

Imagine the result

Weissman Holdings, Inc

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2

Former Kings Electronics Co., Inc. Site 40 Marbledale Road Tuckahoe, New York

VCA#W3-0855-99-07 VCP Site No. V00237-3

30 November 2010

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater - Year 2

Former Kings Electronics Co., Inc. Site 40 Marbledale Road Tuckahoe, New York

VCA #W3-0855-99-07 VCP Site No. V00237-3

Prepared for: Weissman Holdings, Inc.

Prepared by:

ARCADIS of New York, Inc. Raritan Center Plaza III 105 Fieldcrest Avenue Suite 305 Edison New Jersey 08837 Tel 732.225.5061 Fax 732.225.5067

Our Ref.: NJ000423.0005

Date: 30 November 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS of New York, Inc. Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer-Engineer of Record NY PE License #074527

Table of Contents

1.	Introdu	iction			1
	1.1	Project	Summary	to Date	1
	1.2	Purpos	e		2
2.	Pre-Re	medial	Groundv	vater Conditions	2
3.	Techni	cal Ove	rview		3
	3.1	Post-R	emedial M	onitoring	4
		3.1.1	Sampling	g Methodology	4
		3.1.2	Quality A	ssurance/Quality Control	4
	3.2	Inspec	tions and N	Naintenance of the Injection and Monitoring Well Network	5
		3.2.1	Annual		5
		3.2.2	Other Ins	spections and Maintenance	6
4.	Post-R	emedia	l Monitor	ring Program Results and Evaluation – Year 2	6
	4.1	Ground	dwater Mor	nitoring	6
		4.1.1	Results		6
			4.1.1.1	October 2009	6
			4.1.1.2	January 2010	7
			4.1.1.3	April 2010	7
			4.1.1.4	July 2010	8
		4.1.2	Evaluatio	on	8
	4.2	Inspec	tions and N	Naintenance of the Injection and Monitoring Well Network	10
		4.2.1	Results		10
		4.2.2	Evaluatio	n	10
5.	Conclu	isions a	and Reco	mmendations	10
6.	Refere	nces			11

Table of Contents

Tables

- 1 Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010.
- 2 Volatile Organic Compound Results for Upgadient Groundwater Monitoring Well MW-6S, October 2008 to July 2010.
- 3 Summary of Groundwater Elevation Measurements, October 2008 to July 2010.

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Summary of CVOCs in Groundwater, October 2008 July 2010
- 4 Groundwater Contour Map for the Shallow Overburden, July 2010
- 5 Groundwater Contour Map for the Deep Overburden, July 2010

Appendices

- A Groundwater Sampling Forms
- B Laboratory Data Packages
- C Data Usability Summary Report
- D Well Inspection Forms

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

1. Introduction

ARCADIS of New York, Inc. (ARCADIS), on behalf of Weissman Holdings, Inc., formerly Kings Electronics Co., Inc. (Kings), has prepared this Final Post-Remedial Annual Report (August 2008 – July 2010) and Project Evaluation (PRM Report) for Year 2 (August 2009 – July 2010) of the Post-Remedial Monitoring Period for on-site groundwater at the former Kings Electronics Co., Inc. facility (Site). This PRM Report is being submitted in accordance with the Post Remedial Operation, Maintenance and Monitoring Plan-On-Site Groundwater Remediation System dated 9 November 2009 (the 2009 OM&M Plan).

The Post-Remedial Monitoring Period began in August 2008, following shutdown of the groundwater remediation system. The PRM Report for Year 1 (August 2008 – July 2009) of the Post-Remedial Period was submitted to the New York State Department of Environmental Conservation (NYSDEC) on 30 October 2009. The results for Year 1 of the Post-Remedial Period showed that a post-remedial rebound of the site constituents for groundwater had not occurred.

This PRM Report for Year 2 of the Post-Remedial Period for the Site summarizes (i) monitoring results for Year 2, which includes four quarters of on-site groundwater monitoring (October 2009, January 2010, April 2010, and July 2010) following shutdown of the groundwater remediation system in August 2008 (also showing no rebound); (ii) the operations, maintenance and monitoring (OM&M) activities, which consist of monitoring well and injection well inspections; and (iii) conclusions and recommendations based on post-remedial monitoring data.

As discussed below and based on the post remedial monitoring results, this Final Post-Remedial Report concludes that there has been no rebound of the source area during the post remedial monitoring period – see Tables 1 - 3. With the submission of this report, all groundwater monitoring and reporting pursuant to the 2009 OM&M Plan is now complete.

1.1 Project Summary to Date

The Site is located at 40 Marbledale Road, Village of Tuckahoe, Town of Eastchester, Westchester County, New York, with Tax Map Identifier Numbers Section 68, Block 4, and Lots 29 and 36 E. The Site location is presented on Figure 1. A Site plan showing existing site features is presented on Figure 2. Constituents of concern (COCs) at the

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

Site are chlorinated volatile organic compounds (CVOCs) based on previous groundwater investigations.

NYSDEC approved Kings' Revised On-Site Remedial Action Work Plan (RAWP) dated 3 July 2002 (ARCADIS, 2002). As described in the RAWP, Enhanced Reductive Dechlorination (ERD) was selected as the cleanup remedy for the CVOC contamination in groundwater at the Site originating from the source (former degreaser) area. The ERD remedial system began operation in January 2003. The site specific cleanup goals established for the Site (i.e.; below NYSDEC's Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1) were achieved in January 2008, after operating for a period of approximately 5 years. As set forth in the Final Engineering Report (FER) dated 11 February 2009 (ARCADIS, 2009), on-site post-remedial monitoring was to begin following shutdown of the groundwater remedial system in August 2008. The PRM Report for Year 1 (ARCADIS, 2009) of the Post-Remedial Period, submitted to NYSDEC on 30 October 2009, summarized the results for the first year and confirmed that a post-remedial rebound had not occurred during Year 1.

1.2 Purpose

The groundwater remedial action goals for the Site were to achieve groundwater quality standards meeting the Standard, Cleanup and Guidance Values of TOGS 1.1.1 (SCGs). Kings achieved these Site specific cleanup goals in January 2008.

As described herein, and in the previously submitted PRM Report for Year 1, all groundwater remediation activities ended in August 2008, beginning the Post-Remedial Period. The purpose of this PRM Report for Year 2 is to evaluate and document the effectiveness of the groundwater remediation during the second year of the Post-Remedial Monitoring Period and determine if any post-remedial action is warranted. In addition, this PRM report summarizes the operations, maintenance and monitoring (OM&M) groundwater activities for Year 2.

2. Pre-Remedial Groundwater Conditions

On-site groundwater was historically impacted with chlorinated VOCs (CVOCs). Trichloroethene (TCE) has been determined to be the diagnostic constituent of concern (COC) at the Site. The highest concentrations of total CVOCs in groundwater were detected in the upper unconsolidated unit (10 to 20 feet bgs). Prior to remediation

activities, concentrations of TCE in groundwater ranged from non-detect to 28,000 parts per billion (ppb).

Concentrations of CVOCs historically detected in the lower unconsolidated unit generally decreased by two to three orders of magnitude, demonstrating that the downward migration of CVOCs was limited, possibly attributable to decreased hydraulic conductivity at depth associated with the fining downward sequence observed for the unconsolidated unit.

3. Technical Overview

The Post-Remedial Monitoring Period includes at least eight quarters (2 years) of onsite groundwater monitoring as set forth in Section 8.1 of the FER (ARCADIS, 2009). Year 1 of the Post-Remedial Period was completed following the July 2009 monitoring event and was summarized in the PRM Report submitted to NYSDEC in October 2009. Year 2 of the Post Remedial Period (August 2009 – July 2010) is summarized in this Final Report.

On-site performance monitoring wells include six wells downgradient of the former degreaser source area (MW-9S, MW-9D, PTW-2, GP-104R, GP-103R and MW-13R). One additional well, upgradient of the groundwater treatment system and the former degreaser source area (MW-6S) is located at the northern (up-gradient) property line. Performance monitoring well results evaluate the effectiveness of the remediation and the upgradient well is utilized to document upgradient groundwater conditions.

Two objectives of the post-remedial monitoring are (i) to evaluate if a rebound of former source area contaminants has occurred in on-site groundwater and (ii) if so, to evaluate whether reinstatement of molasses substrate injections at any injection line or the implementation of an alternative remedial measure (Post Remedial Action) is necessary.

The Post Remedial Monitoring Period also includes inspections and maintenance of monitoring wells and injection wells on an annual and "as-needed" basis throughout the period. Inspections and maintenance are completed to ensure that the existing remedial system components (e.g., monitoring and injection wells) remain in operable condition.

Post-remedial activities for groundwater are summarized below in Sections 3.1, 3.2, and 3.3.

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

3.1 Post-Remedial Monitoring

Post-remedial quarterly monitoring was conducted as set forth in the FER, the Revised On-Site Remedial Action Work Plan for the Site, and by agreement with NYSDEC in accordance with the 2009 OM&M Plan.

3.1.1 Groundwater Sampling

On-site post-remedial monitoring, Year 2, was conducted during October 2009, January 2010, April 2010, and July 2010. Six on-site performance monitoring wells were sampled during each quarter: MW-9S, MW-9D, PTW-2, GP-104R, GP-103R and MW-13R. In addition, MW-6S (at the on-site up-gradient northern property line) was monitored each quarter to document groundwater quality upgradient of the former treatment zone and degreaser source area.

Purge water generated from the sampling activities was temporarily staged on-site in designated 55-gallon drums. On 12 February 2010, Royal Environmental Services Corporation (Royal), a 6 NYCRR Part 364 permitted transporter, removed purge water for delivery off-site. On 19 November, 2010, two drums containing the remaining purge water were removed from the Site by Royal.

3.1.1 Sampling Methodology

Monitoring wells were purged using a low-flow groundwater sampling technique during each sampling event. During well purging, field measurements were recorded onto groundwater sampling logs. Completed logs are provided as Appendix A. Groundwater samples were also collected using a low-flow groundwater sampling technique and were analyzed for Volatile Organic Compounds (VOCs) using EPA Method 8260. All groundwater samples were transferred properly into sample containers and placed in coolers with ice and maintained at 4° C for delivery to an ELAP-certified laboratory for analysis under proper chain of custody.

3.1.2 Quality Assurance/Quality Control

All monitoring well samples were analyzed by a NYS DOH ELAP certified laboratory following the quality assurance/quality control (QA/QC) procedures specified in the analytical method. Category A laboratory data deliverables were provided by the laboratory for samples collected during October 2009, January 2010, and April 2010. Category B laboratory data deliverables were provided by the laboratory for samples

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

collected during July 2010. The laboratory data packages for each of the four quarters are provided as Appendix B to this Report.

QA/QC samples were collected to assure quality control for the monitoring program. Analyses of QA/QC samples enabled data evaluation for accuracy and integrity. QA/QC sample sets included one trip blank with each cooler containing samples collected for VOC analyses, field blank samples for each day of any sampling event where a decontamination process was employed, and a blank duplicate (site specific) and MS/MSD (batch specific) analyzed at a frequency of one per every twenty samples in a sample delivery group (SDG) to determine the quality of laboratory analysis. QA/QC samples were used to verify the quality of the sampling and analytical results.

A data usability summary report (DUSR) was prepared for the Category B laboratory data deliverable for the July 2010 monitoring event. Results of the DUSR indicate that all data is useable for its intended purpose. The DUSR is provided as Appendix C.

3.2 Inspections and Maintenance of the Injection and Monitoring Well Network

3.2.1 Annual

Annual inspections and maintenance of the injection system and monitoring wells were completed as follows:

- (a) Annual well integrity assessments were completed on 7 July 2010 for injection wells (IW-5, IW-6, MW-HP-8S, MW-1, MW-11, MW-10, MW-12, MW-2, IW-8, IW-9, IW-10, IW-11, GP-106R2, IW-1R, IW-2, IW-3, IW-4, IW-13, IW-14, IW-15R, MW-7S & IW-16), post-remedial performance monitoring wells (MW-9S, MW-9D, PTW-2, GP-104R, GP103R and MW-13R), and the on-site, upgradient well (MW-6S). Injection Well IW-12 was not inspected because the well is located within a storage unit that is rented, and was therefore inaccessible during the well inspection event. Completed well inspection logs are provided as Appendix D.
- (b) Annual visual inspections were completed on 7 July 2010 for off-site monitoring wells (OS-MW-1, OS-MW-2, OS-MW-3, MW-HP-2S, MW-HP-2D) to assess if they remain secure. A visual examination of the flush-mount protective casing at the ground surface was completed to accomplish this. All off-site wells were secure.

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

3.2.2 Other Inspections and Maintenance

Additional maintenance of the injection system was completed on 30 July 2010 based on ARCADIS field observations. Maintenance and repair was performed by Weissman Holdings as follows:

- The cover plate for the injection vault in Line 1 did not close properly, after the July quarterly monitoring was completed, because the hinges are rusted solid. (Repeated opening will eventually break the cover.) Never-the-less, it was subsequently secured in the closed position, lying flat as designed and flush with the macadam.
- During the second year of the Post-Remedial Period, no reports of on-site flooding, injection system damage, or monitoring well damage were received by Weissman Holdings from the current Site's owner/operator.

4. Post-Remedial Monitoring Program Results and Evaluation – Year 2

Results for the second year of the post-remedial monitoring program are described in the following sections and supplement data from the first year to further document the effectiveness of the groundwater remediation performed by ARCADIS and its achievement of the groundwater remedial action goals.

4.1 Groundwater Monitoring

4.1.1 Results

Analytical results from Year 2 of the Post-Remedial Monitoring Period for post-remedial performance monitoring wells (MW-9S, MW-9D, PTW-2, GP-104R, GP-103R, MW-13R) are provided in Table 1. Analytical results for upgradient Monitoring Well MW-6S (for which there is no cleanup obligation) are provided in Table 2. A summary of the results for each quarter are provided as follows:

4.1.1.1 October 2009

Results of the post-remedial monitoring conducted during October 2009 are as follows:

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

- There were no exceedences of the SCG for TCE (5.0 μ g/l) at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 1.14 μ g/l.
- There were no exceedences of other SCGs for any performance monitoring well.
- The reported TCE concentration at upgradient well MW-6S was 18.5 μg/l.

4.1.1.2 January 2010

Results of the post-remedial monitoring conducted during January 2010 are as follows:

- There were no exceedences of the SCG for TCE at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 1.74 µg/l.
- There were no exceedences of other SCGs for any performance monitoring well.
- The reported TCE concentration at upgradient well MW-6S was 40.3 µg/l.
 Additionally, tetrachloroethene (PCE) was reported at a concentration of 5.17 µg/l.

4.1.1.3 April 2010

Results of the post-remedial monitoring conducted during April 2010 are as follows:

- There were no exceedences of the SCG for TCE at post-remedial performance monitoring wells. Concentrations of TCE ranged from non-detect to 3.48 µg/l.
- There were two exceedences of the SCG for vinyl chloride (VC). The exceedences were detected at wells MW-9S and GP-103R. Reported concentrations of VC were 7.31 µg/l and 3.02 µg/l, respectively.
- There was one exceedence of the SCG for cis-1,2-dichloroethene (cis-1,2-DCE) at Well MW-9S. The reported cis-1,2-DCE concentration was 6.59 µg/l.
- The reported TCE concentration at upgradient well MW-6S was 25.1 µg/l.

It should be noted that during the April 2010 quarterly monitoring, water-level elevation measurements were recorded as being higher than the previous winter/spring monitoring periods. The current Site operator's maintenance supervisor reported a

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

sump pump had to be employed within the basement, at a low point between GP-103R and MW-7S. Water-level elevation measurements for this quarter are provided in Table 3.

4.1.1.4 July 2010

Results of the post-remedial monitoring conducted during July 2010 are as follows:

- There was one exceedence of the SCG for TCE at post-remedial performance monitoring well PTW-2 at a concentration of 6.22 μg/l.
- There were two exceedences of the SCG for VC at wells GP-103R and GP-104R. The reported VC concentrations were 10.9 μ g/l and 2.41 μ g/l, respectively.
- The reported TCE concentration at upgradient well MW-6S was 16.3 µg/l.

4.1.2 Evaluation

As discussed below, based on an evaluation of the post-remedial monitoring data, a post-remedial rebound of the source area has not occurred. Detected VOC concentrations for each on-site well are shown on Figure 3.

TCE (diagnostic constituent of concern)

Based on the eight quarters of post-remedial monitoring data (October 2008 through July 2010), TCE slightly exceeded the applicable SCG at PTW-2 in July 2010 at a concentration of 6.22 μ g/l. The detected concentration is likely a result from the upgradient CVOC plume detected at MW-6S and is not a result of a post-remedial rebound. This conclusion is based on the following:

- A post-remedial rebound of TCE would likely be characterized by a rebound of TCE concentrations that are at a greater magnitude than that detected at well PTW-2.
- TCE did not exceed the SCG at well MW-9S, which is located between the former source area and PTW-2. Any post-remedial rebound would be detected at MW-9S due to its proximity to the former source area and historical concentrations, therefore, the TCE concentration detected at PTW-2 is likely attributable to background conditions.

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

- Concentrations historically fluctuate at upgradient well MW-6S, indicating that the TCE mass upgradient of the source area is in flux. TCE concentrations at upgradient well MW-6S increased from 18.5 µg/l in October 2009 to 40.3 µg/l in January 2010, indicating movement of TCE mass from an upgradient location towards well MW-6S during the January 2010 period. This mass flux migrated downgradient and resulted in an increase of TCE concentration at well MW-9S three months later (0.338 µg/l in January 2010 to 1.9 µg/l in April 2010) and at PTW-2 after an additional three months (3.48 µg/l in April 2010 to 6.22 µg/l in July 2010). TCE concentrations at well MW-6S decreased after January 2010 and were followed by decreased TCE concentrations in Well MW-9S three months later (1.9 µg/l in April 2010 to non-detectable in July 2010). It is expected that the TCE concentration at PTW-2 will similarly decrease.
- Because of significant precipitation during Spring 2010 (e.g., water table rose by approximately 3.5 ft) and drought during Summer 2010 (e.g., water table dropped by approximately 5 ft), localized groundwater velocity changed which resulted in faster migration of TCE mass flux from upgradient well MW-6S area. The abnormal water level fluctuations did not result in a significant increase of TCE concentrations in any monitoring well, confirming no rebound of TCE concentrations.

CVOCs (non diagnostic constituents)

During Year 2 of the post-remedial period, other CVOCs (non-diagnostic constituents) were detected at concentrations greater than the SCGs. Cis-1,2-DCE and vinyl chloride were detected at MW-9S in April 2010 at a concentrations of 6.59 μ g/l and 7.31 μ g/l, respectively. Vinyl chloride was detected at GP-104R in July 2010 at a concentration of 2.41 μ g/l. Vinyl chloride was also detected at GP-103R in October 2009, April 2010, and July 2010 at concentrations of 5.61 μ g/l, 3.02 μ g/l, and 10.9 μ g/l, respectively.

As TCE mass flux migrates from the upgradient MW-6S area, it degrades within the former remediation zone. The compounds cis-1,2-DCE and vinyl chloride are degradation products of TCE and have a greater transport velocity in groundwater than TCE. The cis-1,2 DCE and vinyl chloride detections likely result from either (i) natural attenuation of the CVOC plume detected at upgradient well MW-6S that represents background conditions or (ii) localized residual CVOCs that are not related to the

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

former degreaser source. In either case, the relatively low concentrations suggest that they are not from a post-remedial rebound.

Groundwater Flow

Groundwater elevation measurements for each quarter were taken and are provided in Table 3. Groundwater contour maps indicate that flow direction in the shallow and deep overburden is generally towards the south (refer to Figures 4 and 5), consistent with the flow direction observed during previous monitoring events.

4.2 Inspections and Maintenance of the Injection and Monitoring Well Network

4.2.1 Results

The annual inspection and maintenance results from Year 2 of the Post-Remedial Period are summarized as follows:

• Maintenance to an injection vault was completed on 30 July 2010, as summarized in Section 3.2.2.

4.2.2 Evaluation

The injection and monitoring wells are in operable condition based on the 7 July 2010 inspection and maintenance completed on 30 July 2010.

5. Conclusions and Recommendations

The following conclusions are based on a review of the post-remedial data for Years 1 and 2 of the Post-Remedial Period:

- Post-remedial rebound of TCE has not occurred since shutdown of the groundwater remediation system in August 2008
- No further remedial measures are warranted
- Conclusion of the post-remedial monitoring program and annual inspection and maintenance of the injection system and monitoring wells pursuant to the 2009 OM&M Plan is recommended
- Termination of all future groundwater monitoring at the Site is recommended.

Final Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 2 Former Kings Electronics Co., Inc. Site

6. References

- ARCADIS. 2002. Revised On-Site Remedial Action Work Plan, Kings Electronics Co., Inc. Site. Tuckahoe, New York. July 3, 2002
- ARCADIS. 2009. Final Engineering Report, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York. February 11, 2009
- ARCADIS 2009. Post-Remedial Annual Report and Project Evaluation for On-Site Groundwater – Year 1, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York. 30 October 2009.
- ARCADIS 2009. Post-Remedial Operation, Maintenance and Monitoring Plan On-Site Groundwater Remediation System, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York. 9 November 2009.
- The Cody Ehlers Group. 1999. Summary of Environmental Conditions, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, New York. February 23, 1999.
- The Cody Ehlers Group. 1999. April 1999 Soil Removal Summary Report, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, New York. June 24, 1999.
- Geovation. 2002. Additional Site Investigation Activities, Kings Electronics Co., Inc. Site. Tuckahoe, New York. February 6, 2002
- Hall, Leo. M. 1968. Bedrock Geology in the Vicinity of White Plains, New York. University of Massachusetts, May 1968.
- Leggette, Brashears & Graham, Inc. 2000. Summary of Remedial Investigative Findings, Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, Westchester County, New York. June 1, 2000.
- New York State Department of Environmental Conservation. 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation. December 12, 2002

Location ID MW-9D MW-9D_E08-MW-9D E09-MW-9D E09-MW-9D E09-MW-9D E09-MW-9D E10-MW-9D E10-MW-9D E10-Lab Sample ID 12330-010 00763-006 03980-007 07112-005 10185-005 00249-003 03186-005 06728-005 10/21/2008 1/21/2009 4/22/2009 7/15/2009 10/6/2009 1/7/2010 4/6/2010 7/8/2010 Sample Date SCGs Compound < 0.51 < 0.23 < 0.930 <1.00 < 0.360 Chloromethane 5 < 0.18 < 0.23 <1.00 Vinyl chloride 2 < 0.56 < 0.46 < 0.26 < 0.26 < 0.470 <1.00 <1.00 < 0.420 Bromomethane 5 < 0.51 < 0.37 < 0.36 < 0.36 < 0.950 <1.00 <1.00 < 0.590 Chloroethane 5 < 0.71 < 0.64 < 0.29 < 0.29 < 0.170 <1.00 <1.00 < 0.410 5 Trichlorofluoromethane < 0.6 < 0.74 < 0.23 < 0.23 < 0.310 <1.00 <1.00 < 0.390 Acrolein < 2.57 < 4.34 <1.74 <20.0 <20.0 ---< 1.87 < 4.34 <1.64 5 1.1-Dichloroethene < 0.42 < 0.53 < 0.61 < 0.61 < 0.360 <1.00 <1.00 < 0.390 5 Methylene chloride < 1.98 < 1.98 < 1.98 < 1.98 <1.98 <2.00 <2.00 <1.98 Acrylonitrile ----< 1.19 < 0.74 < 0.95 < 0.95<1.16 <20.0 <20.0 <1.40 5 trans-1,2-Dichloroethene < 0.45 < 0.25 < 0.19 < 0.19 < 0.340 <1.00 <1.00 < 0.330 1,1-Dichloroethane 5 < 0.34 < 0.21 < 0.23 < 0.23 <1.00 < 0.350 < 0.260 <1.00 cis-1,2-Dichloroethene 5 <0.220 < 0.32 < 0.19 < 0.2 < 0.2 < 0.270 <1.00 <1.00 7 Chloroform < 0.29 < 0.14 < 0.17 < 0.17 < 0.220 <1.00 <1.00 < 0.330 5 1.1.1-Trichloroethane < 0.43 < 0.36 < 0.23 < 0.23 < 0.250 <1.00 <1.00 < 0.360 5 Carbon tetrachloride < 0.45 < 0.3 < 0.16 < 0.16 < 0.280 <1.00 < 0.320 <1.00 < 0.21 < 0.240 < 0.340 1.2-Dichloroethane (EDC) 0.6 < 0.28 < 0.19 < 0.21 <1.00 <1.00 Benzene < 0.29 < 0.17 < 0.21 < 0.21 < 0.290 <1.00 <1.00 < 0.270 1 Trichloroethene 5 < 0.32 < 0.19 < 0.28 < 0.28 < 0.310 <1.00 <1.00 < 0.320 1,2-Dichloropropane 1 < 0.21 < 0.16 < 0.2 < 0.2 <0.280 <1.00 <1.00 <0.220 Bromodichloromethane 50 < 0.21 < 0.18 < 0.12 < 0.12 < 0.250 <1.00 <1.00 < 0.310 <1.00 < 0.350 2-Chloroethyl vinyl ether < 0.63 < 1.04 < 0.99 < 0.99 < 0.400 <1.00 --cis-1,3-Dichloropropene 0.4 < 0.2 < 0.24 < 0.15 < 0.15 < 0.140 <1.00 <1.00 < 0.210 Toluene 5 < 0.34 < 0.23 < 0.2 < 0.2 < 0.300 <1.00 <1.00 < 0.270 trans-1,3-Dichloropropene 0.4 < 0.13 < 0.32 < 0.27 < 0.27 < 0.130 <1.00 <1.00 < 0.250 1,1,2-Trichloroethane 1 < 0.36 < 0.15 < 0.15 < 0.15 < 0.240 <1.00 <1.00 <0.280 5 Tetrachloroethene < 0.38 < 0.33 < 0.19 < 0.19 < 0.300 <1.00 <1.00 <0.280 Dibromochloromethane 50 < 0.16 < 0.330 <1.00 < 0.230 < 0.25 < 0.16 < 0.16 <1.00 5 Chlorobenzene < 0.27 < 0.2 < 0.2 < 0.2 <0.170 <1.00 <1.00 < 0.270 Ethylbenzene 5 < 0.33 < 0.27 < 0.19 < 0.19 < 0.240 <1.00 <1.00 < 0.220 5 Total Xylenes < 0.98 < 0.79 < 0.44 < 0.44 < 0.740 <2.00 <2.00 < 0.600 Bromoform 50 < 0.15 < 0.14 < 0.14 < 0.250 <1.00 < 0.210 < 0.3 <1.00 5 < 0.210 1.1.2.2-Tetrachloroethane < 0.14 < 0.17 < 0.12 < 0.12 < 0.190 <1.00 <1.00 3 < 0.240 1,3-Dichlorobenzene < 0.32 < 0.23 < 0.17 < 0.17 < 0.130 <1.00 <1.00 3 1,4-Dichlorobenzene < 0.28 < 0.25 < 0.16 < 0.16 <0.180 <1.00 <1.00 < 0.230 3 1,2-Dichlorobenzene < 0.28 < 0.23 < 0.15 < 0.15 <0.110 <1.00 <1.00 < 0.210

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Location ID MW-9S MW-9S_E08-MW-9S E09-MW-9SR E09-MW-9S E09-MW-9S E09-MW-9S E10-MW-9S E10-MW-9S E10-Lab Sample ID 12330-008 00763-007 03980-006 07112-006 10185-006 00249-004 03186-004 06728-004 Sample Date 10/21/2008 1/21/2009 4/22/2009 7/15/2009 10/6/2009 1/7/2010 4/6/2010 7/8/2010 SCGs Compound Chloromethane < 0.51 < 0.23 < 0.930 <1.00 <1.00 < 0.360 5 < 0.18 < 0.23 Vinyl chloride 2 0.861 0.808 0.757 < 0.26 1.15 0.757 J 7.31 1.17 5 Bromomethane < 0.51 < 0.37 < 0.36 < 0.36 < 0.950 <1.00 <1.00 < 0.590 Chloroethane 5 < 0.71 < 0.64 < 0.29 < 0.29 < 0.170 <1.00 <1.00 < 0.410 5 Trichlorofluoromethane < 0.6 < 0.74 < 0.23 < 0.23 < 0.310 <1.00 <1.00 < 0.390 Acrolein < 2.57 < 4.34 < 4.34 <1.74 <20.0 <20.0 ---< 1.87 <1.64 5 1.1-Dichloroethene < 0.42 < 0.53 < 0.61 < 0.61 < 0.360 <1.00 <1.00 < 0.390 5 Methylene chloride < 1.98 < 1.98 < 1.98 < 1.98 <1.98 <2.00 <2.00 <1.98 Acrylonitrile ----< 1.19 < 0.74 < 0.95 < 0.95<1.16 <20.0 <20.0 <1.40 5 trans-1,2-Dichloroethene 0.882 < 0.25 1.31 < 0.19 0.934 0.514 J 2.00 0.626 J 1,1-Dichloroethane 5 0.52 0.547 0.877 < 0.23 0.646 0.671 J 4.16 1.11 cis-1,2-Dichloroethene 5 6.59 0.668 0.64 0.657 0.564 0.687 0.518 J 0.360 J Chloroform 7 < 0.330 < 0.29 < 0.14 < 0.17 < 0.17 < 0.220 <1.00 <1.00 5 1.1.1-Trichloroethane < 0.43 < 0.36 < 0.23 < 0.23 < 0.250 <1.00 <1.00 < 0.360 5 Carbon tetrachloride < 0.45 < 0.3 < 0.16 < 0.16 < 0.280 <1.00 <1.00 < 0.320 0.6 < 0.21 < 0.240 < 0.340 1.2-Dichloroethane (EDC) < 0.28 < 0.19 < 0.21 <1.00 <1.00 Benzene < 0.29 < 0.17 < 0.21 < 0.21 < 0.290 <1.00 <1.00 < 0.270 1 Trichloroethene 5 < 0.32 < 0.19 < 0.28 < 0.28 < 0.310 0.338 J 1.90 < 0.320 1,2-Dichloropropane 1 < 0.21 < 0.16 < 0.2 < 0.2 <0.280 <1.00 <1.00 <0.220 Bromodichloromethane 50 < 0.21 < 0.18 < 0.12 < 0.12 < 0.250 <1.00 <1.00 < 0.310 <1.00 < 0.350 2-Chloroethyl vinyl ether < 0.63 < 1.04 < 0.99 < 0.99 < 0.400 <1.00 --cis-1,3-Dichloropropene 0.4 < 0.2 < 0.24 < 0.15 < 0.15 < 0.140 <1.00 <1.00 < 0.210 Toluene 5 < 0.34 < 0.23 < 0.2 < 0.2 < 0.300 <1.00 <1.00 < 0.270 trans-1,3-Dichloropropene 0.4 < 0.13 < 0.32 < 0.27 < 0.27 < 0.130 <1.00 <1.00 < 0.250 1,1,2-Trichloroethane 1 < 0.36 < 0.15 < 0.15 < 0.15 < 0.240 <1.00 <1.00 <0.280 5 Tetrachloroethene < 0.38 < 0.33 < 0.19 < 0.19 < 0.300 <1.00 <1.00 <0.280 Dibromochloromethane 50 < 0.16 < 0.330 <1.00 < 0.230 < 0.25 < 0.16 < 0.16 <1.00 5 Chlorobenzene < 0.27 < 0.2 < 0.2 < 0.2 <0.170 <1.00 <1.00 < 0.270 Ethylbenzene 5 < 0.33 < 0.27 < 0.19 < 0.19 < 0.240 <1.00 <1.00 < 0.220 5 Total Xylenes < 0.98 < 0.79 < 0.44 < 0.44 < 0.740 <2.00 <2.00 < 0.600 Bromoform 50 < 0.15 < 0.14 < 0.14 < 0.250 <1.00 < 0.210 < 0.3 <1.00 5 < 0.210 1.1.2.2-Tetrachloroethane < 0.14 < 0.17 < 0.12 < 0.12 < 0.190 <1.00 <1.00 3 < 0.240 1,3-Dichlorobenzene < 0.32 < 0.23 < 0.17 < 0.17 < 0.130 <1.00 <1.00 3 1,4-Dichlorobenzene < 0.28 < 0.25 < 0.16 < 0.16 <0.180 <1.00 <1.00 <0.230 3 1,2-Dichlorobenzene < 0.28 < 0.23 < 0.15 < 0.15 <0.110 <1.00 <1.00 < 0.210

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

	Location ID		PTW-2							
	Lab Sample ID	PTW-2_E08- 12330-014	PTW-2_E09- 00763-017	PTW-2_E09- 03980-001	PTW-2_E09- 07112-010	PTW-2_E09- 10185-003	PTW-2_E10- 00249-009	PTW-2_E10- 03186-003	PTW-2_E10- 06728-003	
	Sample Date	10/23/2008	1/22/2009	4/21/2009	7/16/2009	10/7/2009	1/8/2010	4/6/2010	7/8/2010	
Compound	SCGs									
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23	<0.930	<1.00	<1.00	<0.360	
Vinyl chloride	2	< 0.56	< 0.46	0.816	< 0.26	0.632	0.658 J	1.38	0.846 J	
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36	<0.950	<1.00	<1.00	<0.590	
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29	<0.170	<1.00	<1.00	<0.410	
Trichlorofluoromethane	5	< 0.6	< 0.74	< 0.23	< 0.23	<0.310	<1.00	<1.00	<0.390	
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34	<1.74	<20.0	<20.0	<1.64	
1,1-Dichloroethene	5	< 0.42	< 0.53	< 0.61	< 0.61	<0.360	<1.00	1.79	<0.390	
Methylene chloride	5	< 1.98	< 1.98	< 1.98	< 1.98	<1.98	<2.00	<2.00	<1.98	
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95	<1.16	<20.0	<20.0	<1.40	
trans-1,2-Dichloroethene	5	< 0.45	< 0.25	0.717	< 0.19	0.384	0.799 J	<1.00	<0.330	
1,1-Dichloroethane	5	0.657	1.69	1.88	0.576	1.41	3.37	<1.00	1.39	
cis-1,2-Dichloroethene	5	0.395	< 0.19	1.31	1.76	2.19	0.510 J	<1.00	2.67	
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17	<0.220	<1.00	<1.00	<0.330	
1,1,1-Trichloroethane	5	< 0.43	< 0.36	< 0.23	< 0.23	<0.250	<1.00	<1.00	0.691 J	
Carbon tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16	<0.280	<1.00	<1.00	<0.320	
1,2-Dichloroethane (EDC)	0.6	< 0.28	< 0.19	< 0.21	< 0.21	<0.240	<1.00	<1.00	<0.340	
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21	<0.290	<1.00	<1.00	<0.270	
Trichloroethene	5	< 0.32	0.525	1.54	2.22	1.14	0.794 J	3.48	6.22	
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2	<0.280	<1.00	<1.00	<0.220	
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12	<0.250	<1.00	<1.00	<0.310	
2-Chloroethyl vinyl ether		< 0.63	< 1.04	< 0.99	< 0.99	<0.400	<1.00	<1.00	<0.350	
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15	<0.140	<1.00	<1.00	<0.210	
Toluene	5	< 0.34	< 0.23	< 0.2	< 0.2	<0.300	<1.00	<1.00	<0.270	
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27	<0.130	<1.00	<1.00	<0.250	
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15	<0.240	<1.00	<1.00	<0.280	
Tetrachloroethene	5	< 0.38	< 0.33	< 0.19	< 0.19	<0.300	<1.00	<1.00	0.290 J	
Dibromochloromethane	50	< 0.25	< 0.16	< 0.16	< 0.16	<0.330	<1.00	<1.00	<0.230	
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2	<0.170	<1.00	<1.00	<0.270	
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19	<0.240	<1.00	<1.00	<0.220	
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44	<0.740	<2.00	<2.00	<0.600	
Bromoform	50	< 0.3	< 0.15	< 0.14	< 0.14	<0.250	<1.00	<1.00	<0.210	
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12	<0.190	<1.00	<1.00	<0.210	
1,3-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17	<0.130	<1.00	<1.00	<0.240	
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16	<0.180	<1.00	<1.00	<0.230	
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15	<0.110	<1.00	<1.00	<0.210	

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Location ID GP-104R GP-104R E08 GP-104R E09 GP-104R E09-GP-104R E09-GP-104R E09 GP-104R E10-GP-104R E10- GP-104R E10 Lab Sample ID 12330-013 00763-012 03980-005 07112-009 10185-001 00249-007 03186-009 06728-009 Sample Date 10/23/2008 1/22/2009 4/22/2009 7/16/2009 10/7/2009 1/8/2010 4/7/2010 7/9/2010 SCGs Compound Chloromethane < 0.51 < 0.23 < 0.930 <1.00 <1.00 < 0.360 5 < 0.18 < 0.23 Vinyl chloride 2 < 0.56 0.502 < 0.26 < 0.26 1.48 1.04 <1.00 2.41 5 Bromomethane < 0.51 < 0.37 < 0.36 < 0.36 < 0.950 <1.00 <1.00 < 0.590 Chloroethane 5 < 0.71 < 0.64 < 0.29 < 0.29 < 0.170 <1.00 <1.00 < 0.410 5 <1.00 Trichlorofluoromethane < 0.6 < 0.74 < 0.23 < 0.23 < 0.310 <1.00 < 0.390 Acrolein < 2.57 < 4.34 < 4.34 <1.74 <20.0 <20.0 <1.64 ---< 1.87 5 1.1-Dichloroethene < 0.42 < 0.53 < 0.61 < 0.61 < 0.360 <1.00 <1.00 < 0.390 5 Methylene chloride < 1.98 < 1.98 < 1.98 < 1.98 <1.98 <2.00 <2.00 <1.98 Acrylonitrile ----< 1.19 < 0.74 < 0.95 < 0.95<1.16 <20.0 <20.0 <1.40 5 0.686 J trans-1,2-Dichloroethene 0.459 1.19 0.759 < 0.19 0.971 1.43 < 0.330 1,1-Dichloroethane 5 0.789 < 0.23 0.931 1.30 1.84 0.573 1.48 1.16 cis-1,2-Dichloroethene 5 2.75 0.589 1.58 1.16 1.64 1.26 1.36 1.06 Chloroform 7 < 0.330 < 0.29 < 0.14 < 0.17 < 0.17 < 0.220 <1.00 <1.00 5 1.1.1-Trichloroethane < 0.43 < 0.36 < 0.23 < 0.23 < 0.250 <1.00 <1.00 < 0.360 5 Carbon tetrachloride < 0.45 < 0.3 < 0.16 < 0.16 < 0.280 <1.00 <1.00 < 0.320 < 0.21 < 0.240 < 0.340 1.2-Dichloroethane (EDC) 0.6 < 0.28 < 0.19 < 0.21 <1.00 <1.00 Benzene < 0.29 < 0.17 < 0.21 < 0.21< 0.290 <1.00 <1.00 < 0.270 1 Trichloroethene 5 0.402 1.49 1.13 1.82 0.591 1.74 1.05 0.533 J 1,2-Dichloropropane 1 < 0.21 < 0.16 < 0.2 < 0.2 <0.280 <1.00 <1.00 <0.220 Bromodichloromethane 50 < 0.21 < 0.18 < 0.12 < 0.12 < 0.250 <1.00 <1.00 < 0.310 <1.00 < 0.350 2-Chloroethyl vinyl ether < 0.63 < 1.04 < 0.99 < 0.99 < 0.400 <1.00 ---<0.210 cis-1,3-Dichloropropene 0.4 < 0.2 < 0.24 < 0.15 < 0.15 < 0.140 <1.00 <1.00 Toluene 5 < 0.34 < 0.23 < 0.2 < 0.2 < 0.300 <1.00 <1.00 < 0.270 trans-1,3-Dichloropropene 0.4 < 0.13 < 0.32 < 0.27 < 0.27 < 0.130 <1.00 <1.00 < 0.250 1,1,2-Trichloroethane 1 < 0.36 < 0.15 < 0.15 < 0.15 < 0.240 <1.00 <1.00 <0.280 5 Tetrachloroethene < 0.38 < 0.33 < 0.19 < 0.19 < 0.300 <1.00 <1.00 <0.280 Dibromochloromethane 50 < 0.16 < 0.330 <1.00 < 0.230 < 0.25 < 0.16 < 0.16 <1.00 5 Chlorobenzene < 0.27 < 0.2 < 0.2 < 0.2 <0.170 <1.00 <1.00 < 0.270 Ethylbenzene 5 < 0.33 < 0.27 < 0.19 < 0.19 < 0.240 <1.00 <1.00 < 0.220 5 Total Xylenes < 0.98 < 0.79 < 0.44 < 0.44 < 0.740 <2.00 <2.00 < 0.600 Bromoform 50 < 0.15 < 0.14 < 0.14 < 0.250 <1.00 < 0.210 < 0.3 <1.00 5 < 0.210 1.1.2.2-Tetrachloroethane < 0.14 < 0.17 < 0.12 < 0.12 < 0.190 <1.00 <1.00 3 < 0.240 1,3-Dichlorobenzene < 0.32 < 0.23 < 0.17 < 0.17 < 0.130 <1.00 <1.00 3 1,4-Dichlorobenzene < 0.28 < 0.25 < 0.16 < 0.16 <0.180 <1.00 <1.00 <0.230 3 1,2-Dichlorobenzene < 0.28 < 0.23 < 0.15 < 0.15 <0.110 <1.00 <1.00 < 0.210

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Location ID GP-103R GP-103R E08 GP-103R E09 GP-103R E09-GP-103R E09-GP-103R E09 GP-103R E10-GP-103R E10- GP-103R E10 Lab Sample ID 12330-007 00763-011 03980-004 07112-004 10185-002 00249-008 03186-010 06728-010 Sample Date 10/23/2008 1/22/2009 4/22/2009 7/16/2009 10/7/2009 1/8/2010 4/7/2010 7/9/2010 SCGs Compound Chloromethane < 0.51 < 0.18 < 0.23 < 0.930 <1.00 <1.00 < 0.360 5 < 0.23 Vinyl chloride 2 35.2 0.763 10.9 < 0.26 5.61 1.26 3.02 10.9 5 Bromomethane < 0.51 < 0.37 < 0.36 < 0.36 < 0.950 <1.00 <1.00 < 0.590 Chloroethane 5 < 0.71 < 0.64 < 0.29 < 0.29 < 0.170 <1.00 <1.00 < 0.410 5 Trichlorofluoromethane < 0.6 < 0.74 < 0.23 < 0.23 < 0.310 <1.00 <1.00 < 0.390 Acrolein < 2.57 < 4.34 <1.74 <20.0 <20.0 <1.64 ---< 1.87 < 4.34 5 1.1-Dichloroethene < 0.42 < 0.53 < 0.61 < 0.61 < 0.360 <1.00 <1.00 < 0.390 5 Methylene chloride < 1.98 < 1.98 < 1.98 < 1.98 <1.98 <2.00 <2.00 <1.98 Acrylonitrile ----< 1.19 < 0.74 < 0.95 < 0.95<1.16 <20.0 <20.0 <1.40 5 trans-1,2-Dichloroethene 0.468 < 0.25 1.8 < 0.19 0.479 0.582 J <1.00 < 0.330 1,1-Dichloroethane 5 0.418 < 0.21 < 0.23 < 0.23 0.620 <1.00 < 0.350 0.458 J cis-1,2-Dichloroethene 5 3.22 6.31 0.579 < 0.2 2.21 0.657 J 1.91 1.74 Chloroform 7 < 0.330 < 0.29 < 0.14 < 0.17 < 0.17 < 0.220 <1.00 <1.00 5 1.1.1-Trichloroethane < 0.43 < 0.36 < 0.23 < 0.23 < 0.250 <1.00 <1.00 < 0.360 5 Carbon tetrachloride < 0.45 < 0.3 < 0.16 < 0.16 < 0.280 <1.00 <1.00 < 0.320 0.6 < 0.21 < 0.240 < 0.340 1.2-Dichloroethane (EDC) < 0.28 < 0.19 < 0.21 <1.00 <1.00 Benzene < 0.29 < 0.17 < 0.21 < 0.21< 0.290 <1.00 <1.00 < 0.270 1 Trichloroethene 5 0.585 < 0.19 0.323 0.285 0.541 <1.00 1.29 < 0.320 1,2-Dichloropropane 1 < 0.21 < 0.16 < 0.2 < 0.2 <0.280 <1.00 <1.00 <0.220 Bromodichloromethane 50 < 0.21 < 0.18 < 0.12 < 0.12 < 0.250 <1.00 <1.00 < 0.310 <1.00 < 0.350 2-Chloroethyl vinyl ether < 0.63 < 1.04 < 0.99 < 0.99 < 0.400 <1.00 --cis-1,3-Dichloropropene 0.4 < 0.2 < 0.24 < 0.15 < 0.15 < 0.140 <1.00 <1.00 < 0.210 Toluene 5 < 0.34 < 0.23 < 0.2 < 0.2 < 0.300 <1.00 <1.00 < 0.270 trans-1,3-Dichloropropene 0.4 < 0.13 < 0.32 < 0.27 < 0.27 < 0.130 <1.00 <1.00 < 0.250 1,1,2-Trichloroethane 1 < 0.36 < 0.15 < 0.15 < 0.15 < 0.240 <1.00 <1.00 <0.280 5 Tetrachloroethene < 0.38 < 0.33 < 0.19 < 0.19 < 0.300 <1.00 <1.00 <0.280 Dibromochloromethane 50 < 0.16 < 0.330 <1.00 < 0.230 < 0.25 < 0.16 < 0.16 <1.00 5 Chlorobenzene < 0.27 < 0.2 < 0.2 < 0.2 <0.170 <1.00 <1.00 < 0.270 Ethylbenzene 5 < 0.33 < 0.27 < 0.19 < 0.19 < 0.240 <1.00 <1.00 < 0.220 5 Total Xylenes < 0.98 < 0.79 < 0.44 < 0.44 < 0.740 <2.00 <2.00 < 0.600 Bromoform 50 < 0.15 < 0.14 < 0.14 < 0.250 <1.00 < 0.210 < 0.3 <1.00 5 < 0.210 1.1.2.2-Tetrachloroethane < 0.14 < 0.17 < 0.12 < 0.12 < 0.190 <1.00 <1.00 3 < 0.240 1,3-Dichlorobenzene < 0.32 < 0.23 < 0.17 < 0.17 < 0.130 <1.00 <1.00 3 1,4-Dichlorobenzene < 0.28 < 0.25 < 0.16 < 0.16 <0.180 <1.00 <1.00 <0.230 3 1,2-Dichlorobenzene < 0.28 < 0.23 < 0.15 < 0.15 <0.110 <1.00 <1.00 < 0.210

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Location ID MW-13R MW-13R_E08-MW-13 E09-MW-13R E09-MW-13R E09-MW-13R E09- MW-13R E10-MW-13R E10- MW-13R E10-Lab Sample ID 12330-012 00763-009 03980-002 07112-008 10185-004 00249-005 03186-011 06728-007 Sample Date 10/22/2008 1/21/2009 4/21/2009 7/15/2009 10/6/2009 1/7/2010 4/7/2010 7/8/2010 SCGs Compound Chloromethane < 0.51 < 0.18 < 0.23 < 0.930 <1.00 < 0.360 5 < 0.23 <1.00 Vinyl chloride 2 < 0.56 2.73 0.546 < 0.26 0.673 1.09 <1.00 < 0.420 5 Bromomethane < 0.51 < 0.37 < 0.36 < 0.36 < 0.950 <1.00 <1.00 < 0.590 Chloroethane 5 < 0.71 < 0.64 < 0.29 < 0.29 < 0.170 <1.00 <1.00 < 0.410 5 <1.00 Trichlorofluoromethane < 0.6 < 0.74 < 0.23 < 0.23 < 0.310 <1.00 < 0.390 Acrolein < 2.57 < 4.34 < 4.34 <1.74 <20.0 <20.0 <1.64 ---< 1.87 5 1.1-Dichloroethene < 0.42 < 0.53 < 0.61 < 0.61 < 0.360 <1.00 <1.00 < 0.390 5 Methylene chloride < 1.98 < 1.98 < 1.98 < 1.98 <1.98 <2.00 <2.00 <1.98 Acrylonitrile ----< 1.19 < 0.74 < 0.95 < 0.95<1.16 <20.0 <20.0 <1.40 5 trans-1,2-Dichloroethene < 0.45 < 0.25 < 0.19 < 0.19 < 0.340 <1.00 <1.00 < 0.330 1,1-Dichloroethane 5 0.86 0.792 < 0.23 1.20 0.980 J <1.00 0.636 J 0.61 cis-1,2-Dichloroethene 5 0.853 0.433 J 0.647 1.85 0.721 0.668 0.941 J <1.00 Chloroform 7 < 0.330 < 0.29 < 0.14 < 0.17 < 0.17 < 0.220 <1.00 <1.00 5 1.1.1-Trichloroethane < 0.43 < 0.36 < 0.23 < 0.23 < 0.250 <1.00 <1.00 < 0.360 Carbon tetrachloride 5 < 0.45 < 0.3 < 0.16 < 0.16 < 0.280 <1.00 < 0.320 <1.00 < 0.21 < 0.240 < 0.340 1.2-Dichloroethane (EDC) 0.6 < 0.28 < 0.19 < 0.21 <1.00 <1.00 Benzene < 0.29 < 0.17 < 0.21 < 0.21< 0.290 <1.00 <1.00 < 0.270 1 Trichloroethene 5 1.62 1.62 1.18 0.862 1.08 1.22 <1.00 0.969 J 1,2-Dichloropropane 1 < 0.21 < 0.16 < 0.2 < 0.2 <0.280 <1.00 <1.00 <0.220 Bromodichloromethane 50 < 0.21 < 0.18 < 0.12 < 0.12 < 0.250 <1.00 <1.00 < 0.310 <1.00 < 0.350 2-Chloroethyl vinyl ether < 0.63 < 1.04 < 0.99 < 0.99 < 0.400 <1.00 ---<0.210 cis-1,3-Dichloropropene 0.4 < 0.2 < 0.24 < 0.15 < 0.15 < 0.140 <1.00 <1.00 Toluene 5 < 0.34 < 0.23 < 0.2 < 0.2 < 0.300 <1.00 <1.00 < 0.270 trans-1,3-Dichloropropene 0.4 < 0.13 < 0.32 < 0.27 < 0.27 < 0.130 <1.00 <1.00 < 0.250 1,1,2-Trichloroethane 1 < 0.36 < 0.15 < 0.15 < 0.15 < 0.240 <1.00 <1.00 <0.280 5 Tetrachloroethene < 0.38 < 0.33 < 0.19 < 0.19 < 0.300 <1.00 <1.00 <0.280 Dibromochloromethane 50 < 0.16 < 0.330 <1.00 < 0.230 < 0.25 < 0.16 < 0.16 <1.00 5 Chlorobenzene < 0.27 < 0.2 < 0.2 < 0.2 <0.170 <1.00 <1.00 < 0.270 Ethylbenzene 5 < 0.33 < 0.27 < 0.19 < 0.19 < 0.240 <1.00 <1.00 < 0.220 5 Total Xylenes < 0.98 < 0.79 < 0.44 < 0.44 < 0.740 <2.00 <2.00 < 0.600 Bromoform 50 < 0.15 < 0.14 < 0.14 < 0.250 <1.00 < 0.210 < 0.3 <1.00 5 < 0.210 1.1.2.2-Tetrachloroethane < 0.14 < 0.17 < 0.12 < 0.12 < 0.190 <1.00 <1.00 3 < 0.240 1,3-Dichlorobenzene < 0.32 < 0.23 < 0.17 < 0.17 < 0.130 <1.00 <1.00 3 1,4-Dichlorobenzene < 0.28 < 0.25 < 0.16 < 0.16 <0.180 <1.00 <1.00 <0.230 3 1,2-Dichlorobenzene < 0.28 < 0.23 < 0.15 < 0.15 <0.110 <1.00 <1.00 < 0.210

Table 1. Volatile Organic Compound Results for Post-Remedial Groundwater Monitoring Wells, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

	Location ID		MW-6S							
	Lab Sample ID	MW-6S_E08- 12330-015	MW-6S_E09- 00763-004	MW-6S_E09- 03980-003	MW-6S_E09- 07112-007	MW-6S_E09- 10185-007	MW-6S_E10- 00249-011	MW-6S_E10- 03186-006	MW-6S_E10- 06728-006	
_	Sample Date	10/23/2008	1/20/2009	4/21/2009	7/15/2009	10/6/2009	1/8/2010	4/6/2010	7/8/2010	
Compound	SCGs									
Chloromethane	5	< 0.51	< 0.18	< 0.23	< 0.23	<0.930	<1.00	<1.00	<0.360	
Vinyl chloride	2	< 0.56	< 0.46	< 0.26	< 0.26	<0.470	<1.00	<1.00	<0.420	
Bromomethane	5	< 0.51	< 0.37	< 0.36	< 0.36	<0.950	<1.00	<1.00	<0.590	
Chloroethane	5	< 0.71	< 0.64	< 0.29	< 0.29	<0.170	<1.00	<1.00	<0.410	
Trichlorofluoromethane	5	< 0.6	< 0.74	< 0.23	< 0.23	<0.310	<1.00	<1.00	<0.390	
Acrolein		< 1.87	< 2.57	< 4.34	< 4.34	<1.74	<20.0	<20.0	<1.64	
1,1-Dichloroethene	5	< 0.42	< 0.53	< 0.61	1.55	< 0.360	<1.00	<1.00	<0.390	
Methylene chloride	5	< 1.98	< 1.98	< 1.98	< 1.98	<1.98	<2.00	<2.00	<1.98	
Acrylonitrile		< 1.19	< 0.74	< 0.95	< 0.95	<1.16	<20.0	<20.0	<1.40	
trans-1,2-Dichloroethene	5	< 0.45	< 0.25	< 0.19	< 0.19	<0.340	<1.00	<1.00	<0.330	
1,1-Dichloroethane	5	< 0.34	0.417	0.382	< 0.23	<0.260	0.336 J	<1.00	< 0.350	
cis-1,2-Dichloroethene	5	< 0.32	< 0.19	< 0.2	< 0.2	<0.270	0.578 J	<1.00	<0.220	
Chloroform	7	< 0.29	< 0.14	< 0.17	< 0.17	<0.220	<1.00	<1.00	<0.330	
1,1,1-Trichloroethane	5	4.22	5.1	6.31	< 0.23	<0.250	<1.00	4.23	2.51	
Carbon tetrachloride	5	< 0.45	< 0.3	< 0.16	< 0.16	<0.280	<1.00	<1.00	<0.320	
1,2-Dichloroethane (EDC)	0.6	< 0.28	< 0.19	< 0.21	< 0.21	<0.240	<1.00	<1.00	<0.340	
Benzene	1	< 0.29	< 0.17	< 0.21	< 0.21	<0.290	<1.00	<1.00	<0.270	
Trichloroethene	5	24.1	43.3	33.9	37.3	18.5	40.3	25.1	16.3	
1,2-Dichloropropane	1	< 0.21	< 0.16	< 0.2	< 0.2	<0.280	<1.00	<1.00	<0.220	
Bromodichloromethane	50	< 0.21	< 0.18	< 0.12	< 0.12	<0.250	<1.00	<1.00	<0.310	
2-Chloroethyl vinyl ether		< 0.63	< 1.04	< 0.99	< 0.99	<0.400	<1.00	<1.00	<0.350	
cis-1,3-Dichloropropene	0.4	< 0.2	< 0.24	< 0.15	< 0.15	<0.140	<1.00	<1.00	<0.210	
Toluene	5	< 0.34	< 0.23	< 0.2	< 0.2	<0.300	<1.00	<1.00	<0.270	
trans-1,3-Dichloropropene	0.4	< 0.13	< 0.32	< 0.27	< 0.27	<0.130	<1.00	<1.00	<0.250	
1,1,2-Trichloroethane	1	< 0.36	< 0.15	< 0.15	< 0.15	<0.240	<1.00	<1.00	<0.280	
Tetrachloroethene	5	3.23	5.55	3.54	5.48	2.49	5.17	3.28	2.46	
Dibromochloromethane	50	< 0.25	< 0.16	< 0.16	< 0.16	<0.330	<1.00	<1.00	<0.230	
Chlorobenzene	5	< 0.27	< 0.2	< 0.2	< 0.2	<0.170	<1.00	<1.00	<0.270	
Ethylbenzene	5	< 0.33	< 0.27	< 0.19	< 0.19	<0.240	<1.00	<1.00	<0.220	
Total Xylenes	5	< 0.98	< 0.79	< 0.44	< 0.44	<0.740	<2.00	<2.00	<0.600	
Bromoform	50	< 0.3	< 0.15	< 0.14	< 0.14	<0.250	<1.00	<1.00	<0.210	
1,1,2,2-Tetrachloroethane	5	< 0.14	< 0.17	< 0.12	< 0.12	<0.190	<1.00	<1.00	<0.210	
1,3-Dichlorobenzene	3	< 0.32	< 0.23	< 0.17	< 0.17	<0.130	<1.00	<1.00	<0.240	
1,4-Dichlorobenzene	3	< 0.28	< 0.25	< 0.16	< 0.16	<0.180	<1.00	<1.00	<0.230	
1,2-Dichlorobenzene	3	< 0.28	< 0.23	< 0.15	< 0.15	<0.110	<1.00	<1.00	<0.210	

Table 2. Volatile Organic Compound Results for Upgadient Groundwater Monitoring Well MW-6S, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site Tuckahoe, New York.

Results are reported in micrograms per liter (ug/l)

Results exceeding an SCG are shaded gray

Table 3. Summary of Groundwater Elevation Measurements, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York

	Measuring	10/2	0/2008	1/20)/2009	4/2	1/2009	7/15/2009	
Well ID	Point Elevation' (ft)	Depth to Water (ft bmp)	Groundwater Elevation' (ft)	Depth to Water (ft bmp)	Groundwater Elevation' (ft)	Depth to Water (ft bmp)	Groundwater Elevation ' (ft)	Depth to Water (ft bmp)	Groundwater Elevation ' (ft)
Shallow Over	burden Wells								
MW-5S	100.00			9.36	90.64				
MW-6S	102.00	12.83	89.17	10.37	91.63	11.58	90.42	10.66	91.34
MW-9S	100.20	11.49	88.71	9.23	90.97	10.45	89.75	9.53	90.67
MW-13R	97.50	14.06	83.44	12.21	85.29	13.26	84.24	12.24	85.26
GP-103R	94.40	6.81	87.59	5.67	88.73	5.22	89.18	4.88	89.52
GP-104R	94.20	6.35	87.85	4.17	90.03	5.69	88.51	4.40	89.80
PTW-1	100.00			9.74	90.26				
PTW-2	99.90	11.98	87.92	9.76	90.14	10.77	89.13	10.02	89.88
Deep Overbu	irden Wells								
MW-HP-1D	99.50			9.34	90.16				
MW-6D	102.00			10.49	91.51				
MW-7D	97.90			10.86	87.04				
MW-HP-8D	101.10			9.77	91.33				
MW-9D	100.20	11.83	88.37	9.51	90.69	10.67	89.53	9.87	90.33
Off-Site Wells	<u>6</u>								
MW-HP-2S	100.70			10.31	90.39				
MW-HP-2D	100.50			10.10	90.40				
OS-MW-1	98.10			14.83	83.27				
OS-MW-2	98.40			11.59	86.81				
OS-MW-3PL	100.60			9.83	90.77				
Injection Wel	ls								
Injection Line	e #1								
IW-5	101.50			9.96	91.54				
IW-6	101.20			9.72	91.48				
MW-HP-8S	101.00			9.49	91.51				
MW-1	100.50			9.41	91.09				
Injection Line	e #2								
MW-11	103.70			12.35	91.35				
MW-10	103.70			12.35	91.35				
MW-12	103.40			12.07	91.33				
MW-2	100.30			8.78	91.52				
Injection Line									
IW-8	100.20			9.27	90.93				
IW-9	100.20			9.41	90.79				
IW-10	99.50			8.73	90.77				
IW-11	99.00			8.50	90.50				
Injection Line									
GP-106R2	100.80			10.65	90.15				
IW-1R	100.10			10.05	90.05				
IW-2	99.20			9.21	89.99				
IW-3	98.40			8.11	90.29				
IW-4	98.40			8.32	90.08				
Injection Line				0.44	<u> </u>				
IW-12	93.50			3.41	90.09				
IW-13	93.80			3.85	89.95				
IW-14	98.50			8.74	89.76				
Injection Line					aa				
IW-15R	98.40			9.63	88.77				
MW-7S	97.70			10.15	87.55				
IW-16	97.00			9.08	87.92				

¹ Elevations relative to on-site benchmark (January and December 2008 surveys)

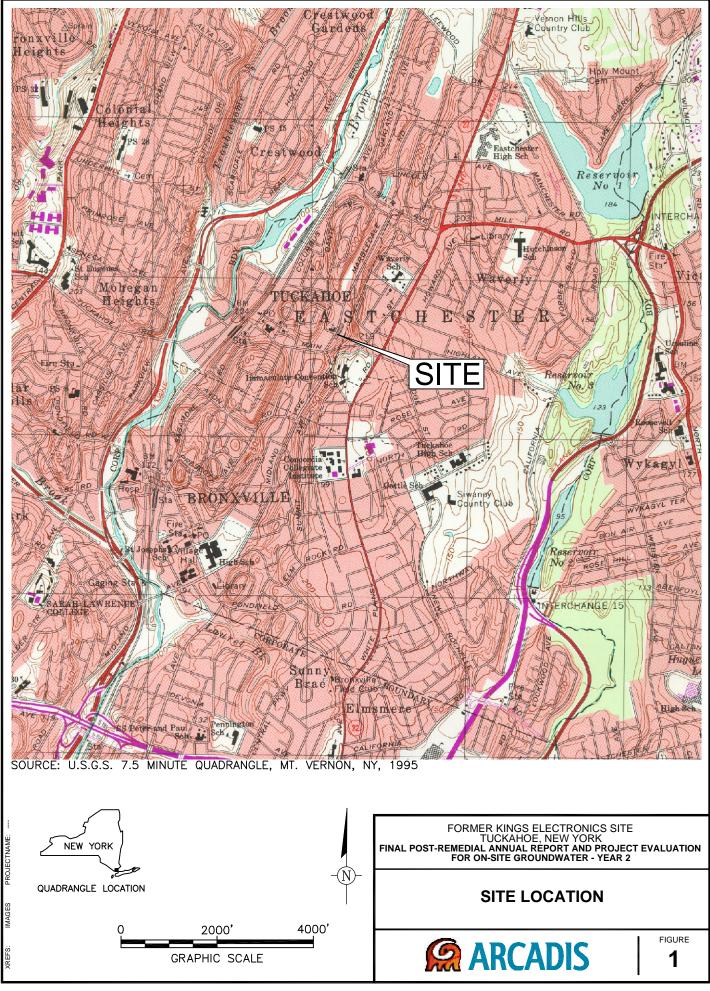
ft bmp Feet below measuring point

--- Not measured.

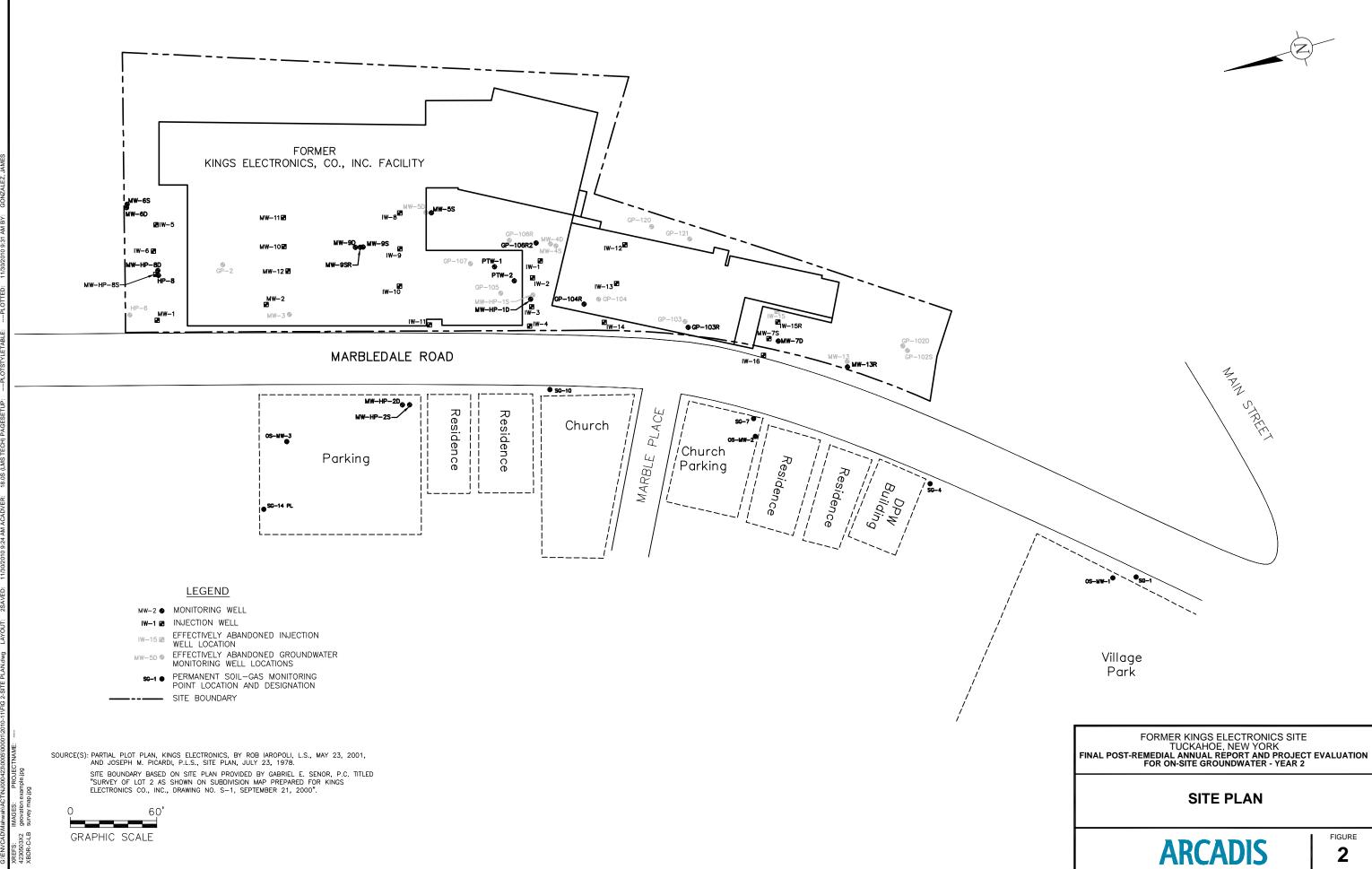
Notes: Groundwater elevations measured for accessible wells during the annual inspection and maintenance event Groundwater elevations measured for all post-remedial monitoring wells each quarter

Table 3. Summary of Groundwater Elevation Measurements, October 2008 to July 2010, Former Kings Electronics Co., Inc. Site, Tuckahoe, New York

	Measuring	10/6	6/2009	1/7	/2010	4/6	/2010	7/6	/2010
Well ID	Point Elevation' (ft)	Depth to Water (ft bmp)	Groundwater Elevation' (ft)						
Shallow Over	burden Wells								
MW-5S	100.00							11.09	88.91
MW-6S	102.00	11.94	90.06	11.00	91.00	7.08	94.92	12.27	89.73
MW-9S	100.20	10.61	89.59	10.07	90.13	6.36	93.84	11.21	88.99
MW-13R	97.50	13.37	84.13	12.43	85.07	8.71	88.79	11.95	85.55
GP-103R	94.40	6.86	87.54	5.32	89.08	1.40	93.00	6.37	88.03
GP-104R	94.20	5.38	88.82	4.83	89.37	1.91	92.29	5.90	88.30
PTW-1	100.00								
PTW-2	99.90	9.96	89.94	10.22	89.68	6.99	92.91	11.51	88.39
Deep Overbu	rden Wells								
MW-HP-1D	99.50							11.09	88.41
MW-6D	102.00							12.37	89.63
MW-7D	97.90							12.45	85.45
MW-HP-8D	101.10							11.65	89.45
MW-9D	100.20	10.88	89.32	10.19	90.01	6.71	93.49	11.37	88.83
Off-Site Wells	<u>8</u>								
MW-HP-2S	100.70							11.95	88.75
MW-HP-2D	100.50							11.75	88.75
OS-MW-1	98.10							16.20	81.90
OS-MW-2	98.40							13.10	85.30
OS-MW-3PL	100.60							11.50	89.10
Injection Well	<u>ls</u>								
Injection Line									
IW-5	101.50								
IW-6	101.20							11.58	89.62
MW-HP-8S	101.00							11.36	89.64
MW-1	100.50							11.15	89.35
Injection Line MW-11	103.70 [#] ∠							14.23	89.47
MW-10	103.70							14.23	89.50
MW-10	103.40							13.96	89.44
MW-2	100.30							10.82	89.48
Injection Line								10.02	00.40
IW-8	100.20							11.36	88.84
IW-9	100.20							11.15	89.05
IW-10	99.50							10.41	89.09
IW-11	99.00							10.28	88.72
Injection Line								10.20	00.12
GP-106R2	100.80							11.70	89.10
IW-1R	100.10							12.39	87.71
IW-2	99.20							10.86	88.34
IW-3	98.40							9.90	88.50
IW-4	98.40							9.99	88.41
Injection Line									
IW-12	93.50								
IW-13	93.80							5.60	88.20
IW-14	98.50							10.42	88.08
Injection Line									
								11.67	86.73
IW-15R	98.40								
•	98.40 97.70							11.28	86.42

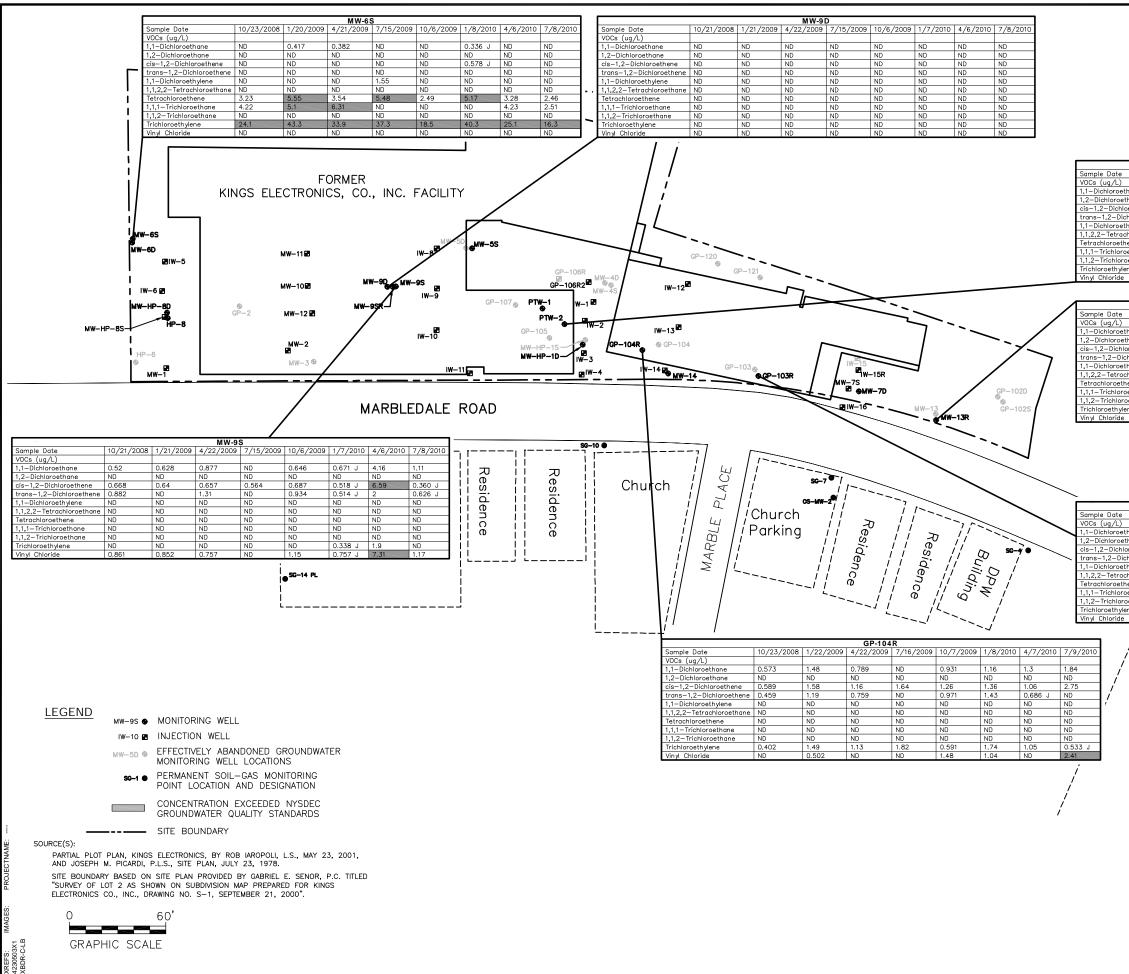

¹ Elevations relative [†]

ft bmp Feet below measur


--- Not measured.

Notes: Groundwater eleva

Groundwater eleva



JAMES GONZALEZ, 11/30/2010 9:19 AM BY: ARCADIS.CTB PLOTTED: DWF PAPLOTSTYLETABLE: 18.0S (LMS TECH) PAGESETUP: PIC:(Opt) PM:(Reqd) TM:(Opt) LYR:(Opt)ON=*,OFF=*REF* 1-SITE LOCATION.dwg LAYOUT: 1SAVED: 11/30/2010 9:18 AM ACADVER: LD:(Opt) 1 \2010-11\FIG DB:JG DIV/GROUP:ENVCAD ACT/NJ000 CITY:MAHWAH

GONZALEZ LD: E. RODRIGUEZ PIC;(Opi) PM: M. MOHIUDDN TM: E. RODRIGUEZ LYR: (Opi)ON=*OFF=*REF 2010-111FIG 2-SITE PLANdwg LAYOUT: 2SAVED: 11302010 9:24 AM ACADVER: 18.0S (LMS TECH) PAGESE DB :J. ЧD

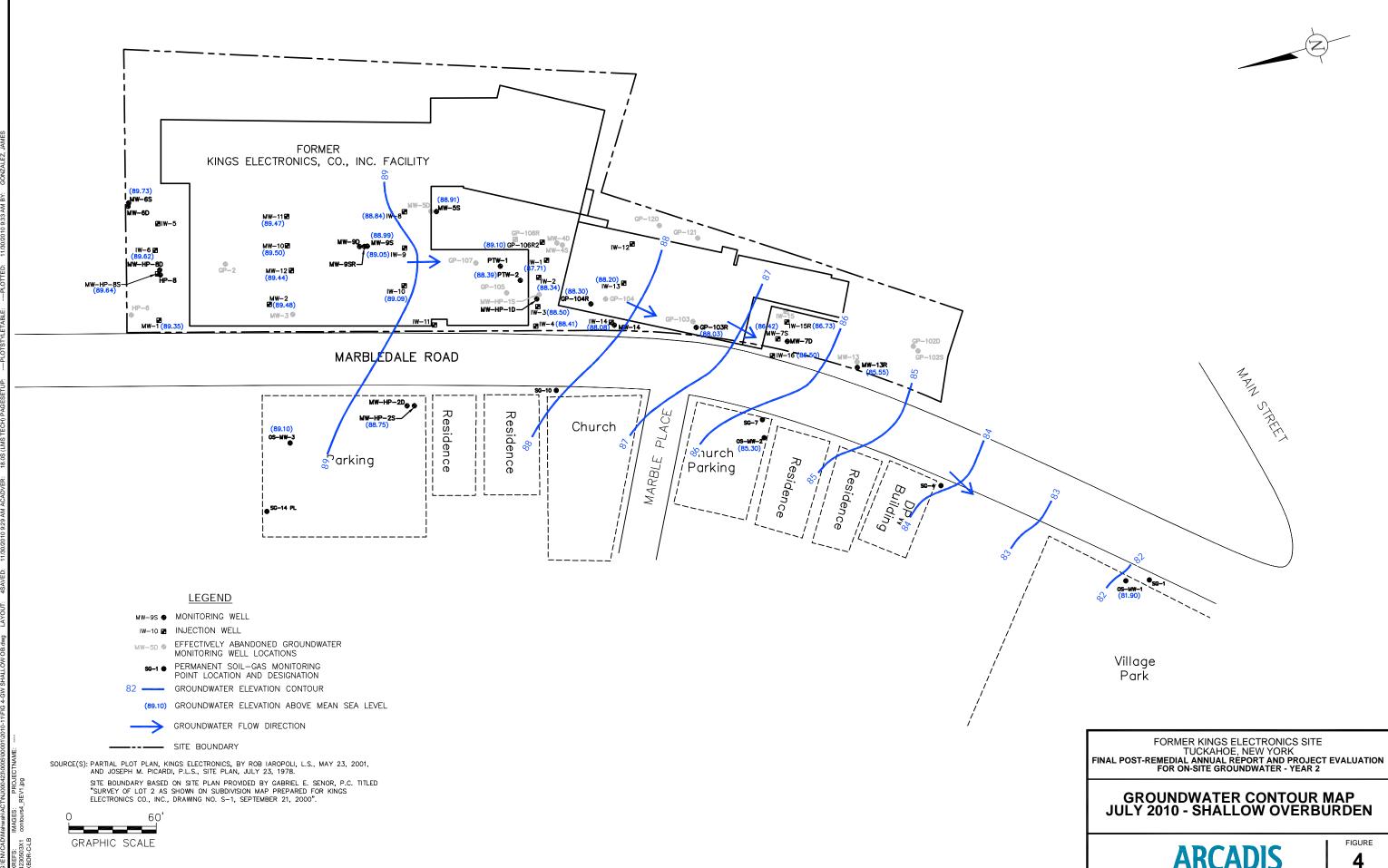
FIGURE

SUMMARY OF CVOCs IN GROUNDWATER **OCTOBER 2008 - JULY 2010**

FORMER KINGS ELECTRONICS SITE TUCKAHOE, NEW YORK FINAL POST-REMEDIAL ANNUAL REPORT AND PROJECT EVALUATION FOR ON-SITE GROUNDWATER - YEAR 2

Village Park

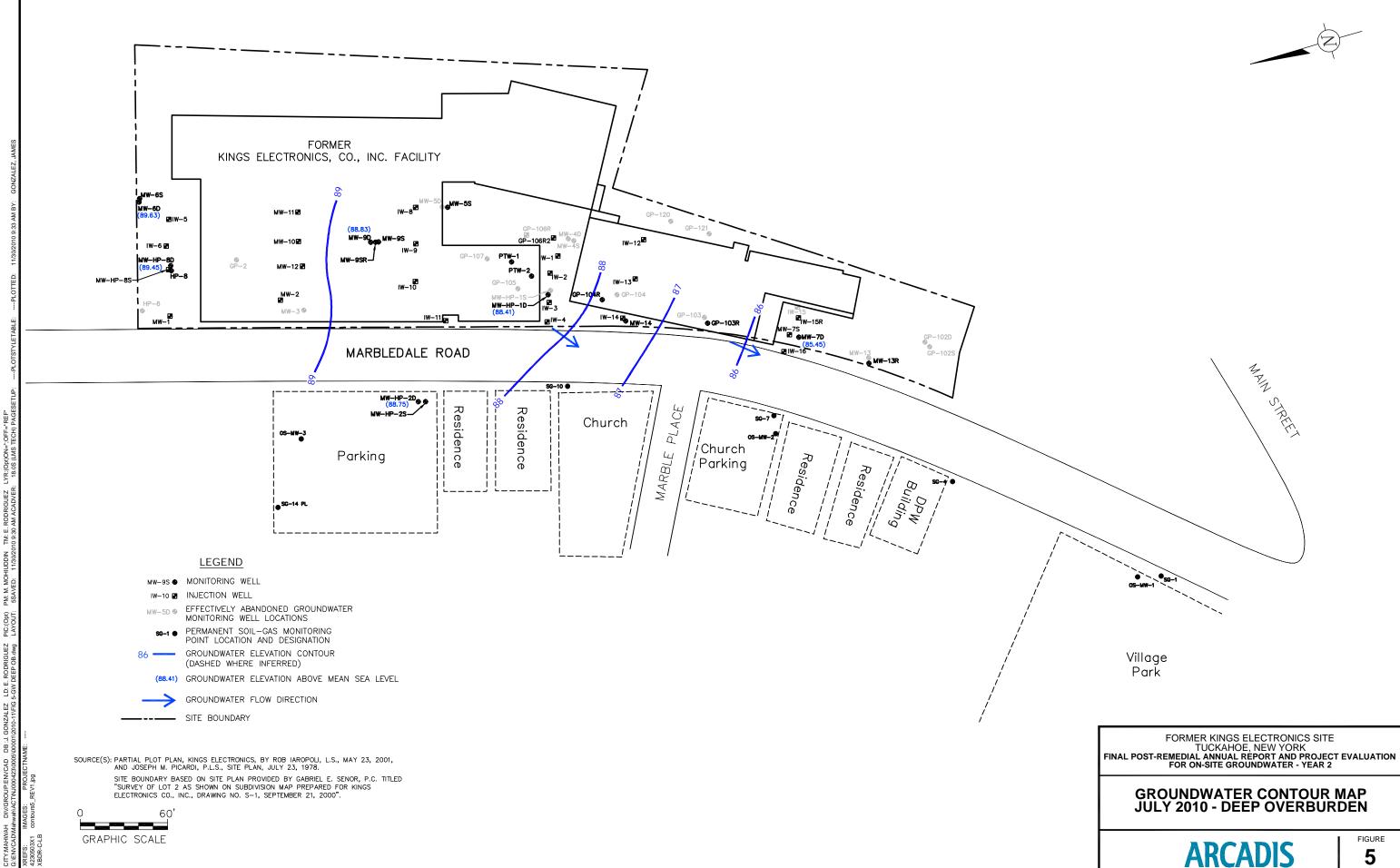
•sg-1 OS-MW-


GP-103R													
	10/23/2008	1/22/2009	4/22/2009	7/16/2009	10/7/2009	1/8/2010	4/7/2010	7/9/2010					
thane	0.418	ND	ND	ND	0.62	0.458 J	ND	ND					
thane	ND	ND	ND	ND	ND	ND	ND	ND					
oroethene	6.31	0.579	3.22	ND	2.21	0.657 J	1.91	1.74					
chloroethene	0.468	ND	1.8	ND	0.479	0.582 J	ND	ND					
thylene	ND	ND	ND	ND	ND	ND	ND	ND					
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND					
hene	ND	ND	ND	ND	ND	ND	ND	ND					
oethane	ND	ND	ND	ND	ND	ND	ND	ND					
oethane	ND	ND	ND	ND	ND	ND	ND	ND					
ene	0.585	ND	0.323	0.285	0.541	ND	1.29	ND					
	35.2	0.763	10.9	ND	5.61	1.26	3.02	10.9					
,		1			/	,							

MW-13R												
	10/22/2008	1/21/2009	4/21/2009	7/15/2009	10/6/2009	1/7/2010	4/7/2010	7/8/2010				
thane	0.61	0.86	0.877	0.552	1.2	0.980 J	ND	0.636 J				
thane	ND	ND	ND	ND	ND	ND	ND	ND				
oroethene	0.647	1.85	0.892	0.721	0.668	0.941 J	ND	0.433 J				
chloroethene	ND	ND	ND	ND	ND	ND	ND	ND				
thylene	ND	ND	ND	ND	ND	ND	ND	ND				
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND				
hene	ND	ND	ND	ND	ND	ND	ND	ND				
oethane	ND	ND	ND	ND	ND	ND	ND	ND				
oethane	ND	ND	ND	ND	ND	ND	ND	ND				
ene	1.62	1.62	1.21	0.862	1.08	1.22	ND	0.969 J				
	ND	2 73	0.546	ND	0.673	1.00	ND	ND				

	FIW-2												
	10/23/2008	1/22/2009	4/21/2009	7/16/2009	10/7/2009	1/8/2010	4/6/2010	7/8/2010					
hane	0.657	1.69	1.88	0.576	1.41	3.37	ND	1.39					
thane	ND	ND	ND	ND	ND	ND	ND	ND					
oroethene	0.395	ND	1.31	1.76	2.19	0.510 J	ND	2.67					
chloroethene	ND	ND	0.717	ND	0.384	0.799 J	ND	ND					
hylene	ND	ND	ND	ND	ND	ND	1.79	ND					
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND					
nene	ND	ND	ND	ND	ND	ND	ND	0.290 J					
pethane	ND	ND	ND	ND	ND	ND	ND	0.691 J					
oethane	ND	ND	ND	ND	ND	ND	ND	ND					
ene	ND	0.525	1.54	2.22	1.14	0.794 J	3.48	6.22					
	ND	ND	0.816	ND	0.632	0.658 J	1.38	0.864 J					

PTW-2												
	10/23/2008	1/22/2009	4/21/2009	7/16/2009	10/7/2009	1/8/2010	4/6/2010	7/8/2010				
thane	0.657	1.69	1.88	0.576	1.41	3.37	ND	1.39				
ethane	ND	ND	ND	ND	ND	ND	ND	ND				
loroethene	0.395	ND	1.31	1.76	2.19	0.510 J	ND	2.67				
chloroethene	ND	ND	0.717	ND	0.384	0.799 J	ND	ND				
thylene	ND	ND	ND	ND	ND	ND	1.79	ND				
chloroethane	ND	ND	ND	ND	ND	ND	ND	ND				
hene	ND	ND	ND	ND	ND	ND	ND	0.290 J				
oethane	ND	ND	ND	ND	ND	ND	ND	0.691 J				
oethane	ND	ND	ND	ND	ND	ND	ND	ND				



";OFF=*REF* PIC:(Opt) PM: M. MOHIUDDIN TM: E. RODRIGUEZ LYR:(Opt)ON= wg LAYOUT: 4SAVED: 11/30/2010 9:29 AM ACADVER: 18.0S (. RODRIGUEZ 30NZALEZ LD: E. 2010-11/FIG 4-GW S BB

FIGURE

GROUNDWATER CONTOUR MAP JULY 2010 - SHALLOW OVERBURDEN

FIGURE

GROUNDWATER CONTOUR MAP

Appendix A

Groundwater Sampling Forms

Project	Kings Electronics									
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	<u>א M</u> V	V-6S
Date		10/6/2009		Sampled By	D. Kirs	chner				
Sampling Time		11:14		Recorded By	D. Kirs	chner				
Weather		Sun, 60's		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality	Veter(s)	Lamotte 2020 I	Pine # 14015.	YSI 600XL Pine #	# 8979 SN# 08G1	01421				
	(1)					·				
Casing Materia	d	P	vc	Purge	Method	1	Low Flow Monsoon Pump			
Casing Diamet		2.	.0"	-			10.0'		Bottom	20.0'
Sounded Depth		19		-	Intake Depth (ft		18.0'			
Depth to Water			.94	-			10:37		Finish	11:16
	(it biip)		.04	Purge Time Start						11.10
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
10:42	5	300	0.40	17.29	6.68	1.014	139.5	5.91	153.0	11.98
10:42	10	300	0.79	17.53	6.65	1.056	147.4	5.77	65.3	11.99
10:52	15	300	1.19	17.53	6.64	1.057	151.2	5.79	16.4	11.99
10:52	20	300	1.58	17.54	6.64	1.058	151.9	5.76	6.30	11.99
11:02	25	300	1.98	17.54	6.64	1.030	153.1	5.75	1.73	11.99
11:02	30	300	2.38	17.54	6.63	1.071	155.2	5.75	1.95	11.99
11:12	35	300	2.77	17.56	6.63	1.089	157.9	5.75	1.93	11.99
									•	
Collected Sam	ple Condition		Color Clear		Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs	_	Glas	ss Vials	-	2		-	H	CL
		_			-	-		-		
		_			-	-		-		
Comments	I otal volume	s purged: 2.8 gal	ions							
•										

Project	Kings	Electronics									
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckal	noe, NY		Well ID	<u>мw</u>	-9SR	
Date		10/6/2009		Sampled By	V. Mye	rs					
Sampling Time		12:05		Recorded By	V. Mye	rs					
Weather		Indoors		Coded Replicat	te No. <u>None</u>						
Instrument Ide Water Quality I		Lamotte 2020e	Pine # 07540,	SN-ME-10465 Y	SI 650 XLM Pin	e # 5655/8979 SN	I# OPG10142				
Casing Materia	ıl	P	vc	Purge M	lethod	<u> </u>	Low Flow Mor	isoon Pump			
Casing Diamet	er	2.	.0"	Screen Interval		(ft bmp) Top			Bottom	20.0'	
Sounded Dept	h (ft bmp)	19	.91	Pump li	ntake Depth (ft	bmp)	18.0'				
Depth to Water	r (ft bmp)	10	.61	Purge 1	Time	Start	11:23		Finish	12:08	
				Field Parameter	Measurement	s During Purging	I				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
11:28	5	200	0.26	16.42	6.86	1.476	-133.0	0.49	3.18	10.67	
11:33	10	200	0.53	16.66	6.87	1.476	-136.7	0.53	2.96	10.67	
11:38	15	200	0.79	16.91	6.87	1.472	-135.8	0.56	4.14	10.67	
11:43	20	200	1.06	17.06	6.86	1.471	-133.9	0.56	4.32	10.67	
11:48	25	200	1.32	17.10	6.82	1.447	-129.4	0.55	3.23	10.67	
11:53	30	200	1.58	17.14	6.77	1.422	-126.5	0.75	2.09	10.67	
11:58	35	200	1.85	17.13	6.73	1.403	-123.5	0.65	1.61	10.67	
12:03	40	200	2.11	17.23	6.72	1.400	-122.6	0.62	1.46	10.67	
Collected Sam	ple Condition		Color <u>Clear</u>		Odor	No Odor		Appearance	Clear		
Parameter			Container			No.			Preservative		
VC	Cs	-	Glas	s Vials		2		-	н	CL	
		-						-			
		-						-			
Comments	Total volumes	purged: 2.11 ga	allons								

Project	Kings	Electronics									
Project Numbe	r <u>NJ000</u> 4	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	о <u>м</u> и	V-9D	
Date		10/6/2009		Sampled By	V. Mye	ers					
Sampling Time		10:59		Recorded By	V. Mye	rs					
Weather		Indoors		Coded Replica	te No. None						
Instrument Ide											
Water Quality	Meter(s)	Lamotte 2020e	Pine # 07540,	SN-ME-10465 Y	SI 650 XLM Pir	e # 5655/8979 SN	# OPG10142				
Casing Materia			VC	Purge I		-	_ow Flow Mor				
Casing Diamete			0"	Screen	·· · -	30.0'		Bottom	40.0'		
Sounded Depth			.00		ntake Depth (fi		35.0'				
Depth to Water	(ft bmp)	10	.88	Purge	Time	Start	10:22		Finish	11:01	
Field Parameter Measurements During Purging											
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
10:27	5	200	0.26	15.43	6.67	1.193	-82.9	0.88	1.67	10.98	
10:32	10	200	0.53	15.51	6.66	1.195	-87.4	0.39	1.70	10.98	
10:37	15	200	0.79	15.53	6.66	1.193	-90.3	0.37	1.80	10.98	
10:42	20	200	1.06	15.37	6.65	1.184	-93.2	0.35	2.60	10.98	
10:47	25	200	1.32	15.37	6.65	1.184	-94.8	0.36	2.18	10.98	
10:52	30	200	1.58	15.43	6.65	1.182	-96.1	0.37	1.98	10.98	
10:57	35	200	1.85	15.41	6.65	1.181	-96.2	0.37	1.94	10.98	
Collected Sam	ple Condition		Color <u>Clear</u>		Odor	No Odor		Appearance	Clear		
Parameter			Container			No.			Preservative		
VO	Cs	-	Glas	s Vials		2		_	н	ICL	
		-						-			
		-						-			
Comments	Total volumes	purged: 1.85 ga	allons								

Project	Kings	Electronics								
Project Number NJ000423.0005.0001		Site Location		Tucka	hoe, NY		Well II	MW-13R		
Date		10/6/2009		Sampled By D		Kirschner				
Sampling Time		12:43		Recorded By	D. Kirs	D. Kirschner				
Weather		Sun, 60's		Coded Replicate No. No		one				
Instrument Ide	ntification									
Water Quality I	Meter(s)	Lamotte 2020	Pine # 14015, \	YSI 600XL Pine #	# 8979 SN# 08G	101421				
Casing Material PVC Purge Method Low Flow Monsoon Pump										
Casing Diameter		2.0"		Screen	Interval (ft bmp	р) Тор_	9.5'		Bottom	19.5'
Sounded Depth (ft bmp)		19.57		Pump Intake Depth (ft		bmp)	17.5'			
Depth to Water	r (ft bmp)	13.37		Purge Time		Start	12:11		Finish	12:50
				_		_				
_				Field Paramete	r Measurements	During Purging				
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
12:16	5	200	0.26	18.51	6.48	2.063	159.8	0.83	27.1	13.40
12:21	10	200	0.53	18.27	6.47	1.998	167.3	0.61	9.5	13.40
12:26	15	200	0.79	18.24	6.48	1.971	168.0	0.56	4.37	13.40
12:31	20	200	1.06	18.23	6.48	1.940	166.0	0.52	2.12	13.40
12:36	25	200	1.32	18.20	6.48	1.932	165.3	0.51	1.39	13.40
12:41	30	200	1.58	18.06	6.48	1.915	163.6	0.49	1.10	13.40
<u>.</u>									•	
Collected Sam	ple Condition		Color Clear		Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VOCs			Glass Vials			2		HCL		CL
				-			-			
		-			-			-		
		-			-					
Comments Total volumes purged: 1.60 gallons										
······································										

Project	Kings	Electronics									
Project Number NJ000423.0005.0001		Site Location		Tucka	hoe, NY		Well ID		PTW-2		
Date		10/7/2009		Sampled By	V. Mye	V. Myers					
Sampling Time		12:02		Recorded By	V. Mye	V. Myers					
Weather		Indoors		Coded Replicat	e No. None						
Instrument Ide	ntification										
Water Quality I	Meter(s)	Lamotte 2020e	Pine # 07540,	SN-ME-10465 Y	SI 650 XLM Pir	ie # 5655/8979 SN	# OPG10142				
	.,										
Casing Material PVC Purge Method Low Flow Monsoon Pump											
Casing Diameter		2.0"		Screen	Interval (ft bm	ıp) Top <u>7.0'</u>		Bottom		17.0'	
Sounded Depth (ft bmp)		16.52		Pump Intake Depth (f		_	15.0'	,			
Depth to Water	(ft bmp)	9.	96	Purge Time		Start	11:30		Finish	12:10	
	,					-					
Field Parameter Measurements During Purging											
Time	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to	
Time	Elasped	(mL/min)	Purged	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)	
11:35	5	200	0.26	17.29	6.65	0.948	-75.9	0.47	11.5	9.98	
11:40	10	200	0.53	17.22	6.62	0.984	-83.1	0.51	6.81	9.98	
11:45	15	200	0.79	17.29	6.60	1.001	-89.4	0.53	4.61	9.98	
11:50	20	200	1.06	17.29	6.60	1.007	-92.4	0.54	3.48	9.98	
11:55	25	200	1.32	17.29	6.59	1.015	-96.1	0.55	2.21	9.98	
12:00	30	200	1.58	17.39	6.59	1.021	-96.8	0.57	2.15	9.98	
Collected Sam	ple Condition		Color Clear/	Tan	Odor	Slight Odor		Appearance	Clear		
Parameter Container		Container			No.			Preservative			
VOCs		_	Glass Vials			2		HCL		CL	
							-				
		_									
Comments Total volumes purged: 1.60 gallons											

Project	Kings	Electronics									
Project Number NJ000423.0005.00		423.0005.0001		Site Location Tuckal		noe, NY		Well ID		GP-103R	
Date		10/7/2009		Sampled By V. My		ers/ D. Kirschner					
Sampling Time		9:42		Recorded By V		/. Myers/ D. Kirschner					
Weather		Indoors		Coded Replicate No. None							
Instrument Ide	ntification										
Water Quality I	Meter(s)	Lamotte 2020e	Pine # 07540,	SN-ME-10465 YS	650 XLM Pin	e # 5655/8979 SN	# OPG10142				
Casing Material		P	PVC		lethod	Low Flow M		Ionsoon Pump			
Casing Diameter		2.0"		Screen Interval (ft bm		p) Top_	5.0'		Bottom	15.0'	
Sounded Depth (ft bmp)		14.84		Pump Intake Depth (f		ft bmp)1					
Depth to Water	r (ft bmp)	6.86		Purge Time		Start	9:05		Finish	9:50	
Field Parameter Measurements During Purging											
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
9:10	5	200	0.26	14.98	6.95	1.213	-112.0	0.40	44.1	5.98	
9:15	10	200	0.53	15.05	6.95	1.205	123.7	0.41	32.6	5.98	
9:20	15	200	0.79	15.10	6.94	1.176	-125.4	0.42	24.7	5.98	
9:25	20	200	1.06	15.13	6.91	1.156	-123.4	0.44	22.7	5.98	
9:30	25	200	1.32	15.13	6.89	1.154	-122.7	0.44	15.5	5.98	
9:35	30	200	1.58	15.19	6.88	1.154	-123.4	0.45	12.3	5.98	
9:40	35	200	1.85	15.19	6.88	1.149	-123.0	0.45	12.1	5.98	
Collected Sample Condition Co			Color <u>Clear</u>		Odor	Slight Odor		Appearance	Clear slight co	blor	
Parameter			Container			No.			Preservative		
VOCs		-	Glass Vials			2		-	HCL		
							-				
		-						-			
Comments	Total volumes	purged: 1.85 g	allons								

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckahoe	e, NY		Well II	DGP-	104R
Date		10/7/2009		Sampled By	V. Myers/	D. Kirschner				
Sampling Time		10:32		Recorded By	V. Myers/	D. Kirschner				
Weather		Indoors		Coded Replica	te No. <u>DUP(1007</u>	(09)				
Instrument Ide Water Quality I		Lamotte 2020e	9 Pine # 07540, SN-I	ME-10465 YSI 65	50 XLM Pine # 565	5/8979 SN# OPC	610142			
Casing Materia	ıl		PVC	Purge	Method	-	Low Flow Mor	isoon Pump		
Casing Diamet	er		2.0"	Screen	Interval (ft bmp)	Тор	5.0'		Bottom	15.0'
Sounded Dept	h (ft bmp)		14.90	Pump l	ntake Depth (ft br		13.0'			
Depth to Water	r (ft bmp)		5.38	Purge	Гime	Start	9:55		Finish	10:35
			r	Field Parameter	Measurements D	uring Purging				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
10:00	5	200	0.26	16.88	6.98	1.370	-82.2	0.59	352.00	5.37
10:05	10	200	0.53	17.32	6.97	1.387	-39.9	0.64	317.00	5.37
10:10	15	200	0.79	17.18	6.91	1.304	-25.9	0.57	53.00	5.37
10:15	20	200	1.06	17.14	6.89	1.266	-113.5	0.47	23.00	5.37
10:20	25	200	1.32	17.16	6.89	1.264	-116.1	0.45	14.00	5.37
10:25	30	200	1.58	17.11	6.90	1.264	-119.8	0.42	7.31	5.37
10:30	35	200	1.85	17.12	6.90	1.262	-121.0	0.42	6.49	5.37
Collected Sam	ple Condition	Color	Slightly Orange		Odor	No Odor		Appearance	Clear slight co	blor
Parameter			Container			No.			Preservative	
vo	Cs		Glass	/ials		2	2		н	CL
		-								
		-						-		
		-						-		
Comments	Total volumes	s purged: 1.85 g	allons							

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u> 4	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	D <u>MV</u>	V-6S
Date		1/8/2010		Sampled By	C. Cif	elli/D. Kirschner				
Sampling Time	•	13:47		Recorded By	C. Cif	elli				
Weather		Cloudy, 30s		Coded Replicat	e No. None					
Instrument Ide	ntification									
Water Quality	Meter(s)	YSI 556 MPS								
Casing Materia	ı	P	vc	Purge N	lethod	L	ow Flow Mor	soon Pump		
Casing Diamete			.0"	-	Interval (ft bn		10.0'		Bottom	20.0'
Sounded Depth			.35	-	ntake Depth (i		18.0'			
Depth to Water			.95	- Purge T			1309		Finish	1348
Deptil to Water	(it binp)				inte		1505			1340
				Field Parameter	Measuremen	ts During Purging				
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1314	5	350	0.5	13.57	7.00	0.786	12.6	6.99	154.0	10.96
1314	10	350	0.9	13.16	7.00	0.799	36.4	6.05	60.0	10.96
1313	15	350	1.4	14.37	6.93	0.816		6.40	29.0	10.96
							47.7 52.4			
1329	20	350	1.8	14.40	6.92	0.854	53.1	6.25	27.2	10.96
1334	25	350	2.3	14.13	6.91	0.874	59.4	6.22	0.91	10.96
1339	30	350	2.8	14.45	6.92	0.882	66.1	6.29	0.89	10.96
1344	35	350	3.2	14.32	6.92	0.884	71.0	6.25	0.85	10.96
						+ +				
						+ +				
	-									
Collected Sam	ple Condition		Color	clear	Odor	none		Appearance	ok	
Parameter			Container			No.			Preservative	
V0	Cs	-	Glass	s Vials		2		-	Н	CL
		-						-		
		-						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuck	ahoe, NY		Well I	D <u>MW</u>	-9SR
Date		1/7/2010		Sampled By	C. Cit	felli/D. Kirschner				
Sampling Time		12:25		Recorded By	C. Cit	felli				
Weather		Sunny, 30s		Coded Replicat	e No. None					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600 XL								
Casing Materia	I	P	vc	Purge N	lethod	<u> </u>	Low Flow Mor	nsoon Pump		
Casing Diamet	er	2.	0"	Screen	Interval (ft br	np) Top	10.0'		Bottom	20.0'
Sounded Depti	n (ft bmp)	18	.76	- Pump Ir	take Depth (- ft bmp)	17.0'			
Depth to Water	(ft bmp)	10	.07	Purge T	ime	Start	1150		Finish	1225
-						-				
				Field Parameter	Measuremen	ts During Purging				
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1155	5	300	0.4	16.98	7.03	1.345	-94.7	0.86	35	10.08
1200	10	300	0.8	17.34	6.87	1.327	-111.6	0.23	25	10.08
1205	15	300	1.2	17.43	6.81	1.311	-122.0	0.14	0.0	10.08
1210	20	300	1.6	17.45	6.79	1.301	-119.4	0.12	0.0	10.08
1215	25	300	2.0	17.49	6.77	1.296	-115.6	0.13	0.0	10.08
1220	30	300	2.4	17.50	6.76	1.296	-117.5	0.14	0.0	10.08
Collected Sam	ple Condition		Color cl	ear	Odor	slight		Appearance	ok	_
										-
Parameter			Container			No.			Preservative	
vo	Cs	_	Glass	s Vials		2		_	н	CL
		_						_		
		_						_		
Comments										

Project	Kings I	Electronics								
Project Numbe	r <u>NJ0004</u>	NJ000423.0005.0001 1/7/2010		Site Location	Tuc	kahoe, NY		Well IE	<u>мм</u>	/-9D
Date		1/7/2010		Sampled By	<u>D.</u>	(irschner/C. Cifelli				
Sampling Time		13:07		Recorded By	D. 1	Kirschner/C. Cifelli				
Weather		Sunny, 30s		Coded Replicat	te No. Nor	ie				
Instrument Ide	ntification									
Water Quality	Meter(s)	YSI 600 XL								
	.,									
Casing Materia	I	P	vc	Purge N	lethod		Low Flow Mor	isoon Pump		
Casing Diamete	er	2.	0"	Screen	Interval (ft	bmp) Top	30.0'		Bottom	40.0'
Sounded Depth		39	.11	•	ntake Depth		35.0'			
Depth to Water			.14	Purge 1	-		1230		Finish	1310
	(
				Field Parameter	Measureme	ents During Purging	J			
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1235	5	200	0.3	15.74	6.66	1.153	-93.8	0.18	0.25	10.24
1240	10	200	0.5	15.72	6.67	1.152	-96.7	0.07	0.00	10.24
1245	15	200	0.8	15.73	6.67	1.157	-97.7	0.07	0.00	10.24
1250	20	200	1.1	15.92	6.64	1.156	-83.4	1.12	0.00	10.24
1255	25	200	1.3	15.85	6.67	1.153	-95.9	0.09	0.00	10.22
1300	30	200	1.6	15.77	6.67	1.150	-98.5	0.08	0.00	10.22
1305	35	200	1.8	15.60	6.67	1.148	-90.5	0.07	0.00	10.24
1305	30	200	1.0	10.00	0.07	1.140	-99.0	0.07	0.00	10.24
Collected Sam	nle Condition		Color light	grey	Odd	n no		Appearance	clear	
Collected Salli	ple condition		Color light	grey	Out	or <u>no</u>		Appearance	Clear	-
Parameter			Container			No.			Preservative	
VO	C e			s Vials		110.	,			CL
	05	-	GidS			2	•	-	n	
		-						-		
		•						-		
Comments										
comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u> 4	123.0005.0001		Site Location	Tucka	hoe, NY		Well II	MW	-13R
Date		1/7/2010		Sampled By	D. Kir	schner/C. Cifelli				
Sampling Time		11:40		Recorded By	C. Cif	elli				
Weather		Sunny, 30s		Coded Replicat	te No. DUP(010710)				
				-						
Instrument Ider	ntification									
Water Quality N	Meter(s)	YSI 600 XL								
	()									
Casing Materia	1	P	vc	Purge I	Nethod	L	ow Flow Mor	nsoon Pump		
Casing Diamete		2	.0"	-	Interval (ft br		9.5'		Bottom	19.5'
Sounded Depth		19	.52	-	ntake Depth (17.5'			
Depth to Water			.54	- Purge 1		Start			Finish	1142
	(<u>`</u>								
				Field Parameter	Measuremen	ts During Purging				
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1100	10	200	0.5	11.82	6.81	2.158	114.0	1.46	150	12.45
1105	15	200	0.8	13.34	6.73	2.193	121.2	1.08	23	12.44
1110	20	200	1.1	13.50	6.74	2.191	125.1	1.03	9.9	12.45
1115	25	200	1.3	14.37	6.74	2.236	127.6	0.91	7.7	12.45
1120	30	200	1.6	13.92	6.73	2.218	129.8	0.83	5.0	12.45
1125	35	200	1.8	12.60	6.73	2.165	130.5	0.86	3.6	12.45
1130	40	200	2.1	11.17	6.71	2.074	130.5	0.78	3.7	12.45
1135	45	200	2.4	13.30	6.71	2.209	131.8	0.71	3.6	12.45
	-									
						1 1				
						1 1				
						1 1				
· · · · ·						•				
Collected Sam	ole Condition		Color	clear	Odor	none		Appearance	ok	
Parameter			Container			No.			Preservative	
VO	Cs			s Vials		2				CL
		-				_		-		
		-						-		
		-						-		
Comments										
•										
•										
•										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well I	D <u>PT</u>	W-2
Date		1/8/2010		Sampled By	C. Cife	elli/D. Kirschner				
Sampling Time		10:56		Recorded By	C. Cife	elli				
Weather		Cloudy, 30s		Coded Replicat	e No. None					
Instrument Ide	ntification									
Water Quality	Meter(s)	YSI 556MPS								
Casing Materia	I	P	vc	Purge N	lethod	L	ow Flow Mor	isoon Pump		
Casing Diamete		2	.0"	Screen	Interval (ft bm	р) Тор	7.0'		Bottom	17.0'
Sounded Depth		16	5.52	-	ntake Depth (f		15.0'			
Depth to Water		10		- Purge T			1008		Finish	1058
•	,					-				
				Field Parameter	Measurement	s During Purging				
-	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1013	5	350	0.5	17.25	6.78	1.134	-51.7	1.63	50	10.42
1018	10	350	0.9	17.55	6.80	1.146	-103.5	0.90	25	10.42
1023	15	350	1.4	17.62	6.76	1.160	-122.7	0.72	8.5	10.42
1028	20	350	1.8	17.65	6.76	1.160	-108.2	0.50	3.5	10.42
1033	25	350	2.3	17.67	6.76	1.155	-128.6	0.44	1.4	10.42
1038	30	350	2.8	17.70	6.77	1.155	-90.2	0.42	0.0	10.42
1043	35	350	3.2	17.68	6.77	1.162	-109.0	0.38	0.0	10.42
1048	40	350	3.7	17.69	6.75	1.160	-118.0	0.35	0.0	10.42
1053	45	350	4.2	17.69	6.89	1.164	-117.5	0.31	0.0	10.42
						1				
						1 1				
						1 1				
				11		1 1				
Collected Sam	ole Condition		Color	clear	Odor	none		Appearance	ok	
				01041	040			, ppoulaitee		
Parameter			Container			No.			Preservative	
	Cs			s Vials		2				CL
		-	0.00					-		
		-						-		
		-						-		
Comments										
•										

Project	Kings	Electronics									
Project Numbe	r <u>NJ0004</u>	23.0005.0001		Site Location	Tuckal	noe, NY		Well ID	GP-	103R	
Date		1/8/2010		Sampled By	D. Kirs	chner/C. Cifelli					
Sampling Time		12:10		Recorded By	D. Kirs	chner/C. Cifelli					
Weather		Cloudy, 30s		Coded Replica	te No. <u>None</u>						
Instrument Ide	ntification										
Water Quality I	Meter(s)	YSI 556 MPS									
Casing Materia	ıl	P	vc	Purge	Method	<u> </u>	_ow Flow Mor	isoon Pump			
Casing Diamet	er		8"	Screen	Interval (ft bm	p) Top_	5.0'		Bottom	15.0'	
Sounded Dept	h (ft bmp)	14	.87	Pump I	ntake Depth (ft	bmp)	13.0'				
Depth to Water	r (ft bmp)	5.	23	Purge	Time	Start	1128		Finish	1212	
				Field Parameter	Measurements	s During Purging					
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to Water	
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	
1133	5	300	0.4	15.83	7.06	1.199	-92.7	3.05	70	5.30	
1138	10	300	0.8	15.98	7.07	1.225	-100.2	2.45	65	5.30	
1143	15	300	1.2	16.08	7.07	1.234	-113.2	2.13	40	5.30	
1148	20	300	1.6	16.11	7.07	1.235	-118.8	1.58	15	5.29	
1153	25	300	2.0	15.98	7.06	1.231	-96.3	1.23	40	5.29	
1158	30	300	2.4	15.86	7.06	1.227	-93.3	1.09	39	5.30	
1203	35	300	2.8	16.15	7.06	1.232	-101.4	0.98	38	5.31	
1208	40	300	3.2	16.43	7.07	1.237	-105.1	0.89	38	5.30	
Collected Sam	ple Condition		Color ver	y light green	Odor	slight deca	у	Appearance	ok		
Parameter			Container			No.			Preservative		
V0	Cs		Glass	s Vials		2		-	н	CL	
								-			
								-			
Comments											

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	J000423.0005.0001 1/8/2010		Site Location	Tuck	ahoe, NY		Well II	DGP-	104R
Date		1/8/2010		Sampled By	D. K	irschner/C. Cifelli				
Sampling Time		12:47		Recorded By	D. K	irschner/C. Cifelli				
Weather		Cloudy, 30s		Coded Replica	te No. None	e				
Instrument Ide	ntification									
Water Quality	Meter(s)	YSI 556 MPS								
Casing Materia	I	P	vc	Purge I	Method		Low Flow Mor	isoon Pump		
Casing Diamete		2.	.0"	-	Interval (ft b	-	5.0'		Bottom	15.0'
Sounded Depth		14	.92	-	ntake Depth	-	13.0'			
Depth to Water			83		-		1215		Finish	1249
	(
				Field Parameter	Measureme	nts During Purging				
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
1220	5	400	0.5	16.94	7.22	0.934	-44.5	1.70	120	4.93
1225	10	400	1.1	17.03	7.15	1.007	-75.9	0.30	42	4.91
1230	15	400	1.6	17.05	7.11	1.096	-101.3	0.21	25	4.91
1235	20	400	2.1	17.05	7.10	1.109	-106.6	0.20	10	4.91
1240	25	400	2.6	17.05	7.10	1.110	-108.3	0.20	11	4.91
1245	30	400	3.2	17.06	7.10	1.115	-115.7	0.20	4.59	4.91
						•			•	·
Collected Sam	ple Condition		Color	clear	Odo	none		Appearance	ok	
Parameter			Container			No.			Preservative	
	Cs			s Vials		2				CL
		-						-		
		-						-		
		-						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ0004</u>	NJ000423.0005.0001 4/6/2010		Site Location	Tucka	hoe, NY		Well ID	DMV	V-6S
Date		4/6/2010		Sampled By	<u>V. Mye</u>	rs				
Sampling Time		11:46		Recorded By	V. Mye	ers				
Weather		Sun 70's		Coded Replicate	e No. None					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	04JL6000AF, La	a Motte 2020 SN 2	26856					
	()									
Casing Materia	I	P	vc	Purge M	lethod	L	ow Flow Mo	nsoon Pump		
Casing Diamet	er	2	.0"	Screen I	nterval (ft bm	·	10.0'		Bottom	20.0'
Sounded Dept			.32	-	take Depth (fi		18.0'			
Depth to Water			08	- Purge Ti		Start			Finish	11:50
	(<u>-</u>				
				Field Parameter I	Measurement	s During Purging				
Time	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
11:20	5	350	0.46	13.17		0.742	56.4	12.56	7.61	7.19
11:25	10	350	0.92	13.1		0.981	73.2	10.32	5.0	7.19
11:30	15	350	1.39	13.23	6.72	1.067	85.0	9.79	3.2	7.19
11:35	20	350	1.85	13.22	6.62	1.110	90.1	9.03	3.27	7.19
11:40	25	350	2.31	13.33	6.66	1.120	90.5	8.95	2.36	7.19
11:45	30	350	2.77	13.13	6.66	1.127	97.2	9.06	2.13	7.19
Instrument/r	ecording error									
Collected Sam	ple Condition		Color	Clear	Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
vo	Cs		Glass	s Vials		2			н	CL
		-						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u> 4	23.0005.0001		Site Location	Tuc	kahoe, NY		Well I	о <u>м</u> w	-9SR
Date		4/6/2010		Sampled By	<u>C. I</u>	_aprus				
Sampling Time		10:53		Recorded By	<u>C. I</u>	_aprus				
Weather		Indoors		Coded Replica	te No. <u>No</u> r	ne				
Instrument Ide										
Water Quality	Meter(s)	YSI 600XL SN	04JL6000AF, L	a Motte 2020 033	313					
Casing Materia		10	vc	Purge I	Vethod		Low Flow Mo			
Casing Diamete			0"	-	Interval (ft		10.0'		Bottom	20.0'
Sounded Depth			.94	-	ntake Depth		17.0		Bottom	20.0
Depth to Water			36	Purge 1	-		9:26		Finish	10:03
Deptil to Mater	(it billp)	0.				oluit	0.20		- mon	10.00
_				Field Parameter	Measurem	ents During Purging	g			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	pH (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
9:31	5	250	0.33	16.81	6.80	1.03	11.9	3.13	*	6.39
9:36	10	250	0.66	16.85	6.80	1.037	11.9	2.50	*	6.39
9:41	15	250	0.99	16.86	6.82	1.034	-41.9	1.74	*	6.39
9:46	20	250	1.32	26.79	6.81	1.043	-49.9	1.10	*	6.39
9:51	25	250	1.65	16.78	6.82	1.047	-59.9	0.64	*	6.39
9:56	30	250	1.98	16.74	6.82	1.047	-62.3	0.62	*	6.39
10:01	35	250	2.31	16.75	6.82	1.045	-64.4	0.60	*	6.39
Collected Sam	ple Condition		Color	Clear	Ode	or <u>No Odo</u>	r	Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs		Glas	s Vials		:	2	_	н	CL
								_		
								_		
Comments	* LaMo	tte turbidity me	ter is not worki	ing correctly cal	ibrated and	instrument is still	malfunctioning	j .		

