
ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

October 30, 2009

Nicole M. Bonsteel, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E 625 Broadway, 12th Floor Albany, New York 12233-7017

Re: Post-Remedial Annual Report, Year 1 (August 2008-July 2009) Kings Electronics Co., Inc./Weissman Holdings, Inc. (Kings) VCP #V00237-3 40 Marbledale Road Tuckahoe, Westchester County, NY

Dear Ms. Bonsteel:

On behalf of Weissman Holdings, Inc., formerly Kings Electronics Co., Inc. (Kings), Environmental Management, Ltd. (EML) submits this Annual Report and Evaluation in connection with the post-remedial operations, maintenance and monitoring (OM&M) activities for the site located at 40 Marbledale Road, Tuckahoe, Westchester County (the Site). This report is for the year ending July 31, 2009, which includes the first four quarters of post-remedial groundwater monitoring.

Groundwater Monitoring

A "Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater-Year 1" prepared and certified by ARCADIS is being submitted herewith under separate cover and incorporated by reference. Groundwater sampling was carried out quarterly, in October 2008, and in January, April, and July 2009. ARCADIS's report summarizes these four quarters of monitoring and includes the following:

- A location map;
- A site map;
- All quarterly monitoring data, including test methods, analytical reports, summary data tables and a Site map with sampling locations and any corresponding significant analytical values;
- A description of the annual inspections of the Injection and On-Site Monitoring Wells with Monitoring Well Field Inspection Logs attached, as well as a description of any damage and/or repairs in connection with any injection or monitoring well; and
- Comments, conclusions and recommendations based on an evaluation of groundwater monitoring results, injection and monitoring well integrity.

On-Site Sub-Slab Depressurization (SSD) System

The SSD System at the site became operational in March 2008. An On-Site OM&M/Site Management Plan for Sub Slab Depressurization Installed at Storage Deluxe dated May 16, 2008 (the SSD OM&M Plan) was approved by NYSDEC and NYSDOH (the State) on August 6, 2008.

Pursuant to the SSD OM&M Plan, on March 12, 2009, post-mitigation indoor air quality (IAQ) testing for the Storage Deluxe facility was carried out by EML and Geovation Engineering, PC (Geovation) personnel. EML's IAQ report was submitted to NYSDEC on June 29 and is included in Attachment A. No further air monitoring is required.

In addition, inspection and routine maintenance of the SSD system was carried out in accordance with the SSD OM&M Plan on May 21, 2009 by Bruce Munson, Project Manager, EML and Nick Mouganis, President Mitigation Tech (the SSD installer). An "OM&M Report (Routine Maintenance)" was prepared and submitted to the State on August 10, 2009, a copy of which is included as Attachment B. Based on the results of the inspection and routine maintenance, Mr. Mouganis certified the continued effectiveness of the on-site SSD system (see Attachment B, Exhibit 5, p.2). A SSD Annual Certification prepared by EML, as required by Section 8 of the SSD OM&M Plan, is included as Attachment C.

<u>Soil</u>

Areas of residual soil contamination at the Site (below the 6 NYCRR Part 375 Restricted Use Commercial Soil Cleanup Objective for the Protection of Public Health) are located beneath the building foundation (immediately south of the former Kings degreaser area and within the sub-slab soils adjacent to GP-104R and GP-103R) or asphalt surface (within the central alley.) NYSDEC agreed to allow Kings to address this soil as part of a Deed Restriction, which has not yet been approved or filed. It is anticipated that the Deed Restriction will prohibit any disturbance of the Site's sub-surface soil or its current building foundations and asphalt cover (the Soil Cover) except in accordance with a NYSDEC approved Site-specific Soil Management Plan (SMP) and Health and Safety Plan (HASP).

A Figure showing the existing soil cover (i.e.; building foundations and asphalt cover after the State approved renovations by the current owner were completed) is attached, "Surface Area Showing Buildings, Asphalt/Concrete, Bedrock Outcrops and Soil."

This Post-Remedial Annual Report confirms that Kings has not engaged in any subsurface or soil cover disturbance activities. (The current owner/operator has a State-approved Soil Management Plan in connection with its activities.) This Report also confirms that the Site's soil cover remains intact (i.e., as it appears on the Figure) and its configuration remains unchanged.

Very truly yours,

Environmental Management, Ltd.

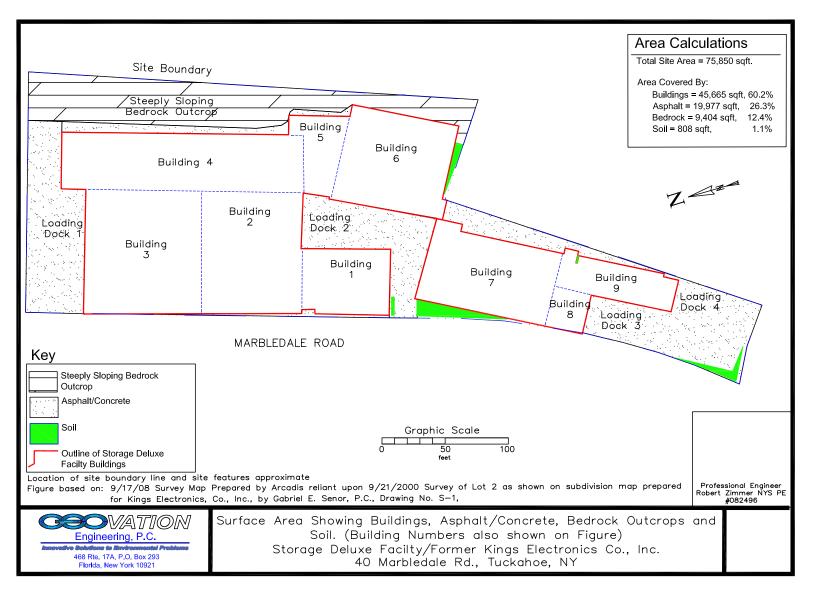
Donald J. Wanamaker

Donald J. Wanamaker President pc:

Carl Obermeyer Bureau of Environmental Exposure Investigation Monticello District Office 50 North Street, Suite 2 Monticello, New York 12701-1711

Mr. James Moras Environmental Engineer II New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor Albany, New York 12233-7017

William E. Wertz, Ph.D.
Senior Engineering Geologist
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, NY 12233


Mark VanValkenburg Bureau of Environmental Exposure Investigation Mid Hudson Section New York State Department of Health Flanigan Square, 547 River Street – 3rd Floor Troy, NY 12180-2216

Michael Lesser New York State Department of Environmental Conservation Division of Environmental Enforcement 625 Broadway, 14th Floor Albany, New York 12233-5500

Charles Goldberger, Esq. McCullough, Goldberger & Staudt 1311 Mamaroneck Avenue White Plains, New York 10605

FIGURE

Surface Area Showing Buildings, Asphalt/Concrete, Bedrock Outcrops, and Soil

ATTACHMENT A

To Post-Remedial Annual Report

ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

Post-Mitigation Indoor Air Quality Testing 40 Marbledale Road, Tuckahoe, Westchester County, NY Formerly Kings Electronics Co., Inc. Site No. V 00234-3 June 2009

On behalf of Weissman Holdings, Inc. (formerly Kings Electronics Co., Inc.), and in accordance with the *Sampling and Analytical Procedure for Post-Mitigation Indoor Air Sampling* as submitted in March 2009, Environmental Management, Ltd. (EML) performed indoor/outdoor air testing at 40 Marbledale Road (currently a self storage facility operated by Storage Deluxe) on March 12, 2009.

This report (designed as an Addendum to the NYS Department of Environmental Conservation and the NYS Department of Health approved Operation, Maintenance & Monitoring Plan) summarizes the March 2009 test results.

A. Storage Deluxe Post Mitigation Indoor Air Quality (IAQ) Sampling Locations

Post mitigation IAQ sampling sites were selected within all areas where a SSD system had been installed. Sampling was conducted in all buildings where pre-mitigation samples were collected. Two additional locations were needed.

Diagrams of Building A and Building B of this facility (Attachment A) identify each of the seven locations sampled as follows:

- SSD-1, Showroom area of Building 1.
- SSD-2 #1155, Central corridor of Building 3, near the site of the former degreaser.
- SSD-3 #1027, Central East/West corridor of Building 2.
- SSD-4 #1325, North central corridor of Building 6.
- SSD-5 #0054, Western corridor of Building 7 basement.
- SSD-6 #1444, Central corridor of Building 9.
- Outdoor sample near the Loading Dock of Building 3.

B. Preparation for Post Mitigation IAQ Sampling

On February 19, 2009, EML conducted a pre-sampling inspection and inventory. The standard "New York State Department of Health Indoor Air Quality Questionnaire and Building Inventory" prescribed by the Center for Environmental Health was completed (Attachment B). A visual inspection of the Showroom identified items for sale, such as cardboard boxes and packaging materials (e.g.; plastic peanuts, foam and bubble wrap). The Maintenance Room, in Building 2, contained a variety of cleaning, painting and pesticide *Indoor/Outdoor Air Quality Sampling Report Storage Deluxe*

Storage Deluxe Tuckahoe, NY June 2009 supplies, as well as gasoline powered tools. Individual customer storage units were either locked (i.e.; not accessible) or empty (i.e.; not yet rented).

In preparation for sampling, 6-liter Summa canisters (certified clean and each having a vacuum pressure of - 29.5 inches Hg) and flow controllers calibrated for 8-hour collection periods, were obtained from Columbia Analytical Services, Inc. Air Quality Laboratory (CAS), located in Simi Valley, California (NELAP certified; NY lab ID No:11221).

C. Post Mitigation IAQ Sampling Plan

For purposes of indoor air quality in each area with a sub-slab depressurization system, IAQ sampling was performed to evaluate concentrations of contaminants of concern, and for comparison, concentrations in the ambient, outdoor air.

D. Post Mitigation IAQ Sampling Procedure

Indoor air samples were obtained at seven locations using eight 6-liter Summa canisters as described above. Each 6-liter Summa canister, equipped with a flow controller that was lab-calibrated for 8-hour sampling, was set at approximately 31/2 to 4 ft. height (within the "living/breathing zone"). Sample start time was approximately between 9:00 and 10:00 a.m. and stop time was approximately between 4:30 and 5:30 p.m. on March 12, 2009. At the end of the sampling period, the canister valve was closed and the flow controller removed. All data was recorded on the Chain of Custody (included within attachment C). Sampling locations are indicated within the Storage Deluxe (SD) floor plans included as Attachment A.

E. Laboratory Analysis

All Summa canister samples and the trip blank from the March 12, 2009 sampling event were shipped with Chain of Custody, via Federal Express, to CAS.

All samples were analyzed for volatile organic compounds utilizing USEPA Method TO-15 (full parameter list) with laboratory data deliverables Category B requested, and in accordance with the Quality Assurance Program of CAS. In addition, a Data Usability Summary Report (DUSR) was prepared by EcoChem, Inc., 710 Second Avenue, Suite 660, Seattle, Washington 98104, an independent data validator. A summary of the analytical results for SD is included in Table I. Laboratory data sheets for each sample collected are also included - see Attachment C.

F. Personnel

Bruce Munson, Project Manager (EML) Melinda Horan, Certified Industrial Hygienist (EML) Matthew Mordas, Field Operations Manager (Geovation Engineering, PC)

TABLES AND ATTACHMENTS

The following table is included as part of this report.

Table I - Results from March 2009 Indoor Air Sampling - Storage Deluxe.

Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009 Attachment A – Storage Deluxe IAQ Sampling Locations, Building A and Building B.

Attachment B – New York State Department of Health Indoor Air Quality Questionnaire and Building Inventory for Storage Deluxe prepared by EML 2/19 to 3/12/09.

Attachment C -- Laboratory data sheets for each sample, from DUSR.

Attachment D – Draft transmittal letter to Steven Novenstein, Storage Deluxe.

Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009

TABLE 1

Results from March 2009 Indoor Air Sampling – Storage Deluxe

40 Marbledale Road, Tuckahoe, Westchester County, New York

Location	Showroom	Bldg. 3/4	Bldg. 2/4	Bldg. 5/6	Bldg. 7	Bldg. 8/9	Outdoor
Sample Date	03/12/09	03/12/09	03/12/09	03/12/09	03/12/09	03/12/09	03/12/09
Sample ID	SSD-1	SSD-2	SSD-3	SSD-4	SSD-5	SSD-6	Ambient
Canister ID	AC01028	AC00799	AC01401	AC01454	AC01377	AC01189	AC00893
Compound							
Trichloroethene	1.8	6.0	3.6	0.64	1.5	0.15	0.28
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	1.8	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND
Acetone	16	23	21	10	22	ND	7.6
Benzene	ND	1.1	0.96	ND	1.2	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	
Ethylbenzene	3.5	17	17	9.1	38	4.2	ND
m&p-Xylenes	12	64	61	33	140	15	ND
2-Butanone (MEK)	1.5	3.3	2.8	1.6	2.3	0.96	0.82
Methyl isobutyl ketone (4-Methyl-2-pentanone)	ND	1.8	1.6	ND	ND	ND	ND
Methylene chloride	ND	ND	0.72	ND	ND	ND	ND
o-Xylene	4.6	21	20	10	56	4.2	ND
Toluene	2.5	6.7	5.3	1.8	6.4	1.0	1.3
Trichlorofluoroethane	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	1.2	1.3	1.3	1.2	1.2	1.2	1.2
1,4-Dichlorobenzene	ND	1.9	1.6	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND		ND
Carbon Tetrachloride	0.47	0.53	0.52	0.49	0.50	0.52	0.50
Additional:							
Propene	4.7	4.3	3.6	1.1	2.1	0.87	0.82
CFC-12	3.2	2.6	2.5	2.2	2.3	2.3	2.3
Ethanol	120	100	78	14	23	11	ND
Acrolein	ND	ND	0.94	ND	1.3	ND	ND
2-Propanol	21	17	14	2.9	3.8	2.0	2.8
Ethyl Acetate	1.3	2.1	1.9	1.7	1.5	3.6	ND
n-Hexane	ND	2.6	1.8	ND	1.4	ND	ND
Tetrahydrofuran (THF)	ND	ND	ND	ND	0.97	ND	ND

Results are reported in micrograms per cubic meter (mcg/m³ or µg/m³)

ND - Not detected above quantification limit

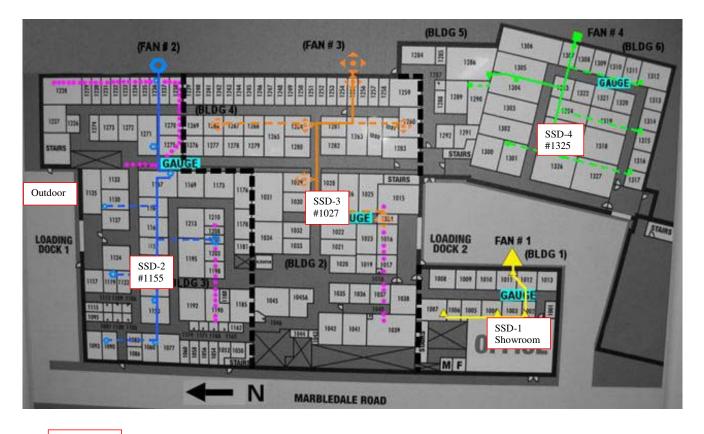
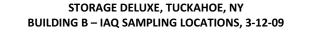
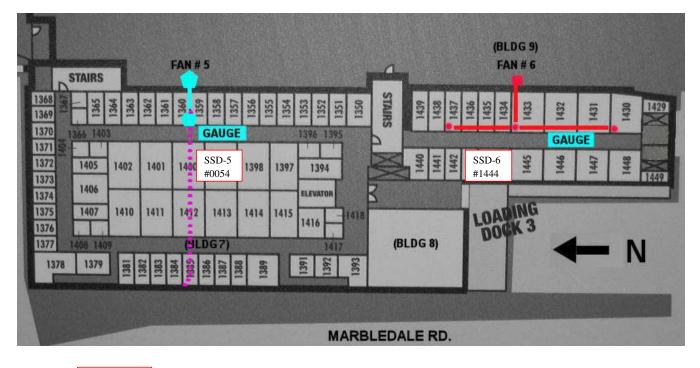

