Periodic Review Report NYSDEC VCP Site #V00230-8

Reporting Period: April 30, 2022 to April 30, 2023

Location:

99 Ridgeland Road Henrietta, New York 14623

Prepared for:

American Siepmann Corporation 65 Pixley Industrial Parkway Rochester, New York 14624

LaBella Project No. 209387

June 2, 2023

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

Table of Contents

1.0	INTROD	UCTION	1
2.0		ROUND	
3.0		SE AND SCOPE OF WORK	
4.0		PRING DURING THE REPORTING PERIOD	
4.1		nary of Work Completed	
4.2		ndwater Monitoring	
4.3	Sub-S	Slab Depressurization System Monitoring	4
4.4	Devia	tions	4
5.0		DWATER FLOW AND CONTOURS	
6.0		RY OF GROUNDWATER MONITORING	
6.1	Grour	ndwater Data Summary	4
6.2	Grour	ndwater Data Evaluation	6
7.0	INSTITU	TIONAL AND ENGINEERING CONTROL CERTIFICATION	7
8.0	CONCLU	JSIONS AND RECOMMENDATIONS	7
Figure: Figure	1	Site Location Map	
Figure		Groundwater Monitoring Well Locations	
Figure	2A	Groundwater Monitoring Well Locations & December 2020 Groundwater Surface Contours	
Figure	3	Concentrations of CVOCs in Groundwater in November 30, 2023	
Figure		Contours of Average Total CVOCs in Groundwater From 2001 and 2022	
Tables Table 2		Groundwater Sample Results for VOCs	
Append Append Append Append Append	dix A dix B dix C	Laboratory Report SSDS Inspections Graphs of CVOC Concentrations Over Time Mass Reduction Calculations	

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report for the monitoring period from April 30, 2022 to April 30, 2023 for the property located at 99 Ridgeland Road, Town of Henrietta, Monroe County, New York, herein after referred to as the "Site". The Site is enrolled in the New York State Department of Environmental Conservation's (NYSDEC's) Voluntary Cleanup Program (VCP), (NYSDEC Site Code V00230). A Site Location Map is included as Figure 1.

LaBella was retained by American Siepmann Corporation (ASC) to assist in the monitoring and reporting requirements associated with the Monitored Natural Attenuation (MNA) and sub-slab venting system remedial strategy for the Site.

2.0 BACKGROUND

Impact to the subsurface soil and groundwater at the Site from the chlorinated solvent trichloroethene (TCE) was first discovered in 1993 during an environmental site assessment by ERC. Additional investigations by SAW Environmental Services, Inc. (SAW) delineated the area of soil and groundwater impacted by the TCE and the breakdown products from TCE. SAW subsequently conducted the removal of approximately 185 tons of soil from the exterior eastern side of the building. Groundwater monitoring conducted by SAW from 1995 to 1998 documented concentrations of contaminants from non-detected to 2,900 parts per billion (ppb). During a September 2, 1998 meeting with the NYSDEC, the site owner, and previous site occupants, the NYSDEC requested that additional delineation work be conducted due to the continuing detection of contaminants in well MW-3 and the results of a Goresorber investigation completed in July 1998. The additional delineation work was completed by Haley & Aldrich (H&A). Subsequent to completing the additional delineation work, the results were used to develop a Remedial Action Work Plan (RAWP) for the Site.

A RAWP for the Site has been approved by the NYSDEC and consists of the following documents:

- Revised Work Plan for Implementation of Monitored Natural Attenuation, 99 Ridgeland, Henrietta, New York dated January 2003 prepared by Haley and Aldrich of New York.
- Voluntary Cleanup Agreement Work Plan Addendum for Implementation of Monitored Natural Attenuation, 99 Ridgeland, Henrietta, New York 14414 dated July 14, 2003 prepared by Haley and Aldrich of New York.
- Letter from NYSDEC to Harter, Secrest & Emery (including attached Deed Restriction) dated August 14, 2003, RE: Voluntary Cleanup Project, Revised Work Plan for Implementation of Monitored Natural Attenuation, January 2003.

The RAWP identifies the remedial approach for the Site (MNA and sub-slab depressurization) and details the required work for implementing the remedial approach. As part of the MNA work, eight groundwater monitoring wells initially required regular monitoring/sampling and the sub-slab depressurization system required semi-annual monitoring. The monitoring wells included as part of the groundwater sampling program were B-103-0W, MW-203, MW-301, MW-302, B-112-0W, MW-4, MW-203, and MW-401. A site map with the monitoring well locations is included as Figure 2.

Initially, the seven (7) exterior 1-inch monitoring wells included as part of the sampling program were over-drilled in order to improve groundwater yields and obtain representative groundwater samples. A Well Maintenance Work Plan dated November 2005 was submitted to the NYSDEC and approved in a November 29, 2005 letter by the NYSDEC (with comments). One monitoring well included as part of the monitoring program, B-103-OW, is located on the interior of the building and was not accessible to the drilling equipment. As such, this well was not included as part of the over-drilling work. The seven exterior 4-inch diameter monitoring wells (designated MW-201-05, MW-203-05, MW-301-05, MW-302-05, B-112-OW-05, MW-4-05, and MW-401-05) were installed between December 5 and 8, 2005. The wells were over-drilled/installed at the same location as the previous existing smaller diameter 1-inch wells (MW-201, MW-203, MW-301, MW-302, B-112-OW, MW-4, and MW-401) and constructed to similar depths and well screened interval as the previous monitoring wells.

The NYSDEC has approved revisions to the operations, maintenance, and monitoring in letters dated November 9, 2009, June 2, 2010, and March 26, 2013. The NYSDEC approved the following modifications listed below:

- The Work Plan does not modify the approved remedy for the Site. Rather the operations, maintenance, and monitoring activities for the Site.
- The request to change to groundwater sampling parameters to the United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs only.
- The request to change the groundwater sampling method from low-flow sampling to passive diffusion bags (PDBs).
- The request to eliminate the annual sub-slab sampling point measurements is approved; however, manometer checks will be completed semi-annually in conjunction with groundwater monitoring activities.
- The request to eliminate sampling of monitoring well MW-201-05 (the upgradient well).
- The request to eliminate sampling of monitoring well MW-4-05.
- The request to reduce the groundwater sampling frequency from semi-annual to annual (with annual sampling to occur in the fall).
- In addition, a request to change the groundwater sampling frequency to every 15 months was made in the 2015 Annual Monitoring Report dated March 2016.

3.0 PURPOSE AND SCOPE OF WORK

The purpose of this report is to present the monitoring work completed at the Site during the April 30, 2022 to April 30, 2023 monitoring period. This report also summarizes the cumulative groundwater data. This work was completed in general accordance with the provisions identified in the RAWP and approved NYSDEC revisions. As required by the NYSDEC, this monitoring report includes the following information:

- A description of the remedy and all activities performed during the reporting period, including any problems encountered, solutions, significant repairs, and deviations from the work plan.
- Summary tables that include cumulative analytical results with comparisons to available Standards, Criteria, or Guidance Values (SCGs).

- Concentration posting maps for total chlorinated volatile organic compounds (CVOCs) in groundwater.
- Comments, conclusions, and recommendations based on an evaluation of the information in the report.
- Inspections of the SSDS.
- A copy of the laboratory analytical report(s).

4.0 MONITORING DURING THE REPORTING PERIOD

4.1 Summary of Work Completed

The following monitoring work was completed at the Site from April 30, 2022 to April 30, 2023:

- collection of groundwater samples on November 30, 2022;
- verification that the sub-slab depressurization system was operational on November 30, 2022 and April 28, 2023;
- · compilation of historic data; and
- completion of the monitoring report.

A summary of the work completed during the reporting period is provided below.

4.2 Groundwater Monitoring

Groundwater samples were collected on November 30, 2022. The samples were collected using Passive Diffusion Bags (PDBs). A PDB sampler is a low density polyethylene bag filled with deionized water, which acts as a semi-permeable membrane, and is suspended in the well to passively collect groundwater samples. PDB samplers rely on the free movement of groundwater from the aquifer through the well screen. VOCs in groundwater will diffuse across the bag material until constituent concentrations within the bag reach equilibrium with concentrations in the surrounding groundwater. PDB samples were suspended in the middle of the well screen, which corresponds to the previous sample locations (i.e. the location of the bladder pump).

Groundwater samples that were collected on November 30, 2022 were from PDBs that were suspended during the previous sampling event (September 10, 2021).

All samples were submitted to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The groundwater samples were analyzed for United States Environmental Protection Agency (USEPA) Target Compound List (TCL) volatile organic compounds (VOCs) using USEPA Method 8260. A copy of the laboratory analytical reports are provided in Appendix A.

Table 1 (attached) summarizes the recent sampling event as well as historic groundwater results for the six (6) wells sampled as well as previous samples collected at other wells not included during this monitoring event. Also included on Table 1 is a comparison to applicable SCGs (i.e., NYS Part 703/Technical Operational Guidance Series TOGS 1.1.1 Groundwater Standards).

QA/QC procedures included the collection and analysis of a trip blank, a duplicate sample, and a matrix spike/matrix spike duplicate (MS/MSD), as required in the RAWP during each sampling event.

4.3 Sub-Slab Depressurization System Monitoring

The sub-slab depressurization system was monitored on November 30, 2022 and April 28, 2023 in order to verify proper operation of the system. To accomplish this purpose, visual observation of pressure readings were collected from the in-line U-tube manometer. The in-line U-tube manometer on the suction side of the piping for the system indicated a pressure ranging from approximately 0.5-inches of water column indicating the sub-slab depressurization system is operational. This is consistent with previous observation of pressure readings conducted during previous monitoring events. Documentation of the SSDS operation is included in Appendix B.

4.4 Deviations

There were no deviations from the RAWP during the reporting period.

5.0 GROUNDWATER FLOW AND CONTOURS

Historical trends from 2005 to 2020 have consistently shown a north to south flow direction with a slight trend to the southwest. The most recent groundwater flow data collected was during the December 10, 2020 sampling event which indicated a similar groundwater flow direction to the south-southwest. The groundwater contour map is included as Figure 2A.

6.0 **SUMMARY OF GROUNDWATER MONITORING**

Groundwater monitoring was conducted on November 30, 2022. This section presents a summary of CVOC monitoring conducted to date. [Note: Since the collection of MNA parameters was ceased after the June 15, 2009 sampling event (as approved by NYSDEC by letter dated November 9, 2009), a detailed evaluation of MNA was not completed; however, previous reports provide a detailed evaluation of the MNA indicator parameters and documented the on-going natural attenuation.]

6.1 Groundwater Data Summary

To summarize the CVOC concentration and trends in the groundwater at the Site, graphs depicting the concentration of the select CVOCs (TCE, trans-1,2-DCE, cis-1,2-DCE, and VC) and total CVOCs over time are included in Appendix C. Graphs were not completed for well MW-401-05, since significant concentrations of CVOCs have not been detected in this well. It should also be noted that the upgradient well MW-201-05 had not identified CVOCs in any sampling event conducted 2000 through 2011 and as such NYSDEC approved eliminating this well from the sampling program. In addition, monitoring well MW-4-05 had not detected a CVOC above the NYSDEC Groundwater Standards in 14 consecutive sampling events between April 2006 and October 2012 (including 11 consecutive sampling events with no CVOC detections) and as such NYSDEC approved eliminating this well from the sampling program.

Each well graphed is summarized below and a copy of each graph is included in Appendix C.

 Monitoring Well B-103-0W – This monitoring well is located within the apparent former source area of CVOCs and as indicated on the graph has shown significant decreases in CVOCs over time. Specifically, this well consistently detected seven CVOCs with total concentrations between about 1 ppm and 6 ppm in sampling conducted in 1999 and 2000

(refer to Table 1); however, since 2008, only the breakdown products of TCE (1,2-DCE and VC) were detected at concentrations slightly above the NYSDEC Groundwater Standards. In the most recent sampling event three (3) CVOCs (TCE, cis-1,2-DCE and vinyl chloride) were detected; however, only vinyl chloride (0.0031 ppm) was detected in concentrations above NYSDEC Groundwater Standards (0.002 ppm).

- Monitoring Well MW-203-05 This monitoring well is located slightly downgradient of the apparent source area and has also shown significant decreases in total CVOC concentrations over time. The graph for this well includes a trend line for total CVOCs, which depict the overall trend for these compounds since 2000. As shown, total CVOCs are trending down from an initial value of approximately 2.54 ppm in 2000 to 0.55868 ppm (0.55882 ppm in the Duplicate) for the most recent sampling data. Total CVOC concentrations appear to be relatively stagnant for the past approximately 4 years.
- Monitoring Well B-112-OW-05 This monitoring well is located south of the source area and has shown decreases in total CVOCs over time. The graph for this well includes trend lines for total CVOCs, Cis-1,2-DCE, and TCE, which depict the overall trend for these constituents since 2005. As shown, total CVOCs concentrations have decreased from about 0.12 ppm to 0.0621 ppm and TCE concentrations decreased from approximately 0.05 ppm to 0.018 ppm between 2005 and the most recent sampling event, respectively. Cis-1,2-DCE concentrations have remained generally stagnant with a slight downward trend that appears more evident in the past 5 years. Stagnant cis-1,2-DCE concentrations this may be due to lateral plume movement and generation/natural attenuation of TCE degradation products. However, CVOC concentrations detected in the most recent sampling event were below NYSDEC Groundwater Standards with the exception of TCE and Cis-1,2-DCE which remained just slightly above. Results from the recent sampling are generally lower than the majority of sampling events in the past which indicate the continuation of the downward trend.
- Monitoring Well MW-302-05 This well is located south and slightly west of the apparent source area and has shown an apparent increase in total CVOCs since 2001. This increase is likely due to some lateral migration of the plume; however, the concentrations detected are significantly lower (by an order of magnitude) than the previously documented source area and the degradation compound DCE is at higher concentrations than TCE and concentrations of VC appear to be slightly increasing but remain relatively low. In addition, the very low VC accumulation indicates almost complete degradation of the contaminants. Total CVOCs appear to have increased since 2013 to the most recent sampling event while TCE concentrations have remained generally stagnant; however CVOC concentrations are lower than spikes seen in 2011 and 2012 potentially indicating that total CVOCs have already peaked.
- Monitoring Well MW-301-05 This well is located southwest of the apparent source area and has shown a decrease in total CVOCs since 2001. The graph depicts the overall downward trend for total CVOCs, TCE, and Cis-1,2-DCE since 2001. It should be noted that there was an increase in total CVOC concentrations in this well between March 2012 and November 2014, however, contaminants declined in the 2015 and 2017 sampling. The total CVOC concentrations observed in the September 2021 sampling event appear to be an overall low point in the data while data jumped back up in 2022 to concentrations similar to those identified in December 2020. Total CVOCs in November 2022 (0.7389 ppm) are significantly lower than concentrations documented in 2005 (1.5472 ppm). The total CVOC concentrations appear to be on a downward trend.

