

December 27, 2006

Mr. Gardiner Cross NYSDEC Division of Environmental Remediation 625 Broadway Albany, New York 12233

Re: 1 West Main Street, Beacon, New York Interim Remedial Measure (IRM) Work Plan

Dear Mr. Cross:

Enclosed please find a hard copy and CD of the *Interim Remedial Measure (IRM) Work Plan* (IRM Work Plan) for the property located at 1 West Main Street in Beacon, New York. This IRM Work Plan has been revised from the version previously submitted on September 29, 2006, to address NYSDEC's comments discussed during a conference call on December 7, 2006. The main revisions included changes to Section 2.6 – Air Monitoring (to refer to the NYSDOH Generic Community Air Monitoring Plan) and changing the title of the document to reflect that the work will be conducted as an IRM under CHGE's exiting Voluntary Cleanup Agreement (VCA) Index No. D3-0005-99-04.

The hard copy document includes text, tables, figures, Attachments 1 (Relevant Information from Previous Investigation Reports) and Attachment 3 (NYSDOH Generic Community Air Monitoring Plan). The CD contains a PDF of the complete document, including Attachment 2 (Previous Investigation Reports).

If you should have any questions and/or comments, please feel free to contact Jeffrey Clock at (845) 486-5534. We look forward to receiving NYSDEC's approval of the IRM Work Plan

Respectfully,

icholos Nonoly A

Nicholas Kowalczyk Assistant Environmental Specialist

cc: Robert Schick, NYSDEC Gary Litwin, NYSDOH Jeffrey Clock, CHGE Patricia Buck, CHGE Records Management, CHGE Karen Timko, M-NR (3 copies) Dennis Harkawik, JFM Nancy Gensky, BBL David Bessingpas, BBL

284 South Avenue Poughkeepsie, NY 12601 64262196Ltr.doc

(845) 452-2000 www.CHEngergyGroup.com

Interim Remedial Measure (IRM) Work Plan

1 West Main Street Beacon, New York

VCA Index No. D3-0005-99-04

Central Hudson Gas & Electric Corporation Poughkeepsie, New York

December 2006

Table of Contents

Section	1.	Introduction	1-2
		1.1 General	1-2
		1.2 Site Description	1-2
		1.3 Site History	1-2
		1.4 Previous Investigations	1-2
		1.4.1 Modified Phase I Environmental Site Assessment	1-2
		1.4.2 Phase II Environmental Site Assessment	1-2
		1.4.3 Supplemental Phase II Investigation	1-2
		1.5 Extent of Visually Impacted Soils	1-2
Section	2.	Scope of Work	2-2
		2.1 General	2-2
		2.2 Remediation Contractor Procurement, Survey, and Pre-Remediation Submittals	2-2
		2.3 Mobilization/Site Preparation	2-2
		2.4 Site Security	2-2
		2.5 Soil Removal	2-2
		2.5.1 Soil Excavation Method and Approach	2-2
		2.5.2 Soil Dewatering/Stabilization	2-2
		2.6 Air Monitoring	2-2
		2.7 Water Management	2-2
		2.8 Equipment Cleaning and Residual Waste Management	2-2
		2.9 Transportation and Disposal.	2-2
		2.9.1 Disposal of impacted Soils and Debris	Z-Z
		2.9.2 Water	۲-۲
		2.9.3 Non-Aqueous Phase Liquid	ב-2 מימ
		2.10 Post-Removal Activities	
		2.10 Post-Removal Activities	2-2
Section	3.	Institutional Controls	3-2
oconom	0.		
Section	4.	Reporting	4-2
Section	5	Project Organization	5-2
	5.		J-Z

Tables

12/27/06

64262196Rpt.doc

1	Summary of	Pre-Phase	II Soil Boring	Information
---	------------	-----------	----------------	-------------

- 2 3
- Summary of Phase II Soil Boring Information Summary of Supplemental Phase II Soil Boring Information

Figures

- 1 Site Location Map
- 2 Site Plan and Proposed Soil Removal Limits

Attachments

- 1 Relevant Information from Previous Investigations
- 2 Previous Investigation Reports (on CD)
- 3 NYSDOH Generic Community Air Monitoring Plan

1. Introduction

1.1 General

This *Interim Remedial Measure (IRM)Work Plan* (IRM Work Plan) describes the scope of work for soil removal activities to be conducted by Central Hudson Gas & Electric Corporation (CHGE), on behalf of Metro-North Commuter Railroad Co. (M-NR), at a property located on 1 West Main Street in Beacon, New York (Figure 1). The scope of work generally involves the removal and offsite disposal of visually impacted soils adjacent to the southeast corner of the Dorel Building on the subject property (Figure 2), which were identified during Phase I/II investigation activities conducted by M-NR between July 2005 and May 2006. The impacted soils are assumed to contain manufactured gas plant (MGP) tars that are associated with the former Beacon MGP site located just east of the subject property (Site # 314069; Figure 2). The subject property is currently owned by CCJM Company, but it is CHGE's understanding the M-NR is considering purchasing the property and using the Dorel Building as a warehouse. Access to the property required for implementing this IRM Work Plan will be obtained from the current property owner, through M-NR.

Note that work conducted by CHGE at the former Beacon MGP site was performed under Voluntary Cleanup Agreement (VCA) Index No. D3-0005-99-04. CHGE received a Release from the New York State Department of Environmental Conservation (NYSDEC) under the VCA on January 31, 2002. The work proposed in this IRM Work Plan will also be conducted under the existing VCA.

1.2 Site Description

The subject property is approximately 4.1 acres in size, with an approximately 32,000 square foot building located in the southern portion of the property. According to the *Modified Phase-1 Environmental Site Assessment Report* (Phase I Report; YU & Associates, Inc. [YU], September 2005), the building was reportedly formerly used for office space, assembly, sales, and warehousing. A grass covered area surrounds the building and an asphalt-paved parking lot covers the northern half of the property. A contractor storage area is located in the northwest corner of the property. A fenced area located in the east-central portion of the property is used by an adjacent auto body shop to store vehicles. The southeastern portion of the property is covered with trees, high brush, and other materials. A large stockpile of stone/debris is located immediately south of the site (*Phase II ESA Project Status Report*, Day Engineering, P.C. [DAY], December 2005).

1.3 Site History

According to the Phase I Report (YU, September 2005), the following companies formerly occupied the subject property (based on review of Sanborn maps from 1884 to 1962):

- Hudson Straw Works;
- W.N. Cambell Sash, Door and Blind Factory;
- Federal Glue Company;
- Gillette Rubber Company;
- Beacon Tire Company;
- Harry Hooper Coal Company;

- Hammond Paint and Chemical Company;
- Duchess Coal Company; and
- Inflated Products Company.

1.4 Previous Investigations

Investigations conducted at the subject property include:

- Modified Phase I Environmental Site Assessment (July August 2005);
- Phase II Environmental Site Assessment (November December 2005); and
- Supplemental Phase II Investigation (May 2006).

Each of the investigations are summarized below. Relevant information (e.g., boring logs, data summary tables, etc.) from each of these investigations are provided in Attachment 1. Complete investigation reports are provided in Attachment 2 (on CD).

1.4.1 Modified Phase I Environmental Site Assessment

A detailed discussion of the scope and findings of the Modified Phase I Environmental Site Assessment (ESA) are presented in the Phase I Report (YU, September 2005), and are summarized below. As discussed in the Phase I Report, the Phase I ESA scope of work was divided into two tasks: Task 1 – Phase I ESA and Task 2 – Pre-Phase II Investigation. The Phase I ESA was conducted in accordance with ASTM E1527, and included review of historical documentation, federal and state database/records searches, visual observation of current conditions, and reconnaissance of adjoining properties. Based on the findings of the Phase I ESA, ten Potential Concerns and five Recognized Environmental Conditions (RECs) were identified on the subject property.

Three Potential Concerns/RECs were investigated as part of the Pre-Phase II Investigation, which included the following activities:

- Advancement of four soil borings;
- Collection of three soil samples (for analysis of volatile organic compounds [VOCs], semivolatile organic compounds [SVOCs], metals, pesticides, polychlorinated biphenyls (PCBs), phenols, and cyanides); and
- Collection of one groundwater sample (for analysis of VOCs, SVOCs, metals, pesticides, and PCBs).

The locations of the four soil borings are depicted on Figure 2. Boring depths ranged from 1 to 20 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, silt, wood, concrete fragments, and brick fragments. The fill material generally extended to depths of 7 to 10 feet below grade. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at three of the four borings. MGP tar-type material was not encountered in any of the four borings. For each boring, Table 1 summarizes the depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs, SVOCs, metals, and total phenols were exceeded in one or more of the soil samples. NYSDEC Ambient Water Quality Standards for certain VOCs, SVOCs, metals, and pesticides were exceeded in the groundwater sample. Based on the results of the Pre-Phase II Investigation, additional soil and groundwater sampling and analysis were recommended in the Phase I Report (YU, September 2005).

1.4.2 Phase II Environmental Site Assessment

A detailed discussion of the scope and findings of the Phase II ESA are presented in the *Phase II ESA Project Status Report* (DAY, December 2005), and are summarized below. The following investigation activities were conducted as part of the Phase II ESA:

- Advancement of 31 direct-push test borings;
- Installation of five 1-inch diameter monitoring wells;
- Collection of 15 soil samples (for analysis of VOCs, SVOCs, metals, PCBs, cyanide, pH, ignitability, and/or reactivity); and
- Collection of six groundwater samples (for analysis of VOCs, SVOCs, and/or metals).

The locations of the 31 test borings are depicted on Figure 2. Boring depths ranged from 8 to 12 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, coal, slag, wood, and brick fragments. The fill material generally extended from approximately 0.5 feet below grade (at most locations, fill was overlain by approximately 0.5 feet of asphalt pavement or topsoil) to depth of 5 to 12 feet below grade. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at 18 of the 31 borings. Refusal of the direct push boring equipment, potentially indicative of the top of bedrock, was encountered at six borings. MGP tar-type material was encountered within the fill material at eight borings. For each boring, Table 2 summarizes the ground surface type, depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

Groundwater was measured at depths ranging from approximately 1 to 5 feet below grade in the five monitoring wells.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs and SVOCs were exceeded in one or more of the soil samples. Metals concentrations in the soil samples were generally low and/or comparable to published background values. PCBs were not detected in any of the soil samples. Based on waste characterization testing, the fill material is not considered a characteristic hazardous waste.

NYSDEC Ambient Water Quality Standards for certain VOCs and SVOCs were exceeded in the groundwater samples collected from MW-103. VOCs and SVOCs were either not detected or detected below standards in the samples from the other wells. NYSDEC Ambient Water Quality Standards for certain metals were exceeded in the groundwater samples collected from MW-101 (lead and mercury) and MW-102 (lead).

1.4.3 Supplemental Phase II Investigation

Based on the findings of the Phase II ESA, a Supplemental Phase II Investigation was conducted. A detailed discussion of the scope and findings of the Supplemental Phase II Investigation are presented in the *Supplemental Phase II Investigation Report* (YU, June 2006), and are summarized below. The following investigation activities were conducted as part of the Supplemental Phase II Investigation:

- Advancement of 11 direct-push test borings within the Doral Hat Building;
- Collection of seven soil samples (for analysis of VOCs, SVOCs, cyanide, pH, ignitability, and/or reactivity); and
- Collection of one groundwater sample from MW-103 (for analysis of VOCs and SVOCs).

The locations of the 11 test borings are depicted on Figure 2. Boring depths ranged from 4 to 16 feet below grade. The primary material encountered in the borings was fill material consisting of varying amounts of gravel, sand, silt, coal, slag, ash, and cinders. The fill material generally extended from below the concrete building floor to depths of 4 to 12.5 feet below the floor¹. Native soils, consisting of mixtures of clay, silt and/or sand, were encountered below the fill material at seven of the 11 borings. Refusal of the direct push boring equipment was encountered at four borings. MGP tar-type material was encountered (generally within the fill material) at four borings. For each boring, Table 3 summarizes the depth intervals that fill and native materials were encountered, if/where refusal was encountered, and the depths at which MGP tar-type materials were observed.

NYSDEC Recommended Soil Cleanup Objectives for certain VOCs and SVOCs were exceeded in one or more of the soil samples. Based on waste characterization testing, the fill material is not considered a characteristic hazardous waste.

NYSDEC Ambient Water Quality Standards for certain VOCs and SVOCs were exceeded in the groundwater samples collected from MW-103.

1.5 Extent of Visually Impacted Soils

As discussed above in Section 1.4 and shown on Figure 2, visually impacted soils that contain MGP tar-type materials are present beneath the southeast corner of the Doral Hat Building and also outside of the building, adjacent to the southeast corner. Outside of the building, the visibly impacted soil area is defined to the north by TB-119 and to the south by TB-124 and TB-128 (no visibly impacted soils were observed at these borings). The presence of a steep, densely vegetated hillside that slopes up away from the Doral Hat Building toward River Street has prevented additional investigations to the east. Visually impacted soils were observed (generally in fill materials) at depths of up to 10 feet below grade. Native soils were present at the majority of the soil borings present within this area at depths beginning from 5 to 10 feet below grade. Refusal (potentially indicative of bedrock) was encountered within this area at depths ranging from 9 to 15 feet below grade.

¹ Note: the building floor is approximately three feet higher than the ground surface outside of the building.

2. Scope of Work

2.1 General

This section presents a description for the IRM soil removal activities that will be conducted by CHGE at the 1 West Main Street property in Beacon, New York. The following activities will be conducted:

- Remediation Contractor procurement, survey, and pre-remediation submittals;
- Mobilization/site preparation;
- Site security;
- Soil removal;
- Air monitoring;
- Water management;
- Equipment cleaning and residual waste management;
- Transportation and disposal;
- Post-removal activities; and
- Demobilization.

Each of these activities is discussed in detail below.

2.2 Remediation Contractor Procurement, Survey, and Pre-Remediation Submittals

CHGE will select a Remediation Contractor to implement the IRM soil removal activities. Prior to conducting the soil removal activities, the selected Remediation Contractor will conduct a survey of the soil removal area, which is anticipated to include survey of the following features:

- Above grade physical site features including all above grade structures;
- Below grade features such as building footers;
- Horizontal limits of the proposed soil removal area;
- Surface contours at a 1-foot interval; and
- Above and below grade utilities (if applicable).

Survey control will include survey control benchmarks and monuments. A licensed surveyor will provide the surveying functions/services necessary for the proper construction and documentation of the activities.

As required/appropriate, the Remediation Contractor will prepare the following submittals for review and approval by the NYSDEC and the New York State Department of Health (NYSDOH):

- Site Operations Plan (SOP); and
- Site Health and Safety Plan (HASP).

Each of these submittals is described below.

Site Operations Plan

The SOP will provide detailed procedures for completing the IRM soil removal activities. The following topics are anticipated to be included in the SOP:

- Work schedule;
- Site security;
- Mobilization and site preparation;
- HASP and other plan preparation;
- Staging area development;
- Erosion and sedimentation control measures;
- Excavation support methods (including foundation protection adjacent to the Doral Hat Building);
- Excavation methods;
- Construction quality assurance/quality control measures;
- Material handing methods;
- Material dewatering/stabilization methods;
- Odor control;
- Dewatering liquid handling and disposal (including disposal facilities, testing requirements, permitting requirements, and pretreatment requirements, if necessary);
- Impacted soil/waste handling and disposal (including disposal facilities, testing requirements, permitting requirements, and pretreatment requirements, if necessary);
- Offsite transportation plan (including description of containers and covers, modes of transportation, permitting requirements, and expected frequency and schedule of transportation);
- Disposal facility(ies);
- Select backfill installation;
- Equipment cleaning and residual waste management;
- Demobilization; and
- Organizational chart of key personnel, including subcontractors and resumes of key personnel.

The Remediation Contractor will submit the SOP to the NYSDEC and NYSDOH at least 20 days prior to the IRM soil removal activities.

Site Health and Safety Plan

The Remediation Contractor will be responsible for the preparation of the overall site-specific HASP that will establish safe working conditions at the site during the IRM soil removal activities. Each party performing work on site will comply with the overall site-specific HASP and will prepare their own task-specific HASP for their organization, which will be consistent with the overall site-specific HASP. Each task-specific HASP must meet the minimum requirements established in the site-specific HASP and 29 CFR 1910 and 1926. Each party will also agree in writing to abide by requirements set forth in the site-specific HASP. The Remediation Contractor will submit the overall site-specific HASP and the subcontractor's task-specific HASPs to NYSDEC and NYSDOH at least 20 days prior to the IRM soil removal activities.

The site-specific HASP, at a minimum, will meet the requirements of 29 CFR 1910 and 29 CFR 1926 (which includes 29 CFR 1910.120 and 29 CFR 1926.65). It is anticipated that the HASP will include, but will not be limited to, the components described below.

- Identification of Key Personnel Identification of the onsite and offsite health and safety personnel responsible for the implementation of health and safety procedures. All onsite personnel involved in the activities will be required to maintain OSHA 40-hour hazardous waste training (29 CFR 1910.120 and 29 CFR 1926.65) and the corresponding 8-hour refresher course update.
- Training A description of health and safety training requirements for supervisory and onsite personnel will be presented. Training requirements will include attending an initial site orientation prior to engaging in any onsite activities.
- Medical Surveillance A description of appropriate medical examinations required for supervisory and onsite personnel to conduct the tasks associated with the performance of the remedy will be presented. Associated tasks may include the following: working with chemicals, heavy lifting, using respiratory protection, using personal protective equipment (PPE) and conducting hazardous substance operations in accordance with 29 CFR 1910.120 and 1926.65.
- Task Specific Risk/Hazard Analysis A description of chemical and physical hazards associated with removal of the impacted soil within the soil removal area will be presented in the HASP. In addition, a discussion of identifying and mitigating foreseeable chemical and physical hazards associated with the work will be presented. Foreseeable chemical and physical hazards may include, but will not be limited to, hazards associated with exposure to constituents of concern, heavy equipment operation, site conditions, weather, biological hazards, materials handling, and work around excavated areas and water.
- Work Zones A description of the work zones that will be established during the IRM soil removal activities will be presented. The work zones will be preliminarily delineated on a figure that depicts the designation of zones including: (1) Exclusion Zones; (2) Contamination Reduction Zones; and (3) Support Zones. The level of personal protection required for each work zone will be specified.
- Personal Safety Equipment and Protective Clothing The HASP will identify personal safety equipment and protective clothing to be used and available onsite. This will include identification of expected levels of protection for the work, and the action levels for PPE upgrades. Also included will be a respiratory protection program that meets the requirements of 29 CFR 1910.134, which establishes specific requirements for any respirator use.
- Air Monitoring Plan An air monitoring plan that identifies air-monitoring requirements within the soil removal area and at the perimeter for site-specific constituents of concern. The air-monitoring plan may contain requirements for personnel monitoring and will present trigger concentrations for site-specific constituents of concern that will require corrective action.
- Equipment Cleaning The methods and procedures for cleaning of personnel, vehicles, and equipment will be described.
- Confined Space Entry The HASP will describe procedures for confined space entry in accordance with OSHA's Permit-Required Confined Space Standard (29 CFR 1910.146). In addition, requirements for Confined Space Entry Training for all authorized personnel in accordance with 29 CFR 1910.146 will be presented.

- Overhead and Electrical Safety The HASP will describe procedures for electrical safety in accordance with the requirements of OSHA (29 CFR 1926.550), New York State High Voltage Proximity Act, New York State Department of Transportation (Code SB-92-2), and New York State Department of Labor, Code Rule 57, Section 202-h (High Voltage Proximity Act).
- Material Safety Data Sheets Material Safety Data Sheets (MSDSs) for all materials to be brought onsite, as well as constituents that are expected to be encountered in the course of remediation, will be presented as an attachment or appendix to the HASP.
- Excavation Safety Excavation and trenching safety procedures as specified in 29 CFR 1926 Subpart P including, but not limited to soil classification, excavation inspections, protective systems, and designated competent persons will be discussed.
- Procedures and Programs Standard operating procedures and safety programs as required by applicable sections of Section 1910 of 29 CFR 1910 and 29 CFR 1926.
- Contingency Plan The HASP will also contain a contingency plan to be implemented in the event of various emergency or non-routine events. The contingency plan will set forth procedures for addressing spill prevention and emergency response procedures, odor control, emergency vehicular access/egress, evacuation, emergency notification and contacts, and emergency medical procedures.

2.3 Mobilization/Site Preparation

Prior to commencing the remediation, the Remediation Contractor will perform mobilization and site preparation activities. The following mobilization/site preparation activities are anticipated to be conducted by the Remediation Contractor (the exact methods used by the Remediation Contractor will be specified in the SOP):

- Identifying the location of all aboveground and underground utilities (e.g., electric, gas, water, sewer, telephone, etc.), equipment, and structures (as necessary to implement the IRM soil removal activities);
- Obtaining any necessary permits required by federal, state, and local codes, rules, or regulations;
- Mobilizing necessary remediation personnel, equipment, and materials to the subject property;
- Clearing of vegetation to facilitate the soil excavation activities;
- Constructing a stabilized construction entrance consisting at or near the soil removal area exit and establishing onsite and offsite traffic controls and patterns;
- Constructing a material staging area(s) for overall management and dewatering, stabilizing, and staging of excavated material;
- Constructing an equipment cleaning pad for trucks, equipment, and personnel that come into contact with impacted materials during soil removal activities;
- Establishing work zones (i.e. soil removal area, staging area, cleaning area, and other areas needed for the remediation) and health and safety zones (i.e. Exclusion Zone, Contamination Reduction Zone, and Support Zone);
- Installing erosion and sedimentation control measures in accordance with the SOP
- Constructing either an onsite water management system and associated piping connections (if applicable) to the sewer system for subsequent discharge to the local sewer system or a groundwater management area for staging water prior to offsite disposal in accordance with the water management procedures specified in the SOP;

- Abandoning groundwater monitoring wells that lie within the soil removal area;
- Installing and maintaining temporary fencing or other temporary barriers to limit unauthorized access to the areas where soil removal activities will be conducted; and
- Stabilizing the building foundation adjacent to the soil removal area by installing underpinning piles beneath/adjacent to the existing building foundation or other appropriate methods specified in the SOP.

2.4 Site Security

The level of site security will be dependent on the activities being performed and location of activities; however, the following security measures are anticipated to be implemented: fencing and/or barriers, warning tape/signs, maintenance of sign-in/sign-out sheets, and implementation of safe work practices. Descriptions of site security measures are provided below. The exact methods used by the Remediation Contractor will be specified in the SOP.

- Fencing At a minimum, the soil removal area will be enclosed with a fence, to control access for nonauthorized personnel. Access gates will provide ingress and egress access to the soil removal area. In addition, temporary construction fencing will also be used, as needed, to delineate and secure areas of the ongoing remediation activities. Temporary fencing is anticipated to be used in the following areas:
 - Areas where stockpiling (if applicable) or loading for offsite transport occurs;
 - Areas designated as health and safety zones;
 - Areas utilized for personal or equipment cleaning activities; and
 - Any areas where the remediation activities may cause a disruption to the normal vehicular or pedestrian traffic.
- Posting of Warning Tape and Signs To restrict access during remediation activities, warning tape may be installed at certain locations, such as open excavations, cleaning areas, and stockpile areas.
- Sign-In/Sign-Out Sheet For the duration of remediation activities, a sign-in/sign-out sheet will be maintained. All site personnel and site visitors will be required to sign in upon entering the site and sign out upon leaving.
- Implementation of Safe Work Practices Implementation of safe work practices will provide for additional site security during remediation. Safe work practices that will contribute to overall security include the following:
 - Maintaining fencing and signage around all open excavations and other potentially dangerous areas;
 - Parking heavy equipment in a designated area each night and removing keys;
 - Maintaining an organized work area, including maintaining access roads, proper storage of all tools and equipment;
 - Conducting a daily security review and health and safety meetings; and
 - Maintaining covers on staging areas and associated sumps.

2.5 Soil Removal

The following subsections discuss the anticipated soil excavation method and approach, and soil dewatering/stabilization methods. The exact methods to be used will be specified in the Remediation Contractor's SOP.

2.5.1 Soil Excavation Method and Approach

As discussed above in Section 1.5 and shown on Figure 2, the anticipated horizontal soil removal limits encompass soil borings MW-103, TB-105, TB-106, TB-117, TB-121, TB-122, and TB-123 where visibly impacted soil containing MGP tar-type materials were observed. The soil removal area is defined to the north by TB-119 and to the south by TB-124 and TB-128 (no visibly impacted soils were observed at these borings). The Doral Hat Building defines the western limit of the soil removal area and the steep, densely vegetated hillside defines the eastern limit of the soil removal area. Within this area, MGP tar-type materials were observed (generally in fill materials) at depths of up to 10 feet below grade. Native soils were present at the majority of the soil borings present within this area at depths beginning from 5 to 10 feet below grade (MGP tar-type materials were generally not encountered within the native soils). Refusal (potentially indicative of bedrock) was encountered within this area at depths ranging from 9 to 15 feet below grade.

Within the soil removal area depicted on Figure 2, soils will be initially excavated to a depth of approximately 8 feet below existing grade, or to the top of the native soil or bedrock, whichever occurs first. If, after reaching a depth of 8 feet below grade or the top of the native soil, MGP tar-type materials are still present, excavation will continue until MGP tar-type materials are no longer observed, or until bedrock is encountered. The soil removal limits identified on Figure 2 encompass an area of approximately 4,200 square feet. Based on this area, and an assumed average removal depth of 8 feet, the resulting volume of soils anticipated to be removed from this area is 1,250 cubic yards (cy).

Soil excavation will generally be conducted using conventional excavation equipment. Soils visually impacted by MGP tar-type materials will be segregated from visually non-impacted soils to the extent feasible. Impacted materials will be handled, stabilized (as necessary), transported, and disposed of as set forth in the Remediation Contractor's SOP. Visually non-impacted soils will be stockpiled near or within the soil removal area and used as backfill.

Due to the anticipated excavation depths (up to 10 feet below grade) and soil characteristics, excavation support will be required to provide for stable and safe sidewalls. Due to the depth to bedrock within the soil removal area (estimated to be 9 to 15 feet below grade), sheetpiling is not anticipated to be a feasible excavation support mechanism. Instead, sloping or benching of the sidewalls will likely be the preferred excavation support method. Along the Doral Hat Building, underpinning (or other appropriate methods) of the building foundation may also be required to maintain the integrity of the building foundation. The exact excavation and building support methods will be specified in the Remediation Contractor's SOP.

Soil excavated from above the groundwater table will generally not require dewatering. However, soil excavated from below the groundwater table (anticipated to be encountered at approximately 1 to 5 feet below grade) will likely require dewatering and possibly stabilization. Dewatering of excavated materials, if needed to meet disposal requirements, will be performed in accordance with the requirements of the disposal facility. Soil dewatering/stabilization requirements are further described in Section 2.5.2

Odor/vapor and dust monitoring and control action levels will be specified in the overall site HASP (prepared by the Remedial Contractor) and NYSDOH's Generic Community Air Monitoring Plan (CAMP; Attachment 3). At a minimum, odor/vapor and dust controls will be initiated when work area action levels, as presented in the HASP, or perimeter action levels as specified in the CAMP are exceeded. Odor/vapor and dust control of the excavation and excavated materials, if necessary, is anticipated to be conducted through one or more of the following methods:

- Foam suppression;
- Water spray;
- Cover excavation and/or soil in staging area(s) with ultraviolet resistant polyethylene plastics at least 5-mil thick;
- Minimize extent of excavation areas; and/or
- Methods selected by the Remediation Contractor.

2.5.2 Soil Dewatering/Stabilization

Impacted soils will be direct loaded, to the extent practicable, in a manner that minimizes the potential for inadvertent releases to the environment, unsafe conditions for onsite personnel, and delays or complications in soil removal implementation. However, excavated impacted soil containing free liquids, if any, may require dewatering prior to offsite transportation and disposition as specified by the treatment/disposal facility. In general, excavated impacted soil that contains free liquid may be dewatered using gravity drainage and/or stabilized with other materials. Methods to be implemented during soil dewatering/stabilization activities will be further discussed in the Remediation Contractor's SOP. Following gravity dewatering, the paint filter test (USEPA SW-846 Method 9095) and/or visual observation may be used to determine if excavated impacted soil contains free liquids, additional stabilizing agent will be mixed with the excavated material to reduce moisture content. Gravity dewatering and/or stabilizing operations will be conducted in a dedicated staging area constructed at location selected by the Remediation Contractor.

The anticipated staging are requirements are as follows:

- The excavated soil will be placed onto a 30 mil low-permeability liner of sufficient strength and thickness to prevent puncture during use. The placement and/or removal of soil into the staging area will not involve any equipment or procedures that may jeopardize the integrity of the underlying low-permeability liner;
- The staging area will be continuously covered with a properly anchored membrane, except while soil is actively being placed, stabilized, or removed. This membrane will be maintained for the duration of staging activities;
- A perimeter berm will be constructed around the staging area to contain water that has drained from the staged soils and to mitigate the potential for surface water run-on to come in contact with the staged soils;
- The staging area will be sloped and equipped with a sump to collect water that has drained from the stockpiled soils. Drained water will be removed from the sump, as required, and handled in accordance with Section 2.8 of this IRM Work Plan;

- Stabilizing operations may be conducted within the staging area, but only if the integrity of the lowpermeability liner and perimeter berm is maintained throughout the work. Stabilizing operations include the addition of a stabilization agent to soils by some type of mechanical mixing (i.e., pug mill, backhoe, etc.). Stabilizing operations may also be conducted after the soil has been loaded into lined rolloffs for offsite disposition provided the integrity of the liner is maintained; and
- The staging area will be inspected daily and noted deficiencies will be promptly addressed.

2.6 Air Monitoring

An air-monitoring program will be established prior to, and will be implemented during, the soil removal activities to protect the health and safety of site workers and the surrounding community, address potential nuisance odors, and establish appropriate response protocols for potential emission source control. This effort will include both work area and perimeter air monitoring programs. The onsite air monitoring program will be conducted in accordance with the site specific HASP and the perimeter air monitoring program will be conducted in accordance with the NYSDOH's Generic CAMP (Attachment 3). The methods to control odors and/or vapors during remediation activities will be specified in the SOP, and may include the measures previously described in Section 2.5.1.

The work area/breathing zone air monitoring program is anticipated to be implemented by employing directreading survey instruments to identify the appropriate level of PPE needed based on total organic vapor and particulate concentrations. Excavations are anticipated to be monitored for total organic vapors, total particulate, lower explosive limit (LEL), oxygen, and hydrogen sulfide.

A perimeter air-monitoring program will be established and is anticipated to consist of air monitoring stations at the perimeter of the subject property. Perimeter monitoring will include use of hand held direct-reading survey instruments and/or dedicated direct-reading survey instruments for total organic vapors and particulate monitoring.

Action levels will be established for the worker area/breathing zone and perimeter air-monitoring program to determine if health and safety protocols or construction technique modifications need to be performed to reduce odor/vapor or dust emissions.

2.7 Water Management

During the soil excavation activities, surface water diversion methods and groundwater hydraulic controls will be implemented to minimize the amount of water that enters an excavation area. Surface water diversion methods may include (but are not limited to) channeling surface water flow around the soil excavation areas by excavating a temporary ditch, construction of berms, or installing piping to create a preferential flow path for the surface water around each excavation area. During the soil excavation activities, groundwater (or surface water) that accumulates within the excavation area will be removed to assist in dewatering the soil and to facilitate sedimentation/erosion control. Groundwater (or surface water) that accumulates within an excavation area will be removed via pumping (to the extent practicable). To minimize the amount of soil being removed during pumping activities, a sump may be constructed within the soil removal area using one of, or a combination of, the following techniques:

- Excavation of a sump and backfilling the sump with washed gravel and installing geotextile, as needed;
- Cutting perforations into a cylindrical object (i.e., a corrugated metal pipe or 55-gallon drum) and wrapping the perforated object with a non-woven geotextile fabric;
- Installing straw bales and/or silt fence around the area that the water is being pumped from; and/or
- Other methods selected by the Remediation Contractor.

Water generated as a result of the remediation activities will either be pretreated onsite and discharged to the local sewer system in accordance with applicable permits or be collected for offsite disposal in accordance with applicable federal, state and local regulations.

2.8 Equipment Cleaning and Residual Waste Management

Equipment cleaning will be utilized to prevent the transport of waste materials that may be present on the equipment used for remediation activities (e.g., excavators, loaders). The Remediation Contractor will select the methods and approach (as part of the SOP) for equipment cleaning activities. Specific equipment cleaning procedures will be required, at a minimum, to include the following:

- Each transport vehicle will be visually inspected before leaving the loading area. Accumulations of soil on the vehicle tires or other exterior surfaces will be removed manually or, if necessary, by using a high-pressure water and/or steam spray in the equipment cleaning area.
- Material handling equipment that has come into contact with waste-containing soils will be cleaned in the equipment cleaning area before it enters non-work areas, handles "clean" materials (e.g., backfill), or leaves the site. Equipment cleaning will likely be performed manually, utilizing a high-pressure water spray, and/or steam cleaning.
- Liquid materials, such as cleaning water (and other residual material collected during equipment cleaning), will be collected and containerized for offsite disposal and/or pretreated, if necessary, and discharged to the local sewer system.
- A visual inspection of heavy equipment (e.g., excavators, loaders) will be performed following final equipment cleaning. If the visual inspection indicates waste materials remain, the equipment will be recleaned and reinspected.
- Following completion of water treatment activities the temporary water treatment system (if installed as part of the water management system) will be subject to cleaning. Any accumulated material will be removed, containerized and sampled for the required disposal parameters of the selected disposal facilities to determine appropriate disposition. The treatment system components will then be cleaned by high-pressure water spray or flushing. The wash water will be collected and containerized for appropriate disposal.

Residual wastes likely to be generated during excavation activities include used disposable equipment, PPE, sampling equipment, cleaning residuals, etc. These materials will be containerized as generated and staged for subsequent disposal by the Remediation Contractor in accordance with federal, state, and local requirements. If soil transport activities are in progress, residual materials may be included with the materials subject to offsite disposal. Waste characterization samples (if any) will be submitted to an NYSDOH ELAP-approved laboratory for analysis.

2.9 Transportation and Disposal

Impacted soils will be direct loaded, to the extent practicable, in a manner that minimizes the potential for inadvertent releases to the environment, unsafe conditions for onsite personnel, and delays or complications in the soil removal implementation. Ultimately, the removed soils will be transported to offsite facilities for appropriate treatment/disposal in accordance with applicable regulations for disposal.

In addition, groundwater will be extracted from the excavation areas as part of the excavation dewatering process. The extracted groundwater (as well as rainwater that contacts impacted soil and water generated as part of equipment cleaning) will be subject to pretreatment (as required) and discharged to the local sewer system or containerized for offsite disposal.

The Remediation Contractor will identify the means and methods (as part of the SOP) for dewatering soils so that such soils can be direct loaded and meet the disposal requirements, to eliminate to the extent practicable the need to stockpile soils onsite, and to control odors. The Remediation Contractor will be required to prepare contingency plans (as part of the SOP) for soil dewatering/stabilization and soil stockpiling.

2.9.1 Disposal of Impacted Soils and Debris

Visibly impacted soil/fill or debris will be handled, loaded, transported, and disposed of at one or more permitted disposal facilities capable of accepting MGP-materials in a manner consistent with NYSDEC program policy, TAGM 4061 (Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants) dated January 11, 2002. The final disposal of all visibly impacted soil/fill or debris will be at an appropriately permitted facility that has been approved by CHGE.

If direct loading of excavation spoils for offsite disposition is the proposed method in the SOP, the Remediation Contractor will conduct pre-excavation characterization sampling in accordance with the treatment/disposal facility(ies) requirements. Otherwise the Remediation Contractor will conduct excavation characterization sampling in accordance with the treatment/disposal facility(ies) requirements. Existing data from the Phase I and II ESAs conducted by M-NR may also be used for waste characterization purposes in lieu of collecting additional samples. Characterization samples collected will be submitted to a NYSDOH ELAP-approved laboratory for analysis.

The Remediation Contractor will perform all aspects of the transport and disposal of materials. Materials subject to offsite disposal will be transported via the selected and permitted transport mechanisms to the appropriate disposal facilities. The Remediation Contractor will be responsible for cleaning and visually inspecting the disposal vehicles prior to leaving the site. Licensed haulers will perform all transport of materials in accordance with appropriate local, state, and federal regulations. Loaded vehicles leaving the site will be appropriately lined, tarped, manifested, and placarded in accordance with appropriate federal, state, local, and New York State Department of Transportation (NYSDOT) requirements (or other applicable transportation requirements).

2.9.2 Water

As part of the SOP, the Remediation Contractor will select the methods and approach for handling and disposition of water generated during the IRM soil removal activities. Methods may include containerization and subsequent offsite disposition or pretreatment followed by discharge to the local sewer system for subsequent treatment at the local publicly owned treatment works (POTW). The Remediation Contractor will be required to obtain and comply with applicable permits required for disposition of wastewater generated during the IRM soil removal activities.

2.9.3 Non-Aqueous Phase Liquid

Free phase non-aqueous phase liquid (NAPL), if encountered, will be handled in accordance with TAGM 4061 (Management of Coal Tar Waste and Coal Tar Contaminated Soils and Sediment from Former Manufactured Gas Plants).

2.9.4 Miscellaneous Waste

Miscellaneous waste generated during the IRM soil removal activities may be classified as general refuse or remediation-related waste material.

General refuse (i.e., material that has not contacted any impacted site media) including, but not limited to, used disposable equipment and temporary fencing will be managed as a non-hazardous waste and disposed of at a non-hazardous solid waste disposal facility.

Remediation-related materials that are either in, or come in contact with, impacted soils during the remediation activities will be considered contaminated. This material may include ancillary wastes generated as a result of the remediation activities, including (but not limited to) materials used to construct the materials handling and dewatering/staging areas, equipment cleaning pads, and PPE. The Remediation Contractor will be required to characterize the miscellaneous waste prior to offsite disposition at an acceptable facility based on waste characterization activities to be conducted by the Remediation Contractor. With approval of the disposal facility, this material may also be included with the impacted soil wastes.

2.10 Post-Removal Activities

Post-removal activities will include backfilling the excavation and completing the surface restoration. Following soil excavation activities, visually non-impacted soils will be placed back into the excavation and select backfill will be used to fill the remainder of the excavation. Backfill will be placed and compacted to restore the ground surface within the soil removal area to pre-remediation conditions minus approximately 4 to 6 inches. Restoration of the ground surface will include placing 4 to 6 inches of topsoil materials and seeding.

Backfill and topsoil from offsite sources will be sampled and analyzed to verify that the proposed materials are free of contaminants and suitable for their intended use as backfill. At a minimum, proposed backfill and topsoil source(s) will be sampled and analyzed for VOCs, SVOCs, PCBs, pesticides, herbicides and metals.

2.11 Demobilization

The Remediation Contractor will be responsible for demobilizing all labor, equipment, and materials (not designated for offsite disposal) from the subject property. The Remediation Contractor will be required to clean (in accordance with the SOP) all equipment and materials prior to removal from the subject property.

The Remediation Contractor will also be responsible for performing any follow-up coordination and maintenance activities, including the following:

- Restoring areas disturbed to accommodate support areas (e.g., staging area, equipment cleaning area, storage area, temporary water management area, access area) to pre-remediation conditions;
- Removing any temporary access areas and restoring the disturbed access areas to pre-remediation conditions; and
- Removing sediment and erosion control measures and disposing of the materials in accordance with acceptable rules and regulations as a non-hazardous waste.

3. Institutional Controls

Institutional controls to be implemented following completion of the IRM soil removal activities include establishing an environmental easement and a site management plan (SMP). The environmental easement will prohibit the use of groundwater and restrict the land use to commercial or industrial. The SMP will include institutional and engineering controls to: (a) address residual impacted soils that may be excavated from beneath the Doral Hat Building and other areas outside of the proposed excavation limits (Figure 2); (b) evaluate the potential for vapor intrusion if the Doral Hat Building is occupied in the future; (c) identify any use restrictions on property development or groundwater use; (d) provide an annual certification to NYSDEC that the institutional and engineering controls have been followed.

4. Reporting

A final engineering report and certification of completion will be submitted to NYSDEC following implementation of the IRM soil removal activities. The final engineering report is anticipated to include the following:

- A description of the IRM soil removal activities performed;
- A description of any changes to the remediation;
- Sampling and monitoring results;
- A copy of the applicable Remediation Contractor records and record drawings showing changes made during construction;
- Groundwater treatment/disposal data and information; and
- Soil disposal data and information.

A Professional Engineer registered in New York State, the Remediation Engineer, will provide certification that the construction was completed in substantial conformance with the approved IRM Work Plan, and/or approved field changes; this certification will be appropriately signed and stamped.

5. Project Organization

This section presents the anticipated project organization and associated roles, including key personnel, descriptions of duties, and lines of authority in the management of the IRM Work Plan. Information regarding the organizations/personnel and their associated responsibilities is provided below.

NYSDEC

NYSDEC will serve as the lead regulatory agency for this remediation. The NYSDEC project manager is anticipated to be Gardiner Cross, who will be responsible for providing and coordinating regulatory oversight and direction.

NYSDOH

The NYSDOH will work closely with NYSDEC and will provide input from a health and safety perspective. The NYSDOH contact is anticipated to be Gary Litwin.

CHGE

CHGE will be responsible for implementing the IRM soil removal activities at the subject property. The primary contact for CHGE will be Jeffrey Clock.

<u>M-NR</u>

M-NR will be responsible for implementing the institutional and engineering controls after the IRM soil removal activities have been completed by CHGE. CHGE will coordinate with M-NR and the current property owner during the implementation of the soil removal activities.

Remediation Contractor

The Remediation Contractor selected for this project will provide services associated with soil removal and disposal, groundwater dewatering and disposal, air monitoring, emergency spill response services (if necessary), and management of waste transport and disposal.

The Remediation Contractor may retain various subcontractors for the purposes of completing the project, if necessary. Remediation Contractor and subcontractor responsibilities will be set forth in the SOP.

Remediation Engineer

The Remediation Engineer selected for this project will provide full-time engineering observation services for the duration of the IRM soil removal activities to document the activities are conducted in accordance with this IRM Work Plan and associated plans submitted by the Remediation Contractor. The Remediation Engineer will be responsible for certifying the construction was completed in substantial conformance with the approved IRM Work Plan, and/or approved field changes. In addition to oversight and final engineering certification, the Remediation Engineer may review plans such as the SOP, HASP, and other appropriate plans.

Analytical Laboratory

A NYSDOH ELAP-certified laboratory will provide analytical services required for this project.

Offsite Disposal Facilities

The excavated materials will be transported to and disposed of at licensed disposal facilities. The disposal facilities used must be licensed to accept MGP-contaminated soils and materials. Transportation to these facilities will be via legally permitted (such as permits required in NYCRR Part 364 and NYCRR Part 360) and NYSDEC-acceptable methods.

Tables

TABLE 1 SUMMARY OF PRE-PHASE II SOIL BORING INFORMATION

1 West Main Street Beacon, New York

Boring ID	Depth of Fill Material (feet below grade)	Depth to Native Material (feet below grade)	Depth of Refusal (feet below grade)	Depth MGP Tar-Type Material Observed (feet below grade)
B-1	0-7	7		
B-2	0-6	6	-	
B-3	0-10	10		
B-4	0-1			

Note:

-- = not applicable

Information summarized above based on interpretation of boring logs prepared by YU & Associates, Inc.
Descriptions from last sample interval not interpolated to extend past depth of recovery.

TABLE 2 SUMMARY OF PHASE II SOIL BORING INFORMATION

1 West Main Street Beacon, New York

	Ground	Depth of Fill Material	Depth to Native Material	Depth to Refusal	Depth MGP Tar-Type Material Observed
Boring ID	Surface Type	(feet below grade)	(feet below grade)	(feet below grade)	(feet below grade)
MW-101	fill	0-6.5	6.5		
MW-102	fill	0-6.5	6.5		
MW-103	fill	0-5	5	9	0-5
MW-104	vegetated topsoil	0.5-6	6		
MW-105	vegetated topsoil	0.5-9.5	9.5		
TB-101	vegetated topsoil	0.5-11.2			
TB-105	vegetated topsoil	0.5-8.9		11	4.5-8.9
TB-106	vegetated topsoil	0.5-9	9	10.5	5-9
TB-107	vegetated topsoil	0.5-8.8			0.5-4
TB-108	vegetated topsoil	0.5-8.8	-	-	
TB-110	asphalt and fill	0.3-5.6		8	
TB-111	asphalt and fill	0.3-9.2			
TB-112	asphalt and fill	0.7-7	7		
TB-113	asphalt and fill	0.3-9.8			
TB-115A	fill	0-6	6	-	
TB-116	vegetated topsoil	0.5-6	6		
TB-117	vegetated topsoil	0.5-10	10		7.5-10
TB-118	vegetated topsoil	0.5-8.8			
TB-119	vegetated topsoil	0.5-8.8			
TB-120	asphalt and fill	0.3-10.5	10.5		
TB-121	vegetated topsoil	0.5-9.5	9.5	15	6-9.5
TB-122	vegetated topsoil	0.5-8	8	10.6	0.5-8
TB-123	vegetated topsoil	0.5-6	6	10.5	0.5-6
TB-124	vegetated topsoil	0.5-8.5	8.5		
TB-125	vegetated topsoil	0.5-9.5	9.5	-	
TB-126	vegetated topsoil	0.5-8	8		
TB-127	vegetated topsoil	0.5-6.4			
TB-128	fill	0-8.4			
TB-129	fill	0-8.4			
TB-130	asphalt	1-9			
TB-131	asphalt and fill	0.7-11.2			

Notes:

-- = not applicable

1. Information summarized above based on interpretation of boring logs prepared by Day Engineering, Inc.

2. Descriptions from last sample interval not interpolated to extend past depth of recovery.

TABLE 3 SUMMARY OF SUPPLEMENTAL PHASE II SOIL BORING INFORMATION

1 West Main Street Beacon, New York

Boring ID	Depth of Fill Material (feet below floor)	Depth to Native Material (feet below floor)	Depth to Refusal (feet below floor)	Depth MGP Tar-Type Material Observed (feet below floor)
TB-200	0.5-5		5	
TB-201	0.7-6		6.5	
TB-202	0.5-6		6.5	
TB-203	0.4-3.3		4	
TB-204	0.5-12.5	12.5		8-12.5
TB-205	0.7-12.5	12.5		
TB-206	0.5-9.5	9.5		
TB-207	0.5-10	10		8.5-10.3
TB-208	0.5-9	9		8.5-9
TB-209	0.5-9.5	9.5		8.5-9.5
TB-210	0.5-10	10-12		

Notes:

-- = not applicable

1. Information summarized above based on interpretation of boring logs prepared by YU & Associates, Inc.

2. Descriptions from last sample interval not interpolated to extend past depth of recovery.

3. Concrete floor inside Doral Hat building approximately 3 feet higher than ground surface outside the building.

Figures

SAVED:12/27/2006 2:04 PM LAYOUT: LOYOUT: PAGESETUP: AP-PDF PENTABLE: PLTFULL.CTB PRINTED:12/27/2006 2:06 PM BY: LFORAKER -B5-RCA GMS LAF LAYER: ON=*, OFF=*REF* \CTIVE\-DWG\ACT\20537005\20537G02.DWG

[SYR-85-LAF] SYR-85-LAF LJP LAF LAYER: ON=*, OFF=*REF* F:\ACTIVE\-DWG\ACT\20537005\20537601.DWG SAVED:12/27/2006

LEGEND:

	PROPERTY LINE
	BUILDING
x	FENCE
	ROAD
+++++++++++++++++++++++++++++++++++++++	RAILROAD
······	TREELINE
\oplus	TEST BORING LOCATION AND ID
ø	GROUNDWATER MONITORING WELL LOCATION AND ID
۲	TEST BORING/MONITORING WELL WHERE MGP-TYPE TAR MATERIAL OBSERVED (SEE NOTE 3)
	PROPOSED SOIL REMOVAL LIMITS

NOTES:

- BASEMAP INFORMATION OBTAINED FROM AN AERIAL PHOTOGRAPH BY YU & ASSOCIATES, INC. DATED 9/9/05 AND A FIGURE BY DAY ENGINEERING, P.C. ENTITLED "SITE PLAN WITH AREAS OF CONTAMINATION" DATED 12/30/2005 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- BASED ON INTERPRETATION OF BORING LOGS PREPARED BY DAY ENGINEERING, INC. AND/OR YU & ASSOCIATES, INC.

APHIC SCALE CENTRAL HUDSON GAS AND ELECTRIC CORP. BEACON, NEW YORK INTERIM REMEDIAL MEASURE WORK PLAN SITE PLAN AND PROPOSED SOIL REMOVAL LIMITS BBI FIGURE 2 an ARCADIS company

Attachments

Attachment 1

Relevant Information from Previous Investigations

Modified Phase I ESA

PROJECT NAME: Metro North B LOCATION: Beacon, NY	leacon, Dorel Hat STARTED: 08/04/05	Boring No. BOREHOL	B-1 E FLUID LEVEL
NORTHING: EA	COMPLETED: 08/04/05 STING:	DATE	DEPTH
RIG TYPE: Geoprobe Advance 66 DT. DRILLING METHOD: Direct Push Geopre CASING: NA CORING: NA	CONTRACTOR: Land Air Water obe Environmental Services DRILLER: Ernesto Santiago INSPECTOR: A. Garg	08/04/05 9:30 AM	(FEET) 3.8

UEPTH (feat)	USC	DESCRIPTION		Rasovaci		Т	SAMPLE	
(reet)	System	(based on Burmister system)		(In/in)	PID (ppm)	Hg (mg/m3)	Env. Sample	Depth (feet)
ı _	FILL	0-6": Hand Augering Brown to Dark Brown, c-f SAND, some c-f gravel little silt root fragments, dou						
2		Search, and she loor naginenes, ary	± 2'		-			
3		Brown to Grayish Brown c-f SAND, some silt, some c-f gravel, concrete fragments, dry	± 3'	42/60			B1-3.0	3-4
4 _		silt, wet, black c-f SAND, some c-f gravel, trace	. 7		1:0	-	(Soil)	
5_		Grayish Black c-f SAND and c-f GRAVEL,	± 4.5'			0.0 (throughout)	B1-GW (Groundwater)	2
6 _		trace still, wel, black stained, oil sheen			3.0		B1-6.0	6-7
7 _		Gray c-f GRAVEL, little c-f sand, little silt &	± 0.5				(Soil)	
8	CL	Gray CLAY & SILT, medium plasticity, wet	<u>± 7'</u>	30/60	-5.5			
9							·	
-10			± 10'					
n _		IEND OF BORING @ 10 FEET				s 1975 - 1977		1 1
12	.							

REMARKS: B1-6.0 on hold Oil sheen observed from 5'-7.5'.

Yu & Associates, Inc.
PROJECT NAM	AE: Metro North Bea	con, Dorel Hat	Boring No.	B-2
LOCATION:	Beacon, NY	STARTED: 08/04/05	BOREHOLE	FLUID LEVEL
GROUND ELE	VATION:	COMPLETED: 08/04/05	DATE	DEPTH
NORTHING:	EAST	'ING:		(FEET)
RIG TYPE:	Geoprobe Advance 66 DT.	CONTRACTOR: Land Air Water		
DRILLING MET	HOD: Direct Push Geoprobe	Environmental Services		
CASING:	NA	DRILLER: Emesto Santiago	NA	NA I
CORING:	NA	INSPECTOR: A. Garg		

DEPTH	usc	DESCRIPTION	Pagawan			SAN	IPLE
(feet)	System		(In/In)	PID	Hg	Env.	Depth
	L	(based on Burmister system)	(110/11)	(ppm)	(mg/m3)	Sample	(feet) ····
	1	Brown c-f SAND, some silt, some c-f gravel,]			T
1	FILL	root matters, dry $\pm 0.6^{\circ}$			0.003		
_	1	Gray c-f GRAVEL, some c-f sand, little silt, dry		1	1	· ·	
2 _	4	± 2']	0		[
,		Dark Brown c-f SAND, some c-f gravel, trace	42/60	ſ .			
3 -	ł	siit, moist			0		
4							
· -	1						
5		+ 1 5				Dico	
		Gravish Brown c-f SAND, some silt, little c-f gravel				B2-5.0 (8-10)	5-6
6		dry + 6'				(3011)	
	ML	Gray-light Brown SILT & CLAY.					
7		moist					
- 1			10.000	0			
8			43/60	(throughout)			
1		·	4				
9							
1							:
10		± 10'					
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	sa saya	Same as above					en en esta esta esta esta esta esta esta esta
11 -			İ				
	[1		-			
12 -				i			
13			30/60				
··· -							i
1.4			1			ĺ	
·· -					1		[
15		. 15					
··		END OF BORING @ 15 FEET					
16	ľ		1				
****	1			1	1		
			1			1	

REMARKS:

Yu & Associates, Inc.

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	B-3
LOCATION:	Beacon, NY	STARTED:	08/04/05	BOREHOLE	LUID LEVEL
GROUND ELEVA	TION:	COMPLETED:	08/04/05	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: Geop	robe Advance 66 DT.	CONTRACTOR:	Land Air Water		
DRILLING METHO	D: Direct Push Geoprobe	Enviro	onmental Services	00/04/07	10 7
CASING: N	A.	DRILLER:	Ernesto Santiago	08/04/05	12.5
CORING: N/	4	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Becourse			SA SA	MPLE
(feet)	System		(I=/I=)	PID	.Hg	Env.	Depth
<u> </u>		(based on Burmister system)	l''' (innu)	(ppm)	(mg/m ³)	Sample	(feet)
12	FILL	Brown c-f SAND, some silt, some c-f gravel, root matters, dry ± 1' Dark Brown c-f SAND, some silt and c-f gravel, with concrete fragments, brick fragments, moist/dry					
3		± 3.7'	44/60				
4					an a		
- 5		± 5'	2				. .
6		Dark Gray- Brown c-f SAND, some c-f gravel, little silt, trace Clay, moist ± 6 Gray, Brown Clayer, SILT, little c.f. sand trace			· · · · ·	B3-5.5 (Soil)	5.5.6.5
7		gravel, moist, pocket of brick fragments at 7 ft. ± 7.3'	28/60				
8 -			28/00	0 (throughout)	0 . (throughout)		
⁹ –							
10	CN4	± 10	1997 - 1997 -		arda, di La carda a	1	en de se
11	Divi	gravel, moist, with wood fragments					
12	РТ	±11.5 Dark Brown SILT & CLAY, little c-f sand, trace gravel organic matter, fibers, wood, moist (PEAT), low plasticity	······································			B3+11.5 (Soil)	11.5-12.5
13 – 14	1	Gray silty CLAY, some c-f gravel, some c-f $\pm 12.5^{\circ}$ sand, fibers, wet (PEAT), low plasticity					
15		± 15'	- m.	· .	·		
16	PT [Dark Gray-Brown SILT & CLAY, little m-f sand, organic matter, wood fragments, wet, low plasticity ± 16.3'					
17	ł	Dark Brown Clayey SILT, some m-f sand, race gravel, wood fragments, moist, low plasticity	• •••				
18			60/60				
19	····	± 19.5					
20	5iMi L 	Jark Brown c-1 SAND and SIL1, trace c-1 ravel, wood fragments, moist ± 20' ND OF BORING (0.20 FEFT					
21		IND OF BORING @ 20 PEE I					

REMARKS: Groundwater encountered at 12.5 ft. Approximately 500 ml of water was sampled, before the flow of water stopped. Per the driller, it was a small amount of water sitting over the underlying clayey strata.

Yu & Associates, Inc.

PROJECT NAME:	Metro North Beacon, D	orel Hat		Boring No.	B-4
LOCATION:	Beacon, NY	STARTED:	08/04/05	BOREHOLE	
GROUND ELEVATION	:	COMPLETED:	08/04/05	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: Geoprobe	Advance 66 DT.	CONTRACTOR:	Land Air Water		(1 = = 1)
DRILLING METHOD:	Hand Auger	Env	vironmental Services		
CASING: NA		DRILLER: E	rnesto Santiano	NA	NA
CORING: NA		INSPECTOR:	A. Garg		

(foot)	USC	DESCRIPTION	Recover]	SA	MPLE
(ieet)	System	(based on Burmister system)	(in/in)	PID (ppm)	Hg (mg/m ³)	Env. Sample	Depth
1	FILL	Brown c-f SAND, some silt, burnt leaves/wood pieces, black staining at top ±1		0 0	0	B4-0.5	0.5-1.0
2 _		END OF BORING @ 1 FOO1				(Soil)	
3							
4 _							
5 6 7			- - 				
' 8 9					1		
10	-Sec.		·		-	·. •	n se san se
		• • • • • • • • • • • • • • • • • • •					

REMARKS: Black stained area was observed adjacent to the two 55-gallon drums inside the junk yard area. Surface soil sample was collected at 0.5 ft.

Yu & Associates, Inc.

THE 1 SAMPLING SUMMARY TABLE DOREL HAT - PRE PHASE II INVESTIGATION BEACON, NY Project # 0507501

Sample Number	Area of Concern	Date	Depth (ft)	Matrix	Analytical Paramotors
		Collected	- ·F ··· (··)	*********	Analytical Farameters
B1-3.0	Blow Down Area	8/4/2004	3.0-4.0	SOIL	Not Analyzed
B1-6.0	Blow Down Area	8/4/2004	6.0-7.0	SOIL	PP+40
B2-5.0	Off Site Migration Area	8/4/2004	5.0-6.0	SOIL	PP+40
B3-5.5	Drums and Abandoned Equipment Storage Area	8/4/2004	5.5-6.5	SOIL	Not Analyzed
B3-11.5	Drums and Abandoned Equipment Storage Area	8/4/2004	11.5-12.5	SOIL	Not Analyzed
B4-0.5	Drums and Abandoned Equipment Storage Area	8/4/2004	0.5-1.5	SOIL	PP+40
B1-GW	Blow Down Area	8/4/2004	NA	AQUEOUS	VO+15, BN+25, Pesticides, PCBs
VO+15 - Volatile Org BN+25 - Base Neutra PP+40 - Priority Pollut PCBs - Polychlorinate NA - Not Applicable	anic compounds plus 15 additional compour l Compounds plus 25 additional compounds tants plus 40 additional compounds d Biphenyls	nds			

in the second state of the

Table 2

Soil Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D0921-02C 8/4/2005 6.0-7.0 Soil mg/Kg 200	B2-5.0 D0921-03C 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06C 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
Methylene Chloride Chloroform Trichloroethene Toluene Tetrachloroethene Xylene (Total) 1,2,4-Trimethylbenzene Napthalene	ND ND 41 J ND 96 J 58 J 3200	0.031 J 0.012 J 0.081 ND ND ND ND ND ND	0.007 J 0.003 J ND ND 0.0008 J ND ND 0.003 J	0.1 0.3 0.7 1.5 1.4 1.2 NA 13	0.1 0.3 0.7 1.5 1.4 1.2 NA 13

Qualifiers

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Use professional Judgement based on data use

Note:

The data presented herein is based on the Preminary Results of Volatile Organics analyses.

Soil Semivolatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY Project # 0507501

Sample ID B1-6.0 B2-5.0 B4-0.5 NYSDEC NYSDEC Lab Sample ID D0921-02A D0921-03A D0921-06A Rec. Soil Soil cleanup Sampling Date 8/4/2005 8/4/2005 8/4/2005 Cleanup objectives Sample Depth (ft) 6.0-7.0 5.0-6.0 0.5-1.0 Objective to protect Matrix Soil Soil Soil GW quality Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Dilution Factor 20 1 1 SVOCs 2,4-Dimethylphenol 7.2 ND ND NA NA Naphthalene 3800 E ND 0.07 . 13 13 2-Methylnaphthalene 990 Е ND ND 36.4 36.4 Acenaphthylen 1000 Ε ND ND 41 41 Acenaphthen 170 ND ND 50 90 Dibenzofura 860 Ε ND ND 6.2 6.2 Fluoren 960 Е ND ND 50 350 Phenanthrene 2300 Е ND ND 50 220 Anthracene 670 Έ ND ND 50 700 Carbazole 270 ND ND NA NA Fluoranthene 1500 Е 0.044 J ND 50 1900 Pyrene 1500 Е 0.05 J ND 50 665 Benzo(a)anthracene 680 E 0.041 J ND MDL 3 Chrysene 390 Έ 0.06 J ND 0.4 0.4 bis(2-Ethylhexyl)phthalate ND 0.05 J ND 50 435 Benzo(b)fluoranthene 590 E 0.05 J ND 1.1 1.1 Benzo(k)fluoranthene 200 0.027 J ND 1.1 1.1 Benzo(a)pyrene 230 0.038 J ND MDL 11 Indeno(1,2,3-cd)pyrene 170 ND ND 3.2 3.2 Dibenzo(a,h)anthracene 33 ND ND MDL 165000 Benzo(g,h,i)perylene 140 ND ND 50 800

Qualifiers

J - Analyte detected Below quantitation limits

E - Value above quantitation range

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Note:

The data presented herein is based on the Preminary Results of Semivolatile Organic Compounds analyses.

Die 4

Soil PP-Metals Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor PP Metals	B1-6.0 D0921-02 8/4/2005 6.0-7.0 Soil mg/Kg 1	B2-5.0 D0921-03 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Zinc	ND 19 2.9 0.59 42 100 28 9.7 40	$ \begin{array}{r} 1.2 \\ 7.3 \\ \hline 0.48 \\ \hline 0.62 \\ \hline 20 \\ 48 \\ \hline 61 \\ \hline 21 \\ 57 \\ \hline 0.655	$ \begin{array}{r} 2.5 \\ 5.1 \\ \hline 0.33 \\ \hline 1.5 \\ 13 \\ \hline 140 \\ 54 \\ \hline 19 \\ \hline 870 \\ \end{array} $	SB 7.5 or SB 0.16 or SB 1 or SB 10 or SB 25 or SB SB 13 or SB 20 or SB

Qualifiers

- J Analyte detected Below quantitation limits
- SB Site Background
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in **bold** type.
- 55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Note:

The data presented herein is based on the Preminary Results of PP-Metals analyses.

Jacobe 5

Soil Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D0921-02A 8/4/2005 6.0-7.0 Soil mg/Kg 20		B2-5.0 D0921-03A 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06A 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
4,4'-DDD 4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde gamma-Chlordane	0.18 0.36 0.86 0.28 0.11 0.47	P P P	ND ND ND ND ND	ND ND ND ND ND	2.9 2.1 NA NA NA 0.54	7.7 2.5 900 NA NA 14

Qualifiers

J - Analyte detected Below quantitation limits

P - Use professional Judgement based on data use

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Soil Total Phenol Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D1022-01A 8/4/2005 6.0-7.0 Soil mg/Kg 1	B2-5.0 D1022-02A 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D1022-03A 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
Total Phenol	5.3	< 1.1	< 1.0	0.03	0.0003

Qualifiers

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

< 1.1 The detection limit for the sample exceeds the NYSDEC Soil Cleanup Criteria

Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Taole 7

Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Proiect # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07C 8/4/2005 Water ug/l 100		NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
VOCs			
Methylene Chloride	ND		5
Chloroform	ND		7
Trichloroethene	ND		5
Toluene	150	J	5
Tetrachloroethene	ND	-	5
Xylene (Total)	150	J	5
1,2,4-Trimethylbenzene	100	J	5
Napthalene	4600]]	10

Qualifiers

J - Analyte detected below quantitation limits

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Volatile Organics analyses.

Groundwater Semivolatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY Project # 0507501

Sample ID	B1-GW		NYSDEC
Lab Sample ID	D0921-07A		Ambient Water Quality
Sampling Date	8/4/2005		Standards and
Matrix	Water		Guidance Values
Units	ug/l		ug/l
Dilution Factor	1		
SVOCs			
Phenol	9	ן [1
2-Methylphenol	11	1	1
4-Methylphenol	22	1	1
2,4-Dimethylphenol	56	1]
Naphthalene	4000	E	10
2-Methylnaphthalene	430	Ē	NA
Acenaphthylene	330	E	NA
Acenaphthene	39	1	20
Dibenzofuran	140	-	NA
Fluorene	110	1	50
Phenanthrene	140	1	50
Anthracene	31	-	50
Carbazole	200		NA
Fluoranthene	28		50
Pyrene	22		50
Benzo(a)anthracene	8]]	0.002
Chrysene	6	J	0.002
Benzo(b)fluoranthene	4	J	0.002
Benzo(k)fluoranthene	2]]	0.002
Benzo(a)pyrene	4] J	0.002
Indeno(1,2,3-cd)pyrene	2]]	0.002
Benzo(g,h,i)perylene	2	J	NA

Qualifiers

J - Analyte detected below quantitation limits

- E Value above quantitation range
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.
 55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Semi-volatile Organics analyses.

Jole 9

Grounwater PP Metals Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY Proiect # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07 8/4/2005 Water ug/l 1	NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
PP Metals		
Antimony	34	3
Arsenic	590	25
Beryllium	34	3
Cadmium	42	5
Chromium	1400	50
Copper	2800	200
Lead	1000	25
Nickel	1200	100
Zinc	4500	NA
Mercury	0.96	0.7

Qualifiers

NA - Not Available

PP-Metals - Priority Pollutant Metals

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of PP-Metals analyses.

٦ 🔤 اe 10

Groundwater Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation

Beacon, NY

Project # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07A 8/4/2005 Water ug/l 1		NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
Pesticides/PCBs Heptachlor epoxide 4,4'-DDD 4,4'-DDT Endrin ketone gamma-Chlordane	0.11 0.21 0.46 1.4 0.1] P P P	0.03 NA NA 5 NA

Qualifiers

PCBs - Polychlorinated Biphenyls

NA - Not Available

P - Use professional judgement based on data use

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

Phase II ESA

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO		ITAL, IN	IC.					AN AFFII	LIATE OF DAY ENGINEERING, P.C
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York						- - -		Ground Elevation: Datum:		TEST BORING NO. MW-101
DAY R	epreser	ntative:	Nate Sir	non	- tol	-		Date Started: 11/15/2006 Date Ended: 11/15/200 Deschols: Deschols: Deschols: 0.01)5	-
Sampl	ing Meth	nod:	Direct P	ush	ental	-		Completion Method: Well Installed Backfilled with Grout	Backfilled with Cu	uttinas
	5					-		Water Level (Date/Time): Not Measured		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	Dark brown Sandy Silt, some Gravel, intermixed with Brick and Coal Fragments,		
1								moist (FILL)	-	
2	NA	S-1	0-4	100	NA	0.0	0.0		-	
3									-	
4							0.0	Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	-	
							0.0	moist (FILL) wet		
5									-	
6	NA	S-2	4-8	60	NA	0.0	0.0		-	
7								Green/Gray Sandy SILT, some Gravel, wet	-	
8							0.0	-	-	
9	NA	6.2	8 4 2	40	NIA	0.0	0.0		-	
10	NA	3-3	0-12	40	INA	0.0	0.0	Gray Sandy GRAVEL, little Rock Fragments, trace Silt, wet	-	
11							0.0		-	
12							0.0	BOH @ 12.0'	4	
									-	
									-	
									-	
									-	
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condi	tions state	A. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	1	
	 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 									
	4) NA = 1	Not Availa	able or Not	Applicab	le					IESI BUKING NU.MW-101
40 CO	MMERC	NEW Y	REET ORK 149	514-1009	3					NEW YORK, NEW YORK 10165-1617
(585)	154-021)	5111 140							(212) 986-8645
FAX (5	XX (585) 454-0825 www.dayenvironmental.com (212) 986-8645									

day DAY ENVIRONMENTAL, INC.		AN AFF	ENVIRONMENTA	L CONSULTANTS
,	MONITORING WELL INSTALLATION LOG			,
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Date Started: <u>11/15/2005</u> Date E Water Level (Date/Time): <u>4.23' 12/01/2005</u>	Datum: Ended:	MONITORING WE	ELL MW-101
Refer to Test Boring Log TB- MW-101 for Soil Description	 Flush Mounted Roadbox 0.20 Depth to Top of Riser Pipe (ft) 0.33 Depth to Bottom of Cement Surface Patch (ft) Backfill Type N/A 0.53 Depth to Top of Bentonite Seal (ft) 0.70 Depth to Bottom of Bentonite Seal (ft) 2.0 Depth to Top of Well Screen (ft) 2.5 Diameter of Borehole (in) Backfill Type Sand 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth to Bottom of Well Screen (ft) 			
Notes: 1) Water levels were made at the times and un 2) NA = Not Available or Not Applicable	der conditions stated. Fluctuations of groundwater levels may occur due to se	easonal factors ar	nd other conditions.	
			MONITORING WE	LL MW-101

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	y								ENVIRONMENTAL CONSULTANTS
DAY	ENVIRG	ONMEN	ITAL, IN	IC.				AN AFF	ILIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	s:	PC.2696 1 West I	6I-01 Vlain Stre	eet	-			TEST BORING NO. MW-102
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005	_
Drilling	ing Meth	ctor:	Direct P	ivironme ush	ental	-		Completion Method: Well Installed Backfilled with Grout Backfilled with Grout	Cuttings
Gampi	ing mea	100.	Directi	0011		-		Water Level (Date/Time): Not Measured	Juliyo
							-		
epth (ft)	lows per 0.5 ft.	ample Number	ample Depth (ft)	Recovery	-Value or RQD%	Headspace PID Reading (ppm)	D Reading (ppm	Sample Description	Notes
ŏ	B	ů	ů	%	ż		E		
							0.0	Black, Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	
1									
	NA	S-1	0-4	50	NA	0.0	0.0		
2								-	
3									
J									
4							0.0	wet -	
							0.0		
5								-	
	NA	6.2	10	40	NA	0.0	0.0		
6	INA	3-2	4-0	40	INA	0.0	0.0	-	
7								- Gray Silty CLAY, some Sand, trace Gravel, wet	
8							0.0		
Ŭ							0.0		
9								Green/Gray Silty SAND, trace Clay, trace Gravel, wet	
10	NA	S-3	8-12	100	NA	0.0	0.0	-	
11								-	
							0.0		
12					l	l		BOH @ 12.0'	
								.	
								-	
								-	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	 2) Stratif 3) PID re 	tication lir eadings a	nes repres ire referen	ent appro ced to a h	ximate bo enzene s	undaries. tandard m	Transitio	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
	4) NA = 1	Not Availa	able or Not	Applicab	le			· · · · · · · · · · · · · · · · · · ·	TEST BORING NO.MW-102
40 CO	MMERC	CIAL STR	REET						-
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617
(585) 4	154-0210	0							(212) 986-8645
FAX (5	X (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657								

day DAY ENVIRONMENTAL, INC.	AN AFF	ENVIRONMENTA	L CONSULTANTS		
	MONITORING WELL INSTALLATION LOG				
Project #: PC.2696I-01 Project Address: 1 West Main Street			MONITORING WELL MW-102		
Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: D Date Started: 11/15/2005 Date E Water Level (Date/Time): 1.55' 12/01/2005	Datum: Ended:	11/15/2005	Page 1 of 1	
Refer to Test Boring Log TB- MW-102 for Soil Description	 Flush Mounted Roadbox 0.15 Depth to Top of Riser Pipe (ft) 0.33 Depth to Bottom of Cement Surface Patch (ft) Backfill Type N/A 0.48 Depth to Top of Bentonite Seal (ft) 0.7 Depth to Bottom of Bentonite Seal (ft) 2.0 Depth to Top of Well Screen (ft) 2.5 Diameter of Borehole (in) Backfill Type Sand 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 12.0 Depth to Bottom of Well Screen (ft) 12.0 Depth of Borehole (ft) 				
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to se	easonal factors ar	nd other conditions.		
			MONITORING WE	ELL MW-102	

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	day ENVIRONMENTAL CONSULTANTS									
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFIL	LIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	is:	PC.2696 1 West I	6I-01 Main Stre	eet	-				TEST BORING NO. MW-103
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY F	Represen	ntative:	Nate Sir	non		-		Date Started: 11/16/2006 Date Ended: 11/16/2005	5	-
Samp	ing Meth	ctor: nod:	Direct P	ush	ental	-		Completion Method: Well Installed Backfilled with Grout Backfilled	ackfilled with Cu	uttings
	5					-		Water Level (Date/Time): Not Measured		
epth (ft)	lows per 0.5 ft.	ample Number	ample Depth (ft)	Recovery	-Value or RQD%	Headspace PID Reading (ppm)	ID Reading (ppm)	Sample Description		Notes
	В	Ś	ŵ	%	z		0.0	Black Sandy Gravel trace Silt intermixed with Coal Tar. Coal. Coal Slan and Brick		
								Fragments, moist (FILL)		
1								Coal Tar Type Odor	-	
2	NA	S-1	0-4	50	NA	2.1	0.5		_	
-										
3									-	
							2.4			
4							2.4	wet (water has a sheen)	-	
							10.0			
5								Black Silty CLAY, some Sandy Gravel, wet	+	
	NA	S-2	4-8	60	NA	155	58.6			
6									-	
7									_	
8							24.2		-	
	NA	S-3	8-9	0	NA	-	-			
9								Refusal @ 9.0'		
									-	
									-	
									-	
									-	
									-	
									_	
									-	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions		
	2) Stratif	fication lir	nes repres	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.		
	 3) PID re 4) NA – N 	eadings a	ire referen	Applicab	enzene s	tandard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. MW-103
40 CC	MMERC	IAL ST	REET	, ihhingn						I
ROCH	IESTER,	NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617
(585)	454-0210	D								(212) 986-8645
FAX (X (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657									

day DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS
,	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Datum: Date Started: <u>11/15/2005</u> Date Ended: Water Level (Date/Time): <u>2.00' 12/01/2005</u>	MONITORING WELL MW-103 Page 1 of 1 11/15/2005
Refer to Test Boring Log TB- MW-103 for Soil Description	 Flush Mounted Roadbox 0.15Depth to Top of Riser Pipe (ft) 0.33Depth to Bottom of Cement Surface Patch (ft) Backfill TypeN/A 0.48Depth to Top of Bentonite Seal (ft) 0.7Depth to Bottom of Bentonite Seal (ft) 2.0Depth to Top of Well Screen (ft) 1.5Diameter of Borehole (in) Backfill Type Sand 1.0Inside Diameter of Well (in) Type of Pipe PVCScreen slot size_#10 9.0Depth to Bottom of Well Screen (ft) 	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	der conditions stated. Fluctuations of groundwater levels may occur due to seasonal factor	s and other conditions.
		MONITORING WELL MW-103

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da		ONMEN	NTAL IN	IC				AN AFF	ENVIRONMENTAL CONSULTANTS
Projec	t #:	35:	PC.2696	61-01 Main Stre	eet	-			TEST BORING NO. MW-104
DAY R Drilling Sampl	epreser Contracing Meth	ntative: ctor: nod:	Beacon, Nate Sin Miller Er Direct Pr	New Yo non nvironme ush	ork ental	- - -		Ground Elevation: Datum: Date Started: 11/29/2006 Borehole Depth: 12.0' Completion Method: Well Installed Water Level (Date/Time): Not Measured	Page of 1 of 1
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
1 2 3	NA	S-1	0-4	20	NA	0.4	0.0	TOPSOIL AND ROOTS Black Sandy Gravel, some Brick Fragments, moist (FILL)	
4 5 6	NA	S-2	4-8	40	NA	1.1	0.7	wet	
9 10 11	NA	S-3	8-12	0	NA	-	-	- - - -	
12								BOH @ 12.0'	
Notes: 40 CO ROCH (585) 4 FAX (5	1) Water 2) Stratif 3) PID re 4) NA = 1 MMERC ESTER, 154-021(185) 454	r levels w fication line eadings a Not Availa CIAL STI , NEW Y 0	rere made a nes represe are reference able or Not REET /ORK 146	at the timent appro ced to a b Applicab	es and un ximate bo enzene s le	nder condi oundaries. tandard m	tions state Transitio neasured i	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. www.dayenvironmental.com	TEST BORING NO. MW-104 NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

day DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS AFFILIATE OF DAY ENGINEERING, P.C
	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street		MONITORING WELL MW-104
Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Datum: Date Started: 11/29/2005 Water Level (Date/Time): 5.40'	Page 1 of 1
Refer to Test Boring Log TB- MW-104 for Soil Description	 Flush Mounted Roadbox <u>3.0 AGS</u> Depth to Top of Riser Pipe (ft) <u>N/A</u> Depth to Bottom of Cement Surface Patch (ft) Backfill Type <u>N/A</u> <u>0.0</u> Depth to Top of Bentonite Seal (ft) <u>2.0</u> Depth to Bottom of Bentonite Seal (ft) <u>2.0</u> Depth to Top of Well Screen (ft) <u>2.0</u> Diameter of Borehole (in) Backfill Type <u>Sand</u> <u>1.0</u> Inside Diameter of Well (in) Type of Pipe <u>PVC</u> Screen slot size <u>#10</u> <u>12.0</u> Depth to Bottom of Well Screen (ft) <u>12.0</u> Depth to Bottom of Well Screen (ft) 	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal facto	rs and other conditions.
		MONITORING WELL MW-104

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	V								ENVIRONMENTAL CONSULTANTS
DAY			ITAL, IN	C.				AN A	FFILIATE OF DAY ENGINEERING, P.C
Projec Projec	t#: Addres	is:	PC.2696 1 West M	61-01 Main Stre	eet	-			TEST BORING NO. MW-105
			Beacon,	New Yo	ork	_		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epresen	ntative:	Nate Sin	non	ntel	-		Date Started: 11/29/2006 Date Ended: 11/29/2005	
Sampl	ng Meth	nod:	Direct P	ush	mai	-		Completion Method: Well Installed Backfilled with Grout Backfille	th Cuttings
	0					_		Water Level (Date/Time): Not Measured	C C
						-	Ê		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PIC Reading (ppm)	PID Reading (ppr	Sample Description	Notes
							0.0	TOPSOIL	
1								Black Sandy Gravel, some Silt, intermixed with Coal, Coal Slag and Brick Fragments,	
								moist (FILL)	
2	NA	S-1	0-4	30	NA	0.3	0.0	_	
3								-	
							0.0		
4							0.0	·	
_								wet	
5								-	
6	NA	S-2	4-8	20	NA	0.2	0.0	Brown Silty Sand, some Gravel intermixed with Brick Fragments, wet (FILL)	
Ū									
7								_	
8							0.0	-	
							0.0		
9								-	
	NA	S-3	8-12	60	NA	0.4	1.1	Green/Gray Silty CLAY, trace Gravel, trace Sand, wet	
10									
11									
12				-		ļ	1.0		
								BOH @ 12.0'	
								-	
NI-4-	4) 144	r lou!	·	ot the - ··		dor "	tion		
Notes:	 vvater Stratif 	r revels w fication lir	ere made nes represe	at the tim ent appro	es and ur ximate bo	oundaries.	uons state Transitio	r-ructuations or groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.	
	3) PID re	eadings a	re referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. MW-105
40.00	4) NA = N		able or Not	Applicab	le				
40 CO		NEW V		314-1009	3				NEW YORK NEW YORK 10165-1617
(585) 4	54-0210	0	51111-14		-				(212) 986-8645
FAX (5	i85) <u>45</u> 4-	-0825						www.dayenvironmental.com	FAX (212) 986-8657

day DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS
	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon New York	Ground Elevation: Datum:	MONITORING WELL MW-105
DAY Representative: <u>Nate Simon</u> Drilling Contractor: <u>Miller Environmen</u>	Date Started: 11/30/2005 Date Ended: Water Level (Date/Time): 4.35' 12/01/2005	11/30/2005
Refer to Test Boring Log TB- MW-105 for Soil Description	 ← Flush Mounted Roadbox <u>1.75 AGS</u> Depth to Top of Riser Pipe (ft) <u>N/A</u>Depth to Bottom of Cement Surface Patch (ft) Backfill TypeN/A 0.0Depth to Top of Bentonite Seal (ft) 0.5"Depth to Bottom of Bentonite Seal (ft) 2.0Depth to Top of Well Screen (ft) 2.0Diameter of Borehole (in) Backfill Type Sand 1.0Inside Diameter of Well (in) Type of Pipe PVC Screen slot size #10 12.0Depth to Bottom of Well Screen (ft) 12.0Depth of Borehole (ft) 	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal factor	s and other conditions.
		MONITORING WELL MW-105

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	aV ENVIRONMENTAL CONSULTANTS										
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C	
Project Project	t#: Addres	ss:	PC.2696 1 West I	61-01 Main Stre	eet	-				TEST BORING NO. TB-101	
	onrocor	ntativo:	Nate Sir	New Yo	ork	-		Date Started: 11/30/2006 Date Ended: 11/30/2005		Page of 1 of 1	
Drilling	Contra	itative.	Miller Er	non	ntal	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"			
Sampli	ing Meth	nod.	Direct P	ush	inter	-			ckfilled with Cu	ittings	
						-		Water Level (Date/Time): Not Measured			
			1			1	_				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes	
							0.0	TOPSOIL AND ROOTS			
1									_		
								Black Silty Sand, little Gravel, trace Clay, intermixed with Brick, Coal Slag and	Ē		
2	NA	S-1	0-4	60	NA	0.0	0.7	Coal Fragments, moist (FILL)	_		
~											
3									_		
Ŭ											
4							1.0	wet	_		
-							0.0				
5									_		
Ŭ											
6	NA	S-2	4-8	80	NA	0.6	0.2	Black Sandy Gravel, little Silt, trace Clay, intermixed with Coal Fragments, wet (FILL)	_		
Ŭ									Ē		
7											
'									Ē		
8							0.4		_		
Ŭ							0.0				
9								Brown fine Sand, some Gravel, trace Silt, intermixed with Brick Fragments, wet (FILL)	_		
Ĵ											
10	NA	S-3	8-12	80	NA	0.6	0.0		_		
11								Brown coarse Sand, some Gravel, trace Silt, intermixed with Brick Fragments, wet (FILL)	-		
12			L			ļ	0.0		-		
								BOH @ 12.0'			
									-		
									-		
									-		
									-		
Notes:	1) Wator	r levels w	ere mado	at the time	es and ur	der condi	tions state	d. Fluctuations of aroundwater levels may occur due to seasonal factors and other conditions			
110/03.	2) Stratif	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
	3) PID re	eadings a	re referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-101	
	4) NA = 1	Not Availa	able or Not	Applicab	le						
40 CO	MMERC	CIAL STR	REET								
ROCH	ESTER,	, NEW Y	ORK 146	514-1008	3					NEW YORK, NEW YORK 10165-1617	
(585) 4	154-0210	U								(212) 986-8645	
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	

da	av Environmental consultants											
DAY		ONMEN	ITAL, IN	IC.					AN AFFIL	LIATE OF DAY ENGINEERING, P.C		
Draina	· #.		DC 2606	21.01								
Projec	t #. t Addres	s:	1 West N	Main Stre	eet	-				TEST BORING NO. TB-105		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
DAY R	epreser	ntative:	Nate Sin	non	ntol	-		Date Started: 11/15/2006 Date Ended: 11/15/2005 Parabala Dapth: 11.0 Parabala Diameter: 2.0"		-		
Sampl	ing Meth	nod:	Direct P	ush	antei	-		Completion Method: Well Installed Backfilled with Grout	kfilled with Cu	uttings		
						-		Water Level (Date/Time): Not Measured				
	_	_	t)		%	9 2	(m					
	0.5 ft	mbei	pth (1	~	RQD	ce P (ppn	1d) 6					
(ft)	per (e Nu	e Del	over	e or	dspa ding	adin	Sample Description		Notes		
epth	lows	ample	ample	Rec	-Valu	Hea	ID Re					
٥	В	Ś	Ś	%	z		0.0					
								Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	-			
2	NA	S-1	0-4	80	NA	0.0	0.2	moist (FILL)	-			
3								Coal Slag Fragments, wet	-			
4							0.2		-			
								Black Sandy Gravel, trace Silt, intermixed with Coal Tar and Coal Slag Fragments,				
5								wet (FILL)	-			
	NA	S-2	4-8	30	NA	3.2	10.8	Water is black with sheen				
6		-	-						-			
7									-			
_												
8							12.4 22.4		-			
9								·	-			
10	NA	S-3	8-11	30	NA	4.8	12.8		-			
							11.6					
11							-	Refusal @ 11.0'	-			
									-			
									-			
									-			
									-			
									-			
Notes:	1) Water 2) Stratif	r levels w	ere made :	at the time	es and un ximate bo	ider condi jundaries	tions state Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.				
	3) PID re	eadings a	re referen	ced to a b	enzene s	tandard m	easured i			TEST BORING NO. TB-105		
40.00		Not Availa	able or Not	Applicab	le							
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617		
(585) 4	454-0210))								(212) 986-8645		
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

da	ay ENVIRONMENTAL CONSULTANTS											
DAY	ENVIRO		ITAL, IN	IC.					AN AFFI	LIATE OF DAY ENGINEERING, P.C		
Projec Projec	t #: t Addres	s:	PC.2696 1 West N	6I-01 Main Stre	eet	-				TEST BORING NO. TB-106		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	_	Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sin	non wironme	Intal	-		Date Started: <u>11/15/2006</u> Date Ended: <u>11/15/200</u>	5	-		
Sampl	ing Meth	nod:	Direct P	ush	anten	-		Completion Method: Vell Installed Backfilled with Grout	ackfilled with C	uttings		
						-		Water Level (Date/Time): Not Measured				
Jepth (ft)	3lows per 0.5 ft.	sample Number	sample Depth (ft)	6 Recovery	4-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes		
		•,		0.			0.0	TOPSOIL AND ROOTS				
1]_			
								Black Sandy Gravel, trace Silt, intermixed with Coal and Coal Slag Fragments,				
2	NA	5-1	0-4	60	NA	1.6	2.3	moist (FILL)	-			
3									-			
4							4.6	wet (water has sheen)	-			
							10.6	Rlack stained Gravel some Silly Sand intermixed with Coal Tar and Coal Slag				
5								Fragments, wet (FILL)	-			
6	NA	S-2	4-8	40	NA	5.9	33.1		_			
Ū												
7									-			
							42.2					
8							12.8		-			
9	NIA	6.2	9 10 F	20	NIA	2.7	7.0		+			
	INA	3-3	0-10.5	30	INA.	5.7	1.2	Green/Gray Sitty CLAY, wet				
10							5.6		-			
								Refusal @ 10.5'	-			
									-			
									-			
									-			
									-			
									-			
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condit	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u> </u>			
	 Stratif PID re 	eadings a	ies represi ire refereni	ced to a b	kimate bo ienzene s	undaries. tandard m	easured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.				
	4) NA = N	Not Availa	able or Not	Applicab	le					IEST BURING NU. 18-106		
40 CO	MMERC	NEW V	REET	314-1009	3					NEW YORK NEW YORK 10165-1617		
(585) 4	454-0210)	5111 140		-					(212) 986-8645		
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

	da	ENVIRONMENTAL CONSULTANTS											
Project r: Project r: Strain Twin Twin Twin PC_000011 Twin	DAY	ENVIRO		ITAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C		
Description Temperature Description Page of 1 of 1 Diffic Converse Best Binder Integrad Description Best Binder Integrad Integrad Best Binder Integrad	Projec Projec	t #: t Addres	is:	PC.2696 1 West I	6I-01 Vain Stre	eet	_				TEST BORING NO. TB-107		
DM Megnetation: Net: Since	.,			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
Diffing Centrol Mile Eventorement Boreline Mail Boreline Dentritie 20" generation Bill Restau Bill Restau Boreline Dentritie Boreline Dentritie 20" generation Bill Restau Boreline Dentritie Boreline	DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005				
Simplify Method Origination Method: Origination Method: Origination Method: Description Backlind with Grad Backlind with	Drilling	g Contra	ctor:	Miller Er	nvironme	ental	_		Borehole Depth: 12.0' Borehole Diameter: 2.0"				
Notes Notes 0	Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Bac	ckfilled with Cu	ttings		
u u									Water Level (Date/Time): Not Measured				
Image: Mail of the set of the se	Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes		
Image: Normal State State <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>TOPSOIL AND ROOTS</td> <td></td> <td></td>								0.0	TOPSOIL AND ROOTS				
NA S-1 0.4 40 NA 3.4 1.6 Prognants, mois (FLL) Image: Construction of the state of the	1								Black Sandy Gravel, trace Silt, intermixed with Coal Tar, Coal and Coal Slag	_			
1 NA S-1 0-4 40 NA 3.4 1.6 1									Fragments, moist (FILL)	-			
Mark A A A A Coal Sing Fragments come Sand, trace Gravel, wet	2	NA	S-1	0-4	40	NA	3.4	1.6		_			
A A A A A A A Coal Skig Fragments some Sand, trace Gravel, wet . B A A A water is black with sheen Black Slaved Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL) water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL) water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL) water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL) Materia A A A A A A A Materia A A A A A A A Materia A A A A A A A Materia A A A A A A A A Materia A A A B A A A A A A Materia A	2									-			
Mark Image: State of the	2									-			
Mag NA S-2 4-8 30 NA 6-4 2.8 Coal Slag Fragments some Slad, trace Gravel, wet - 6 NA S-2 4-8 30 NA 6-4 2.8 7 - - - - - - - 6 NA S-2 4-8 30 NA 6-4 28.6 - 9 NA S-2 4-8 30 NA 6-4 28.6 9 NA S-3 8-12 20 NA 1.9 6.2 10 NA I I I I I I I I I I I I I	3									-			
Mark S-2 4-8 30 NA 6-4 28.6 NA S-3 8-12 20 NA 1.9 6.2 NA NA Indication lines represent approximate boundaries. BOH @ 12.0" Estimate and under conditions at a point waterelevels may occur due to seasonal	4							2.8	Coal Slag Fragments some Sand, trace Gravel, wet	_			
A NA S-2 4-8 30 NA 6-4 25-6 A NA S-2 4-8 30 NA 6-4 25-6 A A S-2 4-8 30 NA 6-4 25-6 A A S-3 8-12 20 NA 1.9 6.2 A NA S-3 8-12 20 NA 1.9 6.2 BOH 812.0' BOH @ 12.0' BOH @ 12.0' Extension and other conditions. Extension and other conditions. 1 Matter levels wave moder in spromean structure to a barcere standard measured in the levels pare later. BOH @ 12.0' Extension and other conditions. 1 Matter levels wave moder at spromean structure to a barcere standard measured in the levelspace above the sample uaing	-							3.4	water is black with sheen	-			
NR S-2 4-8 30 NA 6.4 28.6 wet (FiLL) Image: 1	5								Black Stained Gravel, some Silty Sand intermixed with Coal Slag Fragments,	-			
o NA S-2 4-8 30 NA 6.4 28.6 7 - - - - - - 8 - - - - - - 9 NA S-3 8-12 20 NA 1.9 6.2 - 10 NA S-3 8-12 20 NA 1.9 6.2 - 11 - - - - - - - 12 MA S-3 8-12 20 NA 1.9 6.2 - 14 - - - - - - - - 14 - - - - - - - - 14 - - - - - - - - - 15 Mark Internetional and Inder Conditions stated. Fluctuations of groundwater tweets may accur due to seasonal factors and other conditions. - - 19 PiD readings are referenced to a becorestand resource due to seasona	5								wet (FILL)	-			
Name: 1 <td>6</td> <td>NA</td> <td>S-2</td> <td>4-8</td> <td>30</td> <td>NA</td> <td>6.4</td> <td>28.6</td> <td></td> <td></td> <td></td>	6	NA	S-2	4-8	30	NA	6.4	28.6					
7 I	0									-			
Name	-												
Image: Normality of the state of t	'									-			
a I								41.2					
a NA S-3 B-12 20 NA 1.9 6.2 11 I	8							4.6		-			
3 NA \$-3 8-12 20 NA 1.9 6.2 11 I													
10 NA \$-3 8-12 20 NA 1.9 6.2 11 1	9									-			
11 - 12 - 12 - 12 - 12 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 11 - 12 - 12 - 12 - 13 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 <td< td=""><td>40</td><td>NA</td><td>S-3</td><td>8-12</td><td>20</td><td>NA</td><td>1.9</td><td>6.2</td><td></td><td></td><td></td></td<>	40	NA	S-3	8-12	20	NA	1.9	6.2					
11 I	10									-			
12 12.4 12 12.4 12 12.4 12 12.4 13 12.4 14 12.4 15 12.4 16 12.4 17 12.4 18 12.4 19 12.4 10 12.4 11 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 12 12.4 13 10.4 140 10.4 15 10.4 16 1													
12 Image: 12.4 Image: 12.4 13 Image: 12.4 Image: 12.4 14 Image: 12.4 Image: 12.4 15 Image: 12.4 16 Image: 12.4 17 Image: 12.4 18 Image: 12.4 19 Image: 12.4 10	11									-			
Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. Image: 1) Water levels were made at the times and under conditions are observed to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 40 COMMERCIAL STREET TEST BORING NO. TB-107 40 COMMERCIAL STREET NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 936-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	40							12.4					
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . .) Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . .) Stratification lines represent approximate boundaries. Transitions may be gradual. . . .) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. . .) ND readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. . .) Not Available or Not Applicable TEST BORING NO. TB-107 40 COMMERCIAL STREET . ROCHESTER, NEW YORK 14614-1008 . (585) 454-0210 . FAX (585) 454-0825 . Yeak-6455 .	12								BOH @ 12.0'	-			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 1 4) NA = Not Available or Not Applicable TEST BORING NO. TB-107 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 (212) 986-8645 FAX (585) 454-0210 (212) 986-8645													
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. - 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										-			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. IEST BORING NO. TB-107 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										_			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										-			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										-			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 4) NA = Not Available or Not Applicable TEST BORING NO. TB-107 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										-			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 4) NA = Not Available or Not Applicable TEST BORING NO. TB-107 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 (212) 986-86645 FAX (585) 454-0210 (212) 986-8657 FAX (585) 454-0825 www.dayenvironmental.com										_			
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET NEW YORK 14614-1008 (585) 454-0210 (212) 986-86645 (212) 986-86657 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657													
a) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-107 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.				
4) NA = Not Available or Not Applicable TEST BORING NO. TB-107 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657		 Stratif PID re 	eadings a	re referen	ced to a b	viniate po venzene s	standard m	n ansitio neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.				
40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657		4) NA = 1	Not Availa	ble or Not	Applicab	le			· ····································		TEST BORING NO. TB-107		
ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 FAX (212) 986-8657	40 CO) COMMERCIAL STREET											
(585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	ROCH	ESTER,	NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617		
FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	(585) 4	454-0210	C								(212) 986-8645		
	FAX (5	585 <u>)</u> 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

da	av Environmental Consultants											
DAY		ONMEN	ITAL, IN	IC.						AN AFFILIA	TE OF DAY ENGINEERING, P.C	
Projec Projec	t #: t Addres	s:	PC.2696	8I-01 Main Stre	eet	-				TE	EST BORING NO. TB-108	
,			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	:		Page of 1 of 1	
DAY F	lepreser	ntative:	Nate Sir	non		_		Date Started: 11/15/2006 Date Ended	: 11/15/2005			
Drilling	Contra	ctor:	Miller Er	vironme	ental	-		Borehole Depth: 12.0' Borehole Diameter	: 2.0"			
Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Gro	out Backfil	lled with Cuttin	gs	
		1	1	1	1		_					
	ff.	e	(£		%Q	E ĝ	(mqq					
	r 0.5	qun	epth	Σe	r RG	g (pl	ing (Sample Description			Notes	
h (ft)	s pe	ole N	ole D	COVE	lue c	adsp	Read					
Dept	Blow	Saml	Sam	% Re	N-Va	He Re	DIA					
				-			0.0	TOPSOIL AND ROOTS				
1												
2	NA	S-1	0-4	60	NA	0.0	0.0	Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FI	LL) -			
3									-			
							0.0	wet				
4							0.0		-			
5												
5									Ē			
6	NA	S-2	4-8	40	NA	0.1	0.0		_			
7									-			
							0.0					
8							0.0		-			
9									-			
10	NA	S-3	8-12	20	NA	0.0	0.0		-			
11									-			
							0.0					
12							0.0	BOH @ 12.0'				
									-			
									_			
									-			
									-			
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other co	onditions.			
	 Stratif PID re 	tication lir eadings a	nes repres ire referen	ent appro: ced to a b	ximate bo enzene s	oundaries. tandard m	Fransitio neasured i	ns may be gradual. In the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV la	amp.	Г		
	4) NA = 1	Not Availa	able or Not	Applicab	le_				•	TE	EST BORING NO. TB-108	
40 CO	MMERC	CIAL STR	REET									
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					N	IEW YORK, NEW YORK 10165-1617	
(585) 4	454-0210	0									(212) 986-8645	
FAX (5	585) 454	-0825						www.dayenvironmental.com			FAX (212) 986-8657	