Location Showroom Bldg. 3/4 Bldg. 2/4 Bldg. 5/6 Bldg. 7 Bldg. 8/9 Outdoor Sample Date 03/12/09 03/12/09 03/12/09 03/12/09 03/12/09 03/12/09 03/12/09 Sample ID SSD-1 SSD-2 SSD-3 SSD-4 SSD-5 SSD-6 Ambient AC00799 Canister ID AC01028 AC01401 AC01454 AC01377 AC01189 AC00893 Compound 0.94 ND ND ND 0.96 ND ND Cyclohexane n-Heptane ND 1.5 1.1 ND 0.83 ND ND ND ND 0.86 ND ND ND ND n-Butyl Acetate n-Octane ND 0.87 0.74 ND 1.4 ND ND ND ND ND ND ND Styrene 0.81 0.69 ND n-Nonane 1.5 4.3 3.7 4.6 43 ND ND Cumene ND 0.99 1.4 ND 6.1 ND ND ND ND alpha-Pinene 1.6 2.7 2.0 14 23 ND ND n-Propylbenzene 0.83 3.3 4.1 1.9 4-Ethyltoluene 1.5 6.3 6.8 3.7 44 1.3 ND 1,3,5-Trimethylbenzene 7.7 12 40 ND 1.8 3.8 1.3 1,2,4-Trimethylbenzene 5.2 22 30 11 130 3.8 ND ND d-Limonene 4.0 3.2 1.4 ND 2.3 ND Naphthalene 3.3 29 30 4.8 1.3 ND ND

TABLE 1

Results are reported in micrograms per cubic meter (mcg/m³ or μ g/m³) ND - Not detected above quantification limit


ATTACHMENT A


Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009

STORAGE DELUXE, TUCKAHOE, NY BUILDING A – IAQ SAMPLING LOCATIONS, 3-12-09

Sample ID Locker #

Sample ID Locker #

ATTACHMENT B

Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009 OSR-3

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Bruce Munson Date/Time Prepared	1_2/19/09-3/12/09
Preparer's Affiliation Enviro. Mgt. Ltd Phone No. 845	
Purpose of Investigation Post M. t. gation Indoor A	ir Quality
1. OCCUPANT: Storage Deluxe	
Interviewed: WN Site Manager	
Last Name: O'Donnell First Name: Lauren	
Address: 40 Marbledele Road, Tuckahoe, N)	70701
County: Westchester	
Home Phone: Office Phone: 914 - 337 - 166	6
Number of Geoupants/persons at this location $2 - 3$ Age of Occupants	
2. OWNER OR LANDLORD: (Check if same as occupant)	
Interviewed: VID Marble dale Road LLC clo Sta	orage Deluxe
Last Name: Novenstein First Name: Steven	
Address: 50 Main Street, Swite 812 White Pla	UNS NY 10606
County: Westchester	
Home Phone: 0ffice Phone: 914-997-9211	

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential	School	Commercial Multi-use
Industrial	Church	Other Self Storage

2

If the property is residential, type? (Circle appropriate response)

3-Family
Colonial
Mobile Home
Townhouses/Condos
Other:

If multiple units, how many? _____

If the property is commercial, type?

Business Type(s) _Selfstor	aye	
Does it include residences (i.e., multi-use)?	? Y (N) If yes, how many?	
Other characteristics:	Seven structura (units Building age 1890 - 1980 Renovation 2	DOG
Number of floors 1 +0-3	Building age 1890 - 1980 12enouce, 04 2	.000
Is the building insulated (Y) N	How air tight? Tight Average / Not Tight	

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors Negligible. Multistory portions have enclosed fire starwells.

Airflow near source

Source area removed.

Outdoor air infiltration

Negligible, except at loading docks

Infiltration into air ducts

Overhead HVAC units, installed 2006

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	BHAD 7	crawlspace	All others stab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	in common spaces
e. Concrete floor:	unsealed	sealed	sealed with	paint
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	(unsealed)	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	(finished)	unfinished	partially finis	hed
j. Sump present?	YN			
k. Water in sump? Y /	N /not applicable	>		
Basement/Lowest level depth belo	w grade: <u>4</u>	(feet)		

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

C Stream	radiation	Hot water baseboard Radiant floor Outdoor wood boiler	Other
is:			
		Kerosene Solar	
d by: Natur	algers -	Bldglonly	
1		Main Floor	Other
Central Air FC cents	Window units	Open Windows	None
	C Stream Wood s is: Fuel Oi Propane Coal d by: Natur	Wood stove is: Fuel Oil Propane Coal d by: Naturel ges - Basement Outdoors	C Stream radiation Radiant floor Wood stove Outdoor wood boiler is: Fuel Oil Kerosene Propane Solar Coal d by: <u>Natural gess - Bldg I only</u> Basement Outdoors Main Floor

Are there air distribution ducts present?

NA

NA

3rit Floor

4th Floor

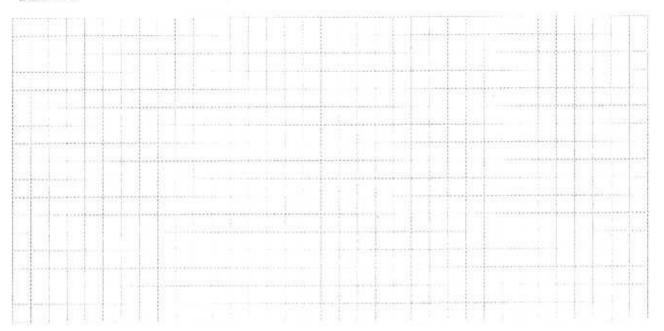
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Mul.	liple HVAC units throughout buildings.
All	new installation, 2006.
7. OCCUP	ANCY
Is basement	lowest level occupied? Full-time Occasionally Seldom Almost Never
<u>Level</u>	General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)
Basement	Building 7 - selfetorage
1" Floor	Building 1 - office/showroom. Allothers selfstorage
2 nd Floor	Selfatorage

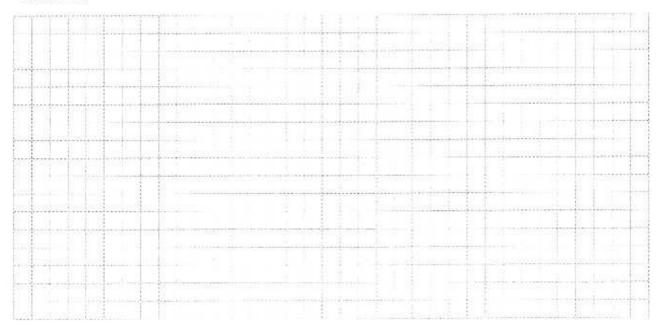
8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

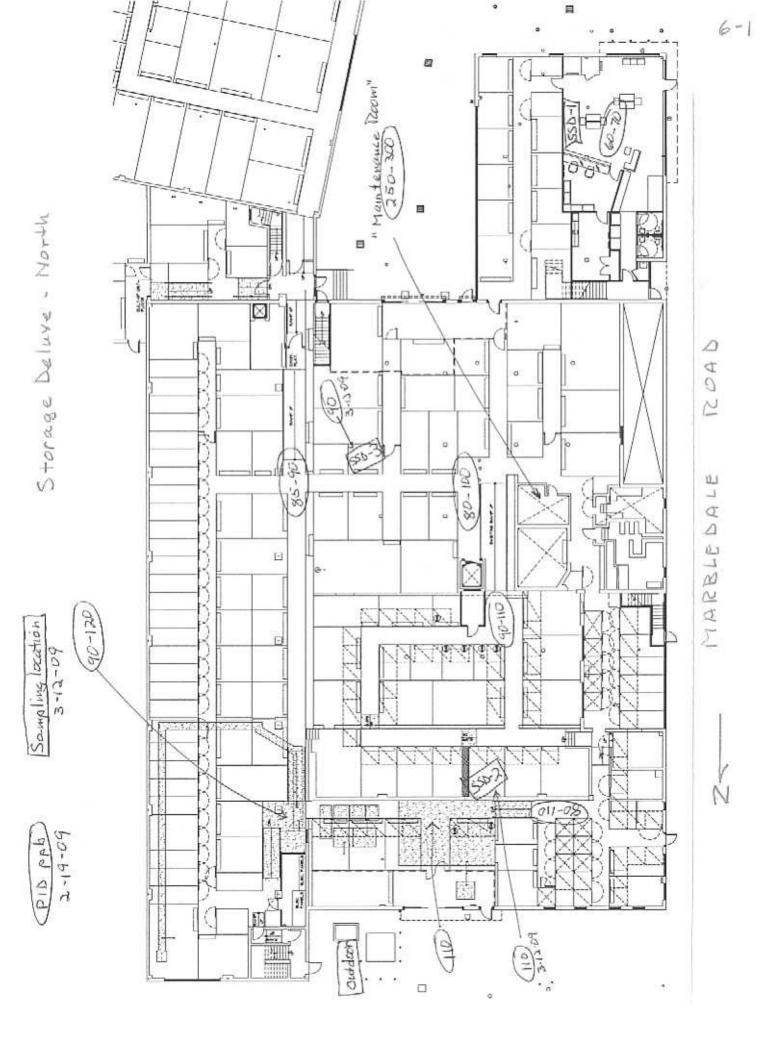
a. Is there an attached garage?	Y NO
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car) Maintenance FOOM	(Y)N/NA Leathlowen Please specify Gasoline container
d. Has the building ever had a fire?	Y/N When? 1980's
e. Is a kerosene or unvented gas space heater present?	Y N Where?
f. Is there a workshop or hobby/craft area?	() N Where & Type? Maintenance room
g. Is there smoking in the building?	Y (N) How frequently?
h. Have cleaning products been used recently?	(V) When & Type? Daily & Suspended IAQ sampling
i. Have cosmetic products been used recently?	Y N When & Type?
* Showroom floor-clean wax Shinysurface cleaners-glass	s, stamless steel trim, railings etc.

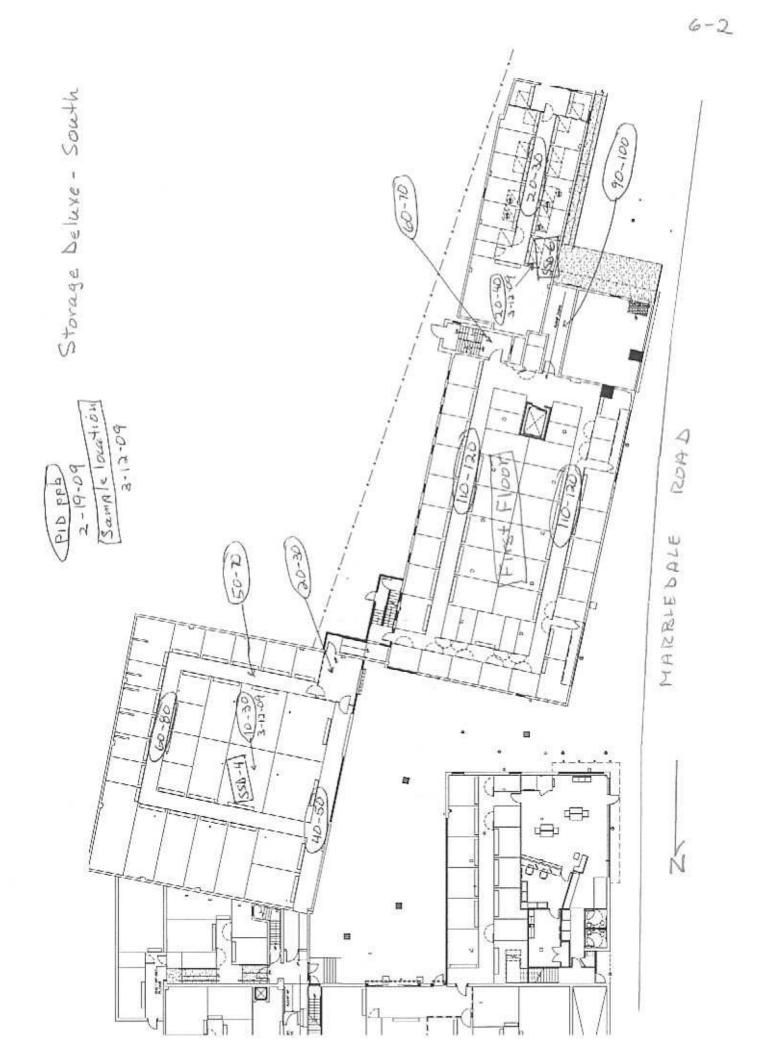
(VN Building lonly

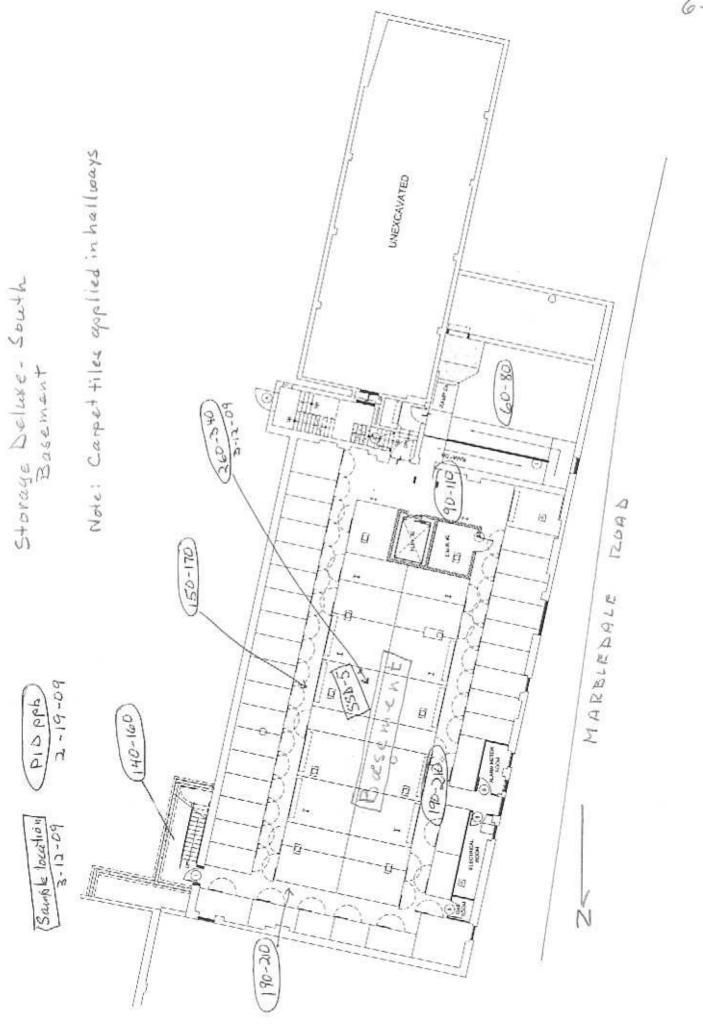

	5		Concrete floors
j. Has painting/s	لحے ?taining been done in the last	Ø N	Concrete floors Where & When? Blue railings too
k. Is there new c	arpet, drapes or other textiles?	(N	Where & When? Basement # 7
I. Have air fresh	eners been used recently?	(Y)N	Where & When? Basement # 7 Fannary 2009 When & Type? Daily
m. Is there a kit	chen exhaust fan?	YN	If yes, where vented?
n. Is there a bat	hroom exhaust fan?	(N	If yes, where vented? Out side
o. Is there a clot	hes dryer?	YN) If yes, is it vented outside? Y / N
p. Has there bee	n a pesticide application?	(V) N	When & Type? Honthly - vendon
Are there odors If yes, please de	in the building? scribe: Fresh paint. Vari	QN ous (rom storage materials
(e.g., chemical man	ling occupants use solvents at work? ufacturing or laboratory, auto mechanic or sticide application, cosmetologist	N auto body	shop, painting, fuel oil delivery,
If yes, what types	of solvents are used? Floorstr	part	
If yes, are their cl	othes washed at work?	Y/N)
	othes washed at work? ling occupants regularly use or work at :	U) ning service? (Circle appropriate
Do any of the built response) Yes, use dr Yes, use dr		U	ning service? (Circle appropriate No Unknown
Do any of the build response) Yes, use dr Yes, use dr Yes, work a	ling occupants regularly use or work at a cleaning regularly (weekly) cleaning infrequently (monthly or less) t a dry-cleaning service	a dry-clea (No Unknown
Do any of the build response) Yes, use dr Yes, use dr Yes, work a Is there a radon m	ling occupants regularly use or work at a cleaning regularly (weekly) cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structur or passive?	a dry-clea (No Unknown
Do any of the build response) Yes, use dry Yes, use dry Yes, work i Is there a radon m Is the system active	ling occupants regularly use or work at a cleaning regularly (weekly) cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structur or passive? ActivePassive EWAGE	a dry-clea (No Unknown
Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon m Is the system active 9. WATER AND S	t a dry-cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structur t or passive? Active Passive EWAGE Public Water Drilled Well Drive	a dry-clea (re? N	No Unknown Date of Installation: <u>2007</u>
Do any of the build response) Yes, use dry Yes, use dry Yes, work i Is there a radon m Is the system active 9. WATER AND S Water Supply: Sewage Disposal:	t a dry-cleaning regularly (weekly) -cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structur t or passive? Active Passive EWAGE Public Water Drilled Well Drive	a dry-clea (re? N n Well n Field	No Unknown Date of Installation: <u>2007</u> Dug Well Other: Dry Well Other:
Do any of the build response) Yes, use dry Yes, use dry Yes, work i Is there a radon m Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION	ling occupants regularly use or work at a cleaning regularly (weekly) c-cleaning infrequently (monthly or less) t a dry-eleaning service itigation system for the building/structur or passive? ActivePassive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach	a dry-clea (re? N n Well n Field	No Unknown Date of Installation: <u>2007</u> Dug Well Other: Dry Well Other:
Do any of the build response) Yes, use dry Yes, use dry Yes, use dry Yes, work a Is there a radon m Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reas	ling occupants regularly use or work at a cleaning regularly (weekly) cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structur or passive? ActivePassive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach INFORMATION (for oil spill residenti	a dry-clea (re? () N n Well 1 Field al emerge	No Unknown Date of Installation: _2007_ Dug Well Other: Dry Well Other: ency) NA
Do any of the build response) Yes, use dry Yes, use dry Yes, use dry Yes, work i Is there a radon m Is the system active 9. WATER AND S Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reas b. Residents ch	ling occupants regularly use or work at a cleaning regularly (weekly) c-cleaning infrequently (monthly or less) t a dry-cleaning service itigation system for the building/structure or passive? ActivePassive EWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach I INFORMATION (for oil spill residentions why relocation is recommended:	a dry-clea (re? () N n Well n Field al emerge	No Unknown Date of Installation: 2007 Dug Well Other: Dry Well Other: ency) NA