6.2 Groundwater Data Evaluation

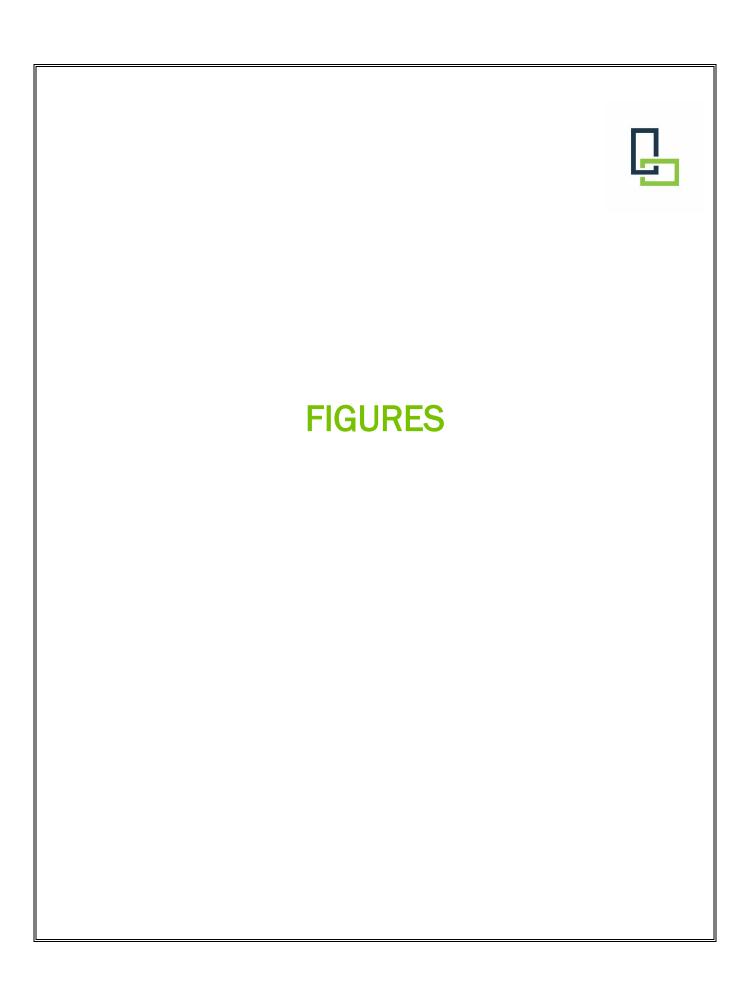
Table 1 summarizes the VOC groundwater data collected to date for the eight monitoring wells included in the MNA program. In addition, select CVOC data from the most recent sampling events has been included on Figure 3. To further evaluate the plume of CVOCs over time, a concentration contour map has been developed for total CVOCs. Specifically, the average concentration from the 2001 data and the concentration of the most recent data (November 2022) were used to develop contours of the concentrations of total CVOCs. The data was input into Surfer version 8.05 (Golden Software, Inc.) to develop the contours provided on Figure 4. The contours were used to evaluate changes in the location and concentration of CVOCs between 2001 and the most recent groundwater sample results.

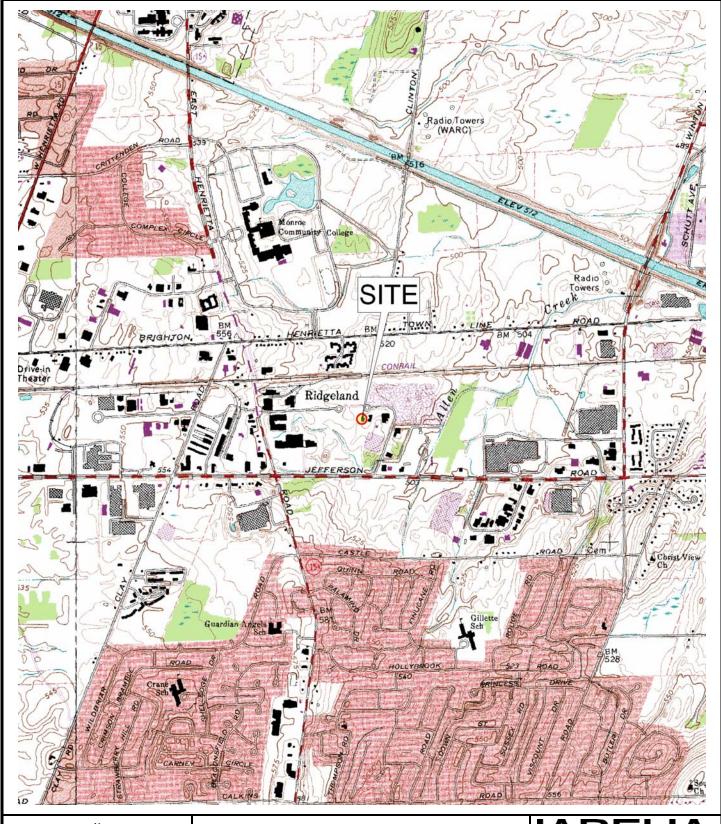
As an additional evaluation, concentration contours from Figure 4 (total CVOCs) were selected to conduct a relative evaluation of constituent mass reduction for total CVOCs. Specifically, a concentration contour was selected and the area encompassed by the concentration contour was calculated and this area was used to calculate a total volume of groundwater in the void spaces. An effective porosity of 0.35 was utilized along with an assumed groundwater plume thickness of 10 feet. To simplify the calculations and to evaluate general trends, the contour selected was assumed to be the average concentration throughout the area and thus volume calculated. [Note: It is understood that this assumption is not valid for determining the actual mass of constituents and actually under-estimates the mass. However, this evaluation is not intended to calculate actual masses of constituents but rather to evaluate the relative trends in the constituent mass at the Site. Previous reports evaluated total CVOCs and individual; however, due to decreasing concentrations only total CVOCs have been evaluated in this report.] Below is a summary of the results of the stated evaluation and a table included in Appendix D.

<u>Total CVOC - Figure 4:</u> As shown, the plume of total CVOCs has decreased in size and concentration from 2001 to the most recent sample events. The highest concentration of total CVOCs in 2001 was around wells MW-203-05 and B-103-0W at approximately 1.2 ppm, however, the highest concentration of total CVOCs in 2022 is around well MW-301-05 at approximately 0.74 ppm.

In 2001, the 0.3 ppm plume area was approximately 28,300 sq ft and during the 2022 sampling event the 0.3 ppm plume area is approximately 14,876 sq ft. The total mass of dissolved phase total CVOC for the areas and concentrations was calculated based on the contouring provided on Figure 4. The 2001 CVOC Plume mass estimate utilized each of the contaminant contours and corresponding areas to develop a total mass estimate (with the assumptions noted above) which is approximately 3.37 Kg. The 2022 CVOC Plume mass estimate only utilized the 0.3 ppm contour due to the limited concentrations detected. The November 2022 CVOC Plume mass estimate is approximately 0.44 Kg. This equates to an approximate 86.89% reduction in the mass of dissolved phase CVOCs at the Site indicating the overall concentrations and mass of CVOCs has significantly reduced.

7.0 INSTITUTIONAL AND ENGINEERING CONTROL CERTIFICATION


The NYSDEC Institutional and Engineering Controls Certification Form is included in Appendix E.


8.0 CONCLUSIONS AND RECOMMENDATIONS

The work conducted during this reporting period was completed in general accordance with the RAWP and revised operations, maintenance, and monitoring that were approved by the NYSDEC. The analytical results from the most recent sampling events indicate the concentrations of CVOCs are decreasing at the Site similar to historical trends that indicate natural attenuation of VOCs is ongoing.

The next scheduled groundwater sampling event is scheduled to be completed in March 2024.

I:\AMERICAN SIEPMANN\209387\REPORTS\2023 ANNUAL REPORT\RPT.2023-5-25_209387_99 RIDGELAND.DOCX

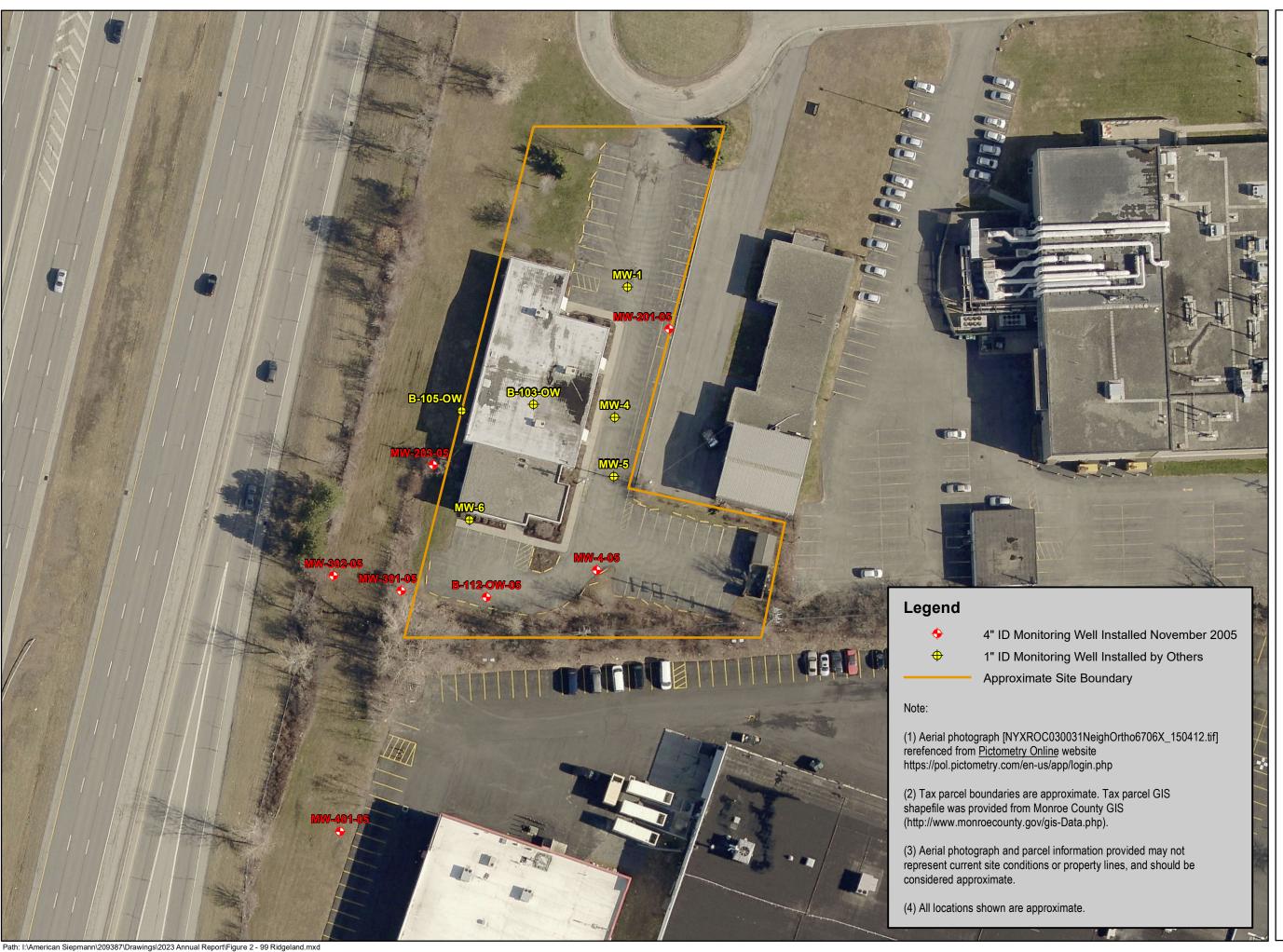

Scale: 1:24,000

FIGURE 1 Site Location Map

99 Ridgeland Road Henrietta, New York

$\mathsf{L}\mathsf{ABELL}\mathsf{A}$

LaBella Project No 209387

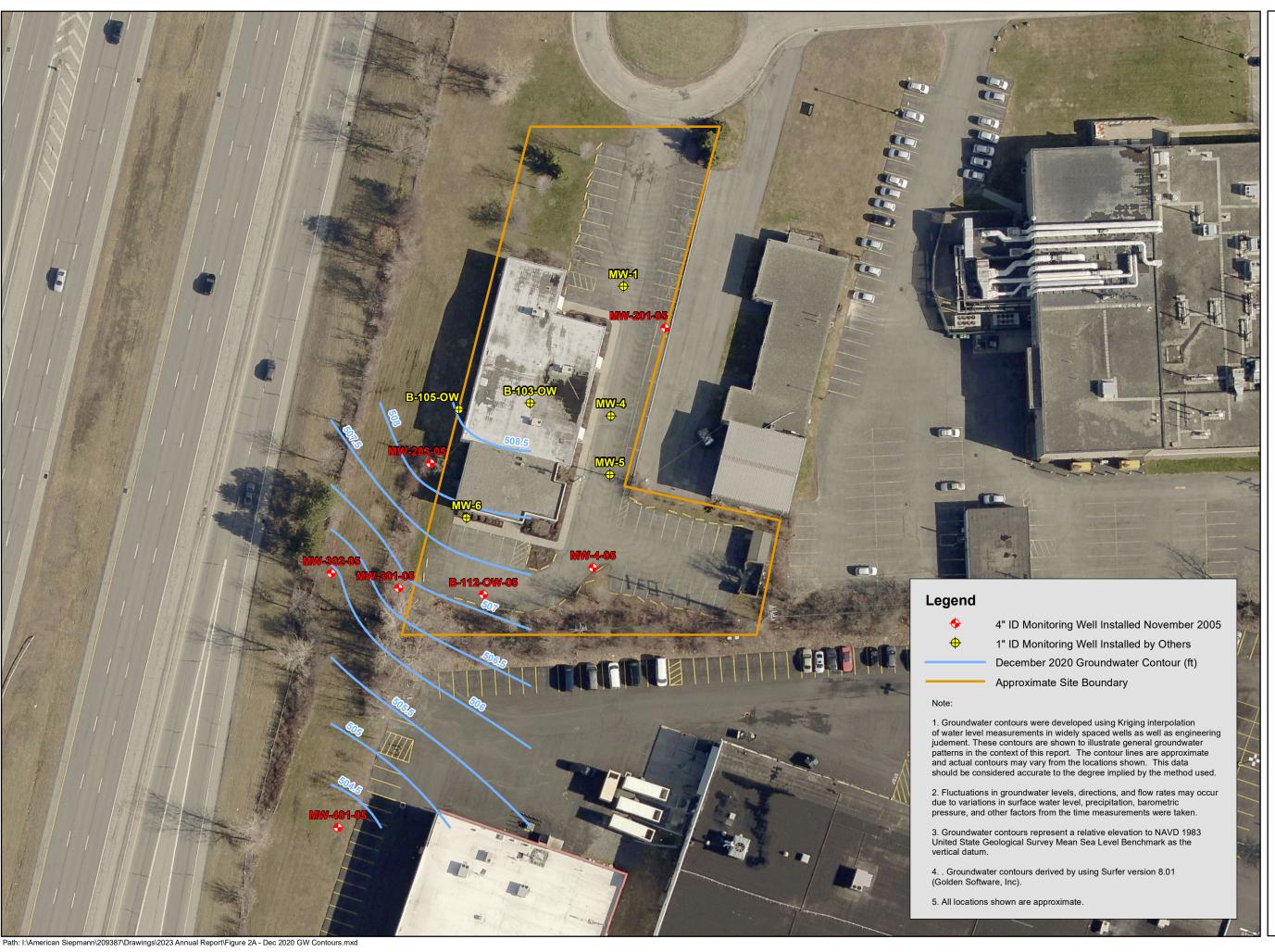
300 STATE STREET ROCHESTER, NY 1461 P: (585) 454-6110 F: (585)454-3066 www.labelapc.com

