

Imagine the result

Weissman Holdings, Inc

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1

Former Kings Electronics Co., Inc. Site 40 Marbledale Road Tuckahoe, New York

VCA#W3-0855-99-07 VCP Site No. V00237-3

30 October 2009

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater - Year 1

Former Kings Electronics Co., Inc. Site 40 Marbledale Road Tuckahoe, New York

VCA #W3-0855-99-07 VCP Site No. V00237-3

Prepared for: Weissman Holdings, Inc.

Prepared by:

ARCADIS of New York, Inc. Raritan Center Plaza III 105 Fieldcrest Avenue Suite 305 Edison New Jersey 08837 Tel 732.225.5061 Fax 732.225.5067

Our Ref.: NJ000423.0005

Date: 30 October 2009

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS of New York, Inc.

Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer-Engineer of Record NY PE License #074527

Table of Contents

i

1.	Introdu	iction			1
	1.1	Projec	t		1
	1.2	Purpos	se		1
2.	Pre-Re	medial	Ground	water Conditions	2
3.	Techni	cal Ove	erview		2
	3.1	Post-F	Remedial M	lonitoring	3
		3.1.1	Samplin	g Methodology	3
		3.1.2	Quality /	Assurance/Quality Control	4
	3.2	Inspec	tions and	Maintenance of the Injection and Monitoring Well Network	4
		3.2.1	Annual		4
		3.2.2	Other In	spections and Maintenance	5
4.	Post-R	emedia	al Monito	ring Program Results and Evaluation – Year 1	5
	4.1	Groun	dwater Mo	nitoring	5
		4.1.1	Results		5
			4.1.1.1	October 2008	6
			4.1.1.2	January 2009	6
			4.1.1.3	April 2009	6
			4.1.1.4	July 2009	7
		4.1.2	Evaluati	on	7
	4.2	Inspec	tions and I	Maintenance of the Injection and Monitoring Well Network	8
		4.2.1	Results		8
		4.2.2	Evaluati	on	8
5.	Conclu	sions	and Reco	ommendations	8
6.	Schedu	ule and	Reportir	ng	9
7.	Refere	nces			10

g:\aproject\kings electronics\reports\annual report - year 1\annual report_final_2009-10-30.doc

Table of Contents

Tables

- 1 Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2009.
- 2 Volatile Organic Compound Results for Upgadient Groundwater Monitoring Well MW-6S, October 2008 to July 2009.
- 3 Summary of Groundwater Elevation Measurements, October 2008 to July 2009.
- 4 Post-Remedial On-Site Performance Groundwater Monitoring and Maintenance Schedule

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Summary of CVOCs in Groundwater, October 2008 July 2009
- 4 Groundwater Contour Map for the Shallow Overburden, January 2009
- 5 Groundwater Contour Map for the Deep Overburden, January 2009

Appendices

- A Groundwater Sampling Forms
- B Laboratory Data Packages
- C Well Inspection Forms

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

1. Introduction

ARCADIS of New York, Inc. (ARCADIS), on behalf of Weissman Holdings, Inc., formerly Kings Electronics Co., Inc. (Kings), has prepared this Post-Remedial Annual Report and Project Evaluation (PRM Report) for on-site groundwater at the former Kings Electronics Co., Inc. facility (Site). This report summarizes (i) the results of four quarters of on-site groundwater monitoring for the first year (August 2008 - July 2009) following shutdown of the groundwater remediation system in August 2008; (ii) the operations, maintenance and monitoring (OM&M) activities, which consist of monitoring well and injection well inspections; and (iii) conclusions and recommendations based on post-remedial data.

1.1 Project

The Site is located at 40 Marbledale Road, Village of Tuckahoe, Town of Eastchester, Westchester County, New York, with Tax Map Identifier Numbers Section 68, Block 4, and Lots 29 and 36 E. The Site location is presented on Figure 1. A Site plan showing existing site features is presented on Figure 2. Constituents of concern (COCs) at the Site are chlorinated volatile organic compounds (CVOCs) based on previous groundwater investigations.

The New York State Department of Environmental Conservation (NYSDEC) approved Kings' Revised On-Site Remedial Action Work Plan (RAWP) dated July 3, 2002 (ARCADIS, 2002). As described in the RAWP, Enhanced Reductive Dechlorination (ERD) was selected as the cleanup remedy for the CVOC contamination in groundwater at the Site originating from the source (former degreaser) area. The ERD remedial system began operation in January 2003. The site specific cleanup goals established for the Site (i.e.; below NYSDEC's Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1) were achieved in January 2008, after operating for a period of approximately 5 years. As set forth in the Final Engineering Report (FER) dated February 11, 2009 (ARCADIS, 2009), on-site post-remedial monitoring was to begin following shutdown of the groundwater remedial system in August 2008.

1.2 Purpose

The groundwater remedial action goals for the Site were to achieve groundwater quality standards meeting the Standard, Cleanup and Guidance Values of TOGS 1.1.1 (SCGs). These Site specific cleanup goals were reached in January 2008.

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

As described herein, all groundwater remediation activities ended in August 2008, beginning the Post-Remedial Period. The purpose of this PRM Report is to evaluate and document the effectiveness of the groundwater remediation during the Post-Remedial Period and determine if any post-remedial action is warranted. In addition, the PRM report summarizes the operations, maintenance and monitoring (OM&M) activities, which consist of monitoring well and injection well inspections.

2. Pre-Remedial Groundwater Conditions

On-site groundwater was impacted with chlorinated VOCs (CVOCs). Trichloroethene (TCE) has been determined to be the diagnostic COC at the Site. The highest concentrations of total CVOCs in groundwater were detected in the upper unconsolidated unit (10 to 20 feet bgs). Concentrations of TCE in groundwater ranged from non-detect to 28,000 parts per billion (ppb).

Concentrations of CVOCs historically detected in the lower unconsolidated unit generally decrease by two to three orders of magnitude, demonstrating that the downward migration of CVOCs is limited, possibly attributable to decreased hydraulic conductivity at depth associated with the fining downward sequence observed for the unconsolidated unit.

3. Technical Overview

The Post-Remedial Period includes at least eight quarters (2 years) of on-site groundwater monitoring as set forth in Section 8.1 of the FER (ARCADIS, 2009). The first post-remediation monitoring event occurred in October 2008, following shutdown of the groundwater remedial system in August 2008. Year 1 of the Post-Remedial Period has been completed (for August 2008 - July 2009) and is summarized in this report.

The on-site monitoring wells include wells downgradient of the former degreaser source area (MW-9S, MW-9D, PTW-2, GP-104R, GP-103R and MW-13R) and one well upgradient of the former degreaser source area (MW-6S) at the northern property line. Downgradient wells monitor the effectiveness of the remediation and the upgradient well is utilized to document upgradient groundwater conditions.

The objectives of the post-remedial monitoring are (i) to determine if a rebound of former source area contaminants is observed in on-site groundwater and (ii) if so, to identify whether reinstatement of molasses substrate injections at any injection line or

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

the implementation of an alternative remedial measure (Post Remedial Action) is necessary.

The Post-Remedial Period also includes inspections and maintenance of monitoring wells and injection wells on an annual and "as-needed" basis throughout the period. Inspections and maintenance are completed to ensure that the existing remedial system components (e.g., monitoring and injection wells) remain in operable condition.

The post-remedial activities are summarized below in Sections 3.1, 3.2, and 3.3.

3.1 Post-Remedial Monitoring

Post-remedial quarterly monitoring was conducted as set forth in the FER, and the Revised On-Site Remedial Action Work Plan for the Site, and by agreement with NYSDEC

3.1.1 Groundwater Sampling

On-site post-remedial monitoring was completed during October 2008, January 2009, April 2009, and July 2009. The following six on-site monitoring wells were sampled during each quarter: MW-9S, MW-9D, PTW-2, GP-104R, GP-103R and MW-13R. In addition, MW-6S (on-site at the upgradient northern property line) was monitored each quarter to document groundwater quality upgradient of the former degreaser source area.

Purge water generated from the sampling activities is temporarily staged on-site in designated 55-gallon drums. On 13 October 2008 and on 22 April 2009, Royal Environmental Services Corporation, a 6 NYCRR Part 364 permitted transporter, removed purge water for delivery off-site.

3.1.1 Sampling Methodology

Monitoring wells were purged using a low-flow groundwater sampling technique during each sampling event. During well purging, field measurements were recorded onto groundwater sampling logs. The logs are provided as Appendix A. Groundwater samples were also collected using a low-flow groundwater sampling technique and were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) using EPA Method 8260. All groundwater samples were transferred properly into

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

sample containers and placed in coolers with ice and maintained at 4° C for delivery to an ELAP-certified laboratory for analysis under proper chain of custody.

3.1.2 Quality Assurance/Quality Control

All monitoring well samples were analyzed by a NYS DOH ELAP certified laboratory following the quality assurance/quality control (QA/QC) procedures specified in the analytical method. Category A laboratory data deliverables were provided by the laboratory. The laboratory data packages for each of the four quarters are provided as Appendix B to this Report.

QA/QC samples were collected to assure quality control for the monitoring program. Analyses of QA/QC samples enabled data evaluation for accuracy and integrity. QA/QC sample sets included one trip blank with each cooler containing samples collected for VOC analyses, field blank samples for each day of any sampling event where a decontamination process was employed, and a blank duplicate (site specific) and MS/MSD (batch specific) analyzed at a frequency of one per every twenty samples in a sample delivery group (SDG) to determine the quality of laboratory analysis. QA/QC samples were used to verify the quality of the sampling and analytical results.

3.2 Inspections and Maintenance of the Injection and Monitoring Well Network

3.2.1 Annual

Annual inspections and maintenance of the injection system and monitoring wells were completed as follows:

- (a) Annual well integrity assessments were completed on 20 January 2009 for injection wells (IW-5, IW-6, MW-HP-8S, MW-1, MW-11, MW-10, MW-12, MW-2, IW-8, IW-9, IW-10, IW-11, GP-106R2, IW-1R, IW-2, IW-3, IW-4, IW-12, IW-13, IW-14, IW-15R, MW-7S & IW-16), post-remedial performance monitoring wells (MW-9S, MW-9D, PTW-2, GP-104R, GP103R and MW-13R), and the on-site, upgradient well (MW-6S). Completed well field inspection logs are provided as Appendix C.
- (b) Annual visual inspections were completed on 20 January 2009 for off-site monitoring wells (OS-MW-1, OS-MW-2, OS-MW-3, MW-HP-2S, MW-HP-2D) to assess if they remain secure. A visual examination of the flush-mount protective

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

casing at the ground surface was completed to accomplish this. All off-site wells were secure.

3.2.2 Other Inspections and Maintenance

Additional maintenance of the injection system and monitoring wells was completed on 17 July 2009 based on ARCADIS field observations. The maintenance performed was completed as follows:

- Bolts were replaced for Monitoring Well MW-HP-1D and Injection Wells IW-11 and GP-106R2.
- Flushmount unit threads that receive bolts to secure the well cover were retapped and bolts were replaced for Monitoring Wells MW-6S, MW-9S, MW-9D, MW-13R, GP103R, GP-104R, PTW-2, MW-HP-2S, MW-HP-2D, OS-MW-1, OS-MW-2, and OW-MW-3-PL, and for Injection Wells MW-HP-8S, IW-3, IW-4, IW-6, IW-8, and IW-16.

During the first year of the Post-Remedial Period, no reports of on-site flooding, injection system damage, or monitoring well damage were received by Kings from the Site's owner/operator.

4. Post-Remedial Monitoring Program Results and Evaluation – Year 1

The results for the first year of the post-remedial monitoring program are described in the following sections.

4.1 Groundwater Monitoring

4.1.1 Results

The analytical results from Year 1 of the Post-Remedial Period for post-remedial performance monitoring wells (MW-9S, MW-9D, PTW-1, GP014R, GP-103R, MW-13R) are provided in Table 1. The analytical results for upgradient Monitoring Well MW-6S (for which there is no cleanup obligation) are provided in Table 2. A summary of the results for each quarter are provided as follows:

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

4.1.1.1 October 2008

The results of the post-remedial monitoring conducted during October 2008 are as follows:

- There were no exceedences of the SCG for TCE (5.0 µg/l) at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 1.62 µg/l.
- There was one exceedence of the SCG for cis-1,2-DCE (5.0 µg/l) and one exceedence of the SCG for vinyl chloride (2.0 µg/l) at Well GP-103R. The reported concentrations for cis-1,2-DCE and vinyl chloride were 6.31 µg/l and 35.2 µg/l, respectively.
- The TCE concentration at upgradient well MW-6S was reported at 24.1 µg/l.

4.1.1.2 January 2009

The results of the post-remediation monitoring conducted during January 2009 are as follows:

- There were no exceedences of the SCG for TCE at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 1.62 µg/l.
- There was one exceedence of the SCG for vinyl chloride at Well MW-13R. The reported concentration was 2.73 μg/l.
- The TCE concentration at upgradient well MW-6S was reported at 43.3 µg/l. Additionally, 1,1,1-trichloroethane (1,1,1-TCA) and tetrachloroethene (PCE) were reported at concentrations of 5.1 µg/l and 5.55 µg/l, respectively.

4.1.1.3 April 2009

The results of the post-remediation monitoring conducted during April 2009 are as follows:

- There were no exceedences of the SCG for TCE at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 1.54 µg/l.
- There was one exceedence of the SCG for vinyl chloride at Well GP-103R. The reported concentration was 10.9 μg/l.

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

 The TCE concentration at upgradient well MW-6S was reported at 33.9 µg/l. Additionally, 1,1,1-TCA was reported at a concentration of 6.31 µg/l.

4.1.1.4 July 2009

The results of the post-remediation monitoring conducted during July 2009 are as follows:

- There were no exceedences of the SCG for TCE at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 2.22 µg/l.
- There were no SCG exceedences for any performance monitoring well.
- The TCE concentration at upgradient well MW-6S was reported at 37.3 µg/l. Additionally, PCE was reported at 5.48 ug/l.

4.1.2 Evaluation

As discussed below, based on an evaluation of the post-remedial monitoring data, a post-remedial rebound of the source area has not occurred.

Detected VOC concentrations for each on-site well are shown on Figure 3. Based on the four quarters of post-remedial monitoring data, TCE has not exceeded the applicable SCG in any performance monitoring well. One exceedence of cis-1,2 DCE was detected at GP-103R in October 2008 at a concentration of 6.31 ug/l. Two exceedences of vinyl chloride were detected at GP-103R in October 2008 and April 2009 at concentrations of 35.2 ug/l and 10.9 ug/l, respectively. One exceedence of vinyl chloride was detected at MW-13R in January 2009 at a concentration of 2.73 ug/l.

Although cis-1,2-DCE and vinyl chloride are degradation products of TCE, their relatively low concentrations and the absence of TCE exceedences suggest that a post-remedial rebound has not occurred. Additionally, exceedences of SCGs were not detected in wells located between the former degreaser source area and GP-103R (i.e., results from MW-9S, MW-9D, PTW-2, and GP-104R were below SCGs), further suggesting that a post-remedial rebound has not occurred. The single detected exceedence of vinyl chloride at MW-13R was relatively low and is likely attributable to concentrations detected upgradient at GP-103R. Subsequent monitoring indicates that these concentrations have attenuated to levels below the SCGs.

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

Based on the post-remedial monitoring data, the upgradient VOC concentrations reported at MW-6S have not re-impacted the performance monitoring wells.

Groundwater contour maps indicate that flow direction in the shallow and deep overburden is generally towards the south (refer to Figures 4 and 5), consistent with the flow direction observed during previous monitoring events. Groundwater elevation measurements for each quarter are provided in Table 3.

4.2 Inspections and Maintenance of the Injection and Monitoring Well Network

4.2.1 Results

The annual inspection and maintenance results from Year 1 of the Post-Remedial Period are summarized as follows:

- Minimal maintenance was required for on-site and off-site wells based on the annual inspection results performed on 20 January 2009.
- Maintenance was completed, as summarized in Section 3.2.2, on 17 July 2009.

4.2.2 Evaluation

The injection and monitoring wells appear in operable condition based on the 20 January 2009 inspection. No additional repair or maintenance is required.

5. Conclusions and Recommendations

The following conclusions are based on a review of the post-remedial data for Year 1 of the Post-Remedial Period:

- Post-remedial rebound of TCE has not occurred since shutdown of the groundwater remediation system in August 2008.
- TCE concentrations in groundwater remain below the SCG at post-remedial performance monitoring wells.
- TCE degradation products, specifically cis-1,2 DCE and vinyl chloride, were detected at relatively low concentrations at Well GP-103R and vinyl chloride was detected at a low concentration at MW-13R. The detections of cis-1,2-

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

DCE and vinyl chloride are likely due to localized residual CVOCs and are likely not related to the former degreaser source area. This is based on (i) the distance of GP-103R from the former degreaser source area (approximately 300 ft) and (ii) the absence of SCG exceedences in post-remedial performance wells upgradient of GP-103R.

- Average yearly TCE upgradient sample results at MW-6S are trending lower.
- Monitoring well and injection wells appear in operable condition to continue monitoring activities and reinstate injections, if required.

Continued post-remedial monitoring on a quarterly basis and annual inspection and maintenance of the injection system and monitoring wells are recommended for a second year (i.e., four additional quarters) in accordance with the FER.

6. Schedule and Reporting

Post-remedial groundwater monitoring is scheduled to be completed during October 2009, January 2010, April 2010, and July 2010 for on-site wells. It is anticipated that a final groundwater monitoring event will be completed during July 2010, pending NYSDEC approval and provided that a post-remedial rebound is not observed during the Post-Remedial Period. The on-site post-remedial groundwater monitoring and maintenance schedule is summarized in Table 4.

Interim Quarterly Reports will continue to be prepared and submitted to NYSDEC while on-site quarterly monitoring is required.

An Annual Report will be submitted within 90 days of concluding the second year of the Post-Remedial Period. It is anticipated that the Post-Remedial Period will conclude following the July 2010 monitoring event, provided a post-remedial rebound is not observed.

Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1 Former Kings Electronics Co., Inc. Site

7. References

- ARCADIS. 2002. Revised On-Site Remedial Action Work Plan, Kings Electronics Co., Inc. Site. Tuckahoe, New York. July 3, 2002
- ARCADIS. 2009. Final Engineering Report, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York. February 11, 2009
- The Cody Ehlers Group. 1999. Summary of Environmental Conditions, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, New York. February 23, 1999.
- The Cody Ehlers Group. 1999. April 1999 Soil Removal Summary Report, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, New York. June 24, 1999.
- Geovation. 2002. Additional Site Investigation Activities, Kings Electronics Co., Inc. Site. Tuckahoe, New York. February 6, 2002
- Hall, Leo. M. 1968. Bedrock Geology in the Vicinity of White Plains, New York. University of Massachusetts, May 1968.
- Leggette, Brashears & Graham, Inc. 2000. Summary of Remedial Investigative Findings, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, Westchester County, New York. June 1, 2000.
- New York State Department of Environmental Conservation. 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation. December 12, 2002

	Location ID	MW-9D				MW-9S			
		MW-9D E08-	MW-9D E09-	MW-9D E09-	MW-9D E09-	MW-95 E08-	MW-95 E09-	MW-9SR E09-	MW-95 E09-
	Lab Sample ID	12330-010	00763-006	03980-007	07112-005	12330-008	00763-007	03980-006	07112-006
	Sample Date	10/21/2008	1/21/2009	4/22/2009	7/15/2009	10/21/2008	1/21/2009	4/22/2009	7/15/2009
Compound	SCGs								
1,1,1-Trichloroethane	5	< 0.43	< 0.36	< 0.23	< 0.23	< 0.43	< 0.36	< 0.23	< 0.23
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12	< 0.14	< 0.17	< 0.12	< 0.12
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15	< 0.36	< 0.15	< 0.15	< 0.15
1,1-Dichloroethane	5	< 0.34	< 0.21	< 0.23	< 0.23	0.52	0.547	0.877	< 0.23
1,1-Dichloroethylene	5	< 0.42	< 0.53	< 0.61	< 0.61	< 0.42	< 0.53	< 0.61	< 0.61
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15	< 0.28	< 0.23	< 0.15	< 0.15
1,2-Dichloroethane	0.6	< 0.28	< 0.19	< 0.21	< 0.21	< 0.28	< 0.19	< 0.21	< 0.21
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2	< 0.21	< 0.16	< 0.2	< 0.2
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16	< 0.28	< 0.25	< 0.16	< 0.16
2-Chloroethyl Vinyl Ether		< 0.63	< 1.04	< 0.99	< 0.99	< 0.63	< 1.04	< 0.99	< 0.99
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34	< 1.87	< 2.57	< 4.34	< 4.34
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95	< 1.19	< 0.74	< 0.95	< 0.95
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21	< 0.29	< 0.17	< 0.21	< 0.21
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12	< 0.21	< 0.18	< 0.12	< 0.12
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36	< 0.51	< 0.37	< 0.36	< 0.36
Carbon Tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16	< 0.45	< 0.3	< 0.16	< 0.16
CFC-11	5	< 0.6	< 0.74	< 0.23	< 0.23	< 0.6	< 0.74	< 0.23	< 0.23
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2	< 0.27	< 0.2	< 0.2	< 0.2
Chlorodibromomethane	50	< 0.25	< 0.16	< 0.16	< 0.16	< 0.25	< 0.16	< 0.16	< 0.16
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29	< 0.71	< 0.64	< 0.29	< 0.29
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17	< 0.29	< 0.14	< 0.17	< 0.17
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23	< 0.51	< 0.18	< 0.23	< 0.23
cis-1,2-Dichloroethene	5	< 0.32	< 0.19	< 0.2	< 0.2	0.668	0.64	0.657	0.564
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15	< 0.2	< 0.24	< 0.15	< 0.15
Dichloromethane	5	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19	< 0.33	< 0.27	< 0.19	< 0.19
m-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17	< 0.32	< 0.23	< 0.17	< 0.17
Methylbenzene	5	< 0.34	< 0.23	< 0.2	< 0.2	< 0.34	< 0.23	< 0.2	< 0.2
Tetrachloroethene	5	< 0.38	< 0.33	< 0.19	< 0.19	< 0.38	< 0.33	< 0.19	< 0.19
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44	< 0.98	< 0.79	< 0.44	< 0.44
trans-1,2-Dichloroethene	5	< 0.45	< 0.25	< 0.19	< 0.19	0.882	< 0.25	1.31	< 0.19
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27	< 0.13	< 0.32	< 0.27	< 0.27
Tribomomethane	50	< 0.3	< 0.15	< 0.14	< 0.14	< 0.3	< 0.15	< 0.14	< 0.14
Trichloroethylene	5	< 0.32	< 0.19	< 0.28	< 0.28	< 0.32	< 0.19	< 0.28	< 0.28
Vinyl Chloride	2	< 0.56	< 0.46	< 0.26	< 0.26	0.861	0.808	0.757	< 0.26

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2009, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

	Location ID		PTW-2				GP-104R			
	Lab Comple ID	PTW-2_E08-	PTW-2_E09-	PTW-2_E09-	PTW-2_E09-	GP-104R_E08-	GP-104R_E09-	GP-104R_E09-	GP-104R_E09-	
	Lab Sample ID	12330-014	00763-017	03980-001	07112-010	12330-013	00763-012	03980-005	07112-009	
	Sample Date	10/23/2008	1/22/2009	4/21/2009	7/16/2009	10/23/2008	1/22/2009	4/22/2009	7/16/2009	
Compound	SCGs									
1,1,1-Trichloroethane	5	< 0.43	< 0.36	< 0.23	< 0.23	< 0.43	< 0.36	< 0.23	< 0.23	
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12	< 0.14	< 0.17	< 0.12	< 0.12	
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15	< 0.36	< 0.15	< 0.15	< 0.15	
1,1-Dichloroethane	5	0.657	1.69	1.88	0.576	0.573	1.48	0.789	< 0.23	
1,1-Dichloroethylene	5	< 0.42	< 0.53	< 0.61	< 0.61	< 0.42	< 0.53	< 0.61	< 0.61	
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15	< 0.28	< 0.23	< 0.15	< 0.15	
1,2-Dichloroethane	0.6	< 0.28	< 0.19	< 0.21	< 0.21	< 0.28	< 0.19	< 0.21	< 0.21	
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2	< 0.21	< 0.16	< 0.2	< 0.2	
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16	< 0.28	< 0.25	< 0.16	< 0.16	
2-Chloroethyl Vinyl Ether		< 0.63	< 1.04	< 0.99	< 0.99	< 0.63	< 1.04	< 0.99	< 0.99	
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34	< 1.87	< 2.57	< 4.34	< 4.34	
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95	< 1.19	< 0.74	< 0.95	< 0.95	
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21	< 0.29	< 0.17	< 0.21	< 0.21	
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12	< 0.21	< 0.18	< 0.12	< 0.12	
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36	< 0.51	< 0.37	< 0.36	< 0.36	
Carbon Tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16	< 0.45	< 0.3	< 0.16	< 0.16	
CFC-11	5	< 0.6	< 0.74	< 0.23	< 0.23	< 0.6	< 0.74	< 0.23	< 0.23	
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2	< 0.27	< 0.2	< 0.2	< 0.2	
Chlorodibromomethane	50	< 0.25	< 0.16	< 0.16	< 0.16	< 0.25	< 0.16	< 0.16	< 0.16	
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29	< 0.71	< 0.64	< 0.29	< 0.29	
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17	< 0.29	< 0.14	< 0.17	< 0.17	
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23	< 0.51	< 0.18	< 0.23	< 0.23	
cis-1,2-Dichloroethene	5	0.395	< 0.19	1.31	1.76	0.589	1.58	1.16	1.64	
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15	< 0.2	< 0.24	< 0.15	< 0.15	
Dichloromethane	5	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19	< 0.33	< 0.27	< 0.19	< 0.19	
m-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17	< 0.32	< 0.23	< 0.17	< 0.17	
Methylbenzene	5	< 0.34	< 0.23	< 0.2	< 0.2	< 0.34	< 0.23	< 0.2	< 0.2	
Tetrachloroethene	5	< 0.38	< 0.33	< 0.19	< 0.19	< 0.38	< 0.33	< 0.19	< 0.19	
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44	< 0.98	< 0.79	< 0.44	< 0.44	
trans-1,2-Dichloroethene	5	< 0.45	< 0.25	0.717	< 0.19	0.459	1.19	0.759	< 0.19	
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27	< 0.13	< 0.32	< 0.27	< 0.27	
Tribomomethane	50	< 0.3	< 0.15	< 0.14	< 0.14	< 0.3	< 0.15	< 0.14	< 0.14	
Trichloroethylene	5	< 0.32	0.525	1.54	2.22	0.402	1.49	1.13	1.82	
Vinyl Chloride	2	< 0.56	< 0.46	0.816	< 0.26	< 0.56	0.502	< 0.26	< 0.26	

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2009, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

	Location ID		GP-103R				MW-13R			
		GP-103R E08-	GP-103R E09	GP-103R E09	GP-103R E09	MW-13R E08-	MW-13 E09-	MW-13R E09-	MW-13R E09-	
	Lab Sample ID	12330-007	00763-011	03980-004	07112-004	12330-012	00763-009	03980-002	07112-008	
	Sample Date	10/23/2008	1/22/2009	4/22/2009	7/16/2009	10/22/2008	1/21/2009	4/21/2009	7/15/2009	
Compound	SCGs									
1.1.1-Trichloroethane	5	< 0.43	< 0.36	< 0.23	< 0.23	< 0.43	< 0.36	< 0.23	< 0.23	
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12	< 0.14	< 0.17	< 0.12	< 0.12	
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15	< 0.36	< 0.15	< 0.15	< 0.15	
1,1-Dichloroethane	5	0.418	< 0.21	< 0.23	< 0.23	0.61	0.86	0.792	< 0.23	
1,1-Dichloroethylene	5	< 0.42	< 0.53	< 0.61	< 0.61	< 0.42	< 0.53	< 0.61	< 0.61	
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15	< 0.28	< 0.23	< 0.15	< 0.15	
1,2-Dichloroethane	0.6	< 0.28	< 0.19	< 0.21	< 0.21	< 0.28	< 0.19	< 0.21	< 0.21	
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2	< 0.21	< 0.16	< 0.2	< 0.2	
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16	< 0.28	< 0.25	< 0.16	< 0.16	
2-Chloroethyl Vinyl Ether		< 0.63	< 1.04	< 0.99	< 0.99	< 0.63	< 1.04	< 0.99	< 0.99	
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34	< 1.87	< 2.57	< 4.34	< 4.34	
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95	< 1.19	< 0.74	< 0.95	< 0.95	
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21	< 0.29	< 0.17	< 0.21	< 0.21	
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12	< 0.21	< 0.18	< 0.12	< 0.12	
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36	< 0.51	< 0.37	< 0.36	< 0.36	
Carbon Tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16	< 0.45	< 0.3	< 0.16	< 0.16	
CFC-11	5	< 0.6	< 0.74	< 0.23	< 0.23	< 0.6	< 0.74	< 0.23	< 0.23	
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2	< 0.27	< 0.2	< 0.2	< 0.2	
Chlorodibromomethane	50	< 0.25	< 0.16	< 0.16	< 0.16	< 0.25	< 0.16	< 0.16	< 0.16	
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29	< 0.71	< 0.64	< 0.29	< 0.29	
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17	< 0.29	< 0.14	< 0.17	< 0.17	
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23	< 0.51	< 0.18	< 0.23	< 0.23	
cis-1,2-Dichloroethene	5	6.31	0.579	3.22	< 0.2	0.647	1.85	0.853	0.721	
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15	< 0.2	< 0.24	< 0.15	< 0.15	
Dichloromethane	5	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	< 1.98	
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19	< 0.33	< 0.27	< 0.19	< 0.19	
m-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17	< 0.32	< 0.23	< 0.17	< 0.17	
Methylbenzene	5	< 0.34	< 0.23	< 0.2	< 0.2	< 0.34	< 0.23	< 0.2	< 0.2	
Tetrachloroethene	5	< 0.38	< 0.33	< 0.19	< 0.19	< 0.38	< 0.33	< 0.19	< 0.19	
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44	< 0.98	< 0.79	< 0.44	< 0.44	
trans-1,2-Dichloroethene	5	0.468	< 0.25	1.8	< 0.19	< 0.45	< 0.25	< 0.19	< 0.19	
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27	< 0.13	< 0.32	< 0.27	< 0.27	
Tribomomethane	50	< 0.3	< 0.15	< 0.14	< 0.14	< 0.3	< 0.15	< 0.14	< 0.14	
Trichloroethylene	5	0.585	< 0.19	0.323	0.285	1.62	1.62	1.18	0.862	
Vinyl Chloride	2	35.2	0.763	10.9	< 0.26	< 0.56	2.73	0.546	< 0.26	

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2009, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

	Location ID	MW-6S						
	Lob Somolo ID	MW-6S_E08-	MW-6S_E09-	MW-6S_E09-	MW-6S_E09-			
		12330-015	00763-004	03980-003	07112-007			
	Sample Date	10/23/2008	1/20/2009	4/21/2009	7/15/2009			
Compound	SCGs							
1,1,1-Trichloroethane	5	4.22	5.1	6.31	< 0.23			
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12			
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15			
1,1-Dichloroethane	5	< 0.34	0.417	0.382	< 0.23			
1,1-Dichloroethylene	5	< 0.42	< 0.53	< 0.61	1.55			
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15			
1,2-Dichloroethane	0.6	< 0.28	< 0.19	< 0.21	< 0.21			
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2			
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16			
2-Chloroethyl Vinyl Ether		< 0.63	< 1.04	< 0.99	< 0.99			
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34			
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95			
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21			
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12			
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36			
Carbon Tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16			
CFC-11	5	< 0.6	< 0.74	< 0.23	< 0.23			
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2			
Chlorodibromomethane	50	< 0.25	< 0.16	< 0.16	< 0.16			
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29			
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17			
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23			
cis-1,2-Dichloroethene	5	< 0.32	< 0.19	< 0.2	< 0.2			
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15			
Dichloromethane	5	< 1.98	< 1.98	< 1.98	< 1.98			
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19			
m-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17			
Methylbenzene	5	< 0.34	< 0.23	< 0.2	< 0.2			
Tetrachloroethene	5	3.23	5.55	3.54	5.48			
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44			
trans-1,2-Dichloroethene	5	< 0.45	< 0.25	< 0.19	< 0.19			
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27			
Tribomomethane	50	< 0.3	< 0.15	< 0.14	< 0.14			
Trichloroethylene	5	24.1	43.3	33.9	37.3			
Vinyl Chloride	2	< 0.56	< 0.46	< 0.26	< 0.26			

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Table 3. Summary of Groundwater Elevation Measurements, October 2008 to July 2009, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York

	Measuring	10/20/2008		1/20	0/2009	4/2	1/2009	7/1	5/2009	10/0	6/2009
Well ID	Point Elevation ¹ (ft)	Depth to Water (ft bmp)	Groundwater Elevation ¹ (ft)	Depth to Water (ft bmp)	Groundwater Elevation ¹ (ft)	Depth to Water (ft bmp)	Groundwater Elevation ¹ (ft)	Depth to Water (ft bmp)	Groundwater Elevation ¹ (ft)	Depth to Water (ft bmp)	Groundwater Elevation ¹ (ft)
Shallow Overbu	irden Wells										
MW-1 MW-5S MW-6S MW-HP-8S MW-9S MW-13R GP-103R GP-104R PTW-1 PTW-1	100.50 100.00 102.00 101.00 97.50 94.40 94.20 99.90 90.00	 12.83 11.49 14.06 6.81 6.35 	89.17 88.71 83.44 87.59 87.85	9.41 9.36 10.37 9.49 9.23 12.21 5.67 4.17 9.74	91.09 90.64 91.63 91.51 90.97 85.29 88.73 90.03 90.16 90.14	 11.58 10.45 13.26 5.22 5.69 	90.42 89.75 84.24 89.18 88.51 	 10.66 9.53 12.24 4.88 4.40 	91.34 90.67 85.26 89.52 89.80	 11.94 10.62 13.37 6.86 5.38 	90.06 89.58 84.13 87.54 88.82
Deep Overburde	99.90 en Wells	11.90	67.92	9.76	90.14	10.77	69.13	10.02	09.00	9.96	69.94
MW-HP-1D MW-6D MW-7D MW-HP-8D MW-9D	99.50 102.00 97.90 101.10 100.20	 11.83	 88.37	9.34 10.49 10.86 9.77 9.51	90.16 91.51 87.04 91.33 90.69	 10.67	 89.53	 9.87	 90.33	 10.88	 89.32
Off-Site Wells											
MW-HP-2S MW-HP-2D OS-MW-1 OS-MW-2 OS-MW-3PL	100.70 100.50 98.10 98.40 100.60	 	 	10.31 10.10 14.83 11.59 9.83	90.39 90.40 83.27 86.81 90.77	 	 	 	 	 	

¹ Elevations relative to on-site benchmark (January and December 2008 surveys)

ft bmp Feet below measuring point

--- Not measured.

Notes: Groundwater elevations measured for accessible wells during the annual inspection and maintenance event Groundwater elevations measured for all post-remedialmonitoring wells each quarter

 Table 4.
 Post-Remedial On-Site Performance Groundwater Monitoring and Maintenance Schedule, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York

	On-Site Performa Monitoring for Pos	Well Integrity Assessment ¹	
Period	Quarterly	Quarterly	Annual
Parameters	Water Level	VOCs, Field Parameters ²	Water Level, Depth to Bottom
Monitoring Wells	MW-6S MW-9S MW-9D PTW-2 GP-104R GP-103R MW-13R	MW-6S MW-9S MW-9D PTW-2 GP-104R GP-103R MW-13R	MW-6S MW-9S MW-9D PTW-2 GP-104R GP-103R MW-13R All Injection Wells ³

VOCs: Volatile Organic Compounds

¹ Physical inspection as per Monitoring Well Integrity Survey SOP. Well Integrity Assessment Form will also be completed.

² Field parameters for groundwater include pH, specific conductivity, temperature, turbidity,

dissolved oxygen, and redox potential.

³ Injection wells include IW-5, IW-6, MW-HP-8S, MW-1, MW-11, MW-10, MW-12, MW-2, IW-8, IW-9, IW-10, IW-11, GP-106R2, IW-1R, IW-2, IW-3, IW-4, IW-12, IW-13, IW-14, IW-15R, MW-7S and IW-16.

ARCADIS.CTB PLOTTED: ---PLOTSTYLETABLE: 17.1S (LMS TECH) PAGESETUP: 10/28/2009 9:51 AM ACADVER: 1SAVED: TM: PL_LYR:ON=*,OFF=*REF* 10/4230503B1_GWR.dwg_LAYOUT: M: MM 1/2009-1 PM PIC:MM n GW Rep ER Ë 2 DB: N. 1000423/0005/000 ENRI-1 DIVIGROUP EDISON CITY GUD

09	7/16/2009
	0.576
	ND
	1.76
	ND
	2.22
	ND

	GP-103R										
e Date	10/23/2008	1/22/2009	4/22/2009	7/16/2009							
(ug/L)											
ichloroethane	0.418	ND	ND	ND							
ichloroethane	ND	ND	ND	ND							
2-Dichloroethene	6.31	0.579	3.22	ND							
-1.2-Dichloroethene	0.468	ND	1.8	ND							
ichlorgethylene	ND	ND	ND	ND							
-Tetrachloroethane	ND	ND	ND	ND							
chloroethene	ND	ND	ND	ND							
Trichloroethane	ND	ND	ND	ND							
Trichloroethane	ND	ND	ND	ND							
proethylene	0.585	ND	0.323	0.285							
Chlorida	36.0	0 763	10.9	ND							

ER ΪŇ MM PM MM Q

Appendix A

Groundwater Sampling Forms

Project Forme		er Kings Electro	nics Co., Inc. S							
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuc	kahoe, NY		Well I	D <u>MV</u>	V-6S
Date		10/23/2008		Sampled By	D. K	irschner				
Sampling Time		10:23		Recorded By	D. K	irschner				
Weather		Sun, 40's		Coded Replica	te No. Non	e				
Instrument Ider	ntification									
Water Quality M	/leter(s)	Multi-RAE Pine	e # 8437, Solini	st Water Level N	leter 100' Pi	ne #03629, YSI Pine	e # 03118 SN#	02A0841 AH,		_
		Pine # 0955 S	N# 01E0374 AC	LaMotte 2020C	Pine # 6540	SN# SN-ME-10321				_
Casing Materia	I	P	vc	Purge I	Method	-	Low Flow Mo	nsoon Pump		
Casing Diamete	er	2.	.0"	Screen	Interval (ft k	omp) Top	10.0'		Bottom	20.0'
Sounded Depth	n (ft bmp)	19	.35	Pump I	ntake Depth	(ft bmp)	15.0'			
Depth to Water	Depth to Water (ft bmp)		.93	Purge	Time	Start	9:30		Finish	10:25
				_						
_				Field Parameter	Measureme	nts During Purging	9			
Time Minutes		Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to Water
	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
9:35	5	200	0.25	10.05	7.09	0.833	166	9.45	600	12.93
9:40	10	200	0.25	15.64	6.9	0.868	154.3	5.82	360	12.93
9:45	15	200	0.25	16.47	6.82	0.923	138.8	5.41	70	12.93
9:50	20	200	0.25	16.67	6.79	0.946	130.1	5.33	37	12.95
9:55	25	200	0.25	16.77	6.78	0.963	122.3	5.26	31	12.95
10:00	30	200	0.25	16.86	6.76	0.983	118	5.19	25	12.95
10:05	35	200	0.25	16.97	6.75	0.984	114.7	5.2	23	12.95
10:10	40	200	0.25	17.05	6.75	1.008	111.6	5.09	14	12.95
10:15	45	200	0.25	17.08	6.74	1.015	110.5	5.08	10	12.95
10:20	50	200	0.25	17.1	6.73	1.019	109	5.06	9.8	12.95
Collected Sam	ole Condition		Color Clear		Odo	r No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VOCs + cis-1,2-DCE Glas			Glass	s Vials		2	!	_	н	CL
								-		
							_			
Comments	Total volume	purged is ~3 gal	llons							
-										
-										
-										

Project <u>F</u>		er Kings Electro	nics Co., Inc. S							
Project Numbe	er <u>NJ00</u>	0423.0005.0001		Site Location	Tuck	ahoe, NY		Well I	<u>мv</u>	V-9S
Date		10/21/2008		Sampled By	<u>V. My</u>	ers				
Sampling Time)	12:52		Recorded By	V. My	ers				
Weather		Sun, 60's		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE Pin	e # 8437, Solini	st Water Level N	/leter 100' Pin	e #03629, YSI Pin	e # 03118 SN#	02A0841 AH,		
	()	Pine # 0955 S	N# 01E0374 AC	LaMotte 2020C	Pine # 6540 \$	SN# SN-ME-10321				-
Casing Materia	al	P	vc	Purge	Method		Low Flow Mor	nsoon Pump		-
Casing Diamet	er	2	.0"	- Screen	Interval (ft br	np) Top	10.0'		Bottom	20.0'
Sounded Dept	h (ft bmp)	19.45		- Pump I	ntake Depth (ft bmp)	18.0'			
Depth to Water	r (ft bmp)	12	.49	- Purae	Time	Start	12:20		Finish	12:55
							-			
				Field Parameter	Measuremen	ts During Purging	3			
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
12:25	5	200	0.25	17.54	6.67	1.151	-94.5	5.64	5.93	11.52
12:30	10	200	0.25	17.35	6.67	1.231	-115.5	3.27		11.53
12:35	15	200	0.25	17.42	6.68	1.241	-121.8	2.20	4.10	11.55
12:40	20	200	0.25	17.54	6.69	1.237	-117.4	1.78	4.04	11.55
12:45	25	200	0.25	17.61	6.68	1.239	-188.2	1.69	4.26	11.55
12:50	30	200	0.25	17.63	6.66	1.242	-116.9	1.70	4.20	11.55
12:55	35	200	0.25	17.64	6.66	1.243	-116.4	1.78	4.20	11.55
							-	_		
Collected Sam	ple Condition	1	Color Clear		Odor	No Odor		Appearance	Clear	
			<u></u>		-			, ppoulaitee	0.00	
Parameter			Container			No.			Preservative	
VOCs + ci	is-1.2-DCF		Glass	s Vials			,		н	CL
	VOCs + cis-1,2-DCE		0140					-		
		_			•			-		
		_			•			-		
Comments	Total volume	e purged is ~2 ga	llons							
		,								

Project	Form	er Kings Electro	nics Co., Inc. S							
Project Numbe	r <u>NJ00</u>	0423.0005.0001		Site Location	Tucka	ahoe, NY		Well II	<u>мv</u>	V-9D
Date		10/21/2008		Sampled By	D. Kii	schner				
Sampling Time	•	12:53		Recorded By	D. Kii	schner				
Weather		Indoors		Coded Replicat	te No. None					
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE Pine	e # 8437, Solini	st Water Level M	leter 100' Pin	e #03629, YSI Pine	# 03118 SN#	02A0841 AH,		
-		Pine # 0955 S	N# 01E0374 AC	LaMotte 2020C	Pine # 6540 \$	N# SN-ME-10321				-
Casing Materia	ıl	P	vc	Purge N	lethod		Low Flow Mor	nsoon Pump		-
Casing Diamete	er	2.0"		Screen	Interval (ft br	np) Top	30.0'		Bottom	40.0'
Sounded Depth	h (ft bmp)	39	.07	– Pump Ir	ntake Depth (ft bmp)	35.0'			
Depth to Water	(ft bmp)	11	.83	- · Purge T	īme · ·	Start	12:20		Finish	12:55
					_					
				Field Parameter	Measuremen	ts During Purging	I			
	Minutes	Flow Rate	Volume	Temp	pH	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°°)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
12:25	12:25 5		0.25	17.69	6.74	1.039	-35.9	3.56	15.9	11.84
12:30	10	200	0.25	16.6	6.42	1.071	-75.3	1.43	9.11	11.87
12:35	15	200	0.25	16016	6.38	1.064	-79.1	1.22	5.18	11.87
12:40	20	200	0.25	16.13	6.37	1.063	-79.4	1.22	2.44	11.87
12:45	25	200	0.25	16.07	6.38	1.061	-79.6	1.21	1.39	11.87
12:50	30	200	0.25	16.03	6.38	1.058	-77.2	1.21	1.43	11.87
				<u> </u>		1 1				
Collected Sam	ple Condition		Color Clear		Odor	No Odor		Appearance	Clear	
			<u></u>							
Parameter			Container			No.			Preservative	
VOCs + ci	s-1.2-DCF		Glas	s Vials		2			н	CL
	VOCs + cis-1,2-DCE							-		
		_						-		
		_						-		
Comments	Total volume	purged is ~2 gal	llons							
		gu	-							
-										
-										
•										

Project	Form	ormer Kings Electronics Co., Inc. Site								
Project Numbe	ect Number NJ000423.0005.0001			Site Location		kahoe, NY		Well II	<u> </u>	/-13R
Date		10/2202008		Sampled By	<u>V.</u> N	lyers				
Sampling Time		9:42		Recorded By		V. Myers				
Weather Sun, 60's		Sun, 60's		Coded Replica	te No. Nor	None				
Instrument Ide	ntification									
Water Quality Meter(s)		Multi-RAE Pine	e # 8437, Solini	st Water Level N	/leter 100' Pi	ine #03629, YSI Pin	e # 03118 SN#	02A0841 AH,		_
		Pine # 0955 SN# 01E0374 AC LaMotte 2020C Pine # 6540 SN# SN-ME-10321								
Casing Material		PVC		Purge Method			Low Flow Mo			
Casing Diameter		2.	.0"	Screen	Interval (ft	bmp) Top	ıp) Top 10.0'		Bottom	20.0'
Sounded Dept	h (ft bmp)	19	.49	Pump I	ntake Depth	n (ft bmp)	15.0'			
Depth to Water	r (ft bmp)	14	 14.11 Pu		e Time Start				Finish	9:45
_				Field Parameter	Measureme	ents During Purging	9			
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
TIME	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
9:05	5	200	0.25	16.54	6.51	1.910	-58.6	5.10	55.00	14.11
9:10	10	200	0.25	17.65	2.97	2.083	-13.1	2.91	17.40	14.11
9:15	15	200	0.25	17.91	6.47	2.067	6.7	2.44	5.50	14.11
9:20	20	200	0.25	17.92	6.46	2.041	14.7	2.31	3.51	14.11
9:25	25	200	0.25	17.96	6.46	2.014	24.3	2.28	2.10	14.11
9:30	30	200	0.25	17.96	6.46	2.008	27.4	2.25	0.89	14.11
9:35	35	200	0.25	17.92	6.46	1.991	33.2	2.14	1.20	14.11
9:40	40	200	0.25	17.95	6.45	1.986	34.6	2.14	0.96	14.11
Collected Sam	ple Condition		Color Clear		Odd	or No Odor		Appearance	Clear	
					-					
Parameter	Parameter		Container			No.			Preservative	
VOCs + cis-1,2-DCE			Glass	s Vials	_	2	2		н	CL
					-					
Comments	Total volume	purged is ~2 ga	llons							

Project	Form	er Kings Electronics Co., Inc. Site									
Project Numbe	r <u>NJ000</u>	NJ000423.0005.0001		Site Location		Tuckahoe, NY			Well II	оо	W-2
Date		10/23/2008	Sampled By		D	D. Kirschner					
Sampling Time		12:37		Recorded By	By <u>D. Kirso</u>		chner				
Weather		Indoors	Coded Replicate No		te No. <u>N</u>	None					
Instrument Ide	ntification										
Water Quality Meter(s) Multi-RAE Pine		e # 8437, Solini	st Water Level N	Neter 100'	Pine	#03629, YSI Pine	e # 03118 SN#	02A0841 AH,		-	
Pine # 095		Pine # 0955 S	N# 01E0374 AC	LaMotte 2020C	Pine # 65	40 SN	I# SN-ME-10321				-
Casing Material		P	VC	Purge Method			-	Low Flow Monsoon Pump			
Casing Diameter		2	.0"	Screen	Interval (ft bmj	p) Top	7.0'		Bottom	17.0'
Sounded Dept	h (ft bmp)	16	6.51	Pump I	ntake Dep	oth (ft	bmp)	15.0'			
Depth to Water	r (ft bmp)	12	2.03	Purge	Time		Start_	12:05		Finish	12:40
				Field Parameter	Measurer	nents	During Purging	1			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.))	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
12:10	5	300	0.26	16.52	6.56	i	0.885	-62.9	3.42	30.00	12.03
12:15	10	300	0.26	17.68	6.54		0.914	-102.9	0.89	12.00	12.05
12:20	15	300	0.26	17.88	6.53		0.965	-113.9	0.78	11.00	12.07
12:25	20	300	0.26	17.95	6.52		1.013	-114.7	0.73	7.40	12.07
12:30	25	300	0.26	17.98	6.52		1.039	-122.4	0.72	5.10	12.07
12:35	30	300	0.26	17.99	6.51		1.043	-125.3	0.72	4.50	12.07
Collected Sam	ple Condition		Color <u>Clear</u>		o	dor	No Odor		Appearance	Clear	
Parameter			Container				No.			Preservative	
VOCs + ci	VOCs + cis-1,2-DCE		Glas	s Vials			2		-	Н	CL
		_							-		
		_							-		
Comments	Total volume	purged is ~2 ga	llons								

Project	Forme	er Kings Electronics Co., Inc. Site									
Project Numbe	r <u>NJ000</u>	NJ000423.0005.0001		Site Location		Tuckahoe, NY			Well I	GP-	103R
Date		10/23/2008	Sampled By		-	V. Myers					
Sampling Time	•	10:52		Recorded By		V. Myers					
Weather		Sun, 60's	Coded Repl		te No.	lo. None					
Instrument Ide	ntification										
Water Quality Meter(s) Multi-RA		Multi-RAE Pin	AE Pine # 8437, Solinist Water Level Meter 100' Pine #03629, YSI Pine # 03118 SN# 02A0841 AH,								-
Pine # 0		Pine # 0955 S	N# 01E0374 AC	LaMotte 2020C	Pine # (6540 SN	# SN-ME-10321				-
Casing Material		PVC		Purge Method			Low Flow		Flow Monsoon Pump		
Casing Diameter		2	.0"	Screen	Interval	(ft bm	p) Top	5.0'		Bottom	15.0'
Sounded Dept	h (ft bmp)	14	.81	Pump	ntake D	epth (ft	t bmp) 10.0				
Depth to Water	(ft bmp)	6	.91	Purge	Time		Start	9:20		Finish	10:56
				Field Parameter	Measur	ements	s Durina Puraina	1			
	Minutos	Elow Pote	Volume	Tomn			Conductivity		DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	ې (s.	п u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
9:25	5	200	0.25	14.52	6.	80	1.145	-130.8	2.98	19.00	6.91
9:30	10	200	0.25	15.55	6.8	84	1.195	-138.3	2.35	7.38	6.92
9:35	15	200	0.25	15.71	6.8	82	1.211	-136.4	2.50	5.36	6.92
9:40	20	200	0.25	15.75	6.8	B1	1.241	-136.3	2.33	4.46	6.92
9:45	25	200	0.25	15.79	6.8	80	1.220	-136.4	2.28	4.64	6.92
9:50	30	200	0.25	15.82	6.8	B0	1.225	-134.7	2.26	3.82	6.92
Collegia de Com	ula Canditian		Color Class			Odaa	Clickt Duct Od		A	<u>Ola en</u>	
Conected Sam					•	Ouor	Slight Rust Out		Appearance	Cleal	
Parameter			Container				No.			Preservative	
VOCs + ci	s-1,2-DCE	_	Glass	s Vials	_		2		_	н	CL
					_				_		
		-			-				-		
Comments	Total volume	purged is ~2 ga	llons								

Project	Form	Former Kings Electronics Co., Inc. Site									
Project Number NJ000423.0005.0001		423.0005.0001	Site Location		Tu	ckahoe, NY		Well II	GP-	104R	
Date		10/23/2008		Sampled By	v .	Myers					
Sampling Time	e	13:04		Recorded By		V. Myers					
Weather		Sun, 60's	Sun, 60's		te No. No	ne					
Instrument Identification											
Water Quality Meter(s) M		Multi-RAE Pine # 8437, Solinist Water Level Meter 100' Pine #03629, YSI Pine # 03118 SN# 02A0841 AH,									
		Pine # 0955 SN# 01E0374 AC LaMotte 2020C Pine # 6540 SN# SN-ME-10321									
Casing Material		PVC		Purge I	Method		Low Flow Mo				
Casing Diameter		2	.0"	Screen	Interval (ft	bmp) Top	5.0'		Bottom	15.0'	
Sounded Dept	h (ft bmp)	1	4.9	Pump I	ntake Dept	h (ft bmp)	t bmp) 13.0'				
Depth to Wate	r (ft bmp)	6	.43	Purge	Time	Star	t 11:35		Finish	11:55	
_				Field Parameter	Measurem	ents During Purgi	ng				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
11:40	5	200	0.25	17.47	6.82	1.572	-96.9	2.94	132.00	6.43	
11:45	10	200	0.25	17.81	6.81	1.648	-102.1	3.24	98.90	6.43	
11:50	15	200	0.25	17.91	6.78	1.601	-117.6	3.20	64.00	6.43	
11:55	20	200	0.25	17.97	6.73	1.492	-134.5	3.30	15.20	6.43	
	Battery dead, pump is off		•								
12:50	90	200	0.25	17.88	6.69	1.425	-112.8	2.57	21.00	6.43	
12:55	95	200	0.25	18.04	6.69	1.419	-138.2	4.24	6.40	6.43	
13:00	100	200	0.25	18.04	6.69	1.418	-137.0	2.40	5.12	6.43	
13:05	105	200	0.25	18.04	6.69	1.413	-138.5	2.35	4.53	6.43	
Collected Sam	ple Condition		Color <u>Clear</u>		Od	lor <u>No Odor</u>		Appearance	Clear Slight S	heen	
Parameter			Container			No.			Preservative		
VOCs + c	is-1,2-DCE	_	Glas	s Vials			2	-	Н	CL	
		_						-			
		_						-			
Comments	Total volume	purged is ~2 ga	llons								

Project	Former Kings Electronics Co., Inc.			ite							
Project Numbe	Project Number NJ000423.0005.0001			Site Location		kahoe, NY		Well ID		MW-6S	
Date	1/20/2	009		Sampled By	<u>C. L</u>	C. Laprus					
Sampling Time	e 13:17		Recorded By		C. L	C. Laprus					
Weather 20's Sun			Coded Replicat		ne						
Instrument Ide	entification Meter(s)	Solinist YSI I	aMotte 2020								
Water Quality	meter(3)	00111131, 101, 1									
Casing Material PV		vc	Purae l	Vethod		Low Flow Mo	nsoon Pump				
Casing Diameter 2		.0"	Screen	Screen Interval (ft bmp)		10.0'		Bottom	20.0'		
Sounded Depth (ft bmp) 1/		10).35	– Pump I	Pump Intake Depth (ft k		15.0'	ı			
Depth to Wate	r (ft bmp)	9	9.2	Purge	Time	Start	10:40)	Finish	11:20	
						-					
				Field Parameter	Measureme	ents During Purging	9				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
12:50	5	200	0.25	13.70	7.25	0.801	-38.4	7.44	14.60	10.37	
12:55	10	200	0.25	14.49	7.25	0.857	-40.0	8.78	3.78	10.37	
13:00	15	200	0.25	14.61	7.20	0.884	-37.1	8.65	2.50	10.37	
13:05	20	200	0.25	14.65	7.17	0.896	-35.6	8.47	1.01	10.37	
13:10	25	200	0.25	14.59	7.14	0.902	-33.8	8.28	0.98	10.37	
13:15	30	200	0.25	14.57	7.12	0.899	-32.8	8.17	1.01	10.37	
									-		
Collected Sam	ple Condition		Color <u>Clear</u>		Odd	or <u>No Odor</u>		Appearance	Clear		
Parameter			Container			No.		Preservative			
VOCs + c	is-1,2-DCE	_	Glas	s Vials		2	2	_	Н	ICL	
		_						-			
		-						-			
Commente	Total volume	nurged is -3 go	llons								
Comments		purgeu is ~3 ga	10113								

Project	Former Kings Electronics Co., Inc			ite							
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	ahoe, NY		Well ID		MW-9D	
Date	1/21/2	009		Sampled By	C. La	prus					
Sampling Time	14:11		Recorded By		C. La	prus					
Weather	Indoo	rs		Coded Replica	te No. None						
Instrument Ide	ntification										
Water Quality I	Meter(s)	Solinist, YSI, L	aMotte 2020			_					
Casing Material PVC		vc	Purge I	Method	_	Low Flow Mo	nsoon Pump				
Casing Diameter 2		.0"	Screen	Interval (ft br	ıp) Top 30.0'			Bottom	40.0'		
Sounded Depth (ft bmp) 3 ^r		39	.05	Pump I	Pump Intake Depth (ft		35.0'				
Depth to Water	(ft bmp)	9.	.52	Purge	Time	Start	13:30		Finish	14:13	
				Field Peromotor	Maaauraman	to During Durging					
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	pH (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft hmp)	
13:35	5	200	0.25	16.78	6.83	0.985	-111.2	0.90	5.35	9.61	
13:40	10	200	0.25	16.99	6.79	0.991	-112.1	0.41	1.19	9.58	
13:45	15	200	0.25	17.06	6.78	0.991	-111.5	0.75	0.11	9.59	
13:50	20	200	0.25	16.79	6.77	0.956	-115.6	0.20	0.09	9.59	
13:55	25	200	0.25	16.25	6.77	0.970	-117.0	0.22	0.10	9.63	
14:00	30	200	0.25	15.86	6.77	0.968	-116.8	0.10	0.11	9.64	
14:05	35	200	0.25	15.75	6.75	0.958	-117.2	0.10	0.08	9.64	
14:10	40	200	0.25	15.73	6.74	0.961	-117.4	0.09	0.10	9.64	
Collected Sam	ple Condition		Color <u>Clear</u>		Odor	No Odor		Appearance	Clear		
Parameter			Container			No.			Preservative		
VOCs + ci	VOCs + cis-1,2-DCE		Glas	s Vials		2		-	н	CL	
		-						-			
		_						-			
Comments	Total volume	purged is ~2 ga	llons								

Project	King	s Electronics								
Project Num	ber <u>NJ00</u>	NJ000423.0005.0001		Site Location Tuckahoe, NY				Well II	<u>MW</u>	-9SR
Date		1/21/2009		Sampled By	C. La	orus				
Sampling Tin	ne	10:42		Recorded By	C. La	orus				
Weather		Indoors		Coded Replicate No. DI		P(092109)				
Instrument Ic Water Quality	dentification y Meter(s)	Solinist, YSI, I	_aMotte 2020							
Casing Material PVC		vc	Purge	Method	_	Low Flow Mo	nsoon Pump			
Casing Diameter		2	.0"	Screen	Interval (ft br	וף) Top 10.0			Bottom	20.0'
Sounded Dep	oth (ft bmp)	20).00	Pump I	ntake Depth (t bmp) 18.				
Depth to Wat	er (ft bmp)	9	.30	Purge	Time	Start	9:35		Finish	10:29
						-				
				Field Parameter	Measuremen	ts During Purging	9			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
10:15	5	200	0.25	3.45	6.62	1.27	-133.8	0.52	3.45	9.35
10:20	10	200	0.25	1.73	6.56	1.297	-125.9	0.27	1.73	9.35
10:25	15	200	0.25	1.04	6.52	1.301	-122.2	0.18	1.04	9.35
10:30	20	200	0.25	1.14	6.52	1.302	-121.9	0.13	1.14	9.35
10:35	25	200	0.25	1.12	6.52	1.304	-120.8	0.13	1.12	9.35
10:40	30	200	0.25	1.09	6.52	1.306	-119.9	0.14	1.09	9.35
	_	_								
Collected Sa	mple Conditior	1	Color <u>N/C</u>		Odor	N/C		Appearance	N/C	
Parameter			Container			No.			Preservative	
VOCs Cis 1,2 DCE		Glas	s Vials		2	2	-	н	CL	
		_						-		
		_						-		
Comments	DO: N/C mg/	L								
	Total volume	e purged 7.5 gallo	ons							

Project	Kings	Electronics								
Project Numb	er <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	MW	/-13R
Date		1/21/2009		Sampled By	D. Kir	schner				
Sampling Tim	e	11:15		Recorded By	D. Kir	schner				
Weather		Sun, 20's		Coded Replica	te No. None					
Instrument Ide	entification									
Water Quality	Meter(s)	Solinist, YSI, I	LaMotte 2020							
						_				
Casing Materi	al	P	VC	Purge I	Method	<u> </u>	Low Flow Mo	nsoon Pump		
Casing Diame	ter	2	.0"	Screen	Interval (ft bn	np) Top	9.5'		Bottom	19.5'
Sounded Dept	th (ft bmp)	19	9.50	Pump I	ntake Depth (f	t bmp)	17.5'			
Depth to Wate	er (ft bmp)	12	2.21	Purge 1	Time	Start	8:52		Finish	11:18
						_				
_				Field Parameter	Measurement	s During Purging				
Time	Minutes	Flow Rate	Volume Purged	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to Water
	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
10:42	5	200	0.25	14.15	6.78	1.937	83.4	0.42	216.00	12.31
10:47	10	200	0.25	14.39	6.77	1.899	86.2	0.52	538.30	12.31
10:52	15	200	0.25	15.28	6.76	1.921	91.0	0.64	17.00	12.31
10:57	20	200	0.25	15.08	6.76	1.922	89.7	0.46	9.36	12.31
11:02	25	200	0.25	14.39	6.76	1.876	91.3	0.4	6.98	12.31
11:07	30	200	0.25	14.50	6.75	1.919	94.9	0.41	7.70	12.31
11:12	35	200	0.25	14.51	6.75	1.95	88.7	0.42	6.38	12.31
								-		
								-		
								-		
Collected Sam	nple Condition		Color N/C		Odor	N/C		Appearance	N/C	
Parameter			Container			No.			Preservative	
VOCs Ci	is 1,2 DCE	_	Glas	s Vials		2		_	н	CL
		_						_		
		_						_		
Comments	DO: N/C mg/L									
	Total volume	purged 7.5 gallo	ons							