Project	Kings	Electronics								
Project Numbe	r <u>NJ0004</u>	IJ000423.0005.0001 4/6/2010		Site Location	<u></u>	ickahoe, NY		Well II	<u>м</u> и	V-9D
Date		4/6/2010		Sampled By	<u>C.</u>	Laprus				
Sampling Time		10:52		Recorded By	<u>C.</u>	Laprus				
Weather		Indoors		Coded Replica	te No. <u>No</u>	one				
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	04JL6000AF, L	a Motte 2020 03	313					
Casing Materia	d	P	vc	Purge	Method		Low Flow Mo	nsoon Pump		
Casing Diamet	er	2.	.0"	Screen	Interval (f	t bmp) Top	30.0'		Bottom	40.0'
Sounded Dept	h (ft bmp)	39	.01	- Pump I	ntake Dep	th (ft bmp)	35.0'			
Depth to Water	(ft bmp)	6.	.71	Purge	Time	Start	10:20)	Finish	10:53
-										
_				Field Parameter	Measuren	nents During Purgin	g			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
10:25	5	250	0.33	15.78	6.92	1.099	-74.6	0.35	*	6.73
10:30	10	250	0.66	15.78	6.93	1.100	-89.0	0.26	*	6.74
10:35	15	250	0.99	15.69	6.93	1.100	-97.6	0.21	*	6.74
10:40	20	250	1.32	15.68	6.93	1.100	-99.9	0.19	*	6.74
10:45	25	250	1.65	15.65	6.93	1.101	-102.5	0.18	*	6.74
10:50	30	250	1.98	15.63	6.93	1.101	-103.6	0.18	*	6.74
Collected Sam	ple Condition		Color	Clear	0	dor <u>No Odo</u> i	r	Appearance	Clear	
Parameter	_		Container			No.			Preservative	
VO	Cs	-	Glas	s Vials		:	2	_	Н	CL
		-						_		
		-						_	-	
Commente	* 1	466 4. upbi -114	ton in not		ibrate	d in otrum cut in a till	malfunction	-		
Comments	^ LaiMo	the turbidity me	ter is not work	ing correctly cal	ibrated an	d instrument is still	mairunctioning	y.		

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	0 <u> </u>	-13R
Date		4/7/2010		Sampled By	<u>C. Lap</u>	rus				
Sampling Time	•	10:12		Recorded By	C. Lap	rus				
Weather		80's,Sun		Coded Replicate	e No. <u>None</u>					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	04JL6000AF, La	a Motte 2020 033 [.]	13					
Casing Materia	ıl	P	/C	Purge M	lethod	1	Low Flow Mo	nsoon Pump		
Casing Diamet		2.	0"	-	Interval (ft bm	р) Тор	9.5'		Bottom	19.5'
Sounded Dept			.49	-	take Depth (fi		17.0'			
Depth to Water			75	- Purge T			9:40		Finish	10:17
	(
				Field Parameter	Measurement	s During Purging				
-	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
9:45	5	200	0.26	13.58	6.70	1.79	115.8	2.61	*	8.79
9:50	10	200	0.53	13.99	6.70	1.724	114.2	2.27	*	8.78
9:55	15	200	0.79	14.16	6.71	1.703	113.6	2.24	*	8.78
10:00	25	200	1.32	14.39	6.69	1.702	113.8	2.15	*	8.78
10:05	30	200	1.58	14.24	6.68	1.681	114.2	2.14	*	8.78
10:10	35	200	1.85	14.28	6.67	1.679	114.7	2.16	*	8.78
Collected Sam	ple Condition		Color	Clear	Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
	Cs			s Vials		2				CL
		-								
		-								
		-						-		
Comments	* LaMotte turb	idity meter is no	ot working corr	ectly calibrated a	and instrumer	t is still malfunct	tioning.			

Project	Kings	Electronics								
Project Numbe	r <u>NJ0004</u>	123.0005.0001		Site Location	Tuckah	noe, NY		Well II	D <u>PT</u>	W-2
Date		4/6/2010		Sampled By	V. Mye	rs				
Sampling Time		10:36		Recorded By	V. Mye	rs				
Weather		Indoors		Coded Replicat	te No. Dup(04	0610)				
				•						
Instrument Ide	ntification									
Water Quality I		YSI 600XL SN	04JL6000AF. La	a Motte 2020 SN	26856					
Casing Materia	d	P	/C	Purge I	lethod		Low Flow Mor	Isoon Pump		
Casing Diamet			0"	-	Interval (ft bm)	-	7.0'		Bottom	17.0'
Sounded Dept			.42	-	ntake Depth (ft		15.0'			11.0
Depth to Water			99	Purge 1			10:05		Finish	10:39
Depth to Water	(it binp)	0.	33	- Fuige		Start	10.05			10.33
_				Field Parameter	Measurements	During Purging	I			
Time	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to Water
TIME	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
10:10	5	350	0.46	16.24	6.70	1.465	-88.4	1.20	100.0	7.02
10:15	10	350	0.92	16.00	6.59	1.422	-63.9	0.57	15.70	7.03
10:20	15	350	1.39	16.00	6.54	1.386	-52.4	0.51	7.65	7.03
10:25	20	350	1.85	16.05	6.56	1.376	-53.3	0.55	5.44	7.03
10:30	25	350	2.31	16.06	6.55	1.375	-52.8	0.55	4.96	7.03
10:35	30	350	2.77	16.17	6.55	1.373	-51.3	0.53	4.27	7.03
					-					
					-					
					-					
					-					
Collected Sam	ple Condition		Color	Clear	Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
	Cs			s Vials		2				CL
		-						-		<u> </u>
		-						-		
		-						-		
Comments										

Project	Kings I	Electronics								
Project Numbe	r <u>NJ0004</u>	23.0005.0001		Site Location	Tuckał	noe, NY		Well ID	GP-	103R
Date		4/7/2010		Sampled By	V. Mye	rs				
Sampling Time		10:06		Recorded By	V. Mye	rs				
Weather		Indoors		Coded Replicat	e No. <u>None</u>					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	04JL6000AF, La	a Motte 2020 SN	26856					
Casing Materia	ıl	P	VC	Purge N	lethod	<u> </u>	Low Flow Mor	nsoon Pump		
Casing Diamet	er	2	2"	Screen	Interval (ft bm	p) Top_	5.0'		Bottom	15.0'
Sounded Dept	h (ft bmp)	14	.87	Pump Ir	ntake Depth (ft	bmp)	13.0'			
Depth to Water	r (ft bmp)	1.	96	Purge T	ïme	Start	9:35		Finish	10:10
·				Field Parameter	Measurements	s During Purging				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
9:40	5	300	0.40	15.56	7.09	1.197	-148.0	0.34	14.8	2.00
9:45	10	300	0.79	15.55	6.98	1.202	-142.0	0.27	23.7	2.00
9:50	15	300	1.19	15.56	6.96	1.206	-139.7	0.25	15.1	2.20
9:55	20	300	1.58	15.56	6.94	1.206	-140.4	0.20	5.07	2.20
10:00	25	300	1.98	15.60	6.92	1.207	-136.5	0.21	3.01	2.20
10:05	30	300	2.38	15.59	6.92	1.207	-135.1	0.19	2.75	2.20
Collected Sam	ple Condition		Color	Clear	Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs	-	Glass	s Vials		2		-	н	CL
								-		
								_		
Comments										

Project	Kings	Electronics								
Project Numbe	r NJ000	423.0005.0001		Site Location	Tuck	ahoe, NY		Well I	OGP-	104R
Date		4/7/2010		Sampled By	V. My	ers				
Sampling Time		10:57		Recorded By	V. My	ers				
Weather		Indoors		Coded Replicat	e No. <u>None</u>					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	04JL6000AF, La	a Motte 2020 SN	26856					
Casing Materia	al	P	vc	Purge N	lethod	<u>_</u>	Low Flow Mo	nsoon Pump		
Casing Diamet	er	2.	.0"	Screen	Interval (ft br	np) Top	5.0'		Bottom	15.0'
Sounded Dept	h (ft bmp)	14	.91	Pump Ir	ntake Depth (ft bmp)	13.0'			
Depth to Water	r (ft bmp)	1.	42	Purge T	ime	Start	10:25	5	Finish	10:59
				_		_				
				Field Parameter	Measuremen	ts During Purging	I			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged (gal)	Temp (°C)	рН (s.u.)	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
10:30	5	400	0.53	14.29	6.83	1.308	49.0	0.43	61.1	1.60
10:35	10	400	1.06	14.25	6.82	1.282	-75.6	0.46	29.9	1.60
10:40	15	400	1.58	14.27	6.81	1.251	-98.4	0.22	15.1	1.60
10:45	20	400	2.11	14.32	6.81	1.242	-102.7	0.18	10.33	1.60
10:50	25	400	2.64	14.35	6.80	1.231	-106.6	0.18	6.22	1.60
10:55	30	400	3.17	14.36	6.80	1.225	-107.7	0.16	7.95	1.60
Collected Sam	ple Condition		Color	Clear	Odor	No Odor		Appearance	Clear	
Parameter			Container			No.			Preservative	
VC	OCs	-	Glass	s Vials		2		_	н	CL
		-						_		
		-						_		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well II	о <u>м</u> и	V-6S
Date		7/8/2010		Sampled By	V. My	ers				
Sampling Time		11:57		Recorded By	V. My	ers				
Weather		90's, Cloudy		Coded Replica	te No. DUP(0	70810)				
Instrument Ide	ntification									
Water Quality		YSI 600XL SN	3158-1602. La M	Notte 2020 SN 2	912-5101					
			, <u>_</u> a.							
Casing Materia		P	vc	Purge I	Vethod	F	Bladder Pump	, ,		
Casing Diamete			0"	-	Interval (ft br	_	10.0'		Bottom	20.0'
Sounded Depth			9.3	•	ntake Depth (f	_	18.0'			20.0
Depth to Water			.32	Purge		Start			Finish	12:02
Depth to water	(it bilip)		.32	- Fuige	lille	Start	11.20		Fiilisii	12.02
				Field Parameter	Measurement	s During Purging				
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	рп (s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water
44.05				40.00		4.450	110.0	0.40	40.50	(ft bmp)
11:25	5	200	0.26	19.06	6.42	1.152	119.3	8.42	10.56	12.32
11:30	10	200	0.53	18.15	6.30	1.145	133.7	8.04	6.8	12.32
11:35	15	200	0.79	18.15	6.23	1.173	142.1	7.45	3.1	12.32
11:40	20	200	1.06	17.43	6.13	1.219	147.9	7.14	2.72	12.32
11:45	25	200	1.32	17.31	6.07	1.279	153	6.91	1.19	12.32
11:50	30	200	1.58	17.7	6.06	1.31	154.6	6.77	1.76	12.32
11:55	35	200	1.9	18.56	6.08	1.345	154.6	6.46	1.34	12.32
						├				
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs	-	Glass	s Vials		2		_	н	CL
		-						_		
		-						_		
Comments										

Project	Kings	Electronics								
Project Numbe	er <u>NJ000</u> 4	423.0005.0001		Site Location	Tucka	hoe, NY		Well I	о <u>м</u> w	-9SR
Date		7/8/2010		Sampled By	D. Kirs	schner				
Sampling Time		14:11		Recorded By	D. Kirs	schner				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality I	Meter(s)	YSI 600XL SN	01E0374AC, La	Motte 2020 ME	10465					
Casing Materia	al	P	vc	Purge I	Method	<u> </u>	Bladder Pump			
Casing Diamet	er	2.	0"	Screen	Interval (ft bm	p) Top_	10.0'		Bottom	20.0'
Sounded Dept	h (ft bmp)	18	.65	Pump I	ntake Depth (f	bmp)	17.0'			
Depth to Water	r (ft bmp)	11	.25	Purge	Time	Start	13:34		Finish	14:15
						_				
_				Field Parameter	Measurement	s During Purging	I			
Time	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to Water
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)
13:39	5	200	0.26	16.64	6.71	1.346	-103.4	0.69	40	11.25
13:44	10	200	0.53	16.85	6.71	1.314	-104.9	0.42	15	11.25
13:49	15	200	0.79	17.00	6.72	1.273	-109.3	0.28	6.1	11.25
13:54	20	200	1.06	17.14	6.72	1.259	-109.9	0.25	3.1	11.25
13:59	25	200	1.32	17.13	6.72	1.244	-113	0.19	3	11.25
14:04	30	200	1.58	17.11	6.72	1.244	-112.4	0.18	2.7	11.25
14:09	35	200	1.85	17.14	6.72	1.248	-110.3	0.19	3	11.25
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
					-					
Parameter			Container			No.			Preservative	
va	Cs		Glass	s Vials		2			н	CL
		_						_		
		_						_		
		_						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u> 4	423.0005.0001		Site Location	Tucka	hoe, NY		Well ID	<u>мv</u>	/-9D
Date		7/8/2010		Sampled By	D. Kir	schner				
Sampling Time		12:07		Recorded By	D. Kir	schner				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality		YSI 600XL SN	01E0374AC. La	Motte ME10465						
·····,										
Casing Materia	ı	P	vc	Purge I	Vethod	E	Bladder Pump			
Casing Diamete			.0"	-	Interval (ft bm		30.0'		Bottom	40.0'
Sounded Depth			.73		ntake Depth (f		35.0'			
Depth to Water			.37	Purge 1		Start			Finish	12:10
	(it billp)		.01				11.00			12.10
				Field Parameter	Measurement	s During Purging				
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
11:40	5	200	0.26	16.1	6.62	1.349	-82.1	1.31	28	11.4
11:45	10	200	0.53	16.31	6.62	1.367	-79.4	0.96	11	11.46
11:50	15	200	0.79	15.98	6.61	1.359	-64.2	0.72	7.3	11.46
11:55	20	200	1.06	15.96	6.61	1.361	-63.2	0.72	4	11.46
12:00	25	200	1.32	15.98	6.61	1.368	-61.1	0.70	0.93	11.40
12:00	30	200	1.52	16.01	6.62	1.372	-61.5	0.71	1.04	11.47
12.05	50	200	1.50	10.01	0.02	1.572	-01.5	0.70	1.04	11.47
						1 1				
						1 1				
						1 1				
						1 1				
Collected Same	nla Condition		Calar	Clear	Oder	Clear		A	Clear	
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
.			.			N				
Parameter	•		Container			No.			Preservative	~
VO	US	-	Glass	s Vials		2		-	H	CL
		-						-		
		-						-		
C										
Comments										
,										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckal	hoe, NY		Well ID	<u>м</u> мw	-13R
Date		7/8/2010		Sampled By	V. Mye	ers				
Sampling Time		10:32		Recorded By	V. Mye	ers				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality		YSI 600XL SN	3158-1602. La N	Notte 2912-5101						
·····,			,							
Casing Materia	ı	P	vc	Purge I	Vethod		Bladder Pump			
Casing Diamete			0"	-	Interval (ft bm		9.5'		Bottom	19.5'
Sounded Depth			9.5	•	ntake Depth (ft		17.0'			
Depth to Water			.65	Purge 1			9:50		Finish	10:36
Deptil to Water	(it binp)	13	.00	- Turge		otart_	5.50		1 111311	10.50
				Field Parameter	Measurement	s During Purging	1			
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
9:55	5	200	0.26	19.1	6.24	1.660	69.4	1.60	10.03	13.67
9.55	10	200	0.53	17.13	6.18	1.635	81.6	1.09		
									12.9	13.67
10:05	15	200	0.79	16.61	6.11	1.652	89.4	0.86	9.39	13.67
10:10	25	200	1.32	17.92	6.12	1.685	98.3	0.66	12.9	13.67
10:15	30	200	1.58	17.68	6.10	1.682	110.9	0.65	7.72	13.67
10:20	35	200	1.85	17.89	6.09	1.675	118.2	0.62	10.99	13.67
10:25	40	200	2.1	17.57	6.09	1.672	121.5	0.64	11.64	13.67
10:30	45	200	2.4	17.62	6.07	1.675	123.6	0.64	10.97	13.67
						╂────╂				
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs	-	Glass	s Vials		2		-	н	CL
		-						-		
		-						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tuckal	noe, NY		Well I) <u>PT</u>	W-2
Date		7/8/2010		Sampled By	V. Mye	rs				
Sampling Time		14:12		Recorded By	V. Mye	rs				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality		YSI 600XL SN	3158-1602. La M	Aotte 2020 SN 2	912-5101					
			,							
Casing Materia	ı	P	vc	Purae	Method	E	Bladder Pump			
Casing Diamete			.0"	-	Interval (ft bm		7.0'		Bottom	17.0'
Sounded Depth			6.5	-	ntake Depth (ft		15.0'			
Depth to Water			.51	Purge		Start			Finish	14:15
Deptil to Water	(it binp)		.51	_ Turge		otart_	13.40		1 misn	14.15
				Field Parameter	Measurements	s During Purging				
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
13:45	5	200	0.26	18.18	6.49	0.991	-24.9	1.93	1.54	11.50
13:50	10	200	0.53	19.14	6.37	1.023	-24.9	0.07	1.90	11.50
13:55	15	200	0.33	19.14	6.39	1.023	-20.4	0.22	1.90	11.50
14:00	20	200	1.06	20.35	6.39	1.052	-11.4	0.44	1.39	11.50
14:05	25	200	1.32	21.50	6.41	1.081	-20.44	0.49	1.27	11.50
14:10	30	200	1.58	20.70	6.42	1.088	-30	0.48	1.24	11.50
						<u> </u>				
						<u> </u>				
						<u> </u>				
						 }				
						 }				
						 }				
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
Parameter			Container			No.			Preservative	
VO	Cs	-	Glass	s Vials		2		-	н	CL
		-						-		
		-						-		
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	hoe, NY		Well IE	GP-	103R
Date		7/9/2010		Sampled By	V. Mye	ers				
Sampling Time		9:17		Recorded By	V. Mye	ers				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ider	ntification									
Water Quality N		YSI 600XL SN	3158-1602. La M	Aotte 2020 SN 2	912-5101					
·····,			,							
Casing Materia		P	vc	Purael	Method		Bladder Pump			
Casing Diamete			2"	-	Interval (ft bm	-	5.0'		Bottom	15.0'
Sounded Depth			.84	-	ntake Depth (f	_	13.0'			
Depth to Water			41	Purge			8:40		Finish	9:20
	(it billp)	0.					0.40			0.20
				Field Parameter	Measurement	s During Purging	1			
	Minutes	Flow Rate	Volume	Temp	рН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft bmp)
8:45	5	200	0.26	15.51	6.71	1.137	-98.6	1.02	17.6	15.40
8:50	10	200	0.53	15.66	6.64	1.137	-98.0	1.02	9.25	15.40
8:55	15	200	0.79	15.52	6.64	1.138	-99.1	0.39	6.71	15.40
9:00	20	200	1.06	15.3	6.65	1.130	-100.8	0.53	4.15	15.40
9:05	20	200	1.32	15.22	6.66	1.131	-100.8	0.62	2.92	15.40
9:10	30	200	1.52	14.92	6.66	1.139	-99.9	0.62	3.27	15.40
9:15	35	200	1.85	15.23	6.68	1.142	-101.5	0.68	2.93	15.40
0.11.1.0			0.1	0		0		•	0	
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
_										
Parameter			Container			No.			Preservative	
VO	Cs	-	Glass	s Vials		2		-	Н	CL
		-						-		
		-						-		
_										
Comments										

Project	Kings	Electronics								
Project Numbe	r <u>NJ000</u>	423.0005.0001		Site Location	Tucka	ahoe, NY		Well ID	GP-	104R
Date		7/9/2010		Sampled By	D. Kir	schner				
Sampling Time		9:18		Recorded By	D. Kir	schner				
Weather		90's, cloudy		Coded Replica	te No. None					
Instrument Ide	ntification									
Water Quality		YSI 600XL SN	01E0374AC. La	Motte 2020 SN	ME10465					
·····,										
Casing Materia	1	P	vc	Purge I	Vethod		Bladder Pump			
Casing Diamete			.0"	-	Interval (ft br		5.0'		Bottom	15.0'
Sounded Depth			.91	-	ntake Depth (
Depth to Water			94	Purge 1					Finish	9:20
Deptil to Water	(it binp)	J.	54	- ruige		Start_	0.41		1 111311	5.20
				Field Parameter	Measuremen	ts During Purging				
	Minutes	Flow Rate	Volume	Temp	pН	Conductivity	ORP	DO	Turbidity	Depth to
Time	Elasped	(mL/min)	Purged (gal)	(°C)	(s.u.)	(mS/cm)	(mV)	(mg/L)	(NTU)	Water (ft hmn)
9.46	5	200	0.26	45.4	6 70	4 564	50.0	0.00	210	(ft bmp)
8:46 8:51		200 200	0.26	15.4	6.72	1.561 1.497	-50.0	0.90	210 80	0.90
	10			15.17	6.72		-61.7			
8:56	15	200	0.79	15.24	6.72	1.397	-80.6	0.46	31	0.46
9:01	20	200	1.06	15.25	6.73	1.341	-88.4	0.41	21	0.41
9:06	25	200	1.32	15.2	6.73	1.304	-92.4	0.40	10	0.40
9:11	30	200	1.58	15.21	6.73	1.300	-93.5	0.39	9	0.39
9:16	35	200	1.85	15.23	6.73	1.297	-96.4	0.39	8	0.39
						+ +				
	-									
Collected Sam	ple Condition		Color	Clear	Odor	Clear		Appearance	Clear	
Parameter			Container			No.			Preservative	
V0	Cs	-	Glass	s Vials		2		-	н	CL
		-						-		
		-						-		
Comments										

ARCADIS

Appendix B

Laboratory Data Packages

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 1 International Blvd. Suite 406 Mahwah, NJ 07495

Project Name: KINGS ELECTRONICS - VENDOR #1168636 IAL Case Number: E10-00249

These data have been reviewed and accepted by:

nicha

Michael H. Leffin, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed.

Sample Summary

IAL Case No.

Client Arcadis Geraghty & Miller

E10-00249

Project KINGS ELECTRONICS - VENDOR #1168636

Received On <u>1/8/2009@17:21</u>

					<u># of</u>
Lab ID	<u>Client Sample ID</u>	Depth Top/Bottom	<u>Sampling Time</u>	<u>Matrix</u>	<u>Container</u>
00249-001	FB(010710)	n/a	1/7/2010@13:30	Aqueous	2
00249-002	FB(010810)	n/a	1/ 8/2010@08:55	Aqueous	2
00249-003	MW-9D	n/a	1/ 7/2010@13:07	Aqueous	2
00249-004	MW-9S	n/a	1/ 7/2010@12:25	Aqueous	2
00249-005	MW-13R	n/a	1/ 7/2010@11:40	Aqueous	2
00249-006	DUP(010710)	n/a	1/ 7/2010	Aqueous	2
00249-007	GP-104R	n/a	1/ 8/2010@12:47	Aqueous	2
00249-008	GP-103R	n/a	1/ 8/2010@12:10	Aqueous	2
00249-009	PTW-2	n/a	1/ 8/2010@10:56	Aqueous	2°
00249-010	TB(010810)	n/a	1/ 8/2010	Aqueous	2
00249-011	MW-6S		1/ 8/2010@13:47	Aqueous	2

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	58 60

×

MATRIX QUALIFIERS

- **A** Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates the concentration was reported below the RL but above the MDL. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- RL Reporting Limit.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to <u>Matrix Interferences</u>.
- NA Not Applicable.
- ND Indicates the compound was analyzed for but <u>Not Detected at the MDL</u>.

REPORT QUALIFIERS

- All solid sample analyses are reported on a dry weight basis.
- All solid sample values are corrected for original sample size and percent solids.
- Q Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRONICS - VENDOR #1168636) on January 8, 2009 for the analysis of:

(11) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E10-00249

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	
2.	Table of Contents.	√
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	✓
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	✓
5.	Document bound, paginated and legible.	✓
6.	Chain of Custody.	
7.	Methodology Summary.	✓
8.	Laboratory Chronicle and Holding Time Check.	√
9.	Results submitted on a dry weight basis (if applicable).	√
10.	Method Detection Limits.	∕
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	<u> </u>
12.	NonConformance Summary.	✓

INTEGRATED ANALYTICAL LABORATORIES
CONFORMANCE/NONCONFORMANCE SUMMARY
GC/MS VOLATILE ANALYSIS

	Lab Case Number: E09 - 249		
1.	ا Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks).	<u>No</u>	<u>Yes</u>
2.	GC/MS Tuning Specifications: a. BFB Passed		
3,	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		<u>√</u>
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds		na
	b. System Performance Check Compounds		na
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:		
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
	If not met, were the calculations checked and the results qualified as "estimated"?	_	00
3.	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		<u>na</u> na
) .	Internal Standard Area/Retention Time Shift meet criteria	-	~
0.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:	••••••••••••••••••••••••••••••••••••••	na
	Analysis Holding Time Met If not met, list number of days exceeded for each sample:	- - 	
[Sample Dilution Performed High Targel High Nontarget Matrix Interference Other Compounds Compounds Interference Other Comments: Comments: Compounds Compounds		
-	1/15/10		
	Organics Manager / Date		00

				r KEFUK leraghty &					
Client: Arcadis Geraghty & Miller Project: KINGS ELECTRONICS - VENDOR #1168636									
	Lab Case No.: E10-00249								
	Lab ID: 00249-001 00249-002 00249-003 00249-004								
	Client ID:	F B (0	10710)	FB(01	0810)	MW	-9D	M	W-9S
	Matrix:	Aq	Aqueous		eous	Aqueous		Aqueous	
	Sampled Date	1/	7/10	1/8/10		1/7/10		1/7/10	
PARAMETER(Units)		Conc	Q RL	Conc Q	<u> RL</u>	Conc Q	RL	Conc	Q RL
Volatiles + Cis 1,2-DCE	(Units)	(ug/.	L-ppb)	(ug/L-	ppb)	(ug/L-	ppb)	(ug/)	L-ppb)
Vinyl chloride		ND	1.00	ND	1.00	ND	1.00		J 1.00
trans-1,2-Dichloroethene		ND	1.00	ND	1.00	ND	1.00	0.514	J 1.00
1,1-Dichloroethane		ND	1.00	ND	1.00	ND	1.00	0.671	J 1.00
cis-1,2-Dichloroethene		ND	1.00	ND	1.00	ND	1.00		J 1.00
Trichloroethene		ND	1.00	ND	1.00	ND	1.00	0.338	J 1.00
TOTAL VO's:		ND		ND		ND		2.80	J
	Lab ID:	0024	19-005	00249	-006	00249	-007		19-008
	Client ID:	MŴ	V-13R	DUP(0)	10710)	GP-1	04 R	GP-	-103R
	Matrix:	-	ueous	Aque		Aque		Aqueous	
	Sampled Date	1/	7/10	1/7/		1/8/10		1/8/10	
PARAMETER(Units)		Conc	Q RL	Conc Q	RL	Conc Q			Q RL
Volatiles + Cis 1,2-DCE	(Units)	_	L-ppb)	(ug/L-	ppb)	(ug/L-)			L-ppb)
Vinyl chloride		1.09	1.00	1.32	1.00	1.04	1.00	1.26	1.00
trans-1,2-Dichloroethene		ND	1.00	ND	1.00	1.43	1.00		J 1.00
1,1-Dichloroethane		0.980	J 1.00	1.03	1.00	1.16	1.00		J 1.00
cis-1,2-Dichloroethene		0.941	J 1.00	0.958 J		1.36	1.00	0.657	J 1.00
Trichloroethene		1.22	1.00	1.37	1.00	1.74	1.00	ND	1.00
TOTAL VO's:		4.23	J	4.68 J		6.73		2.96	J
	Lab ID:	0024	19-009	00249	-010	00249			
	Client ID:	РТ	'W-2	TB(01	-	MW	-6S		
Matrix: Aqueous			Aqueous Aqueous						
	Sampled Date	1/	8/10	1/8/		1/8/10			
PARAMETER(Units)			Q RL	Conc Q		Conc Q		=	
Volatiles + Cis 1,2-DCE	(Units)	_	L-ppb)	(ug/L-		(ug/L-	-		
Vinyl chloride		0.658	J 1.00	ND	1.00	ND	1.00		
trans-1,2-Dichloroethene	:	0.799	J 1.00	ND	1.00	ND	1.00		
1,1-Dichloroethane		3.37	1.00	ND	1.00	0.336 J			
cis-1,2-Dichloroethene		0.510	J 1.00	ND	1.00	0.578 J	1.00		
Trichloroethene		0.794	J 1.00	ND	1.00	40.3	1.00		
Tetrachloroethene		ND	1.00	ND	1.00	5.17	1.00	-	
TOTAL VO's:		6.13	J	ND		46.4 J		-	

SUMMARY REPORT

ND = Analyzed for but Not Detected at the MDL

J = The concentration was detected at a value below the RL and above the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-001GC/MS Column: DB-624Client ID: FB(010710)Sample wt/vol: 5mlDate Received: 01/08/2009Matrix-Units: Aqueous-µg/L (ppb)Date Analyzed: 01/15/2010Dilution Factor: 1Data file: L2726.D% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	ND		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	ND		1.00	0.260
cis-1,2-Dichloroethene	ND		1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	ND		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

0

0006

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

 Lab ID: 00249-002
 GC/MS Column: DB-624

 Client ID: FB(010810)
 Sample wt/vol: 5ml

 Date Received: 01/08/2009
 Matrix-Units: Aqueous-µg/L (ppb)

 Date Analyzed: 01/15/2010
 Dilution Factor: 1

 Data file: L2727.D
 % Moisture: 100

Chloromethane ND 1.00 0.930 Vingl chloride ND 1.00 0.470 Bromomethane ND 1.00 0.950 Chloroethane ND 1.00 0.170 Trichlorofluoromethane ND 1.00 0.310 Acrolein ND 20.0 1.74 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.98 Acrylonitrile ND 2.00 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.250 cis-1,2-Dichloroethane ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon etrachloride ND 1.00 0.280 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.310 1,2-	Compound	Concentration	Q	RL	MDL
Bromomethane ND 1.00 0.950 Chlorochane ND 1.00 0.170 Trichlorofluoromethane ND 1.00 0.310 Acrolein ND 20.0 1.74 1,1-Dichlorocthene ND 20.0 1.74 1,1-Dichlorocthene ND 2.00 1.98 Acrylonitrile ND 2.00 1.16 trans-1,2-Dichlorocthene ND 1.00 0.340 1,1-Dichlorocthane ND 1.00 0.260 cis-1,2-Dichlorocthene ND 1.00 0.220 1,1,1-Trichlorocthane ND 1.00 0.220 Chloroform ND 1.00 0.220 1,1,1-Trichlorocthane (EDC) ND 1.00 0.280 1,2-Dichlorocthane (EDC) ND 1.00 0.280 1,2-Dichloropropane ND 1.00 0.280 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.300	Chloromethane	ND		1.00	0.930
Chloroethane ND 1.00 0.170 Trichlorofluoromethane ND 1.00 0.310 Acrolein ND 20.0 1.74 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 20.0 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.270 Chloroform ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1-Trichloroethane ND 1.00 0.230 (z-Dichloroethane ND 1.00 0.240 Benzene ND 1.00 0.240 Benzene ND 1.00 0.240 Bromodichloromethane ND 1.00 0.240 Bromodichloromethane ND 1.00 0.240 Bromodichloromethane ND 1.00 0.250 2-Chloroethane ND 1.00 0.400 cis-1,3-Dichloropropene	Vinyl chloride	ND		1.00	0.470
Trichlorofluoromethane ND 1.00 0.310 Acrolein ND 20.0 1.74 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.98 Acrylonitrile ND 2.00 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethene ND 1.00 0.260 cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinj ether ND 1.00 0.240 Trans-1,3-Dichloropropene ND 1.00 0.300 Citaras-1,3-Dichloropropene ND 1.00 0.300 <td>Bromomethane</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.950</td>	Bromomethane	ND		1.00	0.950
Acrolein ND 20.0 1.74 1,1-Dichloroethene ND 1.00 0.360 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane ND 1.00 0.280 1,2-Dichloropropane ND 1.00 0.280 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 <	Chloroethane	ND		1.00	0.170
1,1-Dichloroethene ND 1.00 0.360 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 2.00 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethane ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.240 Benzene ND 1.00 0.240 Benzene ND 1.00 0.280 Trichloroethene ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloropropane ND 1.00 0.280 Bromodichloropropene ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.330	Trichlorofluoromethane	ND		1.00	0.310
Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethane ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.220 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.240 Benzene ND 1.00 0.280 Trichloroethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloropropane ND 1.00 0.280 Cis-1,3-Dichloropropene ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.330	Acrolein	ND		20.0	1.74
Acrylonitrile ND 20.0 1.16 trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.220 Carbon tetrachloride ND 1.00 0.250 Carbon tetrachloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.280 1,2-Dichloroethane ND 1.00 0.240 Benzene ND 1.00 0.280 Trichloroethene ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 2-Chloroethyl vinjt ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300	1,1-Dichloroethene	ND		1.00	0.360
trans-1,2-Dichloroethene ND 1.00 0.340 1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloropropane ND 1.00 0.280 Bromodichloropropene ND 1.00 0.260 2-Chloroethyl vinyl ether ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00	Methylene chloride	ND		2.00	1.98
1,1-Dichloroethane ND 1.00 0.260 cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Chloroethyl vinyl ether ND 1.00 0.240 Tetrachloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.3	Acrylonitrile	ND		20.0	1.16
cis-1,2-Dichloroethene ND 1.00 0.270 Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloroppane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 Dibromochloromethane ND 1.00	trans-1,2-Dichloroethene	ND		1.00	0.340
Chloroform ND 1.00 0.220 1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00	1,1-Dichloroethane	ND		1.00	0.260
1,1,1-Trichloroethane ND 1.00 0.250 Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloroethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chiorobenzene ND 1.	cis-1,2-Dichloroethene	ND		1.00	0.270
Carbon tetrachloride ND 1.00 0.280 1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.400 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropeneme ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND	Chloroform	ND		1.00	0.220
1,2-Dichloroethane (EDC) ND 1.00 0.240 Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.400 trans-1,3-Dichloropropene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.240 Total Xylenes ND 2.00 0.740 Bromoform ND 1.00	1,1,1-Trichloroethane	ND		1.00	0.250
Benzene ND 1.00 0.290 Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropthane ND 1.00 0.300 trans-1,3-Dichloropthane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.240 Total Xylenes ND 2.00	Carbon tetrachloride	ND		1.00	0.280
Trichloroethene ND 1.00 0.310 1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.240 Total Xylenes ND 2.00 0.740 Bromoform ND 1.00 <td>1,2-Dichloroethane (EDC)</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.240</td>	1,2-Dichloroethane (EDC)	ND		1.00	0.240
1,2-Dichloropropane ND 1.00 0.280 Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.130 1,1,2-Trichloroethane ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloroptopene ND 1.00 0.240 Tetrachloroethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND 1.00 0.170 Ethylbenzene ND 1.00 0.240 Total Xylenes ND 2.00 0.740 Bromoform ND 1.00 0.190 1,3-Dichlorobenzene ND 1.00 0.130 <td>Benzene</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.290</td>	Benzene	ND		1.00	0.290
Bromodichloromethane ND 1.00 0.250 2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.130 1,1,2-Trichloroethane ND 1.00 0.240 Tetrachloroethene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND 1.00 0.170 Ethylbenzene ND 1.00 0.240 Total Xylenes ND 2.00 0.740 Bromoform ND 1.00 0.250 1,1,2,2-Tetrachloroethane ND 1.00 0.130 1,3-Dichlorobenzene ND 1.00 0.130 </td <td>Trichloroethene</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.310</td>	Trichloroethene	ND		1.00	0.310
2-Chloroethyl vinyl ether ND 1.00 0.400 cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.130 1,1,2-Trichloroethane ND 1.00 0.240 Tetrachloroethene ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND 1.00 0.300 Ethylbenzene ND 1.00 0.240 Total Xylenes ND 1.00 0.240 Bromoform ND 1.00 0.240 1,1,2,2-Tetrachloroethane ND 1.00 0.250 1,1,2,2-Tetrachloroethane ND 1.00 0.190 1,3-Dichlorobenzene ND 1.00 0.130 1,4-Dichlorobenzene ND 1.00 0.180	1,2-Dichloropropane	ND		1.00	0.280
cis-1,3-Dichloropropene ND 1.00 0.140 Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.130 1,1,2-Trichloroethane ND 1.00 0.240 Tetrachloroethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND 1.00 0.330 Chlorobenzene ND 1.00 0.170 Ethylbenzene ND 1.00 0.240 Total Xylenes ND 2.00 0.740 Bromoform ND 1.00 0.250 1,1,2,2-Tetrachloroethane ND 1.00 0.130 1,3-Dichlorobenzene ND 1.00 0.130 1,4-Dichlorobenzene ND 1.00 0.130	Bromodichloromethane	ND		1.00	0.250
Toluene ND 1.00 0.300 trans-1,3-Dichloropropene ND 1.00 0.130 1,1,2-Trichloroethane ND 1.00 0.240 Tetrachloroethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Dibromochloromethane ND 1.00 0.300 Chlorobenzene ND 1.00 0.330 Chlorobenzene ND 1.00 0.170 Ethylbenzene ND 1.00 0.240 Total Xylenes ND 1.00 0.240 Bromoform ND 2.00 0.740 I,1,2,2-Tetrachloroethane ND 1.00 0.250 1,1,2,2-Tetrachloroethane ND 1.00 0.190 1,3-Dichlorobenzene ND 1.00 0.130 1,4-Dichlorobenzene ND 1.00 0.180	2-Chloroethyl vinyl ether	ND		1.00	0.400
trans-1,3-DichloropropeneND1.000.1301,1,2-TrichloroethaneND1.000.240TetrachloroetheneND1.000.300DibromochloromethaneND1.000.330ChlorobenzeneND1.000.170EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1301,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	cis-1,3-Dichloropropene	ND		1.00	0.140
1,1,2-TrichloroethaneND1.000.240TetrachloroetheneND1.000.300DibromochloromethaneND1.000.330ChlorobenzeneND1.000.170EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Toluene	ND		1.00	0.300
TetrachloroetheneND1.000.300DibromochloromethaneND1.000.330ChlorobenzeneND1.000.170EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	trans-1,3-Dichloropropene	ND		1.00	0.130
DibromochloromethaneND1.000.330ChlorobenzeneND1.000.170EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	1,1,2-Trichloroethane	ND		1.00	0.240
ChlorobenzeneND1.000.170EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Tetrachloroethene	ND		1.00	0.300
EthylbenzeneND1.000.240Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Dibromochloromethane	ND		1.00	0.330
Total XylenesND2.000.740BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Chlorobenzene	ND		1.00	0.170
BromoformND1.000.2501,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Ethylbenzene	ND		1.00	0.240
1,1,2,2-TetrachloroethaneND1.000.1901,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Total Xylenes	ND		2.00	0.740
1,3-DichlorobenzeneND1.000.1301,4-DichlorobenzeneND1.000.180	Bromoform	ND		1.00	0.250
1,4-Dichlorobenzene ND 1.00 0.180	1,1,2,2-Tetrachloroethane	ND		1.00	0.190
·	1,3-Dichlorobenzene	ND		1.00	0.130
1,2-Dichlorobenzene ND 1.00 0.110	1,4-Dichlorobenzene	ND		1.00	0.180
	1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-003 Client ID: MW-9D Date Received: 01/08/2009 Date Analyzed: 01/15/2010 Data file: L2732.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	ND		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	ND		1.00	0.260
cis-1,2-Dichloroethene	ND		1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	ND		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-004 Client ID: MW-9S Date Received: 01/08/2009 Date Analyzed: 01/15/2010 Data file: L2733.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	0.757	J	1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	0.514	J	1.00	0.340
1,1-Dichloroethane	0.671	J	1.00	0.260
cis-1,2-Dichloroethene	0.518	J	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	0.338	J	1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

J

2.80

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-005	GC/MS Column: DB-624
Client ID: MW-13R	Sample wt/vol: 5ml
Date Received: 01/08/2009	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 01/15/2010	Dilution Factor: 1
Data file: L2734.D	% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	1.09		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	0.980	J	1.00	0.260
cis-1,2-Dichloroethene	0.941	J	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	1.22		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

J

4.23

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

 Lab ID: 00249-006
 GC/MS Column: DB-624

 Client ID: DUP(010710)
 Sample wt/vol: 5ml

 Date Received: 01/08/2009
 Matrix-Units: Aqueous-µg/L (ppb)

 Date Analyzed: 01/15/2010
 Dilution Factor: 1

 Data file: L2735.D
 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	1.32		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	1.03		1.00	0.260
cis-1,2-Dichloroethene	0.958	J	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	1.37		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

J

4.68

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-007	GC/MS Column: DB-624
Client ID: GP-104R	Sample wt/vol: 5ml
Date Received: 01/08/2009	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 01/15/2010	Dilution Factor: 1
Data file: L2736.D	% Moisture: 100

ND 1.04 ND ND ND ND		1.00 1.00 1.00 1.00	0.930 0.470 0.950
ND ND ND		1.00	0.950
ND ND			
ND		1.00	
		1.00	0.170
ND		1.00	0.310
		20.0	1.74
ND		1.00	0.360
ND		2.00	1.98
ND		20.0	1.16
1.43		1.00	0.340
1.16		1.00	0.260
1.36		1.00	0.270
ND		1.00	0.220
ND		1.00	0.250
ND		1.00	0.280
ND		1.00	0.240
ND		1.00	0.290
1.74		1.00	0.310
ND		1.00	0.280
ND		1.00	0.250
ND		1.00	0.400
ND		1.00	0.140
ND		1.00	0.300
ND		1.00	0.130
ND		1.00	0.240
ND		1.00	0.300
ND		1.00	0.330
ND		1.00	0.170
ND		1.00	0.240
ND		2.00	0.740
ND		1.00	0.250
ND		1.00	0.190
ND		1.00	0.130
ND		1.00	0.180
ND		1.00	0.110
	ND ND 1.43 1.16 1.36 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND 1.43 1.16 1.36 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.00 ND 2.00 ND 20.0 1.43 1.00 1.16 1.00 1.36 1.00 ND 1.00 ND </td

6.73

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-008	GC/MS Column: DB-624
Client ID: GP-103R	Sample wt/vol: 5ml
Date Received: 01/08/2009	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 01/15/2010	Dilution Factor: 1
Data file: L2737.D	% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	1.26		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	0.582	J	1.00	0.340
1,1-Dichloroethane	0.458	J	1.00	0.260
cis-1,2-Dichloroethene	0.657	\mathbf{J}	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	ND		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

2.96 J

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-009 Client ID: PTW-2 Date Received: 01/08/2009 Date Analyzed: 01/15/2010 Data file: L2738.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	0.658	J	1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	0.799	J	1.00	0.340
1,1-Dichloroethane	3.37		1.00	0.260
cis-1,2-Dichloroethene	0.510	J	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	0.794	J	1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

J

6.13

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-010	GC/MS Column: DB-624
Client ID: TB(010810)	Sample wt/vol: 5ml
Date Received: 01/08/2009	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 01/15/2010	Dilution Factor: 1
Data file: L2728.D	% Moisture: 100

Compound	Concentration	Q	RL	MDL	
Chloromethane	ND		1.00	0.930	_
Vinyl chloride	ND		1.00	0.470	
Bromomethane	ND		1.00	0.950	
Chloroethane	ND		1.00	0.170	
Trichlorofluoromethane	ND		1.00	0.310	
Acrolein	ND		20.0	1.74	
1,1-Dichloroethene	ND		1.00	0.360	
Methylene chloride	ND		2.00	1.98	
Acrylonitrile	ND		20.0	1.16	
trans-1,2-Dichloroethene	ND		1.00	0.340	
1,1-Dichloroethane	ND		1.00	0.260	
cis-1,2-Dichloroethene	ND		1.00	0.270	
Chloroform	ND		1.00	0.220	
1,1,1-Trichloroethane	ND		1.00	0.250	
Carbon tetrachloride	ND		1.00	0.280	
1,2-Dichloroethane (EDC)	ND		1.00	0.240	
Benzene	ND		1.00	0.290	
Trichloroethene	ND		1.00	0.310	
1,2-Dichloropropane	ND		1.00	0.280	
Bromodichloromethane	ND		1.00	0.250	
2-Chloroethyl vinyl ether	ND		1.00	0.400	
cis-1,3-Dichloropropene	ND		1.00	0.140	
Toluene	ND		1.00	0.300	
trans-1,3-Dichloropropene	ND		1.00	0.130	
1,1,2-Trichloroethane	ND		1.00	0.240	
Tetrachloroethene	ND		1.00	0.300	
Dibromochloromethane	ND		1.00	0.330	
Chlorobenzene	ND		1.00	0.170	
Ethylbenzene	ND		1.00	0.240	
Total Xylenes	ND		2.00	0.740	
Bromoform	ND		1.00	0.250	
1,1,2,2-Tetrachloroethane	ND		1.00	0.190	
1,3-Dichlorobenzene	ND		1.00	0.130	
1,4-Dichlorobenzene	ND		1.00	0.180	
1,2-Dichlorobenzene	ND		1.00	0.110	

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 00249-011GC/MS Column: DB-624Client ID: MW-6SSample wt/vol: 5mlDate Received: 01/08/2009Matrix-Units: Aqueous-µg/L (ppb)Date Analyzed: 01/15/2010Dilution Factor: 1Data file: L2739.D% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	ND		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	0.336	J	1.00	0.260
cis-1,2-Dichloroethene	0.578	J	1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	40.3		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	5.17		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

J

46.4

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	L2445.D	BFB Injection Date:	12/31/20	009
Inst ID:	MSD_L	BFB Injection Time:	<u>11:17</u>	
m/z	Ion Abudance Criteria	% Relative Abundance		
50	15 - 40.0% of mass 95	16.3		
75	30.0 - 60.0% of mass 95	43.9		
95	Base peak, 100% relative abundanc	e 100.0		
96	5.0 - 9.0% of mass 95	7.9		
173	Less than 2.0% of mass 174	0.8 (1.0)1
174	Great than 50.0% of mass 95	83.5		
175	5.0 - 9.0% of mass 174	6.6 (7.9)1
176	95.0 - 101.0% of mass 174	84.1 (100.7)l
177	5.0 - 9.0% of mass 176	6.7 (8.0)2
	1-Value is % mass 174	2-Value is % mass 176	5	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
5PPB	STD-5PPB	L2448.D	12/31/2009	12:41	
20PPB	STD-20PPB	L2449.D	12/31/2009	13:09	
100PPB	STD-100PPB	L2450.D	12/31/2009	13:36	
150PPB	STD-150PPB	L2451.D	12/31/2009	14:05	
200PPB	STD-200PPB	L2452.D	12/31/2009	14:34	
1PPB	STD-1PPB	L2458.D	12/31/2009	17:27	
2PPB	STD-2PPB	L2460.D	12/31/2009	18:25	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>L2720.D</u>	BFB Injection Date:	<u>01/15/20</u>	<u>)10</u>
Inst ID:	MSD_L	BFB Injection Time:	<u>2:07</u>	
m/z	Ion Abudance Criteria	% Relative Abundance		
50	15 - 40.0% of mass 95	15.7		
75	30.0 - 60.0% of mass 95	44.7		
95	Base peak, 100% relative abundance	e 100.0		
96	5.0 - 9.0% of mass 95	6.5		
173	Less than 2.0% of mass 174	0.7 (0.8)1
174	Great than 50.0% of mass 95	85.0		
175	5.0 - 9.0% of mass 174	6.5 (7.6)1
176	95.0 - 101.0% of mass 174	85.9 (101.0)1
177	5.0 - 9.0% of mass 176	5.9 (6.9)2
	I-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed
100PPB	STD-100PPB	L2722.D	01/15/2010	3:00
NA	METHOD-BLK	L2725.D	01/15/2010	4:21
FB(010710)	00249-001	L2726.D	01/15/2010	4:47
FB(010810)	00249-002	L2727.D	01/15/2010	5:14
TB(010810)	00249-010	L2728.D	01/15/2010	5:41
LCS-50PPB	BLK-SPK	L2729.D	01/15/2010	6:08
MS	00249-001MS	L2730.D	01/15/2010	6:35
MSD	00249-001MSD	L2731.D	01/15/2010	7:01
MW-9D	00249-003	L2732.D	01/15/2010	7:28
MW-9S	00249-004	L2733.D	01/15/2010	7:55
MW-13R	00249-005	L2734.D	01/15/2010	8:21
DUP(010710)	00249-006	L2735.D	01/15/2010	8:48
GP-104R	00249-007	L2736.D	01/15/2010	9:15
GP-103R	00249-008	L2737.D	01/15/2010	9:42
PTW-2	00249-009	L2738.D	01/15/2010	10:09
MW-6S	00249-011	L2739.D	01/15/2010	10:36

VOLATILE METHOD BLANK SUMMARY

Lab File ID: <u>L2725.D</u>

Instrument ID: <u>MSD L</u>

Date Analyzed: 01/15/2010

Time Analyzed: 04:21

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
FB(010710)	00249-001	01/15/2010	4:47
FB(010810)	00249-002	01/15/2010	5:14
TB(010810)	00249-010	01/15/2010	5:41
LCS-50PPB	BLK-SPK	01/15/2010	6:08
MS	00249-001MS	01/15/2010	6:35
MSD	00249-001MSD	01/15/2010	7:01
MW-9D	00249-003	01/15/2010	7:28
MW-9S	00249-004	01/15/2010	7:55
MW-13R	00249-005	01/15/2010	8:21
DUP(010710)	00249-006	01/15/2010	8:48
GP-104R	00249-007	01/15/2010	9:15
GP-103R	00249-008	01/15/2010	9:42
PTW-2	00249-009	01/15/2010	10:09
MW-6S	00249-011	01/15/2010	10:36

FORM 4

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK	GC/MS Column: DB-624
Client ID: NA	Sample wt/vol: 5ml
Date Received:	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 01/15/2010	Dilution Factor: 1
Data file: L2725.D	% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.930
Vinyl chloride	ND		1.00	0.470
Bromomethane	ND		1.00	0.950
Chloroethane	ND		1.00	0.170
Trichlorofluoromethane	ND		1.00	0.310
Acrolein	ND		20.0	1.74
1,1-Dichloroethene	ND		1.00	0.360
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.16
trans-1,2-Dichloroethene	ND		1.00	0.340
1,1-Dichloroethane	ND		1.00	0.260
cis-1,2-Dichloroethene	ND		1.00	0.270
Chloroform	ND		1.00	0.220
1,1,1-Trichloroethane	ND		1.00	0.250
Carbon tetrachloride	ND		1.00	0.280
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	ND		1.00	0.310
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.400
cis-1,3-Dichloropropene	ND		1.00	0.140
Toluene	ND		1.00	0.300
trans-1,3-Dichloropropene	ND		1.00	0.130
1,1,2-Trichloroethane	ND		1.00	0.240
Tetrachloroethene	ND		1.00	0.300
Dibromochloromethane	ND		1.00	0.330
Chlorobenzene	ND		1.00	0.170
Ethylbenzene	ND		1.00	0.240
Total Xylenes	ND		2.00	0.740
Bromoform	ND		1.00	0.250
1,1,2,2-Tetrachloroethane	ND		1.00	0.190
1,3-Dichlorobenzene	ND		1.00	0.130
1,4-Dichlorobenzene	ND		1.00	0.180
1,2-Dichlorobenzene	ND		1.00	0.110

Total Target Compounds:

VOLATILE ORGANICS Tentatively Identified Compounds

Client/Project:

Lab ID: METHOD-BLK Client ID: NA Date Received: Date Analyzed: 01/15/2010 Date File: L2725.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

		Estimated	Retention
CAS #	Compound	Concentration	Time

No peaks detected

Method Path : C:\MSDCHEM\1\METHODS\ Method File : LAM1231.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Mon Jan 04 14:17:38 2010 Response Via : Initial Calibration Calibration Files 1 =L2458.D 2 =L2460.D 5 =L2448.D 200 =L2452.D 100 =L2450.D 20 =L2449.D 1 2 5 20 100 200 Avg ∛RSD Compound ______ 1) I Pentafluorobenzene -----ISTD-----ISTD-----2) T Dichlorodifluorom 0.276 0.338 0.274 0.320 0.359 0.281 0.304 11.39 3) P Chloromethane 0.550 0.493 0.513 0.521 0.516 0.504 0.510 4.72 0.349 0.401 0.387 0.441 0.453 0.428 0.409 8.63 4) C Vinyl chloride Bromomethane0.3490.3170.3360.3050.2520.3180.31810.70Chloroethane0.2390.2520.2530.2640.2530.1790.23612.96 5) T 6) T Trichlorofluorome 0.318 0.394 0.293 0.408 0.456 0.364 0.370 14.88 7) T Acrolein 0.013 0.016 0.019 0.017 0.017 0.016 0.016 10.80 81 T 9) MC 1,1-Dichloroethen 0.331 0.371 0.306 0.370 0.378 0.350 0.349 7.40 10) T Acetone 0.127 0.112 0.112 0.096 0.090 0.094 0.102 14.85 Carbon disulfide 1.004 1.177 1.061 1.201 1.285 1.255 1.166 8.65 11) T Vinyl acetate 1.606 1.406 1.322 1.435 1.498 1.566 1.468 6.61 12) T Methylene chlorid 0.626 0.659 0.626 0.519 0.506 0.569 13.40 13) T Acrylonitrile 0.143 0.156 0.197 0.172 0.178 0.186 0.173 10.48 14) T 8.54 tert-Butyl alcoho 0.036 0.040 0.037 0.037 0.036 0.045 0.038 15) T 6.32 trans-1,2-Dichlor 0.520 0.478 0.490 0.547 0.551 0.569 0.525 16) T Methyl tert-butyl 1.678 1.440 1.379 1.460 1.467 1.589 1.491 7.00 17) T 1,1-Dichloroethan 0.922 0.899 0.824 0.893 0.930 0.986 0.907 5.37 18) P Diisopropyl ether 1.862 1.700 1.540 1.624 1.658 1.731 1.673 6.25 19) T cis-1,2-Dichloroe 0.654 0.598 0.562 0.617 0.635 0.668 0.621 5.75 20) T 2,2-Dichloropropa 0.615 0.672 0.493 0.617 0.712 0.751 0.648 12.98 21) T 22) T 2-Butanone (MEK) 0.248 0.199 0.181 0.195 0.190 0.205 0.200 11.17 7.62 23) T Bromochloromethan 0.334 0.299 0.263 0.284 0.297 0.315 0.297 Chloroform 1.124 1.021 0.924 0.946 0.970 1.011 0.989 7.13 25) C 26) T 1,1,1-Trichloroet 0.552 0.624 0.551 0.677 0.755 0.781 0.664 13.90 27) T Carbon tetrachlor 0.440 0.433 0.383 0.494 0.595 0.532 0.482 14.60 1,1-Dichloroprope 0.653 0.622 0.519 0.608 0.652 0.656 0.615 7.85 28) T 29) T 1.2-Dichloroethan 0.821 0.741 0.657 0.675 0.677 0.704 0.703 8.66 30) S 1,2-Dichloroethan 0.465 0.468 0.465 0.461 0.452 0.458 0.460 1.42 31) I 1,4-Difluorobenzene -----ISTD-----ISTD------32) M Benzene 1.679 1.523 1.383 1.454 1.488 1.546 1.498 6.62 Trichloroethene 0.399 0.381 0.335 0.363 0.380 0.401 0.374 6.17 33) M 1,2-Dichloropropa 0.407 0.360 0.317 0.351 0.368 0.392 0.364 8.02 34) C Dibromomethane0.2390.2250.2050.2310.2430.2620.2347.431,4-Dioxane0.0030.0030.0030.0030.0030.0030.00312.99 35) T 36) T Bromodichlorometh 0.369 0.338 0.352 0.399 0.477 0.474 0.411 14.84 37) 🗉 38) T 2-Chloroethyl vin 0.219 0.186 0.192 0.214 0.240 0.265 0.221 12.44 cis-1,3-Dichlorop 0.540 0.681 0.472 0.512 0.602 0.661 0.579 13.23 39) T 4-Methyl-2-pentan 0.299 0.262 0.236 0.263 0.276 0.309 0.273 8.98 40) T Toluene-d81.0481.0481.0491.0601.0621.0581.054Toluene1.0770.9550.8600.9080.9490.9830.948 0.57 41) S 7.40 42) MC 43) T trans-1,3-Dichlor 0.415 0.484 0.510 0.444 0.542 0.602 0.505 12.52 44) T 1,1,2-Trichloroet 0.288 0.284 0.253 0.273 0.283 0.305 0.280 5.73 45) T Tetrachloroethene 0.451 0.404 0.319 0.353 0.378 0.387 0.378 11.26 46) T 1,3-Dichloropropa 0.624 0.563 0.508 0.531 0.549 0.585 0.555 7.10 47) T 2-Hexanone 0.178 0.153 0.159 0.187 0.197 0.223 0.184 12.85 48) T Dibromochlorometh 0.248 0.235 0.280 0.293 0.351 0.322 0.287 13.94 49) T 1,2-Dibromoethane 0.373 0.320 0.308 0.339 0.354 0.383 0.346 7.78

50) [.] I	Chlorobenzene-d5				ISTI)			
51) MP	Chlorobenzene	1.377	1.154	1.016	1.054	1.079	1.124	1.120	11.00
52) T	1,1,1,2-Tetrachlo	0.300	0.281	0.271	0.342	0.379	0.377	0.331	14.00
53) C	Ethylbenzene	2.030	1.796	1.597	1.721	1.730	1.738	1.747	8.17
54) T	m,p-Xylene	0.803	0.695	0.634	0.673	0.668	0.649	0.677	9.04
55) T	o-Xylene	0.752	0.684	0.618	0.685	0.705	0.705	0.688	5.96
56) T	Styrene	1.230	1.133	1.061	1.186	1.242	1.225	1.176	5.50
57) P	Bromoform	0.137					0.186		13.55
58) T	Isopropylbenzene	1.568					1.594	1.500	5.78
59) S	Bromofluorobenzen	0.454	0.448	0.456	0.454	0.454	0.447	0.452	0.72
60) P	1,1,2,2-Tetrachlo	0.507	0.442	0.398	0.445	0.459	0.488	0.454	7.83
61) T	Bromobenzene	0.609	0.509	0.451	0.483	0.497	0.518	0.507	9.91
62) T	1,2,3-Trichloropr	0.409		0.333				0.357	7.54
63) T	n-Propylbenzene	2.019		1.497				1.715	9.41
64) T	2-Chlorotoluene	1.542					1.212		12.37
65) T	1,3,5-Trimethylbe	1.508					1.308		8.85
66) T	4-Chlorotoluene	1.790					1.366		12.81
67) T	tert-Butylbenzene						0.982		8.83
68) T	1,2,4-Trimethylbe	1.614					1.398		9.57
69) T	sec-Butylbenzene	1.487					1.371		9.25
70) T	1,5 2.5.	1.159					0.894		14.74
71) T		1.296					1.103		11.63
72) 🙄	1,4-Dichlorobenze	1.082					0.925		10.08
73) T	n-Butylbenzene	0.574					0.581		10.94
74) T	1,2-Dichlorobenze						0.878		13.83
75) T	1,2-Dibromo-3-chl						0.038		14.41
76) T	1,2,4-Trichlorobe								13.03
77) T	Hexachlorobutadie						0.227		12.65
78) T	Naphthalene		1.003				1.383		12.62
79) T	1,2,3-Trichlorobe		0.499				0.538		11.44
80) Т	1,1,2-Trichloro-1						0.202		11.08
81) T	Methyl acetate		0.241				0.208		14.13
82) T	Cyclohexane						0.355		12.39
83) T	Methylcyclohexane	0.263	0.238	0.216	0.216	0.250	0.218	0.229	9.39
					· ·	-			
(#) = C	ut of Range ### 1	Number	or ca.	librat:	ion lev	veis e:	xceedeo	d format	: ###

LAM1231.M Mon Jan 04 14:17:43 2010

Evaluate Continuing Calibration Report

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2722.D Acq On : 15 Jan 2010 3:00 Operator : MEI Sample : 100PPB,STD-100PPB,A,5ml, Misc : ALS Vial : 28 Sample Multiplier: 1

Quant Time: Jan 15 10:25:25 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
 1 I	Pentafluorobenzene	1.000	1.000	0.0	76	0.00
3 P	Chloromethane	0.510	0.440	13.7	65	0.00
4 C	Vinyl chloride	0.409	0.399	2.4	67	0.00
5 T	Bromomethane	0.318	0.286	10.1	86	0.01
6 T	Chloroethane	0.236	0.267	-13.1	80	0.01
0 τ 7 τ	Trichlorofluoromethane	0.370	0.316	14.6	53	0.00
, - 8 т	Acrolein	0.016	0.016	0.0	71	0.01
9 MC		0.349	0.411	-17.8	83	0.00
10 T	Acetone	0.102	0.114	-11.8	96	0.01
11 'r	Carbon disulfide	1.166	1.315	-12.8	78	0.01
12 T	Vinyl acetate	1.468	1.220	16.9	62	0.01
13 T	Methylene chloride	0.569	0.550	3.3	81	0.01
14 T	Acrylonitrile	0.173	0.196	-13.3	84	0.00
15 T	tert-Butyl alcohol (TBA)	0.038	0.033	13.2	69	0.00
16 т	trans-1,2-Dichloroethene	0.525	0.555	-5,7	77	0.00
17 T	Methyl tert-butyl ether (MT	1.491	1.376	7.7	71	0.00
	1,1-Dichloroethane	0.907	0.917	-1.1	75	0.00
19 T	Diisopropyl ether (DIPE)	1.673	1.589	5.0	73	0.00
20 Т	cis-1,2-Dichloroethene	0.621	0.636	-2.4	76	0.01
21 Т	2,2-Dichloropropane	0.648	0.643	0.8	69	0.00
22 T	2-Butanone (MEK)	0.200	0.184	8.0	73	0.00
23 T	Bromochloromethane	0.297	0.304	-2.4	78	0.00
25 C	Chloroform	0.989	0.976	1.3	76	0.00
26 T	1,1,1-Trichloroethane	0.664	0.783	-17.9	79	0.00
27 T	Carbon tetrachloride	0.482	0.576	-19.5	74	0.00
28 T	1,1-Dichloropropene	0.615	0.663	-7.8	77	0.00
29 T	1,2-Dichloroethane (EDC)	0.703	0.662	5.8	74	0.00
30 S	1,2-Dichloroethane-d4	0.460	0.463	-0.7	78	0.00
31 I	1,4-Difluorobenzene	1.000	1.000	0.0	82	0.00
32 M	Benzene	1.498	1.365	8.9	75	-0.01
33 M	Trichloroethene	0.374	0.381	-1.9	82	0.00
34 C	1,2-Dichloropropane	0,364	0.333	8.5	75	0.00
35 т	Dibromomethane	0.234	0.221	5.6	75	0.00
37 т	Bromodichloromethane	0.411	0.441	-7.3	76	0.00
38 T	2-Chloroethyl vinyl ether	0.221	0.198	10.4	68	0.00
39 T	cis-1,3-Dichloropropene	0.579	0.500	13.6	68	0.00
40 T	4-Methyl-2-pentanone (MIBK)	0.273	0.232	15.0	69	0.00
41 S	Toluene-d8	1.054	1.073	-1.8	83	0.00
42 MC		0.948	0.867	8.5	75	0.00
43 T	trans-1,3-Dichloropropene	0.505	0.440	12.9	67	0.00
44 T	1,1,2-Trichloroethane	0.280	0.256	8.6	74	0.00

45 т	Tetrachloroethene	0.378	0.360	4.8	78	0.00
46 T	1,3-Dichloropropane	0.555	0.493	11.2	74	0.00
47 T	2-Hexanone	0.184	0.163	11.4	68	0.00
48 T	Dibromochloromethane	0.287	0.342	-19.2	80	0.00
40 I 49 T	1,2-Dibromoethane (EDB)	0.346	0.324	6.4	75	0.00
49 1	1,2 Diptomocentarie (152,					
50 I	Chlorobenzene-d5	1.000	1.000	0.0	85	0.00
51 MP	Chlorobenzene	1.120	0.973	13.1	76	0.00
52 T	1,1,1,2-Tetrachloroethane	0.331	0.348	-5.1	78	0.00
53 C	Ethylbenzene	1.747	1.552	11.2	76	0.00
54 T	m,p-Xylene	0.677	0.611	9.7	77	0.00
55 T	o-Xylene	0.688	0.638	7.3	76	0.00
56 T	Styrene	1.176	1.113	5.4	76	0.00
57 P	Bromoform	0.174	0.193	-10.9	83	0.00
58 T	Isopropylbenzene	1.500	1.428	4.8	77	0.00
59 S	Bromofluorobenzene	0.452	0.450	0.4	84	0.00
60 P	1,1,2,2-Tetrachloroethane	0.454	0.367	19.2	68	0.00
61 T	Bromobenzene	0.507	0.457	9.9	78	0.00
62 T	1,2,3-Trichloropropane	0.357	0.297	16.8	73	0.00
63 T	n-Propylbenzene	1.715	1.538	10.3	75	0.00
64 T	2-Chlorotoluene	1.219	1.043	14.4	75	0.00
65 T	1,3,5-Trimethylbenzene	1.282	1.148	10.5	75	-0.01
66 T	4-Chlorotoluene	1.403	1.188	15.3	74	0.00
67 T	tert-Butylbenzene	0.925	0.892	3.6	79	0.00
68 T	1,2,4-Trimethylbenzene	1.357	1.224	9.8	76	0.00
69 T	sec-Butylbenzene	1.299	1.242	4.4	78	0.00
70 T	1,3-Dichlorobenzene	0.879	0.759	13.7	76	0.00
71 T	4-Isopropyltoluene	1.063	0.983	7.5	77	0.00
72 T	1,4-Dichlorobenzene	0.901	0.785	12.9	76	0.00
73 т	n-Butylbenzene	0.523	0.495	5.4	74	0.00
74 T	1,2-Dichlorobenzene	0.867	0.765	11.8	77	0.00
75 T	1,2-Dibromo-3-chloropropane	0.032	0.037	-15.6	91	0.00
76 Т	1,2,4-Trichlorobenzene	0.523	0.472	9.8	76	0.00
77 T	Hexachlorobutadiene	0.219	0.207	5.5	83	-0.01
78 Т	Naphthalene	1.167	1.087	6.9	76	0.00
79 T	1,2,3-Trichlorobenzene	0.483	0.437	9.5	77	0.00
80 T	1,1,2-Trichloro-1,2,2-trifl	0.221	0.221	0.0	73	0.01
81 T	Methyl acetate	0.220	0.177	19.5	75	0.00
82 T	Cyclohexane	0.344		0.6	71	0.00
83 T	Methylcyclohexane	0.229	0.201	12.2	68	0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0

· .

LAM1231.M Fri Jan 15 10:25:34 2010

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed:	01/15/2010

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	L2725.D	99	100	95
00249-001	AQUEOUS	L2726.D	99	99	96
00249-002	AQUEOUS	L2727.D	101	100	97
00249-010	AQUEOUS	L2728.D	100	100	96
BLK-SPK	AQUEOUS	L2729.D	107	104	100
00249-001MS	AQUEOUS	L2730.D	100	102	96
00249-001MSD	AQUEOUS	L2731.D	98	99	95
00249-003	AQUEOUS	L2732.D	99	102	95
00249-004	AQUEOUS	L2733.D	101	100	98
00249-005	AQUEOUS	L2734.D	99	100	96
00249-006	AQUEOUS	L2735.D	101	101	98
00249-007	AQUEOUS	L2736.D	102	100	96
00249-008	AQUEOUS	L2737.D	103	99	96
00249-009	AQUEOUS	L2738.D	102	100	97
00249-011	AQUEOUS	L2739.D	102	100	97

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	45-154	51-164
SMC2 = Toluene-d8	50 ppb	47-151	52-157
SMC3 = Bromofluorobenzene	50 ppb	48-149	56-154

Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID: 00249-001

Batch No.: LAM011410B

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	56.0	112	46 - 150
Benzene	50.0	0.0	52.5	105	63 - 146
Trichloroethene	50.0	0.0	52.1	104	60 - 152
Toluene	50.0	0.0	51.2	102	63 - 151
Chlorobenzene	50.0	0.0	47.8	96	75 - 149

	SAMPLE	MSD	MSD			
Compound	CONC.	CONC.	%	%	QC LI	літs
	(ug/L)	(ug/L)	# REC	RPD #	RPD	REC.
1,1-Dichloroethene	0.0	59.0	118	5	17	46 - 150
Benzene	0.0	47.9	96	9	14	63 - 146
Trichloroethene	0.0	48.2	96	8	15	60 - 152
Toluene	0.0	47.5	9 5	7	15	63 - 151
Chlorobenzene	0.0	46.8	94	2	12	75 - 149

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): <u>L2450.D</u>

Date Analyzed: <u>12/31/2009</u>

Instrument ID:

MSD_L

Time Analyzed: <u>13:36</u>

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	177124	6.19	259867	7.00	249663	10.33
UPPER LIMIT	354248	6.69	519734	7.50	499326	10.83
LOWER LIMIT	88562	5.69	129933.5	6.50	124831.5	9.83
LAB SAMPLE						
١D						
01 STD-5PPB	183389	6.19	270006	7.00	248120	10.33
02 STD-20PPB	172853	6.19	255157	7.00	238521	10.33
03 STD-150PPB	184831	6.19	272556	7.00	261842	10.33
04 STD-200PPB	171766	6.19	251452	7.00	243593	10.33
05 STD-1PPB	173059	6.19	252670	7.00	232858	10.33
06 STD-2PPB	162050	6.19	239725	7.00	221050	10.33
07						
08						,
09						
10						
11						
12						
13						
14						
16						
17						{
18				·		
19						
20						
21					·	·
22	· [

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):	L2722.D	Date Analyzed:	01/15/2010
Instrument ID:	MSD L	Time Analyzed:	3:00

50UG/L	IS1		1S2		1S3	
0000012	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	134650	6.19	213745	7.00	210980	10.33
UPPER LIMIT	269300	6.69	427490	7.50	421960	10.83
LOWER LIMIT	67325	5.69	106872.5	6.50	105490	9.83
LAB SAMPLE						
ID						
1 METHOD-BLK	142372	6.19	212363	7.00	205400	10.33
2 00249-001	131888	6.19	196520	7.00	188008	10.33
3 00249-002	121475	6.19	181161	7.00	174900	10.33
4 00249-010	141074	6.19	210024	7.00	203574	10.33
5 BLK-SPK	108739	6.19	175147	7.00	176414	10.33
600249-001MS	119167	6.19	174214	7.00	170974	10.33
7 00249-001MSD	139149	6.19	206213	7.00	199297	10.33
8 00249-003	132962	6.19	193771	7.00	190183	10.33
9 00249-004	125233	6.19	187653	7.00	182088	10.33
00249-005	127330	6.19	188086	7.00	183491	10.33
1 00249-006	117919	6.19	173846	7.00	168753	10.33
2 00249-007	114345	6.19	172477	7.00	165296	10.33
3 00249-008	111963	6.19	169212	7.00	163900	10.33
4 00249-009	125279	6.19	185365	7.00	177164	10.33
5 00249-011	114152	6.19	168823	7.00	163431	10.33
5						
7						
3						
9						
						·····
1	· · · · · · · · · · · · · · · · · · ·					
2				Ť		• <u></u>

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2726.D Acg On : 15 Jan 2010 4:47Operator : MEI Sample : FB(010710),00249-001,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, ALS Vial : 32 Sample Multiplier: 1 Quant Time: Jan 15 10:39:30 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1916813188850.00UG0.0031) 1,4-Difluorobenzene7.0011419652050.00UG0.0050) Chlorobenzene-d510.3311718800850.00UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.52655995449.38UG-0.01Spiked Amount50.000Range43-133Recovery=98.76%41) Toluene-d88.679820579149.68UG0.00Spiked Amount50.000Range39-137Recovery=99.36%59) Bromofluorobenzene11.73958196848.20UG0.00Spiked Amount50.000Range23-145Recovery=96.40% Ovalue Target Compounds (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2726.D Acq On : 15 Jan 2010 4:47 Operator : MEI Sample : FB(010710),00249-001,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, ALS Vial : 32 Sample Multiplier: 1

Quant Time: Jan 15 10:39:30 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Abundance		TIC: L2726.D)	
320000				:
300000				
280000	Tolución Artenario Artenario	ene-d5,1	<u>a</u>	:
260000		Chlorobenzene do,u Chlorobenzene d5,1 Rremoditionteonsete S		
240000	Denzene, I	Rrenodite		1
220000	1,4-Difluorobenzene,1			
200000	enzere, l			
180000	Pertafluorobenzene,			
160000				
140000				
120000	thane-d4,S			
100000	1.2-Dichloroethane-d4.S			
80000	2			
60000-				
40000				: : : :
20000				
Time> 2.00 3.00 4.00 5.00	6.00 7.00 8.00	9.00 10.00 11.00 1	2.00 13.00 14.00 15.00	0 16.00 17.00 18.00 19.00

Data Path : C:\MSDChem\1\DATA Data File : L2727.D Acq On : 15 Jan 2010 5:1 Operator : MEI Sample : FB(010810),00249- Misc : ARCADIS/KINGS_ELE ALS Vial : 33 Sample Multi	4 002,A,5m1,100	/09,	
Quant Time: Jan 15 10:41:52 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16: Response via : Initial Calibr	ETHODS\LAM1231.M ICS BY EPA METHO 40:54 2010 ation	D 8260B	
Internal Standards	R.T. QIon	Response Conc (Jnits Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.19 168 7.00 114 10.33 117	121475 50.00 181161 50.00 174900 50.00	UG 0.00 UG 0.00 UG 0.00 UG 0.00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 - 133 8.67 98 Range 39 - 137 11.73 95	56334 50.38 Recovery = 191258 50.08 Recovery = 76337 48.29 Recovery =	100.76% 3 UG 0.00 100.16% 5 UG 0.00
Target Compounds			Qvalue
(#) = qualifier out of range		tegration (+) = s	signals summed

		C:\MSDChem\1\DATA\01-14-10\
Data File		
Acq On	:	15 Jan 2010 5:14
Operator		
		FB(010810),00249-002,A,5ml,100
		ARCADIS/KINGS_ELEC,01/08/10,01/08/09,
ALS Vial	:	33 Sample Multiplier: 1
		Jan 15 10:41:52 2010
Quant Meth	10Ċ	: C:\MSDCHEM\1\METHODS\LAM1231.M

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Abundance		TIC: L2727.	D			
300000						
280000						:
260000		Toluene-d8,S e nzene d5,I	Sene,S			:
240000	-	- Toluene-d8 Chlorobenzene d5,I	Bromoftuorobenzene,S			
220000	1,4-Difluorobenzene,I		5 20			
200000	1,4-Dift.					
180000	ben zene,1					:
160000	Pentafluorobenzene, ¹					
140000						
120000	4 2 2 2					
100000	1,2-Dichloroethane-d4,S					
80000	1,2-6					
60000						
40000						
20000						
0			// · · · · · · · · · · · · · · · · · · ·	······································		
	4.00 5.00 6.00 7.00 8.0	0 9.00 10.00 11.00	12.00 13.00	14.00 15.00 16.0		
41231.M Fri Ja	in 15 10:41:59 2010					Page: 2

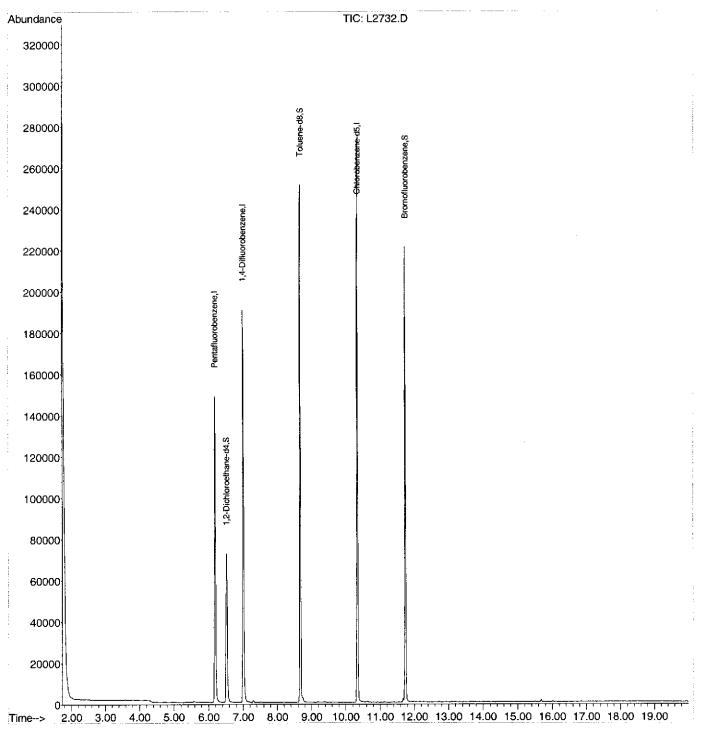
Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2732.D Acg On : 15 Jan 2010 7:28 Operator : MEI Sample : MW-9D,00249-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, ALS Vial : 38 Sample Multiplier: 1 Quant Time: Jan 15 10:47:20 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1916813296250.00UG0.0031) 1,4-Difluorobenzene7.0011419377150.00UG0.0050) Chlorobenzene-d510.3311719018350.00UG0.00 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.53
 65
 60283
 49.25
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 98.50%

 41) Toluene-d8
 8.67
 98
 208469
 51.04
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 =
 102.08%

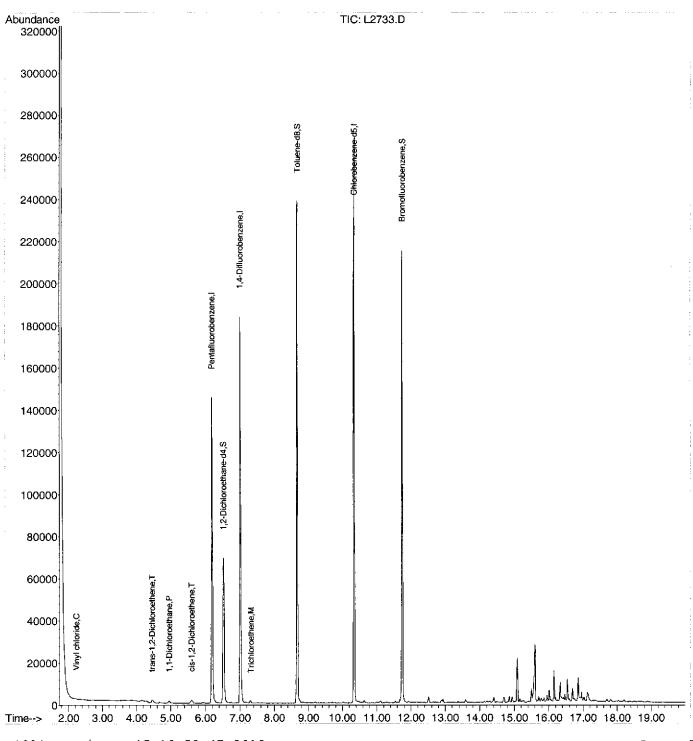

 59) Bromofluorobenzene
 11.73
 95
 81528
 47.39
 UG
 0.00

 Spiked Amount
 50.000
 Range
 23 - 145
 Recovery
 =
 94.78%

 Qvalue Target Compounds (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2732.D Acq On : 15 Jan 2010 7:28 Operator : MEI Sample : MW-9D,00249-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, ALS Vial : 38 Sample Multiplier: 1

Quant Time: Jan 15 10:47:20 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration



Data Path : C:\MSDChem\1\DATA Data File : L2733.D Acq On : 15 Jan 2010 7:5 Operator : MEI Sample : MW-9S,00249-004,A Misc : ARCADIS/KINGS_ELE ALS Vial : 39 Sample Multip	5 ,5ml,100 C,01/07/10,	,01/08,	/09,			
Quant Time: Jan 15 10:51:40 20 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16:4 Response via : Initial Calibra	ETHODS\LAM ICS BY EPA 40:54 2010 ation	METHO	D 8260B		it. Dev	
Internal Standards	R.T.	Qion	Kesponse	Conc Un	lits Dev	7(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.19 7.00 10.33	168 114 117	125233 187653 182088	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	Range 43	- 133	Recove	ry =	101.12%	5
41) Toluene-d8 Spiked Amount 50.000	Range 39	- 137	198187 Recove	50.10 ry = 48.84	100.20%	0.00
59) Bromofluorobenzene Spiked Amount 50.000	Range 23	- 145	Recove	40.04 ry =	97.689	
Target Compounds					Οī	value
4) Vinvl_chloride	2.23	62	775	0.76	UG	98
<pre>16) trans-1,2-Dichloroethene 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene</pre>	e 4.46	96	676	0.51	UG #	68
18) 1,1-Dichloroethane	4.95	63	1525	0.67	UG #	87
20) cis-1,2-Dichloroethene 33) Trichloroethene	5.60 7.31	96 95	805 475	0.52 0.34	UG # UG	68 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2733.D Acq On : 15 Jan 2010 7:55 Operator : MEI Sample : MW-9S,00249-004,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, ALS Vial : 39 Sample Multiplier: 1

Quant Time: Jan 15 10:51:40 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Data Path : C:\MSDChem\1\DATA Data File : L2734.D Acq On : 15 Jan 2010 8:22 Operator : MEI Sample : MW-13R,00249-005,2 Misc : ARCADIS/KINGS_ELEC ALS Vial : 40 Sample Multip	L A,5ml,100 C,01/07/10	,01/08,	/09,		
Quant Time: Jan 15 10:54:56 20 Quant Method : C:\MSDCHEM\1\Mi Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16:4 Response via : Initial Calibra	ETHODS\LAM: [CS BY EPA 40:54 2010				
Internal Standards	R.T.	QIon	Response	Conc Uni	ts Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.19 7.00 10.33	168 114 117	127330 188086 183491	50.00 U 50.00 U 50.00 U	G 0.00 G 0.00 G 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 39 11.73	- 137 95	Recove 79965	ry = 10 48.18 U	30.24% 3 0.00
Target Compounds 4) Vinyl chloride 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	2.23 4.94 5.61 7.30	62 63 96 95	1132 2265 1488 1720	1.09 U 0.98 U 0.94 U 1.22 U	Qvalue G # 86 G # 87 G # 97 G 96

(#) =qualifier out of range (m) =manual integration (+) =signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2734.D : 15 Jan 2010 8:21 Acq On : MEI Operator : MW-13R,00249-005,A,5ml,100 Sample : ARCADIS/KINGS_ELEC,01/07/10,01/08/09, Misc Sample Multiplier: 1 ALS Vial : 40 Quant Time: Jan 15 10:54:56 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration Abundance TIC: L2734.D 320000 300000 280000 Totuene-d8,S Bromofluorobenzene,S 260000 240000 1,4-Difluorobenzene,1 220000 200000 Pentafluorobenzene, l 180000 160000 140000 1,2-Dichloroethane-d4,S 120000 100000 80000 60000 cis-1,2-Dichloroethene,T 1,1-Dichloroethane,P Frichloroethene, M chloride,C 40000 /invl 20000 o 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 5.00 2.00 3.00 4.00 Time-->

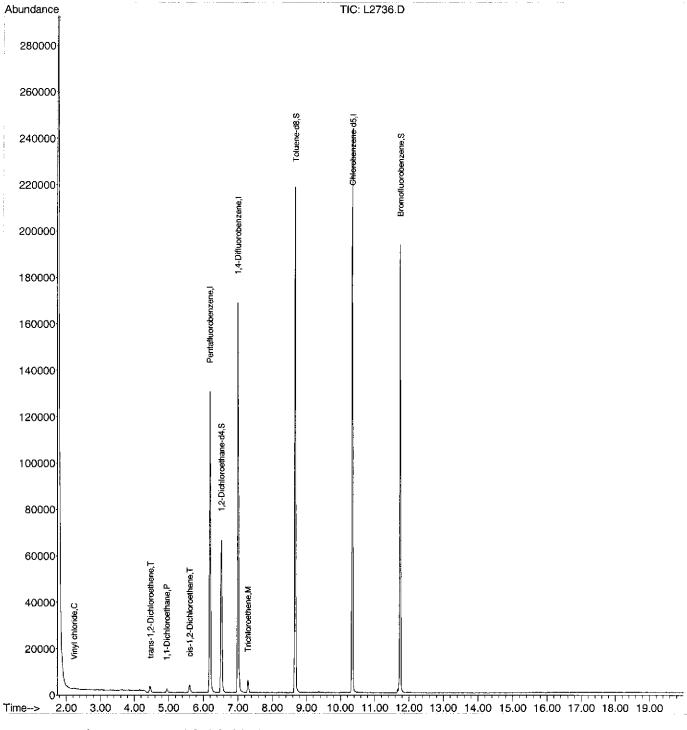
Data Path : C:\MSDChem\1\DATA Data File : L2735.D Acq On : 15 Jan 2010 8:4 Operator : MEI Sample : DUP(010710),00249 Misc : ARCADIS/KINGS_ELE ALS Vial : 41 Sample Multi	8 -006,A,5ml, C,01/07/10,	,100 ,01/08,	/09,			
Quant Time: Jan 15 10:58:05 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16: Response via : Initial Calibr	ETHODS\LAM ICS BY EPA 40:54 2010					
Internal Standards	R.T.	QIon	Response	Conc Un	nits D	ev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.19 7.00 10.33	114	173846	50.00	UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1.2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.67 Range 39 11.73	- 133 98 - 137 95	Recove 185167 Recove 74731	ry = 50.53 ry = 48.96	101.0 UG 101.0 UG	6% 0.00 6% 0.00
Target Compounds 4) Vinyl chloride 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	5.61	63 96	1276 2198 1403 1781	1.03	UG UG UG	Qvalue 99 98 # 95 97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

.

Data Path : C:\MSDChem\1\DATA\01-14-10\
Data File : L2735.D
Acq On : 15 Jan 2010 8:48
Operator : MEI
Sample : DUP(010710),00249-006,A,5ml,100
Misc : ARCADIS/KINGS_ELEC,01/07/10,01/08/09,
ALS Vial : 41 Sample Multiplier: 1

Quant Time: Jan 15 10:58:05 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration


280000 260000 240000 2200000 180000 180000 160000 120000 120000 100000 80000	Pertafluorobenzene,I
240000 220000 200000 180000 160000 140000 120000 100000	
220000 200000 180000 160000 140000 120000 100000	
200000 180000 160000 140000 120000 100000	
180000 160000 140000 120000 100000	
160000 140000 120000 100000	
140000 120000 100000	Pentalluorobe
120000 ⁻ 100000 ⁻	۵.
100000	
	يد م
80000	1,2-Dichloroethane-d4,S
	1,2-Dict
60000	E.
40000 0	oethane, P #Iloroethene
40000 20000 20000	
0	1,1-Dichloroethane,P cis-1,2-Dichloroethe

Data Path : C:\MSDChem\l\DATA Data File : L2736.D Acq On : 15 Jan 2010 9:1 Operator : MEI Sample : GP-104R,00249-007 Misc : ARCADIS/KINGS_ELE ALS Vial : 42 Sample Multi	5 ,A,5ml,100 C,01/08/10,	,01/08	/09,								
Quant Time: Jan 15 10:59:58 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration											
Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)					
 Pentafluorobenzene 1, 4-Difluorobenzene Chlorobenzene-d5 	6.19 7.00 10.33	168 114 117	114345 172477 165296	50.00 UG 50.00 UG 50.00 UG		0.00 0.00 0.00					
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	Range 43	- 133	Recove	51.05 UG ry = 102		0.00					
41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 39 11.73	95	Recove 71696	49.96 UG ry = 99 47.95 UG ry = 95	.92%	0.00 0.00					
Target Compounds 4) Vinyl chloride 16) trans-1,2-Dichloroethen 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	2.23 e 4.47 4.94	62 96 63 96	971 1723 2398 1928	1.04 UG 1.43 UG 1.16 UG 1.36 UG	QVa #						

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2736.D Acq On : 15 Jan 2010 9:15 Operator : MEI Sample : GP-104R,00249-007,A,5m1,100 Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09, ALS Vial : 42 Sample Multiplier: 1

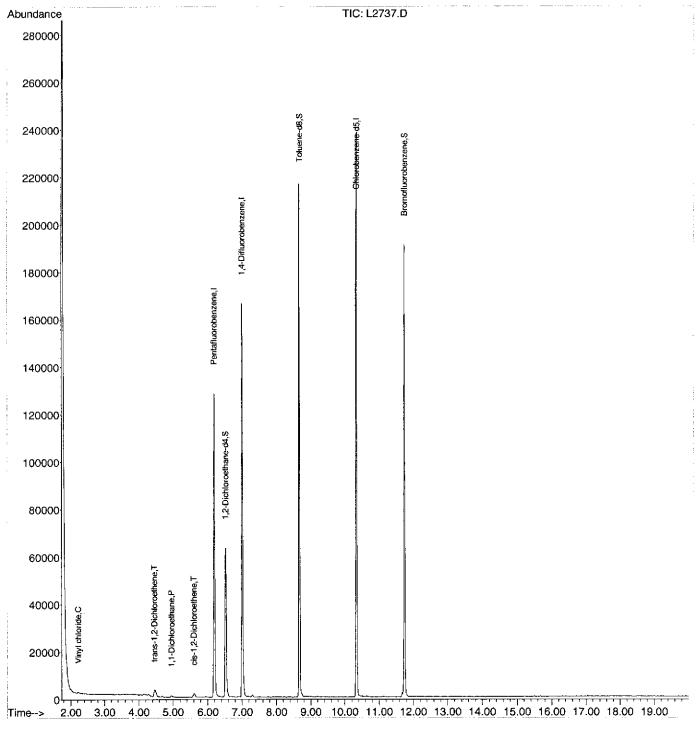
Quant Time: Jan 15 10:59:58 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2737.D Acq On : 15 Jan 2010 9:42 Operator : MEI Sample : GP-103R,00249-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09, ALS Vial : 43 Sample Multiplier: 1 Ouant Time: Jan 15 11:01:31 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1916811196350.00 UG0.0031) 1,4-Difluorobenzene7.0011416921250.00 UG0.0050) Chlorobenzene-d510.3311716390050.00 UG0.00 System Monitoring Compounds
30) 1,2-Dichloroethane-d46.53655282351.25UG0.00Spiked Amount50.000Range43-133Recovery=102.50%41) Toluene-d88.679817672549.54UG0.00Spiked Amount50.000Range39-137Recovery=99.08%59) Bromofluorobenzene11.73957084647.79UG0.00Spiked Amount50.000Range23-145Recovery=95.58% Target Compounds Qvalue 4) Vinyl chloride

 4) Vinyl chloride
 2.22
 62
 1151
 1.26 UG #

 16) trans-1,2-Dichloroethene
 4.46
 96
 685
 0.58 UG #

 18) 1,1-Dichloroethane
 4.95
 63
 931
 0.46 UG #

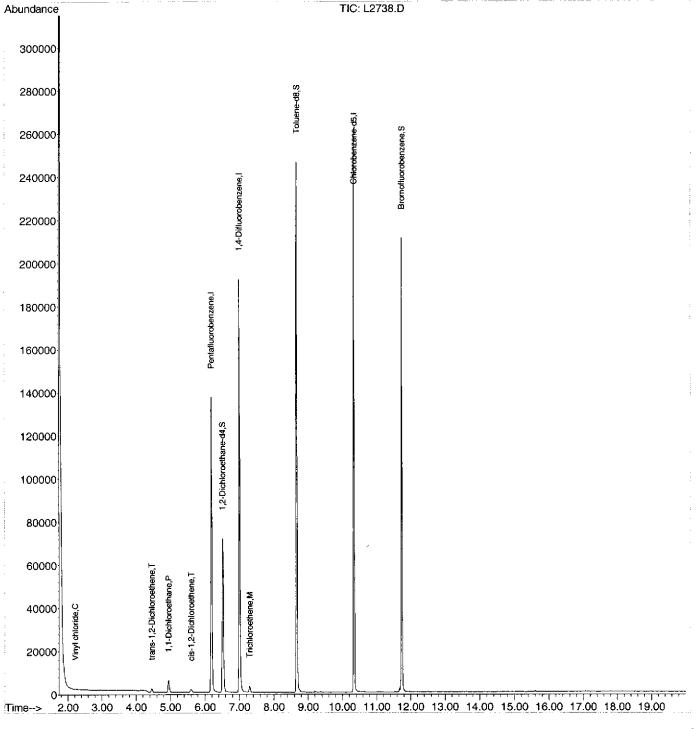

 20) cis-1,2-Dichloroethene
 5.60
 96
 914
 0.66 UG #

 # 86 # 94 # 96 68 _____

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2737.D Acq On : 15 Jan 2010 9:42 Operator : MEI Sample : GP-103R,00249-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09, ALS Vial : 43 Sample Multiplier: 1

Quant Time: Jan 15 11:01:31 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration


LAM1231.M Fri Jan 15 11:01:48 2010

Data Path : C:\MSDChem\1\DATA Data File : L2738.D Acq On : 15 Jan 2010 10:0 Operator : MEI Sample : PTW-2,00249-009,A Misc : ARCADIS/KINGS_ELE ALS Vial : 44 Sample Multi	9 ,5ml,100 C,01/08/10,	,01/08	/09,								
Quant Time: Jan 15 11:02:37 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration											
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)					
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.19 7.00 10.33	168 114 117	125279 185365 177164	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00					
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.66 Range 39 11.73	- 133 98 - 137 95	Recove 195365 Recove 77424	ry = 50.00 ry = 48.31	102. UG 100. UG	34% -0.01 00% 0.00					
Target Compounds 4) Vinyl chloride 16) trans-1,2-Dichloroethen 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	e 4.46 4.94	96 63 96	7654 793	0.80 3.37 0.51	UG UG UG	# 100 100					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2738.D Acq On : 15 Jan 2010 10:09 Operator : MEI Sample : PTW-2,00249-009,A,5m1,100 Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09, ALS Vial : 44 Sample Multiplier: 1

Quant Time: Jan 15 11:02:37 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

Data Path : C:\MSDChem\l\DATA Data File : L2728.D Acq On : 15 Jan 2010 5:4 Operator : MEI Sample : TB(010810),00249- Misc : ARCADIS/KINGS_ELE ALS Vial : 34 Sample Multi Quant Time: Jan 15 10:42:32 2 Quant Method : C:\MSDCHEM\l\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16: Response via : Initial Calibr	1 010,A,5ml,100 c,01/08/10,01/08, plier: 1 010 ETHODS\LAM1231.M HCS BY EPA METHOM 40:54 2010		
Internal Standards	R.T. QIon	Response Conc	Units Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.19 168 7.00 114 10.33 117	141074 50. 210024 50. 203574 50.	00 UG 0.00 00 UG 0.00 00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 - 133 8.67 98 Range 39 - 137 11.73 95	Recovery 222198 50. Recovery 88257 47.	= 99.78% 19 UG 0.00 = 100.38% 93 UG 0.00
Target Compounds			Qvalue
(#) = qualifier out of range	(m) = manual int	tegration (+) =	signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\
Data File : L2728.D
Acq On : 15 Jan 2010 5:41
Operator : MEI
Sample : TB(010810),00249-010,A,5ml,100
Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09,
ALS Vial : 34 Sample Multiplier: 1

Quant Time: Jan 15 10:42:32 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration

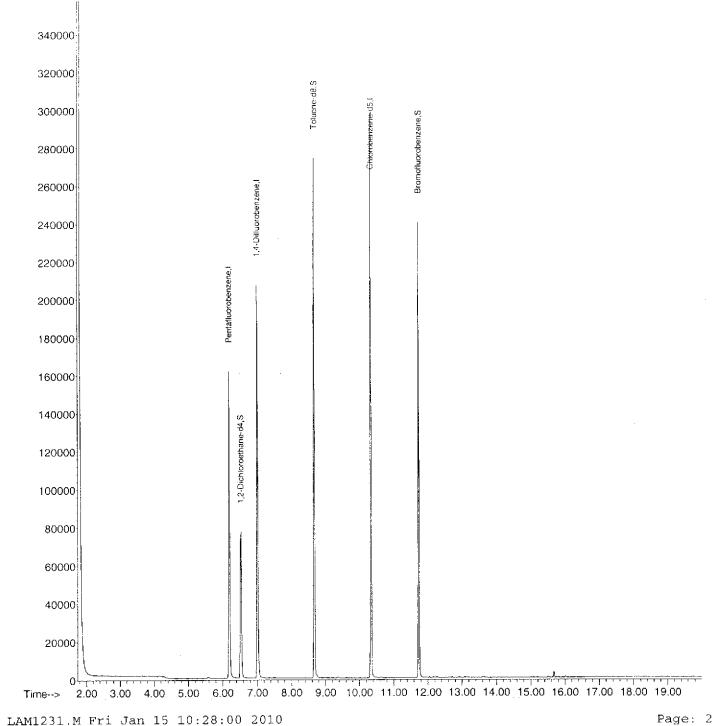
Ab	undance	TIC: L2728.D
	340000	
:	320000	
	300000	Toluene-d8,S zene,S
	280000	Bromofluorobenzene, S Bromofluorobenzene, S
	260000	
÷	240000	Brom Harrison Ha Harrison Harrison Ha Harrison Harrison H
	220000	
	200000	
-	180000	
	160000	
:	140000	<u>रु</u> स्ट
	120000	1,2-Dichloroethane-d4,S
	100000	
	80000	
	60000	
:	40000	
	20000	
Tir	ne> 2	2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Data Path : C:\MSDChem\1\DATA Data File : L2739.D Acq On : 15 Jan 2010 10:30 Operator : MEI Sample : MW-65,00249-011,A Misc : ARCADIS/KINGS_ELEC ALS Vial : 45 Sample Multip	6 ,5ml,100 C,01/08/10	,01/08	/09,				
Quant Time: Jan 15 11:11:27 20 Quant Method : C:\MSDCHEM\1\MJ Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16:4 Response via : Initial Calibra	ETHODS\LAM ICS BY EPA 40:54 2010 ation	METHO]	D 8260B				
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev ((Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.19 7.00 10.33	168 114 117	114152 168823 163431	50.00 50.00 50.00	UG UG UG		0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.67	- 133 98 - 137 95	Recove 178797 Recove 71446	ery = 50.24 ery = 48.33	102. UG 100. UG	448 488	0.00 0.00 0.00
Target Compounds 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene 45) Tetrachloroethene	4.94 5.61 7.30 9.37	06	010	0 59	TIC	# #	90

(#) =qualifier out of range (m) =manual integration (+) =signals summed

Data Path : C:\MSDChem\1\DATA\01-14-10\ Data File : L2739.D Acq On : 15 Jan 2010 10:36 Operator : MEI Sample : MW-6S,00249-011,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,01/08/10,01/08/09, ALS Vial : 45 Sample Multiplier: 1

Quant Time: Jan 15 11:11:27 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration



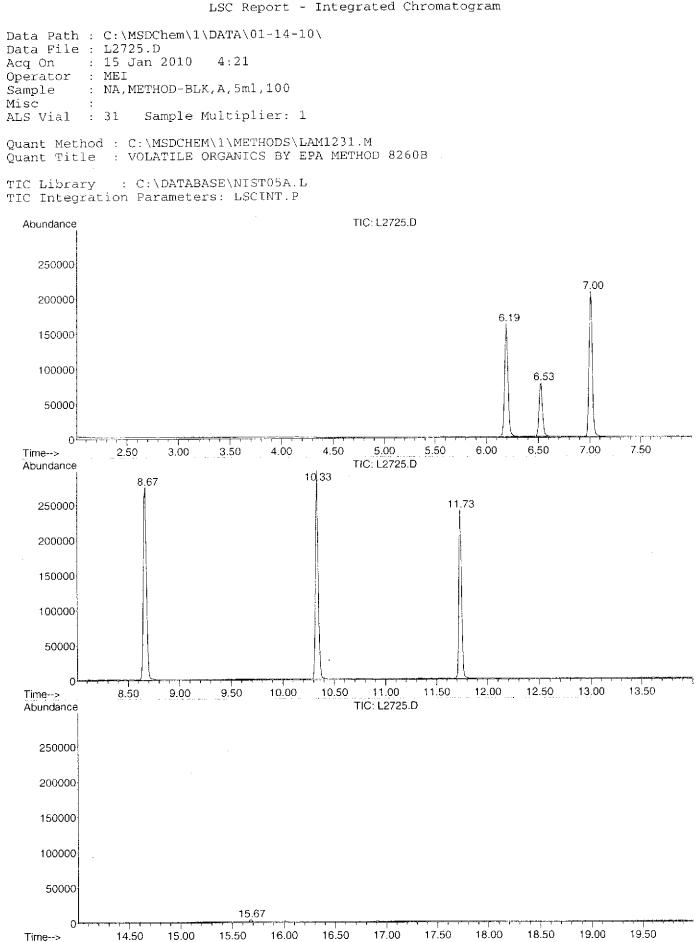
Data Path : C:\MSDChem\l\DATA Data File : L2725.D Acq On : 15 Jan 2010 4:2 Operator : MEI Sample : NA,METHOD-BLK,A,5 Misc : ALS Vial : 31 Sample Multi	1 ml,100
Quant Time: Jan 15 10:27:47 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jan 04 16: Response via : Initial Calibr	ETHODS\LAM1231.M HICS BY EPA METHOD 8260B 40:54 2010 ation
Internal Standards	R.T. QIon Response Conc Units Dev(Min)
11, 1 (Diflumehengene	6.1916814237250.00 UG0.007.0011421236350.00 UG0.0010.3311720540050.00 UG0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.53656502449.61UG0.00Range43 - 133Recovery=99.22%8.679822341049.90UG0.00Range39 - 137Recovery=99.80%11.73958784747.28UG0.00Range23 - 145Recovery=94.56%
	Ovalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

(QT Reviewed)

Data Path : C:\MSDChem\1\DATA01-14-10Data File : L2725.D : 15 Jan 2010 4:21Acq On Operator : MEI : NA, METHOD-BLK, A, 5ml, 100 Sample Misc 2 ALS Vial : 31 Sample Multiplier: 1 Quant Time: Jan 15 10:27:47 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM1231.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Mon Jan 04 16:40:54 2010 Response via : Initial Calibration TIC: L2725.D Abundance

Data Path : C:\MSDChem\1\DATA01-14-10Data File : L2725.D Acq On : 15 Jan 2010 4:21Operator : MEI Sample : NA, METHOD-BLK, A, 5ml, 100 Misc : ALS Vial : 31 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Filtering: 5 Smoothing : ON Min Area: 1 % of largest Peak Sampling : 1 Max Peaks: 100 Start Thrs: 0.2 Stop Thrs : 0 Peak Location: TOP If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 : C:\MSDCHEM\1\METHODS\LAM1231.M Method Title : VOLATILE ORGANICS BY EPA METHOD 8260B Signal : TIC peak % of corr. corr. peak R.T. first max last PK min scan scan scan TY height % max. total area Ħ --------- ----_____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ----374363 65.80% 14.514% 440 454 rBV 473 492 rVB 161290 1 6.191 432 32.138 7.088% 76805 182834 2 6.526 465 453296 79.67% 17.574% 520 535 rBV 206583 3 7.003 514 273802 568961 100.00% 22.058% 674 684 698 rBV 8.668 4 842 848 860 rBV 297287 559601 98.35% 21.695% 10.333 5 239757 434452 76.36% 16.843% 6 11.734 979 986 1001 rBV 15.673 1367 1374 1380 rVB2 5876 1.03% 0.228%


Sum of corrected areas: 2579383

3114

LAM1231.M Fri Jan 15 10:28:25 2010

7

Page: 1

LAM1231.M Fri Jan 15 10:28:25 2010

Page: 2

	1-4252
	S.
	(673)
1	44
	hone

I.

INTEGRATED ANALYTICAL LABORATORIES

273 Franklin Rd

Fax # (973) 989-5288					С	CHAIN OF CUSTODY	USTODY					Randolp	Randolph, NJ 07869	69	- 1
CUSTOMER INFO			REPORTING	ING INFO		Turnarou	id Time (starts	the following	Turnaround Time (starts the following day if samples rec'd at lab > 5PM)	d at lab > 5PM)					
Company: ASCAD15-05, In Address: 1 In ter achieved	 KINI	REPORT TO: Address: /	ALCADIS -	015-05	1-5-1	*Lab noti GUARA ABLE T	Lab notification is required for GUARANTEED WITHOUT L ABLE TO ACCOMMODATE.	iired for RU HOUT LAB DDATE.	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT GUARANTEED WITHOUT LAB APPROVAL. ***RUSH SURCHARGES WILL APPLY IF ABLE TO ACCOMMODATE.	o sample arrival RUSH SURCH	. RUSH TA ARGES WI	T IS NC	DT PLY II	r.	
-	7945J		Mahuar.	S	56460	PHC- MU	PHC- MUST CHOOSE			Rush TAT Charge **	Report Format	rmat		EDD's	
55		Attn:	Eric	-	40	DRO (3-5 day TAT) DRO (8015B) - used f	y TAT) • used for: Fuel O	QAM0 1 #2/Home Hear	QAM025 (5 day TAT min.) ome Heating Oil #1 /#2.		Results Only	'nly	SRP. d	SRP. dbf format	ta
Fax #: 201 - 684 - 1420		FAX #	201-684		24	QAM-025 (O contarninants	2A-QAM025) - usi	ed for: all other	QAM-925 (UQA-QAM025) - used for: all other fuel oil and unknown contaminants.		Reduced		lah amar	or ad an	ctom
EMAIL Address:		INVOICE TO:	1: ALCADU	4015-051	1 100	a	X	; ;;	Results needed by:	72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies			наи арри отец сциниц	
Project Manager: Eric Lodityue2	してる	Address:	1-1-1	Intronted 1	6100	Hard Conv	t.	(Std)		5 day - 25 % 6-9 day 10 %	Other (describe)				
Sampler: D. Kirschner / C. Cifelli	lli.		Mahwah	ñ	SSHEO	Other *call for price	orice						(O EDD	NO EDD/CD REQ'D	0,0
Project Name: Lung, Electronic	161						ANA	LYTICAL F	ANALYTICAL PARAMETERS	-		Ē		ļ	-6541500
Ň	۲.	Attn: E	Eric Re	Relligite		37' 						durar tercon		۔ ر	
Bottle Order #:		P0# N	5	10	10000	(7	· ·					* ROTTY VC	TTPC	à	
Quote #:			San	Sample Matrix		: ')					PI -	PRESERVATIVES	UATI	VES	
SAMPLE INFORMATION		DW - Drinking /	Water AQ - Aqu - Liquid (Specify)	DW - Drinking Water AQ - Aqueous WW - Waste Water 01 - Oil LIQ - Liquid (Specify) 0T - Other (Specify)	ste Water cify)	ריז					[_			_
		S Soil SL S	ludge SOL - Soi	S - Soil SL - Sludge SOL - Solid W - Wipe	:);]					H				910
Client ID D	Depth (ft. only)	Sam Date	Sampling Time	Matrix	# containers	™, ≯S				,	IOPN	oszh onh	0914	ouon oupo	oou3
FB(cic 740)		olleli	1330	40	2	1 2					7				
FB(010%16)		1/2/10	_ <u>_</u>	Aù	2	2 2					2				
MU - 40		1/2/10	1307	ÂĊ	4	<u>5</u> 2					2				
Mu - 95e		i 17/10	1225	AG	2	7					2				
MW - 13E		1 1-110	1140		2	5 2					2				
DUP (eiczlo)		12/10	•]	AQ	2	6 2					1				
GP - 104 R		118/10	1247	Αû	2	2 6					2				
Gr 103R		1/8/10	0121	40	2						7				
PTW-2		1/8/10	1056	AU	2	ğ Z					4				
T & (0;03\$0)		118/90	}	AQ	5	2 01					4				
Yes or	i					MDL	Reat GWOS (1	1/05) - SBS -	MIJI - Root GWOS (11/05) - SRS //CW - SRS Recitantial - (1144EB //SEE //OM/04ENES)	Residential . (YTY		EFUNC.	(STN		
Conc. Expected: Low Med High					_	. ľ						TTATTAKO.	(011)		
Please print legibly and fill out completely. Samples cannot be processed and the	oletely. Samp	iles cannot b	e processed	2	<u>F</u>	will rot		biguities hu	any ambiguities have been resolved	ď.					
Signature Company		ءلة				pany	Date	Time	Comments:						
		60/8/	172) ^R	Kecentri					***	í					
Relinquished b			×	Received by:											
Relinquished by:			R	Received by:											
Relinquished by:			ä	Received by:					Lab Case	ase #					
Relia Ojshed by:			R	Received by:						51	PAGE:	į af	4		
C LAB (JPHES - WHITE & YELLOW; CLIENT COPY - PINK M	Y - PINK			-											
->											ç	10000 m	<i>.</i>	0.00	

10/2009 rev Re/ .vn. G. (209009/00

PROJECT INFORMATION

Case No. E10-00249 Project KINGS ELECTRONICS - VENDOR #1168636

Customer Arcadis Geraghty & Miller	P.O. # NJ000423.0005.000C
Contact Eric Rodriguez EMail eric.rodriguez@arcadis-us.com EMail EDDs Phone (201) 684-1410 Fax 1(201) 684-1420	Received 1/8/2010 17:21 Verbal Due 1/25/2010 Report Due 2/1/2010
Report To	Bill To
1 International Blvd.	640 Plaza Drive
Suite 406	Suite 130
Mahwah, NJ 07495	Highlands Ranch, CO 80129
Attn: Eric Rodriguez	Attn: Eric Rodriguez
Report Format Reduced Additional Info State Form Field Sampling	Conditional VOA

<u>Lab ID</u>	Client Sample ID	Depth Top / Bottom	Sampling Time	<u>Matrix</u>	<u>Unit</u>	<u># of Containers</u>
00249-001	FB(010710)	n/a	1/7/2010@13:30	Aqueous	ug/L	2
00249-002	FB(010810)	n/a	1/8/2010@08:55	Aqueous	ug/L	2
00249-003	MW-9D	n/a	1/7/2010@13:07	Aqueous	ug/L	2
00249-004	MW-9S	n/a	1/7/2010@12:25	Aqueous	ug/L	2
00249-005	MW-13R	n/a	1/7/2010@11:40	Aqueous	ug/L	2
00249-006	DUP(010710)	n/a	1/7/2010	Aqueous	ug/L	2
00249-007	GP-104R	n/a	1/8/2010@12:47	Aqueous	ug/L	2
00249-008	GP-103R	n/a	1/8/2010@12:10	Aqueous	ug/L	2
00249-009	PTW-2	n/a	1/8/2010@10:56	Aqueous	ug/L	2
00249-010	TB(010810)	n/a	1/8/2010	Aqueous	ug/L	2
00249-011	MW-68	n/a	1/8/2010@13:47	Aqueous	ug/L	2
<u>Sample # Te</u>	ests	<u>Status</u> Q	A Method			
001 PP	VOA + Cis 1,2-DCE	Complete 826	50B			
002 PP	VOA + Cis 1,2-DCE	Complete 826	50 B			
003 PP	VOA + Cis 1,2-DCE	Complete 826	50B			
004 PP	VOA + Cis 1,2-DCE	Complete 820	50 B			
005 PP	VOA + Cis 1,2-DCE	Complete 820	50 B			
006 PP	VOA + Cis 1,2-DCE	Complete 820	50B			
007 PP	VOA + Cis 1,2-DCE	Complete 820	60 B			
008 PP	VOA + Cis 1,2-DCE	Complete 820	60B			
009 PP	VOA + Cis 1,2-DCE	Complete 820	60B			
010 PP	VOA + Cis 1,2-DCE	Complete 820	60B			
011 PP	VOA + Cis 1,2-DCE	Complete 820	60B			

01/12/2010 14:53 by katie - REV 1

As per Eric Rodriguez, change sample ID for sample 4 to read: MW-9S.

Phone # (973) 361-4252 Fax # (973) 989-5288

i

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd

-

IN	0.4NI	Turnaround Time (starts the following day if samples rec'd at lab > 5PM) *Lab notification is required for RUSH TAT prior to sample arrival	d at lab > 5PM) sample arrival. R1	Randol ISH TAT IS N	Randolph, NJ 07869 15 NOT	
Address: / httnhal (1/	ALCADIS -	GUARANTEED WITHOUT LAB APPROVAL. **RUSH SURCHARGES WILL APPLY IF ABLE TO ACCOMMODATE.	RUSH SURCHAR	GES WILL AF	PLY IF	
Mahun NJ	Wehner NJ CAMPA	PHC- MUST CHOOSE DRO (3-5 day TAT) DRO (3-5 day TAT min)	Rush TAT Charge **	Report Format	EDD's	
Telephone #: 201 - 684 - 1410 Fax#: 201 - 684 - 1426	Atta: 6211 RONICALIE	or: Fuel Oil #2/Hc 4025) - used for: :	24 hr - 100%	Results Only Reduced	SRP. dbf format	
	CETO: AKCA-DIC	aVFax		Regulatory - 15% Surcharge amilies	lab approved custom EDD	mo
Project Manager: Ere Lodrigues	Internetind	24 hr* 48 hr* 72 hr* 1 wk* Hard Corv. 3 correct		Other (describe)		
C.F. 11: / P	Ę	price			NO EDD/CD REQ'D	2
knja El		'U' ANALYTICAL PARAMETERS	-	Cooler Tenn		
Project Location (State): Nr. Yerk	Attn: CRIC Lectrosere	20				
Bottle Order #:	PO# N3002123, Dec 5, 00001	2 1/		Ua #	0 33 ILUA #	
Quote #:	Sample Matrix	5		PRESE	PRESERVATIVES	
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Sludge SOL - Solid W - Wree					
Client ID Depth (ft. only)	<u> </u>	<u>م</u>		FOSTI FONI FONI HOP	юле Ићег ГеОН	neore
Mw-65	10 1347 AQ	4		HT I	0	я
Known Hazard: Yes or Str. Describe:			_			
1.4		MPF Req: GWQS (11/05) - SRS - SRS/JGW - SRS Residential - OTHER (SEE COMMENTS)	tesidential - OTHER	(SEE COMMI	(STTS)	
Please print legibly and fill out completely. Samples cannot be processed and the	e turnaroung t	me will fot start until any ambiguities have been resolved				
Sunature/Combany	Date Time Signature 94 Hipany	Ν	5			
	11/8/10 [72] Received by					
Relinquished by:	Received by:					
Relinquished by:	Received by:	Lab Cas	5 9- #			
Relit Gisbed by:	Received by:			PAGE: 2 of	2	
LAB OPIES - WHITE & VELLOW; CLIENT COPY - PLUK] 			
8						

10/2009 rev Ref Nor 3 (0.02003/00

INTEGRATED ANALYTICAL LABORATORIES, LLC
SAMPLE RECEIPT VERIFICATION
CASE NO: E 10 00249 CLIENT: Aceds
COOLER TEMPERATURE: 2° - 6°C: ✓ (See Chain of Custody) COC: COMPLETE / INCOMPLETE KEY ✓ = YES/NA ¥ = NO
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles
 ✓ Sufficient Sample Volume no-headspace/bubbles in VOs Labels intact/correct pH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time¹ Sample to be Subcontracted ✓ Chain of Custody is Clear ¹ All samples with "Analyze Immediately" holding times will be analyzed by this laboratory past the holding time. This includes but is not limited to the following tests: pH, Temperature, Free Residual Chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite. ADDITIONAL COMMENTS:
SAMPLE(S) VERIFIED BY: INITIAL DATE USING DATE USING DATE DATE USING DATE DATE DATE USING DATE DATE DATE DATE DATE DATE DATE DATE
If COC is NOT clear, <u>STOP</u> until you get client to authorize/clarify work. CLIENT NOTIFIED: YES Date/ Time: NO NO SUBCONTACT: SUBCONTRACTED LAB:
ADDITIONAL COMMENTS:

VERIFIED/TAKEN BY:

INITIAL	KN

REV 03/2009

	Laboratory	, Custo	dy Chron	icle		
<i>IAL Case No.</i> E10-00249		Clien	at <u>Arcadis Ge</u>	raghty & Mil	ller	
E10-00249		Projec	t <u>KINGS EI</u>	ECTRONICS	5 - VENDOR #116	<u>8636</u>
	R	eceived Or	<u>1/ 8/2009@</u>	<u>017:21</u>		
Department: Volatiles			<u>Prep. Date</u>	<u>Analyst</u>	<u>Analysis Date</u>	<u>Analys</u>
PP VOA + Cis 1,2-DCE	00249-001	Aqueous	n/a	n/a	1/15/10	Xing
n	-002	71	n/a	n/a	1/15/10	Xing
,	-003	Ħ	n/a	n/a	1/15/10	Xing
t i i i i i i i i i i i i i i i i i i i	-004	*1	n/a	n/a	1/15/10	Xing
,	-005	ti	n/a	n/a	1/15/10	Xing
ı	-006	11	n/a	n/a	1/15/10	Xing
r	-007	*1	n/a	n/a	1/15/10	Xing
1	-008	91	n/a	n/a	1/15/10	Xing
•	-009	41	n/a	n/a	1/15/10	Xing
,	-010	11	n/a	n/a	1/15/10	Xing
		11	n/a		1/15/10	Xing

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 1 International Blvd. Suite 406 Mahwah, NJ 07495

Project Name: KINGS ELECTRONICS - VENDOR #1168636 IAL Case Number: E09-10185

These data have been reviewed and accepted by:

Michael H. Left, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed.

