

RECEIVED

DEC 2 9 2006

Remedial Bursh C Division of Environmediation

Interim Remedial Measure (IRM) Work Plan

1 West Main Street Beacon, New York

VCA Index No. D3-0005-99-04

Central Hudson Gas & Electric Corporation Poughkeepsie, New York

December 2006

Table of Contents

Section	1.	Introduction	1-1
		1.1 General	1-1
		1.2 Site Description	1-1
		1.3 Site History	1-1
		1.4 Previous Investigations	
		1.4.1 Modified Phase I Environmental Site Assessment	
		1.4.2 Phase II Environmental Site Assessment	
		1.4.3 Supplemental Phase II Investigation	
		1.5 Extent of Visually Impacted Soils	1-4
Section	2.	Scope of Work	2-1
		2.1 General	2-1
		2.2 Remediation Contractor Procurement, Survey, and Pre-Remediation Submittals	2-1
		2.3 Mobilization/Site Preparation	2-4
		2.4 Site Security	2-5
		2.5 Soil Removal	
		2.5.1 Soil Excavation Method and Approach	
		2.5.2 Soil Dewatering/Stabilization	
		2.6 Air Monitoring	
		2.7 Water Management	
		2.8 Equipment Cleaning and Residual Waste Management	
		2.9 Transportation and Disposal2.9.1 Disposal of Impacted Soils and Debris	
		2.9.1 Disposal of impacted solis and Debris	
	•	2.9.2 Water 2.9.3 Non-Aqueous Phase Liquid	
		2.9.4 Miscellaneous Waste	
· ·		2.10 Post-Removal Activities	
		2.11 Demobilization	
Section	3.	Institutional Controls	3-1
Section	4.	Reporting	4-1
Section	5.	Project Organization	5-1

Tables

1	Summary	of Pre-Phase	II Soil Bo	ring Information
---	---------	--------------	------------	------------------

- 2 Summary of Phase II Soil Boring Information
- 3 Summary of Supplemental Phase II Soil Boring Information

Figures

- 1 Site Location Map
- 2 Site Plan and Proposed Soil Removal Limits

Attachments

- 1 Relevant Information from Previous Investigations
- 2 Previous Investigation Reports (on CD)
- 3 NYSDOH Generic Community Air Monitoring Plan

1. Introduction

1.1 General

This Interim Remedial Measure (IRM) Work Plan (IRM Work Plan) describes the scope of work for soil removal activities to be conducted by Central Hudson Gas & Electric Corporation (CHGE), on behalf of Metro-North Commuter Railroad Co. (M-NR), at a property located on 1 West Main Street in Beacon, New York (Figure 1). The scope of work generally involves the removal and offsite disposal of visually impacted soils adjacent to the southeast corner of the Dorel Building on the subject property (Figure 2), which were identified during Phase I/II investigation activities conducted by M-NR between July 2005 and May 2006. The impacted soils are assumed to contain manufactured gas plant (MGP) tars that are associated with the former Beacon MGP site located just east of the subject property (Site # 314069; Figure 2). The subject property is currently owned by CCJM Company, but it is CHGE's understanding the M-NR is considering purchasing the property and using the Dorel Building as a warehouse. Access to the property required for implementing this IRM Work Plan will be obtained from the current property owner, through M-NR.

Note that work conducted by CHGE at the former Beacon MGP site was performed under Voluntary Cleanup Agreement (VCA) Index No. D3-0005-99-04. CHGE received a Release from the New York State Department of Environmental Conservation (NYSDEC) under the VCA on January 31, 2002. The work proposed in this IRM Work Plan will also be conducted under the existing VCA.

1.2 Site Description

The subject property is approximately 4.1 acres in size, with an approximately 32,000 square foot building located in the southern portion of the property. According to the *Modified Phase-1 Environmental Site Assessment Report* (Phase I Report; YU & Associates, Inc. [YU], September 2005), the building was reportedly formerly used for office space, assembly, sales, and warehousing. A grass covered area surrounds the building and an asphalt-paved parking lot covers the northern half of the property. A contractor storage area is located in the northwest corner of the property. A fenced area located in the east-central portion of the property is used by an adjacent auto body shop to store vehicles. The southeastern portion of the property is covered with trees, high brush, and other materials. A large stockpile of stone/debris is located immediately south of the site (*Phase II ESA Project Status Report*, Day Engineering, P.C. [DAY], December 2005).

1.3 Site History

According to the Phase I Report (YU, September 2005), the following companies formerly occupied the subject property (based on review of Sanborn maps from 1884 to 1962):

- Hudson Straw Works;
- W.N. Cambell Sash, Door and Blind Factory;
- Federal Glue Company;
- Gillette Rubber Company;
- Beacon Tire Company;
- Harry Hooper Coal Company;

BLASLAND, BOUCK & LEE, INC.

- Hammond Paint and Chemical Company;
- Duchess Coal Company; and
- Inflated Products Company.

1.4 Previous Investigations

Investigations conducted at the subject property include:

- Modified Phase I Environmental Site Assessment (July August 2005);
- Phase II Environmental Site Assessment (November December 2005); and
- Supplemental Phase II Investigation (May 2006).

Each of the investigations are summarized below. Relevant information (e.g., boring logs, data summary tables, etc.) from each of these investigations are provided in Attachment 1. Complete investigation reports are provided in Attachment 2 (on CD).

1.4.1 Modified Phase I Environmental Site Assessment

A detailed discussion of the scope and findings of the Modified Phase I Environmental Site Assessment (ESA) are presented in the Phase I Report (YU, September 2005), and are summarized below. As discussed in the Phase I Report, the Phase I ESA scope of work was divided into two tasks: Task 1 – Phase I ESA and Task 2 – Pre-Phase II Investigation. The Phase I ESA was conducted in accordance with ASTM E1527, and included review of historical documentation, federal and state database/records searches, visual observation of current conditions, and reconnaissance of adjoining properties. Based on the findings of the Phase I ESA, ten Potential Concerns and five Recognized Environmental Conditions (RECs) were identified on the subject property.

Three Potential Concerns/RECs were investigated as part of the Pre-Phase II Investigation, which included the following activities:

- Advancement of four soil borings;
- Collection of three soil samples (for analysis of volatile organic compounds [VOCs], semivolatile organic compounds [SVOCs], metals, pesticides, polychlorinated biphenyls (PCBs), phenols, and cyanides); and
- Collection of one groundwater sample (for analysis of VOCs, SVOCs, metals, pesticides, and PCBs).

The locations of the four soil borings are depicted on Figure 2. Boring depths ranged from 1 to 20 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, silt, wood, concrete fragments, and brick fragments. The fill material generally extended to depths of 7 to 10 feet below grade. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at three of the four borings. MGP tar-type material was not encountered in any of the four borings. For each boring, Table 1 summarizes the depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs, SVOCs, metals, and total phenols were exceeded in one or more of the soil samples. NYSDEC Ambient Water Quality Standards for certain VOCs, SVOCs, metals, and pesticides were exceeded in the groundwater sample. Based on the results of the Pre-Phase II Investigation, additional soil and groundwater sampling and analysis were recommended in the Phase I Report (YU, September 2005).

1.4.2 Phase II Environmental Site Assessment

A detailed discussion of the scope and findings of the Phase II ESA are presented in the *Phase II ESA Project Status Report* (DAY, December 2005), and are summarized below. The following investigation activities were conducted as part of the Phase II ESA:

- Advancement of 31 direct-push test borings;
- Installation of five 1-inch diameter monitoring wells;
- Collection of 15 soil samples (for analysis of VOCs, SVOCs, metals, PCBs, cyanide, pH, ignitability, and/or reactivity); and
- Collection of six groundwater samples (for analysis of VOCs, SVOCs, and/or metals).

The locations of the 31 test borings are depicted on Figure 2. Boring depths ranged from 8 to 12 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, coal, slag, wood, and brick fragments. The fill material generally extended from approximately 0.5 feet below grade (at most locations, fill was overlain by approximately 0.5 feet of asphalt pavement or topsoil) to depth of 5 to 12 feet below grade. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at 18 of the 31 borings. Refusal of the direct push boring equipment, potentially indicative of the top of bedrock, was encountered at six borings. MGP tar-type material was encountered within the fill material at eight borings. For each boring, Table 2 summarizes the ground surface type, depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

Groundwater was measured at depths ranging from approximately 1 to 5 feet below grade in the five monitoring wells.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs and SVOCs were exceeded in one or more of the soil samples. Metals concentrations in the soil samples were generally low and/or comparable to published background values. PCBs were not detected in any of the soil samples. Based on waste characterization testing, the fill material is not considered a characteristic hazardous waste.

NYSDEC Ambient Water Quality Standards for certain VOCs and SVOCs were exceeded in the groundwater samples collected from MW-103. VOCs and SVOCs were either not detected or detected below standards in the samples from the other wells. NYSDEC Ambient Water Quality Standards for certain metals were exceeded in the groundwater samples collected from MW-101 (lead and mercury) and MW-102 (lead).

1.4.3 Supplemental Phase li Investigation

Based on the findings of the Phase II ESA, a Supplemental Phase II Investigation was conducted. A detailed discussion of the scope and findings of the Supplemental Phase II Investigation are presented in the *Supplemental Phase II Investigation Report* (YU, June 2006), and are summarized below. The following investigation activities were conducted as part of the Supplemental Phase II Investigation:

- Advancement of 11 direct-push test borings within the Doral Hat Building;
- Collection of seven soil samples (for analysis of VOCs, SVOCs, cyanide, pH, ignitability, and/or reactivity); and
- Collection of one groundwater sample from MW-103 (for analysis of VOCs and SVOCs).

The locations of the 11 test borings are depicted on Figure 2. Boring depths ranged from 4 to 16 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, silt, coal, slag, ash, and cinders. The fill material generally extended from below the concrete building floor to depths of 4 to 12.5 feet below the floor¹. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at seven of the 11 borings. Refusal of the direct push boring equipment was encountered at four borings. MGP tar-type material was encountered (generally within the fill material) at four borings. For each boring, Table 3 summarizes the depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs and SVOCs were exceeded in one or more of the soil samples. Based on waste characterization testing, the fill material is not considered a characteristic hazardous waste.

NYSDEC Ambient Water Quality Standards for certain VOCs and SVOCs were exceeded in the groundwater samples collected from MW-103.

1.5 Extent of Visually Impacted Soils

As discussed above in Section 1.4 and shown on Figure 2, visually impacted soils that contain MGP tar-type materials are present beneath the southeast corner of the Doral Hat Building and also outside of the building, adjacent to the southeast corner. Outside of the building, the visibly impacted soil area is defined to the north by TB-119 and to the south by TB-124 and TB-128 (no visibly impacted soils were observed at these borings). The presence of a steep, densely vegetated hillside that slopes up away from the Doral Hat Building toward River Street has prevented additional investigations to the east. Visually impacted soils were observed (generally in fill materials) at depths of up to 10 feet below grade. Native soils were present at the majority of the soil borings present within this area at depths beginning from 5 to 10 feet below grade. Refusal (potentially indicative of bedrock) was encountered within this area at depths ranging from 9 to 15 feet below grade.

BLASLAND, BOUCK & LEE, INC.

¹ Note: the building floor is approximately three feet higher than the ground surface outside of the building.

2. Scope of Work

2.1 General

This section presents a description for the IRM soil removal activities that will be conducted by CHGE at the 1 West Main Street property in Beacon, New York. The following activities will be conducted:

- Remediation Contractor procurement, survey, and pre-remediation submittals;
- Mobilization/site preparation;
- Site security;
- Soil removal;
- Air monitoring;
- Water management;
- Equipment cleaning and residual waste management;
- Transportation and disposal;
- Post-removal activities; and
- Demobilization.

Each of these activities is discussed in detail below.

2.2 Remediation Contractor Procurement, Survey, and Pre-Remediation Submittals

CHGE will select a Remediation Contractor to implement the IRM soil removal activities. Prior to conducting the soil removal activities, the selected Remediation Contractor will conduct a survey of the soil removal area, which is anticipated to include survey of the following features:

- Above grade physical site features including all above grade structures;
- Below grade features such as building footers;
- Horizontal limits of the proposed soil removal area;
- Surface contours at a 1-foot interval; and
- Above and below grade utilities (if applicable).

Survey control will include survey control benchmarks and monuments. A licensed surveyor will provide the surveying functions/services necessary for the proper construction and documentation of the activities.

As required/appropriate, the Remediation Contractor will prepare the following submittals for review and approval by the NYSDEC and the New York State Department of Health (NYSDOH):

- Site Operations Plan (SOP); and
- Site Health and Safety Plan (HASP).

Each of these submittals is described below.

BLASLAND, BOUCK & LEE, INC.

Site Operations Plan

The SOP will provide detailed procedures for completing the IRM soil removal activities. The following topics are anticipated to be included in the SOP:

- Work schedule;
- Site security;
- Mobilization and site preparation;
- HASP and other plan preparation;
- Staging area development;
- Erosion and sedimentation control measures;
- Excavation support methods (including foundation protection adjacent to the Doral Hat Building);
- Excavation methods;
- Construction quality assurance/quality control measures;
- Material handing methods;
- Material dewatering/stabilization methods;
- Odor control;
- Dewatering liquid handling and disposal (including disposal facilities, testing requirements, permitting requirements, and pretreatment requirements, if necessary);
- Impacted soil/waste handling and disposal (including disposal facilities, testing requirements, permitting requirements, and pretreatment requirements, if necessary);
- Offsite transportation plan (including description of containers and covers, modes of transportation, permitting requirements, and expected frequency and schedule of transportation);
- Disposal facility(ies);
- Select backfill installation;
- Equipment cleaning and residual waste management;
- Demobilization; and
- Organizational chart of key personnel, including subcontractors and resumes of key personnel.

The Remediation Contractor will submit the SOP to the NYSDEC and NYSDOH at least 20 days prior to the IRM soil removal activities.

Site Health and Safety Plan

The Remediation Contractor will be responsible for the preparation of the overall site-specific HASP that will establish safe working conditions at the site during the IRM soil removal activities. Each party performing work on site will comply with the overall site-specific HASP and will prepare their own task-specific HASP for their organization, which will be consistent with the overall site-specific HASP. Each task-specific HASP must meet the minimum requirements established in the site-specific HASP and 29 CFR 1910 and 1926. Each party will also agree in writing to abide by requirements set forth in the site-specific HASP. The Remediation Contractor will submit the overall site-specific HASP and the subcontractor's task-specific HASPs to NYSDEC and NYSDOH at least 20 days prior to the IRM soil removal activities.

The site-specific HASP, at a minimum, will meet the requirements of 29 CFR 1910 and 29 CFR 1926 (which includes 29 CFR 1910.120 and 29 CFR 1926.65). It is anticipated that the HASP will include, but will not be limited to, the components described below.

- Identification of Key Personnel Identification of the onsite and offsite health and safety personnel responsible for the implementation of health and safety procedures. All onsite personnel involved in the activities will be required to maintain OSHA 40-hour hazardous waste training (29 CFR 1910.120 and 29 CFR 1926.65) and the corresponding 8-hour refresher course update.
- Training A description of health and safety training requirements for supervisory and onsite personnel will be presented. Training requirements will include attending an initial site orientation prior to engaging in any onsite activities.
- Medical Surveillance A description of appropriate medical examinations required for supervisory and onsite personnel to conduct the tasks associated with the performance of the remedy will be presented. Associated tasks may include the following: working with chemicals, heavy lifting, using respiratory protection, using personal protective equipment (PPE) and conducting hazardous substance operations in accordance with 29 CFR 1910.120 and 1926.65.
- Task Specific Risk/Hazard Analysis A description of chemical and physical hazards associated with removal of the impacted soil within the soil removal area will be presented in the HASP. In addition, a discussion of identifying and mitigating foreseeable chemical and physical hazards associated with the work will be presented. Foreseeable chemical and physical hazards may include, but will not be limited to, hazards associated with exposure to constituents of concern, heavy equipment operation, site conditions, weather, biological hazards, materials handling, and work around excavated areas and water.
- Work Zones A description of the work zones that will be established during the IRM soil removal activities will be presented. The work zones will be preliminarily delineated on a figure that depicts the designation of zones including: (1) Exclusion Zones; (2) Contamination Reduction Zones; and (3) Support Zones. The level of personal protection required for each work zone will be specified.
- Personal Safety Equipment and Protective Clothing The HASP will identify personal safety equipment and protective clothing to be used and available onsite. This will include identification of expected levels of protection for the work, and the action levels for PPE upgrades. Also included will be a respiratory protection program that meets the requirements of 29 CFR 1910.134, which establishes specific requirements for any respirator use.
- Air Monitoring Plan An air monitoring plan that identifies air-monitoring requirements within the soil removal area and at the perimeter for site-specific constituents of concern. The air-monitoring plan may contain requirements for personnel monitoring and will present trigger concentrations for site-specific constituents of concern that will require corrective action.
- Equipment Cleaning The methods and procedures for cleaning of personnel, vehicles, and equipment will be described.
- Confined Space Entry The HASP will describe procedures for confined space entry in accordance with OSHA's Permit-Required Confined Space Standard (29 CFR 1910.146). In addition, requirements for Confined Space Entry Training for all authorized personnel in accordance with 29 CFR 1910.146 will be presented.

- Overhead and Electrical Safety The HASP will describe procedures for electrical safety in accordance with the requirements of OSHA (29 CFR 1926.550), New York State High Voltage Proximity Act, New York State Department of Transportation (Code SB-92-2), and New York State Department of Labor, Code Rule 57, Section 202-h (High Voltage Proximity Act).
- Material Safety Data Sheets Material Safety Data Sheets (MSDSs) for all materials to be brought onsite, as well as constituents that are expected to be encountered in the course of remediation, will be presented as an attachment or appendix to the HASP.
- Excavation Safety Excavation and trenching safety procedures as specified in 29 CFR 1926 Subpart P including, but not limited to soil classification, excavation inspections, protective systems, and designated competent persons will be discussed.
- Procedures and Programs Standard operating procedures and safety programs as required by applicable sections of Section 1910 of 29 CFR 1910 and 29 CFR 1926.
- Contingency Plan The HASP will also contain a contingency plan to be implemented in the event of various emergency or non-routine events. The contingency plan will set forth procedures for addressing spill prevention and emergency response procedures, odor control, emergency vehicular access/egress, evacuation, emergency notification and contacts, and emergency medical procedures.

2.3 Mobilization/Site Preparation

Prior to commencing the remediation, the Remediation Contractor will perform mobilization and site preparation activities. The following mobilization/site preparation activities are anticipated to be conducted by the Remediation Contractor (the exact methods used by the Remediation Contractor will be specified in the SOP):

- Identifying the location of all aboveground and underground utilities (e.g., electric, gas, water, sewer, telephone, etc.), equipment, and structures (as necessary to implement the IRM soil removal activities);
- Obtaining any necessary permits required by federal, state, and local codes, rules, or regulations;
- Mobilizing necessary remediation personnel, equipment, and materials to the subject property;
- Clearing of vegetation to facilitate the soil excavation activities;
- Constructing a stabilized construction entrance consisting at or near the soil removal area exit and establishing onsite and offsite traffic controls and patterns;
- Constructing a material staging area(s) for overall management and dewatering, stabilizing, and staging of excavated material;
- Constructing an equipment cleaning pad for trucks, equipment, and personnel that come into contact with impacted materials during soil removal activities;
- Establishing work zones (i.e. soil removal area, staging area, cleaning area, and other areas needed for the remediation) and health and safety zones (i.e. Exclusion Zone, Contamination Reduction Zone, and Support Zone);
- Installing erosion and sedimentation control measures in accordance with the SOP
- Constructing either an onsite water management system and associated piping connections (if applicable) to the sewer system for subsequent discharge to the local sewer system or a groundwater management area for staging water prior to offsite disposal in accordance with the water management procedures specified in the SOP;

BLASLAND, BOUCK & LEE, INC.

- Abandoning groundwater monitoring wells that lie within the soil removal area;
- Installing and maintaining temporary fencing or other temporary barriers to limit unauthorized access to the areas where soil removal activities will be conducted; and
- Stabilizing the building foundation adjacent to the soil removal area by installing underpinning piles beneath/adjacent to the existing building foundation or other appropriate methods specified in the SOP.

2.4 Site Security

The level of site security will be dependent on the activities being performed and location of activities; however, the following security measures are anticipated to be implemented: fencing and/or barriers, warning tape/signs, maintenance of sign-in/sign-out sheets, and implementation of safe work practices. Descriptions of site security measures are provided below. The exact methods used by the Remediation Contractor will be specified in the SOP.

- Fencing At a minimum, the soil removal area will be enclosed with a fence, to control access for nonauthorized personnel. Access gates will provide ingress and egress access to the soil removal area. In addition, temporary construction fencing will also be used, as needed, to delineate and secure areas of the ongoing remediation activities. Temporary fencing is anticipated to be used in the following areas:
 - Areas where stockpiling (if applicable) or loading for offsite transport occurs;
 - Areas designated as health and safety zones;
 - Areas utilized for personal or equipment cleaning activities; and
 - Any areas where the remediation activities may cause a disruption to the normal vehicular or pedestrian traffic.
- Posting of Warning Tape and Signs To restrict access during remediation activities, warning tape may be installed at certain locations, such as open excavations, cleaning areas, and stockpile areas.
- Sign-In/Sign-Out Sheet For the duration of remediation activities, a sign-in/sign-out sheet will be maintained. All site personnel and site visitors will be required to sign in upon entering the site and sign out upon leaving.
- Implementation of Safe Work Practices Implementation of safe work practices will provide for additional site security during remediation. Safe work practices that will contribute to overall security include the following:
 - Maintaining fencing and signage around all open excavations and other potentially dangerous areas;
 - Parking heavy equipment in a designated area each night and removing keys;
 - Maintaining an organized work area, including maintaining access roads, proper storage of all tools and equipment;
 - Conducting a daily security review and health and safety meetings; and
 - Maintaining covers on staging areas and associated sumps.

2.5 Soil Removal

The following subsections discuss the anticipated soil excavation method and approach, and soil dewatering/stabilization methods. The exact methods to be used will be specified in the Remediation Contractor's SOP.

2.5.1 Soil Excavation Method and Approach

As discussed above in Section 1.5 and shown on Figure 2, the anticipated horizontal soil removal limits encompass soil borings MW-103, TB-105, TB-106, TB-117, TB-121, TB-122, and TB-123 where visibly impacted soil containing MGP tar-type materials were observed. The soil removal area is defined to the north by TB-119 and to the south by TB-124 and TB-128 (no visibly impacted soils were observed at these borings). The Doral Hat Building defines the western limit of the soil removal area and the steep, densely vegetated hillside defines the eastern limit of the soil removal area. Within this area, MGP tar-type materials were observed (generally in fill materials) at depths of up to 10 feet below grade. Native soils were present at the majority of the soil borings present within this area at depths beginning from 5 to 10 feet below grade (MGP tar-type materials were generally not encountered within the native soils). Refusal (potentially indicative of bedrock) was encountered within this area at depths ranging from 9 to 15 feet below grade.

Within the soil removal area depicted on Figure 2, soils will be initially excavated to a depth of approximately 8 feet below existing grade, or to the top of the native soil or bedrock, whichever occurs first. If, after reaching a depth of 8 feet below grade or the top of the native soil, MGP tar-type materials are still present, excavation will continue until MGP tar-type materials are no longer observed, or until bedrock is encountered. The soil removal limits identified on Figure 2 encompass an area of approximately 4,200 square feet. Based on this area, and an assumed average removal depth of 8 feet, the resulting volume of soils anticipated to be removed from this area is 1,250 cubic yards (cy).

Soil excavation will generally be conducted using conventional excavation equipment. Soils visually impacted by MGP tar-type materials will be segregated from visually non-impacted soils to the extent feasible. Impacted materials will be handled, stabilized (as necessary), transported, and disposed of as set forth in the Remediation Contractor's SOP. Visually non-impacted soils will be stockpiled near or within the soil removal area and used as backfill.

Due to the anticipated excavation depths (up to 10 feet below grade) and soil characteristics, excavation support will be required to provide for stable and safe sidewalls. Due to the depth to bedrock within the soil removal area (estimated to be 9 to 15 feet below grade), sheetpiling is not anticipated to be a feasible excavation support mechanism. Instead, sloping or benching of the sidewalls will likely be the preferred excavation support method. Along the Doral Hat Building, underpinning (or other appropriate methods) of the building foundation may also be required to maintain the integrity of the building foundation. The exact excavation and building support methods will be specified in the Remediation Contractor's SOP.

Soil excavated from above the groundwater table will generally not require dewatering. However, soil excavated from below the groundwater table (anticipated to be encountered at approximately 1 to 5 feet below grade) will likely require dewatering and possibly stabilization. Dewatering of excavated materials, if needed to meet disposal requirements, will be performed in accordance with the requirements of the disposal facility. Soil dewatering/stabilization requirements are further described in Section 2.5.2

Odor/vapor and dust monitoring and control action levels will be specified in the overall site HASP (prepared by the Remedial Contractor) and NYSDOH's Generic Community Air Monitoring Plan (CAMP; Attachment 3). At a minimum, odor/vapor and dust controls will be initiated when work area action levels, as presented in the HASP, or perimeter action levels as specified in the CAMP are exceeded. Odor/vapor and dust control of the excavation and excavated materials, if necessary, is anticipated to be conducted through one or more of the following methods:

- Foam suppression;
- Water spray;
- Cover excavation and/or soil in staging area(s) with ultraviolet resistant polyethylene plastics at least 5mil thick;
- Minimize extent of excavation areas; and/or
- Methods selected by the Remediation Contractor.

2.5.2 Soil Dewatering/Stabilization

Impacted soils will be direct loaded, to the extent practicable, in a manner that minimizes the potential for inadvertent releases to the environment, unsafe conditions for onsite personnel, and delays or complications in soil removal implementation. However, excavated impacted soil containing free liquids, if any, may require dewatering prior to offsite transportation and disposition as specified by the treatment/disposal facility. In general, excavated impacted soil that contains free liquid may be dewatered using gravity drainage and/or stabilized with other materials. Methods to be implemented during soil dewatering/stabilization activities will be further discussed in the Remediation Contractor's SOP. Following gravity dewatering, the paint filter test (USEPA SW-846 Method 9095) and/or visual observation may be used to determine if excavated impacted soil contains free liquids, additional stabilizing agent will be mixed with the excavated material to reduce moisture content. Gravity dewatering and/or stabilizing operations will be conducted in a dedicated staging area constructed at location selected by the Remediation Contractor.

