cubic feet per minute (CFM) of air through the SSD System. The active radon fan continues to operate 24 hours a day, 7 days a week, 365 days a year. CTS also measured Volatile Organic Compound (VOC) gases along the following SSD System ports: extraction port, influent port and effluent port utilizing a photoionization detector (PID). Field measurements are listed below in Table 1.

<u>Table 1 - Interior Vacuum Test Points and VOC Gas Measurements</u>

Magnehelic Differential Pressure (inches of water column)									
Interior Vacuum Test Points	May 18, 2018	October 22, 2019	May 27, 2021	September 20, 2022					
TP-1	-13.85	-4.71	-7.48	-5.54					
TP-2	-11.08	-12.75	-10.81	-27.71					
TP-3	-11.08	-6.10	-6.37	-8.31					
TP-4	-5.54	-5.54	-6.65	-36.02					
Extraction Port	-831.23	-767.50	-822.92	-623.42					

PID Readings (parts per million)										
SSD System Ports	May 18, 2018	October 22, 2019	May 27, 2021	September 20, 2022						
Extraction Port	3.2	7.5	1.7	10.0						
Influent Port	0.0	7.3	1.4	0.3						
Effluent Port	0.0	0.0	0.0	0.5						
Indoor Ambient Air	1.8	12.4	0.0	1.9						

3.2 Sub-Slab Depressurization (SSD) System Air Sampling

CTS collected an air sample from the influent port and effluent port associated with the SSD System. Samples were collected in 6-liter Suma canisters with eight-hour regulators and analyzed for VOCs (EPA Method TO-15). The results of this testing are presented in Table 2 below.

<u>Table 2 – Influent Port and Effluent Port Vapor Gas Sample Results</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 12/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
Influent Port	Acetone	225	8.3	188	50.5
1011	Benzene	1.3	U	40.7	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	0.78	5.42	U (<7.48)
	Cyclohexane	14.5	U	U	U (<5.78)
	Dichlorodifluoromethane	U	2.8	U	U (<5.70)
	Ethanol	18.3	4	330	54.5
	Ethyl acetate	20.6	U	U	U (<6.62)
	Ethylbenzene	82.8	U	34.1	U (<3.56)
	Isopropanol	U	U	33.2	161
	Methylene Chloride	7.6	U	U	129
	Methyl Ethyl Ketone (2- Butanone)	4.8	10.4	25.8	U (<4.88)
	n-Heptane	22.8	U	27.9	U (<4.40)
	n-Hexane	10.9	U	28.7	118
	Styrene	4.1	U	U	U (<6.38)
	Tetrachloroethene (PCE)	181	331	96.0	U (<7.06)
	Toluene	7.2	1.2	246	U (<2.38)
	trans-1,2-Dichloroethene	U	U	U	8.25
	Trichloroethene (TCE)	24.4	24.8	U	U (<5.20)
	cis-1,2-Dichloroethene (c12- DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)

	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)	
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)	
	1,1,1-Trichloroethane (111- TCA)	U	U	6.93	U (<5.52)	
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)	
	Vinyl Chloride	U	U	U	U (<3.72)	
	m&p-Xylene	389	U	259	U (<13.7)	
	o-Xylene	124	U	33.4	U (<3.34)	

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 12/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
Effluent Port	Acetone	9.7	51.7	116	U (<25.3)
1011	Benzene	1.3	0.58	58.0	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	1.3	6.54	U (<7.48)
	Cyclohexane	3.3	U	U	U (<5.78)
	Dichlorodifluoromethane	U	3.1	U	U (<5.70)
	Ethanol	23.5	6.3	448	32.3
	Ethylbenzene	U	U	43.3	U <3.56
	Isopropanol	U	U	47.5	6.88
	Methylene Chloride	U	U	U	8.68
	n-Heptane	U	U	36.7	U (<4.40)
	n-Hexane	2.5	U	43.3	U (<5.26)
	Tetrachloroethene (PCE)	41.5	4.1	9.16	U (<7.06)
	Toluene	U	6.5	373	U (<2.38)
	Trichloroethene (TCE)	8.4	U	U	U (<5.20)
	cis-1,2-Dichloroethene (c12- DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	Trans-1,2-Dichloroethene	U	9.9	U	U (<5.36)
	1,1,1-Trichloroethane (111-	U	U	5.35	U (<5.52)

TCA)				
1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
Trichlorofluoromethane	U	1.8	U	U (<5.04)
Vinyl Chloride	U	U	U	U (<3.72)
m&p-Xylene	389	3.3	343	U (<13.7)
o-Xylene	124	U	45.1	U (<3.34)

NOTES:

^{1.} All results are expressed in micrograms per cubic meter of air (ug/m³). 2. U= Less than analytical detection limit.

Indoor and Outdoor Ambient Air Sampling

CTS collected one (1) indoor ambient air sample from inside the subject building and one (1) outdoor ambient air sample on the subject Site. The indoor canister was placed on a stool in the rear warehouse space and the outdoor canister was placed in the western asphalt paved parking lot area. Samples were collected in 6-liter Suma canisters with eight-hour regulators and analyzed for VOCs (EPA Method TO-15). The results of ambient air testing are presented in Table 3 below.

Table 3 – Indoor and Outdoor Ambient Air Sampling Results

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1 st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³	NYSDOH Air Guideline Values ug/m ³
Indoor	Acetone	22.3	13.2	39.5	31	N/A
Ambient Air	Benzene	0.56	U	U	10.4	N/A
	Carbon Disulfide	U	2.2	U	U (<70.0)	N/A
	Carbon Tetrachloride	U	U	U	U (<0.16)	1
	Chloromethane	0.7	0.83	U	U (<5.16)	N/A
	Dichlorodifluoromethane	U	2.4	U	U (<4.95)	N/A
	Ethanol	16.9	19	49.1	99.3	N/A
	Ethylbenzene	U	U	U	8.81	N/A
	4-Ethyltoluene	U	U	U	7.62	N/A
	Isopropanol	U	U	7.03	14.9	N/A
	m,p-Xylenes	U	U	U	72	N/A
	Methylene Chloride	U	10.7	9.10	U (<2.52)	60
	Methyl Ethyl Ketone (2- Butanone)	U	U	15.3	7.58	N/A
	n-Heptane	U	U	U	8.85	N/A
	n-Hexane	U	U	U	11.2	N/A
	o-Xylene	U	U	U	10.7	N/A
	Propylene	U	U	1.84	U (<1.25)	N/A
	Styrene	3.6	U	U	U (<4.26)	N/A

Tetrachloroethene (PCE) ⁴	U	263	U	U (<2.53)	30
Tetrahydrofuran	U	U	28.8	12.8	N/A
Toluene	1.6	2	U	62.7	N/A
Trichloroethene (TCE) ⁴	61.9	46.6	U	U (<0.16)	2
1,2,4-Trimethylbenzene	U	1.9	U	8.7	N/A
cis-1,2-Dichloroethene (c12-DCE)	U	U	U	U (<0.16)	1
1,1-Dichloroethene (11- DCE)	U	U	U	U (<0.16)	1
1,2-Dichloroethane (12-DCA)	U	U	U	U (<4.05)	N/A
1,1-Dichloroethane (11- DCA)	U	U	U	U (<4.05)	N/A
1,1,1-Trichloroethane (111-TCA)	U	U	U	U (<2.76)	10
1,1,2-Trichloroethane (112-TCA)	U	U	U	U (<5.46)	N/A
Vinyl Chloride	U	U	U	U (<0.16)	0.2

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³	NYSDOH Air Guideline Values ug/m ³
Outdoor	Acetone	4.7	8.6	28.1	U (<25.0)	
Ambient Air	Benzene	0.59	0.48	U	U (<3.19)	
	Carbon Tetrachloride	U	U	U	U (<0.16)	
	Chloromethane	0.64	0.61	U	U (<5.16)	
	Dichlorodifluoromethane	1.7	2.4	U	U (<4.95)	
	Ethanol	3	3.4	45.8	36	
	Isopropanol	U	U	116	6.51	N/A
	n-Hexane	U	U	68.2	U (<2.63)	
	Toluene	U	1.5	U	U (<3.77)	
	Tetrachloroethene (PCE) ⁴	U	69.7	U	U (<2.53)	
	Trichloroethene (TCE) ⁴	U	U	U	U (<0.16)	
	cis-1,2-Dichloroethene (c12-DCE)	U	U	U	U (<0.16)	
	1,1-Dichloroethene (11-	U	U	U	U (<0.16)	

DCE)					
1,2-Dichloroethane (12- DCA)	U	U	U	U (<4.05)	
1,1-Dichloroethane (11- DCA)	U	U	U	U (<4.05)	
1,1,1-Trichloroethane (111-TCA)	U	U	U	U (<2.76)	
1,1,2-Trichloroethane (112-TCA)	U	U	U	U (<5.46)	
Methylene Chloride	U	U	22.0	U (<2.52)	
Vinyl Chloride	U	U	U	U (<0.16)	

According to the laboratory analytical results for the September 20, 2022 sampling event, no VOC compounds exceeded the NYSDOH air guideline values in the Indoor and Outdoor Ambient Air samples as shown in Table 3 above.

3.3 Subsurface Soil Vapor Gas Sampling

CTS collected three soil vapor gas samples from exterior sub-surface permanent soil vapor gas sampling points (PP-3, PP-4, and PPB-5). Three sample were covered over by asphalt (PP-2) or gravel (PPB-1 and PPB-6), and temporary sampling points were erected in locations close to where the corresponding permanent sampling points would have been. Samples were collected in 6-liter Suma canisters with eight-hour regulators and analyzed for VOCs (EPA Method TO-15). The results of subsurface soil vapor gas sampling are presented in Table 4 below.

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
PPB-1	Acetone	8.2	12.8	429	160
	Acrolein	-	-	34	76.3
	Benzene	0.78	U	6.77	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	10.8	3.7	3.95	22.3
	Dichlorodifluoromethane	1.3	3.6	U	U (<5.70)
	Ethanol	U	U	470	224
	Ethylbenzene	U	U	3.47	<3.56
	Isopropanol	U	U	54.2	78.7
	m,p-Xylenes	U	U	97.6	22.2
	Methyl Ethyl Ketone (2- Butanone)	U	U	62.4	33.7
	Methylene Chloride	U	U	15.4	76.7
	n-Heptane	U	U	7.87	U (<4.40)
	n-Hexane	U	U	12.2	18.9
	o-Xylene	U	U	4.21	U (<3.34)
	Propylene	U	U	50.3	58
	Tetrachloroethene (PCE)	290	434	32.0	U (<7.06)
	Tetrahydrofuran	U	U	8.11	U (<5.60)
	Toluene	U	1.2	23.2	7.99
	Trichloroethene (TCE)	2	5.5	10.8	U (<5.20)
	cis-1,2-Dichloroethene (c12- DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111- TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results (Continued)</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
PP-2	Acetone	4.8	26.4	U	79.3
	Acrolein	-	-	U	78.6
	Benzene	U	1.5	U	5.56
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	U	U	9.57
	Dichlorodifluoromethane	1.4	2.2	U	U (<5.70)
	Ethanol	4	8.9	133	188
	Methyl Butyl Ketone (2- Hexanone)	U	7.8	U	U (<6.76)
	Isopropanol	U	U	U	40.9
	m,p-Xylenes	U	U	U	23.2
	Methylene Chloride	U	5.3	U	32.8
	Methyl Ethyl Ketone (2- Butanone)	U	114	U	25.8
	n-Hexane	U	U	U	8.32
	Propylene	U	10.7	U	30.6
	Tetrachloroethene (PCE)	U	172	U	16.3
	Toluene	U	U	U	8.97
	Trichloroethene (TCE)	U	U	U	U (<5.20)
	cis-1,2-Dichloroethene (c12-DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111- TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results (Continued)</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
PP-3	Acetone	41.5	90.0	133	1630
	Acrolein	-	-	48.9	32.3
	Benzene	U	1.9	35.7	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	1.5	12.3	11.4
	Ethanol	3	5.1	406	92.3
	Ethylbenzene	U	U	28.3	U (<3.56)
	Isopropanol	U	U	39.3	14.3
	Methylene Chloride	U	35.9	U	U (<5.04)
	Methyl Ethyl Ketone (2- Butanone)	4.2	14.4	19.5	46.3
	m,p-Xylenes	U	U	212	25.3
	n-Heptane	U	U	28.9	U (<4.40)
	n-Hexane	U	4.3	23.0	U (<5.26)
	o-Xylene	U	U	29.4	U (<3.34)
	Propylene	U	1.4	23.2	19.5
	Tetrachloroethene (PCE)	87.9	463	168	1240
	Toluene	U	U	218	6.26
	Trichloroethene (TCE)	U	9	U	16.2
	cis-1,2-Dichloroethene (c12- DCE)	U	8.1	7.61	7.61
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111- TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results (Continued)</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3^{rd} PRR $9/20/2022$ Results ug/m^3
PP-4	Acetone	9.5	8.8	203	974
	Acrolein	-	-	77.5	19.4
	Benzene	0.52	U	50.0	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	2.8	9.67	U (<7.48)
	Dichlorodifluoromethane	U	2.1	U	U (<5.70)
	Ethanol	4.3	4.7	700	50
	Ethylbenzene	U	U	27.7	U (<3.56)
	Isopropanol	U	U	66.7	10.3
	m,p-Xylenes	U	U	214	21.5
	Methyl Ethyl Ketone (2- Butanone)	U	U	46.8	29
	Methylene Chloride	U	U	50.7	5.56
	n-Heptane	U	U	39.3	U (<4.40)
	n-Hexane	U	U	54.9	U (<5.26)
	o-Xylene	U	U	29.5	U (<3.34)
	Propylene	U	U	46.4	10.6
	Tetrachloroethene (PCE)	87.4	399	28.8	450
	Toluene	1.3	U	248	U (<2.38)
	Trichloroethene (TCE)	U	2	U	U (<5.20)
	cis-1,2-Dichloroethene (c12- DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111- TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results (Continued)</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3^{rd} PRR $9/20/2022$ Results ug/m^3
PPB-5	Acetone	U	9.9	291	1200
	Acrolein	-	-	U	19.6
	Benzene	U	0.74	47.3	U (<2.90)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloroform	U	2.3	14.5	U (<7.48)
	Chloromethane	0.92	U	U	U (<4.20)
	Dichlorodifluoromethane	1.4	2	U	U (<5.70)
	Ethanol	U	4.8	682	54.4
	Ethylbenzene	U	U	19.8	U (<3.56)
	Isopropanol	U	U	70.7	9.44
	m,p-Xylenes	U	U	140	25.3
	Methyl Ethyl Ketone (2- Butanone)	U	42.3	87.5	36.9
	Methylene Chloride	10.3	5.4	64.9	U (<5.04)
	n-Heptane	U	U	32.9	U (<4.40)
	n-Hexane	U	U	55.2	U (<5.26)
	o-Xylene	U	U	19.2	U (<3.34)
	Propylene	U	U	41.2	11.2
	Tetrachloroethene (PCE)	U	132	U	U (<7.06)
	Toluene	U	U	226	7.99
	Trichloroethene (TCE)	U	U	U	U (<5.20)
	cis-1,2-Dichloroethene (c12-DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111- TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112- TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)