11. FLOOR PLANS

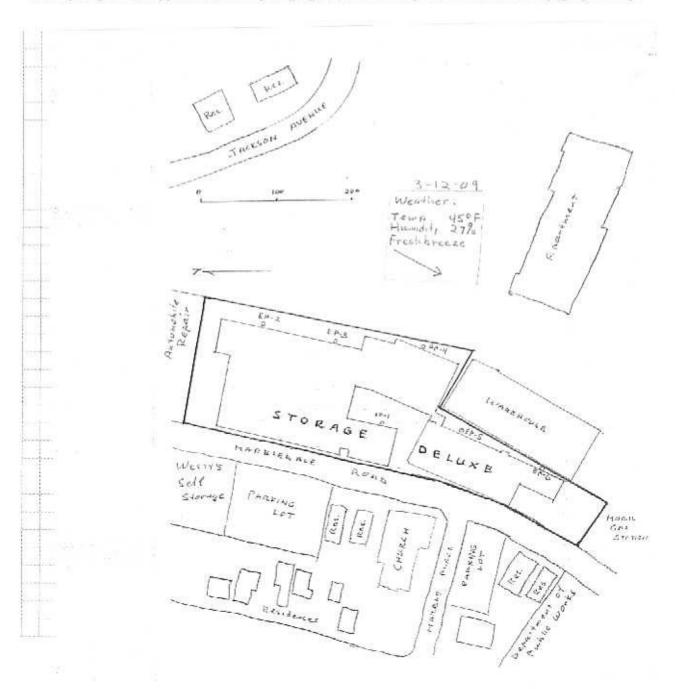

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.


Basement:


See attached construction drawings



First Floor:



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Location 40°57'02'N 73°49'16'W

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: PP6 RAE Hodel PGH 7240

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo " <u>Y / N</u>
Showroc	M: Bubble wrap					2
-	Plastic peanuits				sel	
	Foam				FLOON	
	Cardhoard				PLANS	
<u>x.</u> 1	~ · · ·				\sim	
	Stanless Steel Cleaner towels	30/14g	UDau	Duneval Oil, Napithal (potro D-Limonene	oleum)	
Master	Class floor finish	5gal Bails	ио	Diethylene Stycolmonosthy ether	I	
Accolade	Hard Elper	1 gal		DictlyTene Stylettyl etter DibulyI ph thatete	eri	
Stick-Em	Rata Mouse Glue Traps	2/pkg	ио	Chlorophacinone		
AL Form	nula Rotenticide	75/2021	luo	н		
Mas	Non-ammoniated Hog-Strip		HOND			
	Mois-Strip Pine-Sol	Gullon	uo	ti -		
Ly501	Epray disinfertant	R/202	40+0			
QP6	Pine Oil Disin Fectaut	Gella	uo			
Roundup		1,33	U0 40			
Behr P	remnum pacuta Warne	us Geel	D			
Amsterd	am Color Works	Gal.	0			

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P://Sections/SIS/Oil Spills/Guidance Does/OSR-3.doe

STORAGE DELUXE – TUCKAHOE 2-19-09 to 3-12-09

Showroom Supplies

Maintenance Room

Maintenance Room

Maintenance Room

Showroom: SSD-1 and Dup

Building 3, Locker 1155: SSD-2

Building 2, Locker 1027: SSD-3

Building 6, Locker 1325: SSD-4 (PID=20ppb)

Building 7, Locker 0054: SSD-5

Building 7, Locker 0054: SSD-5 (PID=325ppb)

Building 9, Locker 1444: SSD-6

Northern Driveway: Outdoor Ambient

ATTACHMENT C

Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009

DATA USABILITY SUMMARY REPORT

KINGS/STORAGE DELUXE IAQ INVESTIGATION

March 12, 2009 Sampling Event

Prepared for:

Environmental Management, LTD. On the Lake @ 41 Franck Road Stony Point, New York 10980

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C23901-1

June 16, 2009

Approved for Release:

Eric Strout Technical Director EcoChem, Inc.

DATA USABILITY SUMMARY REPORT KINGS/STORAGE DELUX IAQ INVESTIGATION

This report documents the review of analytical data from the analyses of eight air samples, one trip blank, and the associated laboratory quality control (QC) samples. A full (USEPA Level IV) validation was performed. Samples were analyzed by Columbia Analytical Services, Inc., Simi Valley, California. **Table 1** provides a cross reference of sample identifiers and collection date.

Field ID	Lab ID	Date Collected	SDG
SSD-1	P0900931-001.01	3/12/2009	P0900931
SSD-2	P0900931-002.01	3/12/2009	P0900931
SSD-3	P0900931-003.01	3/12/2009	P0900931
SSD-4	P0900931-004.01	3/12/2009	P0900931
SSD-5	P0900931-005.01	3/12/2009	P0900931
SSD-6	P0900931-006.01	3/12/2009	P0900931
SSD-1 DUP	P0900931-007.01	3/12/2009	P0900931
Outdoor Ambient	P0900931-008.01	3/12/2009	P0900931
Trip Blank	P0900931-009.01	3/12/2009	P0900931

TABLE 1: Sample Index

BASIS OF DATA EVALUATION

The data were validated using guidance and QC criteria documented in USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Air Samples – Volatile Organic Analyses of Ambient Air in Canister by Method TO-15 and the analytical method, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, January 1999, EPA/625/R-96/010B, Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)".

The technical findings and qualifiers assigned are organized by method and immediately follow this introduction. Data Validation Qualifier Code definitions are provided as **Appendix A**. The sample result summary forms are included as **AppENDIX B**. The data validation worksheets are included as **AppENDIX C**.

PROCESS FOR DATA VALIDATION

A full data validation equivalent to an USEPA CLP "QA Level IV" level of effort was performed. **Table 2** lists the quality control (QC) elements that were reviewed.

TABLE 2: Full (USEPA Level IV) Quality Control Elements

Qua	ality Control Elements
> [Data Completeness
> (Cover letter, Narrative, and Data Reporting Forms
> A	Analytical holding times
> (Chain of custody and sample handling/preservation
	nstrument performance: GC/MS tune, ICP interference check samples, GC column degradation checks (from summary forms)
> 1	Method blank contamination (from summary forms)
>	nstrument blank contamination for metals analysis (from summary forms)
>	nitial and continuing calibration (from summary forms)
≻ F	Field blank contamination (from sample result summaries)
	Analytical accuracy: surrogate %R for organic analyses, matrix spike sample %R, serial dilution for metals analysis, and laboratory control sample %R (from summary forms)
> 4	Analytical precision: matrix spike duplicate and laboratory duplicate sample RPD (from summary forms)
> F	Field precision: field duplicate RPD (if analyzed)
>	nternal standard areas (from summary forms)
> F	Reported detection limits (from sample result summaries)
> (Compound identification evaluated from raw data
	Compound quantitation, transcription and calculation checks performed at a frequency of 10 percent from raw data. It an error was noted, 100 percent of the calculations and transcriptions for that data package were verified.

Laboratory QC samples were used to assess the effectiveness of extraction/preparation procedures and to evaluate laboratory method performance, potential contamination during the analytical process, and sample matrix effects. Quality control samples included method blanks, laboratory control samples (LCS), matrix spike (MS) samples, and laboratory duplicate samples. Surrogates were added to each sample analyzed for organic compounds to further assess the effects of sample matrix on accuracy.

During validation, the results of the QC samples and instrument calibration and tuning are compared to the measurement quality objectives (MQO) initially established during project planning. Validation also provides a quantitative and qualitative evaluation of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall data usability.

Data were qualified when associated QC sample and instrument performance results were outside the laboratory QC sample control limits. For the Kings/Storage Deluxe IAQ Investigation samples, no data were qualified for any reason.

TECHNICAL SUMMARY

Overall, the data are acceptable for the intended purposes. No data were rejected, or qualified for any reason. The data meet all the criteria for the parameters tested.

All data, as reported, are acceptable for use.

RESULTS OF ANALYSIS

Page 1 of 3

		Page 1 of 5				
Client: Client Sample ID: Client Project ID:	Environmental Management, LTE SSD-1 Kings - Storage / 3-2009).		CAS Project ID: CAS Sample ID:		01
Test Code: Instrument ID: Analyst:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6 Elsa Moctezuma	5890N/MS9		Date Collected: Date Received: Date Analyzed:	3/16/09	
Sampling Media: Test Notes: Container ID:	6.0 L Summa Canister AC01028		V	olume(s) Analyzed:	1.00 Li	ter(s)
	Initial Pressure (psig):	-3.7 Fii	nal Pressure (psig): 3.5		
				Caniste	r Dilution Fa	ctor: 1.65
CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Da Quali
115-07-1	Propene	4.7	0.83	2.7	0.48	MI
75-71-8	Dichlorodifluoromethane (CFC 12)	3.2	0.83	0.64	0.17	
74-87-3	Chloromethane	ND	0.83	ND	0.40	

CAS #	Compound	resuit	4 T. 4 4 4 4 4			
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	4.7	0.83	2.7	0.48	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	3.2	0.83	0.64	0.17	
74-87-3	Chloromethane	ND	0.83	ND	0.40	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.83	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.17	ND	0.065	90.99
106-99-0	1,3-Butadiene	ND	0.83	ND	0.37	
74-83-9	Bromomethane	ND	0.83	ND	0.21	
75-00-3	Chloroethane	ND	0.83	ND	0.31	
64-17-5	Ethanol	120	8.3	62	4.4	
75-05-8	Acetonitrile	ND	0.83	ND	0.49	2.192
107-02-8	Acrolein	ND	0.83	ND	0.36	
67-64-1	Acetone	16	8.3	6.7	3.5	M1
75-69-4	Trichlorofluoromethane	1.2	0.83	0.22	0.15	
67-63-0	2-Propanol (Isopropyl Alcohol)	21	0.83	8.7	0.34	
107-13-1	Acrylonitrile	ND	0.83	ND	0.38	
75-35-4	1,1-Dichloroethene	ND	0.83	ND	0.21	
75-09-2	Methylene Chloride	ND	0.83	ND	0.24	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.83	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.83	ND	0.11	
75-15-0	Carbon Disulfide	ND	0.83	ND	0.27	
156-60-5	trans-1,2-Dichloroethene	ND	0.83	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.83	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.83	ND	0.23	
108-05-4	Vinyl Acetate	ND	8.3	ND	2.3	
78-93-3	2-Butanone (MEK)	1.5	0.83	0.50	0.28	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

Data

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-1 Kings - Storage / 3-2009	CAS Project ID: P0900931 CAS Sample ID: P0900931-001
Test Code: Instrument ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma	Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09
Analyst: Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AC01028	

-3.7

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.65

CAS #	Compound	Result	MRL	Result	MRL	Data
CAG II	Compound	$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.83	ND	0.21	
141-78-6	Ethyl Acetate	1.3	0.83	0.35	0.23	
110-54-3	n-Hexane	ND	0.83	ND	0.23	
67-66-3	Chloroform	ND	0.83	ND	0.17	
109-99-9	Tetrahydrofuran (THF)	ND	0.83	ND	0.28	and the second
107-06-2	1,2-Dichloroethane	ND	0.83	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.83	ND	0.15	
71-43-2	Benzene	ND	0.83	ND	0.26	
56-23-5	Carbon Tetrachloride	0.47	0.17	0.075	0.026	
110-82-7	Cyclohexane	ND	0.83	ND	0.24	
78-87-5	1,2-Dichloropropane	ND	0.83	ND	0.18	
75-27-4	Bromodichloromethane	ND	0.83	ND	0.12	
79-01-6	Trichloroethene	1.8	0.17	0.33	0.031	
123-91-1	1,4-Dioxane	ND	0.83	ND	0.23	
80-62-6	Methyl Methacrylate	ND	0.83	ND	0.20	
142-82-5	n-Heptane	ND	0.83	ND	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.83	ND	0.18	
108-10-1	4-Methyl-2-pentanone	ND	0.83	ND	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.83	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.83	ND	0.15	
108-88-3	Tolucne	2.5	0.83	0.66	0.22	
591-78-6	2-Hexanone	ND	0.83	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.83	ND	0.097	
106-93-4	1,2-Dibromoethane	ND	0.83	ND	0.11	
123-86-4	n-Butyl Acetate	ND	0.83	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Un

MSG 15 los

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-1 Kings - Storage / 3-2009	CAS Project ID: P0900 CAS Sample ID: P0900	
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma 6.0 L Summa Canister AC01028	Date Collected: 3/12/ Date Received: 3/16/ Date Analyzed: 3/19/ Volume(s) Analyzed:	09

-3.7

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.65

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.83	ND	0.18	
127-18-4	Tetrachloroethene	ND	0.83	ND	0.12	
108-90-7	Chlorobenzene	ND	0.83	ND	0.18	
100-41-4	Ethylbenzene	3.5	0.83	0.82	0.19	
179601-23-1	m,p-Xylenes	12	0.83	2.9	0.19	
75-25-2	Bromoform	ND	0.83	ND	0.080	
100-42-5	Styrene	ND	0.83	ND	0.19	
95-47-6	o-Xylene	4.6	0.83	1.1	0.19	
111-84-2	n-Nonane	1.5	0.83	0.29	0.16	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.83	ND	0.12	
98-82-8	Cumene	ND	0.83	ND	0.17	
80-56-8	alpha-Pinene	1.6	0.83	0.28	0.15	
103-65-1	n-Propylbenzene	0.83	0.83	0.17	0.17	
622-96-8	4-Ethyltoluene	1.5	0.83	0.30	0.17	
108-67-8	1,3,5-Trimethylbenzene	1.8	0.83	0.37	0.17	
95-63-6	1,2,4-Trimethylbenzene	5.2	0.83	1.1	0.17	
100-44-7	Benzyl Chloride	ND	0.83	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.83	ND	0.14	
106-46-7	1,4-Dichlorobenzene	ND	0.83	ND	0.14	
95-50-1	1,2-Dichlorobenzene	ND	0.83	ND	0.14	
5989-27-5	d-Limonene	4.0	0.83	0.72	0.15	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.83	ND	0.085	
120-82-1	1,2,4-Trichlorobenzene	ND	0.83	ND	0.11	
91-20-3	Naphthalene	3.3	0.83	0.63	0.16	
87-68-3	Hexachlorobutadiene	ND	0.83	ND	0.077	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

NS61669

RESULTS OF ANALYSIS

Final Pressure (psig):

Page 1 of 3

-3.4

Client:	Environmental Management, LTD.	
Client Sample ID:	SSD-2	CAS Pro
	Kings - Storage / 3-2009	CAS San
Test Code:	EPA TO-15	Date Co
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Re
Analyst:	Elsa Moctezuma	Date An
Sampling Media:	6.0 L Summa Canister	Volume(s) Ar
Test Notes:		
Container ID:	AC00799	

Initial Pressure (psig):

CAS Project ID: P0900931 CAS Sample ID: P0900931-002

Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.61

3.5

CAS #	Compound	Result μg/m ³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	4.3	0.81	2.5	0.47	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.6	0.81	0.52	0.16	
74-87-3	Chloromethane	ND	0.81	ND	0.39	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.81	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.063	C New II II
106-99-0	1,3-Butadiene	ND	0.81	ND	0.36	
74-83-9	Bromomethane	ND	0.81	ND	0.21	
75-00-3	Chloroethane	ND	0.81	ND	0.31	
64-17-5	Ethanol	100	8.1	54	4.3	
75-05-8	Acetonitrile	ND	0.81	ND	0.48	
107-02-8	Acrolein	ND	0.81	ND	0.35	
67-64-1	Acetone	23	8.1	9.9	3.4	MI
75-69-4	Trichlorofluoromethane	1.3	0.81	0.23	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	17	0.81	7.1	0.33	
107-13-1	Acrylonitrile	ND	0,81	ND	0.37	0.993
75-35-4	1,1-Dichloroethene	ND	0.81	ND	0.20	
75-09-2	Methylene Chloride	ND	0.81	ND	0.23	· · · · · · · · · · · · · · · · · · ·
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.81	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.81	ND	0.11	
75-15-0	Carbon Disulfide	ND	0.81	ND	0.26	
156-60-5	trans-1,2-Dichloroethene	ND	0.81	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.81	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.81	ND	0.22	
108-05-4	Vinyl Acetate	ND	8.1	ND	2.3	
78-93-3	2-Butanone (MEK)	3.3	0.81	1.1	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

MI = Matrix interference due to coelution with a non-target compound; results may be biased high.

