ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

March 25, 2009

Nicole M. Bonsteel, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E 625 Broadway, 12th Floor Albany, New York 12233-7017

Re: Laboratory Data Package, January 2009 Quarterly VOC Voluntary Cleanup Program (VCP #V00237-3) Kings Electronics Co., Inc./Weissman Holdings, LLC (Kings) 40 Marbledale Road, Tuckahoe, New York 10707

Dear Ms. Bonsteel:

Attached to this letter, please find the laboratory analysis report and the spreadsheet summary by ARCADIS of the second Post-Remedial Program Quarterly Groundwater Monitoring for January 2009.

Based on the results, there is no evidence of post-remedial rebound. As a matter of interest, Vinyl Chloride (VC) in MW-13R is reported at a concentration of 2.73 μ g/L. Since VC has been non-detect in this well since January 2007, this is most likely related to the transitory increase of VC and cis-1,2-Dichloroethene (DCE) observed within GP-103R (immediately upgradient of MW-13R) during the October 2008 quarterly sampling. DCE within MW-13R also increased slightly, to 1.85 μ g/L. Both DCE and VC decreased significantly in GP-103R from October 2008.

As was conveyed (based on preliminary laboratory results) in the March 10, 2009 Monthly Report, the October 2008 concentrations within GP-103R of cis-1,2-Dichloroethene (DCE) and Vinyl Chloride (VC), respectively 6.31 and 35.2 μ g/L, have dropped back to 0.579 and 0.763 μ g/L. Concentrations of all other CVOCs at GP-103R were non-detect in the current quarter.

Quarterly sampling of all off-site monitoring wells will be discontinued for the next and subsequent monitoring periods, as approved by DEC on February 11. Any future sampling of off-site wells, if required, will be based on actions to be stipulated within the Post Remedial Operations Maintenance & Monitoring (OM&M) Plan.

As you agreed yesterday (with Donald Wanamaker, EML) Kings will discontinue routine monthly progress reporting of Site activities, as earlier required within Kings' Voluntary Cleanup Agreement. All quarterly monitoring and reporting during this post-remedial period will be conducted in accordance with the approved On-Site Post-Remedial OM&M Plan. As necessary, additional reporting may be submitted at the conclusion of specific site activities.

Hard copies of this letter, the laboratory report and the spreadsheet are also being sent to you.

Please contact us if you have any questions.

Very truly yours,

Environmental Management, Ltd.

Bruce M. Munson

Bruce M. Munson Project Manager

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	MW-6S 04/24/2007	MW-6S 07/26/2007	MW-6S 10/02/2007	MW-6S 01/16/2008	MW-6S 04/17/2008	MW-6S 07/24/2008	MW-6S 10/23/2008	MW-65 01/20/2009
Chlorinated VOCs (ug/L)								
richloroethene	66.5	44.2	20.6	31	46.8	38.8	24.1	43.3
is-1,2-Dichloroethene	0.528	ND	ND	ND	ND	ND	ND	NI
ans-1,2-Dichloroethene	ND	NI						
'inyl Chloride	ND	NI						
,1-Dichloroethene	ND	NI						
,1,1-Trichloroethane	15.9	16.1	4.56	3.91	8.56	7.62	4.22	5.
etrachloroethene	8.44	6.84	3.32	3.97	4.93	4.66	3.23	5.5
,1-Dichloroethane	1.03	ND	ND	ND	ND	ND	ND	0.41
,2-Dichloroethane(EDC)	ND	NI						
,1,2-Trichloroethane	ND	NI						
,1,2,2-Tetrachloroethane	ND	NE						
ield Parameters								
issolved Oxygen (mg/L)	5.13	8.78	3.2	6.33	8.31	7.35	5.06	8.1
RP (mV)	-20.7	164.3	76.6	27.8	125.8	89	109	-32.
H (SU)	6.62	6.3	6.58	6.88	6.61	6.64	6.73	7.13
. Conductivity (umhos/cm)	1837	906	1353	1050	1293	1520	1019	899
otal Organic Carbon (ppm)			2.19		1.9	1.69		
issolved Organic Carbon (ppm)								
liogeochemical Parameters								
Carbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
ssolved Manganese (ug/L)								
otal Manganese (ug/L)								
lkalinity (mg/L)								
hloride (mg/L)								
itrate (mg/L)								
litrite (mg/L)								
Sulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	MW-9S 04/24/2007	MW-9S 07/25/2007	MW-9S 10/02/2007	MW-9S 01/15/2008	MW-9S 04/17/2008	MW-9S 07/22/2008	MW-9S 10/21/2008	MW-95 01/21/2009
Chlorinated VOCs (ug/L)								
richloroethene	ND	0.893	0.406	0.707	0.383	ND	ND	NE
is-1,2-Dichloroethene	1.37	ND	ND	0.703	0.918	0.637	0.668	0.64
ans-1,2-Dichloroethene	ND	ND	ND	0.775	1.34	0.795	0.882	NE
inyl Chloride	2	ND	ND	ND	1.33	0.979	0.861	0.808
,1-Dichloroethene	ND	NI						
,1,1-Trichloroethane	ND	NI						
etrachloroethene	ND	ND	ND	0.492	ND	ND	ND	NI
,1-Dichloroethane	ND	1.08	1.24	0.878	1.02	0.672	0.52	0.54
,2-Dichloroethane(EDC)	ND	NI						
,1,2-Trichloroethane	ND	NI						
,1,2,2-Tetrachloroethane	ND	NI						
ield Parameters								
issolved Oxygen (mg/L)	0.19	1.53	3.86	0.47	0.67	0.29	1.78	0.1
RP (mV)	-53.2	-74.9	-123.7	-135.6	-115.1	-79.7	-116.4	-119.
H (SU)	6.4	6.49	6.66	6.73	7.12	6.6	6.66	6.5
. Conductivity (umhos/cm)	2172	835	1589	1689	1661	1744	1243	130
otal Organic Carbon (ppm)			12.9		15.6	27.7		-
issolved Organic Carbon (ppm)								
iogeochemical Parameters								
Carbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
ssolved Iron (ug/L)								
otal Iron (ug/L)								
ssolved Manganese (ug/L)								
otal Manganese (ug/L)								
kalinity (mg/L)								
hloride (mg/L)								
itrate (mg/L)								
itrite (mg/L)								
ulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	MW-9D 04/24/2007	MW-9D 07/25/2007	MW-9D 10/02/2007	MW-9D 01/15/2008	MW-9D 04/17/2008	MW-9D 07/22/2008	MW-9D 10/21/2008	MW-9E 01/21/2009
Chlorinated VOCs								
richloroethene	ND	ND	0.452	ND	ND	ND	ND	NE
sis-1,2-Dichloroethene	ND	NE						
ans-1,2-Dichloroethene	ND	NE						
inyl Chloride	5.4	2.32	2.6	ND	ND	ND	ND	NE
,1-Dichloroethene	ND	NE						
,1,1-Trichloroethane	ND	NE						
etrachloroethene	ND	ND	ND	0.699	ND	ND	ND	NE
,1-Dichloroethane	ND	0.626	ND	ND	ND	ND	ND	NI
,2-Dichloroethane(EDC)	ND	NI						
,1,2-Trichloroethane	ND	NE						
,1,2,2-Tetrachloroethane	ND	NI						
ïeld Parameters								
issolved Oxygen (mg/L)	0.42	0.32	0.13	0.52	0.25		1.21	0.0
RP (mV)	-86.5	-101.5	-118.6	-125.3	-104.7	-104.5	-77.2	-117.
H (SU)	6.78	6.62	6.67	6.74	6.55	6.67	6.38	6.7
. Conductivity (umhos/cm)	1478	989	1468	1370	1249	1622	1058	96
otal Organic Carbon (ppm)			2.91		3.61	3.12		-
issolved Organic Carbon (ppm)								
iogeochemical Parameters								
arbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
hene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
ssolved Iron (ug/L)								-
otal Iron (ug/L)								
ssolved Manganese (ug/L)								
otal Manganese (ug/L)								
kalinity (mg/L)								
hloride (mg/L)								
, ,								
itrate (mg/L) itrite (mg/L)								-

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	PTW-2 04/24/2007	PTW-2 07/25/2007	PTW-2 10/02/2007	PTW-2 01/15/2008	PTW-2 04/18/2008	PTW-2 07/22/2008	PTW-2 10/23/2008	PTW-2 01/22/2009
Chlorinated VOCs (ppb)								
Frichloroethene	8.17	0.449	ND	ND	0.871	0.968	ND	0.525
cis-1,2-Dichloroethene	5.96	ND	ND	ND	1.1	2.32	0.395	ND
rans-1,2-Dichloroethene	ND							
/inyl Chloride	ND	ND	ND	ND	ND	0.646	ND	ND
,1-Dichloroethene	ND							
,1,1-Trichloroethane	ND							
etrachloroethene	ND	ND	ND	0.406	ND	ND	ND	ND
,1-Dichloroethane	1.33	ND	0.783	2.44	1.41	2.68	0.657	1.69
,2-Dichloroethane(EDC)	ND							
,1,2-Trichloroethane	ND							
,1,2,2-Tetrachloroethane	ND							
ield Parameters								
issolved Oxygen (mg/L)	0.37		4.73	1.49	0.61	0.24	0.72	0.24
RP (mV)	-120.5	-102.8	-147.5	-116.3	-99.9	-83.9	-125.3	-157
H (SU)	7.17	6.59	6.84	6.44	6.79	6.54	6.51	6.8
. Conductivity (umhos/cm)	2130	640	1607	1590	1378	1648	1043	1106
otal Organic Carbon (ppm)			16.6		4.22	4.34		
issolved Organic Carbon (ppm)								
Biogeochemical Parameters								
Carbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
issolved Manganese (ug/L)								
otal Manganese (ug/L)								
3 \- 3 /								
lkalinity (mg/L)								
Chloride (mg/L)					 		 	
Alkalinity (mg/L) Chloride (mg/L) Vitrate (mg/L) Vitrite (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	GP-104-R 04/24/2007	GP-104-R 07/25/2007	GP-104-R 10/03/2007	GP-104-R 01/16/2008	GP-104-R 04/16/2008	GP-104-R 07/23/2008	GP-104-R 10/23/2008	GP-104-R 01/22/2009
Chlorinated VOCs								
richloroethene	134	23.9	6.42	2.29	0.669	ND	0.402	1.49
is-1,2-Dichloroethene	3.74	1.35	2	1.12	1.68	0.849	0.589	1.58
ans-1,2-Dichloroethene	ND	ND	1.92	ND	ND	ND	0.459	1.19
inyl Chloride	ND	ND	0.577	ND	ND	ND	ND	0.502
,1-Dichloroethene	ND	NE						
,1,1-Trichloroethane	3.92	ND						
etrachloroethene	7.57	1.6	ND	0.597	ND	ND	ND	NE
,1-Dichloroethane	0.44	1.41	1.52	0.572	1.22	ND	0.573	1.48
,2-Dichloroethane(EDC)	ND	NE						
,1,2-Trichloroethane	ND	NE						
1,2,2-Tetrachloroethane	ND	NE						
ield Parameters								
issolved Oxygen (mg/L)	0.38	0.4		0.61	0.81	0.84	2.35	0.09
RP (mV)	41.2	-10.9	-90.8	-139.7	-151	-125.4	-135.5	-153.4
H (SU)	7.08	6.98	7.6	6.99	6.67	7.01	6.69	6.87
. Conductivity (umhos/cm)	1799	1072	1471	1776	2132	1869	1413	1170
otal Organic Carbon (ppm)			5.83		17.3	7.49		
issolved Organic Carbon (ppm)								
iogeochemical Parameters								
arbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
issolved Manganese (ug/L)								
otal Manganese (ug/L)								
kalinity (mg/L)								
hloride (mg/L)								
litrate (mg/L)								
litrite (mg/L)								
Sulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

	-							
Sample ID: Date Sampled:	GP-103-R 04/24/2007	GP-103-R 07/25/2007	GP-103-R 10/03/2007	GP-103-R 01/16/2008	GP-103-R 04/16/2008	GP-103-R 07/23/2008	GP-103-R 10/23/2008	GP-103-R 01/22/2009
Chlorinated VOCs								
Trichloroethene	2.3	4.47	2.67	1.74	0.739	0.539	0.585	ND
cis-1,2-Dichloroethene	ND	ND	ND	0.606	0.527	0.923	6.31	0.579
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.468	ND
Vinyl Chloride	ND	ND	ND	ND	ND	1.26	35.2	0.763
1,1-Dichloroethene	ND							
1,1,1-Trichloroethane	0.981	4.94	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	1.07	ND	0.505	ND	ND	ND	ND
1,1-Dichloroethane	1.01	4.43	6.7	1.44	ND	ND	0.418	ND
1,2-Dichloroethane(EDC)	ND							
1,1,2-Trichloroethane	ND							
1,1,2,2-Tetrachloroethane	ND							
Field Parameters								
Dissolved Oxygen (mg/L)	0.2	1.67	0.2		0.53		2.26	0.19
ORP (mV)	-58.8	28.2	-98.6	-139	-106.2	-110.6	-134.7	-141.1
pH (SU)	6.85	6.66	6.81	6.28	6.44	6.79	6.8	6.94
S. Conductivity (umhos/cm)	1387	572	1475	1716	1515	1432	1225	1061
Total Organic Carbon (ppm)			28.4		2.63	3.8		
Dissolved Organic Carbon (ppm)								
Biogeochemical Parameters								
Carbon Dioxide (mg/L)								
Nitrogen (mg/L)								
Methane (ug/L)								
Ethane (ng/L)								
Ethene (ng/L)								
Sulfide (mg/L)								
Ferrous Iron (mg/L)								
Dissolved Iron (ug/L)								
Total Iron (ug/L)								
Dissolved Manganese (ug/L)								
Total Manganese (ug/L)								
Alkalinity (mg/L)								
Chloride (mg/L)								
Nitrate (mg/L)								
Nitrite (mg/L)								
Sulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Validies (ppb) Vali	MW-13 01/21/200	MW-13R 10/22/2008	MW-13R 07/24/2008	MW-13R 04/16/2008	MW-13R 01/15/2008	MW-13R 10/03/2007	MW-13 disabled	MW-13 04/23/2007	Sample ID: Date Sampled:
Dissolved Oxygen (mg/L) 0.38 0.13 1.22 0.45 0.68 2.14									Volatiles (ppb)
Trans-1,2-Dichloroethene ND ND ND ND ND ND ND N	1.6	1.62	1.7	0.989	3.87	2.99		1.68	Trichloroethene
Insplication ND ND ND ND ND ND ND N	1.8		ND	ND	0.509	0.435			sis-1,2-Dichloroethene
1-Dichloroethene ND ND ND ND ND ND ND N	N		ND	ND					ans-1,2-Dichloroethene
i.1-Trichoroethane ND	2.7		ND						•
etrachtrorethene ND ND 0.562 ND ND ND ND 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	N								
1-Dichlorethane ND	N								
2-Dichloroethane (EDC) ND ND ND ND ND ND ND N	N								etrachloroethene
1,12-Trichloroethane	0.8		0.796					ND	
1,1,2,2-Tetrachloroethane ND A A A A A <td>N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	N								
issolved Oxygen (mg/L)	N		ND						,1,2-Trichloroethane
Sissolved Oxygen (mg/L)	N	ND	ND	ND	ND	ND		ND	1,2,2-Tetrachloroethane
NRP (mV)									ield Parameters
(SU)	0.4	2.14	0.68	0.45	1.22	0.13			
Conductivity (umhos/cm) 1074 1707 1888 1955 2943 1986	88.		218.9						
2.51 1.99 1.64 1.99 1.64 1.99 1.64 1.99 1.64 1.99 1.64 1.99 1.64	6.7		-						
Seld Parameters	195	1986	2943		1888			1074	
eld Parameters arbon Dioxide (mg/L)	-		1.64	1.99		2.51			otal Organic Carbon (ppm)
arbon Dioxide (mg/L)	-								issolved Organic Carbon (ppm)
Integration									ield Parameters
ethane (ug/L)	-								, ,
thane (ng/L)	-								
chene (ng/L) <	-								, ,
ulfide (mg/L)	-								· • ·
errous Iron (mg/L)	-								
Sesolved Iron (ug/L)	-								, o ,
otal Iron (ug/L)	-								, ,
ssolved Manganese (ug/L)	-								
stal Manganese (ug/L) </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
kalinity (mg/L)	-								
nloride (mg/L)	-								
trate (mg/L)	-								, , ,
	-								
	-								
itrite (mg/L)	-								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	OS-MW-3PL 04/23/2007	OS-MW-3PL 07/26/2007	OS-MW-3PL 10/02/2007	OS-MW-3PL 01/14/2008	OS-MW-3PL 04/15/2008	OS-MW-3PL 07/24/2008	OS-MW-3PL 10/22/2008	OS-MW-3PL 01/20/2009
Chlorinated VOCs								
Trichloroethene	ND	0.717	ND	0.408	0.479	ND	ND	ND
cis-1,2-Dichloroethene	5.26	1.84	1.16	ND	ND	ND	ND	0.675
rans-1,2-Dichloroethene	ND							
/inyl Chloride	ND							
,1-Dichloroethene	ND							
,1,1-Trichloroethane	ND							
etrachloroethene	ND	ND	ND	0.719	ND	ND	ND	ND
,1-Dichloroethane	ND							
,2-Dichloroethane(EDC)	ND							
,1,2-Trichloroethane	ND							
,1,2,2-Tetrachloroethane	ND							
Field Parameters								
issolved Oxygen (mg/L)	2.45	1.8	4.79	4	2.11	0.76	0.78	1.19
RP (mV)	-40.5	113.9	-32.1	153	190.2	-21.4	-64.1	-28.6
H (SU)	6.8	6.75	7.06	6.83	6.64	6.85	6.88	7.04
. Conductivity (umhos/cm)	1306	1066	1380	1124	1315	1504	1132	1145
otal Organic Carbon (ppm)			6.92		7.69	8.03		
issolved Organic Carbon (ppm)								
Biogeochemical Parameters								
Carbon Dioxide (mg/L)								
litrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
issolved Manganese (ug/L)								
otal Manganese (ug/L)								
Ikalinity (mg/L)								
hlorido (ma/l)								
, ,								
Chloride (mg/L) Vitrate (mg/L) Vitrite (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	MW-HP-2S 04/23/2007	MW-HP-2S 07/24/2007	MW-HP-2S 10/01/2007	MW-HP-2S 01/14/2008	MW-HP-2S 04/15/2008	MW-HP-2S 07/23/2008	MW-HP-2S 10/21/2008	MW-HP-29 01/20/2009
Chlorinated VOCs								
richloroethene	1.2	1.66	2.3	4.52	2.42	2.24	1.95	1.9
is-1,2-Dichloroethene	ND	0.437	1.95	3.39	0.903	1.5	1.56	1.19
ans-1,2-Dichloroethene	ND	N						
inyl Chloride	ND	N						
,1-Dichloroethene	ND	N						
,1,1-Trichloroethane	ND	N						
etrachloroethene	17.7	11.2	8.28	22.6	30	16.8	15.2	24.
,1-Dichloroethane	ND	N						
,2-Dichloroethane(EDC)	ND	N						
,1,2-Trichloroethane	ND	N						
,1,2,2-Tetrachloroethane	ND	N						
ield Parameters								
issolved Oxygen (mg/L)	0.27	0.41	0.14	0.56	0.23	2.47	6.01	1.0
RP (mV)	-67.5	10	207.3	160.4	262.4	144.6	283.5	-31
H (SU)	6.89	6.91	6.69	6.85	6.79	6.83	6.49	7
. Conductivity (umhos/cm)	1277	1109	1163	1264	1324	1438	1097	92
otal Organic Carbon (ppm)			2.72		1.61	1.96		-
issolved Organic Carbon (ppm)								-
liogeochemical Parameters								
Carbon Dioxide (mg/L)								-
itrogen (mg/L)								-
lethane (ug/L)								-
thane (ng/L)								-
thene (ng/L)								-
ulfide (mg/L)								-
errous Iron (mg/L)								-
issolved Iron (ug/L)								-
otal Iron (ug/L)								-
issolved Manganese (ug/L)								-
otal Manganese (ug/L)								-
lkalinity (mg/L)								-
hloride (mg/L)								-
litrate (mg/L)								-
litrite (mg/L)								_

ND Not detected at

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	MW-HP-2D 04/23/2007	MW-HP-2D 07/24/2007	MW-HP-2D 10/01/2007	MW-HP-2D 01/14/2008	MW-HP-2D 04/15/2008	MW-HP-2D 07/23/2008	MW-HP-2D 10/21/2008	MW-HP-2D 01/20/2009
Chlorinated VOCs								
Frichloroethene	0.76	ND	0.907	1.04	1.41	1.06	1.04	1.26
sis-1,2-Dichloroethene	ND							
rans-1,2-Dichloroethene	ND							
/inyl Chloride	ND							
,1-Dichloroethene	ND							
,1,1-Trichloroethane	ND							
etrachloroethene	13.1	8.94	14.3	16.9	21.1	19.5	21.5	23
,1-Dichloroethane	ND							
,2-Dichloroethane(EDC)	ND							
,1,2-Trichloroethane	ND							
,1,2,2-Tetrachloroethane	ND							
Field Parameters								
hissolved Oxygen (mg/L)	1.24	0.13	5.07	4.1	3.7	2.69	2.97	2.89
DRP (mV)	138.5	247.1	30.5	117.8	162	340.7	205.3	-40
H (SU)	7	7.01	6.83	7.1	7.03	6.94	6.76	7.25
. Conductivity (umhos/cm)	1263	1045	1372	1270	1208	1344	972	927
otal Organic Carbon (ppm)			1.52		1.02	1.23		
issolved Organic Carbon (ppm)								
Biogeochemical Parameters								
Carbon Dioxide (mg/L)								
litrogen (mg/L)								
Methane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
issolved Manganese (ug/L)								
otal Manganese (ug/L)								
lkalinity (mg/L)								
Chloride (mg/L)								
litrate (mg/L)								
litrite (mg/L)								
Sulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID: Date Sampled:	OS-MW-2 04/23/2007	OS-MW-2 07/26/2007	OS-MW-2 10/03/2007	OS-MW-2 01/14/2008	OS-MW-2 04/16/2008	OS-MW-2 07/24/2008	OS-MW-2 10/22/2008	OS-MW-2 01/22/2009
Chlorinated VOCs								
richloroethene	2.13	4.65	2.64	3.43	3.24	5.73	4	3.14
is-1,2-Dichloroethene	3.41	1.69	1.6	2.49	1.23	1.68	2.55	2.8
ans-1,2-Dichloroethene	ND	NI						
'inyl Chloride	ND	NI						
,1-Dichloroethene	ND	NI						
,1,1-Trichloroethane	ND	NI						
etrachloroethene	3.03	5.69	6.63	4.41	8.01	10.3	7.6	7.78
,1-Dichloroethane	ND	NI						
,2-Dichloroethane(EDC)	ND	NI						
,1,2-Trichloroethane	ND	NI						
,1,2,2-Tetrachloroethane	ND	NI						
ield Parameters								
issolved Oxygen (mg/L)	0.59	2.27	0.16	1.12	3.85	1.79	2.95	4.7
RP (mV)	-62.8	390	201	153.2	173.6	128.4	55	60.
H (SU)	6.84	5.61	6.89	6.9	6.77	6.85	6.79	7.2
. Conductivity (umhos/cm)	1686	790	1353	1574	1520	1573	1222	122
otal Organic Carbon (ppm)			2.17		1.98	1.71		-
issolved Organic Carbon (ppm)								
liogeochemical Parameters								
Carbon Dioxide (mg/L)								
itrogen (mg/L)								
lethane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
ssolved Iron (ug/L) otal Iron (ug/L)								
ssolved Manganese (ug/L)								
otal Manganese (ug/L)								
lkalinity (mg/L)								
hloride (mg/L)								
itrate (mg/L)								
itrite (mg/L)								
ulfate (mg/L)								

Table 1. Performance Monitoring Results, Kings Electronics, Tuckahoe, New York.