<u>Table 4 – Subsurface Soil Vapor Gas Sampling Results (Continued)</u>

Sample ID	VOC Compounds	12/27/2017 Results ug/m ³	1st PRR 10/22/2019 Results ug/m ³	2 nd PRR 5/27/2021 Results ug/m ³	3 rd PRR 9/20/2022 Results ug/m ³
PPB-6	Acetone	10.2	15.4	308	97.6
	Acrolein	-	-	U	45.2
	Benzene	0.72	1.8	24.7	U (<2.90)
	Carbon Disulfide	U	13.6	U	U (<136)
	Carbon Tetrachloride	U	U	U	U (<9.06)
	Chloromethane	U	0.7	U	U (<4.20)
	Dichlorodifluoromethane	U	2.4	U	U (<5.70)
	Ethanol	4.4	U	349	111
	Ethylbenzene	U	U	25.8	U (<3.56)
	Isopropanol	U	U	22.2	26.2
	m,p-Xylenes	U	U	207	23.4
	Methylene Chloride	U	U	U	19
	Methyl Ethyl Ketone (2-Butanone)	30.8	24.1	935	21.5
	n-Heptane	5.5	U	19.7	U (<4.40)
	n-Hexane	1.2	1.3	17.0	U (<5.26)
	o-Xylene	U	U	30.5	U (<3.34)
	Propylene	U	6.2	179	24.5
	Tetrachloroethene (PCE)	U	22.7	U	U (<7.06)
	Toluene	2.4	1.7	152	28
	Trichloroethene (TCE)	U	U	U	U (<5.20)
	cis-1,2-Dichloroethene (c12-DCE)	U	U	U	U (<6.06)
	1,1-Dichloroethene (11-DCE)	U	U	U	U (<4.72)
	1,2-Dichloroethane (12-DCA)	U	U	U	U (<7.00)
	1,1-Dichloroethane (11-DCA)	U	U	U	U (<6.60)
	1,1,1-Trichloroethane (111-TCA)	U	U	U	U (<5.52)
	1,1,2-Trichloroethane (112-TCA)	U	U	U	U (<5.64)
	Vinyl Chloride	U	U	U	U (<3.72)
	Vinyl Acetate	1	U	U	U (<7.14)

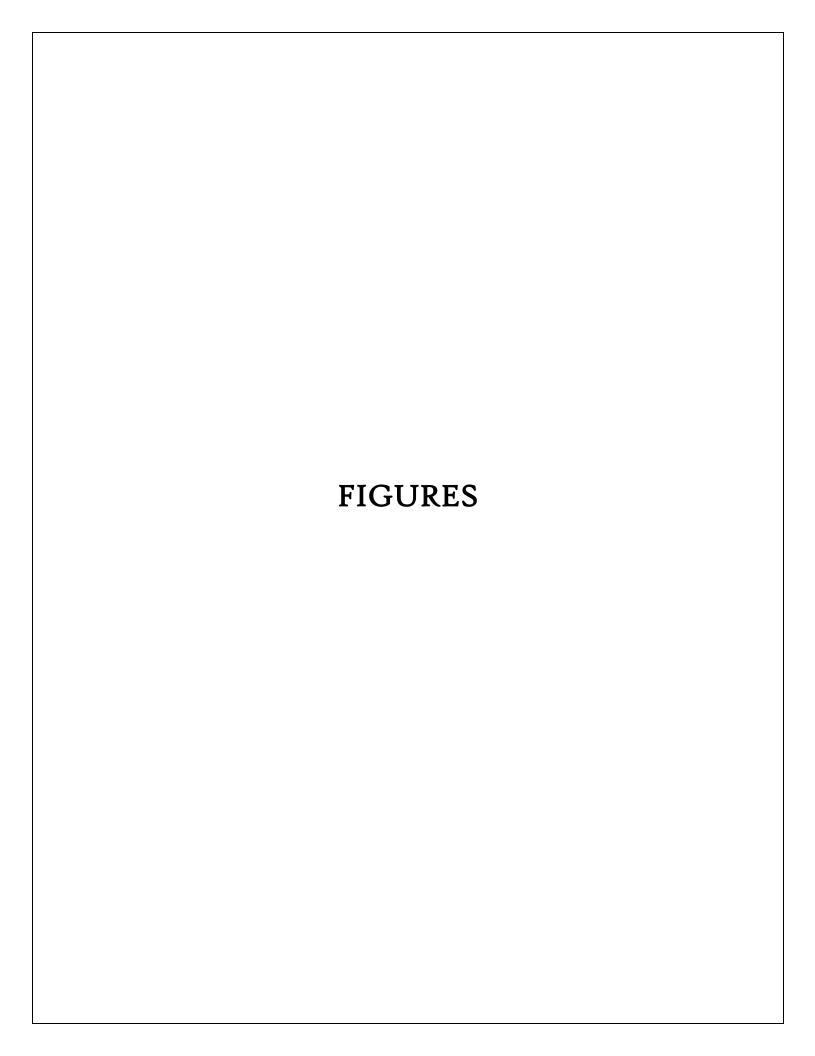
Locations of all sampling points associated with the SSD System are shown on Figure 1 – SSDS Site Sampling Sketch and all of the interior monitoring and exterior sampling points are shown on Figure 2 – Site Sampling Sketch. Laboratory analytical results for vapor gas sampling are included in Appendix A. A water table elevation contour map is shown on Figure 3.

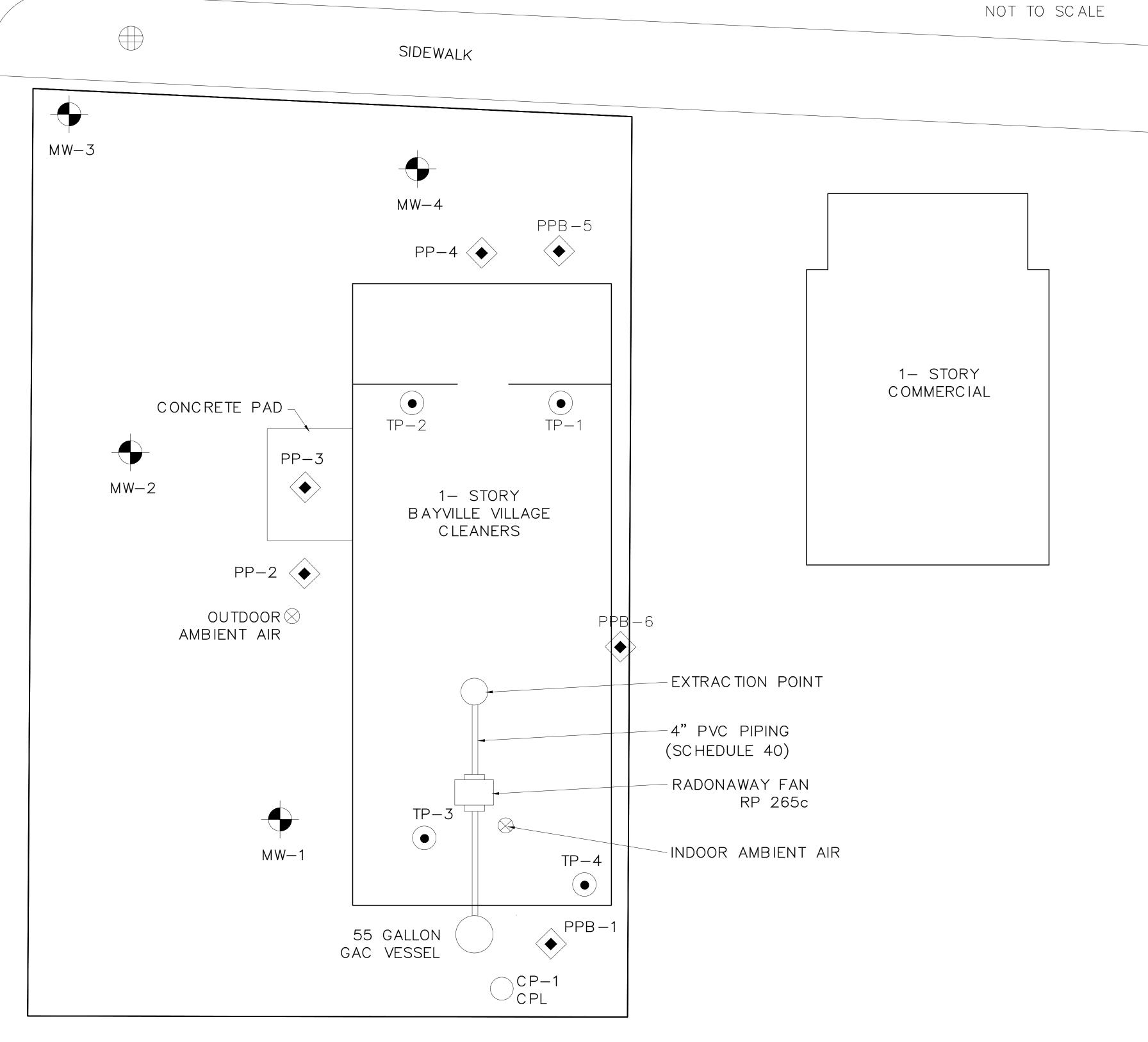
All samples were analyzed by Long Island Analytical Laboratories, Inc. (New York State ELAP Certification # 11693) located in Holbrook, New York 11741. Certifications and quality control data are included in the raw analytical data report enclosed in Appendix A. Laboratory analytical results reported by Long Island Analytical Laboratories, Inc. conform to the most current, applicable National Environmental Laboratory Accreditation Program (NELAC) standards and the laboratory's Quality Assurance Manual.

4.0 INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AND SUB-SLAB DEPRESSURIZATION SITE MANAGEMENT FORM

CTS on behalf of Mr. Thomas Ryan completed the NYSDOH "Indoor Air Quality Questionnaire and Building Inventory Form" for the subject Site during sampling activities. This form includes a product inventory form which lists each of the products/chemicals used and stored at the plumbing, heating and air conditioning warehouse/office space. The completed form is included in Appendix B. As part of the annual sampling, CTS inspected the SSD System and all of its components to ensure they are operating properly. The completed Sub-slab Depressurization Site Management Form is included in Appendix C. The NYSDEC Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form is provided in Appendix D.

5.0 CONCLUSIONS AND RECOMMENDATIONS


The New York State Department of Health (NYSDOH) Soil Vapor/Indoor Air Decision Matrices lists eight volatile chemicals: carbon tetrachloride; 1,1-dichloroethene (11-DCE); cis-1,2-dichloroethene (c12-DCE); trichloroethene (TCE); methylene chloride; tetrachloroethene (PCE); 1,1,1-trichloroethane (111-TCA); and vinyl chloride. These matrices outline steps to take based on the sub-slab vapor concentration of these compounds compared to the indoor air concentration.

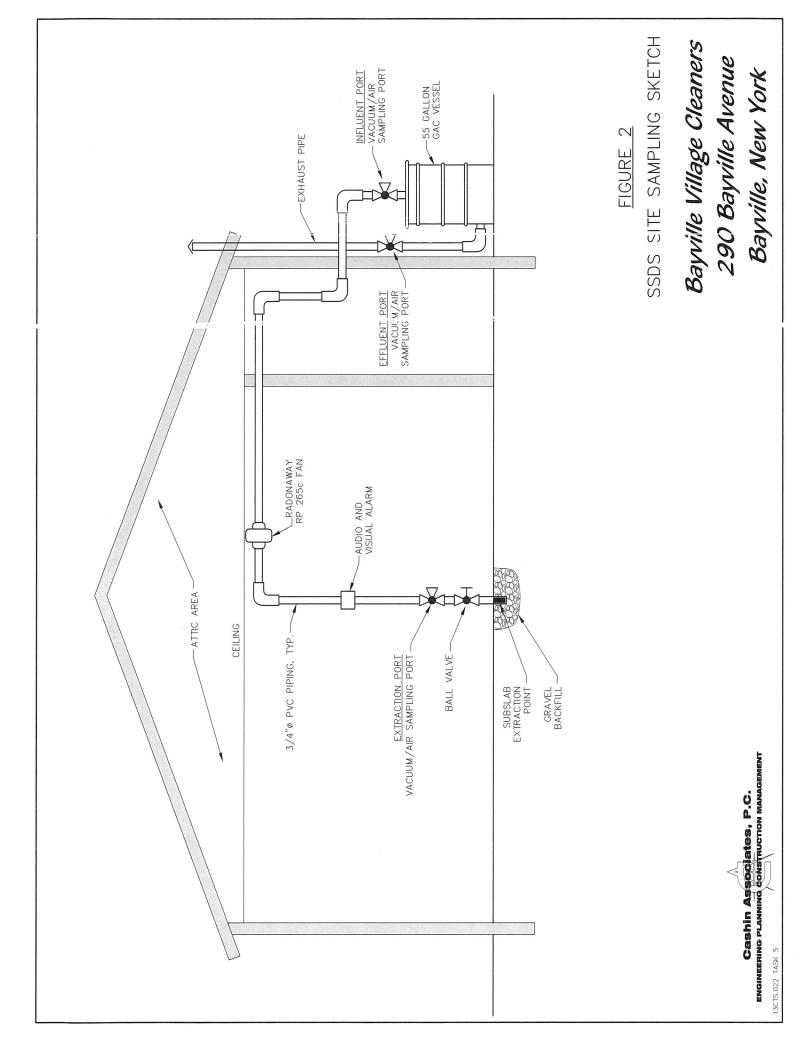

Based on the monitoring and sampling data, none of the eight VOCs listed above were detected in the ambient air inside or outside of the subject building. The non-detect presence of these compounds may be attributed with the removal of the dry cleaner business and its associated dry-cleaning chemicals that took effect in December of 2020.

