

January 30, 2025

Mr. Gerald Pratt, P.G.
Division of Environmental Remediation
Section C Bureau C Geologist
New York State Department of Environmental Conservation
625 Broadway 12th Floor
Albany NY 12233-7014

Re: Report – 18th Post-Remediation Groundwater Sampling Event, October 2024

RG&E Brockport Former MGP Site Corner of Erie and Perry Streets

Village of Brockport, Monroe County, New York

NYSDEC Site #V00301

Dear Mr. Pratt:

The purpose of this report is to present the results of the eighteenth (18th) post-remediation groundwater sampling event completed at the Rochester Gas and Electric Corporation (RG&E) Brockport Former Manufactured Gas Plant (MGP) site (NYSDEC Site No. V00301), located near the northwestern corner of the intersection of Erie and Perry Streets in the Village of Brockport, Monroe County, New York (referred to herein as the "Site"). This October 2024 sampling event was completed under high-water conditions in the adjacent Erie Canal (*i.e.*, the canal had been filled for the boating season). Sampling was performed by NEU-VELLE, LLC (NEU-VELLE) personnel and completed in accordance with the Site Management Plan (SMP) dated September 2017, as well as the *Report – Post Remediation Groundwater Sampling Event, September 2018*, prepared by NEU-VELLE and dated December 12, 2018, which proposed a reduction of the number of wells to be included in this and future groundwater sampling events.

SCOPE OF WORK

Synoptic Water Levels

As summarized in **Table 1**, a Site-wide round of synoptic groundwater levels was gauged at the seventeen (17) monitoring wells on and in the immediate vicinity of the Site. Additionally, the surface water elevation of the canal was gauged at two (2) locations. These field activities were completed on October 14, 2024. The locations of the monitoring wells are depicted on the Monitoring Well Location Map provided as **Exhibit A**. Each well was also gauged for the presence of Non-aqueous Phase Liquid (NAPL) using an oil/water interface probe, and NAPL was not detected in any of the wells; however, a petroleum odor was detected in MW-15, which had previously contained LNAPL during the last sampling event (April 2024) and had a spill report (#2400393) opened by the NYSDEC with a subsequent investigation by the NYSDEC Region 8 spills group. As this spill did not occur on RG&E property, RG&E is not involved in the investigation other

than in providing previous groundwater flow mapping and access to any groundwater monitoring wells that are needed to assist in the investigation, at the request of the NYSDEC. The well gauging observations and field measurements are provided in **Table 1**, and a groundwater elevation contour map is provided as **Figure 1**.

Groundwater Sampling

From October 15 through October 17, 2024, groundwater samples were collected for laboratory analysis from the following eight (8) groundwater monitoring wells:

- MW6, MW22, MW24, and MW25, in which benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), and/or cyanide have historically been detected at concentrations above their respective NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Class GA, standards, criteria, and guidance values (SCGs); and
- MW8, MW17, MW20, and MW21, which are located adjacent to the previously noted wells.

Groundwater samples were collected using the "low-flow" purging techniques outlined in the United States Environmental Protection Agency (USEPA) Ground-Water Sampling Guidelines for Superfund and Resource Conservation Recovery Act (RCRA) Project Managers, dated May 2002.

Prior to initiating purging, field personnel donned new nitrile gloves and care was taken to avoid introducing contaminants into the groundwater monitoring wells. Low-flow purging was conducted using an appropriately decontaminated stainless-steel bladder pump equipped with a polyethylene bladder and polyethylene tubing. A new, clean bladder and tubing were used at each groundwater monitoring well. During purging, time, water-level measurements, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, turbidity, and specific conductance (purge parameters) were measured and recorded using calibrated field monitoring equipment.

The well information, sample information, monitoring parameters, and field observations were recorded on a groundwater sample log completed at each well. The groundwater sample logs are provided herein as **Attachment A**.

Collection of Laboratory Samples

New nitrile gloves were donned by field personnel prior to the collection of each laboratory sample. The laboratory sample was collected in appropriate laboratory-supplied sample containers. Samples were placed in a plastic cooler pre-chilled with ice and submitted under appropriate chain of custody protocols to Paradigm Environmental Services, Inc. located in Rochester, New York. Samples were analyzed for:

- volatile Organic Compounds (VOCs), BTEX only, in accordance with USEPA Method 8260C,
- semi-VOCs (SVOCs), PAHs only, in accordance with USEPA Method 8270D, and
- total cyanide in accordance with USEPA Method 335.4.

In accordance with the Quality Assurance Project Plan (QAPP), provided with the SMP, appropriate chain of custody protocols was followed. Copies of the chain of custody forms are included in **Exhibit B**.

Quality Assurance/Quality Control (QA/QC) samples were collected and submitted for laboratory analysis as described in the SMP. QA/QC samples consisted of a blind field duplicate sample (collected at MW6), matrix spike/matrix spike duplicate (MS/MSD) samples (collected at MW22), and an "equipment blank" sample. Trip blanks were also provided by the laboratory, maintained with the sample containers, and analyzed for VOCs.

Reporting of Results

Copies of the laboratory reports are presented in **Exhibit B**.

Waste Accumulation and Disposal

Well purge water and decontamination water were containerized in 5-gallon buckets and transported to the RG&E Front Street Former MGP Site to be containerized in 55-gallon drums. The drum was labeled with its contents, date of generation, generator contact information, and "Non-Hazardous." The drums were subsequently transferred to the RG&E Front Street Former MGP Site in Rochester, NY, for temporary staging prior to appropriate transportation and off-site disposal.

RESULTS

The analytical results associated with this 18th post-remediation groundwater sampling event are summarized in **Table 2** and shown on **Figure 2**. These findings were compared to the TOGS 1.1.1 Class GA SCGs, as summarized below:

- the following BTEX compounds were reported at concentrations above their respective TOGS 1.1.1 Class GA SCGs in the groundwater sample collected from MW24:
 - o benzene was reported at concentration of 9.73 micrograms per liter (μ g/L);
 - o toluene was reported at concentration of 10.5 μg/L; and
 - o total xylenes were reported at a concentration of 23.04 µg/L.
- ethylbenzene was reported at concentration of 4.99 μ g/L in the groundwater sample collected from MW24 [slightly below the TOGS 1.1.1 Class GA SCG: for ethylbenzene (5 μ g/L)],
- ethylbenzene was reported at concentration of 2.50 μ g/L in the groundwater sample collected from MW25 [below the TOGS 1.1.1 Class GA SCG: for ethylbenzene (5 μ g/L)], and benzene was reported at concentration of 9.52 μ g/L, which is above the TOGS 1.1.1 Class GA SCG for benzene (1 μ g/L);
- naphthalene was reported in the groundwater sample collected from MW24 at a concentration (57 μ g/L) above the TOGS 1.1.1 Class GA SCG (10.0 μ g/L) for this compound (10 μ g/L).; and

• cyanide was detected in five (5) of the eight (8) groundwater monitoring wells that were sampled (*i.e.*, MW6, MW20, MW22, MW24, and MW25). However, the only reported concentration of cyanide that was above the TOGS 1.1.1 Class GA SCG for Cyanide [0.20 milligrams per liter (mg/L)] was in the groundwater sample collected from MW6 (0.72 mg/L reported).