Sample ID Date Sampled		OS-MW-1 07/26/2007	OS-MW-1 10/03/2007	OS-MW-1 01/14/2008	OS-MW-1 04/15/2008	OS-MW-1 07/24/2008	OS-MW-1 10/22/2008	OS-MW-1 01/21/2009
Chlorinated VOCs								
richloroethene	3.39	2.68	1.15	0.528	1.33	1.94	0.529	1.32
is-1,2-Dichloroethene	1.36	1.39	1.78	1.36	2.48	1.9	0.498	1.93
ans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND
'inyl Chloride	ND	1.38	1.87	ND	1.93	1.88	0.822	1.67
,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND
,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
etrachloroethene	1.5	1.45	0.975	1.03	0.66	2.52	0.991	4.08
,1-Dichloroethane	ND	ND	ND	0.73	3.17	ND	ND	ND
,2-Dichloroethane(EDC)	ND	ND	ND	ND	ND	ND	ND	ND
,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND
,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	
ield Parameters								
Dissolved Oxygen (mg/L)	0.52	0.93		0.12	0.46	1.19	0.7	0.23
ORP (mV)	-44.7	-43.8	-109.6	-125.3	-88	-92.6	-103.3	-120
H (SU)	6.55	6.36	7.55	6.7	6.87	6.79	6.95	7.2
S. Conductivity (umhos/cm)	3381	828	1182	1470	1288	1510	1231	1201
otal Organic Carbon (ppm)			2.13		1.99	2.07		
Dissolved Organic Carbon (ppm)								
Biogeochemical Parameters								
Carbon Dioxide (mg/L)								
litrogen (mg/L)								
Methane (ug/L)								
thane (ng/L)								
thene (ng/L)								
ulfide (mg/L)								
errous Iron (mg/L)								
issolved Iron (ug/L)								
otal Iron (ug/L)								
issolved Manganese (ug/L)								
otal Manganese (ug/L)								
Ikalinity (mg/L)								
hloride (mg/L)								
litrate (mg/L)								

ND Not detected at the MDL.

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 465 New Karner Road Albany, NY 12205

Project Name: KINGS ELECTRIC - VENDOR

#1168636

IAL Case Number: E09-00763

These data have been reviewed and accepted by:

Michael H. Leftin, Ph.D. Laboratory Director

Sample Summary

IAL Case No.

E09-00763

Client Arcadis Geraghty & Miller

Project KINGS ELECTRIC - VENDOR #1168636

Received On 1/23/2009@17:08

					<u># of</u>
Lab ID	Client Sample ID	Depth Top/Bottom	Sampling Time	<u>Matrix</u>	Container
00763-001	MW-HP-2D	n/a	1/20/2009@09:10	Aqueous	sing diagram
00763-002	MW-HP-2S	n/a	1/20/2009@10:26	Aqueous	2
00763-003	OS-MW-3PL	n/a	1/20/2009@11:56	Aqueous	$0.64875\mathrm{kil}2$ enia 0.6
00763-004	MW-6S	n/a	1/20/2009@13:17	Aqueous	2
00763-005	OS-MW-1	n/a	1/21/2009@13:59	Aqueous	2
00763-006	MW-9D	n/a	1/21/2009@14:11	Aqueous	2
00763-007	MW-9S	n/a	1/21/2009@10:42	Aqueous	
00763-008	DUP(012109)	n/a	1/21/2009	Aqueous	2
00763-009	MW-13	n/a	1/21/2009@11:15	Aqueous	A CONTRACTOR AND A CONT
00763-010	OS-MW-2	n/a	1/22/2009@10:03	Aqueous	2
00763-011	GP-103R	o Papara ng ang ang ang ang ang ang ang ang ang	1/22/2009@10:02	Aqueous	100 February 1
00763-012	GP-104R	n/a	1/22/2009@11:02	Aqueous	2
00763-013	FB(012009)	n/a	1/20/2009@10:15	Aqueous	26.60.60.60.20
00763-014	FB(012109)	n/a	1/21/2009@12:00	Aqueous	2
00763-015	FB(012209)	n/a	1/22/2009@09:15	Aqueous	2
00763-016	TBLANK(012009)	n/a	1/20/2009	Aqueous	2
00763-017	PTW-2	14 14 2 2 2 1/a	1/22/2009@13:53	Aqueous	34.8 mg/20 mg/

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	- 6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	23
Sample Tracking Chains of Custody Laboratory Chronicle	82 87

^{*} Methodology is included in the IAL Project Information Page

MATRIX QUALIFIERS

- A Indicates the sample is an Aqueous matrix.
- O Indicates the sample is an Oil matrix.
- **S** Indicates the sample is a <u>S</u>oil, <u>S</u>ludge or <u>S</u>ediment matrix.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to \underline{M} atrix Interferences.
- NA Not Applicable.
- **ND** Indicates the compound was analyzed for but <u>N</u>ot <u>D</u>etected at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received seventeen (17) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRIC - VENDOR #1168636) on January 23, 2009 for the analysis of:

(17) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Date

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E09-00763

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	
2.	Table of Contents.	
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	
7.	Methodology Summary.	
8.	Laboratory Chronicle and Holding Time Check.	
9.	Results submitted on a dry weight basis (if applicable).	
10.	Method Detection Limits.	
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	
12.	NonConformance Summary.	
	Jeguli J. Beauty 2/9/	() 1

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY **GC/MS VOLATILE ANALYSIS**

	Lab Case Number: <u>E09 - 765</u>		
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks).	<u>No</u>	<u>Yes</u> ✓
2.	GC/MS Tuning Specifications: a. BFB Passed		✓
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.	 .	✓
1.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series	<u> </u>	√
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds		na
	b. System Performance Check Compounds		na
3.	Blank Contamination - If yes, list compounds and concentrations in each blank:	<u> </u>	
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)	·	✓
	If not met, were the calculations checked and the results qualified as "estimated"?		na
3.	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		na
ð.	Internal Standard Area/Retention Time Shift meet criteria		✓
10.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		na
J 1 .	Analysis Holding Time Met If not met, list number of days exceeded for each sample:		✓
2.	Sample Dilution Performed High Target High Nontarget Compounds Matrix Interference Other		
۱3.	Comments:		
	Organics Manager Date		0.00

INTEGRATED ANALYTICAL LABORATORIES, LLC. SUMMARY REPORT

Client: Arcadis Geraghty & Miller Project: KINGS ELECTRIC - VENDOR #1168636

Lab Case No.: E09-00763

			b Case No	4307 007					
	Lab ID:	0076	3-001	0076	3-002	0070	63-003	007	63-004
	Client ID:	MW-	HP-2D	MW-	HP-2S	OS-M	IW-3PL	M	W-6S
	Matrix:		ieous		eous		ueous		ueous
	Sampled Date		0/09		0/09		20/09		20/09
DADAMETED/II	Sampled Date		Q MDL		O MDL		Q MDL	Conc	Q MDL
PARAMETER(Units)			<u> </u>				· · · · · · · · · · · · · · · · · · ·		
Volatiles + Cis 1,2-DCE	(Units)		ppb)	(ug/L			L-ppb)		(L-ppb)
1,1-Dichloroethane		ND	0.210	ND	0.210	ND	0.210	0.417	0.210
cis-1,2-Dichloroethene		ND	0.190	1.19	0.190	0.675	0.190	ND	0.190
Chloroform		0.738	0.140	ND	0.140	ND	0.140	ND	0.140
1,1,1-Trichloroethane		ND	0.360	ND	0.360	ND	0.360	5.10	0.360
Trichloroethene		1.26	0.190	1.94	0.190	ND	0.190	43.3	0.190
Tetrachloroethene		23.0	0.330	24.1	0.330	ND	0.330	5.55	0.330
TOTAL VO's:		25.0		27.2		0.675		54.4	
	Lab ID:	0076	3-005	0076	3-006	0070	63-007	007	63-008
	Client ID:	OS-N	/W-1	MW	/-9D	M	W-9S	DUP	(012109)
	Matrix:	Aqu	eous	Aqu	eous	Aq	ueous	Aq	ueous
	Sampled Date	1/2	1/09	1/2	1/09	1/2	21/09	1/	21/09
PARAMETER(Units)	-	Conc	Q MDL	Conc (Q MDL	Conc	Q MDL	Conc	Q MDL
Volatiles + Cis 1,2-DCE	(Units)		ppb)	(ug/L			L-ppb)		(L-ppb)
Vinyl chloride	(Cins)	1.67	0.460	ND	0.460	0.808	0.460	0.852	0.460
1,1-Dichloroethane		ND	0.400	ND	0.210	0.547	0.210	0.628	0.210
cis-1,2-Dichloroethene		1.93	0.190	ND	0.190	0.640	0.190	0.643	0.190
Trichloroethene		1.32	0.190	ND	0.190	ND	0.190	ND	0.190
Tetrachloroethene		4.08	0.330	ND	0.330	ND	0.330	ND	0.330
Ethylbenzene		2.23	0.270	ND	0.270	ND	0.270	ND	0.270
TOTAL VO's:		11.2	0.270	ND	<u> </u>	2.00	0.270	2.12	0.270
TOTAL TO 3.	Lab ID:		3-009		3-010		63-011		63-012
	Client ID:		3-009 V-13		1W-2		-103R		-104R
	Matrix:		eous		eous				
	18121118		levus	Auu	cous	Au	ueous	Ag	ueous
							22/00	1/	22/00
DADABARTEDALI	Sampled Date	1/2	1/09	1/22	2/09	1/2	22/09		22/09
PARAMETER(Units)	Sampled Date	1/2 Conc	1/09 Q MDL	1/22 Conc (2/09 Q MDL	1/2 Conc	Q MDL	Conc	Q MDL
Volatiles + Cis 1,2-DCE	Sampled Date	1/2 Conc (ug/L	1/09 Q MDL ppb)	1/22 Conc ((ug/L	2/09 <u>Q</u> MDL -ppb)	1/2 Conc	Q MDL L-ppb)	Conc (ug/	Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride	Sampled Date	1/2 Conc (ug/L 2.73	1/09 Q MDL ppb) 0.460	1/2/ Conc ((ug/L ND	2/09 Q MDL -ppb) 0.460	1/2 Conc (ug/ 0.763	Q MDL L-ppb) 0.460	Conc (ug/ 0.502	Q MDL /L-ppb) 0.460
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene	Sampled Date	1/2 Conc (ug/I 2.73 ND	1/09 Q MDL ppb) 0.460 0.250	1/22 Conc ((ug/L ND ND	2/09 Q MDL -ppb) 0.460 0.250	1/2 Conc (ug/ 0.763 ND	Q MDL L-ppb) 0.460 0.250	Conc (ug/ 0.502 1.19	Q MDL /L-ppb) 0.460 0.250
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane	Sampled Date	1/2 Conc (ug/L 2.73 ND 0.860	1/09 Q MDL ppb) 0.460 0.250 0.210	1/22 Cone ((ug/L ND ND ND ND	2/09 Q MDL -ppb) 0.460 0.250 0.210	1/2 Conc (ug/ 0.763 ND ND	Q MDL L-ppb) 0.460 0.250 0.210	Conc (ug/ 0.502 1.19 1.48	Q MDL /L-ppb) 0.460 0.250 0.210
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene	Sampled Date	1/2 Conc (ug/L 2.73 ND 0.860 1.85	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190	1/22 Conc (ug/L ND ND ND ND ND 2.86	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190	1/2 Conc (ug/ 0.763 ND ND 0.579	Q MDL L-ppb) 0.460 0.250 0.210 0.190	Conc (ug/ 0.502 1.19 1.48 1.58	Q MDL /L-ppb) 0.460 0.250 0.210 0.190
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene	Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190 0.190	1/22 Cone (ug/L ND ND ND ND 2.86 3.14	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190	1/2 Conc (ug/. 0.763 ND ND 0.579 ND	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.190	Conc (ug. 0.502 1.19 1.48 1.58 1.49	Q MDL /L-ppb) 0.460 0.250 0.210 0.190 0.190
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190	1/2: Cone (ug/L ND ND ND ND 2.86 3.14 7.78	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND	Q MDL L-ppb) 0.460 0.250 0.210 0.190	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND	Q MDL /L-ppb) 0.460 0.250 0.210 0.190
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene	Sampled Date (Units)	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06	1/09 Q MDL pph) 0.460 0.250 0.210 0.190 0.190 0.330	1/2: Cone (ug/L ND ND ND ND 2.86 3.14 7.78 13.8	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND ND	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	(Units) Lab ID:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06	1/09 Q MDL -pph) 0.460 0.250 0.210 0.190 0.190 0.330 3-013	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076	2/09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-014	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND ND 1.34	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.190 0.330	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24	Q MDL (<i>L</i> -ppb) 0.460 0.250 0.210 0.190 0.330 (63-016
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Sampled Date (Units)	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06	1/09 Q MDL pph) 0.460 0.250 0.210 0.190 0.190 0.330	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND ND 1.34	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN	Q MDL (<i>L-ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	(Units) Lab ID:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0	1/09 Q MDL -pph) 0.460 0.250 0.210 0.190 0.190 0.330 3-013	1/2: Conc (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01	2/09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-014	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.190 0.330	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN	Q MDL (<i>L-ppb</i>) 0.460 0.250 0.210 0.190 0.330 (63-016 (K(012009) (ueous
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	(Units) Lab ID: Client ID:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009)	1/22 Conc (ug/L ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-014 12109)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN	Q MDL (<i>L-ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	(Units) Lab ID: Client ID: Matrix:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009)	1/22 Conc (ug/L ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01 Aqu	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-014 12109) leous	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN	Q MDL (<i>L-ppb</i>) 0.460 0.250 0.210 0.190 0.330 (63-016 (K(012009) (ueous
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc	1/09 Q MDL -pph) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDL	1/2: Conc (ug/L ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01 Aqu 1/2: Conc (2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1eous 1/09 Q MDL	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 (63-016 (K(012009) [ueous 20/09 Q MDL
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units)	Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc	1/09 Q MDL ppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09	1/2: Conc (ug/L ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01 Aqu 1/2: Conc (2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) leous 1/09	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 (63-016 (K(012009) [ueous 20/09
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND	1/09 Q MDLpph) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLpph)	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Conc	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE	Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190	1/2: Cone (ug/L ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01 Aqu 1/2: Cone (ug/L	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/. 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Lab ID: Client ID: Matrix: Sampled Date (Units)	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND ND 0076 PT	1/09 Q MDLpph) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLpph) 0.190 3-017 W-2	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND 0076 PT Aqu	1/09 Q MDLpph) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLpph) 0.190 3-017 W-2 1eous	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID:	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND 0076 PT Aqu 1/2	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND ND 0076 PT Aqu 1/2 Conc	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09 Q MDL	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND ND 0076 PT Aqu 1/2 Conc (ug/I Conc (ug/I Aqu 1/2 Conc (ug/I	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09 Q MDLppb)	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE 1,1-Dichloroethane	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND ND 0076 PT Aqu 1/2 Conc (ug/I 1.69	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09 Q MDLppb) 0.210	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene Cis-1,2-Dichloroethene Trichloroethene Total VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene Cis-1,2-Dichloroethene Cis-1,2-Dichloroethene Cis-1,2-Dichloroethene	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND 0076 PT Aqu 1/2 Conc (ug/I Aqu 1/2 Conc (ug/I ND ND	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09 Q MDLppb) 0.210 0.190	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)
Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE 1,1-Dichloroethane	Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/2 Conc (ug/I 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(0 Aqu 1/2 Conc (ug/I ND ND ND 0076 PT Aqu 1/2 Conc (ug/I 1.69	1/09 Q MDLppb) 0.460 0.250 0.210 0.190 0.330 3-013 12009) 1eous 0/09 Q MDLppb) 0.190 3-017 W-2 1eous 2/09 Q MDLppb) 0.210	1/2: Cone (ug/L) ND ND ND 2.86 3.14 7.78 13.8 0076 FB(01) Aqu 1/2: Cone (ug/L)	2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.330 3-014 12109) 1209 Q MDL -ppb)	1/2 Conc (ug/ 0.763 ND ND 0.579 ND ND 1.34 0076 FB(0 Aq 1/2 Conc	Q MDL L-ppb) 0.460 0.250 0.210 0.190 0.330 63-015 012209) ueous 22/09 Q MDL L-ppb)	Conc (ug. 0.502 1.19 1.48 1.58 1.49 ND 6.24 007 TBLAN Aq 1/ Conc (ug. ND	Q MDL (L-ppb) 0.460 0.250 0.210 0.190 0.330 63-016 NK(012009) [ueous 20/09 Q MDL (L-ppb)

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-001 GC/MS Column: DB-624

Client ID: MW-HP-2D Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/27/2009 Dilution Factor: 1
Data file: J0428.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	0.738		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	1.26		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	23.0		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-002 GC/MS Column: DB-624

Client ID: MW-HP-2S Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/27/2009 Dilution Factor: 1
Data file: J0429.D % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	1.19		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.94		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	24.1		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-003 GC/MS Column: DB-624

Client ID: OS-MW-3PL Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/27/2009 Dilution Factor: 1
Data file: J0430.D % Moisture: 100