Periodic Review Report NYSDEC VCP Site #00230-8 99 Ridgeland Avenue Town of Henrietta, New York

Client: American Siepmann Corp

Title:

Site Map with Groundwater Monitoring Well Locations



Intended to Print as 11x17

5/26/2023

209387

FIGURE 2

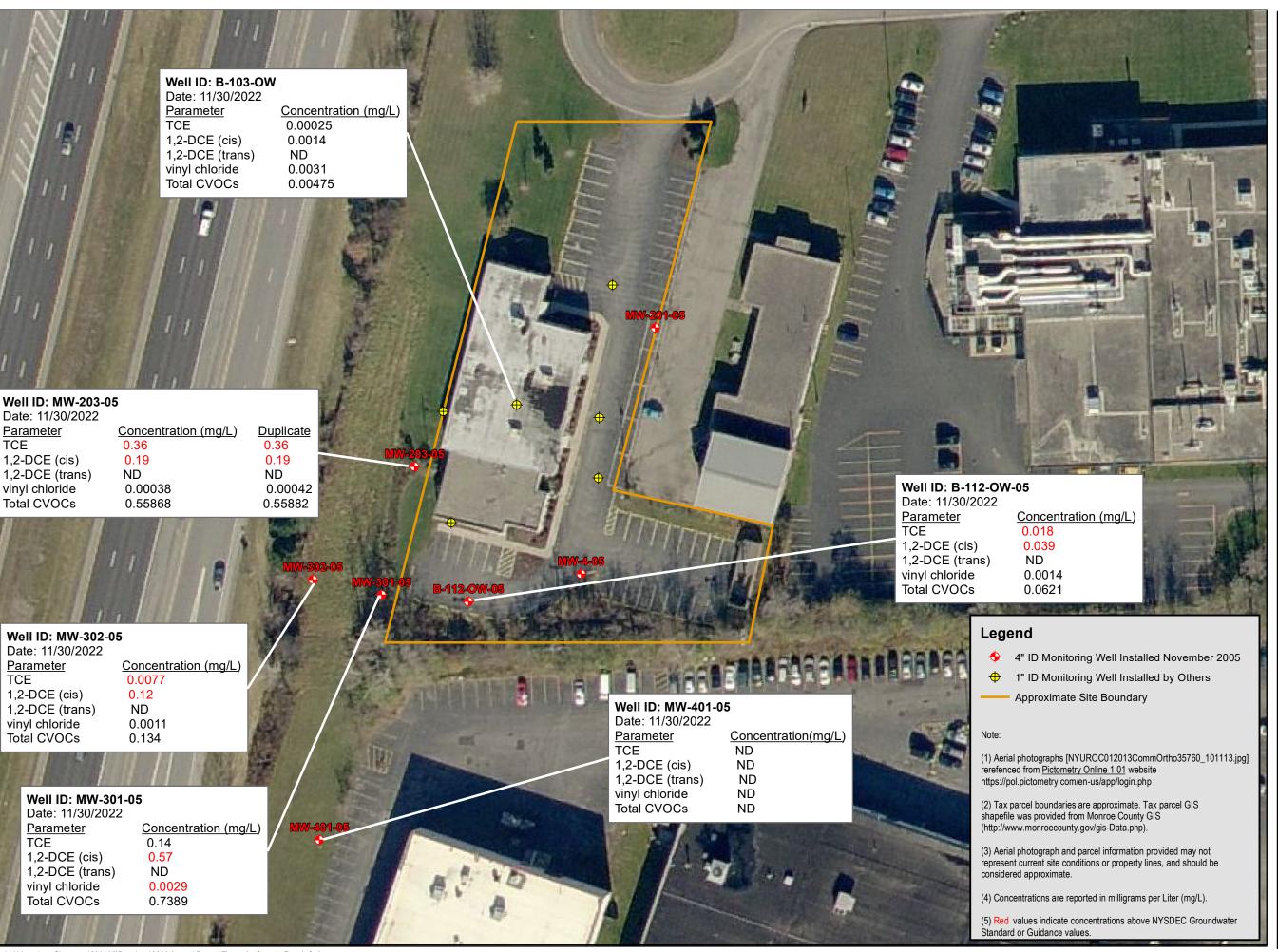
P: (585) 454-6110 F: (585) 454-6110 F: (585) 454-3066 www.labellapc.com

Periodic Review Report NYSDEC VCP Site #00230-8 99 Ridgeland Avenue Town of Henrietta, New York

Client: American Siepmann Corp

Title:

Site Map with Groundwater Monitoring Well Locations and December 10, 2020 Groundwater Contours


0 15 30 60 1 inch = 60 feet

Intended to Print as 11x17

5/26/2023

209387

FIGURE 2A

ROCHESTER, NY 146 P: (585) 454-6110 F: (585) 454-3066 www.labellapc.com

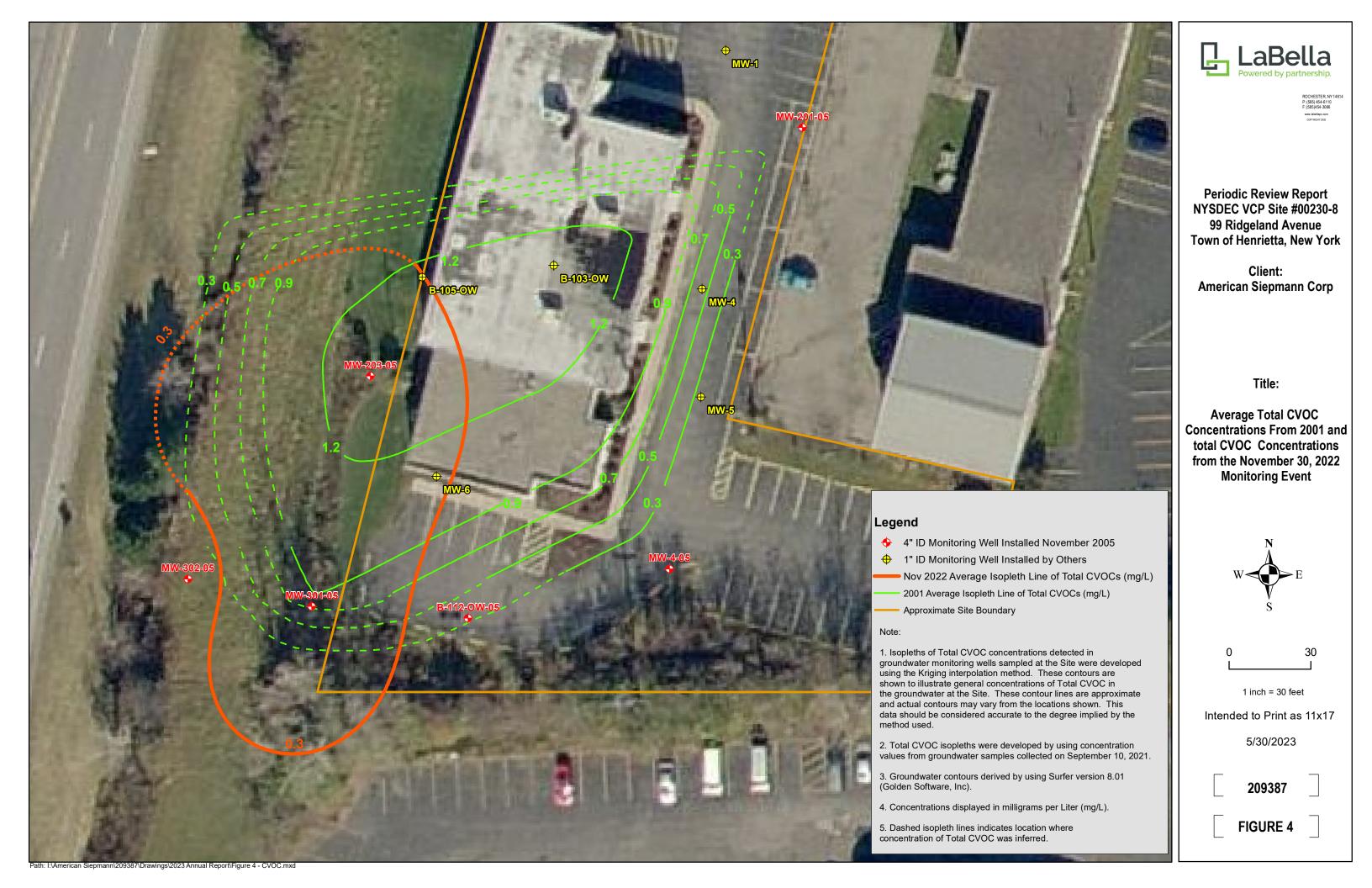
Periodic Review Report NYSDEC VCP Site #00230-8 99 Ridgeland Avenue Town of Henrietta, New York

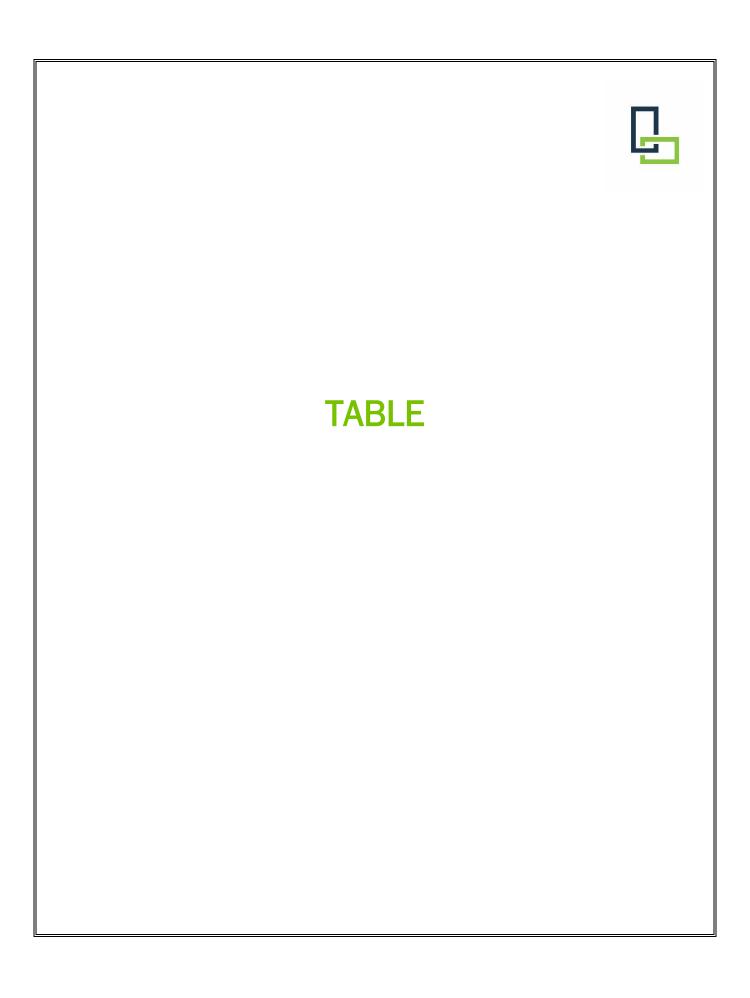
Client: American Siepmann Corp

Title:

Select CVOC Concentrations From November 30, 2022 Groundwater Monitoring Event

0		60 I
_	 	


1 inch = 60 feet


Intended to Print as 11x17

5/26/2023

209387

FIGURE 3

TABLE 1

99 Ridgeland Road Henrietta, New York

Reference Page for **Historical Groundwater Sampling Results** for Volatile Organic Compounds (VOCs)

Notes:

- Groundwater samples collected in 1995, 1996 and 1997 were collected by SAW Environmental
- Groundwater samples collected in 1999, 2000 and 2001 collected by Haley & Aldrich
- Groundwater samples collected in April 2004 were collected by TriTech Environmental
- Split samples collected by NYSDEC do not differentiate between cis and trans 1,2-DCE

- = Ambient Groundwater Standards or Guidance Values referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) dated June 1998.
- = Indicates that the value was estimated.
- Ε = Indicates the compound detected exceeded the calibration limit of the laboratory instrument

0.0069 = Bold and highlighted values indicate concentrations that exceed NYSDEC TOGS 1.1.1 Groundwater Standard or

NR = Indicates that dilution values were not recorded on data sheet.

NL= Indicates a value is not listed in NYSDEC TOGS 1.1.1 for these compounds.

S = Indicates the sample was Split with NYSDEC.

D = Indicates that the sample was diluted

В = Indicates that the same parameter was detected in the laboratory method blank NT = Indicates the sample parameter was not listed In the historic data available.

U = Indicates element was analyzed for, but not detected.

D = Indicates coupound indentified in an analysis at the secondary dilution factor.

=Spiked sample recovery not within control limits.