The analytical results for QA/QC samples are as follows:

- Laboratory analytical results for the "blind duplicate" groundwater sample (collected from MW6) are summarized in **Table 2** and are nearly equivalent to the results reported for the "parent" sample (i.e., the groundwater sample also collected from MW6);
- no detections of BTEX, PAHs, or cyanide were reported in the "equipment blank" sample;
 and
- no BTEX compounds were detected in the VOC Trip Blank samples.

Groundwater Mapping

A groundwater contour map (see **Figure 1**) was prepared based on the water level data collected at the Site on October 14, 2024. The groundwater elevation contour map is provided as **Figure 1** and shows that the flow of overburden groundwater beneath the Site is interpreted to be generally to the southwest. This groundwater flow direction is consistent with historic groundwater flow mapped during prior occurrences of high-water conditions in the adjacent Erie Canal.

Conclusions

This report presents the results of the 18th post-remediation groundwater sampling event completed at the RG&E Brockport Former MGP site (NYSDEC Site No. V00301).

The exceedances of the TOGS 1.1.1 Class GA SCGs for BTEX compounds and naphthalene reported in the groundwater sample collected from MW24 during this monitoring event, as well as prior sampling events, are likely due to the presence of residual tar and tar-like material (TLM) in the remaining subsurface soil along the upgradient side of the Site on the NYSCC property (which could not be removed during remediation, as directed by the NYSCC). Similarly, the elevated concentration of cyanide reported in the groundwater sample collected from MW6 may also be attributable to remaining MGP impacts in the subsurface soil at the Site.

Based upon the data collected from the post-remediation groundwater sampling events, the downgradient distribution of impacts seems to vary with low or high-water conditions in the canal. When the canal is drained (*i.e.*, not during this sampling event), the water table along the canal is lower, and flows through the impacted canal soils is predominantly to the west-southwest. During high-water conditions (during this groundwater sampling event), water flows out of the canal, through the impacted soils on the NYSCC property, and onto the Site, with a groundwater flow direction predominantly to the southwest. This likely explains the seasonal variation of BTEX and PAHs detected in the monitoring wells on the northern side of the Site. The laboratory analytical results associated with this groundwater sampling event are generally consistent with prior autumn high-water (in the adjacent canal) groundwater sampling events (see **Table 2**).

The previously recommended three- year (2022 - 2024) monitoring period for the semi-annual sampling has concluded with this sampling event. Based on the data compiled during the previous monitoring period, RG&E is recommended continued groundwater monitoring for another three-year period (2025 - 2027) with a reduction in the number of monitoring wells to be sampled, as follows:

- MW-8 would cease sampling activities given that no contaminants have ever been detected in this well going back to 2017;
- MW-17 would cease sampling activities given that no contaminants have ever been detected in this well going back to 2019;
- MW-20 would cease sampling activities given that only low-levels of cyanide have been detected at an order of magnitude below the TOGS 1.1.1 Class GA SCG; and
- MW-21 would cease sampling activities given that no contaminants have ever been detected above TOGS 1.1.1 Class GA SCGs, and has only had very low-level detections of cyanide and acenaphthene when lower detection limits were used by the laboratory.

Based on historical trends, there does appear to be a slight reduction in the concentrations of BTEX and PAH compounds in the four (4) monitoring wells (MW6, MW22, MW24, and MW25) closest to the remaining Site contamination. Furthermore, there does not appear to be evidence of contaminant migration in the overburden groundwater to downgradient monitoring wells (i.e., MW-20 and MW-21). The previous eight years of semi-annual sampling have demonstrated that contaminant concentrations have consistently been higher during the spring sampling events when the canal water level is lowered, representing a "worst case" scenario for contaminant concentrations; therefore, RG&E is recommending continuing groundwater sampling events only in the spring to continue to monitor the natural attenuation of the remaining site contamination. Semi-annual sampling is no longer needed to evaluate for seasonal fluctuations in site contamination.

RG&E will also consult with REGENESIS® regarding product selection and feasibility of in-situ injections to address the remaining source material adjacent to the canal bed that was not removed as part of the remedial action. RG&E will update the NYSDEC with any proposed remedies recommended by REGENESIS®.

RG&E is therefore recommending continued groundwater monitoring of the four (4) monitoring wells (MW6, MW22, MW24, and MW25) closest to the remaining contamination on an annual basis (spring) for a three-year period starting in the spring of 2025 and ending in the spring of 2027.

After the completion of the three-year monitoring period in 2024, the monitoring program will be evaluated in consultation with the NYSDEC.

Please feel free to contact me at (585) 478-1666 with any questions you may have regarding this letter report, or contact Mr. Jeremy Wolf, RG&E's Project Manager for the project at (585) 500-8392.

Sincerely,

NEU-VELLE, LLC

cc: Jeremy Wolf - RG&E

Attachments:

Table 1 – Monitoring Well Reference Data and Groundwater Measurements

Table 2 – Groundwater Sample Analytical Results

Exhibit A – Monitoring Well Location Map

Figure 1 – October 2024 Groundwater Elevation Contours

Figure 2 – October 2024 Groundwater Analytical Detections

Attachment A – Groundwater Sample Logs

Exhibit B - Groundwater Laboratory Reports and Chain of Custody Forms

Table 1 Monitoring Well Reference Data and Groundwater Measurements

Table 1

Rochester Gas Electric - Brockport, NY NYSDEC Site No. V00301-8

Monitoring Well Reference Data and Groundwater Measurements

Designation	Installation Date	Ground Surface Elevation (Feet NAVD88)	Well Diameter (Inches)	Top of PVC Riser Elevation (Feet NAVD88)	Bottom of Well Elevation (Feet)	Depth to Water 10/14/2024 (Feet)	Groundwater Elevation 10/14/2024 (Feet NAVD88)	Notes
MW1	10/15/2002	Decommissioned						
MW2	10/14/2002	Decommissioned						
MW3	10/10/2002	Decommissioned						
MW4	10/17/2002	Decommissioned						
MW5	10/15/2002	Decommissioned						
MW6	10/14/2002	511.4	2	511.15	494.65	7.54	503.61	
MW7	10/11/2002	502.2	2	501.99	484.49	2.79	499.20	
MW8	10/22/2002	513.4	2	512.94	482.62	8.69	504.25	
MW9		Decommissioned						
MW10		Decommissioned						
MW11	10/3/2003	507.2	1.5	506.90	492.48	6.75	500.15	
MW12	10/3/2003	504.8	1.5	504.46	490.38	4.87	499.59	
MW13		Decommissioned						
MW14	10/2/2003	504.7	1.5	504.28	490.53	5.61	498.67	
MW15	10/2/2003	503.1	1.5	502.52	489.08	4.70	497.82	Petroleum odor
MW16	10/7/2003	Not Found						Paved-over under street?
MW17	10/1/2003	512.0	1.5	511.51	496.92	7.24	504.27	
MW18	10/8/2003	Decommissioned						
MW19	10/8/2003	504.4	1.5	503.73	491.35	2.05	501.68	
MW20	3/21/2016	506.3	2	505.64	493.14	3.19	502.45	
MW21	3/21/2016	505.9	2	505.70	493.20	4.65	501.05	
MW22	3/21/2016	510.4	2	510.22	497.72	7.41	502.81	
MW23	3/22/2016	504.5	2	504.15	491.15	3.41	500.74	
MW24	3/22/2016	512.2	2	511.88	498.88	8.50	503.38	
MW25	3/22/2016	512.8	2	512.46	499.46	9.09	503.37	no J plug
PZ1	10/16/2002	Decommissioned						
PZ2	10/3/2003	504.8	1.5	504.16	489.63	5.25	498.91	
PZ3	10/6/2003	504.2	1.5	503.84	489.55	4.33	499.51	
Surface Wate	r Elevation Refe	erence Point						
				Surface Water Reference Point Elevation (Feet)				
SWRP1	5/19/2010	NA	NA	532.22	NA	20.7	511.54	
SWRP2	5/19/2010	NA	NA	514.79	NA	3.3	511.54	