Chloromethane ND 0.180 Vinyl chloride ND 0.460 Bromomethane ND 0.370 Chloroethane ND 0.640 Trichlorofluoromethane ND 0.740 Acrolein ND 0.530 Methylene chloride ND 0.530 Methylene chloride ND 1.98 Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chioroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.360 Carbon tetrachloride ND 0.190 Benzene ND 0.170 Trichloroethane (EDC) ND 0.170 Benzene ND 0.170 Trichloroethane ND 0.180 2,	Compound	Concentration	Q	MDL
Bromomethane ND 0.370 Chloroethane ND 0.640 Trichlorofluoromethane ND 0.740 Acrolein ND 2.57 1,1-Dichloroethene ND 0.530 Methylene chloride ND 1.98 Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.230	Chloromethane	ND		0.180
Chloroethane ND 0.640 Trichlorofluoromethane ND 0.740 Acrolein ND 0.740 Acrolein ND 0.530 Methylene chloride ND 1.98 Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.360 Carbon tetrachloride ND 0.190 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Tolluene ND 0.230 trans-1,3-Dichloropropene ND 0.330 <td>Vinyl chloride</td> <td>ND</td> <td></td> <td>0.460</td>	Vinyl chloride	ND		0.460
Trichlorofluoromethane ND 0.740 Acrolein ND 2.57 1,1-Dichloroethene ND 0.530 Methylene chloride ND 1.98 Actylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.190 1,2-Dichloropropane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.230 trans-1,3-Dichloropropene ND <td< td=""><td>Bromomethane</td><td>ND</td><td></td><td>0.370</td></td<>	Bromomethane	ND		0.370
Acrolein ND 2.57 1,1-Dichloroethene ND 0.530 Methylene chloride ND 1.98 Acrylonitrile ND 0.740 rans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethane 0.675 0.190 Chloroform ND 0.360 Carbon tetrachloride ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethane (EDC) ND 0.190 Benzene ND 0.190 Penzene ND 0.170 Trichloroethane (EDC) ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.230	Chloroethane	ND		0.640
1,1-Dichloroethene ND 1.98 Methylene chloride ND 1.98 Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.170 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 roluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 trans-1,3-Dichloropropene ND 0.320 Tetrachloroethane ND 0.330 Dibromochloromethane ND	Trichlorofluoromethane	ND		0.740
Methylene chloride ND 1.98 Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.170 Trichloropropane ND 0.160 Bromodichloromethane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.240 Toluene ND 0.240 Toluene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethane ND 0.150 Tetrachloroethane ND 0.200	Acrolein	ND		2.57
Acrylonitrile ND 0.740 trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethane (EDC) ND 0.170 Trichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethane (EDC) ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethane ND	1,1-Dichloroethene	ND		0.530
trans-1,2-Dichloroethene ND 0.250 1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.150 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>1.98</td>	Methylene chloride	ND		1.98
1,1-Dichloroethane ND 0.210 cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloroethyl vinyl ether ND 0.240 Toluene ND 0.240 Toluene ND 0.240 Toluene ND 0.320 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.270 Total Xylenes ND 0.790 <	Acrylonitrile	ND		0.740
cis-1,2-Dichloroethene 0.675 0.190 Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloropropene ND 0.240 Toluene ND 0.240 Toluene ND 0.320 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.150 <t< td=""><td>trans-1,2-Dichloroethene</td><td>ND</td><td></td><td>0.250</td></t<>	trans-1,2-Dichloroethene	ND		0.250
Chloroform ND 0.140 1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 0.180 2-Chloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>0.210</td></t<>	1,1-Dichloroethane	ND		0.210
1,1,1-Trichloroethane ND 0.360 Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230	cis-1,2-Dichloroethene	0.675		0.190
Carbon tetrachloride ND 0.300 1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethane ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Chloroform	ND		0.140
1,2-Dichloroethane (EDC) ND 0.190 Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.150 1,1,2,2-Tetrachloroethane ND 0.230 1,4-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	1,1,1-Trichloroethane	ND		0.360
Benzene ND 0.170 Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.150 1,1,2-Tothlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Carbon tetrachloride	ND		0.300
Trichloroethene ND 0.190 1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	1,2-Dichloroethane (EDC)	ND		0.190
1,2-Dichloropropane ND 0.160 Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Benzene	ND		0.170
Bromodichloromethane ND 0.180 2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Trichloroethene	ND		0.190
2-Chloroethyl vinyl ether ND 1.04 cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	1,2-Dichloropropane	ND		0.160
cis-1,3-Dichloropropene ND 0.240 Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethane ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Bromodichloromethane	ND		0.180
Toluene ND 0.230 trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	2-Chloroethyl vinyl ether	ND		1.04
trans-1,3-Dichloropropene ND 0.320 1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	cis-1,3-Dichloropropene	ND		0.240
1,1,2-Trichloroethane ND 0.150 Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Toluene	ND		0.230
Tetrachloroethene ND 0.330 Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	trans-1,3-Dichloropropene	ND		0.320
Dibromochloromethane ND 0.160 Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	1,1,2-Trichloroethane	ND		0.150
Chlorobenzene ND 0.200 Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Tetrachloroethene	ND		0.330
Ethylbenzene ND 0.270 Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Dibromochloromethane	ND		0.160
Total Xylenes ND 0.790 Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Chlorobenzene	ND		0.200
Bromoform ND 0.150 1,1,2,2-Tetrachloroethane ND 0.170 1,3-Dichlorobenzene ND 0.230 1,4-Dichlorobenzene ND 0.250	Ethylbenzene	ND		0.270
1,1,2,2-TetrachloroethaneND0.1701,3-DichlorobenzeneND0.2301,4-DichlorobenzeneND0.250	Total Xylenes	ND		0.790
1,3-DichlorobenzeneND0.2301,4-DichlorobenzeneND0.250	-	ND		0.150
1,4-Dichlorobenzene ND 0.250	1,1,2,2-Tetrachloroethane	ND		0.170
-,·		ND		0.230
1,2-Dichlorobenzene ND 0.230	1,4-Dichlorobenzene	ND		0.250
	1,2-Dichlorobenzene	ND		0.230

Total Target Compounds:

0.675

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-004 GC/MS Column: DB-624

Client ID: MW-6S Sample wt/vol: 5ml
Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/27/2009 Dilution Factor: 1
Data file: J0431.D % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.417		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	5.10		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	43.3		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	5.55		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-005 GC/MS Column: DB-624

Client ID: OS-MW-1 Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0438.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	1.67		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	1.93		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	1.32		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	4.08		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	2.23		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-006 GC/MS Column: DB-624

Client ID: MW-9D Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0440.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-007 GC/MS Column: DB-624

Client ID: MW-9S Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0441.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND	······································	0.180
Vinyl chloride	0.808		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	0.547		0.210
cis-1,2-Dichloroethene	0.640		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-008 GC/MS Column: DB-624

Client ID: DUP(012109) Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0442.D % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	0.852		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.628		0.210	
cis-1,2-Dichloroethene	0.643		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

GC/MS Column: DB-624 Lab ID: 00763-009

Client ID: MW-13 Sample wt/vol: 5ml

Matrix-Units: Aqueous-µg/L (ppb) Date Received: 01/23/2009

Dilution Factor: 1 Date Analyzed: 01/28/2009 Data file: J0443.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	2.73		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	0.860		0.210
cis-1,2-Dichloroethene	1.85		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	1.62		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

GC/MS Column: DB-624 Lab ID: 00763-010

Sample wt/vol: 5ml Client ID: OS-MW-2

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb) Date Analyzed: 01/28/2009 Dilution Factor: 1

% Moisture: 100 Data file: J0444.D

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	2.86		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	3.14		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	7.78		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-011 GC/MS Column: DB-624

Client ID: GP-103R Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0445.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	0.763		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	0.579		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-012 GC/MS Column: DB-624

Client ID: GP-104R Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0446.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	0.502		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	1.19		0.250
1,1-Dichloroethane	1.48		0.210
cis-1,2-Dichloroethene	1.58		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	1.49		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

6.24

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-013 GC/MS Column: DB-624

Client ID: FB(012009) Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0449.D % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	NĐ		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-014 GC/MS Column: DB-624

Client ID: FB(012109) Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-µg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0450.D % Moisture: 100

Compound Concentration Q M	DL
Chloromethane ND 0.1	180
Vinyl chloride ND 0.4	460
Bromomethane ND 0.3	370
Chloroethane ND 0.6	640
Trichlorofluoromethane ND 0.3	740
Acrolein ND 2.	57
1,1-Dichloroethene ND 0.5	530
Methylene chloride ND 1.	98
Acrylonitrile ND 0.7	740
trans-1,2-Dichloroethene ND 0.2	250
1,1-Dichloroethane ND 0.2	210
cis-1,2-Dichloroethene ND 0.1	1 9 0
Chloroform ND 0.1	140
1,1,1-Trichloroethane ND 0.3	360
Carbon tetrachloride ND 0.3	300
1,2-Dichloroethane (EDC) ND 0.3	190
Benzene ND 0.1	170
Trichloroethene ND 0.1	190
1,2-Dichloropropane ND 0.1	160
Bromodichloromethane ND 0.1	180
2-Chloroethyl vinyl ether ND 1.	04
cis-1,3-Dichloropropene ND 0.2	240
Toluene ND 0.2	230
trans-1,3-Dichloropropene ND 0.3	320
1,1,2-Trichloroethane ND 0.1	150
Tetrachloroethene ND 0.3	330
Dibromochloromethane ND 0.1	160
Chlorobenzene ND 0.2	200
Ethylbenzene ND 0.2	270
Total Xylenes ND 0.3	790
Bromoform ND 0.1	150
1,1,2,2-Tetrachloroethane ND 0.1	170
1,3-Dichlorobenzene ND 0.2	230
1,4-Dichlorobenzene ND 0.2	250
1,2-Dichlorobenzene ND 0.2	230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-015

Client ID: FB(012209)

Date Received: 01/23/2009

Date Analyzed: 01/28/2009

Data file: J0451.D

GC/MS Column: DB-624

Sample wt/vol: 5ml

Matrix-Units: Aqueous-μg/L (ppb)

Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-016 GC/MS Column: DB-624

Client ID: TBLANK(012009) Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0452.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	ND ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-017 GC/MS Column: DB-624

Client ID: PTW-2 Sample wt/vol: 5ml

Date Received: 01/23/2009 Matrix-Units: Aqueous-μg/L (ppb)

Date Analyzed: 01/28/2009 Dilution Factor: 1
Data file: J0453.D % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	1.69		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	0.525		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

Lab File ID:

J0356.D

BFB Injection Date:

01/22/2009

Inst ID:

MSD J

BFB Injection Time:

12:40

m/z	Ion Abudance Criteria	%Relative Abundance
50	15 - 40.0% of mass 95	20.9
75	30.0 - 60.0% of mass 95	49.3
95	Base peak, 100% relative abundance	ce 100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.1 (0.2)1
174	Great than 50.0% of mass 95	66.3
175	5.0 - 9.0% of mass 174	5.3 (8.0)1
176	95.0 - 101.0% of mass 174	64.4 (97.1)1
177	5.0 - 9.0% of mass 176	4.4 (6.8)2
	1-Value is % mass 174	2-Value is % mass 176

Client ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed
20PPB	STD-20PPB	J0357.D	01/22/2009	1:06
5PPB	STD-5PPB	J0358.D	01/22/2009	1:31
100PPB	STD-100PPB	J0360.D	01/22/2009	2:24
200PPB	STD-200PPB	J0363.D	01/22/2009	3:41
150PPB	STD-150PPB	J0364.D	01/22/2009	4:57
1PPB	STD-1PPB	J0366.D	01/22/2009	5:49

Lab File ID: J0407.D BFB Injection Date: 01/27/2009
Inst ID: MSD J BFB Injection Time: 11:19

m/z	Ion Abudance Criteria	%Rela Abund				
50	15 - 40.0% of mass 95	20.	9			
75	30.0 - 60.0% of mass 95	48.	6			
95	Base peak, 100% relative abundance	e 100	.0			
96	5.0 - 9.0% of mass 95	6.3	}			
173	Less than 2.0% of mass 174	0.0) (0.0	1(
174	Great than 50.0% of mass 95	67.	4		/-	
175	5.0 - 9.0% of mass 174	5.0	(7.4)1	
176	95.0 - 101.0% of mass 174	66,	`	98.4)1	
177	5.0 - 9.0% of mass 176	4.3	(6.5)2	
	1-Value is % mass 174	2-Value is % m	ass 17		,-	

Cli ID		F14	Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J0408.D	01/27/2009	1:02	
NA	METHOD-BLK	J0410.D	01/27/2009	1:53	
SB-2	00688-002	J0411.D	01/27/2009	2:19	
SB-1	00688-001	J0412.D	01/27/2009	2:59	
LCS-50PPB	BLK-SPK	J0413.D	01/27/2009	3:25	
MW-2	00766-001	J0414.D	01/27/2009	3:51	
MW-2	00687-004	J0416.D	01/27/2009	4:43	
MS	WATER-MS	J0417.D	01/27/2009	5:09	
MSD	WATER-MSD	J0418.D	01/27/2009	5:35	
MW-4	00687-002	J0419.D	01/27/2009	6:01	
MW-3	00687-003	J0420.D	01/27/2009	6:27	
MW-1	00687-005	J0421.D	01/27/2009	6:53	
FIELD_BLANK	00687-006	J0422.D	01/27/2009	7:18	
TRIP_BLANK	00687-007	J0423.D	01/27/2009	7:44	
MW-3	00766-002	J0424.D	01/27/2009	8:10	
MW-5	00766-003	J0425.D	01/27/2009	8:36	
FIELD_BLANK	00766-004	J0426.D	01/27/2009	9:02	
TRIP_BLANK	00766-005	J0427.D	01/27/2009	9:28	
MW-HP-2D	00763-001	J0428.D	01/27/2009	9:54	
MW-HP-2S	00763-002	J0429.D	01/27/2009	10:20	

Lab File ID:

J0407.D

BFB Injection Date:

01/27/200

Inst ID:

MSD J

BFB Injection Time:

11:19

m/z	Ion Abudance Criteria	%Relativ Abundano	_		
50	15 - 40.0% of mass 95	20.9			
75	30.0 - 60.0% of mass 95	48.6			
95	Base peak, 100% relative abundanc	e 100.0			
96	5.0 - 9.0% of mass 95	6.3			
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	Great than 50.0% of mass 95	67.4			
175	5.0 - 9.0% of mass 174	5.0	(7.4)1
176	95.0 - 101.0% of mass 174	66.3	(98.4)1
177	5.0 - 9.0% of mass 176	4.3	(6.5)2
	1-Value is % mass 174	2-Value is % mass	176	<u>,</u>	

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
OS-MW-3PL	00763-003	J0430.D	01/27/2009	10:46	
MW-6S	00763-004	J0431.D	01/27/2009	11:12	

Lab File ID:

J0433.D

BFB Injection Date:

01/28/2009

Inst ID:

MSD J

BFB Injection Time:

12:04

m/z	Ion Abudance Criteria	%Relativ Abundand			
50	15 - 40.0% of mass 95	21.8			8
75	30.0 - 60.0% of mass 95	50.6			
95	Base peak, 100% relative abundanc	e 100.0			
96	5.0 - 9.0% of mass 95	6.5			
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	Great than 50.0% of mass 95	71.0	•		•
175	5.0 - 9.0% of mass 174	5.3	(7.4)1
176	95.0 - 101.0% of mass 174	68.4	(96.3)1
177	5.0 - 9.0% of mass 176	4.4	(6.5)2
	1-Value is % mass 174	2-Value is % mass	176	5	•

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J0434.D	01/28/2009	12:29	-
NA	METHOD-BLK	J0437.D	01/28/2009	1:46	
OS-MW-1	00763-005	J0438.D	01/28/2009	2:12	
MW-9D	00763-006	J0440.D	01/28/2009	3:04	
MW-9S	00763-007	J0441.D	01/28/2009	3:29	
DUP(012109)	00763-008	J0442.D	01/28/2009	3:55	
MW-13	00763-009	J0443.D	01/28/2009	4:21	
OS-MW-2	00763-010	J0444.D	01/28/2009	4:47	
GP-103R	00763-011	J0445.D	01/28/2009	5:12	
GP-104R	00763-012	J0446.D	01/28/2009	5:38	
MS	MS	J0447.D	01/28/2009	6:03	
MSD	MSD	J0448.D	01/28/2009	6:30	
FB(012009)	00763-013	J0449.D	01/28/2009	6:55	
FB(012109)	00763-014	J0450.D	01/28/2009	7:21	
FB(012209)	00763-015	J0451.D	01/28/2009	7:47	
TBLANK(012009)	00763-016	J0452.D	01/28/2009	8:13	
PTW-2	00763-017	J0453.D	01/28/2009	8:39	
LCS-50PPB	BLK-SPK	J0457.D	01/28/2009	10:23	
MW-5	00687-001	J0458.D	01/28/2009	10:49	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:

J0410.D

Instrument ID:

MSD J

Date Analyzed: 01/27/2009

Time Analyzed: 01:53

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
SB-2	00688-002	01/27/2009	2:19
SB-1	00688-001	01/27/2009	2:59
LCS-50PPB	BLK-SPK	01/27/2009	3:25
MW-2	00766-001	01/27/2009	3:51
MW-2	00687-004	01/27/2009	4:43
MS	WATER-MS	01/27/2009	5:09
MSD	WATER-MSD	01/27/2009	5:35
MW-4	00687-002	01/27/2009	6:01
MW-3	00687-003	01/27/2009	6:27
MW-1	00687-005	01/27/2009	6:53
FIELD_BLANK	00687-006	01/27/2009	7:18
TRIP_BLANK	00687-007	01/27/2009	7:44
MW-3	00766-002	01/27/2009	8:10
MW-5	00766-003	01/27/2009	8:36
FIELD_BLANK	00766-004	01/27/2009	9:02
TRIP_BLANK	00766-005	01/27/2009	9:28
MW-HP-2D	00763-001	01/27/2009	9:54
MW-HP-2S	00763-002	01/27/2009	10:20
OS-MW-3PL	00763-003	01/27/2009	10:46
MW-6S	00763-004	01/27/2009	11:12

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK

Client ID: NA

Date Received:

Date Analyzed: 01/27/2009

Data file: J0410.D

GC/MS Column: DB-624

Sample wt/vol: 5ml

Matrix-Units: Aqueous-μg/L (ppb)

Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:

J0437.D

Instrument ID:

MSD J

Date Analyzed: 01/28/2009

Time Analyzed: 01:46

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
OS-MW-I	00763-005	01/28/2009	2:12
MW-9D	00763-006	01/28/2009	3:04
MW-9S	00763-007	01/28/2009	3:29
DUP(012109)	00763-008	01/28/2009	3:55
MW-13	00763-009	01/28/2009	4:21
OS-MW-2	00763-010	01/28/2009	4:47
GP-103R	00763-011	01/28/2009	5:12
GP-104R	00763-012	01/28/2009	5:38
MS	MS	01/28/2009	6:03
MSD	MSD	01/28/2009	6:30
FB(012009)	00763-013	01/28/2009	6:55
FB(012109)	00763-014	01/28/2009	7:21
FB(012209)	00763-015	01/28/2009	7:47
TBLANK(012009)	00763-016	01/28/2009	8:13
PTW-2	00763-017	01/28/2009	8:39
LCS-50PPB	BLK-SPK	01/28/2009	10:23
MW-5	00687-001	01/28/2009	10:49

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK

Client ID: NA

Date Received:
Date Analyzed: 01/28/2009

Data file: J0437.D

GC/MS Column: DB-624

Sample wt/vol: 5ml

Matrix-Units: Aqueous-μg/L (ppb)

Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	ND		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

Response Factor Report MSD J

Method : C:\MSDCHEM\1\METHODS\UAWU122... : Title : VOLATILE ORGANICS BY EPA METHOD 8260B : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Last Update : Wed Jan 28 11:44:37 2009