Verified By:____

io-

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-2 Kings - Storage / 3-2009	CAS Project ID: P0900931 CAS Sample ID: P0900931-002	
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma 6.0 L Summa Canister AC00799	Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09 Volume(s) Analyzed: 1.00 Liter(s))

Initial Pressure (psig): -3.4

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

CAS #	Compound	Result	MRL	Result	MRL	Data
CAS #		μg/m ³	µg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.81	ND	0.20	
141-78-6	Ethyl Acetate	2.1	0.81	0.59	0.22	
110-54-3	n-Hexane	2.6	0.81	0.74	0.23	
67-66-3	Chloroform	ND	0.81	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.81	ND	0.27	- 11
107-06-2	1,2-Dichloroethane	ND	0.81	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.81	ND	0.15	
71-43-2	Benzene	1.1	0.81	0.34	0.25	
56-23-5	Carbon Tetrachloride	0.53	0.16	0.084	0.026	
110-82-7	Cyclohexane	0.94	0.81	0.27	0.23	
78-87-5	1.2-Dichloropropane	ND	0.81	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.81	ND	0.12	
79-01-6	Trichloroethene	6.0	0.16	1.1	0.030	
123-91-1	1,4-Dioxane	ND	0.81	ND	0.22	
80-62-6	Methyl Methacrylate	ND	0.81	ND	0.20	
142-82-5	n-Heptane	1.5	0.81	0.37	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.81	ND	0.18	
108-10-1	4-Methyl-2-pentanone	1.8	0.81	0.43	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.81	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.81	ND	0.15	
108-88-3	Toluene	6.7	0.81	1.8	0.21	
591-78-6	2-Hexanone	ND	0.81	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.81	ND	0.095	
106-93-4	1,2-Dibromoethane	ND	0.81	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.81	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID:	Environmental Management, LTD. SSD-2	CAS Project ID: P0900931 CAS Sample ID: P0900931-002
Client Project ID:	Kings - Storage / 3-2009	
Test Code: Instrument ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Collected: 3/12/09 Date Received: 3/16/09
Analyst:	Elsa Moctezuma	Date Analyzed: 3/19/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AC00799	
	Initial Pressure (psig): -3.4	Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

		Result	MRL	Result	MRL	Data
CAS #	Compound	$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	0.87	0.81	0.19	0.17	
127-18-4	Tetrachloroethene	ND	0.81	ND	0.12	
108-90-7	Chlorobenzene	ND	0.81	ND	0.17	
100-41-4	Ethylbenzene	17	0.81	4.0	0.19	
179601-23-1	m,p-Xylenes	64	0.81	15	0.19	
75-25-2	Bromoform	ND	0.81	ND	0.078	
100-42-5	Styrene	0.81	0.81	0.19	0.19	
95-47-6	o-Xylene	21	0.81	4.9	0.19	
111-84-2	n-Nonane	4.3	0.81	0.81	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.81	ND	0.12	1911 T 4
98-82-8	Cumene	0.99	0.81	0.20	0.16	
80-56-8	alpha-Pinene	2.7	0.81	0.49	0.14	
103-65-1	n-Propylbenzene	3.3	0.81	0.68	0.16	
622-96-8	4-Ethyltoluene	6.3	0.81	1.3	0.16	
108-67-8	1,3,5-Trimethylbenzene	7.7	0.81	1.6	0.16	
95-63-6	1,2,4-Trimethylbenzene	22	0.81	4.5	0.16	
100-44-7	Benzyl Chloride	ND	0.81	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.81	ND	0.13	
106-46-7	1.4-Dichlorobenzene	1.9	0.81	0.32	0.13	
95-50-1	1,2-Dichlorobenzene	ND	0.81	ND	0.13	
5989-27-5	d-Limonene	3.2	0.81	0.57	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.81	ND	0.083	
120-82-1	1,2,4-Trichlorobenzene	ND	0.81	ND	0.11	
91-20-3	Naphthalene	29	0.81	5.6	0.15	
87-68-3	Hexachlorobutadiene	ND	0.81	ND	0.075	

NI) = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:

Lee

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Environmental Management, LTD.		
Client Sample ID:	SSD-3	CAS Project ID: P0	900931
	Kings - Storage / 3-2009	CAS Sample ID: P0	900931-003
Test Code:	EPA TO-15	Date Collected: 3/	12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/16/09	
∧nalyst:	Elsa Moctezuma	Date Analyzed: 3/19/09	
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

AC01401 Container ID:

> Initial Pressure (psig): -1.2

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.35

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	3.6	0.68	2.1	0.39	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	2.5	0.68	0.50	0.14	
74-87-3	Chloromethane	ND	0.68	ND	0.33	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.68	ND	0.097	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.053	
106-99-0	1,3-Butadiene	ND	0.68	ND	0.31	
74-83-9	Bromomethane	ND	0.68	ND	0.17	
75-00-3	Chloroethane	ND	0.68	ND	0.26	
64-17-5	Ethanol	78	6.8	41	3.6	
75-05-8	Acetonitrile	ND	0.68	ND	0.40	2.2
107-02-8	Acrolein	0.94	0.68	0.41	0.29	
67-64-1	Acetone	21	6.8	9.0	2.8	M1
75-69-4	Trichlorofluoromethane	1.3	0.68	0.23	0.12	
67-63-0	2-Propanol (Isopropyl Alcohol)	14	0.68	5.9	0.27	
107-13-1	Acrylonitrile	ND	0.68	ND	0.31	
75-35-4	1.1-Dichloroethene	ND	0.68	ND	0,17	
75-09-2	Methylene Chloride	0.72	0.68	0.21	0.19	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.68	ND	0.22	
76-13-1	Trichlorotrifluoroethane	ND	0.68	ND	0.088	
75-15-0	Carbon Disulfide	ND	0.68	ND	0.22	<u></u>
156-60-5	trans-1,2-Dichloroethene	ND	0.68	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.68	ND	0.17	
1634-04-4	Methyl tert-Butyl Ether	ND	0.68	ND	0.19	
108-05-4	Vinyl Acetate	ND	6.8	ND	1.9	
78-93-3	2-Butanone (MEK)	2.8	0.68	0.96	0.23	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

Verified By:

40

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-3 Kings - Storage / 3-2009	CAS Project ID: P090 CAS Sample ID: P090	
Test Code: Instrument ID: ∧nalvst:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma	Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09	
Sampling Media: Test Notes: Container ID:	6.0 L Summa Canister AC01401		1.00 Liter(s)

-1.2

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.35

		8°2				
CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifici
156-59-2	cis-1.2-Dichloroethene	ng/m ND	0.68	ND	0.17	Quantici
141-78-6	Ethyl Acetate	1.9	0.68	0.52	0.19	
110-54-3	n-Hexane	1.8	0.68	0.52	0.19	
67-66-3	Chloroform	ND	0.68	ND	0.14	
109-99-9	Tetrahydrofuran (THF)	ND	0.68	ND	0.23	
107-06-2	1,2-Dichloroethane	ND	0.68	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.68	ND	0.12	
71-43-2	Benzene	0.96	0.68	0.30	0.21	
56-23-5	Carbon Tetrachloride	0.52	0.14	0.083	0.021	
110-82-7	Cyclohexane	0.96	0.68	0.28	0.20	
78-87-5	1,2-Dichloropropane	ND	0.68	ND	0.15	
75-27-4	Bromodichloromethane	ND	0.68	ND	0.10	
79-01-6	Trichloroethene	3.6	0.14	0.67	0.025	
123-91-1	1,4-Dioxane	ND	0.68	ND	0.19	
80-62-6	Methyl Methacrylate	ND	0.68	ND	0.16	
142-82-5	n-Heptane	1.1	0.68	0.26	0.16	
10061-01-5	cis-1,3-Dichloropropene	ND	0.68	ND	0.15	
108-10-1	4-Methyl-2-pentanone	1.6	0.68	0.39	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.68	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.68	ND	0.12	
108-88-3	Toluene	5.3	0.68	1.4	0.18	
591-78-6	2-Hexanone	ND	0.68	ND	0.16	20 ⁸⁰
124-48-1	Dibromochloromethane	ND	0.68	ND	0.079	
106-93-4	1,2-Dibromoethane	ND	0.68	ND	0.088	
123-86-4	n-Butyl Acetate	0.86	0.68	0.18	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 3 of 3

		Page 3 of 3				
Client:	Environmental Management, LTI).		CAS Project ID	P0900931	
Client Sample ID:				CAS Sample ID	P0900931-00	03
	Kings - Storage / 3-2009					
and a set of the set o						
Test Code:	EPA TO-15			Date Collected:	3/12/09	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6	5890N/MS9		Date Received	3/16/09	
Analyst:	Elsa Moctezuma			Date Analyzed	3/19/09	
Sampling Media:	6.0 L Summa Canister			Volume(s) Analyzed	1.00 Li	ler(s)
Test Notes:						
Container ID:	AC01401					
	Initial Pressure (psig):	-1.2 Fin	al Pressure (psi	ig): 3.5		
				Caniste	r Dilution Fac	tor: 1.35
		Result	MRL	Result	MRL	Data
CAS #	Compound	$\mu g/m^3$	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	0.74	0.68	0.16	0.14	
127-18-4	Tetrachloroethene	ND	0.68	ND	0.10	
108-90-7	Chlorobenzene	ND	0.68	ND	0.15	
100-41-4	Ethylbenzene	17	0.68	4.0	0.16	
179601-23-1	m,p-Xylenes	61	0.68	14	0.16	
75-25-2	Bromoform	ND	0.68	ND	0.065	
100-42-5	Styrene	0.69	0.68	0.16	0.16	
95-47-6	o-Xylene	20	0.68	4.6	0.16	
111-84-2	n-Nonane	3.7	0.68	0.71	0.13	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.68	ND	0.098	
98-82-8	Cumene	1.4	0.68	0.28	0.14	

1 2 - 2 - 2	1,1,2,2 10000000000000000000000000000000	the second s			
98-82-8	Cumene	1.4	0.68	0.28	0.14
80-56-8	alpha-Pinene	2.0	0.68	0.35	0.12
103-65-1	n-Propylbenzene	4.1	0.68	0.84	0.14
622-96-8	4-Ethyltoluene	6.8	0.68	1.4	0.14
108-67-8	1,3,5-Trimethylbenzene	12	0.68	2.4	0.14
95-63-6	1,2,4-Trimethylbenzene	30	0.68	6.2	0.14
100-44-7	Benzyl Chloride	ND	0.68	ND	0.13
541-73-1	1,3-Dichlorobenzene	ND	0.68	ND	0.11
106-46-7	1,4-Dichlorobenzene	1.6	0.68	0.26	0.11
95-50-1	1,2-Dichlorobenzene	ND	0.68	ND	0.11
5989-27-5	d-Limonene	1.4	0.68	0.25	0.12
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.68	ND	0.070
120-82-1	1,2,4-Trichlorobenzene	ND	0.68	ND	0.091
91-20-3	Naphthalene	30	0.68	5.7	0.13
87-68-3	Hexachlorobutadiene	ND	0.68	ND	0.063

NID = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Environmental Management, LTD.	
Client Sample ID:	SSD-4	CAS Project ID: P0900931
Client Project ID:	Kings - Storage / 3-2009	CAS Sample ID: P0900931-004
Test Code:	EPA TO-15	Date Collected: 3/12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/16/09
∧nalyst:	Elsa Moctezuma	Date Analyzed: 3/19/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AC01454	
	Initial Pressure (psig): -3.4 I	Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

CAS #	Compound	Result	MRL	Result	MRL	Data
		µg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	1.1	0.81	0.62	0.47	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	0.81	0.45	0.16	
74-87-3	Chloromethane	ND	0.81	ND	0.39	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.81	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.063	
106-99-0	1,3-Butadiene	ND	0.81	ND	0.36	
74-83-9	Bromomethane	ND	0.81	ND	0.21	
75-00-3	Chloroethane	ND	0.81	ND	0.31	
64-17-5	Ethanol	14	8.1	7.6	4.3	
75-05-8	Acetonitrile	ND	0.81	ND	0.48	
107-02-8	Acrolein	ND	0.81	ND	0.35	
67-64-1	Acetone	10	8.1	4.4	3.4	M1
75-69-4	Trichlorofluoromethane	1.2	0.81	0.22	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	2.9	0.81	1.2	0.33	
107-13-1	Acrylonitrile	ND	0.81	ND	0.37	
75-35-4	1,1-Dichloroethene	ND	0.81	ND	0.20	
75-09-2	Methylene Chloride	ND	0.81	ND	0.23	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.81	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.81	ND	0.11	
75-15-0	Carbon Disulfide	ND	0.81	ND	0.26	5
156-60-5	trans-1,2-Dichloroethene	ND	0.81	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.81	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.81	ND	0.22	
108-05-4	Vinyl Acetate	ND	8.1	ND	2.3	
78-93-3	2-Butanone (MEK)	1.6	0.81	0.55	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

MI = Matrix interference due to coelution with a non-target compound; results may be biased high.