NOTES:

NA = Not Applicable NM = Not Measured New and existing wells surveyed on March 24, 2016

Vertical Coordinates are North American Vertical Datum 1988 (NAVD88)

 $^{^{1}\,\}textsc{=}\,$ Reference point established on Smith Street bridge and on southern canal wall

² = Surface water elevation

Table 2 Groundwater Sample Analytical Results

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

	Sample Location MW6 Sample Date 4/6/2016 Sample Identification RGE-MW6 TOGS 1.1.1		8/1,	W6 /2016 ·MW6	4/17	W6 /2017 MW-6	10/1	W6 6/2017 W6	4/9	W6 /2018 W6	9/1	ЛW6 7/2018 ЛW6		IW6 4/24 W-6	/2019	OUPLICATE)	10/	MW6 12/2019 MW-6	4/5	IW6 /2020 6-04052020	10/3	IW6 8/2020 6-10032020	4/14	W6 //2021 /6-041421	10/1	IW6 1/2021 V6-100121	5/2/:	W6 /2022 /6-050222			
Analyte	Cas No.		Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
ВТЕХ		1		<u> </u>																											
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Гoluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
n,p-Xylene	4220.20		μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-	/ 5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	. NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
luoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
luorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
ndeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
henanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide																															
Cyanide, Total	NA	0.2	mg/L	2.35	0.0100	0.299	0.0100	7.33	0.0100	4.10	0.0100	5.70	0.0100	1.12	0.0100	3.60	0.0100	3.53	0.0100	2.98	0.0100	3.38	0.0100	1.21	0.0100	5.11	0.0100	4.64	0.0100	5.24	0.075

		Sample	Location	M	IW6	MW6 (I	Duplicate)	IV	IW6	M	W6	IV	IW6	M	W6	MW6 (E	ouplicate)
		Sam	ple Date		10/15	/2022		4/22	2/2023	10/2	3/2023	4/16	6/2024		10/17	/2024	
		Sample Ident	tification	BPT-MV	/6-101522	BPT-DL	JP-101522	BPT-MV	V6-042223	BPT-MW	/6-102323	BPT-MV	V6-041624	BPT-MW	/6-101724	BPT-DU	P-101724
Analyte	Analyte Cas No. Groundwat SCG		Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																	
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00	ND	1.00
m,p-Xylene	4220 20 7	_	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00	ND	1.00
PAHs													· · · · · ·				
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	0.39	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	0.26	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	0.34	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30	ND	10.80	ND	10.90
Cyanide																	
Cyanide, Total	NA	0.2	mg/L	1.2	0.10	1.2	0.10	6.20	0.010	0.41 S	0.010	2.16	0.050	0.72	0.100	0.78	0.100

- Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

	Sample Location Sample Dat Sample Identification TOGS 1.1.1		mple Date	4/6/	W8 /2016 ·MW8	8/1,	W8 /2016 -MW8	4/1	MW8 17/2017 E-MW-8	10/1	W8 6/2017 IW8	4/9	IW8 /2018 IW8	9/1	/IW8 7/2018 /IW8	4/25	W8 5/2019 W-8	10,	MW8 /12/2019 MW-8	4/5/	W8 /2020 3-04052020	10/3	W8 /2020 3-10032020		/IW8 4/14, N8-041421	/2021	JP-041421	10/1	1W8 1/2021 V8-100121	5/2/	/IW8 2/2022 W8-050222
Analyte	Cas No.		r Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX								•	•					•				•				•		•	•			•			
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	4220.20.		μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide																															
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	0.0107	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.005

		Sample Ident	ple Date	10/1	W8 5/2022 /8-101522	4/22	W8 /2023 /8-042223	10/2	W8 3/2023 /8-102323	4/11	W8 /2024 /8-041124	10/1	W8 5/2024 /8-101524
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX					· · · ·		· · · ·				<u> </u>		
Benzene	71-43-2	1	μg/L	ND	1.00	ND	5.0	ND	1.00	ND	5.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
m,p-Xylene	1330-20-7	_	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
PAHs													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60	ND	10.80
Cyanide													
Cyanide, Total	NA	0.2	mg/L	ND	0.010	ND	0.010	ND S	0.010	ND	0.005	ND	0.010

- Notes:

 1. µg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2
Rochester Gas & Electric - Brockport, NY
NYSDEC Site No. V00301-8
Groundwater Sample Analytical Results

			Location ple Date tification	4/25	W17 5/2019 W-17	10/14	N17 4/2019 N-17	4/6,	W17 /2020 7-04062020	10/5	N17 /2020 7-10052020	4/1	W17 3/2021 /17-041321	10/2	N17 /2021 17-100221	4/28	W17 3/2022 117-042822	10/20	W17 D/2022 17-102022	4/14	N17 /2023 17-041423	10/2	W17 4/2023 /17-102423	M\ 4/15 BPT-MW:		10/15	W17 5/2024 17-101524
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																											
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.0	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.0	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.0	ND	1.00
m,p-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.0	ND	2.00
o-Xylene	1330-20-7	3	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.0	ND	1.00
PAHs																											
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.60	ND	12.5
Cyanide																											
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.005	ND	0.010	ND	0.010	ND S	0.010	ND	0.005	ND	0.010

Notes

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
- 5. **Bold Sample result** = compound was detected.

6. Gray shading indicates the sample result is above the

- 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
- 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."
- 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

	Sample Location MW20 MW20 MW20 Sample Date 4/7/2016 8/3/2016 4/18/20 Sample Identification RGE-MW20 RGE-MW20 RGE-MW20		3/2017	10/1	W20 7/2017 W20	4/10	N20 /2018 N20	9/1	W20 9/2018 W20	4/25	W20 /2019 W20	10/	MW20 /10/2019 MW-20	MW20 4/4/2020 BPT-MW20-04042020	M\ BPT-MW2	10/2	/2020	OUPLICATE) 2-10022020		V20 /2021 20-041321	MV 9/30/ BPT-MW2	/2021	MW 4/30/2 BPT-MW20	/2022						
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result Reporting	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
зтех																														
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND D 1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND D 2.00	ND	2.00	ND	2.00	ND	2.00	ND M	2.00	ND	2.00
thylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND 2.00	ND	2.00	ND	2.00	ND	2.00	ND M	2.00	ND	2.00
n,p-Xylene	4220 20 7	_	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND 2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND 2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																														
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND M 10.0	ND	10.0	ND	10.0	ND	10.0	ND MD	10.0	ND	1.9
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
luoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
luorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
ndeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
yrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND M 10.0	ND	10.0	ND	10.0	ND	10.0	ND MD	10.0	ND	1.9
Cyanide																														
Cyanide, Total	NA	0.2	mg/L	0.180	0.0100	0.0439	0.0100	0.0456	0.0100	0.0128	0.0100	0.0378	0.0100	ND	0.0100	0.0104	0.0100	ND	0.0100	0.0074 J 0.0100	ND	0.0100	ND	0.0100	ND	0.0100	0.0171	0.0100	0.006	0.005