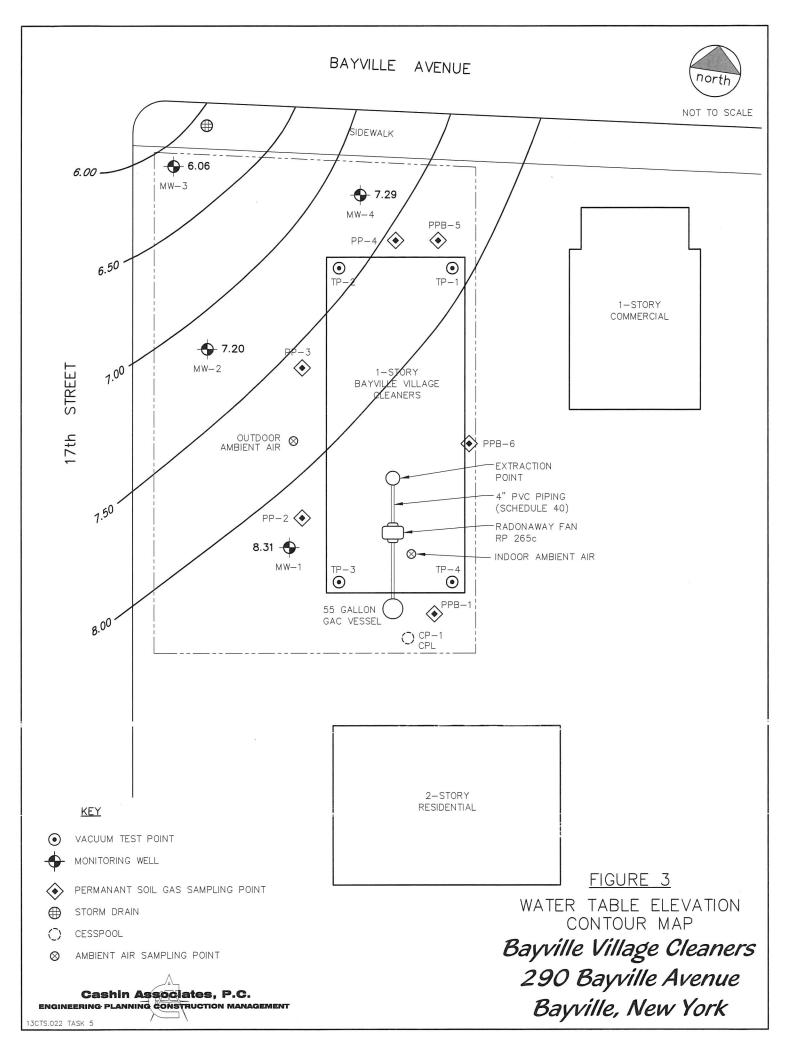
All of the existing engineering controls are still in operation at the Site. The sub-slab depressurization (SSD) system was observed to be operating properly. The general system piping was observed to be in good working condition and the discharge pipe of the SSD System was clear of obstruction. The RadonAway fan runs continuously to induce negative pressure to the building's sub-slab. The results of the air samples collected from the influent port and effluent port associated with the SSD System show that any VOCs detected in the influent port are significantly reduced after passing through the SSD System to the effluent port. The granular activated carbon vessel is effectively treating the effluent gas prior to discharge to the atmosphere.

The detection of volatile organic compounds in the soil vapor samples reflects a range of variability inherent in this type of sampling and analysis. The original source of these compounds on the site was attributed to the dry cleaner business and its associated drycleaning chemicals, which was removed in December of 2020. The subject building is used as an office space, plumbing parts/supply warehouse, and plumbing workshop; there are no significant quantities of hazardous materials stored, used, or generated at the property, nor have there been any at the Site since December 2020.

In accordance with Environmental Conservation Law (ECL 27-2405) and in association with the recent property purchase by Tri-County Installations Plumbing & Heating, Inc., Mr. Thomas Ryan (former owner of the VCA # W1-0848-9903, Site # V00220) has provided copies of all historical reports and documents associated with the VCA for the subject property including a copy of this 2022 PRR for "Tenant Notification of Indoor Air Contamination Associated with Soil Vapor Intrusion. When approved by the Department, a copy of this PRR will be maintained at the subject building for reference purposes by building tenants and occupants.

2— STORY RESIDENTIAL


<u>KEY</u>


- () VACUUM TEST POINT
- MONITORING WELL
- PERMANANT SOIL GAS SAMPLING POINT
- STORM DRAIN
- () CESSPOOL
- AMBIENT AIR SAMPLING POINT

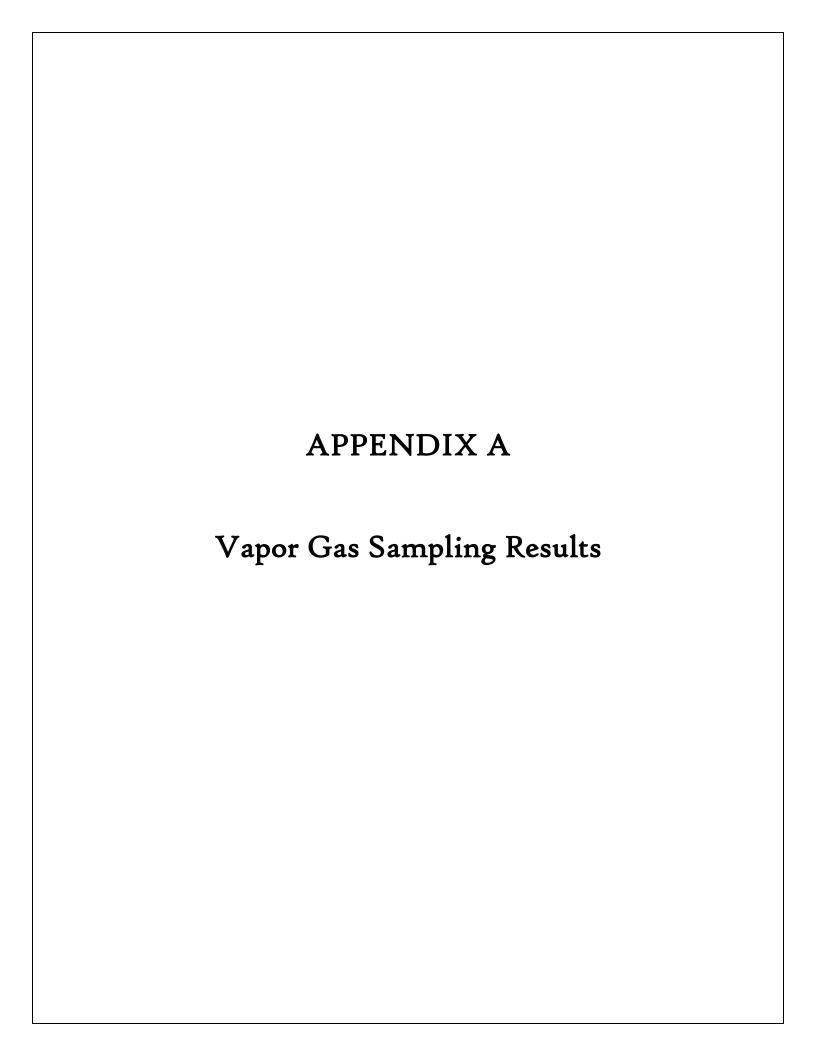

Cashin Associates, P.C.
ENGINEERING-PLANNING CONSTRUCTION MANAGEMENT
13CTS.022

FIGURE 1
SITE SAMPLING SKETCH

Bayville Village Cleaners 290 Bayville Avenue Bayville, New York

Laboratory Report

NYSDOH ELAP# 11693 USEPA# NY01273 CTDOH# PH-0284 AIHA# 164456 NJDEP# NY012 PADEP# 68-2943

LIAL# 2092206

March 08, 2023

Cashin Associates Marc Califano 1200 Veterans Highway Hauppauge, NY 11787

Re: 280 Bayville Ave Bayville Village Cleaners

Dear Marc Califano,

Enclosed please find the laboratory Analysis Report(s) for sample(s) received on September 21, 2022. Long Island Analytical laboratories analyzed the samples on September 22, 2022 for the following:

SAMPLE ID ANALYSIS

TO-15 Sub slab
TO-15 Sub slab
TO-15
TO-15
TO-15 Sub slab
TO-15 Sub slab
TO-15 Sub slab

If you have any questions or require further information, please call at your convenience. Long Island Analytical Laboratories Inc. is a NELAP accredited laboratory. All reported results meet the requirements of the NELAP standards unless noted. Report shall not be reproduced except in full without the written approval of the laboratory. Results related only to items tested. Long Island Analytical Laboratories would like to thank you for the opportunity to be of service to you.

Best Regards,

Long Island Analytical Laboratories, Inc.

James Aufiero Chief Operating Officer

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:53	Sample ID: Influent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-01
Matrix: Air	FLAP: #11693

Volatiles Analysis

Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	50.5	ug/m³	3.E
Acrolein	107-02-8	10.0	<9.32	ug/m³	3.B
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:53	Sample ID: Influent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-01
Matrix: Air	FLAP: #11693

Parameter Parame	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	<7.48	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	54.5	ug/m³	2.B, 3.E, 4.M
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	161	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	<13.7	ug/m³	3.B
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	<4.88	ug/m³	3.B
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	129	ug/m³	3.E
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	118	ug/m³	3.E
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	<2.50	ug/m³	2.B, 3.B
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	<7.06	ug/m³	3.B
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	<2.38	ug/m³	3.B
trans-1,2-Dichloroethene	156-60-5	7.92	8.25	ug/m³	3.E

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:53	Sample ID: Influent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-01
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	92	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 13:22	Sample ID: Effluent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-02
Matrix: Air	ELAP: #11693

VOIATIIES ANAIYSIS Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	<25.3	ug/m³	3.B
Acrolein	107-02-8	10.0	<9.32	ug/m³	3.B
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 13:22	Sample ID: Effluent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-02
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	<7.48	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	32.3	ug/m³	2.B, 3.E, 4.M
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	6.88	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	<13.7	ug/m³	3.B
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	<4.88	ug/m³	3.B
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	8.68	ug/m³	3.E
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	<5.26	ug/m³	3.B
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	<2.50	ug/m³	2.B, 3.B
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	<7.06	ug/m³	3.B
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	<2.38	ug/m³	3.B
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B
	•		•	•	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 13:22	Sample ID: Effluent Port 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-02
Matrix: Air	ELAP: #11693

	1				
Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	88	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:43	Sample ID: PP-3 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-03
Matrix: Air	ELAP: #11693

VOIATIIES ANAIYSIS Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	1630	ug/m³	3.E, 4.A
Acrolein	107-02-8	10.0	32.3	ug/m³	3.E
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:43	Sample ID: PP-3 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-03
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	11.4	ug/m³	3.E
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	7.61	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	92.3	ug/m³	2.B, 4.M, 3.E
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	14.3	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	25.3	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	46.3	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	<5.04	ug/m³	3.B
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	<5.26	ug/m³	3.B
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	19.5	ug/m³	2.B, 3.E
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	1240	ug/m³	4.A, 3.E
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	6.26	ug/m³	3.B
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:43	Sample ID: PP-3 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-03
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	16.2	ug/m³	3.E
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	87	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:51	Sample ID: PP-4 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-04
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	3.B, 2.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	974	ug/m³	3.E, 4.A
Acrolein	107-02-8	10.0	19.4	ug/m³	3.E
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:51	Sample ID: PP-4 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-04
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	<7.48	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	50.0	ug/m³	2.B, 3.E, 4.M
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	10.3	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	3.B, 2.B
m,p-Xylenes	108-38-3/106-42-3	20.0	21.5	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	3.B, 2.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	29.0	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	5.56	ug/m³	3.B
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	<5.26	ug/m³	3.B
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	10.6	ug/m³	2.B, 3.E
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	450	ug/m³	3.E
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	<2.38	ug/m³	3.B
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B
			•	•	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 16:51	Sample ID: PP-4 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-04
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
	TAS NO.	70 ROCOVERY	TCC. Limits	ı iag
4-Bromofluorobenzene	460-00-4	86	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:03	Sample ID: PPB-5 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-05
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	1200	ug/m³	3.E, 4.A
Acrolein	107-02-8	10.0	19.6	ug/m³	3.E
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:03	Sample ID: PPB-5 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-05
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	<7.48	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	54.4	ug/m³	2.B, 3.E, 4.M
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	9.44	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	25.3	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	36.9	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	<5.04	ug/m³	3.B
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	<5.26	ug/m³	3.B
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	11.2	ug/m³	2.B, 3.E
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	<7.06	ug/m³	3.B
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	7.99	ug/m³	3.E
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:03	Sample ID: PPB-5 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-05
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	87	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:08	Sample ID: Outdoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-06
Matrix: Air	FLAP: #11693