da	V							av Environmental Consultants											
DAY		ONMEN	NTAL, IN	IC.				AN A	FFILIATE OF DAY ENGINEERING, P.C										
Projec Projec	t #: t Addres	ss:	PC.2696	6I-01 Main Stre	eet	-			TEST BORING NO. TB-110										
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1										
DAY R	epreser	ntative:	Nate Sir	non		_		Date Started: 11/29/2006 Date Ended: 11/29/2005											
Drilling	Contrac	ctor:	Miller Er	nvironme	ntal	-		Borehole Depth: Borehole Diameter: 2.0"											
Sampi	ing Metr	100:	Direct P	usn		-		Completion Method: Well Installed Backfilled with Grout Backfilled with Water Level (Date/Time): Not Measured	th Cuttings										
		1				1	-												
	ť.	er	(H		уD%	CIL (n	mdd												
	r 0.5	Iump	epth	ery	or RG	oace g (pl	ing (Sample Description	Notes										
h (ft)	s pe	ole N	ole D	COVE	lue c	adsp	Read												
Dept	Blow	Sam	Sam	% Re	N-Va	μş	DIA												
				-			0.0	0.3' Asphalt and FILL											
1								Brown Sandy Gravel intermixed with Coal Fragments, moist (FILL)											
2	NA	S-1	0-4	60	NA	1.1	0.0	-											
3								Black Sandy Gravel											
							0.0	wot											
4							0.0	-											
5																			
5								Ē											
6	NA	S-2	4-8	40	NA	1.1	0.0	_											
7								-											
							0.0												
8							0.0	Refusal @ 8.0'											
								Ē											
								.											
								-											
Notes:	lotes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.																		
	2) Stratification lines represent approximate boundaries. Transitions may be gradual.																		
	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable																		
40 CO	MMERC	CIAL STI	REET																
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617										
(585) 4	454-0210	0							(212) 986-8645										
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657										

da	ENVIRONMENTAL CONSULTANTS											
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFIL	LATE OF DAY ENGINEERING, P.C		
Projec Projec	t#: Addres	s:	PC.2696 1 West I	61-01 Main Stre	eet	-				TEST BORING NO. TB-111		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sir	non		_		Date Started: 11/15/2006 Date Ended: 11/15/2005				
Sampl	Contrac	ctor: nod:	Direct P	ush	ental	-		Completion Method: Ukell Installed Backfilled with Grout Backfilled with Grout	ckfilled with Cu	ittings		
	5					-		Water Level (Date/Time): Not Measured				
					%	0.0	Ê					
	.5 ft.	nber	th (fi		Sap	ce Pll (ppm	dd) E					
(tt)	per 0	Nur	e Dep	very	e or	dspa ding (adinę	Sample Description		Notes		
epth (ows	ample	ample	Reco	Valu	Head	D Re					
ă	8	ů	š	%	ż		E	0.2) Apphalicand EU L				
							0.0	Brown Sand, some Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)				
1									-			
2	NA	S-1	0-4	60	NA	0.9	0.8		-			
3									-			
							17					
4							0.3	wer Black Sandy Gravel, intermixed with Coal Slag and Coal Fragments, wet (FILL)	-			
э									-			
6	NA	S-2	4-8	40	NA	1.0	0.4		-			
7									-			
							0.4					
8							0.4		-			
									_			
Ĵ												
10	NA	S-3	8-12	30	NA	0.3	0.6		-			
								Black Silty SAND, trace Gravel, wet				
11									-			
12							0.5					
12								BOH @ 12.0'	-			
									-			
									-			
									-			
									_			
N	4) 147 -		<u> </u>		<u> </u>							
Notes:	 vvater Stratif 	r revels w fication lir	ere made nes repres	at the tim ent appro	es and ur ximate bo	uder condition of the second s	uons state Transitio	nucruations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.				
	3) PID re	eadings a	are referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-111		
40.00	4) NA = Not Available or Not Applicable											
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617		
(585) 4	54-0210	0								(212) 986-8645		
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

da	ay ENVIRONMENTAL CONSULTANTS										
DAY	ENVIRO		ITAL, IN	IC.				AN /	AFFILIATE OF DAY ENGINEERING, P.C		
Projec Projec	t #: t Addres	is:	PC.2696 1 West M	6I-01 Main Stre	eet	-			TEST BORING NO. TB-112		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sin	non	ntal	-		Date Started: 11/30/2006 Date Ended: 11/30/2005			
Sampl	ing Meth	nod:	Direct P	ush	mai	-		Completion Method: Vell Installed Backfilled with Grout Backfilled with Grout	vith Cuttings		
	5					-		Water Level (Date/Time): Not Measured			
						_	ē				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppn	Sample Description	Notes		
							0.0	0.75' Asphalt and FILL			
1								Brown Sandy Gravel, some Silt, intermixed with Brick and Coal Fragments,			
								moist (FILL)			
2	NA	S-1	0-4	50	NA	1.0	0.0	-			
3								-			
							0.0	. wet			
4							0.0	wet -			
5								-			
6	NA	S-2	4-8	20	NA	1.3	0.0				
Ŭ											
7											
							0.0	Green Silty CLAY, wet			
8							0.0	· · · ·			
9								-			
10	NA	S-3	8-12	0	NA	-	-	no recovery			
10											
11											
12											
								BOH @ 12.0'			
								-			
Notes:	1) Water	r levels w	ere made :	at the tim	es and ur	nder condit	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.			
	2) Stratif	fication li	nes represe	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
	3) PID re 4) NA – *	eadings a	ire referen	Applicable	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-112		
40 CO	MMERC	CIAL STI	REET	, Abbiingn							
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617		
(585) 4	154-0210	D							(212) 986-8645		
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657		

da	ENVIRONMENTAL CONSULTANTS											
DAY			ITAL. IN	IC.				AN AFF	FILIATE OF DAY ENGINEERING. P.C			
			,									
Project	t#: Addres	· ·	PC.2696	6I-01 Main Stre	opt	-			TEST BORING NO. TB-113			
1 10,00	, riddi co		Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1			
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005				
Drilling	Contrac	ctor:	Miller Er	nvironme	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"				
Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Uvell Installed Backfilled with Grout Backfilled with	Cuttings			
			1	1								
	÷	P	(£		%O	OL (ji	(mdc					
	0.5	đun	epth	≥	r RQ	ace g (pp	1) Gu	Sample Description	Notos			
(ft)	s per	le N	e D	Sove	ne o	adsp	eadi		Notes			
Depth	slows	amp	amp	6 Rec	I-Val	Hea	ID R					
	ш	S S S S S S S S S S S S S S S S S S S	o	~	z		0.0	0 3' Asphalt and Ell I				
								Black Sandy Silt, little Gravel, intermixed with Brick and Coal Fragments.				
1								moist (FILL)				
_	NA	S-1	0-4	80	NA	0.9	0.0					
2								-				
3								-				
-												
4							0.0	·				
							0.0	wet				
5								-				
	ΝΔ	S-2	1-8	80	ΝΔ	0.4	0.0	Gray Silty Sand, little Gravel, intermixed with Brick and Coal Fragments,				
6	1.07	02	+0	00	1473	0.4	0.0					
								Black Sandy Silt				
7								-				
8							0.0					
Ŭ							0.0					
9								-				
10	NA	S-3	8-11	60	NA	0.3	0.0	-				
11								Black Sandy Gravel, little Silt, intermixed with Wood and Brick Fragments,				
							0.0					
12								- BOH @ 12.0'				
								-				
Notes:	1) Water	r levels w	ere made	at the tim	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.				
	2) Stratif	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitic	ns may be gradual.				
	3) PID re 4) NA – N	eadings a	ire referen	ced to a b	ienzene s Ie	tandard m	easured	n the neadspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-113			
40 CO	4) NA = Not Available or Not Applicable											
ROCH	ESTER,	, NEW Y	ORK 146	514-1008	3				NEW YORK, NEW YORK 10165-1617			
(585) 4	54-0210	0							(212) 986-8645			
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657			

da	ay Environmental Consultants											
DAY		ONMEN	NTAL, IN	IC.				AN A	AFFILIATE OF DAY ENGINEERING, P.C			
Projec Projec	t #: t Addres	s:	1 West I	01-01 Main Stre	eet	-			TEST BORING NO. TB-115A			
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1			
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005				
Drilling	Contrac	ctor:	Direct P	ivironme ush	ental	-		Borehole Depth: 8.0' Borehole Diameter: 2.0"	ith Cuttings			
oumpi	ing mean	100.	Directi	4511		-		Water Level (Date/Time): Not Measured	un outingo			
			_				ē					
	5 ft.	ber	th (ft)		aD%	e PIC ppm)	udd)					
ft)	oer 0.	Nun	Dep	very	orF	spac ing (Iding	Sample Description	Notes			
pth (I	ws p	nple	nple	Seco	/alue	Head) Rea					
De	Blo	Saı	Saı	1%	-z		ЫС					
							0.0	Black Sandy Gravel, some Silt, intermixed with Coal and Brcik Fragments,				
1								moist (FILL)				
	NA	S-1	0-4	70	NA	0.0	0.0					
2								-				
3												
4							0.0	wet				
-							0.0					
5								-				
6	NA	S-2	4-8	30	NA	0.0	0.0					
								Green/Gray coarse SAND, little Gravel, trace Silt, wet				
7								-				
							0.0					
8								BOH @ 8.0'				
								-				
								-				
								·				
								-				
								-				
								-				
Notes:	Les: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.											
	2) Stratif	fication li	nes repres	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.				
	3) PID re 4) NA = №	eadings a	are referen able or Not	ced to a b	enzene s Ile	tandard m	easured i	n the neadspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-115A			
40 CO	MMERC	CIAL STI	REET									
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617			
(585) 4	154-0210	0							(212) 986-8645			
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657			

da	av ENVIRONMENTAL CONSULTANTS												
DAY			ITAL, IN	IC.				AN AI	FFILIATE OF DAY ENGINEERING, P.C				
Projec Projec	t#: Addres	s:	PC.2696 1 West N	61-01 Main Stre	eet	-			TEST BORING NO. TB-116				
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1				
DAY R	epresen	ntative:	Nate Sin	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005					
Drilling	Contrac	ctor:	Miller Er	nvironme uch	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0"</u>	h Cuttings				
Sampi	ing weth	100.	Dilect	usn		-		Water Level (Date/Time): Not Measured	Cuttings				
							2						
	5 ft.	ber	(#) H		aD%	DIA (ud	nqq)						
~	er 0.5	Mum	Dept	ery	or R	pace ng (p	ding	Sample Description	Notes				
th (ft	vs pe	ple	ple	ecov	alue	eads	Read						
Dep	Blov	Sam	Sam	% R	Ň-N	Ξŵ	DIA						
							0.0	TOPSOIL and ROOTS					
1								Black Sandy Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)					
2	NA	S-1	0-4	90%	NA	0.0	0.0	-					
3								-					
							0.0	wat					
4							0.0	-					
э								-					
6	NA	S-2	4-8	100	NA	0.2	0.0						
-								Brown/Green Silty CLAY, trace Sand, wet					
7								-					
8							0.0	-					
							0.0	Diown Sich, nace Sand, wet					
9								-					
10	NA	S-3	8-12	90	NA	0.0	0.0						
10								-					
11								-					
12							0.0	.					
								BOH @ 12.0'					
								-					
								-					
								-					
			L			<u> </u>							
Notes:	 Water Stratif 	r Ievels w fication lir	ere made : nes represe	at the time ent appro:	es and un ximate bo	nder condi oundaries.	tions state Transitio	xd. Fluctuations ot groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.					
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-116				
10.05	4) NA = Not Available or Not Applicable												
				\$14-1005	2								
(585) 4	54-021	, iNE VV T)	UKK 140	514-1008	J				(212) 986-8645				
FAX (5	85) 454	- -0825						www.dayenvironmental.com	FAX (212) 986-8657				
da	V	AV ENVIRONMENTAL CONSULTANTS											
----------	---	------------------------------	-------------	-----------------	-----------------------	---------------	-------------	--	-----------------------------------	--	--	--	--
DAY		ONME	ITAL, IN	IC.				AN	AFFILIATE OF DAY ENGINEERING, P.C				
Project	#:		PC.2696	SI-01									
Projec	Addres	s:	1 West I	Main Stre	eet	-			TEST BORING NO. TB-117				
		tativa	Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1				
Drilling	Contrac	ctor:	Miller Er	non nvironme	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"					
Sampl	ng Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Backfilled	with Cuttings				
						_		Water Level (Date/Time): Not Measured					
			÷		%	<u>م</u>	(î						
	.5 ft.	nber	th (f		RaD	ce PI (ppm	dd) E						
(t)	per 0	Nur	Dep	very	e or l	Ispa ling	adinç	Sample Description	Notes				
pth (swo	mple	mple	Reco	Value	Heac Reac	D Re						
De	ă	Sa	Sa	%	ź		E						
								TOPSOIL and ROOTS					
1								Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FILL)					
	NA	S-1	0-4	80	NA	1.7	5.3						
2								-					
3								-					
4								wet (water has sheen)					
-							17.1						
5								-					
6	NA	S-2	4-8	60	NA	23.5	34.6	-					
								some Coal Slag Fragments					
7								- Black Sandy Gravel, some Silt, intermixed with Coal Fragments and Coal Tar					
							49.2	wet (FILL)					
8							37.2	-					
٩								_					
Ĵ													
10	NA	S-3	8-12	40	NA	1.7	29.1						
								Gray Silty CLAY, some sand, wet					
11								-					
							7.6						
12					1		-	- BOH @ 12.0'					
								-					
								-					
Notes:	1) Water	r levels w	ere made	at the tim	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.					
	 Stratif PID re 	fication li	nes repres	ent appro	ximate bo enzene s	oundaries.	Transitio	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp					
	4) NA = N	Not Avail	able or Not	Applicab	le				TEST BORING NO. TB-117				
40 CO	MMERC	IAL ST	REET										
ROCH	ESTER,	NEW)	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617				
(585) 4	54-0210	0							(212) 986-8645				
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657				

da	AV ENVIRONMENTAL CONSULTANTS												
DAY	ENVIRO	ONME	NTAL, IN	IC.				AN AI	FFILIATE OF DAY ENGINEERING, P.C				
Projec Projec	t#: Addres	s:	PC.2696 1 West I	6I-01 Main Stre	eet	-			TEST BORING NO. TB-118				
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1				
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005					
Drilling	Contrac	ctor:	Direct P	nvironme	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0'</u> Borehole Diameter: <u>2.0'</u> Borehole Diameter: <u>2.0'</u> Backfilled with Grout	h Cuttings				
Gampi	ing weth	iou.	Direct	uan		-		Water Level (Date/Time): Not Measured	Cuttings				
					_		ê						
	5 ft.	ber	(#) H		aD%	e PID (mq	udd)						
Ð	er 0.	Mum	Dept	/ery	or R	spac ng (j	ding	Sample Description	Notes				
th (f	ws p	ble	ble	ecov	alue	leads	Rea						
Dep	Blo	San	San	% К	∧-N	Τœ	DID						
							0.0	TOPSOIL and ROOTS					
1								Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FILL)					
	NIA	C 1	0.4	60	NIA	0.0	0.0						
2	NA	5-1	0-4	60	INA	0.0	0.0	-					
3								•					
							0.0	wet					
4							0.0	•					
5													
Ŭ													
6	NA	S-2	4-8	40	NA	0.0	0.0	-					
7								-					
							0.0						
8							0.0	•					
9								-					
10	NA	S-3	8-12	20	NA	0.0	0.0	-					
11													
							0.0						
12							0.0	BOH @ 12.0'					
								l l					
								.					
Notes:	1) Water	l r levels w	l vere made	at the tim	l es and ur	l nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.					
	2) Stratif	fication li	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.					
	3) PID re 4) NA = №	eadings a Not Aveil	are reteren	ced to a b t Applicab	ienzene s le	standard m	easured i	n the neadspace above the sample using a Minikae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-118				
40 CO	MMERC	CIAL ST	REET										
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617				
(585) 4	54-0210	0							(212) 986-8645				
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657				

da	ay Environmental Consultants											
DAY	ENVIRO		ITAL, IN	C.					AN AFFII	LATE OF DAY ENGINEERING, P.C		
			DO 0000									
Projec	t #: t Addres	s:	1 West M	л-01 Лain Stre	eet	-				TEST BORING NO. TB-119		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sin	non	ntol	-		Date Started: <u>11/16/2006</u> Date Ended: <u>11/16/2005</u>	i	-		
Sampl	ing Meth	nod:	Direct P	ush	indi	-		Completion Method: Well Installed Backfilled with Grout Ba	ckfilled with Cu	uttings		
-	-					-		Water Level (Date/Time): Not Measured				
			(1		%	<u>م</u>	Ω.					
).5 ft.	nber	oth (f		Rap	ce PI (ppm	dd) 6					
(£	per (e Nur	Dep	nen	e or	dspa	adin	Sample Description		Notes		
epth (ows	ample	ample	Rect	-Valu	Head	D Re					
ă	8	ů	ů	%	ż		E					
							0.0		1			
1									-			
2	NA	S-1	0-4	70	NA	4.3	1.3	Brown coarse Sand, some Gravel, trace Silt, moist (FILL)	_			
-												
3									-			
							0.0					
4							0.8	wet (water has sheen)	-			
							1.1	Rlack Stained Gravel trace Sand intermixed with Coal Fragments, wet (FILL)				
5								black Stained Graver, trace Sand, internixed with Coar Fragments, wet (FILE)	-			
	NA	S-2	4-8	20	NA	2.1	2.1					
0									-			
7									_			
8							3.0		-			
							2.4	Black Sandy Silt, some Gravel, trace Clay, wet (FILL)				
9									-			
10	NA	S-3	8-12	20	NA	14.1	2.9					
10									-			
11									_			
12							3.2		-			
									-			
									Ē			
									-			
									-			
Notes:	1) Water	r levels w	ere made :	at the time	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u>I</u>			
	2) Stratif	fication lin	nes represe	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual. In the headsnace above the sample using a MiniRae 2000 equipped with a 10.6 oV loop.				
	4) NA = N	Not Availa	able or Not	Applicab	le	anudiu ff	icasuled l	יי איז איז איז איז איז איז איז איז איז א		TEST BORING NO. TB-119		
40 CO	MMERC	IAL STR	REET							-		
ROCH	ESTER,	NEW Y	ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617		
(585) 4	154-0210	C								(212) 986-8645		
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY		ONMEN	ITAL, IN	IC.					AN AFFII	LIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	s:	PC.2696 1 West M	6I-01 Main Stre	eet	-				TEST BORING NO. TB-120
,			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	Represer	ntative:	Nate Sin	non		-		Date Started: 11/16/2006 Date Ended: 11/16/200)5	-
Drilling	g Contrac	ctor:	Miller Er	ivironme	ntal	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0"</u>	Packfilled with C	Ittinge
Sampi	ing weu	100.	Dilectri	4511		-		Water Level (Date/Time): Not Measured		aungs
					. 9		Ê			
	.5 ft.	lber	th (ft)		taD%	e PIC ppm)	udd)			
ft)	oer 0.	Nun	Dep	very	or	spac ing (Iding	Sample Description		Notes
pth (1	ows p	mple	mple	Reco	/alue	Head) Rea			
De	BIG	Sa	Sa	%	ź		PI			
							0.0	0.3' Asphalt and FILL	-	
1								Black Sandy Gravel intermixed with Coal and Coal Slag Fragments, moist (FILL)	-	
2	NA	S-1	0-4	80	NA	2.2	0.2			
2									-	
3									-	
							0.4	wet (water has sheen)		
4							0.4		-	
							0.0			
5									-	
6	NA	S-2	4-8	40	NA	3.0	2.1		_	
Ŭ									-	
7									-	
							2.0			
8							3.9		-	
							_			
9									-	
10	NA	S-3	8-12	20	NA	4.7	2.9		-	
									_	
11								Gray Silty SAND, some Gravel, trace Clay, wet	-	
							3.8			
12						1		BOH @ 12.0'	7-	
									-	
									-	
									-	
									-	
Notes:	1) Water 2) Stratif	r levels w fication lir	ere made : nes represe	at the time ent appro:	es and un ximate bo	nder condi oundaries.	tions state Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re	eadings a	re referen	ced to a b	enzene s	tandard m	neasured i			TEST BORING NO TR-120
40.00	4) NA = 1	Not Availa	able or Not	Applicab	le					
40 CO	MMERC	NEW V		314-1009	3					NEW YORK NEW YORK 10165-1617
(585) 4	454-0210)	51111-14		-					(212) 986-8645
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	av Environmental Consultants											
DAY			ITAL, IN	IC.					AN AFFILIATE	OF DAY ENGINEERING, P.C		
			50.000									
Project	t#: Addres	s:	1 West I	Main Stre	eet	-			TES	T BORING NO. TB-121		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/29/2006 Date Ended: 11/29/2005				
Sampli	ng Meth	ctor: nod:	Direct P	ush	ental	-		Completion Method: Vell Installed Backfilled with Grout Backfilled	led with Cuttings			
	5					-		Water Level (Date/Time): Not Measured				
					%	0 0	Ê					
	.5 ft.	nber	oth (fi		RQD	ce PI (ppm	dd) 6					
£	per 0	Nur	Dep	very	e or	lspa ding	adinç	Sample Description		Notes		
epth (ows	mple	ald m	Reco	Valu	Heac Reac	DRe					
De	B	Sa	Sa	%	ż							
							0.0	TOPSOIL and ROOTS Plack Sandy Gravel, some Silt, intermixed with Coal and Coal Slag Fragments				
1								Diack Sandy Gravel, some Silt, intermixed with Coar and Coar Siag Fragments,				
	NA	S-1	0-4	80	NA	2.1	0.0					
2								-				
3												
Ŭ												
4							1.0	wet (water has sheen), Coal Tar Type Odor				
							1.1					
5								-				
	NA	S-2	4-8	60	NA	2.2	2.1	Rlack Sandy Gravel and Coal Intermixed with Coal Slag Fragments and				
6								Coal Tar, wet (FILL)				
_												
8							1.0					
							323					
9								-				
	NA	S-3	8-12	60	NA	39.9	81.6	Diack Silly CLAV, trace Sill, trace Croyel wet				
10		00	0.2	00		00.0	01.0	Diack Silly CLAT, trace Sill, trace Gravel, wet				
11												
12							106					
							6.4					
13								Gray Silty SAND, some Gravel, wet				
	NΔ	S-4	12-15	80	NΔ	3.0	5.6					
14	107	0 4	12 10	00	147.	0.0	0.0	-				
							6.2					
15								Refusal @ 15.0'				
Noter	4) 10/-4	r love'-	000 m	ot the fir		dor c "	tiona -t- '					
inotes:	 vvater Stratif 	fication lir	ere made nes repres	ent appro	es and un ximate bo	oundaries.	Transitio	 roucluations or groundwater revers may occur due to seasonal factors and other conditions. ns may be gradual. 				
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TES	T BORING NO. TB-121		
40.00	4) NA = 1		able or Not	Applicab	le							
ROCH	ESTER.	NEW Y	ORK 14	614-1008	3				NEV	V YORK, NEW YORK 10165-1617		
(585) 4	154-0210	0								(212) 986-8645		
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	ITAL, IN	IC.					AN AFFIL	LATE OF DAY ENGINEERING, P.C
Projoc	• #-		PC 2606	21.01						
Projec	t #. t Addres	ss:	1 West M	Main Stre	eet	-				TEST BORING NO. TB-122
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	contract	ntative:	Nate Sin	non wironme	ntal	-		Date Started: <u>11/29/2006</u> Date Ended: <u>11/29</u> Borehole Depth: <u>10.6'</u> Borehole Diameter: <u>2.0"</u>	/2005	-
Sampl	ing Meth	nod:	Direct P	ush	inter	-		Completion Method:	Backfilled with Cu	uttings
						_		Water Level (Date/Time): Not Measured	_	
			t)		%	₽ ĉ	(m			
	0.5 ft	mbei	pth (1	>	RQD	ce P (ppn	d) 6			
(ft)	per (e Nu	e Del	over	e or	dspa ding	adin	Sample Description		Notes
epth	ows	amp	ampl	Rec	-Valu	Hea Rea	D Re			
Δ	8	s	S	%	z		0.0	TOPSOIL and ROOTS		
								Black Sandy Gravel, some Silt, intermixed with Coal Tar. Coal Slag and Coal		
1								Fragments, moist (FILL)	-	
2	NA	S-1	0-4	60	NA	12.4	0.0		_	
-									-	
3									-	
4							9.3	wet (water has sheen)	-	
							3.6			
5									-	
	NA	S-2	4-8	50	NA	2.1	1.2			
6									-	
7										
,									-	
8							1.0			
							3.2	Gray Silty CLAY, wet		
9	NΔ	5-3	8-12	40	NΔ	2.8	12		-	
		00	0.2			2.0				
10							0.8		-	
								Refusal @ 10.6'	_	
									-	
									-	
									-	
									-	
									-	
									-	
Notae	1) Moto	r lovele ···	oro mode	at the tire	os and	dor con-	tions state	d. Eluctuations of anoundwater louds may accur due to accessed factors and other and "		
INULES:	 2) Stratil 	fication li	nes represe	ent appro:	ximate bo	oundaries.	Transitio	ns may be gradual.		
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-122
40 CO	4) NA = I	NOT AVAIL	ADIE OF NOT	Applicab	ile					<u> </u>
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617
(585) 4	154-021	0								(212) 986-8645
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

d	ay								E	NVIRONMENTAL CONSULTANTS		
DAY	ENVIE	RONME	NTAL, I	NC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C		
Proje Proje	ct #: ct Addre	ess:	PC.269 1 West	961-01 Main St	reet	-				TEST BORING NO. TB-123		
			Beacor	ı, New Y	'ork	_		Ground Elevation: Datum:		Page of 1 of 1		
DAY	Represe	enlative:	Nate S	mon		-		Date Started: 11/29/2006 Date Ended: 11/29/20)05			
Drillin	g Contr	actor:	Miller E	nvironm	ental	-		Borehole Depth: <u>10.5'</u> Borehole Diameter: <u>2.0"</u> Borehole Diameter: <u>2.0</u>	Real-Gliad with C	tilinge		
Samp	ling Me	thod:	Urect	Jush		-		Water Level (Date/Time):	Backaled with C	otarigs		
	r	1	1	<u> </u>	1	1	T					
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes		
		1		1	1		0.0	TOPSOIL and ROOTS				
								Black Sandy Gravel, some Silt, intermixerd with Coal and Coal Slag Fragments,				
1								Coal Tar, moist (FILL)				
2	NA	S-1	0-4	80	NA	16.9	3.1		-			
-				i				Coal Slag Fragments, some Sandy Gravel, trace Silt, intermixed with				
3								Coal Tar, moist (FILL)	-			
						[
4							7.2	wet (water has sheen)	-			
							3.0					
5									-			
	NA	S-2	4-8	50	NA	14.8	6.8					
6								Grav Silly CLAY, trace Sand, wet				
7									-			
							4.8		-			
Ŭ							6.8					
9									-			
	NA	S-3	8-12	60	NA	0.7	13.8					
10							4.0		-			
ŀ							1.0	Deficient (2) 40 5'	-			
								Reiusai (g. 10.5	-			
									1			
									-			
				ĺ					-			
ĺ									-			
Notes:	L L F L L F L L L S S S S S S S S S S S											
	2) Statification lines represent approximate boundaries. Transitions may be gradual.											
	s) Proceedings are reterenced to a benzene standard measured in the headspace above the sample using a minikae 2000 equipped with a 10.6 eV tamp. 4) NA = Not Available or Not Applicable											
40 COI	IMERC	IAL STR	EET		-			and a second				
ROCH	STER,	NEW Y	DRK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617		
(585) 4	54-0210)								(212) 986-8645		
FAX (5	35) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657		
			0000	000000	04 0							

day Environmental Consultants Day Environmental, Inc. AN AFFILIATE OF DAY ENGINEERING, P.C												
Project #: PC.2696I-01 Project Address: 1 West Main Street	RING NO. TB-124											
Beacon, New York Ground Elevation: Datum:	Page of 1 of 1											
DAY Representative: Nate Simon Date Started: 11/29/2006 Date Ended: 11/29/2005												
Drilling Contractor: Miller Environmental Borehole Depth: 12.0' Borehole Diameter: 2.0"												
Sampling Method: Direct Push Completion Method: Water Level (Date/Time): Not Measured												
Depth (ft) Sample Description A-Value or RQD% Not Reading (ppm) PID Reading (ppm) Value or RQD% Not	tes											
0.0 TOPSOIL and ROOTS												
Black Silty Sand, intermixed with Coal and Coal Slag Fragments, moist (FILL)												
2 NA S-1 0-4 90 NA 0.7 0.0												
3												
4												
0.8												
5												
NA S-2 4-8 60 NA 0.9 1.2												
6 -												
Coal Slag Fragments, some Gravel, wet (FiLL)												
3.6												
48.1												
9 Gray Silty CLAY, wet												
10 NA S-3 8-12 40 NA 8.1 96.2												
t1 · · ·												
18.9												
12 BOH @ 12.0'												
Noles: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.												
2) Stratification lines represent approximate boundaries. Transitions may be gradual.												
3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable												
40 COMMERCIAL STREET												
ROCHESTER, NEW YORK 14614-1008 NEW YORK,	, NEW YORK 10165-1617											
(585) 454-0210	(212) 986-8645											
FAX (585) 454-0825 www.dayenvironmental.com	FAX (212) 986-8657											

d	ay								ENVIRONMENTAL CONSULTANTS
DAY	ENVIE	RONME	NTAL, I	NC.				AN AFFI	IATE OF DAY ENGINEERING, P.C
Proje Proje	ct #: ct Addre	955:	PC.269 1 West	96I-01 Main St	reet				TEST BORING NO. TB-125
DAY	Dopropr	ntotiuo:	Beacor	n, New Y	ork	-		Ground Elevation: Datum: Data Stated: 11/29/2005	Page of 1 of 1
Drillin	ig Contra	actor:	Miller E	inun invironm	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0*	
Samp	ling Mel	lhod:	Direct F	² ush		_		Completion Method: 🗌 Well Installed 🔲 Backfilled with Grout 🔳 Backfilled with	
			~		·			Water Level (Date/Time): Not Measured	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
			1	1		1	0.0	TOPSOIL and ROOTS	
1								Black Gravel, some Coal Fragments, moist (FILL)	
2	NA	S-1	0-4	70	NA	2.3	0.0		
3							0.0	Black Gravel, intermixed with Coal and Coal Stag Fragments, moist (FILL)	
							0.0		
5								-	
6	NA	S-2	4-8	70	NA	1.6	0,1	wet	
								Coal Slag Fragments, some Gravei, wet (FiLL)	
7								•	
							0.1		
0							0.0		
9								-	
	NA	S-3	8-12	40	NA	8.1	0.0	Grav Silly CLAY wet	
10									
11								-	
							0.0		
12							0.0		
	[-	
						1			
Notes:	1) Waler	leveis we	re made a	at the time	is and un	der condi	lions slate	 Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 	
	2) Strallfk 3) PID re:	cation line adings are	os represe o referenc	nt approx	imate boi enzene st	undaries. tandard m	Transition leasured in	is may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
4	I) NA = N	ot Availat	le or Not	Applicable	9				TEST BORING NO. TB-125
40 CON	MERC	IAL STR	EET						
KUCHE (585) 4	54-0210	NEW Y(JKK 146	14-1008					(212) 986-8645
FAX (5)	85) 454-	0825						www.dayenvironmental.com	FAX (212) 986-8657
imonit	U. Deat		00000	000606	Of Pari	ing Looc			

Project A: Project A: Strate Tanks C2.369.01 (1) TEST BORING NO. TB-126 (2) Project A: Project A: Strate Tanks Discust (2) Discus (2) Discust (2) <td< th=""><th></th><th>ay ' envif</th><th>RONME</th><th>NTAL,</th><th>INC.</th><th></th><th></th><th></th><th>А</th><th>ENVIR AN AFFILIATE</th><th>CONMENTAL CONSULTANTS OF DAY ENGINEERING, P.C</th></td<>		ay ' envif	RONME	NTAL,	INC.				А	ENVIR AN AFFILIATE	CONMENTAL CONSULTANTS OF DAY ENGINEERING, P.C
DAT Descond meretrik Descond meretrik <thdescond meretrik<="" th=""> <thdescond meretrik<="" th=""> <t< td=""><td>Proje</td><td>ct #: ct Addre</td><td>ess:</td><td>PC.26 1 Wes</td><td>961-01 t Main S</td><td>treet</td><td>_</td><td></td><td></td><td>TES</td><td>T BORING NO. TB-126</td></t<></thdescond></thdescond>	Proje	ct #: ct Addre	ess:	PC.26 1 Wes	961-01 t Main S	treet	_			TES	T BORING NO. TB-126
DAY Representative Med Simon Under Simon Data Simon Notes Image Simon Image Simon Image Simon Image Simon Image Simon Notes Image Simon Notes Image Simon Image Simon Image Simon Image Simon Image Simon Notes Image Simon Image Simon Image Simon Image Simon Image Simon Notes Image Simon Image Simon Image Simon Image Simon Image Simon Notes Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon Image Simon I				Beaco	n, New Y	rork	-		Ground Elevation: Datum:		Page of 1 of 1
Online Converte Wite Envolvement Description Description Description Description Sampling Verture Verture Local Operations 0.00 Wate Local Operations 0.00 Description Description Description Verture Verture Local Operations 0.00 Mailed Hondon Uperations 0.00 Description Notes Verture Verture Local Operations 0.00 Description Notes Description Notes Verture Verture Verture Verture Description Notes Description Notes Verture Verture Verture Verture Verture Description Notes Verture Verture Verture Verture Verture Description Notes Verture Verture Verture Verture Description Notes Description Notes Verture Verture Verture Verture Description Notes Description Notes Verture Verture Verture Operations Operations Operation Description Descriptio	DAY	Represe	entative:	Nate S	imon		_		Date Started: 11/29/2006 Date Ended: 11/29/2005	4645	
Stampling Ventori Unter Lived Consistent Model: I Marian Consistent Model: Description Reacting with Cultings g	Drillin	ig Contr	actor:	Miller 8	nvironn	iental			Borehole Depth: 12.0' Borehole Diameter: 2.0"		
View Law () () Mer Law () Mer	Sam	oling Me	thod:	Direct	Push		_		Completion Method: 🔲 Well Installed 🔲 Backfilled with Grout 🔳 Backfil	illed with Cuttings	s
vis vis <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Water Level (Date/Time): Not Measured</td> <td>······································</td> <td></td>									Water Level (Date/Time): Not Measured	······································	
1 NA S-1 O-4 70 NA 12 0.0 TOPSOLUM SCR TOWN trace Clay, interview with Cool and Bick Standy SR, some Gravel, trace Clay, interview with Cool and Bick Fragments, molat (FIL) 1 0 0 0.0 0.0 0.0 0.0 6 NA S-2 4-8 0.0 0.0 0.0 0.0 6 NA S-2 4-8 0.0 NA 2.3 0.2 7 NA S-2 4-8 0.0 NA 0.3 Wood (RR Tin), molat (FIL) 0.0 10 NA S-3 5-12 4.0 NA 0.8 0.0 Gray CLAY, trace Sit, wet 0.0 11 10 1 0.0 0.0 0.0 BOH (3) 12.0' Enterview and the transmitter	Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
NA S-1 O-4 TO NA 12 OO Back Stardy SU, some Gravel, tace Clay, internixed with Cool and Brick Fragments, moist (FIL1) NA S-1 O-4 TO NA 12 OO Back Stardy SU, some Gravel, tace Clay, internixed with Cool and NA S-2 4-8 60 NA 2.3 OC NA S-2 4-8 60 NA 2.3 OC NA S-3 5-12 40 NA 0.8 Mood (RR Tile), moist (FIL1) NA S-3 5-12 40 NA 0.8 0.00 Gray CLAY, tace SU, wet NA S-3 5-12 40 NA 0.8 0.00 Gray CLAY, tace SU, wet 12 In tace trans were made at heares and doc concloses tace file/fulluations of group/indeer fewel may occur due to assessed factors and other conclose. Statistaria 13 In tace trans were made at heares and doc concloses tace file/fulluations of group/indeer fewel may occur due to assessed factors and other conclose. Statistaria Statistaria 14 In tace factors were made at hearese and doc concloses and file	<u> </u>		1	1	T	Ī	Ī	0.0	TOPSOIL and ROOTS		
NA S-1 0-4 70 NA 1.2 0.0 Brick Fragments, molit (FLL) A A S-2 4.8 60 NA 2.3 0.2 B MA S-2 4.8 60 NA 2.3 0.2 B MA S-2 4.8 60 NA 2.3 0.2 B MA S-2 4.8 60 NA 2.3 0.2 Coal Slag Fragments, molit (FLL) B MA S-3 8-12 40 NA 0.8 0.0 If the MA S-3 8-12 40 NA 0.8 0.0 BOH (9) 12.0" BOH (9) 12.0" NEXt If the MA S-3 8-12 40 NA 0.8 0.0 BOH (9) 12.0" BOH (9) 12.0" NEXt If the MA A A A A A PARAME If the MA A A A A A A A A A A A A A A A A A A									Black Sandy Silt, some Gravel, trace Clay, intermixed with Coal and		
NA N-1 O-1 NA 12 O-0 A B Coal Sbag Fragments, trace Sardy Gravel, moist (FLL) Coal Sbag Fragments, trace	1					1			Brick Fragments, moist (FILL)		
A A		NA	S-1	0-4	70	NA	1.2	0.0			
NA S-2 4-U A 2.3 0.0 NA S-2 4-U 60 NA 2.3 0.2 Ocal Stage Fragments, trace Sandy Oravel, moist (FLL) 0.0 Wrod (RR Trib, moist (FLL)) 0.0 0.0 NA S-3 8-12 40 NA 0.0 Ocal Stage Fragments, trace Sandy Oravel, moist (FLL) NA S-3 8-12 40 NA 0.0 Grey CLAY, trace Sit, wet NA S-3 8-12 40 NA 0.8 0.0 GOH @) 12.0" NA S-3 8-12 40 NA 0.8 0.0 GOH @) 12.0" NA NA S-3 8-12 40 NA 0.8 0.0 GOH @) 12.0" NDM Note water made at the times and under conditions dades. Flicituation of groundwate revel may occur due to sussistial Exter at didth" condition. TEST BORING NO. TB-126 NDM motings are referenced to at Adaptation. Test BORING NO. TB-126 Test BORING NO. TB-126 ND conditional are referenced to at Adaptation. The Mathematere Mand date of the tindits at the ti	2										
A A A A A A A A A A B											
Image: Note Transformer Provide Transformer	3										
1 NA S2 4-8 60 NA 2.3 0.2 6 NA S2 4-8 60 NA 2.3 0.2 7 1 1 1 0 0.3 Wood (RR Tib), moist (FILL) 1 8 1 1 1 0.0 Gray CLAY, trace Sit, well 1 10 NA S3 8-12 40 NA 0.8 0.0 11 1 1 1 0.0 Gray CLAY, trace Sit, well 1 10 NA S3 8-12 40 NA 0.8 0.0 11 1 1 0 0 0.0 EOH @ 12.0* 1 10 1 1 1 1 0.0 EOH @ 12.0* EEST EORING NO. TB-126 10 10 1 1 1 1 1 1 EEST EORING NO. TB-126 10 1 1 1 1 1 1 E								0.0			
s NA S-2 4-8 60 NA Z.3 0.2 Coal Stag Fragments, traces Sandy Gravel, moist (FILL) a	1		-					0.0			
o NA S-2 4-8 60 NA 2.3 0.2 Coal Sig Fragments, trace Sandy Gravel, moist (FILL) 0 NA S-3 8-12 40 NA 0.0 Gray CLAY, trace Sit, wet 10 NA S-3 8-12 40 NA 0.8 Wood (RR Tie), moist (FILL) 10 NA S-3 8-12 40 NA 0.8 0.00 Gray CLAY, trace Sit, wet 10 NA S-3 8-12 40 NA 0.8 0.0 BOH @) 12.0" 11 I <thi< th=""> I I I<</thi<>	L L										
k NA S-2 4-8 60 NA 2.3 0.2 Coal Skip Fragments, trace Sandy Gravel, moist (FILL) a A S-2 4-8 60 NA 2.3 0.2 Coal Skip Fragments, trace Sandy Gravel, moist (FILL) a A S-3 8-12 40 NA 0.8 Wood (RR Tie), moist (FILL) a A S-3 8-12 40 NA 0.8 0.0 Gray CLAY, trace Sit, wet a A S-3 8-12 40 NA 0.8 0.0 Gray CLAY, trace Sit, wet a A S-3 8-12 40 NA 0.8 0.0 Gray CLAY, trace Sit, wet a A I	5										
Image: Intervention of the target and under concloses stated. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. Control State Field and Under Concidents stated. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. State Contenerecol to a bencare standstater measured in t	6	NA	S-2	4-8	60	NA	2.3	0.2	-		
1 1 1 0.8 Wood (RR Tie), moist (FILL) 1 1 1 0.0 Grey CLAY, trace Sit, wet 10 NA S-3 8-12 40 NA 0.8 0.0 14 1 1 0.0 Grey CLAY, trace Sit, wet . . 14 1 1 0.0 Grey CLAY, trace Sit, wet . . 14 1 0.0 0.0 14 1 0.0 0.0 14 1 0.0 0.0 14 1 0.0 0.0 15 10 10 10 0.0 10 10 10 10 0.0 10 10 10 10 10 10 10 <	ľ								Coal Slag Fragments, trace Sandy Gravel, moist (FILL)		
Image: Normal State	7										
Image: Normal Sector											
9 NA S-3 8-12 40 NA 0.8 0.0 Gray CLAY, trace Silt, wet 10 NA S-3 8-12 40 NA 0.8 0.0 11 Image: Comparison of the comparison	8					ļ	<u> </u>	0.8	Wood (RR Tie), moist (FILL)		
a k-1 k-1 k-1 k-1 k-1 k-1 k-1 10 NA S-3 B-12 40 NA 0.8 0.0 . 14 - - - 0.0 BOH @ 12.0' . . 14 - - 0.0 BOH @ 12.0' . . . NMSE 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . . NMSE 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . . NMSES 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . . 3) PD cendings are reference to a backate Test BORING NO. TB-126 Test BORING NO. TB-126 40 COMERCIAL STREET NEW YORK 1td161-1008 NEW YORK 1td161-1008 NEW YORK 1td165-1617 653) 454-025 tww.dayenvironmental.com FAX (212) 986-8657								0.0	Gray CLAY, trace Silt, wet		
10 NA S-3 B-12 40 NA 0.8 0.0 11 I	9										
NA S-3 8-12 40 NA 0.8 0.0 11 I <thi< th=""> <thi< th=""> I <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thi<>											
11 0.0 12 0.0 14 0.0 12 0.0 14 0.0 12 0.0 14 0.0 15 0.0 16 0.0 17 0.0 18 0.0 19 0.0 10 0.0 <td< td=""><td>10</td><td>NA</td><td>S-3</td><td>8-12</td><td>40</td><td>NA</td><td>0.8</td><td>0.0</td><td>·</td><td></td><td></td></td<>	10	NA	S-3	8-12	40	NA	0.8	0.0	·		
11 0.0 12 0.0 12 0.0 13 0.0 14 0.0 15 BOH @ 12.0' 1 0.0<											
12 0.0 BOH @ 12.0' Notes: 1) Water levels were made at the limes and under conditions of groundwater levels may occur due to seasonal factors and other conditions. . 2) Stratification lines represent approximate boundaries. Transitions of groundwater levels may occur due to seasonal factors and other conditions. . 3) PID readings are referenced to a being and under conditions and ye gradual. . . . 4) NA = Not Available or Not Applicable TEST BORING NO. TB-126 . 40 COMMERCIAL STREET NEW YORK 14614-1008 NEW YORK 14614-1008 NEW YORK 10165-1617 (585) 454-0825 www.dayenvironmental.com FAX (212) 966-8657	11								·		
12 0 0.00 BOH @ 12.0' 12 0 0 0 BOH @ 12.0' 13 0 0 0 0 0 14 0 0 0 0 0 0 10045 1) Water levels were made at the lines and under conditions stated. Fluctuations of groundwater fevels may occur due to seasonal factors and other conditions. 2) Statification lines represent approximate boundaries. Transforms may be gradual. TEST BORING NO. TB-126 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV tamp. TEST BORING NO. TB-126 4) NA = NAt Available or NO Applicable NEW YORK 14614-1008 NEW YORK 10165-1617 (S85) 454-0210 (212) 986-8645 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 966-8657											
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-126 4) Na = Not Available or Not Applicable NEW YORK, NEW YORK 10165-1617 ROCCHESTER, NEW YORK 14614-1008 (212) 986-8645 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com	12							0.0			
Ndes: 1) Water levels were made at the lines and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. - 2) Stratification lines represent approximate boundaries. - - 3) PiD readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. - 4) NA = Not Available or Not Applicable TEST BORING NO. TB-126 40 COMMERCIAL STREET - ROCHESTER, NEW YORK 14614-1008 NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657									BOH @ 12.0		
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . .) Statification lines represent approximate boundaries. Transitions may be gradual. . . .) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . .) Statification lines represent approximate boundaries. Transitions may be gradual. . . .) NA = Not Available or Not Applicable TEST BORING NO. TB-126 40 COMMERCIAL STREET . . ROCHESTER, NEW YORK 14614-1008 . . (585) 454-0210 . . FAX (585) 454-0825 . . YORK 14612-1008 . .									•		
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	ĺ										
Nales: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. . .2) Stratification lines represent approximate boundaries. Transitions may be graduat. . . .3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-126 4) NA = Not Available or Not Applicable Not Available or Not Applicable NEW YORK. NEW YORK 10165-1617 40 COMMERCIAL STREET NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657									•		
Nater levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundarles. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 www.dagenvironmental.com											
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-126 4) NA = Not Available or Not Applicable Test BORING NO. TB-126 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 (212) 986-8645 (585) 454-0210 (212) 986-8657 FAX (585) 454-0825 www.dayenvironmental.com									·		
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. TEST BORING NO. TB-126 4) NA = Not Available or Not Applicable TEST BORING NO. TB-126 40 COMMERCIAL STREET NEW YORK 14614-1008 ROCHESTER, NEW YORK 14614-1008 (212) 986-8645 (585) 454-0210 FAX (585) 454-0825											
Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be graduat. 3) PID readings are referenced to a bezzene standard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-126 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET NEW YORK 14614-1008 10.6 eV lamp. 10.6 eV l									•		
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene slandard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	Noles:	1) Water	levels we	are made	al the tim	es and un	ider condi	lions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
4) NA = Not Available or Not Applicable TEST BORING NO. TB-126 40 COMMERCIAL STREET NEW YORK, NEW YORK 10165-1617 ROCHESTER, NEW YORK 14614-1008 (212) 996-8645 (585) 454-0210 (212) 996-8645 FAX (585) 454-0825 www.dayenvironmental.com		2) Stralif 3) PID re	ication lin eadings ar	es represe e referen	ent appro. ced to a h	xornate bo xenzene s	undaries. landard m	i ransitior leasured l	is may oe gracuai. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657		1) NA = N	Not Availa	ble or Not	Applicab	le			, the providence of the second s	TEST	BURING NO. TB-126
ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 996-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	40 CO	MMERC	IAL STR	REET							
(585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	ROCH	ESTER,	NEW Y	ORK 146	514-100	8				NEW	YORK, NEW YORK 10165-1617
FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	(585) 4	54-0210	D								(212) 986-8645
	FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

į

d				NC					E AN AFFI	INVIRONMENTAL CONSULTANTS
Proje	ct #:		PC.269	61-01 Main St	reet					TEST BORING NO. TB-127
	_		Beacor	n, New Y	ork	_		Ground Elevation: Datum:	5	Page of 1 of 1
DAY I Drillin	Represe o Contra	entative: actor:	Nate SI Miller E	mon nvironm	ental	-		Barehole Depth: 12 Borehole Diameter: 2"	<u>.</u>	
Samp	ling Met	lhod:	Direct F	Push		-		Completion Method: 🔲 Well Installed 🔤 Backfilled with Grout 🔳 Backfilled	ackfilled with Cu	ttings
L_				1		. <u>1</u>	r	Water Level (Date/Time): Not Measured		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
						•	0.0	TOPSOIL and ROOTS		
1									-	
	NA	5-1	0-4	80	NA	3.9	0.0	Black Sandy Gravel, some Silt, intermixed with Coal, Coal Slag, and Brick Fragments,		
2			•					nontracy	•	
3										
							0.0			
4							0.0		-	
5										
	NA	5.2	4-A	60	NA	0.6	0.0	wat		
6			, .						-	
7									-	
							0.8			
8										
9									-	
	NA	S-3	8-12	0	NA	NA	NA			
10									-	
11										
12								BOH @ 12.0°		
									-	
									-	
									-	
									-	
Notes:	1) Waler 2) Stratifi	leveis we ication line	re made a is represer	l lhe limes 11 approxir	and unde	er conditio noarles. T	ns stated. ransitions i	Huctuations of groundwater levels may occur due to seasonal factors and other conditions. nay be gradual.		
	3) PID ne \$) NA = N	iadings an Iol Avaitat	e reference ble or Not J	ed to a be Applicable	nzene sla	ndard mea	asured in li	ie headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-127
40 CO	MMERC	IAL STR	EET							
ROCHI	ESTER,	NEW Y	ORK 146	14~1008	;					NEW YORK, NEW YORK 10165-1617
(585) 4 FAX (5	54-0210 85) 454) -0825						www.davenvironmental.com		(212) 986-8645 FAX (212) 986-8657
				000000	01.0					

Documents\nes0090 PC2696i-01 Boring Log:

	Day Environmental, INC. Environmental, Consultants												
Proje	ct #: ct Addr	ess:	PC.26	961-01 t Main S	treet	_			TEST BORING NO. TB-128				
			Beaco	n, New Y	fork	-		Ground Elevation: Datum:	Page of 1 of 1				
DAY	Repres	entative:	Nate S	imon		_		Date Started: 11/29/2006 Date Ended: 11/29/2005					
Drillir	ig Contr	ractor:	Miller E	Invironm	nental	-		Borehole Depth: 12.0' Borehole Diameter: 2*					
Sam	oling Me	thod:	Direct	Push		-		Completion Method: Well Installed Backfilled with Grout Backfilled	with Cultings				
ļ	.							Water Level (Date/Time): Not Measured					
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes				
	1	Ī					0.0	Brown Silly Sand, some Gravel, intermixed with Brick, Coal, and					
								Coal Slag Fragments, moist (FILL)					
1								Black Sitly Sand, some Gravel, intermixed with Brick, Coal, and					
2	NA	S-1	0-4	40	NA	2.0	0.0	Coal Slag Fragments, moist (FILL)					
3								 -					
4		-					0.0	Brown Sandy Gravel, intermixed with Brick, Coal, and Coal Slag Fragments,					
							0.0	moist (FILL)					
5								•					
	NA	S-2	4-8	10	NA	NA	1.2	wet					
6								·					
7		1											
8		<u> </u>		_			3.6						
							3.4						
9								*					
	NA	S-3	8-12	10	NA	NA	2.1						
10								-					
11													
12							2.4	-					
								BOH @ 12.0'					
								-					
								-					
Noles:	 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual. 												
	3) PID re	adings ar	e referen	ced to a b	enzene s	landard m	leasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-128				
) NA = N	Vol Availa	bie or Nol	Applicab	te								
40 COI	MERC			244 4000	D				NEW YORK NEW YORK 10165-1617				
(585) 4	-31 ER, 54-0210	, 14 E VV TI]	URN 14t	14-1008					(212) 986-8645				
FAX /5	95) 454	-0825						www.davenvironmental.com	FAX (212) 986-8657				
10													

da	V								E	NVIRONMENTAL CONSULTANTS	
DAY			NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C	
			,	-							
Projec Projec	t #: t Addres	s:	PC.2696 1 West M	6I-01 Main Stre	eet	-				TEST BORING NO. TB-129	
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1	
DAY R	epresen	ntative:	Nate Sin	non		-		Date Started: 11/29/2006 Date Ended: 11/29/2005	,		
Drilling	Contrac	ctor:	Direct P	vironme	ental	-		Completion Method: Well Installed Regkfilled with Grout Regkfilled	okfilled with Cu	ttings	
Sampi	ing weth	iou.	Dilect	1511		-		Water Level (Date/Time): Not Measured		ungs	
							~				
t)	er 0.5 ft.	Number	Depth (ft)	very	or RQD%	space PID ing (ppm)	ding (ppm)	Sample Description		Notes	
epth (1	slows p	ample	ample	6 Reco	I-Value	Head Read	ID Rea				
	ш	0	0)	6	~		0.0	Black Sandy Gravel intermixed with Coal and Coal Slag Fragments, moist (FILL)			
1									_		
2	NA	S-1	0-4	60	NA	14.7	0.8	Black Sandy Gravel trace Silt, some Coal Slag Fragments, moist (FILL)	-		
3								wet (water has a sheen)	-		
4							1.1		-		
							1.3				
5									-		
6	NA	S-2	4-8	20	NA	5.4	2.3				
0									-		
7									-		
							1.0				
8							2.4		-		
9									-		
	NIA	6.2	0.40	10	NIA	0.2	2.4				
10	NA	5-3	8-12	10	NA	9.2	3.1		-		
									-		
12							3.6		-		
								BOH @ 12.0"			
									-		
									-		
									-		
Notes:	 Water Stratif 	r levels w fication lir	ere made : nes represe	at the time ent appro:	es and un ximate bo	ider condit oundaries.	tions state Transitio	ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.			
	3) PID re	eadings a	are referen	ced to a b	enzene s	tandard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-129	
40.000	4) NA = N	Not Availa	able or Not	Applicab	le						
40 CO		NEW/		14-1009	2						
(585) 4	154-0210)	5 STAT 140							(212) 986-8645	
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	
										× /	

da	V								ENVIRONMENTAL CONSULTANTS		
DAY			ITAL, IN	IC.				AN AFF	ILIATE OF DAY ENGINEERING, P.C		
			50.000								
Projec	t#: Addres	s:	1 West I	Main Stre	eet	-			TEST BORING NO. TB-130		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1		
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005	_		
Sampl	Contrac	ctor:	Direct P	ivironme ush	intal	-		Completion Method: Well Installed Backfilled with Grout Backfilled with	Cuttings		
Gampi	ing moti		Billoott	uon		-		Water Level (Date/Time): Not Measured	ouungo		
			_				Ê				
	.5 ft.	ber	th (ft		taD%	e PIC ppm)	ıdd)				
£	oer 0.	Nun	Dep	very	orF	spac ing (Iding	Sample Description	Notes		
oth (i	wsp	nple	nple	Seco	/alue	Head	Rea				
De	Blc	Saı	Saı	1%	1-N		ЫС				
							0.0	Asphalt and Sub-base			
1								- Black Sandy Gravel, some Silt, intermixed with Coal, Brick, and Wood Fragments,			
2	NA	S-1	0-4	40	NA	1.1	0.8	moist (FILL)			
-											
3								-			
							0.7				
4							0.7	wet -			
							0.0				
5								-			
	NA	S-2	4-8	10	NA	0.8	2.4				
6								- Black Coal Slag, some Gravel, intermixed with Coal, Brick and Wood Fragments,			
7								wet (FILL)			
8							2.7	-			
							0.0	Gray Silty Clay some Silt, trace Gravel, wet (FILL)			
9								-			
	NA	S-3	8-12	25	NA	1.0	0.0				
10								-			
11											
								Gray coarse Sand, some Gravel, intermixed with Coal and Brick Fragments, wet			
12							0.0	(FILL)			
								BOH @ 12.0'			
								.			
								·			
								.			
Notes:	ntee: 1) Water levels were made at the times and under conditions stated. Fluctuations of proundwater levels may occur due to seasonal feature and other conditions										
110103.	2) Stratif	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	easured i	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-130		
40 CO	MMERC	IAL STR		r vhhiicap	16						
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617		
(585) 4	54-0210	0							(212) 986-8645		
FAX (5	XX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657										

da	V								ENVIRONMENTAL CONSULTANTS		
DAY	INVIRG	ONMEN	ITAL, IN	IC.				AN AF	FILIATE OF DAY ENGINEERING, P.C		
Project Project	#: Addres	ss:	PC.2696 1 West M	6I-01 Vain Stre	eet	-			TEST BORING NO. TB-131		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1		
DAY R	epreser	ntative:	Nate Sin	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005			
Drilling	Contrac	ctor:	Direct P	ivironme	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2"</u>	Cuttings		
Sampi	ng weu	100.	Dilect	usn		-		Water Level (Date/Time): Not Measured	Cuturigs		
							~				
)epth (ft)	slows per 0.5 ft.	ample Number	iample Depth (ft)	6 Recovery	I-Value or RQD%	Headspace PID Reading (ppm)	ID Reading (ppm	Sample Description	Notes		
	ш	0	0)	6	~		0.0	0.7' Asphalt and FILL			
								Black Sandy Gravel, some Silt, intermixed with Coal and Brick Fragments.			
1								moist (FILL)			
2	NA	S-1	0-4	40	NA	0.4	0.0				
-											
3											
4							0.0				
							0.0	Coal Fragments			
5								-			
	NA	S-2	4-8	90	NA	0.4	0.0	Diack Sandy Gravel, little Silt, Internitiked with Coar and Dick Fragments,			
6		_						-			
_								Gray Silty Clay, some Sand, intermixed with Coal and Brick Fragments, wet (FILL)			
'											
8							0.0				
							0.0	Sandy Gravel intermixed with Wood and Coal Fragments, wet (FILL)			
9								-			
	NIA	6.2	0.40	80	NIA	0.5	0.0				
10	INA	3-3	0-12	00	INA	0.5	0.0	-			
11								•			
40							0.0				
12								BOH @ 12.0'			
								_			
Notes:	1) Water	r levels w	ere made	at the time	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.			
	 Stratif PID rd 	fication lir eadings a	nes represe ire reference	ent appro: ced to a b	ximate bo enzene s	oundaries. tandard m	Transitio easured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp			
	4) NA = 1	Not Availa	able or Not	Applicab	le			and a set of the set o	TEST BORING NO. TB-131		
40 CO	MMERC	CIAL STR	REET						-		
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617		
(585) 4	54-0210	0							(212) 986-8645		
FAX (5	X (585) 454-0825 www.dayenvironmental.com (212) 936-8645										

TABLE 1 PAGE 1 of 2

1 WEST MAIN STREET BEACON, NEW YORK

VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND			NYSDEC TAGM				
NAPHTHALENE	TB-105 (8.0')	TB-106 (8.0')	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-117 (8.0')	(PPB)
1,2,4-Trimethylbenzene	ND	500	3,300	ND	ND	6,900	10,000
1,3,5-Trimethylbenzene	ND	170	1,300	ND	ND	2,800	3,300
Benzene	ND	160	1,200	ND	ND	300	60
Ethylbenzene	ND	110	440	ND	ND	1,200	5,500
Total Xylenes	ND	740	7,000	ND	ND	8,300	1,200
Toluene	ND	240	3,100	ND	ND	1,400	1,500
Styrene	ND	ND	1,000	ND	ND	ND	NL
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200
n-Butylbenzene	ND	ND	ND	ND	ND	ND	10,000
sec-Butylbenzne	ND	ND	ND	ND	ND	ND	10,000
Chloroform	ND	ND	ND	ND	ND	ND	300
Isopropylbenzene	ND	ND	ND	ND	ND	ND	2,300
p-Isoprppyltoluene	ND	ND	ND	ND	ND	ND	10,000
2-Butanone	410	280	ND	15	ND	ND	300
Total VOCs	410	2,200	17,340	15	ND	20,900	10,000
Naphthalene	5,600	130,000	1,100,000	ND	ND	1,500,000	13,000

Concentrations shown in ug/kg or parts per billion (ppb).

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

TABLE 1 PAGE 2 of 2

1 WEST MAIN STREET BEACON, NEW YORK

VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND			NYSDEC TAGM				
NAPHTHALENE	TB-118 (4.0')	TB-120 (8.0')	TB-124 (10.0')	TB-126 (4.0')	TB-127 (8.0')	TB-129 (8.0')	(PPB)
1,2,4-Trimethylbenzene	ND	130	3,600	ND	ND	ND	10,000
1,3,5-Trimethylbenzene	ND	ND	1,400	ND	ND	ND	3,300
Benzene	ND	ND	340	3	ND	ND	60
Ethylbenzene	ND	ND	740	ND	ND	ND	5,500
Total Xylenes	ND	ND	10,500	2	ND	ND	1,200
Toluene	ND	ND	3,200	3	ND	ND	1,500
Styrene	ND	ND	ND	ND	ND	ND	NL
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200
n-Butylbenzene	ND	ND	110	ND	ND	12	10,000
sec-Butylbenzne	ND	ND	ND	ND	ND	21	10,000
Chloroform	ND	ND	ND	ND	ND	ND	300
Isopropylbenzene	ND	ND	130	ND	ND	ND	2,300
p-Isoprppyltoluene	ND	ND	110	ND	ND	ND	10,000
2-Butanone	18	4,501	ND	ND	ND	ND	300
Total VOCs	18	4,631	20,130	8	ND	33	10,000
Naphthalene	ND	9,000	43,000	ND	ND	390	13,000

Concentrations shown in ug/kg or parts per billion (ppb)

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit

NL = Not Listed in TAGM 4046

PAGE 1 of 2

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			S	AMPLE AN	D LOCATIO	N			NYSDEC TAGM 4046
	TB-101	TB-105	TB-106	TB-107	TB-110	TB-111	TB-112	TB-115A	RSCO ⁽¹⁾ (PPB)
	(4.0')	(8.0')	(8.0')	(8.0')	(8.0')	(12.0')	(4.0')	(4.0')	、 <i>'</i>
2-Methylnaphthalene	ND	1,500	1,900	2,500	130	ND	ND	1,500	36,400
Acenaphthene	ND	2,700	2,900	1,400	1,600	ND	ND	ND	50,000
Acenaphthylene	ND	2,200	1,500	3,600	220	ND	ND	1,600	50,000
Anthracene	300	5,600	4,300	7,800	230	ND	56	1,700	50,000
Benzo(a)anthracene	880	5,300	2,900	5,500	320	ND	270	2,600	224
Benzo(a)pyrene	1,100	4,800	2,700	4,300	280	ND	270	3,600	61
Benzo(b)fluoranthene	1,200	4,600	2,400	3,500	380	ND	390	2,700	220
Benzo(g,h,I)perylene	260	500	490	760	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	1,500	4,600	2,400	4,100	420	ND	500	3,400	220
Chrysene	980	4,100	2,500	4,500	340	ND	290	2,400	400
Dibenz(a,h)anthracene	ND	420	340	660	ND	ND	ND	ND	14.3
Dibenzofuran	ND	3,600	2,700	3,100	ND	ND	ND	980	6,200
Fluoranthene	2,000	11,000	7,700	12,000	690	ND	480	4,700	50,000
Fluorene	ND	5,600	4,800	4,900	210	ND	ND	1,700	50,000
Indeno(1,2,3-cd)pyrene	280	700	530	1,200	ND	ND	ND	570	3,200
Naphthalene	ND	1,100	1,700	7,600	2,100	ND	ND	2,000	13,000
Phenanthrene	1,200	13,000	11,000	13,000	850	ND	240	5,800	50,000
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	67	ND	ND		50,000
Pyrene	1,800	8,800	6,500	9,200	570	ND	360	4,400	50,000
Total SVOCs	11,500	80,120	59,260	89,620	8,407	0	2,856	39,650	500,000
Total cPAHs	5,940	24,520	13,770	23,760	1,740	ND	1,720	15,270	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	1,361	6,367	3,672	6,066	358	ND	344	4,245	NL

Concentrations shown in ug/kg or parts per billion (ppb).

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene).

BAP = Benzo(a)pyrene.

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

1,500 = Exceeds RSCO.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

PAGE 2 of 2

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			SAMPI	E AND LOC	CATION			NYSDEC TAGM 4046
	TB-117	TB-118	TB-120	TB-124	TB-126	TB-127	TB-129	RSCO ⁽¹⁾ (PPB)
	(8.0')	(4.0')	(8.0')	(4.0')	(10.0')	(8.0')	(8.0')	· · · ·
2-Methylnaphthalene	210,000	ND	ND	350,000	340	390	540	36,400
Acenaphthene	ND	ND	370	41,000	ND	180	320	50,000
Acenaphthylene	190,000	ND	ND	83,000	ND	ND	ND	50,000
Anthracene	200,000	ND	550	160,000	ND	260	ND	50,000
Benzo(a)anthracene	140,000	100	1,500	110,000	ND	190	ND	224
Benzo(a)pyrene	86,000	72	1,100	7,800	ND	ND	ND	61
Benzo(b)fluoranthene	59,000	63	750	62,000	ND	ND	ND	220
Benzo(g,h,I)perylene	ND	ND	690	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	88,000	91	1,200	90,000	ND	ND	ND	220
Chrysene	110,000	100	1,800	89,000	ND	180	ND	400
Dibenz(a,h)anthracene	ND	ND	380	ND	ND	ND	ND	14.3
Dibenzofuran	130,000	ND	4,500	130,000	ND	ND	ND	6,200
Fluoranthene	370,000	170	ND	220,000	340	410	430	50,000
Fluorene	190,000	ND	ND	180,000	ND	250	290	50,000
Indeno(1,2,3-cd)pyrene	ND	ND	560	17,000	ND	ND	ND	3,200
Naphthalene	780,000	ND	440	690,000	260	910	400	13,000
Phenanthrene	530,000	110	5,100	400,000	340	740	630	50,000
Di-n-butylphthalate	ND	ND	ND	ND	260	180	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	ND	50,000
Pyrene	280,000	160	4,100	170,000	330	330	390	50,000
Total SVOCs	3,363,000	866	23,040	2,799,800	1,870	4,020	3,000	500,000
Total cPAHs	483,000	335	7,290	375,800	ND	370	ND	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	107,880	90	1,791	28,490	ND	21	ND	NL

Concentrations shown in ug/kg or parts per billion (ppb)

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene)

BAP = Benzo(a)pyrene

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

210,000 = Exceeds RSCO

ND = Not Detected at concentration above reported analytical laboratory detection limit

NL = Not Listed in TAGM 4046

1 WEST MAIN STREET BEACON, NEW YORK

METALS TEST RESULTS: SOIL SAMPLES

DETECTED	S	AMPLE AN	D LOCATIO	DN	Recommended	Typical
ANALYTE	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Objective (1)	Range (2)
Antimony	ND	ND	ND	ND	SB	NL
Arsenic	7.53	1.14	4.68	3.92	7.5 or SB	3-12
Beryllium	0.76	ND	0.23	0.31	0.16 or SB	0-1.75
Cadmium	ND	ND	ND	ND	1 or SB (10)	0.1-1
Chromium	7.53	8.1	13.8	13.4	10 or SB (50)	1.5-40
Copper	21.6	13.8	75.2	55.4	25 or SB	1-50
Lead	15.4	11.4	47.5	99.7	SB	200-500**
Mercury	ND	ND	ND	ND	0.1	0.001-0.2
Nickel	1.81	11.9	20	12.8	13 or SB	0.5-25
Selenium	ND	ND	ND	1.02	2 or SB	0.1-3.9
Silver	ND	ND	ND	ND	SB	NL
Thallium	ND	ND	ND	ND	SB	NL
Zinc	30.3	37.3	97.3	49.5	20 or SB	9-50

Concentrations shown in mg/kg or parts per million (ppm).

SB = Site background.

- Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994.
 - Cadmium results also compared to RSCO of 10 ppm listed in the 1995 "proposed" TAGM 4046.
 - Chromium results also compared to RSCO of 50 ppm listed in the 1995 "proposed" TAGM 4046.

2) = Typical background range as referenced in NYSDEC TAGM 4046 dated January 24, 1994.

97.3 Exceeds typical background range referenced in TAGM 4046.

49.5 = Exceeds RSCO referenced in TAGM 4046.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

1 WEST MAIN STREET BEACON, NEW YORK

PCBS TEST RESULTS: SOIL SAMPLES

Detected	s	AMPLE AN	D LOCATIO	N	Recommended Soil Cleanup
Compound	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Objective ⁽¹⁾ (PPM)
PCB 1260	ND	ND	ND	ND	10

Concentrations shown in mg/kg or parts per million (ppm).

 (1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

1 WEST MAIN STREET BEACON, NEW YORK

CYANIDE, pH, IGNITABILITY AND REACTIVITY TEST RESULTS: SOIL SAMPLES

Demonster								
Parameter	TB-101 (4.0')	TB-110 (8.0')	TB-121 (8.0')	TB-124 (4.0')	TB-127 (8.0')	TB-126 (10.0')	TB-129 (8.0')	RSCO ⁽¹⁾ (PPM)
Total Cyanide	ND	ND	ND	ND	ND	ND	1.24	NL
pН	-	-	9.86	-	-	-	9.89	NL
Ignitability	-	-	ND	-	-	-	-	NL
Reactivity	-	-	29	-	-	-	-	NL

Cyanide concentrations shown in mg/kg or parts per million (ppm).

- (1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.
- ND = Cyanide not detected at concentration above reported analytical laboratory detection limit / Sample did not ignite.

NL = Not Listed in TAGM 4046.

- = Not Tested as part of Laboratory Program.

1 WEST MAIN STREET BEACON, NEW YORK

VOLATILE ORGANIC COMPOUND (VOC), NAPHTHALENE, pH, AND TOTAL CYANIDE TEST RESULTS: GROUNDWATER SAMPLES

		S	SAMPLE A		ON		NYSDEC TOGS 1.1.1 Groundwater Standard or	
	MW-101*	MW-102*	MW-103*	MW-103**	MW-104**	MW-105**	Guidance Value ⁽¹⁾ (PPB)	
Total Xylene	ND	ND	290	59	ND	ND	5	
1,2,4-Trimethylbenzene	ND	ND	58	12	ND	ND	5	
Benzene	ND	ND	650	99	ND	ND	1	
Ethylbenzene	ND	ND	ND	3	ND	ND	5	
Toluene	1	ND	350	71	ND	ND	5	
n-Butylbenzene	ND	ND	ND	ND	ND	ND	5	
n-Propylbenzene	ND	ND	ND	ND	ND	ND	5	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	5	
Naphthalene	ND	ND	2900	390	ND	ND	10	
1,3,5-Trimethylbenzene	ND	ND	ND	5	ND	ND	5	
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	5	
1,2-Dichlorothane	ND	ND	ND	3	ND	ND	0.6	
Tetrachloroethene	ND	ND	ND	ND	ND	ND	5	
p-lsopropyltoluene	ND	ND	ND	ND	ND	ND	5	
рН	-	-	-	6.86	7.92	7.48	NL	
Total Cyanide	-	-	-	0.02	ND	ND	400	

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

290 = Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

- = Not Tested as part of Laboratory Program.

NL = Not listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

1 WEST MAIN STREET BEACON, NEW YORK

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: GROUNDWATER SAMPLES

		S		NYSDEC TOGS 1.1.1 Groundwater Standard or			
	MW-101*	MW-102*	MW-103*	MW-103**	MW-104**	MW-105**	Guidance Value ⁽¹⁾ (PPB)
2-Methylnaphthalene	ND	ND	140	ND	ND	ND	NL
Acenaphthene	ND	ND	83	ND	ND	ND	20
Acenaphthylene	ND	ND	92	ND	ND	ND	NL
Dibenzofuran	ND	ND	58	ND	ND	ND	NL
Fluoranthene	ND	ND	58	ND	ND	ND	50
Fluorene	ND	ND	87	ND	ND	ND	50
Naphthalene	ND	ND	1,300	84	ND	ND	10
Phenanthrene	ND	ND	130	ND	ND	ND	50
Pyrene	ND	ND	51	ND	ND	ND	50

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

83

= Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

NA = Not Listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

1 WEST MAIN STREET BEACON, NEW YORK

METALS TEST RESULTS: GROUNDWATER SAMPLES

Detected	SAMPI		NYSDEC TOGS 1.1.1 Groundwater Standard or	
Analyte	MW-101*	MW-102*	MW-103*	Guidance Value (1) (PPB)
Antimony	ND	ND	ND	6
Arsenic	ND	ND	14	50
Beryllium	0.30	0.10	ND	3
Cadmium	ND	ND	ND	10
Chromium	16	8	8	100
Copper	117	94	11	1,000
Lead	390	90	35	50
Mercury	5.5	0.30	ND	1.4
Nickel	9	ND	ND	200
Selenium	11	ND	16	20
Silver	ND	ND	46	100
Thallium	ND	ND	ND	0.5
Zinc	187	95	ND	5,000

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in mg/kg or parts per million (ppm).

= Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

* = Sample collected on November 17, 2005.

Supplemental Phase II Investigation

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-200
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVATION	DN:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Core Drill & Jack Hammer			05/16/06	NA
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	NA I
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deceiver		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1 _	FILL	Brown c-f SAND, little Silt, little m-f Gravel, dry	12/18			
2		+ 2	,	0.0		
		Same as above		(throughout)		
3		± 3	19/24	-		
		Grayish Black c-f SAND, little Silt, frequent ash and	10/24			
4		cinder fragments ± 4			TB200-4	4-5
_		Same as above	12/12		(Soil)	
5 _		$\pm \mathfrak{I}$				
		END OF BORING @ 5 FEET				
-						

REMARKS: Refusal encountered at 5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-201
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD	: Core Drill & Jack Hammer			05/16/06	ΝΔ
CASING: NA	Α	DRILLER:	Chris Myers / Tony	03/10/00	NA I
CORING: NA	Α	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		8" Thick Concrete Floor				
I _	FILL	Brown c-f SAND, little Clayey Silt, trace m-f Gravel, moist	4/12			
2		± 2'		0.0		
2		Brown c-f SAND, little Silt, trace m-f Gravel, dry		(throughout)		
3 _			12/24			
4		±4'			TB201-4	4-5
5		Same as above			(Soil)	
		Dark Brown to Black c-f SAND, little m-f Gravel, ash	12/24			
6		and cinder fragments				
		± 6.5'	0/6			
7 _		END OF BORING @ 6.5 FEET				

REMARKS: Refusal encountered at 6.5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-202
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Core Drill & Jack Hammer			05/16/06	6.5
CASING: N	A	DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: N	A	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Decessory		SAM	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little m-f Gravel, little Silt, dry				
			22/24			
2	_			0.0		
		± 2.5'		(throughout)		
3	_	Same as above				
			9/24			
4	_					
		Dark Brown c-I SAND, little m-I Gravel, trace Silt, moist				
5		Same as above				
		Brown m-f SAND, some Silt, trace f Gravel, moist	19/24		TB202-5.5	5.5-6.5
6		Brown m-f SAND, some Clayey Silt, wet	10/24		(Soil)	
		Dark Brown/Black c-f SAND, and f Gravel, wet $\pm 6.5'$				
		END OF BORING @ 6.5 FEET				

REMARKS: Refusal encountered at 6.5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-203
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE I	FLUID LEVEL
GROUND ELEVATION	DN:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Core Drill & Jack Hammer			05/16/06	ΝΔ
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	112
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Decevery		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(11/11)	(ppm)	Sample	(feet)
		4.5" Thick Concrete Floor				
1	FILL	Note: Cored drilled to 1 ft due to refusal $\pm 1'$				
		Dark Gray / Black c-f GRAVEL, some c-f Sand, ash	4/12			
2		and cinders, moist $\pm 2'$	4/12	0.0		
		Grayish Brown c-f SAND, some c-f Gravel, trace Silt, moist,		(throughout)		
		ash and cinders $\pm 3'$		(unoughout)		
3		Dark Gray/ Black c-f SAND, some m-f Gravel, moist, ash	16/24		TB203-3	3-4
		and coal fragments			(Soil)	
4		$\pm 4'$				
		END OF BORING @ 4 FEET				

REMARKS: Refusal encountered at 4 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-204
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Truck Mounted Geoprobe			05/18/06	6
CASING: N.	Α.	DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: N	Ą	INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAN	IPLE
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6.5" Thick Concrete Floor				
1		FILL	Brown c-f SAND, little c-f Gravel, trace Silt, moist				
2	_			24/48	0.0		
3	_						
4			+ 4'				
•	-		Dark Brown/Black c-f SAND, some Silt, little 1				
5			Gravel, dry, with ash, cinders and coal fragments				
6			Brown c-f SAND, little c-f Gravel, trace Silt, moist	35/48	0.0		
			Brown/Dark Brown c-f Gravel, little c-f Sand, trace	55/40	0.0		
7	_		Silt, wet				
0			Note: Dark Gray / Black color @ bottom 1" of sample				
8	-		± 8 Dork Cray / Plack a f CDAVEL little a f Sand trace Silt			TP204 8 5	8505
9			wet free product (coal tar) observed strong petroleum			(Soil)	8.5-9.5
,	-		odor			(Boll)	
10				14/40	100		
				14/48	> 100 ppm		
11							
12	_		± 12'				
12	ŀ		Same as above $\pm 12.5^{\circ}$				
15	-	SM	Dark Gray V. I. SAND, frace Sift, wet				
14		5141		10/10			
	_			13/48	0.0		
15							
16	⊢		± 16'				
			END OF BORING @ 16 FEET				
	_						

REMARKS:

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-205
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	8
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAMPLE	
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		8" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little Silt, trace m-f Gravel, dry				
_						
2 _	-		23/40			
3						
	1					
4		$\pm 4'$				
		Same as above		0.0		
5	_	Dark Brown c-f SAND, some Silt, little m-f Grave		(throughout)		
		moist				
0	-	Dark Brown /Black c-I GRAVEL, some c-I Sand, little Silt moist with ash and sinder fragments	36/48		TR205 6 5	6575
7		Dark Brown SILT & CLAY, moist			(Soil)	0.5-7.5
		······································				
8		± 8'			TB205-8	8-9
		Brown c-f GRAVEL, little c-f Sand, trace Silt, wet			(Soil)	
9	-	Note: Cobble stuck at tip of the sampler				
10						
10	-		12/48			
11						
12	-	$\pm 12'$				
12		Brown c-I GRAVEL, little c-I Sand, trace Silt moist ± 12.5				
15	SM	Dark Brown/Gray I SAND, Ittle Crayey Sitt, moist				
14	5111		0/40			
-	1		0/48			
15						
16		+ 16'				
10	<u> </u>	\pm 10 END OF BORING @ 16 FEET				
-	1					

REMARKS:

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-206
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	FLUID LEVEL
GROUND ELEVATIO	1:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	ruck Mounted Geoprobe			05/18/06	65
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Bocovory		SAMPLE	
(feet)	System		Kecovery	PID	Env.	Depth
		(based on Burmister system)	(11/11)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little f Gravel, trace Silt, dry				
2	_	±2				
		Dark Brown c-f SAND, little m-f Gravel, dry	18/41.5			
3						
4						
	-	± 4 Dark Brown/Black c-f SAND_little c-f Gravel		0.0		
5		little Silt, moist + 5		(throughout)		
		Brown c-f SAND, lilttle f Gravel, trace Silt, moist		(unoughout)		
6		±6	20/10			
		Dark Gray to Black c-f GRAVEL, little c-f Sand, wet, septic	28/48			
7		odor				
8		<u>± 8'</u>				
0		Dark Gray/Black c-f GRAVEL, little c-f Sand,				0.40
9	-	trace Silt, wet, coal tar odor oberserved			TB206-9	9-10
10		± 9.5			(Soil)	
10 _	CI	Dark Gray/Black Silty CLAY, coal tar odor observed	23/48			
11	CL					
	-					
12		+ 12				
		END OF BORING @ 12 FEET	1	1		

REMARKS:	

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-207
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	65
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION SA		SAN	IPLE	
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6" Thick Concrete Floor				
1		FILL	Brown / Dark Brown c-f GRAVEL, and c-f Sand,				
			trace Silt, moist				
2				- 2'			
			Dark Gray/Black c-f SAND, some Silt, some	30/42			
3			c-f Gravel, with ash and cinder fragments				
4				- 4'	-		
_			Dark Brown/Brown c-t SAND, little c-t Gravel		0.0		
5			trace Silt, moist, with ash and cinder fragments		(throughout)		
			±.	5.5'			
6	_		Brown c-f GRAVEL, some c-f Sand, trace Silt,	36/48			
-				<u>5.5'</u>			
7	_		Dark Gray/Black c-f GRAVEL, trace c-f Sand, wet,				
0			with ash and ciner fragments	01			
o	_		Proven/Derk Proven a f SAND, and a f Gravel wet	8	-		
0			Dark Gray/Plack of GPAVEL trace of Sand wet				
,			free product (coal tar) observed			TB207-9 5	9 5-10 5
10			+	10'		(Soil)	2.5-10.5
10				28/48		(501)	
11		CL					
		-					
12			±	12'			
			END OF BORING @ 12 FEET		1		

REMARKS:		

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-208
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Truck Mounted Geoprobe			05/18/06	6
CASING: N	A	DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: N	A	INSPECTOR:	A. Garg		

USC	DESCRIPTION	Basayany		N SAMPLE		IPLE
System		Recovery	PID	Env.	Depth	
	(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)	
	6" Thick Concrete Floor					
FILI	Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with					
TILL	coal and slag fragments					
	Brown/Dark Brown c-f SAND, and Clayey Silt					
	trace c-f Gravel, moist $\pm 2'$	24/42				
	Black c-f SAND, some Silt, little c-f Gravel, dry					
_	with ash and cinder fragments					
-	$\pm 4'$		0.0			
	Dark Brown/Brown of CPAVEL some of Sand		0.0 (throughout)			
-	little Silt moist + 5 5'		(unoughout)			
	Dark Gray/Black c-f GRAVEL little c-f Sand trace Silt wet					
-	Burk Gruy, Black e i Grui (EE, hale e i Suild, duce Shi, we	24/42				
	$\pm 8'$					
	Dark Gray/Black c-f GRAVEL, some c-f Sand, trace Silt,					
	wet, coal tar observed at bottom of layer $\pm 9'$			TB208-9	9-10	
	Dark Gray Silty CLAY, wet			(Soil)		
CL		15/48				
		10,10				
_						
	. 121					
	± 12					
	END OF BORING @ 12 FEET					
-						
	CL	USC System DESCRIPTION (based on Burmister system) 6" Thick Concrete Floor Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with coal and slag fragments Brown/Dark Brown c-f SAND, and Clayey Silt. trace c-f Gravel, moist ± 2" Black c-f SAND, some Silt, little c-f Gravel, dry with ash and cinder fragments 	USC System DESCRIPTION (based on Burmister system) Recovery (In/In) FILL 6" Thick Concrete Floor Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with coal and slag fragments Brown/Dark Brown c-f SAND, and Clayey Silt. trace c-f Gravel, moist ± 2? Black c-f SAND, some Silt, little c-f Gravel, dry with ash and cinder fragments Dark Brown/Brown c-f GRAVEL, some c-f Sand, little Silt, moist ± 5.5' Dark Gray/Black c-f GRAVEL, little c-f Sand, trace Silt, we coal tar observed at bottom of layer ± 9' Dark Gray/Black c-f GRAVEL, some c-f Sand, trace Silt, wet, coal tar observed at bottom of layer ± 9' Dark Gray Silty CLAY, wet 24/42 CL END OF BORING @ 12 FEET 15/48	USC System DESCRIPTION (based on Burmister system) Recovery (in/ln) PID (ppm) 6" Thick Concrete Floor Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with coal and slag fragments Brown/Dark Brown c-f SAND, and Clayey Silt. trace c-f Gravel, moist ± 2' Black c-f SAND, some Silt, little c-f Gravel, dry with ash and cinder fragments ± 4' 24/42 Same as above Dark Brown/Brown c-f GRAVEL, some c-f Sand, little Silt, moist ± 5.5' 0.0 (throughout) Dark Gray/Black c-f GRAVEL, little c-f Sand, trace Silt, we wet, coal tar observed at bottom of laye1 ± 9' Dark Gray Silty CLAY, wet 15/48 CL END OF BORING @ 12 FEET	USC System DESCRIPTION Recovery (In/In) PID (ppm) SAW Env. FILL 6" Thick Concrete Floor Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with coal and slag fragments Brown/Dark Brown c-f SAND, and Clayey Silt trace c-f Gravel, moist ± 2 24/42 0.0 Black c-f SAND, some Silt, little c-f Gravel, dry with ash and cinder fragments ± 4 0.0 0.0 Same as above 0.0 0.0 0.0 0.0 Dark Brown/Brown c-f GRAVEL, some c-f Sand, little Silt, moist ± 5.5' 24/42 0.0 Dark Gray/Black c-f GRAVEL, little c-f Sand, trace Silt, wet, coal tar observed at bottom of layet ± 8' 24/42 Dark Gray/Black c-f GRAVEL, some c-f Sand, trace Silt, wet, coal tar observed at bottom of layet ± 9' 15/48 CL END OF BORING @ 12 FEET 15/48 TB208-9	

REMARKS:
PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-209
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	6
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAM	IPLE
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6" Thick Concrete Floor				
1		FILL	Brown c-f SAND, little c-f Gravel, little Silt, dry				
2							
				21/42			
3	_						
4	_		± 4'				
_			Same as above		0.0		
5	_		Dark Brown/Black c-f SAND, with ash and cinders		(throughout)		
(
0	_		± 0	40/49			
			moist	40/48			
7			Dark Brown/Black of SAND little m f Groval moist				
/	_		Gravish Black c-f GRAVEL little c-f Sand trace				
8			Silt wet septic odor observed $+ 8'$				
0	-		Same as above				
9			Dark Grav / Black c-f GRAVEL, little c-f Sand.			TB209-9	9-10
-	_		moist, observed coal tar, no odor $\pm 9.5'$			(Soil)	, - ·
10			Dark Gray Clayey SILT, moist, septic odor	10/49		. ,	
		ML		19/48			
11							
12	_		<u>± 12'</u>				
			Same as above				
13	_						
14		G) (Dark Gray v f SAND, little Silt, moist				
14	_	SM		23/48			
15							
15	_						
16			+ 16'				
10	-		END OF BORING @ 16 FEET				
	_						

REMARKS:

Yu & Associates, Inc.

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-210
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	6
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Decessory		SAN	IPLE
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6" Thick Concrete Floor				
1		FILL	Brown c-f SAND, little Silt, little f Gravel, dry, with ash and				
			cinder fragments				
2	_						
				24/42			
3	_						
4	_		±4'				
-			Same as above		0.0		
5	—		ash and ainder fragments $\pm 5.5'$		(throughout)		
6			Brown f SAND little c f Gravel little Silt wet				
U	-		+ 65'	33/48			
7			Dark Gray c-f GRAVEL little c-f Sand wet sentic odor				
,	-		observed				
8			± 8'				
_	_		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and				
			cinder fragments, septic odor				
9			Gray CLAY & SILT, trace c Gravel, moist $\pm 9'$			TB210-9	9-10
	_		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and			(Soil)	
10			cinder fragments, septic odor $\pm 10'$	29/48			
			Gray Silty CLAY, moist, Black in color at top and				
11		CL	gray at bottom				
12			± 12'				
	Т		END OF BORING @ 12 FEET				

REMARKS:

Yu & Associates, Inc.