Sample Summary

IAL Case No.

Client Arcadis Geraghty & Miller

E09-10185

Project KINGS ELECTRONICS - VENDOR #1168636

Received On <u>10/7/2009@15:05</u>

					<u># of</u>
<u>Lab ID</u>	<u>Client Sample ID</u>	Depth Top/Bottom	<u>Sampling Time</u>	<u>Matrix</u>	<u>Container</u>
10185-001	$\overline{\text{GP-104R}}$	n/a	10/ 7/2009@10:32	Aqueous	$2^{\circ\circ\circ\circ}$
10185-002	GP-103R	n/a	10/ 7/2009@09:42	Aqueous	2
10185-003	PTW-2	n/a	10/ 7/2009@12:02	Aqueous	2
10185-004	MW-13R	n/a	10/ 6/2009@12:43	Aqueous	2
10185-005	MW-9D	n/a	10/ 6/2009@10:59	Aqueous	2
10185-006	MW-9S	n/a	10/ 6/2009@12:05	Aqueous	2
10185-007	MW-6S	n/a	10/6/2009@11:14	Aqueous	2
10185-008	FB(100609)	n/a	10/ 6/2009@12:00	Aqueous	2
10185-009	FB(100709)	n/a	10/ 7/2009@10:20	Aqueous	2
10185-010	TB(100609)	n/a	10/ 6/2009	Aqueous	1
10185-011	DUP(100709)	n/a	10/ 7/2009	Aqueous	2

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	. 5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	64 68

MATRIX QUALIFIERS

- **A** Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- C Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- D.F. Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates an estimated value. The compound was detected at a value below the method detection limit but greater than zero. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- MDL Method Detection Limit.
- **MI** Indicates compound concentration could not be determined due to <u>Matrix Interferences</u>.
- NA Not Applicable.
- ND Indicates the compound was analyzed for but <u>Not Detected</u> at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRONICS - VENDOR #1168636) on October 7, 2009 for the analysis of:

(11) PP VOA + Cis 1,2-DCE(1) VO Project Revision

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

ləil

Date

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E09-10185

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	<u>√</u>
2.	Table of Contents.	<u> </u>
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	√
5.	Document bound, paginated and legible.	
6.	Chain of Custody.	√
7.	Methodology Summary.	
8.	Laboratory Chronicle and Holding Time Check.	
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	✓
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	√
12.	NonConformance Summary.	√

.

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS

Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks).	La	b Case Number:	E09 - 0 85			
a. BFB Passed	Chromatograms	Labeled/Compound	s Identified (Field Samples and Me	ethod Blanks).	<u>No</u>	<u>Yes</u> √
12 hours for 8000 series and 8 hours for 500 series. GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series. GC/MS Calibration Requirements: a. Calibration Check Compounds b. System Performance Check Compounds Blank Contamination - If yes, list compounds and concentrations in each blank: Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range) If not met, were the calculations checked and the results qualified as "estimated"? Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range) Internal Standard Area/Retention Time Shift meet criteria Matrix Spike Holding Time Met If not met, list number of days exceeded for each sample: Analysis Holding Time Met If not met, list number of days exceeded for each sample: Sample Dilution Performed High Target High Nontarget Compounds Matrix Interference Other		Specifications:				1
analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series GC/MS Calibration Requirements: a. Calibration Check Compounds	GC/MS Tuning I 12 hours for 800	Frequency - Perform 00 series and 8 hours	ed every 24 hours for 600 series, s for 500 series.	-		✓
a. Calibration Check Compounds na b. System Performance Check Compounds na Blank Contamination - If yes, list compounds and concentrations in each blank:	analysis and co	ntinuing calibration p	erformed within 24 hours before sa	sample :- Imple		1
b. System Performance Check Compounds na Blank Contamination - If yes, list compounds and concentrations in each blank: ✓ Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range) ✓ If not met, were the calculations checked and the results qualified as "estimated"? na Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range) na Internal Standard Area/Retention Time Shift meet criteria ✓ Extraction Holding Time Met na If not met, list number of days exceeded for each sample: ✓ Sample Dilution Performed Matrix Interference High Target High Nontarget Compounds Other						па
Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range) If not met, were the calculations checked and the results qualified as "estimated"? Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range) Internal Standard Area/Retention Time Shift meet criteria Katrix Criteria Met If not met, list number of days exceeded for each sample: Analysis Holding Time Met If not met, list number of days exceeded for each sample: Sample Dilution Performed High Target Compounds Matrix Interference Other	⁵ b. System Perfo	ormance Check Com	pounds	_		na
recoveries which fall outside the acceptable range) If not met, were the calculations checked and the results qualified as "estimated"? Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range) Internal Standard Area/Retention Time Shift meet criteria Internal Standard Area/Retention Time Shift meet criteria Internal Standard Area/Retention Time Shift meet criteria If not met, list number of days exceeded for each sample: Analysis Holding Time Met If not met, list number of days exceeded for each sample: Sample Dilution Performed High Nontarget Compounds Other	Blank Contamin	ation - If yes, list con	npounds and concentrations in eac	h blank:	✓	
Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range) na Internal Standard Area/Retention Time Shift meet criteria ✓ Extraction Holding Time Met	Surrogate Recoveries which	veries Meet Criteria (n fall outside the acc	(If not met, list those compounds a eptable range)	nd their	·	✓
and their recoveries/% differences which fall outside the acceptable range) Internal Standard Area/Retention Time Shift meet criteria Extraction Holding Time Met If not met, list number of days exceeded for each sample: Analysis Holding Time Met If not met, list number of days exceeded for each sample: Analysis Holding Time Met If not met, list number of days exceeded for each sample: Sample Dilution Performed High Target Compounds Matrix Interference Other	If not met, were	the calculations chec	cked and the results qualified as "e	stimated"?		na
Extraction Holding Time Met	Matrix Spike/Ma and their recove	trix Spike Duplicate i eries/% differences w	meet criteria (if not, list those comp /hich fall outside the acceptable rai	pounds		na
If not met, list number of days exceeded for each sample:	Internal Standar	d Area/Retention Tin	ne Shift meet criteria			· •
If not met, list number of days exceeded for each sample: Sample Dilution Performed			ded for each sample:			<u>na</u>
If not met, list number of days exceeded for each sample: Sample Dilution Performed	- <u> </u>		······			
Sample Dilution Performed High Target High Nontarget Compounds Compounds Matrix Interference Other		•	ded for each sample:	-		✓
High Target High Nontarget Compounds Compounds Other					1	
	High Target		et		<u> </u>	
Comments:	Compounds	Compounds		Other		
	Comments:	L		l]		
Ato 10/13/09						
10/13/09						
10/13/09						
Organics Manager Date	<i>A</i>	40-		6 13/09		

Project: KINGS ELECTRONICS - VENDOR #1168636 Lab Case No.: E09-10185									
	Lab ID:		5-001		5-002	1018	35-003	1018	5-004
	Client ID:	GP-	104R	GP-	10 3R	РТ	'W-2	MW	-13R
	Matrix:	Aqı	ieous	Aqu	eous	Aq	ueous	Aqu	eous
	Sampled Date	-	7/09	10/	7/09	10	7/09	10/	6/09
PARAMETER(Units)	-	Conc	Q MDL	Conc (Q MDL	Conc	Q MDL	Conc (Q MDL
Volatiles (Units)		(ug/1	L-ppb)	(ug/L	-ppb)	(ug/1	L-ppb)	(ug/L	-ppb)
Vinyl chloride		1.48	0.470	5.61	0.470	0.632	0.470	0.673	0.470
trans-1,2-Dichloroethene		0.971	0.340	0.479	0.340	0.384	0.340	ND	0.340
1,1-Dichloroethane		0.931	0.260	0.620	0.260	1.41	0.260	1.20	0.260
cis-1,2-Dichloroethene		1.26	0.270	2.21	0.270	2.19	0.270	0.668	0.270
Trichloroethene		0.591	0.310		0.310	1.14	0.310	1.08	0.310
TOTAL VO's:		5.23		9.46		5.76		3.62	
IOIAL VO3.	Lab ID:		5-005		5-006		35-007		5-008
	Client ID:		V-9D		V-9S		W-6S	1	0609)
	Matrix:		ieous		eous		ueous	1	eous
	Sampled Date		6/09	-	6/09	-	/6/09		6/09
PARAMETER(Units)	5		Q MDL		Q MDL		Q MDL	Conc (Q MDL
Volatiles (Units)		(ug/1	-ppb)	(ug/L	-ppb)	(ug/I	L-ppb)	(ug/L	-ppb)
Vinyl chloride		ND	0.470	1.15	0.470	ND	0.470	ND	0.470
trans-1,2-Dichloroethene		ND	0.340	0.934	0.340	ND	0.340	ND	0.340
1,1-Dichloroethane		ND	0.260	0.646	0.260	ND	0.260	ND	0.260
cis-1,2-Dichloroethene		ND	0.270	0.687	0.270	ND	0.270	ND	0.270
Trichloroethene		ND	0.310	ND	0.310	18.5	0.310	ND	0.310
Tetrachloroethene		ND	0.300	ND	0.300	2.49	0.300	ND	0.300
				2.40		21.0		ND	
TOTAL VO's:	I.I.D.	ND	5-009	3.42	5-010	21.0	85-011	IND	
	Lab ID: Client ID:		00709)		5-010 D0609)		100709)		
	Matrix:		ieous		eous		ueous		
	Sampled Date		7/09	-	6/09		/7/09		
PARAMETER(Units)	Sampled Date		Q MDL	•	Q MDL		Q MDL		
Volatiles (Units)		(ug/l	L-ppb)	(ug/1	ppb)	(ug/	L-ppb)		
Vinyl chloride		ND	0.470	ND	0.470	2.29	0.470	-	
trans-1,2-Dichloroethene		ND	0.340	ND	0.340	1.22	0.340		
1,1-Dichloroethane		ND	0.260	ND	0.260	1.21	0.260		
cis-1,2-Dichloroethene		ND	0.270	ND	0.270	1.53	0.270		
Trichloroethene		ND	0.310	ND	0.310	0.731	0.310		
				ND		6.98			
TOTAL VO's:	<u> </u>	ND				0.70			

SUMMARY REPORT Client: Arcadis Geraghty & Miller Project: KINGS ELECTRONICS - VENDOR #1168636

ND = Analyzed for but Not Detected at the MDL

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-001 Client ID: GP-104R Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L0998.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.930
Vinyl chloride	1.48		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND		0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	0.971		0.340
1,1-Dichloroethane	0.931		0.260
cis-1,2-Dichloroethene	1.26		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	0.591		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	ND		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

Total Target Compounds: 5.23

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-002 Client ID: GP-103R Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L1000.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

ChloromethaneND0.930Vinyl chloride5.610.470BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND1.741,1-DichloroetheneND1.98AcrylonitrileND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethene0.6200.260cis1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroetheneND0.2801,2-Dichloroethene0.5410.3101,2-Dichloroethene0.5410.3101,2-Dichloroethene0.5410.3101,2-Dichloroethene0.5410.3101,2-DichloroethaneND0.2801,2-DichloroetheneND0.2502-ChloroetheneND0.3101,2-DichloroethaneND0.300trichloroethaneND0.300trichloroetheneND0.300trichloroetheneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.330Chloroet	Compound	Concentration	Q	MDL
BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethene0.6200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2201,1,1-Trichloroethane0.5410.3101,2-Dichloroethane (EDC)ND0.240BenzeneND0.2801,2-Dichloroethane0.5410.3101,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2802-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropaneND0.3001,1,2-TrichloroptopeneND0.3001,1,2-TrichloroethaneND0.330ChlorobenzeneND0.330DibromochloromethaneND0.240Total XylenesND0.240Total XylenesND0.240Total XylenesND0.240Total XylenesND0.240Total XylenesND0.2501,1,2-TritchloroethaneND0.2501,1,2,2-Tetrachloroethane <td>Chloromethane</td> <td>ND</td> <td></td> <td>0.930</td>	Chloromethane	ND		0.930
ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethene0.6200.260cis-1,2-Dichloroethene2.210.270ChlorooftamND0.2201,1-1richloroethaneND0.2801,2-Dichloroethane0.5410.3101,2-Dichloroethane0.5410.3101,2-Dichloroethane0.5410.3101,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-Dichloroethane0.5410.3101,2-DichloroethaneND0.280BromodichloromethaneND0.2801,2-DichloropropaneND0.280BromodichloromethaneND0.2801,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240TetrachloroetneneND0.300DibromochloromethaneND <td>Vinyl chloride</td> <td>5.61</td> <td></td> <td>0.470</td>	Vinyl chloride	5.61		0.470
TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethene0.200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.230Carbon tetrachlorideND0.240BenzeneND0.240BenzeneND0.250Crichloroethane0.5410.3101,2-DichloroethaneND0.290TrichloroethaneND0.250Carbon tetrachlorideND0.250Carbon tetrachlorideND0.240BenzeneND0.250ChloroethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300TrichloroethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2-TrichloroethaneND0.2501,1,2-TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.130<	Bromomethane	ND		0.950
AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethene0.2210.270ChloroformND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2801,2-Dichloroethane0.5410.2101,1,1-TrichloroethaneND0.240BenzeneND0.2801,2-Dichloroethene0.5410.3101,2-DichloroethaneND0.2801,2-DichloroethaneND0.2502-Chloroethyl vinyl etherND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.300Trans-1,3-DichloropropeneND0.3001,1,2-TrichloroethaneND0.3001,1,2-TrichloroethaneND0.3001,1,2-TrichloroethaneND0.3301,1,2-TrichloroethaneND0.3301,1,2-TrichloroethaneND0.3301,1,2-TrichloroethaneND0.330DibromochloromethaneND0.240TetrachloroetheneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND	Chloroethane	ND		0.170
1,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethane0.6200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.240BenzeneND0.290Trichloroethane (EDC)ND0.280BenzeneND0.280BromodichloromthaneND0.280BromodichloromthaneND0.280BromodichloromthaneND0.280ChloroethaneND0.280BromodichloromthaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240Total XylenesND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.130	Trichlorofluoromethane	ND		0.310
Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethane0.6200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane (EDC)ND0.280Benzene0.5410.3101,2-DichloroethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280Carbon tetrachlorideND0.280BromodichloromethaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240Total XylenesND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0	Acrolein	ND		1.74
AcrylonitrileND1.16trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethane0.6200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane (EDC)ND0.2801,2-Dichloropthane0.5410.3101,2-DichloropthaneND0.280BromodichloromethaneND0.280StornodichloropthaneND0.280StornodichloropthaneND0.280Carbon tetrachlorideND0.290TrichloroethaneND0.280BromodichloropthaneND0.280BromodichloropthaneND0.280StornodichloropthaneND0.2802-Chloroethyl vinjl etherND0.400cis-1,3-DichloropropeneND0.300Trans-1,3-DichloropropeneND0.300TetrachloroethaneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.340TetrachloroethaneND0.240TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,1,2,2-TetrachloroethaneND0.130 </td <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.360</td>	1,1-Dichloroethene	ND		0.360
trans-1,2-Dichloroethene0.4790.3401,1-Dichloroethane0.6200.260cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.280Trichloroethane0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2802-Chloroethyl vinyl etherND0.280cis-1,3-DichloropropaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.330chloroetheneND0.330ChloroethaneND0.330ChloroethaneND0.330ChloroethaneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.330ChlorobenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND <td< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>1.98</td></td<>	Methylene chloride	ND		1.98
1,1-Dichloroethane0.6200.260cis-1,2-Dichloroethane2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.240BenzeneND0.240BenzeneND0.290Trichloroethane0.5410.3101,2-DichloropropaneND0.2502-ChloroethaneND0.2502-ChloroethaneND0.2502-ChloroethaneND0.400cis-1,3-DichloropropaneND0.400rans-1,3-DichloropropaneND0.300trans-1,3-DichloropropaneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.240TetrachloroethaneND0.330ChlorobenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND	Acrylonitrile	ND		1.16
cis-1,2-Dichloroethene2.210.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene0.5410.3101,2-DichloroptheneND0.2502-Chloroethyl vinyl etherND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.400cis-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloroptheneND0.300DibromochloromethaneND0.300trans-1,3-DichloroptheneND0.300trans-1,3-DichloroptheneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240Total XylenesND0.240Total XylenesND0.240Total XylenesND0.240Total XylenesND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-Dichlorobenzene<	trans-1,2-Dichloroethene	0.479		0.340
ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vingl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.240TetrachloroetheneND0.330DibromochloromethaneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,1-Dichloroethane	0.620		0.260
1,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300ChloroetheneND0.300trans-1,3-DichloropropeneND0.300TetrachloroethaneND0.300ChlorobenzeneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	cis-1,2-Dichloroethene	2.21		0.270
Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300ChloroetheneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300ChloroetheneND0.3001,1,2-TrichloroethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240Total XylenesND0.240BromoformND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Chloroform	ND		0.220
1,2-Dichloroethane (EDC) ND 0.240 Benzene ND 0.290 Trichloroethene 0.541 0.310 1,2-Dichloropropane ND 0.280 Bromodichloromethane ND 0.250 2-Chloroethyl vinyl ether ND 0.400 cis-1,3-Dichloropropene ND 0.140 Toluene ND 0.300 trans-1,3-Dichloropropene ND 0.130 1,1,2-Trichloroethane ND 0.300 Dibromochloromethane ND 0.240 Total Xylenes ND 0.240 Bromoform ND 0.250 1,1,2,2-Tetrachloroethane ND 0.250 1,1,2,2-Tetrachloroethane ND 0.130<	1,1,1-Trichloroethane	ND		0.250
BenzeneND0.290Trichloroethene0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichloroptopeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Carbon tetrachloride	ND		0.280
Trichloroethene0.5410.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,2-Dichloroethane (EDC)	ND		0.240
1,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Benzene	ND		0.290
BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Trichloroethene	0.541		0.310
2-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,2-Dichloropropane	ND ·		0.280
cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Bromodichloromethane	ND		0.250
TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	2-Chloroethyl vinyl ether	ND		0.400
trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	cis-1,3-Dichloropropene	ND		0.140
1,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Toluene	ND		0.300
TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	trans-1,3-Dichloropropene	ND		0.130
DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	1,1,2-Trichloroethane	ND		0.240
ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Tetrachloroethene	ND		0.300
EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Dibromochloromethane	ND		0.330
Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Chlorobenzene	ND		0.170
BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Ethylbenzene	ND		0.240
1,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Total Xylenes	ND		0.740
1,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Bromoform	ND		0.250
1,4-Dichlorobenzene ND 0.180	1,1,2,2-Tetrachloroethane	ND		0.190
	1,3-Dichlorobenzene	ND		0.130
1,2-Dichlorobenzene ND 0.110	1,4-Dichlorobenzene	ND		0.180
	1,2-Dichlorobenzene	ND		0.110

Total Target Compounds:

9.46

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-003 Client ID: PTW-2 Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L1002.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.930
Vinyl chloride	0.632		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND		0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND -		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	0.384		0.340
1,1-Dichloroethane	1.41		0.260
cis-1,2-Dichloroethene	2.19		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND ¹		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	1.14		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	ND		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

5.76

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-004 Client ID: MW-13R Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L0999.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

ChloromethaneND0.930Vinyl chloride0.6730.470BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.2201,1-Dichloroethane1.200.260cis-1,2-DichloroetheneND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.230Carbon tetrachlorideND0.240BenzeneND0.240BenzeneND0.250Carbon tetrachlorideND0.230Trichloroethane1.080.3101,2-DichloropropaneND0.2502-Chloroethyl vinyl etherND0.2502-Chloroethyl vinyl etherND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND <td< th=""></td<>
BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1-TrichloroethaneND0.2201,1-TrichloroethaneND0.2201,2-DichloroethaneND0.2201,2-DichloroethaneND0.2201,2-DichloroethaneND0.2201,2-DichloroethaneND0.2801,2-DichloroethaneND0.240BenzeneND0.2502-ChloroetheneND0.2502-ChloroethaneND0.2502-ChloroethaneND0.400cis-1,3-DichloropropeneND0.400cis-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TeacheneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1
ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-Dichloroethene1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroetheneND0.2801,2-DichloropropaneND0.2502-ChloroethaneND0.2502-ChloroethaneND0.400cis-1,3-DichloropropaneND0.300trans-1,3-DichloropropaneND0.300trans-1,3-DichloropropaneND0.300trans-1,3-DichloropropaneND0.300trans-1,3-DichloropropaneND0.240TerachloroethaneND0.240TerachloroethaneND0.240TerachloroethaneND0.240
TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-Dichloroethene1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.2801,2-Dichloroethane0.0800.240BenzeneND0.240BenzeneND0.2801,2-Dichloropthane1.080.3101,2-DichloropthaneND0.2801,2-Dichloroethane1.080.3101,2-DichloropthaneND0.2801,2-DichloropthaneND0.2801,2-DichloropthaneND0.2801,2-DichloropthaneND0.2801,2-DichloropthaneND0.2801,2-DichloropthaneND0.2601,2-DichloropthaneND0.2601,2-DichloropthaneND0.2601,2-DichloropthaneND0.2601,3-DichloropthaneND0.3001,3-DichloropthaneND0.3001,1,2-TrichloroethaneND0.2401,1,2-TrichloroethaneND0.3001,1,2-TrichloroethaneND0.300
AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-Dichloroethene1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2801,2-DichloroethaneND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.280Trichloroethene1.080.3101,2-DichloroppaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloroppeneND0.400TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
1,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-Dichloroethane1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane1.080.3101,2-DichloroppaneND0.2502-Chloroethyl vinyl etherND0.2502-ChloroppaneND0.400cis-1,3-DichloropponeND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroethaneND0.300
Methylene chloride ND 1.98 Acrylonitrile ND 1.16 trans-1,2-Dichloroethene ND 0.340 1,1-Dichloroethene 0.668 0.270 Chloroform ND 0.220 1,1,1-Trichloroethane ND 0.250 Carbon tetrachloride ND 0.280 1,2-Dichloroethane (EDC) ND 0.240 Benzene ND 0.280 Trichloroethane 1.08 0.310 1,2-Dichloroethane ND 0.280 Benzene ND 0.280 Trichloroethane 1.08 0.310 1,2-Dichloropropane ND 0.280 Bromodichloromethane ND 0.280 Bromodichloromethane ND 0.250 2-Chloroethyl vinyl ether ND 0.400 cis-1,3-Dichloropropene ND 0.300 trans-1,3-Dichloropropene ND 0.130 1,1,2-Trichloroethane ND 0.240 Tetrachloroethene ND <td0< td=""></td0<>
AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-Dichloroethane1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
trans-1,2-DichloroetheneND0.3401,1-Dichloroethane1.200.260cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2401,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.2502-ChloropropaneND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.240
trans-1,2-Dichloroethene ND 0.340 1,1-Dichloroethane 1.20 0.260 cis-1,2-Dichloroethene 0.668 0.270 Chloroform ND 0.220 1,1,1-Trichloroethane ND 0.250 Carbon tetrachloride ND 0.240 1,2-Dichloroethane (EDC) ND 0.240 Benzene ND 0.280 Trichloroethene 1.08 0.310 1,2-Dichloropropane ND 0.280 Bromodichloromethane ND 0.280 Bromodichloromethane ND 0.280 Bromodichloromethane ND 0.280 Bromodichloromethane ND 0.280 Bromodichloropropane ND 0.250 2-Chloroethyl vinyl ether ND 0.400 cis-1,3-Dichloropropene ND 0.140 Toluene ND 0.300 trans-1,3-Dichloropropene ND 0.130 1,1,2-Trichloroethane ND 0.240 Tetrachloroethene
cis-1,2-Dichloroethene0.6680.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.400cis-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.240
1,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
1,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
BenzeneND0.290Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
Trichloroethene1.080.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
1,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
2-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
1,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300
Tetrachloroethene ND 0.300
Dibromochloromethane ND 0.330
Chlorobenzene ND 0.170
Ethylbenzene ND 0.240
Total Xylenes ND 0.740
Bromoform ND 0.250
1,1,2,2-Tetrachloroethane ND 0.190
1,3-Dichlorobenzene ND 0.130
1,4-Dichlorobenzene ND 0.180
1,2-Dichlorobenzene ND 0.110

Total Target Compounds:

3.62

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-005 Client ID: MW-9D Date Received: 10/07/2009 Date Analyzed: 10/13/2009 Data file: L1053.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.930
Vinyl chloride	ND		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND		0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	ND		0.340
1,1-Dichloroethane	ND		0.260
cis-1,2-Dichloroethene	NÐ		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	ND		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	ND		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-006 Client ID: MW-9S Date Received: 10/07/2009 Date Analyzed: 10/13/2009 Data file: L1054.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.930
Vinyl chloride	1.15		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND		0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	0.934		0.340
1,1-Dichloroethane	0.646		0.260
cis-1,2-Dichloroethene	0.687		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	ND		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	ND		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

Total Target Compounds: 3.42

VOLATILE ORGANICS

	Client/Project: ARCADIS/KINGS_ELEC	
	Lab ID: 10185-007	GC/MS Column: DB-624
a series A series a series de la series de	Client ID: MW-6S	Sample wt/vol: 5ml
	Date Received: 10/07/2009	Matrix-Units: Aqueous-µg/L (ppb)
	Date Analyzed: 10/09/2009	Dilution Factor: 1
	Data file: L0997.D	% Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND	· · · · · · ·	0.930
Vinyl chloride	ND		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND		0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	ND		0.340
1,1-Dichloroethane	ND		0.260
cis-1,2-Dichloroethene	ND		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	18.5		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	2.49		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

Total Target Compounds: 21.0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-008 Client ID: FB(100609) Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L0990.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	· .
Chloromethane	ND		0.930	
Vinyl chloride	ND		0.470	
Bromomethane	ND		0.950	
Chloroethane	ND		0.170	·
Trichlorofluoromethane	ND		0.310	
Acrolein	ND		1.74	
1,1-Dichloroethene	ND		0.360	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.16	
trans-1,2-Dichloroethene	ND		0.340	
1,1-Dichloroethane	ND		0.260	
cis-1,2-Dichloroethene	ND		0.270	
Chloroform	ND		0.220	
1,1,1-Trichloroethane	ND		0.250	
Carbon tetrachloride	ND		0.280	
1,2-Dichloroethane (EDC)	ND		0.240	
Benzene	ND		0.290	
Trichloroethene	ND		0.310	
1,2-Dichloropropane	ND		0.280	
Bromodichloromethane	ND		0.250	
2-Chloroethyl vinyl ether	ND		0.400	
cis-1,3-Dichloropropene	ND		0.140	
Toluene	ND		0.300	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.240	
Tetrachloroethene	ND		0.300	
Dibromochloromethane	ND		0.330	
Chlorobenzene	ND		0.170	
Ethylbenzene	ND		0.240	
Total Xylenes	ND		0.740	
Bromoform	ND		0.250	
1,1,2,2-Tetrachloroethane	ND		0.190	
1,3-Dichlorobenzene	ND		0.130	
1,4-Dichlorobenzene	ND		0.180	
1,2-Dichlorobenzene	ND		0.110	

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-009 Client ID: FB(100709) Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L0991.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

ChloromethaneND0.930Vinyl chlorideND0.470BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.2201,1-DichloroetheneND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.240BenzeneND0.240BenzeneND0.3101,2-DichloroptopaneND0.280BromodichloromethaneND0.2801,2-DichloroptopaneND0.280		Concentration	Q	MDL	
BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.3101,2-DichloropropaneND0.230	•	ND		0.930	
ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.3101,2-DichloropropaneND0.280		ND		0.470	
TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND		0.950	
AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND	a a secondaria de la composición de la	0.170	
1,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	nethane	ND		0.310	
Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND		1.74	
AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	ne	ND		0.360	
trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	ide	ND		1.98	
1,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND		1.16	
cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	roethene	ND		0.340	
ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	ine	ND		0.260	
1,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	ethene	ND		0.270	
Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND		0.220	
Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280	thane	ND		0.250	
BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280		ND		0.280	
TrichloroetheneND0.3101,2-DichloropropaneND0.280	ine (EDC)	ND		0.240	
1,2-Dichloropropane ND 0.280		ND		0.290	
		ND		0.310	
Bromodichloromethane ND 0.250	bane	ND		0.280	
	iethane	ND		0.250	
2-Chloroethyl vinyl ether ND 0.400	nyl ether	ND		0.400	
cis-1,3-Dichloropropene ND 0.140	propene	ND		0.140	
Toluene ND 0.300		ND		0.300	
trans-1,3-Dichloropropene ND 0.130	ropropene	ND		0.130	
1,1,2-Trichloroethane ND 0.240	thane	ND		0.240	
Tetrachloroethene ND 0.300	ie	ND		0.300	
Dibromochloromethane ND 0.330	ıethane	ND		0.330	
Chlorobenzene ND 0.170		ND		0.170	
Ethylbenzene ND 0.240		ND		0.240	
Total Xylenes ND 0.740		ND		0.740	
Bromoform ND 0.250		ND		0.250	
1,1,2,2-Tetrachloroethane ND 0.190	oroethane	ND		0.190	
1,3-Dichlorobenzene ND 0.130	zene	ND		0.130	
1,4-Dichlorobenzene ND 0.180	zene	ND		0.180	
1,2-Dichlorobenzene ND 0.110	zene	ND		0.110	

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-010 Client ID: TB(100609) Date Received: 10/07/2009 Date Analyzed: 10/09/2009 Data file: L0992.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.930	
Vinyl chloride	ND		0.470	
Bromomethane	ND		0.950	
Chloroethane	ND		0.170	
Trichlorofluoromethane	ND		0.310	
Acrolein	ND		1.74	
1,1-Dichloroethene	ND		0.360	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.16	
trans-1,2-Dichloroethene	ND		0.340	
1,1-Dichloroethane	ND		0.260	
cis-1,2-Dichloroethene	ND		0.270	
Chloroform	ND		0.220	
1,1,1-Trichloroethane	ND		0.250	
Carbon tetrachloride	ND		0.280	
1,2-Dichloroethane (EDC)	ND		0.240	
Benzene	ND	- -	0.290	
Trichloroethene	ND		0.310	
1,2-Dichloropropane	ND		0.280	
Bromodichloromethane	, ND		0.250	
2-Chloroethyl vinyl ether	ND .		0.400	
cis-1,3-Dichloropropene	ND		0.140	
Toluene	ND		0.300	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.240	
Tetrachloroethene	ND		0.300	
Dibromochloromethane	ND		0.330	
Chlorobenzene	ND		0.170	
Ethylbenzene	ND ·		0.240	
Total Xylenes	ND		0.740	
Bromoform	ND		0.250	
1,1,2,2-Tetrachloroethane	ND		0.190	
1,3-Dichlorobenzene	ND		0.130	
1,4-Dichlorobenzene	ND		0.180	
1,2-Dichlorobenzene	ND		0.110	

Total Target Compounds:

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 10185-011 Client ID: DUP(100709) Date Received: 10/07/2009 Date Analyzed: 10/13/2009 Data file: L1055.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL	
Chloromethane	ND		0.930	
Vinyl chloride	2.29		0.470	
Bromomethane	ND		0.950	
Chloroethane	ND		0.170	
Trichlorofluoromethane	ND		0.310	
Acrolein	ND		1.74	
1,1-Dichloroethene	ND		0.360	
Methylene chloride	ND		1.98	
Acrylonitrile	ND		1.16	
trans-1,2-Dichloroethene	1.22		0.340	
1,1-Dichloroethane	1.21		0.260	
cis-1,2-Dichloroethene	1.53		0.270	
Chloroform	ND		0.220	
1,1,1-Trichloroethane	ND		0.250	
Carbon tetrachloride	ND		0.280	
1,2-Dichloroethane (EDC)	ND		0.240	
Benzene	ND		0.290	
Trichloroethene	0.731		0.310	
1,2-Dichloropropane	ND		0.280	
Bromodichloromethane	ND		0.250	
2-Chloroethyl vinyl ether	ND		0.400	
cis-1,3-Dichloropropene	ND		0.140	
Toluene	ND		0.300	
trans-1,3-Dichloropropene	ND		0.130	
1,1,2-Trichloroethane	ND		0.240	
Tetrachloroethene	ND		0.300	
Dibromochloromethane	ND		0.330	
Chlorobenzene	ND		0.170	
Ethylbenzene	ND		0.240	
Total Xylenes	ND		0.740	
Bromoform	ND		0.250	
1,1,2,2-Tetrachloroethane	ND		0.190	
1,3-Dichlorobenzene	ND		0.130	
1,4-Dichlorobenzene	ND		0.180	
1,2-Dichlorobenzene	ND		0.110	

Total Target Compounds:

6.98

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>L0892.D</u>	BFB Injection Date:	<u>10/06/20</u>	<u>)09</u>
Inst ID:	MSD_L	BFB Injection Time:	<u>9:38</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	19.1		
75	30.0 - 60.0% of mass 95	55.0		
95	Base peak, 100% relative abundance	ce 100.0		
96	5.0 - 9.0% of mass 95	6.7		
173	Less than 2.0% of mass 174	0.4 (0.7)1
174	Great than 50.0% of mass 95	62.7		
175	5.0 - 9.0% of mass 174	4.5 ((7.2)1
176	95.0 - 101.0% of mass 174	63.3 ((100.9)1
177	5.0 - 9.0% of mass 176	4.3 (6.8)2
	1-Value is % mass 174	2-Value is % mass 1'	76	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
1PPB	STD1PPB	L0893.D	10/06/2009	10:05	
5PPB	STD-5PPB	L0895.D	10/06/2009	11:09	
20PPB	STD-20PPB	L0897.D	10/06/2009	12:55	
100PPB	STD-100PPB	L0899.D	10/06/2009	13:53	
150PPB	STD-150PPB	L0900.D	10/06/2009	14:23	
200PPB	STD-200PPB	L0901.D	10/06/2009	14:54	
N/A	METHOD-BLK	L0905.D	10/06/2009	17:12	
NS-MW-7/12.69	09991-001	L0906.D	10/06/2009	17:41	
LCS-50PPB	BLK-SPK	L0907.D	10/06/2009	18:09	
MS	09991-001MS	L0908.D	10/06/2009	18:37	
MSD	09991-001MSD	L0909.D	10/06/2009	19:06	
NS-MW-6/12.58	09991-002	L0910.D	10/06/2009	19:33	
NS-MW-3/7.79	09991-003	L0911.D	10/06/2009	20:00	
NS-MW-4/9.43	09991-004	L0912.D	10/06/2009	20:27	
NS-MW-2/8.62	09991-006	L0914.D	10/06/2009	21:21	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	L0983.D	BFB Injection Date:	<u>10/09/20</u>	<u>)09</u>
Inst ID:	MSD_L	BFB Injection Time:	<u>10:14</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	19.1		
75	30.0 - 60.0% of mass 95	53.5		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	5.4		
173	Less than 2.0% of mass 174	0.5 (0.9)1
174	Great than 50.0% of mass 95	56.2		
175	5.0 - 9.0% of mass 174	4.2 (7.5)1
176	95.0 - 101.0% of mass 174	56.7 (100.9)1
177	5.0 - 9.0% of mass 176	5.0 (8.9)2
	1-Value is % mass 174	2-Value is % mass 17	'6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-210PPB	L0984.D	10/09/2009	10:41	-
N/A	METHOD-BLK	L0987.D	10/09/2009	12:13	
FB	10152-006	L0988.D	10/09/2009	12:41	
TB	10152-007	L0989.D	10/09/2009	13:10	
FB(100609)	10185-008	L0990.D	10/09/2009	13:38	
FB(100709)	10185-009	L0991.D	10/09/2009	14:07	
TB(100609)	10185-010	L0992.D	10/09/2009	14:36	
BLDG_710	10175-001	L0993.D	10/09/2009	15:05	
LCS-50PPB	BLK-SPK	L0994.D	10/09/2009	15:36	
MS	10152-006MS	L0995.D	10/09/2009	16:06	
MSD	10152-006MSD	L0996.D	10/09/2009	16:35	
MW-6S	10185-007	L0997.D	10/09/2009	17:03	
GP-104R	10185-001	L0998.D	10/09/2009	17:31	
MW-13R	10185-004	L0999.D	10/09/2009	18:01	
GP-103R	10185-002	L1000.D	10/09/2009	18:30	
PTW-2	10185-003	L1002.D	10/09/2009	19:29	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>L1039.D</u>	BFB Injection Date:	10/13/20	009
Inst ID:	MSD_L	BFB Injection Time:	<u>9:57</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	19.2		
75	30.0 - 60.0% of mass 95	52.5		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	5.9		
173	Less than 2.0% of mass 174	0.6 (1.2)1
174	Great than 50.0% of mass 95	51.0		
175	5.0 - 9.0% of mass 174	4.5 (8.9)1
176	95.0 - 101.0% of mass 174	50.6 (99.2)1
177	5.0 - 9.0% of mass 176	3.2 (6.3)2
	I-Value is % mass 174	2-Value is % mass 17	'6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	L1040.D	10/13/2009	10:24	
N/A	METHOD-BLK	L1044.D	10/13/2009	12:20	
TCLP	TCLP-BLK	L1045.D	10/13/2009	12:48	
WASTE_CLASS	10308-001	L1046.D	10/13/2009	13:16	
ROLL_OFF_LIME	10340-001	L1047.D	10/13/2009	13:44	
FWPH_SOILS	10340-002	L1048.D	10/13/2009	14:12	
TCLP	TCLP-SPK	L1049 D	10/13/2009	14:40	
LCS-50PPB	BLK-SPK	L1050.D	10/13/2009	15:09	
MS	10152 -001MS	L1051.D	10/13/2009	15:38	
MSD	10152-001MSD	L1052.D	10/13/2009	16:06	
MW-9D	10185-005	L1053.D	10/13/2009	16:34	
MW-9D MW-9SK (1010)	10185-006	L1054.D	10/13/2009	17:02	
DUP(100709)	10 185-01 1	L1055.D	10/13/2009	17:30	
MW-1	10152-001	L1058.D	10/13/2009	18:55	
MW-3	10152-003	L1059.D	10/13/2009	19:23	
MW-2R	10152-002	L1060.D	10/13/2009	19:50	
MW-5R	10152-005	L1062.D	10/13/2009	20:45	
MW-4R	10152-004	L1064.D	10/13/2009	21:38	

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>L0987.D</u>	Instrument ID:	<u>MSD_L</u>
Date Analyzed:	<u>10/09/2009</u>	Time Analyzed:	<u>12:13</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
FB	10152-006	10/09/2009	12:41
TB	10152-007	10/09/2009	13:10
FB(100609)	10185-008	10/09/2009	13:38
FB(100709)	10185-009	10/09/2009	14:07
TB(100609)	10185-010	10/09/2009	14:36
BLDG 710	10175-001	10/09/2009	15:05
LCS-50PPB	BLK-SPK	10/09/2009	15:36
MS	10152-006MS	10/09/2009	16:06
MSD	10152-006MSD	10/09/2009	16:35
MW-6S	10185-007	10/09/2009	17:03
GP-104R	10185-001	10/09/2009	17:31
MW-13R	10185-004	10/09/2009	18:01
GP-103R	10185-002	10/09/2009	18:30
PTW-2	10185-003	10/09/2009	19:29

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: N/A Date Received: Date Analyzed: 10/09/2009 Data file: L0987.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	MDL
Chloromethane	ND		0.930
Vinyl chloride	ND		0.470
Bromomethane	ND		0.950
Chloroethane	ND		0.170
Trichlorofluoromethane	ND	4 ¹	0.310
Acrolein	ND		1.74
1,1-Dichloroethene	ND		0.360
Methylene chloride	ND		1.98
Acrylonitrile	ND		1.16
trans-1,2-Dichloroethene	ND		0.340
1,1-Dichloroethane	ND		0.260
cis-1,2-Dichloroethene	ND		0.270
Chloroform	ND		0.220
1,1,1-Trichloroethane	ND		0.250
Carbon tetrachloride	ND		0.280
1,2-Dichloroethane (EDC)	ND		0.240
Benzene	ND		0.290
Trichloroethene	ND		0.310
1,2-Dichloropropane	ND		0.280
Bromodichloromethane	ND		0.250
2-Chloroethyl vinyl ether	ND		0.400
cis-1,3-Dichloropropene	ND		0.140
Toluene	ND		0.300
trans-1,3-Dichloropropene	ND		0.130
1,1,2-Trichloroethane	ND		0.240
Tetrachloroethene	ND		0.300
Dibromochloromethane	ND		0.330
Chlorobenzene	ND		0.170
Ethylbenzene	ND		0.240
Total Xylenes	ND		0.740
Bromoform	ND		0.250
1,1,2,2-Tetrachloroethane	ND		0.190
1,3-Dichlorobenzene	ND		0.130
1,4-Dichlorobenzene	ND		0.180
1,2-Dichlorobenzene	ND		0.110

0

Total Target Compounds:

0021

VOLATILE METHOD BLANK SUMMARY

Lab File ID:L1044.DInstrument ID:MSD_LDate Analyzed:10/13/2009Time Analyzed:12:20

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
TCLP	TCLP-BLK	10/13/2009	12:48
WASTE_CLASS	10308-001	10/13/2009	13:16
ROLL_OFF_LIME	10340-001	10/13/2009	13:44
FWPH_SOILS	10340-002	10/13/2009	14:12
TCLP	TCLP-SPK	10/13/2009	14:40
LCS-50PPB	BLK-SPK	10/13/2009	15:09
MS	10152-001MS	10/13/2009	15:38
MSD	10152-001MSD	10/13/2009	16:06
MW-9D	10185-005	10/13/2009	16:34
MW-9SR polo	10185-006	10/13/2009	17:02
DUP(100709)	10185-011	10/13/2009	17:30
MW-1	10152-001	10/13/2009	18:55
MW-3	10152-003	10/13/2009	19:23
MW-2R	10152-002	10/13/2009	19:50
MW-5R	10152-005	10/13/2009	20:45
MW-4R	10152-004	10/13/2009	21:38

FORM 4

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK

Client ID: N/A Date Received: Date Analyzed: 10/13/2009 Data file: L1044.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

ChloromethaneND0.930Vinyl chlorideND0.470BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16transn-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260rians-1,2-DichloroetheneND0.2201,1,1-TrichloroetheneND0.2201,1,1-TrichloroetheneND0.2201,1,1-TrichloroetheneND0.2201,1,1-TrichloroetheneND0.2801,2-DichloroetheneND0.2801,2-DichloroetheneND0.2801,2-DichloroetheneND0.2101,2-DichloroetheneND0.250Carbon tetrachlorideND0.2201,2-DichloroetheneND0.2301,2-DichloroetheneND0.2502-ChloroetheneND0.3101,2-DichloropropaneND0.300trans-1,3-DichloropropeneND0.330OthoroethaneND0.330OthoroethaneND0.330OthoroethaneND0.330OthoroethaneND0.330OthoroethaneND0.330OthoroethaneND0.240Trans-1,3-DichloroethaneND0.330OthoroethaneND0.340 <trr< th=""><th>Compound</th><th>Concentration</th><th>Q</th><th>MDL</th></trr<>	Compound	Concentration	Q	MDL
BromomethaneND0.950ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.240BenzeneND0.2301,2-Dichloroethane (EDC)ND0.240BenzeneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropaneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.240TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2-TritchloroethaneND0.2501,1,2-TritchloroethaneND0.2501,1,2-TritchloroethaneND0.2501,1,2-Tetrachloroet	Chloromethane	ND		0.930
ChloroethaneND0.170TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroetheneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1-1'trichloroethaneND0.250Carbon tetrachlorideND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.280BenzeneND0.280BromodichloromethaneND0.2502-ChloroethaneND0.2801,2-DichloropaneND0.280BromodichloromethaneND0.2801,1,2-TrichloroethaneND0.300trans-1,3-DichloroppaneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.330ChlorobenzeneND0.330DibromochloromethaneND0.240TetrachloroetheneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND<	Vinyl chloride	ND		0.470
TrichlorofluoromethaneND0.310AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.240(is-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2201,1,1-TrichloroethaneND0.2201,2-DichloroethaneND0.2201,2-DichloroethaneND0.240BenzeneND0.290TrichloroethaneND0.290TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-DichloroethaneND0.240BenzeneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240TetrachloroethaneND0.2501,1,2,2-Tet	Bromomethane	ND		0.950
AcroleinND1.741,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-DichloroethaneND0.240BenzeneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloroethaneND0.2801,2-DichloropropaneND0.210ScholterachlorideND0.280BromodichloromethaneND0.2101,2-DichloropropaneND0.3101,2-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.3301,1,2-TrichloroethaneND0.330ChlorobenzeneND0.240TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.130	Chloroethane	ND		0.170
1,1-DichloroetheneND0.360Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane (EDC)ND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.3101,2-DichloropopaneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-Tetrachloroethane	Trichlorofluoromethane	ND		0.310
Methylene chlorideND1.98AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290Trichloroethane (EDC)ND0.290TrichloroethaneND0.280BenzeneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240TetachloroetheneND0.240TetachloroetheneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.250 <td>Acrolein</td> <td>ND</td> <td></td> <td>1.74</td>	Acrolein	ND		1.74
AcrylonitrileND1.16trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChioroformND0.2201,1,1-TrichloroethaneND0.2801,1,2-Dichloroethane (EDC)ND0.240BenzeneND0.280Trichloroethane (EDC)ND0.2801,2-DichloroptheneND0.290TrichloroethaneND0.2801,2-DichloroptheneND0.2801,2-DichloroptheneND0.280StoromethaneND0.2801,2-DichloroptheneND0.280StoromethaneND0.280StoromethaneND0.280StoromethaneND0.2802-ChloroethaneND0.2802-ChloroethaneND0.2802-ChloroethaneND0.2802-ChloroethaneND0.300cis-1,3-DichloropropeneND0.3001,1,2-TrichloroethaneND0.3001,1,2-TrichloroethaneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240DibromochloromethaneND0.240ChlorobenzeneND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.130 <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.360</td>	1,1-Dichloroethene	ND		0.360
trans-1,2-DichloroetheneND0.3401,1-DichloroethaneND0.260cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.240BenzeneND0.290Trichloroethane (EDC)ND0.2801,2-DichloroppaneND0.280BromodichloromethaneND0.280SchloroethaneND0.280ChloroppaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenessND0.740BromoformND0.2501,1,2-TrichloroethaneND0.240Total XylenesND0.1301,1,2-TrichloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,1,2-TrichloroethaneND0.1301,1,2-TrichloroethaneND0.1301,1,2-TrichloroethaneND0.1301,1,2-TrichloroethaneND0.1301,1,2-Tetrachlo	Methylene chloride	ND		1.98
1,1-DichloroethaneND0.260cis-1,2-DichloroethaneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.3101,2-DichloroptaneND0.3101,2-DichloroptaneND0.250ZrichloroethaneND0.2502-ChloroethaneND0.2502-ChloroethaneND0.400cis-1,3-DichloropropaneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.330ChloroethaneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240TetrachloroethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.2501,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,1,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,3-DichlorobenzeneND0.1301,3-Dichlorobenzene </td <td>Acrylonitrile</td> <td>ND</td> <td></td> <td>1.16</td>	Acrylonitrile	ND		1.16
cis-1,2-DichloroetheneND0.270ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropopaneND0.2502-Chloroethyl vinyl etherND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropaneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240TetrachloroethaneND0.240DibromochloromethaneND0.240Total XylenesND0.240BromoformND0.2501,1,2-TitrachloroethaneND0.2501,1,2-TitrachloroethaneND0.2501,1,2-TitrachloroethaneND0.2501,1,2-TitrachloroethaneND0.1301,1,2-TitrachloroethaneND0.1301,1,2-TitrachloroethaneND0.1301,1,2-TitrachloroethaneND0.1301,1,2-TitrachloroethaneND0.1301,3-Dichlorobenzen	trans-1,2-Dichloroethene	ND		0.340
ChloroformND0.2201,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropopaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichloropenaeND0.1301,3-DichlorobenzeneND0.1301,1,2,2-TetrachloroethaneND0.1301,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,1-Dichloroethane	ND		0.260
1,1,1-TrichloroethaneND0.250Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300trans-1,3-DichloropropeneND0.300ChloroetheneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.240TetrachloroetheneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	cis-1,2-Dichloroethene	ND		0.270
Carbon tetrachlorideND0.2801,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chioroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.300trans-1,3-DichloropropeneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Chloroform	ND		0.220
1,2-Dichloroethane (EDC)ND0.240BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1301,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,1,1-Trichloroethane	ND		0.250
BenzeneND0.290TrichloroetheneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Carbon tetrachloride	ND		0.280
TrichloroetheneND0.3101,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,2-Dichloroethane (EDC)	ND		0.240
1,2-DichloropropaneND0.280BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	Benzene	ND		0.290
BromodichloromethaneND0.2502-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.330ChlorobenzeneND0.240Total XylenesND0.240JapanesND0.240JopanesND0.240Total XylenesND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Trichloroethene	ND		0.310
2-Chloroethyl vinyl etherND0.400cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.2401,1,2,2-TetrachloroethaneND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	1,2-Dichloropropane	ND		0.280
cis-1,3-DichloropropeneND0.140TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Bromodichloromethane	ND		0.250
TolueneND0.300trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	2-Chloroethyl vinyl ether	ND		0.400
trans-1,3-DichloropropeneND0.1301,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.130	cis-1,3-Dichloropropene	ND		0.140
1,1,2-TrichloroethaneND0.240TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Toluene	ND		0.300
TetrachloroetheneND0.300DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	trans-1,3-Dichloropropene	ND		0.130
DibromochloromethaneND0.330ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	1,1,2-Trichloroethane	ND		0.240
ChlorobenzeneND0.170EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Tetrachloroethene	ND		0.300
EthylbenzeneND0.240Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Dibromochloromethane	ND		0.330
Total XylenesND0.740BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Chlorobenzene	ND		0.170
BromoformND0.2501,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Ethylbenzene	ND		0.240
1,1,2,2-TetrachloroethaneND0.1901,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Total Xylenes	ND		0.740
1,3-DichlorobenzeneND0.1301,4-DichlorobenzeneND0.180	Bromoform	ND		0.250
1,4-Dichlorobenzene ND 0.180	1,1,2,2-Tetrachloroethane	ND		0.190
,	1,3-Dichlorobenzene	ND		0.130
1,2-Dichlorobenzene ND 0.110	1,4-Dichlorobenzene	ND		0.180
	1,2-Dichlorobenzene	ND		0.110

Total Target Compounds:

0

Method Path : C:\MSDCHEM\1\METHODS\ Method File : LAW1006.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Tue Oct 06 17:04:43 2009 Response Via : Initial Calibration Calibration Files 100=L0899.D200=L0901.D150=L0900.D1=L0893.D20=L0897.D5=L0895.D Compound 100 200 150 1 20 5 Avg %RSD 1) I Pentafluorobenzene -----ISTD-----ISTD-----2) T Dichlorodifluorom 0.637 0.497 0.518 0.576 0.632 0.639 0.583 10.90

 3) P
 Chloromethane
 0.841
 0.815
 0.795
 0.871
 0.977
 0.988
 0.881
 9.35

 4) C
 Vinyl chloride
 0.796
 0.695
 0.699
 0.654
 0.867
 0.891
 0.767
 12.89

 5) T
 Bromomethane
 0.301
 0.255
 0.301
 0.263
 0.355
 0.305
 13.99

 6) T
 Chloroethane
 0.343
 0.281
 0.261
 0.282
 0.320
 0.333
 0.303
 10.95

 7) T Trichlorofluorome 0.668 0.524 0.553 0.528 0.719 0.628 0.603 13.39 8) T Acrolein 0.082 0.072 0.062 0.054 0.066 0.074 0.068 14.44 9) MC 1,1-Dichloroethen 0.621 0.557 0.551 0.524 0.671 0.696 0.603 11.67 Acetone 0.162 0.151 0.144 0.199 0.190 0.161 0.168 13.04 0) T Carbon disulfide 2.059 1.929 1.905 1.411 2.075 1.848 1.871 12.95 1) T Vinyl acetate 2.830 2.619 2.546 2.394 3.126 2.992 2.751 10.17 2) T Methylene chlorid 0.825 0.777 0.751 0.938 0.971 1.021 0.881 12.63 3) T Acrylonitrile 0.307 0.279 0.241 0.212 0.228 0.239 0.251 14.03 4) T tert-Butyl alcoho 0.093 0.089 0.084 0.079 0.076 0.061 0.080 14.12 5) T trans-1,2-Dichlor 0.847 0.831 0.792 0.645 0.877 0.867 0.810 10.62 6) T Methyl tert-butyl 2.863 2.908 2.718 2.390 3.074 3.031 2.831 8.84 7) T 1,1-Dichloroethan 1.649 1.611 1.523 1.478 1.763 1.770 1.632 7.38 8) P Diisopropyl ether 2.865 2.741 2.615 2.733 3.202 3.190 2.891 8.61 9) T О) Т cis-1,2-Dichloroe 0.941 0.946 0.884 0.790 0.993 1.001 0.926 8.50 2,2-Dichloropropa 1.253 1.160 1.142 0.905 1.286 1.183 1.155 11.63 21) T 2-Butanone (MEK) 0.368 0.352 0.331 0.297 0.406 0.424 0.363 12.96 2) T Bromochloromethan 0.385 0.386 0.358 0.308 0.406 0.394 0.373 9.55 23) T Chloroform 1.678 1.650 1.562 1.476 1.800 1.812 1.663 7.91 25) C 1,1,1-Trichloroet 1.183 1.133 1.094 0.805 1.182 1.103 1.083 13.07 26) T Carbon tetrachlor 0.701 0.763 0.681 0.503 0.778 0.767 0.699 14.86 27) T 1,1-Dichloroprope 1.135 1.053 1.025 0.823 1.137 1.152 1.054 11.82 28) T 1,2-Dichloroethan 1.410 1.332 1.291 1.350 1.597 1.652 1.439 10.43 29) T 1,2-Dichloroethan 0.773 0.758 0.767 0.806 0.818 0.831 0.792 3.81 30) S 1,4-Difluorobenzene -----ISTD-----ISTD-----31) I 2.067 2.079 1.952 1.762 2.106 2.092 2.010 6.64 Benzene 32) M Trichloroethene 0.493 0.492 0.467 0.415 0.491 0.493 0.475 6.54 33) M 6.01 1,2-Dichloropropa 0.524 0.521 0.491 0.467 0.545 0.544 0.515 34) C Dibromomethane0.3400.3390.3170.2300.3500.3360.3191,4-Dioxane0.0040.0040.0040.0030.0040.0030.004 14.03 35) T 14.49 36) T Bromodichlorometh 0.712 0.727 0.678 0.507 0.654 0.562 0.640 13.63 37) T 38) T 2-Chloroethyl vin 0.366 0.373 0.344 0.284 0.357 0.319 0.340 9.89 cis-1,3-Dichlorop 0.907 0.905 0.808 0.592 0.855 0.743 0.802 14.98 39) T 4-Methyl-2-pentan 0.467 0.459 0.430 0.387 0.469 0.437 0.441 10) T 7.04 Toluene-d81.1921.1611.1811.1961.1821.2051.186Toluene1.2201.2171.1441.0231.2101.1851.167 1.28 11) S 6.50 12) MC trans-1,3-Dichlor 0.868 0.879 0.821 0.606 0.794 0.658 0.771 14.70 13) T 1,1,2-Trichloroet 0.406 0.409 0.379 0.308 0.411 0.397 0.385 10.29 14) T 45) T Tetrachloroethene 0.305 0.299 0.285 0.252 0.295 0.294 0.288 6.53 1,3-Dichloropropa 0.836 0.834 0.786 0.669 0.866 0.838 0.805 8.88 16) T 14.61 2-Hexanone 0.330 0.329 0.307 0.217 0.326 0.284 0.299 47) T Dibromochlorometh 0.269 0.289 0.284 0.187 0.259 0.276 0.261 14.44 48) T 1,2-Dibromoethane 0.445 0.448 0.417 0.308 0.446 0.415 0.413 13.02 49) T -----ISTD-----50) I Chlorobenzene-d5 51) MP Chlorobenzene 1.204 1.207 1.143 1.136 1.251 1.270 1.202 4.54 1,1,1,2-Tetrachlo 0.351 0.339 0.366 0.241 0.322 0.304 0.320 13.95 52) Т

			_							
3)	С	Ethylbenzene				1.746				6.38
4)	Т	m,p-Xylene				0.603				7.44
5 }	Т	o-Xylene				0.607				8.87
6)	Т	Styrene				1.004				12.58
7)	Ρ	Bromoform				0,165				11.93
8)	т	Isopropylbenzene	1.496	1,476	1.412	1.264	1.510	1.458	1.436	6.33
9)	S	Bromofluorobenzen				0.531				1.08
0)	Р	1,1,2,2-Tetrachlo	0.642	0.648	0.616	0.424	0.637	0.590	0.593	14.37
1)	Т	Bromobenzene				0.354				7.87
2)	Т	1,2,3-Trichloropr	0.526	0.530	0.497	0.384	0.556	0.549	0.507	12.56
3)	Т	n-Propylbenzene	1.773	1.739	1.665	1.551	1.793	1.773	1.716	5.38
4)	Т	2-Chlorotoluene				1.149				6,15
5)	Т	1,3,5-Trimethylbe	1.237	1.233	1.179	1.099	1.263	1.226	1,206	4.88
6)	Т	4-Chlorotoluene				1.411				4.73
7)	Т	tert-Butylbenzene				0.780				4.00
8)	Т	1,2,4-Trimethylbe	1.304	1.318	1.252	1.133	1.362	1.300	1.278	6.21
9)	Т	sec-Butylbenzene				1.055				5.66
0)	Т	1,3-Dichlorobenze	0.686	0.714	0,657	0.611	0.700	0.671	0.673	5.42
1)	Т	4-Isopropyltoluen	0.986	0.972	0.925	0.826	0.999	0.939	0.941	6.68
2)	Т	1,4-Dichlorobenze	0.717	0.746	0.694	0.644	0.742	0.710	0.709	5.26
3)	т	n-Butylbenzene				0.483			0.544	6.68
4)	Т	1,2-Dichlorobenze	0.696	0.735	0.674	0.573	0.710	0.691	0.680	8.30
5)	Т	1.2-Dibromo-3-chl	0.079	0.077	0,076	0.078	0.093	0.064	0.078	11.93
6)	\mathbf{r}	1,2,4-Trichlorobe							0.374	6.11
7)	Т	Hexachlorobutadie							0.143	7.65
8)	т		1.188							7.80
9)	Т	1,2,3-Trichlorobe	0.347	0.389	0,351	0.350	0.339	0.324	0.350	6.16
0)	Т	1,1,2-Trichloro-1								14.34
1)	Т	Methyl acetate				0.272			-	10.96
2)	Т		0.479							11.63
3)	Т	Methylcyclohexane	0.291	0.229	0.238	0.204	0.281	0.278	0.253	13.73

#) = Out of Range

W1006.M Tue Oct 06 17:04:49 2009 RPT1

Data F Acq Or Operat Sample Misc ALS Vi Quant Quant Quant QLast Respon	Path : C:\MSDCHEM\1\DATA\10-09 File : L0984.D i : 9 Oct 2009 10:41 for : MEI : 100PPB,STD-210PPB,A,5m1 : Lal : 2 Sample Multiplier: Time: Oct 12 10:35:23 2009 Method : C:\MSDCHEM\1\METHODS Title : VOLATILE ORGANICS BY Update : Tue Oct 06 17:23:47 ise via : Initial Calibration RRF : 0.000 Min. Rel. A RRF Dev : 35% Max. Rel. A	,100 1 \LAW1006 EPA METH 2009 rea : 5(HOD 8260B		0.50	Dmin
	Compound	AvgRF	CCRF	%Dev A		
	Pentafluorobenzene Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acrolein 1,1-Dichloroethene Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile tert-Butyl alcohol (TBA) trans-1,2-Dichloroethene Methyl tert-butyl ether (MT 1,1-Dichloroethane Diisopropyl ether (DIPE) cis-1,2-Dichloroethene 2,2-Dichloropropane 2-Butanone (MEK) Bromochloromethane	1.000 0.583 0.767 0.305 0.303 0.603 0.603 0.603 0.168 1.871 2.751 0.881 0.251 0.881 0.251 0.881 0.251 0.881 0.251 0.926 1.155 0.363 0.373 1.663 1.083 0.699 1.054	1.000 0.474 0.878 0.795 0.398 0.401 0.522 0.065 0.658 0.185 2.319 2.515 0.942 0.224 0.068	$\begin{array}{c} 0.3 \\ -3.7 \\ -30.5 \\ -32.3 \\ 13.4 \\ 4.4 \\ -9.1 \\ -10.1 \\ -23.9 \\ 8.6 \\ -6.9 \\ 10.8 \\ 15.0 \end{array}$	118 88 123 118 156 138 92 93 125 135 135 135 135 86 87	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.000 0.00
31 I 32 M 33 C 35 T 36 T 37 T 38 T 39 T 40 S 41 S 42 T 41 S 42 T 44 T 44 T 44 T	<pre>1,4-Difluorobenzene Benzene Trichloroethene 1,2-Dichloropropane Dibromomethane 1,4-Dioxane Bromodichloromethane 2-Chloroethyl vinyl ether cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene-d8 Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane</pre>	1.000 2.010 0.475 0.515 0.319 0.004 0.640 0.340 0.802 0.441 1.186 1.167 0.771 0.385 0.288 0.805	$\begin{array}{c} 1.000\\ 1.893\\ 0.429\\ 0.484\\ 0.295\\ 0.003\\ 0.625\\ 0.269\\ 0.805\\ 0.349\\ 1.205\\ 1.111\\ 0.744\\ 0.346\\ 0.268\\ 0.726\end{array}$	$\begin{array}{c} 0.0\\ 5.8\\ 9.7\\ 6.0\\ 7.5\\ 25.0\\ 2.3\\ 20.9\\ -0.4\\ 20.9\\ -1.6\\ 4.8\\ 3.5\\ 10.1\\ 6.9\\ 9.8 \end{array}$	120 110 105 111 104 82 106 89 107 90 121 109 103 102 106 104	0.00 0.00

47	Т	2-Hexanone	0.299	0.250	16.4	91	0.00
48	Т	Dibromochloromethane	0,261	0.349	-33.7	156	0.00
49	Т	1,2-Dibromoethane (EDB)	0.413	0.380	8.0	103	0.00
50	I	Chlorobenzene-d5	1.000	1.000	0.0	124	0.00
	MP	Chlorobenzene	1.202	1.085	9.7	111	0.00
52		1,1,1,2-Tetrachloroethane	0.320	0.347	-8.4	122	0.00
	Ċ,	Ethylbenzene	1.961	1.810	7.7	111	0.00
54		m,p-Xylene	0.702	0.686	2.3	114	0.00
55	T	o-Xylene	0.737	0.713	3.3	114	0.00
56	T	Styrene	1.336	1.321	1.1	113	0.00
57		Bromoform	0.167	0.196	-17.4	123	0.00
58		Isopropylbenzene	1.436	1.329	7.5	110	0.00
59	S	Bromofluorobenzene	0.537	0.525	2.2	122	0.00
	Ρ	1,1,2,2-Tetrachloroethane	0.593	0.534	9.9	103	0.00
61	T	Bromobenzene	0.414	0.382	7.7	110	0.00
62	T	1,2,3-Trichloropropane	0.507	0.422	16.8	99	0.00
63	Т	n-Propylbenzene	1.716	1.577	8.1	110	0.00
64	Т	2-Chlorotoluene	1.285	1.157	10.0	110	0.00
	Т	1,3,5-Trimethylbenzene	1.206	1.113	7.7	111	0.00
	Т	4-Chlorotoluene	1.521	1.390	8.6	111	0.00
67	Т	tert-Butylbenzene	0,832	0.759	8.8	110	0.00
68	Т	1,2,4-Trimethylbenzene	1.278	1.191	6.8	113	0.00
69	Т	sec-Butylbenzene	1,177	1.084	7.9	108	0.00
70	Т	1,3-Dichlorobenzene	0.673	0.618	8.2	111	0.00
71	Т	4-Isopropyltoluene	0.941	0.874	7.1	110	0.00
72	Т	1,4-Dichlorobenzene	0,709	0.644	9,2	111	0.00
73	Т	n-Butylbenzene	0.544	0.516	5.1	111	0.00
74	Т	1,2-Dichlorobenzene	0,680	0.626	7.9	111	0.00
75	т	1,2-Dibromo-3-chloropropane	0.078	0.081	-3.8	127	0.00
76	Т	1,2,4-Trichlorobenzene	0.374	0.325	13.1	108	0.00
77	Т	Hexachlorobutadiene	0.143	0.119	16.8	105	0.00
78	Т	Naphthalene	1.155	0.917	20.6	95	0.00
79	Т	1,2,3-Trichlorobenzene	0.350	0.286	18.3	102	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.290	0.288	0.7	119	0.00
81	Т	Methyl acetate	0.282	0.269	4.6	123	0.00
	T	Cyclohexane	0.448	0.368	17.9	95	0.00
	Т	Methylcyclohexane	0,253	0.223	11.9	95	0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0

AW1006.M Mon Oct 12 10:35:28 2009 RPT1

•

Svaluate Continuing Calibration Report

Data Path : C:\MSDChem\l\DATA\l0-13-09\ Data File : L1040.D Acq On : 13 Oct 2009 10:24 Operator : MEI Sample : 100PPB,STD-100PPB,A,5ml,100 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 13 14:36:23 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dov : 35% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	∛Dev A	rea%	Dev(min)
11	 Pentafluorobenzene	1.000	1.000	0.0	133	0.00
2 T	Dichlorodifluoromethane	0.583	0.596	-2.2	124	0.00
3 P	Chloromethane	0.881	0.956	-8.5	151	0.00
4 C	Vinyl chloride	0.767	0.876	-14.2		0.00
5 T	Bromomethane	0.305	0.409	-34.1	130	0.00
6 Т	Chloroethane	0.303	0.404	-33.3	157	
7 T	Trichlorofluoromethane		0.776	-28.7	154	0.01
8 т	Acrolein	0.068	0.054	20.6	87	0.00
9 M	1,1-Dichloroethene	0.603	0.691	-14.6	148	0.00
10 2	Acetone	0.168	0.175	-4.2	144	
11 T	Carbon disulfide	1.871	2.452	-31.1	158	
12 T	Vinyl acetate	2.751	2.575	6.4	121	
13 T	Methylene chloride	0.881		-6.2	151	
10 T	Acrylonitrile	0.251	0.202	19.5	88	
15 T	tert-Butyl alcohol (TBA)	0.080	0.067	16.2		
15 T	trans-1,2-Dichloroethene	0.810	0.798	1.5	125	0.00
10 T	Methyl tert-butyl ether (MT			13.4	114	
18 P	1,1-Dichloroethane	1.632	1.513	7.3	122	0.00
19 T	Diisopropyl ether (DIPE)	2.891	2.664	7.9	124	
20 T	cis-1,2-Dichloroethene	0.926		5.0	124	
20 I 21 T	2,2-Dichloropropane	1.155		-0.8	123	
21 I 22 T	2-Butanone (MEK)	0.363	0.312	14.0	113	
22 I 23 T	Bromochloromethane	0.303	0.347	7.0	120	
25 C	Chloroform	1.663		8.9	120	
25 C	1,1,1-Trichloroethane	1.083	1.072	1.0	120	
20 1 27 T	Carbon tetrachloride	0.699	1.072	-16.3	154	
27 1 28 T	1,1-Dichloropropene	1.054		-10.5	124	
28 I 29 T	1,2-Dichloroethane (EDC)			13.2	124	
		0.792	0.703.		121	
30 S	1,2-Dichloroethane-d4	0.192	0.703.	11.2	121	0.00
31 T	l,4-Difluorobenzene	1.000	1.000	0.0	132	0.00
32 M	Benzene	2.010	1.946	3.2	124	0.00
33 M	Trichloroethene	0.475	0.453	4.6	121	0.00
34 C	1,2-Dichloropropane	0.515	0.501	2.7	126	0.00
35 T	Dibromomethane	0.319	0.301	5.6	117	0.00
37 Т	Bromodichloromethanc	0.640	0.641	-0.2	119	0.00
38 T	2-Chloroethyl vinyl ether	0.340	0.284	16.5	102	0.00
39 T	cis-1,3-Dichloropropene	0.802	0.829	-3.4	120	0.00
40 T	4-Methyl-2-pentanone (MIBK)	0.441	0.353	20.0	100	0.00
41 S	Toluene-d8	1.186	1.199	-1.1	132	0.00
42 MG	Toluene	1.167	1.137	2.6	123	0.00
43 T	trans-1,3-Dichloropropene	0.771	0,765	0.8	116	0.00
44 T	1,1,2-Trichloroethane	0.385	0.355	7.8	115	0.00
45 T	Tetrachloroethene	0.288	0.289	-0.3	125	0.00
46 T	1,3-Dichloropropane	0.805	0.750	6.8	118	0.00
47 T	2-Hexanone	0.299	0.254	15.1	101	0.00
			-			

48 T 49 T	Dibromochloromethane 1,2-Dibromoethane (EDB)	0.261 0.413	0.348 0.389	-33.3 5.8	170 115	0.00 0.00
50 I	Chlorobenzene-d5	1.000	1.000	0.0	137	0.00
51 MI	P Chlorobenzene	1,202	1.097	8.7	125	0.00
52 т		0.320	0.355	-10.9	139	0.00
53 C		1.961	1.852	5.6	126	0.00
54 T	L		0.697	0.7	129	0.00
55 T		0.737	0.726	1.5	128	0.00
56 T	Styrene	1.336	1.334	0.1	126	0.00
57 P	Bromoform	0.167	0.206	-23.4	143	0.00
58 T	Isopropylbenzene	1.436	1.392	3.1	127	0.00
59 S	Bromofluorobenzene	0.537	0.526	2.0	135	0.00
60 P	1,1,2,2-Tetrachloroethane	0.593	0.538	9.3	115	0.00
61 T	Bromobenzene	0.414	0.393	5.1	125	0.00
62 T	1,2,3-Trichloropropane	0.507	0.423	16.6	110	0.00
63 T	n-Propylbenzene	1.716	1.650	3.8	127	0.00
64 T	2-Chlorotoluene	1.285	1.187	7.6	124	0,00
65 T	1,3,5-Trimethylbenzene	1.206	1.152	4.5	127	0.00
66 T	4-Chlorotoluene	1.521	1.402	7.8	124	0.00
67 T	tert-Butylbenzene	0.832	0.799	4.0	128	0.00
68 T	1,2,4-Trimethylbenzene	1.278	1.211	5.2	127	0.00
69 T	sec-Butylbenzene	1.177	1.160	1.4	128	0.00
70 T	1,3-Dichlorobenzene	0.673	0.630	6.4	126	0.00
71 T	4-Isopropyltoluene	0.941	0.930	1.2	129	0.00
72 T	1,4-Dichlorobenzene	0.709	0.660	6.9	126	0.00
73 T	n-Butylbenzene	0.544	0.544	0.0	129	0.00
74 T	1,2-Dichlorobenzene	0.680	0.639	6.0	125	0.00
75 T	1,2-Dibromo-3-chloropropane	0.078	0.083	-6.4	145	0.00
76 T	1,2,4-Trichlorobenzene	0.374	0.348	7.0	128	0.00
77 T	Hexachlorobutadiene	0.143	0.134	6.3	132	0.00
78 T	Naphthalene	1.155	0.955	17.3	110	0.00
79 T	1,2,3-Trichlorobenzene	0.350	0.307	12.3	121	0.00
T . 08	1,1,2-Trichloro-1,2,2-trifl	0.290	0.316	-9.0	145	0.01
81 T	Methyl acetate	0.282	0.254	9.9	129	0.00
82 T	Cyclohexane	0.448	0.423	5.6	121	0.00
83 T	Methylcyclohexane	0.253	0.255	-0.8	120	0.00
						

LAW1006.M Tue Oct 13 14:36:28 2009 RPT1

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 10/09/2009

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	L0987.D	99	100	96
10152-006	AQUEOUS	L0988.D	100	101	95
10152-007	AQUEOUS	L0989.D	100	101	96
10185-008	AQUEOUS	L0990.D	99	101	96
10185-009	AQUEOUS	L0991.D	100	102	96
10185-010	AQUEOUS	L0992.D	100	101	94
10175-001	AQUEOUS	L0993.D	100	101	94
BLK-SPK	AQUEOUS	L0994.D	95	102	99
10152-006MS	AQUEOUS	L0995.D	100	101	95
10152-006MSD	AQUEOUS	L0996.D	100	101	94
10185-007	AQUEOUS	L0997.D	99	102	95
10185-001	AQUEOUS	L0998.D	99	103	95
10185-004	AQUEOUS	L0999.D	100	101	94
10185-002	AQUEOUS	L1000.D	100	101	95
10185-003	AQUEOUS	L1002.D	99	101	95

--

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	45-154	51-164
SMC2 = Toluene-d8	50 ppb	47-151	52-157
SMC3 = Bromofluorobenzene	50 ppb	48-149	56-154

Column to be used to flag recovery values

0030

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

.

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	L1044.D	97	100	97
TCLP-BLK	AQUEOUS	L1045.D	97	100	95
10308-001	AQUEOUS	L1046.D	98	100	95
10340-001	AQUEOUS	L1047.D	97	101	96
10340-002	AQUEOUS	L1048.D	98	100	94
TCLP-SPK	AQUEOUS	L1049.D	75	102	98
BLK-SPK	AQUEOUS	L1050.D	92	102	98
10152-001MS	AQUEOUS	L1051.D	96	100	95
10152-001MSD	AQUEOUS	L1052.D	97	100	95
10185-005	AQUEOUS	L1053.D	97	100	95
10185-006	AQUEOUS	L1054.D	97	100	95
10185-011	AQUEOUS	L1055.D	97	102	94
10152-001	AQUEOUS	L1058.D	105	100	87
10152-003	AQUEOUS	L1059.D	103	102	90
10152-002	AQUEOUS	L1060.D	103	101	92
10152-005	AQUEOUS	L1062.D	101	101	93
10152-004	AQUEOUS	L1064.D	101	101	92

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	45-154	51-164
SMC2 = Toluene-d8	50 ppb	47-151	52-157
SMC3 = Bromofluorobenzene	50 ppb	48-149	56-154

Column to be used to flag recovery values

FORM 2

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID: <u>10152-006</u>

Batch No.: LAW100909A

	SPIKE	SAMPLE	MS	MS	QC		
Compound	ADDED	CONC.	CONC.	%	LIMITS		
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.		
1,1-Dichloroethene	50.0	0.0	65.2	130	46 - 150		
Benzene	50.0	0.0	51.5	103	63 - 146		
Trichloroethene	50.0	0.0	50.6	101	60 - 152		
Toluene	50.0	0.0	52.9	106	63 - 151		
Chlorobenzene	50.0	0.0	51.3	103	75 - 149		

	SAMPLE	MSD	V	ISD					
Compound	CONC.	CONC.		%	%	QC LIN	IMITS		
	(ug/L)	(ug/L)	# F	REC	RPD #	RPD	REC.		
1,1-Dichloroethene	0.0	64.0		128	2	17	46 - 150		
Benzene	0.0	49.3		99	4	14	63 - 146		
Trichloroethene	0.0	49.3		99	2	15	60 - 152		
Toluene	0.0	50.5		101	5	15	63 - 151		
Chlorobenzene	0.0	49.4		99	4	12	75 - 149		

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0__ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID: <u>10152-001</u>

Batch No.: LAW101309A

	SPIKE	SAMPLE	MS	MS	QC		
Compound	ADDED	CONC.	CONC.	%	LIMITS		
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.		
1,1-Dichloroethene	50.0	0.0	72.1	144	46 - 150		
Benzene	50.0	0.0	55.0	110	63 - 146		
Trichloroethene	50.0	0.0	55.4	111	60 - 152		
Toluene	50.0	0.0	56.5	113	63 - 151		
Chlorobenzene	50.0	0.0	53.5	107	75 - 149		

	SAMPLE	MSD	MSD					
Compound	CONC.	CONC.	%	%	QC LIN	ITS		
	(ug/L)	(ug/L)	# REC	RPD #	RPD	REC.		
1,1-Dichloroethene	0.0	72.8	146	1	17	46 - 150		
Benzene	0.0	53.3	107	3	14	63 - 146		
Trichloroethene	0.0	53.7	107	4	15	60 - 152		
Toluene	0.0	55.1	110	3	15	63 - 151		
Chlorobenzene	0.0	52.7	105	2	12	75 - 149		

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___out of __5__outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

L0899.D

Date Analyzed: 10/06/2009

Instrument ID:

MSD_L

Time Analyzed: 13:53

50UG/L	IS1		IS2		IS3		
	AREA #	RT #	AREA #	RT #	AREA #	RT #	
12 HOUR STD	145068	6.19 253735		7.01	256470	10.33	
UPPER LIMIT	290136	6.69	507470	7.51	512940	10.83	
LOWER LIMIT	72534	5.69	126867.5	6.51	128235	9.83	
LAB SAMPLE							
ID.		A second					
01 STD1PPB	159085	6.19	284536	7.01	278630	10.33	
02 STD-5PPB	155865	6.19	281356	7.01	276891	10.33	
03 STD-20PPB	138109	6.19	249669	7.01	246126	10.33	
04 STD-150PPB	161015	6.19	280992	7.01	281052	10.33	
05 STD-200PPB	153006	6.19	266022	7.01	268907	10.34	
06 METHOD-BLK	136937	6.19	250645	7.01	243550	10.33	
07 09991-001	150953	6.19	272804	7.01	268294	10.33	
08 BLK-SPK	151371	6.19	271343	7.01	268867	10.34	
0909991-001MS	142101	6.19	256448	7.01	251283	10.33	
10 09991-001MSD	149395	6.19	270511	7.01	268883	10.33	
11 09991-002	133856	6.19	242623	7.01	235012	10.33	
12 09991-003	130603	6.20	238476	7.01	234448	10.34	
13 09991-004	145001	6.19	262536	7.01	257122	10.34	
14 09991-006	133577	6.19	243542	7.01	238348	10.33	
15							
16							
17		2 M. T				-	
18							
19							
20			· · ·				
21			· · · · ·				
22	· ·						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

L0984.D

MSD_L

Date Analyzed: <u>10/09/2</u>009

Instrument ID:

Time Analyzed: 10:41

50UG/L	IS1		IS2		IS3		
	AREA #	RT #	AREA #	RT #	AREA #	RT #	
12 HOUR STD	171126	6.20	304894	7.01	317098	10.34	
UPPER LIMIT	342252	6.70	609788	7.51	634196	10.84	
LOWER LIMIT	85563	5.70	152447	6.51	158549	9.84	
LAB SAMPLE							
ID							
01 METHOD-BLK	139376	6.19	259604	7.01	260386	10.33	
02 10152-006	136443	6.20	255223	7.01	254672	10.33	
03 10152-007	142938	6.20	267218	7.01	265672	10.33	
04 10185-008	152739	6.19	280109	7.01	282487	10.33	
05 10185-009	138704	6.19	257616	7.01	258787	10.33	
06 10185-010	146106	6.19	272409	7.01	276352	10.33	
07 10175-001	140558	6.19	263590	7.01	266328	10.33	
08 BLK-SPK	151014	6.19	270070	7.01	279866	10.33	
09 10152-006MS	137018	6.19	253512	7.01	253848	10.33	
10 10152-006MSD	150279	6.20	279426	7.01	284412	10.33	
11 10185-007	150871	6.19	280652	7.01	281822	10.33	
12 10185-001	163306	6.19	303756	7.01	309542	10.33	
13 10185-004	153305	6.19	285395	7.01	288558	10.33	
14 10185-002	157479	6.20	294065	7.01	297870	10.34	
15 10185-003	150889	6.20	281987	7.01	282324	10.34	
16							
17							
18							
19							
20							
21							
22							

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab File ID (Standard):
 L1040.D
 Date Ana

Date Analyzed: 10/13/2009

Instrument ID:

MSD_L

	50UG/L	IS1		1S2		IS3		
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
	12 HOUR STD	192777	6.19	334310	7,01	350849	10.33	
	UPPER LIMIT	385554	6.69	668620	7.51	701698	10.83	
	LOWER LIMIT	96388.5	5.69	167155	6.51	175424.5	9.83	
	LAB SAMPLE							
	ID							
01 ME	ETHOD-BLK	168461	6.20	309613	7.01	310041	10.33	
02 TC	CLP-BLK	165483	6.19	302286	7.01	303252	10.33	
03 10	308-001	146245	6.20	269973	7.01	272070	10.33	
04 10	340-001	156988	6,19	289589	7.01	290679	10.33	
05 10	340-002	135020	6.19	251156	7.01	253539	10.33	
	CLP-SPK	185075	6.19	265851	7.01	277204	10.33	
07 BL	.K-SPK	168373	6.19	304475	7.01	317767	10.33	
	152-001MS	147481	6.19	264789	7.01	272268	10.33	
09 10	152-001MSD	145335	6.19	268547	7.01	272905	10.33	
10 10	185-005	154774	6.19	287087	7.01	289283	10.33	
	185-006	190627	6.19	352905	7.01	358814	10.33	
12 10	185-011	160974	6.19	298717	7.01	305198	10.33	
	152-001	156851	6.19	294434	7.01	290224	10.33	
- FL	152-003	167743	6.19	313223	7.01	319471	10.33	
15 10	152-002	177517	6.19	336723	7.01	340129	10.33	
	152-005	173675	6.19	328934	7.01	331118	10.33	
	152-004	175719	6.20	331090	7.01	337266	10.33	
18								
19								
20								
21								
22								

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

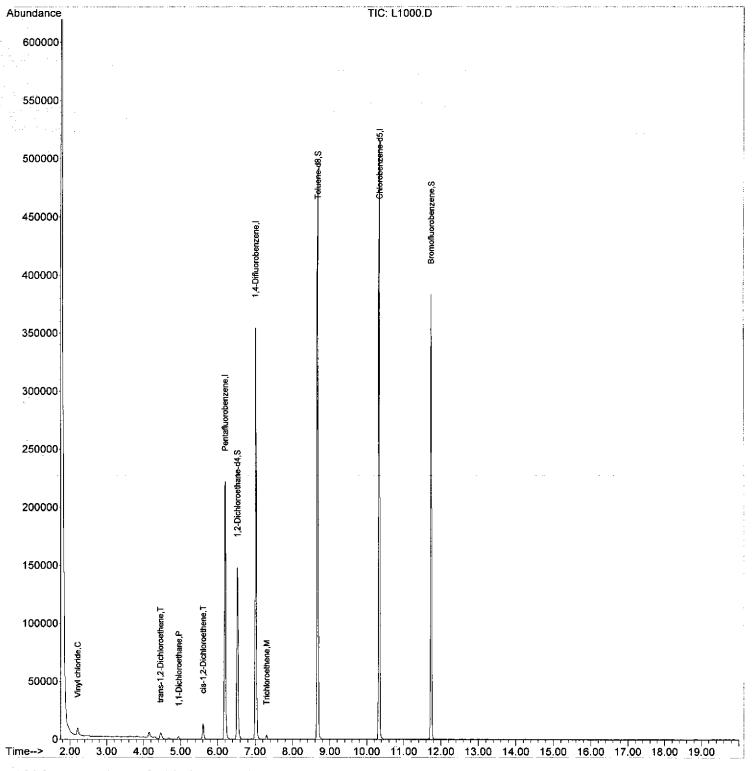
* Values outside of QC limits.

	and the second	Quantitation	Report	z (QT I	Reviewed)) <u> </u>	
Data File : Acq On : Operator : Sample : Misc :	9 Oct 2009 17	:31 01,A,5ml,100 LEC,10/07/09	,10/07,			· · · · · · · · · · · · · · · · · · ·	
Quant Method Quant Title QLast Update	Oct 12 10:21:05 i : C:\MSDCHEM\1 : VOLATILE ORG : Tue Oct 06 1 i : Initial Cali	\METHODS\LAW ANICS BY EPA 7:23:47 2009					
Internal St	andards	R.T.	QION	Response	Conc Ur	nits De	v(Min)
31) 1,4-Di	luorobenzene fluorobenzene benzene-d5	6.19 7.01 10.33	114		50.00		0.00 0.00 0.00
30) 1,2-Di Spiked An 41) Toluer	ie-d8	6.53 Range 43 8.66	98	Recove 371296	51.52	99.22 UG	0.00
	ount 50.000 luorobenzene ount 50.000	11.73		157346			0.00
Target Comp 4) Vinyl	chloride	2.21 ene 4.46		3712 2569		UĠ	value 99 68
18) 1,1-Di	1,2-Dichloroeth chloroethane 2-Dichloroethen oroethene	4.95	63 96	4964	0.93 1.26	UG UG #	100 99 89

(#) = qualifier out of range (m) = manual integration (+) = signals summed

:

	n na sea Anna ann an Anna Anna ann an Anna Anna		· ·		Quar	ntitati	on F	lepor	t	(QT	Revie	wed)			•		· · ·
Data Pa Data Fi Acq On	le : LO	998.D	·	· ·	1.1.1.1	0-09-0	9\	÷	· •. •	an a	· · ·					· · · ·	
Operato Sample	r : ME : GP	I -104R	,101	85-0	01,F	A,5ml,1	00			• • • •							
Misc ALS Via	: AR 1 : 16	CADIS Sa	/KIN mple	GS_E Mul	LEC. tipl	10/07/ ier: 1	09,1	.0/07	/09,	1			······		· · ·	· · ·	
Quant T Quant M	'ime: Oc lethod :	:t 12 C:\M	10:2 SDCH	1.05 EM\1	200 \ME1	9 HODS\L	AW10	06.M	-								
Quant T QLast U Respons	'itle : pdate :	VOLA Tue	TILE Oct	ORG 06 1	ANIC 7:23	S BY E: 3:47 20	PA M	IETHC	D 826	0B							
Abundance			na di shin M		; .	·		TI	C: L0998	.D	· · ·						· · · · · ·
650000			e e e Starte				•	• • • •									
600000			· · · ·				· · ·			•		· · ·		· · ·	· · · · ·	• • •	:
				i s i s	•	· · · · · · · · · · · · · · · · · · ·				•	· ·						
550000				· .	. 1 3 1		ene-d8,5	i	1'ap-948								
	· · .	•		÷					NOIONE .	-							
500000								i									
450000					enzene	. *			1	le,S							
	·				,4-Difluorobenzene					Bromoftuorobenzene,S							
400000					- 4					Iromoftua							
									-								
350000				ene,	.'												
300000				² entafluorobenz													
				Pentaf	(0)												
250000				[hane-d4,												
					2-Dichloroethane-d4												
200000					1,2-0												
150000	-																
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		F	-														
100000	Ę	anaman	ane,P	oethene,1		×.											
-	Vinyl chloride,C	trans-1 2-Dichlomethene	1-Dichloroethane,P	cis-1,2-Dichloroethene,1		[richloroethene,M											
50000	Vinyl	trans-1	1,1-Dic	cis-1.		Trichlo											
0		╤╤╤╋	┶╾┰ᠰ᠂╴	_{┺╴┲} ║		· · · · · · · · · · · · · · · · · · ·	<u> </u> 	,, , ,,	 	╷║	.					· • • • • • • • •	-
	2.00 3.00	4.00	5.00	6.00		0 8.00	9.00	10.00	0 11.00	12.00	0 13.00	14.00	15.00 1	6.00 17.00	0 18.00	19.00	


LAW1006.M Mon Oct 12 10:21:17 2009 RPT1

Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L1000.D Acq On : 9 Oct 2009 18:30 Operator : MEI Sample : GP-103R,10185-002,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,10/07/09,10/07/09, ALS Vial : 18 Sample Multiplier: 1 Quant Time: Oct 12 10:24:30 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration								
Internal Standards	R.T.	QIon	Response	Conc Units	B Dev	(Min)		
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 7.01 10.34	168 114 117	157479 294065 297870	50.00 UG 50.00 UG 50.00 UG		0.00 0.00 0.00		
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000				49.83 UG ery = 99		0.00		
41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	8.67 Range 39 11.74	98 - 137 95	353244 Recove 151307	50.63 UG ry = 101 47.33 UG	26%	0.00		
Spiked Amount 50.000 Target Compounds	Range 23	- 145	Recove	ry = 94		alue		
4) Vinyl chloride 16) trans-1,2-Dichloroethene	2.21 e 4.46	62 96	13551 1222	5.61 UG 0.48 UG	#	99 100		
<pre>18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene</pre>	4.95 5.61	63 96	3187 6432	0.62 UG	#	99		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\10-09-09\
Data File : L1000.D
Acq On : 9 Oct 2009 18:30
Operator : MEI
Sample : GP-103R,10185-002,A,5ml,100
Misc : ARCADIS/KINGS_ELEC,10/07/09,10/07/09,
ALS Vial : 18 Sample Multiplier: 1

Quant Time: Oct 12 10:24:30 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration

Quantitation Report (QT Reviewed)

		Quantitation	Report	C (QT	Reviewed)	
Data I Acq Or Operat Sample Misc	Path : C:\MSDChem\1 File : L1002.D 1 : 9 Oct 2009 For : MEI 2 : PTW-2,10185-0 2 : ARCADIS/KINGS 1al : 20 Sample M	19:29 03,A,5ml,100 ELEC,10/07/09		/09,		
Quant Quant QLast Respon	Time: Oct 12 10:28: Method : C:\MSDCHEM Title : VOLATILE O Update : Tue Oct 06 mse via : Initial Ca	\1\METHODS\LAW RGANICS BY EPA 17:23:47 2009 libration	METHOI			
Inte	nal Standards	R.T.	QIon	Response	e Conc Units	Dev(Min)
1) 31) 50)	Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5	6.20 7.01 10.34	168 114 117	150889 281987 282324	50 00 110	0 00
Sp.	Monitoring Compou 1,2-Dichloroethane- iked Amount 50.0 Toluene-d8 iked Amount 50.0 Bromofluorobenzene iked Amount 50.0	00 Range 43	- 133	Recov	49.26 UG very = 98 50.63 UG very = 101	.52%
59) Sp:	iked Amount 50.0	00 Range 23	- 145	Recov	47.43 0G very = 94	.86%
	et Compounds Vinyl chloride trans-1,2-Dichloroe 1,1-Dichloroethane cis-1,2-Dichloroeth Trichloroethene					_

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	:	C:\MSDChem\1\DATA\10-09-09\
Data File	:	L1002.D
		9 Oct 2009 19:29
Operator	:	MEI
Sample		PTW-2,10185-003,A,5ml,100
Misc		ARCADIS/KINGS_ELEC,10/07/09,10/07/09,
ALS Vial	:,	20 Sample Multiplier: 1

Quant Time: Oct 12 10:28:31 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration

Indance 580000							 TIC	L1002.E)						
560000		-			·		·.								
540000												÷			
520000															
500000							-								
480000						Ś	ene-d5,l				·				
460000						Toluene-d8,S	Chlorobenzer								
440000					-	鲁丁	CHO		ve.						
420000					nzene,				Bromofluorobenzene,S						
400000					uorobe				nofiluon						
380000					1,4-Difluorobenzene,i				Bron						
360000									ł						
340000															
320000	·						ŗ								
300000				_											
280000				Pentafluorobenzene,I 4,S											
260000				luorobe											
240000				Pentaf											
220000				ane-d											
200000				loroett											
180000				Per 1,2-Dichloroethane-d4,S	1										
160000	· .														
140000															
120000															
100000	1	T, iai	me,T												
80000		irans-1,2-Dichloroethene,T 1 1-Dichloroethane P	cis-1,2-Dichloroethene,T		N, M				1						
60000	oride.C	Dichlor Dichlor	2-Dichi		Trichtoroethene,M		:								
40000	Vinyl chloride.C	ans-1,2-Dichloroethe 1 1-Dichloroethana P	cis-1,		Trichtor										
20000	5	- tra													
ne> 2		<u></u> ^^^^	<u>, , , , , , , , , , , , , , , , , , , </u>	 .007	.00 8) e oo.	 ┯┯┦	11.00	╢	····		᠇᠇᠇᠇	↑ , , , , , ,	 18.00	 т <u>—</u>

Data Path : C:\MSDChem\1\DATA Data File : L0999.D Acq On : 9 Oct 2009 18:0 Operator : MEI Sample : MW-13R,10185-004, Misc : ARCADIS/KINGS_ELE ALS Vial : 17 Sample Multi Quant Time: Oct 12 10:22:58 2 Quant Method : C:\MSDCHEM\1\M	1 A,5ml,100 C,10/06/09 plier: 1 009	1				
Quant Title : VOLATILE ORGAN	ICS BY EPA	METHO	D 8260B			
QLast Update : Tue Oct 06 17:	23:47 2009					
Response via : Initial Calibr	ation					
	r , r ,	OTom	Degnongo	Cong IIr	ita 1	
Internal Standards	R.I.		Response			
1) Pentafluorobenzene	6.19	168	153305	50.00	UG	0.00
31) 1,4-Difluorobenzene			285395			0.00
50) Chlorobenzene-d5	10.33	117	288558	50.00	UG	0.00
System Monitoring Compounds		6 5	101097	40.04	110	0.00
30) 1,2-Dichloroethane-d4	6.53 Range 43					
Spiked Amount 50.000	8.66					
41) Toluene-d8						
Spiked Amount 50.000 59) Bromofluorobenzene		- T2/	146114	$L_{y} = 10$		0.01
	Range 23					
Spiked Amount 50.000	Range 23	- 145	Recove	гу —	54	505
Target Compounds						Qvalue
4) Vinyl chloride	2.20	62	1582	0.67	UG	98
18) 1,1-Dichloroethane	4.95					# 99
20) cis-1,2-Dichloroethene	5.61	96	1897	0.67	UG	# 99
33) Trichloroethene	7.31	95	2933	1.08		# 88

(#) = qualifier out of range (m) = manual integration (+) = signals summed

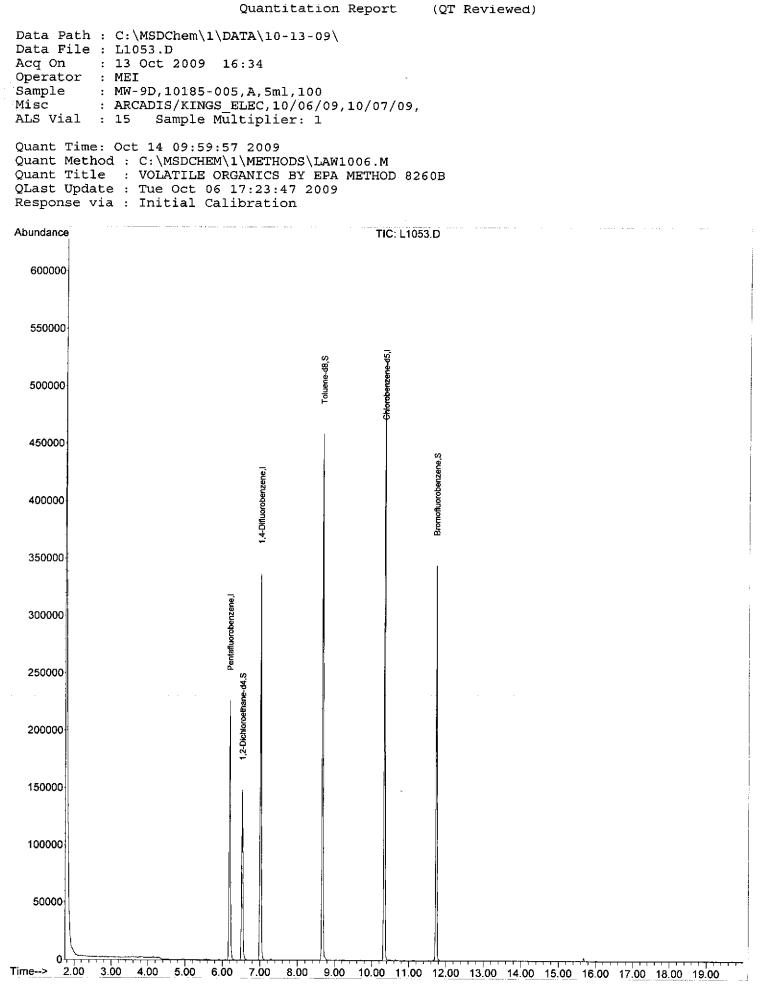
	Quantitation	Report	(QT Reviewed)
Data Path :	C:\MSDChem\1\DATA\10-09-09\		
Data File : Acq On :	9 Oct 2009 18:01	e en	
Sample :	MEI MW-13R,10185-004,A,5ml,100	an An taona an taonachadh an t	general second second second second
Misc :	ARCADIS/KINGS_ELEC,10/06/09 17 Sample Multiplier: 1	,10/07/09,	
	Oct 12 10:22:58 2009		
Quant Method Quant Title QLast Update	d : C:\MSDCHEM\1\METHODS\LAW : VOLATILE ORGANICS BY EPA e : Tue Oct 06 17:23:47 2009 a : Initial Calibration		0B
Abundance		TIC: L0999	D
600000			
550000			· · · · · · · · · · · · · · · · · · ·
	ŭ		
500000	Tokene-d8, S	tene-d,	
		Jhlorabo nzene-d5,	
450000		5	
			ອງ ເຊິ່ງ ເຊິ່ງ ເຊິ່
400000			
400000	.4-Diffuorobenzene,		Bromoffuorobertzene.S
	÷		ă
350000			
	- e		
300000			
	Pentafluorobenze		
250000	د م		
	1,2-Dichloroettane-d4,S	-	
200000	plaroet		
	1.20		
150000			
100000	e ere Presente Pres Presente Presente P		
ide, C	thene, I		
C oppose	1, 1-Dichloroethane, P dis-1, 2-Dichloroethene, T Trichloroethene, M		
< (ii)			
			1

.....

Data Path : C:\MSDChem\1\DATA\10-13-09\ Data File : L1053.D Acq On : 13 Oct 2009 16:34 Operator : MEI Sample : MW-9D,10185-005,A,5ml,100 Misc : ARCADIS/KINGS ELEC, 10/06/09, 10/07/09, ALS Vial : 15 Sample Multiplier: 1 Quant Time: Oct 14 09:59:57 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1)Pentafluorobenzene6.1916815477450.00UG0.0031)1,4-Difluorobenzene7.0111428708750.00UG0.0050)Chlorobenzene-d510.3311728928350.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.53
 65
 119545
 48.74
 UG

 Spiked Amount
 50.000
 Range
 43
 - 133
 Recovery
 =
 97.48%


 41) Toluene-d8
 8.66
 98
 341186
 50.09
 UG

 Spiked Amount
 50.000
 Range
 39
 - 137
 Recovery
 =
 100.18%

 59) Bromofluorobenzene
 11.73
 95
 147426
 47.48
 UG

 0.00 0.00 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 94.96% Target Compounds Qvalue ******** (#) = qualifier out of range (m) = manual integration (+) = signals summed

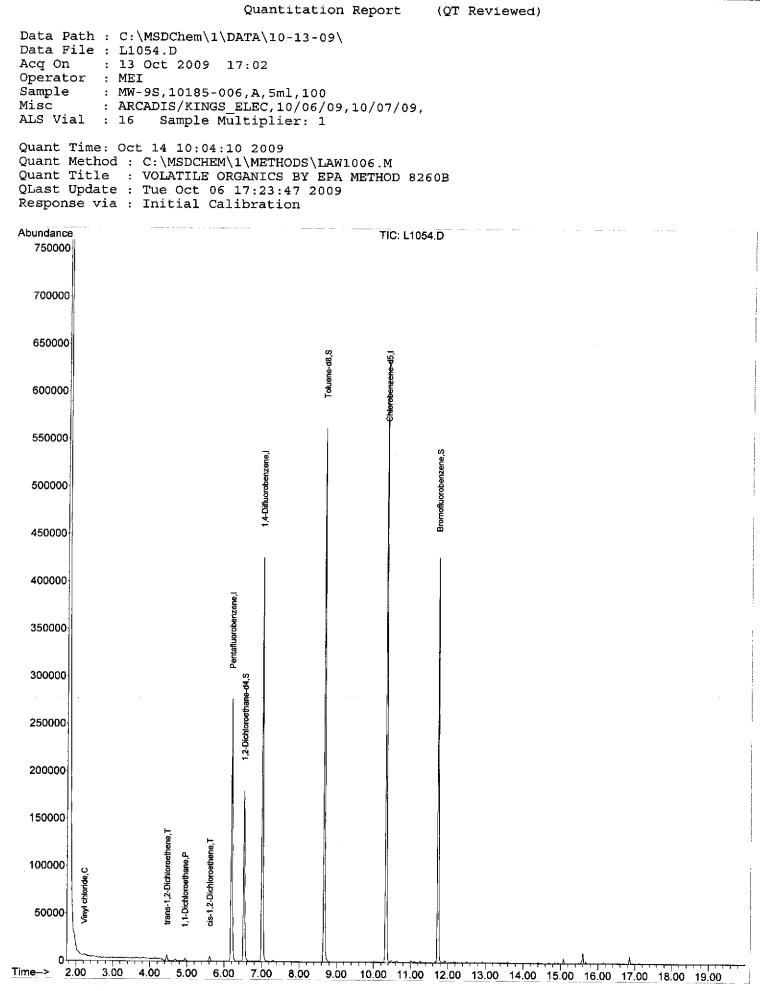
Page: 1 0045

Data Path : C:\MSDChem\1\DATA\10-13-09\ Data File : L1054.D Acq On : 13 Oct 2009 17:02 Operator : MEI Sample : MW-9S,10185-006,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,10/06/09,10/07/09, Misc ALS Vial : 16 Sample Multiplier: 1 Quant Time: Oct 14 10:04:10 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1916819062750.00UG0.0031) 1,4-Difluorobenzene7.0111435290550.00UG0.0050) Chlorobenzene-d510.3311735881450.00UG0.00 31) 1,4-Difluorobenzene
50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.53
 65
 146240
 48.41
 UG

 30) 1,2-Dichloroethane-d4
 6.53
 65
 146240
 48.41
 UG

 Spiked Amount
 50.000
 Range
 43
 133
 Recovery
 =
 96.82%


 41) Toluene-d8
 8.66
 98
 418791
 50.02
 UG

 Spiked Amount
 50.000
 Range
 39
 137
 Recovery
 =
 100.04%

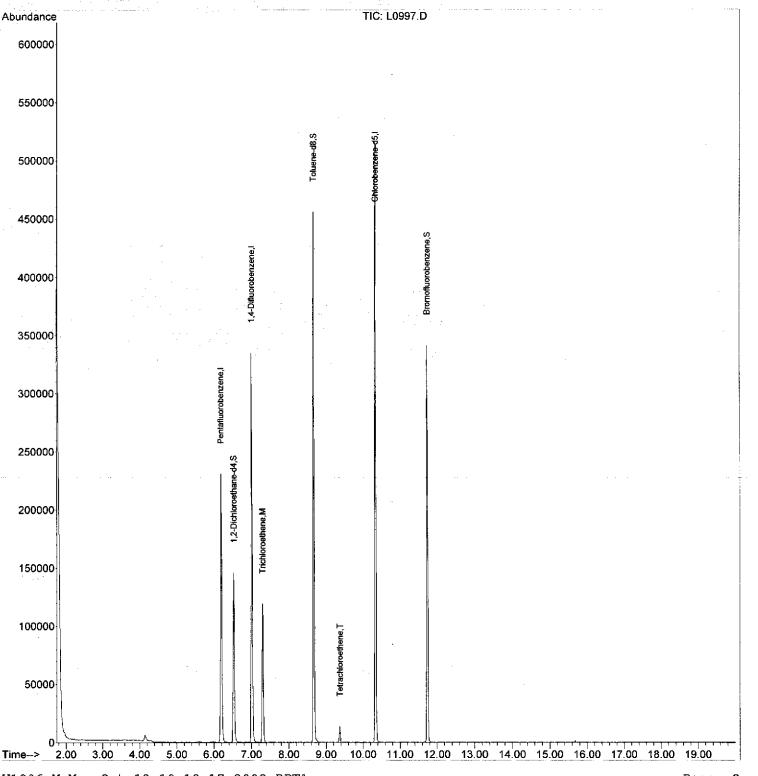
 59) Bromofluorobenzene
 11.73
 95
 182656
 47.43
 UG

 0.00 0.00 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 94.86% Target Compounds Qvalue 4) Vinyl chloride2.226233541.15 UG16) trans-1,2-Dichloroethene4.469628850.93 UG18) 1,1-Dichloroethane4.956340200.65 UG20) cis-1,2-Dichloroethene5.619624240.69 UG # 95 Ħ 68 # 97 0.69 UG # 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA Data File : L0997.D Acq On : 9 Oct 2009 17:0 Operator : MEI Sample : MW-6S,10185-007,A Misc : ARCADIS/KINGS_ELEC ALS Vial : 15 Sample Multip Quant Time: Oct 12 10:18:06 20	3 ,5ml,100 C,10/06/09, plier: 1 009		/09,			
Quant Method : C:\MSDCHEM\1\MI						
Quant Title : VOLATILE ORGAN QLast Update : Tue Oct 06 17:3		METHOI	J 8260B			
Response via : Initial Calibra						
				· · · · ·		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) Pentafluorobenzene		169	150971	50 00	 ПС	0.00
31) 1,4-Difluorobenzene	7 01	114	280652	50.00	UG	0.00
50) Chlorobenzene-d5	10.33	117	281822			
System Monitoring Compounds	C 50	~ ~ ~	110090	40 20	110	0.00
30) 1,2-Dichloroethane-d4 Spiked Amount 50.000						
41) Toluene-d8		- 133 98				° 0.00
Spiked Amount 50.000	Range 39	- 137	Recover	v =	101.70	
59) Bromofluorobenzene	11.74	95	Recover 143496	47.44	UG	0.01
Spiked Amount 50.000			Recover			
Tenach Compounds					~	value
Target Compounds 33) Trichloroethene	7 30	95	49324	18 50	_	varue 89
45) Tetrachloroethene	9.37			2.49		99


(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report

(QT Reviewed)

ALS Vial	:	15 Sample Multiplier: 1
Misc		ARCADIS/KINGS_ELEC, 10/06/09, 10/07/09,
		MW-6S,10185-007,A,5ml,100
Operator		
Acq_On	:	9 Oct 2009 17:03
Data File		
Data Path	:	C:\MSDChem\1\DATA\10-09-09\

Quant Time: Oct 12 10:18:06 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration

Page: 2 0050

LAW1006.M Mon Oct 12 10:18:17 2009 RPT1

Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L0990.D Acq On : 9 Oct 2009 13:38 Operator : MEI Sample : FB(100609),10185-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,10/06/09,10/07/09, ALS Vial : 8 Sample Multiplier: 1 Quant Time: Oct 09 16:28:54 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1916815273950.00UG0.0031) 1,4-Difluorobenzene7.0111428010950.00UG0.0050) Chlorobenzene-d510.3311728248750.00UG0.00 31) 1,4-Difluorobenzene
 50) Chlorobenzene-d5 System Monitoring Compounds 30) 1,2-Dichloroethane-d46.536511981149.50 UG0.00Spiked Amount50.000Range 43 - 133Recovery = 99.00%41) Toluene-d88.669833692850.70 UG0.00Spiked Amount50.000Range 39 - 137Recovery = 101.40%59) Bromofluorobenzene11.739514497447.82 UG0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 95.64% Qvalue Target Compounds ______ (#) = qualifier out of range (m) = manual integration (+) = signals summed

LAW1006.M Fri Oct 09 16:28:59 2009 RPT1

Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L0990.D : 9 Oct 2009 13:38 Acq On Operator : MEI Sample : FB(100609),10185-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC, 10/06/09, 10/07/09, ALS Vial : 8 Sample Multiplier: 1 Quant Time: Oct 09 16:28:54 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Abundance TIC: L0990.D 600000 550000 Shlorobenzene-d5,1 oluene-d8,S 500000 450000 Bromofluorobenzene,S 1,4-Difluorobenzene,1 400000 350000 Pentafluorobenzene, 300000 250000 .2-Dichloroethane-d4,S 200000 150000 100000 50000 ۵ Time--> 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

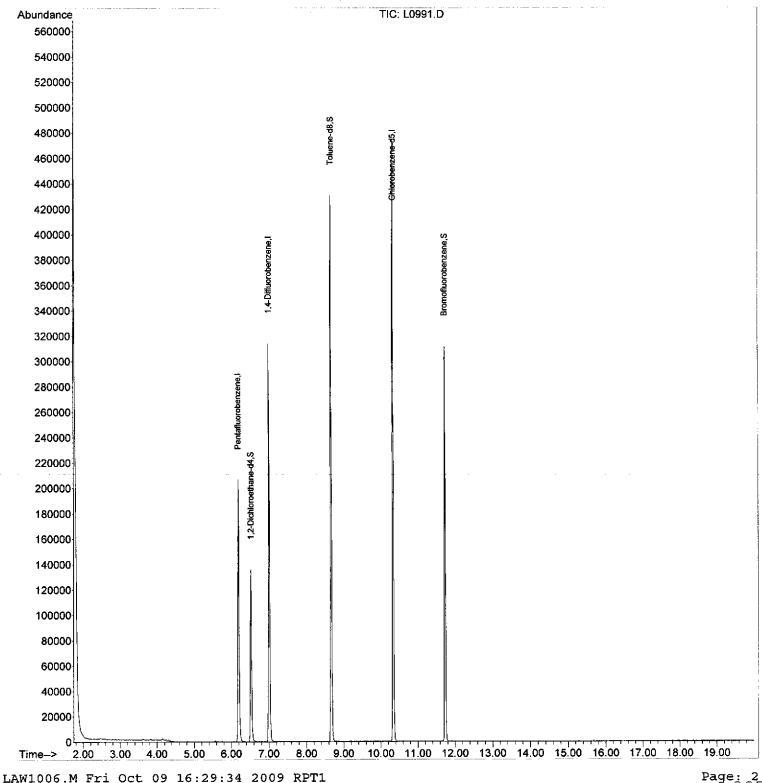
Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L0991.D Acq On : 9 Oct 2009 14:07 Operator : MEI Sample : FB(100709),10185-009,A,5ml,100 Misc : ARCADIS/KINGS ELEC, 10/07/09, 10/07/09, ALS Vial : 9 Sample Multiplier: 1 Quant Time: Oct 09 16:29:29 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1916813870450.00UG0.0031) 1,4-Difluorobenzene7.0111425761650.00UG0.0050) Chlorobenzene-d510.3311725878750.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.53
 65
 109543
 49.84
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 - 133
 Recovery
 =
 99.68%

 41) Toluene-d8
 8.66
 98
 311204
 50.92
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39
 - 137
 Recovery
 =
 101.84%


 59) Bromofluorobenzene
 11.74
 95
 133851
 48.19
 UG
 0.01

 Spiked Amount
 50.000
 Range
 23
 - 145
 Recovery
 =
 96.38%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path Data File	: C:\MSDChem\1\DATA\10-09-09\ . L0991 D
Acq On	: 9 Oct 2009 14:07
Operator	: MEI
Sample	
Misc	: ARCADIS/KINGS_ELEC,10/07/09,10/07/09,
ALS Vial	: 9 Sample Multiplier: 1

Quant Time: Oct 09 16:29:29 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration

Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L0992.D Acq On : 9 Oct 2009 14:36 Operator : MEI Sample : TB(100609),10185-010,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,10/06/09,10/07/09, ALS Vial : 10 Sample Multiplier: 1 Quant Time: Oct 09 16:30:07 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1916814610650.00UG0.0031) 1,4-Difluorobenzene7.0111427240950.00UG0.0050) Chlorobenzene-d510.3311727635250.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.52
 65
 115302
 49.80
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43 - 133
 Recovery
 =
 99.60%

 41) Toluene-d8
 8.66
 98
 326437
 50.51
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39 - 137
 Recovery
 =
 101.02%

 59) Bromofluorobenzene
 11.74
 95
 140107
 47.24
 UG
 0.00

 Spiked Amount
 50.000
 Range
 23 - 145
 Recovery
 =
 94.48%

 Target Compounds Qvalue _____ (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\l\DATA\l0-09-09\ Data File : L0992.D Acq On : 9 Oct 2009 14:36 Operator : MEI Sample : TB(100609),10185-010,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,10/06/09,10/07/09, ALS Vial : 10 Sample Multiplier: 1									
Quant Title : VOLA	MSDCHEM\1\METHODS\LA ATILE ORGANICS BY E1 Oct 06 17:23:47 200	PA METHOD	8260B						
Abundance		TIC:	L0992.D		····· ·· ··				
580000									
560000									
540000									
520000									
500000	٥	v. 5							
480000	0	l oluene-da,5 robenzene-d5							
460000	- - -	I Oluerie-ds, S Chlorobenzene-d5,							
440000		, D	~						
420000			Izene,5						
400000	enzene		lorober						
380000	1,4-Diffuorobenzene,I		Bromofluorobenzene, S						
360000	1,4-Di		ā						
340000			1						
320000									
300000	ene,		·						
280000	robenz								
260000	Pentafluorobenzene,								
240000									
220000	1.2-Dichloroethane-d4,S								
200000									
180000	2-Dich								
160000	-								
140000									
120000									
100000									
80000									
60000									
40000									
20000									
04	5.00 6.00 7.00 8.00	9.00 10.00 1	11.00 12.00	13.00 14.00	15.00 16.00	17.00 18.00	<u>1900</u>		

Data Path : C:\MSDChem\1\DATA\10-13-09\ Data File : L1055.D Acq On : 13 Oct 2009 17:30 Operator : MEI Sample : DUP(100709),10185-011,A,5ml,100 Misc : ARCADIS/KINGS_ELEC, 10/07/09, 10/07/09, ALS Vial : 17 Sample Multiplier: 1 Quant Time: Oct 14 10:09:43 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Pentafluorobenzene6.1916816097450.00UG0.0031) 1,4-Difluorobenzene7.0111429871750.00UG0.0050) Chlorobenzene-d510.3311730519850.00UG0.00 31) 1,4-Difluorobenzene
 50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.53
 65
 123737
 48.51
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 - 133
 Recovery
 =
 97.02%

 41) Toluene-d8
 8.66
 98
 360317
 50.84
 UG
 0.00

 Spiked Amount
 50.000
 Range
 39
 - 137
 Recovery
 =
 101.68%

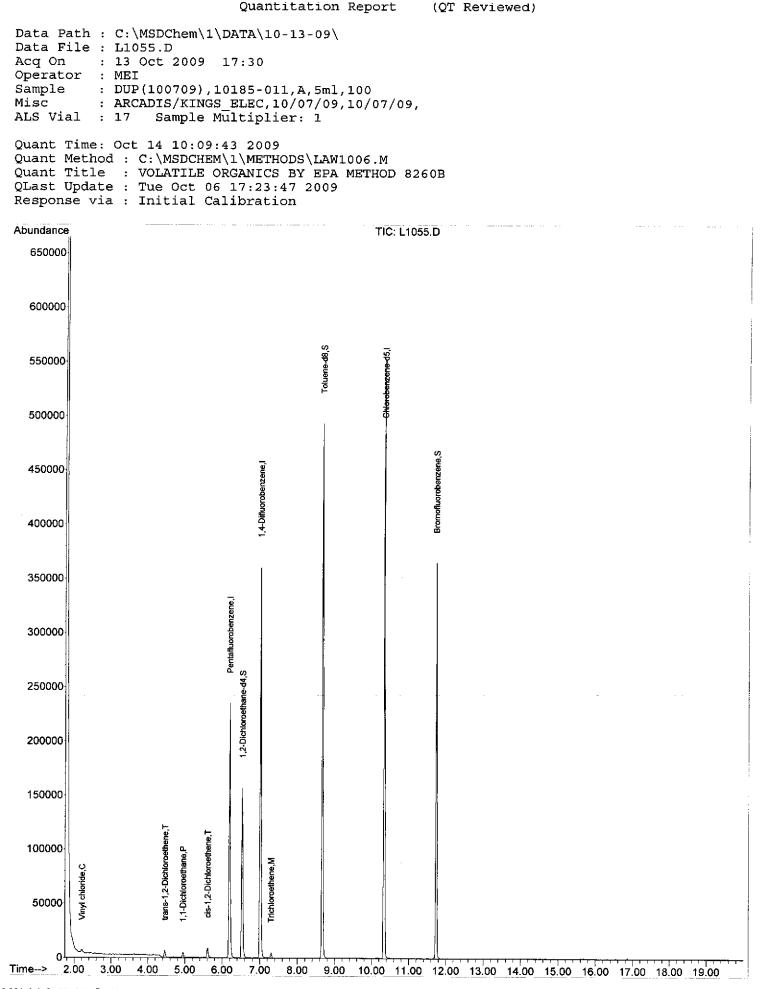
 59) Bromofluorobenzene
 11.73
 95
 153428
 46.84
 UG
 0.00

 Spiked Amount 50.000 Range 23 - 145 Recovery = 93.68% Target Compounds

 Qvalue

 4) Vinyl chloride
 2.21
 62
 5645
 2.29 UG
 98

 16) trans-1,2-Dichloroethene
 4.46
 96
 3174
 1.22 UG
 # 98


 18) 1,1-Dichloroethane
 4.95
 63
 6361
 1.21 UG
 100

 20) cis-1,2-Dichloroethene
 5.62
 96
 4549
 1.53 UG
 # 99

 33) Trichloroethene
 7.30
 95
 2074
 0.73 UG
 89

 Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\10-09-09\ Data File : L0987.D Acq On : 9 Oct 2009 12:13 Operator : MEI Sample : N/A, METHOD-BLK, A, 5ml, 100 Misc : ALS Vial : 5 Sample Multiplier: 1 Quant Time: Oct 09 16:22:22 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1916813937650.00UG0.0031) 1,4-Difluorobenzene7.0111425960450.00UG0.0050) Chlorobenzene-d510.3311726038650.00UG0.00 System Monitoring Compounds

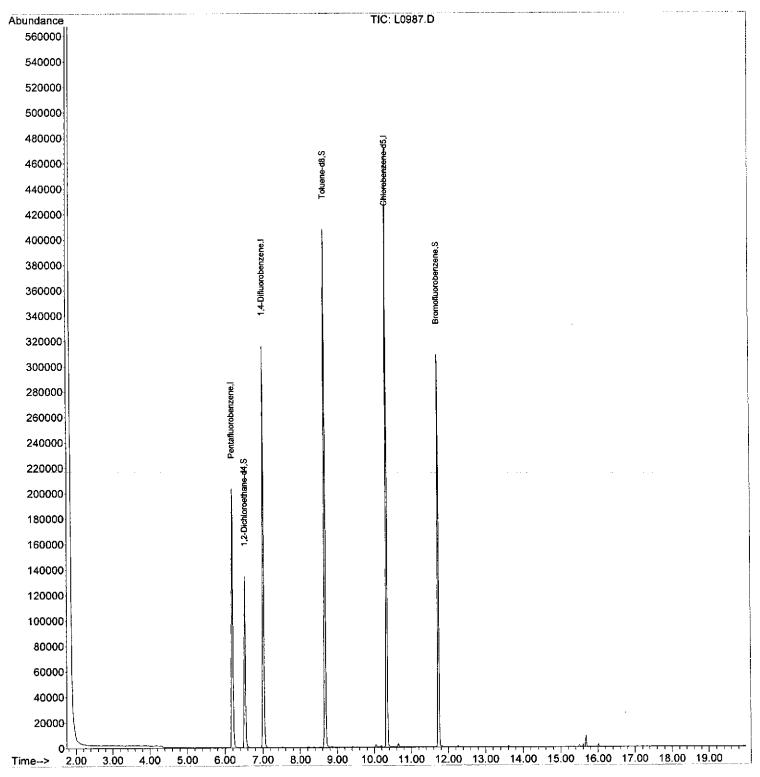
 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.53
 65
 109585
 49.62 UG
 0.00

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 99.24%

 41) Toluene-d8
 8.66
 98
 308817
 50.14 UG
 0.00

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 100.28%

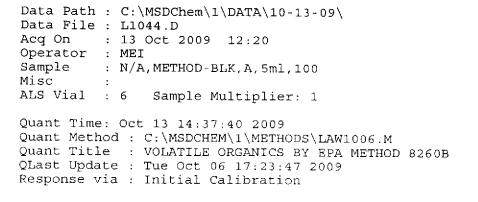
 59) Bromofluorobenzene
 11.73
 95
 133969
 47.94 UG
 0.00

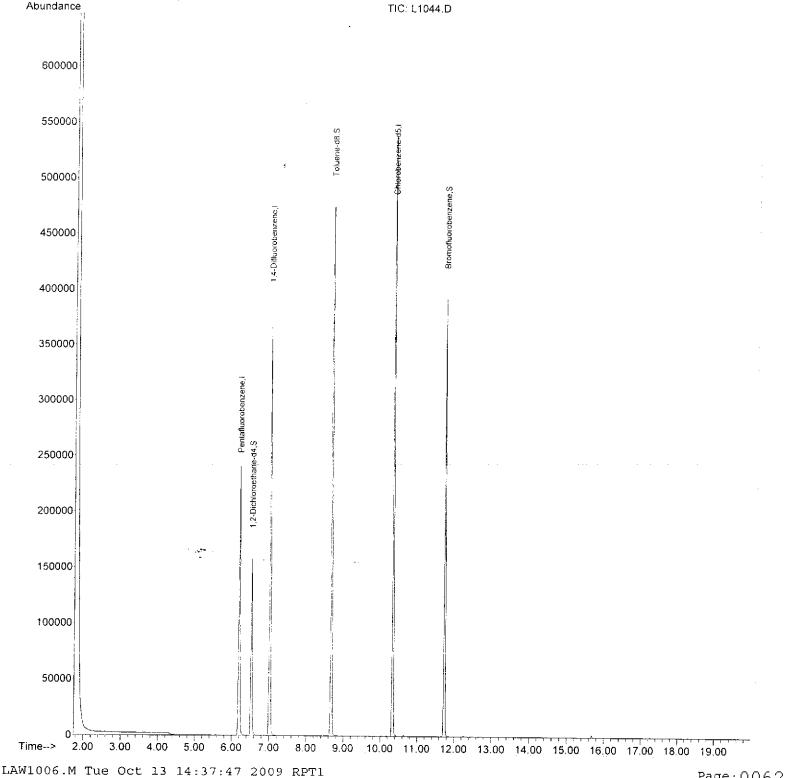

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 95.88%

 Target Compounds Ovalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	:	C:\MSDChem\1\DATA\10-09-09\
Data File	:	L0987.D
Acq On	:	9 Oct 2009 12:13
Operator	:	MEI
Sample	:	N/A, METHOD-BLK, A, 5ml, 100
Misc	:	
ALS Vial	:	5 Sample Multiplier: 1


Quant Time: Oct 09 16:22:22 2009 Quant Method : C:\MSDCHEM\1\METHODS\LAW1006.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Oct 06 17:23:47 2009 Response via : Initial Calibration



Data Path : C:\MSDChem\1\DATA Data File : L1044.D Acq On : 13 Oct 2009 12:2 Operator : MEI Sample : N/A,METHOD-BLK,A, Misc : ALS Vial : 6 Sample Multip	0 5ml,100					
Quant Time: Oct 13 14:37:40 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Tue Oct 06 17: Response via : Initial Calibr	ETHODS\LAW1(ICS BY EPA N 23:47 2009 ation	METHOD				
Internal Standards		QION H	Response	Conc Ui	nits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20	168 114 117	168461 309613 310041	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	8.67 Range 39 - 11.74	98 - 137 95	368538 Recover 160835	50.17 Y = 48.33	UG 100.34% UG	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

......