Project	King	s Electronics								
Project Numb	er <u>NJ00</u>	0423.0005.0001		Site Location	Tuc	kahoe, NY		Well II	оо	W-2
Date		1/22/2009		Sampled By	D. K	lirschner				
Sampling Tim	e	13:53		Recorded By	D. K	lirschner				
Weather		Indoor		Coded Replica	te No. Non	e				
Instrument Ide	entification									
Water Quality	Meter(s)	Solinist, YSI, I	_aMotte 2020							
Casing Materi	ial	P	vc	Purge I	Nethod		Low Flow Mo	nsoon Pump		
Casing Diame	eter	2	.0"	Screen	Interval (ft l	omp) Top	7.0'		Bottom	17.0'
Sounded Dep	th (ft bmp)	16	6.50	Pump I	ntake Depth	(ft bmp)	15.0'			
Depth to Wate	er (ft bmp)	9	.76	Purge	Гime	Start	13:20)	Finish	13:55
_				Field Parameter	Measureme	ents During Purging	g			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
13:25	5	200	0.25	17.00	6.85	1.061	-132.8	0.32	46.4	9.80
13:30	10	200	0.25	17.45	6.80	1.087	-143.2	0.30	30.5	9.80
13:35	15	200	0.25	17.56	6.80	1.098	-147.9	0.26	16.4	9.80
13:40	20	200	0.25	17.58	6.80	1.099	-150.3	0.26	9.36	9.80
13:45	25	200	0.25	17.61	6.80	1.104	-156.0	0.25	5.19	9.80
13:50	30	200	0.25	17.63	6.80	1.106	-157.0	0.24	5.13	9.80
Collected San	nple Conditior	ı	Color N/C		Odo	or N/C		Appearance	N/C	
Parameter			Container			No.			Preservative	
VOCs C	is 1,2 DCE	_	Glas	s Vials			2	_	н	ICL
		_						_		
		_						_		
Comments	DO: N/C mg/	L								
	Total volume	e purged 12.5 gal	lons							

Project	King	s Electronics								
Project Numb	er <u>NJ0</u>	00423.0005.0001		Site Location	Tuck	ahoe, NY		Well I	D <u>GP</u> -	103R
Date		1/22/2009		Sampled By	C. La	aprus				
Sampling Tim	ne	10:02		Recorded By	C. La	aprus				
Weather		Indoors		Coded Replicat	te No. None	9				
Instrument Id	entification									
Water Quality	Meter(s)	Solinist, YSI, I	LaMotte 2020			_				
Casing Mater	ial	P	VC	Purge N	lethod		Low Flow Mo	nsoon Pump		
Casing Diame	eter	2	.0"	Screen	Interval (ft b	mp) Top	5.0'		Bottom	15.0'
Sounded Dep	th (ft bmp)	14	1.83	Pump li	ntake Depth	(ft bmp)	9.0'			
Depth to Wate	er (ft bmp)	4	.71	Purge T	Time	Start	9:30		Finish	10:05
				Field Parameter	Measuremer	nts During Purging	g			
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
lime	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
9:35	8	200	0.25	16.29	6.78	1.006	-98.9	0.54	6.81	4.77
9:40	10	200	0.25	16.37	6.91	1.046	-132.7	0.25	2.4	4.77
9:45	15	200	0.25	16.41	6.92	1.052	-138.5	0.15	2.46	4.77
9:50	20	200	0.25	16.41	6.93	1.055	-140.6	0.18	0.79	4.77
9:55	25	200	0.25	16.51	6.93	1.059	-140.9	0.2	0.72	4.77
10:00	30	200	0.25	16.48	6.94	1.061	-141.1	0.19	0.72	4.77
Collected Sar	nple Conditio	n	Color <u>N/C</u>		Odor	<u>N/C</u>		Appearance	N/C	
Parameter			Container			No			Prosorvativo	
			Glas	ve Viale		NO.	•			
<u></u>			Gids			4	2	_		
								-		
								_		
Comments	DO: N/C ma	/L								
	Total volum	e purged 7.5 gall(ons							
		- pargea no gain								

Project Number NJ000423.0005.0001 Site Location Tuckahoe, NY Well ID GP-104R Date 1/22/2009 Sampled By C. Laprus	
Date 1/22/2009 Sampled By C. Laprus Sampling Time 11:02 Recorded By C. Laprus Weather Indoors Coded Replicate No. None Instrument Identification Water Quality Meter(s) Solinist, YSI, LaMotte 2020 Low Flow Monsoon Pump Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Einled Parameter Measurements During Purging	
Sampling Time 11:02 Recorded By C. Laprus Weather Indoors Coded Replicate No. None Instrument Identification Water Quality Meter(s) Solinist, YSI, LaMotte 2020 None Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:00 Finish 11:00	
Weather Indoors Coded Replicate No. None Instrument Identification Nater Quality Meter(s) Solinist, YSI, LaMotte 2020 Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Purge Time Start 10:25 Finish 11:0	
Instrument Identification Water Quality Meter(s) Solinist, YSI, LaMotte 2020 Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Einld Parameter Measurements During Purging	
Solinist, YSI, LaMotte 2020 Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:0	
Casing Material PVC Purge Method Low Flow Monsoon Pump Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Pump Intake Depth (ft bmp) 13.0' Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:0	
Casing Diameter 2.0" Screen Interval (ft bmp) Top 5.0' Bottom 15.0' Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' 13.0' 13.0' 13.0' 13.0' 13.0' 10:25 Finish 11:0' Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:0'	
Sounded Depth (ft bmp) 14.85 Pump Intake Depth (ft bmp) 13.0' Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:0 Field Parameter Measurements During Purging	,
Depth to Water (ft bmp) 4.20 Purge Time Start 10:25 Finish 11:0 Field Parameter Measurements During Purging	
Field Parameter Measurements During Purging	1
Field Parameter Measurements During Purging	
TimeMinutes ElaspedFlow Rate (mL/min)Volume Purged (gal)Temp (°C)pH (s.u.)Conductivity (mS/cm)ORP (mV)DO (mg/L)Turbidity (MU)DO (mg/L)	pth to /ater bmp)
10:30 5 200 0.25 16.38 6.90 1.124 -128.7 0.16 22	4.28
10:35 10 200 0.25 16.41 6.91 1.147 -142 0.17 12.6	4.28
10:40 15 200 0.25 16.42 6.89 1.158 -147.5 0.15 5.96	4.28
10:45 20 200 0.25 16.42 6.88 1.166 -152.3 0.14 5.01	4.28
10:50 25 200 0.25 16.11 6.88 1.166 -152.5 0.12 20.9	4.28
10:55 30 200 0.25 16.42 6.87 1.168 -153.2 0.10 2.18	4.28
11:00 35 200 0.25 16.42 6.87 1.170 -153.4 0.09 2.14	4.28
Collected Sample Condition Color N/C Odor N/C Appearance N/C	
Parameter Container No. Preservative	
VOCs Cis 1,2 DCE Glass Vials 2 HCL	
Comments DO: N/C mg/L	
Total volume purged 8.75 gallons	

Project	Forme	Former Kings Electronics Co., Inc. Site								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckał	noe, NY		Well ID	<u>мv</u>	V-6S
Date		4/21/2009		Sampled By	D. Kirs	chner, V. Myers				
Sampling Time		11:07		Recorded By	D. Kirs	chner, V. Myers				
Weather		Cloudy, rain, 50	's	Coded Replica	te No.	None				
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE SN#	ŧ 095-516950, S	olinist Water Le	vel Meter 100' l	Pine # 04392, YSI	SN# 02E1060	AB		
		LaMotte 2020e	SN# SN-ME-11	955, DO Meter I	Pine # 06059					
Casing Materia	I	P	vc	Purge I	Vethod	I	ow Flow Mor	isoon Pump		
Casing Diamete	er	2	.0"	Screen	Interval (ft bm	р) Тор	10.0'		Bottom	20.0'
Sounded Depth	n (ft bmp)	19	.31	- Pump I	ntake Depth (ft	bmp)	18.0'			
Depth to Water	(ft bmp)	11	.58	Purge	Гime	Start	10:30		Finish	11:10
			1	Field Parameter	Measurements	During Purging				
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
10:35	5	300	0.4	13.58	6.83	1.010	199.9	8.55	29.90	11.61
10:40	10	300	0.4	13.59	6.81	1.077	201.6	7.70	18.80	11.61
10:45	15	300	0.4	13.67	6.80	1.095	206.0	7.56	10.39	11.61
10:50	20	300	0.4	13.65	6.80	1.100	196.1	7.48	7.14	11.61
10:55	25	300	0.4	13.65	6.79	1.110	191.4	7.33	5.29	11.61
11:00	30	300 0.4		13.69	6.79	1.115	189.0	7.27	3.64	11.61
11:05	35	300	0.4	13.34	6.79	1.120	189.0	7.30	3.20	11.61
Collected Sam	ple Condition		Color Tan Cle	ear	Odor	No Odor		Appearance	Small suspend	ded particles
Parameter			Container			No.			Preservative	
VOCs + ci	s-1,2-DCE	_	Glass	s Vials		2			н	CL
1		_						-		
		_						-		
Comments	Total volume	purged is ~3.0 g	allons							
-										
-										
-										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	nhoe, NY		Well I	о <u>м</u> и	V-9S
Date		4/22/2009		Sampled By	D. Kir	schner, V. Myers				
Sampling Time		13:17		Recorded By	D. Kir	schner, V. Myers				
Weather		Indoors		Coded Replica	te No.	None				
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE SN#	095-516950, S	olinist Water Le	vel Meter 100'	Pine # 04392, YS	I SN# 02E1060)AB		
		LaMotte 2020e	SN# SN-ME-11	1955, DO Meter I	Pine # 06059					
Casing Materia	I	P	vc	Purge I	Method	_	Low Flow Mor	nsoon Pump		
Casing Diamete	er	2	0"	Screen	Interval (ft br	np) Top	10.0'		Bottom	20.0'
Sounded Depth	n (ft bmp)	19	.98	- Pump I	intake Depth (it bmp)	18.0'	18.0'		
Depth to Water	(ft bmp)	10	.45	- Purge	Time	Start	12:40		Finish	13:19
	,					•				
				Field Parameter	Measuremen	ts During Purging	3			
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
12:45	5	200	0.25	16.48	6.75	1.465	-111.1	0.65	6.60	10.41
12:50	10	200	0.25	16.75	6.78	1.482	-132.2	0.46	13.90	10.41
12:55	15	200	0.25	16.88	6.77	1.488	-137.6	0.47	13.70	10.41
13:00	20	200	0.25	16.89	6.73	1.486	-137.0	0.40	7.02	10.41
13:05	25	200	0.25	16.89	6.72	1.487	-135.1	0.39	4.89	10.41
13:10	30	200	0.25	16.88	6.69	1.485	-132.8	0.37	3.62	10.41
13:15	35	200	0.25	16.87	6.68	1.483	-130.0	0.36	3.67	10.41
u										
Collected Sam	ple Condition		Color Clear		Odor	No Odor		Appearance	Clear	
			<u> </u>		-					
Parameter			Container			No.			Preservative	
VOCs + ci	s-1.2-DCE		Glas	s Vials		2	2		н	CL
	,	_			-			-		
		_			-			-		
		_			-			-		
Comments	Total volume	purged is ~2 gal	lons							
		ge - gu								
-										
-										
-										

Project	Kings	Electronics									
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckał	noe, NY		Well I	<u>мv</u>	V-9D	
Date		4/22/2009		Sampled By	D. Kirs	chner, V. Myers					
Sampling Time	•	14:02		Recorded By	D. Kirs	chner, V. Myers					
Weather		Indoor		Coded Replicat	e No.	None					
Instrument Ide	ntification										
Water Quality	Meter(s)	Multi-RAE SN#	# 095-516950, S	olinist Water Lev	vel Meter 100' i	Pine # 04392, YS	SN# 02E1060)AB			
		LaMotte 2020e	e SN# SN-ME-11	1955, DO Meter P	Pine # 06059						
Casing Materia	ıl	P	vc	Purge N	lethod	<u> </u>	Low Flow Mor	/ Flow Monsoon Pump			
Casing Diamete	er	2	.0"	Screen	Interval (ft bm	р) Тор_	30.0'		Bottom	40.0'	
Sounded Depth	h (ft bmp)	39	9.02	Pump Ir	ntake Depth (ft	bmp)	35.0'				
Depth to Water	(ft bmp)	10).63	Purge T	ïme	Start	13:30		Finish	14:05	
·				Field Parameter	Measurements	s During Purging					
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
13:35	5	200	0.25	15.95	6.71	1.160	-110.0	0.63	2.49	10.74	
13:40	10	200	0.25	15.95	6.71	1.160	-110.0	0.63	1.17	10.8	
13:45	15	200	0.25	15.95	6.71	1.160	-110.0	0.63	2.31	10.8	
13:50	20	200	0.25	15.66	6.65	1.141	-117.2	0.17	1.93	10.8	
13:55	25	200	0.25	15.54	6.69	1.136	-118.3	0.19	1.21	10.8	
14:00	30	200	0.25	15.71	6.64	1.140	-119.3	0.20	1.32	10.8	
Collected Sam	ple Condition		Color <u>Clear</u>		Odor	No Odor		Appearance	Clear		
Parameter			Container			No.			Preservative		
VOCs + ci	s-1,2-DCE	_	Glas	s Vials		2		_	н	CL	
		_						_			
		_						-			
Comments	I otal volume	purged is ~2 ga	lions								
-											

Project	King	s Electronics										
Project Numbe	r <u>NJ00</u>	0423.0005.0001		Site Location	Tucka	hoe, NY		Well ID	<u>м</u> мw	-13R		
Date		4/21/2009		Sampled By	D. Kir	schner, V. Myers						
Sampling Time		12:17		Recorded By	D. Kir	schner, V. Myers						
Weather		Cloudy, 50's		Coded Replica	te No.	DUP(042109)						
Instrument Ider	ntification											
Water Quality M	Meter(s)	Multi-RAE SN#	• 095-516950, S	olinist Water Le	vel Meter 100'	Pine # 04392, YS	I SN# 02E1060	AB				
		LaMotte 2020e	SN# SN-ME-11	955, DO Meter F	Pine # 06059							
Casing Materia	I	P	vc	Purge I	Method	_	Low Flow Mor	ow Flow Monsoon Pump				
Casing Diamete	er	2.	.0"	Screen	Interval (ft br	np) Top	9.5'		Bottom	19.5'		
Sounded Depth	n (ft bmp)	1	9.5	- Pump li	ntake Depth (f	t bmp)	17.5'	17.5'				
Depth to Water	(ft bmp)	13	.26	Purge 1	Гime	Start	11:40		Finish	12:20		
						-						
_				Field Parameter	Measurement	s During Purging	I					
Time	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to		
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)		
11:45	5	200	0.25	12.77	6.54	2.49	193.7	0.75	49.4	13.27		
11:50	10	200	0.25	13.16	6.56	2.397	192.9	0.87	31.9	13.31		
11:55	15	200	0.25	13.06	6.58	2.225	188.7	0.43	16.1	13.31		
12:00	20	200	0.25	12.94	6.59	2.073	182.7	0.36	5.12	13.31		
12:05	25	200	0.25	12.98	6.59	1.997	179	0.32	3.74	13.31		
12:10	30	200	0.25	12.97	6.59	1.964	175.5	0.31	3.27	13.31		
12:15	35	200	0.25	12.97	6.58	1.945	172.9	0.31	2.67	13.31		
Collected Sam	ple Condition	1	Color Clear		Odor	No Odor		Appearance	Clear			
Parameter			Container			No.			Preservative			
VOCs + ci	s-1,2-DCE	_	Glass	s Vials		2		_	н	CL		
		_						_				
		_						-				
Comments	Total volume	e purged is ~2 gal	llons									
-												
-												
-												

Project	Kings	s Electronics									
Project Numbe	r <u>NJ00</u>	0423.0005.0001		Site Location	Tuckał	noe, NY		Well ID	ррт	W-2	
Date		4/21/2009		Sampled By	D. Kirs	chner, V. Myers					
Sampling Time		14:42		Recorded By	D. Kirs	chner, V. Myers					
Weather		Cloudy, 50's		Coded Replicat	te No.	None					
Instrument Ide	ntification										
Water Quality	Meter(s)	Multi-RAE SN#	¢ 095-516950, S	olinist Water Lev	vel Meter 100' l	Pine # 04392, YS	SN# 02E1060	AB			
		LaMotte 2020e	SN# SN-ME-11	1955, DO Meter F	Pine # 06059						
Casing Materia	ıl	P	vc	Purge N	lethod	I	ow Flow Mor	Flow Monsoon Pump			
Casing Diamete	er	2	.0"	Screen	Interval (ft bm	р) Тор	7.0'		Bottom	17.0'	
Sounded Depth	n (ft bmp)	16	.55	- Pump li	ntake Depth (ft	bmp)	15.0'	15.0'			
Depth to Water	(ft bmp)	10	.77	- Purge T	Time	Start	14.05		Finish	14.45	
-				-		-					
				Field Parameter	Measurements	During Purging					
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to	
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	
14:10	5	200	0.25	16.12	6.65	1.382	-79.6	0.21	72.1		
14:15	10	200	0.25	16.12	6.62	1.167	-99.3	0.2	48.4		
14:20	15	200	0.25	16.07	6.63	1.178	-114.2	0.18	18.9		
14:25	20	200	0.25	16.07	6.64	1.179	-119.7	0.18	46.9		
14:30	25	200	0.25	16.04	6.64	1.184	-118	0.14	4.21		
14:35	30	200	0.25	16.13	6.64	1.188	-125.4	0.14	3.61		
14:40	35	200	0.25	16.11	6.64	1.184	-124.8	0.13	3.26		
Collected Sam	ple Condition	I	Color Tan cle	ear	Odor	No Odor		Appearance	Small suspend	ded particles	
Parameter			Container			No.			Preservative		
VOCs + ci	s-1,2-DCE		Glass	s Vials		2		_	н	CL	
		_						_			
								_			
Comments	Total volume	purged is ~2 ga	llons								
-											

Project	Kings	Electronics									
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckał	noe, NY		Well ID	GP-	103R	
Date		4/22/2009		Sampled By	D. Kirs	chner, V. Myers					
Sampling Time		9:42		Recorded By	D. Kirs	chner, V. Myers					
Weather		Indoor		Coded Replicat	te No.	None					
Instrument Ider	ntification										
Water Quality M	Meter(s)	Multi-RAE SN#	¢ 095-516950, S	olinist Water Lev	vel Meter 100' I	Pine # 04392, YS	I SN# 02E1060	AB			
		LaMotte 2020e	SN# SN-ME-11	1955, DO Meter F	Pine # 06059						
Casing Materia	I	Р	vc	Purge M	lethod		Low Flow Mor	Flow Monsoon Pump			
Casing Diamete	er	2	.0"	Screen	Interval (ft bm	р) Тор	5.0'		Bottom	15.0'	
Sounded Depth	n (ft bmp)	19	.94	- Pump li	ntake Depth (ft	bmp)	13.0'				
Depth to Water	(ft bmp)	5.	.45	Purge T	Time	Start	9:10		Finish	9.45	
						_					
				Field Parameter	Measurements	During Purging	I				
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to	
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	
9:15	5	300	0.4	13.68	6.84	1.493	-130.8	1.40	30.70	5.68	
9:20	10	300	0.4	15.98	6.89	1.530	-149.0	0.83	21.20	5.68	
9:25	15	300	0.4	15.95	6.91	1.516	-155.6	0.75	17.80	5.68	
9:30	20	300	0.4	15.97	6.91	1.487	-156.8	0.65	15.10	5.68	
9:35	25	300	0.4	15.98	6.91	1.464	-153.5	0.68	10.66	5.68	
9:40	30	300	0.4	15.99	6.91	1.464	-154.1	0.74	8.18	5.68	
Collected Sam	ple Condition		Color Slightl	y tan	Odor	No Odor		Appearance	Small suspend	led particles	
Parameter			Container			No.			Preservative		
VOCs + ci	s-1,2-DCE		Glass	s Vials		2			н	CL	
Comments	Total volume	purged is ~2.5 g	allons								
-											
-											
-											
-											

Project	King	gs Electronics								
Project Numbe	r <u>NJO</u>	00423.0005.0001		Site Location	Tucka	hoe, NY		Well I	GP-	104R
Date		4/22/2009		Sampled By	D. Kirs	schner, V. Myers				
Sampling Time		10:47		Recorded By	D. Kirs	schner, V. Myers				
Weather		Indoor		Coded Replicat	e No.	None				
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE SN	# 095-516950, S	olinist Water Lev	vel Meter 100'	Pine # 04392, YS	I SN# 02E1060)AB		
		LaMotte 2020e	SN# SN-ME-11	955, DO Meter F	Pine # 06059					
Casing Materia	ı	P	vc	Purge N	lethod	<u>_</u>	Low Flow Mor	nsoon Pump		
Casing Diamete	er	2	.0"	Screen	Interval (ft bm	ip) Top_	5.0'		Bottom	15.0'
Sounded Depth	n (ft bmp)	1	4.9	- Pump li	ntake Depth (f	t bmp)	13.0'			
Depth to Water	(ft bmp)	5	.15	Purge T	ïme	Start	10.15		Finish	10.55
				Field Parameter	Measurement	s During Purging				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
10:20	5	200	0.25	14.55	6.87	1.555	-91.7	0.28	65.70	5.26
10:25	10	200	0.25	14.70	6.84	1.516	-97.8	0.33	51.20	5.26
10:30	15	200	0.25	14.93	6.84	1.504	-101.6	0.37	43.90	5.26
10:35	20	200	0.25	15.05	6.83	1.482	-108.7	0.38	25.50	5.26
10:40	25	200	0.25	15.05	6.83	1.469	-114.0	0.34	16.50	5.26
10:45	30	200	0.25	15.05	6.83	1.458	-117.9	0.36	14.60	5.26
Collected Sam	ple Conditio	n	Color Slight	y tan	Odor	No Odor		Appearance	Small suspend	ded particles
Parameter			Container			No.			Preservative	
VOCs + ci	s-1,2-DCE		Glass	s Vials		2		-	н	CL
								-		
		_						-		
Comments	Total volum	e purged is ~2 ga	llons							
-										

Project	For	mer Kings Electro	nics Co., Inc. S	iite						
Project Numbe	r <u>NJO</u>	00423.0005.0001		Site Location	Tucka	hoe, NY		Well I	DMW-6S	
Date		7/15/2009		Sampled By	D. Kirs	schner				
Sampling Time		11:27		Recorded By	D. Kirs	schner				
Weather		Sun, 80's		Coded Replicate	e No	None				
Instrument Ide	ntification									
Water Quality I	Meter(s)	Multi-RAE Pin	e # 8437, Solini	ist Water Level M	eter 100' Pine	# 5272, YSI SN#	06GAA47AC			
		LaMotte 2020e	SN# SN-ME-1	1955, DO Meter P	ine # 10822					
Casing Materia	d	P	VC	Purge M	lethod	•	Low Flow Mor	nsoon Pump		
Casing Diamet	er	2	.0"	Screen I	nterval (ft bm	p) Top	10.0' Bottom 2			20.0'
Sounded Dept	h (ft bmp)	19	9.41	Pump In	take Depth (f	t bmp)	<u>18.0'</u>			
Depth to Water	r (ft bmp)	10).66	Purge Ti	ime	Start	10:55		Finish	11:38
				Field Parameter I	Maacuramont	c During Burging	-			
			Volume		weasurement	s During Purging				Depth to
Time	Minutes Elasped	Flow Rate (mL/min)	Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Water (ft bmp)
11:00	5	300	0.4	16.43	6.59	0.716	133.6	8.15	31.2	10.70
11:05	10	300	0.4	16.44	6.54	0.781	149.1	7.91	16.3	10.70
11:10	15	300	0.4	16.45	6.51	0.83	167.9	7.75	6.8	10.70
11:15	20	300	0.4	16.00	6.52	0.846	171.3	7.68	3.16	10.70
11:20	25	300	0.4	16.51	6.53	0.851	174.1	7.66	2.13	10.70
11:25	30	300	0.4	16.52	6.53	0.858	175.3	7.67	1.31	10.70
Collected Sam	ple Conditio	n	Color <u>Clear</u>		Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VOCs + ci	s-1,2-DCE		Glas	s Vials		2	2	_	н	CL
								-		
								-		
Comments	i otal volun	ne purged 2.4 gallo	ons							
•										
•										
•										

Project	Forme	Former Kings Electronics Co., Inc. Site										
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well I	DMV	V-9S		
Date		7/15/2009		Sampled By	V. My	/. Myers						
Sampling Time		10:32		Recorded By	V. My	V. Myers						
Weather		Indoors, Sun, 80	's	Coded Replica	te No.	DUP(071509)						
Instrument Ide	ntification											
Water Quality I	Meter(s)	Multi-RAE Pine	e # 8437, Solini	st Water Level M	Aeter 100' Pine	e # A01143, YSI SI	N#98L0843AA					
		LaMotte 2020e	SN# SN-ME-11	1894, DO Meter I	Pine # 13050							
Casing Materia	I	P	vc	Purge Method Low F			Low Flow Mor					
Casing Diameter 2.0		.0"	Screen	Interval (ft bn	/al (ft bmp) Top			Bottom	20.0'			
Sounded Depth (ft bmp) 19		19	.98	- Pump I	ntake Depth (i	Depth (ft bmp)						
Depth to Water	(ft bmp)	9.	53	- Purge	Time	Start	10:01		Finish	10:35		
-				_		-						
				Field Parameter	Measuremen	ts During Purging						
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to		
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)		
10:05	5	200	0.27	17.35	6.86	1.489	-101.2	1.02	4.83	9.58		
10:10	10	200	0.27	17.28	6.72	1.451	-84.4	0.72	5.18	9.58		
10:15	15	200	0.27	17.49	6.68	1.448	-80.6	0.79	3.79	9.58		
10:20	20	200	0.27	17.18	6.60	1.394	-64.0	0.64	2.36	9.58		
10:25	25	200	0.27	17.10	6.56	1.376	-66.6	0.68	1.53	9.58		
10:30	30	200	0.27	17.09	6.54	1.365	-65.1	0.69	1.46	9.58		
Collected Sam	ple Condition		Color Clear		Odor	Slight Odor		Appearance	Clear			
Parameter			Container			No.			Preservative			
VOCs + ci	s-1,2-DCE	_	Glass	s Vials		2		_	н	CL		
		_						-				
		_						_				
Comments	Total volume	purged is ~2 gal	llons									

Project	Form	er Kings Electro	nics Co., Inc. S	ite						
Project Numbe	r <u>NJ000</u>	0423.0005.0001		Site Location	Tucka	hoe, NY		Well ID	<u>мv</u>	V-9D
Date		7/15/2009		Sampled By	V. My	ers				
Sampling Time		11:32		Recorded By	V. My	V. Myers				
Weather		Indoor, Sun 80'	s	Coded Replica	te No.	None				
Instrument Ide	ntification									
Water Quality	Meter(s)	Multi-RAE Pine	e # 8437, Solini	st Water Level N	leter 100' Pine	e # A01143, YSI SI	N#98L0843AA			
		LaMotte 2020e	SN# SN-ME-11	894, DO Meter I	Pine # 13050					
Casing Materia	I	Р	vc	Purge I	Vethod	Low Flow Monsoon Pump				
Casing Diameter 2		.0"	Screen	Interval (ft br	np) Top_	30.0'		Bottom	40.0'	
Sounded Depth (ft bmp) 3		3	9.7	- Pump I	ntake Depth (t bmp)	35.0'			
Depth to Water	(ft bmp)	9.	.87	Purge	Гime	Start	11:00		Finish	11:36
						-				
				Field Parameter	Measuremen	ts During Purging	I			
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
10:05	5	200	0.27	15.54	6.64	1.218	-69.90	0.81	5.64	10.03
10:10	10	200	0.27	15.66	6.62	1.193	-74.40	0.55	6.11	10.03
10:15	15	200	0.27	15.81	6.62	1.180	-82.00	0.50	2.39	10.03
10:20	20	200	0.27	15.80	6.63	1.175	-84.30	0.48	2.14	10.03
10:25	25	200	0.27	15.84	6.63	1.171	-86.70	0.48	2.64	10.03
10:30	30	200	0.27	15.84	6.63	1.169	-87.30	0.47	2.10	10.03
Collected Sam	ple Condition		Color Clear		Odor	Slight Musky O	dor	Appearance	Clear	
Parameter			Container			No.			Preservative	
VOCs + ci	s-1,2-DCE	_	Glass	s Vials		2			н	CL
		_						-		
		_						-		
Comments	Total volume	purged is ~2 ga	llons							
-										
-										

Project	Form	er Kings Electro	nics Co., Inc. S	ite								
Project Numbe	r <u>NJ00</u>	0423.0005.0001		Site Location	Tucka	nhoe, NY		Well I	<u>м</u> мw	/-13R		
Date		7/15/2009		Sampled By	D. Kir	schner						
Sampling Time		10:37		Recorded By	D. Kir	D. Kirschner						
Weather		Sun, 80's		Coded Replica	te No.	None						
Instrument Ide	ntification											
Water Quality I	Meter(s)	Multi-RAE Pin	e # 8437, Solini	st Water Level N	Meter 100' Pine	e # 5272, YSI SN#	06GAA47AC					
		LaMotte 2020e	SN# SN-ME-1	1955, DO Meter	Pine # 10822							
Casing Materia	al	P	VC	Purge	Method	Low Flow		nsoon Pump				
Casing Diameter 2		.0"	Screen	Interval (ft br	np) Top	9.5'		Bottom	19.5'			
Sounded Depth (ft bmp) 1		19).57	Pump I	Intake Depth (ft bmp)	17.5'					
Depth to Water	r (ft bmp)	12	2.84	Purge	Time	Start	10:00		Finish	10:44		
				Field Parameter	Maasuraman	to During Burgin	~					
<u> </u>			Volume		weasuremen		9			Depth to		
Time	Minutes Elasped	Flow Rate (mL/min)	Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Water (ft bmp)		
10:05	5	200	0.27	17.04	6.31	3.844	74.4	1.90	63.70	12.35		
10:10	10	200	0.27	18.12	6.34	3.596	93.2	1.24	24.30	12.35		
10:15	15	200	0.27	18.05	6.32	3.409	192.1	1.10	15.00	12.35		
10:20	20	200	0.27	18.09	6.29	3.235	120.1	1.01	10.20	12.35		
10:25	25	200	0.27	18.10	6.28	3.145	122.1	0.98	7.80	12.35		
10:30	30	200	0.27	18.11	6.27	3.137	127.9	0.96	3.18	12.35		
10:35	35	200	0.27	18.11	6.27	3.130	129.1	0.97	2.19	12.35		
Collected Sam	ple Condition		Color <u>Clear</u>		Odor	No Odor		Appearance	Clear			
Parameter			Container			No.			Preservative			
VOCs + ci	s-1,2-DCE	_	Glas	s Vials	-	2	2	_	н	CL		
		_			-			_				
		_			-			_				
Comments	Total volume	purged is -2 ga	llons									
Commento	. Juli Voluille	pargea is ~2 ga										

Project	Form	er Kings Electro	nics Co., Inc. S	ite							
Project Numbe	r <u>NJ00</u>	0423.0005.0001		Site Location	Tucka	hoe, NY		Well ID	р <u>р</u> т	W-2	
Date		7/16/2009		Sampled By	V. Mye	ers					
Sampling Time		10:42		Recorded By	V. Mye	ers					
Weather		Indoor, Sun. 80	's	Coded Replicate No. None							
Instrument Ider	ntification										
Water Quality M	Meter(s)	Multi-RAE Pin	e # 8437, Solini	st Water Level M	leter 100' Pine	# A01143, YSI S	N#98L0843AA				
		LaMotte 2020e	SN# SN-ME-11	894, DO Meter	Pine # 13050						
Casing Materia	I	P	vc	Purge	Method	-	Low Flow Mor	ow Monsoon Pump			
Casing Diameter 2		.0"	Screen	Interval (ft bm	p) Top	7.0'		Bottom	17.0'		
Sounded Depth	n (ft bmp)	16	5.56	Pump	ntake Depth (f	t bmp)	15.0'				
Depth to Water	(ft bmp)	10	0.02	Purge	Time	Start	10:10		Finish		
				Field Parameter	Measurement	s During Purging	1				
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to Water	
	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	
10:15	5	200	0.27	17.38	6.68	1.094	-41.2	0.93	68.40	10.08	
10:20	10	200	0.27	17.24	6.56	1.091	-41.9	0.59	35.20	10.08	
10:25	15	200	0.27	17.21	6.56	1.102	-54.1	0.48	17.20	10.08	
10:30	20	200	0.27	17.37	6.54	1.113	-60.5	0.46	12.00	10.08	
10:35	25	200	0.27	17.37	6.54	1.119	-63.1	0.46	9.21	10.08	
10:40	30	200	0.27	17.50	6.53	1.113	-67.6	0.46	8.41	10.09	
10:45	35	200	0.27	17.57	6.53	1.117	-69.0	0.46	8.09	10.09	
Collected Sam	ple Condition	1	Color Clear		Odor	Slight Odor		Appearance	Clear		
Parameter			Container			No.			Preservative		
VOCs + ci	s-1,2-DCE	_	Glass	s Vials	_	2		_	H	CL	
		_									
		_						-			
Comments	Total volume	e purged is ~2 ga	llons								
-											
-											
-											

Project	Forme	r Kings Electro	nics Co., Inc. Si	ite								
Project Numbe	er <u>NJ000</u>	423.0005.0001		Site Location Tuckahoe, NY				Well ID	GP-	GP-103R		
Date		7/15/2009		Sampled By	V. Mye	ers						
Sampling Time		9:42		Recorded By	V. Mye	V. Myers						
Weather		Indoor, Sun. 80'	s	Coded Replicate No.		None						
Instrument Ide	ntification											
Water Quality I	Meter(s)	Multi-RAE Pine	e # 8437, Solini:	st Water Level N	leter 100' Pine	# A01143, YSI SI	N#98L0843AA					
		LaMotte 2020e	SN# SN-ME-11	894, DO Meter I	Pine # 13050							
Casing Materia	al	P	vc	Purge I	Method	<u> </u>	Low Flow Mor	ow Monsoon Pump				
Casing Diameter 2		.0"	Screen	Interval (ft bm	np) Top_	5.0'		Bottom	15.0'			
Sounded Dept	h (ft bmp)	14	.91	- Pump I	ntake Depth (f	t bmp)	13.0'					
Depth to Water	r (ft bmp)	4.	92	Purge	Гime	Start	8.31		Finish	9:12		
			I	Field Parameter	Measurement	s During Purging	I					
Timo	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to		
Time	Elasped	(mL/min)	(gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)		
8:35	5	200	0.27	14.95	6.75	1.258	-106.8	0.57	28.40	5.64		
8:40	10	200	0.27	14.85	6.81	1.245	-111.4	0.42	17.80	5.96		
8:45	15	200	0.27	14.79	6.85	1.222	-144.0	0.36	7.93	5.96		
8:50	20	200	0.27	14.80	6.86	1.216	-116.7	0.33	7.68	5.96		
8:55	25	200	0.27	14.96	8.86	1.219	-188.6	0.33	5.42	5.96		
9:00	30	200	0.27	14.83	6.87	1.216	-115.6	0.33	5.42	5.96		
9:05	35	200	0.27	14.76	6.87	1.210	-113.1	0.32	5.37	5.96		
Collected Sam	ple Condition		Color Clear		Odor	No Odor		Appearance	Clear			
Parameter			Container			No.			Preservative			
VOCs + ci	s-1,2-DCE	_	Glass	s Vials		2		_	н	CL		
								_				
		_						-				
Comments	Total volume	purged is ~2 gal	llons									

Project	Former Kings Electronics Co., Inc. Site									
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well ID	0GP-	104R
Date		7/15/2009		Sampled By	D. Kir	schner				
Sampling Time		9:40		Recorded By	D. Kir	schner				
Weather		Indoor, Sun. 80	's	Coded Replication	te No.	None				
Instrument Ider	ntification									
Water Quality N	Meter(s)	Multi-RAE Pin	e # 8437, Solini	ist Water Level N	leter 100' Pine	# 5272, YSI SN#	06GAA47AC			
		LaMotte 2020e	SN# SN-ME-1	ME-11955, DO Meter Pine # 10822						
Casing Materia	1	P	VC	Purge Met		od Low Flow		nsoon Pump		
Casing Diameter		.0"	Screen	Interval (ft bn	np) Top_	5.0'		Bottom	15.0'	
Sounded Depth (ft bmp) 1		1	4.9	Pumpl	ntake Depth (f	t bmp)	13.0'			
Depth to Water	(ft bmp)	4	.44	Purge	Time	Start	9:08		Finish	9:42
				Field Parameter	Measurement	s During Purging				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
9:13	5	200	0.27	16.10	6.77	1.848	-42.8	1.12	116.00	4.51
9:18	10	200	0.27	15.40	6.77	1.782	-52.9	0.49	63.20	4.51
9:23	15	200	0.27	15.73	6.80	1.698	-67.5	0.48	28.20	4.51
9:28	20	200	0.27	15.63	6.83	1.544	-85.4	0.4	17.00	4.51
9:33	25	200	0.27	15.60	6.84	1.529	-89.4	0.44	13.40	4.51
9:38	30	200	0.27	15.16	6.85	1.510	-91.0	0.45	10.90	4.51
Collected Sam	ple Condition		Color <u>Slight</u>	ly Orange	Odor	No Odor		Appearance	Small suspend	ded particles
Parameter			Container			No.			Preservative	
VOCs + ci	VOCs + cis-1,2-DCE Glass Vials		s Vials		2		-	Н	CL	
		-						-		
		-						-		
Comments	Total volume	purged is ~2 ga	llons							
-										
-										
-										
-										

ARCADIS

Appendix B

Laboratory Data Packages

(Submitted Under Separate Cover)

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller - Albany 465 New Karner Road Albany, NY 12205

Project Name: KINGS ELECTRONICS -NJ000423.0005.00003 IAL Case Number: E08-12330

These data have been reviewed and accepted by:

Hillian

Michael H. Leftin, Ph.D. Laboratory Director

Sample Summary

IAL Case No.

E08-12330

Client Arcadis Geraghty & Miller - Albany

Project KINGS ELECTRONICS - NJ000423.0005.00003

Received On <u>10/24/2008@16:36</u>

	<i>a</i>				<u># of</u>
<u>Lao ID</u>	<u>Client Sample ID</u>	Depth Top/Bottom	<u>Sampling Time</u>	Matrix	Container
12330-001	BB-(102108)	n/a	10/21/2008@10:05	Aqueous	<u> 16 18 2</u> . 19 10
12330-002	FB-(102208)	n/a	10/22/2008@09:25	Aqueous	· · · · · · · · · · · · · · · · · · ·
12330-003	FB-(102308)	n/a	10/23/2008/2008-50	Amenus	1
12330-004	OS-MW-3PL	n/a	10/22/2008@11.42	Aqueous	9463 1149 4 8 9 1. N. 7
12330-005	OS-MW-1	n/a	10/22/2008/2009-52	Aqueous	2 Alter a la g e (a co
12330-006	OS-MW-2	n/a	10/22/2008/@11.13	Aguaaua	a 1967 - Alberta Albert Alberta Alberta
12330-007	GR-103R	a a start a st	10/22/2008(011.13	Aqueous	2 مربع میں 199 4 36 میں
12330-008	MW-98	n/a	10/21/2008@12.52	Aqueous	360 - Ang 4 - S. S.
12330-009	MW-IP-2D AMOUNT AND	п/а р/а	10/21/2008(@12:32	Aqueous	Z
12330-010	MW-9D	-465,2696-2669 -4296 6269-36555695-20	10/21/2008@11:17	Aqueous	2
12220 011		II/a	10/21/2008@12:53	Aqueous	2
12330-011	a MAY ALEAZS and seeds the Mar ber Mar Lase region	in the time of the 11/A the first trace of the	10/21/2008@11;21	Aqueous	2
12330-012	MW-13R	n/a	10/22/2008@09:42	Aqueous	2
12330-013	GP-104R	n∕a	10/23/2008@13:04	Aqueons	
12330-014	PTW-2	n/a	10/23/2008@12:37	Amenus	5 -Hobkik ∰ibi it i 2
12330-015	MW-6S	n/a di sina	10/23/2008/200 23	Ameous	1
12330-016	TB-(102108)	n/a	10/21/2008	Ame	n se
		11) el	10/21/2008	Aqueous	2

Page 1 of 1

TABLE OF CONTENTS

	Page
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	-
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	22
Sample Tracking Chains of Custody Laboratory Chronicle	82 87

MATRIX QUALIFIERS

- A Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- D.F. Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- **MI** Indicates compound concentration could not be determined due to <u>Matrix Interferences</u>.
- NA <u>N</u>ot <u>Applicable</u>.
- ND Indicates the compound was analyzed for but <u>Not Detected</u> at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received sixteen (16) aqueous sample(s) from Arcadis Geraghty & Miller - Albany (Project: KINGS ELECTRONICS - NJ000423.0005.00003) on October 24, 2008 for the analysis of:

(16) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

11/7/08

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E08-12330

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name	✓
	& address and date of report preparation.	
2.	Table of Contents.	✓
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	√
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	
7.	Methodology Summary.	
8.	Laboratory Chronicle and Holding Time Check.	~
9.	Results submitted on a dry weight basis (if applicable).	
10.	Method Detection Limits.	√
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	<u>√</u>
		,
12.	NonConformance Summary.	

QC Reviewed by

1/08

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY
GC/MS VOLATILE ANALYSIS

	Lab Case Number: <u>E08 - 12330</u>		
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)	<u>No</u>	<u>Yes</u>
2.	GC/MS Tuning Specifications: a. BFB Passed		
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		_ _
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds		./
	b. System Performance Check Compounds		
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:	\sim	
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
	If not met, were the calculations checked and the results qualified as "optimated"?		
8.	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		<u></u>
9.	Internal Standard Area/Retention Time Shift meet criteria		
10.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:		
12.	Sample Dilution Performed High Target High Nontarget Compounds Compounds Matrix Interference Other		
13.	Comments:		
-	Organics Manager Date		

		SUN	AMARY I	REPOR	Т						
	Client: Arcadis Geraghty & Miller - Albany										
	Project: KING	S ELE	CTRONI	CS - NJ	000423.00	05.0000	3				
		Lab (Case No.: 1	E08-123	30						
	Lab ID:	123	30-001	123	30-002	1233	30-003	1233	0-004		
	Client ID:	FB-(102108)	FB-(102208)	FB-(102308)		OS-M	W-3PL		
	Matrix:	Aq	ueous	Aqueous		Aqueous		Aqu	ieous		
	Sampled Date	10/	/21/08	10/22/08		10/	23/08	10/22/08			
PARAMETER(Units)		Conc	Conc Q MDL C		Q MDL	Conc	Q MDL	Conc Q MDL			
Volatiles + Cis 1,2-DCE	(Units)	(ug/	(L-ppb)	(ug/	L-ppb)	(ug/)	L-ppb)	(ug/L	-ppb)		
cis-1,2-Dichloroethene		ND	0.320	ND	0.320	ND	0.320	ND	0.320		
TOTAL VO's:		ND		ND		ND		ND			
	Lab ID:	123	30-005	123	30-006	1233	30-007	1233	0-008		
	Client ID:	OS-	MW-1	OS-	MW-2	GP	-103R	MV	V-9S		
	Matrix:	Aq	ueous	Aq	ueous	Aq	ueous	Aqu	eous		
	Sampled Date	10/	/22/08	10/	22/08	10 /2	23/08	10/2	1/08		
PARAMETER(Units)		Conc	Q MDL	Conc	Q MDL	Conc	Q MDL	Conc (<u>Q MDL</u>		
Volatiles + Cis 1,2-DCE	(Units)	(ug/	(L-ppb)	(ug/1	L-ppb)	(ug/1	L-ppb)	(ug/L	-ppb)		
Vinyl chloride		0.822	0.560	ND	0.560	35.2	0.560	0.861	0.560		
trans-1,2-Dichloroethene		ND	0.450	ND	0.450	0,468	0.450	0.882	0.450		
1,1-Dichloroethane		ND	0.340	ND	0.340	0.418	0.340	0.520	0.340		
cis-1,2-Dichloroethene		0.498	0.320	2.55	0.320	6.31	0.320	0.668	0.320		
Trichloroethene		0.529	0.320	4.00	0.320	0.585	0.320	ND	0.320		
Toluene		0.382	0.340	ND	0.340	ND	0.340	ND	0.340		
Tetrachloroethene		0.991	0.380	7.60	0.380	ND	0.380	ND	0.380		
Ethylbenzene		17.8	0.330	ND	0.330	ND	0.330	ND	0.330		
Total Xylenes		2.48	0.980	ND	0.980	ND	0.980	ND	0.980		
TUTAL VU'S:		23.3		14.2		.43.0		2.93			
	Lab ID:	1233	30-009	1233	50-010	1233	0-011	1233	0-012		
	Client ID:	MW-	·HP-2D	M V	₹-9D	MW-	HP-2S	MW	-13R		
	Matrix:	Aq	ueous	Aqu	ueous	Aqu	ieous	Aqueous			
DADAMETED/IImita)	Sampled Date	10/	21/08 O MDI	10/2	21/08 O MDI	10/2	21/08	10/2	2/08		
PARAMETER(UMIS)	/TT 1/)	Conc	Q MDL	Conc	<u>Q MDL</u>	Conc	Q MDL	Conc (<u>2 MDL</u>		
volatiles + Cis 1,2-DUE	(Units)	(ug/.	L-ppb)	(<i>ug/1</i>	L-ppb)	(ug/1	L-ppb)	(ug/L	-ppb)		
1,1-Dichloroeinane			0.340	ND	0.340		0.340	0.610	0.340		
Chloroform			0.320	ND	0.320	1.50	0.320	0.647	0.320		
Trichloroethene		1.04	0.290	ND	0.290	1.05	0.290	ND 1.40	0.290		
Tetrachloroethene		21.5	0.320	ND	0.320	1.93	0.320	1.02 ND	0.320		
TOTAL VO's:		23.3	0.560	ND	0.580	19.2	0.380	2.88	0.360		
	Ĩ ah ID∙	123	30_013	1233	20 014	12.0	0.015	1122	0.016		
	Client ID:	GP.	.104R	1233 PT	W_7	1253 MV	N-65	TB-(1	0-010 02108\		
	Matrix.	Δa		1 1 • • •	11-2 UPD115	A (1)		1)-U1 Aau	4005		
	Sampled Date	10/	23/08	10/	23/08	10/	23/08	10/2	1/08		
PARAMETER(Units)		Conc	O MDL	Conc	O MDL	Conc	O MDL	Conc (D MDL		
Volatiles + Cis 1.2-DCE	(Units)	(up/	L-ppb)	(119/1	L-pph)	(119/1	L-ppb)	(uo/I	-nph)		
trans-1,2-Dichloroethene	()	0.459	0.450	ND	0.450	ND	0.450	ND	0.450		
1,1-Dichloroethane		0.573	0.340	0.657	0.340	ND	0.340	ND	0.340		
cis-1,2-Dichloroethene		0.589	0.320	0.395	0.320	ND	0.320	ND	0.320		
1,1,1-Trichloroethane		ND	0.430	ND	0.430	4.22	0.430	ND	0.430		
Trichloroethene		0.402	0.320	ND	0.320	24.1	0.320	ND	0.320		
Tetrachloroethene		ND	0.380	ND	0.380	3.23	0.380	ND	0.380		
MOMUX MOL		2.02		1.05		31.6		ND			

ND = Analyzed for but Not Detected at the MDL

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-001 Client ID: FB-(102108) Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7493.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

Total Target Compounds:

0

ų,

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-002 Client ID: FB-(102208) Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7494.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	·······
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

0

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-003 Client ID: FB-(102308) Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7495.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	·
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

0

0008

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-004 Client ID: OS-MW-3PL Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7496.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

0

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-005 Client ID: OS-MW-1 Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7490.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	0.822		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	0.498		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	0.529		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	0.382		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	0.991		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	17.8		0.330	
Total Xylenes	2.48		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0,280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-006 Client ID: OS-MW-2 Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7497.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	—
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	2.55		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	4.00		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	7.60		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-007 Client ID: GP-103R Date Received: 10/24/2008 Date Analyzed: 10/29/2008 Data file: F7498.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	35.2		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	0.468		0.450	
1,1-Dichloroethane	0.418		0.340	
cis-1,2-Dichloroethene	6.31		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	0.585		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-008 Client ID: MW-9S Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7504.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	0.861		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1 98	
Acrylonitrile	ND		1 19	
trans-1,2-Dichloroethene	0.882		0.450	
1,1-Dichloroethane	0.520		0 340	
cis-1,2-Dichloroethene	0.668		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0 450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

Total Target Compounds:

2.93

VOLATILE ORGANICS

ċ

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-009 Client ID: MW-HP-2D Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7505.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1 19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0 340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	0.743		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	1.04		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	21.5		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	
VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-010 Client ID: MW-9D Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7506.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.510
Vinyl chloride	ND		0.560
Bromomethane	ND		0.510
Chloroethane	ND		0.710
Trichlorofluoromethane	ND		0.600
Acrolein	ND		1.87
1,1-Dichloroethene	ND		0.420
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.19
trans-1,2-Dichloroethene	ND		0.450
1,1-Dichloroethane	ND		0.340
cis-1,2-Dichloroethene	ND		0.320
Chloroform	ND		0.290
1,1,1-Trichloroethane	ND		0.430
Carbon tetrachloride	ND		0.450
1,2-Dichloroethane (EDC)	ND		0.280
Benzene	ND		0.290
Trichloroethene	ND		0.320
1,2-Dichloropropane	ND		0.210
Bromodichloromethane	ND		0.210
2-Chloroethyl vinyl ether	ND		0.630
cis-1,3-Dichloropropene	ND		0.200
Toluene	ND		0 340
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0 360
Tetrachloroethene	ND		0.380
Dibromochloromethane	ND		0.250
Chlorobenzene	ND		0.220
Ethylbenzene	ND		0 330
Total Xylenes	ND		0.980
Bromoform	ND		0.300
1,1,2,2-Tetrachloroethane	ND		0.140
1,3-Dichlorobenzene	ND		0 320
1,4-Dichlorobenzene	ND		0.520
1,2-Dichlorobenzene	ND		0.280

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-011 Client ID: MW-HP-2S Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7507.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	1.56		0.320	
Chloroform	0.332		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	1.95		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	15.2		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-012 Client ID: MW-13R Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7511.D

Compound	Concentration	Q	MDL
Chloromethane	ND		0.510
Vinyl chloride	ND		0.560
Bromomethane	ND		0.510
Chloroethane	ND		0.710
Trichlorofluoromethane	ND		0.600
Acrolein	ND		1.87
1,1-Dichloroethene	ND		0.420
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.19
trans-1,2-Dichloroethene	ND		0.450
1,1-Dichloroethane	0.610		0.340
cis-1,2-Dichloroethene	0.647		0.320
Chloroform	ND		0.290
1,1,1-Trichloroethane	ND		0.430
Carbon tetrachloride	ND		0.450
1,2-Dichloroethane (EDC)	ND		0.280
Benzene	ND		0.290
Trichloroethene	1.62		0.320
1,2-Dichloropropane	ND		0.210
Bromodichloromethane	ND		0.210
2-Chloroethyl vinyl ether	ND		0.630
cis-1,3-Dichloropropene	ND		0.200
Toluene	ND		0.340
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.360
Tetrachloroethene	ND		0.380
Dibromochloromethane	ND		0.250
Chlorobenzene	ND		0.270
Ethylbenzene	ND		0.330
Total Xylenes	ND		0.980
Bromoform	ND		0.300
1,1,2,2-Tetrachloroethane	ND		0.140
1,3-Dichlorobenzene	ND		0.320
1,4-Dichlorobenzene	ND		0.280
1,2-Dichlorobenzene	ND		0.280

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-013 Client ID: GP-104R Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7512.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	_
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	0.459		0.450	
1,1-Dichloroethane	0.573		0.340	
cis-1,2-Dichloroethene	0.589		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	0.402		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

٢

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-014 Client ID: PTW-2 Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7513.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	0	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	-
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	0.657		0.340	
cis-1,2-Dichloroethene	0.395		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

1.05

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 12330-015 Client ID: MW-6S Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7514.D

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	4.22		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	24.1		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	3.23		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS EL

Lab ID: 12330-016 Client ID: TB-(102108) Date Received: 10/24/2008 Date Analyzed: 10/30/2008 Data file: F7515.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	0	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0 340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

Total Target Compounds:

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F6802.D</u>	BFB Injection Date:	10/07/20	008
Inst ID:	MSD_F	BFB Injection Time:	<u>11:21</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	20.2		
75	30.0 - 60.0% of mass 95	49.5		
95	Base peak, 100% relative abundance	e 100,0		
96	5.0 - 9.0% of mass 95	7.6		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	92.2)-
175	5.0 - 9.0% of mass 174	7.3 (7.9)1
176	95.0 - 101.0% of mass 174	89.2 (96.8)1
177	5.0 - 9.0% of mass 176	5.9 (6.6	$)^{2}$
	1-Value is % mass 174	2-Value is % mass 17	'6)_

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
1PPB	STD-1PPB	F6803.D	10/07/2008	12:08	
5PPB	STD-5PPB	F6804.D	10/07/2008	12:35	
20PPB	STD-20PPB	F6805.D	10/07/2008	13:00	
100PPB	STD-100PPB	F6807.D	10/07/2008	13:52	
150PPB	STD-150PPB	F6808.D	10/07/2008	14:18	
200PPB	STD-200PPB	F6809.D	10/07/2008	14:44	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F7482.D</u>	BFB Injection Date:	<u>10/29/20</u>	<u>)08</u>
Inst ID:	<u>MSD_F</u>	BFB Injection Time:	<u>9:05</u>	
m/z	Ion Abudance Criteria	% Relative Abundance		
50	15 - 40.0% of mass 95	20.1		
75	30.0 - 60.0% of mass 95	44.6		
95	Base peak, 100% relative abundance	e 100.0		
96	5.0 - 9.0% of mass 95	6.6		
173	Less than 2.0% of mass 174	0.6 (0.8)1
174	Great than 50.0% of mass 95	74.4		/-
175	5.0 - 9.0% of mass 174	5.4 (7.2	Л
176	95.0 - 101.0% of mass 174	71.0 (95.4)1
177	5.0 - 9.0% of mass 176	4.8 (6.7)2
	1-Value is % mass 174	2-Value is % mass 17	6	,-

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	F7483.D	10/29/2008	9:31	
N/A	METHOD-BLK	F7486.D	10/29/2008	11:03	
MW-6/51.35	12228-005	F7487.D	10/29/2008	11:29	
MW-11/53.81	12228-008	F7488.D	10/29/2008	11:55	
LCS-50PPB	BLK-SPK	F7489.D	10/29/2008	12:21	
OS-MW-1	12330-005	F7490.D	10/29/2008	12:47	
MS	WATER-MS	F7491.D	10/29/2008	13:13	
MSD	WATER-MSD	F7492.D	10/29/2008	13:39	
FB-(102108)	12330-001	F7493.D	10/29/2008	14:05	
FB-(102208)	12330-002	F7494.D	10/29/2008	14:31	
FB-(102308)	12330-003	F7495.D	10/29/2008	14:57	
OS-MW-3PL	12330-004	F7496.D	10/29/2008	15:23	
OS-MW-2	12330-006	F7497.D	10/29/2008	15:49	
GP-103R	12330-007	F7498.D	10/29/2008	16:14	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F7499.D</u>	BFB Injection Date:	<u>10/3</u>	<u>30/200</u>	<u> 80</u>
Inst ID:	MSD_F	BFB Injection Time:	<u>9:38</u>	<u>8</u>	
m/z	Ion Abudance Criteria	%Relative Abundance	:		
50	15 - 40.0% of mass 95	19.7			
75	30.0 - 60.0% of mass 95	44.3			
95	Base peak, 100% relative abundance	e 100.0			
96	5.0 - 9.0% of mass 95	6.3			
173	Less than 2.0% of mass 174	0.6 (((0.7)1
174	Great than 50.0% of mass 95	89.4			
175	5.0 - 9.0% of mass 174	6.5 (('	7.3)1
176	95.0 - 101.0% of mass 174	88.6 ((9	9.1)1
177	5.0 - 9.0% of mass 176	5.4 (((6.1)2
	1-Value is % mass 174	2-Value is % mass 1	76		

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	F7500.D	10/30/2008	10:04	
BLK	METHOD-BLK	F7503.D	10/30/2008	11:21	
MW-9S	12330-008	F7504.D	10/30/2008	11:46	
MW-HP-2D	12330-009	F7505.D	10/30/2008	12:12	
MW-9D	12330-010	F7506.D	10/30/2008	12:38	
MW-HP-2S	12330-011	F7507.D	10/30/2008	13:04	
LCS	BLK-SPK	F7508.D	10/30/2008	13:30	
MW-13R	12330-012	F7511.D	10/30/2008	14:47	
GP-104R	12330-013	F7512.D	10/30/2008	15:13	
PTW-2	12330-014	F7513.D	10/30/2008	15:39	
MW-6S	12330-015	F7514.D	10/30/2008	16:05	
TB-(102108)	12330-016	F7515.D	10/30/2008	16:31	
EFFLUENT	12397-001	F7517.D	10/30/2008	17:22	

.