The anticipated staging are requirements are as follows:

- The excavated soil will be placed onto a 30 mil low-permeability liner of sufficient strength and thickness to prevent puncture during use. The placement and/or removal of soil into the staging area will not involve any equipment or procedures that may jeopardize the integrity of the underlying low-permeability liner;
- The staging area will be continuously covered with a properly anchored membrane, except while soil is actively being placed, stabilized, or removed. This membrane will be maintained for the duration of staging activities;
- A perimeter berm will be constructed around the staging area to contain water that has drained from the staged soils and to mitigate the potential for surface water run-on to come in contact with the staged soils;
- The staging area will be sloped and equipped with a sump to collect water that has drained from the stockpiled soils. Drained water will be removed from the sump, as required, and handled in accordance with Section 2.8 of this IRM Work Plan;

- Stabilizing operations may be conducted within the staging area, but only if the integrity of the lowpermeability liner and perimeter berm is maintained throughout the work. Stabilizing operations include the addition of a stabilization agent to soils by some type of mechanical mixing (i.e., pug mill, backhoe, etc.). Stabilizing operations may also be conducted after the soil has been loaded into lined rolloffs for offsite disposition provided the integrity of the liner is maintained; and
- The staging area will be inspected daily and noted deficiencies will be promptly addressed.

2.6 Air Monitoring

An air-monitoring program will be established prior to, and will be implemented during, the soil removal activities to protect the health and safety of site workers and the surrounding community, address potential nuisance odors, and establish appropriate response protocols for potential emission source control. This effort will include both work area and perimeter air monitoring programs. The onsite air monitoring program will be conducted in accordance with the site specific HASP and the perimeter air monitoring program will be conducted in accordance with the NYSDOH's Generic CAMP (Attachment 3). The methods to control odors and/or vapors during remediation activities will be specified in the SOP, and may include the measures previously described in Section 2.5.1.

The work area/breathing zone air monitoring program is anticipated to be implemented by employing directreading survey instruments to identify the appropriate level of PPE needed based on total organic vapor and particulate concentrations. Excavations are anticipated to be monitored for total organic vapors, total particulate, lower explosive limit (LEL), oxygen, and hydrogen sulfide.

A perimeter air-monitoring program will be established and is anticipated to consist of air monitoring stations at the perimeter of the subject property. Perimeter monitoring will include use of hand held direct-reading survey instruments and/or dedicated direct-reading survey instruments for total organic vapors and particulate monitoring.

Action levels will be established for the worker area/breathing zone and perimeter air-monitoring program to determine if health and safety protocols or construction technique modifications need to be performed to reduce odor/vapor or dust emissions.

2.7 Water Management

During the soil excavation activities, surface water diversion methods and groundwater hydraulic controls will be implemented to minimize the amount of water that enters an excavation area. Surface water diversion methods may include (but are not limited to) channeling surface water flow around the soil excavation areas by excavating a temporary ditch, construction of berms, or installing piping to create a preferential flow path for the surface water around each excavation area. During the soil excavation activities, groundwater (or surface water) that accumulates within the excavation area will be removed to assist in dewatering the soil and to facilitate sedimentation/erosion control. Groundwater (or surface water) that accumulates within an excavation area will be removed via pumping (to the extent practicable). To minimize the amount of soil being removed during pumping activities, a sump may be constructed within the soil removal area using one of, or a combination of, the following techniques:

- Excavation of a sump and backfilling the sump with washed gravel and installing geotextile, as needed;
- Cutting perforations into a cylindrical object (i.e., a corrugated metal pipe or 55-gallon drum) and wrapping the perforated object with a non-woven geotextile fabric;
- Installing straw bales and/or silt fence around the area that the water is being pumped from; and/or
- Other methods selected by the Remediation Contractor.

Water generated as a result of the remediation activities will either be pretreated onsite and discharged to the local sewer system in accordance with applicable permits or be collected for offsite disposal in accordance with applicable federal, state and local regulations.

2.8 Equipment Cleaning and Residual Waste Management

Equipment cleaning will be utilized to prevent the transport of waste materials that may be present on the equipment used for remediation activities (e.g., excavators, loaders). The Remediation Contractor will select the methods and approach (as part of the SOP) for equipment cleaning activities. Specific equipment cleaning procedures will be required, at a minimum, to include the following:

- Each transport vehicle will be visually inspected before leaving the loading area. Accumulations of soil on the vehicle tires or other exterior surfaces will be removed manually or, if necessary, by using a high-pressure water and/or steam spray in the equipment cleaning area.
- Material handling equipment that has come into contact with waste-containing soils will be cleaned in the equipment cleaning area before it enters non-work areas, handles "clean" materials (e.g., backfill), or leaves the site. Equipment cleaning will likely be performed manually, utilizing a high-pressure water spray, and/or steam cleaning.
- Liquid materials, such as cleaning water (and other residual material collected during equipment cleaning), will be collected and containerized for offsite disposal and/or pretreated, if necessary, and discharged to the local sewer system.
- A visual inspection of heavy equipment (e.g., excavators, loaders) will be performed following final equipment cleaning. If the visual inspection indicates waste materials remain, the equipment will be recleaned and reinspected.
- Following completion of water treatment activities the temporary water treatment system (if installed as part of the water management system) will be subject to cleaning. Any accumulated material will be removed, containerized and sampled for the required disposal parameters of the selected disposal facilities to determine appropriate disposition. The treatment system components will then be cleaned by high-pressure water spray or flushing. The wash water will be collected and containerized for appropriate disposal.

Residual wastes likely to be generated during excavation activities include used disposable equipment, PPE, sampling equipment, cleaning residuals, etc. These materials will be containerized as generated and staged for subsequent disposal by the Remediation Contractor in accordance with federal, state, and local requirements. If soil transport activities are in progress, residual materials may be included with the materials subject to offsite disposal. Waste characterization samples (if any) will be submitted to an NYSDOH ELAP-approved laboratory for analysis.

2.9 Transportation and Disposal

Impacted soils will be direct loaded, to the extent practicable, in a manner that minimizes the potential for inadvertent releases to the environment, unsafe conditions for onsite personnel, and delays or complications in the soil removal implementation. Ultimately, the removed soils will be transported to offsite facilities for appropriate treatment/disposal in accordance with applicable regulations for disposal.

In addition, groundwater will be extracted from the excavation areas as part of the excavation dewatering process. The extracted groundwater (as well as rainwater that contacts impacted soil and water generated as part of equipment cleaning) will be subject to pretreatment (as required) and discharged to the local sewer system or containerized for offsite disposal.

The Remediation Contractor will identify the means and methods (as part of the SOP) for dewatering soils so that such soils can be direct loaded and meet the disposal requirements, to eliminate to the extent practicable the need to stockpile soils onsite, and to control odors. The Remediation Contractor will be required to prepare contingency plans (as part of the SOP) for soil dewatering/stabilization and soil stockpiling.

2.9.1 Disposal of Impacted Soils and Debris

Visibly impacted soil/fill or debris will be handled, loaded, transported, and disposed of at one or more permitted disposal facilities capable of accepting MGP-materials in a manner consistent with NYSDEC program policy, TAGM 4061 (Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants) dated January 11, 2002. The final disposal of all visibly impacted soil/fill or debris will be at an appropriately permitted facility that has been approved by CHGE.

If direct loading of excavation spoils for offsite disposition is the proposed method in the SOP, the Remediation Contractor will conduct pre-excavation characterization sampling in accordance with the treatment/disposal facility(ies) requirements. Otherwise the Remediation Contractor will conduct excavation characterization sampling in accordance with the treatment/disposal facility(ies) requirements. Existing data from the Phase I and II ESAs conducted by M-NR may also be used for waste characterization purposes in lieu of collecting additional samples. Characterization samples collected will be submitted to a NYSDOH ELAP-approved laboratory for analysis.

The Remediation Contractor will perform all aspects of the transport and disposal of materials. Materials subject to offsite disposal will be transported via the selected and permitted transport mechanisms to the appropriate disposal facilities. The Remediation Contractor will be responsible for cleaning and visually inspecting the disposal vehicles prior to leaving the site. Licensed haulers will perform all transport of materials in accordance with appropriate local, state, and federal regulations. Loaded vehicles leaving the site will be appropriately lined, tarped, manifested, and placarded in accordance with appropriate federal, state, local, and New York State Department of Transportation (NYSDOT) requirements (or other applicable transportation requirements).

2.9.2 Water

As part of the SOP, the Remediation Contractor will select the methods and approach for handling and disposition of water generated during the IRM soil removal activities. Methods may include containerization and subsequent offsite disposition or pretreatment followed by discharge to the local sewer system for subsequent treatment at the local publicly owned treatment works (POTW). The Remediation Contractor will be required to obtain and comply with applicable permits required for disposition of wastewater generated during the IRM soil removal activities.

2.9.3 Non-Aqueous Phase Liquid

Free phase non-aqueous phase liquid (NAPL), if encountered, will be handled in accordance with TAGM 4061 (Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants).

2.9.4 Miscellaneous Waste

Miscellaneous waste generated during the IRM soil removal activities may be classified as general refuse or remediation-related waste material.

General refuse (i.e., material that has not contacted any impacted site media) including, but not limited to, used disposable equipment and temporary fencing will be managed as a non-hazardous waste and disposed of at a non-hazardous solid waste disposal facility.

Remediation-related materials that are either in, or come in contact with, impacted soils during the remediation activities will be considered contaminated. This material may include ancillary wastes generated as a result of the remediation activities, including (but not limited to) materials used to construct the materials handling and dewatering/staging areas, equipment cleaning pads, and PPE. The Remediation Contractor will be required to characterize the miscellaneous waste prior to offsite disposition at an acceptable facility based on waste characterization activities to be conducted by the Remediation Contractor. With approval of the disposal facility, this material may also be included with the impacted soil wastes.

2.10 Post-Removal Activities

Post-removal activities will include backfilling the excavation and completing the surface restoration. Following soil excavation activities, visually non-impacted soils will be placed back into the excavation and select backfill will be used to fill the remainder of the excavation. Backfill will be placed and compacted to restore the ground surface within the soil removal area to pre-remediation conditions minus approximately 4 to 6 inches. Restoration of the ground surface will include placing 4 to 6 inches of topsoil materials and seeding.

Backfill and topsoil from offsite sources will be sampled and analyzed to verify that the proposed materials are free of contaminants and suitable for their intended use as backfill. At a minimum, proposed backfill and topsoil source(s) will be sampled and analyzed for VOCs, SVOCs, PCBs, pesticides, herbicides and metals.

2.11 Demobilization

The Remediation Contractor will be responsible for demobilizing all labor, equipment, and materials (not designated for offsite disposal) from the subject property. The Remediation Contractor will be required to clean (in accordance with the SOP) all equipment and materials prior to removal from the subject property.

The Remediation Contractor will also be responsible for performing any follow-up coordination and maintenance activities, including the following:

- Restoring areas disturbed to accommodate support areas (e.g., staging area, equipment cleaning area, storage area, temporary water management area, access area) to pre-remediation conditions;
- Removing any temporary access areas and restoring the disturbed access areas to pre-remediation conditions; and
- Removing sediment and erosion control measures and disposing of the materials in accordance with acceptable rules and regulations as a non-hazardous waste.

3. Institutional Controls

Institutional controls to be implemented following completion of the IRM soil removal activities include establishing an environmental easement and a site management plan (SMP). The environmental easement will prohibit the use of groundwater and restrict the land use to commercial or industrial. The SMP will include institutional and engineering controls to: (a) address residual impacted soils that may be excavated from beneath the Doral Hat Building and other areas outside of the proposed excavation limits (Figure 2); (b) evaluate the potential for vapor intrusion if the Doral Hat Building is occupied in the future; (c) identify any use restrictions on property development or groundwater use; (d) provide an annual certification to NYSDEC that the institutional and engineering controls have been followed.

4. Reporting

A final engineering report and certification of completion will be submitted to NYSDEC following implementation of the IRM soil removal activities. The final engineering report is anticipated to include the following:

- A description of the IRM soil removal activities performed;
- A description of any changes to the remediation;
- Sampling and monitoring results;
- A copy of the applicable Remediation Contractor records and record drawings showing changes made during construction;
- Groundwater treatment/disposal data and information; and
- Soil disposal data and information.

A Professional Engineer registered in New York State, the Remediation Engineer, will provide certification that the construction was completed in substantial conformance with the approved IRM Work Plan, and/or approved field changes; this certification will be appropriately signed and stamped.

5. Project Organization

This section presents the anticipated project organization and associated roles, including key personnel, descriptions of duties, and lines of authority in the management of the IRM Work Plan. Information regarding the organizations/personnel and their associated responsibilities is provided below.

NYSDEC

NYSDEC will serve as the lead regulatory agency for this remediation. The NYSDEC project manager is anticipated to be Gardiner Cross, who will be responsible for providing and coordinating regulatory oversight and direction.

NYSDOH

The NYSDOH will work closely with NYSDEC and will provide input from a health and safety perspective. The NYSDOH contact is anticipated to be Gary Litwin.

CHGE

CHGE will be responsible for implementing the IRM soil removal activities at the subject property. The primary contact for CHGE will be Jeffrey Clock.

<u>M-NR</u>

M-NR will be responsible for implementing the institutional and engineering controls after the IRM soil removal activities have been completed by CHGE. CHGE will coordinate with M-NR and the current property owner during the implementation of the soil removal activities.

Remediation Contractor

The Remediation Contractor selected for this project will provide services associated with soil removal and disposal, groundwater dewatering and disposal, air monitoring, emergency spill response services (if necessary), and management of waste transport and disposal.

The Remediation Contractor may retain various subcontractors for the purposes of completing the project, if necessary. Remediation Contractor and subcontractor responsibilities will be set forth in the SOP.

Remediation Engineer

The Remediation Engineer selected for this project will provide full-time engineering observation services for the duration of the IRM soil removal activities to document the activities are conducted in accordance with this IRM Work Plan and associated plans submitted by the Remediation Contractor. The Remediation Engineer will be responsible for certifying the construction was completed in substantial conformance with the approved IRM Work Plan, and/or approved field changes. In addition to oversight and final engineering certification, the Remediation Engineer may review plans such as the SOP, HASP, and other appropriate plans.

Analytical Laboratory

A NYSDOH ELAP-certified laboratory will provide analytical services required for this project.

Offsite Disposal Facilities

The excavated materials will be transported to and disposed of at licensed disposal facilities. The disposal facilities used must be licensed to accept MGP-contaminated soils and materials. Transportation to these facilities will be via legally permitted (such as permits required in NYCRR Part 364 and NYCRR Part 360) and NYSDEC-acceptable methods.

Tables

C1225

TABLE 1 SUMMARY OF PRE-PHASE II SOIL BORING INFORMATION

1 West Main Street

Beacon, New York

Boring ID	Fill Material	Depth to Native Material (feet below grade)	Refusal	<pre>Depth MGP.Tar-Type Material Observeds (feet below grade)</pre>
B-1	0-7	7		-
B-2	0-6	6		-
B-3	0-10	10		
B-4	0-1	-		

Note:

-- = not applicable

1. Information summarized above based on interpretation of boring logs prepared by YU & Associates, Inc.

2. Descriptions from last sample interval not interpolated to extend past depth of recovery.

TABLE 2 SUMMARY OF PHASE II SOIL BORING INFORMATION

1 West Main Street

Beacon, New York

	Ground	Fill Material	Native Material	Refusal 🖈	Depth MGP Tar-Type Material Observed
	Surface Type			(feet below grade) /	👫 (feet below grade)
MW-101	fill	0-6.5	6.5		
MW-102	fill	0-6.5	6.5		
MW-103	fill	0-5	5	9	0-5
MW-104	vegetated topsoil	0.5-6	6		
MW-105	vegetated topsoil	0.5-9.5	9.5		
TB-101	vegetated topsoil	0.5-11.2			
TB-105	vegetated topsoil	0.5-8.9		11	4.5-8.9
TB-106	vegetated topsoil	0.5-9	9	10.5	5-9
TB-107	vegetated topsoil	0.5-8.8			0.5-4
_TB-108	vegetated topsoil	0.5-8.8	**		
TB-110	asphalt and fill	0.3-5.6		8	
TB-111	asphalt and fill	0.3-9.2			
TB-112	asphalt and fill	0.7-7	7		
TB-113	asphalt and fill	0.3-9.8	-		
TB-115A	fill	0-6	6		
TB-116	vegetated topsoil	0.5-6	6	**	
TB-117	vegetated topsoil	0.5-10	10		7.5-10
TB-118	vegetated topsoil	0.5-8.8			
TB-119	vegetated topsoil	0.5-8.8	-		
TB-120	asphalt and fill	0.3-10.5	10.5		
TB-121	vegetated topsoil	0.5-9.5	9.5	15	6-9.5
TB-122	vegetated topsoil	0.5-8	8	10.6	0.5-8
TB-123	vegetated topsoil	0.5-6	6	10.5	0.5-6
TB-124	vegetated topsoil	0.5-8.5	8.5		
TB-125	vegetated topsoil	0.5-9.5	9.5		-
TB-126	vegetated topsoil	0.5-8	8		
TB-127	vegetated topsoil	0.5-6.4			
TB-128	fill	0-8.4			
TB-129	fill	0-8.4			
TB-130	asphalt	1-9			
TB-131	asphalt and fill	0.7-11.2			

Notes:

-- = not applicable

1. Information summarized above based on interpretation of boring iogs prepared by Day Engineering, inc.

2. Descriptions from last sample interval not interpolated to extend past depth of recovery.

TABLE 3 SUMMARY OF SUPPLEMENTAL PHASE II SOIL BORING INFORMATION

1 West Main Street

Beacon, New York

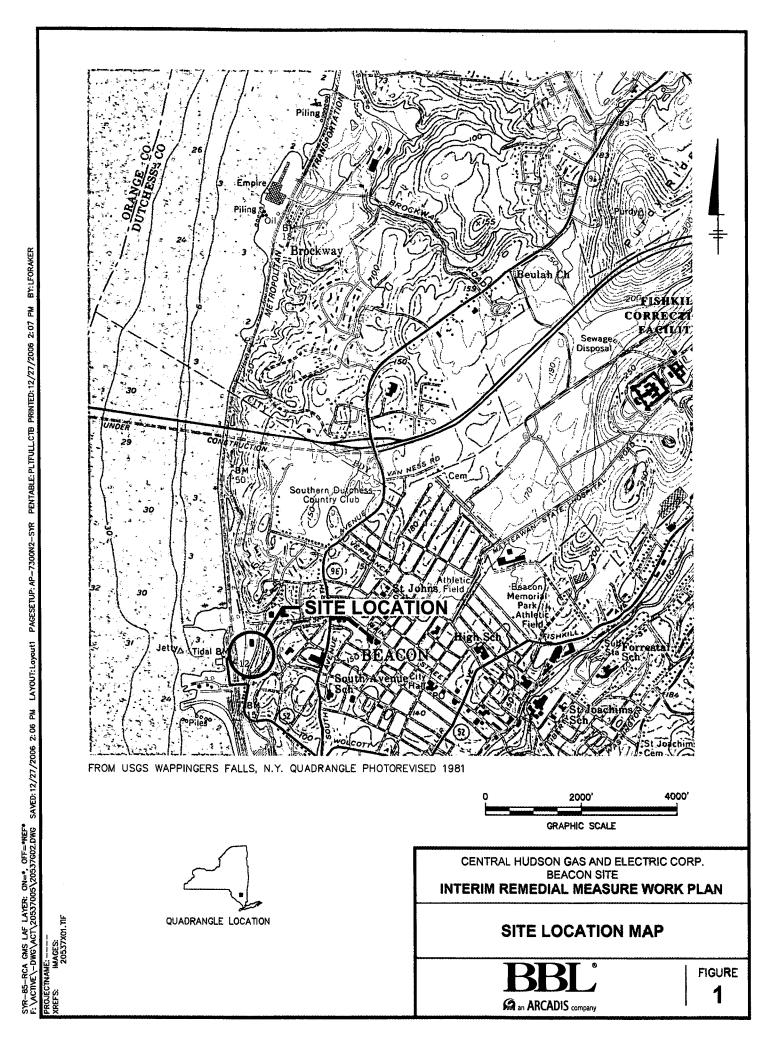
Boring ID	E Depth of Fill Material (feet below floor)	Native Material	Refusal	Depth MGP;Tar-Type Material Observed; (feet below floor)
TB-200	0.5-5		5	
TB-201	0.7-6		6.5	
TB-202	0.5-6		6.5	
TB-203	0.4-3.3		4	
TB-204	0.5-12.5	12.5		8-12.5
TB-205	0.7-12.5	12.5		
TB-206	0.5-9.5	9.5		
TB-207	0.5-10	10		8.5-10.3
TB-208	0.5-9	9		8.5-9
TB-209	0.5-9.5	9.5		8.5-9.5
TB-210	0.5-10	10-12		

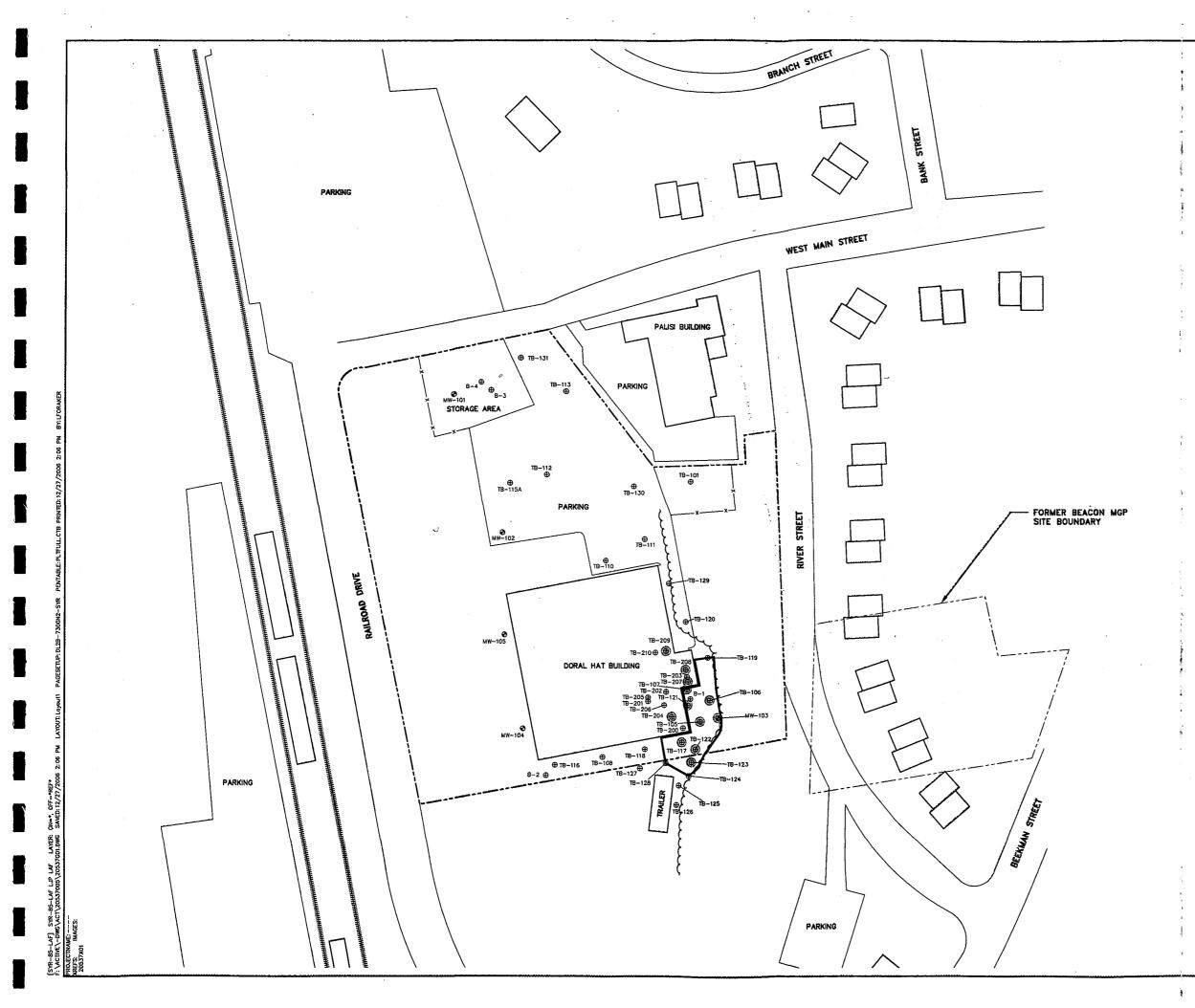
Notes:

-- = not applicable

1. Information summarized above based on interpretation of boring logs prepared by YU & Associates, Inc.

2. Descriptions from last sample interval not interpolated to extend past depth of recovery.


3. Concrete floor inside Doral Hat building approximately 3 feet higher than ground surface outside the building.


Figures

e a c

<u>.</u> 27

LEGEND:

	PROPERTY LINE
	BUILDING
x	FENCE
	ROAD
	RAILROAD
\sim	TREELINE
Ð	TEST BORING LOCATION AND ID
٠	GROUNDWATER MONITORING WELL LOCATION AND ID
Ø	TEST BORING/MONITORING WELL WHERE MGP-TYPE TAR MATERIAL OBSERVED (SEE NOTE 3)
······	PROPOSED SOIL REMOVAL LIMITS

NOTES:

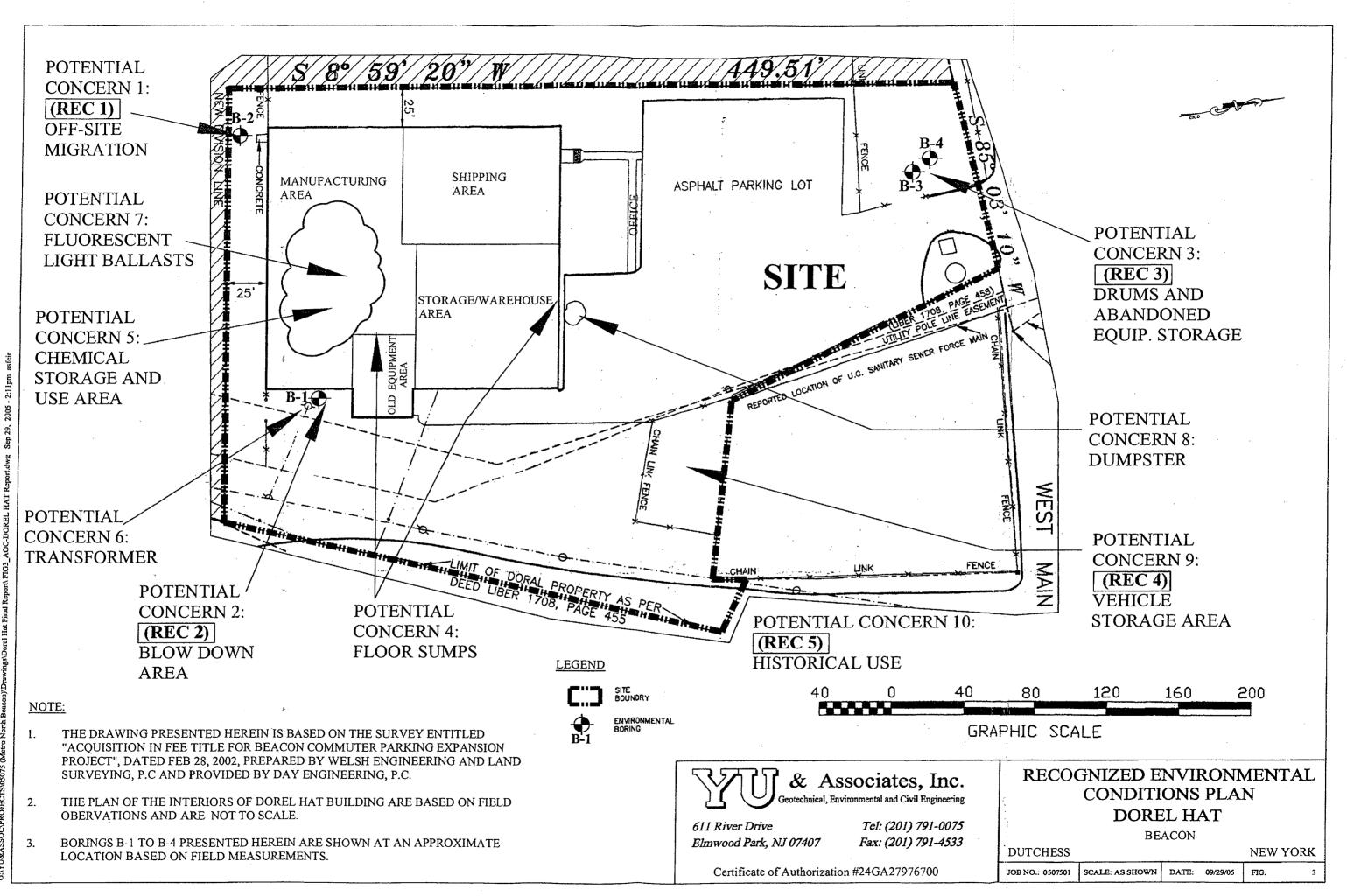
- BASEMAP INFORMATION OBTAINED FROM AN AERIAL PHOTOGRAPH BY YU & ASSOCIATES, INC. DATED 9/9/05 AND A FIGURE BY DAY ENGINEERING, P.C. ENTILED "SITE PLAN WITH AREAS OF CONTAMINATION" DATED 12/30/2005 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. BASED ON INTERPRETATION OF BORING LOGS PREPARED BY DAY ENGINEERING, INC. AND/OR YU & ASSOCIATES, INC.