			Location ple Date		W20 1/2022		N20 /2023	М	W20 10/17	MW20 (D /2023	UPLICATE)		W20 /2024		W20 5/2024
		Sample Ident	tification	BPT-MW	20-101422	BPT-MW	20-041823	BPT-MW	/20-101723	BPT-DU	P-101723	BPT-MW	20-041124	BPT-MW	20-101624
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX															
Benzene	71-43-2	1	μg/L	ND	1.00	ND	5.0	ND	1.00	ND	1.00	ND	5.0	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.0	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.0	ND	1.00
m,p-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.0	ND	2.00
o-Xylene	1330-20-7))	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.0	ND	1.00
PAHs															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60	ND	10.60
Cyanide															
Cyanide, Total	NA	0.2	mg/L	0.014	0.010	0.024	0.010	0.012	0.010	0.016 S	0.010	0.0168	0.005	0.02	0.010

- Notes:

 1. µg/L = micrograms per liter

 2. mg/L = miligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

- 9. S is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."
 9. D is a laboratory data qualifier indicating "Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative PercentDifference limit."
 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

		Sam	Sample Identification RGE-MW21 RGE-MW21 RGE-MW-21	M\ 10/18 M\	3/2017	4/11	W21 /2018 W21		W21 /2018 W21		V21 /2019 V-21	10/14	W21 J/2019 V-21	4/7/	W21 '2020 1-04072020	10/1	W21 /2020 1-10012020	4/14	W21 /2021 21-041421	MW BPT-MW2	9/30/	2021	Duplicate) JP-093021						
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX													•																
Benzene	71-43-2	1	μg/L	0.566 J	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	1330-20-7	-	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7]	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Cyanide																													
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND M	0.0100	0.0083 J	0.0100	ND	0.0100

			Location	M\	N21 4/30/		Ouplicate)		W21 2/2022		W21 7/2023		W21 7/2023		W21 2/2024	MV	V21 7/2024
		Sample Iden		DDT MANA/	4/30/ 21-043022		P-043022		2/2022 21-101222		72023 721-041723		7/2023 21-101723		21-041224*	BPT-MW2	
		TOGS 1.1.1	tincation	DF I-IVIVV	21-043022	BF 1-DU	r-043022	DF I-IVIVV	21-101222	DF I-IVIVV	21-041/23	DF I-IVIVV	21-101/25	DF I-IVIVV	21-041224	DF I-IVI VV 2	1-101/24
Analyte	Cas No.	Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX															<u> </u>		
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
m,p-Xylene		_	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
PAHs			10-														
Acenaphthene	83-32-9	20	μg/L	1.8 J	2.0	2.0	2.0	ND	10.0	1.1	0.20	ND	10.0	ND	9.6	ND	10.60
Acenaphthylene	208-96-8	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Anthracene	120-12-7	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Chrysene	218-01-9	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Fluoranthene	206-44-0	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Fluorene	86-73-7	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Naphthalene	91-20-3	10	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Phenanthrene	85-01-8	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.6	ND	10.60
Pyrene	129-00-0	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND N	10.0	ND	9.6	ND	10.60
Cyanide																	
Cyanide, Total	NA	0.2	mg/L	0.004 J	0.0100	0.003 J	0.005	ND	0.010	ND	0.010	ND S	0.010	ND	0.005	ND	0.010

- Notes:

 1. µg/L = micrograms per liter
 2. ng/L = milligrams per liter
 3. NT = not tested, NS = No standard, and ND = non-detect
 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.
 5. Bold Sample result = compound was detected.
 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.
 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
 8. M is a laboratory data qualifier indicating "Soike Recoveries outside QC limits. Matrix bias indicated."

- S is a laboratory data qualifier indicating "Matth Spice recovering united secretary outside accepted recovery limits"
 Lab report identified this sample as "PPT-MW8-041124" and was given Lab ID R2403033-004

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

Sample Locatic Sample Da Sample Identificatio TOGS 1.1.1		ple Date	4/7	W22 /2016 MW22	8/3	1W22 3/2016 -MW22	4/19	W22 /2017 MW-22	10/1	N22 3/2017 N22	4/10	N22 /2018 N22	9/17	W22 7/2018 W22	4/2	IW22 4/2019 IW-22		1W22 10/10 IW-22	2 (DUPLICA /2019 DUPL			N22 4/4/ 2-04042020	2020 `	DUPLICATE) P-04042020	10/	W22 2/2020 22-10022020	4/13	W22 3/2021 /22-041321	MW2 10/1/2 BPT-MW22	2021	
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporti ng Limit
TEX																			•								•				
enzene	71-43-2	1	μg/L	ND	1.00	78.3	1.00	ND	1.00	37.7	1.00	ND	1.00	8.08	1.00	ND	1.00	0.681	J 1.00	0.614 J	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
oluene	108-88-3	5	μg/L	ND	2.00	2.20	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
thylbenzene	100-41-4	5	μg/L	ND	2.00	37.6	2.00	ND	2.00	7.35	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
n,p-Xylene	1330-20-7		μg/L	ND	2.00	1.74	J 2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
-Xylene	1550-20-7	3	μg/L	ND	2.00	3.82	2.00	ND	2.00	1.20 J	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
AHs														_								_		_							
cenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	5.62 J	10.0	ND	10.0	5.0	10.0	ND	M 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
cenaphthylene	208-96-8	NS	μg/L	ND	10.0	18.5	10.0	ND	10.0	16.1	10.0	ND	10.0	11.3	10.0	ND	10.0	7.44	J 10.0	7.91 J	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
nthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
enzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
enzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
enzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
enzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
enzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
ibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
hrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
luoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
luorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
ndeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
laphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
henanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
yrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
yanide																															
yanide, Total	NA	0.2	mg/L	0.0476	0.0100	0.499	0.0100	0.696	0.0100	0.386	0.0100	0.973	0.0100	0.246	0.0100	0.792	0.0100	0.189	0.0100	0.178	0.0100	0.298	0.0100	0.346	0.0100	0.0936	0.0100	0.284	0.0100	0.0973	0.0100

			Location ple Date tification		W22 '2022 22-050222	10/14	V22 }/2022 22-101422		W22 4/18, 22-041823	, 2023	Duplicate) P-041823	10/19	W22 9/2023 22-101923	4/11	W22 L/2024 /22-041124	10/1	W22 6/2024 222-101624
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX			<u> </u>														•
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	5.0	ND	5.0	ND	1.00	ND	5.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00	ND	1.00
m,p-Xylene			μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00	ND	1.00
PAHs			10.														
Acenaphthene	83-32-9	20	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Acenaphthylene	208-96-8	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Anthracene	120-12-7	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Chrysene	218-01-9	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Fluoranthene	206-44-0	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Fluorene	86-73-7	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Naphthalene	91-20-3	10	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Phenanthrene	85-01-8	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Pyrene	129-00-0	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.6	ND	10.80
Cyanide																	
Cyanide, Total	NA	0.2	mg/L	0.204	0.005	0.019	0.010	0.260	0.10	0.260	0.10	0.063	0.010	0.118	0.005	0.07	0.010

- Notes:

 1. µg/L = micrograms per liter

 2. mg/L = miligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Natrix spike recoveries outside QC limits. Matrix bias indicated."