Table 1 Sampling Summary Table Dorel Hat- Supplemental Phase II Investigation Beacon, NY Project No. 0507501

Date Sampled	Sample Number	Depth (ft)	Medium	Analytical parameters	Sampling method
Soil Samplin	g (Through Bor	ings TB200 to	TB210)		
~~~~ <b>r</b> ~~.	8 ( 0 - 8 0 -		,		
5/16/2006	TB200-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB201-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB202-5.5*	5.5-6.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB203-3*	3.0-4.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB204-8.5	8.5-9.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB205-6.5	6.5-7.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB205-8*	8.0-9.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB206-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB207-9.5	9.5-10.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB208-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB209-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB210-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
Groundwate	r Sampling				
5/18/2005	MW103		Aqueous	STARS VOCs, TCL VOCs, STARS SVOCs, TCL SVOCs	Bailer

* - Not Analyzed

Qualifiers :

STARS VOCs - Spill Technology and Remediation Series - Volatile Organic compounds

STARS SVOCs - Spill Technology and Remediation Series - Semi-Volatile Organic compounds

TCL VOCs - Target Compound List - Volatile Organic Compounds

TCL SVOCs - Target Compound List - Semi-Volatile Organic Compounds

TCLP VOCs - Toxicity Characteristic Leaching Procedure - Volatile Organic Compounds

TCLP SVOCs - Toxicity Characteristic Leaching Procedure - Semi-Volatile Organic Compounds

#### Table 2

#### Soil Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

#### Beacon, NY

#### Project No. 0507501

												NUMBER	NUMBER
Sample ID	TB204-8.5	TB204-8.5DL	TB205-6.5	TB206-9	TB206-9DL	TB207-9.5	TB207-9.5DL	TB208-9	TB208-9DL	TB209-9	TB210-9	NYSDEC	NYSDEC
Lab Sample ID	E0658-05C	E0658-05C	E0658-06B	E0658-08C	E0658-08CDL	E0658-09C	E0658-09CDL	E0658-10C	E0658-10CDL	E0658-11C	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	8.5-9.5	6.5-7.5	9-10	9-10	9.5-10.5	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	50	1	1	50	1	100	1	20	1	1		
VOCs													
Benzene	<b>640</b> E	ND	ND	<b>1800</b> E	ND	<b>10000</b> E	<b>22000</b> DJ	150	ND	ND	ND	60	60
Toluene	<b>2000</b> E	ND	ND	<b>3000</b> E	<b>5900</b> DJ	<b>13000</b> E	<b>78000</b> D	370	ND	ND	ND	1500	1500
Ethylbenzene	<b>1300</b> E	ND	ND	<b>3600</b> E	ND	<b>23000</b> E	ND	60	ND	ND	ND	5500	5500
m,p-Xylene	<b>5200</b> E	<b>22000</b> DJ	ND	<b>7800</b> E	13000 DJ	<b>48000</b> E	140000 D	680	ND	ND	ND	1200	1200
o-Xylene	<b>2800</b> E	ND	ND	<b>5500</b> E	ND	<b>35000</b> E	<b>53000</b> DJ	260	ND	ND	ND	1200	1200
Xylene (Total)	<b>8100</b> E	22000 DJ	ND	<b>13000</b> E	13000 DJ	<b>83000</b> E	<b>190000</b> D	940	ND	ND	ND	1200	1200
Isopropylbenzene	110	ND	ND	610	ND	<b>1500</b> E	ND	8 J	ND	ND	ND	NA	NA
n-Propylbenzene	51	ND	ND	140	ND	<b>2800</b> E	ND	6 J	ND	ND	ND	NA	NA
1,3,5-Trimethylbenzene	<b>1600</b> E	ND	ND	<b>3100</b> E	ND	<b>25000</b> E	<b>36000</b> DJ	170	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	<b>2400</b> E	<b>22000</b> DJ	ND	<b>4100</b> E	10000 DJ	<b>32000</b> E	<b>80000</b> D	400	ND	ND	ND	NA	NA
4-Isopropyltoluene	50	ND	ND	220	ND	<b>1600</b> E	ND	5 J	ND	ND	ND	NA	NA
Naphthalene	<b>12000</b> EB	<b>22000</b> D	4 J	18000 EE	<b>360000</b> D	<b>85000</b> EE	3 2600000 D	<b>5300</b> EH	3 <b>54000</b> D	27	5 J	13000	13000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

E - Concentration exceeds the calibration range

B - Detected in associated method blank

- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are

listed and identified in bold and boxed.

Use professional Judgement based on data use

#### Note:

The data presented herein is based on the Preliminary Results of Volatile Organics analyses

# Table 3Soil Semi-Volatile Organic Analytical Results SummaryDorel Hat- Supplemental Phase II InvestigationBeacon, NY

#### Project No. 0507501

Sample ID	TB204-8.5	TB204-8.5DL	TB205-6.5	TB206-9	TB206-9DL	TB207-9.5	TB207-9.5DL	TB208-9	TB208-9DL	TB209-9	TB210-9	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-05ADL	E0658-06B	E0658-08A		E0658-09A	E0658-09ADL	E0658-10A	E0658-10AD1	E0658-11C	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	8.5-9.5	6.5-7.5	9-10	9-10	9.5-10.5	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	10	1	1	25	1	5	1	10	1	1		
SVOCs													
Phenol	<b>77</b> J	ND	ND	ND	ND	260 J	ND	ND	ND	ND	ND	30	30
4-Methylphenol	<b>90</b> J	ND	ND	<b>2600</b> J	ND	<b>370</b> J	380 DJ	<b>810</b> J	ND	ND	ND	900	900
2,4-Dimethylphenol	<b>100</b> J	ND	ND	<b>2800</b> J	ND	1900	<b>1900</b> DJ	6400	<b>5600</b> DJ	ND	ND	NA	NA
Naphthalene	<b>21000</b> E	<b>40000</b> D	140 J	<b>1300000</b> E	<b>200000</b> D	<b>37000</b> E	<b>55000</b> D	<b>390000</b> E	<b>670000</b> D	620	85 J	13000	13000
2-Methylnaphthalene	<b>10000</b> E	18000 D	ND	<b>490000</b> E	<b>72000</b> D	17000 E	<b>26000</b> D	<b>150000</b> E	<b>240000</b> D	85 J	ND	36400	36400
Acenaphthylene	<b>11000</b> E	<b>19000</b> D	ND	<b>410000</b> E	<b>58000</b> D	<b>15000</b> E	<b>24000</b> D	<b>120000</b> E	<b>200000</b> D	<b>43</b> J	ND	41000	41000
Acenaphthene	4900	<b>6400</b> D	ND	320000	<b>40000</b> D	5600	7200 D	52000	<b>70000</b> D	<b>240</b> J	570	50000	90000
Dibenzofuran	<b>10000</b> E	<b>17000</b> D	ND	<b>430000</b> E	<b>59000</b> D	<b>14000</b> E	<b>21000</b> D	<b>100000</b> E	<b>170000</b> D	140 J	80 J	6200	6200
Fluorene	<b>12000</b> E	<b>22000</b> D	ND	<b>500000</b> E	<b>72000</b> D	<b>16000</b> E	<b>26000</b> D	<b>120000</b> E	<b>220000</b> D	<b>190</b> J	150 J	50000	350000
Phenanthrene	<b>36000</b> E	<b>49000</b> D	110 J	<b>1200000</b> E	<b>150000</b> D	<b>39000</b> E	<b>48000</b> D	<b>310000</b> E	<b>500000</b> D	780	1000	50000	220000
Anthracene	<b>36000</b> E	<b>31000</b> D	<b>47</b> J	<b>480000</b> E	<b>65000</b> D	<b>18000</b> E	<b>31000</b> D	<b>94000</b> E	<b>190000</b> D	<b>290</b> J	<b>300</b> J	50000	700000
Carbazole	<b>9600</b> E	12000 D	ND	240000	<b>28000</b> D	<b>14000</b> E	17000 D	64000	<b>82000</b> D	200 J	<b>130</b> J	NA	NA
Fluoranthene	<b>21000</b> E	<b>37000</b> D	200 J	<b>770000</b> E	<b>120000</b> D	<b>22000</b> E	<b>36000</b> D	<b>190000</b> E	<b>380000</b> D	750	1000	50000	1900000
Pyrene	<b>23000</b> E	<b>33000</b> D	160 J	<b>840000</b> E	<b>99000</b> D	<b>27000</b> E	<b>32000</b> D	<b>240000</b> E	<b>290000</b> D	620	870	50000	665000
Benzo(a)anthracene	<b>15000</b> E	<b>16000</b> D	110 J	<b>540000</b> E	<b>59000</b> D	<b>15000</b> E	<b>19000</b> D	<b>150000</b> E	<b>160000</b> D	<b>240</b> J	490	224	3000
Chrysene	<b>17000</b> E	<b>19000</b> D	150 J	<b>510000</b> E	<b>58000</b> D	<b>17000</b> E	18000 D	<b>140000</b> E	<b>150000</b> D	<b>290</b> J	680	400	400
Benzo(b)fluoranthene	<b>12000</b> E	<b>14000</b> D	110 J	<b>480000</b> E	<b>46000</b> D	<b>13000</b> E	15000 D	<b>120000</b> E	<b>130000</b> D	<b>200</b> J	<b>450</b> J	1100	1100
Benzo(k)fluoranthene	6800	<b>8000</b> D	<b>47</b> J	200000	<b>28000</b> D	5200	6300 D	60000	66000 D	88 J	<u>220</u> J	1100	1100
Benzo(a)pyrene	<b>11000</b> E	11000 D	<u>90</u> J	390000	<b>41000</b> D	10000	<b>12000</b> D	<b>100000</b> E	110000 D	<b>170</b> J	350 J	61	11000
Indeno(1,2,3-cd)pyrene	4500	<b>4600</b> DJ	55 J	160000	<b>16000</b> D	4400	<b>4000</b> D	43000	<b>40000</b> DJ	<b>78</b> J	<b>150</b> J	3200	3200
Dibenzo(a,h)anthracene	1800	<b>1800</b> DJ	ND	65000	<b>6500</b> DJ	1800	<b>1800</b> DJ	18000	<b>16000</b> DJ	ND	75 J	14.3	» 10 ⁸
Benzo(g,h,i)perylene	4100	<b>3900</b> DJ	<b>64</b> J	150000	14000 D	4100	<b>3700</b> D	42000	<b>36000</b> DJ	<b>83</b> J	150 J	50000	800000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type.
- 55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are
  - listed and identified in bold and boxed.
  - Use professional Judgement based on data use

#### Note:

#### Table 4

Soil TCLP Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

#### Beacon, NY

#### **Project No. 0507501**

Sample ID	TB204-8.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05C	E0658-08C	E0658-09C	E0658-10C	E0658-11C	E0658-12C	Regulatory Levels
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5	9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg						
Dilution Factor	1	1	1	1	1	1	
TCLP VOCs							
Benzene	3 J	160	88	6	ND	ND	500
Trichloroethene	2 J	ND	ND	ND	ND	ND	500
Tetrachloroethene	3 J	ND	ND	ND	ND	ND	700

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

- TCLP Toxicity Characterictic Leaching Procedure
  - J Analyte detected Below quantitation limits
  - ND Not Detected at the method detection limit
  - NA Not Available
  - **55** Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

#### Note:

## Table 5Soil TCLP Semi-Volatile Organic Analytical Results Summary<br/>Dorel Hat- Supplemental Phase II Investigation

#### Beacon, NY Project No. 0507501

Sample ID	TB204-8.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	Regulatory Levels
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5	9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	1	1	1	1	1	
TCLP SVOCs							
2-Methylphenol	ND	<b>4</b> J	6 J	8 J	ND	ND	NA
4-Methylphenol	3 J	7 J	10 J	12 J	ND	ND	NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

#### Qualifiers

TCLP - Toxicity Characterictic Leaching Procedure

- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

#### Note:

## Table 6Soil Cyanide Analytical Results SummaryDorel Hat- Supplemental Phase II Investigation

#### Beacon, NY Project No. 0507501

Sample ID	TB204-8.5	TB205-6.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	TB210-9DUP	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-06A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	6.5-7.5	9-10	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	1	1	1	1	1	1	1	1		
Cyanides										
Cyanide	<b>3.2</b> N	ND	<b>2.5</b> N	<b>0.54</b> BN	<b>4.7</b> N	2.2 N	ND	<b>0.161</b> B	NA	NA

#### Qualifiers

- N Matrix Spike Recovery falls outside the control limit
- B Detected in associated method blank
- ND Not Detected at the method detection limit
- NA Not Available
- **55** Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

#### Note:

#### Table 7

#### Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation Beacon, NY

#### **Project No. 0507501**

Sample ID	MW103		MW103DL		NYSDEC
Lab Sample ID	E0658-13A		E0658-13ADL		Ambient Water
Sampling Date	5/18/2006		5/18/2006		Quality Standards
Matrix	Water		Water		& Guidance Values
Units	ug/Kg		ug/Kg		ug/l
Dilution Factor	1		8		
VOCs					
Acetone	6		ND		50
Carbon Disulfide	5	_	ND	_	50
Benzene	360	Е	400	D	1
Toluene	240	Е	190	D	5
Ethylbenzene	10		ND		5
m,p-Xylene	120		82	D	5
o-Xylene	55		39	DJ	5
Xylene (Total)	170	1	120	D	5
Styrene	17		11	DJ	5
1,3,5-Trimethylbenzene	12	]	ND		5
1,2,4-Trimethylbenzene	29	]	19	DJ	5
Naphthalene	410	Е	1100	D	10
		-		-	

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

#### Qualifiers

- E Concentration exceeds the calibration range
- J Analyte detected Below quantitation limits
- D Concentration obtained from diluted analysis
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

**55** Concentration of compounds that exceed the NYSDEC Ambient Water Quality Standards & Guidance Values are listed and identified in bold and boxed. Use professional Judgement based on data use

#### Note:

#### Table 8

#### Groundwater Semi-Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation Beacon, NY

	Projec	et No	. 0507501		
Sample ID	MW103		MW103DL		NYSDEC
Lab Sample ID	E0658-13B		E0658-13BDL		Ambient Water
Sampling Date	5/18/2006		5/18/2006		Quality Standards
Matrix	Water		Water		& Guidance Values
Units	ug/Kg		ug/Kg		ug/l
Dilution Factor	1		10		
SVOCs					
Phenol	240	Е	270	D	1
2-Methylphenol	360	E	480	D	NA
4-Methylphenol	540	Е	740	D	NA
2,4-Dimethylphenol	ND		1000	D	50
Naphthalene	730	Е	1300	D	10
2-Methylnaphthalene	100		110	D	4.2
Acenaphthylene	72		77	DJ	NA
Acenaphthene	70		80	DJ	20
Dibenzofuran	31		32	DJ	NA
Fluorene	26		26	DJ	50
Phenanthrene	48		55	DJ	50
Anthracene	9	J	ND		50
Carbazole	29		28	DJ	NA
Fluoranthene	10		ND		50
Pyrene	9	J	ND		50
Benzo(a)anthracene	2	J	ND		NA
Chrysene	3	J	ND		0.002
Benzo(b)fluoranthene	2	J	ND		0.002
Benzo(k)fluoranthene	1	J	ND		0.002
Benzo(a)pyrene	2	J	ND		0.002
Indeno(1,2,3-cd)pyrene	1	J	ND		0.002
Benzo(g,h,i)perylene	1	J	ND		NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

#### Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.
 55 - Concentration of compounds that exceed the NYSDEC Ambient Water Quality

Standards & Guidance Values are listed and identified in bold and boxed. Use professional Judgement based on data use

#### Note:

### Attachment 2

### **Previous Investigation Reports**



**Modified Phase I ESA** 



#### MODIFIED PHASE - 1 ENVIRONMENTAL SITE ASSESSMENT REPORT

FOR 1 WEST MAIN STREET BEACON, NEW YORK 12508



#### **PREPARED FOR:**

#### DAY ENGINEERING, P.C. 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008

#### **PREPARED BY:**

#### YU & ASSOCIATES, INC. 611 RIVER DRIVE ELMWOOD PARK, NEW JERSEY 07407

September 29, 2005

611 River Drive, 3rd Floor, Elmwood Park, NJ 07407 • (201) 791-0075 • Fax: (201) 791-4533

September 29, 2005 0507501

Day Engineering, P.C. 40 Commercial Street Rochester, New York 14614-1008

Attn: Mr. Raymond L. Kampff

#### Re: Metro North Agreement No. 201415 Modified Phase I - Environmental Site Assessment Dorel Hat Company (vicinity of Beacon Station) 1 West Main Street, Beacon, New York 12508

Dear Mr. Kampff:

In accordance with the proposal, dated June 29, 2005 under your authorization, YU conducted a Modified Phase-1 Environmental Site Assessment at the Dorel Hat property located on 1 West Main Street, in the City of Beacon, Dutchess County, New York. The accompanying report presents the details of the environmental site assessment activities conducted at the site.

The objective of this Modified Phase I program is to identify potential subsurface environmental liabilities for the site. The program is broadly composed of a two tasks; (1) Phase I Environmental Site Assessment (ESA) and (2) Pre Phase II Investigation involving limited soil borings with soil and groundwater sampling. The Phase I ESA was performed in general accordance with ASTM E 1527 including limited research, a review of historical Sanborn and Topographical maps, a listing search and site reconnaissance.

The report summarizes the findings relative to the existing potential presence, as of the dates of the latest site visit and records reviewed, of hazardous materials/wastes at the site at levels likely to warrant further investigation and mitigation measures pursuant to current New York State Department of Environmental Conservation (NYSDEC) regulations.

If there are any questions concerning the content of this report, or if we may be of further service, please contact the undersigned at your convenience.

Yours truly

Charles McCusker, P.G., C.H.M.M. Project Manager

Andrew Leung, P.E. Vice President

EXECUTIVE SUMMARY	VI
1.0 INTRODUCTION	1
<ul><li>1.1 Background Information</li><li>1.2 Objectives and Scope of Work</li><li>1.3 Limitations</li></ul>	1 1 2
2.0 SITE DESCRIPTION	3
<ul><li>2.1 Location and Legal Description</li><li>2.2 Vicinity Characteristics</li><li>2.3 Information Provided by Client / Owner</li></ul>	
3.0 PHYSICAL SETTING SOURCES	5
<ul> <li>3.1 Topography</li></ul>	5 6 7 7 7 7 7 9 11
4.0 ENVIRONMENTAL RECORD REVIEW	12
<ul> <li>4.1 Standard Environmental Record Sources</li></ul>	
5.0 SITE RECONNAISSANCE	22
<ul> <li>5.1 Onsite Exterior Survey</li> <li>5.2 Onsite Interior Survey</li></ul>	22 22 22 23 25
6.0 PRE PHASE-II INVESTIGATION	
6.0 PRE PHASE-II INVESTIGATION	26
<ul><li>6.1 Soil and Groundwater Sampling</li><li>6.2 Soil Analytical Results</li><li>6.2.1 Volatile Organic Compounds (VOCs)</li></ul>	26 27 27

#### **TABLE OF CONTENTS**

6.2.2 Semi-Volatile Organic Compounds (SVOCs)	27
6.2.2 Definition Pollutant Metals (PP Metals)	27
6.2.5 Priority Politican-metals (11 metals)	27
6.2.4 Pesticides and Polychiorinaled Dipnenyis (1 CD3)	27
6.2.5 Phenols and Cyanides	
6.3 Groundwater Analytical Results	20 າ0
6.3.1 Target Compound List - Volatile Organic Compounds (ICL VOCs)	20
6.3.2 Target Compound List -Semi-Volatile Organic Compounds (TCL SVOCs)	28
6.3.3 Target Analyte List Metals (TAL Metals)	28
6.3.4 Target Compound List -Pesticides and Polychlorinated Biphenyls (PCBs)	28
7.0 FINDINGS AND CONCLUSIONS	29
7.1 Tools 1. Phase LESA	29
7.2 Task-2: Pre Phase-II Site Investigation	29
8.0 RECOMMENDATIONS	31
9.0 REFERENCES	32
10.0 QUALIFICATIONS	33

÷

#### LIST OF TABLES

- Table 1 Sampling Summary Table
- Table 2 Soil Volatile Organic Analytical Results Summary
- Table 3 Soil Semi Volatile Organic Analytical Results Summary
- Table 4 Soil PP-Metals Analytical Results Summary
- Table 5 Soil Pesticides/PCBs Analytical Results Summary
- Table 6 Soil Total Phenols Analytical Results Summary
- Table 7 Groundwater Volatile Organic Analytical Results Summary
- Table 8 Groundwater Semi Volatile Organic Analytical Results Summary
- Table 9 Groundwater PP Metals Analytical Results Summary
- Table 10 Groundwater Pesticides/PCBs Analytical Results Summary

#### LIST OF FIGURES

Figure 1 – Site Location Map

- Figure 2 Tax Map
- Figure 3 Recognized Environmental Condition Plan
- Figure 4 Aerial Photograph-I
- Figure 5 Aerial Photograph-II

#### LIST OF APPENDICES

- Appendix A Toxics Targeting Radius Map
- Appendix B Tax Information Document
- Appendix C Site Interview Questionnaire
- Appendix D FOIA Requests and Responses
- Appendix E Historic Topographical Maps
- Appendix F Sanborn Fire Insurance Maps
- Appendix G Building Department Information
- Appendix H Site Photographs
- Appendix I Boring Logs
- Appendix J Resumes

#### **EXECUTIVE SUMMARY**

YU & Associates (YU) on behalf of Day Engineering, P.C. (DAY), has completed this Modified Phase I - Environmental Site Assessment (ESA) program for the property located at 1 West Main Street (herein after designated as the "subject site") located in the City of Beacon, Dutchess County, New York. The site is comprised of an approx 32,000 square foot building situated on 3.8 acres approximately ¼ mile East of the Hudson River. A document provided by DAY titled 'Property Information', identified the subject site with Assessor Property Number (APN) 130200-5954-25-563911-0000. Figure 1, Site Location Map, identifies the site location on a USGS 7.5 minute quadrangle map. Figure 2, Tax Map depicts the site tax information.

The scope of work is broadly divided into Task 1 – Phase I ESA and Task-2 – Pre Phase II investigation. The ESA was performed in accordance with ASTM Standard E1527. The Pre-Phase II investigation involved conducting Geoprobe borings, based upon the Recognized Environmental Conditions (RECs) identified at the subject site, and collection and analysis of a limited number of soil and groundwater samples.

#### Task 1-ESA

The purpose of the ESA was to evaluate the potential concerns and determine the recognized environmental conditions (RECs), that involved the presence or likely presence of any hazardous substances or petroleum products on the subject site under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the site or into the ground, groundwater or surface water of the property.

Based upon site visits, site interviews and a review of relevant documentation, YU identified the potential concerns and evaluated them to determine the RECs at the subject site. Figure 3, Recognized Environmental Conditions Plan, depicts the approximate location of these potential concerns and RECs. These potential concerns and RECs are described below.

**Potential Concern 1 (REC 1) - Off Site Migration:** The Dorel Hat property was subdivided and a portion of the former Dorel Hat Property was sold to Metro North for development as a Parking Lot. Based on a review of the Parsons Brinckerhoff Quade & Douglas (PBQD) reports for the adjoining property to the South and West (Former Dorel Hat Property), contamination of the soil (PAHs, metals) and groundwater (metals) exists at concentrations above NYSDEC criteria on this adjoining property. Mercury contamination was identified at "hazardous concentrations" in boring MNR-DH3 (adjacent to the southwest corner of the subject property). The possibility of contaminant migration from off site sources (adjoining property) on to the subject site exists and is considered to be a recognized environmental condition. This REC was investigated as part of the Pre-Phase II investigation.

**Potential Concern 2 (REC 2) - Blow Down Area:** A steam blow down area on the East side of the Dorel Hat Building was noted that discharged directly to the ground surface on the East side of the building. This presents a material threat of release of contaminants to soil, surface water

and groundwater and is considered to be a recognized environmental condition. This REC was investigated as part of the Pre Phase II investigation.

**Potential Concern 3 (REC 3) - Drums and Abandoned Equipment Storage:** Two (2) 55gallon drums were noted in the area used to store drums and abandoned equipment, located to the north of the paved parking lot. Staining was observed on the ground in close proximity to the drums. This indicates a past release and the material threat of a release and the potential for soil and groundwater contamination in this vicinity and is considered to be a recognized environmental condition. This REC was investigated as part of the Pre-Phase II investigation.

**Potential Concern 4 - Floor Sumps:** Two floor-sumps were observed inside the Dorel Hat Building. One floor sump is located in the loading dock area, on the northern side of the building. Another sump was noted at the entrance of a room housing hat molding equipment, located to the East of the manufacturing area, inside the building. These sumps are reportedly lined with concrete and pumped out intermittently. The possibility of contaminated water collecting in the sumps and leaking poses a material threat of soil and ground contamination in these areas. Based on field observations of the sump integrity and site interviews further evaluation of these potential concerns was deemed unnecessary.

**Potential Concern 5 - Chemical Storage and Use Area:** A five (5) gallon pail of a water based adhesive "# 2476 Stixit" was noted inside the Dorel Hat Building. A 55-gallon drum labeled as 'Chem Power' was also observed inside the Dorel Hat Building. Potential spills of these chemicals pose a material threat of a release and are considered to be potential concerns. Based on visual observations no spills or leaks from these containers was evident and further evaluation was deemed unnecessary.

**Potential Concern 6 - Transformer:** A transformer without a 'non-PCB' label was noted at the Southeast corner of the Dorel Hat Building, near the 'Blow Down Area'. The possibility of the transformer containing PCBs exists. This poses a material threat of PCB contamination in this vicinity and is considered to be a potential concern. Based on visual observations the transformer appears to be in good condition and no evidence of leaks were observed. Further evaluation of the transformer was deemed unnecessary.

**Potential Concern 7 - Fluorescent Light Ballasts:** Fluorescent Light Ballasts were observed inside the Dorel Hat Building, indicating the possible presence of PCBs in the light ballasts. This poses the material threat of a release and the possibility of PCB contamination and is considered to be a potential concern. If removed from the site these ballasts should be handled appropriately. Further evaluation of these ballasts was deemed unnecessary.

**Potential Concern 8 - Dumpster:** A dumpster for municipal solid waste was observed near the loading dock area to the North of the building. The dumpster is located in an unsecured location and the possibility for disposal of hazardous substances or petroleum products exists at this location. A material threat of a release to the ground in or around the dumpster exists, therefore the dumpster is considered to be a potential concern. There were no visual indications of spills in the dumpster vicinity and further evaluation was deemed unnecessary.

**Potential Concern 9 (REC 4) - Vehicle Storage Area:** A vehicle storage area was noted on the eastern side of the paved parking lot. The area is currently leased to Palisi Auto Body Shop, located at the adjoining property, 7 West Main Street. The area is used to store vehicles visiting the auto body shop for repair. Due to a material threat of oil and other vehicular fluid leaks from the damaged vehicles, the area is identified as a recognized environmental condition. Further evaluation of this area should be performed as part of a Phase II investigation.

**Potential Concern 10 (REC 5) - Historical Use:** Based on a review of Sanborn maps, two coal companies (Harry Hopper Coal Company, Dutchess Coal Company) existed at the location of the subject site. Railroad tracks are shown running through the subject property. A steel vulcanizing chamber, constructed on concrete piers appears to extend into the subject property in the 1962 Sanborn Map. It is possible that hazardous materials were used and disposed by these industrial units. This indicates the possibility of soil, surface water and groundwater contamination in the past, this area is identified as a recognized environmental condition. Further evaluation of this area should be performed as part of a Phase II investigation.

Based on the findings of the Phase-I ESA, ten (10) Potential Concerns and five (5) RECs were identified at the subject site. The Potential Concerns and RECs and their approximate locations are depicted in Figure 3, Recognized Environmental Conditions Plan. As a limited scope of work for the Pre-Phase-II investigation, the RECs most likely to present a threat of contamination were investigated. Out of the five (5) RECs identified at the subject site, REC 1 Off-Site Migration, REC 2 Blow Down Area, and REC 3 Drums and Abandoned Equipment Storage Area warranted subsurface investigation as part of the Pre Phase II investigation. Potential Concerns 4 through 8 did not warrant further investigation based on the Phase I observations. Potential Concerns 9 and 10 (RECs 4 and 5) would be evaluated as part of a Phase II investigation.

#### Task 2-Pre Phase II Investigation

Per our June 29, 2005 proposal, the Pre Phase II investigation was carried out at the subject site on August 4th, 2005. A total of four (4) borings (B-1 through B-4) were advanced at the subject property. These borings were performed using a Geoprobe 66DT. Six (6) soil samples and one (1) groundwater sample were collected. The samples collected and analyzed are summarized in Table 1, Sampling Summary. The boring locations are depicted on Figure 3, Recognized Environmental Conditions Plan. Boring B-1 was advanced to investigate the subsurface conditions in REC 2 (Blow Down Area). Boring B-2 was advanced to investigate the subsurface conditions related to potential off site migration (REC 1) from the property to the south. Borings B-3 and B-4 were advanced to investigate the subsurface conditions in the vicinity of the Drums and Abandoned Equipment Storage Area (REC 3).

The soil samples were analyzed for Volatile Organics, Base/Neutrals, Metals, Pesticides/PCBs, Cyanides and Phenols. The groundwater sample was requested for TCL-VO, TCL-SVOC and TCL- Pesticides/PCBs analyses. Metals analysis was not requested on the Chain of Custody form; however, a sample container was collected. The laboratory analyzed the sample for metals without authorization.

Preliminary results for volatile organic analysis, semi volatile organic analysis, PP metals, Pesticides/PCBs, Cyanides, and Phenols for soil samples have been provided by Mitkem. Table 2 to Table 6 present the summary of soil analytical results. The preliminary results indicate the presence of volatile organics, semivolatile organic compounds, metals, and Total Phenols in the soil sample B1-6.0 (REC 2 Blow Down Area) at concentrations exceeding NYSDEC Recommended Soil Cleanup Objectives. The preliminary results also show the presence of metals in the soil samples B2-5.0 (REC 1 Off Site Migration) and B-4-0.5 (REC 3 Drums and Abandoned Equipment Storage) at concentrations exceeding NYSDEC Recommended Soil Cleanup Objectives.

Groundwater was not encountered in borings B-2 and B-4. Groundwater in boring B-1 was encountered at 3.8 ft below ground surface. Based on the depths of borings B-2 and B-3, this may indicate a perched water table condition in this location. Groundwater was encountered at 12.5 feet in boring B-3. Groundwater sampling was attempted but only a small amount of water (< 500 ml) was obtained before the flow of water stopped. Based on the field observations, the water in this boring appears to be perched water of limited thickness overlying the fine-grained material beneath. Preliminary results for volatile organic analysis, semi volatile organic analysis, metals, and Pesticides/PCBs for groundwater sample B1-GW (REC 2 Blow Down Area) have also been provided by Mitkem. Table 7 to Table 10 present the summary of groundwater analytical results. The preliminary results indicate the presence of volatile organics, semivolatile organic compounds, metals and a pesticide (heptachlor epoxide) in the groundwater sample at concentrations exceeding NYSDEC Ambient Groundwater Standards.

#### **Recommendations**

Based on the Pre-Phase II investigation results, further evaluation of the REC 1 (Off Site Migration) and REC 3 (Drums and Abandoned Equipment Storage) is unnecessary. REC 1 was investigated primarily to determine if mercury contamination existed on the subject property. Based on the analytical results mercury contamination above the NYSDEC Recommended Soil Cleanup Objects is not present in this vicinity. REC 3 was investigated to evaluate the presence of soil contamination related to the staining evident in the vicinity of the Drums. The analytical results did not indicate organic contamination in this vicinity. Metals (beryllium, chromium, copper, nickel and zinc) concentrations exceed the NYSDEC Recommended Soil Cleanup Objectives in samples from both of these areas. However, no determination has been made as to whether or not these concentrations exceed site background. Based on the metals concentrations in these areas, protection of human health and the environment can be addressed with engineering controls (cap).

Based on the presence of volatile organics, semi volatile organic compounds, metals and Total Phenols in soil sample B1-6.0 (REC 2 Blow Down Area), at concentrations above the NYSDEC Recommended Soil Cleanup Objectives, we recommend delineation of volatile organics, semi volatile organic compounds, phenols and metals contamination in soil in the vicinity of the Blow Down Area with a Phase II investigation.

Based on the presence of volatile organics, semi volatile organic compounds, metals and a pesticide (heptachlor epoxide) in the groundwater sample B1-GW (REC 2 Blow Down Area) at concentrations exceeding NYSDEC Ambient Water Quality Standards and Guidance Values, we

recommend a groundwater investigation to characterize the site hydrogeologic conditions and delineation of volatile organic, semi volatile organic, metals and pesticide contamination in groundwater with a Phase II investigation.

The automobiles stored in the Vehicular Storage Area should be moved in order to facilitate a Phase II investigation. The Phase II investigation should include subsurface exploration including soil sampling for Volatile organic, semi volatile organic and metals contamination.

It is possible that hazardous materials were used and disposed of on site during previous site operations. A site wide subsurface investigation is also recommended to evaluate potential contamination associated with historical use. Soil and groundwater samples should be collected as part of the Phase II investigation for volatile organic, semi volatile organic, pesticide/PCBs, metals, phenols and cyanide analyses.

#### **1.0 INTRODUCTION**

#### **1.1 Background Information**

This report presents the results of Modified Phase I Environmental Site Assessment (ESA) program for the property located at 1 West Main Street, in City of Beacon, Dutchess County, New York. The Modified ESA was performed for Day Engineering P.C. during the period from July 12, 2005 to the present. The scope of services was provided as agreed to and outlined in our June 29, 2005 proposal. The services performed included limited research, a review of specified listings, site reconnaissance including interviews with property owners, and limited number of soil borings.

#### 1.2 Objectives and Scope of Work

The purpose of this modified ESA was to identify the potential concerns and determine the recognized environmental conditions (RECs), that involve the presence or likely presence of any hazardous substances or petroleum products on the subject site under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the site or into the ground, groundwater or surface water of the site.

The scope of work is broadly divided into Task 1 – Phase I ESA and Task-2 – Pre Phase II investigations, as follows:

#### Task 1 – Phase I ESA

- Determination of Site history through a review of reasonably ascertainable standard sources, such as Sanborn Fire Insurance Maps, Historical Topographical Maps, City Directory and Aerial Photographs.
- A review of listings contained within Federal and State environmental databases and other local agency records, within specific search distances.
- A visual observation of current conditions at the site and evidence of past waste disposal activities and interviews with appropriate site personnel regarding details of past activities at the property.
- A reconnaissance of the adjoining properties from public thoroughfares to evaluate the presence of entities that potentially use, store, generate, or dispose of hazardous materials or hazardous wastes.
- Documentation of site environmental conditions and identification of RECs.

#### Task 2 – Pre Phase II Investigation

- Limited site investigation based on the RECs identified in Task-1. Performance of soil borings, collection of a specific quantity of soil and groundwater samples and laboratory testing.
- Interpretation of analytical results, summarization of findings and determination of the recommendations.
- Submittal of a Modified Phase I Environmental Site Assessment report.

#### **1.3 Limitations**

YU has prepared this Modified Phase I-ESA Report using reasonable efforts in each phase of its work to identify RECs associated with hazardous substances, wastes, and petroleum products at the Site. The methodology used by YU to conduct the Phase I-ESA was consistent with the ASTM Standard Practice E1527. Findings within this report are based on information collected from observations made on the days of the site reconnaissance, site interviews and from reasonably ascertainable information obtained from governing public agencies and private sources.

This report is not definitive and should not be assumed to be a complete or specific definition of the conditions above or below grade. Information in this report is not intended to be used as a construction document and should not be used for demolition or other construction purposes. YU makes no representation or warranty that the past or current operations at the Site are or have been in compliance with all applicable Federal, State, or local laws, regulations, and codes.

Regardless of the findings stated in this report, YU is not responsible for consequences or conditions arising from facts that were concealed, withheld, or not fully disclosed at the time the evaluation was conducted. This report does not warrant against future operations or conditions, nor does it warrant against operations or conditions present of a type or at a location not inspected.

The regulatory database report provided (Appendix-A) is based on an evaluation of data collected and compiled by Toxics Targeting Inc., a data research company. The regulatory research is designed to meet the requirements of ASTM Standard Practice E1527. The information provided in the regulatory database report is assumed to be correct and complete. The report focuses on the Site and neighboring properties that could impact the Site. Adjoining properties listed in government environmental records are identified within specific search distances. The search distance varies depending upon the particular government record being checked.

As mentioned in our proposal dated June 29, 2005, the assessment of other environmental compliance issues, including asbestos and LBP (Lead Based Paint), will be addressed by LeadCare, a consultant of Metro North under a separate program.

#### 2.0 SITE DESCRIPTION

#### 2.1 Location and Legal Description

The site is located to the Southwest of the intersection of Main Street and River Street, in the City of Beacon, Dutchess County, New York. Based on the information provided, the site is comprised of an approx 32,000 square foot building situated on 3.8 acres approximately ¹/₄ mile East the Hudson River. The facility is owned by CCJM Realty, LLC. The approximate location, along with the topography of the area is presented on a copy of a portion of the USGS Wappingers Falls, Quadrangle, 7.5 Minute Series Topographic Map, Figure 1. The limits of the subject site and the property block, lot and tax numbers are depicted in Figure 2, Tax Map, based on the survey provided by DAY.

#### **2.2 Vicinity Characteristics**

The subject site is located within a mixed residential/commercial/industrial area. The properties adjoining the site consist of two-story residential dwellings to the East across River Street, a paved parking lot and a drums and abandoned equipment storage area to the North, a parking lot for Beacon Station to the West and a vacant lot to the South with construction activities in progress. At the Northeast corner of the paved parking is a commercial property owned by Arthur Dominicis, C.P.A housing owner's offices, Palisi Auto Body Shop and John Joseph Welding and Fabrication Shop.

The subject site is occupied by a one-story building owned by CCJM Realty, LLC (Dorel Hat Company). The building houses Dorel Hat Company's corporate offices as well as assembly, sales, and some warehousing.

#### 2.3 Information Provided by Client / Owner

The information provided by the Client is as follows:

<u>Survey Map/Tax Information</u>

DAY provided YU with an undated document titled 'Property Information' pertaining to the subject site. The document identified the subject site with Assessor Property Number (APN) 130200-5954-25-563911-0000, and the site use is stated to be 'Industrial (NEC)'. The document depicted the owner of the property to be CCJM Realty, LLC and the property was sold by the owner in December, 2002. The buyer's details are not available in the document. The document is presented in Appendix-B.

DAY also provided YU with a survey depicting the location and tax information for the subject site. The survey entitled 'Acquisition in Fee Title for Beacon Commuter Parking Extension Project', dated February 28, 2002, and prepared by WELSH Engineering and Land Surveying, P.C. The referenced survey is presented in Figure 2, Tax Map. Based on Figure 2, Tax Map, and a discussion with personnel conducting utility mark-out at the subject site, an underground sanitary sewer force main exists to the East of the Dorel Hat Building.

#### Aerial Photographs

DAY provided YU with two undated aerial photographs depicting the subject site. The two aerial photographs are presented in Figure 4 and Figure 5

#### <u>Previous ESAs</u>

DAY provided YU with a previous Phase-1 Environmental Site Assessment for 'Beacon Station Expansion Sites, One West Main Street and 7-11 Beekman Street' performed by Parsons Brinckerhoff Quade & Douglas (PBQD) and presented in a report dated July 24, 2001.

DAY also provided YU with a previous Phase-II Subsurface Investigation report for 'Beacon Station Parking Facility Expansion' for a parcel of land located at One West Main Street, performed by PBQD and presented in a report dated January, 2002.

A representative of YU met Mr. Salvator Cumella, one of the co-owners of the site during site reconnaissance on June 22, 2005. Two representatives of YU met Mr. Raymond Morano, the second co-owner of the site during site reconnaissance on August 2, 2005. The information obtained from the two site interviews is as follows.

• <u>Site Interviews</u>

The site interview was designed to obtain information regarding general site characteristics, and various environmental concerns including hazardous materials, spills or leaks in the past, air emissions and waste management at the site. A site interview questionnaire prepared by YU was filled out and is presented in Appendix C of this report.

- <u>Underground storage tanks records</u> No underground storage tanks (USTs) are located on the premises of the subject property. No records indicate the presence of USTs at the subject site.
- <u>Aboveground storage tanks records</u> No above ground storage tanks (ASTs) are located on the premises of the subject property. No records indicate the presence of ASTs at the subject site.
- <u>Community right to know plan/safety plans, spill plans, etc.</u> No information or records were available relevant to the Community Right to Know requirements.
- <u>Hydrogeologic/geotechnical reports</u> The soil at the subject site generally consists of fill material composed of sand, gravel and silt near the surface, underlain by fine grained soils, silts and clays. See Section 9.0 for references and section 3.2 for further description of the subsurface conditions.
- <u>Government agency violations, liens, environmental liability/proceedings</u> YU submitted requests under Freedom of Information Act (FOIA) with state and local agencies including NYSDEC Region-3, City of Beacon Building and Fire Departments and Dutchess County Department of Health. Based on a review of available documents, no violations were reported on the site. The copies of FOIA requests and response letters are presented in Appendix D.
- Other documents relating to recognized environmental conditions No other documents related to RECs were available.

#### **3.0 PHYSICAL SETTING SOURCES**

#### 3.1 Topography

The subject site is depicted in Figure 1, Site Location Map, on a United States Geological Survey (USGS) 7.5-minute, Wappingers Falls, New York Quadrangle, dated 1981. The site is at an approximate elevation of 10 feet to 15 feet based upon the National Geodetic Vertical Datum (NGVD) of 1929. The topography of the area surrounding the subject site shows general surface elevation sloping towards west. Relatively mild slopes are observed to the west of the subject site, with slope getting steeper to the East of the subject site.

#### 3.2 Geology/Hydrogeology

Site geologic and hydrogeologic information for this report was obtained from numerous sources listed in "Section 9.0 REFERENCES" of this report. Prior to the Taconic orogeny, the "east" coast of what is now the United States was located near the Hudson River valley, Philadelphia, Washington, DC and extended to western South Carolina. The Taconic Orogeny added land to Proto North America that is now the western portions of New England and the Canadian Maritime provinces. This collision added land and raised mountains southward through northern New Jersey, south-eastern Pennsylvania, Virginia and North Carolina. The orogeny ended about 445 million years ago.

The Taconic Orogeny began in Cambrian time (about 480 million years ago) and ended around Late Ordovician time (about 440 million years ago). During the Taconic Orogeny a small landmass, similar in size to modern Japan, was accreted onto the North American continent in the southern New England. Before and during this orogeny, sedimentary deposits formed on the margins of both the North American continent, and within an intervening deep marine basin. Today, these sedimentary rocks form the core of the Taconic Mountains (east of the Hudson River, generally north of the Tappan Zee Bridge). As with most mountain-building episodes vulcanism occurred concurrently with tectonism. Igneous intrusions occurred throughout the New England region. Heat and pressure associated with deep burial and tectonic deformation converted sedimentary and igneous rocks to metamorphic rocks (marble, quartzite, phyllite, schist, and gneiss).

#### Surficial Deposits

The bedrock in the site vicinity is blanketed with unconsolidated deposits. These sediments may consist of a combination of fill, alluvium, outwash and glacial till. Fill material may include any combination of imported non-indigenous materials or reworked native materials that are a direct result of the actions of man. The alluvium is the result of deposition of Hudson River sediments. Outwash consists of sand and gravel and is a result of glacial meltwaters that flowed from the front of the glaciers as the ice melted. Glacial Till is an unsorted mixture of mud, sand, gravel cobbles and boulders. Based on previous reports, the unconsolidated deposits on the site are thought to be on the order of 10 to 20 feet thick.

#### Bedrock

The bedrock in the area of the site consists of sedimentary, igneous and metamorphic rocks. The sedimentary rocks are predominantly shale and limestone. Large masses of granite dominate the

eastern and western sections of the immediately surrounding area. Granite forms the mountains to the south. Metamorphic rocks consist of slate and chert, although quartzite and gneiss are present along the mountains to the south. The site is underlain by the Austin Glen Formation which is Middle Ordovician in age and part of the Trenton Group and comprised of graywacke and shale.

#### Hydrogeology

Based on topography and the site's proximity to the Hudson River, groundwater on the site is assumed to flow to the West. Based on this investigation, groundwater is approximately four (4) feet below grade, on the eastern side of the property and approximately 12.5 feet below grade inside the drums and abandoned equipment storage area. The aquifer systems in the Fishkill-Beacon area consists of the following lithologic units: (1) sand and gravel aquifer (avg. yield 189 gpm), (2) shale, slate, graywacke and chert aquifer (avg. yield 30 gpm), (3) limestone and dolomite aquifer (avg. yield 152 gpm), and (4) granite and gneiss aquifer (avg. yield 16 gpm).

#### 3.3 Historical Topographic Map Review

The following discussion is based upon YU's review of USGS Historical Topographic maps provided by EDR for years 1903, 1943, 1947, 1956 and 1981. The review is organized in chronological order of mapping dates.

The following discussion is based upon YU's review of USGS Historical Topographic maps provided by EDR for years 1903, 1943, 1947, 1956 and 1981. The review is organized in chronological order of mapping dates. The maps are presented in Appendix-E of this report.

#### 1903 Topographic Map

A review of this 1: 62,500 scale map (15 minute) indicates that Railroad line exists at this time along the Hudson River, to the west of the City of Beacon. The Railroad line appears to be located over the water in some locations. A few jetties are observed in the Hudson River, to the west of the site. The subject site does not appear to be developed at this time. The City of Beacon appears to have limited development at that time.

#### 1943 Topographic Map

A review of this 1: 62,500 scale map (15 minute) depicts more development in the city and the vicinity of the site compared to 1903 map. Jetties are observed in the Hudson River, to the west of the site, similar to the 1903 map. The subject site does not appear to be developed at this time. A number of new streets and roads are observed. Although difficult to make out, a structure appears to exist on the subject property. The Railroad line appears to be on the ground surface indicating Filling along the Hudson River Bank.

#### **1947** Topographic Map

A review of this 1: 24,000 scale map (7.5 minute) shows more development in the vicinity of the site. The subject site appears to be vacant at this time. A group of Railroad tracks is now evident at Beacon Station. Railroad tracks appear to run through the subject site. A number of new structures, although not clear about their type and use, are observed in the vicinity of the subject site.

#### 1956 Topographic Map

A review of this 1:24,000 scale map (7.5 minute) indicates numerous new buildings along Main Street. Well defined city boundaries are also observed. Three circular entities are observed to the Southwest of the subject site, representing a possible chemical/petroleum bulk storage facility. A pie-shaped building is observed to the Northeast of the subject site. Some of the Railroad tracks appear to have been removed.

#### 1981 Topographic Map

A review of this 1: 24,000 scale map (7.5 minute) indicates numerous new buildings in the vicinity of the subject site, compared to the 1956 map. The Dorel Hat Company Building is now present on the subject site. The map shows a new highway I-84 North of the City of Beacon. Three circular entities are observed to the Southwest of the subject site, representing a possible chemical/petroleum bulk storage facility.

#### **3.4 Physical Setting Analysis**

Based upon our review of the site area and the presence of surface water bodies shown on the above referenced maps, it is estimated that groundwater flow direction is generally towards the Hudson River. The estimated groundwater flow direction is utilized for the purpose of establishing potential off-site sources that may impact the subject site. Due to local variations and groundwater flow resulting from various natural and man-made factors, inferred groundwater flow at the subject site and adjoining sites may vary.

#### 3.5 Review of Aerial Photographs

YU requested historical aerial photographs from EDR for the site and surrounding areas, however it was reported that 'EDR searched its own collection or select outside repository collections of aerial photography and based on client supplied information, aerial photography including the target property was not deemed reasonably ascertainable (ASTM E1527-00) by Environmental Data Resources, Inc. (EDR)'.

#### 3.6 Review of Sanborn Fire Insurance Maps

The following discussion is based upon YU's review of Sanborn Fire Insurance Maps provided by EDR for years 1884, 1889, 1896, 1904, 1912, 1919, 1927, 1946 and 1962. The review is organized in chronological order of map dates. The Sanborn Maps are presented in Appendix-F of this report.

#### 3.6.1 Site

#### 1884 Sanborn Map

Based on a review of 1884 Sanborn Fire Insurance Map, the location of the subject property appears to be part of the Hudson Straw Works site, which is comprised of the current Palisi Auto Body Shop property, Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates a vacant area at the location of the subject property.

#### 1889 Sanborn Map

Based on a review of 1889 Sanborn Map, the location of the subject property appears to be part of the Hudson Straw Works site, which is comprised of the current Palisi Auto Body Shop property, Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates a vacant area at the location of the subject property.

#### 1896 Sanborn Map

Based on a review of 1896 Sanborn Map, the location of the subject property appears to be part of the W. N. Campbell Sash. Door and Blind Factory site, which is comprised of the current Palisi Auto Body Shop property, Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates a vacant area at the location of the subject property.

#### 1904 Sanborn Map

Based on a review of 1889 Sanborn Map, the location of the subject property appears to be part of the Federal Glue Company site, which is comprised of the current Palisi Auto Body Shop property, Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates a vacant area at the location of the subject property.

#### 1912 Sanborn Map

Based on a review of 1912 Sanborn Map, the location of the subject property appears to be a part of a the Gillette Rubber Company site comprised of the Palisi Auto Body Shop property, Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates a vacant area at the location of the subject property.

#### 1919 Sanborn Map

Based on a review of 1919 Sanborn Map, the location of the subject property appears to be a part of the area to the south of Beacon Tire Company site, comprised of the Dorel Hat property, and a portion of the Metro North Parking Lot. A vacant area appears at the location of the subject property. The map indicates property boundaries of the Beacon Tire Company site, located to the Northeast of the subject property.

#### 1927 Sanborn Map

Based on a review of 1927 Sanborn Map, the location of the subject property appears to be a part of the area to the south of Beacon Tire Company site, comprised of the Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates property boundaries of the Beacon Tire Company site. The map shows Harry Hooper Coal Company consisting of a one-story building for coal storage and a two-story building for office space on the subject property. Railroad tracks appear to run through the property.

#### 1946 Sanborn Map

Based on a review of 1946 Sanborn Map, the location of the subject property appears to be a part of the area to the south of Hammond Paint and Chemical Company site, comprised of the Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates property boundaries of the Hammond Paint and Chemical Company site. The map shows Duchess Coal Company occupying the building previously occupied by Harry Hopper Coal Company. The building is located on the subject property. A one-story building storing coal is located north of the Duchess Coal Company. The two buildings are inferred to be coal heated. Railroad tracks are shown running through the subject property.

#### 1962 Sanborn Map

Based on a review of 1962 Sanborn Map, the location of the subject property appears to be a part of the area to the south of Inflated Products Company site comprised of the Dorel Hat property, and a portion of the Metro North Parking Lot. The map indicates the property boundaries of the Inflated Products Company site. A steel vulcanizing chamber, constructed on concrete piers appears to extend into the subject property. Railroad tracks are shown running through the subject property.

#### 3.6.2 Adjoining Properties

#### 1884 Sanborn Map

The 1884 Sanborn map indicates that adjoining property to the Northeast of the subject site is occupied by Hudson Straw Works. The site consists of a two-story building housing a packing and shipping office on the first floor and a serving hall on the second floor. The map depicts 'Dry Houses' and "Dye Stuff" in the basement of the building. The building is inferred to be coal heated. The map indicates that River Street to the East of the site was formerly known as Hudson Street.

The map indicates several buildings to the East of the site, at the Northeast corner of the intersection of Main Street and Union Street. The buildings appear to house various industrial and commercial entities including 'Dutchess Hat Works'. An underground gasoline storage tank is depicted to the North of these buildings. Several two to three-story dwellings are shown in the general vicinity of the subject site. A coal shed and a storage building belonging to Dutchess Hat Works are located along the Hudson River, Northwest of the site. Further North of the coal shed is Fishkill Landing Machine Company, consisting of one to two-story buildings housing a foundry shop, a machine shop, a pattern shop, a storage area and a boiler shop. Two coal bins are observed at the same site.

#### 1889 Sanborn Map

The 1889 Sanborn map shows that adjoining property to the Northeast of the subject site is occupied by two (2) three-story buildings belonging to Hudson Straw Works.

The map shows Fishkill Landing Machine Company to the Northwest of the subject site. Dutchess Hat Works is shown across Main Street to the Northeast of the subject site. The gasoline UST shown in 1884 map is not shown here, indicating it may have been removed some time between 1884 and 1889. A Gas Holder with 12,000 cubic feet capacity is shown to the Southeast of the subject site. The Gas Holder site appears to be a part of Phoenix Gas Company, developed after 1889, shown in the 1896 Sanborn Map. Several two to three-story dwellings are shown in the general vicinity of the subject site, similar to 1884 map.

#### 1896 Sanborn Map

The 1896 Sanborn Map indicates that the adjoining property to the Northeast of the subject site is occupied by a three-story building. The building houses "wood working machinery" at the second floor. The portion to the west of the building is shown to be occupied by W. N. Campbell Sash., Door and Blind Factory. The factory is depicted as not in operation. Part of the building shown in 1889 Sanborn Map appears to have been demolished sometime before 1896.

The map shows Phoenix Gas Company to the south of the subject site and east of River (Hudson) Street. Two above ground gasometers are observed at the same location. The capacities of gasometers are shown as 12,000 cu. ft. and 17,200 cu. ft. respectively. No other significant changes are observed in the vicinity of the subject site.

#### 1904 Sanborn Map

The 1904 Sanborn Fire Insurance Map indicates that the three-story building on the adjoining property to the Northeast is now occupied by Federal Glue Company. The map shows 'Liming and Boiling' operations in the basement, 'Packing' on first floor, 'washing' on second floor, and 'drying' on third floor of the building. The map indicates that the building uses coal for heat and steam. New buildings are observed to the West of the three-story building. The map shows two boilers housed inside one of new buildings.

The map shows Fishkill and Matteawan Gas Company now occupies the location of Phoenix Gas Company shown in 1896 map. Two gasometers are observed at locations similar to the ones shown in 1896 map. However, a new 32,000 cu. ft. gasometer is shown in place of the old 17,200 cu. ft. gasometer. The map indicates a change in the orientation of the two gasometers compared that in the 1896 Sanborn Map. New York, New Haven & Hartford Railroad Shops are located along the Hudson River Southwest of the subject site. A water tank with a capacity of 20,000-gallons is shown near the railroad shops. Also observed is a locomotive turntable at the same site.

#### 1912 Sanborn Map

The 1912 Sanborn Map depicts that the three-story building to the Northeast of the subject site, is occupied by Gillette Rubber Company, an automobile tire manufacturing company. The building houses a 'mill room' in the basement, and 'packaging', 'tire room', and 'storage' on the first, second and third floors respectively. Two boilers are again shown at same location as in 1904. The map indicates that the building uses coal for heat and steam. Two buildings to the south of three-story building are used as an office and for storage.

The map also indicates that Southern Dutchess Gas & Electric Company now occupies the location of Fishkill and Matteawan Gas Company and an additional lot formerly occupied by a dwelling shown in 1904 map. A total of three gasometers are observed, out of which two are the same as ones noted in 1904 map. The third gasometer appears to be larger than the existing gasometers, although its capacity could not be ascertained.

#### 1919 Sanborn Map

The 1919 Sanborn Map depicts a two-story building with basement, to the Northeast of the subject site. The building is now occupied by Beacon Tire Company, Inc. The map indicates that

tire and tubes were manufactured at the site. The building houses a 'Tire room' and a 'Shipping room' on the first and second floors respectively. The map indicates that the building uses coal for heat and steam. New railroad tracks have been constructed to the West of the subject property.

The area in the vicinity of the site is divided into numerous lots unlike those in previous years. Southern Dutchess Gas & Electric Company is shown at the same location as shown in the 1912 map. Only two gasometers are observed on the plan, with the 12,000-gallon gasometer no longer present.

#### 1927 Sanborn Map

A review of 1927 Sanborn Map indicates that the two-story building located Northeast of the subject site is occupied by 'Beacon Tire Company'. The plant is shown as not in operation. The Newburg Ferry Port is shown to the west of the site on the bank of the Hudson River.

#### 1946 Sanborn Map

The 1946 Sanborn Map indicates that the building located Northeast of the subject site, houses Hammond Paint and Chemical Company on the first floor and a garment factory on the second floor. The New York Central and Hudson River Railroad Yard and Newburg Ferry Port are shown to the West of the site.

#### 1962 Sanborn Map

The 1962 Sanborn Map indicates that Inflated Products Company now occupies the subject property and the property to the Northeast. The facility is indicated to obtain heat from 'Steam Power' and electricity from 'Fuel Oil'. A steel vulcanizing chamber, constructed on concrete piers, appears to extend into the subject property.

The map also shows The New York Central and Hudson River Railroad Yard and Newburg Ferry Port to west of the subject site. A number of Fuel Oil Tanks are shown on the southern side of Ferry Street, to the Southwest of the subject site. A Coal Yard is now indicated east of the Fuel Oil Tanks, across Ferry Street

#### **3.7 Site Tax Information**

DAY provided YU with an undated document titled 'Property Information' pertaining to the subject site. The document identified the subject site with Assessor Property Number (APN) 130200-5954-25-563911-0000, and the site use is stated to be 'Industrial (NEC)'. The document depicted the owner of the property to be CCJM Realty, LLC and the property was sold by the owner in December, 2002. However, the buyer's details are not available in the document.

DAY also provided YU with a survey titled 'Acquisition in Fee Title for Beacon Commuter Parking Extension Project', dated February 28, 2002, and prepared by WELSH Engineering and Land Surveying, P.C. The survey identified the subject site with tax parcel number 5954-25-563911. The survey depicted a 1 story concrete block building housing Dorel Hat Factory. The tax information for subject site and surrounding areas is shown in Figure 2, Tax Map.

#### 4.0 ENVIRONMENTAL RECORD REVIEW

#### 4.1 Standard Environmental Record Sources

YU reviewed the latest information from federal, state and local agencies with regards to potential environmental contamination, as compiled in a report prepared by Toxics Targeting, Inc. dated June 27, 2005. A copy of the radius search report is presented in Appendix A. A review of the standard environmental record sources is presented in Table 4.1.

Database	Date of	Search	No. of
LICEDA Matianal Driarity List (MDL)	Database	Radius	Listings
USEPA National Priority List (NPL)	07/27/2004	1 mile	0
USEPA Comprehensive Environmental Response,	07/14/2004	1	
Configuration, and flability information System	07/14/2004	1 mile	2
(CRECLIS)			
USEPA Resource Conservation and Recovery	06/14/2004	1	
Information System (RCRIS) Hazardous waste	06/14/2004	I mile	0
Treatment, Storage, Disposal (TSD) Sites			
New York Inactive Hazardous Waste Disposal Site	08/20/2004	1 mile	3
(HWS)			
New York Hazardous Substance Waste Disposal	05/16/2000	1 mile	1
Sites			
New York Solid Waste Facilities Registry –	12/31/2001	1 mile	4
including New York City 1934 Sites.	01/01/2002		
New York State Major Oil Storage Facilities.	01/01/2002	1 mile	1
Brownfield Sites	01/21/2005	1 mile	6
New York State Toxic Spills Report – including	01/29/2005	0.5 mile	
active and closed spills and leaking underground			9
storage tanks (USTs)			
USEPA (RCRIS) Hazardous Waste Generators and	06/15/2004	0.25 mile	0
Transporters – including RCRA violations and			
Corrective Action Report (CORRACTS)			
New York and Local Petroleum Bulk Storage	01/01/2002	0.25 mile	2
Facilities			
New York Chemical Bulk Storage Facilities	01/01/2002	0.25 mile	0
New York Toxic Release Inventory Facilities	03/08/2004	0.25 mile	0
Federal Permit Compliance System Toxic	06/17/2004	0.25 mila	0
Wastewater Discharges	00/1//2004	0.25 mile	U
New York State Air Discharge Facilities	11/24/1999	0.25 mile	0
Federal Civil Enforcement Docket	10/14/1999	0.25 mile	0
USEPA emergency Response Notification System of	01/21/2000	Subject	0
Spills (ERNS)	01/51/2000	property	

#### **Table 4.1 Findings of Environmental Database Search**

The following paragraphs present the detailed information regarding the above listings:

#### USEPA Comprehensive Environmental Response, Compensation, and liability information System (CERCLIS) Facilities

This is a federal listing of sites that can pose environmental or public health hazards requiring investigation or clean up. The list indicates two CERCLIS sites located within one mile radius of search from the subject site. Table 4.2 provides additional information regarding these sites.

Facility Name and Address	Distance from Site of Concern	Federal Status	Facility Information
Central Hudson Gas and Electric MGP – Beacon Street River Street	747 feet to the SSE	No Further Remedial Action Planned	Central Hudson G&E Corporation Allegedly found and removed a tar like substance during excavation for houses that now occupy the site. A site inspection of this facility was conducted in June 1987 by the USEPA
Beacon City Landfill (Inactive) - Municipal Park adjacent to railroad station	816 feet to the W	No Further Remedial Action Planned	There is no evidence of leachate at the site, no evidence of surface water contamination that can be attributed to the landfill, and no environmental problem that can be associated with the disposal of hazardous waste. USEPA conducted in June 1991 a site investigation of this facility

#### Table 4.2 USEPA CERCLIS Sites

Based on the distance and the down-gradient direction, the Beacon City Landfill is not considered likely to pose an environmental concern to the subject property. The Central Hudson Gas and Electric MGP may pose an environmental concern on the subject property.

#### New York State Inactive Hazardous Waste Disposal Site Registry:

This list includes contaminated sites located within New York State that can pose environmental or public health hazard and requires investigation and/or clean up. The environmental database indicates that there are three Inactive Hazardous Substance Waste Disposal Sites located within a one mile radius of the Site. Table 4.3 shows a summary of the sites.

Site Name and Address	Distance from Site of Concern	Status	Facility Information
Central Hudson Gas and Electric MGP – Beacon Street River Street	747 feet to the SSE	N/A*	Registry qualifying investigations underway from 7/1999 to 10/1999
Central Hudson Gas and Electric MGP – Beacon Street River Street	747 feet to the SSE	Delisted Site, Hazardous Waste Not Found	A former gasification plant operated at the site. The property was later developed for residential use. During construction of the homes, tar was found and removed. Phase I and Phase II were completed, no hazardous material was found.
Beacon City Landfill (Inactive) - Municipal Park adjacent to railroad station	816 feet to the W	Delisted Site, Hazardous Waste Not Found	The Site received municipal, commercial and industrial wastes including wastes from a local dye works. The site has four feet of soil and vegetation cover over a plastic liner. Phase I and Phase II investigations were completed and found no evidence of hazardous waste disposal.

Table 4.3 New Yo	ork State Hazardo	us Waste Disposal Sites
------------------	-------------------	-------------------------

*Not Available

Based on the distance and the down-gradient direction, the Beacon City Landfill is not considered likely to pose an environmental concern to the subject property. The Central Hudson Gas and Electric MGP may pose an environmental concern on the subject property.

#### New York State Hazardous Substance Waste Disposal Sites

This list includes contaminated sites located within the New York State that can pose environmental hazards and are not eligible for state clean up funding. The environmental database indicates that there is one Hazardous Substance Waste Disposal facility located within a one-mile radius of the Site. Description of the facility is shown in Table 4.4.

Table 4.4 New	York State	<b>Hazardous S</b>	ubstance	Waste Dis	posal Sites
---------------	------------	--------------------	----------	-----------	-------------

Site Name and Address	Distance from Site of Concern	Status	Facility Information
Central Hudson Gas and Electric MGP – Beacon Street River Street	648 feet to the SSE	Removed from the Hazardous Substance Inventory	A former coal gasification facility operated at the site. Tar was found 14 to 16 ft deep during construction of the residential housing that currently occupies the site.
Based on the distance and the up-gradient direction, the Central Hudson Gas and Electric MGP may pose an environmental concern on the subject property.

### New York State Solid Waste Facility

This list is a New York State database of solid wastes facilities, including landfills, incinerators, transfer station and recycling centers. There are four facilities found in the database, which fall under this category within one mile of the subject site. Table 4.5 provides more details regarding these facilities.

Facility Name	Reported Address	Distance from Site of Concern	Facility Status	Facility Information
All County	78 Denning Avenue	4272 feet to the SSE	Registered	Small transfer station that receives less than 50,000 cubic yards of residential wastes per year.
All County	78 Denning Avenue	4272 feet to the SSE	Registered	Miscellaneous / unknown Facility receiving residential waste.
All county Resource Management	80 Denning Avenue	4443 feet to the S	None	Large transfer station, receives more than 50,000 cubic yards of sludge and grit per year.
Beacon Recycling and Transfer	Denning Avenue	4456 feet to the SSE	Registered	Small transfer station, receive less than 50,000 cubic yards of residential, demolition and recyclables wastes per year.

Table 4	1.5	New	York	State	Solid	Waste	Facility

Those facilities are located down gradient from the Site and at a distance at which they do not appear to pose any environmental threat to the subject site. Therefore YU does not consider these facilities for any environmental concern to the subject site.

### New York State Major Oil Storage Facilities

According to the New York State database for major oil storage facilities (> 400,000-gallon storage capacity for petroleum products), there is one major oil storage facility located within one mile radius from the site of interest. Information about this facility is shown in Table 4.6.

Facility Name	Address	Distance from Site of Concern	Facility Information
Garret Storm, INC.	Long Dock	1539 feet to the SSW	No tank information was reported, located down gradient of the Site

### **Table 4.6 Major Oil Storage Facilities**

Based on Location, YU does not consider the facility as environmentally threatening to the subject site.

### **Toxic Spills List (Including Leaking USTs)**

This list includes stationary source spills reported to the State environmental authorities, including unremediated leaking USTs. Two active hazardous spills were identified within the ASTM half mile search radius from the Site of concern on the Toxic Spills List Database. These incidents are listed as having active status, which YU assumes to indicate that they have not been resolved with the NYSDEC. Table 4.7 provides information regarding the most proximate active spill incidents to the Sites.

Spill Site	Date of Spill	Distance from Site of Concern	Cause	Material/Quantity Spilled	Evaluation
Garrett Storm Long Dock, Red Flynn Drive	02/04/1993	1516 feet to the SSW	Unknown	Unknown quantity of #2 Fuel Oil.	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
Vacant Lot, RT. 9D and Beekman Street.	06/16/1993	1807 feet to the ENE	Unknown	Unknown quantity of unknown material	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken

Table 4.7	<b>Toxic Spills</b>	List (Includi	ing Leaking	USTs)
-----------	---------------------	---------------	-------------	-------

Spill Site	Date of Spill	Distance from Site of Concern	Cause	Material/Quantity Spilled	Evaluation
Kellam Property, Ferry Street and Beacon	04/10/1997	1371 feet to the ESE	Unknown	Unknown quantity of Lubricating Oil	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
Garrett Storm, Ferry Street	04/04/1989	1516 feet to the SSW	Unknown	Unknown quantity of Unknown Petroleum	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
Cervones Auto, 14 Commerce Street	06/02/2001	1970 feet to the E	Unknown	Unknown quantity of #2 Fuel Oil	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
Rencon Rest, 157 Main Street	06/03/2001	2170 feet to the E	Unknown	Unknown quantity of Unknown Petroleum	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
52 Monell Pl.	10/10/1995	2480 feet to the NNE	Unknown	Unknown quantity of Raw Sewage	Known Release with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.

Spill Site	Date of Spill	Distance from Site of Concern	Cause	Material/Quantity Spilled	Evaluation
Beacon Oil, 16 Main Street	06/19/1994	860 feet to the E	Equipment Failure	10-gallon of #2 Fuel Oil	Possible REL with minimal potential for hazard or fire, no DEC response, willing responsible party, corrective action taken.
Tompkins Terrace Apt., 21 Tompkins Avenue	06/14/1991	1364 feet to the NE	Deliberate	Unknown quantity of Unknown Material, probably 'pesticides'	N/A*

*Not Available

Although most of the spills are located up-gradient from the subject site, they are at a distance far enough not to cause any environmental impact. Based on the distance and the up-gradient direction, the Beacon Oil may pose an environmental concern on the subject property. The Garrett Storm spill it is located down-gradient from the site and also not expected to cause any kind of threat to the subject site. Therefore YU does not consider these active sites spill sites likely to represent any environmental concern to the subject site.

### NYSDEC Petroleum Bulk Storage (PBS) Facilities

This list includes sites with less than a 400,000-gallon capacity for storing petroleum products. According to the PBS database, the Sites are not registered as PBS facilities. There are two PBS facilities located within one quarter of a mile search radius from the site of interest. Information regarding those sites is described in Table 4.8.

Site Name	Address	Distance from Site of Concern	Tank Type/Capacity	Product Stored	Site Status
Lo-Rac Fuel Corp DBA Beacon Oil	16 Main Street	861 feet to the E	Two 2000- gallon capacity USTs. One 1000-gallon capacity AST and one 550- gallon capacity AST.	Number 1, 2 or 4 fuel oil, Diesel, Unleaded gasoline and other.	Two USTs are closed, 1000-gallon AST and 550-gallon AST are still in service

### Table 4.8 NYSDEC PBS Facilities

Site Name	Address	Distance from Site of Concern	Tank Type/Capacity	Product Stored	Site Status
DIA: Beacon	3 Beekman Street	891 feet to the SSE	Four 12,000- gallon capacity USTs	Number 1,2 or 4 Fuel Oil	All the USTs are in service

Based on the distance and the up-gradient direction, and a past history of spills, Beacon Oil may pose an environmental concern on the subject property. DIA: Beacon is located in an up-gradient direction, however due to its distance and no previous spills, it is not expected to pose any environmental concern for the subject site.

### **Brownfield Sites**

This list includes Brownfield sites located within the one mile search radius dictated by the ASTM standards. The New York State Brownfield Cleanup Sites database indicates that there are six sites located in that area. Table 4.9 shows additional information regarding those sites.

Site Name	Revised Address	Distance from	Brownfield Program	
		Site of Concern	and Volunteer	
CH Beacon MGP	416 River Road Beacon NY 12508	519 ft to the SE	Voluntary Cleanup Program by Central Hudson Gas & Electric Corp.	
Beacon Salvage Property	Red Flynn Drive, Beacon NY 12508	781 feet to the SSW	Voluntary Cleanup Program by Scenic Hudson Land Trust, Inc.	
Ferry Road Waterfront Site	Ferry Street, Beacon NY 12508	1030 feet to the S	Voluntary Cleanup Program by Scenic Hudson Land Trust, Inc.	
Long Dock Beacon	Long Dock Road, Beacon NY 12508	1613 feet to the SSW	Brownfield Cleanup Program	
DIA Center for the Arts	125 Wolcott Avenue, Beacon NY 12508	2296 feet to the SSE	Voluntary Cleanup Program by DIA Center for the Arts	
Brunetto Cheese	33 North Cedar Street, Beacon NY 12508	4025 feet to the E	Environmental Restoration Program	

### **Table 4.9 Brownfield Sites**

Based on the distance and the up-gradient direction, the Central Hudson Gas and Electric MGP may pose an environmental concern for the subject property. Based on the proximity and orientation, other Brownfields sites presented in Table 4.9 do not appear to pose an environmental concern for the subject site.

### 4.2 Local Agency Review

YU also submitted Freedom of Information Act (FOIA) requests to various State, County and local agencies to obtain information regarding environmental issues for the site and the vicinity. The FOIA requests and the responses received from different agencies are attached in Appendix D. A review of the local agency information is presented below.

### 4.2.1 Building Department Review

YU representatives performed a record search at the City of Beacon Building Department to determine the presence of Underground Storage Tanks or other pertinent information concerning the subject site. During the record search, a building record for the subject property was found. The building record lists American Property Investors, CCJM Realty LLC and Metro North Commuter Railroad Company in the record of ownership. It is inferred that the building was leased to Stone Container Corporation as of August 20, 1973. The record shows the property was subdivided and a part of the property was sold to Metro North on January 9, 2003. The building record also contained the assessment record from Tax Assessor's Office, for years 1974 and 1976 for the subject site. However, no information was available concerning any environmental issues including USTs at the subject property. The documentation obtained from the Building Department is presented in Appendix G.

YU was informed by the City of Beacon – Building Department, that all information from Zoning Department, Tax Assessor's Office and Fire Prevention Department, were available at the building department.

### 4.2.2 Health Department Review

A representative of YU contacted the Dutchess County Department of Health (DOH) to obtain any file information pertaining to the subject site and adjoining properties. However, in a telephone conversation with Mr. John G. Glass of DOH, on July 25, 2005, YU was informed that no documents were available for the subject site. A phone memo of the telephone conversation is attached in Appendix D.

### 4.2.3 NYSDEC Review

A FOIL request was submitted to NYSDEC and was forwarded to the Division of Water, Environmental Permits, Air, and the Hazardous Materials Program within NYDEC. We have received responses from the Division of Water indicating no records of State Pollutant Discharge Elimination System (SPDES) permits. We have received a response from the Division of Environmental Permits indicating that no records could be found. We have also received a letter from the Records Access Office that indicates there are no spill or petroleum bulk storage (PBS) records found for the subject property. Any additional information received will be forwarded as an addendum to this report. All of the correspondence is included in Appendix D.

### 4.2.4 EPA Review

A FOIL request was submitted to United States Environmental Protection Agency (EPA) Region II Office. We have received a response indicating no records of air or water information for the subject site. We also received a response regarding the RCRA information concerning the subject property. The RCRA record shows that Dorel Hat Company filed a Notification of Hazardous Waste Activity, to comply with section 3010 of the Resource Conservation and Recovery Act (RCRA). The notification, filed on Dec 9th, 1987, depicted the facility as a

Hazardous Waste Generator, generating less than 1,000 Kg hazardous waste per month. The waste generated was three parts thinner to one part Series of 745 with admix use of solvents. The thinner consisted of nitrocellulose, Butyl Acetate, Methyl Ethyl Ketone, Naphtha and Toluene. All correspondence is included in Appendix D.

### 4.2.5 Additional Record Sources

No additional records or reports are available for this subject site.

### 5.0 SITE RECONNAISSANCE

On July 22 and August 2, 2005, YU representatives performed a visual site reconnaissance survey. The purpose of the reconnaissance was to observe the existing site conditions with respect to indications of hazardous materials affecting the subject site. The information obtained and observations noted during the site reconnaissance are summarized below. Photographs taken during the site walk through are presented in Appendix H.

### 5.1 Onsite Exterior Survey

The subject site consists of a one-story frame building housing Dorel Hat Company, a hat manufacturing factory. A paved parking lot exists North of the building. Further North of the parking lot, is an area used to store drums and abandoned equipment. The area is currently leased to Palisi Auto Body Shop located at the adjoining property (7 West Main Street). The drums and abandoned equipment storage area consists of scrap metal, old vehicles, and two 55-gallon drums stored in an unpaved area. A vehicle storage area was also noted at the eastern side of the paved parking lot. This area is also leased to the Palisi Auto Body Shop. The area is partially paved and used to store vehicles visiting the auto body shop for repair. Figure 2, Tax Map, Figure 4, Aerial Photograph-I and Figure 5, Aerial Photograph-II show more details of the site.

A transformer without a 'no-PCB' label was noted at the Southeast corner of the building. A steam blow down area was observed near the transformer, on the eastern side of the building. A gas meter was noted at the mid section of eastern facade of Dorel Hat Building. A hydrant exists at the Southwest corner of the building.

### 5.2 Onsite Interior Survey

Based upon the site interviews it is understood that activities like assembly operations, fabric milling/spinning/weaving, grinding/polishing/buffing and packaging are conducted at the site. Equipment including hat molding machines, hat molds, stitching machines were noted inside the building. Different areas inside the Dorel Hat Building (Manufacturing area, storage area, shipping area, and administrative offices area) are depicted in Figure 3, Recognized Environmental Conditions Plan.

A boiler room was noted to the east of the manufacturing area. The assessment of environmental issues including asbestos and lead based paint will be addressed by LeadCare, a consultant for Metro North under a separate program, and are not part of this Modified ESA. Two floor sumps were observed inside the building premises, one near the loading dock area and the other in front of a room housing old hat molding machines. The approximate location of these two floor sumps are shown in Figure 3, Recognized Environmental Conditions Plan. Photo Documentation of these floor sumps are included in the Photo Log presented as Appendix H. Based on the site interviews, the facility is supplied with municipal water and sanitary sewer. The building is heated by natural gas.

### 5.3 Offsite Survey

In addition to the onsite reconnaissance, the YU representatives observed adjoining properties from the subject site and public thoroughfares. Observations were made in an effort to assess if

facilities and/or structures are located on these properties and, if so, if they are operated by entities whose names suggest that they might use, store, generate, treat, or dispose of hazardous materials in the course of their business. Observations are summarized below.

The subject site is located within a mixed residential/commercial/industrial area. River Street runs along the eastern boundary of the subject property. The properties adjoining the site consist of two-story residential dwellings to the East across River Street, a paved parking lot and a drums and abandoned equipment storage area to the North, a parking lot for Beacon Station to the West and a vacant lot to the South with construction activities in progress. At the Northeast corner of the paved parking is a commercial property housing a C.P.A. office, other vacant offices, Palisi Auto Body Shop and John Joseph Welding and Fabrication Shop. A pump station connected to the sanitary sewer force main is located to the North of the subject site, across West Main Street.

### 5.4 Potential Concerns and Recognized Environmental Conditions (RECs)

Based upon the site visits, site interviews and a review of relevant documentation, YU identified Potential Concerns and determined the Recognized Environmental Conditions (RECs) at the subject site. Figure 3, Recognized Environmental Conditions Plan, depicts the approximate location of these RECs.

**Potential Concern 1 (REC 1) - Off Site Migration:** The Dorel Hat property was subdivided and a portion of the former Dorel Hat Property was sold to Metro North for development as a Parking Lot. Based on a review of the Parsons Brinckerhoff Quade & Douglas (PBQD) reports for the adjoining property to the South and West (Former Dorel Hat Property), contamination of the soil (PAHs, metals) and groundwater (metals) exists at concentrations above NYSDEC criteria on this adjoining property. Mercury contamination was identified at "hazardous concentrations" in boring MNR-DH3 (adjacent to the southwest corner of the subject property). The possibility of contaminant migration from off site sources (adjoining property) on to the subject site exists and is considered to be a recognized environmental condition.

**Potential Concern 2 (REC 2) - Blow Down Area:** A steam blow down area on the East side of the Dorel Hat Building was noted that discharged directly to the ground surface on the East side of the building. This presents a material threat of release of contaminants to soil, surface water and groundwater and is considered to be a recognized environmental condition.

**Potential Concern 3 (REC 3) - Drums and Abandoned Equipment Storage:** Two (2) 55gallon drums were noted in the area used to store drums and abandoned equipment, located to the north of the paved parking lot. Staining was observed on the ground in close proximity to the drums. This indicates a past release and the material threat of a release and the potential for soil and groundwater contamination in this vicinity and is considered to be a recognized environmental condition.

**Potential Concern 4 - Floor Sumps:** Two floor-sumps were observed inside the Dorel Hat Building. One floor sump is located in the loading dock area, on the northern side of the building. Another sump was noted at the entrance of a room housing hat molding equipment,

located to the East of the manufacturing area, inside the building. These sumps are reportedly lined with concrete and pumped out intermittently. The possibility of contaminated water collecting in the sumps and leaking poses a material threat of soil and ground contamination in these areas. Based on field observations of the sump integrity and site interviews further evaluation of these potential concerns was deemed unnecessary.

**Potential Concern 5 - Chemical Storage and Use Area:** A five (5) gallon pail of a water based adhesive "# 2476 Stixit" was noted inside the Dorel Hat Building. A 55-gallon drum labeled as 'Chem Power' was also observed inside the Dorel Hat Building. Potential spills of these chemicals pose a material threat of a release and are considered to be potential concerns. Based on visual observations no spills or leaks from these containers was evident and further evaluation was deemed unnecessary.

**Potential Concern 6 - Transformer:** A transformer without a 'non-PCB' label was noted at the Southeast corner of the Dorel Hat Building, near the 'Blow Down Area'. The possibility of the transformer containing PCBs exists. This poses a material threat of PCB contamination in this vicinity and is considered to be a potential concern. Based on visual observations the transformer appears to be in good condition and no evidence of leaks were observed. Further evaluation of the transformer was deemed unnecessary.

**Potential Concern 7 - Fluorescent Light Ballasts:** Fluorescent Light Ballasts were observed inside the Dorel Hat Building, indicating the possible presence of PCBs in the light ballasts. This poses the material threat of a release and the possibility of PCB contamination and is considered to be a potential concern. If removed from the site these ballasts should be handled appropriately. Further evaluation of these ballasts was deemed unnecessary.

**Potential Concern 8 - Dumpster:** A dumpster for municipal solid waste was observed near the loading dock area to the North of the building. The dumpster is located in an unsecured location and the possibility for disposal of hazardous substances or petroleum products exists at this location. A material threat of a release to the ground in or around the dumpster exists, therefore the dumpster is considered to be a potential concern. There were no visual indications of spills in the dumpster vicinity and further evaluation was deemed unnecessary.

**Potential Concern 9 (REC 4) - Vehicle Storage Area:** A vehicle storage area was noted on the eastern side of the paved parking lot. The area is currently leased to Palisi Auto Body Shop, located at the adjoining property, 7 West Main Street. The area is used to store vehicles visiting the auto body shop for repair. Due to a material threat of oil and other vehicular fluid leaks from the damaged vehicles, the area is identified as a recognized environmental condition. Further evaluation of this area should be performed as part of a Phase II investigation.

**Potential Concern 10 (REC 5)- Historical Use:** Based on a review of Sanborn maps, two coal companies (Harry Hopper Coal Company, Dutchess Coal Company) existed at the location of the subject site. Railroad tracks are shown running through the subject property. A steel vulcanizing chamber, constructed on concrete piers appears to extend into the subject property in the 1962 Sanborn Map. It is possible that hazardous materials were used and disposed by these

industrial units. This indicates the possibility of soil, surface water and groundwater contamination in the past, this area is identified as a recognized environmental condition. Further evaluation of this area should be performed as part of a Phase II investigation.

### 5.5 Other Recognized Environmental Conditions

During the site reconnaissance on June 22 and August 2, 2005, our representatives did not observe any other Recognized Environmental Conditions.

### **6.0 PRE PHASE-II INVESTIGATION**

The Pre Phase II investigations involved a limited site investigation based on the RECs identified as a part of Phase I ESA conducted at the subject site. The investigation activities included advancement of soil borings, collection of soil and groundwater samples and subsequent laboratory testing for analytical parameters.

Based on the findings of the Phase-I ESA, ten (10) Potential Concerns and five (5) RECs were identified at the subject site. The Potential Concerns and RECs and their approximate locations are depicted in Figure 3, Recognized Environmental Conditions Plan. As a limited scope of work for Pre-Phase-II investigation, the RECs most likely to present a threat of contamination were investigated. Out of the five (5) RECs identified at the subject site, REC 1 Off-Site Migration, REC 2 Blow Down Area, and REC 3 Drums and Abandoned Equipment Storage Area warranted subsurface investigation as part of the Pre Phase II investigation. Potential Concerns 4 through 8 did not warrant further investigation based on the Phase I observations. Potential Concerns 9 and 10 (RECs 4 and 5) would be evaluated as part of a Phase II investigation.

### 6.1 Soil and Groundwater Sampling

Field activities for Pre Phase II investigation were conducted at the subject site on August 4th, 2005. A drilling company 'Land, Air, Water Environmental Services, Inc.', of Center Moriches, NY was subcontracted by DAY to perform the soil borings. A total of four (4) borings (B-1 through B-4) were advanced and labeled at the subject property. Boring B-1 was advanced to investigate the subsurface conditions in Blow Down Area (REC 2). Boring B-2 was advanced to investigate the subsurface conditions related to potential off site migration (REC 1) from the property to the south. Borings B-3 and B-4 were advanced to investigate the subsurface conditions and Abandoned Equipment Storage Area (REC 3). The approximate locations of these borings are shown on Figure 3, Recognized Environmental Conditions Plan.

Borings B-1 to B-3 were performed using a Geoprobe 66DT. The soil samples were collected using 5-ft long Macrocore samplers with acetate liners. Boring B-4 located at the stained ground near the 55-gallon drums in abandoned equipment storage area, was performed using a Hand Auger due to the restricted access for Direct Push equipment. The soil obtained from the borings was visually examined, and screened using a Photo Ionization Detector (PID) and a Mercury Vapor Analyzer (MVA), by the YU personnel present at the site. The PID used in the investigation was calibrated prior to sampling. The soil was classified in accordance with ASTM Standard D2488-84. Six (6) soil samples were collected from locations indicating possible contamination, based upon visual observations and/or PID and MVA readings. The boring logs are attached to this report as Appendix-I.

Groundwater sampling was conducted using the Hydropunch® Direct Push Sampler. Groundwater was encountered at 3.8 feet in boring B-1 and a groundwater sample B1-GW was collected. Groundwater was encountered at 12.5 feet in boring B-3. Groundwater sampling was attempted but only a small amount of water (< 500 ml) was obtained before the flow of water stopped. Based on the field observations, the water in this boring appears to be perched water of

limited thickness overlying the fine-grained material beneath. Groundwater was not encountered in borings B-2 and B-4.

### 6.2 Soil Analytical Results

This section discusses the subsurface soil sample analytical results. Six (6) soil samples were collected during field investigation activities on August 4th, 2005. The samples were collected in lab-provided containers and submitted to Mitkem Corporation, an accredited laboratory subcontracted by DAY for the analyses. A chain of custody was filled along with the samples submitted for laboratory analyses. The samples collected and analyzed are summarized in Table 1, Sampling Summary Table.

The soil samples were analyzed for Volatile Organics, Base/Neutrals, Metals, Cyanides, Phenols, Pesticides and PCBs.

### 6.2.1 Volatile Organic Compounds (VOCs)

Soil samples B1-6.0, B2-5.0 and B4-0.5 were analyzed for the presence of VOCs. Toluene, Xylene (Total) and Naphthalene were detected in soil sample B1-6.0 at concentrations exceeding the NYSDEC Soil Cleanup Objectives. Methylene Chloride, Chloroform and Trichloroethene were detected in sample B2-5.0. Methylene Chloride, Chloroform, Tetrachloroethene and Naphthalene were detected in sample B4-0.5. However, the concentrations of compounds detected in B2-5.0 and B4-0.5 were less than NYSDEC Soil Cleanup Objectives. Soil VOCs Analytical Results Summary is shown in Table 2.

### 6.2.2 Semi-Volatile Organic Compounds (SVOCs)

Soil samples B1-6.0, B2-5.0 and B4-0.5 were analyzed for the presence of SVOCs. A number of compounds were detected in the soil sample B1-6.0 at concentrations exceeding the NYSDEC Soil Cleanup Objectives. SVOCs were detected in soil samples B2-5.0 and B4-0.5; however the concentrations of the compounds were less than NYSDEC Soil Cleanup Objectives. Soil SVOCs Analytical Results Summary is shown in Table 3.

#### 6.2.3 Priority Pollutant-Metals (PP Metals)

Soil samples B1-6.0, B2-5.0 and B4-0.5 were analyzed for the presence of PP Metals. Arsenic, Beryllium, Chromium, Copper, Zinc and Mercury were detected in the sample B1-6.0 at concentrations exceeding the NYSDEC Soil Cleanup Objectives. Beryllium, Chromium, Copper, Nickel and Zinc were detected in the sample B2-5.0 at concentrations exceeding the NYSDEC Soil Cleanup Objectives. Zinc was detected in soil sample B4-0.5 at concentration exceeding the NYSDEC Soil Cleanup Objectives. Soil Cleanup Objectives. Soil PP Metals Analytical Results Summary is shown in Table 4.

#### 6.2.4 Pesticides and Polychlorinated Biphenyls (PCBs)

Soil samples B1-6.0, B2-5.0 and B4-0.5 were analyzed for the presence of Pesticides and PCBs. Pesticides were detected only in the soil sample B1-6.0. The concentration of the compounds was less than the NYSDEC Soil Cleanup Objectives. Pesticides were not detected in soil samples B2-5.0 and B4-0.5. PCBs were not detected in any of the soil samples that were analyzed. Soil Pesticides Analytical Results Summary is shown in Table 5.

### 6.2.5 Phenols and Cyanides

Soil samples B1-6.0, B2-5.0 and B4-0.5 were analyzed for the presence of Phenols and

Cyanides. Total phenols were detected in the sample B1-6.0 at concentrations exceeding the NYSDEC Soil Cleanup Objectives. Although phenols were not detected in samples B2-5.0 and B4-0.5, the detection limits for phenols for the two samples exceeded the NYSDEC Soil Cleanup Criteria. Cyanides were not detected in any of the soil samples. Soil Total Phenols Analytical Results Summary is shown in Table 6.

### 6.3 Groundwater Analytical Results

This section discusses the groundwater analytical results. One (1) groundwater sample B1-GW was collected during field investigation activities on August 4th, 2005. The sample was collected from the boring B-1 located in the Blow Down Area. The sample was collected in lab-provided jars and submitted to Mitkem Corporation, an accredited laboratory subcontracted by DAY for the analyses. A chain of custody was filled along with the sample submitted for laboratory analyses. The samples collected and analyzed are summarized in Table 1, Sampling Summary Table.

The groundwater sample was requested to be analyzed for TCL VO, TCL SVOC and TCL Pesticides/PCBs analyses. Metals analysis was not requested on the Chain of Custody form; however, a sample container was collected. The laboratory analyzed the sample for metals without authorization.

### 6.3.1 Target Compound List - Volatile Organic Compounds (TCL VOCs)

The groundwater sample B1-GW was analyzed for the presence of TCL VOCs. Toluene, Xylene (Total) and Naphthalene were detected in the sample at concentrations exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values. Groundwater TCL VOCs Analytical Results Summary is shown in Table 7.

### 6.3.2 Target Compound List -Semi-Volatile Organic Compounds (TCL SVOCs)

The groundwater sample B1-GW was analyzed for the presence of TCL SVOCs. A number of compounds were detected in the sample at concentrations exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values. Groundwater TCL SVOCs Analytical Results Summary is shown in Table 8.

### 6.3.3 Target Analyte List Metals (TAL Metals)

The groundwater sample B1-GW was analyzed for the presence of TAL Metals. Antimony, Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Nickel and Mercury were detected in the sample at concentrations exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values. Groundwater TAL Metals Analytical Results Summary is shown in Table 9.

### 6.3.4 Target Compound List -Pesticides and Polychlorinated Biphenyls (PCBs)

The groundwater sample B1-GW was analyzed for the presence of TCL Pesticides/PCBs. Heptachlor epoxide, a Pesticide was detected in the sample at concentrations exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values. PCBs were not detected in the groundwater sample. Groundwater TCL Pesticides Analytical Results Summary is shown in Table 10.

### 7.0 FINDINGS AND CONCLUSIONS

**YU** performed Modified Phase I Environmental Site Assessment activities at the property located at 7 West Main Street, in the City of Beacon, Dutchess County, New York. The scope of work was broadly divided into Task 1-Phase I ESA and Task 2-Pre Phase II Investigation. The findings of Task 1 and Task 2 are as follows.

### 7.1 Task-1: Phase-I ESA

- 1. Based on a review of Phase II Site Investigation Report for the adjoining Parking Facility Expansion Site, prepared by PBQD, the possibility of contaminant migration from off site sources was recognized at the subject site.
- 2. A Blow Down area, identified to the East of the Dorel Hat building.
- 3. A drum and abandoned equipment storage area, to the north of the paved parking lot.
- 4. Two floor sumps observed inside the Dorel Hat Building
- 5. Different chemical storage and use areas inside the Dorel Hat Building.
- 6. A transformer without 'no-PCB' label, located at the Southeast corner of the Dorel Hat Building.
- 7. Fluorescent Light Ballasts observed inside the Dorel Hat Building.
- 8. A dumpster noted near the loading dock area, on the northern side of the building.
- 9. A vehicle storage area on the eastern side of the paved parking lot.
- 10. Based on a review of Sanborn Maps, the possibility of contamination from Historical uses was recognized at the subject site.

### 7.2 Task-2: Pre Phase-II Site Investigation

A total of four (4) borings (B-1 through B-4) were advanced at the subject property. A total of Six (6) soil samples and one (1) groundwater sample were collected. The samples collected and analyzed are summarized in Table 1, Sampling Summary Table.

Preliminary results for volatile organic analysis, semi volatile organic analysis, PP metals, and Pesticides/PCBs for soil samples have been provided by Mitkem. Table 2 to Table 6 present the summary of soil analytical results. The preliminary results indicate the presence of volatile organics, semivolatile organic compounds, metals and total phenols in the soil sample B1-6.0 (REC 2 Blow Down Area) at concentrations exceeding NYSDEC Recommended Soil Cleanup Objectives. The preliminary results also show the presence of metals in the soil samples B2-5.0

(REC 1 Off Site Migration) and B-4-0.5 (REC 3 Drums and Abandoned Equipment Storage) at concentrations exceeding NYSDEC Recommended Soil Cleanup Objectives.

Groundwater was not encountered in borings B-2 and B-4. Groundwater in boring B-1 was encountered at 3.8 ft below ground surface. Based on the depths of borings B-2 and B-3, this may indicate a perched water table condition in this location. Groundwater was encountered at 12.5 feet in boring B-3. Groundwater sampling was attempted but only a small amount of water (< 500 ml) was obtained before the flow of water stopped. Based on the field observations, the water in this boring appears to be perched water of limited thickness overlying the fine-grained material beneath. Preliminary results for volatile organic analysis, semi volatile organic analysis, metals, and Pesticides/PCBs for groundwater sample B1-GW (REC 2 Blow Down Area) have also been provided by Mitkem. Table 7 to Table 10 present the summary of groundwater analytical results. The preliminary results indicate the presence of volatile organics, semivolatile organic compounds, metals and a pesticide (heptachlor epoxide) in the groundwater sample at concentrations exceeding NYSDEC Ambient Groundwater Standards.

### 8.0 RECOMMENDATIONS

Based on the Pre-Phase II investigation results, further evaluation of the REC 1 (Off Site Migration) and REC 3 (Drums and Abandoned Equipment Storage) is unnecessary. REC 1 was investigated primarily to determine if mercury contamination existed on the subject property. Based on the analytical results mercury contamination above the NYSDEC Recommended Soil Cleanup Objects is not present in this vicinity. REC 3 was investigated to evaluate the presence of soil contamination related to the staining evident in the vicinity of the Drums. The analytical results did not indicate organic contamination in this vicinity. Metals (beryllium, chromium, copper, nickel and zinc) concentrations exceed the NYSDEC Recommended Soil Cleanup Objectives in samples from both of these areas. However, no determination has been made as to whether or not these concentrations exceed site background. Based on the metals concentrations in these areas, protection of human health and the environment can be addressed with engineering controls (cap).

Based on the presence of volatile organics, semi volatile organic compounds, metals and Total Phenols in soil sample B1-6.0 (REC 2 Blow Down Area), at concentrations above the NYSDEC Recommended Soil Cleanup Objectives, we recommend delineation of volatile organics, semi volatile organic compounds, phenols and metals contamination in soil in the vicinity of the Blow Down Area with a Phase II investigation.

Based on the presence of volatile organics, semi volatile organic compounds, metals and a pesticide (heptachlor epoxide) in the groundwater sample B1-GW (REC 2 Blow Down Area) at concentrations exceeding NYSDEC Ambient Water Quality Standards and Guidance Values, we recommend a groundwater investigation to characterize the site hydrogeologic conditions and delineation of volatile organic, semi volatile organic, metals and pesticide contamination in groundwater with a Phase II investigation.

The automobiles stored in the Vehicular Storage Area should be moved in order to facilitate a Phase II investigation. The Phase II investigation should include subsurface exploration including soil sampling for Volatile organic, semi volatile organic and metals contamination.

It is possible that hazardous materials were used and disposed of on site during previous site operations. A site wide subsurface investigation is also recommended to evaluate potential contamination associated with historical use. Soil and groundwater samples should be collected as part of the Phase II investigation for volatile organic, semi volatile organic, pesticide/PCBs, metals, phenols and cyanide analyses.

### 9.0 REFERENCES

Parsons Brickerhoff Quade and Douglas, July 24, 2001, *Phase I Environmental Site Assessment*, Beacon Station Expansion Sites, One West Main Street and 7-11 Beekman Street, Metro North Railroad.

Parsons Brickerhoff Quade and Douglas, January, 2002, *Phase II Subsurface Investigation*, Beacon Station Parking Facility Expansion, Metro North Railroad.

Snavely, Deborah S., Groundwater Appraisal of the Fishkill-Beacon Area, Dutchess County, New York, U.S.G.S., 1980 Open File Report: 80-437

Megurian, Charles, Sanders, John, Trips on the Rocks, Trip 8: Taconic Range of Eastern New York, The New York Academy of Sciences, 21-22 October 1989.

Cadwell, D.H., Connally, G.G., Dineen, R.J., Fleisher, P.J., Fuller, M.L., Sirkin, Les, and Wiles, G.C., 1989, *Surficial geologic map of New York: Lower Hudson sheet: New York State*, U. S. Geological Survey, Map and Chart Series 40, scale 1:250,000.

Fisher, D.W., Isachsen, Y.W., and Rickard, L.V., 1970, *Geologic map of New York - Lower Hudson Sheet: New York State*, Museum, Map and Chart Series 15, scale 1:250,000.

### **10.0 QUALIFICATIONS**

Andrew Leung, Charles McCusker and Amit Garg conducted the field reconnaissance and site interviews. Charles McCusker and Amit Garg conducted research and prepared this report. Andrew Leung performed QA/QC review of this report. Resumes are attached in Appendix J and a brief summary of qualifications follows.

Amit Garg has one year of experience conducting environmental investigations. He received a Bachelors degree (Civil Engineering) from the Indian Institute of Technology, New Delhi (India), in 2002. He received his Master of Science degree from the University of Massachusetts Lowell (Civil & Environmental Engineering) in 2004. Mr. Garg is also a published author.

Charles McCusker has over nineteen years of experience conducting environmental investigations. He received a Bachelor of Science degree (Geology) from the University of Southern Colorado (Colorado State University, Pueblo) in 1985. He is has been a Certified Hazardous Materials Manager (No. 3907) since 1992. He is a registered Professional Geologist in Pennsylvania (PG-002812), and Delaware (S40000942). He is also a New Jersey Department of Environmental Protection Licensed Subsurface Investigator (239389). He has performed environmental investigations in twenty four states and the U.S. Virgin Islands. Mr. McCusker is also a published author.

Andrew Leung has over twenty four years of experience in of technical and project management experience in environmental and geotechnical engineering for the planning, design, construction, and rehabilitation of various civil works. His experience encompasses all phases of hazardous and solid waste management projects. He is a registered Professional Engineer in New York and New Jersey. He received a Bachelor of Science degree (Civil Engineering) from the University of London in 1980. He received a Master of Science degree (Geotechnical Engineering) from the University of Illinois in 1982.

### THE 1 SAMPLING SUMMARY TABLE DOREL HAT - PRE PHASE II INVESTIGATION BEACON, NY Project # 0507501

Sample Number	Area of Concern	Date	Depth (ft)	Matrix	Analytical Paramotors
		Collected	- ·F ··· (··)	*********	Analytical Farameters
B1-3.0	Blow Down Area	8/4/2004	3.0-4.0	SOIL	Not Analyzed
B1-6.0	Blow Down Area	8/4/2004	6.0-7.0	SOIL	PP+40
B2-5.0	Off Site Migration Area	8/4/2004	5.0-6.0	SOIL	PP+40
B3-5.5	Drums and Abandoned Equipment Storage Area	8/4/2004	5.5-6.5	SOIL	Not Analyzed
B3-11.5	Drums and Abandoned Equipment Storage Area	8/4/2004	11.5-12.5	SOIL	Not Analyzed
B4-0.5	Drums and Abandoned Equipment Storage Area	8/4/2004	0.5-1.5	SOIL	PP+40
B1-GW	Blow Down Area	8/4/2004	NA	AQUEOUS	VO+15, BN+25, Pesticides, PCBs
VO+15 - Volatile Org BN+25 - Base Neutra PP+40 - Priority Pollut PCBs - Polychlorinate NA - Not Applicable	anic compounds plus 15 additional compour l Compounds plus 25 additional compounds tants plus 40 additional compounds d Biphenyls	nds			

in the second state of the

# Table 2

# Soil Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY

## Project # 0507501

Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D0921-02C 8/4/2005 6.0-7.0 Soil mg/Kg 200	B2-5.0 D0921-03C 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06C 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
Methylene Chloride Chloroform Trichloroethene Toluene Tetrachloroethene Xylene (Total) 1,2,4-Trimethylbenzene Napthalene	ND ND 41 J ND 96 J 58 J 3200	0.031 J 0.012 J 0.081 ND ND ND ND ND ND	0.007 J 0.003 J ND ND 0.0008 J ND ND 0.003 J	0.1 0.3 0.7 1.5 1.4 1.2 NA 13	0.1 0.3 0.7 1.5 1.4 1.2 NA 13

Qualifiers

J - Analyte detected Below quantitation limits

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Use professional Judgement based on data use

### Note:

The data presented herein is based on the Preminary Results of Volatile Organics analyses.



### Soil Semivolatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY Project # 0507501

Sample ID B1-6.0 B2-5.0 B4-0.5 NYSDEC NYSDEC Lab Sample ID D0921-02A D0921-03A D0921-06A Rec. Soil Soil cleanup Sampling Date 8/4/2005 8/4/2005 8/4/2005 Cleanup objectives Sample Depth (ft) 6.0-7.0 5.0-6.0 0.5-1.0 Objective to protect Matrix Soil Soil Soil GW quality Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Dilution Factor 20 1 1 SVOCs 2,4-Dimethylphenol 7.2 ND ND NA NA Naphthalene 3800 E ND 0.07 . 13 13 2-Methylnaphthalene 990 Е ND ND 36.4 36.4 Acenaphthylen 1000 Ε ND ND 41 41 Acenaphthen 170 ND ND 50 90 Dibenzofura 860 Ε ND ND 6.2 6.2 Fluoren 960 Е ND ND 50 350 Phenanthrene 2300 Е ND ND 50 220 Anthracene 670 Έ ND ND 50 700 Carbazole 270 ND ND NA NA Fluoranthene 1500 Е 0.044 J ND 50 1900 Pyrene 1500 Е 0.05 J ND 50 665 Benzo(a)anthracene 680 E 0.041 J ND MDL 3 Chrysene 390 Έ 0.06 J ND 0.4 0.4 bis(2-Ethylhexyl)phthalate ND 0.05 J ND 50 435 Benzo(b)fluoranthene 590 E 0.05 J ND 1.1 1.1 Benzo(k)fluoranthene 200 0.027 J ND 1.1 1.1 Benzo(a)pyrene 230 0.038 J ND MDL 11 Indeno(1,2,3-cd)pyrene 170 ND ND 3.2 3.2 Dibenzo(a,h)anthracene 33 ND ND MDL 165000 Benzo(g,h,i)perylene 140 ND ND 50 800

Qualifiers

J - Analyte detected Below quantitation limits

E - Value above quantitation range

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

Note:

The data presented herein is based on the Preminary Results of Semivolatile Organic Compounds analyses.

# Die 4

# Soil PP-Metals Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY

# Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor PP Metals	B1-6.0 D0921-02 8/4/2005 6.0-7.0 Soil mg/Kg 1	B2-5.0 D0921-03 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Zinc	ND 19 2.9 0.59 42 100 28 9.7 40	$ \begin{array}{r} 1.2 \\ 7.3 \\ \hline 0.48 \\ \hline 0.62 \\ \hline 20 \\ 48 \\ \hline 61 \\ \hline 21 \\ 57 \\ \hline 0.055	$ \begin{array}{r} 2.5 \\ 5.1 \\ \hline 0.33 \\ \hline 1.5 \\ 13 \\ \hline 140 \\ 54 \\ \hline 19 \\ \hline 870 \\ \end{array} $	SB 7.5 or SB 0.16 or SB 1 or SB 10 or SB 25 or SB SB 13 or SB 20 or SB

#### Qualifiers

- J Analyte detected Below quantitation limits
- SB Site Background
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in **bold** type.
- 55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

#### Note:

The data presented herein is based on the Preminary Results of PP-Metals analyses.

### Jacole 5

# Soil Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY

# Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D0921-02A 8/4/2005 6.0-7.0 Soil mg/Kg 20		B2-5.0 D0921-03A 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D0921-06A 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
4,4'-DDD 4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde gamma-Chlordane	0.18 0.36 0.86 0.28 0.11 0.47	P P P	ND ND ND ND ND	ND ND ND ND ND	2.9 2.1 NA NA NA 0.54	7.7 2.5 900 NA NA 14

Qualifiers

J - Analyte detected Below quantitation limits

P - Use professional Judgement based on data use

ND - Not Detected at the method detection limit

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

#### Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.



# Soil Total Phenol Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY Project # 0507501

Sample ID Lab Sample ID Sampling Date Sample Depth (ft) Matrix Units Dilution Factor	B1-6.0 D1022-01A 8/4/2005 6.0-7.0 Soil mg/Kg 1	B2-5.0 D1022-02A 8/4/2005 5.0-6.0 Soil mg/Kg 1	B4-0.5 D1022-03A 8/4/2005 0.5-1.0 Soil mg/Kg 1	NYSDEC Rec. Soil Cleanup Objective mg/Kg	NYSDEC Soil cleanup objectives to protect GW quality mg/Kg
Total Phenol	5.3	< 1.1	< 1.0	0.03	0.0003

### Qualifiers

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are listed and identified in bold and boxed.

< 1.1 The detection limit for the sample exceeds the NYSDEC Soil Cleanup Criteria

#### Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.

# Taole 7

# Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY Proiect # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07C 8/4/2005 Water ug/l 100		NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
VOCs			
Methylene Chloride	ND		5
Chloroform	ND		7
Trichloroethene	ND		5
Toluene	150	J	5
Tetrachloroethene	ND	-	5
Xylene (Total)	150	] j	5
1,2,4-Trimethylbenzene	100	J	5
Napthalene	4600	]]	10

Qualifiers

J - Analyte detected below quantitation limits

NA - Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Volatile Organics analyses.



### Groundwater Semivolatile Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation Beacon, NY Project # 0507501

Sample ID	B1-GW		NYSDEC
Lab Sample ID	D0921-07A		Ambient Water Quality
Sampling Date	8/4/2005		Standards and
Matrix	Water		Guidance Values
Units	ug/l		ug/l
Dilution Factor	1		
SVOCs			
Phenol	9	ן [	1
2-Methylphenol	11	1	1
4-Methylphenol	22	1	1
2,4-Dimethylphenol	56	1	]
Naphthalene	4000	E	10
2-Methylnaphthalene	430	Ē	NA
Acenaphthylene	330	E	NA
Acenaphthene	39	1	20
Dibenzofuran	140	-	NA
Fluorene	110	1	50
Phenanthrene	140	1	50
Anthracene	31	-	50
Carbazole	200		NA
Fluoranthene	28		50
Pyrene	22		50
Benzo(a)anthracene	8	]]	0.002
Chrysene	6	J	0.002
Benzo(b)fluoranthene	4	J	0.002
Benzo(k)fluoranthene	2	] ]	0.002
Benzo(a)pyrene	4	] J	0.002
Indeno(1,2,3-cd)pyrene	2	]]	0.002
Benzo(g,h,i)perylene	2	J	NA

Qualifiers

J - Analyte detected below quantitation limits

- E Value above quantitation range
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.
 55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

Note:

The data presented herein is based on the Preminary Results of Semi-volatile Organics analyses.

# Jole 9

# Grounwater PP Metals Organic Analytical Results Summary Dorel Hat- Pre Phase II Investigation

### Beacon, NY Proiect # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07 8/4/2005 Water ug/l 1	NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
PP Metals		
Antimony	34	3
Arsenic	590	25
Beryllium	34	3
Cadmium	42	5
Chromium	1400	50
Copper	2800	200
Lead	1000	25
Nickel	1200	100
Zinc	4500	NA
Mercury	0.96	0.7

### Qualifiers

NA - Not Available

PP-Metals - Priority Pollutant Metals

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

#### Note:

The data presented herein is based on the Preminary Results of PP-Metals analyses.

# ٦ 🔤 اe 10

# Groundwater Pesticides Analytical Results Summary Dorel Hat- Pre Phase II Investigation

# Beacon, NY

# Project # 0507501

Sample ID Lab Sample ID Sampling Date Matrix Units Dilution Factor	B1-GW D0921-07A 8/4/2005 Water ug/l 1		NYSDEC Ambient Water Quality Standards and Guidance Values ug/l
Pesticides/PCBs Heptachlor epoxide 4,4'-DDD 4,4'-DDT Endrin ketone gamma-Chlordane	0.11 0.21 0.46 1.4 0.1	] P P P	0.03 NA NA 5 NA

#### Qualifiers

PCBs - Polychlorinated Biphenyls

NA - Not Available

P - Use professional judgement based on data use

55 - Concentration of compounds that are detected are listed and identified in **bold** type.

55 - Concentration of compounds that exceed the NYSDEC Groundwater Standards are listed and identified in bold type and boxed.

### Note:

The data presented herein is based on the Preminary Results of Pesticides/PCBs analyses.





RIN	G AND LAND S	URVEYING, P.	C AND	PROVII	DED BY	DAY	
		TAX DORE	MAI EL H	P AT			
	(VICINTIY OF BEACON STATION)						
		BE	ACON				
	DUTCHESS				NEW	YORK	
	JOB NO.: 0507501	SCALE: AS SHOWN	DATE:	09/29/05	FIG.	2	





611 River Drive Elmwood Park, NJ 07407

Tel: (201) 791-0075 Fax: (201) 791-4533