Well Location: B-103-0W-05

Analytical Dilution	2.5	10	NR	NR	10	1	20	NR	1	20	NR	5	5	1	5	4	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NYSDEC Groundwater
Sample Date	11/23/1999	11/23/1999	11/23/1999 S	11/23/1999 SD	3/13/2000	3/13/2000 5	3/13/2000 SD	10/2/2000 SD	4/12/2001	9/21/2001	4/11/2005	6/15/2005	4/13/2006	10/10/2006	4/24/2007	10/11/2007	4/30/2008	11/5/2008	6/17/2009	1/15/2010	11/11/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	11/11/2014	10/19/2015	2/23/2017	1/28/2019	8/28/2020	12/10/2020	9/10/2021	11/30/2022	Standard or Guidance Value*
1,1-Dichloroethane	0.018	0.018 J	0.024	ND	0.031 J	0.026	0.023 JD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00031 NJ	0.00025 J	0.00063 J	ND	ND	ND	ND	ND	0.005
Tetrachloroethene	0.015	0.012 J	0.007 J	ND	0.061	0.06	0.033 JD	ND	ND	ND	ND	ND	ND	ND	ND	0.0067	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0003 J	ND	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	0.0085J	ND	0.004 J	ND	0.076	0.083	0.058 JD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,2-Trichloroethane	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	0.34	0.3	0.360 E	0.28 D	0.83	0.88 E	0.59 D	0.13 SD	0.07	0.3	0.0237	0.014	ND	0.001 J	ND	0.068	ND	0.0024	0.0015 J	ND	ND	0.0017 J	ND	ND	ND	0.00046 J	0.004 NJ	0.0046	0.011 J	0.0056	0.00047 J	0.0012	0.00027	0.00025 J	0.005
Acetone	0.25	0.14 J	0.081	ND	ND	0.011 B	0.093 JBD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0057	ND	0.014	0.025	ND	ND	ND	0.0040 NJ	0.0027 J	0.0013 J	0.0024 J	0.027	ND	0.011	0.0036 J	0.05
2 - Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Cis-1,2-Dichloroethene	1.2 E	1.2	2.7 E	1.5 D	1.8	1.7 E	1.8 D	2.2 D	1.3	2.6	0.18	0.067	0.057	0.032 J	0.015	0.150	0.029	0.046	0.024	0.014	0.007	0.016	0.002	.003 J	0.0021 J	0.0028	0.024 NJ	0.017 NJ	0.028 J	0.01	0.0007 J	0.015	0.00072	0.0014 J	0.005
Trans-1,2-Dichloroethene	0.014	0.14 J	2.7 E	1.5 D	0.02 J	1.7 E	1.8 D	ND	ND	ND	0.0066	ND	ND	0.0009 J	ND	ND	ND	0.00065 J	ND	ND	ND	ND	ND	ND	ND	ND	0.00040 NJ	0.00034 J	ND	ND	ND	ND	ND	ND	0.005
Toluene	ND	ND	ND	0.026 BDJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	0.002 JB	0.085 JBD	ND	ND	ND	ND	ND	ND	ND	ND	0.0044 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	0.004 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	0.082	0.081	0.16	0.069 DJ	0.12	0.088	0.078 JD	0.24 SD	ND	0.28	0.0351	0.0093	0.01	0.0005 J	ND	0.014	0.012	0.0064	0.0037 J	0.0061	0.0039 J	ND	ND	0.0052	0.0034 J	0.00078 J	0.0011	0.0006 J	ND	ND	ND	0.00052 J	0.00007	0.0031	0.002
Chloroethane	0.0036 J	ND	0.004 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Bromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	0.0038 J	ND	0.003 J	ND	0.018 J	0.012	ND	ND	ND	ND	ND	ND	ND	0.0006 J	ND	ND	ND	ND	ND	ND	0.0069	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Total CVOCs	1.6849	1.751	5.962	3,349	2.956	4.549	4.382	2.57	1.37	3.18	0.2454	0.0903	0.058	0.039	0.015	0.243	0.041	0.055	0.029	0.020	0.018	0.0177	0.002	0.0082	0.0055	0.00404	0.02981	0.02549	0.04176	0.0156	0.00117	0.01672	0.00106	0.00475	NL

Well Location:

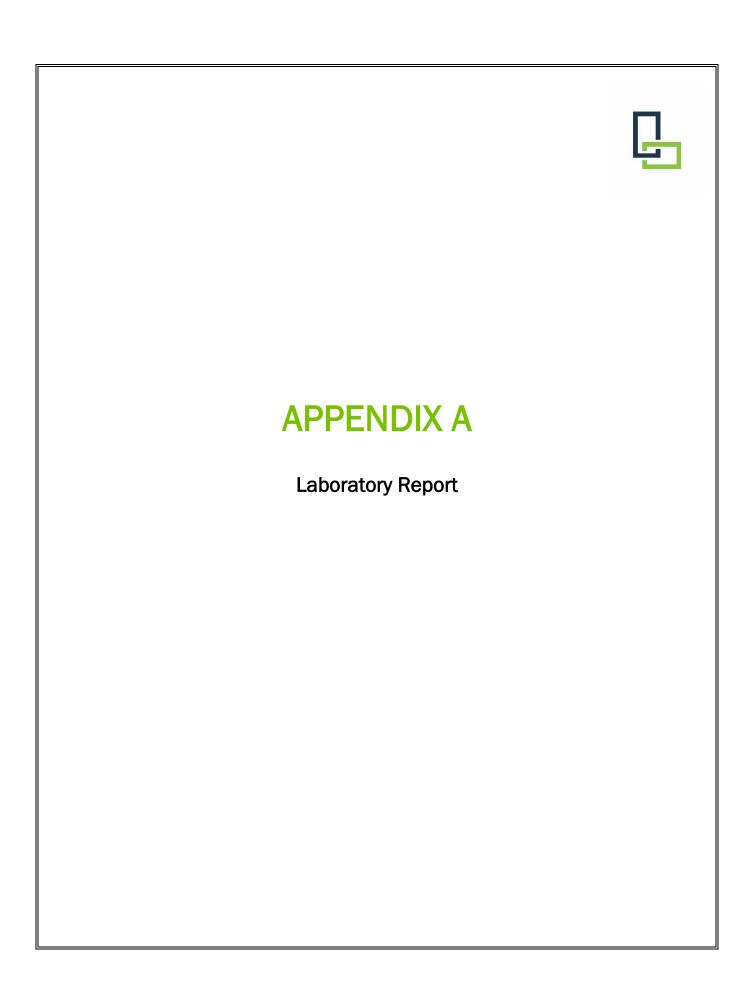
MW-203-05

Analytical Dilution	10	NR	NR	10	5	NR	5	5	8		10 / 50	5	5/10	1	1	1	3	1	10	1	10	1	1	1	1	2.5	2.5	1	1	2	2	2	4	4	
Sample Date	10/2/2000	10/2/2000 SD	4/12/2001	4/12/2001 S	9/21/2001	12/11/200	5 4/20/2005	4/12/2006	11/4/2006	4/24/2007	10/10/2007	4/29/2008	11/4/2008	6/17/2009	6/17/2009 (Blind Duplicate)	8/7/2009 (Passive Diffusion Bag)	1/15/2010	4/20/2010	10/14/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	11/11/2014	10/19/2015	2/23/2017	7/6/2018	8/28/2020	12/10/2020	9/10/2022	9/10/2021 (Duplicate)	11/30/2022	2 11/30/2022 (Duplicate)	NYSDEC Groundwater Standard or Guldance Value*
1,1-Dichloroethane	ND	0.025 SD	0.028 S	ND	ND	0.044	0.026	0.012	0.009 J	0.02	0.060	0.0078	0.015	0.029	0.03	0.0067	0.0057	0.0046 J	0.017 J	0.0064	0.0115	0.001 J	0.012	0.0013	0.0094 NJ	0.0071	0.0058 J	0.00519	0.0032	0.0039 J	0.0045	0.0042	0.0033	J 0.0034 J	0.005
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00028 J	0.00066 J	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	ND	ND	0.050 S	ND	ND	ND	0.009	ND	ND	ND	0.022	ND	ND	0.0061	0.0065	ND	ND	ND	ND	ND	ND	ND	0.00096 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,2-Trichloroethane	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	1.2	1.1 SD	1.15 S	1.4	0.32	0.834	0.76	0.23	0.18	0.35	2.1 D	0.15	0.560 D	0.61 D	0.62 D	0.025	0.046	0.038	0.067	0.064	ND	0.045	0.091	0.022	0.052 NJ	0.03	0.17 J	0.225	0.160	0.26	0.33	0.31	0.36	0.36	0.005
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.017	0.011	ND	ND	0.0065	ND	ND	ND	ND	ND	0.0044 J	ND	ND	0.0029 J	ND	0.0064	0.0061	0.085	0.09	0.05
2 - Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0015 NJ	0.0016 J	ND	ND	ND	ND	ND	ND	ND	ND	0.007
Cis-1,2-Dichloroethene	1.2	1.2 SD	1.7 S	1.6	0.63	1.69	1.1 E	0.49	0.46	0.83	3.0 D	0.38	0.760 D	1.0 D	1.0 D	.26 D	0.140 D	0.18	1	0.21 D	0.437	0.12	0.61	0.059	0.64 NJ	0.410	0.25 J	0.233	0.14	0.18	0.26	0.24	0.19	0.19	0.005
Trans-1,2-Dichloroethene	ND	ND	0.010 S	ND	ND	ND	0.015	0.08	0.005 J	0.0098	0.029	0.0023 J	0.0094	0.011	0.012	0.004 J	ND	0.0014 J	0.012 J	0.0026 J	ND	0.0011 J	0.0068	0.00080 J	0.0069 NJ	0.014	0.0029 J	0.00422	0.0022 J	0.0014 J	0.0047	0.0043	ND	ND	0.005
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.057	0.010 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	0.2	0.15 SD	0.087 S	0.12	0.081	0.129	0.1	0.058	0.021 J	0.067	0.160	0.0074	0.046	0.089	0.096	0.026	0.0014 J	ND	0.21	0.0087	0.196	ND	0.027	0.0037	0.013 NJ	0.010	ND	ND	0.0014	0.00019 J	0.0024	0.0024	0.00038	J 0.00042 J	0.002
Chloroethane	ND	ND	ND	ND	ND	ND	0.0022 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	ND	ND	0.0197 S	ND	ND	ND	0.013	0.0042 J	ND	0.01	0.043	ND	0.0082	0.017	0.018	0.0019 J	0.0014 J	0.0013 J	0.012 J	0.0022 J	ND	0.001 J	0.0081	0.00046 J	0.008 NJ	0.0047	0.0032 J	0.00562	0.00350	0.0042	0.0062	0.0058	0.005	0.005	0.005
Total CVOCs	2.6	2.475	3.0447	3.12	1.031	2.697	2.0252	0.8742	0.675	1.293	5.424	0.168	1.399	1.762	1.783	0.324	0.195	0.225	1.318	0.294	0.645	0.168	0.756	0.087	0.7293	0.4818	0.4319	0.4730	0.3106	0.45035	0.6078	0.5667	0.55868	0.55882	NL

Well Location: MW-301-05

Analytical Dilution	5	NR	NR	20	5	10	20	5	1	10	10	10	1	1	8	1/5	5	1/5	10	1	1	1	1	5	5	5	4	5	1	5	
Sample Date	9/21/2001	9/21/2001 S	4/11/2005	12/21/2005	4/12/2006 (Duplicate)	4/12/2006	10/9/2006	4/23/2007	4/23/2007 (Duplicate)	10/10/2007	4/29/2008	11/4/2008	6/16/2009	8/7/2009 (Passive Diffusion Bag)	1/15/2010	4/20/2010	10/14/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	11/11/2014	10/19/2015	2/23/2017	7/6/2018	8/28/2020	12/10/2020	9/10/2021	11/30/2022	NYSDEC Groundwater Standard or Guldance Value*
1,1-Dichloroethane	0.015	0.011	0.0148	0.028	0.028	0.028	0.034 J	0.010	0.014	0.024	0.020	0.024	0.018	0.026	0.019	0.017	0.016 J	0.024	ND	0.01	ND	0.02	0.024 BJ	0.018	0.0037 J	0.0116	0.013	0.017	0.0019	0.017	0.005
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	ND	0.0039	ND	0.0059	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0012 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,2-Trichloroethane	NT	NT	NT	0.00058 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	0.21	0.724	0.04	0.29 E	0.072	0.068	0.034 J	0.014	0.016	0.190	0.055	0.079	0.044	0.13	0.035	0.037	0.031	0.11	ND	0.025	0.044	0.05	0.031 NJ	0.016	0.069 J	0.109	0.084	0.14	0.0021	0.14	0.005
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	0.0023 J	0.013 J	ND	ND	ND	0.018	0.0061	ND	ND	0.0087	ND	0.003 J	ND	ND	0.0021 NJ	ND	ND	ND	0.24	ND	0.0041	0.079	0.05
2 - Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Chloroform																							ND	0.0022 J	ND	ND	ND	ND	ND	ND	0.007
Cis-1,2-Dichloroethene	0.53 D	0.716	0.473	1.1	0.9	0.88	1.3	0.360	0.460 E	0.860	0.760	1.200 D	0.52 D	0.67 D	0.510 D	0.550 D	0.53	0.66 D	0.68	0.280 E	0.630 D	0.58	0.880 DNJ	0.640	0.33 J	0.381	0.410	0.54	0.11	0.57	0.005
Trans-1,2-Dichloroethene	ND	ND	ND	0.0075	0.0049	ND	ND	ND	0.0025	0.0077 J	0.0042 J	0.0061 J	ND	0.0062	0.0020 J	0.0013 J	ND	ND	ND	ND	0.0042 J	0.0034 J	0.0056 NJ	0.0042 J	ND	0.00183	ND	ND	ND	ND	0.005
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0011 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	0.11	ND	0.0836	0.098	0.024	0.028	0.12 J	0.011	0.015	0.100	0.0051	0.090	ND	0.064	ND	ND	0.015 J	ND	0.114	ND	0.058	0.058	0.076 NJ	0.048	ND	0.00983	ND	ND	0.0052	0.0029 J	0.002
Chloroethane	ND	ND	ND	0.0062	0.0052	0.0052	ND	ND	0.0021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Bromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	ND	ND	ND	0.011	0.0099	0.0094 J	0.015 J	0.0049	0.0059	0.014	ND	0.011	ND	0.011	0.0046 J	0.0042 J	ND	0.0086	ND	.0024 J	0.0084	0.0053 J	0.012 NJ	0.0078	0.011 J	0.00586	0.00520	0.0079	0.0017	0.009	0.005
Total CVOCs	0.865	1.4549	0.6114	1.5472	1.044	1.0186	1.503	0.3999	0.5155	1.1968	0.8443	1.3991	0.582	0.9084	0.5706	0.6095	0.592	0.8026	0.794	0.317403	0.7446	0.7167	1.0286	0.7362	0.4148	0.5191	0.5122	0.7049	0.1209	0.7389	NI I