Page:0062

Data Path : C:\MSDChem\1\DATA\10-13-09\ Data File : L1044.D Acq On : 13 Oct 2009 12:20 Operator : MEI Sample : N/A, METHOD-BLK, A, 5ml, 100 Misc ALS Vial : 6 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Filtering: 5 Min Area: 1 % of largest Peak Max Peaks: 100 Sampling : 1 Start Thrs: 0.2 Stop Thrs : 0 Peak Location: TOP If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 Method : C:\MSDCHEM\1\METHODS\LAW1006.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Signal : TIC eak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total peak R.T. first max last PK peak -----------------6.190 434 440 457 rVB 240958 566034 54.10% 12.654% 1 6.524467473487rBV15789334957933.41%7.815%7.010513521535rBV37888678157874.70%17.473% 2 7.010 513 521 535 rBV 378886 513 521 535 rBV 378886 781578 74.70% 17.473% 677 685 703 rVB 474877 999581 95.54% 22.347% 3 4 8.671 5 10.332 841 849 863 rBV 539852 1046273 100.00% 23.391%

Sum of corrected areas: 4473019

6 11.739 975 988 1002 rVB 392466 729974 69.77% 16.319%

61-4252	
ę (973) 3	
Phone	

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

Far # (973) 989-5268				Kandol	Kandolpn, NJ V/569	
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd at lab > 5PM)	l at lab > 5PM)			
Company: ARCADIS-US, Inc. Address: 1 ThERNATIONAC Blud.	REPORT TO: ARCAO 15 - US, Inc. Address: 1 Informational Olvo.	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT GUARANTEED WITHOUT LAB APPROVAL. **RUSH SURCHARGES WILL APPLY IF ABLE TO ACCOMMODATE.	sample arrival. RUSH SURCHA	RUSH TAT IS N RGES WILL AI	IOT PPLY IF	
MAHWAH, NJ 07495	29970 (U, MI, MI, 67995	OOSE	Rush TAT Charge **	Report Format	s,qqa	s
- 1.84 -	15	1 DRO (3-5 day TAT) QAM025 (5 day TAT min.) DRO (80158) - used for: Fuel Oil #2/Hume Heating Oil #1 #2.		Results Only	SRP. dbf format	ormat
01-684-142	1.]	QAM-025 (OQA-QAM025) - used for: all other fuel oil and unknown contantinants.	24 hr - 100% 48 hr - 75%	Reduced	SRP.wk1 format	ornat
Project Manager: ERIC ROPPIGUEZ	INVOICE TO: ALCADIS-US, TAC.	al/Fax 2 wk/S	72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	lab approved custom	custom
	Address: / International Blue	Hard Copy 3 wk/Std	5 day - 25% 6-9 day 10%	Other (describe)	EDE	
leo /	WATUAH, NI 07495	price			NO EDD/CD REQ'D	REQ'D
EU	$\left \right $	X ANALYTICAL PARAMETERS		E - P - O	ۍ ډ	
Bottle Order #: $\beta_{03}715$	Attn: FRIC 1400RIGUEZ	7				
Quote # :	10# XT000 423,0005.00001			UU #	# ROTTIFS &	
		512		PRESE	PRESERVATIVES	Sž
	DW - Drinking Water AQ - Aqueous WW - Waste Water					2
SAMPLE INFORMATION	OI - Oil LIO - Liquid (Specify) OT - Other (Specify) S - Soil SL - Studge SOL - Solid W - Wipe	(JOC)		£	H	9.
Client ID Depth (ft. only)	Sampling			OSZH CONH HO®N	neon 1940	Eucon None
20-1048	10/7/m 10:32 AQ 2 1	2		2		
20-1020	7 00 9:42 A	2		2		
DTur-2	12:02 A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5		
min-138	12:43 AO 2	2		2		
mw-GD	10:59 A	2		2		
mw-95R	8			2		
mw-6S	Indiana Inter AC 2 7	2		7		
Õ	10/01/01/20 AQ 28			2		
$F_{0}(100700)$	10710 1020 AQ 2 9	2		2		
73(100609)						
Known Hazard: Yes or No Describe:	•	MDL . Rea: (JWOS (11/05) - SRS - SRS/J(JW - SRS Residentia) - (JTHER (SEE ('))MMENTS)	esidential • OTH	ER (SEE COMM	ENTS)	
Conc. Expected: Low Med High					6	
Please print legibly and fill out completely. Sam	tot be processed and the turnaround time	will not sport until any ambiguities have been resolved.				
Signature/Company	Date Time					
Relinquistred by: 2 & min & 1 ma / Al (1903	11, 70/2/02/ (1/2/ (1/2/ /0/					
Relinquished by:	Received by:					
Relinquistied by:	Received by:					
Relinquished by:	Received by:	Lab Case #	##			
ReQuished by:	Received by:	<8101 [0185		PAGE: of	2	
LA O'OPIES - WHITE & YELLOW; CLIENT COPY - PINK				-		zachodor ∩ wastera

03/2009 rev Ref No. 0, 260202873

Phone # (973) 361-4252	Fax # (973) 989-5288
------------------------	----------------------

ī

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

03/2009 rev Rei Mrr C 260202673

PROJECT INFORMATION

Case No. E09-10185

Project KINGS ELECTRONICS - VENDOR #1168636

Customer	Arcadis Geraghty & Miller	P.O. # NJ000423.0005.000(
Contact EMail Phone	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs (201) 684-1410 Fax 1(201) 684-1420	Received 10/7/2009 15:05 Verbal Due 10/21/2009 Report Due 10/28/2009
Report To		Bill To
1 Internatio	nal Blvd.	640 Plaza Drive
Suite 406		Suite 130
Mahwah, N	IJ 07495	Highlands Ranch, CO 80129
Attn: Eric R	Rodriguez	Attn: Eric Rodriguez
Report F		
Addition	al Info State Form Field Sampling	Conditional VOA

Lab ID	Client Sample ID	<u>Depth Top / Bottom</u>	Sampling Time	<u>Matrix</u>	Unit <u># of</u>	Containers
10185-001	GP-104R	n/a	10/7/2009@10:32	Aqueous	ug/L	2
10185-002	GP-103R	n/a	10/7/2009@09:42	Aqueous	ug/L	2
10185-003	PTW-2	n/a	10/7/2009@12:02	Aqueous	ug/L	2
10185-004	MW-13R	n/a	10/6/2009@12:43	Aqueous	ug/L	2
10185-005	MW-9D	n/a	10/6/2009@10:59	Aqueous	ug/L	2
10185-006	MW-95	n/a	10/6/2009@12:05	Aqueous	ug/L	2
10185-007	MW-6S	n/a	10/6/2009@11:14	Aqueous	ug/L	2
10185-008	FB(100609)	n/a	10/6/2009@12:00	Aqueous	ug/L	2
10185-009	FB(100709)	n/a	10/7/2009@10:20	Aqueous	ug/L	2
10185-010	TB(100609)	n/a	10/6/2009	Aqueous	ug/L	1
10185-011	DUP(100709)	n/a	10/7/2009	Aqueous	ug/L	2
Sample # Te	sts	<u>Status</u> QA	Method			
001 PP V	VOA + Cis 1,2-DCE	Complete 826	0B			
002 PP	OA + Cis 1,2-DCE	Complete 826	0 B			
003 PP V	VOA + Cis 1,2-DCE	Complete 826				
	OA + Cis 1,2-DCE	Complete 826				
	VOA + Cis 1,2-DCE	Complete 826				
	/OA + Cis 1,2-DCE	Complete 826				
	Project Revision	Run 624				
· · · · · · · · · · · · · · · · · · ·	/OA + Cis 1,2-DCE	Complete 826				
	/OA + Cis 1,2-DCE	Complete 826				
	/OA + Cis 1,2-DCE	· · · · · · · · · · · ·				
	/OA + Cis 1,2-DCE	Complete 826				
011 PP V	70A + Cis 1,2-DCE	Complete 826	0B			

10/15/2009 09:58 by kim - REV 1

Per Eric Rodriguez, please change sample ID MW-9SR to MW-9S on sample 006.

SAMPLE RECEIPT VERIFICATION

CASE NO: E 09	10185	CLIENT:	Arc	adis
COOLER TEMPERA	TURE: 2° - 6°C:	✓ (See Chain c	of Custody) Comments	
✓ = YES/NA ¥ = NO				
 ✓ Bottles Inta ✓ no-Missing ✓ no-Extra B 	Bottles	·		
 ✓ no-headsp ✓ Labels inta ✓ pH Check ✓ Correct bo ✓ Sufficient H 	(exclude VOs) ¹ ttles/preservative Holding/Prep Time'			
	be Subcontracted Custody is Clear			
the following tests: pH, Temper ADDITIONAL COMM SAMPLE(S) VERIFIE	ENTS:	e, Total Residual Chlorine, Disso	Ived Oxygen, Sulfite. DATE (O (SEE BELOW) NO	7(09)
If COC is NOT clear,	<u>STOP</u> until you get	t client to authorize/cla	arify work.	
CLIENT NOTIFIED: PROJECT CONTAC [®] SUBCONTRACTED DATE SHIPPED: ADDITIONAL COMM	LAB:	Date/ Time:		NO
VERIFIED/TAKEN B	Y: INITIAL		DATE 10.8-09	REV 03/20090067

	Laboratory	v Custo	dy Chron	nicle		
IAL Case No. E09-10185		Clier	nt <u>Arcadis G</u> e	eraghty & Mi	ller	
		Projec	X KINGS EL	ECTRONIC	S - VENDOR #116	8636
	R	eceived Or	a <u>10/ 7/2009</u>	@15:05		
Department: Volatiles			Prep. Date	<u>Analyst</u>	Analysis Date	Analyst
PP VOA + Cis 1,2-DCE	10185-001	Aqueous	n/a	n/a	10/ 9/09	Xing
1	-002	"	n/a	n/a	10/ 9/09	Xing
1	-003	**	n/a	n/a	10/ 9/09	Xing
	-004	п	n/a	n/a	10/ 9/09	Xing
	-005	11	n/a	n/a	10/13/09	Xing
	-006	**	n/a	n/a	10/13/09	Xing
	-007	*1	n/a	n/a	10/ 9/09	Xing
	-008	11	n/a	n/a	10/ 9/09	Xing
	-009	**	n/a	n/a	10/ 9/09	Xing
	-010	U.	n/a	n/a	10/ 9/09	Xing
	-011	**	n/a	n/a	10/13/09	Xing

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller - Albany 465 New Karner Road Albany, NY 12205

Project Name: KINGS ELECTRONICS - VENDOR #1168636 IAL Case Number: E10-03186

These data have been reviewed and accepted by:

Micha

Michael H. Lefun, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed.

Sample Summary

IAL Case No.

Client Arcadis Geraghty & Miller - Albany

E10-03186

Project KINGS ELECTRONICS - VENDOR #1168636

Received On <u>4/7/2010@19:00</u>

					<u># of</u>
<u>Lab ID</u>	<u>Client Sample ID</u>	<u>Depth Top/Bottom</u>	<u>Sampling Time</u>	<u>Matrix</u>	<u>Container</u>
03186-001	FB (040610)	n/a	4/ 6/2010	Aqueous	2
03186-002	TB (040610)	n/a	4/ 6/2010@09:00	Aqueous	1
03186-003	PTW-2	n/a	4/ 6/2010@10:36	Aqueous	2
03186-004	MW-9S	n/a	4/ 6/2010@10:53	Aqueous	2
03186-005	MW-9D	n/a	4/ 6/2010@10:52	Aqueous	2
03186-006	MW-6S	n/a	4/ 6/2010@11:46	Aqueous	2
03186-007	DUP (040610)	n/a	4/ 6/2010	Aqueous	2
03186-008	FB (040710)	n/a	4/ 7/2010@09:00	Aqueous	2
03186-009	GP-104R	n/a	4/ 7/2010@10:57	Aqueous	2 B B
03186-010	GP-103R	n/a	4/ 7/2010@10:10	Aqueous	2
03186-011	MW-13R	n/a	4/ 7/2010@10:12	Aqueous	2 1

Page 1 of 1

Apr 21, 2010 @ 02:33

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatiles	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	70 74

MATRIX QUALIFIERS

- A Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>O</u>il matrix.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- X Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- E <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates the concentration was reported below the RL but above the MDL. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- RL Reporting Limit.
- MDL Method Detection Limit.
- MI Indicates compound concentration could not be determined due to Matrix Interferences.
- NA Not Applicable.
- ND Indicates the compound was analyzed for but Not Detected at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller - Albany (Project: KINGS ELECTRONICS - VENDOR #1168636) on April 7, 2010 for the analysis of:

(11) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

22/10

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E10-03186

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	
2.	Table of Contents.	
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	~
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	✓
5.	Document bound, paginated and legible.	_ ~
6.	Chain of Custody.	✓
7.	Methodology Summary.	✓
8.	Laboratory Chronicle and Holding Time Check.	✓
9.	Results submitted on a dry weight basis (if applicable).	✓
10.	Method Detection Limits.	√
11.	Lab certified by NJDEP for parameters or appropriate category of	✓
	parameters or a member of the USEPA CLP.	
12.	NonConformance Summary.	✓

0003

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS

.

	Lab Case Number: <u>E10 - つろくもん</u>		
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks).	<u>No</u>	<u>Yes</u> √
2.	GC/MS Tuning Specifications: a. BFB Passed		
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds		
	b. System Performance Check Compounds		$\overline{\checkmark}$
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:	✓	
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)	- 	
	If not met, were the calculations checked and the results qualified as "estimated"?	-	na
8	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		
9 .	Internal Standard Area/Retention Time Shift meet criteria	-	✓
10.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:		
12	Sample Dilution Performed		
12.	High Target High Nontarget Matrix Interference Other Compounds Compounds Interference Interference	 	<u> </u>
13,	Comments:	•	
	Organics Manager Date		

	Project: KINC				er - Alba NDOR #				
	j			E10-0318					
PARAMETER(Units)	Lab ID: Client ID: Matrix: Sampled Date	FB (040610) Aqueous 4/6/10		03186-002 TB (040610) Aqueous 4/6/10 Conc Q RL		03186-003 PTW-2 Aqueous 4/6/10 Conc Q RL		03186-004 MW-9S Aqueous 4/6/10 Conc Q RL	
Volatiles (Units)		(ug/L-ppb)		(ug/L-ppb)		(ug/L-ppb)		(ug/L-ppb)	
Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene		ND ND ND ND ND	1.00 1.00 1.00 1.00 1.00	ND ND ND ND ND	1.00 1.00 1.00 1.00 1.00	1.38 ND 1.79 ND 3.48	1.00 1.00 1.00 1.00 1.00	7.31 2.00 4.16 6.59 1.90	1.00 1.00 1.00 1.00 1.00
TOTAL VO's:		ND		ND		6.65		22.0	
	Lab ID: Client ID: Matrix: Sampled Date	: 03186-005 : MW-9D : Aqueous		03186-006 MW-6S Aqueous 4/6/10		03186-007 DUP (040610) Aqueous 4/6/10		03186-008 FB (040710) Aqueous 4/7/10	
PARAMETER(Units)		Conc (Q RL	Conc (<u>Q</u> RL	Conc Q	RL	Conc C	<u>)</u> RL
Volatiles (Units)		(ug/L	-ppb)	(ug/L	-ppb)	(ug/L-]	(L-ppb) (ug/L-ppl		-ppb)
Vinyl chloride 1,1-Dichloroethane cis-1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethane Tetrachloroethane		ND ND ND ND ND	1.00 1.00 1.00 1.00 1.00 1.00	ND ND 4.23 25.1 3.28	1.00 1.00 1.00 1.00 1.00 1.00	1.50 1.66 ND ND 3.35 ND	1.00 1.00 1.00 1.00 1.00 1.00	ND ND ND ND ND ND	1.00 1.00 1.00 1.00 1.00 1.00
TOTAL VO's:		ND		32.6		6.51		ND	
PARAMETER(Units)	Lab ID: Client ID: Matrix: Sampled Date	03186-009 GP-104R Aqueous		03186-010 GP-103R Aqueous 4/7/10 Conc Q RL		03186-011 MW-13R Aqueous 4/7/10 Conc Q RL			
Volatiles (Units)		(ug/I	ug/L-ppb) (ug/L-ppb)		(ug/L-ppb)				
Vinyl chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Trichloroethene		ND 0.686 1.30 1.06 1.05	1.00	3.02 ND ND 1.91 1.29	1.00 1.00 1.00 1.00 1.00	ND ND ND ND ND	1.00 1.00 1.00 1.00 1.00 1.00		
TOTAL VO's:		4.10	J	6.22		ND			

SUMMARY REPORT Client: Arcadis Geraghty & Miller - Albany Project: KINGS ELECTRONICS - VENDOR #1168636

ND = Analyzed for but Not Detected at the MDL

J = The concentration was detected at a value below the RL and above the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-001 Client ID: FB_(040610) Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8212.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	ND		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	ND		1.00	0.480
1,1-Dichloroethane	ND		1.00	0.450
cis-1,2-Dichloroethene	ND		1.00	0.380
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	ND		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	ND		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	ND		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
1,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-002 Client ID: TB_(040610) Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8213.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL	
Chloromethane	ND		.00	0.550	
Vinyl chloride	ND	1	.00	0.460	
Bromomethane	ND	1	.00	0.870	
Chloroethane	ND	1	.00	0.720	
Trichlorofluoromethane	ND	1	.00	0.750	
Acrolein	ND	2	20.0	1.44	
1,1-Dichloroethene	ND	1	.00	0.590	
Methylene chloride	ND	2	.00	1.98	
Acrylonitrile	ND	2	0.0	1.62	
trans-1,2-Dichloroethene	ND	1	.00	0.480	
1,1-Dichloroethane	ND	1	.00	0.450	
cis-1,2-Dichloroethene	ND	1	.00	0.380	
Chloroform	ND	1	.00	0.250	
1,1,1-Trichloroethane	ND	1	.00	0.310	
Carbon tetrachloride	ND	1	.00	0.220	
1,2-Dichloroethane (EDC)	ND	1	.00	0.240	
Benzene	ND	1	.00	0.200	
Trichloroethene	ND	1	.00	0.230	
1,2-Dichloropropane	ND	1	.00	0.240	
Bromodichloromethane	ND	1	.00	0.230	
2-Chloroethyl vinyl ether	ND	1	.00	0.630	
cis-1,3-Dichloropropene	ND	1	.00	0.250	
Toluene	ND	1	.00	0.190	
trans-1,3-Dichloropropene	ND	1	.00	0.190	
1,1,2-Trichloroethane	ND	1	.00	0.300	
Tetrachloroethene	ND	1	.00	0.220	
Dibromochloromethane	ND	1	.00	0.210	
Chlorobenzene	ND	1	.00	0.190	
Ethylbenzene	ND	1	.00	0.220	
Total Xylenes	ND	2	.00	0.600	
Bromoform	ND	1	.00	0.230	
1,1,2,2-Tetrachloroethane	ND	1	.00	0.210	
1,3-Dichlorobenzene	ND	1	.00	0.300	
1,4-Dichlorobenzene	ND	1	.00	0.190	
1,2-Dichlorobenzene	ND	1	.00	0.230	

0

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-003 Client ID: PTW-2 Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8214.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	1.38		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	ND		1.00	0.480
1,1-Dichloroethane	1.79		1.00	0.450
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	ND		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	3.48		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	ND		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
l,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-004 Client ID: MW-9S Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8215.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	7.31		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	2.00		1.00	0.480
1,1-Dichloroethane	4.16		1.00	0.450
cis-1,2-Dichloroethene	6.59		1.00	0.380
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	ND		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	1.90		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	ND		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
1,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-005 Client ID: MW-9D Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8216.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

.

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	ND		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	ND		1.00	0.480
1,1-Dichloroethane	ND		1.00	0.450
cis-1,2-Dichloroethene	ND		1.00	0.380
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	ND		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	ND		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	ND		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
1,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

0

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-006 Client ID: MW-6S Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8217.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	ND		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	ND		1.00	0.480
1,1-Dichloroethane	ND		1.00	0.450
cis-1,2-Dichloroethene	ND		1.00	0.380
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	4.23		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	25.1		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	3.28		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
1,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 03186-007 Client ID: DUP_(040610) Date Received: 04/07/2010 Date Analyzed: 04/09/2010 Data file: J8218.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL	
Chloromethane	ND		1.00	0.550	_
Vinyl chloride	1.50		1.00	0.460	
Bromomethane	ND		1.00	0.870	
Chloroethane	ND		1.00	0.720	
Trichlorofluoromethane	ND		1.00	0.750	
Acrolein	ND		20.0	1.44	
1,1-Dichloroethene	ND		1.00	0.590	
Methylene chloride	ND		2.00	1.98	
Acrylonitrile	ND		20.0	1.62	
trans-1,2-Dichloroethene	ND		1.00	0.480	
1,1-Dichloroethane	1.66		1.00	0.450	
Chloroform	ND		1.00	0.250	
1,1,1-Trichloroethane	ND		1.00	0.310	
Carbon tetrachloride	ND		1.00	0.220	
1,2-Dichloroethane (EDC)	ND		1.00	0.240	
Benzene	ND		1.00	0.200	
Trichloroethene	3.35		1.00	0.230	
1,2-Dichloropropane	ND		1.00	0.240	
Bromodichloromethane	ND		1.00	0.230	
2-Chloroethyl vinyl ether	ND		1.00	0.630	
cis-1,3-Dichloropropene	ND		1.00	0.250	
Toluene	ND		1.00	0.190	
trans-1,3-Dichloropropene	ND		1.00	0.190	
1,1,2-Trichloroethane	ND		1.00	0.300	
Tetrachloroethene	ND		1.00	0.220	
Dibromochloromethane	ND		1.00	0.210	
Chlorobenzene	ND		1.00	0.190	
Ethylbenzene	ND		1.00	0.220	
Total Xylenes	ND		2.00	0.600	
Bromoform	ND		1.00	0.230	
1,1,2,2-Tetrachloroethane	ND		1.00	0.210	
1,3-Dichlorobenzene	ND		1.00	0.300	
1,4-Dichlorobenzene	ND		1.00	0.190	
1,2-Dichlorobenzene	ND		1.00	0.230	

6.51

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 03186-008 Client ID: FB_(040710) Date Received: 04/07/2010 Date Analyzed: 04/13/2010 Data file: L4830.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Chloromethane ND 1.00 0.270 Vinyl chloride ND 1.00 0.410 Bromomethane ND 1.00 0.520 Chloroethane ND 1.00 0.620 Trichlorofluoromethane ND 1.00 0.620 Acrolein ND 20.0 1.75 JDichloroethene ND 2.00 1.88 Acrylonitrile ND 2.00 1.98 Actrylonitrile ND 2.00 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.430 1,1-Dichloroethane ND 1.00 0.430 1,1-Trichloroethane ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.340 Trichloroethane ND 1.00 0.340 Bromodichloromethane N	Compound	Concentration	Q	RL	MDL
Bromomethane ND 1.00 0.520 Chloroethane ND 1.00 0.620 Trichlorofluoromethane ND 1.00 0.460 Acrolein ND 20.0 1.75 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.33 trams-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethene ND 1.00 0.460 1,1-Dichloroethene ND 1.00 0.390 cis-1,2-Dichloroethene ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.340 1,2-Dichloroethane ND 1.00 0.340 1,2-Dichloropropane ND 1.00 0.340 1,2-Dichloroethene ND 1.00 0.320 cis-1,3-Dichloropropene </td <td>Chloromethane</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.270</td>	Chloromethane	ND		1.00	0.270
Chloroethane ND 1.00 0.620 Trichlorofluoromethane ND 1.00 0.460 Acrolein ND 20.0 1.75 1,1-Dichloroethene ND 1.00 0.450 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.340 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloropropane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroe	Vinyl chloride	ND		1.00	0.410
Trichlorofluoromethane ND 1.00 0.460 Acrolein ND 20.0 1.75 1,1-Dichloroethene ND 1.00 0.450 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,2-Dichloroethane ND 1.00 0.430 1,2-Dichloroethane ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.340 Schloroethane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.320 cis-1,3-Dichloropropane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trich	Bromomethane	ND		1.00	0.520
Acrolein ND 20.0 1.75 1,1-Dichloroethene ND 1.00 0.450 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.440 Chloroform ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.340 J.2-Dichloropropane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.280 Trans-1,3-Dichloropropene ND 1.00 0.280 Trans-1,3-Dichloropropene ND 1.00 0.330	Chloroethane	ND		1.00	0.620
1,1-Dichloroethene ND 1.00 0.450 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.390 cis-1,2-Dichloroethene ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.330 Sendolchloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromo	Trichlorofluoromethane	ND		1.00	0.460
Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.390 cis-I,2-Dichloroethene ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.330 J.2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.310 J.2-Dichloropropane ND 1.00 0.310 J-2-Dichloropropane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromo	Acrolein	ND		20.0	1.75
Acrylonitrile ND 20.0 1.33 trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.390 cis-1,2-Dichloroethane ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.370 Trichloroethane (EDC) ND 1.00 0.310 2-Chloropropane ND 1.00 0.310 2-Chloroethane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.240 1,1,2-Trichloropthane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 D	1,1-Dichloroethene	ND		1.00	0.450
trans-1,2-Dichloroethene ND 1.00 0.460 1,1-Dichloroethane ND 1.00 0.390 cis-1,2-Dichloroethene ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.380 1,2-Dichloroethane ND 1.00 0.330 Benzene ND 1.00 0.340 Trichloroethene ND 1.00 0.340 1,2-Dichloropropane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.430 Tetrachloroethene ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>2.00</td> <td>1.98</td>	Methylene chloride	ND		2.00	1.98
1,1-Dichloroethane ND 1.00 0.390 cis-1,2-Dichloroethane ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.330 Benzene ND 1.00 0.340 1,2-Dichloropthane (EDC) ND 1.00 0.340 Bromodichloroethane ND 1.00 0.340 Bromodichloropropane ND 1.00 0.320 cis-1,3-Dichloropropane ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.320 Chlorobenzene ND 1.00 0.330	Acrylonitrile	ND		20.0	1.33
cis-1,2-Dichloroethene ND 1.00 0.420 Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.400 Carbon tetrachloride ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.330 Trichloroethene ND 1.00 0.380 1,2-Dichloropthane ND 1.00 0.340 Bromedichloromethane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.320 cis-1,3-Dichloropropane ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.320 Chlorobenzene ND 1.00 0.330 Dibromochloromethane ND 0.00 0.430	trans-1,2-Dichloroethene	ND		1.00	0.460
Chloroform ND 1.00 0.430 1,1,1-Trichloroethane ND 1.00 0.400 Carbon tetrachloride ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.370 Trichloroethene ND 1.00 0.370 Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 <	1,1-Dichloroethane	ND		1.00	0.390
1,1,1-Trichloroethane ND 1.00 0.400 Carbon tetrachloride ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.370 Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 Total Xylenes ND 1.00 0.350	cis-1,2-Dichloroethene	ND		1.00	0.420
Carbon tetrachloride ND 1.00 0.380 1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.370 Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Totuene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 Total Xylenes ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.340 <td>Chloroform</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.430</td>	Chloroform	ND		1.00	0.430
1,2-Dichloroethane (EDC) ND 1.00 0.330 Benzene ND 1.00 0.370 Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.400 Tetrachloroethene ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 Total Xylenes ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.340	1,1,1-Trichloroethane	ND		1.00	0.400
Benzene ND 1.00 0.370 Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.340 1,3-Dichlorobenzene ND 1.00 0.340 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.380</td>	Carbon tetrachloride	ND		1.00	0.380
Trichloroethene ND 1.00 0.380 1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.400 Tetrachloroethene ND 1.00 0.320 Chlorobenzene ND 1.00 0.330 Dibromochloromethane ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.340 <td>1,2-Dichloroethane (EDC)</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.330</td>	1,2-Dichloroethane (EDC)	ND		1.00	0.330
1,2-Dichloropropane ND 1.00 0.340 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 Chlorobenzene ND 1.00 0.380 Total Xylenes ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00	Benzene	ND		1.00	0.370
Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.330 Tetrachloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.380 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.340 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.340	Trichloroethene	ND		1.00	0.380
2-Chloroethyl vinyl ether ND 1.00 0.320 cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.400 Tetrachloroethene ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.350 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.340	1,2-Dichloropropane	ND		1.00	0.340
cis-1,3-Dichloropropene ND 1.00 0.260 Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.400 Tetrachloroethane ND 1.00 0.400 Tetrachloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 1.00 0.350 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.370	Bromodichloromethane	ND		1.00	0.310
Toluene ND 1.00 0.280 trans-1,3-Dichloropropene ND 1.00 0.240 1,1,2-Trichloroethane ND 1.00 0.400 Tetrachloroethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Dibromochloromethane ND 1.00 0.330 Chlorobenzene ND 1.00 0.220 Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.320 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.340	2-Chloroethyl vinyl ether	ND		1.00	0.320
trans-1,3-DichloropropeneND1.000.2401,1,2-TrichloroethaneND1.000.400TetrachloroetheneND1.000.330DibromochloromethaneND1.000.220ChlorobenzeneND1.000.430EthylbenzeneND1.000.380Total XylenesND1.000.3501,1,2,2-TetrachloroethaneND1.000.3501,1,2,2-TetrachloroethaneND1.000.3401,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	cis-1,3-Dichloropropene	ND		1.00	0.260
1,1,2-Trichloroethane ND 1.00 0.400 Tetrachloroethene ND 1.00 0.330 Dibromochloromethane ND 1.00 0.220 Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.220 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.340	Toluene	ND		1.00	0.280
TetrachloroetheneND1.000.330DibromochloromethaneND1.000.220ChlorobenzeneND1.000.430EthylbenzeneND1.000.380Total XylenesND2.000.790BromoformND1.000.3501,1,2,2-TetrachloroethaneND1.000.2201,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	trans-1,3-Dichloropropene	ND		1.00	0.240
Dibromochloromethane ND 1.00 0.220 Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.220 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.370	1,1,2-Trichloroethane	ND		1.00	0.400
Chlorobenzene ND 1.00 0.430 Ethylbenzene ND 1.00 0.380 Total Xylenes ND 2.00 0.790 Bromoform ND 1.00 0.350 1,1,2,2-Tetrachloroethane ND 1.00 0.220 1,3-Dichlorobenzene ND 1.00 0.340 1,4-Dichlorobenzene ND 1.00 0.370	Tetrachloroethene	ND		1.00	0.330
EthylbenzeneND1.000.380Total XylenesND2.000.790BromoformND1.000.3501,1,2,2-TetrachloroethaneND1.000.2201,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	Dibromochloromethane	ND		1.00	0.220
Total XylenesND2.000.790BromoformND1.000.3501,1,2,2-TetrachloroethaneND1.000.2201,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	Chlorobenzene	ND		1.00	0.430
BromoformND1.000.3501,1,2,2-TetrachloroethaneND1.000.2201,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	Ethylbenzene	ND		1.00	0.380
1,1,2,2-TetrachloroethaneND1.000.2201,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	Total Xylenes	ND		2.00	0.790
1,3-DichlorobenzeneND1.000.3401,4-DichlorobenzeneND1.000.370	Bromoform	ND		1.00	0.350
1,4-Dichlorobenzene ND 1.00 0.370	1,1,2,2-Tetrachloroethane	ND		1.00	0.220
	1,3-Dichlorobenzene	ND		1.00	0.340
1.2-Dichlorobenzene ND 1.00 0.340	1,4-Dichlorobenzene	ND		1.00	0.370
	1,2-Dichlorobenzene	ND		1.00	0.340

Total Target Compounds:

0

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 03186-009GC/MS Column: DB-624Client ID: GP-104RSample wt/vol: 5mlDate Received: 04/07/2010Matrix-Units: Aqueous-µg/L (ppb)Date Analyzed: 04/13/2010Dilution Factor: 1Data file: L4831.D% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.270
Vinyl chloride	ND		1.00	0.410
Bromomethane	ND		1.00	0.520
Chloroethane	ND		1.00	0.620
Trichlorofluoromethane	ND		1.00	0.460
Acrolein	ND		20.0	1.75
1,1-Dichloroethene	ND		1.00	0.450
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.33
trans-1,2-Dichloroethene	0.686	J	1.00	0.460
1,1-Dichloroethane	1.30		1.00	0.390
cis-1,2-Dichloroethene	1.06		1.00	0.420
Chloroform	ND		1.00	0.430
1,1,1-Trichloroethane	ND		1.00	0.400
Carbon tetrachloride	ND		1.00	0.380
1,2-Dichloroethane (EDC)	ND		1.00	0.330
Benzene	ND		1.00	0.370
Trichloroethene	1.05		1.00	0.380
1,2-Dichloropropane	ND		1.00	0.340
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.320
cis-1,3-Dichloropropene	ND		1.00	0.260
Toluene	ND		1.00	0.280
trans-1,3-Dichloropropene	ND		1.00	0.240
1,1,2-Trichloroethane	ND		1.00	0.400
Tetrachloroethene	ND		1.00	0.330
Dibromochloromethane	ND		1.00	0.220
Chlorobenzene	ND		1.00	0.430
Ethylbenzene	ND		1.00	0.380
Total Xylenes	ND		2.00	0.790
Bromoform	ND		1.00	0.350
1,1,2,2-Tetrachloroethane	ND		1.00	0.220
1,3-Dichlorobenzene	ND		1.00	0.340
1,4-Dichlorobenzene	ND		1.00	0.370
1,2-Dichlorobenzene	ND		1.00	0.340

Total Target Compounds:

J

4.10

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 03186-010 Client ID: GP-103R Date Received: 04/07/2010 Date Analyzed: 04/13/2010 Data file: L4832.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.270
Vinyl chloride	3.02		1.00	0.410
Bromomethane	ND		1.00	0.520
Chloroethane	ND		1.00	0.620
Trichlorofluoromethane	ND		1.00	0.460
Acrolein	ND		20.0	1.75
1,1-Dichloroethene	ND		1.00	0.450
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.33
trans-1,2-Dichloroethene	ND		1.00	0.460
1,1-Dichloroethane	ND		1.00	0.390
cis-1,2-Dichloroethene	1.91		1.00	0.420
Chloroform	ND		1.00	0.430
1,1,1-Trichloroethane	ND		1.00	0.400
Carbon tetrachloride	ND		1.00	0.380
1,2-Dichloroethane (EDC)	ND		1.00	0.330
Benzene	ND		1.00	0.370
Trichloroethene	1.29		1.00	0.380
1,2-Dichloropropane	ND		1.00	0.340
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.320
cis-1,3-Dichloropropene	ND		1.00	0.260
Toluene	ND		1.00	0.280
trans-1,3-Dichloropropene	ND		1.00	0.240
1,1,2-Trichloroethane	ND		1.00	0.400
Tetrachloroethene	ND		1.00	0.330
Dibromochloromethane	ND		1.00	0.220
Chlorobenzene	ND		1.00	0.430
Ethylbenzene	ND		1.00	0.380
Total Xylenes	ND		2.00	0.790
Bromoform	ND		1.00	0.350
1,1,2,2-Tetrachloroethane	ND		1.00	0.220
1,3-Dichlorobenzene	ND		1.00	0.340
1,4-Dichlorobenzene	ND		1.00	0.370
1,2-Dichlorobenzene	ND		1.00	0.340

6.22

Total Target Compounds:

VOLATILE ORGANICS

Client/Project: AGM-ALBNY/KINGS_EL

Lab ID: 03186-011 Client ID: MW-13R Date Received: 04/07/2010 Date Analyzed: 04/13/2010 Data file: L4833.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.270
Vinyl chloride	ND		1.00	0.410
Bromomethane	ND		1.00	0.520
Chloroethane	ND		1.00	0.620
Trichlorofluoromethane	ND		1.00	0.460
Acrolein	ND		20.0	1.75
1,1-Dichloroethene	ND		1.00	0.450
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.33
trans-1,2-Dichloroethene	ND		1.00	0.460
1,1-Dichloroethane	ND		1.00	0.390
cis-1,2-Dichloroethene	ND		1.00	0.420
Chloroform	ND		1.00	0.430
1,1,1-Trichloroethane	ND		1.00	0.400
Carbon tetrachloride	ND		1.00	0.380
1,2-Dichloroethane (EDC)	ND		1.00	0.330
Benzene	ND		1.00	0.370
Trichloroethene	ND		1.00	0.380
1,2-Dichloropropane	ND		1.00	0.340
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.320
cis-1,3-Dichloropropene	ND		1.00	0.260
Toluene	ND		1.00	0.280
trans-1,3-Dichloropropene	ND		1.00	0.240
1,1,2-Trichloroethane	ND		1.00	0.400
Tetrachloroethene	ND		1.00	0.330
Dibromochloromethane	ND		1.00	0.220
Chlorobenzene	ND		1.00	0.430
Ethylbenzene	ND		1.00	0.380
Total Xylenes	ND		2.00	0.790
Bromoform	ND		1.00	0.350
1,1,2,2-Tetrachloroethane	ND		1.00	0.220
1,3-Dichlorobenzene	ND		1.00	0.340
1,4-Dichlorobenzene	ND		1.00	0.370
1,2-Dichlorobenzene	ND		1.00	0.340

0

Total Target Compounds:

Lab File ID:	<u>L4208.D</u>	BFB Injection Date:	<u>03/18/2</u>	<u>010</u>	
Inst ID:	MSD_L	BFB Injection Time:	<u>11:21</u>		
m/z	Ion Abudance Criteria	%Relative Abundance	•		
50	15 - 40.0% of mass 95	22.6			
75	30.0 - 60.0% of mass 95	54.7			
95	Base peak, 100% relative abundar	nce 100.0			
96	5.0 - 9.0% of mass 95	6.8			
173	Less than 2:0% of mass 174	0.5	(0.6)1	
174	Great than 50.0% of mass 95	88.1		·	
175	5.0 - 9.0% of mass 174	6.3	(7.1)1	
176	95.0 - 101.0% of mass 174	87.0	(98.8)1	
177	5.0 - 9.0% of mass 176	5.8	(6.7)2	
	1-Value is % mass 174	2-Value is % mass 1	76		

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
1PPB	STD-1PPB	L4210.D	03/18/2010	12:37	
5PPB	STD-5PPB	L4212.D	03/18/2010	13:31	
2PPB	STD-2PPB	L4213.D	03/18/2010	14:13	
20PPB	STD-20PPB	L4214.D	03/18/2010	14:41	
100PPB	STD-100PPB	L4215.D	03/18/2010	15:09	
150PPB	STD-150PPB	L4216.D	03/18/2010	15:38	
200PPB	STD-200PPB	L4217.D	03/18/2010	16:07	
N/A	METHOD-BLK	L4221.D	03/18/2010	18:21	
TB04 (031810)	02456-002	L4222.D	03/18/2010	18:50	
171MW11 (60-80	02456-001	L4224.D	03/18/2010	19:45	
LCS-50PPB	BLK-SPK	L4225.D	03/18/2010	20:12	
MS	02373-013MS	L4226.D	03/18/2010	20:39	
MSD	02373-013MSD	L4227.D	03/18/2010	21:06	
FIELD BLANK	02373-013	L4228.D	03/18/2010	21:33	
FIELD_BLANK	02375-020	L4229.D	03/18/2010	21:59	

Lab File ID:	<u>L4816.D</u>	BFB Injection Date:	04/	13/20	<u>)10</u>
Inst ID:	<u>MSD_L</u>	BFB Injection Time:	<u>11:4</u>	<u>47</u>	
m/z	Ion Abudance Criteria	%Relative Abundance	:		
50	15 - 40.0% of mass 95	19.1			
75	30.0 - 60.0% of mass 95	50.7			
95	Base peak, 100% relative abundan	ce 100.0			
96	5.0 - 9.0% of mass 95	6.8			
173	Less than 2.0% of mass 174	0.4	()	0.5)1
174	Great than 50.0% of mass 95	85.7			
175	5.0 - 9.0% of mass 174	6.1	(7.1)1
176	95.0 - 101.0% of mass 174	82.4	(9	6.1)1
177	5.0 - 9.0% of mass 176	5.5	(6.7)2
	1-Value is % mass 174	2-Value is % mass 1	76		

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed
N/A	METHOD-BLK	L4820.D	04/13/2010	13:39
TCLP	TCLP-BLK	L4821.D	04/13/2010	14:06
FIELD_BLANK	03181-006	L4822.D	04/13/2010	14:33
ST. GEORGE_(O	I 03299-001	L4823.D	04/13/2010	14:59
LCS-50PPB	BLK-SPK	L4824.D	04/13/2010	15:26
TCLP	TCLPSPK	L4825.D	04/13/2010	15:56
MS	03311-018MS	L4826.D	04/13/2010	16:49
MSD	03311-018MSD	L4827.D	04/13/2010	17:15
FB-SOIL	03311-018	L4828.D	04/13/2010	17:42
FIELD	03233-001	L4829.D	04/13/2010	18:09
FB_(040710)	03186-008	L4830.D	04/13/2010	18:36
GP-104R	03186-009	L4831.D	04/13/2010	19:02
GP-103R	03186-010	L4832.D	04/13/2010	19:29
MW-13R	03186-011	L4833.D	04/13/2010	19:55
EFFLUENT	03274-002	L4834.D	04/13/2010	20:22
INFLUENT	03274-001	L4835.D	04/13/2010	20:49

Lab File ID:	<u>J7560.D</u>	BFB Injection Date:	<u>03/22/20</u>	<u>10</u>
Inst ID:	MSD_J	BFB Injection Time:	<u>8:28</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	21.1		
75	30.0 - 60.0% of mass 95	58.4		
95	Base peak, 100% relative abundance	e 100.0		
96	5.0 - 9.0% of mass 95	6.8		
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Great than 50.0% of mass 95	72.0	v.v .	<i>)</i> 1
175	5.0 - 9.0% of mass 174	5.5 (7.7)1
176	95.0 - 101.0% of mass 174	69.0 (95.8)1
177	5.0 - 9.0% of mass 176	4.5 (6.5)2
	1-Value is % mass 174	2-Value is % mass 176		<i>]</i> 2

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

_			Date	Time
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed
5PPB	STD-5PPB	J7562.D	03/22/2010	9:26
20PPB	STD-20PPB	J7563.D	03/22/2010	9:55
1PPB	STD-1PPB	J7564.D	03/22/2010	10:24
200PPB	STD-200PPB	J7565.D	03/22/2010	10:53
100PPB	STD-100PPB	J7566.D	03/22/2010	11:22
2PPB	STD-2PPB	J7567.D	03/22/2010	11:52
150PPB	STD-150PPB	J7568.D	03/22/2010	12:21
NA	METHOD-BLK	J7570.D	03/22/2010	13:30
TCLP	TCLP-BLK	J7571.D	03/22/2010	13:59
SP-2	02482-001	J7572.D	03/22/2010	14:28
TCLP	TCLP-SPK	J7573.D	03/22/2010	14:57
TB06_(032210)	02562-001	J7574.D	03/22/2010	15:42
171MW10B(80-10	02562-002	J7575.D	03/22/2010	16:11
171MW10B(60-80	02562-003	J7576.D	03/22/2010	16:40
MS	MS	J7577.D	03/22/2010	17:09
MSD	MSD	J7578.D	03/22/2010	17:39
LCS-50PPB	BLK-SPK	J7579.D	03/22/2010	18:08
MW-21I/59	02358-001	J7580.D	03/22/2010	18:37
MW-22I/59	02358-003	J7582.D	03/22/2010	19:35
171MW10B(60-80	02562-003	J7583.D	03/22/2010	20:04

Lab File ID:	<u>J8198.D</u>	BFB Injection Date:	<u>04/09/20</u>	<u>)10</u>
Inst ID:	MSD_J	BFB Injection Time:	<u>9:13</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	23.2		
75	30.0 - 60.0% of mass 95	49.7		
95	Base peak, 100% relative abundance	e 100.0		
96	5.0 - 9.0% of mass 95	6.9		
173	Less than 2.0% of mass 174	0.2 (0.3)1
174	Great than 50.0% of mass 95	66.2		
175	5.0 - 9.0% of mass 174	5.0 (7.6)1
176	95.0 - 101.0% of mass 174	63.8 (96.4)1
177	5.0 - 9.0% of mass 176	3.9 (6.1)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed
100PPB	STD-100PPB	J8199.D	04/09/2010	11:53
NA	METHOD-BLK	J8201.D	04/09/2010	13:00
MW-18	03077-001	J8202.D	04/09/2010	13:29
LCS-50PPB	BLK-SPK	J8203.D	04/09/2010	13:58
MS	03186-005MS	J8204.D	04/09/2010	14:27
MSD	03186-005MSD	J8205.D	04/09/2010	14:56
BLDG_710	03086-001	J8208.D	04/09/2010	16:23
FB040710	03187-004	J8209.D	04/09/2010	16:52
TB040710	03187-005	J8210.D	04/09/2010	17:21
FIELD_BLANK	03181-006	J8211.D	04/09/2010	17:50
FB_(040610)	03186-001	J8212.D	04/09/2010	18:18
TB_(040610)	03186-002	J8213.D	04/09/2010	18:47
PTW-2	03186-003	J8214.D	04/09/2010	19:15
MW-9S	03186-004	J8215.D	04/09/2010	19:44
MW-9D	03186-005	J8216.D	04/09/2010	20:13
MW-6S	03186-006	J8217.D	04/09/2010	20:42
DUP_(040610)	03186-007	J8218.D	04/09/2010	21:10

, : •

VOLATILE METHOD BLANK SUMMARY

Lab File ID: <u>14820.7</u> Lab File ID: <u>14821.9</u> Date Analyzed: <u>04/13/2010</u> MSD L <u>13:39</u> Time Analyzed: <u>14:06</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
FIELD BLANK	03181-006	04/13/2010	14:33
ST. GEORGE (OL	03299-001	04/13/2010	14:59
LCS-50PPB	BLK-SPK	04/13/2010	15:26
TCLP	TCLPSPK	04/13/2010	15:56
MS	03311-018MS	04/13/2010	16:49
MSD	03311-018MSD	04/13/2010	17:15
FB-SOIL	03311-018	04/13/2010	17:42
FIELD	03233-001	04/13/2010	18:09
FB (040710)	03186-008	04/13/2010	18:36
GP-104R	03186-009	04/13/2010	19:02
GP-103R	03186-010	04/13/2010	19:29
MW-13R	03186-011	04/13/2010	19:55
EFFLUENT	03274-002	04/13/2010	20:22
INFLUENT	03274-001	04/13/2010	20:49

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: N/A Date Received: Date Analyzed: 04/13/2010 Data file: L4820.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.360
Bromomethane	ND		1.00	0.430
Chloroethane	ND		1.00	0.370
Trichlorofluoromethane	ND		1.00	0.340
Acrolein	ND		20.0	1.81
1,1-Dichloroethene	ND		1.00	0.370
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.11
trans-1,2-Dichloroethene	ND		1.00	0.350
1,1-Dichloroethane	ND		1.00	0.340
cis-1,2-Dichloroethene	ND		1.00	0.270
Chloroform	ND		1.00	0.260
1,1,1-Trichloroethane	ND		1.00	0.300
Carbon tetrachloride	ND		1.00	0.270
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.290
Trichloroethene	ND		1.00	0.340
1,2-Dichloropropane	ND		1.00	0.280
Bromodichloromethane	ND		1.00	0.250
2-Chloroethyl vinyl ether	ND		1.00	0.860
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.290
trans-1,3-Dichloropropene	ND		1.00	0.270
1,1,2-Trichloroethane	ND		1.00	0.260
Tetrachloroethene	ND		1.00	0.330
Dibromochloromethane	ND		1.00	0.220
Chlorobenzene	ND		1.00	0.210
Ethylbenzene	ND		1.00	0.310
Total Xylenes	ND		2.00	0.820
Bromoform	ND		1.00	0.170
1,1,2,2-Tetrachloroethane	ND		1.00	0.250
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.250
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS Tentatively Identified Compounds

Client/Project:

Lab ID: METHOD-BLK	GC/MS Column: DB-624
Client ID: N/A	Sample wt/vol: 5ml
Date Received:	Matrix-Units: Aqueous-µg/L (ppb)
Date Analyzed: 04/13/2010	Dilution Factor: 1
Date File: L4820.D	% Moisture: 100
	Estimated Retention

CAS #CompoundEstimatedRetentionCas #ConcentrationTime

No peaks detected

Total TICs =

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>J8201.D</u>	Instrument ID:	<u>MSD_J</u>
Date Analyzed:	04/09/2010	Time Analyzed:	<u>13:00</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
MW-18	03077-001	04/09/2010	13:29
LCS-50PPB	BLK-SPK	04/09/2010	13:58
MS	03186-005MS	04/09/2010	14:27
MSD	03186-005MSD	04/09/2010	14:56
BLDG_710	03086-001	04/09/2010	16:23
FB040710	03187-004	04/09/2010	16:52
TB040710	03187-005	04/09/2010	17:21
FIELD_BLANK	03181-006	04/09/2010	17:50
FB_(040610)	03186-001	04/09/2010	18:18
TB_(040610)	03186-002	04/09/2010	18:47
PTW-2	03186-003	04/09/2010	19:15
MW-9S	03186-004	04/09/2010	19:44
MW-9D	03186-005	04/09/2010	20:13
MW-6S	03186-006	04/09/2010	20:42
DUP_(040610)	03186-007	04/09/2010	21:10

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLKGC/MS Column: DB-624Client ID: NASample wt/vol: 5mlDate Received:Matrix-Units: Aqueous-µg/L (ppb)Date Analyzed: 04/09/2010Dilution Factor: 1Data file: J8201.D% Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.550
Vinyl chloride	ND		1.00	0.460
Bromomethane	ND		1.00	0.870
Chloroethane	ND		1.00	0.720
Trichlorofluoromethane	ND		1.00	0.750
Acrolein	ND		20.0	1.44
1,1-Dichloroethene	ND		1.00	0.590
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.62
trans-1,2-Dichloroethene	ND		1.00	0.480
1,1-Dichloroethane	ND		1.00	0.450
cis-1,2-Dichloroethene	ND		1.00	0.380
Chloroform	ND		1.00	0.250
1,1,1-Trichloroethane	ND		1.00	0.310
Carbon tetrachloride	ND		1.00	0.220
1,2-Dichloroethane (EDC)	ND		1.00	0.240
Benzene	ND		1.00	0.200
Trichloroethene	ND		1.00	0.230
1,2-Dichloropropane	ND		1.00	0.240
Bromodichloromethane	ND		1.00	0.230
2-Chloroethyl vinyl ether	ND		1.00	0.630
cis-1,3-Dichloropropene	ND		1.00	0.250
Toluene	ND		1.00	0.190
trans-1,3-Dichloropropene	ND		1.00	0.190
1,1,2-Trichloroethane	ND		1.00	0.300
Tetrachloroethene	ND		1.00	0.220
Dibromochloromethane	ND		1.00	0.210
Chlorobenzene	ND		1.00	0.190
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.230
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.300
1,4-Dichlorobenzene	ND		1.00	0.190
1,2-Dichlorobenzene	ND		1.00	0.230

1ethod Path : C:\MSDCHEM\1\METHODS\ Aethod File : LAM0318.M Citle : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Fri Mar 19 11:52:06 2010 Response Via : Initial Calibration Calibration Files 1=L4210.D2=L4213.D5=L4212.D20=L4214.D100=L4215.D200=L4217.D150=L4216.D Compound 1 2 5 20 100 200 150 Avg %RSD _____ 1) I Pentafluorobenzene -----ISTD-----ISTD-----1) IPentafluorobenzeneISTD-----2) TDichlorodifluorom 0.4250.342 0.479 0.478 0.379 0.409 0.41913.013) PChloromethane1.0481.058 1.138 0.994 0.806 0.839 0.98113.374) CVinyl chloride1.0730.945 1.077 0.964 0.811 0.837 0.95111.845) TBromomethane0.6130.647 0.692 0.515 0.477 0.553 0.58314.116) TChloroethane0.6290.547 0.539 0.414 0.473 0.538 0.52413.977) TTrichlorofluorome 1.0870.917 1.226 1.110 0.831 0.926 1.01614.618) TAcrolein0.0920.106 0.096 0.115 0.082 0.094 0.09811.859) MC1,1-Dichloroethen 0.7940.799 0.893 0.784 0.607 0.649 0.75414.110) TAcetone0.1610.159 0.191 0.182 0.145 0.149 0.16411.031) TCarbon disulfide2.9022.512 2.947 2.733 2.193 2.301 2.59812.082) TVinyl acetate1.9251.762 2.051 2.035 1.861 1.816 1.9086.153) TMethylene chlorid 1.339 1.566 1.155 1.204 1.732 1.539 1.548 1.44014.73 3) TMethylene chlorid1.3391.5661.1551.2041.7321.5391.5481.44014.734) TAcrylonitrile0.1270.1430.1360.1810.1710.1720.15514.515) Ttert-Butyl alcoho0.0860.0770.0770.0690.0610.0600.07214.046) Ttrans-1,2-Dichlor0.5450.5100.5730.6050.6400.5880.5777.947) TMethyl tert-butyl1.5311.5021.7431.7851.8141.6781.6757.868) P1,1-Dichloroethan0.9000.9021.0090.9760.9120.8780.9295.539) TDiisopropyl ether1.9631.8832.1512.0991.9401.8791.9865.7211) T2,2-Dichloroe0.5790.5490.6370.6610.6590.6170.6177.3312) T2,2-Dichloropropa0.7090.6860.8110.8400.8390.7950.7808.5212) T2-Butanone (MEK)0.2560.2370.2600.2500.2390.2270.2455.1513) T1,1-Trichloroet0.6560.6740.8010.8160.8290.7810.7599.9214) TCarbon tetrachlor0.4930.4210.5880.5870.6070.5830.54713.4414) T1,1-Dichloroprope0.6380.5880.6800.7090.715 Methylene chlorid 1.339 1.566 1.155 1.204 1.732 1.539 1.548 1.440 14.73 3) T 1,2-Dichloroethan 0.459 0.477 0.471 0.480 0.453 0.413 0.426 0.454 5.70 30) S 1,4-Difluorobenzene -----ISTD----ISTD-----31) I 1,4-Diffuorobenzene1.2731.4491.5991.7191.5621.48611.66Benzene1.3121.2731.4491.5991.7191.5621.48611.66Trichloroethene0.3550.3310.3680.4030.4420.3990.38310.311,2-Dichloropropa0.3260.3300.3820.3970.4120.3800.3719.49Dibromomethane0.2680.2110.2510.2810.3010.2720.26411.591,4-Dioxane0.0030.0030.0040.0030.0030.0030.0036.61 32) M 33) M 34) C 35) T 36) T Bromodichlorometh 0.4120.5230.4310.5320.5770.5190.49912.792-Chloroethyl vin 0.2780.3730.2590.2700.2920.2660.29014.59cis-1,3-Dichlorop 0.5920.4600.5930.6650.7110.6490.61214.244-Methyl-2-pentan 0.3570.3100.3820.3930.4130.3800.3729.62 37) T 38) T 39) T 40) T4-Methyl-2-pentan0.3570.3100.3820.3930.4130.3800.37241) SToluene-d80.9470.9710.9510.9860.9690.9780.9730.96842) MCToluene0.9331.2480.9181.0271.1861.0511.06043) Ttrans-1,3-Dichlor0.4330.5700.5580.6420.6550.6400.58344) T1,1,2-Trichloroet0.2390.2390.2900.3050.3290.3000.28445) TTetrachloroethene0.3360.3090.3390.3740.4520.3940.36846) T1,3-Dichloropropa0.4730.4780.5780.6000.6570.5900.56347) T2-Hexanone0.3360.2250.2800.2810.3000.2730.28348) TDibromochlorometh0.2790.3080.2940.3610.4070.3580.33549) T1,2-Dibromoethane0.4410.4630.3490.3780.4220.3760.405 40) T 1.47 12.54 0.570 0.558 0.642 0.655 0.640 0.583 14.43 13.00 13.90 12.9612.78 14.65 10.84 50) I Chlorobenzene-d5 -----ISTD-----ISTD-----51) MPChlorobenzene0.9960.9551.0741.1991.2911.1731.11511.5452) T1,1,1,2-Tetrachlo0.2220.2520.2990.3210.2590.2740.27112.89

Response Factor Report MSD_L

_										10.05
3)	С	Ethylbenzene	1.459		1.621					12.85
4)	Т	m,p-Xylene	0.882		0.677					11.13
5)	Т	o-Xylene	0.843		0.670					13.13
6)	T	Styrene	1.331		1.197					13.80
7)	Ρ	Bromoform	0.104		0.140					14.14
8)	Т	Isopropylbenzene	1.283		1.358					14.69
9)	S	Bromofluorobenzen	0.409 0.406						0.404	1.74
0)	P	1,1,2,2-Tetrachlo	0.361		0.437					12.29
1)	Т	Bromobenzene	0.415		0.471					14.53
2)	Т	1,2,3-Trichloropr	0.234	0.255	0.286	0.306	0.314	0.284	0.280	10.85
3)	Т	n-Propylbenzene	1.424	1.315	1.510	1.685	1.805	1.637	1.563	11.54
4)	Т	2-Chlorotoluene	0.991	1.052	1.037	1.188	1.045	1.339	1.109	11.80
5)	Т	1,3,5-Trimethylbe	1.270	1.235	1.132	1.423	1.618	1.446	1.354	12.94
6)	Т	4-Chlorotoluene	1.197	1.713	1.245	1.497	1.647	1.474	1.462	14.19
7)	Т	tert-Butylbenzene	0.817	0.967	0.848	1.008	1.151	1.014	0.967	12.59
8)	Т	1,2,4-Trimethylbe		1.444	1.198	1.467	1.617	1.453	1.380	13.88
(9)	Т	sec-Butylbenzene	1,132	0.967	1.112	1.295	1.421	1.292	1.203	13.56
0)	Ţ	1,3-Dichlorobenze	0.729	0.931	0.753	0.929	1.039	0.919	0,883	13.46
1)	T	4-Isopropyltoluen	0.923	1.055	0.994	1.201	1.372	1.210	1.126	14.70
2)	Т	1,4-Dichlorobenze		0.941	0.792	0.979	1.087	0.960	0.923	12.81
3)	Т	n-Butylbenzene	0.462	0.487	0.447	0.559	0.625	0,564	0.524	13.27
4)	Т	1,2-Dichlorobenze	0.731	0.718	0.767	0.975	0.921	0.978	0.848	14.48
5)	Т	1,2-Dibromo-3-chl	0.061	0.039	0.052	0.049	0.054	0.050	0.051	13.68
6)	Т	1,2,4-Trichlorobe	0.437	0.341	0.390	0.476	0.521	0.465	0.438	14.73
7)	Т	Hexachlorobutadie	0.150	0.116	0.123	0.139	0.113	0.136	0.130	11.18
8)	Т	Naphthalene	0.890	0.883	1.090	1.105	1.296	1.069	1.055	14.62
(9)	Т	1,2,3-Trichlorobe	0.366	0,302	0.343	0.418	0.366	0.418	0.369	12.15
(0)	Т	1,1,2-Trichloro-1							0.471	12.42
31)	Т	Methyl acetate	0.458						0.393	12.96
32)	Т	Cyclohexane	0.266						0.354	12,79
83)	Т	Methylcyclohexane	0.257	0.185	0.217	0.238	0.230	0.219	0.224	10.84
(#)	= 0	ut of Range ###	Number of ca	librat	ion le	vels e	xceede	d form	at ###	 ŧ

AM0318.M Fri Mar 19 11:52:12 2010 RPT1

Data Path : C:\MSDChem\l\DATA\04-13-10\ Data File : L4817.D Acq On : 13 Apr 2010 12:14 Operator : MEI Sample : 100PPB,STD-100PPB,W,5ml,100 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Apr 14 09:58:21 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM0318.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Mar 25 10:58:10 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area	∛ Dev(min)
1	 I	Pentafluorobenzene	1.000	1.000	0.0 14	
2	Т	Dichlorodifluoromethane	0.419	0.423	-1.0 13	
3	Р	Chloromethane	0.981	0.800	18.5 11	
4	С	Vinyl chloride	0.951	0.783	17.7 12	
5	T	Bromomethane	0.583	0.479	17.8 13	
6	Т	Chloroethane	0.524	0.443	15.5 15	
7	Т	Trichlorofluoromethane	1.016	1.033	-1.7 13	
8	Т	Acrolein	0.098	0.089	9.2 11	
9	MC	1,1-Dichloroethene	0.754	0.767	-1.7 14	
10	т	Acetone	0.164	0.143	12.8 11	
11	Т	Carbon disulfide	2.598	2.523	2.9 13	
12	т	Vinyl acetate	1.908	1.692	11.3 12	
13	Т	Methylene chloride	1.440	1.547	-7.4 13	
14	Т	Acrylonitrile	0.155	0.175	-12.9 14	
15	Т	tert-Butyl alcohol (TBA)	0.072	0.073	-1.4 15	
16	Т	trans-1,2-Dichloroethene	0.577	0.652	-13.0 15	
17	Т	Methyl tert-butyl ether (MT	1,675	1.532	8.5 12	
	Р	l,1-Dichloroethane	0.929	0.994	-7.0 15	
19	Т	Diisopropyl ether (DIPE)	1.986	1.989	-0.2 14	
20	Т	cis-1,2-Dichloroethene	0.617	0.709	-14.9 15	
21	T	2,2-Dichloropropane	0.780	0.846	-8.5 14	
22	Т	2-Butanone (MEK)	0.245	0.263	-7.3 15	
23	Т	Bromochloromethane	0.300	0.343	-14.3 15	
25	С	Chloroform	0.964	1.089	-13.0 15	
26	Т	1,1,1-Trichloroethane	0.759	0.894	-17.8 16	
27	Т	Carbon tetrachloride	0.547	0.638	-16.6 16	
28	Т	1,1-Dichloropropene	0.668	0.782	-17.1 16	
29	т	1,2-Dichloroethane (EDC)	0.841	0.838	0.4 13	
30	S	1,2-Dichloroethane-d4	0.454	0.402	11.5 13	1 0.00
31	I	1,4-Difluorobenzene	1.000	1.000	0.0 15	
32	М	Benzene	1.486	1.619	-9.0 15	
33	М	Trichloroethene	0.383	0.429	-12.0 16	
34	С	1,2-Dichloropropane	0.371	0.375	-1.1 14	
35	Т	Dibromomethane	0.264	0.240	9.1 13	
37	Т	Bromodichloromethane	0.499	0.516	-3.4 15	
38	Т	2-Chloroethyl vinyl ether	0.290	0.339	-16.9 19	
39	т	cis-1,3-Dichloropropene	0.612	0.620	-1.3 14	
40	т	4-Methyl-2-pentanone (MIBK)	0.372	0.403	-8.3 15	
41	S	Toluene-d8	0.968	0.982	-1.4 15	
42	MC	Toluene	1.060	1.096	-3.4 16	
43		trans-1,3-Dichloropropene	0.583	0.555	4.8 13	
44		1,1,2-Trichloroethane	0.284	0.266	6.3 13	
45		Tetrachloroethene	0.368	0.426	-15.8 17	
46		1,3-Dichloropropane	0.563	0.528	6.2 13	86 0.00
	Т	2-Hexanone	0.283	0.266	6.0 14	6 0.00

48	т	Dibromochloromethane	0.335	0.397	-18.5	170	0.00	
49		1,2-Dibromoethane (EDB)	0.405	0.333	17.8	136	0.00	
50	I	Chlorobenzene-d5 Chlorobenzene	1.000	1.000		173	0.00	
	MP	Chlorobenzene	1,115	1.123	-0.7	162	0.00	
52		1 1 1 0 0 0 + + + + + + + + + + + + + +	0 271	0 315	-16 2	170	. 0 00	
53		Ethvlbenzene	1.680	1.700	-1.2	161	0.00	
	Ť	m.p-Xvlene	0.860	0.813	5.5	158	0.00	
55		T,T,T,Z-Fetrachfordethane Ethylbenzene m,p-Xylene o-Xylene	0.849	0.813	4.2	159	0.00	
56		Styrene	1.447	1.398	3.4	154	0.00	
	P	Bromoform	0.128	0.150	-17.2	203	0.00	
58		o-Xylene Styrene Bromoform Isopropylbenzene Bromofluorobenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,2,5-Trimathylbenzene	1.455	1.520	-4.5	165	0.00	
59		Bromofluorobenzene	0.404	0.389	3.7	165	0.00	
	P	1,1,2,2-Tetrachloroethane	0.413	0.361	12.6	128	-0.01	
	Т	Bromobenzene	0.474	0.523	-10.3	152	0.00	
62	Ť	1.2.3-Trichloropropane	0.280	0.269	3.9	153	0.00	
	T	n-Propylbenzene	1.563	1.592	-1.9	164	0.00	
	r	2-Chlorotoluene	1.109	1.104	0.5	161	0.00	
	T	1,3,5-Trimethylbenzene	1.354	1.355	-0.1	165	-0.01	
	Ť	4-Chlorotoluene	1.462	1.366	6.6	158	0.00	
	T		0 067	0 004	_1 8	160	0.00	
	Ť	1,2,4-Trimethylbenzene	1.380	1.352	2.0	160	0.00	
	Т	sec-Butylbenzene	1.203	1.276	-6.1	171	0.00	
	T	1.3-Dichlorobenzene	0.883	0.848	4.0	158	Q.00	
	T	4-Isopropyltoluene	1.126	1.165	-3.5	168	0.00	
	T	tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene 1,4-Dichlorobenzene n-Butylbenzene	0.923	0.873	5.4	155	0.00	
	Т	n-Butylbenzene	0.524	0.547	-4.4	169	0.00	
74	Т	I,Z~Dichiorobenzene	0.040	0.000	τ.0	THO	0.00	
75		1.2-Dibromo-3-chloropropane	0.051	0.045	11.8	160	0.00	
	T	1.2 4-Wrichlorobenzene	0 438	0 418	4.6	152	0.00	
	Т	Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene 1,1,2-Trichloro-1,2,2-trifl	0.130	0.124	4.6	155	0.00	
	T	Naphthalene	1.055	1.072	-1.6	168	0.00	
	T	1,2,3-Trichlorobenzene	0.369	0.300	18.7	124	0.00	
	Т	1,1,2-Trichloro-1,2,2-trifl	0.471	0.383	18.7	133	-0.03	
	Т	1,1,2-Trichioro-1,2,2-triff Methyl acetate Cyclohexane Methylcyclohexane	0.393	0.444	-13.0	189	0.00	
	Т	Cyclohexane	0.354	0.311	12.1	142	0.00	
83	Т	Methylcyclohexane	0.224	0.203	9.4	148	0.00	

(#) = Out of Range SPCC's out = 0 CCC's out = 0

AM0318.M Wed Apr 14 09:58:26 2010 RPT1

Method Path : C:\MSDCHEM\1\METHODS\ Method File : J0322.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Wed Mar 24 11:27:19 2010 Response Via : Initial Calibration Calibration Files

 1
 =J7564.D
 2
 =J7567.D
 5
 =J7562.D

 20
 =J7563.D
 100
 =J7566.D
 200
 =J7565.D
 150
 =J7568.D

 Compound 1 2 5 20 100 200 150 Avg %RSD 1) I Pentafluorobenzene 2) T Dichlorodifluorom 0.648 0.787 0.669 0.719 0.621 0.564 0.549 0.651 12.91 3) P Chloromethane 0.587 0.649 0.606 0.675 0.424 0.605 0.601 0.592 13.59 Vinyl chloride0.4420.5300.5090.6220.4490.5290.5310.516Bromomethane0.2800.2810.3150.2780.2330.2220.2160.261Chloroethane0.2180.3200.2590.3000.2230.2680.2960.269 4) C 11.66 5) T 14.23 6) T 14.39 7) T Trichlorofluorome 0.612 0.770 0.856 0.834 0.572 0.708 0.697 0.721 14.78 Acrolein 0.074 0.069 0.067 0.062 0.053 0.063 0.057 0.064 11.34 8) T 9) MC 1,1-Dichloroethen 0.347 0.367 0.389 0.384 0.355 0.392 0.391 0.375 5.00 10) T Acetone 0.154 0.168 0.156 0.188 0.152 0.151 0.150 0.160 8.58 Carbon disulfide 1.391 1.471 1.543 1.552 1.281 1.441 1.454 1.448 11) T 6.41 Vinyl acetate 1.642 1.295 1.351 1.482 1.447 1.383 1.343 1.421 12) T 8.20 13) T Methylene chlorid 0.498 0.551 0.552 0.424 0.474 0.475 0.496 10.03 Acrylonitrile 0.233 0.259 0.218 0.200 0.240 0.194 0.177 0.217 13.29 14) T tert-Butyl alcoho 0.044 0.055 0.054 0.046 0.040 0.047 0.040 0.047 12.82 15) T 16) T trans-1,2-Dichlor 0.450 0.523 0.573 0.566 0.466 0.459 0.462 0.500 10.65 17) T Methyl tert-butyl 1.778 1.678 1.749 1.738 1.656 1.542 1.473 1.659 6.83 18) P 1,1-Dichloroethan 0.979 1.111 1.057 1.004 0.909 0.875 0.883 0.974 9.25 19) T Diisopropyl ether 1.425 1.270 1.440 1.665 1.617 1.562 1.590 1.510 9.14 20) T cis-1,2-Dichloroe 0.540 0.429 0.457 0.471 0.486 0.495 0.481 0.480 7.15 2,2-Dichloropropa 0.369 0.384 0.385 0.400 0.363 0.352 0.335 0.370 21) т 5.93 2-Butanone (MEK) 0.201 0.203 0.213 0.232 0.238 0.236 0.212 0.219 22) T 7.21 Bromochloromethan 0.307 0.253 0.252 0.252 0.229 0.219 0.222 0.248 12.21 .23) т Chloroform 1.037 1.050 1.010 0.972 0.882 0.871 0.885 0.958 8.11 25) C 26) T 1,1,1-Trichloroet 0.705 0.714 0.658 0.666 0.614 0.603 0.612 0.653 6.96 27) T Carbon tetrachlor 0.751 0.545 0.552 0.574 0.535 0.522 0.528 0.573 14.05 1,1-Dichloroprope 0.743 0.610 0.589 0.672 0.646 0.640 0.635 0.648 7.63 28) T 1,2-Dichloroethan 0.865 1.046 0.929 0.889 0.833 0.827 0.826 0.888 29) т 8.95 1,2-Dichloroethan 0.740 0.721 0.679 0.621 0.586 0.583 0.575 0.644 10.74 30) S 31) I 1,4-Difluorobenzene -----ISTD----ISTD-----32) M Benzene 1.534 1.287 1.261 1.308 1.239 1.181 1.228 1.291 8.89 Trichloroethene 0.349 0.296 0.289 0.299 0.302 0.297 0.302 0.305 33) M 6.48 34) C 1,2-Dichloropropa 0.351 0.294 0.312 0.333 0.323 0.311 0.321 0.321 5.61 35) T Dibromomethane 0.261 0.215 0.212 0.220 0.221 0.212 0.213 0.222 7.84 36) T 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 1,4-Dioxane 10.65 Bromodichlorometh 0.442 0.364 0.377 0.421 0.438 0.450 0.455 0.421 37) T 8.62 38) т 2-Chloroethyl vin 0.042 0.049 0.046 0.048 0.062 0.049 0.043 0.049 13.37 39) т cis-1,3-Dichlorop 0.427 0.408 0.411 0.418 0.515 0.526 0.519 0.460 12.17 40) T 4-Methyl-2-pentan 0.270 0.258 0.271 0.233 0.309 0.300 0.280 0.275 9.24
 Toluene-d8
 0.966
 0.996
 1.002
 1.045
 1.083
 1.074
 1.083
 1.036
 41) S 4.60 42) MC Toluene 0.929 0.785 0.766 0.807 0.802 0.779 0.799 0.809 6.75 trans-1,3-Dichlor 0.399 0.331 0.430 0.422 0.485 0.477 0.477 0.432 12.80 43) T 44) T 1,1,2-Trichloroet 0.326 0.250 0.236 0.244 0.253 0.248 0.247 0.258 11.84 45) T Tetrachloroethene 0.342 0.269 0.249 0.272 0.276 0.284 0.283 0.282 10.21 46) T 1,3-Dichloropropa 0.522 0.450 0.470 0.531 0.577 0.571 0.570 0.527 9.65 47) т 2-Hexanone 0.272 0.265 0.281 0.187 0.288 0.276 0.241 0.258 13.54 Dibromochlorometh 0.255 0.312 0.322 0.246 0.314 0.340 0.326 0.302 48) T 12.08 49) T 1,2-Dibromoethane 0.298 0.235 0.252 0.281 0.318 0.324 0.316 0.289 12.04 50) I -----ISTD-----Chlorobenzene-d5 Chlorobenzene 1.016 1.007 0.918 0.908 0.832 0.799 0.825 0.901 51) MP 9.69 1,1,1,2-Tetrachlo 0.338 0.288 0.274 0.296 0.299 0.300 0.306 0.300 52) т 6.55

Response Factor Report MSD J

J J J J		вспутрепzене	1.303	τ.τύψ	1.210	1.494	1.490	T.DA7	1.521	1.370	12.34
54)		m,p-Xylene	0.439	0.384	0.495	0.566	0.533	0.507	0.527	0.493	12.57
55)		o-Xylene	0.517	0.437	0.588	0.465	0.551	0.527	0.544	0.518	10.00
56)		Styrene	0.983	0.825	0.799	1.063	1.032	0.977	1.016	0.956	10.79
57)		Bromoform	0.146	0.197	0.184	0.146	0.182	0.208	0.189	0.179	13.50
58)		Isopropylbenzene	1.030	1.222	1.577	1.289	1.404	1.422	1.432	1.339	13.21
59)		Bromofluorobenzen	0.570	0.579	0.614	0.634	0.616	0.616	0.605	0.605	3.71
60)		1,1,2,2-Tetrachlo	0.603	0.511	0.499	0.512	0.469	0.431	0.411	0.491	12.85
61)		Bromobenzene	0.454	0.380	0.376	0.407	0.386	0.362	0.372	0.391	7.99
62)		1,2,3-Trichloropr	0.411	0.356	0.339	0.366	0.355	0.342	0.320	0.355	8.03
63)	T	n-Propylbenzene	1.376	1.349	1.358	1.750	1.756	1.728	1.726	1.577	12.87
64)	Т	2-Chlorotoluene	1.089	0.905	1.089	1.265	1,232	1.190	1 201	1 1 3 9	10.80
65)	Т	1,3,5-Trimethylbe	1.629	1.560	1.195	1.221	1.292	1.235	1.252	1 341	13.20
66)	Т	4-Chlorotoluene	1.299	1.539	1.470	1.585	1 472	1.404	1 418	1 455	6.44
67)	Т	tert-Butylbenzene	0.929	0.694	0.900	0.813	0.870	0 825	0 832	0 838	9.07
68)	Т	1,2,4-Trimethylbe	0.806	0.860	1.128	1 126	1 1 4 7	0 903	1 077	1 007	14.39
69)	т	sec-Butylbenzene	1.519	1.548	1.012	1.384	1 393	1.339	1 345	1 363	12.86
70)	Т	1,3-Dichlorobenze	0.731	0.655	0.689	0.759	0 717	0 677	0 691	0 703	5.02
71)	Т	4-Isopropyltoluen	1.278	1.192	0.819	0.970	1 116	1 066	1 078	1 074	13.85
72)	Т	1,4-Dichlorobenze	0.750	0.667	0.762	0 814	0 765	0 721	0 736	0 7/5	6.06
73)	Т	n-Butylbenzene	0.433	0.391	0.589	0.550	0 571	0.538	0.750	0.745	14.40
74)	Т	1,2-Dichlorobenze	0.689	0.660	0 735	0 809	0.712	0.000	0.544	0.317	7.62
75)	т	1,2-Dibromo-3-chl	0.062	0.086	0 062	0.000	0 084	0.000	0.070	0.700	14.82
76)	Т	1,2,4-Trichlorobe	0.273	0 280	0.252	0.301	0.365	0.000	0.007	0.077	14.82
77)	т	Hexachlorobutadie	0.173	0.169	0.231	0.001	0.182	0.162	0.344	0.310	14.20
78)	Т	Naphthalene	0.871	0.805	0 845	1 063	1 162	1 0/1	0.100	0.102	13.64 13.60
79)	Т	1,2,3-Trichlorobe	0 338	0 320	0 314	0 354	1.102	1.041	0.334	0.909	5.67
80)	Т	1,1,2-Trichloro-1	0.148	0.320	0.218	0.334	0.303	0.342	0.330	0.340	
81)	Т	Methyl acetate	0.156	0 179	0,210	0.104	0.164	0.179	0.172	0.175	$11.84 \\ 12.08$
82)	T	Cyclohexane	0.386	0.175	0.212	0.104	0.104	0.101	0.109	0.175	12.08
83)	т	Methylcyclohexane	0.213	0.401	0.159	0.330	0.370	0.300	0.309	0.352	
				~				0.100	0.10/	V.100	10.16
(#)	= 0	ut of Range ### N	lumber	of cal	ibrati	on lev	els ex	ceeded	forma		

J0322.M Wed Mar 24 11:36:48 2010 RT1

.

.

.

Data Path : C:\MSDChem\1\DATA\04-09-10\ Data File : J8199.D Acq On : 9 Apr 2010 11:53 Operator : DANA Sample : 100PPB,STD-100PPB,A,5m1,100 Misc : ALS Vial : 2 Sample Multiplier: 1

Quant Time: Apr 09 12:52:46 2010 Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

Ŀ		Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
- 1	I	Pentafluorobenzene	1.000	1.000	0.0	69	0.00
2		Dichlorodifluoromethane	0.651	0.710	-9.1	79	0.01
3	Р	Chloromethane	0.592	0.627		102	0.02
4	С	Vinyl chloride	0.516	0.611	-18.4	94	0.01
5	Т	Bromomethane	0.261	0.282	-8.0	84	-0.01
.6	т	Chloroethane	0.269	0.297	-10.4	92	0.00
7	т	Trichlorofluoromethane	0.721	0.809	-12.2	98	0.00
8	Т	Acrolein	0.064	0.048	25.0	63	0.01
9	MC	1,1-Dichloroethene	0.375	0.430	-14.7	84	-0.01
10	Т	Acetone	0.160	0.161	-0.6	73	0.01
11	Т	Carbon disulfide	1.448	1.716	-18.5	93	0.00
12	Т	Vinyl acetate	1.421	1.619	-13.9	77	0.01
13	т	Methylene chloride	0.496	0.578	-16.5	94	0.00
14	Т	Acrylonitrile	0.217	0.243	-12.0	70	0.00
15	т	tert-Butyl alcohol (TBA)	0.047	0.050	-6.4	86	0.02
16	т	trans-1,2-Dichloroethene	0.500	0.473	5.4	70	0.00
17	Т	Methyl tert-butyl ether (MT	1.659	1.637	1.3	68	0.00
18	Р	1,1-Dichloroethane	0.974	0.956	1.8	73	0.00
19	т	Diisopropyl ether (DIPE)	1.510	1.732	-14.7	74	0.00
20	Т	cis-1,2-Dichloroethene	0.480	0.476	0.8	68	0.00
21	т	2,2-Dichloropropane	0.370	0.416	-12.4	79	0.01
22	Т	2-Butanone (MEK)	0.219	0.224	-2.3	65	0.01
23	Т	Bromochloromethane	0.248	0.224	9.7	68	0.00
25	С	Chloroform	0.958	0.980	-2.3	77	0,01
26	Т	1,1,1-Trichloroethane	0.653	0.735	-12.6	83	0.01
27	Т	Carbon tetrachloride	0.573	0.650	-13.4	84	0.01
28	Т	l,l-Dichloropropene	0.648	0.691	-6.6	74	0.00
29	Т	1,2-Dichloroethane (EDC)	0.888	1.033	-16.3	86	0.00
30	S	1,2-Dichloroethane-d4	0.644	0.605	6.1	72	0.00
31 31	I	1,4-Difluorobenzene	1.000	1.000	0.0	66	0.00
32		Benzene	1.291	1.313	-1.7	70	0.00
33		Trichloroethene	0.305	0.321	-5.2	71	0.00
34		1,2-Dichloropropane	0.321	0.342	-6.5	71	0.00
35		Dibromomethane	0.222	0.241	-8.6	72	0.00
36		1,4-Dioxane	0.003	0.003	0.0	84	0.00
37		Bromodichloromethane	0.421	0.432	-2.6	66	0.00
38		2-Chloroethyl vinyl ether	0.049	0.055	-12.2	59	0.00
	T	cis-1,3-Dichloropropene	0.460	0.532	-15.7	69	0.00
40		4-Methyl-2-pentanone (MIBK)	0.275	0.319	-16.0	69	0.00
41		Toluene-d8	1.036	0.928	10.4	57	0.00
42		Toluene	0.809	0.861	-6.4	71	0.00
43	T	trans-1,3-Dichloropropene	0.432	0.513	-18.8	70	0.00
44		1,1,2-Trichloroethane	0.258	0.256	0.8	67	-0.01
	Ť	Tetrachloroethene	0.282	0.298	-5.7	72	0.00
46		1,3-Dichloropropane	0.527	0.604	-14.6	70	-0.01
-7-Q	-	1,5 promotopropune	0.027	J. UJ.I	23.0	. 0	0.01

47 T 2-Hexanone 0.258 0.281 -8.9 65 -0.01 48 T Dibromochloromethane 0.302 0.343 -13.6 73 0.00 49 T 1.2-Dibromoethane 0.289 0.318 -10.0 66 0.00 50 I Chlorobenzene-d5 1.000 1.000 0.0 91 0.00 51 MP Chlorobenzene 0.301 0.292 2.7 89 0.00 53 C Ethylbenzene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.518 0.510 1.5 84 0.00 56 T Styrene 0.566 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 62 T 1.2.3-Trichloroptopane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.319 0.976 14.3 72 0.00	- 5 1							
49 T Dibromochloromethane 0.302 0.343 -13.6 73 0.00 49 T 1,2-Dibromoethane (EDB) 0.289 0.318 -10.0 66 0.00 50 I Chlorobenzene-d5 1.000 1.000 0.0 91 0.00 51 MP Chlorobenzene 0.901 0.801 11.1 88 0.00 52 T 1,1,1,2-Tetrachloroethane 0.300 0.292 2.7 89 0.00 53 C Ethylbenzene 1.376 1.168 15.1 71 0.00 54 T m,p-Xylene 0.411 16.6 70 0.00 54 T m,p-Xylene 0.518 0.510 1.5 84 0.00 56 T Styrene 0.956 0.796 16.7 70 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 60 P 1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.555 0.294 17.2 75 0.00 <td>47</td> <td>т</td> <td>2-Hexanone</td> <td>0.258</td> <td>0.281</td> <td>-8 9</td> <td>65</td> <td>-0.01</td>	47	т	2-Hexanone	0.258	0.281	-8 9	65	-0.01
49 T1,2-Dibromoethane (EDB) 0.289 0.318 -10.0 66 0.00 50 IChlorobenzene-d5 1.000 1.000 0.0 91 0.00 51 MPChlorobenzene 0.901 0.801 11.1 88 0.00 52 T $1,1,1,2$ -Tetrachloroethane 0.300 0.292 2.7 89 0.00 53 CEthylbenzene 1.376 1.168 15.1 71 0.00 54 T $m,p-Xylene$ 0.493 0.411 16.6 70 0.00 55 T $o-Xylene$ 0.956 0.518 0.510 1.5 84 0.00 56 TStyrene 0.956 0.796 16.7 70 0.00 57 PBromoform 0.179 0.149 16.8 75 0.00 58 TIsopropylbenzene 1.339 1.316 1.7 85 0.00 60 P $1,1,2,2$ -Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T $1,2,3$ -Trinethylbenzene 1.339 0.976 14.3 72 0.00 64 T $2-chlorotoluene$ 1.455 1.202 17.4 74 0.00 65 T $1,3,5$ -Trimethylbenzene 1.363 0.738 11.9 77 0.00 66 T $1,2,4$ -Trimethylbenzene 1.363 0.738 11.9 77 0.00 67 Ttert-Butylbenzene 0.733 0.642 8.7 82 0.00 70 T $1,3.5$ -Trimethylbenzene <td>48</td> <td>Т</td> <td>Dibromochloromethane</td> <td></td> <td></td> <td></td> <td></td> <td></td>	48	Т	Dibromochloromethane					
50IChlorobenzene-d51.0001.0000.0910.0051MPChlorobenzene0.9010.80111.1880.0052T1,1,1,2-Tetrachloroethane0.3000.2922.7890.0053CEthylbenzene1.3761.16815.1710.0054Tm,p-Xylene0.4930.41116.6700.0055To-Xylene0.9560.79616.7700.0056TStyrene0.9560.79616.7700.0058TIsopropylbenzene1.3391.3161.7850.0059SBromofluorobenzene0.6050.5705.8840.0060P1,1,2,2-Tetrachloroethane0.4910.563-14.71090.0062T1,2,3-Trichloropropane0.3550.29417.2750.0063Tn-Propylbenzene1.3711.34314.8700.0065T1,3,5-Trimethylbenzene1.3411.12316.3790.0066T4.241.4551.20217.4740.0067Ttetrablenzene0.6380.33811.9770.0068T1,2,4-Trimethylbenzene1.0740.88917.2720.0071Ttetrablenzene0.7050.63614.6760.007	49	Т						
S1 MP Chlorobenzene 0.901 0.801 11.1 88 0.00 52 T 1,1,2.7Etrachloroethane 0.300 0.292 2.7 89 0.00 53 C Ethylbenzene 1.376 1.168 15.1 71 0.00 54 T m,p-Xylene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.518 0.510 1.5 84 0.00 56 T styrene 0.956 0.796 16.7 70 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 60 P 1,2,2.7etrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n=Propylbenzene 1.577 1.343 14.8 70 0.00 65 T 1,3,5-Trimethylbenzene 1.063 1.331 2.3 87 0.00					01010	10.0	00	0.00
51 MP Chlorobenzene 0.901 0.801 11.1 88 0.00 52 T 1,1,1,2-Tetrachloroethane 0.300 0.292 2.7 89 0.00 53 C Ethylbenzene 1.376 1.168 15.1 71 0.00 54 T m,p-Xylene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 60 P 1,1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.319 0.976 14.3 72 0.00 64 T 2-chlorotoluene 1.435 1.202 17.4 74 0.00 65 T 1,3.5-Trimethylbenzene 0.838 0.738 11.9 77 0			Chlorobenzene-d5	1.000	1.000	0.0	91	0.00
52 T 1,1,1,2-Tetrachloroethane 0.300 0.292 2.7 89 0.00 53 C Ethylbenzene 1.376 1.168 15.1 71 0.00 54 T m,p-Xylene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.518 0.510 1.5 84 0.00 56 T Styrene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 60 P 1,2,2-Tetrachloroptopane 0.491 0.563 -14.7 109 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.455 1.202 17.4 74 0.00 65 T 1,3,5-Trimethylbenzene 1.363 1.331 2.3 87 0.00			Chlorobenzene	0.901				
53 C Ethylbenzene 1.376 1.168 15.1 71 0.00 54 T m,p-Xylene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.518 0.510 1.5 84 0.00 55 T o-Xylene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 60 P 1,1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 63 T n-Propylbenzene 1.517 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.319 0.976 14.3 72 0.00 65 T 1,3,5-Trimethylbenzene 1.341 1.123 16.3 79 0.00 65 T 1,2,4-Trimethylbenzene 1.363 1.331 2.3 87 0.00 66 T 4-Chlorotoluene 1.071 1.053 -4.6 84 0.00 <td>52</td> <td>Т</td> <td>1,1,1,2-Tetrachloroethane</td> <td></td> <td></td> <td></td> <td></td> <td></td>	52	Т	1,1,1,2-Tetrachloroethane					
54 T m,p-Xylene 0.493 0.411 16.6 70 0.00 55 T o-Xylene 0.518 0.510 1.5 84 0.00 56 T Styrene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 59 S Bromofluorobenzene 0.605 0.570 5.8 84 0.00 60 P 1.1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.123 16.3 79 0.00 65 T 1,3,5-Trimethylbenzene 1.331 1.23 16.3 79 0.00 65 T 1,2,4-Trimethylbenzene 1.331 1.23 87 0.00 66 T 4-Chlorotoluene 1.007 1.053 -4.6 84 0.00 70 T <	53	С	Ethylbenzene					
55 T o-Xylene 0.518 0.510 1.5 84 0.00 56 T Styrene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 59 S Bromofluorobenzene 0.605 0.570 5.8 84 0.00 62 T 1,2,3-Trichloroptopane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.139 0.976 14.3 72 0.00 64 T 2-Chlorotoluene 1.139 0.976 14.3 72 0.00 65 T 1,3,5-Trimethylbenzene 1.341 1.123 16.3 79 0.00 66 T 4-Chlorotoluene 1.455 1.202 17.4 74 0.00 67 T tert-Butylbenzene 1.007 1.053 -4.6 84 0.00 67 T sec-Butylbenzene 0.703 0.642 8.7 82 0.00 <td></td> <td></td> <td>m,p-Xylene</td> <td></td> <td></td> <td></td> <td></td> <td></td>			m,p-Xylene					
56 T Styrene 0.956 0.796 16.7 70 0.00 57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 59 S Bromofluorobenzene 0.605 0.570 5.8 84 0.00 60 P 1,1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.455 1.202 17.4 74 0.00 65 T 1,3,5-Trimethylbenzene 1.007 1.053 -4.6 84 0.00 66 T 4-Chlorotoluene 1.455 1.202 17.4 74 0.00 67 T tert-Butylbenzene 1.007 1.053 -4.6 84 0.00 67 T tert-Butylbenzene 0.703 0.642 8.7 82 <	55	т	o-Xylene					
57 P Bromoform 0.179 0.149 16.8 75 0.00 58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 59 S Bromofluorobenzene 0.605 0.570 5.8 84 0.00 60 P 1,1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-chlorotoluene 1.455 1.202 17.4 74 0.00 65 T 1,3,5-Trimethylbenzene 1.341 1.123 16.3 79 0.00 66 T 4-Chlorotoluene 1.455 1.202 17.4 74 0.00 67 T tert-Butylbenzene 1.007 1.053 -4.6 84 0.00 67 T sec-Butylbenzene 0.703 0.642 8.7 82 0.00 70 T 1,3-Dichlorobenzene 0.745 0.636 14.6 76 </td <td>-56</td> <td>т</td> <td>Styrene</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-56	т	Styrene					
58 T Isopropylbenzene 1.339 1.316 1.7 85 0.00 59 S Bromofluorobenzene 0.605 0.570 5.8 84 0.00 60 P 1,1,2,2-Tetrachloroethane 0.491 0.563 -14.7 109 0.00 62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.39 0.976 14.3 72 0.00 65 T 1,3,5-Trimethylbenzene 1.341 1.123 16.3 79 0.00 66 T 4-Chlorotoluene 1.455 1.202 17.4 74 0.00 67 T tert-Butylbenzene 1.007 1.053 -4.6 84 0.00 67 T sc-Butylbenzene 1.363 1.331 2.3 87 0.00 70 T 1,3-Dichlorobenzene 0.745 0.636 14.6 76 0.00 71 T 4-Dichlorobenzene 0.517 0.451 12.8 <t< td=""><td>57</td><td>Ρ</td><td>Bromoform</td><td></td><td></td><td></td><td></td><td></td></t<>	57	Ρ	Bromoform					
59 SBromofluorobenzene0.6050.5705.8840.0060 P1,1,2,2-Tetrachloroethane0.4910.563-14.71090.0062 T1,2,3-Trichloropropane0.3550.29417.2750.0063 Tn-Propylbenzene1.5771.34314.8700.0064 T2-Chlorotoluene1.1390.97614.3720.0065 T1,3,5-Trimethylbenzene1.3411.12316.3790.0066 T4-Chlorotoluene1.4551.20217.4740.0067 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene0.7030.6428.7820.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7160.60114.9770.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.3100.3090.3770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3400.27020.667-0.0177 THexachlorobutadiene0.1820.14918.1 </td <td>58</td> <td>т</td> <td>Isopropylbenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td>	58	т	Isopropylbenzene					
60P1,1,2,2-Tetrachloroethane0.4910.563-14.71090.0062T1,2,3-Trichloropropane0.3550.29417.2750.0063Tn-Propylbenzene1.5771.34314.8700.0064T2-Chlorotoluene1.1390.97614.3720.0065T1,3,5-Trimethylbenzene1.3411.12316.3790.0066T4-Chlorotoluene1.4551.20217.4740.0067Ttert-Butylbenzene0.8380.73811.9770.00681,2,4-Trimethylbenzene1.0631.3312.3870.0070T1,3-Dichlorobenzene0.7030.6428.7820.0071T4-Isopropyltoluene1.0740.88917.2720.0072T1,4-Dichlorobenzene0.5170.45112.8720.0073Tn-Butylbenzene0.5170.45112.8720.0074T1,2-Dichlorobenzene0.3100.3090.3770.0075T1,2,4-Trichlorobenzene0.3100.3090.3770.0075T1,2,4-Trichlorobenzene0.3100.3090.3770.0074T1,2,3-Trichlorobenzene0.3400.27020.667-0.0175THexachlorobutadiene0.14918.1 <td>59</td> <td>S</td> <td>Bromofluorobenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td>	59	S	Bromofluorobenzene					
62 T 1,2,3-Trichloropropane 0.355 0.294 17.2 75 0.00 63 T n-Propylbenzene 1.577 1.343 14.8 70 0.00 64 T 2-Chlorotoluene 1.139 0.976 14.3 72 0.00 65 T 1,3,5-Trimethylbenzene 1.341 1.123 16.3 79 0.00 66 T 4-Chlorotoluene 1.455 1.202 17.4 74 0.00 67 T tert-Butylbenzene 0.838 0.738 11.9 77 0.00 68 T 1,2,4-Trimethylbenzene 1.007 1.053 -4.6 84 0.00 69 T sec-Butylbenzene 1.363 1.331 2.3 87 0.00 70 T 1,3-Dichlorobenzene 0.703 0.642 8.7 82 0.00 71 T 4-Isopropyltoluene 1.074 0.889 17.2 72 0.00 72 T 1,4-Dichlorobenzene 0.517 0.451 12.8 72 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
63 Tn-Propylbenzene1.5771.34314.8700.0064 T2-Chlorotoluene1.1390.97614.3720.0065 T1,3,5-Trimethylbenzene1.3411.12316.3790.0066 T4-Chlorotoluene1.4551.20217.4740.0067 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene1.3631.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7070.0743.9800.0075 T1,2,4-Trichlorobenzene0.3100.3090.3770.0075 TNaphthalene0.9690.84113.2660.0077 THexachlorobutadiene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0078 TMaphthalene0.3520.369-4.8890.0181 TMethyl acetate0.1750.184-5.11020.01 <td>62</td> <td>Т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	62	Т						
64 T2-Chlorotoluene1.1390.97614.3720.0065 T1,3,5-Trimethylbenzene1.3411.12316.3790.0066 T4-Chlorotoluene1.4551.20217.4740.0067 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene1.3611.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.5170.45112.8720.0073 Tn-Butylbenzene0.0770.0743.9800.0074 T1,2-Dichlorobenzene0.3100.3090.3770.0075 T1,2,4-Trichlorobenzene0.3100.3090.3770.0075 T1,2,4-Trichlorobenzene0.3400.27020.667-0.0177 THexachlorobutadiene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1750.184-5.11020.0181 TMethyl acetate0.1750.369-4.8890.0183 TMethylcyclohexane0.3520.369-4.8890.01								
65 T1,3,5-Trimethylbenzene1.3411.12316.3790.0066 T4-Chlorotoluene1.4551.20217.4740.0067 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene1.3631.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.5170.45112.8720.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.3100.3090.3770.0075 T1,2-A-Trichlorobenzene0.3100.3090.3770.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1750.184-5.11020.0181 TMethyl acetate0.1750.1685.6870.0083 TMethylcyclohexane0.3520.369-4.8890.0184 TAcetaldehyde0.0000.0000.0000.	64	Т						
66 T4-Chlorotoluene1.4551.20217.4740.0067 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene1.3631.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.0770.0743.9800.0075 T1,2,4-Trichlorobenzene0.3100.3090.3770.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1750.184-5.11020.0181 TMethyl acetate0.1750.369-4.8890.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.00	65	т	1,3,5-Trimethylbenzene					
67 Ttert-Butylbenzene0.8380.73811.9770.0068 T1,2,4-Trimethylbenzene1.0071.053-4.6840.0069 Tsec-Butylbenzene1.3631.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dichlorobenzene0.3100.3090.3770.0075 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0182 TCyclohexane0.3520.369-4.8890.0084 TAcetaldehyde0.0000.0000.0870.06	66	Т						
68 T 1,2,4-Trimethylbenzene 1.007 1.053 -4.6 84 0.00 69 T sec-Butylbenzene 1.363 1.331 2.3 87 0.00 70 T 1,3-Dichlorobenzene 0.703 0.642 8.7 82 0.00 71 T 4-Isopropyltoluene 1.074 0.889 17.2 72 0.00 72 T 1,4-Dichlorobenzene 0.745 0.636 14.6 76 0.00 73 T n-Butylbenzene 0.517 0.451 12.8 72 0.00 74 T 1,2-Dichlorobenzene 0.706 0.601 14.9 77 0.00 75 T 1,2-Dibromo-3-chloropropane 0.077 0.074 3.9 80 0.00 75 T 1,2,4-Trichlorobenzene 0.310 0.309 0.3 77 0.00 75 T 1,2,3-Trichlorobenzene 0.340 0.270 20.6 67 -0.01 79 T 1,2,3-Trichlorobenzene 0.340 0.270 20.6 67 -0.01 80 T 1,1,2-Trichloro-1,2,2-trifl 0.178 0.168 <td>67</td> <td>т</td> <td>tert-Butylbenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td>	67	т	tert-Butylbenzene					
69 Tsec-Butylbenzene1.3631.3312.3870.0070 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1750.184-5.11020.0181 TMethyl acetate0.3520.369-4.8890.0182 TCyclohexane0.3520.369-4.8890.0083 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	68	Т	1,2,4-Trimethylbenzene					
70 T1,3-Dichlorobenzene0.7030.6428.7820.0071 T4-Isopropyltoluene1.0740.88917.2720.0072 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.1750.184-5.11020.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	69	Т	sec-Butylbenzene					
71 T4-Isopropyltoluene1.0740.88917.2720.0032 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	70	Т						
32 T1,4-Dichlorobenzene0.7450.63614.6760.0073 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	71	T						
73 Tn-Butylbenzene0.5170.45112.8720.0074 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0182 TCyclohexane0.1880.1756.9800.0083 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	72	Т						
74 T1,2-Dichlorobenzene0.7060.60114.9770.0075 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	73	т	n-Butylbenzene					
75 T1,2-Dibromo-3-chloropropane0.0770.0743.9800.0076 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	74	Т	1,2-Dichlorobenzene					
76 T1,2,4-Trichlorobenzene0.3100.3090.3770.0077 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.3520.369-4.8890.0182 TCyclohexane0.1880.1756.9800.0083 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	75	т						
77 THexachlorobutadiene0.1820.14918.1740.0078 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.1750.184-5.11020.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06			1,2,4-Trichlorobenzene					
78 TNaphthalene0.9690.84113.2660.0079 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.1750.184-5.11020.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06			Hexachlorobutadiene					
79 T1,2,3-Trichlorobenzene0.3400.27020.667-0.0180 T1,1,2-Trichloro-1,2,2-trifl0.1780.1685.6870.0081 TMethyl acetate0.1750.184-5.11020.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06		Т	Naphthalene	0.969				
80 T 1,1,2-Trichloro-1,2,2-trifl 0.178 0.168 5.6 87 0.00 81 T Methyl acetate 0.175 0.184 -5.1 102 0.01 82 T Cyclohexane 0.352 0.369 -4.8 89 0.01 83 T Methylcyclohexane 0.188 0.175 6.9 80 0.00 84 T Acetaldehyde 0.000 0.000 0.0 87 0.06	79	т	1,2,3-Trichlorobenzene					
81 TMethyl acetate0.1750.184-5.11020.0182 TCyclohexane0.3520.369-4.8890.0183 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	80	Т	1,1,2-Trichloro-1,2,2-trifl					
82 T Cyclohexane 0.352 0.369 -4.8 89 0.01 83 T Methylcyclohexane 0.188 0.175 6.9 80 0.00 84 T Acetaldehyde 0.000 0.000 0.0 87 0.06								
83 TMethylcyclohexane0.1880.1756.9800.0084 TAcetaldehyde0.0000.0000.0870.06	82	Т						
84 T Acetaldehyde 0.000 0.000 0.0 87 0.06	83 .	Т	Methylcyclohexane					
	84 1	Т						
	. <u>-</u>						-	

4 (#) = Out of Range
4 (#

(#) = Out of Range J0322.M Mon Apr 12 08:36:37 2010 RT1

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 04/13/2010

.

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
TCLP-BLK	AQUEOUS	L4821.D	95	99	99
03181-006	AQUEOUS	L4822.D	97	99	99
03299-001	AQUEOUS	L4823.D	96	99	99
BLK-SPK	AQUEOUS	L4824.D	92	101	99
TCLPSPK	AQUEOUS	L4825.D	93	101	99
03311-018MS	AQUEOUS	L4826.D	98	101	95
03311-018MSD	AQUEOUS	L4827.D	98	101	95
03311-018	AQUEOUS	L4828.D	97	99	98
03233-001	AQUEOUS	L4829.D	96	99	98
03186-008	AQUEOUS	L4830.D	95	100	99
03186-009	AQUEOUS	L4831.D	97	100	99
03186-010	AQUEOUS	L4832.D	96	100	98
03186-011	AQUEOUS	L4833.D	95	100	98
03274-002	AQUEOUS	L4834.D	95	99	98
03274-001	AQUEOUS	L4835.D	94	101	101

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	45-154	51-164
SMC2 = Toluene-d8	50 ppb	47-151	52-157
SMC3 = Bromofluorobenzene	50 ppb	48-149	56-154

Column to be used to flag recovery values

I.

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 04/09/2010

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	J8201.D	144	74	66
03077-001	AQUEOUS	J8202.D	146	75	86
BLK-SPK	AQUEOUS	J8203.D	105	94	72
03186-005MS	AQUEOUS	J8204.D	130	72	71
03186-005MSD	AQUEOUS	J8205.D	137	74	71
03086-001	AQUEOUS	J8208.D	146	75	70
03187-004	AQUEOUS	J8209.D	149	77	70
03187-005	AQUEOUS	J8210.D	148	76	70
03181-006	AQUEOUS	J8211.D	141	76	71
03186-001	AQUEOUS	J8212.D	146	76	71
03186-002	AQUEOUS	J8213.D	145	75	71
03186-003	AQUEOUS	J8214.D	148	76	69
03186-004	AQUEOUS	J8215.D	142	76	71
03186-005	AQUEOUS	J8216.D	144	76	70
03186-006	AQUEOUS	J8217.D	140	78	70
03186-007	AQUEOUS	J8218.D	143	78	70

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	39-183	39-183
SMC2 = Toluene-d8	50 ppb	58-143	58-143
SMC3 = Bromofluorobenzene	50 ppb	50-152	50-152

Column to be used to flag recovery values

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	03311-018
Batch No.:	LAM041310A

	SPIKE	SAMPLE	MS	MIS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	66.6	133	46 - 150
Benzene	50.0	0.0	54.5	109	63 - 146
Trichloroethene	50.0	0.0	57.8	116	60 - 152
Toluene	50.0	0.0	51.8	104	63 - 151
Chlorobenzene	50.0	0.0	53.9	108	75 - 149

	SAMPLE	MSD	MSD			
Compound	CONC.	CONC.	%	%	QC LIN	AITS
	(ug/L)	(ug/L)	# REC	RPD #	RPD	REC.
1,1-Dichloroethene	0.0	57.8	116	14	17	46 - 150
Benzene	0.0	49.5	99	10	14	63 - 146
Trichloroethene	0.0	51.9	104	11	15	60 - 152
Toluene	0.0	46.7	93	11	15	63 - 151
Chlorobenzene	0.0	49.6	99	9	12	75 - 149

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	<u>03186-005</u>
Batch No.:	<u>J040910</u>

.]