P0900931_TO15_0903261525_SS.xls - Sample (4)

Verified By: 119-

Date: 3/27/09 140 TOI5scan.xls - 75 Compounds - PageNn.: WSUSTA

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-4 Kings - Storage / 3-2009	CAS Project ID: P0900931 CAS Sample ID: P0900931-004
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma 6.0 L Summa Canister	Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09 Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AC01454	
	Initial Pressure (psig): -3.4	Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

CAS #	Compound	Result	MRL	Result	MRL	Data
	a na ana ang na Kabupatèn	μg/m³	μg/m ³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.81	ND	0.20	
141-78-6	Ethyl Acetate	1.7	0.81	0.46	0.22	
110-54-3	n-Hexane	ND	0.81	ND	0.23	
67-66-3	Chloroform	ND	0.81	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.81	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	0.81	ND	0.20	
71-55-6	1,1,1-Trichloroethane	ND	0.81	ND	0.15	
71-43-2	Benzene	ND	0.81	ND	0.25	
56-23-5	Carbon Tetrachloride	0.49	0.16	0.079	0.026	
110-82-7	Cyclohexane	ND	0.81	ND	0.23	
78-87-5	1,2-Dichloropropane	ND	0.81	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.81	ND	0.12	
79-01-6	Trichloroethene	0.64	0.16	0.12	0.030	
123-91-1	1,4-Dioxane	ND	0.81	ND	0.22	
80-62-6	Methyl Methacrylate	ND	0.81	ND	0.20	
142-82-5	n-Heptane	ND	0.81	ND	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.81	ND	0.18	
108-10-1	4-Methyl-2-pentanone	ND	0.81	ND	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.81	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.81	ND	0.15	
108-88-3	Toluene	1.8	0.81	0.49	0.21	
591-78-6	2-Hexanone	ND	0.81	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.81	ND	0.095	
106-93-4	1,2-Dibromoethane	ND	0.81	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.81	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_____ Les Date: <u>3/27/09</u> **141** TO15scan.xls - 75 Compounds - PageNo.: WSWSW

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID: Client Project ID:	Environmental Management, LTD. SSD-4 Kings - Storage / 3-2009	CAS Project ID: P0900931 CAS Sample ID: P0900931-004
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma 6.0 L Summa Canister AC01454	Date Collected: 3/12/09 Date Received: 3/16/09 Date Analyzed: 3/19/09 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -3.4

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.61

20

		Result	MRL	Result	MRL	Data
CAS #	Compound	$\mu g/m^3$	μg/m³	pphV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.81	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.81	ND	0.12	
108-90-7	Chlorobenzene	ND	0.81	ND	0.17	
100-41-4	Ethylbenzene	9.1	0.81	2.1	0.19	
179601-23-1	m,p-Xylenes	33	0.81	7.6	0.19	
75-25-2	Bromoform	ND	0.81	ND	0.078	
100-42-5	Styrene	ND	0.81	ND	0.19	
95-47-6	o-Xylene	10	0.81	2.4	0.19	
111-84-2	n-Nonane	4.6	0.81	0.87	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.81	ND	0.12	
98-82-8	Cumene	ND	0.81	ND	0.16	
80-56-8	alpha-Pinene	ND	0.81	ND	0.14	
103-65-1	n-Propylbenzene	1.9	0.81	0.39	0.16	
622-96-8	4-Ethyltoluene	3.7	0.81	0.74	0.16	
108-67-8	1,3,5-Trimethylbenzene	3.8	0.81	0.77	0.16	2222
95-63-6	1,2,4-Trimethylbenzene	11	0.81	2.3	0.16	
100-44-7	Benzyl Chloride	ND	0.81	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.81	ND	0.13	
106-46-7	1,4-Dichlorobenzene	ND	0.81	ND	0.13	
95-50-1	1,2-Dichlorobenzene	ND	0.81	ND	0.13	
5989-27-5	d-Limonene	ND	0.81	ND	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.81	ND	0.083	
120-82-1	1.2.4-Trichlorobenzene	ND	0.81	ND	O.1 I	
91-20-3	Naphthalene	4.8	0.81	0.91	0.15	
87-68-3	Hexachlorobutadiene	ND	0.81	ND	0.075	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P0900931_T015_0903261525_SS.xls - Sample (4)

Verified By: _____

Date: <u>7/27/09</u>**142** TOISsean.xls. 75 Compounds. PageNa.: WSUS

RESULTS OF ANALYSIS

Page 1 of 3

		Page 1 of 3				
Client: Client Sample ID:	Environmental Management, LTI SSD-5	D.		CAS Project ID:	P0900931	
	Kings - Storage / 3-2009			CAS Sample ID		05
Chent Project ID:	Kings - Storage / 3-2009			CAS Sample ID		
Test Code:	EPA TO-15			Date Collected:	3/12/09	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/	6890N/MS9		Date Received:	3/16/09	
Analyst:	Elsa Moctezuma			Date Analyzed	3/19/09	
Sampling Media:	6.0 L Summa Canister		V	olume(s) Analyzed	1.00 Li	ter(s)
Test Notes:						
Container ID:	AC01377					
	Initial Pressure (psig):	-3.6 Fin	al Pressure (psig)	: 3.5		
				Caniste	r Dilution Fa	ctor: 1.64
				1		
CAS #	Compound	Result	MRL	Result	MRL	Data
C. 15 0	- mp	μg/m³	µg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	2.1	0.82	1.2	0.48	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.82	0.47	0.17	
74-87-3	Chloromethane	ND	0.82	ND	0.40	
	1,2-Dichloro-1,1,2,2-	NID	0.82	ND	0.12	
76-14-2	tetrafluoroethane (CFC 114)	ND	0.82	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.064	
106-99-0	1,3-Butadiene	ND	0.82	ND	0.37	
74-83-9	Bromomethane	ND	0.82	ND	0.21	
75-00-3	Chloroethane	ND	0.82	ND	0.31	
64-17-5	Ethanol	23	8.2	12	4.4	
75-05-8	Acetonitrile	ND	0.82	ND	0.49	
107-02-8	Acrolein	1.3	0.82	0.58	0.36	
67-64-1	Acetone	22	8.2	9.2	3.5	M1
75-69-4	Trichlorofluoromethane	1.2	0.82	0.22	0.15	
67-63-0	2-Propanol (Isopropyl Alcohol)	3.8	0.82	1.5	0.33	
107-13-1	Acrylonitrile	ND	0.82	ND	0.38	
75-35-4	1,1-Dichloroethene	ND	0.82	ND	0.21	
75-09-2	Methylene Chloride	ND	0.82	ND	0.24	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.82	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.82	ND	0.11	
75-15-0	Carbon Disulfide	ND	0.82	ND	0.26	
156-60-5	trans-1,2-Dichloroethene	ND	0.82	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.82	ND	0.20	
1634-04-4	Methyl tert-Butyl Ether	ND	0.82	ND	0.23	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

2-Butanone (MEK)

Vinyl Acetate

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

2.3

ND

8.2

0.82

P0900931 TO15 0903261525_SS.xls - Sample (5)

108-05-4

78-93-3

Date: <u>3/27/09</u>**169** TOI59can.xls - 75 Chunpounds - PageNo.: Verified By: in

ND

0.77

2.3

0.28

WSUSAG

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Environmental Management, LTI).				
Client Sample ID:	SSD-5			CAS Project ID	: P0900931	
Client Project ID:	Kings - Storage / 3-2009			CAS Sample II): 1°0900931-0	05
Test Code:	EPA TO-15			Date Collected	: 3/12/09	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/	6890N/MS9		Date Received	1: 3/16/09	
Analyst:	Elsa Moctezuma			Date Analyzed	l: 3/19/09	
Sampling Media: Test Notes:	6.0 L Summa Canister		Vc	lume(s) Analyzed	l: 1.00 Li	ter(s)
Container ID:	AC01377					
	Initial Pressure (psig):	-3.6 Fin	al Pressure (psig)	3.5		
				Canist	er Dilution Fac	ctor: 1.64
CAS #	Compound	Result	MRL	Result	MRL	Da
		$\mu g/m^3$	µg/m³	ppbV	ppbV	Qua
156-59-2	cis-1,2-Dichloroethene	ND	0.82	ND	0.21	
141-78-6	Ethyl Acetate	1.5	0.82	0.41	0.23	
110-54-3	n-Hexane	1.4	0.82	0.40	0.23	

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.82	ND	0.21	
141-78-6	Ethyl Acetate	1.5	0.82	0.41	0.23	
110-54-3	n-Hexane	1.4	0.82	0.40	0.23	
67-66-3	Chloroform	ND	0.82	ND	0.17	
109-99-9	Tetrahydrofuran (THF)	0.97	0.82	0.33	0.28	
107-06-2	1,2-Dichloroethane	ND	0.82	ND	0.20	
71-55-6	1,1,1-Trichloroethane	1.8	0.82	0.33	0.15	
71-43-2	Benzene	1.2	0.82	0.37	0.26	
56-23-5	Carbon Tetrachloride	0.50	0.16	0.080	0.026	
110-82-7	Cyclohexane	ND	0.82	ND	0.24	
78-87-5	1,2-Dichloropropane	ND	0.82	ND	0.18	
75-27-4	Bromodichloromethane	ND	0.82	ND	0.12	
79-01-6	Trichloroethene	1.5	0.16	0.28	0.031	
123-91-1	1,4-Dioxane	ND	0.82	ND	0.23	
80-62-6	Methyl Methacrylate	ND	0.82	ND	0.20	
142-82-5	n-Heptane	0.83	0.82	0.20	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.82	ND	0.18	
108-10-1	4-Methyl-2-pentanone	ND	0.82	ND	0.20	
10061-02-6	trans-1,3-Dichloropropene	ND	0.82	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.82	ND	0.15	
108-88-3	Toluene	6.4	0.82	1.7	0.22	
591-78-6	2-Hexanone	ND	0.82	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.82	ND	0.096	
106-93-4	1,2-Dibromoethane	ND	0.82	ND	0.11	
123-86-4	n-Butyl Acetate	ND	0.82	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: 14-

Date: <u>3/17/09</u> **170** TO15scan.sls - 75 Compounds - PageNo.:

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Environmental Management, LTD.	CAS Project ID: P0	900931
Client Sample ID:	SSD-5	CAS Sample ID: P0	900931-005
Client Project ID:	Kings - Storage / 3-2009		
Test Code:	EPA TO-15	Date Collected: 3/1	2/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/1	6/09
Analyst:	Elsa Moctezuma	Date Analyzed: 3/1	9/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC01377		

-3.6

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.64

		Result	MRL	Result	MRL	Data
CAS #	Compound	$\mu g/m^3$	μg/m ³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	1.4	0.82	0.30	0.18	
127-18-4	Tetrachloroethene	ND	0.82	ND	0.12	
108-90-7	Chlorobenzene	ND	0.82	ND	0.18	
100-41-4	Ethylbenzene	38	0.82	8.8	0.19	
179601-23-1	m,p-Xylenes	140	0.82	32	0.19	
75-25-2	Bromoform	ND	0.82	ND	0.079	20
100-42-5	Styrene	ND	0.82	ND	0.19	
95-47-6	o-Xylene	56	0.82	13	0.19	
111-84-2	n-Nonane	43	0.82	8.2	0.16	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.82	ND	0.12	
98-82-8	Cumene	6.1	0.82	1.2	0.17	
80-56-8	alpha-Pinene	14	0.82	2.4	0.15	
103-65-1	n-Propylbenzene	23	0.82	4.6	0.17	
622-96-8	4-Ethyltoluene	44	0.82	9.1	0.17	
108-67-8	1,3,5-Trimethylbenzene	40	0.82	8.2	0.17	
95-63-6	1,2,4-Trimethylbenzene	130	0.82	26	0.17	
100-44-7	Benzyl Chloride	ND	0.82	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.82	ND	0.14	
106-46-7	1,4-Dichlorobenzene	ND	0.82	ND	0.14	
95-50-1	1,2-Dichlorobenzene	ND	0.82	ND	0,14	
5989-27-5	d-Limonene	2.3	0.82	0.41	0.15	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.82	ND	0.085	
120-82-1	1,2,4-Trichlorobenzene	ND	0.82	ND	0.11	
91-20-3	Naphthalene	1.3	0.82	0.25	0.16	
87-68-3	Hexachlorobutadiene	ND	0.82	ND	0.077	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:___ 100-

Date: <u>3/47/04</u>**171** TOISscan.xls - 75 Compounds - PageNo.:

NSULUTON

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Environmental Management, LTD.	CAS Project ID:	P0900931
Client Sample ID: Client Project ID:	Kings - Storage / 3-2009	CAS Sample ID:	
Test Code:	EPA TO-15	Date Collected:	3/12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received:	3/16/09
∧nalyst:	Elsa Moctezuma	Date Analyzed:	3/19/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC01189		
	Initial Pressure (psig): -1.9	Final Pressure (psig): 3.6	2
		Caniste	r Dilution Factor: 1.43

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	0.87	0.72	0.50	0.42	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.72	0.46	0.14	
74-87-3	Chloromethane	ND	0.72	ND	0.35	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.72	ND	0.10	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.056	
106-99-0	1,3-Butadiene	ND	0.72	ND	0.32	
74-83-9	Bromomethane	ND	0.72	ND	0.18	
75-00-3	Chloroethane	ND	0.72	ND	0.27	
64-17-5	Ethanol	11	7.2	6.1	3.8	
75-05-8	Acetonitrile	ND	0.72	ND	0.43	
107-02-8	Acrolein	ND	0.72	ND	0.31	
67-64-1	Acetone	ND	7.2	ND	3.0	
75-69-4	Trichlorofluoromethane	1.2	0.72	0.21	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	2.0	0.72	0.81	0.29	
107-13-1	Acrylonitrile	ND	0.72	ND	0.33	165 15
75-35-4	1,1-Dichloroethene	ND	0.72	ND	0.18	
75-09-2	Methylene Chloride	ND	0.72	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.72	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.72	ND	0.093	
75-15-0	Carbon Disulfide	ND	0.72	ND	0.23	
156-60-5	trans-1,2-Dichloroethene	ND	0.72	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.72	ND	0.18	
1634-04-4	Methyl tert-Butyl Ether	ND	0.72	ND	0.20	
108-05-4	Vinyl Acetate	ND	7.2	ND	2.0	
78-93-3	2-Butanone (MEK)	0.96	0.72	0.33	0.24	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

P0900931_TO15_0903261525_SS.xis - Sample (6)

INSPIRIT

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	Environmental Management, LTD. SSD-6	CAS Project ID: PO	900931
	Kings - Storage / 3-2009	CAS Sample ID: P0	900931-006
Test Code:	EPA TO-15	Date Collected: 3/	12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/	16/09
∧nalyst:	Elsa Moctezuma	Date Analyzed: 3/	19/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC01189		

-1.9

Initial Pressure (psig):

Final Pressure (psig): 3.6

Canister Dilution Factor: 1.43

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.72	ND	0.18	
141-78-6	Ethyl Acetate	3.6	0.72	0.99	0.20	
110-54-3	n-Hexane	ND	0.72	ND	0.20	
67-66-3	Chloroform	ND	0.72	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.72	ND	0.24	
107-06-2	1,2-Dichloroethane	ND	0.72	ND	0.18	
71-55-6	1,1,1-Trichloroethane	ND	0.72	· ND	0.13	
71-43-2	Benzene	ND	0.72	ND	0.22	
56-23-5	Carbon Tetrachloride	0.52	0.14	0.083	0.023	
110-82-7	Cyclohexane	ND	0.72	ND	0.21	
78-87-5	1,2-Dichloropropane	ND	0.72	ND	0.15	
75-27-4	Bromodichloromethane	ND	0.72	ND	O.11	
79-01-6	Trichloroethene	0.15	0.14	0.028	0.027	
123-91-1	1,4-Dioxane	ND	0.72	ND	0.20	
80-62-6	Methyl Methacrylate	ND	0.72	ND	0.17	
142-82-5	n-Heptane	ND	0.72	ND	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.72	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.72	ND	0.17	
10061-02-6	trans-1,3-Dichloropropene	ND	0.72	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.72	ND	0.13	
108-88-3	Toluene	1.0	0.72	0.27	0.19	
591-78-6	2-Hexanone	ND	0.72	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.72	ND	0.084	
106-93-4	1,2-Dibromoethane	ND	0.72	ND	0.093	
123-86-4	n-Butyl Acetate	ND	0.72	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:_____

Date: <u>3/27/04</u> **208** TOI5sean.xis - 75 Compounds - PageNo.