BEACON NEW YORK DUTCHESS JOB NO.: 05075 SCALE: N.T.S DATE: 09/29/2005 FIG.

4



DI

611 River Drive Elmwood Park, NJ 07407

Tel: (201) 791-0075 Fax: (201) 791-4533 BEACON

JUICHESS				NEW
JOB NO.: 05075	SCALE:	N.T.S	DATE: 09/29/2005	FIG.

/ YORK

5

# **APPENDIX A** Toxic Targeting Radius Map

# Toxics Targeting Computerized Environmental Report

1 West Main Street Beacon, NY 12508

June 27, 2005
### LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

### Who is Covered

This limited warranty is extended by Toxics Targeting, Inc. only to the original purchaser of the accompanying Computerized Environmental Report ("Report"). It may not be assigned to any other person.

### What is Warranted

Toxics Targeting, Inc. warrants that it uses reasonable care to accurately transcribe the information contained in this Report from the sources from which it is obtained. This limited warranty is in low of all other express warranties which might otherwise arise with respect to the Report. No one is autovitzed to change or add to this limited warranty.

#### What We Will Do

If during the warranty period there is shown to be a material error in the transcription of the information contained in this Report from the sources from which it was obtained. Toxics Targeting. Inc. shall refund to the original purchaser the full purchase price paid for the Report. The remedy stated above is the exclusive remedy extended to the Purchaser by Toxics Targeting. Inc. for any failure of the Report to conform with this Warranty, or otherwise for breach of this Warranty or any other warranty, whether expressed or implied.

### What We Won't Cover

Toxics Targeting, Inc. has not and can not verify the accuracy, correctness or completion of the information contained in this Report. Information is obtained from government agencies, site owners, and other sources and errors are common in such information. Because Toxics Targeting. Inc. can not control the accuracy of the information contained in this Report, or the uses which may be made of the information, TOXICS TARGETING, INC. DISCLAIMS LIABILITY TO ANYONE FOR ANY EVENTS ARISING OUT OF THE USE OF THE INFORMATION. TOXICS TARGETING, INC. SHALL NOT BE LIABLE FOR ANY DAMAGE CAUSED BY THIS REPORT, WHETHER DIRECT OR INDIRECT, AND WHETHER OR NOT TOXICS TARGETING, INC. HAS BEEN ADVISED OF OR HAS KNOWLEDGE OF THE POSSIBILITY OF SUCH DAMAGES. TOXICS TARGETING, INC. EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR USE. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above exclusion or limitation may not apply to you.

#### Period of Warranty

The period of warranty coverage is ninety days from the date of purchase of this Report. There shall be no warranty after the period of coverage. ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR USE SHALL HAVE NO GREATER DURATION THAN THE PERIOD OF WARRANTY STATED HERE, AND SHALL TERMINATE AUTOMATICALLY UPON THE EXPIRATION OF SUCH PERIOD. Some jurisdictions do not allow limitations on how long ar implied warranty lasts, so the above exclusion or limitation may not apply to you.

## PLEASE REFER TO PAGES ONE AND FOUR FOR A DESCRIPTION OF SOME OF THE LIMITATIONS OF THIS COMPUTERIZED ENVIRONMENTAL REPORT.

## **Table of Contents**

Introduction..... 1 • The Three Sections of Your Report + How to Use Your Report + Toxic Site Databases Analyzed In Your Report * Limitations Of the Information In Your Report - Table One: Number of Identified Toxic Sites By Distance Interval Table Two: Identified Toxic Sites By Direction • Table Three: Identified Toxic Sites Ranked by Proximity • Table Four: Identified Toxic Sites By Category • Mao Ores One-Mile Radius Map • Map Two. Half Mile Radius Map " Map Three, Quarter-Mile Radius Map • Map Foury Quarter-Mile Radius Close-up Map Section Two: Toxic Site Profiles Section Three: Appendices

- * USEPA ERNS Check
- Unmappable Sites
- · Hazardous Waste Codes
- How Toxic Sites Are Mapped
- * Information Source Guide

© Toxics Targeting, Inc. 2005



### Introduction

*Toxics Targeting* has combined environmental database searches, extensive regulatory analysis and sophisticated mapping techniques to produce your *Computerized Environmental Report*. It checks for the presence of 18 categories of government-reported toxic sites and provides detailed, up-to-date information on each identified site. The findings of your report are presented in an easy-to-understand format that:

- 1. *Maps* the approximate locations of selected government-reported toxic sites identified on or near a specified target address.
- 2. Estimates the distance and direction between the target address and each identified toxic site.
- 3. Reports air and water permit non-compliance and other regulatory violations.
- 4 *Profiles* some aspects of the usage, numifacture, storage, handling, transport or disposal of toxic chemicals at individual sites.
- 5. *Summarizes* some potential health effect information and drinking water standards for selected chemicals reported at individual sites.

### The Three Sections Of Your Report

The first section highlights your report's findings by summarizing identified sites according to: a) distance intervals, b) direction, c) proximity to the target address and d) individual site categories. In addition, the locations of all identified toxic sites are illustrated on individual maps for each radius search distance used in your report. Finally, a close-up map illustrates the locations of all identified toxic sites at the shortest radius search distance used in your report.

The second section of your report contents *Toxic Site Profiles* that provide detailed information on each identified toxic site. The information in each *Toxic Site Profile* varies according to its source. Some toxic site categories have extensive information, some have limited information. All the information is updated on a regular basis.

The third section of the report contains appendices that identify 1) on-site spills reported to the national Emergency Response Notification System (LRNS), 2) various toxic sites that cannot be mapped due to incomplete or erroneous addresses or other mapping problems, 3) codes that characterize hazardous wastes reported at various facilities, 4) methods used to map toxic sites identified in your report and 5) information sources used in your report.

### How to Use Your Report

- Check Table One to see the number of identified sites by distance intervals.
- Check Table Two to see identified sites sorted by <u>direction</u>.
- Check Table Three to see identified sites ranked by proximity to the target address.
- Check Table Four to see identified sites sorted by site categories.
- Refer to the various maps to see the locations of identified toxic sites. Refer to the *Toxic Site Profile* and *Appendix* sections for additional information.



### Toxic Site Databases Analyzed In Your Report

Search Radius

One-Mile

One-Mile

One-Mile

One-Mile

2

One-Mile



Ope-Mile

One-Mile

One-Mile

Half-Mile

One-Mile



1) *New York Inactive Hazardous Waste Disposal Site Registry:* a state listing of sites that can pose environmental or public health hazards requiring investigation or clean up.

2) *CERCLIS* (Comprehensive ) invironmental Response, Compensation and Liability Information System): a federal listing of sites that can pose environmental or public health hazards requiring investigation or clean up.

3) *National Priority List for Federal Superfund Cleanup*: a listing of sites known to pose environmental or health hazards that are being investigated or cleaned up under the Federal Superfund program.

4) New York Hazardous Substance Disposal Site Draft Study: a state listing of sites contaminated with toxic substances that can pose environmental or public health hazards. These sites are not eligible for state clean up funding programs.

5) *New York State Brownfield Cleanup Sites:* a listing of sites that are abandoned, idled or under-used industrial and commercial sites where expansion or redevelopment is complicated by real or perceived environmental contamination.

6) New York Solid Waste Facilities Registry, including New York City 1934 Sites: active and inactive landfills, incinerators, transfer stations or other solid waste management facilities.

7) New York State Major Oil Storage Facilities: sites with more than a 400,000 gallon capacity for storing petroleum products.

8) New York and Federal Hazardous Waste Treatment, Storage or Disposal Facilities: sites reported by the NYS manifest system and the USEPA's Resource Conservation and Recovery Act Information System (RCRIS). Also includes the following database:

 RCRA violations: waste facilities with violations reported by the USEPA pursuant to the Resource Conservation and Recovery Act.

9) *RCRA Corrective Action Activity (CORRACTS):* waste facilities with RCRA corrective action activity reported by the USEPA.

Half-Mile



10a) *Toxic Spills: active* stationary source spills reported to state environmental authorities, including unremediated leaking underground storage tanks.

10b) *Toxic Spills: closed* stationary and non-stationary source spills reported to state environmental authorities, including remediated leaking underground storage tanks.





11) New York and Local Petroleum Bulk Storage Facilities: sites with more than an 1,100 gallon capacity for storing petroleum products.

12) New York and Federal Hazardous Waste Generators and Transporters: sites reported by the NYS manifest system and the USEPA's Resource Conservation and Recovery Act Information System (RCRA) Also includes the following database:

RCRA violations: waste facilities with violations reported by the
 USEPA pursuant to the Resource Conservation and Recovery Act.

13) New York Chemical Bulk Storage Facilities: Sites storing hazardous substances listed in 6 NYCRR Part 597 in aboveground tanks with capacities of 185 gallons or more and/or underground tanks of any size

14) Federal Texic Release Inventory Facilities: discharges of selected toxic elemicals to air, land, water or treatment facilities.

15) Federal Pernit Compliance System Toxic Wastewater Discharges: pernitted toxic wastewater discharges.

16) *Federal Air Discharges:* Air pollution point sources monitored by U.S. EPA and/or state and local air regulatory agencies.

17) *Federal Civil and Administrative Enforcement Docket:* judiciary cases filed on behalf of the U. S. Environmental Protection Agency by the Department of Justice.

18) ERNS: Vederal Emergency Response Notification System Spills: a listing of federally reported spills.

### Limitations Of The Information In Your Report

The information presented in your *Computerized Environmental Report* has been obtained from various local, state and federal government agencies. Please be aware that: 1) additional information on individual sites may be available, 2) newly discovered sites are continually reported and 3) all map locations are approximate. As a result, this report is intended to be the FIRST STEP in the process of identifying and evaluating possible environmental threats to specific properties and can only serve as a guide for conducting on-site visits or additional, more detailed toxic hazard research.

*Toxics Targeting* tries to ensure that the information in your report is presented accurately and with minimal alteration. The only systematic changes that are made correct obvious address errors in order to allow dies to be mapped. Any address changes that are made are noted in the map information section at the top of each corresponding *Toxic Site Profile*. Since the information presented in your report is not edited, please be aware that it can contain reporting errors or typographical mistakes made by the site owners/operators or government agencies that produced the information. Please be aware of some other limitations of the information in your report:

- The computerized map used by *Toxics Targeting* is the same one used by the U. S. Census. While the map is generally accurate, no map is perfect. In addition, *Toxics Targeting's* mapping methods estimate where toxic site addresses are located if the address is not specifically designated on the Census map. FOR THESE REASONS, ALL MAP LOCATIONS OF ADDRESSES AND RFPORTED TOXIC SITES SHOULD BE CONSIDERED APPROXIMATE AND SHOULD BE VERIFIED BY ON-SITE VISITS;
- UNDISCOVERED, UNREPORTED OR UNMAPPABLE TOXIC SITES MIGHT NOT BE IDENTIFIED BY THIS REPORT'S CHECK OF 18 TOXIC SITE CATEGORIES. TOXIC SITES REPORTED IN OTHER GOVERNMENT DATABASES MIGHT ALSO EXIST FOR THESE REASONS, YOUR REPORT MIGHT NOT IDENTIFY ALL THE TOXIC SITES THAT EXIST IM THE AREA IT SEARCHES;
- The appendix of your report contains a listing of sites that could not be mapped due to incomplete or erroneous address information or other mapping problems. This listing includes unmappable toxic sites in zip code areas within one mile of the target address as well as toxic sites without zip codes reported in the same county. IF YOU WOULD LIKE INFORMATION ON ANY OF THE LISTED SITES, PLEASE CONTACT TOXICS TARGETING AND REFER TO THE SITE ID NUMBER.
- Some toxic sites identified in your report may be classified as known hazards. Most of the toxic sites identified in your report involve potential hazards related to the on-site use, manufacture, handling, storage, transport or disposal of toxic chemicals. Some of the toxic sites identified in your report may be the addresses of parties responsible for toxic sites located elsewhere. YOU SHOULD ONLY CONCLUDE THAT TOXIC HAZARDS ACTUALLY EXIST AT A SPECIFIC SITE WHEN GOVERNMENT AUTHORITIES MAKE THAT DETERMINATION OR WHEN THAT CONCLUSION IS FULLY DOCUMENTED BY THE FINDINGS OF AN APPROPRIATE SITE INVESTIGATION UNDERTAKEN BY LICENSED PROFESSIONALS;
- Compass directions and distances are approximate. Compass directions are calculated from the subject property address to the mapped location of each identified toxic site. The compass direction does not necessarily refer to the closest property boundary of an identified toxic site. The compass direction also can vary substantially for toxic sites that are located very close to the subject property address.
- The information presented in your report is a summary of the information that *Toxics Targeting* obtains from government agencies on reported toxic sites. YOU MAY BE ABLE TO OBTAIN ADDITIONAL INFORMATION ABOUT REPORTED SITES WITH THE FREEDOM OF INFORMATION REQUEST FORM LETTERS THAT ARE PROVIDED ON THE INSIDE OF THE BACK COVER.



## Section One-

## Report Summary

• Table One: Number of Identified Toxic Sites By Distance Interval

• Table Two: Identified Toxic Sites By Direction

• Table Three: Identified Toxic Sites Ranked By Proximity

• Table Four: Identified Toxic Sites By Category

• Map One: One-Mile Radius Map

• Map Two: Half-Mile Radius Map

• Map Three: Quarter-Mile Radius Map

• Map Four: Quarter-Mile Radius Close up Map

5

 $\mathcal{Z}$ 



1 West Main Street

June 27, 2005

## NUMBER OF IDENTIFIED SITES BY DISTANCE INTERVAL

Database Searched	0 - 100 fi	100 ft - 1/8 mi	1/8 mì - 1/4 mi	1/4 mi - 1/2 mi	1/2 mi 1 mi	Site(s) Category
NYS Inactive Haz Waste Registry or Reg. Qualifying Sites *	Ü	0	2	0		lotals
CERCLIS Sites *	Ŭ	<u>.</u>	~	.1	0	3
National Priority List Sites *	0	0	2	ζ)	р ^т	2
Hazardous Substance Waste Disposal Sites *	0	0	0	υ	Ũ	0
Brownfields Sites *	-	1	Û	Ü	0	1
NYS Solid Wasto Excilition t	n	1	2	2	1	6
	0	C	0	0	4	Δ
NYS Major Oil Storage Facilities *	Ç.,	C	0	<b>?</b>	Ğ	
RCRA Hazardous Waste Treatment, Storage, Disposal Sites *	0	<u>e</u>	ð	0	0	1
RCRA Corrective Action Sites *	Э	0	ř.	5	U	0
NYS Toxic Spills (incl. Leaking Undrgrod Storage Tanks) **	, j	(}		()	С	0
Local & State Petroleum Bulk Storage Sites ***	2.		i	8(0)	Not searched	9(0)
RCRA Hazardous Waste Generators & Transporterr	e e		2	Nol searched	Not searched	2
NYS Chemical Bulk Storage Sites ***	•.* 	U	Ū	Not searched	Not searched	0
	ί.	0		Not searched	Not searched	0
Permit Compliance Ports T is the	Γ.	Ú.	0	Not searched	Not searched	Ú
Non A state system Toxic Wastewater Discharges ***	C	0	0	Not searched	Not searched	0
NYS Air Discharges ***	0	0	0	Not searched	Not soorehad	0
Civil & Administrative Enforcement Docket Facilities ***	0	0	0	Not searchod	Not searched	0
ERNS (Onsite) *****	0	Not searched	Not coprohed	Net	Not searched	0
			. WALSESHED	ivet searched	Not searched	0
Unstance interval Totals	0	2	10	11(0)		29(0)
Search Radius: * 1 Mile Search Radius ** 1/2 Mile Search Radius	adius *** 1/4 N	Aile Search Radius	**** 1/8 Mile Search R	adius ***** on oite		20(0)
Never have to the term of the second				UI-SIL	o oray	

Numbers in () indicate spills not mapped and profiled, and are found in the tables at the end of the active and closed spills sections. See these tables for a description of the parameters involved with identifying these spills.

Identified Toxic Ses by Direction

1 West Main Street Beacon, NY 12508

* Compass directions can vary substantially for sites located very close to the subject property address

## Sites less than 100 feet from subject property sorted by distance

No sites found less than 100 feet from subject property

## Sites between 100 ft and 660 ft from the subject property sorted by direction and distance

Map			Approximate	
ld#	Site Name	Site Street	Distance & Direction	Toxic Site
5			From Property	Category
<b>,</b>	CH-BEACON MGP	416,418,420,422,424,426, 428, 430, RIVER RD.	SiS feet to the SE	Brounfulde Cite
4	CHG&E, BEACON SITE			brownieius Sile
		RIVER STREE (	648 feet to the SSE	Hazardous Substance Waste Disposal Site
Sito				

## Sites equal to or greater than 660 ft from subject property sorted by direction and distance

Map Id#	Site Name	Site Street	Approximate Distance & Direction	Toxic Site
22	52 MONELL PL	0.4.1/f	гол горену	Category
24		SAME.	2480 feet to the NNE	Closed Status Spill (Unk/Other Cause)
24	TOMPRINS TERRACE APT.	21 TOMPKINS AVE.	1364 feet to the NE	
17	VAC. LOT			Closed Status Spill (Misc. Spill Cause)
23	BEACON OIL	KI OO A BLEAMAN STREET	1907 feet to the ENE	Active Haz Spill (Unknown/Other Cause)
25 20 21 10	LO-RAC FUEL CORP DBA BEACON OL CERVONES AUTO RENCON REST BRUNETTO CHEESE	16 MAIN STREET 16 MAIN ST 14 COMMERCE ST 157 MAIN ST 33 NORTH CEDAR STREET	860 feet to the E 861 feet to the E 1970 feet to the E 2170 feet to the E 4025 feet to the F	Closed Status Spill (Misc. Spill Cause) Petroleum Bulk Storage Site Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Brownfielde Statu
18	KELLAM PROPERTY	FERRY ST AND BEACON	1371 feet to the EST	
1 2 9 11 12 14 7	CHG&E, BEACON SITE CENTRAL HUDSON E&G MGP - BEACON STREET DIA: BEACON DIA CENTER FOR THE ARTS ALL-COUNTY ALL-COUNTY BEACON RECY. & TRANSFER	RIVER STREET RIVER STREET 3 BEEKMAN STREET 125 WOLCOTT AVE DENNING'S AVENUE DENNING'S AVENUE DENNINGS AVE	747 feet to the SSE 747 feet to the SSE 891 feet to the SSE 2296 feet to the SSE 4272 feet to the SSE 4272 feet to the SSE 4456 feet to the SSE	Viosed Status Sp.il (Unk/Other Cause) NYSDEC Inactive Haz Waste Site CERCLIS/NYSDEC Inactive Haz Waste Site Petroleum Bulk Storage Site Brownfields Site Solid Waste Facility Solid Waste Facility Solid Waste Facility
13	ALL COUNTY RESOURCE MGT.	WEST END OF FERRY STREET	1030 feet to the S 4445 feet to the S	Brownfields Site
6	BEACON SALVAGE PROPERTY	RED FLYNN DRIVY	781 feet to the SSW	Brownfields Site



BEACON CITY LANDFILL (INACTIVE) 3

LONG DOCK RED FUN DRIVE HERRY STREET LONG DOCK ۰. S & 12-25 LONG DOCK ROAD

1613 feet in the SSW MUNICIPAL PARK ADJACENT TO RAILROAD STATION

 

 1516 feet to the SS W
 Active Haz Spill (Unknown/Other Cause)

 1516 feet to the SSW
 Closed Status Spill (Unk/Other Cause)

 1539 feet to the SSW
 Major Oil Storage Facility

 Brownfields Site

• •

316 feet to the W

CERCLIS/NYSDEC Inactive Haz Waste Site



## Identified Tokic Sites by Proximity 1 West Main Street, Beacon, NY 12508

* Compass directions can vary substantially for sites located very close to the subject property address.

Map Id# 5		Site Street	Approximate Distance & Direction From Property	Toxic Site Category
4 1 2 6 3 225 226 7 24 18 16 19 22 21 9 22 10 11 12 3 14	CHG&E, BEACON SITE CHG&E, BEACON SITE CENTRAL HUDSON E&G MGP - BEACON STREET BEACON SALVAGE PROPERTY BEACON OIL LO-RAC FUEL CORP DBA BEACON OL DIA: BEACON FERRY ROAD WATERFRONT SITE TOMPKINS TERRACE APT. KELLAM PROPERTY GARRETT STORM GARRETT STORM GARRET STORM, INC LONG DOCK BEACON VAC. LOT CERVONES AUTO RENCON REST DIA CENTER FOR THE ARTS 52 MONELL PL BRUNETTO CHEESE ALL-COUNTY ALL-COUNTY ALL-COUNTY & TRANSFER	416,418,420,422,424,426, 428, 430, RIVER RD. RIVER STREET RIVER STREET RIVER STREET RED FLYNN DRIVE MUNICIPAL PARK ADJACENT TO RAILROAD STATION 16 MAIN STREET 16 MAIN ST 3 BEEKMAN STREET WEST END OF FERRY STREET 24 TOMPKINS AVE. FERRY ST AND BEACON LONG DOCK, RED FLYNN DRIVE FERRY STREET LONG DOCK 6 & 12-25 LONG DOCK ROAD RT. 9D & BEEKMAN STREET 14 COMMERCE ST 157 MAIN ST 125 WOLCOTT AVE SAME 33 NORTH CEDAR STREET DENNING'S AVENUE DENNING'S AVENUE	519 feet to the SE 648 feet to the SSE 747 feet to the SSE 747 feet to the SSE 747 feet to the SSE 781 feet to the SSW 816 feet to the SSW 860 feet to the E 891 feet to the SSE 1030 feet to the SSE 1030 feet to the SSE 1364 feet to the SSE 1371 feet to the SSW 1516 feet to the SSW 1516 feet to the SSW 1539 feet to the SSW 1613 feet to the SSW 1613 feet to the SSW 1807 feet to the E 2170 feet to the E 2296 feet to the SSE 2480 feet to the SSE 4472 feet to the SSE 4443 feet to the SSE	Brownfields Site Hazardous Substance Waste Disposal Site NYSDEC Inactive Haz Waste Site CERCLIS/NYSDEC Inactive Haz Waste Site Brownfields Site CERCLIS/NYSDEC Inactive Haz Waste Site Closed Status Spill (Misc. Spill Cause) Petroleum Bulk Storage Site Brownfields Site Closed Status Spill (Misc. Spill Cause) Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Active Haz Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Major Oil Storage Facility Brownfields Site Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Closed Status Spill (Unk/Other Cause) Brownfields Site Closed Status Spill (Unk/Other Cause) Brownfields Site Solid Waste Facility Solid Waste Facility Solid Waste Facility Solid Waste Facility



Identified T C Sites by Category

1 West Main Street Beacon, NY 12508

* Сотра	ss directions can vary sul	bstantially for sites located very close to the subject property as	idress	
	CERCLIS/NYSDEC	Inactive Hazardous Wasto Sites		
MAP ID	FACILITY ID	FACILITY NAME		
2	314069		FACILITY STREET	
3	314024	BEACON CITY LANDERS (INDICATION STREET	RIVER STREET	DISTANCE & DIRECTION
		DEACON CITE LANDFILL (INACTIVE)	MUNICIPA', PARK ADJACENT TO RAILROAD STATION	747 feet to the SSE
	NYSDEC Inactive H	az Waste Posicing as Bas O 11/1 and		816 feet to the W
MAP ID	FACILITY ID	EACILITY NAME		
1			FACILITY STREET	_
		CHORE BEAUCIN SEE	RIVER STREET	DISTANCE & DIRECTION
	Hazardous Substar	Ace Waste Dispersed Of		747 feet to the SSE
MAP ID	FACILITY ID	The Waste Disposal Sites		
4	314069		FACILITY STREET	
	014005	CHG&E, BEACON SITE	RIVER STREET	DISTANCE & DIRECTION
	Brownfields Sites			648 feet to the SSE
MAP ID	FACILITY ID			
5	V00202	FACILITY NAME	FACILITY STREET	
6	V00293	CH - BEACON MGP	416 416 420 422 424 426 420 420 500 50	DISTANCE & DIRECTION
7	V00444	BEACON SALVAGE PROPERTY	RED FLYNN DDIVE	519 feet to the SE
8	00096	FERRY ROAD WATERFRONT SITE	WESTEND OF FEDDY STOFFT	781 feet to the SSW
0	C314112	LONG DOCK BEACON	8 & 12-25 LONG DOOK DOAD	1030 feet to the S
10	V00299 R00400	DIA CENTER FOR THE ARTS		1613 feet to the SSW
10	B00130	BRUNETTO CHEESE	33 NORTH CEDAR ATOMICS	2296 feet to the SSE
			SUNORTH CEDAR STREET	4025 feet to the E
MADID	Solid Waste Faciliti	es		
11		FACILITY NAME		
11	14R01	ALL-COUNTY		DISTANCE & DIRECTION
12	14201	ALL-COUNTY		4272 feet to the SSE
13	14115	ALL COUNTY RESOURCE MGT.	BENNING S AVENUE	4272 feet to the SSE
14	14R07	BEACON RECY: & TRANSFER		4443 feet to the S
	** 1		DEMNINGS AVE	4456 feet to the SSE
	Major Oil Storage Fi	acilities		
MAP ID	FACILITY ID	FACILITY NAME		
15	3-2500	GARRET STORM, INC	FACILITY STREET	DISTANCE & DIRECTION
			LONG DOCK	1539 feet to the SSIM
	Active Haz Spills (U	nknown Causes & Other Causes)		, ood leer to the 33W
MAP ID	FACILITY ID	FACILITY NAME		
16	9212560	GARRETT STORM	FACILITY STREET	DISTANCE & DIRECTION
17	9303959	VAC. LOT	LUNG DOCK, RED FLYNN DRIVE	1516 feet to the SSW
			RT. 9D & BEEKMAN STREET	1807 fact to the ENE
	Closed Status Spills	(Unknown Causes & Other Causes)		Ser reer to the ENE
MAP ID	FACILITY ID	FACILITY NAME		
18	9700726	KELLAM PROPERTY	FACILITY STREET	
19	8900064	GARRETT STORM	FERRY ST AND BEACON	1371 foot to the EQE
20	0102464	CERVONES AUTO	FERRY STREET	1516 foot to the COVE
21	0102481	RENCON REST	14 COMMERCE ST	1070 feet to the SSW
22	9508392	52 MONFLE PL	157 MAIN ST	
			SAME	
				2400 reet to the NNE



### Closed Status Spills (Miscellaneous Spill Causes)

9403880	BEACON OI
9103003	TOMPKINS TERRACE APT
	9403880 9103003

### Petroleum Bulk Storage Sites

MAP ID	FACILITY ID	FACILITY NAME
25	3-012548	LO-RAC FUEL CORP DBA BEACON OL
26	3-600787	DIA: BEACON

.

FAGILITY STREET 16 MAIN STREET 21 TOMPKINS AVE

FACILITY STREET 16 MAIN ST 3 BEEKMAN STREET

.

#### DISTANCE & DIRECTION 860 feet to the E 1364 feet to the NE

DISTANCE & DIRECTION 861 feet to the E 891 feet to the SSE









## Section Two: Toxic Site Profiles

The heading of each Toxic Site Profile refers to the site's map location and details.

- The facility name, address, city, state, and zip code (This information does not appear in the headings for Inactive Hazardous Waste Disposal Sites).
- Any changes that were made to a site's address in order to map its location.
- The site mapping method that was used (see How Sites are Located, at the end of this section for more information).

Toxic Site Profiles summarize information provided by site owners or operators and government agencies regarding various toxic chemical activities reported at each

- Whether chemicals were stored, produced, transported, discharged or disposed of.
- The name of chemicals and their Chemical Abstract Series (CAS) numbers;
- The amount of chemicals and the units (gallons/pounds) the chemical was measured in.
- Whether the site or storage tanks at the site are currently active or macrive.
- Special codes used by government agencies to regulate hazardous waste activities at some sites (A complete description of the codes follows the profiles section).

For selected individual chemicals reported at various toxic sites, some potential health effect summary information appears below the site profile. Each potential health effect summary identifies chemicals by name and by Chemical Abstract Series (CAS) Number. An "x" under each potential health effect heading indicates positive toxicity testing results reported by the National Institute of Occupational Safety and Health's Registry of Toxic Effects of Chemical Substances (RTECS). Some chemicals (mostly appearing in profiles of Hazardous Waste facilities), are reported as mixtures, and RTECS health effect information is only available for individual chemicals. In addition, RTECS only provides information on approximately 100,000 common chemicals. Consequently, the absence of potential health effect summary information for a particular chemical identified in a Toxic Site Profile does not necessarily mean that the chemical does not pose potential health

The Maximum Contaminant Level (MCL) in drinking water allowed for selected chemicals is also noted. In most cases, the only applicable MCL has been set by the New York State Department of Health (NYSDOH). Where NYSDOH has not set an MCL, the federal standard, if one exists, is listed and is marked by an asterisk.

Presented below are column headings that describe the health effect definitions used in RTECS and applicable New York State and federal drinking water standards. Reference sources for information presented in this section are also provided.

Acute Toxicity: Short-term exposure to this chemical can cause lethal and non-lethal toxicity effects not included in the following four categories. ACUTE TOX:

- TUMOR TOX: Tumorigenic Toxicity: The chemical can cause an increase in the incidence of tumors.
- MUTAG TOX: Mutagenic Toxicity: The chemical can cause genetic alterations that are passed from one generation to the next.

REPRO TOX:	REPRO TOX: Reproductive toxicity: May signify one of the following effects: maternal effects, paternal effects, effects on fertility, effects on the embryo or fetus, specific developmental abnormalities, tumorigenic effects, or effects on the newborn (only positive reproductive effects data for mammalian species are referenced)						
IRRIT TOX:	Primary Irritant: The chemical can cau	se eye or skin irritation					
MCL:	MCL: Drinking Water Standard - Maximum Contaminant Level (MCL) listed under Drinking Water Supplies, 10 NYCRR Part 5, Subparts 1.51(f),(g), and (h) for NYDOH MCL's and under the Safe Drinking Water Act, 40 CFR 141, Subparts B and G, (* indicates value for total trihalomethanes) for federal MCL's.						
Reference Source	for Toxicity Information.	Registry of Toxic Effects of Chemical Substances (RTECS), NIOSH (on-line database); For further information, contact: NIOSH, 4676 Columbia Parkway, Cincinnati, OH, 45226, 800/35-NIOSH.					
Reference Source for Drinking Water Standards:		New York State Department of Health, Bureau of Toxic Substances Assessment, 2 University Place, Room 240, Albany, NY 12203, 518/458-6373.					
U.S. Environmental Protection Agency. Office of Drinking Water, 401 M St SW, Mailstop WH-556, Washington, DC, 20460, 202/260-5700.							
Inactive Hazardo	ous Waste Disposal Site Classifications	: 1 Causing or presenting an imminent danger of causing irreversible or irreparable damage to the public lealth or the environment immediate action required;					
	:	2 Significant threat to the public health or environment action required:					
		3 - Does not Present a significant threat to the environment or public health action may be deferred;					
		4 Site properly closedrequires continued management;					
		> Site properly closed, no evidence of present or potential adverse impact no further action required;					
		2a This temporary classification has been assigned to sites where there is inadequate data to assign them to the five classifications specified by law.					
		$D_{1,2,0}$ - Delisted Site (1: hazardous waste not found; 2: remediated; 3: consolidated site or site incorrectly listed)					

a and Manager

..



-4

1 West Main Street

Page 1

NPL, CERCLIS, INACTIVE HAZARDOUS WASTE REGISTRY SITES AND/OR REGISTRY QUALIFYING SITES IDENTIFIED WITHIN 1 MILE SEARCH RADIUS	*
ompass directions can vary substantially for sites located vary close to the subject set of the subject set	

PLEASE NOTE: * Compass directions can vary substantially for sites located very close to the subject property address.

The New York State Department of Environmental Conservation issues Quarterly Status Reports of the Inactive Hazardous Disposal Site Registry. Part Five of those reports identifies "all sites that are under an investigation by the DEC in order to determine whether or not the site meets the statutory definition of an inactive hazardous waste disposal site." Sites identified in Part Five are not currently listed in the Registry and may be added to the Registry or dropped from consideration. This section contains information on those sites. 

Map Identification Number 1	CHG&E, BEACON SITE RIVER STREET			BEACON, NY		Facility Id:
MAP LOCATION INFORMATION Site location mapped by: MANUAL I Approximate distance from property	MAPPING (3) 747 feet to the SSE			ADDRESS CHANGE I Revised street: NO C Revised zip code: UN	NFORMATION HANGE KNOWN	
SITE DESIGNAT	ION: NPL -	CERCLIS -	NYSDEC	REGISTRY -	NYSDEC REGISTRY	QUALIFYING - X
	NEW YORK STATE DEPA DIVISION C INACTIVE H	RTMENT OF ENVIF F HAZARDOUS WA AZARDOUS WAST	RONMEN ASTE REI FE DISPO	TAL CONSERVATION MEDIATION SAL REPORT	·· ₽╡★☆₽₩₽₽₩₩₩₩₩₽₽₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩	************
Registry Qualifying Investigations Ur 07/1999 to 10/1999	nderway from:					
Map Identification Number 2	CENTRAL HUDSON E&G RIVER STREET	MGP - BEACON ST	REET	BEACON NY 12508		Facility Id: 314069
EPA Facility Name:	CENTRAL HUDSON G & E RIVER ST	/BEACON GAS PL/	ANT	BEACO	N NY 12508	EPA Facility Id: NYD980531792
MAP LOCATION INFORMATION Site location mapped by: MAP COOF Approximate distance from property:	RDINATE (2) 747 feet to the SSE		,   	ADDRESS CHANGE II Revised street: NO CI Revised zip code: NO	NFORMATION HANGE CHANGE	
SITE DESIGNATI	ON: NPL -	CERCLIS - X	NYSDEC	REGISTRY	SDEC REGISTRY C	NUALIFYING -
This facility has been deleted from th	e reported data. Data reflect	s last reported inform	mation.			
************	NEW YORK ST	TATE DEPARTMENT VISTON OF HAZARI	OF ENV DOUS WA	IRONMENTAL CONSER STE REMEDIATION	VATION	*****

#### 1 West Main Street

Page 2

### INACTIVE MAZARDOUS WASTE DISPOSAL SITE INFORMATION

.

CLASSIFICATION C CLASSIFICATION C Delisted site	DDE: D1 DDE DESCRIPTION: - hazardous waste not found	REGICN: 3	SITE CODE: 114069 EPA ID: NYD980531792
NAME OF SITE: STREET ADDRESS: TOWN/CITY:	Central Hudson E&G MGP - Beacon S River Stree: Beacon 7	TP: 12508	
SITE TYPE:	Dump-X Structure- Lagoon- Lag	udlill Treatment Pond-	COUNTY: Dutchess
SITE OWNER/OPERA CURRENT OWNER ( NAME: ADDRESS: NAME: ADDRESS: NAME: ADDRESS: NAME: ADDRESS: NAME: ADDRESS: OWNER DURING D' NAME: OPERATOR (S) DUI NAME: ADDRESS:	TOR INFORMATION: S): Jeffrey Staten 420 River Street, Beacon, NY 12500 Hassan Toy 422 River Street, Beacon, NY 12500 Jeffrey L. Boetign 424 River Street, Beacon, NY 12500 Robert Harrington 426 River Street, Beacon, NY 12500 Gurmukh Singh 428 River Street, Beacon, NY 12500 Joseph Stezel 430 River Street, Beacon, NY 12500 ISPOSAL: RING DISPOSAL: Central Hudson Gas & Electric Corp 284 South Avenue, Poughkeepsie, NY	3	
HAZARDOUS WASTE I	DISPOSAL PERIOD: from 1871 to 1933		

#### SITE DESCRIPTION:

OT BOOT DE ON ----

A former coal gasification plant operated at this site. The property was subsequently owned by Central Hudson and Gas Co. and later by private owners for residential use. During construction of the homes and services, some tar was found and removed by Central Hudson. At this time it is not known if coal tar exists at other locations on or near the property. There is a potential for soil vapors in adjacent base- ments. Responsible Party Phase I and II contravened. These metals are c ommon to gas processing residues. Wastes generated from the coal gasification process are not considered to be hazardous waste by present DEC program definitions .

CONFIRMED HAZARDOUS WASTE DISPOSED:

TYPE.	OTTO ME COM		
	QUANTITY		

U I West Main Street

----

Page 3

ANALYTICAL DATA AVAIL APPLICABLE STANDARDS	ABLE FOR: EXCEEDED 1N:	Air- Groundwater ()	Surface   Drinking	Baller- <i>Mat</i> er-2	Groundwate Surface W		Spil-X	Sediment-
GEOTECHNICAL INFORMAT SOIL/ROCK TYPE: GROUNDWATER DEPTH:	ION :				Struce wa	iter-	Alr-	
LEGAL ACTION: STATUS: REMEDIAL ACTION: NATURE OF ACTION:	Ίγρe: Negotia Propose	tion in Progress- d- Under Des	sign-	State- Order Signe In Progress	Fec d-X - Con	leral-		
ASSESSMENT OF ENVIRONM Groundwater standard Contamination from w	MENTAL PROBLEMS is contravened vastes other th	: for cadmium, chrom an hazardous.	uum, iron,	, lead, andm	anganese.	High PAH's	in soil.	
ASSESSMENT OF HEALTH F	PROBLEMS :							
*****	******	****						
		*****	******	*****************	* * * * * * * * * * * * * * * * * * * *	*****	*******	****
		USEPA COMPRE COMPENSATION AND L	HENSIVE EN IABILITY I	VIRONMENTAL INFORMATION	RESPONSE SYSTEM (CER	CLIS)		
			SITE INFO	RMATION				
EPA~ID:	NYD980531792							
Site Name: Site Street: Site City/State/Zip:	CENTRAL HUDSON RIVER ST BEACON, NY 12	V G & E ∕BEACON JA: 2508	S PLANT				Site-ID:	0201958
NFRAP (No Further Reme	dial Activity H	lanned) Status: N	D FURTHER	REMEDIAL ACT	PEON DIAMO	~		
Owner Indicator: Incident Type: Incident Category: Non-NPL Status: Federal Facility Flag:	Other NFRAP Not a Federal	Facility			NPL Status USGS Hydrol RCRA Flag:	) Indicator: Logical Unit	Not on t : 02020008	he NFL
SITE DESCRIPTION: SITE LOCATED APPROX : E DURING EXCAVATION 1	1000 FT BAST OF FOR HOUSES NOW	HUDSON RIVER. CEN ON SITE. TAR DESCR	KIRAL SULA LIPED AS CO	ing GAS & ELF Gil Tar by N	NC CORP ALLE	GEDLY FOUND	) & REMOVED	TAR-LIKE SUBSTANC
		OPER	ABLE UNIT	INFORMATION	r		į	



Operable Unit ID: 00

Operable Unit Mape: SITEWIDE:

ACTION INFORMATION

Name: DISCOVERY Lead: EPA Fund-Financed Actual Start Date: Qualifier: Actual Completion Date: 19810601 Category: Operable Unit ID: 00 IFMS Entry: Planning Status: No Entry into IFMS Anomaly Indicator: Financial Budget Source: Name: PRELIMINARY ASSESSMENT Lead: EPA Fund-Financed Actual Start Date. Qualifier: Actual Completion Date: 19860924 Low Category: Operable Unit ID: (° A IFMS Entry: Planning Status: Both Intramural and Extramural Entry into IFMS Anomaly Indicator: Financial Budget Source: Remedial Name: SITE INSPECTION Lead: EPA Fund-Financed Actual Start Date-19370615 Qualifier: Actual Completion Date: 19970623 NFRAP (No Futher Remodial Action Planned Operable Unit ID:

Category: IFMS Entry: Both Intramural and Extramural Sutry (neo 19MS Anomaly Indicator:

Name: ARCHIVE SITE Lead: Actual Start Date: EPA In-House Qualifier: Actual Completion Date: 19870623 Category: Operable Unit ID: 00 IFMS Entry: Planning Status: No Entry into IFMS Anomaly Indicator: Financial Budget Source:

FINANCIAL INFORMATION

No financial information was provided

Map Identification Number 3	BEACON CITY LANDFILL (INACTIVE) MUNICIPAL PARK ADJACENT TO RAI	) ILROAD STATIO <b>B</b> EACON, NY 12508	Facility id: 314024
EPA Facility Name:	BEACON LF MUNICIPAL PARK	BEACON, NY 12508	EPA Facility Id: NYD980507719
MAP LOCATION INFORMATION Site location mapped by: MAP COOF Approximate distance from property:	RDINATE (1) 816 feet to the W	ADDRESS CHANGE INFORMATION Revised street: Municipal Park adjacent to Revised zip code: NO CHANGE	o railroad station

00

Planning Status:

Financial Budget Source: Remedial

- 10 A A

Page 5

SI	TE DESIGNATION:	NPL -	CERCLIS - X	NYSDEC BEC	SISTRY Y			
This facility has been	deleted from the reporte	ed data. Data reflect	ts last reported in	formation	51011(1 - X	NY SDEC RE	GISTRY QU	ALIFYING -
*****	*******		io last reported in	iormation.				
		NEW YORK S' DIV INACTIVE	TATE DEPARTME VISION OF HAT HAZARDOUS WA	NT OF ENVIRO ARDOUS WASTE STE DISPOSAL	NMENTAL CONSE REMEDIATION SITE INFORMA	RVATION TION	*****	******
CLASSIFICATION ( CLASSIFICATION ( Delisted site	CODE: D1 CODE DESCRIPTION: - hazardous waste	not found		REGTON: 3			SITE C EPA	ODE: 314024 TD: NYD980567719
NAME OF SITE: STREET ADDRESS: TOWN/CITY:	Beacon City Landf Municipal Park ad Beacon	ill (Inactive) jacent to railm	road station					
SITE TYPE:	Dump- Structure	Terr					COU	NTY: Dutchess
SITE OWNER/OPERA CURRENT OWNER ( NAME: ADDRESS: OWNER DURING D NAME: OPERATOR (S) DU NAME: ADDRESS:	TOR INFORMATION: S): City of Beacon 1 Municipal Plaza ISPOSAL: City of Beacon RING DISPOSAL: City of Beacon 427 Main Street,	- Lagoon- I , Suite 1, Beac Beacon, NY 1250	undfill-X T Con, NY 12508	reatment Pon	d-	R.S	TIMATED S	27E: 5 Acres
HAZARDOUS WASTE	DISPOSAL PERIOD:	from mid 1930's	- to Oct. 1966	3				
SITE DESCRIPTION This site recein has four feet of Phase I Invest: evidence of has revealed no con located just no their continued	: ived municipal, con of soil and vegetat igation has been co cardous waste dispo- ntamination attribu- orth of the Beacon 1 oversight.	nmercial and in tive cover over ompleted. A Ph osal. Analysis Itable to the fo Metro Train st.	dustrial wast a plastic li ase II Invest of surface v ormer land- f ation. The s	es incluáing ner. Ground igation, com vater samples ill. The si its will be	y wastes from Water dischar mpleted in Mar s collected fr te is current referred to t	a local d ges to th cch of 199 fom the ad ly used a he Divisio	ye works. e Hudson F 1, found r jacent Hud s a public on of Soli	The site liver. A lo lson River, park and is d Waste for
CONFIRMED HAZARDO	DUS WASTE DISPOSED							
*==*==*=	TYPE			QUANTI				
ANALYTICAL DATA A APPLICABLE STANDA	WAILABLE FOR: RDS EXCEEDED IN:	Air- Groundwater-	Surface Drinkin	Maler-X 9 Water-	Groundwater Surface Wate	- er-	Soil-X Air-	Sediment-X

1 West Main Street

West Main Street

GEOTECHNICAL INFORMATION: SOIL/ROCK TYPE: GROUNDWATER DEPTH: LEGAL ACTION: rype: STATUS: like-Federal-Negotiation in Programs-REMEDIAL ACTION: Coder Sigues. Proposed Under Lesign-Programs-NATURE OF ACTION: Completed-ASSESSMENT OF ENVIRONMENTAL PROBLEMS: There is no evidence of leachate at the site. There is no evidence of surface water contamination attributable to the landfill. No environmental problems exist that can be associated with the disposal that hazardcus waste. ASSESSMENT OF HEALTH PROBLEMS: USEPA COMPREHENSIVE INVIRONMENTAL RESPONSE COMPENSATION AND LIABILITY INFORMATION SYSTEM (CERCLIS) SITE INFORMATION EPA-ID: NYD980507719 Site Name: BEACON LF Site-1D: 0201768 Site Street: MUNICIPAL PARK Site City/State/Zip: BEACON, NY 12508 NFRAP (No Further Remedial Activity Planned) Status: NO FURTHER REMEDIAL ACTION PLANNED Owner Indicator: Other Incident Type: NPL Status Indicator: Not on the MRL Incident Category: USGS Hydrological Unit: 02020008 Non-NPL Status: RCRA Flag: NFRAP Federal Facility Flag: Not a Federal Facility SITE ALIAS INFORMATION Alias Name: BEACON LF Alias Street: NΥ Alias ID. 101 Alias City/State/Zip: DUTCHESS OFBRASLE UNIT INFORMATION Operable Unit ID: 00 Operable Unit Name: SITEWIDE ACTION INFORMATION

Page 6



Page 7

Name; Lead; Qualifier; Category: IFMS Entry; Anomaly Indicator;	DISCOVERY EPA Fund-Financed No Entry into IFMS	Actual Start Date: Actual Completion Date: Operable Unit ID: Planning Status: Finarcial Budget Source:	19800401 00
Name: Lead: Qualifier: Category: IFMS Entry: Anomaly Indicator:	SITE INSPECTION EPA Fund-Financed Both Intramural and Extramural Entry into (FMS)	Actual Start Date: Actual Completion Date: Operable Unit ID: Planning Status: Financial Budger Source:	19810901 19811001 00 Hemedial
Name: Lead: Qualifier: Category: IFMS Entry: Anomaly Indicator:	PRELIMINARY ASSESSMENT State, Fund Financed Low Both Intramural and Extramural Entry into IFMS	Actual Start Date: Actual Completion Date: Operable Unit ID: Planning Status: Financial Budget Source:	19870304 00 Remedial
Name: Lead: Qualifier: Category: IFMS Entry: Anomaly Indicator:	SITE INSPECTION EPA Fund-Financed NFRAP (No Futher Remedial Action Planned) Both Intramural and Extramural Entry into IEMS	Actual Start Date: Actual Completion Date: Operable Unit ID Planning Status: Financial Budget Source:	19501001. 19901228 00 Remedia]
Name: Lead: Qualifier: Category: IFMS Entry: Anomaly Indicator:	SITE INSPECTION State, Fund Financed NFRAP (No Futher Remedial Action Planned) Both Intramural and Extramural Entry into IFMS	Actual Start Date: Actual Completion Date: Operable Unit ID: Planning Status: Financial Budget Source:	19910101 / 19910624 00 Remedial
Name: Lead: Qualifier: Category: IFMS Entry: Anomaly Indicator:	ARCHIVE SITE EPA In-House No Entry into IFMS	Actual Start Date: Actual Completion Date: Operable Unit ID: Planning Status: Financial Budget Source:	19910624 90

FINANCIAL INFORMATION

No financial information was provided





Owner	:	Municipal			
Owner	Name:	CITY OF BRACOW	Operator:		TNACTIVE
Owner	Street:	424,426,428,420 BIUDD om	permitor	Name:	Unknowe
Owner	City/ZIP/State:	BEACON NY 12500	Sperator	Street:	Unknown
Owner	Telephone:	Unknown	Operator	City/ZIP/State.	omenown
	-	5.1.1.1.0WII	Operator	Telephone:	Unknown

### SITE IMPACT DATA

Affected Media:

 Contamination of...
 Boundees Subscance Exposed? No

 ...Surface Water?
 Unknown

 ...Groundwater?
 Yes

 ...Drinking Water? No
 Threat of Direct Contact? Unknown

 Surface Water Class:
 Unknown

 Groundwater Class:
 Unknown

 Impact on Opecial Status Fish or Wildlife Resource?
 Unknown

 Active Drinking Water Supply? Yes

Descriptions:

Surface Water: Surface water can be found 800° west of the site.

#### Groundwater:

Groundwater can be found 20 ' below the surface. flowing file west to northwest direction.

Drinking Water:

The nearest drinking well is located upgradient from the site. (.9 miles north)

Fish or Wildlife Mortality: None provided Special Status Fish or Wildlife Resource: None provided

#### Building:

Private homes can be found on site.

THREAT TO THE ENVIRONMENT OR PUBLIC HEALTH

Threat to the Environment or the Public Health: Environment/Public Health

Threat Posed by Disposed Hazardous Substance:

VOC's, PAH's, and inorganic compounds have been positively identified on site. Liners and batriers were not used at the site. The area has been excavated and reworked. More of the coal tar found on site could still remain buried on other parts of the site.



HAZARDOUS SUBSTANCES DISPOSED: VOCs: Yes Semi-VOCs: Yes PCBs: No Pesticides: No Metals: No Asbestos: No Hazardous Substances Disposed: Coal Tar Wastes: benzene 71-43-2, ethylbenzene 100-41-4, methylene chloride 75-09-2, toluene 108-88-0, acenaphthene 83-32-9 acenaphthylene 208-96-8, benzo(a)anthracene 56-35-3, benzo(k)fluoranthene 207-08-9, chrysene 218-01-9, fluoranthene 206-44-0, naphthalene 91-20-3 SELECTED ANALYTICAL INFORMATION: Samples Collected: Air, Groundwater, Surface Soil, Subsurface Soil Air: 2 air samples and 8 soil vapor samples were taken Surface Water: None provided Surface Soil: Analyses indicated that organic compounds associated with coal gasification have been positively identified in the surface soil samples and to a limited extent in the subsurface soils. Waste: None provided EPToxicity: None provided Groundwater: Inorganic compounds were found in the groundwater, while organic compounds were not. Sediment: None provided Subsurface Soil: See Sursoil Leachate: None provided TCLP: None provided AGENCY INFORMATION: Regulatory Agencies Involved: NYSDEC Dutchess County DOH EPA Preparer: Julie Welch EnvEngrTechl May 24, 1994

Page 10

1 West Main Street

Page 11



# * BROWNFIELDS SITES IDENTIFIED WITHIN 1 MILE SEARCH RADIUS *

PLEASE NOTE: * Compass directions can vary substantially for sites located very close to the subject property address.

Map Identification Numb MAP LOCATION INFORM Site location mapped by: M Approximate distance from Brownfield Program: Volunteer:	er 5 IATION MANUAL M property: Voluntar Central I	CH - BEACON MGP 416,418,420,422,424,426, 428, 430, RIVER RD. MAPPING (3) 5 519 feet to the SE Ty Cleanup Program Hudson Gas & Electric Corp.	BEACON, NY 12508 ADDRESS CHANGE INFORMATION Revised street: 416 RIVER RD Revised zip code: NO CHANGE	Facility Id: V00293
Map Identification Numb MAP LOCATION INFORM Site location mapped by: N Approximate distance from This facility has been delet Brownfield Program: Volunteer:	er 6 ATION ANUAL M Property: ed from th Voluntar SCENIC	BEACON SALVAGE PROPERTY RED FLYNN DRIVE MAPPING (4) 781 feet to the SSW e reported data. Data reflects last reported information. y Cleanup Program HUDSON LAND TRUST, INC.	BEACON, NY 12508- ADDRESS CHANGE INFORMATION Revised street: RED FLYNN DR Revised zip code: NO CHANGE	Facility Id: V00444
Map Identification Number MAP LOCATION INFORM Site location mapped by: M Approximate distance from This facility has been delete Brownfield Program: Volunteer:	er 7 ATION IANUAL M property: ed from the Voluntary Scenic H	FERRY ROAD WATERFRONT SITE WEST END OF FERRY STREET APPING (4) 1030 feet to the S e reported data. Data reflects last reported information. y Cleanup Program udscn Land Trust, Inc.	BEACON, NY 12508 ADDRESS CHANGE INFORMATION Revised street: FERRY ST Revised zip code: NO CHANGE	Facility Id: V00096

Copyn 2005	Toxics Targeting, Inc. June 27, 2005	

EcoY/coll

1 West Main Street

Page 12

Map Identification Number 8 MAP LOCATION INFORMATION Site location mapped by: MANU/ Approximate distance from prope Brownfield Program: Brow	LONG DOCK BEACON 8 & 12-25 LONG DOCK ROAD N AL MAPPING (4) erty: 1613 teet to the SSW vnfield Cleanup Program	BEACON, NY 12508- ADDRESS CHANGE INFORMATION Revised street. LONG DOCK RD Revised zip code: NO CHANGE	Facility Id: C314112
Map Identification Number 9MAP LOCATION INFORMATION Site location mapped by: ADDRE Approximate distance from properBrownfield Program:Volume Dia C	DIA CENTER FOR THE ARTS 125 WOLCOTT AVE. SS MATCHING rty: 2296 feet to the SSE htary Cleanup Program Center for the Arts	BEACON, NY 12508- ADDRESS CHANGE INFORMATION Revised street: NO CHANGE Revised zip code: NO CHANGE	Facility Id: V00299
Map Identification Number 10 MAP LOCATION INFORMATION Site location mapped by: ADDRE Approximate distance from proper Brownfield Program: Envir	BRUNETTO CHEESE 33 NORTH CEDAR STREET SS MATCHING rty: 4025 feet to the E conmental Restoration Program	BEACON (C), NY 12508- ADDRESS CHANGE INFORMATION Revised street: NO CHANGE Revised zip code: NO CHANGE	Facility ld: B00130



1 West Midin Street

Page 13



# * SOLID WASTE FACILITIES IDENTIFIED WITHIN THE 1 MILE SEARCH RADIUS *

PLEASE NOTE: * Compass directions can vary substantially for sites located very close to the subject property address.

Map Identification I	Number 11	ALL-COUNTY DENNING'S AVENUE	REACON	Facility Id: 14R01
MAP LOCATION INF Site location mapped Approximate distance	FORMATION I by: MANUA e from property	L MAPPING (3) : 4272 feet to the SSE	ACORESS CHANGE INFO Revised street: 78 DENN Revised zip code: NO CH	ORMATION INGS AV IANGE
This facility has been	n deleted from t	he reported data. Data reflects last reported information.		
PERMIT NUMBER	PERMIT EXPIRES	FACILITY TYPE	FACILITY STATUS	WASTE TYPES
		SMALL TRANSFER STATION (<50000 CY/YR)	Registered	Residential
Map Identification N	lumber 12	ALL-COUNTY DENNING'S AVENUE	BEACON	Facility Id: 14Z01
MAP LOCATION INF Site location mapped Approximate distance	ORMATION by: MANUAL from property:	MAPPING (3) 4272 feet to the SSE	ADDRESS CHANGE INFO Revised street: 78 DENNI Revised zin code: NO CH	
PERMIT NUMBER	PERMIT EXPIRES	FACILITY TYPE	FACILITY STATUS	WASTE TYPES
3130200028000030	06/30/2001	MISCELLANEOUS/UNKNOWN	None	Residential
Map Identification N	umber 13	ALL COUNTY RESOURCE MGT. NO ADDRESS INFORMATION PROVIDED		Facility Id: 14T15
MAP LOCATION INF Site location mapped Approximate distance	ORMATION by: MANUAL from property:	MAPPING (3) 4443 feet to the S	ADDRESS CHANGE INFO Revised street: 80 DENNIN Revised zip code: 110KNO	RMATION NGS AVE
PERMIT NUMBER	PERMIT EXPIRES	FACILITY TYPE	FACILITY STATUS	WASTE TYPES
3130200028000030	06/03/2000	LARGE TRANSFER STATION (>50000 CY/YR)	None	Sludge, Grit

PERMIT EXPIRES

PERMIT

NUMBER



Page 14

### Map Identification Number 14 BEACON RECY. & TRANSFER DENNINGS AVE

MAP LOCATION INFORMATION Site location mapped by: MAP COORDINATE (2) Approximate distance from property: 4456 feet to the SSE

FACILITY TYPE

BEACON

Registered

Facility Id: 14R07

ADDRESS CHANGE INFORMATION Revised street. NO CHANGE Revised zip code: 12580

FACILITY STATUS WASTE TYPES

SMALL TRANSFER STATIC/N (<50000 CY/YR)

_

Residential, Demolition, Recyclables



1 West Main Street

Page 15



* OIL STORAGE FACILITIES LARGER THAN 400,000 GALLONS IDENTIFIED WITHIN 1 MILE SEARCH RADIUS *

PLEASE NOTE: * Compass directions can vary substantially for sites located very close to the subject property address.

Map Identification Number 15 GARRET STORM, INC LONG DOCK					
		LONG DOCK		BEACON, NY 12508	Facility Id 3-2500
MAP LOCATIO Site location ma Approximate dis	N INFORMATION apped by: MANUAL I stance from property	MAPPING (4) : 1539 feet to the SSW		ADDRESS CHANGE INFORMATION Revised street: NO CHANGE Revised zip code: UNKNOWN	
TANK NUMBER	TANK STATUS		PETROLEUM PRODUCT	CAPACITY TANK	INSTALL
NO TANK INFO	RMATION WAS DE			UCATION LOCATION	DATE

ORMATION WAS REPORTED FOR THIS SITE.



1 West Main Street

Page 16



* NO HAZARDOUS WASTE TREATMENT/STORAGE/DISPOSERS IDENTIFIED WITHIN THE 1 MILE SEARCH RADIUS *

1 West Main Street

Page 17



* NO RCRA CORRECTIVE ACTION SITES IDENTIFIED WITHIN 1 MILE SEARCH RADIUS *
West Main Street

HAZARDOUS MATERIAL SPILLS INTRODUCTION 

The Hazardous Material Spills in this section are divided into eight spill cause groupings. These include:

Active Spills Section: Spills with incomplete paperwork that may or may not be cleaned up (See Date Cleanup Ceased)

- 1) Tank Failures
- 2) Tank Test Failures
- 3) Unknown Spill Cause or Other Spill Cause Hazardous Spills
- 4) Miscellanous Spill Causes: Equipment Failure, Human Error, Tank Overfill, Deliberate Spill, Traffic Accidents, Housekeeping, Abandoned Drum, and Vandalism,

Closed Status Spills Section: Spills with completed paperwork that may or may not be cleaned up (See Date Cleanup Ceased)

- 5) Tank Failures
- 6) Tank Test Failures
- 7) Unknown Spill Cause or Other Spill Cause Hazardous Spills

8) Miscellanous Spill Causes: Equipment Failure, Human Error, Tank Overfill, Deliberate Spill, Traffic Accidents. Housekeeping, Abandoned Drum, and Vandalism.

All spills within each spill cause category are presented in order of proximity to the subject site address.

Please note that spills reported within 0.25 mile (or one-eighth mile in Manhattan) are mapped and profiled.

Between 0.25 mile (or one-eighth mile in Manhattan) and 0.5 mile, only the following spills are mapped and profiled:

- * Tank Failures:
- Tank Test Failures;
- * Unknown Spill Cause or Other Spill Cause;
- * Spills greater than 100 units of quantity; and
- * Spills reported in the NYSDEC Fall 1993 MTBE Survey.

A table at the end of each section presents a listing of reported Miscellanous Spills with less than 100 units located between 0.25 mile (or one-eighth mile in Manhattan) and 0.5 mile. These spills are neither mapped nor profiled.



_____

Page 19



NO ACTIVE TANK FAILURES IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS



-----

Page 20



NO ACTIVE TANK TEST FAILURES IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS



Page 21



ACTIVE UNKNOWN CAUSE SPILLS AND OTHER CAUSE SPILLS IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS

Please Note: * - Compass directions can vary substantially for sites located very close to the subject property address.

**Site profiles in this report section contain 36 data fields of information obtained from the New York Department of Environmental Conservation. Since 1/1/02, the DEC has only released information for 12 of those data fields: spill name, address components, spill date, close date, material spilled, quantity spilled, units, cause of spill and resource affected. As a result, the other 24 data fields are only updated through 1/1/02. Please note that the "Meets Cleanup Standards" status for individual spills could have changed since that time.

	ai spills could !	have changed since	that time.

Map Identificatio	on Number 16	GARREIT STO	RM							
		LONG DOCK, RE	ED FLYNN DRIVE		BEACON, NY		Spill Number	: 9212560	Close Dat	te:
MAP LOCATION Site location map Approximate dista	INFORMATION ped by: MANUAL ance from property:	MAPPING (4) 1516 feet to the	e SSW		ADDRESS CH/ Revised street: Revised zip coo	ANGE INFOR NO CHANGI le: 12508	MATION	**Information up	dated throug	jh: 01/31/2005
Notifier Type: Caller Name: DEC Investigator:	MAJOR OIL FACI RESPONSIBLE P. JOHN GRIFFITH McCABE	LITY (>400,000 G ARTY	AL)	Spiller: Notifier Name: Caller Agency:	SAME	DRM INC.		S	piller Phone otifier Phone	: :
Spill Class:	KNOWN RELEAS	E WITH MINIMAL	POTENTIAL FOR	R FIRE OR HAZARD				Contact Pe	Jaller Phone srson Phone:	: (914) 831-1100
Spill Date	Date Cleanup Cea	sed	Cause of Spiil				IG RP;CORRECT	IVE ACTION T	AKEN	
02/04/1993					Resource Affected Me		Meets Cleanup Standards		Penalty Recommended	
Material			UNKNOWN		GROUND	WATER	NO		No	
Spilled			Material Class		Quantity Spilled	Inite	Unk Quantity	Quantity		Unk Quantity
#2 FUEL OIL			UNKNOWN			Units	Spilled 7	Recovered	Units	Recovered ?
Caller Remarks:	DISCOVERED CO	NTAMINATED SC			U	POUNDS	NO	0	POUNDS	NO
DEC Investigator F	Remarks: NO DE	C INVESTIGATO	R REMARKS GIV	EN FOR THIS SPIL	MARA IS AWAR 	E OF SITE		****		

** See beginning of spills section for more details.



1 West Main Street

Page 23



NO ACTIVE HAZARDOUS SPILLS - MISC. SPILL CAUSES - EQUIPMENT FAILURE, HUMAN ERROR, TANK OVERFILL, DELIBERATE SPILL, TRAFFIC ACCIDENT, HOUSEKEEPING, ABANDONED DRUM, AND VANDALISM - IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS. All spills mapped and profiled within 1/4 Mile. Between 1/4 Mile and 1/2 Mile, spills reported to be greater than 100 units and spills reported in the NYSDEC Fall 1998 MTBE Survey are mapped and profiled. Spills reported to be less than 100 units are listed in a table at the end of this section.

#### THE FOLLOWING ACTIVE SPILLS FOR THIS CATEGORY WERE REPORTED BETWEEN 1/4 MILE AND 1/2 MILE FROM THE SUBJECT ADDRESS. THESE SPILLS WERE REPORTED TO BE LESS THAN 100 UNITS IN QUANTITY AND CAUSED BY: EQUIRMENT FAILURE, HUMAN ERROR, TANK OVERFILL, DELIBERATE SPILL, TRAFFIC ACCIDENT, HOUSEKEEPING, ABANDONED DRUM, OR VANDALISM. THESE SPILLS ARE NEITHER MAPPED NOR PROFILED IN THIS REPORT.

FACILITY ID FACILITY NAME No dropped spills found for this category

STREET

CITY

----





NO CLOSED STATUS TANK FAILURES IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS

.

;





-----

-----

SCOOL CONTRACTOR

NO CLOSED STATUS TANK TEST FAILURES IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS

Page 25



Page 26



CLOSED STATUS UNKNOWN CAUSE SPILLS AND OTHER CAUSE SPILLS IDENTIFIED WITHIN 1/2 MILE SEARCH RADIUS 

Please Note: * - Compass directions can vary substantially for sites located very close to the subject property address

**Site profiles in this report section contain 36 data fields of information obtained from the New York Department of Environmental Conservation. Since 1/1/02, the DEC has only released information for 12 of those data belds: spill name, address components, spill date, close date, material spilled, quantity spilled, units, cause of spill and resource affected. As a result, the other 24 data fields are only updated through 1/1/02. Please note that the "Meets Cleanup Standards" status for individual spills could have changed since that time. 

Map Identificatio	en Number 18	KELLAM PROP FERRY ST AND	ERTY BEACON		BEACON, NY N		Spill Number:	9700726	Close Date	e: 06/23/1997
MAP LOCATION Site location map Approximate dista	INFORMATION ped by: MANUAL ince from property:	MAPPING (3) 1371 feet to the	e ESE		ADDRESS CHA Revised street: Revised zip code	NGE INFORM FERRY ST / I	MATION BEACON ST	Information up	dated throug	h: 01/01/2002
Source of Spill: Notifier Type: Caller Name: DEC Investigator:	PRIVATE DWELL OTHER DEBBIE THOMPS MCCABE	ING ION	Cont	Spiller: Notifier Name: Caller Agency: act for more spill info:	KELLAM PROPI DEBBIE THOMP IRA D CONKLIN ABOVE	ERTY PSON & SON		S Ni	piller Phone: otifier Phone: Caller Phone:	(914) 561-1512 (914) 561-1512
Spill Class:	KNOWN RELEASE	E WITH MINIMAL	POTENTIAL FO	OR FIRE OR HAZARD			_	Contact Pe	rson Phone:	. –
Spill Date	Date Cleanup Cea	sed	Cause of Call		, NO DEC RESPU	NSE; WILLIN	G RP;CORRECTI	VE ACTION T	AKEN	
04/10/1997			Cause of Spill		Resource Affected Meets Clear			Standards	Penalty Recommended	
					ON LAND		YES		the second recommended	
Spilled			Material Class		Quantity Spilled	Unite	Unk Quantity	Quantity		Unk Quantity
LUBRICATING OI	L		PETROLEUM			OTING	Spined ?	Recovered	Units	Recovered ?
Caller Remarks:	comp was excavati	ng soil on propert	y and found to b	e saturated by lube oil	0	GALLONS	YES	0	GALLONS	NO
	waiting for sample	to come back		a work alloa by 100e of	son excavated	sample taker	n			*=========
DEC Investigator Remarks:	06/23/97 LETTER	SENT; BASED O	N SITE ASSESS	SMENT REPORT, NFA	<b>A</b> ;		******	······		

** See beginning of spills section for more details.

Copyright 2005	Toxics Targeting, I	Inc. June 27, 2005
----------------	---------------------	--------------------

1 West Main Street

Page 27

Map Identificati	on Number 19	GARRETT STOR FERRY STREET	M		SE			Spill Number:	2900064	Close Date	a. 06/10/1989
MAP LOCATION Site location map Approximate dist	INFORMATION ped by: MANUAL ance from property:	MAPPING (4) 1516 feet to the	SSW		ADI Rev Rev	DRESS CHAi vised street: 1	NGE INFORM NGE INFORM NO CHANGE	MATION	Information up	dated through	n: 01/01/2002
Source of Spill: Notifier Type: Caller Name: DEC Investigator Spill Class:	UNKNOWN DEC JOHN K. O'MARA D. TRAVER	E WITH MINIMAL	Contact f	Spiller Notifier Name: Caller Agency or more spill info: IRE OR HAZARI	- - NY: D;NQ:	SDEC DEC RESPO	NSE:WILLIN		S No Contact Pe	piller Phone: otifier Phone: Caller Phone: erson Phone:	(914) 255-5453
Spill Date	Date Cleanup Cea	ised	Cause of Spill	*****		Resource A	ffoctod		VE ACTION T	4KEN 	
04/04/1989	06/10/1989		UNKNOWM			GÝOLNOV		Meets Cleanup S	Standards	Penalty Rec	commended
Material			Material					UNKNOWN		NO	
UNKNOWN PETF			Class			Quantity Spilled	Units	Unk Quantity Spilled ?	Quantity Recovered	Units	Unk Quantity Recovered 2
Caller Remarks			PETROLEUM			0	GALLONS	NO	0	GALLONS	NO
DEC Investigi		AMINATION OF G	ROUNDWATER AT	GARRET STOR	M				• • • • • • • • • • • • • • • • • • • •		
** See beginning of	Remarks: NO DE	EC INVESTIGATO	? REMARKS 'GI\/EI	N FOR THIS SPIL	L	· · ·					
Map Identification	n Number 20	CERVONES AUTO 14 COMMERCE S	<b>)</b> T		BEA	CON, NY NO	) ZIP PROVID	Spill Number: 0	102464	Close Date:	06/08/2001
MAP LOCATION I Site location mapp Approximate dista	NFORMATION ed by: ADDRESS nce from property:	MATCHING 1970 feet to the E	E		ADD Revis Revis	RESS CHAN sed street: No	GE INFORM/ O CHANGE 12508	ATION **In	formation upd	ated through:	12/06/2002
Source of Spill: Notifier Type: Caller Name: DEC Investigator:	OTHER COMM/INE LOCAL AGENCY MCCABE/WEITZ	DUSTRIAL	Contact for	Spiller: Notifier Name: Caller Agericy:	UNK	NOWN			Sp Not	iller Phone: ( ifier Phone:	) -
Spill Class:	KNOWN RELEASE	WITH MINIMAL P	OTENTIAL FOR FI	RE OR HAZARD;	JERF DEC I	RESPONSE;	E WILLING RP;	CORRECTIVE AC	Contact Per	son Phone: (8	345) 831-8870

.

· · · ·



_____

Page 28

Spin Date	Date Cleanup Ceased	Cause of Spill		Resource	Affected	Moets Cleanu	n Stondaut		
06/02/2001		UNKNOWN		ONLIAND		meeta oleanu	p Standards	Penalty Re	commended
Material						NO		NO	
Spilled		Material Class		Quantity Spilled	Units	Unk Quantity Spilled ?	Quantity Recovered	Units	Unk Quantil
#2 FUEL OIL		UNKNOWN UNKNOWN		0 C	GALLONS GALLONS	YES	0	GALLONS	NO
Caller Remarks:	oil was observed under oil tank u	nclear what will be need to be done to	net this					GALLONS	NO
DEC Investigator	r Remarks:			up					
06/06/2001 SEE	ONE PAGE UPDATES BY D. WEIT	Z & V. MCCABE. ALSO SEE SPILL N	NUMBE	R 0102481	(CLOSED SP	ILL NUMBER).			
Map Identificatio	on Number 21 RENCON RES 157 MAIN ST	r .	BEA	CON, NY N	O ZiP PROV	<b>Spill Number:</b> DED	0102481	Close Date	: 06/05/2001
Site location map	ance from property: 2170 feet to the	e E	ADDI Revis Revis	RESS CHAI sed street: 1	NGE INFORM NO CHANGE	* IAT [.] ON	*Information upo	lated through	12/06/2002
Source of Spill: Notifier Type: Caller Name: DEC Investigator:	UNKNOWN AFFECTED PERSONS : MCCABE/WEITZ	Spiller: Notifier Name: Celier Agency Contact for more spill infor		NOWN	. 12,30		SI No	oiller Phone: tifier Phone:	() -
Spill Class:	KNOWN RELEASE WITH MINIMA	L POTENTIAL FOR FIRE OR HAZARI		EK EÓ BERDA			Contact Pe	son Phone:	() -
Spill Date	Date Cleanup Ceased	Cause of Spill			NSE, WILLING	GRP;CORRECT	IVE ACTION TA	KEN	
06/03/2001		UNKNOWN	 	Resource A	ffected	Meets Cleanup	Standards	Penalty Rec	ommended
Material		hintorial				YES		NO	
Spilled	ERIAL	Class	2	Quantity Spilled	Units	Unk Quantity Spilled ?	Quantity Recovered	Units	Unk Quantity Recovered 2
JNKNOWN MATE	ERIAL		ł	0. Q	GALLONS GALLONS	YES YES	0	GALLONS	NO
Jaller Kemarks:	CALLER STATES THAT PEOPLE / SOMETHING ON HIS PROPERTY.	ARE GETTIN SICK AT REST FOR AN CALLER REC A CALL ASAP	UNKN	OWN REAS	ON. HE THIN	KS THAT THE N	EIGHBOR DUN	ACLONS MPED	INU

.

1 West Main Street

Page 29

DEC Investigator Remarks:

06/05/2001 CALLER STATES THAT THERE IS A BLACK SEMILY LIQUID IN THE BASEMENT THAT SMELLS LIKE VOC'S. INFORMED DUTCHESS CO. H.D. (H. GONIA). DCDOH WILL CHECK OUT SITUATION ASAP. D. WEITZ OF SPILLS TO RESPOND. THIS SPILL NUMBER CLOSED. SEE SPILL NUMBER

** See beginning of spills section for more details.

Map Identificatio	n Number 22	52 MONELL PL Same			BEACON	N⊻ N		Spiil Number:	9508392	Close Date	: 10/10/1995
MAP LOCATION INFORMATION Site location mapped by: MANUAL MAPPING (3) Approximate distance from property: 2480 feet to the NNE Source of Spill: MALOR OIL FACILITIES (5)		ADDRESS CHANGE INFORMATION Revised street: 52 MONELL PL Revised zip code: 12508			* MATION PL	**Information updated through: 01/01/2002					
Source of Spill: Notifier Type: Caller Name: DEC Investigator:	MAJOR OIL FACI CITIZEN WM MCKECWN MCCABE	LITY (>400,000 G	AL) Contact for	Spiller: Notifier Name: Caller Agency: r more spid info:	TOWN OF BEACON RESIDENCE SAME			Spiller Phone: Notifier Phone: Caller Phone: (914) 831-4		(914) 831-4248	
Spill Class:	KNOWN RELEAS	E WITH MINIMAL	POTENTIAL FOR FI	RE OR HAZARD					Contact Pe	rson Phone:	, ,
Spill Date	Date Cleanup Cea	ised	Cause of Spill			01436		P;CORRECTIVE	ACTION TAKE	N	
10/10/1995					Resc	ource A	ttected	Meets Cleanup Standards		Penalty Recommended	
 Material					SUR	FACE	WATER	YES		NO	
Spilled			Material Class		Quar Spille	ntity ad	Units	Unk Quantity Spilled ?	Quantity Recovered	Units	Unk Quantity
RAW SEWAGE			NON-PETROLEUM/	NON-HAZARDO	US 0		GALLONS	VES	0	01143	Recovered ?
Caller Remarks:	RAW SEWAGE FR WOULD LIKE RET	ROM CITY SEWAG	GE SYSTEM IS LEAK	ING AND IS RUN	NNING INT	O HUC	SON RIVER	ONGOING PRO	BLEM CALLE	GALLONS R	YES
DEC Investigator Remarks:	10/10/95 NO SPIL	L REFERED TO H	IEALTH DEPT.								

** See beginning of spills section for more details.

#### 1 West Main Street

Page 30

		•
	CLOSED STATUS HAZARDOUS SPILLS - MISC SPILL CAUSES FOUNDARY PARTY	
	SPILL, TRAFFIC ACCIDENT, HOUSEKEEPING, ABANDONED DRUM, AND VANDALISM - IDENTIFIED MUTING OVERFI	LL, DELIBERATE
	NYSDEC Fall 1998 MTBE Survey are manned and profiled. Sollid and 1/2 Mile, spills reported to be greater than 100 units and spills rep	ARCH RADIUS.
*	Comments are listed in a table at the end of the	lis section.
	- Compass directions can vary substantially for sites located very close to the subject property address	

Please Note: * - Compass directions can vary substantially for sites located very close to the subject properly address.

**Site profiles in this report section contain 36 data fields of information obtained from the New York Department of Environmental Conservation. Since 1/1/02, the DEC has only released information for 12 of those data fields: spill name, address components, spill date, close date, material spilled, quantity spilled, units, cause of spill and resource affected. As a result, the other 24 data fields are only updated through 1/1/02. Please note that the "Meets Cleanup Standards" status for individual spills could have changed since that time. 

Map Identification Number 23 **BEACON OIL** 16 MAIN STREET Spill Number: 9403880 BEACON, NY NO ZIF PROVIDED Close Date: 06/27/1994 MAP LOCATION INFORMATION **Information updated through: 01/01/2002 Site location mapped by: MANUAL MAPPING (3) ADDRESS CHANGE INFORMATION Approximate distance from property: 860 feet to the E Revised street: NO CHANGE Revised zip code: 12508 Source of Spill: OTHER COMM/INDUSTRIAL Notifier Type: Spiller: BEACON OIL RESPONSIBLE PARTY Spiller Phone Notifier Name: Caller Name: LOUIS RACONELLI Caller Agency: BEACON OIL Notifier Phone: DEC Investigator: McCABE Caller Phone: (914) 831-0830 Contact for more spill info: Contact Person Phone: POSSIBLE REL WITH MIN POTENTIAL FOR FIRE OR HAZARD (OR KNOWN REL W/ NO DAMAGE);NO DEC RESP;WILLING RP;CORR ACTION TAKEN Spill Class: Spill Date Date Cleanup Ceased Resource Affected Meets Cleanup Standards Penalty Recommended 06/19/1994 06/27/1994 EQUIPMENT FAILURE NO Material Material Spilled Quantity Unk Quantity Quantity Class Unk Quantity Spilled Units Spilled ? Recovered Units Recovered ? #2 FUEL OIL PETROLEUM 10.00 GALLONS NO 0.00 Caller Remarks: FITTING LEAK CONTAINED ON PAVED DRIVEWAY SORBENT APPLIED AND PICKED UP WILL POWER WASH COMPLETED GALLONS NO DEC Investigator Remarks: NO DEC INVESTIGATOR REMARKS GIVEN FOR THIS SPILL.

** See beginning of spills section for more details.

1: West Main Sites:

Page 31

Map Identificatio	n Number 24	TOMPKINS TER 21 TOMPKINS A	RACE APT. √E.		BEACON NY NO ZIF PROVI	Spill Number:	9103003	Ciose Date: 06/17/1991
MAP LOCATION Site location map Approximate dista	INFORMATION ped by: ADDRES ince from property:	S MATCHING 1364 faet to the	NE		ADDRESS CHANGE INFORM Revised street. NO CHANGE Revised zip code: 12508	ATION **	Information	updated through: 01/01/2002
Source of Spill: Notifier Type: Caller Name: DEC Investigator:	OTHER COMM/// CITIZEN SYBAL CURRY TRAVER	NDUSTRIAL	Contact fo	Spiller: Notifier Nama: Caller Agancy: r more spill info;	TOMPKINS TERRACE ASSOC	<b>).</b>	Oraște d	Spiller Phone: Notifier Phone: Caller Phone: (914) 838-3828
Spill Date	Date Cleanup Cea	ased	Cause of Spill		Rosourco Affectual		Contact	Person Phone:
06/14/1991	06/17/1991		DELIBERATE		ON LAND	Meets Cleanup	Standards	Penalty Recommended
NO MATERIAL IN Caller Remarks:	FORMATION GIVE THE LANDLORD TO DCHD AND P	EN FOR THIS SPI PUT THE ORANG ESTICIDES. NFA	L E PEBBLES AROUN 6/17/91		E OF APTS.TWO PEOPLE WEN	IT TO HOSPITA		NO 
DEC Investigator	Remarks:	***						

09/27/95: This is additional information about material spilled from the translation of the old spill file: PESTICIDE ?.

** See beginning of spills section for more details.

THE FOLLOWING CLOSED SPILLS FOR THIS CATEGORY WERE REPORTED BETWEEN 1/4 MILE AND 1/2 MILE FROM THE SUBJECT ADDRESS. THESE SPILLS WERE REPORTED TO BE LESS THAN 100 UNITS IN QUANTITY AND CAUSED BY: EQUIPMENT FAILURE, HUMAN ERROR, TANK OVERFILL, DELIBERATE SPILL, TRAFFIC ACCIDENT, HOUSEKEEPING, ABANDONED DRUM, OR VANDALISM. THESE SPILLS ARE NEITHER MAPPED NOR PROFILED IN THIS REPORT.

FACILITY ID FACILITY NAME No dropped spills found for this category

STREET

CITY



West Main Street

Page 32



* PETROLEUM BULK STORAGE FACILITIES LESS THAN 400,000 GALLONS IDENTIFIED WITHIN THE 1/4 MILE SEARCH RADIUS * PLEASE NOTE: * Compass directions can vary substantially for sites located very close to the subject property address.

ADDRESS CHANGE INFORMATION Revised street: NO CHANGE Revised zip code: NO CHANGE
2 4 (914) 831-0830
'ACITYTANKINSTALLTESTCLOSEJONSLOCATIONDATEDATEDATE2000UNDERGROUND09/01/197409/01/198907/01/19982000UNDERGROUND09/01/197409/01/197409/01/19981000ABOVEGROUND ON LEGS RACKS ETC04/01/199109/01/1974550ABOVEGROUND ON LEGS RACKS ETC09/01/197409/01/1974
NOACUTE TOXTUMOR TOXMUTAG TOXREPRO TOXIRRIT TOXMCL4305XXXX73000XXXX
Facility Id 3-600787       Source: NYS DEC         ADDRESS CHANGE INFORMATION       Revised street: NO CHANGE         Revised street: NO CHANGE       Revised street: NO CHANGE
-N 14:77

.

#### 1 West Main Street

۰.

.

. . Page 33

۰.

CLOSE DATE

Operator Na Facility Typ	ame: JAMES SCHAEUFELE e: Other	Facility	y Phone #: (Gia	4) 440-0305		
TANK NUMBER	TANK STATUS	TANK CONTENT		TANK	INSTALL	TEST
T-001 T-002 T-003 T-004	IN SERVICE IN SERVICE IN SERVICE IN SERVICE	#1 2 OR 4 FUEL OIL #1 2 OR 4 FUEL OIL	2006 12006 12006 12000	UNDERGROUND VAULTED W/ ACCESS UNDERGROUND VAULTED W/ ACCESS UNDERGROUND VAULTED W/ ACCESS UNDERGROUND VAULTED W/ ACCESS	DATE 01/01/1945 01/01/1945 01/01/1945 C1/01/1945	DATE



1 West Main Street

Page 34



#### * NO HAZARDOUS WASTE GENERATORS/TRANSPORTERS IDENTIFIED WITHIN THE 1/4 MILE SEARCH RADIUS *



1 West Main Streat

Page 35



* NO CHEMICAL STORAGE FACILITIES IDENTIFIED WITHIN 1/4 MILE SEARCH RADIUS *



1 West Main Street

-----

Page 36



#### * NO TOXIC AIR, LAND AND WATER RELEASES IDENTIFIED WITHIN 1/4 MILE SEARCH RADIUS *



i West Main Street

·····

Page 37



Harrison March 2000

* NO WASTEWATER DISCHARGES IDENTIFIED WITHIN 1/4 MILE SEARCH RADIUS 1



West Main Street

-----

_____

Page 38



* NO AIR DISCHARGE FACILITIES IDENTIFIED WITHIN 1/4 MILE SEARCH RADIUS *



1 West Main Street

the second second second second

----- ..

Page 39



* NO CIVIL & ADMINISTRATIVE ENFORCEMENT DOCKET FACILITIES IDENTIFIED WITHIN THE 1/4 MILE SEARCH RADIUS * 



* Any ERNS Spills listed below are NOT mapped in this report  $\star$ 

ONSITE ERNS (A count of these spills can be found in the distance unterval table). THIS SITE IS NOT FOUND IN THE ERNS DATABASE

POTENTIALLY ONSITE ERNS: THIS SITE IS NOT FOUND IN THE ERNS DATABASE





NUMBER OF HOMES TESTED 44

AVERAGE FOR THE ZIF 4.69 FCM/LETER

STANCARD DEVIATION 3 56 PCTANTER

MAXIMUM READING FOR THE ZIP 21.2 PCI/DITER Unmappable facilities for 'Dutchess' County

Hazardous Su	bstance Waste Sites			
FACILITY ID	FACILITY NAME			
NY0111	METRO NORTH COMMUTER DE DIODOG	STHEET		
	CONNOTER RR DISPOS	PAILROAD EASEMENT	CIT	ZIP
Solid Waste	Facilities		GARRISON/BEACON	UNKNOWN
FACILITY ID	FACILITY NAME			
14D03	NENNI C & D	ST LEET		
14T07	BEACON T.S.		CITY	ZIP
14W02	LIBERTA'S BUSINESS CENTED			UNKNOWN
14W03	BLACKTOP MAINTENANCE COED			12508
14W04	MIDHUDSON STELICTURAL CONG			UNKNOWN
14Y01	BEACON COMPOSE FACTLINY			UNKNOWN
				UNKNOWN
Hazardous Sp	1115 - UNKNOWN CAUSE OF OTHER CAUSES			UNKNOWN
FACILITY ID	FACILITY NAME			
0302657	CARTER / UNKNAMECREEK	erre <b>ft</b>		
0201091	BEACON SEWAGE ODOR	OFF MAIN ST	CITY	ZIP
		MAIN ST	FJ SHKILU	12524
Hazardous Spi	.11s - TANK FAILURES - Closed		POUGHKEEDS13	12508
FACILITY ID	FACILITY NAME			
8600637		STREET	_	
		SEACON	CITY	210
Hazardous Spi	11s - TANK TEST FAILURES - Closed		BEACOM	12508
FACILITY ID	FACILITY NAME			
8709142	BREWSTER TRANSIT MTY	STENET	_	
	- anto a ton K	P.P. 15	CITY	ZIP
Hazardous Spi	11s - UNKNOWN CAUSE OR OTHER CAUSES OF A		BEACGN	12508
FACILITY ID	FACILITY NAME			
8400287		STREET		
8600097	1		CTIĂ	ZIP
9314331	111111111111111111111111111111111111111	BEACON	-	UNKNOWN
9312179	11111111111111111111111111	111111111111111111111111111111111111111	1	12508
9312047	111111111111111111111111111111111111111	121111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9303427	1111111111111111111111111	12321111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9301250	11111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9300552	311111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9300069	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9213488	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9204366	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9200245	11111111111111111111111111		111111111111111111111111111111111111111	111 UNKNOWN
9914793	CHGE: TRANSFORMER	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111 UNKNOWN
9813516	CRAIG HOUSE HOSPITAL	56 SOUTH DAVIES TERRACE	111111111111111111111111111111111111111	111 UNKNOWN
9702804	KELLAM PROPERTY	RT 9D	BEACON	12508
8804322	BUCHANAN TUG #4	FERRY ST	BEACON	12508
0212720	HUDSON RIVER INK	CLINTON POINT	BEACON	12508
0212713	HUDSON RIVER UNK	NEWBURG BEACON BRIDGE	BEACON	12508
0205541	ROUTE 52 JUST BEROPE	NEWBURGH BEACON BRIDGE	BEACON	UNKNOWN
0204867	HUDSON RIVER	PURPLE PARLOR CAR WASH	BEACON	12508
0107531	HUDSON RIVER	NEWBURG BEACON BRIDGE	BEACON	12508
9610503		NEWBURGH BEACON BRIDGE	BEACON	UNKNOWN
9112061	MOBIL S/S	GARY WAY	BEACON	12508
9104525	1 MILE NORTH OF BRIDGE	₹7. 9D	FISHKILL	UNKNOWN
8302038	A RECEIPTION	HI SD SOUTH	FISHXILI DIGUNUT	UNKNOWN
8201437			FISEKILL Process	UNKNOWN
8200790			FISHKILL	UNKNOWN
			FISHKILL	UNKNOWN
			ET SHKITU	INVOICE

-----

UNKNOWN



8001136	
0200375	
7800929	VACANT LAND
9505605	
8601219	
0207714	TEXACO TRUCK LEAK
8806303	HUDSON RIVER
	HUDSON RIVER
Hazardous Spille -	MICO ODTA
FACILITY ID	BACH THE CAUSES - Closed
8700000	FACILITY NAME
9800433	6803263 CDNTG 1999
9600893	CRAIG HOUSE
9100746	BEACON TERMINAL
8908911	ELBERT SERVICE STATION
8600034	1-84 EAST
0212084	
0007845	RAWSEWAGE: TOMPKINSTER
0205275	WINDGATE NURSING HOME
8601797	R/R TRACKS
9914310	AMIRAK MBAR A BEEF
9904626	TRAF.ACCID.: RT 9D
9606514	
9411142	CON ED SUBSTATION
0400981	RT. 9D
0305918	CRANESVILLEBLOCK: LOT#19
9305978	TRINITY BROADCASTING
	TEXACO RESEARCH CENTER
Petroleum Bulk Stor	
FACILITY ID	age Facilities
3-039241	FACILITY NAME
3-104094	CIRCLE M WOOD TREATING CORP
3-104485	BEACON SCHOOLS SUS GARAGE
	CITY OF BEACON HOUSING AUTHOR
Hazardous Waste Con	
FACILITY ID	Hadrison or Transport Facilities
NYW300023671	FACILLITY NAME
NYD982528325	
NYD982539439	TRANSPORTATION DEPT BEACON CITY SCH DIST
NYD001398551	PALISI AUTO BODY INC
NYR000071043	BRACON HAT COMPANY
NYN30003A509	BEACON ACUSING AUTHORITY
NYP000778308	SOUTHERN DUTCHESS SEPTIC
NYW000060992	AIR PRODUCTS & CHEM INC
NYR000061028	FISHKILL SEWER DISTRICT
	CENTRAL HUDSON GAS & ELECTRIC
Chemical Bulk Storag	e Prodlini
FACILITY ID	e raciiitiec
3-000062	ACILITY NAME
· –	A K A Y I R C H
Wastewater Discharge	8
FACILITY ID	FACILITY NAME
NY0233536	TOWN MORODA TRUCK
NY0234958	DETCUERS TEXACO

CTTV	
	ZIP
PELCON	UNKNOWN
PEACON	12508
BELCON	12508
PEACON	12508
BRACON	12508
PERCON	12508
BBR CON	12508
BEACON BEACON	12508
SEACON-TARRYTOWN	UNKNOWN
COLD SPRING-POUGHKEEPSII	UNKNOWN
PISHKILI,	12524
t ISHKILL	12524
FISHKIDL	UNKNOWN
FISHMILL	UNKNOWN
FISHKILL	12524
FISHKILL	12524
GLENHAM	12508
	12300
CITY	210
BEACON	UNKMORN
BEACON	UNKNOUM
BEACON	12500
	12308
CITY	710
_	UNKNOWN
BEACON	UNKNOWN
BEACON	12500
BEACON	12500
BEACON	10500
BEACON,	12500
FISHKILL	UNKNOWN
FISHKTLL	UNKNOWN
N/S	UNKNOWN
	ONMONIA
<b>67</b> -1	
CTTY	ZIP
BEACON	12508
CITHU	
CT 1.X	ZIP
	UNKNOWN
	UNKNOWN
	UNKNOWN
	UNKNOWN

FISEKIGL

FISHKILL

GLENHAM

NEWBURGH

FISHKILL CREEN

GLENHAM/FISHKILL

NEWBURGH/BEACON

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

Air Releases FACILITY ID

NY0234982

NY0249947

NYU300092

FACILITY NAME

JUDSON OIL CO

DUTCHESS DOCKS REMEDIATION PRO

FERREIRA MOBIL REM PROJ

STREET

UNK EXACT ADDRESS

NUCHBURGH BRIDGE

UNDER NEWS/BEACON BRIDGE

BEACON-NEWBURGH BRIDGE

WERACK LINE MILE#52-#75

RTOD / BAXTERTOWN RD EXT

EAST FISHKILL SUB STATION

LCP 19 STONY KILL WOODS

124 TOMPKINS TERRACE

UNKNOWN

STREET

RT 9D

UNKNOWN

LOUDON DR

SOUTH AVENUE

DELADERNGE AVE

HUDSON RAILLINF

EFFAKNOT TUNNAL

1 FORRESTAL HEIGHTS

1 FORRESTAL FEICHTS

CHELSEA PUMPING SUBSTATION

11 MER.MT RD

MAIN STREET

STREET PC BOX 940

STREET

378 9D

5 SAIN STREET

1 MAIN STREET

INDUSTRIAL PARK

MAL N ROAD

P G BOX 49

CNENOWN

STREET

STREET

20UTE 9D

MAIN STREET

2

CITY

ZTP

**UNKNOWN** 



3602700063

International and the second sec

NABISCO INC

.

-ILCOTT AVENUS

------

BEACON

12508

.

.

1.00

Copyright 2005 Toxics Targeting, Inc.

1 West Main Street

June 27, 2005

# Hazardous waste codes presented in individual Toxic Information Profiles are defined below.

Source: U, S. Environmental Protection Agency

## How Toxic Site Locations Are Mapped

Toxics Targeting maps toxic site locations on a computerized version of the U.S. Census map using addresses and map coordinates provided by site owners/operators or government agencies. In order to allow site locations to be verified independently, the technique used and any address corrections that were made in order to locate toxic sites with incomplete or inadequate site location information. The mapping process is explained below.



## **Information Source Guide**

*Toxics Targeting's Computerized Environmental Reports* contain government information compiled from 17 categories of reported known or potential toxic sites. Each toxic site database is described below with information detailing a) the source of the information, b) the date when each database is covered to and c) when *Toxics Targeting* obtained the information.

<u>Inactive Hazardous Waste Disposal Site Registry</u>: New York State database that maintains information and aids decision making regarding the investigation and cleanup of toxic sites. The Registry's data includes two-page profiles noting site name, ID number, description, classification, cleanup status, types of cleanup, owner information, types and quantities of contaminants, and assessment of health and environmental problems. ASTM required.* Fannie Mae required.**
 Profile data updated through: 8/20/2004.
 New Facilities updated to: 8/20/2004.
 Data obtained by Toxics Targeting: 08/23/2004.

 2) <u>CERCLIS</u>: Toxic sites listed in the Federal Comprehensive Environmental Response, Compensation and Liability Information System. NPL sites are also included in CERCLIS. ASTM required.* Fannie Mae required.**
 Bource: U. S. Environmental Protection Agency.¹
 Profile data updated through: 07/14/2004.
 New Facilities updated through: 07/14/2004.
 Data obtained by Toxics Targeting: 08/06/2004.
 Data obtained by Toxics Targeting: 08/06/2004.

3) <u>National Priority List for Federal Superfund Cleanup</u>: Toxic sites nominated for cleanup under the Federal Superfund program. Annual compilation of special two-page detailed profiles of NPL sites. ASTM required.* Fannie Mae required.** Source: U. S. Environmental Protection Agency.¹ Profile data updated through: 07/27/2004. Data obtained by Toxics Targeting: 07/28/2004.

New Facilities updated through: 07/27/2004

Data obtained by Toxics Targeting: 07/28/2004. Data obtained by Toxics Targeting: 07/28/2004

4) <u>Hazardous Substance Waste Disposal Site Study</u>: NYS database of waste disposal sites that may pose threats to public health or the environment, but cannot be remediated using monies from the Hazardous Waste Remedial Fund.
 Source: New York State Department of Environmental Conservation.²
 Data updated to: 5/16/2000.

5) <u>Brownfield Cleanup Sites</u>: NYS database of sites that are abandoned, idled or under-used industrial and/or commercial sites where expansion or redevelopment is complicated by real or perceived environmental contamination. Source: New York State Department of Environmental Conservation.² Data updated to: 1/21/2005.

Data obtained by Toxics Targeting: 2/28/2005.

6) Solid Waste Facilities: NYS database of solid waste facilities, including, but not limited to, landfilis, incinerators, wansfer stations, recycling centers. ASTM required * Fannic Mac required.** Source: New York State Department of Environmental Conservation.² Data updated to: 12/31/2001. Data obtained by Toxics Targeting: 3/16/2002.

Also includes a listing of solid waste disposal sites operated by New York City municipal authorities circa 1934. Source: City of New York Dept. of Sanitation (1984). The Waste Disposal Problem in New York City: A Proposal For Action.

 7) <u>Major Oil Storage Facilities</u>: NYS database of facilities licensed pursuant to Article 12 of the Navigation Law, 6NYCRR Parts 610 and 17NYCRF. Part 30, such as onshore facilities or vessels, with petroleum storage capacities equal to or greater than four hundred thousand gallons. Data withheld by NYSDEC as of 4/1/2002. Fannie Mae required.** Source: New York State Department of Environmental Conservation.2
 Sew facilities updated through: 1/1/2002. New facilities data obtained by Toxics Targeting: 1/11/2002. Tank data updated through: 1/1/2002. Tank data obtained by Toxics Targeting: 1/11/2002.

8) RCRA Hazardous Waste Treatment, Storage or Disposal Facility Databases:

(a) <u>Manifest Information</u>: New York State database of hazardous waste facilities and shipments regulated by the DEC's Bureau of Hazardous Waste Facility Compliance pursuant to New York State Law and the Resource Conservation and Recovery Act (RCRA). ASTM required.* Fannie Mae required.** Source: New York State Department of Environmental Conservation.² New facilities updated through: 6/14/2004. New facilities obtained by Toxics Targeting: 6/21/2004.

Manifest transactions data updated to: 6/14/2004. Manifest transactions data obtained by Toxics Targeting: 6/21/2004.

(b) <u>RCRA Notifier, Violations, and Corrective Action</u> Protection Agency database of hazardous facilities regulated put ASTM required.* Fannie Mae required.**	Activity (CORRACTS) Information: U. S. Environmental rsuant to the Resource Conservation and Recovery Act (RCRA).
New facilities updated through: 6/15/2004 Data attributes updated through: 6/15/2004.	New facilities obtained by Toxics Targeting: 6/21/2004. Data obtained by Toxics Targeting: 6/21/2004.
9) <u>Spills Information Database</u> : Spills reported to the DEC as reconstructed by Navigation Law, 6 NYCRR Section 613.8 (from Petroleum Bulk St Chemical Bulk Storage Regulations). The database includes active Data updated on a rolling basis. ASTM required.* Fannie Mae.** Source: NYS Exportment of Environmental Conservation. ²	uired by one or more of the following: Article 12 of the torage Regulations) or 6 NYCRR Section 595.2 (from and <i>closed</i> spills reported before 01/30/2005.
New spills through: 01/29/2005. Most spill attribute data updated through 01/01/2002 (Some data wi Limited spill attribute data updated to between 01/01/2002 and 04/0	thead by NYSDEC since 01/01/2002). 3/2005. (See individual spill profiles.)
Active spills: paperwork not completed. Both active and closed spills may or may not have been cleaned up (	Closed spiffs: paperwork completed. see Date Cleanup Ceased in spill profiles).
10) <u>Petroleum Bulk Storage Facilities</u> : Local and State databases of facilities with a combined storage capacity over 1,100 gallons. AST	of aboveground and underground petroleum storage M required.* Fannie Mae required.**
All New York Counties except Cortland, Naesau, Rockland, and Suffolk. Source: NYS Department of Environmental Conservation. ² Update schedule: rolling basis; Data has been withheld by the NYSDEC sind Facility data updated through: 1/1/2002 (10/1/98 for Westchester Co.) Tank data updated through: 1/1/2002 (10/1/98 for Westchester Co.)	re 4/1/2002. Facility data obtained by foxics-Targeting: 1/11/2002. Tank data obtained by Toxics Targeting: 1/11/2002.
Nassau County: Heat producing products and other products with less than 1,600 gallons stor Source: Nassau County Department of Health. ³ Data update schedule: rollin Data updated through: 04/1/2001	age capacity g basis Data obtained by Toxics Targeting: 01/02/2002
Generally non-heat producing products with more than 1,000 gallons biorage Source: Nassau County Fire Marshall. ⁴ Data update schedule: rolling basis v Data updated through: 9/27/1996 for mapped sites; 03/21/2000 for on-site ch	capacity with anomal update ecks.
Rockland County: Source: Rockland County Department of Health 5. Data update schedule: foll Data updated through: 04/13/2004.	ing basis. Date obtained by Toxics Targeting: 04/16/2004
Suffolk County: Source: Suffolk County Department of Health Services. ⁶ Data update schedu Data updated through: 1/12/1999.	le: annual update. Data obtained by Toxics Targeting: 2/26/1999.
<ul> <li>11) <u>RCRA Hazardous Waste Cenerators and/or 'Transporters Dat</u> <ul> <li>(a) <u>Manifest Information</u>: New York State database of haza New York State Department of Environmental Conservation's pursuant to New York State Law. ASTM required.* Famile N Source: New York State Department of Environmental Conservation New facilities updated through: 5/14/2004. Manifest transactions data updated to: 6/14/2004. Manifest transactions data</li> </ul> </li> </ul>	abases: adous waste facilities and shipments regulated by the Bureau of Hazardous Waste Facility Compliance Mae required.** tration. ² New facilities obtained by Toxics Targeting: 6/21/2004. ansactions data obtained by Toxics Targeting: 6/21/2004.
(b) <u>RCRA Notifier, Violations, and Corrective Action Acti</u> Protection Agency database of hazardous facilities regulated pursuan ASIM required.* Fannie Mae required.**	vity (CORRACTS) Information: U. S. Environmental t to the Resource Conservation and Recovery Act (RCRA).
Source: U. S. Environmental Protection Agencyl New facilities updated through: 6/15/2004 Data attributes updated through: 6/15/2004.	New facilities obtained by Toxics Targeting: 6/21/2004. Data obtained by Toxics Targeting: 6/21/2004.
12) <u>Chemical Bulk Storage Facilities</u> : New York State database of fac store regulated substances listed in 6NYCRR Part 597 in aboveground ta underground tanks of any size. Data withheld by NYSDEC as of 4/1/20 Source: New York State Department of Environmental Conservation 2	ilities compiled pursuant to 6NYCRR Part 596 that anks with capacities greater than 185 gallons and /or in 02. ASTM required.* Fannie Mae required.**
Data updated through: 1/1/2002. Data obta	ained by Toxics Targeting, 1/11/2002

Data obtained by Toxics Targeting: 1/11/2002.

.

13) Toxic Release Inventory: Federal database of manufacturing facilities required under Section 313 of the Federal Emergency Planning and Community Right-to-Know Act to report releases to the air, water and land of any specifically listed toxic chemical. See Fannie Mae requirement** below. Source: U. S. Environmental Protection Agency ¹ / NYS Department of Environmental Conservation² Data updated through: 3/8/2004. Data obtained by Toxics Targeting: 3/25/2004 14) Air Discharge Facilities: EPA AIRS database containing address information on each air emission facility and the type of air pollutant emission it is. Compliance information is also provided on each pollutant as well as the facility itself. See Fannie Mae requirement** below. Source: U. S. Environmental Protection Agency! Data updated through: 11/24/1999. Data obtained by Toxics Targeting: 1/06/2000

15) Toxic Wastewater Discharges (Permit Compliance System): Federal database of discharges of wastewater to surface waters and groundwaters. See Fannie Mae requirement** below. Source: U.S. Environmental Protection Agency,1 Data updated through: 5/17/2004. Data obtained by Toxics Targeting: 7/19/2004.

16) Civil Enforcement & Administrative Docket: This database is the U.S. EPA's system for tracking administrative and civil judiciary cases filed on behalf of the agency by the Department of Justice Fannie Mae required ** Source: U. S. Environmental Protection Agency 1

New Sites through: 10/14/1999. Data updated through: 10/14/1999.

Data obtained by Toxics Targeting: 11/18/1999.

17) Emergency Response Netification System (ERNS): Federal database of spills compiled by the Emergency Response Notification System. On-site searches only. ASTM required.* See Fannie Mae requirement ** below. Source: U. S. Environmental Protection Agency,¹ Data updated through: 1/31/2000.

Data obtained by Toxics Targeting: 2/15/2000

*American Society of Testing Materials Standards on Environmental Site Assessments for Commercial Real Estate (F 1527-93, E 1523-93)

** Founde Mac's Part X Environmental Hazards Management Procedures specify 1.0 mile searches for "any state or Federal list of hazardous waste sites (e.g. CERCLIS, HWOMS etc.)." Searches for the property and adjacent properties are specified for "chemical manufacturing" plants," "obvious high risk neighbors engaging in storing or transporting hazardous waste, chemicals or substances" and "...any documented or visible evidence of dangerous waste handling ... (e.g. stressed vegetation, stained soil, open or leaking containers, foul futnes or smells, oily ponds, etc." Searches for property and adjacent properties can include sites up to a quarter mile away (W. Hayward, Director, Multi-Family Business Planning and Control, Famile Mae, personal communication, 5/94).

10. S. Environmental Protection Agency 290 Broadway, NY, NY 10007-1866.

²NYS Department of Environmental Conservation, 625 Broadway, Albany, NY 12233.

³Nassau County Department of Health, Bureau of Land Resources Management, 240 Old Country Road. Mineola, NY 11561.

⁴Nossen County Fire Contraistion, Office of the Fire Marshall, 899 Jerusalem Avenue, P. O. Box 128 Uniondale, NY 11553.

⁵Rockland County Department of Health, The Dr. Robert Yeager Health Center, Building D, Sanitorium Road, Pomona, NY 10970. ⁶Suffolk County Department of Health, Hazardous Materials Management, 15 Horseblock Place, Farmingville, NY 11738-1220

Copyl 2005	Toxics Targeting, Inc. June 27, 20	005		st Main Street						
				oncer				Page	22	
Map Identificatio	on Number 17 VAC. LOT RT. 9D & BE	EKMAN STREET		FEACON NY		Spill Number:	9303959			
MAP LOCATION	INFORMATION			BEACON, NY 1	NO ZIF PROV	/IDED	00000000	Close Dat	e:	
Site location mapped by: MANUAL MAPPING ( Approximate distance from property: 1807 feet		the ENE	e ENE		ADDRESS CHANGE INFORMATION Revised street: STATE HWY 9D / BEEKMAN			**Information updated through: 01/31/2005		
Source of Spill:	UNKNOWN			Revised zip cod	e: 12508					
Notifier Type: Caller Name: DEC Investigator:	AFFECTED PERSONS JOE BRAUN McCABE	Contact fr	Spiller: Notifier Name: Caller Agency:	CITY OF BEAC	ON		S	piller Phone otifier Phone		
Spill Class:	KNOWN RELEASE WITH MININ	AL POTENTIAL FOR F	IRF OR HAZARD	DEC DESSOUR			Contact Pe	Caller Phone erson Phone:	:()831-0302	
Spill Date	Date Cleanup Ceased	Cause of Sail		DEC RESPONS	E;WILLING R	P;CORRECTIVE	CTION TAKE	N		
06/16/1993		Gause of Spill		Resource /	Affected	Meets Cleanup	Siandards			
	~	UNKNOWN		GROUNDV	VATER	NO	5101100105	Penalty Re	commended	
Spilled		Material		~		NU		NO		
	RIAL	Class		Quanity Spiiled	Units	Unk Quantity Spilled ?	Quantity Recovered	Units	Unk Quantity Recovered 2	
Caller Remarks:	SITE ASSESSMENT PERFORM			0	POUNDS	NO	ບ	POUNDS	NO	
DEC Investigator F	Remarks: NO DEC INVESTIGA	TOR REMARKS GIVEN	FOR THIS SPILL	CONTAMINATIO	N NOTED RE	PORT FAXED TO	DEC		_	
** Con haster	•									

* See beginning of spills section for more details.

DEV CONTRACTOR AND A DEVICE AND A

- 11 - L - L - L

## **APPENDIX B Tax Information Document**

.

#### PROPERTY INFORMATION

3) Property: 1 MAIN ST, BEACON NY 12508 APN: 130200-5954-25-563911-0000 Use: INDUSTRIAL (NEC) Alt/Old APN: 30-5954-25-563911-00 Tax Class/Area: 130200 Total Value: \$518,940 Card #: Prop Tax: \$43,122.88 Land Value: \$145,440 County: DUTCHESS, NY Tax Yr: 2005 Deling: Imprv Value: \$373,500 Census: 2103.00 Tax Apprsl Dist: Market Value: \$1,323,489 School Dist: 130200 Map Pg: Mkt Land Val: Municipality:BEACON(TOWN OF FISHKILL) Exemptions: Assd Yr: 2004 Township: Exempt Land: % Improve: 072% Exempt Total: Neighbr Code: Owner: C C J M COMPANY Owner Vest: 1 1 Phone: Mail: PO BOX 267; BEACON NY 12508-0267 B002 Owner Transfer = Sale Dt: Price: Doc#: Type: SALE & FINANCE INFORMATION LAST SALE PRIOR SALE Recording/Sale Date: 12/03/2002 09/12/2002 05/29/1986 Sale Price/Type: \$600,000 \$800,000 Document #/Stamp \$: 11803 1708-455 Deed Type: WARRANTY DEED 1st Mtg Loan \$/Type: Ist Mtg Rate/Type/Term: 1st Mtg Lender: 2nd Mtg Loan \$/Type: 2nd Mtg Rate/Type/Term: Tranfer B&P: Title Company: Seller: CCJM REALTY LLC F/K/A CCJ New Construction: Other Last Sale Info =# Parcels: Type 2: Pend: SITE INFORMATION Zoning: HE Sewer Type: PUBLIC SERVICE Acres: 3.11 County Use: Water Type: PUBLIC Lot Area: 135,471.6 State Use: 710 Electric: Lot Width: Bldg Class: Lot Depth: Lot Shape: Garage Cap#: Site Influence: Bldg Width: Garage2 Sqft: Bldg Depth: Parking Soft: Parking Type: **IMPROVEMENT INFORMATION** County: DUTCHESS, NY 130200-5954-25-563911-0000 APN: Gross Bldg Area: Total Rooms: Construction: Bldg/Living Area: Bedrms: Foundation: Ground Flr Area: Baths (Full/Half): Ext Wall: Above Grade: Ttl Baths/Fixt: Int Wall: Upper Area: 1965 Yr Built/Eff: Roof Type: 2nd Flr Area: # Stories: Roof Matl: Rec Rm Area: Fireplace/#: Roof Shape:

Basement Area:	Basement	Туре:	Heat Fuel:			
Basement Fin:	Pool:	Heat 7	Type:			
\$/SF:	Porch Type:	COVERED PORCH	Parcel Fuel:			
Perimeter Area:	Patio Type	: Flo	or Type:			
	Attic Type:	Floor Cove	er:			
# Bldgs: 1	Style:	Air Cond	l:			
# Res. Units:						
# Comm Units:		•				
Inspect Entry: F0	9					
Permit Amt:						
Bldg Type:						
Bldg Comments:						
Parcel Comments:						
LEGAL INFORMA	TION					
Legal Blk/Bldg: 25						
Legal Lot/Unit: 563	5					
Legal Desc: 3.11 AC (C) 1419 0270						






# **APPENDIX C** Site Interview Questionnaire

( )

### SITE INTERVIEW

### I. SITE INFORMATION

- A. Name, title, phone number and employer of individuals who provided information for this questionnaire:
  - 1. Name/Title: Salvatore Cumella / Raymond Morano
  - 2. Phone/Dates of Employment: (845) 831-5231/ Since 1986
  - 3. Area of Knowledge: Overall Operation
  - 4. Current Employer (if different than current owner of the facility): Owners

### B. Key facility personnel:

- 1 Site/facility manager: Salvatore Cumella /Raymond Morano
- 2. Operations or production manager: Ditto
- 3. Environmental coordinator: Ditto
- C. Total number of employees at facility: Currently, approx. 4
- D. Facility floor space (include multiple floors in calculation): 32,000 sf
- E. What type of activity is conducted at site (check appropriate blanks):

-----Abrasive blasting Acid/alkali cleaning ------Adhesive bonding Air pollutant filtration/scrubbing -----------Anodizing ------Asbestos handling Х Assembly operations Bleaching -----Casting of metal parts ------Chemical formulation/synthesis Degreasing/solvent cleaning -----------Drilling/machining Dye/pigment formulation ------Х Fabric milling/spinning/weaving -----Glass/ceramic production Х Grinding/polishing/buffing Hazardous waste storage/treatment/disposal -----Ionizing radiation source _____ Lasers Metal forging/stamping/forming Mining On-site waste disposal -----Х Packaging _____ Pesticide production

	Photographic developing/printing
	Plastic formulation/extrusion/blow molding
	Plating
	Printing
	RF/Microwave heating
	Rubber formulation/vulcanization
	Semiconductor production
	Soldering/brazing
*******	Solid/liquid waste recycling/recovery
	Spray painting
	Underground storage tanks
	Waste water treatment
	Welding
	Woodworking
	Wood treatment
	Other activities of concern (specify)
	· 1 • /

### F. Contiguous Properties:

List current and past facility names, addresses, and activities conducted for contiguous properties. Indicate any hazardous materials that may be or have been utilized. Also, identify these sites on a map.

North (of Dorel Hat Factory)

Facility: Junkyard

Address: within concern property, 1 West Main Street, Beacon, NY 12508 Activities: abandoned equipment storage Hazardous materials used: observed waste oil spillage Known Environmental Issues/Investigation/Cleanup: none as of this writing

South (of Dorel Hat Factory)

Facility: Landscape area

Address: within concern property, 1 West Main Street, Beacon, NY 12508

Activities: none observed

Hazardous materials used: none observed

Known Environmental Issues/Investigation/Cleanup: none

#### East (of Dorel Hat Factory)

Facility: 1. A lot located at northeast corner of the property, currently leased to Palisi Auto

2. A trailer for abandoned equipment storage is currently located to the east of the property

3. Steam Blow Down Area located at the east side of the Dorel Hat Building

Address: within concern property, 1 West Main Street, Beacon, NY 12508 Activities: Automobile storage

Hazardous materials used: none observed

Known Environmental Issues/Investigation/Cleanup: none



West (of Dorel Hat Factory) Facility: Metro North parking lot Address: within concern property, 1 West Main Street, Beacon, NY 12508 Activities: paving construction at the time of visit Hazardous materials used: none observed Known Environmental Issues/Investigation/Cleanup: none

### II. HAZARDOUS MATERIALS

### A. TANKS

According to the owner, Salvatore Cumella, the building has been gas-heated since 1986. He is not aware of any oil fuel being used for building-heating purposes.

### **B. HAZARDOUS MATERIALS STORAGE**

Hazardous materials noticed at the site include the following:

- 1. Hazardous material: following: Stixit #2476, water based adhesive, manufactured by Basic Adhesives, Inc.
- 2. Material identification number/CAS number (if known): MSDS sheets available
- 3. Volume stored: 5 gallons
- 4. Storage container: PAL
- 5. Monthly rate of usage: Not known
- 6. Proper Labeling: Yes
- 7. Secondary Containment: No

### D. PCBs.

Possible PCB containing materials are noted as following:

- 1. Transformers: with no non-PCB label, unit located at southeast corner outside of the building
- 2. Capacitors: none noticed
- 3. Electromagnets: none noticed
- 4. Hydraulic systems: none
- 5. Ballasts: possible fluorescent lighting

### III. RELEASES, SPILLS, LEAKS

List any releases, spills, leaks of hazardous materials (including wastes) as defined in CERCLA or RCRA at the site, through spills or leaks to air, soil, and/or surface or groundwater. Fill in blanks as indicated, attach additional pages, if needed. Indicate locations on a map.



 Date: NONE REPORTED Material: Quantity: Location: Regulatory agencies notified: Clean-up description:

### IV. AIR EMISSIONS

Air emissions sources identified are as follows:

- 1. Source: NONE
- 2. Amount:
- 3. Composition (specify if a regulated hazardous air pollutant):
- 4. Air emission limitations:
- 5. Parameter monitored:
- 6. Frequency of monitoring:
- 7. Reduction equipment (include date of installation):
- 8. Permit: Yes/No (Provide all permitting information)
- 9. Is there staining or condensation on or near the emission point?

### V. WASTE MANAGEMENT INFORMATION

### A. WASTE GENERATED

Waste produced at the facility is being handled by Royal Carting Co. (845-896-6000). Dumpsters are currently stored at the loading dock area. No noticeable hazardous waste are stored at the site.

# B. OFF-SITE TREATMENT, STORAGE OR DISPOSAL FACILITY (TSDF) LOCATIONS

Identify the <u>off-site</u> facilities where hazardous waste is (or was) treated, stored, or disposed. Include the corresponding TSDF locations, dates, and transporters used. Also, indicate the approximate amount sent to each TSDF.

1) Waste: TSDFs: Locations: Transporters: Dates used: Amount sent:

### C. ON-SITE TSDF LOCATIONS

NOT APPLICABLE

### VI. WATER

#### A. Wastewater

List all wastewater streams generated at the facility.

Source: Steam blow down Composition: Excess steam water

4

Initial

Subject to on-site wastewater treatment prior to discharge? No What is the condition of the treatment house? None Effluent Limitations: None Frequency of monitoring: None Discharge Location: To the lawn area at southeast corner of the building Permit: No

### B. Septic Systems

City Sewers provide septic disposal service.

### C. Facility Drainage and Stormwater Discharge

Facility currently has trench drains at the loading dock as well as the hat assembly areas. No sump pumps and dry wells are observed.

- 1. Provide any sewer and drain line maps indicating locations of piping, dry wells, septic fields, surface water bodies, discharge points, etc. <u>NONE AVAILABLE</u>
- Does the facility have an individual stormwater permit? <u>NO</u> Have coverage under a general stormwater permit? <u>NO</u> Maintain a Stormwater Pollution Prevention Plan (SWPPP)? <u>NO</u>

#### D. Water Supply

City water

#### E. On-Site Wells

List all water wells on site, and whether or not they have been abandoned. Indicate well locations on a map.

- *1. Well: NONE NOTICED*
- 2. Depth:
- 3. Age:
- 4. Intended use:
- 5. Parameters analyzed, if any:

### IX. ENERGY

- 1. What type of fuel (i.e., oil, gas) is used at the facility? Gas
- 2. Are there any back-up generators? No
- 3. Are there any utility contracts with suppliers in effect? To be obtained. If so, state the duration of the contract and attach a copy.

### <u>X. PERMITS</u>

State the issuing agency, type, and identifying number of all environmental permits, licenses or other types of permission required, whether currently in effect or not, to conduct a particular operation at the site (for example, wastewater treatment, or hazardous waste disposal) pertaining to that listing.

Issuing regulatory agency: NONE

Initial

License and ID number: Expiration date: Site operation/Equipment/Process:

### XI. COMPLAINTS, VIOLATIONS, ORDERS, DEMANDS

- 1. List any occupational exposure claim by a current or former employee and the disposition of the claim.
  - a. Date Received:
  - b. Action Taken:
  - c. Current status:

#### **ATTACHMENTS**

Figures:

Signature	, <u></u>
Print name	

Date____

# APPENDIX D FOIA Requests and Responses

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION APPLICATION FOR ACCESS TO RECORDS (See Instructions on Reverse Side)	NUMBER
<ul> <li>TO THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION: Thereby apply to inspect the following records under the provisions of the Free A</li> </ul>	eedom of Information Law:
P A.) (West Main Street, City of Beacon, NY 12508, Per our information, the property	y belongs to Dorel Hat Company.
<ul> <li>P B.) 7 West Main Street, City of Beacon, NY 12508. Per our information, the property</li> </ul>	y houses a few bosinesses
including Palisi Auto Body.	
C       A       After inspection, should I desire copies of all or part of the records inspected, I will ide hereby offer to promptly pay the established fees. (Cost of reproduction or 25¢ per page i will exceed \$ 50,00         T       Name (Print or type)	ntify the records to be copied and as applicable). Contact me if cost
Attention of: Amit Garg	203-791 0075
Mailing Address 611 River Drive 3rd Floor, Elmwood Park, NJ-07407	
Signature for back Date 06/07/0	5
	an a
<ul> <li>-Records Provided</li> <li>The reproduction costs for the records provided are S</li> <li>Records have been (partially, fully) provided. (If not fully provided, date weexpected to be fully provided:</li></ul>	when records are sheen denied to the any person preement purposes puld: rement investigations ght to a fair trial or tree or disclose clating to a ve techniques or techniques or techniques and vy's capacity to guarantee ion technology assets, poth electronic frastructures
Identification of records withheld (attach listing if additional space is required) and/or explana	tion if appropriate:
	1

•



Jul 11, 2005 0507500

### The City of Beacon Building Department 1 Municipal Center Beacon, NY 12508

Attn: Ms. Carla Eylers

Re: FOIL request for two properties located at West Main Street, Beacon, NY 12508.

Dear Ms. Carla Eylers,

Yu & Associates (YU) is under contract with Metro-North Railroad to prepare a Preliminary Assessment (PA) at two facilities located at :

- 1. 1 West Main Street, City of Beacon, NY 12508. According to our record, the property belongs to Dorel Hat Company.
- 2. 7 West Main Street, City of Beacon, NY 12508. According to our record, the property is currently occupied by a few businesses including Palisi Auto Body.

As part of the PA process, YU would like all files that the City of Beacon Building Department may have regarding this property including former owners. If the information is too extensive to mail, arrangements can be made for it to be reviewed at your office.

This request is being made pursuant to the Freedom of Information Act, 5 USC 552. If you have any questions regarding this request or believe there is more efficient way to process the information, please do not hesitate to contact Chuck McCusker or me at (201) 791-0075, extensions 116 and 105, respectively.

Thanks you for your assistance in obtaining this information.

Very Truly Yours,

Arcon bar G

YU & Associates, Inc. Andrew Leung, P.E. Vice President

CC. Chuck McCusker, P.G.





Jul 17, 2005 0507500

The City of Beacon Fire Department 1 Municipal Plaza Beacon, NY 12508

Attn: Mr. Tim Dexter

Re: FOIL request for two properties located at West Main Street, Beacon, NY 12508.

Dear Mr. Tim Dexter,

Yu & Associates (YU) is under contract with Metro-North Railroad to prepare a Preliminary Assessment (PA) at two facilities located at :

- 1. 1 West Main Street, City of Beacon, NY 12508. According to our record, the property belongs to Dorel Hat Company.
- 2 7 West Main Street, City of Beacon, NY 12508. According to our record, the property is currently occupied by a few businesses including Palisi Auto Body.

As part of the PA process, YU would like all files that the City of Beacon's Fire Department may have regarding this property including former owners. If the information is too extensive to mail, arrangements can be made for it to be reviewed at your office.

This request is being made pursuant to the Freedom of Information Act, 5 USC 552. If you have any questions regarding this request or believe there is more efficient way to process the information, please do not hesitate to contact Chuck McCusker or me at (201) 791-0075, extensions 116 and 105, respectively.

Thanks you for your assistance in obtaining this information.

Very Truly Yours,

Arcon barg

YU & Associates, Inc. Andrew Leung, P.E. Vice President

CC. Chuck McCusker, P.G.



Jul 11, 2005 0507500

Dutchess County Department of Health 387 Main Street Poughkeepsie, NY 12601

Attn: Mr. John Glass

Re: FOIL request for two properties located at West Main Street, Beacon, NY 12508.

Dear Mr. John Glass,

Yu & Associates (YU) is under contract with Metro-North Railroad to prepare a Preliminary Assessment (PA) at two facilities located at :

- 1. 1 West Main Street, City of Beacon, NY 12508. According to our record, the property belongs to Dorel Hat Company.
- 2. 7 West Main Street, City of Beacon, NY 12508. According to our record, the property is currently occupied by a few businesses including Palisi Auto Body.

As part of the PA process, YU would like all files that the Dutchess County Health Department may have regarding this property including former owners. If the information is too extensive to mail, arrangements can be made for it to be reviewed at your office.

This request is being made pursuant to the Freedom of Information Act, 5 USC 552. If you have any questions regarding this request or believe there is more efficient way to process the information, please do not hesitate to contact Chuck McCusker or me at (201) 791-0075, extensions 116 and 105, respectively.

Thanks you for your assistance in obtaining this information.

Very Truly Yours,

Arcon bar G.

YU & Associates, Inc. Andrew Leung, P.E. Vice President

CC. Chuck McCusker, P.G.



July 21, 2005

Andrew Leung, P.E., Vice President YU & Associates, Inc. 611 River Drive Elmwood Park, New Jersey 07407

Re: Your Letter FOIL Request dated July 11, 2005

Dear Mr. Leung:

Please be advised that we received your letter in the above matter.

To review your request we need Tax Map Identifiers for the parcels you wish review. Kindly forward that information if you would like to proceed.

Thank you.

County Department Very truly yours, of Health

đ٤

Dutchess

William R. Steinhaus County Executive

lichael C. Caldwell, MD, MPH Comprissional

Environmental Health

387 Main Street Poughkeepsia New York 1260 (845)486-3404 Fax (845)486-3545



John G. Glass, P.E. Supervising Public Health Engineer Environmental Health Services

4. Illasi

and such a start for the second second

### New York State Department of Environmental Conservation

Records Access Office, Region 3 21 South Putt Corners Road, New Paltz, New York 12561-1696 Phone: (845) 256-3052• FAX: (845) 255-3414 Website: www.dec.state.ny.us



JULY 22, 2005

AMIT GARE YU & ASSOCIATES INC 611 RIVER DRIVE 3RD FLOOR ELMWOOD PARK NJ 07407

RECEIVED JUL 25 2005 WI&ASSOCIATES

RE: FOIL #649-3/05 1 WEST MAIN ST, 7 WEST MAIN ST BEACON (DOREL HAT CO OR PALISI AUTO BODY OR OTHER BUSINESSES) DATE RECEIVED: JULY 22, 2005

DEAR AMIT GARE:

This letter acknowledges receipt of your request for access to records under New York State's Freedom of Information Law (FOIL). Your request has been forwarded to B. Zicca, P. Duke, A. DiMare, B. More of the Water, Environmental Permits, Air, Hazardous Materials Programs, respectively. Within twenty (20) business days, you can expect a response from the regional programs as to whether such documents are in their custody. There were no spill or pbs records found for the names and addresses you provided.

If programs have records, you will have an opportunity to arrange to obtain access to the records. There is no charge to review records or for copies of seven or fewer pages. By law, copy charges will not exceed 25 cents per page or the actual cost of copying. Photographs, maps, oversized documents, videotapes or audio tapes generally cost more than 25 cents per page to copy. You may be required to pay a deposit prior to copies being made and/or to pay all copy charges prior to copies being sent.

If all records are not provided because the records are excepted from disclosure, you will be notified of the reasons and of your right to appeal the determination.

If you have questions about the status of your request, you may write to this office at the above address or call (845) 256-3000 and follow instructions to reach the program contact person(s) noted in the first paragraph.

Region 3 Records Access Office

cc: B. Zicca, P. Duke, A. DiMare, B. More WATER/PERMITS/AIR/HM

### New York State Department of Environmental Conservation

Division of Water, Region 3 200 White Plains Road – 5th Floor, Tarrytown, New York 10591-5805 Phone: (914) 332-1835 • FAX: (914) 332-4670 Website: www.dec.state.ny.us



Acting Commissioner

29 July 2005

Amit Gare Yu & Associates Inc. 611 River Drive, 3rd Floor Elmwood Park NJ 07407

Re: Foil #649-3/05 1 West Main St., 7 West Main St., Beacon (Dorel Hat Co or Palisi Auto Body or Other Businesses)

Dear Amit Gare.

The Division of Water has reviewed your request for the above referenced records under New York State's Freedom of Information Law (FOIL). Please note that most of our records are filed by State Pollutant Discharge Elimination System (SPDES) Permit Number, under the names of individuals and/or corporations. We have no way of locating or retrieving records if they are filed under names other than those you have provided. If no records have been located, this does not necessarily mean, and should not be interpreted to mean that there have never been any violations, complaints, claims, investigations or inquires involving those names or addresses. We cannot make any representations as to whether there are or have been any such violations, complaints, claims, investigations or inquires.

After a search of Region3 Division of Water files, no records could be located for the name you provided and I have no way of retrieving records by address.

Very truly yours,

Beth Zičea Division of Water

BZ/srr



Records Access Office File



New York State Department of Environmental Conservation Division of Environmental Permits, Region 3 21 South Putt Corners Road, New Paltz, New York 12561-1620 Phone: (845) 256-3054 • FAX: (845) 255-3042 Website: www.dec.state.ny.us

AMIT GARE YU & ASSOCIATES INC 611 RIVER DR 3RD FLOOR ELMWOOD PARK NJ 07407

RE: FOIL # 649-3/05

1 West Main St., 7 West Main St., Beacon (Dorel Hat Co. or Palisi Auto Body

August 5, 2005

Dear Amit Gare:

 $\boxtimes$ 

 $\square$ 

The program noted below has reviewed your request for the above referenced records under New York State's Freedom of Information Law (FOIL). Please note that most of our records are filed by number under the names of individuals or corporations. We have no way of locating or retrieving records if they are filed under names or addresses other than those you have provided. If no records have been located, this does not necessarily mean, and should not be interpreted to mean that there have neverbeen any violations, complaints, claims, investigations or inquiries involving those names or addresses. We cannot make any representations as to whether there are or have been any such violations, complaints, claims, investigations or inquiries.

After a diligent search, no records could be located in the Region 3 Environmental Permits office for the names and/or addresses you provided.

Records are available for review and/or copying. Please contact the FOIL Secretary at (845) 256-3021 to schedule an appointment to review the records. There is no charge to review records or for copies of seven or fewer pages. By law, copy charges will not exceed 25 cents per page or the actual cost of copying. Photographs, maps, oversized documents, videotapes or audio tapes generally cost more than 25 cents per page to copy. You may be required to pay a deposit prior to copies being made and/or to pay all copy charges prior to copies being sent.

Very truly yours,

aune Faurence

Laurie Lawrence Environmental Permits Region 3

cc: Records Access Office

649-05Nohitsltr.wpd(Revised 6/3/03)



Mr. Amit Garg Yu & Associates; Inc 611 River Drive Elmwood Park, New Jersey 07407

Re: Freedom of Information Request No. 02-RIN-01859-05 Dated: July 13, 2005

Dear Mr. Garg:

Your request for information has been referred to this branch for response. We have searched the Resource Conservation and Recovery Act (RCRA) files and/or computer database as appropriate to respond to your request. In addition, you may also receive more information from other program areas within this Regional Office.

We were unable to find hazardous waste (RCRA) information concerning the property at 1 West Main Street in Beacon, New York. For your information we found and have enclosed the RCRA information for the property at 1 Main Street, PO Box 267.

For information on Underground Storage Tanks (USTs), please contact New York State Department of Environmental Conservation (NYSDEC) at the enclosed address as it is responsible for keeping records and tracking incidents related to USTs.

If you consider this response to be a denial, you may submit a written appeal to HQ FOIA OPERATIONS STAFF, U.S. Environmental Protection Agency (2822T), 1200 Pennsylvania Avenue, N.W., Washington, D.C. 20460. The appeal must be made in writing, and must be received within 30 calendar days of the date of this response to receive consideration. The Agency will not consider appeals received after the 30-day limit. The appeal should be marked "Freedom of Information Act Appeal", and should reference the Freedom of Information Request Number of this response.

Also, RCRA information is now available on the World Wide Web as described on the enclosed sheet.

Please include the above referenced request number in any subsequent communication relating to this response.

Sincerely yours, .E. rett. . Chief RO RA ProgNams Branch Enclosures



#### ACKNOWLEDGEMENT OF NOTIFICATION OF HAZARDOUS WASTE ACTIVITY (VERIFICATION)

This is to acknowledge that you have filed a Notification of Hazardous Waste Activity for the installation located at the address shown in the box below to comply with Section 3010 of the Resource Conservation and Recovery Act(*RCRA*). Your EPA Identification Number for that installation appears in the box below. The EPA Identification Number must be included on all shipping manifests for transporting hazardous wastes; on all Annual Reports that generators of hazardous waste, and owners and operators of hazardous waste treatment, storage and disposal facilities must file with EPA; on all applications for a Federal Hazardous Waste Permit; and other hazardous waste management reports and documents required under Subtitle C of RCRA.

> THYCCULSSUSSI DEREL HAT LO. INC. 1 MAIN STREET PO BEX 267 DEACON NY

> > 1 MAIN SINELT PL EUX 201

12508

よぞうじゅ

 $1 \times T$ 

INSTALLATION ADDRESS

EPAID. NUMBER

EPA Form 8700-128 (4-80)

Ş

EPA

16163

 $\mathbb{E} [ \mathbb{E} [ \mathcal{A} ] \subseteq \mathbb{E} [ \mathbb{E} ] ]$ 

Please print or type with ELITE type (12 characters per inch) in the unstraded	areas only	Form App	roved. OMB No. 2050-0028. Expires GSA No. 0246	9-30-
United States Environment Washington, D	ous Waste A	ctivity	Please refer to the Instruction Filing Notification before comp this form. The information requires the form of the required by law (Su 3010 of the Resource Consert and Resource Consert	ns fo sleting sester ection vation