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50,0	0.0	62.4	125	34 - 149
Benzene	50,0	0.0	49.7	99	45 - 136
Trichloroethene	50.0	0.0	51.2	102	40 - 147
Toluene	50.0	0.0	53.0	106	43 - 137
Chlorobenzene	50.0	0.0	53.2	106	45 - 144

	SAMPLE	MSD		MSD			
Compound	CONC.	CONC.		%	%	QC LIN	/ITS
	(ug/L)	(ug/L)	#	REC	RPD #	RPD	REC.
1,1-Dichloroethene	0.0	56.6		113	10	19	34 - 149
Benzene	0.0	54.0		108	9	15	45 - 136
Trichloroethene	0.0	56.2		112	9	18	40 - 147
Toluene	0.0	58.5		117	10	16	43 - 137
Chlorobenzene	0.0	58.7		117	10	16	45 - 144

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

Lab File ID (Standard):

L4215.D

Date Analyzed: 03/18/2010

Instrument ID:

MSD_L

Time Analyzed: 15:09

	50UG/L	IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	294042	6.18	424261	6.99	439651	10.32
	UPPER LIMIT	588084	6.68	848522	7.49	879302	10.82
	LOWER LIMIT	147021	5.68	212130.5	6.49	219825.5	9.82
	LAB SAMPLE						
	ID .						
01	STD-1PPB	328019	6.18	505415	6.99	475839	10.32
02	STD-5PPB	317421	6.18	490043	6.99	481041	10.32
03	STD-2PPB	250239	6.18	391405	6.99	389808	10.32
04	STD-20PPB	282573	6.18	435452	6.99	450261	10.32
05	STD-150PPB	345686	6.18	471768	6.99	514420	10.32
06	STD-200PPB	348200	6.18	459105	6.99	514270	10.32
07	METHOD-BLK	261206	6,18	412925	6,99	415458	10.32
08	02456-002	217552	6,18	346814	6.99	330474	10.32
09	02456-001	224516	6,18	359226	6.99	350968	10.32
10	BLK-SPK	247548	6.18	373751	6.99	387129	10.32
11	02373-013MS	247491	6.18	391018	6.99	395505	10.32
12	02373-013MSD	242661	6.18	386217	6.99	387515	10.32
13	02373-013	196483	6.18	304900	6.99	289324	10.32
14	02375-020	208128	6.18	304784	6.99	278737	10.32
15							
16							
17	7						
18	3						
19)						
20							
2							
22	2						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

İ

Lab File ID (Standard):

L4820.D

Date Analyzed: 04/13/2010

Instrument ID:

MSD	L	

·	
Time Analyzed:	13:39

[50UG/L	IS1		1S2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	380418	6.18	625690	7.00	650410	10.32
ł	UPPER LIMIT	760836	6.68	1251380	7.50	1300820	10.82
	LOWER LIMIT	190209	5.68	312845	6.50	325205	9.82
	LAB SAMPLE						
	ID				-		
01	TCLP-BLK	341422	6.18	559082	6.99	583207	10.32
02	03181-006	321170	6.18	529168	6.99	553029	10.32
03	03299-001	375974	6.18	617195	7.00	648473	10.32
04	BLK-SPK	346358	6.18	547878	7.00	603918	10.32
05	TCLPSPK	354823	6.18	566730	7.00	625631	10.32
06	03311-018MS	324790	6.18	530644	6.99	589684	10.32
07	03311-018MSD	330169	6.18	543540	6.99	600112	10.32
08	03311-018	339762	6.18	557677	7.00	587840	10.32
09	03233-001	349539	6.18	574008	6.99	603014	10.32
10	03186-008	357574	6.18	586965	7.00	612469	10.32
11	03186-009	352343	6.18	584286	7.00	614628	10.32
12	03186-010	345928	6,18	572486	7.00	597293	10.32
13	03186-011	345505	6.18	572428	7.00	597324	10.32
14	03274-002	305236	6.18	504469	7.00	526087	10.32
15	03274-001	310681	6.18	507504	7.00	533193	10.32
16							
17							
18							
19							
20							
21							
22							

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Lab File ID (Standard):

J7566.D

Time Analyzed: 11:22

Instrument ID:

MSD J

50UG/L	I\$1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	487993	5.95	732017	6.76	809770	10.10
UPPER LIMIT	975986	6.45	1464034	7.26	1619540	10.60
LOWER LIMIT	243996.5	5.45	366008.5	6.26	404885	9.60
LAB SAMPLE						
ID						
01 STD-5PPB	410857	5.95	675442	6.76	687001	10.10
02 STD-20PPB	432122	5.95	682505	6.76	709655	10.10
03 STD-1PPB	359127	5.95	617008	6.76	625335	10.10
04 STD-200PPB	475175	5.95	730848	6.76	849213	10.10
05 STD-2PPB	388414	5.95	654920	6.76	676119	10.10
06 STD-150PPB	481829	5.95	732889	6.76	843471	10.10
07 METHOD-BLK	365335	5.95	649438	6.76	662655	10.10
08 TCLP-BLK	314720	5.95	569296	6.77	598565	10.10
09 02482-001	316750	5.95	565328	6.77	588841	10.10
10 TCLP-SPK	413936	5.95	641196	6.77	689448	10.10
11 02562-001	346613	5.95	611611	6.76	632004	10.10
12 02562-002	318127	5.95	579550	6.77	604440	10.10
13 02562-003	290791	5.95	540786	6.77	569360	10.10
14 MS	306480	5.95	576366	6.77	594043	10.10
15 MSD	314599	5.95	594984	6.76	616325	10.10
16 BLK-SPK	396722	5.95	606791	6.76	663038	10.10
17 02358-001	335649	5.95	567485	6.77	592842	10.10
18 02358-003	302032	5.95	554313	6.77	594978	10.10
19 02562-003	273865	5.95	517128	6.77	551862	10.10
20						
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Lab File ID (Standard): J8199.D

Instrument ID:

MSD J

Time Analyzed: <u>11:53</u>

50UG/L	IS1		IS2		IS3	
	AREA #	<u>R</u> T #	AREA #	RT #	AREA #	RT #
12 HOUR STD	337930	5.95	486433	6.76	644599	10.10
	675860	6.45	972866	7.26	1289198	10.60
LOWER LIMIT	168965	5.45	243216.5	6.26	322299.5	9.60
LAB SAMPLE						
ID						
01 METHOD-BLK	183038	5.95	340748	6.77	357331	10.10
0203077-001	232412	5.95	450261	6.77	495832	10.10
03 BLK-SPK	382964	5.95	568074	6.77	845855	10.10
04 03186-005MS	295998	5.95	552133	6.77	558988	10.10
0503186-005MSD	263562	5.95	509640	6.77	527181	10.10
0603086-001	229861	5.95	441262	6.77	475580	10.10
07 03187-004	225227	5.95	435576	6.77	481497	10.10
08 03187-005	228193	5.95	440656	6.77	484596	10.10
0903181-006	238988	5.95	450646	6.77	497143	10.10
10 03186-001	233412	5.95	443337	6.77	482862	10.10
11 03186-002	233724	5.95	451537	6.77	479989	10.10
12 03186-003	214543	5.95	412495	6.77	451398	10.10
13 03186-004	242889	5.95	451685	6.77	486119	10.10
14 03186-005	237039	5.95	450783	6.77	497964	10.10
15 03186-006	236921	5.95	444762	6.77	494048	10.10
16 03186-007	237825	5.95	443111	6.77	492915	10.10
17						10.10
18						
19		/	·			
20						· · · · · ·
21						
22						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

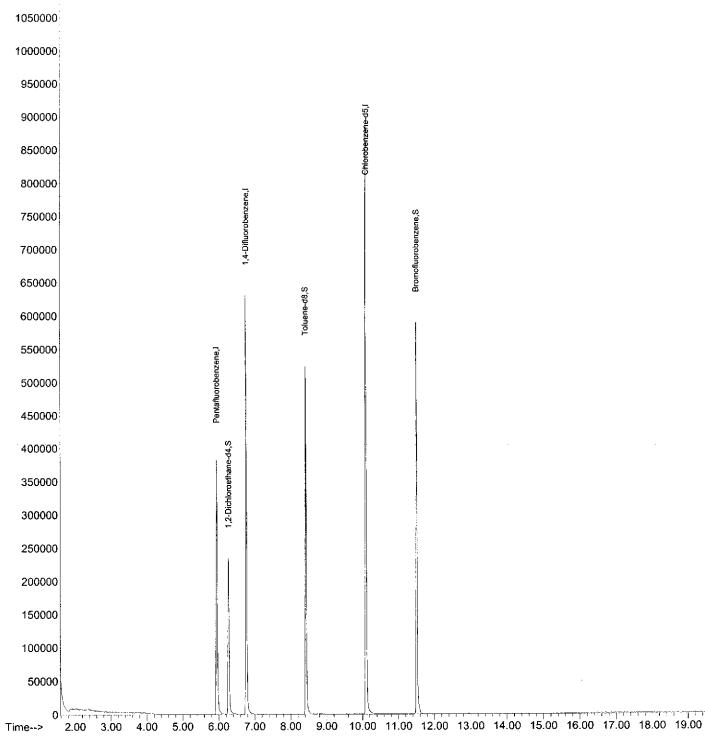
* Values outside of QC limits.

Data Path : C:\MSDChem\1\DATA Data File : J8212.D Acq On : 9 Apr 2010 18:1 Operator : DANA Sample : FB_(040610),03186 Misc : ARCADIS/KINGS_ELE ALS Vial : 15 Sample Multi	18	/10,	
Quant Time: Apr 12 08:53:19 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Wed Mar 24 16: Response via : Initial Calibr	METHODS\J0322.M NICS BY EPA METHC :16:43 2010	D 8260B	
Internal Standards	R.T. QIon	Response Cond	: Units Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	5 95 168	233412 50. 443337 50. 482862 50.	00 UG 0.00 00 UG 0.00 00 UG 0.00
System Monitoring Compounds		010600 70	
30) 1,2-Dichloroethane-d4			
Spiked Amount 50.000	8 43 - 155	749234 38	= 145.58%
41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	Range 39 - 137	' Recoverv	= 76.06%
59) Bromofluorobenzene	11,51 95	206178 35.	29 UG 0.00
Spiked Amount 50.000	Range 23 - 145	Recovery	= 70.58%
Target Compounds			Qvalue
(#) = qualifier out of range	e (m) = manual in	tegration (+) =	signals summed

J0322.M Mon Apr 12 08:53:23 2010 RT1

	Quan	titation Repo	ort (QT Re	eviewed)
	:\MSDChem\1\DATA\	04-09-10\		
Data File : J Acq On : Operator : D	9 Apr 2010 18:18			
Sample : Fi	B_(040610),03186- RCADIS/KINGS_ELEC	001,A,5ml,100 ,04/06/10,04/) '07/10,	
ALS Vial : 1	5 Sample Multip	lier: 1		
Quant Method	pr 12 08:53:19 20 : C:\MSDCHEM\1\ME : VOLATILE ORGANI	THODS\J0322.M		
QLast Update	: Wed Mar 24 16:1 : Initial Calibra	6:43 2010	.nod 8260B	
Abundance			IC: J8212.D	
1050000				١
1000000				
950000				
900000		i		
850000		-	comorobenzene-do,	
800000		i		
750000	l, anazne		s S	
700000	1,4-Difluorobenzene,I		probenze	
650000	1,4-1		Bromofluorobenzene,S	
600000	ì	S S	2	
	_	Toluene-d8,S		
550000	penzene			
500000	Pentafluorobenzene,I			
450000				
400000	1.2-Dichloroethane-d4,S			
350000	Dictrioroed			
300000	1,2-6			
250000				
200000				
150000				
100000				
50000				

Data Path : C:\MSDChem\1\DATA Data File : J8213.D Acq On : 9 Apr 2010 18:4 Operator : DANA Sample : TB_(040610),03186 Misc : ARCADIS/KINGS_ELE ALS Vial : 16 Sample Multi	7	/10,	
Quant Time: Apr 12 08:54:01 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Wed Mar 24 16: Response via : Initial Calibr	ETHODS\J0322.M ICS BY EPA METHOI 16:43 2010	D 8260B	
Internal Standards	R.T. QION	Response Conc	Units Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	5.95 168 6.77 114 10.10 117	233724 50.0 451537 50.0 479989 50.0	0 UG 0.00 0 UG 0.01 0 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4	6 27 65	218036 72 4	8 UG 0.00
Spiked Amount 50.000			
41) Toluene-d8	8 4 2 9 8	352771 37 7	2 11G 0 00
Spiked Amount 50.000 59) Bromofluorobenzene	Range 39 - 137	Recovery =	75.44%
59) Bromofluorobenzene	11.51 95	205037 35.3	0 UG 0.00
Spiked Amount 50.000	Range 23 - 145	Recovery =	70.60%
Target Compounds			Qvalue
(#) = qualifier out of range	(m) = manual int	cegration (+) =	signals summed


Data Path	:	C:MSDChem(1)DATA(04-09-10)
Data File	:	J8213.D
		9 Apr 2010 18:47
Operator		
Sample		TB_(040610),03186-002,A,5ml,100
Misc		ARCADIS/KINGS_ELEC,04/06/10,04/07/10,
ALS Vial	:	16 Sample Multiplier: 1
Quant Time	<u>.</u>	Apr 12 08:54:01 2010

Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Abundance

ċ

TIC: J8213.D

Data Path : C:\MSDChem\1\DATA\04-09-10\ Data File : J8214.D Acq On : 9 Apr 2010 19:15 Operator : DANA Sample : PTW-2,03186-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,04/07/10,04/07/10, ALS Vial : 17 Sample Multiplier: 1						
Quant Time: Apr 12 09:04:52 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Wed Mar 24 16: Response via : Initial Calibra	ETHODS\J032 ICS BY EPA 16:43 2010		D 8260B			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits 1	Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	5.95 6.77 10.10	168 114 117	214543 412495 451398	50.00 50.00 50.00		0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.43 Range 39 11.51	- 133 98 - 137 95	204535 Recover 323549 Recover 189765 Recover	cy = 37.87 cy = 34.74	148.3 UG 75.7 UG	14%# 0.01 74% 0.00
Target Compounds 4) Vinyl chloride 18) 1,1-Dichloroethane 33) Trichloroethene	1.99 4.68 7.05	63	7472		UG	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

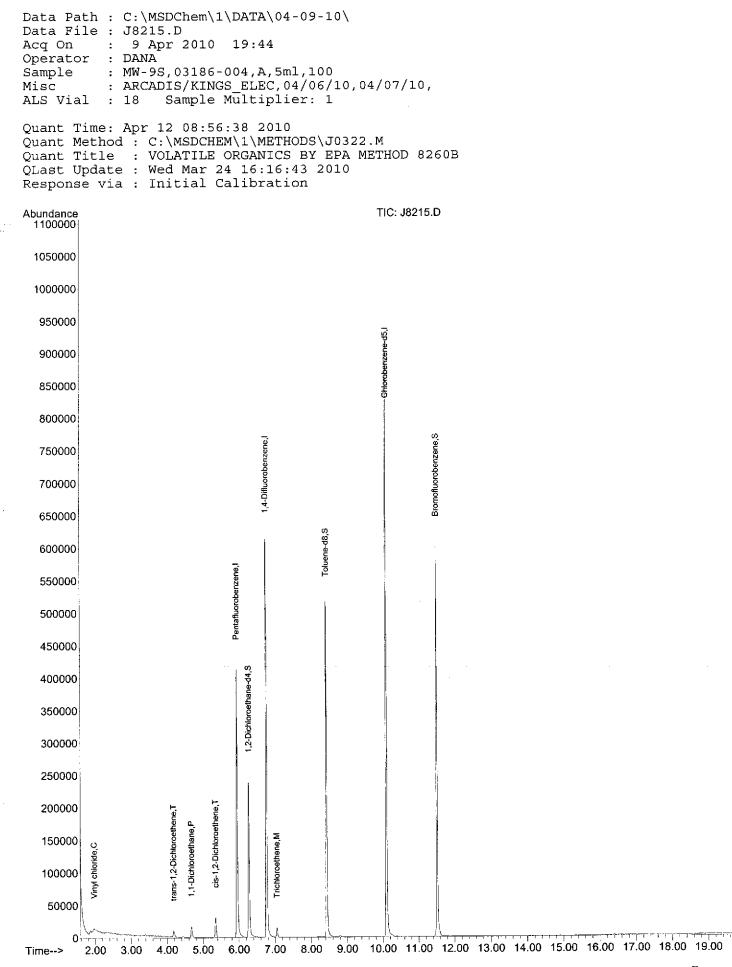
TIC: J8214.D

Bromofluorobenzene,S

Data Path : C:\MSDChem\1\DATA\04-09-10\ Data File : J8214.D
Acq On : 9 Apr 2010 19:15 Operator : DANA
Sample : PTW-2,03186-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,04/07/10,04/07/10,
ALS Vial : 17 Sample Multiplier: 1 Quant Time: Apr 12 09:04:52 2010
Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B
QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Abundance 1000000

7


7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 2.00 4.00 5.00 6.00 3.00 Time-->

Vinył

50000

Data Path : C:\MSDChem\1\DATA Data File : J8215.D Acq On : 9 Apr 2010 19:4 Operator : DANA Sample : MW-9S,03186-004,A Misc : ARCADIS/KINGS_ELE ALS Vial : 18 Sample Multip	4	,04/07	/10,			
Quant Time: Apr 12 08:56:38 2010 Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration						
Internal Standards	R.T.	QIon	Response	Conc Un	its E	ev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 		169	212000	50 00	11/1	0 00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.43 Range 39 11.51	- 133 98 - 137 95	Recove 354849 Recove 208291	ry = 37.93 ry = 35.41	141.9 UG 75.8 UG	00%# 0.01 66% 0.00
Target Compounds 4) Vinyl chloride 16) trans-1,2-Dichloroethen 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	1.97 e 4.18 4.67 5.35 7.04	62 96 63 96 95	18320m 4863 19702 15354 5228	7.31 2.00 4.16 6.59 1.90	UG UG UG UG	Qvalue # 100 98 # 100 87

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA Data File : J8216.D Acq On : 9 Apr 2010 20:1 Operator : DANA Sample : MW-9D,03186-005,A Misc : ARCADIS/KINGS_ELE ALS Vial : 19 Sample Multi	.3 ,5ml,100 C,04/06/10,04	/07/10,		
Quant Time: Apr 12 08:57:23 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Wed Mar 24 16: Response via : Initial Calibr	IETHODS\J0322.] IICS BY EPA ME 16:43 2010			
Internal Standards	R.T. QI	on Response	Conc Units	Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.77 1	14 450783	50.00 UG	0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4	6 27	65 219271	71 87 116	0 00
Spiked Amount 50.000		133 Recove:		
41) Toluene-d8	8.43	98 355989	38.13 UG	0.01
41) Toluene-d8 Spiked Amount 50.000	Range 39 - 3	137 Recove:	ry = 76.	.26%
59) Bromofluorobenzene	11.51	95 211574	35.11 UG	0.00
Spiked Amount 50.000	Range 23 - 1	145 Recove:	ry = 70.	,22%
Target Compounds				Qvalue
(#) = qualifier out of range	(m) = manual	integration	(+) = signal	ls summed

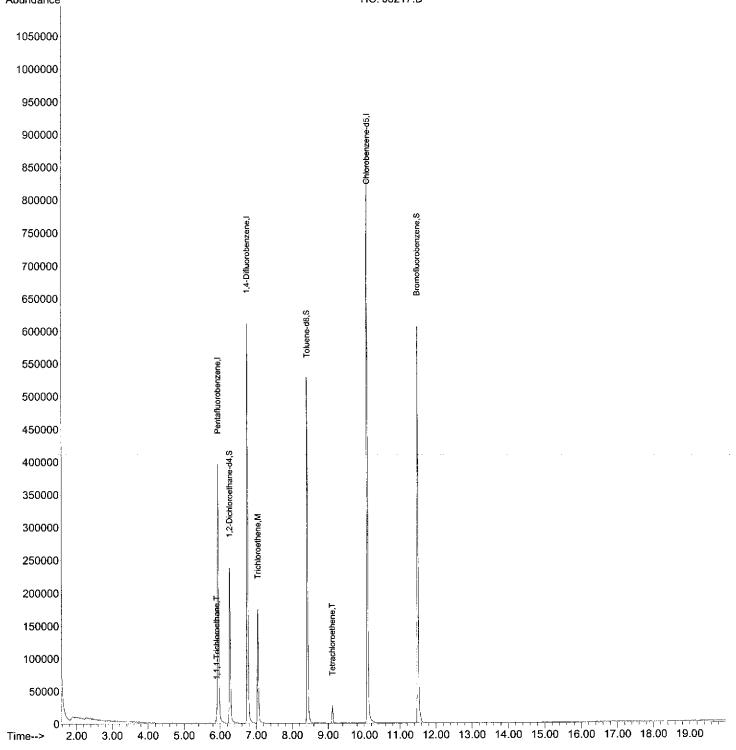
Data Path	:	C:\MSDChem\1\DATA\04-09-10\
Data File	:	J8216.D
Acq On	:	9 Apr 2010 20:13
Operator	:	DANA
Sample	:	MW-9D,03186-005,A,5ml,100
Misc	:	ARCADIS/KINGS ELEC,04/06/10,04/07/10,
ALS Vial	:	19 Sample Multiplier: 1
Quant Time	::	Apr 12 08:57:23 2010
Quant Meth	100	d : C:\MSDCHEM\1\METHODS\J0322.M
Quant Tit]	е	VOLATILE ORGANICS BY EPA METHOD 8260B

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Abundance 1100000			١	fiC: J8216.I	D	
് 1050000						
1000000						
950000				ż		
900000				nzene-df		
850000				Chlorobenzene-d 5,I		
800000	Ī				2	
750000	A Difference	BYISOOT				
700000	200 v	5				
650000			S.	4	2	
600000			Toluene-d8,S			
550000	nzene,l		P			
500000	Pentafluorobenzene,I					
450000	Pent					
400000	ane-d4,S				,	
350000	1,2-Dichloroethane-d4,S					
300000	1,2-Dic					
250000	1					
200000						
150000						
100000						
50000						
	111	ł.	JI.	1	{	

Time--> 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Data Path : C:\MSDChem\1\DATA\04-09-10\ Data File : J8217.D Acq On : 9 Apr 2010 20:42 Operator : DANA Sample : MW-6S,03186-006,A,5m1,100 Misc : ARCADIS/KINGS_ELEC,04/06/10,04/07/10, ALS Vial : 20 Sample Multiplier: 1						
Quant Time: Apr 12 08:58:25 2010 Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration						
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.77	114	444762	50.00	UG	0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.43 Range 39	- 133 98 - 137 95	359820 Recove: 208206	ry = 39.06 ry = 34.83	139. UG 78. UG	66%# 0.01 12% 0.00
Target Compounds 26) 1,1,1-Trichloroethane 33) Trichloroethene 45) Tetrachloroethene	7.05	95	67996	4.23 25.08 3.28	UG	# 83


(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : (C:\MSDChem\l\DATA\04-09-10\	
Data File : 🗸	J8217.D	
Acq On :	9 Apr 2010 20:42	
Operator : 1	DANA	
Sample : I	MW-6S,03186-006,A,5ml,100	
Misc : J	ARCADIS/KINGS ELEC,04/06/10,04/07/10,	
ALS Vial : :	20 Sample Multiplier: 1	
Quant Time: Apr 12 08:58:25 2010		

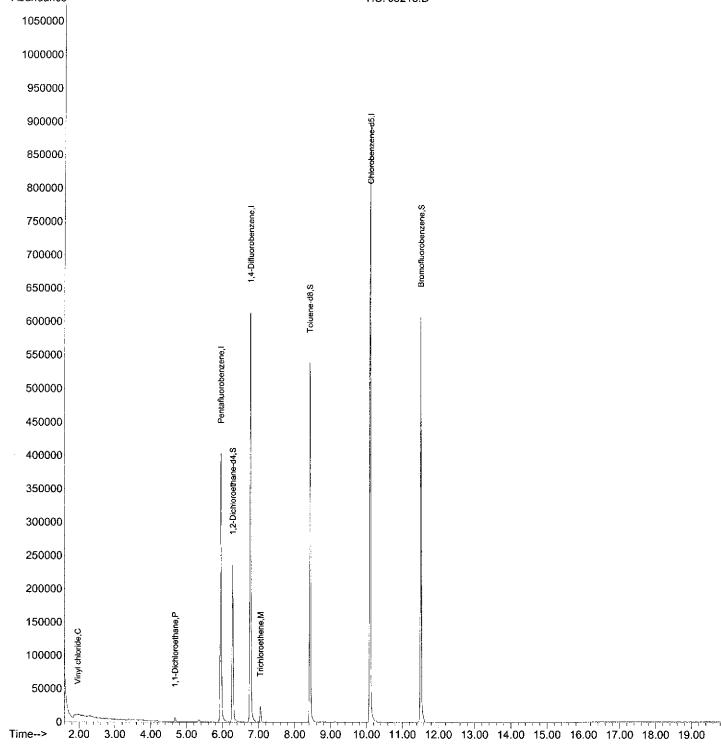
Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Abundance

TIC: J8217.D

Data Path : C:\MSDChem\1\DATA\04-09-10\ Data File : J8218.D Acq On : 9 Apr 2010 21:10 Operator : DANA Sample : DUP_(040610),03186-007,A,5m1,100 Misc : ARCADIS/KINGS_ELEC,04/06/10,04/07/10, ALS Vial : 21 Sample Multiplier: 1					
Quant Time: Apr 12 09:05:33 2010 Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration					
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6,77	114	443111	50.00 UG 50.00 UG 50.00 UG	0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.42 Range 39 11.51	- 133 98 - 137 95	Recove: 356410 Recove: 208575	71.27 UG ry = 142 38.83 UG ry = 77 34.97 UG ry = 69	.54%# 0.00 .66% 0.00
Target Compounds Qvalue					
4) Vinyl chloride	1.96	62	3689m	1.50 UG	
18) 1,1-Dichloroethane 33) Trichloroethene		63 95		1.66 UG 3.35 UG	

(#) = qualifier out of range (m) = manual integration (+) = signals summed


	: C:\MSDChem\1\DATA\04-09-10\
Data File	: J8218.D
	: 9 Apr 2010 21:10
Operator	: DANA
Sample	: DUP_(040610),03186-007,A,5ml,100
Misc	: ARCADIS/KINGS ELEC,04/06/10,04/07/10,
ALS Vial	: 21 Sample Multiplier: 1
Quant Time	: Apr 12 09:05:33 2010

Quant Time: Apr 12 09:05:35 2010 Quant Method : C:\MSDCHEM\1\METHODS\J0322.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Wed Mar 24 16:16:43 2010 Response via : Initial Calibration

Abundance

11

TIC: J8218.D

Data Path : C:\MSDChem\1\DATA\04-13-10\ Data File : L4830.D Acq On : 13 Apr 2010 18:36 Operator : MEI Sample : FB (040710),03186-008,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,04/07/10,04/07/10, ALS Vial : 15 Sample Multiplier: 1 Quant Time: Apr 14 10:17:44 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM0318.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Mar 25 10:58:10 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.1816835757450.00UG0.0031) 1,4-Difluorobenzene7.0011458696550.00UG0.0150) Chlorobenzene-d510.3211761246950.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.52
 65
 154617
 47.62
 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 - 133
 Recovery
 =
 95.24%

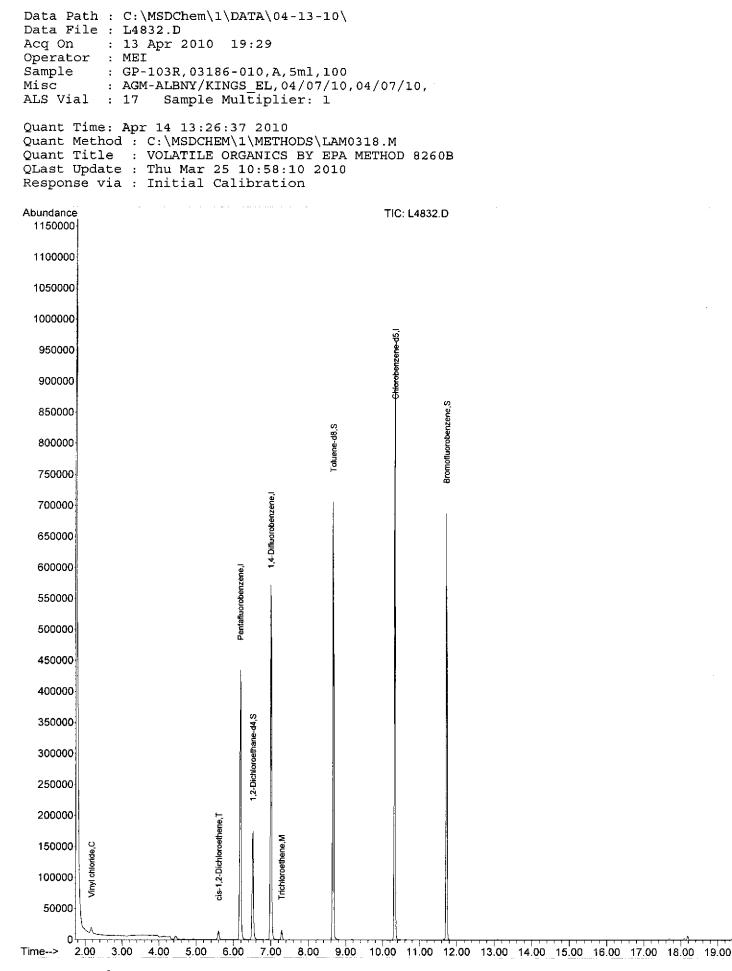
 41) Toluene-d8
 8.66
 98
 568089
 49.99
 UG
 0.01

 Spiked Amount
 50.000
 Range
 39
 - 137
 Recovery
 =
 99.98%

 59) Bromofluorobenzene
 11.72
 95
 244542
 49.35
 UG
 0.00

 Spiked Amount 50.000 Range 23 - 145 Recovery = 98.70% Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Fil Acq On Operator	: FB_(040710), : AGM-ALBNY/KI	18:36 03186-0 NGS_EL,	08,A,5ml, 04/07/10,	100 04/07/	′10,					
Quant Me Quant Ti QLast Up	me: Apr 14 10:17 thod : C:\MSDCHE tle : VOLATILE date : Thu Mar 2 via : Initial C	M\1\METH ORGANIC: 5 10:58	HODS\LAMC 5 BY EPA :10 2010		9 8260B					
Abundance		i.		TIC	: L4830.D					
1150000										:
1100000										
1050000										:
1000000				-45,1						
950000				Chlorobenzene- d5,J						:
900000				Chloro	S					
850000			<u>8</u>		Bromofluorobenzene, S					:
800000			Toluene-d8,S		ofluorob					:
750000			1		Вгоп					÷
700000		oenzene								
650000		1,4-Difluorobenzene,I								
600000		benzene, ¹								:
550000										
500000		Pentafluoro								
450000										
400000				t e				·		
350000		8-d4,S								
300000		1,2-Dichloroethane-d4,S	·							:
250000		2-Dichlo			í					
200000										
150000										
100000				ļ	1					
50000										
0	·····					7 8 1 7 2 1 7 7	11111111	····	┑╺┍╲┍┈┱ ╲╬╾ ┍╶┍	╶╴╸╸┑
Time> 2.0	00 3.00 4.00 5.00	6.00 7.00	8.00 9.0	0 10.00	11.00 12	2.00 13.00	14.00 15.00	16.00 17.00	18.00 1	19.00


Data Path : C:\MSDChem\1\DATA Data File : L4831.D Acq On : 13 Apr 2010 19:02 Operator : MEI Sample : GP-104R,03186-009 Misc : AGM-ALBNY/KINGS_EI ALS Vial : 16 Sample Multip	2 ,A,5ml,100 L,04/07/10,	,04/07,	/10,			
Quant Time: Apr 14 13:27:29 20 Quant Method : C:\MSDCHEM\1\MJ Quant Title : VOLATILE ORGAN QLast Update : Thu Mar 25 10:5 Response via : Initial Calibra	ETHODS\LAM(ICS BY EPA 58:10 2010)318.M METHOI	D 8260B			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.18 7.00 10.32	168 114 117	352343 584286 614628	50.00 50.00 50.00	UG UG UG	0.00 0.01 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	Range 43 8.66	- 133 98	Recove 566902	ry = 50.11	97.00 UG	° 0.01 ° 0.00
Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 23	- 145	Recove	ry =	99.12	
Target Compounds 16) trans-1,2-Dichloroethene	e 4.45 4.93	96 63 96	2789 8508 4596	0.69 1.30 1.06	Q UG # UG	99 68

(#) = qualifier out of range (m) = manual integration (+) = signals summed

		Quantita	tion 1	Report	2	(QT	Reviewed)
	: GP-104R,03186 : AGM-ALBNY/KIN	19:02 -009,A,5m]	,100 07/10,0	04/07,	/10,		
Quant Me Quant Ti QLast Up	me: Apr 14 13:27: thod : C:\MSDCHEM tle : VOLATILE O date : Thu Mar 25 via : Initial Ca	<pre>\1\METHODS RGANICS B3 10:58:10</pre>	EPA I		0 826	0B	
Abundance 1150000				TIC	: L4831.	D	······································
1100000							
1050000							
1000000				_			
950000				che-d5			
000000				Chiorobenzene- d5,			
850000			<i>(</i>)	۵ ا		nzene,S	
800000			Toluene-d8,S			Bromofluorobenzene,S	
750000			101			Brom	
700000		e,i 1,4-Difluorobenzene,i					
650000		jifluorobe					
600000		e		i			
550000		Pentafluorobenz					
500000		Penta					
450000							
400000							
350000		e-d4,S					
300000		proethan					:
250000		1,2-Dichloroethane-d4,S					:
200000	L. T.	-					
150000	loroethe hane, P	W.					
100000	trans-1,2-Dichloroethene,7 1,1-Dichloroethane,P cis-1,2-Dichloroethane,T	Trichloroethene.M					:
50000	trans- 1,1-Di cis-1,	Trict					
o	·····	╷╷╷╷╷╷	┯┭╇┯┯	╢ ╎ ᡶ	-+	╢	╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╺╸╸
Time> 2.0	0 3.00 4.00 5.00 6.	00 7.00 8.	00 9.00	10.00	11.00	12.0	0 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Data Path : C:\MSDChem\1\DATA\04-13-10\ Data File : L4832.D Acq On : 13 Apr 2010 19:29 Operator : MEI Sample : GP-103R,03186-010,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,04/07/10,04/07/10, ALS Vial : 17 Sample Multiplier: 1 Quant Time: Apr 14 13:26:37 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM0318.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Mar 25 10:58:10 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1816834592850.00UG0.0031) 1,4-Difluorobenzene7.0011457248650.00UG0.0150) Chlorobenzene-d510.3211759729350.00UG0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d46.526515051547.91UG0.00Spiked Amount50.000Range 43 - 133Recovery = 95.82%41) Toluene-d88.669855342649.93UG0.01Spiked Amount50.000Range 39 - 137Recovery = 99.86%59) Bromofluorobenzene11.729523714649.08UG0.00Spiked Amount50.000Range 23 - 145Recovery = 98.16% Qvalue Target Compounds 4) Vinyl chloride2.1762198703.02UG20) cis-1,2-Dichloroethene5.609681621.91UG33) Trichloroethene7.299556651.29UG 99 # 99 1.29 UG 92 _____

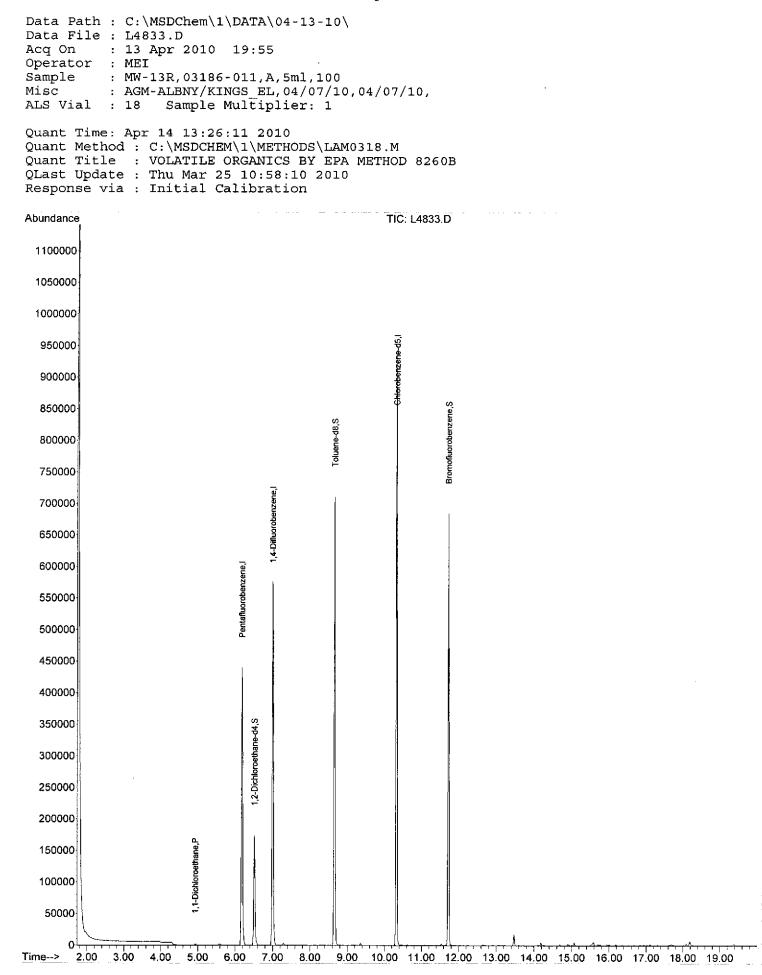
(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\MSDChem\1\DATA\04-13-10\ Data File : L4833.D Acq On : 13 Apr 2010 19:55 Operator : MEI Sample : MW-13R,03186-011,A,5ml,100 Misc : AGM-ALBNY/KINGS_EL,04/07/10,04/07/10, ALS Vial : 18 Sample Multiplier: 1 Quant Time: Apr 14 13:26:11 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM0318.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Thu Mar 25 10:58:10 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.1816834550550.00UG0.0031) 1,4-Difluorobenzene7.0011457242850.00UG0.0150) Chlorobenzene-d510.3211759732450.00UG0.00 31) 1,4-Difluorobenzene
 50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.52
 65
 149374
 47.61 UG
 0.00

 Spiked Amount
 50.000
 Range
 43
 133
 Recovery
 =
 95.22%

 41) Toluene-d8
 8.66
 98
 553497
 49.94 UG
 0.01


 Spiked Amount
 50.000
 Range
 39
 137
 Recovery
 =
 99.88%

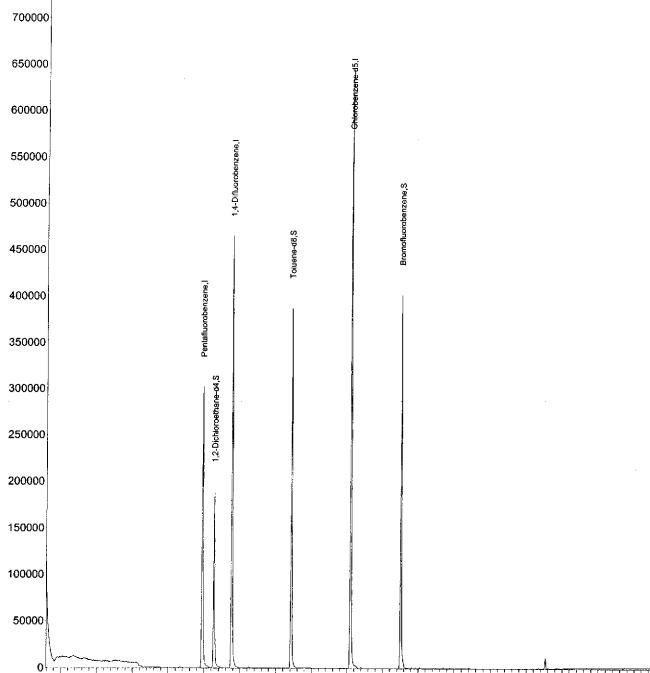
 59) Bromofluorobenzene
 11.72
 95
 236537
 48.95 UG
 0.00

 Spiked Amount
 50.000
 Range
 23
 145
 Recovery
 =
 97.90%

 Qvalue Target Compounds - 4/22/10-AX 18)-1,1-Dichloreethane 4.93 63 2491 0.39 UG #____ ____98 _____ (#) = qualifier out of range (m) = manual integration (+) = signals summed

LAM0318.M Wed Apr 14 13:26:21 2010 RPT1

Data Path : C:\MSDCHEM\1\DATA Data File : J8201.D Acq On : 9 Apr 2010 13:0 Operator : DANA Sample : NA,METHOD-BLK,A,5 Misc : ALS Vial : 4 Sample Multip	00 5ml,100		
Quant Time: Apr 12 09:16:50 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Wed Mar 24 16: Response via : Initial Calibr	ETHODS\J0322.M NCS BY EPA METHO 16:43 2010	D 8260B	
Internal Standards	R.T. QIon	Response Conc Un	its Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	5.95 168 6.77 114 10.10 117	183038 50.00 340748 50.00 357331 50.00	UG 0.00 UG 0.00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.27 65 Range 43 - 133 8.42 98 Range 39 - 137 11.51 95 Range 23 - 145	170034 72.17 Recovery = 259524 36.77 Recovery = 143255 33.13 Recovery =	UG 0.00 144.34%# UG 0.00 73.54% UG 0.00 66.26%
Target Compounds			Qvalue
(#) = qualifier out of range			gnals summed


١

. 1

.

(QT Reviewed)

	£	(21 100110
Data File :	C:\MSDCHEM\1\DATA\04-09-10\ J8201.D 9 Apr 2010 13:00	
Operator : Sample : Misc :	DANA NA,METHOD-BLK,A,5ml,100	
ALS Vial :		
Quant Metho Quant Title QLast Updat	Apr 12 09:16:50 2010 od : C:\MSDCHEM\1\METHODS\J0322.M : VOLATILE ORGANICS BY EPA METHOD e : Wed Mar 24 16:16:43 2010	8260B
Response vi	a : Initial Calibration	
Abundance	TIC: JE	3201.D
750000		
700000		
650000	are d5.1	

01.00 01.00

ä.

(QT Reviewed)

Data Path : C:\MSDChem\1\DATA Data File : L4820.D						
Acq On : 13 Apr 2010 13:3: Operator : MEI	9					
Sample : N/A,METHOD-BLK,W,S Misc :	5ml,100					
ALS Vial : 5 Sample Multip	lier: l					
Quant Time: Apr 14 10:00:03 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Fri Mar 19 11:5 Response via : Initial Calibra	ETHODS\LAMO ECS BY EPA 54:20 2010) 8260B		·	
Internal Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(Min)
1) Pentafluorobenzene	6.18	168	380418	50.00	IIG	0.00
31) 1,4-Difluorobenzene			625690			
50) Chlorobenzene-d5			650410			
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.52	65	163855	47.43	UG	0.00
Spiked Amount 50.000	Range 43	- 133	Recover	y = '	94.8	36%
41) Toluene-d8	8.66	98	600464	49.57	UG	0.01
Spiked Amount 50.000						
59) Bromofluorobenzene			262476			
Spiked Amount 50.000	Range 23	- 145	Recover	Y =	99.1	76%
Target Compounds						Qvalue
	• ~					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	:	C:\MSDChem\1\DATA\04-13-10\
Data File	:	L4820.D
Acq On	:	13 Apr 2010 13:39
Operator	:	MEI
Sample	:	N/A,METHOD-BLK,W,5ml,100
Misc	:	
ALS Vial	:	5 Sample Multiplier: 1

Quant Time: Apr 14 10:00:03 2010 Quant Method : C:\MSDCHEM\1\METHODS\LAM0318.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Fri Mar 19 11:54:20 2010 Response via : Initial Calibration . . .

undance 1250000					TIC: L4820.E)						:
1250000					· .		·	•				
1200000								÷				
1150000												:
100000												
1050000					15,1		.*					
					Ghlorobenzene-d 5,I							
000000					lorober 1							
950000					5	ene.S						
900000				N.		robenz						
850000				Toluene-d8,S		Bromofluorobenzene,S		a.				
800000						28						
750000		zene,l		1		1						
700000		oroben										
		, 1,4-Difluarobenzene,										
650000		1 Izene,										
600000		Pertalluorobenzene,I										
550000		Pentallu										
500000		ы.									,	
450000				İ								
400000												
		Dichloroethane-d4,S										
350000		oethan										
300000		Dichio										
250000		12										
200000				-								
150000												
100000												
50000				 .						h sh		
᠐ᢆᢩᡰ᠆᠇	3.00 4.00 5.00 6	<u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>	8.00	ᠰ᠇᠇᠇	0.00 <u>11.00</u>	<u>"</u>	╷╷╷╷┍╷ ╷┍	, , , , , , , , , , , , , , , , , , , 	,^ <u>, </u>			

LSC Area Percent Report

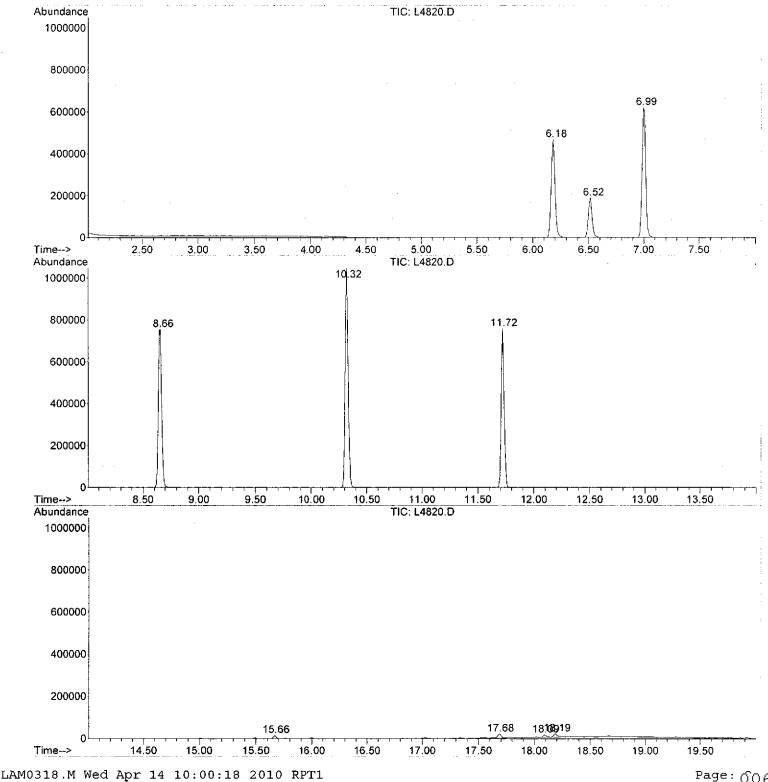
Data Path : C:\MSDChem\1\DATA\04-13-10\ Data File : L4820.D : 13 Apr 2010 13:39 Acq On Operator : MEI Sample : N/A, METHOD-BLK, W, 5ml, 100 Misc : ALS Vial : 5 Sample Multiplier: 1 - Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Filtering: 5 Sampling : 1 Min Area: 1 % of largest Peak Start Thrs: 0.2 Max Peaks: 100 Stop Thrs : 0 Peak Location: TOP If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5 Method : C:\MSDCHEM\1\METHODS\LAM0318.M : VOLATILE ORGANICS BY EPA METHOD 8260B Title : TIC Signal corr. corr. area % max. peak R.T. first max last PK peak % of # min scan scan scan TY height total ---- ---- ---- ----- -6.181 431 439 452 rBV 468556 1097632 57.06% 13.798% 1 6.516 464 472 486 rBV 189189 446951 23.23% 5.618% 2 6.993 513 519 533 rBV 621463 1389902 72.25% 17.472% З 4 8.658 676 683 704 rBV 754256 1601761 83.27% 20.135% 5 10.323 837 847 860 rBV 1048287 1923640 100.00% 24.181% б 11.724 974 985 999 rBV 759349 1344499 69.89% 16.901% 7 15.663 1366 1373 1379 rBV2 14227 23960 1.25% 0.301% 8 17.683 1564 1572 1579 rBV 19223 49467 2.57% 0.622%

Sum of corrected areas:

15823

7955027

29942 1.56% 0.376% 47273 2.46% 0.594%


9 18.089 1608 1612 1618 rBV2 12328

10 18.191 1618 1622 1631 rBV2

Data Path	: C:\MSDChem\1\DATA\04-13-10\
Data File	: L4820.D
	: 13 Apr 2010 13:39
Sample	: N/A,METHOD-BLK,W,5ml,100
Misc	÷
ALS Vial	: 5 Sample Multiplier: 1
Acq On Operator Sample Misc ALS Vial	: 13 Apr 2010 13:39 : MEI : N/A,METHOD-BLK,W,5ml,100 : : 5 Sample Multiplier: 1 nod : C:\MSDCHEM\1\METHODS\LAM0318.M

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Phone # (973) 361-4252 Fax # (973) 989-5288

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd

				Kando	Kandolph, NJ 07869	
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd at lab > SPM)	'samples rec'd at lab > 5PM)			
Company: ARCADI'S - U.S., Inc.	REPORT TO: E. Kodnaucz	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT CUIA DANTEED WITHART AD ADDOXVAT **DUCH CUIATANCES WITHAUT	AT prior to sample arrival	RUSH TAT IS N	loT W	
Address: I Interestration Blue.	Address: / Interaction and Bled	ADARAN I EEU WILHOUL LAB AFFI ABLE TO ACCOMMODATE.	KUVAL. **KUSH SURCH	ARGES WILL AI	PLLY IF	
HAHWAH, NT 01495	HAWLAN, NJ 07495	PHC- MUST CHOOSE	Rush TAT Charge **	Report Format	EDD's	
ğ	E. Rodriguez	DEO (80158) used for Fuel Oil #2/Home Heating DJ #1 #21. DEO (80158) used for Fuel Oil #2/Home Heating DJ #1 #2. OAM 455 (OOA-0AM025) used for: all other fuel uil and unbrown	ay 1.41 /400.) #1 /#2. and unbrown 24 hr - 1000.	Results Only	SRP. dbf format	mat
Fax #: X01.6P4.1420	FAX# 201. 684. 1920	Contaminants.		Keduced	horizonta del	
EMAIL Address:	ENVOICE TO: ALCADIS - U.S. Tre	al/Fax Zwk/Std	Results needed by: 72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	EDB COSTON	castom
- 94	Address: / Inter wortward B/ a	Hard Conv Weisser	5 day - 25% 6-9 day 10%	Other (describe))	_
Sampler: C. Lanrus, U. Ky CRS	WATHLAND NJ 07455	price			NO EDD/CD REQ'D	REQ'D
		U ANALYTICAL PARAMETERS	METERS		3	l
Project Location (State) Tuckey c . W	Atta: C. Rodridcer			Cooler Temp	₽ <mark></mark> *	1
Bottle Order #:	PO# 10000 43.00005.00001	2'		, , ,		
Quote #:		15		PRESE	<u># BUITLES &</u> PRESERVATIVES	~
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Waste Water OI - Oii LIO - Liquid (Specify) OT - Other (Specify)	נו נו		 		
	S-Soil SL-Sludge SOL-Solid W-Wipe	30		£	Н	э.
Client ID Depth (ft. only)	Sampling Matrix # IAL # Date Time Matrix # IAL #			OSZH SONH NºOH HOP	NeO1 Tedbo	Yone Toon
FB (040610)	4/c/10 9:00 FB 2 1	2		í –	F . [
TB(040610)	9.00					
- N	10136 AQ	2		2		<u> </u>
mw-95	4	2		2		
mw-90	+/1/10 10:52 AC 2 5	7		2		
mw-CS	A 4	2		5		
DUP (040610)	- 40 2	2		2		
FB(040710)	10 9:00 FB 2	2		5		
•	4(7(10 10:57 AQ 2 9	2		7		
60-1032	(0);01	7		2		
Kuown Hazard: Yes or No Describe:		All Down TWO THE TABLE OF A SUB WITHOUT SUB THE SUB THE SUB	and the first of such that			
Conc. Expected: 1.0w Med High		TICNE - CNC - (COULD CALLS than TOTAL	10 W - SKS Kesigendal - U.I.B	IEK (SEE COMMI	ENIS)	
Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been resolved.	es cannot be processed and the turnaround time w	vill not start until any ambiguities have be	en resolved.		-	
A signature/company	Date	Time Comments	nts:			
Relinquished by Unresch . fa	4/7/10 A. O. Recorded man	X/ 1/10 13:35				
Relinquished by:	4/7/10 14 00 Reduced by Sall 1	4710 1900				
Relinquished by:	Received by:	-				
Refinquished by:	Received by:		Lab Case #		,	
Relinomished by:	Received by:		03186	PAGE: of	2	
LAB OPTES - WHITE & YELLOW; CLIENT COPY - PINK						
70			-	10/2009 rev	W Red Ver G et Dept	67.040038

10/2009 rev Ref. The G. of detuning

Phone # (973) 361-4252

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

. Water Water . Water Water . Water Water . Water Water . (Specify) . (Specify) . (Specify) . (Specify)
Финисальной Солонности Солонности Солонности
Participante de la comparte de la co
Age HC Age HC Age HC Age HC Age HC Age HC Age HC Age HC Age HC Age HC Age HC Age Comments: Age Comments:
HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI
aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned aligned
aq: GWOS (11/05) - SRS - SRS/IGW - SRS R aq: GWOS (11/05) - SRS - SRS/IGW - SRS R Time Date Time Comments:
aq: GWQS (11/05) - SRS - SRS. aq: GWQS (11/05) - SRS - SRS. aq: GWQS (11/05) - SRS - SRS. aq: Time Data Time Comm
aq: GWOS (11/05 aq: GWOS (11/05 The RCO
/asic Water pecify) Period All # Containers IAL # Containers IAL # Signature(Company)
DW - Drinking Water AQUE outsous WW - Water Water O1 - Oil LIQ - Liquid (Specify) OT - Other (Specify) S = Soil SL - Suide SOL - Soild W - Wipe S = Sail Sludge SOL - Soild W - Wipe S = Sampling Matrix Containers Date Time Matrix containers Af 7 J to Io' \L A Z Af 7 J to Io' \L A Z Date Time Signature(C) Date Time Signature(C) Af 7 //O F7 < GO
DW - Drinking Water AQ - Aqueous WW - Waste W OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S = Soil SI - Slugge SOL - Solid W - Wipe S = Soil SI - Slugge SOL - Solid W - Wipe Date Time Marrix con AT Imae Marrix con AT Imae Marrix con AT Imae Marrix con AT Imae AC Con AT Imae Marrix con AT Imae Marrix con AT Imae Marrix con AT Imae Marrix con
we queews we we wild a consider when we wild a consider when we will be a constructed by the second of the second
Ag Ag SOL - Succession SOL - Succession Ag Ag Ag B Ag B
Water AO. Aqueous WW Water AO. Aqueous WW Nindge SOL - Sulid W. Wip Time Marrin Horizan Marrin Marin Marin Marrin Marrin Marrin Marrin Marrin Marrin Marrin Marrin
DW - Drinking Water Aquecous WW OI - Oil LIQ - Liquid (Specify) OT - Other Sampling Marrix Marrix Date Sampling Marrix $Y T I:O$ IO' II Marrix Af $T Iinc Marrix Af T Iinc Marrix Af T Iinc Marrix Af T Iinc Io' II Af T Iinc Marrix Af T Iinc Marrix Af T Iinc Marrix Af P I = Point Marrix Date Time Received by: Y T/O PI : O PI: Af P I > O PI: $
DW - 1 01 - 0 2 -
AMPLE INFORMATION Dw. Drinking Water A. Aurous WW AMPLE INFORMATION 0: -01 10: -01 -01 Cleart ID Depth (h. only) 5: soil S.I. Sungle SOL- soil W. Wight Matri MMW - 13.R Depth (h. only)
A P M tom
ORMATION -13R (es or (y) Descrit Low Med High Low Med High Signature/Company
FORMATI
NE STREET LESS
SAMPLE INFORMATION Chent ID MW - 13 ft Known Hazard: Yes or Ko Describe: Conc. Expected: Low Med High Please print legibly and fill out coi signature/Company Relinquished by: Relinquished by: Relinquished by:
SAMPLLI Chient ID MMA Known Ha Known Ha Conc. Exp Please p Relinquishee Relinquishee Relinquishee

LAE OPPLES - WHITE & YELLOW; CLIENT COPY - PINK

PROJECT INFORMATION

Case No.	E10-03186	Project KINGS ELECTRONIC	CS - VENDOR	#1168636
Customer	Arcadis Geraghty & N	· · · ·	P.O. #	NJ000423.00

Customer	Arcadis Geraghty & Miller - Albany	P.O. # NJ000423.0005.000(
Contact EMail	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs	Received 4/7/2010 19:00 Verbal Due 4/22/2010
Phone	(518) 452-7826 Fax 1(518) 452-7086	Report Due 4/29/2010
<u>Report To</u>		<u>Bill To</u>
465 New Ka	arner Road	640 Plaza Drive
Albany, NY	/ 12205	Suite 130
		Highlands Ranch, CO 80129
Attn: Eric R	lodriguez	Attn: Eric Rodriguez
Report F	ormat Reduced	
Addition	al Info 🔲 State Form 🔄 Field Sampling 🗌 Cond	itional VOA

<u>Lab ID</u>	Client Sample ID	Depth Top / Botto	m Sampling Time	<u>Matrix</u>	Unit	# of Containers
03186-001	FB (040610)	n/a	4/6/2010	Aqueous	ug/L	2
03186-002	TB (040610)	n/a	4/6/2010@09:00	Aqueous	ug/L	1
03186-003	PTW-2	n/a	4/6/2010@10:36	Aqueous	ug/L	2
03186-004	MW-9S	· n/a	4/6/2010@10:53	Aqueous	ug/L	2
03186-005	MW-9D	n/a	4/6/2010@10:52	Aqueous	ug/L	2
03186-006	MW-6S	n/a	4/6/2010@11:46	Aqueous	ug/L	2
03186-007	DUP (040610)	n/a	4/6/2010	Aqueous	ug/L	2
03186-008	FB (040710)	n/a	4/7/2010@09:00	Aqueous	ug/L	2
03186-009	GP-104R	n/a	4/7/2010@10:57	Aqueous	ug/L	2
03186-010	GP-103R	n/a	4/7/2010@10:10	Aqueous	ug/L	2
03186-011	MW-13R	n/a	4/7/2010@10:12	Aqueous	u <u>g</u> /L	2
Sample # _ To	ests	<u>Status</u>	QA Method			
001 PP	VOA + Cis 1,2-DCE	In Process	8260B			
002 PP	VOA + Cis 1,2-DCE	In Process	8260B			
003 PP	VOA + Cis 1,2-DCE	In Process	8260B			
004 PP	VOA + Cis 1,2-DCE	In Process	8260B			
005 PP	VOA + Cis 1,2-DCE	In Process	8260B			
006 PP	VOA + Cis 1,2-DCE	In Process	8260B			
007 PP	VOA + Cis 1,2-DCE	In Process	8260B			
008 PP	VOA + Cis 1,2-DCE	In Process	8260B			
009 PP	VOA + Cis 1,2-DCE	In Process	8260B			
010 PP	VOA + Cis 1,2-DCE	In Process	8260B			
011 PP	VOA + Cis 1,2-DCE	In Process	8260B			

04/12/2010 09:21 by kim - REV 1

CHANGE REPORT MAILING ADDRESS TO THE ALBANY OFFICE, PER ERIC RODRIGUEZ.

SAMPLE RECEIPT VERIFICATION

CASE NO: E 10 03186	CLIENT: Arcadic
COOLER TEMPERATURE: 2° - 6°C COC: COMPLETE)/ INCOMPLETE	Comments
KEY V = YES/NA X = NO	
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles 	
 Sufficient Sample Volume no-headspace/bubbles in VOs Labels intact/correct pH Check (exclude VOs)¹ Correct bottles/preservative Sufficient Holding/Prep Time Sample to be Subcontracted 	
✓ Chain of Custody is Clear	ill be analyzed by this laboratory past the holding time. This includes but is not limited to
the following tests: pH, Temperature, Free Residual Chl ADDITIONAL COMMENTS:	orine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INITIA	
If COC is NOT clear, <u>STOP</u> until you	get client to authorize/clarify work.
CLIENT NOTIFIED: YES PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED:	S Date/ Time: NO
ADDITIONAL COMMENTS:	
VERIFIED/TAKEN BY: INITIA	DATE 4.910 REV 03/2009 0073

	Laboratory	v Custo	dy Chron	nicle			
IAL Case No. Client Arcadis Geraghty & Miller - Albany E10-03186 Image: Client Arcadis Geraghty & Miller - Albany							
		Proje	ct <u>KINGS EI</u>	LECTRONIC	<u>8 - VENDOR #116</u>	<u>8636</u>	
	R	eceived O	n <u>4/7/2010(</u>	<u>019:00</u>			
Department: Volatiles	<i>n</i>		<u>Prep. Date</u>	<u>Analyst</u>	Analysis Date	Analys	
PP VOA + Cis 1,2-DCE	03186-001	Aqueous	n/a	n/a	4/9/10	Xing	
,	-002	11	n/a	n/a	4/9/10	Xing	
	-003	¥1	n/a	n/a	4/ 9/10	Xing	
	-004	"	n/a	n/a	4/ 9/10	Xing	
	-005	н	n/a	n/a	4/ 9/10	Xing	
	-006	1+	n/a	n/a	4/ 9/10	Xing	
	-007		n/a	n/a	4/ 9/10	Xing	
	-008	11	n/a	n/a	4/13/10	Xing	
	-009	۴i	n/a	n/a	4/13/10	Xing	
	-010	**	n/a	n/a	4/13/10	Xing	
	-010						

ANALYTICAL DATA REPORT

Arcadis Geraghty & Miller 465 New Karner Rd Albany, NY 12205

Project Name: KINGS ELECTRONICS - VENDOR #1168636 IAL Case Number: E10-06728

These data have been reviewed and accepted by:

Mac

Michael H. Lefth, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed.

273 Franklin Road Randolph, NJ 07869 Phone: 973 361 4252 Fax: 973 989 5288

AL is a NELAC New Jersey Certified Lab (14751) and maintains certification in Connecticut (PH 0699), New York (11402), Rhode Island (00126), Pennsylvania (68-00773) and in the Department of Navy IR CA Program

Sample Summary						
	IAL Case No.	Client Arcadis Geraghty & Miller				
	E10-06728 Project KINGS ELECTRONICS - VENDOR #1168636					
		Received On 7/9/2010@17:20				
L		<u># of</u>				
<u>Lab ID</u>	<u>Client Sample ID</u>	<u>Depth Top/Bottom Sampling Time Matrix Container</u>				

06728-001	FB(070810)	n/a	7/ 8/2010@09:00	Aqueous	2
06728-002	TB(070810)	n/a	7/ 8/2010	Aqueous	1
06728-003	PTW-2	n/a	7/ 8/2010@14:12	Aqueous	2200
06728-004	MW-9S	n/a	7/ 8/2010@14:11	Aqueous	2
06728-005	MW-9D	n/a	7/ 8/2010@12:07	Aqueous	2
06728-006	MW-6S	n/a	7/ 8/2010@11:57	Aqueous	2
06728-007	MW-13R	n/a	7/ 8/2010@10:32	Aqueous	2
06728-008	DUP(070810)	n/a	7/8/2010	Aqueous	2
06728-009	GP-104R	n/a	7/ 9/2010@09:18	Aqueous	2
06728-010	GP-103R	n/a	7/ 9/2010@09:17	Aqueous	2
06728-011	FB(070910)	n/a	7/9/2010@08:30	Aqueous	2.5

TABLE OF CONTENTS

	<u>Page</u>
Qualifiers Conformance / NonConformance Summary Laboratory Deliverables Check List GC/MS NonConformance Summary	1 2 3 4
Summary Report	5
Analytical Results Volatilés	6
Methodology Summary *	
Quality Control Volatiles Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Results Summary Matrix Spike/Matrix Spike Duplicate Results Summary Internal Standard Summary Chromatograms	17
Sample Tracking Chains of Custody Laboratory Chronicle	151 156

MATRIX QUALIFIERS

- A Indicates the sample is an <u>Aqueous</u> matrix.
- **O** Indicates the sample is an <u>Oil matrix</u>.
- **S** Indicates the sample is a <u>Soil</u>, <u>Sludge or Sediment matrix</u>.
- **X** Indicates the sample is an Other matrix as indicated by Client Chain of Custody.

DATA QUALIFIERS

- **B** Indicates the analyte was found in the <u>B</u>lank and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of the analyte.
- **C** Common Laboratory Contaminant.
- **D** The compound was reported from the <u>D</u>iluted analysis.
- **D.F.** Dilution Factor.
- **E** <u>E</u>stimated concentration, reported results are outside the calibrated range of the instrument.
- J Indicates the concentration was reported below the RL but above the MDL. For GC/MS procedures, the mass spectral data meets the criteria required to identify the target compound.
- RL Reporting Limit.
- MDL Method Detection Limit.
- **MI** Indicates compound concentration could not be determined due to <u>Matrix Interferences</u>.
- NA Not Applicable.
- **ND** Indicates the compound was analyzed for but <u>Not Detected</u> at the MDL.

REPORT QUALIFIERS

All solid sample analyses are reported on a dry weight basis.

All solid sample values are corrected for original sample size and percent solids.

Q - Qualifier

CONFORMANCE / NONCONFORMANCE SUMMARY

Integrated Analytical Laboratories, LLC. received eleven (11) aqueous sample(s) from Arcadis Geraghty & Miller (Project: KINGS ELECTRONICS - VENDOR #1168636) on July 9, 2010 for the analysis of:

(11) PP VOA + Cis 1,2-DCE

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

Date

LABORATORY DELIVERABLES CHECK LIST

Lab Case Number: E10-06728

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report preparation.	✓
2.	Table of Contents.	<u>√</u>
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	
4.	Summary Table cross-referencing Field ID's vs. Lab ID's.	✓
5.	Document bound, paginated and legible.	✓
6.	Chain of Custody.	✓
7.	Methodology Summary.	
8.	Laboratory Chronicle and Holding Time Check.	<u>√</u>
9.	Results submitted on a dry weight basis (if applicable).	_ √
10.	Method Detection Limits.	✓
11.	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEPA CLP.	<u>√</u>
12.	NonConformance Summary.	√

INTEGRATED ANALYTICAL LABORATORIES CONFORMANCE/NONCONFORMANCE SUMMARY GC/MS VOLATILE ANALYSIS

	Lab Case Number: E10 - 06728	No	Yes
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks).	·	<u>√</u>
	GC/MS Tuning Specifications: a. BFB Passed		
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series, 12 hours for 8000 series and 8 hours for 500 series.		
4.	GC/MS Calibration - Initial calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis for 600 series, 12 hours for 8000 series		
5.	GC/MS Calibration Requirements: a. Calibration Check Compounds	<u> </u>	
	b. System Performance Check Compounds	<u></u>	\checkmark
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:	<u> </u>	
7.	Surrogate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		✓
	If not met, were the calculations checked and the results qualified as "estimated"?		na
8.	Matrix Spike/Matrix Spike Duplicate meet criteria (if not, list those compounds and their recoveries/% differences which fall outside the acceptable range)		
9 .	Internal Standard Area/Retention Time Shift meet criteria		<u> </u>
10.	Extraction Holding Time Met If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:	- 	<u> </u>
12.	Sample Dilution Performed High Nontarget Matrix Interference Other		
	High Target High Nontarget Matrix Interference Other Compounds Compounds]	
13	. Comments:	_	
	All 7/14 / Organics Manager Date	_	

		Lab C	Case No.: 1	21 <u>0-067</u> 2	28			-		
	Lab ID:	067	28-001	0672	8-002	067	28-	-003	067	28-004
	Client ID:	FB(070810)	TB(0 ′	70810)	P	PTW-2		MW-9S	
	Matrix:	Aq	ueous	Aqu	Aqueous		Aqueous		Aqueous	
	Sampled Date	7,	/8/10	7/8/10		7/8/10		7/8/10		
PARAMETER(Units)	-	Conc Q MDL Conc Q MDL Co		Conc	Q	MDL	Conc	Q MDL		
Volatiles (Units)		(ug/	L-ppb)	(ug/1	ppb)	(ug/	/L-µ	ppb)	(ug/L-ppb)	
Vinyl chloride		ND	0.420	ND	0.420	0.846	J	0.420	1.17	0.420
trans-1,2-Dichloroethene		ND	0.330	ND	0.330	ND		0.330	0.626	J 0.330
1,1-Dichloroethane		ND	0.350	ND	0.350	1.39		0.350	1.11	0.350
cis-1,2-Dichloroethene	-	ND	0.220	ND	0.220	2.67		0.220	0.360	J 0.220
1,1,1-Trichloroethane		ND	0.360	ND	0.360	0.691	J	0.360	ND	0.360
Trichloroethene		ND	0.320	ND	0.320	6.22		0.320	ND	0.320
Tetrachloroethene		ND	0.280	ND	0.280	0.290	J	0.280	ND	0.280
100000000000000000000000000000000000000	·									
TOTAL VO's:		ND		ND		12.1	J	• •	3.27	J
	Lab ID:		28-005		8-006			-007		28-008
	Client ID:	1)		MW-6S				I3R		(070810)
	Matrix:		ueous	Aqueous		Aqueous 7/8/10			Aqueous 7/8/10	
	Sampled Date		/8/10		8/10 2 NOV					
PARAMETER(Units)	······································	Conc	Q MDL	Conc	Q MDL	Conc	Q	MDL	Conc	Q MDL
Volatiles (Units)		(ug/	L-ppb)	(ug/1	ppb)	(ug/L-ppb)		(ug/	(L-ppb)	
1,1-Dichloroethane		ND	0.350	ND	0.350			0.350	ND	0.350
cis-1,2-Dichloroethene		ND	0.220	ND	0.220	0.433	J	0.220	ND	0.220
1,1,1-Trichloroethane		ND	0.360	2.51	0.360	ND		0.360	2.93	0.360
Trichloroethene		ND	0.320	16.3	0.320	0.969	J	0.320	19.0	0.320
Tetrachloroethene		ND	0.280	2.46	0.280	ND		0.280	2.91	0.280
TOTAL VO's:		ND		21.3		2.04	J		24.8	
	Lab ID:	067	28-009	0672	8-010	067	28-	-011		
	Client ID:	GP	-104R	GP-	103R	FB(070	910)		
	Matrix:	Aq	ueous	Αqu	ieous	Aq	ue	ous		
	Sampled Date	-	/9/10	-	9/10	7.	/9 /1	10		
PARAMETER(Units)			Q MDL	Conc	Q MDL	Conc	Q	MDL		
Volatiles (Units)		(ug)	(L-ppb)	(ug/1	L-ppb)	(ug	/L-J	opb)		
Vinyl chloride		2.41	0.420	10.9	0.420	ND		0.420	ļ	
1,1-Dichloroethane		1.84	0.350	ND	0.350	ND		0.350		
cis-1,2-Dichloroethene		2.75	0.220	1.74	0.220	ND		0.220		
Trichloroethene		0.533	J 0.320	ND	0.320	ND		0.320		
TOTAL VO's:		7.53	J	12.6	_	ND				

SUMMARY REPORT Client: Arcadis Geraghty & Miller Project: KINGS ELECTRONICS - VENDOR #1168636

ND = Analyzed for but Not Detected at the MDL

J = The concentration was detected at a value below the RL and above the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-001 Client ID: FB(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0613.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

0

Total Target Compounds:

0006

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-002 Client ID: TB(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0614.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Chloromethane ND 1.00 0.360 Vinyl chloride ND 1.00 0.420 Bromomethane ND 1.00 0.590 Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1.1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.98 Acrylonitrile ND 2.00 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dich	Compound	Concentration	Q	RL	MDL
Bromomethane ND 1.00 0.750 Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 20.0 1.98 Acrylonitrile ND 20.0 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Trichloroethene ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloroethane ND 1.00 0.320 1,2-Dichloroethane ND 1.00 0.320 1,2-Dichloroethane ND 1.00 0.220 Benzene <td< td=""><td>Chloromethane</td><td>ND</td><td></td><td>1.00</td><td>0.360</td></td<>	Chloromethane	ND		1.00	0.360
Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Aerolein ND 20.0 1.64 1,1-Dichloroethene ND 20.0 1.98 Aerylonitrile ND 20.0 1.98 Aerylonitrile ND 20.0 1.98 Aerylonitrile ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.340 Benzene ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloroethane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.310 2-Chloroethalare ND	-	ND		1.00	0.420
Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.98 Acrylonitrile ND 2.00 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloropthane (EDC) ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.210 Bromodichloromethane ND 1.00 0.230		ND		1.00	0.590
Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 1.00 0.390 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Trichloroethene ND 1.00 0.320 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropene ND 1.00 0.310 2-Chloroethyl vinjl ether ND 1.00 0.250 1,1,2-Trichloropropene ND 1.00 0.280		ND		1.00	
I.1-Dichloroethene ND 1.00 0.390 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethane ND 1.00 0.320 Chloroform ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.310 2-Chloroethyl vinjl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.280 Tetrachloroethane ND 1.00 0.280		ND		1.00	0.390
Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.330 i,1-Dichloroethane ND 1.00 0.330 i,1,1-Trichloroethane ND 1.00 0.330 i,1,1-Trichloroethane ND 1.00 0.330 i,1,1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.320 i,2-Dichloroethane (EDC) ND 1.00 0.320 i,2-Dichloroethane ND 1.00 0.320 i,2-Dichloropropane ND 1.00 0.320 genzene ND 1.00 0.320 i,2-Dichloropropane ND 1.00 0.320 i,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.210 otista 1.00 0.210 0.210		ND		20.0	1.64
Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethane ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.310 2-Chloroethane ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloropropene ND 1.00 0.280 </td <td></td> <td>ND</td> <td></td> <td>1.00</td> <td>0.390</td>		ND		1.00	0.390
trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1.1-Trichloroethane ND 1.00 0.330 1,1.1-Trichloroethane ND 1.00 0.330 1,1.1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00	Methylene chloride	ND		2.00	1.98
trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethane ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloropthane (EDC) ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00	Acrylonitrile	ND		20.0	1.40
1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloropthene ND 1.00 0.320 1,2-Dichloropthene ND 1.00 0.320 1,2-Dichloropthene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.210 Toluene ND 1.00 0.230 trans-1,3-Dichloropropene ND 1.00 0.280 Tetrachloroethane ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230	trans-1,2-Dichloroethene	ND		1.00	
cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.320 Trichloroethene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.210 2-Chloroethyl vinyl ether ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloropropene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220	1,1-Dichloroethane	ND		1.00	
Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.270 Trichloroethane (EDC) ND 1.00 0.270 Trichloroethane (EDC) ND 1.00 0.220 Benzene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Chlorobenzene ND 1.00 0.220 Chor	cis-1,2-Dichloroethene	ND		1.00	
1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.270 Trichloroethene ND 1.00 0.220 Bromodichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210	Chloroform	ND		1.00	
Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.270 Trichloroethene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 J-2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.270 Ethylbenzene ND 1.00 0.270 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>1.00</td> <td></td>	1,1,1-Trichloroethane	ND		1.00	
Benzene ND 1.00 0.270 Trichloroethene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.240 <		ND		1.00	
Benzene ND 1.00 0.270 Trichloroethene ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 <td>1,2-Dichloroethane (EDC)</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.340</td>	1,2-Dichloroethane (EDC)	ND		1.00	0.340
1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.210 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230 <td>Benzene</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.270</td>	Benzene	ND		1.00	0.270
Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethane ND 1.00 0.230 Dibromochloromethane ND 1.00 0.220 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Trichloroethene	ND		1.00	0.320
2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	1,2-Dichloropropane	ND		1.00	0.220
2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Bromodichloromethane	ND		1.00	0.310
Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.270 Ethylbenzene ND 1.00 0.270 Total Xylenes ND 1.00 0.220 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	2-Chloroethyl vinyl ether	ND		1.00	0.350
trans-1,3-DichloropropeneND1.000.2501,1,2-TrichloroethaneND1.000.280TetrachloroethaneND1.000.280DibromochloromethaneND1.000.230ChlorobenzeneND1.000.270EthylbenzeneND1.000.220Total XylenesND2.000.600BromoformND1.000.2101,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2101,4-DichlorobenzeneND1.000.230	cis-1,3-Dichloropropene	ND		1.00	0.210
1,1,2-TrichloroethaneND1.000.280TetrachloroetheneND1.000.280DibromochloromethaneND1.000.230ChlorobenzeneND1.000.270EthylbenzeneND1.000.220Total XylenesND2.000.600BromoformND1.000.2101,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230		ND		1.00	0.270
TetrachloroetheneND1.000.280DibromochloromethaneND1.000.230ChlorobenzeneND1.000.270EthylbenzeneND1.000.220Total XylenesND2.000.600BromoformND1.000.2101,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230	trans-1,3-Dichloropropene	ND		1.00	0.250
Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.270 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	1,1,2-Trichloroethane	ND		1.00	0.280
Chlorobenzene ND 1.00 0.270 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Tetrachloroethene	ND		1.00	0.280
Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Dibromochloromethane	ND		1.00	0.230
Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Chlorobenzene	ND		1.00	0.270
Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Ethylbenzene	ND		1.00	0.220
1,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230	-	ND		2.00	0.600
1,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230	Bromoform	ND		1.00	0.210
1,4-Dichlorobenzene ND 1.00 0.230	1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,4-Dichlorobenzene ND 1.00 0.230	1,3-Dichlorobenzene	ND		1.00	
	•	ND		1.00	
	1,2-Dichlorobenzene	ND		1.00	

0

Total Target Compounds:

0007

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-003 Client ID: PTW-2 Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0615.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

ND		1.00	0.1/0
0.047		1.00	0.360
0.846	J	1.00	0.420
ND		1.00	0.590
ND		1.00	0.410
ND		1.00	0.390
ND		20.0	1.64
ND		1.00	0.390
ND		2.00	1.98
ND		20.0	1.40
ND		1.00	0.330
1.39		1.00	0.350
2.67		1.00	0.220
ND		1.00	0.330
0.691	J	1.00	0.360
ND		1.00	0.320
ND		1.00	0.340
ND		1.00	0.270
6.22		1.00	0.320
ND		1.00	0.220
ND		1.00	0.310
ND		1.00	0.350
ND		1.00	0.210
ND		1.00	0.270
ND		1.00	0.250
ND		1.00	0.280
0.290	J	1.00	0.280
ND		1.00	0.230
ND		1.00	0.270
ND		1.00	0.220
ND		2.00	0.600
ND		1.00	0.210
ND		1.00	0.210
ND		1.00	0.240
ND		1.00	0.230
ND		1.00	0.210
	ND ND ND ND ND ND ND 1.39 2.67 ND 0.691 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND 1.39 2.67 ND 0.691 J ND ND	ND 1.00 ND 1.00 ND 20.0 ND 1.00 ND 2.00 ND 2.00 ND 20.0 ND 20.0 ND 20.0 ND 20.0 ND 1.00 1.39 1.00 2.67 1.00 ND 1.00 ND

Total Target Compounds: 12.1

J

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-004 Client ID: MW-9S Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0616.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Concentration	Q	RL	MDL
ND		1.00	0.360
1.17		1.00	0.420
ND		1.00	0.590
ND		1.00	0.410
ND		1.00	0.390
ND		20.0	1.64
ND		1.00	0.390
ND		2.00	1.98
ND		20.0	1.40
0.626	J	1.00	0.330
1.11		1.00	0.350
0.360	J	1.00	0.220
ND		1.00	0.330
ND		1.00	0.360
ND		1.00	0.320
ND		1.00	0.340
ND		1.00	0.270
ND		1.00	.0.320
ND		1.00	0.220
ND		1.00	0.310
ND		1.00	0.350
ND		1.00	0.210
ND		1.00	0.270
ND		1.00	0.250
ND		1.00	0.280
ND		1.00	0.280
ND		1.00	0.230
ND		1.00	0.270
ND		1.00	0.220
ND		2.00	0.600
ND		1.00	0.210
ND		1.00	0.210
ND		1.00	0.240
ND		1.00	0.230
ND		1.00	0.210
	1.17 ND ND ND ND ND ND ND 0.626 1.11 0.360 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.17 ND ND	ND 1.00 1.17 1.00 ND 20.0 ND 20.0 ND 20.0 0.626 J 1.00 ND 1.00 <tr< td=""></tr<>

Total Target Compounds:

3.27

J

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-005 Client ID: MW-9D Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0617.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

0

0010

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-006 Client ID: MW-6S Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0618.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	2.51		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	16.3		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	2.46		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

21.3

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-007 Client ID: MW-13R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0619.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	0.636	J	1.00	0.350
cis-1,2-Dichloroethene	0.433	J	1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	0.969	J	1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

J

2.04

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-008 Client ID: DUP(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0620.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	2.93		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	19.0		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	2.91		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds: 24.8

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-009 Client ID: GP-104R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0621.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	2.41		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	1.84		1.00	0.350
cis-1,2-Dichloroethene	2.75		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	0.533	J	1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds: 7.53

J

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-010 Client ID: GP-103R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0622.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	10.9		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	1.74		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1,00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds: 12.6

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-011 Client ID: FB(070910) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0623.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210
1,2-Dichlorobelizene				

0

Total Target Compounds:

0016

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F0406.D</u>	BFB Injection Date:	<u>07/</u>	<u>02/20</u>	<u>10</u>
Inst ID:	<u>MSD_F</u>	BFB Injection Time:	<u>12:</u>	<u>39</u>	
m/z	Ion Abudance Criteria	%Relative Abundance	;		
50	15 - 40.0% of mass 95	16.4			
75	30.0 - 60.0% of mass 95	48.4			
95	Base peak, 100% relative abundance	ce 100.0			
96	5.0 - 9.0% of mass 95	6.7			
173	Less than 2.0% of mass 174	0.8	(1.0)1
174	Great than 50.0% of mass 95	79.5			
175	5.0 - 9.0% of mass 174	5.9	(7.4)1
176	95.0 - 101.0% of mass 174	76.6	(9	96.3)1
177	5.0 - 9.0% of mass 176	5.1	(6.6)2
.,,	1-Value is % mass 174	2-Value is % mass 1	76		

À

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
5PPB	STD-5PPB	F0409.D	07/02/2010	14:29	
20PPB	STD-20PPB	F0410.D	07/02/2010	14:55	
100PPB	STD-100PPB	F0411.D	07/02/2010	15:21	
200PPB	STD-200PPB	F0413.D	07/02/2010	16:14	
150PPB	STD-150PPB	F0414.D	07/02/2010	16:41	
1PPB	STD-1PPB	F0417.D	07/02/2010	18:05	
2PPB	STD-2PPB	F0418.D	07/02/2010	18:31	
N/A	METHOD-BLK	F0420.D	07/02/2010	19:24	
TCLP	TCLP-BLK	F0421.D	07/02/2010	19:50	
001	06383-001	F0422.D	07/02/2010	20:16	
TCLP	TCLP-SPK	F0423.D	07/02/2010	20:42	
LCS-50PPB	BLK-SPK	F0424.D	07/02/2010	21:09	
MS	WATER-MS	F0425.D	07/02/2010	21:35	
MSD	WATER-MSD	F0426.D	07/02/2010	22:02	
TB	06220-026	F0427.D	07/02/2010	22:28	
TB	06323-008	F0428.D	07/02/2010	22:55	
FB-S	06329-019	F0429.D	07/02/2010	23:21	

FORM 5

s .

Data Path : C:\msdchem\1\DATA\07-02-10\ Data File : F0406.D : 2 Jul 2010 12:39 Acq On Operator : XING : BFB TUNING Sample : 50NG Misc Sample Multiplier: 1 ALS Vial : 5 Integration File: LSCINT.P Method : C:\MSDCHEM\1\METHODS\FAM0702.M : VOLATILE ORGANICS BY EPA METHOD 8260B Title Last Update : Fri Jul 02 16:55:38 2010 Ion 95.00 (94.70 to 95.70): F0406.D\data.ms Abundance 60000 50000 40000 30000 20000 10000 0^L______7 Time--> 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 Average of 11.757 to 11.777 min.: F0406.D\data.ms (-) Abundance 95 50000 174 40000 30000 75 20000 10000 50 69 62 81 87 56 117 124 130 137 ¹⁴³ 149 155 161 207 106 ΔΔ ц**й, , , й, ,**,,ЦЩ,,-ст. с 1 11 111 0 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 30 40 50 60 m/z--> AutoFind: Scans 988, 989, 990; Background Corrected with Scan 982 Raw Result Target | Rel. to | Lower | Upper Rel. Mass Mass Limit Limit Abn | Pass/Fail Abn% _ _ _ _ _ _ -----t D. 0510

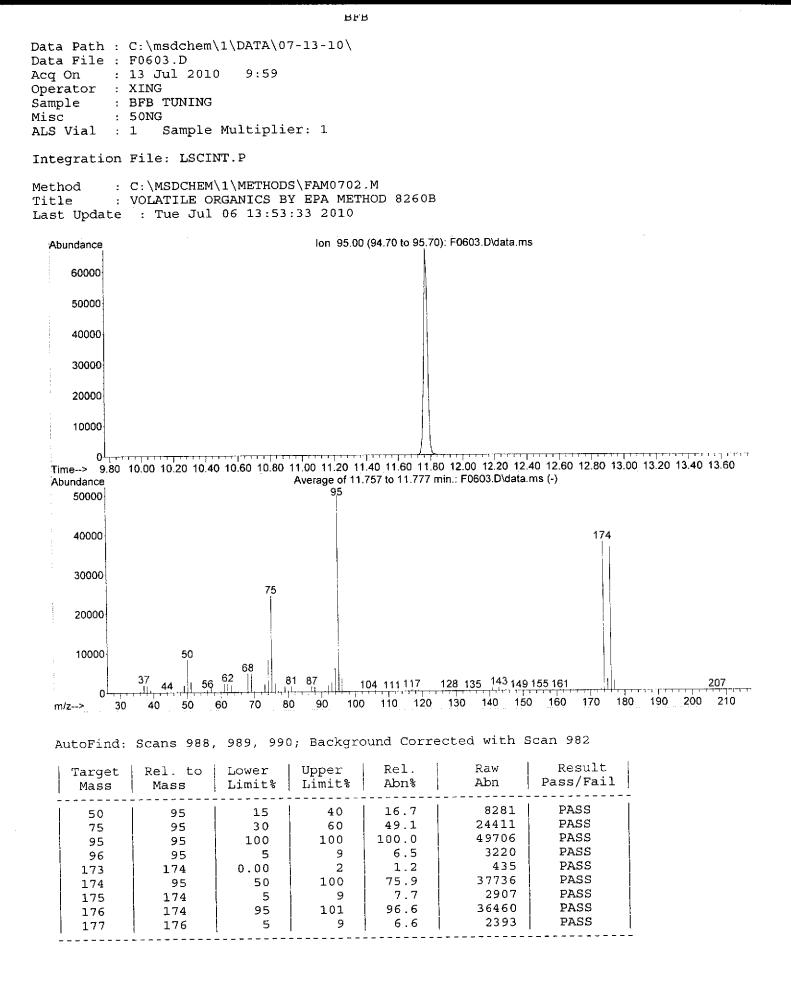
50	95	15	40	16.4	8519	PASS	
75	95	30	60	48.4	25080	PASS	
95	95	100	100	100.0	51853	PASS	
96	95	5	9	6.7	3456	PASS	
173	174	0.00	2	1.0	421	PASS	
174	95	50	100	79.5	41208	PASS	
175	174	5	9	7.4	3039	PASS	
176	174	95	101	96.3	39698	PASS	ł
177	176	5	9	6.6	2627	PASS	
• `	• • • • • • • • • • • • •	, 	 .				

BFB TUNING							
Modified:sub						,	-1
m/z	abund	m/z	abund.	m/z	abund.	m/z	abund.
36.05	344	48.05	241	60.05	449	72.05	227
37.10	1896	49.10	1832	61.05	2185	73.05	2124
38.10	1643	50.10	8519	62.00	2376	74.05	8549
39.05	682	51.10	2583	63.10	1760	75.10	25080
40.10	27	52.10	118	64.05	185	76.10	2252
41.30	7	53.00	18	65.05	161	77.00	222
43.10	27	55.00	121	66.05	20	77.95	133
44.00	238	56.10	653	66.95	110	78.90	1332
45.05	322	57.05	1250	68.00	4844	79.95	374
46.05	29	58.05	62	69.05	4870	80.95	1321
47.10	378	59.00	7	70.05	364	81.95	239
Average of	11.757 to	11.777 mi	n.: F0406.	D\data.ms			
BFB TUNING							
Modified:su	btracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
83.05	42	102.95	30	114.90	72	126.85	18
86.05	48	103.90	232	115.95	209	127.95	230
87.00	1344	104.95	7 7	116.90	408	128.95	122
88.00	1301	105.95	239	117.90	273	129.95	241
90.95	204	106.90	56	119.00	337	130.95	94
92.00	1573	109.95	29	122.00	11	134.95	96
93.00	2425	110.90	49	122.90	16	136.95	123
94,05	6525	111.85	28	123.80	20	139.00	9
95.10	51853	112.10	8	124.00	14	139.90	33
96.10	3456	112.90	12	124.80	7	140.90	814
97.00	76	113.05	24	125.70	7	141.95	88
Average of	11 757 to	11.777 m		D\data.ms			
BFB TUNING	11.757 00						
Modified:su	btracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
142.95	898	152.90	45	170.95	46		
142.95	41	153.80	35	172.00	257		
144.95	128	154.10	14	173.05	421		
144.95	97	154.95	166	174.00	41208		
145.85	9	155.90	10	175.00	3039		
146.95	40	156,10	15	176.00	39698		
146.95	190	156.90	115	177.00	2627		
	56	158.10		177.95	67		
148.90	50 93	158.90	94	207.05	17		
149.95	93 11	160.90	99	20			
151.80	11	170.40	7				
152.20	Т <u>т</u>	110.40	,				

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F0603.D</u>	BFB Injection Date:	07/13/20	<u>)10</u>
Inst ID:	<u>MSD_F</u>	BFB Injection Time:	<u>9:59</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	16.7		
75	30.0 - 60.0% of mass 95	49.1		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	6.5		
173	Less than 2.0% of mass 174	0.9 (1.2)1
174	Great than 50.0% of mass 95	75.9		
175	5.0 - 9.0% of mass 174	5.8 (7.7)1
176	95.0 - 101.0% of mass 174	73.3 (96.6)1
177	5.0 - 9.0% of mass 176	4.8 (6.6)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:


			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
100PPB	STD-100PPB	F0604.D	07/13/2010	10:25	
N/A	METHOD-BLK	F0607.D	07/13/2010	11:55	
FB	06674-004	F0608.D	07/13/2010	12:58	
TB	06674-005	F0609.D	07/13/2010	13:24	
LCS-50PPB	BLK-SPK	F0610.D	07/13/2010	13:50	
MS	06728-005MS	F0611.D	07/13/2010	14:17	
MSD	06728-005MSD	F0612.D	07/13/2010	14:43	
FB(070810)	06728-001	F0613.D	07/13/2010	15:10	
TB(070810)	06728-002	F0614.D	07/13/2010	15:36	
PTW-2	06728-003	F0615.D	07/13/2010	16:03	
MW-9S	06728-004	F0616.D	07/13/2010	16:29	
MW-9D	06728-005	F0617.D	07/13/2010	16:55	
MW-6S	06728-006	F0618.D	07/13/2010	17:22	
MW-13R	06728-007	F0619.D	07/13/2010	17:48	
DUP(070810)	06728-008	F0620.D	07/13/2010	18:14	
GP-104R	06728-009	F0621.D	07/13/2010	18:41	
GP-103R	06728-010	F0622.D	07/13/2010	19:07	
FB(070910)	06728-011	F0623.D	07/13/2010	19:34	
FB	06462-003	F0624.D	07/13/2010	20:00	
TB	06462-004	F0625.D	07/13/2010	20:27	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>F0603.D</u>	BFB Injection Date :	<u>07/13/20</u>	<u>)]</u>
Inst ID:	MSD_F	BFB Injection Time:	<u>9:59</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50	15 - 40.0% of mass 95	16.7		
75	30.0 - 60.0% of mass 95	49.1		
95	Base peak, 100% relative abundan	ce 100.0		
96	5.0 - 9.0% of mass 95	6.5		
173	Less than 2.0% of mass 174	0.9 (1.2)1
174	Great than 50.0% of mass 95	75.9		
175	5.0 - 9.0% of mass 174	5.8 (7.7)1
176	95.0 - 101.0% of mass 174	73.3 (96.6)1
177	5.0 - 9.0% of mass 176	4.8 (6.6)2
	1-Value is % mass 174	2-Value is % mass 17	6	,

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
GW-1	06662-001	F0627.D	07/13/2010	21:19	

Average of BFB TUNING	11.757 to	11.777 m:	ın.: F0603.	D\data.ms			
Modified:su	ubtracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.10	351	49.05	1821	62.05	2154	74.05	8141
37.10	1870	50.10	8281	63.10	1788	75.10	24411
38.10	1703	51.10	2534	64.05	212	76.10	2124
39.10	675	52.05	101	65.05	213	77.05	209
40.00	32	53.00	27	66.05	22	78.00	118
42.80	6	55.10	114	67.05	113	79.00	1339
44.00	232	56.00	670	68.00	4712	79.95	385
45.10	313	57.05	1207	69.05	4700	80.95	1435
46.25	41	58.05	38	70.05	352	81.95	270
47.05	347	60.00	429	72.05	226	82.95	22
48.00	228	61.00	2140	73.00	2063	83.20	20
Average of	11.757 to	11.777 m	in.: F0603.	D\data.ms			
BFB TUNING							
Modified:su	ubtracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
85.95	33	103.95	226	115.95	206	126.90	8
87.00	1319	104.80	14	116.90	425	127.95	232
87.95	1253	105.05	47	117.95	224	128.90	109
90.95	198	105.95	216	118.95	319	129.90	206
92.00	1641	106.70	6	120.10	6	130.95	97
93.00	2362	106.90	50	121.70	12	132.80	7
94.00	6016	109.85	29	122.90	11	134.00	17
95.05	49706	110.95	62	123.90	38	134.90	121
96.05	3220	112.00	30	124.90	10	135.85	15
97.05	103	112.95	42	125.70	10	136.95	114
102.95	28	114.95	55	126.10	11	139.00	17
Average of	11.757 to	11.777 m	in.: F0603.	D\data.ms			
BFB TUNING							
Modified:sv	ubtracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
139.90	34	147.90	189	158.05	19	178.00	62
140.20	8	148.80	42	158.85	79	206.80	8
140.95	744	149.20	13	160.95	89	207.30	18
141.80	34	149.95	71	171.00	52		
142.10	29	151.95	31	172.00	354		
142.90	852	153.00	38	173.05	435		
143.95	68	153.85	38	174.00	37736		
144.95	209	154.95	168	175.00	2907		
145.90	94	155.70	7	176.00	36460		
146.80	12	156.10	19	177.00	2393		
147.00	32	156.95	114	177.80	7		

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>F0607.D</u>	Instrument ID:	<u>MSD_F</u>
Date Analyzed:	07/13/2010	Time Analyzed:	<u>11:55</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
FB	06674-004	07/13/2010	12:58
ТВ	06674-005	07/13/2010	13:24
LCS-50PPB	BLK-SPK	07/13/2010	13:50
MS	06728-005MS	07/13/2010	14:17
MSD	06728-005MSD	07/13/2010	14:43
FB(070810)	06728-001	07/13/2010	15:10
TB(070810)	06728-002	07/13/2010	15:36
PTW-2	06728-003	07/13/2010	16:03
MW-9S	06728-004	07/13/2010	16:29
MW-9D	06728-005	07/13/2010	16:55
MW-6S	06728-006	07/13/2010	17:22
MW-13R	06728-007	07/13/2010	17:48
DUP(070810)	06728-008	07/13/2010	18:14
GP-104R	06728-009	07/13/2010	18:41
GP-103R	06728-010	07/13/2010	19:07
FB(070910)	06728-011	07/13/2010	19:34
FB	06462-003	07/13/2010	20:00
ТВ	06462-004	07/13/2010	20:27
GW-1	06662-001	07/13/2010	21:19

INTEGRATED ANALYTICAL LABORATORIES

VOLATILE ORGANICS

Client/Project:

Lab ID: METHOD-BLK Client ID: N/A Date Received: Date Analyzed: 07/13/2010 Data file: F0607.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

0

Total Target Compounds:

Method Path : C:\MSDCHEM\1\METHODS\ Method File : FAM0702.M Title : VOLATILE ORGANICS BY EPA METHOD 8260B Last Update : Tue Jul 06 13:53:33 2010 Response Via : Initial Calibration												
-		ion Files 117.D 110.D	2 =F0 100 =F0	418.D 411.D	5 20	=F0 00 =F0	409.D 413.D	1	50 = F0-	414.D		
	Co	ompound	1	2	5	20	10 -	0 20 	0 15	0 Av	g 	%RSD -
1) 2) 2 2) 2 3) 1 4) (5) 2		Pentafluoro Dichlorodif Chlorometha Vinyl chlor Bromomethan Chloroethan	luorom ne ide e	0.406 (0.266 (0.315 (0.289 ().439).271).335).286	0.380 0.233 0.308 0.228	0.316 0.228 0.268 0.243	0.367 0.210 0.272 0.228	0.341 0.203 0.258 0.210	0.330 0.212 0.254 0.223	0.232 0.287 0.244	11.82 11.77 11.04 12.79 9.12
6) 7 7) 7 8) 7 9) 1 10) 7 11) 7	T I T I MC T I	Trichlorofl Acrolein 1,1-Dichlor Acetone Carbon disu	uorome oethen	0.750 (0.012 (0.372 (D.799 D.014 D.377 D.112 1.150	0.659 0.013 0.356 0.105 1.021	0.581 0.015 0.304 0.088 0.915	0.640 0.013 0.309 0.081 0.959	0.614 0.013 0.307 0.082 0.954	0.573 0.013 0.295 0.085 0.930	0.659 0.013 0.331 0.092 1.020	12.96 6.23 10.65 14.32 11.33
12) 13) 14) 15) 16) 17)	T T T T	Vinyl aceta Methylene c Acrylonitri tert-Butyl trans-1,2-E Methyl tert	hlorid le alcoho lichlor	0.107 0.036 0.531 1.401	0.479 0.116 0.035 0.515 1.313	0.451 0.106 0.035 0.515 1.278	0.389 0.118 0.031 0.456 1.155	0.343 0.103 0.028 0.416 1.089	0.372 0.098 0.030 0.401 1.061	0.371 0.101 0.031 0.396 1.105	0.401 0.107 0.032 0.461 1.200	5.16 13.14 6.94 9.54 12.75 10.84
18) 19) 20) 21) 22)	P T T T T	1,1-Dichlor Diisopropyl cis-1,2-Dic 2,2-Dichlor 2-Butanone	coethan ether chloroe copropa (MEK)	0.756 0.917 0.473 0.558 0.126	0.806 0.861 0.434 0.540 0.139	0.757 0.953 0.440 0.539 0.142	0.662 1.041 0.437 0.499 0.131	0.615 1.029 0.439 0.494 0.132	0.616 1.001 0.437 0.474 0.132	0.621 1.027 0.441 0.462 0.131	0.691 0.976 0.443 0.509 0.133	11.66 6.94 3.00 7.16 4.07 12.14
23) 25) 26) 27) 28) 29)	C T T T	Bromochlord Chloroform 1,1,1-Trich Carbon teth 1,1-Dichlon 1,2-Dichlon	nloroet rachlor roprope	1.023 0.913 0.842 0.570 0.813	0.996 0.862 0.864 0.516 0.812	0.996 0.811 0.734 0.457 0.825	0.853 0.719 0.657 0.430 0.693	0.801 0.742 0.731 0.473 0.649	0.799 0.736 0.732 0.468 0.639	0.779 0.704 0.680 0.456 0.617	0.892 0.784 0.749 0.481 0.721	12.09 10.19 10.33 9.69 12.78 6.75
30) 31)		1,2-Dichlo: 1,2-Dichlo: 1,4-Difluo:		ne	_		ISTI)				
32) 33) 34) 35)	M M C T	Benzene Trichloroe 1,2-Dichlo Dibromomet 1,4-Dioxan	thene ropropa	1.155 0.354 0.240	0.297 0.223	0.286 0.221 0.199	0.258 0.200 0.175	0.283 0.202 0.176	0.174	0.278 0.200 0.169	0.292 0.212 0.188	10.41 10.29 7.54 10.16 11.79
36) 37) 38) 39) 40) 41)	T T T T	Bromodichl 2-Chloroet cis-1,3-Di 4-Methyl-2 Toluene-d8	orometh hyl vir chlorop -pentar	0.450 0.112 0.292 0.153 0.822	0.411 0.098 0.303 0.159 0.850	0.424 0.102 0.304 0.128 0.863	0.376 0.099 0.324 0.139 0.887	0.399 0.132 0.380 0.175 0.906	0.403 0.130 0.381 0.176 0.899	0.385 0.132 0.373 0.176 0.882	0.407 0.115 0.337 0.158 0.873	6.09 13.89 11.87 12.12 3.38
41) 42) 43) 44) 45) 46)	MC T T T	Toluene trans-1,3- 1,1,2-Tric Tetrachlor	Dichlor hloroet	$\begin{array}{c} 0.788 \\ 0.304 \\ 0.222 \\ 0.326 \\ 0.362 \end{array}$	0.727 0.325 0.192 0.290 0.330	0.706 0.329 0.191 0.266 0.349	0.655 0.317 0.167 0.248 0.328	0.680 0.392 0.179 0.286 0.363	0.658 0.390 0.173 0.280 0.352	0.644 0.378 0.171 0.271 0.349	0.694 0.348 0.185 0.281 0.348	7.35 10.74 10.27 8.62 3.97
47) 48) 49)	T T T	2-Hexanone Dibromochl 1,2-Dibrom	orometl Noethan Noethan	0.102 n 0.394 e 0.277	0.094 0.348 0.248	0.095 0.355 0.254	0.096 0.344 0.237	0.126 0.400 0.274	0.125	0.126	0.109	14.34 6.72 5.63
50) 51) 52)	ΜP	Chlorobenz 1,1,1,2-Te		1 164	1 092	1.074	0,923	0.904	0.876	0.870	0.986 0.424	12.19 11.22

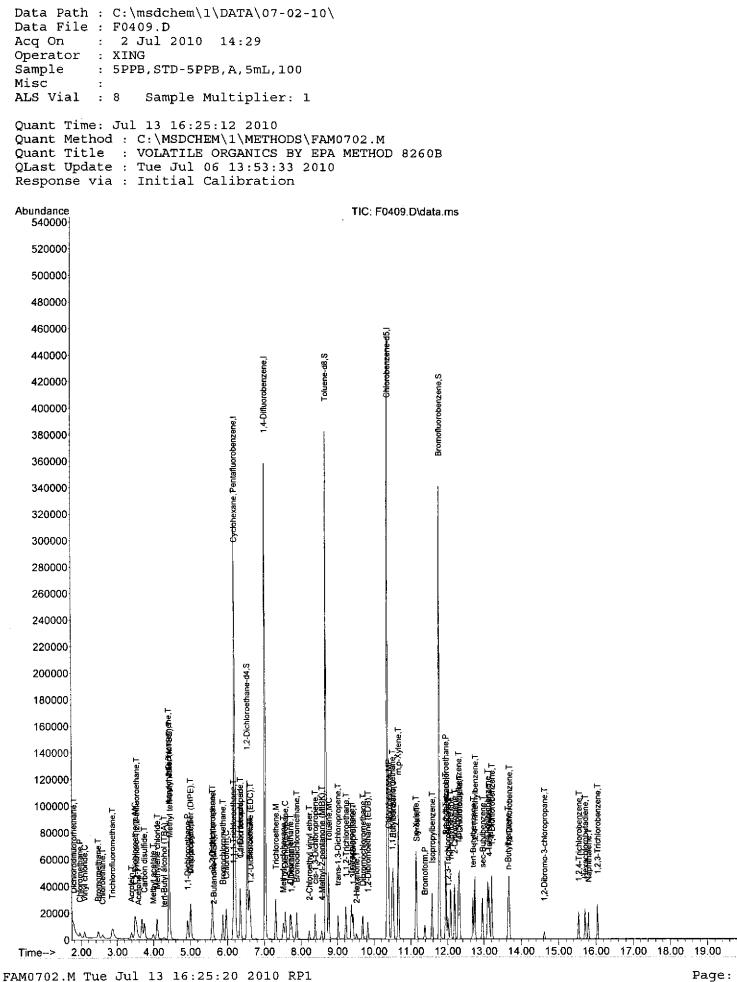
55) To-Xylene0.4080.4060.4180.4870.5230.5060.5010.46411.56) TStyrene0.7140.7450.8950.9230.9570.9200.9110.86711.57) PBromoform0.2180.1860.1930.1830.2190.2260.2140.206858) TIsopropylbenzene1.0650.9051.0891.0491.2281.2041.1771.1021059) SBromofluorobenzen0.3950.4030.4140.4150.4130.4070.4030.407160) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.19864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	.16
56) TStyrene0.7140.7450.8950.9230.9570.9200.9110.8671157) PBromoform0.2180.1860.1930.1830.2190.2260.2140.206858) TIsopropylbenzene1.0650.9051.0891.0491.2281.2041.1771.1021059) SBromofluorobenzen0.3950.4030.4140.4150.4130.4070.4030.407160) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	
57) PBromoform0.2180.1860.1930.1830.2190.2260.2140.206858) TIsopropylbenzene1.0650.9051.0891.0491.2281.2041.1771.1021059) SBromofluorobenzen0.3950.4030.4140.4150.4130.4070.4030.407160) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	
58) TIsopropylbenzene1.0650.9051.0891.0491.2281.2041.1771.1021059) SBromofluorobenzen0.3950.4030.4140.4150.4130.4070.4030.407160) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	. 52
59) SBromofluorobenzen0.3950.4030.4140.4150.4130.4070.4030.4071.60) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	
60) P1,1,2,2-Tetrachlo0.3650.3420.3240.2930.2860.2760.2900.3111061) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	.80
61) TBromobenzene0.4970.4200.4130.3880.4010.3920.3840.413962) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	
62) T1,2,3-Trichloropr0.2640.2510.2290.2050.2020.1970.1950.2201263) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	.46
63) Tn-Propylbenzene1.1680.9571.0361.1301.2131.1801.1521.119864) T2-Chlorotoluene0.9560.7630.8400.8550.8770.8500.8370.8546	
64) T 2-Chlorotoluene 0.956 0.763 0.840 0.855 0.877 0.850 0.837 0.854 6	
(4) 1 E GHIGIDEGIAGHO SISSO SI	.72
	.99 .19
	.85
	.41
Up I bed bacymband office cross state first first first	.58
	.30
(1) I IOOPEOPJIELLUUG OVOID OVOID INTE INTE INTE INTE INTE	. 93
	.36
(J) I II DUCYTECHICIC COOL COOL COULCE COULT COULCE COUL	.63
(i) I I/E Diomaologonado trata tra	.89
	.88
	.42
()) f Hondonie Condidate () () () () () () () () () () () () ()	.85
	.33
	.53
	.48
Di) I Mechyi Recedee 01103 01103 01178 01217 01401 11111 11111 11111	.35
	.98
83) T Methylcyclohexane 0.135 0.135 0.131 0.128 0.170 0.166 0.166 0.147 12	.77
(#) = Out of Range ### Number of calibration levels exceeded format ###	

FAM0702.M Tue Jul 06 13:53:40 2010 RP1

Data Acq O Opera Sampl Misc	Path : C:\msdchem\1\DATA\ File : F0409.D n : 2 Jul 2010 14:29 tor : XING e : 5PPB,STD-5PPB,A,5m : ial : 8 Sample Multipl	L,100						
Quant Quant QLast	Time: Jul 13 16:25:12 20 Method : C:\MSDCHEM\1\ME Title : VOLATILE ORGANI Update : Tue Jul 06 13:5 nse via : Initial Calibra	THODS\FAM CS BY EPA 3:33 2010	0702.M METHO	D 8260B				
Inte	rnal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
	Pentafluorobenzene	6.193	168	205401	50.00	UG		-0.01
31)	Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5	7.016	114	329128	50.00	ŬĠ	-	-0.01
50)	Chlorobenzene-d5	10.366	117	299217	50.00	ŪĞ		0.00
Syst	em Monitoring Compounds							
30)	1,2-Dichloroethane-d4	6.528	65	101291	51.94	UG	0.0%	0.00
Sp	iked Amount 50.000	Range 43	- 133	Recove 284200	ry =	103.	.88%	0.00
41) Co	Toluene-d8 iked Amount 50.000 Bromofluorobenzene	0.001 Pange 39	- 137	204200 Recove	49.47 rv =	98	948	0.00
59)	Bromofluorobenzene	11.767	95	123787	-y - 50.79	UG.		0.00
a2,	oiked Amount 50.000	Range 23	- 145	Recove	ry =	101.	.58%	
- 1-		~			1			
Targ	et Compounds						Qva	alue
	Dichlorodifluoromethane	1.788	85	7807	5.16	UG		100
3)	Chloromethane	1.960	50	4780	5.02	UG		100
4)	Vinyl chloride	2.092	62	6324	5.36	UG	н	99 39
5)	Vinyl chloride Bromomethane Chloroethane	2.468	94	4088	4.68	UG	Ħ	39 99
6) 7)	Trichlorofluoromethane	2.550	101	13533	4.73	UG	#	22 7 2
/) B)	Acrolein	3 392	56	5218	97.55	UG	11 11	96
		3.493	96	5218 7306	5.37	ŬĞ	#	37 96 100
10)	Acetone Carbon disulfide Vinyl acetate Methylene chloride Acrylonitrile	3.584	43	2008m	5.31	ŪG		
11)	Carbon disulfide	3.747	76	20962	5.00	UG		100
12)	Vinyl acetate	5.006	43	19559	5.22	UG		100
13)	Methylene chloride	4.102	84	9761	5.93	UG	#	
14)	Acrylonitrile	4.417	53	43539	99.09	UG	#	100
15)	tert-Butyl alcohol (TBA)	4.285	59	1447	10.90			100
	trans-1,2-Dichloroethene			10588	5.59 5.32		#	98 100
	Methyl tert-butyl ethe 1,1-Dichloroethane	4.437		26245 15550	5.48			99
18)	Diisopropyl ether (DIPE)			19578	4.89		#	100
20)	cis-1,2-Dichloroethene	5.605		9031	4.96		#	100
	2,2-Dichloropropane	5.594		11069	5.29			97
	2-Butanone (MEK)	5.635	43	2918	5.33	UG	#	98
	Bromochloromethane	5.879		7114	5.39		#	100
	Chloroform	5.970		20452	5.58			100
	1,1,1-Trichloroethane	6.163		16660	5.17		#	58
	Carbon tetrachloride	6.346		15075	4.90		#	99 95
	1,1-Dichloropropene	6.346		9389 16952	4.75 5.72		Ħ	95 100
) 1,2-Dichloroethane (EDC)) Benzene	6.620 6.589		33874	5.19			100
	Trichloroethene	7.310		9408	4.90		#	81
	1,2-Dichloropropane	7.564		7278	5.21		#	100
	Dibromomethane	7.706		6566	5.30			98
) 1,4-Dioxane	7.736		10797	864.78		#	100
37	Bromodichloromethane	7.879	83	13943	5.20	UG	#	99
38) 2-Chloroethyl vinyl ethe			2872m	3.79			
39) cis-1,3-Dichloropropene	8.386		9997	4.51		#	97
	4-Methyl-2-pentanone (.			4042	3.89			99
) Toluene	8.762		23249	5.09		ш	99
) trans-1,3-Dichloroprope			9929	4.34 5.16		#	91 93
44) 1,1,2-Trichloroethane	9.239	83	6283	7.10	99		23

FAM0702.M Tue Jul 13 16:25:18 2010 RP1

.