MSWISBY

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Environmental Management, LTD.	CAS Project ID: P0900931
Client Sample ID:	SSD-6	CAS Sample ID: P0900931-006
Client Project ID:	Kings - Storage / 3-2009	
Test Code:	EPA TO-15	Date Collected: 3/12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/16/09
∧nalyst:	Elsa Moctezuma	Date Analyzed: 3/19/09
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AC01189	
	Initial Pressure (psig): -1.9	Final Pressure (psig): 3.6

Canister Dilution Factor: 1.43

		Result	MRL.	Result	MRL	Data
CAS #	Compound	$\mu g/m^3$	μg/m ³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.72	ND	0.15	
127-18-4	Tetrachloroethene	ND	0.72	ND	0.11	
108-90-7	Chlorobenzene	ND	0.72	ND	0.16	
100-41-4	Ethylbenzene	4.2	0.72	0.97	0.16	
179601-23-1	m,p-Xylenes	15	0.72	3.4	0.16	
75-25-2	Bromoform	ND	0.72	ND	0.069	
100-42-5	Styrene	ND	0.72	ND	0.17	
95-47-6	o-Xylene	4.2	0.72	0.97	0.16	
111-84-2	n-Nonane	ND	0.72	ND	0.14	
79-34-5	1,1.2,2-Tetrachloroethane	ND	0.72	ND	0.10	
98-82-8	Cumene	ND	0.72	ND	0.15	
80-56-8	alpha-Pinene	ND	0.72	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.72	ND	0.15	
622-96-8	4-Ethyltoluene	1.3	0.72	0.27	0.15	
108-67-8	1,3,5-Trimethylbenzene	1.3	0.72	0.26	0.15	
95-63-6	1,2,4-Trimethylbenzene	3.8	0.72	0.78	0.15	
100-44-7	Benzyl Chloride	ND	0.72	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.72	ND	0.12	
106-46-7	1,4-Dichlorobenzene	ND	0.72	ND	0.12	
95-50-1	1,2-Dichlorobenzene	ND	0.72	ND	0.12	
5989-27-5	d-Limonene	ND	0.72	ND	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.72	ND	0.074	
120-82-1	1,2,4-Trichlorobenzene	ND	0.72	ND	0.096	
91-20-3	Naphthalene	ND	0.72	ND	0.14	
87-68-3	Hexachlorobutadiene	ND	0.72	ND	0.067	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: in-

Date: 3/27/09 209

MSULAKA

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Environmental Management, LTD.			
Client Sample ID:	SSD-1 DUP	CAS Project ID: P0900931		
	Kings - Storage / 3-2009	CAS Sample ID: P0900931-007		
Test Code:	EPA TO-15	Date Collected: 3/12/09		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/16/09		
∧nalyst:	Elsa Moctezuma	Date Analyzed: 3/19/09		
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)		
Container ID:	AC01550			
	Initial Pressure (psig): -1.6 Final	Pressure (psig): 3.5		

Canister Dilution Factor: 1.39

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	4.6	0.70	2.7	0.40	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	3.5	0.70	0.71	0.14	
74-87-3	Chloromethane	ND	0.70	ND	0.34	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.70	ND	0.099	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
106-99-0	1,3-Butadiene	ND	0.70	ND	0.31	
74-83-9	Bromomethane	ND	0.70	ND	0.18	
75-00-3	Chloroethane	ND	0.70	ND	0.26	
64-17-5	Ethanol	110	7.0	58	3.7	
75-05-8	Acetonitrile	ND	0.70	_ ND	0.41	ti. Paulio di Mari
107-02-8	Acrolein	0.78	0.70	0.34	0.30	
67-64-1	Acetone	16	7.0	6.8	2.9	M11
75-69-4	Trichlorofluoromethane	1.2	0.70	0.22	0.12	
67-63-0	2-Propanol (Isopropyl Alcohol)	20	0.70	8.1	0.28	
107-13-1	Acrylonitrile	ND	0.70	ND	0.32	
75-35-4	1,1-Dichloroethene	ND	0.70	ND	0.18	
75-09-2	Methylene Chloride	0.76	0.70	0.22	0.20	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.70	ND	0.22	
76-13-1	Trichlorotrifluoroethane	ND	0.70	ND	0.091	
75-15-0	Carbon Disulfide	ND	0.70	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.70	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.70	ND	0.17	
1634-04-4	Methyl tert-Butyl Ether	ND	0.70	ND	0.19	
108-05-4	Vinyl Acetate	ND	7.0	ND	2.0	
78-93-3	2-Butanone (MEK)	1.5	0.70	0.51	0.24	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

P0900931_T015_0903261525_SS.xls - Sample (7)

Verified By: In

Date: 3/27/09 232

NS66519

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Environmental Management, LTD.			
Client Sample ID:	SSD-1 DUP	CAS Project ID: PC	900931	
Client Project ID:	Kings - Storage / 3-2009	CAS Sample ID: PO	900931-007	
Test Code:	EPA TO-15	Date Collected: 3/	12/09	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/	Date Received: 3/16/09	
Analyst:	Elsa Moctezuma	Date Analyzed: 3/	19/09	
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)	
Container ID:	AC01550			

-1.6

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.39

CAS #	Compound	Result μg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.70	ND	0.18	2
141-78-6	Ethyl Acetate	2.1	0.70	0.58	0.19	
110-54-3	n-Hexane	0.78	0.70	0.22	0.20	
67-66-3	Chloroform	0.72	0.70	0.15	0.14	
109-99-9	Tetrahydrofuran (THF)	ND	0.70	ND	0.24	
107-06-2	1,2-Dichloroethane	ND	0.70	ND	0.17	
71-55-6	1,1,1-Trichloroethane	ND	0.70	ND	0.13	
71-43-2	Benzene	ND	0.70	ND	0.22	
56-23-5	Carbon Tetrachloride	0.50	0.14	0.080	0.022	
110-82-7	Cyclohexane	ND	0.70	ND	0.20	
78-87-5	1,2-Dichloropropane	ND	0.70	ND	0.15	****
75-27-4	Bromodichloromethane	ND	0.70	ND	0.10	
79-01-6	Trichloroethene	1.9	0.14	0.35	0.026	
123-91-1	1,4-Dioxane	ND	0.70	ND	0.19	
80-62-6	Methyl Methacrylate	ND	0.70	ND	0.17	
142-82-5	n-Heptane	0.76	0.70	0.19	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.70	ND	0.15	
108-10-1	4-Methyl-2-pentanone	ND	0.70	ND	0.17	
10061-02-6	trans-1,3-Dichloropropene	ND	0.70	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.70	ND	0.13	
108-88-3	Toluene	2.9	0.70	0.78	0.18	
591-78-6	2-Hexanone	ND	0.70	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.70	ND	0.082	
106-93-4	1,2-Dibromoethane	ND	0.70	ND	0.090	
123-86-4	n-Butyl Acetate	ND	0.70	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: in-

Date: 3/27/04 TO(5scan.xls - 75 Compounds - PageNo.:

RESULTS OF ANALYSIS

Page 3 of 3

Client:	Environmental Management, LTD.	CAS Project ID: P(900931
Client Sample ID:	SSD-1 DUP	CAS Sample ID: P(900931-007
Client Project ID:	Kings - Storage / 3-2009		
Test Code:	EPA TO-15	Date Collected: 3/	12/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/16/09	
Analyst:	Elsa Moctezuma	Date Analyzed: 3/19/09	
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Container ID:	AC01550		

-1.6

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.39

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.70	ND	0.15	
127-18-4	Tetrachloroethene	ND	0.70	ND	0.10	
108-90-7	Chlorobenzene	ND	0.70	ND	0.15	
100-41-4	Ethylbenzene	3.9	0.70	0.90	0.16	
179601-23-1	m,p-Xylenes	14	0.70	3.2	0.16	
75-25-2	Bromoform	ND	0.70	ND	0.067	
100-42-5	Styrene	ND	0.70	ND	0.16	
95-47-6	o-Xylene	5.1	0.70	1.2	0.16	
111-84-2	n-Nonane	1.6	0.70	0.31	0.13	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.70	ND	0.10	
98-82-8	Cumene	ND	0.70	ND	0.14	
80-56-8	alpha-Pinene	1.7	0.70	0.30	0.12	
103-65-1	n-Propylbenzene	0.88	0.70	0.18	0.14	
622-96-8	4-Ethyltoluene	1.6	0.70	0.34	0.14	
108-67-8	1,3,5-Trimethylbenzene	2.0	0.70	0.41	0.14	
95-63-6	1,2,4-Trimethylbenzene	5.6	0.70	1.1	0.14	
100-44-7	Benzyl Chloride	ND	0.70	ND	0.13	
541-73-1	1,3-Dichlorobenzene	ND	0.70	ND	0.12	
106-46-7	1,4-Dichlorobenzene	ND	0.70	ND	0.12	
95-50-1	1.2-Dichlorobenzene	ND	0.70	ND	0.12	
5989-27-5	d-Limonene	3.8	0.70	0.69	0.12	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.70	ND	0.072	
120-82-1	1,2,4-Trichlorobenzene	ND	0.70	ND	0.094	
91-20-3	Naphthalene	3.1	0.70	0.59	0.13	
87-68-3	Hexachlorobutadiene	ND	0.70	ND	0.065	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P0900931_T015_0903261525_SS.xis - Sample (7)

Date: 3/27/09 **234** TOISscan.xls - 75 Compounds - PageNo : Verified By: 69-

US61909

RESULTS OF ANALYSIS

Page | of 3

Client:	Environmental Management, LTD.		
Client Sample ID:	nple ID: Outdoor Ambient		900931
	Client Project ID: Kings - Storage / 3-2009 CAS Sample ID: P090		900931-008
Test Code:	EPA TO-15	Date Collected: 3/1	2/09
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/1	6/09
Analyst:	Elsa Moctezuma	Date Analyzed: 3/2	20/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

AC00893

Container ID:

Initial Pressure (psig): -0.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.26

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	0.82	0.63	0.48	0.37	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.63	0.46	0.13	
74-87-3	Chloromethane	ND	0.63	ND	0.31	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.63	ND	0.090	
75-01-4	Vinyl Chloride	ND	0.13	ND	0.049	
106-99-0	1,3-Butadiene	ND	0.63	ND	0.28	
74-83-9	Bromomethane	ND	0.63	ND	0.16	
75-00-3	Chloroethane	ND	0.63	ND	0.24	
64-17-5	Ethanol	ND	6.3	ND	3.3	
75-05-8	Acetonitrile	ND	0.63	ND	0.38	
107-02-8	Acrolein	ND	0.63	ND	0.27	
67-64-1	Acetone	7.6	6.3	3.2	2.7	MI
75-69-4	Trichlorofluoromethane	1.2	0.63	0.22	0.11	
67-63-0	2-Propanol (Isopropyl Alcohol)	2.8	0.63	1.1	0.26	
107-13-1	Acrylonitrile	ND	0.63	ND	0.29	
75-35-4	1,1-Dichloroethene	ND	0.63	ND	0.16	
75-09-2	Methylene Chloride	ND	0.63	ND	0.18	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.63	ND	0.20	
76-13-1	Trichlorotrifluoroethane	ND	0.63	ND	0.082	
75-15-0	Carbon Disulfide	ND	0.63	ND	0.20	
156-60-5	trans-1,2-Dichloroethene	ND	0.63	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.63	ND	0.16	
1634-04-4	Methyl tert-Butyl Ether	ND	0.63	ND	0.17	
108-05-4	Vinyl Acetate	ND	6.3	ND	1.8	
78-93-3	2-Butanone (MEK)	0.82	0.63	0.28	0.21	

NI) = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

P0900031_TO15_0903261525_SS.xis - Sample (8)

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Environmental Management, LTD.				
Client Sample ID: Outdoor Ambient		CAS Project ID: P0900931			
	Kings - Storage / 3-2009	CAS Sample ID: P0900931-008			
Test Code:	EPA TO-15	Date Collected: 3/	12/09		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 3/	16/09		
Analyst:	Elsa Moctezuma	Date Analyzed: 3/20/09			
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)		

AC00893

Test Notes:

Container ID:

Initial Pressure (psig): -0.2

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.26

CAS #	Compound	Result	MRL	Result	MRL	Data
480 F. 169 F. 188		μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.63	ND	0.16	
141-78-6	Ethyl Acetate	ND	0.63	ND	0.17	
110-54-3	n-Hexane	ND	0.63	ND	0.18	
67-66-3	Chloroform	ND	0.63	ND	0.13	
109-99-9	Tetrahydrofuran (THF)	ND	0.63	ND	0.21	
107-06-2	1,2-Dichloroethane	ND	0.63	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.63	ND	0.12	
71-43-2	Benzene	ND	0.63	· ND	0.20	
56-23-5	Carbon Tetrachloride	0.50	0.13	0.080	0.020	
110-82-7	Cyclohexane	ND	0.63	ND	0.18	
78-87-5	1,2-Dichloropropane	ND	0.63	ND	0.14	
75-27-4	Bromodichloromethane	ND	0.63	ND	0.094	
79-01-6	Trichloroethene	0.28	0.13	0.053	0.023	
123-91-1	1,4-Dioxane	ND	0.63	ND	0.17	
80-62-6	Methyl Methacrylate	ND	0.63	ND	0.15	
142-82-5	n-Heptane	ND	0.63	ND	0.15	
10061-01-5	cis-1,3-Dichloropropene	ND	0.63	ND	0.14	
108-10-1	4-Methyl-2-pentanone	ND	0.63	ND	0.15	
10061-02-6	trans-1,3-Dichloropropene	ND	0.63	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.63	ND	0.12	
108-88-3	Toluene	1.3	0.63	0.34	0.17	
591-78-6	2-Hexanone	ND	0.63	ND	0.15	
124-48-1	Dibromochloromethane	ND	0.63	ND	0.074	
106-93-4	1,2-Dibromoethane	ND	0.63	ND	0.082	
123-86-4	n-Butyl Acetate	ND	0.63	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

10

Date: <u>3/22/09</u> 268

WS6/5/67

RESULTS OF ANALYSIS

Page 3 of 3

	-		
	Environmental Management, LTD. Outdoor Ambient Kings - Storage / 3-2009	CAS Project ID: P0900931 CAS Sample ID: P0900931-008	
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Elsa Moctezuma 6.0 L Summa Canister AC00893	Date Collected: 3/ Date Received: 3/ Date Analyzed: 3/ Volume(s) Analyzed:	16/09

-0.2

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.26

		Result	MRL	Result	MRL	Data
CAS #	Compound	µg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.63	ND	0.13	
127-18-4	Tetrachloroethene	ND	0.63	ND	0.093	
108-90-7	Chlorobenzene	ND	0.63	ND	0.14	
100-41-4	Ethylbenzene	ND	0.63	ND	0.15	
179601-23-1	m,p-Xylenes	ND	0.63	ND	0.15	
75-25-2	Bromoform	ND	0.63	ND	0.061	
100-42-5	Styrene	ND	0.63	ND	0.15	
95-47-6	o-Xylene	ND	0.63	ND	0.15	
111-84-2	n-Nonane	ND	0.63	ND	0.12	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.63	ND	0.092	
98-82-8	Cumene	ND	0.63	ND	0.13	
80-56-8	alpha-Pinene	ND	0.63	ND	O.11	
103-65-1	n-Propylbenzene	ND	0.63	ND	0.13	
622-96-8	4-Ethyltoluene	ND	0.63	ND	0.13	
108-67-8	1,3,5-Trimethylbenzene	ND	0.63	ND	0.13	
95-63-6	1,2,4-Trimethylbenzene	ND	0.63	ND	0.13	
100-44-7	Benzyl Chloride	ND	0.63	ND	0.12	
541-73-1	1,3-Dichlorobenzene	ND	0.63	ND	0.10	
106-46-7	1,4-Dichlorobenzene	ND	0.63	ND	0.10	
95-50-1	1,2-Dichlorobenzene	ND	0.63	ND	0.10	
5989-27-5	d-Limonene	ND	0.63	ND	0.11	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.63	ND	0.065	
120-82-1	1,2,4-Trichlorobenzene	ND	0.63	ND	0.085	
91-20-3	Naphthalene	ND	0.63	ND	0.12	
87-68-3	Hexachlorobutadiene	ND	0.63	ND	0.059	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

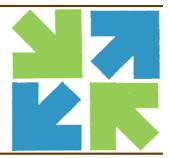
Verified By: 44-

Date: 3/27/09 269

וומוות היומווים איוומולים וופרטות איוומולים הקומצור ווימוים ווישוות ווישוות ווישוות ווישוות ווישוות ווישוות ווישו

Page 1 of 1

2655 Park Center Drive, Suite A	Simi Valley, California 93065	Phone (805) 526-7161	T. (001) TOO MOTO
	Columbia	Analytical Services" Phone (805) 526-7161	


(100) (101)	
	Chooka (and a contract
Company Name & Address (Reporting Information) Project Name	Kate Ague lera
Environmental Management Ltd KINGS - STORAGE	
41 Procenck Read Project Number Stony Point, NY 10908-3012 3-2009	-1:1)-
Project Manager	
Phone Fax SAME 645-429-1141 845-429-1166	
Sampler	
e Type Cánister ID Flow Controller Ube/ (Bar Code # - (Bar Code - jd)//L AC, SC, etc.) FC #)	Sample Volume
PLOUS & FLOUGH	664 6L
2 2 2 4 3 31409 9.15 13444 25 199 F2 0535	
3-2.5 3/2/09 9:10 5:06 01401 F2 00458	outst il
-7.0 slinks 9:45 5:12 36,454 PE0031	10337 6L
9.50 5.20 "COISTI FLOWERT	19597 6L
-3.5 3/4/09 10:00 5:32 01189 72 0074	074 bc Valuenottullyclox
7:06 4:47 01550 00311	511 bL
FC 0350	2350 GL
	- ¢L
	# EL 0.10 40/m3 for VC, COL4 & TCE
	Reed WHUMBER 3/16/09 10935
Tier III - (Data Validation Package) 10% Surcharge	
Z (1/2, 2) Date: 2/11/69	NUL / Went Date: 2/1 2 Time 10.00
Alleria Horan Date 3/12 Time 17. X	a) O Lov M. W. W. W. W. W. Dater Dater 2/3 / Time: 6, 20 Cooler / Blank

ATTACHMENT D

Indoor/Outdoor Air Quality Sampling Report Storage Deluxe Tuckahoe, NY June 2009 ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

June 30, 2009

Marbledale Rd LLC c/o Storage Deluxe 50 Main Street, Suite 812 White Plains, New York 10606 Attn: Steven Novenstein

Re: March 2009 Post-Mitigation Air Quality Testing Storage Deluxe, 40 Marbledale Road, Tuckahoe, NY (formerly Kings Electronics Co., Inc.) Site No. V 00234-3

Dear Mr. Novenstein:

Enclosed please find results of the post-mitigation indoor and outdoor air testing completed at the Storage Deluxe Tuckahoe facility (i.e.; your premises) pursuant to the sub-slab depressurization systems Operation, Maintenance & Monitoring (OM&M) Plan approved by NYS Department of Environmental Conservation (NYSDEC) and NYS Department of Health (NYSDOH). Air sampling was conducted on March 12, 2009, by Environmental Management, Ltd. (EML) on behalf of Weissman Holdings, Inc., formerly Kings Electronics Co., Inc. (Kings). An attached table summarizes our results. Copies of the analytical laboratory sheets for each sample location are included, along with the completed questionnaire/inventory for the facility.