VOIATIIES ANAIYSIS Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	5.46	<2.76	ug/m³	
1,1,2,2-Tetrachloroethane	79-34-5	6.86	<3.52	ug/m³	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	7.66	<3.99	ug/m³	
1,1,2-Trichloroethane	79-00-5	5.46	<2.82	ug/m³	
1,1-Dichloroethane	75-34-3	4.05	<3.30	ug/m³	
1,1-Dichloroethene	75-35-4	3.96	<0.160	ug/m³	
1,2,4-Trichlorobenzene	120-82-1	7.42	<6.60	ug/m³	
1,2,4-Trimethylbenzene	95-63-6	4.92	<4.86	ug/m³	
1,2-Dibromoethane	106-93-4	7.68	<3.43	ug/m³	
1,2-Dichlorobenzene	95-50-1	6.01	<4.55	ug/m³	
1,2-Dichloroethane	107-06-2	4.05	<3.50	ug/m³	
1,2-Dichloropropane	78-87-5	4.62	<2.72	ug/m³	
1,2-Dichlorotetrafluoroethane	76-14-2	6.99	<4.23	ug/m³	
1,3,5-Trimethylbenzene	108-67-8	4.92	<4.64	ug/m³	
1,3-Butadiene	106-99-0	2.21	<1.94	ug/m³	
1,3-Dichlorobenzene	541-73-1	6.01	<2.57	ug/m³	
1,4-Dichlorobenzene	106-46-7	6.01	<2.58	ug/m³	
1,4-Dioxane	123-91-1	4.00	<3.65	ug/m³	
4-Ethyltoluene	622-96-8	4.92	<3.45	ug/m³	2.B
4-Methyl-2-Pentanone	108-10-1	4.10	<3.02	ug/m³	
Acetone	67-64-1	25.0	<12.6	ug/m³	
Acrolein	107-02-8	5.00	<4.66	ug/m³	
Benzene	71-43-2	3.19	<1.45	ug/m³	
Benzyl Chloride	100-44-7	5.18	<3.14	ug/m³	
Bromodichloromethane	75-27-4	6.70	<4.46	ug/m³	
Bromoform	75-25-2	10.3	<5.40	ug/m³	
Bromomethane	74-83-9	3.88	<3.13	ug/m³	
Carbon disulfide	75-15-0	70.0	<68.0	ug/m³	
Carbon Tetrachloride	56-23-5	6.29	<0.160	ug/m³	
Chlorobenzene	108-90-7	4.60	<1.35	ug/m³	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:08	Sample ID: Outdoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-06
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	6.60	<2.70	ug/m³	
Chloroform	67-66-3	4.88	<3.74	ug/m³	
Chloromethane	74-87-3	5.16	<2.10	ug/m³	4.J
cis-1,2-Dichloroethene	156-59-2	3.96	<0.160	ug/m³	
cis-1,3-Dichloropropene	10061-01-5	4.54	<2.77	ug/m³	
Cyclohexane	110-82-7	3.44	<2.89	ug/m³	
Dibromochloromethane	124-48-1	8.52	<3.78	ug/m³	
Dichlorodifluoromethane	75-71-8	4.95	<2.85	ug/m³	
Ethanol	64-17-5	5.00	36.0	ug/m³	2.B, 4.M
Ethylbenzene	100-41-4	4.34	<1.78	ug/m³	
Hexachlorobutadiene	87-68-3	10.7	<9.35	ug/m³	
Isopropanol	67-63-0	3.00	6.51	ug/m³	
Isopropyl acetate	108-21-4	3.60	<3.31	ug/m³	2.B
m,p-Xylenes	108-38-3/106-42-3	10.0	<6.83	ug/m³	
Methyl Butyl Ketone (2-Hexanone)	591-78-6	4.10	<3.38	ug/m³	2.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	2.95	<2.44	ug/m³	
Methyl Methacrylate	80-62-6	5.00	<4.42	ug/m³	
Methylene Chloride	75-09-2	3.47	<2.52	ug/m³	
Methyl-tert-Butyl Ether	1634-04-4	3.61	<2.25	ug/m³	
Naphthalene	91-20-3	5.24	<4.07	ug/m³	
n-Heptane	142-82-5	4.10	<2.20	ug/m³	
n-Hexane	110-54-3	3.52	<2.63	ug/m³	
o-Xylene	95-47-6	4.34	<1.67	ug/m³	
Propylene	115-07-1	3.11	<1.25	ug/m³	2.B
Styrene	100-42-5	4.26	<3.19	ug/m³	
Tetrachloroethene	127-18-4	6.78	<2.53	ug/m³	
Tetrahydrofuran	109-99-9	7.37	<2.80	ug/m³	2.B
Toluene	108-88-3	3.77	<1.19	ug/m³	
trans-1,2-Dichloroethene	156-60-5	3.96	<2.68	ug/m³	
-			·	-1	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:08	Sample ID: Outdoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-06
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	4.54	<2.32	ug/m³	
Trichloroethene	79-01-6	5.37	<0.160	ug/m³	
Trichlorofluoromethane	75-69-4	5.62	<2.52	ug/m³	
Vinyl Acetate	108-05-4	5.00	<3.57	ug/m³	
Vinyl chloride	75-01-4	2.56	<0.160	ug/m³	

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	94	70-130	
4-Bromofluorobenzene	460-00-4	99	70-130	

Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:11	Sample ID: Indoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-07
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	5.46	<2.76	ug/m³	
1,1,2,2-Tetrachloroethane	79-34-5	6.86	<3.52	ug/m³	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	7.66	<3.99	ug/m³	
1,1,2-Trichloroethane	79-00-5	5.46	<2.82	ug/m³	
1,1-Dichloroethane	75-34-3	4.05	<3.30	ug/m³	
1,1-Dichloroethene	75-35-4	3.96	<0.160	ug/m³	
1,2,4-Trichlorobenzene	120-82-1	7.42	<6.60	ug/m³	
1,2,4-Trimethylbenzene	95-63-6	4.92	8.70	ug/m³	
1,2-Dibromoethane	106-93-4	7.68	<3.43	ug/m³	
1,2-Dichlorobenzene	95-50-1	6.01	<4.55	ug/m³	
1,2-Dichloroethane	107-06-2	4.05	<3.50	ug/m³	
1,2-Dichloropropane	78-87-5	4.62	<2.72	ug/m³	
1,2-Dichlorotetrafluoroethane	76-14-2	6.99	<4.23	ug/m³	
1,3,5-Trimethylbenzene	108-67-8	4.92	<4.64	ug/m³	
1,3-Butadiene	106-99-0	2.21	<1.94	ug/m³	
1,3-Dichlorobenzene	541-73-1	6.01	<2.57	ug/m³	
1,4-Dichlorobenzene	106-46-7	6.01	<2.58	ug/m³	
1,4-Dioxane	123-91-1	4.00	<3.65	ug/m³	
4-Ethyltoluene	622-96-8	4.92	7.62	ug/m³	2.B
4-Methyl-2-Pentanone	108-10-1	4.10	<3.02	ug/m³	
Acetone	67-64-1	25.0	31.0	ug/m³	
Acrolein	107-02-8	5.00	<4.66	ug/m³	
Benzene	71-43-2	3.19	10.4	ug/m³	
Benzyl Chloride	100-44-7	5.18	<3.14	ug/m³	
Bromodichloromethane	75-27-4	6.70	<4.46	ug/m³	
Bromoform	75-25-2	10.3	<5.40	ug/m³	
Bromomethane	74-83-9	3.88	<3.13	ug/m³	
Carbon disulfide	75-15-0	70.0	<68.0	ug/m³	
Carbon Tetrachloride	56-23-5	6.29	<0.160	ug/m³	
Chlorobenzene	108-90-7	4.60	<1.35	ug/m³	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:11	Sample ID: Indoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-07
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	6.60	<2.70	ug/m³	
Chloroform	67-66-3	4.88	<3.74	ug/m³	
Chloromethane	74-87-3	5.16	<2.10	ug/m³	4.J
cis-1,2-Dichloroethene	156-59-2	3.96	<0.160	ug/m³	
cis-1,3-Dichloropropene	10061-01-5	4.54	<2.77	ug/m³	
Cyclohexane	110-82-7	3.44	<2.89	ug/m³	
Dibromochloromethane	124-48-1	8.52	<3.78	ug/m³	
Dichlorodifluoromethane	75-71-8	4.95	<2.85	ug/m³	
Ethanol	64-17-5	5.00	99.3	ug/m³	2.B, 4.A, 4.M
Ethylbenzene	100-41-4	4.34	8.81	ug/m³	
Hexachlorobutadiene	87-68-3	10.7	<9.35	ug/m³	
Isopropanol	67-63-0	3.00	14.9	ug/m³	
Isopropyl acetate	108-21-4	3.60	<3.31	ug/m³	2.B
m,p-Xylenes	108-38-3/106-42-3	10.0	72.0	ug/m³	
Methyl Butyl Ketone (2-Hexanone)	591-78-6	4.10	<3.38	ug/m³	2.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	2.95	7.58	ug/m³	
Methyl Methacrylate	80-62-6	5.00	<4.42	ug/m³	
Methylene Chloride	75-09-2	3.47	<2.52	ug/m³	
Methyl-tert-Butyl Ether	1634-04-4	3.61	<2.25	ug/m³	
Naphthalene	91-20-3	5.24	<4.07	ug/m³	
n-Heptane	142-82-5	4.10	8.85	ug/m³	
n-Hexane	110-54-3	3.52	11.2	ug/m³	
o-Xylene	95-47-6	4.34	10.7	ug/m³	
Propylene	115-07-1	3.11	<1.25	ug/m³	2.B
Styrene	100-42-5	4.26	<3.19	ug/m³	
Tetrachloroethene	127-18-4	6.78	<2.53	ug/m³	
Tetrahydrofuran	109-99-9	7.37	12.8	ug/m³	2.B
Toluene	108-88-3	3.77	62.7	ug/m³	
trans-1,2-Dichloroethene	156-60-5	3.96	<2.68	ug/m³	
		I	l		

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:11	Sample ID: Indoor Ambient Air 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-07
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	4.54	<2.32	ug/m³	
Trichloroethene	79-01-6	5.37	<0.160	ug/m³	
Trichlorofluoromethane	75-69-4	5.62	<2.52	ug/m³	
Vinyl Acetate	108-05-4	5.00	<3.57	ug/m³	
Vinyl chloride	75-01-4	2.56	<0.160	ug/m³	

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	93	70-130	
4-Bromofluorobenzene	460-00-4	98	70-130	

Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:26	Sample ID: PPB-6 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-08
Matrix: Air	FLAP: #11693

VOIATIIES ANAIYSIS Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	97.6	ug/m³	3.E
Acrolein	107-02-8	10.0	45.2	ug/m³	3.E
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:26	Sample ID: PPB-6 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-08
Matrix: Air	ELAP: #11693

IVIALITA. AII		LLAI . # 11033			
Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	<7.48	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	111	ug/m³	3.E, 4.M, 2.B
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	26.2	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	3.B, 2.B
m,p-Xylenes	108-38-3/106-42-3	20.0	23.4	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	3.B, 2.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	21.5	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	19.0	ug/m³	3.E
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	<5.26	ug/m³	3.B
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	24.5	ug/m³	3.E, 2.B
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	<7.06	ug/m³	3.B
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	28.0	ug/m³	3.E
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:26	Sample ID: PPB-6 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-08
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	83	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:52	Sample ID: PPB-1 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-09
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	160	ug/m³	3.E
Acrolein	107-02-8	10.0	76.3	ug/m³	3.E
Benzene	71-43-2	6.38	<2.90	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:52	Sample ID: PPB-1 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-09
Matrix: Air	ELAP: #11693

IVIALITA. AII		LLAI . # 11033			
Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	22.3	ug/m³	3.E
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	224	ug/m³	.B, 3.E, 4.A, 4.
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	78.7	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	22.2	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	33.7	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	76.7	ug/m³	3.E
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	18.9	ug/m³	3.E
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	58.0	ug/m³	2.B, 3.E
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	<7.06	ug/m³	3.B
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	7.99	ug/m³	3.E
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B
			•		

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 15:52	Sample ID: PPB-1 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-09
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	90	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:15	Sample ID: PP-2 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-10
Matrix: Air	FLAP: #11693

VOIATIIES ANAIYSIS Parameter	CAS No.	LOQ	Result	Units	Flag
1,1,1-Trichloroethane	71-55-6	10.9	<5.52	ug/m³	3.B
1,1,2,2-Tetrachloroethane	79-34-5	13.7	<7.04	ug/m³	3.B
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	15.3	<7.98	ug/m³	3.B
1,1,2-Trichloroethane	79-00-5	10.9	<5.64	ug/m³	3.B
1,1-Dichloroethane	75-34-3	8.10	<6.60	ug/m³	3.B
1,1-Dichloroethene	75-35-4	7.92	<4.72	ug/m³	3.B
1,2,4-Trichlorobenzene	120-82-1	14.8	<13.2	ug/m³	3.B
1,2,4-Trimethylbenzene	95-63-6	9.84	<9.72	ug/m³	3.B
1,2-Dibromoethane	106-93-4	15.4	<6.86	ug/m³	3.B
1,2-Dichlorobenzene	95-50-1	12.0	<9.10	ug/m³	3.B
1,2-Dichloroethane	107-06-2	8.10	<7.00	ug/m³	3.B
1,2-Dichloropropane	78-87-5	9.24	<5.44	ug/m³	3.B
1,2-Dichlorotetrafluoroethane	76-14-2	14.0	<8.46	ug/m³	3.B
1,3,5-Trimethylbenzene	108-67-8	9.84	<9.28	ug/m³	3.B
1,3-Butadiene	106-99-0	4.42	<3.88	ug/m³	3.B
1,3-Dichlorobenzene	541-73-1	12.0	<5.14	ug/m³	3.B
1,4-Dichlorobenzene	106-46-7	12.0	<5.16	ug/m³	3.B
1,4-Dioxane	123-91-1	8.00	<7.30	ug/m³	3.B
4-Ethyltoluene	622-96-8	9.84	<6.90	ug/m³	2.B, 3.B
4-Methyl-2-Pentanone	108-10-1	8.20	<6.04	ug/m³	3.B
Acetone	67-64-1	50.0	79.3	ug/m³	3.E
Acrolein	107-02-8	10.0	78.6	ug/m³	3.E
Benzene	71-43-2	6.38	5.56	ug/m³	3.B
Benzyl Chloride	100-44-7	10.4	<6.28	ug/m³	3.B
Bromodichloromethane	75-27-4	13.4	<8.92	ug/m³	3.B
Bromoform	75-25-2	20.7	<10.8	ug/m³	3.B
Bromomethane	74-83-9	7.76	<6.26	ug/m³	3.B
Carbon disulfide	75-15-0	140	<136	ug/m³	3.B
Carbon Tetrachloride	56-23-5	12.6	<9.06	ug/m³	3.B
Chlorobenzene	108-90-7	9.20	<2.70	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:15	Sample ID: PP-2 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-10
Matrix: Air	FLAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
Chloroethane	75-00-3	13.2	<5.40	ug/m³	3.B
Chloroform	67-66-3	9.76	9.57	ug/m³	3.B
Chloromethane	74-87-3	10.3	<4.20	ug/m³	3.B, 4.J
cis-1,2-Dichloroethene	156-59-2	7.92	<6.06	ug/m³	3.B
cis-1,3-Dichloropropene	10061-01-5	9.08	<5.54	ug/m³	3.B
Cyclohexane	110-82-7	6.88	<5.78	ug/m³	3.B
Dibromochloromethane	124-48-1	17.0	<7.56	ug/m³	3.B
Dichlorodifluoromethane	75-71-8	9.90	<5.70	ug/m³	3.B
Ethanol	64-17-5	10.0	188	ug/m³	.B, 3.E, 4.A, 4.
Ethylbenzene	100-41-4	8.68	<3.56	ug/m³	3.B
Hexachlorobutadiene	87-68-3	21.3	<18.7	ug/m³	3.B
Isopropanol	67-63-0	6.00	40.9	ug/m³	3.E
Isopropyl acetate	108-21-4	7.20	<6.62	ug/m³	2.B, 3.B
m,p-Xylenes	108-38-3/106-42-3	20.0	23.2	ug/m³	3.E
Methyl Butyl Ketone (2-Hexanone)	591-78-6	8.20	<6.76	ug/m³	2.B, 3.B
Methyl Ethyl Ketone (2-Butanone)	78-93-3	5.90	25.8	ug/m³	3.E
Methyl Methacrylate	80-62-6	10.0	<8.84	ug/m³	3.B
Methylene Chloride	75-09-2	6.94	32.8	ug/m³	3.E
Methyl-tert-Butyl Ether	1634-04-4	7.22	<4.50	ug/m³	3.B
Naphthalene	91-20-3	10.5	<8.14	ug/m³	3.B
n-Heptane	142-82-5	8.20	<4.40	ug/m³	3.B
n-Hexane	110-54-3	7.04	8.32	ug/m³	3.E
o-Xylene	95-47-6	8.68	<3.34	ug/m³	3.B
Propylene	115-07-1	6.22	30.6	ug/m³	2.B, 3.E
Styrene	100-42-5	8.52	<6.38	ug/m³	3.B
Tetrachloroethene	127-18-4	13.6	16.3	ug/m³	3.E
Tetrahydrofuran	109-99-9	14.7	<5.60	ug/m³	2.B, 3.B
Toluene	108-88-3	7.54	8.97	ug/m³	3.E
trans-1,2-Dichloroethene	156-60-5	7.92	<5.36	ug/m³	3.B