or Official Use Only		jagado giaciscia e	and Recovery Act).	
C I I I I I I I I I I I I I I I I I I I	Comments			
<b>C</b>				
Installation's EPA ID Number	Approved /	Date Receiv yr. mo.	dayi Ditches	55
FNYD001398551	1 8	712	14 027	
I. Name of Installation				
DOREL HAT CO.	INC.			
II. Installation Mailing Address				
$\begin{array}{c c} Stree \\ \hline C \\ \hline 3 \\ \hline \end{array} \\ \hline M \\ \hline A \\ \hline I \\ \hline N \\ \hline S \\ \hline T \\ \hline C \\ \hline C \\ \hline C \\ \hline C \\ \hline T \\ T \\$	PCB	<i>C</i> ·X	2.6.7	
4 D E A C C IV			WY 1250	X
Street c	r Route Number			
$\frac{c}{5} \le Am E$				
City or Town			State ZIP Code	
6 SAME				
V. Installation Contact		966 Augusta		
2 C- ILBERT CCLLII	US	9/4	Number (area code and number	7 /
V. Ownership				
$\frac{A. \text{ Name of Installation's Legal Own}}{B} CORPORATICN$	ier		B. Type of Ownership lenter co Closely Hold	de)
/I. Type of Regulated Waste Activity (Mark 'X' in the a	opropriate boxes. R	efer to instru	uctions 1	
A. Hazardous Waste Activity		B. Used Oil F	Fuel Activities	
<ul> <li>Ia. Generator</li> <li>Ib. Less than 1,000 kg/mo.</li> <li>2. Transporter</li> <li>3. Treater/Storer/Disposer</li> <li>4. Underground Injection</li> <li>5. Market or Burn Hazardous Waste Fuel (enter X' and mark appropriate boxes below)</li> <li>a. Generator Marketing to Burner</li> </ul>	6. Off-Specificat <i>fenter 'X' and</i> a. Gener b. Other C. Burner 7. Specification 1	ion Used Oil Fu <i>mark approprig</i> ator Marketing Marketer Jsed Oil Fuel M	uel ne boxes below) 10 Burner farketer (or On site Burner)	
L b. Other Markoter	vvno First Clai	ms the Oil Mee	ets the Specification	
II. Waste Fuel Burning: Type of Combustion Device (en hich hazardous waste fuel or off-specification used oil fuel is burned.	ter 'X' in all appropriate L See instructions for defi	oxes to indicate nitions of comb	e type of combustion device(s) in Justion devices. I	-
A. Utility Boiler B. Industri	al Boiler	C. Indus	strial Furnace	
III. Mode of Transportation (transporters only — enter	'X' in the appropria	te box(es)		
A. Air B. Rail C. Highway D. Water E. O	her (specify)			
. First or Subsequent Notification				
If X in the appropriate box to indicate whether this is your install itication. If this is not your first notification, enter your installation's finance.	ation's first notification PA ID Number in the sp	of hazardous v ace provided be	waste activity or a subsequent blow.	7
A First Notification			tion's EPA ID Number	
a manufaction in a subsequent Notification (complete ite	π ()			
A Form 8700-12 (Rev. 11-85) Previous edition is obsolete.			Continue on reve	rse

			ID	For Official Us	e Only	
		C				T/A C
		W				1
X. Description of Hazardo	ous Wastes (continue	d from front)				
Hazardous Wastes from Non from nonspecific sources your	specific Sources. Enter th r installation handles. Use	e four-digit number additional sheets if r	from 40 <i>CFR</i> Part 2 recessary.	61.31 for each lis	ied hazardous waste	
<b>1</b>	2	3	4	5	6	
FICIS						
7	8	9	10	11	12	<u> </u>
						· · ·
B. Hazardous Wastes from Spec	ific Sources. Enter the fou	ir-digit number from	40 CFR Part 261 3	2 for each listed b	azardous waste from	<u> </u>
specific sources your installati	ion handles. Use additional	sheets if necessary	•		bearaous waste nom	
13	14	15	16	:7	18	
19	20	21	22	23	24	
25	25	27	28	29	30	
				Í Í .		
C. Commercial Chemical Product your installation handles which	t Hazardous Wastes. Enter may be a bazardous waste	r the four-digit numb	er from 40 CFR Pa	rt 261.33 for each	chemical substance	
		. ose nounional sne	ers in thecessary.		and a second	
31		33	34	35	36	
37	38			<u> </u>		
		····		41	42	N PERMIT AND
				M	-	· · · ·
43	44 4	5	46	47	48	
D. Listed Infectious Wastes. Enter pitals, or medical and research la	the four-digit number from aboratories your installation	n 40 CFR Part 261.3- n handles. Use addit	4 for each hazardou ional sheets if nece	is waste from hos issary.	pitals, veterinary hos	-
49	50 5	1	52	53	54	
E. Characteristics of Nonlisted Has your installation handles. /See 40	t <mark>ardous Wastes</mark> , Mark 'X' i ) CFR <i>Parts 261.21 — 261</i> .	in the boxes correspe 24)	onding to the chara	cteristics of nonlis	ted hazardous waste	25
i Ignitable	2. Corrosiv	e	3. Reactive		4. Toxic	
XI Certification			(1.003)		(DCOO)	
l certify under penalty of la this and all attached docu obtaining the information, there are significant penal	aw that I have person ments, and that base I believe that the subn ties for submitting fal:	ally examined ar d on my inquiry nitted informatio se information, ir	nd am familiar v of those individ n is true, accura ncluding the pos	with the inform wals immediat ote, and comple ssibility of fine a	ation submitted ely responsible fi te. I am aware thi and imprisonmer	in or at at
Signature	Nam	e and Official Title	(type or print)		te Signed	
Cliffel	les .	Hickory	4 G. 16	+ 611	12/5/87	
EPA Form 8700-12 (Rev. 11-85) 8	leverse	/ · · · / · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

EPA Form 8700-12 (Rev. 11-85) Reverse



.L

**NEW YORK TELEPHONE 12721 240:5379** X 212-629-3420 1939 - FORTY YEARS - 1979

CABLE ADDRESS

Dorel Hat Co., Inc. 213

P.O. BOX 267 - MANUFACTURERS AND CREATORS OF FINE MILLINERY Phone Beacon, N. Y. 12508 Phone Beacon (914) 831-5231

December 9, 1987

#NYD 001398551

U.S. EPA Region II Permits Administration 26 Federal Plaza New York, New York 10278

Attn: Mr. John Sanchez Room 432

Dear John,

Per our phone conversation, enclosed please find completed EPA Form 8700-12 and data sheets pertaining to the waste we wish to dispose of.

Also, enclosed is a copy of the letter we wrote the New England Marine Contractors, Ltd.. who will probably handle disposal.

We need to move on this as quickly as possible so please process the enclosed application upon receipt.

Thank you for your cooperation.

Sincerely yours, Dorel Hat Co., Inc.

Gilbert Collins Vice President

Enclosures.

NEW YORK TELEPHONE X (212+629-3420 1939 - FORTY YEARS - 1979

CABLE ADDRESS

and the star

Dorel Hat Co., Inc.

P.O. BOX 267 - ONE MAIN STREET · BEACON, N. Y. 12508 PHONE DEACON (914) 831-5231

December 8, 1987

New England Marine Contractors,Ltd. P.O. Box 2974 Poughkeepsie, New York 12603

Dear David,

Enclosed please find data sheets regarding the product (s) we wish to dispose of.

The waste in question is a mixture of three parts thinner to one part 745-P8110 hat size.

Please call me if you need further information. I must resolve this matter quickly.

Thank you.

Sincerely yours, Dorel Hat Co., Inc.

Gilbert Collins Vice President

Enclosures.



# MAT RIAL SAFETY DATA SHEET

FOR COATINGS, RESINS AND RELATED MATERIALS LApproved by U.S. Department of Labor Essentially Sublar to Form OSHA.201

MANUEACTURERS CODE DENTIFICA

745-P8110 Hat Size

89. A.S.

Section II - HAZARDOUS INGREDIENTS INGREDIENT. PERCENT LEL VAPOD PPL Nitrocellulose mo/M+ mHz020bc Butyl Acetate 8-10 [? x Methyl Ethyl Ketone 4-10 -150-7 Naptha ..... 1 15-20 8 200 1.8 7.0 10-15 Toluol 200 1.2 30 - 4020 100 1:2 25 Series of 745 with admix use of solvent Section III - PHYSICAL DATA ILING RANGE Up to 160°C. VAPOR DENSITY XX HEAVIER. LIGHTER THAN ONRAL FASTER X SLOWER, THAN ETHER BERCENTIVOLATILE WEIGHT PER THE BERCENTIVOLATILE BERCENTI BERCENTI BERCENTIVOLATILE BERCENTI E BERCENTI BER Section IV - FIRE AND EXPLOSION HAZARD DATA MMABILITY CLASSIFICATION Flammable -XX **FLASH POINT** 20⁰F (T.C.C.) Combustible INGUISHING MEDIA Sand, Foam, Carbon Dioxide, Chemical Types ÷ 1 SUAL FIRE AND EXPLOSION HAZARDS Prevent Fire, Keep Away From Heat, Sparks, And Open Flames JAL FIRE FIGHTING PROCEDURES Avoid Breathing Vapor or Fumes. Use Air Supplied Rescue Equipment For Enclosed Areas. Cool Exposed Containers With Water To Prevent Explosion Due to

PHONE (718) 625 { 6358 4634

# WESLEY LACQUER CORPORATION

TRADE MARK

93-95 FOURTH STREET (BETWEEN BOND AND HOYT STREET) BROOKLYN, N. Y. 11231

January 23, 1985

Mr. Eli Rogen Aldo Hat Corp. 32 WEST 39th St. New York, K.Y.

Dear Mr. Rosen:

Regarding the information you requested for our Lacquer Thinner 59, I am enclosing the safety date sheets for the solvents we use to make this product. Thinner 69 is composed of Butyl Cellosolve, acctone, and toluol. There is at least 20% of each of these chemicals in our formular for Thinner 69.

Please let me know if you need any further information regarding this matter.

Sincerely your

Paul Patane, Off. Mgr.

ES I

. . 

# MAT RIAL SAFETY DATA SHE T

EFFECTIVE DATE: NOVEMBER 1, 1981



PRODUCT NAME:	ACET(	)NE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- -	cen, 0°2767459545454545350		
CHEMICAL NAME:	Aceton	- <u> </u>			- IEMICAL FAN	All Y: Ketone	· · · · · · · · · · · · · · · · · · ·	
FORMULA:	CH_CC	)CH ₂		M	DLECULAR W	EIGHT 58.08	······	
SYNONYMS	Dimeth	VI Ketope - 2-Prog	anne Dimeth	ed ketal				
DEPARTMENT OF	HAZARD C	LASSIFICATION	Flammable I	iquid	-			
TRANSPORTATION	SHIPPING	NAME	Acetone					
CAS # 67-64-1	CAS N	IAME	2-Propanone	AL DA	TA			
BOILING POINT, 760 mm Hg . 56.2 101.325 kPa		56.29 °C (13:	3.32°F)	FREI	EZING POINT		-96.54 °C (-141.77 °F)	
SPECIFIC GRAVITY (H,O = 1)		0.7915 at 20/	20 °	VAP(	DA PRESSUR	E at 20*C	(24.53 kPa) 184 mm Hg	
VAPOR DENSITY (air		2.0		: SOLU : WAT	JBILITY IN ER. % by wt.		Complete	
PER CENT VOLATILE BY VOLUME	S	100		EVAPORATION RATE (Buly) Acetate = 1)		ATE 1)	14,4	
APPEARANCE AND (	ROGC	Highly flamm	ble tiquid; sha	rp, penetr deve server	ating and non-	residual odor.		
			INGRED	IENTS				
	MATERIAL		%	TL	V (Units)		HAZARD	
	Acetone		- 100	/ 50 p   1000	pm ACGIH ppm OSHA	tract; f	t to eye and re lammable	spiratory
LASH POINT	0°F. Tac		Exelos	ION H	AZARDI	DATA		
test method(s))	4°F, Tag	Open Cup			· · · • · · · · · · · · · · · · · · · ·		· · ·	
LAMMABLE LIMITS	IN AIR, % by	volume	1.03	MER	2.15	UPPER	13.0	
EXTINGUISHING Use water spray, AEDIA foams applied by		r, carbon dioxi ay manufactur	de, dry ch er's recom	emical, alcoho mended techn	pl-type or univers iques.	al-type		
SPECIAL FIRE FIGHTING PROCEDURES Use supplied brea		eathing air and	protectiv	e clothing.		•		
INUSUAL FIRE AND None S				,		*		
			GENCIARIO	NENDME	EA			
		This number is ava	304/744-3/ itable days, nigh	187 Is, weekend	s, and holidays.	x		

· 理解的描述。我们必须有什么有什么。

# V HEALTH HAZARD DATA

V AND SOURCE: 750 ppm, ACGIH (1980 notice of intended changes) 1000 ppm, DSHA CFR 29 § 1910.1000, Table 2-1.

#### **DUTE EFFECTS OF OVEREXPOSURE** ____ Nausea, vomiting, headache, dizziness, and stupor. SWALLOWING · · _ · · · · ···-- -· None currently known. SKIN ABSORPTION Headache, dizziness, nausea, and vomiting. INHALATION Vapors may irritate eyes, nose, and throat, No immediate irritation, Repeated contact SKIN CONTACT causes defetting and skin chapping. Will cause irritation. EYE CONTACT. HRONIC EFFECTS None currently known. F OVEREXPOSURE THER HEALTH None currently known. AZARDS ASSENCY AND FIRST AID PROCEDURES: Immediately flush eyes with plenty of water for at SWALLOWING least 15 minutes. Call a physician. Flush with water. SKIN ·• •• - -- -Remove to fresh air. If breathing has stopped, INHALATION give artificial respiration. Call a physician. Do not induce vomiting. Call a physician. EYES

OTES TO PHYSICIAN

Aspirated acetone may cause severe lung damage and present a significant hazard. Stomach contents should be evacuated quickly in a manner which avoids aspiration. Otherwise, treatment is directed at the control of symptoms and the clinical condition. No specific antidote is known.

1.1

÷.

. .

ेजे.

. .

Set.

					and sent the
			ATT DATA		
		VIEREA	UTIVITE DATAS		an a
STAE	BILITY	· · ·			
UNSTABLE	STABLE		Ignition sources		
	$\checkmark$				
INCOMPATIBILITY	) )	Strong oxidizing	, gagents (such as nitric aci	¢}.	
HAZARDOUS CON DECOMPOSITION	ABUSTION OR PRODUCTS	Burning can pro	duce carbon monoxide ar	id/or carbon dioxide.	
HAZARDOUS PC	DLYMERIZATION		Alkali (such as caust	ic soda) can	
May Occur	Will not Occur	CONDITIONS	<ul> <li>cause condensation : occur, but the reaction</li> </ul>	reactions to ons are not	
	V ·	TO AVOID	expected to be violer	nt.	
			T FAK PROCED	URES	
	CENTERS,		ن بي من من من من من من بي من	rable protective	
STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED		Eliminate all sot equipment, Sma of water, Larger	urces of ignition, what sur all spills could be flushed v spills should be collected	with large quantities I for disposal.	
WASTE DISPOSA	L METHOD	Incinerate in a f Federal, State, a	urnace where permitted u and local regulations.	inder appropriate	
		Socol All DO	TECTION INFO	RMATION	
Restriction wave O				A REAL PROPERTY OF A REA	
and the second se		1 merel and a stand b	worthing apparatus in biol	h concentrations.	
RESPIRATORY PR		Self-contained b	preathing apparatus in hig	h concentrations.	
RESPIRATORY PR	ROTECTION ype) This product she	Self-contained t	breathing apparatus in high	h concentrations. which case general	
RESPIRATORY PF (specify t)	ROTECTION ype) This product she (mechanical) ro	Self-contained to build be confined with om ventilation is exp	preathing apparatus in high him covered equipment, in acted to be satisfactory. S er can be expected to esca	h concentrations. h which case general Special, local ventil- special the air.	·····
RESPIRATORY PF (specify ty	ROTECTION ype) This product she (mechanical) rou ation is needed in	Self-contained to build be confined with om ventilation is exp at points where vapor	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca	h concentrations. h which case general Special, local ventil- spe to the air.	
RESPIRATORY PF (specify t) VENTILATION PROTECTIVE GLO	OTECTION ype) This product she (mechanical) ro- ation is needed in DVES	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber	breathing apparatus in high him covered equipment, in ected to be patisfactory. S rs can be expected to esca	h concentrations. which case general Special, local ventil- upe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT	AOTECTION ype) This product she (mechanical) rol ation is needed i DVES	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower.	h concentrations. h which case general Special, local ventil- pe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT	ROTECTION ype) This product she (mechanical) ro- ation is needed i OVES	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety	breathing apparatus in high hin covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower.	h concentrations. which case general special, local ventil- upe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT	AOTECTION ype) This product she (mechanical) rou ation is needed in OVES TIVE	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower.	h concentrations. h which case general Special, local ventil- spe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE	Self-contained b build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOR	breathing apparatus in high him covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower.	h concentrations. which case general special, local ventil- spe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed OVES TIVE	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOR Keep away from	hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. Structure NING n heat, sparks, and open f	h concentrations. h which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE	Self-contained to build be confined with om ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOR Keep away from Avoid breathing	breathing apparatus in high hin covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower. Construction NNG n heat, sparks, and open f g vapor.	h concentrations. which case general Special, local ventil- spe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid breathing Do not take int	breathing apparatus in high him covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>MEREFIELD</b> NMG n heat, sparks, and open f g vapor, with eyes, emally.	h concentrations. h which case general Special, local ventil- upe to the air. EYE PROTECTION lame.	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed OVES TIVE	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOR Keep away from Avoid breathing Avoid contact v Do not take int Keep container	breathing apparatus in high him covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Showe	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOF Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough	breathing apparatus in high hin covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower. <b>APPEEGAUUG</b> NMG in heat, sparks, and open f g vapor, with eyes, emaily, closed, late ventilation, ly after handling.	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	OTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough	breathing apparatus in high him covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower. <b>MEDECAUSE</b> NG n heat, sparks, and open f g vapor, with eyes, ernally, closed, ate ventilation, ly after handling, DUSTRY USE ONLY	h concentrations. h which case general Special, local ventil- upe to the air. EYE PROTECTION lame.	Səfety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	TIONS	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>PEECAULUS</b> NNG n heat, sparks, and open f g vapor. with eyes. emaily. closed. ate ventilation. ly after handling. DUSTRY USE ONLY	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	This product she (mechanical) ro- ation is needed OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapou Rubber Eye bath, safety Eye bath, safety NDLING AND STOR Keep away from Avoid breathing Avoid breathing Avoid contact to Do not take int Keep container Use with adequ Wash thorough	breathing apparatus in high him covered equipment, in acted to be satisfactory. S rs can be expected to esca y shower. <b>APPEEGAUDIO</b> NING In heat, sparks, and open f g vapor. with eyes. ernally. closed. late ventilation. ly after handling. DUSTRY USE ONLY	h concentrations. which case general Special, local ventil- spe to the air. EYE PROTECTION lame.	Səfety glasses
RESPIRATORY PR (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	This product she (mechanical) ro- ation is needed OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough FOR IN	breathing apparatus in high ented to be satisfactory. S rs can be expected to esca y shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. Shower. S	h concentrations. h which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Səfety glasses
RESPIRATORY PR (specify 1) VENTILATION PROTECTIVE GLO OTHER PROTECT PRECAUTIONS T	This product she (mechanical) rou ation is needed OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough FOR IN	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>PEECAULUS</b> NNG in heat, sparks, and open f g vapor, with eyes, emaily, closed, ate ventilation, ly after handling, DUSTRY USE ONLY	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Safety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT EQUIPMENT PRECAUTIONS T	ROTECTION ype) This product she (mechanical) ro- ation is needed OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapou Rubber Eye bath, safety NDLING AND STOR Keep away from Avoid breathing Avoid breathing Avoid contact to Do not take int Keep container Use with adequ Wash thorough FOR IN	breathing apparatus in high hin covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>APPEEGUUGO</b> NMG in heat, sparks, and open f g vapor, with eyes. ernally. closed. ate ventilation. ly after handling. DUSTRY USE ONLY	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Səfety glasses
RESPIRATORY PF (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT PRECAUTIONS T OTHER PRECAU	ROTECTION ype) This product she (mechanical) ro- ation is needed in OVES TIVE	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough FOR IN	breathing apparatus in high him covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>APPEGAUMO</b> NMG n heat, sparks, and open f g vapor, with eyes. ernally. closed. ate ventilation. ly after handling. DUSTRY USE ONLY	h concentrations. which case general special, local ventil- pe to the air. EYE PROTECTION lame.	Səfety glasses
RESPIRATORY PR (specify ty VENTILATION PROTECTIVE GLO OTHER PROTECT PRECAUTIONS T	ROTECTION ype) This product she (mechanical) ro- ation is needed OVES TIVE O BE TAKEN IN HAI	Self-contained to build be confined with on ventilation is exp at points where vapor Rubber Eye bath, safety NDLING AND STOP Keep away from Avoid breathing Avoid contact v Do not take int Keep container Use with adequ Wash thorough FOR IN	breathing apparatus in high him covered equipment, in ected to be satisfactory. S rs can be expected to esca y shower. <b>APPECAUUS</b> ING n heat, sparks, and open f g vapor. with eyes. ernally. closed. ate ventilation. ly after handling. DUSTRY USE ONLY	h concentrations. which case general Special, local ventil- pe to the air. EYE PROTECTION lame.	Safety glasses

and the second second

• --- -

. .



China State

No.

# A TERIAL SAFETY DATA SHEET

EFFECTIVE DATE: October 30, 1981



(FORMULA:	Glycol M	onobutyl Ether		CHEMICAL FAM	ILY: Glyc	ol Ethers
SYNONYMO.	C ₄ H ₉ OC	⁵ H ³ OH		MOLECULAR WE	IGHT: 118:	18
STRUNTMS:	Butyl CE	LLOSOLVE®				
TRANSPORTATION	HAZARD (	CLASSIFICATION	Combusti	ible liquid		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
CAS# 111.76.2	-   SHIPPING	NAME	Combusti	ble liquid, NOS		
	CAS N	AME Ethand	al, 2-butoxy	•		
			HYSIC	AL DATA TA		
BOILING POINT. 76	X0 mm Hg	171.2 °C (34)	0.2°F)			-70.4 °C
<u></u>	11.325 kPa			E THEEZING POINT	· · · ·	(∋4.7 °[
SPECIFIC GRAVITY	(H=O == 1)	0.9022 at 20/	.50 °C	VAPOR PRESSURE	at 20°C	(0.08 kPa 0.6 mm H
VAPOR DENSITY (a)	ir = 1)	4.1		SOLUBILITY IN	······································	C
PER CENT VOLATIL	.ES	100	·- ·	EVADORATION PATE		Complete
BY VOLUME				(Buly) Acelate = 1)		0.08
APPEARANCE AND	ODOR	Colorless liqui	d; mild odor	ан ал ан ал ан		) ******
12-TECONSIGN			VGRFDI	ENTOTOTOT		
	MATERIAL	وراجارتك بيراء المستشكا والاستوالي	%			
	2-Buroxyethan	ol	100			HAZARD
······································		And a subsequence of the second	100	25 ppm (skin) ACG1H 50 ppm (skin) OSHA	Toxic, eve	irritant combu
and the second		·····			· · · · · · · · · · · · · · · · · · ·	
· et a analogi , y	••		ĺ			
			Allen sizer bore	120 127 3		
FLASH POINT		THE AND EX	(PLOSIC	IN HAZARD DA	ASSIST	a she tan is
[test method(s)]	150 F, Tac 157 F, Tac	I closed cup ASTM [ I open cup ASTM /)	) 56 1210			
	NAIR & build	llume		Not datageniand		
FLAMMABLE LIMITS I	The second se		£.QVV±	H I Ivolatila ftuid	UPPER	Not determin (volatile flui
FLAMMABLE LIMITS I				i (reache min)		· · · · · · · · · · · · · · · · ·
FLAMMABLE LIMITS I EXTINGUISHING MEDIA		Use water spray, i	carbon rlioxi	de, dry chemical shart of		
FLAMMABLE LIMITS I EXTINGUISHING MEDIA		Use water spray, i foams applied by	tarbon rlioxi manufacturi	ide, dry chemical; alcohol- r's recommended techniq	type or univers	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA		Use water spray, i foams applied by	carbon rlioxi manufacturi	ide, dry chemical, alcohol- er's recommended techniq	type or univers	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES	VG :	Use water spray, i foams applied by Use self-contained	carbon rlioxi manufacturi	ide, dry chemical; alcohol- er's recommended techniq	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES	VG	Use water spray, i foams applied by Use self-contained	carbon dioxi manufacturi breathing a	nde, dry chemical, alcohol- er's recommended techniq 	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES	VG	Use water spray, i foams applied by Use self-contained	carbon rlioxi manufacturi breathing aj	nde, dry chemical, alcohol- er's recommended techniq pparatus and protective clo	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES NUSUAL FIRE AND XPLOSION HAZARDS	VG	Use water spray, i foams applied by Use self-contained	carbon dioxi manufacturi breathing a	nde, dry chemical, alcohol- er's recommended techniq - pparatus and protective cle	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES INUSUAL FIRE AND XPLOSION HAZARDS	VG	Use water spray, i foams applied by Use self-contained None	carbon rlioxi manufacturi breathing aj	ide, dry chemical, alcohol- er's recommended techniq pparatus and protective cle	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES INUSUAL FIRE AND XPLOSION HAZARDS	vG	Use water spray, i foams applied by Use self-contained None	carbon rlioxi manufacturi breathing a	ide, dry chemical, alcohol- er's recommended techniq pparatus and protective cle	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES JNUSUAL FIRE AND EXPLOSION HAZARDS	VG	Use water spray, i foams applied by Use self-contained None	carbon rlioxi manufacturi breathing a	nde, dry chemical, alcohol- er's recommended techniq pparatus and protective cle	type or universue.	al-type
FLAMMABLE LIMITS I EXTINGUISHING MEDIA SPECIAL FIRE FIGHTIN PROCEDURES INUSUAL FIRE AND XPLOSION HAZARDS	VG	Use water spray, i foams applied by Use self-contained None	carbon dioxi manufacturi breathing a V744-3487	nde, dry chemical, alcohol- er's recommended techniq pparatus and protective cle	type or universue.	al-type

EXON COMPANY USA			L		TOL
A DIVISION OF FRICE CONDENSION	ne breve				Form No. Of
•	U.J. DEPAR	TMENT OF LABOR		5.	8/10 Derrodoc (c
	JPATIONAL SAFETY	Y AND HEALTH ADMINIS	TRATION		of 8/1
<u> </u>	AIERIAL SA	AFELY DALA SE	iff		
	-	SECTION I			······································
MANUFACTURER'S NAME			EMENGE	NCY TELE	HONE NO.
Exxon Company, U.S.A.			(713	) 656-3.	424
PO Box 2190 Vouce of T	Codej				• •
CHEMICAL NAME AND SYNONYMS	Cas //001	TRADE NAME AND SUN			
Toluene		TOLUENE			
CHEMICAL FAMILY		FORMULA			
Petroleum Hydrocarbon		^C 7 ^H 8			
	SECTION II HA	ZARDOUS INGREDIENTS		··	
	·				TLV (UNITS
				ļ	i
SOLVENTS				100	100
				100	100 PPE
				I	
•				1 1	
ł.					1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
					at on the second s
					1999 - 1999 1997 - 1999 1997 - 1999
<u>)</u>					
	SECTION III	PHYSICAL DATA			
BOILING RANGE	SECTION III	PHYSICAL DATA SPECIFIC GRAVITY (H2D+1	)		
BOILING RANGE IBP-Dry Pt. (230-232*)	SECTION III 110.2-111°C	PHYSICAL DATA SPECIFIC GRAVITY (H20-1 15.6°/15.6°C	)		0.87
BOILING RANGE IBP-Dry Pt. (230-232°;) VAPOR PRESSURE (MM H0.) (25°C	SECTION III 110.2-111°C	PHYSICAL DATA SPECIFIC GRAVITY (H20+1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%)	)		0.87
BOILING RANGE IBP-Dry Pt. (230-232*3) VAPOR PRESSURE (mm Ho.) <u>(25°C</u> VAPOR DENSITY (A(H#1))	SECTION III 110.2-111°C 54	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE	)		0.87
BOILING RANGE IBP-Dry Pt. (230-232*) VAPOR PRESSURE (MM H0.) @25°C VAPOR DENSITY (A(H#1)	SECTION III 110.2-111°C 54 3.2	PHYSICAL DATA SPECIFIC GRAVITY (H2D+1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In - BUTYL ACETATE+1)	)		0.87
BOILING RANGE IBP-Dry Pt. (230-232*;) VAPOR PRESSURE (mm H0.) (25°C) VAPOR DENSITY (A(H#)) OLUBILITY IN WATER	SECTION III 110.2-111°C 54 3.2	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In - BUTYL ACETATE=1)	)		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232*3) VAPOR PRESSURE (mm Ho.) (25°C) VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER PPEARANCE AND ODDR	SECTION III 110.2-111°C 54 3.2 Negligible	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE IN - BUTYL ACETATE-1)	)		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232*?) VAPOR PRESSURE (mm H0.) Q25°C VAPOR DENSITY (ALH#1) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh	SECTION III 110.2-111°C 54 3.2 Negligible fite liquid. An	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In . BUTYL ACETATE-1) Comatic hydrocarbon	) odor-		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232*5) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh SECT	SECTION III 110.2-111°C 54 3.2 Negligible fite liquid. An TION IV FIRE AND	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In -BUTYL ACETATE=1) Tomatic hydrocarbon EXPLOSION HAZARD DAT	odor.		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232*3) VAPOR PRESSURE (mm Hb.) (25°C VAPOR DENSITY (AIR#1) OLUBILITY IN WATER IPPEARANCE AND ODDR Water-wh SECT CASH POINT (Meinod Uird) Case Classed Comp	SECTION III 110.2-111°C 54 3.2 Negligible Site liquid. An TION IV FIRE AND E	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE IN - BUTYL ACETATE=1) COMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE	) odor. A		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232°) VAPOR PRESSURE (mm H9.) (25°C VAPOR DENSITY (A(H#1) OLUBILITY IN WATER IPPEARANCE AND ODOR Water-wh SECT Cash POINT (Meined Used) Cash POINT (Meined Used) Cash Closed Cup ATINGUISMING MEDIA	SECTION III 110.2-111°C 54 3.2 Negligible ite liquid. An TION IV FIRE AND 6 *F)	PHYSICAL DATA SPECIFIC GRAVITY (H2D+1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE IN - BUTYL ACETATE+1) FOMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS IPERCENT BY VOLUME IN AI	odor. A		0.87 100 1.8
BOILING RANGE IBP-Dry Pt. (230-232*5) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh SECT Cash POINT (Meinod Uied) Cash POINT (Meinod Uied) Cash Closed Cup ATINGUISHING MEDIA 'Oam, dry chemical. CO. WETAY	SECTION III 110.2-111°C 54 3.2 Negligible Site liquid. An TION IV FIRE AND E *F)	PHYSICAL DATA SPECIFIC GRAVITY (H20-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE [n - BUTYL ACETATE-1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS [PERCENT BY VOLUME IN AL	odor. A	ER LIMIT 1.22	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232*5) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER VAPOR DENSITY (Meinod Uied) Cag Closed Cup ~7°C (~45) RTINGUISHING MEDIA 'OAM, dry chemical, CO2, WETER 'ECIAL FIRE FIGHTING PAOCEDURES	SECTION III 110.2-111°C 54 3.2 Negligible Site liquid. An TION IV FIRE AND E *F) Spray or fog.	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE (n - BUTYL ACETATE=1) FOMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS (PERCENT BY VOLUME IN AN	odor. A R)	ER LIMIT 1.2Z	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232°3) VAPOR PRESSURE (mm Hg.) (25°C VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER IPPEARANCE AND ODOR Water-wh SECT Cag Closed Cup ATINGUISHING MEDIA 'DAM, dry chemical, CO2, weter 'ECIAL FIRE FIGHTING PAOCEDURES 'se air-supplied rescue equipme	SECTION III 110.2-111°C 54 3.2 Negligible dite liquid. An TION IV FIRE AND E *F) *F) *Fnay or fog.	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE IN - BUTYL ACETATE=1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE IMITS IPERCENT BY VOLUME IN AN d areas.	odor. A Low	ER LIMIT 1.2Z	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232°) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (AIH#1) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh SECT Cash POINT (Meined Uied) Cash POINT (Meined Uied) Cash Closed Cup ~7°C (~45) ATINGUISHING MEDIA 'OAM, dry chemical, CO ₂ , water 'ECIAL FIRE FIGHTING PAOCEDURES 'se air-supplied rescue equipme ool exposed containers with wa	SECTION III 110.2-111°C 54 3.2 Negligible Ate liquid. An TION IV FIRE AND B *F) Spray or fog. ent for enclose ater spray. Av	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In . BUTYL ACETATE-1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS IPERCENT BY VOLUME IN AN d areas. oid breathing vapor	odor. A Low R)	ER LIMIT 1.22	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232°?) VAPOR PRESSURE (mm H0.) Q25°C VAPOR DENSITY (A(H#1)) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh SECT Sector of the sector of the sect	SECTION III 110.2-111°C 54 3.2 Negligible Ate liquid. An TION IV FIRE AND B *F) *F) *Fray or fog. ent for enclose ater spray. Av	PHYSICAL DATA SPECIFIC GRAVITY (H20-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE [n - BUTVL ACETATE-1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS [PERCENT BY VOLUME IN AI d areas. oid breathing vapor	odor. A or fumes.	ER L1M1T 1.22	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232°?) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (A(H#)) OLUBILITY IN WATER IPPEARANCE AND ODOR Water-wh SECT SECT Cash POINT (Melhod Uled) Cas Closed Cup ~7°C (~45) KTINGUISHING MEDIA 'OAM, dry chemical, CO, water FECIAL FIRE FIGHTING PAOCEDUARS Se air-supplied rescue equipme ool exposed containers with wa	SECTION III 110.2-111°C 54 3.2 Negligible Ate liquid. An TION IV FIRE AND B *F) Spray or fog. ent for enclose ater spray. Av	PHYSICAL DATA SPECIFIC GRAVITY (H2D=1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In -BUTYL ACETATE=1) FOMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS IPERCENT BY VOLUME IN AN d areas. oid breathing vapor	odor. A Low (R) or fumes.	ER LIMIT 1.22	0.87 100 1.8 UPPER LIMIT 7.0%
BOILING RANGE IBP-Dry Pt. (230-232*3) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (AIH#1) OLUBILITY IN WATER PPEARANCE AND ODDR Water-wh SECT Case Closed Cup ATTINGUISHING MEDIA Coam, dry chemical, CO, water VECIAL FIRE FIGHTING PROCEDURES Se air-supplied rescue equipme ool exposed containers with wa UAL FIRE AND EXPLOSION HAZARDS Not mix or store with strong	SECTION III 110.2-111°C 54 3.2 Negligible dite liquid. An TION IV FIRE AND F *F) *F) *F) spray or fog. ent for enclose ater spray. Av s oxidants like	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE IN -BUTVL ACETATE-1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS IPERCENT BY VOLUME IN AN d areas. oid breathing vapor liquid chlorine or	odor. A Low (R) or fumes.	ER LIMIT 1.22	0.87 100 1.8 UPPER LIMIT 7.0%
BOILING RANGE IBP-Dry Pt. (230-232°?) VAPOR PRESSURE (mm H0.) Q25°C VAPOR DENSITY (AIH#1) OLUBILITY IN WATER PPEARANCE AND ODOR Water-wh SECT SECT Cash POINT (Meined Used) Cash POINT (Meined Used) Cash POINT (Meined Used) Cash, dry chemical, CO, water Varinguishing media Coam, dry chemical, CO, water Se air-supplied rescue equipme ool exposed containers with wa UAL FIRE AND EXPLOSION HAZARDS Not mix or store with strong	SECTION III 110.2-111°C 54 3.2 Negligible ite liquid. An TION IV FIRE AND B *F) Spray or fog. ent for enclose ater spray. Av ; oxidants like	PHYSICAL DATA SPECIFIC GRAVITY (H2D-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE In . BUTYL ACETATE-1) COMMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS IPERCENT BY VOLUME IN AI d areas. oid breathing vapor liquid chlorine or	odor. A concentra	ER LIMIT 1.22	0.87 100 1.8 UPPER LIMIT 7.02
BOILING RANGE IBP-Dry Pt. (230-232°?) VAPOR PRESSURE (mm H0.) (25°C VAPOR DENSITY (AIR#1) OLUBILITY IN WATER IPPEARANCE AND ODDR Water-wh SECT ASH POINT (Meinod Uied) Tag Closed Cup ~7°C ~45' XTINGUISHING MEDIA Toam, dry chemical, CO, weter FECIAL FIRE FIGHTING PACEDURES 'se air-supplied rescue equipme ool exposed containers with wa UAL FIRE AND EXPLOSION HAZARDS Not mix or store with strong LAMABLE LIQUID	SECTION III 110.2-111°C 54 3.2 Negligible Ate liquid. An TION IV FIRE AND H *F) Spray or fog. ent for enclose ater spray. Av s oxidants like	PHYSICAL DATA SPECIFIC GRAVITY (H20-1 15.6°/15.6°C PERCENT VOLATILE BY VOLUME (%) EVAPORATION RATE [n - BUTYL ACETATE-1) TOMATIC hydrocarbon EXPLOSION HAZARD DAT FLAMMABLE OR EXPLOSIVE LIMITS [PERCENT BY VOLUME IN AN d areas. oid breathing vapor liquid chlorine or	odor. A Low or fumes. concentra	ER LIMIT 1.22 ted oxyg	0.87 100 1.8 UPPER LIMIT 7.02

THRESHOLDLIM	IT VALUE	······································	
100 ppm for	. S hour workday	7.	
EFFECTS OF OVE	REKPOSURE	*	
Inhalation	of high vapor o	obcentra	ations may have results renging from disciones and
headaches t	o unconsciousne	es. Pro	plopped or repeated liquid contact with the chip will d
and defat t	he skin, leadin	ng to irr	ritation and dermaritis
		0	
na an a			<b>~</b>
EMERGENCY AND	FIRST AID PROCEOUP	25	nan Anger an anger a sa s
If overcome irregular o vomiting; ca and wash sk:	by vapor, remo r stopped, star all a Physician in with soap and s minutes or was	ve from t resusc . In ca d warm w	exposure immediately; call a Physician. If breathing citation, administer oxygen. If ingested, DO NOT induc- ase of skin contact, remove any contaminated clothing, water. If splashed into the eyes, flush eyes with clear
Hacci IVI I.	Diffuces of on		conton subsides.
STABILITY		······································	
	UNSTABLE	<u> </u>	
	STABLE	X	
INCOMPATABILITY	Moterials to avoid;		
Strong oxida	nts like: ligi	<u>jio' chlo</u> r	prine, concentrated oxygen, sodium or calcium hypochlori
Funes, smoke	and carbon mor	s Noxide. :	in the case of incomplete combustion
	MAY OCCUR	]	CONDITIONS TO AVOID
POLYMERIZATION		<b> </b>	_
	WILL NOT OCCUR	X	
		SECTIC	ON VIL SPILL OR LEAK PROCEDURES
STEPS TO BE TAKE	VIN CASE MATERIAL I	IS RELEASED	CORSPILLED REMOVE all ignition sources. Keep people au
Recover free	liquid, Add a	hsorhent	t (sand earth conduct of ) as adding the propie and
	Trdordt von a	naotneuc	c (sand, earth, sawdust, etc.) to spill area. Avoid
breathing va	pors. Ventilat	e confin	Red spaces. Open all windows and doors. Knop petrolow
aroducte out	of severs and		verse by different free addes and boils. Reep perioren
	or sewers and	walticou	uises of diking of impounding. Advise authorities if
soduct has	entered or may.	enter se	avers, valercourses, or extensive land areas.
ASTE DISPOSAL M	ETHOD		
Assure conto:	rmity with appl	icable d	disposal regulations. Dispose of absorbed material at
an approved o	disposal site of	r facili	itv.
	•		
RESP. BATORY PAD	FETION (Specify type)	Upo by	IT SPECIAL PROTECTION INFORMATION
	ise non (specify type)	Use nya	Grocarbon vapor canister or supplied-air respiratory
protection in	contined or er	nclosed (	spaces it needed.
	LOCAL EXHAUST		SPECIAL
VENTILATION	Face velocity	7 > 66 E	pm Use only with adequate* ventilation.
	MECHANICAL (General	y	OTHER
	Use explosion	-proof (	equipment No smoking or open lights.
ROTECTIVE GLOVE	S Use chemical-	resistar	int gloves, if EVEPROTECTION Use Bolach prootes or face
needed to avo	id repeated or	ນກົດໂຄງແລະ	ed skin contact shield then ave contact
THER PROTECTIVE	EQUIPMENT ITED AN	iemical	resistant aprop or other elething if and it and been
Tepeated or o	use cu - mida haanning	ontrot	resistant apron or other clothing it needed to avoid
proceed of p	LOLONKEU BRID C	CENY	TION IN SPECIAL DOCCAUTION
RECAUTIONS TO PE	TAKEN IN HANDLEN	35.1	TION TA SPECIAL PRECAUTIONS
Keep containe	rs closed when	not in "	use. Do not handle or store noor home analysis
Keep containe	rs closed when dants. Adequat	not in u et verti	use. Do not handle or store near heat, sparks, flame
Keep containe or strong oxi	rs closed when dants. Adequat	not in u e* venti	use. Do not handle or store near heat, sparks, flame illation required.
Keep containe or strong oxi * Adequate pe	rs closed when dants. Adequat ans equivalent	not in u e* venti to outdo	use. Do not handle or store near heat, sparks, flame illation required.
Keep containe or strong oxi A Adequate me THER PRECAUTION	rs closed when dants. Adequat ans equivalent ^s Avoid breathin	not in u e* venti to outdo ng vapor	use. Do not handle or store near heat, sparks, flame ilation required. pors.
Keep containe or strong oxi A Adequate me THER PRECAUTION Remove contam	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing	not in u e* venti to outdo ng vapor , laundé	use. Do not handle or store near heat, sparks, flame ilation required. pors. rs. Avoid prolonged or repeated contact with skin.
Keep containe or strong oxi A Adequate per THER PRECAUTION Remove contam thoroughly dr	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse.	not in u e* venti to outdo ng vapor , laundé Wash s	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ir before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact
Keep containe or strong oxi A Adequate per THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse.	not in u e* venti to outdo ng vapor , laundé Wash g ALTH FFFF	use. Do not handle or store near heat, sparks, flame ilation required. oors. 's. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact.
Keep containe or strong oxi A Adequate per THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. pors. rs. Avoid prolonged or repeated contact with skin. ir before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. FOR OTHER PRODUCT INFORMATION CONTACT:
Keep containe or strong oxi Adequate me. THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713: 555-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE Municial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. ECTS CONTACT: FOR OTHER PRODUCT INFORMATION CONTACT: Manager, Marketing Technical Services
Keep containe or strong oxi Adequate me. THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713; 556-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE solutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. ECTS CONTACT: FOR OTHER PRODUCT INFORMATION CONTACT: Manager, Marketing Technical Services (713) 656-4929
Keep containe or strong oxi Adequate me. THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713; 556-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE solutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. FOR OTHER PRODUCT INFORMATION CONTACT Manager, Marketing Technical Services (713) 656-4929
Keep containe or strong oxi Adequate me. THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713; 556-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE solutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash s ALTH EFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. FOR OTHER PRODUCT INFORMATION CONTACT Manager, Marketing Technical Services (713) 655-4929
Keep containe or strong oxi A Adequate me THER PAECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713: 556-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE solutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ar before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. FOR OTHER PRODUCT INFORMATION CONTACT Manager, Marketing Technical Services (713) 655-4929
Keep containe or strong oxi A dequate me THER PAECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713; 556-24	rs closed when dants. Adequat ans equivalent ^s Avoid breathin inated clothing y before reuse. INFORMATION ON HE soutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé Wash g ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. ir before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. ECTS CONTACT: FOR OTHER PRODUCT INFORMATION CONTACT: Manager, Marketing Technical Services (713) 655-4929
Keep containe or strong oxi Adequate me THER PRECAUTION Remove contam thoroughly dr FOR ADDITIONAL Director of in (713; 556-24	rs closed when dants. Adequat ans equivalent ⁵ Avoid breathin inated clothing y before reuse. INFORMATION ON HE solutrial Hygiene 43	not in u e* venti to outdo ng vapor , laundé <u>Wash g</u> ALTHEFFE	use. Do not handle or store near heat, sparks, flame ilation required. bors. rs. Avoid prolonged or repeated contact with skin. r before reuse. Remove contaminated shoes and skin thoroughly with soap and water after contact. ECTS CONTACT: FOR OTHER PRODUCT INFORMATION CONTACT: Manager, Marketing Technical Services (713) 656-4929





Query Results

Name: Containing: hat ZIP Code: 12508 Location Address: 1 main City Name: beacon State Abbreviation: ny

# LIST OF EPA-REGULATED FACILITIES IN ENVIROPACTS

To see a report on a facility click on the underlined Facility Name. Click on the underlined "View Facility Information" link to view EPA Facility information for the facility.

Go To Bottom Of The Page

FACILITY NAME/ADDRESS	FACILITY INFORMATION	Permitted Discharges to Water?	Toxic Releases <u>Reported</u> ?	Hazardous Waste Handler?	Active or Archived Superfund Report?	Air Releases <u>Reported?</u>
DOREL <u>HAT CO</u> I <u>NC</u> 1 MAIN ST BOX 267 BEACON, NY 12508	View Facility Information	NO	NO	YES	NO	NO

Go To Top Of The Page

Total Number of Facilities Displayed: 1

EPA Home | Contact Us

Last updated on Thursday, July 21st, 2005





Additional Information can be obtained from Resource Conservation and Recovery Information RCRAInfo Query.

http://oasint.rtpnc.cpa.gov/enviro/multisys2.get_list?facility_uin=110009464178

7/21/2005

7/21/2005

### EPA Home | Contact Us

Last updated on Thursday, July 21st, 2005 http://oasint.rtpnc.epa.gov/enviro/multisys2.get_list



# **Facility Detail Report**

[[	
Facility Name:	DOREL HAT CO INC
Location Address:	I MAIN ST BOX 267
Supplemental Address:	
City Name:	BEACON
State	NY
County Name:	DUTCHESS
ZIP/Postal Code:	12508
EPA Region:	02
Congressional District Number	26
Legislative District Number:	NY
HUC Code:	02020008
Federal Facility:	
Tribal Land :	NO
Latitude:	41.507795
Longitude:	-73.983361
Method:	ADDRESS MATCHING-HOUSE NUMBER
Reference Point Description:	PLANT ENTRANCE (GENERAL)
Duns Number:	001398551
Registry ID:	110009464178

Map this facility

# **Environmental Interests**

	Information System	Information System ID	Environmental Interest Type	<u>Data Source</u>	<u>Last</u> Updated Date	Supplemental Environmental Interests:	
)	RCRAINFO	NYD001398551	NOT IN A UNIVERSE	IMPLEMENTER	03/24/1995		

# **Facility Mailing Addresses**

Affiliation Type	Delivery Point	City Name St	ate Postal Code	Information System
CONTACT/GENERAL	1 MAIN ST BOX 267	BEACON N	Y 12508	RCRAINFO

# **NAICS** Codes

No NAICS Codes returned.

# SIC Codes

No SIC Codes returned.

### Contacts

No Contacts returned.

# Organizations

No Organizations returned.

# **Alternative Names**

No Alternative Names returned.

Query executed on: JUL-21-2005

EPA Home | Contact Us

Last updated on Thursday, July 21st, 2005



# SEPA United States Handler - Handler Search



Enter the Handler ID you wish to search on:

Handler ID: nyd001398551

Search Cancel Clear

Your search has found 1 handler(s).

### Search Results

Act Loc	Handler Name	EPA Id	Street No.	Street Address	Cıty	State	Zip Code	County	In a Universe
NY	DOREL HAT CO INC	NYD001398551	1	MAIN ST BOX 267	BEACON	NY	12508	DUTCHESS	N

URL: /HANDLER2/Handler_srch.asp


## Handler Detail



DOREL HAT CO INC

BEACON

#### NYD001398551

	, <u>, , , , , , , , , , , , , , , , </u>				•• -	<ul> <li>Indicates</li> </ul>	source rea	cord used f	or Universe	Calculations
				Н	andler Univer	ses				
In a Universe	Genstatus	Transporter	Univ Waste	Recycler	Used Oil	Furnace Exempt	Importer	Onsite Burner Exem	Mixed Waste Gen	Underground Injection
N	N	N	N	N	NNNNNN	U	U	υ	U	N

		Permi	itting and Correc	ctive Action L	Iniverses			
Permit Workload	Closure Workload	Postclosure Workload	Permit Progress	CA Workload	Subject to CA	Subject to CA - TSD	Subject to CA - Discretion	Subject to CA - Non- TSD
				N	N	N	N	N

		Compliance, Mo	onitoring and En	forcement and G	<b>SPRA Universes</b>	6	
Full Enforcement	Operating TSDF	SNC	BOYSNC	GPRA Permit	GPRA Postciosure	GPRA CME	GPRA CA
		N	N	N	N	N	N

		Source Summary T	able	
Act Loc	Source	Sequence	Receipt Date	Non-notifier
NY	**	1	3/24/1995	
· NY	N	1	12/14/1987	

Add Site Identification Form RCRA Site Detail Report Universe Justification

Create New Activity Location

Go To

URL: /Handler2/HAND_main.asp

Region II State contact for information requests regarding Underground Storage Tanks

Wayne Bayer New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7020

Tel #(518) 402-9543

Kevin Kratina, Chief Bureau of Southern Case Management New Jersey Department of Environmental Protection P.O. Box 028 401 East State Street Trenton, NJ 08625-0028

Tel #(609) 292-8761

Water Quality Control Environmental Quality Board Commonwealth of Puerto Rico P.O. Box 11488 Santurce, PR 00910

Tel #(809) 725-8410

St. Croix Hollis Griffin, Director Division of Environmental Protection Department of Planning and Natural Resources 1118 Watergut Christiansted, VI 00820-5065 and

St. Thomas Mr. Leonard Reed, Assistant Director Division of Environmental Protection Department of Planning and Natural Resources Nisky Center 231 45A Estate Nisky Charlotte Amalie St. Thomas, VI 00801

Telephone # (340) 774-3320

NJ Revised 7/16/03, NY Revised 3/28/05

Environmental Protection Agency Internet

Internet - Region 2

EPA Region 2 provides an increasing amount of Environmental media information, and other Regional Activities via Internet at <u>http://www.epa.gov</u>, Region 2 has provided a Freedom of Information Act (FOIA) specific page <u>http://www.epa.gov/region2/foia/rera/reports</u> which covers RCRA data. Another page covers many media programs ( not just RCRA) which is <u>http://www.epa.gov/region2/fff.htm</u>. Through this FOIA page, you can learn about each media Program, associated databases, and special points of interest. Of particular interest is the ability to "directly download" all of the most commonly requested Region 2 ASCII, and Flat File RCRA FOIA reports - all compressed for quicker downloading.

Also found on the FOIA site are direct links to the Envirofacts, and RTK Net public access databases. Both house Environmental media data from EPA National Databases, and are specifically designed for public use. Both have on-line query capabilities for facility specific information.

More specific FOIA requests will be honered by directly writing to Region 2 and more specific questions regarding the RCRA Program should be directed to the RCRA Hotline at 1-800-424-9346.

Internet - HQ

EPA HQ provides BRS data cycle instructions, and the data for all completed BRS data cycles at <u>http://www.epa.gov/epaoswer/hazwaste/data.</u>

# **APPENDIX E Historic Topographical Maps**



## EDR Historical Topographic Map Report

1 West Main Street 1 West Main Street Beacon, NY 12508

Inquiry Number: 1464862.4

July 13, 2005

## The Standard in Environmental Risk Management Information

440 Wheelers Farms Road Milford, Connecticut 06460

## **Nationwide Customer Service**

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

## **EDR Historical Topographic Map Report**

Environmental Data Resources, Inc.'s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property, and its surrounding area, resulting from past activities. ASTM E 1527-00, Section 7.3 on Historical Use Information, identifies the prior use requirements for a Phase I environmental site assessment. The ASTM standard requires a review of *reasonably ascertainable standard historical sources*. *Reasonably ascertainable is defined as information that is publicly available, obtainable from a source with reasonable time and cost constraints, and practically reviewable.* To meet the prior use requirements of ASTM E 1527-00, Section 7.3.4, the following *standard historical sources* may be used: aerial photographs, city directories, fire insurance maps, topographic maps, property tax files, land title records (although these cannot be the sole historical source consulted), building department records, or zoning/and use records. ASTM E 1527-00 requires *"All obvious uses of the property shall be identified from the present, back to the property's obvious first developed use, or back to 1940, whichever is earlier. This task requires reviewing only as many of the standard historical sources as are necessary, and that are reasonably ascertainable and likely to be useful." (ASTM E 1527-00, Section 7.3.2 page 12.)* 

EDR's Historical Topographic Map Report includes a search of available public and private color historical topographic map collections.

#### **Topographic Maps**

A topographic map (topo) is a color coded line-and-symbol representation of natural and selected artificial features plotted to a scale. Topos show the shape, elevation, and development of the terrain in precise detail by using contour lines and color coded symbols. Many features are shown by lines that may be straight, curved, solid, dashed, dotted, or in any combination. The colors of the lines usually indicate similar classes of information. For example, topographic contours (brown); lakes, streams, irrigation ditches, etc. (blue); land grids and important roads (red); secondary roads and trails, railroads, boundaries, etc. (black); and features that have been updated using aerial photography, but not field verified, such as disturbed land areas (e.g., gravel pits) and newly developed water bodies (purple).

For more than a century, the USGS has been creating and revising topographic maps for the entire country at a variety of scales. There are about 60,000 U.S. Geological Survey (USGS) produced topo maps covering the United States. Each map covers a specific quadrangle (quad) defined as a four-sided area bounded by latitude and longitude. Historical topographic maps are a valuable historical resource for documenting the prior use of a property and its surrounding area, and due to their frequent availability can be particularly helpful when other standard historical sources (such as city directories, fire insurance maps, or aerial photographs) are not reasonably ascertainable.

#### **Disclaimer - Copyright and Trademark Notice**

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright © 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.





N^ EDR INQUIRY# 1464862.4 TARGET QUAD: POUGHKEEPSIE YEAR: 1943 Series: 15' Scale: 1:62,500



N^ EDR INQUIRY# 1464862.4 TARGET QUAD: WAPPINGERSFALLS YEAR: 1947 Series: 7.5' Scale: 1:24,000



N^ EDR INQUIRY# 1464862.4 TARGET QUAD: WAPPINGERSFALLS YEAR: 1956 Series: 7.5' Scale: 1:24,000



N ^ EDR INQUIRY# 1464862.4 TARGET QUAD: WAPPINGERSFALLS PhotoRevised: 1956-1981 Series: 7.5' Scale: 1:24,000

## **APPENDIX F** Sanborn Fire Insurance Maps

.



"Linking Technology with Tradition"®

## Sanborn® Map Report

Ship To: Amit Garg

Yu & Associates 611 River Drive Elmwood Park, NJ 07407

Customer Project:050751011100ERK201-791-0075

 Order Date:
 7/13/2005
 Completion Date:
 7/14/2005

 Inquiry #:
 1464862.3S
 7/14/2005

 P.O. #:
 NA
 NA

 Site Name:
 1 West Main Street
 7/14/2005

 Address:
 1 West Main Street
 7/14/2005

 City/State:
 Beacon, NY 12508
 7/14/2005

 Cross Streets:
 1
 1

Based on client-supplied information, fire insurance maps for the following years were identified

1884 - 1 Map 1889 - 1 Map 1896 - 1 Map 1904 - 1 Map 1912 - 1 Map 1919 - 1 Map 1927 - 1 Map 1946 - 1 Map

1962 - 1 Map

Total Maps: 9

Yu & Associates (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Limited Permission to Photocopy

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. UDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THER CAUSE, FOR ANY LOSS OF RESUMES, INC. US STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings. environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provided for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2005 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, affiliates. All other trademarks used herein are the property of their respective owners.

#### **USER'S GUIDE**

This User's Guide provides guidelines for accessing Sanborn Map® images and for transferring them to your Word Processor.

#### ding Sanborn Maps

Sanborn Maps document historical property use by displaying property information through words, abbreviations, and map symbols. The Sanborn Map Key provides information to help interpret the symbols and abbreviations used on Sanborn Maps. The Key is available from EDR's Web Site at: http://www.edrnet.com/reports/samples/key.pdf

#### Organization of Electronic Sanborn Image File

- Sanborn Map Report, listing years of coverage
- User's Guide
- Oldest Sanborn Map Image
- Most recent Sanborn Map Image

#### Navigating the Electronic Sanborn Image File

- Open file on screen. 1.
- 2. Identify TP (Target Property) on the most recent map.
- 3. Find TP on older printed images.
- Using Acrobat® Reader®, zoom to 250% in order to view more 4. clearly. (200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.)
  - - A. On the menu bar, click "View" and then "Zoom to ... "
  - B. Or, use the magnifying tool and drag a box around the TP

#### Printing a Sanborn Map From the Electonic File

- EDR recommends printing images at 300 dpi (300 dpi prints faster than 600 dpi)
- To print only the TP area, cut and paste from Acrobat to your word processor application.

#### Acrobat Versions 6 and 7



- 2. Click the "Select Tool"
- 3. Draw a box around the area selected
- 4. "Right click" on your mouse
- 5. Select "Copy Image to Clipboard"
- 6. Go to Word Processor such as Microsoft Word, paste and print.

#### Acrobat Version 5

- 1. Go to the menu bar
- 2. Click the "Graphics Select Tool"
- 3. Draw a box around the area selected
- 4. Go to "Menu"
- 5. Highlight "Edit"
- 6. Highlight "Copy"
- 7. Go to Word Processor such as Microsoft Word, paste and print.

## Important Information about Email Delivery of Electronic Sanborn Map Images

- Images are grouped intro one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases, you will receive multiple files, labeled as "1 of 3", "2 of 3", etc. including all available map years. Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please
- contact your ISP to identify their specific file size limitations.

75% • (*) 🕀 Zoom In 🚲 C Zoom Qut Dynamic Zoon

The Select and The Subset Data Tool C.

T- & O 1794 - 👁 🕒 🖪 Graphics Select Tool (Gr

















The Sanborn Library, LLC RAS Copyright© 1946 The Sanborn Library, LLC its fact at whole or in part of any map of the Sancorn Library LLC may be seen from the Sancorn Library, LLC





# **APPENDIX G Building Department Information**

CONSTRUCTION EDECISION				DUILUING KEU	JKD		412					
E DEUPANCY	ITAAP SHE FATBING B	ECORD	No Statts	/#/\.			14		<u>نې</u>			
	WA SHULLON OCH	115	NO, UTILS	.e	Man	577	P.	Sec. man a	ETTAS -	6255	COMMERCIAL L	TLTIONS
LOT . EMELINIO	CONCOUR MARK		Builder	<u> </u>	······		ا ترا	xa 770 g	<i>K 460</i> :	46 230	STORY	22117
LIVING ACCOMMODATICHS	BBK C'STONG	(						Fle-Mill	. PC	WL HT	· ]	1
ESC FAULY	PLATE DIADE COCHE						G	176	<u>حمد</u>		BSM1	
ROOK ROOK							7		10		ISF FLODE	······································
BASEMENT	80	0E		1ª Mirl	( )			SPL	40		SHE FLCOR	
	SH INGLEASTAIT (1						Æ	22000	- 30 -		JRD FLDOR	
GRAME - PHRE . EUL	SLATE, FREZMETA		<u>+</u>	2088	) 🎢 🖥	7		$\mathcal{D}_{\mathcal{R}}$		53640		
HEATING	DOWP ON MOCH TAN	13	<u>  -  </u>		, ,	5 <b>1</b>		500	CE E	2600 EASE	FRICE	
a super a la des desta desta de la	COMP ON STEEL FEAR	lê	<u>†</u> [		$\mathcal{V}_{-}$			A	ç -	12:0 10:05	r	
CENTRAL & AIRCON	FLO	C RS	╨╼┫					1930 1940	50 57	370 FRJUT		
A K		8 1 2 3						70702	- 23	1250 110.14	IRCON	
LE REAL	IOVCIETE			/40				+	20-2-2-	7760 21871	N.	
+F61F8x	WC03			Post Plant	15 dames			1 St. Com		P 1140		·
PEIMBING	10.0			WLS, 270 LIE	Enterin	160 Y / 18 191	20 × 18	HI Carl	1. 1. 1.	Ze serin	1155	
				ATT ONE ZIN	200 A.L. 54	cuing	5 F. L. F.	R.F. BARR	REG	insol		
S POINTS S	NE/SE TRAVE		5	ROWS 10 NO	4 30'0	d. Zir		2 - 2 - 2 - 2 	131945 2415	ST PE		<u> </u>
<b>₩</b> ₩	NETH CONCRETE		• · .	Permet Q.C.K.	All shall	CLAT L	an a	Clour Fry	5 67	SEUAR	E #EET	
ROCH	INTERIO	FINISH		Care fill 0-	E TEUCH	U	20/	OXY AL	130-11	CAR SUBTC	741	<u> </u>
VOCA T	F: STER /novwills	<u>B 1 2 1</u>	r	OFFICE ENTL.	K. x 45 7 20	522	12.2	20 18 AL	27. 61	ACOITI	Cars	······································
LAVITORY	FISERBOASO			AC+50 54	1. 2 LA	12	يكر للمكينية حدر عدرج	Ca +10.	170 N	TATE -	EASE	
P CLOSET/URINAL	UNFWISHED		C N T F	ADDISS CAY +	Came .	ا بهره		***	27000	SCHO. GRADE		R
ATTIE	· · · · · · · · · · · · · · · · · · ·			200	acce 12	37	6 F. G			REP. Y	FLJE	
		~~		Koor An	1.2 · · · ·	يسر				henry		
CHEMIC PARTS EVEL	AGE			NEWER CORR	CATE	2 6 0,	TEINE	125		DEP 420		<u> </u>
DWEL.ING CC	INPUTAT CHS			D. CONSTRUCTION	SHSE .	RKTE	GIADE	TO POTED		THUE .	ALUE	
	OTHERFE	ATU RES	-BOX PLANT	1ª Morel	28800	1	2410	1915		REPLYCLUE	DEPA	TRUE VALUE
<u>s</u> <u></u> s r	PT WASONES WHILE		0 A 111 A2					1100	<u> </u>	23779	10	232010
MENI	FIREP_ACE		PHYING	ASPA	22000			1965	1.	2.2.4		·
ING	TINISHED BONT			·····	_				-al	220	<u>= 55</u>	<del>ين الم محرك تري</del> ير
9inic	<u> </u>	·								·		
	Í		والمراجع والمستروم والمراجع والم						· · · · · · · · · · · · · · · · · · ·			
8					_				<u> </u>			
n na server distantante destabilitante en la server destabilitante en									<u>                                      </u>			
				······································								
			· · · · · · · · · · · · · · · · · · ·		-				<u> </u>			
Martin Martin			· · · · · · · · · · · · · · · · · · ·								·	
s li di si										·		
				·····								
					l l				-			
ALUE					ļ	. <u> </u>						
			LISTED LLA						1444-1444-1444-14-14-14-14-14-14-14-14-1	······································		
E YALUE			L'anto EB	DATE 7-22-71				TOTAL PR	It F Walt the		· Startbauer	a market war a burner of
	••	- »'IICU 31						10744	TIN LALVE		<u>&gt;</u>	06410
· ~ ~	GRADE DEN	NTES QUALITY O	F CONSTRUCTION	XCELLENT 2 COOD O	AllPoson			101.40	I RUE YAL	LE ALL EUROING	5 2	36410
		COU FACTOR R	FERS TO THE COND THE	NU DES RABIERTY AND DES	-AYCKAGE: C Frittingen of	CHEA	"; E	CHEAP		Y. E		- Internet
				- Ferry Frank (19)	er verress ()F	INE BUI	LING			->*+&* LAYEE •TI	INBLE CO./AFM	制器标言的冗一
												dia 🖓

USA MARKARA MUSIKA

Uncome         Image: Section Property Control of the section of the sectin of the sectin of the section of the section of the sectin of t	:		-									· · · · · · · · · · · · · · · · · · ·	ede .						
PERDE DO MARTEN         Cost         Total         Cost de la cost de	LOCATION	nain	<del>- 4¥</del> €. {∔				C							. <b>3</b> 0	100 P. 100		a transferra	<b>.</b> 7	
PENN CENTRAL         COL         CAL         CAL <thcal< th=""> <thcal< th=""> <thc< td=""><td>, F</td><td>ECORD OF DW</td><td>NERSHIP</td><td></td><td></td><td>T</td><td></td><td>┳━╲╙┸━━╸</td><td><u> </u></td><td></td><td></td><td>1</td><td>·</td><td>CISTRUTT</td><td>A research (Minut a rest</td><td>KADRE VO.</td><td></td><td>C/R) V</td><td>L VEER</td></thc<></thcal<></thcal<>	, F	ECORD OF DW	NERSHIP			T		┳━╲╙┸━━╸	<u> </u>			1	·	CISTRUTT	A research (Minut a rest	KADRE VO.		C/R) V	L VEER
Иптелсов Насенції (VEIDAS         Имало 1920         Имало 1920         Обла 1920         Ofna 1	L.	PENN (	CENTRAL				¢∕XE	EM-12		Eage/Post		PERCI	E	tu tu		ACCOUNT	NUMBER	<u></u>	
American Propusy Investors         TIO         Million to 10/2 / 1000         All 200	American	HODERTY	1 Inverto	XS													6	- 23	an
CG371         Res         CG371         Res         CG371         Res         CG372         CG372 <thcg372< th=""> <thcg372< th=""> <thcg372< t<="" td=""><td>American</td><td>Donald</td><td>41 Lout</td><td>- Ch-</td><td></td><td><b> </b>&amp;</td><td></td><td>19.75</td><td></td><td>0000 00</td><td>00</td><td></td><td></td><td>1. S. S.</td><td>954</td><td>1,4</td><td>á lú</td><td></td><td>E17-1</td></thcg372<></thcg372<></thcg372<>	American	Donald	41 Lout	- Ch-		<b> </b> &		19.75		0000 00	00			1. S. S.	954	1,4	á lú		E17-1
MEMORADA         Disol 2/20/23         1/00/453         Res acc           MEMORADA         MEMORADA <t< td=""><td>- CCIM Lea</td><td>Here ic</td><td></td><td>LITCK</td><td>2 <u> </u></td><td></td><td>710</td><td></td><td></td><td>1419/2-</td><td>20</td><td>1.072.</td><td><u>a s</u>t</td><td><u>78 (</u></td><td>4164</td><td>SAUE</td><td></td><td>163</td><td>90</td></t<>	- CCIM Lea	Here ic		LITCK	2 <u> </u>		710			1419/2-	20	1.072.	<u>a s</u> t	<u>78 (</u>	4164	SAUE		163	90
MEMORANDA         NEW ACCOUNT         CONSUMING         PODERTY CHANGE RECOOD           L         E         236410 1         236410         TONOMING         PODERTY CHANGE RECOOD         Anton           L         E         236410 1         236410         TONOMING         PODERTY CHANGE RECOOD         Anton           L         E         236410 1         236410         TONOMING         PODERTY CHANGE RECOOD         Anton           L         E         236410 1         236410         TONOMING         PODERTY CHANGE RECOOD         Anton           LEASED RUDG)         - KRAFT COR, CONT         TONO CONTAINEE         CORP.         TONO         Anton         Anton           STONE CONTAINEE         CORP.         TAK         MALLIZOUR VIEW         Anton         Anton           CLAND CONTAINEE         CORP.         TAK         MALINE         Anton         Anton           CLAND CONTAINEE         CORP.         TAK         MALINE         Anton         Anton           CLAND CONTAINEE         CORP.         TAK         Anton         Anton         Anton           CLAND CONTAINEE         CORP.         TAK         Anton         Anton         Anton           CLAND CONTAINEE         CORP.         TAN	Meno North	Comm	Her RO	Cri	+ <u>1</u>			5-20-0	6	1708-45	<u> </u>	800 :	200					tatini (	
NEWDRANDA         NEW ACCOUNT B/2073         TE-OSERTI WID         WEWDRANDA         NEW ACCOUNT B/2073         TE-OSERTI WID         WEWDRANDA         PROPERTY CHANGE RECORD           L         B         236410 1         236413         THE ADDRESS         DOTS         WURRANDA         MURRANDA         MURRANDAA         MURRA					*			71121200		22:02-118	<u>c3</u>	6000	200	<u>(</u>	<u> 1898</u>	17.2 <b>-</b> 17.2			
MEMORANDA         NEw ACCOUNT B/2G/73         TENDEMM         WENDEMM         WENDEMM         PODERTY CHANGE RECOD           L         E         236410 1         236413         III.         III.         III.         MUMBER         PODERTY CHANGE RECOD           L         E         236410 1         236413         III.         III.         III.         MUMBER         PULPOR         AND III.         AND IIIIII.         AND IIII.         AND III.	مىمى <u>مىسىيەر مىلەر</u> يىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى		·····								<b></b>					- Bergel			4.229
NEWDRANDA         NEW ACCOUNT 3/20/73         NEW ACCOUNT 3/20/74         NEW ACCOUNT 3/20/74 <t< td=""><td>·</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>   </td><td></td><td></td><td></td><td></td><td>1.2.5</td><td></td><td></td><td></td><td></td></t<>	·				<u> </u>					 					1.2.5				
MEMORANDA         NEW ACCOUNT B/2073         UN         VENDRAME         PROPERTY CHANGE RECORD MADE           L         B         236410         1         236413         UN         RUMER								· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				41.2	<u> 12</u>	ays	
NELDRAMMA         NEK ACCOUNT B/20/73         TERDIMUL         VERDEMINA         VERDEMINA         PROPERTY CHARGE RECORD           L         D         236410 1         236410 3         B/20/73         HILL         BRANC RECORD         AND JAMER RECORD           (LEASED ELDG)         -         KRAFT COR, CONTA WARE CORP.         BREIGRAD DURING         BREIGRAD DURING         BREIGRAD DURING         BREIGRAD DURING         BREIGRAD DURING         BREIGRAD DURING         AND JAMER RECORD         AND JAMER RECORD           CEASED ELDG         -         KRAFT COR, CONTA WARE CORP.         BREIGRAD DURING         BREIGRAD DURING         AND JAMER RECORD         AND JAM						<u>,</u>								the state of	1. N. M. S	10.000 B	<u></u>	4	
L         B         236410 1         236413         UVE         ROTE NAME         PECH NAME         PECH NAME         PECH NAME         NA	i	N	EMDRANDA		EN AL	rr nı	INT	TE-POSIBLERH /		M PROVEMEN	TS			Panp	TOTY OF			5,6482	de fai.
L         B         236410 T         236610 T         236610 T         236610 T         236610 T         236610 T         236010 T         236610 T	•	_		•	8720	6773	u':€€ 7 3	LEVE.	~	GENTRAL WATER		DATE	NUMB			PHILENSE	UKU		
LEASED ELDG)         KRAFT COR. CONT.         LIN         OR         LIN         LIN <thlin< th="">         LIN         LIN</thlin<>	L	e 2364	÷10 T	2364	13			FICH		ÆWIR		1/alos		ارب		1 17.1			L-CMA
STONE CONTAINÉE         CORP.         RESERCT           STONE CONTAINÉE         CORP.         STRETOROZ         CISTROT           STRETORZ         CISTROT         STRETOROZ         CISTROT           STRETORZ         CISTROT         STRETOROZ         CISTROT           STRETORZ         CISTROT         STRETOROZ         CISTROT           STRETORZ         CISTROT         STRETOROZ         CISTROT           STRETORZ         STRETOROZ         CISTROT         STRETOROZ           STRETORZ         STRETOROZ         STRETOROZ         CISTROT           STRETORZ         STRETOROZ         STRETOROZ         STRETOROZ           STRETOR         STRETOROZ         STRETOROZ         STRETOROZ           STRETOROZ         STRETOROZ	LEASED BLOG	) KRAT	T COR					LON		G45					<u>, a, ~</u>	TO A FAL	o Nara	1	
STENC CONTAINEL CORP.         STREET NOTA         DESTRET           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         1000         1000         1000           1000         1000         1000         10000         10000         10000           10000         10000         10000         10000         10000         10000           100000         100000         100000         100000         100000         100000           1000000         1000000         1000000         1000000         100000         1000000           10000000         1000000         1000000 <td>C</td> <td>5-</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>FOLUNI</td> <td></td> <td>AL JELES</td> <td>¥</td> <td></td> <td></td> <td></td> <td>······································</td> <td><u> </u></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>	C	5-		•				FOLUNI		AL JELES	¥				······································	<u> </u>			· · · · · · · · · · · · · · · · · · ·
Interve         MPEND         <		، <i>ا</i> ا	ONCE US.	NTAW	er (	20R)	F1	STREET DIT POAT	3	DISTRICT									
Lith APD J         J BY K         J           VIEW P220         32 (C. R3)         32 (C. R3)         32 (C. R3)           VIEW P220         32 (C. R3)         31 (C. R3)         31 (C. R3)           VIEW P220         32 (C. R3)         31 (C. R3)         31 (C. R3)           VIEW P220         32 (C. R3)         31 (C. R3)         31 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         31 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         31 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         31 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)           VIEW P220         X1 (C. R3)         101 (C. R3)         101 (C. R3)<								FA7I		( <b>VED:</b> 319)					······	ويوجيها فوكنكان بيد غداد كسوري	····		
APPEND         REARS         REARS         ASSESSMENT RECORD           *CERNE         ACTIVE         REARS         ASSESSMENT RECORD           *CERNE         ACTIVE         REARS         ASSESSMENT RECORD           *CERNE         ACTIVE         ACTIVE         REARS         ASSESSMENT RECORD           *CERNE         ACTIVE         ACTIVE         ACTIVE         AND           *CERNE         ACTIVE         ACTIVE         ACTIVE         AND           *CERNE         ACTIVE         ACTIVE         ACTIVE         ACTIVE         ACTIVE           *CERNE         ACTIVE         ACTIVE         ACTIVE         ACTIVE         ACTIVE         ACTIVE           *CENTER         ACTIVE         ACTIVE         ACTIVE         ACTIVE         ACTIVE         ACTIVE           *CENTER         ACTIVE		•						SUM IN PROVED		STATK	$\leq$								
LAND COMPUTATIONS         Ann J         Ann J         Ann J           FORMAL         Mail         Mail </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SEEVILE</td> <td></td> <td>2802.0.45 9100000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								SEEVILE		2802.0.45 9100000									
Transmission         ASSESSMENT RECORD           Second         Annu         A	1 LOT 2 ADAS AT	B HOHE		·		LAN	DCOMPLITATI	KINS I		2020 - 2	L								
Invision	FRATINGE YPTH		XP'H KANYA	ACTUAL		UNT	ACTURE	10110 T	-	<u> </u>					SESSME	INT RECOR	2		
Contract         Port		1 See	184.05	<u></u>		<u> </u>	<u></u>	10 4		TOUL		EAND		<u> </u>	720	_×110	<u> </u>		
How with a set of the	Frank Chart	بك			2 40 (	$\overline{\mathcal{A}}$	20 000	21700			••••••	BUILING		236	410	8.40 MG			
ATTERPRECUTION       NT. 0° 60283       PATE PERADE       10 74 TTAL       2 60, 190       19       19° 4         CASSIFICATION       NT. 0° 60283       PATE PERADE       PAT	tucres		The grant	<u></u>	4 AC	3	5 770		<u>.</u>	4.6,00	2.2	EVENTPTICE		•		DENTION	-		·•
LINE         Line         Line         Go, coc         UND           CASSIFICATION         HIL OF 6/183         MITERERASE         NITERERASE         NITERERASE         NITERERASE         NITERERASE         NITERERASE         DEMPTICE         DEMPTICE           CASSIFICATION         HIL OF 6/183         MITERERASE         NITERERASE         NITERERASE         DEMPTICE         DEMPTICE           LIABLE, APO         III.ABLE, APO         IIII.ABLE, APO         IIII.ABLE, APO         IIII.ABLE, APO         IIII.ABLE,			-							6.0,00	20	074	IATCI	260,	170	19	10.47		
C.ASSHEATON         N.C.OFACRES         PATCHERADSE         NELEVISE         NELEVISE         RELEVISE         RELEVISE         RELEVISE         DEMONITOR         EURISE         EUR				S. 19	<b>x</b>							ԼԿԻD		@o.	00	LAND			
Interview         Interview <t< td=""><td>CLASSIFICATION</td><td>NT 05 4000+</td><td>0475 A4A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.UN8</td><td></td><td>_236,</td><td>400</td><td>EV 10(8)</td><td></td><td></td><td></td></t<>	CLASSIFICATION	NT 05 4000+	0475 A4A									8.UN8		_236,	400	EV 10(8)			
11A31E APD       2 76 FUTAL       2 76, 400       19       TOTAL         *ASTURE       140       145,44.00       149,0       149,0         *OTAANS       80,000       145,44.00       149,0       149,0         *OTAANS       80,000       145,44.00       149,0       149,0         *STELANE       200,000       19       1012,000       19       1012,000         *STELANE       200,000       19       1012,000       19       1012,000         TIPER       1074,4376,433       3,11       76       300,000       19       1014,000         1074,4376,433       3,11       76       300,000       200,000       200,000       200,000       200,000         1074,4376,433       3,11       76       300,000       200,000       200,000       200,000       200,000       200,000         1074,4376,433       3,11       200,000       200,000       200,000       200,000       200,000       200,000         1074,4376,430       1074,4300       200,000       23,00,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000       200,000 </td <td>ICHESITE</td> <td>H., U' MJ/EQ</td> <td>PLIEPEKI</td> <td>07F</td> <td>ND OF FORES</td> <td>3</td> <td>WIEFELACE</td> <td></td> <td></td> <td></td> <td></td> <td>SBALL BUILDING</td> <td></td> <td>r</td> <td></td> <td>DEWING</td> <td></td> <td>• ••=•</td> <td></td>	ICHESITE	H., U' MJ/EQ	PLIEPEKI	07F	ND OF FORES	3	WIEFELACE					SBALL BUILDING		r		DEWING		• ••=•	
MAD       HAD       LAND         "ODULAND       BLILCING       373.500       EVILIANS         "ASTERIANC       DEVPTICN       DEVPTICN       DEVPTICN         "ASTERIANC       10"AL VALUE DAND DIDDSS!       19       KTAL       STIBLINE         TOTAL ASTERIA       76       400       15       TOTAL         TOTAL ASTERIA       10"AL VALUE DAND DIDDSS!       600,000       20000000       EVILUAND         TOTAL ASTERIA       00"AL VALUE BUILDING       603.64400       23.66,400       23.66,400       23.66,400         TOTAL MANE LANE AND BUILDINGS       63.64400       23.66,400       23.66,400       23.66,400       23.66,400         TOTAL MANE LANE AND BUILDINGS       26.07.900       23.66,400       18       WTAL       10	11A31E .4PD								مود باستا مستانه			3 76	IETAL	296,	400	19	701.8		<u> </u>
**0:01AND       BLICHNS       373500       EVILINE         **3TELANC       3EWFTICK       DEWFTICK       DEWFTICK       DEWFTICK         **3TELANC       19       KTA	MSTURE					·				•		LAND		1454	40	LAND			
*ASTELANC     DEMPTICA     DEMPTICA       THER     III     IIII     IIIII     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	тосолана					-		-				8LIICIMS	<u></u>	3735	$\overline{\circ}\overline{\circ}$	EVILINNS		····	
IDEN	"ASTELANC							0				DEVENICA				EXEMPTION			
TOTAL ACTEANS         B         TOTAL         MOD         LANC           10° AL VALUE LAND DUCSSI         10° AL VALUE LAND DUCSSI <t< td=""><td><b>ТРЕЯ</b></td><td></td><td></td><td></td><td></td><td>;</td><td></td><td></td><td></td><td>1-1</td><td></td><td>19</td><td>KIA 🧲</td><td>518.9</td><td>ΩĽ</td><td>t:</td><td>TOTA</td><td></td><td></td></t<>	<b>ТРЕЯ</b>					;				1-1		19	KIA 🧲	518.9	ΩĽ	t:	TOTA		
10° 1 VALUE DAD DROSSI         10° 2 VALUE DAD DROSSI         40 LONG         40 LONG         EVENTS           10° 1 VALUE BUILDATES         236410         236,400         36000000000000000000000000000000000000	TOTAL ASPEASE	8,11						jie yr		- 76	×	(M)				иже			
TOTAL MULE BULLINHES         236410         236,400         XENTER         EXEMPTION           TOTAL MULE AND BULLINGS         266190         236,400         18         NTA         25         TOTAL			10^	AL VALUE DOM	0 010551			0278	8	60.00		RATORIC	780-944 (State of Control )			ENILINAS			<u>_</u>
TOTAL MANE LANC AND BUILDINGS 26,0190 276,400 13 WTA. 25 TOTAL			10	THE VILLUE BUIL	.DNES			23641		236.4	20	XENTER	······································	·····		EXEMPTION	<u> </u>		
	C017_11351. 1650-010	0 11001 EV PC	10*	AL MANELAN	C APO B, HUB	n63		26,619	2	276,7	-20	19	KTA.			25	10541		

contractore de la constante de

Distanting of the local states of the

# APPENDIX H Site Photographs

## **PHOTOGRAPHIC DOCUMENTATION**

CLIENT NAME:

Day Engineering, P.C.

PROJECT NAME: Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York

PROJECT NUMBER: 0507501



at the site.



## PHOTOGRAPHIC DOCUMENTATION

CLIENT NAME:

Day Engineering, P.C.

#### **PROJECT NAME:**

Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York PROJECT NUMBER: 0507501

# Photo # Date: 3 6/22/05 Description: Junkyard located at northern part of the paved parking lot. Waste oil observed spilled on the ground. Photograph taken facing north. Image: Comparison of the paved parking lot.



## PHOTOGRAPHIC DOCUMENTATION

**CLIENT NAME:** 

Day Engineering, P.C.

**PROJECT NAME:** 

Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York





## PHOTOGRAPHIC DOCUMENTATION

CLIENT NAME:

Day Engineering, P.C.

PROJECT NAME: Modified Phase I - Environmental Due Diligence



## PHOTOGRAPHIC DOCUMENTATION

CLIENT NAME:

Day Engineering, P.C.

PROJECT NAME: Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York



#### PHOTOGRAPHIC DOCUMENTATION

CLIENT NAME:

Day Engineering, P.C.

PROJECT NAME: Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York



#### **PHOTOGRAPHIC DOCUMENTATION**

CLIENT NAME:

Day Engineering, P.C.

PROJECT NAME: Modified Phase I - Environmental Due Diligence Dorel Hat Company, City of Beacon, New York



# APPENDIX I Boring Logs

100 T

PROJECT NAME: Metro North B LOCATION: Beacon, NY	leacon, Dorel Hat STARTED: 08/04/05	Boring No. B-1 BOREHOLE FLUID LEV				
NORTHING: EA	COMPLETED: 08/04/05 STING:	DATE	DEPTH			
RIG TYPE: Geoprobe Advance 66 DT. DRILLING METHOD: Direct Push Geopre CASING: NA CORING: NA	CONTRACTOR: Land Air Water obe Environmental Services DRILLER: Ernesto Santiago INSPECTOR: A. Garg	08/04/05 9:30 AM	(FEET) 3.8			

UEPTH (feat)	USC	DESCRIPTION		Recovery		1	S.	AMPLE
system	System	(based on Burmister system)		(In/in)	PID (ppm)	Hg (mg/m3)	Env. Sample	Depth (feet)
ı _	FILL	0-6": Hand Augering Brown to Dark Brown, c-f SAND, some c-f gravel little silt root fragments, dou						
2		Search, and she loor nagments, try	± 2'		-			
3		Brown to Grayish Brown c-f SAND, some silt, some c-f gravel, concrete fragments, dry	± 3'	42/60			B1-3.0	3-4
4 _		silt, wet, black stained	. <del>7</del>		1:0	-	(Soil)	
5_		Grayish Black c-f SAND and c-f GRAVEL,	± 4.5'			0.0 (throughout)	B1-GW (Groundwater)	2
6 _		trace still, wel, black stained, oil sheen			3.0		B1-6.0	6-7
7 _		Gray c-f GRAVEL, little c-f sand, little silt &	± 0.5				(Soil)	
8	CL	Gray CLAY & SILT, medium plasticity, wet	<u>± 7'</u>	30/60	-5.5			
9							·	
-10			± 10'					
n _		IEND OF BORING @ 10 FEET				s 1975 - 1977		1 1
12	.							

REMARKS: B1-6.0 on hold Oil sheen observed from 5'-7.5'.

Yu & Associates, Inc.
PROJECT NAM	AE: Metro North Bea	con, Dorel Hat	Boring No.	B-2
LOCATION:	Beacon, NY	STARTED: 08/04/05	BOREHOLE	FLUID LEVEL
GROUND ELE	VATION:	COMPLETED: 08/04/05	DATE	DEPTH
NORTHING:	EAST	'ING:		(FEET)
RIG TYPE:	Geoprobe Advance 66 DT.	CONTRACTOR: Land Air Water		
DRILLING MET	HOD: Direct Push Geoprobe	Environmental Services		
CASING:	NA	DRILLER: Emesto Santiago	NA	NA I
CORING:	NA	INSPECTOR: A. Garg		

DEPTH	usc	DESCRIPTION	Pagawan		SAMPLE		
(feet)	System		(In/In)	PID	Hg	Env.	Depth
	L	(based on Burmister system)	(110/11)	(ppm)	(mg/m3)	Sample	(feet) ····
	1	Brown c-f SAND, some silt, some c-f gravel,		]			T
1	FILL	root matters, dry $\pm 0.6^{\circ}$			0.003		
_	1	Gray c-f GRAVEL, some c-f sand, little silt, dry		1	1	· ·	
2 _	4	± 2'		<b>]</b>	0		[
<b>,</b>		Dark Brown c-f SAND, some c-f gravel, trace	42/60	ſ .			
3 -	ł	siit, moist			0		
4							
· -	1						
5		+ 1 5				Dico	
		Gravish Brown c-f SAND, some silt, little c-f gravel				B2-5.0	5-6
6		dry + 6'				(3011)	
	ML	Gray-light Brown SILT & CLAY.					
7		moist					
- 1			10.000	0			
8			43/60	(throughout)			
1		·	4				
9							
1							:
10		± 10'					
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	sa saya	Same as above					en en esta esta esta esta esta esta esta esta
11 -			İ				
	[	1		-			
12 -				i			
13			30/60				
··· –							i
1.4			1			ĺ	
·· -					1		[
15		. 15					
··		END OF BORING @ 15 FEET					
16	ľ		1				
****	1			1	1		
			1			1	

REMARKS:

Yu & Associates, Inc.



PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	B-3
LOCATION:	Beacon, NY	STARTED:	08/04/05	BOREHOLE	LUID LEVEL
GROUND ELEVA	TION:	COMPLETED:	08/04/05	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: Geop	robe Advance 66 DT.	CONTRACTOR:	Land Air Water		
DRILLING METHO	D: Direct Push Geoprobe	Enviro	onmental Services	00/04/07	10 7
CASING: N	A.	DRILLER:	Ernesto Santiago	08/04/05	12.5
CORING: N/	4	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Becourse			SA SA	MPLE
(feet)	System		(I=/I=)	PID	.Hg	Env.	Depth
<u> </u>		(based on Burmister system)	l''' (innu)	(ppm)	(mg/m ³ )	Sample	(feet)
12	FILL	Brown c-f SAND, some silt, some c-f gravel, root matters, dry ± 1' Dark Brown c-f SAND, some silt and c-f gravel, with concrete fragments, brick fragments, moist/dry					
3		± 3.7'	44/60				
4					an an an an an an an an an an an an an a		
- 5		± 5'	2				<b>.</b> .
6		Dark Gray- Brown c-f SAND, some c-f gravel, little silt, trace Clay, moist ± 6 Gray, Brown Clayer, SILT, little c.f. sand trace			· · · · ·	B3-5.5 (Soil)	5.5.6.5
7		gravel, moist, pocket of brick fragments at 7 ft. ± 7.3'	28/60				
8 -			28/00	0 (throughout)	0 . (throughout)		
⁹ –							
10	CN4	± 10	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		arda, di La contenta di	1	en de se
11	Divi	gravel, moist, with wood fragments					
12	РТ	±11.5 Dark Brown SILT & CLAY, little c-f sand, trace gravel organic matter, fibers, wood, moist (PEAT), low plasticity	······································			B3+11.5 (Soil)	11.5-12.5
13 – 14	1	Gray silty CLAY, some c-f gravel, some c-f $\pm 12.5^{\circ}$ sand, fibers, wet (PEAT), low plasticity					
15		± 15'	- m.	· .	·		
16	PT [	Dark Gray-Brown SILT & CLAY, little m-f sand, organic matter, wood fragments, wet, low plasticity ± 16.3'					
17	ł	Dark Brown Clayey SILT, some m-f sand, race gravel, wood fragments, moist, low plasticity	• •••				
18			60/60				
19	····	± 19.5					
20	5iMi L 	Jark Brown c-1 SAND and SIL1, trace c-1 ravel, wood fragments, moist ± 20' ND OF BORING (0.30 FEFT					
21		IND OF BORING @ 20 PEE I					

REMARKS: Groundwater encountered at 12.5 ft. Approximately 500 ml of water was sampled, before the flow of water stopped. Per the driller, it was a small amount of water sitting over the underlying clayey strata.

Yu & Associates, Inc.



PROJECT NAME:	Metro North Beacon, D	orel Hat		Boring No.	B-4
LOCATION:	Beacon, NY	STARTED:	08/04/05	BOREHOLE	
GROUND ELEVATION	:	COMPLETED:	08/04/05	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: Geoprobe	Advance 66 DT.	CONTRACTOR:	Land Air Water		(1 = = 1)
DRILLING METHOD:	Hand Auger	Env	vironmental Services		
CASING: NA		DRILLER: E	rnesto Santiano	NA	NA
CORING: NA		INSPECTOR:	A. Garg		

(foot)	USC	DESCRIPTION	Recover		]	SA	MPLE
(ieet)	System	(based on Burmister system)	(in/in)	PID (ppm)	Hg (mg/m ³ )	Env. Sample	Depth
1	FILL	Brown c-f SAND, some silt, burnt leaves/wood pieces, black staining at top ±1		0 0	0	B4-0.5	0.5-1.0
2 _		END OF BORING @ 1 FOO1				(Soil)	
3							
4 _							
5 6 7			- - 				
' 8 9					1		
10	-Sec.		·		-	·. •	n se san se
		• • • • • • • • • • • • • • • • • • •					

REMARKS: Black stained area was observed adjacent to the two 55-gallon drums inside the junk yard area. Surface soil sample was collected at 0.5 ft.

Yu & Associates, Inc.

# APPENDIX J Resumes

ŀ

11

1

# ANDREW LEUNG, P.E.

Vice President

# EDUCATION AND TRAINING

University of Illinois, MS, Geotechnical Engineering, 1982 University of London, University College, BS, Civil Engineering. 1980

### Special Courses:

Short course on Earth Dam Engineering, by Prof. P.R. Vaughan at Imperial College, University of London, 1980

OSHA 40-Hour Health and Safety Training for Hazardous Waste, 1985

OSHA 8-Hour Supervisor's Course, 1990

Confined Space Entry Training - 1995

Designing with Geosynthetics, Geosynthetic Research Institute, 1990

Various Geosynthetics Research Institute Round tables and Seminars, 1991 through 1995 Executive-21 Program in Construction and Engineering Management. Brooklyn Polytechnic, 2000 to 2002.

# REGISTRATION

Professional Engineer - New York, New Jersey, 1985

# EXPERIENCE SUMMARY

Mr. Leung has 24 years of technical and project management experience in environmental and geotechnical engineering for the planning, design, construction, and rehabilitation of various civil works. His experience encompasses all phases of hazardous and solid waste management projects. His technical experience has focused mainly on the geotechnical aspects of waste management, including remedial design, groundwater monitoring, hydrologic and hydraulic evaluations, and geotechnical and geophysical investigations. His experience also includes the design of soil and rock slopes and the establishment of foundation design criteria. Types of projects include major transportation infrastructure design, sanitary landfills, leachate containment structures, dams and reservoirs, and residential and commercial buildings.

# **REPRESENTATIVE PROJECTS**

Essex Sportsplex Parking Garage, Newark, Essex County, NJ. Fay, Spofford and Thorndike/ Essex County. Project Manager in environmental discipline for the design bid built team. Responsibilities included effectively correspond with New Jersey Department of Environmental Protection (NJDEP) and the owner, Essex County, to prepare a Remedial Action Work Plan (RAWP), Perimeter Air Monitoring Plan (PAMP), Remedial Action Report (RAR) and a Deed Notice in a time constraint construction schedule. Provided Remedial Design investigation for the proposed parking facility and managed the investigation and remediation of contaminated soil. Remedial investigations included excavation of test pits and installation of monitoring wells, around the construction activities in a timely manner to achieve optimal progress. Soil remediation included removal and off-site treatment of PCB and TPH contaminated soil. Prepared a drafted a Deed Notice (DN) for soil contamination. Successfully negotiated with the NJDEP to allow the horizontal and vertical delineation samples to serve as the post-excavation samples for impacted soils.

Petroleum Bulk Storage Tank Upgrade Program, New York. NYC Dept. of Design and Construction. Project Manager for the \$12 million PBS facility upgrades at 27 fire stations

throughout Manhattan. Upgrade program included environmental remedial investigation and design of fuel tanks at sites managed by the NYCDDC. Also provided innovative remedial design recommendations and feasibility evaluations for contaminated sites that have severe site accessibility and constraints. Project included implementing remote access of throughput fuel quantity via data modem. Implemented a consent compliance program among State Regulators, city agencies, owner, construction managers, and contractors. Participated in roundtable discussion to render opinion on application of Remote Sensing.

**Rt. 29 Duck Island Landfill Project, Hamilton, NJ. NJDOT.** Project Manager for the closure design of the 36-acre sanitary landfill in Hamilton Township, NJ. Provided end-to-end, fast-track site formation from planning to completion for a site design with extensive environmental constraints for the NJDOT. Managed and engineered the geotechnical and hydrologic investigations, and developed the engineering design focus for the landfill. Geotechnical investigations included the design of an exploration program and the performance of a site formation analysis including settlement and stability evaluations. Hydrologic design included conducting a surface water management design to satisfy current federal, state, and local environmental regulations. Part of the closure plan also included an environmentally friendly design of gabion retaining structures to minimize wetland disturbances as well as facilitate the site drainage criteria. In addition, design included a convertible passive gas collection system, traffic impact studies, and landscaping design. A total of eight federal, state, and local permits were secured on behalf of the NJDOT in an extremely challenging project schedule. The design team won the New Jersey Quality Initiative (NJQI) Award for *Teamwork and Quality Merit Award* in 2004. Project also received Client rating of 5.0 /5.0 (Excellent rating) was awarded consecutively.

Terminal C Expansion, Newark International Airport, Newark, NJ. Continental Airlines Global Gateway Project, Continental Airlines, Inc. Geotechnical Engineer responsible for the geotechnical engineering for the expansion and improvement of Terminal C. Project includes the construction of a new 12-gate concourse and operations control tower, the reconfiguration of the access roads in front of the terminal, and more than ten acres of new airfield. Responsible for the development of the subsurface exploration programs, engineering analyses, and evaluations; the preparation of geotechnical engineering reports, construction drawings, and specifications; and the provision of geotechnical consulting services during construction. The work also included the use of light-weight fill to support slabs on-grade, tunneling to install utility lines, and the construction of a mechanically stabilized earth wall.

Adam's Ditch Enclosure, Newark International Airport, Newark, NJ. Continental Airlines, Inc. Project Engineer responsible for performing pile foundation designs; slope stability analyses, cost and benefit evaluations; and designing sheetpile bulkheads. Environmental program included planning and performing treatability studies for potentially contaminated dredge spoil stabilization and evaluating result.

Former Manufactured Gas Plant Site, Morristown, NJ, PSE&G. Project Manager for development of the Remedial Design for this former MGP site to be developed as a residential community. Project concerns included public relations, geophysical assessments, deep excavation adjacent to active railroad tracks and extensive waste classification. Responsible for planning, Remedial Action Work Plan (RAWP) development, Remedial Design (RD) and Remedial Action (RA) components.

# CHARLES McCUSKER, P.G., C.H.M.M.

Project Manager

# **EDUCATION**

University of Southern Colorado: B.S. Geology

# **PROFESSIONAL REGISTRATIONS**

Professional Geologist Commonwealth of Pennsylvania: License No. PG-002812-G
Professional Geologist, State of Delaware: S40000942
Certified Hazardous Materials Manager, No. 3907
NJDEP Licensed (Subsurface Investigator, UST Closure) No. 239389
Rail Operations Contractor Safety Training (MTA, Conrail, Amtrak, NJ Transit)
Hazardous Waste Site and Supervisor Training: OSHA 29 CFR 1910.120(c)

### SUMMARY QUALIFICATIONS

Mr. McCusker has over 19 years of experience in geotechnical engineering, hazardous waste site investigation and remediation on projects throughout the United States. His geotechnical background includes forensic investigations of distressed homes in Southern California, providing oversight and field reconnaissance prior to and during earthwork related to construction of landfills, dams, pipelines, runways, roads and buildings in the Eastern and Western United States. His environmental background includes preliminary assessments, site investigations, and site characterization, remedial investigations and site remediation on projects in Twenty-four States and the U.S. Virgin Islands. He has worked with local, State and Federal officials on environmental projects performed in accordance with CERCLA, TSCA, RCRA, ISRA, CAA, CWA, LUST, and OSHA regulations. His experience includes extent of contamination studies of organic and inorganic chemicals in soil and groundwater, hydrogeologic investigations of water supply systems, groundwater modeling of contaminated aquifers, installation and maintenance of product recovery systems and pump and treat systems, contractor oversight during removal actions and remedial system installation, preparation of Quality Assurance Work Plans, Health and Safety Plans, Preliminary Assessments, Remedial Investigation Reports, Sampling and Analysis Plans, conducting in house training on representative soil sampling and soil classification, computer applications for word processing, database management, modeling and geostatistical analysis.

# **RELEVANT EXPERIENCE**

**Proposed Seaman Avenue School, Perth Amboy, New Jersey, NJSCC** – Provided remedial investigation of areas of concern identified during previous site investigation and remedial activities on this site. This hydrogeologic investigation included pumping tests and development of a groundwater model for the site. A health and safety plan, remedial investigation report, and remedial action workplan were also prepared. A remedial action selection report was developed and foundation recommendations were made to minimize remedial costs by minimizing excavation and dewatering during construction.

Early Childhood Center 13, Jersey City, New Jersey, NJSCC — Conducted a remedial investigation of properties proposed for acquisition by NJSCC as part of the new early childhood center construction. This investigation included a geophysical survey, and intrusive methods to investigate potential areas of concern including USTs, historical fill, automotive repair facilities and groundwater. Prepared the Preliminary Assessment, Site Investigation, Remedial Investigation reports and the Remedial Action Workplan, bid specifications and Property Acquisition

# CHARLES McCUSKER, P.G., C.H.M.M.

Environmental Cost Estimate Reports (PAECER) for properties proposed for acquisition.

**Grand Street Campus, Brooklyn, New York, Take the Fields** – Provided management and review of geophysical investigations conducted in order to identify potential obstructions that might be encountered during athletic field reconstruction. A subsurface investigation was also performed to locate buried structures and to identify potentially contaminated soil. A contaminated soil removal was performed as part of the athletic field reconstruction. A HASP was prepared to address environmental concerns and a RAR was issued to NYDEC upon completion of the project.

Second Avenue Subway, New York, New York, New York City Transit – Oversight of geotechnical drilling operation for this 8 ½ mile tunnel from the financial district to Harlem. Inspection included soil and rock core logging, packer testing, falling head and rising head testing, and well installation. Performed QA/QC of rock core logs vs. acoustic televiewer data, and structural geologic interpretation of these analyses. Helped to develop the building information Access database. Graphic depiction of the available building information with GIS was utilized to help develop the conceptual design for this \$16 billion dollar project.

New Hotel, New York, New York, Alexico Management Group – Petroleum contaminated soil was encountered during foundation construction for a new 32-story hotel in midtown Manhattan. Prepared a health and safety plan for remedial activities and provided air monitoring during removal activities. All work was performed on a fast track basis in order to maintain the project schedule. A remedial action report was prepared for NYDEC approval.

Manufactured Gas Plant Remedial Action, Trenton, New Jersey, PSEG – Field oversight of large-scale remediation project. Remedial measures included source removal, collection and pretreatment of excavation ground water, natural attenuation of remaining dissolved contamination and on-site reuse of thermally treated soils. This project received a distinguished award from the New Jersey Consulting Engineers Council (NJCEC) in 2001.

Waterfront Development, Jersey City, New Jersey, Colgate – Field oversight of a large waterfront redevelopment project at a former manufacturing facility. Provided oversight and management of hazardous and non-hazardous soils excavated during construction. Also provided geotechnical inspection of earthwork, steel pipe pile and sheet pile installation, utility installation and closure, concrete inspection of all structures including slabs, walls, planter boxes, stairs, planter boxes, deadman and the pile cap. This project received an honor award from NJCEC in 2000.

### PUBLICATIONS

"Aquifer Characterization Utilizing Geochemical, Isotopic and Geophysical Methods", 1994 National Proceedings of the Eighth Annual Conference of the Academy of Certified Hazardous Materials Managers, October 26, 1994. Lead Author, Presenter.

"Evaluation of an Immunoassay Soil Test Kit for Pentachlorophenol", 1993 National Technology Seminar, sponsored by U.S. EPA Region V. Co-author.

"Assessment of a Well Field Contaminated with Trichloroethylene", 1993 National Technology Seminar, sponsored by U.S. EPA Region V. Co-author, presenter.

# AMIT GARG Staff Engineer



# **EDUCATION**

University of Massachusetts Lowell, MA, M. S. Civil & Environmental Engineering -2004 Indian Institute of Technology, New Delhi (India), B. Tech. Civil Engineering - 2002

# TRAINING & CERTIFICATIONS

40-hour HAZWOPER-29 CFR 1910.120(e) trained Engineer In Training (EIT), Oct 2004

### EXPERIENCE SUMMARY

Mr. Garg has two and a half years of experience in research and practical projects involving geotechnical and geoenvironmental engineering, and a co-investigator for various environmental site characterization systems. While at the University of Massachusetts Lowell he has been involved in the development of a real time geo-environmental site characterization system. He has also worked in association with USEPA for the characterization of a gasoline contaminated site, conducting insitu testing and collecting soil and ground water samples. In practice, he has experience working on various geotechnical site investigation projects which included supervising and inspection of soil borings, analyzing laboratory and field data and preparing site investigation reports.

# **REPRESENTATIVE PROJECTS**

New Jersey Turnpike Authority, Interchange 12 Design of Final Improvements, Carteret, NJ – The NJ Turnpike Authority plans to expand Interchange 12 to upgrade the existing 7 toll lanes to 14 lanes, and construct a new flyover for an existing rail line. The project involved over 200 soil borings and installation of groundwater monitoring wells, at environmentally sensitive locations like on a landfill, in wetlands and inside the premises of major petroleum processing companies. Responsibilities included inspection of soil borings, installation of monitoring wells, and collection of geotechnical and environmental samples. Also responsible for management of boring logs and coordination of log submission to the client.

Brewster Yard Maintenance Facility, Metro North, New York City MTA (on-call Contract) Geo-environmental Engineer responsible for boring observation, well installation and development, groundwater and soil sample collection. Also responsible for preparing a technical memorandum describing the extent of contamination at the site and recommending sampling locations for additional Phase II remedial investigation.

Seaman Avenue School, Perth Amboy, NJ – Field Environmental Engineer for the proposed development of a new School at along Seaman Avenue in Perth Amboy. Several USTs were removed from a portion of the property that was formerly used as trucking and warehouse facility and had a history of environmental conditions. Responsibilities included inspection of environmental borings, collecting soil and ground water samples and doing various field measurements for laying out borings.

**Talafous Complex, Jersey City, NJ** – Geotechnical Engineer provided oversight during borings and test pit excavations, and performed ground water sampling. Prepared boring logs, test pit logs and reviewed analytical laboratory report and prepared sampling summary. Collected environmental soil and groundwater samples for analytical testing.

# AMIT GARG Representative Projects (Cont.)

**Essex Sportsplex Parking Garage, Newark, NJ** – Performed Low Flow Groundwater Sampling for the preparation of deed notice for Essex County. Calculated the elevations of different monitoring wells from the contour map, to calculate the elevation of different environmental samples for the design of groundwater flow model.

Hasting-on-Hudson, New York State Department of Environmental Conservation (on-call Contract) Geotechnical engineer responsible for sheetpile stability analysis installed in an offshore environment. The proposed 80-ft long sheetpile is designed to contain and limit any off-site migration of contaminated sediments during remedial dredging operation. Design considerations included ice, wave, current and other impact loadings.

**Dr. Charles P. Deffucio School, Jersey City, NJ** – Field Engineer for the proposed addition to this existing school in Jersey City. Subsurface investigation included borings drilled to 40 ft deep and test pits excavated to investigate the fill and depth to existing foundations. Also, conducted dye test to identify the flow of waste water from the school building into the sewer.

Mineola Intermodal Center, Mineola, NY – Field Engineer for the geotechnical investigation, for proposed design and construction of a multi-storey parking garage and pedestrian bridge for the Mineola Train Station, that serves Long Island Rail Road. Duties included inspection of soil test borings and conducting field percolation tests, to estimate the permeability characteristics of the natural strata.

**Providence, Rhode Island** – Worked as a research assistant, in association with USEPA for the characterization of an underground gasoline contaminated site, using the direct push technology and a novel real-time site characterization system. He also worked on developing a new artificial intelligence based model for the evaluation of liquefaction potential of various sites during an earthquake.

### **COMPUTER SKILLS**

MS-Word, MS-Excel, MS-PowerPoint, GEO-SLOPE Office, Grapher, AutoCAD (2004), Data Acquisition – Processing and Analysis using MATLAB.

# **PUBLICATIONS / PRESENTATIONS**

- Garg, A., and Kurup, P. U., "Evaluation of Liquefaction Potential Using ART Based Neural Networks", Journal of Transportation Research Board, To be Published- Nov, 2005
- Garg, A. (2004). 'Detection of TCE contamination using EN-MIP system.' Annual Student Research Symposium (Poster Presentation), Umass-Lowell.
- Garg, A. (2003). 'Application of Neural Networks in Geotechnical Engineering.' Northeast Graduate Student Research Symposium, Umass-Amherst.
- Garg, A. (2002). 'Design of Hazardous Waste landfills.' Bachelor's Senior Year Project, Indian Institute of Technology, Delhi, India.

Phase II ESA



# Project Status Report Phase II ESA 1 West Main Street Beacon, New York

Day Engineering, P. C. (DAY) is in the process of conducting a Phase II Environmental Site Assessment (Phase II ESA) at 1 West Main Street, Beacon, New York (Site). This document presents a summary of findings for the work completed to date.

The Site consists of 3.8-acres and it is improved with an approximate 32,000 square foot building. A grass-covered area surrounds the building and an asphalt-paved parking lot covers the northern half of the Site. A contractor storage area is located in the northwest corner of the Site and a fenced area, located in the east central portion of the Site is used by an adjacent body shop to store vehicles. The southeastern portion of the Site is covered with trees, high brush and other materials. A large stockpile of stone/debris is located immediately south of the Site.

# Fieldwork and Analytical Laboratory Testing

To date, thirty-one direct push test borings have been advanced on and to the south of the Site and five of these test borings were subsequently completed as 1-inch diameter groundwater monitoring wells. The location of the test borings/monitoring wells installed to date is shown on Figure 1.

Selected soil samples from the test borings and groundwater samples from the monitoring wells were submitted for analytical laboratory testing. The results of this testing are summarized on the following tables:

Table 1 Volatile Organic Compound (VOC) and Naphthalene Test Results: Soil Samples Table 2 Semi-Volatile Organic Compound (SVOC) Test Results: Soil Samples Table 3 Metals Test Results: Soil Samples Table 4 PCB Test Results: Soil Samples Table 5 Cyanide, pH, Ignitability and Reactivity Test Results: Soil Samples Table 6 Volatile Organic Compound (VOC) and Naphthalene, pH and Total Cyanide Test Results: Groundwater Samples Semi-Volatile Organic Compound (SVOC) Test Results: Groundwater Table 7 Samples Table 8 Metals Test Results: Groundwater Samples

# Findings

Depending upon the location of the test boring, an approximate 0.5-ft. thick asphalt pavement or topsoil layer was encountered at the ground surface and above a fill material. This fill material generally consists of varying amounts of gravel, coal, sand, coal slag and brick fragments and it extended to the bottom of the hole in test borings TB-101, TB-105, TB-108, TB-110, TB-113, TB-118, TB-119, TB-127, TB-128, TB-129, TB-130 and TB-131. However, indigenous soil consisting of mixtures of clay, silt and/or sand was encountered below the fill in the other test borings advanced. Coal tar was observed to be intermixed within the soil/fill in some of the samples collected from test borings TB-MW-103, TB-105, TB-106, TB-107, TB-117, TB-121, TB-122 and TB-123. In addition a petroleum-type sheen was observed on selected samples collected from test borings TB-MW-103, TB-105, TB-106, TB-107, TB-117, TB-119, TB-120, TB-121, TB-122, TB-123, TB-124 and TB-129.

Equipment refusal (i.e., potentially indicative of top of rock) was encountered at depths ranging between about 8.0 feet (ft.) below ground surface (bgs) (TB-110) and about 15.0 ft. bgs (TB-121).

Groundwater was measured at depths ranging between 1.4 ft. bgs (MW-102) and 4.03 ft. bgs (MW-101) in the monitoring wells installed.

As shown on Table 1, VOCs were detected in 10 of the 12 soil samples that were tested. In 6 of these samples, one or more specific VOCs were measured at concentrations that exceeded Recommended Soil Cleanup Objectives (RSCOs) referenced in the NYSDEC Technical and Administrative Guidance Memorandum: *Determination of Soil Cleanup Objectives and Cleanup Levels* dated January 24, 1999 (TAGM 4046) as amended by the NYSDEC's Supplemental Tables dated August 22, 2001. [Note: In two of the samples, the concentration of 2-butanone exceeded RSCOs. In the remaining samples, apparent coal tar-related constituent (i.e., benzene, toluene and xylene) concentrations exceeded RSCOs.]

As shown on Table 2, SVOCs were detected in 14 of the 15 soil samples that were tested. In 11 of these samples, one or more specific SVOCs were measured at concentrations that exceeded RSCOs.

Although metals were detected in each of the four soil samples tested, the concentrations are generally low and/or comparable to published background values. As such, metals were not identified as constituents of concern.

PCBs were not detected above the laboratory detection limit in any of the 4 soil samples tested. The waste characterization testing done on samples from the Site (refer to Table 5) did not identify constituents at concentrations that would classify this material as a characteristic hazardous waste.

With the exception of the groundwater samples collected from monitoring well MW-103 and a toluene concentration of 1 ppb in a sample from MW-101, VOC and SVOC concentrations were reported as "not detected". Various VOCs (notably benzene) and SVOCs (e.g., naphthalene) were measured in samples from MW-103 at concentrations exceeding groundwater standards and guidance values as identified in NYSDEC TOGS 1.1.1.

The areal extent of VOC and SVOC impact measured in soil samples is graphically depicted on Figure 2 and Figure 3, respectively. The test borings that contained apparent coal tar and evidence of petroleum-type sheen on soil samples are also identified on these figures. The estimated areal extent of soil/fill impacted with coal tar is depicted on Figure 4. Due to the presence of trees and thick brush to the east and a large stockpile of stone/debris, the extent of coal tar impact to the east and south is uncertain.

# Conclusions

The following is a summary of observations regarding the Site:

- Groundwater was observed at depths ranging from about 1.4 to 4.03 ft bgs.
- Suspected bedrock (i.e., equipment refusal) was encountered at depths ranging from about 8 to about 15 ft bgs.
- Coal tar and petroleum sheen was observed in eight of the test borings advanced on and in proximity of the Site (i.e., test borings advanced in the southeastern portion of the Site and to the south of the Site). In four additional test borings, petroleum sheen (probably related to the coal tar) was observed.
- VOCs that are probably related to the presence of coal tar (i.e., benzene, toluene, and xylene) were identified in 4 of the 12 soil samples collected at concentrations exceeding NYSDEC TAGM 4046 RSCOs.
- SVOCs (naphthalene and various polycyclic aromatic hydrocarbons) that are probably related to the presence of coal tar were identified in 11 of 15 soil samples at concentrations exceeding NYSDEC TAGM 4046 RSCOs.
- VOCs that are probably related to the presence of coal tar (i.e., benzene, toluene, xylene, 1,2,4-trimethylbenze and naphthalene) were identified in groundwater samples from MW-103 at concentrations above their respective NYSDEC TOGS 1.1.1.
- SVOCs (i.e., PAHs) that are probably related to the presence of coal tar were identified in groundwater samples from MW-103 at concentrations above their respective NYSDEC TOGS 1.1.1.

Based upon the work completed to date, the soil and groundwater in the southeastern portion of the Site and to the south of the Site is impacted with coal tar. The extent of the coal tar impact to the south and east could not be evaluated due to obstructions that prevented the advancement of test borings in these areas.

The available documentation indicates a Central Hudson Gas and Electric Manufactured Gas Plant (MGP) was located on River Street (i.e., east of the Site). The documentation also indicates that coal tar was removed from this MGP site prior to construction of residences on River Street. The coal tar found on the Site and to the south of the Site appears to be related to the MGP site.

#### TABLE 1 PAGE 1 of 2

#### 1 WEST MAIN STREET BEACON, NEW YORK

#### VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND		S	AMPLE AND		N		NYSDEC TAGM	
NAPHTHALENE	TB-105 (8.0')	TB-106 (8.0')	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-117 (8.0')	(PPB)	
1,2,4-Trimethylbenzene	ND	500	3,300	ND	ND	6,900	10,000	
1,3,5-Trimethylbenzene	ND	170	1,300	ND	ND	2,800	3,300	
Benzene	ND	160	1,200	ND	ND	300	60	
Ethylbenzene	ND	110	440	ND	ND	1,200	5,500	
Total Xylenes	ND	740	7,000	ND	ND	8,300	1,200	
Toluene	ND	240	3,100	ND	ND	1,400	1,500	
Styrene	ND	ND	1,000	ND	ND	ND	NL	
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200	
n-Butylbenzene	ND	ND	ND	ND	ND	ND	10,000	
sec-Butylbenzne	ND	ND	ND	ND	ND	ND	10,000	
Chloroform	ND	ND	ND	ND	ND	ND	300	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	2,300	
p-Isoprppyltoluene	ND	ND	ND	ND	ND	ND	10,000	
2-Butanone	410	280	ND	15	ND	ND	300	
Total VOCs	410	2,200	17,340	15	ND	20,900	10,000	
Naphthalene	5,600	130,000	1,100,000	ND	ND	1,500,000	13,000	

Concentrations shown in ug/kg or parts per billion (ppb).

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit.



NL = Not Listed in TAGM 4046.

#### TABLE 1 PAGE 2 of 2

#### 1 WEST MAIN STREET BEACON, NEW YORK

#### VOLATILE ORGANIC COMPOUND (VOC) AND NAPHTHALENE TEST RESULTS: SOIL SAMPLES

DETECTED VOCS AND		S	AMPLE ANI		N		NYSDEC TAGM
NAPHTHALENE	TB-118 (4.0')	TB-120 (8.0')	TB-124 (10.0')	TB-126 (4.0')	TB-127 (8.0')	TB-129 (8.0')	(PPB)
1,2,4-Trimethylbenzene	ND	130	3,600	ND	ND	ND	10,000
1,3,5-Trimethylbenzene	ND	ND	1,400	ND	ND	ND	3,300
Benzene	ND	ND	340	3	ND	ND	60
Ethylbenzene	ND	ND	740	ND	ND	ND	5,500
Total Xylenes	ND	ND	10,500	2	ND	ND	1,200
Toluene	ND	ND	3,200	3	ND	ND	1,500
Styrene	ND	ND	ND	ND	ND	ND	NL
Vinyl Chloride	ND	ND	ND	ND	ND	ND	200
n-Butylbenzene	ND	ND	110	ND	ND	12	10,000
sec-Butylbenzne	ND	ND	ND	ND	ND	21	10,000
Chloroform	ND	ND	ND	ND	ND	ND	300
Isopropylbenzene	ND	ND	130	ND	ND	ND	2,300
p-Isoprppyltoluene	ND	ND	110	ND	ND	ND	10,000
2-Butanone	18	4,501	ND	ND	ND	ND	300
Total VOCs	18	4,631	20,130	8	ND	33	10,000
Naphthalene	ND	9,000	43,000	ND	ND	390	13,000

Concentrations shown in ug/kg or parts per billion (ppb)

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

ND = Not Detected at concentration above reported analytical laboratory detection limit



NL = Not Listed in TAGM 4046

#### PAGE 1 of 2

#### 1 WEST MAIN STREET BEACON, NEW YORK

#### SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			S	AMPLE AN	D LOCATIO	N			NYSDEC TAGM 4046
	TB-101	TB-105	TB-106	TB-107	TB-110	TB-111	TB-112	TB-115A	RSCO ⁽¹⁾ (PPB)
	(4.0')	(8.0')	(8.0')	(8.0')	(8.0')	(12.0')	(4.0')	(4.0')	、 <i>'</i>
2-Methylnaphthalene	ND	1,500	1,900	2,500	130	ND	ND	1,500	36,400
Acenaphthene	ND	2,700	2,900	1,400	1,600	ND	ND	ND	50,000
Acenaphthylene	ND	2,200	1,500	3,600	220	ND	ND	1,600	50,000
Anthracene	300	5,600	4,300	7,800	230	ND	56	1,700	50,000
Benzo(a)anthracene	880	5,300	2,900	5,500	320	ND	270	2,600	224
Benzo(a)pyrene	1,100	4,800	2,700	4,300	280	ND	270	3,600	61
Benzo(b)fluoranthene	1,200	4,600	2,400	3,500	380	ND	390	2,700	220
Benzo(g,h,I)perylene	260	500	490	760	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	1,500	4,600	2,400	4,100	420	ND	500	3,400	220
Chrysene	980	4,100	2,500	4,500	340	ND	290	2,400	400
Dibenz(a,h)anthracene	ND	420	340	660	ND	ND	ND	ND	14.3
Dibenzofuran	ND	3,600	2,700	3,100	ND	ND	ND	980	6,200
Fluoranthene	2,000	11,000	7,700	12,000	690	ND	480	4,700	50,000
Fluorene	ND	5,600	4,800	4,900	210	ND	ND	1,700	50,000
Indeno(1,2,3-cd)pyrene	280	700	530	1,200	ND	ND	ND	570	3,200
Naphthalene	ND	1,100	1,700	7,600	2,100	ND	ND	2,000	13,000
Phenanthrene	1,200	13,000	11,000	13,000	850	ND	240	5,800	50,000
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	67	ND	ND		50,000
Pyrene	1,800	8,800	6,500	9,200	570	ND	360	4,400	50,000
Total SVOCs	11,500	80,120	59,260	89,620	8,407	0	2,856	39,650	500,000
Total cPAHs	5,940	24,520	13,770	23,760	1,740	ND	1,720	15,270	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	1,361	6,367	3,672	6,066	358	ND	344	4,245	NL

Concentrations shown in ug/kg or parts per billion (ppb).

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene).

BAP = Benzo(a)pyrene.

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

1,500 = Exceeds RSCO.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

#### PAGE 2 of 2

#### 1 WEST MAIN STREET BEACON, NEW YORK

#### SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: SOIL SAMPLES

DETECTED SVOCS			SAMPI	E AND LOC	CATION			NYSDEC TAGM 4046
	TB-117	TB-118	TB-120	TB-124	TB-126	TB-127	TB-129	RSCO ⁽¹⁾ (PPB)
	(8.0')	(4.0')	(8.0')	(4.0')	(10.0')	(8.0')	(8.0')	· · · ·
2-Methylnaphthalene	210,000	ND	ND	350,000	340	390	540	36,400
Acenaphthene	ND	ND	370	41,000	ND	180	320	50,000
Acenaphthylene	190,000	ND	ND	83,000	ND	ND	ND	50,000
Anthracene	200,000	ND	550	160,000	ND	260	ND	50,000
Benzo(a)anthracene	140,000	100	1,500	110,000	ND	190	ND	224
Benzo(a)pyrene	86,000	72	1,100	7,800	ND	ND	ND	61
Benzo(b)fluoranthene	59,000	63	750	62,000	ND	ND	ND	220
Benzo(g,h,I)perylene	ND	ND	690	ND	ND	ND	ND	50,000
Benzo(k)fluoranthene	88,000	91	1,200	90,000	ND	ND	ND	220
Chrysene	110,000	100	1,800	89,000	ND	180	ND	400
Dibenz(a,h)anthracene	ND	ND	380	ND	ND	ND	ND	14.3
Dibenzofuran	130,000	ND	4,500	130,000	ND	ND	ND	6,200
Fluoranthene	370,000	170	ND	220,000	340	410	430	50,000
Fluorene	190,000	ND	ND	180,000	ND	250	290	50,000
Indeno(1,2,3-cd)pyrene	ND	ND	560	17,000	ND	ND	ND	3,200
Naphthalene	780,000	ND	440	690,000	260	910	400	13,000
Phenanthrene	530,000	110	5,100	400,000	340	740	630	50,000
Di-n-butylphthalate	ND	ND	ND	ND	260	180	ND	8,100
bis-(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	ND	50,000
Pyrene	280,000	160	4,100	170,000	330	330	390	50,000
Total SVOCs	3,363,000	866	23,040	2,799,800	1,870	4,020	3,000	500,000
Total cPAHs	483,000	335	7,290	375,800	ND	370	ND	NL
Total cPAH SVOCs as BAP Toxicity Equivalent	107,880	90	1,791	28,490	ND	21	ND	NL

Concentrations shown in ug/kg or parts per billion (ppb)

cPAH = carcinogenic polyaromatic hydrocarbons (Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Ideno(1,2,3-cd)pyrene, Benzo(k)fluoranthene, chrysene)

BAP = Benzo(a)pyrene

(1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

**210,000** = Exceeds RSCO

ND = Not Detected at concentration above reported analytical laboratory detection limit

NL = Not Listed in TAGM 4046

#### 1 WEST MAIN STREET BEACON, NEW YORK

#### METALS TEST RESULTS: SOIL SAMPLES

DETECTED	S	AMPLE AN	D LOCATIO	DN	Recommended	Typical
ANALYTE	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Objective (1)	Range (2)
Antimony	ND	ND	ND	ND	SB	NL
Arsenic	7.53	1.14	4.68	3.92	7.5 or SB	3-12
Beryllium	0.76	ND	0.23	0.31	0.16 or SB	0-1.75
Cadmium	ND	ND	ND	ND	1 or SB (10)	0.1-1
Chromium	7.53	8.1	13.8	13.4	10 or SB (50)	1.5-40
Copper	21.6	13.8	75.2	55.4	25 or SB	1-50
Lead	15.4	11.4	47.5	99.7	SB	200-500**
Mercury	ND	ND	ND	ND	0.1	0.001-0.2
Nickel	1.81	11.9	20	12.8	13 or SB	0.5-25
Selenium	ND	ND	ND	1.02	2 or SB	0.1-3.9
Silver	ND	ND	ND	ND	SB	NL
Thallium	ND	ND	ND	ND	SB	NL
Zinc	30.3	37.3	97.3	49.5	20 or SB	9-50

Concentrations shown in mg/kg or parts per million (ppm).

SB = Site background.

- Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994.
  - Cadmium results also compared to RSCO of 10 ppm listed in the 1995 "proposed" TAGM 4046.
  - Chromium results also compared to RSCO of 50 ppm listed in the 1995 "proposed" TAGM 4046.

2) = Typical background range as referenced in NYSDEC TAGM 4046 dated January 24, 1994.

97.3 Exceeds typical background range referenced in TAGM 4046.

49.5 = Exceeds RSCO referenced in TAGM 4046.

ND = Not Detected at concentration above reported analytical laboratory detection limit.

NL = Not Listed in TAGM 4046.

# 1 WEST MAIN STREET BEACON, NEW YORK

### PCBS TEST RESULTS: SOIL SAMPLES

Detected	s	AMPLE AN	D LOCATIO	N	Recommended Soil Cleanup
Compound	TB-107 (8.0')	TB-111 (12.0')	TB-115A (4.0')	TB-118 (4.0')	Objective ⁽¹⁾ (PPM)
PCB 1260	ND	ND	ND	ND	10

Concentrations shown in mg/kg or parts per million (ppm).

 (1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.

# 1 WEST MAIN STREET BEACON, NEW YORK

#### CYANIDE, pH, IGNITABILITY AND REACTIVITY TEST RESULTS: SOIL SAMPLES

Demonster	SAMPLE AND LOCATION												