Response via: Initial Calibration

Calibration Files

=J0358.D =J0364.D 100 =J0360.D 20 =J0357.D 200 =J0363.D 1 =J0366.D 150

		Compound (ppb)	5	100	20	150	200	1	Avg	%RSD
2) 3) 4) 5) 6) 7) 8) 9) 10) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 26) 27) 28)	PCTTTTMTTTTTTTTTTTTTTTTTTT	Pentafluorobenzene Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acrolein 1,1-Dichloroethene Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile tert-Butyl alcohol trans-1,2-Dichloroe Methyl tert-butyl e 1,1-Dichloroethane Diisopropyl ether (cis-1,2-Dichloroeth 2,2-Dichloropropane 2-Butanone (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroetha Carbon tetrachlorid 1,1-Dichloropropene	0.489 0.644 0.452 0.234 0.556 0.009 0.321 0.944 1.604 0.384 0.133 0.465 0.481 0.891 1.918 0.521 0.275 0.443 0.251 0.251 0.443 0.5542 0.632	0.543 0.663 0.466 0.263 0.257 0.573 0.013 0.200 1.132 1.698 0.295 0.151 0.033 0.472 0.474 0.938 1.941 0.533 0.375 0.375 0.368 0.638 0.634	0.566 0.730 0.508 0.284 0.267 0.545 0.011 0.333 0.233 1.175 1.827 0.421 0.084 0.035 0.508 0.432 1.002 2.058 0.583 0.272 0.400 0.284 0.929 0.643 0.540 0.705	-ISTD- 0.609 0.809 0.585 0.329 0.332 0.670 0.017 0.415 0.224 1.452 1.923 0.453 0.171 0.040 0.571 0.652 1.146 2.267 0.652 1.146 2.267 0.387 0.404 0.306 1.037 0.790 0.757	0.578 0.785 0.785 0.524 0.302 0.607 0.014 0.371 0.199 1.311 1.766 0.417 0.152 0.038 0.506 0.620 1.021 2.033 0.558 0.360 0.275 0.940 0.720 0.672 0.671	0.447 0.591 0.426 0.262 0.248 0.553 0.014 0.343 0.232 1.175 1.527 0.345 0.179 0.466 0.469 0.995 1.712 0.479 0.479 0.478 0.249 0.789 0.756 0.600 0.663	0.539 0.704 0.493 0.284 0.273 0.584 0.013 0.352 0.225 1.198 1.724 0.386 0.145 0.035 0.498 0.521 0.999 1.988 0.521 0.999 1.988 0.550 0.329 0.410 0.271 0.903 0.682 0.602 0.677	11.19 12.14 11.65 8.68 13.42 8.13 22.09 9.99 10.72 14.32 8.44 14.95 23.63 14.59 8.14 17.51 8.65 9.22 9.35 15.46 10.71 7.95 9.52 13.40 15.46 7.00
32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46)	IMMCTTTTTTSMCTTTTT	Bromodichloromethan 2-Chloroethyl vinyl cis-1,3-Dichloropro 4-Methyl-2-pentanon Toluene-d8 Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha Tetrachloroethene 1,3-Dichloropropane 2-Hexanone Dibromochloromethan	0.631 1.216 0.309 0.337 0.176 0.002 0.361 0.002 0.415 0.534 1.118 0.768 0.556 0.227 0.285 0.483 0.392 0.229	0.568 1.199 0.319 0.341 0.178 0.002 0.408 0.001 0.505 0.502 1.105 0.762 0.440 0.212 0.304 0.455 0.394 0.298	0.586 1.347 0.348 0.370 0.189 0.002 0.496 0.524 1.100 0.851 0.399 0.228 0.332 0.502 0.400 0.243	0.586 -ISTD 1.391 0.378 0.391 0.198 0.002 0.484 0.001 0.586 0.543 1.118 0.894 0.516 0.237 0.350 0.502 0.432 0.362	0.569 1.225 0.337 0.348 0.180 0.002 0.444 0.002 0.534 0.498 1.110 0.794 0.473 0.212 0.313 0.453 0.393 0.333	0.628 1.100 0.308 0.302 0.162 0.002 0.364 0.002 0.360 0.587 1.111 0.746 0.477 0.215 0.297 0.483 0.414 0.247	0.594 1.247 0.333 0.348 0.180 0.002 0.409 0.002 0.483 0.531 1.110 0.803 0.477 0.222 0.313 0.480 0.404 0.285	4.76 8.49 8.14 8.68 6.93 16.22 11.84 26.20 16.95 6.11 0.64 7.24 11.55 4.57 7.65

50)	I	Chlorobenzene-d5				-ISTD-				
51)		Chlorobenzene						1.026		 5.03
52)		1,1,1,2-Tetrachloro	0.264	0.336	0.316	0.397	0 365	0 324	0 334	13.56
53)	C	Ethylbenzene	1.481	1.536	1.659	1 769	1 584	1.433	1 577	7.77
54)	${ m T}$	m,p-Xylene				0 690	0.605	0.635	0 6/10	6.19
55)	${f T}$	o-Xylene	0.623	0.628	0.706	0.699		0.568		8.20
56)	T	Styrene		1.082				1.019		
57)	P	Bromoform				0 175	0 137	0.101	0 120	6.43 26.62
58)	${ m T}$	Isopropylbenzene	1.484	1.618	1 724	1 900	1 692	1.404	1 627	10.85
59)	S	Bromofluorobenzene	0.557	0.573	0.566	0.579	1.002 0.588	0.563	1.037	2.01
60)	P	1,1,2,2-Tetrachloro	0.367	0.330	0.365	0.379	0.308	0.303	0.371	7.22
61)	T	Bromobenzene	0.428	0.409	0.303	0.310	0.315	0.409	0.331	5.34
62)	Т	1,2,3-Trichloroprop	0.328	0.305	0.319	0.407	0.413	0.405	0.420	5.06
63)	T	n-Propylbenzene	1,587	1.726	1.804	2 021	1 791	1.746	1 770	7.96
64)	${f T}$	2-Chlorotoluene			1 191	1 287	1 143	1.428	1 222	9.68
65)	T	1,3,5-Trimethylbenz	1.327	1.404	1.506	1 596	1 406	1 292	1 // 2 // 2	7.96
66)	\mathbf{T}	4-Chlorotoluene	1.304	1.302	1.421	1 487	1 307	1.428	1 275	5.86
67)	${f T}$	tert-Butylbenzene	1.047	1.036	1.118	1 225	1 076	1.039	1 000	6.67
68)	T	1,2,4-Trimethylbenz	1.395	1.496	1.597	1 722	1 515	1 422	1.000	7.89
69)	T	sec-Butylbenzene	1.497	1.630	1.732	1 886	1 654	1.631	1 670	7.74
70)	${ m T}$	1,3-Dichlorobenzene	0.781	0.792	0.853	0 907	0.800	n 869	0.072	6.01
71)	\mathbf{T}	4-Isopropyltoluene	1.243	1.370	1.456	1 581	1 366	1.312	1 300	8.49
72)	Τ	1,4-Dichlorobenzene	0.805	0.834	0.890	0.954	0 841	0 965	1.300	7.54
73)	${ m T}$	n-Butylbenzene	0.521	0.573	0.632	0.531	0.511	0.648	0.001	9.00
74)	Т	1,2-Dichlorobenzene	0.780	0.760	0.840	0.830	0.333	0.040	0.330	7.23
75)	T	1,2-Dibromo-3-chlor	0.044	0.058	0.049	0.065	0.751	0.051	0.000	14.74
76)	${ m T}$	1,2,4-Trichlorobenz	0.333	0.364	0.399	0.382	0.000	0.050	0.034	8.19
77)	${ m T}$	Hexachlorobutadiene	0.167	0.139	0.168	0.352	0.320	0.333	0.333	9.47
78)	${f T}$	Naphthalene	0.910	0.950	0.958	1.027	0.255	0.921	0.132	5.69
79)	Τ	1,2,3-Trichlorobenz	0.301	0.300	0.330	0 318	0.005	0.221	0.232	7.55
80)	Т	1,1,2-Trichloro-1,2	0.210	0.197	0.199	0.222	0.205	0.200	0.301	4.36
81)	T	Methyl acetate	0.170	0.142	0.143	0.151	0.200	0.200	0.207	7.76
82)	Τ	Cyclohexane	0.616	0.574	0.626	0.612	0.569	0.112	0.140	7.76
83)	T	Methylcyclohexane	0.380	0.413	0.453	0.437	0.418	0.431	0.303	5.96
		· · · · · · · · · · · · · · · · · · ·		_			U . I . U	·	V. TZZ	2.20

(#) = Out of Range

JAW0122.M Wed Jan 28 11:44:40 2009 MANAGER

Instrument ID: MSD_J Method ID: JAW0122 Date:

01/22/09

Average %RSD = 9.75

Refer to SW846 Method 8000B Section 7.5.1.

Evaluate Continuing Calibration Report

MS Integration Params: LSCINT.P

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009 Response via : Single Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 35% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0	106	0.00
2 T	Dichlorodifluoromethane	0.539	0.448	16.9		-0.01
3 P	Chloromethane	0.704	0.658	6.5	105	0.00
4 C	Vinyl chloride	0.493	0.447	9.3	102	0.00
5 T	Bromomethane	0.284	0.286	-0.7	115	-0.01
6 T	Chloroethane	0.273	0.265	2.9	109	-0.02
7 T	Trichlorofluoromethane	0.584	0.497	14.9	92	0.00
8 T	Acrolein	0.013	0.015	-15.4	121	0.00
9 M C	1,1-Dichloroethene	0.352	0.313	11.1	101	0.00
10 T	Acetone	0.225	0.216	4.0	114	0.00
11 T	Carbon disulfide	1.198	1.116	6.8	105	0.01
12 T	Vinyl acetate	1.724	1.796	-4.2		-0.01
13 T	Methylene chloride	0.386	0.397	-2.8		0.00
14 T	Acrylonitrile	0.145	0.158	-9.0		0.00
15 T	tert-Butyl alcohol (TBA)	0.035	0.040	-14.3		-0.01
16 T	trans-1,2-Dichloroethene	0.498	0.468	6.0		0.00
17 T	Methyl tert-butyl ether (MT	0.521	0.575	-10.4		0.00
18 P	1,1-Dichloroethane	0.999	0.955	4.4		0.00
19 T	Diisopropyl ether (DIPE)	1.988	2.009	-1.1		-0.01
20 T	cis-1,2-Dichloroethene	0.550	0.545	0.9		0.00
21 T	2,2-Dichloropropane	0.329	0.321	2,4		-0.01
22 T	2-Butanone (MEK)	0.410	0.404	1.5		-0.01
23 T	Bromochloromethane	0.271	0.276	-1.8		-0.01
25 C	Chloroform	0.903	0.890	1.4		0.00
26 T	1,1,1-Trichloroethane	0.682	0.627	8.1		0.00
27 T	Carbon tetrachloride	0.602	0.590	2.0		0.00
28 T	1,1-Dichloropropene	0.677	0.606	10.5		-0.01
29 T	1,2-Dichloroethane (EDC)	0.765	0.769	-0.5		0.00
30 S	1,2-Dichloroethane-d4	0.594	0.593	0.2		0.00
01 T	1 4 Difl	7 000	1 000	2 2	• 0.0	
31 I	1,4-Difluorobenzene	1.000	1.000	0.0		0.00
32 M	Benzene	1.247	1.200	3.8		-0.01
33 M	Trichloroethene	0.333	0.316	5.1		0.00
34 C	1,2-Dichloropropane	0.348	0.350	-0.6		0.00
35 T	Dibromomethane	0.180	0.189	-5.0		0.00
37 T	Bromodichloromethane	0.409	0.440	-7.6	115	0.00
38 T	2-Chloroethyl vinyl ether	0.002	0.001	15.0		0.00
39 T	cis-1,3-Dichloropropene	0.483	0.529	-9.5	112	0.00
40 T	4-Methyl-2-pentanone (MIBK)	0.531	0.543	-2.3	116	0.00
41 S	Toluene-d8	1.110	1.117	-0.6	108	-0.01
42 MC	Toluene	0.803	0.764	4.9	107	0.00
43 T	trans-1,3-Dichloropropene	0.477	0.473	0.8	115	0.00
44 T	1,1,2-Trichloroethane	0.222	0.224	-0.9	113	0.00
45 T	Tetrachloroethene	0.313	0.289	7.7		0.00
46 T	1,3-Dichloropropane	0.480	0.479	0.2	113	-0.01 _O

	T	2-Hexanone Dibromochloromethane	0.404 0.285	0.431 0.336		117 121	-0.01 0.00
49 '	Т	1,2-Dibromoethane (EDB)	0.290	0.299	-3.1	114	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	111	0.00
51 I	MΡ	Chlorobenzene	1.043	0.966	7.4	108	0.00
52 '	T	1,1,1,2-Tetrachloroethane	0.334	0.347	-3.9	115	0.00
53 (С	Ethylbenzene	1.577	1.481	6.1	107	0.00
54 '	T	m,p-Xylene	0.648	0.593	8.5	106	-0.01
55 '		o-Xylene	0.641	0.606	5.5	107	0.00
56 '	T	Styrene	1.108	1.061	4.2	109	0.00
57		Bromoform	0.130	0.145	-11.5	98	0.00
58 ′		Isopropylbenzene	1.637	1.541	5.9	105	0.00
	S	Bromofluorobenzene	0.571	0.579	-1.4	112	0.00
60 1		1,1,2,2-Tetrachloroethane	0.351	0.341	2.8	114	0.00
61 ′		Bromobenzene	0.428	0.402	6.1	109	0.00
	Т	1,2,3-Trichloropropane	0.322	0.312	3.1	113	0.00
	T	n-Propylbenzene	1.779	1.657	6.9	106	0.00
	\mathbf{T}	2-Chlorotoluene	1.222	1.081	11.5	109	0.00
	${ m T}$	1,3,5-Trimethylbenzene	1.422	1.358	4.5	107	0.00
	${ m T}$	4-Chlorotoluene	1.375	1.285	6.5	109	0.00
	T	tert-Butylbenzene	1.090	0.990	9.2	106	0.00
	T	1,2,4-Trimethylbenzene	1.524	1.459	4.3	108	0.00
69 7		sec-Butylbenzene	1.672	1.533	8.3	104	0.00
70 3		1,3-Dichlorobenzene	0.834	0.785	5.9	110	0.00
	T	4-Isopropyltoluene	1.388	1.306	5.9	106	0.00
72 5		1,4-Dichlorobenzene	0.881	0.830	5.8	110	0.00
73 :		n-Butylbenzene	0.596	0.552	7.4	107	0.00
74 5		1,2-Dichlorobenzene	0.806	0.753	6.6	110	0.00
75 3		1,2-Dibromo-3-chloropropane	0.054	0.065	-20.4	123	0.00
76 7		1,2,4-Trichlorobenzene	0.359	0.365	-1.7	111	0.00
77 3		Hexachlorobutadiene	0.152	0.129	15.1	103	0.00
78 3		Naphthalene	0.939	1.028	-9.5	120	0.00
79]		1,2,3-Trichlorobenzene	0.301	0.313	-4.0	115	0.00
80 7		1,1,2-Trichloro-1,2,2-trifl	0.207	0.163	21.3	92	0.00
	Т	Methyl acetate	0.148	0.148	0.0	116	-0.01
	Γ	Cyclohexane	0.585	0.449	23.2	87	0.04
83 7	Γ	Methylcyclohexane	0.422	0.331	21.6	89	-0.01

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0122.M Wed Jan 28 14:43:07 2009 MANAGER

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0434.D Vial: 29 Acq On : 28 Jan 2009 12:29 am Operator: BINXU Sample : 100PPB, STD-100PPB, A, 5ml, 100 Inst : MSD J Misc Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)
Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009 Response via : Single Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 35% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0 91	0.00
2 T	Dichlorodifluoromethane	0.539	0.483	10.4 81	
3 P	Chloromethane	0.704		-5.1 101	0.00
4 C	Vinyl chloride	0.493		-7.5 103	0.00
5 T	Bromomethane	0.284			-0.01
6 T	Chloroethane	0.273		-11.4 107	-0.02
7 T	Trichlorofluoromethane	0.584		-3.4 96	0.01
8 T	Acrolein	0.013	0.009	30.8 67	
9 MC	1,1-Dichloroethene	0.352	0.373	-6.0 103	
10 T	Acetone	0.225		23.6 78	
11 T	Carbon disulfide	1.198	1.301	-8.6 104	
12 T	Vinyl acetate	1.724	1.569	9.0 84	
13 T	Methylene chloride	0.386	0.409	-6.0 126	
14 T	Acrylonitrile	0.145	0.138	4.8 83	0.00
15 T	tert-Butyl alcohol (TBA)	0.035	0.031	11.4 86	-0.01
16 T	trans-1,2-Dichloroethene	0.498		-2.2 98	0.00
17 T	Methyl tert-butyl ether (MT		0.402	22.8 77	0.00
18 P	1,1-Dichloroethane	0.999	0.999	0.0 97	0.00
19 T	Diisopropyl ether (DIPE)	1.988	1.929	3.0 90	0.00
20 T	cis-1,2-Dichloroethene	0.550	0.571	-3.8 97	0.00
21 T 22 T	2,2-Dichloropropane	0.329	0.312	5.2 87	0.00
22 T	2-Butanone (MEK)	0.410	0.300	26.8 73	0.00
25 C	Bromochloromethane Chloroform	0.271	0.264	2.6 92	0.00
26 T	1,1,1-Trichloroethane	0.903	0.922	-2.1 96	0.00
20 I 27 T	Carbon tetrachloride	0.682	0.713	-4.5 101	0.00
27 I 28 T	1,1-Dichloropropene	0.602 0.677	0.649	-7.8 102	0.00
20 T	1,2-Dichloroethane (EDC)			-1.2 98	0.00
30 S	1,2-Dichloroethane-d4	0.765	0.734	4.1 92	0.00
30 3		0.534	0.563	5.2 90	0.00
31 I	1,4-Difluorobenzene	1.000	1.000	0.0 91	0.00
32 M	Benzene	1.247	1.268	-1.7 96	0.00
33 M	Trichloroethene	0.333	0.346	-3.9 99	0.00
34 C	1,2-Dichloropropane	0.348	0.348	0.0 93	0.00
35 T	Dibromomethane	0.180	0.174	3.3 89	0.00
37 T	Bromodichloromethane	0.409	0.426	-4.2 95	0.00
38 T	2-Chloroethyl vinyl ether	0.002	0.001	34.8 80	0.00
39 T	cis-1,3-Dichloropropene	0.483	0.500	-3.5 90	0.00
40 T	4-Methyl-2-pentanone (MIBK)	0.531	0.418	21.3 76	0.00
41 S	Toluene-d8	1.110	1.118	-0.7 92	-0.01
42 MC	Toluene	0.803	0.819	-2.0 98	0.00
43 T	trans-1,3-Dichloropropene	0.477	0.424	11.1 88	0.00
44 T	1,1,2-Trichloroethane	0.222	0.202	9.0 87	0.00
45 T	Tetrachloroethene	0.313	0.326	-4.2 98	0.00
46 T	1,3-Dichloropropane	0.480	0.435	9.4 87	-0.01

48 T Dibromochloromethane 0.285 0.305 -7.0 93 0.00 49 T 1,2-Dibromoethane (EDB) 0.290 0.269 7.2 87 0.00 50 I Chlorobenzene-ds 1.000 1.000 0.0 94 0.00 51 MP Chlorobenzene 1.043 1.021 2.1 97 0.00 52 T 1.1,1,2-Tetrachloroethane 0.334 0.349 -4.5 98 0.00 53 C Ethylbenzene 1.577 1.632 -3.5 100 0.00 54 T m,p-Xylene 0.648 0.637 0.6 95 0.00 55 T o-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S </th <th>47</th> <th></th> <th>2-Hexanone Dibromochloromethane</th> <th>0.404 0.285</th> <th>0.322 0.305</th> <th>20.3 -7.0</th> <th>75 93</th> <th>-0.01</th>	47		2-Hexanone Dibromochloromethane	0.404 0.285	0.322 0.305	20.3 -7.0	75 93	-0.01
The Chlorobenzene								0.00
51 MP Chlorobenzene 1.043 1.021 2.1 97 0.00 52 T 1,1,1,2-Tetrachloroethane 0.334 0.349 -4.5 98 0.00 53 C Ethylbenzene 1.577 1.632 -3.5 100 0.00 54 T m,p-Xylene 0.648 0.639 1.4 97 -0.01 55 T o-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 61 T Bromoschazene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T	* -	±	1,2 DIDIOMOECHANE (EDB)	0.290	0.209	1.2	0/	0.00
52 T 1,1,1,2-Tetrachloroethane 0.334 0.349 -4.5 98 0.00 53 C Ethylbenzene 1.577 1.632 -3.5 100 0.00 54 T m,p-Xylene 0.648 0.639 1.4 97 -0.01 55 T o-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloroperopane 0.322 0.275 14.6 84 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td></t<>								0.00
53 C Ethylbenzene 1.577 1.632 -3.5 100 0.00 54 T m,p-Xylene 0.648 0.639 1.4 97 -0.01 55 T O-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,2-Tetrachloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
54 T m,p-Xylene 0.648 0.639 1.4 97 -0.01 55 T o-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T <td></td> <td></td> <td></td> <td></td> <td></td> <td>-4.5</td> <td>98</td> <td>0.00</td>						-4.5	98	0.00
55 T o-Xylene 0.641 0.637 0.6 95 0.00 56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorottoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00						-3.5		0.00
56 T Styrene 1.108 1.129 -1.9 98 0.00 57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 65 T 1,2,4-Trimethylbenzene 1.090 1.109 -1.7 100 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.4</td> <td>97</td> <td>-0.01</td>						1.4	97	-0.01
57 P Bromoform 0.130 0.160 -23.1 92 0.00 58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.692 1.109 -1.7 100 0.00				0.641	0.637	0.6	95	0.00
58 T Isopropylbenzene 1.637 1.736 -6.0 101 0.00 59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 65 T 1,3,5-Trimethylbenzene 1.90 1.109 -1.7 100 0.00 65 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 67 T tert-Butylbenzene 1.672 1.785 -6.8 103							98	0.00
59 S Bromofluorobenzene 0.571 0.577 -1.1 95 0.00 60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103				0.130	0.160	-23.1	92	0.00
60 P 1,1,2,2-Tetrachloroethane 0.351 0.341 2.8 97 0.00 61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 <						-6.0	101	0.00
61 T Bromobenzene 0.428 0.421 1.6 97 -0.01 62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.					0.577	-1.1	95	0.00
62 T 1,2,3-Trichloropropane 0.322 0.275 14.6 84 0.00 63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.81 0.9 9.0						2.8		0.00
63 T n-Propylbenzene 1.779 1.856 -4.3 101 0.00 64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 69 T sec-Butylbenzene 0.834 0.850 -1.9 101 0.00 69 T sec-Butylbenzene 0.834 0.850 -1.9 101 0.00 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 72 T 1,4-Dichlorobenzene 0.596 0.631 -5.9 103 0				0.428		1.6	97	-0.01
64 T 2-Chlorotoluene 1.222 1.184 3.1 101 0.00 65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0				0.322	0.275	14.6	84	0.00
65 T 1,3,5-Trimethylbenzene 1.422 1.518 -6.8 101 0.00 66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 75 T Hexachlorobutadiene 0.152 0.149 <t< td=""><td></td><td></td><td></td><td></td><td>1.856</td><td>-4.3</td><td>101</td><td>0.00</td></t<>					1.856	-4.3	101	0.00
66 T 4-Chlorotoluene 1.375 1.400 -1.8 101 -0.01 67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 78 T Naphthalene 0.939 0.792 15.7 <td></td> <td></td> <td></td> <td>1.222</td> <td>1.184</td> <td>3.1</td> <td>101</td> <td>0.00</td>				1.222	1.184	3.1	101	0.00
67 T tert-Butylbenzene 1.090 1.109 -1.7 100 0.00 68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.00 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 78 T Naphthalene 0.939 0.792 15.7 78				1.422	1.518	-6.8	101	0.00
68 T 1,2,4-Trimethylbenzene 1.524 1.621 -6.4 102 0.00 69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170				1.375	1.400	-1.8	101	-0.01
69 T sec-Butylbenzene 1.672 1.785 -6.8 103 -0.01 70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 <t< td=""><td></td><td></td><td></td><td>1.090</td><td>1.109</td><td>-1.7</td><td>100</td><td>0.00</td></t<>				1.090	1.109	-1.7	100	0.00
70 T 1,3-Dichlorobenzene 0.834 0.850 -1.9 101 0.00 71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.00 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 1				1.524	1.621	-6.4	102	0.00
71 T 4-Isopropyltoluene 1.388 1.508 -8.6 103 0.00 72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04				1.672	1.785	-6.8	103	-0.01
72 T 1,4-Dichlorobenzene 0.881 0.881 0.0 99 0.00 73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04				0.834	0.850	-1.9	101	0.00
73 T n-Butylbenzene 0.596 0.631 -5.9 103 0.00 74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04						-8.6	103	0.00
74 T 1,2-Dichlorobenzene 0.806 0.776 3.7 96 0.00 75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04					0.881	0.0	99	0.00
75 T 1,2-Dibromo-3-chloropropane 0.054 0.049 9.3 78 0.00 76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04			-		0.631	-5.9	103	0.00
76 T 1,2,4-Trichlorobenzene 0.359 0.363 -1.1 93 0.00 77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04				0.806	0.776	3.7	96	0.00
77 T Hexachlorobutadiene 0.152 0.149 2.0 101 0.00 78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04			1,2-Dibromo-3-chloropropane	0.054	0.049	9.3	78	0.00
78 T Naphthalene 0.939 0.792 15.7 78 0.00 79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04				0.359	0.363	-1.1	93	0.00
79 T 1,2,3-Trichlorobenzene 0.301 0.279 7.3 87 0.00 80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04			Hexachlorobutadiene	0.152	0.149	2.0	101	0.00
80 T 1,1,2-Trichloro-1,2,2-trifl 0.207 0.170 17.9 81 0.00 81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04			Naphthalene	0.939	0.792	15.7	78	0.00
81 T Methyl acetate 0.148 0.124 16.2 82 -0.01 82 T Cyclohexane 0.585 0.498 14.9 81 0.04	79	T	1,2,3-Trichlorobenzene	0.301	0.279	7.3	87	0.00
82 T Cyclohexane 0.585 0.498 14.9 81 0.04	80	T	1,1,2-Trichloro-1,2,2-trifl	0.207	0.170	17.9	81	0.00
· · · · · · · · · · · · · · · · · · ·	81	T	Methyl acetate	0.148	0.124	16.2	82	-0,01
	82	T	Cyclohexane	0.585	0.498	14.9	81	
	83	T						