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>F7486.D</u>	Instrument ID:	<u>MSD_F</u>
Date Analyzed:	10/29/2008	Time Analyzed:	<u>11:03</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
MW-6/51.35	12228-005	10/29/2008	11:29
MW-11/53.81	12228-008	10/29/2008	11:55
LCS-50PPB	BLK-SPK	10/29/2008	12:21
OS-MW-1	12330-005	10/29/2008	12:47
MS	WATER-MS	10/29/2008	13:13
MSD	WATER-MSD	10/29/2008	13:39
FB-(102108)	12330-001	10/29/2008	14:05
FB-(102208)	12330-002	10/29/2008	14:31
FB-(102308)	12330-003	10/29/2008	14:57
OS-MW-3PL	12330-004	10/29/2008	15:23
OS-MW-2	12330-006	10/29/2008	15:49
GP-103R	12330-007	10/29/2008	16:14

•

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: N/A Date Received: Date Analyzed: 10/29/2008 Data file: F7486.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	•
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

0

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>F7503.D</u>	Instrument ID:	MSD_F
Date Analyzed:	10/30/2008	Time Analyzed:	<u>11:21</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
MW-9S	12330-008	10/30/2008	11:46
MW-HP-2D	12330-009	10/30/2008	12:12
MW-9D	12330-010	10/30/2008	12:38
MW-HP-2S	12330-011	10/30/2008	13:04
LCS	BLK-SPK	10/30/2008	13:30
MW-13R	12330-012	10/30/2008	14:47
GP-104R	12330-013	10/30/2008	15:13
PTW-2	12330-014	10/30/2008	15:39
MW-6S	12330-015	10/30/2008	16:05
TB-(102108)	12330-016	10/30/2008	16:31
EFFLUENT	12397-001	10/30/2008	17:22

FORM 4

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: BLK Date Received: Date Analyzed: 10/30/2008 Data file: F7503.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.510	
Vinyl chloride	ND		0.560	
Bromomethane	ND		0.510	
Chloroethane	ND		0.710	
Trichlorofluoromethane	ND		0.600	
Acrolein	ND		1.87	
1,1-Dichloroethene	ND		0.420	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.19	
trans-1,2-Dichloroethene	ND		0.450	
1,1-Dichloroethane	ND		0.340	
cis-1,2-Dichloroethene	ND		0.320	
Chloroform	ND		0.290	
1,1,1-Trichloroethane	ND		0.430	
Carbon tetrachloride	ND		0.450	
1,2-Dichloroethane (EDC)	ND		0.280	
Benzene	ND		0.290	
Trichloroethene	ND		0.320	
1,2-Dichloropropane	ND		0.210	
Bromodichloromethane	ND		0.210	
2-Chloroethyl vinyl ether	ND		0.630	
cis-1,3-Dichloropropene	ND		0.200	
Toluene	ND		0.340	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.360	
Tetrachloroethene	ND		0.380	
Dibromochloromethane	ND		0.250	
Chlorobenzene	ND		0.270	
Ethylbenzene	ND		0.330	
Total Xylenes	ND		0.980	
Bromoform	ND		0.300	
1,1,2,2-Tetrachloroethane	ND		0.140	
1,3-Dichlorobenzene	ND		0.320	
1,4-Dichlorobenzene	ND		0.280	
1,2-Dichlorobenzene	ND		0.280	

0

Total Target Compounds:

Method Path : C:\MSDCHEM\1\METHODS\ Method File : FAW1007.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Thu Oct 09 10:01:26 2008 Response Via : Initial Calibration Calibration Files 20=F6805.D100=F6807.D150=F6808.D200=F6809.D1=F6803.D5=F6804.D Compound (ppb) 20 100 150 200 1 5 Avg %RSD 1) I Pentafluorobenzene -----ISTD-----ISTD-----Dichlorodifluorom 0.378 0.302 0.304 0.319 0.387 0.305 0.333 11.81 2) T Chloromethane 0.680 0.576 0.569 0.539 0.796 0.662 0.637 15.03 3) P 4) C Vinyl chloride 0.517 0.424 0.382 0.397 0.498 0.449 0.445 12.20 5) Т Bromomethane Chloroethane 0.243 0.168 0.149 0.122 0.277 0.246 0.201 31.18 6) T 0.251 0.171 0.139 0.136 0.249 0.177 0.187 27.31 7) T Trichlorofluorome 0.407 0.337 0.293 0.286 0.370 0.298 0.332 14.72 8) T Acrolein 0.089 0.084 0.077 0.075 0.080 0.089 0.082 7.18 9) MC 1,1-Dichloroethen 0.260 0.222 0.214 0.219 0.285 0.228 0.238 11.83 Acetone 0.158 0.140 0.145 0.136 0.198 0.169 0.158 10) T 14.71Carbon disulfide 0.893 0.753 0.680 0.678 1.060 0.759 0.804 11) T 18.40 Vinyl acetate 2.697 2.356 2.291 2.168 3.108 2.490 2.518 13.54 12) T Methylene chlorid 0.561 0.494 0.482 0.480 0.712 0.492 0.537 16.93 13) T 14) T Acrylonitrile 0.478 0.456 0.441 0.409 0.414 0.436 0.439 5.88 15) T tert-Butyl alcoho 0.066 0.059 0.061 0.055 0.072 0.067 0.063 9.66 16) T trans-1,2-Dichlor 0.510 0.461 0.460 0.453 0.649 0.479 0.502 14.91 17) T Methyl tert-butyl 1.380 1.161 1.094 1.095 1.567 1.203 1.250 15.00 18) P 1,1-Dichloroethan 1.077 0.956 0.945 0.919 1.244 0.996 1.023 11.90Diisopropyl ether 2.677 2.279 2.281 2.182 3.120 2.449 2.498 19) T 14.05 20) T cis-1,2-Dichloroe 0.584 0.533 0.535 0.527 0.693 0.542 0.569 11.27 2,2-Dichloropropa 0.593 0.516 0.484 0.468 0.661 0.540 0.544 13.33 21) T 22) T 2-Butanone (MEK) 0.308 0.292 0.303 0.284 0.357 0.315 0.310 8.29 Bromochloromethan 0.278 0.253 0.253 0.253 0.322 0.254 0.269 10.39 23) T Chloroform 0.932 0.842 0.829 0.820 1.094 0.861 0.896 11.65 25) C 26) T 1,1,1-Trichloroet 0.671 0.595 0.584 0.586 0.750 0.586 0.629 10.83 27) T Carbon tetrachlor 0.547 0.542 0.532 0.534 0.619 0.478 0.542 8.32 28) T 1,1-Dichloroprope 0.692 0.625 0.623 0.616 0.870 0.631 0.676 14.62 1,2-Dichloroethan 0.864 0.765 0.753 0.710 0.971 0.817 0.813 29) T 11.54 30) S 1,2-Dichloroethan 0.589 0.587 0.576 0.568 0.574 0.582 0.579 1.39 1,4-Difluorobenzene -----ISTD-----ISTD-----31) I Benzene 1.574 1.416 1.414 1.374 1.938 1.467 1.531 13.79 32) M Trichloroethene 0.368 0.340 0.343 0.342 0.454 0.342 0.365 12.33 33) M 34) C 1,2-Dichloropropa 0.443 0.407 0.408 0.401 0.532 0.415 0.434 11.49 Dibromomethane 0.229 0.207 0.210 0.206 0.259 0.213 0.220 35) T 9.32 36) T l,4-Dioxane 0.004 0.005 0.004 0.004 0.003 0.003 0.004 17.16 37) T Bromodichlorometh 0.499 0.468 0.475 0.470 0.553 0.443 0.485 7 84 2-Chloroethyl vin 0.294 0.276 0.282 0.271 0.339 0.280 0.291 38) T 8,63 cis-1,3-Dichlorop 0.671 0.621 0.628 0.615 0.760 0.598 0.649 39) T 9.17 40) T 4-Methyl-2-pentan 0.502 0.459 0.464 0.437 0.639 0.474 0.496 14.77 41) S Toluene-d8 1.125 1.136 1.136 1.128 1.126 1.124 1.129 0.49 42) MC Toluene 0.952 0.877 0.886 0.871 1.153 0.877 0.936 11.80 43) T trans-1,3-Dichlor 0.615 0.574 0.581 0.564 0.674 0.538 0.591 8.05 44) T 1,1,2-Trichloroet 0.275 0.252 0.259 0.251 0.321 0.259 0.269 9.88 45) T Tetrachloroethene 0.309 0.294 0.301 0.301 0.442 0.292 0.323 18.16 46) T 1,3-Dichloropropa 0.616 0.564 0.572 0.548 0.702 0.574 0.596 9.47 2-Hexanone 0.309 0.293 0.307 0.290 0.351 0.319 0.312 47) T 7.1148) T Dibromochlorometh 0.349 0.352 0.366 0.361 0.345 0.297 0.345 7.22 49) T 1,2-Dibromoethane 0.333 0.309 0.319 0.309 0.370 0.312 0.325 7.27 50) I Chlorobenzene-d5 -----ISTD------Chlorobenzene 1.104 1.009 1.015 1.012 1.366 1.007 1.086 13.09 51) MP 52) T 1,1,1,2-Tetrachlo 0.376 0.355 0.361 0.359 0.427 0.330 0.368 8.78

53)	C	Ethylbenzene	1 7 7 7 7	1 5 7 0	1 6 0 1					
54)	т	m n-Yvlene	1./33	1.570	1.581	1.549	1.897	1.568	1.650	8.41
55)	Ť	-Xvlene	0.00/	0.625	0.613	0.573	0.829	0.622	0.658	13.89
561	Ť	Styrene	0.688	0.628	0.619	0.589	0.821	0.627	0.662	12.72
571	Ð	Bromoform	1.23/	1.132	1.118	1.053	1.464	1.116	1.187	12.50
59)	T.	Jacomyeres have	0.206	0.221	0.235	0.232	0.187	0.167	0.208	12.76
50)	с г	Bromefluench	1.313	1.194	1.209	1.197	1.667	1.194	1.296	14.49
551	с П	Bromoriuorobenzen	0.547	0.535	0.542	0.535	0.544	0.543	0.541	0.90
607	P	1,1,2,2-Tetrachio	0.448	0.400	0.405	0.374	0.519	0.412	0.426	12.09
61)	Т —	Bromobenzene	0.429	0.400	0.411	0.398	0.509	0.408	0.426	9.95
62)	T	1,2,3-Trichloropr	0.392	0.345	0.353	0.335	0.464	0.374	0.377	12.58
63)	Т.	n-Propylbenzene	1.572	1.402	1.429	1.404	2.077	1.418	1.550	17.15
64)	Т. 	2-Chlorotoluene	1.124	1.000	1.015	0.991	1.464	1.027	1.104	16.58
65)	Т	1,3,5-Trimethylbe	1.174	1.062	1.069	1.022	1.556	1.055	1.156	17.49
66)	T	4-Chlorotoluene	1.308	1.164	1.173	1.119	1.762	1.198	1.287	18.73
67)	Т	tert-Butylbenzene	0.902	0.811	0.844	0.815	1.188	0.805	0.894	16,59
68)	Т	1,2,4-Trimethylbe	1.246	1.118	1.131	1.094	1.664	1.127	1.230	17.82
69)	т	sec-Butylbenzene	1.227	1.092	1.115	1.110	1.658	1,080	1.214	18.45
70)	т	1,3-Dichlorobenze	0.700	0.636	0.654	0.632	0.919	0.638	0.697	16.05
71)	Т	4-Isopropyltoluen	1.065	0.950	0.976	0.970	1.436	0.951	1.058	17.96
72)	Т	1,4-Dichlorobenze	0.735	0.668	0.690	0.667	0.981	0.688	0.738	16.49
73)	т	n-Butylbenzene	0.506	0.456	0.460	0.451	0.637	0.447	0.493	14.95
74)	т	1,2-Dichlorobenze	0.697	0.634	0.652	0.623	0.877	0.629	0.685	14.26
75)	Т	1,2-Dibromo-3-chl	0.079	0.073	0.076	0.072	0.077	0.068	0.074	5.45
76)	Т	l,2,4-Trichlorobe	0.376	0.342	0.353	0.354	0.503	0.341	0.378	16 51
77)	Т	Hexachlorobutadie	0.144	0.130	0.135	0.139	0.234	0.140	0.154	25.61
78)	Т	Naphthalene	1.230	1.087	1.112	1.068	1.522	1.100	1.186	14 66
79)	Т	1,2,3-Trichlorobe	0.347	0.317	0.328	0.329	0.509	0.323	0.359	20.64
80)	Т	1,1,2-Trichloro-1	0.134	0.113	0.100	0.112	0.165	0.145	0.128	19.02
81)	т	Methyl acetate	0.418	0.364	0.363	0.353	0.535	0.394	0.404	16.90
82)	Т	Cyclohexane	0.482	0.394	0.398	0.439	0.484	0.324	0.420	14.58
83)	Т	Methylcyclohexane	0.344	0.298	0.281	0.301	0.433	0.294	0.325	17.59
(#)	=	Out of Range ### N	Jumber	of cal	ibrati	on lev	zels ex	ceeded	format	 : ###

-

AW1007.M Thu Oct 09 10:03:02 2008 RP1

Instrument ID:	MSD_F
Method ID:	FAW1007.M
Date:	10/09/2008

Average %RSD = 13.60

Refer to SW846 Method 8000B Section 7.5.1.

Data Path : C:\msdchem\l\DATA\10-29-08\ Data File : F7483.D Acq On : 29 Oct 2008 9:31 Operator : XING Sample : 100PPB,STD-100PPB,A,5ml,100 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 30 09:25:50 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 35% Max. Rel. Area : 200%

_		Compound	AvgRF	CCRF	%Dev Are	a¥:	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0 1	.05	0.00
2	т	Dichlorodifluoromethane	0.333	0.352	-5.7 1	.23	0.02
3	Р	Chloromethane	0.637	0.561	11.9 1	.02	0.02
4	С	Vinyl chloride	0.445	0.424	4.7 1	.05	0.02
5	т	Bromomethane	0.201	0.222	-10.4 1	.39	0.02
6	т	Chloroethane	0.187	0.207	-10.7 1	.27	0.00
7	т	Trichlorofluoromethane	0.332	0.438	-31.9 1	.36	0.03
8	т	Acrolein	0.082	0.061	25.6	76	0.02
9	MC	1,1-Dichloroethene	0.238	0.243	-2.1 1	15	0.02
10	т	Acetone	0.158	0.178	-12.7 1	.33	0.00
11	Т	Carbon disulfide	0.804	0.766	4.7 1	.07	0.02
12	т	Vinyl acetate	2.518	2.013	20.1	90	0.00
13	т	Methylene chloride	0.537	0.521	3.0 1	11	0.02
14	т	Acrylonitrile	0.439	0.643	-46.5 1	48	0.02
15	т	tert-Butyl alcohol (TBA)	0.063	0.047	25.4	84	0.00
16	Т	trans-1,2~Dichloroethene	0.502	0.472	6.0 1	08	0.02
17	т	Methyl tert-butyl ether (MT	1.250	1.183	5.4 1	.07	0.02
18	P	1,1-Dichloroethane	1.023	0.912	10.9 1	00	0.00
19	т	Diisopropyl ether (DIPE)	2.498	2.125	14.9	98	0.00
20	т	cis-1,2-Dichloroethene	0.569	0.540	5.1 1	.06	0.00
21	т	2,2-Dichloropropane	0.544	0.558	-2.6 1	14	0.00
22	т	2-Butanone (MEK)	0.310	0.265	14.5	95	0.00
23	т	Bromochloromethane	0.269	0.270	-0.4 1	.12	0.00
25	С	Chloroform	0.896	0.825	7.9 1	.03	0.02
26	т	1,1,1-Trichloroethane	0.629	0.639	-1.6 1	.13	0.00
27	т	Carbon tetrachloride	0,542	0.586	-8.1 1	14	0.00
28	т	1,1-Dichloropropene	0.676	0.613	9.3 1	03	0.00
29	т	1,2-Dichloroethane (EDC)	0.813	0.684	15.9	94	0.00
30	S	1,2-Dichloroethane-d4	0.579	0.451	22.1	81	0.00
31	I	1,4-Difluorobenzene	1.000	1.000	0.0 1	.04	0.00
32	М	Benzene	1.531	1.389	9.3 1	.02	0.00
33	М	Trichloroethene	0.365	0.338	7,4 1	.04	0.00
34	С	l,2-Dichloropropane	0.434	0.380	12.4	98	0.00
35	т	Dibromomethane	0.220	0.198	10.0 1	.00	0.00
37	Т	Bromodichloromethane	0.485	0.453	6.6 1	.01	0.00
38	т	2-Chloroethyl vinyl ether	0.291	0.227	22.0	86	0.00
39	т	cis-1,3-Dichloropropene	0.649	0.588	9.4	99	0.00
40	Т	4-Methyl-2-pentanone (MIBK)	0.496	0.352	29.0	80	0.00
41	S	Toluene-d8	1.129	0.997	11.7	92	0.00
42	MC	Toluene	0,936	0.878	6.2 1	05	0.00
43	т	trans-1.3-Dichloropropene	0.591	0.521	11 8	95	0 00
44	т	1,1,2-Trichloroethane	0.269	0.235	12.6	98	0.00
45	т	Tetrachloroethene	0.323	0 315	2.0	12	0.00
46	т	1.3-Dichloropropane	0.525 0.596	0 514	13 8	95	0.00
47	- T	2-Hexanone	0 21 7	0.759	17 0	20	0.00
÷ '	-		0.312	V. 439	±/.Ų	23	0.00

48	Т	Dibromochloromethane	0.345	0.362	-4.9	107	0.00
49	Т	1,2-Dibromoethane (EDB)	0.325	0.296	8.9	100	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	107	0.00
51	MP	Chlorobenzene	1.086	1.039	4.3	110	0.00
52	Т	l,l,1,2-Tetrachloroethane	0.368	0.378	-2.7	113	0.00
53	С	Ethylbenzene	1.650	1.555	5.8	106	0.00
54	Т	m,p-Xylene	0.658	0.624	5.2	106	0.00
55	т	o-Xylene	0.662	0.639	3.5	108	0.00
56	Т	Styrene	1 .187	1.127	5.1	105	0.00
57	Ρ	Bromoform	0.208	0.237	-13.9	114	0.00
58	Т	Isopropylbenzene	1.296	1.283	1.0	115	0.00
59	Ş	Bromofluorobenzene	0.541	0.503	7.0	100	0.00
60	Р	1,1,2,2-Tetrachloroethane	0.426	0.369	13.4	99	0.00
61	Т	Bromobenzene	0.426	0.433	-1.6	116	0.00
62	Т	1,2,3-Trichloropropane	0.377	0.319	15.4	99	0.00
63	Т	n-Propylbenzene	1.550	1.537	0.8	117	0.00
64	Т	2-Chlorotoluene	1.104	1.074	2.7	114	0.00
65	Т	1,3,5-Trimethylbenzene	1.156	1.155	0.1	116	0.00
66	Т	4-Chlorotoluene	1.287	1.245	3.3	114	0.00
67	Т	tert-Butylbenzene	0.894	0.945	-5.7	124	0.00
68	Т	1,2,4-Trimethylbenzene	1.230	1.238	-0.7	118	0.00
69	т	sec-Butylbenzene	1.214	1.271	-4.7	124	0.00
70	Т	1,3-Dichlorobenzene	0.697	0.745	-6.9	125	0.00
71	\mathbf{T}	4-Isopropyltoluene	1.058	1.122	-6.0	126	0.00
72	Т	1,4-Dichlorobenzene	0.738	0.780	~5.7	125	0.00
73	Т	n-Butylbenzene	0.493	0.518	-5.1	121	0.00
74	Т	1,2-Dichlorobenzene	0.685	0.731	-6.7	123	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.074	0.060	18.9	87	0.00
76	Т	1,2,4-Trichlorobenzene	0.378	0.373	1.3	116	0.00
77	т	Hexachlorobutadiene	0.154	0.158	-2.6	129	0.00
78	Т	Naphthalene	1.186	0.925	22.0	91	0.00
79	Т	1,2,3-Trichlorobenzene	0.359	0.303	15.6	102	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.128	0.154	-20.3	146	0.00
81	'ľ	Methyl acetate	0.404	0.275	31.9	80	0.02
82	T	Cyclohexane	0.420	0.456	-8.6	123	0.00
83	т	Methylcyclohexane	0.325	0.301	7.4	108	0.00

(#) = Out of Range SPCC's out = 2 CCC's out = 0

-

FAW1007.M Thu Oct 30 09:25:58 2008 RP1

Data Path : C:\msdchem\l\DATA\l0-30-08\ Data File : F7500.D Acq On : 30 Oct 2008 10:04 Operator : XING Sample : 100PPB,STD-100PPB,A,5ml,100 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 31 08:41:19 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 35% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0	 84	0.00
2	т	Dichlorodifluoromethane	0.333	0.330	0.9	92	0.02
3	P	Chloromethane	0.637	0.551	13.5	80	0.02
4	С	Vinyl chloride	0.445	0.452	-1.6	89	0.02
5	т	Bromomethane	0.201	0.235	-16.9	118	0.00
6	т	Chloroethane	0.187	0.215	-15.0	105	0.00
7	т	Trichlorofluoromethane	0.332	0.446	-34.3	111	0.02
8	т	Acrolein	0.082	0.049	40.2	49	0.00
9	MC	l,l-Dichloroethene	0.238	0.257	-8.0	97	0.00
10	т	Acetone	0.158	0.240	-51.9	144	0.00
11	т	Carbon disulfide	0.804	0.795	1.1	89	0.02
12	т	Vinyl acetate	2.518	2.235	11.2	80	0.00
13	т	Methylene chloride	0.537	0.478	11.0	81	0.00
14	т	Acrylonitrile	0.439	0.509	-15.9	94	0.02
15	т	tert-Butyl alcohol (TBA)	0.063	0.050	20.6	71	0.02
16	т	trans-1,2-Dichloroethene	0.502	0.466	7.2	85	0.02
17	т	Methyl tert-butyl ether (MT	1.250	1.076	13.9	78	0.00
18	\mathbf{P}	1,1-Dichloroethane	1.023	0.856	16.3	75	0.00
19	т	Diisopropyl ether (DIPE)	2.498	2.236	10.5	82	0.00
20	т	cis-1,2-Dichloroethene	0.569	0.526	7.6	83	0.00
21	т	2,2-Dichloropropane	0.544	0.565	-3.9	92	0.00
22	т	2-Butanone (MEK)	0.310	0.402	~29.7	116	0.00
23	Т	Bromochloromethane	0.269	0.255	5.2	85	0.00
25	С	Chloroform	0.896	0.830	7.4	83	0.00
26	т	1,1,1-Trichloroethane	0.629	0.639	-1.6	90	0.00
27	т	Carbon tetrachloride	0.542	0.627	-15.7	97	0.00
28	т	l,l-Dichloropropene	0.676	0.663	1.9	89	0.00
29	т	1,2-Dichloroethane (EDC)	0.813	0.782	3.8	86	0.00
30	S	l,2-Dichloroethane-d4	0.579	0.513	11.4	73	0.00
31	I	l,4-Difluorobenzene	1.000	1.000	0.0	83	0.00
32	м	Benzene	1.531	1.445	5.6	85	0.00
33	Μ	Trichloroethene	0.365	0.350	4.1	85	0.00
34	С	1,2-Dichloropropane	0.434	0.400	7.8	82	0.00
35	т	Dibromomethane	0.220	0.207	5.9	83	0.00
37	Т	Bromodichloromethane	0.485	0.472	2.7	84	0.00
38	т	2-Chloroethyl vinyl ether	0.291	0.236	18.9	71	0.00
39	т	cis-1,3-Dichloropropene	0.649	0.595	8.3	79	0.00
4 O	т	4-Methyl-2-pentanone (MIBK)	0.496	0.435	12.3	79	0.00
41	S	Toluene-d8	1.129	1.035	8.3	76	0.00
42	MC	Toluene	0.936	0.923	1.4	87	0.00
43	т	trans-1,3-Dichloropropene	0.591	0.553	6.4	80	0.00
44	т	1,1,2-Trichloroethane	0.269	0.246	8.6	ตา	0 00
45	т	Tetrachloroethene	0.323	0.337	-4.3	95	0.00
46	т	1,3-Dichloropropane	0.596	0.563	 5 5	2. 8.2	0 00
47	T	2-Hexanone	0.312	0.400	-28.2	גרן גון	0 00
	-		· · · · · ·	v. 100	20.2		0.00

48	т	Dibromochloromethane	0 345	0 373	- 9 1	89	0 00
49	- T	1 2-Dibromoethane (EDB)	0.335	0.3/3	-0.1	00	0.00
1.5	-	172 Dipromocchane (EDB)	0.325	0.303	0.0	91	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	86	0.00
51	MP	Chlorobenzene	1.086	1.036	4.6	89	0.00
52	Т	1,1,1,2-Tetrachloroethane	0.368	0.374	-1.6	91	0.00
53	С	Ethylbenzene	1.650	1.629	1.3	90	0.00
54	т	m,p-Xylene	0.658	0.671	-2.0	92	0.00
55	Т	o-Xylene	0.662	0.667	-0.8	92	0.00
56	т	Styrene	1.187	1.187	0.0	91	0.00
57	P	Bromoform	0.208	0.228	-9.6	89	0.00
58	Т	Isopropylbenzene	1.296	1.269	2.1	92	0.00
59	S	Bromofluorobenzene	0.541	0.502	7.2	81	0.00
60	Р	1,1,2,2-Tetrachloroethane	0.426	0.393	7.7	85	0.00
61	т	Bromobenzene	0.426	0.436	-2.3	94	0.00
62	Т	1,2,3-Trichloropropane	0.377	0.331	12.2	83	0.00
63	т	n-Propylbenzene	1.550	1.542	0.5	95	0.00
64	т	2-Chlorotoluene	1.104	1.070	3.1	92	0.00
65	т	1,3,5-Trimethylbenzene	1.156	1.158	-0,2	94	0.00
66	Т	4-Chlorotoluene	1.287	1.281	0.5	95	0.00
67	т	tert-Butylbenzene	0.894	0.906	-1.3	96	0.00
68	Т	1,2,4-Trimethylbenzene	1.230	1.215	1.2	94	0.00
69	\mathbf{T}	sec-Butylbenzene	1.214	1.230	-1.3	97	-0.01
70	Т	l,3-Dichlorobenzene	0.697	0.713	-2.3	97	0.00
71	Т	4-Isopropyltoluene	1.058	1.062	-0.4	96	0.00
72	Т	l,4-Dichlorobenzene	0.738	0.752	-1.9	97	-0.0l
73	Т	n-Butylbenzene	0.493	0.516	-4.7	98	0.00
74	Т	1,2-Dichlorobenzene	0.685	0.711	-3.8	97	0.00
75	т	1,2-Dibromo-3-chloropropane	0.074	0.061	17.6	72	0.00
76	Т	1,2,4-Trichlorobenzene	0.378	0.336	11.1	85	0.00
77	т	Hexachlorobutadiene	0.154	0.144	6.5	95	0.00
78	Т	Naphthalene	1.186	0.878	26.0	70	0.00
79	т	1,2,3-Trichlorobenzene	0.359	0.286	20.3	78	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.128	0.163	-27.3	125	0.00
81	т	Methyl acetate	0.404	0,309	23.5	73	0.00
82	Т	Cyclohexane	0.420	0.384	8.6	84	0.00
83	т	Methylcyclohexane	0.325	0.280	13.8	81	0.00

(#) = Out of Range SPCC's out = 2 CCC's out = 0

AW1007.M Fri Oct 31 08:41:39 2008 RP1

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed:	10/29/2008

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	F 7 486.D	82	87	86
12228-005	AQUEOUS	F 7487 .D	83	87	84
12228-008	AQUEOUS	F 7 488.D	83	86	85
BLK-SPK	AQUEOUS	F7489.D	81	90	91
12330-005	AQUEOUS	F 7 490.D	81	88	90
WATER-MS	AQUEOUS	F7491.D	83	87	86
WATER-MSD	AQUEOUS	F7492.D	84	86	85
12330-001	AQUEOUS	F7493.D	85	86	85
12330-002	AQUEOUS	F 7 494.D	87	86	85
12330-003	AQUEOUS	F 7 495.D	88	86	84
12330-004	AQUEOUS	F 7 496.D	90	87	84
12330-006	AQUEOUS	F 7 49 7 .D	91	88	83
12330-007	AQUEOUS	F 7 498.D	93	88	84

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	40-159	4 9- 152
SMC2 = Toluene-d8	50 ppb	60-144	60-143
SMC3 = Bromofluorobenzene	50 ppb	62-146	62-146

Column to be used to flag recovery values

•

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 10/30/2008

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	F7503.D	94	88	82
12330-008	AQUEOUS	F7504.D	95	88	84
12330-009	AQUEOUS	F7505.D	97	89	83
12330-010	AQUEOUS	F7506.D	97	89	83
12330-011	AQUEOUS	F7507.D	9 8	90	82
BLK-SPK	AQUEOUS	F7508.D	92	92	98
12330-012	AQUEOUS	F7511.D	9 8	89	82
12330-013	AQUEOUS	F7512.D	102	89	83
12330-014	AQUEOUS	F7513.D	9 9	88	84
12330-015	AQUEOUS	F7514.D	100	89	82
12330-016	AQUEOUS	F7515.D	97	89	79
12397-001	AQUEOUS	F7517.D	91	88	83

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	40-159	49-152
SMC2 = Toluene-d8	50 ppb	60-144	60-143
SMC3 = Bromofluorobenzene	50 ppb	62-146	62-146

Column to be used to flag recovery values

.

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	WATER-MSD
Batch No.:	<u>FAW102908A</u>

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	34.8	70	52 - 157
Benzene	50.0	0.0	42.2	84	55 - 155
Trichloroethene	50.0	0.0	44.1	88	61 - 153
Toluene	50.0	0.0	45.8	92	58 - 144
Chlorobenzene	50.0	0.0	48.4	97	63 - 149

	SAMPLE	MSD		MSD					
Compound	CONC.	CONC.	[%	%	QC LIN	/IT'S		
	(ug/L)	(ug/L)	#	REC	RPD #	RPD		RE	EC.
1,1-Dichloroethene	0.0	33.4	1	67	4	14	52	_	157
Benzene	0. O	40.8		82	2	8	55	-	155
Trichloroethene	0.0	42.9		86	2	19	6 1	-	153
Toluene	0.0	44.6		89	3	12	58	-	144
Chlorobenzene	0.0	46.9		94	3	11	63	-	149

Column to be used to flag recovery and RPD values with an asterisk

-

* Values outside of QC limits

NC Non calculable

RPD: __0__ out of __5__ outside limits

.

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

F6807.D

Date Analyzed: 10/07/2008

Instrument ID:

MSD_F

Time Analyzed:	13:52
----------------	-------

	50UG/L	IS1		IS2		153	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	340840	6.06	485518	6.89	468135	10.23
	UPPER LIMIT	681680	6.56	971036	7.39	936270	10.73
	LOWER LIMIT	170420	5.56	242759	6.39	234067.5	973
	LAB SAMPLE						
	ID						
01	STD-1PPB	344710	6.06	494232	6.89	471492	10.23
02	STD-5PPB	342786	6.06	495221	6.89	472600	10.23
03	STD-20PPB	325517	6.06	467603	6.89	445563	10.23
04	STD-150PPB	339269	6.06	480976	6.89	469223	10.23
05	STD-200PPB	358864	6.06	504748	6.89	482910	10.23
06							
07						· · · · · · · · · · · ·	
08							
09				·			
10							
11							
12							
13							
14							
15							
16							
1/							
18							
19		~					
20							
21							
22[

IS1 = PENTAFLUOROBENZENE

- IS2 = 1,4-DIFLUOROBENZENE
- IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk
- * Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): F

Instrument ID:

F7483.D

MSD_F

Date Analyzed: <u>10/29/2008</u>

Time Analyzed: _____9:31

50UG/L	IS1		IS2		183	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	358218	6.07	507347	6.89	499133	10.23
	716436	6.57	1014694	7.39	998266	10.73
LOWER LIMIT	179109	5.57	253673.5	6.39	249566.5	9 73
LAB SAMPLE			·			
ID						
01 METHOD-BLK	337378	6.07	480850	6.89	461769	10.23
02 12228-005	357432	6.07	512639	6.89	488334	10.23
03 12228-008	325293	6.07	467692	6.89	442968	10.23
04 BLK-SPK	343531	6.07	480438	6.89	469862	10.23
05 12330-005	338813	6.07	478370	6,90	471672	10.23
06 WATER-MS	325802	6.07	466747	6,89	451375	10.23
07 WATER-MSD	334236	6.07	478113	6.89	456614	10.23
08 12330-001	328227	6.07	467243	6,89	443667	10.23
09 12330-002	308750	6.07	443048	6.89	419497	10.23
10 12330-003	298644	6.06	430616	6.89	407733	10.23
11 12330-004	280803	6.07	405004	6.89	384084	10.23
12 12330-006	272348	6.07	386456	6.89	372296	10.23
13 12330-007	254152	6.06	359257	6.89	344554	10.23
14				·		
15						
16			-		·	
17						
18						
19						
20						
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

F7500.D

Date Analyzed: 10/30/2008

Instrument ID:

MSD_F

Time	Analyzed:	10:04

50UG/L	IS1		IS2		IS3			
	AREA #	RT #	AREA #	RT #	AREA #	RT #		
12 HOUR STD	286131	6.06	402621	6.89	404029	10.23		
UPPER LIMIT	572262	6.56	805242	7.39	808058	10.73		
LOWER LIMIT	143065.5	5.56	201310.5	6.39	202014.5	9.73		
LAB SAMPLE								
iD								
METHOD-BLK	253572	6.06	364166	6.89	348036	10.23		
02 12330-008	216438	6.07	311928	6.89	304478	10.23		
03 12330-009	209007	6.07	305090	6.89	296921	10.23		
04 12330-010	196235	6.07	286413	6.89	278247	10.23		
05 12330-011	200170	6.07	292484	6.89	287702	10.23		
D6 BLK-SPK	220885	6.07	310992	6.89	312012	10.23		
07 12330-012	202952	6.07	296317	6.89	283841	10.23		
08 12330-013	151821	6.07	226428	6.89	217924	10.23		
09 12330-014	180303 181679	180303	180303	6.07	268623	6.89	256657	10.23
10 12330-015		6.07	274847	6.89	268620	10.23		
11 12330-016	216912	6.07	320773	6.89	308254	10.23		
12 12397-001	186127	6.07	254585	6.89	248189	10.23		
13								
14								
15								
16								
17			l					
18								
19						<u> </u>		
20						<u> </u>		
21								
22						<u> </u>		

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Data Path : C:\msdchem\1\DATA\10-29-08\ Data File : F7493.D Acq On : 29 Oct 2008 14:05 Operator : XING Sample : FB-(102108),12330-001,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/21/08,10/24/08, ALS Vial : 12 Sample Multiplier: 1 Quant Time: Oct 29 14:49:00 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Pentafluorobenzene6.07316832822750.00UG0.0031) 1,4-Difluorobenzene6.88511446724350.00UG0.0050) Chlorobenzene-d510.22511744366750.00UG0.00 50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.388
 65
 161388
 42.43
 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery =
 84.86%

 41) Toluene-d8
 8.550
 98
 455227
 43.14
 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery =
 86.28%

 59) Bromofluorobenzene
 11.626
 95
 204234
 42.54
 UG
 0.00

 Spiked Amount 50.000 Range 23 - 145 Recovery = 85.08%

.Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qvalue

Data Path	:	$C: \mbox{msdchem}1\DATA\10-29-08$
Data File	:	F7493.D
Acq On	:	29 Oct 2008 14:05
Operator	:	XING
Sample	:	FB-(102108),12330-001,A,5ml,100
Misc	:	AGM-ALBNY/KINGS_EL,10/21/08,10/24/08,
ALS Vial	:	12 Sample Multiplier: 1

Quant Time: Oct 29 14:49:00 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Abundance 1400000	e TIC: F7493.D\data.ms
1350000	
1300000	
1250000	
1200000	
1150000	
1100000	
1050000	
1000000	
950000	
900000	er de de la companya
850000	
800000	C P P P P P P P P P P P P P P P P P P P
750000	
700000	auseure 1 openseure 1
650000	
600000	
550000	
500000	
450000	
400000	
350000	
300000	
250000	
200000	
150000	
100000	
5000	
Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Data Path : C:\msdchem\1\DATA'	\10-29-08\					
Data File : F7494.D						
Acg On : 29 Oct 2008 14:33	1					
Operator : XING						
Sample : FB-(102208),12330-	-002,A,5ml,	100				
Misc : AGM-ALBNY/KINGS E	L.10/22/08	10/24/	/08,			
ALS Vial : 13 Sample Multi	olier: 1		•			
	-					
Ouant Time: Oct 29 15:12:31 20	008					
Quant Method : C:\MSDCHEM\1\M	ETHODS \ FAW	L007.M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHOI	D 8260B			
OLast Update : Thu Oct 09 10:	01:26 2008					
Response via : Initial Calibra	ation					
Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) Pentafluorobenzene	6.073	168	308750	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.885	114	443048	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	419497	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	156043	43.62	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recover	ry =	87.24%	
41) Toluene-d8	8.560	98	431324	43.11	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recover	ry =	86.22%	
59) Bromofluorobenzene	11 .626	95	192977	42.52	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recover	ry =	85.04%	
- <u>F</u>	5			-		
Target Compounds					Qva	alue
					 •	
(#) = qualifier out of range	(m) = manu	ual int	tegration	(+) = s	ignals su	ummed

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\10-29-08\ Data File : F7494.D Acq On : 29 Oct 2008 14:31 Operator : XING Sample : FB-(102208),12330-002,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/22/08,10/24/08, ALS Vial : 13 Sample Multiplier: 1

Quant Time: Oct 29 15:12:31 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Page:0045

	Hobor C	187	Revieweu)	
١.				

Data Path : C:\msdchem\1\DATA\10-29-08\ Data File : F7495.D Acq On : 29 Oct 2008 14:57 Operator : XING Sample : FB-(102308),12330-003,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/23/08,10/24/08, ALS Vial : 14 Sample Multiplier: 1 Quant Time: Oct 29 15:35:35 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.06316829864450.00UG0.0031) 1,4-Difluorobenzene6.88511443061650.00UG0.0050) Chlorobenzene-d510.22511740773350.00UG0.00

 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.388
 65
 152520
 44.07 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 88.14%

 41) Toluene-d8
 8.550
 98
 420378
 43.23 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 86.46%
 0.00

 59) Bromofluorobenzene
 11.626
 95
 184968
 41.93 UG
 0.00

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 83.86%
 83.86%

 Target Compounds Ovalue (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	: C: $msdchem1DATA10-29-08$					
Data File	: F7495.D					
Acq On	: 29 Oct 2008 14:57					
Operator	: XING					
Sample Misc ALS Vial	FB-(102308),12330-003,A,5ml,100 AGM-ALBNY/KINGS_EL,10/23/08,10/24/08, 14 Sample Multiplier: 1					
Quant Time Quant Meth Quant Titl	: Oct 29 15:35:35 2008 od : C:\MSDCHEM\1\METHODS\FAW1007.M e : VOLATILE ORGANICS BY FRA METHOD RECOR					

QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Abundance 1300000						· · · - •	TIC	F7495.D	\data.m	S							
1350000																	
1250000																	
1200000																	
1150000																	
1100000																	
1050000																	
1000000																	
950000																	
900000																	
850000								15,1									
800000								nzene-i									
750000								hlorobe									
700000				-		S, B		0									
650000				enzene		luene-d			le,S								
600000				ifluorob		10			benzei								
550000			l, en	1,4-D		l			nonilor								
500000			obenze	I					Bror								
450000			ntafiuo						1								
400000			e Pe					i i									
350000			hane-d														
300000			hloroet														
250000			1,2-Dic				-										
200000							1										
200000																	
150000																	
100000							ļ										
50000																	
0 ¹ ,	.00 4.00 5	, 00 6	- - 3 00		،	<u>Ц</u>	 10.01	· • • • • • • •	<u>∥</u> 40.00		·				, , , , , , , , , , , , , , , , , , , 	───────	
√1007.M Wed (Oct 29 15	:35:4	43 21	008	יייייי	9.UU	10.00	/ 11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	
					77 T. T											T	n r

Data Path : C:\msdchem\1\DAT Data File : F7496.D Acq On : 29 Oct 2008 15: Operator : XING Sample : OS-MW-3PL,12330- Misc : AGM-ALBNY/KINGS_ ALS Vial : 15 Sample Mult	A\10-29-08\ 23 004,A,5ml,100 EL,10/22/08,10/24 iplier: 1	/08,	
Quant Time: Oct 29 15:47:29 2 Quant Method : C:\MSDCHEM\1\7 Quant Title : VOLATILE ORGA QLast Update : Thu Oct 09 10 Response via : Initial Caliba	2008 METHODS\FAW1007.M NICS BY EPA METHO :01:26 2008 ration	D 8260B	
internal Standards	R.T. QION	Response Conc Units	Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.073 168 6.885 114 10.225 117	280803 50.00 UG 405004 50.00 UG 384084 50.00 UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.388 65 Range 43 - 133 8.560 98 Range 39 - 137 11.626 95 Range 23 - 145	145728 44.79 UG Recovery = 89. 398524 43.57 UG Recovery = 87. 174707 42.04 UG Recovery = 84.	0.00 58% 0.00 14% 0.00 08%
Target Compounds 2) Dichlorodifluoromethane	1.708 85-	- 4651 - 2.49 UC	Qvalue
(#) = qualifier out of range	(m) = manual int	egration (+) = signal	s summed

AW1007.M Wed Oct 29 15:47:38 2008 RP1

Data Path	:	$C: \mbox{msdchem}1\DATA\10-29-08\$
Data File	:	F7496.D
Acq On	:	29 Oct 2008 15:23
Operator	:	XING
Sample	:	OS-MW-3PL,12330-004,A.5ml,100
Misc	:	AGM-ALBNY/KINGS EL. 10/22/08.10/24/08
ALS Vial	:	15 Sample Multiplier: 1
Quant Time	::	Oct 29 15:47:29 2008
Quant Meth	100	1 : C:\MSDCHEM\1\METHODS\FAW1007 M

: VOLATILE ORGANICS BY EPA METHOD 8260B Quant Title QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\l\DATA	\10-29-08\					
Data File : F7490.D						
Acq On : 29 Oct 2008 12:4	7					
Operator : XING						
Sample : OS-MW-1,12330-005	,A,5m⊥,100		1			
Misc : AGM-ALBNY/KINGS_E	L,10/22/08,	,10/24,	/08,			
ALS Vial : 9 Sample Multip	iler: 1					
Ouant Time: Oct 29 14:34:27 2	008					
Quant Method : C:\MSDCHEM\1\M	ETHODS \ FAW:	1007.M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHO	D 8260B			
QLast Update : Thu Oct 09 10:	01:26 2008					
Response via : Initial Calibr	ation					
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
					- 	
1) Pentafluorobenzene	6.073	168	338813	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.895	114	478370	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	471672	50.00	UG	0.00
System Monitoring Compounds						
30) 1 2-Dichloroethane-d4	6 388	65	159552	40.64	UG	0.00
Spiked Amount 50 000	Range 43	- 133	Recove	erv =	81.28%	
41) Toluene-d8	8.560	98	475498	44.01	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove	ery =	88.02%	
59) Bromofluorobenzene	1 1.626	95	229374m	44.94	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ery =	89.88%	
Target Compounds					Ov	alue
(A) Vinvl chloride	2 012	62	2475	0.82	11G #	93
20) dig-1 2-Dichloroethene	5 474	96	1921	0.50	UG #	41
33) Trichloroethene	7 180	95	1847	0.53	UG "	97
42) Toluene	8 631	92	3418	0.38	UG	96
45) Tetrachloroethene	9.271	166	3064	0.99	ŪG #	68
53) Ethylbenzene	10.388	91	276333	17.76	UG	99
54) m,p-Xylene	10.530	106	15380	2.48	UG	92
				 .		

(#) = qualifier out of range (m) = manual integration (+) = signals summed
Data Path : C:\msdchem\1\DATA\10-29-08\ Data File : F7490.D Acq On : 29 Oct 2008 12:47 Operator : XING Sample : OS-MW-1,12330-005,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL, 10/22/08, 10/24/08, ALS Vial : 9 Sample Multiplier: 1

Quant Time: Oct 29 14:34:27 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA Data File : F7497.D Acq On : 29 Oct 2008 15:4 Operator : XING Sample : OS-MW-2,12330-006 Misc : AGM-ALBNY/KINGS_E ALS Vial : 16 Sample Multi Quant Time: Oct 30 08:39:37 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Thu Oct 09 10: Response via : Initial Calibra	\10-29-08\ 9 ,A,5ml,100 L,10/22/08 plier: 1 008 ETHODS\FAW ICS BY EPA 01:26 2008 ation	,10/24, 1007.M METHOI	/08, D 8260B			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) Pentafluorobenzene	6.073	168	272348	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.885	114	386456	50.00	UG	0.00
50) Chiorobenzene-us	10.225	11/	372290	50.00	06	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	143307	45.41	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	90.82	8
41) Toluene-d8	8.560	98	383933	43.99	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	87.98	6
59) Bromofluorobenzene	11.626	95	167796	41.65	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	83.30	8
Target Compounds					Cr.	value
20) cis-1.2-Dichloroethene	5,474	96	7903	2 55	UG H	78
33) Trichloroethene	7 190	95	11267	4 00	UG "	93
45) Tetrachloroethene	9.271	166	18972	7.60	UG #	68
			• • • • • • • • • • • • • • • • • • •			

Data Path : C:\msdchem\l\DATA\l0-29-08\ Data File : F7497.D Acq On : 29 Oct 2008 15:49 Operator : XING Sample : OS-MW-2,12330-006,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/22/08,10/24/08, ALS Vial : 16 Sample Multiplier: 1 Quant Time: Oct 30 08:39:37 2008

Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\ Data File : F7498.D Acq On : 29 Oct 2008 16:14 Operator : XING Sample : GP-103R,12330-007, Misc : AGM-ALBNY/KINGS_EI ALS Vial : 17 Sample Multip	10-29-08 4 A,5ml,100 5,10/23/08 5lier: 1	,10/24	/08,			
Quant Time: Oct 30 08:43:16 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Thu Oct 09 10:0 Response via : Initial Calibra	008 THODS\FAW CS BY EPA 01:26 2008 tion	l007.m METHOI	D 8260B			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.063 6.885 10.225	168 114 117	254152 359257 344554	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	6.388 Range 43	65 - 133	136364 Recove:	46.30 ry =	UG 92.60%	0.00
Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	8,550 Range 39 11.626 Range 23	98 - 137 95 - 145	355646 Recove: 156739 Recove:	43.84 ry = 42.04 ry =	UG 87.68% UG 84.08%	0.00
Target Compounds 4) Vinvl chloride	2 002	67	79619	35 24	Qva	alue
 16) trans-1,2-Dichloroethene 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene 	4.307 4.794 5.464	96 63 96	1195 2175 18247	0.47 0.42 6.31	UG # UG # UG #	28 25 40
	7.190	95 	1533	0.58	ŲG	97

Data Path Data File	: C:\msdchem\l\DATA\10-29-08\ : F7498.D
Acq On	: 29 Oct 2008 16:14
Operator	: XING
Sample	: GP-103R,12330-007,A,5ml,100
Misc	: AGM-ALBNY/KINGS EL, 10/23/08, 10/24/08,
ALS Vial	: 17 Sample Multiplier: 1
Quant rime	: OCE 30 08:43:16 2008
Quant Meth	od : C:\MSDCHEM\1\METHODS\FAW1007.M
Quant Titl	e : VOLATILE ORGANICS BY EPA METHOD 8260B

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\	10-30-08						
Data File : F7504.D							
Acq On : 30 Oct 2008 11:46							
Operator : XING							
Sample : MW-9S,12330-008,A,	5ml,100						
Misc : AGM-ALBNY/KINGS EL	,10/21/08	,10/24	/08,				
ALS Vial : 6 Sample Multipl	ier: 1		-				
Quant Time: Oct 30 12:12:16 20	08						
Quant Method : C:\MSDCHEM\1\ME	THODS \ FAW	1007.м					
Quant Title : VOLATILE ORGANI	CS BY EPA	METHO	D 8260B				
QLast Update : Thu Oct 09 10:0	1:26 2008						
Response via : Initial Calibra	tion						
Internal Standards	В . Т.	OTon	Response	Conc II	nite	Ποιτ (Minì
1) Pentafluorobenzene	6.073	168	216438	50.00	UG		0.00
31) 1,4-Difluorobenzene	6.885	114	311928	50.00	UG		0.00
50) Chlorobenzene-d5	10.225	117	304478	50.00	UG		0.00
System Monitoring Compounds							
30) 1,2-Dichloroethane-d4	6.388	65	119609	47.69	UG		0.00
Spiked Amount 50.000	Range 43	- 133	Recover	ry =	95.3	38%	
41) Toluene-d8	8.560	98	309292	43.91	UG		0.00
Spiked Amount 50.000	Range 39	- 137	Recover	ry =	87.3	82%	
59) Bromofluorobenzene	11.626	95	138446	42.02	UG		0.00
Spiked Amount 50.000	Range 23	- 145	Recover	ry =	84.	048	
Target Compounds						Ova	lue
4) Vinyl chloride	2.002	62	1657	0.86	UG		97
16) trans-1,2-Dichloroethene	4.307	96	1917	0.88	UG	#	30
18) 1,1-Dichloroethane	4.794	63	2303	0.52	UG	#	98
20) cis-1,2-Dichloroethene	5.474	96	1645	0.67	UG	#	40

Data Path : C:\msdchem\l\DATA\l0-30-08\ Data File : F7504.D Acq On : 30 Oct 2008 11:46 Operator : XING Sample : MW-9S,12330-008,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/21/08,10/24/08, ALS Vial : 6 Sample Multiplier: 1 Quant Time: Oct 30 12:12:16 2008 Quant Method : C:\MSDCHEM\l\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B

QLast Update : Thu Oct 09 10:01:26 2008

Data Path : C:\msdchem\1\DATA Data File : F7505.D Acq On : 30 Oct 2008 12:1 Operator : XING Sample : MW-HP-2D,12330-00 Misc : AGM-ALBNY/KINGS_E ALS Vial : 7 Sample Multip	\10-30-08\ 2 9,A,5ml,10 L,10/21/08 Dier: 1	0 ,10/24	/08,			
Quant Time: Oct 30 12:41:38 2	008					
Quant Method : C:\MSDCHEM\1\M	ETHODS\FAW	1007.M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHO:	D 8260B			
Response via : Initial Calibr	ation					
Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) Pentafluorobenzene	6.073	168	209007	50.00	 UG	0 00
31) 1,4-Difluorobenzene	6.885	114	305090	50.00	ŬĠ	0.00
50) Chlorobenzene-d5	10.225	117	296921	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	117093	49 35	UC.	0 00
Spiked Amount 50.000	Range 43	- 133	Recover	rv =	96 70%	0.00
41) Toluene-d8	8.560	98	306276	44.45	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove:	ry =	88.90%	0100
59) Bromofluorobenzene	11.626	95	133623	41.59	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recover	ry =	83.18%	
Target Compounds					0.1	-1.00
25) Chloroform	5,840	83	2784	0 74	UG V	41UE 97
33) Trichloroethene	7.180	95	2305	1.04	ŬĠ	90
45) Tetrachloroethene	9.271	166	42449	21.53	UG #	68
		• -		- -		

Data Path : C:\msdchem\l\DATA\l0-30-08\ Data File : F7505.D Acq On : 30 Oct 2008 12:12 Operator : XING Sample : MW-HP-2D,12330-009,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/21/08,10/24/08, ALS Vial : 7 Sample Multiplier: 1 Quant Time: Oct 30 12:41:38 2008

Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\10-30-08\ Data File : F7506.D Acq On : 30 Oct 2008 12:38 Operator : XING Sample : MW-9D,12330-010,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,10/21/08,10/24/08, ALS Vial : 8 Sample Multiplier: 1 Quant Time: Oct 30 13:13:21 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.07316819623550.00UG0.0031) 1,4-Difluorobenzene6.88511428641350.00UG0.0050) Chlorobenzene-d510.22511727824750.00UG0.00 System Monitoring Compounds

 3ystem Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.388
 65
 110598
 48.64
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 97.28%

 41) Toluene-d8
 8.560
 98
 287005
 44.37
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 =
 88.74%

 59) Bromofluorobenzene
 11.626
 95
 125121
 41.56
 UG
 0.00

 Spiked Amount
 50.000
 Range
 23 - 145
 Recovery
 =
 83.12%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	: $C: \msdchem \1 \DATA \1 0 - 30 - 08 \$
Data File	: F7506.D
Acq On	: 30 Oct 2008 12:38
Operator	: XING
Sample	: MW-9D,12330-010.A.5ml 100
Misc	: AGM-ALBNY/KINGS EL 10/21/08 10/24/09
ALS Vial	: 8 Sample Multiplier: 1
Quant Time Ouant Meth	2: Oct 30 13:13:21 2008

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\	10-30-08\					
Acq On : 30 Oct 2008 13:04						
Operator : XING						
Sample : MW-HP-2S,12330-011	,A,5ml,10	0				
Misc : AGM-ALBNY/KINGS_EL	,10/21/08	,10/24/	⁷ 08,			
ALS Vial : 9 Sample Multipl	ier: 1					
Quant Time, Oct 30 13.27.17 20	00					
Quant Method : C.\MSDCHEM\1\ME	THODS \ FAW	1007 M				
Quant Title : VOLATILE ORGANT	CS BY EPA	METHOI	1 8260B			
QLast Update : Thu Oct 09 10:0	1:26 2008					
Response via : Initial Calibra	tion					
Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	ev(Min)
1) Pentafluorobenzene	6.073	168	200170	50 00	 11G	0 00
31) 1.4-Difluorobenzene	6.885	114	292484	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	287702	50.00	UG	0.00
						0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	113685	49.01	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recover	ry =	98.02	\$
41) Toluene-d8	8.560	98	296514	44.89	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recover	ry =	89.78	8
59) Bromofluorobenzene	11.626	95	128004	41.12	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recover	ry =	82.24	8
Target Compounds					C	مدادي
20) cis-1.2-Dichloroethene	5 464	96	3545	1 56	UG S	VALUE 94
25) Chloroform	5.829	83	1193	0.33	11G #	5 5
33) Trichloroethene	7.190	95	4158	1.95	UG "	90
45) Tetrachloroethene	9.271	166	28804	15.24	UG #	68

(QT Reviewed)

Data Path	:	C:\msdchem\1\DATA\10-30-08\
Data File	:	F7507.D
Acq On	:	30 Oct 2008 13:04
Operator	:	XING
Sample	:	MW-HP-2S,12330-011,A,5ml,100
Misc	:	AGM-ALBNY/KINGS EL, 10/21/08, 10/24/08,
ALS Vial	:	9 Sample Multiplier: 1
Quant Time	::	Oct 30 13:27:17 2008

Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA Data File : F7511.D Acq On : 30 Oct 2008 14:4 Operator : XING Sample : MW-13R,12330-012, Misc : AGM-ALBNY/KINGS_E ALS Vial : 13 Sample Multip	\10-30-08\ 7 A,5ml,100 L,10/22/08 plier: 1	,10/24,	/08,			
Quant Time: Oct 30 15:14:51 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Thu Oct 09 10: Response via : Initial Calibra	008 ETHODS\FAW: ICS BY EPA 01:26 2008 ation	L007.M METHOI	D 8260B			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	/(Min)
 Pentafluorobenzene 1, 4-Difluorobenzene Chlorobenzene-d5 	6.073 6.885 10.225	168 114 117	202952 296317 283841	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	6.388 Range 43	65 - 133	115427 Recove	49.08 ry =	UG 98.168	0.00
41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	8.560 Range 39 11.626	98 - 137 95	296205 Recove 126424	44.26 ry = 41.16	UG 88.528 UG	0.00 \$ 0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	82.328	5
Target Compounds 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	4.794 5.474 7.190	63 96 95	2534 1495 3511	0.61 0.65 1.62	Qv UG # UG # UG	value 99 37 91
(#) = qualifier out of range	(m) = manu	al int	egration	(+) = si	ignals s	summed

Data Path	: C:\msdchem\1\DATA\10-30-08\
Data File	: F7511.D
Acq On	: 30 Oct 2008 14:47
Operator	: XING
Sample	: MW-13R,12330-012,A,5ml,100
Misc	: AGM-ALBNY/KINGS_EL,10/22/08,10/24/08,
ALS Vial	: 13 Sample Multiplier: 1
Quant Time	: Oct 30 15:14:51 2008
Quant Meth	od : C:\MSDCHEM\1\METHODS\FAW1007.M
Quant Titl	e : VOLATILE ORGANICS BY EPA METHOD 8260B
QLast Upda	te : Thu Oct 09 10:01:26 2008
Response v	ria : Initial Calibration

Abundance 1800000	TIC: F7511.D\data.ms	
1700000		
1600000		
1500000		
1400000		
1300000		
1200000		
1100000		
1000000		
900000		
800000		
700000		
600000	enzene Short	
500000	S S S S S S S S S S S S S S S S S S S	
400000	Pertension of the second	
300000-	A. P.	
200000	2-Dichloroe that	
100000		
0 Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00	
FAW1007.M	4 Thu Oct 30 15:14:59 2008 RP1 Page ₀₀₆	5

Data Path : C:\msdchem\l\DATA\ Data File : F7512.D Acq On : 30 Oct 2008 15:13 Operator : XING Sample : GP-104R,12330-013, Misc : AGM-ALBNY/KINGS_EL ALS Vial : 14 Sample Multip Quant Time: Oct 30 15:38:49 20 Quant Method : C:\MSDCHEM\l\ME Quant Title : VOLATILE ORGANI QLast Update : Thu Oct 09 10:0 Response via : Initial Calibra	10-30-08 A,5ml,100 ,10/23/08 lier: 1 08 THODS\FAW: CS BY EPA 1:26 2008 tion	,10/24, 1007.M METHOI	/08, D 8260В			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	/(Min)
1) Pentafluorobenzene	6.073	168	151821	50.00	UG	0.00
31) 1.4-Difluorobenzene	6.885	114	226428	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	217924	50.00	UG	0.00
Suctom Monitoring Compounds						
20) 1 2 Dichlereethane d4	6 200	65	00325	50 77	ПC	0 00
SU) 1,2-DICHIOIOECHANE-04	0.300	125	09525 Bogovor		101 549	L 0.00
All Malware do	Range 43	- 133	226709		101.54	° ^ ^^
$41) 1010ene-ab \qquad \qquad 50 000$	0.000	20	220700 Dogouou	44.34		U.UU
Spiked Amount 50.000	Range 39	- 13/	Recove.	£y ≡ 41 E4	00.001	• • • • •
59) Bromorluorobenzene	11.626	95	9/943	41.54		0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	83.081	6
Target Compounds					Q	value
16) trans-1.2-Dichloroethene	4.307	96	700	0.46	UG #	30
18) 1.1-Dichloroethane	4.804	63	1781	0.57	UG #	98
20) cis-1,2-Dichloroethene	5.464	96	1018	0.59	UG #	25
33) Trichloroethene	7.190	95	665	0.40	UG #	83

200000	 trans-1,2-Dichloro	- 1,1-Dichlorbethan	cis-1,2-Dichloroet	1 2. 1	Trichlorsethene M					1 1 1 2 1	 	 	· · · · · · · · ·	
300000	oethene,T	Ч,	thene,T	Pentaflu ichlomeths	- 5				ш 1					
400000				iorobenzei ane-d4 S	4-Diffuor	Tolu	ł		ŝromofluai					
500000				ne,l	obenzene	ene-d8,S	Chlorobei		robenzent					
600000					-		nzene-d5,		S					
700000							_							
800000														
900000														
1000000														
1100000														
1200000														
1300000														
1400000														
1500000														
1600000														
1700000														
1800000														
1900000														
Abundance	 					 	TIC: F75	512.D\da	ita.ms		 			

page0067

.