PHIC SCALE CENTRAL HUDSON GAS AND ELECTRIC CORP. BEACON, NEW YORK INTERIM REMEDIAL MEASURE WORK PLAN SITE PLAN AND PROPOSED SOIL REMOVAL LIMITS BBI FIGURE 2 an ARCADIS company

Attachments

BBL

an ARCADIS company


Attachment 1

Relevant Information from Previous Investigations

Modified Phase I ESA

1.200 Contraction (2010)

PROJECT	NAME:	Metro North Beacon, Dorel Hat					Boring No.	B-1
LOCATION	:	Beacon, NY	STARTED:	08/04/05			BOREHOL	E FLUID LEVEL
GROUND B	LEVATION	: COI	MPLETED:	08/04/05			DATE	DEPTH
NORTHING	:	EASTING:					ſ	(FEET)
RIG TYPE:	Geoprobe	Advance 66 DT. CONT	RACTOR:	Land Air V	Vater			
	IETHOD: Di	rect Push Geoprobe	Envir	onmental Se	rvices		08/04/05	
CASING:	NA		DRILLER:	Emesto San	tiago		9:30 AM	3.8
CORING:	NA		PECTOR:		- 31			1
		· · · ·						L-,
DEPTH	USC	DESCRIPTION		Recovery				MPLE
(feet)	System	(based on Burmister system)		(In/In)	PID (ppm)	Hg (mg/m3)	Env. Sample	Depth (feet)
		0-6": Hand Augering	· _ ·		(ppild)	(11,0,11,2)	Sampre	(reet)
1	FILL	Brown to Dark Brown, c-f SAND, some c-f						
]	gravel, little silt, root fragments, dry						
2	4	Brown to Grayish Brown c-f SAND, some silt.	<u></u> ± 2'		-			· - ·
3	}	some c-l gravel, concrete fragments, dry	- ± 3'	42/60			B1-3.0	3-4
		Grayish Black c-f SAND, some c-f gravel, trace			1:0		(Soil)	
4	l	silt, wet, black stained	· 1	i				
5		Grayish Black c-CSAND and c-f GRAVEL,	± 4.5		ŀ I	0.0 (throughout)	B1-GW (Groundwater)	
J		trace silt, wet, black stained, oil sheen -				(Insoughour)	(Crouisowater)	
6		-	· · · [3.0		BI-6.0	6-7
			± 6.5				(Soil)	
7 -	E State	Gray c-f GRAVEL, little c-f sand, little silt & clay, wet, oil sheen	± 7'		.5.5		1.1	
8	CL	Gray CLAY & SILT, medium plasticity, wet		30/60	0.0			
				.			·	•
9 _							}	
10			. ± · tβ		·			
· · · ·		END OF BORING @ 10 FEET						: :
" _		1				}	1	

12

REMARKS: B1-6.0 on hold Oil sheen observed from 5'-7.5'.

Yu & Associates, Inc.

.

· .

. . . . · . -

.

·•....

....

.

UTER A SUBJECT STATE

	PROJECT NA	AME:	Metro North Beacon, D	orel Hai				Boring No.	8-2	
	LOCATION:		Beacon, NY	STARTED:	08/04/05			BOREHOLE	LUID LEVEL	7
	GROUND EL	EVATION:		COMPLETED:	08/04/05			DATE	DEPTH	1
	NORTHING:		EASTING:					1	(FEET)	1
	RIG TYPE:	Geoprobe	Advance 66 DT.	CONTRACTOR:	Land Ai	r Water				1
	DRILLING ME	ETHOD: Dire	ct Push Geoprobe	Envi	ronmental Se	rvices		NA		1
	CASING:	NA		DRILLER:	Ernesto San	tiago	I.	INA NA	NA	
	CORING:	NA		INSPECTOR:	A. Garg					
	DEPTH	USC	DESCRI	PTION		1	1	SAM	PLE	7
	(feet)	System			Recovery (In/in)	PID	Hg	Env.	Depth	1
	L		(based on Burr		(mear)	(ppm)	(mg/m3)	Sample	(feet)]
		FILL	Brown c-f SAND, some silt, root matters, dry	- 0 K			0.003			1
	· ·		Gray c-f GRAVEL, some c-	sand, little silt, dry			0.003			
	2	-	Dark Brown c-I SAND, som	± 2'			0			1 ·
	3 .		Dark Brown c-I SAND, som silt, moist	: c-t gravel, trace	42/60		0			
							ů		-	
	4 -	4	-							
	5	1	· ·	± 3.5				B2-5.0	5-6	
	-	1	Grayish Brown c-f SAND, so	me silt, little c-f gravel,				(Soil)		
	۵ _	ML	dry Gray-light Brown SILT & Cl	± 6'				•		l
	7		moist							
	_				43/60	0				
	⁸ –	1		-		(throughout)				
	9	1	··					ļ		
	10	1							:	
	10 		Same as above	± 10					يىتى بالىقىلەر بىلىر	
	Ш,		ta tar	· .						1.1
	12									
N , 1				-	30/60		1			
	13 _				30.00					
	14							í		
1		1					ĺ	j	1	
	15 _			± 15'		1	ļ		1	•
	16		END OF BORING @ 15 FEE	1				1		
		1 1				1	-	1		
L			·							

SECTION CONTRACTOR OF

REMARKS:

Yu & Associates, Inc.

¥

PROJECT	NAME:	Metro North Beacon, Dore	l Hat				Boring No	B-3
LOCATION	:	Beacon, NY	STARTED:	08/04/05		. `	BOREHOLI	E FLUID LEVEL
GROUND I	ELEVATIO	N:	COMPLETED:	08/04/05			DATE	DEPTH
NORTHING	:	EASTING:						(FEET)
RIG TYPE:	Geoprob	e Advance 66 DT.	CONTRACTOR:	Land Air \	Water			
DRILLING N	AETHOD:	Direct Push Geoprobe	Envi	ronmenial Se	ervices			
CASING:	NA		DRILLER:	Ernesto Sar	ntiago		08/04/05	12.5
CORING:	NA		INSPECTOR:	A. Garg				
						من المراجع الم		
DEPTH (feet)	USC System	DESCRIPTI	ON	Recovery	PID	.Hg	Env.	MPLE Depth
(1001)	- Cystom	(based on Burmis	ter system)	(in/in)	(ppm)	.ng (mg/m ³)	Sample	(feet)
	1	Brown c-f SAND, some silt, som			1 100	1 (10)	- Compile	(1001)
l 1	FILL	root matters, dry	<u>+ l'</u>		i .	[· .
2	1	Dark Brown c-f SAND, some sil with concrete fragments, brick fr				1	· .	
	1	inter concrete magnetics, otter it	± 3.7	44/60				1
3 _				44/00				1
4]			1
.	1							
5 -	1	Dark Gray- Brown c-f SAND, so	± 5'			· •		
6	1	little silt, trace Clay, moist	the c-ι gravel, ± δ'		· ·		B3-5.5 (Soil)	5.5.6.5
1 -	1	little silt, trace Clay, moist Gray- Brown Clayey SILT, little						
7 -		gravel, moist, pocket of brick frag	gnents at 7 ft. ± 7.3'		ļ			. .
8_				28/60	0	0.		
				•	(throughout)	(throughout)		1
° -	1					· ·		
· 10			± 10	···				=
11	SM	Dark-Brown c-f SAND, some silt				· · · · · ·		·
" –		gravel, moist, with wood fragmen	± 11.5				B3-11.5	11.5-12.5
12	PT	Dark Brown SILT & CLAY, little	c-f sand, trace gravel				(Soil)	
13		organic matter, fibers, wood, moist (Gray silty CLAY, some c-f gravel	PEAT), low plasticity , some c-f ± 12.5'	60/60				
		sand, fibers, wet (PEAT), low pla						
14 _								
15			± 5'	· ••	· .	• • •		1
		Dark Gray-Brown SILT & CLAY	, little m-f sand, organic					
16 _		matter, wood fragments, wet, low	plasticity ± 16.3'					1
17		Dark Brown Clayey SILT, some n trace gravel, wood fragments, moi		• • • •	•	1		
1		· · · · · · · · · · · · · · · · · · ·		60/60				
18 _								
19			± 19.5*					
- T		Dark Brown c-f SAND and SILT,		1			İ	
20 -		gravel, wood fragments, moist END OF BORING @ 20 FEET	± 20'					
21						l l		
				ĺ				

REMARKS: Groundwater encountered at 12.5 ft. Approximately 500 ml of water was sampled, before the flow of water stopped. Per the driller, it was a small amount of water sitting over the underlying clayey strata.

Yu & Associates, Inc.

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	8-4
LOCATION:	Beacon, NY	STARTED:	08/04/05	BOREHOLE F	LUID LEVEL
GROUND ELEVATION:		COMPLETED:	08/04/05	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: Geoprobe A	dvance 66 DT.	CONTRACTOR:	Land Air Water		
DRILLING METHOD:	Hand Auger	Env	vironmental Services	NA	NA
CASING: NA		DRILLER: E	Ernesto Santiago		101
CORING: NA		INSPECTOR:	A, Garg		

DEPTH	USC	DESCRIPTION	_			SAN	PLE
(feet)	System	(based on Burmister system)	Recovery (In/In)	PID (ppm)	Hg (mg/m ³)	Env. Sample	Depth (feet)
<u>ا</u>	FILL	Brown c-f SAND, some silt, burnt leaves/wood pieces, black staining at top ±1' END OF BORING @ 1 FOOT		0 0	0 0	B4-0.5 (Soil)	0.5-1.0
1 _						(,	
3 _							
4 _					·		
5		-				-	
⁶ _							
7_							, M
8 9			·	 .			
10	- 1974 - 1974 1977 - 19						
^{II} –		· · ·	· -				
12	l						L.,

REMARKS: Black stained area was observed adjacent to the two SS-gallon drums inside the junk yard area. Surface soil sample was collected at 0.5 ft.

١

Yu & Associates, Inc.

I SAMPLING SUMMARY TABLE DOREL HAT - PRE PHASE II INVESTIGATION BEACON, NY Project # 0507501

Area of Concern	Date Collected	Depth (ft)	Matrix	Analytical Parameters
Blow Down Area	8/4/2004	3.0-4.0	SOIL	Not Analyzed
Blow Down Area	8/4/2004	6.0-7.0	SOIL	PP+40
Off Site Migration Area	8/4/2004	5.0-6.0	SOIL	PP+40
Drums and Abandoned Equipment Storage Area	8/4/2004	5.5-6.5	SOIL	Not Analyzed
Drums and Abandoned Equipment Storage Area	8/4/2004	11.5-12.5	SOIL	Not Analyzed
Drums and Abandoned Equipment Storage Area	8/4/2004	0.5-1.5	SOIL	PP+40
Blow Down Area	8/4/2004	NA	AQUEOUS	VO+15, BN+25, Pesticides, PCB
• • •	Blow Down Area Off Site Migration Area Drums and Abandoned Equipment Storage Area Drums and Abandoned Equipment Storage Area Drums and Abandoned Equipment Storage Area	Blow Down Area8/4/2004Blow Down Area8/4/2004Off Site Migration Area8/4/2004Drums and Abandoned Equipment Storage Area8/4/2004Drums and Abandoned Equipment Storage Area8/4/2004Drums and Abandoned Equipment Storage Area8/4/2004Drums and Abandoned Equipment Storage Area8/4/2004	Blow Down Area8/4/20043.0-4.0Blow Down Area8/4/20046.0-7.0Off Site Migration Area8/4/20045.0-6.0Drums and Abandoned Equipment Storage Area8/4/20045.5-6.5Drums and Abandoned Equipment Storage Area8/4/200411.5-12.5Drums and Abandoned Equipment Storage Area8/4/20040.5-1.5	Blow Down Area8/4/20043.0-4.0SOILBlow Down Area8/4/20046.0-7.0SOILOff Site Migration Area8/4/20045.0-6.0SOILDrums and Abandoned Equipment Storage Area8/4/20045.5-6.5SOILDrums and Abandoned Equipment Storage Area8/4/200411.5-12.5SOILDrums and Abandoned Equipment Storage Area8/4/200411.5-12.5SOIL

Soil Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Mátrix Units Dilution Factor	B1-6.0 D0921-02C 8/4/2005 6.0-7.0 Soil mg/Kg 200	B2-5.0 D0921-03C 8/4/2005 5.0-6.0 Soil mg/Kg 1		B4-0.5 D0921-06C 8/4/2005 0.5-1.0 Soil mg/Kg 1		NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
VOCs Methylene Chloride	ND	0.031	J	0.007	J	0.1	0.1
Chloroform Trichloroethene Toluene Tetrachloroethene	ND 41 J ND	0.012 0.081 ND ND	J	0.003 ND ND 0.0008	1 1	0.3 0.7 1.5 1.4	0.3 0.7 1.5 1.4
Xylene (Total) 1,2,4-Trimethylbenzene Napthalene	58 J	ND ND ND		ND ND 0.003	j	1.2 NA 13	1.2 NA 13

Qualifiers

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Use professional Judgement based on data use

Note:

Repairing the second
The data presented herein is based on the Preminary Results of Volatile Organics analyses.

Sample 1D	B1-6.0		B2-5.0		B4-0.5		NYSDEC	NYSDEC
Lab Sample ID	D0921-02A		D0921-03A		D0921-06A		Rec. Soil	Soil cleanup
Sampling Date	8/4/2005		8/4/2005		8/4/2005		Cleanup	objectives
Sample Depth (ft)	6.0-7.0	ļ	5.0-6.0		0.5-1.0		Objective	to protect
Matrix	Soil		Soil		Soil		-	GW quality
Units	mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg
Dilution Factor	20		1		1			
SVOCs			· · ·					
2,4-Dimethylphenol	7.2	J	ND		ND		NA	NA
Naphthalene	3800	E	ND		0.07	J	13	13
2-Methylnaphthalene	990	E	ND		ND		36.4	36.4
Acenaphthylene	1000] E	ND		ND		41	41
Acenaphthene	170]	ND		ND		50	90
Dibenzofuran	860	E	ND		ND		6.2	6.2
Fluorene	960] E	ND		ND		50	350
Phenanthrene	2300	E	ND		ND		50	220
Anthracene	670	E	ND		ND		50	700
Carbazole	270	_	ND		ND		NA	NA
Fluoranthene	1500	E	0.044	J	ND		50	1900
i ² yrene	1500] E.	0.05	J	ND		50	665
Benzo(a)anthracene	680] E	0.041	J	ND		MDL	3
Chrysenc	390] E	0.06	J	ND		0.4	0.4
bis(2-Ethylhexyl)phthalate	ND		0.05	1	ND		50	435
Benzo(b)fluoranthene		E	0.05	J	ND		1.1	1.1
Benzo(k)fluoranthene	200	1	0.027	J	ND		1.1	1.1
Benzo(a)pyrene			0.038	J	ND		MDL	11
Indeno(1,2,3-cd)pyrcne		J	ND		ND	l	3.2	3.2
Dibenzo(a,h)anthracene		_	ND		ND		MDL	165000
Benzo(g,h,i)perylene	140]	ND		ND		50	800
1		-				i		

Qualifiers

J - Analyte detected Below quantitation limits

E - Value above quantitation range

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria arc listed and identified in bold and boxed.

Note:

Description and the second
The data presented herein is based on the Preminary Results of Semivolatile Organic Compounds analyses.

Soil PP-Metals Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Project # 0507501

Sample ID B1-6.0 B2-5.0 B4-0.5 NYSDEC Lab Sample ID D0921-02 D0921-03 D0921-06 Rec. Soil Sampling Date 8/4/2005 8/4/2005 8/4/2005 Cleanup Sample Depth (ft) 6.0-7.0 5.0-6.0 0.5-1.0 Objective Matrix Soil Soil Soil Units mg/Kg mg/Kg mg/Kg mg/Kg Dilution Factor 1 1 1 **PP** Metals Antimony ND 1.2 2.5 SB 19 7.3 Arsenic 5.1 7.5 or SB 2.9 Beryllium 0.48 0.33 0.16 or SB 0.59 Cadmium 0.62 1.5 1 or SB Chromium 42 20 13 10 or SB Copper 100 48 140 25 or SB 28 Lead 61 54 SB Nickel 9.7 21 19 13 or SB Zinc 40 57 870 20 or SB Mercury 0.22 0.075 0.04 0.1

Qualifiers

J - Analyte detected Below quantitation limits

SB - Site Background

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that arc detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Note:

WALLAND WALLERS WALLERS

The data presented herein is based on the Preminary Results of PP-Metals analyses.

Soil Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY

Project # 0507501

Sample ID	B1-6.0		B2-5.0	B4-0.5	NYSDEC	NYSDEC
Lab Sample ID	D0921-02A	1	D0921-03A	D0921-06A	Rec. Soil	Soil cleanup
Sampling Date	8/4/2005		8/4/2005	8/4/2005	Cleanup	objectives
Sample Depth (ft)	6.0-7.0		5.0-6.0	0.5-1.0	Objective	to protect
Matrix	Soil		Soil	Soil		GW quality
Units	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	20		1	1		3 3
Pesticides/PCBs						
4,4'-DDD	0.18	Р	ND	ND	2.9	7.7
4,4'-DDT	0.36		ND	ND	2.1	2.5
Methoxychlor	0.86	Р	ND	ND	NA	900
Endrin ketone	0.28	Р	ND	ND	NA	NA
Endrin aldehyde	0.11	Ρ	ND	ND	NA	NA
gamma-Chlordane	0.47		ND	ND	0.54	14
					1	

Qualifiers

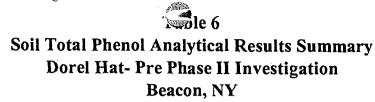
J - Analyte detected Below quantitation limits

P - Use professional Judgement based on data use

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.


55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are

listed and identified in bold and boxed.

Note:

orso na contrata

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D1022-01A 8/4/2005 6.0-7.0 Soil mg/Kg 1	B2-5.0 D1022-02A 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D1022-03A 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
Total Phenol	5.3	< 1.1	< 1.0	0.03	0.0003

Qualifiers

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

< 1.1 The detection limit for the sample exceeds the NYSDEC Soil Cleanup Criteria

Note:

(1)/09/(Coll(2)/(C**ALARCE**)

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Sample ID Lab Sample ID Sampling Date Matrix	B1-GW D0921-07C 8/4/2005 Water	NYSDEC Ambient Water Quality Standards and Guidance Values
Units Dilution Directory	ug/l	ug/l
Dilution Factor	100	
VOCs		
Methylene Chloride	ND	5
Chloroform	ND	7
Trichloroethene	ND	5
Toluene	150	J 5
Tetrachloroethene	ND	5
Xylene (Total)	150	J 5
1,2,4-Trimethylbenzene	100	J 5
Napthalene	4600	J 10

Qualifiers

J - Analyte detected below quantitation limits

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Volatile Organics analyses.

Groundwater Semivolatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY Project # 0507501

Sample ID	BI-GW		NYSDEC
Lab Sample ID	D0921-07A		Ambient Water Quality
Sampling Date	8/4/2005		Standards and
Matrix	Water		Guidance Values
Units	ug/)		ug/l
Dilution Factor	1		
SVOCs			
Phenol	9	ן נ [1
2-Methylphenol	11	1	1
4-Methylphenol	22	1	1
2,4-Dimethylphenol	56].	1
Naphthalene	4000	E	10
2-Methylnaphthalene	430	Ē	NA
Acenaphthylene	330	E	NA
Acenaphthene	39]	20
Dibenzofuran	140	_	NA
Fluorene	110		50
Phenanthrene	140		50
Anthracene	31		50
Carbazole	200		NA
Fluoranthene	28		50
Pyrene	22		50
Benzo(a)anthracene	8	ון	0.002
Chrysene	6	11	0.002
Benzo(b)fluoranthenc	4] 1	0.002
Benzo(k)fluoranthene	2	נן	0.002
Benzo(a)pyrene]]	0.002
Indeno(1,2,3-cd)pyrene		1	0.002
Benzo(g,h,i)perylene	2	J	NA

Qualifiers

J - Analyte detected below quantitation limits

E - Value above quantitation range

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

(CONSTRUCTION OF THE PARTY OF

The data presented herein is based on the Preminary Results of Semi-volatile Organics analyses.

PP Metals Organic Analytical Pas

Grounwater PP Metals Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Project # 0507501

Sample ID Lab Sample ID	B1-GW D0921-07	NYSDEC Ambient Water Quality
Sampling Date	8/4/2005	Standards and
Matrix	Water	Guidance Values
Units	ug/l	ugЛ
Dilution Factor	1	
PP Metals		
Antimony	34	3
Arsenic	590	25
Beryllium	34	3
Cadmium	42	5
Chromium	1400	50
Соррег	2800	200
Lead	1000	25
Nickel	1200	100
Zinc	4500	NA
Mercury	0.96	0.7

Qualifiers

NA - Not Available

PP-Metals - Priority Pollutant Metals

55 - Concentration of compounds that are detected are listed and identified in bold type. 55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are

listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of PP-Metals analyses.

Twile 10 Groundwater Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Project # 0507501

Sample ID	BI-GW		NYSDEC
Lab Sample ID	D0921-07A		Ambient Water Quality
Sampling Date	8/4/2005		Standards and
Matrix	Water		Guidance Values
Units	ug/l		ug/l
Dilution Factor	1		U U
Pesticides/PCBs			
Heptachlor epoxide	0.11	P	0.03
4,4'-DDD	0.21	P	NA
4,4'-DDT	0.46	Р	NA
Endrin ketone	1.4		5
gamma-Chlordane	0.1	Р	NA

Qualifiers

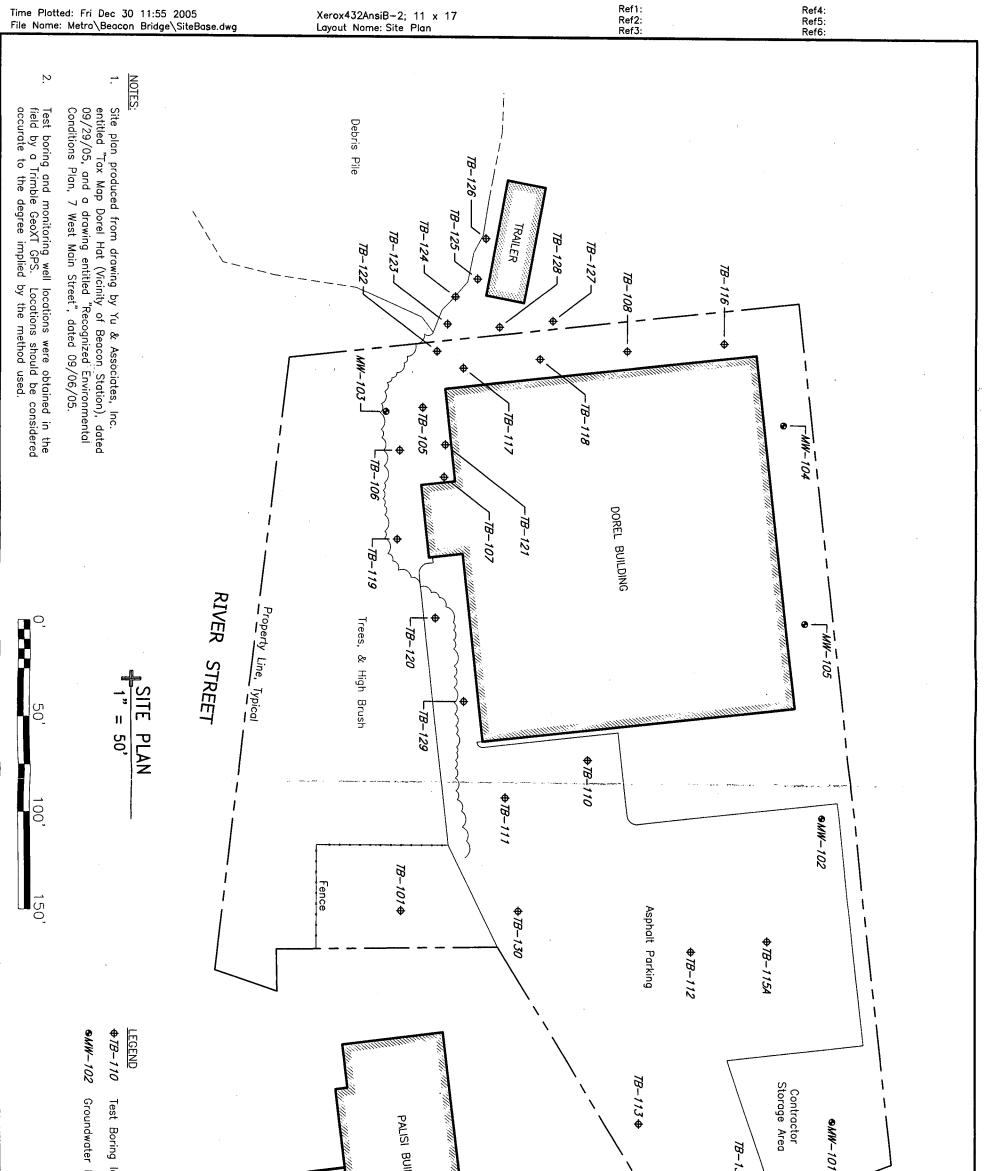
PCBs - Polychlorinated Biphenyls

NA - Not Available

P - Use professional judgement based on data use

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.


Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Phase II ESA

Э

er monitoring weil location and designation	g location and designation	TEET MAIN STREET	101	V V Z
01-3023I FIGURE 1	PROJECT TITLE METRO-NORTH RAILROAD 1 & 7 WEST MAIN STREET BEACON, NEW YORK PHASE II ENVIRONMENTAL STUDY DRAWING TITLE Site Plan	DAY ENGINEERING, P.C. ENVIRONMENTAL ENGINEERING CONSULTANTS ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617	FIELD VERIFIED BY NS DRAWN BY RJM SCALE 1" = 50'	DATE 11-2005 DATE DRAWN 11-23-2005 DATE ISSUED 12-30-2005

da	IY								ENVIRONMENTAL CONSULTANTS
DAY	ENVIR		ITAL, IN	IC.				AN A	FFILIATE OF DAY ENGINEERING, P.C
Projec Projec	t#: tAddres	55 :	PC.2696 1 West 1		eet	-			TEST BORING NO. MW-101
	epreser	tative:	Beacon, Nate Sin		xrk	-		Ground Elevation: Datum:	Page of 1 of 1
	contra		Miller En		ental	-		Date Started: 11/15/2006 Date Ended: 11/15/2005 Borehole Depth: 12.0' Borehole Diameter: 2.0''	
	ing Meth		Direct P			-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0''</u> Completion Method: Well Installed Backfilled with Grout Backfilled with	
						-		Water Level (Date/Time): Not Measured	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
							0.0	Dark brown Sandy Sitt, some Gravel, intermixed with Brick and Coal Fragments,	
1								moist (FILL)	
	NA	61		100					
2	NA	S-1	0-4	100	NA	0.0	0.0		
3									
							0.0	Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	
							0.0	moist (FILL)	
5								wet	
6	NA	S-2	4-8	60	NA	0.0	0.0		
								Cross/Cray Candy Oll T. same Crayel unit	
7								Green/Gray Sandy SILT, some Gravel, wet	
							0.0		
°							0.0		
9									
10	NA	S-3	8-12	40	NA	0.0	0.0		
								Gray Sandy GRAVEL, little Rock Fragments, trace Silt, wet	
11									
12							0.0		
'								BOH @ 12.0'	
								· · ·	
								·	
		L	L						
Notes:								nd. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.	
	3) PID re	adings a	re referenc	ed to a b	enzene s			n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO.MW-101
		-	ble or Not	Applicab	le				
	MMERC		REET ORK 146	14-1009					
	ESTER, 154-0210		June 140		•				NEW YORK, NEW YORK 10165-1617 (212) 986-8645
	85) 454							www.dayenvironmental.com	FAX (212) 986-8657
ينصحب									

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

· -	0.26961-01				VELL MW-101
•	West Main Street eacon, New York Nate Simon Miller Environmen	Ground Elevation: Date Started: <u>11/15/2005</u> Water Level (Date/Time): <u>4.23' 12/01/2005</u> ← Flush Mounted Roadbox 0.20 Depth to Top of Riser Pipe (ft)	Datum: Date Ended:	11/15/2005	Page 1 of 1
Refer to Test Boring Log TB- MW-101 for Soil Description		0.20 Depth to Top of Riser Pipe (it) 0.33 Depth to Bottom of Cement Surface Patch Backfill Type N/A 0.53 Depth to Top of Bentonite Seal (ft) 0.70 Depth to Bottom of Bentonite Seal (ft) 0.70 Depth to Top of Bentonite Seal (ft) 2.0 Depth to Top of Well Screen (ft) 2.5 Diameter of Borehole (in) Backfill Type Sand 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth to Bottom of Well Screen (ft)	n (ff) 		
	were made at the times and u aliable or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occ	ur due to seasonal facto	rs and other conditions.	VELL MW-101

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

l da	Ŋ								E	ENVIRONMENTAL CONSULTANTS
1	-	ONME	NTAL, IN	IC.						IATE OF DAY ENGINEERING, P.C
<u> </u>	- Two									
Projec	t #:		PC.2698	il-01						
Projec	t Addres	is:	1 West I	Main Str	eet					TEST BORING NO. MW-102
			Beacon,	New Yo	яk	-		Ground Elevation: Datum:		Page of 1 of 1
	epreser		Nate Sin			-		Date Started: 11/15/2006 Date Ended: 11/15/2005		-
	Contra		Miller En		ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"		
Sampi	ing Meth	100:	Direct Pi	JSN		-			ckfilled with Cu	uttings
								Water Level (Date/Time): Not Measured		
	نہ	-	E		8	₽ ₽	Ê			
	Blows per 0.5 ft.	Sampte Number	Sample Depth (ft)	~	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)			
£	per	N N	å	Recovery	5	th ga	adin	Sample Description		Notes
Depth (ft)	S.	mpt	Ť	Rec	/alu	Head	Re l			
å	ā	Sa	s.	%	ź		Ē			
							0.0	Black, Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,		
1								moist (FILL)	-	
						1				
2	NA	S-1	0-4	50	NA	0.0	0.0			
									-	
3										
									-	
4							0.0	wet		
							0.0		-	
5]]]				
6	NA	S-2	4-8	40	NA	0.0	0.0			
7										
								Gray Silty CLAY, some Sand, trace Gravel, wet		
8					ļ	<u> </u>	0.0			
							0.0			
9								Green/Gray Silty SAND, trace Clay, trace Gravel, wel		
		~ ~		400						
10	NA	S-3	8-12	100	NA	0.0	0.0		.	
11					[-	
					[0.0	some Gravel		
12			<u>├</u>			<u> </u>			-	
			[BOH @ 12.0'		
									ŀ	
									-	
					1				-	•
Notes:	1) Water	· levels w	ere made a	t the tim	es and un	der condi	L	d Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u> </u>	·····
	2) Stratif	ication li	nes represe	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.		
						tandard n	neasured i	the headspace above the sample using a MinjRae 2000 equipped with a 10.6 aV lamp.		TEST BORING NO.MW-102
	-	.,	able or Not	Applicab	18					
	MMERC		REE 1 ORK 146	14-100						
	ESTER, 154-0210		URK 146	14-1008	,					NEW YORK, NEW YORK 10165-161
	i85) 454							www.dayenvironmental.com		(212) 986-864
	Doctor Doctor	· · · · · ·	nes0090							FAX (212) 986-865

sindi. wy becanentarie acceso P C2030P01 Bolilig Egg

DAY ENVIRONMENTAL, INC.	A	ENVIRONMENTAL CONSULTANTS N AFFILIATE OF DAY ENGINEERING, P.C
	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Datum: Date Started: 11/15/2005 Date Ended: Water Level (Date/Time): 1.55' 12/01/2005	
Notes: 1) Water levels were made at the times and ur 2) NA = Not Available or Not Applicable	Flush Mounted Roadbox 0.15Depth to Top of Riser Pipe (ft) 0.33Depth to Bottom of Cement Surface Patch (ft) Backfill Type N/A 0.48Depth to Top of Bentonite Seal (ft) 0.7Depth to Bottom of Bentonite Seal (ft) 2.0Depth to Top of Well Screen (ft) 2.5Diameter of Borehole (in) Backfill Type Sand 2.0Inside Diameter of Well (in) Type of Pipe <u>PVC</u> Screen slot size <u>#10</u> . 12.0Depth to Bottom of Well Screen (ft) 12.0Depth of Borehole (ft)	factors and other conditions.
Simon:Wy Documents'nes0091 PC2696I-01 Monitoring V		MONITORING WELL MW-102

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

-

www.dayenvironmental.com

7

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

ENVIRONMENTAL, INC. Project #: PC.2696I-01 TEST BORING NO. MW Project #: PC.2696I-01 TEST BORING NO. MW Day Representative: Nate Simon Date Started: 11/16/2006 Datum: Page of 1 DAY Representative: Miller Environmental Borehole Depth: 9.0° Borehole Diameter: 2.0° Sampling Method: Direct Push Completion Method: Well Installed Backfilled with Grout Backfilled with Cuttings	Ering, P.C
DAY ENVIRONMENTAL, INC. AN AFFILIATE OF DAY ENGINEE Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York Ground Elevation: DAY Representative: Nate Simon Difiling Contractor: Miller Environmental Sampling Method: Direct Push	
Project #: PC.2696I-01 TEST BORING NO. MW Project Address: 1 West Main Street Test BORING NO. MW Beacon, New York Ground Elevation: Datum: Page of 1 DAY Representative: Nate Simon Date Started: 11/16/2006 Date Ended: 11/16/2005 Drilling Contractor: Miller Environmental Borehole Depth: 9.0' Borehole Diameter: 2.0" Sampling Method: Direct Push Completion Method: Well Installed Backfilled with Grout Backfilled with Cuttings	
Project Address: 1 West Main Street TEST BORING NO. MW Beacon, New York Ground Elevation: Datum: Page of 1 DAY Representative: Nate Simon Date Started: 11/16/2006 Date Ended: 11/16/2005 Drilling Contractor: Miller Environmental Borehole Depth: 9.0' Borehole Diameter: 2.0' Sampling Method: Direct Push Completion Method: Well Installed Backfilled with Grout Backfilled with Cuttings	V-103
Project Aduress: 1 West Main Street Beacon, New York Ground Elevation: Datum: Page of 1 DAY Representative: Nate Simon Date Started: 11/16/2006 Date Ended: 11/16/2005 Drilling Contractor: Miller Environmental Borehole Depth: 9.0' Borehole Diameter: 2.0" Sampling Method: Direct Push Completion Method: Well Installed Dackfilled with Grout Dackfilled with Cuttings	v-103
DAY Representative: Nate Simon Date Started: 11/16/2006 Date Ended: 11/16/2005 Drilling Contractor: Miller Environmental Borehole Depth: 9.0' Borehole Diameter: 2.0'' Sampling Method: Direct Push Completion Method: Image: Method: Image: Method: Image: Method: Image: Method:	
Drilling Contractor: Miller Environmental Borehole Depth: 9.0' Borehole Diameter: 2.0" Sampling Method: Direct Push Completion Method: Well Installed Backfilled with Grout Backfilled with Cuttings	of 1
Sampling Method: Direct Push Completion Method: 📕 Well Installed 🗌 Backfilled with Grout 🔲 Backfilled with Cuttings	
Water Level (Date/Time): Not Measured	
O Lin Lin Lin Lin Lin Lin Lin Notes (1) 1 <td< td=""><td></td></td<>	
Right (ff) Right (ff) Right (ff) <td></td>	
0.0 Black Sandy Gravel, trace Silt, intermixed with Coal Tar, Coal, Coal Slag and Brick	
1 Fragments, moist (FILL)	
NA ST 04 50 NA 21 05	
2 NA S-1 0-4 50 NA 2.1 0.5	
3 .	
2.4 wet (water has a sheen)	
4 2.4 wet (water has a sheen)	
5 Plack Silb CLAX come Sea du Canada and	
NA S-2 4-8 60 NA 155 58.6 Black Silty CLAY, some Sandy Gravel, wet	
6 NY 0 Y 0 0 0 10 100 000 1	
η	
24.2	
NA S-3 8-9 0 NA	
9	
Notes: 1) Water layels were made at the times and under ponditions stated. Stratustions of moundwake layels men and distances of the second distances	
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual.	
3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	RN-103
e) vy – vor vyáliste o vor Vábironie	103
40 COMMERCIAL STREET	
ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK	
	2) 986-8645
FAX (585) 454-0825 www.dayenvironmental.com FAX (21 Simon:\My Documents\nes0090 PC2696I-01 Boring Logs	2) 986-8657

day Day Environmental, INC.	AN AF	ENVIRONMENTAL CONSULTANT FILIATE OF DAY ENGINEERING, P	
	MONITORING WELL INSTALLATION LOG		
Project #: PC.2696I-01 Project Address: 1 West Main Street		MONITORING WELL MW-103	
Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Datum: Date Started: 11/15/2005 Date Ended: Water Level (Date/Time): 2.00' 12/01/2005	Page 1 of 1	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	Flush Mounted Roadbox 15Depth to Top of Riser Pipe (ft) 0.33Depth to Bottom of Cernert Surface Patch (ft) Backfill TypeN/A 0.48Depth to Top of Bentonite Seal (ft) 0.7Depth to Top of Well Screen (ft) 1.5Diameter of Borehole (in) Backfill Type Sand 1.0Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 9.0Depth to Bottom of Well Screen (ft) 9.0Depth of Borehole (ft)	and other conditions.	
Simon My Documents/nes0091 PC2696I-01 Monitoring		MONITORING WELL MW-103	

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

.

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

3/14/2006

ojec ojec	t#: tAddres	.e.	PC.2696 1 West I		Pet	-				TEST BORING NO. MW-104
AY R illing	tepreser Contra	ntative: ctor:	Beacon, Nate Sin Miller En Direct Po	New Yo non ivironme	xk	- - - -		Borehole Depth: 12.0' Borehole Diameter: 2' Completion Method: ■ Well Installed □ Backfilled with Grout	9/2005	Page of 1 of 1
	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Water Level (Date/Time): Not Measured		Notes
1 2	NA	\$1	0-4	20	NA	0.4	0.0	TOPSOIL AND ROOTS Black Sandy Gravel, some Brick Fragments, moist (FILL)		
3 4 5							0.7 0.0	wet	•	
6	NA	S-2	4-8	40	NA	1.1	0.0	Tan Silly CLAY, trace Gravel, wet		
9 10 11	NA	S-3	8-12	0	NA	-	-			
12								BOH @ 12.0'		
									-	
	2) Stratif 3) PID re	ication fi adings a	tes represe	ent appro: ed to a b	kimate bo enzene s	undaries.	Transition	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. Is may be gradual. I the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. MW-1

¢

DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS
Project #: PC.2696I-01	MONITORING WELL INSTALLATION LOG	
Project Address: 1 West Main Street		MONITORING WELL MW-104
Beacon, New York DAY Representative: <u>Nate Simon</u> Drilling Contractor: <u>Miller Environmen</u>	Ground Elevation: Datum: Date Started: 11/29/2005 Date Ended: Water Level (Date/Time): 5.40' 12/01/2005	Page 1 of 1
Ndes: 1) Water levels were made at the times and the limes	Flush Mounted Roadbox 3.0 AGS Depth to Top of Riser Pipe (ft) N/A Depth to Bottom of Cement Surface Patch (ft) Backfill Type N/A 0.0 Depth to Top of Bentonite Seal (ft) 2.0" Depth to Bottom of Bentonite Seal (ft) 2.0" Depth to Top of Well Screen (ft) 2.0 Depth to Top of Well Screen (ft) 2.0 Diameter of Borehole (in) Backfill Type Sand 1.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth of Borehole (ft)	rts and other conditions.
		MONITORING WELL MW-104

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

<u> </u>										
l da	Ŋ								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR		ITAL, IN	IC.					AN AFFIL	LIATE OF DAY ENGINEERING, P.C
╞╼━╸							WI A			
Projec			PC.2698			-				TEST BORING NO. MW-105
Projec	t Addres	S:	1 West I			-				
	epreser	itative:	Beacon, Nate Sin		Drk	-		Ground Elevation: Datum: Date Started: 11/29/2006 Date Ended: 11/29/2005		Page of 1 of 1
	Contra		Miller En		ental	-		Date Started: 11/29/2006 Date Ended: 11/29/2005 Borehole Depth: Borehole Diameter: Borehole Diameter: Borehole Diameter:		-
1 .	ing Metr		Direct P			-			ckfilled with Cu	- uttings
			,			-		Water Level (Date/Time): Not Measured		•
							Ê			
	5 ft.	ber	Sample Depth (ft)		N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	· ·		
2	Blows per 0.5 ft.	Sample Number	Dep	Very	P. P.	spac ng (j	gub	Sample Description		Notes
Depth (ft)	ws p	pie	eld	Recovery	ge	ead	Rea			
å	Blo	San	San	% R	N-N	Ξœ	8			
							0.0	TOPSOIL	÷ ***** .	
1					1			Black Sandy Gravel, some Silt, intermixed with Coal, Coal Slag and Brick Fragments,		
					1			moist (FILL)		
2	NA	S-1	0-4	30	NA	0,3	0.0		-	
					1		1			
3									-	
							0.0			
4							0.0		-	
								wet		
5						1			-	
	NA	S-2	4-8	20	NA	0.2	0.0	Brown Silty Sand, some Gravel intermixed with Brick Fragments, wet (FILL)		
6									-	
7										
									-	
8						L	0.0		-	
							0.0			
9									-	
	NA	S-3	8-12	60	NA	0.4	1.1	Cross (Cross Sills CLAV, June Crossel June Desid und		
10						0.4		Green/Gray Silty CLAY, trace Gravel, trace Sand, wet	-	
11									•	
					1		1.0			
12					1			BOH @ 12.0'	•	
									_	
								·	-	
									-	
								· ·		
									-	
					ļ					
									•	
Notes:								 Fuctuations of groundwater levels may occur due to seasonal factors and other conditions. 		
								ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 aV lamp.	i	
			re renerend able or Not			anuara n	ioa suf 6d i	n une meanspace above die sample using a ministae 2000 êdµipped with a 10,5 aV lamp.		TEST BORING NO. MW-105
	MMERC									L
			ORK 146	514-1008	в [.]					NEW YORK, NEW YORK 10165-1617
(585) 4	154-0210)								(212) 986-8645
FAX (5	85) 454							www.dayenvironmental.com		FAX (212) 986-8657

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

۰.

day Day Environmental, INC.		AN A		TAL CONSULTANTS ENGINEERIN <mark>G</mark> , P.C
MONITORI	NG WELL INSTALLATION L	OG		
Project #: PC.2696I-01 Project Address: 1 West Main Street			MONITORING	NELL MW-105
Beacon, New York Ground Elevation: DAY Representative: Nate Simon Date Started: Drilling Contractor: Miller Environment Water Level (Date/Time)	<u>11/30/2005</u>): <u>4.35' 12/01/2005</u>	Datum: Date Ended:	11/30/2005	Page 1 of 1
End Image: Section of the section o	p of Riser Pipe (ft) Bottom of Cement Surface N/A If Bentonite Seal (ft) in of Bentonite Seal (ft) if Well Screen (ft) orehole (in) er of Well (in) m of Well Screen (ft) nole (ft)		s and other conditions.	
			MONITORING	WELL MW-105

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	V							<u>، دینی بر از میں استی استی اور اور میں دور اور میں بر اور اور اور اور اور اور اور اور اور او</u>	E	INVIRONMENTAL CONSULTANTS		
		ONMEN	NTAL, IN	IC.						IATE OF DAY ENGINEERING, P.C		
Projec Projec	t#: tAddres	ss:	PC.2696 1 West 1	_	eet	-				TEST BORING NO. TB-101		
			Beacon,		<u>xk</u>	-		Ground Elevation: Datum:		Page of 1 of 1		
	Represer		Nate Sir			•		Date Started: 11/30/2006 Date Ended: 11/30/2005				
ų) Contra		Miller Er		ental	•		Borehole Depth: 12.0" Borehole Diameter: 2.0"				
Sampi	ling Metl	nog:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Ba Water Level (Date/Time): Not Measured	ckfilled with Cu	ttings		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Neadspace PID Neading (ppm)	PID Reading (ppm)	Sample Description		Notes		
							0.0	TOPSOIL AND ROOTS				
1	NA	S-1	0-4	60	NA	0.0	0.7	Black Silty Sand, little Gravel, trace Clay, intermixed with Brick, Coal Slag and	-			
2						0.0	0.7	Coal Fragments, moist (FILL)	•			
4							1.0	wet				
							0.0		-			
5	NA	\$ -2	4-8	80	NA	0.6	0.2	Black Sandy Gravel, little Silt, trace Clay, intermixed with Coal Fragments, wet (FILL)	-			
8							0.4		-			
9							0.0	Brown fine Sand, some Gravel, trace Siit, intermixed with Brick Fragments, wet (FILL)	-			
10	NA	S-3	8-12	80	NA	0.6	0.0		-			
11								Brown coarse Sand, some Gravel, trace Silt, intermixed with Brick Fragments, wet (FILL)	-			
12				├──			0.0	POL 6 12 ~	-			
								Boh @ 12.0'	•			
									-			
									-			
Notes:	1) Wate	r levels w	ere made	at the tim	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.				
								ns may be gradual.				
	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable											
ROCH			REET ORK 146	514-1008	3					NEW YORK, NEW YORK 10165-1617 (212) 986-8645		
FAX (5	685) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		
N			0000200	00000	04.0							

3/14/2006

da	Ŋ								[ENVIRONMENTAL CONSULTANTS
DAY			NTAL, IN						AN AFFI	LIATE OF DAY ENGINEERING, P.C
Projec Projec	t#: tAddres	s:	PC.2696 1 West 1		eet	-				TEST BORING NO. TB-105
	Represer	tation	Beacon,		xrk 🛛	-		Ground Elevation: Datum:		Page of 1 of 1
	g Contra		Nate Sin Miller Er		ental	•		Date Started: 11/15/2006 Date Ended: Borehole Depth: 11.0' Borehole Diameter: 2	11/15/2005	-
Sampl	ing Meth	od:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Water Level (Date/Time): Not Measured	Backfilled with Cu	- uttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	TOPSOIL AND ROOTS		
1 2	NA	S-1	0-4	80	NA	0.0	0.2	Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments, moist (FILL)		
								Coal Slag Fragments, wet		
4 5 6 7	NA	\$- 2	4-8	30	NA	3.2	10.8	Black Sandy Gravel, trace Silt, intermixed with Coal Tar and Coal Slag Fragm wet (FILL) water is black with sheen	ients, - -	
8							12.4 22.4			
9 10	NA	S-3	8-11	30	NA	4.8	12.8		-	
11								Refusal @ 11.0*		
									-	
Notes:	1) Water	levels w	ere made i	at the tim	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other condi	tions.	······································
	2) Stratil	ication fir	ies repres	ent appro	x'mate bo	undaries.	Transitio	u, increased of generation increasing occupied as a session lactor said units contains is may be gradual. I the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			ible or Not	Applicab	le					TEST BORING NO. TB-105
ROCH	MMERC IESTER, 454-0210	NEW Y	REET ORK 146	514-1008	3					NEW YORK, NEW YORK 10165-1617 (212) 986-864
	585) 454							www.dayenvironmental.com		FAX (212) 986-8657

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

(<u> </u>										
da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Projec	4 #·		PC.2696	SI-01						
	a#. ≭Addres	6S:	1 West 1		eet	-				TEST BORING NO. TB-106
			Beacon,	New Yo	xk	-		Ground Elevation: Datum:		Page of 1 of 1
	Represer		Nate Sin			-		Date Started: 11/15/2006 Date Ended: 11/15/2005		
	g Contra ling Meth		Direct P		ental	-		Borehole Depth: 10.5' Borehole Diameter: 2.0" Completion Method: Weil Installed Backfilled with Grout Back	filled with Cu	tinge
						-		Water Level (Date/Time): Not Measured		unga
	<u> </u>						Ê		÷	
	.5 ft.	her	Sample Depth (fl)		N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)			
£	Blows per 0.5	Sample Number	Del	% Кесочегу	9 0	galling	ading	Sample Description		Notes
Depth (ft)	SMO	dua	ldua	Rec	Valu	Hear Rear	DRe			
		ů.	ű		Ż	<u> </u>	0.0			
	1						0.0	TOPSOIL AND ROOTS		
1								- Black Sandy Gravel, trace Silt, intermixed with Coal and Coal Slag Fragments,		
2	NA	S-1	0-4	60	NA	1.6	2.3	moist (FILL)		
3		1								
							4.6	wet (water has sheen)		
4					<u> </u>	1	10.6	•		
5								Black stained Gravel, some Silty Sand, intermixed with Coal Tar and Coal Slag		
								Fragments, wet (FILL)		
6	NA	S-2	4-8	40	NA	5.9	33.1			
7								ŀ		
. 8		L	[]		L		42.2			
							12.8			
9	NA	S-3	8-10.5	30	NA	3.7	7.2	Green/Gray Silty CLAY, wet		
10										
					<u> </u>	<u> </u>	5.6			
								Refusal @ 10.5'		
		1								
					l					
ļ					l	[
Notes	1) Wate	r lavale m	are mede	at the time	es and un	der cond	tions state	d. Fluctuations of groundwater levels may occur due to seesonal factors and other conditions.		
119185.	2) Strati	fication fo	tes represe	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.		
			ure reference able or Not			tandard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-106
	MMERC									
ROCH	IESTER	, NEW Y	ORK 146	14-100	3					NEW YORK, NEW YORK 10165-1617
	454-021									(212) 986-8645
	585) 454		nes0090	00000	04 8-			www.dayenvironmental.com		FAX (212) 986-6657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR		NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Projec Pròjec	t#: tAddres	is:	PC.2696 1 West I	Vain Str		-				TEST BORING NO. TB-107
	epreser	tativa	Beacon,		yrk	-		Ground Elevation: Datum:		Page of 1 of 1
	Contra		Nate Sin Miller En		entel	-			5/2005	
	ing Meth		Direct Pu		intal	•			Backfilled with Cu	tin an
						-		Water Level (Date/Time): Not Measured		unga
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	TOPSOIL AND ROOTS		
1								Black Sandy Gravel, trace Silt, intermixed with Coal Tar, Coal and Coal Slag		
						Ι.		Fragments, moist (FILL)		
2	NA	S-1	0-4	40	NA	3.4	1.6			
3						ł			ŀ	
							2.8	Coal Slag Fragments some Sand, trace Gravel, wet		
4							3.4	water is black with sheen	ŀ	
5								Black Stained Gravel, some Silty Sand intermixed with Coal Stag Fragments,		
5								wet (FILL)	•	
6	NA	S-2	4-8	30	NA	6.4	28.6			
									-	
7									-	
							44.2			
8							41.2 4.6		-	
							4.0			
9						1			ŀ	
10	NA	S-3	8-12	20	NA	1.9	6.2			
10									ľ	
11										
					1	ł				
12							12.4			
								ВОН @ 12.0'		
									-	
									ſ	
									-	
Notes:	1) Water	levels w	ere made a	at the tim	l es and un	der condi	tions state	 Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 		
	2) Stratil	fication lin	nes represe	ent appro	ximate bo	undaries.	Transition	ns may be gradual.		
			re referenc able or Not			tandard n	leasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-107
	MMERC			· wpscdD						······
			ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617
(585) 4	54-0210)								(212) 986-8645
	85) 454		00000					www.dayenvironmental.com		FAX (212) 986-8657

canon any becamentaries of the C2050F01 boing Lo

					· · · ·					
da	Ŋ								E	ENVIRONMENTAL CONSULTANTS
	-	ONMEI	NTAL, IN	IC.						LIATE OF DAY ENGINEERING, P.C
F							· · · · ·			LATE OF DAT ENGINEERING, P.C
Projec	t #:		PC.2696	51-01						
Projec	t Addres	ss:	1 West	Main Str	eet					TEST BORING NO. TB-108
ļ			Beacon,	New Yo	rk	_		Ground Elevation: Datum:		Page of 1 of 1
DAY F	Represer	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005		
	g Contra		Miller Er		ental	-		Borehole Depth; 12.0' Borehole Diameter; 2.0"		-
Sampl	ing Met	hod:	Direct P	ush	<u> </u>	-			ckfilled with Cu	uttings
								Water Level (Date/Time): Not Measured		
			2		*	₽ ?	Ē			
	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)		N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)			
Ê	D La	Nur	a a	Recovery	5	spa	- E	Sample Description		Notes
Depth (ft)	ş	eld r	ejde	60	alue	ead	Rea			
ă	B	Sar	San	*	2 z	<u> </u>	G	х.	1	
							0.0	TOPSOIL AND ROOTS		
									1	
									ļ	
2	NA	S-1	0-4	60	NA	0.0	0.0	Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FILL)		
Ĺ					ļ				ľ	
				ľ					-	
							0.0	wet		
							0.0		-	
5										
5					1		1		-	6
6	NA	S-2	4-8	40	NA	0.1	0.0			
						Į			-	
7				ļ						
									[-	
8							0.0			
				[0.0		-	
9									_	
					1					
10	NA	S-3	8-12	20	NA	0.0	0.0			
				l	1	1				
11				[_	
					ĺ	ľ				
12				<u> </u>		ļ	0.0	······································	 _	
				ĺ		:		BOH @ 12.0'		
					ŀ				.	
				1						
					1					
					ļ				-	
					l					
									 -	
Notes	1) Wata	r levels	l	at the time	as and un	der con-6	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	I	
10100	2) Strati	fication li	nes repres	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.		
						tandard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV tamp.		TEST BORING NO. TB-108
			able or Not	Applicab	le					
1	MMERC									
			ORK 146	514-1008	3					NEW YORK, NEW YORK 10165-1617
· ·	454-021									(212) 986-8645
	585) 454		00000					www.dayenvironmental.com		FAX (212) 986-8657