Client: Cashin Associates	Client ID: 280 Bayville Ave Bayville Village Cleaners
Date (Time) Collected: 09/20/2022 17:15	Sample ID: PP-2 9-20-22
Date (Time) Received: 09/21/2022 13:00	Laboratory ID: 2092206-10
Matrix: Air	ELAP: #11693

Parameter	CAS No.	LOQ	Result	Units	Flag
trans-1,3-Dichloropropene	10061-02-6	9.08	<4.64	ug/m³	3.B
Trichloroethene	79-01-6	10.7	<5.20	ug/m³	3.B
Trichlorofluoromethane	75-69-4	11.2	<5.04	ug/m³	3.B
Vinyl Acetate	108-05-4	10.0	<7.14	ug/m³	3.B
Vinyl chloride	75-01-4	5.12	<3.72	ug/m³	3.B

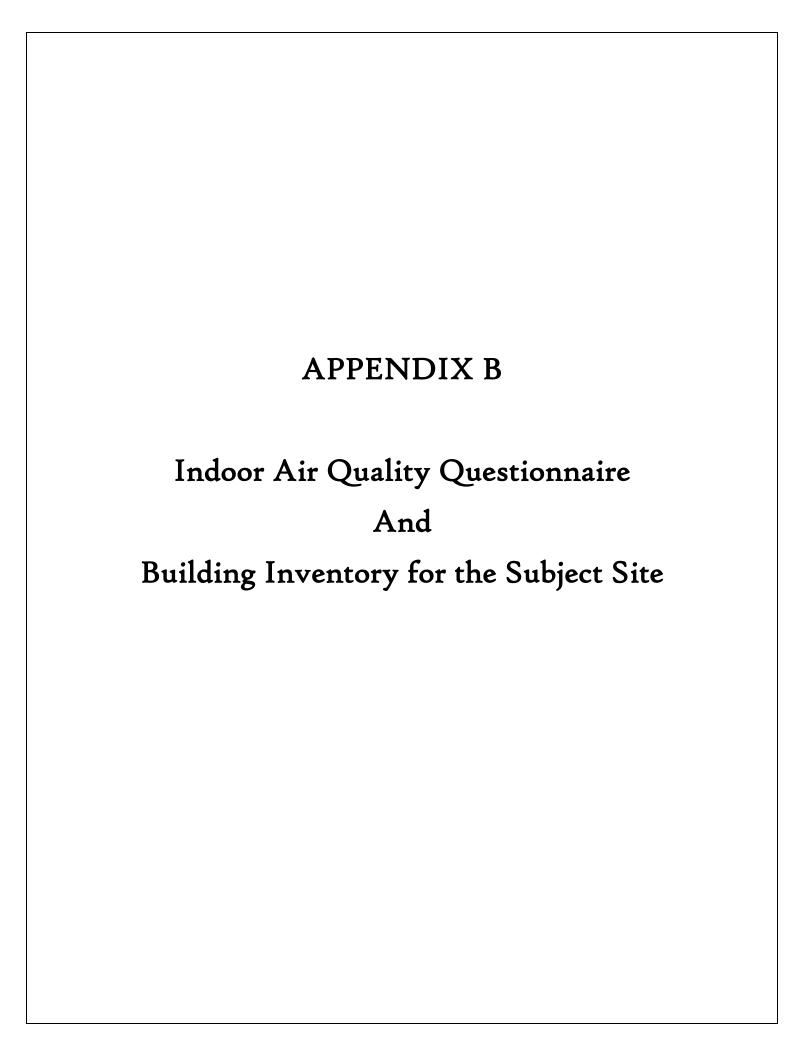
Surrogate	CAS No.	% Recovery	Rec. Limits	Flag
4-Bromofluorobenzene	460-00-4	84	70-130	
Internal Standard	CAS No.	% Recovery	Rec. Limits	Flag
1,4-Difluorobenzene	540-36-3		60-140	
Bromochloromethane	74-97-5		60-140	
Chlorobenzene-d5	3114-55-4		60-140	

Data Qualifiers Key Reference:

2 B	Parameter not certifiable by NFLAP
/ D	Parameter not centiliable by NELAP

- 3.B Reporting limit raised due to target compound interference.
- 3.E Compound reported at a dilution factor.
- 4.A Estimated concentration, exceeds calibration range.
- 4.J Continuing Calibration Verification (CCV) quality control levels failed low, values are considered to be estimated.
- LCS recovery was above QC acceptance limit. 4.M
- MDL Minimum Detection Limit
- LOQ Limit of Quantitation
- Н Holding Time Exceeded

ONG LAND MAIVTCAL


www.lialinc.com Chain of Custody - TO-15

PAGE OF

CAM SHOOTA OOR -											
"TOMORROWS ANALYTICAL SOLITIONS TODAY"	CLIENT	-	10 Thomas Dy	DAM RALL IN WILLOW COMMEN	SH WILL	NO Clone	_	DATE COLLECTED	1-77		
Long Island Analytical Laboratories Inc.		7	NOW WOR	NOCYTON A	VIII VIII	TO THE	THOM	~1	1		,
110 Colin Drive Holbrook, New York 11741		19 TOAA DC.	Glen Read,	NY 290	Bayvil	290 Boyville Ave Bayille	aville Ro	Rache/ La	Lambert	209	2092206
(631) 472-3400 • Fax 472-8505 E-mail:LIAL@lialinc.com	CLIEN	-317	317-3183	E-MAIL ADDRESS	KINS 4	F-MAIL ADDRESS 400/Not Mail	-	TURNAROUND TIME: BY	/ / A		
LABORATORY NO. For Laboratory Use Only	CANISTER NO.	CANISTER NO. / REGULATOR NO.		SAMPLE LOCATION	8	TIME	TIME	VACUUM GUAGE START ("Hg)	VACUUM GUAGE END ("Hg)	LEAK DETECTOR ANALYTE	ANALYSIS
	043/	14-20	Influent Port		9-20-21	2:30	15:53	-30	5	clod	T0-15
.5	1040	10-20	EAFluent "	Port 9-20-22		27.8	13:22	62-	5		-
3.	/,840	19-20	PP-3	9-20-22	22	8:27	16:43	-36	-5		
	038/	120-50	PP-4	9-20-11		8:36	16:51	-30	15		
2.	052/	02-21	PPB-5	9-20-22		24:8	17:03	-30	-5	\rightarrow	
6.	044/	12-20	Outdoor Ambient Air 9-20-72	which Air 9	7-20-12	8:47	17:08	- 38	9		
7	041/	12-50	Indoor Amb	Ambiert Lis 920-22		8:50	17:11	62-	5-		
ø.	055/	4-20	PPB-6	12-01-6	4	21:6	17:26	- 30	1-	clay	
ď	1640	13-50	PPB-1	9-10-11		4:13	15:52	12-	15		
10	034,	02-11	PP-2 9	11-01-b		8:53	17:15	-29	1-	- >	\rightarrow
			2								
2	,										
₩	- X				,	i i					
14.			•								
COMMENTS				<u> </u>	LEAK DETECTOR ANALYTES (1) ISOPROPYL ALCOHOL (2)	ALCOHOL (2)	HELIUM (BY TE	S (2) HELIUM (BY TECHNICIAN IN THE FIELD)		(3) ОТНЕВ:	
RELINQUISHED BY (SIGNATURE)	IRE)	DATE 9/21/22	ROCLAS LA	mbert	RECEIVED BY (SIGNATURE)	SIGNATURE)		DATE	PRII	PRINTED NAME	
IQUISHED BY (SIG	JRE)		PRINTED NAME	S	SAMPLE CUSTODIAN	ODIAN	1	DATE 9-21/2	2.	PRINTED NAME	P. Ven

WHITE-LAB CANARY-CLIENT

NYSDOH ELAP# 11693

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Rachel Lambert	Date/Time Prepared	9/20/22 12:00 pm
Preparer's Affiliation Cashin Technical Services,	Inc. Phone No. 631-348-7	7600
Purpose of Investigation_Periodic Review Report 202	22 VCA: WI-0848-9903 Site # \	/00220
1. OCCUPANT:		
Interviewed: Y/N		
Last Name: Riso First Name	me: Frank	
Address: 290 Bayville Avenue, Bayville, NY 1170)9	
County: Nassau		
Home Phone: Office Phone	516-628-8421	
Number of Occupants/persons at this location	Age of Occupants	
2. OWNER OR LANDLORD: (Check if same as o	ccupant)	
Interviewed: Y/N		
Last Name: Riso First Name	_{me:} Richard	
Address: 290 Bayville Avenue, Bayville, NY 1	1709	
County: Nassau		
Home Phone: Office Phone	e: <u>516-628-8421</u>	
3. BUILDING CHARACTERISTICS		
Type of Building: (Circle appropriate response)		
Residential School Con Industrial Church Othe	nmercial/Multi-use er:	

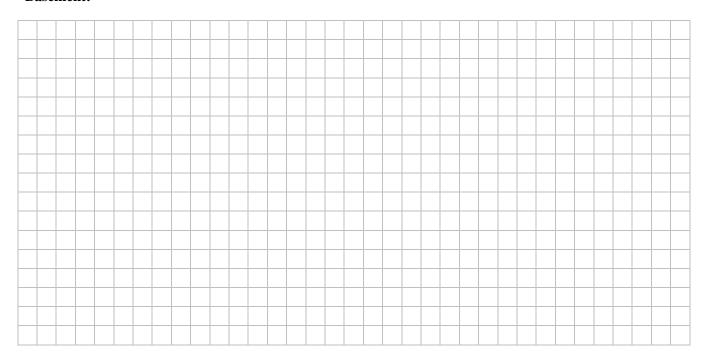
If the property is residential, type? (Circle appropriate response) 2-Family Ranch 3-Family Raised Ranch Split Level Colonial Cape Cod Contemporary Mobile Home Apartment House Duplex Townhouses/Condos Modular Log Home Other:____ If multiple units, how many? N/A If the property is commercial, type? Business Type(s) Plumbing, Heating, & Air Conditioning Does it include residences (i.e., multi-use)? Y N If yes, how many? _____ Other characteristics: Building age 63 years Number of floors 1 How air tight? Tight / Average / Not Tight Is the building insulated? Y N 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors N/A Airflow near source N/A Outdoor air infiltration N/A Infiltration into air ducts N/A

5.	BASEMENT A	AND	CONSTRUCTION	CHARACTERISTICS	(Circle all that apply

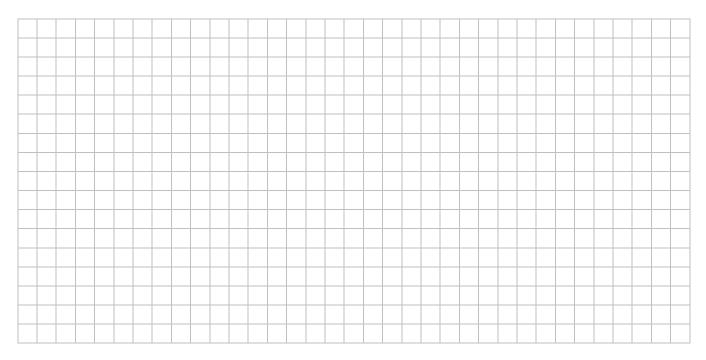
a. Above grade construction:	wood frame	concrete	stone	brick		
b. Basement type: N/A	full	crawlspace	slab	other		
c. Basement floor: N/A	concrete	dirt	stone	other		
d. Basement floor: N/A	uncovered	covered	covered with _			
e. Concrete floor:	unsealed	sealed	sealed with			
f. Foundation walls:	poured	block	stone	other		
g. Foundation walls:	unsealed	sealed	sealed with			
h. The basement is: N/A	wet	damp	dry	moldy		
i. The basement is: N/A	finished	unfinished	partially finish	ed		
j. Sump present?	YN					
k. Water in sump?	/ N / not applicable					
Basement/Lowest level depth belo	ow grade:	_(feet) N/A				
Identify potential soil vapor entry	points and approx	ximate size (e.g.	, cracks, utility	ports, drains)		
During investigation of SSDS, all possil	ole entry points (i.e., c	racks) were sealed	d off to prevent the	entrance of		
soil gas vapors and to enhance sub	o-slab negative pres	sure field of the	active SSDS.			
6. HEATING, VENTING and A	IR CONDITIONI	NG (Circle all th	at apply)			
Type of heating system(s) used in	this building: (circ	cle all that apply	y – note primary	y)		
Hot air circulation Heat pump			Hot water baseboard Radiant floor			
Space Heaters Electric baseboard	Wood stove			Other		
The primary type of fuel used is:						
Natural Gas Electric Wood	Fuel Oil Propane Coal	Propane Solar				
Domestic hot water tank fueled by: Natural Gas						
Boiler/furnace located in: Ba	sement Outdo	ors Main	Floor	Other		
Ğ	entral Air Windo	ow units Open	Windows	None		