- 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

		Sample I			W24	M	W24		OUPLICATE)	M	W24		OUPLICATE)	, N	/W24		DUPLICATE)	, N	ЛW24		DUPLICATE)		W24		W24		W24		W24		W24
			ple Date		/2016			/2016				/2017				8/2017				2/2018			0/2018		/2019		5/2019		/2020		/2020
		Sample Ident	ification	RGE-	-MW24	RGE-	-MW24	RGE	DUP#1	RGE-	MW-24	RGE-	DUPE 1	IV.	/IW24	Di	ipe #1		ЛW24	Di	ıpe#1	M	W24	MI	N-24	MI	N-24	BPT-MW2	4-04072020	BPT-MW24	-10052020
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit																				
STEX																															
Senzene	71-43-2	1	μg/L	22.9	1.00	3.36	1.00	3.04	1.00	34.6	10.0	34.3	1.00	3.81	1.00	3.56	1.00	43.9	1.00	39.0	1.00	ND	1.00	47.1	1.00	1.03	1.00	54.4	1.00	8.57	1.00
oluene	108-88-3	5	μg/L	29.3	2.00	8.98	2.00	7.23	2.00	29.2	20.0	29.4	2.00	7.16	2.00	7.21	2.00	69.7	2.00	60.6	2.00	ND	2.00	23.1	2.00	ND	2.00	24.9	2.00	8.98	2.00
thylbenzene	100-41-4	5	μg/L	2.87	2.00	ND	2.00	ND	2.00	ND	20.0	ND	2.00	1.46	J 2.00	1.39	J 2.00	19.0	2.00	17.1	2.00	ND	2.00	12.0	2.00	ND	2.00	10.3 J	2.00	1.66 J	2.00
n,p-Xylene	1330-20-7	-	μg/L	21.6	2.00	7.32	2.00	5.87	2.00	32.9	20.0	32.5	2.00	6.91	2.00	6.54	2.00	78.9	2.00	71.9	2.00	ND	2.00	38.0	2.00	ND	2.00	27.5	2.00	5.75	2.00
-Xylene	1330-20-7) 1	μg/L	10.6	2.00	2.68	2.00	2.12	2.00	ND	20.0	ND	2.00	3.56	2.00	3.37	2.00	45.1	2.00	41.4	2.00	ND	2.00	23.7	2.00	ND	2.00	16.6 J	2.00	3.17	2.00
PAHs																															
cenaphthene	83-32-9	20	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	12.0	10.0	ND	10.0	12.4	10.0	ND	10.0										
cenaphthylene	208-96-8	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	5.01	J 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	11.0	10.0	ND	10.0	11.5	10.0	ND	10.0
nthracene	120-12-7	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
enzo(a)anthracene	56-55-3	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
enzo(a)pyrene	50-32-8	ND	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
enzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
enzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
enzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
ibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
Chrysene	218-01-9	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
luoranthene	206-44-0	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
luorene	86-73-7	50	μg/L	ND	20.0	5.10 J	10.0	5.75 .	10.0	ND	50.0	ND	10.0	5.59	J 10.0	5.72	J 10.0	ND	10.0	ND	10.0	ND	10.0	14.1	10.0	ND	10.0	13.7	10.0	ND	10.0
ndeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
-methylnaphthalene	91-57-6	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
laphthalene	91-20-3	10	μg/L	252	20.0	62.6	10.0	70.9	10.0	357	50.0	270	10.0	91.7	10.0	87.7	10.0	711	10.0	776	10.0	ND	10.0	ND	10.0	9.40 J	10.0	ND	10.0	61.1	10.0
henanthrene	85-01-8	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	6.23 J	10.0	ND	10.0	11.1	10.0	ND	10.0										
yrene	129-00-0	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0												
yanide																															
yanide, Total	NA	0.2	mg/L	0.117	0.0100	0.0662	0.0100	0.0659	0.0100	0.105	0.0100	0.0812	0.0100	0.0523	0.0100	0.0505	0.0100	0.141	0.0100	0.154	0.0100	0.0293	0.0100	0.149	0.0100	0.0257	0.0100	0.144	0.0100	0.0380	0.0100

		Sample			N24		W24		W24		W24		N24		N24	M۱	N24		Ouplicate)		W24
			ple Date		/2021		/2021		/2022		9/2022		/2023		4/2023		4/15,				7/2024
		Sample Ident	ification	BPT-MW	24-041521	BPT-MW	24-100221	BPT-MW	24-050322	BPT-MW	24-101922	BPT-MW	24-042323	BPT-MW	24-102423	BPT-MW	24-041524	DUP-	041524	BPT-MW	24-101724
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																					
Benzene	71-43-2	1	μg/L	23.0	1.00	0.890 J	1.00	48.9	1.00	ND	1.00	39	10	14.7	1.00	ND	5.00	ND	5.00	9.73	1.00
Toluene	108-88-3	5	μg/L	8.45	2.00	ND	2.00	26.7	2.00	ND	2.00	39	10	14.3	2.00	ND	5.00	ND	5.00	10.5	1.00
Ethylbenzene	100-41-4	5	μg/L	3.22	2.00	ND	2.00	21.1	2.00	ND	2.00	22	10	7.00	2.00	ND	5.00	ND	5.00	4.99	1.00
m,p-Xylene	1330-20-7	5	μg/L	10.2	2.00	ND	2.00	36.3	2.00	ND	2.00	57	10	16.2	2.00	ND	5.00	ND	5.00	14.6	2.00
o-Xylene	1330-20-7	5	μg/L	6.89	2.00	ND	2.00	27.7	2.00	ND	2.00	35	10	9.70	2.00	ND	5.00	ND	5.00	8.44	1.00
PAHs																					
Acenaphthene	83-32-9	20	μg/L	7.57 J	10.0	ND	10.0	13	2.0	ND	10.0	10	0.19	7.82 J	10.0	ND	9.60	ND	9.60	ND	11.70
Acenaphthylene	208-96-8	NS	μg/L	5.36 J	10.0	ND	10.0	6.0	2.0	ND	10.0	8.8	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	1.1	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	1.2 J	2.0	ND	10.0	1.0	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Fluorene	86-73-7	50	μg/L	5.89 J	10.0	ND	10.0	7.6	2.0	ND	10.0	8.5	0.19	5.69 J	10.0	ND	9.60	ND	9.60	ND	11.70
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	37 E	0.19	112	10.0	ND	9.60	ND	9.60	57.0	11.70
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	6.1	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	0.70 J	2.0	ND	10.0	0.66	0.19	ND	10.0	ND	9.60	ND	9.60	ND	11.70
Cyanide												_									
Cyanide, Total	NA	0.2	mg/L	0.0785	0.0100	0.0317	0.0100	0.265	0.005	ND	0.010	0.388	0.010	0.036 S	0.0100	0.02	0.005	0.0227	0.005	0.08	0.010

- 1. μg/L = micrograms per liter
- 2. mg/L = milligrams per liter
- 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

Bold Sample result = compound was detected. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

- 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."
- 9. E is a laboratory data qualifier indicating "Concentration has exceeded the calibration range for that specific analysis"
- 10. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8 **Groundwater Sample Analytical Results**