<u> </u>									
da	Ŋ								ENVIRONMENTAL CONSULTANTS
DAY		ONME	NTAL, IN	IC.					AN AFFILIATE OF DAY ENGINEERING, P.C
Projec	t #:		PC.2698	51-01		_			TEST BORING NO. TB-110
Projec	t Addres	SS:	1 West I	Main Str	eet	_			TEST BORING NO, TB-TTO
			Beacon,		лk	-		Ground Elevation: Datum:	Page of 1 of 1
	Represer		Nate Sin			-		Date Started: 11/29/2006 Date Ended: 11/29/2005	
N (g Contra ling Meth		Miller Er Direct Pr		ental	-		Borehole Depth: Borehole Diameter: 2.0"	
	ang men	iou.	Dieur	usii		-		Completion Method: Well Installed Backfilled with Grout Backfille Water Level (Date/Time): Not Measured	ed with Cuttings
	1		<u> </u>	<u> </u>	1				
	æ:	5	Ê		8	Headspace PID Reading (ppm)	PID Reading (ppm)		
	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	2	N-Value or RQD%	b ace	1 p		
Ê	per	Ň	ă	Recovery	5	g b	adir	Sample Description	Notes
Depth (ft)	SMO	d L	du		, all	Rea	a a		
L ă	ā	ů	ů I	8	Ż				
					1		0.0	0.3' Asphait and FILL	
1								Brown Sandy Gravel intermixed with Coal Fragments, moist (FILL)	
	NA	51	0-4	60	NA	1.1	0.0		
2		3	0.4			1.1	0.0	•	
						ļ		Plack Oracle Oracle	
3						1		Black Sandy Gravel	
			Ì	{	Ì	•	0.0	wet	
4							0.0		
5								·	
	NA	S-2	4-8	40	NA	1.1	0.0		
6								•	
			1					ŀ	
							0.0		
ľ								Refusal @ 8.0'	
				ł	1				
]							•	
	1 1								
	i '	1		1					
								· ·	
								-	
						l I		-	
				1					
						. .		·	
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	· · · · ·
								ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
			ane reneren lable or No				nua sur eu (יי אייט איזעאפאישט צעטייס פוס אפוועיס עשאון מ אאוויזעס צטעט פעעואאפט אוועז ע דע.ט פּי ואווין. איז איז איז איז געט פין אוויזע פין אוויזעט פעעואאפט אוויז ג	TEST BORING NO. TB-110
40 CC	MMERC					,			<u></u>
8			YORK 14	614-100	8				NEW YORK, NEW YORK 10165-1617
1	454-021								(212) 986-8645
FAX (585) 454	1-0825						www.dayenvironmental.com	FAX (212) 986-8657
Simon	My Doc	uments	nes0090	PC2696	6I-01 Bor	ing Logs	;		

1

3/14/2006

da	V					-				ENVIRONMENTAL CONSULTANTS
		ONME	NTAL, IN	IC.						IATE OF DAY ENGINEERING, P.C
Projec Projec	t#: tAddres	is:	PC.2696		eet	.				TEST BORING NO. TB-111
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
	Represe		Nate Sir			-		Date Started: 11/15/2006 Date Ended: 11/15/200		
	g Contra ling Metl		Miller Er Direct P		ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0" Completion Method: Weil Installed T Backfilled with Grout		•
Cump	ang mea		Dieur	<u></u>		-		Completion Method: Well Installed Backfilled with Grout Water Level (Date/Time): Not Measured	Backfilled with Cu	mings
				Γ			Ê		T	<u></u>
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
			Τ		l		0.0	0.3' Asphalt and FILL	[
1								Brown Sand, some Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)		
					1					
2	NA	S-1	0-4	60	NA	0.9	0.8		-	
					1				1	
3									-	
							1.7	wet		
4						1	0.3	Black Sandy Gravel, intermixed with Coal Slag and Coal Fragments, wet (FILL)	-	
5										
-				ĺ					ĺ	
6	NA	S-2	4-8	40	NA	1.0	0.4			
7									ŀ	
			1		1		0.4			
8							0.4		ŀ	
9			1							
									-	
10	NA	S-3	8-12	30	NA	0.3	0.6		4	
				l	l		Į	Black Silty SAND, trace Gravel, wet		
11			ļ						ŀ	
							0.5			
12			1		ĺ			BOH @ 12.0'	1	
									-	
									-	
								~		
						1			ŀ	
			[[
					L <u></u>				·	
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
								n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BODING NO. TO 444
			able or Not	Applicab	le					TEST BORING NO. TB-111
	MMERC		REET (ORK 146	44 400	•					
	ESTER, 154-021(ORK 146	14-1008						NEW YORK, NEW YORK 10165-161 (212) 986-864
	i85) 454							www.dayenvironmental.com		(212) 986-864 FAX (212) 986-865
										1777 (212) 777

montary bocuments resource recommendation botting Log

da	V					1707			ENVIRONMENTAL CONSULTANT
			TAL, IN						
			NTAL, IN	ю. 				AN AF	FILIATE OF DAY ENGINEERING, P.
Project Project	#: Addres	55 :	PC.2696 1 West M		eet	-			TEST BORING NO. TB-112
			Beacon,		rk	-		Ground Elevation: Datum:	Page of 1 of 1
		ntative:	Nate Sin			-		Date Started: 11/30/2006 Date Ended: 11/30/2005	_
	Contra ng Meth		Miller En Direct Pu		ntai	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0'</u> Completion Method: Well Installed Backfilled with Grout Backfilled with	
						-		Completion Method: Well Installed Backfilled with Grout Backfilled with Water Level (Date/Time): Not Measured	Coungs
		1	<u> </u>		<u> </u>		-		· · · · · · · · · · · · · · · · · · ·
(H)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
Depth (ft)	lowe	ame	dme	% Re	- <al< td=""><td>Rea</td><td>0 s</td><td></td><td></td></al<>	Rea	0 s		
-	<u> </u>	0	<i>o</i>	~		1	0.0	0.75' Asphalt and FILL	
								Brown Sandy Gravel, some Silt, intermixed with Brick and Coat Fragments,	
1								moist (FILL)	
_	NA	S-1	0-4	50	NA	1.0	0.0	······································	
2								•	
3									
Ĭ									
4							0.0	wet	
							0.0		
5									
	NA	S-2	4-8	20	NA	1.3	0.0		
6	117	0.2		20		1.5	0.0		
7								Green Silty CLAY, wet	
							·0.0		
*								•	
9									
10	NA	S-3	8-12	0	NA	-	•	no recovery	
		1			Ì				
11									
12								ВОН @ 12.0'	
Notes:	1) Water	r leveis w	ere made a	at the time	es end un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	2) Strati	fication lin	ies lebieze	ent approx	kimete bo	undaries.	Transitio	ns may be gradua).	
			re referenc ible or Not			tandard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-112
		IAL STF		-4hacep			•		
			ORK 146	14-1008					NEW YORK, NEW YORK 10165-16
	54-0210								(212) 986-86
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-86
			nes0090	PC2696	1-01 Bor	ina Loas			

da	V	•								ENVIRONMENTAL CONSULTANTS
i	-	ONME	NTAL, IN	IC						
										LIATE OF DAY ENGINEERING, P.C
Projec Projec	t#: tAddres	ss:	PC.269		eet	-				TEST BORING NO. TB-113
			Beacon			-		Ground Elevation: Datum:		Page of 1 of 1
H	Represer		Nate Sir			-		Date Started: 11/30/2006 Date Ended: 11/30/200	5	. <u> </u>
1	g Contra ling Meth		Miller E		ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"		-
Gamp	ang wea	100.	Direct P	usii		-		Completion Method: Well Installed Backfilled with Grout B Water Level (Date/Time): Not Measured	ackfilled with Cu	uttings
•				Γ			2		1	
	ar 0.5 ft.	lumber	Sample Depth (ft)	λı	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	1	Notes
Depth (M)	Blows per 0.5 ft.	Sample Number	Sample I	% Recovery	-Value	Heads	VD Read			
	· · - · - ·		<u> </u>			 -	0.0	0.3' Asphait and FILL	1	······
1								Black Sandy Silt, little Gravel, intermixed with Brick and Coal Fragments,		
								moist (FILL)		
2	NA	S-1	0-4	80	NA	0.9	0.0			
						1				
3			ļ		1	ĺ			-	
4					<u> </u>		0.0			`
						ļ	0.0	wet		
5						[-	
	NA	S-2	4-8	80	NA	0.4	0.0	Gray Silty Sand, little Gravel, intermixed with Brick and Coal Fragments, wet (FILL)		
6						1			-	
7								Black Sandy Silt		
8			{	<u> </u>		<u> </u>	0.0		-	
10	NA	S-3	8-11	60	NA	0.3	0.0			
						ſ				
11					1			Black Sandy Gravel, little Silt, Intermixed with Wood and Brick Fragments, wet (FILL)	-	
12						Ì	0.0			
12								BOH @ 12.0'	Ť	
									-	
									-	
				ļ	ļ		l		ŀ	
Notes:	1) Wate	r levels v	vere made	at the tim	i es and un	I Ider condi	tions state	 Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 	<u>I</u>	
								ns may be gradual. n the headspace above the sample using a MinlRae 2000 equipped with a 10.6 eV tamp.		
			able or No					יייין איז		TEST BORING NO. TB-113
	MMERC									
Į	IESTER, 454-0211		ORK 146	514-100	в					NEW YORK, NEW YORK 10165-1617
	585) 454							www.dayenvironmental.com		(212) 986-864 FAX (212) 986-865
			\nes0090	DC2606	101 Par	001000				100 (212) 000-0001

3/14/2006

,

da	IV.	-							E	NVIRONMENTAL CONSULTANTS
DAY			NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Projec Projec	t#: tAddres	s:	PC.2696 1 West 1		eet					TEST BORING NO. TB-115A
Drilling	Beacon, New York Ground Elevation: Datum: Representative: Nate Simon Date Started: 11/15/2006 g Contractor: Miller Environmental Borehole Depth: 8.0' Bing Method: Direct Push Completion Method: Well Installed Water Level (Date/Time): Not Measured							led with Cu	Page of 1 of 1	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
1								Black Sandy Gravel, some Silt, intermixed with Coal and Brcik Fragments, moist (FILL)		
2 3	NA	S-1	0-4	70	NA	0.0	0.0			
4 5							0.0 0.0	wet -		
6	NA	S-2	4-8	30	NA	0.0	0.0	Green/Gray coarse SAND, little Gravel, trace Siit, wet		
8							0.0	BOH @ 8.0'		
				-						
Notes:	2) Stratif	ication lin	es represe	ent appro	kimate bo	undaries.	Transitio	- d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. In the haddspece above the sample using a MiniRae 2000 equipoed with a 10.6 eV lamp.		
3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST BORING NO. TB-115A										
RCCH	MMERC ESTER, 154-0210	NEW Y	REET ORK 146	14-1008	5					NEW YORK, NEW YORK 10165-1617 (212) 986-864
FAX (5	85) 454-	-0825	nes0090					www.dayenvironmental.com		FAX (212) 986-865

da	W								
	-								ENVIRONMENTAL CONSULTANTS
DAY I		DNME	ITAL, IN	C.				AN A	FILIATE OF DAY ENGINEERING, P.C
Project	#		PC.2696	SL01					
	t Addres	s:	1 West M		et	•			TEST BORING NO. TB-116
			Beacon,	New Yo	rk			Ground Elevation: Datum:	Page of 1 of 1
	epresen		Nate Sin					Date Started: 11/15/2006 Date Ended: 11/15/2005	
	Contra		Miller En		ntal	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"	
Sampi	ng Meth	οφ.	Direct Pu	120		•		Completion Method: Well Installed Backfilled with Grout Backfilled with Water Level (Date/Time): Not Measured	h Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
Dep	B	Sam	Sam	% В	Ň-N	Ξŵ	5		
							0.0	TOPSOIL and ROOTS	
1								Black Sandy Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)	
2	NA	S-1	0-4	90%	NA	0.0	0.0		
								· ·	
3								•	
							0.0	wet	
٩ ا							0.0	•	
5									
Ĩ									
6	NA	S-2	4-8	100	NA	0.2	0.0		
1								Brown/Green Silty CLAY, trace Sand, wet	
7								•	
							0.0		
8							0.0	Brown SiLT, trace Sand, wet	
9									
1									
10	NA	S-3	8-12	90	NA	0.0	0.0		
11									
							0.0		
12								BOH @ 12.0'	
1									
								.	
		1							
Notes:	1) Water 2) Stratif	levels w	ere made a les represe	at the time ant approx	es and un	der condit undaries.	ions state Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.	
								s the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEET DODING NO. TO 440
			ble or Not	Applicabl	e				TEST BORING NO. TB-116
	MMERC								
	ESTER, 54-0210		ORK 146	14-1008					NEW YORK, NEW YORK 10165-1617
	85) 454-							www.dayenvironmental.com	(212) 986-8645 FAX (212) 986-8657
			nes0090	PC2696	-01 Bori	ng Logs			FPV (212) 300-003/

. /

da	V									ENVIRONMENTAL CONSULTANTS
	-	ONME	NTAL, IN	IC.						IATE OF DAY ENGINEERING, P.C
Project Project	t#: tAddres	s:	PC.2696	Main Str		•				TEST BORING NO. TB-117
Drilling	epresen Contrac ing Meth	tor:	Beacon, Nate Sin Miller En Direct Pr	non ivironme		- - -		Ground Elevation: Datum: Date Started: 11/15/2006 Date Ended: 11/15/200 Borehole Depth: 12.0' Borehole Diameter: 2.0" Completion Method: I Well Installed I Backfilled with Grout I E Water Level (Date/Time): Not Measured I Mediane I E	05 Backfilled with Cu	Page of 1 of 1
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
								TOPSOIL and ROOTS		
1 2 3	NA	S-1	0-4	80	NA	1.7	5.3	Black Sandy Gravel, some Silt, intermixed with Coat Fragments, moist (FILL)		
4							17.1	wet (water has sheen)		
6	NA	S-2	4-8	60	NA	23.5	34.6 49.2	some Coal Slag Fragments Black Sandy Gravel, some Silt, intermixed with Coal Fragments and Coal Tar, wet (FILL)	-	
9 10	NA	S-3	8-12	40	NA	1.7	37.2 29.1	Gray Silty CLAY, some sand, wet	-	
11) 12-							7.6	Gray Siky CLAT, Some sand, wet	-	
								вон @ 12.0		
								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re	adings a		ced to a b	enzene si			n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV (amp.		TEST BORING NO. TB-117
40 CO ROCH (585) 4 FAX (5	MMERC ESTER, 54-0210 85) 454-	IAL STF NEW Y 0825		614-1008	\$		· · · · ·	www.dayenvironmental.com		NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

j

da	V										ENVIRONMENTAL CONSULTANTS
	-	ONME	NTAL, IN	IC.							LIATE OF DAY ENGINEERING, P.C
Project	#:		PC.2696	51-01					<u> </u>	<u></u>	
	Addres	s:	1 West I	Main Str	eet	-					TEST BORING NO. TB-118
	epreser	tative	Beacon, Nate Sin		xk	-		Ground Elevation: Date Started: 11/15/2006	Datum:		Page of 1 of 1
	Contra		Miller En		ental	-		Borehole Depth: 12.0'	Date Ended: Borehole Diameter:	<u>11/15/2005</u> 2.0"	-
Sampli	ng Meth	od:	Direct P	ush		-		Completion Method: Uvell Installed		Backfilled with Cu	- uttings
			·····					Water Level (Date/Time): Not Measure	j		
Depth (fi)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Кесоvегу	N-Vatue or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample De	cription		Notes
					[0.0	TOPSOIL and ROOTS			
1								Black Sandy Gravel, some Silt, intermixed with	Coal Fragments, moist (FILL)		
	NA	S-1	0-4	60	NA	0.0	0.0				
2										-	
3						ĺ					
4					<u> </u>		0.0 0.0	wet		-	
					Ì						
5										-	
6	NA	S-2	4-8	40	NA	0.0	0.0			-	
7										-	
8							0.0	, ,			
						<u>ן</u>	0.0			1	
9										-	
10	NA	S -3	8-12	20	NA	0.0	0.0				
					l					-	
11											
							0.0				
12								BOH @ 12.0			
							-			-	
										ŀ	
										.	
										ŀ	
								d. Fluctuations of groundwater levels may occur due t ns may be gradual.	seasonal factors and other cond	tions.	
	3) PID re	adingsa	are referenc	ced to a b	enzene s			n the headspace above the sample using a MiniRae 2	00 equipped with a 10.6 eV lamp		TEST BORING NO. TB-118
	4) NA ≂ N MMERC	_	able or Not	Applicab	le	•					
			ORK 146	614-1008	3						NEW YORK, NEW YORK 10165-1617
	54-0210										(212) 986-8645
	85) 454		nes0090	DODOO	101 5			www.dayenvironmental.com			FAX (212) 986-8657

			VTAL, IN							ENVIRONMENTAL CONSULTANTS
Project			PC.2696	il-01	eet	-				IATE OF DAY ENGINEERING, P.C
			Beacon,	New Yo	xk	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	epresen	itative:	Nate Sin	поп				Date Started: 11/16/2006 Date Ended: 11/16/2	2005	
Driiling	Contra	ctor:	Miller Er	vironme	intal			Borehole Depth: 12.0' Borehole Diameter: 2.0"		
Sampli	ing Meth	iod:	Direct P	ush	···	-		Completion Method: Well Installed Backfilled with Grout Water Level (Date/Time): Not Measured	Backfilled with Cu	ttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	TOPSCIL and ROOTS		
1									ŀ	
Z	NA	S-1	0-4	70	NA	4.3	1.3	Brown coarse Sand, some Gravel, trace Silt, moist (FILL)		
3										,
							0.8	wet (water has sheen)		
4		i					1.1	שנו (שמנסו וופס אוקסוו)	-	
5								Black Stained Gravel, trace Sand, intermixed with Coal Fragments, wet (FILL)	_	
	NA	S-2	4-8	20	NA	2.1	2.1			
6		92		20		<u>د.</u> ۱	2.1		-	
7										
							3.0			
8								Black Sandy Silt, some Gravel, trace Clay, wet (FiLL)	-	
9										
	NA	5-3	8-12	20	NA	14.1	2.9			
10		0.0	0-12	20		14.1	2.5		ŀ	
11									_	
							2.2			
12							3.2	BOH @ 12.0'		
									ŀ	
									ŀ	
								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re	adings a	re referen	ed to a b	enzene s			n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-119
	4) NA = N MMERC		ble or Not	Applicab	le					
			ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-161
	54-0210									(212) 986-864
	85) 454		nes0090					www.dayenvironmental.com		FAX (212) 986-865

da	y								ENVIRONMENTAL CONSULTANTS
			ITAL, IN	C.					N AFFILIATE OF DAY ENGINEERING, P.C
Project Project	:#: Addres	s:	PC.2696 1 West M Beacon,	Aain Stre				Ground Elevation: Datum:	TEST BORING NO. TB-120
DAY R	epresen	tative:	Nate Sin		**	•		Date Started: 11/16/2006 Date Ended: 11/16/2005	Page of 1 of 1
Dritting	Contrac	tor:	Miller En	vironme	ntal			Borehole Depth: 12.0' Borehole Diameter: 2.0"	
Sampl	ng Meth	od:	Direct Pu	ish		-		Completion Method: Well Installed Backfilled with Grout Backfille Water Level (Date/Time): Not Measured	d with Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Кесочегу	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
							0.0	0.3' Asphalt and FILL	
- 1 2 3	NA	S-1	0-4	80	NA	2.2	0.2	Black Sandy Gravel intermixed with Coal and Coal Siag Fragments, moist (FILL)	
							0.4	wet (water has sheen)	
4						·	0.4	•	
5	NA	\$-2	4-8	40	NA	3.0	2.1	-	
7	Í						3.9		
8							3.2	-	
9 10	NA	\$ 3	8-12	20	NA	4.7	2.9		
11								Gray Silty SAND, some Gravel, trace Clay, wet	
12							3.8		
12								вон @ 12.0'	
								•	
Notes:	1) Water 2) Stratifi	levels w cation lin	ere made a es represe	it the time int approx	s and un	der condit undaries.	tions state Transition	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.	
	3) PID re	adings a	re referenc	ed to a b	enzene s			a the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-120
<u> </u>	4) NA = N MMERC		ble or Not	Applicabl	e	•			
t			ORK 146	14-1008					NEW YORK, NEW YORK 10165-1617
	54-0210								(212) 986-8645
	85) 454-							www.dayenvironmental.com	FAX (212) 986-8657
Simon:\	My Docu	ments\	nes0090	PC2696	I-01 Bori	ng Logs	•		

ι

da	V								r	
	_		IT AL	~						INVIRONMENTAL CONSULTANT
UAYE		JNMEN	ITAL, IN	U.					AN AFFIL	IATE OF DAY ENGINEERING, P.
Project	#:		PC.2696	1-01		_			1	
Project	Addres	s:	1 West M	Aain Stre	eet	-				TEST BORING NO. TB-121
			Beacon,		rk	-		Ground Elevation: Datum:		Page of 1 of 1
	epresen Contrac		Nate Sin Miller En		otel	-			29/2005	
	ng Meth		Direct Pu			•		Borehole Depth: 15.0' Borehole Diameter: 2.0" Completion Method: 📋 Well Installed 📄 Backfilled with Grout	Backfilled with Cu	, Ittings
						•		Water Level (Date/Time): Not Measured	- .	
	<u> </u>		_		5	0-	Ê		<u> </u>	
	0.5 ft.	ther	(L)		N-Value or RQD%	Headspace PID Reading (ppm)	Reading (ppm)			
£	0 Jac	Sample Numbe	Sample Depth	very	5	spac Ing (gling	Sample Description		Notes
Depth (ft)	Blows per	mple	mple	Recovery	/alue	Head Read	Rea			
å	ă	Sai	Sai	*	ź		8	Min		
							0.0	TOPSOIL and ROOTS		
1								Black Sandy Gravel, some Silt, intermixed with Coal and Coal Slag Fragments,	-	
	NA	S-1	0-4	80(NA	2.1	0.0	lmoist (FILL)		
2		•.					0.0		-	
3									ľ	
4	-,,,					<u> </u>	1.0	wet (water has sheen), Coal Tar Type Odor		
							1.1			
5									-	
6	NA	S-2	4-8	60	NA	2.2	2.1	Black Sandy Gravel and Coal, intermixed with Coal Stag Fragments and	-	
								Coal Tar, wet (FILL)		
7									-	
_							1.0			
8							323		-	
9										
]	
10	NA	S-3	8-12	60	NA	39.9	81.6	Black Silty CLAY, trace Silt, trace Gravel, wet	-	
11									-	
							106			
12							6.4		-	
13								Gray Silty SAND, some Gravel, wet		
."									Ī	
14	NA	S-4	12-15	80	NA	3.0	5.6		-	
							6.2			
15							6.2			
								Refusal @ 15.0'		
									1-	
								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
								ns may be gradual. n the headspace above the sample using a MinjRae 2000 equipped with a 10.6 eV lamp.	1	
			ble or Not							TEST BORING NO. TB-121
40 CO	MMERC	IAL STR	REET							
			ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-16
	54-0210									(212) 986-86
	85) 454		nes0090	00000	1015			www.dayenvironmental.com	·····	FAX (212) 986-865

ocuments/nes0090 PC2696I-01 Boring Logs n:\My

da	y			- M AL						E	
DAY	ENVIR	DNME	NTAL, IN	C.			<u></u>				IATE OF DAY ENGINEERING, P.
Projec Projec	:#: :Addres	s:	PC.2696		eet	-					TEST BORING NO. TB-122
			Beacon,		xk	-		Ground Elevation:	Datum:		Page of 1 of 1
	epresen Contra		Nate Sin Miller En		at al	-		Date Started: 11/29/2006 Borehole Depth: 10.6'	Date Ended:	11/29/2005	
	ng Meth		Direct Pu			-		Completion Method: Well Installed	Borehole Diameter: 2 Backfilled with Grout	.0" Backfilled with Cu	Ittinae
						-		Water Level (Date/Time): Not Measured			lungs
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Desc	1ption		Notes
							0.0	TOPSOIL and ROOTS			
1]	1		Black Sandy Gravel, some Silt, intermixed with C	oal Tar, Coal Slag and Coal		
								Fragments, moist (FILL)			
2	NA	S-1	0-4	60	NA	12.4	0.0			-	
3	ĺ									-	
							9.3	wet (water has sheen)			
4							3.6			-	
5											
										ſ	
6	NA	S-2	4-8	50	NA	2.1	1.2			-	
7				-	ł					•	
							1.0				
8							3.2	Gray Silly CLAY, wet			
9								-			
J	NA	S-3	8-12	40	NA	2.8	1.2			ľ	
10					1					 -	•
					<u> </u>		0.8	·····			
					1			Refusal @ 10.0	r	-	
										-	
					ſ						
										ľ	
										ŀ	
					l					ļ	
	[ŀ	
Votes:	1) Water 2) Straff	levels w	ere made a	t the time	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to a name be gradual.	easonal factors and other condit	ions.	
								is may be gradual. I the headspace above the sample using a MiniRae 200	C equipped with a 10.6 eV lamp.	1	
			able or Not								TEST BORING NO. TB-122
	MMERC									······	·····
			ORK 146	14-1008	3			×			NEW YORK, NEW YORK 10165-16
	54-0210 85) 454-							·····			(212) 986-86
<u> </u>			nes0090		1.04.0			www.dayenvironmental.com	·····		FAX (212) 986-86

da	V								E	NVIRONMENTAL CONSULTANTS
	-	ONME	NTAL, IM	NC.						IATE OF DAY ENGINEERING, P.C
Projec Projec	t #: 1 Addres	is:	PC-2696 1 West		eel	-	<u></u>			TEST BORING NO. TB-123
			Beacon,	New Yo	ork	_		Ground Elevation: Datum:		Page of 1 of 1
DAY F	lepreser	nlative:	Nate Sin	non		_		Date Started: 11/29/2006 Data Ended: 11/29/2005	j	
Drilling	Contra	ctor:	Miller Er	wironme	ental	-		Borehole Depth: 10.5' Borehole Diameter: 2.0"		•
Sampl	ing Melh	od:	Direct P	ush		-		Completion Method: Wetl installed Backfilled with Grout Backfille	ackfilled with C	Unungs
			F		~		Ê			
Depth (ft)	Blows per 0.5 Å,	Sample Number	Sample Depth (fl)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notas
					1	Ī	0.0	TOPSOIL and ROOTS	1	
								Black Sandy Gravel, some Silt, intermixerd with Coal and Coal Slag Fragmenta,		
1	1					1		Coal Tar, moist (FILL)	1	
2	NA	S-1	0-4	80	NA	16.9	3.1			
ſ								Cost Slag Fregments, some Sandy Gravel, trace Sill, inlemixed with		
3								Coal Tar, moist (FILL)		
j										
4							72	wet (water has sheen)	ŀ	
							3.6			
5									ŀ	
	NA	S-2	4-8	50	NA	14.8	6.8		1	
6	·~							Gray Silly CLAY, Irace Sand, wel	1	
7					<u> </u>				ľ	
							4.8			
°							6.8			
e									.	
Ĩ	NA	S-3	8-12	60	NA	0.7	13.8			
10							1.8		-	
								Refusal @ 10.5'].	
	[ľ	
									ŀ	
	1									
									-	
	ļ					l i				
									-	
	ļ								<u> </u>	
lotas:	1) Water	levels w	ere made a	at the the	es and ur	nder cond	tions stal	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
	2) Stralifi 3) PID rei	cation lin adings a	os raprese ne referenc	iniappro. Sed to a b	idmate bo ionzone s	undaries.	. Transilio	ns may be gradual. In the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-123
des de la seconda de la se	MMERC		ble or Not	Applicab	HØ					
			ORK 146	14-100	8					NEW YORK, NEW YORK 10165-161
	54-0210									(212) 986-864
	85) 454-							www.dayenvironmental.com		FAX (212) 986-865

Simon:Wy Documents\nes0090 PC2696I-01 Boring Logs

3

.