Are there ai	Are there air distribution ducts present? Y N					
	e supply and cold air return ductwork, and its old air return and the tightness of duct joints. I					
N/A						
7. OCCUP	ANCY					
Is basement	/lowest level occupied? Full-time Occa	sionally	Seldom	Almost Never		
Level	General Use of Each Floor (e.g., familyroo	·	om, laundry, w	orkshon, storage)		
2010	General ese of Buen 11001 (eigh 141111, 1100)		, , , , , , , , , , , , , , , , , , ,	ornshop, storage,		
Basement	N/A			-		
1 st Floor	Storefront and supply storage					
2 nd Floor	N/A					
3 rd Floor	N/A					
4 th Floor	N/A					
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR (QUALITY				
a. Is there	an attached garage?		Y/N			
b. Does th	e garage have a separate heating unit?		Y/N/NA			
_	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)		Y / N NA Please specify_			
d. Has the	building ever had a fire?		Y N When?	<u> </u>		
e. Is a kerosene or unvented gas space heater present?			Y N Where	?		
f. Is there a workshop or hobby/craft area? YN Whe				?		
g. Is there	y?					
h. Have cl						

 ${\bf i.\ Have\ cosmetic\ products\ been\ used\ recently?}$


Y N When & Type? _____

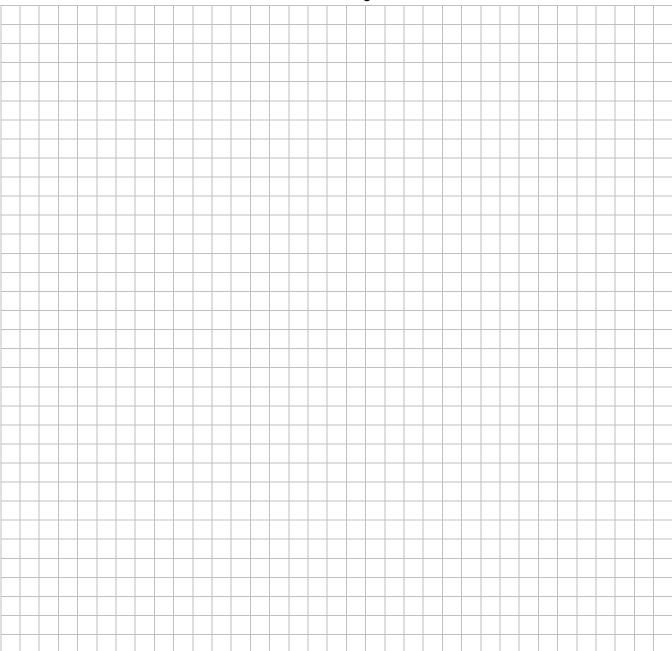
j. Has painting/sta	aining been done i	n the last 6 mo	onths? Y/N	Where & Whe	n?
k. Is there new ca	rpet, drapes or otl	her textiles?	YN	Where & Whe	n?
l. Have air freshe	ners been used rec	ently?	Y (N	When & Type	?
m. Is there a kitch	nen exhaust fan?		Y (N	If yes, where v	rented?
n. Is there a bath	room exhaust fan	?	Y/N	If yes, where v	rented?
o. Is there a cloth	es dryer?		Y N	If yes, is it ven	ted outside? Y / N
p. Has there been	a pesticide applic	ation?	Y /N	When & Type	?
Are there odors in If yes, please des	n the building?		Y N		
Do any of the buildi (e.g., chemical manu- boiler mechanic, pest	facturing or laborat	ory, auto mech		shop, painting,	fuel oil delivery,
If yes, what types	of solvents are used	1?			
If yes, are their clo	thes washed at wor	k?	YN		
Do any of the buildi response)	ng occupants regu	ılarly use or w	ork at a dry-clea	ning service? (Circle appropriate
Yes, use dry-	cleaning regularly cleaning infrequen a dry-cleaning serv	tly (monthly or	less)	No Unknown	
Is there a radon mit Is the system active		the building/s Active/Passive		Date of Installa	ation:
9. WATER AND SE	EWAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other: Cesspool
10. RELOCATION	INFORMATION	(for oil spill re	esidential emerge	ency)	
a. Provide reaso	ns why relocation	is recommend	ed: N/A		
b. Residents cho	ose to: remain in h	ome reloca	ate to friends/fam	ily relocat	te to hotel/motel N/A
c. Responsibility	for costs associat	ed with reimb	ursement explaii	ned? Y/N	N/A
d. Relocation pa	ckage provided a	nd explained to	residents?	Y / N	N/A


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

See Attached Figure 1

13. PRODUCT INVENTORY FORM	(Attached as additional page)					
Make & Model of field instrument used:						
List specific products found in the residence that have the potential to affect indoor air quality.						

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
					1	
					1	

^{*} Describe the condition of the product containers as **Unopened** (**UO**), **Used** (**U**), or **Deteriorated** (**D**)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Location	Product Description	Size (units)	Quantity	Quantity	Chemical Ingredient SDS Links (Also attached in separate PDF)
Bathroom	WD-40 EZ-Reach	14.4 oz	(New)	(Used)	https://resources.cleanitsupply.com/MSDS/WDF490194EA_SDS.PDF
Bathroom	Clorox Clean-Up Cleaner + Bleach	32 oz/ 24 oz		2	https://www.thecloroxcompany.com/wp-content/uploads/2020/12/US001274-cloroxclean-upcleanerbleach1_2.pdf
Bathroom	Softsoap Handsoap	128 oz		1	https://www.msdsdigital.com/softsoap-antibacterial-liquid-hand-soap-msds-4
Warehouse	Sakrete High-Strength Concrete Mix	80 lbs	6	1	https://www.sakrete.com/content/uploads/2021/07/High-Strength-Concrete-SDS.pdf
Warehouse	Rapid Set Mortar Mix	25 lbs		1	https://images.homedepot-static.com/catalog/pdflmages/bb/bbb21dd2-0b4a-46be-a218-87424c7ee866.pdf
Warehouse	Commercial Grade Quikrete Hydraulic Water-Stop Cement	10 lbs		1	https://www.buildsite.com/pdf/quikrete/QUIKRETE-Hydraulic-Water-Stop-Cement-1126-SDS-1837828.pdf
Warehouse	USG Sheetrock Easy Sand 90 Joint Compound	18 lbs	3	1	http://www.usg.com/content/dam/USG Marketing Communications/united_states/sds/usg-sheetrock-easy-sand-lightweight-setting-type-joint-compounds-sds-en61000030002.pdf
Washroom	Weiman Stainless Steel Cleaner & Polish	17 oz		2	https://weiman.com/mwdownloads/download/link/id/17/
Washroom	Ultra Ajax Triple Action Orange Dish Soap	14 oz	1	1	https://resources.cleanitsupply.com/MSDS/CPC44678EA_SDS.PDF
Washroom	Rite Aid Baby Powder Mild and Hypoallergenic	22 oz		1	https://www.kandelandson.com/msds/Raid%20Ant%20and%20Roach%20Killer
Washroom	Raid Ant & Roach Killer Unscented	18 oz		1	<u>pdf</u>
Washroom	Windex Original	1 gal		1	https://beta.lakeland.edu/AboutUs/MSDS/PDFs/3258/Windex%20Original%20 Glass%20Cleaner%20(SC%20Johnson)%201-23-18.pdf
Washroom	Pine-Sol Original Multi-Surface Cleaner	144 fl oz		1	https://www.thecloroxcompany.com/wp-content/uploads/2022/10/USA-SDS-Clorox-Pine-Sol-Multi-Surface-Cleaner-All-Scents 2-2.pdf
Washroom	Evolved By Nature Hand Soap	128 oz	2	1	https://resources.cleanitsupply.com/MSDS/EBN-SDS-SOAP-001.PDF
Washroom Washroom	Dawn Ultra Platinum Powerwash Dish Spray Fresh Scent Clorox Disinfecting Bathroom Bleach-Free Cleaner	16 oz 30 fl oz	2	1	https://resources.cleanitsupply.com/MSDS/PGC31836_SDS.PDF https://www.thecloroxcompany.com/wp-
Washroom	Super Clean Tough Task Cleaner Degreaser	1 qt		1	content/uploads/cloroxdisinfectingbathroomcleanerjw.pdf https://www.superclean.com/wp-content/uploads/2016/10/2016-SuperClean-
	Simple Green All-Purpose Cleaner	32 fl oz		1	Degreaser-SDS-v2.0.pdf https://cdn.simplegreen.com/downloads/SDS_EN-
Warehouse	3M Calcite	45 lbs		1	US_SimpleGreenAllPurposeCleaner.pdf https://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn_zu8I00xM
Warehouse	Klean-Strip Pure Gum Spirits Turpentine	32 fl oz		1	xmUn8meOv70k17zHvu9lxtD7SSSSSS https://www2.pcad.edu/Facilities/health_safety/SDS/Painting/Solvents/W.M.%2
Warehouse	Valspar Medallion Paint Primer 2408 Pastel Base	126 fl oz		1	<u>0Barr/klean%20strip%20pure%20gum%20turpentine.pdf</u> https://assets.unilogcorp.com/187/ITEM/DOC/Valspar 100053727 SDS.pdf
Warehouse	Revivex Instant Waterproofing	5 oz		1	https://www.nrs.com/assets/downloads/msds/revivex_durable_water_repellant_(ghs).pdf
Warehouse	Premier Plastic Roof Cement PR300	0.90 gal		1	https://www.msdsdigital.com/premier-350-wet-dry-plastic-roof-cement-msds
Warehouse	Hercules Premium Grade/All-Weather Roof and Flashing Sealant	1 gal		3	https://www.herculesindustries.com/sites/default/files/pdgs/spec_docs/SDS%20 MTS100.pdf
Warehouse	Roofers Choice 16 Wet N Dry Roof Cement	0.90 gal		1	https://assets.unilogcorp.com/187/ITEM/DOC/Henry 100031248 SDS.pdf
Warehouse	Benjamin Moore Ultra Spec Ext Advanced Waterborne Formula Exterior Flat Base 3 N447 3X	118 fl oz		1	https://media.benjaminmoore.com/WebServices/prod/assets/production/datasheets/MSDS_0447/N4473X_SDS_EN.pdf
Warehouse	Minwax Wood Finish Penetrating Stain Semi-Transparent Classic Gray 271	1 qt		1	https://www.whatsinproducts.com/brands/show_msds/1/20663
Warehouse	AutoZone Conventional Green Antifreeze & Coolant	1 gal		2	https://contentinfo.autozone.com/znetcs/msds/en/US/540721
Warehouse	Peak Antifreeze & Coolant	1 gal		2	https://media.lifeandhome.com/media/downloads/30375/SDSpdf.pdf
Warehouse	Napa Anti-Freeze Coolant Alugard	1 gal		1	https://media.napaonline.com/is/content/GenuinePartsCompany/889651pdf https://shop.sclubricants.com/pub/media/sds/shell/ShellZone-Multi-Vehicle-ELC
Warehouse	Shell Zone Pre-diluted 50/50 Antifreeze/Coolant	1 gal		1	<u>50-50-MSDS.pdf</u>
Warehouse	Pride 500 50/50 Pre-mix Atifreeze & Coolant	1 gal		3	http://sumo-east.ru/Data/MSDS_10-10-02_PRIDE_500_50-50.pdf
Warehouse	Mercedes-Benz Anticorrosion/Antifreeze Agent	1 gal		1	https://msdsdigital.com/mercedes%C2%AE-benz-g-48-antifreeze-coolant-msds-0
Warehouse	Gunk Brake Parts Cleaner Chlorinated	19 oz		1	https://www.solvewithb.com/products/msds/M709.pdf
Warehouse	Johnsen's Synthetic Dot-3 Brake Fluid	12 fl oz		1	https://www.shophighlinewarren.com/images/ProductSDSDocuments/JOHN221 2.pdf
Warehouse	Gumout Jet Spray Carb/Choke & Parts Cleaner	16 oz	1		https://petroleumservicecompany.com/content/pdfs/Gumout-Jet-Spray-Carb-and Choke-Cleaner_SDS.pdf
Warehouse	Gumout Starting Fluid	11 oz	1		https://ehs.cranesville.com/msds.pdfs/SDS(G025).pdf
Warehouse	Bar's Leaks Radiator Stop Leak	5.5 fl oz			https://barsleaks.com/wp-content/uploads/2019/07/1194-1196-SDS.pdf https://petroleumservicecompany.com/content/pdfs/COMSTAR_SUPER_HEAT
Warehouse	ComStar Super Heat	8 oz		7	SDS.pdf
Warehouse	Castrol GTX SAE 10W-30 Motor Oil	1 qt		1	https://msdspds.castrol.com/ussds/amersdsf.nsf/Files/B7B55E77E7548F35802 5865A00580A5E/\$File/2695570.pdf
Warehouse	Cam2 2-Cycle Engine Oil	3.2 fl oz & 8 fl oz		2	https://cam2.com/wp-content/uploads/2021/07/80565-324_sds.pdf
Warehouse	Mobil 1 10W-30 Fully Synthetic Motor Oil	1 qt		1	https://images.homedepot-static.com/catalog/pdfImages/c1/c1527ca5-f9f3-4aa1-b2ca-a255804938ff.pdf
Warehouse	Mobil Drive Clean Oil 10W-30 Motor Oil	1 qt		1	https://www.k-state.edu/facilities/storeroom/products/msds/Mobil%2010W30%20oil.pdf