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0122.M Wed Jan 28 14:50:24 2009 MANAGER

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed:

01/27/2009

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J0410.D	106	100	99
00688-002	AQUEOUS	J0411 D	105	100	100
00688-001	AQUEOUS	J0412.D	104	101	99
BLK-SPK	AQUEOUS	J0413.D	99	101	101
00766-001	AQUEOUS	J0414.D	104	100	100
00687-004	AQUEOUS	J0416.D	104	100	100
WATER-MS	AQUEOUS	J0417.D	104	99	98
WATER-MSD	AQUEOUS	J0418.D	107	100	99
00687-002	AQUEOUS	J0419.D	107	101	98
00687-003	AQUEOUS	J0420.D	108	100	98
00687-005	AQUEOUS	J0421.D	106	100	98
00687-006	AQUEOUS	J0422.D	107	100	97
00687-007	AQUEOUS	J0423.D	106	100	97
00766-002	AQUEOUS	J0424.D	106	101	96
00766-003	AQUEOUS	J0425.D	103	101	96
00766-004	AQUEOUS	J0426.D	107	101	97
00766-005	AQUEOUS	J0427.D	105	101	96
00763-001	AQUEOUS	J0428.D	105	100	96
00763-002	AQUEOUS	J0429.D	105	100	97
00763-003	AQUEOUS	J0430.D	102	101	95
00763-004	AQUEOUS	J0431.D	103	102	97

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	55-148	47-162
SMC2 = Toluene-d8	50 ppb	50-147	44-158
SMC3 = Bromofluorobenzene	50 ppb	47-145	31-153

[#] Column to be used to flag recovery values

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 01/28/2009

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J0437.D	103	100	95
00763-005	AQUEOUS	J0438.D	103	101	95
00763-006	AQUEOUS	J0440.D	105	100	94
00763-007	AQUEOUS	J0441.D	103	101	96
00763-008	AQUEOUS	J0442.D	103	100	95
00763-009	AQUEOUS	J0443.D	105	101	95
00763-010	AQUEOUS	J0444.D	101	100	94
00763-011	AQUEOUS	J0445.D	104	99	92
00763-012	AQUEOUS	J0446.D	103	100	93
MS	AQUEOUS	J0447.D	105	100	95
MSD	AQUEOUS	J0448.D	108	99	97
00763-013	AQUEOUS	J0449.D	109	101	95
00763-014	AQUEOUS	J0450.D	107	101	95
00763-015	AQUEOUS	J0451.D	109	100	95
00763-016	AQUEOUS	J0452.D	110	101	97
00763-017	AQUEOUS	J0453.D	110	102	95
BLK-SPK	AQUEOUS	J0457.D	99	101	97
00687-001	AQUEOUS	J0458.D	107	99	97

	Concentration	Aqueous/Meo	oh Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	55-148	47-162
SMC2 = Toluene-d8	50 ppb	50-147	44-158
SMC3 = Bromofluorobenzene	50 ppb	47-145	31-153

[#] Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID: MSD

Batch No.: JAW0127P

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	44.1	88	34 - 149
Benzene	50.0	0.0	53.8	108	45 - 136
Trichloroethene	50.0	0.0	53.5	107	40 - 147
Toluene	50.0	0.0	55.1	110	43 - 137
Chlorobenzene	50.0	0.0	52.7	105	45 - 144

	SAMPLE	MSD	MSD		"	
Compound	CONC.	CONC.	%	%	QC LIA	/IITS
	(ug/L)	(ug/L)	# REC	RPD #	RPD	REC.
1,1-Dichloroethene	0.0	41.8	84	5	19	34 - 149
Benzene	0.0	50.5	101	7	15	45 - 136
Trichloroethene	0.0	50.4	101	6	18	40 - 147
Toluene	0.0	51.9	104	6	16	43 - 137
Chlorobenzene	0.0	50.3	101	4	16	45 - 144

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: _0__ out of _5_ outside limits

Spike Recovery: __0__ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): J0360.D Date Analyzed: 01/22/2009

Instrument ID: MSD_J Time Analyzed: 2:24

	50UG/L	IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	387727	6.17	609798	6.99	583846	10.33
	UPPER LIMIT	775454	6.67	1219596	7.49	1167692	10.83
	LOWER LIMIT	193863.5	5.67	304899	6.49	291923	9.83
	LAB SAMPLE						0.00
	ID						
01	STD-20PPB	376150	6.17	599103	6.99	578399	10.33
	STD-5PPB	329954	6.17	529946	6.99	519882	10.33
03	STD-200PPB	376093	6.17	606071	6.99	588697	10.33
	STD-150PPB	358688	6.17	579495	6.99	568575	10.33
- 1	STD-1PPB	378165	6.17	609745	6.99	596201	10.33
06							
07						_	
08							
09							
10							
11							
12							
13							
14							
15							
16	-						
17 18							
19							
20							
21							
22							
~~							

IS1 = PENTAFLUOROBENZENE
IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): J0408.D Date Analyzed: 01/27/2009

Instrument ID: MSD_J Time Analyzed: 1:02

50UG/L	IS1		IS2		IS3	ř
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	411415	6.17	653252	6.99	646531	10.33
UPPER LIMIT	822830	6.67	1306504	7.49	1293062	10.83
LOWER LIMIT	205707.5	5.67	326626	6.49	323265.5	9.83
LAB SAMPLE						
ID	j			-		
01 METHOD-BLK	383811	6.17	611239	6.99	615234	10.33
02 00688-002	378907	6.17	603008	6.99	601814	10.33
03 00688-001	389665	6.17	619971	6.99	621552	10.33
04 BLK-SPK	375045	6.17	592232	6.99	583834	10.33
05 00766-001	374988	6.17	600091	6.99	600707	10.33
06 00687-004	375619	6.17	598892	6.99	590118	10.33
07 WATER-MS	380332	6.17	610757	6.99	603577	10.33
08 WATER-MSD	374614	6.17	606552	6.99	597130	10.33
09 00687-002	335244	6.17	543050	6.99	548954	10.33
10 00687-003	367595	6.17	594549	6.99	602043	10.33
11 00687-005	371374	6.17	597701	6.99	605083	10.33
12 00687-006	352204	6.17	571931	6.99	583254	10.33
13 00687-007	367498	6.17	594811	6.99	601269	10.33
14 00766-002	366367	6.17	587788	6.99	595963	10.33
15 00766-003	371449	6.17	590339	6.99	600401	10.33
16 00766-004	359270	6.17	581931	6.99	587165	10.33
17 00766-005	366585	6.17	583020	6.99	594069	10.33
18 00763-001	360572	6.17	580126	6.99	587140	10.33
19 00763-002	357696	6.17	572177	6.99	577079	10.33
20 00763-003	357830	6.17	568079	6.99	580703	10.33
21 00763-004	347624	6.17	556464	6.99	566655	10.33
22						

IS1 = PENTAFLUOROBENZENE
IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): J0434.D Date Analyzed: 01/28/2009

Instrument ID: MSD_J Time Analyzed: 12:29

	50UG/L	ĪS1	11 1	IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	351905	6.17	555726	6.99	547539	10.33
	UPPER LIMIT	703810	6.67	1111452	7.49	1095078	10.83
	LOWER LIMIT	175952.5	5.67	277863	6.49	273769.5	9.83
	LAB SAMPLE						
	ID						
	METHOD-BLK	343923	6.17	552447	6.99	566865	10.33
02	00763-005	286567	6.17	454457	6.99	455788	10.33
03	00763-006	309681	6.17	494638	6.99	506442	10.33
04	00763-007	343306	6.17	552268	6.99	559226	10.33
05	00763-008	333861	6.17	537231	6.99	551763	10.33
06	00763-009	336222	6.17	544711	6.99	555460	10.33
07	00763-010	344977	6.17	547343	6.99	556583	10.33
08	00763-011	302334	6.17	483937	6.99	496635	10.33
09	00763-012	336517	6.17	541366	6.99	552033	10.33
10	MS	308652	6.17	496015	6.99	501022	10.33
11	MSD	332480	6.17	541829	6.99	538023	10.33
12	00763-013	319126	6.17	509186	6.99	524157	10.33
13	00763-014	329723	6.17	527189	6.99	542768	10.33
14	00763-015	322485	6.17	521179	6.99	538227	10.33
15	00763-016	319715	6.17	519684	6.99	537972	10.33
16	00763-017	304566	6.17	491036	6.99	509057	10.33
17	BLK-SPK	321653	6.17	501027	6.99	507236	10.33
18	00687-001	318516	6.17	511961	6.99	510509	10.33
19							
20							
21				-			
22			1				

IS1 = PENTAFLUOROBENZENE
IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0428.D Vial: 23 Acq On : 27 Jan 2009 9:54 pm Operator: BINXU Sample : MW-HP-2D,00763-001,A,5ml,100 inst : MSD_0
Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Multiplr: 1.00 : MW-HP-2D,00763-001,A,5ml,100 Inst : MSD J

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:43 2009 Quant Results File: JAW0122.RES

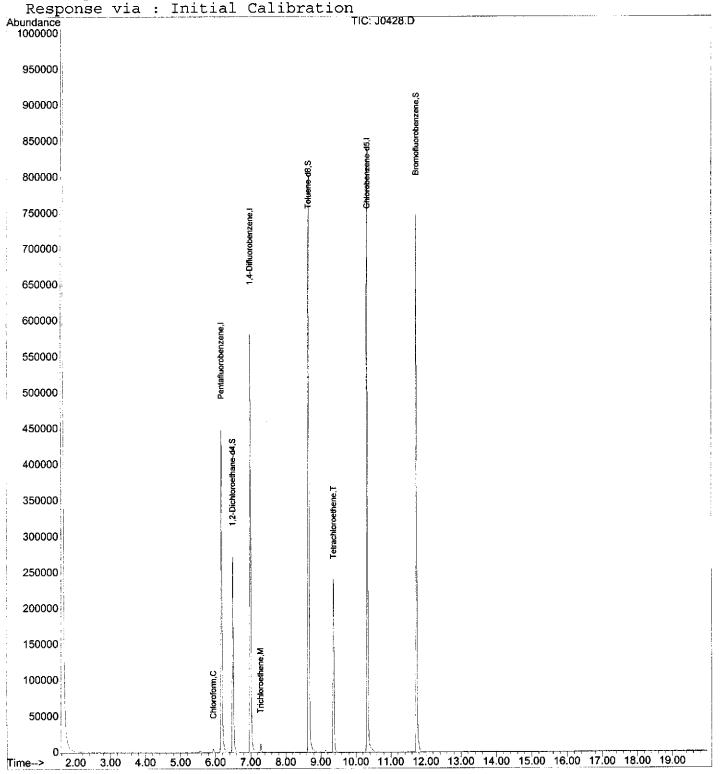
Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration
DataAcq Meth : JAW0122

Internal Standards		R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Pentafluorobe		6.17	168	360572	50.00		0.00
31) 1,4-Difluorob		6.99		580126	50.00		0.00
50) Chlorobenzene	-d5	10.33	117	587140	50.00	UG	0.00
System Monitoring	Compounds						
30) 1,2-Dichloroe		6.50	65	224493	52.36	UG	0.00
Spiked Amount	50.000	Range 43	- 133	Recove	ery =	104.	72%
41) Toluene-d8		8.65	98	644911	50.06	UG	-0.01
Spiked Amount	50.000	Range 39	- 137	Recove	ry =	100.	12%
59) Bromofluorober	nzene	11.73	95	321886	48.01	UG	0.00
Spiked Amount	50.000	Range 23	- 145	Recove	ry =	96.	02왕
Target Compounds							Qvalue
25) Chloroform		5.94	83	4803	0.74	UG	98
33) Trichloroether	ne	7.29	95	4865	1.26	UG	93
45) Tetrachloroetl	hene	9.37	166	83658	23.01	UG	99


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:29 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

J0428.D

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0429.D Vial: 24 Acq On : 27 Jan 2009 10:20 pm Operator: BINXU Sample : MW-HP-2S,00763-002,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:43 2009 Quant Results File: JAW0122.RES

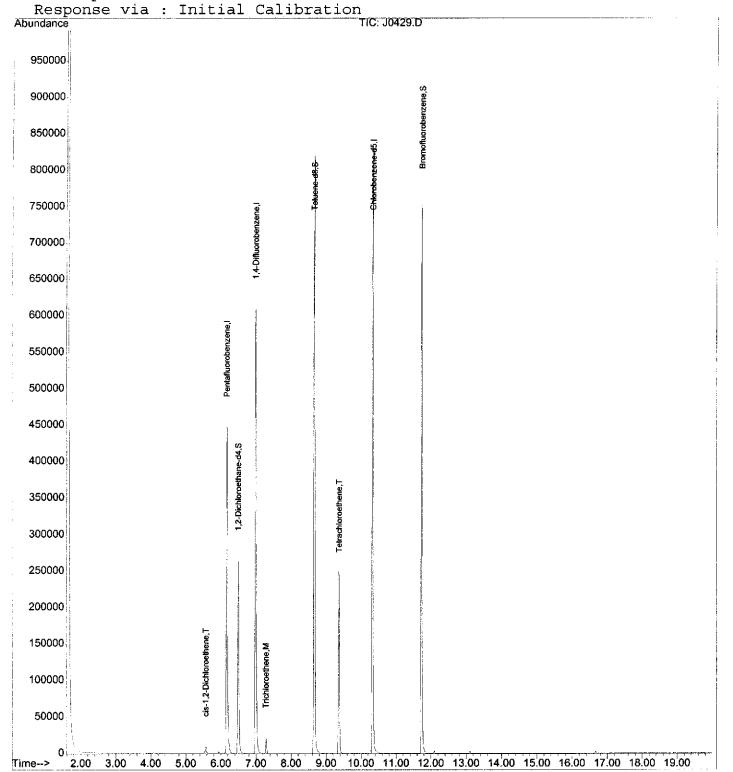
Quant Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122

Internal Standards		R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Pentafluorobe		6.17	168 114	357696 572177	50.00		0.00
50) Chlorobenzene		10.33	117	577079	50.00	UG	0.00
System Monitoring	Compounds						
30) 1,2-Dichloroe	thane-d4	6.50	65				
Spiked Amount	50.000	Range 43	- 133	Recove	ry =	104.	74%
41) Toluene-d8		8.65	98	634953	49.98	UG	-0.01
Spiked Amount	50.000	Range 39	- 137	Recove	ry =	99.	96%
59) Bromofluorobe:	nzene	11.73	95	319242	48.45	UG	0.00
Spiked Amount	50.000	Range 23	- 145	Recove	ry =	96.	90%
Target Compounds							Qvalue
20) cis-1,2-Dichle	oroethene	5.57	96	4669	1.19	UG	# 39
33) Trichloroether		7.29	95	7392	1.94	UG	90
45) Tetrachloroet	hene	9.37	166	86415	24.09	UG	# 68

^{(#) =} qualifier out of range (m) = manual integration J0429.D JAW0122.M Thu Jan 29 11:16:59 2009 MANAGER


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:29 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

Vial: 25 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0430.D Acq On : 27 Jan 2009 10:46 pm Sample : OS-MW-3PL,00763-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:44 2009 Ouant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

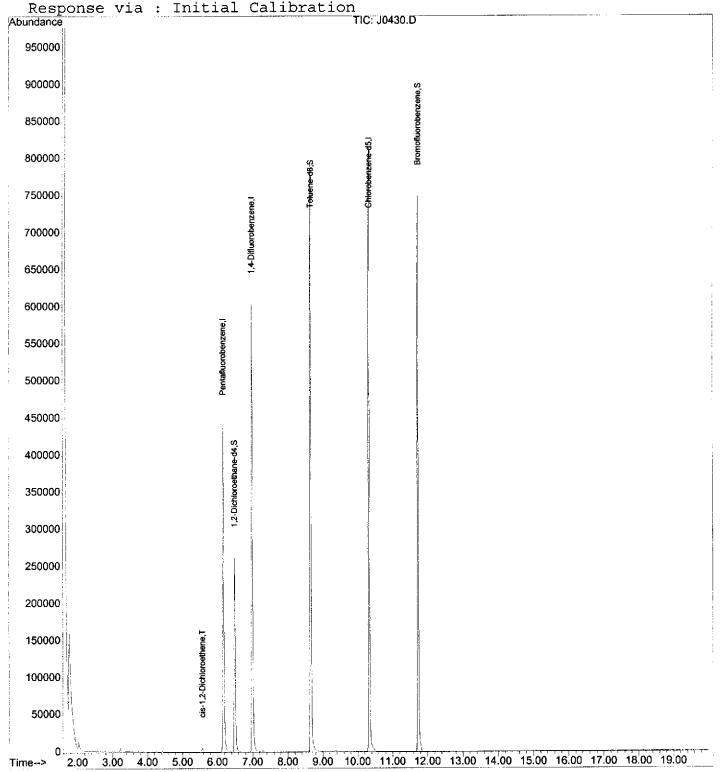
: VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 6.99 10.33		357830 568079 580703	50.00 50.00 50.00	UG	0.00 0.00 0.00
System Monitoring Compound 30) 1,2-Dichloroethane-Spiked Amount 50.041) Toluene-d8 Spiked Amount 50.059) Bromofluorobenzene Spiked Amount 50.06	d4 6.50 000 Range 43 8.66 000 Range 39 11.73	- 133 98 - 137 95	Recove: 313821	ry = 50.40	102.36% UG 100.80% UG	0.00
Target Compounds 20) cis-1,2-Dichloroeth	ene 5.57	96	2657	0.67		alue 39