- 111 - 11-

Ŀ

のないでは、

<u>.</u>	<u> </u>	ONME	NTAL, II					AN AF	ILIATE OF DAY ENGINEERING,
rojec rojec	t#: tAddre:	ss:	PC.269		eet	-			TEST BORING NO. TB-124
AY F	leprese	ulative:	Beacon Nate Sir	non		-		Ground Elevation: Datum: Date Started: 11/29/2006 Date Ended: 11/29/2005	Page of 1 of 1
	I Contra ing Meti		Miller Er Direct P		ental			Borehole Depth: 12.0' Borehole Diameter: 2.0' Completion Method: Use Installed Backfilled with Grout Backfilled with Grout Backfilled with Grout Water Level (Date/Time): Not Measured Backfilled with Grout Backfilled with	
Depth (ft)	Blows per 0.5 ft.	Sample Numbar	Sample Depth (ft)	% Recovery	N-Value or RQD%	Neadspace PID Neading (ppm)	PID Reading (ppm)	Sample Description	Notes
_							0.0	TOPSOIL and ROOTS	
1								Black Silty Sand, Intermixed with Coat and Coal Stag Fragments, moist (FILL)	
2	NA	S-1	0-4	90	NA	0.7	0.0	· .	
1									
3								-	
4							0.0	wet (water has sheen)	
							0.8		
5									
6	NA	S-2	4-8	60	NA	0.9	1.2	-	
								Cosl Slag Fragments, some Gravel, wel (FILL)	
Ί					:		3.6		
8							48.1	·	
9								Gray Silty CLAY, wet	
	NA	S-3	8-12	40	NA	8.1	96.2		
10									
11									
12						l	18.9		
								BOH @ 12.0'	
								-	
								d. Fluctuations of groundwater levels may occur due to seasonel factors and other conditions. ns may be gradual.	
	3) PID re	adings ä		ed to a b	enzene s			In the keadspace above the sample using a MiniRee 2000 equipped with a 10.5 eV lamp.	TEST BORING NO. TB-124
	MMERC			Applicab					
			ORK 146	14-100	3				NEW YORK, NEW YORK 10165 (212) 986
5)4	54-0210								12121 200

Station and the second second

	y .								E	NVIRONMENTAL CONSULTANTS
DAY EN	NVIRG	ONME	NTAL, II	NC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Project # Project A		s:	PC.269 1 West	_	reel	-				TEST BORING NO. TB-125
			Beacon	New Y	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY Rep	presen	itative:	Nate Sir	пол		-		Date Started: 11/29/2006 Date Ended: 11/29/2	005	
Drilling C			Miller Er		ental	-	-	Borehole Depth: 12.0" Borehole Diameter: 2.0"		• •
Sampling	g Meth	od:	Direct P	ush	·····	-		Completion Method: Well Installed Backfilled with Grout	Backfilled with C	umings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Dapth (ft)	% Recovery	N-Value or RQD%	Readspace PiD Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
	1	-					0.0	TOPSOIL and RODTS		
		i						Black Gravel, some Coal Fragments, molst (FILL)		
1								• • • • •	-	
1	ŇA	S-1	04	70	NA	2.3	0.0			
Z									Ē	
	1									
3					ŀ	[.				
					_		0.0	Black Gravel, intermixed with Coal and Coal Stag Fragments, moist (FILL)	-	
							0.0			
5									-	
					· .	ļ				
6	NA	S-2	4-8	70	NA	1.6	0,1	wet	-	
					ŀ			Coal Slag Fragments, some Gravel, wat (FILL)		
7	Ĩ									
8	-						0.1		-	
							0.0			
9	- 1				l –				-	
	NA	S-3	8-12	40	NA	8.1	0.0			
10			0-12				0.0	Gray Silly CLAY, wei	ŀ	
					[
11	1								-	
							0.0			
12		_						BOH @ 12.0	Ē.	
						۱ I			-	
									-	
		1								
	- 1								ŀ	
	Walat	Imunie	vagate	at the ti-	PE 201		None elet	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		and the second
2) (Strattfic	alion lin	es represe	ant appro	ximale bo	undaries.	Transilio	ns may be gradual.		
						standard r	neasured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 aV lamp.		TEST BORING NO. TB-125
			ble or Not	Applicat						<u>l</u>
					•					NEW YORK, NEW YORK 10165-161
			ORK 146	o 14-160	0					(212) 986-864
i85) 454 AX (585								www.dayenvironmental.com		FAX (212) 986-865

Simon:My Documents/nes0090 PC2696I-01 Boring Logs

Ï

1

I

in the second second

In the second se

ALC: NO. TO ALC: NO.

da	av								E	NVIRONMENTAL CONSULTANTS
1		ONME	NTAL, II	NC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Proje Proje	ct#: :t Addres	55:	PC.269 1 West		reet	- -				TEST BORING NO. TB-126
			Beacon		ork	-		Ground Elevation: Datum:		Page of 1 of 1
1			Nate Si			-		Dale Started: 11/29/2006 Date Ended: 11/29/2005 Borehole Depth: 12.0' Borehole Diameter: 2.0"		•
	g Contra ling Metl		Miller Er Direct P	<u> </u>	ental	-			ckfilled with C	Suttings
Samp	ng men	190.	DREULF			-		Water Level (Date/Time): Not Measured		-
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sampla Dascription		Notes
å	Ē	å	S.	~~	<u> </u>			722224		A MARTIN STREET, IN MUCH STATE OF THE AUTOMOTION.
				1	1		0.0	TOPSOIL and ROOTS		
1					1			Black Sandy Silt, some Gravel, trace Clay, Intermixed with Coal and Brick Fragments, moist (FILL)		
	NA	S-1	04	70	NA	1.2	0.0	MINNEL PROVINCIAN CONTRACT		
2		÷.	, , , , , , , , , , , , , , , , , , ,						•	
3)					
				Ĺ			0.0			
							0.0			
5										
6	NA	S-2	4-8	60	NA	2.3	02	Onel Star Franzosta, tanas Starta Convol. Maint (EU.)	•	
						ĺ .		Coal Slag Fragmants, trace Sandy Gravel, moist (FILL)		
7					ļ				•	
							0.8	Wood (RR Tie), moist (FILL)	_	
8							0.0	Gray CLAY, trace Silt, wel		
9					1					
Í										
10	NA	S-3	8-12	40	NA	8.0	.0.0	•	•	
						[
11					l			·	•	
							0.0			
12								80H @ 12.0'	•	
									-	
									-	
									-	
									•	
Notes:	1) Water	levels w	ere made	əithətim	es and u	nder cond	itions state	id. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u></u>	
	2) Strail	cation lin	os represe	ant appro	oimate bo	undarles.	. Transitio	ns may be gradual. In the headspace above the sample using a MiniRae 2000 equipped with a 10.6 aV lamp.		
			te reterenk ble or Not			nanuaro f	Horney and	או הוה המאיזאסיים מהתנם הנם פסוולאים מאוול ס ואניה אם דלהה כלמאלאים נוצוים. באי היא אייולא		TEST BORING NO. TB-126
	MMERC								• • • · · · · · · · · · · · · · · · · ·	
			ORK 148	514-100	8					NEW YORK, NEW YORK 10165-1617
(585) 4	54-0210)								(212) 986-8645
FAX (6	65) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

Simon: My Documents/nes0090 PC26961-01 Boring Logs

A second se

da	_	A 1 1 1				<u></u>				INVIRONMENTAL CONSULTANTS
Projec			PC.269		raot					TEST BORING NO. TB-127
-			<u> </u>	New Y		-		Ground Elevation: Datum: Date Started: 11/29/2006 Date Ended: 11/29/20	05	Page of 1 of 1
) Contra ling Met/		Miller El	nvironme Yush	antal	-		Borahole Cepth: <u>12</u> Borahole Clameter: <u>2*</u> Completion Method: Weil Installed Backfilled with Grout Backfilled	Backfilled with Cu	tlings
Depth (ft)	Blows par 0.5 ft.	Sample Number	Sample Depth (H)	% Recavery	N-Value or RQD%	Headspace PID Reading (ppm)	PiD Reading (ppm)	Sample Description		Notes
1					ĺ		Q.Q	TOPSOIL and ROOTS		
2	NA	S-1	0-4	60	NA	3.9	0.0	Black Sandy Gravel, some Sill, intermixed with Coal, Coal Slag, and Brick Fragments, moist (FILL)		
3 4							0.0 0.0			
5	NA	S-2	4-8	60	NA	0.6	0.0	wet		
8							0.8			
9 10 11	NA	S-3	8-12	0	NA	NA	NA			
12								BOH @ 12.0*		
									•	
									ŀ	
	2) Siratifi 3) PID ne	ication IIn adings ar	es represei	ni epproxi ed ilo a be	mala bou Inzene sla	ndarles. 1	ransitions	Fluctuations of groundwater levels may occur due to essance! factors and other conditions. may be gradual. he headspace above the sample using a MiniRae 2000 equipped with a 10.6 dV temp.		TEST BORING NO. TB-127
OCH	MMERC	NEW Y								NEW YORK, NEW YORK 10165-1((212) 986-86
	85) 454							www.dayenvironmental.com		FAX (212) 986-86

pimon:wy Documentsvies0090 PC2696-01 Bornig Lu

0

Į

 \overline{v}

LEANWAY VC

è

rojec rojec	t #: { Addres	15:	PC.2696		eet	-				TEST BORING NO. TB-128
AY R rilling	eprese Contra ing Meth	itative: ctor:	Beacon Nate Sir Miller Er Direct P	New Yo non wironme	ork	-		Ground Elevation: Datum: Date Started: 11/29/2006 Borehole Depth: 12.0' Borehole Depth: 12.0' Completion Method: Well Installed Water Level (Date/Time): Not Measured	05 Backfilled with C	Page of 1 of 1
Depth (ft)	Blows per 0.5 ft.	Sample Number	Semple Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PiD Reading (ppm)	Sample Description		Notes
1 2 3	NA	S-1	0-4	4D	NA	2.0	0.0 0.0	Brown Silly Sand, some Gravel, Internitxed with Brick, Coal, and Coal Stag Fragments, molst (FiLL) Black Silly Sand, some Gravel, Intermixed with Brick, Coal, and Coel Slag Fragments, molst (FiLL)	-	
4		S-2	4-8	10	NA	NA	0.0	Brown Sandy Gravel, intermixed with Brick, Coal, and Coal Slag Fragments. moist (FILL)	•	
6 7 8	NA	5-2					3.6	Wel	•	
9 10 11	NA	S-3	8-12	10	NA	NA	2.1		-	
12							2.4	BOH @ 12.0'		
									-	
	2) Stratifi	cetion lin	es represe	int appro	ximate bo	oundaries.	Transilio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual. In the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	-	
			la reierenc Ibte or Nol				neasorau			TEST BORING NO. TB-12

2

Î

Î

Ŀ

ARE RECEIVED AND DESCRIPTION OF A DESCRIPT A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A

Ņ

da	11									
1	-								E	INVIRONMENTAL CONSULTANTS
DAY E	ENVIR	DNME	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C
Project	#		PC.2696	61-01						
· ·	Addres	s:	1 West I		eet	-				TEST BORING NO. TB-129
			Beacon,	New Yo	ork	_		Ground Elevation: Datum:		Page of 1 of 1
	epreser		Nate Sin			-		Date Started: 11/29/2006 Date Ended: 11/29/200	5	· · · · · · · · · · · · · · · · · · ·
	Contra		Miller En		ental	-		Borehole Depth: 12.0' Borehole Diameter: 2"		
Sampii	ng Meth	100:	Direct Pi	usn		-		Completion Method: Well Installed Backfilled with Grout B Water Level (Date/Time): Not Measured	lackfilled with Cu	ittings
			T	1	<u> </u>				· · · · · · · · · · · · · · · · · · ·	
	÷	e	Ê		ő	Headspace PID Reading (ppm)	PID Reading (ppm)			
	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	ž	N-Value or RQD%	g (pi) Bul	Sample Description		Notes
Ē	s pe	pie N	ed 1	00	1	adin	Read		ļ	noco
Depth (ft)	Blow	Sam	Sam	% Recovery	N-Va	1 2 8	ê	·		
			1			İ	0.0	Black Sandy Gravel intermixed with Coal and Coal Slag Fragments, moist (FILL)		
'									ľ	·
z	NA	S-1	0-4	60	NA	14.7	0.8	Black Sandy Gravel trace Silt, some Coal Slag Fragments, moist (PILL)		
3					1	·				
					Į	l	1.1	wet (water has a sheen)		
4							1.3		ŀ	
5									-	
_	NA	S-2	4-8	20	NA	5.4	2.3			
ľ						1			-	
7						l			1.	
8							1.0 2.4		ŀ	
							2.4			
9									-	
	NA	S-3	8-12	10	NA	9.2	3.1			
10										
11										
12				<u> </u>	<u> </u>		3.6		4	
			1					BOH @ 12.0'		
									ŀ	
									ľ	
].	
Notes:	1) Water	levels w	ere made r	at the time	es and ur	der condi	tions state	d. Fluctuations of groundwater tevels may occur due to seasonal factors and other conditions.	1	
	2) Stratif	ication la	nes represe	ant approx	ximate bo	oundaries.	Transitio	ns may be gradual.		
			are reference able or Not			tandard n	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO, TB-129
	4) NA = P			whileap			-			
			ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617
	54-0210									(212) 986-8645
FAX (5	85) 454	_	vnes0090					www.dayenvironmental.com		FAX (212) 986-8657

3/14/2006

rojec	1#:		PC.2696	1-01						TEST RODING NO. TR 420
)AY R Drilling	Addres epresen Contrac	Beacon, New York Ground Elevation: Datum: ossentative: Nate Simon Date Started: 11/30/2006 Date Ended: 11/30/2005 ntractor: Miller Environmental Borehole Depth: 12.0' Borehole Diameter: 2" Method: Direct Push Completion Method: Welt Installed Backfilled with Grout Backfilled with Grout							5ackfilled with Cu	TEST BORING NO. TB-130 Page_of 1 of 1 ttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Кесочегу	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
1 2 3	NA	Ş-1	0-4	40	NA	1.1		Asphait and Sub-base Black Sandy Gravel, some Silt, intermixed with Coal, Brick, and Wood Fragments, moist (FILL)	-	
4 5 6 7	NA	S-2	4-8	10	NA	0.8	0.7 0.8 2.4	wet Black Coal Slag, some Gravel, Intermixed with Coal, Brick and Wood Fragments, wet (FILL)	-	
8 9 10	NA	S -3	8-12	25	NA	1.0	2.7 0.0 0.0	Gray Silty Clay some Silt, trace Gravel, wet (FILL)		
11 12							0.0	Gray coarse Sand, some Gravel, intermixed with Coal and Brick Fragments, wet (FILL) BOH @ 12.0'		
	2) Stratifi 3) PID re	cation lir adings a	nes represe	ed to a b	cimate bo enzene s	undaries.	Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. as may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-130

.

DAY ENVIRONMENTAL, INC. AN AFFILIATE OF DAY ENGINEERING, P.C Project #: PC.2696I-01 TEST BORING NO. TB-131 Beacon, New York Ground Elevation: Daty Engineering Datum: Daty Engineering Project Address: Nate Simon Date Started: 11/30/2006 Drilling Contractor: Miller Environmental	DAY ENVIRONMENTAL, INC. Project #: PC.2696I-01 Project Address: 1 West Main Beacon, Net DAY Representative: Nate Simon Diffing Contractor: Miller Envico Sampling Method: Direct Push it it it <thi< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>ENVIRONMENTAL CONSULTANTS</th></thi<>							ENVIRONMENTAL CONSULTANTS
Project Ji VC_2000-01 TEST BORING NO. TB-131 Project Ji Twee Minist Steel Count Blevidion: Datam TEST BORING NO. TB-131 DAV Representative Name Simon Datam Til020035 Page 41 of 1 David Datam Til020035 Datam Til020035 Page 41 of 1 David Datam Til020035 Til020035 Til020035 Page 41 of 1 Serreting Method Data Statest Til020035 Til020035 Page 41 of 1 Serreting Method Data Statest Til020035 Page 41 of 1 Serreting Method Data Statest Til020035 Page 41 of 1 Serreting Method Data Statest Serreting Method Til020035 Page 41 of 1 Tree of the statest with Coal and Brick Fragments, mode for the state of thill Til020035 Til020035 Til020035 Til020035 Tree of the statest with Coal and Brick Fragments, mode fill Til020035 Til020035 <td< td=""><td>Project #: PC.2696I-01 Project #ddress: 1 Image: Strate S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Project #: PC.2696I-01 Project #ddress: 1 Image: Strate S							
Project Address: I West Mino Steet Test Borniko No. Te-131 DAV Representative Sempting Contract: Test Steet Index Steet Data	Project Address: 1 West Main Beacon, Ner DAY Representative: DAY Representative: Nate Simon Miller Enviro Sampling Method: U; U; U; U; U; U; U; U; U; U;		AL, INC.					IATE OF DAY ENGINEERING, P.C
Original Date Descent, New Year New Year New Ye	Beacon, Ner Beacon, Ner NAY Representative: Nampling Method: Miller Enviro Billing Contractor: Miller Enviro Sampling Method: Direct Push Image: Strength of the strength			_				TEST BORING NO. TR 121
DAY Papersentative:	DAY Representative: Nate Simon Drilling Contractor: Miller Enviro Sampling Method: Direct Push i i i i i i i i i i i i i i iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					Our I Day I		L
United Control Met Environmental Service Depring Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprind Method Service Deprint Method Service Deprint Ser	Image: Diffiling Contractor: Miller Enviro Sampling Method: Direct Push E E							Page of 1 of 1
Weiter Lowel (Date/Time): Not Measured u <thu< th=""> <thu< th=""> u</thu<></thu<>	Image: second			_				
u v	1 NA S-1 0-4 4 3 4 - - 4 5 NA S-2 4-8 9 7 - - - - 8 - - - - - 9 NA S-3 8-12 8 10 NA S-3 8-12 8 11 12 - - - Notes: 1) Water levels were made at the 2) Stratification lines represent at	ush	irect Push	_			kfilled with Cu	Ittings
1 NA S-1 0-4 40 NA 0.4 0.0 0.0 0.0 0.0 Coal Fragments, model (FILL) Back Sandy Gravel, some Sit, intermixed with Coal and Brick Fragments, model (FILL) - 4 0.0 0.0 0.0 Coal Fragments - - 5 NA S-2 4-8 90 NA 0.4 0.0 Coal Fragments - 6 NA S-2 4-8 90 NA 0.4 0.0 Black Sandy Gravel, Itilite Sit, infermixed with Coal and Brick Fragments, model (FILL) - 7	1 NA S-1 0-4 4 3 4 - - 4 5 NA S-2 4-8 9 7 - - - - 8 - - - - - 9 NA S-3 8-12 8 10 NA S-3 8-12 8 11 12 - - - Notes: 1) Water levels were made at the 2) Stratification lines represent at	 				Water Level (Date/Time): Not Measured		
Image: NA S-1 0-4 40 NA 0.4 0.0 Bick Sandy Gravel, some Sill, intermixed with Coal and Brick Fragments, moist (FILL) Bick Sandy Gravel, some Sill, intermixed with Coal and Brick Fragments, moist (FILL) Bick Sandy Gravel, Some Sill, intermixed with Coal and Brick Fragments, moist (FILL) NA S-2 4-3 90 NA 0.4 0.0 Bick Sandy Gravel, Some Sill, Intermixed with Coal and Brick Fragments, moist (FILL) Bick Sandy Gravel, Itile Sill, Intermixed with Coal and Brick Fragments, moist (FILL) Bick Sandy Gravel, Itile Sill, Intermixed with Coal and Brick Fragments, moist (FILL) NA S-2 4-3 90 NA 0.4 0.0 Bick Sandy Gravel, Itile Sill, Intermixed with Coal and Brick Fragments, moist (FILL) moist (FILL)	2 3 4 5 5 NA 5 NA 7 - 8 - 9 NA 9 NA 10 NA 11 - 12 - Notes: 1) Water levels were made at the 2) Stratification lines represent at	% Recovery N-Value or RQD%	Sample Depth (ft) % Recovery	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
2 NA S-1 0-4 40 NA 0.4 0.0 moist (FILL) 3 - - 0.0 - 0.0 Coal Fragments 5 NA S-2 4-6 90 NA 0.4 0.0 6 - - - 0.0 Coal Fragments moist (FILL) - - - 0.0 Black Sandy Gravel, Itile Sit, Intermixed with Coal and Brick Fragments, wet (FILL) - 7 - - - 0.0 Black Sandy Gravel, Itile Sit, Intermixed with Coal and Brick Fragments, wet (FILL) - 9 NA S-3 8-12 80 NA 0.5 0.0 10 NA S-3 8-12 80 NA 0.5 0.0 11 - - - 0.0 BoH @ 12.0' - 12 - - - - - - - 12 - - - - - - - 14 - - - - - -	2 3 4 5 6 NA S-2 4-8 9 7 8 7 7 8 7 8 9 NA S-3 8-12 8 10 NA S-3 8-12 8 11 12 1 12 1 Notes: 1) Weter levels were made at the 2) Stratification times represent at the strategy of the s					0.7' Asphalt and FILL		
1 NA S-1 0-4 40 NA 0.4 0.0 3 - - - 0.0 - - 0.0 5 NA S-2 4-3 90 NA 0.4 0.0 Black Sandy Gravel, little Sitt, intermixed with Coal and Brick Fragments, most (FILL) - 6 NA S-2 4-3 90 NA 0.4 0.0 Black Sandy Gravel, little Sitt, intermixed with Coal and Brick Fragments, wet (FILL) - 7 - - - 0.0 - - - 9 - - - 0.0 - - - - 10 NA S-3 8-12 80 NA 0.5 0.0 Sandy Gravel intermixed with Wood and Coal Fragments, wet (FILL) - - 11 - - - 0.0 - - - - 12 - - - 0.0 - - - - - 12 - - - - 0.0 - - -<	2 3 4							
3 -	2 3 4 5 6 NA S-2 4-8 9 7 8 7 7 8 7 8 9 NA S-3 8-12 8 10 NA S-3 8-12 8 11 12 1 12 1 Notes: 1) Weter levels were made at the 2) Stratification times represent at the strategy of the s					moist (FILL)	-	
4 -	6 7 8 9 10 11 12 Notes: 1) Water levels were made at the 2) Stratification times represent at the series of the se	40 NA	0-4 40	0.4 0	0.0		-	
4 -	6 7 8 9 10 11 12 Notes: 1) Water levels were made at the 2) Stratification times represent at the series of the se							
4 -	6 7 8 9 10 11 12 Notes: 1) Water levels were made at the 2) Stratification times represent at the series of the se							
5 NA S-2 4-3 90 NA 0.4 0.0 Black Sandy Gravel, little Sit, intermixed with Coal and Brick Fragments, moist (FILL) Black Sandy Gravel, little Sit, intermixed with Coal and Brick Fragments, wet (FILL) 7 0 0.0 0.0 0.0 0.0 0.0 9 0.0 0.0 0.0 Sandy Gravel intermixed with Wood and Coal Fragments, wet (FILL) 0.0 10 NA S-3 8-12 80 NA 0.5 0.0 11 0.0 0.0 0.0 Sandy Gravel intermixed with Wood and Coal Fragments, wet (FILL) 0.0 10 NA S-3 8-12 80 NA 0.5 0.0 11 0.0 0.0 DOH @ 12.0* 0.0 0.0 0.0 0.0 0.0	6 7 8 9 10 NA 11 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 13 12 14 12 15 10 16 10 17 10 18 10 19 10 10 11 12 11 12 11 13 12 14 12 15 10 16 10 17 10 18 10 19 10 10 10 10 10 10 10 11 12 12 10 14 10 15 10 16 10 17 10 18			c	0.0		_	
6 NA S-2 4-8 90 NA 0.4 0.0 moist (FILL) vet Grey Sity Clay, some Sand, intermixed with Coal and Brick Fragments, wet (FILL) 8 -	6 7 8 9 10 NA 11 12 12 1 Notes: 1) Water levels were made at the 2) Stratification lines represent at the strategy of the strategy			0	0.0	Coal Fragments	-	
6 NA S-2 4-8 90 NA 0.4 0.0 moist (FILL) vet Grey Sity Clay, some Sand, intermixed with Coal and Brick Fragments, wet (FILL) 8 -	6 7 8 9 10 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent a						-	
6 wet 7 wet 6 wet 6 wet 7 wet 8 wet 9 wet 10 NA NA S3 8-12 80 0.0 Sandy Gravel Intermixed with Wood and Coal Fragments, wet (FILL) 11	6 7 8 9 10 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent a	90 NA	4-8 90	0.4 0				
NA S3 8-12 80 NA 0.5 0.0 10 NA S3 8-12 80 NA 0.5 0.0 11 1 0 0.0 BOH @ 12.0' 0 0 10 1 1 0.0 BOH @ 12.0' 0 0	NA S-3 8-12 8 10 NA S-3 8-12 8 11 12					ļ. la la la la la la la la la la la la la	-	
a a b b b b 0.0 Sandy Gravel intermixed with Wood and Coal Fragments, wet (F[LL)) - 10 NA S-3 8-12 80 NA 0.5 0.0 11 - - 0.0 BOH @ 12.0* - 12 - - 0.0 BOH @ 12.0* - Notes: 1) Weter levels were mode at the times and under conditions stated. Fluctuations of groundwater levels may occur due to sessonal factors and other conditions.	NA S-3 8-12 8 10 NA S-3 8-12 8 11 12					Gray Silty Clay, some Sand, intermixed with Coal and Brick Fragments, wet (FILL)	_	
a a b b b b 0.0 Sandy Gravel intermixed with Wood and Coal Fragments, wet (F[LL)) b 10 NA S-3 8-12 80 NA 0.5 0.0 11 1 0.0 0.0 BOH @ 12.0' b b 12 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 10 1	NA S-3 8-12 8 10 11 12 11 12 12 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent at						-	
a NA S-3 8-12 80 NA 0.5 0.0 11 1 0.0 0.0 12 1 1 0.0 BOH @ 12.0*	NA S-3 8-12 8 10 11 12 11 12 12 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent at							
10 NA S-3 8-12 80 NA 0.5 0.0 11 11 0.0 0.0 0.0 0.0 0.0 12 0.0 0.0 BOH @ 12.0° 0.0 0.0 Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	NA S-3 8-12 8 10 NA S-3 8-12 8 11 12							
10 11 - 11 0.0 - 12 0.0 BOH @ 12.0° I I I </td <td>10 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	10 11 12 Notes: 1) Water levels were made at the 2) Stratification lines represent a						-	
12 0.0 BOH @ 12.0* Image: Im	12 Notes: 1) Water levels were made at the 2) Stratification lines represent at	80 NA	8-12 80	0.5 0	0.0			
12 0.0 BOH @ 12.0* Image: Im	12 Notes: 1) Water levels were made at the 2) Stratification lines represent at							
12 BOH @ 12.0* . . .	Notes: 1) Water levels were made at the 2) Stratification lines represent a							
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	Notes: 1) Water levels were made at the 2) Stratification lines represent a			0	0.0			
	2) Stratification lines represent a					BOH @ 12.0'	•	
	2) Stratification lines represent a					ļ.	•	
	2) Stratification lines represent a							
	2) Stratification lines represent a					ŀ		
	2) Stratification lines represent a							
	2) Stratification lines represent a					·	-	
	2) Stratification lines represent a							
2) Stratilication lines represent approximate boundaries. Transitions may be gradual								
3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipoped with a 10.6 eV iamo.	j rio readings are reserviced u					• •	1	
4) NA = Not Available or Not Applicable TEST BORING NO. TB-131					- "			TEST BORING NO. TB-131
	40 COMMERCIAL STREET							
		514-1008	RK 14614-1008					
ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645	FAX (585) 454-0825					www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