Parameter	TB-101 (4.0')	TB-110 (8.0')	TB-121 (8.0')	TB-124 (4.0')	TB-127 (8.0')	TB-126 (10.0')	TB-129 (8.0')	RSCO ⁽¹⁾ (PPM)					
Total Cyanide	ND	ND	ND	ND	ND	ND	1.24	NL					
pН	-	-	9.86	-	-	-	9.89	NL					
Ignitability	-	-	ND	-	-	-	-	NL					
Reactivity	-	-	29	-	-	-	-	NL					

Cyanide concentrations shown in mg/kg or parts per million (ppm).

- (1) = Recommended soil cleanup objective (RSCO) as referenced in NYSDEC TAGM 4046 dated January 24, 1994 as amended by the NYSDEC's supplemental Tables dated August 22, 2001.
- ND = Cyanide not detected at concentration above reported analytical laboratory detection limit / Sample did not ignite.

NL = Not Listed in TAGM 4046.

- = Not Tested as part of Laboratory Program.

### 1 WEST MAIN STREET BEACON, NEW YORK

#### VOLATILE ORGANIC COMPOUND (VOC), NAPHTHALENE, pH, AND TOTAL CYANIDE TEST RESULTS: GROUNDWATER SAMPLES

		S		NYSDEC TOGS 1.1.1 Groundwater Standard or			
	MW-101*	MW-102*	MW-103*	MW-103**	MW-104**	MW-105**	Guidance Value ⁽¹⁾ (PPB)
Total Xylene	ND	ND	290	59	ND	ND	5
1,2,4-Trimethylbenzene	ND	ND	58	12	ND	ND	5
Benzene	ND	ND	650	99	ND	ND	1
Ethylbenzene	ND	ND	ND	3	ND	ND	5
Toluene	1	ND	350	71	ND	ND	5
n-Butylbenzene	ND	ND	ND	ND	ND	ND	5
n-Propylbenzene	ND	ND	ND	ND	ND	ND	5
Isopropylbenzene	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	2900	390	ND	ND	10
1,3,5-Trimethylbenzene	ND	ND	ND	5	ND	ND	5
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	5
1,2-Dichlorothane	ND	ND	ND	3	ND	ND	0.6
Tetrachloroethene	ND	ND	ND	ND	ND	ND	5
p-lsopropyltoluene	ND	ND	ND	ND	ND	ND	5
рН	-	-	-	6.86	7.92	7.48	NL
Total Cyanide	-	-	-	0.02	ND	ND	400

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

**290** = Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

- = Not Tested as part of Laboratory Program.

NL = Not listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

# 1 WEST MAIN STREET BEACON, NEW YORK

#### SEMI-VOLATILE ORGANIC COMPOUND (SVOC) TEST RESULTS: GROUNDWATER SAMPLES

		S		NYSDEC TOGS 1.1.1 Groundwater Standard or				
	MW-101*	MW-102*	MW-103*	MW-103**	MW-104**	MW-105**	Guidance Value ⁽¹⁾ (PPB)	
2-Methylnaphthalene	ND	ND	140	ND	ND	ND	NL	
Acenaphthene	ND	ND	83	ND	ND	ND	20	
Acenaphthylene	ND	ND	92	ND	ND	ND	NL	
Dibenzofuran	ND	ND	58	ND	ND	ND	NL	
Fluoranthene	ND	ND	58	ND	ND	ND	50	
Fluorene	ND	ND	87	ND	ND	ND	50	
Naphthalene	ND	ND	1,300	84	ND	ND	10	
Phenanthrene	ND	ND	130	ND	ND	ND	50	
Pyrene	ND	ND	51	ND	ND	ND	50	

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in ug/L or parts per billion (ppb).

83

= Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

NA = Not Listed in TOGS 1.1.1.

* = Sample collected on November 17, 2005.

** = Sample collected on December 1, 2005.

# 1 WEST MAIN STREET BEACON, NEW YORK

### METALS TEST RESULTS: GROUNDWATER SAMPLES

Detected	SAMPI		NYSDEC TOGS 1.1.1 Groundwater Standard or				
Analyte	MW-101*	MW-102*	MW-103*	Guidance Value (1) (PPB)			
Antimony	ND	ND	ND	6			
Arsenic	ND	ND	14	50			
Beryllium	0.30	0.10	ND	3			
Cadmium	ND	ND	ND	10			
Chromium	16	8	8	100			
Copper	117	94	11	1,000			
Lead	390	90	35	50			
Mercury	5.5	0.30	ND	1.4			
Nickel	9	ND	ND	200			
Selenium	11	ND	16	20			
Silver	ND	ND	46	100			
Thallium	ND	ND	ND	0.5			
Zinc	187	95	ND	5,000			

(1) = Groundwater standard or guidance value as referenced in NYSDEC TOGS 1.1.1dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Concentrations shown in mg/kg or parts per million (ppm).



= Exceeds groundwater standard or guidance value.

ND = Not detected at concentrations above reported analytical laboratory detection limits.

* = Sample collected on November 17, 2005.





30 12:30 2005 acon Bridge/VOCBc Dec E

Plotted: Name: Me

**> N	DATE		_		0	10	
		11-2005	DATE DRAWN	12-16-2005	DATE ISSUE	12-30-200	
ł	FIELD VERIFIED BY	NS	DRAWN BY	RJM	SCALE	1" = 50'	
WEST MAIN STREET				DAY ENGINEERING, P.C. ENVIRONMENTAL ENGINEERING CONSULTANTS	ROCHESTER, NEW YORK 14614-1008	NEW YORK, NEW YORK 10165-1617	
		NLROAD STRFFT	RK	MENTAL STUDY		I VOC's Contours	
g location and designation g with coal tar observed g with sheen on water observed		ETRO-NORTH RA & 7 WEST MAIN S	EACON, NEW YOI	HASE II ENVIRON	AWING TITLE	ite Plan With Tota	
er Monitoring Well location and designation er Monitoring Well with coal tar and sheen observed contour line (ppb) created by Golden lnc. Surfer8 program	PR	≥ ← ^{©JECT} (	- m )1-: Gl	302: JRI	3I E 2	Ō	



gwb.

N (	DATE 11-2005 DATE DRAWN 12-16-2005 DATE ISSUED 12-30-2005
ł	FIELD VERIFIED BY NS DRAWN BY RJM SCALE 1" = 50'
MEST MAIN STREET	DAY ENGINEERING, P.C. DAY ENGINEERING CONSULTANTS ENVIRONMENTAL ENGINEERING CONSULTANTS ROCHESTER, NEW YORK 10165-1617 NEW YORK, NEW YORK 10165-1617
	NLROAD STREET RK MENTAL STUDY I SVOC's Contours
g location and designation g with coal tar observed g with sheen on water observed a sampled for SVOC's	ALET RO-NORTH RA ALET RO-NORTH RA & 7 WEST MAIN S & 7 WEST MAIN S BEACON, NEW YOH HASE II ENVIRONI ANNIG TILE ifte Plan With Total
er Monitoring Well location and designation er Monitoring Well with coal tar and sheen observed	E ≥ ← m e b o PROJECT NO. 01-3023I FIGURE 3
C contour line (ppb) created by Golden Inc. Surfer8 program	



- <b>\$</b> ≫ N	DATE 11-2005 DATE DRAWN 12-22-2005 DATE ISSUED 12-30-2005
	FIELD VERIFIED BY NS DRAWIN BY RJM SCALE 1" = 50'
WEST MAIN STREET	DAY ENGINEERING, P.C. ENVIRONMENTAL ENGINEERING CONSULTANTS ROCHESTER, NEW YORK 10165-1617 NEW YORK, NEW YORK 10165-1617
g location and designation	PROJECT TITLE METRO-NORTH RAILROAD 1 & 7 WEST MAIN STREET BEACON, NEW YORK PHASE II ENVIRONMENTAL STUDY DRAWNG TITLE Site Plan With Areas Of Contamination
er Monitoring Well location and designation	PROJECT NO. 01-3023T
g with coal tar observed g with sheen on water observed	
er Monitoring Well with coal tar and sheen observed	

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO		ITAL, IN	IC.					AN AFFII	LIATE OF DAY ENGINEERING, P.C
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York					eet ork	- - -		Ground Elevation: Datum:		TEST BORING NO. MW-101
DAY R	epreser	ntative:	Nate Sir	non	- tol	-		Date Started:         11/15/2006         Date Ended:         11/15/200           Deschols:         Deschols:         Deschols:         0.01	)5	-
Sampl	ing Meth	nod:	Direct P	ush	ental	-		Completion Method: Well Installed Backfilled with Grout	Backfilled with Cu	uttinas
						-		Water Level (Date/Time): Not Measured		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	Dark brown Sandy Silt, some Gravel, intermixed with Brick and Coal Fragments,		
1								moist (FILL)	-	
2	NA	S-1	0-4	100	NA	0.0	0.0		-	
3									-	
4							0.0	Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	-	
							0.0	moist (FILL) wet		
5									-	
6	NA	S-2	4-8	60	NA	0.0	0.0		-	
7								Green/Gray Sandy SILT, some Gravel, wet	-	
8							0.0	-	-	
9	NA	6.2	8 4 2	40	NIA	0.0	0.0		-	
10	NA	3-3	0-12	40	INA	0.0	0.0	Gray Sandy GRAVEL, little Rock Fragments, trace Silt, wet	+	
11							0.0		-	
12							0.0	BOH @ 12.0'	4	
									-	
									-	
									-	
									-	
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condi	tions state	A. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	1	
	<ol> <li>2) Stratif</li> <li>3) PID re</li> </ol>	ncation lir eadings a	nes repres ire referen	ent appro: ced to a b	ximate bo ienzene s	undaries. tandard m	Fransitio easured i	ns may be gradual. in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
	4) NA = 1	Not Availa	able or Not	Applicab	le					IESI BUKING NU.MW-101
40 CO	MMERC	NEW Y	REET ORK 149	514-1009	3					NEW YORK, NEW YORK 10165-1617
(585) 4	154-021	)	5111 140							(212) 986-8645
FAX (5	35) 454-0210         (212) 986-8645           VX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657									

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

day DAY ENVIRONMENTAL, INC.		AN AFF	ENVIRONMENTA	L CONSULTANTS					
MONITORING WELL INSTALLATION LOG									
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Date Started: <u>11/15/2005</u> Date E Water Level (Date/Time): <u>4.23' 12/01/2005</u>	Datum: Ended:	MONITORING WE	ELL MW-101					
Refer to Test Boring Log TB- MW-101 for Soil Description	<ul> <li>Flush Mounted Roadbox</li> <li>0.20 Depth to Top of Riser Pipe (ft)</li> <li>0.33 Depth to Bottom of Cement Surface Patch (ft)</li> <li>Backfill Type N/A</li> <li>0.53 Depth to Top of Bentonite Seal (ft)</li> <li>0.70 Depth to Bottom of Bentonite Seal (ft)</li> <li>2.0 Depth to Top of Well Screen (ft)</li> <li>2.5 Diameter of Borehole (in)</li> <li>Backfill Type Sand</li> <li>2.0 Inside Diameter of Well (in)</li> <li>Type of Pipe PVC</li> <li>Screen slot size #10</li> <li>12.0 Depth to Bottom of Well Screen (ft)</li> <li>12.0 Depth to Bottom of Well Screen (ft)</li> </ul>								
Notes: 1) Water levels were made at the times and un 2) NA = Not Available or Not Applicable	der conditions stated. Fluctuations of groundwater levels may occur due to se	easonal factors ar	nd other conditions.						
			MONITORING WE	LL MW-101					

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	y								ENVIRONMENTAL CONSULTANTS
DAY	ENVIRG	ONMEN	ITAL, IN	IC.				AN AFF	ILIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	s:	PC.2696 1 West I	6I-01 Vlain Stre	eet	-			TEST BORING NO. MW-102
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005	_
Drilling	ing Meth	ctor:	Direct P	ivironme ush	ental	-		Completion Method: Well Installed Backfilled with Grout Backfilled with Grout	Cuttings
Gampi	ing mea	100.	Water Level (Date/Time): Not Measured					Water Level (Date/Time): Not Measured	Juliyo
							-		
epth (ft)	lows per 0.5 ft.	ample Number	ample Depth (ft)	Recovery	-Value or RQD%	Headspace PID Reading (ppm)	D Reading (ppm	Sample Description	Notes
ŏ	B	ů	ů	%	ż		<b>E</b>		
							0.0	Black, Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	
1									
	NA	S-1	0-4	50	NA	0.0	0.0		
2								-	
3									
J									
4							0.0	wet -	
							0.0		
5								-	
	NA	6.2	10	40	NA	0.0	0.0		
6	INA	3-2	4-0	40	INA	0.0	0.0	-	
7								- Gray Silty CLAY, some Sand, trace Gravel, wet	
8							0.0		
Ŭ							0.0		
9								Green/Gray Silty SAND, trace Clay, trace Gravel, wet	
10	NA	S-3	8-12	100	NA	0.0	0.0	-	
11								-	
							0.0		
12					l	l		BOH @ 12.0'	
								.	
								-	
								-	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	<ol> <li>2) Stratif</li> <li>3) PID re</li> </ol>	tication lir eadings a	nes repres ire referen	ent appro ced to a h	ximate bo enzene s	undaries. tandard m	Transitio	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
	4) NA = Not Available or Not Applicable								
40 CO	MMERC	CIAL STR	REET						-
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617
(585) 4	154-0210	0							(212) 986-8645
FAX (5	X (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657								

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

day DAY ENVIRONMENTAL, INC.		AN AFF	ENVIRONMENTA	L CONSULTANTS	
	MONITORING WELL INSTALLATION LOG				
Project #: PC.2696I-01 Project Address: 1 West Main Street			MONITORING WELL MW-102		
Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation:         D           Date Started:         11/15/2005         Date E           Water Level (Date/Time):         1.55'         12/01/2005	Datum: Ended:	11/15/2005	Page 1 of 1	
Refer to Test Boring Log TB- MW-102 for Soil Description	<ul> <li>Flush Mounted Roadbox</li> <li>0.15 Depth to Top of Riser Pipe (ft)</li> <li>0.33 Depth to Bottom of Cement Surface Patch (ft)</li> <li>Backfill Type N/A</li> <li>0.48 Depth to Top of Bentonite Seal (ft)</li> <li>0.7 Depth to Bottom of Bentonite Seal (ft)</li> <li>2.0 Depth to Top of Well Screen (ft)</li> <li>2.5 Diameter of Borehole (in)</li> <li>Backfill Type Sand</li> <li>2.0 Inside Diameter of Well (in)</li> <li>Type of Pipe PVC Screen slot size #10</li> <li>12.0 Depth to Bottom of Well Screen (ft)</li> <li>12.0 Depth of Borehole (ft)</li> </ul>				
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to se	easonal factors ar	nd other conditions.		
			MONITORING WE	ELL MW-102	

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da DAY	day     Environmental consultants       Day Environmental, INC.     An Affiliate of day Engineering, P.C									
Projec Projec	ct #: ct Addres	is:	PC.2696 1 West M	6I-01 Main Stre	eet	-				TEST BORING NO. MW-103
Beacon, New York			-		Ground Elevation: Datum:		Page of 1 of 1			
DAY F	Represer	ntative:	Nate Sin	non		-		Date Started: <u>11/16/2006</u> Date Ended: <u>11/16/2005</u>	5	-
Samp	ling Meth	nod.	Direct P	ush	mai	-		Completion Method: Well Installed	ackfilled with Cu	uttings
						-		Water Level (Date/Time): Not Measured		
							-			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm	Sample Description		Notes
				-			0.0	Black Sandy Gravel, trace Silt, intermixed with Coal Tar, Coal, Coal Slag and Brick		
								Fragments, moist (FILL)		
								Coal Tar Type Odor	-	
2	NA	S-1	0-4	50	NA	2.1	0.5		-	
3									-	
							0.4			
4							2.4	wet ( water has a sheen)	-	
							10.0			
5								Rlack Silty CLAY some Sandy Gravel wet	ł	
	NA	S-2	4-8	60	NA	155	58.6			
6									-	
-										
									Ē	
8							24.2		-	
	NA	S-3	8-9	0	NA	-	-			
9									-	
								Refusal @ 9.0'		
									-	
									-	
									ſ	
									-	
									-	
									-	
									-	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
	<ol> <li>Stratif</li> <li>PID re</li> </ol>	tication lii eadings a	ies represe re referend	ent appro	ximate bo enzene s	undaries. tandard m	Transitio neasured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamo		
	4) NA = 1	Not Availa	able or Not	Applicab	le					TEST BORING NO. MW-103
40 CC	MMERC	CIAL STI	REET							
ROCH	IESTER,	, NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617
(585)	454-0210	0								(212) 986-8645
FAX (	XX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657									

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs

day DAY ENVIRONMENTAL, INC.	ENVIRONMENTAL CONSULTANTS FILIATE OF DAY ENGINEERING, P.C								
,	MONITORING WELL INSTALLATION LOG								
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation: Datum: Date Started: <u>11/15/2005</u> Date Ended: Water Level (Date/Time): <u>2.00' 12/01/2005</u>	MONITORING WELL MW-103 Page 1 of 1 11/15/2005							
Refer to Test Boring Log TB- MW-103 for Soil Description	<ul> <li>Flush Mounted Roadbox</li> <li>0.15Depth to Top of Riser Pipe (ft)</li> <li>0.33Depth to Bottom of Cement Surface Patch (ft)</li> <li>Backfill TypeN/A</li> <li>0.48Depth to Top of Bentonite Seal (ft)</li> <li>0.7Depth to Bottom of Bentonite Seal (ft)</li> <li>2.0Depth to Top of Well Screen (ft)</li> <li>1.5Diameter of Borehole (in)</li> <li>Backfill Type Sand</li> <li>1.0Inside Diameter of Well (in)</li> <li>Type of Pipe PVCScreen slot size_#10</li> <li>9.0Depth to Bottom of Well Screen (ft)</li> </ul>								
<ul> <li>Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.</li> <li>2) NA = Not Available or Not Applicable</li> </ul>									
		MONITORING WELL MW-103							

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

dayEnvironmental consultantsDay environmental, inc.An Affiliate of day engineering, p.c.									
Project #: PC.2696I-01 Project Address: 1 West Main Street					eet				TEST BORING NO. MW-104
	0010000	totivo:	Beacon,	New Yo	rk	-		Ground Elevation: Datum:	Page of 1 of 1
Drilling	Contrac	ctor:	Miller Er	ivironme	ntal	-		Borehole Depth: 12.0' Borehole Diameter: 2"	_
Sampling Method: Direct Push			-		Completion Method: Well Installed Backfilled with Grout Backfilled with C	Cuttings			
			1			1		Water Level (Date/Time): Not Measured	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes
							0.0	TOPSOIL AND ROOTS	
1								Black Sandy Gravel, some Brick Fragments, moist (FILL)	
2	NA	S-1	0-4	20	NA	0.4	0.0		
3									
4							0.7	wet	
-							0.0		
5								-	
	NA	S-2	4-8	40	NA	1.1	0.0		
6								Tan Silty CLAY, trace Gravel, wet	
7								-	
							0.0		
8								-	
9								-	
	ΝΔ	5-3	8-12	0	NΔ				
10	INA.	0-0	0-12	0	INA.	_	-	-	
11									
12			<u> </u>					ROH @ 12.0'	
								.	
								.	
Notes:	1) Water	r levels w	ere made :	at the time	es and ur	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	2) Stratification lines represent approximate boundaries. Transitions may be gradual.								
	4) NA = N	Not Availa	able or Not	Applicab	le				TEST BORING NO. MW-104
40 CO	40 COMMERCIAL STREET								
ROCH (585) 4	KUCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645								
FAX (5	i85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657

Simon:\My Documents\nes0090 PC2696I-01 Boring Logs
day DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS AFFILIATE OF DAY ENGINEERING, P.C
	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street		MONITORING WELL MW-104
Beacon, New York DAY Representative: Nate Simon Drilling Contractor: Miller Environment	Ground Elevation:     Datum:       Date Started:     11/29/2005       Water Level (Date/Time):     5.40'	Page 1 of 1
Refer to Test Boring Log TB- MW-104 for Soil Description	<ul> <li>Flush Mounted Roadbox</li> <li><u>3.0 AGS</u> Depth to Top of Riser Pipe (ft)</li> <li><u>N/A</u> Depth to Bottom of Cement Surface Patch (ft)</li> <li>Backfill Type <u>N/A</u></li> <li><u>0.0</u> Depth to Top of Bentonite Seal (ft)</li> <li><u>2.0</u> Depth to Bottom of Bentonite Seal (ft)</li> <li><u>2.0</u> Depth to Top of Well Screen (ft)</li> <li><u>2.0</u> Diameter of Borehole (in)</li> <li>Backfill Type <u>Sand</u></li> <li><u>1.0</u> Inside Diameter of Well (in)</li> <li>Type of Pipe <u>PVC</u></li> <li>Screen slot size <u>#10</u></li> <li><u>12.0</u> Depth to Bottom of Well Screen (ft)</li> <li><u>12.0</u> Depth to Bottom of Well Screen (ft)</li> </ul>	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal facto	rs and other conditions.
		MONITORING WELL MW-104

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	V								ENVIRONMENTAL CONSULTANTS
DAY			ITAL, IN	C.				AN A	FFILIATE OF DAY ENGINEERING, P.C
Projec Projec	t#: Addres	is:	PC.2696 1 West M	61-01 Main Stre	eet	-			TEST BORING NO. MW-105
			Beacon,	New Yo	ork	_		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epresen	ntative:	Nate Sin	non	ntel	-		Date Started: 11/29/2006 Date Ended: 11/29/2005	
Sampl	ng Meth	nod:	Direct P	ush	mai	-		Completion Method:  Well Installed Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfilled with Grout Backfille	th Cuttings
	0					_		Water Level (Date/Time): Not Measured	C C
						-	Ê		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PIC Reading (ppm)	PID Reading (ppr	Sample Description	Notes
							0.0	TOPSOIL	
1								Black Sandy Gravel, some Silt, intermixed with Coal, Coal Slag and Brick Fragments,	
								moist (FILL)	
2	NA	S-1	0-4	30	NA	0.3	0.0	_	
3								-	
							0.0		
4							0.0	·	
_								wet	
5								-	
6	NA	S-2	4-8	20	NA	0.2	0.0	Brown Silty Sand, some Gravel intermixed with Brick Fragments, wet (FILL)	
Ū									
7								_	
8							0.0	-	
							0.0		
9								-	
	NA	S-3	8-12	60	NA	0.4	1.1	Green/Gray Silty CLAY, trace Gravel, trace Sand, wet	
10									
11									
12				-		ļ	1.0		
								BOH @ 12.0'	
								-	
NI-4-	4) 144	r lou!	·	ot the - ··		dor "	tion		
Notes:	<ol> <li>vvater</li> <li>Stratif</li> </ol>	r revels w fication lir	ere made nes represe	at the tim ent appro	es and ur ximate bo	oundaries.	uons state Transitio	<li>r-ructuations or groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.</li>	
	3) PID re	eadings a	re referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. MW-105
40.00	4) NA = N		able or Not	Applicab	le				
40 CO		NEW V		314-1009	3				NEW YORK NEW YORK 10165-1617
(585) 4	54-0210	0	51111-14		-				(212) 986-8645
FAX (5	i85) <u>45</u> 4-	-0825						www.dayenvironmental.com	FAX (212) 986-8657

day DAY ENVIRONMENTAL, INC.	AN A	ENVIRONMENTAL CONSULTANTS
	MONITORING WELL INSTALLATION LOG	
Project #: PC.2696I-01 Project Address: 1 West Main Street Beacon New York	Ground Elevation: Datum:	MONITORING WELL MW-105
DAY Representative: <u>Nate Simon</u> Drilling Contractor: <u>Miller Environmen</u>	Date Started:         11/30/2005         Date Ended:           Water Level (Date/Time):         4.35'         12/01/2005	11/30/2005
Refer to Test Boring Log TB- MW-105 for Soil Description	<ul> <li>← Flush Mounted Roadbox</li> <li><u>1.75 AGS</u> Depth to Top of Riser Pipe (ft)</li> <li><u>N/A</u>Depth to Bottom of Cement Surface Patch (ft)</li> <li>Backfill TypeN/A</li> <li>0.0Depth to Top of Bentonite Seal (ft)</li> <li>0.5"Depth to Bottom of Bentonite Seal (ft)</li> <li>2.0Depth to Top of Well Screen (ft)</li> <li>2.0Diameter of Borehole (in)</li> <li>Backfill Type Sand</li> <li>1.0Inside Diameter of Well (in)</li> <li>Type of Pipe PVC</li> <li>Screen slot size #10</li> <li><u>12.0</u>Depth to Bottom of Well Screen (ft)</li> <li>12.0Depth of Borehole (ft)</li> </ul>	
Notes:       1) Water levels were made at the times and u         2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal factor	s and other conditions.
		MONITORING WELL MW-105

Simon:\My Documents\nes0091 PC2696I-01 Monitoring Well Installation Logs

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825

www.dayenvironmental.com

NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

da	day ENVIRONMENTAL CONSULTANTS										
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C	
Project Project	t#: Addres	ss:	PC.2696 1 West I	61-01 Main Stre	eet	-				TEST BORING NO. TB-101	
	onrocor	ntativo:	Nate Sir	New Yo	ork	-		Date Started: 11/30/2006 Date Ended: 11/30/2005		Page of 1 of 1	
Drilling	Contra	itative.	Miller Er	non	ntal	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"			
Sampli	ing Meth	nod.	Direct P	ush	inter	-			ckfilled with Cu	ittings	
						-		Water Level (Date/Time): Not Measured			
			1			1	_				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes	
							0.0	TOPSOIL AND ROOTS			
1									_		
								Black Silty Sand, little Gravel, trace Clay, intermixed with Brick, Coal Slag and	Ē		
2	NA	S-1	0-4	60	NA	0.0	0.7	Coal Fragments, moist (FILL)	_		
~											
3									_		
Ŭ											
4							1.0	wet	_		
-							0.0				
5									_		
Ĵ											
6	NA	S-2	4-8	80	NA	0.6	0.2	Black Sandy Gravel, little Silt, trace Clay, intermixed with Coal Fragments, wet (FILL)	_		
Ŭ									Ē		
7											
'									Ē		
8							0.4		_		
Ŭ							0.0				
9								Brown fine Sand, some Gravel, trace Silt, intermixed with Brick Fragments, wet (FILL)	_		
Ĵ											
10	NA	S-3	8-12	80	NA	0.6	0.0		_		
11								Brown coarse Sand, some Gravel, trace Silt, intermixed with Brick Fragments, wet (FILL)	-		
12			L			ļ	0.0		-		
								BOH @ 12.0'			
									-		
									-		
									-		
									-		
Notes:	1) Wator	r levels w	ere mado	at the time	es and ur	der condi	tions state	d. Fluctuations of aroundwater levels may occur due to seasonal factors and other conditions			
110/03.	2) Stratif	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
	3) PID re	eadings a	re referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-101	
	4) NA = 1	Not Availa	able or Not	Applicab	le						
40 CO	MMERC	CIAL STR	REET								
ROCH	ESTER,	, NEW Y	ORK 146	514-1008	3					NEW YORK, NEW YORK 10165-1617	
(585) 4	154-0210	U								(212) 986-8645	
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	

da	V								E	ENVIRONMENTAL CONSULTANTS	
DAY		ONMEN	ITAL, IN	IC.					AN AFFIL	LIATE OF DAY ENGINEERING, P.C	
Draiaa	· #.		DC 2606	21.01							
Projec	t #. t Addres	s:	1 West N	Main Stre	eet	-				TEST BORING NO. TB-105	
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1	
DAY R	epreser	ntative:	Nate Sin	non	ntol	-		Date Started:         11/15/2006         Date Ended:         11/15/2005           Parabala Dapth:         11.0'         Parabala Diameter:         2.0"		-	
Sampl	ing Meth	nod:	Direct P	ush	antei	-		Completion Method: Well Installed Backfilled with Grout	kfilled with Cu	uttings	
						-		Water Level (Date/Time): Not Measured			
	_	_	t)		%	9 2	(m				
	0.5 ft	mbei	pth (1	~	RQD	ce P (ppn	1d) 6				
(ft)	per (	e Nu	e Del	over	e or	dspa ding	adin	Sample Description		Notes	
epth	lows	ample	ample	Rec	-Valu	Hea	ID Re				
٥	В	Ś	Ś	%	z		0.0				
								Black Sandy Gravel, trace Silt, intermixed with Brick and Coal Fragments,	-		
2	NA	S-1	0-4	80	NA	0.0	0.2	moist (FILL)	-		
3								Coal Slag Fragments, wet	-		
4							0.2		-		
								Black Sandy Gravel, trace Silt, intermixed with Coal Tar and Coal Slag Fragments,			
5								wet (FILL)	-		
	NA	S-2	4-8	30	NA	3.2	10.8	Water is black with sheen			
6		-	-						-		
7									-		
_											
8							12.4 22.4		-		
9								·	-		
10	NA	S-3	8-11	30	NA	4.8	12.8		-		
							11.6				
11							-	Refusal @ 11.0'	-		
									-		
									-		
									-		
									-		
									-		
Notes:	1) Water 2) Stratif	r levels w	ere made :	at the time	es and un ximate bo	ider condi jundaries	tions state Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.			
	3) PID re	eadings a	re referen	ced to a b	enzene s	tandard m	easured i			TEST BORING NO. TB-105	
40.00		Not Availa	able or Not	Applicab	le						
ROCH	ROCHESTER, NEW YORK 14614-1008 NEW YORK NEW YORK 10165-1617										
(585) 4	454-0210	) )								(212) 986-8645	
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	

da	V								I	ENVIRONMENTAL CONSULTANTS	
DAY	ENVIRO		ITAL, IN	IC.					AN AFFI	LIATE OF DAY ENGINEERING, P.C	
Projec Projec	t #: t Addres	s:	PC.2696 1 West N	6I-01 Main Stre	eet	-				TEST BORING NO. TB-106	
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	_	Page of 1 of 1	
DAY R	epresen	ntative:	Nate Sin	non wironme	Intal	-		Date Started: <u>11/15/2006</u> Date Ended: <u>11/15/200</u>	5	-	
Sampl	ing Meth	nod:	Direct P	ush	anten	-		Completion Method: Vell Installed Backfilled with Grout	ackfilled with C	uttings	
						-		Water Level (Date/Time): Not Measured			
Jepth (ft)	3lows per 0.5 ft.	sample Number	sample Depth (ft)	6 Recovery	4-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes	
		•,		0.			0.0	TOPSOIL AND ROOTS			
1									]_		
								Black Sandy Gravel, trace Silt, intermixed with Coal and Coal Slag Fragments,			
2	NA	5-1	0-4	60	NA	1.6	2.3	moist (FILL)	-		
3									-		
4							4.6	wet (water has sheen)	-		
							10.6	Rlack stained Gravel some Silly Sand intermixed with Coal Tar and Coal Slag			
5								Fragments, wet (FILL)	-		
6	NA	S-2	4-8	40	NA	5.9	33.1		_		
Ū											
7									-		
							42.2				
8							12.8		-		
9	NIA	6.2	9 10 F	20	NIA	2.7	7.0		+		
	INA	3-3	0-10.5	30	INA.	5.7	1.2	Green/Gray Sitty CLAY, wet			
10							5.6		-		
								Refusal @ 10.5'	-		
									-		
									-		
									-		
									-		
									-		
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condit	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u> </u>		
	<ol> <li>Stratif</li> <li>PID re</li> </ol>	eadings a	ies represe ire referene	ced to a b	kimate bo ienzene s	undaries. tandard m	easured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.			
	4) NA = N	Not Availa	able or Not	Applicab	le					IEST BURING NU. 18-106	
40 CO	MMERC	NEW V	REET	314-1009	3					NEW YORK NEW YORK 10165-1617	
(585) 4	585) 454-0210 (212) 986-8645										
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	

	da	day ENVIRONMENTAL CONSULTANTS										
Project r: Project r: Strain Twin Twin Twin         PC_000011 Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin Twin	DAY	ENVIRO		ITAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C	
Description         Temperature         Description         Page of 1 of 1           Diffic Converse         Best Binder         Integrad         Description         Best Binder         Integrad         Integrad         Best Binder         Integrad	Projec Projec	t #: t Addres	is:	PC.2696 1 West I	6I-01 Main Stre	eet	_				TEST BORING NO. TB-107	
DM Megnetation:       Net: Since	.,			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1	
Diffing Centrol         Mile Eventorement         Boreline Mail         Boreline Dentritie         20"           generation         Bill Restau         Bill Restau         Boreline Dentritie         Boreline Dentritie         20"           generation         Bill Restau         Boreline Dentritie         Boreline	DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005			
Simplify Method         Origination Method:         Origination Method:         Origination Method:         Description         Backlind with Grad         Backlind with	Drilling	g Contra	ctor:	Miller Er	nvironme	ental	_		Borehole Depth: 12.0' Borehole Diameter: 2.0"			
Notes         Notes           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Bac	ckfilled with Cu	ttings	
u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u         u									Water Level (Date/Time): Not Measured			
Image: Mail of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se	Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes	
Image: Normal State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State         State <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>TOPSOIL AND ROOTS</td> <td></td> <td></td>								0.0	TOPSOIL AND ROOTS			
NA         S-1         0.4         40         NA         3.4         1.6         Prognants, mois (FLL)           Image: Construction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	1								Black Sandy Gravel, trace Silt, intermixed with Coal Tar, Coal and Coal Slag	_		
1       NA       S-1       0-4       40       NA       3.4       1.6         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									Fragments, moist (FILL)	-		
Mark         A         A         A         A         Coal Sing Fragments come Sand, trace Gravel, wet	2	NA	S-1	0-4	40	NA	3.4	1.6		_		
A       A       A       A       A       A       A       Coal Skig Fragments some Sand, trace Gravel, wet       .         B       A       A       A      water is black with sheen       Black Slaved Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL)      water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL)      water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL)      water is black blaned Gravel, some Sity Sand intermixed with Coal Slig Fragments, wet (FLL)         Materia       A       A       A       A       A       A       A                 Materia       A       A       A       B       A       A       A       A       A       A         Materia       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A	2									-		
Mark       Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	2									-		
Mag         NA         S-2         4-8         30         NA         6-4         2.8         Coal Slag Fragments some Slad, trace Gravel, wet         -           6         NA         S-2         4-8         30         NA         6-4         2.8           7         -         -         -         -         -         -         -           6         NA         S-2         4-8         30         NA         6-4         28.6         -           7         -         -         -         -         -         -         -           9         NA         S-3         8-12         20         NA         1.9         6.2           10         NA         I         I         I         I         I         I         I         I         I         I         I         I         I         I	3									-		
Mark         S-2         4-8         30         NA         6-4         28.6           NA         S-3         8-12         20         NA         1.9         6.2           NA         NA         S-3         8-12         D         NA         1.9           NA         NA         NA	4							2.8	Coal Slag Fragments some Sand, trace Gravel, wet	_		
A         NA         S-2         4-8         30         NA         6-4         25-6           A         NA         S-2         4-8         30         NA         6-4         25-6           A         A         S-2         4-8         30         NA         6-4         25-6           A         A         S-3         8-12         20         NA         1.9         6.2           A         NA         S-3         8-12         20         NA         1.9         6.2           BOH         812.0'         BOH @ 12.0'         BOH @ 12.0'         Extension and other conditions.         Extension and other conditions.           1 Matter levels wave moder in spromean structure to a barcere standard measured in the levels pare later.         BOH @ 12.0'         Extension and other conditions.           1 Matter levels wave moder at spromean structure to a barcare standard measured in the levelspace above the sample uaing	-							3.4	water is black with sheen	-		
NR       S-2       4-8       30       NA       6.4       28.6       wet (FiLL)         Image: 1	5								Black Stained Gravel, some Silty Sand intermixed with Coal Slag Fragments,	-		
o         NA         S-2         4-8         30         NA         6.4         28.6           7         -         -         -         -         -         -           8         -         -         -         -         -         -           9         NA         S-3         8-12         20         NA         1.9         6.2           10         NA         S-3         8-12         20         NA         1.9         6.2           11         -         -         -         -         -         -         -           10         NA         S-3         8-12         20         NA         1.9         6.2         -           11         -         -         -         -         -         -         -           12         Max         S-3         8-12         20         NA         1.9         6.2         -         -           13         Pitro reduing are referenced to a bearse standard measured in the headspace above the sample using a MniRea 2000 equipped with a 10.6 eV lump.         -         TEST BORING NO. TB-107           14         VA = Not Amaible or Not Applicable         -         Max         NA         NA	5								wet (FILL)	-		
Name:       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>6</td> <td>NA</td> <td>S-2</td> <td>4-8</td> <td>30</td> <td>NA</td> <td>6.4</td> <td>28.6</td> <td></td> <td></td> <td></td>	6	NA	S-2	4-8	30	NA	6.4	28.6				
7       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	0									-		
Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name       Name	-											
Image: Normality of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	'									-		
a       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I								41.2				
a       NA       S-3       B-12       20       NA       1.9       6.2         11       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	8							4.6		-		
3       NA       \$-3       8-12       20       NA       1.9       6.2         11       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I												
10       NA       \$-3       8-12       20       NA       1.9       6.2         11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	9									-		
11       -         12       -         12       -         12       -         12       -         12       -         13       -         14       -         15       -         16       -         17       -         18       -         19       -         19       -         19       -         19       -         10       -         10       -         10       -         10       -         10       -         10       -         11       -         12       -         12       -         12       -         13       -         10       -         10       -         10       -         10       -         10       -         10       -         10       -         10       -         10       -         10       -         10 <td< td=""><td>40</td><td>NA</td><td>S-3</td><td>8-12</td><td>20</td><td>NA</td><td>1.9</td><td>6.2</td><td></td><td></td><td></td></td<>	40	NA	S-3	8-12	20	NA	1.9	6.2				
11       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	10									-		
12       12.4         12       12.4         12       12.4         12       12.4         13       12.4         14       12.4         15       12.4         16       12.4         17       12.4         18       12.4         19       12.4         10       12.4         11       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         12       12.4         13       10.4         140       10.4         15       10.4         16       1												
12       Image: 12.4       Image: 12.4         13       Image: 12.4       Image: 12.4         14       Image: 12.4       Image: 12.4         15       Image: 12.4         16       Image: 12.4         17       Image: 12.4         18       Image: 12.4         19       Image: 12.4         10	11									-		
Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.         2) Stratification lines represent approximate boundaries. Transitions may be gradual.       Image: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.         2) Stratification lines represent approximate boundaries. Transitions may be gradual.       Image: 1) Water levels were made at the times and under conditions are observed to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.         40 COMMERCIAL STREET       TEST BORING NO. TB-107         40 COMMERCIAL STREET       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 936-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657	40							12.4				
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       .         .) Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       .         .) Stratification lines represent approximate boundaries. Transitions may be gradual.       .       .         .) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       .         .) ND readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       .         .) Not Available or Not Applicable       TEST BORING NO. TB-107         40 COMMERCIAL STREET       .         ROCHESTER, NEW YORK 14614-1008       .         (585) 454-0210       .         FAX (585) 454-0825       .         Yeak-6455       .	12								BOH @ 12.0'	-		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       1         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-107         40 COMMERCIAL STREET       NEW YORK 14614-1008         ROCHESTER, NEW YORK 14614-1008       (212) 986-8645         FAX (585) 454-0210       (212) 986-8645												
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       -         2) Stratification lines represent approximate boundaries. Transitions may be gradual.       3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         40 COMMERCIAL STREET       ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657										-		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       IEST BORING NO. TB-107         40 COMMERCIAL STREET       ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657										_		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         40 COMMERCIAL STREET       ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657										-		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         40 COMMERCIAL STREET       ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657										-		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-107         40 COMMERCIAL STREET       NEW YORK 14614-1008         ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657										-		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-107         40 COMMERCIAL STREET       NEW YORK 14614-1008         ROCHESTER, NEW YORK 14614-1008       (212) 986-86645         FAX (585) 454-0210       (212) 986-8657         FAX (585) 454-0825       www.dayenvironmental.com										_		
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         4) NA = Not Available or Not Applicable       40 COMMERCIAL STREET       NEW YORK 14614-1008         (585) 454-0210       (212) 986-86645       (212) 986-86657         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657												
a) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-107         4) NA = Not Available or Not Applicable       40 COMMERCIAL STREET         ROCHESTER, NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657	Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.			
4) NA = Not Available or Not Applicable         TEST BORING NO. TB-107           40 COMMERCIAL STREET         NEW YORK 14614-1008           ROCHESTER, NEW YORK 14614-1008         NEW YORK, NEW YORK 10165-1617           (585) 454-0210         (212) 986-8645           FAX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657		<ol> <li>Stratif</li> <li>PID re</li> </ol>	eadings a	re referen	ced to a b	viniate po venzene s	standard m	n ansitio neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.			
40 COMMERCIAL STREET           ROCHESTER, NEW YORK 14614-1008           (585) 454-0210           FAX (585) 454-0825           www.dayenvironmental.com           FAX (212) 986-8657		4) NA = 1	Not Availa	ble or Not	Applicab	le			· ····································		TEST BORING NO. TB-107	
ROCHESTER, NEW YORK 14614-1008         NEW YORK, NEW YORK 10165-1617           (585) 454-0210         (212) 986-8645           FAX (585) 454-0825         FAX (212) 986-8657	40 CO	MMERC	IAL ST	REET								
(585) 454-0210         (212) 986-8645           FAX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657	ROCH	ESTER,	NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617	
FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	(585) 4	585) 454-0210 (212) 986-8645										
	FAX (5	585 <u>)</u> 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657	

da	V									EN\	/IRONMENTAL CONSULTANTS
DAY		ONMEN	ITAL, IN	IC.						AN AFFILIA	TE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	s:	PC.2696	8I-01 Main Stre	eet	-				TE	EST BORING NO. TB-108
,			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	:		Page of 1 of 1
DAY F	lepreser	ntative:	Nate Sir	non		_		Date Started: 11/15/2006 Date Ended	: 11/15/2005		
Drilling	Contra	ctor:	Miller Er	vironme	ental	-		Borehole Depth: 12.0' Borehole Diameter	: 2.0"		
Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Gro	out Backfil	lled with Cuttin	gs
		1	1	1	1		_				
	ff.	e	(£		%Q	E (r	(mqq				
	r 0.5	qun	epth	Σe	r RG	g (pi	ing (	Sample Description			Notes
h (ft)	s pe	ole N	ole D	COVE	lue c	adsp	Read				
Dept	Blow	Saml	Sam	% Re	N-Va	He Re	DIA				
				-			0.0	TOPSOIL AND ROOTS			
1											
2	NA	S-1	0-4	60	NA	0.0	0.0	Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FI	LL) -		
3									-		
							0.0	wet			
4							0.0		-		
5											
5									Ē		
6	NA	S-2	4-8	40	NA	0.1	0.0		_		
7									-		
							0.0				
8							0.0		-		
9									-		
10	NA	S-3	8-12	20	NA	0.0	0.0		-		
11									-		
							0.0				
12							0.0	BOH @ 12.0'			
									-		
									_		
									-		
									-		
Notes:	1) Water	r levels w	ere made	at the time	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other co	onditions.		
	<ol> <li>Stratif</li> <li>PID re</li> </ol>	tication lir eadings a	nes repres ire referen	ent appro: ced to a b	ximate bo enzene s	oundaries. tandard m	Fransitio neasured i	ns may be gradual. In the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV la	amp.	Г	
	4) NA = 1	Not Availa	able or Not	Applicab	le_				•	TE	EST BORING NO. TB-108
40 CO	MMERC	CIAL STR	REET								
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					N	IEW YORK, NEW YORK 10165-1617
(585) 4	454-0210	0									(212) 986-8645
FAX (5	585) 454	-0825						www.dayenvironmental.com			FAX (212) 986-8657

da	V								ENVIRONMENTAL CONSULTANTS	
DAY		ONMEN	NTAL, IN	IC.				AN A	FFILIATE OF DAY ENGINEERING, P.C	
Projec Projec	t #: t Addres	ss:	PC.2696	6I-01 Main Stre	eet	-			TEST BORING NO. TB-110	
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1	
DAY R	epreser	ntative:	Nate Sir	non		_		Date Started: 11/29/2006 Date Ended: 11/29/2005		
Drilling	Contrac	ctor:	Miller Er	nvironme	ntal	-		Borehole Depth: Borehole Diameter: 2.0"		
Sampi	ing Metr	100:	Direct P	usn		-		Completion Method: Well Installed Backfilled with Grout Backfilled with	th Cuttings	
		1				1	-			
	ť.	er	(H		уD%	CIL (n	mdd			
	r 0.5	Iump	epth	ery	or RG	oace g (pl	ing (	Sample Description	Notes	
h (ft)	s pe	ole N	ole D	COVE	lue c	adsp	Read			
Dept	Blow	Sam	Sam	% Re	N-Va	μş	DIA			
				-			0.0	0.3' Asphalt and FILL		
1								Brown Sandy Gravel intermixed with Coal Fragments, moist (FILL)		
2	NA	S-1	0-4	60	NA	1.1	0.0	-		
3								Black Sandy Gravel		
							0.0	wot		
4							0.0	-		
5										
5								Ē		
6	NA	S-2	4-8	40	NA	1.1	0.0	_		
7								-		
							0.0			
8							0.0	Refusal @ 8.0'		
								Ē		
								.		
								-		
Notes:	1) Water	r levels w	ere made	at the tim	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
	2) Stratif	fication li	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual. n the headsnace above the sample using a MiniPae 2000 optimored with a 10.6 aV lown.		
	4) NA = 1	Not Availa	able or Not	Applicab	le	anudiu ff	Casuled	n une neucopace above une sample using a minimae zood equipped with a 10.0 eV idnip.	TEST BORING NO. TB-110	
40 CO	MMERC	CIAL STI	REET							
ROCH	OCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617									
(585) 4	454-0210	0							(212) 986-8645	
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657	

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFIL	LATE OF DAY ENGINEERING, P.C
Projec Projec	t#: Addres	s:	PC.2696 1 West I	61-01 Main Stre	eet	-				TEST BORING NO. TB-111
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	epresen	ntative:	Nate Sir	non		_		Date Started: 11/15/2006 Date Ended: 11/15/2005		
Sampl	Contrac	ctor: nod:	Direct P	ush	ental	-		Completion Method: Ukell Installed Backfilled with Grout Backfilled with Grout	ckfilled with Cu	ittings
	5					-		Water Level (Date/Time): Not Measured		
					%	0.0	Ê			
	.5 ft.	nber	th (fi		20D°	ce Pll (ppm	dd) E			
(tt)	per 0	Nur	e Dep	very	e or	dspa ding (	adinę	Sample Description		Notes
epth (	ows	ample	ample	Reco	Valu	Head	D Re			
ă	8	ů	š	%	ż		<b>E</b>	0.2) Apphalicand EU L		
							0.0	Brown Sand, some Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)		
1									-	
2	NA	S-1	0-4	60	NA	0.9	0.8		-	
3									-	
							17			
4							0.3	wer Black Sandy Gravel, intermixed with Coal Slag and Coal Fragments, wet (FILL)	-	
э									-	
6	NA	S-2	4-8	40	NA	1.0	0.4		-	
7									-	
							0.4			
8							0.4		-	
									_	
Ĵ										
10	NA	S-3	8-12	30	NA	0.3	0.6		-	
								Black Silty SAND, trace Gravel, wet		
11									-	
12							0.5			
12								BOH @ 12.0'	-	
									-	
									-	
									-	
									_	
N	4) 147 -		<u> </u>		<u> </u>					
Notes:	<ol> <li>vvater</li> <li>Stratif</li> </ol>	r revels w fication lir	ere made nes repres	at the tim ent appro	es and ur ximate bo	uder condition of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	uons state Transitio	<li>nucruations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.</li>		
	3) PID re	eadings a	are referen	ced to a b	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-111
40.00	4) NA = N MMERO	NOT Avail	ADIE OF NO	Applicab	IE					
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617
(585) 4	54-0210	0								(212) 986-8645
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	day ENVIRONMENTAL CONSULTANTS										
DAY	ENVIRO		ITAL, IN	IC.				AN /	AFFILIATE OF DAY ENGINEERING, P.C		
Projec Projec	t #: t Addres	is:	PC.2696 1 West M	6I-01 Main Stre	eet	-			TEST BORING NO. TB-112		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sin	non	ntal	-		Date Started: 11/30/2006 Date Ended: 11/30/2005			
Sampl	ing Meth	nod:	Direct P	ush	mai	-		Completion Method: Vell Installed Backfilled with Grout Backfilled with Grout	vith Cuttings		
	5					-		Water Level (Date/Time): Not Measured			
						_	ē				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppn	Sample Description	Notes		
							0.0	0.75' Asphalt and FILL			
1								Brown Sandy Gravel, some Silt, intermixed with Brick and Coal Fragments,			
								moist (FILL)			
2	NA	S-1	0-4	50	NA	1.0	0.0	-			
3								-			
							0.0	. wet			
4							0.0	wet -			
5								-			
6	NA	S-2	4-8	20	NA	1.3	0.0				
Ŭ											
7											
							0.0	Green Silty CLAY, wet			
8							0.0	· · · ·			
9								-			
10	NA	S-3	8-12	0	NA	-	-	no recovery			
10											
11											
12											
								BOH @ 12.0'			
								-			
Notes:	1) Water	r levels w	ere made :	at the tim	es and ur	nder condit	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.			
	2) Stratif	fication li	nes represe	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
	3) PID re 4) NA – *	eadings a	ire referen	Applicable	enzene s	standard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-112		
40 CO	MMERC	CIAL STI	REET	, when one							
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617		
(585) 4	154-0210	D							(212) 986-8645		
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657		

da	V								ENVIRONMENTAL CONSULTANTS
DAY			ITAL. IN	IC.				AN AFF	FILIATE OF DAY ENGINEERING. P.C
			,						
Project	t#: Addres	· ·	PC.2696	6I-01 Main Stre	opt	-			TEST BORING NO. TB-113
1 10/00	, riddi co		Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005	
Drilling	Contrac	ctor:	Miller Er	nvironme	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"	
Sampl	ing Meth	nod:	Direct P	ush		-		Completion Method: Uvell Installed Backfilled with Grout Backfilled with	Cuttings
			1	1					
	÷	P	(£		%O	OL (ji	(mdc		
	0.5	quin	epth	≥	r RQ	ace g (pp	1) Gu	Sample Description	Notos
(ft)	s per	le N	e D	Sove	ne o	adsp	eadi		Notes
Depth	slows	amp	amp	6 Rec	I-Val	Hea	ID R		
	ш	S S S S S S S S S S S S S S S S S S S	o	~	z		0.0	0 3' Asphalt and Ell I	
								Black Sandy Silt, little Gravel, intermixed with Brick and Coal Fragments.	
1								moist (FILL)	
_	NA	S-1	0-4	80	NA	0.9	0.0		
2								-	
3								-	
-									
4							0.0	·	
							0.0	wet	
5								-	
	ΝΔ	S-2	1-8	80	ΝΔ	0.4	0.0	Gray Silty Sand, little Gravel, intermixed with Brick and Coal Fragments,	
6	1.07	02	+0	00	1473	0.4	0.0		
								Black Sandy Silt	
7								-	
8							0.0		
Ŭ							0.0		
9								-	
10	NA	S-3	8-11	60	NA	0.3	0.0	-	
11								Black Sandy Gravel, little Silt, intermixed with Wood and Brick Fragments,	
							0.0		
12								- BOH @ 12.0'	
								-	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	2) Stratif	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitic	ns may be gradual.	
	3) PID re 4) NA – N	eadings a	ire referen	ced to a b	ienzene s Ie	tandard m	easured	n the neadspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-113
40 CO	MMERC	CIAL STR	REET	ppiiodu					
ROCH	ESTER,	, NEW Y	ORK 146	514-1008	3				NEW YORK, NEW YORK 10165-1617
(585) 4	54-0210	0							(212) 986-8645
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657

da	ENVIRONMENTAL CONSULTANTS												
DAY		ONMEN	NTAL, IN	IC.				AN A	AFFILIATE OF DAY ENGINEERING, P.C				
Projec Projec	t #: t Addres	s:	1 West I	01-01 Main Stre	eet	-			TEST BORING NO. TB-115A				
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1				
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005					
Drilling	Contrac	ctor:	Direct P	ivironme ush	ental	-		Borehole Depth: 8.0' Borehole Diameter: 2.0"	ith Cuttings				
oumpi	ing mean	100.	Directi	4511		-		Water Level (Date/Time): Not Measured	un outingo				
			_				ē						
	5 ft.	ber	th (ft)		aD%	e PIC ppm)	udd)						
ft)	oer 0.	Nun	Dep	very	orF	spac ing (	Iding	Sample Description	Notes				
pth (I	ws p	nple	nple	Seco	/alue	Head	) Rea						
De	Blo	Saı	Saı	1%	-z		ЫС						
							0.0	Black Sandy Gravel, some Silt, intermixed with Coal and Brcik Fragments,					
1								moist (FILL)					
	NA	S-1	0-4	70	NA	0.0	0.0						
2								-					
3													
4							0.0	wet					
-							0.0						
5								-					
6	NA	S-2	4-8	30	NA	0.0	0.0						
								Green/Gray coarse SAND, little Gravel, trace Silt, wet					
7								-					
							0.0						
8								BOH @ 8.0'					
								-					
								-					
								·					
								-					
								-					
								-					
Notes:	1) Water	r levels w	ere made	at the tim	es and un	ider condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.					
	2) Stratif	fication li	nes repres	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.					
	3) PID readings are referenced to a benzene standard measured in the neadspace above the sample using a Minikae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable												
40 CO	MMERC	CIAL STI	REET										
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617				
(585) 4	154-0210	0							(212) 986-8645				
FAX (5	585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657				

da	V								ENVIRONMENTAL CONSULTANTS				
DAY			ITAL, IN	IC.				AN AI	FFILIATE OF DAY ENGINEERING, P.C				
Projec Projec	t#: Addres	s:	PC.2696 1 West N	61-01 Main Stre	eet	-			TEST BORING NO. TB-116				
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1				
DAY R	epresen	ntative:	Nate Sin	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005					
Drilling	Contrac	ctor:	Miller Er	nvironme uch	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0"</u>	h Cuttings				
Sampi	ing weth	100.	Dilect	usn		-		Water Level (Date/Time): Not Measured	Cuttings				
							2						
	5 ft.	ber	(#) H		aD%	DIA (ud	nqq)						
~	er 0.5	Mum	Dept	ery	or R	pace ng (p	ding	Sample Description	Notes				
th (ft	vs pe	ple	ple	ecov	alue	eads	Read						
Dep	Blov	Sam	Sam	% R	Ň-N	Ξŵ	DIA						
							0.0	TOPSOIL and ROOTS					
1								Black Sandy Gravel, trace Silt, intermixed with Coal Fragments, moist (FILL)					
2	NA	S-1	0-4	90%	NA	0.0	0.0	-					
3								-					
							0.0	wat					
4							0.0	-					
э								-					
6	NA	S-2	4-8	100	NA	0.2	0.0						
-								Brown/Green Silty CLAY, trace Sand, wet					
7								-					
8							0.0	-					
							0.0	Diown Sich, nace Sand, wet					
9								-					
10	NA	S-3	8-12	90	NA	0.0	0.0						
10								-					
11								-					
12							0.0	.					
								BOH @ 12.0'					
								-					
								-					
								-					
			L			Ļ							
Notes:	<ol> <li>Water</li> <li>Stratif</li> </ol>	r Ievels w fication lir	ere made : nes represe	at the time ent appro:	es and un ximate bo	nder condi oundaries.	tions state Transitio	xd. Fluctuations ot groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.					
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-116				
10.05	4) NA = Not Available or Not Applicable												
				\$14-1005	2								
(585) 4	54-021	, iNE VV T )	UKK 140	514-1008	J				(212) 986-8645				
FAX (5	85) 454	- -0825						www.dayenvironmental.com	FAX (212) 986-8657				

da	ENVIRONMENTAL CONSULTANTS											
DAY		ONME	ITAL, IN	IC.				AN	AFFILIATE OF DAY ENGINEERING, P.C			
Project	#:		PC.2696	SI-01								
Projec	Addres	s:	1 West I	Main Stre	eet	-			TEST BORING NO. TB-117			
		tativa	Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1			
Drilling	Contrac	ctor:	Miller Er	non nvironme	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0"				
Sampl	ng Meth	nod:	Direct P	ush		-		Completion Method: Well Installed Backfilled with Grout Backfilled	with Cuttings			
						_		Water Level (Date/Time): Not Measured				
			÷		%	<u>م</u>	(î					
	.5 ft.	nber	th (f		RaD	ce PI (ppm	dd) E					
(t)	per 0	Nur	Dep	very	e or l	Ispa ling	adinç	Sample Description	Notes			
pth (	swo	mple	mple	Reco	Value	Heac Reac	D Re					
De	ă	Sa	Sa	%	ź		E					
								TOPSOIL and ROOTS				
1								Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FILL)				
	NA	S-1	0-4	80	NA	1.7	5.3					
2								-				
3								-				
4								wet (water has sheen)				
-							17.1					
5								-				
6	NA	S-2	4-8	60	NA	23.5	34.6	-				
								some Coal Slag Fragments				
7								- Black Sandy Gravel, some Silt, intermixed with Coal Fragments and Coal Tar				
							49.2	wet (FILL)				
8							37.2	-				
٩								_				
Ĵ												
10	NA	S-3	8-12	40	NA	1.7	29.1					
								Gray Silty CLAY, some sand, wet				
11								-				
							7.6					
12					1		-	- BOH @ 12.0'				
								-				
								-				
Notes:	1) Water	r levels w	ere made	at the tim	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.				
	<ol> <li>Stratif</li> <li>PID re</li> </ol>	fication li	nes repres	ent appro	ximate bo enzene s	oundaries.	Transitio	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp				
	4) NA = N	Not Avail	able or Not	Applicab	le				TEST BORING NO. TB-117			
40 CO	MMERC	IAL ST	REET									
ROCH	ESTER,	NEW )	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617			
(585) 4	54-0210	0							(212) 986-8645			
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657			

da	Dav ENVIRONMENTAL CONSULTANTS											
DAY	ENVIRO	ONME	NTAL, IN	IC.				AN AI	FFILIATE OF DAY ENGINEERING, P.C			
Projec Projec	t#: Addres	s:	PC.2696 1 West I	6I-01 Main Stre	eet	-			TEST BORING NO. TB-118			
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1			
DAY R	epresen	ntative:	Nate Sir	non		-		Date Started: 11/15/2006 Date Ended: 11/15/2005				
Drilling	Contrac	ctor:	Direct P	nvironme	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0'</u> Borehole Diameter: <u>2.0'</u> Borehole Diameter: <u>2.0'</u> Backfilled with Grout	h Cuttings			
Gampi	ing weth	iou.	Direct	uan		-		Water Level (Date/Time): Not Measured	Cuttings			
					_		ê					
	5 ft.	ber	(#) H		aD%	e PID (mq	udd)					
Ð	er 0.	Mum	Dept	/ery	or R	spac ng (j	ding	Sample Description	Notes			
th (f	ws p	ble	ble	ecov	alue	leads	Rea					
Dep	Blo	San	San	% В	∧-N	Тœ	DID					
							0.0	TOPSOIL and ROOTS				
1								Black Sandy Gravel, some Silt, intermixed with Coal Fragments, moist (FILL)				
	NIA	C 1	0.4	60	NIA	0.0	0.0					
2	NA	5-1	0-4	60	INA	0.0	0.0	-				
3								•				
							0.0	wet				
4							0.0	•				
5												
Ŭ												
6	NA	S-2	4-8	40	NA	0.0	0.0	-				
7								-				
							0.0					
8							0.0	•				
9								-				
10	NA	S-3	8-12	20	NA	0.0	0.0	-				
11												
							0.0					
12							0.0	BOH @ 12.0'				
								l l				
Notes:	1) Water	l r levels w	l vere made	at the tim	l es and ur	l nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.				
	2) Stratif	fication li	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.				
	3) PID re 4) NA = №	eadings a Not Aveil	are reteren	ced to a b t Applicab	ienzene s le	standard m	easured i	n the neadspace above the sample using a Minikae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-118			
40 CO	MMERC	CIAL ST	REET									
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617			
(585) 4	54-0210	0							(212) 986-8645			
FAX (5	85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657			

da	ENVIRONMENTAL CONSULTANTS											
DAY	ENVIRO		ITAL, IN	C.					AN AFFII	LATE OF DAY ENGINEERING, P.C		
			<b>DO</b> 0000									
Projec	t #: t Addres	s:	1 West M	л-01 Лain Stre	eet	-				TEST BORING NO. TB-119		
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1		
DAY R	epresen	ntative:	Nate Sin	non	ntol	-		Date Started: <u>11/16/2006</u> Date Ended: <u>11/16/2005</u>		-		
Sampl	ing Meth	nod:	Direct P	ush	indi	-		Completion Method: Well Installed Backfilled with Grout Ba	ackfilled with Cu	uttings		
-	-					-		Water Level (Date/Time): Not Measured				
			(1		%	<u>م</u>	(î					
	).5 ft.	nber	oth (f		Rap	ce PI (ppm	dd) 6					
(£	per (	e Nur	Dep	nen	e or	dspa	adin	Sample Description		Notes		
epth (	ows	ample	ample	Rect	-Valu	Head	D Re					
ă	8	ů	ů	%	ż		<b>E</b>					
							0.0		1			
1									-			
2	NA	S-1	0-4	70	NA	4.3	1.3	Brown coarse Sand, some Gravel, trace Silt, moist (FILL)	_			
-												
3									-			
4							0.8	wet (water has sheen)	-			
							1.1	Rlack Stained Gravel trace Sand intermixed with Coal Fragments, wet (FILL)				
5								black Stained Graver, trace Sand, internixed with Coar Fragments, wet (FILE)	-			
	NA	S-2	4-8	20	NA	2.1	2.1					
0									-			
7									_			
8							3.0		-			
							2.4	Black Sandy Silt, some Gravel, trace Clay, wet (FILL)				
9									-			
10	NA	S-3	8-12	20	NA	14.1	2.9					
10									-			
11									_			
12							3.2		-			
									-			
									Ē			
									-			
									-			
Notes:	1) Water	r levels w	ere made :	at the time	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u>I</u>			
	2) Stratif	fication lin	nes represe	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual. In the headsnace above the sample using a MiniRae 2000 equipped with a 10.6 oV loop.				
	4) NA = N	Not Availa	able or Not	Applicab	le	anudiu ff	icasuled l	יי איז איז איז איז איז איז איז איז איז א		TEST BORING NO. TB-119		
40 CO	MMERC	IAL STR	REET							-		
ROCH	ESTER,	NEW Y	ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617		
(585) 4	154-0210	C								(212) 986-8645		
FAX (5	5) 454-0210 (212) 986-8645 K (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657											

da	V								E	ENVIRONMENTAL CONSULTANTS
DAY		ONMEN	ITAL, IN	IC.					AN AFFII	LIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	is:	PC.2696 1 West M	6I-01 Main Stre	eet	-				TEST BORING NO. TB-120
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	Represer	ntative:	Nate Sin	non		-		Date Started: 11/16/2006 Date Ended: 11/16/200	)5	-
Drilling	g Contrac	ctor:	Miller Er	ivironme	ntal	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2.0"</u>	Packfilled with C	Ittinge
Sampi	ing weu	100.	Dilectri	4511		-		Water Level (Date/Time): Not Measured		aungs
					. 9		Ê			
	.5 ft.	lber	th (ft)		taD%	e PIC ppm)	udd)			
ft)	oer 0.	Nun	Dep	very	or	spac ing (	Iding	Sample Description		Notes
pth (1	ows p	mple	mple	Reco	/alue	Head	) Rea			
De	BIG	Sa	Sa	%	ź		<b>PI</b>			
							0.0	0.3' Asphalt and FILL	-	
1								Black Sandy Gravel intermixed with Coal and Coal Slag Fragments, moist (FILL)	-	
2	NA	S-1	0-4	80	NA	2.2	0.2			
2									-	
3									-	
							0.4	wet (water has sheen)		
4							0.4		-	
							0.0			
5									-	
6	NA	S-2	4-8	40	NA	3.0	2.1		_	
Ŭ									-	
7									-	
							2.0			
8							3.9		-	
							_			
9									-	
10	NA	S-3	8-12	20	NA	4.7	2.9		-	
									_	
11								Gray Silty SAND, some Gravel, trace Clay, wet	-	
							3.8			
12						1		BOH @ 12.0'	7-	
									-	
									-	
									-	
									-	
Notes:	<ol> <li>Water</li> <li>Stratif</li> </ol>	r levels w fication lir	ere made : nes represe	at the time ent appro:	es and un ximate bo	nder condi oundaries.	tions state Transitio	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re	eadings a	re referen	ced to a b	enzene s	tandard m	neasured i			TEST BORING NO TR-120
40.00	4) NA = 1	Not Availa	able or Not	Applicab	le					
40 CO	MMERC	NEW V		314-1009	3					NEW YORK NEW YORK 10165-1617
(585) 4	454-0210	)	51111-14		-					(212) 986-8645
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	V								ENVIR	RONMENTAL CONSULTANTS
DAY			ITAL, IN	IC.					AN AFFILIATE	OF DAY ENGINEERING, P.C
			50.000							
Project	t#: Addres	s:	1 West I	Main Stre	eet	-			TES	T BORING NO. TB-121
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/29/2006 Date Ended: 11/29/2005		
Sampli	ng Meth	ctor: nod:	Direct P	ush	ental	-		Completion Method: Vell Installed Backfilled with Grout Backfilled	led with Cuttings	
	5					-		Water Level (Date/Time): Not Measured	5.	
					%	0 0	Ê			
	.5 ft.	nber	oth (fi		RQD	ce PI (ppm	dd) 6			
£	per 0	Nur	Dep	very	e or	lspa ding	adinç	Sample Description		Notes
epth (	ows	mple	ald m	Reco	Valu	Heac Reac	DRe			
De	B	Sa	Sa	%	ż					
							0.0	TOPSOIL and ROOTS Plack Sandy Gravel, some Silt, intermixed with Coal and Coal Slag Fragments		
1								Diack Sandy Gravel, some Silt, intermixed with Coar and Coar Siag Fragments,		
	NA	S-1	0-4	80	NA	2.1	0.0			
2								-		
3										
Ŭ										
4							1.0	wet (water has sheen), Coal Tar Type Odor		
							1.1			
5								-		
	NA	S-2	4-8	60	NA	2.2	2.1	Rlack Sandy Gravel and Coal Intermixed with Coal Slag Fragments and		
6								Coal Tar, wet (FILL)		
_										
8							1.0			
							323			
9								-		
	NA	S-3	8-12	60	NA	39.9	81.6	Diack Silly CLAV, trace Sill, trace Cravel wet		
10		00	0.2	00		00.0	01.0	Diack Silly CLAT, trace Sill, trace Gravel, wet		
11										
12							106			
							6.4			
13								Gray Silty SAND, some Gravel, wet		
	NΔ	S-4	12-15	80	NΔ	3.0	5.6			
14	107	0 4	12 10	00	107	0.0	0.0	-		
							6.2			
15								Refusal @ 15.0'		
Noter	4) 10/-4	r love'-	000 m	ot the fir		dor c "	tiona -t- '			
inotes:	<ol> <li>vvater</li> <li>Stratif</li> </ol>	fication lir	ere made nes repres	ent appro	es and un ximate bo	oundaries.	Transitio	<ul> <li>roucluations or groundwater revers may occur due to seasonal factors and other conditions.</li> <li>ns may be gradual.</li> </ul>		
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TES	T BORING NO. TB-121
40.00	4) NA = 1		able or Not	Applicab	le					
ROCH	ESTER.	NEW Y	ORK 14	614-1008	3				NEV	V YORK, NEW YORK 10165-1617
(585) 4	154-0210	0								(212) 986-8645
FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	ENVIRONMENTAL CONSULTANTS												
DAY	ENVIR	ONMEN	ITAL, IN	IC.					AN AFFIL	LATE OF DAY ENGINEERING, P.C			
Projoc	• #.		PC 2606	21.01									
Projec	t #. t Addres	ss:	1 West M	Main Stre	eet	-				TEST BORING NO. TB-122			
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:		Page of 1 of 1			
DAY R	contract	ntative:	Nate Sin	non	ntal	-		Date Started: <u>11/29/2006</u> Date Ended: <u>11/29</u> Borehole Depth: <u>10.6'</u> Borehole Diameter: <u>2.0"</u>	/2005	-			
Sampl	ing Meth	nod:	Direct P	ush	inter	-		Completion Method:	Backfilled with Cu	uttings			
						_		Water Level (Date/Time): Not Measured	_				
			t)		%	9 e	(m						
	0.5 ft	mbei	pth (1	>	RQD	ce P (ppn	d) 6						
(ft)	per (	e Nu	e Del	over	e or	dspa ding	adin	Sample Description		Notes			
epth	swo	amp	ampl	Rec	-Valu	Hea Rea	D Re						
Δ	8	s	S	%	z		0.0	TOPSOIL and ROOTS					
								Black Sandy Gravel, some Silt, intermixed with Coal Tar. Coal Slag and Coal					
1								Fragments, moist (FILL)	-				
2	NA	S-1	0-4	60	NA	12.4	0.0		_				
-									-				
3									-				
4							9.3	wet (water has sheen)	-				
							3.6						
5									-				
	NA	S-2	4-8	50	NA	2.1	1.2						
6									-				
7													
,									-				
8							1.0						
							3.2	Gray Silty CLAY, wet					
9	NΔ	5-3	8-12	40	NΔ	2.8	12		-				
		00	0.2			2.0							
10							0.8		-				
								Refusal @ 10.6'	_				
									-				
									-				
									-				
									-				
									-				
									-				
Notae	1) Moto	r lovele ···	oro mode	at the tire	os and	dor con-	tions state	d. Eluctuations of anoundwater louds may accur due to accessed factors and other and "					
INULES:	<ol> <li>2) Stratil</li> </ol>	fication li	nes represe	ent appro:	ximate bo	oundaries.	Transitio	ns may be gradual.					
	3) PID re	eadings a	ire referen	ced to a b	enzene s	standard m	neasured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		TEST BORING NO. TB-122			
40 CO	4) NA = I	NOT AVAIL	ADIE OF NOT	Applicab	ile					<u> </u>			
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617			
(585) 4	154-021	0								(212) 986-8645			
FAX (5	585) 454	5) 454-0210 (212) 986-8645 X (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657											

d	day Environmental Consultants												
DAY	ENVIE	RONME	NTAL, I	NC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C			
Proje Proje	ct #: ct Addre	ess:	PC.269 1 West	961-01 Main St	reet	-				TEST BORING NO. TB-123			
			Beacor	ı, New Y	'ork	_		Ground Elevation: Datum:		Page of 1 of 1			
DAY	Represe	enlative:	Nate S	mon		-		Date Started: 11/29/2006 Date Ended: 11/29/20	)05				
Drillin	g Contr	actor:	Miller E	nvironm	ental	-		Borehole Depth: <u>10.5'</u> Borehole Diameter: <u>2.0"</u> Borehole Diameter: <u>2.0</u>	Real-Gliad with C	tilinge			
Samp	ling Me	thod:	Urect	Jush		-		Water Level (Date/Time):	Backaled with C	otarigs			
	<u>r</u>	1	1	<u> </u>	1	1	T						
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes			
		1		1	1		0.0	TOPSOIL and ROOTS					
								Black Sandy Gravel, some Silt, intermixerd with Coal and Coal Slag Fragments,					
1								Coal Tar, moist (FILL)					
2	NA	S-1	0-4	80	NA	16.9	3.1		-				
-				i				Coal Slag Fragments, some Sandy Gravel, trace Silt, intermixed with					
3								Coal Tar, moist (FILL)	-				
						[							
4							7.2	wet (water has sheen)	-				
							3.0						
5									-				
	NA	S-2	4-8	50	NA	14.8	6.8						
6								Grav Sillv CLAY, trace Sand, wet					
7									-				
							4.8		-				
Ŭ							6.8						
9									-				
	NA	S-3	8-12	60	NA	0.7	13.8						
10							4.0		-				
ŀ							1.0	Deficient (2) 40 5'	-				
								Reiusai (g. 10.5	-				
									1				
									-				
				ĺ					-				
ĺ									-				
Notes:	es: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.												
	2) Stratification lines represent approximate boundaries. Transitions may be gradual.												
	)) 110 /e }NA = ^	adings ar Iot Availai	e reterend de or Not	eo to a bi Applicabl	enzeñé ŝi e	angard m	leasuréd i	i ure reauspace above the sample using a ministale 2000 equipped with a 10.0 eV tamp.		TEST BORING NO. TB-123			
40 COI	4/NA - NO Assistant of Not Application												
ROCH	OCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617												
(585) 4	54-0210	)								(212) 986-8645			
FAX (5	35) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657			
			0000	000000	04 0								

day     Environmental consultants       day environmental, inc.     An affiliate of day engineering, p.c.												
Project #: PC.2696I-01 Project Address: 1 West Main Street	RING NO. TB-124											
Beacon, New York Ground Elevation: Datum:	Page of 1 of 1											
DAY Representative: Nate Simon Date Started: 11/29/2006 Date Ended: 11/29/2005												
Drilling Contractor: Miller Environmental Borehole Depth: 12.0' Borehole Diameter: 2.0"												
Sampling Method: Direct Push Completion Method: Water Level (Date/Time): Not Measured												
Depth (ft) Sample Description A-Value or RQD% Not Reading (ppm) PID Reading (ppm) Not	tes											
0.0 TOPSOIL and ROOTS												
Black Silty Sand, intermixed with Coal and Coal Slag Fragments, moist (FILL)												
NA S-1 0-4 90 NA 0.7 0.0												
3												
4												
0.8												
5												
NA S-2 4-8 60 NA 0.9 1.2												
6 -												
Coal Slag Fragments, some Gravel, wet (FiLL)												
3.6												
48.1												
9 Gray Silty CLAY, wet												
10 NA S-3 8-12 40 NA 8.1 96.2												
t1 · · ·												
18.9												
12 BOH @ 12.0'												
Noles: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.												
2) Stratification lines represent approximate boundaries. Transitions may be gradual.												
3) Pib readings are reierenced to a denzene standard measured in the neadspace above the sample using a Minicae 2000 equipped with a 10.0 eV kamp. 4) NA = Not Available or Not Applicable												
40 COMMERCIAL STREET												
ROCHESTER, NEW YORK 14614-1008 NEW YORK,	, NEW YORK 10165-1617											
(585) 454-0210	(212) 986-8645											
FAX (585) 454-0825 www.dayenvironmental.com	FAX (212) 986-8657											

d	ay								ENVIRONMENTAL CONSULTANTS				
DAY	ENVIE	RONME	NTAL, I	NC.				AN AFFI	IATE OF DAY ENGINEERING, P.C				
Proje Proje	ct #: ct Addre	955:	PC.269 1 West	96I-01 Main St	reet				TEST BORING NO. TB-125				
DAY	Dopropr	ntotiuo:	Beacor	n, New Y	ork	-		Ground Elevation:         Datum:           Data Stated:         11/29/2005	Page of 1 of 1				
Drillin	ig Contra	actor:	Miller E	inun invironm	ental	-		Borehole Depth: 12.0' Borehole Diameter: 2.0*					
Samp	ling Mel	lhod:	Direct F	² ush		_		Completion Method: 🗌 Well Installed 🔲 Backfilled with Grout 🔳 Backfilled with					
			<b>~</b>		·			Water Level (Date/Time): Not Measured					
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes				
			1	1		1	0.0	TOPSOIL and ROOTS					
1								Black Gravel, some Coal Fragments, moist (FILL)					
2	NA	S-1	0-4	70	NA	2.3	0.0						
3							0.0	Black Gravel, intermixed with Coal and Coal Stag Fragments, moist (FILL)					
							0.0						
5								-					
6	NA	S-2	4-8	70	NA	1.6	0,1	wet					
								Coal Slag Fragments, some Gravei, wet (FiLL)					
7								•					
							0.1						
0							0.0						
9								-					
	NA	S-3	8-12	40	NA	8.1	0.0	Grav Silly CLAY wet					
10													
11								-					
							0.0						
12							0.0						
	[							-					
						1							
Notes:	1) Waler	leveis we	re made a	at the time	is and un	der condi	lions slate	<ol> <li>Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.</li> </ol>					
	2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readines are referenced to a benzone standard measured in the headspace above the sample using a MniRae 2000 equipped with a 10.6 eV lamp.												
4	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a Minikaa 2000 equipped with a 10.6 eV tamp. 4) NA = Not Available or Not Applicable												
40 CON	OMMERCIAL STREET												
KUCHE (585) 4	54-0210	NEW Y(	JKK 146	14-1008					(212) 986-8645				
FAX (5)	85) 454-	0825						www.dayenvironmental.com	FAX (212) 986-8657				
imonit	U. Deat		00000	000606	Of Pari	ing Looc							

Project A: Project A: Strate Tanks         C2.369.01 (1)         TEST BORING NO. TB-126 (2)           Project A: Project A: Strate Tanks         Discust (2)         Discus (2)         Discust (2) <td< th=""><th></th><th colspan="13">day     Environmental consultants       Day Environmental, INC.     An affiliate of day Engineering, p.C</th></td<>		day     Environmental consultants       Day Environmental, INC.     An affiliate of day Engineering, p.C												
DAT         Descond meretrik         Descond meretrik <thdescond meretrik<="" th=""> <thdescond meretrik<="" th=""> <t< td=""><td>Proje</td><td>ct #: ct Addre</td><td>ess:</td><td>PC.26 1 Wes</td><td>961-01 t Main S</td><td>treet</td><td>_</td><td></td><td></td><td>TES</td><td>T BORING NO. TB-126</td></t<></thdescond></thdescond>	Proje	ct #: ct Addre	ess:	PC.26 1 Wes	961-01 t Main S	treet	_			TES	T BORING NO. TB-126			
DAY Representative Med Simon       Under Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Data Simon       Notes         Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Notes       Image Simon       Notes         Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Notes         Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Notes         Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Notes         Image Simon         Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       Image Simon       I				Beaco	n, New Y	rork	-		Ground Elevation: Datum:		Page of 1 of 1			
Online Converte       Wite Envolvement       Description       Description       Description       Description         Sampling Verture       Verture Local Operations       0.00       Wate Local Operations       0.00       Description       Description       Description         Verture       Verture Local Operations       0.00       Mailed Hondon Uperations       0.00       Description       Notes         Verture       Verture Local Operations       0.00       Description       Notes       Description       Notes         Verture       Verture       Verture       Verture       Description       Notes       Description       Notes         Verture       Verture       Verture       Verture       Verture       Description       Notes         Verture       Verture       Verture       Verture       Verture       Description       Notes         Verture       Verture       Verture       Verture       Verture       Description       Notes         Verture       Verture       Verture       Verture       Description       Notes       Description       Notes         Verture       Verture       Verture       Operations       Operations       Operations       Descrintent Notes       Description	DAY	Represe	entative:	Nate S	imon		_		Date Started: 11/29/2006 Date Ended: 11/29/2005	4645				
Stampling Ventori         Unter Lived         Consistent Model:         I Marian         Consistent Model:         Description         Reacting with Cultings           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g	Drillin	ig Contr	actor:	Miller 8	nvironn	iental			Borehole Depth: 12.0' Borehole Diameter: 2.0"					
View Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer Law () Mer	Sam	oling Me	thod:	Direct	Push		_		Completion Method: 🔲 Well Installed 🔲 Backfilled with Grout 🔳 Backfil	illed with Cuttings	s			
vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis         vis <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Water Level (Date/Time): Not Measured</td> <td>······································</td> <td></td>									Water Level (Date/Time): Not Measured	······································				
1         NA         S-1         O-4         70         NA         12         0.0         TOPSOLUE AND FORMULATIONS Classes           2         NA         S-1         O-4         70         NA         12         0.0           3         O         NA         S-2         4-8         O         NA         2.3         0.2           6         NA         S-2         4-8         O         NA         2.3         0.2           7         O         NA         2.3         0.2         Cost Slag Fragmens, moist (FIL)         -           8         MA         S-2         4-8         0.0         NA         2.3         0.2           10         NA         S-3         5-12         40         NA         0.8         0.0           11         O         NA         S-3         5-12         40         NA         0.8         0.0           12         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I	Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description		Notes			
NA         S-1         O-4         TO         NA         12         OO         Back Stardy SU, some Gravel, tace Clay, internixed with Cool and Brick Fragments, moist (FIL1)           NA         S-1         O-4         TO         NA         12         OO         Back Stardy SU, some Gravel, tace Clay, internixed with Cool and           NA         S-2         4-8         60         NA         2.3         OC           NA         S-2         4-8         60         NA         2.3         OC           NA         S-3         5-12         40         NA         0.8         Mood (RR Tile), moist (FIL1)           NA         S-3         5-12         40         NA         0.8         0.00         Gray CLAY, tace SU, wet           NA         S-3         5-12         40         NA         0.8         0.00         Gray CLAY, tace SU, wet           12         In tace trans were made at heares and doc concloses tace file/fulluations of group/indeer fewel may occur due to assessed factors and other conclose.         Statistaria           13         In tace trans were made at heares and doc concloses tace file/fulluations of group/indeer fewel may occur due to assessed factors and other conclose.         Statistaria         Statistaria           14         In tace factors were made at hearese and doc concloses and file	<u> </u>		1	1	T	Ī	Ī	0.0	TOPSOIL and ROOTS					
NA         S-1         0-4         70         NA         1.2         0.0         Brick Fragments, molit (FLL)           A         A         S-2         4.8         60         NA         2.3         0.2           B         MA         S-2         4.8         60         NA         2.3         0.2           B         MA         S-2         4.8         60         NA         2.3         0.2           B         MA         S-2         4.8         60         NA         2.3         0.2           Coal Slag Fragments, molit (FLL)           B         MA         S-3         8-12         40         NA         0.8         0.0           If the MA         S-3         8-12         40         NA         0.8         0.0         BOH (9) 12.0"         BOH (9) 12.0"           NEXt         If the MA         S-3         8-12         40         NA         0.8         0.0         BOH (9) 12.0"         BOH (9) 12.0"           NEXt         If the MA A A A A A PARAME         If the MA A A A A A A A A A A A A A A A A A A									Black Sandy Silt, some Gravel, trace Clay, intermixed with Coal and					
NA         N-1         O-1         NA         12         O-0           A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         B         A         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B	1					1			Brick Fragments, moist (FILL)					
A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A		NA	S-1	0-4	70	NA	1.2	0.0						
NA         S-2         4-U         A         2.3         0.0           NA         S-2         4-U         60         NA         2.3         0.2           Ocal Stage Fragments, trace Sandy Oravel, moist (FLL)         0.0         Wrod (RR Trib, moist (FLL))         0.0         0.0           NA         S-3         8-12         40         NA         0.0         Ocal Stage Fragments, trace Sandy Oravel, moist (FLL)           NA         S-3         8-12         40         NA         0.0         Grey CLAY, trace Sit, wet           INVent lines were made at the lines and under conditions abded. Fluctuation of groundwater fewels may occur due to sussisted Extern and Other Conditions.         Extern and the conditions abded. Fluctuation of groundwater fewels may occur due to sussisted Extern and Other Conditions.           Statistication lines represent approximate bounderins. Transform may to groundwater fewels may occur due to sussisted Extern and Other Conditions.         TEST BORING NO. TB-126           Note Matheber PM Condition Street         Test Boring NO. TB-126         NEW YORK 1005-1697         NEW YORK 1005-1697           OCOMMERCIONE. TIRETT         Test Boring NO. 106-1697         NEW YORK 1005-1697         NEW YORK 1005-1697           Kit (S3)         Fluctuation of the two and to be subject abde of the State Sta	2													
A         A         A         A         A         A         A         A         A         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B														
Image: Note Transformer Provide Transformer	3													
1         NA         S2         4-8         60         NA         2.3         0.2           6         NA         S2         4-8         60         NA         2.3         0.2           7         1         1         1         0         0.3         Wood (RR Tib), moist (FILL)         1           8         1         1         1         0.0         Gray CLAY, trace Sit, well         1           10         NA         S3         8-12         40         NA         0.8         0.0           11         1         1         1         0.0         Gray CLAY, trace Sit, well         1           10         NA         S3         8-12         40         NA         0.8         0.0           11         1         1         0         0         0.0         EOH @ 12.0*         1           10         1         1         1         1         0.0         EOH @ 12.0*         EEST EORING NO. TB-126           10         10         1         1         1         1         1         1         EEST EORING NO. TB-126           10         1         1         1         1         1         1         E								0.0						
s         NA         S-2         4-8         60         NA         Z.3         0.2         Coal Stag Fragments, traces Sandy Gravel, moist (FILL)           a	1		-					0.0						
o       NA       S-2       4-8       60       NA       2.3       0.2       Coal Sig Fragments, trace Sandy Gravel, moist (FILL)         0       NA       S-3       8-12       40       NA       0.0       Gray CLAY, trace Sit, wet         10       NA       S-3       8-12       40       NA       0.8       Wood (RR Tie), moist (FILL)          10       NA       S-3       8-12       40       NA       0.8       0.00       Gray CLAY, trace Sit, wet          10       NA       S-3       8-12       40       NA       0.8       0.0       BOH @) 12.0"          11       1       1       1       0       0.0       Gray CLAY, trace Sit, wet          12       10       1       1       0       0.0       BOH @) 12.0"           13       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 </td <td>L L</td> <td></td>	L L													
k         NA         S-2         4-8         60         NA         2.3         0.2         Coal Skip Fragments, trace Sandy Gravel, moist (FILL)           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n </td <td>5</td> <td></td>	5													
Image: Intervention of the target and under concloses stated. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents. <ul> <li>Control State Field and Under Concidents stated. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Control State. State State. Fluctuations of groundwater fewels may occur due to seasonal factors and other concidents.</li> <li>State Contenerecol to a bencare standstater measured in t</li></ul>	6	NA	S-2	4-8	60	NA	2.3	0.2	-					
1       1       1       0.8       Wood (RR Tie), moist (FILL)         1       1       1       0.0       Grey CLAY, trace Sit, wet         10       NA       S-3       8-12       40       NA       0.8       0.0         14       1       1       0.0       Grey CLAY, trace Sit, wet       .       .         14       1       1       0.0       Grey CLAY, trace Sit, wet       .       .         14       1       0.0       0.0       .       .       .       .         14       1       0.0       0.0       .       .       .       .         14       1       0.0       0.0       .       .       .       .         14       1       0.0       0.0       .       .       .       .         15       10       10       10       0.0       .       .       .       .         10       10       10       10       0.0       .       .       .       .       .         10       10       10       10       10       10       10       .       .       .       .       .       .       .       <	ľ								Coal Slag Fragments, trace Sandy Gravel, moist (FILL)					
Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State         Image: Normal State	7													
Image: Normal Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector														
9       NA       S-3       8-12       40       NA       0.8       0.0       Gray CLAY, trace Silt, wet         10       NA       S-3       8-12       40       NA       0.8       0.0         11       Image: Comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison	8					ļ	<u> </u>	0.8	Wood (RR Tie), moist (FILL)					
a       k-1								0.0	Gray CLAY, trace Silt, wet					
10       NA       S-3       B-12       40       NA       0.8       0.0         11       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	9													
NA         S-3         8-12         40         NA         0.8         0.0           11         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th="">         I         <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thi<>														
11       0.0         12       0.0         14       0.0         12       0.0         14       0.0         12       0.0         14       0.0         15       0.0         16       0.0         17       0.0         18       0.0         19       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0 <td< td=""><td>10</td><td>NA</td><td>S-3</td><td>8-12</td><td>40</td><td>NA</td><td>0.8</td><td>0.0</td><td>·</td><td></td><td></td></td<>	10	NA	S-3	8-12	40	NA	0.8	0.0	·					
11       0.0         12       0.0         12       0.0         12       0.0         13       0.0         14       0.0         15       0.0         16       0.0         17       0.0         18       0.0         19       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0         10       0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
12       0.0       BOH @ 12.0'         Notes:       1) Water levels were made at the limes and under conditions of groundwater levels may occur due to seasonal factors and other conditions.       .         2) Stratification lines represent approximate boundaries.       Transitions of groundwater levels may occur due to seasonal factors and other conditions.       .         3) PID readings are referenced to a being and under conditions and ye gradual.       .       .       .         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-126       .         40 COMMERCIAL STREET       NEW YORK 14614-1008       NEW YORK 14614-1008       NEW YORK 10165-1617         (585) 454-0825       www.dayenvironmental.com       FAX (212) 966-8657	11								·					
12       0       0.00       BOH @ 12.0'         12       0       0       0       BOH @ 12.0'         13       0       0       0       0       0         14       0       0       0       0       0       0         10045       1) Water levels were made at the lines and under conditions stated. Fluctuations of groundwater fevels may occur due to seasonal factors and other conditions.       2) Statification lines represent approximate boundaries. Transforms may be gradual.       TEST BORING NO. TB-126         1) Water levels were made at the lines and under conditions stated. Fluctuations of groundwater fevels may occur due to seasonal factors and other conditions.       2) Statification lines represent approximate boundaries. Transforms may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV tamp.       TEST BORING NO. TB-126         4) NA = NAt Available or NA Applicable       NEW YORK 14614-1008       NEW YORK 10165-1617         (S85) 454-0210       (212) 986-8645       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 966-8657														
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-126         4) Na = Not Available or Not Applicable       NEW YORK, NEW YORK 10165-1617         ROCCHESTER, NEW YORK 14614-1008       (212) 986-8645         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com	12							0.0						
Ndes:       1) Water levels were made at the lines and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       -         2) Stratification lines represent approximate boundaries.       -       -         3) PiD readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       -         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-126         40 COMMERCIAL STREET       -         ROCHESTER, NEW YORK 14614-1008       NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657									BOH @ 12.0					
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       .         .) Statification lines represent approximate boundaries. Transitions may be gradual.       .       .         .) Yater levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       .         .) Statification lines represent approximate boundaries. Transitions may be gradual.       .       .         .) NA = Not Available or Not Applicable       TEST BORING NO. TB-126         40 COMMERCIAL STREET       .       .         ROCHESTER, NEW YORK 14614-1008       .       .         (585) 454-0210       .       .         FAX (585) 454-0825       .       .         YORK 14612-1008       .       .									•					
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.         2) Statification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.         4) NA = Not Available or Not Applicable         40 COMMERCIAL STREET         ROCHESTER, NEW YORK 14614-1008         (585) 454-0210         FAX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657	ĺ													
Nales:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       .         .2) Stratification lines represent approximate boundaries. Transitions may be graduat.       .       .         .3) PID readings are referenced to a benzene standard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-126         4) NA = Not Available or Not Applicable       Not Available or Not Applicable       NEW YORK. NEW YORK 10165-1617         40 COMMERCIAL STREET       NEW YORK 14614-1008       NEW YORK, NEW YORK 10165-1617         (585) 454-0210       (212) 986-8645         FAX (585) 454-0825       www.dayenvironmental.com       FAX (212) 986-8657									•					
Nater levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.         2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.         4) NA = Not Available or Not Applicable         40 COMMERCIAL STREET         ROCHESTER, NEW YORK 14614-1008         (585) 454-0210         FAX (585) 454-0825         www.dagenvironmental.com														
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be gradual.         3) PID readings are referenced to a benzene standard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-126         4) NA = Not Available or Not Applicable       Test BORING NO. TB-126         40 COMMERCIAL STREET       NEW YORK 14614-1008         ROCHESTER, NEW YORK 14614-1008       (212) 986-8645         (585) 454-0210       (212) 986-8657         FAX (585) 454-0825       www.dayenvironmental.com									·					
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.         2) Stratification lines represent approximate boundaries. Transitions may be gradual.       TEST BORING NO. TB-126         4) NA = Not Available or Not Applicable       TEST BORING NO. TB-126         40 COMMERCIAL STREET       NEW YORK 14614-1008         ROCHESTER, NEW YORK 14614-1008       (212) 986-8645         (585) 454-0210       FAX (585) 454-0825														
Notes:       1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.       2) Stratification lines represent approximate boundaries. Transitions may be graduat.       3) PID readings are referenced to a bezzene standard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp.       TEST BORING NO. TB-126         4) NA = Not Available or Not Applicable       40 COMMERCIAL STREET       NEW YORK 14614-1008       10.6 eV lamp.       10.6 eV l									<b>•</b>					
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene slandard measured in the headspace above line sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	Noles:	1) Water	levels we	are made	al the tim	es and un	ider condi	lions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.					
4) NA = Not Available or Not Applicable         TEST BORING NO. TB-126           40 COMMERCIAL STREET         NEW YORK, NEW YORK 10165-1617           ROCHESTER, NEW YORK 14614-1008         (212) 996-8645           (585) 454-0210         (212) 996-8645           FAX (585) 454-0825         www.dayenvironmental.com		2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene slandard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.												
40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 NEW YORK, NEW YORK 10165-1617 (585) 454-0210 (212) 986-8645 FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657		4) NA = Not Available or Not Applicable												
ROCHESTER, NEW YORK 14614-1008         NEW YORK, NEW YORK 10165-1617           (585) 454-0210         (212) 996-8645           FAX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657	40 CO	MMERC	IAL STR	REET										
(585) 454-0210         (212) 986-8645           FAX (585) 454-0825         www.dayenvironmental.com         FAX (212) 986-8657	ROCH	ESTER,	NEW Y	ORK 146	514-100	8				NEW	YORK, NEW YORK 10165-1617			
FAX (585) 454-0825 www.dayenvironmental.com FAX (212) 986-8657	(585) 4	54-0210	D								(212) 986-8645			
	FAX (5	85) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657			

į

LAY ENVIRONMENTAL INC. AN AFFILIATE OF DAY ENGINEERING, P.C.										
Project #: PC.2696I-01 Project Address: 1 West Main Street										TEST BORING NO. TB-127
	_		Beacor	n, New Y	ork	_		Ground Elevation: Datum:	5	Page of 1 of 1
DAY Drillin	Represe o Contra	entative: actor:	Nate SI Miller E	mon nvironm	ental	-		Date Started:         11/29/2006         Date Ended:         11/29/200           Borehole Depth:         12         Borehole Diameter:         2"	3	
Samp	ling Met	lhod:	Direct F	Push		-		Completion Method: Well Installed Backfilled with Grout Backfilled with Grout Backfilled with Grout	ackfilled with Cu	ttings
<u> </u>	Ī	T	1	1		Ι	- -			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PIC Reading (ppm)	PID Reading (ppn	Sample Description		Notes
			1	1	Ī	ŀ	0.0	TOPSOIL and ROOTS		
1								Direk Candy Cravel some Sit intervised with Cool Cool Stop and Rick Fragments	-	
	NA	S-1	0-4	80	NA	3.9	0.0	Black Sandy Gravel, some Silt, intermixed with Coal, Coal Slag, and Block Pragments, moist (FILL)		
3									-	
4		<u> </u>		ļ			0.0			
							0.0			
5									-	
6	NA	S-2	4-8	60	NA	0.6	0.0	wet	-	
7										
							0.0			
8							U.a		-	
9									-	
	NA	S-3	8-12	0	NA	NA	NA			
10										
11									-	
12										
								вон @ 12.0"		
									-	
									-	
									-	
Notes:	1) Waler 2) Stratifi	levels we ication line	re made a is represer	l lhe limes 1 approxi	and unde	er conditio ndarles. T	ns stated. ransitions i	Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. may be gradual.		
	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. TEST BORING NO. TB-127									
40 CO	MMERC	IAL STR	EET	- Ahurging						
ROCH	ESTER,	NEW Y	ORK 146	14~1008	;					NEW YORK, NEW YORK 10165-1617
(585) 4 FAX /5	54-0210 85) 454	) .0825						www.davenvironmental.com		(212) 986-8645 FAX (212) 986-8657
c) Mi	AX (383) 434-0823 WWW.dayenvironmental.com PAX (212) 300-0001									

Documents\nes0090 PC2696i-01 Boring Log:

	DAY ENVIRONMENTAL, INC. AN AFFILIATE OF DAY ENGINEERING, P.C										
Project #: PC.2696I-01 Project Address: 1 West Main Street						_			TEST BORING NO. TB-128		
			Beaco	n, New Y	fork	-		Ground Elevation: Datum:	Page of 1 of 1		
DAY Representative: Nate Simon						_		Date Started: 11/29/2006 Date Ended: 11/29/2005			
Drillin	ig Contr	ractor:	Miller E	Invironm	nental	-		Borehole Depth: 12.0' Borehole Diameter: 2*			
Sam	oling Me	thod:	Direct	Push		-		Completion Method:  Well Installed Backfilled with Grout Backfilled	with Cultings		
ļ	<del>.</del>							Water Level (Date/Time): Not Measured			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID Reading (ppm)	PID Reading (ppm)	Sample Description	Notes		
	1	Ī					0.0	Brown Silly Sand, some Gravel, intermixed with Brick, Coal, and			
								Coal Slag Fragments, moist (FILL)			
1								Black Sitly Sand, some Gravel, intermixed with Brick, Coal, and			
	NA	S-1	0-4	40	NA	2.0	0.0	Coal Slag Fragments, moist (FILL)			
-											
3								  -			
4		-					0.0	Brown Sandy Gravel, intermixed with Brick, Coal, and Coal Slag Fragments,			
							0.0	moist (FILL)			
5								•			
	NA	S-2	4-8	10	NA	NA	1.2	wet			
6								·			
7		1									
8		<u> </u>		<b>_</b>			3.6				
							3.4				
9								*			
	NA	S-3	8-12	10	NA	NA	2.1				
10								-			
11											
12							2.4	-			
								BOH @ 12.0'			
								-			
								-			
Noles:	1) Waler 2) Stratif	r levels we ication lin	ere made es represe	at the tim ant appro:	es and un ximale bo	der condi undaries.	lions slate Transilior	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. Is may be gradual.			
	3) PID re	adings ar	e referen	ced to a b	enzene s	landard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-128		
4	) NA = N	Vol Availa	bie or Nol	Applicab	te						
40 COI	MERC			244 4000	D				NEW YORK NEW YORK 10165-1617		
(585) 4	-31 ER, 54-0210	, 14 E VV TI ]	URN 14t	14-1008					(212) 986-8645		
FAX /5	95) 454	-0825						www.davenvironmental.com	FAX (212) 986-8657		
	AX (365) 494-0825 Www.dayenvironmental.com										

da	day ENVIRONMENTAL CONSULTANTS										
DAY	DAY ENVIRONMENTAL, INC. AN AFFILIATE OF DAY ENGINEERING, P.C										
			,	-							
Project #: PC.2696I-01 Project Address: 1 West Main Street				eet	-				TEST BORING NO. TB-129		
	Beacon, New York			-		Ground Elevation: Datum:		Page of 1 of 1			
DAY R	epresen	ntative:	Nate Sin	non		-		Date Started: 11/29/2006 Date Ended: 11/29/2005	i		
Drilling	Contrac	ctor:	Miller Er	vironme	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2"</u>			
Sampi	ing weth	100.	Direct P	usn		-		Water Level (Date/Time): Not Measured	icknilled with Cu	ungs	
<u> </u>			1				-				
ft)	oer 0.5 ft.	Number	Depth (ft)	very	or RQD%	space PID ing (ppm)	ding (ppm)	Sample Description		Notes	
Jepth (1	3 lows p	ample	sample	6 Reco	I-Value	Head Read	ID Rea				
	ш	0)	0,	°`	~		0.0	Black Sandy Gravel intermixed with Coal and Coal Slag Fragments, moist (FILL)			
1									-		
	ΝΑ	S-1	0-4	60	ΝΑ	14.7	0.8				
2	IN/A	3-1	0-4	00	INA.	14.7	0.0	Black Sandy Gravel trace Silt, some Coal Slag Fragments, moist (FILL)	-		
3									-		
							11	wet (water has a sheen)			
4							1.3		-		
5									-		
	NA	S-2	4-8	20	NA	5.4	2.3				
6		02		20		0.1	2.0		-		
7									-		
							1.0				
8							2.4		-		
9									-		
10	NA	S-3	8-12	10	NA	9.2	3.1		_		
11									-		
12							3.6		-		
								BOH @ 12.0'			
									-		
									-		
									_		
									-		
Notes:	1) Water	r levels w	vere made	at the time	es and un	ider condit	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	•		
	<ol> <li>Stratif</li> <li>PID re</li> </ol>	eadings a	are referen	ced to a b	ximate bo ienzene s	tandard m	easured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.			
	4) NA = N	Not Avail	able or Not	Applicab	le					TEST BURING NU. TB-129	
40 CO	MMERC	IAL STI	REET								
ROCH	ESTER,	NEW Y	ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617	
(585) 4	154-0210	D								(212) 986-8645	
FAX (5	FAX (585) 454-0825 FAX (212) 986-8657										

da	day ENVIRONMENTAL CONSULTANTS								
DAY	ENVIR		ITAL, IN	IC.				AN AFF	ILIATE OF DAY ENGINEERING, P.C
р			50.000						
Project Address: 1 West Main Street				eet	-			TEST BORING NO. TB-130	
Beacon, New York				ork	-		Ground Elevation: Datum:	Page of 1 of 1	
DAY R	epreser	ntative:	Nate Sir	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005	_
Drilling	ing Meth	ctor:	Direct P	ivironme ush	Intal	-		Completion Method: Well Installed Backfilled with Grout Backfilled with	Cuttings
Camp	ing mou		Billoott	uon		-		Water Level (Date/Time): Not Measured	ouungo
			_				Ê		
	.5 ft.	ber	th (ft		taD%	e PIC ppm)	ıdd)		
ft)	o o	Nun	Dep	very	or	spac ing (	Iding	Sample Description	Notes
oth (i	wsp	nple	nple	Seco	/alue	Head	Rea		
De	Blc	Saı	Saı	1%	۲-۲		ЫС		
							0.0	Asphalt and Sub-base	
1								- Black Sandy Gravel, some Silt, intermixed with Coal, Brick, and Wood Fragments,	
2	NA	S-1	0-4	40	NA	1.1	0.8	moist (FILL)	
-									
3								-	
							0.7		
4							0.7	wet -	
							0.0		
5								-	
	NA	S-2	4-8	10	NA	0.8	2.4		
6								- Black Coal Slag, some Gravel, intermixed with Coal, Brick and Wood Fragments,	
7								wet (FILL)	
-									
8							2.7	-	
							0.0	Gray Silty Clay some Silt, trace Gravel, wet (FILL)	
9								-	
	NA	S-3	8-12	25	NA	1.0	0.0		
10								-	
11									
								Gray coarse Sand, some Gravel, intermixed with Coal and Brick Fragments, wet	
12							0.0	(FILL)	
								BOH @ 12.0'	
								-	
								.	
Notes:	1) Water	r levels w	ere made	at the tim	es and un	nder condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions	
	2) Strati	fication lir	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.	
	3) PID re	eadings a	re referen	ced to a b	enzene s	standard m	easured i	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	TEST BORING NO. TB-130
40 CO	MMERC	CIAL ST	REET	nppilodb	10				
ROCH	ESTER,	, NEW Y	ORK 146	514-1008	3				NEW YORK, NEW YORK 10165-1617
(585) 4	154-021	0							(212) 986-8645
FAX (5	FAX (585) 454-0825 FAX (212) 986-8657								

da	day ENVIRONMENTAL CONSULTANTS								
DAY	ENVIRO	ONMEN	ITAL, IN	IC.				AN AF	FILIATE OF DAY ENGINEERING, P.C
Project #: PC.2696I-01 Project Address: 1 West Main Street			-			TEST BORING NO. TB-131			
			Beacon,	New Yo	ork	-		Ground Elevation: Datum:	Page of 1 of 1
DAY R	epreser	ntative:	Nate Sin	non		-		Date Started: 11/30/2006 Date Ended: 11/30/2005	
Drilling	Contrac	ctor:	Direct P	ivironme	ental	-		Borehole Depth: <u>12.0'</u> Borehole Diameter: <u>2"</u>	Cuttings
Sampi	ing men	100.	Dilect	usn		-		Water Level (Date/Time): Not Measured	Cuturigs
							~		
)epth (ft)	slows per 0.5 ft.	ample Number	iample Depth (ft)	6 Recovery	I-Value or RQD%	Headspace PID Reading (ppm)	ID Reading (ppm	Sample Description	Notes
	ш	0	0)	6	~		0.0	0.7' Asphalt and FILL	
								Black Sandy Gravel, some Silt, intermixed with Coal and Brick Fragments.	
1								moist (FILL)	
2	NA	S-1	0-4	40	NA	0.4	0.0		
-									
3									
4							0.0		
							0.0	Coal Fragments	
5								-	
	NA	S-2	4-8	90	NA	0.4	0.0	Diack Sandy Gravel, little Silt, Internitiked with Coar and Dick Fragments,	
6		_						-	
_								Gray Silty Clay, some Sand, intermixed with Coal and Brick Fragments, wet (FILL)	
'									
8							0.0		
							0.0	Sandy Gravel intermixed with Wood and Coal Fragments, wet (FILL)	
9								-	
	NIA	6.2	0.40	80	NIA	0.5	0.0		
10	INA	3-3	0-12	00	INA	0.5	0.0	-	
11								•	
40							0.0		
12								BOH @ 12.0'	
								_	
								-	
								•	
Notes:	1) Water	r levels w	ere made	at the time	es and un	der condi	tions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	<ol> <li>2) Stratif</li> <li>3) PID re</li> </ol>	fication lir eadings a	nes represe ire reference	ent appro: ced to a h	ximate bo enzene s	oundaries. tandard m	Transitio easured i	ns may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
	4) NA = 1	Not Availa	able or Not	Applicab	le			· · · · · · · · · · · · · · · · · · ·	TEST BORING NO. TB-131
40 CO	MMERC	CIAL STR	REET						-
ROCH	ESTER,	, NEW Y	ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617
(585) 4	54-0210	0							(212) 986-8645
FAX (5	FAX (585) 454-0825 FAX (212) 986-8657								

# **Supplemental Phase II Investigation**



June 22, 2006 0507501

Day Engineering, P.C. 40 Commercial Street Rochester, New York 14614-1008

Attn: Mr. Raymond L. Kampff

# Re: Metro North Agreement No. 201415 Supplemental Phase II Investigation Dorel Hat Company (vicinity of Beacon Station) 1 West Main Street, Beacon, New York 12508

Dear Mr. Kampff:

In accordance with the proposal, dated May 11, 2006 under your authorization, YU conducted a Supplemental Phase II investigation the Dorel Hat property located on 1 West Main Street, in the City of Beacon, Dutchess County, New York. The accompanying data report presents the details of the investigation activities conducted at the site.

The objective of this Supplemental Phase II investigation was to verify the presence of Coal Tar contamination under the existing floor slab, inside the Dorel Hat building, to delineate the extent of contamination inside the building, and to determine the waste classification for the disposal purposes. The investigation program involved drilling eleven (11) soil borings and sampling.

This data report summarizes the findings relative to the coal tar contamination in the vicinity of the Blow Down area near the Southeast corner of Dorel Hat building.

If there are any questions concerning the content of this report, or if we may be of further service, please contact the undersigned at your convenience.

Yours truly,

Andrew Leung, P.E. Vice President

# **1.0 INTRODUCTION**

Yu and Associates, Inc. (YU), has prepared this Supplemental Phase II Investigation Report on behalf of Day Engineering, P.C. (DAY) to document the results of additional soil and groundwater sampling activities conducted at the Dorel Hat Company located at 1 West Main Street, City of Beacon, Dutchess County, New York.

The supplemental Phase II investigation was conducted as per our proposal dated May 11, 2006. Site Activities included conducting direct push Geoprobe borings inside the Dorel Hat Building, based upon the site knowledge and findings of the Modified Phase I Environmental Site Assessment (ESA), dated September 29, 2006, conducted by YU and the available information from the Phase II investigation activities conducted by DAY.

This Supplemental Phase II Investigation Report consists of a summary of the field work performed, results of field work and laboratory analyses, and discussion of the impacts to soil/groundwater at the subject property.

# 2.0 OBJECTIVES

The objectives of the supplemental Phase II activities preformed by YU were as follows:

- To verify the presence of Coal Tar contamination under the existing floor slab, inside the building foot print area
- To delineate the extent of contamination inside the building
- To determine the waste classification of contaminated soil for disposal purposes

# 3.0 SCOPE OF WORK

As a part of continuing investigations, YU has performed the following scope of work at this site.

- Advanced 11 test borings (TB200 through TB210) within the Dorel Hat Building through the concrete floor up to a depth of 16.0 ft below the ground surface and at least 2 feet into the water table at locations identified in the '*Figure 1, Site Plan of the Phase II Environmental Study*', and based upon the '*Sampling Plan for Dorel Hat Company Site*' provided by DAY, dated May 11, 2006. The boring locations are identified in Figure-1, Boring Location Plan.
- Collected at least one soil sample from each test boring for laboratory testing. The sample was selected for testing, based on visual and olfactory observations and/or PID screening to obtain a "worst case" sample from each location. If observation and/or screening did not indicate impact, the sample from a depth 8 ft below ground surface was collected.
- Prepared Chain of Custody documentation and test samples in accordance with the analytical testing program provided by DAY.
- Prepared this Supplemental Phase II Investigation data report including the soil boring logs, sampling summary tables, chain of custody documentation and laboratory reports

# 4.0 SITE INVESTIGATION

4.1 Soil Sampling Investigation

A soil sampling investigation was conducted on May 16 and 18, 2006 to evaluate the extent of coal tar contamination in the Dorel Hat Building. DAY retained Miller Environmental Group, Inc. of Calverton, New York for drilling of soil borings. The floor

inside the Dorel Hat Buildings is approximately three (3) feet higher than ground surface outside the building. The floor consists of a concrete slab, with thickness ranging from six (6) to eight (8) inches. A coring drill device was used to core through the concrete slab, before the sampler was advanced

Soil borings TB-200 through TB-203 were advanced on May 16, 2006 using a pneumatic jackhammer device modified to collect subsurface soil samples. The sampling equipment consisted of two (2) feet long sampler with acetate liner approximately 1 inch in diameter, pushed using a jack hammer in two (2) feet intervals. Equipment refusal was encountered during the installation of all four (4) borings TB-200 through TB-203. Apparently, the equipment was not appropriate for penetrating the dense granular soil.

Based on discussions with DAY, the four (4) borings were re-drilled using a truck mounted Geoprobe on May 18, 2006 to their anticipated depth. Drilling and sampling was performed using four (4) feet long macro core samplers with acetate liners. These soil borings TB-204 through TB-207 were re-drilled at offsets ranging from 3 feet to 10 feet from the original borings TB-200 through TB-203, respectively. Based on the observations from these borings, additional borings TB-208, TB-209, and TB-210 were drilled to a depth of 12 feet, on the same day. The sampler was decontaminated before each successive push, with an alconox solution and distilled water. Groundwater was encountered in borings TB-204 through TB-210, at a depth ranging from six (6) to eight (8) feet below floor elevation. Locations of all test borings TB-200 through TB-210 are shown in Figure 1, Boring Location Plan.

Soil obtained from the borings was visually examined, and screened using a MiniRAE 2000 (Model PGM 7600) Photo Ionization Detector (PID). The PID used in the investigation was calibrated before the start of work each day. Soil was classified in the field, as per the Burmeister classification system and boring logs were prepared. The borings are presented in Appendix A of this report. Samples were collected in certified laboratory containers, from the zone exhibiting maximum contamination or "worst case" contamination. If no contamination was evident, samples were collected from a depth of eight (8) feet below ground surface. Standard chain of custody procedures were followed to track the samples submitted for testing to Mitkem Corporation of Warwick, Rhode Island, a New York State certified laboratory. The chain of custody documentation is presented in Appendix B of this report.

During this investigation, a total of seven (7) soil samples were analyzed. All these samples were obtained from borings TB-204, through TB-210, and were analyzed for STARS – VOCs, TCLP-VOCs, TCL SVOCs, TCLP-SVOCs, Total Cynanides and waste classification analyses. Details of samples including the depths of the samples, media collected, the analytical parameters tested and sampling methods used are presented in Table 1 – Sampling Summary Table.

#### 4.2 Groundwater Investigation

One (1) groundwater sample was collected from MW-103 using a ³/₄ inch bailer. MW-103 was a one (1) inch diameter well. The initial groundwater level was observed to be approximately three (3) feet below ground surface. The PID reading inside the metal protective casing and the head space inside PVC casing was observed to be zero (0) ppm. The monitoring well was purged by bailing out approximately five (5) well volumes of water, before sampling was performed. The groundwater sample from MW-103 was collected in appropriate laboratory provided containers and analyzed for STARS VOCs,

TCL VOCs, STARS SVOCs, and TCL SVOCs. All soil and groundwater samples were stored and shipped for testing in the laboratory provided coolers filled with ice and maintained at  $4^\circ C$ 

# 5.0 ANALYTICAL RESULTS

Preliminary analytical results for soil and groundwater samples have been provided by Mitkem Corporation. All soil and groundwater analytical results are summarized in Tables 1 through 8. The laboratory analytical results are presented in Appendix C of this report.

#### 5.1 Soil Analytical Results

The analytical results detected several VOCs and SVOCs in soil samples from borings TB-204, TB-206, TB-207, and TB-208 that exceeded the New York State Department of Environmental Conservation (NYSDEC) Recommended Soil Cleanup Objectives (RSCO) published in Technical and Administrative Guidance Memorandum #4046 (TAGM #4046). Only a few SVOCs were detected at concentration exceeding the RSCO in soil borings TB-205, TB-209, and TB-210.

#### Volatile Organic Compounds (VOCs)

Soil samples TB204-8.5, TB206-9, TB207-9.5 and TB208-9 showed the presence of VOCs at concentrations exceeding the RSCO. Compounds including Benzene, Toluene, o,m,p Xylenes, and Naphthalene were detected in samples TB204-8.5, TB206-9 and TB207-9.5, at concentration exceeding the RSCO. Sample TB208-9 contained Benzene and Naphthalene at concentration higher than the RSCO. Soil VOCs Analytical Results Summary is shown in Table 2.

# Semi-Volatile Organic Compounds (SVOCs)

Several SVOCs were detected in the soil samples TB204-8.5, TB206-9, TB207-9.5 and TB208-9 at concentrations exceeding the RSCO. SVOCs were also detected in samples TB205-6.5, TB209-9 and TB210-9; however only a few compounds exceeded the RSCO. The detailed Soil SVOCs Analytical Results Summary is shown in Table 3.

#### Toxicity Characteristic Leaching Procedure (TCLP) VOCs and SVOCs

TCLP VOCs analysis detected the presence of Benzene, Trichloroethene (TCE) and Tetrachloroethene (PCE) in TB204-8.5. Benzene was also detected in samples TB206-9, TB207-9.5 and TB208-9. All these compounds were detected at concentrations below the respective Hazardous Waste Regulatory Levels for Toxicity Characteristic, published in Spill Technology and Remediation Series (STARS) Memo #1. TCLP VOCs were not detected in samples TB209-9 and TB210-9. Soil TCLP VOCs Analytical Results Summary is shown in Table 4.

TCLP SVOCs including 2-Methylphenol and 4 Methylphenol were detected in TB206-9, TB207-9.5 and TB208-9. Only 4-Methylphenol was detected in sample TB204-8.5. TCLP SVOCs were not detected in samples TB209-9 and TB210-9. Hazardous Waste Regulatory Levels for Toxicity Characteristics were not available for these compounds. Soil TCLP SVOCs Analytical Results Summary is shown in Table 5.

#### Total Cyanides

A review of the analytical results showed the presence of cyanide in all soil samples including TB204-8.5, TB205-6.5, TB206-9, TB207-9.5, TB208-9, TB209-9 and TB210-9, with concentration ranging from 0.161 ppm to 4.7 ppm. The RSCO for Cyanide were

not available in TAGM# 4046. Soil Cyanide Analytical Results Summary is shown in Table 6.

#### pH, Reactivity and Ignitability

Soil samples TB204-8.5, TB206-9, TB207-9.5, TB208-9, TB209-9 and TB210-9 were tested for pH, reactivity and ignitability analyses. The analytical results are included with this report in Appendix C

# 5.2 Groundwater Analytical Results

#### Volatile Organic Compounds (VOCs)

Analytical results for Groundwater sample MW103 showed the presence of several VOCs including BTEX, Naphthalene and other compounds at levels exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values, published in Division of Water Technical and Operational Guidance Series (TOGS)-1.1.1. Groundwater VOCs Analytical Results Summary is shown in Table 7.

#### Semi-Volatile Organic Compounds (SVOCs)

Analytical results showed the presence of several SVOCs at concentrations exceeding the NYSDEC Ambient Water Quality Standards and Guidance Values published in TOGS-1.1.1. Groundwater SVOCs Analytical Results Summary is shown in Table 8.

#### 6.0 **DISCUSSIONS**

#### 6.1 Delineation of Coal Tar Contamination

The analytical results revealed the presence of coal tar contamination in the soil beneath the existing floor slab, inside the Dorel Hat buildings. Presence of Coal Tar was observed in soil borings TB-204, TB-206, TB207, and TB-208 typically between 8.5 to 10.5 feet below the concrete floor. Based upon field observations, trace amount of coal tar was observed in boring TB 209, however no odor was observed. Dark Gray material consisting of coarse to fine Gravel with septic odor was encountered in borings TB 209 and TB 210. Boring TB 205 did not show signs of visible coal tar contamination, also confirmed by the analytical results.

#### 6.2 Waste Characterization for Disposal

Soil samples from borings TB204 and TB206 through TB210 were tested for waste characterization analyses including TCLP VOCs, TCLP SVOCs, pH, Reactivity and Ignitability. For *toxicity* characteristics, none of the samples contained TCLP VOCs and/or SVOCs that exceeded the regulatory criteria (Tables 4 & 5). For *ignitability* characteristics, results showed flash point greater than 140 ⁰F for all the samples. For *corrosivity* characteristics, all samples were observed to have pH greater than 2 and less than 12.5. For *reactivity* characteristics, none of the samples showed release of reactive cyanide. However all the samples showed release of reactive sulfide at concentration ranging from 270 ppm to 3500 ppm.

Although a release of reactive sulfide was observed, these waste characteristics can be addressed by the designated disposal facility using appropriate disposal technique to limit the release of reactive sulfide, and the waste may be disposed as non-hazardous waste.

# TABLES
## Table 1 Sampling Summary Table Dorel Hat- Supplemental Phase II Investigation Beacon, NY Project No. 0507501

Date Sampled	Sample Number	Depth (ft)	Medium	Analytical parameters	Sampling method
Soil Samplin	g (Through Bor	ings TB200 to	TB210)		
~~~~ <b>r</b> ~~.	8 ( 0 - 8 0 -		,		
5/16/2006	TB200-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB201-4*	4.0-5.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB202-5.5*	5.5-6.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/16/2006	TB203-3*	3.0-4.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB204-8.5	8.5-9.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB205-6.5	6.5-7.5	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB205-8*	8.0-9.0	Solid	STARS VOCs, TCL SVOCs, TOTAL CYANIDES	Trowel
5/18/2006	TB206-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB207-9.5	9.5-10.5	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB208-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB209-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
5/18/2006	TB210-9	9.0-10.0	Solid	STARS VOCs, TCLP VOCs, TCL SVOCs, TCLP SVOCs, TOTAL CYANIDES, pH, REACTIVITY, IGNITABILITY	Trowel
Groundwate	r Sampling				
5/18/2005	MW103		Aqueous	STARS VOCs, TCL VOCs, STARS SVOCs, TCL SVOCs	Bailer