Location	Product Description	Size (units)	Quantity (New)	Quantity (Used)	Chemical Ingredient SDS Links (Also attached in separate PDF)
Warehouse	Hercules Haymaker Tankless Water Heater Descaler	32 fl oz		1	https://s3.amazonaws.com/s3.supplyhouse.com/product_files/Oatey-35231- MSDS.pdf
Warehouse	Castrol Hypoy C Gear Oil Sae 80W-90	1 qt		1	https://www.autowaresgroup.com/msds/Castrol/12609.pdf
Warehouse	Carquest Motor Oil Sae 5W-30	1 qt		1	http://buffalobuildingsurvey.com/msds/carquest%205w-30%20oil.pdf
Warehouse	WD-40	1 gal		1	https://files.wd40.com/pdf/sds/mup/wd-40-multi-use-product-bulk-low-voc-us-ghs.pdf
Warehouse	HM Spray Adhesive 101	15 oz		5	
Warehouse	ArmorAll Tire Foam Protectant	20 oz		1	https://www.dultmeier.com/pdfs/SDS/IM40040-Armorall-Tire-Foam-Can.pdf
Warehouse	VHT Plate Finish Shiny Plated Appearance	11 oz		1	https://www.speco.com.au/Downloads/MSDSLPV6H.pdf
Warehouse	Tuff Stuff Multi-Purpose Foam Cleaner	22 oz		1	https://www.shophighlinewarren.com/images/ProductSDSDocuments/TUFF13147WB.pdf
Warehouse	Ace Belt Dressing	11 oz		1	https://acechempro.com/wp- content/uploads/2020/12/acesurgripbeltdressingbda.msds .pdf
Warehouse	Seymour Stripe Marker White 16-652	11 oz		1	https://fs.amplifi.io//file?id=987960d1-d230-44a8-8064-fcdcb8b0fcec
Warehouse	Krylon Semi-gloss Interior-Exterior	12 oz		1	https://media.napaonline.com/is/content/GenuinePartsCompany/827881pdf
Warehouse	Valker Chem Flush 1	14 oz		1	
Warehouse	Heads Up Super Duty Interior Adhesive	16.5 fl oz		1	https://www.eastwood.com/images/library/52274Z.pdf
Warehouse	PlastiKote Car Color 1018 Gunmetal	11 oz		2	https://core-docs.s3.amazonaws.com/documents/asset/uploaded_file/234020/Plasti-Kote_Marking-Paint.pdf
Warehouse	E-Zoil Hot Shot Heating Oil Treatment	16 oz		1	https://www.ezoil.com/documents//Hot%20Shot%20SDS%202018_2.pdf
Warehouse	Tempo Marine Yellow Zinc Chromate Primer No. 5606	12 oz		1	http://www.intrepidcoatings.com/pdf/msds/200Y02.pdf
Warehouse	Quicksilver Power Trim & Steering Fluid	8 fl oz		1	http://www.marineroutboards.com.au/media/328885/quicksilver%20premium%2
Warehouse	Plasti-Kote Rust Not Rust Converter No. 623	8 fl oz		1	<u>Opower%20trim%20and%20steering%20fluid%20(au)en.pdf</u> https://www.n1.is/media/6526/rust_converter_sds.pdf
warenouse	Plasti-Kote Rust Not Rust Converter No. 623	8 11 OZ		1	https://itwgbrainx.wpenginepowered.com/wp-content/uploads/2020/11/9191-
Warehouse	Rain-x De-Icer	1 gal		1	SDS-RainX-DeIcer-Spray-909.pdf
Warehouse	Simple Green Car Wash	2 L		1	https://cdn.simplegreen.com/downloads/SDS_EN-US_SimpleGreenCarWash.pdf
Warehouse	Global Sub Zero Depressant	16 fl oz		1	https://www.globalp.com/wp-content/uploads/2019/10/SDS_SubZero_ih1AFS_IFS0209_USA_Eng.pdf
Warehouse	Armor All Multi-Purpose Cleaner	16 fl oz		1	https://media.napaonline.com/is/content/GenuinePartsCompany/1615219pdf
Warehouse	Armor All Air Freshening Protectant	16 fl oz		1	https://whatsinproducts.com/files/brands_pdf/11177_03027212%20MSDS%20ARMOR%20ALL%20AIR%20FRESHENING%20PROTECTANT%20- %20COOL%20MIST.pdf
Warehouse	Still Sweet	1 lb		7	
Warehouse	Still Clean	1 lb		8	https://proproducts.com/wp-content/uploads/Pro-Still-Clean-Distiller-Cleaner-Descaler-English-GHS-11-07-2019.pdf
Warehouse	Green Meadow Lawn Mower and Chain Saw 2-cycle Lubricant	8 fl oz		1	
Warehouse	Behr Wet-Lock Sealer No. 985 Hi-Gloss	1 gal		1	https://images.thdstatic.com/catalog/pdfImages/08/08451236-2bfc-4737-96ee-573f5f0a1a76.pdf
Warehouse	MaryKate On & Off Hull & Bottom Cleaner	32 fl oz		1	https://www.fastenal.com/productimages/supplemental/product_docs/CRC%20INDUSTRIES,%20INC_254392.pdf
Warehouse	PX Super "99" Isopropyl Alcohol Fuel System Conditioner & Antifreeze All Season Formula	10 fl oz	16		https://www.splashwash.com/application/files/3515/4223/0551/SPLASH_SUPE R_PX-99_Isopropyl_Alcohol_LQ_SDS.pdf
Warehouse	Hercules Mega Bubble Leak Detector	1 gal		1	https://images.thdstatic.com/catalog/pdfImages/ab/ab3af6a1-b89b-441d-8299ea128ff38fb6.pdf
Warehouse	Citgo 10W-30 Supergard Motor Oil	1 qt		1	http://www.docs.citgo.com/msds_pi/620813001.pdf
Warehouse	Mercury Precision Lubricants Outboard Oil 4-Stroke SAE 10W-30	1 L		1	https://www.whatsinproducts.com/files/brands_pdf/13033002%20MSDS%204-Stroke%20Outboard%20Oil%20(10W-30)%20085-1170.pdf
Warehouse	Pennzoil SAE 10W-40 Motor Oil with PureBase	1 qt		2	https://evosupplygroupcatalog.sfo3.digitaloceanspaces.com/files/FCsLrW6TycZcZGAa3SrL3Td9OgzgHwXy9CRYx6BQ.pdf
Warehouse	Diamond Crystal Solar Naturals Salt Crystals for Water Softeners	40 lbs	3	1	https://images.thdstatic.com/catalog/pdflmages/83/834e9b40-24c2-468a-886e22cf4eb7ea7b.pdf
Warehouse	Sto Gold Coat 80265	18 L	1		https://www.stocorp.com/content/Products_TechService/SDS/SDS%20English/SDS_80265_Sto%20Gold%20Coat_EN.pdf
Warehouse	Peak Blue Def Diesel Exhaust Fluid	2.5 gal	2		https://www1.mscdirect.com/MSDS/MSDS00068/30606818-20201225.PDF
Warehouse	Utility Wonder Products No-Freez' Non-Toxic Heat Transfer Fluid	5 gal	3		https://www.utilitychemicals.com/pdf_files/18-450%20SDS.pdf
Warehouse	Napa Diesel Exhaust Fluid	2.5 gal	3		https://media.napaonline.com/is/content/GenuinePartsCompany/150258474pdf
Warehouse	Leslie's Pool Salt	40 lbs	2	1	
Warehouse	Still Pro Distiller Cleaner	1 lb		8	
Warehouse	Karnak 19 Flashing Cement	5 gal		1	https://global- uploads.webflow.com/5fdb6a6c2e47643f50c6794c/62c87e03d3c97467f6199e91 _19 SDS 062722.pdf
Warehouse	Rust-oleum Undercoating Rubberized Black	15 oz	1	1	https://images.thdstatic.com/catalog/pdfImages/d5/d59b0caa-9261-4832-baf9-8f5cf151330e.pdf
Warehouse	Johnsen's Starting Fluid for Gas and Diesel Engines	10 oz	11		https://www.johnsens.com/content/products/sds/6762.pdf
Warehouse	Armor All Auto Glass Cleaner	22 fl oz		1	https://www.dultmeier.com/pdfs/SDS/IM17234-Armorall-Glass-Cleaner-4oz-Bottle.pdf
Warehouse	Krylon Contractor Marking Paint	15 oz		1	http://s7d9.scene7.com/is/content/GenuinePartsCompany/684686pdf
Warehouse	3M Fiberglass Resin No. 20122	32 fl oz		1	https://msdsdigital.com/3m%E2%84%A2-bondo%C2%AE-all-purpose-
	Č	J∠ 11 0Z		1	fiberglass-resin-pn-20122-20124-msds
Warehouse	Western Parts and Accessories Red Enamel Part # 49135	1 qt		1	https://pics.millsupply.com/pdf/parts/2560565.pdf

Location	Product Description	Size (units)	Quantity (New)	Quantity (Used)	Chemical Ingredient SDS Links (Also attached in separate PDF)
Warehouse	Premium Décor High Gloss Waterbased Acrylic Enamel PDL-70 Slate Gray	1 qt		1	
Warehouse	Benjamin Moore Ultra Spec 500 Interior Flat N536 01	1 gal		3	https://media.benjaminmoore.com/WebServices/prod/assets/production/datasheets/MSDS_0536/N53601_SDS_EN_01-07-2021.pdf
Warehouse	Benjamin Moore Regal Select Premium Interior Paint and Primer Base 1 549 1x	1 gal		1	https://media.benjaminmoore.com/WebServices/prod/assets/stage/datasheet s/MSDS_0549/5491X_SDS_EN_02-05-2019.pdf
Warehouse	USG Sheetrock All Purpose Joint Compound	4.5 gal		1	https://www.usg.com/content/dam/USG_Marketing_Communications/united_states/sds/usg-sheetrock-all-purpose-joint-compound-ready-mixed-sds-en-61000010001.pdf
Warehouse	Rustoleum Protective Enamel Oil-Based	32 fl oz		1	https://images.thdstatic.com/catalog/pdfImages/41/41cef8bf-ab3e-4c44-b9f3-540803438354.pdf
Warehouse	Rustoleum Ultra Cover Premium Latex Paint Gloss Black	32 fl oz		1	https://www.rustoleum.com/MSDS/ENGLISH/1979502.pdf
Warehouse	Rust-oleum Gloss Protective Gloss Protective Enamel Smoke Gray V7786	32 fl oz		1	https://www.rustoleum.com/MSDS/ENGLISH/7786402.pdf
Warehouse	Miscellaneous gasoline containers	~5 gal			https://www.valero.com/sites/default/files/2019-12/sds us - 002-ghs unleaded gasoline rev1 5-14 0.pdf
Bathroom 2	Great Scents Air Freshener Rose Garden	9 oz		1	
Bathroom 2	Nurse Madonna Hand Sanitizer	8 fl oz		1	https://www.isanico.com/myfile.aspx?doc=madonnasds.pdf%7c2
Bathroom 2	Clorox Total Bowl Cleaner Bleach	24 fl oz		1	https://www.thecloroxcompany.com/wp-content/uploads/2020/12/US001276-Clorox-Commercial-Solutions-Clorox-Toilet-Bowl-Cleaner-with-Bleach1_4-1.pdf
Bathroom 2	Pledge Furniture Spray Lemon Clean	13.8 oz		1	https://swish.ca/amfile/file/download/file/698/product/5751/
Bathroom 2	Afta Mattress Fresh	6 oz	10		
Bathroom 2	Soft Scrub Cleanser with Bleach Surface Cleaner	36 oz		1	https://www.uline.com/PDF/SS-7137.pdf
Warehouse	Round Up Poison Ivy Plus Tough Brush Killer	24 fl oz		1	https://images.thdstatic.com/catalog/pdfImages/af/af4dc90d-f809-497e-a383-e093766492d9.pdf
Warehouse	Spray Nine Heavy-Duty Cleaner/Degreaser	32 fl oz		1	https://itwgbspraynine.wpenginepowered.com/wp-content/uploads/tech_docs/sds/01_USA-English/26832.pdf
Warehouse	Hercules Purple PVC Primer	32 fl oz		1	https://www.oatey.com/products/hercules-purple-primer-for-pvc-and-cpvc-762785864
Warehouse	Hercules Clear Plastic Pipe Cement	32 fl oz	14		https://www.oatey.com/products/hercules-medium-body-set-clear-pvc-cement-157765147
Warehouse	Hercules Clear PVC Primer	32 fl oz	10		https://www.oatey.com/products/hercules-clear-pvc-primer-1621591729
Warehouse	Hercules Jel-Flux	8 fl oz		1	https://superiormechanical.us/wp-content/uploads/2021/05/Hercules-Jel-Flux.pdf
Warehouse	Silco Sil-Bond RTV 6500	10.3 fl oz		1	https://static1.squarespace.com/static/61edd9811a204a0fdbe9d14d/t/62697067c711d7246fa50de2/1651077223531/SIL-BOND-RTV-6500-US-EN-3-sds+%281%29.pdf
Warehouse	Unifrax LDS Moldable Fiberfrax	11 fl oz		1	https://www.unifrax.com/wp-content/uploads/2018/08/M0139.pdf
Warehouse	DAP Gray Concrete Siliconized Filler & Sealant	10.1 fl oz		1	https://www.buildsite.com/pdf/dap/DAP-Concrete-Mortar-Siliconized-Filler-Sealant-SDS-1875489.pdf

Photograph #1 - View of PP-3 located in concrete loading ramp. Also pictured: PP-2 and Outdoor Ambient Air.

Photograph #2 - View of plumbing warehouse product listed in Product Inventory Form.

Photograph #3 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #4 - View of plumbing warehouse product listed in Product Inventory Form.

Photograph #5 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #6 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #7 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #8 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #9 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #10 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #11 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #12 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #13 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #14 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #15 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #16 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #17 – View of plumbing warehouse product listed in Product Inventory Form.

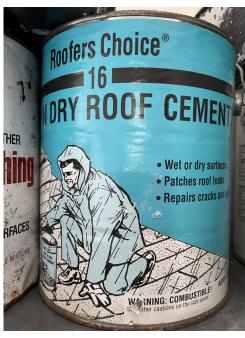
Photograph #18 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #19 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #20 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #21 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #22 – View of plumbing warehouse product listed in Product Inventory Form.