•

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

ſ

TABLE 1 PAGE 1 of 2

1 WEST MAIN STREET BEACON, NEW YORK

VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND		S			N		NYSDEC TAGM 4046 RSCO ⁽¹⁾	
NAPHTHALENE	TB-105	TB-106	TB-107	TB-111	TB-115A	TB-117	(PPB)	
	(8.0')	(8.0')	(8.0')	(12.0')	(4.0')	(8.0')	(110)	
1,2,4-Trimethylbenzene	ND	500	3,300	ND	ND	6,900	10,000	
1,3,5-Trimethylbenzene	ND	170	1,300	ND	ND	2,800	3,300	
Benzene	ND	160 🙀	1,200;	ND	ND	300	60	
Ethylbenzene	ND	110	440	ND	ND	1,200	5,500	
Total Xylenes	ND	740	7,000	ND	ND	8,300	1,200	
Toluene	ND	240	3,100	ND	ND	1,400	1,500	
Styrene	ND	ND	1,000	ND	ND	ND	NL	
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200	
n-Butylbenzene	ND	ND	ND	ND	ND	ND	10,000	
sec-Butylbenzne	ND	ND	ND	ND	ND	ND	10,000	
Chloroform	ND	ND	ND	ND	ND	ND	300	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	2,300	
p-IsoprppyItoluene	ND	ND	ND	ND	ND	ND	10,000	
2-Butanone	410	280	ND	15	ND	ND	300	
Total VOCs	410	2,200	17,340	15	ND	20,900 #	10,000	
Naphthalene	5,600	130,000	1,100,000	ND	ND	1,500,000	13,000	

Concentrations shown in ug/kg or parts per billion (ppb).

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

410 = Exceeds RSCO.

NL = Not Listed in TAGM 4046.

DAY ENGINEERING, INC.

1

NES0094 / P.C.2696I-01

TABLE 1 PAGE 2 of 2

1 WEST MAIN STREET BEACON, NEW YORK

VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND		S	AMPLE ANI	D LOCATIO	N		NYSDEC TAGM 4046 RSCO ⁽¹⁾
NAPHTHALENE	TB-118	TB-120	TB-124	TB-126	TB-127	TB-129	(PPB)
-	(4.0')	(8.0')	(1 0 .0')	(4.0')	(8.0')	(8.0')	((()))
1,2,4-Trimethylbenzene	ND	130	3,600	ND	ND	ND	10,000
1,3,5-Trimethylbenzene	ND	ND	1, 4 00	ND	ND	ND	3,300
Benzene	ND	ND	340	3	ND	ND	60
Ethylbenzene	ND	ND	740	ND	ND	ND	5,500
Total Xylenes	ND	ND	10,500	2	ND	ND	1,200
Toluene	ND	ND	3,200	3	ND	ND	1,500
Styrene	ND	ND	ND	ND	ND	ND	NL
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200
n-Butylbenzene	ND	ND	110	ND	ND	12	10,000
sec-Butylbenzne	ND	ND	ND	ND	ND	21	10,000
Chloroform	ND	ND	ND	ND	ND	ND	300
Isopropylbenzene	ND	ND	130	ND	ND	ND	2,300
p-Isoprppyltoluene	ND	ND	110	ND	ND	ND	10,000
2-Butanone	18	4,501	ND	ND	ND	ND	300
Total VOCs	18	4,631	20,130	8	ND	33	10,000
Naphthalene	ND	9,000	43,000	ND	ND	390	13,000

Concentrations shown in ug/kg or parts per biliion (ppb)

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit

4,501 = Exceeds RSCO

NL = Not Listed in TAGM 4046

TABLE 2 PAGE 1 of 2

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			S	AMPLE AN		N			NYSDEC TAGM 4046
	TB-101	TB-105	TB-106	TB-107	TB-110	TB-111	TB-112	TB-115A	RSCO ⁽¹⁾ (PPB)
	(4.0')	(8.0')	(8.0')	(8.0')	(8.0')	(12.0')	(4.0')	(4.0')	
2-Methylnaphthalene	ND	1,500	1,900	2,500	130	ND	ND	1,500	36,400
Acenaphthene	ND	2,700	2,900	1,400	1,600	ND	ND	ND	50,000
Acenaphthylene	ND	2,200	1,500	3,600	220	ND	ND	1,600	50,000
Anthracene	300	5,600	4,300	7,800	230	ND	56	1,700	50,000
Benzo(a)anthracene		5,300 ×	, 2,900	5,500	320	ND	270	2,600	224
Benzo(a)pyrene	1,100	4,800	2,700 🦗	4,300	280	ND	270	3,600 🐔	61
Benzo(b)fluoranthene	1,200	4,600	2,400	3,500	380	ND	390	2,700	220
Benzo(g,h,I)perylene	260	500	490	760	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	1,500	4,600	2,400	4,100 📣	420	ND	500	3,400	220
Chrysene	980	4,100	2,500	4,500	340	ND	290	2,400	400
Dibenz(a,h)anthracene	ND	420	- 340	660	ND	ND	ND	ND	14.3
Dibenzofuran	ND	3,600	2,700	3,100	ND	ND	ND	980	6,200
Fluoranthene	2,000	11,000	7,700	12,000	690	ND	480	4,700	50,000
Fluorene	ND	5,600	4,800	4,900	210	ND	ND	1,700	50,000
Indeno(1,2,3-cd)pyrene	280	700	530	1,200	ND	ND	ND	570	3,200
Naphthalene	ND	1,100	1,700	7,600	2,100	ND	ND	2,000	13,000
Phenanthrene	1,200	13,000	11,000	13,000	850	ND	240	5,800	50,000
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	67	ND	ND		50,000
Pyrene	1,800	8,800	6,500	9,200	570	ND	360	4,400	50,000
Total SVOCs	11,500	80,120	59,260	89,620	8,407	0	2,856	39,650	500,000
Total cPAHs	5,940	24,520	13,770	23,7 6 0	1,740	ND	1,720	15,270	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	1,361	6,367	3,672	6,066	358	ND	344	4,245	NL

Concentrations shown in ug/kg or parts per billion (ppb).

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene).

BAP = Benzo(a)pyrene.

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

1,500 = Exceeds RSCO.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

TABLE 2 PAGE 2 of 2

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			SAMPL	LE AND LOC	ATION			NYSDEC TAGM 4046
	TB-117	TB-118	TB-120	TB-124	TB-126	TB-127	TB-129	RSCO ⁽¹⁾ (PPB)
	(8.0')	(4.0')	(8.0')	(4.0')	(10.0')	(8.0')	(8.0')	. ,
2-Methylnaphthalene	*210,000	ND	ND	-350,000	340	390	540	36,400
Acenaphthene	ND	ND	370	41,000	ND	180	320	50,000
Acenaphthylene	190,000	ND	ND	83,000	ND	ND	ND	50,000
Anthracene	200,000	ND	550	160,000	ND	260	ND	50,000
Benzo(a)anthracene	140,000	100	1,500	110,000	ND	190	ND	224
Benzo(a)pyrene	86,000	72	1,100	7,800	ND	ND	ND	61
Benzo(b)fluoranthene	59,000	8	7.50	62,000 🗴	ND	ND	ND	220
Benzo(g,h,l)perylene	ND	ND	690	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	88,000	91	1,200	90,000 _	ND	ND	ND	220
Chrysene	110,000	100	1,800	89,000	ND	180	ND	400
Dibenz(a,h)anthracene	ND	ND	380	ND	ND	ND	ND	14.3
Dibenzofuran	130,000	ND	4,500	130,000	ND	ND	ND	6,200
Fluoranthene	370,000	170	ND	220,000	340	410	430	50,000
Fluorene	190,000	ND	ND	180,000	ND	250	290	50,000
Indeno(1,2,3-cd)pyrene	ND	ND	560	17,000	ND	ND	ND	3,200
Naphthalene	780,000	ND	440	690,000	260	910	400	13,000
Phenanthrene	530,000	110	5,100	400,000	340	740	630	50,000
Di-n-butylphthalate	ND	ND	ND	ND	260	180	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	ND	50,000
Pyrene	280,000	160	4,100	170,000	330	330	390	50,000
Total SVOCs	3,363,000	866	23,040	2,799,800	1,870	4,020	3,000	500,000
Total cPAHs	483,000	335	7,290	375,800	ND	370	ND	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	107,880	90	1,791	28,490	ND	21	ND	NL

Concentrations shown in ug/kg or parts per billion (ppb)

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene)

BAP = Benzo(a)pyrene

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

210,000 = Exceeds RSCO

ND = Not Detected at concentration above reported analytical laboratory detection limit

NL = Not Listed in TAGM 4046

DAY ENGINEERING, INC.

1 WEST MAIN STREET BEACON, NEW YORK

METALS TEST RESULTS: SOIL SAMPLES

DETECTED	S	AMPLE AN	D LOCATIO	DN	Recommended	Typical Reekground
ANALYTE	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Soil Cleanup Objective (1)	Background Range (2)
Antimo ny	ND	ND	ND	ND	SB	NL
Arsenic	7.53	1.14	4.68	392	75or SB	312
Bryllium	0.76	ND	0.23	0.31	0.16 or SB	0-1.5
Cadmium	ND	ND	ND	ND	1 or SB(10)	0.1-1
Chromium	73	8.1	1 3. 8	13.4	10 or SB(8)	1.540
Copper	21.6	138	75.2	55.4	25or SB	1-8
Lead	154	11.4	475	99.7	SB	200-60*
Mercury	ND	ND	ND	ND	0.1	0.601-0.2
Nickel	1.81	11.9	20	12.8	13or SB	0.525
Selenium	ND	ND	ND	1.02	2 or SB	0.1-39
Silver	ND	ND	ND	ND	SB	NL
Thallium	ND	ND	ND	ND	SB	NL
Ъс	30.3	37.3	⊘ 97.3*<	49.5	20 or SB	9-6

Concentrations shown in mg/kg or parts per million (ppm).

SB Site background.

- 1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994.
 - Cadmium results also compared to RSCO of 10 ppm listed in the 199\$proposed'TAGM 4046.
 - Chromium results also compared to RSCO of 8 ppm listed in the 199\$proposed'TAGM 4046.

2) = Typical background range as referenced in NYSDEC TAGM 4046 dated January 24, 1994.

93 Exceeds typical background range referenced in TAGM 4046.

49.5 = Exceeds RSCO referenced in TAGM 4046.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

NES0094 / P.C.2696I-01

1 WEST MAIN STREET BEACON, NEW YORK

PCBS TEST RESULTS: SOIL SAMPLES

Detected	S	AMPLE AN	Recommended Soil Cleanup		
Compound	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Objective ⁽¹⁾ (PPM)
PCB260	ND	ND	ND	ND	10

Concentrations shown in mg/kg or parts per million (ppm).

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

1 WEST MAIN STREET BEACON, NEW YORK

CYANIDE, pH, IGNITABILITY AND REACTIVITY TEST RESULTS: SOIL SAMPLES

Dente		NYSDEC TAGM 4046						
Parameter	TB-101 (4.0')	TB-110 (8.0')	TB-121 (8.0')	TB-124 (4.0')	TB-127 (8.0')	TB-126 (10.0')	TB-129 (8.0')	RSCO ⁽¹⁾ (PPM)
Total Cyanide	ND	ND	ND	ND	ND	ND	1.24	NL
р Н	-		9.86	-	-	-	9.89	NL.
Ignitability	-	-	ND	-	-	-	-	NL
Reactivity	-	-	29	-	-	-	-	NL

Cyanide concentrations shown in mg/kg or parts per million (ppm).

- (1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.
- ND = Cyanide not detected at concentration above reported analytical laboratory detection limit / Sample did not ignite.

NL = Not Listed in TAGM 4046.

- = Not Tested as part of Laboratory Program.

1 WEST MAIN STREET BEACON, NEW YORK

VILATILE ORGENIC COMPOUND (VC), NAPHALENE, PHAND TOTAL CYANIDE TEST RESULTS: BOUNDWATER SAMPLES

ø

DETECTED ØCS		Ś	SAMPLE A	ND LOCAT	ION		NYSDEC TOS 1.1.1 SundaterStandad or	
	MW-101*	MW-102* I	1W-103 MV	V-103 MW-1	04* MW-10	5*	Gidance Mue ⁽¹⁾ (PPB)	
Total Xylene	ND	ND	20	59	ND	ND	5	
1,2,4-Trimethylbenzene	ND	ND	5 8	. 12 -	ND	ND	5	
Benzene	ND	ND	6 0 ·	9	ND	ND	1	
Ethylbenzene	ND	ND	ND	3	ND	ND	5	
Toluene	1	ND	50	71	ND	ND	5	
n-Butylbenzene	ND	ND	ND	ND	ND	ND	5	
n-Propylbenzene	ND	ND	ND	ND	ND	ND	5	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	5	
Naphthalene	ND	ND	200	9	ND	ND	10	
1,3,5-Trimethylbenzene	ND	ND	ND	5	ND	ND	5	
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	5	
1,2-Dichlorothane	ND	ND	ND	<u>3</u>	ND	ND	0.6	
Tetrachloroethene	ND	ND	ND	ND	ND	ND	5	
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	5	
рН	-	-	-	6.86	7.92	7.48	NL	
Total Cyanide	-	-	-	0.02	ND	ND	400	

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

29 = Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

- = Not Tested as part of Laboratory Program.

NL = Not listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

DAY ENGINEERING, INC.

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: GROUNDWATER SAMPLES

DETECTED SVOCS	1	S		NYSDEC TOGS 1.1.1 Groundwater Standard or			
	MW-101*	MW-102*	MW-103*	MW-103**	MW-104**	MW-105**	Guidance Value ⁽¹⁾ (PPB)
2-Methylnaphthalene	ND	ND	140	ND	ND	ND	NL
Acenaphthene	ND	ND	83	ND	ND	ND	20
Acenaphthylene	ND	ND	92	ND	ND	ND	NL
Dibenøfuran	ND	ND	58	ND	ND	ND	NL
Fuoranthene	ND	ND	58	ND	ND	ND	50
Fuorene	ND	ND	· 87	ND	ND	ND	50
Naphthalene	ND	ND	1,300	84	ND	ND	10
Phenanthrene	ND	ND	130	ND	ND	ND	50
Pyrene	ND	ND	51	ND	ND	ND	50

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

83

= Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

NA = Not Listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

DAY ENGINEERING, INC.

NES0094 / P.C.2696I-01

1 WEST MAIN STREET BEACON, NEW YORK

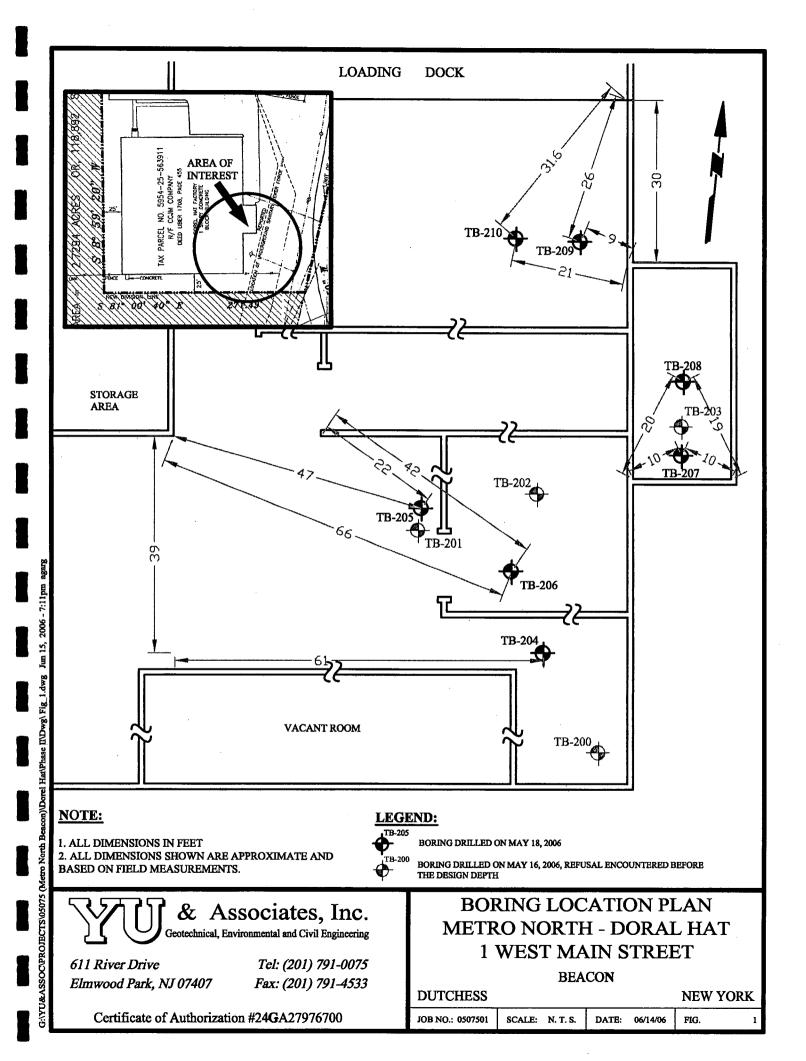
METALS TEST RESULTS: BOUNDWATER SAMPLES

Detected	SAMPLE AND LOCATION			NYSDEC TOS 1.1.1 Coundater Standard or
Analyte	MW-101*	MW-102*	/W-103*	Gidance Mue (1) (PPB)
Antimony	ND	ND	ND	6
Arsenic	ND	ND	14	50
Beryllium	0.30	0.10	ND	3
Cadmium	ND	ND	ND	10
Chromium	16	8	8	100
Copper	117	94	11	1,000
Lead	390	90 👘	35	50
Mercury	5.5	0.30	ND	1.4
Nickel	9	ND	ND	200
Selenium	11	ND	16	20
Silver	ND	ND	46	100
Thaliium	ND	ND	ND	0.5
Zinc	187	95	ND	5,000

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in mg/kg or parts per million (ppm).

390 =


Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

* = Sample collected on November 17, 2005.

Supplemental Phase II Investigation

PROECT NAME:	Metro North Beacon, Dorel	Hat		Boring No.	TB-200
LOCATION:	Beacon, NY	STARTED	05/16/06	BOREBLE EL	JID LET
BOUND ELEXTION:		COMPLETED:	05/16/06	DATE	DEPTH
NORTHIG	EASTING			(8	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental	[
DRILLINGMETED: C	ore Drill & Jack Hammer			05/16/06	
CASING NA		DRILLER	Chris Myers / Tony	03/10/00	NA
CORING NA		INSPECTOR	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAN	NPLE
(éet)	Sytem		Recovery (InIn)	PID	Env.	Depth
		(baed on Burmiter ytem)	(1111) (ppm) S	ample	(éet)
1	FILL	6.5" Thick Concrete Floor Brown c-f SAND, little Silt, little m-f Gravel, dry	12/18			
2		± 2'		0.0]	1
3]	Same as above ± 3'	18/24	(throughout)		
4		Grayish Black c-f SAND, little Silt, frequent ash and cinder fragments ± 4'			TB200-4	4-5
5		Same as above ± 5'	12/12		(Soil)	
	_	END OF BORING @ 5 FEET				
L					l	

REMARKS: Refusal encountered at 5 ft

PROECT NAME:	Metro North Beacon, Dorel	Hat		Boring No.	TB-201
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREBLE E	
BOUND ELEXTION:		COMPLETED:	05/16/06	DATE	DEPTH
NORTHING	EASTING			(1	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING/IETEID:	Core Drill & Jack Hammer			05/16/06	
CASING NA		DRILLER:	Chris Myers / Tony	03/10/06	NA
CORING NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Basever		SAN	PLE
(feet)	Sytem		Recovery	PID	Env.	Depth
		(based on Burmiter steem)	(inin) (ppm) S	ample	(éet)
12	FILL	8" Thick Concrete Floor Brown c-f SAND, little Clayey Silt, trace m-f Gravel, moist ± 2'	4/12	0.0		
3		Brown c-f SAND, little Silt, trace m-f Gravel, dry	12/24	(throughout)		
4 _		±4' Same as above		4	TB201-4 (Soil)	4-5
5		± 5' Dark Brown to Black c-f SAND, little m-f Gravel, ash	12/24		(001.)	
⁶ _		and cinder fragments ± 6.5'	0/6			
7 _ 		END OF BORING @ 6.5 FEET				

REMARKS: Refusal encountered at 6.5 ft

PROECT NAME:	Metro North Beacon, Dorel	Hat		Boring No.	TB-202
LOCATION:	Beacon, Nγ	STARTED:	05/16/06	BOREBLE EL	
GOUND ELEXTION:		COMPLETED:	05/16/06	DATE	DEPTH
NORTHING	EASTING			(8	ET)
RIGTYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLINGMETBD: (Core Drill & Jack Hammer			05/16/06	6.5
CASING NA		DRILLER:	Chris Myers / Tony	05/10/06	0.0
CORING NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAMPLE	
(éet)	Sytem		Recovery	PID	Env.	Depth
		(baad on Burmiter ytem)	(Inín)	ppm) S	ample	(éet)
		6.5" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little m-f Gravel, little Silt, dry			j -	
2			22/24	0.0		
-	-	± 2.5'		(throughout)		
3		Same as above				
4	_	±4'	9/24			
-	1	Dark Brown c-f SAND, little m-f Gravel, trace Silt, moist	1			
5		Same as above		1		
		Brown m-f SAND, some Silt, trace f Gravel, moist	18/24		TB202-5.5	5.5-6.5
6	_	Brown m-f SAND, some Clayey Silt, wet	10/24		(Soil)	
		Dark Brown/Black c-f SAND, and f Gravel, wet $\pm 6.5'$			ł	
	4	END OF BORING @ 6.5 FEET		1	{	
						1
	-1			Į		1
			1	ł		

REMARKS: Refusal encountered at 6.5 ft

PROECT NAME:	Metro North Beacon, Dorel	Hat		Boring No.	TB-203
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREBLE EL	
GOUND ELEXTION:		COMPLETED:	05/16/06	DATE	DEPTH
NORTHIG	EASTING			(1	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLINGMETED: C	ore Drill & Jack Hammer			05/16/06	NA
CASING NA		DRILLER	Chris Myers / Tony	03/10/00	11/4
CORING NA		INSPECTOR	A. Garg		_

DEPTH		Usc	DESCRIPTION	Decement		SAN	IPLE
(éet)		Sytem		Recovery	PID	Env.	Depth
			(baad on Burmiter stem)	(InIn)	ppm) S	ample	(£et)
			4.5" Thick Concrete Floor				
1	_	FILL	Note: Cored drilled to 1 ft due to refusal ± 1'				
			Dark Gray / Black c-f GRAVEL, some c-f Sand, ash	4/12			
2			and cinders, moist ± 2'	4/12	0.0		
			Grayish Brown c-f SAND, some c-f Gravel, trace Silt, moist,				
1			ash and cinders $\pm 3'$		(throughout)		
3			Dark Gray/ Black c-f SAND, some m-f Gravel, moist, ash	16/24		TB203-3	3-4
			and coal fragments			(Soil)	
4			± 4'			(,	
			END OF BORING @ 4 FEET		1	l	
1							

REMARKS: Refusal encountered at 4 ft

Yu & Associates, Inc.