Pursuant to the OM&M Plan, this air monitoring constitutes the post-mitigation air sampling required by Kings at your premises. No other air monitoring is required while the SSD systems are operational and working properly. In that regard, routine maintenance of the SSD systems, as required under the OM&M Plan, was carried out by EML, Mitigation Tech and Geovation Engineering, PC on May 21, 2009. Routine maintenance findings will be included within a separate report.

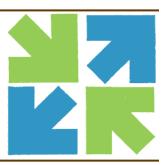
On behalf of Kings, thank you for your assistance and that of your staff. If you have any questions regarding the sampling results, please do not hesitate to contact me by phone at 845-429-1141 or call Nicole Bonsteel at NYSDEC toll free at 888-459-8667. You may also contact Carl Obermeyer at NYSDOH by phone at 845-794-2045, or by email at cjo01@health.state.ny.us, with any health related questions.

Very truly yours,

Environmental Management, Ltd.

Donald J. Wanamaker

Donald J. Wanamaker President encl.


ATTACHMENT B

To Post-Remedial Annual Report

ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

August 10, 2009

Nicole Bonsteel, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Re: OM&M Report (Routine Maintenance) for SSD Systems Installed at 40 Marbledale Road, Tuckahoe, Westchester County Weissman Holdings, Inc. (formerly Kings Electronics Co., Inc.) Site # V 00237-3

Dear Ms. Bonsteel:

Kings Electronics Co., Inc. (Kings) installed six sub-slab depressurization (SSD) systems at the Storage Deluxe self storage facility (formerly Kings Electronics) located at 40 Marbledale Road, Tuckahoe, Westchester County, New York (the Site). All SSD systems were deemed operational in March 2008. Environmental Management, Ltd. (EML) submitted an Operation, Maintenance & Monitoring (OM&M)/ Site Management Plan for the SSD systems, to New York State DEC and DOH (the State), on May 16, 2008. Its purpose was to set forth OM&M protocols and to help ensure that the SSD systems installed at the Site will continue to operate properly. EML's OM&M Plan was approved by the State on August 6, 2008. Post-Mitigation Indoor Air Quality (IAQ) Sampling pursuant to the OM&M Plan was conducted on March 12, 2009. A report of the IAQ results was submitted to the State on June 30, 2009.

Routine Maintenance

The OM&M Plan requires that specified routine maintenance commence within 18 months of the date the SSD systems became operational and occur every 12 to 18 months thereafter, until the SSD systems are shut down. A report of the Routine Maintenance conducted on May 21, 2009 is enclosed herein.

Please contact me if you have any questions or comments.

Very truly yours, Environmental Management, Ltd.

Donald J. Wanamaker


Donald J. Wanamaker, President

cc: Carl Obermeyer, NYS DOH

REPORT

ENVIRONMENTAL MANAGEMENT, LTD. On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

OM&M Report Summarizing Routine Maintenance of SSD Systems 40 Marbledale Road, Tuckahoe, Westchester County NYSDEC Site # V 00237-3 May 21, 2009

Kings Electronics Co., Inc. (Kings) installed six sub-slab depressurization (SSD) systems at the Storage Deluxe self storage facility (formerly Kings Electronics) located at 40 Marbledale Road, Tuckahoe, Westchester County, New York (the Site). All SSD systems were deemed operational in March 2008. An Operation, Maintenance & Monitoring (OM&M)/ Site Management Plan was submitted to the State on May 16, 2008. Its purpose was to set forth OM&M protocols and to help ensure that the SSD systems installed at the Site will continue to operate properly. The OM&M/ Site Management Plan for the self storage facility was approved by the State on August 6, 2008.

The OM&M Plan requires that specified routine maintenance commence within 18 months of the date the SSD systems became operational and occur every 12 to 18 months thereafter, until the SSD systems are shut down.

During routine maintenance, Kings or its agents must:

- (a) Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);
- (b) Inspect all components for condition and proper operation;
- (c) Inspect metal cages surrounding drop points to ensure they are intact;
- (d) Identify and repair any leaks in accordance with Sections 4.3.1(a) of NYSDOH's *October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (i.e.; with the systems running, smoke tubes will used to check for leaks through concrete cracks, floor joints and at the suction points and any leaks will be re-sealed until smoke is no longer observed flowing through the opening).
- (e) Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;
- (f) Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.

Preventative maintenance, repairs and/or adjustments will be made to the SSD system, as necessary, to ensure its continued effectiveness.

Routine Maintenance, May 2009

Routine maintenance was conducted at the Site on May 21, 2009 by Bruce Munson, Project Manager, Environmental Management, Ltd. (EML); Nicholas Mouganis, President, Mitigation Tech (the SSD installer); and Robert Zimmer, PE, Vice President, Geovation Engineering, PC (Geovation). Ralph Resignato, Corporate Facilities Director for Storage Deluxe, provided access to the Site, accompanied the inspection team at certain locations and was informed of significant observations as they arose.

The following summarizes the routine maintenance performed (see Exhibit 1, Annual Inspection & Routine Maintenance Form for individual systems):

- (a) **Visual Inspection**: EML and Geovation conducted a visual inspection of the six SSD Systems at Storage Deluxe. The vent fans, piping, warning devices, systems labeling were intact and in place, as installed.
- (b) **Component Condition and Operation**: A more detailed inspection of the SSD Systems components confirmed that the vent fans were running, there was no damage to the piping and the manometer readings were at the marks established during post mitigation confirmation testing by Mitigation Tech. Manometer readings obtained are recorded on the Visual Inspection Form for SSD Systems, Exhibit 2. Based on this inspection, all components of the SSD systems appeared to be in good condition and operating properly.
- (c) SSD system drop points are located (with one exception) along the corrugated metal interior walls of individual customer storage units and enclosed (solid corrugated metal cages) against the wall with the same material. At the time of this routine maintenance, most customer storage units enclosing down drops were rented (i.e., locked and inaccessible). The point at which the down drop enters the cage along the top of the storage unit wall is generally visible. No damage was noted. Unrented units were opened and the cages inspected. All down drops were intact.
- (d) Identification and Repair of any Leaks: The SSD systems were running at all times during the routine maintenance. The concrete facility floors, where visible within the public corridors and loading docks, were, with one exception, in excellent condition. At the loading dock for Building 6 a portion of the floor had cracked and shifted somewhat. Mitigation Tech used a smoke tube to check the crack for leaks, which were observed at several points. The crack was cleaned out and sealed along its length with polyurethane caulk, until smoke was no longer drawn in. As noted above, all down drops, including the point at which they enter the suction points they serve, are enclosed within solid corrugated metal cages and are therefore not accessible for smoke testing.
- (e) Air Intakes: The vent discharge point for each of the systems was observed; no air intakes have been located nearby.
- (f) **Interview**: Mr. Resignato, Corporate Facilities Director for Storage Deluxe was interviewed. He was cognizant of the recent replacement of a failed fan and had no problems with the systems' operation.

Pressure Field Extension Testing, May 2009

Upon completion of the SSD system installations at the end of 2007, Mitigation Tech conducted postmitigation confirmation testing, which included pressure field extension testing. (A copy of that report is attached hereto as Exhibit 3.) Although field extension testing is not included within the requirements of the approved OM&M Plan, the installer (Mitigation Tech) felt that field extension test readings would provide the best diagnostic indicator of system effectiveness. Consequently, field extension testing was carried out. Where the original (i.e.; 2007) test points drilled through the slab could not be located or accessed (due to floor repainting and completion or rental of storage units) new points were drilled in adjacent hallway locations, with the agreement of Mr. Resignato.

Results and locations of the pressure field extension testing in May 2009 for the six individual systems are presented on system layouts in Exhibit 4.

Mitigation Tech's report of Routine Maintenance is attached as Exhibit 5.

Exhibits:

- 1. Annual Inspection & Routine Maintenance Forms (6)
- 2. Visual Inspection Form SSD Systems (1)
- 3. Mitigation Tech Report, 12/3/07, SSD installation and testing
- 4. System plan drawings with pressure field readings, manometer readings, etc. (6)
- 5. Mitigation Tech Report of Routine Maintenance on 5/21/09

EXHIBIT 1

SSD System #

Storage Deluxe Building(s) _____

Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	/	
Inspect all components for condition and proper- operation;	/	
Inspect metal cages surrounding drop points to ensure they are intact;	5	All lockers reuted
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Reseal any leaks until smoke is no longer observed flowing through the opening).	1	No leaks molab
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;	~	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.	2	Interviewee: Rachh Mesig water Corp. Facilities Director
Conduct appropriate pressure field extension testing of SSD System.	/	Demolocker m showroom

Action taken, if deficiencies noted:

	~ ~ ~ ~	
Inspected by	Forme De Musia	
Organization	Enu. Agt Ltd.	

Resolution:

Date: _____ Name: _____ Initial: _____

SSD System # ____

Storage Deluxe Building(s) 3+4

Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	~	
Inspect all components for condition and proper operation;	~	
Inspect metal cages surrounding drop points to ensure they are intact;	-	where located in unrented locker
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Rescal any leaks until smoke is no longer observed flowing through the opening).	1	Cracked + 100r in Locker 1150 smoketested on 7/15. D. 016 wir maintained at + wo adjacent TA-S
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby:	~	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.	- 1-	Interviewee: Ralph Resignato, Corporate Faculities Dueston
Conduct appropriate pressure field extension testing of SSD System.	1	Three new TPis in Blog 3

Action taken, if deficiencies noted:

S Q a da	
nspected by Formed Aluman	
Organization Ene. Digt Ltd	

Resolution:

Date:	Name:	Initial:

SSD System # 3

Storage Deluxe Building(s) 2 + 4

Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	1	
Inspect all components for condition and proper- operation;	1	
Inspect metal cages surrounding drop points to ensure they are intact;	~	where accessible.
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Rescal any leaks until smoke is no longer observed flowing through the opening).	~	No cracles in slack
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;	~	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.	v	Interviewee: Rulph Resignato, Lorp. Faculities Director
Conduct appropriate pressure field extension testing of SSD System.	-	Original TPs

Action taken, if deficiencies noted:

		л р.	
		De Deressur	
Organization_	Env.	Mgt. Ltd.	

Resolution:

Date: _____ Name: _____

Initial: _____

SSD System # <u>4</u>

Storage Deluxe Building(s) 5 +6

Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	~	collecting at rear of Bidg 6. Close to exit pipe to Can.
Inspect all components for condition and proper- operation;	- L	
Inspect metal cages surrounding drop points to ensure they are intact;	~	where accessible
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Reseal any leaks until smoke is no longer observed flowing through the opening).	1	Crack in floor of loading dock show leaking at several spots. Cleaned out ascaled to polyterethane cacelle
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;	-	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.		Interviewee: Ralph Rasignato Corp. Facilities Director
Conduct appropriate pressure field extension testing of SSD System.	-	Three original TPs

Action taken, if deficiencies noted: _____

Inspected by	Ferre	se H. V	Cienta	
Organization	Eno.	Mat	Ltd	

Resolution:

Date: _____ Initial: _____

SSD System # 5

Storage Deluxe Building(s) 7

Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	~	
Inspect all components for condition and proper- operation;	~	
Inspect metal cages surrounding drop points to ensure they are intact;	/	Locker 0013 - Droppourt treestad
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Reseal any leaks until smoke is no longer observed flowing through the opening).	~	Hallways covered w. carpet tiles. Slack intact where accessble in unneuted lockers.
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;	V	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.	~	Interviewee: Ralph Resignato Corporate Faculaties Sirector
Conduct appropriate pressure field extension testing of SSD System.	-	Basement not builtout when system installed a tested. Original TPs covered over.

Action taken, if deficiencies noted:

2	4	0.00		
Inspected by _	Duu	ie H. H	laper	
Organization_	New.	Segt.	Ltd	

Resolution:

Date: _____ Initial: _____

SSD System # 6

Storage Deluxe Building(s) 9 Date 5/21/09

Routine Maintenance: Kings or its agents will commence routine maintenance within 18 months of the date the system became operational and such maintenance will occur every 12 to 18 months thereafter, until Kings is no longer responsible for SSD systems operations.

Maintenance Item	Check	Comments
Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices/manometers, labeling on systems, etc.);	~	
Inspect all components for condition and proper- operation:	-	
Inspect metal cages surrounding drop points to ensure they are intact;	~	where visible
Identify and repair any leaks (e.g., with the systems running, use smoke tubes to check for leaks through concrete cracks, floor joints and at accessible suction points. Reseal any leaks until smoke is no longer observed flowing through the opening).	2	Floor sleek mtact
Inspect the exhaust or discharge point(s) to verify that no air intakes have been located nearby;	~	None
Interview an appropriate Storage Deluxe representative seeking comments and observations regarding the operation of the SSD system.	~	Interviewee: Ralph Resignato Corporate Faculities Director
Conduct appropriate pressure field extension testing of SSD System.	-	New TA near original

Action taken, if deficiencies noted:

0	-	n f		
Inspected by _	Jeeu	e OC. O	luna	
Organization_	Ew.	Mgt.	Ltd	

Resolution:

Date:	Name:	Initial:

EXHIBIT 2

Visual Inspection Form – SSD Systems Storage Deluxe, 40 Marbledale Road, Tuckahoe NY

Date 5/2,1/09

For use during the annual Routine Maintenance of the SSD systems, and may be used for other visual checks. SSD system exhaust fans shall be checked for obvious signs of deterioration (e.g., excessive noise, vibration, overheating, loose or damaged mountings). Manometer readings will also be recorded, to document current system vacuum.

SSD System	Fan Operation/Comments	Manometer Vacuum (wei)
1 - Office/Showroom	Normal	17
2 – Buildings 3 & 4	Normal	2.0
3 – Buildings 2 & 4	Normal	0: 9
4 – Buildings 5& 6	Normal	1.6
5 – Building 7	Normal	0.9
6 – Building 9	Normal	2.6

Other observations:

Inspected by Ferrice Hunner Organization Env. Mgt Ltd

EXHIBIT 3

mitigation tech

radon correction specialists

December 3, 2007

Mr. Bruce Munson Environmental Management, Ltd. 41Franck Rd Stony Point, NY 10980-3012 Via email attachment: bmunson@emlweb.com,dwanamaker@emlweb.com

Re: Completion of SSD System Installation Former Kings Electronics Site 40 Marbledale Rd., Tuckahoe, NY 10707

Dear Mr. Munson:

On November 8, 2007 we visited this location A) to complete several outstanding work items, B) to conduct a thorough inspection and performance evaluation of the installed SSD system, and C) to certify system effectiveness. Our report follows.

System configuration has changed substantially since submission and acceptance of our original work plan. Causes include the accommodation of new owner's design and construction schedule, and the determination by others that intrinsically safe blowers would be required at three locations, Fan #2, #3 and #5. Utilizing a field designed grid and incorporating connections to pre-existing covered trenches, six specialized fans furnish negative pressure differential to all areas of the sub-slab except Building 8 and the sprinkler room (unoccupied). The intent of the original work plan has been accomplished.

A. Outstanding work items completed on 11-08-07

1. Add exterior sampling port to building 1 fan system

2. Add (2) suction points to building 5 – one at each floor level with valve as required; connect to B-6 SSD system; test for influence

- B. Inspection and Performance Evaluation We performed the following procedures and recorded the following observations:
 - 1. Conduct a visual inspection of the complete SSD system (e.g., vent fans, piping, vacuum gauges, labeling, etc.); **Observation : Acceptable**
 - 2. Inspect all components for condition and proper operation; **Observation :** Acceptable
 - 3. Identify (and repair) any leaks in accordance with Sections 4.3.1(a) of the NYS DOH Guidance **Observation: No leaks**
 - 4. Inspect the discharge point to verify that no air intakes have been located nearby; **Observation: No intakes**
 - 5. Interview the primary occupant of the premises seeking comments regarding the operation of the SSD system; **No comments of concern**
 - 6. Inspect all vertical pipe drops to suction cavities to ensure that metal protective coverings have been installed; **Observation : Acceptable;**

December 3, 2007 Page 2

Exceptions – a) two new drops in building 5; owner agrees to add coverings to these before use by public, **b)** currently freestanding pipe drop in basement of B-7; owner agrees to build cage around this pipe once area is built out

- 7. List location of all suction cavities and plot on floor plan
 - B-1: 1002, 1004, 1007, 1011
 - B-2: 1024, 1029
 - B-3: 1080, 1090, 1119, 1150, 1130, 1155, 1167, 1205
 - B-4: 1236, 1255, 1260, 1264, 1268, 1271
 - B-5: 1286, 1290
 - B-6: 1301, 1304, 1307, 1312, 1315, 1317, 1326
 - B-7: central location (unnumbered)
 - B-8: None
 - B-9: 1430, 1433, 1437
- 8. Conduct pressure field extension testing (to ensure that the system is maintaining a vacuum beneath the entire slab).