Photograph #23 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #24 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #25 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #26 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #27 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #28 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #29 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #30 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #31 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #32 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #33 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #34 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #35 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #36 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #37 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #38 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #39 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #40 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #41 – View of plumbing warehouse product listed in Product Inventory Form.


Photograph #42 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #43 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #44 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #45 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #46 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #47 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #48 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #49 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #50 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #51 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #52 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #53 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #54 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #55 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #56 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #57 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #58 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #59 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #60 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #61 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #62 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #63 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #64 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #65 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #66 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #67 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #68 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #69 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #70 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #71 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #72 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #73 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #74 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #75 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #76 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #77 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #78 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #79 – View of plumbing bathroom product listed in Product Inventory Form.

Photograph #80 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #81 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #82 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #83 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #84 – View of plumbing warehouse product listed in Product Inventory Form.

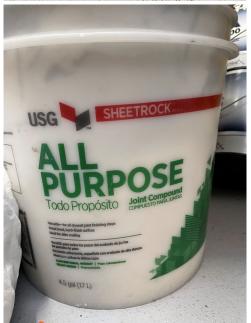
Photograph #85 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #86 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #87 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #88 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #89 – View of plumbing warehouse product listed in Product Inventory Form.


Photograph #90 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #91 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #92 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #93 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #94 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #95 – View of plumbing warehouse product listed in Product Inventory Form.

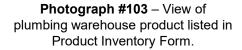
Photograph #96 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #97 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #98 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #99 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #100 – View of plumbing warehouse product listed in Product Inventory Form.

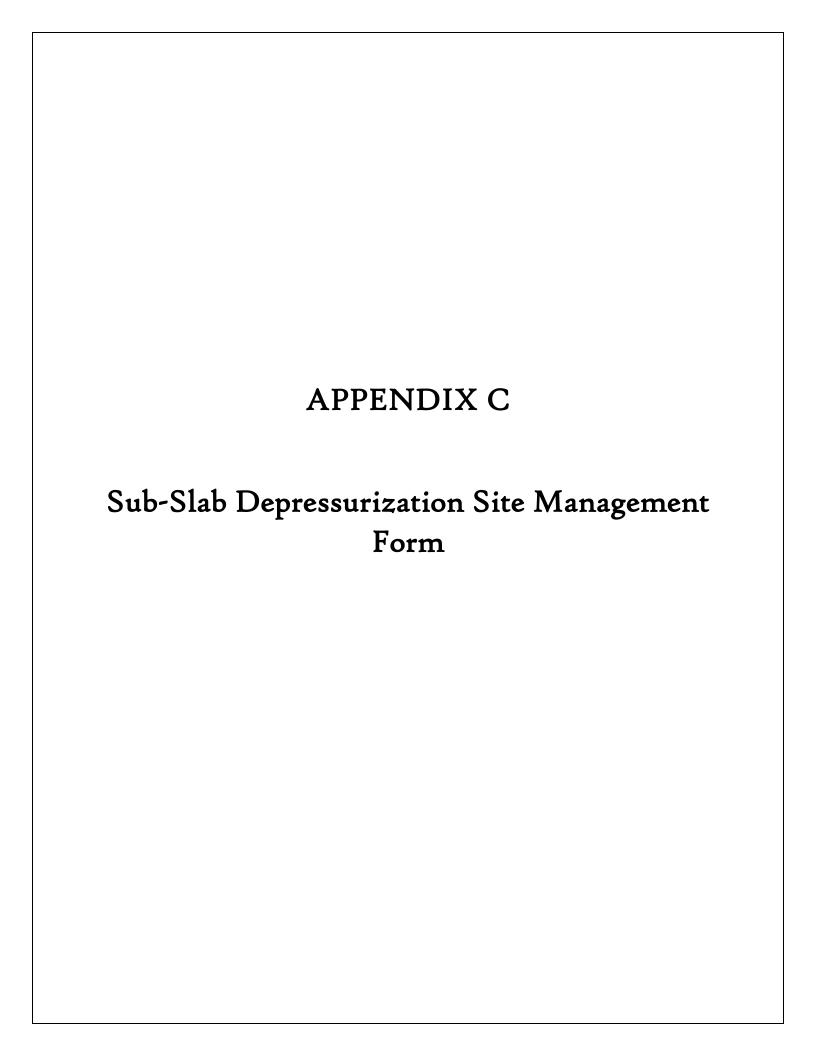


Photograph #101 – View of plumbing warehouse product listed in Product Inventory Form.

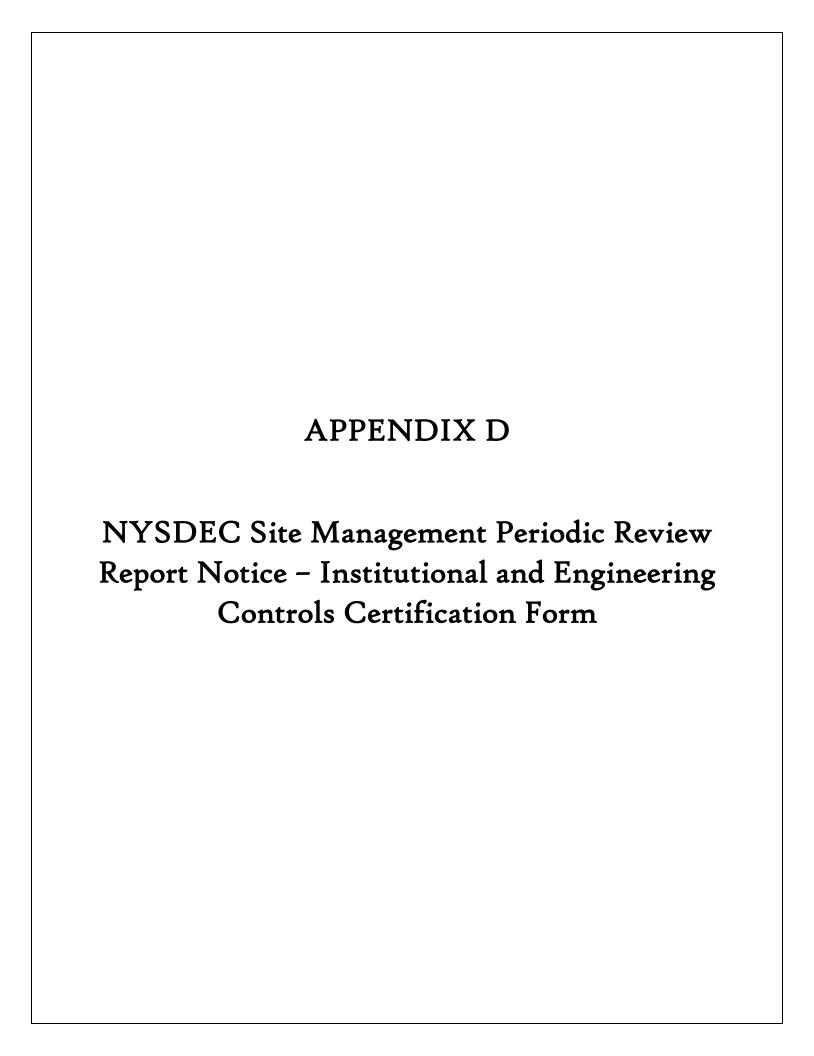
Photograph #102 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #104 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #105 – View of plumbing warehouse product listed in Product Inventory Form.


Photograph #103 – View of plumbing warehouse product listed in Product Inventory Form.

Photograph #104 – View of plumbing warehouse product listed in Product Inventory Form.



Photograph #105 – View of plumbing warehouse product listed in Product Inventory Form.

BAYVILLE VILLAGE CLEANERS
290 BAYVILLE AVENUE
BAYVILLE, NEW YORK 11560
SUB-SLAB DEPRESSURIZATION SITE MANAGEMENT FORM

					Drint Name of	
2021	Date	Yes	S _O	If No - Action Taken	Inspector	Signature of Inspector
Discharge Pipe Clear of Obstruction	5/27/21	7		The state of the s		
General System Piping Inspection		, 			74	
RadonAway Fan Running Properly		1			<u></u>	7
RadonAway Alarm Operating Properly		7			(3)	
Negative Pressure Monitoring		7			2	
VOC PID Monitoring		7				
Ambient Air Sampling		7			>	
Influent Air Sampling		<u> </u>			_	,
Effluent Air Sampling		7				2
Exterior Soil Vapor Gas Sampling		7				2
Groundwater Sampling		7		*****		
Replacement of Filter Media			7	Not yet remised		
Building Inventory Questionnaire	7	7		•	1	
2022	, ,	1				
Discharge Pipe Clear of Obstruction	9/20/12	\			Rachel Lawbert	Xmy Mallelland
General System Piping Inspection)	\				
RadonAway Fan Running Properly						
RadonAway Alarm Operating Properly		.\				
Negative Pressure Monitoring		\		***************************************		
VOC PID Monitoring		/		Hamman Ha		
Ambient Air Sampling		,		***************************************		
Influent Air Sampling		/				
Effluent Air Sampling		>				
Exterior Soil Vapor Gas Sampling	⊋	\				
Groundwater Sampling	N/A	A/N				
Replacement of Filter Media	Replaced 12	108/17				,
Building Inventory Questionnaire	1,3				>	>
2023					-	
Discharge Pipe Clear of Obstruction				***************************************		
General System Piping Inspection				A		
RadonAway Fan Running Properly						
RadonAway Alarm Operating Properly						
Negative Pressure Monitoring						
VOC PID Monitoring						
Ambient Air Sampling						TO THE PARTY OF TH
Influent Air Sampling						
Effluent Air Sampling						
Exterior Soil Vapor Gas Sampling						
Groundwater Sampling						
Replacement of Filter Media						
Building Inventory Questionnaire						

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	te No.	V00220	Site Details		Box 1	
Sit	te Name Ba	yville Village Cleaners				
Cit Co	e Address: 2 y/Town: Ba ounty:Nassau e Acreage: (yville 1 0.250	Code: 11709			
Re	porting Perio	od: June 25,	2021 - Sept	tember 20,	202	2
					YES	NO
1.	Is the infor	mation above correct?			1	1
	If NO, inclu	de handwritten above or	on a separate sheet.			
2.		or all of the site property be nendment during this Rep	peen sold, subdivided, mer orting Period?	rged, or undergone a	f	in
3.		een any change of use a RR 375-1.11(d))?	t the site during this Repo	rting Period	1	V
4.		ederal, state, and/or local property during this Rep	permits (e.g., building, dis orting Period?	charge) been issued	ı	
			2 thru 4, include docum			
5.	Is the site o	urrently undergoing deve	lopment?		ļ	
					Box 2	
					YES	NO
6.		nt site use consistent with I and Industrial	n the use(s) listed below?			
7.	Are all ICs/	ECs in place and function	ing as designed?			
	IF TH		QUESTION 6 OR 7 IS NO, 9 E REST OF THIS FORM. O	-	nd	
A C	Corrective Me	easures Work Plan must	be submitted along with t	his form to address th	iese issi	ies.
Sigi	nature of Ow	ner, Remedial Party or Des	signated Representative	Date		

SITE NO. V00220 Box 3

Description of Institutional Controls

Parcel

Owner

Richard Riso

Institutional Control

Soil Management Plan O&M Plan

Richard Riso is the property owner as of August 3, 2020.

- Declaration of Covenants and Restrictions Current and Future Use of the Site: Permitted future uses (commercial and industrial) must comply with 6 NYCRR 375-1.8(g)(2)(iii) for commercial uses; and 6 NYCRR 375-1.8(g)(2)(iv) for industrial uses A copy of the Declaration of Covenants and Restrictions (DCR) and its recording page was recorded with the Nassau County Clerk's office on March 17, 2017; The property may be used for: commercial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary
 water quality treatment as determined by the NYSDOH or the Nassau County
 Department of Health to render it safe for use as drinking water or for commercial
 purposes, and the user must first notify and obtain written approval to do so from the
 Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives
 of the State of New York with reasonable prior notice to the property owner to assure
 compliance with the restrictions identified by the Declaration of Covenants and
 Restrictions;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, specifically within the IC boundaries; and any potential impacts that are identified must be monitored or mitigated. The IC boundaries for this Site encompasses the entire subject lot as depicted on the site map provided; and
- · Vegetable gardens and farming on the Site are prohibited.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

Vapor Mitigation Cover System Groundwater Containment Monitoring Wells

- 1, Vapor Mitigation System: The SSD System was installed with the following components:
- a. A RadonAway fan (Model RP265c) was installed to induce negative pressure to the sub-slab region beneath the one-story building.
- b. The extraction point for PCE vapors was installed in the center of the building, beneath the building slab, to capture all vapors.
- c. Interconnecting piping consisting of three and four-inch diameter schedule 40 PVC was utilized to install the SSD System. Four-inch PVC piping was installed from the sub-slab extraction point, extending to above the suspended ceiling, and then connected to the fan utilizing flexible couplings. The four-inch piping was then extended from the fan to the southern exterior wall. The piping then penetrates the wall whereby a reducer fitting extends three-inch PVC piping into a 55-gallon drum containing granular activated carbon (GAC). The GAC Vessel is located outside the building along the south side. The purpose of the GAC Vessel is to treat the effluent gas prior to discharge to the atmosphere through a three-inch exterior mounted stack pipe. Sampling/monitoring ports were installed on the extraction piping (influent side) and after the GAC vessel (effluent side) for monitoring vacuum, flow and contaminant concentrations.
- 2. Other Engineering Controls: Sealing of the concrete floor The concrete floor was evaluated to eliminate any other sub-slab transport pathway (i.e. cracks in the building floor). All possible routes were sealed off to prevent the entrance of soil gas and to enhance the sub-slab negative pressure field of the SSD System.
- 3. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the declaration of covenants and restrictions (DCR), which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;
- 4. Periodic certification of the institutional and engineering controls listed above.

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment:
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative	Date
Service of the servic	2010

IC CERTIFICATIONS SITE NO. V00220

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address Hauppauze, NY 11788

am certifying as Designated Representative (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

9/20/2022

Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address Heappa se, Ny 11788

am certifying as a Professional Engineer for the Remedial Party (Mr. Thomas Ryan)

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE)

ant offero.

1/20/2022

Data