/

PROECT NAME:	Metro North Beacon, Dorel H	at		Boring No.	TB-204
LOCATION:	Beacon, N'r	STARTED	: 05/18/06	BOREBLE EL	
BOUND ELEXTION	1:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHNG	EASTING			(1	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLINGMETOD:	Truck Mounted Geoprobe			05/18/06	6
CASING N	4	DRILLER	: Chris Myers / Tony	03/16/06	0
CORING N	A	INSPECTOR	A. Garg		

DEPTH	USC	DESCRIPTION	Recovery		SAMPLE	
(éet)	Sytem		(in/n)	PID	Env.	Depth
		(baad on Burmiter ytem)	(((((((((((((((((((((((((((((((((((((((ppm) 🖇	ample	(ēet)
1 2 3 4	- FILL	6.5" Thick Concrete Floor Brown c-f SAND, little c-f Gravel, trace Silt, moist ± 4"	24/48	0.0		
5		Dark Brown/Black c-f SAND, some Silt, little 1 Gravel, dry, with ash, cinders and coal fragments				
6 7	-	Brown c-f SAND, little c-f Gravel, trace Silt, moist Brown/Dark Brown c-f Gravel, little c-f Sand, trace Silt, wet	35/48	0.0		
8		Note: Dark Gray / Black color @ bottom 1" of sample ± 8'				
9	-	Dark Gray / Black c-f GRAVEL, little c-f Sand, trace Silt, wet, free product (coal tar) observed, strong petroleum odor			TB204-8.5 (Soil)	8.5-9.5
10	-		14/48	> 100 ppm		
11	-					
12		± 12' Same as above ± 12.5'				
13 14	- SM	Dark Gray v. f. SAND, trace Silt, wet				
15			13/48	0.0		
16		± 16'			4	
	_	END OF BORING @ 16 FEET				

PROECT NAME:	Metro North Beacon, Dorel	Hat	Boring No.	TB-205
LOCATION:	Beacon, NY	STARTED: 05/18/06	BOREBLE E	
BOUND ELEXTION:		COMPLETED: 05/18/06	DATE	DEPTH
NORTHNG	EASTING		(1	ET)
RIGYPE: NA		CONTRACTOR: Miller Environmental		
DRILLINGMETED: T	ruck Mounted Geoprobe		05/18/06	8
CASING NA		DRILLER: Chris Myers / Tony	03/16/06	0
CORING NA		INSPECTOR: A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAN	NPLE
(ē et)		Sytem	•	Recovery (InIn)	PID	Env.	Depth
		Ι.	(baed on Burmiter stem)	(⁽⁽¹¹¹¹⁾)	ppm) S	ample	(ēet)
			8" Thick Concrete Floor				
1		FILL	Brown c-f SAND, little Silt, trace m-f Gravel, dry				
]			×				
2				23/40	ł		
	- 1			227.10			
3	_				[
	1					1	
4			± 4' Same as above		0.0		
5			Dark Brown c-f SAND, some Silt, little m-f Grave		(throughout)		
			moist		(unoughout)		
6			Dark Brown /Black c-f GRAVEL, some c-f Sand,	26/10			
	-1		little Silt, moist, with ash and cinder fragments	36/48		TB205-6.5	6.5-7.5
7		1	Dark Brown SILT & CLAY, moist		Į	(Soil)	(I
	_				1	1	
8			± 8'			TB205-8	8-9
			Brown c-f GRAVEL, little c-f Sand, trace Silt, wet			(Soil)	
· 9			Note: Cobble stuck at tip of the sampler				
10							
				12/48			
11	1						
	-1					ł	
12			± 12'		1		
			Brown c-f GRAVEL, little c-f Sand, trace Silt moist ± 12.5]		
13			Dark Brown/Gray f SAND, little Clayey Silt, moist		1		
		SM					
14				8/48	1		
15							
15							
16			± 16'				
	-		END OF BORING @ 16 FEET			1	
						1	
l	1				1	l	

PROECT NAME:	Metro North Beacon, Dorel	Hat		Boring No.	TB-206
LOCATION:	Beacon, N'r	STARTED:	05/18/06	BOREBLE EL	
GOUND ELEXTION:		COMPLETED:	05/18/06	DATE	DEPTH
NORTHNG	EASTING			1 (8	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING/IET&D:	Truck Mounted Geoprobe			05/19/06	6.5
CASING NA		DRILLER:	Chris Myers / Tony	05/18/06	6.5
CORING NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION			SAMPLE		
(feet)		Sytem		Recovery	PID	Env.	Depth	
			(baed on Burmiter stem)	(inín) (i	ppm) S	ample	(éet)	
		-	6.5" Thick Concrete Floor					
1	_	FILL	Brown c-f SAND, little f Gravel, trace Silt, dry]			
2	_		± 2'					
			Dark Brown c-f SAND, little m-f Gravel, dry	18/41.5				
3					l	1		
4								
-	-		± 4' Dark Brown/Black c-f SAND, little c-f Gravel,		0.0			
5			little Silt, moist ± 5		(throughout)			
_			Brown c-f SAND, lilttle f Gravel, trace Silt, moist		(unoughout)			
6			± 6'		l			
			Dark Gray to Black c-f GRAVEL, little c-f Sand, wet, septic	28/48	1	1		
7	_		odor			<u> </u>		
					1			
8			± 8'				}	
			Dark Gray/Black c-f GRAVEL, little c-f Sand,		l			
9	٦		trace Silt, wet, coal tar odor oberserved			TB206-9	9-10	
10			± 9.5'			(Soil)		
10	-	CL	Dark Gray/Black Silty CLAY, coal tar odor observed	23/48				
11	i	CL						
12	ĺ		± 12'					
			END OF BORING @ 12 FEET		1			
1	_							
				L				

PROECT NAME:	Metro North Beacon, Dorel H	lat		Boring No.	TB-207
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREBLE EL	
BOUND ELEXTION	:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHNG	EASTING			(6	ET)
RIGYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLINGHETOD:	Truck Mounted Geoprobe			05/19/06	C.F.
CASING NA	A	DRILLER:	Chris Myers / Tony	05/18/06	6.5
CORING NA	X	INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAMPLE	
(ēet)		Sytem		Recovery	PID	Env.	Depth
			(baed on Burmiter ytem)	(Inln) (ppm) S	ample	(é et)
			6" Thick Concrete Floor				
1		FILL	Brown / Dark Brown c-f GRAVEL, and c-f Sand,			1	
			trace Silt, moist				
2			±				l
			Dark Gray/Black c-f SAND, some Silt, some	30/42			ł
3			c-f Gravel, with ash and cinder fragments				
4	-		±	<u>4'</u>			
-			Dark Brown/Brown c-f SAND, little c-f Gravel		0.0		
5	-		trace Silt, moist, with ash and cinder fragments		(throughout)		
			± 5.	5			
6	-		Brown c-f GRAVEL, some c-f Sand, trace Silt,	36/48			1
7			moist ± 6. Dark Gray/Black c-f GRAVEL, trace c-f Sand, wet,	2			
'	-		with ash and ciner fragments				
8				21		Ĩ	
0	-		Brown/Dark Brown c-f SAND, and c-f Gravel, wet	<u></u>	1		
9			Dark Gray/Black c-f GRAVEL, trace c-f Sand, wet,				
-			free product (coal tar) observed			TB207-9.5	9.5-10.5
10			±1)'		(Soil)	
			Dark Gray Silty CLAY, wet, coal tar observed	28/48		(,	
11		CL			1		l
					1		
12		<u>`</u>	± 1	2'	1		
			END OF BORING @ 12 FEET]		
	_				1	1	
					· ·		
				1			

PROECT NAME:	Metro North Beacon, Dore	l Hat	Boring No.	TB-208
LOCATION:	Beacon, NY	STARTED: 05/18/06	BOREBLE E	
BOUND ELEXTION:		COMPLETED: 05/18/06	DATE	DEPTH
NORTHNG	EASTING		(1	ŧет)
RIGYPE: NA		CONTRACTOR: Miller Environmental		
DRILLING/IETED: Truck Mounted Geoprobe			05/18/06	6
CASING NA		DRILLER: Chris Myers / Tony	00/10/00	° I
CORING NA		INSPECTOR: A. Garg		

DEPTH		USC	DESCRIPTION	Decessor		SAN	APLE
(feet)		Sytem		Recovery	PID	Env.	Depth
<u> </u>			(baad on Burmiter stem)	(inin) (opm) S	ample	(éet)
			6" Thick Concrete Floor				
1	1	FILL	Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with				
1		TILL	coal and slag fragments				
			Brown/Dark Brown c-f SAND, and Clayey Silt				
2			trace of Control maint (0)	24/42			
			Black c-f SAND, some Silt, little c-f Gravel, dry	- • •			
3	1		with ash and cinder fragments				
							J
4			± 4'				
			Same as above		0.0		
5	_		Dark Brown/Brown c-f GRAVEL, some c-f Sand		(throughout)		1
			little Silt, moist ± 5.5' Dark Gray/Black c-f GRAVEL, little c-f Sand, trace Silt, we				
6	_		Dark Gray/Black c-f GRAVEL, little c-f Sand, trace Silt, we	24/42		[
						1	
7	_						
8	_		± 8'		4	ļ	
•			Dark Gray/Black c-f GRAVEL, some c-f Sand, trace Silt,				
9			wet, coal tar observed at bottom of layer $\pm 9'$			TB208-9	9-10
10	1	a	Dark Gray Silty CLAY, wet			(Soil)	
10		CL		15/48	1		
					1		1
11	•				1		
10			. 10			1	
12	-				4		
			END OF BORING @ 12 FEET				
	_						
					l	I	

PROECT NAME	Metro North Beacon, Dor	el Hat	Boring No.	TB-209	
LOCATION:	Beacon, NY	STARTED: 05/18/06	BOREBLE E		
BOUND ELEXT	ION:	COMPLETED: 05/18/06	DATE	DEPTH	
NORTHNG	EASTING		(1	ET)	
RIGYPE: NA		CONTRACTOR: Miller Environmental			
DRILLINGHETE	D: Truck Mounted Geoprobe		05/18/06	6	
CASING	NA	DRILLER: Chris Myers / Tony	03/18/00	0	
CORING	NA	INSPECTOR: A. Garg			

DEPTH	USC	DESCRIPTION			SAMPLE		
(feet)	Sytem		Recovery	PID	Env.	Depth	
		(baed on Burmiter ytem)	(in/n) (ppm) s	ample	(feet)	
1	FILL	6" Thick Concrete Floor Brown c-f SAND, little c-f Gravel, little Silt, dry					
2 _			21/42				
3_	· .						
4 _	-	± 4' Same as above		0.0			
5 _	4	Dark Brown/Black c-f SAND, with ash and cinders		(throughout)			
6 _	•	± 6' Yellowish Brown c-f SAND, some Silt, little c-f Gravel, moist	40/48				
7 _		Dark Brown/Black of SAND, little m-f Gravel, moist Grayish Black of GRAVEL, little c-f Sand, trace					
8 –	1	Silt, wet, septic odor observed ± 8' Same as above					
9_		Dark Gray / Black c-f GRAVEL, little c-f Sand, moist, observed coal tar, no odor ± 9.5'			TB209-9 (Soil)	9-10	
¹⁰ –	ML	Dark Gray Clayey SILT, moist, septic odor	19/48				
11 -	1 .						
12 _	ł	± 12' Same as above		4			
13 _		Dark Gray v f SAND, little Silt, moist					
14 _	SM		23 /48				
15 _							
16 _		± 16' END OF BORING @ 16 FEET		4			
_							

J

REMARKS:

Yu & Associates, Inc.

PROECT NAME:	Metro North Beacon, Dorel I	Hat		Boring No.	TB-210
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREÐLE EU	
BOUND ELEXTION	:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHNG	EASTING			. (6	ET)
RIGTYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING/IETOD:	Truck Mounted Geoprobe			05/18/06	6
CASING NA	X	DRILLER:	Chris Myers / Tony	05/16/06	6
CORING NA	Λ	INSPECTOR:	A. Garg		

	USC	DESCRIPTION	Recovery		SAMPLE		
(feet)	Sytem		(inin)	PID	Env.	Depth	
		(baed on Burmiter stem)	(((((((((((((((((((((((((((((((((((((((ppm) S	ample	(É et)	
		6" Thick Concrete Floor					
1	FILL	Brown c-f SAND, little Silt, little f Gravel, dry, with ash and					
		cinder fragments					
2	_						
			24/42				
3	_						
4	-	± 4'					
· ·		Same as above	·	0.0			
5		Dark Brown/Black c-f SAND, trace Silt, dry, with		(throughout)			
	-	ash and cinder fragments ± 5.5		(unoughour)			
6		Brown f SAND, little c-f Gravel, little Silt, wet	1				
		± 6.5'	33/48				
7		Dark Gray c-f GRAVEL, little c-f Sand, wet, septic odor					
		observed		1			
8		± 8'		ļ			
		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and					
		cinder fragments, septic odor					
9.	-1	Gray CLAY & SILT, trace c Gravel, moist ± 9'			TB210-9	9-10	
		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and	20/40		(Soil)		
10		cinder fragments, septic odor $\pm 10'$	29/48				
11	CL	Gray Silty CLAY, moist, Black in color at top and					
11 .		gray at bottom					
12	l	± 12'	Į	Į	l		
14		END OF BORING @ 12 FEET		4			
		END OF BORING WIZ FEET]	
						1	
				1			

REMARKS:

Yu & Associates, inc.

Table 1Sampling Summary TableDorel Hat- Supplemental Phase II InvestigationBeacon, NYProject No. 0507501

Date Sampled	Sample Number	Depth (ft)	Medium	Analytical parameters	Sampling method
Soil Samplin	g (Through Bor	ings TB200 to	TB210)		
5/16/2006	TB200-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB201-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB202-5.5*	5.5-6.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB203-3*	3.0-4.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB204-8.5	8.5-9.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB205-6.5	6.5-7.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB205-8*	8.0-9.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB206-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB207-9.5	9.5-10.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB208-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB209-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB210-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
Groundwate	r Sampling				
5/18/2005	MW103		Aqueous	STARS VOCs, TCL VOCs, STARS SVOCs, TCL SVOCs	Bailer

* - Not Analyzed

Qualifiers :

STARS VOCs - Spill Technology and Remediation Series - Volatile Organic compounds

STARS SVOCs - Spill Technology and Remediation Series - Semi-Volatile Organic compounds

TCL VOCs - Target Compound List - Volatile Organic Compounds

TCL SVOCs - Target Compound List - Semi-Volatile Organic Compounds

TCLP VOCs - Toxicity Characteristic Leaching Procedure - Volatile Organic Compounds

TCLP SVOCs - Toxicity Characteristic Leaching Procedure - Semi-Volatile Organic Compounds

Soil Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

Beacon, NY

Project No. 0507501

Sample ID TB204-8.5 TB204-8.5DL TB205-6.5 TB206-9 TB206-9DL TB207-9.5 TB207-9.5DL TB208-9DL TB208-9DL TB209-9 TB210-9 NYSD	C NYSDEC
Lab Sample ID E0658-05C E0658-06B E0658-08C E0658-08CDL E0658-09C E0658-09CDL E0658-10CDL E0658-10CDL E0658-11C E0658-12A Rec. S	1 Soil cleanup
Sampling Date 5/18/2006	objectives
Sample Depth (ft) 8.5-9.5 8.5-9.5 6.5-7.5 9-10 9-10 9.5-10.5 9.5-10.5 9-10 9-10 9-10 9-10 Object	e to protect
Matrix Soil Soil Soil Soil Soil Soil Soil Soil	GW quality
Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ug/Kg
Dilution Factor 1 50 1 1 50 1 100 1 20 1 1	
VOCs	
Benzene 640 E ND ND 1800 E ND 10000 E 22000 DJ 150 ND ND ND 60	60
Toluene 2000 E ND ND 3000 E 5900 DJ 13000 E 78000 D 370 ND ND ND 1500	1500
Ethylbenzene 1300 E ND ND 3600 E ND 23000 E ND 60 ND ND ND 5500	5500
m,p-Xylene 5200 E 22000 DJ ND 7800 E 13000 DJ 48000 E 140000 D 680 ND ND ND 1200	1200
o-Xylene 2800 E ND ND 5500 E ND 35000 E 53000 DJ 260 ND ND ND 1200	1200
Xylene (Total) 8100 E 22000 DJ ND 13000 E 13000 DJ 83000 E 190000 D 940 ND ND ND 1200	1200
Isopropylbenzene 110 ND ND 610 ND 1500 E ND 8 J ND ND ND NA	NA
n-Propylbenzene 51 ND ND 140 ND 2800 E ND 6 J ND ND ND NA	NA
1,3,5-Trimethylbenzene 1600 E ND ND 3100 E ND 25000 E 36000 DJ 170 ND ND ND NA	NA
1,2,4-Trimethylbenzene 2400 E 22000 DJ ND 4100 E 10000 DJ 32000 E 80000 D 400 ND ND ND ND NA	NA
4-Isopropyltoluene 50 ND ND 220 ND 1600 E ND 5 J ND ND NA	NA
Naphthalene 12000 EB 22000 D 4 J 18000 EB 360000 D 85000 EB 2600000 D 5300 EB 54000 D 27 5 J 1300	13000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

E - Concentration exceeds the calibration range

B - Detected in associated method blank

D - Concentration obtained from diluted analysis

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are

listed and identified in bold and boxed.

Use professional Judgement based on data use

Note:

The data presented herein is based on the Preliminary Results of Volatile Organics analyses

Soil Semi-Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

Beacon, NY

Project No. 0507501

Sample ID	TB204-8.5	TB204-8.5DL	TB205-6.5	TB206-9	TB206-9DL	TB207-9.5	TB207-9.5DL	TB208-9	TB208-9DL	TB209-9	TB210-9	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-05ADL	E0658-06B	E0658-08A		E0658-09A	E0658-09ADL	E0658-10A	E0658-10AD1	E0658-11C	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	8.5-9.5	6.5-7.5	9-10	9 -10	9.5-10.5	9.5-10.5	9-10	9-10	- 9 -10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	' ug/Kg	ug/Kg
Dilution Factor	1	10	1	1	25	1	5	1	10	. 1	1		
SVOCs													
Phenol	77 J	ND	ND	ND	ND	260 J	ND	ND	ND	ND	ND	30	30
4-Methylphenol	90 J	. ND	ND	2600 J	ND	370 J	380 DJ		ND	+ND	ND	900	900
2,4-Dimethylphenol	<u>100</u> J	ND	ND	2800 J	ND	1900	DJ		<u>5600</u> DJ		ND	NA	NA
Naphthalene	21000 E	40000 D	140 J	1300000 E	200000 D	57000 1	55000 D		670000 D	620	85 J	13000	13000
2-Methylnaphthalene	10000 E	18000 D	ND	490000 E	72000 D	17000 E	26000 D		240000 D	85 J	ND	36400	36400
Acenaphthylene	11000 E	19000 D	ND	410000 E	58000 D	15000 E	24000 D		200000 D	43 J	ND	41000	41000
Acenaphthene	4900	<u>6400</u> D	ND	320000	40000 D	5600	<u>7200</u> D		<u>70000</u> D	240 J	570	50000	90000
Dibenzofuran	10000 E	17000 D	ND	430000 E	59000 D	14000 E	21000 D		170000 D	140 J	80 J	6200	6200
. Fluorene	12000 E	22000 D	ND	500000 E	72000 D	16000 E	26000 D		220000 D	190 J	150 J	50000	350000
Phenanthrene	36000 E	49000 D	110 J	1200000 E	150000 D	. 39000 E	48000 D	310000 E	500000 D	780	1000	50000	220000
Anthracene	36000 E	31000 D	47 J	480000 E	65000 D	18000 E	31000 D		190000 D	290 J	300 J	50000	700000
Carbazole	9600 E	12000 D	ND	240000	28000 D	14000 E	17000 D		82000 D	200 J	130 J	NA	NA
Fluoranthene	21000 E ⁻	37000 D	. 200 J	770000 E	120000 D	22000 E	36000 D		380000 D	750	1000	50000	1900000
Pyrene	23000 E	<u>33000</u> D	160 J	840000 E	99000 D	27000 E	<u>32000</u> D		290000 D	620	870	50000	665000
Benzo(a)anthracene	15000 E	16000 D	110 J	540000 E	59000 D	15000 E	19000 D		160000 D	240 J	490	224	3000
Chrysene	17000 E	19000 D	150 J	510000 E	58000 D	17000 E	18000 D		150000 D	290 J	680	400	400
Benzo(b)fluoranthene	12000 E	14000 D	110 J	480000 E	46000 D	13000 E	15000 D		130000 D	200 J	450 J	1100	1100
Benzo(k)fluoranthene	6800	8000 D	47 J	200000	28000 D	5200	6300 D	60000	66000 D	1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 -	220 J	110 0	1100
Benzo(a)pyrene	11000 E	11000 D	90 J	390000	41000 D	10000	12000 D	100000 E		170 J	350 J	61	11000
Indeno(1,2,3-cd)pyrene	4500	4600 DJ	55 J	160000	16000 D	4400	4000 D	43000	40000 DJ	78 J	150 J	3200	3200
Dibenzo(a,h)anthracene	1800	1800 DJ	ND	65000	6500 DJ	1800	1800 DJ	18000	16000 DJ	(IND	75 J	14.3	» 10 ⁸
Benzo(g,h,i)perylene	4100	3900 DJ	64 J	150000	14000 D	4100	3700 D	42000	36000 DJ	··· 83 J	150 J	50000	800000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in **bold** type.
- 55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are
 - listed and identified in bold and boxed.
 - Use professional Judgement based on data use

Note:

Table 4Soil TCLP Volatile Organic Analytical Results Summary
Dorel Hat- Supplemental Phase II Investigation

Beacon, NY Project No. 0507501

				~~~j•••	. CECTECI			
Sample ID	TB204-8.5		TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05C		E0658-08C	E0658-09C	E0658-10C	E0658-11C	E0658-12C	Regulatory Levels
Sampling Date	5/18/2006		5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5		9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil		Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1		1	1	1	1	1	
TCLP VOCs								
Benzene	3	J	160	88	6	ND	ND	500
Trichloroethene	2	J	ND	ND	ND	ND	ND	500
Tetrachloroethene	3	J	ND	ND	ND	ND	ND	700

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

TCLP - Toxicity Characterictic Leaching Procedure

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

Note:

# Table 5Soil TCLP Semi-Volatile Organic Analytical Results SummaryDorel Hat- Supplemental Phase II InvestigationBeacon, NY

Project No. 0507501

Sample ID	TB204-8.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	Regulatory Levels
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5	9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	1	1	1	1	1	
TCLP SVOCs							
2-Methylphenol	ND	<b>4</b> J	6 J	8 J	ND	ND	NA
4-Methylphenol	3 J	<b>7</b> J	10 J	12 J	ND	ND	NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

TCLP - Toxicity Characterictic Leaching Procedure

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

#### Note:

# Table 6Soil Cyanide Analytical Results SummaryDorel Hat- Supplemental Phase II InvestigationBeacon, NY

## Project No. 0507501

Sample ID	TB204-8.5	TB205-6.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	TB210-9DUP	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-06A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	6.5-7.5	9-10	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil		GW quality							
Units	mg/Kg	mg/Kg	mg/Kg							
Dilution Factor	1	1	1	1	1	1	1	1		
Cyanides Cyanide	3.2 N	ND	2.5 N	0.54 BN	4.7 N	2.2 N	ND	<b>0.161</b> B	NA	NA

#### Qualifiers

- N Matrix Spike Recovery falls outside the control limit
- B Detected in associated method blank
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

#### Note:

# Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

	Project No. 050/501										
Sample ID	MW103		MW103DL		NYSDEC						
Lab Sample ID	E0658-13A		E0658-13ADL		Ambient Water						
Sampling Date	5/18/2006		5/18/ <b>2</b> 006		Quality Standards						
Matrix	Water		Water		& Guidance Values						
Units	ug/Kg		ug/Kg		ug/l						
Dilution Factor	1	I	8		C						
VOCs											
Acetone	6		ND		50						
Carbon Disulfide	5		ND		50						
Benzene	360	E	400	] D	1						
Toluene	240	E	190	D	5						
Ethylbenzene	10		ND	-	5						
m,p-Xylene	120		82	D	5						
o-Xylene	55		39	DJ	5						
Xylene (Total)	170		120	D	5						
Styrene	17	]	11	DJ	5						
1,3,5-Trimethylbenzene	12	]	ND		5						
1,2,4-Trimethylbenzene	29		<b>19</b> DJ		5						
Naphthalene	<b>410</b> E		1100	D	10						
		_		-							

### Beacon, NY Project No. 0507501

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

#### Qualifiers

- E Concentration exceeds the calibration range
- J Analyte detected Below quantitation limits
- D Concentration obtained from diluted analysis
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type.

55 -

Concentration of compounds that exceed the NYSDEC Ambient Water Quality

Standards & Guidance Values are listed and identified in bold and boxed. Use professional Judgement based on data use

Note:

# Groundwater Semi-Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

# Beacon, NY

## Project No. 0507501

Sample ID	MW103		MW103DL		NYSDEC
Lab Sample ID	E0658-13B		E0658-13BDL		Ambient Water
Sampling Date	5/18/2006		5/18/2006		Quality Standards
Matrix	Water		Water		& Guidance Values
Units	ug/Kg		ug/Kg		ug/l
Dilution Factor	1		10		Ū
SVOCs					
Phenol	240	E	270	] D	1
2-Methylphenol	- 360	E	480	D	NA
4-Methylphenol		Е	740	D	NA
2,4-Dimethylphenol	ND		1000	D	50
Naphthalene	730	E	1300	D	10
2-Methylnaphthalene	100		110	D	4.2
Acenaphthylene	72		77	DJ	NA
Acenaphthene	70		80	DJ	20
Dibenzofuran	31		32	DJ	NA
Fluorene	26		26	DJ	50
Phenanthrene	48		55	DJ	50
Anthracene	9	J	ND	- 1	50
Carbazole	29		28	DJ	NA
Fluoranthene	10		ND		50
Pyrene	9	J	ND		50
Benzo(a)anthracene	2	J	ND		NA
Chrysene	3	J	ND		0.002
Benzo(b)fluoranthene	2	J	ND		0.002
Benzo(k)fluoranthene		J	ND		0.002
Benzo(a)pyrene	2	J	ND		0.002
Indeno(1,2,3-cd)pyrene	1	J	ND		0.002
Benzo(g,h,i)perylene	1	J	ND		NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

#### Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Ambient Water Quality Standards & Guidance Values are listed and identified in bold and boxed.

Use professional Judgement based on data use

Note:

# Attachment 2

# Previous Investigation Reports (provided on CD)



# **Attachment 3**

# NYSDOH Generic Community Air Monitoring Plan



#### New York State Department of Health Generic Community Air Monitoring Plan

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical-specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

#### **Community Air Monitoring Plan**

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for volatile organic compounds (VOCs) and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate NYSDEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells. **Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

#### VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a **continuous** basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

All 15-minute readings must be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

#### Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored **continuously** at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (DEC and DOH) personnel to review.

June 20, 2000

P:\Bureau\Common\CommunityAirMonitoringPlan (CAMP)\GCAMPR1.DOC