46) 1,3-Dichloropropane 9.432 76 11472 5.01 UG 1 47) 2-Hexanone 9.523 43 2644 3.68 UG 48) Dibromcchloromethane 9.696 129 11680 4.73 UG 49) 1,2-Dibromoethane (EDB) 9.828 107 8365 4.88 UG 51) Chlorobenzene 10.396 112 32123 5.44 UG # 1 52) 1,1,1,2-Tetrachloroethane 10.498 131 13084 5.16 UG # 53) Ethylbenzene 10.518 91 35812 4.93 UG 55 54) m,p-Xylene 10.660 106 31918 10.60 UG 55 55 o-Xylene 11.137 106 12501 4.50 UG # 57) Bromoform 11.381 173 5777 4.70 UG # 601 1,2,2-Tetrachloroethane 12.900 75 6839 5.18 UG # 61) Bromobenzene 12.001 75 6839 5.18 UG # 1 <tr< th=""><th>ata Fi cq On perato ample isc LS Via uant T uant T uant T Last C</th><th>ath : C:\msdchem\1\DATA\07 ile : F0409.D : 2 Jul 2010 14:29 or : XING : 5PPB,STD-5PPB,A,5mL, : al : 8 Sample Multiplie Fime: Jul 13 16:25:12 2010 Method : C:\MSDCHEM\1\METH Fitle : VOLATILE ORGANICS Update : Tue Jul 06 13:53: se via : Initial Calibrati</th><th>100 r: 1 ODS\FAM(BY EPA 33 2010</th><th></th><th></th><th></th><th></th><th></th></tr<>	ata Fi cq On perato ample isc LS Via uant T uant T uant T Last C	ath : C:\msdchem\1\DATA\07 ile : F0409.D : 2 Jul 2010 14:29 or : XING : 5PPB,STD-5PPB,A,5mL, : al : 8 Sample Multiplie Fime: Jul 13 16:25:12 2010 Method : C:\MSDCHEM\1\METH Fitle : VOLATILE ORGANICS Update : Tue Jul 06 13:53: se via : Initial Calibrati	100 r: 1 ODS\FAM(BY EPA 33 2010					
45) Tetrachloroethene 9.391 166 8767 4.74 UG # 1 46) 1,3-Dichloropropane 9.432 76 11472 5.01 UG 1 47) 2-Hexanone 9.523 43 2644 3.68 UG 1 48) Dibromochloromethane 9.696 129 11680 4.73 UG # 1 49) 1,2-Dibromoethane (EDB) 9.828 107 8365 4.88 UG # 1 51) Chlorobenzene 10.396 112 32123 5.44 UG # 1 52) 1,1,1,2-Tetrachloroethane 10.498 131 13084 5.16 UG # 5 54) m,p-Xylene 10.660 106 31918 10.60 UG # 5 5 o-Xylene 11.158 104 26778 5.16 UG # 5 5 i 5 11.949 83 9698 5.21 UG 6 62) 1,2,3-Trichloropropane 12.000 75 <t< td=""><td>Interr</td><td>nal Standards</td><td>R.T.</td><td>QIon</td><td>Response</td><td>Conc Units</td><td>Dev</td><td>(Min)</td></t<>	Interr	nal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
46) 1,3-Dichloropropane 9.432 76 11472 5.01 UG 1 47) 2-Hexanone 9.523 43 2644 3.68 UG 48) Dibromochloromethane 9.696 129 11680 4.73 UG 49) 1,2-Dibromoethane (EDB) 9.828 107 8365 4.88 UG 51) Chlorobenzene 10.396 112 32123 5.44 UG # 1 52) 1,1,1,2-Tetrachloroethane 10.498 131 13084 5.16 UG # 53) Ethylbenzene 10.660 106 31918 10.60 UG # 54) m,p-Xylene 11.137 106 12501 4.50 UG # 56) Styrene 11.158 104 26778 5.16 UG # 57) Bromoform 11.574 105 24680 3.74 UG # 60) 1,2,2-Tetrachloroethane 11.949 156 12358 4.99 UG # 62) 1,2,3-Trichloropropane 12.000 75 6839 5.18 UG # 1 <	45) 7	Tetrachloroethene	9 3 9 1	166	8767	4 74 UG	#	
49)1,2-Dibromoethane (EDB)9.82810783654.88UG51)Chlorobenzene10.396112321235.44UG#152)1,1,1,2-Tetrachloroethane10.498131130845.16UG#53)Ethylbenzene10.51891358124.93UG54)m,p-Xylene10.6601063191810.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG57)Bromoform11.38117357774.70UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.2159131065.27UG#65)1,3,5-Trimethylbenzene12.691119174363.69UG#66)4-Chlorotoluene12.3159131065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146	46)]	1.3-Dichloropropane	9.432	76	11472	5.01 UG		100
49)1,2-Dibromoethane (EDB)9.82810783654.88UG51)Chlorobenzene10.396112321235.44UG#152)1,1,1,2-Tetrachloroethane10.498131130845.16UG#53)Ethylbenzene10.51891358124.93UG54)m,p-Xylene10.6601063191810.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG57)Bromoform11.38117357774.70UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.2159131065.27UG#65)1,3,5-Trimethylbenzene12.691119174363.69UG#66)4-Chlorotoluene12.3159131065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146	47) 2	2-Hexanone	9.523	43	2644	3.68 UG		98
49)1,2-Dibromoethane (EDB)9.82810783654.88UG51)Chlorobenzene10.396112321235.44UG#152)1,1,1,2-Tetrachloroethane10.498131130845.16UG#53)Ethylbenzene10.51891358124.93UG54)m,p-Xylene10.6601063191810.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG57)Bromoform11.38117357774.70UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.2159131065.27UG#65)1,3,5-Trimethylbenzene12.691119174363.69UG#66)4-Chlorotoluene12.3159131065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146	48) I	Dibromochloromethane	9.696	129	11680	4.73 UG		99
54)m, p-Xylene10.660106 31918 10.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG#57)Bromoform11.38117357774.70UG#58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.295105268954.70UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#61)1,2,4-Trimethylbenzene12.691119174363.69UG#162)sec-Butylbenzene12.965105239694.18UGUG63)n-Eutylbenzene13.097146224425.08UG#170)1,3-Dichlorobenzene13.097146224425.08UG#171)4-Isopropyltoluene13.137119250884.42UG#17	49) 1	1,2-Dibromoethane (EDB)	9.828	107	8365	4.88 UG		99
54)m, p-Xylene10.660106 31918 10.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG#57)Bromoform11.38117357774.70UG#58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.295105268954.70UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#61)1,2,4-Trimethylbenzene12.691119174363.69UG#162)sec-Butylbenzene12.965105239694.18UGUG63)n-Eutylbenzene13.097146224425.08UG#170)1,3-Dichlorobenzene13.097146224425.08UG#171)4-Isopropyltoluene13.137119250884.42UG#17	51) (Chlorobenzene	10.396	112	32123	5.44 UG	#	100
54)m, p-Xylene10.660106 31918 10.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG#57)Bromoform11.38117357774.70UG#58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.295105268954.70UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#61)1,2,4-Trimethylbenzene12.691119174363.69UG#162)sec-Butylbenzene12.965105239694.18UGUG63)n-Eutylbenzene13.097146224425.08UG#170)1,3-Dichlorobenzene13.097146224425.08UG#171)4-Isopropyltoluene13.137119250884.42UG#17	52) 1	1,1,1,2-Tetrachloroethane	10.498	131	13084	5.16 UG	#	
54)m, p-Xylene10.660106 31918 10.60UG55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG#57)Bromoform11.38117357774.70UG#58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.295105268954.70UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#61)1,2,4-Trimethylbenzene12.691119174363.69UG#162)sec-Butylbenzene12.965105239694.18UGUG63)n-Eutylbenzene13.097146224425.08UG#170)1,3-Dichlorobenzene13.097146224425.08UG#171)4-Isopropyltoluene13.137119250884.42UG#17	53) F	Ethylbenzene	10.518	91	35812	4.93 UG		99
55)o-Xylene11.137106125014.50UG56)Styrene11.158104267785.16UG#57)Bromoform11.38117357774.70UG#58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.091119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.208146245875.23UG173)n-Butylbenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene1	54) n	m.p-Xvlene	10.660	106	31918	10.60 UG		90
58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146224425.08UG#70)1,3-Dichlorobenzene13.137119250884.42UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene13.675146237415.30UG#		o-Xylene	11.137	106	12501	4.50 UG		92
58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146224425.08UG#70)1,3-Dichlorobenzene13.137119250884.42UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene13.675146237415.30UG#		Styrene	11.158	104	26778	5.16 UG	#	72
58)Isopropylbenzene11.574105246803.74UG60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.965105239694.18UG69)sec-Butylbenzene13.097146224425.08UG#70)1,3-Dichlorobenzene13.137119250884.42UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene13.675146237415.30UG#		Bromoform	11.381	173	5777	4.70 UG	#	99
60)1,1,2,2-Tetrachloroethane11.9498396985.21UG61)Bromobenzene11.949156123584.99UG#62)1,2,3-Trichloropropane12.0007568395.18UG#63)n-Propylbenzene12.07191309894.63UG#64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#68)1,2,4-Trimethylbenzene12.751105294684.81UG69)sec-Butylbenzene12.965105239694.18UG70)1,3-Dichlorobenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.208146245875.23UG173)n-Butylbenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene13.675146237415.30UG#	58) 1	Isopropylbenzene	11.574	105	24680	3.74 UG		99
63)n-Propylbenzene12.07191309894.63UG64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#168)1,2,4-Trimethylbenzene12.751105294684.81UG69)sec-Butylbenzene12.965105239694.18UG70)1,3-Dichlorobenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG173)n-Butylbenzene13.675146237415.30UG#	60) 1	1.1.2.2-Tetrachloroethane	11.949	83	9698	5.21 UG		99
63)n-Propylbenzene12.07191309894.63UG64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#168)1,2,4-Trimethylbenzene12.751105294684.81UG69)sec-Butylbenzene12.965105239694.18UG70)1,3-Dichlorobenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG173)n-Butylbenzene13.675146237415.30UG#	61) F	Bromobenzene	11.949	156	12358	4.99 UG	#	34
63)n-Propylbenzene12.07191309894.63UG64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#168)1,2,4-Trimethylbenzene12.751105294684.81UG69)sec-Butylbenzene12.965105239694.18UG70)1,3-Dichlorobenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.645928219m3.89UG173)n-Butylbenzene13.675146237415.30UG#	62) .	1,2,3-Trichloropropane	12.000	75	6839	5.18 UG		
64)2-Chlorotoluene12.1839125092m4.91UG65)1,3,5-Trimethylbenzene12.295105268954.70UG66)4-Chlorotoluene12.31591331065.27UG#67)tert-Butylbenzene12.691119174363.69UG#168)1,2,4-Trimethylbenzene12.751105294684.81UG69)sec-Butylbenzene12.965105239694.18UG70)1,3-Dichlorobenzene13.097146224425.08UG#71)4-Isopropyltoluene13.137119250884.42UG#72)1,4-Dichlorobenzene13.208146245875.23UG173)n-Butylbenzene13.645928219m3.89UG#74)1,2-Dichlorobenzene13.675146237415.30UG#	63) r	n-Propylbenzene	12.071	91	30989	4.63 UG		91
67) tert-Butylbenzene12.691119174363.69UG#168) 1,2,4-Trimethylbenzene12.751105294684.81UG69) sec-Butylbenzene12.965105239694.18UG70) 1,3-Dichlorobenzene13.097146224425.08UG#171) 4-Isopropyltoluene13.137119250884.42UG#72) 1,4-Dichlorobenzene13.208146245875.23UG173) n-Butylbenzene13.645928219m3.89UG#74) 1,2-Dichlorobenzene13.675146237415.30UG#	64) 2	2-Chlorotoluene	12.183	91	25092m	4.91 UG		
67) tert-Butylbenzene12.691119174363.69UG#168) 1,2,4-Trimethylbenzene12.751105294684.81UG69) sec-Butylbenzene12.965105239694.18UG70) 1,3-Dichlorobenzene13.097146224425.08UG#171) 4-Isopropyltoluene13.137119250884.42UG#72) 1,4-Dichlorobenzene13.208146245875.23UG173) n-Butylbenzene13.645928219m3.89UG#74) 1,2-Dichlorobenzene13.675146237415.30UG#	65)	1,3,5-Trimethylbenzene	12.295	105	26895	4.70 UG		98
67) tert-Butylbenzene12.691119174363.69UG#168) 1,2,4-Trimethylbenzene12.751105294684.81UG69) sec-Butylbenzene12.965105239694.18UG70) 1,3-Dichlorobenzene13.097146224425.08UG#171) 4-Isopropyltoluene13.137119250884.42UG#72) 1,4-Dichlorobenzene13.208146245875.23UG173) n-Butylbenzene13.645928219m3.89UG#74) 1,2-Dichlorobenzene13.675146237415.30UG#	66) 4	4-Chlorotoluene	12.315	91	33106	5.27 UG	#	96
72) 1,4-Dichlorobenzene 13.208 146 24587 5.23 0G 1 73) n-Butylbenzene 13.645 92 8219m 3.89 UG 1 74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	67) t	tert-Butylbenzene	12.691	119	17436	3.69 UG	#	100
72) 1,4-Dichlorobenzene 13.208 146 24587 5.23 0G 1 73) n-Butylbenzene 13.645 92 8219m 3.89 UG 1 74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	68) 3	1,2,4-Trimethylbenzene	12.751	105	29468	4.81 UG		99
72) 1,4-Dichlorobenzene 13.208 146 24587 5.23 0G 1 73) n-Butylbenzene 13.645 92 8219m 3.89 UG 1 74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	69) s	sec-Butylbenzene	12.965	105	23969	4.18 UG		99
72) 1,4-Dichlorobenzene 13.208 146 24587 5.23 0G 1 73) n-Butylbenzene 13.645 92 8219m 3.89 UG 1 74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	70) 1	1,3-Dichlorobenzene	13.097	146	22442	5.08 UG		100
72) 1,4-Dichlorobenzene 13.208 146 24587 5.23 0G 1 73) n-Butylbenzene 13.645 92 8219m 3.89 UG 1 74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	71) 4	4-Isopropyltoluene	13,137	119	25088	4.42 UG	#	99
74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	72) 7	1,4-Dichlorobenzene	13.208	146	24587	5.23 UG		100
74) 1,2-Dichlorobenzene 13.675 146 23741 5.30 UG #	73) л	n-Butylbenzene	13.645	92	8219m			
			13.675	146	23741			99
	75)	1,2-Dibromo-3-chloropr	14.619	75	1400	4.39 UG	#	91
, v , u	76)	1,2,4-Trichlorobenzene	15.533	180	6158	3.54 UG		98
()) HERREDHOLD UP	77) J	Hexachlorobutadiene	15.706	225	3833			99
78) Naphthalene 15.797 128 25627m 4.00 UG	78) J	Naphthalene	15.797	128	25627m			
79) 1,2,3-Trichlorobenzene 16.041 180 7282 4.20 UG	79)	1,2,3-Trichlorobenzene						99
80) 1,1,2-Trichloro-1,2,2 3.534 101 7137 5.04 UG #	80)	1,1,2-Trichloro-1,2,2	3.534	101				85
81) Methyl acetate 3.990 43 5645 6.14 UG #			3.990	43			#	97
82) Cyclohexane 6.204 56 8922m 5.83 UG	82)	Cyclohexane						
83) Methylcyclohexane 7.513 55 3450 3.92 UG #	83)	Methylcyclohexane	7.513	55		3.92 UG	#	81

ς.

(#) = qualifier out of range (m) = manual integration (+) = signals summed

FAM0702.M Tue Jul 13 16:25:18 2010 RP1

.

Page: 3

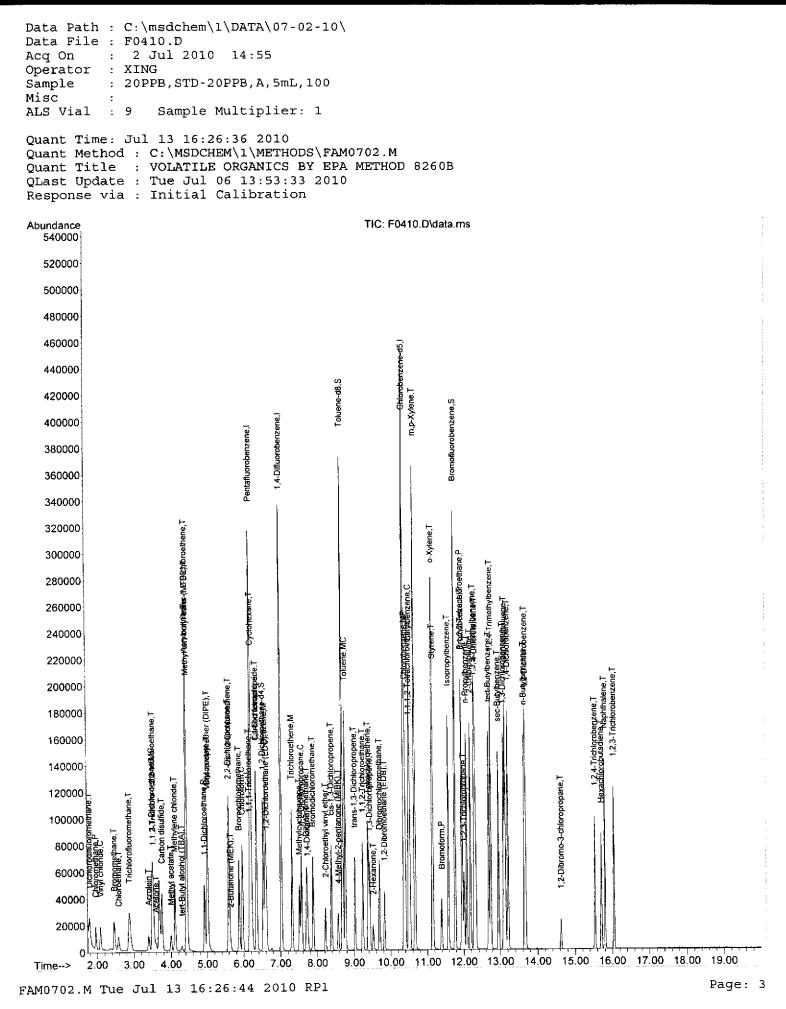
Data Path : C:\msdchem\l\DATA\0 Data File : F0410.D Acq On : 2 Jul 2010 14:55 Operator : XING Sample : 20PPB,STD-20PPB,A,5 Misc : ALS Vial : 9 Sample Multipli	5mL,100						
Quant Time: Jul 13 16:26:36 203 Quant Method : C:\MSDCHEM\1\MET Quant Title : VOLATILE ORGANIC QLast Update : Tue Jul 06 13:53 Response via : Initial Calibrat	THODS\FAM(CS BY EPA 3:33 2010						
Internal Standards	R.T.	QIon	Response			Dev	(Min)
1) Pentafluorobenzene	6.204	168	204581	50.00	UG		0.00
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	7.026	114	318960	50.00	ŬĠ		0.00
50) Chlorobenzene-d5	10.366	117	300059	50.00	ŪĠ		0.00
System Monitoring Compounds							
30) 1,2-Dichloroethane-d4	6.529	65	98948	50.94	UG		0.00
Spiked Amount 50.000 H	Range 43	- 133	Recove	ry =	101.	88%	
41) Toluene-d8	8.681	98	282918	50.82	UG		0.00
Spiked Amount 50.000 H	Range 39	- 137	282918 Recove 124520 Recove	ry =	101.	64%	
59) Bromofluorobenzene	11.767	95	124520	50.95	UG		0.00
Spiked Amount 50.000 H	Range 23	- 145	Recove	ry =	101.	90%	
						0	1
Target Compounds	1 700	0.5	25893	10 10	110	Qva	lue
2) Dichlorodifluoromethane	1.788 1.960	85 50					100 98
 Chloromethane Vinyl chloride 			18618				99 99
5) Bromomethane	2.052	94	21950 19911	19.95		#	54
6) Chloroethane	2.092 2.468 2.590	64	13742	20.13			99
7) Trichlorofluoromethane	2.320	101	47560	17.63			37
8) Acrolein	3.402	56	11880	222.99	ŬĞ	11	99
9) 1,1-Dichloroethene	3.503	101 56 96	24889	17.63 222.99 18.35	ŪG	#	100
10) Acetone	3.595		7167	19.03	UG		99
11) Carbon disulfide	3.757	76	74846	17.94	UG		100
	5.006	43	74846 73064 31795	19.58	ŨG		100
12) Vinyl acetate 13) Methylene chloride	4.102	84	31795	19.39	UG	#	99
14) Acrylonitrile	4.417	53	96611	220.75	UG	#	100
15) tert-Butyl alcohol (TBA)	4.295	59	5011	37.90		#	100
16) trans-1,2-Dichloroethene	4.427	96	37284	19.75		#	98
17) Methyl tert-butyl ethe		73	94556	19.25		ш	100
18) 1,1-Dichloroethane	4.925	63	54184	19.18		# #	85 100
19) Diisopropyl ether (DIPE) 20) cis-1,2-Dichloroethene	5.016 5.605	45 96	85156 35722	21.33 19.71		# #	100 99
21) 2,2-Dichloropropane	5.595	50 77	40867	19.61		Π	94
22) 2-Butanone (MEK)	5.645	43	10741	19.70		#	98
23) Bromochloromethane	5.879	128	25257	19.21		#	100
25) Chloroform	5.970	83	69783	19.11			100
26) 1,1,1-Trichloroethane	6.163	97	58802	18.34	UG	#	58
27) Carbon tetrachloride	6.346	117	53778	17.56	UG		99
28) 1,1-Dichloropropene	6.346	75	35196	17.87		#	85
29) 1,2-Dichloroethane (EDC)	6.620	62	56727	19.22	UG		100
32) Benzene	6.589	78	119350	18.87			100
33) Trichloroethene	7.310	95	32906	17.69		#	79
34) 1,2-Dichloropropane	7.574		25561	18.86		#	100
35) Dibromomethane	7.706		22362	18.62		и	96
36) 1,4-Dioxane	7.726		25117	2075.86		#	100
37) Bromodichloromethane	7.879		47953	18.47		# #	99 94
38) 2-Chloroethyl vinyl ethe	r 8.224		12687 41309	17.30 19.23		# #	94 97
39) cis-1,3-Dichloropropene	8.386 . 8.569		41309 17756	19.23		π	97
40) 4-Methyl-2-pentanone (8.762		83506	18.86			99
42) Toluene 43) trans-1,3-Dichloropropen			40390	18.80		#	91
43) trans-1,3-Dichiorophopen 44) 1,1,2-Trichloroethane	9.239		21350	18.08		14.	93
11) 1,1,2 ILLUILOLOCCHARC	5.255			20.00			

FAM0702.M Tue Jul 13 16:26:42 2010 RP1

Page: 1

х. · · ·

Data Path : C:\msdchem\1\DATA\07 Data File : F0410.D Acq On : 2 Jul 2010 14:55 Operator : XING Sample : 20PPB,STD-20PPB,A,5m Misc : ALS Vial : 9 Sample Multiplie	L,100					
Quant Time: Jul 13 16:26:36 2010 Quant Method : C:\MSDCHEM\1\METH Quant Title : VOLATILE ORGANICS QLast Update : Tue Jul 06 13:53: Response via : Initial Calibrati	ODS\FAM BY EPA 33 2010					
Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
45) Tetrachloroethene	9.391	166	31685	17.67 UG	#	99
	9.432				π	100
47) 2-Hexanone	9.523	43	12191	17.51 UG		99
48) Dibromochloromethane	9.696	129	41879 12191 43891	18.36 UG		100
49) 1,2-Dibromoethane (EDB)		107	30275			100
51) Chlorobenzene	10.396				#	100
52) 1,1,1,2-Tetrachloroethane			110781 47631	18.74 UG	#	99
53) Ethylbenzene	10.518	91	143663	19.74 UG	н	99
54) m,p-Xylene	10.660		123095			92
55) o-Xylene	11.137		58442	20.98 UG		91
56) Styrene	11.158		58442 110797	21.31 UG		95
57) Bromoform	11.391		21989	17.82 UG	#	77
58) Isopropylbenzene	11.574	105	125951		17	99
60) 1,1,2,2-Tetrachloroethane			35205	18.87 UG		100
61) Bromobenzene	11.950		35205 46539	18.75 ŬG	#	35
62) 1,2,3-Trichloropropane	12.000	75	24636		#	100
63) n-Propylbenzene	12.000	91	135659		#	98
64) 2-Chlorotoluene	12.183		102310m	19.97 UG	π	20
65) 1,3,5-Trimethylbenzene	12.285		123546			99
66) 4-Chlorotoluene	12.315	91	126144		#	96
67) tert-Butylbenzene	12.691	119			#	100
	12.752		94325 135098	21.97 UG	π	99
69) sec-Butylbenzene	12.955		115908	20.18 UG		99
70) 1,3-Dichlorobenzene	13.097	146	85309	19 26 UG	#	99
71) 4-Isopropyltoluene	13.137	119	122160	21.46 UG	#	99
72) 1,4-Dichlorobenzene	13.208	146	92892	19.70 UG		100
73) n-Butylbenzene	13.645	92	40072	18.91 UG	#	91
74) 1,2-Dichlorobenzene	13.675	146	92250	20.52 UG	#	100
75) 1,2-Dibromo-3-chloropr		75	5808	18.16 UG		89
76) 1,2,4-Trichlorobenzene	15.533	180	29021	16.65 UG		99
77) Hexachlorobutadiene	15.706	225	14930	19.08 UG		100
78) Naphthalene	15.797	128	116915	18.21 UG		100
79) 1,2,3-Trichlorobenzene	16.041	180	33863	19.49 UG		99
	3.524	101	23505	16.57 UG	#	85
81) Methyl acetate	4.001	43	17650		#	97
82) Cyclohexane	6.214		26633	17.35 UG	#	83
	7.513		15341	17.37 UG	#	82
83) Methylcyclohexane	7.513	55 	15341	17.37 UG	# 	82

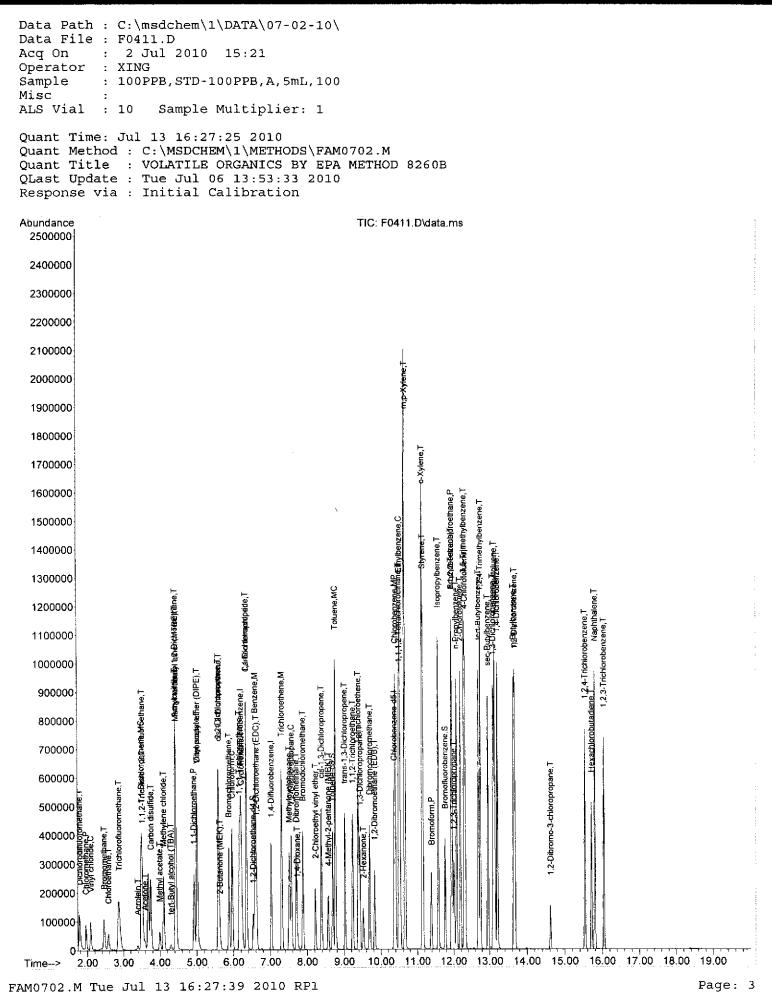

.

(#) = qualifier out of range (m) = manual integration (+) = signals summed

FAM0702.M Tue Jul 13 16:26:42 2010 RP1

•

ς.


Data Path : C:\msdchem\1\DATA\ Data File : F0411.D Acq On : 2 Jul 2010 15:21 Operator : XING Sample : 100PPB,STD-100PPB, Misc : ALS Vial : 10 Sample Multip	A,5mL,100 lier: 1						
Quant Time: Jul 13 16:27:25 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Tue Jul 06 13:5 Response via : Initial Calibra	THODS\FAM CS BY EPA 3:33 2010						
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
1) Dentafluorobenzene	6 203	168	234310	50 00	UC.		0 00
31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	7.026	114	355151	50.00	ŪĞ		0.00
50) Chlorobenzene-d5	10.366	117	345830	50.00	ŪG		0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4	-						
30) 1,2-Dichloroethane-d4	6.528	65	105356	47.36	UG		0.00
Spiked Amount 50.000	Range 43	- 133	Recove	ry =	94.	72%	
41) Toluene-d8	8.680	98	321787	51.91	UG		0.00
Spiked Amount 50.000	Range 39	- 137	Recove	ry =	103.	82%	
59) Bromofluorobenzene	11.767	95	142998	50.76	UG		0.00
Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 23	- 145	Recove	ery =	101.	52%	
						0	1
Target Compounds	1 707	05	172033	00 63	110		lue 100
2) Dichlorodífluoromethane	1.707	60 50	1/2035 0010C	99.02	UG		99
4) Vinvl chloride	2 092	50	127614	94 87	UG UG		99
5) Bromomethane	2.002	94	106735	93 36	ПG	#	56
 3) Chloromethane 4) Vinyl chloride 5) Bromomethane 6) Chloroethane 	2.579	64	73286	93.72	ŬĠ		99
7) Trichlorofluoromethane	2.874	101	299725	96.98	ŪG	#	37
 a) Chilorolethane b) Trichlorofluoromethane a) Acrolein b) 1,1-Dichloroethene 	3.402	56	17615	288.69	ŪĠ		99 37 98
9) 1,1-Dichloroethene	3.503	96	144586	93.10	UG	#	100
10) Acetone 11) Carbon disulfide 12) Vinyl acetate	3.594	43	37915	87.88	UG		99
11) Carbon disulfide	3.757	76	449501	94.06	UG		100
12) Vinyl acetate 13) Methylene chloride	5.005	43	419102	98.08	UG		100
13) Methylene chloride	4.102	84	160703	85.55	UG	#	100
14) Acrylonitrile	4.417	53	145158	289.59		#	
15) tert-Butyl alcohol (TBA)			26710				
16) trans-1,2-Dichloroethene		96	194717	90.07		#	99
17) Methyl tert-butyl ethe			510487	90.74		#	100 99
18) 1,1-Dichloroethane	4.924 5.016	63 45	288151 482362	89.05 105.52		# #	100
19) Diisopropyl ether (DIPE) 20) cis-1,2-Dichloroethene	5.604	4J 96	205941	99.23		#	99
21) 2,2-Dichloropropane	5.594	77	231477	96.96		π	93
22) 2-Butanone (MEK)	5.635	43	61822	99.02		#	93
23) Bromochloromethane	5.879	128	133985	88,98		÷#	99
25) Chloroform	5.970	83	375534	89.81			100
26) 1,1,1-Trichloroethane	6.163	97	347533	94.62	UG	#	58
27) Carbon tetrachloride	6.346	117	342586	97.66	UG		99
28) 1,1-Dichloropropene	6.346	75	221651	98.25		#	85
29) 1,2-Dichloroethane (EDC)			304208	90.00			100
32) Benzene	6.589		655478	93.09			100
33) Trichloroethene	7.310		200706	96.90		#	80
34) 1,2-Dichloropropane	7.574		143569	95.16		#	100
35) Dibromomethane	7.706		125102	93.53		11	97 100
36) 1,4-Dioxane	7.726		45365	3367.25 98.05		# #	99
37) Bromodichloromethane	7.878 er 8.224		283411 93410	98.05 114.38		# #	99 94
38) 2-Chloroethyl vinyl ethe 39) cis-1,3-Dichloropropene	8.386		270062	114.38		#	97
40) 4-Methyl-2-pentanone (124021	110.55		11	97
40) 4-Mechyl-2-pencanone (42) Toluene	8.762		483303	98.01			99
43) trans-1,3-Dichloroproper			278204	112.64		#	91
44) 1,1,2-Trichloroethane	9.239		126936	96.52			94
, -, ,							

FAM0702.M Tue Jul 13 16:27:38 2010 RP1

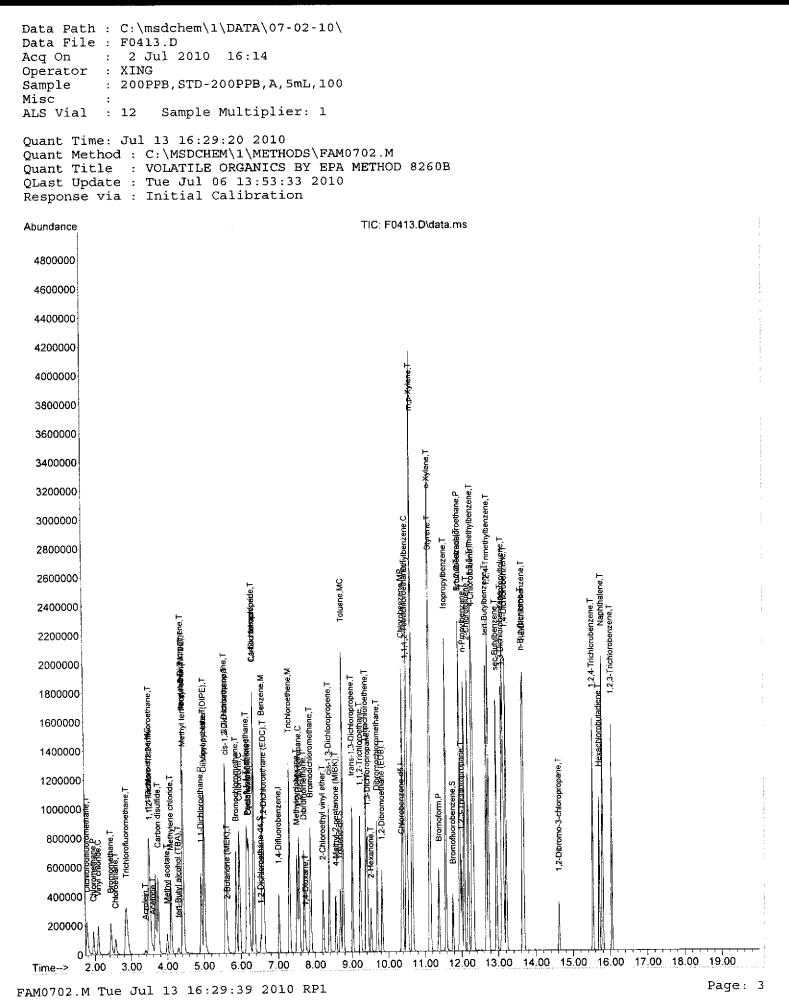
Data Acq O Opera Sample Misc ALS V Quant Quant	Path : C:\msdchem\1\DATA\07 File : F0411.D n : 2 Jul 2010 15:21 tor : XING e : 100PPB,STD-100PPB,A, : ial : 10 Sample Multipli Time: Jul 13 16:27:25 2010 Method : C:\MSDCHEM\1\METH Title : VOLATILE ORGANICS	5mL,100 er: 1 ODS\ FAM (
QLast	Update : Tue Jul 06 13:53: nse via : Initial Calibrati	33 2010	MBINO	D 0200D			
Inte	rnal Standards	R.T.	QIon	Response	Conc Units		
45)	Tetrachloroethene	9.391	166	202980	101.65 UG	#	99
46)	1,3-Dichloropropane		76	257636	104.36 UG		100
47)	2-Hexanone	9.523	43	89465	115.41 UG		97
48)	2-Hexanone Dibromochloromethane	9.696	129	89465 284049	106.68 UG		100
49)	1,2-Dibromoethane (EDB)	9.828	107	194634	105.28 UG		100
51)	Chlorobenzene	10.396	112	625277 274622 877053	91.69 UG	#	100
52)	1,1,1,2-Tetrachloroethane	10.498	131	274622	93.75 UG	#	98
53)	Ethylbenzene	10.518	91	877053	104.54 UG		99
54)	m,p-Xylene	10.660	106	718645	206.41 UG		92
55)	o-Xylene	11.137	106	361822 662096	112.71 UG		92
56)	Styrene	11.158	104	662096	110.47 UG		95
57)	Bromoform	11.391	173	151360	106.46 UG	#	100
58)	Isopropylbenzene	11.574	105	849658	111.42 UG		100
	1,1,2,2-Tetrachloroethane	11.949	83	197503	91.87 UG		100
61)	Bromobenzene	11.949	156	197503 277147	96.91 UG	#	35
62)	1,2,3-Trichloropropane	12.000	75	139970	91.79 U G	#	100
	n-Propylbenzene	12.071	91	839220	108.40 UG	#	98
64)	2-Chlorotoluene	12.183	91	608198m	102.99 UG		
65)	1,3,5-Trimethylbenzene	12.295	105	733661	110.94 UG		99
	4-Chlorotoluene	12.315	91	723615	99.60 UG	#	97
67)	tert-Butylbenzene	12.690	119	636369	116.39 UG	#	100
	1,2,4-Trimethylbenzene	12.751	105	636369 778758	109.90 UG		99
69)	sec-Butylbenzene	12.954	105	762476	115.16 UG		99
70)	1,3-Dichlorobenzene	13.097	146	492826	96.54 UG	#	100
71)	4-Isopropyltoluene	13.137	119	756486	115.28 UG	Ħ	99
72)	1,4-Dichlorobenzene	13.208	146	525099	96.60 UG		100
73)	n-Butylbenzene	13.645	92	280393	114.81 UG	#	91
74)	1,2-Dichlorobenzene	13.675	146	499803	96.48 UG	#	100
75)	1,2-Dibromo-3-chloropr	14.619	75	38561	104.59 UG	#	85
76)	1,2,4-Trichlorobenzene	15.533	180	222125	110.57 UG		100
77)	Hexachlorobutadiene	15.706	225	88460	98.07 UG		100
78)	Naphthalene	15.797	128	840522	113.59 UG		100
79)	1,2,3-Trichlorobenzene	16.041	180	214388	107.06 UG		100
80)	1,1,2-Trichloro-1,2,2	3.523	101	158910	97.18 UG	#	85
	Methyl acetate	3.990	43	94285	88.75 UG	#	93
	Cyclohexane	6.214	56	167712	94.78 UG	#	83
	Methylcyclohexane	7.513	55	117383		#	78

(#) = qualifier out of range (m) = manual integration (+) = signals summed

FAM0702.M Tue Jul 13 16:27:38 2010 RP1

Data Path : C:\msdchem\l\DATA\ Data File : F0413.D Acq On : 2 Jul 2010 16:14 Operator : XING Sample : 200PPB,STD-200PPB, Misc : ALS Vial : 12 Sample Multip	A,5mL,100						
Quant Time: Jul 13 16:29:20 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Tue Jul 06 13:5 Response via : Initial Calibra	THODS\FAM CS BY EPA 3:33 2010		D 8260B				
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
1) Pentafluorobenzene					UG		0.00
31) 1,4-Difluorobenzene	7.016	114	372783	50.00	UG		0.00
31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	10.366	117	361305	50.00	UG		0.00
System Monitoring Compounds							
30) 1,2-Dichloroethane-d4	6.528	65					0.00
		- 133	Recove				
41) Toluene-d8	8.681						0.00
		- 137	Recove	ery =	102.		
59) Bromofluorobenzene			147231 Dogovo			0.0%	0.00
Spiked Amount 50.000	Range 23	- 145	Recove	ery =	100.	.065	
Target Compounds						Ωv^2	alue
2) Dichlorodifluoromethane	1.777	85	332117	185.15	UG	2.10	100
3) Chloromethane			197491	175.19			99
4) Vinvl chloride	1.960 2.092	62	197491 250920	179.50			100
5) Bromomethane	2.437	94	204909	172.56		#	55
	2.569	64	148214	182.49	UG		99
7) Trichlorofluoromethane		101	148214 597622 30749	186.17	UG	#	37
8) Acrolein	3.392	56	30749	485.17			99
9) 1,1-Dichloroethene	3.493	96	299025	185.37	UG	#	100
10) Acetone	3.595	43	79528 928961 843937	177.47	UG		99
11) Carbon disulfide	3.747	76	928961	187.14	UG		100
12) Vinyl acetate 13) Methylene chloride	5.006	43	843937	190.14		¥	100
	4.417	64 53	239418	169.58 459.85		# #	99 100
14) Acrylonitrile 15) tert-Butyl alcohol (TBA)			58552				100
16) trans-1,2-Dichloroethene		96	390313	173.82		ű #	99
17) Methyl tert-butyl ethe		73	1033306	176.84			100
18) 1,1-Dichloroethane	4.924	63	599868	178.48		#	99
19) Diisopropyl ether (DIPE)	5.016	45	974730	205.28		#	100
20) cis-1,2-Dichloroethene	5,605	96	425659	197.46		#	99
21) 2,2-Dichloropropane	5.594	77	461280	186.03		#	62
22) 2-Butanone (MEK)	5,635	43	128356	197.93		#	96
23) Bromochloromethane	5.879	128 83	280115 777796	179.09 179.08		#	$\begin{array}{c} 100 \\ 100 \end{array}$
25) Chloroform 26) 1,1,1-Trichloroethane	5.970 6.163	83 97	716886	187.91		#	99
27) Carbon tetrachloride	6.346		712446	195.53		71	99
28) 1,1-Dichloropropene	6.346		455459	194.37		#	96
29) 1,2-Dichloroethane (EDC)	6.620		622545	177.32			100
32) Benzene	6.589		1336934	180.89	UG		100
33) Trichloroethene	7.310	95	427486	196.62	UG	#	82
34) 1,2-Dichloropropane	7.574	63	297226	187.68	UG	#	100
35) Dibromomethane	7.706		259099	184.55			96
36) 1,4-Dioxane	7.737		82578	5839.50		#	100
37) Bromodichloromethane	7.879		601082	198.11		#	100
38) 2-Chloroethyl vinyl ethe			194482	226.88		#	94
39) cis-1,3-Dichloropropene	8.386		568341	226.43		#	97
40) 4-Methyl-2-pentanone (262391 981881	222.83 189.70			97 99
42) Toluene	8.762 e 9.016		581485	224.29		#	99 91
43) trans-1,3-Dichloropropen44) 1,1,2-Trichloroethane	9.239		258354	187.15		Π	94
11/ 1/1/2-1110110106011411C		00	~~~~~	,,,			

.

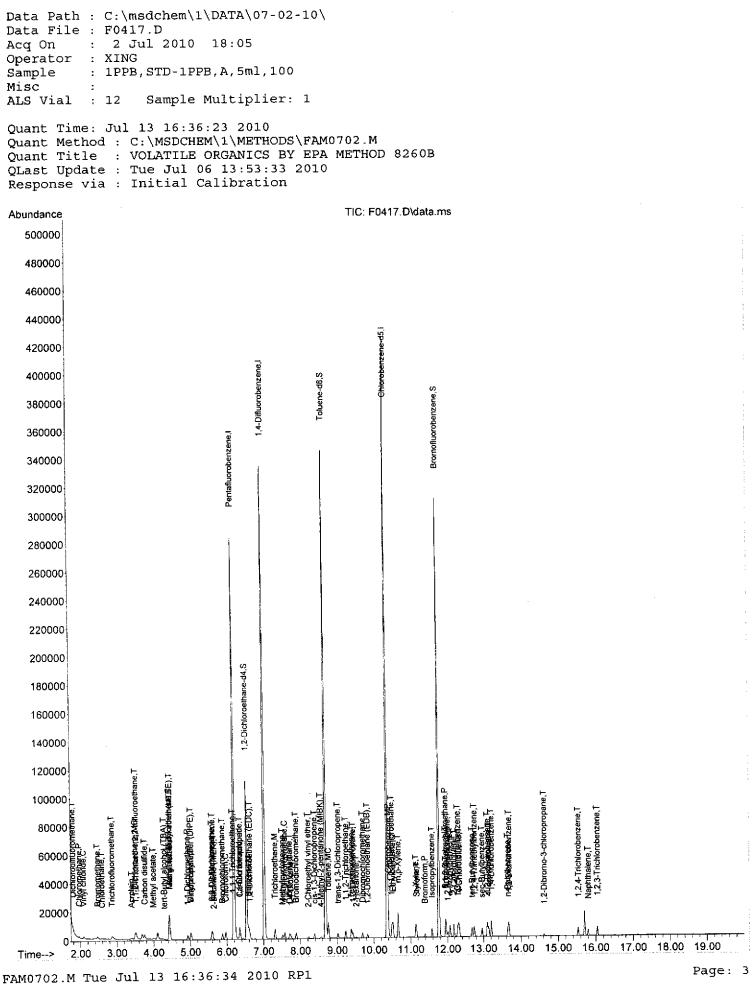

.

FAM0702.M Tue Jul 13 16:29:38 2010 RP1

Data Path : C:\msdchem\l\DATA\07-02-10\ Data File : F0413.D Acq On : 2 Jul 2010 16:14 Operator : XING Sample : 200PPB,STD-200PPB,A,5mL,100 Misc : ALS Vial : 12 Sample Multiplier: 1 Quant Time: Jul 13 16:29:20 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
45) Tetrachloroethene	9.391	166	417577	199.22 UG	#	99
46) 1,3-Dichloropropane	9.432	76	525174	202.66 UG		100
47) 2-Hexanone	9.523	43	186991	229.81 UG		96
48) Dibromochloromethan	e 9.696	129	596926	213.59 UG		100
49) 1,2-Dibromoethane (1		107	402352	207.34 UG		100
51) Chlorobenzene	10.396	112	1265366	177.60 UG	#	100
52) 1,1,1,2-Tetrachloro	ethane 10.498	131	567914	185.56 UG	#	98
53) Ethylbenzene	10.518	91	1775585	202.57 UG		99
54) m,p-Xylene	10.660	106	1423912	391.45 UG		93
55) o-Xylene	11.137		730706	217.87 UG		93
56) Styrene	11.158		1329001	212.24 UG		96
57) Bromoform	11.391	173	325964	219.44 UG	#	100
58) Isopropylbenzene	11.574	105	1739878	218.40 UG		100
60) 1,1,2,2-Tetrachloro			392848	174.91 UG		99
61) Bromobenzene	11.950		566496	189.60 UG	#	35
62) 1,2,3-Trichloroprop	ane 12.000	75	285037	178.91 UG	#	100
63) n-Propylbenzene	12.071	91	1705621	210.87 UG	#	91
64) 2-Chlorotoluene	12,183	91	1227555m	198.97 UG		
65) 1,3,5-Trimethylbenz	ene 12.295	105	1487200	215.26 UG		99
66) 4-Chlorotoluene	12.315	91	1456780	191.92 UG	#	97
67) tert-Butylbenzene	12.691	119	1292512	226.28 UG	#	100
68) 1,2,4-Trimethylbenz	ene 12.752	105	1579535	213.37 UG		99
69) sec-Butylbenzene	12.965	105	1534866	221.89 UG		99
70) 1,3-Dichlorobenzene	13.107	146	994863	186.54 UG	#	100
71) 4-Isopropyltoluene	13.137	119	1521871	221.98 UG	#	99
72) 1,4-Dichlorobenzene	13.208	146	1053198	185.45 UG		100
73) n-Butylbenzene	13.645	92	569552	223.23 UG	#	91
74) 1,2-Dichlorobenzene	13.675	146	998981	184.59 UG	#	100
75) 1,2-Dibromo-3-chlor		75	85543	222.08 UG	#	82
76) 1,2,4-Trichlorobenz		180	479384	228.40 UG		100
77) Hexachlorobutadiene		225	184426	195.70 UG		100
78) Naphthalene	15.797	128	1768829	228.81 UG		100
79) 1,2,3-Trichlorobenz	ene 16.041	. 180	454002	217.02 UG		100
80) 1,1,2-Trichloro-1,2		101	318523	186.45 UG	#	85
81) Methyl acetate	3.990) 43	195328	175.98 UG	#	97
82) Cyclohexane	6,214			182.07 UG	#	83
83) Methylcyclohexane	7.513	8 55	239350	225.13 UG	#	77

(#) = qualifier out of range (m) = manual integration (+) = signals summed


Duart Method : C:\WSDCHBW(1\WHTHODS\FAMO702.M Quart Title : VoLATIE ORGNNICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QION Response via : Initial Calibration Internal Standards R.T. QION Response via : Initial Calibration Internal Standards R.T. QION Response via : Initial Calibration 1) Pentafluorobenzene 7.026 114 316031 50.00 UG 0.00 50) Chlorobenzene di Compounds 0.01 300 1.2-Dichloroethane-d4 6.528 65 98483 53.98 UG 0.00 Spiked Amount 50.000 Range 43 - 133 Recovery = 942.28 59) Bromofluorobenzene 11.767 95 110523 48.52 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04* Target Compounds Covalue 2) Dichlorodifluoromethane 1.767 95 1693 1.20 UG # 99 3) Chloromethane 2.468 94 1098m 1.17 UG 6) Chloromethane 2.468 94 1098m 1.17 UG 7) Trichorofluoromethane 2.589 64 839 1.31 UG # 99 7) Trichorofluoromethane 2.669 950 18.99 UG # 60 8) Acrolein 3.402 56 950 18.99 UG # 60 9) Tricholoroethane 2.689 64 8391 1.17 UG	Data Path : C:\msdchem\l\DATA\ Data File : F0417.D Acq On : 2 Jul 2010 18:05 Operator : XING Sample : 1PPB,STD-1PPB,A,Sm Misc : ALS Vial : 12 Sample Multip Quant Time: Jul 13 16:36:23 20	l,100 lier: 1						
1) Pentafluorobenzene 6.203 168 192156 50.00 0G 0.00 31) 1,4-Difluorobenzene-d5 10.366 117 279638 50.00 0G 0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.528 65 98483 53.98 0G 0.00 Spiked Amount 50.000 Range 43 -113 Recovery = 94.22% 41) Toluene-d8 8.691 98 259848 47.11 0G 0.01 Spiked Amount 50.000 Range 43 -113 Recovery = 94.22% 59) Bromofluorobenzene 11.767 95 110523 48.52 0.00 99 3) Chloromethane 1.787 85 1693 1.20 0G 99 3) Chloromethane 1.960 1055m 1.91 00 90 4) Vinyl chloride 2.082 62 1392 1.26 0G # 96 6) Chloroethane 2.663 101 3034 1.20 0G # 36 7) Trichloroflaromethane 2.679	Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Tue Jul 06 13:5	THODS\FAM(CS BY EPA 3:33 2010						
1) Pentafluorobenzene 6.203 168 192156 50.00 0G 0.00 31) 1,4-Difluorobenzene-d5 10.366 117 279638 50.00 0G 0.00 System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.528 65 98483 53.98 0G 0.00 Spiked Amount 50.000 Range 43 -113 Recovery = 94.22% 41) Toluene-d8 8.691 98 259848 47.11 0G 0.01 Spiked Amount 50.000 Range 43 -113 Recovery = 94.22% 59) Bromofluorobenzene 11.767 95 110523 48.52 0.00 99 3) Chloromethane 1.787 85 1693 1.20 0G 99 3) Chloromethane 1.960 1055m 1.91 00 90 4) Vinyl chloride 2.082 62 1392 1.26 0G # 96 6) Chloroethane 2.663 101 3034 1.20 0G # 36 7) Trichloroflaromethane 2.679	Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
System Monitoring Compounds 30 1,2-Dichloroethane-d4 6.528 65 98483 53.98 UG 0.00 Spiked Amount 50.000 Range 43 - 133 Recovery = 107.96% 41) Toluene-d8 8.691 98 259848 47.11 UG 0.01 Spiked Amount 50.000 Range 39 - 137 Recovery = 94.22% 59 50 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04% 0.00 2) Dichlorodifluoromethane 1.767 95 110523 48.52 UG 0.00 3) Chloromethane 1.787 85 1693 1.20 UG 99 3) Chloromethane 2.680 50 1055m 1.19 UG 90 4) Viyl Chlorofluoromethane 2.683 101 3034 1.20 UG # 38 Acrolein 3.402 56 950 18.99 UG # 100 11 Carbon disulfide 3.757 76 4980 1.27 UG	1) Pentafluorobenzene	6.203	168	192156	50.00	UG		0.00
System Monitoring Compounds 30 1,2-Dichloroethane-d4 6.528 65 98483 53.98 UG 0.00 Spiked Amount 50.000 Range 43 - 133 Recovery = 107.96% 41) Toluene-d8 8.691 98 259848 47.11 UG 0.01 Spiked Amount 50.000 Range 39 - 137 Recovery = 94.22% 59 50 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04% 0.00 2) Dichlorodifluoromethane 1.767 95 110523 48.52 UG 0.00 3) Chloromethane 1.787 85 1693 1.20 UG 99 3) Chloromethane 2.680 50 1055m 1.19 UG 90 4) Viyl Chlorofluoromethane 2.683 101 3034 1.20 UG # 38 Acrolein 3.402 56 950 18.99 UG # 100 11 Carbon disulfide 3.757 76 4980 1.27 UG	31) 1,4-Difluorobenzene	7.026	114	316031	50.00	UG		0.00
System Monitoring Compounds 30 1,2-Dichloroethane-d4 6.528 65 98483 53.98 UG 0.00 Spiked Amount 50.000 Range 43 - 133 Recovery = 107.96% 41) Toluene-d8 8.691 98 259848 47.11 UG 0.01 Spiked Amount 50.000 Range 39 - 137 Recovery = 94.22% 59 50 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04% 0.00 2) Dichlorodifluoromethane 1.767 95 110523 48.52 UG 0.00 3) Chloromethane 1.787 85 1693 1.20 UG 99 3) Chloromethane 2.680 50 1055m 1.19 UG 90 4) Viyl Chlorofluoromethane 2.683 101 3034 1.20 UG # 38 Acrolein 3.402 56 950 18.99 UG # 100 11 Carbon disulfide 3.757 76 4980 1.27 UG	50) Chlorobenzene-d5	10.366	117	279638	50.00	UG		0.00
10) 1,2-Dichloroethame-d4 6.528 65 98483 53.98 0.00 Spiked Amount 50.000 Range 43 133 Recovery = 107.96% 41) Toluene-d8 8.691 98 259848 47.11 UG 0.01 Spiked Amount 50.000 Range 23 -145 Recovery = 94.22% 59) Bromofluorobenzene 1.1767 95 110523 48.52 UG 0.00 Spiked Amount 50.000 Range 23 -145 Recovery = 97.04% Target Compounds Qvalue Qvalue Qvalue 99 3) Chloroethane 2.082 62 1392 1.26 UG # 96 6) Chloroethane 2.589 64 839 1.31 UG # 96 7) Trichlorofluoromethane 2.663 101 3034 1.20 UG # 66 9) 1,1-Dichorofluoromethane 3.603 96 1621 1.27 <ug< td=""> 100</ug<>								
41) Toluene-d8 8.691 98 259848 47.11 0 0.01 Spiked Amount 50.00 Range 39 - 137 Recovery = 94.22% 59) Bromofluorobenzene 11.767 95 110523 48.52 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04% 2) Dichlorodifluoromethane 1.767 85 1693 1.20 UG 99 3) Chloromethane 1.960 50 Torgomethane 2.468 94 1098m 1.17 UG 6) Choroethane 2.659 64 839 1.31 UG 99 7 Trichlorofluoromethane 2.653 101 3034 1.20 UG # 6) Choroethane 3.603 96 1621 1.27 UG 100 11 Carbon disulfide 3.757 76 4980 1.27 UG 100 12 Vinyl acetate 5.016 43 3831 1.09 UG # 99 12 Viny	System Monitoring Compounds	6 629	65	00/00	52 00	UC.		0 00
41) Toluene-d8 8.691 98 259848 47.11 0 0.01 Spiked Amount 50.00 Range 39 - 137 Recovery = 94.22% 59) Bromofluorobenzene 11.767 95 110523 48.52 UG 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 97.04% 2) Dichlorodifluoromethane 1.767 85 1693 1.20 UG 99 3) Chloromethane 1.960 50 Torgomethane 2.468 94 1098m 1.17 UG 6) Choroethane 2.659 64 839 1.31 UG 99 7 Trichlorofluoromethane 2.653 101 3034 1.20 UG # 6) Choroethane 3.603 96 1621 1.27 UG 100 11 Carbon disulfide 3.757 76 4980 1.27 UG 100 12 Vinyl acetate 5.016 43 3831 1.09 UG # 99 12 Viny	Spiked Amount 50 000	0.520 Pange 43	כס ברו -	JO403 Recove	33.38	103	968	0.00
Target CompoundsQvalue2) Dichlorodifluoromethane1.7878516931.20UG993) Chloromethane1.960501055m1.19UG4) Vinyl chloride2.0826213921.26UG#965) Bromomethane2.468941098m1.17UG#386) Chloroethane2.589648391.31UG#997) Trichlorofluoromethane2.66310130341.20UG#388) Acrolein3.4025695018.99UG#10011) Carbon disulfide3.7577649801.27UG#10012) Vinyl acetate5.0164338311.09UG#9914) Acrylonitrile4.42753820719.96UG#10015) tert-Butyl alcohol (TBA)4.28559287m2.31UG16) trans-1,2-Dichloroethene4.9246334211.29UG9919) Diisopropyl ether (DIPE)5.0164535240.94UG#10020cis-1,2-Dichloroethene5.6947721441.10UG9521) 2,2-Dichloroptopane5.5947721441.00UG#9622) 2-Butanone (MEK)5.645434840.95UG10023) Bromochloromethane5.8791281.24UG99 <td< td=""><td>41) Toluene-d8</td><td>Range 43 8.691</td><td>98</td><td>259848</td><td>47.11</td><td>UG .</td><td>200</td><td></td></td<>	41) Toluene-d8	Range 43 8.691	98	259848	47.11	UG .	200	
Target CompoundsQvalue2) Dichlorodifluoromethane1.7878516931.20UG993) Chloromethane1.960501055m1.19UG4) Vinyl chloride2.0826213921.26UG#965) Bromomethane2.468941098m1.17UG#386) Chloroethane2.589648391.31UG#997) Trichlorofluoromethane2.66310130341.20UG#388) Acrolein3.4025695018.99UG#10011) Carbon disulfide3.7577649801.27UG#10012) Vinyl acetate5.0164338311.09UG#9914) Acrylonitrile4.42753820719.96UG#10015) tert-Butyl alcohol (TBA)4.28559287m2.31UG16) trans-1,2-Dichloroethene4.9246334211.29UG9919) Diisopropyl ether (DIPE)5.0164535240.94UG#10020cis-1,2-Dichloroethene5.6947721441.10UG9521) 2,2-Dichloroptopane5.5947721441.00UG#9622) 2-Butanone (MEK)5.645434840.95UG10023) Bromochloromethane5.8791281.24UG99 <td< td=""><td>Spiked Amount 50,000</td><td>Range 39</td><td>- 137</td><td>Recove</td><td>rv =</td><td>94.</td><td>22%</td><td>0.02</td></td<>	Spiked Amount 50,000	Range 39	- 137	Recove	rv =	94.	22%	0.02
Target CompoundsQvalue2) Dichlorodifluoromethane1.7878516931.20UG993) Chloromethane1.960501055m1.19UG4) Vinyl chloride2.0826213921.26UG#965) Bromomethane2.468941098m1.17UG#386) Chloroethane2.589648391.31UG#997) Trichlorofluoromethane2.66310130341.20UG#388) Acrolein3.4025695018.99UG#10011) Carbon disulfide3.7577649801.27UG#10012) Vinyl acetate5.0164338311.09UG#9914) Acrylonitrile4.42753820719.96UG#10015) tert-Butyl alcohol (TBA)4.28559287m2.31UG16) trans-1,2-Dichloroethene4.9246334211.29UG9919) Diisopropyl ether (DIPE)5.0164535240.94UG#10020cis-1,2-Dichloroethene5.6947721441.10UG9521) 2,2-Dichloroptopane5.5947721441.00UG#9622) 2-Butanone (MEK)5.645434840.95UG10023) Bromochloromethane5.8791281.24UG99 <td< td=""><td>59) Bromofluorobenzene</td><td>11.767</td><td>95</td><td>110523</td><td>48.52</td><td>UG</td><td></td><td>0.00</td></td<>	59) Bromofluorobenzene	11.767	95	110523	48.52	UG		0.00
Target CompoundsQvalue2) Dichlorodifluoromethane1.7878516931.20UG993) Chloromethane1.960501055m1.19UG4) Vinyl chloride2.0826213921.26UG#965) Bromomethane2.468941098m1.17UG#386) Chloroethane2.589648391.31UG#997) Trichlorofluoromethane2.66310130341.20UG#388) Acrolein3.4025695018.99UG#10011) Carbon disulfide3.7577649801.27UG#10012) Vinyl acetate5.0164338311.09UG#9914) Acrylonitrile4.42753820719.96UG#10015) tert-Butyl alcohol (TBA)4.28559287m2.31UG16) trans-1,2-Dichloroethene4.9246334211.29UG9919) Diisopropyl ether (DIPE)5.0164535240.94UG#10020cis-1,2-Dichloroethene5.6947721441.10UG9521) 2,2-Dichloroptopane5.5947721441.00UG#9622) 2-Butanone (MEK)5.645434840.95UG10023) Bromochloromethane5.8791281.24UG99 <td< td=""><td>Spiked Amount 50.000</td><td>Range 23</td><td>- 145</td><td>Recove</td><td>ry =</td><td>97.</td><td>04%</td><td></td></td<>	Spiked Amount 50.000	Range 23	- 145	Recove	ry =	97.	04%	
2) Dichlorodifluoromethane 1.787 85 1693 1.20 UG 99 3) Chloromethane 1.960 50 1055m 1.19 UG 4 4) Vinyl chloride 2.082 62 1392 1.26 UG # 96 5) Bromomethane 2.468 94 1098m 1.17 UG # 38 6) Chloroethane 2.589 64 839 1.31 UG # 38 8) Accolein 3.402 56 950 18.99 UG # 60 11) Carbon disulfide 3.757 76 4980 1.27 UG # 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG # 100 16) trans-1,2-Dichloroethane 4.924 63 3421 1.29 UG # 100 100 101 11								
3) Chloromethane 1.960 50 1055m 1.19 UG 4) Vinyl chloride 2.082 62 1392 1.26 UG # 96 5) Bromomethane 2.668 94 1098m 1.17 UG # 38 6) Chloroethane 2.663 101 3034 1.20 UG # 38 8) Acrolein 3.402 56 950 18.99 UG # 66 9) 1,1-Dichloroethene 3.503 96 1621 1.27 UG # 100 112 Vinyl acetate 5.016 43 3831 1.09 UG # 99 14) Acrylonitrile 4.427 55 9277 1.23 UG # 100 15 tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG # 100 16 trans-1,2-Dichloroethane 4.927 96 1218 1.07 UG # 99 19) Diisopropyl ether (DIP							Qva	
4) Vinyl chloride 2.082 62 1392 1.26 UG # 96 5) Bromomethane 2.468 94 1098m 1.17 UG 99 7) Trichlorofluoromethane 2.863 101 3034 1.20 UG # 38 8) Accolein 3.402 56 950 18.99 UG # 66 91 1.1-Dichloroethene 3.503 96 1621 1.27 UG # 100 11) Carbon disulfide 3.757 76 4980 1.27 UG # 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 99 14) Acrylonitrile 4.427 53 8207 19.96 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG # 100 16) trans-1.2-Dichloroethene 4.427 73 5384 1.17 UG 100 100 100 100	•							99
5) Brommethane 2.468 94 109m 1.17 06 6) Chloroethane 2.863 101 3034 1.20 UG # 38 8) Acrolein 3.402 56 950 18.99 UG # 66 91 1.1-Dichloroethene 3.503 96 1621 1.27 UG # 100 11) Carbon disulfide 3.757 76 4980 1.27 UG # 100 12) Vinyl acetate 5.016 43 381 1.09 UG # 99 14) Acrylonitrile 4.427 53 8207 19.96 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG # 100 16) trans-1.2-Dichloroethene 4.427 96 1816 1.07 UG # 99 10) Disopropyl ether (DIPE) 5.016 45 3421 1.29 UG # 96 212 2.Bichlo	3) Chloromethane							n .c
b) Action 3.422 30 13.5 13.5 13.5 14.5 10 9) 1,1-Dichloroethene 3.537 76 4980 1.27 UG 100 11) Carbon disulfide 3.757 76 4980 1.27 UG 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 100 12) Vinyl acetate 5.016 43 3821 1.09 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 17) Methyl tert-butyl ethe. 4.427 63 3421 1.29 UG 99 19) Disopropyl ether (DIPE) 5.016 45 3424 0.94 UG # 100 2.2-Dichloropenpane 5.594 77 2144 1.10 UG #	4) Vinyl chloride	2.082	62	1392 1008m			Ħ	96
b) Action 3.422 30 13.5 13.5 13.5 14.5 10 9) 1,1-Dichloroethene 3.537 76 4980 1.27 UG 100 11) Carbon disulfide 3.757 76 4980 1.27 UG 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 100 12) Vinyl acetate 5.016 43 3821 1.09 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 17) Methyl tert-butyl ethe. 4.427 63 3421 1.29 UG 99 19) Disopropyl ether (DIPE) 5.016 45 3424 0.94 UG # 100 2.2-Dichloropenpane 5.594 77 2144 1.10 UG #	5) Bromomethane	2.400	94	10960	1 21			90
b) Action 3.422 30 13.5 13.5 13.5 14.5 10 9) 1,1-Dichloroethene 3.537 76 4980 1.27 UG 100 11) Carbon disulfide 3.757 76 4980 1.27 UG 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 100 12) Vinyl acetate 5.016 43 3821 1.09 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 17) Methyl tert-butyl ethe. 4.427 63 3421 1.29 UG 99 19) Disopropyl ether (DIPE) 5.016 45 3424 0.94 UG # 100 2.2-Dichloropenpane 5.594 77 2144 1.10 UG #	5) Unioroeunane 7) Trichlorofluoromethane	2.209	101	3034	1 20		#	
9) 1,1-Dichloroethene 3.503 96 1621 1.27 UG 100 11) Carbon disulfide 3.757 76 4980 1.27 UG 100 12) Vinyl acctate 5.016 43 3831 1.09 UG # 99 14) Acrylonitrile 4.427 53 8207 19.96 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 100 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 99 19) Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG # 100 20 cis-1,2-Dichloroethane 5.604 96 1816 1.07 UG # 95 21 2,2-Dichloropropane 5.594 77 2144 1.10 UG 96 25) Chloroform 5.970 83 4240m 1.24 UG 26 26) 1,1-Dichloropropene 6.346 17 3236 </td <td> Arrolain </td> <td>2.003</td> <td>56</td> <td>950</td> <td>18 99</td> <td></td> <td></td> <td></td>	 Arrolain 	2.003	56	950	18 99			
11) Carbon disulfide 3.757 76 4980 1.27 UG 100 12) Vinyl acetate 5.016 43 3831 1.09 UG # 99 14) Acrylonitrile 4.427 53 8207 19.96 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 99 17) Methyl tert-butyl ethe 4.437 73 5384 1.17 UG 100 18) 1,1-Dichloroethane 4.924 63 3421 1.29 UG 99 19) Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG # 100 20) cis-1,2-Dichloropthene 5.604 96 1816 1.07 UG # 95 21) 2,2-Dichloropropane 5.879 128 1595 1.29 UG # 96 25) Chloroform 5.879 <td></td> <td>3.503</td> <td>96</td> <td>1621</td> <td>1.27</td> <td>ÜG</td> <td></td> <td></td>		3.503	96	1621	1.27	ÜG		
12) Vinyl acetate 5.016 43 3831 1.09 UG # 99 14) Acrylonitrile 4.427 53 8207 19.96 UG # 100 15) tert-Butyl alcohol (TBA) 4.285 59 287m 2.31 UG 100 16) trans-1,2-Dichloroethene 4.427 96 2178m 1.23 UG 100 17) Methyl tert-butyl ethe 4.437 73 5384 1.17 UG 100 18) 1,1-Dichloroethane 4.924 63 3421 1.29 UG 99 19) Diisopropyl ether (DIPE) 5.064 96 1816 1.07 UG # 95 21) 2,2-Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2-Butanone (MEK) 5.645 43 484 0.95 UG 100 23) Bromochloromethane 5.879 128 1595 1.29 UG # 96 25) Chloroform 5.970 83 4240m 1.24 UG 26 1,1,1-Trichloroethane 6.346 17<	11) Carbon disulfide	3.757	76	4980	1.27	UG	,,	
17)Methyl tert-butyl ethe 4.437 73 5384 1.17 UG 100 18) 1.1 -Dichloroethane 4.924 63 3421 1.29 UG 99 19)Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG $\#$ 100 20)cis-1,2-Dichloroethene 5.604 96 1816 1.07 UG $\#$ 95 21) 2.2 -Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2 -Butanone (MEK) 5.645 43 484 0.95 UG 100 23)Bromochloromethane 5.879 128 1595 1.29 UG $\#$ 96 26)Chloroform 5.970 83 $4240m$ 1.24 UG UG 26 26) $1, 1.1$ -Trichloroethane 6.163 97 3509 1.16 UG $\#$ 85 29) $1, 2$ -Dichloropropene 6.346 117 3236 1.12 UG 99 28) $1, 1$ -Dichloropthane (EDC) 6.620 62 $3487m$ 1.26 UG32)Benzene 6.589 78 7725 1.23 UG 100 33)Trichloroethane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.7878 83 2846 1.11 UG 499 38)	12) Vinvl acetate	5.016	43	3831	1.09	UG	#	99
17)Methyl tert-butyl ethe 4.437 73 5384 1.17 UG 100 18) 1.1 -Dichloroethane 4.924 63 3421 1.29 UG 99 19)Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG $\#$ 100 20)cis-1,2-Dichloroethene 5.604 96 1816 1.07 UG $\#$ 95 21) 2.2 -Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2 -Butanone (MEK) 5.645 43 484 0.95 UG 100 23)Bromochloromethane 5.879 128 1595 1.29 UG $\#$ 96 26)Chloroform 5.970 83 $4240m$ 1.24 UG UG 26 26) $1, 1.1$ -Trichloroethane 6.163 97 3509 1.16 UG $\#$ 85 29) $1, 2$ -Dichloropropene 6.346 117 3236 1.12 UG 99 28) $1, 1$ -Dichloropthane (EDC) 6.620 62 $3487m$ 1.26 UG32)Benzene 6.589 78 7725 1.23 UG 100 33)Trichloroethane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.7878 83 2846 1.11 UG 499 38)	14) Acrylonitrile	4.427	53	8207	19.96	UG	#	100
17)Methyl tert-butyl ethe 4.437 73 5384 1.17 UG 100 18) 1.1 -Dichloroethane 4.924 63 3421 1.29 UG 99 19)Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG $\#$ 100 20)cis-1,2-Dichloroethene 5.604 96 1816 1.07 UG $\#$ 95 21) 2.2 -Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2 -Butanone (MEK) 5.645 43 484 0.95 UG 100 23)Bromochloromethane 5.879 128 1595 1.29 UG $\#$ 96 26)Chloroform 5.970 83 $4240m$ 1.24 UG UG 26 26) $1, 1.1$ -Trichloroethane 6.163 97 3509 1.16 UG $\#$ 85 29) $1, 2$ -Dichloropropene 6.346 117 3236 1.12 UG 99 28) $1, 1$ -Dichloropthane (EDC) 6.620 62 $3487m$ 1.26 UG32)Benzene 6.589 78 7725 1.23 UG 100 33)Trichloroethane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.776 93 1374 1.550 95 36) $1, 4$ -Dioxane 7.7878 83 2846 1.11 UG 499 38)	15) tert-Butyl alcohol (TBA)	4.285	59	287m	2.31	UG		
18) 1.1-Dichloroethane 4.924 63 3421 1.29 UG 99 19) Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG # 100 20) cis-1,2-Dichloroethene 5.604 96 1816 1.07 UG # 95 21) 2,2-Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2-Butanone (MEK) 5.645 43 484 0.95 UG 100 23) Bromochloromethane 5.879 128 1595 1.29 UG # 96 26) 1,1.1-Trichloroethane 6.163 97 3509 1.16 UG # 58 27) Carbon tetrachloride 6.346 117 3236 1.12 UG 99 28) 1,2-Dichloroethane (EDC) 6.620 62 3487m 1.26 UG # 80 39) 1,2-Dichloroptopane 7.574 63 1520 1.13 UG # 99 35) Dib			96					
19) Diisopropyl ether (DIPE) 5.016 45 3524 0.94 UG # 100 20) cis-1,2-Dichloroethene 5.604 96 1816 1.07 UG # 95 21) 2,2-Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2-Butanone (MEK) 5.645 43 484 0.95 UG # 96 23) Bromochloromethane 5.879 128 1595 1.29 UG # 96 25) Chloroform 5.970 83 4240m 1.24 UG # 58 27) Carbon tetrachloride 6.163 97 3509 1.16 UG # 58 29) 1,2-Dichloropropene 6.346 117 3236 1.12 UG 99 28 1,2-Dichloroptopane 7.310 95 2238 1.21 UG # 80 34) 1,2-Dichloroptopane 7.574 63 1520 1.13 UG 95 36) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
20) $cis-1, 2-Dichloroethene$ 5.6049618161.07UG#9521)2,2-Dichloropropane5.5947721441.10UG9522)2-Butanone (MEK)5.645434840.95UG10023)Bromochloromethane5.87912815951.29UG#9625)Chloroform5.970834240m1.24UG2626)1,1.1-Trichloroethane6.1639735091.16UG#5827)Carbontetrachloride6.34611732361.12UG9928)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG10033)Trichloroethene7.3109522381.21UG#9935)Dibromomethane7.7669313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG440)4-Methyl-2-pentanone (8.55949821.14UG9936)trans-1,3-Dichloropropene8.3867517230.81UG99							ш	
21) 2,2-Dichloropropane 5.594 77 2144 1.10 UG 95 22) 2-Butanone (MEK) 5.645 43 484 0.95 UG 100 23) Bromochloromethane 5.879 128 1595 1.29 UG # 96 25) Chloroform 5.970 83 4240m 1.24 UG 26) 1,1.1-Trichloroethane 6.163 97 3509 1.16 UG # 85 27) Carbon tetrachloride 6.346 117 3236 1.12 UG 99 28) 1,1-Dichloropropene 6.620 62 3487m 1.26 UG 100 30) Trichloroethane (EDC) 6.620 62 3487m 1.26 UG 100 33) Trichloropropane 7.574 63 1520 1.13 UG # 99 35) Dibromomethane 7.878 83 2846 1.11 UG # 99 36) 1,4-Dioxane 7.878 83 2846 1.11 <td< td=""><td>19) Diisopropyl ether (DIPE)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	19) Diisopropyl ether (DIPE)							
22)2-Butanone (MEK)5.645434840.95UG10023)Bromochloromethane5.87912815951.29UG#9625)Chloroform5.970834240m1.24UG4026)1,1,1-Trichloroethane6.1639735091.16UG#5827)Carbon tetrachloride6.34611732361.12UG9928)1,2-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG0032)Benzene6.5897877251.23UG10033)Trichloroptopane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG40)4-Methyl-2-pentanone (8.55943967m0.97UG41)4-Methyl-2-pentanone (8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.02675 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td></t<>							11	
23)Bromochloromethane5.87912815951.29UG#9625)Chloroform5.970834240m1.24UG26)1,1,1-Trichloroethane6.1639735091.16UG#5827)Carbon tetrachloride6.34611732361.12UG9928)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG0032)Benzene6.5897877251.23UG10033)Trichloroptopane7.5746315201.13UG#9936)1,4-Dioxane7.7069313741.15UG#9036)1,4-Dioxane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#40)4-Methyl-2-pentanone(8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG#9745)Tetrachloroethene9.391 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
25)Chloroform5.970834240m1.24UG26)1,1,1-Trichloroethane6.1639735091.16UG#5827)Carbon tetrachloride6.34611732361.12UG9928)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG10032)Benzene6.5897877251.23UG10033)Trichloroethene7.3109522381.21UG#8034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.3867517230.81UG#9739)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG9841)trans-1,3-Dichloropropene9.0267519220.87UG9842)trans-1,3-Dichloropropene9.0267519220.87UG9543)trans-1,3-Dichloropropene9.0267519220.87UG9544) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>#</td><td></td></t<>							#	
26)1,1,1-Trichloroethane6.1639735091.16UG#5827)Carbon tetrachloride6.34611732361.12UG9928)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG10033)Benzene6.5897877251.23UG10034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG#9036)1,4-Dioxane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG9740)4-Methyl-2-pentanone (8.55943967m0.97UG41)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97							.,	
27)Carbon tetrachloride6.34611732361.12UG9928)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG32)Benzene6.5897877251.23UG10033)Trichloroethene7.3109522381.21UG#8034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG431.1,2-Trichloroethane9.2398314061.20UG9841)1,1,2-Trichloroethane9.2398314061.20UG499745)Tetrachloroethene9.39116622381.26UG#97			97	3509	1.16	UG	#	58
28)1,1-Dichloropropene6.3467521891.18UG#8529)1,2-Dichloroethane (EDC)6.620623487m1.26UG32)Benzene6.5897877251.23UG10033)Trichloroethene7.3109522381.21UG#8034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG9841)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97		6.346	117	3236				
32)Benzene6.5897877251.23UG10033)Trichloroethene7.3109522381.21UG#8034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG#9139)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG#42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97	28) 1,1-Dichloropropene						#	85
33)Trichloroethene7.3109522381.21UG#8034)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG9842)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97	29) 1,2-Dichloroethane (EDC)							
34)1,2-Dichloropropane7.5746315201.13UG#9935)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone (8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97								
35)Dibromomethane7.7069313741.15UG9536)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone(8.55943967m0.97UG9342)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97								
36)1,4-Dioxane7.736881411117.70UG#10037)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone(8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97							Ħ	
37)Bromodichloromethane7.8788328461.11UG#9938)2-Chloroethyl vinyl ether8.21363708m0.97UG39)cis-1,3-Dichloropropene8.3867517230.81UG#9740)4-Methyl-2-pentanone(8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG#97							#	
38)2-Chloroethyl vinyl ether8.21363708m0.97 UG39)cis-1,3-Dichloropropene8.3867517230.81 UG#9740)4-Methyl-2-pentanone(8.55943967m0.97 UG9942)Toluene8.7629249821.14 UG9943)trans-1,3-Dichloropropene9.0267519220.87 UG9844)1,1,2-Trichloroethane9.2398314061.20 UG9545)Tetrachloroethene9.39116622381.26 UG#97								
39) cis-1,3-Dichloropropene8.3867517230.81 UG #9740) 4-Methyl-2-pentanone (8.55943967m0.97 UG42) Toluene8.7629249821.14 UG9943) trans-1,3-Dichloropropene9.0267519220.87 UG9844) 1,1,2-Trichloroethane9.2398314061.20 UG9545) Tetrachloroethene9.39116622381.26 UG #97								
40)4-Methyl-2-pentanone8.55943967m0.97UG42)Toluene8.7629249821.14UG9943)trans-1,3-Dichloropropene9.0267519220.87UG9844)1,1,2-Trichloroethane9.2398314061.20UG9545)Tetrachloroethene9.39116622381.26UG# 97							#	97
42) Toluene8.7629249821.14UG9943) trans-1,3-Dichloropropene9.0267519220.87UG9844) 1,1,2-Trichloroethane9.2398314061.20UG9545) Tetrachloroethene9.39116622381.26UG#97								
43) trans-1,3-Dichloropropene9.0267519220.87 UG9844) 1,1,2-Trichloroethane9.2398314061.20 UG9545) Tetrachloroethene9.39116622381.26 UG#97					1.14	UG		99
44) 1,1,2-Trichloroethane9.2398314061.20UG9545) Tetrachloroethene9.39116622381.26UG#97				1922				
45) Tetrachloroethene 9.391 166 2238 1.26 UG # 97	44) 1,1,2-Trichloroethane	9.239						
46) 1,3-Dichloropropane 9.432 76 2290 1.04 UG 99							#	
	46) 1,3-Dichloropropane	9.432	76	2290	1.04	UG		99

FAM0702.M Tue Jul 13 16:36:32 2010 RP1

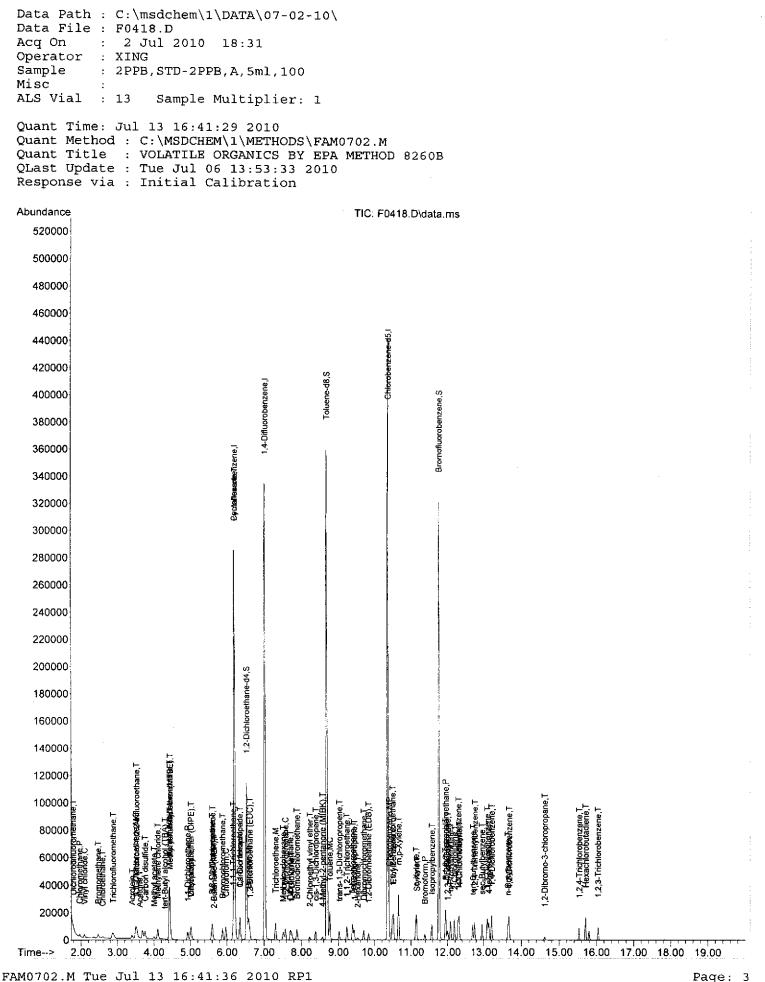
Data Path : C:\msdchem\1\DATA\07-02-10\ Data File : F0417.D Acq On : 2 Jul 2010 18:05 Operator : XING Sample : 1PPB,STD-1PPB,A,5ml,100 Misc ; ALS Vial : 12 Sample Multiplier: 1 Quant Time: Jul 13 16:36:23 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal StandardsR.T. QION ResponseConc Units Dev(Min)47)2-Hexanone9.52343527m0.76 UG48)Dibromochloromethane9.69612924331.05 UG10049)1,2-Dibromoethane (EDB)9.82810717511.06 UG9951)Chlorobenzene10.3961126698m1.21 UG9953)Ethylbenzene10.48731129171.23 UG9954)m.p-Xylene10.66010658162.07 UG9955)o-Xylene11.157106228110.88 UG9056)Styrene11.157410544640.72 UG10057)Bromoform11.371106227801.20 UG10061)1.2, 2-Tetrachloroethane11.9498322451.29 UG10061)Bromobenzene11.9498527801.20 UG3462)1.2, 3-Trichloropropane12.0017514741.20 UG9864)2-Chlorotoluene12.183915319m1.11 UG9665)1.3, 5-Trimethylbenzene12.29410550130.94 UG9866)1.2, 4-Trimethylbenzene12.26911935750.81 UG9867)tert-Butylbenzene12.26415664980.88 UG</td Internal Standards R.T. QIon Response Conc Units Dev(Min)

(#) = qualifier out of range (m) = manual integration (+) = signals summed

FAM0702.M Tue Jul 13 16:36:32 2010 RP1

Data File : Acq On : Operator :	2 Jul 2010 18:3 XING 2PPB,STD-2PPB,A,5	L nl,100	N					
Quant Method Quant Title QLast Update	Jul 13 16:41:29 20 I : C:\MSDCHEM\1\MI : VOLATILE ORGAN E : Tue Jul 06 13:5 I : Initial Calibra	ETHODS\FA ICS BY EP 53:33 201	A METHO	1 D 8260B				
Internal St	andards		. QIon	Response	Conc Ui	nits	Dev	(Min)
1) Pentai	luorobenzene	6 20	4 168	196973	50 00	UG		0.00
31) 1.4-Di	luorobenzene fluorobenzene bbenzene-d5	7.02	6 114	319419	50.00	UG		0.00
50) Chloro	benzene-d5	10.36	6 117	290053	50.00	ŪG		0.00
System Moni	toring Compounds							
	chloroethane-d4	6.52	8 65	99774	53.35	UG		0.00
Spiked An	ount 50.000	Range 4	3 - 133	Recov			70%	
41) Toluer		8.68			48.69			0.00
	nount 50.000	Range 3	9 - 137	7 Recov 116862	ery =	97.	38%	
•	luorobenzene							0.00
Spiked Ar	nount 50.000	Range 2	3 - 145	Recov	ery =	98.	92%	
							<u> </u>	7
Target Comp		1 70	7 95	2717	2 56	TIC	Qva	lue
3) Chloro	rodifluoromethane	1.78 1.96		2266	$2.56 \\ 2.48$			98 100
	chloride							99
5) Bromor		2.09	2 02 8 94		2.35			
6) Chloro		2.09 2.46 2.58	9 64					97
	lorofluoromethane			6437m				
8) Acrole		3.40						97
	chloroethene	3.50	3 96	2718 3044m	2.33			
10) Acetor		3.60	5 43	919m	2.53			
	n disulfide	3.75	7 76	9058	2.25	UG		100
12) Vinyl	acetate	5.00	6 43	9058 7170 3980m	2.00	UG	#	100
13) Methy	lene chloride			3980m				
14) Acrylo	onitrile	4.42	/ 53	22805	54.12		#	100
15) tert-1	Butyl alcohol (TBA) 4.29		548			#	100
	-1,2-Dichloroethen			4668	2.57		#	100
	l tert-butyl ethe.			10345	2.19 2.33			100
	ichloroethane propyl ether (DIPE	4.92) 5.01		6351 6781	2.33 1.76		#	99 100
	,2-Dichloroethene	5.60		3417	1.96		#	97
	ichloropropane	5.59		4254	2.12		11	97
	anone (MEK)	5.64		1094	2.08			100
	chloromethane	5.87		3007	2.38		#	98
25) Chlor		5.97	0 83	8306	2.36	UG		99
26) 1,1,1	-Trichloroethane	6.16	3 97	6792	2.20		#	58
	n tetrachloride	6,34		6806	2.31			99
	ichloropropene	6.34		4064	2.14		#	85
	ichloroethane (EDC			6710	2.36			99
32) Benze		6.58		14007	2.21			100
	loroethene	7.31		3790	2.03		#	81
	ichloropropane	7.57		2849 2641	2.10 2.20		#	99 96
35) Dibro		7.70		4131	340.93		#	100
36) 1,4-D	ioxane dichloromethane	7.73 7.87		5256	2.02		# #	200
	oroethyl vinyl eth			1204m			π	~~~~
	,3-Dichloropropene			3384	1.57		#	97
	hyl-2-pentanone (.			2037m			.,	
40) 4-Mec 42) Tolue		8.76		9292	2.10			100
	-1,3-Dichloroprope			3537	1.59		#	98
	-Trichloroethane	9.22		2456	2.08			94

FAM0702.M Tue Jul 13 16:41:35 2010 RP1


•

Page: 1

.

Data 1 Acq Or Operat Sample Misc ALS V: Quant Quant Quant	<pre>Path : C:\msdchem\1\DATA\07 File : F0418.D n : 2 Jul 2010 18:31 tor : XING e : 2PPB,STD-2PPB,A,5ml, : ial : 13 Sample Multipli Time: Jul 13 16:41:29 2010 Method : C:\MSDCHEM\1\METH Title : VOLATILE ORGANICS Update : Tue Jul 06 13:53;</pre>	100 er: 1 CODS\FAM(BY EPA					
	nse via : Initial Calibrati						
	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
		9.391	166		2.07 UG	 #	100
	1,3-Dichloropropane		76	4220	1.90 UG	.,	100
			43	1106m	1.59 UG		
	Dibromochloromethane	9.523	129	4443	1.86 UG		100
49)	1,2-Dibromoethane (EDB)	9.828	107	3164	1.90 UG		99
	Chlorobenzene	10.396	112	13312	2.33 UG	#	99
52)	1,1,1,2-Tetrachloroethane	10.498	131	5011	2.04 UG	#	96
53)	Ethylbenzene	10.518	91	12687	1.80 UG		99
54)	m,p-Xylene	10.660	106	10589	3.63 UG		93
55)	o-Xylene	11.137	106	4716m	1.75 UG		
	Styrene	11.158	104	7440	1.48 UG		94
	Bromoform	11.381		2159	1.81 UG	#	99
58)	Isopropylbenzene	11.574	105	10664m	1.67 UG		
60)	1,1,2,2-Tetrachloroethane	11.949	83	3964	2.20 UG		99
61)	Bromobenzene	11.949	156	4872	2.03 UG	#	35
62)	1,2,3-Trichloropropane	12.000	75	2915	2.28 UG	#	100
63)	n-Propylbenzene	12.071	91	11101	1.71 UG	#	91
64)	2-Chlorotoluene	12.183	91	8843m	1.79 UG		
65)	1,3,5-Trimethylbenzene	12.295	105	8552	1.54 UG		98
66)	4-Chlorotoluene	12.315	91	11227	1.84 UG	#	96
	tert-Butylbenzene	12.691	119	7343m	1.60 UG		
	1,2,4-Trimethylbenzene	12.751	105	8382m	1.41 UG		
	sec-Butylbenzene	12.954		8297	1.49 UG	#	93
		13.097		8513	1.99 UG	#	99
	1 1 2	13.137	119	8853m	1.61 UG		
-	1,4-Dichlorobenzene	13.208	146	8753	1.92 UG		98
	n-Butylbenzene	13.645	92	3106m	1.52 UG		
	1,2-Dichlorobenzene	13.675	146	8603	1.98 UG	#	99
	1,2-Dibromo-3-chloropr	14.619	75	545	1.76 UG	#	88
	1,2,4-Trichlorobenzene	15.533	180	2575	1.53 UG		98
	Hexachlorobutadiene	15.706	225	1707m	2.26 UG		~ ~
	1,2,3-Trichlorobenzene	16.041	180	2837	1.69 UG		96
	1,1,2-Trichloro-1,2,2	3.523	101	3268m	2.38 UG		
	Methyl acetate	4.001	43	2139m	2.40 UG		
	Cyclohexane	6.204	56	3713m	2.50 UG	л	
83)	Methylcyclohexane	7.513	55	1568	1.84 UG	# 	46
			_			_	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : Acq On : Operator : Sample : Misc :	13 Jul 2010 10:25 XING 100PPB,STD-100PPB,A,5mL,100
Quant Metho Quant Title QLast Updat	Jul 13 11:56:54 2010 d : C:\MSDCHEM\1\METHODS\FAM0702.M : VOLATILE ORGANICS BY EPA METHOD 8260B e : Tue Jul 06 13:53:33 2010 .a : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

		»	CODE	Stor Tr	~~~~	Dev(min)
	Compound	AvgRF	CCRF	SDEV AL	= d %	
lI	Pentafluorobenzene	1.000	1.000	0.0	81	0.00
2 Т	Dichlorodifluoromethane	0.369	0.385	-4.3	85	0.00
3 P	Chloromethane	0.232	0.221	4.7	85	0.00
4 C	Vinyl chloride	0.287	0.273	4.9	81	0.00
5 T	Bromomethane	0.244	0.242	0.8	86	0.01
6 Т	Chloroethane	0.167	0.166	0.6	86	0.00
7 T	Trichlorofluoromethane	0.659	0.729	-10.6	92	0.00
8 Т	Acrolein	0.013	0.014	-7.7	89	0.00
9 MC	1,1-Dichloroethene	0.331	0.318	3.9	84	0.00
10 T	Acetone	0.092	0.081	12.0	81	0.00
11 T	Carbon disulfide	1.020	0.994	2.5	84	0.00
12 T	Vinyl acetate	0.912	0.926	-1.5	84	0.00
13 T	Methylene chloride	0.401	0.357	11.0	85	0.00
14 T	Acrylonitrile	0.107	0.107	0.0	84	0.01
15 T	tert-Butyl alcohol (TBA)	0.032	0.029	9.4	82	0.00
16 T	trans-1,2-Dichloroethene	0.461	0.437	5.2	85	0.00
17 T	Methyl tert-butyl ether (MT	1.200	1.156	3.7	86	0.00
18 P	1,1-Dichloroethane	0.691	0.641	7.2	84	0.01
19 T	Diisopropyl ether (DIPE)	0,976	1.077	-10.3	85	0.00
20 T	cis-1,2-Dichloroethene	0.443	0.460	-3.8	85	0.00
21 T	2,2-Dichloropropane	0.509	0.556	-9.2	91	0.00
22 T	2-Butanone (MEK)	0.133	0.128	3.8	79	0.01
23 Т	Bromochloromethane	0.321	0.301	6.2	85	0.00
25 C	Chloroform	0.892	0.852	4.5	86	0.00
26 T	1,1,1-Trichloroethane	0.784	0.816	-4.1	89	0.00
27 T	Carbon tetrachloride	0.749	0.809	-8.0	90	0.00
28 T	1,1-Dichloropropene	0.481	0.492	-2.3	84	0.01
29 T	1,2-Dichloroethane (EDC)	0.721	0.694	3.7	87	
30 S	1,2-Dichloroethane-d4	0.475	0.451	5.1	81	0.01
31 I	1,4-Difluorobenzene	1.000	1.000	0.0	82	0.00
32 M	Benzene	0.991	0.945	4.6	84	
33 M	Trichloroethene	0.292	0.295	-1.0	85	
34 C	1,2-Dichloropropane	0.212	0.210	0.9	85	
35 T	Dibromomethane	0.188	0.184	2.1	85	
36 T	1,4-Dioxane	0.002	0.002	0.0	73	
37 T	Bromodichloromethane	0.407	0.424	-4.2	87	
38 T	2-Chloroethyl vinyl ether	0.115	0.128	-11.3	79	
39 T	cis-1,3-Dichloropropene	0.337	0.392	-16.3	84	0.00
40 T	4-Methyl-2-pentanone (MIBK)	0.158	0.172	-8.9	80	
41 S	Toluene-d8	0.873	0.936	-7.2	84	
42 MC	Toluene	0.694	0.705	-1.6	85	
43 T	trans-1,3-Dichloropropene	0.348	0.403	-15.8	84	0.01
43 I 44 T	1,1,2-Trichloroethane	0.185	0.180	2.7	82	
49 I 45 T	Tetrachloroethene	0.281	0.300	-6.8	86	
45 I 46 T	1,3-Dichloropropane	0.348	0.374	-7.5	84	0.00
70 1	T'O DIOUTOFOLDEALAND					

47	Т	2-Hexanone	0.109	0.119	-9.2	77	0.00
48		Dibromochloromethane	0.375	0.420	-12.0	86	0.00
49		1,2-Dibromoethane (EDB)	0.260	0.278	-6.9	83	0.00
1.2	-	-,					
50	т	Chlorobenzene-d5	1.000	1.000	0.0	89	0.00
	MP	Chlorobenzene	0.986	0.880	10.8	86	0.00
52		1,1,1,2-Tetrachloroethane	0,424	0.399	5.9	89	0.00
53		Ethylbenzene	1.213	1.227	-1.2	86	0.00
	Ť	m,p-Xylene	0.503	0.504	-0.2	86	0.00
	T	o-Xylene	0.464	0.515	-11.0	87	0.00
	Ť	Styrene	0.867	0.934	-7.7	87	0.00
	P	Bromoform	0.206	0.211	-2.4	85	0.00
	T	Isopropylbenzene	1.102	1.211	-9.9	88	0.00
	S	Bromofluorobenzene	0.407	0.430	-5.7	92	0.00
	P	1,1,2,2-Tetrachloroethane	0.311	0.302	2.9	94	0.00
	T	Bromobenzene	0.413	0.395	4.4	88	0.00
	T	1,2,3-Trichloropropane	0.220	0.197	10.5	86	0.00
	Ť	n-Propylbenzene	1.119	1.201	-7.3	88.	0.00
	T	2-Chlorotoluene	0.854	0.861	-0.8	87	0.00
	T T	1,3,5-Trimethylbenzene	0.956	1.067	-11.6	89	0.00
	T	4-Chlorotoluene	1.050	1.034	1.5	88	0.00
	, 1 T	tert-Butylbenzene	0.790	0.911	-15.3	88	0.00
	T	1,2,4-Trimethylbenzene	1.024	1.137	-11.0	90	0.00
	, т Э.Т.	sec-Butylbenzene	0.957	1.098	-14.7	88	0.00
) T	1,3-Dichlorobenzene	0,738	0.705	4.5	88	-0.01
	, T	4-Isopropyltoluene	0.949	1.105	-16.4	90	0.00
	2 T	1,4-Dichlorobenzene	0.786	0.748	4.8	87	0.00
	- 1 3 T	n-Butylbenzene	0.353	0.399	-13.0	88	0,00
	1 T	1,2-Dichlorobenzene	0.749	0,724	3.3	89	0.00
	5 T	1,2-Dibromo-3-chloropropane	0.053	0.054	-1.9	86	0.00
	5 T	1,2,4-Trichlorobenzene	0.290	0.322	-11.0	89	0.00
	7 T	Hexachlorobutadiene	0.130	0.130	0.0	90	0.00
	, т 3 Т	Naphthalene	1.070	1.197	-11.9	87	0.00
	эт Эт	1,2,3-Trichlorobenzene	0.290	0.315	-8.6	90	0.00
	, т) Т	1,1,2-Trichloro-1,2,2-trifl	0.236	0.225	4.7	87	0.00
	1 T	Methyl acetate	0.154	0.131	14.9	85	0.01
	2 T	Cyclohexane	0.256	0.230	10.2		0.00
	2 I 3 T	Methylcyclohexane	0.147	0.166	-12.9	87	0.00
_							

(#) = Out of Range SPCC's out = 0 CCC's out = 0

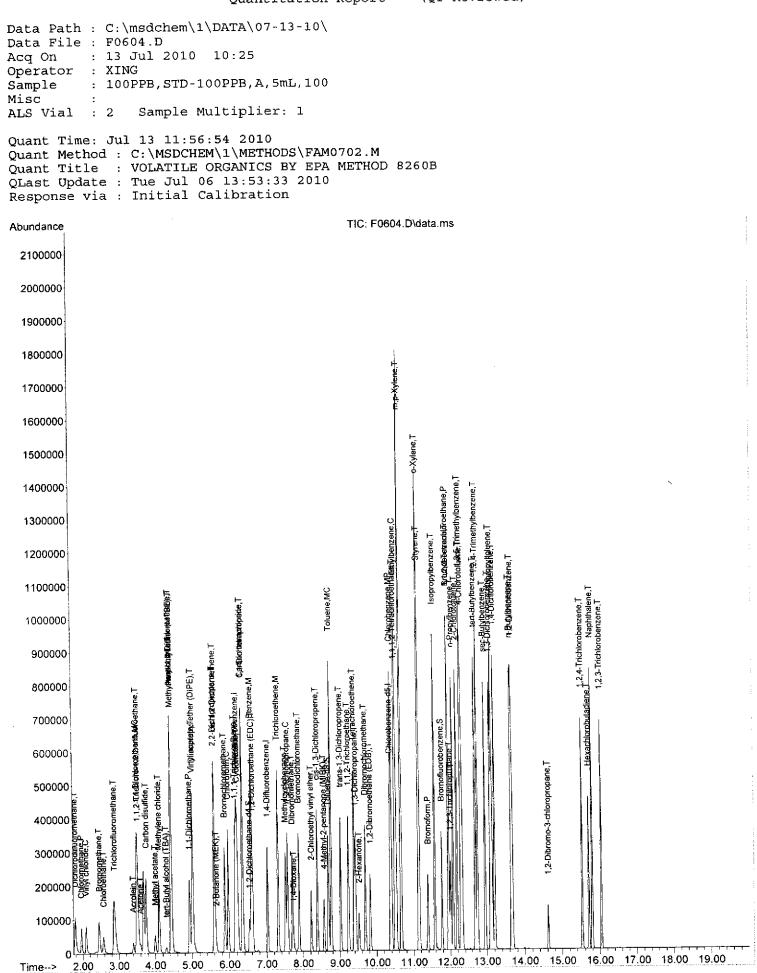
FAM0702.M Tue Jul 13 11:56:58 2010 RP1

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0604.D Acq On : 13 Jul 2010 10:25 Operator : XING Sample : 100PPB,STD-100PPB,A,5mL,100 Misc : ALS Vial : 2 Sample Multiplier: 1 Quant Time: Jul 13 11:56:54 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.20416819002950.00UG0.0031) 1,4-Difluorobenzene7.02611428973650.00UG0.0050) Chlorobenzene-d510.36611730710050.00UG0.00

 System Monitoring Compounds
 6.539
 65
 85693
 47.50
 UG
 0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 95.00%
 95.00%

 41) Toluene-d8
 8.691
 98
 271086
 53.60
 UG
 0.01


 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 107.20%
 107.20%

 59) Bromofluorobenzene
 11.767
 95
 132068
 52.80
 UG
 0.00

 System Monitoring Compounds Spiked Amount 50.000 Range 23 - 145 Recovery = 105.60% Qvalue Target Compounds

Data Path : C:\msdchem\1\DATA\07~13-10\ Data File : F0604.D Acq On : 13 Jul 2010 10:25 Operator : XING Sample : 100PPB,STD-100PPB,A,5mL,100 Misc : ALS Vial : 2 Sample Multiplier: 1 Quant Time: Jul 13 11:56:54 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 45)Tetrachloroethene9.391166173788106.68UG#9946)1,3-Dichloropropane9.43276216521107.50UG10047)2-Hexanone9.5234368788108.77UG9748)Dibromochloromethane9.696129243303112.01UG10049)1,2-Dibromoethane (EDB)9.828107161356106.98UG10051)Chlorobenzene10.39611254047089.25UG#10052)1,1,2-Tetrachloroethane10.49813124486094.13UG#9853)Ethylbenzene10.51891753598101.15UG9954)m,p-Xylene10.660106619391200.34UG9255)o-Xylene11.137106316571111.05UG9256)Styrene11.391173129382102.48UG#10058)Isopropylbenzene11.574105743851109.85UG10060)1,1,2,2-Tetrachloroethane11.94983185570m97.21UG# 57)Bromotorm11.391173129382102.48UG#10058)Isopropylbenzene11.574105743851109.85UG10060)1,2,2-Tetrachloroethane11.94983185570m97.21UG61)Bromobenzene11.94915624280995.61UG#5162)1,2,3-Trichloropropane12.0007512081089.21UG#9163)n-Propylbenzene12.07191737825107.32UG#9164)2-Chlorotoluene12.18391528573m100.80UG9965)1,3,5-Trimethylbenzene12.295105655200111.58UG9966)4-Chlorotoluene12.3159163500098.42UG#10068)1,2,4-Trimethylbenzene12.691119559767115.29UG#10069)sec-Butylbenzene12.955105674621114.74UG#9370)1,3-Dichlorobenzene13.09714643280995.48UG#10071)4-Isopropyltoluene13.64592245344113.13UG#9174)1,2-Dichlorobenzene13.67514644464596.66UG#10075)1,2-Dibromo-3-chloropr...14.6197533077101.03UG#8476)1,2,4-Trichlorobenzen (#) = qualifier out of range (m) = manual integration (+) = signals summed

FAM0702.M Tue Jul 13 11:57:50 2010 RP1

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 07/13/2010

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
METHOD-BLK	AQUEOUS	F0607.D	117	92	93
06674-004	AQUEOUS	F0608.D	126	91	93
06674-005	AQUEOUS	F0609.D	122	94	93
BLK-SPK	AQUEOUS	F0610.D	101	109	106
06728-005MS	AQUEOUS	F0611.D	111	94	93
06728-005MSD	AQUEOUS	F0612.D	114	94	92
06728-001	AQUEOUS	F0613.D	119	94	91
06728-002	AQUEOUS	F0614.D	119	94	92
06728-003	AQUEOUS	F0615.D	117	9 4	92
06728-004	AQUEOUS	F0616.D	121	95	95
06728-005	AQUEOUS	F0617.D	113	94	92
06728-006	AQUEOUS	F0618.D	119	96	92
06728-007	AQUEOUS	F0619.D	120	97	92
06728-008	AQUEOUS	F0620.D	121	96	91
06728-009	AQUEOUS	F0621.D	119	94	92
06728-010	AQUEOUS	F0622.D	120	93	92
06728-011	AQUEOUS	F0623.D	122	94	93
06462-003	AQUEOUS	F0624.D	120	94	92
06462-004	AQUEOUS	F0625.D	123	94	90
06662-001	AQUEOUS	F0627.D	104	95	99

	Concentration	Aqueous/Meoh	Soil
SMC1 = 1,2-Dichloroethane-d4	50 ppb	76-138	39-165
SMC2 = Toluene-d8	50 ppb	66-119	45-162
SMC3 = Bromofluorobenzene	50 ppb	43-136	40-152

Column to be used to flag recovery values

FORM 2

AQUEOUS VOLATILE LABORATORY CONTROL SAMPLE RECOVERY

Matrix spike Lab sample ID:	<u>BLK-SPK</u>
Batch No.:	FSO071310A

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	46.1	92	70 - 130
Benzene	50.0	0.0	47.8	96	70 - 130
Trichloroethene	50.0	0.0	48.2	96	70 - 130
Toluene	50.0	0.0	50.6	101	70 - 130
Chlorobenzene	50.0	0.0	45.0	90	70 - 130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

Spike Recovery: __0___ out of __5__ outside limits

AQUEOUS VOLATILE MATRIX SPIKE/SPIKE DUPLICATE RECOVERY

Matrix spike Lab sample ID:	<u>06728-005</u>
Batch No.:	<u>FSO071310A</u>

	SPIKE	SAMPLE	MS	MS	QC
Compound	ADDED	CONC.	CONC.	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	50.0	0.0	65.2	130	52 - 157
Benzene	50.0	0.0	52.4	105	55 - 155
Trichloroethene	50.0	0.0	52.4	105	61 - 153
Toluene	50.0	0.0	52.3	105	58 - 144
Chlorobenzene	50.0	0.0	51.2	102	63 - 149

	SAMPLE	MSD		MSD				
Compound	CONC.	CONC.		%	%	QC LIN	1ITS	
	(ug/L)	(ug/L)	#	REC	RPD #	RPD		REC.
1,1-Dichloroethene	0.0	64.8		130	0	14	52	- 157
Benzene	0.0	51.9		104	1	8	55	- 155
Trichloroethene	0.0	52.5		105	0	19	61	- 153
Toluene	0.0	52.0		104	1	12	58	- 144
Chlorobenzene	0.0	50.9		102	0	11	63	- 149

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

NC Non calculable

RPD: __0___ out of __5__ outside limits

Spike Recovery: __0___ out of __10__ outside limits

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):	F0411.D	Date Analyzed: 07/02/2010
Instrument ID:	MSD_F	Time Analyzed: 15:21

5000	G/L	IS1				IS2				IS3				
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#	
12 H	OUR STD	234310		6.20	6.20 355151				3	34583	10.37			
UPP	ER LIMIT	468620	6.70)	71030	2	7.53		69166	50	10.8	10.87		
LOW	/ER LIMIT	117155	i 1	5.70)	177575.	5	6.53	3	1729	5	9.8	9.87	
LAB S	AMPLE													
II	D													
01 STD-5PP	В	205401		6.19	}	32912	8	7.02	2	2992	17	10.3	7	
02 STD-20P	PB	204581		6.20)	31896	Ō	7.03	3	3000	59	10.3	7	
03 STD-2001	PPB	243375	5	6.19)	37278	3	7.02	2	3613()5	10.3	7	
04 STD-150	PPB	266538	5	6.20)	40682	6	7.03	3	38849	94	10.3	7	
05 STD-1PP	В	192156	i	6.20)	31603		7.03	3	27963	38	10.3	7	
06 STD-2PP	B	196973	ι.	6.20)	31941	9	7.03		290053		10.3	7	
07 METHOD	-BLK	168762		6.20)	282511		7.03		254211		10.3	7	
08 TCLP-BL	К	156832		6.20	}	26867	2	7.03		239965		10.3	7	
09 06383-00	1	159452	2	6.20)	26795	5	7.03		234031		10.3	7	
10 TCLP-SP	K	199709)	6.20)	30576	6	7.03		28882	24	10.3	7	
11 BLK-SPK		225177		6.19)	34372	5	7.02		31878	36	10.3	7	
12 WATER-I	MS	198006	;	6.20)	32426	7	7.03	3	28113	36	10.3	7	
13 WATER-I	MSD	183636	;	6.20)	30416	S	7.02	2	26569)1	10.3	7	
14 06220-02	6	168613	5	6.20)	28125	2	7.03	3	24116	30	10.3	7	
15 06323-00	8	166186	5	6.20)	28073	8	7.03	3	2455	72	10.3	7	
16 06329-01	9	151851		6.20)	26000	3	7.03	3	22452	24	10.3	7	
17														
18														
19														
20														
21														
22														

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

FORM 8

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard):

F0604.D

Time Analyzed: ____10:25

Date Analyzed: 07/13/2010

Instrument ID:

MSD_F

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	190029	6.20	289736	7.03	307100	10.37
UPPER LIMIT	380058	6.70	579472	7.53	614200	10.87
LOWER LIMIT	95014.5	5.70	144868	6.53	153550	9.87
LAB SAMPLE						
ID						
01 METHOD-BLK	145454	6.20	255693	7.03	244487	10.37
02 06674-004	131161	6.20	231718	7.03	219190	10.37
03 06674-005	133793	6.20	236784	7.03	232675	10.37
04 BLK-SPK	176930	6.20	273515	7.03	288349	10.37
0506728-005MS	165172	6.20	288664	7.03	276008	10.37
06 06728-005MSD	160999	6.20	282662	7.03	272665	10.37
07 06728-001	146942	6.20	258176	7.03	247701	10.37
08 06728-002	142101	6.20	249677	7.03	242789	10.37
09 06728-003	147932	6.20	259336	7.03	250095	10.37
10 06728-004	142588	6.20	253879	7.03	249984	10.37
11 06728-005	164208	6.20	280176	7.03	270080	10.37
12 06728-006	146744	6.20	256120	7.03	253236	10.37
13 06728-007	144315	6.20	253484	7.03	252299	10.37
14 06728-008	138758	6.20	243446	7.03	240327	10.37
15 06728-009	141347	6.20	248915	7.03	240857	10.37
16 06728-010	143454	6.20	251436	7.03	243559	10.37
17 06728-011	138188	6.20	246383	7.03	241251	10.37
18 06462-003	139877	6.20	248249	7.03	242164	10.37
19 06462-004	138707	6.20	246966	7.03	238683	10.37
20 06662-001	187962	6.20	314953	7.03	312630	10.37
21						
22					<u> </u>	l <u> </u>

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

LABORATORY CHRONICLE - GC/MS VOA (Soil)

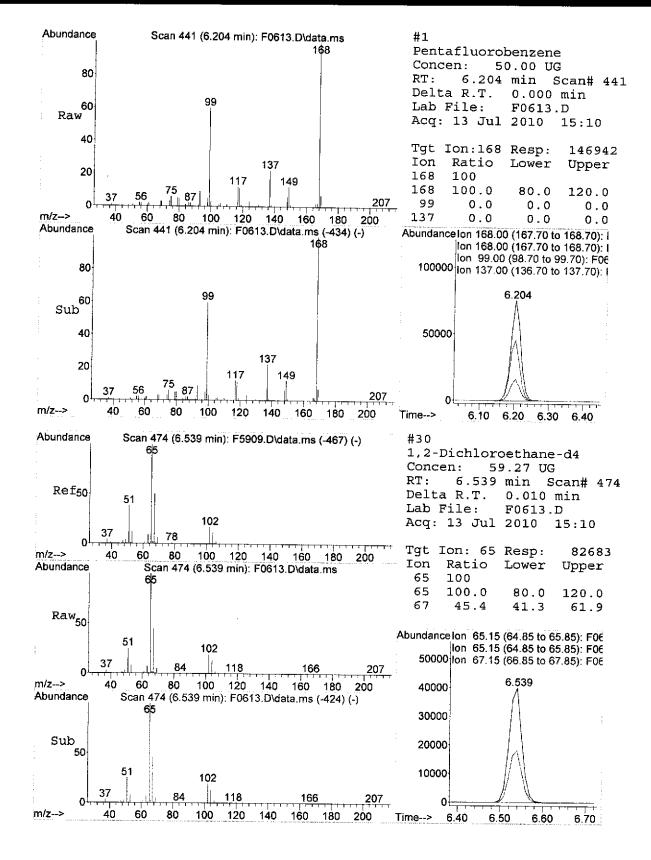
				7/2/10 17:00							 #		# (ul)	CONC.
DAT	E:			7/2/10	17:00)	F	TAN			LS831	+		1	250 ug/mL
		MENT:		MSE)F			STD/S			LS843	_		2.5	40 ug/mL
INS	IRU	WIEINT.					- F	PRIMARY 8260 STD						1.5	1000 ug/mL
		u r .		TUN	ΕF		Ľ	PRIMARY AC/AC			LS835				10000 ug/mL
	NE F			07-03			1,4-Di	ioxa	ne	LS81	1	_ _	1.5		
SE	QUE	NCE FI	LE: _		_		t	8260	MAT	TRIX SPK	LS83	3		10	25 ug/mL
ME	тно	D:	-	FAM	J702		ł	<u> </u>							
								 9E01		ARY 8260 S	L226	7		6.25	40 ug/mL
AN		ST:	_	Xingfan	g Wa		1				1	9		1	1000 ug/mL
				. INXF		Initial		SEC	ONL	ARY AC/AC			Recd	%	
							Jar			Client ID	Sam Date	-		Moist	Comments
	a1 #	Data File	Case #	Samp #	DF	Wt /Vol	#	MX		Cliencin	+				K
		F0406	BFB TUNING	50NG				┝┯			+	-+-		100	
· ·		F0407	1PPB	STD-1PPB		5		A	┼╌╴					100	
		F0408	2PPB	STD-2PPB		5		A	╉╼					100	- K-
		F0409	5PPB	STD-5PPB	 	5	╂	Â	╀╴		-[100	K
5	5	F0410	20PPB	STD-20PPB		5	╀╌╼	Â	╋					100	K
ő	6	F0411	100PPB	STD-100PPI		5	╋╌─		+		-			100	
7	7	F0412	1PPB	STD-1PPB		5	┢╌╴	A	-1		-			100	K
8	8	F0413	200PPB	STD-200PP		5	╁━╍				1-			100	K
9	-	F0414	150PPB	STD-150PP	B	5	+							100	
10	10	F0415	BLK		+	5								100	
11	11	F0416	BLK											100	
12	12	F0417	1PPB	STD-1PPI		5								100	
13	13	F0418	2PPB	STD-2PP	3		+-							10	
14	14	F0419				5	-+-	_	<u></u>					10	
15	15	F0420		NETHOD-E		5		- +	<u> </u>					10	
16	16	F0421	-1	TCLP-BL	<u>к </u>	0.1			A	001	06/	30/10	06/30/10	_	
17	17	F0422	6383	1		0.1	-+-		$\frac{1}{A}$					10	
18	18	F042		TCLP-SF		5	-+-		$\frac{2}{4}$					10	
19	19	F042	4 LCS-50PPE			- 5	-+-	-+	A					_+	0 0
20	┝			WATER-		- 5	-+-	+	A					_	0 <u>d</u>
21				WATER-N	ASD	5			A	ТВ	06	/24/10		-+	00 <u>K</u>
22				26				-+	 A	ТВ	06	6/28/10	06/28/1		00 00-
2		+		8	+	5		{-	<u>A</u>	FB-S	0	5/25/10	06/28/*		00 01-
24	<u> </u>	-+		19			_	{	 A	+					00
2		╧╋╾╼╾					5		<u></u>						

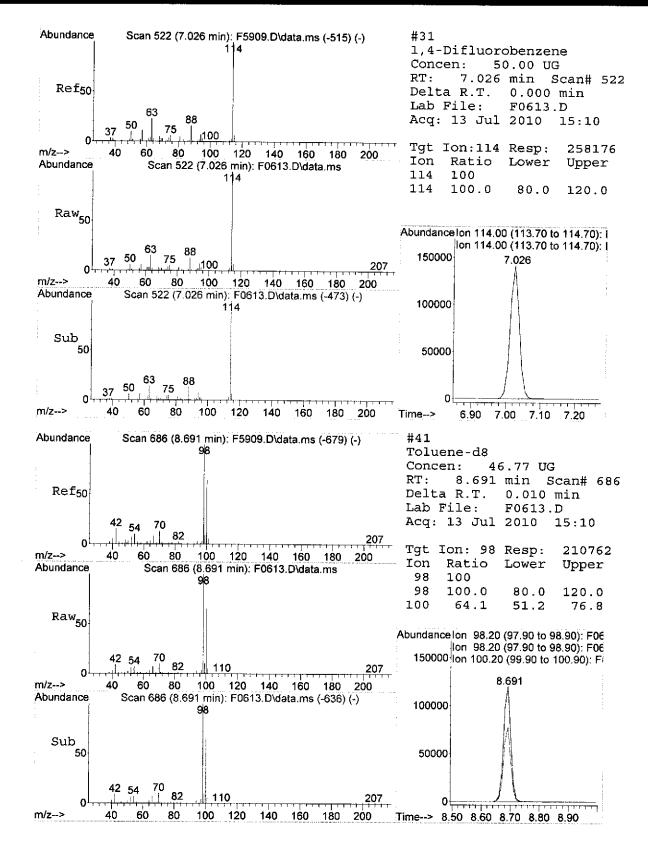
LABORATORY CHRONICLE - GC/MS VOA (Soil)

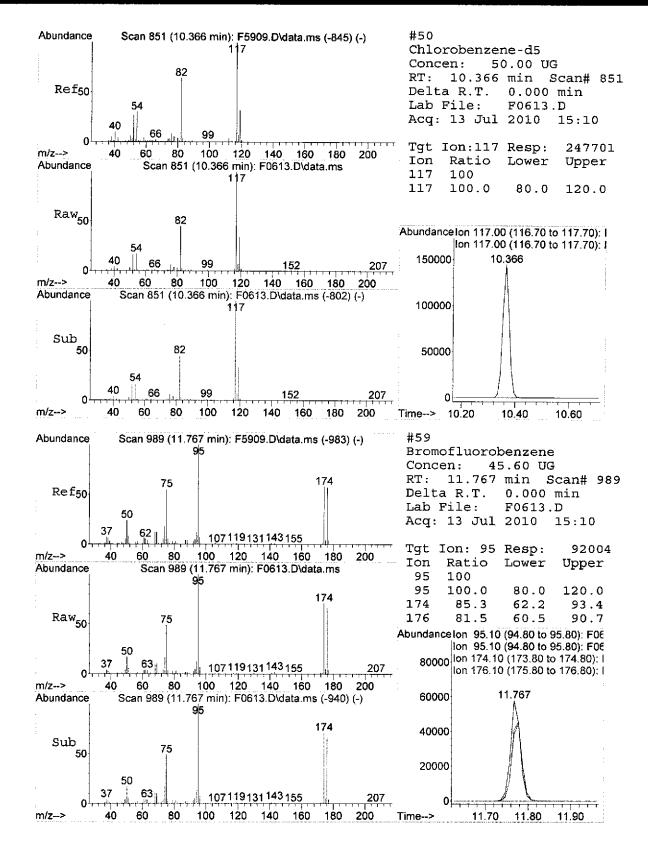
	DATE	:		7/13/10 13:06			STA	NDARD	#	#	(ul)	CONC.	
	INST	RUMEN	т:	M	SDF			ISTD	/SURR	LS831		1	250 ug/mL
								PRIMARY 8260 STD		LS843		12.5	40 ug/mL
	TUNE	E FILE:		TU	NE F	F PRIMARY AC/AC		LS835		1.5	1000 ug/mL		
	SEQI	JENCE	FILE:	07-1	13-1(0		1,4-D	lioxane	LS811		1.5	10000 ug/mL
	METH	HOD:		FAM	1070	2		8260	MATRIX SPK	LS833		10	25 ug/ mL
	ANAL	YST:		Xingfar	ng W	ang		SEC	ONDARY 8260 S	L2267		6.25	40 ug/mL
				INX	F	Initial		SECO	ONDARY AC/AC	LS809		1	1000 ug/mL
ſ		Data					Jar			Samp	Recd	%	
	Vial #	File	Case #	Samp #	DF	Wt /Vol	#	мх	Client ID	Date	Date	Moist	Comments
1	1	F0603	BFB TUNING	50NG									K
2	2	F0604	100PPB	STD-100PPB		5		A				100	K
3	3	F0605	BLK			5		A				100	
4	4	F0606	BLK			5		Α				100	
5	5	F0607	N/A	METHOD-BLH	<	5		A				100	K
6	6	F0608	6674	4		5		Α	FB	07/08/10	07/08/10	100	K
7	7	F0609		5		5		A	TB	07/08/10	07/08/10	100	K
8	8	F0610	LCS-50PPB	BLK-SPK		5		A				100	K
9	9	F0611	MS	06728-005MS	\$	5		A				100	<u>K</u>
10	10	F0612	MSD	6728-005MS	D	5		A				100	K
11	11	F0613	6728	1		5		A	FB(070810)	07/08/10	07/09/10	100	dK
12	12	F0614		2		5		Α	TB(070810)	07/08/10	07/09/10	100	<u>K</u>
13	13	F0615		3		5		A	PTW-2	07/08/10	07/09/10	100	K
14	14	F0616		4		5		A	MW-9S	07/08/10	07/09/10	100	K
15	15	F0617		5		5		A	MW-9D	07/08/10	07/09/10	100	K
16	16	F0618		6		5		A	MW-6S	07/08/10	07/09/10	100	K
17	17	F0619		7		5		A	MW-13R	07/08/10	07/09/10	100	K
18	18	F0620		8		5		A	DUP(070810)	07/08/10	07/09/10	100	dK
19	19	F0621		9		5		A	GP-104R	07/09/10	07/09/10	100	K
20	20	F0622		10		5		A	GP-103R	07/09/10	07/09/10	100	d
21	21	F0623		11	<u> </u>	5		A	FB(070910)	07/09/10	07/09/10	100	K
22	22	F0624	6462	3		5		A	FB	07/01/10	07/01/10	100	d<
23	23	F0625		4		5		Α	ТВ	07/01/10	07/01/10	100	dC
24	24	F0626	6662	1		1		А	GW-1	07/07/10	07/08/10	100	
25	25	F0627		1		5		A	GW-1	07/07/10	07/08/10	100	K
26	26	F0628	BLK			5		A				100	
27	27	F0629	BLK			5		A	1	,		100	