		Sample Loc Sample Sample Identific	Date	4/7	W25 /2016 MW-25	8/1	IW25 1/2016 -MW25	4/1	IW25 7/2017 -MW-25	4/17	W25 7/2017 MW-25	10/10	W25 5/2017 W25	4/9	N25 /2018 N25	9/17	W25 /2018 W25	4/26	W25 5/2019 W-25	10/1	W25 5/2019 <i>N</i> -25	4/8/	W25 /2020 5-04082020	10/5	W25 /2020 5-10052020	4/15	W25 /2021 25-041521	10/2	W25 2/2021 /25-100221	MW 5/3/2 BPT-MW2	2022
Analyte	Cas No.	TOGS 1.1.1 Groundwater L SCG	Jnits	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
ВТЕХ																															
Benzene	71-43-2	1 1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	1.28	1.00	1.61	1.00
Toluene	108-88-3	5 1	ug/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	11.9	2.00	ND	2.00	ND	2.00	ND	2.00	9.75	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5 1	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	4220 20 7	- 1	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7) 7	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	2.78	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS I	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND I	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	NS I	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS I	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluoranthene	206-44-0	50 j	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluorene	86-73-7	50 j	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
2-methylnaphthalene	91-57-6	NS I	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10 j	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	1.1 J	2.0
Phenanthrene	85-01-8	50 j	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50 j	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide																															
Cyanide, Total	NA	0.2 r	ng/L	0.391	0.0100	0.14	0.0100	0.209	0.0100	0.209	0.0100	0.0277	0.0100	0.3050	0.0100	0.0263	0.0100	0.187	0.0100	ND	0.0100	0.120	0.0100	ND	0.0100	0.0744	0.0100	0.116	0.0100	0.121	0.005

			Location ple Date tification	10/18	V25 5/2022 25-101822	4/23	N25 /2023 24-042523	10/2	N25 5/2023 25-102523	4/15	W25 /2024 25-041524	10/1	N25 7/2024 25-101724
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX													
Benzene	71-43-2	1	μg/L	31.9	1.00	ND	5.0	10.6	1.00	ND	5.00	9.52	1.00
Toluene	108-88-3	5	μg/L	1.59 J	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
Ethylbenzene	100-41-4	5	μg/L	10.6	2.00	ND	5.0	2.84	2.00	ND	5.00	2.5	1.00
m,p-Xylene	4220 20 7	-	μg/L	9.12	2.00	ND	5.0	ND	2.00	ND	5.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	17.1	2.00	ND	5.0	ND	2.00	ND	5.00	ND	1.00
PAHs													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	0.76	0.19	ND	10.0	ND	9.30	ND	11.70
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	0.86	0.19	ND	10.0	ND	9.30	ND	11.70
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Naphthalene	91-20-3	10	μg/L	44.0	10.0	0.29	0.19	ND	10.0	ND	9.30	ND	11.70
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30	ND	11.70
Cyanide													
Cyanide, Total	NA	0.2	mg/L	0.13	0.010	0.172	0.010	0.68 S	0.010	0.0877	0.005	0.11	0.010

- Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect
- 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

- 4. Division of Water Technical and Operational Guidance Series (10Gs) (1.1.1) Ambient Water Quality Standards and Guidance
 5. Bold Sample result = compound was detected.
 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.
 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."
 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Exhibit A Monitoring Well Location Map

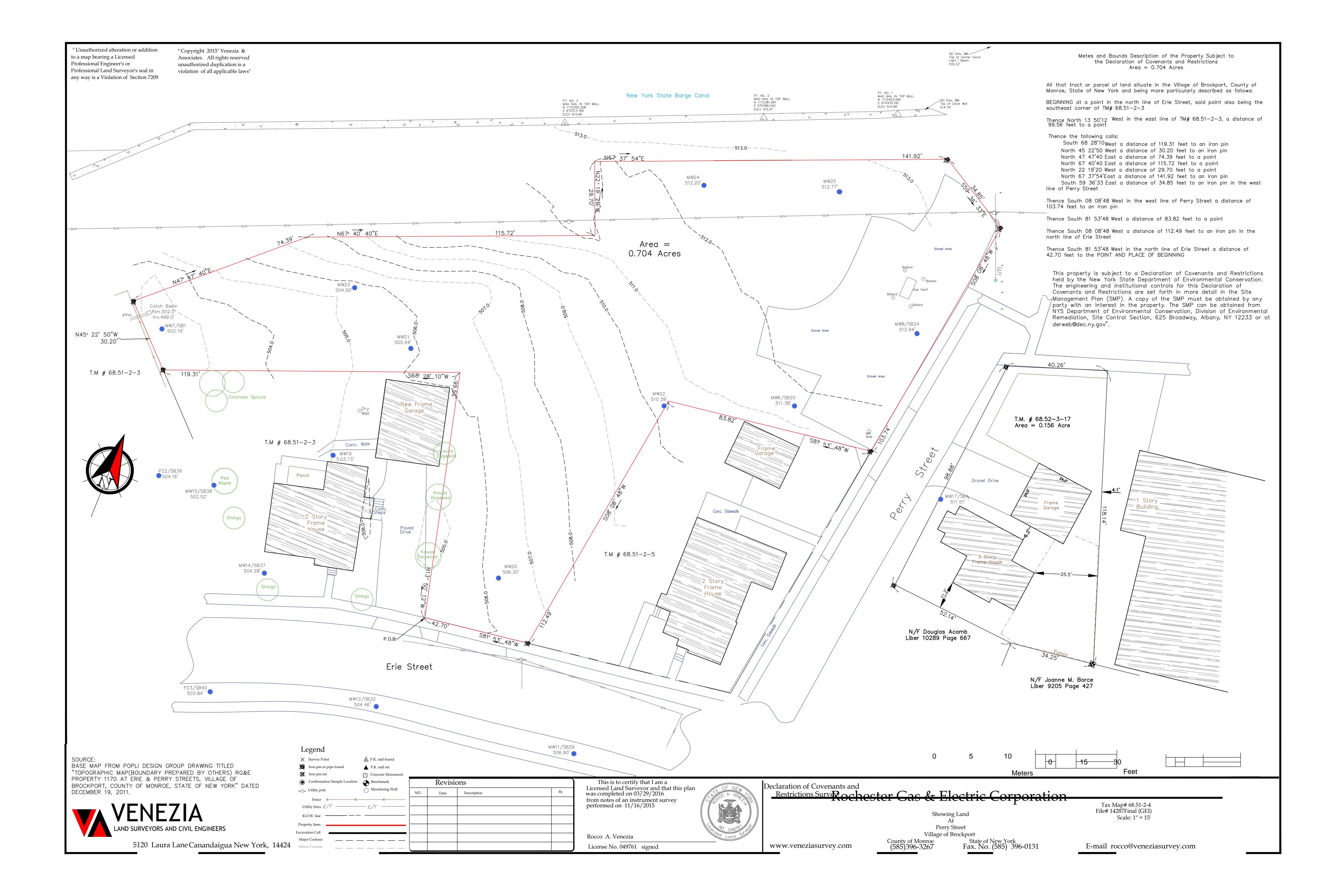
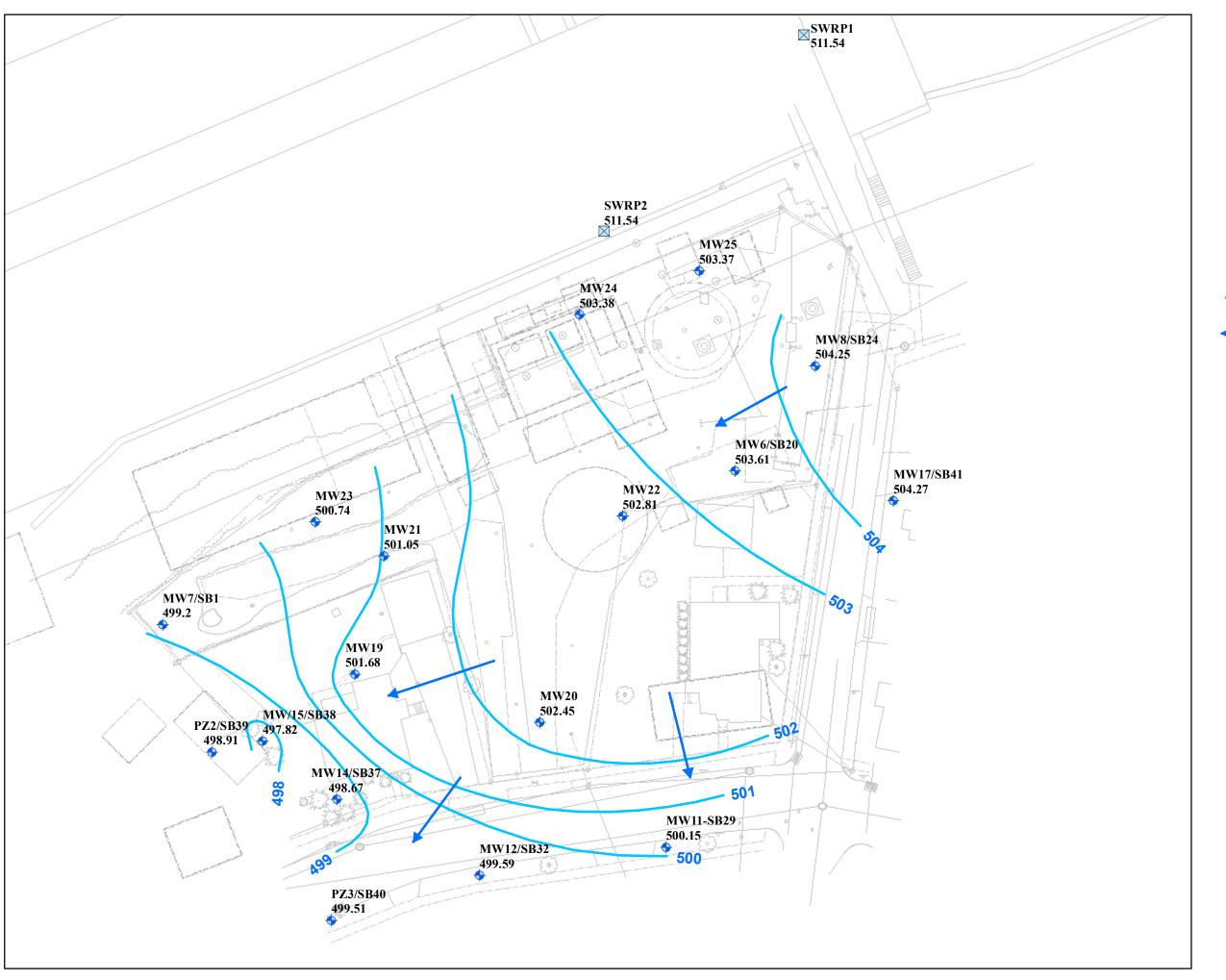
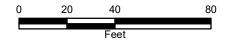