Well Location: MW-302-05


Analytical Dilution	1	NR	NR	4	4	4	2	2	2	10	1	1	1	1	1	1/10	1/5	1	1	1	1	1	1	2.5	1	1	1	1	1	NYSDEC Groundwater
Sample Date	9/21/2001	9/21/2001 S	4/12/2005	12/20/2005	4/13/2006	10/10/2006	4/23/2007	10/10/2007	4/29/2008	11/4/2008 (Blind Duplicate)	11/4/2008	6/15/2009	1/15/2010	4/20/2010	10/14/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	10/15/2013 (DUP)	11/11/2014	10/19/2015	2/13/2017	7/6/2018	8/28/2020	12/10/2020	9/10/2021	11/30/2022	Standard or Guidance Value*
1,1-Dichloroethane	ND	ND	ND	0.004	ND	0.003 J	0.0045	0.0013 J	0.0041	0.0085 J	.0086 J	0.0041 J	.0016 J	0.0039 J	0.0027 J	0.0088	0.0034	0.0072	0.0034 J	0.0027	0.003	0.0029 NJ	0.0033	0.00078 J	0.00412	0.0044	0.0032	0.0035	0.0037	0.005
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,2-Trichloroethane	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	ND	ND	0.00468	0.01	0.005	0.006 J	0.012	0.0024	0.014	0.0019	0.0017	0.011	0.0026	0.0086	0.0046 J	0.016	ND	0.014	0.0011 J	0.002	0.002	0.001 NJ	0.0033	0.004 J	0.0110	0.0097	0.0058	0.0054	0.0077	0.005
Acetone	ND	ND	0.022	ND	0.11	0.016 J	ND	0.004 J	ND	ND	ND	ND	0.013	ND	ND	0.0079	0.012	.0034 J	ND	ND	ND	0.0018 NJ	0.0016 J	0.002	ND	0.082	ND	0.0071	0.12	0.05
2 - Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Cis-1,2-Dichloroethene	0.027	0.018	0.0289	0.14	0.078	0.100	0.140	0.041	0.150	0.032	0.031	0.130	0.043	0.120	0.092	0.26 D	0.0969	.220 E	0.088	0.056	0.062	0.052 NJ	0.09	0.087	0.124	0.13	0.098	0.1	0.12	0.005
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00022 J	ND	0.00059 J	ND	0.00317	ND	ND	ND	ND	0.005
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	0.0024 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	ND	ND	0.0037	0.023	0.019	0.022 J	0.019	0.0092	0.019	0.056	0.0056	0.011	0.0018	0.0019 J	0.014	0.0025 J	0.0275 D	ND	0.03	0.012	0.012	0.03 NJ	0.0016	ND	ND	0.00048 J	0.00097 J	0.00069	0.0011	0.002
Chloroethane	ND	ND	ND	0.0086	ND	0.016 J	0.0049	0.0012 J	0.0030	ND	ND	0.0032 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	ND	ND	ND	ND	ND	0.00096 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Bromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001 J	ND	0.0029 J	0.001	.0018 J	0.00086 J	0.00045 J	ND	ND	0.00091 J	0.0034 J	0.00109	0.0012	0.0011	0.001	0.0015	0.005
Total CVOCs	0.027	0.018	0.0373	0.177	0.102	0.147	0.180	0.058	0.190	890.0	0.047	0.159	0.049	0.135	0.114	0.2902	0.1288	0.2464	0.12336	0.07315	0.07922	0.0859	0.1013	0.09774	0 1434	0 1458	0.1091	0.11059	0.134	NI

Well Location: B-112-0W-05

Analytical Dilution	NR	4	4	1	2	4	1	4	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NYSDEC Groundwater
Sample Date	4/12/2005	12/19/2005	4/13/2006	10/9/2006	4/23/2007	10/9/2007	10/9/2007 (Duplicate)	4/29/2008	11/4/2008	6/15/2009	1/15/2010	4/20/2010	10/14/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	11/11/2014	10/19/2015	10/19/2015 (Duplicate)	2/23/2017	7/6/2018	8/28/2020	12/10/2020	9/10/2021	11/30/2022	Standard or Guidance Value*
1,1-Dichloroethane	0.00862	0.0079	0.0042	0.005 J	ND	0.0029 J	0.003	0.0047	0.010	0.0054	0.004 J	0.0017 J	0.0060	0.004 J	0.0058	.0018 J	0.0068	0.00022 J	0.0051 NJ	0.0041	0.004	0.0032 J	0.00175	ND	0.0036	ND	0.0028	0.005
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0018 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	0.00346	0.0043	ND	0.0006 J	ND	ND	ND	ND	0.0029	0.0016 J	ND	ND	ND	ND	0.0011	ND	ND	ND	0.00065 NJ	0.00067 J	0.00057 J	0.00037 J	ND	ND	0.0007 J	ND	ND	0.005
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	0.0595	0.041	0.019	0.024	0.011	0.0015	0.016	0.038	0.014	0.021	0.010	0.0059	0.015	0.013	0.0142	0.0062	0.034	0.021	0.028 NJ	0.0320	0.0320	0.024 J	0.0139	0.0042	0.026	0.0052	0.018	0.005
Acetone	ND	0.096	0.16	0.058	0.032	0.017 J	0.011	0.020	ND	ND	0.0100	ND	ND	0.0095	ND	ND	ND	ND	0.0014 NJ	0.002 J	0.0018 J	ND	ND	0.0460	ND	0.0048	0.028	0.05
2 - Butanone	ND	ND	0.012 J	0.006 J	ND	ND	0.0019 J	0.020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Cis-1,2-Dichloroethene	0.0478	0.059	0.021	0.022	0.079	0.016	0.016	0.031	0.110 D	0.045	0.037	0.017	0.054	0.036	0.0625	0.02	0.072	0.031	0.047 NJ	0.04	0.039	0.032 J	0.0207	0.0022 J	0.035	0.0026	0.039	0.005
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 J	0.00044 NJ	0.00055 J	0.00055 J	ND	ND	ND	ND	ND	ND	0.005
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	0.0047 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	0.00215	0.0075	0.0029	0.003 J	ND	ND	0.0018	ND	0.0034	ND	ND	ND	0.0039 J	ND	0.0045	ND	0.0058	0.0014	0.0017 NJ	0.0016	0.0016	ND	ND	ND	0.0014	0.00008	0.0014	0.002
Chloroethane	ND	0.0052	ND	0.002 J	ND	ND	0.00044 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	0.0025 J	0.0025	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	0.027	0.022	ND	ND	0.00076 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Bromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	0.00135	ND	ND	0.0008 J	ND	ND	0.00051 J	ND	0.0019	ND	ND	ND	0.001 J	ND	0.001	ND	ND	0.0038	0.00078 NJ	0.00057 J	ND	ND	ND	ND	0.00096	ND	0.0009	0.005
Total CVOCs	0.1229	0.1249	0.0741	0.1434	0.09	0.028	0.037	0.069	0.1422	0.0676	0.0470	0.0246	0.0799	0.053	0.0891	0.028	0.1204	0.05769	0.08367	0.08149	0.07952	0.06014	0.0364	0.0064	0.0677	0.00788	0.0621	NI

Well Location: MW-401-05

Analytical Dilution	1	NR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NYSDEC Groundwater
Sample Date	2/21/2002	4/11/2005	12/21/2005	4/12/2006	10/10/200	6 4/24/2007	10/10/2007	7 4/30/2008	11/3/2008	6/16/2009	1/15/2010	1/15/2010 Blind Duplicate	4/20/2010	10/14/2010	4/29/2011	11/1/2011	3/26/2012	10/25/2012	10/15/2013	3 11/11/2014	11/11/2014 (Duplicate)	10/19/2015	2/23/2017	7/6/2018	8/28/2020	8/28/2020 (Duplicate)	12/10/2020	12/10/2020	9/10/2021	11/30/2022	Standard or Guldance
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,1,-Trichlorethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
1,1,2-Trichloroethane	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00031 J	ND	ND	ND	ND	ND	0.005
Acetone	ND	0.017	0.0087	ND	ND	ND	ND	ND	ND	ND	0.0087	0.0083	ND	ND	0.0076	0.0126	0.0069	ND	ND	0.0020 NJ	0.00017 NJ	ND	ND	ND	0.097	0.095	ND	ND	0.005	0.12	0.05
2 - Butanone	ND	ND	0.0026 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.0031 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
M+P-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Methyl tert-butyl Ether	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01
Vinyl Chloride	ND	ND	ND	0.0035	0.005 J	0.00090 J	0.0015	ND	0.0013	ND	ND	ND	ND	0.0031 J	ND	0.0017	ND	0.0013 J	0.00040 J	0.00094 NJ	0.00094 NJ	0.00064 J	ND	ND	ND	ND	ND	ND	ND	ND	0.002
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001
Carbon Disulfate	ND	ND	ND	ND	0.0007 J	ND	0.00047 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Bromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Total CVOCs	0	0	0	0.0035	0.0057	0.00090	0.00197	0	0.0013	0	0	0	0	0.0031	0	0.0017	0.01	0.0013	0.0004	0.00094	0.00094	0.00064	0	0	0.00031	0	0	0	0	0	NL

ANALYTICAL REPORT

Lab Number: L2267152

Client: LaBella Associates, P.C.

300 State Street

Suite 201

Rochester, NY 14614

ATTN: Mike Pelychaty Phone: (585) 295-6253

Project Name: 99 RIDGELAND ROAD

Project Number: 209387 Report Date: 12/13/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152 **Report Date:** 12/13/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2267152-01	B-103-OW-113022	WATER	HENRIETTA, NY	11/30/22 11:15	11/30/22
L2267152-02	B-112-OW-05-113022	WATER	HENRIETTA, NY	11/30/22 12:15	11/30/22
L2267152-03	MW-203-05-113022	WATER	HENRIETTA, NY	11/30/22 13:30	11/30/22
L2267152-04	DUP-113022	WATER	HENRIETTA, NY	11/30/22 13:32	11/30/22
L2267152-05	MW-301-05-113022	WATER	HENRIETTA, NY	11/30/22 14:15	11/30/22
L2267152-06	MW-302-05-113022	WATER	HENRIETTA, NY	11/30/22 14:45	11/30/22
L2267152-07	MW-401-05-113022	WATER	HENRIETTA, NY	11/30/22 15:30	11/30/22
L2267152-08	TRIP BLANK-113022	WATER	HENRIETTA, NY	11/30/22 08:00	11/30/22

L2267152

Project Name: 99 RIDGELAND ROAD **Lab Number:**

Project Number: 209387 Report Date: 12/13/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/13/22

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

Lab ID: L2267152-01 Client ID: B-103-OW-113022

Field Prep:

Date Collected:

11/30/22 11:15 11/30/22

Sample Location:

HENRIETTA, NY

Date Received: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date:

12/08/22 00:35

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.1		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.25	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 99 RIDGELAND ROAD L2267152

Project Number: Report Date: 209387 12/13/22

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/22 11:15 L2267152-01

Client ID: Date Received: B-103-OW-113022 11/30/22 Sample Location: Field Prep: HENRIETTA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

11/30/22 12:15

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

Lab ID: L2267152-02

Client ID: B-112-OW-05-113022 Sample Location: HENRIETTA, NY

Date Received: 11/30/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/08/22 00:58

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	2.8		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.4		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.90		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	18		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-02 Date Collected: 11/30/22 12:15

Client ID: B-112-OW-05-113022 Date Received: 11/30/22 Sample Location: HENRIETTA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
/olatile Organics by GC/MS - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	39		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	28		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	100	70-130	

11/30/22 13:30

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

SAIIII EE NEGO

Lab ID: L2267152-03 D
Client ID: MW-203-05-113022
Sample Location: HENRIETTA, NY

Date Received: 11/30/22
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/08/22 01:22

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	10	2.8	4
1,1-Dichloroethane	3.3	J	ug/l	10	2.8	4
Chloroform	ND		ug/l	10	2.8	4
Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Dibromochloromethane	ND		ug/l	2.0	0.60	4
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Tetrachloroethene	ND		ug/l	2.0	0.72	4
Chlorobenzene	ND		ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	ND		ug/l	2.0	0.64	4
Toluene	ND		ug/l	10	2.8	4
Ethylbenzene	ND		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	0.38	J	ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	5.0		ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Trichloroethene	360		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

Project Name: Lab Number: 99 RIDGELAND ROAD L2267152

Project Number: Report Date: 209387 12/13/22

SAMPLE RESULTS

Lab ID: D Date Collected: 11/30/22 13:30 L2267152-03

Date Received: Client ID: 11/30/22 MW-203-05-113022 Sample Location: Field Prep: HENRIETTA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	190		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	85		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	ND		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	ND		ug/l	40	1.6	4

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

11/30/22 13:32

Not Specified

11/30/22

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

Date Collected:

Date Received:

Lab ID: L2267152-04 D

Client ID: DUP-113022 Sample Location: HENRIETTA, NY

HENRIETTA, NY Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/08/22 01:45

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	10	2.8	4
1,1-Dichloroethane	3.4	J	ug/l	10	2.8	4
Chloroform	ND		ug/l	10	2.8	4
Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Dibromochloromethane	ND		ug/l	2.0	0.60	4
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Tetrachloroethene	ND		ug/l	2.0	0.72	4
Chlorobenzene	ND		ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	ND		ug/l	2.0	0.64	4
Toluene	ND		ug/l	10	2.8	4
Ethylbenzene	ND		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	0.42	J	ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	5.0		ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Trichloroethene	360		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-04 D Date Collected: 11/30/22 13:32

Client ID: DUP-113022 Date Received: 11/30/22 Sample Location: HENRIETTA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	190		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	90		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	ND		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	ND		ug/l	40	1.6	4

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	102	70-130	

11/30/22 14:15

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

SAIVIPLE RESUI

Lab ID: L2267152-05 D

Client ID: MW-301-05-113022

Sample Location: HENRIETTA, NY

Date Received: 11/30/22
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/08/22 02:08