Data Path : C:\msdchem\1\DATA	\10-30-08\					
Data File : F7513.D Acc On - 30 Oct 2008 15.3	a					
Operator : XING	2					
Sample : PTW-2.12330-014.A	.5ml,100					
Misc : AGM-ALBNY/KINGS E	L.10/23/08	.10/24	/08.			
ALS Vial : 15 Sample Multiple Sample Strategies $15 \text{ Sample Multiple}$	plier: 1		, ,			
Quant Time, Oct 30 16-04-51 3	0.0.0					
Quant IIme: Oct 30 16:04:51 2 Ouant Method · C.\MSDCHEM\1\M	UUO FTHODS\ FAM	1007 M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHO	D 8260B			
OLast Update : Thu Oct 09 10:	01:26 2008	1.211.0	02002			
Response via : Initial Calibra	ation					
Internal Standards	T	OTon	Pogpongo	Cong II	ita Doi	r (Min)
1) Pentafluorobenzene	6.073	168	180303	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.885	114	268623	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	256657	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	103923	49.74	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recover	ry =	99.481	š
41) Toluene-d8	8.560	98	265808	43.82	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recover	cy =	87.648	Ś
59) Bromofluorobenzene	11.626	95	116578	41.98	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recover	су =	83.96%	ŝ
Target Compounds					Q٦	value
18) 1,1-Dichloroethane	4.794	63	2423	0.66	UG Ĥ	86
20) cis-1,2-Dichloroethene	5.474	96	811	0.40	UG #	84

Data Path	:	C:\msdchem\1\DATA\10-30-08\
Data File	:	F7513.D
Acq On	:	30 Oct 2008 15:39
Operator	:	XING
Sample	:	PTW-2,12330-014,A,5ml,100
Misc	:	AGM-ALBNY/KINGS_EL,10/23/08,10/24/08,
ALS Vial	:	15 Sample Multiplier: 1

Quant Time: Oct 30 16:04:51 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

(OT	Reviewed)	
	,	

Data Path : C:\msdchem\1\DATA	\10-30-08\					
Data File : F7514.D	5					
Operator : XING	_					
Sample : MW-6S,12330-015,A	,5ml,100					
Misc : AGM-ALBNY/KINGS_E	L,10/23/08	,10/24,	/08,			
ALS Vial : 16 Sample Multi	plier: 1					
Quant Time: Oct 31 07:46:24 2	UUS FTUADS \ FAW	1007 M				
Quant Method : C: MSDCHEM (I M. Ouant Title · VOLATILE ORGAN	TCS BY EPA	METHOI	D 8260B			
OLast Update : Thu Oct 09 10:	01:26 2008					
Response via : Initial Calibra	ation					
-			_			(35
Internal Standards	R.T.	QION	Response	Conc Ur	iits Dev	(M111)
1) Dentafluorobenzene	6.073	168	181679	50.00	UG	0.00
31) 1.4-Difluorobenzene	6,885	114	274847	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	268620	50.00	UG	0.00
System Monitoring Compounds				50 10		0 00
30) 1,2-Dichloroethane-d4	6.388	65	105593	50.16	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	100.323	0 00
41) Toluene-d8	8.560	98	275040	44.31	00 672	0.00
Spiked Amount 50.000	Range 39	- 13/	Recove	21 Y =	00.02%	0 00
59) Bromofluorobenzene	11.626	95	119607	41.10	02 208	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ту =	02.30%	
Target Compounds					Ovi	alue
26) 1.1.1-Trichloroethane	6.043	97	9645	4.22	UG #	34
33) Trichloroethene	7.180	95	48388	24.12	UG	90
45) Tetrachloroethene	9.271	166	5738	3.23	UG #	68
				, .		
<pre>(#) = qualifier out of range</pre>	(m) = man	ual in	tegration	(+) = S	igna⊥s s	ummed

Data Path	:	C: $msdchem1DATA10-30-08$
Data File	:	F7514.D
Acq On	:	30 Oct 2008 16:05
Operator	:	XING
Sample	:	MW-6S,12330-015,A,5ml,100
Misc	:	AGM-ALBNY/KINGS_EL,10/23/08,10/24/08,
ALS Vial	:	16 Sample Multiplier: 1

Quant Time: Oct 31 07:46:24 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Abundance 1350000					T	IC: F75	i14.D\dat	a.ms							n béannanna
1300000															
1250000															
1200000															
1150000															
1100000															
1050000															
1000000															
950000															
900000															
850000															
800000															
750000															
700000															
650000						le-d5,l									
600000						benzen									
550000			-			Chlore		w <u></u>							
500000	E .		enzene	C I I	0-00'N			ienzene							
450000		_	Muorok	-	loine			ofluorot							
400000		'uzene'	1,4-0		1			Êoð							
350000		fluarobe -d4,S	1												
300000		Pental sethane	Mau												
250000		ane,T Dichlort	loroethe												
200000	•	Hereeth 1,2-1	Trict		ane,T										
150000					loroeth										
100000		T			Tetract										
50000															
0 Time >	200 300 400 500	, _ _ 5 00	- - -, 7.00		9.00	10 00	11.00	12,00	13.00	14.00	15.00	16.00	17.00	18.00	19 .00
FAW1007.	4 Fri Oct 31 07:47:	02 2	008	RP1	2.00										Pagen of

Page0071

Data Path : C:\msdchem\1\DATA	\10-30-08\					
Data File : F7515.D	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L					
G_{2}	016 7 501	100				
Mico ACM_ALENY/KINCG F	-010, R, 5m1	10/24	/09			
MISC : AGM-ADDNI/KINGS_E. ALS Viel : 17 Semala Multin	1,10/21/00. 110/21/00	,10/24,	/00,			
Alb viai . 17 Sampie Marci	JTTCT. T					
Quant Time: Oct 31 07:50:19 20	008					
Ouant Method : C:\MSDCHEM\1\M	ETHODS \ FAW:	1007.M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHO	D 8260B			
OLast Update : Thu Oct 09 10:	01:26 2008					
Response via : Initial Calibra	ation					
-						
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	6.073	168	216912	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.885	114	320773	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	308254	50.00	UG	0.00
System Monitoring Compounds		~-	100015			
30) 1,2-Dichloroethane-d4	6.388	65	122315	48.66	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recover	ry =	97.328	
41) Toluene-as	8.560	127	323616	44.6/		0.00
Spiked Amount 50.000	Range 39	- 13/	120245	ry ≡	89.346	<u> </u>
Sy) Bromolluorobenzene	11.020 D 22	95 14F	132345	39.68		0.00
Spiked Amoune 50.000	Range 23	- 145	Recover	Ly =	19.306	
Target Compounds					Qva	alue
				<i>,</i> , ,		-
(#) = qualifier out of range	(m) = mani	la⊥ int	tegration	(+) = 91	ignais si	immed

Data Path : C:\msdchem\1\DATA\10-30-08\ Data File : F7515.D Acq On : 30 Oct 2008 16:31 Operator : XING Sample : TB-(102108),12330-016,A,5ml,100 : AGM-ALBNY/KINGS_EL,10/21/08,10/24/08, Misc ALS Vial Sample Multiplier: 1 : 17

Quant Time: Oct 31 07:50:19 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Page: 2 0073

Data Path : C:\msdchem\l\DATA Data File : F7486.D Acq On : 29 Oct 2008 11:0 Operator : XING Sample : N/A,METHOD-BLK,A, Misc : ALS Vial : 5 Sample Multip	<pre>\\10-29-08\ 3 5ml,100 0lier: 1 2008</pre>					
Quant Method : C:\MSDCHEM\1\M	IETHODS \ FAW	1007.M				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHOD	9 8260B			
QLast Update : Thu Oct 09 10:	01:26 2008					
Response via : inicial Calibr	ation					
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	6.073	168	337378	50.00	UG	0.00
31) 1,4-Difluorobenzene	6.885	114	480850	50.00	UG	0.00
50) Chlorobenzene-d5	10.225	117	461769	50. 0 0	UG	0.00
System Monitoring Compounds						
30) 1.2-Dichloroethane-d4	6.388	65	159432	40.78	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recove:	rv =	81.56%	0.00
41) Toluene-d8	8.560	98	469679	43.25	UG	0.00
Spiked Amount 50.000	Range 39	- 137	Recove:	εγ =	86.50%	
59) Bromofluorobenzene	Ī1.626	95	215137	43.06	UG	0.00
Spiked Amount 50.000	Range 23	- 145	Recove:	ry =	86.12%	
Target Compounds					Qva	alue

•

Data Path Data File Acq On Operator Sample Misc ALS Vial	: C:\msd : F7486. : 29 Oct : XING : N/A,ME : : 5 Sa	chem\l D 2008 THOD-B mple M	.\DAT# 11:(BLK,A, Multip	A\10-:)3 5ml,: plier	29-08\ 100 : 1											
Quant Time Quant Met Quant Tit QLast Upda Response v	e: Oct 29 nod : C:\ .e : VOL nte : Thu ria : Ini	13:07 MSDCHE ATILE Oct 0 tial C	:18 2 M\1\N ORGAN 9 10 : Calibu	2008 METHO NICS 1 01:20 ratio	DS\FAW BY EPA 6 2008 n	1007. METH	. M IOD	8260)B							
Abundance 2500000						TIC:	F748	6.D\da	ta.ms							·
2400000																
2300000																
2200000																
2100000																
2000000																
1900000																
1800000																
1700000																
1600000																
1500000																
1400000																
1300000																
1200000																
1100000							d5,1									
1000000							enzene-									
900000				ane,l	S		Chlorob		ene,S							
800000			_	probenze	uene-dĉ				orobenz							
700000			enzene,	.4-Difluc	Ta				romoflu							
600000			aftuorobi ⊱d4,S	-					۵							
500000			Pentz													
400000			-Dichler													
300000			1.2													
200000																
100000																
0 Time> 2.00	3.00 4.00	0 5.00	6. 0 0	7.00	8.00 9	.00 10	, 00	11. O 0	12.00	13.00	14.00	15.00	16.O0	17.00	18.00	19.00

-

Data Path : C:\msdchem\1\DATA\10-29-08\ Data File : F7486.D Acq On : 29 Oct 2008 11:03 Operator : XING : N/A, METHOD-BLK, A, 5ml, 100 Sample Misc : ALS Vial : 5 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Filtering: 5 Min Area: 1 % of largest Peak Max Peaks: 100 Peak Location: TOP Sampling : 1 Start Thrs: 0.2 Stop Thrs : 0 If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 Method : C:\MSDCHEM\1\METHODS\FAW1007.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Signal : TIC: F7486. peak R.T. first max last PK peak corr. °r of corr. min scan scan scan TY height # area % max. total ------- - ----- ---- ---- --------- ----- ------6.063 430 437 452 rBV 1 404838 902848 65.92% 14.918% 2 6.388 462 469 484 rVB 215271 443983 32.42% 7.3368 3 6.885 510 518 536 rBV 535664 1071533 78.23% 17.705% 4 8.327 652 660 673 rBV 5749 17090 1.25% 0.282% 614858 5 8.550 675 682 701 rVV 1254298 91.58% 20.725% 837 847 10.225 6 865 rBV 747627 1369674 100.00% 22.631%

Sum of corrected areas: 6052187

992761 72.48% 16.403%

532000

7 11.626

977 985

995 rBV

```
Data Path : C:\msdchem\l\DATA\l0-29-08\
Data File : F7486.D
Acq On : 29 Oct 2008 11:03
Operator : XING
Sample : N/A,METHOD-BLK,A,5ml,100
Misc :
ALS Vial : 5 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\l\METHODS\FAW1007.M
```

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B

```
TIC Library : C:\DATABASE\NIST98.L
TIC Integration Parameters: LSCINT.P
```


Data Path : C:\msdchem\1\DATA Data File : F7503 D	\10-30-08\					
Acq On : 30 Oct 2008 11:2	1					
Sample : BLK, METHOD-BLK, A,	5ml,100					
Misc : ALS Vial : 5 Sample Multip	lier: 1					
Quant Time: Oct 30 11,54,21 2						
Quant Method : C:\MSDCHEM\1\M	ETHODS\FAW1	007.м				
Quant Title : VOLATILE ORGAN OLast Update : Thu Oct 09 10.0	ICS BY EPA I	METHOD	0 8260B			
Response via : Initial Calibra	ation					
Internal Standards	R.T. (QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	6.063	168	253572	50.00	 UG	0.00
31) 1,4-Difluorobenzene	6.885	114	364166	50.00	UG	0.00
30) Chrorobenzene-ds	IU.225	11.1	348036	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.388	65	137879	46.93	UG	0.00
Spiked Amount 50.000	Range 43 -	- 133	Recover	TY =	93.86%	
41) Toluene-d8	8.550	98	362346	44.06	UG	0.00
Spiked Amount 50.000	Range 39 ·	- 137	Recover	Y =	88.12%	
Sy Bromoriuorobenzene	11.626	95	154043	40.91	ŬĠ	0.00
spiked Amount 50.000	Range 23 -	- 145	Recover	:Y =	81.82%	
Target Compounds		~			Qva	alue
(#) = qualifier out of range	(m) = manua	al int	égration (+) = si	gnals su	mmed

FAW1007.M Thu Oct 30 11:54:38 2008 RP1

-

(QT Reviewed)

Data Path	:	C:\msqcnem\l\DATA\10-30-08\
Data File	:	F7503.D
Acq On	:	30 Oct 2008 11:21
Operator	:	XING
Sample	:	BLK, METHOD-BLK, A, 5ml, 100
Misc	:	, , , ,
ALS Vial	:	5 Sample Multiplier: 1
Misc ALS Vial	:	5 Sample Multiplier: 1

a \....

+ ~

Quant Time: Oct 30 11:54:31 2008 Quant Method : C:\MSDCHEM\1\METHODS\FAW1007.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Oct 09 10:01:26 2008 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\10-30-08\ Data File : F7503.D Acq On : 30 Oct 2008 11:21 Operator : XING Sample : BLK, METHOD-BLK, A, 5ml, 100 Misc ALS Vial : 5 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Filtering: 5 Sampling : 1 Min Area: 1 % of largest Peak Start Thrs: 0.2 Max Peaks: 100 Stop Thrs : 0 Peak Location: TOP If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 Method : C:\MSDCHEM\1\METHODS\FAW1007.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Signal : TIC: F7503. peak R.T. first max last PK peak corr. corr. ∛ of # min scan scan scan TY height area ቼ max. total - - ----- ---- ---- -------------------1 6.063 430 437 **4**50 rBV 331139 697710 64.57% 14.657% 181955 378572 35.04% 7.953% 2 6.388 462 469 480 rVB 3 6.885 512 518 538 rBV 851606 78.82% 17.890% 444300 8.550 674 682 699 rBV 4 521395 997433 92.31% 20.954% 5 10.225 841 847 866 rBV 617333 1080482 100.00% 22.699%

437142 754335 69.81% 15.847%

Sum of corrected areas: 4760138

6 11.626 978 985 997 rBB

```
Data Path : C:\msdchem\l\DATA\l0-30-08\
Data File : F7503.D
Acq On : 30 Oct 2008 11:21
Operator : XING
Sample : BLK,METHOD-BLK,A,5ml,100
Misc :
ALS Vial : 5 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\l\METHODS\FAW1007.M
```

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B

```
TIC Library : C:\DATABASE\NIST98.L
TIC Integration Parameters: LSCINT.P
```


3	
1-42	
8	
516	-
ne #	
Pho	I

INTEGRATED ANALYTICAL LABORATORIES

REPORT	REPORTING INFO	Turn OF CUSTOUT Turnaround Time (starts the following day if samples rec *Lab notification is required for RUSH TAT prior (CTA AP ANTEED WITHOUT TAR APPROVAT *	c'd at lab > 5PM) (o sample arrival. * PTISH STIRCH /	Randol RUSH TAT IS N RCFES WILL AF	OT DT	
* 1 Toleenerous - US	Matrices / Informational DWD.	GUARANTEED WITHOUT LAB APPROVAL.* ABLE TO ACCOMMODATE.	*RUSH SURCHA	RGES WILL AI	PLY IF	
HIMH, NT 07495	WARTHAN NJ 07995	PHC-MUST CHOOSE	Rush TAT Charge **	Report Format	DISKETTE	
* 201.1.04.1410	Atta: Prin UNPICINED	DRO (3-5 day TAT) QAM025 (5 day TAT min.		Results Only	SRP. dbf format	
01 1.00 1420	FAX# 201 684 1420	SEE BELOW (under comments section for explanation)	24 hr - 100% 48 hr - 75%	Reduced	SRP.wkl formal	
Anager Golo Kon Rich 152	INVOICE TO: AT ADIS - (S	Verbal/Fax Wk/Std Results needed by: 24 hrs 48 hrs 73 hrs 1 ms	72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	lab approved cust	Ę
D.Kuschnur, U. Uhrees	Address: 1 Top Car DT WAR BUD.	Hard Copy Juk/Ste	5 day - 25 % 6-9 day 10 %	Other (describe)	EDD	
tames/JD00423,0005,000 3	KINHUPH NT 07495	Other *call for price			NO DISK/CD RE(<u>p</u>
contion (State): JUS Kaper, L2		ANALYTICAL PARAMETERS	-	Cooler Ten	د د	
)rder #:	Allen & ROOPIGLEY					T
	PO #	2'		# 80	TTLES &	
	Sample Matrix	SI		PRESE	RVATIVES	
	DW - Drinking Water AQ - Aqueous WW - Waste Water	7		_		
PLE INFORMATION	01 - 011 LtQ - Liquid (specify) 01 - Outor (specify) S - Soil SL - Sludge SOL - Solid W - Wipe			0† 03 94	н(е •	01.6
ID Depth (ft. only)	Sampling Matrix # IAL # Date Time Matrix containerts IAL #	<u>}</u> 1		S7H HNC N [®] O N	Nom Nite Detr	ouJ
102108)	10/21/05 10:05 HB 2 1	2		7		
102208)	10/22/08 (19:25 PB 2 2	7		2		
-(107308)	Value OF SO FB 2 3	2		2		
mm3PL	10/22/08 11:42 AQ Z Y	2		2	-	
- mu-)	10/22/08/09:52 AG Z J	N		2		
mw-2	10/22/08/11/13 AQ Z 6	X.		2		ļ
- 103R -	10/23/04 0:52 AQ Z 7			7		
<u> </u>	10/21/05 12:52 AQ 2 8	Z		~		
- OZ-dH-m	Policio 11:17 AQ 2 9	N		2		
<u>U-9D</u>	10/21/00 12:53 AQ 2 10	2		7		
n Hazard: Yes or No Describe:		Conc. Expected: Low Med High				
e print legibly and fill out completely. Sam	nples cannot be processed and the turnaround ti	me will not start until any MDL Req. Old GWQS	- 11/05 GWQS - 1	SCC - OTHER (S	EE COMMEN	$\overline{\mathbf{S}}$
guntes nuve veen resourca. Semannes Command	Date Time Signature/Company					
inter by Main & h	16 24/01 12-00 Received by:	+				
ished by:	10/24/by 110 36 Received by: 1000	DRO (8015B) - use	ed for: Fuel Oil #2/Hor	nc Heating Oil #1 /#2		
uished by:	Received by:	QAM-025 (0QA-C	DAM025) - used for: a	ll other fuel oils and u	nknown contamina	tíon
uished by:	Received by:		C486 #		1	
uished hy:	Received by:	1233	<u>റ</u>	PAGE: C 0	J	

 L^{∞}_{∞} copies - white & vellow; client copy - pink Σ

Hef, Nar G, 130800164

01/2007 rev

Phone # (973) 361-425 For # (973) 000-5790	007C-202 (C/2) # YES
---	----------------------

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

ЪЯ	
aaklin	
73 Fr	
24	

					100/0 fv: 'ad	
	REPORTING INFO	Turnaround Time (starts the following day if samples re	sc'd at lab > 5PM)			
Company: APCAOS ~US Address: 177 / 2004 US	REPORT TO ADS US	* Lab notification is required for RUSH TAT prior GUARANTEED WITHOUT LAB APPROVAL.	to sample arrival. **RUSH SURCHA	RUSH TAT IS N RGES WILL AI	OT PLY IF	
MIC XALINA IV IV IV		ABLE TO ACCOMMODATE.				i
CLUON HAMMAN	NATURA 007450	PHC-MUST CHOOSE	Rush TAT Charge **	Report Format	DISKETTH	ଜ
Telephone #: JOI . (JSA . H IO	ATT ADRITA	DRO (3-5 day TAT) QAM025 (5 day TAT min	(1	Results Only	SRP. dbf forma	L.
1201.684.1420	14X# 201-684, 1920	SEE BELOW (under comments section for explanation)	24 hr - 100 % 48 hr - 75 %.	Reduced	SRP.wk1 forma	
Project Manager Cle K KODC 1GUEZ	INVOICE TO: ANT AD) S-(X	<u>Verbal/Fax</u> 2 wk/Std Results needed by:	72 hr - 50%	Regulatory - 15%		
Sumpler: DXITSCHAOD IN. U. 1005	Address: The my the work of the D	24 hr* 48 hr* 72 hr* 1 ryk*	5 day - 25%	other (demolocy)	lab approved cust EDD	ШQ
Project Name NUS Cleck Christics	MAHUA4 UTO795	Hard Copy 3 wk/Std Other *call for price	6-9 day 10%		NO DISK/CD RE	Q,D
Project Location (State): (CCKc, hoc, LU		ANALYTICAL PARAMETERS			Þ	
Bottle Order #:	ATTI ERE RODEREZ	<u> </u>		Cooler Tem	₽ <u></u> °C	
Quote # :	PO#	7				
	Sample Matrix			# 80	TTLES &	
	DW - Drinking Water AQ - Aqueous WW - Waste Water			<u>FKENE</u>	KVATIVES	
SAMPLE INFORMATION	OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Studge SOL - Solid W - Wine	2				
Client ID Depth (ft. ouly)	Sampling Matrix Evolutions IAL#	<u>}</u>		ISSO4 INO3 IOH ICI	оле црет ГеОН	9300M
mw-HP-2S	WZ1/08 11:21 AQ 7 11				N 0 N	য
mw-12R	122/18(A: 47 A(3 7 1)					
20-140	12 12 12 12 12 12 12 12 12					
		<u>\</u>				
	1 - N/ 18: × 1 20(rela)	70		4		
1 (So)-(m) 1	(1) Z CH 23 10: 23 AC 2 10	7		2		
TB-(102108)	1/2 1/2 1/0	7		2		
Known Hazard: Yes or No Describe:		Conc. Expected: Low Med Hirth				ľ
Please print legibly and fill out completely. Samp	ries cannot be processed and the turnaround tim	w will not start until any MDL Req: Old GWQS -	- 11/05 GWQS - SC	C - OTHER (SE	E COMMENT	ŝ
unwiguutes huve been resolved.		Comments:				
Balinomiched her	Date Tune Signature(Company					
- M W Comp	CONTRACTOR AND A CONTRACTOR					
Relinquished by:	(UCADY 1056 Received by:	DRO (8015B) - used	1 for: Fuel Oil #2/Home	Heating Oil #1 /#2		
Relinquished by:	Received by:	QAM-025 (OQA-Q)	AM025) - used for: all c	wher fuel oils and unk	cnown contaminati	EO
Relinquished by:	Received by:		Case #	ſ	ſ	
Relinquished by:	Received by:	1,233	0	PAGE: 🖊 of	<u>~</u>	

LA COPIES . WHITE & VELLOW; CLIENT COPY . PINK

01/2007 rev

PROJECT INFORMATION

Case No. E08-12330

Project KINGS ELECTRONICS - NJ000423.0005.00003

Customer	Arcadis Geraghty & Miller - Albany	P.O. # NJ000423.0005.0000
Contact EMail	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs	Received 10/24/2008 16:36 Verbal Due 11/7/2008
Phone	(518) 452-7826 Fax 1(518) 452-4398	Report Due 11/14/2008
<u>Report To</u>		<u>Bill To</u>
465 New Ko	orner Road	465 New Korner Road
Albany, NY	· 12205	Albany, NY 12205
Attn: Eric R	odriguez	Attn: Eric Rodriguez
Report F	`ormat Reduced	
Addition	al Info State Form Field Sampling Con	iditional VOA

Lab ID	Client Sample ID	<u>Depth Top / Bottom</u>	<u>1 Sampling Time</u>	<u>Matrix</u>	<u>Unit</u>	<u># of Containers</u>
12330-001	FB-(102108)	n/a	10/21/2008@10:05	Aqueous	ug/L	2
12330-002	FB-(102208)	n/a	10/22/2008@09:25	Aqueous	ug/L	2
12330-003	FB-(102308)	n/a	10/23/2008@08:50	Aqueous	ug/L	2
12330-004	OS-MW-3PL	n/a	10/22/2008@11:42	Aqueous	ug/L	2
12330-005	OS-MW-1	n/a	10/22/2008@09:52	Aqueous	ug/L	2
12330-006	OS-MW-2	п/а	10/22/2008@11:13	Aqueous	ug/L	2
12330-007	GP-103R	n/a	10/23/2008@10:52	Aqueous	ug/L	2
12330-008	MW-9S	n/a	10/21/2008@12:52	Aqueous	ug/L	2
12330-009	MW-HP-2D	n/a	10/21/2008@11:17	Aqueous	ug/L	2
12330-010	MW-9D	n/a	10/21/2008@12:53	Aqueous	ug/L	2
12330-011	MW-HP-2S	n/a	10/21/2008@11:21	Aqueous	ug/L	2
12330-012	MW-13R	n/a	10/22/2008@09:42	Aqueous	u <u>g</u> /L	2
12330-013	GP-104R	n/a	10/23/2008@13:04	Aqueous	ug/L	2
12330-014	PTW-2	n/a	10/23/2008@12:37	Aqueous	ug/L	2
12330-015	MW-6S	n/a	10/23/2008@10:23	Aqueous	ug/L	2
12330-016	TB-(102108)	n/a	10/21/2008	Aqueous	ug/L	2
<u>Sample # </u>	<u>ests</u>	<u>Status</u>	QA Method			
001 PP	VOA + Cis 1,2-DCE	Run	8260B			
002 PP	VOA + Cis 1,2-DCE	Run	8260B			
003 PP	VOA + Cis 1,2-DCE	Run	8260B			
004 PP	VOA + Cis 1,2-DCE	Run	8260B			
005 PP	VOA + Cis 1,2-DCE	Run	8260B			
006 PP	VOA + Cis 1,2-DCE	Run	8260B			
007 PP	VOA + Cis 1,2-DCE	Run	8260B			
008 PP	VOA + Cis 1,2-DCE	Run	8260B			
009 PP	VOA + Cis 1,2-DCE	Run	8260B			
010 PP	VOA + Cis 1,2-DCE	Run	8260B			
011 PP	VOA + Cis 1,2-DCE	Ruu	8260B			
012 PP	VOA + Cis 1,2-DCE	Run	8200B			

PROJECT INFORMATION

Case No. E08-12330 Project KINGS ELECTRONICS - NJ000423.0005.00003

Sample # Tests	<u>Status</u>	<u>OA Method</u>
013 PP VOA + Cis 1,2-DCE	Run	8260B
014 PP VOA + Cis 1,2-DCE	Run	8260B
015 PP VOA + Cis 1,2-DCE	Rue	8260B
016 PP VOA + Cis 1,2-DCE	Rou	8260B
10/20/2000 00 20		

10/29/2008 08:28 by kim - REV 1

As per Eric Rodriguez, sample 9 sample ID should read MW-HP-2D

10/29/2008 08:31 by kim - NOTE 1

As per Eric Rodriguez, please e-mail results to eric.rogriguez@arcadis.us.com

INTEGRATED ANALYTICAL LABORATORIES,	LLC
-------------------------------------	-----

SAMPLE RECEIPT VERIFICATION

CASE NO: E 08 12330 CLIENT: Arcoals
COOLER TEMPERATURE: 2° - 6°C: (See Chain of Custody)
COC: COMPLETE / INCOMPLETE
✓ = YES/NA ★ = NO
✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles
 ✓ Sufficient Sample Volume no-headspace/bubbles in VOs ✓ Labels intact/correct ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time' Sample to be Subcontracted
¹ All samples with "Analyze Immediately" holding times will be analyzed by this laboratory past the holding time. This includes but is not limited to the following tests: pH, Temperature, Free Residual Chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INITIAL DATE DATE DATE CORRECTIVE ACTION REQUIRED: YES SEE BELOWN NO
CLIENT NOTIFIED: YES Date/ Time: NO
PROJECT CONTACT:
ADDITIONAL COMMENTS:
VERIFIED/TAKEN BY: INITIAL 90 DATE 10/22/08 REV 02/05

<i>IAL Case No.</i> E08-12330
Department: Volatiles
PP VOA + Cis 1,2-DCE
n
"
1

Review and Approval:

n

Offormer.

-015

-016

11

17

n/a

n/a

n/a

n/a

Xing

Xing

10/30/08

10/30/08

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 465 New Karner Road Albany, NY 12205

Project Name: KINGS ELECTRIC - VENDOR #1168636 IAL Case Number: E09-00763

These data have been reviewed and accepted by:

Histican

Michael H. Leftin, Ph.D. Laboratory Director

Sample Summary

IAL Case No.

Client Arcadis Geraghty & Miller

E09-00763

Project KINGS ELECTRIC - VENDOR #1168636

Received On <u>1/23/2009@17:08</u>

					<u># of</u>
<u>Lab ID</u>	Client Sample ID	Depth Top/Bottom	Sampling Time	<u>Matrix</u>	Container
00763-001	MW-HP-2D	n/a	1/20/2009@09:10	Aqueous	2000
00763-002	MW-HP-2S	n/a	1/20/2009@10:26	Aqueous	2
00763-003	OS-MW-3PL	n/a	1/20/2009@11:56	Aqueous	1.002 2.002
00763-004	MW-6S	n/a	1/20/2009@13:17	Aqueous	2
00763-005	OS-MW-1	n/a	1/21/2009@13:59	Aqueous	2
00763-006	MW-9D	n/a	1/21/2009@14:11	Aqueous	2
00763-007	MW-9S	n/a	1/21/2009@10:42	Aqueous	2^{10}
00763-008	DUP(012109)	n/a	1/21/2009	Aqueous	2
00763-009	MW-13	n/a	1/21/2009@11:15	Aqueous	2
00763-010	OS-MW-2	n/a	1/22/2009@10:03	Aqueous	2
00763-011	GP-103R	n/a	1/22/2009@10:02	Aqueous	2^{-1}
00763-012	GP-104R	n/a	1/22/2009@11:02	Aqueous	2
00763-013	FB(012009)	n/a	1/20/2009@10:15	Aqueous	2
00763-014	FB(012109)	n/a	1/21/2009@12:00	Aqueous	2
00763-015	FB(012209)	n/a	1/22/2009@09:15	Aqueous	2
00763-016	TBLANK(012009)	n/a	1/20/2009	Aqueous	2
00763-017	PTW-2	n/a	1/22/2009@13:53	Aqueous	2^{-1}

TABLE OF CONTENTS

	Page
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	23
Sample Tracking Chains of Custody Laboratory Chronicle	82 87

MATRIX QUALIFIERS

- **A** Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- E <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to Matrix Interferences.
- NA Not Applicable.
- ND Indicates the compound was analyzed for but <u>Not Detected at the MDL</u>.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received seventeen (17) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRIC - VENDOR #1168636) on January 23, 2009 for the analysis of:

(17) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

2/9/05 Date

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E09-00763

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name	✓
	& address and date of report preparation.	
2.	Table of Contents.	✓
3.	Summary Sheets listing analytical results for all targeted and	✓
	non-targeted compounds.	
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	<u>√</u>
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	✓
7.	Methodology Summary.	✓
8.	Laboratory Chronicle and Holding Time Check.	√
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	✓
11.	Lab certified by NJDEP for parameters or appropriate category of	✓
	parameters or a member of the USEPA CLP.	
12.	NonConformance Summary.	
	•	

Acquining Bank

2 9/09 Date

	INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS		
	Lab Case Number: E09 - $-7h3$		
1	Chromatograms Labeled/Compounds Identified (Field Samples and Mothod Blanks)	<u>No</u>	<u>Yes</u>
י. י	CC/MS Tuning Specifications:		•
۷.	a. BFB Passed	<u></u>	<u> </u>
З.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds		na
	b. System Performance Check Compounds		na
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:	✓	
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
	If not met, were the calculations checked and the results qualified as "estimated"?	-	na
8.	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		na
9.	Internal Standard Area/Retention Time Shift meet criteria		\checkmark
10.	Extraction Holding Time Met		na
	If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:		
12,	Sample Dilution Performed High Target High Nontarget		
	Compounds Compounds Matrix Interference Other		
13.	Comments:		
	1-11.7		
	Organics Manager Date		0.07

. . .

SUMMARY REPORT

Client: Arcadis Geraghty & Miller

Project: KINGS ELECTRIC - VENDOR #1168636 Lab Case No.: E09-00763

	Lab ID:	0076	3-001	00763	-002	00763	3-003	0076	3-004
	Client ID:	MW-I	HP-2D	MW-B	IP-2S	OS-MV	W-3PL	MV	V-6S
	Matrix:	Aan	eous	Алие	ous	Ασυ	eous	Ααι	eous
	Sampled Data	1/3/	2005 2/00	1/20	/00	1/20	1/00	1/2	n/ng
	Sampled Date	1/20	<i>#09</i>	1/20. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/09	1/20		1/2	
PARAMETER(Units)		Conc (<u> MDL</u>	<u>Conc</u> Q	MDL	Conc (<u> MDL</u>	Conc	2 MDL
Volatiles + Cis 1.2-DCE	(Units)	(ug/L	-ppb)	(ug/L-	ppb)	(ug/L	-ppb)	(ug/L	-ppb)
1 1-Dichloroethane		ND	0.210	ND	0.210	ND	0.210	0.417	0.210
ais 1.2 Dichloroethene		ND	0.190	1 19	0.190	0.675	0.190	ND	0 190
		0 720	0.170	ND	0.170	ND	0.140	ND	0.170
		0.756	0.140		0.140		0.140	14D	0.140
1,1,1-1 richloroethane		ND	0.360	ND	0.360	ND	0.360	5.10	0.300
Trichloroethene		1.26	0.190	1.94	0.190	ND	0.190	43.3	0.190
Tetrachloroethene		23.0	0.330	24.1	0.330	ND	0.330	5.55	0.330
TOTAL VO's:		25.0		27.2		0.675		54.4	
	Lah ID•	0076	3-005	00763	-006	00763	3-007	0076	3-008
	Climet ID.		5-005 #117 1	DO 703	000	M33	/ 06	DUD(12100
	Chent ID:	05-0	1 ** - 1	IVI VV	-90	141 44	-73	DUF(12109)
	Matrix:	Aqu	eous	Aque	eous	Aqu	eous	Aqu	eous
	Sampled Date	1/21	1/09	1/21.	/09	1/21	/09	1/2	1/09
PARAMETER(Units)		Conc () MDL	Conc Q	MDL	Conc Q) MDL	Conc (Q MDL
$V_{olotilos} + Cis 1 2 DCE$	(Unite)	(na/I		(ua/l_	nnh)	(ua/I	_onh)	(ua/I	_nnhì
Volatiles + Cis 1,2-DCE	(Umis)	(<i>ug/L</i>	- <i>pp0)</i>		0 460	0 000	0 460	(# <i>5/1</i>	0 460
vinyl chloride		1.07	0.460	ND	0.460	0.808	0.400	0.632	0.400
1,1-Dichloroethane		ND	0.210	ND	0.210	0.547	0.210	0.628	0.210
cis-1,2-Dichloroethene		1.93	0.190	ND	0.190	0.640	0.190	0.643	0,190
Trichloroethene		1.32	0.190	ND	0.190	ND	0.190	ND	0.190
Tetrachloroethene		4.08	0.330	ND	0.330	ND	0.330	ND	0.330
Ethylbenzene		2.23	0.270	ND	0.270	ND	0.270	ND	0.270
TOTAL VO's:		11.2		ND		2.00		2.12	
TOTAL TO 3.	~	11.2		112	040	2.00		2,12	
	Lab ID:	0076.	3-009	00763	-010	0076.	5-011	0076	3-012
	Client ID:	MW	/-13	OS-M	W-2	GP-1	103R	GP-	104R
	Matrix:	Aqu	eous	Aque	ous	Aqu	eous	Aqu	eous
							100		1/00
	Sampled Date	1/21	1/09	1/22	/09	1/22	:/09	1/2	4/09
PARAMETER(Units)	Sampled Date	1/21 Conc (1/09) MDL	1/22. Cone O	/09 MDL	1/22 Conc C	./09) MDL	1/2: Conc (D MDL
PARAMETER(Units)	Sampled Date	1/21 Conc (1/09 2 MDL	1/22 Conc Q	/09 MDL	1/22 Conc Q	2/09 2 MDL	1/2: Conc (<u>2</u> MDL
PARAMETER(Units) Volatiles + Cis 1,2-DCE	Sampled Date (Units)	1/21 Conc ((ug/L	1/09 <u>}</u> MDL - <i>ppb)</i>	1/22 Conc Q (ug/L-	/09 MDL ppb)	1/22 Conc ((ug/L-	2/09) MDL -ppb)	1/2 Conc ((ug/L	2709 2 MDL -ppb)
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride	Sampled Date (Units)	1/21 Conc ((ug/L 2.73	1 /09 2 MDL - <i>ppb)</i> 0.460	1/22 Conc Q (ug/L- ND	/09 MDL <i>ppb)</i> 0.460	1/22 Conc ((ug/L 0.763	2/09 2 MDL - <i>ppb)</i> 0.460	1/2 Conc ((ug/L 0.502	2709 2 MDL - <i>ppb)</i> 0.460
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene	Sampled Date (Units)	1/21 Conc ((ug/L 2.73 ND	1/09 <u>D</u> MDL -ppb) 0.460 0.250	1/22. Conc Q (ug/L-7 ND ND	/09 MDL <i>ppb)</i> 0.460 0.250	1/22 Conc (<i>(ug/L</i> 0.763 ND	2/09 2 MDL - <i>ppb)</i> 0.460 0.250	1/2 Conc ((ug/L 0.502 1.19	2/09 2 MDL - <i>ppb)</i> 0.460 0.250
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane	Sampled Date (Units)	1/21 Conc ((ug/L 2.73 ND 0.860	I/ 09 <u>0 MDL</u> -ppb) 0.460 0.250 0.210	1/22. Conc Q (ug/L-7 ND ND ND ND	/09 MDL <i>ppb)</i> 0.460 0.250 0.210	1/22 Conc ((ug/L 0.763 ND ND ND	2 MDL -ppb) 0.460 0.250 0.210	1/2 Conc ((ug/L 0.502 1.19 1.48	2/09 <u>2</u> MDL -ppb) 0.460 0.250 0.210
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene	Sampled Date (Units)	1/21 Conc ((ug/L 2.73 ND 0.860 1.85	I/09 <u>MDL</u> -ppb) 0.460 0.250 0.210 0.190	1/22. Conc Q (ug/L- ND ND ND 2.86	/09 MDL <i>ppb)</i> 0.460 0.250 0.210 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579	(/09 ///////////////////////////////////	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58	<u>Q MDL</u> -ppb) 0.460 0.250 0.210 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene	Sampled Date (Units)	1/21 Conc ((ug/L 2.73 ND 0.860 1.85 1.62	//09 <u>MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190	1/22. Conc Q (ug/L-7 ND ND ND 2.86 3.14	/09 MDL 0.460 0.250 0.210 0.190 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND	(109 (mDL) (ppb) 0.460 0.250 0.210 0.190 0.190	1/2: <u>Conc</u> ((ug/L 0.502 1.19 1.48 1.58 1.49	<u>Q MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Sampled Date (Units)	1/21 <u>Conc</u> (<u>ug/L</u> 2.73 ND 0.860 1.85 1.62 ND	//09 <u>MDL</u> - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330	1/22. <u>Conc</u> Q (ug/L-7 ND ND ND 2.86 3.14 7.78	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND ND	(109 (109 (100) (10)	1/2 <u>Conc</u> (0.502 1.19 1.48 1.58 1.49 ND	<u>Q MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190 0.330
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06	MDL mpb 0.460 0.250 0.210 0.190 0.330	1/22. <u>Conc</u> Q (ug/L-7 ND ND ND 2.86 3.14 7.78 13.8	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND ND 1.34	(109 (109 (100 (10) (100	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24	2/09 <u>MDL</u> - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06	//09 <u>MDL</u> - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330	1/22. <u>Conc</u> Q (ug/L- ND ND 2.86 3.14 7.78 13.8	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND ND 1.34	(109 (109) (100) (1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24	Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Sampled Date (Units) Lab ID:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 0076	J/09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014	1/22 Conc ((ug/L 0.763 ND 0.579 ND ND 1.34 00763	(109 (109) (100) (1/2 Conc (0.502 1.19 1.48 1.58 1.49 ND 6.24 0076	2.09 <u>ppb</u>) 0.460 0.250 0.210 0.190 0.190 0.330 3-016
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Sampled Date (Units) Lab ID: Client ID:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(01	//09 <u>MDL</u> - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 (2009)	1/22. Conc Q (ug/L- ND ND ND 2.86 3.14 7.78 13.8 00763 FB(012)	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109)	1/22 Conc ((ug/L 0.763 ND 0.579 ND 0.579 ND 1.34 00763 FB(01	(109 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209)	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI	2.09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 <(012009)
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Sampled Date (Units) Lab ID: Client ID: Matrix:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(01 Aqu	//09 <u>MDL</u> - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(012 Aque	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous	1/22 Conc ((ug/L 0.763 ND 0.579 ND ND 1.34 00763 FB(01 Aqu	(109 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu	2/09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 <(012009) reous
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's:	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/2(//09 <u>()</u> MDL - <i>ppb</i>) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(012 Aque 1/21	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09	1/22 Conc ((ug/L 0.763 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2	2/09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 (012009) reous 0/09
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units)	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (1)	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous)/09) MDL	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09	1/22 Conc ((ug/L 0.763 ND 0.579 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc (2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc (2/09 <u>MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 (012009) reous 0/09 MDL
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units)	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (C	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 MDL	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc (2/09 MDL 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2 MDL	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc (2/09 Q MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 (012009) reous 0/09 Q MDL
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L)	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL -ppb) -ppb) -ppb) -ppb) -ppb) -ppb) -ppb)	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L-	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 MDL ppb)	1/22 Conc ((ug/L 0.763 ND 0.579 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L	2/09 MDL 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2 MDL -ppb)	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc (ug/L	2/09 2/09 2/00 0.20 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/02 MDL
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL -ppb) 0.190	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND 0.579 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc (ug/L ND	2/09 2/09 2/07 2/07 2/07 2/07 2/07 0.460 0.250 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 MDL ppb) 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) 2 C 4 2 4 DL -ppb) 0.190	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/00 0.250 0.250 0.250 0.250 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/05 2/05 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 2 MDL -ppb) 0.190 3-017	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND ND	2/09 2/09 2/07 2/07 0.107 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 MDL ppb) 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L) ND	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 2 MDL -ppb) 0.190 3-017 W-2	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND ND	2/09 2/09 2/00 0.250 0.250 0.250 0.250 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/05 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Nature	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 0076 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L) ND	<pre>//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL -ppb) 0.190 3-017 W-2 eous</pre>	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/07 0.10 0.250 0.210 0.190 0.190 0.330 3-016 (012009) reous 0/09 2/07 0.190 0.190 0.330
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix:	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL -ppb) 0.190 3-017 W-2 eous 0/09	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/07 0.10 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 MDL -7ppb) 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 Conc (ug/L Conc (ug/L) Conc (ug/	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.190 0.330 3-013 2009) eous 0/09 2 MDL -ppb) 0.190 3-017 W-2 eous 2/09	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND ND	2/09 2/09 2/07 2/07 0.107 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 2/07 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 PT Aqu 1/21 Conc (ug/L) ND	//09 <u>MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous 0/09 <u>MDL</u> -ppb) 0.190 3-017 W-2 eous 2/09 <u>QMDL</u>	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	<pre>//09 // MDL // MDL 0.460 0.250 0.210 0.190 0.190 0.330 // 0.190 // 0.330 // 0.190 // MDL // 09 // MDL // 09 // MDL</pre>	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/07 0.10 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 2/07 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 PT Aqu 1/22 Conc (ug/L) 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076	//09 <u>MDL</u> -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09 <u>MDL</u> -ppb) 0.190 3-017 W-2 eous 2/09 <u>MDL</u> -ppb)	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	<pre>//09 // MDL 0.460 0.250 0.210 0.190 0.190 0.330 // 0.190 // 0.330 // 0.190 // MDL // 09 // MDL // 09 // 0.190</pre>	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/07 2/07 2/07 2/07 0.190 0.190 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 2/07 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE Longhloroethane TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND D 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 Conc (ug/L ND 0076 Conc (ug/L ND 0076 1 1 1 1 1 1 1 1	<pre>//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09 2 MDL -ppb) 0.190 3-017 W-2 eous 2/09 2 MDL -ppb) 0.210</pre>	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	<pre>//09 // MDL // MDL 0.460 0.250 0.210 0.190 0.190 0.330 // MDL // MDL // Ppb) 0.190</pre>	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2 MDL -ppb) 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE 1,1-Dichloroethane cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L 1.69 ND	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09 2 MDL -ppb) 0.190 3-017 W-2 eous 2/09 2 MDL -ppb) 0.210 0.190	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 0 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/07 2/07 0.107 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/07 0.190 0.190 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE 1,1-Dichloroethane cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND D 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 FB(01 Aqu 1/20 Conc (ug/L 1.69 ND 0076 Conc (ug/L 1.69 ND 0076 FB(01 Aqu 1/20 Conc (ug/L 1.69 ND 0076 FB(01 Aqu 1/20 Conc (ug/L ND 0076 PT Aqu 1/20 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076 0076	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09 2 MDL -ppb) 0.190 3-017 W-2 eous 2/09 2 MDL -ppb) 0.210 0.190 0.210 0.190 0.190	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 2/09 2/09 0.190 0.190	1/2 Conc ((ug/I 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/I ND ND	2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous D/09 Q MDL -ppb) 0.190
PARAMETER(Units) Volatiles + Cis 1,2-DCE Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethene Trichloroethene Tetrachloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE cis-1,2-Dichloroethene TOTAL VO's: PARAMETER(Units) Volatiles + Cis 1,2-DCE 1,1-Dichloroethane cis-1,2-Dichloroethene TOTAL VO's:	Sampled Date (Units) (Units) Lab ID: Client ID: Matrix: Sampled Date (Units) Lab ID: Client ID: Matrix: Sampled Date (Units)	1/21 Conc (ug/L 2.73 ND 0.860 1.85 1.62 ND 7.06 FB(01 Aqu 1/20 Conc (ug/L ND D 0076 FB(01 Aqu 1/20 Conc (ug/L 1.69 ND 0.525	//09 2 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-013 2009) eous)/09 2 MDL -ppb) 0.190 3-017 W-2 eous 2/09 2 MDL -ppb) 0.210 0.190 0.210 0.190 0.190	1/22. Conc Q (ug/L- ND ND 2.86 3.14 7.78 13.8 00763 FB(01: Aque 1/21 Conc Q (ug/L- ND ND ND	/09 MDL ppb) 0.460 0.250 0.210 0.190 0.190 0.330 -014 2109) cous /09 0 MDL ppb) 0.190	1/22 Conc ((ug/L 0.763 ND 0.579 ND 1.34 00763 FB(01 Aqu 1/22 Conc ((ug/L ND ND	2/09 MDL -ppb) 0.460 0.250 0.210 0.190 0.190 0.330 3-015 2209) eous 2/09 MDL -ppb) 0.190	1/2 Conc ((ug/L 0.502 1.19 1.48 1.58 1.49 ND 6.24 0076 TBLANI Aqu 1/2 Conc ((ug/L ND ND	2/09 2/09 2/07 2/07 0.107 0.250 0.210 0.190 0.190 0.330 3-016 (012009) eous 0/09 2/05 0/09 2/05 0.190 0.190

ND = Analyzed for but Not Detected at the MDL

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-001 Client ID: MW-HP-2D Date Received: 01/23/2009 Date Analyzed: 01/27/2009 Data file: J0428.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	_
Chloromethane	ND		0.180	-
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	0.738		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.26		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	23.0		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-002 Client ID: MW-HP-2S Date Received: 01/23/2009 Date Analyzed: 01/27/2009 Data file: J0429.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	1.19		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.94		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	24.1		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-003 Client ID: OS-MW-3PL Date Received: 01/23/2009 Date Analyzed: 01/27/2009 Data file: J0430.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

۲

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	0.675		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	ND		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-004 Client ID: MW-6S Date Received: 01/23/2009 Date Analyzed: 01/27/2009 Data file: J0431.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	-
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.417		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	5.10		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	43.3		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	5.55		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-005 Client ID: OS-MW-1 Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0438.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	1.67		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	1.93		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.32		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	4.08		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	2.23		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-006 Client ID: MW-9D Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0440.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	-
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-007 Client ID: MW-9S Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0441.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	0.808		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.547		0.210	
cis-1,2-Dichloroethene	0.640		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-008 Client ID: DUP(012109) Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0442.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	-
Vinyl chloride	0.852		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.628		0.210	
cis-1,2-Dichloroethene	0.643		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-009 Client ID: MW-13 Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0443.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	2.73		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	0.860		0.210	
cis-1,2-Dichloroethene	1.85		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.62		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-010 Client ID: OS-MW-2 Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0444.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.180
Vinyl chloride	ND		0.460
Bromomethane	ND		0.370
Chloroethane	ND		0.640
Trichlorofluoromethane	ND		0.740
Acrolein	ND		2.57
1,1-Dichloroethene	ND		0.530
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.740
trans-1,2-Dichloroethene	ND		0.250
1,1-Dichloroethane	ND		0.210
cis-1,2-Dichloroethene	2.86		0.190
Chloroform	ND		0.140
1,1,1-Trichloroethane	ND		0.360
Carbon tetrachloride	ND		0.300
1,2-Dichloroethane (EDC)	ND		0.190
Benzene	ND		0.170
Trichloroethene	3.14		0.190
1,2-Dichloropropane	ND		0.160
Bromodichloromethane	ND		0.180
2-Chloroethyl vinyl ether	ND		1.04
cis-1,3-Dichloropropene	ND		0.240
Toluene	ND		0.230
trans-1,3-Dichloropropene	ND		0.320
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	7.78		0.330
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.270
Total Xylenes	ND		0.790
Bromoform	ND		0.150
1,1,2,2-Tetrachloroethane	ND		0.170
1,3-Dichlorobenzene	ND		0.230
1,4-Dichlorobenzene	ND		0.250
1,2-Dichlorobenzene	ND		0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-011 Client ID: GP-103R Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0445.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	0.763		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	0.579		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-012 Client ID: GP-104R Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0446.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	0.502		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	1.19		0.250	
1,1-Dichloroethane	1.48		0.210	
cis-1,2-Dichloroethene	1.58		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	1.49		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-013 Client ID: FB(012009) Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0449.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-014 Client ID: FB(012109) Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0450.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00763-015 Client ID: FB(012209) Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0451.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-016 Client ID: TBLANK(012009) Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0452.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	. ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 00763-017 Client ID: PTW-2 Date Received: 01/23/2009 Date Analyzed: 01/28/2009 Data file: J0453.D

1

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	1.69		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	0.525		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

Lab File ID:	<u>J0356.D</u>	BFB Injection Date:	01/22/2	2009
Inst ID:	MSD J	BFB Injection Time:	12:40	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	20.9		
75	30.0 - 60.0% of mass 95	49.3		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	6.8		
173	Less than 2.0% of mass 174	0.1 (0.2)1
174	Great than 50.0% of mass 95	66.3		,
175	5.0 - 9.0% of mass 174	5.3 (8.0)1
176	95.0 - 101.0% of mass 174	64.4 (97.1)1
177	5.0 - 9.0% of mass 176	4.4 (6.8)2
	1-Value is % mass 174	2-Value is % mass 17	76	/

Client ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
20PPB	STD-20PPB	J0357.D	01/22/2009	1:06	
5PPB	STD-5PPB	J0358.D	01/22/2009	1:31	
100PPB	STD-100PPB	J0360.D	01/22/2009	2:24	
200PPB	STD-200PPB	J0363.D	01/22/2009	3:41	
150PPB	STD-150PPB	J0364.D	01/22/2009	4:57	
1PPB	STD-1PPB	J0366.D	01/22/2009	5:49	

Lab File ID:	J0407.D	BFB Injection Date:	01/27/2	009
Inst ID:	<u>MSD J</u>	BFB Injection Time:	<u>11:19</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	20.9		
75	30.0 - 60.0% of mass 95	48.6		
95	Base peak, 100% relative abundation	nce 100.0		
96	5.0 - 9.0% of mass 95	6.3		
173	Less than 2.0% of mass 174	0.0 (0.0	1(
174	Great than 50.0% of mass 95	67.4		/-
175	5.0 - 9.0% of mass 174	5.0 (7.4)1
176	95.0 - 101.0% of mass 174	66,3 (98.4)1
177	5.0 - 9.0% of mass 176	4.3 (6.5	$\hat{)2}$
	1-Value is % mass 174	2-Value is % mass 1	76	,-

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J0408.D	01/27/2009	1:02	
NA	METHOD-BLK	J0410.D	01/27/2009	1:53	
SB-2	00688-002	J0411.D	01/27/2009	2:19	
SB-1	00688-001	J0412.D	01/27/2009	2:59	
LCS-50PPB	BLK-SPK	J0413.D	01/27/2009	3:25	
MW-2	00766-001	J0414.D	01/27/2009	3:51	
MW-2	00687-004	J0416.D	01/27/2009	4:43	
MS	WATER-MS	J0417.D	01/27/2009	5:09	
MSD	WATER-MSD	J0418.D	01/27/2009	5:35	
MW-4	00687-002	J0419.D	01/27/2009	6:01	
MW-3	00687-003	J0420.D	01/27/2009	6:27	
MW-1	00687-005	J0421.D	01/27/2009	6:53	
FIELD_BLANK	00687-006	J0422.D	01/27/2009	7:18	
TRIP_BLANK	00687-007	J0423.D	01/27/2009	7:44	
MW-3	00766-002	J0424.D	01/27/2009	8:10	
MW-5	00766-003	J0425.D	01/27/2009	8:36	
FIELD_BLANK	00766-004	J0426 D	01/27/2009	9:02	
TRIP_BLANK	00766-005	J0427.D	01/27/2009	9:28	
MW-HP-2D	00763-001	J0428.D	01/27/2009	9:54	
MW-HP-2S	00763-002	J0429.D	01/27/2009	10:20	

Lab File ID:	J0407.D	BFB Injection Date :	01/27/2	200
Inst ID:	MSD J	BFB Injection Time:	<u>11:19</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	20.9		
75	30.0 - 60.0% of mass 95	48.6		
95	Base peak, 100% relative abundan	nce 100.0		
96	5.0 - 9.0% of mass 95	6.3		
173	Less than 2.0% of mass 174	0.0	0.0)1
174	Great than 50.0% of mass 95	67.4		
175	5.0 - 9.0% of mass 174	5.0 (7.4)1
176	95.0 - 101.0% of mass 174	66.3 (98.4)1
177	5.0 - 9.0% of mass 176	4.3 (6.5)2
	1-Value is % mass 174	2-Value is % mass 1	76	

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
OS-MW-3PL	00763-003	J0430.D	01/27/2009	10:46	
MW-6S	00763-004	J0431.D	01/27/2009	11:12	

Lab File ID:	J0433.D	BFB Injection Date:	01/28/2	009
Inst ID:	MSD J	BFB Injection Time:	12:04	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	21.8		
75	30.0 - 60.0% of mass 95	50.6		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	6.5		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	71.0		·
175	5.0 - 9.0% of mass 174	5.3 (7.4)1
176	95.0 - 101.0% of mass 174	68.4 (96.3)1
177	5.0 - 9.0% of mass 176	4.4 (6.5)2
	1-Value is % mass 174	2-Value is % mass 1	76	·

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J0434.D	01/28/2009	12:29	
NA	METHOD-BLK	J0437.D	01/28/2009	1:46	
OS-MW-1	00763-005	J0438.D	01/28/2009	2:12	
MW-9D	00763-006	J0440.D	01/28/2009	3:04	
MW-9S	00763-007	J0441.D	01/28/2009	3:29	
DUP(012109)	00763-008	J0442.D	01/28/2009	3:55	
MW-13	00763-009	J0443.D	01/28/2009	4:21	
OS-MW-2	00763-010	J0444.D	01/28/2009	4:47	
GP-103R	00763-011	J0445.D	01/28/2009	5:12	
GP-104R	00763-012	J0446 D	01/28/2009	5:38	
MS	MS	J0447.D	01/28/2009	6:03	
MSD	MSD	J0448.D	01/28/2009	6:30	
FB(012009)	00763-013	J0449.D	01/28/2009	6:55	
FB(012109)	00763-014	J0450.D	01/28/2009	7:21	
FB(012209)	00763-015	J0451.D	01/28/2009	7:47	
TBLANK(012009)	00763-016	J0452.D	01/28/2009	8:13	
PTW-2	00763-017	J0453.D	01/28/2009	8:39	
LCS-50PPB	BLK-SPK	J0457.D	01/28/2009	10:23	
MW-5	00687-001	J0458.D	01/28/2009	10:49	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>J0410.D</u>	Instrument ID:	<u>MSD J</u>

Date Analyzed: 01/27/2009

Time Analyzed: 01:53

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
SB-2	00688-002	01/27/2009	2:19
SB-1	00688-001	01/27/2009	2:59
LCS-50PPB	BLK-SPK	01/27/2009	3:25
MW-2	00766-001	01/27/2009	3:51
MW-2	00687-004	01/27/2009	4:43
MS	WATER-MS	01/27/2009	5:09
MSD	WATER-MSD	01/27/2009	5:35
MW-4	00687-002	01/27/2009	6:01
MW-3	00687-003	01/27/2009	6:27
MW-1	00687-005	01/27/2009	6:53
FIELD_BLANK	00687-006	01/27/2009	7:18
TRIP_BLANK	00687-007	01/27/2009	7:44
MW-3	00766-002	01/27/2009	8:10
MW-5	00766-003	01/27/2009	8:36
FIELD_BLANK	00766-004	01/27/2009	9:02
TRIP_BLANK	00766-005	01/27/2009	9:28
MW-HP-2D	00763-001	01/27/2009	9:54
MW-HP-2S	00763-002	01/27/2009	10:20
OS-MW-3PL	00763-003	01/27/2009	10:46
MW-6S	00763-004	01/27/2009	11:12

FORM 4

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 01/27/2009 Data file: J0410.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	_
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:J0437.DInstrument ID:MSD J

Date Analyzed: 01/28/2009

Time Analyzed: 01:46

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
OS-MW-1	00763-005	01/28/2009	2:12
MW-9D	00763-006	01/28/2009	3:04
MW-9S	00763-007	01/28/2009	3:29
DUP(012109)	00763-008	01/28/2009	3:55
MW-13	00763-009	01/28/2009	4:21
OS-MW-2	00763-010	01/28/2009	4:47
GP-103R	00763-011	01/28/2009	5:12
GP-104R	00763-012	01/28/2009	5:38
MS	MS	01/28/2009	6:03
MSD	MSD	01/28/2009	6:30
FB(012009)	00763-013	01/28/2009	6:55
FB(012109)	00763-014	01/28/2009	7:21
FB(012209)	00763-015	01/28/2009	7:47
TBLANK(012009)	00763-016	01/28/2009	8:13
PTW-2	00763-017	01/28/2009	8:39
LCS-50PPB	BLK-SPK	01/28/2009	10:23
MW-5	00687-001	01/28/2009	10:49

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 01/28/2009 Data file: J0437.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.180	
Vinyl chloride	ND		0.460	
Bromomethane	ND		0.370	
Chloroethane	ND		0.640	
Trichlorofluoromethane	ND		0.740	
Acrolein	ND		2.57	
1,1-Dichloroethene	ND		0.530	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.740	
trans-1,2-Dichloroethene	ND		0.250	
1,1-Dichloroethane	ND		0.210	
cis-1,2-Dichloroethene	ND		0.190	
Chloroform	ND		0.140	
1,1,1-Trichloroethane	ND		0.360	
Carbon tetrachloride	ND		0.300	
1,2-Dichloroethane (EDC)	ND		0.190	
Benzene	ND		0.170	
Trichloroethene	ND		0.190	
1,2-Dichloropropane	ND		0.160	
Bromodichloromethane	ND		0.180	
2-Chloroethyl vinyl ether	ND		1.04	
cis-1,3-Dichloropropene	ND		0.240	
Toluene	ND		0.230	
trans-1,3-Dichloropropene	ND		0.320	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.330	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.270	
Total Xylenes	ND		0.790	
Bromoform	ND		0.150	
1,1,2,2-Tetrachloroethane	ND		0.170	
1,3-Dichlorobenzene	ND		0.230	
1,4-Dichlorobenzene	ND		0.250	
1,2-Dichlorobenzene	ND		0.230	

		R	lespons	e Fact	or Rep	ort M	ISD_J			
Me T: La Re	Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration									
Calibr 5 150		ration Files =J0358.D 100 =J0364.D 200	=J0360.D =J0363.D		20 = 1 =		J0357.D J0366.D			
		Compound (ppb)	5	100	20	150	200	1	Avg	%RSD
1) 2) 3) 4) 5) 6) 7) 9) 10) 12) 13) 12) 13) 12) 12) 13) 12) 12) 12) 12) 12) 12) 12) 12) 12) 12	ITPCTTTTTTTTTTTTTTTTTTTTTTT	Pentafluorobenzene Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acrolein 1,1-Dichloroethene Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile tert-Butyl alcohol trans-1,2-Dichloroe Methyl tert-butyl e 1,1-Dichloroethane Diisopropyl ether (cis-1,2-Dichloroeth 2,2-Dichloropropane 2-Butanone (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroetha Carbon tetrachlorid 1,1-Dichloropropene 1,2-Dichloroethane 1,2-Dichloroethane	0.489 0.644 0.291 0.234 0.556 0.009 0.321 0.264 0.944 1.604 0.384 0.384 0.384 0.384 0.465 0.481 0.521 0.275 0.443 0.275 0.443 0.251 0.275 0.443 0.521 0.521 0.521 0.521 0.521 0.521 0.542 0.542 0.542 0.632 0.631	0.543 0.663 0.263 0.257 0.573 0.013 0.200 1.132 1.698 0.295 0.151 0.033 0.472 0.474 0.938 1.941 0.533 0.325 0.325 0.375 0.262 0.868 0.580 0.568	0.566 0.730 0.508 0.284 0.267 0.545 0.011 0.333 1.175 1.827 0.421 0.084 0.035 0.432 1.002 2.058 0.272 0.284 0.540 0.586	- ISTD- 0.609 0.809 0.585 0.329 0.332 0.670 0.017 0.415 0.224 1.452 1.923 0.453 0.453 0.171 0.040 0.571 0.652 1.146 2.267 0.652 1.146 2.267 0.652 1.146 2.267 0.652 1.146 2.267 0.652 1.146 2.267 0.652 1.146 2.267 0.387 0.404 0.306 1.037 0.790 0.757 0.834 0.586	0.578 0.785 0.524 0.276 0.014 0.302 0.607 0.014 0.371 0.199 1.311 1.766 0.417 0.152 0.038 0.506 0.620 1.021 2.033 0.558 0.388 0.360 0.275 0.940 0.720 0.671 0.759 0.569	0.447 0.591 0.426 0.262 0.248 0.553 0.014 0.343 0.232 1.175 1.527 0.345 0.179 0.026 0.466 0.469 0.995 1.712 0.479 0.325 0.478 0.249 0.249 0.555 0.756 0.600 0.663 0.628	0.539 0.704 0.493 0.284 0.273 0.584 0.013 0.352 0.225 1.198 1.724 0.386 0.145 0.352 0.498 0.521 0.999 1.988 0.550 0.329 0.410 0.271 0.903 0.682 0.602 0.602 0.765 0.594	$\begin{array}{c} 11.19\\ 12.14\\ 11.65\\ 8.68\\ 13.42\\ 8.13\\ 22.09\\ 9.99\\ 10.72\\ 14.32\\ 8.44\\ 14.95\\ 23.63\\ 14.59\\ 8.14\\ 17.51\\ 8.65\\ 9.22\\ 9.35\\ 15.46\\ 10.71\\ 7.95\\ 9.52\\ 13.40\\ 15.46\\ 7.00\\ 5.30\\ 4.76\end{array}$
$\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 44 \\ 45 \\ 46 \\ 45 \\ 46 \\ 48 \\ 49 \\ \end{array}$	IMMCTTTTTSMTTTTTT	1,4-Difluorobenzene Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane 1,4-Dioxane Bromodichloromethan 2-Chloroethyl vinyl cis-1,3-Dichloropro 4-Methyl-2-pentanon Toluene-d8 Toluene trans-1,3-Dichlorop 1,1,2-Trichloroethan Tetrachloroethene 1,3-Dichloropropane 2-Hexanone Dibromochloromethan 1,2-Dibromoethane (1.216 0.309 0.337 0.176 0.002 0.361 0.002 0.415 0.534 1.118 0.768 0.556 0.227 0.285 0.483 0.392 0.229 0.287	$\begin{array}{c} 1.199\\ 0.319\\ 0.341\\ 0.178\\ 0.002\\ 0.408\\ 0.001\\ 0.505\\ 0.502\\ 1.105\\ 0.762\\ 0.440\\ 0.212\\ 0.304\\ 0.455\\ 0.394\\ 0.298\\ 0.281 \end{array}$	1.347 0.348 0.370 0.189 0.002 0.389 0.002 0.496 0.524 1.100 0.851 0.399 0.228 0.332 0.502 0.400 0.243 0.286	ISTD- 1.391 0.378 0.391 0.198 0.002 0.484 0.001 0.586 0.543 1.118 0.894 0.516 0.237 0.350 0.502 0.432 0.362 0.319	1.225 0.337 0.348 0.180 0.002 0.444 0.002 0.534 0.498 1.110 0.794 0.473 0.212 0.313 0.453 0.393 0.333 0.291	1.100 0.308 0.302 0.162 0.002 0.364 0.002 0.360 0.587 1.111 0.746 0.477 0.215 0.297 0.483 0.414 0.247 0.276	1.247 0.333 0.348 0.180 0.002 0.409 0.002 0.483 0.531 1.110 0.803 0.477 0.222 0.313 0.480 0.404 0.285 0.290	8.49 8.14 8.68 6.93 16.22 11.84 26.20 16.95 6.11 0.64 7.24 11.55 4.57 7.65 4.51 3.94 19.05 5.10031

50)	I	Chlorobenzene-d5				- TSTD-				
51)	ΜP	Chlorobenzene	1.015	0.986	1 082	1 129	1 010	1 024	1 042	 E ^-
52)	Т	1,1,1,2-Tetrachloro	0.264	0.336	0 316	0 397	1.017	1.020	1.045	5.03
53)	С	Ethylbenzene	1 481	1 536	1 659	1 769	1 594	1 1 2 2 4	1 534	13.56
54)	Т	m,p-Xvlene	0.638	0 617	0 704	0 600	1.004 0.605	1.400	1.577	1.11
55)	Т	o-Xvlene	0 623	0 628	0.704	0.090	0.005	0.635	0.648	6.19
56)	Т	Stvrene	1 074	1 082	1 1 70	1 216	1 000	1 010	0.641	8.20
57)	Ρ	Bromoform	0 088	0 164	A 116	0 175	1.090	1.019	1.108	6.43
58)	Т	Isopropy]benzene	1 484	1 619	1 724		1 (00	1 404	0.130	26.62
59)	S	Bromofluorobenzene	0 557	0 573	1.724	1.900 0 E70	1.092	1.404	1.63/	10.85
60)	Р	1.1.2.2-Tetrachloro	0.357	0.270	0.000	0.579		0.563	0.571	2.01
61)	Т	Bromobenzene	0.307	0.330	0.305	0.348	0.313	0.381	0.351	7.22
62)	T	1.2.3-Trichloroprop	0.420	0.409	0.445	0.40/	0.415	0.409	0.428	5.34
63)	T	n-Propylbenzene	1 597	1 726	1 004	0.332	0.304	0.346	0.322	5.06
64)	T	2-Chlorotoluene	1 179	1 102	1 101	1 207	1.791	1.746	1.779	7.96
65)	Ť	1 3 5-Trimethylbenz	1 207	1 404	1 500	1.287	1.143	1.428	1.222	9.68
66)	Ť	4-Chlorotoluepe	1 204	1 202	1 401	1.596	1.406	1.292	1.422	7.96
67)	Ť	tert-Butylbenzene	1 047	1 026	1,421	1.487	1.307	1.428	1.375	5.86
68)	Ť	1 2 4-Trimethylbenz	1 305	1 406	1 = 07	1.225	1.076	1.039	1.090	6.67
69)	Ť	sec-Butylbenzene	1 407	1 620	⊥.⊃∀/ 1 マンン	1.722	1.515	1.422	1.524	7.89
70)	Ť	1 3-Dichlorobenzene	1.49/ 0 701	1,030	1.732	1.886	1.654	1.631	1.672	7.74
71)	Ť	4-Isopropyltoluene	1 242	1 270	0.853	0.907	0.800	0.869	0.834	6.01
72)	Ť	1 4-Dichlorobenzono	1.240	L.370	1.455	1.581	1.366	1.312	1.388	8.49
73)	Ť	n-Butylbenzene	0.005	0.034	0.890	0.954	0.841	0.965	0.881	7.54
74)	Ť	1 2-Dichlorobenzeno	0.521	0.573	0.632	0.646	0.553	0.648	0.596	9.00
75)	Ť	1 2-Dibromo-3-chlor	0.760	0.760	0.840	0.830	0.734	0.891	0.806	7.23
76)	Ť	1 2 4-Trichlorobonz	0.044	0.058	0.049	0.065	0.060	0.050	0.054	14.74
77)	Ť	Hexachlorobutadiona	0.333	0.364	0.399	0.382	0.320	0.355	0.359	8.19
78)	Ť	Naphthaleno	0.107	0.139	0.168	0.157	0.135	0.144	0.152	9.47
79)	Ψ	1 2 3-Trichlorobonn	0.910	0.950	0.958	1.027	0.869	0.921	0.939	5.69
80) 80)	Ť	1 1 2-Trichloro 1 2	0.301	0.300	0.330	0.318	0.265	0.290	0.301	7.55
2007 211	Ť	Methyl agetate	0.210	0.19/	0.199	0.222	0.205	0.206	0.207	4.36
82)	Ť	Cyclobexano	0.170	0.142	0.143	0.151	0.140	0.142	0.148	7.76
82)	т Т	Methylayalohowana	0.010	0.5/4	0.626	0.612	0.569	0.513	0.585	7.24
	1 	meenyicycronexane	0.380	V.413	0.453	U.437	0.418	0.431	0.422	5.96
7.03	~									

(#) = Out of Range

JAW0122.M Wed Jan 28 11:44:40 2009 MANAGER
Instrument ID:	MSD_J
Method ID:	JAW0122
Date:	01/22/09

Average %RSD = 9.75

Refer to SW846 Method 8000B Section 7.5.1.