Figure 1
Groundwater Elevation Contours

FIGURE 1

LEGEND

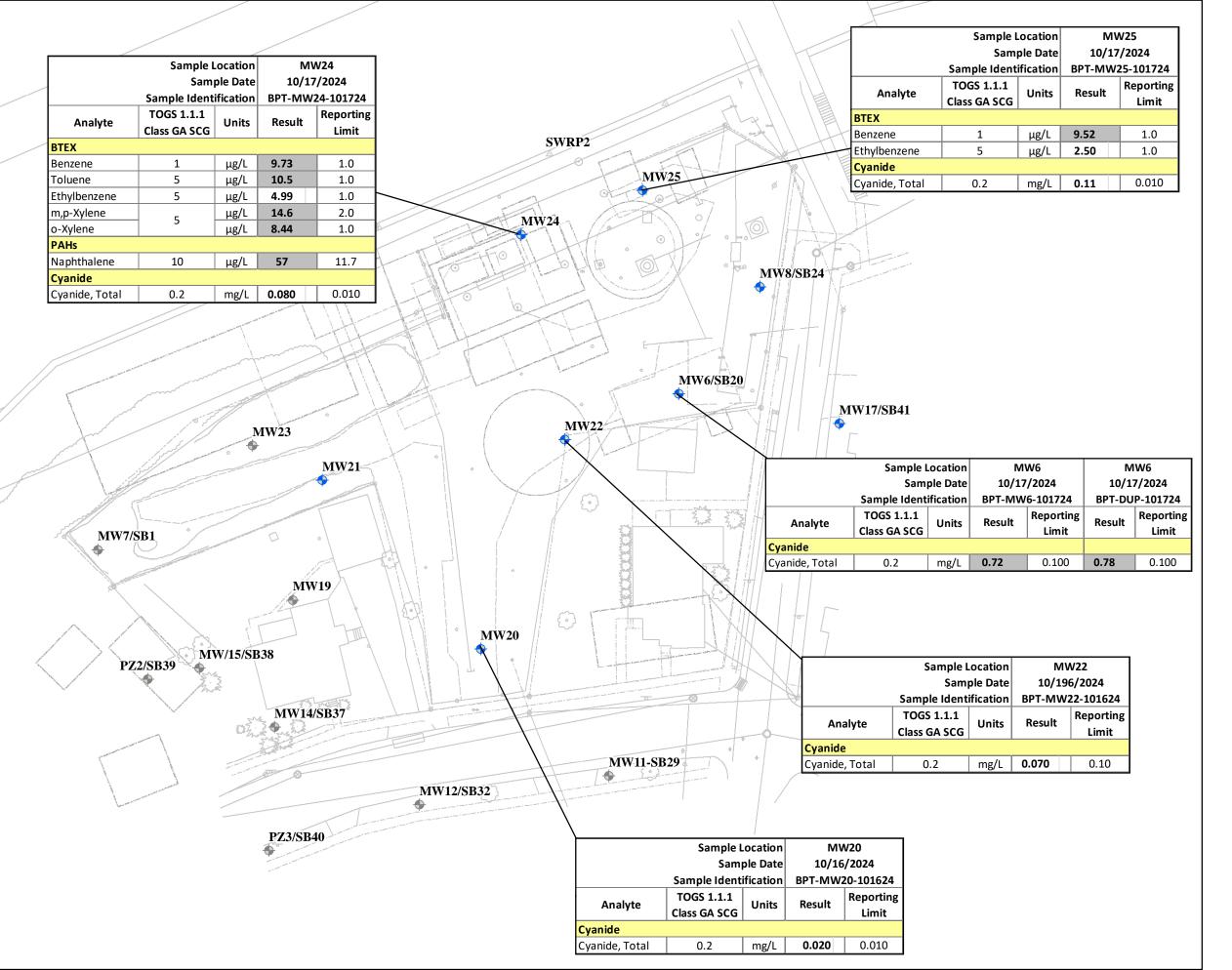

- ♦ GROUNDWATER MONITORING WELL
- SURFACE WATER REFERENCE POINT
 - GROUNDWATER ELEVATION CONTOUR
- INFERRED GROUNDWATER FLOW DIRECTION

NOTES:

BASEMAP PROVIDED BY RG&E.
 GROUNDWATER ELEVATION MEASURED OCTOBER 14, 2024 IN FEET (NAVD 88).