^{(#) =} qualifier out of range (m) = manual integration J0430.D JAW0122.M Thu Jan 29 11:16:59 2009 MANAGER


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:30 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0431.D Vial: 26 Acq On : 27 Jan 2009 11:12 pm Operator: BINXU Sample : MW-6S,00763-004,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:44 2009 Quant Results File: JAW0122.RES

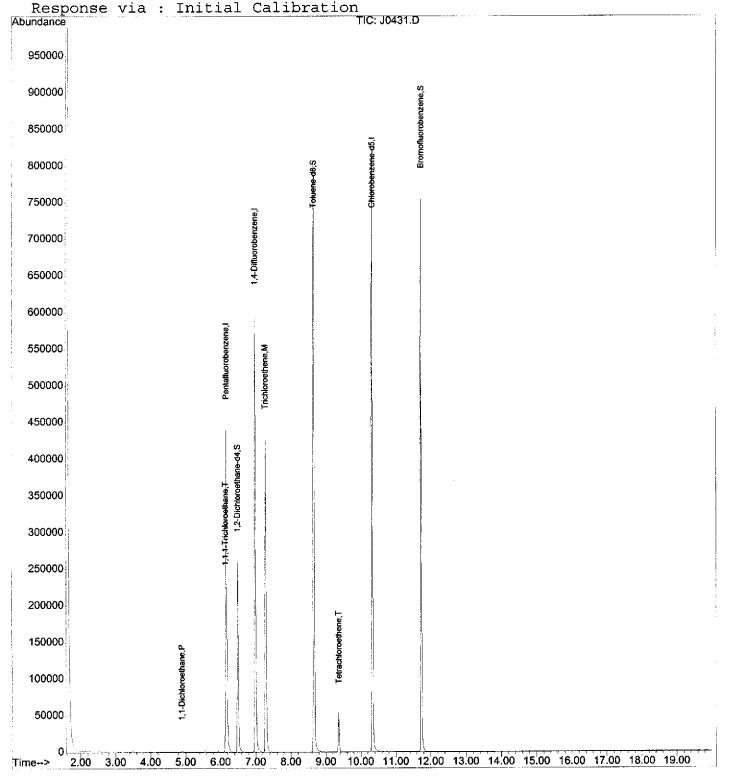
Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration DataAcq Meth : JAW0122

Internal Standards	R.T.	QIon	Response		nits De	ev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 6.99 10.33	114	347624 556464	50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4		65	213834	51.74	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	103.48	} ક
41) Toluene-d8	8.65	98	630842	51.05	UG	-0.01
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	102.10) 웅
59) Bromofluorobenzene	11.73	95	312534	48.30	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	96.60)%
Target Compounds					Ç	value
18) 1,1-Dichloroethane	4.90	63	2896	0.42	UG #	98
26) 1,1,1-Trichloroethane	6.15	97	24147	5.10	UG #	34
33) Trichloroethene	7.29	95	160772	43.34	UG	93
45) Tetrachloroethene	9.37	166	19355	5.55	UG #	68


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:30 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0438.D Vial: 33 Acq On : 28 Jan 2009 2:12 am Operator: BINXU : OS-MW-1,00763-005,A,5ml,100 Inst : MSD J Sample Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Multiplr: 1.00

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:46 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

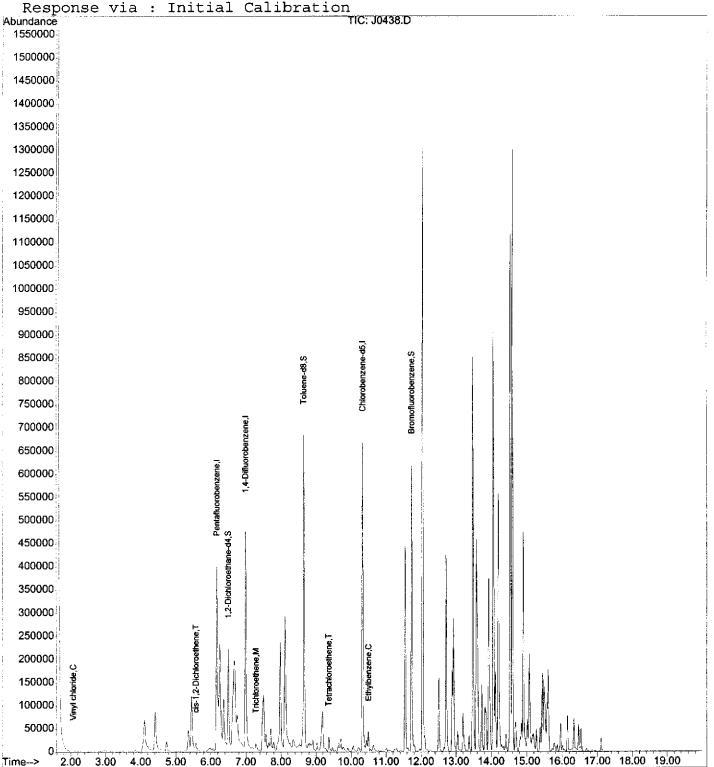
Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene	6.17 6.99				UG UG	0.00
50) Chlorobenzene-d5			455788		UG	
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.50	65				
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	102.98	용
41) Toluene-d8	8.65	98	509996	50.54	UG	-0.01
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	101.08	몽
59) Bromofluorobenzene	11.73	95	246348	47.34	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	94.68	ફ
Target Compounds					Q	value
4) Vinyl chloride	2.07	62	4713	1.67	UG	98
20) cis-1,2-Dichloroethene	5.57	96	6072	1.93		
33) Trichloroethene	7.29	95	4007	1.32		
45) Tetrachloroethene	9.36	166	11635	4.08	UG #	68
53) Ethylbenzene	10.50	91	32083	2.23	UG	99

^{(#) =} qualifier out of range (m) = manual integration J0438.D JAW0122.M Thu Jan 29 11:17:02 2009 MANAGER


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:31 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0440.D Vial: 35 Operator: BINXU

Acq On : 28 Jan 2009 3:04 am Sample : MW-9D,00763-006,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:47 2009 Ouant Results File: JAW0122.RES

Quant Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

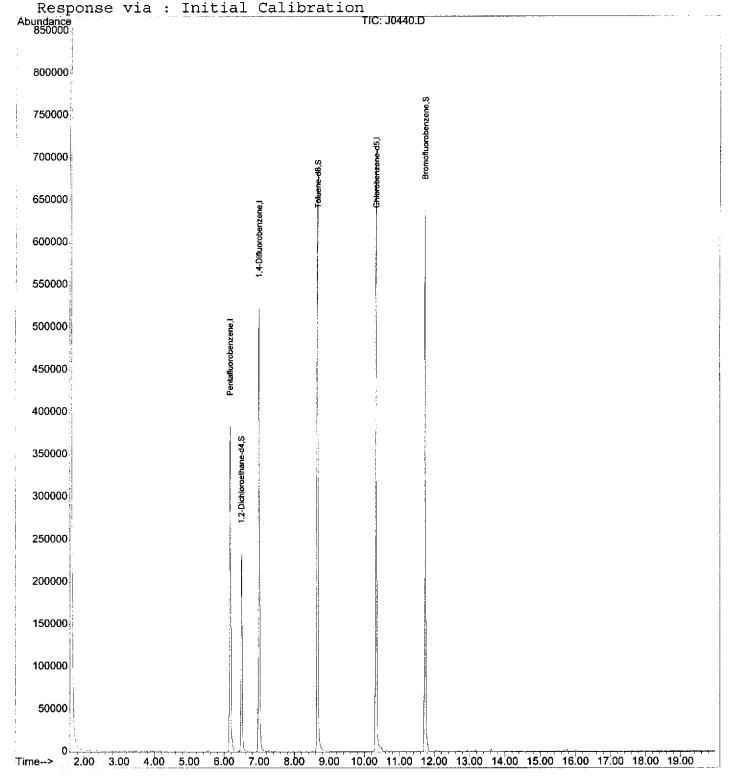
Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T. QIon	Response Co	nc Units Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 168 6.99 114 10.33 117	494638 5	0.00 UG 0.00 0.00 UG 0.00 0.00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.50 65 Range 43 - 13 8.66 98 Range 39 - 13 11.73 95 Range 23 - 14	3 Recovery 546493 4 7 Recovery 271315 4	9.76 UG 0.00 = 99.52% 6.92 UG 0.00
Target Compounds			Qvalue

rarget compounds

^{(#) =} qualifier out of range (m) = manual integration J0440.D JAW0122.M Thu Jan 29 11:17:03 2009 MANAGER


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:32 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 14:42:23 2009

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0441.D Vial: 36

Acq On : 28 Jan 2009 3:29 am Sample : MW-9S,00763-007,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: 1.00

MS Integration Params: LSCINT.P

Ouant Results File: JAW0122.RES Quant Time: Jan 28 12:41:47 2009

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

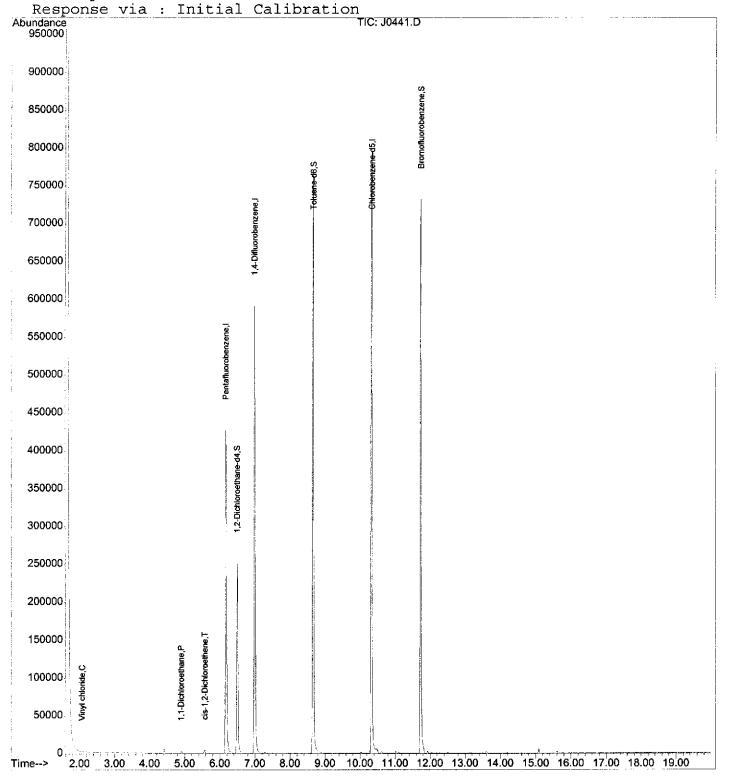
: VOLATILE ORGANICS BY EPA METHOD 8260B Title

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards		R.T.	QIon	Response	Conc U	nits I	Dev(Min)
1) Pentafluorobe 31) 1,4-Difluorob 50) Chlorobenzene	enzene	6.17 6.99 10.33		552268	50.00	UG	0.00 0.00 0.00
System Monitoring							
30) 1,2-Dichloroe	thane-d4	6.50	65	210739	51.63	UG	0.00
Spiked Amount	50.000	Range 43	- 133	Recove	ry =	103.2	26%
41) Toluene-d8		8.66	98	619539	50.52	UG	0.00
Spiked Amount	50.000	Range 39	- 137	Recove	ry =	101.0	ጋ4 %
59) Bromofluorobe			95				0.00
Spiked Amount		Range 23	- 145	Recove	ry =	96.4	48%
Target Compounds							Qvalue
4) Vinyl chlorid	e	2.07	62	2737	0.81	UG	# 94
18) 1,1-Dichloroe	thane	4.90	63	3752	0.55	UG	100
20) cis-1,2-Dichl	oroethene	5.57	96	2418	0.64	UG	# 39

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0441.D


Vial: 36 : 28 Jan 2009 Operator: BINXU Acq On 3:29 am Sample : MW-9S,00763-007,A,5ml,100 Inst : MSD J : ARCADIS/KINGS ELEC, 01/21/09, 01/23/09, Multiplr: 1.00 Misc

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:32 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0442.D Vial: 37

Acq On : 28 Jan 2009 3:55 am Sample : DUP(012109),00763-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:47 2009 Quant Results File: JAW0122.RES

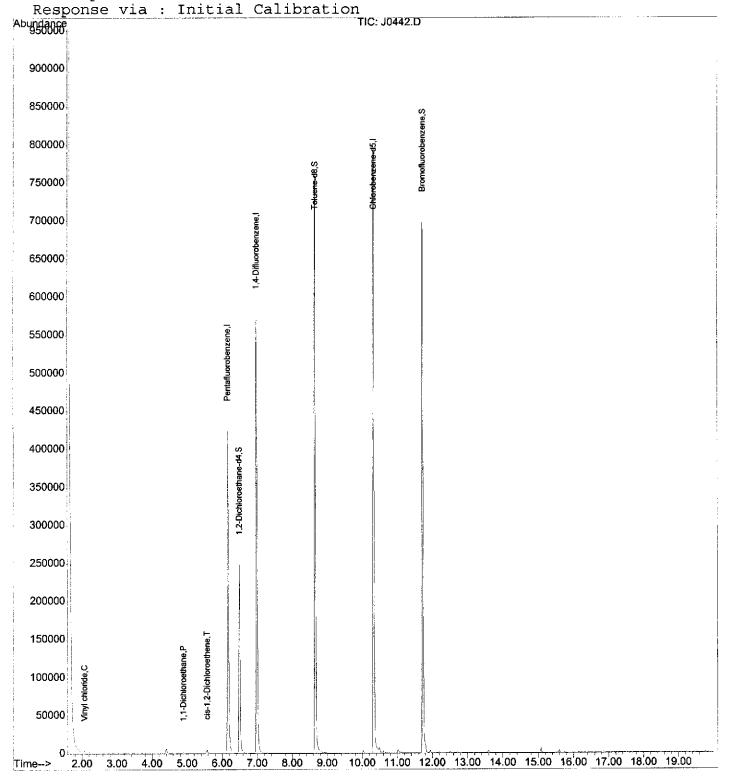
Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

: VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration

DataAcq Meth : JAW0122


Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 6.99 10.33		333861 537231 551763	50.00 50.00 50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.50	65	204811			0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	103.20%	5
41) Toluene-d8	8.66	98	595585	49.93	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	99.86%	5
59) Bromofluorobenzene	11.73	95		47.53		0.00
Spiked Amount 50.000	Range 23			ry =	95.068	5
Target Compounds					Q۲	ralue
4) Vinyl chloride	2.07	62	2808	0.85	UG #	88
18) 1,1-Dichloroethane	4.90	63	4187	0.63	UG #	86
20) cis-1,2-Dichloroethene	5.57	96	2361	0.64	UG #	41

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:33 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Vial: 38 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0443.D Acq On : 28 Jan 2009 4:21 am Operator: BINXU Sample : MW-13,00763-009,A,5ml,100 Inst : MSD_3 Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Multiplr: 1.00 Operator: BINXU Inst : MSD J

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:47 2009 Quant Results File: JAW0122.RES

Quant Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration DataAcq Meth : JAW0122

Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene 6.17 168 336222 50.00 UG 0.00 31) 1,4-Difluorobenzene 6.99 114 544711 50.00 UG 0.00 50) Chlorobenzene-d5 10.33 117 555460 50.00 UG 0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d4 6.50 65 208926 52.26 UG 0.00
Spiked Amount 50.000 Range 43 - 133 Recovery = 104.52%
41) Toluene-d8 8.65 98 608479 50.31 UG 0.00 41) Toluene-d8 8.65 98 608479 50.31 UG 0.00 Spiked Amount 50.000 Range 39 - 137 Recovery = 100.62% 59) Bromofluorobenzene 11.73 95 300164 47.33 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 94.66% Ovalue Target Compounds 4) Vinyl chloride 2.07 62 9052 2.73 UG
18) 1,1-Dichloroethane 4.90 63 5778 0.86 UG #
20) cis-1,2-Dichloroethene 5.57 96 6830 1.85 UG #
33) Trichloroethene 7.29 95 5879 1.62 UG 97 86 41 94

Data File: C:\MSDCHEM\1\DATA\01-27-09\J0443.D Acq On : 28 Jan 2009 4:21 am

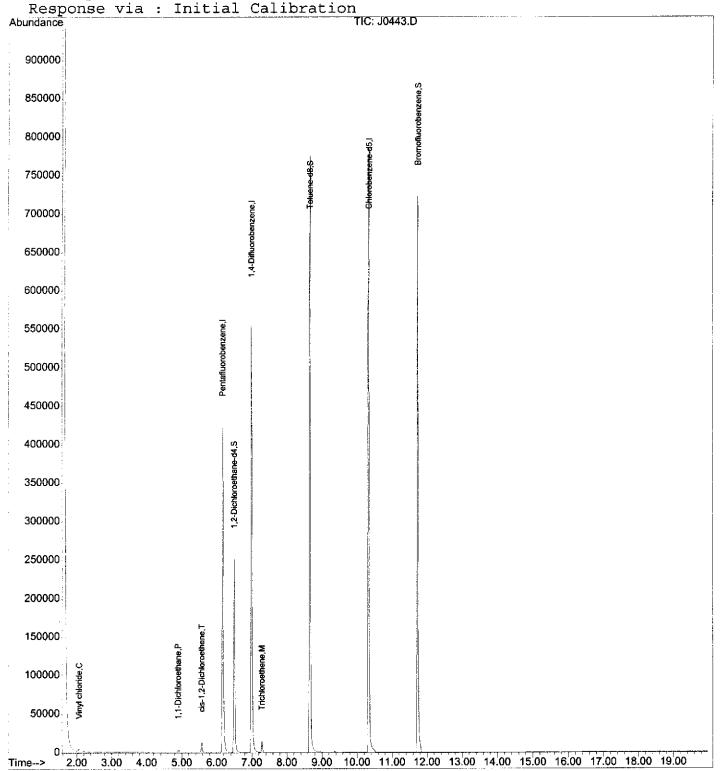
Vial: 38 Operator: BINXU : MSD J Inst

Sample : MW-13,00763-009,A,5ml,100

: ARCADIS/KINGS ELEC, 01/21/09, 01/23/09, Misc

Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P


Quant Time: Jan 28 14:33 2009

Quant Results File: JAW0122.RES

: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

: Wed Jan 28 14:42:23 2009 Last Update

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0444.D Vial: 39

Acq On : 28 Jan 2009 4:47 am Operator: BINXU Sample : OS-MW-2,00763-010,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

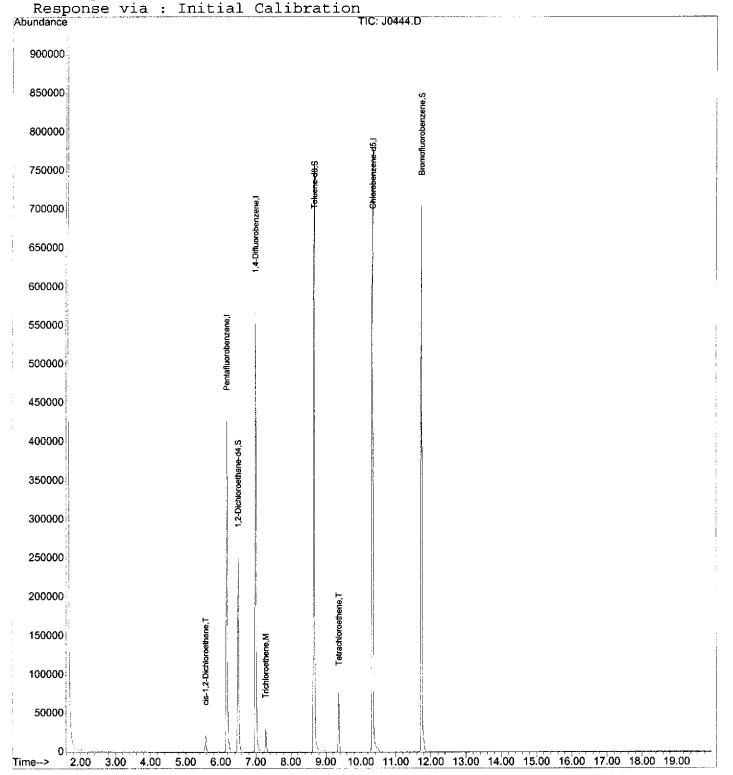
MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:48 2009 Ouant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122