Evaluate Continuing Calibration Report

 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0408.D
 Vial: 5

 Acq On : 27 Jan 2009 1:02 pm
 Operator: BINXU

 Sample : 100PPB,STD-100PPB,A,5ml,100
 Inst : MSD_J

 Misc :
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Single Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 35% Max. Rel. Area : 200% CompoundAvgRFCCRF%Dev Area% Dev(mir1IPentafluorobenzene1.0001.0000.01060.002TDichlorodifluoromethane0.5390.44816.988-0.013PChloromethane0.7040.6586.51050.004CVinyl chloride0.4930.4479.31020.005TBromomethane0.2840.286-0.7115-0.016TChloroethane0.2730.2652.9109-0.027TTrichlorofluoromethane0.3520.31311.11010.009MC1,1-Dichloroethene0.3520.31311.11010.0010TAcetone0.2250.2164.01140.0011TCarbon disulfide1.1981.1166.81050.0112TVinyl acetate1.7241.796-4.2112-0.0113TMethylene chloride0.3860.397-2.81420.0014TAcrylonitrile0.0350.040-14.3129-0.0115Ttert-Butyl alcohol (TBA)0.0350.040-14.3129-0.0116Ttrans-1,2-Dichloroethene0.4990.9554.41080.0017Methyl tert-butyl ether (MT0.5140.990.9554.41080.001 Compound AvgRF CCRF %Dev Area% Dev(min AvgRF CCRF %Dev Area% Dev(min) 31 I1,4-Difluorobenzene1.0001.0000.01070.0032 MBenzene1.2471.2003.8107-0.0133 MTrichloroethene0.3330.3165.11060.0034 C1,2-Dichloropropane0.3480.350-0.61100.0035 TDibromomethane0.1800.189-5.01140.0037 TBromodichloromethane0.4090.440-7.61150.0038 T2-Chloroethyl vinyl ether0.0020.00115.01290.0039 Tcis-1,3-Dichloropropene0.4830.529-9.51120.0040 T4-Methyl-2-pentanone (MIBK)0.5310.543-2.31160.0041 SToluene-d81.1101.117-0.6108-0.0142 MCToluene0.8030.7644.91070.0043 Ttrans-1,3-Dichloropropene0.4770.4730.81150.0044 T1,1,2-Trichloroethane0.2220.224-0.91130.0045 TTetrachloroethene0.3130.2897.71020.0046 T1,3-Dichloropropane0.4800.4790.2113-0.01 0034

47 48 49	T T T	2-Hexanone Dibromochloromethane 1,2-Dibromoethane (EDB)	0.404 0.285 0.290	0.431 0.336 0.299	-6.7 -17.9 -3.1	117 121 114	-0.01 0.00 0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	111	0 00
51	мР	Chlorobenzene	1.043	0.966	7.4	108	0.00
52	Т	1,1,1,2-Tetrachloroethane	0.334	0.347	-3.9	115	0.00
53	С	Ethylbenzene	1.577	1.481	6.1	107	0.00
54	Т	m, p-Xvlene	0.648	0.593	8.5	106	-0.01
55	Т	o-Xylene	0.641	0.606	5.5	107	0.00
56	Т	Styrene	1.108	1.061	4.2	109	0.00
57	P	Bromoform	0.130	0.145	-11.5	98	0.00
58	Т	Isopropylbenzene	1.637	1.541	5.9	105	0.00
59	S	Bromofluorobenzene	0.571	0.579	-1.4	112	0.00
60	P	1,1,2,2-Tetrachloroethane	0.351	0.341	2.8	114	0.00
61	Т	Bromobenzene	0.428	0.402	6.1	109	0.00
62	Т	1,2,3-Trichloropropane	0.322	0.312	3.1	113	0.00
63	Т	n-Propylbenzene	1.779	1.657	6.9	106	0.00
64	Т	2-Chlorotoluene	1.222	1.081	11.5	109	0.00
65	Т	1,3,5-Trimethylbenzene	1.422	1.358	4.5	107	0.00
66	Т	4-Chlorotoluene	1.375	1.285	6.5	109	0.00
67	Т	tert-Butylbenzene	1.090	0.990	9.2	106	0.00
68	Т	1,2,4-Trimethylbenzene	1.524	1.459	4.3	108	0.00
69	Т	sec-Butylbenzene	1.672	1.533	8.3	104	0.00
70	Т	1,3-Dichlorobenzene	0.834	0.785	5.9	110	0.00
71	Т	4-Isopropyltoluene	1.388	1.306	5.9	106	0.00
72	Т	1,4-Dichlorobenzene	0.881	0.830	5.8	110	0.00
73	Т	n-Butylbenzene	0.596	0.552	7.4	107	0.00
74	T	1,2-Dichlorobenzene	0.806	0.753	6.6	110	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.054	0.065	-20.4	123	0.00
76	T	1,2,4-Trichlorobenzene	0.359	0.365	-1.7	111	0.00
77	'T'	Hexachlorobutadiene	0.152	0.129	15.1	103	0.00
78	T	Naphthalene	0.939	1.028	-9.5	120	0.00
79	1.	1,2,3-Trichlorobenzene	0.301	0.313	-4.0	115	0.00
80	T	1,1,2-Trichloro-1,2,2-trif1	0.207	0.163	21.3	92	0.00
8⊥ ΩΩ	T.	Metnyi acetate	0.148	0.148	0.0	116	-U.UI
8∠ 00	T T	Cyclonexane Methyl gygleboyane	0.585	0.449	23.2	87	0.04
	1 	methyrcycronexane	0.422	166.U	21.6	89 	-0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0122.M Wed Jan 28 14:43:07 2009 MANAGER

Evaluate Continuing Calibration Report

 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0434.D
 Vial: 29

 Acq On : 28 Jan 2009 12:29 am
 Operator: BINXU

 Sample : 100PPB,STD-100PPB,A,5ml,100
 Inst : MSD_J

 Misc :
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Method: C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator)Title: VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Single Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

 Max. RF Dev : 35%
 Max. Rel. Area : 200%

 Compound
 AvgRF
 CCRF
 %Dev Area% Dev(min)

 1 I
 Pentafluorobenzene
 1.000
 1.000
 0.0
 91
 0.00

 2 T
 Dichlorodifluoromethane
 0.539
 0.483
 10.4
 81
 -0.01

 3 P
 Chloromethane
 0.704
 0.740
 -5.1
 101
 0.00

 4 C
 Vinyl chloride
 0.493
 0.530
 -7.5
 103
 0.00

 5 T
 Bromomethane
 0.284
 0.312
 -9.9
 107
 -0.01

 6 T
 Chloroethane
 0.273
 0.304
 -11.4
 107
 -0.02

 7 T
 Trichlorofluoromethane
 0.584
 0.604
 -3.4
 96
 0.01

 10 T
 Accolein
 0.013
 0.009
 30.8
 67
 0.00

 11 T
 Carbon disulfide
 1.198
 1.301
 -8.6
 104
 0.01

 12 T
 Vinyl acetate
 1.724
 1.569
 9.0
 84
 -0.01

 13 T
 Methylene chloride
 0.386
 0.409
 -6.0 Max. RRF Dev : 35% Max. Rel. Area : 200%

 31 I
 1,4-Difluorobenzene
 1.000
 1.000
 0.0
 91
 0.00

 32 M
 Benzene
 1.247
 1.268
 -1.7
 96
 0.00

 33 M
 Trichloroethene
 0.333
 0.346
 -3.9
 99
 0.00

 34 C
 1,2-Dichloropropane
 0.348
 0.348
 0.0
 93
 0.00

 35 T
 Dibromomethane
 0.180
 0.174
 3.3
 89
 0.00

 37 T
 Bromodichloromethane
 0.409
 0.426
 -4.2
 95
 0.00

 38 T
 2-Chloroethyl vinyl ether
 0.002
 0.001
 34.8
 80
 0.00

 39 T
 cis-1,3-Dichloropropene
 0.483
 0.500
 -3.5
 90
 0.00

 40 T
 4-Methyl-2-pentanone (MIBK)
 0.531
 0.418
 21.3
 76
 0.00

 41 S
 Toluene-d8
 1.110
 1.118
 -0.7
 92
 -0.01

 42 MC
 Toluene
 0.803
 0.819
 -2.0
 98
 0.00

 43 T
 trans-1,3-Dichloropropene
 0.477
 0.424
 11.1
 88

47	Т	2-Hexanone	0.404	0.322	20.3	75	-0.01
48	Т	Dibromochloromethane	0.285	0.305	-7.0	93	0.00
49	Т	1,2-Dibromoethane (EDB)	0.290	0.269	7.2	87	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	94	0.00
51	MP	Chlorobenzene	1.043	1.021	2.1	97	0.00
52	Т	1,1,1,2-Tetrachloroethane	0.334	0.349	-4.5	98	0.00
53	С	Ethylbenzene	1.577	1.632	-3.5	100	0.00
54	Т	m,p-Xylene	0.648	0.639	1.4	97	-0.01
55	Т	o-Xylene	0.641	0.637	0.6	95	0.00
56	Т	Styrene	1,108	1.129	-1.9	98	0.00
57	P	Bromoform	0.130	0.160	-23.1	92	0.00
58	Т	Isopropylbenzene	1.637	1.736	-6.0	101	0.00
59	S	Bromofluorobenzene	0.571	0.577	-1.1	95	0.00
60	P	1,1,2,2-Tetrachloroethane	0.351	0.341	2.8	97	0.00
61	Т	Bromobenzene	0.428	0.421	1.6	97	-0.01
62	Т	1,2,3-Trichloropropane	0.322	0.275	14.6	84	0.00
63	Т	n-Propylbenzene	1.779	1.856	-4.3	101	0.00
64	Т	2-Chlorotoluene	1.222	1.184	3.1	101	0.00
65	Т	1,3,5-Trimethylbenzene	1.422	1.518	-6.8	101	0.00
66	Т	4-Chlorotoluene	1.375	1.400	-1.8	101	-0.01
67	Т	tert-Butylbenzene	1.090	1.109	-1.7	100	0.00
68	Т	1,2,4-Trimethylbenzene	1.524	1.621	-6.4	102	0.00
69	Т	sec-Butylbenzene	1.672	1.785	-6.8	103	-0.01
70	Т	1,3-Dichlorobenzene	0.834	0.850	-1.9	101	0.00
71	Т	4-Isopropyltoluene	1.388	1.508	-8.6	103	0.00
72	Т	1,4-Dichlorobenzene	0.881	0.881	0.0	99	0.00
73	Т	n-Butylbenzene	0.596	0.631	-5.9	103	0.00
74	Τ·	1,2-Dichlorobenzene	0.806	0.776	3.7	96	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.054	0.049	9.3	78	0.00
76	Т	1,2,4-Trichlorobenzene	0.359	0.363	-1.1	93	0.00
77	Т	Hexachlorobutadiene	0.152	0.149	2.0	101	0.00
78	Т	Naphthalene	0.939	0.792	15.7	78	0.00
79	Т	1,2,3-Trichlorobenzene	0.301	0.279	7.3	87	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.207	0.170	17.9	81	0.00
81	Т	Methyl acetate	0.148	0.124	16.2	82	-0.01
82	Т	Cyclohexane	0,585	0.498	14.9	81	0.04
83	Т	Methylcyclohexane	0.422	0.354	16.1	80	-0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0122.M Wed Jan 28 14:50:24 2009 MANAGER

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J0410.D	106	100	99
00688-002	AQUEOUS	J0411 D	105	100	100
00688-001	AQUEOUS	J0412.D	104	101	99
BLK-SPK	AQUEOUS	J0413.D	99	101	101
00766-001	AQUEOUS	J0414.D	104	100	100
00687-004	AQUEOUS	J0416.D	104	100	100
WATER-MS	AQUEOUS	J0417.D	104	99	98
WATER-MSD	AQUEOUS	J0418.D	107	100	99
00687-002	AQUEOUS	J0419.D	107	101	98
00687-003	AQUEOUS	J0420.D	108	100	98
00687-005	AQUEOUS	J0421.D	106	100	98
00687-006	AQUEOUS	J0422 D	107	100	97
00687-007	AQUEOUS	J0423.D	106	100	97
00766-002	AQUEOUS	J0424.D	106	101	96
00766-003	AQUEOUS	J0425.D	103	101	96
00766-004	AQUEOUS	J0426.D	107	101	97
00766-005	AQUEOUS	J0427.D	105	101	96
00763-001	AQUEOUS	J0428.D	105	100	96
00763-002	AQUEOUS	J0429.D	105	100	97
00763-003	AQUEOUS	J0430.D	102	101	95
00763-004	AQUEOUS	J0431.D	103	102	97

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	55-148	47-162
SMC2 = Toluene-d8	50 ppb	50-147	44-158
SMC3 = Bromofluorobenzene	50 ppb	47-145	31-153

Column to be used to flag recovery values

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 01/28/2009

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J0437.D	103	100	95
00763-005	AQUEOUS	J0438.D	103	101	95
00763-006	AQUEOUS	J0440.D	105	100	94
00763-007	AQUEOUS	J0441.D	103	101	96
00763-008	AQUEOUS	J0442.D	103	100	95
00763-009	AQUEOUS	J0443.D	105	101	95
00763-010	AQUEOUS	J0444.D	101	100	94
00763-011	AQUEOUS	J0445.D	104	99	92
00763-012	AQUEOUS	J0446.D	103	100	93
MS	AQUEOUS	J0447.D	105	100	95
MSD	AQUEOUS	J0448 D	108	99	97
00763-013	AQUEOUS	J0449.D	109	101	95
00763-014	AQUEOUS	J0450.D	107	101	95
00763-015	AQUEOUS	J0451.D	109	100	95
00763-016	AQUEOUS	J0452, D	110	101	97
00763-017	AQUEOUS	J0453 D	110	102	95
BLK-SPK	AQUEOUS	J0457.D	99	101	97
00687-001	AQUEOUS	J0458.D	107	99	97

	Concentration	Aqueous/Meoh	Soil	
SMC1 = 1,2-Dichloroethane-d4	50 ppb	55-148	47-162	
SMC2 = Toluene-d8	50 ppb	50-147	44-158	
SMC3 = Bromofluorobenzene	50 ppb	47-145	31-153	

Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID: MSD

Batch No.: JAW0127P

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	44.1	88	34 - 149
Benzene	50.0	0.0	53.8	108	45 - 136
Trichloroethene	50.0	0.0	53.5	107	40 - 147
Toluene	50.0	0.0	55.1	110	43 - 137
Chlorobenzene	50.0	0.0	52.7	105	45 - 144

	SAMPLE	MSD	MS			
Compound	CONC.	CONC.	%	%	QC LIN	/ITS
	(ug/L)	(ug/L)	# RE(C RPD #	RPD	REC.
1,1-Dichloroethene	0.0	41.8	84	5	19	34 - 149
Benzene	0.0	50.5	101	7	15	45 - 136
Trichloroethene	0.0	50.4	101	6	18	40 - 147
Toluene	0.0	51.9	104	6	16	43 - 137
Chlorobenzene	0.0	50.3	101	4	16	45 - 144

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):	J0360.D	Date Analyzed:	01/22/2009
Instrument ID:	MSD_J	Time Analyzed:	2:24

	50UG/L	IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	387727	6.17	609798	6.99	583846	10.33
	UPPER LIMIT	775454	6.67	1219596	7.49	1167692	10.83
	LOWER LIMIT	193863.5	5.67	304899	6.49	291923	9.83
	LAB SAMPLE						
	ID						
01	STD-20PPB	376150	6.17	599103	6.99	578399	10.33
02	STD-5PPB	329954	6.17	529946	6.99	519882	10.33
03	STD-200PPB	376093	6.17	606071	6.99	588697	10.33
04	STD-150PPB	358688	6.17	579495	6.99	568575	10.33
05	STD-1PPB	378165	6.17	609745	6.99	596201	10.33
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
10							
10							
10							
20							
21							
22					·· ·· ·		
~~							ļ

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): J0408.D

Date Analyzed: 01/27/2009

Instrument ID:

MSD_J

Time Analyzed: 1:02

50UG/L	IS1	. <u></u>	IS2		IS3	· · · · · · · · · · · · · · · · · · ·
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	411415	6.17	653252	6.99	646531	10.33
UPPER LIMIT	822830	6.67	1306504	7.49	1293062	10.83
LOWER LIMIT	205707.5	5.67	326626	6.49	323265.5	9.83
LAB SAMPLE						
ID						
01 METHOD-BLK	383811	6.17	611239	6.99	615234	10.33
02 00688-002	378907	6.17	603008	6.99	601814	10.33
03 00688-001	389665	6.17	619971	6.99	621552	10.33
04 BLK-SPK	375045	6.17	592232	6.99	583834	10.33
05 00766-001	374988	6.17	600091	6.99	600707	10.33
06 00687-004	375619	6.17	598892	6.99	590118	10.33
07 WATER-MS	380332	6.17	610757	6.99	603577	10.33
08 WATER-MSD	374614	6.17	606552	6.99	597130	10.33
09 00687-002	335244	6.17	543050	6.99	548954	10.33
10 00687-003	367595	6.17	594549	6.99	602043	10.33
11 00687-005	371374	6.17	597701	6.99	605083	10.33
12 00687-006	352204	6.17	571931	6.99	583254	10.33
13 00687-007	367498	6.17	594811	6.99	601269	10.33
14 00766-002	366367	6.17	587788	6.99	595963	10.33
15 00766-003	371449	6.17	590339	6.99	600401	10.33
16 00766-004	359270	6.17	581931	6.99	587165	10.33
17 00766-005	366585	6.17	583020	6.99	594069	10.33
18 00763-001	360572	6.17	580126	6.99	587140	10.33
19 00763-002	357696	6.17	572177	6.99	577079	10.33
20 00763-003	357830	6.17	568079	6.99	580703	10.33
21 00763-004	347624	6.17	556464	6.99	566655	10.33
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): J0434.D

Date Analyzed: 01/28/2009

Instrument ID:

MSD_J

Time Analyzed: 12:29

50UG/L	IS1		IS2		IS3	<u> </u>
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	351905	6.17	555726	6.99	547539	10.33
UPPER LIMIT	703810	6.67	1111452	7.49	1095078	10.83
LOWER LIMIT	175952.5	5.67	277863	6.49	273769.5	9.83
LAB SAMPLE						
ID						
01 METHOD-BLK	343923	6.17	552447	6.99	566865	10.33
02 00763-005	286567	6.17	454457	6.99	455788	10.33
03 00763-006	309681	6.17	494638	6.99	506442	10.33
04 00763-007	343306	6.17	552268	6.99	559226	10.33
05 00763-008	333861	6.17	537231	6.99	551763	10.33
06 00763-009	336222	6.17	544711	6.99	555460	10.33
07 00763-010	344977	6.17	547343	6.99	556583	10.33
08 00763-011	302334	6.17	483937	6.99	496635	10.33
09 00763-012	336517	6.17	541366	6.99	552033	10.33
10 MS	308652	6.17	496015	6.99	501022	10.33
11 MSD	332480	6.17	541829	6.99	538023	10.33
12 00763-013	319126	6.17	509186	6.99	524157	10.33
13 00763-014	329723	6.17	527189	6.99	542768	10.33
14 00763-015	322485	6.17	521179	6.99	538227	10.33
15 00763-016	319715	6.17	519684	6.99	537972	10.33
16 00763-017	304566	6.17	491036	6.99	509057	10.33
17 BLK-SPK	321653	6.17	501027	6.99	507236	10.33
18 00687-001	318516	6.17	511961	6.99	510509	10.33
19						
20						
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

Quant	itation Repo	rt (QT	Reviewed)	
Data File : C:\MSDCHEM\1\DA Acq On : 27 Jan 2009 9 Sample : MW-HP-2D,00763- Misc : ARCADIS/KINGS E MS Integration Params: LSCI Quant Time: Jan 28 12:41:43	TA\01-27-09\ :54 pm 001,A,5ml,10 LEC,01/20/09 NT.P 2009	J0428.D 0 ,01/23/09 Quant	Vial: Operator: Inst , Multiplr: Results File:	: 23 : BINXU : MSD_J : 1.00 : JAW0122.RES
Quant Method : C:\MSDCHEM\1 Title : VOLATILE ORG Last Update : Wed Jan 28 1 Response via : Initial Cali DataAcq Meth : JAW0122	\METHODS\JAW ANICS BY EPA 1:44:37 2009 bration	0122.M (R METHOD 8	TE Integrator) 260B	
Internal Standards	R.T.	QION Re	sponse Conc l	Jnits Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.17 6.99 10.33	168 3 114 5 117 5	60572 50.00 80126 50.00 87140 50.00	UG 0.00 UG 0.00 UG 0.00 UG 0.00
System Monitoring Compound 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	.s 6.50 Range 43 8.65 Range 39 11.73	65 2: - 133 98 6- - 137 95 3:	24493 52.36 Recovery = 44911 50.06 Recovery = 21886 48.01	5 UG 0.00 104.72% 5 UG -0.01 100.12% L UG 0.00
Spiked Amount 50.000 Target Compounds 25) Chloroform 33) Trichloroethene 45) Tetrachloroethene	Range 23 5.94 7.29 9.37	- 145 83 95	Recovery = 4803 0.74 4865 1.26 83658 23.01	96.02% Qvalue UG 98 UG 93 UG 99

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0428.D Vial: 23 **Operator: BINXU** Acq On : 27 Jan 2009 9:54 pm : MSD J Sample : MW-HP-2D,00763-001,A,5ml,100 Inst : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 14:29 2009 Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B : Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0428.D Abundance 1000000 950000 Bromofluorobenzene,S 900000 850000 oluene-d8,S 800000 750000 1,4-Difluorobenzene,1 700000 650000 600000 Peritafluorobenzene, l 550000 500000 450000 ,2-Dichloroethane-d4,S 400000 etrachiproethene.T 350000 300000 250000 200000 150000 Trichlonethene, M Chlorafarm, C 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 8.00 5.00 6.00 2.00 3.00 4.00 Time-->

Thu Jan 29 11:15:24 2009

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0429.D Vial: 24

 Acq On
 : 27 Jan 2009
 10:20 pm
 Operator: BINXU

 Sample
 : MW-HP-2S,00763-002,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,01/20/09,01/23/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:43 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716835769650.00UG0.0031) 1,4-Difluorobenzene6.9911457217750.00UG0.0050) Chlorobenzene-d510.3311757707950.00UG0.00

 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 222732
 52.37
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 104.74%

 41) Toluene-d8
 8.65
 98
 634953
 49.98
 UG
 -0.01

 41) Toluene-d88.659863495349.98 UG-0.01Spiked Amount50.000Range39 - 137Recovery=99.96%59) Bromofluorobenzene11.739531924248.45 UG0.00Spiked Amount50.000Range23 - 145Recovery=96.90% Target Compounds Ovalue 20) cis-1,2-Dichloroethene5.579646691.19UG#3933) Trichloroethene7.299573921.94UG9045) Tetrachloroethene9.371668641524.09UG#68

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0429.D Vial: 24 : 27 Jan 2009 10:20 pm **Operator: BINXU** Acq On : MW-HP-2S,00763-002,A,5ml,100 Sample Inst : MSD J : ARCADIS/KINGS_ELEC,01/20/09,01/23/09, Multiplr: $1.0\overline{0}$ Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:29 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration Abundance TIC: J0429.D 950000 Bromoftuorobenzene,S 900000 850000 lorobenzene-d5, 800000 750000 1,4-Difluorobenzene,1 700000 650000 600000 Pentafluorobenzene, I 550000 500000 450000 1,2-Dichloroethane-d4,S 400000 etrachloroethene,] 350000 300000 250000 200000 cis-1,2-Dichlaroethene,T 150000 richloroethene, M 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 3.00 4.00 5.00 6.00 7.00 8.00 2.00 Time-->

Thu Jan 29 11:16:59 2009

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0430.D Vial: 25 Acq On : 27 Jan 2009 10:46 pm Operator: BINXU
 Acq On
 : 27 Jan 2009
 10:46 pm
 Operator: BINXI

 Sample
 : OS-MW-3PL,00763-003, A, 5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,01/20/09,01/23/09,
 Multiplr: 1.00
 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:44 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcg Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716835783050.00UG0.0031) 1,4-Difluorobenzene6.9911456807950.00UG0.0050) Chlorobenzene-d510.3311758070350.00UG0.00

 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 217758
 51.18
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 133
 Recovery
 =
 102.36%

 41) Toluene-d8
 8.66
 98
 635769
 50.40
 UG
 0.00

 41) foldene-da5.008.00906.0090<th Qvalue Target Compounds 20) cis-1, 2-Dichloroethene 5.57 96 2657 0.67 UG $\tilde{\#}$ 39

(#) = qualifier out of range (m) = manual integration J0430.D JAW0122.M Thu Jan 29 11:16:59 2009 MANAGER Page

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0430.D Vial: 25 **Operator: BINXU** : 27 Jan 2009 10:46 pm Acq On : MSD J Inst : OS-MW-3PL,00763-003,A,5ml,100 Sample Multiplr: $1.0\overline{0}$: ARCADIS/KINGS ELEC,01/20/09,01/23/09, Misc MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 14:30 2009 : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method : VOLATILE ORGANICS BY EPA METHOD 8260B Title Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0430.D Abundance 950000 900000 Bromofluorobenzene,S 850000 hiorobenzene-d5, 800000 oluene-d8,5 750000 1,4-Difluorobenzene,1 700000 650000 600000 Pentafluorobenzene, 550000 500000 450000 I,2-Dichloroethane-d4,S 400000 350000 300000 250000 200000 cis-1,2-Dichloroethene,T 150000 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 8.00 3.00 4.00 5.00 6.00 Time--> 2.00

J0430.D

JAW0122.M

Thu Jan 29 11:17:00 2009

MANAGER

Quantita	tion Repor	rt	(QT Review	ved)		
Data File : C:\MSDCHEM\1\DATA\ Acq On : 27 Jan 2009 11:12 Sample : MW-6S,00763-004,A, Misc : ARCADIS/KINGS_ELEC MS Integration Params: LSCINT. Quant Time: Jan 28 12:41:44 20	01-27-09\(pm 5ml,100 ,01/20/09 P 09	J0431.1 ,01/23, Qua	D Or Ir /09, Mu ant Result	Vial: perator: ist : iltiplr: s File:	26 BINXU MSD_J 1.00 JAW01	J J L22.RES
Quant Method : C:\MSDCHEM\1\ME Title : VOLATILE ORGANI Last Update : Wed Jan 28 11:4 Response via : Initial Calibra DataAcq Meth : JAW0122	THODS\JAW(CS BY EPA 4:37 2009 tion	0122.M METHOI	(RTE Inte 28260B	egrator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits I)ev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 6.99 10.33	168 114 117	347624 556464 566655	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.50 Range 43 8.65 Range 39 11.73 Range 23	65 - 133 98 - 137 95 - 145	213834 Recove 630842 Recove 312534 Recove	51.74 ery = 51.05 ery = 48.30 ery =	UG 103.4 UG 102.1 UG 96.6	0.00 8% -0.01 .0% 0.00
Target Compounds 18) 1,1-Dichloroethane 26) 1,1,1-Trichloroethane 33) Trichloroethene 45) Tetrachloroethene	4.90 6.15 7.29 9.37	63 97 95 166	2896 24147 160772 19355	0.42 5.10 43.34 5.55	UG UG UG UG	Qvalue # 98 # 34 93 # 68

(QT Reviewed) Quantitation Report Vial: 26 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0431.D **Operator: BINXU** Acq On : 27 Jan 2009 11:12 pm : MSD J : MW-6S,00763-004,A,5ml,100 Inst Sample : ARCADIS/KINGS ELEC,01/20/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Ouant Time: Jan 28 14:30 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method : VOLATILE ORGANICS BY EPA METHOD 8260B Title Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0431.D Abundance 950000 900000 Bromofluorobenzene, S 850000 hiorobenzene-d5. 800000 oluene-d8;5 750000 1,4-Diffuorabenzene,1 700000 650000 600000 Pentafluorobenzene,I 550000 l'richloroethene, M 500000 450000 I,2-Dichloroethane-d4,S 400000 <u>-1-1-Trichloroethane.T</u> 350000 300000 250000 200000 etrachloroethene. 150000 1, 1-Dichloroethane, P 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 5.00 6.00 7.00 8.00 3.00 4.00 Time--> 2.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0438.D Vial: 33 Operator: BINXU Inst : MSD_J Acq On : 28 Jan 2009 2:12 am : OS-MW-1,00763-005,A,5ml,100 Sample Misc : ARCADIS/KINGS ELEC,01/21/09,01/23/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Ouant Time: Jan 28 12:41:46 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716828656750.00UG0.0031) 1,4-Difluorobenzene6.9911445445750.00UG0.0050) Chlorobenzene-d510.3311745578850.00UG0.00

 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 175431
 51.49
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 - 133
 Recovery
 =
 102.98%

 41) Toluene-d8
 8.65
 98
 509996
 50.54
 UG
 -0.01

 41) Toluene-d88.659850999650.54UG-0.01Spiked Amount50.000Range39 - 137Recovery=101.08%59) Bromofluorobenzene11.739524634847.34UG0.00Spiked Amount50.000Range23 - 145Recovery=94.68% Target Compounds Ovalue 4) Vinyl chloride2.076247131.67UG9820) cis-1,2-Dichloroethene5.579660721.93UG#4033) Trichloroethene7.299540071.32UG#9145) Tetrachloroethene9.36166116354.08UG#6853) Ethylbenzene10.5091320832.23UG99

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0438.D Vial: 33 **Operator: BINXU** Acq On : 28 Jan 2009 2:12 am : MSD J : OS-MW-1,00763-005,A,5ml,100 Inst Sample : ARCADIS/KINGS ELEC,01/21/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:31 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title VOLATILE ORGANICS BY EPA METHOD 8260B : Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0438.D Abundance 1550000 1500000 1450000 1400000 1350000 1300000 1250000 1200000 1150000 1100000 1050000 10000000 950000 900000 Chlorobenzene-d5, 850000 Bromofluorobenzene,S Toluene-d8,S 800000 750000 1,4-Difluorobenzene,1 700000 650000 Pentafluorobenzene,I 600000 550000 500000 1,2-Dichloroethane-d4,S 450000 400000 350000 300000 3is-1,2-Dichloroethene,T 250000 strachioroethene, Ethylbenzene (oroethene.M 200000 150000 100000 50000 16.00 17.00 18.00 19.00 8.00 15.00 7.00 9.00 10.00 11.00 12.00 13.00 14.00 Time--> 2.00 3.00 4.00 5.00 6.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0440.D Vial: 35

 Acq On
 : 28 Jan 2009
 3:04 am
 Operator: BINXU

 Sample
 : MW-9D,00763-006,A,5ml,100
 Inst
 : MSD_C

 Misc
 : ARCADIS/KINGS_ELEC,01/21/09,01/23/09,
 Multiplr: 1.00

 Operator: BINXU Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:47 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene6.1716830968150.000031) 1,4-Difluorobenzene6.9911449463850.000.0050) Chlorobenzene-d510.3311750644250.0000 System Monitoring Compounds 6.506519295452.40UG0.00Range43 - 133Recovery=104.80%8.669854649349.76UG0.00 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 Range 39 - 137 Recovery = 99.52% 11.73 95 271315 46.92 UG 0.00 59) Bromofluorobenzene Spiked Amount 50.000 Range 23 - 145 Recovery = 93.84%

Target Compounds

Qvalue

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0440.D Vial: 35 **Operator: BINXU** Acq On : 28 Jan 2009 3:04 am Sample : MW-9D,00763-006,A,5ml,100 Inst : MSD J : ARCADIS/KINGS ELEC,01/21/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:32 2009 Quant Results File: JAW0122.RES Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0440.D Abundance 850000 800000 Bromofluorobenzene,S 750000 orobenzene-d5. 700000 S B S S 650000 1,4-Difluorobenzene,1 600000 550000 Pentafluorobenzene, J 500000 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 100000 50000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 6.00 Time--> 2.00 3.00 4.00 5.00

Quantit	tation Repor	ct (Q	T Review	ed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 28 Jan 2009 3:2 Sample : MW-9S,00763-007,A Misc : ARCADIS/KINGS_ELE MS Integration Params: LSCINT Quant Time: Jan 28 12:41:47 2	A\01-27-09\J 29 am A,5ml,100 SC,01/21/09, F.P 2009	01/23/0 Quan	Op In 9, Mu t Result	Vial: erator: st : ltiplr: s File:	36 BINXU MSD_J 1.00 JAW0122	.RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Wed Jan 28 11: Response via : Initial Calibr DataAcq Meth : JAW0122	METHODS\JAWO NICS BY EPA :44:37 2009 cation)122.M (METHOD	RTE Inte 8260B	grator)		
Internal Standards	R.T.	QION R	esponse	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 6.99 10.33	168 114 117	343306 552268 559226	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000	6.50 Range 43 8.66 Range 39	65 - 133 98 - 137	210739 Recove 619539 Recove	51.63 ry = 50.52 ry =	UG 103.26% UG 101.04%	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	96.48%	0.00
Target Compounds 4) Vinyl chloride 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene	2.07 4.90 5.57	62 63 96	2737 3752 2418	0.81 0.55 0.64	QV UG # UG UG #	alue 94 100 39

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0441.D Vial: 36 : 28 Jan 2009 **Operator: BINXU** Acq On 3:29 am Sample : MW-9S,00763-007,A,5ml,100 Inst : MSD J : ARCADIS/KINGS ELEC,01/21/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:32 2009 Quant Results File: JAW0122.RES Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0441.D Abundance 950000 900000 Bromofluorobenzene, S 850000 800000 Foluene-d8,S 750000 1,4-Difluorobenzene, 700000 650000 600000 Pentafluorobenzene, 550000 500000 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 cis-1,2-Dichloroethene,T 150000 1,1-Dichloroethane,P 100000 Vinyl chloride. 50000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 4.00 5.00 6.00 Time--> 2.00 3.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0442.D Vial: 37

 Acq On
 : 28 Jan 2009
 3:55 am
 Operator: BINXU

 Sample
 : DUP(012109),00763-008,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,01/21/09,01/23/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:47 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716833386150.000031) 1,4-Difluorobenzene6.9911453723150.000.0050) Chlorobenzene-d510.3311755176350.00UG0.00 System Monitoring Compounds

 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.50
 65
 204811
 51.60
 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 103.20%

 41) Toluene-d8
 8.66
 98
 595585
 49.93
 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 99.86%
 59)
 95
 299434
 47.53
 UG
 0.00

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 95.06%
 0.00

 Ovalue Target Compounds 4) Vinyl chloride2.076228080.85UG#8818) 1,1-Dichloroethane4.906341870.63UG#8620) cis-1,2-Dichloroethene5.579623610.64UG#41

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0442.D Vial: 37 : 28 Jan 2009 3:55 am **Operator: BINXU** Acq On : MSD J : DUP(012109),00763-008,A,5ml,100 Inst Sample : ARCADIS/KINGS ELEC,01/21/09,01/23/09, Multiplr: 1.00Misc MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 14:33 2009 : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0442.D Abundance 900000 850000 Bromofluorobenzene,S 800000 750000 1.4-Difluorabenzene,1 700000 650000 600000 Pentafluorobenzene, l 550000 500000 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 cis-1,2-Dichloroethene,T 1,1-Dichloroethane,P 100000 chloride, Į Ś 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 6.00 7.00 8 00 8 4.00 5.00 Time--> 2.00 3.00

Quantit	ation Repor	rt (QT Review	ed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 28 Jan 2009 4:2 Sample : MW-13,00763-009,A Misc : ARCADIS/KINGS_ELE MS Integration Params: LSCINT Quant Time: Jan 28 12:41:47 2	\01-27-09\3 1 am ,5ml,100 C,01/21/09, .P 009	01/23/ Qua	Op In 09, Mu nt Result	Vial: erator: st : ltiplr: s File:	38 BINXU MSD_J 1.00 JAW0122	.RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Wed Jan 28 11: Response via : Initial Calibr DataAcq Meth : JAW0122	ETHODS\JAWO ICS BY EPA 44:37 2009 ation)122.M METHOD	(RTE Inte 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 6.99 10.33	168 114 117	336222 544711 555460	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.50 Range 43 8.65 Range 39 11.73 Range 23	65 - 133 98 - 137 95 - 145	208926 Recove 608479 Recove 300164 Recove	52.26 ry = 50.31 ry = 47.33 ry =	UG 104.52% UG 100.62% UG 94.66%	0.00 0.00 0.00
Target Compounds					Qva	alue
4) Vinyl chloride	2.07	62	9052 5779	2.73	UG	97 0 c
20) cis-1.2-Dichloroethene	4.90	ьз 96	5778 6830	1.85	UG # UG #	86 41
33) Trichloroethene	7.29	95	5879	1.62	UG	94

a)

(QT Reviewed) Quantitation Report Vial: 38 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0443.D Operator: BINXU Acq On : 28 Jan 2009 4:21 am : MSD J Sample : MW-13,00763-009,A,5ml,100 Inst Multiplr: $1.0\overline{0}$: ARCADIS/KINGS ELEC,01/21/09,01/23/09, Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:33 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B : Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0443.D Abundance 900000 Bromofluorobenzene,S 850000 800000 vobenzene-d5, 750000 1,4-Difluorobenzene,l 700000 650000 600000 Pentafluorobenzene, I 550000 500000 450000 400000 I,2-Dichloroethane-d4,S 350000 300000 250000 200000 cis-1,2-Dichloroethene,T 150000 1,1-Dichloroethane,P richloroethene, M 100000 chloride Vinv 50000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 5.00 6.00 Time---> 2.00 3.00 4.00

J0443.D JAW0122.M

Thu Jan 29 11:17:05 2009

Quantita	ation Repo	rt ((QT Review	ed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 28 Jan 2009 4:4 Sample : OS-MW-2,00763-010 Misc : ARCADIS/KINGS_ELE MS Integration Params: LSCINT Quant Time: Jan 28 12:41:48 20	\01-27-09\ 7 am ,A,5ml,100 C,01/22/09 .P 209	J0444.E ,01/23/ Qua) Op In (09, Mu ant Result	Vial: erator: st : ltiplr: s File:	39 BINXU MSD_J 1.00 JAW0122	.RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Wed Jan 28 11:4 Response via : Initial Calibra DataAcq Meth : JAW0122	ETHODS\JAW ICS BY EPA 44:37 2009 ation	0122.M METHOL	(RTE Inte 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 6.99 10.33	168 114 117	344977 547343 556583	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000	6.50 Range 43 8.66 Range 39	65 - 133 98 - 137	207453 Recove 604784 Recove	50.58 ry = 49.76 ry =	UG 101.16% UG 99.52%	0.00
59) Bromofluorobenzene Spiked Amount 50.000	11.73 Range 23	95 - 145	297256 Recove	46.77 ry =	UG 93.54%	0.00
Target Compounds 20) cis-1,2-Dichloroethene 33) Trichloroethene 45) Tetrachloroethene	5.57 7.29 9.37	96 95 166	10842 11468 26680	2.86 3.14 7.78	Qva UG # UG UG #	alue 40 93 68

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0444.D Vial: 39 Operator: BINXU : 28 Jan 2009 Acq On 4:47 am Sample : OS-MW-2,00763-010,A,5ml,100 Inst : MSD J : ARCADIS/KINGS ELEC,01/22/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:33 2009 Quant Results File: JAW0122.RES Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0444.D Abundance 900000 850000 Bromofluorobenzene,S 800000 750000 1,4-Difluorobenzene,1 700000 650000 600000 Pentafluorobenzene,t 550000 500000 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 etrachloroethene. cis-1,2-Dichloroethene,T 150000 richloroethene, M 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 8.00 3.00 4.00 5.00 6.00 Time--> 2.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0445.D Vial: 40 Acq On : 28 Jan 2009 5:12 am Operator: BINXU

 Acq On
 : 28 Jan 2009
 5:12 am
 Operator: BINXI

 Sample
 : GP-103R,00763-011,A,5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,01/22/09,01/23/09,
 Multiplr: 1.00

 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:48 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene6.1716830233450.00UG0.0031) 1,4-Difluorobenzene6.9911448393750.00UG0.0050) Chlorobenzene-d510.3311749663550.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506518721652.08UG0.00Spiked Amount50.000Range43- 133Recovery=104.16%41) Toluene-d88.669853148449.46UG0.00Spiked Amount50.000Range39- 137Recovery=98.92%59) Bromofluorobenzene11.739526213346.23UG0.00Spiked Amount50.000Range23- 145Recovery=92.46% Qvalue Target Compounds 4) Vinyl chloride2.086222760.76UG#20) cis-1,2-Dichloroethene5.579619270.58UG# # 92 75

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0445.D Vial: 40 **Operator: BINXU** Acq On : 28 Jan 2009 5:12 am : MSD J Sample : GP-103R,00763-011,A,5ml,100 Inst : ARCADIS/KINGS ELEC,01/22/09,01/23/09, Multiplr: $1.0\overline{0}$ Misc MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 14:34 2009 Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) : VOLATILE ORGANICS BY EPA METHOD 8260B Title : Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0445.D Abundance 800000 750000 Bramafluorobenzene,S 700000 f 650000 1,4-Difluorobenzene,1 600000 550000 500000 Pentafluorobenzene, I 450000 400000 350000 I,2-Dichloroethane-d4,S 300000 250000 200000 150000 cis-1,2-Dichloroethene,T 100000 chloride,C 50000 Į 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 8.00 3.00 4.00 5.00 6.00 2.00 Time-->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0446.D Vial: 41

 Acq On
 : 28 Jan 2009
 5:38 am
 Operator: BINXU

 Sample
 : GP-104R,00763-012,A,5ml,100
 Inst
 : MSD_3

 Misc
 : ARCADIS/KINGS_ELEC,01/22/09,01/23/09,
 Multiplr: 1.00

 Operator: BINXU Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:48 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716833651750.00UG0.0031) 1,4-Difluorobenzene6.9911454136650.00UG0.0050) Chlorobenzene-d510.3311755203350.00UG0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.50 65 205774 51.43 UG 0.00 Spiked Amount 50.000 Range 43 - 133 Recovery = 102.86% 49.99 UG 0.00 8.66 98 600903 49.99 UG 0.00 Range 39 - 137 Recovery = 99.98% 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene 11.73 95 292979 46.48 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 92.96% Target Compounds Qvalue 4) Vinyl chloride2.076216680.50UG#8516) trans-1,2-Dichloroethene4.419639751.19UG#3018) 1,1-Dichloroethane4.916399191.48UG10020) cis-1,2-Dichloroethene5.579658341.58UG#4133) Trichloroethene7.299553721.49UG96

(#) = qualifier out of range (m) = manual integration
J0446.D JAW0122.M Thu Jan 29 11:17:06 2009 MANAGER Page

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0446.D Vial: 41 Operator: BINXU Acq On : 28 Jan 2009 5:38 am Sample : GP-104R,00763-012,A,5ml,100 : MSD J Inst : ARCADIS/KINGS ELEC,01/22/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:34 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0446.D Abundance 950000 900000 oluene-d8,S 850000 Bromofluorobenzene,S 800000 750000 700000 1,4-Difluorobenzene,t 650000 600000 Pentafluorobenzene, 550000 500000 450000 400000 , 2-Dichloroethane-d4,S 350000 300000 250000 200000 rans-1,2-Dichloroethene,T cis-1,2-Dichloroethene,T 150000 1,1-Dichloroethane,P inchloroethene, M chloride, C 100000 vinyi 50000 8.00 9.00 6.00 7.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 5.00 Time--> 2.00 3.00 4.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0449.D Vial: 44

 Acq On
 : 28 Jan 2009
 6:55 am
 Operator: BINXU

 Sample
 : FB(012009),00763-013,A,5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,01/20/09,01/23/09,
 Multiplr: 1.00

 Operator: BINXU Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:49 2009 Ouant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Pentafluorobenzene6.1716831912650.00UG0.0031) 1,4-Difluorobenzene6.9911450918650.00UG0.0050) Chlorobenzene-d510.3311752415750.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 206165
 54.33
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 108.66%

 41) Toluene-d8
 8.66
 98
 570053
 50.42
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 =
 100.84%

 59) Bromofluorobenzene
 11.73
 95
 284689
 47.57
 UG
 0.00

 Spiked Amount
 50.000
 Range
 23 - 145
 Recovery
 =
 95.14%

Target Compounds

Qvalue
Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0449.D Vial: 44 : 28 Jan 2009 **Operator: BINXU** Acq On 6:55 am : FB(012009),00763-013,A,5ml,100 Sample Inst : MSD J : ARCADIS/KINGS ELEC,01/20/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:35 2009 Ouant Results File: JAW0122.RES Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0449.D Abundance 900000 850000 800000 Bromofluorobenzene,S Chlorobenzene-d5, 750000 Foluene-d8.S 700000 1,4-Difluorobenzene,1 650000 600000 550000 Pentafluorobenzene, I 500000 450000 400000 ,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 100000 50000 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 6.00 8.00 2.00 3.00 4.00 5.00 Time-->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0450.D Vial: 45

 Acq On
 : 28 Jan 2009
 7:21 am
 Operator: BINXU

 Sample
 : FB(012109),00763-014,A,5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,01/21/09,01/23/09,
 Multiplr: 1.00

 Operator: BINXU Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:49 2009 Quant Results File: JAW0122.RES Ouant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716832972350.00UG0.0031) 1,4-Difluorobenzene6.9911452718950.00UG0.0050) Chlorobenzene-d510.3311754276850.00UG0.00

 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 209067
 53.33
 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 106.66%

 41) Toluene-d8
 8.66
 98
 588363
 50.26
 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 100.52%
 59)
 Bromofluorobenzene
 11.73
 95
 293571
 47.37
 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 94.74%
 94.74%

 Spiked Amount 50.000 Range 23 - 145 Recovery = 94.74%

Target Compounds

Qvalue

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0450.D Vial: 45 **Operator: BINXU** : 28 Jan 2009 7:21 am Acq On : MSD J : FB(012109),00763-014,A,5ml,100 Inst Sample Multiplr: 1.00 Misc : ARCADIS/KINGS ELEC,01/21/09,01/23/09, MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 14:35 2009 : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration -TIC: J0450.D Abundance 900000 850000 Bromofluorobenzene,S 800000 Chlorobenzene-d5, oluene-d8.S 750000 700000 1,4-Difluorobenzene,1 650000 600000 550000 Pentafluorobenzene, 500000 450000 400000 I,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 4.00 6.00 7.00 8.00 Time--> 2.00 3.00 5.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0451.D Vial: 46 Acq On : 28 Jan 2009 7:47 am Operator: BINXU : FB(012209),00763-015,A,5ml,100 Sample : FB(012209),00763-015,A,5ml,100 Inst : MSD_0 Misc : ARCADIS/KINGS_ELEC,01/22/09,01/23/09, Multiplr: 1.00 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:50 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716832248550.00UG0.0031) 1,4-Difluorobenzene6.9911452117950.00UG0.0050) Chlorobenzene-d510.3311753822750.00UG0.00
 System Monitoring Compounds
 6.50
 65
 209340
 54.60
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 133
 Recovery
 =
 109.20%
 8.66 98 575999 49.77 UG 0.00 41) Toluene-d8 41) Toruene-doSpiked Amount50.000Range39 - 13759) Bromofluorobenzene11.7395 Range 39 - 137 Recovery = 99.54% 291254 47.39 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 94.78%

Target Compounds

Qvalue

(#) = qualifier out of range (m) = manual integration
J0451.D JAW0122.M Thu Jan 29 11:17:07 2009 MANAGER Page

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\01-27-09\J0451.D Vial: 46 Operator: BINXU Acq On : 28 Jan 2009 7:47 am Sample : FB(012209),00763-015,A,5ml,100 Inst : MSD J Multiplr: 1.00 Misc : ARCADIS/KINGS ELEC,01/22/09,01/23/09, MS Integration Params: LSCINT.P Quant Time: Jan 28 14:35 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method : VOLATILE ORGANICS BY EPA METHOD 8260B Title : Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0451.D Abundance 900000 850000 Bromofluorobenzene,S 800000 Chlorobenzene-d5, Foluene-d8.S 750000 700000 1,4-Difluorobenzene,l 650000 600000 550000 Pentafluorobenzene, 500000 450000 400000 ,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 4.00 5.00 6.00 7.00 8.00 3.00 Time--> 2.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0452.D Vial: 47 Acq On : 28 Jan 2009 8:13 am Operator: BINXU
 Sample
 : TBLANK(012009),00763-016,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,01/20/09,01/23/09,
 Multiplr: 1.00
 MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:50 2009 Ouant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene6.1716831971550.00UG0.0031) 1,4-Difluorobenzene6.9911451968450.00UG0.0050) Chlorobenzene-d510.3311753797250.00UG0.00

 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.50
 65
 209982
 55.24
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 = 110.48%

 41) Toluene-d8
 8.66
 98
 580603
 50.31
 UG
 0.00

 41) Toluene-d88.669858060350.31 UG0.00Spiked Amount50.000Range39 - 137Recovery=100.62%59) Bromofluorobenzene11.739529733748.40 UG0.00Spiked Amount50.000Range23 - 145Recovery=96.80%

Target Compounds

Qvalue

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0452.D Vial: 47 **Operator: BINXU** Acq On : 28 Jan 2009 8:13 am : TBLANK(012009),00763-016,A,5ml,100 Sample Inst : MSD J : ARCADIS/KINGS ELEC,01/20/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:35 2009 Quant Results File: JAW0122.RES Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 14:42:23 2009 Response via : Initial Calibration TIC: J0452.D Abundance 950000 900000 Bromofluarobenzene,S 850000 Shlorobenzene-d5, 800000 oluene-d8,5 750000 700000 1,4-Difluorobenzene,1 650000 600000 550000 Pentafluorobenzene, I 500000 450000 I,2-Dichloroethane-d4,S 400000 350000 300000 250000 200000 150000 100000 50000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 6.00 2.00 3.00 4.00 5.00 Time-->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0453.D Vial: 48 Acq On : 28 Jan 2009 8:39 am Operator: BINXU
 Acq On
 : 28 Jan 2009
 8:39 am
 Operator: BINXU

 Sample
 : PTW-2,00763-017,A,5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,01/22/09,01/23/09,
 Multiplr: 1.00
 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jan 28 12:41:50 2009 Quant Results File: JAW0122.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716830456650.00UG0.0031) 1,4-Difluorobenzene6.9911449103650.00UG0.0050) Chlorobenzene-d510.3311750905750.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506519864354.85UG0.00Spiked Amount50.000Range 43 - 133Recovery = 109.70%41) Toluene-d88.669855652351.04UG0.00Spiked Amount50.000Range 39 - 137Recovery = 102.08%59) Bromofluorobenzene11.739527720447.69UG0.00Spiked Amount50.000Range 23 - 145Recovery = 95.38%95.38% Target Compounds Ovalue 18)1,1-Dichloroethane4.9163102811.69UG#33)Trichloroethene7.299517180.52UG # 88 91

(QT Reviewed) Quantitation Report Vial: 48 Data File : C:\MSDCHEM\1\DATA\01-27-09\J0453.D Operator: BINXU Acq On : 28 Jan 2009 8:39 am : MSD J : PTW-2,00763-017,A,5ml,100 Inst Sample : ARCADIS/KINGS ELEC,01/22/09,01/23/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Time: Jan 28 14:36 2009 Quant Results File: JAW0122.RES : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B : Wed Jan 28 14:42:23 2009 Last Update Response via : Initial Calibration TIC: J0453.D Abundance 900000 850000 Foluene-d8,S 800000 Brornofluorobenzene,S 750000 700000 650000 1,4-Difluorobenzene,1 600000 550000 Pentafluorobenzene, I 500000 450000 400000 1,2-Dichloroethane-d4,S 350000 300000 250000 200000 150000 1,1-Dichloroethane,P richloroethene, M 100000 50000 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 3.00 4.00 5.00 Time--> 2.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0410.D Vial: 7 Acg On : 27 Jan 2009 1:53 pm Operator: BINXU Sample : NA, METHOD-BLK, A, 5ml, 100 Inst : MSD J Multiplr: $1.0\overline{0}$ Misc . . MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 12:41:38 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716838381150.00UG0.0031) 1,4-Difluorobenzene6.9911461123950.00UG0.0050) Chlorobenzene-d510.3311761523450.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506524151252.92UG0.00Spiked Amount50.000Range43 - 133Recovery=105.84%41) Toluene-d88.669867990650.09UG0.00Spiked Amount50.000Range39 - 137Recovery=100.18%59) Bromofluorobenzene11.739534679649.37UG0.00Spiked Amount50.000Range23 - 145Recovery=98.74%

Target Compounds

Qvalue

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\01-27-09\J0437.D Vial: 32 Acq On : 28 Jan 2009 1:46 am **Operator: BINXU** : NA, METHOD-BLK, A, 5ml, 100 Inst : MSD J Sample Multiplr: $1.0\overline{0}$ Misc : MS Integration Params: LSCINT.P Quant Results File: JAW0122.RES Quant Time: Jan 28 12:41:46 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0122.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jan 28 11:44:37 2009 Response via : Initial Calibration DataAcq Meth : JAW0122 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716834392350.00UG0.0031) 1,4-Difluorobenzene6.9911455244750.00UG0.0050) Chlorobenzene-d510.3311756686550.00UG0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.50 65 210867 51.57 UG 0.00 Spiked Amount50.000Range43 - 133Recovery= 103.14%1) Toluene-d88.659861144049.84UG0.00 41) Toluene-d88.659861144049.84 UG0.00Spiked Amount50.000Range39 - 137Recovery=99.68%59) Bromofluorobenzene11.739530788647.57 UG0.00Spiked Amount50.000Range23 - 145Recovery=95.14%

Target Compounds

Qvalue

(#) = qualifier out of range (m) = manual integration
J0437.D JAW0122.M Thu Jan 29 11:17:01 2009 MANAGER

		Quantita	ation Re	eport	(QT Rev	viewed)		
Data Acq Sam Misc Ms	a File : C:\N On : 28 d ple : NA,N c : Integration N	MSDCHEM\1\DA Jan 2009 1 METHOD-BLK,A	ATA\01-: .:46 am A,5ml,10	27-09\J 00	0437.D	Oper Inst Mult	Vial: rator: : : ciplr:	32 BINXU MSD_J 1.00
Quar	nt Time: Jan	28 14:30 20	09		Quant	Results	File:	JAW0122.RES
Meth Tit Last Resp	nod : (le : V t Update : V ponse via : 1	C:\MSDCHEM\1 /OLATILE ORG Ned Jan 28 1 Initial Cali	ANICS 1 4:42:22 bration	DS\JAWC BY EPA 3 2009 n	122.M (RT METHOD 82	FE Intega 260B	rator)	
Abundance 950000			· · ·	TIC: J0437.I)			
900000								
850000					S.			
800000			ų	ene d 5,1	ofluorobenz			
750000		-	Toluene-d8	Chlorobenz	Fora			
700000		orobenzene						
650000		1,4-Diflu						
600000	• •							
550000		orobenzene						
500000	4 5 7 7	Pentaffu						
450000	- - 							
400000		ane-d4,S						
350000		Dichloroeth						
300000		1,24						
250000								
200000								
150000								
100000								
50000								
0 Time>	2.00 3.00 4.00 5	.00 6.00 7.00 8.	00 9.00 1	0.00 11.00	12.00 13.00 14	.00 15.00 16.0	0 17.00 1	8.00 19.00

J0437.D JAW0122.M Thu Jan 29 11:17:01 2009 MANAGER

Phone # (973) 361-4252

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd

Fax # (973) 989-5288		MIN OF CUSTODY		Randol	ph, NJ 07869
CUSTOMER	REPORTING INFO	Turnaround Time (starts the following day if samples rec'	d at lab > 5PM)		
company: Arcadió Address: IInternitional Bluel Suiltyu	REPORT TO: F. Roch ng UCZ	* Lab notification is required for RUSH TAT prior to GUARANTEED WITHOUT LAB APPROVAL. *** ABLE TO ACCOMMODATE.	sample arrival. RUSH SURCHA	RUSH TAT IS N ARGES WILL AF	OT PLY IF
Mahurah, NJ 07495	Mehush NJ 07495	PHC-MUST CHOOSE	Rush TAT Charge **	Report Format	DISKETTE
Telephone #: (201) 684 - 1410	Atta: Enc Rodnerez	DRO (3-5 day TAT) QAM025 (5 day TAT min.)		Results Only	SRP. dbf format
02/1-189 (102) # xm3	FAX# 201 684-1420	SEE BELOW (under comments section for explanation)	24 hr - 100% 48 hr - 75%	Kedhced	SRP,wkl format
Project Manager: G, Rochright	INVOICE TO: Arcadis	Verbal/Fax 2 wk/Std Results needed by:	- 72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	lab approved custom
Sampler: DKJSCHAU, CLODIS	Address: IInkinahanal BluckSut Ya	Hard Conv 3 why fed	5 day - 25% 6-0 day 10%	Other (describe)	
Project Name: KING CLECKIC	Marhuah, NJ 07485	Other *call for price	2 A7 6m / A		NO DISK/CD REQ'D
Project Location (State): NY		ANALYTICAL PARAMETERS		,	
Bottle Order #:	Atm: En'e Rodryvez			Cooler Ten	° - ∫ , ° C
Quote # :	Por NJORO423, 0005, 0002	1) z'(,Ua #	TTLEC P
	Sample Matrix			PRESE	RVATIVES
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water 01 - 011 LIQ - Liquid (Specify) 07 - Other (Specify)	27			
Client ID Denth (ft. only)	a - 3011 all - 3114ge AVL - 3014 H - wipe Sampling Matrix # 1AL#			520¢ 103 80H 101	ncore one ther [eOR
MU-HP-2D	$\frac{Date}{100} \frac{1100}{260} \frac{1}{200} \frac{1}{200$			H H N H	191 171 171 171
Mu/-HP-25	12009 10:26 1 1 2				
05-MW-3PL	11/20109 1156				
MW-65	1/2/09/13/17				
05-mw-1	1/21/09 1359				
MW-9D	1/21/09 14:11 6				
mw-95	1/21/04 10:42				
DUP(012109)	8 - 20/12/1				
mw-13 /	1/21/09 1115 11 1 9				
0S-MW-2	11/22/09/1003 V V 10			Ā	
Known Hazard: Yes or No Describe:		Conc. Expected: Low Med High			
Please print legibly and fill out completely. San	uples cannot be processed and the turnaround tin	ne will not start until any MDL Req: Old GWQS - 1	11/05 GWQS - S	CC - OTHER (SI	EE COMMENTS)
anorgannes nave veen resurva. Staature/Cognany	Date Time Signature/Company	Comments:			
Relinquished by: ////h.ms///	112266-172:11 Received by:				
Relinquished by	T1/2 7/ 8/ 70 8 Received by: Carl (1)	DROTRHARD - used (for: Fuel Oil #2/Hom	e Heating Oil #1 /#2	
Refinquished by:	Received by:	0 QAM-025 (OQA-QAI	M025) - used for: all	other fuel oils and un	known contamination
Relinquished by:	Received by:	Lab Ca	ise #	-	
R.Čqutshed by:	Received by:		2	PAGE: of	7
Let $\overset{O}{\mathbb{C}}$ optes - white & yellow; client copy - pink \mathbb{C}					

01/2007 rev Ref. No: G 2036/0138

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd Randolph, NJ 07869

				•	
CUSTOMER	REPORTING INFO	1'I'urnaround Time (starts the following day if samples rec'd	1 at lab > 5PM)		
company: Arcaclis	REPORT TO:	*Lab notification is required for RUSH TAT prior to GIIAP ANTEED WITHOUTE LAB APPROVAL **1	sample arrival. RUSH RHSH SURCHARGES	H TAT IS NO S WILL APE	T LV IF
Address:) Internhound Block 20 k 400	Address: 1 In Arnuhunal Bled Sult 406	ABLE TO ACCOMMODATE.			
Mahurh, Mr 07495	Mahican, WJ 07495	PHC-MUST CHOOSE	Rush TAT Charge ** Repo	ort Format	DISKETTE
Telephone #: 201 684-1410	Attn: F.D.C. Rodrievez	DRO (3-5 day TAT) · QAM025 (5 day TAT min.)	Resi	Ala Sila Sila Sila Sila Sila Sila Sila Si	SRP. dbf format
Fax#: 201 684~)420	FAX# 201 684-1420	SEE BELOW (under comments section for explanation)	24 hr - 100%	teduced	SRP.wk1 format
Project Manager: E, Rochnyurz	INVOICE TO:	Verbal/Fax 2 wk/Std) Actuals needed by:	- 72 hr - 50% Reguit 96 hr - 35% Surcha	atory - 15% arge applies 1	da app roved s ustom
Sampler: DKIRCHAN, CLEADUS	Address: Dame a	Hard Copy 3 wkSid	5 day - 25 % Other 6-9 day 10%	r (describe)	(I)
Project Name: KINS E KUNC		Other *call for price		z	O DISK/CD REQ'D
Project Location (State): NY	HADING	ANALYTICAL PARAMETERS		Cooler Temn	ר י ל
Bottle Order #:	Atta: J POOL		F		,
Quote # :	PO #			# ROT	LLES &
	Sample Matrix			PRESER	VATIVES
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Sloche SOL - Solid W - Wipe	20/		9 9 	ə.
Client ID Depth (ft. only)	Sampling Matrix # IAL Date Tune Matrix containens IAL	<u>^</u>	HCI	OSZH CONH HO ^B N	MeOf Other Wone Mone
6P-403L	1/22/09 1002 46 2 11	×	2		
6P-104R	1/22/04/1102				
FB(012009)	1/20/061 1015				
FB/012109)	1/21/04 1200 14				
Fb(012201)	1/22/04/5 04/5 1 15				
TBLANK(oi zeo)	1/2 $1/2$ $1/2$ $1/2$ $1/2$ $1/2$	>	≻		
PTW-2	12009 1353 AQ 217	×	2		
Known Hazard: Yes or No Describe:		Conc. Expected: Low Med High		_	
Please print legibly and fill out completely. Sam	ples cannot be processed and the turnaround ti	ime will not start until any MDL Req: Old GWQS - 1	11/05 GWQS - SCC - (OTHER (SE	COMMENTS)
ambiguities hayk been resolved.		Comments:			
/ Signature/Conpary	Date Time Signature/Company				
Relinquished by Hung /	123109 12.(1 Received by:				
Relinquisted by: A 2	1/27/ct NO & Received by () M	DRO (8015B) - used f	for: Fuel Oil #2/Home Heati	ing Oil #1 /#2	
Relinquished by:	Received by:	QAM-025 (0QA-QA)	M025) - used for: all other f	fuel oils and unk	nown contamination
Relinquished by:	Received by:			C	
lOnquished by:	Received by:		S Pag	у: С «	7
C L 🛱 COPIES - WHITE & YELLOW; CLIENT COPY - PINK W					
					1

Ref. No. G. 33:800/138

01/2007 rev

PROJECT INFORMATION

Case No. E09-00763

Project KINGS ELECTRIC - VENDOR #1168636

Customer	Arcadis Geraghty & Miller	P.O. # NJ000423.0005.000(
Contact EMail	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs	Received 1/23/2009 17:08 Verbal Due 2/9/2009
Phone	(201) 684-1410 Fax 1(201) 684-1420	Report Due 2/17/2009
<u>Report To</u>		Bill To
465 New K	arner Road	640 Plaza Drive
Albany, NY	7 12205	Suite 130
		Highlands Ranch, CO 80129
Attn: Eric F	Rodriguez	Attn: Accounts Payable
Report F	Format Reduced	
Addition	al Info State Form Field Sampling Con	ditional VOA

<u>Lab ID</u>	Client Sample ID	<u>Depth Top / Bottom</u>	Sampling Time	<u>Matrix</u>	<u>Unit</u>	# of Containers
00763-001	MW-HP-2D	n/a	1/20/2009@09:10	Aqueous	ug/L	2
00763-002	MW-HP-2S	n/a	1/20/2009@10:26	Aqueous	ug/L	2
00763-003	OS-MW-3PL	n/a	1/20/2009@11:56	Aqueous	ug/L	2
00763-004	MW-6S	n/a	1/20/2009@13:17	Aqueous	ug/L	2
00763-005	OS-MW-1	n/a	1/21/2009@13:59	Aqueous	ug/L	2
00763-006	MW-9D	n/a	1/21/2009@14;11	Aqueous	ug/L	2
00763-007	MW-9S	n/a	1/21/2009@10:42	Aqueous	ug/L	2
00763-008	DUP(012109)	n/a	1/21/2009	Aqueous	ug/L	2
00763-009	MW-13	n/a	1/21/2009@11:15	Aqueous	ug/L	2
00763-010	OS-MW-2	n/a	1/22/2009@10:03	Aqueous	ug/L	2
00763-011	GP-103R	n/a	1/22/2009@10:02	Aqueous	ug/L	2
00763-012	GP-104R	n/a	1/22/2009@11:02	Aqueous	ug/L	2
00763-013	FB(012009)	n/a	1/20/2009@10:15	Aqueous	ug/L	2
00763-014	FB(012109)	n/a	1/21/2009@12:00	Aqueous	ug/L	2
00763-015	FB(012209)	n/a	1/22/2009@09:15	Aqueous	ug/L	2
00763-016	TBLANK(012009)	n/a	1/20/2009	Aqueous	ug/L	2
00763-017	PTW-2	n/a	1/22/2009@13:53	Aqueous	ug/L	2
Sample # Te	<u>sts</u>	<u>Status</u>	QA Method			
001 PP V	VOA + Cis 1,2-DCE	Run 82	260B			
002 PP V	VOA + Cis 1,2-DCE	Run 82	260B			
003 00 1		D 07	0(0D			

001 FF VOA + CIS 1,2-DCE			Kun	82000	
002 PP VOA + Cis 1,2-DCE	· · ·	1.1	Run	8260B	·
003 PP VOA + Cis 1,2-DCE			Run	8260B	
004 PP VOA + Cis 1,2-DCE	$(1,1)_{i\in \mathbb{N}} = (1,1)_{i\in \mathbb{N}}$	194	Ran	8260B	۰.
005 PP VOA + Cis 1,2-DCE			Run	8260B	
006 PP VOA + Cis 1,2-DCE			Run	8260B	
007 PP VOA + Cis 1,2-DCE			Run	8260B	
008 PP VOA + Cis 1,2-DCE			Run	8260B	•
009 PP VOA + Cis 1,2-DCE			Run	8260B	
010 PP VOA + Cis 1,2-DCE			Run	8260B	
011 PP VOA + Cis 1,2-DCE			Run	8260B	

PROJECT INFORMATION

Case No. E09-00763

Project KINGS ELECTRIC - VENDOR #1168636

Sample # Tests	<u>Status</u>	OA Method	
012 PP VOA + Cis 1,2-DCE	Run	8260B	land and a second s
013 PP VOA + Cis 1,2-DCE	Run	8260B	
014 PP VOA + Cis 1,2-DCE	Run	8260B	
015 PP VOA + Cis 1,2-DCE	Run	8260B	
016 PP VOA + Cis 1,2-DCE	Run	8260B	teriar i
017 PP VOA + Cis 1,2-DCE	Run	8260B	

SAMPLE RECEIPT VERIFICATION

CASE NO: E 09 00763	CLIENT: Arcadis
COOLER TEMPERATURE: 2° - 6°C	C: (See Chain of Custody) Comments
KEY	
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles 	
 ✓ Sufficient Sample Volume ✓ no-headspace/bubbles in VC ✓ Labels intact/correct ✓ PH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time Sample to be Subcontracted 	S
¹ All samples with "Analyze Immediately" holding times the following tests: pH, Temperature, Free Residual C ADDITIONAL COMMENTS:	will be analyzed by this laboratory past the holding time. This includes but is not limited to hlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INIT	IAL IAL DATE 123 0°1 ED: YES (SEE BELOW) NO
CLIENT NOTIFIED: YE PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED:	S Date/ Time: NO
ADDITIONAL COMMENTS:	
VERIFIED/TAKEN BY: INIT	TAL DATE ///6 9 REV 02/00086

Laboratory Custody Chronicle

IAL Case No.