* - Not Analyzed

Qualifiers :

STARS VOCs - Spill Technology and Remediation Series - Volatile Organic compounds

STARS SVOCs - Spill Technology and Remediation Series - Semi-Volatile Organic compounds

TCL VOCs - Target Compound List - Volatile Organic Compounds

TCL SVOCs - Target Compound List - Semi-Volatile Organic Compounds

TCLP VOCs - Toxicity Characteristic Leaching Procedure - Volatile Organic Compounds

TCLP SVOCs - Toxicity Characteristic Leaching Procedure - Semi-Volatile Organic Compounds

Table 2

Soil Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

Beacon, NY

Project No. 0507501

												NUMBER	NUMBER
Sample ID	TB204-8.5	TB204-8.5DL	TB205-6.5	TB206-9	TB206-9DL	TB207-9.5	TB207-9.5DL	TB208-9	TB208-9DL	TB209-9	TB210-9	NYSDEC	NYSDEC
Lab Sample ID	E0658-05C	E0658-05C	E0658-06B	E0658-08C	E0658-08CDL	E0658-09C	E0658-09CDL	E0658-10C	E0658-10CDL	E0658-11C	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	8.5-9.5	6.5-7.5	9-10	9-10	9.5-10.5	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	50	1	1	50	1	100	1	20	1	1		
VOCs													
Benzene	640 E	ND	ND	1800 E	ND	10000 E	22000 DJ	150	ND	ND	ND	60	60
Toluene	2000 E	ND	ND	3000 E	5900 DJ	13000 E	78000 D	370	ND	ND	ND	1500	1500
Ethylbenzene	1300 E	ND	ND	3600 E	ND	23000 E	ND	60	ND	ND	ND	5500	5500
m,p-Xylene	5200 E	22000 DJ	ND	7800 E	13000 DJ	48000 E	140000 D	680	ND	ND	ND	1200	1200
o-Xylene	2800 E	ND	ND	5500 E	ND	35000 E	53000 DJ	260	ND	ND	ND	1200	1200
Xylene (Total)	8100 E	22000 DJ	ND	13000 E	13000 DJ	83000 E	190000 D	940	ND	ND	ND	1200	1200
Isopropylbenzene	110	ND	ND	610	ND	1500 E	ND	8 J	ND	ND	ND	NA	NA
n-Propylbenzene	51	ND	ND	140	ND	2800 E	ND	6 J	ND	ND	ND	NA	NA
1,3,5-Trimethylbenzene	1600 E	ND	ND	3100 E	ND	25000 E	36000 DJ	170	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	2400 E	22000 DJ	ND	4100 E	10000 DJ	32000 E	80000 D	400	ND	ND	ND	NA	NA
4-Isopropyltoluene	50	ND	ND	220	ND	1600 E	ND	5 J	ND	ND	ND	NA	NA
Naphthalene	12000 EB	22000 D	4 J	18000 EE	360000 D	85000 EE	3 2600000 D	5300 EH	3 54000 D	27	5 J	13000	13000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

E - Concentration exceeds the calibration range

B - Detected in associated method blank

- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 - Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are

listed and identified in bold and boxed.

Use professional Judgement based on data use

Note:

The data presented herein is based on the Preliminary Results of Volatile Organics analyses

Table 3Soil Semi-Volatile Organic Analytical Results SummaryDorel Hat- Supplemental Phase II InvestigationBeacon, NY

Project No. 0507501

Sample ID	TB204-8.5	TB204-8.5DL	TB205-6.5	TB206-9	TB206-9DL	TB207-9.5	TB207-9.5DL	TB208-9	TB208-9DL	TB209-9	TB210-9	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-05ADL	E0658-06B	E0658-08A		E0658-09A	E0658-09ADL	E0658-10A	E0658-10AD1	E0658-11C	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	8.5-9.5	6.5-7.5	9-10	9-10	9.5-10.5	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	10	1	1	25	1	5	1	10	1	1		
SVOCs													
Phenol	77 J	ND	ND	ND	ND	260 J	ND	ND	ND	ND	ND	30	30
4-Methylphenol	90 J	ND	ND	2600 J	ND	370 J	380 DJ	810 J	ND	ND	ND	900	900
2,4-Dimethylphenol	100 J	ND	ND	2800 J	ND	1900	1900 DJ	6400	5600 DJ	ND	ND	NA	NA
Naphthalene	21000 E	40000 D	140 J	1300000 E	200000 D	37000 E	55000 D	390000 E	670000 D	620	85 J	13000	13000
2-Methylnaphthalene	10000 E	18000 D	ND	490000 E	72000 D	17000 E	26000 D	150000 E	240000 D	85 J	ND	36400	36400
Acenaphthylene	11000 E	19000 D	ND	410000 E	58000 D	15000 E	24000 D	120000 E	200000 D	43 J	ND	41000	41000
Acenaphthene	4900	6400 D	ND	320000	40000 D	5600	7200 D	52000	70000 D	240 J	570	50000	90000
Dibenzofuran	10000 E	17000 D	ND	430000 E	59000 D	14000 E	21000 D	100000 E	170000 D	140 J	80 J	6200	6200
Fluorene	12000 E	22000 D	ND	500000 E	72000 D	16000 E	26000 D	120000 E	220000 D	190 J	150 J	50000	350000
Phenanthrene	36000 E	49000 D	110 J	1200000 E	150000 D	39000 E	48000 D	310000 E	500000 D	780	1000	50000	220000
Anthracene	36000 E	31000 D	47 J	480000 E	65000 D	18000 E	31000 D	94000 E	190000 D	290 J	300 J	50000	700000
Carbazole	9600 E	12000 D	ND	240000	28000 D	14000 E	17000 D	64000	82000 D	200 J	130 J	NA	NA
Fluoranthene	21000 E	37000 D	200 J	770000 E	120000 D	22000 E	36000 D	190000 E	380000 D	750	1000	50000	1900000
Pyrene	23000 E	33000 D	160 J	840000 E	99000 D	27000 E	32000 D	240000 E	290000 D	620	870	50000	665000
Benzo(a)anthracene	15000 E	16000 D	110 J	540000 E	59000 D	15000 E	19000 D	150000 E	160000 D	240 J	490	224	3000
Chrysene	17000 E	19000 D	150 J	510000 E	58000 D	17000 E	18000 D	140000 E	150000 D	290 J	680	400	400
Benzo(b)fluoranthene	12000 E	14000 D	110 J	480000 E	46000 D	13000 E	15000 D	120000 E	130000 D	200 J	450 J	1100	1100
Benzo(k)fluoranthene	6800	8000 D	47 J	200000	28000 D	5200	6300 D	60000	66000 D	88 J	<u>220</u> J	1100	1100
Benzo(a)pyrene	11000 E	11000 D	<u>90</u> J	390000	41000 D	10000	12000 D	100000 E	110000 D	170 J	350 J	61	11000
Indeno(1,2,3-cd)pyrene	4500	4600 DJ	55 J	160000	16000 D	4400	4000 D	43000	40000 DJ	78 J	150 J	3200	3200
Dibenzo(a,h)anthracene	1800	1800 DJ	ND	65000	6500 DJ	1800	1800 DJ	18000	16000 DJ	ND	75 J	14.3	» 10 ⁸
Benzo(g,h,i)perylene	4100	3900 DJ	64 J	150000	14000 D	4100	3700 D	42000	36000 DJ	83 J	150 J	50000	800000

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type.
- 55 Concentration of compounds that exceed the NYSDEC Soil Cleanup Criteria are
 - listed and identified in bold and boxed.
 - Use professional Judgement based on data use

Note:

Table 4

Soil TCLP Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation

Beacon, NY

Project No. 0507501

Sample ID	TB204-8.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05C	E0658-08C	E0658-09C	E0658-10C	E0658-11C	E0658-12C	Regulatory Levels
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5	9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg						
Dilution Factor	1	1	1	1	1	1	
TCLP VOCs							
Benzene	3 J	160	88	6	ND	ND	500
Trichloroethene	2 J	ND	ND	ND	ND	ND	500
Tetrachloroethene	3 J	ND	ND	ND	ND	ND	700

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

- TCLP Toxicity Characterictic Leaching Procedure
 - J Analyte detected Below quantitation limits
 - ND Not Detected at the method detection limit
 - NA Not Available
 - **55** Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

Note:

Table 5Soil TCLP Semi-Volatile Organic Analytical Results Summary
Dorel Hat- Supplemental Phase II Investigation

Beacon, NY Project No. 0507501

Sample ID	TB204-8.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	Hazardous Waste
Lab Sample ID	E0658-05A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	Regulatory Levels
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	for Toxicity
Sample Depth (ft)	8.5-9.5	9-10	9.5-10.5	9-10	9-10	9-10	Characteristics
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor	1	1	1	1	1	1	
TCLP SVOCs							
2-Methylphenol	ND	4 J	6 J	8 J	ND	ND	NA
4-Methylphenol	3 J	7 J	10 J	12 J	ND	ND	NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which samples were analyzed

Qualifiers

TCLP - Toxicity Characterictic Leaching Procedure

- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available
- 55 Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

Note:

Table 6Soil Cyanide Analytical Results SummaryDorel Hat- Supplemental Phase II Investigation

Beacon, NY Project No. 0507501

Sample ID	TB204-8.5	TB205-6.5	TB206-9	TB207-9.5	TB208-9	TB209-9	TB210-9	TB210-9DUP	NYSDEC	NYSDEC
Lab Sample ID	E0658-05A	E0658-06A	E0658-08A	E0658-09A	E0658-10A	E0658-11A	E0658-12A	E0658-12A	Rec. Soil	Soil cleanup
Sampling Date	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	5/18/2006	Cleanup	objectives
Sample Depth (ft)	8.5-9.5	6.5-7.5	9-10	9.5-10.5	9-10	9-10	9-10	9-10	Objective	to protect
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		GW quality
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	1	1	1	1	1	1	1	1		
Cyanides										
Cyanide	3.2 N	ND	2.5 N	0.54 BN	4.7 N	2.2 N	ND	0.161 B	NA	NA

Qualifiers

- N Matrix Spike Recovery falls outside the control limit
- B Detected in associated method blank
- ND Not Detected at the method detection limit
- NA Not Available
- **55** Concentration of compounds that are detected are listed and identified in bold type. Use professional Judgement based on data use

Note:

Table 7

Groundwater Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation Beacon, NY

Project No. 0507501

Sample ID	MW103		MW103DL		NYSDEC
Lab Sample ID	E0658-13A		E0658-13ADL		Ambient Water
Sampling Date	5/18/2006		5/18/2006		Quality Standards
Matrix	Water		Water		& Guidance Values
Units	ug/Kg		ug/Kg		ug/l
Dilution Factor	1		8		
VOCs					
Acetone	6		ND		50
Carbon Disulfide	5	_	ND	_	50
Benzene	360	Е	400	D	1
Toluene	240	Е	190	D	5
Ethylbenzene	10		ND		5
m,p-Xylene	120		82	D	5
o-Xylene	55		39	DJ	5
Xylene (Total)	170	1	120	D	5
Styrene	17		11	DJ	5
1,3,5-Trimethylbenzene	12]	ND		5
1,2,4-Trimethylbenzene	29]	19	DJ	5
Naphthalene	410	Е	1100	D	10
		-		-	

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

Qualifiers

- E Concentration exceeds the calibration range
- J Analyte detected Below quantitation limits
- D Concentration obtained from diluted analysis
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.