Internal Standards	}	R.T.	QIon	Response	Conc U	nits I	Dev(Min)
1) Pentafluorobe	nzene	6.17	168	344977	50.00	UG	0.00
31) 1,4-Difluorob	enzene	6.99	114	547343	50.00	UG	0.00
50) Chlorobenzene	:- d 5	10.33	117	556583	50.00	UG	0.00
System Monitoring	Compounds						
30) 1,2-Dichloroe		6.50	65	207453	50.58	UG	0.00
Spiked Amount	50.000	Range 43	- 133	Recove	ery =	101.3	16%
41) Toluene-d8		8.66	98	604784	49.76	UG	0.00
Spiked Amount	50.000	Range 39	- 137	Recove	ry =	99.5	52%
59) Bromofluorobe	nzene	11.73	95	297256	46.77	UG	0.00
Spiked Amount	50.000	Range 23	- 145	Recove	ery =	93.5	54%
Target Compounds							Qvalue
20) cis-1,2-Dichl	oroethene	5.57	96	10842	2.86	UG	# 40
33) Trichloroethe		7.29	95	11468	3.14	UG	93
45) Tetrachloroet	hene	9.37	166	26680	7.78	UG	# 68

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:33 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0445.D Vial: 40 Acq On : 28 Jan 2009 5:12 am Operator: BINXU Sample : GP-103R,00763-011,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Results File: JAW0122.RES Quant Time: Jan 28 12:41:48 2009

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards		R.T.	QIon	Response	Conc U	nits D	ev(Min)
1) Pentafluorobe 31) 1,4-Difluorob 50) Chlorobenzene	enzene	6.17 6.99 10.33	168 114 117	302334 483937 496635	50.00 50.00 50.00	UG	0.00
System Monitoring	Compounds						
30) 1,2-Dichloroe		6.50	65	187216	52.08	UG	0.00
Spiked Amount	50.000	Range 43	- 133	Recove	ry =	104.1	68
41) Toluene-d8		8.66	98	531484	49.46	UG	0.00
Spiked Amount	50.000	Range 39	- 137	Recove	ry =	98.9	2왕
59) Bromofluorobe	nzene	11.73	95	262133	46.23	UG	0.00
Spiked Amount	50.000	Range 23	- 145	Recove	ry =	92.4	6%
Target Compounds							Qvalue
4) Vinyl chlorid	e	2.08	62	2276	0.76		# 92
20) cis-1,2-Dichl	oroethene	5.57	96	1927	0.58	UG	# 75

^{(#) =} qualifier out of range (m) = manual integration J0445.D JAW0122.M Thu Jan 29 11:17:06 2009 MANAGER

(QT Reviewed) Quantitation Report

Data File: C:\MSDCHEM\1\DATA\01-27-09\J0445.D Vial: 40 Operator: BINXU Acq On : 28 Jan 2009 5:12 am : MSD J Sample : GP-103R,00763-011,A,5ml,100 Inst : ARCADIS/KINGS ELEC, 01/22/09, 01/23/09, Multiplr: $1.0\overline{0}$ Misc

MS Integration Params: LSCINT.P

Quant Results File: JAW0122.RES Quant Time: Jan 28 14:34 2009

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

: VOLATILE ORGANICS BY EPA METHOD 8260B Title

: Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0445.D Abundance 800000 750000 700000 650000 1,4-Difluorobenzene,1 600000 550000 500000 450000 400000 350000 1,2-Dichloroethane-d4,S 300000 250000 200000 150000 cis-1,2-Dichloroethene,T 100000 50000 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

3.00

4.00

5.00

8.00

Data File: C:\MSDCHEM\1\DATA\01-27-09\J0446.D Vial: 41 Acq On : 28 Jan 2009 5:38 am Sample : GP-104R,00763-012,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

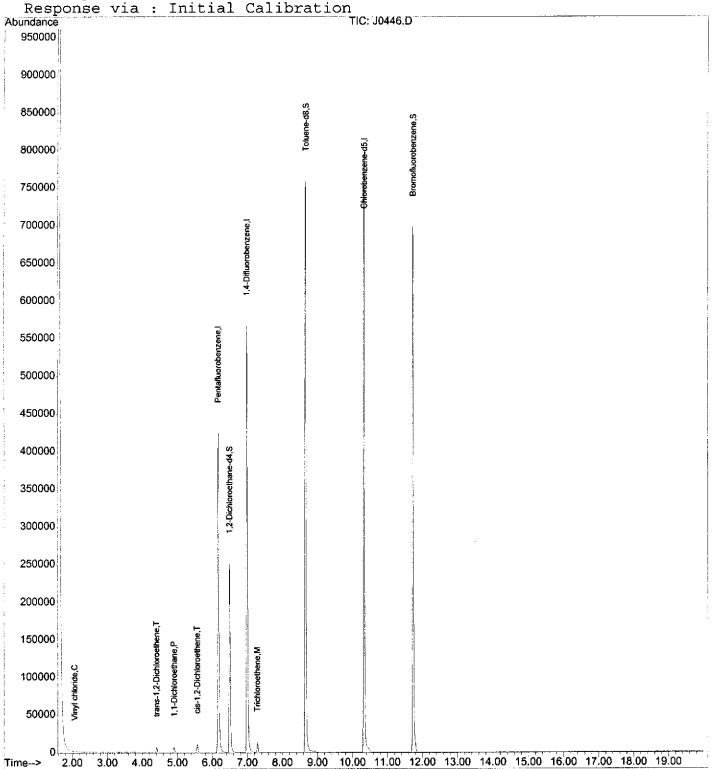
Quant Results File: JAW0122.RES Quant Time: Jan 28 12:41:48 2009

Quant Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

: VOLATILE ORGANICS BY EPA METHOD 8260B Title

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122


Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
- ·	6.17				UG	0.00
•	6.99					0.00
50) Chlorobenzene-d5	10.33	117	552033	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.50	65	205774	51.43	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	102.86%	វ
41) Toluene-d8	8.66	98	600903	49.99	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	99.98%	5
59) Bromofluorobenzene	11.73	95	292979	46.48	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	92.96%	5
Target Compounds					Qv	alue
4) Vinyl chloride	2.07	62	1668	0.50	UG #	85
16) trans-1,2-Dichloroether	ne 4.41	96	3975	1.19	UG #	30
18) 1,1-Dichloroethane	4.91	63	9919	1.48	UG	100
20) cis-1,2-Dichloroethene	5.57	96	5834	1.58	UG #	41
33) Trichloroethene	7.29	95	5372	1.49		96

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:34 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0449.D Vial: 44 Acq On : 28 Jan 2009 6:55 am Sample : FB(012009),00763-013,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:49 2009 Quant Results File: JAW0122.RES

Quant Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

: VOLATILE ORGANICS BY EPA METHOD 8260B Title

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T. QIon	Response Conc	Units Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 168 6.99 114 10.33 117	509186 50.	00 UG 0.00 00 UG 0.00 00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000	6.50 65 Range 43 - 133 8.66 98 Range 39 - 133	Recovery 570053 50.	
59) Bromofluorobenzene Spiked Amount 50.000	11.73 95 Range 23 - 14		57 UG 0.00 = 95.14%
Target Compounds			Qvalue

(#) = qualifier out of range (m) = manual integration

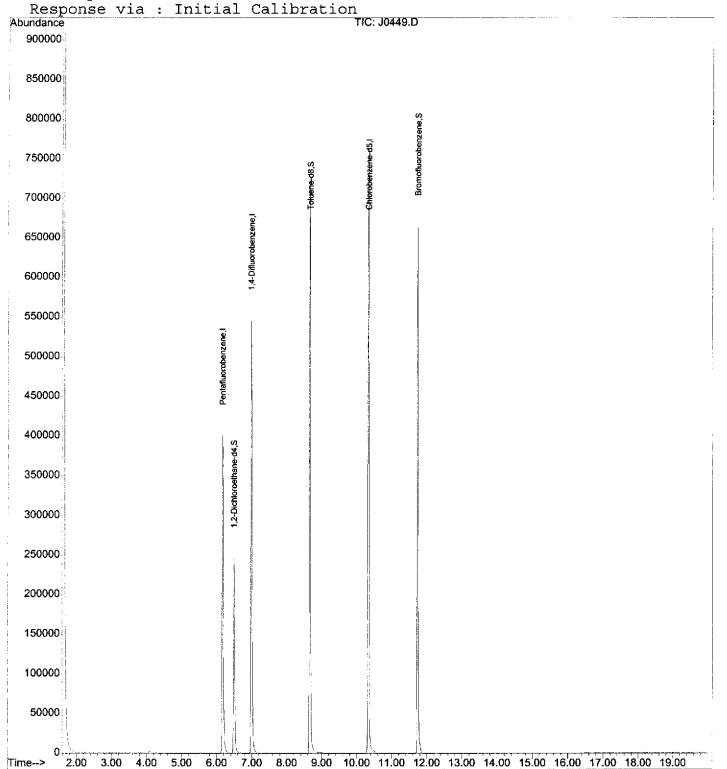
Data File : C:\MSDCHEM\1\DATA\01-27-09\J0449.D : 28 Jan 2009 Acq On 6:55 am

Operator: BINXU Inst : MSD J

Vial: 44

: FB(012009),00763-013,A,5ml,100 Sample : ARCADIS/KINGS ELEC, 01/20/09, 01/23/09, Misc

Multiplr: 1.00


MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:35 2009

Ouant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0450.D Vial: 45 Acq On : 28 Jan 2009 7:21 am Sample : FB(012109),00763-014,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/21/09,01/23/09, Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:49 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

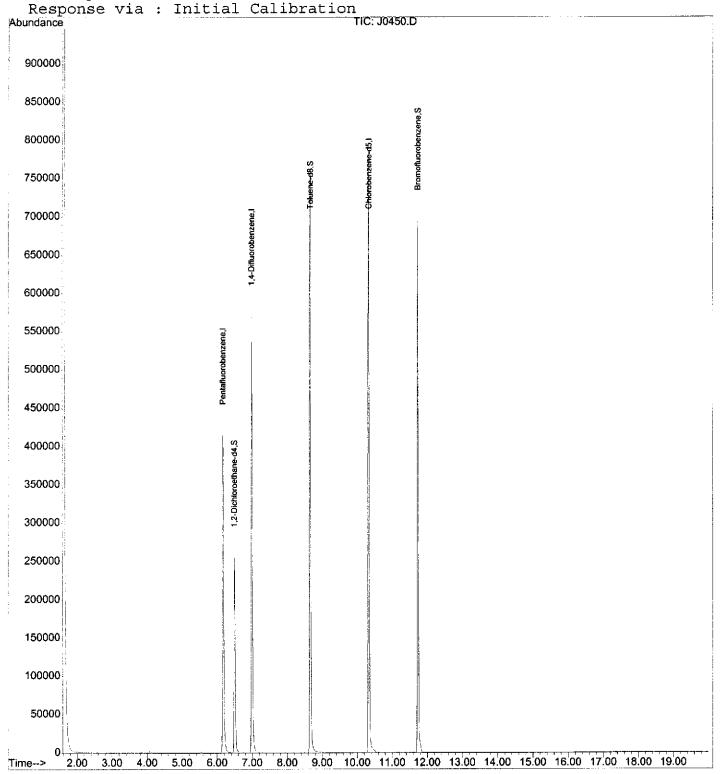
Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T. QIon	Response Conc	Units Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 168 6.99 114 10.33 117	527189 50.	0.00 UG 0.00 0.00 UG 0.00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8	6.50 65 Range 43 - 133 8.66 98	Recovery	33 UG 0.00 = 106.66% 26 UG 0.00
Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 39 - 137 11.73 95 Range 23 - 145	293571 47.3	= 100.52% 37 UG 0.00 = 94.74%

Target Compounds

Qvalue


^{(#) =} qualifier out of range (m) = manual integration

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:35 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0451.D Vial: 46 Acq On : 28 Jan 2009 7:47 am Operator: BINXU Inst : MSD J

Sample : FB(012209),00763-015,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:50 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration

DataAcq Meth : JAW0122

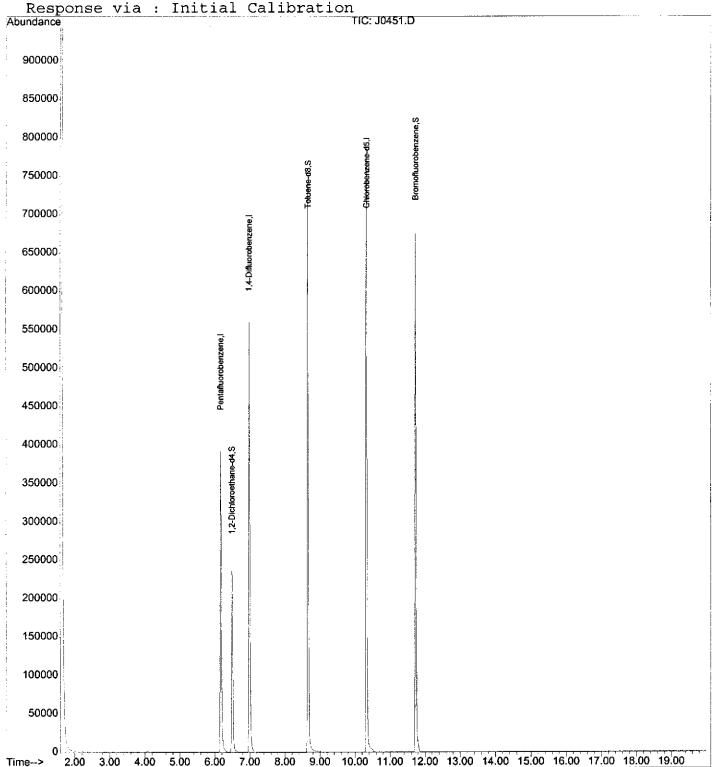
Internal Standards		R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) Pentafluorober 31) 1,4-Difluorober 50) Chlorobenzene	enzene	6.17 6.99 10.33	168 114 117	322485 521179 538227	50.00 50.00 50.00	UG	0.00
System Monitoring (30) 1,2-Dichloroet Spiked Amount		6.50 Range 43	65 - 133	209340 Recove	54.60 ry =	UG 109.20%	0.00
41) Toluene-d8 Spiked Amount	50.000	8.66 Range 39	98 - 137	575999 Recove	49.77	UG 99.54%	0.00
59) Bromofluorober Spiked Amount		11.73	95 - 145	291254 Recove	47.39	UG	0.00
Target Compounds						Ova	alue

Target Compounds

^{(#) =} qualifier out of range (m) = manual integration

Vial: 46

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0451.D


Acq On : 28 Jan 2009 7:47 am Operator: BINXU Sample : FB(012209),00763-015,A,5ml,100 Inst : MSD_J Misc : ARCADIS/KINGS ELEC,01/22/09,01/23/09, Multiplr: 1.00

MS Integration Params: $LS\overline{C}INT.P$

Quant Time: Jan 28 14:35 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0452.D Vial: 47 Operator: BINXU Acq On : 28 Jan 2009 8:13 am : TBLANK(012009),00763-016,A,5ml,100 Sample Inst : MSD J Misc : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:50 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

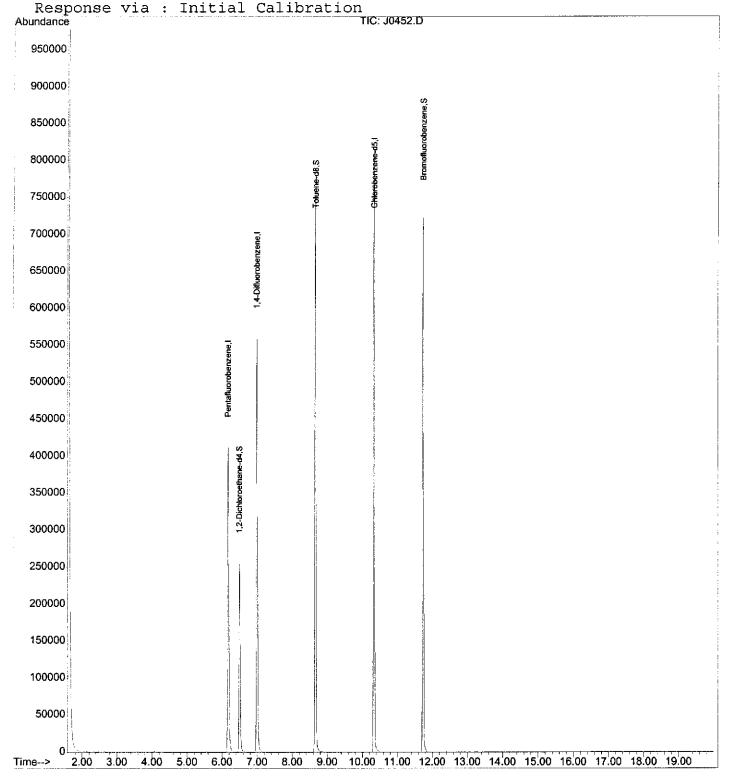
Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration

DataAcq Meth : JAW0122

Internal Standards	R.T. QIon	Response Conc U	nits Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 168 6.99 114 10.33 117	319715 50.00 519684 50.00 537972 50.00	UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.50 65 Range 43 - 133 8.66 98 Range 39 - 133 11.73 95 Range 23 - 145	Recovery = 580603 50.31 Recovery = 297337 48.40	110.48% UG 0.00 100.62% UG 0.00
Target Compounds			Qvalue


^{(#) =} qualifier out of range (m) = manual integration

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:35 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0453.D Vial: 48

Acq On : 28 Jan 2009 8:39 am Operator: BINXU Sample : PTW-2,00763-017,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Inst : MSD J Multiplr: $1.0\overline{0}$

MS Integration Params: LSCINT.P

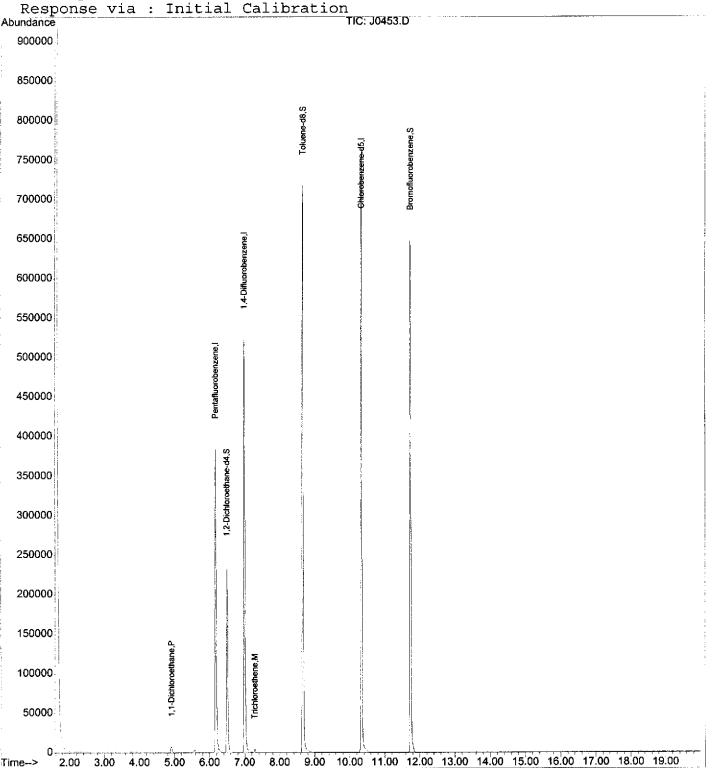
Quant Time: Jan 28 12:41:50 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009

Response via : Initial Calibration
DataAcq Meth : JAW0122


Internal Standards		R.T.	QIon	Response	Conc U	nits D	ev(Min)
1) Pentafluorobe 31) 1,4-Difluorob 50) Chlorobenzene	enzene	6.17 6.99 10.33	168 114 117	304566 491036 509057	50.00 50.00 50.00	UG	0.00 0.00 0.00
System Monitoring	Compounds						
30) 1,2-Dichloroe		6.50	65	198643	54.85	UG	0.00
Spiked Amount	50.000	Range 43	- 133	Recove:	ry =	109.7	0%
41) Toluene-d8		8.66	98	556523	51.04	UG	0.00
Spiked Amount	50.000	Range 39	- 137	Recove:	ry =	102.0	8%
59) Bromofluorobe	nzene	11.73	95	277204	47.69	UG	0.00
Spiked Amount	50.000	Range 23	- 145	Recove:	ry =	95.3	88
Target Compounds						(Qvalue
18) 1,1-Dichloroe	thane	4.91	63	10281	1.69	UG ;	# 88
33) Trichloroethe	ne	7.29	95	1718	0.52	UG	91

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:36 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0410.D

Vial: 7 Acq On : 27 Jan 2009 1:53 pm Sample : NA, METHOD-BLK, A, 5ml, 100 Operator: BINXU Inst : MSD J Multiplr: $1.0\overline{0}$