Client Arcadis Geraghty & Miller

E09-00763

Project KINGS ELECTRIC - VENDOR #1168636

Received On <u>1</u>

On 🗌	1/23/2009(@17:08
-		-

Department: Volatiles			<u>Prep. Date</u>	<u>Analyst</u>	Analysis Date	<u>Analyst</u>
PP VOA + Cis 1,2-DCE	00763-001	Aqueous	n/a	n/a	1/27/09	Xing
ir .	-002		n/a	n/a	1/27/09	Xing
זו	-003	11	n/a	n/a	1/27/09	Xing
n	-004	11	n/a	n/a	1/27/09	Xing
11	-005	W	n/a	n/a	1/28/09	Xing
ท	-006	*1	n/a	n/a	1/28/09	Xing
n	-007	"	n/a	n/a	1/28/09	Xing
n	-008	ч	n/a	n/a	1/28/09	Xing
11	-009	11	n/a	n/a	1/28/09	Xing
	-010	ti	n/a	n/a	1/28/09	Xing
"	-011	"	n/a	n/a	1/28/09	Xing
Ir.	-012		n/a	n/a	1/28/09	Xing
17	-013	Ħ	n/a	n/a	1/28/09	Xing
١٢	-014	H	n/a	n/a	1/28/09	Xing
n	-015	It.	n/a	n/a	1/28/09	Xing
n	-016	It	n/a	n/a	1/28/09	Xing
"	-017	IT	n/a	n/a	1/28/09	Xing

Review and Approval:

Jacque A Ben M

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 1 International Blvd. Suite 406 Mahwah, NJ 07495

Project Name: KINGS ELECTRONICS VENDOR #1168636 IAL Case Number: E09-03980

These data have been reviewed and accepted by:

Michian

Michael H. Leftin, Ph.D. Laboratory Director

Sample Summary

IAL Case No.

Client Arcadis Geraghty & Miller

E09-03980

Project KINGS ELECTRONICS VENDOR #1168636

Received On <u>4/22/2009@18:10</u>

					<u># of</u>
<u>Lab ID</u>	<u>Client Sample ID</u>	<u>Depth Top/Bottom</u>	<u>Sampling Time</u>	<u>Matrix</u>	<u>Container</u>
03980-001	PTW-2	n/a	4/21/2009@14:05	Aqueous	2
03980-002	MW-13R	n/a	4/21/2009@12:17	Aqueous	2
03980-003	MW-6S	n/a	4/21/2009@11:07	Aqueous	2 = 1
03980-004	GP-103R	n/a	4/22/2009@09:42	Aqueous	2
03980-005	GP-104R	n/a	4/22/2009@10:47	Aqueous	2
03980-006	MW-9SR	n/a	4/22/2009@13:17	Aqueous	2
03980-007	MW-9D	n/a	4/22/2009@14:02	Aqueous	2
03980-008	DUP(042109)	n/a	4/21/2009	Aqueous	2
03980-009	FB(042109)	n/a	4/21/2009@12:00	Aqueous	2
03980-010	FB(042209)	n/a	4/22/2009@10:30	Aqueous	2
03980-011	TB(042109)	n/a	4/21/2009	Aqueous	2

TABLE OF CONTENTS

	Page
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	63 67

MATRIX QUALIFIERS

- A Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- X Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to <u>Matrix Interferences</u>.
- NA <u>Not Applicable</u>.
- ND Indicates the compound was analyzed for but <u>Not Detected at the MDL</u>.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRONICS VENDOR #1168636) on April 22, 2009 for the analysis of:

(11) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

109

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E09-03980

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	<u>√</u>
2.	Table of Contents.	✓
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	√
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	✓
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	
7.	Methodology Summary.	
8.	Laboratory Chronicle and Holding Time Check.	✓
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	<u>√</u>
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	

12. NonConformance Summary.

QC

_____]7109

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS 3980

E09 -

Lab Case Number:

1	 Chromatograms Labeled/Compounds Identified (Field Samples and Mather Laboration) 	No	Yes
2	 GC/MS Tuning Specifications: a. BFB Passed 		
3	 GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series, 		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		
5	GC/MS Calibration Requirements: a. Calibration Check Compounds		
	b. System Performance Check Compounds		<u>na</u>
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:		<u></u>
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		<u> </u>
8.	If not met, were the calculations checked and the results qualified as "estimated"? Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		na
9.	Internal Standard Area/Retention Time Shift meet criteria		1
10, -	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		na
	Analysis Holding Time Met f not met, list number of days exceeded for each sample:	- - 	
12. S	ample Ditution Performed High Target High Nontarget Compounds Compounds Matrix Interference Other		
13. Co	omments: 9702675 5100		·

-

rev 01/09

Project: KINGS ELECTRONICS VENDOR #1168636									
• <u>•</u> ••••••	Lab ID: Client ID:	0398 0398 PT	0-001 W-2	03980- 03980- MW-1	002 13R	03980- MW-	003 6S	03980 GP-1)-004 03R
	Matrix: Sampled Date	Aqu 4/2	ieous 1/09	Aque 4/21/	ous 09	Aque 4/21/	ous 09	Aque 4/22	eous 7/09
PARAMETER(Units)		Conc	Q MDL	Conc Q	MDL	Conc Q	MDL	Conc Q	MDL
Volatiles + Cis 1,2-DCE	(Units)	(ug/L	ppb)	(ug/L-p	ppb)	(ug/L-p	pb)	(ug/L·	ppb)
Vinyl chloride		0.816	0.260	0.546	0.260	ND	0.260	10.9	0.260
trans-1,2-Dichloroethene		0.717	0.190	ND	0.190	ND	0.190	1.80	0.190
1,1-Dichloroethane		1.88	0.230	0.792	0.230	0.382	0.230	ND	0.230
cis-1,2-Dichloroethene		1.31	0.200	0.853	0.200	ND	0.200	3.22	0.200
1,1,1-Trichloroethane		ND	0.230	ND	0.230	6.31	0.230	ND	0.230
Trichloroethene		1.54	0.280	1.18	0.280	33.9	0.280	0.323	0.280
Tetrachloroethene		ND	0.190	ND	0.190	3.54	0.190	ND	0.190
TOTAL VO's:		6.26		3.37		44.1		16.2	
***	Lab ID:	0398	0-005	03980-	·006	03980-	007	03980	-008
	Client ID:	GP-	104R	MW-9	SR	MW-	9D	DUP(0	42109)
	Matrix:	Aqı	ieous	Aque	ous	Aque	ous	Aqu	eous
	Sampled Date	4/2	2/09	4/22/	09	4/22/	09	4/21	/09
PARAMETER(Units)		Conc	Q MDL	Conc Q	MDL	Conc Q	MDL	Conc Q	<u>MDL</u>
Volatiles + Cis 1,2-DCE	(Units)	(ug/L	ppb)	(ug/L-p	pb)	(ug/L-p	ppb)	(ug/L·	ppb)
Vinyl chloride		ND	0.260	0.757	0.260	ND	0.260	0.543	0.260
trans-1,2-Dichloroethene		0.759	0.190	1.31	0.190	ND	0.190	ND	0.190
1,1-Dichloroethane		0.789	0.230	0.877	0.230	ND	0.230	0.877	0.230
cis-1,2-Dichloroethene		1.16	0.200	0.657	0.200	ND	0.200	0.892	0.200
Trichloroethene		1.13	0.280	ND	0.280	ND	0.280	1.21	0.280
TOTAL VO's:		3.84		3.60		ND		3.52	
	Lab ID:	0398	0-009	03980-	-010	03980	-011		
	Client ID:	FB(0	42109)	FB(042	209)	TB(042	2109)		
	Matrix:	Aqu	ieous	Aque	ous	Aque	ous		
	Sampled Date	4/2	1/09	4/22/	09	4/21/	09		
PARAMETER(Units)		Conc	Q MDL	Conc Q	MDL	Conc Q	MDL	<u>.</u>	
Volatiles + Cis 1,2-DCE	(Units)	(ug/1	L-ppb)	(ug/L-p	opb)	(ug/L-)	opb)		
cis-1,2-Dichloroethene	• •	ND	0.200	ND	0.200	ND	0.200		
TOTAL VO's:		ND		ND		ND			

SUMMARY REPORT Client: Arcadis Geraghty & Miller

ND = Analyzed for but Not Detected at the MDL

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 03980-001 Client ID: PTW-2 Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2089.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	0.816		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	0.717		0.190	
1,1-Dichloroethane	1.88		0.230	
cis-1,2-Dichloroethene	1.31		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	1.54		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03980-002 Client ID: MW-13R Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2090.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	0.546		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	0.792		0.230
cis-1,2-Dichloroethene	0.853		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	1.18		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELECTRONICS

Lab ID: 03980-003 Client ID: MW-6S Date Received: 04/22/2009 Date Analyzed: 04/30/2009 Data file: J2201.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL		
Chloromethane	ND		0.230	-	
Vinyl chloride	ND		0.260		
Bromomethane	ND		0.360		
Chloroethane	ND		0.290		
Trichlorofluoromethane	ND		0.230		
Acrolein	ND		4.34		
1,1-Dichloroethene	ND		0.610		
Methylene chloride	ND		1.98		
Acrylonitrile	ND		0.950		
trans-1,2-Dichloroethene	ND		0.190		
1,1-Dichloroethane	0.382		0.230		
cis-1,2-Dichloroethene	ND		0.200		
Chloroform	ND		0.170		
1,1,1-Trichloroethane	6.31		0.230		
Carbon tetrachloride	ND		0.160		
1,2-Dichloroethane (EDC)	ND		0.210		
Benzene	ND		0.210		
Trichloroethene	33.9		0.280		
1,2-Dichloropropane	ND		0.200		
Bromodichloromethane	ND		0.120		
2-Chloroethyl vinyl ether	ND		0.990		
cis-1,3-Dichloropropene	ND		0.150		
Toluene	ND		0.200		
trans-1,3-Dichloropropene	ND		0.270		
1,1,2-Trichloroethane	ND		0.150		
Tetrachloroethene	3.54		0.190		
Dibromochloromethane	ND		0.160		
Chlorobenzene	ND		0.200		
Ethylbenzene	ND		0.190		
Total Xylenes	ND		0.440		
Bromoform	ND		0.140		
1,1,2,2-Tetrachloroethane	ND		0.120		
1,3-Dichlorobenzene	ND		0.170		
1,4-Dichlorobenzene	ND		0.160		
1,2-Dichlorobenzene	ND		0.150		

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03980-004 Client ID: GP-103R Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2095.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND	• • • •	0.230
Vinyl chloride	10.9		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	1.80		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	3.22		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	0.323		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 03980-005 Client ID: GP-104R Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2096.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	0.759		0.190
1,1-Dichloroethane	0.789		0.230
cis-1,2-Dichloroethene	1.16		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	1.13		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03980-006 Client ID: MW-9SR Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2097.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	0.757		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	1.31		0.190
1,1-Dichloroethane	0.877		0.230
cis-1,2-Dichloroethene	0.657		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03980-007 Client ID: MW-9D Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2098.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	ND		0.230	
cis-1,2-Dichloroethene	ND		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	ND		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

0

0012

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 03980-008 Client ID: DUP(042109) Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2099.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	0.543		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	0.877		0.230	
cis-1,2-Dichloroethene	0.892		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	1.21		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03980-009 Client ID: FB(042109) Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2100.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

0

0014
INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 03980-010 Client ID: FB(042209) Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2101.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

0

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 03980-011 Client ID: TB(042209) Date Received: 04/22/2009 Date Analyzed: 04/28/2009 Data file: J2105.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

0

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>J1915.D</u>	BFB Injection Date:	04/20/2	2009
Inst ID:	MSD J	BFB Injection Time:	<u>1:07</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	20.2	<u></u>	·
75	30.0 - 60.0% of mass 95	49.5		
95	Base peak, 100% relative abundar	ice 100.0		
96	5.0 - 9.0% of mass 95	7.6		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	92.2		,
175	5.0 - 9.0% of mass 174	7.3 (7.9)1
176	95.0 - 101.0% of mass 174	89.2 (96.8)1
177	5.0 - 9.0% of mass 176	5.9 (6.6)2
	1-Value is % mass 174	2-Value is % mass 1	76	, ,

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
20PPB	STD-20PPB	J1918.D	04/20/2009	2:33	
1PPB	STD-1PPB	J1920.D	04/20/2009	3:29	
100PPB	STD-100PPB	J1921.D	04/20/2009	3:58	
5PPB	STD-5PPB	J1922.D	04/20/2009	4:26	
200PPB	STD-200PPB	J1923.D	04/20/2009	4:55	
150PPB	STD-150PPB	J1924.D	04/20/2009	5:23	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>J2082.D</u>	BFB Injection Date:	04/28/	/2009
Inst ID:	MSD J	BFB Injection Time:	<u>12:55</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	19.9		
75	30.0 - 60.0% of mass 95	55.3		
95	Base peak, 100% relative abundar	ice 100.0		
96	5.0 - 9.0% of mass 95	6.6		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	75.2		
175	5.0 - 9.0% of mass 174	5.9 (7.8)1
176	95.0 - 101.0% of mass 174	72.3 (96.1)1
177	5.0 - 9.0% of mass 176	4.6 (6.3)2
	1-Value is % mass 174	2-Value is % mass 1	76	-

.

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J2084.D	04/28/2009	1:52	
NA	METHOD-BLK	J2086.D	04/28/2009	2:49	
GW_MW7	03933-001	J2087.D	04/28/2009	3:18	
LCS-50PPB	BLK-SPK	J2088.D	04/28/2009	3:46	
PTW-2	03980-001	J2089.D	04/28/2009	4:15	
MW-13R	03980-002	J2090.D	04/28/2009	4:43	
MS	WATER-MS	J2093.D	04/28/2009	6:08	
MSD	WATER-MSD	J2094.D	04/28/2009	6:37	
GP-103R	03980-004	J2095.D	04/28/2009	7:05	
GP-104R	03980-005	J2096.D	04/28/2009	7:33	
MW-9SR	03980-006	J2097.D	04/28/2009	8:01	
MW-9D	03980-007	J2098.D	04/28/2009	8:29	
DUP(042109)	03980-008	J2099.D	04/28/2009	8:58	
FB(042109)	03980-009	J2100.D	04/28/2009	9:26	
FB(042209)	03980-010	J2101.D	04/28/2009	9:55	
B1(1-2)	04103-004	J2102.D	04/28/2009	10:23	
B2(1-2)	04103-005	J2103.D	04/28/2009	10:51	
B3(1-2)	04103-006	J2104.D	04/28/2009	11:20	
TB(042209)	03980-011	J2105.D	04/28/2009	11:48	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	J2186.D	BFB Injection I	Date:	<u>04/30/2</u>	2009	
Inst ID:	MSD J	BFB Injection T	'ime:	<u>11:14</u>		
m/z	Ion Abudance Criteria	%Re Abun	lative dance			
50	15 - 40.0% of mass 95	19	.9			
75	30.0 - 60.0% of mass 95	56	.4			
95	Base peak, 100% relative abundar	ice 100	0.0			
96	5.0 - 9.0% of mass 95	6.	.5			
173	Less than 2.0% of mass 174	0.	.0 (0.0)1	
174	Great than 50.0% of mass 95	80	.9			
175	5.0 - 9.0% of mass 174	6.	1 (7.5)1	
176	95.0 - 101.0% of mass 174	80	.4 (99.4)1	
177	5.0 - 9.0% of mass 176	6.	1 (7.6)2	
	1-Value is % mass 174	2-Value is % n	nass 1'	76	<i>.</i>	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J2187.D	04/30/2009	11:42	
NA	METHOD-BLK	J2189.D	04/30/2009	12:38	
WCC-1S	03975-001	J2190.D	04/30/2009	1:07	
WCC-8S	03975-002	J2191.D	04/30/2009	1:35	
WCC-8SDUP	03975-003	J2192.D	04/30/2009	2:03	
LCS-50PPB	BLK-SPK	J2193.D	04/30/2009	2:31	
WCC10S	03975-004	J2194.D	04/30/2009	3:00	
FB-042209	03975-005	J2195.D	04/30/2009	3:28	
MW-GG-2S	03975-006	J2196.D	04/30/2009	3:57	
MW-E2-2S	03975-007	J2197.D	04/30/2009	4:25	
MW-E2-2D	03975-008	J2198.D	04/30/2009	4:53	
MS	MS	J2199.D	04/30/2009	5:21	
MSD	MSD	J2200.D	04/30/2009	5:50	
MW-6S	03980-003	J2201.D	04/30/2009	6:18	
MW-17/2.5	04201-001	J2202.D	04/30/2009	6:46	
MW-11/4.5	04201-002	J2203.D	04/30/2009	7:15	
FB042909	04201-003	J2204.D	04/30/2009	7:43	
TB042909	04201-004	J2205.D	04/30/2009	8:12	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>J2086.D</u>	Instrument ID:	MSD J
Date Analyzed:	04/28/2009	Time Analyzed:	<u>02:49</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
GW_MW7	03933-001	04/28/2009	3:18
LCS-50PPB	BLK-SPK	04/28/2009	3:46
PTW-2	03980-001	04/28/2009	4:15
MW-13R	03980-002	04/28/2009	4:43
MS	WATER-MS	04/28/2009	6:08
MSD	WATER-MSD	04/28/2009	6:37
GP-103R	03980-004	04/28/2009	7:05
GP-104R	03980-005	04/28/2009	7:33
MW-9SR	03980-006	04/28/2009	8:01
MW-9D	03980-007	04/28/2009	8:29
DUP(042109)	03980-008	04/28/2009	8:58
FB(042109)	03980-009	04/28/2009	9:26
FB(042209)	03980-010	04/28/2009	9:55
B1(1-2)	04103-004	04/28/2009	10:23
B2(1-2)	04103-005	04/28/2009	10:51
B3(1-2)	04103-006	04/28/2009	11:20
TB(042209)	03980-011	04/28/2009	11:48

FORM 4

.

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 04/28/2009 Data file: J2086.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

0

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>J2189.D</u>	Instrument ID:	MSD J
Date Analyzed:	04/30/2009	Time Analyzed:	12:38

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
WCC-1S	03975-001	04/30/2009	1:07
WCC-8S	03975-002	04/30/2009	1:35
WCC-8SDUP	03975-003	04/30/2009	2:03
LCS-50PPB	BLK-SPK	04/30/2009	2:31
WCC10S	03975-004	04/30/2009	3:00
FB-042209	03975-005	04/30/2009	3:28
MW-GG-2S	03975-006	04/30/2009	3:57
MW-E2-2S	03975-007	04/30/2009	4:25
MW-E2-2D	03975-008	04/30/2009	4:53
MS	MS	04/30/2009	5:21
MSD	MSD	04/30/2009	5:50
MW-6S	03980-003	04/30/2009	6:18
MW-17/2.5	04201-001	04/30/2009	6:46
MW-11/4.5	04201-002	04/30/2009	7:15
FB042909	04201-003	04/30/2009	7:43
TB042909	04201-004	04/30/2009	8:12

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 04/30/2009 Data file: J2189.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	_
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	ND		0.230	
cis-1,2-Dichloroethene	ND		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	ND		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

0

			Respons	se Fact	or Rep	port 1	MSD_J			
M T L R	etho itle ast espor	d : C:\MSDCHEM : VOLATILE O Update : Mon Apr 27 nse via : Initial Ca	\1\METH RGANICS 15:36 librati	HODS\JA 5 BY EH 41 200 Ion	AW0420. PA METH)9	M (RTI IOD 82)	E Integ 50B	grator)		
С	alib	ration Files								
5 1	50	=J1922.D 100 =J1924.D 200	=J19 =J19	21.D 23.D	20 1) =	=J1918. =J1920.	D D		
_		Compound (ppb)	5	100	20	150	200	1	Avg	%RSD
1) т	Pentafluorobenzene			_					
2) T	Dichlorodifluoromet	0.745	0.730	0.760	0.683	0.662	0.842	0.737	8.60
3)	P	Chloromethane	0.777	0.758	0.820	0.674	0.807	0.821	0.776	7.21
4, 5)		Vinyl Chloride Bromomethano	0.661	0.679	0.708	0.674	0.725	0.654	0.684	4.03
6)	T	Chloroethane	0.518	0.464	0.523	0.430	0.440	0.598	0.495	12.81
7)	Т	Trichlorofluorometh	1.287	1.058	1.123	0.372	1.035	1.375	1.141	9.32 13.85
8)	Т	Acrolein	0.009	0.013	0.008	0.013	0.012	0.009	0.011	21.47
9) 10)	MC	1,1-Dichloroethene	0.508	0.599	0.615	0.607	0.653	0.751	0.622	12.73
11)	т Т	Carbon digulfide	0.279	0.249	0.269	0.232	0.235	0.318	0.264	12.37
12)	Ť	Vinyl acetate	1.907	1.913	2,111	1 836	2.054	1.8/2	1.888	5.54
13)	Т	Methylene chloride	0.715	0.664	0.736	0.664	0.694	0.820	0.716	8.17
14)	Т	Acrylonitrile	0.163	0.202	0.144	0.196	0.197	0.191	0.182	12.68
15)	T T	tert-Butyl alcohol	0.088	0.081	0.089	0.081	0.077	0.101	0.086	9.58
17)	Ť	Methyl tert-butyl e	0.391 2 147	0.628	0.659	0.628	0.669	0.711	0.614	18.48
18)	Ρ	1,1-Dichloroethane	0.987	1.041	1.054	1.026	1.094	2.185 0.970	2.119	2.43 4 39
19)	Т	Diisopropyl ether (1.640	1.687	1.830	1.647	1.713	1.806	1.721	4.68
20)	T	cis-1,2-Dichloroeth	0.609	0.637	0.678	0.651	0.667	0.669	0.652	3.93
$\frac{21}{22}$	т Т	2-Butanone (MEK)	0.520	0.527	0.560	0.488	0.517	0.529	0.524	4.42
23)	Ť	Bromochloromethane	0.409	0.408	0.340	0.289	0.292	0.384	0.329	11.62
25)	С	Chloroform	1.245	1.324	1.427	1.318	1.383	1.228	1.321	5.82
26)	Т	1,1,1-Trichloroetha	0.931	1.067	1.029	1.070	1.130	0.919	1.024	8.18
27)	T T	Carbon tetrachlorid	0.892	1.043	1.009	1.046	1.134	0.909	1.006	9.06
29)	Ť	1,2-Dichloroethane	1 246	0.870	0.890	0.857	0.895	0.865	0.866	3.13
30)	S	1,2-Dichloroethane-	0.752	0.650	0.711	0.604	1.204 0.621	0.734	1.290	5.41 9 15
31)	т	1 4-Difluorobongono				T (1775)				2.10
32)	M	Benzene	1.391	1.540	1.534	1 516	1 540	·	1 504	
33)	М	Trichloroethene	0.399	0.450	0.429	0.454	0.475	0.407	0.436	5.80
34)	C	1,2-Dichloropropane	0.379	0.421	0.435	0.423	0.430	0.393	0.413	5.39
35)	T	Dibromomethane	0.314	0.315	0.327	0.318	0.324	0.301	0.316	2.82
37)	т Т	Bromodichloromethan	0.003	0.005	0.003	0.005	0.005	0.003	0.004	21.92
38)	Ť	2-Chloroethyl vinyl	0.394 0.174	0.212	0.152	0.682	0.711	0.916	0.700	16.26
39)	Т	cis-1,3-Dichloropro	0.541	0.732	0.664	0.745	0.773	0.683	0.690	12.06
40)	Т	4-Methyl-2-pentanon	0.471	0.496	0.450	0.492	0.497	0.440	0.474	5.25
41) 42)	S MC	TOLUENE-d8	1.113	1.137	1.123	1.116	1.143	1.076	1.118	2.11
43)	T	trans-1.3-Dichlorop	0.9/4 N 950	1.079	1.074	1.074	1.112	1.055	1.061	4.41
44)	т	1,1,2-Trichloroetha	0.357	0.362	0.375	0.359	0.363	0.368	0.364	12.42 1 79
45)	T	Tetrachloroethene	0.381	0.427	0.410	0.425	0.449	0.483	0.429	8.03
46)	T	1,3-Dichloropropane	0.666	0.752	0.779	0.747	0.755	0.648	0.725	7.43
48)	Ť	2-nexamone Dibromochloromethan	0.301	0.403	0.335	0.400	0.407	0.322	0.361	13.09
49)	Î	1,2-Dibromoethane (0.424	0.593	0.508	0.618	0.645 0.531	0.717 0.418	0.584 0.486	17.80024 9.14

50)	I	Chlorobenzene-d5		 -		-TSTD-				
51)	MP	Chlorobenzene	1.034	1.044	1.096	1 060	1 068	1 153	1 076	4 02
52)	Т	1,1,1,2-Tetrachloro	0.350	0.411	0 398	0 425	0 435	1.100	1.070 A 20E	4.03
53)	С	Ethylbenzene	1.393	1.736	1 694	1 761	1 802	1 /20	1 627	10 73
54)	т	m,p-Xylene	0.570	0.637	0 665	0 630	1.002	1.432	1.037	10.73
55)	Т	o-Xylene	0.493	0 639	0 652	0.030	0.037	0.320	0.011	17 65
56)	т	Styrene	1.168	1.144	1 179	1 140	1 1/2	1 150	1 1 5 6	1 74
57)	Р	Bromoform	0.166	0.282	0 219	0 311	1.143	1.130 0 140	1.100	1.34
58)	T	Isopropylbenzene	1,123	1 605	1 513	1 656	1 720	1 676	1 540	20.72
59)	S	Bromofluorobenzene	0 548	0 572	0 569	0 575	1.720	1.070	1.549	14.24
60)	Ρ	1.1.2.2-Tetrachloro	0 505	0 482	0.500	0,070	0.000	0.509	0.570	2.28
61)	т	Bromobenzene	0 407	0.402	0.169	0.472	0.452	0.330	0.495	0.53
62)	Т	1,2,3-Trichloroprop	0 426	0.401	0.456	0.409	0.402	0.420	0.446	5.26
63)	Т	n-Propylbenzene	1 433	1 795	1 726	1 022	1 007	1 567	1 700	3.79
64)	т	2-Chlorotoluene	1 003	1 240	1 226	1 947	1 200	1.007	1.170	11 04
65)	т	1.3.5-Trimethylbenz	1 108	1 281	1 355	1 404	1 /20	1 022	1,1/0	11.84
66)	T	4-Chlorotoluene	1 236	1 476	1 497	1 407		1.035	1.207	13.32
67)	Т	tert-Butvlbenzene	0 727	1 030	1.407 A 931	1 051	1 000	1.750	1.49/	10.94
68)	т	1.2.4-Trimethylbenz	1 171	1 483	1 456	1 516	1.VOO 1 EEO	1 001	1 2 4	14.04
69 ⁾	T	sec-Butylbenzene	1 227	1 443	1 336	1 /02	1 500	1 240	1 376	16.46
70)	т	1.3-Dichlorobenzene	0 657	1,111	1.330 0 777	1.402 0.010	1.044	1.240	1.3/0	9.01
71)	Т	4-Isopropyltoluene	1 015	1 297	1 200	1 226	1 272	0.000	1 105	10.36
72)	T	1.4-Dichlorobenzepe	0 696	0 846	1.209	T.330	1.3/3	0.002	1.105	10.54
73)	т	n-Butvlbenzene	0.366	0.540	0.013	0.600	0.077	0.092	0.797	10.40
74)	т	1.2-Dichlorobenzene	0.720	0.342	0.4/4	0.349	0.000	0.002	0.307	14.98
75)	Т	1,2-Dibromo-3-chlor	0 060	0 100	0.027	0.199	0.004	0.004	0.700	0.78
76)	Т	1,2,4-Trichlorobenz	0 194	0.100	0.070	0.100	0.100	0.094	0.091	20.72
77)	\mathbf{T}	Hexachlorobutadiene	0.260	0 152	0.200	0.163	0.409	0.300	0.335	23.54
78)	Т	Naphthalene	0.815	1 308	0.140	1 397	1 410	0.257	1 111	20.03
79)	т	1.2.3-Trichlorobenz	0.243	0 354	0.283	1.207	1.410	0.004	0 244	23.93
80)	т	1,1,2-Trichloro-1,2	0 102	0.004	0.205	0.373	0.302 0 100	0.431	0.344	20.13
81)	т	Methyl acetate	0 241	0 185	0.1/4	0.197	0.100	0.149	0.109	22.09
82)	т	Cyclohexane	0.380	0 344	0.203	0.107	0.103	0.200	0.200	17 25
83)	т	Methylcyclohexane	0.247	0 227	0 202	0.000	0.044	0.010	V.JOZ 0. 000	T1.32
		·				v.22/	V.211	V.221	0.444	0.00
1 11 3	-	·								

(#) = Out of Range

JAW0420.M Mon Apr 27 15:36:44 2009 MANAGER

Instrument ID:	MSD_J
Method ID:	JAW0420
Date:	04/20/09

Average %RSD = 11.10

Refer to SW846 Method 8000B Section 7.5.1.

-

	Evaluate Continui:	ng Calibr	ation Rep	port		
Data 1 Acq Or Sample Misc MS Int	File : C:\MSDCHEM\1\DATA\04-2 n : 28 Apr 2009 1:52 am e : 100PPB,STD-100PPB,A,5m :	7-09\J208 l,100	4.D	Via Operato: Inst Multipl:	l: 31 r: BI : MS r: 1.	NXU D_J 00
110 111	•					
Methoo Title Last I Respor	d : C:\MSDCHEM\1\METHODS : VOLATILE ORGANICS BY Jpdate : Mon Apr 27 15:36:41 nse via : Single Level Calibra	S\JAW0420 Y EPA MET 2009 ation	.M (RTE 1 HOD 82601	Integrato: 3	c)	
Min. H Max. H	RRF : 0.000 Min. Rel. A RRF Dev : 35% Max. Rel. A	Area : 50 Area : 200	0% Max. 0%	R.T. Dev	0.50	Omin
	Compound	AvgRF	CCRF	%Dev A	irea%	Dev(min)
1 I 3 P 4 C 5 T 7 T 9 MC 10 T 12 T 13 T 14 T 16 T 17 P 10 T 13 T 14 T 16 T 17 P 19 T 10 T 12 T 14 T 16 T 17 T 19 T 10 T 12 T 14 T 15 T 16 T 17 T 18 P 10 T 12 T 14 T 15 T 16 T 17 T 18 P 10 T 12 T 14 T 17 T 18 P 10 T 12 T 14 T 17 T 19 T 10 T 12 T 14 T 17 T 18 P 10 T 12 T 18 P 10 T 12 T 18 P 10 T 12 T 18 P 10 T 17 T 18 P 10 T 17 T 18 P 10 T 17 T 18 P 10 T 17 T 18 P 19 T 17 T 18 P 10 T 17 T 18 P 19 T 17 T 18 P 19 S 19 S 10 S	Pentafluorobenzene Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acrolein 1,1-Dichloroethene Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile tert-Butyl alcohol (TBA) trans-1,2-Dichloroethene Methyl tert-butyl ether (MT 1,1-Dichloroethane Diisopropyl ether (DIPE) cis-1,2-Dichloroethene 2-Butanone (MEK) Bromochloromethane Tetrahydrofuran Chloroform 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane (EDC) 1,2-Dichloroethane-d4	1.000 0.776 0.684 0.495 0.422 1.141 0.011 0.622 0.264 1.888 1.972 0.716 0.182 0.086 0.614 2.119 1.029 1.721 0.652 0.329 0.416 0.165 1.321 1.024 1.024 1.024 1.024 1.029 0.465 0.321 1.024 1.024 1.024 1.024 1.024 1.025 0.321 1.024 1.024 1.024 1.025 0.866 1.290 0.679	1.000 0.652 0.638 0.472 0.384 0.924 0.011 0.585 0.274 1.760 1.496 0.648 0.150 0.094 0.607 2.123 0.936 1.461 0.599 0.318 0.383 0.119 1.283 1.105 1.035 0.825 1.278 0.929	$\begin{array}{c} 0.0\\ 16.0\\ 6.7\\ 4.6\\ 9.0\\ 19.0\\ 0.0\\ 5.9\\ -3.8\\ 6.8\\ 24.1\\ 9.5\\ 17.6\\ -9.3\\ 1.1\\ -0.2\\ 9.0\\ 15.1\\ 8.1\\ 3.3\\ 7.9\\ 27.9\\ 2.9\\ -7.9\\ 2.9\\ -7.9\\ 2.9\\ -7.9\\ 4.7\\ 0.9\\ -33.8\end{array}$	99 85 93 101 95 86 86 97 109 92 78 97 74 109 92 78 97 74 114 96 103 89 86 93 102 93 96 103 98 9101 142	0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
31 I 32 M 33 M 34 C 35 T 37 T 38 T 39 T 40 T 41 S 42 MC 43 T 44 T 45 T 46 T 46 T	1,4-Difluorobenzene Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl vinyl ether cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene-d8 Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane 2-Hexanone	1.000 1.506 0.436 0.316 0.700 0.192 0.690 0.474 1.118 1.061 0.804 0.364 0.429 0.725 0.361	1.000 1.281 0.400 0.336 0.271 0.533 0.132 0.512 0.448 1.415 0.887 0.533 0.295 0.357 0.634 0.368	$\begin{array}{c} 0.0\\ 14.9\\ 8.3\\ 18.6\\ 14.2\\ 23.9\\ 31.3\\ 25.8\\ 5.5\\ -26.6\\ 16.4\\ 33.7\\ 19.0\\ 16.8\\ 12.6\\ -1.9\end{array}$	112 93 100 89 96 89 70 78 101 139 92 79 91 94 94	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

48 49	T T	Dibromochloromethane	0.584	0.460	21.2	87	0.00
τJ	Ŧ	1,2-DIDIONOECHAILE (EDB)	0.486	0.437	10.1	96	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	116	0.00
51	MP	Chlorobenzene	1.076	0.856	20.4	95	0.01
52	Т	1,1,1,2-Tetrachloroethane	0.395	0.337	14.7	95	0.00
53	С	Ethylbenzene	1.637	1.405	14.2	94	0.00
54	Т	m,p-Xylene	0.611	0.526	13.9	96	0.00
55	Т	o-Xylene	0.576	0.525	8.9	96	0.00
56	Т	Styrene	1.156	0.947	18.1	96	0.00
57	Р	Bromoform	0.235	0.197	16.2	81	0.00
58	Т	Isopropylbenzene	1.549	1.319	14.8	95	0.00
59	S	Bromofluorobenzene	0.570	0.609	-6.8	124	0.01
60	P	1,1,2,2-Tetrachloroethane	0.495	0.398	19.6	96	-0.01
61	Т	Bromobenzene	0.446	0.381	14.6	98	0.00
62	Т	1,2,3-Trichloropropane	0.438	0.393	10.3	104	0.00
63	Т	n-Propylbenzene	1.708	1.478	13.5	96	-0.01
64	Т	2-Chlorotoluene	1.170	1.042	10.9	98	0.00
65	Т	1,3,5-Trimethylbenzene	1.287	1.157	10.1	97	0.00
66	Т	4-Chlorotoluene	1.497	1.241	17.1	98	0.00
67	Т	tert-Butylbenzene	0.953	0.857	10.1	97	0.00
68	Т	1,2,4-Trimethylbenzene	1.364	1.241	9.0	97	0.00
69	Т	sec-Butylbenzene	1.376	1.166	15.3	94	0.00
70	Т	1,3-Dichlorobenzene	0.753	0.671	10.9	98	0.00
71	Т	4-Isopropyltoluene	1.185	1.066	10.0	96	-0.01
72	Т	1,4-Dichlorobenzene	0.797	0.714	10.4	98	0.00
73	Т	n-Butylbenzene	0.507	0.426	16.0	91	0.00
74	Т	1,2-Dichlorobenzene	0.766	0.681	11.1	100	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.091	0.093	-2.2	108	0.00
76	Т	1,2,4-Trichlorobenzene	0.335	0.323	3.6	99	0.00
77	Т	Hexachlorobutadiene	0.189	0.125	33.9	95	0.00
78	Т	Naphthalene	1.111	1.268	-14.1	113	0.00
79	Т	1,2,3-Trichlorobenzene	0.344	0.326	5.2	107	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.169	0.120	29.0	69	0.00
81	Т	Methyl acetate	0.200	0.168	16.0	105	0.00
82	Т	Cyclohexane	0.382	0.255	33.2	86	0.00
83	Т	Methylcyclohexane	0.222	0.160	27.9	82	0.00
				· 			

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0420.M Tue Apr 28 14:40:39 2009 MANAGER

Data File : C:\MSDCHEM\1\DATA\04-30-09\J2187.D Vial: 4 Acq On : 30 Apr 2009 11:42 am Operator: BINXU : 100PPB, STD-100PPB, A, 5ml, 100 Sample Inst : MSD J Misc : Multiplr: 1.00MS Integration Params: LSCINT.P Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Single Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 35% Max. Rel. Area : 200%

Evaluate Continuing Calibration Report

		Compound	AvgRF	CCRF	%Dev Are	a% Dev(mi	n)
1	I	Pentafluorobenzene	1.000	1.000	0.0 1	21 0.00	-
2	Т	Dichlorodifluoromethane	0.737	0.480	34.9	79 0.00	
3	Ρ	Chloromethane	0.776	0.554	28.6	88 0.00	
4	С	Vinyl chloride	0.684	0.663	3.1 1	18 0.00	
5	т	Bromomethane	0.495	0.474	4.2 1	23 0.01	
6	Т	Chloroethane	0.422	0.364	13.7 1	10 0.00	
7	Т	Trichlorofluoromethane	1.141	1.160	-1.7 13	32 0.00	
8	Т	Acrolein	0.011	0.012	-9.1 1	07 0.00	
9	MC	1,1-Dichloroethene	0.622	0.587	5.6 1	18 0.00	
10	Т	Acetone	0.264	0.213	19.3 10	03 0.00	
11	Т	Carbon disulfide	1.888	1.736	8.1 11	11 0.00	
12	Т	Vinyl acetate	1.972	1.690	14.3 10	07 0.00	
13	Т	Methylene chloride	0.716	0.620	13.4 11	13 0.00	
14	Т	Acrylonitrile	0.182	0.148	18.7 8	89 0.00	
15	Т	tert-Butyl alcohol (TBA)	0.086	0.068	20.9 10	01 -0.01	
16	Т	trans-1,2-Dichloroethene	0.614	0.607	1.1 11	17 0.00	
17	Т	Methyl tert-butyl ether (MT	2.119	1.950	8.0 11	15 0.00	
18	Р	1,1-Dichloroethane	1.029	0.994	3.4 11	15 0.01	
19	Т	Diisopropyl ether (DIPE)	1.721	1.442	16.2 10	0.00	
20	Т	cis-1,2-Dichloroethene	0.652	0.599	8.1 11	14 0.00	
21	Т	2,2-Dichloropropane	0.524	0.589	-12.4 11	35 0.00	
22	Т	2-Butanone (MEK)	0.329	0.251	23.7 9	98 0.00	
23	т	Bromochloromethane	0.416	0.329	20.9 9	97 0.00	
25	С	Chloroform	1.321	1.207	8.6 11	10 0.00	
26	Т	1,1,1-Trichloroethane	1.024	1.105	-7.9 12	25 0.00	
27	Т	Carbon tetrachloride	1.006	1.139	-13.2 13	32 0.00	
28	Т	1,1-Dichloropropene	0.866	0.775	10.5 10	0.00	
29	Т	1,2-Dichloroethane (EDC)	1.290	1.238	4.0 11	19 0.00	
30	S	1,2-Dichloroethane-d4	0.679	0.738	-8.7 13	37 0.00	
31	I	1,4-Difluorobenzene	1.000	1.000	0.0 10	0.00	
32	М	Benzene	1.506	1.354	10.1 9	96 0.00	
33	М	Trichloroethene	0.436	0.443	-1.6 1(0.00	
34	C	1,2-Dichloropropane	0.413	0.360	12.8 9	93 0.00	
35	Т	Dibromomethane	0.316	0.302	4.4 10	0.00	
37	Т	Bromodichloromethane	0.700	0.669	4.4 11	10 -0.01	
38	т	2-Chloroethyl vinyl ether	0.192	0.151	21.4	78 0.00	
39	Т	cis-1,3-Dichloropropene	0.690	0.668	3.2 10	0.00	
40	Т	4-Methyl-2-pentanone (MIBK)	0.474	0.399	15.8 8	38 0.00	
41	S	Toluene-d8	1.118	1.176	-5.2 11	13 0.00	
42	MC	Toluene	1.061	0.996	6.1 10	0.00	
43	Т	trans-1,3-Dichloropropene	0.804	0.736	8.5 10	0.00	
44	Т	1,1,2-Trichloroethane	0.364	0.314	13.7 9	95 0.00	
45	Т	Tetrachloroethene	0.429	0.433	-0.9 11	11 0.00	0000
46	Т	1,3-Dichloropropane	0.725	0.674	7.0 9	98 0.00	UUZA

47 48 49	T T T	2-Hexanone Dibromochloromethane 1,2-Dibromoethane (EDB)	0.361 0.584 0.486	0.314 0.614 0.473	13.0 -5.1 2.7	85 113 101	0.00 0.00 -0.01
49 512355555555666666666677777777777777777777	1 T IMTCTTTPTSPTTTTTTTTTTTTTTTTTTTTT	<pre>Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene-d5 Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromofluorobenzene 1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene</pre>	0.584 0.486 1.000 1.076 0.395 1.637 0.611 0.576 1.156 0.235 1.549 0.570 0.495 0.446 0.438 1.708 1.708 1.170 1.287 1.497 0.953 1.364 1.376 0.753 1.185 0.797 0.507 0.507 0.507 0.507 0.766 0.091 0.335 0.189 1.111	0.614 0.473 1.000 1.071 0.463 1.827 0.670 0.662 1.198 0.311 1.752 0.608 0.450 0.453 1.918 1.361 1.543 1.644 1.125 1.644 1.539 0.858 1.436 0.903 0.568 0.372 0.372 1.245	$\begin{array}{c} -5.1\\ 2.7\\ 0.0\\ 0.5\\ -17.2\\ -11.6\\ -9.7\\ -14.9\\ -3.6\\ -32.3\\ -13.1\\ -6.7\\ 9.1\\ -10.5\\ -3.4\\ -12.3\\ -16.3\\ -19.9\\ -9.8\\ -16.3\\ -19.9\\ -9.8\\ -18.0\\ -20.5\\ -11.8\\ -13.9\\ -20.5\\ -11.8\\ -13.9\\ -21.2\\ -13.3\\ -12.0\\ -15.4\\ -11.0\\ 9.0\\ -12.1\end{array}$	113 101 102 104 115 107 105 107 105 107 112 111 108 95 111 109 112 114 113 109 110 107 109 113 109 107 107 107 107 107 105 107 100 105 107 100 105 107 100 100	$\begin{array}{c} -0.01 \\ 0.00 \\ 0$
79 80	T T	1,2,3-Trichlorobenzene 1,1,2-Trichloro-1,2,2-trifl	0.344 0.169	0.346 0.152 0.185	-0.6 10.1 7 5	99 76	0.00
81 82 83	T T	Methyl adecate Cyclohexane Methylcyclohexane	0.200 0.382 0.222	0.185 0.324 0.226	15.2 -1.8	96 101	0.00
<pre>(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0420.M Fri May 01 11:29:58 2009 MANAGER</pre>							

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J2086.D	116	95	86
03933-001	AQUEOUS	J2087.D	144	98	95
BLK-SPK	AQUEOUS	J2088.D	101	102	98
03980-001	AQUEOUS	J2089.D	111	94	80
03980-002	AQUEOUS	J2090.D	117	95	82
WATER-MS	AQUEOUS	J2093.D	110	95	89
WATER-MSD	AQUEOUS	J2094.D	116	95	89
03980-004	AQUEOUS	J2095.D	118	96	88
03980-005	AQUEOUS	J2096.D	122	96	89
03980-006	AQUEOUS	J2097.D	126	96	90
03980-007	AQUEOUS	J2098.D	124	98	88
03980-008	AQUEOUS	J2099.D	125	96	87
03980-009	AQUEOUS	J2100.D	125	97	88
03980-010	AQUEOUS	J2101.D	124	98	87
04103-004	AQUEOUS	J2102.D	127	97	85
04103-005	AQUEOUS	J2103.D	128	96	83
04103-006	AQUEOUS	J2104.D	126	97	85
03980-011	AQUEOUS	J2105.D	130	97	85

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	73-200	39-183
SMC2 = Toluene-d8	50 ppb	92-108	58-143
SMC3 = Bromofluorobenzene	50 ppb	77-107	50-152

Column to be used to flag recovery values

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed:	04/30/2009

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J2189.D	129	97	84
03975-001	AQUEOUS	J2190.D	131	9 7	84
03975-002	AQUEOUS	J2191.D	126	97	87
03975-003	AQUEOUS	J2192.D	131	96	88
BLK-SPK	AQUEOUS	J2193.D	113	105	104
03975-004	AQUEOUS	J2194.D	122	95	84
03975-005	AQUEOUS	J2195.D	126	97	81
03975-006	AQUEOUS	J2196.D	129	94	81
03975-007	AQUEOUS	J2197.D	136	97	84
03975-008	AQUEOUS	J2198.D	130	97	88
MS	AQUEOUS	J2199.D	136	95	86
MSD	AQUEOUS	J2200.D	141	97	88
03980-003	AQUEOUS	J2201.D	137	97	87
04201-001	AQUEOUS	J2202.D	143	98	84
04201-002	AQUEOUS	J2203.D	135	96	84
04201-003	AQUEOUS	J2204.D	147	97	84
04201-004	AQUEOUS	J2205.D	143	96	80

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	73-200	39-183
SMC2 = Toluene-d8	50 ppb	92-108	58-143
SMC3 = Bromofluorobenzene	50 ppb	77-107	50-152

Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	WATER-MSD
-----------------------------	-----------

Batch No.: JAW0427P

	SPIKE	SAMPLE	MS	MS	QC	
Compound	ADDED	CONC.	CONC.	%	LIMITS	
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.	
1,1-Dichloroethene	50.0	0.0	34.4	69	34 - 149	
Benzene	50.0	0.0	35.6	71	45 - 136	
Trichloroethene	50.0	0.0	36.4	73	40 - 147	
Toluene	50.0	0.0	35.2	70	43 - 137	
Chlorobenzene	50.0	0.0	38.5	77	45 - 144	

	SAMPLE	MSD	MSD			
Compound	CONC.	CONC.	%	%	QC LIN	1ITS
	(ug/L)	(ug/L)	# REC	RPD #	RPD	REC.
1,1-Dichloroethene	0.0	33.1	66	4	19	34 - 149
Benzene	0.0	37.1	74	4	15	45 - 136
Trichloroethene	0.0	37.2	74	1	18	40 - 147
Toluene	0.0	36.2	72	3	16	43 - 137
Chlorobenzene	0.0	39.7	79	3	16	45 - 144

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab File ID (Standard):
 J1921.D
 Date Analyzed:
 04/20/2009

 Instrument ID:
 MSD_J
 Time Analyzed:
 3:58

	50116/1	161				00	
	COOCIE					153	
				AREA #	RI #	AREA #	RI #
	12 HOUR STD	284018	6.1/	467648	6.99	609950	10.33
		568036	6.67	935296	7.49	1219900	10.83
i	LOWER LIMIT	142009	5.67	233824	6.49	304975	9.83
	LAB SAMPLE						
	ID						
01	STD-20PPB	248220	6.17	433803	6.99	554387	10.33
02	STD-1PPB	271039	6.17	455653	6.99	565406	10.33
03	STD-5PPB	242600	6.17	417701	6,99	526179	10.33
04	STD-200PPB	290887	6.17	476462	6.99	622359	10.33
05	STD-150PPB	309351	6.17	501095	6.99	640411	10.33
06			1	·····			
07							
08							
09		· · · · · · · · · · · · · · · · · · ·	<u> </u>				
10		· · · · · · · · · · · · · · · · · · ·	╂─────┼				
11			<u>├───</u> ┤				i
12			<u> </u>				
13							
14			┟╼╼╍╌╴┟				
15							
16					······		
17							
18		- 'ab	· · · · ·				
10			· · · · ·				
19	<u></u>						
200							
21							
۷۲							

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

Instrument ID:

J2084.D MSD_J

Date Analyzed: 04/28/2009

Time Analyzed: 1:52

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	281501	6.17	523616	6.99	708673	10.33
UPPER LIMIT	563002	6.67	1047232	7.49	1417346	10.83
LOWER LIMIT	140750.5	5.67	261808	6.49	354336.5	9.83
LAB SAMPLE						
ID						
01 METHOD-BLK	352140	6.18	536189	7.00	609739	10.33
02 03933-001	197459	6.18	390306	7.00	469640	10.33
03 BLK-SPK	408944	6.18	618784	7.00	713287	10.33
04 03980-001	383261	6.17	579450	7.00	634855	10.33
05 03980-002	368415	6.18	561639	7.00	637980	10.33
06 WATER-MS	391980	6.17	611450	6.99	697210	10.33
07 WATER-MSD	366961	6.17	573979	6.99	664690	10.33
08 03980-004	358261	6.17	551479	7.00	649585	10.33
0903980-005	341678	6.18	530594	7.00	633317	10.33
10 03980-006	321797	6.17	512544	7.00	620935	10.33
11 03980-007	319244	6.18	495509	7.00	602134	10.33
12 03980-008	322238	6.18	510452	7.00	587575	10.33
13 03980-009	322627	6.17	501646	7.00	584402	10.33
14 03980-010	325237	6.18	508805	7.00	603582	10.33
1504103-004	311658	6.18	501694	7.00	591180	10.33
16 04103-005	301366	6.18	489342	7.00	579851	10.33
17 04103-006	272077	6.18	439834	7.00	516729	10.33
1803980-011	269876	6.18	435771	7.00	508822	10.33
19						
20						
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

٠

* Values outside of QC limits.

FORM 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

Instrument ID:

J2187.D MSD J Date Analyzed: 04/30/2009

Time Analyzed: 11:42

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	342894	6.17	510434	6.99	620628	10.33
UPPER LIMIT	685788	6.67	1020868	7.49	1241256	10.83
LOWER LIMIT	171447	5.67	255217	6.49	310314	9.83
LAB SAMPLE						
ID						
1 METHOD-BLK	282908	6.17	433435	6.99	501309	10.33
2 03975-001	286206	6.17	435937	6.99	510437	10.33
3 03975-002	285141	6.17	437501	6.99	516310	10.33
4 03975-003	280931	6.17	439938	6.99	508101	10.33
5 BLK-SPK	292271	6.17	438392	6.99	531769	10.33
6 03975-004	306009	6.17	460238	6.99	524377	10.33
7 03975-005	275771	6.17	420024	6.99	497878	10.33
8 03975-006	253872	6.17	399148	6.99	462405	10.33
903975-007	198444	6.17	308504	6.99	362019	10.33
0 03975-008	256406	6.17	394528	6.99	469616	10.33
1 MS	211147	6.17	340804	6.99	394377	10.33
2 MSD	244852	6.17	397061	6.99	472029	10.33
3 03980-003	225820	6.17	346810	7.00	403959	10.33
4 04201-001	203597	6.17	317584	7.00	378980	10.33
5 04201-002	201360	6.17	312938	7.00	374785	10.33
6 04201-003	190614	6.17	301712	7.00	361496	10.33
7 04201-004	189237	6.17	294772	7.00	342501	10.33
8						
9						ļ
0						L
1						
2						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2089.D Vial: 36

 Acq On
 : 28 Apr 2009
 4:15 am
 Operator: BINXU

 Sample
 : PTW-2,03980-001,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/21/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 04:35:11 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title: VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716838326150.00UG0.0031) 1,4-Difluorobenzene7.0011457945050.00UG0.0150) Chlorobenzene-d510.3311763485550.00UG0.00

 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.51
 65
 288555
 55.48
 UG
 0.01

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 110.96%

 41) Toluene-d8
 8.66
 98
 609624
 47.05
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 =
 94.10%

 59) Bromofluorobenzene
 11.74
 95
 290418
 40.11
 UG
 0.01

 Spiked Amount 50.000 Range 23 - 145 Recovery = 80.22% Qvalue Target Compounds 4) Vinyl chloride2.09624274m0.82UG16) trans-1,2-Dichloroethene4.42963375m0.72UG18) 1,1-Dichloroethane4.9163148101.88UG20) cis-1,2-Dichloroethene5.579665421.31UG#33) Trichloroethene7.309577651.54UG# - 99 95 55

(#) = qualifier out of range (m) = manual integration J2089.D JAW0420.M Fri May 01 13:55:21 2009 MANAGER

. . . . **. . . .** . . .