Data Path : C:\msdchem\l\DATA Data File : F0613.D Acq On : 13 Jul 2010 15:1 Operator : XING Sample : FB(070810),06728- Misc : ARCADIS/KINGS_ELE ALS Vial : 11 Sample Multi	0 001,A,5ml,100 C,07/08/10,07/	09/10,				
Quant Time: Jul 13 16:48:56 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Tue Jul 06 13: Response via : Initial Calibr	ETHODS\FAM0702 ICS BY EPA MET 53:33 2010					
Internal Standards	R.T. QIO	n Response Con	c Units	Dev(Min)		
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.204 16 7.026 11 10.366 11	8 146942 50 4 258176 50 7 247701 50	.00 UG .00 UG .00 UG	0.00 0.00 0.00		
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 6.539 65 82683 59.27 UG 0.01 Spiked Amount 50.000 Range 43 - 133 Recovery = 118.54% 41) Toluene-d8 8.691 98 210762 46.77 UG 0.01 Spiked Amount 50.000 Range 39 - 137 Recovery = 93.54% 0.01 Spiked Amount 50.000 Range 23 - 145 Recovery = 91.20%						
Target Compounds				Qvalue		

(#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 0¹058 XHJ W


Data Path	:	$C:\mbox{msdchem}1\DATA\07-13-10$
Data File	:	F0613.D
Acq On	:	13 Jul 2010 15:10
Operator	:	XING
Sample	:	FB(070810),06728-001,A,5ml,100
Misc	:	ARCADIS/KINGS_ELEC,07/08/10,07/09/10,
ALS Vial	:	11 Sample Multiplier: 1


Quant Time: Jul 13 16:48:56 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Abundance						TIC: F	0613.D\da	ata.ms			·					
460000																
440000																
420000																
400000						ļ	- G									
380000						:										
360000			tene,													
340000			1,4-Difluorobenzene,I		Toluene-d8,S			Ś								
320000			1,4-Diffu		Totue			enzene,								
300000		e, l			1			Bromofluorobenzene,S								
280000		Pentafluorobenzene,I						Вгол								
260000		กาสที่บอก						Ĭ								
240000		Bd														
220000		1														
200000																
						,										
180000			27. TD													:
160000			1,2-Dichloroethane-d4,5													
140000			Dichlaro													
120000			-7'1													
100000			}													
80000																
60000																
40000					2											
20000		ĺ														
o	╺┍┍╺┍┍┍┍┍┍┍┍┍┍┍┍┍┍	╷┑╻╿	<u> </u> -		 	<u> </u>	 	╟	┌ ╷┍╻┑╸			<u>^,</u>	,,,,,,,,,,	┯╍┲╼┓╼╌		
Time> 2.00	3.00 4.00 5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	8.00	19.00	

XIII W

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0614.D Acq On : 13 Jul 2010 15:36 Operator : XING Sample : TB(070810),06728-002,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 12 Sample Multiplier: 1 Quant Time: Jul 13 16:49:34 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Pentafluorobenzene6.20416814210150.00UG0.0031) 1,4-Difluorobenzene7.02611424967750.00UG0.0050) Chlorobenzene-d510.36611724278950.00UG0.00

 System Monitoring Compounds
 6.539
 65
 80401
 59.60
 0.01

 30) 1,2-Dichloroethane-d4
 6.539
 65
 80401
 59.60
 0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 119.20%
 0.01

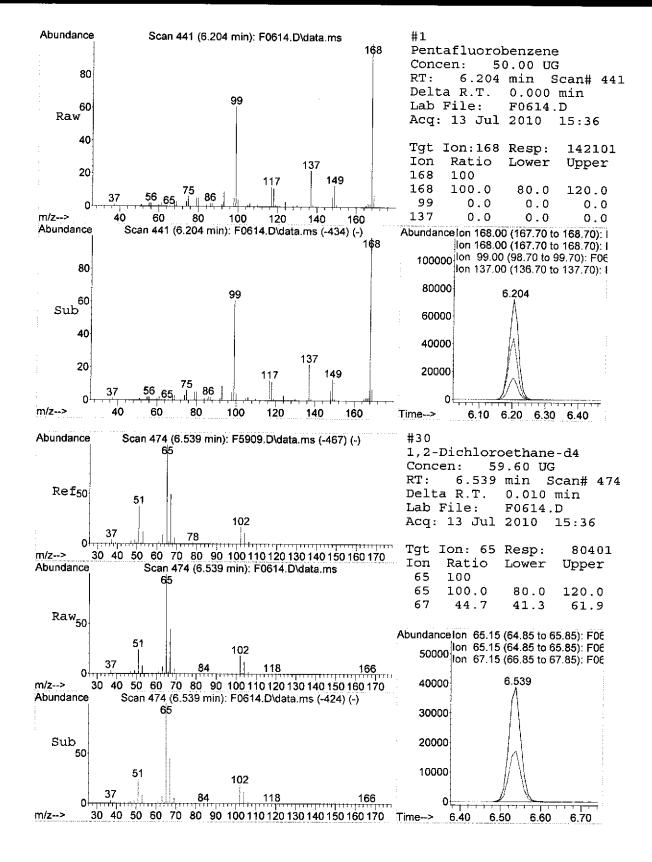
 41) Toluene-d8
 8.691
 98
 204429
 46.91
 0.01

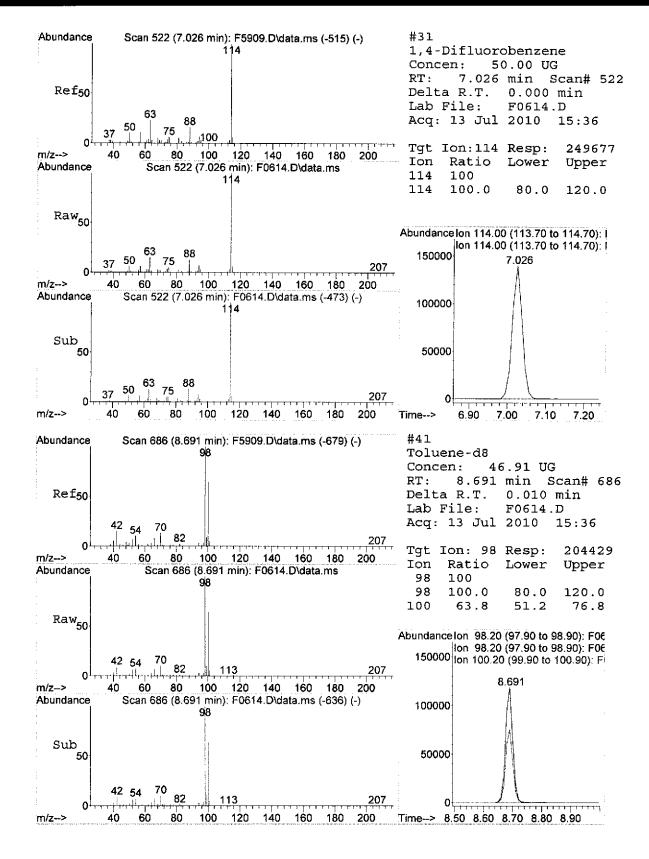
 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 93.82%
 0.00

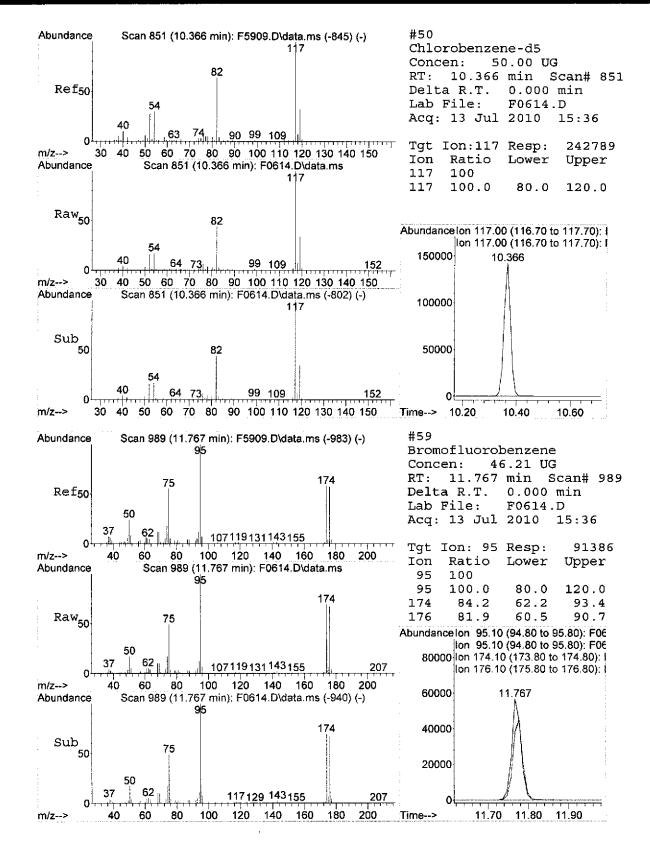
 59) Bromofluorobenzene
 11.767
 95
 91386
 46.21
 0.00

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 92.42%
 92.42%

 Target Compounds Ovalue (#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 0063

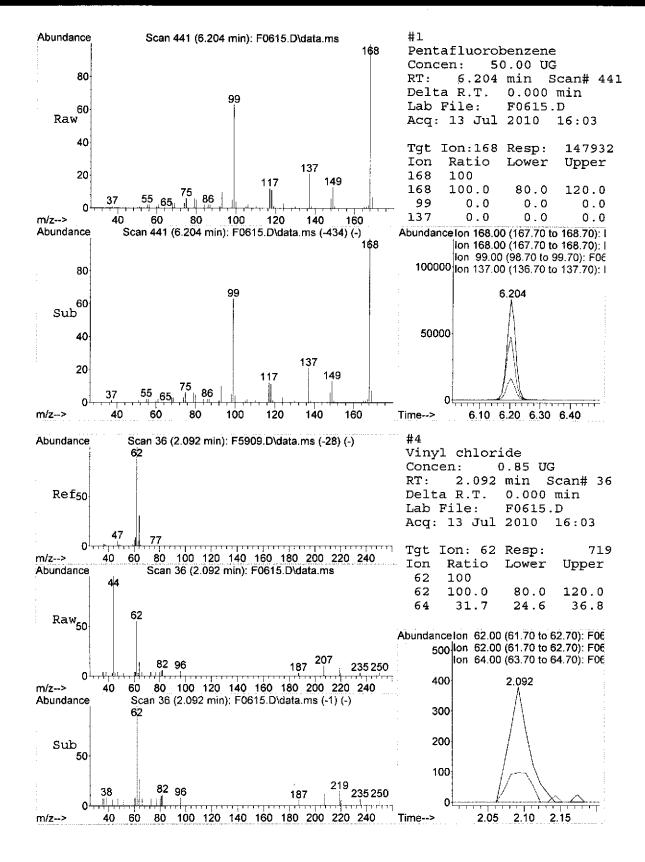

Data Path	:	$C:\msdchem\1\DATA\07-13-10\$
Data File	;	F0614.D
Acq On	:	13 Jul 2010 15:36
Operator	:	XING
Sample	:	TB(070810),06728-002,A,5ml,100
Misc	:	ARCADIS/KINGS ELEC,07/08/10,07/09/10,
ALS Vial		12 Sample Multiplier: 1
a		

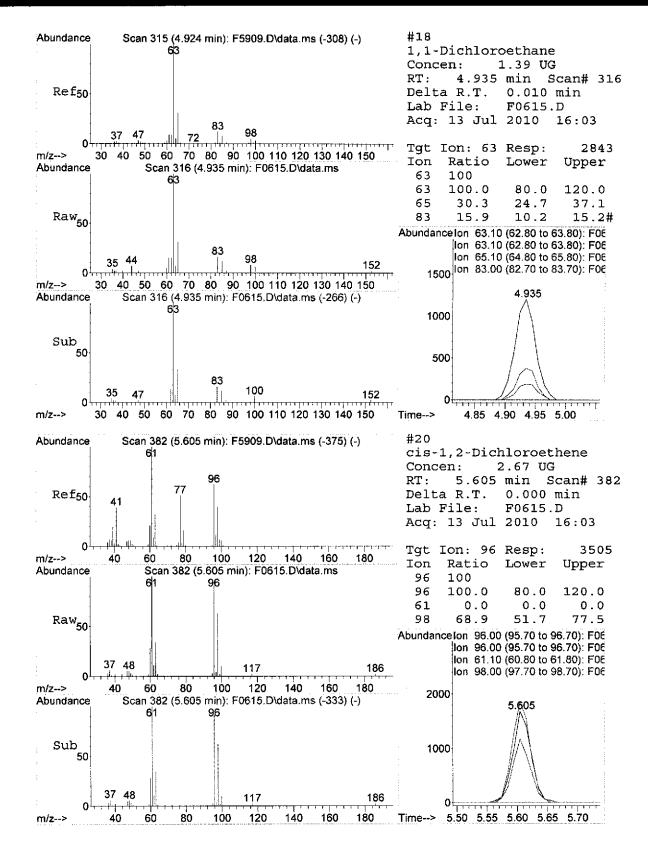

Quant Time: Jul 13 16:49:34 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

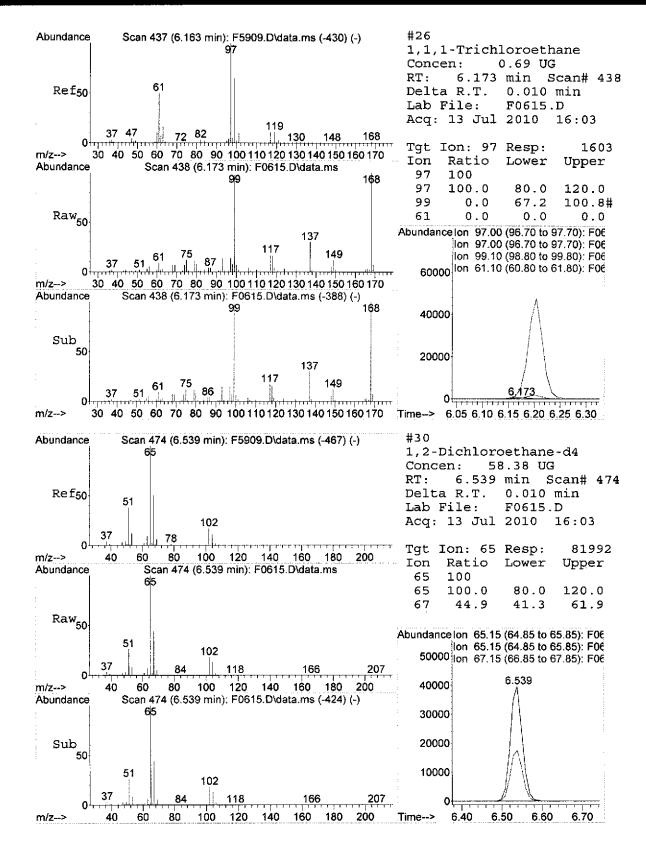
bundance					TIC: FO	314.D\data.m	5		
440000									
420000									
400000									
380000					16-d5,1				
360000			e,		Chlorobenzene-d5,1				
340000			1,4-Difluorobenzene,I	e-d8,S	5				
320000			.4-Difluor	Taluene-d8,S		cene,S			
300000			-	I		Bromofiuorobenzene,S			
280000		enzene, l				Вготой			
260000		Pentafluorobenzene,l				I			
240000		Penl							
220000									
200000									
180000									
160000		e-d4.S							
140000		oroethan							
120000		1,2-Dichloroethane-d4.S							
100000			:						
80000									
60000									
40000									
20000			and summarized entering on the state	1777 - Andrew State					
0	3.00 4.00 5.00		, 7.00 {	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				10 1 5.00 1	

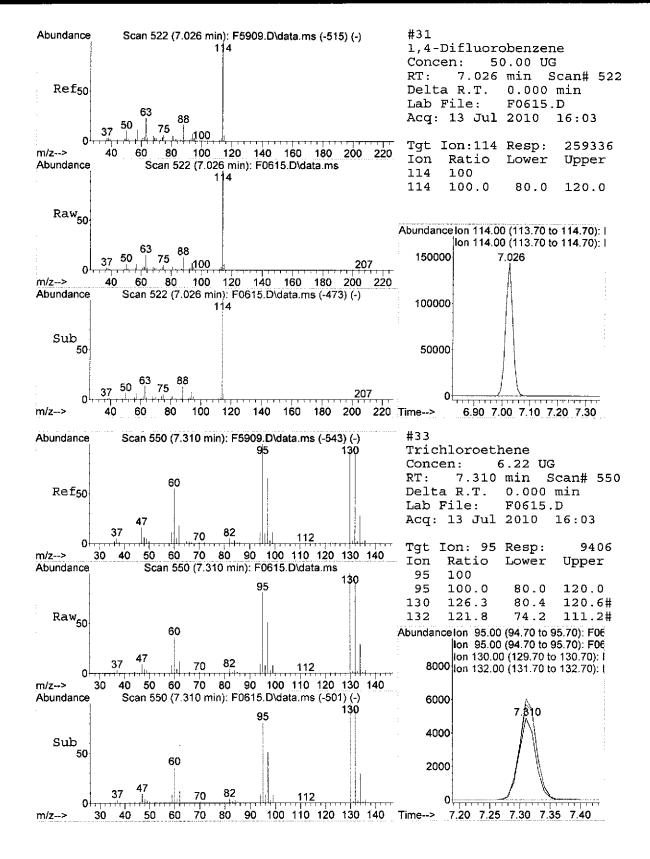
Page 0064

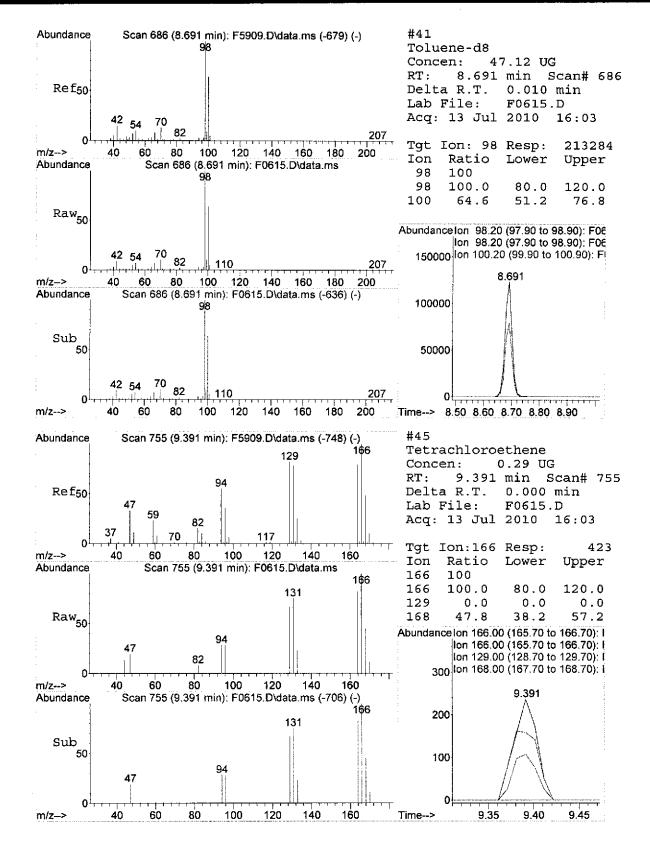
Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0615.D Acq On : 13 Jul 2010 16:03 Operator : XING Sample : PTW-2,06728-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 13 Sample Multiplier: 1 Quant Time: Jul 13 16:50:42 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B						
QLast Update : Tue Jul 06 13: Response via : Initial Calibr	53:33 2010 ation					
Internal Standards		QIon	Response	Conc Un:	its Dev	(Min)
1) Pentafluorobenzene	6.204	168	147932	50.00 t	 JG	0.00
31) 1,4-Difluorobenzene	7.026	114	259336	50.00 t	JG	0.00
50) Chlorobenzene-d5	10.366	1 1 7	250095	50.00 t	JG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.539	65	81992	58.38 t	JG	0.01
Spiked Amount 50.000			Recove		L16.76%	
41) Toluene-d8		98				
Spiked Amount 50.000			Recove	rv =	94.24%	
59) Bromofluorobenzene	-		93733			0.00
Spiked Amount 50.000			Recove:			
Target Compounds					Ov	alue
4) Vinyl chloride	2.092	62	719	0.85 0		100
18) 1,1-Dichloroethane	4 0 2 5	C 2	0040	7 70 7		~ ~
20) cis-1,2-Dichloroethene	5,605	96	3505	2.67 0	IG #	98
26) 1,1,1-Trichloroethane	6.173	97	1603	0.69 0	IG #	58
33) Trichloroethene	7.310	95	9406	6.22 U	IG #	82
45) Tetrachloroethene	9.391	166	2843 3505 1603 9406 423	0.29 0	JG #	100
			•			

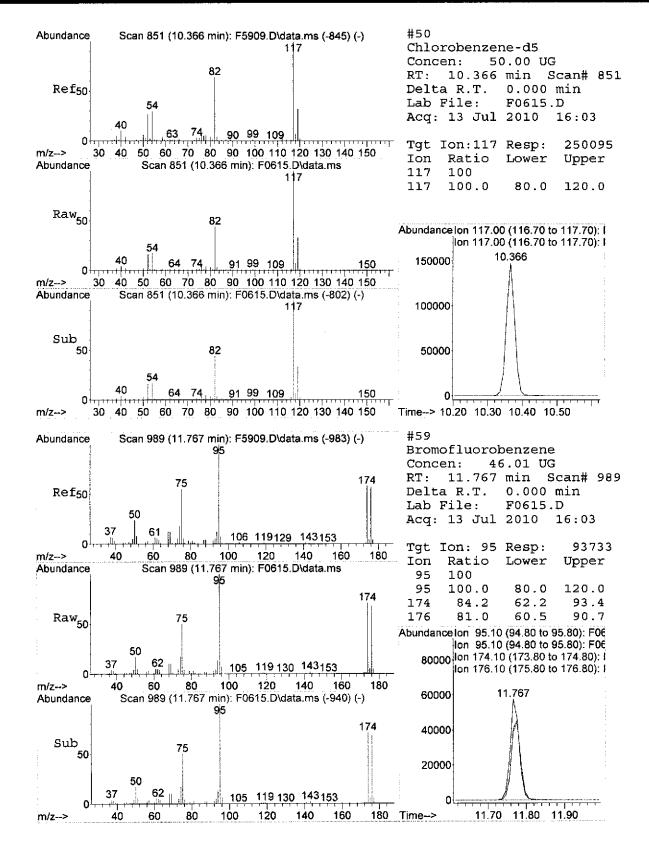

(#) = qualifier out of range (m) = manual integration (+) = signals summed


XIII W J


Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0615.D : 13 Jul 2010 16:03 Acq On Operator : XING Sample : PTW-2,06728-003,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial Sample Multiplier: 1 : 13 Quant Time: Jul 13 16:50:42 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Abundance TIC: F0615.D\data.ms 460000 440000 420000 400000 380000 1,4-Difluorobenzene,ł 360000 Toluene-d8,S 340000 Bromofluorobenzene, S 320000 Pentafluorobenzene,I 300000 280000 260000 240000 220000 200000 180000 1,2-Dichloroethane-d4,S 160000 140000 120000 100000 **Trichloroethene**,M 80000 cis-1,2-Dichloroethene,T 1,1,1-Trichleroet 1,1-Dichloroethane,P Tetrachloroethene,T 60000 ¢ chloride 40000 Ś 20000 n Time--> 3.00 5.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 2.00 4.00 6.00


FAM0702.M Tue Jul 13 16:51:15 2010 RP1


Page:0069



Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0616.D Acq On : 13 Jul 2010 16:29 Operator : XING Sample : MW-9S,06728-004,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 14 Sample Multiplier: 1 Quant Time: Jul 13 16:53:01 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1)Pentafluorobenzene6.20316814258850.00UG0.0031)1,4-Difluorobenzene7.02611425387950.00UG0.0050)Chlorobenzene-d510.36611724998450.00UG0.00

 System Monitoring Compounds
 6.538
 65
 81740
 60.38
 0.01

 30) 1,2-Dichloroethane-d4
 6.538
 65
 81740
 60.38
 0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 120.76%

 41) Toluene-d8
 8.691
 98
 209613
 47.30
 UG
 0.01

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 94.60%
 0.00

 59) Bromofluorobenzene
 11.767
 95
 97219
 47.74
 UG
 0.00

 spiked Amount
 50.000
 Range 23 - 145
 Recovery = 95.48%
 95.48%

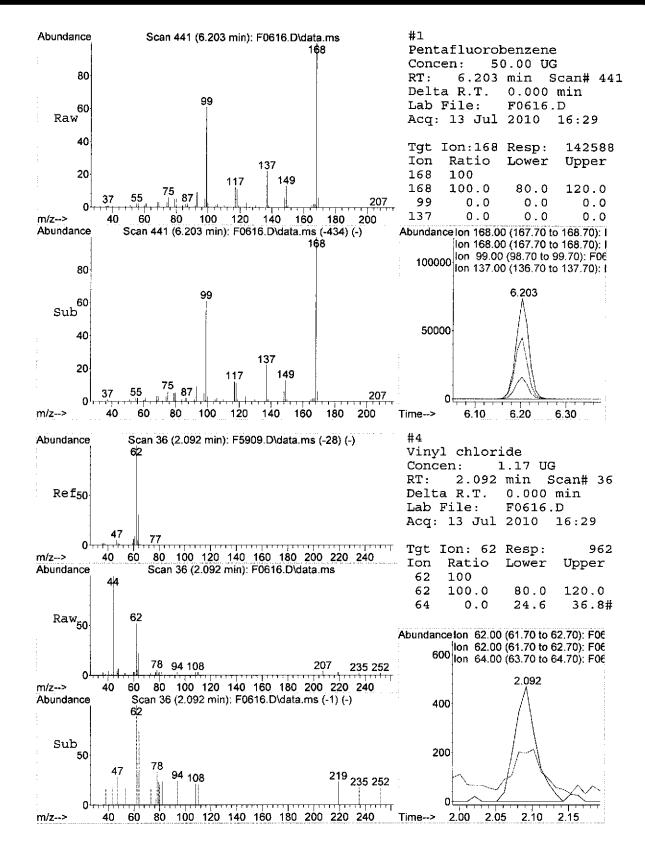
 Target Compounds Qvalue

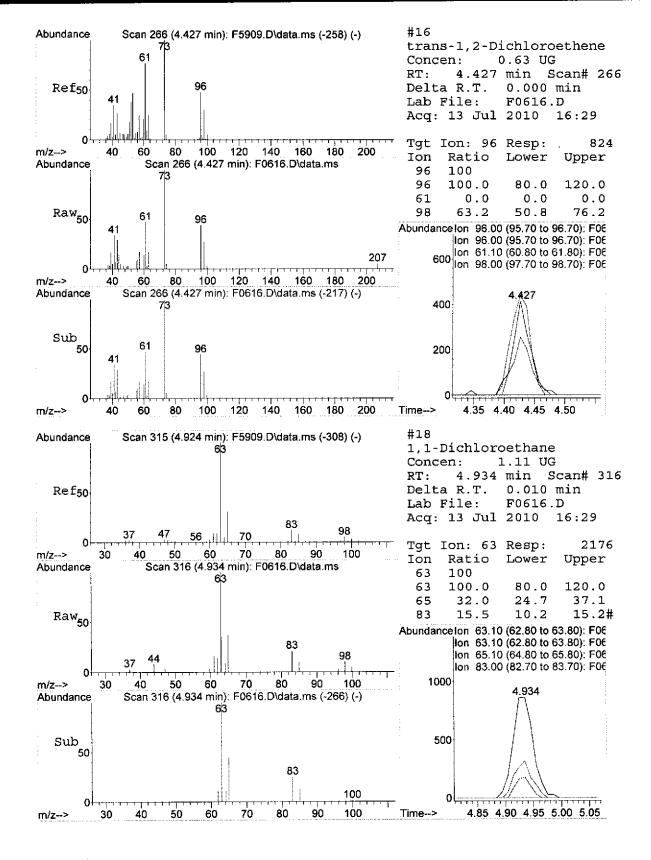
 4) Vinyl chloride
 2.092
 62
 962
 1.17 UG
 #
 87

 16) trans-1,2-Dichloroethene
 4.427
 96
 824
 0.63 UG
 #
 100

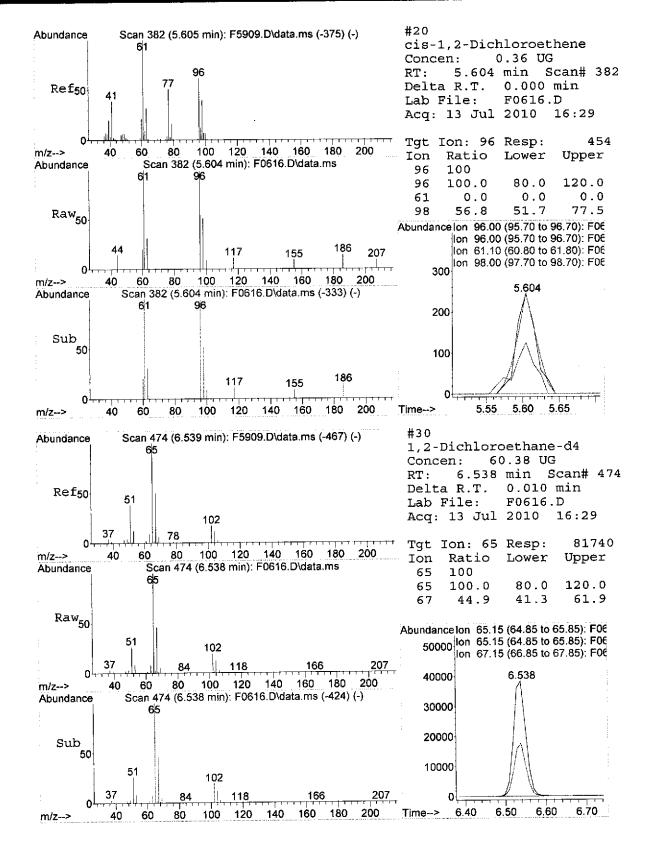
 18) 1,1-Dichloroethane
 4.934
 63
 2176
 1.11 UG
 #
 99

 20) cis-1,2-Dichloroethene
 5.604
 96
 454
 0.36 UG
 #
 96

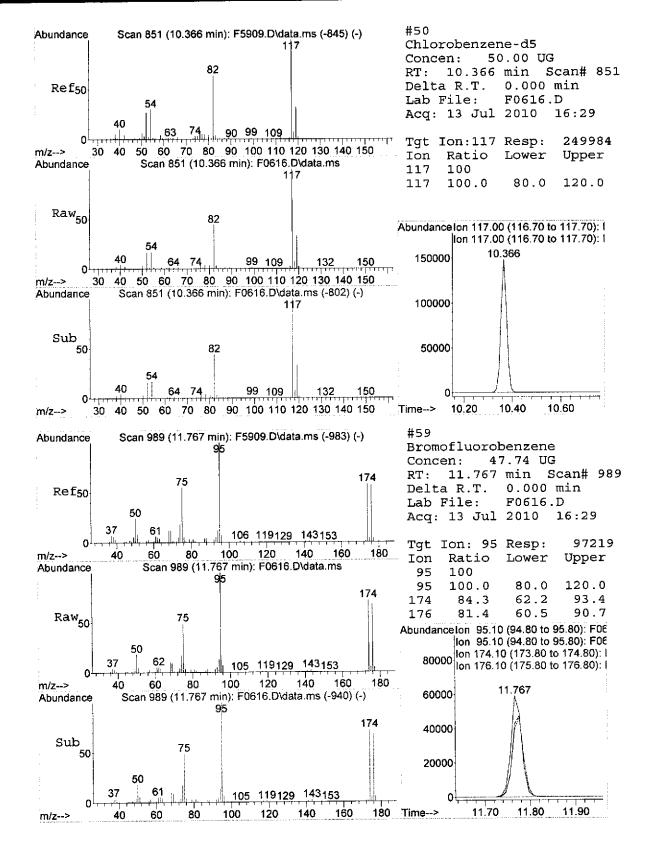

(#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 01076 X117

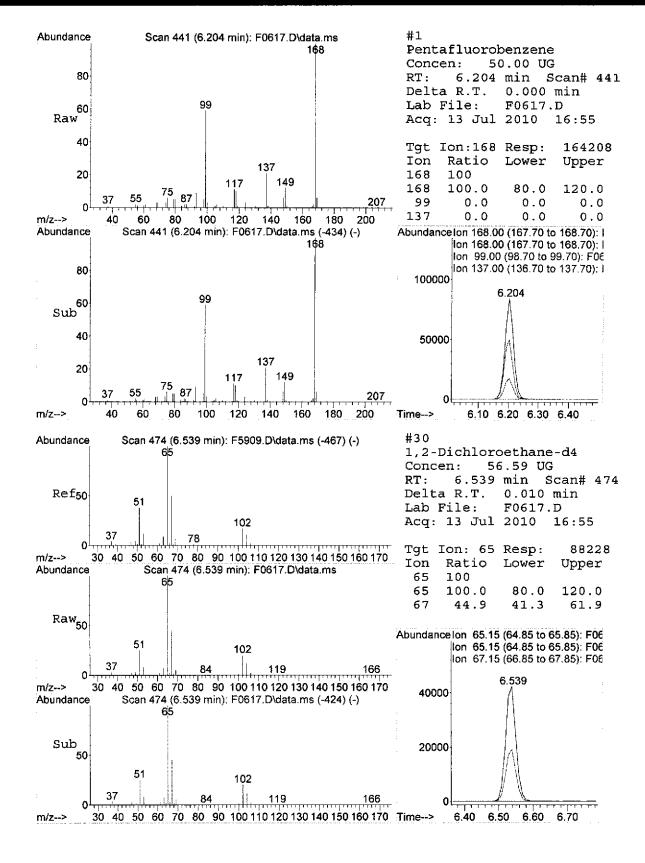
Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0616.D Acq On : 13 Jul 2010 16:29 Operator : XING Sample : MW-9S,06728-004,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 14 Sample Multiplier: 1

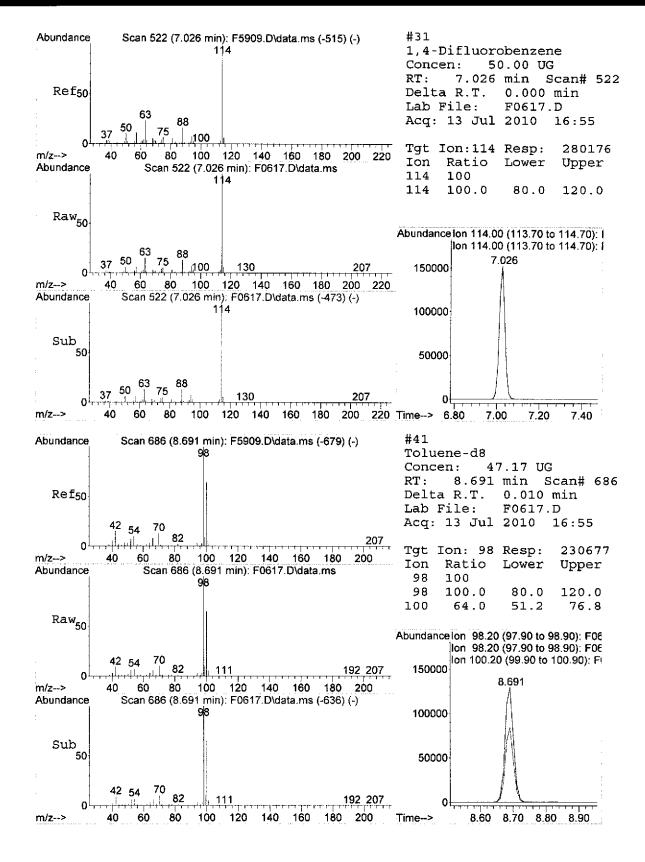

Quant Time: Jul 13 16:53:01 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

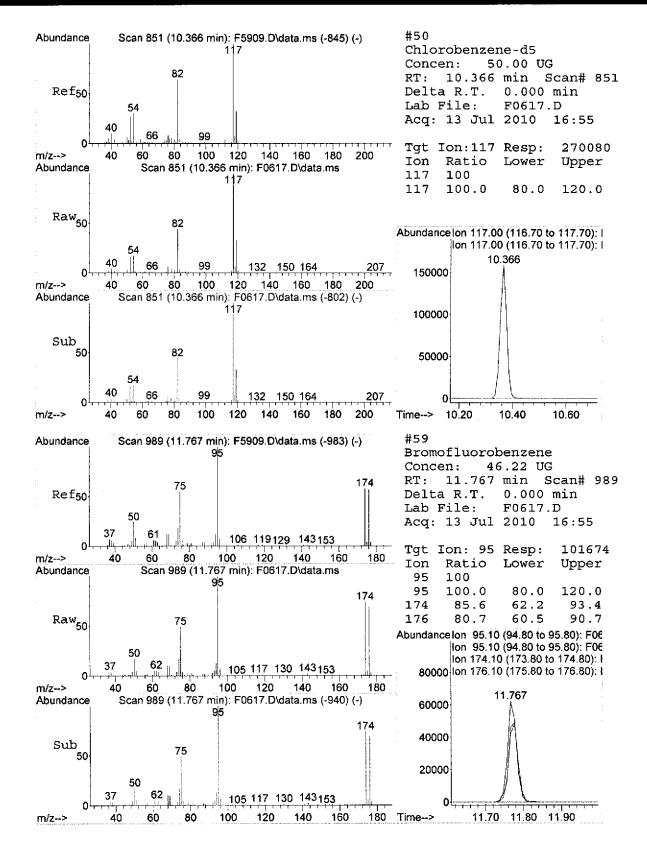
Abundance TIC: F0616.D\data.ms 460000 440000 420000 400000 Chlorobenzene-d5,I 380000 360000 1,4-Diffuorobenzene,l Toluene-d8,S Bromofluorobenzene,S 340000 320000 300000 Pentafluorobenzene, I 280000 260000 240000 220000 200000 180000 1,2-Dichloroethane-d4,S 160000 140000 120000 100000 trans-1,2-Dichloroethene,T 80000 cis-1,2-Dichloroethene,T I, 1-Dichloroethane, P 60000 O chloride 40000 20000 Δ 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 2.00 3.00 4.00 5.00 6.00 8.00 Time--> FAM0702.M Tue Jul 13 16:53:07 2010 RP1



RP1


Data Path : C:\msdchem\l\DATA Data File : F0617.D Acq On : 13 Jul 2010 16:5 Operator : XING Sample : MW-9D,06728-005,A Misc : ARCADIS/KINGS_ELE ALS Vial : 15 Sample Multi	5 ,5ml,100 C,07/08/10,	,07/09,	/10,		
Quant Time: Jul 14 10:12:41 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Tue Jul 06 13: Response via : Initial Calibr	ETHODS\FAMO ICS BY EPA 53:33 2010				
Internal Standards	R.T.	QIon	Response	Conc Unit	ts Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	7.026	114	280176	50.00 U	G 0.00
System Monitoring Compounds					
30) 1,2-Dichloroethane-d4					
Spiked Amount 50.000	Range 43	- 133	Recove:	ry = 11	13.18%
41) Toluene-d8	8.691	98	230677	47.17 U	G 0.01
41) Toluene-d8 Spiked Amount 50.000	Range 39	- 137	Recover	ry = !	94.34%
59) Bromofluorobenzene	11.767	95	101674	46.22 V(G 0.00
Spiked Amount 50.000	Range 23	- 145	Recover	су = 3	92.44%
Target Compounds					Qvalue
(#) = qualifier out of range	(m) = manu	ual int	egration	(+) = sign	nals summed


Page: 0'0837 X-ff J W J


Data Path	:	$C:\msdchem\1\DATA\07-13-10\$
Data File		
Acq On	;	13 Jul 2010 16:55
Operator	:	XING
Sample	:	MW-9D,06728-005,A,5ml,100
Misc	:	ARCADIS/KINGS ELEC,07/08/10,07/09/10,
ALS Vial		15 Sample Multiplier: 1
o		
		Jul 14 10:12:41 2010
Quant Meth	ιoċ	I : C:\MSDCHEM\1\METHODS\FAM0702.M
Ouant Titl	e	: VOLATILE ORGANICS BY EPA METHOD 8260B

QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Abundance TIC: F0617.D\data.ms 500000 480000 460000 440000 Chlorobenzene-d5, j 420000 400000 1,4-Difluorabenzene,1 380000 Taluene-d8,S Bromofluorobenzene,S 360000 340000 Pentafluorobenzene, l 320000 300000 280000 260000 240000 220000 200000 1,2-Dichloroethane-d4,S 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 3.00 6.00 7.00 Time--> 2.00 4.00 5.00 8.00

Page:0084

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0618.D Acq On : 13 Jul 2010 17:22 Operator : XING Sample : MW-6S,06728-006,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 16 Sample Multiplier: 1 Quant Time: Jul 14 15:44:27 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Pentafluorobenzene6.20316814674450.00UG0.0031) 1,4-Difluorobenzene7.02611425612050.00UG0.0050) Chlorobenzene-d510.36611725323650.00UG0.00 31) 1,4-Difluorobenzene
50) Chlorobenzene-d5 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.538
 65
 82632
 59.31
 UG
 0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 118.62%

 41) Toluene-d8
 8.691
 98
 215035
 48.10
 UG
 0.01

 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 96.20%
 59)
 Bromofluorobenzene
 11.767
 95
 94966
 46.04
 UG
 0.00

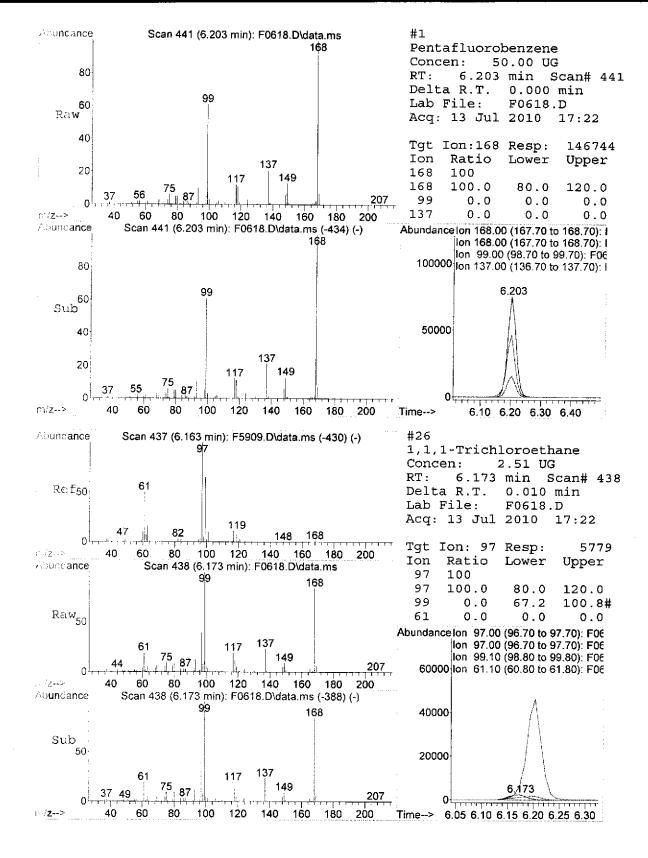
 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 92.08%
 92.08%

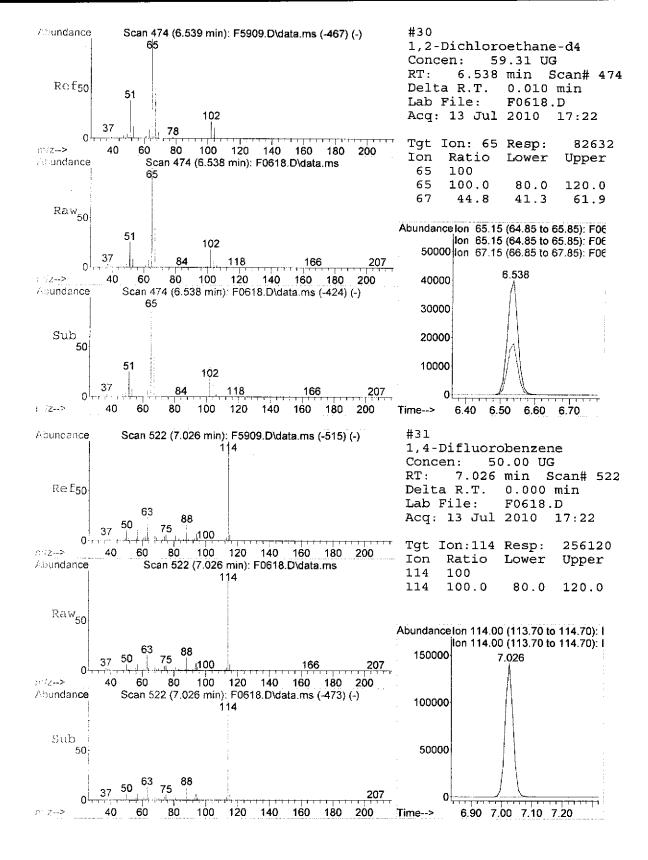
 Target Compounds Ovalue

 26) 1,1,1-Trichloroethane
 6.173
 97
 5779
 2.51
 UG
 #
 58

 33) Trichloroethene
 7.310
 95
 24298
 16.27
 UG
 #
 77

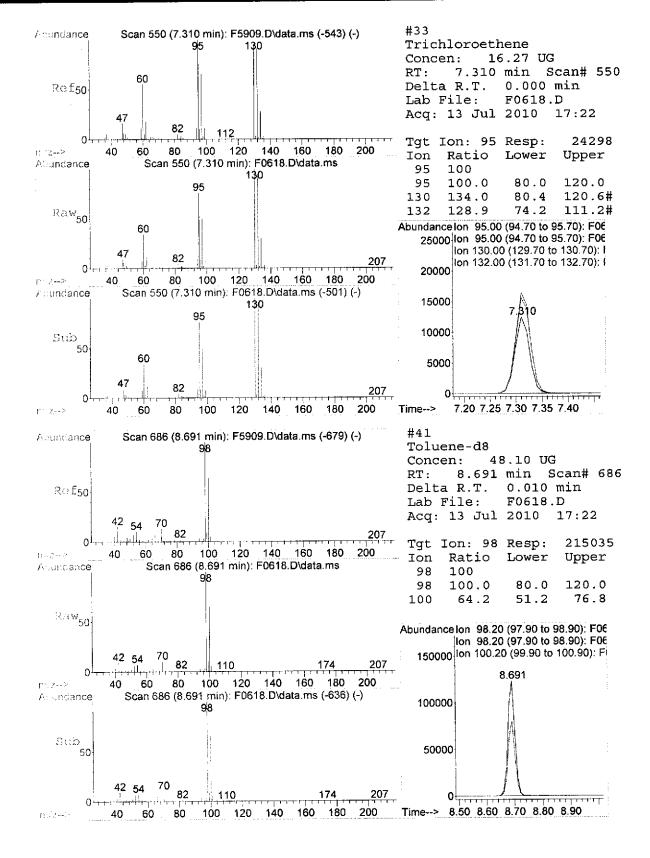
 45) Tetrachloroethene
 9.391
 166
 3543
 2.46
 UG
 #
 99

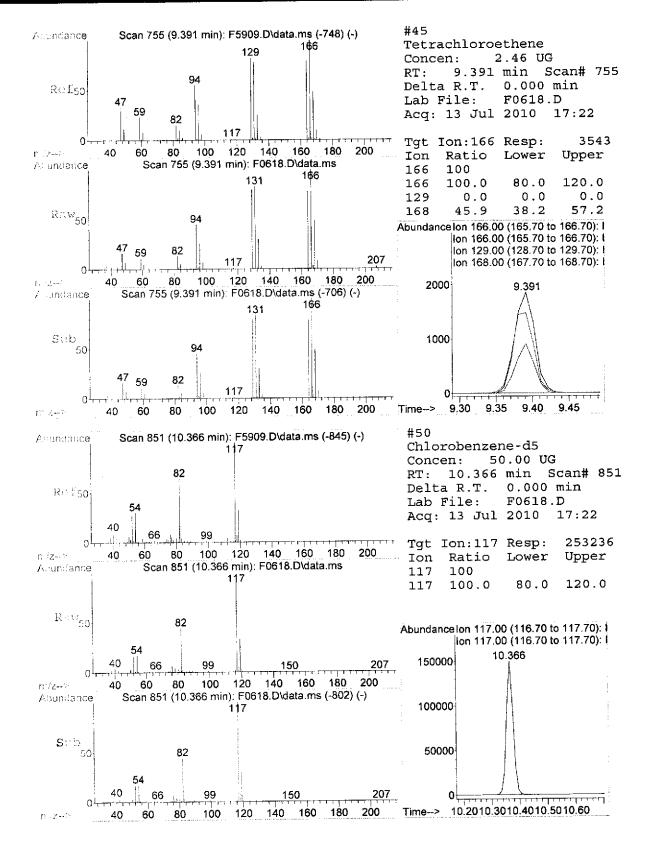

(#) = qualifier out of range (m) = manual integration (+) = signals summed

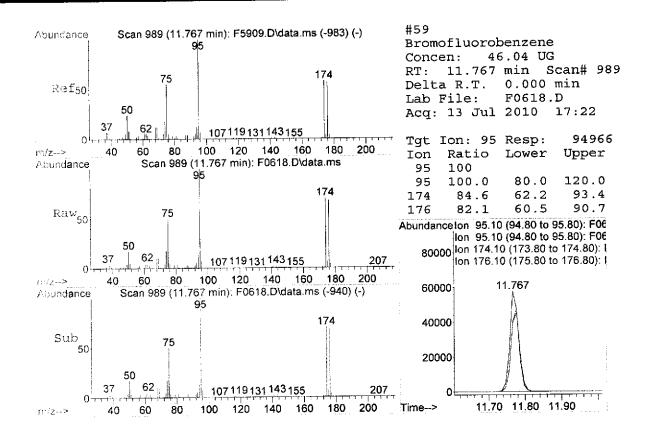

Page: 1 0088 111

Operator : X	0618.D 3 Jul 2010 1 ING W-6S,06728-00 RCADIS/KINGS	7:22 6,A,5m ELEC,(nl,100)7/08/1		09/10,						
Quant Time: J Quant Method Quant Title QLast Update Response via	: C:\MSDCHEM\ : VOLATILE OR : Tue Jul 06	1\METH GANICS 13:53:	HODS\F# 3 BY EH 33 201	PA METI	.M HOD 8260	ЭВ					
Abundance				TIC	F0618.D\da	ata.ms					
460000											
440000											
420 000 ¹											
400 000					ne-d5,1						
380000					Chlorobenzene-d5,						
3600 00		zene, l	c S	88 N	CHO CHO						
340000		1,4-Difluorobenzene,I		Toluene-d8,5		e.S					
3200 00		1,4-Dif	·			Bromofluorobenzene,S					
300000		ene,t				тойног					
280 000		Pentafluorobenzene.t				90 0					
260000		Pentallu									
2400 (0)											
220000											
20000 0]											
180000											
160000		1,2-Dichloroethane-d4.S		1							
140000		thloroeth	Σ								
1200 00		1,2-Dic	M'auanaonan								
16060 0		He L									
80000		1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	l	Ľ.							
600 0		- Line		roethen							
400 00		+		Tetrachkoroethene, T							
: 2000 0 -											
0		_ _ _ xo 7.00	8.00	9.00 10		12 00	13.00 14.00	15.00 16.00	0 17.00	18.00 19	.00
		· · · · · · · · · · · · · · · · · · ·									

FAM0702.M Wed Jul 14 15:44:35 2010 RP1


Page: 2 0089 XTTJ W



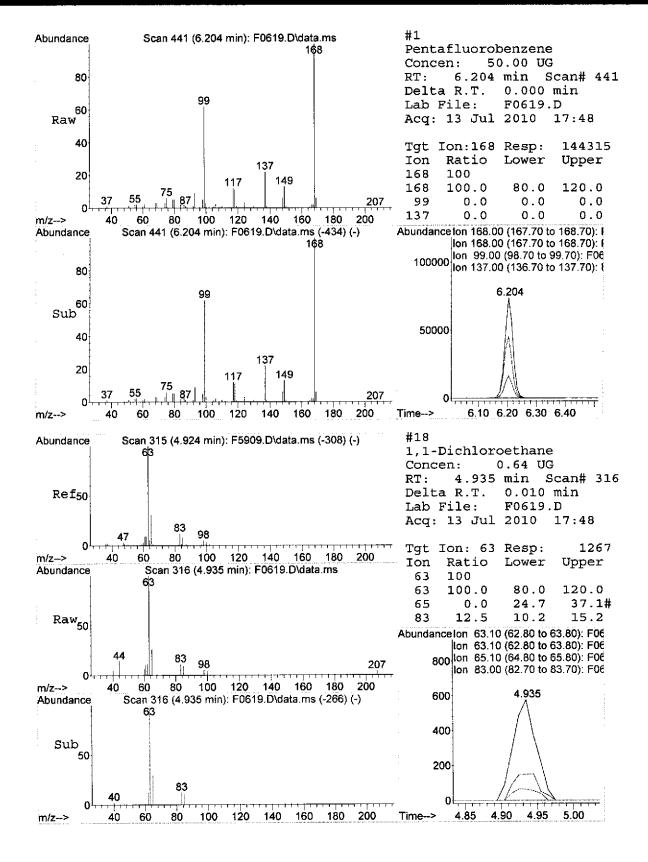

RP1

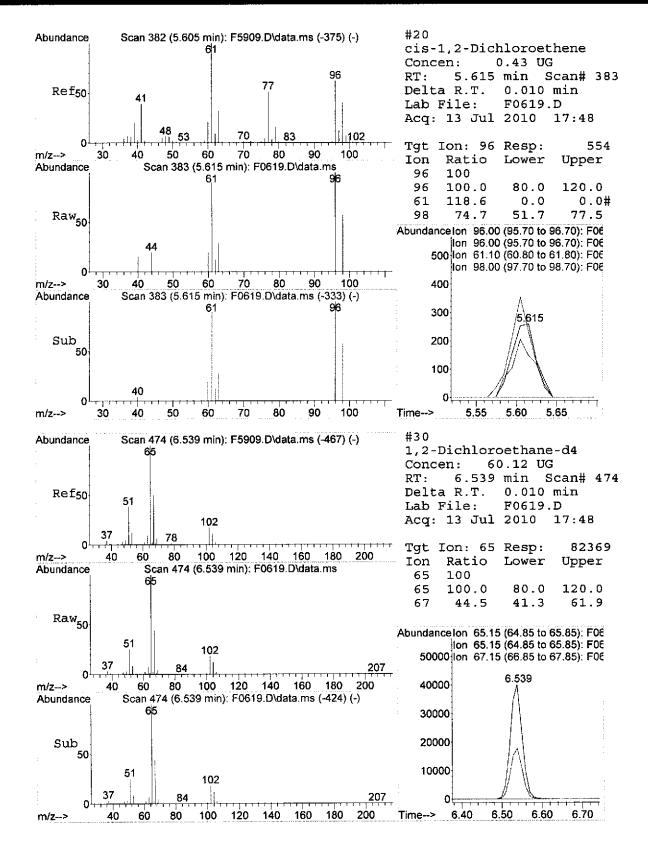
Page 4 0091

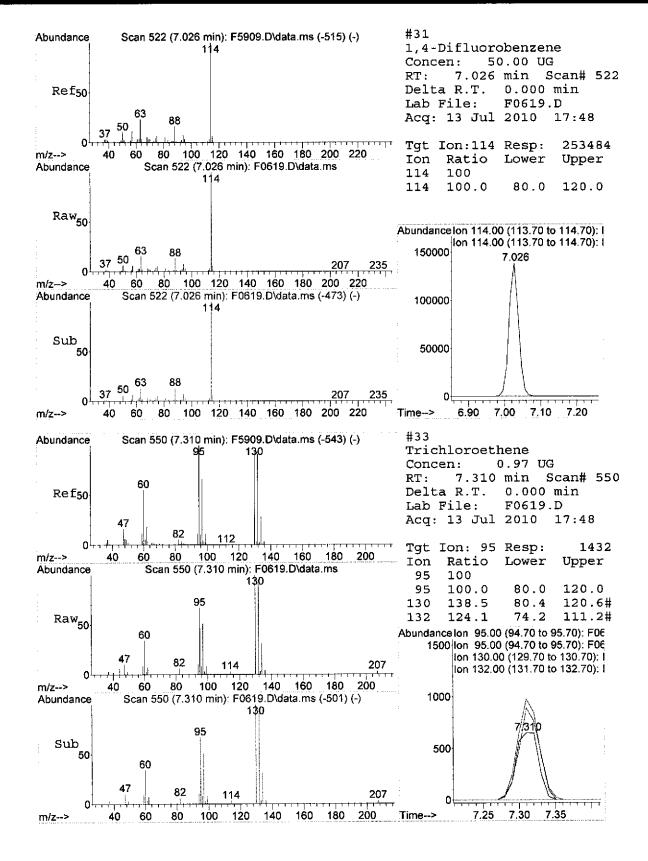
Page 5 0092

Data Path : C:\msdchem\l\DATA Data File : F0619.D Acq On : 13 Jul 2010 17:4 Operator : XING Sample : MW-13R,06728-007, Misc : ARCADIS/KINGS_ELE ALS Vial : 17 Sample Multi	8 A,5ml,100	,07/09,	/10,						
Quant Time: Jul 26 10:25:30 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration									
Internal Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(Min)			
1) Pentafluorobenzene	6 204	168	144315	50 00	UG	0.00			
31) 1 4-Difluorobenzene	7 026	114	253484	50.00	UG	0.00			
31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	10.366	117	252299	50.00	ŪĠ	0.00			
System Monitoring Compounds									
30) 1,2-Dichloroethane-d4	6.539	65	82369	60.12	UG	0.01			
Spiked Amount 50.000									
41) Toluene-d8	8 691	98	214267	48 43	IIG	0 01			
Spiked Amount 50.000	Range 39	- 137	Recove	rv =	96.8	16%			
59) Bromofluorobenzene	Range 39 11.767	95	94532	46.00	UG	0.00			
Spiked Amount 50.000	Range 23	- 145	Recove	ry =	92.0)08			
Target Compounds						Qvalue			
18) 1,1-Dichloroethane	4.935	63	1267	0.64	UG	# 88			
20) cis-1,2-Dichloroethene				0.43	UG	# 95			
33) Trichloroethene	7.310		1432		UG	# 77			

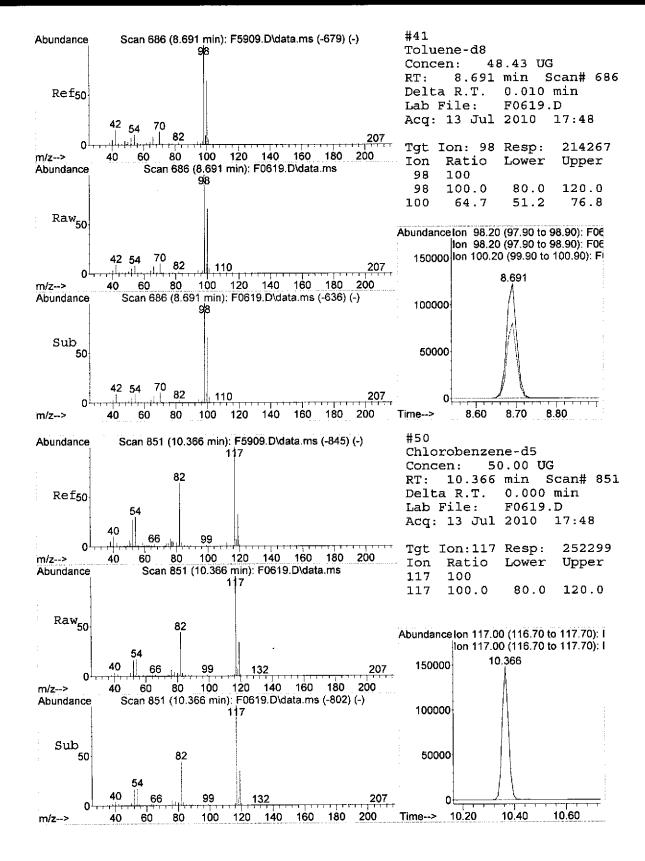
(#) = qualifier out of range (m) = manual integration (+) = signals summed

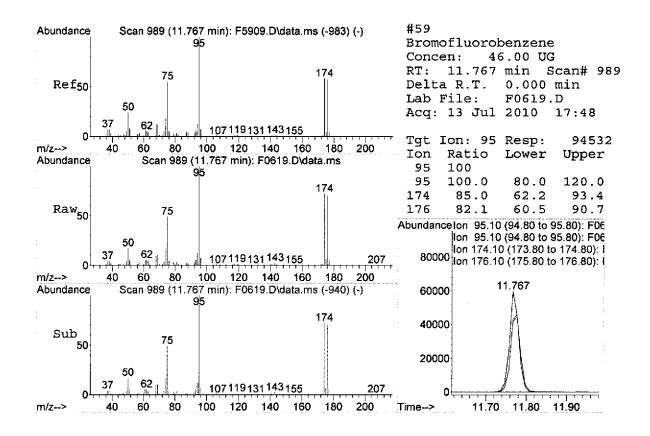

Page: 1 XAJ 00


Data Path Data File		C: $msdchem(1)DATA(07-13-10)$
Acq On	Ξ	13 Jul 2010 17:48
Operator		
Sample		MW-13R,06728-007,A,5ml,100
Misc		ARCADIS/KINGS_ELEC,07/08/10,07/09/10,
ALS Vial	:	17 Sample Multiplier: 1
••••••••••••••••••••••••••••••••••••••		T-1 06 10 05 00 0010


Quant Time: Jul 26 10:25:30 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Indance							TIC: FO	619.D\data.ms	3					
460000														
440000														
420000														
400000							12 12							
380000							Chiorobenzene-d 5.							
360000				-	Le'i	8 <mark>8</mark> S								
340000				-	1,4-Uniuoropenzene,I	Toluene-d8,S		Izene,S						
320000				5	-4-Umuo	·		Bromoftuorobenzene, S						
300000			ļ		-			Bromot						
280000			Dantafirmhenzene (21200										
260000			antsfirm											
240000			0	L										
220000														
200000														
180000				Ś			1							
160000				1,2-Dichloroethane-d4,S										
140000				chloroett				ŝ						
120000				1,2-Di										
100000														
80000		_	le,T											
60000		1,1-Dichloroethane,P	cis-1,2-Dichloroethene,T		hene,M									
40000		Dichloro	1,2-Dichl	i s	richloroethene,M									
20000		1.1-1	Cis.		۲ ۲	,	9							
oh	0 3.00 4.00	5.00	- ^ , , 6.0		<u> ,,</u> .00 В	.00 9.0		11.00 12.0	0 13.00	14,00 1!	5.00 16.00	17.00 18	1.00 19.00	-

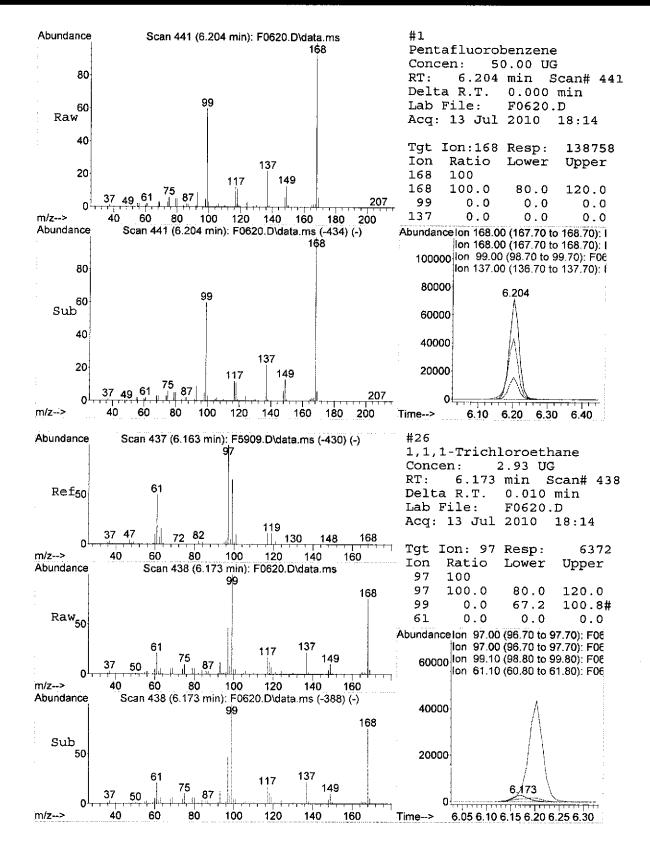

X+1 0096

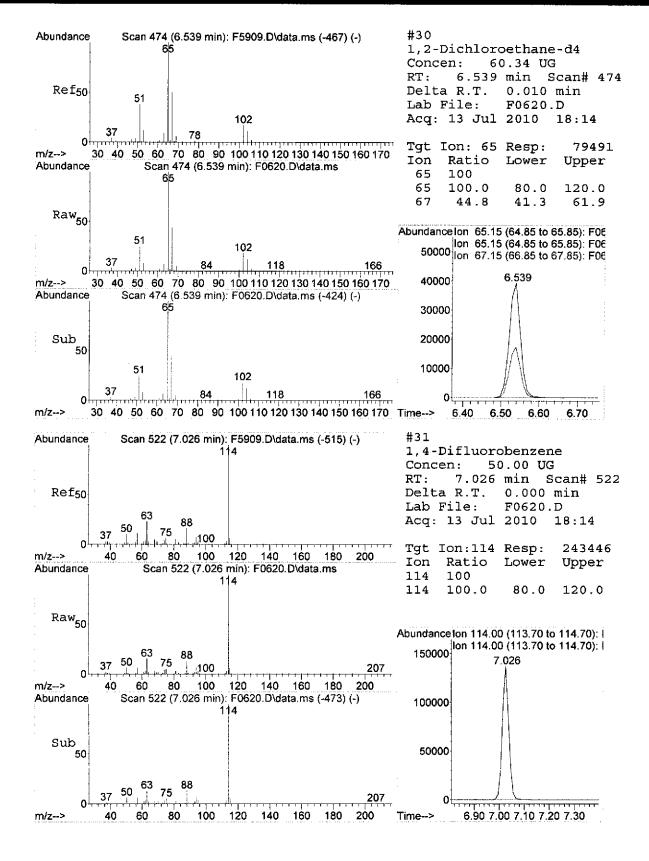


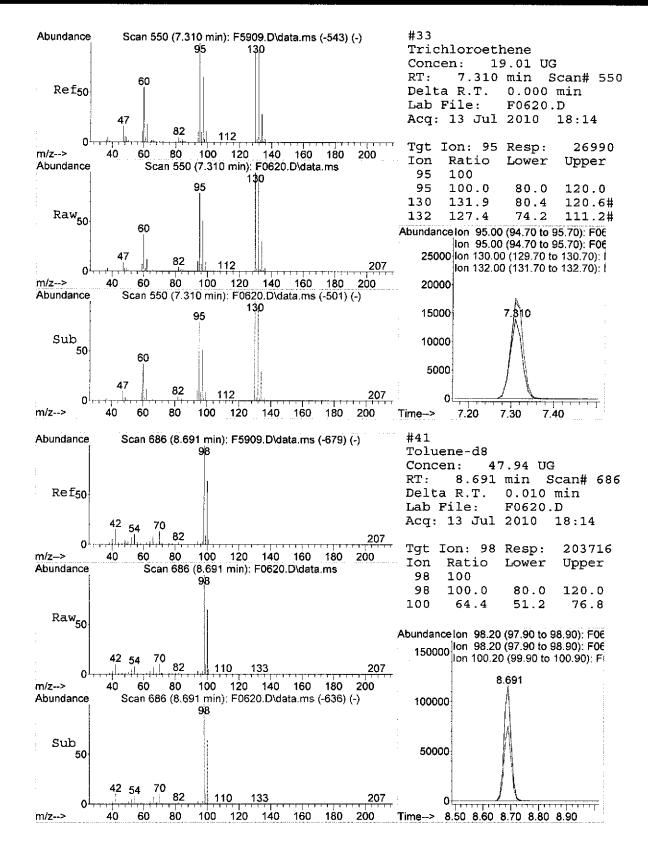
Page ก็จื่อ

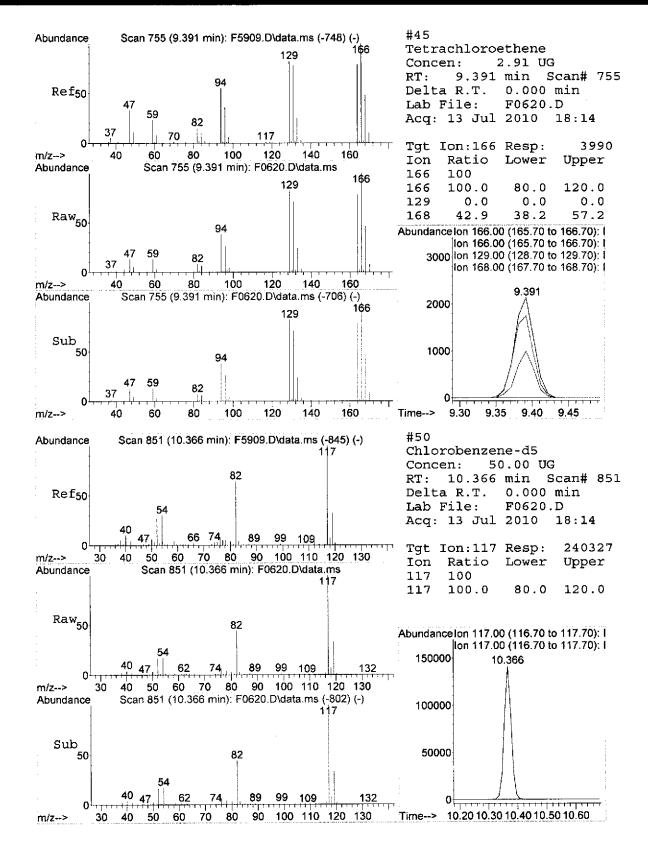
Target Compounds						Qva	lue
26) 1,1,1-Trichloroethane	6.173	97	6372	2.93	UG	#	58
33) Trichloroethene	7.310	95	26990	19.01	UG	#	78
45) Tetrachloroethene	9.391	166	3990	2.91	UG	#	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

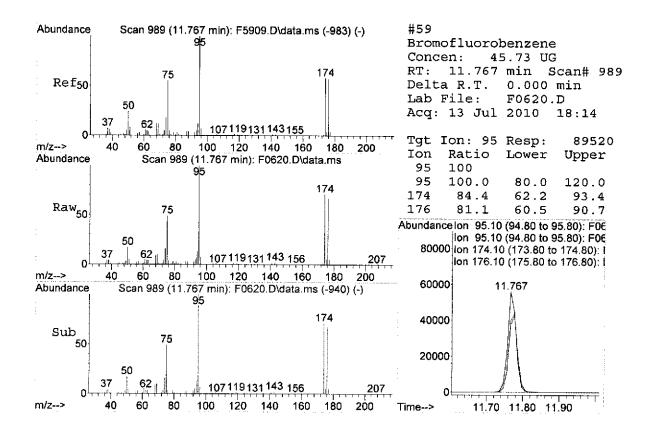

Page: 1 0103 PfJ 4


FAM0702.M Wed Jul 14 10:18:51 2010 RP1

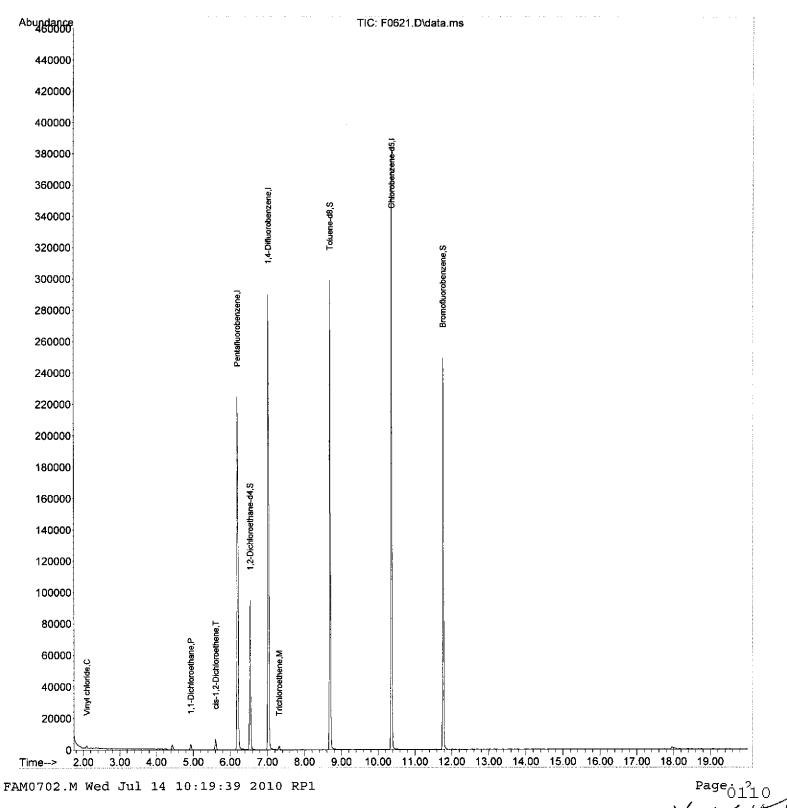

Data File Acq On Operator Sample Misc	Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0620.D Acq On : 13 Jul 2010 18:14 Operator : XING Sample : DUP(070810),06728-008,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/08/10,07/09/10, ALS Vial : 18 Sample Multiplier: 1								
Quant Met Quant Tit QLast Upo	ne: Jul 14 10:18:4 thod : C:\MSDCHEM\ tle : VOLATILE OR date : Tue Jul 06 via : Initial Cal	(1\METHODS) GANICS BY 13:53:33 2	EPA METH	M OD 8260B					
Abundance			TIC: I	F0620.D\data.ms	······				
440000									
420000									
400000									
380000				192 1					
360000				Childrobenzene-d5,					
340000		îzene,	ຮ						
320000		f,4-Diffuorobenzene,I	Toluene-d8,S	s ອ					
300000		1,4-0	т	Jrobenze					
280000		l,		Bromofluorabenzene, S					
260000		Pentafluorobenzene,		_					
240000		Pentafi							
220000		1							
200000									
180000									
160000		44,S							
140000		oethane ie,M	1						
120000		1,2-Dichloroethane-d4,S Trichloroethene,M	- "Wy 224						
100000		Ë							
80000		ethere 							
60000			thene,T						
40000			Tetrachioroethene, T						
20000									
20000									
<u>Time></u> 2.00	0 3.00 4.00 5.00 6.0	0 7.00 8.00	9.00 10.0	0 11.00 12.00 13.00 14.00 15.00	16.00 17.00 18.00 19.00				

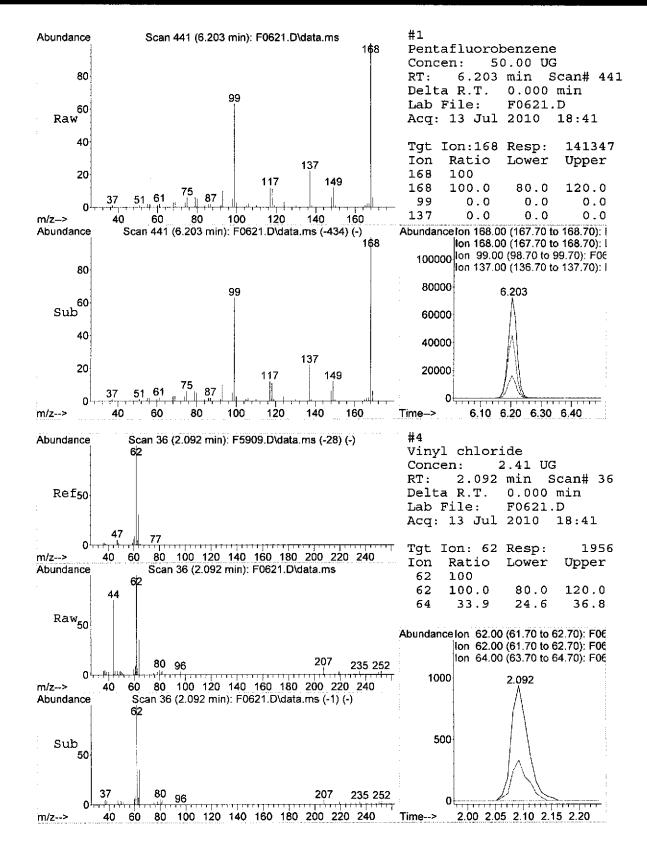

FAM0702.M Wed Jul 14 10:18:52 2010 RP1

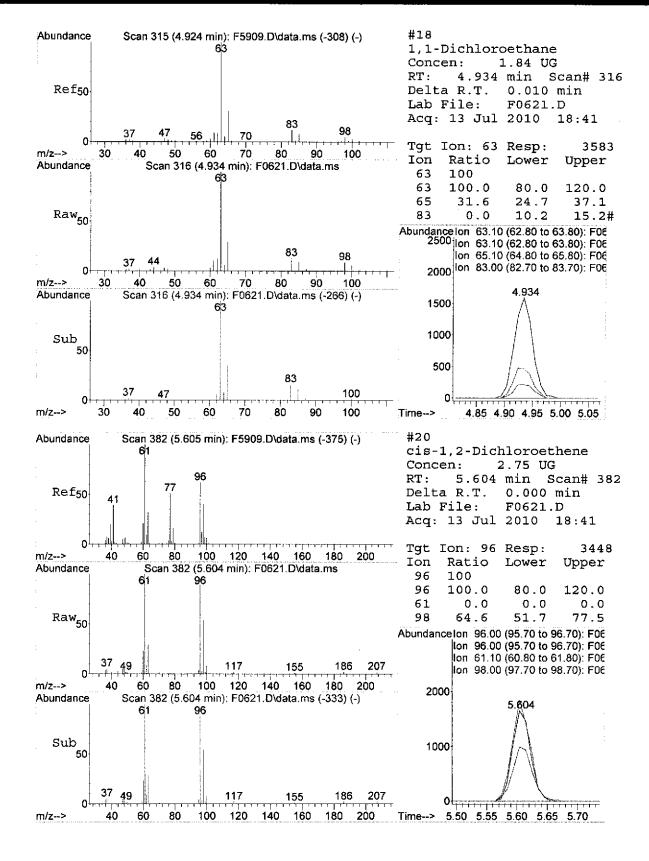
Page 0103 X-17

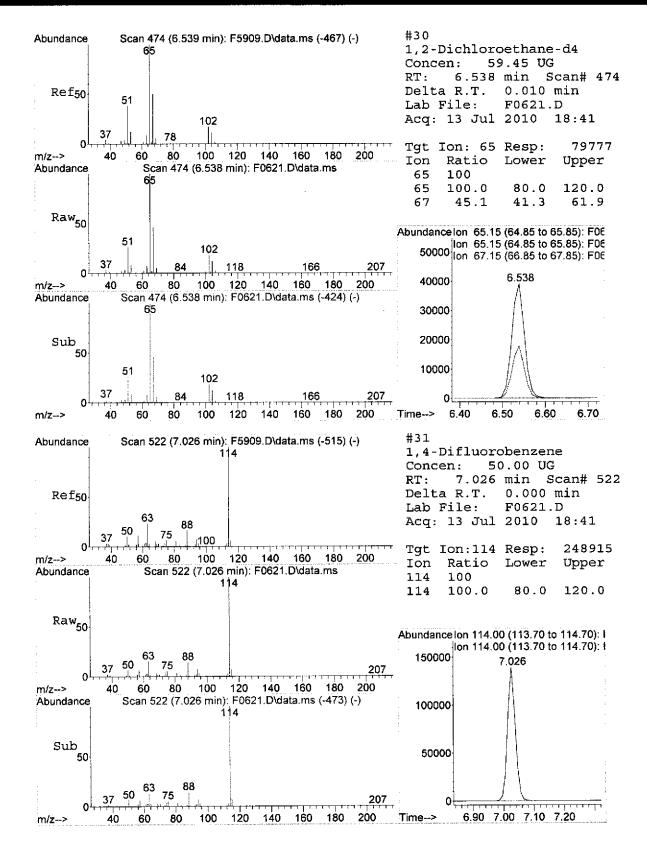


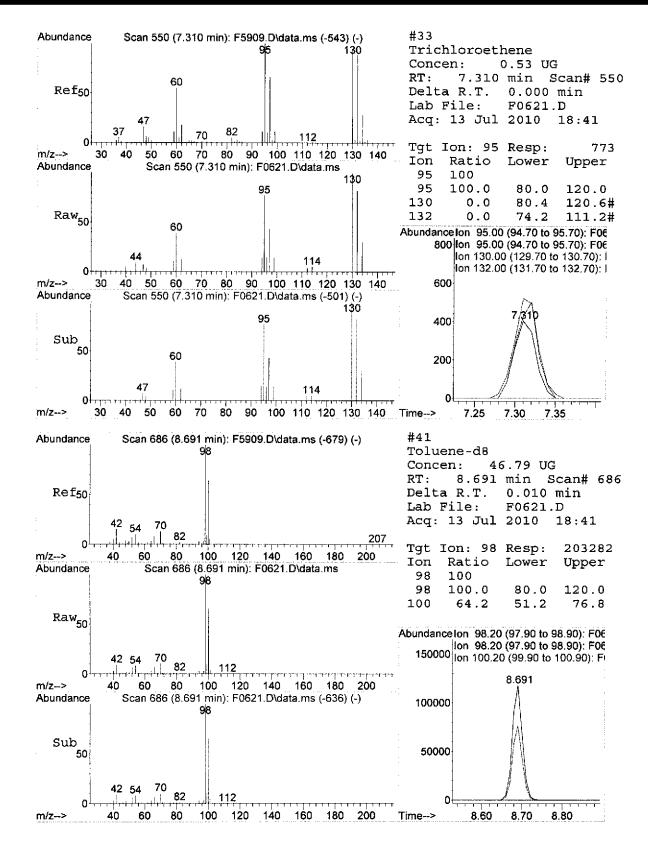
Page 6 0107

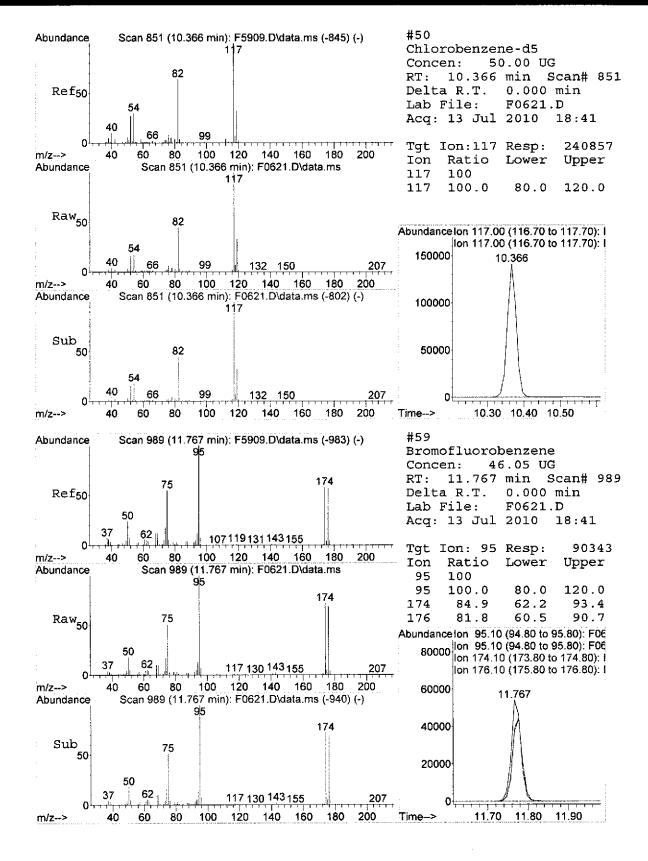

Data Path : C:\msdchem\l\DATA Data File : F0621.D Acq On : 13 Jul 2010 18:4 Operator : XING Sample : GP-104R,06728-009 Misc : ARCADIS/KINGS_ELE ALS Vial : 19 Sample Multi	1		/10,						
Quant Time: Jul 14 10:19:34 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration									
Internal Standards	R.T.	QIon	Response	Cone Ur	nits D	ev(Min)			
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	7.026	114	248915	50 00	TIC .	0 00			
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	Range 43 8.691 Range 39 11.767	- 133 98 - 137 95	Recove 203282 Recove 90343	ry = 46.79 ry = 46.05	118.9 UG 93.5 UG	0% 0.01 8% 0.00			
Target Compounds 4) Vinyl chloride 18) 1,1-Dichloroethane 20) cis-1,2-Dichloroethene 33) Trichloroethene	2.092 4.934 5.604 7.310	63 96	1956 3583 3448 773	1.84	UG UG UG	# 97			


(#) = qualifier out of range (m) = manual integration (+) = signals summed

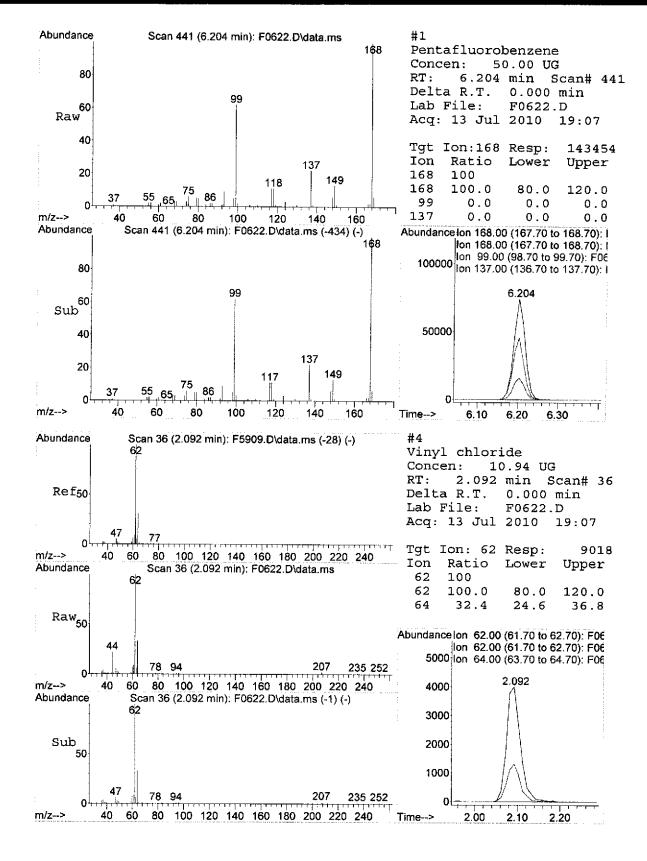

Page: 0109 XTIJUT

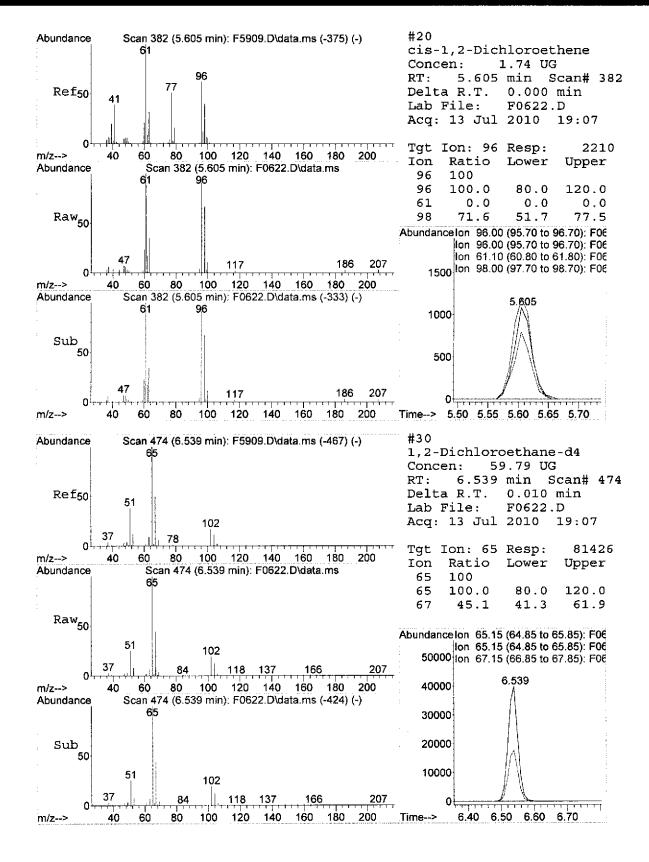

Data Path	:	$:\mddhem\1\DATA\07-13-10\$					
Data File	:	0621.D					
		13 Jul 2010 18:41					
Operator		: XING					
Sample		GP-104R,06728-009,A,5ml,100					
Misc	:	ARCADIS/KINGS_ELEC,07/09/10,07/09/10,					
ALS Vial	:	19 Sample Multiplier: 1					


Quant Time: Jul 14 10:19:34 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

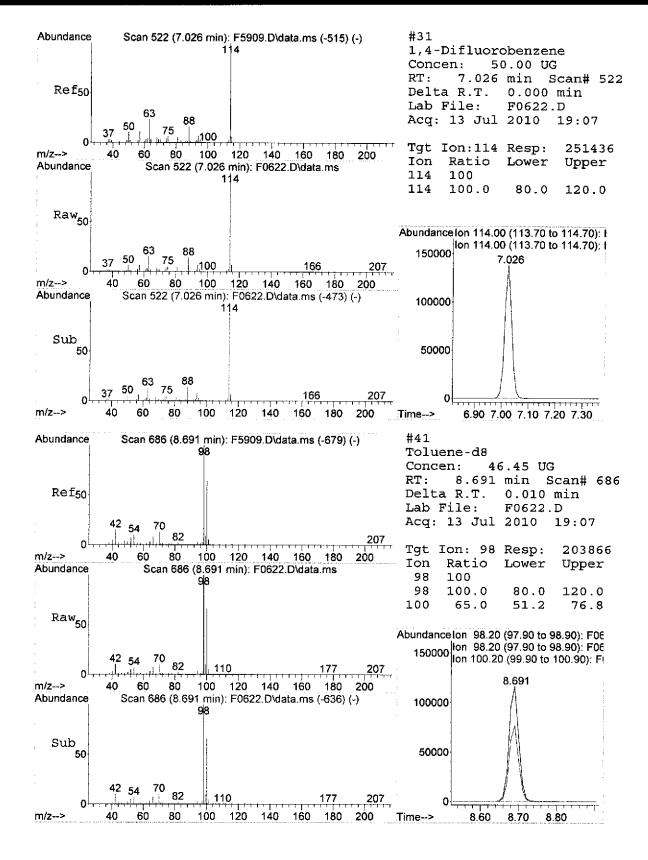


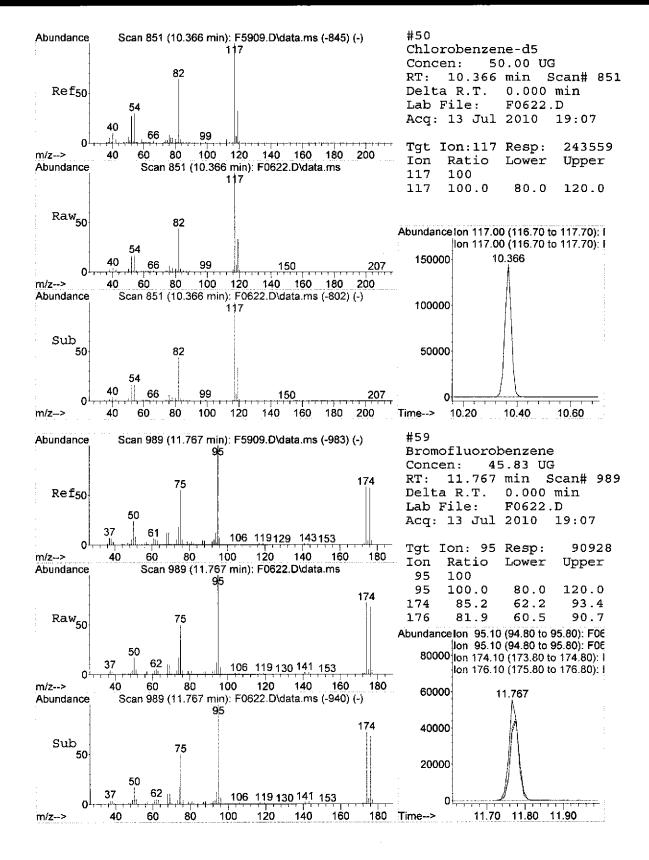
Data Path : C:\msdchem\1\DATA Data File : F0622.D Acq On : 13 Jul 2010 19:0 Operator : XING Sample : GP-103R,06728-010 Misc : ARCADIS/KINGS_ELE ALS Vial : 20 Sample Multi	7 ,A,5ml,100 C,07/09/10	,07/09,	/10,						
Quant Time: Jul 14 21:23:09 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration									
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)			
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	7.026	114	251436	50.00	UG	0 00			
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene	Range 43 8.691 Range 39 11.767	- 133 98 - 137 95	Recove: 203866 Recove: 90928	ry = 46.45 ry = 45.83	119. UG 92. UG	58% 0.01 90% 0.00			
Spiked Amount 50.000	Range 23	- 145	Recover	ry =	91.	66%			
Target Compounds	D 000	60				Qvalue			
4) Vinyl chloride 20) cis-1,2-Dichloroethene	2.092 5.605	6∠ 96	2210	10.94 1.74	UG UG	99 # 96			


(#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 0116 XCHJ W

Data Fi Acq On Operato Sample	<pre>th : C:\msdchem\1\DATA\07 le : F0622.D</pre>	5ml,100 07/09/10,07/09/10,	
Quant M Quant T QLast U	ime: Jul 14 21:23:09 2010 ethod : C:\MSDCHEM\1\METH itle : VOLATILE ORGANICS pdate : Tue Jul 06 13:53: e via : Initial Calibrati	HODS\FAM0702.M 3 BY EPA METHOD 8260B 33 2010	
Abundance 460000		TIC: F0622.D\data.ms	· · · · · ·
440000			
420000			
400000		2	
380000		Ghiorebenzen e d5,1	
360000	Ē	Chiorope	
340000	obenzen	8 8 0	
320000	1.4-Diffuorobenzene,	Toluene-d8,S	
300000		Toluer Bromofluorobenzene, S	
280000	ppenzere	Bromo	
260000	Pentafluorobenzene,		
240000	ŭ		
220000			
200000			
180000			
160000	1,2-Dichloroethane-d4,S		
140000	Noroetta		
120000	1,2-Dic		
100000			
80008	<u></u>		
60000	ide.C		•
40000	Viryl chloride,C cis-1,2-Dichloroethene,T		
20000			
0 Time>	2.00 3.00 4.00 5.00 6.00 7.00	م	0 13.00 14.00 15.00 16.00 17.00 18.00 19.00


FAM0702.M Wed Jul 14 21:23:14 2010 RP1


00 19.00 Page: 2 0117 XTFJVJ

RP1

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0623.D Acq On : 13 Jul 2010 19:34 Operator : XING Sample : FB(070910),06728-011,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/09/10,07/09/10, ALS Vial : 21 Sample Multiplier: 1 Quant Time: Jul 14 21:23:49 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Pentafluorobenzene6.20316813818850.00UG0.0031) 1,4-Difluorobenzene7.02611424638350.00UG0.0050) Chlorobenzene-d510.36611724125150.00UG0.00

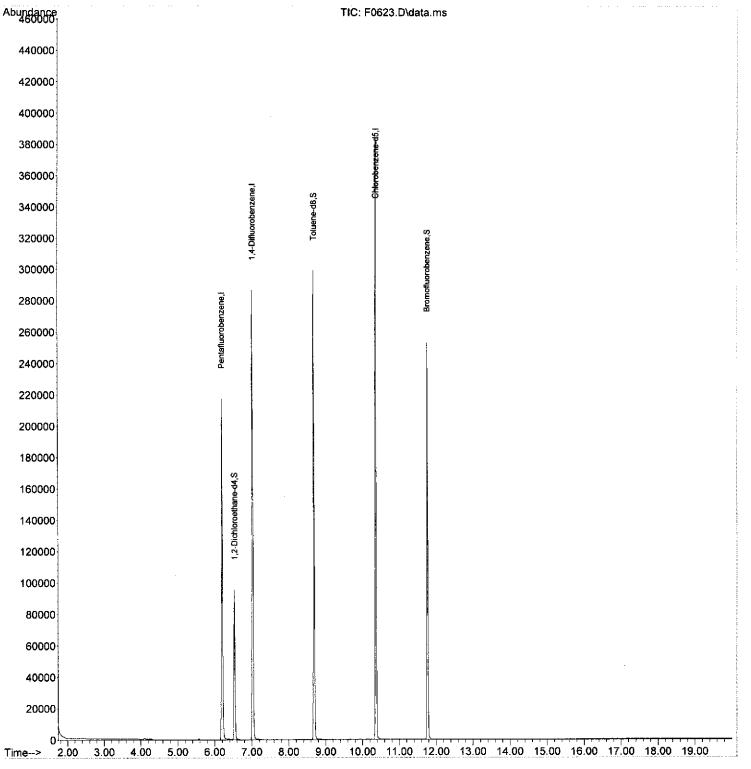
 System Monitoring Compounds
 6.538
 65
 79877
 60.88
 UG
 0.01

 30) 1,2-Dichloroethane-d4
 6.538
 65
 79877
 60.88
 UG
 0.01

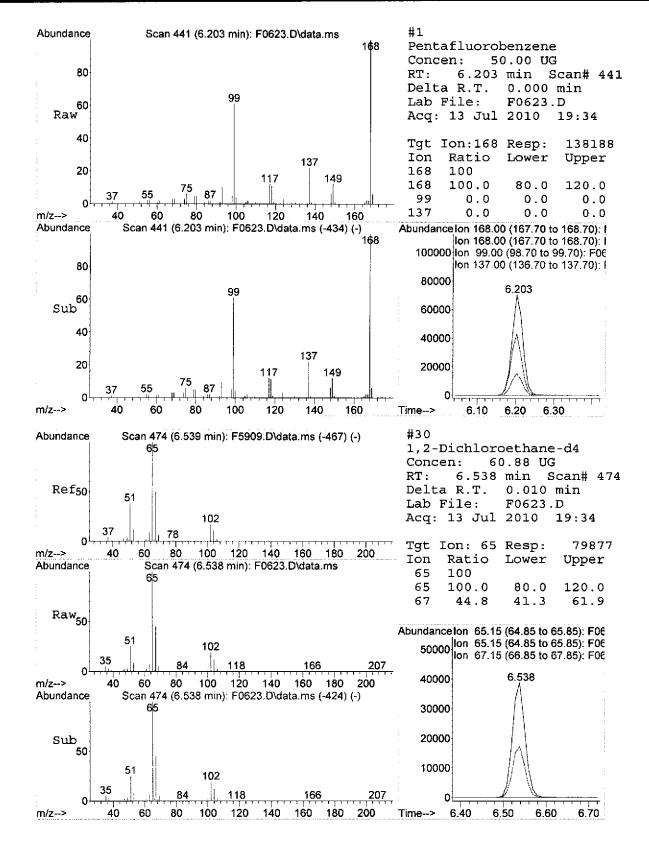
 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 121.76%

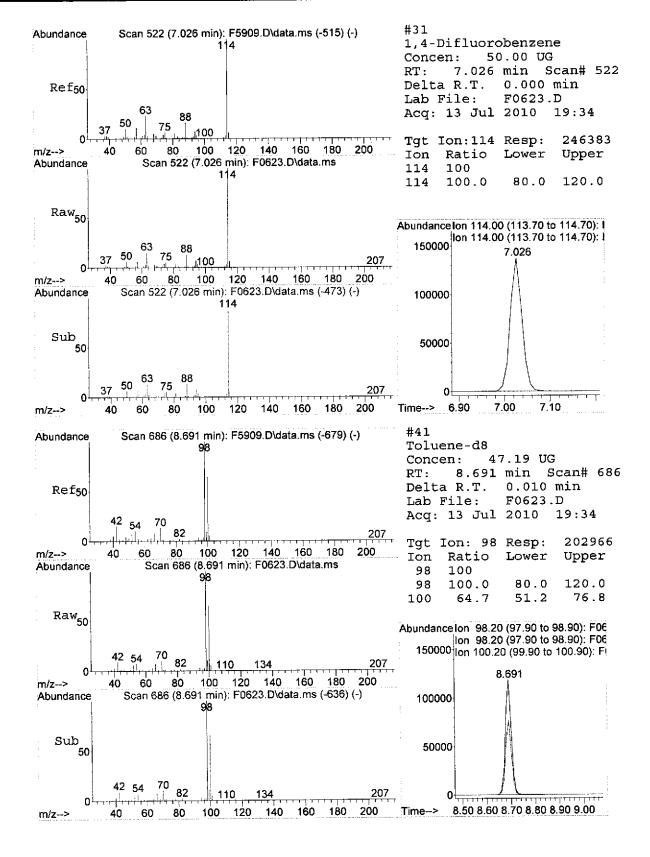
 41) Toluene-d8
 8.691
 98
 202966
 47.19
 UG
 0.01

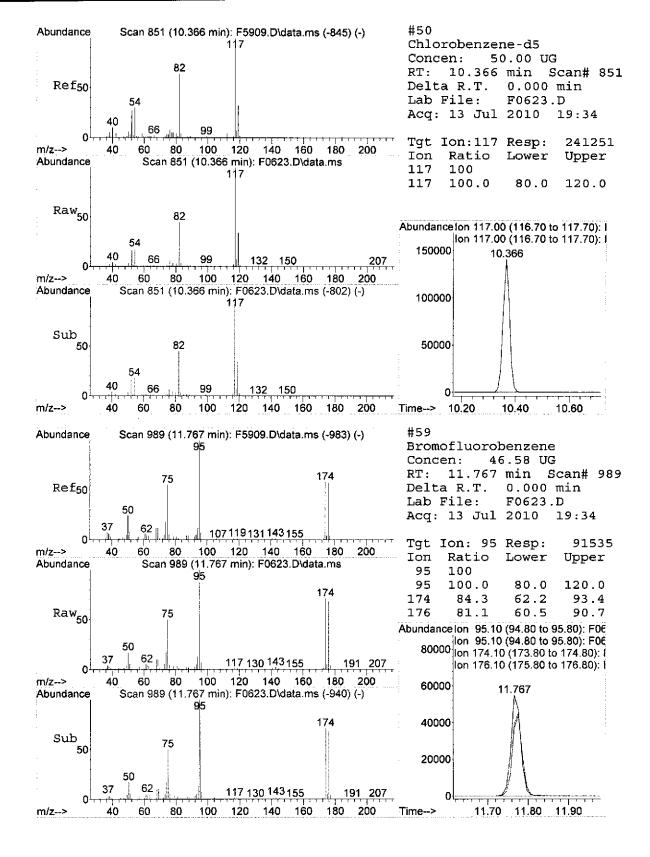
 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 94.38%
 59)
 91535
 46.58
 UG
 0.00


 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 93.16%
 93.16%

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed


> Page: 0122 XIII W


Data Path : C:\msdchem\l\DATA\07-13-10\ Data File : F0623.D Acq On : 13 Jul 2010 19:34 Operator : XING Sample : FB(070910),06728-011,A,5ml,100 Misc : ARCADIS/KINGS_ELEC,07/09/10,07/09/10, ALS Vial : 21 Sample Multiplier: 1


Quant Time: Jul 14 21:23:49 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Page: 2 01 XTFJ W

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0607.D Acq On : 13 Jul 2010 11:55 Operator : XING Sample : N/A, METHOD-BLK, A, 5ml, 100 Misc : ALS Vial : 5 Sample Multiplier: 1 Quant Time: Jul 13 14:16:49 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Pentafluorobenzene6.20316814545450.00UG0.0031) 1,4-Difluorobenzene7.02611425569350.00UG0.0050) Chlorobenzene-d510.36611724448750.00UG0.00 System Monitoring Compounds

 30) 1,2-Dichloroethane-d4
 6.538
 65
 80754
 58.48 UG
 0.01

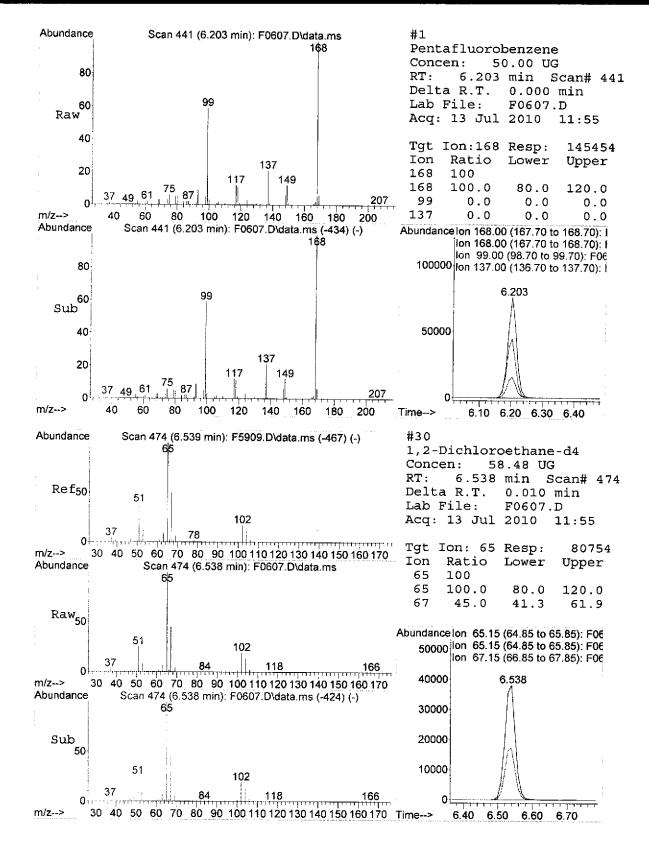
 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 116.96%

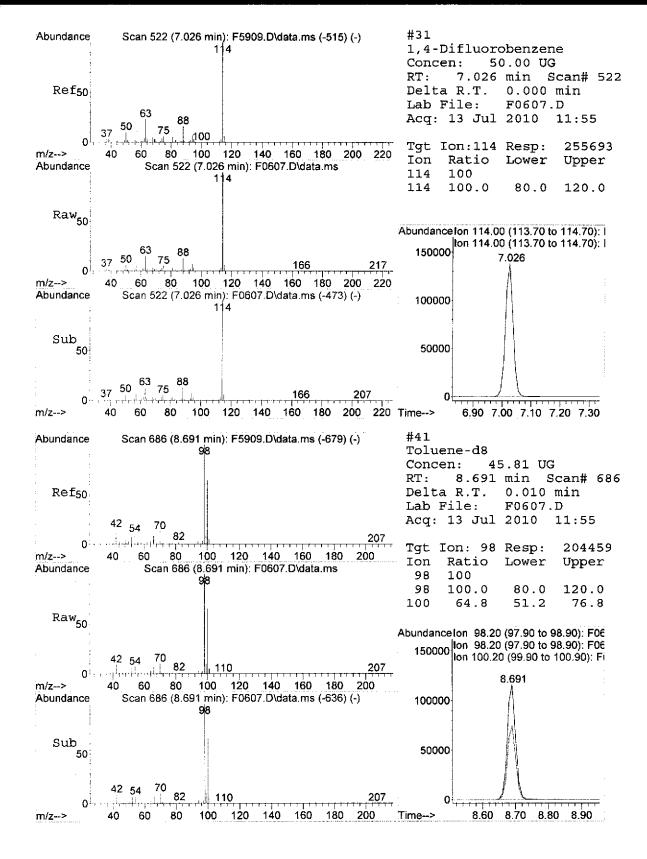
 41) Toluene-d8
 8.691
 98
 204459
 45.81 UG
 0.01

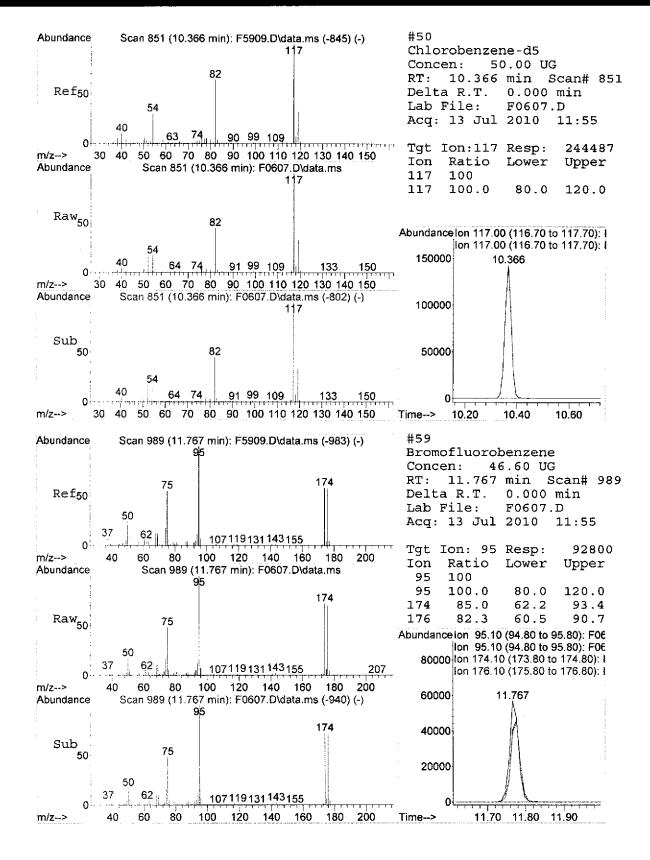
 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 91.62%

 59) Bromofluorobenzene
 11.767
 95
 92800
 46.60 UG
 0.00

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 93.20%


 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 01


Data Path : C:\msdchem\l\DATA\07-13-10\ Data File : F0607.D Acq On : 13 Jul 2010 11:55 Operator : XING Sample : N/A,METHOD-BLK,A,5ml,100 Misc : ALS Vial : 5 Sample Multiplier: 1 Quant Time: Jul 13 14:16:49 2010 Quant Method : C:\MSDCHEM\l\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Abundance 460000	₽ ₽	• •	TIC: F	0607.D\data.ms			
440000))						
420000	1						
400000	5						
380000)			m e -d5,l			
360000				Chlorobenzene-d5,I			
340000		1.4-Difluorobenzene,I	S S	\$			
320000		Difluorob	Toluene-d8,S	lzene,S			
300000			F	Bromoftuorobenzene,S			
280000				Bromo			
260000							
240000	l d						
220000							:
200000							-
180000							
160000		e-d4.S					
140000		oroethan					-
120000		1,2-Dichloroethane-d4,S					
100000							
80000							
60000							
40000		4 4					
20000							
0 Time>	2.00 3.00 4.00 5.00 6.00	7.00 8.00	9.00 10.00	11.00 12.00 13.00	14 00 15 00 40 0	0 17.00 49.00	10.00
	1 Wed Jul 14 15:40:09		0.00 10.00	11.00 F2.00 13.00	14.00 10.00 10.0		19.00 Page : 2 .