Misc MS Integration Params: LSCINT.P

Quant Time: Jan 28 12:41:38 2009 Quant Results File: JAW0122.RES

Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration

DataAcq Meth : JAW0122

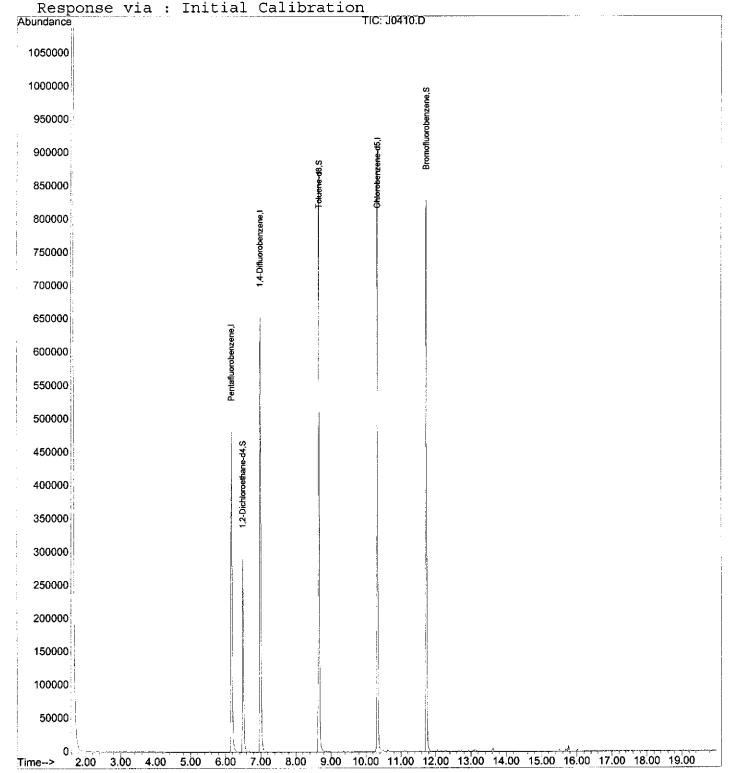
Internal Standards	R.T. QIon	Response Conc U	Jnits Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 168 6.99 114 10.33 117	383811 50.00 611239 50.00 615234 50.00) UG 0.00
System Monitoring Compound 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	s 6.50 65 Range 43 - 133	241512 52.92 Recovery =	UG 0.00
41) Toluene-d8 Spiked Amount 50.000	8.66 98 Range 39 - 137	679906 150.09	
59) Bromofluorobenzene Spiked Amount 50.000	11.73 95 Range 23 - 145	346796 49.37 Recovery =	' UG 0.00 98.74%

Target Compounds

Ovalue

^{(#) =} qualifier out of range (m) = manual integration J0410.D JAW0122.M Thu Jan 29 11:14:00 2009 MANAGER

Data File: C:\MSDCHEM\1\DATA\01-27-09\J0410.D Vial: 7


Acq On : 27 Jan 2009 1:53 pm Operator: BINXU Sample : NA, METHOD-BLK, A, 5ml, 100 Inst : MSD_J Misc : Multiplr: 1.00

MS Integration Params: LSCINT.P Quant Time: Jan 29 11:13 2009

Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Data File : C:\MSDCHEM\1\DATA\01-27-09\J0437.D Vial: 32

Acq On : 28 Jan 2009 1:46 am Operator: BINXU : NA, METHOD-BLK, A, 5ml, 100 Sample Inst : MSD J Multiplr: $1.0\overline{0}$ Misc

MS Integration Params: LSCINT.P

Ouant Results File: JAW0122.RES Quant Time: Jan 28 12:41:46 2009

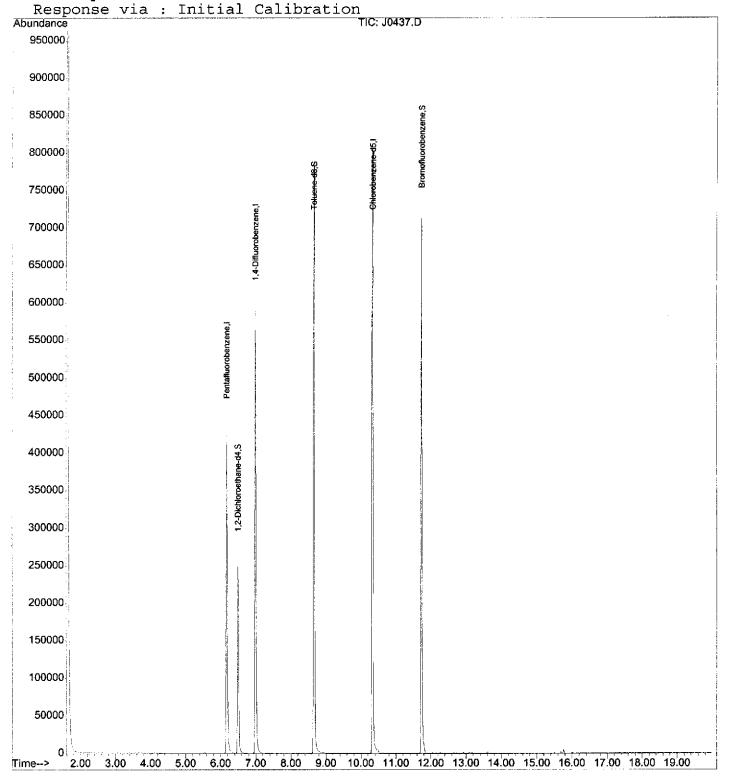
Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122

Internal Standards	R.T. QIO	n Response Conc	Units Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 16: 6.99 11: 10.33 11:	4 552447 50.	0.00 UG 0.00 0.00 UG 0.00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000	6.50 69 Range 43 - 13 8.65 99 Range 39 - 13	Recovery 611440 49.	= 103.14% 34 UG 0.00
59) Bromofluorobenzene Spiked Amount 50.000	11.73 99 Range 23 - 14		57 UG 0.00 = 95.14%
Target Compounds			Qvalue

(#) = qualifier out of range (m) = manual integration J0437.D JAW0122.M Thu Jan 29 11:17:01 2009 MANAGER


Sample : NA, METHOD-BLK, A, 5ml, 100 Inst : MSD_J Misc : Multiplr: 1.00

MS Integration Params: LSCINT.P

Quant Time: Jan 28 14:30 2009 Quant Results File: JAW0122.RES

Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)

Title : VOLATILE ORGANICS BY EPA METHOD 8260B

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

Randolph, NJ 07869 273 Franklin Rd

			TTE	ormat	ormat	custom	<u> </u>	REQ'D		***		3	<u>.</u>	a	Моде Епсот										
)T PLY IF		DISKETTE	SRP. dbf format	SRP, wkl format	ab approve	(a)	NO DISK/CD REQ'D		، ب	e saltatoa #	# DOLLLES & PRESERVATIVES			МеОн Отрег										
	T IS NC	i	ormat) ylı	 ∕§\					Cooler Temp	# Da	# DOI			OSZH EONH										
	USH TA GES WI		Report Format	Results Only	Kedhce	Regulatory - 15% Surcharge applies	Other (describe))		d	il.		HORN										-
(PM)	Tival. RI RCHAR			<u> </u>	%		-	<u> </u>							HCI	7									
Turnaround Time (starts the following day if samples rec'd at lab > 5PM)	*Lab notification is required for RUSH TAT prior to sample arrival, RUSH TAT IS NOT GUARANTEED WITHOUT LAB APPROVAL. **RUSH SURCHARGES WILL APPLY IF		Rush TAT Charge **		24 hr - 100%	72 hr - 50%	5 day - 25%																		
es rec'd	rior to s			Т шіп.)		:. Q Dr.:			ERS																
y if sampl	H TAT p			QAM025 (5 day TAT min.)	anation)	Results needed by:			RAMET																
lowing da	or RUSI LABAI	E,		QAM025	n for expl	ž C			AL PA																
rts the fol	equired t	MODAT	[2 3]		ients sectio	2 wk/Std	2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /		ANALYTICAL PARAMETERS		_		_												
Time (sta.	tion is re EED WI	ABLE TO ACCOMMODATE.	PHC- MUST CHOOSE	Œ)	SEE BELOW (under comments section for explanation))	AN																
iround 1	notificat RANT	E TO A	MUST	DRO (3-5 day TAT)	TOW (ur	Verbal/Fax	و م	Other *call for price																	
Turna	*Lab GUA	ABL	PHC.	DRO (3	SEE BE	Verba	Hard	Other *c			3フケ でり	۹ <u>کی</u>	<u>(2</u>	70	<u> </u>	ᅩ									>
		4 504					J. 44				N				IAL#	<u> </u>	4	7	بر.	ĺ	5	7	X	S	0
•	77	ダダ	15				ומקל				3000		aste Water	pecify)	# containers	2									
REPORTING INFO	Lngu	ert B	07445	200	e S	ر بر	218	797		2	Sol	Matrix	WW.W	T - Other (S W - Wipe	Matrix	40	ı								>
ORTIN	Roc	nahon	7.7	adni	1-14	read	uhan	1507		grig	23,00	Sample Matrix	Q - Aqueou	Specify) O	ne	0	26	و	1	9	11	74	-	ما	~
REP	ا بلنا ا	Ink	14 A	ni' K	1680	Ö.	Inkl	th, M	•	S.	4000		Water A	2 - Liquid (3 Sludge St	Sampling Time	0130	<u>S</u>	1156	13:17	1359	14:	74:01	1	SIII	1003
	Company: Arcadio n. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ddress:	Nuhu	Attn: Enil Rodnings	FAX# 201 684-1420	INVOICE TO: ACADS	Address: Inkinghonal Stud Sut 44 Hand Conn	Mahbah, NITOTYES		Attn: 60's Roduguez	50007.5000423,00057,00002		DW - Drinking Water AQ - Aqueous WW - Waste Water	OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Sludge SOL - Solid W - Wipe	Sau	Polosi	25,01 Polal	1/2/09	1/20/09	1/2/109	11:11/06/12/	121/09	1/21/09	1/21/08	1/22/09
,	~	335		¥	<u>E</u>	<u> </u>	<u> </u>			¥	<u>«</u>			<u> </u>	Γ'				•]			1	(
		2					205								Depth (ft. only)										
	Š	<u> </u>	2	0/1/2	02h1	ל לל	Lab	bin										(
CUSTOMER		onal	200	1-26	0211-489 (102)	ochic	,	Hec	N_{γ}			t:		ATION		20	52	365	. ^	7			(6)		7
cust	radio	JOHN	\$	2) 6 2	رز 6	G	Schre	477.5	State):					FORM.		<u>-</u> dh	. HP-	3 S	79-	∩ι	4 D	98	21210	-13	36
	Company: Arcadio	150	This I	Telephone #: (201) 684- 1410	B	Project Manager: 6, Rochigues	Sampler: DASCHW, CLOONS	Project Name: KINIS CHECKIC	Project Location (State):	Bottle Order #:				SAMPLE INFORMATION	<u> </u>	MW-HP-2D	MW-HP-25	05-MW-3PL	MW-65	05-MW	MW-9D	Sb -MW	DUP(012109)	81-MW	05-MW-2
	Сотра	Address	Park	Telepho	Fax #:	Project	Sample	Project.	Project	Bottle (: # atonŌ	,		SAMI	Client ID	"	_		1	O	Z	,	Δ	_	J

Comments: ambiguities have been resolved.

Samuel Company	Date	1100	Organia Continua		
Relinquished by:	Jero!!	11:21	Received by:	1514	
Redinquished by	1/2/1	8 OL 18	23/ 9/70 8 Received by:	MAZI	DRO (2845B) - used for: Fuel Oil
Refinquished by:	/ /		Received by:		QAM-025 (OQA-QAM025) - used
Relinquished by:			Received by:		Lab Case #
R_{i} quished by:			Received by:		59/_00
ANIA - ABOO ENSELO: MOLLIAN & SETHEM - SELOC. 1				÷	

72/Home Heating Oil #1 /#2 for: all other fuel oils and unknown contamination PAGE:

5 82

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd Randolph, NJ 07869

CUSTOMER	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd at lab > 5PM)	it lab > 5P/M)		
Company:	REPORT TO:	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT	ample arrival. RI	SH TAT IS N	OT
\	Address: I Introutinal Blid So to 406	GUARANTEED WITHOUT LAB APPROVAL. **RUSH SURCHARGES WILL APPLY IF ABLE TO ACCOMMODATE.	USH SURCHAR	ES WILL A	PLY IF
Mahush, W. Ony 45	Mahcah, WJ 07495	PHC. MUST CHOOSE	Rush TAT Charge **	Report Format	DISKETTE
Telephone #: 201 684-1410	AMI FOC RODIGUEZ	DRO (3-5 day TAT) · QAM025 (5 day TAT min.)		Results Only	SRP. dbf format
Fax#: 201 (84-1450	FAX# 201 684-1420	SEE BELOW (under comments section for explanation)		Reduced	SRP.wk1 format
Project Manager: E, Rahnyuzz	INVOICE TO:	Verbal/Fax 2 wk/Std) Account 15.		Regulatory - 13% Surcharge applies	lab appraved custom
Sampler: DKISChow, CLapius	Address: PG 001	Copy 3 wk/6	5 day - 25% O 6-9 day 10%	Other (describe)	gg ₂
Project Name: KINS E KANIC		orice			NO DISK/CD REQ'D
Project Location (State): NY	H DOWN	ANALYTICAL PARAMETERS		Cooler Temn	، ۲
Bottle Order #:	Attn:	2 1		The state of the s	╁║
Quote # :	PO#	17		# 80	# BOTTLES &
	Sample Matrix) (1) 2)	***	PRESE	PRESERVATIVES
SAMPI E INEOPMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water OI - Oil LIQ - Liquid (Specify) OT - Other (Specify)	<u></u>		_	
	S Soil SL Sludge SOL Solid W Wipe			ьс	HQ 19
Client ID Depth (ft. only)	Sampling Matrix containers IAL#		HCI	OBN OBN	Enc Non Orb
7204-09	1/22/09 1002 AQ 2 11	×	, 0	-	
(3P-104R	1/2d/09/ 1102 12				
F6/012004)	1/20/09 1015 12				
F8/01210g)	hi cusi polis/i				
F6(0,2204)					
T BLANK/GI 2004)	11219 0800 V V			 	
PTW-2	1	<u>×</u>		2	
Known Hazard: Yes or No Describe:		Conc. Expected: Low Med High	·		
Please print legibly and fill out completely. San	nples cannot be processed and the turnaround ti	Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any MDL Req: Old GWQS - 11/05 GWQS - SCC - OTHER (SEE COMMENTS)	705 GWQS - SCC	:-OTHER (S	EE COMMENTS)
Lough no the state house word from					

Comments: Signature/Company Time ambiguities haye been resolved.

/ Signature/Compshy

8 1112			
Relinquished by Man	boke/	120	12.(/ Received by:
Relinquished fr:	122/ch	10 p	(12)/4 NO & Received by: ()
Relinquished by:			Received by:
Relinguished by:			Received by:
I_nquished by:			Received by:
LO COPIES - WHITE & YELLOW; CLENT COPY - PINK			

DRO (8015B) - used for: Fuel Oil #2/Home Heating Oil #1 /#2 QAM-025 (OQA-QAM025) - used for: all other fuel oils and unknown contamination

Lab Case #

PAGE: 2 of 2

PROJECT INFORMATION

Case No. E09-00763 Project KINGS ELECTRIC - VENDOR #1168636 NJ000423.0005.000(Arcadis Geraghty & Miller P.O. # Customer Contact Received 1/23/2009 17:08 Eric Rodriguez **EMail** Verbal Due eric.rodriguez@arcadis-us.com EMail EDDs 2/9/2009 Phone (201) 684-1410 Fax 1(201) 684-1420 Report Due 2/17/2009 Report To Bill To 465 New Karner Road 640 Plaza Drive Suite 130 Albany, NY 12205 Highlands Ranch, CO 80129 Attn: Accounts Payable Attn: Eric Rodriguez Report Format Reduced Conditional VOA State Form Field Sampling Additional Info Client Sample ID Depth Top / Bottom Sampling Time <u>Matrix</u> Lab ID <u>Unit</u> # of Containers 00763-001 MW-HP-2D 1/20/2009@09:10 Aqueous ug/L 2 n/a 00763-002 MW-HP-2S 1/20/2009@10:26 Aqueous ug/L 2 n/a 2 00763-003 OS-MW-3PL n/a 1/20/2009@11:56 Aqueous ug/L 00763-004 MW-6S 1/20/2009@13:17 Aqueous ug/L 2 n/a 2 OS-MW-1 1/21/2009@13:59 Aqueous ug/L 00763-005 n/a 00763-006 MW-9D 1/21/2009@14:11 Aqueous ug/L 2 n/a 00763-007 MW-9S 1/21/2009@10:42 Aqueous ug/L 2 n/a 2 00763-008 DUP(012109) n/a 1/21/2009 Aqueous ug/L 00763-009 MW-13 1/21/2009@11:15 Aqueous ug/L 2 n/a 2 OS-MW-2 00763-010 1/22/2009@10:03 Aqueous ug/L n/a 00763-011 GP-103R 1/22/2009@10:02 Aqueous ug/L 2 n/a 2 00763-012 GP-104R n/a 1/22/2009@11:02 Aqueous ug/L 2 00763-013 FB(012009) 1/20/2009@10:15 n/a Aqueous ug/L 2 00763-014 FB(012109) 1/21/2009@12:00 Aqueous n/a ug/L

1/22/2009@09:15

1/22/2009@13:53

1/20/2009

Aqueous

Aqueous

Aqueous

ug/L

ug/L

ug/L

Sample # Tests		<u>Status</u>	QA Method
001 PP VOA + Cis 1,2-DCI	3	Run	8260B
002 PP VOA + Cis 1,2-DCI	3	Run	8260B
003 PP VOA + Cis 1,2-DCI	3	Run	8260B
004 PP VOA + Cis 1,2-DCI	3	Run	8260B
005 PP VOA + Cis 1,2-DCF	3	Run	8260B
006 PP VOA + Cis 1,2-DCI	3	Run	8260B
007 PP VOA + Cis 1,2-DCI	3	Run	8260B
008 PP VOA + Cis 1,2-DCI	3	Run	8260B
009 PP VOA + Cis 1,2-DCI	3	Run	8260B
010 PP VOA + Cis 1,2-DCI	3	Run	8260B
011 PP VOA + Cis 1,2-DCI	3	Run	8260B

n/a

n/a

n/a

00763-015

00763-016

00763-017

FB(012209)

PTW-2

TBLANK(012009)

2

2

2

PROJECT INFORMATION

Case No. E09-00763 Project KINGS ELECTRIC - VENDOR #1168636

Sample #	Tests	5	Status	QA Method	
012	PP VOA + Cis 1,2-DCE	· · · · · · · · · · · · · · · · · · ·	Run	8260B	1.0
013	PP VOA + Cis 1,2-DCE		Run	8260B	
014	PP VOA + Cis 1,2-DCE		Run	8260B	
015	PP VOA + Cis 1,2-DCE		Run	8260B	
016	PP VOA + Cis 1,2-DCE		Run	8260B	; ; ;
017	PP VOA + Cis 1,2-DCE		Run	8260B	

INTEGRATED ANALYTICAL LABORATORIES, LLC

SAMPLE RECEIPT VERIFICATION

CASE NO: E 09 00763	CLIENT:	Arcadis
COOLER TEMPERATURE: 2° - 6°		Custody) Comments
COC: COMPLETE)/ INCOMPLET KEY = YES/NA = NO	JE	
✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles		
✓ Sufficient Sample Volume ✓ no-headspace/bubbles in V0 ✓ Labels intact/correct ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time Sample to be Subcontracted		
¹ All samples with "Analyze Immediately" holding times the following tests: pH, Temperature, Free Residual (ADDITIONAL COMMENTS:		
SAMPLE(S) VERIFIED BY: INIT	RED: YES	DATE 123 00 NO NO
CLIENT NOTIFIED: Y	ES Date/ Time: _	NO
PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED:		
ADDITIONAL COMMENTS:		
VERIFIED/TAKEN BY: INI	TIAL	DATE /66 09 REV 02/09 086

Laboratory Custody Chronicle

IAL Case No.

E09-00763

Client Arcadis Geraghty & Miller

Project KINGS ELECTRIC - VENDOR #1168636

Received On 1/23/2009@17:08

Department: Volatiles			Prep. Date	<u>Analyst</u>	Analysis Date	<u>Analyst</u>
PP VOA + Cis 1,2-DCE	00763-001	Aqueous	n/a	n/a	1/27/09	Xing
It	-002	11	n/a	n/a	1/27/09	Xing
и	-003	11	n/a	n/a	1/27/09	Xing
#I	-004	11	n/a	n/a	1/27/09	Xing
11	-005	11	n/a	n/a	1/28/09	Xing
н	-006	11	n/a	n/a	1/28/09	Xing
n	-007	*1	n/a	n/a	1/28/09	Xing
11	-008	ч	n/a	n/a	1/28/09	Xing
11	-009	11	n/a	n/a	1/28/09	Xing
**	-010	11	n/a	n/a	1/28/09	Xing
· ·	-011	19	n/a	n/a	1/28/09	Xing
R	-012	**	n/a	n/a	1/28/09	Xing
H .	-013	11	n/a	n/a	1/28/09	Xing
и	-014	H	n/a	n/a	1/28/09	Xing
И	-015	IŤ	n/a	n/a	1/28/09	Xing
· ·	-016	it.	n/a	n/a	1/28/09	Xing
II .	-017	l†	n/a	n/a	1/28/09	Xing

Review and Approval:

Joseph A Ben W