55 Concentration of compounds that exceed the NYSDEC Ambient Water Quality Standards & Guidance Values are listed and identified in bold and boxed. Use professional Judgement based on data use

Note:

Table 8

Groundwater Semi-Volatile Organic Analytical Results Summary Dorel Hat- Supplemental Phase II Investigation Beacon, NY

	Projec	et No	. 0507501		
Sample ID	MW103		MW103DL		NYSDEC
Lab Sample ID	E0658-13B		E0658-13BDL		Ambient Water
Sampling Date	5/18/2006		5/18/2006		Quality Standards
Matrix	Water		Water		& Guidance Values
Units	ug/Kg		ug/Kg		ug/l
Dilution Factor	1		10		
SVOCs					
Phenol	240	Е	270	D	1
2-Methylphenol	360	E	480	D	NA
4-Methylphenol	540	Е	740	D	NA
2,4-Dimethylphenol	ND		1000	D	50
Naphthalene	730	Е	1300	D	10
2-Methylnaphthalene	100		110	D	4.2
Acenaphthylene	72		77	DJ	NA
Acenaphthene	70		80	DJ	20
Dibenzofuran	31		32	DJ	NA
Fluorene	26		26	DJ	50
Phenanthrene	48		55	DJ	50
Anthracene	9	J	ND		50
Carbazole	29		28	DJ	NA
Fluoranthene	10		ND		50
Pyrene	9	J	ND		50
Benzo(a)anthracene	2	J	ND		NA
Chrysene	3	J	ND		0.002
Benzo(b)fluoranthene	2	J	ND		0.002
Benzo(k)fluoranthene	1	J	ND		0.002
Benzo(a)pyrene	2	J	ND		0.002
Indeno(1,2,3-cd)pyrene	1	J	ND		0.002
Benzo(g,h,i)perylene	1	J	ND		NA

Note: This table lists only the detected compounds. Please refer to Appendix C - Laboratory Results for a complete list of compunds for which the sample was analyzed

Qualifiers

- E Concentration exceeds the calibration range
- D Concentration obtained from diluted analysis
- J Analyte detected Below quantitation limits
- ND Not Detected at the method detection limit
- NA Not Available

55 - Concentration of compounds that are detected are listed and identified in bold type.
55 - Concentration of compounds that exceed the NYSDEC Ambient Water Quality

Standards & Guidance Values are listed and identified in bold and boxed. Use professional Judgement based on data use

Note:

FIGURES

APPENDIX A

BORING LOGS

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-200
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVATION	DN:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Core Drill & Jack Hammer			05/16/06	NA
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	NA I
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deceiver		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1 _	FILL	Brown c-f SAND, little Silt, little m-f Gravel, dry	12/18			
2		+ 2	,	0.0		
		Same as above		(throughout)		
3		± 3	18/24	-		
		Grayish Black c-f SAND, little Silt, frequent ash and	10/24			
4		cinder fragments ± 4			TB200-4	4-5
_		Same as above	12/12		(Soil)	
5 _		$\pm \mathfrak{I}$				
		END OF BORING @ 5 FEET				
-						

REMARKS: Refusal encountered at 5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-201
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD	: Core Drill & Jack Hammer			05/16/06	ΝΔ
CASING: NA	Α	DRILLER:	Chris Myers / Tony	03/10/00	NA I
CORING: NA	Α	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		8" Thick Concrete Floor				
I _	FILL	Brown c-f SAND, little Clayey Silt, trace m-f Gravel, moist	4/12			
2		± 2'		0.0		
2		Brown c-f SAND, little Silt, trace m-f Gravel, dry		(throughout)		
3 _			12/24			
4		±4'			TB201-4	4-5
5		Same as above			(Soil)	
		Dark Brown to Black c-f SAND, little m-f Gravel, ash	12/24			
6		and cinder fragments				
		± 6.5'	0/6			
7 _		END OF BORING @ 6.5 FEET				

REMARKS: Refusal encountered at 6.5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-202
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Core Drill & Jack Hammer			05/16/06	6.5
CASING: N	A	DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: N	A	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Decessory		SAM	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little m-f Gravel, little Silt, dry				
			22/24			
2	_			0.0		
		± 2.5'		(throughout)		
3	_	Same as above				
			9/24			
4	_					
		Dark Brown c-I SAND, little m-I Gravel, trace Silt, moist				
5		Same as above				
		Brown m-f SAND, some Silt, trace f Gravel, moist	19/24		TB202-5.5	5.5-6.5
6		Brown m-f SAND, some Clayey Silt, wet	10/24		(Soil)	
		Dark Brown/Black c-f SAND, and f Gravel, wet $\pm 6.5'$				
		END OF BORING @ 6.5 FEET				

REMARKS: Refusal encountered at 6.5 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-203
LOCATION:	Beacon, NY	STARTED:	05/16/06	BOREHOLE I	FLUID LEVEL
GROUND ELEVATION	DN:	COMPLETED:	05/16/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Core Drill & Jack Hammer			05/16/06	ΝΑ
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	112
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(11/11)	(ppm)	Sample	(feet)
		4.5" Thick Concrete Floor				
1	FILL	Note: Cored drilled to 1 ft due to refusal $\pm 1'$				
		Dark Gray / Black c-f GRAVEL, some c-f Sand, ash	4/12			
2		and cinders, moist $\pm 2'$	4/12	0.0		
		Grayish Brown c-f SAND, some c-f Gravel, trace Silt, moist,		(throughout)		
		ash and cinders $\pm 3'$		(unoughout)		
3		Dark Gray/ Black c-f SAND, some m-f Gravel, moist, ash	16/24		TB203-3	3-4
		and coal fragments			(Soil)	
4		$\pm 4'$				
		END OF BORING @ 4 FEET				

REMARKS: Refusal encountered at 4 ft

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-204
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	ION:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Truck Mounted Geoprobe			05/18/06	6
CASING: N	Α.	DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: N	Ą	INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAN	IPLE
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6.5" Thick Concrete Floor				
1		FILL	Brown c-f SAND, little c-f Gravel, trace Silt, moist				
2	_			24/48	0.0		
3	_						
4			+ 4'				
•	-		Dark Brown/Black c-f SAND, some Silt, little 1				
5			Gravel, dry, with ash, cinders and coal fragments				
6			Brown c-f SAND, little c-f Gravel, trace Silt, moist	35/48	0.0		
			Brown/Dark Brown c-f Gravel, little c-f Sand, trace	55/40	0.0		
7	_		Silt, wet				
0			Note: Dark Gray / Black color @ bottom 1" of sample				
8	-		± 8 Dork Cray / Plack a f CDAVEL little a f Sand trace Silt			TP204 8 5	8505
9			wet free product (coal tar) observed strong petroleum			(Soil)	8.5-9.5
,	-		odor			(Boll)	
10				14/40	100		
				14/48	> 100 ppm		
11							
12	_		± 12'				
12	ŀ		Same as above $\pm 12.5^{\circ}$				
15	-	SM	Dark Gray V. I. SAND, frace Sift, wet				
14		5141		10/10			
	_			13/48	0.0		
15							
16	⊢		± 16'				
			END OF BORING @ 16 FEET				
	_						

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-205
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	8
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deserver		SAM	PLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		8" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little Silt, trace m-f Gravel, dry				
_						
2 _	-		23/40			
3						
	1					
4		$\pm 4'$				
		Same as above		0.0		
5	_	Dark Brown c-f SAND, some Silt, little m-f Grave		(throughout)		
		moist				
0	-	Dark Brown /Black c-I GRAVEL, some c-I Sand, little Silt moist with ash and cinder fragments	36/48		TR205 6 5	6575
7		Dark Brown SILT & CLAY, moist			(Soil)	0.5-7.5
	1	······································				
8		± 8'			TB205-8	8-9
		Brown c-f GRAVEL, little c-f Sand, trace Silt, wet			(Soil)	
9	-	Note: Cobble stuck at tip of the sampler				
10						
10	-		12/48			
11						
12	-	$\pm 12'$				
12		Brown c-I GRAVEL, little c-I Sand, trace Silt moist ± 12.5				
15	SM	Dark Brown/Gray I SAND, Ittle Crayey Sitt, moist				
14	5111		0/40			
	1		8/48			
15	4					
16		16				
16		± 10				
-	1					

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-206
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	FLUID LEVEL
GROUND ELEVATIO	1:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	ruck Mounted Geoprobe			05/18/06	65
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: NA		INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Deservery		SAM	IPLE
(feet)	System		Kecovery	PID	Env.	Depth
		(based on Burmister system)	(11/11)	(ppm)	Sample	(feet)
		6.5" Thick Concrete Floor				
1	FILL	Brown c-f SAND, little f Gravel, trace Silt, dry				
2 _	_	± 2'				
		Dark Brown c-t SAND, little m-t Gravel, dry	18/41.5			
3	-					
Λ						
	-	± 4 Dark Brown/Black c-f SAND_little c-f Gravel		0.0		
5		little Silt, moist + 5		(throughout)		
	-	Brown c-f SAND, lilttle f Gravel, trace Silt, moist		(unoughout)		
6		± 6	20/10			
		Dark Gray to Black c-f GRAVEL, little c-f Sand, wet, septic	28/48			
7		odor				
8		<u>± 8'</u>				
0		Dark Gray/Black c-f GRAVEL, little c-f Sand,				0.40
9		trace Silt, wet, coal tar odor oberserved			TB206-9	9-10
10		± 9.5			(Soil)	
10 _	CI	Dark Gray/Black Silty CLAY, coal tar odor observed	23/48			
11	CL					
12		+ 12'				
-		END OF BORING @ 12 FEET		1		

REMARKS:	

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-207
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	65
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0.5
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Decessory		SAN	IPLE
(feet)		System		Recovery	PID	Env.	Depth
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
			6" Thick Concrete Floor				
1		FILL	Brown / Dark Brown c-f GRAVEL, and c-f Sand,				
			trace Silt, moist				
2				- 2'			
			Dark Gray/Black c-f SAND, some Silt, some	30/42			
3			c-f Gravel, with ash and cinder fragments				
4				- 4'	-		
_			Dark Brown/Brown c-t SAND, little c-t Gravel		0.0		
5			trace Silt, moist, with ash and cinder fragments		(throughout)		
			±.	5.5'			
6	_		Brown c-f GRAVEL, some c-f Sand, trace Silt,	36/48			
-				<u>5.5'</u>			
7	_		Dark Gray/Black c-f GRAVEL, trace c-f Sand, wet,				
0			with ash and ciner fragments	01			
o	_		Proven/Derk Proven a f SAND, and a f Gravel wet	8	-		
0			Dark Gray/Plack of GPAVEL trace of Sand wet				
,			free product (coal tar) observed			TB207-9 5	9 5-10 5
10			+	10'		(Soil)	2.5-10.5
10				28/48		(501)	
11		CL					
		-					
12			±	12'			
			END OF BORING @ 12 FEET		1		

REMARKS:			

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-208
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVAT	FION:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHO	D: Truck Mounted Geoprobe			05/18/06	6
CASING: N	A	DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: N	A	INSPECTOR:	A. Garg		

DEPTH	USC	DESCRIPTION	Decessory		SAN	IPLE
(feet)	System		Recovery	PID	Env.	Depth
		(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)
		6" Thick Concrete Floor				
1	FILI	Dark Brown c-f SAND, some c-f Gravel, trace Silt, dry, with				
1	TILL	coal and slag fragments				
		Brown/Dark Brown c-f SAND, and Clayey Silt				
2		trace c-f Gravel, moist $\pm 2'$	24/42			
		Black c-f SAND, some Silt, little c-f Gravel, dry				
3	_	with ash and cinder fragments				
4 _	_	$\pm 4'$		0.0		
5		Dark Brown/Brown of CPAVEL some of Sand		0.0 (throughout)		
5		little Silt moist + 5 5'		(unoughout)		
6		Dark Gray/Black c-f GRAVEL little c-f Sand trace Silt wet				
•		Burk Gruy, Black e i Grui (EE, hale e i Suild, duce Shi, we	24/42			
7						
-						
8		$\pm 8'$				
-		Dark Gray/Black c-f GRAVEL, some c-f Sand, trace Silt,				
9		wet, coal tar observed at bottom of layer $\pm 9'$			TB208-9	9-10
		Dark Gray Silty CLAY, wet			(Soil)	
10	CL		15/48			
			10,10			
11						
10		. 12				
12		± 12"				
		END OF BORING @ 12 FEET				
-	-					

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-209
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE I	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	6
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION	Deserver		SAM	PLE				
(feet)		System		Recovery	PID	Env.	Depth				
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)				
			6" Thick Concrete Floor								
1		FILL	Brown c-f SAND, little c-f Gravel, little Silt, dry								
2											
				21/42							
3	_										
4	_		± 4'								
_			Same as above		0.0						
5	_		Dark Brown/Black c-f SAND, with ash and cinders		(throughout)						
(
0	_		± 0	40/49							
			moist	40/48							
7			Dark Brown/Black of SAND little m f Groval moist								
/	_		Gravish Black c-f GRAVEL little c-f Sand trace								
8			Silt wet septic odor observed $+ 8'$								
0	-		Same as above								
9			Dark Grav / Black c-f GRAVEL, little c-f Sand.			TB209-9	9-10				
-	_		moist, observed coal tar, no odor $\pm 9.5'$			(Soil)	, - ·				
10			Dark Gray Clayey SILT, moist, septic odor	10/49		. ,					
		ML		19/48							
11											
12	_		<u>± 12'</u>								
			Same as above								
13	_										
14		G) (Dark Gray v f SAND, little Silt, moist								
14	_	SM		23/48							
15											
15	_										
16			+ 16'								
10	-		END OF BORING @ 16 FEET								
	_										

PROJECT NAME:	Metro North Beacon, Dorel Hat			Boring No.	TB-210
LOCATION:	Beacon, NY	STARTED:	05/18/06	BOREHOLE F	LUID LEVEL
GROUND ELEVATIO	N:	COMPLETED:	05/18/06	DATE	DEPTH
NORTHING:	EASTING:				(FEET)
RIG TYPE: NA		CONTRACTOR:	Miller Environmental		
DRILLING METHOD:	Truck Mounted Geoprobe			05/18/06	6
CASING: NA		DRILLER:	Chris Myers / Tony	03/10/00	0
CORING: NA		INSPECTOR:	A. Garg		

DEPTH		USC	DESCRIPTION			SAMPLE					
(feet)		System		Recovery	PID	Env.	Depth				
			(based on Burmister system)	(in/in)	(ppm)	Sample	(feet)				
			6" Thick Concrete Floor								
1		FILL	Brown c-f SAND, little Silt, little f Gravel, dry, with ash and								
			cinder fragments								
2	_										
				24/42							
3	_										
4	_		±4'								
-			Same as above		0.0						
5	—		ash and ainder fragments $\pm 5.5'$		(throughout)						
6			Brown f SAND little c f Gravel little Silt wet								
U	-		+ 65'	33/48							
7			Dark Gray c-f GRAVEL little c-f Sand wet sentic odor								
,	-		observed								
8			± 8'								
_	_		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and								
			cinder fragments, septic odor								
9			Gray CLAY & SILT, trace c Gravel, moist $\pm 9'$			TB210-9	9-10				
	_		Dark Gray m-f GRAVEL, little c-f Sand, wet, with ash and			(Soil)					
10			cinder fragments, septic odor $\pm 10'$	29/48							
			Gray Silty CLAY, moist, Black in color at top and								
11		CL	gray at bottom								
12			± 12'								
	Т		END OF BORING @ 12 FEET								

APPENDIX B

CHAIN OF CUSTODY

MITKEM Corporation 175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page <u>1</u> of <u>2</u>

		REPOR	T TO		4									2 4 J.	ÎN	VOICE	TØ	- 10- 195 - 19			4		
COMPANY YU 6	A	SSOCIAT	TFS	s.7	Twr.	PHON	^{ie} /20	1)791 007	сом	PANY	ወስ	Y	FN	GIN	IEE	RI	NG.	P.C.	рноі	NE 58	75-1	456-021	LAB PROJECT #:
NAME AMIT		GARG				FAX	201)	791 4533	NAM	Е	RA	γγ	K	ΆΛ	npr	= =			FAX	585-	-4,52	-0825	
ADDRESS 611 D	ι V	ED DOW	F	7	dc	10	•2		ADD	RESS	40	, ,	100	1	E A	ي زم ا	27	5-	FRE		7		TURNAROUND TIME:
CITY/ST/ZIP FI M		LOOD PC	201	 Z	<u></u>	700 T-	<u>_</u>	-407	CITY	/ST/ZI	P Ø	 n /	مریں حرار	- C-	TC	ρ		<u>у</u> ,	- 12		/ !		-
CLIENT PROJECT NAME:	~~		CLIE	NT PR	OJECT	ري #:		CLIENT P.O.#:						<u> </u>	E		_/ ×			<u>7 13 (</u>			1
METRO NORTH- DO REL HAT.								1				· ~/.	4	Å.					A SES	/ /		'	
SAMPLE		DATE/TIME SAMPLED	COMPOSITE	GRAB	WATER	SOIL	OTHER	LAB ID	# OF CONTAINERS	Ċ	AR A		570 570	ABA		JUL A			3	¥ 			COMMENTS
TB200-4	05	16/06 1: 30 PM				V			2	r	V	V										*	
TB201-4		1:00 PM				V			2	V	V	レ										*	
TB202-5.5		/11:30 AM	1			レ			2	V	2	レ									1	*	
TB203-3		12:20 PM				レ			2	V	レ	レ										*	
TB 204-8.5	05	18/06 12:30 PM)			V			5	v	V	V	V	レ	r	r	~						<u> </u>
TB205-6.5		10:45A	m			レ			2	V	レ	~											
TB 205-8		16:50 A	M		ļ	レ			2	V	V	V										*	
		/			ļ		ļ		ļ													*	
		/				Ì											ļ					<i>a</i>	
		/			<u> </u>																		
DEL DIOL		/				Ļ	<u> </u>	ACCE						DATE						MAD			COOLER TEMP
Amit GA	<u>18</u> 18	6	051	19/0	/ 12:	30 PM		AULE	עמדי.						/					JUVL/NINI			4°C
		bd	-		/									,	1		¥	-> 7	66	BE	TES	TED,	ONLY
/							UPON AUTHORIZATIC DAY ENGINEERI				ION BY												

PINK: CLIENT'S COPY

M I T K E M Corporation 175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page <u>2</u> of <u>2</u>

	REPOR	тто												IN	VOICE	то						
COMPANY YUB F	ASSOCIATES	, Ż	NC.		PHON	^{те} 2о1	-791-0075	СОМ	PANY	DA	I E	NG	INE	ER	ING	:, <u>R</u>	Co	PHON	т 5 <i>81</i>	5-45	A- 0210	LAB PROJECT #:
NAME AMIT	GARG				FAX	201-	791-6533	NAM	E R	'AY	K	AN	PE	F	-	ť		FAX	35-	454	-0825	
ADDRESS 611 RIL	IER DRIVE	र	зd	=1	9 N L			ADD	ADDRESS 40 COMMERCIAL STREET							TURNAROUND TIME						
CITY/ST/ZIP FIMIL	100.D PARK	,	NJ	- /	ヮテ	40	7	CITY	TTY/ST/ZIP RACHESTER NV-14414													
CLIENT PROJECT NAME:	-	CLIE	NT PR	OJECT	「 #:	,	CLIENT P.O.#:	1				the main and		<u> </u>	р Р	FOLIE	STED	<u>a nia t</u>	VSES			
METRO NOR	TH- DOREL HAT							·			i		4	A.			\mathcal{N}		US		1.4	' /
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	GRAB	WATER	SOIL	OTHER	LAB ID	# OF CONTAINERS	C				ARA BI	At P			NO NO LIP				GW /	COMMENTS
TB206-9	05/18/06/11:45 Ar	,			v			5	V	~	レ	~	~	v	V	~						
TB207-9.5	1 200 Ar				V			5	r	と	く	レ	V	~	r	V						
TB208-9	10:45 AM				V			5	V	5	レ	V	レ	~	V	~						
TB 209-9	1:30 PM				V			5	ア	~	レ	レ	-	5	2	5						
TB 210-9	2:30 PM				6			5	レ	レ	レ	~	~	レ	~	~						······
MW 103	V 5:35PM			レ				5	V	~								~	~			
·····	1																					
	/																					
	/					•												<u> </u>				
	/														<u> </u>							
	/																					
TSF# RELINQU	ЛSHED BY		DATE	 E/TIME	<u> </u>		ACCE	 PTED]	 BY		1		DATE	/TIME		ADD	L ITION/	AL RE	MARK	S:		COOLER TEMP:
Amit C	000.	nel	ia lnc	4.9.	2								,	/]						
11111 0	<u>17 K (n'</u>	100	~~~~	1 1.5	30 <i>P</i> P	<u>}</u>										-						L
				/								<u> </u>										
				/									. /	/								

WHITE: LABORATORY COPY

YELLOW: REPORT COPY

PINK: CLIENT'S COPY

APPENDIX C

LABORATORY RESULTS

95-47-6----o-Xylene

1330-20-7-----Xylene (Total)

98-82-8-----Isopropylbenzene

108-67-8-----1,3,5-Trimethylbenzene 95-63-6-----1,2,4-Trimethylbenzene

103-65-1----n-Propylbenzene

135-98-8-----sec-Butylbenzene

104-51-8----n-Butylbenzene

91-20-3-----Naphthalene

99-87-6-----4-Isopropyltoluene

EPA SAMPLE NO.

5200 E

2800 E

8100 E

51 1600 E

2400 E

50

12000 EB

14 U

Ū 14

110

TB204-8.5 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Lab Sample ID: E0658-05C Sample wt/vol: 2.6 (g/mL) G Lab File ID: V1H5472 (low/med) Level: LOW Date Received: 05/20/06 % Moisture: not dec. 29 Date Analyzed: 05/24/06 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____(mL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 1634-04-4-----Methyl tert-butyl ether 14 U 71-43-2-----Benzene 640 E 108-88-3-----Toluene 2000 E 100-41-4----Ethylbenzene 1300 E ----m,p-Xylene

FORM I VOA

OLM03.0

EPA SAMPLE NO.

Lab Name: MI7	KEM CORPORATION	Contract:	TB2	205-6.5	
Lab Code: MII	KEM Case No.:	SAS No.:	SDG No.:	ME0658	
Matrix: (soil	/water) SOIL	Lab Sample	ID: E0658	3-06B	
Sample wt/vol	.: 5.0 (g/mL) G	Lab File ID	: V1H55	535	
Level: (low	n/med) LOW	Date Receiv	ed: 05/20)/06	
% Moisture: r	ot dec. 18	Date Analyz	ed: 05/26	5/06	
GC Column: DE	3-624 ID: 0.25 (mm)	Dilution Fa	ctor: 1.0)	
Soil Extract	Volume:(mL)	Soil Aliquo	t Volume:	:(u	ட)
CAS NO). COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg) U	TS: G/KG	Q	
1634-0771-43-108-88100-41195-47-1330-298-82-103-65108-67795-63-135-98199-87-104-51191-20-10000000000000000000000000000000	4-4Methyl tert-h 2Benzene -3Toluene -4Ethylbenzene 6m,p-Xylene 6Xylene 0-7Xylene (Total 8Xylene (Total 8Xylene (Total 8	butyl ether	ት	U U U U U U U U U U U U U U U U U U U	

FORM I VOA

PRELIMINARY

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:		TB206-9	
Lab Code: MITKEM Case No.:	SAS No.:	SDG	No.: ME0658	
Matrix: (soil/water) SOIL	I	ab Sample ID:	E0658-08C	
Sample wt/vol: 2.5 (g	r/mL) G I	ab File ID:	V1H5474	
Level: (low/med) LOW	Г	Date Received:	05/20/06	
% Moisture: not dec. 35	Γ	Date Analyzed:	05/24/06	
GC Column: DB-624 ID: 0.25	(mm) I	ilution Factor	c: 1.0	
Soil Extract Volume:(mL) S	Soil Aliquot Vo	olume:	(uL)
CAS NO. COMPOU	ND CONCENT	RATION UNITS: or ug/Kg) UG/KG	ç Q	

1634-04-4Methyl tert-butyl ether 71-43-2Benzene 108-88-3Toluene	15 1800 3000	U E E
100-41-4Ethylbenzene	3600	E
m,p-Xylene	7800	Ε
95-47-6o-Xylene	5500	E
1330-20-7Xylene (Total)	13000	Ε
98-82-8Isopropylbenzene	610	
103-65-1n-Propylbenzene	140	
108-67-81,3,5-Trimethylbenzene	3100	E
95-63-61,2,4-Trimethylbenzene	4100	E
135-98-8sec-Butylbenzene	15	U
99-87-64-Isopropyltoluene	220	
104-51-8n-Butylbenzene	15	ប
91-20-3Naphtĥalene	18000	EB

FORM I VOA

OLM03.0

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA	SHEET
Lab Name: MITKEM CORPORATION Contrac	TB207-9.5
Lab Code: MITKEM Case No.: SAS N	NO.: SDG No.: ME0658
Matrix: (soil/water) SOIL	Lab Sample ID: E0658-09C
Sample wt/vol: 5.2 (g/mL) G	Lab File ID: V1H5475
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: not dec. 3	Date Analyzed: 05/24/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL)
CONC CAS NO. COMPOUND (ug/	CENTRATION UNITS: /L or ug/Kg) UG/KG Q
1634-04-4Methyl tert-butyl eth 71-43-2Benzene 108-88-3Benzene 100-41-4Ethylbenzene 95-47-6Nylene 95-47-6Xylene 1330-20-7Xylene 103-65-1	ner 5 U 2700 E 3300 E 6000 E 12000 E 8900 E 21000 E 380 E 710 E 12 6300 12 5 13 5 14 5 14 5 14 5

FORM I VOA

1A

VOLATILE ORGANICS ANALYSIS D	DATA SHEET
	TB208-9
Lab Name: MITKEM CORPORATION CON	
Lab Code: MITKEM Case No.: S	SAS No.: SDG No.: ME0658
Matrix: (soil/water) SOIL	Lab Sample ID: E0658-10C
Sample wt/vol: 2.5 (g/mL) G	Lab File ID: V1H5478
Level: (low/med) LOW	Date Received: 05/20/06
<pre>% Moisture: not dec. 28</pre>	Date Analyzed: 05/24/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
1634-04-4Methyl tert-butyl 71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 95-47-6O-Xylene 1330-20-7Xylene (Total) 98-82-8Isopropylbenzene 103-65-1n-Propylbenzene 108-67-81, 3, 5-Trimethylbe 95-63-61, 2, 4-Trimethylbe 135-98-8	ether 14 U 150 150 370

FORM I VOA

OLM03.0

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA S	SHEET
Lab Name: MITKEM CORPORATION Contract	TB209-9
Lab Code: MITKEM Case No.: SAS No	D.: SDG No.: ME0658
Matrix: (soil/water) SOIL	Lab Sample ID: E0658-11C
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: V1H5536
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: not dec. 20	Date Analyzed: 05/26/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL)
CONCE CAS NO. COMPOUND (ug/I	ENTRATION UNITS: L or ug/Kg) UG/KG Q
1634-04-4Methyl tert-butyl ethe 71-43-2Benzene 108-88-3Benzene 100-41-4Benzene 100-41-4Ethylbenzene 95-47-6m,p-Xylene 95-47-6Xylene 1330-20-7Xylene 103-65-1	er 6 U 7

OLM03.0

135-98-8-----sec-Butylbenzene

104-51-8----n-Butylbenzene

91-20-3-----Naphthalene

99-87-6-----4-Isopropyltoluene

EPA SAMPLE NO.

TB210-9 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Lab Sample ID: E0658-12C 5.0 (q/mL) G Sample wt/vol: Lab File ID: V1H5537 Date Received: 05/20/06 (low/med) LOW Level: % Moisture: not dec. 33 Date Analyzed: 05/26/06 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (mL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 1634-04-4-----Methyl tert-butyl ether 7 U 71-43-2----Benzene 7 U 7 108-88-3----Toluene U 100-41-4----Ethylbenzene 7 U 7 -----m,p-Xylene_ U 95-47-6-----o-Xylene 1330-20-7-----Xylene (Total) 7 U 7 U 7 98-82-8-----Isopropylbenzene U 103-65-1-----n-Propylbenzene 108-67-8-----1,3,5-Trimethylbenzene 95-63-6-----1,2,4-Trimethylbenzene 7 U

FORM I VOA

7 U 7 U

7 U

7 U

7 U

5 J

EPA SAMPLE NO.

MW103 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) WATER Lab Sample ID: E0658-13B Sample wt/vol: 1000 (g/mL) ML Lab File ID: S2E8000 Level: (low/med) LOW Date Received: 05/20/06 % Moisture: decanted: (Y/N) Date Extracted:05/25/06 Concentrated Extract Volume: 1000(uL) Date Analyzed: 06/02/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/LQ 108-95-2----Phenol 240 E 111-44-4----bis (2-Chloroethyl) Ether 10 U 95-57-8-----2-Chlorophenol 10 U 541-73-1-----1, 3-Dichlorobenzene 10 U 106-46-7-----1,4-Dichlorobenzene 10 U 95-50-1-----1,2-Dichlorobenzene 10 U 95-48-7----2-Methylphenol 360 E 108-60-1-----2, 2'-oxybis (1-Chloropropane) 10 U 106 621 67-98-9 78-! 88-

106-44-5	4-Methylphenol	540	Ε
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	730	E
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
111-91-1	bis(2-Chloroethoxy)methane	10	U
59-50-7	4-Chloro-3-Methylphenol	10	U
91-57-6	2-Methylnaphthalene	100	
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	72	
606-20-2	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	- 70	

FORM I SV-1

OLM03.0

EPA SAMPLE NO.

MW103 Lab Name: MITKEM CORPORATION Contract: SAS No.: Lab Code: MITKEM Case No.: SDG No.: ME0658 Matrix: (soil/water) WATER Lab Sample ID: E0658-13B Sample wt/vol: 1000 (g/mL) ML Lab File ID: S2E8000 Level: (low/med)LOW Date Received: 05/20/06 decanted: (Y/N)____ % Moisture: Date Extracted:05/25/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/02/06 Injection Volume: Dilution Factor: 1.0 1.0(uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. (uq/L or uq/Kq) UG/LCOMPOUND 0 51-28-5-----2,4-Dinitrophenol 20 U 100-02-7-----4-Nitrophenol 20 U 132-64-9----Dibenzofuran 31 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2----Diethylphthalate 10 U 7005-72-3-----4-Chlorophenyl-phenylether 10 U 86-73-7----Fluorene 26 100-01-6-----4-Nitroaniline 20 10 534-52-1-----4,6-Dinitro-2-methylphenol 20 U 86-30-6-----N-Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether_ 10 U 118-74-1-----Hexachlorobenzene 10 U 87-86-5-----Pentachlorophenol 20 U 85-01-8-----Phenanthrene 48 120-12-7-----Anthracene 9 J 86-74-8-----Carbazole 29 84-74-2----Di-n-butylphthalate Ū 10 206-44-0----Fluoranthene 10 129-00-0----Pyrene 9 J 85-68-7-----Butylbenzylphthalate 10 U 91-94-1-----3,37-Dichlorobenzidine 10 U 56-55-3-----Benzo(a)anthracene_ J 2 218-01-9-----Chrysene 3 J 117-81-7-----bis (2-Ethylhexyl) phthalate 10 U 117-84-0-----Di-n-octylphthalate 205-99-2----Benzo(b)fluoranthene 207-08-9-----Benzo(k)fluoranthene 10 U 2 J 1 J 50-32-8-----Benzo(a)pyrene 2 J 193-39-5-----Indeno(1,2,3-cd)pyrene 1 J 53-70-3-----Dibenzo(a,h)anthracene 10 U 191-24-2----Benzo(g,h,i)perylene J 1

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLM03.0

EPA SAMPLE NO.

TB204-8.5 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Lab Sample ID: E0658-05A Sample wt/vol: 30.0 (g/mL) G Lab File ID: S2E8002 Level: (low/med) LOW Date Received: 05/20/06 % Moisture: 29 decanted: (Y/N) N Date Extracted:05/25/06 Concentrated Extract Volume: 1000(uL) Date Analyzed: 06/02/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/KG0

108-95-2Phenol	77	J
111-44-4bis(2-Chloroethyl)Ether	460	U
95-57-82-Chlorophenol	460	U
541-73-11,3-Dichlorobenzene	460	U
106-46-71,4-Dichlorobenzene	460	U
95-50-11,2-Dichlorobenzene	460	U
95-48-72-Methylphenol	460	ប
108-60-12,2'-oxybis(1-Chloropropane)	460	U
106-44-54-Methylphenol	90	J
621-64-7N-Nitroso-di-n-propylamine	460	ប
67-72-1Hexachloroethane	460	U
98-95-3Nitrobenzene	460	U
78-59-1Isophorone	460	υ
88-75-52-Nitrophenol	460	U
105-67-92,4-Dimethylphenol	100	J
120-83-22,4-Dichlorophenol	460	U
120-82-11,2,4-Trichlorobenzene	460	U
91-20-3Naphthalene	21000	E
106-47-84-Chloroaniline	460	U
87-68-3Hexachlorobutadiene	460	U
111-91-1bis(2-Chloroethoxy)methane	460	U
59-50-74-Chloro-3-Methylphenol	460	U
91-57-62-Methylnaphthalene	10000	Ε
77-47-4Hexachlorocyclopentadiene	460	U
88-06-22,4,6-Trichlorophenol	460	U
95-95-42,4,5-Trichlorophenol	940	U
91-58-72-Chloronaphthalene	460	U
88-74-42-Nitroaniline	940	U
131-11-3Dimethylphthalate	460	U
208-96-8Acenaphthylene	11000	Е
606-20-22,6-Dinitrotoluene	460	U
99-09-23-Nitroaniline	940	U
83-32-9Acenaphthene	4900	
• • • • • • • • • • • • • • • • • • • •		

FORM I SV-1

OLM03.0
1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

TB204-8.5 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Lab Sample ID: E0658-05A Sample wt/vol: 30.0 (g/mL) G Lab File ID: S2E8002 Level: (low/med) LOW Date Received: 05/20/06 % Moisture: 29 decanted: (Y/N) N Date Extracted:05/25/06 Concentrated Extract Volume: 1000(uL) Date Analyzed: 06/02/06 Dilution Factor: 1.0 Injection Volume: 1.0(uL)GPC Cleanup: (Y/N) NpH: CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND 0 940 U 51-28-5-----2,4-Dinitrophenol 100-02-7-----4-Nitrophenol 940 U 132-64-9-----Dibenzofuran 10000 E 121-14-2----2,4-Dinitrotoluene 460 U 84-66-2----Diethylphthalate 460 U 7005-72-3-----4-Chlorophenyl-phenylether 460 U 86-73-7----Fluorene 12000 E 100-01-6-----4-Nitroaniline 940 U 534-52-1-----4,6-Dinitro-2-methylphenol 940 U 86-30-6-----N-Nitrosodiphenylamine (1) 460 U 101-55-3-----4-Bromophenyl-phenylether 460 U 118-74-1-----Hexachlorobenzene 460 U 87-86-5-----Pentachlorophenol 940 U 85-01-8----Phenanthrene 36000 E 120-12-7----Anthracene 36000 E 86-74-8----Carbazole 9600 E 84-74-2----Di-n-butylphthalate 460 U 206-44-0----Fluoranthene 21000 E 129-00-0----Pyrene 23000 E 460 U

85-68-7-----Butylbenzylphthalate 91-94-1-----3,3'-Dichlorobenzidine 460 U 56-55-3-----Benzo(a)anthracene 15000 E 218-01-9----Chrysene 17000 E 117-81-7-----bis(2-Ethylhexyl)phthalate 460 U 117-84-0-----Di-n-octylphthalate 205-99-2-----Benzo(b)fluoranthene 460 U 12000 E 207-08-9-----Benzo(k)fluoranthene 6800 50-32-8----Benzo(a)pyrene 11000 E 193-39-5-----Indeno (1, 2, 3-cd) pyrene 4500 53-70-3-----Dibenzo(a,h)anthracene 1800 191-24-2----Benzo(g,h,i)perylene 4100

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB205-6.5 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: E0658-06A Sample wt/vol: 30.3 (g/mL) GLab File ID: S2E7997 Level: (low/med) LOW Date Received: 05/20/06 decanted: (Y/N) N % Moisture: 18 Date Extracted:05/25/06 Concentrated Extract Volume: 1000(uL) Date Analyzed: 06/02/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N рН: ___ CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/KG Q 400 U 108-95-2----Phenol 111-44-4----bis (2-Chloroethyl) Ether 400 U 95-57-8-----2-Chlorophenol 400 U 541-73-1----1,3-Dichlorobenzene 400 U 106-46-7-----1, 4-Dichlorobenzene 400 U 95-50-1-----1,2-Dichlorobenzene 400 U 95-48-7----2-Methylphenol 400 U 108-60-1-----2,2'-oxybis(1-Chloropropane) 400 U 106-44-5-----4-Methylphenol 400 U 400 U 621-64-7-----N-Nitroso-di-n-propylamine 400 U 67-72-1-----Hexachloroethane 400 U 98-95-3------Nitrobenzene 400 U 78-59-1----Isophorone 88-75-5-----2-Nitrophenol 400 U 105-67-9-----2,4-Dimethylphenol 400 U 400 U 400 U 120-83-2-----2,4-Dichlorophenol 120-82-1-----1,2,4-Trichlorobenzene 140 J 400 U 400 U 400 U 400 U 400 U 400 U 91-20-3-----Naphthalene 106-47-8-----4-Chloroaniline 87-68-3------Hexachlorobutadiene 111-91-1-----bis (2-Chloroethoxy) methane 59-50-7-----4-Chloro-3-Methylphenol 91-57-6----2-Methylnaphthalene 400 U 77-47-4-----Hexachlorocyclopentadiene 400 U 88-06-2----2,4,6-Trichlorophenol_ 95-95-4-----2,4,5-Trichlorophenol 810 U 400 U 91-58-7----2-Chloronaphthalene 88-74-4----2-Nitroaniline 810 U 400 U 131-11-3-----Dimethylphthalate 400 U 208-96-8-----Acenaphthylene 606-20-2-----2,6-Dinitrotoluene_ 99-09-2-----3-Nitroaniline____ 400 U 810 U 83-32-9-----Acenaphthene 400 U

FORM I SV-1

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA	A SHEET
Lab Name: MITKEM CORPORATION Contract	TB205-6.5
Lab Code: MITKEM Case No.: SAS No	.: SDG NO.: ME0658
Matrix: (soil/water) SOIL	Lab Sample ID: E0658-06A
Sample wt/vol: 30.3 (g/mL) G	Lab File ID: S2E7997
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: 18 decanted: (Y/N) N	Date Extracted:05/25/06
Concentrated Extract Volume: 1000(uL)	Date Analyzed: 06/02/06
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	
CONC	
CAS NO. COMPOUND (ug/1	L or ug/Kg) UG/KG Q
	·····
51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenyle 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylph 86-30-64-Nitrosodiphenylamine 101-55-34-Bromophenyl-phenylet 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Di-n-butylphthalate 206-44-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine 56-55-3Benzo(a) anthracene 218-01-9Chrysene 117-84-0Di-n-octylphthalate 205-99-2	810 U 810 U 400 U 810 U 810 U 9 810 9 400 10 U 810 U 10 J 400 U 410 U 400 U 410 U 110 J 110 J
50-32-8Benzo (a) pyrene 193-39-5Indeno (1, 2, 3-cd) pyrene 53-70-3Dibenzo (a, h) anthracene 191-24-2Benzo (g, h, i) perylene	47 0 90 J e 55 e 400 64 J

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLMO3.0

1BSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB206-9 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: E0658-08A Sample wt/vol: 30.0 (g/mL) G Lab File ID: S2E8001 Level: (low/med) LOW Date Received: 05/20/06 decanted: (Y/N) N Date Extracted:05/25/06 % Moisture: 35 Concentrated Extract Volume: 10000(uL) Date Analyzed: 06/02/06 Dilution Factor: 5.0 Injection Volume: 1.0(uL)GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. Q COMPOUND 25000 U 108-95-2----Phenol 111-44-4-----bis(2-Chloroethyl)Ether 25000 U 25000 U 95-57-8-----2-Chlorophenol 541-73-1-----1,3-Dichlorobenzene 25000 U 106-46-7-----1,4-Dichlorobenzene 25000 U 95-50-1-----1,2-Dichlorobenzene 25000 U 95-48-7----2-Methylphenol 25000 U 108-60-1-----2,2'-oxybis(1-Chloropropane) 25000 U 2600 J 106-44-5-----4-Methylphenol 25000 U 621-64-7-----N-Nitroso-di-n-propylamine 25000 U 67-72-1----Hexachloroethane 25000 U 98-95-3-----Nitrobenzene 25000 U 78-59-1----Isophorone 88-75-5-----2-Nitrophenol 25000 U 2800 J 105-67-9----2,4-Dimethylphenol 120-83-2-----2,4-Dichlorophenol 25000 U 120-82-1-----1,2,4-Trichlorobenzene 25000 U 91-20-3-----Naphthalene 1300000 E 106-47-8-----4-Chloroaniline 25000 U 87-68-3-----Hexachlorobutadiene 25000 U 111-91-1----bis(2-Chloroethoxy) methane 25000 U 59-50-7-----4-Chloro-3-Methylphenol 25000 U 490000 E 25000 U 91-57-6-----2-Methylnaphthalene 77-47-4-----Hexachlorocyclopentadiene 88-06-2-----2,4,6-Trichlorophenol_ 95-95-4-----2,4,5-Trichlorophenol_ 91-58-7----2-Chloronaphthalene 25000 U 52000 U 25000 U 88-74-4-----2-Nitroaniline 52000 U 131-11-3-----Dimethylphthalate 25000 U 208-96-8----Acenaphthylene 410000 E 606-20-2-----2,6-Dinitrotoluene 99-09-2-----3-Nitroaniline

FORM I SV-1

83-32-9-----Acenaphthene

OLM03.0

PRELIMINARY

25000 U 52000 U

320000

1C

EPA SAMPLE NO.

TB206-9

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Sample wt/vol: 30.0 (g/mL) G Lab File ID: Level: (low/med) LOW % Moisture: 35 decanted: (Y/N) N Concentrated Extract Volume: 10000(uL) Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: COMPOUND

Lab Sample ID: E0658-08A S2E8001 Date Received: 05/20/06 Date Extracted:05/25/06 Date Analyzed: 06/02/06 Dilution Factor: 5.0

CAS NO.

(ug/L or ug/Kg) UG/KG

Q

L			
	51-28-52,4-Dinitrophenol	52000	υ
	100-02-74-Nitrophenol	52000	U
İ	132-64-9Dibenzofuran	430000	Ε
	121-14-22,4-Dinitrotoluene	25000	U ·
	84-66-2Diethylphthalate	25000	U
	7005-72-34-Chlorophenyl-phenylether	25000	U
	86-73-7Fluorene	500000	Έ
	100-01-64-Nitroaniline	52000	U
	534-52-14,6-Dinitro-2-methylphenol	52000	U
	86-30-6N-Nitrosodiphenylamine (1)	25000	υ
	101-55-34-Bromophenyl-phenylether	25000	υ
	118-74-1Hexachlorobenzene	25000	υ
	87-86-5Pentachlorophenol	52000	υ
	85-01-8Phenanthrene	1200000	Е
	120-12-7Anthracene	480000	Е
	86-74-8Carbazole	240000	
	84-74-2Di-n-butylphthalate	25000	U
1	206-44-0Fluoranthene	770000	Ε
	129-00-0Pyrene	840000	E
	85-68-7Butylbenzylphthalate	25000	U ·
	91-94-13,3'-Dichlorobenzidine	25000	U
	56-55-3Benzo(a)anthracene	540000	Ε
	218-01-9Chrysene	510000	Ε
	117-81-7bis(2-Ethylhexyl)phthalate	25000	ប
	117-84-0Di-n-octylphthalate	25000	υ
	205-99-2Benzo(b)fluoranthene	480000	Ε
	207-08-9Benzo(k)fluoranthene	200000	
I	50-32-8Benzo(a)pyrene	390000	
I	193-39-5Indeno(1,2,3-cd)pyrene	160000	
I	53-70-3Dibenzo(a,h)anthracene	65000	
I	191-24-2Benzo(g,h,i)perylene	150000	· ·
l]	

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLM03.0 PRELIMINARY

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB207-9.5 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Case No.: SAS No.: Lab Code: MITKEM Lab Sample ID: E0658-09A Matrix: (soil/water) SOIL 30.2 (g/mL) G Lab File ID: S2E8003 Sample wt/vol: Date Received: 05/20/06 Level: (low/med) LOW decanted: (Y/N) N Date Extracted:05/25/06 % Moisture: 52 Concentrated Extract Volume: Date Analyzed: 06/02/06 1000 (uL) Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 108-95-2----Phenol 260 J 680 U 111-44-4----bis (2-Chloroethyl) Ether 680 U 95-57-8----2-Chlorophenol 680 U 541-73-1-----1, 3-Dichlorobenzene 106-46-7-----1,4-Dichlorobenzene 680 U 680 U 95-50-1-----1, 2-Dichlorobenzene 170 J 95-48-7----2-Methylphenol 680 U 108-60-1-----2,2'-oxybis(1-Chloropropane)

106-44-54-Methylphenol	370	J
621-64-7N-Nitroso-di-n-propylamine	680	υ
67-72-1Hexachloroethane	680	ע
98-95-3Nitrobenzene	680	ע
78-59-1Isophorone	680	ט
88-75-52-Nitrophenol	680	ע
105-67-92,4-Dimethylphenol	1900	
120-83-22,4-Dichlorophenol	680	<u><u></u><u></u><u></u><u></u><u></u></u>
120-82-11,2,4-Trichlorobenzene	680	U
91-20-3Naphthalene	37000	E
106-47-84-Chloroaniline	680	U
87-68-3Hexachlorobutadiene	680	U
111-91-1bis(2-Chloroethoxy)methane	680	υ i
59-50-74-Chloro-3-Methylphenol	680	U
91-57-62-Methylnaphthalene	17000	E
77-47-4Hexachlorocyclopentadiene	680	U
88-06-22,4,6-Trichlorophenol	680	U
95-95-42,4,5-Trichlorophenol	1400	υ
91-58-72-Chloronaphthalene	680	U
88-74-42-Nitroaniline	1400	υ
131-11-3Dimethylphthalate	680	U
208-96-8Acenaphthylene	15000	E
606-20-22,6-Dinitrotoluene	680	ប
99-09-23-Nitroaniline	1400	U
83-32-9Acenaphthene	5600	

FORM I SV-1

1CSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

TB207-9.5 Contract: Lab Name: MITKEM CORPORATION SAS No.: SDG No.: ME0658 Lab Code: MITKEM Case No.: Matrix: (soil/water) SOIL Lab Sample ID: E0658-09A Sample wt/vol: 30.2 (g/mL) G Lab File ID: S2E8003 Level: (low/med) LOW Date Received: 05/20/06 Date Extracted:05/25/06 decanted: (Y/N) N % Moisture: 52 Date Analyzed: 06/02/06 Concentrated Extract Volume: 1000(uL) 1.0(uL) Injection Volume: Dilution Factor: 1.0 GPC Cleanup: (Y/N) N рН: ___ CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND Q 51-28-5-----2,4-Dinitrophenol 1400 U 100-02-7-----4-Nitrophenol 1400 U 14000 E 132-64-9-----Dibenzofuran 121-14-2----2,4-Dinitrotoluene 680 U 84-66-2----Diethylphthalate 680 U 680 U 7005-72-3-----4-Chlorophenyl-phenylether 16000 E 86-73-7----Fluorene 100-01-6-----4-Nitroaniline 1400 U 534-52-1-----4,6-Dinitro-2-methylphenol 1400 U 86-30-6-----N-Nitrosodiphenylamine (1) 680 U 101-55-3-----4-Bromophenyl-phenylether 680 U 118-74-1-----Hexachlorobenzene 680 U 87-86-5-----Pentachlorophenol 1400 U 85-01-8-----Phenanthrene 39000 E 18000 E 120-12-7-----Anthracene 14000 E 86-74-8-----Carbazole 84-74-2----Di-n-butylphthalate 680 U 206-44-0----Fluoranthene 22000 E 129-00-0----Pyrene 27000 E 85-68-7-----Butylbenzylphthalate 680 U 91-94-1-----3,3'-Dichlorobenzidine 680 U 56-55-3-----Benzo(a) anthracene 15000 E 218-01-9-----Chrysene 17000 E 117-81-7-----bis(2-Ethylhexyl)phthalate 680 U 117-84-0-----Di-n-octylphthalate_ 205-99-2----Benzo(b) fluoranthene 680 U 13000 E 207-08-9-----Benzo(k) fluoranthene 5200 50-32-8-----Benzo(a)pyrene 10000 193-39-5-----Indeno (1, 2, 3-cd) pyrene 440053-70-3-----Dibenzo(a,h)anthracene 1800 191-24-2----Benzo(g,h,i)perylene 4100

(1) - Cannot be separated from Diphenylamine

OLM03.0 PRELIMINARY

FORM I SV-2

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

-1

OLM03.0

PRELIMINA

TB208-9 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Lab Sample ID: E0658-10A Matrix: (soil/water) SOIL Lab File ID: S2E8004 Sample wt/vol: 30.3 (g/mL) G Date Received: 05/20/06 Level: (low/med) LOW Date Extracted:05/25/06 decanted: (Y/N) N % Moisture: 28 Date Analyzed: 06/02/06 Concentrated Extract Volume: 10000(uL) Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol	4500 4500 4500	บ บ บ
541-73-11, 3-Dichloropenzene	4500	U TT
95 50 logona 2-Dichlorobenzene	4500	π
95-48-72-Methylphenol	480	J
108-60-12, 2'-oxybis (1-Chloropropane)	4500	Ū I
106-44-54-Methylphenol	810	Ĵ
621-64-7N-Nitroso-di-n-propylamine	4500	Ū
67-72-1Hexachloroethane	4500	U
98-95-3Nitrobenzene	4500	υ
78-59-1Isophorone	4500	U
88-75-52-Nitrophenol	4500	U
105-67-92,4-Dimethylphenol	6400	
120-83-22,4-Dichlorophenol	4500	U
120-82-11,2,4-Trichlorobenzene	4500	U I
91-20-3Naphthalene	390000	E
106-47-84-Chloroaniline	4500	U
87-68-3Hexachlorobutadiene	4500	U
111-91-1bis(2-Chloroethoxy)methane	4500	U
59-50-74-Chloro-3-Methylphenol	4500	U
91-57-62-Methylnaphthalene	150000	E
77-47-4Hexachlorocyclopentadiene	4500	U
88-06-22,4,6-Trichlorophenol	4500	U
95-95-42,4,5-Trichlorophenol	9200	U -
91-58-72-Chloronaphthalene	4500	U
88-74-42-Nitroaniline	9200	U
131-11-3Dimethylphthalate	4500	<u>u</u>
208-96-8Acenaphthylene	120000	E TT
606-20-22,6-Dinitrotoluene	4500	
99-09-23-Nitroaniline	9200	U
83-32-9Acenaphthene	52000	

FORM I SV-1

EPA SAMPLE NO.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA	A SHEET	EPA SAMPLE NO
		TB208-9
Lab Name: MITKEM CORPORATION Contract	. [i
Lab Code: MITKEM Case No.: SAS No.	SDG	No.: ME0658
Matrix: (soil/water) SOIL	Lab Sample ID:	E0658-10A
Sample wt/vol: 30.3 (g/mL) G	Lab File ID:	S2E8004
Level: (low/med) LOW	Date Received:	05/20/06
% Moisture: 28 decanted: (Y/N) N	Date Extracted	1:05/25/06
Concentrated Extract Volume: 10000(uL)	Date Analyzed:	06/02/06
Injection Volume: 1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N) N pH:		
CONCE	INTRATION UNITS:	
CAS NO. COMPOUND (ug/I	or ug/Kg) UG/M	(G Q
		<u> </u>
51-28-52,4-Dinitrophenol		9200 U
100-02-74-Nitrophenol		9200 U
132-64-9Dibenzofuran]	L00000 E
121-14-22,4-Dinitrotoluene		4500 U
84-66-2Diethylphthalate		4500 U
7005-72-34-Chlorophenyl-phenyle	ether	4500 U
86-73-7Fluorene		120000 E
100-01-64-Nitroaniline		920010
534-52-14,6-Dinitro-2-methylph	henol	9200 0
86-30-6N-Nitrosodiphenylamine	≥_(1)	4500 U
101-55-34-Bromophenyl-phenylet	iner	4500 U
118-74-1Hexacnioropenzene		
87-86-5Pentachtorophenol		9200 0 210000 E
120 12 7 Apthrogone		94000 E
120-12-7Carbazole		64000
84-74-2Di-n-butylphthalate		4500 U
206-44-0Fluoranthene	·	L90000 E
129-00-0Pyrene		240000 E
85-68-7Butylbenzylphthalate		4500 U
91-94-13,3'-Dichlorobenzidine	e	4500 U
56-55-3Benzo(a)anthracene		L50000 E
218-01-9Chrysene		L40000 E
117-81-7bis (2-Ethylhexyl) phtha	alate	4500 U
117-84-0Di-n-octylphthalate		4500 U
205-99-2Benzo(b)fluoranthene		L20000 E
207-08-9Benzo(k)fluoranthene_		60000
50-32-8Benzo(a)pyrene		
193-39-5Indeno(1,2,3-cd)pyrene	ê	43000
53-70-3Dibenzo (a, h) anthracene	€	12000
$191-24-2Benzo(g,n,1)$ perylene_		42000

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLM03.0

1BSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB209-9 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) SOIL Lab File ID: Sample wt/vol: 30.1 (g/mL) G S2E7998 Level: (low/med) LOW

decanted: (Y/N) N% Moisture: 20 Concentrated Extract Volume: 1000(uL) Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N

Lab Sample ID: E0658-11A Date Received: 05/20/06 Date Extracted:05/25/06 Date Analyzed: 06/02/06 Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug
108-95-2	Phenol	·
111-44-4	bis(2-Chloroe	ethyl)Ether
95-57-8	2-Chlorophene	ol –
541-73-1	1,3-Dichlorok	penzene
106-46-7	1,4-Dichlorok	oenzene

pH:

95-57-8-----410 U 541-73-1-----410 U 410 U 106-46-7-----95-50-1-----1,2-Dichlorobenzene 410 U 410 U 95-48-7----2-Methylphenol 108-60-1-----2,2'-oxybis(1-Chloropropane) 410 U 410 U 106-44-5----4-Methylphenol 621-64-7-----N-Nitroso-di-n-propylamine 410 U 67-72-1-----Hexachloroethane 410 U 98-95-3-----Nitrobenzene 410 U 78-59-1-----Isophorone 410 U 88-75-5-----2-Nitrophenol 410 U 105-67-9----2,4-Dimethylphenol 410 U 120-83-2-----2,4-Dichlorophenol 120-82-1----1,2,4-Trichlorobenzene 410 U 410 U 620 91-20-3-----Naphthalene 410 U 106-47-8-----4-Chloroaniline 87-68-3-----Hexachlorobutadiene 410 U 111-91-1-----bis(2-Chloroethoxy)methane 410 U 59-50-7-----4-Chloro-3-Methylphenol 410 U 91-57-6----2-Methylnaphthalene 85 J 77-47-4-----Hexachlorocyclopentadiene 410 U 88-06-2-----2,4,6-Trichlorophenol_ 95-95-4-----2,4,5-Trichlorophenol_ 410 U 830 U 91-58-7-----2-Chloronaphthalene 410 U 830 U 88-74-4----2-Nitroaniline 131-11-3-----Dimethylphthalate 410 U 208-96-8-----Acenaphthylene 606-20-2-----2,6-Dinitrotoluene 43 J 410 U 99-09-2-----3-Nitroaniline 830 U

FORM I SV-1

83-32-9-----Acenaphthene

OLM03.0 PRELIMINARY

240 J

410 U 410 U Q

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB209-9 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Lab Sample ID: E0658-11A Matrix: (soil/water) SOIL Lab File ID: Sample wt/vol: 30.1 (g/mL) G S2E7998 Date Received: 05/20/06 Level: (1ow/med)LOW decanted: (Y/N) N Date Extracted:05/25/06 % Moisture: 20 Date Analyzed: 06/02/06 Concentrated Extract Volume: 1000(uL) Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 51-28-5-----2,4-Dinitrophenol 830 U 830 U 100-02-7-----4-Nitrophenol 140 J 132-64-9----Dibenzofuran 410 U 121-14-2-----2,4-Dinitrotoluene 410 U 84-66-2-----Diethylphthalate 410 U 7005-72-3-----4-Chlorophenyl-phenylether 190 J 86-73-7----Fluorene 100-01-6-----4-Nitroaniline 830 U 534-52-1-----4,6-Dinitro-2-methylphenol 830 U 86-30-6-----N-Nitrosodiphenylamine (1) 410 U 101-55-3-----4-Bromophenyl-phenylether 410 U 118-74-1-----Hexachlorobenzene 410 U 87-86-5-----Pentachlorophenol 830 U 85-01-8----Phenanthrene 780 290 J 120-12-7----Anthracene 86-74-8----Carbazole 200 J 410 U 84-74-2----Di-n-butylphthalate 750 206-44-0----Fluoranthene 620 129-00-0----Pyrene 410 U 85-68-7-----Butylbenzylphthalate 91-94-1-----3,37-Dichlorobenzidine 410 U 56-55-3-----Benzo(a) anthracene 240 J 218-01-9-----Chrysene 290 J 117-81-7----bis (2-Ethylhexyl) phthalate 410 U 410 U 117-84-0----Di-n-octylphthalate 205-99-2-----Benzo(b) fluoranthene 200 J 207-08-9-----Benzo(k) fluoranthene 88 J 50-32-8-----Benzo (a) pyrene 193-39-5-----Indeno (1, 2, 3-cd) pyrene 170 J 78 J 53-70-3-----Dibenzo(a,h)anthracene 410 U 191-24-2----Benzo(g,h,i)perylene 83 J

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

PRELIMINARY MO3.0

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB210-9 Lab Name: MITKEM CORPORATION Contract: SDG No.: ME0658 Lab Code: MITKEM Case No.: SAS No.: Lab Sample ID: E0658-12A Matrix: (soil/water) SOIL Lab File ID: S2E7999 30.2 (q/mL) G Sample wt/vol: Date Received: 05/20/06 Level: (low/med) LOW Date Extracted:05/25/06 decanted: (Y/N) N % Moisture: 33 Concentrated Extract Volume: 1000(uL) Date Analyzed: 06/02/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 490 U 108-95-2----Phenol 111-44-4-----bis(2-Chloroethyl)Ether 490 U 490 U 95-57-8-----2-Chlorophenol 490 U 541-73-1-----1, 3-Dichlorobenzene 490 U 106-46-7-----1, 4-Dichlorobenzene 490 U 95-50-1-----1, 2-Dichlorobenzene 490 U 95-48-7----2-Methylphenol 108-60-1-----2,2'-oxybis(1-Chloropropane) 490 U 106-44-5-----4-Methylphenol 490 U 490 U 621-64-7-----N-Nitroso-di-n-propylamine 490 U 67-72-1-----Hexachloroethane 98-95-3-----Nitrobenzene 490 U 490 U 78-59-1----Isophorone 490 U 88-75-5----2-Nitrophenol 490 U 105-67-9-----2,4-Dimethylphenol 120-83-2-----2,4-Dichlorophenol 120-82-1----1,2,4-Trichlorobenzene 490 U 490 U 85 J 91-20-3----Naphthalene 490 U 106-47-8-----4-Chloroaniline 490 U 87-68-3-----Hexachlorobutadiene 111-91-1-----bis(2-Chloroethoxy)methane______59-50-7-----4-Chloro-3-Methylphenol______ 490 U 490 U 490 U 91-57-6-----2-Methylnaphthalene 77-47-4-----Hexachlorocyclopentadiene 490 U 490 U 88-06-2-----2,4,6-Trichlorophenol 95-95-4-----2,4,5-Trichlorophenol 990 U 91-58-7-----2-Chloronaphthalene 490 U 88-74-4----2-Nitroaniline 990 U 131-11-3-----Dimethylphthalate 490 U 208-96-8----Acenaphthylene 490 U

FORM I SV-1

606-20-2-----2,6-Dinitrotoluene

99-09-2-----3-Nitroaniline

83-32-9-----Acenaphthene

PRELIMINARY DLMO3.0

490 U

990 U

570

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

			1		
Lab Name: MITKEM COR	PORATION	Contract:		T	3210-9
Lab Code: MITKEM (Case No.:	SAS No.:	SDG	No.: N	Æ0658
Matrix: (soil/water)	SOIL	Lab	Sample ID:	E0658	3-12A
Sample wt/vol:	30.2 (g/mL) G	Lab	File ID:	S2E79	999
Level: (low/med)	LOW	Date	Received:	05/20	0/06
% Moisture: 33	decanted: (Y/N)	N Date	e Extracted	1:05/25	5/06
Concentrated Extract	Volume: 1000	(uL) Date	Analyzed:	06/02	2/06
Injection Volume:	1.0(uL)	Dilu	tion Facto	or: 1.()
GPC Cleanup: (Y/N)	N pH:	_			
CAS NO.	COMPOUND	CONCENTRAI (ug/L or u	ION UNITS: g/Kg) UG/K	G	Q
$\begin{array}{c} 51-28-5\\ 100-02-7\\ 132-64-9\\ 121-14-2\\ 84-66-2\\ 84-66-2\\ 84-66-2\\ 84-66-2\\ 86-73-7\\ 86-73-7\\ 100-01-6\\ 534-52-1\\ 86-30-6\\ 101-55-3\\ 86-30-6\\ 101-55-3\\ 85-01-8$	2,4-Dinitrophe 4-Nitrophenol Dibenzofuran 2,4-Dinitroto Diethylphthala 4-Chloropheny Fluorene 4,6-Dinitro-2 N-Nitrosodiphe 4-Bromophenyl Hexachlorophenyl Hexachlorophenyl Pentachlorophe Pentachlorophe Phenanthrene Phenanthrene Carbazole Di-n-butylpht Fluoranthene Pyrene Butylbenzylphi Senzo(a)anthra Chrysene bis(2-Ethylhe: Di-n-octylpht Benzo(b)fluora Benzo(a,h)ai Benzo(g,h,i)p	enol luene ate l-phenylether e -methylphenol enylamine (1) -phenylether zene enol halate halate thalate thalate acene xyl)phthalate halate anthene e cd)pyrene erylene		$\begin{array}{c} 990\\ 990\\ 80\\ 490\\ 490\\ 150\\ 990\\ 490\\ 490\\ 490\\ 990\\ 1000\\ 300\\ 1300\\ 1000\\ 870\\ 490\\ 490\\ 490\\ 490\\ 490\\ 490\\ 490\\ 49$	רנננננננמם מממממממממממ

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

PRELIMINARY^{MO3.0}

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

- 1

Lab Name: MITKEM CORPO	RATION Co:	ntract:	TB204-8.5
Lab Code: MITKEM Ca	se No.:	SAS No.: SD	G No.: ME0658
Matrix: (soil/water) W	IATER	Lab Sample ID	: E0658-05C
Sample wt/vol: 5	.000 (g/mL) ML	Lab File ID:	V2H5152
Level: (low/med) La	WO	Date Received	: 05/20/06
% Moisture: not dec		Date Analyzed	: 05/30/06
GC Column: DB-624 II	D: 0.25 (mm)	Dilution Fact	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/	: L Q
75-01-475-35-475-35-4778-93-377-66-3756-23-571-43-2	-Vinyl Chloride -1,1-Dichloroether -2-Butanone -Chloroform -Carbon Tetrachlo: -1,2-Dichloroethar -Benzene -Trichloroethene -Tetrachloroethene -Chlorobenzene	ne ne e	5 U 5 U 5 U 5 U 5 U 5 U 5 U 3 J 2 J 3 J 5 U

PRELIMINARY OLMO3.0

1A

EPA SAMPLE NO.

	VOLATILE	ORGANICS ANALYSIS	S DATA SHEET			
Lab Na	ume: MITKEM COR	PORATION	Contract:	-	TB206-9	
Lab Co	de: MITKEM	Case No.:	SAS No.:	SDG	No.: ME065	8
Matrix	: (soil/water)	WATER	Lab Sample	e ID:	E0658-08C	
Sample	e wt/vol:	5.000 (g/mL) ML	Lab File 1	D:	V2H5153	
Level:	(low/med)	LOW	Date Recei	ved:	05/20/06	
% Mois	sture: not dec.		Date Analy	zed:	05/30/06	
GC Col	umn: DB-624	ID: 0.25 (mm)	Dilution H	actor	: 1.0	
Soil E	Extract Volume:	(uL)	Soil Aliqu	iot Vo	lume:	(uL)
	CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	NITS: UG/L	Q	
	75-01-4 75-35-4 78-93-3 67-66-3 56-23-5 107-06-2 71-43-2 79-01-6 127-18-4 108-90-7	Vinyl Chloride 1,1-Dichloroeth 2-Butanone Chloroform Carbon Tetrachl 1,2-Dichloroeth Benzene Trichloroethene Tetrachloroethe	ene		5 U 5 U 5 U 5 U 5 U 5 U 160 5 U 5 U 5 U 5 U	

FORM I VOA

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Con	TB207-9.5
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: ME0658
Matrix: (soil/water) WATER	Lab Sample ID: E0658-09C
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V2H5154
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: not dec.	Date Analyzed: 05/30/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroether 78-93-31,1-Dichloroether 67-66-3Chloroform 56-23-5Carbon Tetrachlor 107-06-21,2-Dichloroethar 71-43-2Benzene 79-01-6Trichloroethere 127-18-4Chlorobenzene	ne 5 U 5 U 5 U 5 U 5 U cide 5 U 5 ne 5 U 88 5 U 88 0 6 5 U 5 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS D	DATA SHEET
Lab Name: MITKEM CORPORATION Con	TB208-9
Lab Code: MITKEM Case No.: S	SAS No.: SDG No.: ME0658
Matrix: (soil/water) WATER	Lab Sample ID: E0658-10C
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V2H5177
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: not dec.	Date Analyzed: 05/31/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroethen 78-93-32-Butanone 67-66-3Chloroform 56-23-5Carbon Tetrachlor 107-06-21, 2-Dichloroethan 71-43-2Benzene 79-01-6Trichloroethene 108-90-7Chlorobenzene	5 U 10 5 10 5 10 5 10 5 10 5 11 5 12 5 13 5 14 5 15 10 16 10 17 5 18 5 19 5 10 5 10 5 11 5 12 5 13 10

^{dreliminary}

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:	-	TB209-9	
Lab Code: MITKEM Case No.:	SAS No.:	SDG No	o.: ME0658	
Matrix: (soil/water) WATER	Lab S	ample ID: E	0658-11C	
Sample wt/vol: 5.000 (g/r	nL) ML Lab F	ile ID: V	2H5179	
Level: (low/med) LOW	Date	Received: 0!	5/20/06	
% Moisture: not dec.	Date	Analyzed: 0!	5/31/06	
GC Column: DB-624 ID: 0.25	(mm) Dilut	ion Factor:	1.0	
Soil Extract Volume:(ul	L) Soil	Aliquot Volu	ume:	(uL)
CAS NO. COMPOUNI	CONCENTRATI CONCENTRATI	ON UNITS: /Kg) UG/L	Q	
75-01-4Vinyl Ch 75-35-4Vinyl Ch 78-93-32-Butand 67-66-3Chlorofd 56-23-5Carbon 7 107-06-21,2-Dich 71-43-2Benzene 79-01-6Trichlon 127-18-4Tetrach 108-90-7Chlorobe	loride loroethene one orm Fetrachloride hloroethane roethene loroethene enzene		5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	

PRELIMINARY

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

—1

Lab Name: MITKEM CORPORATION Contra	ct:	TB210-9	
Lab Code: MITKEM Case No.: SAS	No.: SDO	5 No.: ME0658	
Matrix: (soil/water) WATER	Lab Sample ID:	E0658-12C	
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID:	V2H5180	
Level: (low/med) LOW	Date Received:	05/20/06	
<pre>% Moisture: not dec</pre>	Date Analyzed:	05/31/06	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Facto	pr: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot N	701ume:	(uL)
CON CAS NO. COMPOUND (ug	CENTRATION UNITS: //L or ug/Kg) UG/I	Q	
75-01-4Vinyl Chloride 75-35-4Vinyl Chloroethene_ 78-93-32-Butanone 67-66-3Chloroform 56-23-5Carbon Tetrachloride 107-06-21, 2-Dichloroethane_ 71-43-2Benzene 79-01-6Trichloroethene_ 127-18-4Chlorobenzene		5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	

PRELIMINARY

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA	SHEET
Lab Name: MITKEM CORPORATION Contract	TB204-8.5
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: ME0658
Matrix: (soil/water) WATER	Lab Sample ID: E0658-05A
Sample wt/vol: 300.0 (g/mL) ML	Lab File ID: S1E8478
Level: (low/med) LOW	Date Received: 05/20/06
<pre>% Moisture: decanted: (Y/N)</pre>	Date Extracted:05/26/06
Concentrated Extract Volume: 1000(uL)	Date Analyzed: 05/31/06
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	
CONCE CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) UG/L Q
106-46-71,4-Dichlorobenzene_ 95-48-72-Methylphenol_ 106-44-54-Methylphenol_ 67-72-1Hexachloroethane_ 98-95-3Nitrobenzene 87-68-3Hexachlorobutadiene 88-06-22,4,6-Trichlorophenol_ 95-95-42,4,5-Trichlorophenol_ 51-28-52,4-Dinitrophenol_ 118-74-1Hexachlorobenzene 87-86-5	33 U 33 U 33 U 33 U 33 U 33 U 33 U 33 U

FORM I SV-1

OLM03.0

EPA SAMPLE NO.

33 U

33 U

33 U

33 U

67 U

67 U

33 U

67 U

33 U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

67-72-1-----Hexachloroethane

87-68-3-----Hexachlorobutadiene

51-28-5-----2,4-Dinitrophenol

118-74-1-----Hexachlorobenzene

87-86-5-----Pentachlorophenol

88-06-2-----2,4,6-Trichlorophenol

95-95-4-----2,4,5-Trichlorophenol

98-95-3-----Nitrobenzene

110-86-1----Pyridine

TB206-9 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM SAS No.: SDG No.: ME0658 Case No.: Matrix: (soil/water) WATER Lab Sample ID: E0658-08A Sample wt/vol: 300.0 (g/mL) ML Lab File ID: S1E8479 (low/med) Level: LOW Date Received: 05/20/06 decanted: (Y/N) Date Extracted:05/26/06 % Moisture: Concentrated Extract Volume: 1000(uL) Date Analyzed: 05/31/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N рН: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/LQ 106-46-7-----1,4-Dichlorobenzene 33 U 95-48-7----2-Methylphenol 4 J 106-44-5-----4-Methylphenol 7 J

OLM03.0

FORM I SV-1

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TB207-9.5 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: ME0658 Matrix: (soil/water) WATER Lab Sample ID: E0658-09A Sample wt/vol: 300.0 (g/mL) ML Lab File ID: S1E8480 Level: (low/med) LOW Date Received: 05/20/06 decanted: (Y/N) Date Extracted:05/26/06 % Moisture: Concentrated Extract Volume: 1000(uL) Date Analyzed: 05/31/06 Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kg) UG/L Q 106-46-7-----1,4-Dichlorobenzene 33 U 95-48-7-----2-Methylphenol 6 J 106-44-5-----4-Methylphenol 10 J 67-72-1-----Hexachloroethane 33 U 98-95-3----Nitrobenzene 33 U 87-68-3-----Hexachlorobutadiene 33 U 88-06-2----2,4,6-Trichlorophenol 33 U 95-95-4-----2,4,5-Trichlorophenol 67 U 51-28-5-----2, 4-Dinitrophenol 67 U 118-74-1-----Hexachlorobenzene 33 U 87-86-5-----Pentachlorophenol 67 U 110-86-1----Pyridine 33 U

PRELIMINARY

FORM I SV-1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION	Contract:	TB208-9
Lab Code: MITKEM Case No.:	SAS No.: SDG NC	D.: ME0658
Matrix: (soil/water) WATER	Lab Sample ID: E	0658-10A
Sample wt/vol: 300.0 (g/mL) ML	Lab File ID: S	S1E8481
Level: (low/med) LOW	Date Received: 0	5/20/06
<pre>% Moisture: decanted: (Y/N)</pre>	Date Extracted:0	5/26/06
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 0	5/31/06
Injection Volume: 1.0(uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N) N pH:	_	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
106-46-71,4-Dichlorob 95-48-72-Methylpheno 106-44-54-Methylpheno 67-72-1Hexachloroeth 98-95-3Nitrobenzene 87-68-3Hexachlorobut 88-06-22,4,6-Trichlo 95-95-42,4,5-Trichlo 51-28-52,4-Dinitrophe 118-74-1Hexachloroben 87-86-5Pentachlorophe 110-86-1Pyridine	enzene	33 U 8 J 12 J 33 U 33 U 33 U 33 U 33 U 67 U 67 U 33 U 67 U 33 U

Lab Name: MITKEN	I CORPORATION	Contract:	TI	3209-9
Lab Code: MITKEN	I Case No.:	SAS No.:	SDG No.: N	Æ0658
Matrix: (soil/wa	ter) WATER	Lab Sa	ample ID: E0658	8-11A
Sample wt/vol:	300.0 (g/mL)	ML Lab F	lle ID: S1E84	482
Level: (low/me	ed) LOW	Date H	Received: 05/20	0/06
% Moisture:	decanted: (Y	/N) Date H	Extracted:05/20	5/06
Concentrated Ext	ract Volume: 1	000(uL) Date A	Analyzed: 05/3	1/06
Injection Volume	e: 1.0(uL)	Dilut	ion Factor: 1.0	С
GPC Cleanup: (Y/N) N pH:			
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/	N UNITS: 'Kg) UG/L	Q
106-46-71,4-Dichlorobenzene				

OLM03.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM COR	PORATION	Contract:		TB210-9
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.:	ME0658
Matrix: (soil/water)	WATER	Lab Sa	ample ID: E065	58-12A
Sample wt/vol:	300.0 (g/mL) ML	Lab F:	ile ID: S1E8	3483
Level: (low/med)	LOW	Date H	Received: 05/2	20/06
% Moisture:	decanted: (Y/N)	Date I	Extracted:05/2	26/06
Concentrated Extract	Volume: 1000(uL) Date A	Analyzed: 06/0	01/06
Injection Volume:	1.0(uL)	Dilut	ion Factor: 1.	. 0
GPC Cleanup: (Y/N)	N pH:	-		
CAS NO.	COMPOUND	CONCENTRATIO	ON UNITS: /Kg) UG/L	Q
$ \begin{array}{c} 106-46-7\\ 95-48-7\\ 106-44-5\\ 67-72-1\\ 98-95-3\\ 87-68-3\\ 87-68-3\\ 95-95-4\\ 95-95-4\\ 51-28-5\\ 118-74-1\\ 87-86-5\\ 110-86-1\\ \end{array} $	1,4-Dichlorobe 2-Methylphenol 4-Methylphenol Hexachloroetha Nitrobenzene Hexachlorobuta 2,4,6-Trichlor 2,4,5-Trichlor 2,4-Dinitrophe Hexachlorobenz Pentachlorophe Pyridine	nzene ne diene ophenol nol nol nol	33 33 33 33 33 33 33 33 33 67 33 67 33	

OLM03.0

			1	EPA SAN	IPLE NO
		II	NORGANIC ANALYSIS DATA SHEET	TB204	-8.5
Lab Name:	<u>Mitkem Cor</u>	poration	Contract: <u>-</u>		
Lab Code:	MITKEM	Case No.	SAS No.:	SDG No.:	<u>ME0658</u>
Matrix (so	il/water):	SOIL	Lab Sample ID:	E0658-05	
Level (low	/med):	MED	Date Received:	05/20/06	
% Solids:		71.0			
	Concentrat	ion Units	(ug/L or mg/kg dry weight): MG/K	G	

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	3.2		N	CA

Comments:

PRELIMINARY

FORM I - IN

____

SW846

			NODCANTO	1 NNNT VOTO			EPA SAN	IPLE NO
Lah Name.	Mitkem Cor	noration	NORGANIC	ANALISIS	optract: -		TB205	5-6.5
Dab Name.	HICKEM COL	poración		C.				
Lab Code:	MITKEM	Case No.		SAS	No.:		SDG No.:	<u>ME0658</u>
Matrix (so	il/water):	SOIL			Lab Sample	e ID: <u>E(</u>	0658-06	
Level (low	/med):	MED			Date Recei	ved: 05	5/20/06	
% Solids:		82.0						
	Concentrat	ion Units	(ug/L o	r mg/kg d	ry weight):	<u>MG/KG</u>		
						•		

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	0.13	U	N	CA

Comments:

PRELIMINARY

FORM I - IN

SW846

		1		EPA SAN	IPLE NO
		ΙN	ORGANIC ANALYSIS DATA SHEET	TB20)6-9
Lab Name:	<u>Mitkem Cor</u>	poration	Contract: -		
Lab Code:	MITKEM	Case No.	SAS No.:	SDG No.:	<u>ME0658</u>
Matrix (so	il/water):	SOIL	Lab Sample ID:	E0658-08	
Level (low	/med):	MED	Date Received:	05/20/06	
% Solids:		65.0			
Concentration Units (ug/L or mg/kg dry weight): MG/KG					

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	2.5		N	CA
	1	l			L

Comments:

·····

FORM I - IN

SW846

		1	EPA SAMPLE NO		
	INORGAI	NIC ANALYSIS DATA SHEET	TB207-9,5		
Lab Name: <u>Mitkem Co</u> r	rporation	Contract: <u>-</u>			
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: <u>ME0658</u>		
Matrix (soil/water);	SOIL	Lab Sample ID:	<u>E0658-09</u>		
Level (low/med):	MED	Date Received:	05/20/06		
% Solids:	48.0				
Concentration Units (ug/L or mg/kg dry weight): MG/KG					

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	0.54	В	N	CA
				ļ	<u> </u>

Comments:

FORM I - IN

SW846

			1	EPA SA	EPA SAMPLE NO	
Lab Name:	Mitkem Cor	ING poration	Contract: -	TB2	08-9	
Lab Code:	MITKEM	Case No.	SAS No.:	SDG No.:	<u>ME0658</u>	
Matrix (so	il/water):	SOIL	Lab Sample ID:	E0658-10		
Level (low	/med):	MED	Date Received:	05/20/06		
% Solids:		72.0				
	Concentrat	ion Units	(ug/L or mg/kg dry weight): MG/	KG		

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	4.7		N	CA

Comments:

······

FORM I - IN

SW846

	l			
INORGANIC	ANALYSIS	DATA	SHEET	

Contract: <u>-</u>

Lab Sample ID: <u>E0658-11</u>

Date Received: <u>05/20/06</u>

EPA SAMPLE NO

SDG No.: ME0658

тв209-9

Lab Name: Mitkem Corporation Lab Code: <u>MITKEM</u> Case No. SAS No.: Matrix (soil/water): <u>SOIL</u> Level (low/med): MED % Solids: 80.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	I M
57-12-5	Cyanide	2.2		N	CA
					1

Comments:

DRFI MINARY

FORM I - IN

SW846

			1	EPA SAN	APLE NO
		INO	RGANIC ANALYSIS DATA SHEET	T'B2	0-9
Lab Name:	Mitkem Cor	poration	Contract: <u>-</u>		
Lab Code:	MITKEM	Case No.	SAS No.:	SDG No.:	<u>ME0658</u>
Matrix (so	il/water):	SOIL	Lab Sample ID:	E0658-12	
Level (low	/med):	MED	Date Received:	05/20/06	
% Solids:		67.0			
	Concentrat	ion Units (ug/L or mg/kg dry weight): MG/K	G	

CAS No.	Analyte	Concentration	С	Q	М
57-12-5	Cyanide	0.15	U	N	CA

Comments:

.....

PRELIMINARY

FORM I - IN

SW846

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DA	TA SHEET
	MW103
Lab Name: MITKEM CORPORATION Cont	ract:
Lab Code: MITKEM Case No.: SA	S No.: SDG No.: ME0658
Matrix: (soil/water) WATER	Lab Sample ID: E0658-13A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V2H5181
Level: (low/med) LOW	Date Received: 05/20/06
% Moisture: not dec.	Date Analyzed: 05/31/06
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uI
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q
74-87-3Chloromethane	thane 5 0 5 11
75-01-4Vinvl Chloride	5 U
74-83-9Bromomethane	5 U
75-00-3Chloroethane	5 Ü
75-69-4Trichlorofluoromet	hane 5 U
75-35-41,1-Dichloroethene	
67-64-1Acetone	6
74-88-4Iodomethane	5 <u></u> _
75-15-0Carbon Disulfide	5
75-09-2Methylene Chloride	5 0
156-60-5trans-1,2-Dichloro	ethene 5 U
1634-04-4Methyl tert-butyl	ether 5 U
75-34-31,1-Dichloroethane	5 U
108-05-4Vinyl acetate	5 U
78-93-32-Butanone	5 U
156-59-2cis-1,2-Dichloroet	hene 5 U
590-20-72,2-Dichloropropan	.e5_U
74-97-5Bromochloromethane	5 U
67-66-3Chloroform	50
71-55-61,1,1-1richloroeth	ane5U
563-58-61,1-Dichloropropen	
56-23-5Carbon Tetrachioria	
71 42 2 Bongono	
79-01-6Trichloroothono	
78-87-51 2-Dichloropropan	
74-95-3Dibromomethane	
75-27-4Bromodichlorometha	
10061-01-5cis-1 3-Dichloron	opene 5 TT
108-10-14-Methyl-2-pentang	ne 510
- 108-88-3Toluene	240 F
10061-02-6trans-1.3-Dichloro	propene 5 U
79-00-51,1,2-Trichloroeth	ane 5 U
,,	

FORM I VOA

OLM03.0

VOLATILE	EPA SAMPLE NO.		
Lab Name: MITKEM COR	PORATION CO	ontract:	MW103
Lab Code: MITKEM	Case No.:	SAS No.: SDG	No.: ME0658
Matrix: (soil/water)	WATER	Lab Sample ID:	E0658-13A
Sample wt/vol:	5.000 (g/mL) ML	Lab File ID:	V2H5181
Level: (low/med)	LOW	Date Received:	05/20/06
<pre>% Moisture: not dec.</pre>		Date Analyzed:	05/31/06
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vo	olume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 142-28-9-----1,3-Dichloropropane_____

142-28-91,3-Dichloropropane 127-18-4Tetrachloroethene 591-78-62-Hexanone 124-48-1Dibromochloromethane 106-93-41,2-Dibromoethane 108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene m,p-Xylene 95-47-6Xylene	5 5 5 5 5 5 10 120	บ บ บ บ บ บ บ
1330-20-7Xylene (Total)	170	
100-42-5Styrene	17	
75-25-2Bromoform 98-82-8Isopropylbenzene 79-34-51,1,2,2-Tetrachloroethane	5 5 5	บ บ บ
108-86-1Bromobenzene	5	U
96-18-41,2,3-Trichloropropane	5	U
103-65-1n-Propylbenzene	5	U
95-49-82-Chlorotoluene	5	U
108-67-81,3,5-Trimethylbenzene	12	
106-43-44-Chlorotoluene	5	U
98-06-6tert-Butylbenzene	5	U
95-63-61,2,4-Trimethylbenzene	29	
135-98-8sec-Butylbenzene	5	ΰ
99-87-64-Isopropyltoluene	5	U
541-73-11,3-Dichlorobenzene	5	U
106-46-71,4-Dichlorobenzene	5	U
104-51-8n-Butylbenzene	5	U
95-50-11,2-Dichlorobenzene	5	U
96-12-81, 2-Dibromo-3-chloropropane	5	U
120-82-11,2,4-Trichlorobenzene	5	U
87-68-3Hexachlorobutadiene	5	U
91-20-3Naphthalene	410	E
87-61-61,2,3-Trichlorobenzene	5	U

Mitkem Corporation

Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB204-8.5Project:BeaconLab ID:E0658-05Collection Date:05/18/06 12:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES Reactive Cyanide	ND	SW7.3.3.2_S 1.4 mg/Kg	1 05/27/2006 16:29	23905
REACTIVE SULFIDE RELEASED FROM WASTES Reactive Sulfide	1700	SW7.3.4.2_S 140 mg/Kg	100 05/26/2006 17:14	23911
SOIL AND WASTE PH pH	10	SW9045C_S 1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

Mitkem Corporation

Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB206-9Lab ID:E0658-08Collection Date:05/18/06 11:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.5 mg/Kg	1 05/27/2006 16:31	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	890	76 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
рН	10	1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits
	J - Analyte detected below quantititation limits	R - RPD outside accepted recovery limits
		— — — —

 ${\bf B}$ - Analyte detected in the associated Method Blank

DF - Dilution Factor

- E Value above quantitation range
- RL Reporting Limit
Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB207-9.5Project:BeaconLab ID:E0658-09Collection Date:05/18/06 9:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	2.1 mg/Kg	1 05/27/2006 16:34	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2 S		
Reactive Sulfide	3500	410 mg/Kg	200 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
pH	9.8	1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB208-9Project:BeaconLab ID:E0658-10Collection Date:05/18/06 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.4 mg/Kg	1 05/27/2006 16:36	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	890	69 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C S		
рН	9.0	1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits
	J - Analyte detected below quanititation limits	R - RPD outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	E - Value above quantitation range
	DF - Dilution Factor	RL - Reporting Limit

Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB209-9Lab ID:E0658-11Collection Date:05/18/06 13:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.2 mg/Kg	1 05/27/2006 16:44	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	460	62 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
pH	9.5	1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers: ND - Not Detected	at the Reporting Limit
-------------------------------	------------------------

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

Date: 05-Jun-06

Client:Day Environmental, Inc.Client Sample ID:TB210-9Lab ID:E0658-12Collection Date:05/18/06 14:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.5 mg/Kg	1 05/27/2006 16:46	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	270	74 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
рH	7.2	1.0 S.U.	1 05/31/2006 12:00	R16193

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

Client:Day Environmental, Inc.Client Sample ID:TB204-8.5Lab ID:E0658-05

Date: 05-Jun-06

Project: Beacon

Collection Date: 05/18/06 12:30

Analyses **Result Qual RL** Units **DF** Date Analyzed **Batch ID** FLASHPOINT BY PENSKY-MARTENS CLOSED-CUP METHOD SW1010_S Ignitability No flash at 140. 200 °F 1 06/02/2006 12:00 R16270 **REACTIVE CYANIDE RELEASED FROM WASTES** SW7.3.3.2_S 1.4 mg/Kg Reactive Cyanide ND 1 05/27/2006 16:29 23905 **REACTIVE SULFIDE RELEASED FROM WASTES** SW7.3.4.2_S Reactive Sulfide 1700 140 mg/Kg 100 05/26/2006 17:14 23911 SOIL AND WASTE PH SW9045C_S pН 10 1.0 S.U. 1 05/31/2006 12:00 R16193

 Qualifiers:
 ND - Not Detected at the Reporting Limit
 S - Spike Recovery outside accepted recovery limits

 J - Analyt detecte
 J - Analyt detecte
 If tation

 B - Analyt detecte
 In a state d N thod Bl: k
 F - Vo e al ve c antita in range

 DF - Dilution Factor
 RL - Reporting Limit

Client:Day Environmental, Inc.Client Sample ID:TB206-9Lab ID:E0658-08

Date: 05-Jun-06

 Project:
 Beacon

 Collection Date:
 05/18/06 11:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
FLASHPOINT BY PENSKY-MARTENS CLOSED-CU	P METHOD	SW1010_S		
Ignitability	No flash at 140.	200 °F	1 06/02/2006 12:00	R16270
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.5 mg/Kg	1 05/27/2006 16:31	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	890	76 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
pH	10	1.0 S.U.	1 05/31/2006 12:00	R16193

 Qualifiers:
 ND - Not Detected at the Reporting Limit
 S - Spike Recovery outside accepted recovery limits

 J - Analyt detected in the ast ciated N theorem Bit k
 R - 1 'D ou de decepted recovery limits

 DF - Dilution Factor
 RL - Reporting Limit

Client: Day Environmental, Inc. Client Sample ID: TB207-9.5 Lab ID: E0658-09 Date: 05-Jun-06

Project:BeaconCollection Date:05/18/06 9:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
FLASHPOINT BY PENSKY-MARTENS CLOSED-CUF	P METHOD	SW1010_S		
Ignitability	No flash at 140.	200 °F	1 06/02/2006 12:00	R16270
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	2.1 mg/Kg	1 05/27/2006 16:34	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	3500	410 mg/Kg	200 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
рН	9.8	1.0 S.U.	1 05/31/2006 12:00	R16193

 Qualifiers:
 ND - Not Detected at the Reporting Limit.
 S - Spike Recovery outside accepted recovery limits

 J - Analyt detecte in the as ciated N theorem
 R - 1 'D ou detected recovery limits

 B - Analyt detecte in the as ciated N theorem
 R - 1 'D ou detected recovery limits

 DF - Dilution Factor
 RL - Reporting Limit

Client: Day Environmental, Inc. Client Sample ID: TB208-9 Lab ID: E0658-10 Date: 05-Jun-06

 Project:
 Beacon

 Collection Date:
 05/18/06 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
FLASHPOINT BY PENSKY-MARTENS CLOSED-CUP	METHOD	SW1010_S		
Ignitability	No flash at 140.	200 °F	1 06/02/2006 12:00	R16270
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2 S		
Reactive Cyanide	ND	1.4 mg/Kg	1 05/27/2006 16:36	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2 S		
Reactive Sulfide	890	69 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C S		
pH	9.0	1.0 S.U.	1 05/31/2006 12:00	R16193

 Qualifiers:
 ND - Not Detected at the Reporting Limit.
 S - Spike Recovery outside accepted recovery limits

 J - Analyt detected in a case class of M thod Bl:
 R - A 'D ou de coept recovery limits

 B - Analyt detected in a case class of M thod Bl:
 F - Vale al velopantia in range

 DF - Dilution Factor
 RL - Reporting Limit

pН

Client: Day Environmental, Inc. Client Sample ID: TB209-9 Lab ID: E0658-11

Date: 05-Jun-06

Project: Beacon **Collection Date:** 05/18/06 13:30

Analyses **Result Qual RL** Units **DF** Date Analyzed **Batch ID** FLASHPOINT BY PENSKY-MARTENS CLOSED-CUP METHOD SW1010_S Ignitability No flash at 140. 200 °F 1 06/02/2006 12:00 R16270 **REACTIVE CYANIDE RELEASED FROM WASTES** SW7.3.3.2_S Reactive Cyanide ND 1.2 mg/Kg 1 05/27/2006 16:44 23905 **REACTIVE SULFIDE RELEASED FROM WASTES** SW7.3.4.2_S Reactive Sulfide 460 62 mg/Kg 50 05/26/2006 17:14 23911 SOIL AND WASTE PH SW9045C_S 9.5 1.0 S.U. 1 05/31/2006 12:00 R16193

Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyt le' cte bel v qu it'tation mits R / D ou de ccept, recovery limits B - Analy detects in a sciated N thod Bl F-Va e al ve contita in range DF - Dilution Factor RL - Reporting Limit

Client: Day Environmental, Inc. Client Sample ID: TB210-9 Lab ID: E0658-12 Date: 05-Jun-06

Project:BeaconCollection Date:05/18/06 14:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
FLASHPOINT BY PENSKY-MARTENS CLOSED-CUI	P METHOD	SW1010_S		
Ignitability	No Flash at 140.	200 °F	1 06/02/2006 12:00	R16270
REACTIVE CYANIDE RELEASED FROM WASTES		SW7.3.3.2_S		
Reactive Cyanide	ND	1.5 mg/Kg	1 05/27/2006 16:46	23905
REACTIVE SULFIDE RELEASED FROM WASTES		SW7.3.4.2_S		
Reactive Sulfide	270	74 mg/Kg	50 05/26/2006 17:14	23911
SOIL AND WASTE PH		SW9045C_S		
pH	7.2	1.0 S.U.	1 05/31/2006 12:00	R16193

 Qualifiers:
 ND - Not Detected at the Reporting Limit.
 S - Spike Recovery outside accepted recovery limits

 J - Analyt let cte below quint tation mits
 R - Do u de ccepto recovery limits

 B - Analyt detecto in a as ciated N thod Block
 F - Vale al velopantita in range

 DF - Dilution Factor
 RL - Reporting Limit

Attachment 3

NYSDOH Generic Community Air Monitoring Plan

New York State Department of Health Generic Community Air Monitoring Plan

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical-specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for volatile organic compounds (VOCs) and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate NYSDEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells. **Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a **continuous** basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

All 15-minute readings must be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored **continuously** at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (DEC and DOH) personnel to review.

June 20, 2000

P:\Bureau\Common\CommunityAirMonitoringPlan (CAMP)\GCAMPR1.DOC