Bldg.	Location	Differential wci	Fan System
1	Sales demo	.007	1
2	1035	.020	3
2	1031	.017	3
3	1213	.025	2
4	1226	.314	2
5	1285	.005	4
5	1292	.026	4
6	1302	.095	4
7	1408	.013	5
7	1416	.008	5
8	N/A	N/A	-
9	1447	.047	6

- 9. No additional repairs or adjustments made
- C. I certify that the installed system is effective.

If you have any questions, please contact me.

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722

Attachment: schematic showing system components overlaid on a floor plan furnished by Storage Deluxe

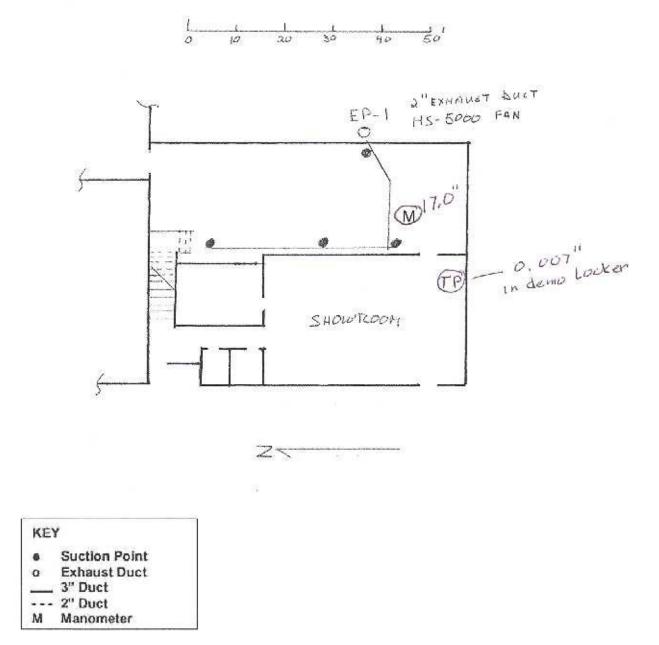
SSD systems. Buildings 1 through 6 - Storage Deluxe, Tuckahoe, NY

Within the four color-coded systems illustrated, solid lines represent 3" PVC pipe and dashed lines 2" PVC pipe.

Dotted purple lines are pre-existing sub slab trenches.

mitigation tech

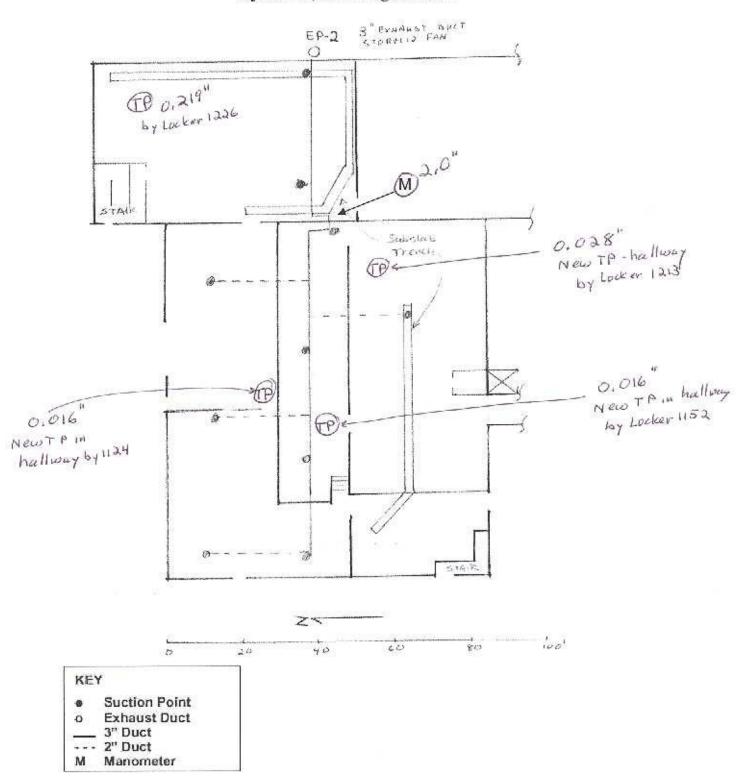
368 1981 369	E	1365	1364	1363	1362	1361	1360	1359	1357	1356	1355	1354	1353	1352	1351	1350	STAIRS	1439	1438	1437	1436	1435	1434	1433	1432	1431	1430	142
370	1366	140	3				1	G/	UGE				139	6 13	395		b								GAU	IGE		
372	14	105	14	02	14	01	140	1	399	1398	8 1	397	1	394			X	1440	1441	1442	1443	1444		1445	1446	1447	1448	1449
373 374	1	106	-		-	-		+	-		+		ELE	VATOR	R		В						T					11447
375 376	1	107	14	10	14	11	141	2 1	413	1414	1	415	141	16	7	418					1	QP.	1	NG K 3				
1377	1400	140	9		ASS.		(8	LDG	7)	1000		-		14	417		(BL	DG	8)	5 14		DC	1		-	-		1
1378		1379		1381	1382	1385	1985	1386	1387	00	1389		1391	1392	3	1393				- 11			1					

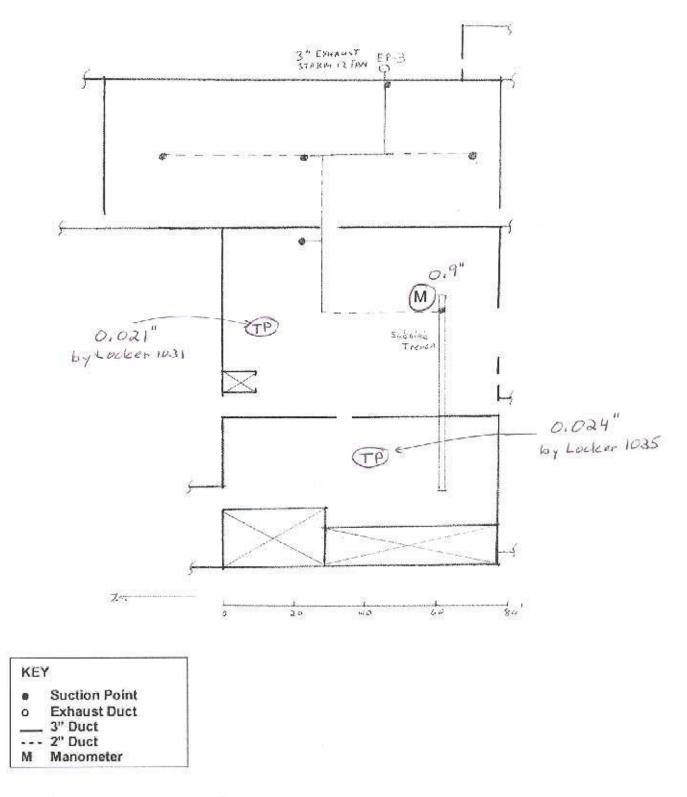

SSD systems. Buildings 7 through 9 – Storage Deluxe, Tuckahoe,NY

The two color coded systems utilize 3" PVC pipe throughout. Dotted purple line is a pre-existing sub slab trench.

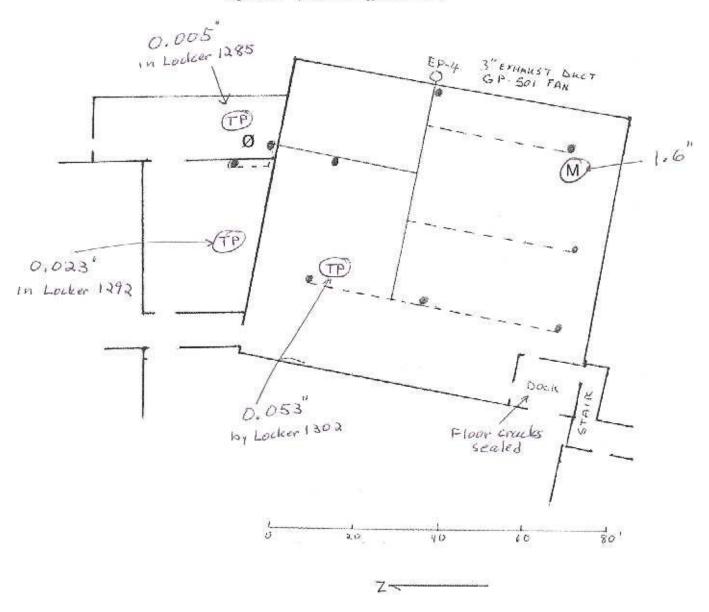
mitigation tech

EXHIBIT 4


System 1, Building 1

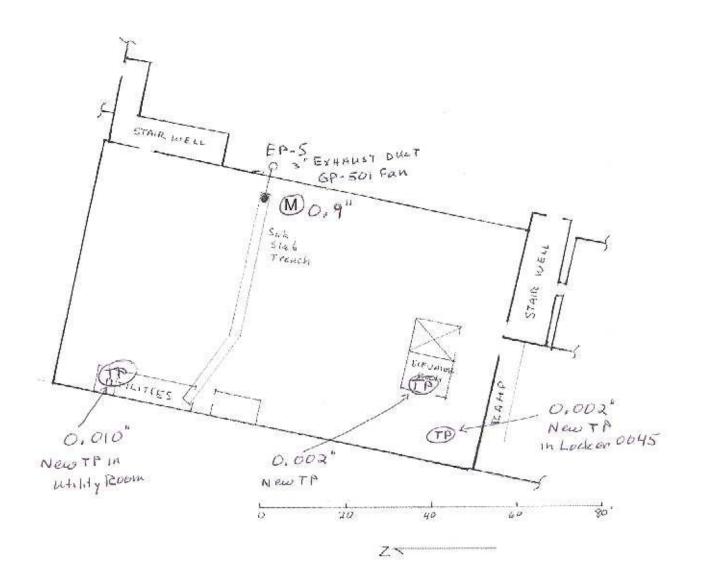

mitigation tech 55 SHUMWAY ROAD, BROCKPORT, NEW YORK, 14420 * OFFICE/FAX 585-637-7430

5/21/09


Pressure Field Extension (TP) and Manometer (M) Vacuum - wci System 2, Buildings 3 and 4

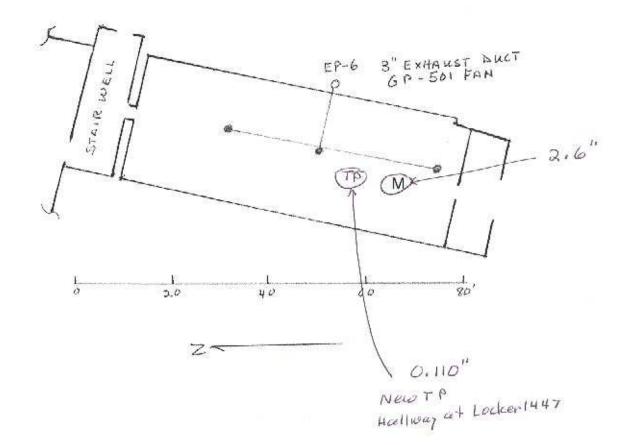
mitigation tech 55 SHUMWAY ROAD, BROCKPORT, NEW YORK, 14420 * OFFICE/FAX 585-637-7430

mitigation tech 55 Shumway Road, Brockport, NEW YORK, 14420 * OFFICE/FAX 585-637-7430



- 0.000
- Suction Point
 Exhaust Duct
- Exhaust Du
 3" Duct
- ---- 2" Duct
- M Manometer
- Ø Proportioning Valve

mitigation tech


55 SHUMWAY ROAD, BROCKPORT, NEW YORK, 14420 * OFFICE/FAX 585-637-7430

5/21/09

KE	Y
ø	Suction Point
o	Exhaust Duct
<u> </u>	3" Duct
	2" Duct
M	Manometer

mitigation tech 55 SHUMWAY ROAD, BROCKPORT, NEW YORK, 14420 * OFFICE/FAX 585-637-7430

KE	Y
	Suction Point
0	Exhaust Duct
_	3" Duct

- ---- 2" Duct
- M Manometer

mitigation tech 55 SHUMWAY ROAD, BROCKPORT, NEW YORK, 14420 * OFFICE/FAX 585-637-743 **EXHIBIT 5**

mitigation tech vapor intrusion specialists

July 29, 2009

Mr. Bruce Munson Environmental Management, Ltd. 41Franck Rd Stony Point, NY 10980-3012 Via email attachment: bruce@emlweb.com;dwanamaker@emlweb.com

Re: SSD Routine Maintenance, May 21, 2009 Storage Deluxe (Former Kings Electronics Site) 40 Marbledale Rd., Tuckahoe, NY 10707

Dear Mr. Munson:

On May 21, 2009 we visited this location to carry out the required Routine Maintenance of the installed SSD systems. In addition to you, Robert Zimmer, PE, Geovation Engineering participated in conducting a thorough inspection and performance evaluation of the installed SSD systems in order to certify system effectiveness. Our report follows.

Since the post mitigation confirmation testing (pressure field extension vacuum) was conducted on the completed systems at the end of 2007, three system fans have required repair (System 3) or replacement (Systems 1 and 5). No other repairs were necessary.

It was noted that the facility is now in full operation, and consequently access to many system components (e.g., vertical pipe drops and suction points within rented storage lockers) was limited. At some locations, where the original test points could not be accessed, new ones were installed.

Inspection and Performance Evaluation - We performed the following procedures and recorded the following observations:

- 1. Conduct a visual inspection of the complete SSD system (e.g., vent fans, piping, vacuum gauges, labeling, etc.); **Observation : Acceptable**
- 2. Inspect all components for condition and proper operation; **Observation :** Acceptable.
- 3. Identify (and repair) any leaks in accordance with Sections 4.3.1(a) of the NYS DOH Guidance; **Observation: crack in floor of loading dock for Building 6 sealed with polyurethane caulk. No other leaks noted.**
- 4. Inspect the discharge points to verify that no air intakes have been located nearby; **Observation: No intakes.**
- 5. Interview the primary occupant of the premises seeking comments regarding the operation of the SSD system; **Corporate Facilities Director had no concerns regarding the systems.**
- 6. Inspect all vertical pipe drops to suction cavities to ensure that metal protective coverings have been installed; **Observation : Acceptable;**

August 5, 2009 Page 2

7. Conduct pressure field extension testing (to ensure that the system is maintaining a vacuum beneath the entire slab).

	Bldg.	Location	Differential wci	Fan System
	1	Sales demo	.007	1
	2	1035	.024	3
	2	1031	.021	3
	3	1213	.028	2
	3	1152	.016	2
	3	1124	.016	2
	4	1226	.219	2
	5	1285	.005	4
	5	1292	.023	4
	6	1302	.053	4
	7	0045	.002	5
	7	Elevator Rm	.002	5
	7	Utility Rm	.010	5
	9	1447	.110	6
_				

8. No additional repairs or adjustments made.

I certify that the installed systems are effective.

If you have any questions, please contact me.

NICHOLAS E MOUGANIS

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 President


ATTACHMENT C

To Post-Remedial Annual Report

ENVIRONMENTAL MANAGEMENT, LTD.

On the Lake @ 41 Franck Road, Stony Point, New York 10980 Phone (845) 429-1141 • Fax (845) 429-1166

Internet: www.emlweb.com Email: info@emlweb.com

October 9, 2009

Nicole Bonsteel, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Re: Annual Certification for SSD System installed at: Storage Deluxe, 40 Marbledale Road, Tuckahoe, Westchester County Weissman Holdings, Inc. (formerly Kings Electronics Co., Inc.) NYSDEC # V 00237-3

Dear Ms. Bonsteel:

In accordance with the approved Operation, Maintenance & Monitoring (OM&M)/ Site Management Plan (for the installed Sub-Slab Depressurization (SSD) System) Environmental Management, Ltd (EML), on behalf of Weissman Holdings, Inc. must submit this annual certification.

By this certification, EML affirms that the SSD system at the site remains in place, is performing properly, and remains effective.

Please call me if you have any questions or comments.

Very truly yours,

Environmental Management, Ltd.

Donald J. Wanamaker

Donald J. Wanamaker President

cc: Carl Obermeyer, NYS DOH