Page 01 X7FJ W

RP1

₽∂Õĩ́́́і́́́́і́́́́і́́́і

<pre>Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0610.D Acq On : 13 Jul 2010 13:50 Operator : XING Sample : LCS-50PPB,BLK-SPK,A,5ml,100 Misc : AP-RAH/ALLSTATE,07/08/10,07/08/10 ALS Vial : 8 Sample Multiplier: 1 Quant Time: Jul 13 14:21:27 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B</pre>							
	CS BY EPA 3:33 2010						
Internal Standards	R.T.	QIon	Response	Conc Ur	its :	Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	7.026	114	176930 273515 288349	50.00	UG		0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 H 41) Toluene-d8	6.539 Range 43 8.691	- 133	84757 Recove 259976	ry =	100.	92%	0.01
Spiked Amount 50.000 H 59) Bromofluorobenzene	Range 39 11.767	- 137 95	Recove 123977	ry = 52.78	108. UG	90%	0.00
-	kalige 23	- 145	Recove	r y -	105.		
Target Compounds 2) Dichlorodifluoromethane	1.788	85	62992	48.31	UG	Qva	alue 100
3) Chloromethane			38504	46.98			99
4) Vinyl chloride	1.960 2.092	62	38504 46396 41803	45.66			99
5) Bromomethane	2.468		41803	48.42		#	55
6) Chloroethane	2.590		28344	48.00 51.02		#	100 37
 7) Trichlorofluoromethane 8) Acrolein 	3.402	56	119065 7552m	163.91	UG	π	57
9) 1,1-Dichloroethene	3.503	96	54083	46.12		#	100
10) Acetone	3.595	43	16154	49.59			100
11) Carbon disulfide	3.757	76	16154 168730 163147	46.76			100
12) Vinyl acetate	5.006	43	163147	50.56		#	100
13) Methylene chloride 14) Acrylonitrile	4.102 4.427	84 53	64938 54533	45.78 144.08		# #	100 100
15) tert-Butyl alcohol (TBA)	4.427	59	10180	89.04		#	100
16) trans-1,2-Dichloroethene	4.427	96	77643	47.56		#	98
17) Methyl tert-butyl ethe	. 4.437	73	198990	46.84			100
18) 1,1-Dichloroethane	4.935	63	112116	45.88		#	99
19) Diisopropyl ether (DIPE)	5.016 5.605	45 96	189114 79337	54.79 50.62		# #	100 99
20) cis-1,2-Dichloroethene 21) 2,2-Dichloropropane	5.595	90 77	89208	49.49		τ	93
22) 2-Butanone (MEK)	5.645		23035	48.86		#	97
23) Bromochloromethane	5.879	128	54697	48.10		#	100
25) Chloroform	5.970		155174	49.14		ш	100
26) 1,1,1-Trichloroethane	6.163 6.346	97 117	138308 136570	49.87 51.56		#	58 99
27) Carbon tetrachloride 28) 1,1-Dichloropropene	6.346		85207	50.02		#	95
29) 1,2-Dichloroethane (EDC)	6.620		127083	49.79			100
32) Benzene	6.589	78	259278	47.81			100
33) Trichloroethene	7.310		76828	48.16		#	79
34) 1,2-Dichloropropane	7.574		57306	49.32 48.58		#	100 97
35) Dibromomethane 36) 1,4-Dioxane	7.706 7.737		50046 15235	1468.35		#	100
37) Bromodichloromethane	7.879		113226	50.86		#	68
38) 2-Chloroethyl vinyl ethe		63	30492	48.48		#	94
39) cis-1,3-Dichloropropene	8.386		100462	54.55		#	97
40) 4-Methyl-2-pentanone (43301	50.12			98
42) Toluene	8.762 e 9.026		192113 101352	50.59 53.28		#	99 98
43) trans-1,3-Dichloropropen 44) 1,1,2-Trichloroethane	9.239		48196	47.58		U,	93

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0610.D Acq On : 13 Jul 2010 13:50 Operator : XING Sample : LCS-50PPB,BLK-SPK,A,5ml,100 Misc : AP-RAH/ALLSTATE,07/08/10,07/08/10 ALS Vial : 8 Sample Multiplier: 1 Quant Time: Jul 13 14:21:27 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

 Internal Standards
 R.T. QIon
 Response
 Conc Units Dev(Min)

 45)
 Tetrachloroethene
 9.391
 166
 77264
 50.24 UG
 # 99

 46)
 1,3-Dichloropropane
 9.432
 76
 99688
 52.43 UG
 99

 47)
 2-Hexanone
 9.523
 43
 31386
 52.57 UG
 98

 48)
 Dibromochloromethane
 9.626
 102
 109144
 53.23 UG
 100

 51)
 Chlorobenzene
 10.396
 112
 255774
 44.98 UG
 # 100

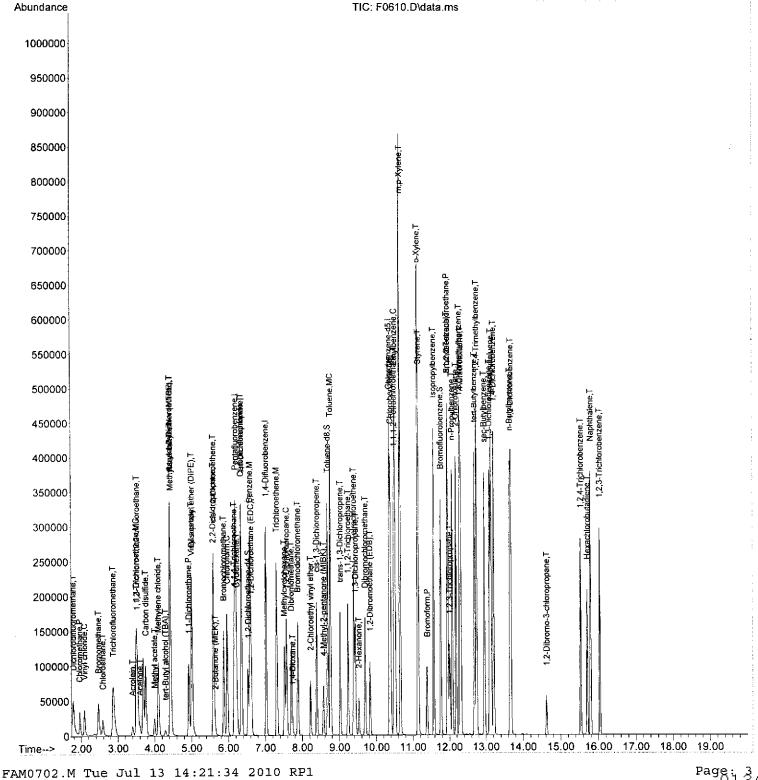
 52)
 1,1,2-Tetrachloroethane
 10.498
 131
 114231
 46.77 UG
 # 98

 53)
 Ehylbenzene
 11.58
 104
 266848
 53.40 UG
 92

 54)
 m.p-Xylene
 11.574
 105
 33528
 52.46 UG
 99

 56)
 Styrene
 11.574
 105
 33528
 52.46 UG
 90

 57)
 Bromoform
 11.574
 105
 33528
 52.46 UG
 90


 561
 1,2,2-Tetrachloroethane
 12.601
 757394
 45.14 UG
 # 100

 <tr R.T. QIon Response Conc Units Dev(Min) Internal Standards

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path	:	$C:\msdchem\1\DATA\07-13-10\$
Data File	;	F0610.D
Acq On	:	13 Jul 2010 13:50
Operator	:	XING
Sample	:	LCS-50PPB,BLK-SPK,A,5ml,100
Misc	:	AP-RAH/ALLSTATE,07/08/10,07/08/10
ALS Vial	:	8 Sample Multiplier: 1
		Jul 13 14:21:27 2010

Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M : VOLATILE ORGANICS BY EPA METHOD 8260B Quant Title QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0611.D Acq On : 13 Jul 2010 14:17 Operator : XING Sample : MS,06728-005MS,A,5mL,100 Misc : ALS Vial : 9 Sample Multiplier: 1 Quant Time: Jul 14 10:01:43 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Pentafluorobenzene6.20416816517250.00UG0.0031) 1,4-Difluorobenzene7.02611428866450.00UG0.0050) Chlorobenzene-d510.36611727600850.00UG0.00

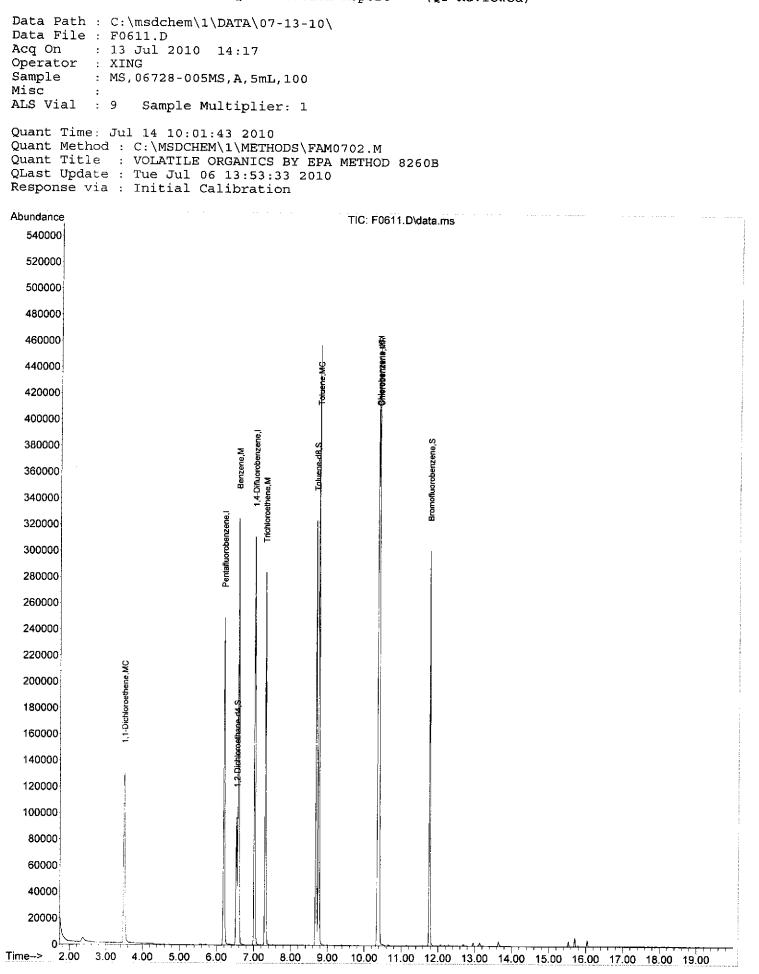
 System Monitoring Compounds
 30) 1,2-Dichloroethane-d4
 6.539
 65
 86868
 55.40 UG
 0.01

 Spiked Amount
 50.000
 Range 43 - 133
 Recovery = 110.80%

 41) Toluene-d8
 8.691
 98
 236407
 46.92 UG
 0.01

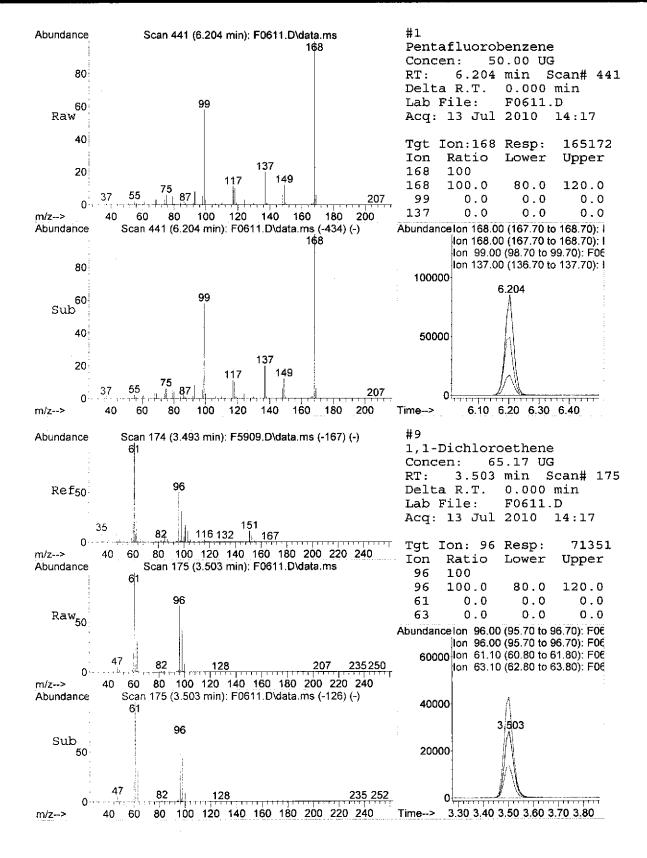
 Spiked Amount
 50.000
 Range 39 - 137
 Recovery = 93.84%

 59) Bromofluorobenzene
 11.767
 95
 104715
 46.58 UG
 0.00

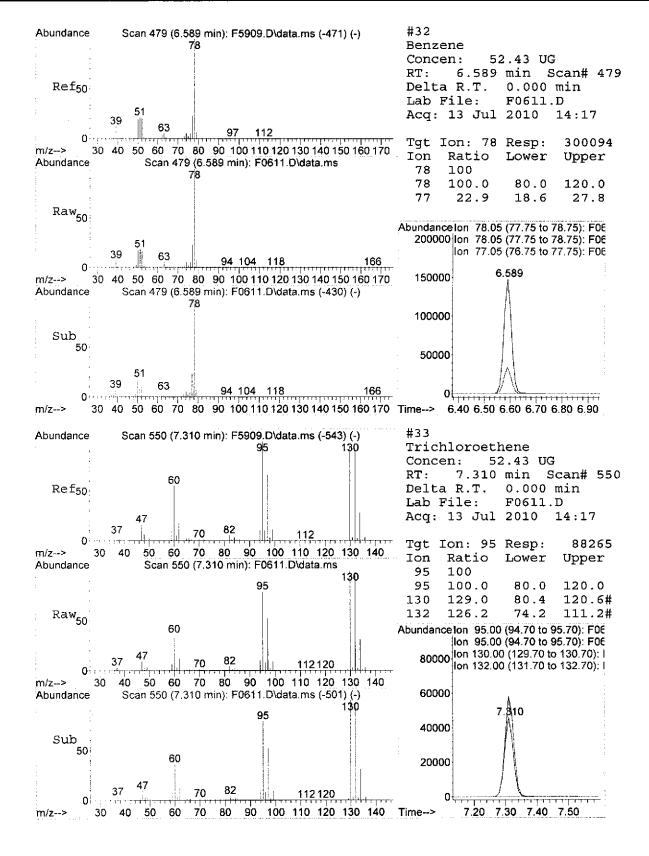

 Spiked Amount
 50.000
 Range 23 - 145
 Recovery = 93.16%
 93.16%

 Target Compounds Qvalue 9) 1,1-Dichloroethene3.503967135165.17UG#10032) Benzene6.5897830009452.43UG10033) Trichloroethene7.310958826552.43UG#7942) Toluene8.7629220960052.30UG9951) Chlorobenzene10.39611227880251.23UG#100

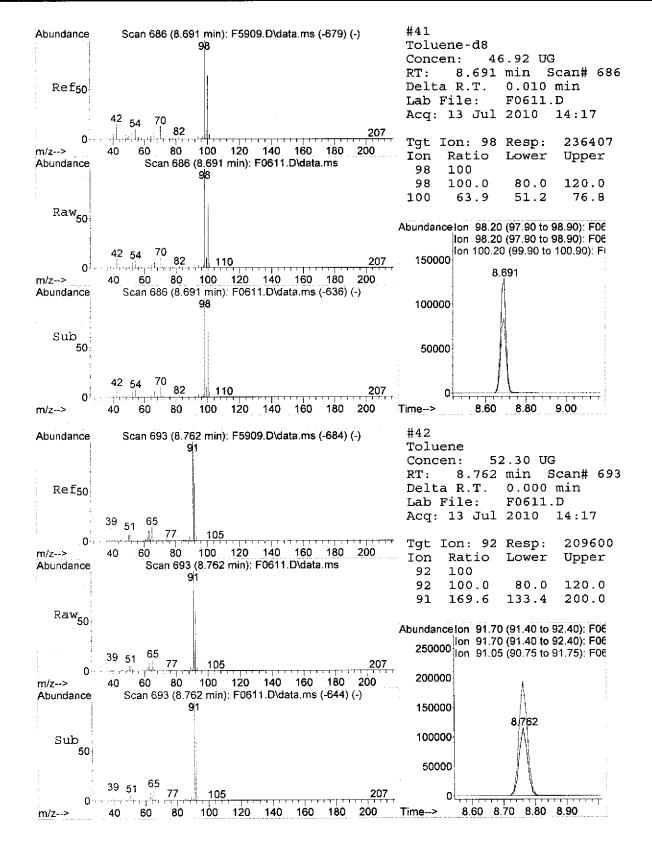
(#) = qualifier out of range (m) = manual integration (+) = signals summed

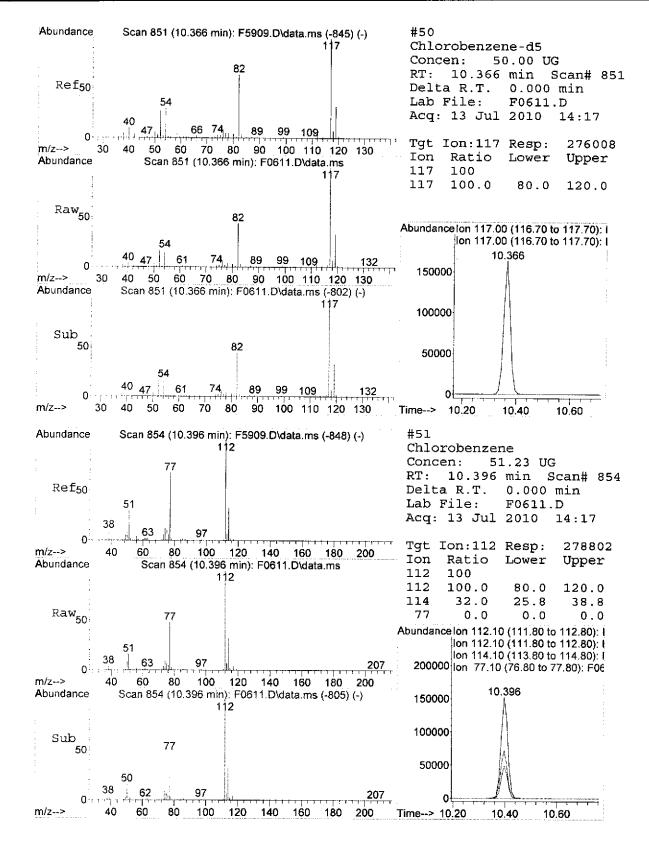

Page: 0135

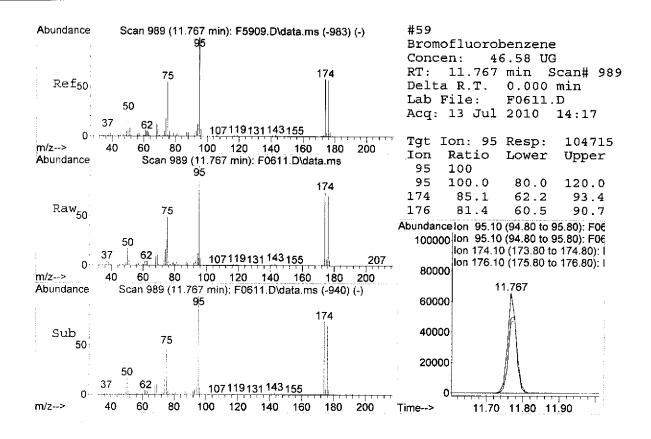
Quantitation	Report	(QT	Reviewed)
--------------	--------	-----	-----------



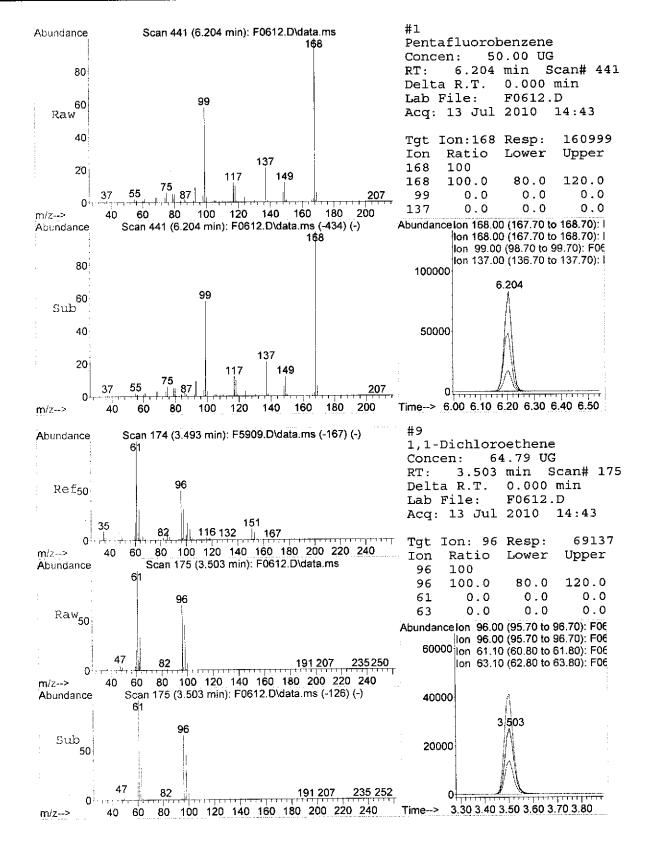
FAM0702.M Wed Jul 14 15:40:30 2010 RP1

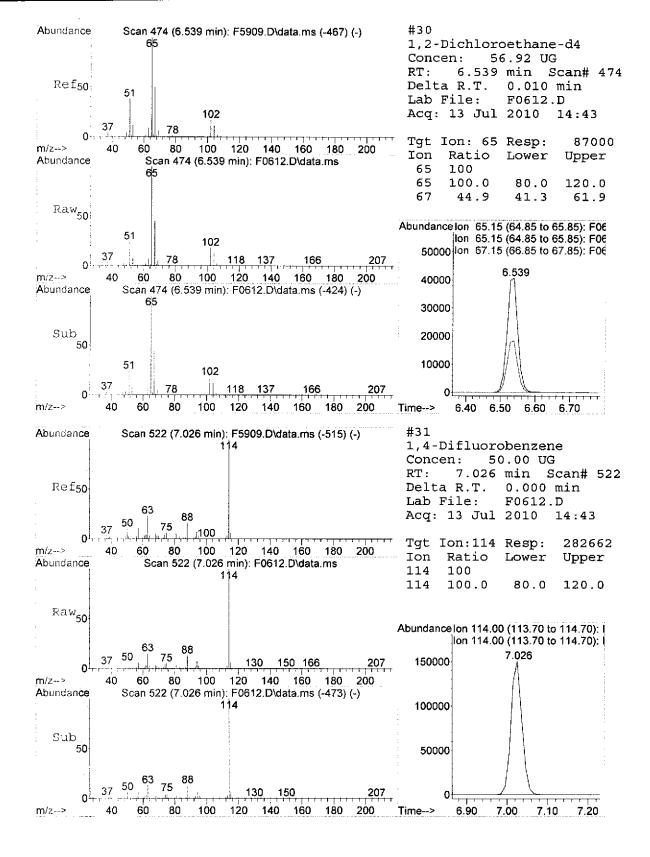

^{Page:}0136

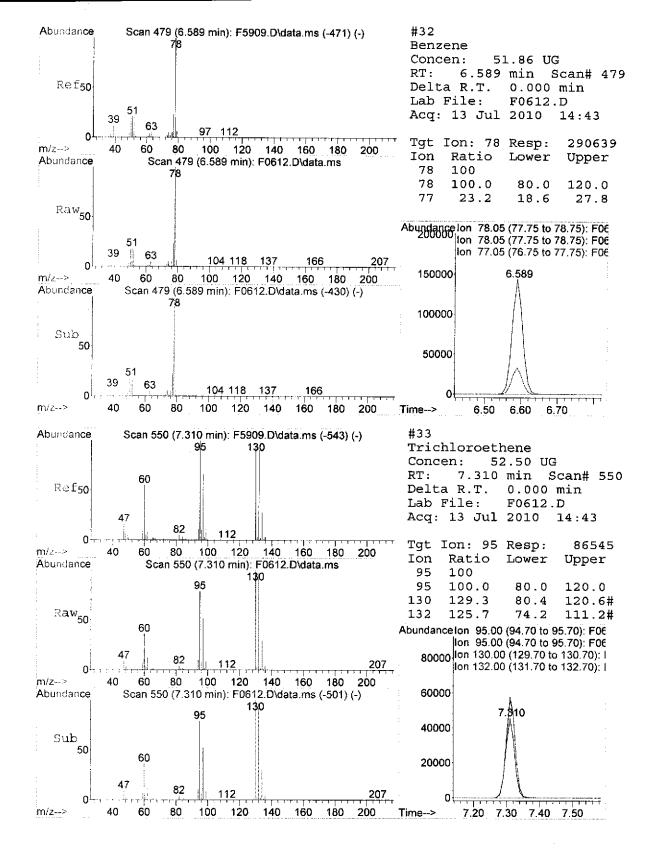


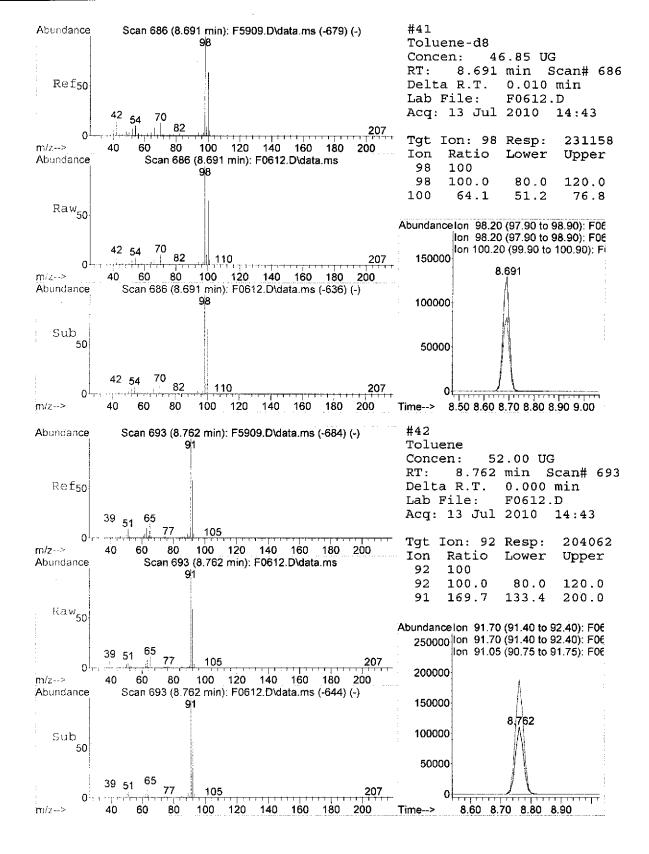


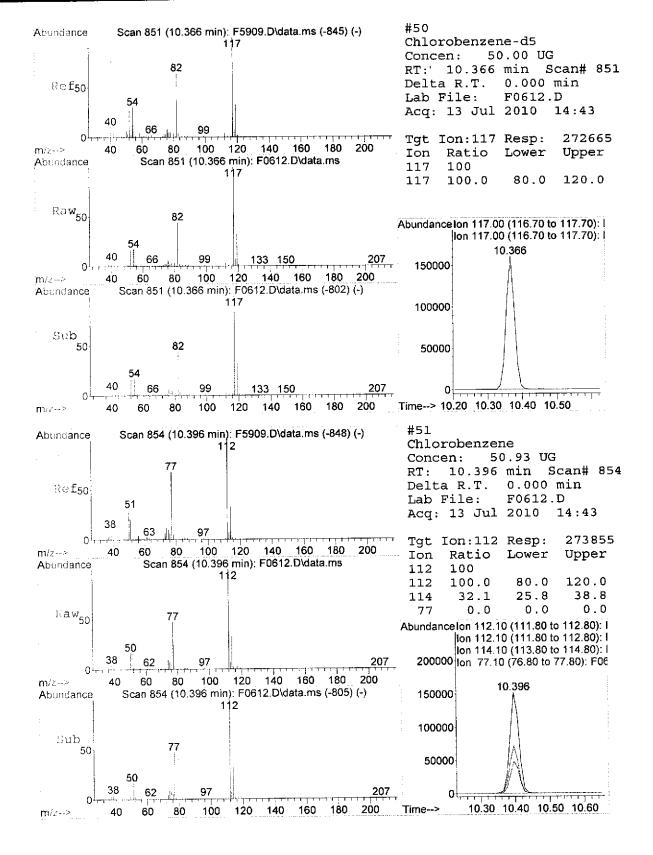
RP1

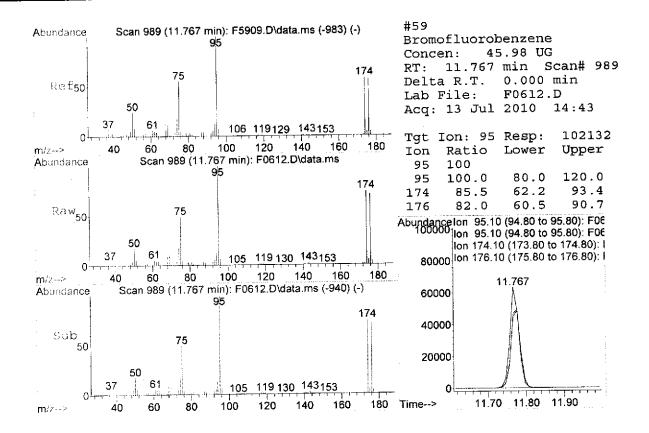

Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0612.D Acg On : 13 Jul 2010 14:43 Operator ; XING Sample : MSD,06728-005MSD,A,5mL,100 Misc : ALS Vial : 10 Sample Multiplier: 1 Quant Time: Jul 14 10:02:24 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Pentafluorobenzene6.20416816099950.00UG0.0031) 1,4-Difluorobenzene7.02611428266250.00UG0.0050) Chlorobenzene-d510.36611727266550.00UG0.00 1,4-Difluorobenzene
 Chlorobenzene-d5 System Monitoring Compounds 30) 1,2-Dichloroethane-d46.539658700056.92UG0.01Spiked Amount50.000Range43 - 133Recovery=113.84% 41) Toluene-d88.6919823115846.85UGSpiked Amount50.000Range39 - 137Recovery=93.70%59) Bromofluorobenzene11.7679510213245.98UG 8.691 98 231158 46.85 UG 0.01 0.00 Spiked Amount 50.000 Range 23 - 145 Recovery = 91.96% Qvalue Target Compounds alget compoundsQvalue9) 1,1-Dichloroethene3.503966913764.79UG#10032) Benzene6.5897829063951.86UG10033) Trichloroethene7.310958654552.50UG#7942) Toluene8.7629220406252.00UG9951) Chlorobenzene10.39611227385550.93UG#100


(#) = qualifier out of range (m) = manual integration (+) = signals summed


Page: 1


Quantitation Report (QT Reviewed)
Data Path : C:\msdchem\1\DATA\07-13-10\ Data File : F0612.D Acq On : 13 Jul 2010 14:43 Operator : XING Sample : MSD,06728-005MSD,A,5mL,100 Misc : ALS Vial : 10 Sample Multiplier: 1
Quant Time: Jul 14 10:02:24 2010 Quant Method : C:\MSDCHEM\1\METHODS\FAM0702.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260B QLast Update : Tue Jul 06 13:53:33 2010 Response via : Initial Calibration
Abundance TIC: F0612.D\data.ms
520000
500000
480000
460000
440000
400000
380000
380000 4 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
380000 360000 340000 3200000 3200000 Brutenery Br
260000
240000
220000
200000 y
200000 W K 180000 Potential Potential 160000 Potential Potential
120000
100000
80000
6000 0
40000
20000
0


FAM0702.M Wed Jul 14 15:41:25 2010 RP1



Phone # (973) 361-4252 Fax # (973) 989-52**6**8

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd Randolph, NJ 07869

CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the following day if samples rec'd at lab > 5PM)	ng day if samples rec'd at l	lab > 5PM)		
Company: ARCADIS - U.S Inc.	REPORT TO: ARCADIS - U.S., TAC.	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT GUARANTEED WITHOUT LAB APPROVAL, **RUSH SURCHARGES WILL APPLY IF	RUSH TAT prior to sam AB APPROVAL, **RUS	nple arrival. F SH SURCHAI	RUSH TAT IS N RGES WILL AF	OT PLY IF
Address: / Tritzen BAR BUD.	Address: 1 Internetabilding.	ABLE TO ACCOMMODATE.				
MAHWAH, NT 07495	MAHUNA, NJ 07495	OOSE		Rush TAT Charge **	Report Format	EDD's
Telephone #: 201. 684. 1410	Atm: P. Rodridever	DRO (3-5 day TAT) QAM DRO (8015B) - used for: Fuel Oil #2/Home F			Results Only	SRP. dbf format
Far # 201.684-1420	FAX# 201. 654. 1420	QAM-025 (OQA-QAM025) - used for: all other fuel oil and unknown contantinants.			Reduced	(
EMAIL Address:	INVOICE TO: Archor U.S. TAC.	al/Fax 2 wk/S	Results needed hy: 72 96	72 hr - 50% 96 hr - 35%	Regulatory - 15% Surcharge applies	EDD EDD
Project Manager: E. Rodredove 2		14 hr* 48 hr* 72 hr* 1 wk*			Other (describe))
Sumpler: U. HULTNS (), Kirkschn Zu	N) 0749	Other *call for price				NO EDD/CD REQ'D
Kings El		I I ANALYTICAI	ANALYTICAL PARAMETERS			
Š	ATTIN 5 ROOPNIDSUEZ	.)>	. <u></u>		Cooler Lemp	P
Bottle Order #: BO 2 402	100 NOUNAR, 0005,00001	0			# RO	# ROTTI FS &
Quote #:	<u>Sample Matrix</u>	7. *			PRESE	PRESERVATIVES
	DW - Drinking Water AQ - Aqueous WW - Waste Water	1			-	_
SAMPLE INFORMATION	UI - UIL LEQ - Lequid (specify) - UI - Uniter (specify) S - Soil SL - Studge SOL - Solid W - Wipe	5r			50	; 1.
Client ID Depth (ft. only)	Sampling Matrix (containers LAL#				HINO HINO N [®] OI HCI	MeO Mone Mone
FR (070810)	7/8/10 09 00 FB 2	7			7	
		\			/	
PTW-2	718/10 1412 AG 2	2			2	
Mw-95k	7/0/10 14 11 AQ 2	2			2	
06- mm	1,0 1207	2			2	
mu-6S	10 1157 AQ	2		-	2	
mw-13R	7/8/10 1032 AQ 2	2			2	
DUD(070810)	/m AQ	2			2	
GP- 104K	7/9/10 09/8 40 2	5		<u> </u>	2	
GP-103R	7610 0917 AQ 2	2				
Known Hazard: Yes or N Describe:		MDE, Ren: GWOS (11/hs) - SRS - SRS/IGW - SRS Residential - OTHER (SFE CYNMMENTS)	S - SRS/IGW - SRS Resid	lential - OTHI	GR (SEE COMM	(SLN3
Conc. Expected: (Lot Med High						
Please print legibly and fill out completely. Samples cannot be processed and the		anya	have been resolved. Comments			
Retinquished by // 11.0	Date Time Signature formany	Date Thine	NIDTE -			R C
1	110	19/10/120			1 42 G	
Relinguished by:	Received by:	- - -				
Relinquished by:	Received by:		Lab Case #			
R(Received by:		6 723		PAGE: of	Ч
LA _U TOPIES - WHITE & YELLOW; CLIENT COPY - PINK H			1 (0001	oler	4 10/2009 rev	Providence of the second second second second second second second second second second second second second se

10/2009 rev Ret Ner G 62020066

a.

ne # (973) 361-4252	# (973) 989-5288
Phone /	Far # (

INTEGRATED ANALYTICAL LABORATORIES CHAIN OF CUSTODY

273 Franklin Rd Randolph, NJ 07869

					soore ertede
CUSTOMER INFO	REPORTING INFO	Turnaround Time (starts the follow	Turnaround Time (starts the following day if samples rcc'd at lab > 5PM)	(
Company: ARCADIS - U.S., TAC.		*Lab notification is required for GUARANTEED WITHOUT L	*Lab notification is required for RUSH TAT prior to sample arrival. RUSH TAT IS NOT GUARANTEED WITHOUT LAB APPROVAL. **RUSH SURCHARGES WILL APPLY IF	d. RUSH TAT IS b IARGES WILL AI	VOT PPLY JF
ADDITESS / 4MT21)ATUNAL DIUD.	Address: 1 - MENAHOR (NW).	ABLE 10 ACCOMIMUDATE.			
LIPHINHH, NJ 07495	34	PHC- MUST CHOOSE	Kush TAT Charge **	** Report Format	EDD's
e l	gue	rr: Fuel Otl #2/He 1025) - used for:	QAIVIULS (5 day IAI min.) one Heating Oil #1 /#2, all other fuel oil and unknown 24 hr - 100%	Results Only Prednord	SRP. dbf format
Fax#: 201.684.1420	FAX# 201.654~1420	contaminants.			lah ap mantel custom
EMAIL Address:	INVOICE TO: ACCAPIS- U.S., Inc.		Results needed by: 72 hr - 50% 96 hr - 35%	Surcharge applies	00
Project Manager: E. Kool rigguez	, J	i Copv	5 day - 25% 6-9 day 10%	Other (describe))
Sampler: U. M. DEXS. D. KinSchnerk	HPHURH, N 07495	orice			NO EDD/CD REQ'D
Project Name: Kings Gurchanics	l	ANALYTICA	ANALYTICAL PARAMETERS	Cooler Temn	Ç.
Project I Acation (State) The Kahor NY	ATTI 5 KOOLVOGGEZ	Э.			
Bottle Order #: Bottle Order #: Bottle Order	PO #	20		UU #	# ROTTI FC &
Quote #: P	Sample Matrix	2		PRESE	
SAMPLE INFORMATION	DW - Drinking Water AQ - Aqueous WW - Water Water OI - Oil LIQ - Liquid (Specify) OT - Other (Specify) S - Soil SL - Sludges SOL - Solid W - Wire	7 S 20			
Client ID Depth (ft. only)		ト A		tont tont HO*N	МеОН Угрег Чопе Зпсоге
Fx (070910)	10 2:30 PS	, ,		1	1
Conc. Expected: And Med High		MDL Req: GWQS (11/05) - SH	MDL Req: GWQS (11/05) - SRS - SRS/IGW - SRS Residential - OTHER (SEE COMMENTS)	HER (SEE COMM	(ENTS)
Please print legibly and fill out completely. Samples cannot be processed and the	turnaround time	yill not start until any ambiguities have been resolved.	have been resolved.	-	
Signature/Company	Signature/Compare	Date Time	Comments:		
Relinquished by Californic Att	1510	1010	NOTE: (HTE	GORY 1	
Redinquished by:	119/10 1 100 Revived by NIN	OPLI ONIMIL	1) miller	IER ARLE	~
Relinquished by:	Received the	1			
Retinquished by:	Received by:		Lab Case #		
Rel Outshed by:	Received by:		6728	PAGE: Z of	2
LAI OPES - WHITE & VELLOW, CLIENT COPY - PINK			cooler		in the second second second second second second second second second second second second second second second

PROJECT INFORMATION

Case No. E10-06728

Project KINGS ELECTRONICS - VENDOR #1168636

Customer	Arcadis Geraghty & Miller	P.O. # NJ000427.0005.0000
Contact EMail Phone	Eric Rodriguez eric.rodriguez@arcadis-us.com EMail EDDs (201) 684-1410 Fax 1(201) 684-1420	Received 7/9/2010 17:20 Verbal Due 7/26/2010 Report Due 8/2/2010
<u>Report To</u>		<u>Bill To</u>
465 New K	arner Rd	630 Plaza Drive
Albany, N	Y 12205	Suite 600
		Highlands Ranch, CO 80129
Attn: Eric F	Rodriguez	Attn: Eric Rodriguez
Report I Addition		Conditional VOA

<u>Lab ID</u>	<u>Client Sample ID</u>		<u>Depth Top / Bottom</u>	Sampling Time	<u>Matrix</u>	<u>Unit</u>	<u># of Containers</u>
06728-001	FB(070810)		n/a	7/8/2010@09:00	Aqueous	ug/L	2
06728-002	TB(070810)		n/a	7/8/2010	Aqueous	ug/L	1 ¹
06728-003	PTW-2		n/a	7/8/2010@14:12	Aqueous	ug/L	2
06728-004	MW-9S	1.	n/a	7/8/2010@14:11	Aqueous	ug/L	1 2
06728-005	MW-9D		n/a	7/8/2010@12:07	Aqueous	ug/L	2
06728-006	MW-6S	:	n/a	7/8/2010@11:57	Aqueous	ug/L	2
06728-007	MW-13R		n/a	7/8/2010@10:32	Aqueous	ug/L	2
06728-008	DUP(070810)		n/a	7/8/2010	Aqueous	ug/L	ал _с ы 2 , бр.
06728-009	GP-104R		n/a	7/9/2010@09:18	Aqueous	ug/L	2
06728-010	GP-103R		п/а	7/9/2010@09:17	Aqueous	ug/L	2
06728-011	FB(070910)		n/a	7/9/2010@08:30	Aqueous	ug/L	2
<u>Sample # T</u>	ests		Status	OA Method			
001 PP	VOA + Cis 1,2-DCE		In Process	8260B			
002 PP	VOA + Cis 1,2-DCE	$(A_{ij}) = (A_{ij})$	In Process	8260B			
003 PP	VOA + Cis 1,2-DCE		In Process	8260B			
004 PP	VOA + Cis 1,2-DCE		In Process	8260B			
005 PP	VOA + Cis 1,2-DCE		In Process	8260B			
006 PP	VOA + Cis 1,2-DCE	м. на х	In Process	8260B			
007 PP	VOA + Cis 1,2-DCE		In Process	8260B			
008 PP	VOA + Cis 1,2-DCE	1. 2	In Process	8260B			
009 PP	VOA + Cis 1,2-DCE		In Process	8260B			
010 PP	VOA + Cis 1,2-DCE		In Process	8260B			
011 PP	VOA + Cis 1,2-DCE		In Process	8260B			

PROJECT INFORMATION

Case No. E10-06728

Project KINGS ELECTRONICS - VENDOR #1168636

07/13/2010 09:20 by katie - NOTE 2

As per Eric Rodriguez, please change the MW-9SR sample ID from MW-9SR to MW-9S.

Also, please change the report mailing address to:

Eric Rodriguez ARCADIS 465 New Karner Road Albany, NY 12205

SAMPLE RECEIPT VERIFICATION

CASE NO: E 10 06728	CLIENT: Arcadis
COOLER TEMPERATURE: 2° - 6°C: COC: COMPLETE / INCOMPLETE KEY	✓ (See Chain of Custody) Comments
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles 	
 ✓ Sufficient Sample Volume ✓ no-headspace/bubbles in VOs ✓ Labels intact/correct ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative ✓ Sufficient Holding/Prep Time' Sample to be Subcontracted ✓ Chain of Custody is Clear 	
¹ All samples with "Analyze Immediately" holding times will be the following tests: pH, Temperature, Free Residual Chlorin ADDITIONAL COMMENTS:	e analyzed by this laboratory past the holding time. This includes but is not limited to e, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INITIAL	DATE 7910 YES (SEE BELOW) NO
If COC is NOT clear, <u>STOP</u> until you get	t client to authorize/clarify work.
CLIENT NOTIFIED: YES [PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED: ADDITIONAL COMMENTS:	Date/ Time: NO
VERIFIED/TAKEN BY: INITIAL	Ku DATE 71210 REV 03/2009 0155

.

	Laboratory	, Custo	dy Chron	nicle		
IAL Case No.		raghty & Mil	ler			
E10-06728	Project KINGS ELECTRONICS - VENDOR #1168636					
	R	eceived On	<u>7/ 9/2010@</u>	<u>)17:20</u>		
Department: Volatiles			<u>Prep. Date</u>	<u>Analyst</u>	<u>Analysis Date</u>	<u>Analyst</u>
PP VOA + Cis 1,2-DCE	06728-001	Aqueous	n/a	n/a	7/13/10	Xing
17	-002	1*	n/a	n/a	7/13/10	Xing
11	-003	H	n/a	n/a	7/13/10	Xing
11	-004	19	n/a	n/a	7/13/10	Xing
n	-005	17	n/a	n/a	7/13/10	Xing
1f	-006	1*	n/a	n/a	7/13/10	Xing
11	-007	17	n/a	n/a	7/13/10	Xing
11	-008	н	n/a	n/a	7/13/10	Xing
n	-009	15	n/a	n/a	7/13/10	Xing
19	-010	It	n/a	n/a	7/13/10	Xing
11	-011	18	n/a	n/a	7/13/10	Xing

ARCADIS

Appendix C

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

KINGS/STORAGE DELUXE IAQ INVESTIGATION

JULY 8, 2010 Sampling Event

Prepared for:

Environmental Management, LTD. On the Lake @ 41 Franck Road Stony Point, New York 10980

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C23902-1

August 31, 2010

Approved for Release:

1,07

Christina Mott Senior Project Chemist EcoChem, Inc.

DATA USABILITY SUMMARY REPORT KINGS/STORAGE DELUXE IAQ INVESTIGATION

This report documents the review of analytical data from the analyses of eight aqueous samples, one trip blank, two field blanks and the associated laboratory quality control (QC) samples. A full (USEPA Level IV) validation was performed. Samples were analyzed by Integrated Analytical Laboratories, LLC, Randolph, New Jersey. **Table 1** provides a cross reference of sample identifiers and collection date.

Field ID	Lab ID	Date Collected	SDG
FB(070810)	06728-001	7/8/2010	E10-06728
TB(070810)	06728-002	7/8/2010	E10-06728
PTW-2	06728-003	7/8/2010	E10-06728
MW-9S	06728-004	7/8/2010	E10-06728
MW-9D	06728-005	7/8/2010	E10-06728
MW-6S	06728-006	7/8/2010	E10-06728
MW-13R	06728-007	7/8/2010	E10-06728
DUP(070810)	06728-008	7/8/2010	E10-06728
GP-104R	06728-009	7/9/2010	E10-06728
GP-103R	06728-010	7/9/2010	E10-06728
FB(070910)	06728-011	7/9/2010	E10-06728

TABLE 1: Sample Index

BASIS OF DATA EVALUATION

The data were validated using guidance and QC criteria documented in USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds –by Gas Chromatography/Mass Spectrometry; SW-846 Method 8260B and the analytical method, SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Method 8260B Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 2, December 1996, New York State Department of Environmental Conservation, DEC Program Policy DER-10, Technical Guidance for Site Investigation and Remediation.

The technical findings and qualifiers assigned are organized by method and immediately follow this introduction. Data Validation Qualifier Code definitions are provided as **Appendix A**. The sample result summary forms are included as **Appendix B**. The data validation worksheets are included as **Appendix C**.

PROCESS FOR DATA VALIDATION

A full data validation equivalent to an USEPA CLP "QA Level IV" level of effort was performed. **Table 2** lists the quality control (QC) elements that were reviewed.

TABLE 2: Full (USEPA Level IV) Quality Control Elements

Quality Control Elements
► Data Completeness
➤ Cover letter, Narrative, and Data Reporting Forms
➤ Analytical holding times
➤ Chain of custody and sample handling/preservation
➤ Instrument performance: GC/MS tune (from summary forms)
 Method blank contamination (from summary forms)
➤ Initial and continuing calibration (from summary forms)
► Field and Trip blank contamination (from sample result summaries)
 Analytical accuracy: surrogate %R for organic analyses, matrix spike sample %R, and laboratory control sample %R (from summary forms)
► Analytical precision: matrix spike duplicate sample RPD (from summary forms)
► Field precision: field duplicate RPD (if analyzed)
➤ Internal standard areas (from summary forms)
 Reported detection limits (from sample result summaries)
► Compound identification evaluated from raw data
Compound quantitation, transcription and calculation checks performed at a frequency of 10 percent from raw data. If an error was noted, 100 percent of the calculations and transcriptions for that data package were verified.

Laboratory QC samples were used to assess the effectiveness of extraction/preparation procedures and to evaluate laboratory method performance, potential contamination during the analytical process, and sample matrix effects. Quality control samples included method blanks, laboratory control samples (LCS), matrix spike (MS) samples, and laboratory duplicate samples. Surrogates were added to each sample analyzed for organic compounds to further assess the effects of sample matrix on accuracy.

During validation, the results of the QC samples and instrument calibration and tuning are compared to the measurement quality objectives (MQO) initially established during project planning. Validation also provides a quantitative and qualitative evaluation of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall data usability.

Data were qualified when associated QC sample and instrument performance results were outside the laboratory QC sample control limits. For the Kings/Storage Deluxe IAQ Investigation samples, no data were qualified for any reason.

TECHNICAL SUMMARY

Overall, the data are acceptable for the intended purposes. No data were rejected, or qualified for any reason. The data meet all the criteria for the parameters tested.

All data, as reported, are acceptable for use.

DATA USABILITY SUMMARY REPORT Kings-Storage Deluxe IAQ Investigation Volatile Organic Compounds – Method 8260B

This report documents the review of analytical data from the analyses of aqueous samples and the associated laboratory and field quality control (QC) samples. Integrated Analytical Laboratories, LLC, Randolph, New Jersey, analyzed the samples.

SDG	Number of Samples	Validation Level
E10-06728	8 Aqueous, 1 Trip Blank & 2 Field Blanks	Full

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all deliverables as required by ASP Category B. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are summarized in the following table. All requirements were met for each QC element, unless noted below.

	Holding Times and Sample Preservation		Laboratory Control Samples (LCS)
	GC/MS Instrument Performance Check	1	Field Replicates
1	Initial Calibration (ICAL)		Internal Standards
	Continuing Calibration (CCAL)		Target Analyte List
	Blanks (Method)		Reporting Limits
1	Blanks (Field and Trip)		Compound Identification
	Surrogate Compounds	1	Calculation Verification (Full validation only)

Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Initial Calibration

Seven standards were used for the initial calibration of the GC/MS instrument. Raw data for calibration standard STD-50PPB were not included in the raw data package supplied by the laboratory. Raw data were supplied for all other calibration points and the initial calibration was confirmed by recalculation to be within the method acceptance criteria. Based on the review of the initial calibration, these results were determined to be acceptable without qualification

Blanks (Field and Trip)

One trip blank was submitted with the samples in this data set. No target analytes were detected in Sample TB (070810).

Two field blank samples were submitted with the samples in this data set. No target analytes were detected in Sample FB (070810) or Sample FB (070910).

Field Replicates

The following acceptance criteria were applied for field replicates: the relative percent difference (RPD) control limit is 35% for results greater than five times the reporting limit (RL). For results less than five times the RL, the difference between the sample and replicate must be less than the RL. Samples MW-6S and DUP (070810) were submitted as field replicates. Precision was acceptable.

Calculation Verification

Calculation verifications were performed. No calculation errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, LCS and MS/MSD percent recovery values. Precision was also acceptable as demonstrated by the matrix spike duplicate and field duplicate relative percent difference values.

All data, as reported, are acceptable for use.

EcoChem, INC. Environmental Data Quality

APPENDIX A DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an Ec	oChem qualifier that may also be assigned during the data review process:
DNR	Do not report; a more appropriate result is reported

from another analysis or dilution.

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

T:\A_EcoChem Controlled Docs\Qualifiers & Reason Codes\Reason Codes-EcoChem.doc

EcoChem, Inc.

EcoChem Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J(+)/UJ(-) if hold times exceeded If exceeded by > 3X HT: J(+)/R(-) (EcoChem PJ)	1
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5A
-	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05	5B
Prior to each 12 hr. shift)	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Storage Blank	One per SDG <crql< td=""><td colspan="2">U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule</td></crql<>	U(+) the specific analyte(s) results in all assoc.samples using the 5x or 10x rule	
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned	
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

EcoChem Validation Guidelines for Volatile Analysis by GC/MS
(Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS low conc. H2O VOA	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL J(+)/R(-) assoc. cmpd if < LCL J(+)/R(-) all cmpds if half are < LCL	10
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL J(+)/UJ(-) if %R <lcl J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl 	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Added to all samples Within method control limits	J(+) if %R >UCL J(+)/UJ(-) if %R <lcl but="">10% (see PJ¹) J(+)/R(-) if <10%</lcl>	13
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J(+) if > 200% J(+)/UJ(-) if < 50% J(+)/R(-) if < 25% RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (if either result < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

PJ¹ No action if there are 4+ surrogates and only 1 outlier.

EcoChem, INC. Environmental Data Quality

APPENDIX B SAMPLE RESULT SUMMARY FORMS

.

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-001 Client ID: FB(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0613.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL	
Chloromethane	ND		1.00	0.360	
Vinyl chloride	ND		1.00	0.420	
Bromomethane	ND		1.00	0.590	
Chloroethane	ND		1.00	0.410	
Trichlorofluoromethane	ND		1.00	0.390	
Acrolein	ND		20.0	1.64	
1,1-Dichloroethene	ND		1.00	0.390	
Methylene chloride	ND		2.00	1.98	
Acrylonitrile	ND		20.0	1.40	
trans-1,2-Dichloroethene	ND		1.00	0.330	
1,1-Dichloroethane	ND		1.00	0.350	
cis-1,2-Dichloroethene	ND		1.00	0.220	
Chloroform	ND		1.00	0.330	
1,1,1-Trichloroethane	ND		1.00	0.360	
Carbon tetrachloride	ND		1.00	0.320	
1,2-Dichloroethane (EDC)	ND		1.00	0.340	
Benzene	ND		1.00	0.270	
Trichloroethene	ND		1.00	0.320	
1,2-Dichloropropane	ND		1.00	0.220	
Bromodichloromethane	ND		1.00	0.310	
2-Chlorocthyl vinyl ether	ND		1.00	0.350	
cis-1,3-Dichloropropene	ND		1.00	0.210	
Toluene	ND		1.00	0.270	
trans-1,3-Dichloropropene	ND		1.00	0.250	
1,1,2-Trichloroethane	ND		1.00	0.280	
Tetrachloroethene	ND		1.00	0.280	
Dibromochloromethane	ND		1.00	0.230	
Chlorobenzene	ND		1.00	0.270	
Ethylbenzene	ND		1.00	0.220	
Total Xylenes	ND		2.00	0.600	
Bromoform	ND		1.00	0.210	
1,1,2,2-Tetrachloroethane	ND		1.00	0.210	
1,3-Dichlorobenzene	ND		1.00	0.240	
1,4-Dichlorobenzene	ND		1.00	0.230	
1,2-Dichlorobenzene	ND		1.00	0.210	

Total Target Compounds:

0

Chuett 10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-002 Client ID: TB(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0614.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL	
Chloromethane	ND		1.00	0.360	
Vinyl chloride	ND		1.00	0.420	
Bromomethane	ND		1.00	0.590	
Chloroethane	ND		1.00	0.410	
Trichlorofluoromethane	ND		1.00	0.390	
Acrolein	ND		20.0	1.64	
1,1-Dichloroethene	ND		1.00	0.390	
Methylene chloride	ND		2.00	1.98	
Acrylonitrile	ND		20.0	1.40	
trans-1,2-Dichloroethene	ND		1.00	0.330	
1,1-Dichloroethane	ND		1.00	0.350	
cis-1,2-Dichloroethene	ND		1.00	0.220	
Chloroform	ND		1.00	0.330	i.
1,1,1-Trichloroethane	ND		1.00	0.360	
Carbon tetrachloride	ND		1.00	0.320	
1,2-Dichloroethane (EDC)	ND		1.00	0.340	
Benzene	ND		1.00	0.270	
Trichloroethene	ND		1.00	0.320	
1,2-Dichloropropane	ND		1.00	0.220	
Bromodichloromethane	ND		1.00	0.310	
2-Chloroethyl vinyl ether	ND		1.00	0.350	
cis-1,3-Dichloropropene	ND		1.00	0.210	
Toluene	ND		1.00	0.270	
trans-1,3-Dichloropropene	ND		1.00	0.250	
1,1,2-Trichloroethane	ND		1.00	0.280	
Tetrachloroethene	ND		1.00	0.280	
Dibromochloromethane	ND		1.00	0.230	
Chlorobenzene	ND		1.00	0.270	
Ethylbenzene	ND		1.00	0.220	
Total Xylenes	ND		2.00	0.600	
Bromoform	ND		1.00	0.210	
1,1,2,2-Tetrachloroethane	ND		1.00	0.210	
1,3-Dichlorobenzene	ND		1.00	0.240	
1,4-Dichlorobenzene	ND		1.00	0.230	
1,2-Dichlorobenzene	ND		1.00	0.210	

Total Target Compounds:

Chuota 10

0007

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-003 Client ID: PTW-2 Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0615.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	0.846	J	1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	1.39		1.00	0.350
cis-1,2-Dichloroethene	2.67		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	0.691	J	1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	6.22		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	0.290	J	1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

J

12.1

Chuott 8.31.10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-004 Client ID: MW-9S Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0616.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	1.17		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	0.626	J	1.00	0.330
1,1-Dichloroethane	1.11		1.00	0.350
cis-1,2-Dichloroethene	0.360	J	1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

J

3.27

Churcht 8.31.13

0009

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-005 Client ID: MW-9D Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0617.D

GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Chloromethane ND 1.00 0.360 Vinyl chloride ND 1.00 0.420 Bromomethane ND 1.00 0.590 Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320
Bromomethane ND 1.00 0.590 Chloroethane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Methylene chloride ND 20.0 1.40 trans-1,2-Dichloroethene ND 20.0 1.40 trans-1,2-Dichloroethene ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1,1-Trichloroethene ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
ChloroethaneND1.000.410TrichlorofluoromethaneND1.000.390AcroleinND20.01.641,1-DichloroetheneND1.000.390Methylene chlorideND2.001.98AcrylonitrileND20.01.40trans-1,2-DichloroetheneND1.000.3301,1-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.3301,1-TrichloroethaneND1.000.3301,1,1-TrichloroethaneND1.000.320Carbon tetrachlorideND1.000.320
TrichlorofluoromethaneND1.000.390AcroleinND20.01.641,1-DichloroetheneND1.000.390Methylene chlorideND2.001.98AcrylonitrileND20.01.40trans-1,2-DichloroetheneND1.000.3301,1-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.3301,1-DichloroetheneND1.000.3301,1-TrichloroethaneND1.000.320ChloroformND1.000.320
AcroleinND20.01.641,1-DichloroetheneND1.000.390Methylene chlorideND2.001.98AcrylonitrileND20.01.40trans-1,2-DichloroetheneND1.000.3301,1-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.350cis-1,2-DichloroetheneND1.000.320ChloroformND1.000.3301,1,1-TrichloroethaneND1.000.360Carbon tetrachlorideND1.000.320
1,1-Dichloroethene ND 1.00 0.390 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
trans-1,2-DichloroetheneND1.000.3301,1-DichloroethaneND1.000.350cis-1,2-DichloroetheneND1.000.220ChloroformND1.000.3301,1,1-TrichloroethaneND1.000.360Carbon tetrachlorideND1.000.320
1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
1,1-Dichloroethane ND 1.00 0.350 cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
cis-1,2-Dichloroethene ND 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320
Carbon tetrachloride ND 1.00 0.320
12-Dichloroethane (EDC) ND 100 0340
1,2-Diemolocitatic (DDC) 100 1.00 0,540
Benzene ND 1.00 0.270
Trichloroethene ND 1.00 0.320
1,2-Dichloropropane ND 1.00 0.220
Bromodichloromethane ND 1.00 0.310
2-Chloroethyl vinyl ether ND 1.00 0.350
cis-1,3-Dichloropropene ND 1.00 0.210
Toluene ND 1.00 0.270
trans-1,3-Dichloropropene ND 1.00 0.250
1,1,2-Trichloroethane ND 1.00 0.280
Tetrachloroethene ND 1.00 0.280
Dibromochloromethane ND 1.00 0.230
Chlorobenzene ND 1.00 0.270
Ethylbenzene ND 1.00 0.220
Total Xylenes ND 2.00 0.600
Bromoform ND 1.00 0.210
1,1,2,2-Tetrachloroethane ND 1.00 0.210
1,3-Dichlorobenzene ND 1.00 0.240
1,4-Dichlorobenzene ND 1.00 0.230
1,2-Dichlorobenzene ND 1.00 0.210

Total Target Compounds:

Chuott 8.31.10

0010

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-006 Client ID: MW-6S Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0618.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	2.51		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	16.3		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	2.46		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210
.,				

Total Target Compounds:

21.3

Churtt 8.31.10

0011

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-007 Client ID: MW-13R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0619.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Chloromethane ND 1.00 0.360 Vinyl chloride ND 1.00 0.420 Bromomethane ND 1.00 0.590 Chloroethane ND 1.00 0.420 Bromomethane ND 1.00 0.470 Chloroethane ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene ND 1.00 0.330 1,1-Trichloroethane 0.636 J 1.00 0.330 1,1-Trichloroethane ND 1.00 0.330 1.1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1.1,1-Trichloroethane ND 1.00 0.330 1,2,1-Trichloroethane ND 1.00 0.320 1.2.20 1.2.20 ND 1.00 0.320 1,2,1-Trichloroethane	Compound	Concentration	Q	RL	MDL
Bromomethane ND 1.00 0.590 Chloroethane ND 1.00 0.410 Trichloroffuoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.84 Acrylonitrile ND 2.00 1.84 Acrylonitrile ND 2.00 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene 0.636 J 1.00 0.330 1,1-Trichloroethene 0.636 J 1.00 0.330 1,1,1-Trichloroethene ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.320 1,2-Dichloroethene (EDC) ND 1.00 0.320 1,2-Dichloroethene 0.969 J 1.00 0.320 1,2-Dichloroethene ND 1.00 0.320 1,2-Dichloroethene ND 1.00 0.320 1,2-Dichloroethene ND 1.00 0.310 2.20 </td <td>Chloromethane</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.360</td>	Chloromethane	ND		1.00	0.360
Chlorothane ND 1.00 0.410 Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 2.00 1.98 Acrylonitrile ND 2.00 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.350 cis-1,2-Dichloroethene 0.433 J 1.00 0.320 1,1-Trichloroethane ND 1.00 0.330 1,1-1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1.2-Dichloroptopane ND 1.00 0.320 1,2-Dichloroptopene ND 1.00 0.310 2-Chloroethane ND 0.00 0.220 Bromodichloromethane ND	Vinyl chloride	ND		1.00	0.420
Trichlorofluoromethane ND 1.00 0.390 Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethene 0.636 J 1.00 0.330 1,1-Dichloroethene 0.433 J 1.00 0.330 1,1,1-Trichloroethane 0.433 J 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1 1,1,1-Trichloroethane ND 1.00 0.330 1 1,1,1-Trichloroethane ND 1.00 0.320 1 1,2-Dichloroethane (EDC) ND 1.00 0.320 1 1,2-Dichloroethene 0.969 J 1.00 0.320 1,2-Dichloropropane ND 1.00 0.310 2.20 Bromodichloromethane ND 1.00 0.210 1.00 0.210 <t< td=""><td>5.</td><td>ND</td><td></td><td>1.00</td><td>0.590</td></t<>	5.	ND		1.00	0.590
Acrolein ND 20.0 1.64 1,1-Dichloroethene ND 1.00 0.390 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.350 cis-1,2-Dichloroethene 0.433 J 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.210 Toluene ND 1.00	Chloroethane	ND		1.00	0.410
I.1-Dichloroethene ND 1.00 0.390 Methylene chloride ND 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.330 1,1-Trichloroethane 0.433 J 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.350 cis-1,3-Dichloroptopene ND 1.00 0.210 Toluene ND 1.00 0.230 I,1,2-Trichloroethane	Trichlorofluoromethane	ND		1.00	0.390
N.D. N.D. 2.00 1.98 Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.330 cis-1,2-Dichloroethane 0.433 J 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.320 1,2-Dichloropthane (EDC) ND 1.00 0.320 1,2-Dichloropthane (EDC) ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropthane ND 1.00 0.220 Bromodichloromethane ND	Acrolein	ND		20.0	1.64
Acrylonitrile ND 20.0 1.40 trans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.350 cis-1,2-Dichloroethene 0.433 J 1.00 0.330 chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.320 1,2-Dichloropthane 0.969 J 1.00 0.320 1,2-Dichloropthane ND 1.00 0.320 1,2-Dichloroptopane ND 1.00 0.320 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinjl ether ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Dibromochloromethane </td <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>1.00</td> <td>0.390</td>	1,1-Dichloroethene	ND		1.00	0.390
Intrans-1,2-Dichloroethene ND 1.00 0.330 1,1-Dichloroethane 0.636 J 1.00 0.350 cis-1,2-Dichloroethene 0.433 J 1.00 0.220 Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.330 1,1-1-Trichloroethane ND 1.00 0.320 0.340 Carbon tetrachloride ND 1.00 0.320 0.340 Benzene ND 1.00 0.320 0.270 Trichloroethene 0.969 J 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 0.220 Bromodichloromethane ND 1.00 0.320 0.220 Bromodichloropropane ND 1.00 0.220 0.310 2-Chloroethyl vinyl ether ND 1.00 0.210 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloropropene ND 1.00 0.280 Tetrachloroethane	Methylene chloride	ND		2.00	1.98
trans-1,2-DichloroetheneND1.000.3301,1-Dichloroethane0.636J1.000.350cis-1,2-Dichloroethene0.433J1.000.220ChloroformND1.000.3301,1,1-TrichloroethaneND1.000.3201,1,1-TrichloroethaneND1.000.3201,2-Dichloroethane (EDC)ND1.000.3201,2-Dichloroethane (EDC)ND1.000.3201,2-Dichloroethane (EDC)ND1.000.3201,2-DichloropropaneND1.000.3201,2-DichloropropaneND1.000.3201,2-DichloropropaneND1.000.3201,2-DichloropropaneND1.000.3201,2-DichloropropaneND1.000.220BromodichloromethaneND1.000.2102-Chloroethyl vinyl etherND1.000.210TolueneND1.000.2501,1,2-TrichloropropeneND1.000.280TetrachloroethaneND1.000.230ChlorobenzeneND1.000.230ChlorobenzeneND1.000.220Total XylenesND2.000.600BromoformND1.000.2101,1,2-TetrachloroethaneND1.000.2101,1,2-TetrachloroethaneND1.000.2101,1,2-TetrachloroethaneND1.000.2101,1,2-TetrachloroethaneND1.00	Acrylonitrile	ND		20.0	1.40
1,1-Dichloroethane 0.636 J 1.00 0.350 cis-1,2-Dichloroethene 0.433 J 1.00 0.220 ChloroformND 1.00 0.330 1,1,1-TrichloroethaneND 1.00 0.360 Carbon tetrachlorideND 1.00 0.320 1,2-Dichloroethane (EDC)ND 1.00 0.340 BenzeneND 1.00 0.320 1,2-Dichloroethane (EDC)ND 1.00 0.320 1,2-DichloroptopaneND 1.00 0.220 Bromodichloromethane 0.969 J 1.00 0.320 1,2-DichloroptopaneND 1.00 0.310 2-Chloroethyl vinyl etherND 1.00 0.350 cis-1,3-DichloroptopeneND 1.00 0.270 Trans-1,3-DichloroptopeneND 1.00 0.270 trans-1,3-DichloroptopeneND 1.00 0.280 TetrachloroethaneND 1.00 0.280 DibromochloromethaneND 1.00 0.230 ChlorobenzeneND 1.00 0.220 Total XylenesND 1.00 0.220 Total XylenesND 1.00 0.210 1,1,2-TetrachloroethaneND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.240 <		ND		1.00	0.330
cis-1,2-Dichloroethene 0.433 J 1.00 0.220 ChloroformND 1.00 0.330 1,1,1-TrichloroethaneND 1.00 0.360 Carbon tetrachlorideND 1.00 0.320 1,2-Dichloroethane (EDC)ND 1.00 0.340 BenzeneND 1.00 0.270 Trichloroethene 0.969 J 1.00 0.220BromodichloropropaneND 1.00 BromodichloromethaneND 1.00 0.220 BromodichloropropeneND 1.00 0.310 2-Chloroethyl vinyl etherND 1.00 0.350 cis-1,3-DichloropropeneND 1.00 0.270 Trans-1,3-DichloropropeneND 1.00 0.220 Itans-1,3-DichloropropeneND 1.00 0.230 1,1,2-TrichloroethaneND 1.00 0.230 ChlorobenzeneND 1.00 0.230 ChlorobenzeneND 1.00 0.230 ChlorobenzeneND 1.00 0.230 ChlorobenzeneND 1.00 0.220 Total XylenesND 2.00 0.600 BromoformND 1.00 0.210 1,1,2-TrithloroethaneND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.220 Total XylenesND 2.00 0.600 BromoformND 1.00 0.210 1,3-DichlorobenzeneND 1.00 0.210 <t< td=""><td></td><td>0.636</td><td>J</td><td>1.00</td><td>0.350</td></t<>		0.636	J	1.00	0.350
Chloroform ND 1.00 0.330 1,1,1-Trichloroethane ND 1.00 0.360 Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.340 Benzene ND 1.00 0.270 Trichloroethene 0.969 J 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.270 Trans-1,3-Dichloropropene ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.230 Tetrachloroethene ND 1.00 0.220 <td></td> <td>0.433</td> <td>J</td> <td>1.00</td> <td>0.220</td>		0.433	J	1.00	0.220
ND 1.00 0.320 1,2-Dichlorothane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.270 Trichlorothene 0.969 J 1.00 0.320 1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloroptopene ND 1.00 0.280 Tetrachloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tet		ND		1.00	0.330
Carbon tetrachloride ND 1.00 0.320 1,2-Dichloroethane (EDC) ND 1.00 0.340 Benzene ND 1.00 0.270 Trichloroethene 0.969 J 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 1,2-Dichloropropane ND 1.00 0.320 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00		ND		1.00	0.360
1,2-Dichloroethane (EDC)ND 1.00 0.340 BenzeneND 1.00 0.270 Trichloroethene 0.969 J 1.00 0.320 1,2-DichloropropaneND 1.00 0.220 BromodichloromethaneND 1.00 0.310 2-Chloroethyl vinyl etherND 1.00 0.350 cis-1,3-DichloropropeneND 1.00 0.270 Trans-1,3-DichloropropeneND 1.00 0.270 trans-1,3-DichloropropeneND 1.00 0.280 TetrachloroethaneND 1.00 0.280 TetrachloroetheneND 1.00 0.230 DibromochloromethaneND 1.00 0.220 Total XylenesND 1.00 0.210 1,1,2,2-TetrachloroethaneND 1.00 0.210 1,3-DichlorobenzeneND 1.00 0.210 1,4-DichlorobenzeneND 1.00 0.230 1,4-DichlorobenzeneND 1.00 0.230		ND		1.00	0.320
BenzeneND 1.00 0.270 Trichlorocthene 0.969 J 1.00 0.320 $1,2$ -DichloropropaneND 1.00 0.220 BromodichloromethaneND 1.00 0.310 2 -Chloroethyl vinyl etherND 1.00 0.350 cis-1,3-DichloropropeneND 1.00 0.270 TolueneND 1.00 0.270 trans-1,3-DichloropropeneND 1.00 0.250 $1,1,2$ -TrichloroethaneND 1.00 0.280 TetrachloroetheneND 1.00 0.230 DibromochloromethaneND 1.00 0.230 ChlorobenzeneND 1.00 0.220 Total XylenesND 2.00 0.600 BromoformND 1.00 0.210 $1,1,2,2$ -TetrachloroethaneND 1.00 0.210 $1,1,2,2$ -TetrachloroethaneND 1.00 0.210 $1,3$ -DichlorobenzeneND 1.00 0.210 $1,4$ -DichlorobenzeneND 1.00 0.210 $1,4$ -DichlorobenzeneND 1.00 0.230		ND		1.00	0.340
1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 2-Chloroethyl vinyl ether ND 1.00 0.210 Toluene ND 1.00 0.210 Toluene ND 1.00 0.250 1,1,2-Trichloropropene ND 1.00 0.280 Tetrachloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.230		ND		1.00	0.270
1,2-Dichloropropane ND 1.00 0.220 Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.250 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethane ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.210 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Trichloroethene	0.969	J	1.00	0.320
Bromodichloromethane ND 1.00 0.310 2-Chloroethyl vinyl ether ND 1.00 0.350 cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Total Xylenes ND 1.00 0.220 Total Xylenes ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	1.2-Dichloropropane	ND		1.00	0.220
2-Chloroethyl vinyl etherND 1.00 0.350 cis-1,3-DichloropropeneND 1.00 0.210 TolueneND 1.00 0.270 trans-1,3-DichloropropeneND 1.00 0.250 1,1,2-TrichloroethaneND 1.00 0.280 TetrachloroetheneND 1.00 0.280 DibromochloromethaneND 1.00 0.230 ChlorobenzeneND 1.00 0.220 EthylbenzeneND 1.00 0.220 Total XylenesND 1.00 0.210 $1,1,2.2$ -TetrachloroethaneND 1.00 0.210 $1,1,2.2$ -TetrachloroethaneND 1.00 0.210 $1,3$ -DichlorobenzeneND 1.00 0.210 $1,4$ -DichlorobenzeneND 1.00 0.240 $1,4$ -DichlorobenzeneND 1.00 0.230		ND		1.00	0.310
cis-1,3-Dichloropropene ND 1.00 0.210 Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethane ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Dibromochloromethane ND 1.00 0.270 Chlorobenzene ND 1.00 0.270 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.240		ND		1.00	0.350
Toluene ND 1.00 0.270 trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.230 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.210		ND		1.00	0.210
trans-1,3-Dichloropropene ND 1.00 0.250 1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.220 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.210 1,4-Dichlorobenzene ND 1.00 0.210		ND		1.00	0.270
1,1,2-Trichloroethane ND 1.00 0.280 Tetrachloroethene ND 1.00 0.280 Dibromochloromethane ND 1.00 0.230 Chlorobenzene ND 1.00 0.270 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.240		ND		1.00	0.250
TetrachloroetheneND1.000.280DibromochloromethaneND1.000.230ChlorobenzeneND1.000.270EthylbenzeneND1.000.220Total XylenesND2.000.600BromoformND1.000.2101,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230		ND		1.00	0.280
Distribution ND 1.00 0.270 Chlorobenzene ND 1.00 0.220 Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230		ND		1.00	
Ethylbenzene ND 1.00 0.220 Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Dibromochloromethane	ND		1.00	
Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Chlorobenzene	ND		. 1.00	
Total Xylenes ND 2.00 0.600 Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230	Ethylbenzene	ND		1.00	0.220
Bromoform ND 1.00 0.210 1,1,2,2-Tetrachloroethane ND 1.00 0.210 1,3-Dichlorobenzene ND 1.00 0.240 1,4-Dichlorobenzene ND 1.00 0.230		ND		2.00	
1,1,2,2-TetrachloroethaneND1.000.2101,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230	· · · · · · · · · · · · · · · · · · ·	ND		1.00	
1,3-DichlorobenzeneND1.000.2401,4-DichlorobenzeneND1.000.230		ND			
1,4-Dichlorobenzene ND 1.00 0.230		ND		1.00	
		ND		1.00	
		ND		1.00	0.210

Total Target Compounds:

J

2.04

Churt 8-31-10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-008 Client ID: DUP(070810) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0620.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	2.93		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	19.0		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	2.91		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

24.8

Total Target Compounds:

Chuett 8.31.10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-009 Client ID: GP-104R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0621.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	2.41		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	1.84		1.00	0.350
cis-1,2-Dichloroethene	2.75		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	0.533	J	1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

Total Target Compounds:

7.53

J

Chuett 8.31.10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS ELEC

Lab ID: 06728-010 Client ID: GP-103R Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0622.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q RL	MDL
Chloromethane	ND	1.00	0.360
Vinyl chloride	10.9	1.00	0.420
Bromomethane	ND	1.00	0.590
Chloroethane	ND	1.00	0.410
Trichlorofluoromethane	ND	1.00	0.390
Acrolein	ND	20.0	1.64
1,1-Dichloroethene	ND	1.00	0.390
Methylene chloride	ND	2.00	1.98
Acrylonitrile	ND	20.0	1.40
trans-1,2-Dichloroethene	ND	1.00	0.330
1,1-Dichloroethane	ND	1.00	0.350
cis-1,2-Dichloroethene	1.74	1.00	0.220
Chloroform	ND	1.00	0.330
1,1,1-Trichloroethane	ND	1.00	0.360
Carbon tetrachloride	ND	1.00	0.320
1,2-Dichloroethane (EDC)	ND	1.00	0.340
Benzene	ND	1.00	0.270
Trichloroethene	ND	1.00	0.320
1,2-Dichloropropane	ND	1.00	0.220
Bromodichloromethane	ND	1.00	0.310
	ND	1.00	0.350
2-Chloroethyl vinyl ether	ND	1.00	0.210
cis-1,3-Dichloropropene	ND	1.00	
Toluene	ND	1.00	
trans-1,3-Dichloropropene	ND	1.00	
1,1,2-Trichloroethane Tetrachloroethene	ND	1.00	0.280
Dibromochloromethane	ND	1.00	0.230
	ND	1.00	
Chlorobenzene	ND	1.00	0.220
Ethylbenzene	ND	2.00	0.600
Total Xylenes	ND	1.00	
Bromoform	ND	1.00	
1,1,2,2-Tetrachloroethane	ND	1.00	
1,3-Dichlorobenzene	ND	1.00	
1,4-Dichlorobenzene	ND	1.00	and a second second second second second second second second second second second second second second second
1,2-Dichlorobenzene	ND	1.00	

12.6

Total Target Compounds:

Chuett 8.31.10

VOLATILE ORGANICS

Client/Project: ARCADIS/KINGS_ELEC

Lab ID: 06728-011 Client ID: FB(070910) Date Received: 07/09/2010 Date Analyzed: 07/13/2010 Data file: F0623.D GC/MS Column: DB-624 Sample wt/vol: 5ml Matrix-Units: Aqueous-µg/L (ppb) Dilution Factor: 1 % Moisture: 100

Compound	Concentration	Q	RL	MDL
Chloromethane	ND		1.00	0.360
Vinyl chloride	ND		1.00	0.420
Bromomethane	ND		1.00	0.590
Chloroethane	ND		1.00	0.410
Trichlorofluoromethane	ND		1.00	0.390
Acrolein	ND		20.0	1.64
1,1-Dichloroethene	ND		1.00	0.390
Methylene chloride	ND		2.00	1.98
Acrylonitrile	ND		20.0	1.40
trans-1,2-Dichloroethene	ND		1.00	0.330
1,1-Dichloroethane	ND		1.00	0.350
cis-1,2-Dichloroethene	ND		1.00	0.220
Chloroform	ND		1.00	0.330
1,1,1-Trichloroethane	ND		1.00	0.360
Carbon tetrachloride	ND		1.00	0.320
1,2-Dichloroethane (EDC)	ND		1.00	0.340
Benzene	ND		1.00	0.270
Trichloroethene	ND		1.00	0.320
1,2-Dichloropropane	ND		1.00	0.220
Bromodichloromethane	ND		1.00	0.310
2-Chloroethyl vinyl ether	ND		1.00	0.350
cis-1,3-Dichloropropene	ND		1.00	0.210
Toluene	ND		1.00	0.270
trans-1,3-Dichloropropene	ND		1.00	0.250
1,1,2-Trichloroethane	ND		1.00	0.280
Tetrachloroethene	ND		1.00	0.280
Dibromochloromethane	ND		1.00	0.230
Chlorobenzene	ND		1.00	0.270
Ethylbenzene	ND		1.00	0.220
Total Xylenes	ND		2.00	0.600
Bromoform	ND		1.00	0.210
1,1,2,2-Tetrachloroethane	ND		1.00	0.210
1,3-Dichlorobenzene	ND		1.00	0.240
1,4-Dichlorobenzene	ND		1.00	0.230
1,2-Dichlorobenzene	ND		1.00	0.210

0

Total Target Compounds:

Chuett 8-31-10

APPENDIX C DATA VALIDATION WORKSHEETS

JC 06/14/95 10:12 AM I:VAPPENDICESVAPPENDIX.DOC

	0			AL		
	C23902-1		Screener:	Chutt	Date:	8.31.00
Project Name: _	Kings / Storage	Deloxe	Reviewer:	45	Date:	8/31/10
SDG/Package:	E10 - 06728					

MODULE A: COMPLETENESS AND HOLDING TIME CHECKLIST

1.0 Chain-of-Custody

1.0 Chain-or-Custody			
1.1 Are all Chain-of-Custody (COC) forms included in data package?	V		
1.2 Were COC forms properly signed and dated?			
1.3 Was sample container temperature recorded on COC form (or other appropriate form) by laboratory?		V	
1.4 Is the recorded temperature within control limits (4°C ±2°C) Temperature(s):	and the		V

Comments:

Cooler Temp was	not recorded, however, the Sample Receipt	-
Verification form	completed by the lab indicated the	
2.0 Completeness Check	cooler temp was between 2-6°C.	

2.1	Is a case narrative present and does it describe analytical problems, discrepancies and corrective actions?	V ,	
2.2	Are all required summary forms present (see attached list)?	~	
2.3	Are data present for all samples listed on COC form?	~	
2.4	Are all required raw data sections present (see attached list)?	/	
	(PRELIMINARY CHECK ONLY; detailed review of raw data will be documented on Module B Checklist).		

Comments:

3.0 Holding Times/Preservation (Technical Criteria: CFR40; DQAPP; DOther

3.1 Were all samples properly preserved? 3.2 Complete the Holding Time Tables. (Documented in Comments or in worksheets attached to Module B; qualifiers assigned during Module B review)

Comments:

ind Sangle doumen no

Completeness and Holding Time Check Complete?

Table	Parameters (√)	Completed	Location (attached or filename)
Sample Index		Y	
Holding Time Tables (list):		\sim	
Volatiles		Y NA	
Semivolatile		Y / NA	
Pest/PCBs		Y / NA	
Metals		Y / NA	
Dioxins/Furans		Y / NA	
Conventionals		Y / NA	
PAH-8270SIM		Y / NA	
Herbicides		Y / NA	
TBT/Krone		Y / NA	
Phthalates-525.2		Y / NA	
Fuels		Y / NA	
Phenols			

as

n

0

N/A

N

Unknow

COL

	Project No.: <u>C23902 - 1</u> Project Name: <u>Kings / Storage D</u> SDG/Package: <u>E10 - 06728</u> Laboratory: <u>Integrated Anul</u>	ely@Reviewer: <u>Chrot</u> Secondary: <u></u> yhia./			
Parameter/Method: <u>VoCs</u>	/ 82608 Data Validation Crit	eria Table: <u>Eco Chem</u> / NYDEC	NFG DER-	and 10	L
MODULE B-1 (Summarie MODULE B-2 (Summarie B-2 Org B-2 H	L EVALUATION CHECKLIS es of sample results; accuracy; es of calibration, instrument pe IRMS B-2 Other	precision; blanks) rformance & compou	55.4 III		
1.0 Technical Holding Times	e Sample Summary forms or o	uner	Y	N	 N/A
	age completeness, Holding Time Table) con	nplete?	1		
1.2 Are all holding times within the tec	hnical criteria from CFR40; QAPP; C	Other)?	1		
1.3 Are all cooler temperatures within	the control limits? (temperature outliers lis ched Holding Time worksheet or data packa	ted on HT table)	1		
Comments: Data judged as no	significantly affected by outliers; no qualifie	rs assigned			
2.0 Surrogates/Labeled Com					
	ched Surrogate Summary Form or data pac		w		
	no qualifiers as all outliers were > UCL (hig ned; one outlier per fraction/column acceptal	and the second second second second second second second second second second second second second second second			
<u>.</u>					

Project No.: C23902 -1 SDG: E10 -0676

3.0	Method/Field Bl	ank (B-1)		Y	N	N/A
3.1	Are Method Blanks fro	ee from contamination?				
	no outliers	see attached Blank Summary Form or data package page	see below	~		
3.2	Are there any trip/equ	ipment/field blanks included in the data package (list below)?		V		
3.3	Are trip/equipment/fie	Id blanks free from contamination?		1		
	no outliers	see attached Blank Summary Form or data package page	see below	V		1

Comments: _____ No positive results in associated samples; no action required for method / trip / equip. / other 10X action level established for common lab cont.; 5X action level for others

FB (070810)	
TB (070810)	
FB (070910)	

4.0 Laboratory Control Sample (Blank Spike/OPR Sample) (B-1)

4.1 Are all %R-values wit	hin the control limits?		1	
no outliers	see attached Summary Form or data package page	see below	V	
4.2 Are all RPD values w	ithin control limits (if duplicate analyzed)?			1
no outliers	see attached Summary Form or data package page	see below		V
Comments for LCS:	No positive results in associated samples; no qualifiers a	s all outliers were > UC	L (high bias)	

BLK-SPK - LCS SOPPB

5.0 Performance Evaluation (PE)/Standard Reference Material (SRM) (B-1)

	PE/SRM Sample ID(s):		
5.1	Was PE/SRM sample(s) analyzed?	1	
5.2	Are all values within control limits?		1
	no outliers see below		-

Comments: ____ No qualifiers assigned based on PE/SRM outliers

no yam. netuoo ON Not rea hrs U

Project No .: C23902 -1 SDG: ER - 0672

6.0 Matrix Spike/Matrix Spike Duplicate or Sample and Lab Duplicate(B-1)

Parent Sample ID:			Y	N	N/A
6.1 Are all %R-values with	in the control limits?		1		
no outliers	see attached MS/MSD Summary Form or data package page	see below	V		
6.2 Are all RPD values wit	hin control limits?		./		
no outliers	see attached MS/MSD Summary Form or data package page	see below	-		
Comments: No posit	ive results in parent sample; no qualifiers as all outliers were > UCL (hi	gh bias)			

7.0 Field Duplicate (B-1) Field Duplicate Sample ID(s):

7.1	Were field duplicates	collected and analyzed?		1	
7.2	Are all RPD values w	ithin control limits? see attached Field Dup. Summary Form or data package page	see below	~	
Con	nments: No qua	lifiers assigned based on field duplicate outliers			

MW65 and DUP (070810)

8.0 Sample Results (B-1)

8.1 Are there results for all analytes on the client required target compound list(s) see QAPP for lists?			
8.2a Were TIC requested for this project?		V	
8.2b If "yes", were TIC reported as required?			~
8.3 Are reporting limits and sample results adjusted for sample size, % moisture (solid samples), etc.?	~		
8.4 Are concentrations reported on the appropriate basis?Dry weightWet weight	~		
8.5 Do detection limits meet project-specific or method-specific limits?	1		

Comments: _____Qualify TIC "NJ" unless already qualified "U" due to blank contamination

this moject. ſΛΑ tor No avai

General Notes and Information:

Project	No.: C23902-1	SDG: EID-	06728
	water and the second se		

MODULE: B-2-Org (calibration, instrument performance & compound identification)

9.0 Internal Standards (B-2)	Y	N	N/A
9.1 Are all internal standard values within the control limits?	/		
no outliers see attached Int. Std. Summary Form or data package page see below	V		
Comments:			

10.0 Initial Calibration (B-2)

10.1 Are ICALs analyzed on all instruments on which samples are analyzed?	1	
10.2 Are response factors / calibration factors stable (%RSD (SC) Correlation coefficients other)?	1	
10.3 Are response factors greater than the required minimum control limit?	1	
Comments: No positive results assoc. w/ outliers; RL judged as not affected - no qualifiers assigned		

RF historically low; no qualifiers assigned since response is stable

ICA 10

ICAL 57 te: Raw 601 The con aug points tot 1CAL fo an u a

11.0 Continuing Calibration (B-2)

11.1 Are CCALs analyzed at the proper frequency?		1
no outliers see attached CCAL Summary Form or data package page	see below	V
11.2 Are CCALs acceptable (🗸 %D %R other)?		/
no outliers see attached CCAL Summary Form or data package page	see below	V
11.3 Are response factors greater than the required minimum control limit?		1
no outliers see attached CCAL Summary Form or data package page	see below	
Comments: No positive results assoc. w/ outliers; RL judged as not affected - no qualifiers	sassigned	
RF historically low; no qualifiers assigned since response is stable		

CCAL: 7/13/10 10:25

Project No.: C23902 - 1 SDG: E10-06728

12.0 Instrument Tun	e (B-2)	Y N N/	A
12.1 Were instruments tun	ed at the required frequency?		
12.2 Are all instrument tun no outliers	e criteria within the required control limits? see attached data package page see bel	low	
Comments:			
BFB :	7/2/10 12:39		
	7/13/10 09:59		

13.0 Breakdown (Pesticides only) (B-2)

13.1 Are breakdown prod	ucts less than the required control limit (if applicable)?	1000	/
no outliers	see attached Breakdown Summary Form or data package page	see below	
13.2 Are breakdown chec	k standards analyzed at the proper frequency?		V
Comments: No pos	itive results assoc. w/ outliers; RL judged as not affected - no qualifiers assign	ed	

See Summary Forms (attached) for other outliers and qualifiers.

General Notes and Information:

Project No.:	Reviewer: CMOTT Date: 8-31-10
SDG/Package: E10 - 06728	Secondary: 45 Date: 8/3(10
Parameter/Method: 82606	Equation List: Attached
Laboratory: Integrated Analytica	See Calculation Worksheets

MODULE C: CALCULATION AND TRANSCRIPTION CHECKLIST

(As per project specific requirements and/or Summary of Recalculation Requirements)

	r			Transcriptions	5
	Chromatograms Checked (✓/ NA / *) * see comments	Calculations Attached (✓/ NA)	OK (✔)	See Below (✓)	NA (✔)
Tunes		cu I NA			
Initial calibration # points for curve?7		8-30-10			
K checked averaging formula	\checkmark	V			
Continuing Calibration	\checkmark	V			
Blanks (method & instrument)	\checkmark	V			
Samples	\checkmark	~			
Surrogates	\checkmark	\checkmark			
LCS or OPR	\checkmark				
MS/MSD or Matrix Spike	\checkmark	V			
Laboratory Duplicate	N/A	N/A			
Internal Standards	\checkmark	V			
Serial Dilutions	NA	NA			
Other:					

Comments: (attach additional page if needed)

(

Copyright © 2006 EcoChem, Inc.

	EcoChem, Inc. Environmental Science and Chemistry	PROJECT N SCREENED REVIEWED 1 = MODU	BY:	902 - 1 ott (No calibration; s	DATE	E10 - 06728 8.30.15 only) (screening or data verification)
	E ORGANIC COMPOUNDS ANALYSIS		ILE A + B1 & B-2			on results; no raw data) (Level III, Level C)
[3 = MODU		+ C(Sample and Required	QC results; raw Present	data; trans/calc. Checks) (Level IV or V, Level D or E)
Deliverab	le Requirement		Equivalent EPA Form	Required	Flesent	Comments
	Shipping Documents (Fed-Ex Airbills)			1, 2, 3		
Case Narra				1, 2, 3	1	Case namative is minimal!
Table of Co	ontents			3	V	
Cross refe	rence of Field Sample No., Lab Sample No., and Analytical	Batch	IV	1, 2, 3	\checkmark	
Chain-of-C	Custody Form (including Sample Receipt Checklist)			1, 2, 3	~	
Sample Ca	alculation (usually just a page copied from SOW)			3	No	
Results Su	Immary for Each Sample and Blank			1, 2, 3	~	
Tentatively	/ Identified Compounds in Each Sample and Blank		I, TIC	3*	NA	* Not required for all packages
Blank Spik	e Results			1, 2, 3	V	
Surrogates	s Recovery			1, 2, 3	\checkmark	
Matrix Spil	ke/Duplicate Matrix Spike Recoveries		III	1, 2, 3	~	
Instrument	t Performance Check (Tuning)		V	2, 3	\checkmark	
Initial Calib	pration Data		VI	2, 3	~	
Continuing	Calibration Data		VII	2, 3		
Internal St	andards Areas and Retention Times		VIII	2, 3		
MDL Stud	у			3	No	
Reconstru	cted Ion Chromatograms for Each Sample, Blank, and Star	dard		3	\checkmark	
Quantitatio				3		
(not for MS				3	\checkmark	
Mass Spe MS/MSD)	ctra of TICs with Library Spectra of Three Best-Fit Matches	(not for		3	NA	
Copies of	Sample Preparation Work Sheets			3	NA	
Copies of	Run Logs			3		

Client: Env Mgmt Ltd Project Name: Kings-Storage Deluxe IAQ Project No. 23902-1 Reviewer: CMM Date: 08/27/19 SDG: E10-06728

HOLDING TIME CHECKLIST

VOC by TO-15

Commis ID	Lab ID	Sample		Date	Prep	Last Date	Holding T	ime (days)	Qual	ifier
Sample ID		Type*	Matrix**	Collected	Date	Analyzed	prep	analyzed	Positive	ND
FB(070810)	06728-001	WQ	FB	7/8/2010	7/13/2010	7/13/2010	5	0		
TB(070810)	06728-002	WQ	TB	7/8/2010	7/13/2010	7/13/2010	5	0		
PTW-2	06728-003	N	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
MW-9S	06728-004	N	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
MW-9D	06728-005	N	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
MW-6S	06728-006	N	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
MW-13R	06728-007	N	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
DUP(070810)	06728-008	FD	Aqueous	7/8/2010	7/13/2010	7/13/2010	5	0		
GP-104R	06728-009	N	Aqueous	7/9/2010	7/13/2010	7/13/2010	4	0		
GP-103R	06728-010	N	Aqueous	7/9/2010	7/13/2010	7/13/2010	4	0		
FB(070910)	06728-011	WQ	FB	7/9/2010	7/13/2010	7/13/2010	4	0		

Hold Time	VOC
Criteria by Test:	
Aqueous	14 Days

* N = Sample; WQ = Water Quality; FD = Field Replicate; FB = Field Blank

** TB = Trip; Aqueous = Aqueous Sample

Client: Env Mgmt Ltd Project Name: Kings-Storage Deluxe IAQ Project No. 23902-1

Reviewer: CMM Date: 08/27/10 SDG: E10-06728

INITIAL CALIBRATION CALCULATION CHECK VOC by 8260B

ICAL Date	: 07/02/10			Instrument:	MSD_F			
Compound	Area of compound	Area of IS	Conc. of compound	Conc. of IS	Calc. RF	Reported RF	Reported %RSD	Calc. %RSD
S. = Bromochloromethane	OF A STATE OF A DELTA	Mary Maria					The state of the state	
1,1,1-trichloroethane	16650	205401	5.000	50	0.811	0.811		
	58802	204581	20.000	50	0.719	0.719		
	347533	234310	100.000	50	0.742	0.742		
	716886	243375	200.000	50	0.736	0.736		
	3509	192156	1.000	50	0.913	0.913		
	6792	196973	2.000	50	0.862	0.862		
			150*		0.704			
Average RRF					0.784	0.784	10.19%	10.17%
S. = 1.4-Difluorobenzene				ter aller and the		STATES STATES	The drama and	
toluene	23249	329128	5.000	50	0.706	0.706		
	83506	318960	20.000	50	0.655	0.655		
	483303	355151	100.000	50	0.680	0.680		
	981881	372783	200.000	50	0.658	0.658		
	4982	316031	1.000	50	0.788	0.788		
	9292	319419	2.000	50	0.727	0.727		
			150*	50	0.644			
Average RRF					0.694	0.694	7.35%	7.34%
S. = Chlorobenzene			in material second	2 Parts and the second	ASTRO- CARLES AND	AN AND AND AND		
bromobenzene	12358	299217	5.000	50	0.413	0.413		
	46539	300059	20.000	50	0.388	0.388		
	277147	345830	100.000	50	0.401	0.401		
	566496	361305	200.000	50	0.392	0.392		
	2780	279638	1.000	50	0.497	0.497		
	4872	290053	2.000	50	0.420	0.420	100.00	
			150*	50	0.384			
Average RRF					0.414	0.413	9.46%	9.44%

RF = (Area compound x Conc. IS) / (Area IS x Conc. compound)

%RSD = Std Deviation of RFs / Average RRF

* Raw Data for Calibration standard at 150 ug were not included in the data package. The RRF values for the calibration std at 150 is included to verifiy the reported average RRF.

CCAL CHECK

Compound	Area of compound	Area of IS	Average RF from ICAL	Reported CCAL RF	Reported %D (<25%)	Calc RF from CCV	Calc %D (<25%)		CCAL Sto Conc.
1.1.1-trichloroethane	310,159	190,029	0.784	0.816	4.7%	0.816	-4.09%	50	100.0
toluene	408,648	289,736	0.694	0.705	1.6%	0.705	-1.61%	50	100.0
bromobenzene	242,809	307,100	0.413	0.395	4.4%	0.395	4.28%	50	100.0

Calc RF = (Area of Compound x IS Conc) / (Area of IS x CCAL Conc)

Calc %D = (Ave RF-Calc RF) / (Ave RF)

Client: E	Env Mgmt Ltd	Reviewer:	CMM
Project Name: H	Kings-Storage Deluxe IAQ	Date:	08/27/10
Project No. 2	23902-1	SDG:	E10-06728

LABORATORY CONTROL SAMPLE RECALCULATION CHECK VOC by 8260B

	LCS Reported	LCS Spike	Reported LCS	Calculated LCS	%R Limits
Compound	Amount	Added (ug/L	& Recover	% Recovery	
1,1-dichloroethene	46.1	50	92.0%	92.2%	70-130
benzene	47.8	50	96.0%	95.6%	70-130
trichloroethene	48.2	50	96.0%	96.4%	70-130
toluene	50.6	50	101.0%	101.2%	70-130
chlorobenzne	45	50	90.0%	90.0%	70-130

LCS Calc. Recovery = Calc.Amt * 100 / Spike Added

MATRIX SPIKE / DUPLICATE MATRIX SPIKE ANALYSES RECALCULATION CHECK VOCs by 8260B

QC Sample: MW-9D

Amount Found	MS Reported	MS Report	MS Spike	MSD Spike	Reported MS	Reported DM	Reported	Calculated MS	Calculated DMS	Calculate
h Parent Samp	Amount	Amount	dded (ug/k	dded (ug/k	% Recovery	% Recovery	RPD (%)	% Recovery	% Recovery	RPD
0	65.2	64.8	50	50.0	130%	130%	0%	130.4%	129.6%	0.6%
0	52.4	51.9	50	50.0	105%	104%	1%	104.8%	103.8%	1.0%
0	52.4	52.5	50	50.0	105%	105%	0%	104.8%	105.0%	0.2%
0	52.3	52	50	50.0	105%	104%	1%	104.6%	104.0%	0.6%
0	51.2	50.9	50	50.0	102%	102%	0%	102.4%	101.8%	0.6%
		Parent Samp Amount 0 65.2 0 52.4 0 52.4 0 52.3	Parent Samp Amount Amount 0 65.2 64.8 0 52.4 51.9 0 52.3 52.5 0 52.3 52	Parent Samp Amount Amount dded (ug/k 0 65.2 64.8 50 0 52.4 51.9 50 0 52.4 52.5 50 0 52.3 52 50	0 65.2 64.8 50 50.0 0 52.4 51.9 50 50.0 0 52.4 52.5 50 50.0 0 52.3 52 50 50.0	Parent Samp Amount Amount dded (ug/kgdded (ug/k % Recovery 0 65.2 64.8 50 50.0 130% 0 52.4 51.9 50.0 105% 0 52.4 52.5 50.0 105% 0 52.3 52 50 50.0 105%	Parent Samp Amount Amount dded (ug/kgdded (ug/k % Recovery % Recovery 0 65.2 64.8 50 50.0 130% 130% 0 52.4 51.9 50 50.0 105% 104% 0 52.4 51.9 50 50.0 105% 105% 0 52.3 52 50 50.0 105% 105%	Parent Samp Amount Amount dded (ug/kgdded (ug/k % Recovery % Recovery RPD (%) 0 65.2 64.8 50 50.0 130% 130% 0% 0 52.4 51.9 50 50.0 105% 104% 1% 0 52.4 51.9 50 50.0 105% 106% 0% 0 52.3 52 50 50.0 105% 104% 1%	Parent Samp Amount Amount dded (ug/k@dded (ug/k % Recovery % Recovery RPD (%) % Recovery 0 65.2 64.8 50 50.0 130% 130% 0% 130.4% 0 52.4 51.9 50 50.0 105% 104% 1% 104.8% 0 52.4 52.5 50 50.0 105% 105% 0% 104.8% 0 52.3 52 50 50.0 105% 104% 1% 104.6%	Parent Samp Amount Amount Idded (ug/ks/dded (ug/k % Recovery % Recovery RPD (%) % Recovery % Recovery 0 65.2 64.8 50 50.0 130% 130% 0% 129.6% 0 52.4 51.9 50 50.0 105% 104% 1% 104.8% 103.8% 0 52.4 52.5 50 50.0 105% 104% 104.8% 103.6% 0 52.3 52 50 50.0 105% 104% 104.6% 104.0%

% Recovery = (Calc.Amt - Parent Amount / Spike Added)*100

SAMPLE & SURROGATE RECALCULATION CHECK

VOC by 8260B

Compound	Area of compound	Area of IS	ICAL RRF	Int.Std. Conc. (ng)	Dil Factor	Extract Vol (mL)	Sample Vol (mL)	Calc On Col. Conc. (ng)	Reported Conc.	Calc. Conc. (ng)	Surr. Spike	Reported % R	Calc. % R
1,1-dichloroethane	1267	144315	0.691	50	1.00	5	5	0.635	0.636	0.635			
cis-1,2-dichloroethene	554	144315	0.443	50	1.00	5	5	0.433	0.433	0.433			
trichloroethene	1432	253484	0.292	50	1.00	5	5	0.967	0.969	0.967			
			_				_						
											Pintera Contractor		in the second second
								+					
1,2-dichloroethane-d4	82369	144315	0.475	50	1.00	5	5	60.08	60.12	60.08	50	120.2%	120.2%
toluene-d8	214267	253484	0.873	50	1.00	5	5	48.41	48.43	48.41	50	96.86%	96.8%
bromofluorobenzene	84532	252299	0.407	50	1.00	5	5	41.12	46	41.12	50	92.00%	82.2%

Conc. = (Area of Cmpd x IS Conc)/ (Area IS x ICAL RRF) x (Dil.Factor x Extract ml) / (Sample Vol ml)

Surrogates: Calculated %Rec = (Calc. Conc.) / (Spike Conc.) Reported conc. is the final conc. From quantitation page.

Field Duplicate Precision VOC by 8260B

Client: Env Mgmt Ltd Reviewer: CMM Project Name: Kings-Storage Deluxe IAQ Project No. 23902-1 SDG: E10-06728

RPD Control Limit: 35%

Compound	R	Sample esult ug/k MW-6S	g	Duplicate Result ug/kg DUP(07/08/10) E10-06728			Calculated RPD	Calculated Difference	Suggested Qualifier
Compound		E10-06728	,				RP		gg
	Result	RL	Flag	Result	RL	Flag	Ca	Di	Su
				1					
chloromethane		1.00	U		1.00	U			None
vinyl chloride		1.00	U		1.00	U			None
bromomethane		1.00	U		1.00	U			None
chloroethane		1.00	U		1.00	U			None
trichlorfluoromethane		1.00	U		1.00	U		Bha nainn an seachadh an Ta	None
acrolein		20.0	U		20.0	U			None
1,1-dichloroethene		1.00	U		1.00	U			None
methylene chloride		2.00	U		2.00	U			None
acrylonitrile		20.0	U	1	20.0	U			None
trans-1,2-dichloroethene		1.00	U		1.00	U			None
1.1-dichloroethane		1.00	U		1.00	U			None
cis-1,2-dichloroethene		1.00	U	1	1.00	U			None
chloroform		1.00	U		1.00	U			None
1,1,1-trichloroethane	2.51	1.00		2.93	1.00		15.4%	0.42	None
carbon tetrachloride		1.00	U		1.00	U			None
1.2-dichloroethane	1	1.00	U	1	1.00	U			None
benzene		1.00	U		1.00	U			None
trichloroethene	16.3	1.00		19	1.00		15.3%	2.7	None
1,2-dichloropropane		1.00	U	1	1.00	U			None
bromodichloromethane		1.00	U		1.00	U			None
2-chloroethyl vinyl ether		1.00	U		1.00	U			None
cis-1,3-dichloropropene		1.00	U		1.00	U			None
toluene	1	1.00	U		1.00	U			None
trans-1,3-dichoropropene		1.00	U		1.00	U			None
1,1,2-trichloroethane		1.00	U		1.00	U			None
tetrachloroethene	2.46	1.00		2.91	1.00		16.8%	0.45	None
dibromochloromethane		1.00	U		1.00	U			None
chlorobenzene		1.00	U		1.00	U			None
ethylbenzene		1.00	U		1.00	U			None
total xylenes		2.00	U		2.00	U			None
bromoform		1.00	U		1.00	U			None
1,1,2,2-tetrachchloroethane		1.00	U	1	1.00	U			None
1,3-dichlorobenzene		1.00	Ū		1.00	U			None
1,4-dichlorobenzene		1.00	U		1.00	U			None
1,2-dichlorobenzene		1.00	U		1.00	U			None
				1					

M1 = matrix interferenece due to co-elution with non-target compound, results may be biased high.

U = Not detected at the stated concentration.

The calculated difference control limit is equal to the reporting limit of the compound.

* Positive results less than 5 times the RL use the calculated difference control limit.

ARCADIS

Appendix D

Well Inspection Forms

SITE NAME:

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 13:26
WELL ID.:	IW-1R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-1	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	YES	NO NO NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	pm
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?		NO
LOCK FUNCTIONAL?		NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	_	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	12.39'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:	-	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS: Some of the flushmount well cover bolts are damaged.

SITE NAME:

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

WELL ID.:	IW-2
DATE/TIME:	7/7/2010 13:40
INSPECTOR:	D. Kirschner/V. Myers
011 - 10	10000120.0000.00001

SITE ID ·

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-2	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED		
		рп
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8.0"	
LOCK PRESENT?		
	YES	NO
LOCK FUNCTIONAL?		NO NO
LOCK FUNCTIONAL?	YES	
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	YES	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES YES	NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES YES 15.66'	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES YES YES 15.66' 10.86'	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES YES <u>YES</u> 15.66' <u>10.86'</u> 2.0"	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES <u>YES</u> <u>YES</u> 15.66' 10.86' 2.0" PVC	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>YES</u> <u>YES</u> 15.66' 10.86' 2.0" PVC	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES YES <u>YES</u> 15.66' 10.86' 2.0" PVC Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

REMARKS: None

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 13:45 WELL ID.: IW-3

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-3	•
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	YES YES	NO NO NO pm
PROTECTIVE CASING MATERIAL TYPE:	Steel flushmou	nt unit
	-	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	YES	NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	19.00' 9.90'	
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u>Good</u> NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	. NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway at the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 13:47
WELL ID.:	IW-4

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT?		NO NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	YES YES	NO NO NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.25'	NO NO
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in driveway next to office the first well at storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 8:25 WELL ID .: IW-5

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	. YES YES	NO NO NO
	. Not Measured	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Steel Vault Box	x
PROTECTIVE CASING MATERIAL TYPE:		int unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Not Measured	
	YES	NO
LOCK PRESENT? LOCK FUNCTIONAL?		NO NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	Not Measured	-
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	Not Measured	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in injection box on injection line number 1 in the storage facility first driveway.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the steel box in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 8:33
WELL ID.:	IW-6

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-6	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	YES YES MultiRAE 0.0 p	•
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
	0.0	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	-	NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.58'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of the storage facility at injection line number 1.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 11:30 WELL ID .: IW-8

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	YES YES . MultiRAE 0.0 pp NA . Steel flushmour	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	. YES	NO NO NO
WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	18.70' 10.92' 5.0" PVC Good NA	NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the hallway on the other side of locker 1018.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 11:35 WELL ID.: IW-9

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	. YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES 0.0 ppm NA . Steel flushmour	NO NO NO
LOCK PRESENT?	. YES	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	<u>11.15'</u> 2.0"	
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	. Good NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility in locker 1018.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside locker 1018

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

••••	
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 11:39
WELL ID.:	IW-10

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	YES YES MultiRAE 0.0 p NA Steel flushmou	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	-	NO
LOCK FUNCTIONAL?		NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	10.40'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	. <u>NA</u>	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility in locker 1040.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside locker 1040

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 11:42
WELL ID.:	IW-11

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO NO
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Steel flushmou	nt unit
	12.0	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING:	<u>Good</u> NA	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		
FROMINITY TO UNDERGROUND OR OVERHEAD UTILITIES	. INA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located inside the storage facility

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located inside the storage facility

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 13:55 WELL ID.: IW-13

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-13	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED		m
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	15.0"	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	14.97'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5.60'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the basement of the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the concrete of the basement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

SITE NAME:	Former Kings Electronics Co., Inc. Site	SITE ID.:	NJ000423.000	5.00001
MONITORING	WELL FIELD INSPECTION LOG		D. Kirschner/V 7/7/2010 14:0 IW-14	,
WELL I.D. VISIB WELL LOCATIO	(If not, provide directions below) LE? N MATCH SITE MAP? (if not, sketch actual location on APPEARS ON PROTECTIVE CASING OR WELL:		YES	NO NO NO
SURFACE SEAL PROTECTIVE C. HEADSPACE RE TYPE OF PROT PROTECTIVE C.	PRESENT? COMPETENT? (If cracked, heaved etc., describe belo ASING IN GOOD CONDITION? (If damaged, describe l EADING (ppm) AND INSTRUMENT USED ECTIVE CASING AND HEIGHT OF STICKUP IN FEET ASING MATERIAL TYPE: TECTIVE CASING INSIDE DIAMETER (Inches):	w) below) (If applicable)		
LOCK PRESENT LOCK FUNCTIO DID YOU REPLA IS THERE EVIDE WELL MEASURE MEASURE WEL MEASURE WEL WEASURE WEL WELL CASING M PHYSICAL CON ATTACH ID MAR	T? NAL? NAL? NCE THE LOCK? ENCE THAT THE WELL IS DOUBLE CASED? (If yes,d ING POINT VISIBLE? L DEPTH FROM MEASURING POINT (Feet): TH TO WATER FROM MEASURING POINT (Feet): L DIAMETER (Inches): MATERIAL: DITION OF VISIBLE WELL CASING: RKER (if well ID is confirmed) and IDENTIFY MARKER UNDERGROUND OR OVERHEAD UTILITIES.	escribe below)	. YES YES YES <u>YES</u> 19.73' 10.42' 2.0" .PVC	NO NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located outside in the injection box on the road,

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the Pacasandra ground coverage.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 14:10
WELL ID.:	IW-15R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-15R	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES . MultiRAE 0.0 pp NA . Steel flushmour	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feel).	11.67'	
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the front of the loading dock by the MW-7 cluster.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 14:33 WELL ID.: IW-16

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IW-16	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES MultieRAE 0.0 p NA Steel flushmour	
LOCK PRESENT?		NO
LOCK FUNCTIONAL?		NO
DID YOU REPLACE THE LOCK?	-	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	18.63' 10.50'	
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located on the sidewalk along the furthest parking lot by the loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 8:38
WELL ID.:	MW-1

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		·
	YES	
LOCK PRESENT? LOCK FUNCTIONAL?		NO NO
DID YOU REPLACE THE LOCK?	-	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.72'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.15'	
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located left of the first driveway near edge.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement near concrete edge.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 13:41 WELL ID.: **MW-HP-1D**

SITE ID.:

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-HP-1D	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	YES YES MultieRAE 0.0 p	
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6"	
LOCK PRESENT? LOCK FUNCTIONAL?		NO NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.09'	
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u>Good</u> NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in middle driveway towards the front on the side of the office.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR D. Kirschner/V. Myers DATE/TIME: 7/7/2010 11:20 WELL ID.: MW-2

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-2	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	YES YES MultiRAE 0.0 pp NA	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT?	-	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES	NO NO
WELL MEASURING POINT VISIBLE?	18.61'	NO
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the storage facility building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located near locker number 1068 in the hallway of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 13:49 WELL ID .: MW-5S

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
WELLID. AS IT AFFEARS ON PROTECTIVE CASING OR WELL.	10100-55	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED		ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8"	
LOCK PRESENT?	YES	NO
		NO
LOCK FUNCTIONAL?	YES	
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES	NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES _YES 	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES <u>YES</u> 17.94' 11.09'	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES <u>YES</u> 17.94' 11.09' 2.0"	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>YES</u> <u>17.94'</u> 11.09' 2.0" <u>PVC</u>	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES <u>17.94'</u> <u>11.09'</u> 2.0" PVC <u>Good</u>	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>17.94'</u> <u>11.09'</u> 2.0" PVC Good NA	NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located at the middle access of the storage building by access door.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 8:20 WELL ID.: MW-6S

		1
WELL VISIBLE? (If not, provide directions below)		NO
WELL I.D. VISIBLE?		NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
		-
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	6S	
SURFACE SEAL PRESENT?	. YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	pin
PROTECTIVE CASING MATERIAL TYPE:		int unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
MEROORE TROTEOTIVE CROINE INCIDE DIAMETER (Incles).	0.0	
LOCK PRESENT?	. YES	NO
LOCK PRESENT? LOCK FUNCTIONAL?	. YES . YES	NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	. YES . YES	
LOCK PRESENT? LOCK FUNCTIONAL?	. YES . YES	NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	. YES . YES . YES . YES YES	NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES YES	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES YES	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	. YES . YES . YES YES . YES . YES . 19.30' 12.27'	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	. YES YES YES YES 19.30' 12.27' 2.0"	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES YES <u>YES</u> <u>19.30'</u> 12.27' 2.0" 	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES YES <u>YES</u> <u>19.30'</u> 12.27' .2.0" .PVC .Good	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES YES <u>YES</u> <u>19.30'</u> 12.27' 2.0" . PVC . Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in first driveway of B Deluxe

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located along automotive garage in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 13:53 WELL ID.: MW-6D

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES	NO NO NO NO
WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	37.18' 12.37' 2.0" PVC	NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located along the automotive garage wall in pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 14:23
WELL ID.:	MW-7S

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES . YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-7S	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES . MultiRAE 0.0 p NA . Steel flushmou	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	. YES	NO
DID YOU REPLACE THE LOCK?	. YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	19.29'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.28'	
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the last driveway by the loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 14:28:00 PM WELL ID .: MW-7D

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES MultieRAE 0.0 p NA Steel flushmour	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES YES	NO NO NO
WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	32.65' 12.45' 2.0" PVC	NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the storage facility in far driveway by loading dock.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in front of above grade loading dock in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 8:35 WELL ID.: **MW-HP-8S**

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-HP-8	S
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES MultiRAE NA Steel flush	
LOCK PRESENT? LOCK FUNCTIONAL?		NO NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	16.55'	NO
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.36'	
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	. <u>NA</u>	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of the storage facility in the injection line number 1.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers 7/7/2010 8:58 DATE/TIME: WELL ID.: MW-HP-8D

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-HP-8D	
SURFACE SEAL PRESENT?	. YES YES	NO NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultieRAE 0.0 p	opm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?	. YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?		NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	57.08'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.65'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	. <u>Good</u> NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the first driveway of the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in pavement in injection line 1.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Automotive garage (off-site).

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 10:40 MW-9S WELL ID .:

	¥50	
WELL VISIBLE? (If not, provide directions below)		NO
WELL I.D. VISIBLE?		NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
SURFACE SEAL PRESENT?		NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultieRae 0.0 p	opm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0"	
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?	YES	NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	18.65'	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	11.21'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	
	1 1/ 1	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle building near elevator and ramp.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 10:42 WELL ID .: MW-9D

WELL VISIBLE? (If not, provide directions below)		NO
WELL I.D. VISIBLE?		NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
	-	_
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-9D	
		_
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0 ppm	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	Steel flushmou	nt unit
	5 O"	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	5.0	
LOCK PRESENT?		NO
LOCK PRESENT?	YES	NO NO
LOCK PRESENT? LOCK FUNCTIONAL?	YES YES	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	YES YES	NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES YES YES	NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES YES YES	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES YES YES	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES YES YES YES <u>38.73'</u> 11.37'	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES YES YES YES <u>38.73'</u> <u>11.37'</u> 2.0"	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES YES YES YES <u>38.73'</u> <u>11.37'</u> 2.0" PVC	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES YES YES YES <u>38.73'</u> <u>11.37'</u> 2.0" PVC	NO NO NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES YES YES <u>YES</u> <u>38.73'</u> 11.37' 2.0" PVC Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the main building of the storage facility near the elevator and ramp.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 11:02
WELL ID.:	MW-11

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-11	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED		
	NA	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		- 4
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12.0"	
LOCK PRESENT?		NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	22.34'	-
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	14.23'	
MEASURE WELL DIAMETER (Inches):	2.0"	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Good	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the sidewalk near the back office door.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the concrete pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 11:06
WELL ID.:	MW-10

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	. YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-10	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	YES YES	NO NO NO
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	NA Steel flushmou	nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT?	-	NO
LOCK FUNCTIONAL?		NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	-	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	14.20'	
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in locker 1201.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located on the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 11:13
WELL ID.:	MW-12

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES YES	NO NO NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-12	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	YES YES MultiRAE 0.0 pp NA	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (IICHES).	12.0	
		NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	Good NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the storage locker 1188

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located on the floor of the locker in the concrete.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 14:20
WELL ID.:	MW-13R

		_
WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-13R	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultiRAE 0.0 p	om
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		nt unit
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
	. 0.0	
LOCK PRESENT?	YES	NO
LOCK PRESENT?		NO NO
LOCK FUNCTIONAL?	YES	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	YES	NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES	NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES YES YES <u>YES</u> . <u>19.50'</u> 11.65'	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES YES <u>YES</u> <u>19.50'</u> <u>11.65'</u> 2.0"	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>YES</u> <u>19.50'</u> <u>11.65'</u> <u>2.0"</u> <u>PVC</u>	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	YES YES <u>YES</u> <u>19.50'</u> <u>11.65'</u> <u>2.0"</u> <u>PVC</u> <u>Good</u>	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES <u>YES</u> <u>19.50'</u> <u>11.65'</u> <u>2.0"</u> <u>PVC</u>	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the last driveway of the storage facility in the back right corner of the driveway with the back towards the loading dock.
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 13:14
WELL ID.:	GP-104R

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	GP-104R	
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED.		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT?	YES	NO
LOCK PRESENT? LOCK FUNCTIONAL?		NO NO
	YES	
LOCK FUNCTIONAL?	YES	NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES	NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	YES YES YES	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	YES YES YES <u>YES</u> <u>YES</u> <u>14.41'</u> 5.90'	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	YES YES YES <u>YES</u> <u>YES</u> <u>14.41'</u> <u>5.90'</u> <u>2.0"</u>	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	YES YES YES YES 14.41' 5.90' 2.0" PVC	NO NO NO
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	YES YES YES 14.41' 5.90' 2.0" PVC Good NA	NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the basement in the electrical closet in building 2.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the basement on the floor in building 2 in electrical closet.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

SITE ID.: NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 13:10
WELL ID.:	GP-103R

WELL VISIBLE? (If not, provide directions below)	YES	NO
WELL I.D. VISIBLE?	YES	NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES	NO
		_
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	None	
		_
SURFACE SEAL PRESENT?	YES	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES	NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED	MultiRAE 0.0 ppm	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		
PROTECTIVE CASING MATERIAL TYPE:	Steel flushmount unit	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOCK PRESENT?	YES	NO
LOCK FUNCTIONAL?	YES	NO
DID YOU REPLACE THE LOCK?		NO
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	YES	NO
WELL MEASURING POINT VISIBLE?	YES	NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		-4
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	6.37'	
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	. NA	
	-	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in building two in the basement.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in locker 0045.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

MONITORING WELL FIELD INSPECTION LOG

SITE ID.:	NJ000423.0005.00001
INSPECTOR:	D. Kirschner/V. Myers
DATE/TIME:	7/7/2010 13:20
WELL ID.:	GP-106R

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	. YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES <u>MultiRAE 0.0 p</u> NA Steel flushmou	
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	YES YES <u>YES</u> <u>19.50'</u> <u>11.70'</u> .2.0" PVC Good NA	NO NO NO NO

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located in the middle of the driveway of the storage facility.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the pavement

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed

Former Kings Electronics Co., Inc. Site

NJ000423.0005.00001

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: INSPECTOR: D. Kirschner/V. Myers DATE/TIME: 7/7/2010 10:50 WELL ID.: PTW-2

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	. YES	NO NO NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES YES MultiRAE 0.0 pp NA Steel flushmoun	
LOCK PRESENT?	. YES	NO NO
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	YES YES	NO NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES.	16.50' 11.51' .2.0" .PVC .Good NA	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Located just outside the office of the main building.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in the floor of the storage facility.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None observed