Quantitation Report (QT Reviewed) Vial: 36 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2089.D **Operator: BINXU** Acq On : 28 Apr 2009 4:15 am Sample : PTW-2,03980-001,A,5ml,100 Inst : MSD J Misc : ARCADIS/KINGS ELEC,04/21/09,04/22/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 14:32 2009 Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration TIC: J2089.D Abundance 1050000 1000000 950000 900000 Chlorobenzene-d5. Foluene-d8,S 850000 Bromofiuorobenzene,S 800000 750000 1,4-Difluorobenzene,1 700000 Pentafluorobenzene,I 650000 600000 550000 500000 450000 I,2-Dichloroethane-d4,S 400000 350000 300000 250000 200000 ans-1,2-Dichloroethene,T cis-1,2-Dichloroethene,T 1,1-Dichlaroethane,P inchloroethene, M 150000 chlaride 100000 ž 50000 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 5.00 6.00 7.00 8.00 9.00 Time---> 2.00 3.00 4.00

Quantit	ation Repor	st (QT Review	ed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 28 Apr 2009 4:4 Sample : MW-13R,03980-002,2 Misc : ARCADIS/KINGS_ELE MS Integration Params: LSCINT Ouant Time: Apr 28 05:03:44 2	\04-27-09\J 3 am A,5ml,100 C,04/21/09, .P 009	J2090.E 04/22/ Oua	Ope In: 09, Mui	Vial: erator: st : ltiplr: s File:	37 BINXU MSD_J 1.00 JAW0420	RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Mon Apr 27 15: Response via : Initial Calibra DataAcq Meth : JAW0420	ETHODS\JAWO ICS BY EPA 36:41 2009 ation	- 0420.M METHOD	(RTE Integ 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.18 7.00 10.33	168 114 117	368415 561639 637980	50.00 50.00 50.00	UG UG UG	0.01 0.01 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.51 Range 43 8.66 Range 39 11.74 Range 23	65 - 133 98 - 137 95 - 145	291839 Recover 597943 Recover 297917 Recover	58.37 Fy = 47.61 Fy = 40.95 Fy =	UG 116.74% UG 95.22% UG 81.90%	0.01 0.00 0.01
Target Compounds					Qva	alue
4) Vinyl chloride 18) 1,1-Dichloroethane	2.08 4.91	62 63	2752m 6003	0.55	UG UG	99
33) Trichloroethene	5.57 7.29	96 95	4096 5798	0.85 1.18	UG # UG	99 91

------_____

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

			Quar	ntitati	on Re	port	(QT Re	viewed)		
Data Acq Samp Misc MS	a File : On : ple : c : Integrati	C:\MSD 28 Apr MW-13R ARCADI on Para	CHEM 2009 ,0398 S/KIN ams:	1\DATA 4:4 0-002, IGS_ELE LSCINT	\04-2 3 am A,5ml C,04/ .P	7-09\J ,100 21/09,	2090.D 04/22/09	Opera Inst , Mult:	/ial: ator: ; iplr:	37 BINXU MSD_J 1.00
Quar	nt Time:	Apr 28	14:3	3 2009			Quant	Results H	ile:	JAW0420.RES
Meth Tit Last Res <u>r</u> Abunganoo	nod le t Update ponse via	: C:\l : VOL : Mon : Ini;	MSDCH ATILE Apr tial	HEM\1\M C ORGAN 27 15: Calibr	ETHOD ICS E 36:41 ation	S\JAW0 Y EPA 2009 TIC: J2090.[420.M (R METHOD 8	TE Integra 260B	ator)	i
1100000										
1050000										
1000000										
950000	-					ne-d5,1				
900000	- - -				ene-d8,5	Yobenzer	Ø			
850000				1		CH	benzene			
800000							mofluorot			
750000				enzene,l			2			
700000				Difluorob						
650000			-	4						
600000			benzene							•
550000			entañuorr							
500000			<u>م</u>							
450000			ane-d4,S		ĺ					
400000			chloroeth		• • •					
350000			1,2-Di		-					
300000										
250000										
200000		L e								
150000	o	sthane, P oroethen		M, end, M						
100000	chloride	Dichlorae 1.2-Dichl		chloroett						
50000	, Nul	1,1-1 ds-		Ę						
0 Time>	2.00 3.00 4	^ .00 5.00	6.00 7		9.00 10	.00 11.00	12.00 13.00 14	1.00 15.00 16.00	17.00 1	8.00 19.00
· · · · · · · · · · · · · · · · · · ·										

J2090.D JAW0420.M Fri May 01 13:55:35 2009 MANAGER

Quantita	tion Repor	rt	(QT Review	red)		
Data File : C:\MSDCHEM\1\DATA\ Acq On : 30 Apr 2009 6:18 Sample : MW-6S,03980-003,A, Misc : ARCADIS/KINGS_ELEC MS Integration Params: LSCINT. Quant Time: Apr 30 18:38:18 20	04-30-09\J pm 5ml,100 TRONICS,4/ P 09	J2201.1 /21/09, Qua	O D In ,4/22/0 Mu ant Result	Vial: erator: st : ltiplr: s File:	16 BINXU MSD_J 1.00 JAW04	20.RES
Quant Method : C:\MSDCHEM\1\ME Title : VOLATILE ORGANI Last Update : Mon Apr 27 15:3 Response via : Initial Calibra DataAcq Meth : JAW0420	THODS\JAWO CS BY EPA 6:41 2009 tion)420.M METHOI	(RTE Inte) 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	its D	ev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.17 7.00 10.33	168 114 117	225820 346810 403959	50.00 50.00 50.00	UG UG UG	0.00 0.01 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.50 Range 43 8.66 Range 39 11.74 Range 23	65 - 133 98 - 137 95 - 145	210155 Recove 376280 Recove 199840 Recove	68.57 ry = 48.52 ry = 43.38 ry =	UG 137.1- UG 97.0- UG 86.7-	0.00 4%# 0.00 4% 0.01 6%
Target Compounds 18) 1,1-Dichloroethane 26) 1,1,1-Trichloroethane 33) Trichloroethene 45) Tetrachloroethene	4.91 6.15 7.29 9.37	63 97 95 166	1775 29181 102337 10541	0.38 6.31 33.87 3.54	UG UG UG UG	Qvalue # 97 # 100 91 # 98

		Quan	titatio	on Rep	ort	(QT Reviewe	ed)							
Data Acq Samp Misc	A File : C:\ On : 30 Dle : MW- C : ARC	MSDCHEM Apr 2009 6S,03980 ADIS/KIN	1\DATA\ 6:18 -003,A, GS_ELEC	04-30 pm 5ml,1 CTRONI	-09\J2 00 CS,4/2	201.D 1/09,4/22/0	Vial: Operator: Inst : Multiplr:	16 BINXU MSD_J 1.00						
MS I Quan	Integration it Time: May	Params: 7 1 13:5	LSCINT. 3 2009	. P		Quant Res	ults File:	JAW0420.RES						
Meth	iod :	C:\MSDCH	EM\1\ME	THODS	JAW04	20.M (RTE I	ntegrator)							
Titl Last	e : Update :	VOLATILE Mon Apr	ORGANI 27 15:3	CS BY	EPA M 2009	ETHOD 8260B								
Resp Abundance	onse via :	Initial	Calibra	ation Tic	: J2201.D									
750000														
700000														
650000														
600000			Toluene-d8	Ċ	Critory Sinzerie, S									
550000			1		Bromofluorobe									
500000		-	anzene,											
450000		lorobenzene, l												
400000		Pentaflı	M.											
350000		-d4,S	richloroethen											
300000	· · · ·	ichloroethane												
250000		ne,T 1,2-D												
200000		Trichloroeths												
150000				thene,T										
100000		hioroethane,F		Tetrachloroe										
50000		1,1-Did												
0. Time>	2.00 3.00 4.00	5.00 6.00 7.	00 8.00 9	9.00 10.00	11.00 12	.00 13.00 14.00 15.	00 16.00 17.00 1	8.00 19.00						

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2095.D Vial: 42

 Acq On
 : 28 Apr 2009
 7:05 am
 Operator: BINXU

 Sample
 : GP-103R,03980-004,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/22/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 07:25:22 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcq Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Pentafluorobenzene6.1716835826150.00UG0.0031) 1,4-Difluorobenzene7.0011455147950.00UG0.0150) Chlorobenzene-d510.3311764958550.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506528632558.89UG0.00Spiked Amount50.000Range 43 - 133Recovery = 117.78%0.0041) Toluene-d88.669859188348.00UG0.00Spiked Amount50.000Range 39 - 137Recovery = 96.00%0.0059) Bromofluorobenzene11.749532761844.23UG0.01Spiked Amount50.000Range 23 - 145Recovery = 88.46%0.01 Ovalue Target Compounds 2.08 62 53512 10.93 UG 100 4) Vinyl chloride 16)trans-1,2-Dichloroethene4.41967936m1.80UG20)cis-1,2-Dichloroethene5.5796150203.22UG#9933)Trichloroethene7.299515510.32UG89

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\04-27-09\J2095.D Vial: 42 **Operator: BINXU** Acq On : 28 Apr 2009 7:05 am : MSD J : GP-103R,03980-004,A,5ml,100 Inst Sample : ARCADIS/KINGS_ELEC,04/22/09,04/22/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 14:28 2009 : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Method : VOLATILE ORGANICS BY EPA METHOD 8260B Title Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration TIC: J2095.D Abundance 1250000 1200000 1150000 1100000 Chlorobenzene-d5,l 1050000 1000000 3romofluorobenzene,S Foluene-d8,5 950000 900000 850000 800000 750000 1,4-Difluorobenzene,1 700000 Pentafluorobenzene,I 650000 600000 550000 500000 1,2-Dichloroethane-d4,S 450000 400000 350000 300000 250000 rans-1,2-Dichloroethene,T cis-1,2-Dichlomethene,T 200000 nchloroethene, M 150000 chloride, C 100000 Į 50000 Ω 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 2.bò 3.00 4.00 5.00 6.00 7.00 8.00 9.00 Time-->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2096.D Acq On : 28 Apr 2009 7:33 am Sample : GP-104R,03980-005,A,5ml,100 Vial: 43 Vial: 43 Operator: BINXU
 Acq on
 20 Apr 2009
 7.55 am

 Sample
 : GP-104R,03980-005,A,5ml,100
 Inst
 : MSD_0

 Misc
 : ARCADIS/KINGS_ELEC,04/22/09,04/22/09,
 Multiplr: 1.00
 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Apr 28 07:53:39 2009 Quant Results File: JAW0420.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcq Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene6.1816834167850.00UG0.0131) 1,4-Difluorobenzene7.0011453059450.00UG0.0150) Chlorobenzene-d510.3311763331750.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506528391661.23UG0.00Spiked Amount50.000Range43 - 133Recovery=122.46%41) Toluene-d88.669856782447.86UG0.00Spiked Amount50.000Range39 - 137Recovery=95.72%59) Bromofluorobenzene11.749532312644.74UG0.01Spiked Amount50.000Range23 - 145Recovery=89.48% Target Compounds Qvalue 16)trans-1,2-Dichloroethene4.429631850.76UG#10018)1,1-Dichloroethane4.916355450.79UG#8720)cis-1,2-Dichloroethene5.579651731.16UG#7033)Trichloroethene7.309552411.13UG89

(#) = qualifier out of range (m) = manual integration

Quantitation Report (QT Reviewed) Vial: 43 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2096.D **Operator: BINXU** : 28 Apr 2009 7:33 am Acq On : MSD J : GP-104R,03980-005,A,5ml,100 Inst Sample : ARCADIS/KINGS_ELEC,04/22/09,04/22/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Ouant Results File: JAW0420.RES Quant Time: Apr 28 14:28 2009 : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration TIC: J2096.D Abundance 1200000 1150000 1100000 1050000 Ghlorobenzene-d5, 1000000 Bromofluorobenzene,S 950000 Foluene-d8,S 900000 850000 800000 750000 1,4-Difluorobenzene,1 700000 650000 Pentafluorobenzene,1 600000 550000 500000 1,2-Dichloroethane-d4,S 450000 400000 350000 300000 250000 rans-1,2-Dichloroethene,T 200000 cis-1,2-Dichloroethene,T 1,1-Dichloroethane,P **Frichloroethene**, M 150000 100000 50000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 8.00 3.00 4.00 5.00 6.00 Time--> 2.00

Quantitation Report (QT Reviewed) Vial: 44 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2097.D

 Acq On
 : 28 Apr 2009
 8:01 am
 Operator: BINXU

 Sample
 : MW-9SR,03980-006,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/22/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 08:21:46 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title: VOLATILE ORGANICS BY EPA METHOD 8260BLast Update: Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716832179750.00UG0.0031) 1,4-Difluorobenzene7.0011451254450.00UG0.0150) Chlorobenzene-d510.3311762093550.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506527535063.05UG0.00Spiked Amount50.000Range43 - 133Recovery=126.10%41) Toluene-d88.669855294848.25UG0.00Spiked Amount50.000Range39 - 137Recovery=96.50%59) Bromofluorobenzene11.749532028845.23UG0.01Spiked Amount50.000Range23 - 145Recovery=90.46% Ovalue Target Compounds 4) Vinyl chloride2.09623332m0.76UG16) trans-1,2-Dichloroethene4.41965172m1.31UG18) 1,1-Dichloroethane4.916358040.88UG20) cis-1,2-Dichloroethene5.579627580.66UG# 99 91

(QT Reviewed) Quantitation Report Vial: 44 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2097.D Operator: BINXU : 28 Apr 2009 8:01 am Acq On : MW-9SR,03980-006,A,5ml,100 Inst : MSD J Sample : ARCADIS/KINGS ELEC,04/22/09,04/22/09, Multiplr: $1.0\overline{0}$ Misc MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 14:29 2009 : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Method : VOLATILE ORGANICS BY EPA METHOD 8260B Title Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration TIC: J2097.D Abundance 1150000 1100000 1050000 1000000 Chlorobenzene-d5,| 950000 Bromofluorobenzene,S Foluene-d8,S 900000 850000 800000 750000 1,4-Difluorobenzene,l 700000 650000 Pentafluorobenzene, 600000 550000 500000 I,2-Dichloroethane-d4,S 450000 400000 350000 300000 250000 rans-1,2-Dichloroethene,T 200000 cis-1,2-Dichloroethene,T 1,1-Dichloroethane,P 150000 chloride.C 100000 λ 50000 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 2.00 Time->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2098.D Vial: 45 Acq On : 28 Apr 2009 8:29 am Operator: BINXU : MW-9D,03980-007,A,5ml,100 Inst : MSD J Sample Misc : ARCADIS/KINGS_ELEC,04/22/09,04/22/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Ouant Time: Apr 28 08:49:49 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title: VOLATILE ORGANICS BY EPA METHOD 8260BLast Update: Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcq Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816831924450.00UG0.0131) 1,4-Difluorobenzene7.0011449550950.00UG0.0150) Chlorobenzene-d510.3311760213450.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506526951562.21UG0.00Spiked Amount50.000Range 43 - 133Recovery = 124.42%41) Toluene-d88.669854361049.07UG0.00Spiked Amount50.000Range 39 - 137Recovery = 98.14%59) Bromofluorobenzene11.749530363844.22UG0.01Spiked Amount50.000Range 23 - 145Recovery = 88.44%88.44%

Target Compounds

Qvalue

				Qua	ntit	tati	on R	lepo	rt	(QT	' Rev	viewe	ed)			
Data Acq Samp Misc MS II	File : On : le : ntegrat	C:\ 28 MW- ARC ion	MSD Apr 9D, ADI Para	CHEM 200 0398 S/KI ams: 14	\1\1 9 0-00 NGS LS	ATA 8:2 7,A ELE CINT	\04- 9 am ,5ml C,04 .P	27- 1 ,10 1/22	09\J2 0 /09,(2098. 94/22 Ou	D /09	Rest	Ope: Insi Muli	Vial: rator: t : tiplr: File:	45 BINXU MSD_J 1.00 JAW0420	RES
Quan	t lime:	Арт	. 20	14:	27 4			- 1		20						
Meth	od e	:	C:\I VOL	MSDC ATIL	HEM` E OI	\1\M RGAN	ETHC ICS	DS\ BY	JAW04 EPA N	l20.M 1ETHC	I (R'. D 8:	ΓΕ 11 260Β	nteg	rator)		
Last	Update	:	Mon	Apr	27	15:	36:4	1 2	009							
Resp Abundance	onse vi	<u>a :</u>	TUT	LIAL			auro	TIC:	J2098.D							
1150000																
1050000																
1000000								_								
950000								tzene-d5,								
900000	але 13 С									C'allezi						
850000							Tolu									
800000									a a a a a a a a a a a a a a a a a a a	6						
750000																:
700000					rene,l											!
650000					Juorobenz			ß								
600000				-	1, 4 -Di					ļ						
550000				benzene,												
500000	1			lafluor												
450000				ne-dd S												ļ
400000				a the most of the second se												
350000				- - - - - -												
300000																
250000																
200000																
150000																
100000																
50000							e e e									
0 Time>	2.00 3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00 1	3.00 1	4.00 1	5.00 16	5.00 17.00	18.00 19.00	· · · · ·
Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2099.D Vial: 46

 Acq On
 : 28 Apr 2009
 8:58 am
 Operator: BINXU

 Sample
 : DUP(042109),03980-008,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/21/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 09:18:23 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816832223850.00UG0.0131) 1,4-Difluorobenzene7.0011451045250.00UG0.0150) Chlorobenzene-d510.3311758757550.00UG0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.50 65 273740 62.59 UG Spiked Amount 50.000 Range 43 - 133 Recovery = 125.18% 0.00 41) Toluene-d88.669854781748.00 UG0.00Spiked Amount50.000Range39 - 137Recovery=96.00%59) Bromofluorobenzene11.749529134843.48 UG0.01 Spiked Amount 50.000 Range 23 - 145 Recovery = 86.96% Ovalue Target Compounds # 94 2392 0.54 UG 4) Vinyl chloride 2.07 62 4) Vinyi chioride2.07022.0918) 1,1-Dichloroethane4.906358100.88UG10020) cis-1,2-Dichloroethene5.579637490.89UG#9833) Trichloroethene7.299553621.21UG#28

_ _ _ _ _ _ _ _ _ _ _ _ _

Quantitation Report (QT Reviewed) Vial: 46 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2099.D Acq On : 28 Apr 2009 **Operator: BINXU** 8:58 am Sample : DUP(042109),03980-008,A,5ml,100 Inst : MSD J Misc : ARCADIS/KINGS ELEC,04/21/09,04/22/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Time: Apr 28 14:30 2009 Ouant Results File: JAW0420.RES Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration TIC: J2099.D Abundance 1100000 1050000 1000000 Shlorobenzene-d5. 950000 900000 Oluene-d8,S Bromofluorobenzene, S 850000 800000 750000 1,4-Diffuorobenzene,1 700000 650000 600000 Pentafluorobenzene, I 550000 500000 450000 1,2-Dichloroethane-d4,5 400000 350000 300000 250000 200000 cis-1,2-Dichloroethene,T 1,1-Dichloroethane,P 150000 **Frichloroethene**,M chloride.C 100000 Zinv 50000 n 6.00 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 8.00 2.00 3.00 4.00 5.00 Time-->

Fri May 01 13:56:48 2009

Quantitation Report (QT Reviewed) Vial: 47 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2100.D Acq On : 28 Apr 2009 9:26 am Operator: BINXU

 Acq On
 : 28 Apr 2009 9:26 am
 Operator: BINKO

 Sample
 : FB(042109),03980-009,A,5ml,100
 Inst : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/21/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 09:46:39 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Pentafluorobenzene6.1716832262750.00UG0.0031) 1,4-Difluorobenzene7.0011450164650.00UG0.0150) Chlorobenzene-d510.3311758440250.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.506527399662.58UG0.00Spiked Amount50.000Range 43 - 133Recovery = 125.16%0.0041) Toluene-d88.669854555148.64UG0.00Spiked Amount50.000Range 39 - 137Recovery = 97.28%0.0159) Bromofluorobenzene11.749529216843.84UG0.01Spiked Amount50.000Range 23 - 145Recovery = 87.68%87.68%

Target Compounds

Qvalue

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

		Quan	titation :	Report	(QT Revi	ewed)	
Data Acq Samp Misc MS I Quar	A File : C: On : 28 ple : FE C : AF Integration nt Time: Ap	\MSDCHEM\ 3 Apr 2009 3(042109), 3(CADIS/KIN 1 Params: 5 28 14:3	1\DATA\04 9:26 au 03980-009 GS_ELEC,0 LSCINT.P 0 2009	-27-09\J; m ,A,5ml,10 4/21/09,0	2100.D)0)4/22/09, Quant Re	Vial: Operator: Inst : Multiplr: esults File:	47 BINXU MSD_J 1.00 JAW0420.RES
Meth Tit] Last Resp	nod : le : Update : ponse via :	C:\MSDCH VOLATILE Mon Apr Initial	EM\1\METH ORGANICS 27 15:36: Calibrati	ODS\JAW04 BY EPA 1 41 2009 On TIC: J2100D	20.M (RTE METHOD 826	Integrator) 0B	
40000ance				110.02100.0			
1050000							
1000000							
950000				15, I			
900000			ŝ	enzene.	2		
850000			oluen e -d	Chlorot			
800000			F				
750000					5		
700000	*	-					
650000		-	0060/261				
600000		Zene,l			i		
600000		luoroben	-				
550000		Pentaf		Р.			
500000		l si					
450000		thane-d4					
400000		Dichloroe		ŕ			
350000		1,2-[
300000							
250000). 						
200000							
150000				1			
100000) [
50000							
C Time_>	2.00 3.00 4.00	5.00 6.00 7	.00 8.00 9.00	10.00 11.00	12.00 13.00 14.00) 15.00 16.00 17.00	18.00 19.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2101.D Vial: 48 Acq On: 28 Apr 20099:55 amOperator: BINXUSample: FB(042209),03980-010,A,5ml,100Inst: MSD_JMisc: ARCADIS/KINGS ELEC,04/22/09,04/22/09,Multiplr: 1.00MS Integration Paramet USCINT D MS Integration Params: LSCINT.P Quant Time: Apr 28 10:15:11 2009 Quant Results File: JAW0420.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcq Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816832523750.00UG0.0131) 1,4-Difluorobenzene7.0011450880550.00UG0.0150) Chlorobenzene-d510.3311760358250.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.516527338961.94UG0.01Spiked Amount50.000Range 43 - 133Recovery = 123.88%41) Toluene-d88.669855747549.00UG0.00Spiked Amount50.000Range 39 - 137Recovery = 98.00%0.0159) Bromofluorobenzene11.749529885943.42UG0.01Spiked Amount50.000Range 23 - 145Recovery = 86.84%86.84%

Target Compounds

(#) = qualifier out of range (m) = manual integration
J2101.D JAW0420.M Fri May 01 13:57:17 2009 MANAGER Page

Ovalue

	Quantitation Rep	ort (QT Reviewed)
Data Acq Samp Misc MS I Quan	File : C:\MSDCHEM\1\DATA\04-27 On : 28 Apr 2009 9:55 am ole : FB(042209),03980-010,A, : : ARCADIS/KINGS_ELEC,04/2 Integration Params: LSCINT.P at Time: Apr 28 14:30 2009	-09\J2101.D Vial: 48 Operator: BINXU 5ml,100 Inst : MSD_J 2/09,04/22/09, Multiplr: 1.00 Quant Results File: JAW0420.RES
Meth Titl Last Resp	od : C:\MSDCHEM\1\METHODS e : VOLATILE ORGANICS BY Update : Mon Apr 27 15:36:41 ponse via : Initial Calibration	JAW0420.M (RTE Integrator) EPA METHOD 8260B 2009
Abundance		
1100000		
1050000		
1000000		
950000		35-au
900000	හ. භ ච භ	0. Original contraction of the c
850000	Totten	
800000		
750000	Ū	E .
700000	opeuz eu	
650000	-+ Diftuon	
600000		
550000		
500000	Pentaflu	
450000	학 2년 2년	
400000		
350000	1,2-Dich	
300000		
250000		
200000		
150000		
100000		
50000		
0 Time->	2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0	00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-27-09\J2105.D Vial: 48

 Acq On
 : 28 Apr 2009 11:48 am
 Operator: BINXU

 Sample
 : TB(042209),03980-011,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,04/22/09,04/22/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 28 12:08:36 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816826987650.00UG0.0131) 1,4-Difluorobenzene7.0011443577150.00UG0.0150) Chlorobenzene-d510.3311750882250.00UG0.00

 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.50
 65
 238483
 65.11
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 = 130.22%

 41) Toluene-d8
 8.66
 98
 474373
 48.69
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 = 97.38%

 59) Bromofluorobenzene
 11.74
 95
 246831
 42.54
 UG
 0.01

 Spiked Amount 50.000 Range 23 - 145 Recovery = 85.08%

Target Compounds

Qvalue

		Qua	ntitati	on Rep	ort	(QT R	leviewe	d)	
Data Acq Samp Misc MS 1	A File : C: On : 28 Dle : TH C : AF	MSDCHEM Apr 200 (042209) CADIS/KI Params:	\1\DATA 9 11:4 ,03980- NGS_ELE LSCINT	\04-27 8 am 011,A, C,04/2	-09\J2 5ml,10 2/09,0	2105.D)0)4/22/0	9,	Vial: Operator: Inst : Multiplr:	48 BINXU MSD_J 1.00
Quar	nt Time: Ar	or 28 14:	31 2009			Quan	it Resu	lts File:	JAW0420.RES
Meth Tit] Last <u>Resp</u>	nod : Le : Update : ponse via :	C:\MSDC VOLATIL Mon Apr Initial	HEM\1\M E ORGAN 27 15: Calibra	ETHODS ICS BY 36:41 ation	\JAW04 EPA N 2009	120.M (IETHOD	RTE In 8260B	tegrator)	
Abundance				i n	J2105.D				
950000									
900000									
850000									
800000			د 9	2	benzene- dt				
750000				-	Chlore Chlore				
700000			F	-					
650000						5			
600000			nzene,l						
550000			4-Diffuorobe						
500000			÷						
450000		fluorobenze							
400000		- Penta 4,S							
350000		roethane-d				-			
300000		1,2-Dichlo							
250000									
200000									-
150000									
100000									
50000						1			
0 Time>	2.00 3.00 4.00	5.00 6.00	7.00 8.00	9.00 10.0	0 <u>11.0</u> 0 1	12.00 13.00	14.00 15.0	0 16.00 17.00 1	18.00 19.00

Quantitation Report (QT Reviewed) Vial: 33 Data File : C:\MSDCHEM\1\DATA\04-27-09\J2086.D Acq On : 28 Apr 2009 2:49 am Operator: BINXU Inst : MSD J : NA, METHOD-BLK, A, 5ml, 100 Sample Multiplr: 1.00Misc : MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Ouant Time: Apr 28 03:09:29 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcg Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816835214050.00UG0.0131) 1,4-Difluorobenzene7.0011453618950.00UG0.0150) Chlorobenzene-d510.3311760973950.00UG0.00

 System Monitoring Compounds
 6.51
 65
 276629
 57.88 UG
 0.01

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 = 115.76%

 41) Toluene-d8
 8.66
 98
 566772
 47.27 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 = 94.54%

 59) Bromofluorobenzene
 11.74
 95
 299772
 43.11 UG
 0.01

 Spiked Amount 50.000 Range 23 - 145 Recovery = 86.22%

Target Compounds

Qvalue

			Quant	citati	on F	Report	(QT]	Reviewe	ed)		
Data Acq Samp Misc	File : On : Dle :	C:\MS 28 Ap NA,ME	DCHEM\1 or 2009 THOD-BI	L\DATA 2:4 LK,A,5	\04- 9 an ml,1	-27-09' n L00	\J2086.D		Vial: Operator: Inst : Multiplr:	33 BINXU MSD_J 1.00	
MS I Quar	Integrat: nt Time:	ion Pa Apr 2	arams: 1 28 11:42	2 2009	.P		Qua	nt Resu	ults File:	JAW0420.R	.ES
Meth Titl Last Rest	nod le : Update ponse via	: C: : VC : Mc a : Tr	\MSDCHE DLATILE on Apr 2 Ditial (EM\1\M ORGAN 27 15: Calibr	ETHO ICS 36:4	DS\JAN BY EPA 1 2009 20	N0420.M A METHOD Ə	(RTE In 8260B	itegrator)		
Abundance						TIC: J208	36.D				
1150000											
1100000			-								
1050000	•										
1000000						9-45,I					
950000					S,	benzene					
900000					Nuene-d	Chlore	Sene				
850000					Ĕ		lorobenz				
800000							Stomoffu				
750000			-				-				
700000			orohenz Z								
650000			14.0%							-	
600000			zene,l								
550000	•		noroben								
500000			Pentaf								
450000			e-d4,S								
400000			oroelhan								
350000			1,2-Dichl								
300000											
250000			1								
200000							5				
150000											
400000											
50000						1					
0000											
0 Time>	2.00 3.00	4.00 5.0	0 6.00 7.	00 8.00	9.00	10.00 11.	00 12.00 13.0	0 14.00 15	.00 16.00 17.00	18.00 19.00	

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\04-30-09\J2189.D Vial: 4 Acq On : 30 Apr 2009 12:38 pm **Operator: BINXU** : NA, METHOD-BLK, A, 5ml, 100 Sample Inst : MSD J Misc Multiplr: $1.0\overline{0}$ <u></u> MS Integration Params: LSCINT.P Quant Results File: JAW0420.RES Quant Time: Apr 30 12:59:01 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0420.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Apr 27 15:36:41 2009 Response via : Initial Calibration DataAcq Meth : JAW0420 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1716828290850.00UG0.0031) 1,4-Difluorobenzene6.9911443343550.00UG0.0050) Chlorobenzene-d510.3311750130950.00UG0.00

 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.50
 65
 247261
 64.40 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 128.80%

 41) Toluene-d8
 8.66
 98
 467970
 48.29 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 96.58%
 0.01

 59) Bromofluorobenzene
 11.74
 95
 240420
 42.05 UG
 0.01

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 84.10%
 84.10%

Target Compounds

Qvalue

(#) = qualifier out of range (m) = manual integration
J2189.D JAW0420.M Fri May 01 13:54:20 2009 MANAGER Pag

	Quantitation	n Report	(QT Reviewe	ed)	
Data File : C:\MSDO Acq On : 30 Apr Sample : NA,METH Misc :	CHEM\1\DATA\ 2009 12:38 IOD-BLK,A,5m	04-30-09\J21 pm L,100	89.D	Vial: Operator: Inst : Multiplr:	4 BINXU MSD_J 1.00
MS Integration Para Quant Time: May 1	10:00 2009	<u>,</u>	Quant Resu	lts File:	JAW0420.RES
Method : C:\M Title : VOLA Last Update : Mon Response via : Init	SDCHEM\1\ME TILE ORGANIC Apr 27 15:30 ial Calibrat	THODS\JAW042 CS BY EPA ME 5:41 2009 tion TIC:J2189.D	0.M (RTE In THOD 8260B	tegrator)	
900000					
850000					
800000		e-d5,			
750000	د. ط8, S	lorobenzer			
700000	Toluen	Gh nzene, S			
650000	uzene,	mofluorobe			
600000		Å.			
550000	robenzene				
500000	Pentafluo				
450000					
400000	hane-d4,S				
350000	Dichloroet				
300000	1,				
250000					
150000					
100000					
50000					
			╴╷╩╌╱ <mark>┟╩┠╶┎╶[┲]┈┲╌╿╶┫╍┍╌╋╺┥╴┲</mark> ╸	_,_, <u>, , , , , , , , , , , , , , , , , </u>	······································
lime> 2.00 3.00 4.00 5.00 6	.00 7.00 8.00 9.0	0 10.00 11.00 12.00	0 13.00 14.00 15.0	0 16.00 17.00 18	3.00 19.00
J2189.D JAW0420.M	Fri May O	1 13:54:20 2	2009 M2	ANAGER	Page 2

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

.....

Z15 FURTHER

		Ē			
CUSIOMER INFO		I urnaround Jime (starts the following day	if samples rec'd at lab > 5PM	(
'JUT' C'N SIGHON Simun	REPORT TO: ACCAPIS- U.S. INC.	CUARANTEED WITHOUT LAB AP	PROVAL **RUSH SUPPORT	L RUSH TAT IS N JARGES WIT AI	OT PPLVIF
Address: I Inter withous Blue.	Address: (Italempmont B/ W.	ABLE TO ACCOMMODATE.			
MAHUMAH, NJ 07495	MATHURH, WO7495	PHC-MUST CHOOSE DR0 (3:5 day TAT) 04M035 (5	Rush TAT Charge *	** Report Format	EDD's
1etephone #: X 0/ ~ LO4 - 14/0	Atta: C. Kodriguez	DRO (2015B) - used for: Fuel Oil #2/House Hearing	141 /#2.	Results Only	SRP. dbf format
Fax #: 201-689. 1420	FAX# 201 689, 1420	Contaminants.	oil and unknown 24 hr - 100% 48 hr - 75%	Reduced	SRP.wk1 format
Project Manager: E. K. Chriguez	INVOICE TO: ARCADIS - U.S., The.	Verbal/Fax (2 wk/Std) Rus	ults needed by: 72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	lah annovad metam
Sampler: N. K. U. Schner, U. M. M.	Address: 1 Totelwortho WAGE Blog.	Hard Conv 3 web Std	5 day - 25%	Other (describe)	EDD
Project Name: KINGS Electronics	MAHUAH, WJ 07495	Other *call for price	0.01 Apr 6-0		NO EDD/CD REQ'D
Project Location (State): Letu Yau		M ANALYTICAL PAR	AMETERS		
Bottle Order #:	Atta: E, Rodriduez			Cooler Ten	ہ 9
Quote # :	*0* NJ 000 +23, \$0005, 0000	Z'l			
	Saunple Matrix	<u>ا</u> ک ا		DBRSH	TLES &
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water 01 - Oil LIQ - Liquid (Specify) OT - Other (Specify)	J+J			
Client ID Depth (ft. only)	5-504 SL-50028 501-5010 W - Wipe Sampling # IAL#	оЛ 		POS EON HO ⁴	core her ber
				тн 4н 8 _N 9н (ЕШ 9 _N 900
	4/2/103 4/2 2 1	~		×	
mw-13K	4/21/09/12:17 AO 2 2	2		,7 ,	
mw-6S	424 109 11:07 AQ 2 3	2		7	
GD-1030	422-los 9:42 AQ 2 4	2.		2	
GP-10 C	2 2 40 12 15	7		7	
mui-95R	0 Z QY LISI 10/5014			7	
Muz-GD	4/22 PY 2011 1927	N		7	
Dup(042129)	4 m - 40 2 8	2		2	
(F3(042109)	4/21/00/14/2 Z 9	2			
FB(042209)	4 22 W 10:30 PS 2 10				
Known Hazard: Yes or No Describe:					
Conc. Expected: Low Med High	B/0 1212	MULL Req: GWQS (11/05) - SRS - SRS	/IGW - SRS Residential - OTF	HER (SEE COMME	(SIN
Please print legibly and fill out completely. Sample	es cannot be processed and the turnaround time w	ill not start until any ambiguities have b	een resolved.		
Signature/Company	Date Time Signature/Company	Comm	ents:		
Relinquished the part of the	9/12/0.9 15-30 Received by: 20				
Relinquished by:	V DLOG Received by:				
Relinquished by:	Received by:				
Reinquished by:	Received by:		Lah Case #		
$O_{\rm int}$ inquished by:	Received by:		20.00	PAGE: / of	<u>[</u>
$\overset{\mathrm{COPIES}}{\overset{\mathrm{COPIES}}{\overset{\mathrm{COPIES}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{C}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}{{}}}{\overset{\mathrm{COP}}}{\overset{\mathrm{COP}}}}{\overset{\mathrm{COP}}}{{}}}{{}}}{\overset{{}}}{{}}}{{}}}}}}}}}}}$					
53					

 t^{+}

03/2009 rev Rel Nor @ 260203873

Phone # (973) 361-4252	Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATURIES CHAIN OF CUSTODY

ì

CONTRACTOR (C) A WRA								-
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the follow	ving day if samples rec'd at la	ab > 5PM)				
company: ACCADIS - US. ZAC	REPORT TO: MCAOS -CS INC	*Lab notification is required for GUARANTEED WITHOUT L ABLE TO ACCOMMODATE	r RUSH TAT prior to sam AB APPROVAL. **RUSH	ple arrival. RU H SURCHARG	SH TAT IS N ES WILL AF	OT PLY IF		
Anutes 1-1/1-CV 14, DORA D DVW	1 1 A. L. B. ATTENTY MICH LING.	PHC- MUST CHOOSE	Rush	a TAT Charge ** Ro	port Format	EDI)'s	
CELLO (~1 mmm/1)	NIMIT DONNELLED	DRO (3-5 day TAT) QA	M025 (5 day TAT min.)	×	esults Only	SRP. dbf	format	
1 terephone #: 201 . 60 1. 1710	TAURE (2, 100/11/ 00 C	DKO (80158) - used for: Fuel OI #2Home QAM-025 (OQA-QAM025) - used for: all contaminants.	t Heating OII #1.762. Other fuel oil and unknown 24	hr - 100%	Reduced	SRP.wk1	format	
Fax #: LU(. 667-14.20		Verbal/Fax	Results needed by: 72 96	hr 50% Reg	ulatory - 15% charge applies	lab approv	ed custom	
Samiler N Kince have 1 N (12)	Address 1 (New Art 191 Address)	24 hr 48 hr 12 hr 14 hr	25	day - 25% Ot	her (describe)	ED	Q	_
Project Name: K1, 1, 1, 5 () - Christof ()	UA to A NO 7495	Other *call for price				NO EDD/C	:D REQ'D	
Project Location (State): NE) Un F		ANALYTICA	AL PARAMETERS	-	Cooler Terr	ڑ`۔ ا		
Bottle Order #:	ATTER RODRIGUES	97						
Quote # :	PO#	<i>1</i> / 5			# BO	TTLES o	الأده	
	Sample Matrix				PRESE	RVATIV	ES	
	DW - Drinking Water AQ - Aqueous WW - Waste Water	+6				_		_
SAMPLE INFORMATION	OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Sludge SOL - Solid W - Wipe	20			04 93 H	H	NLG G	
Chant III Denth (ft. only)	Sampling Matrix # IAL #	 /\		10H	ORNH	odho DaM	eon None	_
000000	L.L. C DO TR 7 11			2	 			
(D1072/07)	4/1/2 0/ 0 0 0/m/#	}						-
						_		
		-						
								-
								-
								1
Known Hazard: Yes or No Describe:		MINE D CULOS (11/05) S	Pised SdS - MULADS SdS	lential _ OTHER	KEE COMM	FNTS)		
Conc. Expected: Low Med High	010 11:15	a - (covil) SUND : TOTAL	nisan cale - Wullche - Cal			(OT LIG		_
Please print legibly and fill out completely. Samp	ples cannot be processed and the turnaround time	will not start until any ambiguiti	es have been resolved.					
Signature/Company	Date Time Signature/Company		Comments:					1
Relinquished by J Malin . M.	4/22/14 1530 Received by:	2						I.
Relinentshed by:	UZZAS Received by:							
Relinquished by:	Received by:	X						
Kelinquished by:	Received by:	2	Lab Case #					1
IOmquished by:	Received by:		03 <u>5</u> 20	<u>a</u>	kGE: 2 of	7		
))					

IQ: COPIES - WHITE & YELLOW; CLIENT COPY - PINK

PROJECT INFORMATION

Case No. E09-03980

Project KINGS ELECTRONICS VENDOR #1168636

Customer	Arcadis Geraghty & Miller	P.O. # NJ000423.0005.000(
Contact EMail	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs	Received 4/22/2009 18:10 Verbal Due 5/7/2009
Рһопе	(201) 684-1410 Fax 1(201) 684-1420	Report Due 5/14/2009
<u>Report To</u>		<u>Bill To</u>
1 Internatio	nal BIvd.	640 Plaza Drive
Suite 406		Suite 130
Mahwah, N	U 07495	Highlands Ranch, CO 80129
Attn: Eric R	Rodriguez	Attn: Eric Rodriguez
Report F	Format Reduced	
Addition	al Info State Form Field Sampling Con	ditional VOA

<u>Lab ID</u>	<u>Client Sample ID</u>		<u>Depth</u>	Top / Bottom	L	Sampling Time	<u>Matrix</u>	<u>Unit</u>	<u># of C</u>	ontainers
03980-001	PTW-2		n/a			4/21/2009@14:05	Aqueous	ug/L		2
03980-002	MW-13R		n/a		···.	4/21/2009@12:17	Aqueous	ug/L	<u>, e -</u>	2
03980-003	MW-6S		n/a			4/21/2009@11:07	Aqueous	ug/L		2
03980-004	GP-103R		n/a			4/22/2009@09:42	Aqueous	ug/L		2
03980-005	GP-104R		n/a			4/22/2009@10:47	Aqueous	ug/L		2
03980-006	MW-9SR		n/a			4/22/2009@13:17	Aqueous	ug/L		2
03980-007	MW-9D		n/a			4/22/2009@14:02	Aqueous	ug/L		2
03980-008	DUP(042109)		n/a			4/21/2009	Aqueous	ug/L		2
03980-009	FB(042109)		n/a			4/21/2009@12:00	Aqueous	ug/L		2
03980-010	FB(042209)		n/a			4/22/2009@10:30	Aqueous	ug/L	en en el composition de la composition La composition de la c	2
03980-011	TB(042109)		n/a			4/21/2009	Aqueous	ug/L		2
Sample # Te	<u>sts</u>			<u>Status</u>	<u>0</u> A	Method				
001 PP V	/OA + Cis 1,2-DCE			Run	8260I	3				
002 PP V	/OA + Cis 1,2-DCE			Run	8260E	3 .				
003 PP 1	/OA + Cis 1,2-DCE			Run	8260I	3		а. -		
004 PP V	/OA + Cis 1,2-DCE	·		Run	8260I	3				
005 PP V	/OA + Cis 1,2-DCE			Run	8260I	3				
006 PP V	/OA + Cis 1,2-DCE			Run	8260I	3				
007 PP V	/OA + Cis 1,2-DCE			Run	8260F	3				
008 PP V	/OA + Cis 1,2-DCE			Run	826 01	Bing and the second second				
009 PP V	/OA + Cis 1,2-DCE			Run	82601	3				
010 PP V	/OA + Cis 1,2-DCE		-111. A	Run	8260I	3				
011 PP V	/OA + Cis 1,2-DCE			Run	8260E	3				

INTEGRA	ATED ANALYTICAL LABORATORIES, LLC	
S	SAMPLE RECEIPT VERIFICATION	
CASE NO: E 09 039	980 CLIENT: Arcadis	
COOLER TEMPERATURE: 2°	° - 6°C: (See Chain of Custody)	
✓ = YES/NA		
 no-Missing Bottles 		
no-Extra Bottles		
 Sufficient Sample Volu no-headspace/bubbles 	s in VOs	<u> </u>
 ✓ Labels intact/correct ✓ pH Check (exclude VO 	Ds) ¹	
 ✓ Correct bottles/preserv. ✓ Sufficient Holding/Prep 		
Sample to be Subcontr	racted	
✓ Chain of Custody is C	Clear	
¹ All samples with "Analyze Immediately" holding	ig times will be analyzed by this laboratory past the holding time. This includes but is	s not limited to
ADDITIONAL COMMENTS:	sidual Chiorine, Total Residual Chiorine, Dissolved Oxygen, Sulfite.	
SAMPLE(S) VERIFIED BY:	INITIAL DATE 4/2	2/59
CORRECTIVE ACTION REC		<u>*</u>
If COC is NOT clear, <u>STOP</u> unt	til you get client to authorize/clarify work.	·
CLIENT NOTIFIED:	YES Date/ Time: N	o
PROJECT CONTACT:		
SUBCONTRACTED LAB:		
ADDITIONAL COMMENTS:		
		· · · · · · · · · · · · · · · · · · ·
VERIFIED/TAKEN BY:	INITIAL DATE CALLOR	0066

REV 03/2009

	Laborator	v Custo	dy Chron	nicle		
IAL Case No. E09-03980		Clier	nt Arcadis G	eraghty & Mi	ller	
		Projec	ct <u>KINGS EI</u>	ECTRONIC	S VENDOR #116	<u>8636</u>
	R	eceived Oi	n <u>4/22/2009(</u>	<u>@18:10</u>		
Department: Volatiles			Prep. Date	Analyst	Analysis Date	Analyst
PP VOA + Cis 1,2-DCE	03980-001	Aqueous	n/a	n/a	4/28/09	Xing
	-002	н	n/a	n/a	4/28/09	Xing
	-003	H	n/a	n/a	4/30/09	Xing
	-004	18	n/a	n/a	4/28/09	Xing
	-005	u.	n/a	n/a	4/28/09	Xing
	-006	† 1	n/a	n/a	4/28/09	Xing
	-007	н	n/a	n/a	4/28/09	Xing
	-008	0	n/a	n/a	4/28/09	Xing
	-009	18	n/a	n/a	4/28/09	Xing
	-010	11	n/a	n/a	4/28/09	Xing
	-011	TI	n/a	n/a	4/28/09	Xing

Review and Approval:

Alberno

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 1 International Blvd. Suite 406 Mahwah, NJ 07495

Project Name: KINGS ELECTRONICS - VENDOR #1168636 IAL Case Number: E09-07112

These data have been reviewed and accepted by:

Michan

Michael H. Leftin, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed.

	Sample Summ	ary				
IAL Case No.	Client A	rcadis Geraghty & Mille	er			
E09-07112	Project KINGS ELECTRONICS - VENDOR #1168636					
	Received On 7	/17/2009@16:45				
ab ID Cliquet Sample ID	Denth Tan/Rottom	Sampling Time	Matrix	<u># of</u> Containe		
<u>ab ID <u>Client Sample ID</u> 7112-001 FB(071509)</u>	<u>Depin Top/Bollom</u> n/a	7/15/2009@09:00	Aqueous	2		

n/a

07112-002

07112-004

07112-006

07112-008

07112-010

07112-007

07112-009

07112-011

07112-003

07112-005

TB(071509)

FB(071609)

GP-103R

MW-9D

MW-68

MW-13R

GP-104R

PTW-2 DUP(071509)

MW-9S

Aqueous

7/15/2009

7/16/2009@09:30

7/16/2009@09:07

7/15/2009@11:32

7/15/2009@10:32

7/15/2009@11:27

7/15/2009@10:37

7/16/2009@09:40

7/16/2009@10:42

7/15/2009

1

2

2

2

2

2

2

2

2

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	54 58

MATRIX QUALIFIERS

- A Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to Matrix Interferences.
- **NA -** <u>Not Applicable</u>.
- ND Indicates the compound was analyzed for but <u>Not Detected at the MDL</u>.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRONICS - VENDOR #1168636) on July 17, 2009 for the analysis of:

(11) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Alenno Reviewed by

7/31/09

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E09-07112

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	<u> </u>
2.	Table of Contents.	✓
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	✓
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	
5.	Document bound, paginated and legible.	<u>√</u>
6.	Chain of Custody.	√
7.	Methodology Summary.	✓
8.	Laboratory Chronicle and Holding Time Check.	✓
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	√
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	✓
12.	NonConformance Summary.	✓

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS

	Lab Case Number: E09 - 7/12		
1. (2. (Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks). GC/MS Tuning Specifications:	<u>No</u>	Yes ✓
3. C	GC/MS Tuning Frequency - Performed every 24 hours for 600 series. 2 hours for 8000 series and 8 hours for 500 series.		
4. G ai ai	iC/MS Calibration - Initial calibration performed within 30 days before sample nalysis and continuing calibration performed within 24 hours before sample nalysis for 600 series, 12 hours for 8000 series		
5. G a.	C/MS Calibration Requirements: Calibration Check Compounds		
b.	System Performance Check Compaunds		na
6. Bla	ank Contamination - If yes, list compounds and concentrations in each blank:		па
7. Su rec	rrogate Recoveries Meet Criteria (If not met, list those compounds and their overies which fall outside the acceptable range)		1
lí n	of met, were the calculations checked and the results a site of a		
8. Mat	rix Spike/Matrix Spike Duplicate meet ontorio (if not ())		na
ອກເ	their recoveries/% differences which fall outside the acceptable rappe)		na
0	,		
a me	nal Standard Area/Retention Time Shift meet criteria		1
10. Extr: Ило	action Holding Time Met		
			<u>na</u>
11. Analy If not	vsis Holding Time Met met, list number of days exceeded for each sample:		<u> </u>
12. Samp High Comp	le Dilution Performed Target High Nontarget ounds Compounds Matrix Interference Other	<u> </u>	
3. Comm	ents:		
	7/29/08		
	Organics Manager		

,

-

	Client: Arcadis Geraghty & Miller								
	Project: KINGS ELECTRONICS - VENDOR #1168636								
	Tak IDa	Lab C	ase No.: 1	1-1-209 171	12 007	071	12 003	071	12-004
	Client ID:	U/11 FD/A	12-001 71500\	U/1 TR((12-002		12-003 171600\	CP	-103R
	Motriv:	r D(V A au	1307)		071307) meous	n∆n n∆		nA	neons
	Samulad Date	7/1	15/09	7/	15/00	7/	16/09	7/	16/09
PARAMETER(Units)	Sampled Date	Conc	O MDL	Conc	O MDL	Conc	Q MDL	Conc	Q MDL
Volatiles + Cis 1 2-DCF	(Units)	(up/)	L-nnh)	(119/	(L-nnh)	(42)	L-ppb)	(ug/	 L-ppb)
cis_1 2-Dichloroethene	(Chirds)	ND	0 200	ND	0.200	ND	0.200	ND	0.200
Trichloroethene		ND	0.280	ND	0.280	ND	0.280	0.285	0.280
TOTAL VO's:		ND		ND		ND		0.285	
	Lab ID:	0711	2-005	071	12-006	071	12-007	071	12-008
	Client ID:	MV	N-9D	M	W-9S	\mathbf{M}	W-6S	MV	V-13R
	Matrix:	Aq	ueous	Aq	ueous	Aq	ueous	Aq	ueous
	Sampled Date	7/1	5/09	7/	15/09	7/	15/09	7/1	15/09
PARAMETER(Units)	-	Conc	Q MDL	Conc	Q MDL	Conc	Q MDL	Conc	Q MDL
Volatiles + Cis 1,2-DCE	(Units)	(ug/l	L-ppb)	(ug/	(L-ppb)	(ug/	L-ppb)	(ug/	L-ppb)
1,1-Dichloroethene		ND	0.610	ND	0.610	1.55	0.610	ND	0.610
cis-1,2-Dichloroethene		ND	0.200	0.564	0.200	ND	0.200	0.721	0.200
Trichloroethene		ND	0.280	ND	0.280	37.3	0.280	0.862	0.280
Tetrachloroethene		ND	0.190	ND	0.190	5.48	0.190	ND	0.190
TOTAL VO's:		ND		0.564		44.3		1.58	
	Lab ID:	0711	12-009	071	12-010	071	12-011		
	Client ID:	GP	-104R	P 7	ГW-2	DUP	(071509)		
	Matrix:	Aqu	ueous	Aq	ueous	Ag	ueous	- - -	
	Sampled Date	7/1	16/09	7/3	16/09	7/	15/09	:	
PARAMETER(Units)		Conc	Q MDL	Conc	Q MDL	Conc	<u>Q MDL</u>	:	
Volatiles + Cis 1,2-DCE	(Units)	(ug/1	L-ppb)	(ug/	(L-ppb)	(ug/	L-ppb)		
1,1-Dichloroethane		ND	0.230	0.576	0.230	0.552	0.230	-	
cis-1,2-Dichloroethene		1.64	0.200	1.76	0.200	0.660	0.200		
Trichloroethene		1.82	0.280	2.22	0.280	ND	0.280		
TOTAL VO's:		3.46		4.56		1.21			

SUMMARY REPORT

ND = Analyzed for but Not Detected at the MDL

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-001 Client ID: FB(071509) Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3932.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-002 Client ID: TB(071509) Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3933.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	· ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-003 Client ID: FB(071609) Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3934.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-004 Client ID: GP-103R Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3920.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	0.285		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-005 Client ID: MW-9D Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3921.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	ND		0.230	
cis-1,2-Dichloroethene	ND		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	ND		0.280	
1,2-Dichloropropane	ND		0,200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-006 Client ID: MW-9S Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3922.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	0.564		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	ND		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

0.564

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 07112-007 Client ID: MW-6S Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3926.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	1.55		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	ND		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	37.3		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	5.48		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-008 Client ID: MW-13R Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3927.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	ND		0.230	
cis-1,2-Dichloroethene	0.721		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	0.862		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-009 Client ID: GP-104R Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3928.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.230
Vinyl chloride	ND		0.260
Bromomethane	ND		0.360
Chloroethane	ND		0.290
Trichlorofluoromethane	ND		0.230
Acrolein	ND		4.34
1,1-Dichloroethene	ND		0.610
Methylene chloride	ND		1.98
Acrylonitrile	ND		0.950
trans-1,2-Dichloroethene	ND		0.190
1,1-Dichloroethane	ND		0.230
cis-1,2-Dichloroethene	1.64		0.200
Chloroform	ND		0.170
1,1,1-Trichloroethane	ND		0.230
Carbon tetrachloride	ND		0.160
1,2-Dichloroethane (EDC)	ND		0.210
Benzene	ND		0.210
Trichloroethene	1.82		0.280
1,2-Dichloropropane	ND		0.200
Bromodichloromethane	ND		0.120
2-Chloroethyl vinyl ether	ND		0.990
cis-1,3-Dichloropropene	ND		0.150
Toluene	ND		0.200
trans-1,3-Dichloropropene	ND		0.270
1,1,2-Trichloroethane	ND		0.150
Tetrachloroethene	ND		0.190
Dibromochloromethane	ND		0.160
Chlorobenzene	ND		0.200
Ethylbenzene	ND		0.190
Total Xylenes	ND		0.440
Bromoform	ND		0.140
1,1,2,2-Tetrachloroethane	ND		0.120
1,3-Dichlorobenzene	ND		0.170
1,4-Dichlorobenzene	ND		0.160
1,2-Dichlorobenzene	ND		0.150

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-010 Client ID: PTW-2 Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3929.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	0.576		0.230	
cis-1,2-Dichloroethene	1.76		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	2.22		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 07112-011 Client ID: DUP(071509) Date Received: 07/17/2009 Date Analyzed: 07/27/2009 Data file: J3930.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	0.552		0.230	
cis-1,2-Dichloroethene	0.660		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	ND		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	
VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>J3846.D</u>	BFB Injection Date:	<u>0</u>	7/22/2	009
Inst ID:	MSD J	BFB Injection Time:	8	:13	
m/z	Ion Abudance Criteria	%Relative Abundance	2		
50	15 - 40.0% of mass 95	20.2			
75	30.0 - 60.0% of mass 95	49.5			
95	Base peak, 100% relative abunda	nce 100.0			
96	5.0 - 9.0% of mass 95	7.6			
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	Great than 50.0% of mass 95	92.2			
175	5.0 - 9.0% of mass 174	7.3	(7.9)1
176	95.0 - 101.0% of mass 174	89.2	(96.8)1
177	5.0 - 9.0% of mass 176	5.9	Ì	6.6)2
	1-Value is % mass 174	2-Value is % mass 1	76		

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
1PPB	STD-1PPB	J3848.D	07/22/2009	9:10	<u></u>
2PPB	STD-2PPB	J3850.D	07/22/2009	10:08	
100PPB	STD-100PPB	J3851.D	07/22/2009	10:36	
5PPB	STD-5PPB	J3852.D	07/22/2009	11:05	
200PPB	STD-200PPB	J3854.D	07/23/2009	12:02	
20PPB	STD-20PPB	J3855.D	07/23/2009	12:31	
150PPB	STD-150PPB	J3860.D	07/23/2009	2:55	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	J3915.D	BFB Injection Date:	07/27/	2009
Inst ID:	MSD J	BFB Injection Time:	<u>9:32</u>	
m/z	Ion Abudance Criteria	%Relative Abundance	:	
50	15 - 40.0% of mass 95	17.0		
75	30.0 - 60.0% of mass 95	48.4		
95	Base peak, 100% relative abundan	nce 100.0		
96	5.0 - 9.0% of mass 95	7.3		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	64.2		
175	5.0 - 9.0% of mass 174	4.6 (7.2)1
176	95.0 - 101.0% of mass 174	61.2 (95.4)1
177	5.0 - 9.0% of mass 176	4.0 (6.6)2
	1-Value is % mass 174	2-Value is % mass 1	76	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	J3916.D	07/27/2009	10:02	******
NA	METHOD-BLK	J3918.D	07/27/2009	10:59	
TRIP_BLANK	07153-003	J3919.D	07/27/2009	11:27	
GP-103R	07112-004	J3920.D	07/27/2009	11:56	
MW-9D	07112-005	J3921.D	07/27/2009	12:24	
MW-9S	07112-006	J3922.D	07/27/2009	12:52	
LCS-50PPB	BLK-SPK	J3923.D	07/27/2009	1:21	
MS	MS	J3924.D	07/27/2009	1:50	
MSD	MSD	J3925.D	07/27/2009	2:18	
MW-6S	07112-007	J3926.D	07/27/2009	2:47	
MW-13R	07112-008	J3927.D	07/27/2009	3:15	
GP-104R	07112-009	J3928.D	07/27/2009	3:44	
PTW-2	07112-010	J3929.D	07/27/2009	4:12	
DUP(071509)	07112-011	J3930.D	07/27/2009	4:40	
FB(071509)	07112-001	J3932.D	07/27/2009	5:37	
TB(071509)	07112-002	J3933.D	07/27/2009	6:05	
FB(071609)	07112-003	J3934.D	07/27/2009	6:34	
MW_#8A	07153-001	J3936.D	07/27/2009	7:32	
FIELD_BLANK	07153-002	J3937.D	07/27/2009	8:01	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>J3918.D</u>	Instrument ID:	MSD J
Date Analyzed:	07/27/2009	Time Analyzed:	<u>10:59</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
TRIP_BLANK	07153-003	07/27/2009	11:27
GP-103R	07112-004	07/27/2009	11:56
MW-9D	07112-005	07/27/2009	12:24
MW-9S	07112-006	07/27/2009	12:52
LCS-50PPB	BLK-SPK	07/27/2009	1:21
MS	MS	07/27/2009	1:50
MSD	MSD	07/27/2009	2:18
MW-6S	07112-007	07/27/2009	2:47
MW-13R	07112-008	07/27/2009	3:15
GP-104R	07112-009	07/27/2009	3:44
PTW-2	07112-010	07/27/2009	4:12
DUP(071509)	07112-011	07/27/2009	4:40
FB(071509)	07112-001	07/27/2009	5:37
TB(071509)	07112-002	07/27/2009	6:05
FB(071609)	07112-003	07/27/2009	6:34
MW_#8A	07153-001	07/27/2009	7:32
FIELD_BLANK	07153-002	07/27/2009	8:01

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 07/27/2009 Data file: J3918.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.230	
Vinyl chloride	ND		0.260	
Bromomethane	ND		0.360	
Chloroethane	ND		0.290	
Trichlorofluoromethane	ND		0.230	
Acrolein	ND		4.34	
1,1-Dichloroethene	ND		0.610	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		0.950	
trans-1,2-Dichloroethene	ND		0.190	
1,1-Dichloroethane	ND		0.230	
cis-1,2-Dichloroethene	ND		0.200	
Chloroform	ND		0.170	
1,1,1-Trichloroethane	ND		0.230	
Carbon tetrachloride	ND		0.160	
1,2-Dichloroethane (EDC)	ND		0.210	
Benzene	ND		0.210	
Trichloroethene	ND		0.280	
1,2-Dichloropropane	ND		0.200	
Bromodichloromethane	ND		0.120	
2-Chloroethyl vinyl ether	ND		0.990	
cis-1,3-Dichloropropene	ND		0.150	
Toluene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.270	
1,1,2-Trichloroethane	ND		0.150	
Tetrachloroethene	ND		0.190	
Dibromochloromethane	ND		0.160	
Chlorobenzene	ND		0.200	
Ethylbenzene	ND		0.190	
Total Xylenes	ND		0.440	
Bromoform	ND		0.140	
1,1,2,2-Tetrachloroethane	ND		0.120	
1,3-Dichlorobenzene	ND		0.170	
1,4-Dichlorobenzene	ND		0.160	
1,2-Dichlorobenzene	ND		0.150	

0

		F	lespons	se Fact	or Rep	ort N	MSD_J			
M T L R	Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jul 29 11:15:01 2009 Response via : Initial Calibration									
C	alib	ration Files								
5 1	50	=J3852.D 100 =J3860.D 200	≃J38 =J38	51.D 54.D	20 1	• = =	=J3855. =J3848.	D D		
		Compound (ppb)	5	100	20	150	200	1	Ava	%RSD
~										
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 16 17 18 19 10 20 21 20 22 25 26 27 28 20 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20)))))))))))))))))))	Pentafluorobenzene Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acrolein 1,1-Dichloroethene Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile tert-Butyl alcohol trans-1,2-Dichloroe Methyl tert-butyl e 1,1-Dichloroethane Diisopropyl ether (cis-1,2-Dichloroeth 2,2-Dichloropropane 2-Butanone (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroetha Carbon tetrachlorid 1,1-Dichloropropene 1,2-Dichloroethane	0.604 0.992 0.598 0.452 0.363 0.015 0.574 0.403 1.337 1.022 0.581 0.174 0.065 0.525 0.736 0.816 1.436 0.575 0.029 0.458 0.382 1.444 0.610 0.312 0.851 1.255	0.695 0.926 0.715 0.405 0.715 0.785 0.019 0.717 0.389 1.628 0.852 0.629 0.193 0.057 0.521 0.571 0.5915 1.504 0.597 0.27 0.406 0.418 1.554 0.595 0.306 0.982 1.324	0.641 0.950 0.682 0.428 0.387 0.811 0.014 0.694 0.392 1.458 0.901 0.611 0.611 0.62 0.522 0.682 0.522 0.682 0.522 0.682 0.583 0.032 0.435 0.404 1.563 0.291 0.923 1.306	-ISTD- 0.694 0.927 0.722 0.438 0.376 0.742 0.021 0.632 0.405 1.477 0.940 0.651 0.202 0.071 0.553 0.742 0.864 1.508 0.597 0.040 0.434 1.550 0.444 1.550 0.444 1.550 0.597 0.335 1.020 1.376	0.687 0.913 0.696 0.370 0.391 0.790 0.020 0.683 0.402 1.611 0.975 0.663 0.205 0.070 0.516 0.774 0.921 1.613 0.622 0.039 0.413 0.622 0.039 0.413 0.427 1.538 0.676 0.351 0.979 1.356	0.774 0.926 0.829 0.421 0.394 0.914 0.015 0.731 0.437 1.241 1.028 0.799 0.180 0.083 0.579 0.651 0.714 1.452 0.674 0.299 0.570 0.420 1.378 0.275 0.294 1.092 1.520	0.682 0.939 0.707 0.419 0.381 0.017 0.672 0.405 1.459 0.953 0.656 0.190 0.656 0.707 0.847 1.491 0.608 0.033 0.454 0.414 1.504 0.557 0.315 0.975 1.356	$\begin{array}{c} 8.42\\ 3.03\\ 10.52\\ 6.85\\ 3.13\\ 7.13\\ 17.86\\ 8.75\\ 4.22\\ 10.38\\ 7.27\\ 11.60\\ 6.37\\ 12.78\\ 4.63\\ 7.16\\ 9.00\\ 4.58\\ 5.96\\ 16.27\\ 13.16\\ 4.51\\ 5.04\\ 25.48\\ 7.55\\ 8.43\\ 6.67\end{array}$
30)	S	1,2-Dichloroethane-	0.737	0.649	0.730	0.649	0.684	0.694	0.690	5.49
32) 33) 34) 35) 36) 37) 38) 39)	л М М С Т Т Т Т Т Т Т	Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane 1,4-Dioxane Bromodichloromethan 2-Chloroethyl vinyl	1.671 0.489 0.429 0.330 0.007 0.623 0.020	$\begin{array}{c} 1.786 \\ 0.548 \\ 0.425 \\ 0.338 \\ 0.006 \\ 0.457 \\ 0.012 \\ 0.201 \end{array}$	1.670 0.508 0.386 0.320 0.006 0.407 0.009	ISTD 1.812 0.579 0.401 0.325 0.007 0.477 0.012	1.726 0.539 0.423 0.332 0.006 0.538 0.012	2.219 0.610 0.251 0.314 0.004 0.598 0.011	1.814 0.545 0.386 0.326 0.006 0.517 0.013	11.40 8.17 17.62 2.64 20.57 16.34 27.95
<pre>>>) 40) 41) 42) 42) 43) 44) 45) 46) 47)</pre>	⊥ TS MC TT TT T	4-Methyl-2-pentanon Toluene-d8 Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha Tetrachloroethene 1,3-Dichloropropane 2-Hexanone	0.237 0.424 1.283 1.167 0.205 0.371 0.428 0.815 0.468	0.301 0.613 1.293 1.221 0.319 0.407 0.431 0.828 0.493	0.264 0.552 1.278 1.163 0.260 0.380 0.414 0.776 0.469	0.302 0.576 1.310 1.262 0.293 0.415 0.443 0.869 0.507	0.319 0.602 1.304 1.159 0.344 0.390 0.411 0.806 0.500	0.284 0.566 1.263 1.428 0.161 0.394 0.491 0.862 0.469	0.284 0.556 1.288 1.234 0.264 0.393 0.436 0.826 0.826 0.484	10.51 12.29 1.35 8.42 26.45 4.16 6.69 4.26 3.63
49)	Ť	1,2-Dibromoethane (0.323	0.363	0.370	0.276 0.530	0.338 0.542	U.424 0.400	0.349 0.491	14.10021 11.58

50)	I	Chlorobenzene-d5				-ISTD-				
51)	ΜP	Chlorobenzene	1.318	1.316	1.277	1.334	1.231	1.628	1.350	10.43
52)	Т	1,1,1,2-Tetrachloro	0.284	0.277	0.288	0.294	0.315	0.129	0.265	25.53
53)	С	Ethylbenzene	2.026	2.280	2.127	2.319	2.175	2.247	2.196	4.94
54)	Т	m,p-Xylene	0.791	0.784	0.785	0.773	0.714	0.833	0.780	4.92
55)	т	o-Xylene	0.796	0.815	0.815	0.802	0.731	0.822	0.797	4.24
56)	Т	Styrene	1.284	1.457	1.402	1.434	1.328	1.224	1.355	6.77
57)	Р	Bromoform	0.139	0.165	0.166	0.179	0.176	0.143	0.162	10.32
58)	\mathbf{T}	Isopropylbenzene	1.708	1.967	1.817	1.898	1.875	1.679	1.824	6.15
59)	S	Bromofluorobenzene	0.579	0.654	0.605	0.644	0.661	0.518	0.610	9.03
60)	Ρ	1,1,2,2-Tetrachloro	0.607	0.643	0.606	0.593	0.559	0.593	0.600	4.53
61)	Т	Bromobenzene	0.535	0.577	0.552	0.570	0.537	0.548	0.553	3.11
62)	Т	1,2,3-Trichloroprop	0.551	0.619	0.545	0.638	0.605	0.497	0.576	9.33
63)	Т	n-Propylbenzene	1.839	2.262	1.967	1.973	2.160	1.575	1.963	12.37
64)	т	2-Chlorotoluene	1.544	1.633	1.453	1.616	1.562	1.347	1.526	7.11
65)	Т	1,3,5-Trimethylbenz	1.341	1.631	1.514	1.527	1.553	1.254	1.470	9.69
66)	Т	4-Chlorotoluene	1.512	1.894	1.689	1.811	1.795	1.505	1.701	9.57
67)	Т	tert-Butylbenzene	1.029	1.166	1.041	1.094	1.113	0.816	1.043	11.67
68)	Т	1,2,4-Trimethylbenz	1.354	1.759	1.586	1.648	1.713	1.298	1.560	12.26
69)	Т	sec-Butylbenzene	1.347	1.707	1.565	1.527	1.654	2.303	1.684	19.47
70)	Т	1,3-Dichlorobenzene	0.742	0.976	0.811	0.909	0.945	0.767	0.858	11.43
71)	Т	4-Isopropyltoluene	1.023	1.471	1.282	1.265	1.437	1.069	1.258	14.62
72)	т	1,4-Dichlorobenzene	0.788	1.030	0.894	0.978	1.014	0.791	0.916	11.87
73)	т	n-Butylbenzene	0.462	0.647	0.535	0.579	0.633	0.549	0.568	12.04
74)	\mathbf{T}	1,2-Dichlorobenzene	0.782	0.990	0.889	0.879	0.940	0.768	0.875	9.93
75)	Т	1,2-Dibromo-3-chlor	0.111	0.121	0.103	0.125	0.125	0.203	0.131	27.48
76)	\mathbf{T}	1,2,4-Trichlorobenz	0.245	0.356	0.216	0.289	0.346	0.375	0.304	21.31
77)	\mathbf{T}	Hexachlorobutadiene	0.201	0.163	0.193	0.168	0.171	0.152	0.175	10.84
78)	Т	Naphthalene	0.890	1.491	1.247	1.279	1.441	0.779	1.188	24.51
79)	Т	1,2,3-Trichlorobenz	0.276	0.354	0.258	0.303	0.355	0.187	0.289	22.02
80)	Т	1,1,2-Trichloro-1,2	0.181	0.194	0.182	0.175	0.177	0.168	0.179	4.84
81)	T	Methyl acetate	0.250	0.223	0.239	0.242	0.250	0.248	0.242	4.27
82)	T	Cyclohexane	0.493	0.458	0.485	0.470	0.454	0.619	0.497	12.49
83)	Т	Methylcyclohexane	0.257	0.263	0.255	0.260	0.263	0.314	0.269	8.37
 (#)		it of Pange						_ .		