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	17		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	ND		ug/l	2.5	0.80	5	
Toluene	ND		ug/l	12	3.5	5	
Ethylbenzene	ND		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	2.9	J	ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	9.0		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	
Trichloroethene	140		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5	

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-05 D Date Collected: 11/30/22 14:15

Client ID: MW-301-05-113022 Date Received: 11/30/22 Sample Location: HENRIETTA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	570		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	79		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	ND		ug/l	50	1.4	5
1,4-Dioxane	ND		ug/l	1200	300	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	ND		ug/l	50	2.0	5

Surrogate	% Recovery	ceptance Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

L2267152

11/30/22 14:45

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 12/13/22

Lab ID: L2267152-06

Client ID: MW-302-05-113022 Sample Location: HENRIETTA, NY

Date Received: 11/30/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/08/22 02:32

Analyst: MJV

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	3.7		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.1		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	1.5		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	7.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-06 Date Collected: 11/30/22 14:45

Client ID: MW-302-05-113022 Date Received: 11/30/22 Sample Location: HENRIETTA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	120		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	120		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

11/30/22 15:30

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

SAMPLE RESULTS

Lab Number: L2267152

Report Date: 12/13/22

Lab ID: L2267152-07

Client ID: MW-401-05-113022 Sample Location: HENRIETTA, NY Date Received: 11/30/22
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/08/22 02:55

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 99 RIDGELAND ROAD L2267152

Project Number: Report Date: 209387 12/13/22

SAMPLE RESULTS

Lab ID: Date Collected: 11/30/22 15:30 L2267152-07

Date Received: Client ID: 11/30/22 MW-401-05-113022 Sample Location: Field Prep: HENRIETTA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	120		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

11/30/22 08:00

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-08

Client ID: TRIP BLANK-113022 Sample Location: HENRIETTA, NY

Date Received: 11/30/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/08/22 03:18

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

SAMPLE RESULTS

Lab ID: L2267152-08 Date Collected: 11/30/22 08:00

Client ID: TRIP BLANK-113022 Date Received: 11/30/22 Sample Location: HENRIETTA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	101		70-130	

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/07/22 19:32

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-08 Batch:	WG1720921-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 99 RIDGELAND ROAD **Lab Number:** L2267152

Project Number: 209387 Report Date: 12/13/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/07/22 19:32

Analyst: LAC

Parameter	Result (Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab fo	or sample(s): 01-08	Batch:	WG1720921-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 99 RIDGELAND ROAD **Lab Number**: L2267152

Project Number: 209387 Report Date: 12/13/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/07/22 19:32

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-08 Batch: WG1720921-5

Surrogate 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene		Acceptance			
Surrogate	%Recovery Qu	alifier Criteria			
1,2-Dichloroethane-d4	97	70-130			
Toluene-d8	101	70-130			
4-Bromofluorobenzene	103	70-130			
Dibromofluoromethane	100	70-130			

Lab Control Sample Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date: 12/13/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-08 Batch: W	G1720921-3 WG1720921-4		
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	91		91	70-130	0	20
Chloroform	96		96	70-130	0	20
Carbon tetrachloride	87		86	63-132	1	20
1,2-Dichloropropane	88		90	70-130	2	20
Dibromochloromethane	93		95	63-130	2	20
1,1,2-Trichloroethane	98		100	70-130	2	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	99		100	75-130	1	20
Trichlorofluoromethane	77		77	62-150	0	20
1,2-Dichloroethane	88		91	70-130	3	20
1,1,1-Trichloroethane	93		93	67-130	0	20
Bromodichloromethane	88		89	67-130	1	20
trans-1,3-Dichloropropene	92		94	70-130	2	20
cis-1,3-Dichloropropene	88		89	70-130	1	20
Bromoform	86		87	54-136	1	20
1,1,2,2-Tetrachloroethane	99		100	67-130	1	20
Benzene	95		96	70-130	1	20
Toluene	98		99	70-130	1	20
Ethylbenzene	95		97	70-130	2	20
Chloromethane	85		84	64-130	1	20
Bromomethane	46		50	39-139	8	20
Vinyl chloride	82		80	55-140	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date: 12/13/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-08 Batch: W0	G1720921-3 WG1720921-4		
Chloroethane	85		80	55-138	6	20
1,1-Dichloroethene	99		100	61-145	1	20
trans-1,2-Dichloroethene	98		99	70-130	1	20
Trichloroethene	88		88	70-130	0	20
1,2-Dichlorobenzene	100		98	70-130	2	20
1,3-Dichlorobenzene	100		98	70-130	2	20
1,4-Dichlorobenzene	99		97	70-130	2	20
Methyl tert butyl ether	93		97	63-130	4	20
p/m-Xylene	95		95	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	97		97	70-130	0	20
Styrene	95		95	70-130	0	20
Dichlorodifluoromethane	75		76	36-147	1	20
Acetone	100		110	58-148	10	20
Carbon disulfide	100		100	51-130	0	20
2-Butanone	110		110	63-138	0	20
4-Methyl-2-pentanone	89		98	59-130	10	20
2-Hexanone	100		110	57-130	10	20
Bromochloromethane	100		100	70-130	0	20
1,2-Dibromoethane	100		100	70-130	0	20
1,2-Dibromo-3-chloropropane	90		92	41-144	2	20
Isopropylbenzene	95		94	70-130	1	20
1,2,3-Trichlorobenzene	99		100	70-130	1	20

12/13/22

Lab Control Sample Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-08 Batch	n: WG1720921-3	3 WG1720921-4				
1,2,4-Trichlorobenzene	100		100		70-130	0		20	
Methyl Acetate	110		110		70-130	0		20	
Cyclohexane	94		95		70-130	1		20	
1,4-Dioxane	142		144		56-162	1		20	
Freon-113	100		100		70-130	0		20	
Methyl cyclohexane	96		98		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	103	105	70-130
4-Bromofluorobenzene	104	102	70-130
Dibromofluoromethane	98	98	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date: 12/13/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS 112-OW-05-113022	- Westborough	Lab Asso	ociated sample(s): 01-08 QC	Batch ID: WG17209	21-6 WG1720921-7	QC Sample	e: L226	7152-02	Client ID: B-
Methylene chloride	ND	10	10	100	10	100	70-130	0		20
1,1-Dichloroethane	2.8	10	12	92	12	92	70-130	0		20
Chloroform	ND	10	9.9	99	9.4	94	70-130	5		20
Carbon tetrachloride	ND	10	9.2	92	8.9	89	63-132	3		20
1,2-Dichloropropane	ND	10	9.2	92	8.6	86	70-130	7		20
Dibromochloromethane	ND	10	9.3	93	8.6	86	63-130	8		20
1,1,2-Trichloroethane	ND	10	10	100	9.5	95	70-130	5		20
Tetrachloroethene	ND	10	11	110	10	100	70-130	10		20
Chlorobenzene	ND	10	10	100	9.6	96	75-130	4		20
Trichlorofluoromethane	ND	10	8.6	86	8.1	81	62-150	6		20
1,2-Dichloroethane	ND	10	9.1	91	8.4	84	70-130	8		20
1,1,1-Trichloroethane	ND	10	10	100	9.9	99	67-130	1		20
Bromodichloromethane	ND	10	9.3	93	8.7	87	67-130	7		20
trans-1,3-Dichloropropene	ND	10	8.9	89	8.4	84	70-130	6		20
cis-1,3-Dichloropropene	ND	10	8.6	86	8.1	81	70-130	6		20
Bromoform	ND	10	8.5	85	7.9	79	54-136	7		20
1,1,2,2-Tetrachloroethane	ND	10	9.9	99	9.0	90	67-130	10		20
Benzene	ND	10	10	100	9.4	94	70-130	6		20
Toluene	ND	10	10	100	9.6	96	70-130	4		20
Ethylbenzene	ND	10	10	100	9.3	93	70-130	7		20
Chloromethane	ND	10	9.4	94	9.0	90	64-130	4		20
Bromomethane	ND	10	4.3	43	4.4	44	39-139	2		20
Vinyl chloride	1.4	10	10	86	10	86	55-140	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number: L2267152

Report Date: 12/13/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 112-OW-05-113022	- Westborough	Lab Ass	ociated sample	(s): 01-08 Q0	C Batch ID: WG17209	921-6 WG172	0921-7	QC Sample	e: L2267	7152-02 Client ID: B-
Chloroethane	ND	10	10	100	10	100		55-138	0	20
1,1-Dichloroethene	0.90	10	12	111	11	101		61-145	9	20
trans-1,2-Dichloroethene	ND	10	11	110	10	100		70-130	10	20
Trichloroethene	18	10	28	100	27	90		70-130	4	20
1,2-Dichlorobenzene	ND	10	9.9	99	9.2	92		70-130	7	20
1,3-Dichlorobenzene	ND	10	10	100	9.4	94		70-130	6	20
1,4-Dichlorobenzene	ND	10	9.9	99	9.2	92		70-130	7	20
Methyl tert butyl ether	ND	10	9.2	92	8.7	87		63-130	6	20
o/m-Xylene	ND	20	20	100	19	95		70-130	5	20
o-Xylene	ND	20	20	100	18	90		70-130	11	20
cis-1,2-Dichloroethene	39	10	49	100	49	100		70-130	0	20
Styrene	ND	20	19	95	18	90		70-130	5	20
Dichlorodifluoromethane	ND	10	8.4	84	7.9	79		36-147	6	20
Acetone	28	10	35	70	34	60		58-148	3	20
Carbon disulfide	ND	10	11	110	10	100		51-130	10	20
2-Butanone	ND	10	10	100	9.8	98		63-138	2	20
4-Methyl-2-pentanone	ND	10	8.6	86	8.3	83		59-130	4	20
2-Hexanone	ND	10	9.7	97	9.0	90		57-130	7	20
Bromochloromethane	ND	10	10	100	9.7	97		70-130	3	20
1,2-Dibromoethane	ND	10	9.9	99	9.5	95		70-130	4	20
1,2-Dibromo-3-chloropropane	ND	10	8.2	82	8.1	81		41-144	1	20
Isopropylbenzene	ND	10	9.9	99	9.2	92		70-130	7	20
1,2,3-Trichlorobenzene	ND	10	9.0	90	8.6	86		70-130	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Lab Number:

L2267152

Report Date:

12/13/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - 112-OW-05-113022	· Westborough L	_ab Assoc	ciated sample(s): 01-08 Q	C Batch ID:	WG17209)21-6 WG1720	0921-7	QC Sample	: L2267	7152-02	Client ID: B-
1,2,4-Trichlorobenzene	ND	10	9.5	95		9.1	91		70-130	4		20
Methyl Acetate	ND	10	10	100		9.1	91		70-130	9		20
Cyclohexane	ND	10	10	100		9.9J	99		70-130	1		20
1,4-Dioxane	ND	500	540	108		570	114		56-162	5		20
Freon-113	ND	10	11	110		11	110		70-130	0		20
Methyl cyclohexane	ND	10	11	110		9.8J	98		70-130	12		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	98	97	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	98	101	70-130
Toluene-d8	104	105	70-130

Serial_No:12132215:21 *Lab Number:* L2267152

Report Date: 12/13/22

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2267152-01A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-01B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-01C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02A1	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02A2	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02B1	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02B2	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02C1	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-02C2	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-03A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-03B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-03C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-04A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-04B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-04C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-05A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-05B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-05C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-06A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)
L2267152-06B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2267152

Report Date: 12/13/22

Project Name: 99 RIDGELAND ROAD

Project Number: 209387

Container Information			Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2267152-06C	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	
	L2267152-07A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	
	L2267152-07B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	
	L2267152-07C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	
	L2267152-08A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	
	L2267152-08B	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260-R2(14)	

Project Name: Lab Number: 99 RIDGELAND ROAD L2267152

Report Date: Project Number: 209387 12/13/22

GLOSSARY

Acronyms

EDL

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:99 RIDGELAND ROADLab Number:L2267152Project Number:209387Report Date:12/13/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:99 RIDGELAND ROADLab Number:L2267152Project Number:209387Report Date:12/13/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 99 RIDGELAND ROAD Lab Number: L2267152
Project Number: 209387 Report Date: 12/13/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

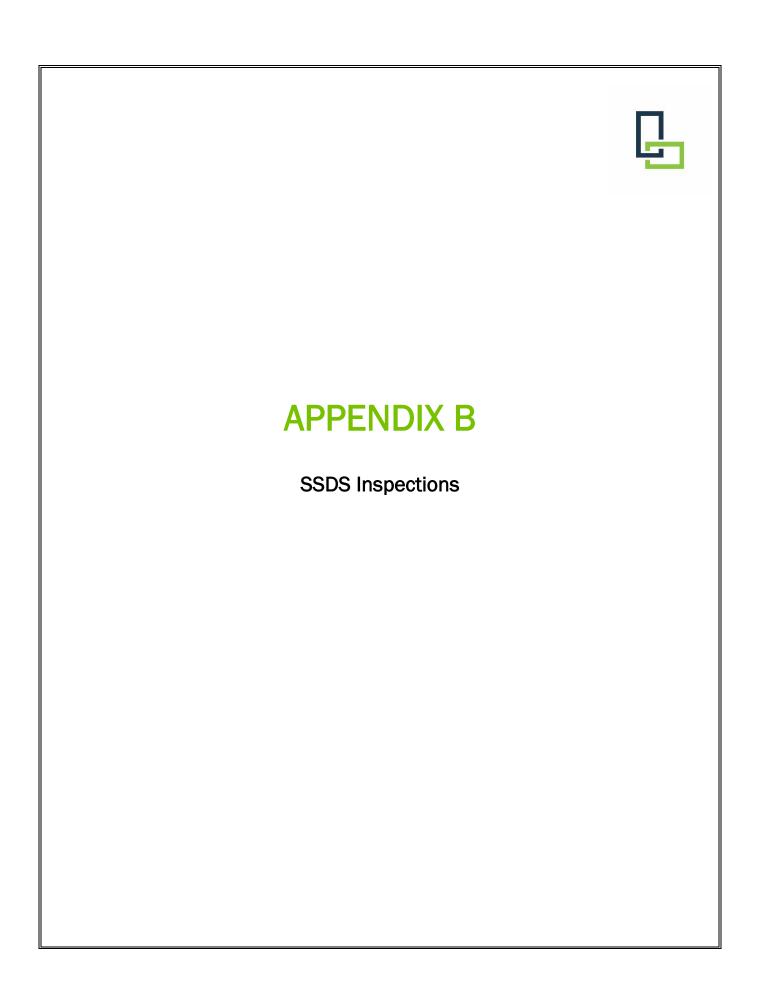
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