(#) = Out of Range

JAW0723.M Wed Jul 29 11:18:29 2009 MANAGER

Instrument ID:	MSD_J
Method ID:	JAW0723
Date:	07/23/09

Average %RSD = 10.62

Refer to SW846 Method 8000B Section 7.5.1.

,

.

Evaluate Continuing Calibration Report Data File : C:\MSDCHEM\1\DATA\07-27-09\J3916.DVial: 3Acq On : 27 Jul 2009 10:02 amOperator: BINXUSample : 100PPB,STD-100PPB,A,5ml,100Inst : MSD_JMisc :Multiplr: 1.00 MS Integration Params: LSCINT.P Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Jul 29 11:18:26 2009 Response via : Single Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 35% Max. Rel. Area : 200% AvgRF CCRF %Dev Area% Dev(min) CompoundAvgRFCCRF%Dev Area% Dev (min1IPentafluorobenzene1.0001.0000.01360.012TDichlorodifluoromethane0.6820.794-16.41550.003PChloromethane0.9390.8836.01290.014CVinyl chloride0.7070.6774.21280.005TBromomethane0.4190.32821.71100.006TChloroethane0.8070.7842.91350.007TTrichlorofluoromethane0.6720.692-3.0131-0.019MC1,1-Dichloroethene0.6720.692-3.0131-0.0110TAcetone0.4050.29227.91020.0111TCarbon disulfide1.4591.577-8.11310.0012TVinyl acetate0.9530.8807.71400.0313TMethylene chloride0.6560.58610.7126-0.0214TAcrylonitrileO.1900.14424.21010.0215Ttert-Butyl alcohol (TBA)0.0680.0645.91510.0216Ttrans-1,2-Dichloroethene0.5350.5065.61310.0017Methyl tert-butyl ether (MT0.770.57618.51190.0119T</td Compound 1,4-Difluorobenzene1.0001.0000.01370.01Benzene1.8141.60511.51230.01Trichloroethene0.5450.46015.61150.011,2-Dichloropropane0.3860.3791.81220.01Dibromomethane0.3260.29011.01170.01Bromodichloromethane0.5170.38026.51140.002-Chloroethyl vinyl ether0.0130.01115.41200.02cis-1,3-Dichloropropene0.2840.287-1.11300.014-Methyl-2-pentanone (MIBK)0.5560.42523.6950.01Toluene-d81.2881.289-0.11360.01trans-1,3-Dichloropropene0.2640.290-9.81240.001,1,2-Trichloroethane0.3930.34711.71170.001,3-Dichloropropane0.8260.70314.91160.01 31 I 32 M 33 M 34 C 35 T 37 T 33 M 37 T 38 T 39 T 40 T 41 S 42 MC 43 T 43 T 44 T 45 T 0.01 0024 46 T

47 48 49	T T T	2-Hexanone Dibromochloromethane 1,2-Dibromoethane (EDB)	0.484 0.349 0.491	0.357 0.319 0.442	26.2 8.6 10.0	99 120 112	0.01 0.01 0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	136	0.01
51	MP	Chlorobenzene	1.350	1.150	14.8	119	0.01
52	Т	1,1,1,2-Tetrachloroethane	0.265	0.273	-3.0	134	0.00
53	С	Ethylbenzene	2.196	2.030	7.6	121	0.01
54	Т	m,p-Xylene	0.780	0.689	11.7	120	0.00
55	T	o-Xylene	0.797	0.701	12.0	117	0.00
56	\mathbf{T}	Styrene	1.355	1.251	7.7	117	0.01
57	P	Bromoform	0.162	0.202	-24.7	166	0.01
58	\mathbf{T}	Isopropylbenzene	1.824	1.756	3.7	122	0.01
59	S	Bromofluorobenzene	0.610	0.649	-6.4	135	0.01
60	P	1,1,2,2-Tetrachloroethane	0.600	0.543	9.5	115	0.00
61	Т	Bromobenzene	0.553	0.487	11.9	115	0.01
62	Т	1,2,3-Trichloropropane	0.576	0.494	14.2	109	0.00
63	Т	n-Propylbenzene	1.963	2.038	-3.8	123	0.00
64	Т	2-Chlorotoluene	1.526	1.436	5.9	120	0.01
65	Т	1,3,5-Trimethylbenzene	1.470	1.437	2.2	120	0.00
66	\mathbf{T}	4-Chlorotoluene	1.701	1.660	2.4	119	0.01
67	Т	tert-Butylbenzene	1.043	1.036	0.7	121	0.01
68	T .	1,2,4-Trimethylbenzene	1.560	1.560	0.0	121	0.01
69	\mathbf{T}	sec-Butylbenzene	1.684	1.560	7.4	124	0.00
70	Т	1,3-Dichlorobenzene	0.858	0.827	3.6	115	0.01
71	Т	4-Isopropyltoluene	1.258	1.321	-5.0	122	0.00
72	Т	1,4-Dichlorobenzene	0.916	0.872	4.8	115	0.01
73	Т	n-Butylbenzene	0.568	0.590	-3.9	124	0.01
74	Т	1,2-Dichlorobenzene	0.875	0.817	6.6	112	0.01
75	Т	1,2-Dibromo-3-chloropropane	0.131	0.088	32.8	99	0.01
76	Т	1,2,4-Trichlorobenzene	0.304	0.260	14.5	100	0.00
77	Т	Hexachlorobutadiene	0.175	0.138	21.1	116	0.00
78	Т	Naphthalene	1.188	1.023	13.9	93	0.01
79	Т	1,2,3-Trichlorobenzene	0.289	0.247	14.5	95	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.179	0.219	-22.3	154	0.00
81	Т	Methyl acetate	0.242	0.204	15.7	125	0.01
82	Т	Cyclohexane	0.497	0.458	7.8	136	0.00
83	Т	Methylcyclohexane	0.269	0.279	-3.7	144	0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J2411.D JAW0723.M Wed Jul 29 11:30:51 2009 MANAGER

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J3918.D	98	99	76
07153-003	AQUEOUS	J3919.D	97	101	75
07112-004	AQUEOUS	J3920.D	91	99	74
07112-005	AQUEOUS	J3921.D	95	99	72
07112-006	AQUEOUS	J3922.D	98	99	76
BLK-SPK	AQUEOUS	J3923.D	91	102	105
MS	AQUEOUS	J3924.D	103	101	95
MSD	AQUEOUS	J3925.D	102	100	92
07112-007	AQUEOUS	J3926.D	94	99	71
07112-008	AQUEOUS	J3927.D	97	99	71
07112-009	AQUEOUS	J3928.D	94	99	72
07112-010	AQUEOUS	J3929.D	94	101	71
07112-011	AQUEOUS	J3930.D	102	101	74
07112-001	AQUEOUS	J3932.D	95	100	70
07112-002	AQUEOUS	J3933.D	95	100	68
07112-003	AQUEOUS	J3934.D	101	101	67
07153-001	AQUEOUS	J3936.D	101	102	85
07153-002	AQUEOUS	J3937.D	106	101	71

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	73-200	39-183
SMC2 = Toluene-d8	50 ppb	92-108	58-143
SMC3 = Bromofluorobenzene	50 ppb	65-117	50-152

Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	<u>MSD</u>
Batch No.:	<u>J0727</u>

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	34.0	68	34 - 149
Benzene	50.0	0.0	38.8	78	45 - 136
Trichloroethene	50.0	0.0	34.9	70	40 - 147
Toluene	50.0	0.0	38.3	77	43 - 137
Chlorobenzene	50.0	0.0	35.8	72	45 - 14 4

	SAMPLE	MSD		MSD				
Compound	CONC.	CONC.		%	%	QC LIN	1ITS	
	(ug/L)	(ug/L)	#	REC	RPD #	RPD	REC.	
1,1-Dichloroethene	0.0	31.5	[63	8	19	34 - 149	
Benzene	0.0	36.8	74		5	15	45 - 136	
Trichloroethene	0.0	33.3		67	4	18	40 - 147	
Toluene	0.0	37.0		74	4	16	43 - 137	
Chlorobenzene	0.0	34.6		69	4	16	45 - 144	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

J3851.D

Date Analyzed: 07/22/2009

Instrument ID:

MSD_J

-	50UG/L	IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	202038	6.18	333497	7.00	358288	10.34
	UPPER LIMIT	404076	6.68	666994	7.50	716576	10.84
	LOWER LIMIT	101019	5.68	166748.5	6.50	179144	9.84
	LAB SAMPLE						
	ID						
01	STD-1PPB	244410	6.18	395841	7.00	407614	10.34
02	STD-2PPB	204964	6.18	332995	7.00	348489	10.34
03	STD-5PPB	225633	6.18	366963	7.00	364631	10.34
04	STD-200PPB	191473	6.18	327805	7.00	354627	10.34
05	STD-20PPB	219298	6.18	363970	7.00	376590	10.34
06	STD-150PPB	192769	6.18	317632	7.00	349223	10.34
07							
08							
10							
11							
12							
12					_		
14							
15							
16						·	i
17							
18	·····					·	
19					ł		
20							
21							
22						·····	

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

J3916.D

Date Analyzed: 07/27/2009

Instrument ID:

MSD_J

Time Analyzed: 10:02

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	273844	6.18	455437	7.00	488029	10.34
UPPER LIMIT	547688	6.68	910874	7.50	976058	10.84
LOWER LIMIT	136922	5.68	227718.5	6.50	244014.5	9.84
LAB SAMPLE						
ID						
01 METHOD-BLK	233328	6.18	402761	7.00	413907	10.34
02 07153-003	252533	6.19	424266	7.01	446121	10.34
03 07112-004	265261	6.18	445188	7.00	457864	10.34
04 07112-005	227577	6.18	404064	7.00	413947	10.34
05 07112-006	233853	6.18	411129	7.00	424706	10.34
06 BLK-SPK	295682	6.18	506351	7.00	540148	10.34
07 MS	220718	6.17	392227	7.00	442580	10.34
08 MSD	235145	6.18	411128	7.00	461645	10.34
0907112-007	245801	6.18	429420	7.01	435259	10.34
10 07112-008	252368	6.18	442759	7.00	453539	10.34
11 07112-009	247014	6.18	428901	7.00	434993	10.34
12 07112-010	246336	6.18	423757	7.00	444931	10.34
13 07112-011	231522	6.18	411193	7.00	431653	10.34
14 07112-001	232674	6.18	410051	7.00	411989	10.34
15 07112-002	210073	6.18	370728	7.01	381660	10.34
16 07112-003	195114	6.18	342133	7.00	356901	10.34
17 07153-001	208395	6.18	357344	7.00	398183	10.34
18 07153-002	200346	6.18	360344	7.01	377845	10.34
19						
20						
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3932.D Vial: 19 Operator: BINXU

 Acq On
 : 27 Jul 2009
 5:37 pm
 Operator: BINXU

 Sample
 : FB(071509),07112-001,A,5ml,100
 Inst
 : MSD_J

 Misc
 : ARCADIS/KINGS_ELEC,07/15/09,07/17/09,
 Multiplr: 1.00

 Acq On : 27 Jul 2009 5:37 pm MS Integration Params: LSCINT.P Quant Results File: JAW0723.RES Quant Time: Jul 27 17:57:50 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 15:15:18 2009 Response via : Initial Calibration DataAcq Meth : JAW0723 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816823267450.00UG0.0131) 1,4-Difluorobenzene7.0011441005150.00UG0.0150) Chlorobenzene-d510.3411741198950.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 153124 47.66 UG 0.02 Spiked Amount50.000Range43 - 133Recovery=95.32%41) Toluene-d88.679853077150.23UG0.01Spiked Amount50.000Range39 - 137Recovery=100.46%
 59) Bromofluorobenzene
 11.75
 95
 177169
 35.24 UG
 0.02

 Spiked Amount
 50.000
 Range
 23 - 145
 Recovery
 =
 70.48%

Target Compounds

Qvalue

JAW0723.M J3932.D

Tue Jul 28 14:31:57 2009

MANAGER

Quantitation Report (QT Reviewed)

 Data File : C:\MSDCHEM\1\DATA\07-27-09\J3933.D
 Vial: 20

 Acq On : 27 Jul 2009 6:05 pm
 Operator: BINXU

 Sample : TB(071509),07112-002,A,5ml,100
 Inst : MSD_0

 Misc : ARCADIS/KINGS_ELEC,07/15/09,07/17/09,
 Multiplr: 1.00

 Operator: BINXU Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jul 27 18:26:01 2009 Quant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 15:15:18 2009 Response via : Initial Calibration DataAcg Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1816821007350.00UG0.0131) 1,4-Difluorobenzene7.0111437072850.00UG0.0250) Chlorobenzene-d510.3411738166050.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 137891 47.53 UG 0.02 Stor1,2-Dichloitecthalle-d40.320.3213705147.350.0Spiked Amount50.000Range43 - 133Recovery=95.06%41) Toluene-d88.679847987350.23UG0.01Spiked Amount50.000Range39 - 137Recovery=100.46%59) Bromofluorobenzene11.759515860534.06UG0.02Spiked Amount50.000Range23 - 145Recovery=68.12%

Target Compounds

Qvalue

					Qu	anti	tati	on	Repo	ort	(QT 1	Revi	ewe	d)			
Data Acq Sam Miso MS Quar	a Fi On ole c Intent	ile egra Cime	: C: : 27 : TB : AR tion : Ju	\MSI Ju] (071 CAD] Pan 1 28	DCHE L 20 L509 LS/K cams 3 14	M\1\ 09),07 INGS : LS :32	DATA 6:0 112- ELE CIN1 2009	\07 05 p 002 C,0 C,0	-27 m ,A,9 7/19	-09 5ml, 5/09	J393 100 ,07/	3.D 17/ Quai	09, nt R	esu	Ope: Ins Muli	Vial: rator: t : tiplr: File:	20 BINXU MSD_J 1.00 JAW072	3.RES
Metł	nod		:	C:\	MSD	CHEM	\1\M	IETH	ods	WAU	0723	. M	(RTE	: In	tea	rator)		
Tit	le	dot.	:	VOI		LEO	RGAN	ICS	BY	EPA	MET	HOD	826	0B		,		
Resp	pons	se v	e : ia :	Ini	itia	1 Ca	libr	ati	on	2009	_							
Abundance 600000)								TIC	: J3933	.D							
580000																		l
560000																		
540000																		
520000																		
500000								8 8	- 15 15									
480000								iene-di	narnar narnar									
460000								튤	Chlorn	}								
440000	}																	
420000																		
400000						izene,												I
380000						lorober												
360000						,4-Dift												
340000					e,	-												
320000					benzen						e,s							
280000					afluorot						benzer							
260000					Pent						oluara							
240000						ł					Bron							
220000						S												
200000						iane-d4												
180000						lloroeth												
160000						2-Dict					ļ							
140000						-												
120000						1												
100000																		
80000																		
60000								Ì										
40000																		
20000						A A												
0 Time>	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.0	0 16.0	0 17.00 1	8.00 19.00	
J3933.	.D	JAW	0723	.м		Tue	Jul	28	14:	32:3	192	009		M	ANAC	GER	Page	e 2

Quantitation Report (QT Reviewed)

 Data File : C:\MSDCHEM\1\DATA\07-27-09\J3934.D
 Vial: 21

 Acq On : 27 Jul 2009 6:34 pm
 Operator: BINXU

 Sample : FB(071609),07112-003,A,5ml,100
 Inst : MSD_J

 Misc : ARCADIS/KINGS_ELEC,07/16/09,07/17/09,
 Multiplr: 1.00

 MS Integration Params: LSCINT.P Quant Results File: JAW0723.RES Quant Time: Jul 27 18:54:34 2009 Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 15:15:18 2009 Response via : Initial Calibration DataAcq Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1816819511450.00UG0.0131) 1,4-Difluorobenzene7.0011434213350.00UG0.0150) Chlorobenzene-d510.3411735690150.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 135840 50.42 UG 0.02 Sol 1,2-Dictribute finance d48.326513584050.42666.62Spiked Amount50.000Range 43 - 133Recovery = 100.84%41) Toluene-d88.679844367050.32UG0.01Spiked Amount50.000Range 39 - 137Recovery = 100.64%59) Bromofluorobenzene11.759514674633.70UG0.02Spiked Amount50.000Range 23 - 145Recovery = 67.40%

Target Compounds

Qvalue

(QT Reviewed) Quantitation Report Data File : C:\MSDCHEM\1\DATA\07-27-09\J3934.D Vial: 21 Operator: BINXU : 27 Jul 2009 6:34 pm Acq On : MSD J Sample : FB(071609),07112-003,A,5ml,100 Inst : ARCADIS/KINGS ELEC,07/16/09,07/17/09, Multiplr: 1.00 Misc MS Integration Params: LSCINT.P Ouant Time: Jul 28 14:32 2009 Quant Results File: JAW0723.RES : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 15:15:18 2009 Response via : Initial Calibration TIC: J3934.D Abundance 540000 520000 500000 480000 460000 Chlorobenzene-d5, 440000 420000 400000 380000 1,4-Difluorobenzene,1 360000 340000 320000 300000 Pentafluorobenzene, l Bromofluorobenzene,S 280000 260000 240000 220000 I,2-Dichloroethane-d4,S 200000 180000 160000 140000 120000 100000 80000 60000 40000 20000 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 3.00 5.00 6.00 7.00 8.00 2.00 4.00 Time-->

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3920.D Acq On : 27 Jul 2009 11:56 am Sample : GP-103R,07112-004,A,5ml,100 Vial: 7 Operator: BINXU Inst : MSD J Misc : ARCADIS/KINGS_ELEC,07/16/09,07/17/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Time: Jul 27 12:16:26 2009 Ouant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Fri Jul 24 10:48:04 2009 Response via : Initial Calibration DataAcg Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1816826526150.00UG0.0131) 1,4-Difluorobenzene7.0011444518850.00UG0.0150) Chlorobenzene-d510.3411745786450.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 166786 45.40 UG 0.02 Spiked Amount50.000Range43 - 133Recovery=90.80%41) Toluene-d88.679856616549.51UG0.01Spiked Amount50.000Range39 - 137Recovery=99.02%59) Bromofluorobenzene11.759520347337.09UG0.02 Spiked Amount 50.000 Range 23 - 145 Recovery = 74.18% Qvalue Target Compounds 33) Trichloroethene 7.30 95 1408 0.28 UG 90

		Quan	titatio	on Rep	ort	(QT	Review	red)			
Data Acq Samp Misc	File : C:\MSD On : 27 Jul le : GP-103 : ARCADI	CHEM\ 2009 R,071 S/KIN	1\DATA\ 11:56 12-004, GS_ELEC	07-27 5 am A,5ml C,07/1	-09\J ,100 6/09,	3920.D 07/17/	09,	Opei Inst Mult	Vial: rator: iplr:	7 BINXU MSD_J 1.00	
Quant	t Time: Jul 27	16:4	7 2009	Ľ		Qua	nt Res	ults	File:	JAW0723	.RES
Metho Titlo Last Respo	od : C:\l e : VOL Update : Mon onse via : Ini	MSDCH ATILE Jul tial	EM\1\ME ORGANI 27 15:3 Calibra	THODS ICS BY 15:18 ation	\JAW0 EPA 1 2009	723.M METHOD	(RTE I 8260B	ntegi	ator))
700000					9. 99529.0						
650000					15,1						
600000			ģ		ilorobenzene∢						
550000			Tottene-								
500000		-						·			
450000											
400000		benzene, l				openzene,o					
350000		Pentalluor				eromotuo					
300000											
250000		oethane-d4,S									
200000		1,2-Dichtor									
150000											
100000			thene.M			: : :					
50000			Trictitoroe								
0, Time> 2	2.00 3.00 4.00 5.00	6.00 7.	00.8.00	9.00 10.0	0 11.00	12.00 13.00) 14.00 15	5.00 16.0	0 17.00 1	8.00 19.00	

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3921.D Vial: 8 Operator: BINXU Acq On : 27 Jul 2009 12:24 pm Sample : MW-9D,07112-005,A,5ml,100 Inst : MSD_3 Misc : ARCADIS/KINGS_ELEC,07/15/09,07/17/09, Multiplr: 1.00 Inst : MSD J MS Integration Params: LSCINT.P Ouant Time: Jul 27 12:44:57 2009 Ouant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Fri Jul 24 10:48:04 2009 Response via : Initial Calibration DataAcq Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards ______ 1) Pentafluorobenzene6.1816822757750.00UG31) 1,4-Difluorobenzene7.0011440406450.00UG50) Chlorobenzene-d510.3411741394750.00UG 0.01 0.01 0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 149309 47.37 UG 0.02 Spiked Amount50.000Range43 - 133Recovery=94.74%41) Toluene-d88.679851430749.55UG0.01Spiked Amount50.000Range39 - 137Recovery=99.10%59) Bromofluorobenzene11.759517971436.23UG0.02Spiked Amount50.000Range23 - 145Recovery=72.46%

Target Compounds

Qvalue

	Quantitati	on Report	(QT Reviewed)	
Data Acq Samp Misc MS Quar	A File : C:\MSDCHEM\1\DATA On : 27 Jul 2009 12:2 ple : MW-9D,07112-005,A c : ARCADIS/KINGS_ELE Integration Params: LSCINT nt Time: Jul 27 16:47 2009	\07-27-09\J3 4 pm ,5ml,100 C,07/15/09,0 .P	921.D Vial: Operator: Inst : 7/17/09, Multiplr: Quant Results File:	8 BINXU MSD_J 1.00 JAW0723.RES
Meth Tit Last Resp	nod : C:\MSDCHEM\1\M Le : VOLATILE ORGAN : Update : Mon Jul 27 15: ponse via : Initial Calibr	ETHODS\JAW07 ICS BY EPA M 15:18 2009 ation TC:J3921D	23.M (RTE Integrator) ETHOD 8260B	
620000 600000 580000 560000 540000 520000 500000 480000		Chlorobenzene-d5,1		
460000 440000 420000 400000 380000	1,4-Difluorobenzene,i			
360000 340000 320000 300000 280000	Pentafluorobenzene, J	Bromofulorobenzene,S		
240000 220000 200000 180000 160000	1,2-Dichloroethane-d4,S			
140000 120000 100000 80000 60000				
40000 20000 0 Time>	2.00 3.00 4.00 5.00 6.00 7.00 8.00	9.00 10.00 11.00 12	00 13.00 14.00 15.00 16.00 17.00 1	8.00 19.00

J3921.D JAW0723.M Tue Jul 28 14:26:45 2009 MANAGER

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3922.D Vial: 9 Acq On : 27 Jul 2009 12:52 pm Operator: BINXU Sample: MW-9S,07112-006,A,5ml,100Inst: MSD_3Misc: ARCADIS/KINGS_ELEC,07/15/09,07/17/09,Multiplr: 1.00 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jul 27 13:12:58 2009 Ouant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Fri Jul 24 10:48:04 2009 Response via : Initial Calibration DataAcg Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1816823385350.00UG0.0131) 1,4-Difluorobenzene7.0011441112950.00UG0.0150) Chlorobenzene-d510.3411742470650.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.52 65 158450 48.92 UG 0.02 Spiked Amount 50.000 Range 43 - 133 Recovery = 97.84% spiked Amount50.000Range43 - 135Recovery- 97.04341) Toluene-d88.679852360449.58 UG0.01Spiked Amount50.000Range39 - 137Recovery= 99.16%59) Bromofluorobenzene11.759519324437.97 UG0.02Spiked Amount50.000Range23 - 145Recovery= 75.94% Target Compounds Ovalue 20) cis-1,2-Dichloroethene 5.59 96 1609 0.56 UG # 99

Tue Jul 28 14:26:58 2009

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3926.D Vial: 13 : MW-6S,07112-007,A,5ml,100 : ARCADIS/KINGS EURO 05/0 Operator: BINXU Acq On : 27 Jul 2009 2:47 pm Inst : MSD J Sample Misc : ARCADIS/KINGS ELEC,07/15/09,07/17/09, Multiplr: 1.00 MS Integration Params: LSCINT.P Quant Time: Jul 27 15:07:12 2009 Quant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 14:55:12 2009 Response via : Initial Calibration DataAcg Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1816824580150.00UG0.0131) 1,4-Difluorobenzene7.0111442942050.00UG0.0250) Chlorobenzene-d510.3411743525950.00UG0.01 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.51 65 159537 47.00 UG 0.01 Stor1,2-Dichlorosethane-d46.516513953747.00666.01Spiked Amount50.000Range43-133Recovery=94.00%41) Toluene-d88.679855052449.75UG0.01Spiked Amount50.000Range39-137Recovery=99.50%59) Bromofluorobenzene11.759518774735.35UG0.02Spiked Amount50.000Range23-145Recovery=70.70% Ovalue Target Compounds 9) 1,1-Dichloroethene3.499651201.55UG#10033) Trichloroethene7.309517480537.32UG8845) Tetrachloroethene9.38166205415.48UG#99

Quantit	ation Repor	rt	(QT Review	red)		
Data File : C:\MSDCHEM\1\DATA Acq On : 27 Jul 2009 3:1 Sample : MW-13R,07112-008, Misc : ARCADIS/KINGS_ELE MS Integration Params: LSCINT	\07-27-09\0 5 pm A,5ml,100 C,07/15/09; .P	J3927.I	O Op In /09, Mu	Vial: erator: st : ltiplr:	14 BINXU MSD_J 1.00	
Quant Time: Jul 27 15:35:44 2	009	Qua	ant Result	s File:	JAW0723	.RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Mon Jul 27 15: Response via : Initial Calibr DataAcq Meth : JAW0723	ETHODS\JAW(ICS BY EPA 15:18 2009 ation	0723.M METHOI	(RTE Inte) 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	its Dev	(Min)
1) Pentafluorobenzene	б.18	168	252368	50.00	UG	0.01
31) 1.4-Difluorobenzene	7.00	114	442759	50.00	UG	0.01
50) Chlorobenzene-d5	10.34	117	453539	50.00	UG	0.01
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.52	65	168382	48.32	UG	0.02
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	96.64%	
41) Toluene-d8	8.67	98	563042	49.35	UG	0.01
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	98.70%	
59) Bromofluorobenzene	11. 75	95	196591	35.52	UG	0.02
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	71.04%	
Target Compounds					Qva	alue
20) cis-1,2-Dichloroethene	5.58	96	2211	0.72	UG #	70
33) Trichloroethene	7.31	95	4161	0.86	UG	89

Quantitation Report (QT Reviewed) Data File : C:\MSDCHEM\1\DATA\07-27-09\J3928.D Vial: 15 Operator: BINXU Acq On : 27 Jul 2009 3:44 pm . 2, 041 2009 3:44 pm : GP-104R,07112-009,A,5ml,100 Sample: GP-104R,07112-009,A,5ml,100Inst: MSD_0Misc: ARCADIS/KINGS_ELEC,07/16/09,07/17/09,Multiplr: 1.00 Inst : MSD J MS Integration Params: LSCINT.P Quant Time: Jul 27 16:04:07 2009 Ouant Results File: JAW0723.RES Quant Method : C:\MSDCHEM\1\METHODS\JAW0723.M (RTE Integrator) Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jul 27 15:15:18 2009 Response via : Initial Calibration DataAcg Meth : JAW0723 R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1816824701450.00UG0.0131) 1,4-Difluorobenzene7.0011442890150.00UG0.0150) Chlorobenzene-d510.3411743499350.00UG0.01 System Monitoring Compounds30) 1,2-Dichloroethane-d46.516516094447.18UG0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 94.36%

 41) Toluene-d8
 8.67
 98
 549220
 49.69
 UG
 0.01

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 99.38%

 Ovalue Target Compounds 20) cis-1,2-Dichloroethene5.59964917m1.64UG33) Trichloroethene7.319585071.82UG#57

Quantita	ation Repo	rt	(QT Review	ed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 27 Jul 2009 4:12 Sample : PTW-2,07112-010,A Misc : ARCADIS/KINGS_ELEC MS Integration Params: LSCINT Quant Time: Jul 27 16:32:34 20	\07-27-09\ 2 pm ,5ml,100 C,07/16/09 .P D09	J3929.I ,07/17, Qua) Op In /09, Mu ant Result	Vial: erator: st : ltiplr: s File:	16 BINXU MSD_J 1.00 JAW0723	.RES
Quant Method : C:\MSDCHEM\1\M Title : VOLATILE ORGAN Last Update : Mon Jul 27 15: Response via : Initial Calibra DataAcq Meth : JAW0723	ETHODS\JAW ICS BY EPA 15:18 2009 ation	0723.M METHOI	(RTE Inte) 8260B	grator)		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.18 7.00 10.34	168 114 117	246336 423757 444931	50.00 50.00 50.00	UG UG UG	0.01 0.01 0.01
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.52 Range 43 8.67 Range 39 11.75 Range 23	65 - 133 98 - 137 95 - 145	160437 Recove 551552 Recove 191571 Recove	47.17 ry = 50.51 ry = 35.29 ry =	UG 94.34% UG 101.02% UG 70.58%	0.02 0.01 0.02
Target Compounds 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	4.92 5.58 7.30	63 96 95	2541 5271 10242	0.58	Qva UG # UG # UG	alue 99 99 88

Quantita	ation Report	(QT	Reviewed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 27 Jul 2009 4:40 Sample : DUP(071509),07112 Misc : ARCADIS/KINGS_ELEC MS Integration Params: LSCINT Quant Time: Jul 27 17:00:39 20	\07-27-09\J39 0 pm -011,A,5ml,10 C,07/15/09,0 .P 009	930.D 00 7/17/09, Quant	Vial Operator Inst Multiplr Results File	: 17 : BINXU : MSD_J : 1.00 : JAW0723	.RES
Quant Method : C:\MSDCHEM\1\MI Title : VOLATILE ORGAN Last Update : Mon Jul 27 15: Response via : Initial Calibra DataAcq Meth : JAW0723	ETHODS\JAW072 ICS BY EPA MI 15:18 2009 ation	23.M (RT ETHOD 82	E Integrator 60B	`}	
Internal Standards	R.T. Q	Ion Res	ponse Conc	Units Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.18 7.00 10.34	L68 23 L14 41 L17 43	1522 50.0 1193 50.0 1653 50.0	0 UG 0 UG 0 UG	0.01 0.01 0.01
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.51 Range 43 - 8.67 Range 39 - 11.75 Range 23 -	65 16 133 98 53 137 95 19 145	3793 51.2 Recovery = 3423 50.3 Recovery = 3781 36.7 Recovery =	3 UG 102.46% 4 UG 100.68% 9 UG 73.58%	0.01 0.01 0.02
Target Compounds 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene	4.92 5.59	63 96	2286 0.5 1858 0.6	Qva 5 UG 6 UG #	alue 98 98

Quantita	ation Report	c (QT	Reviewed)		
Data File : C:\MSDCHEM\1\DATA Acq On : 27 Jul 2009 10:59 Sample : NA,METHOD-BLK,A,5r Misc : MS Integration Params: LSCINT Quant Time: Jul 27 11:19:34 20	\07-27-09\J 9 am nl,100 .P 009	3918.D Quant	Vial: Operator: Inst : Multiplr: Results File:	5 BINXU MSD_J 1.00 JAW0723.	.RES
Quant Method : C:\MSDCHEM\1\ME Title : VOLATILE ORGANI Last Update : Fri Jul 24 10:4 Response via : Initial Calibra DataAcq Meth : JAW0723	ETHODS\JAWO' ICS BY EPA M 18:04 2009 ation	723.M (RI METHOD 82	TE Integrator) 260B		(\
Internal Standards	R.T. (QIon Res	sponse Conc U	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.18 7.00 10.34	168 23 114 40 117 41	332850.00276150.00.390750.00	UG UG UG	0.01 0.01 0.01
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8	6.52 Range 43 - 8.67	65 15 - 133 98 50	8373 49.01 Recovery = 9738 49.27	UG 98.02% UG	0.02
Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 39 - 11.75 Range 23 -	- 137 95 18 - 145	Recovery = 9051 38.12 Recovery =	98.54% UG 76.24%	0.02

Target Compounds

Qvalue

Tue Jul 28 14:25:58 2009

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd Randolph, NJ 97869

				Naurulpu, INJ V1007	- 1
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd	at lab > 5PM)		
Company: APSCHOK - U.S., The.	REPORT TO: E, RORIGUEZ	*Lab notification is required for RUSH TAT prior to GUARANTEED WITHOUT LAB APPROVAL. **R	sample arrival. RUSH TA RUSH SURCHARGES WI	T IS NOT ILL APPLY IF	
Address / Internation Blip.	Address: / Totelan Branch on Sind.	ABLE TO ACCOMMODATE.			
MAHWAH NJ 07495	KANTUME, NJU 7495	PHC. MUST CHOOSE	Rush TAT Charge ** Report Fo	ormat EDD's	
Telephone #: X0/. 694. 1410	ATTI: ERIC ROORIGUES	JJKO (3-5 day 1A.1) JRO (8015B) - used for: Fuel Oil #2/Home Heating Oil #1 /#2.	Results 0	Daly SRP. dbf format	
Fax #: 201.684. 1420	FAX# 20/. 60 4. 1920	QAM-025 (OQA-QAM025) - used for: all other fuel oil and unknown contaminants.	24 hr - 100% Reduce 48 hr - 75%	ed SRP.wk1 format	
Project Manager: ERIC PODKIGUE'	INVOICE TO: E. RODIGUEZ	Verbal/Fax 2 wk/Std Results needed by:	72 hr . 50% Regulatory 96 hr . 35% Surcharge a	- 15% pplies lab approved custom	
Sampler: U. Hueres, D. Kur Schner	Address: / International B(U)	24 hr* 48 hr* Nater Twk* Hard Conv 3 wk/Stel)	5 day - 25 % Other (des	cribe) EDD	
Project Name: KILES Clechenics	KAPAWAN, N/07495	Other *call for price		NO EDD/CD REQ'D	_
Project Location (State): IL KAME . NV		U ANALYTICAL PARAMETERS		7	T
Bottle Order #: BO2672	ATTA: EDIC ROOPICIES			boler Temp*C	
Quote # :	PO# \$1000 \$23.0005.00001	2'		# DTTT 52 P	1
	Sample Matrix	1.51		<u># BULLED &</u> RESERVATIVES	
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Water Water 01 - 0il LAQ - Liquid (Specify) 07 - Other (Specify)	2			
Chient ID Depth (ft. only)	Sampling Synt Solid W - Wipe . # IAL#))))	¹³ OH	ncore Jone Haber LeOH LSSO4 MO3	
F8(071509)	7/(Slorg) OC) FB 2 1			N N U H	1
TB(07150)	7/K/06/2:00 TB 1 Z				1
FB(071609)	7111609:30 FR 2 3	2	2		I
GP-103R	7/10/007 AQ 2 4	7	7		<u> </u>
Jp-WM	7/15/911:32 AQ 2 5	2	7		T
mwgs	7156910 321 AQ 2 6	2	7		r
SJ-WM	TIISM 11:27 AQ 2 7	2	7		T
mw-13R	7/15/29 10.37 AQ 2 8	2	4		<u> </u>
GP-104K	Fille [09] 9: 40 7 AC 2 9	2	N		
PTW-2	7/14/0/10:42 AQ 2-10	2	7		
Known Hazard: Yes or No Describe:		MDI Bear GWOS (11/05) - SRS - SRS IGW - SRS Be	esidential - OTHEP /SEE C	USTNAMMO	
Conc. Expected: Low Med Iligh					- 1
Please print legibly and fill out completely. Sam,	ples cannot be processed and the turnaround time	will not start until any ambiguities have been resolved.			
Signature/Company	Date Time Signature/Company	Comments:			
Relinquished the fund for the name	7/17/06 /0 28 Received by X				1
Relinquished by:	- 1/17 1645 Received by July				
Retinquished by:	Received by:				1
Relinquished by:	Received by:	Lab Cas	e#		1
R(Cquished by:	Received by:	11L0 0 11		× 7	
LAUPOPIES - WHITE & YELLOW; CLIENT COPY - PINK					ļ

03/2009 rev Net Net 0, 260203873

Phone # (973) 361-4252

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

-

Fax # (973) 989-5288	CHA	AIN OF CUSTODY		Randolp	b, NJ 07869	
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd at	lab > SPM)			
Company Arrado S - US. Tr Address [Tritzer APTOL B/ W.	REPORT TO: ACA DE US. C. BUD.	*Lab notification is required for RUSH TAT prior to san GUARANTEED WITHOUT LAB APPROVAL. **RUS ABLE TO ACCOMMODATE.	mple arrival. RUSH T. SH SURCHARGES W	AT IS N(/ILL AP)	IT MAR	
Ninturan, NO7495	NHUPH NI 07495	PHC- MUST CHOOSE	sh TAT Charge ** Report H	format	EDD	s
Telephone #: 201 6 52/4/0 Fax #: 201 654 1420	RATE: E · KODE/GUEZ	URO (3-5 day 1a1) DRO (8015B) - used for: Fuel OII #2/Home Heating OII #1 /#2. QAM-025 (QAA-QAM025) - used for: all other fuel oil and unknown 22 contaminalis.	H hr - 100% Reduc	Only Sed	SRP. dbf I SRP. wk1 I	ormat ormat
Project Manager: Elic Radiovez	INVOICE TO: TRANIZ - US	Verbal/Fax 2 wk/Std Results needed by: 7	45 hr - 75 % 72 hr - 50 % Regulatory 36 hr - 35 % Surcharge	/ - 15%	ab approve	custom
Sampler WARS D. KIRCHAR.	Address (Trited With Jour OV C)	Hard Copy 3 wk/Std	5 day - 25% Other (de 6-9 day 10%	scribe)	EDI EDI	REQ.D
Project Location (State): 10, CLCh DC D		ANALYTICAL PARAMETERS			<u>ر</u>	_
Bottle Order #: B 0 2 4 72-	ATTE Z', KDDRIGUEZ			Cooler Lemp	2 -	_
Quote # :	PO#			# ROT	TIPCE	
	Sample Matrix			RESER	VATIVI	<u>୍</u> ଟ
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Wate Water OI - OII - III, AO - I - Iquid (Specify) OT - Other (Specify) S. Soil SI - Studies SOI - Soild W. Wite)0				
Client JD Depth (ft. only)	Device Sampling Attraction of the Automatic Attraction of	9	N ⁸ OH	FOSZH EONH)(pect	čncore Vone
DUP(071509)	7115109 - AQ 2 (1	5	¹ M	I I		I
					-	
*						
Known Ilazard: Yes or No Describe:				-		T
Conc. Expected: Low Med High		MUL Req: GWQS (11/05) - SRS - SRS/IGW - SRS Resid	dential - OTHER (SEE 0	COMME	(SIN	
Please print legibly and fill out completely. Samp	ples cannot be processed and the turnaround time v	will not start until any ambiguities have been resolved.				
Signature/Company	Date Time Signature/Company	Comments:				
Retinquished by: U. L. M. H. M. M.	7/17 6:25 Received by:	A P				
Relinquished by:	7/17 1645 Received by: (h / A	M. A				
Relinquished by:	Received by:					
Relinquished by:	Received by:	U Lab Case #				
ROnquished by:	Received by:	07112	L PAGE 2	5	ょ	
LCTCOPIES - WHITE & YELLOW; CLIENT COPY - PINK]			

03/2009 rev Ret No. G. 200302875

PROJECT INFORMATION

Case No. E09-07112

Project KINGS ELECTRONICS - VENDOR #1168636

Customer	Arcadis Geraghty & Miller	P.O. # NJ000423.0005.0000
Contact EMail	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs	Received 7/17/2009 16:45 Verbal Due 7/31/2009
Phone	(201) 684-1410 Fax 1(201) 684-1420	Report Due 8/7/2009
Report To		<u>Bill To</u>
1 Internatio	nal Blvd.	640 Plaza Drive
Suite 406		Suite 130
Mahwah, N	JJ 07495	Highlands Ranch, CO 80129
Attn: Eric F	Rodriguez	Attn: Eric Rodriguez
Report I	Format Reduced	
Addition	al Info State Form Field Sampling Con	ditional VOA

<u>Lab ID</u>	Client Sample ID	Depth Top / Bottom	Sampling Time	<u>Matrix</u>	<u>Unit</u>	<u># of Containers</u>
07112-001	FB(071509)	n/a	//15/2009@09:00	Aqueous	ug/L	2
07112-002	TB(071509)	n/a	7/15/2009	Aqueous	ug/L	1 - 7.
07112-003	FB(071609)	n/a	7/16/2009@09:30	Aqueous	ug/L	2
07112-004	GP-103R	n/a	7/16/2009@09:07	Aqueous	ug/L	2
07112-005	MW-9D	n/a	7/15/2009@11:32	Aqueous	ug/L	2
07112-006	MW-98	n/a	7/15/2009@10:32	Aqueous	ug/L	$\mathbb{P}^{\mathrm{part}}_{\mathrm{res}} \sim 2_{\mathrm{res}}$
07112-007	MW-6S	n/a	7/15/2009@11:27	Aqueous	ug/L	2
07112-008	MW-13R	n/a	7/15/2009@10:37	Aqueous	ug/L	2
07112-009	GP-104R	n/a	7/16/2009@09:40	Aqueous	ug/L	2
07112-010	PTW-2	n/a	7/16/2009@10:42	Aqueous	ug/L	- 15 - 2 7 - K
07112-011	DUP(071509)	n/a	7/15/2009	Aqueous	ug/L	2
<u>Sample # Te</u>	sts	<u>Status</u> QA	Method			
001 PP V	/OA + Cis 1,2-DCE	Run 826 0)B			
002 PP	OA + Cis 1,2-DCE	Run 8260)B			
003 PP V	/OA + Cis 1,2-DCE	Run 8260)B			
004 PP N	70A + Cis 1,2-DCE	Run 8260) B			
005 PP V	/OA + Cis 1,2-DCE	Run 8260)B			
006 PP N	/OA + Cis 1,2-DCE	Run 8260)B			
007 PP V	/OA + Cis 1,2-DCE	Run 8260)B			
008 PP	/OA + Cis 1,2-DCE	Run 8260)B			
009 PP V	/OA + Cis 1,2-DCE	Run 8260)B			
010 PP V	/OA + Cis 1,2-DCE	Run 8260	B r the state			
011 PP V	/OA + Cis 1,2-DCE	Run 8260)B			

07/23/2009 09:19 by kim - REV 1

Please change sample ID for Sample 006 from MW-9SR to MW-9S, per Eric Rodriguez.

INTEGRATED ANALYTICAL LABORATORIES, LLC
SAMPLE RECEIPT VERIFICATION
CASE NO: E 09 07112 CLIENT: Arcadis
COOLER TEMPERATURE: $2^{\circ} - 6^{\circ}$ C: \checkmark (See Chain of Custody)
$ \begin{array}{l} \checkmark = YES/NA \\ \Rightarrow = NO \end{array} $
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles
 ✓ Sufficient Sample Volume ✓ no-headspace/bubbles in VOs ✓ Labels intact/correct ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time¹ Sample to be Subcontracted ✓ Chain of Custody is Clear
¹ All samples with "Analyze Immediately" holding times will be analyzed by this laboratory past the holding time. This includes but is not limited to the following tests: pH, Temperature, Free Residual Chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INITIAL DATE 71709 CORRECTIVE ACTION REQUIRED: YES SEE BELOW)
If COC is NOT clear, STOP until you get client to authorize/clarify work.
CLIENT NOTIFIED: YES Date/ Time: NO PROJECT CONTACT:

VERIFIED/TAKEN BY:

INITIAL	KN

REV 03/20000057

	Laboratory	, Custo	dy Chron	nicle	<u>.</u>	
IAL Case No.		Clien	t Arcadis Ge	eraghty & Mil	ler	
E09-0/112		Projec	t <u>KINGS EL</u>	ECTRONIC:	5 - VENDOR #116	8636
	R	eceived On	<u>7/17/2009(</u>	<u>@16:45</u>		
Department: Volatiles			Prep. Date	<u>Analyst</u>	<u>Analysis Date</u>	<u>Analyst</u>
PP VOA + Cis 1,2-DCE	07112-001	Aqueous	n/a	n/a	7/27/09	Xing
	-002		n/a	n/a	7/27/09	Xing
9	-003	"	n/a	n/a	7/27/09	Xing
"	-004	"	n/a	n/a	7/27/09	Xing
н	-005	*1	n/a	n/a	7/27/09	Xing
11	-006	et	n/a	n/a	7/27/09	Xing
11	-007	81	n/a	n/a	7/27/09	Xing
π	-008	*1	n/a	n/a	7/27/09	Xing
н	-009	11	n/a	n/a	7/27/09	Xing
н	-010	W.	n/a	n/a	7/27/09	Xing
н	-011	ŧ	n/a	n/a	7/27/09	Xing

ARCADIS

Appendix C

Well Inspection Forms

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

WELL ID.: MW-6S	
DATE/TIME: January 20, 200	9
INSPECTOR: Dustin Kirschn	er

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	6S	
SURFACE SEAL PRESENT?	YES	NO NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE C	.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	ıt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.31'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	10.37'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in first driveway of B Deluxe

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located along automtive garage in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

REMARKS: One bolt missing

Former Kings Electronics Co., Inc. Site

NJ000423.0005.0000

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 MW-9S WELL ID.:

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
	·	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultieRae	1.2 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
ζ, ,		
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.5'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.23'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle building near elevator and ramp.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.0000

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 MW-9D WELL ID.:

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-9D	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	Not Measu	red
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	39.0'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.51'	
MEASURE WELL DIAMETER (Inches):	<u>2.0"</u>	
WELL CASING MATERIAL:	<u>PVC</u>	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	<u>Good</u>	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the main building of the storage facility near the elevator and ramp.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: **MW-13R**

WELL VISIBLE? (If not, provide directions below)	YES YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-13R	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 0	.5 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
	_	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.5'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.21'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Yes	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIEY MARKER TYPE		
	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the last driveway of the storage facility in the back right corner of the driveway with the back towards the loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS: One bolt bent

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: **GP-103R**

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	. YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultiRAE 1	.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
	-	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	14.83'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5.67'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	P\/C	
	100	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	. Good NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in building two in the basement.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in locker 0045.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	GP-104R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	. YES . YES . YES . GP-104R	NO NO NO
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 1	.4 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	14.88'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	4.17'	
MEASURE WELL DIAMETER (Inches):	<u>2.0"</u>	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the basement in the electrical closet in building 2.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the basement on the floor in building 2 in electrical closet.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS: One bolt missing

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

-	-	
	INSPECTOR:	Dustin Kirschner
	DATE/TIME:	January 20, 2009
	WELL ID.:	PTW-2

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	PTW-2	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 0).3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	16.50'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.76'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located just outside the office of the main building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facilty.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 **IW-5** WELL ID.:

WELL VISIBLE? (If not, provide directions below)	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 2	.0.9 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Not Measu	red
LOCK PRESENT?	YES	NO
	1/50	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES YES	NO NO
DID YOU REPLACE THE LOCK?	YES YES YES	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES YES YES 19.85'	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES YES <u>19.85'</u> 9.96'	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES <u>YES</u> <u>19.85'</u> <u>9.96'</u> 2.0"	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>YES</u> <u>19.85'</u> <u>9.96'</u> .2.0" PVC	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES <u>19.85'</u> <u>9.96'</u> .2.0" .PVC Good	NO NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	YES YES <u>19.85'</u> <u>9.96'</u> 2.0" PVC Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in injection box on injection line number 1 in the storage facility first driveway.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the steel box in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	IW-6

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES YES YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES YES YES	NO NO NO
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	MultiRAE 3 NA	81.9 ppm
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Flushmoun 8.0"	it unit
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	. YES 18.00'	NO
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.72'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. <u>PVC</u>	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of the storage facility at injection line number 1.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the steel box in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

REMARKS: No bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-HP-8S

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WEELID. AS IT ALL EARS ON TROTECTIVE CASING OR WEEL.	10100-111-00	
SURFACE SEAL PRESENT?	YES	NO NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged describe below)	YES	NO
HEADSPACE READING (npm) AND INSTRUMENT USED	MultiRAE 3	0.1 nnm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	o.i ppin
PROTECTIVE CASING MATERIAL TYPE:	Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	16.65'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.49'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of the storage facility in the injection line number 1.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

REMARKS: No Bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

OTTE ID.	10000120.0000.0000
INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-1

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked beaved etc. describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (nom) AND INSTRUMENT USED	MultiRAE 2	23.5 nnm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Steel	
LOCK PRESENT?	VES	NO
	. 160	NU
LOCK FUNCTIONAL?	. YES	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	. YES . YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	. YES . YES . YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	. YES . YES . YES YES	NO NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	. YES . YES . YES . YES . YES . 18.77'	NO NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	. YES . YES . YES . YES . YES . <u>YES</u> . <u>18.77'</u> 9.41'	NO NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	. YES YES YES <u>18.77'</u> 9.41' 2.0"	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	. YES YES YES <u>18.77'</u> 9.41' 2.0" .PVC	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	. YES YES YES <u>18.77'</u> <u>9.41'</u> 2.0" PVC Good	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	. YES YES YES 18.77' 9.41' . 2.0" . PVC . Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located left of the first driveway near edge.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement near concrete edge.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-11

WELL VISIBLE? (If not, provide directions below)	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-11	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultiRAE 2	20.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	22.31'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.35'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the sidewalk near the back office door.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the concrete pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Sidewalk salts and deicer.

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-10

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-10	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	Not Collect	ed
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	2.24'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.35'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in locker 1201.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located on the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-12

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-12	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 2	0.6 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	22.02'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.07'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the storage locker 1188

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located on the floor of the locker in the concrete.

None observed	
(e.g. Gas station, salt pile, etc.):	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: **MW-2**

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-2	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES YES YES	NO NO NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
	. Flushmoun	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inclies).	12.0	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.65'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.78'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the storage facility building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located near locker number 1068 in the hallway of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-8

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-8	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 2	2.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.65'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.27'	
MEASURE WELL DIAMETER (Inches):	. 5.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the hallway on the other side of locker 1018.

None observed	
(e.g. Gas station, salt pile, etc.):	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: **IW-9**

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	100-9	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	YES YES YES	NO NO NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
	VEO	NO
	. YES	NO
	. YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.25'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.41'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility in locker 1018.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside locker 1018

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	IW-10

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	I YES YES YES	NO NO NO
SURFACE SEAL PRESENT?	YES	NO
SUBEACE SEAL COMPETENT? (If graphed baryod ata, datariba balaw)	VES	NO
DROTECTIVE CARING IN COOD CONDITION? (If demograd departing below)	TES	NO
PROTECTIVE CASING IN GOOD CONDITION? (II damaged, describe below)	TES	
HEADSPACE READING (ppm) AND INSTRUMENT USED	<u>. MultiRAE 2</u>	23.6 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. <u>Flushmour</u>	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES . YES	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES . YES 16.91'	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES . YES . 16.91' 8.73'	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES <u>YES</u> <u>16.91'</u> 8.73' 2.0"	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES 16.91' 8.73' 2.0" PVC	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES 16.91' 8.73' .2.0" .PVC Good	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES 16.91' 8.73' .2.0" .PVC .Good NA	NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility in locker 1040.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside locker 1040

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-11

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELE I.D. AO IT AIT EARS ON TROTEOTIVE GAOINO OR WELE.		
SURFACE SEAL PRESENT?	YES YES	NO NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultiRAE 3	30.1ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	17.15'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.50'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside the storage facility

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS: No bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	GP-106R2

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	. YES . YES . YES . GP-106	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	. YES YES YES	NO NO NO 8.1 ppm
PROTECTIVE CASING MATERIAL TYPE:	<u>Flushmoun</u> 5.0"	ıt unit
LOCK PRESENT?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO NO
WELL MEASURING POINT VISIBLE?	. YES 21.15'	NO
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	10.65' 2.0"	
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	<u>PVC</u> <u>Good</u>	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway of the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	IW-1R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES YES	NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-1	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 3	9.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.47'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	10.05'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

One bolt bent

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-2

WELL VISIBLE? (If not, provide directions below)	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-2	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (DDm) AND INSTRUMENT USED	. MultiRAE 2	25.3 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmoun	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.62'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.21'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

No bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: **IW-3**

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-3	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 3	35.0 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	it unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.97'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.11'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

No bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-4

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-4	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	YES YES YES	NO NO NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	t unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.20'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.32'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in driveway next to office the first well at storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

No bolts

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-12

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-12	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	YES YES YES	NO NO NO 39.3 ppm
PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	NA Flushmour 12.0"	nt unit
	VE9	NO
LOCK FRESENT?	. YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	12.16'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	<u>3.41</u> . 2.0"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the basement.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the concrete of the basement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

WELL ID.:	IW-13
DATE/TIME:	January 20, 2009
INSPECTOR:	Dustin Kirschner
OTTE ID	10000120.0000.0000

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	YES YES YES	NO NO NO 9.3 ppm
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	15.0"	
	VEO	
	. YES	NO
	VES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	13.85'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5.85'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the basement of the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the concrete of the basement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-14

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-14	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	Not Collected	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	Flushmount unit	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	NA	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.63'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	8.74'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located outside in the injection box on the road,

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the Pacasandra ground coverage.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-15R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-15R	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 2	.3.0 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	Flushmount unit	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	2.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.34'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.63'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the front of the loading dock by the MW-7 cluster.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement of the storage facilty.

None observed	
(e.g. Gas station, salt pile, etc.):	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	

REMARKS:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	Dustin Kirschner
DATE/TIME:	January 20, 2009
WELL ID.:	MW-7S

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE?	YES	NO NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-7s	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	. MultiRAE 3	3.0 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	. Flushmour	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	. YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.75'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	10.15'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the last driveway by the loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:
SITE NAME:

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: Dustin Kirschner DATE/TIME: January 20, 2009 WELL ID.: IW-16

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-16	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	YES YES YES MultieRAE	NO NO NO 22.0 ppm
PROTECTIVE CASING MATERIAL TYPE:	Flushmount unit	
MEASORE FROTECTIVE CASING INSIDE DIAMETER (IIICIES).	12.0	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.64'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	9.08'	
MEASURE WELL DIAMETER (Inches):	. 2.0"	
WELL CASING MATERIAL:	. PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located on the sidewalk along the furthest parking lot by the loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS:

None