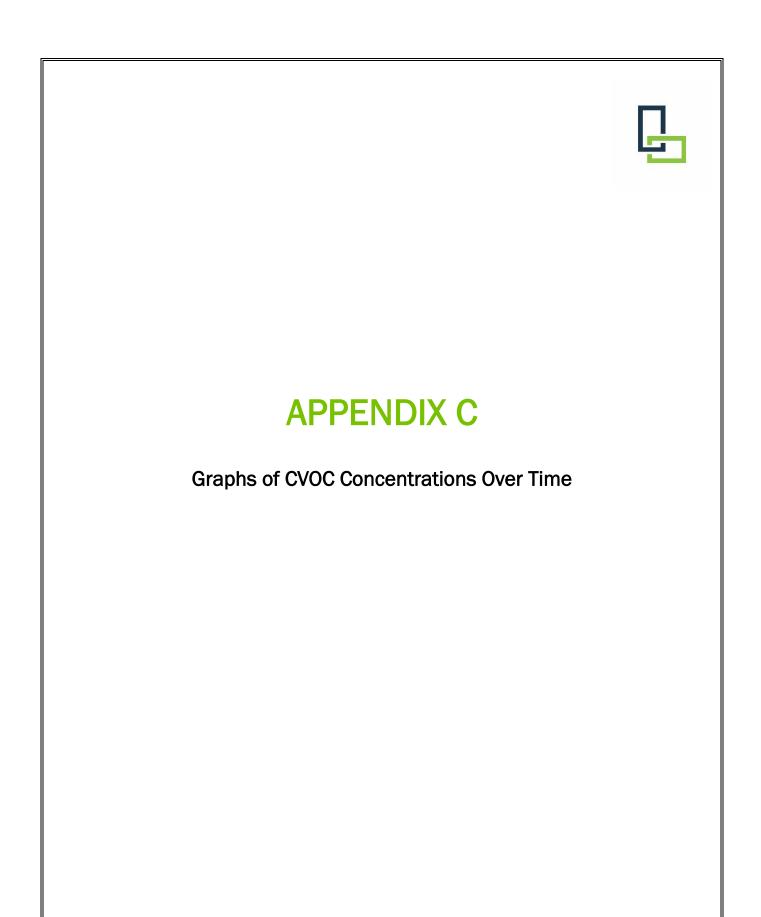

SM2340B

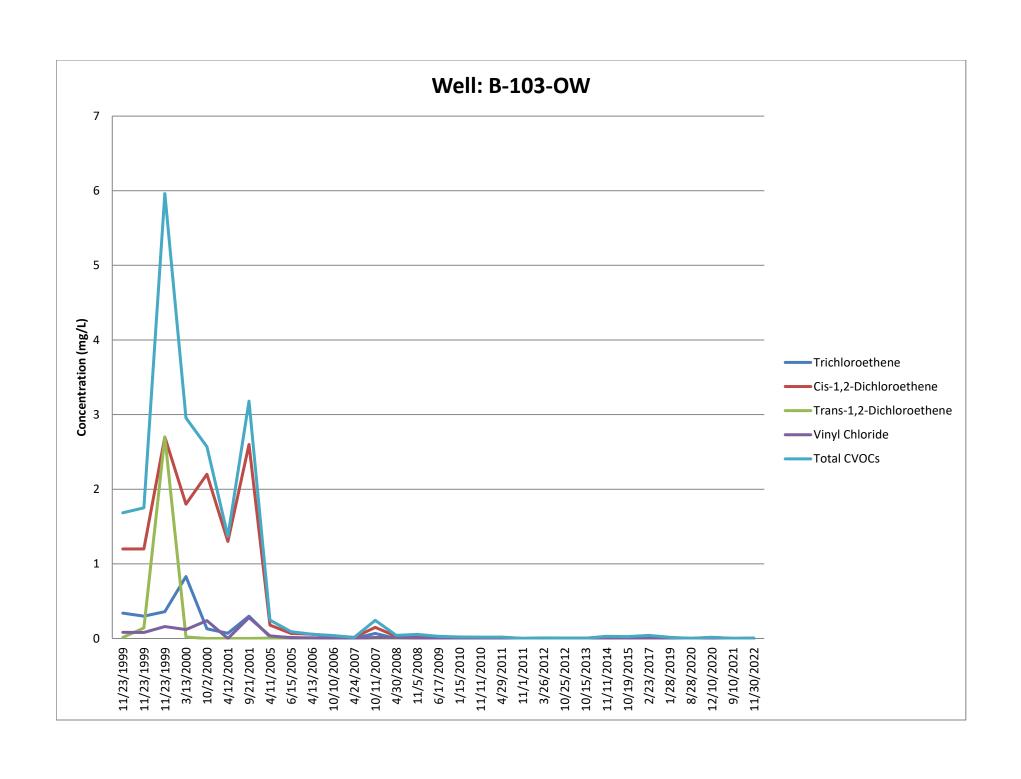
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

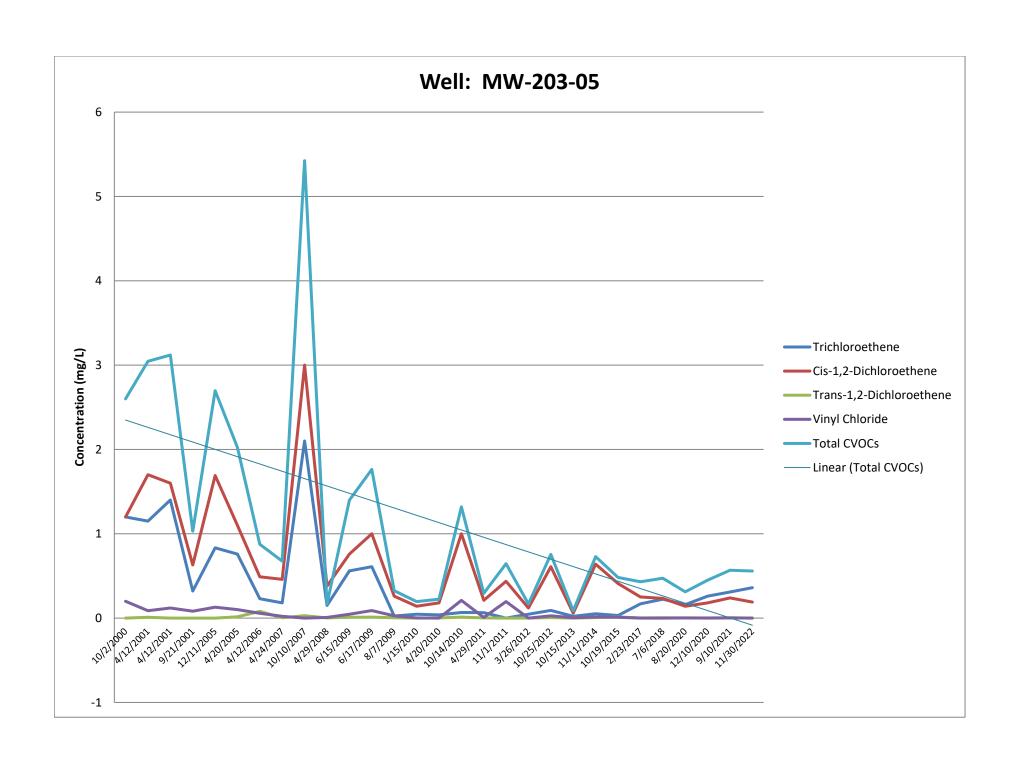
Pre-Qualtrax Document ID: 08-113 Document Type: Form

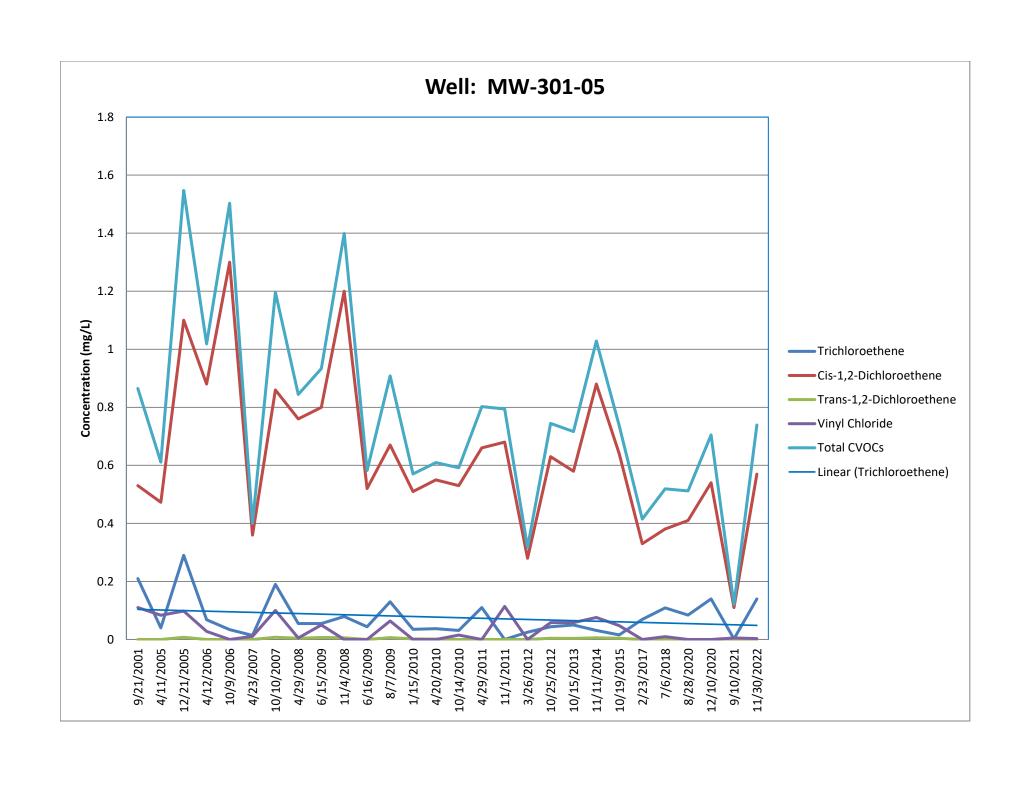
ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105	Pag	of		Date Rec in Lab	d /	2/	01/7	ıı	ALPHA JOB# 226715	2
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information	THE REAL PROPERTY.		Property land	STATE OF	DOM:	erables	Silvi		18	te-	Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: 99	Ridgel				+ =	ASP-A			ASP-B		Same as Client Info	
Client Information	They all no sun	A A -	ennetta.	W				EQuIS (1	File)	M	EQuIS	(4 File)	PO#	
Client Information	decide do	Project # 2043 7						Other						
Client: LASEUM		(Use Project name as F		10			-	atory Rec	luireme	2000	-24		Disposal Site Information	
Address: 300 S		Project Manager: MS	a Relych	sty				NY TOGS		=	NY Part		Please identify below location	of
ROCHESTER		ALPHAQuote #:				-	_	AWQ Stan		=	NY CP-	51	applicable disposal facilities.	
Phone: 535-41		Turn-Around Time					=	NY Restric			Other		Disposal Facility:	
Fax: AhreHell		Standar	10000	Due Date				NY Unrestr					□ NJ □ NY	
	tv@ Inbollapi.iom	Rush (only if pre approve	d) [# of Days				NYC Sewe	r Discha	rge			Other:	-
	c requirements/comm						ANAL	YSIS					Sample Filtration	T
	ume for B-1	18-0W-0S-1130	za for	MS/M	SD		10Cc Jac						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	mple ID	Coll	lection	Sample	Sampler's	5			1 1				1
(Lab Use Only)	Sa	inple ID	Date	Time	Matrix	Initials	5			1 1			Sample Specific Comments	e
107152-01	B-103-04	1-113022	11/30/22	1115	GW	AGB	×		1					3
-02	1 B-112-0W-	-05-113022	11/30/22	1215	GW	AGB	X			\dagger			Perform MS/MSD	9
-03			11/30/22	1330	6W	AGB	X		1 2	T			10160 713/7130	3
-04	DUP-113116		11/30/20	133a	64	Acc	X							3
-05	MW-301-	05-113022	11/31/22	1415	GW	A62	X			\Box	\neg			3
-06	MW-302-	05-113022	11/30/22	1445	Cw	413	X			\Box				3
-07		5-113022	11/30/22	15 30	6W	A13	V			\Box				3
-08	TripBlank-		11/30/22	CCTO	Gilder	A63	N			\Box				2
						1				\Box				-
										\Box	\neg			_
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				reservative	V B				-		Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w	es can
F = MeOH	C = Cube	Relinquished	Dur.	Date/Time (- 15	_	\vdash	D 4 FF		start until any ambiguitie		
G = NaHSO ₄	O = Other E = Encore	// / / /	quished By: Date/Time			Receive			_	Date/Ti		resolved. BY EXECUTING THIS COC, THE CLIENT		
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	DAVINE TROOP	20	11/390	11/392 1600 Secure			TORAGE					HAS READ AND AGRE	ES
O = Other		SECURE STORAGE ROLLANDELOM		11/30/22	16:46	COUM	rungham AAR			12/1/22 0000			TO BE BOUND BY ALP TERMS & CONDITIONS	
Form No: 01-25 HC (rev. 30	0-Sept-2013)	- CUNUTER ON	THE	11/20/22	16:46		<i>V</i>	_		121)	122 0	०००	(See reverse side.)	24

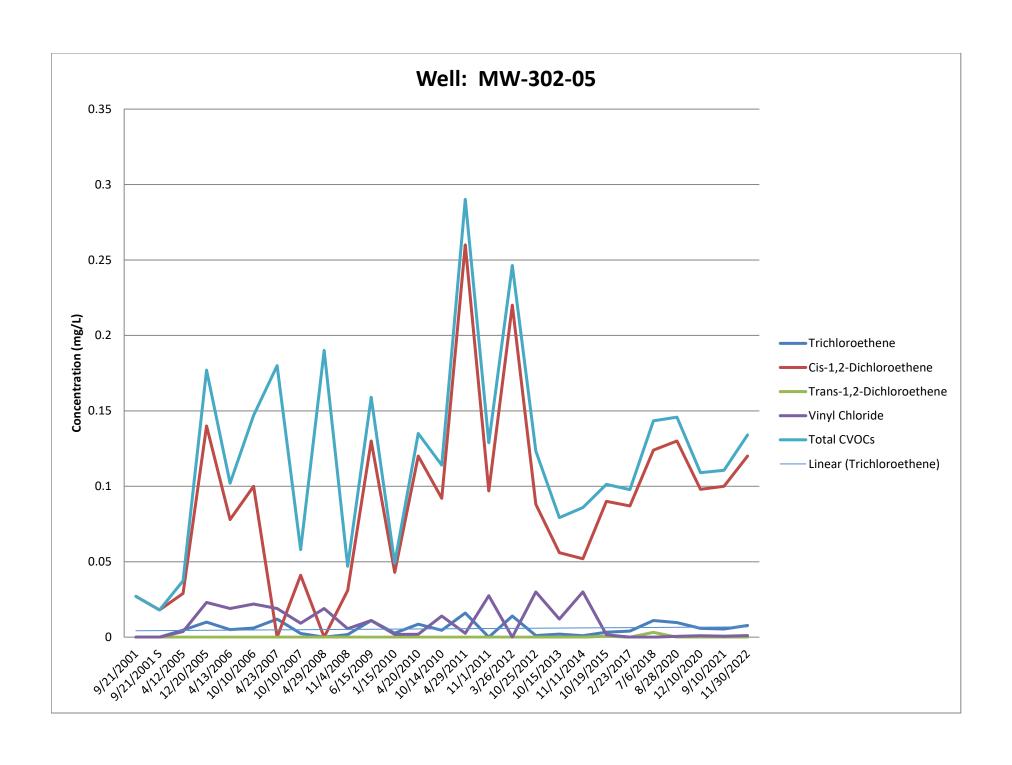
ena

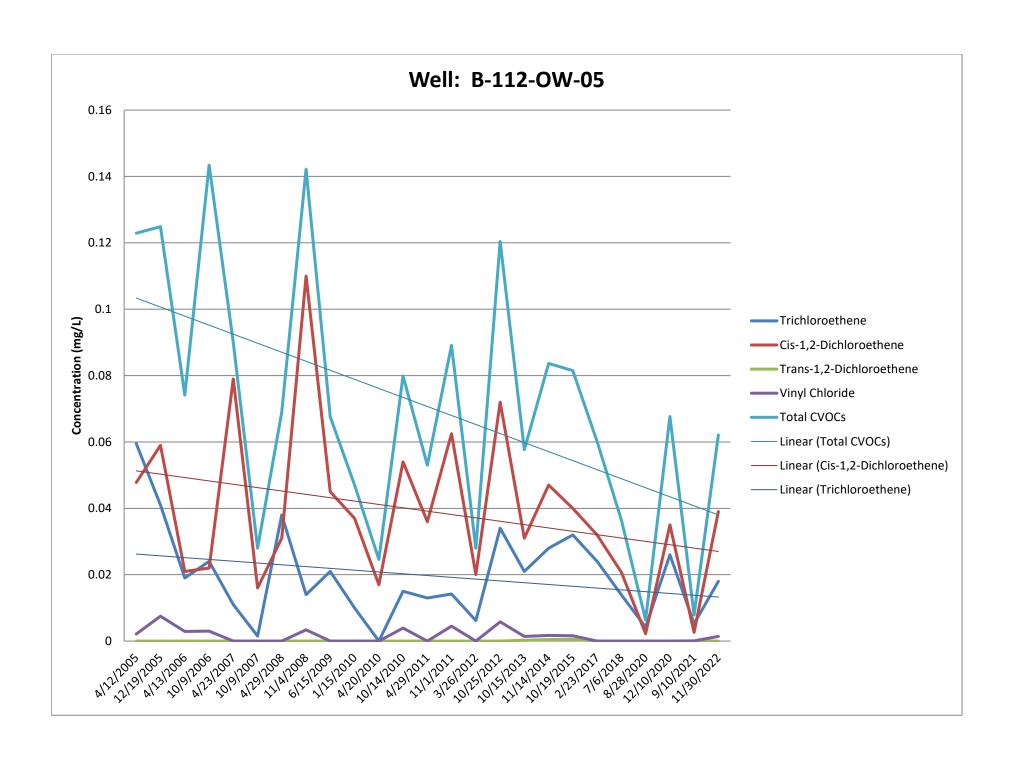


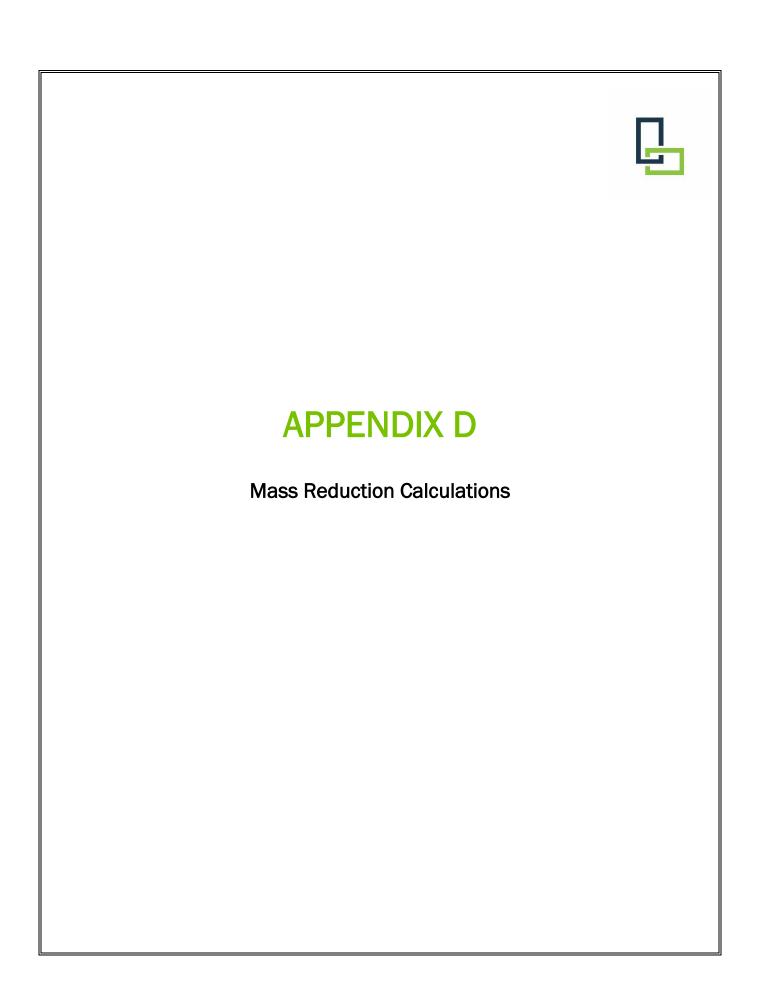



Sub-Slab Depressurization System November 30, 2022




Sub-Slab Depressurization System April 28, 2023





Contaminant Mass Reduction Calculations 99 Ridgeland Road, Henrietta, New York NYSDEC VCP Site# V00230-8

Mass of Contaminant = Plume Concentration (mg/L) * Aquifer Volume (L) * Porosity * 1 kg / 1000000 mg

Year of Estimate	Concentration	Area	Mass
rear or Estimate	(mg/L)	(sq. ft.)	(Kg)
2001 Plume Mass Estimate	1.2	6,100	0.73
	0.9	9,470	0.84
	0.7	9,960	0.69
	0.5	13,670	0.68
	0.3	14,630	0.44
	Total	CVOC Mass 2001	3.37
September 2021 Plume Mass Estimate	0.3	0.44	
	Total CVOC Mas	0.44	
	M	lass Reduction (%)	86.89%

Notes:

Mass calculations are a relative comparison of impacts between 2001 and the most recent sampling events. The actual mass likely varies from these estimates and the above caclulations are used only for estimating the See Figure 4 of report for areas and corresponding plume concentrations.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Name 99 Ridgeland Road (GMC Management Proper Site Address: 99 Ridgeland Road Zip Code: 14623 City/Town: Henrietta County: Monroe Site Acreage: 1.250 Reporting Period: April 30, 2022 to April 30, 2023 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? X Site Address: 99 Ridgeland Road (Site Acreage: 1.250) YES NO	Site	e No.	Site Details V00230		Box 1	
City/Town: Henrietta County: Monroe Site Acreage: 1.250 Reporting Period: April 30, 2022 to April 30, 2023 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	Site	Name 99	Ridgeland Road (GMC Management P	roper		
1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	City Cou	r/Town: He unty:Monro	nrietta	23		
1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	Rep	oorting Perio	d: April 30, 2022 to April 30, 2023			
If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?					YES	NO
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	1.	Is the infor	nation above correct?		X	
tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?		If NO, inclu	de handwritten above or on a separate s	sheet.		
(see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? ■ ★ Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? ■ ★ ■ ★ ■ ★ ■ ★ ■ ★ ■ ★ ■ ★ ■				livided, merged, or undergone a		X
for or at the property during this Reporting Period? Air Permits -see attached If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	3.			g this Reporting Period		X
that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? X						
Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?						
YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?	5.	Is the site of	urrently undergoing development?			X
YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed?						
 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? 					Box 2	
Commercial and Industrial 7. Are all ICs in place and functioning as designed?					YES	NO
			` '	ed below?	X	
	7.	Are all ICs	n place and functioning as designed?	D		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		IF TI			and	
A Corrective Measures Work Plan must be submitted along with this form to address these issues.	A C	orrective M	easures Work Plan must be submitted a	along with this form to address	these iss	ues.
Signature of Owner, Remedial Party or Designated Representative Date	Cia	noture of O	nor Domodial Darty or Docimental Decree	oontativo D-4-		

SITE NO. V00230 Box 3

Description of Institutional Controls

<u>Parcel</u>

Owner

Institutional Control

162.070-01-014.100

558 ELMGROVE LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction

Building Use Restriction

Site use limited to commercial/industrial (daycare, childcare, & medical care are prohibited).

Disturbance of soil/fill below 1-ft must be done per Soil Management Plan.

Use of groundwater is prohibited.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

162.070-01-014.100

Vapor Mitigation

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements						
1.	I certify by checking "YES" below that:						
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;						
b) to the best of my knowledge and belief, the work and conclusions described in this certifica are in accordance with the requirements of the site remedial program, and generally accepted							
	engineering practices; and the information presented is accurate and compete. YES NO						
	old Z						
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:						
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;						
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.						
	YES NO						
	$oxed{X}$						
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
	Signature of Owner, Remedial Party or Designated Representative Date						

IC CERTIFICATIONS SITE NO. V00230

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Ross Cooley at 99 Ridgeland Rd. STE A	
am certifying as Owner	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	5/25/23
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LaBella Associates, D.P.C.
300 State Street, Rochester, NY
print name print business address

am certifying as a Professional Engineer for the Remedial Party

TOPESSIONE WE

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE)

6.2.2023

Date

Division of Air Resources

Registration ID: 8-2632-00420/00001 **Ren:** 0

AIR FACILITY REGISTRATION CERTIFICATE in accordance with 6 NYCRR Subpart 201-4

Registration Issued to: PHOTONAMICS INC

99 RIDGELAND RD STE A ROCHESTER,NY 14623

Contact: ROSS COOLEY

PHOTONAMICS INC 99 RIDGELAND RD STE A ROCHESTER,NY 14623

(585) 247-8990

Facility: PHOTONAMICS INC

99 RIDGELAND RD STE A

HENRIETTA,NY

Description:

This facility solders printed circuit boards (PCBs). Emissions include PCB soldering machines, permit-exempt aqueous cleaning of PCBs, permit-exempt coating with a PCB sealant, and permit-exempt natural gas fired heating systems. The single emission point in this registration corresponds to the selective soldering machine.

Both lead-free and leaded solder are used in the selective soldering machine.

Owners or operators of registered facilities must provide the DEC with an updated registration application at least 30 days in advance of undertaking modifications to the facility that will make the facility subject to additional State or Federal regulatory requirements.

Renewal applications for air facility registrations must be submitted to the DEC no later than 60 days prior to the date of registration expiration.

Total Number of Emission Points: 1 Cap By Rule: No

Authorized Activity By Standard Industrial Classification Code:

3672 - PRINTED CIRCUIT BOARDS

Registration Effective Date: 02/01/2023 Registration Expiration Date: 01/31/2033

List of Regulations in Application:

6 NYCRR Part 200 General Provisions
6 NYCRR Part 201 Permits and Registrations

6 NYCRR Part 211 General Prohibitions

Page 1 of 2 FINAL

Registration ID: 8-2632-00420/00001 **Ren:** 0

AIR FACILITY REGISTRATION CERTIFICATE in accordance with 6 NYCRR Subpart 201-4

List of Regulations in Application:

6 NYCRR Part 212

Process Operations

FRANK SOWERS

REGION 8 AIR POLLUTION CONTROL ENGINEER

NYSDEC - REGION 8 6274 E AVON LIMA RD AVON,NY 14414

This registrant is required to operate this facility in accordance with all air pollution control applicable Federal and State laws and regulations. Failure to comply with these laws and regulations is a violation of the ECL and the registrant is subject to fines and/or penalties as provided by the ECL. If ownership of this facility changes, the registrant is required to notify the Department at the address shown above using the appropriate forms and procedures within 30 days after the transfer takes place. The present registrant will continue to be responsible for all fees and penalties until the Department has been notified of any change in ownership.

Page 2 of 2 FINAL

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Permits, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5400 | F: (585) 226-2830 www.dec.ny.gov

February 9, 2023

Ross Cooley Photonamics, Inc. 99 Ridgeland Rd Ste A Rochester, NY 14623

Re: Air Facility Registration Certificate

DEC# 8-2632-00420/00001

Photonamics, Inc.

Henrietta (T) Monroe (Co)

Dear Mr. Cooley:

Enclosed please find the formal Air Facility Registration Certificate which has an issue date of February 1, 2023.

Please note that as of February 22, 2013, changes in the regulation (6NYCRR Part 201) require that new or modified Registrations be issued with a ten (10) year-term and this has resulted in an expiration date on your Registration Certificate. New renewal provisions have been added at Subpart 201-4.3(b). Renewal applications are due sixty (60) days prior to the expiration date of the existing registration. The existing registrations will continue to be effective while the renewal application is processed.

You are also reminded that 6 NYCRR Part 201 contains various other requirements that must be complied with to maintain your facility's continued status as a registered facility. Applicable regulations are indicated on the registration. It is also your responsibility to maintain compliance with all additional rules and regulations that may be applicable to the facility.

If you have any questions regarding this registration or any applicable regulation, please contact Frank Sowers 585-226-2466.

Sincerely,

Karen E. Page

Karen Flage

Environmental Program Specialist 1

ecc: Frank Sowers, NYSDEC

file