ROCHESTER GAS & ELECTRIC CORPORATION FORMER MGP SITE ERIE AND PERRY STREETS BROCKPORT, NEW YORK

OCTOBER 2024 GROUNDWATER ELEVATION CONTOURS

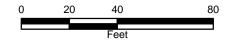


JANUARY 2025

Figure 2
Groundwater Analytical Detections

FIGURE 2

LEGEND


- MONITORING WELL (SAMPLED)
- MONITORING WELL (WATER LEVEL ONLY)

NOTES

- 1. BASEMAP PROVIDED BY RG&E.
- 2. BOLD INDICATES DETECTED ANALYTICAL CONCENTRATION.
- 3. SHADED VALUES INDICATE CONCENTRATIONS IN EXCEEDANCE OF NYSDEC TOGS 1.1.1 CLASS GA SCGs, REVISED JUNE 2004.

ROCHESTER GAS & ELECTRIC CORPORATION FORMER MGP SITE ERIE AND PERRY STREETS BROCKPORT, NEW YORK

OCTOBER 2024 GROUNDWATER ANALYTICAL DETECTIONS

JANUARY 2025

Attachment A Groundwater Sampling Logs

NEU-	VELLE, LLC	w.	***************************************	Low	Flow Gro	und W	<u>/ater Sam</u>	<u>pling L</u>	<u>og</u>
Date	10/15/24	Personn	el	Andrev	v Rothfuss	Weather	400FC	10-164	,
Site Nan	ne RGE Brocks	· マメナ Evacuat	ion Meth	od 3/4/	BP		MW-17		
Site Loc	BUCKBIT NY	′ Samplin	g Method			– Project≠			
		•					···············		
	ormation:			* 140.00		. frama			
Depth of Depth to	Well "	<u>1,5 ft.</u> <u>24 ft. 16</u> 0	11410	" Meas	urements taker		Vell Casing	NAPL?	İ
•	of Water Column	ff (140)	1 '71 6	-9		1, ob o. A	veli Casiriy	NO	
Langtire	T TTALOI COILIIII					1		100	
							· · · · · · · · · · · · · · · · · · ·		
Start Pu	rge Time: 1035								
	Depth				Oxidation	Dissolv			
Time	To Water	Temperature		Conductivity	Reduction		Turbidity	Flow	
	(Ft. BTOC)	(℃)	pН	(µs/cm)	Potential	(mg/l)	(NTU)		ml/min)
10110	7.52	12.9	7.39		310.8	4.98	24.2	140	
1045	7.99 53-	13,1	7,47	1.830	308,3	5.66	17.9	1	
1050	7.5055H	13,4	7.50 7.55	1.837	307.6	7.22	14.3	+ +	
1100	7.56	13.3	7.58	1.827	305.4	7.89	13,1	+ +	
1105	7.55	13,8	7.67	1.818	127.7	8.76	13.2	+	
1110	7.56	13.4	7.61	1.819	187.8	8.20	12.8		
1115	7.56	13.5	7,67	1.912	213.9	7.45	11.60		
1120	7.50	13,5	7,65	1.805	228,2	8.34	5.76	V	
1125			۲						
11 30									
1140									
11.						+			
								 	
			 		1			 	
								1	
				***************************************	5			···	
					<u> </u>	<u> </u>			
End Pur	ge Time: 1120								
vvater s	-						, ,	,	
1 me co				i otal volume o	r purgea water r	removea:	Lla	9/	
1 *	appearance at start				Physical app		sampling		ŀ
	Color (Lett					Color	AATHI	-	
Change	Odor None				Shoon/i	Odor Free Prod	uct NWC		
Sileelive	ree Product Wrd		1				uci pour <u>C</u>	_	
			11 BF	T_ WW	-17-101	524			
Analytic	al Parameters:					• •			
Contair	or Size Contain	ner Tyne	# 62	lected F	ield Filtered	1	<u> </u>	Container p	н
Contail	ioi oize Contai	ner Type	# 00	ioued F	IOIU I INGIGU	+	- '	-Outemot	
					wie				
 			 			1			

NEU-	VELLE, LLC			1	Low	Flow Grou					
Date	10/15/24	Personn	el		Andrew	Rothfuss	Weather	400	F CI	oul	4
Site Nam		RIOC Evacuat		_		2 - lowfla		MI	V-B	8	
-	13 rock Ports	Samulin	g Method		BP	-low/)au	•		<u> </u>		
Site Loc_	1310C 12 1013 1	Sampin	g wellio	J 	<u> </u>	1010/ /20	Jr Toject n				
Well info	ormation:	11 Ot									
Depth of	Well*	18 3 TT.		•	Measu	rements taken	from				
Depth to	Water * 🖁	69 ft.				X	Top of ₩	vell Casin	g N	IAPL?	
Length o	f Water Column	ft.									ļ
							ļ				
Start Pur	ge Time: 1725										
, С.С п. I Г		<u> </u>	Ι .	1		Oxidation	Dissolv	ad a		·	
Time	Depth To Water	Temperature		 Conduct	livity	Reduction		Turbidit	v 1,	Flow	İ
111116	(Ft. BTOC)	(°C)	рH	(μs/cm	-	Potential	(mg/l)				mi/min)
1230	8.40	14.4	7.23	2.23		249.41	1.83	Over		200	
1235	8,91	14,4	7.14	2.27		217.0	2.06	over		1	
1240	8.91	14.3	7.15	2.26		205.0	2.35	over			
1245	4.91	14.1	7.11	2,2	-	199.6	2.33	over			
1250	8.92	14.1	7.12	2,31		190.7	1.99	90.7			
1255	8.94	14.1	7,10	2.32	9	117.9	1.76	90.9			
1300	8.96	14.1	7,11	2.34		129.7	1.56	<u> </u>			
1305	8.98	14.1	7.12	2.41		132.3	1.54	71.9		<u> </u>	
1710	8. વર	14.2	7.16	2.42		129.6	1.56	66.4			
1715	8,49	14.5	7.1	2,42	<u>- 75 </u>	123.1	1.56	46.0	-		
1720			-								
1325			 	 							
1736			 		·						
1340				 							
139=				i	***************************************						
											
				<u> </u>							
			<u> </u>				<u> </u>				
							 				
	. 7 . 6									***************************************	
End Pur	ge Time: 1 <u>315</u>										
vvater s	ample: 1320			ı otal vo	ume or	purged water re	emovea:	<u> 2.</u> ·	5-3	20	<u>!</u>
Dhiratani	l annonranco et etert	•				Physical appe	arance e	t sampling	a 1		
Physica	l appearance at start	Clordy				r Hysical appe	Color	ريه د 1	134 /l	10/10	VISK
		CIVIG					Odor	1/1/1	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	/ 11/-	
Sheen/F	Free Product Non					Sheen/F		uct No			
Cilcolii	tes i louder 100M		.	6							
		<u>" 15r</u>	<u> 1 </u>	NW- B_	<u>. lol</u>	524"					MARK T
Analytic	cal Parameters:										
Contair	ner Size Conta	iner Type	# Co	lected	Fi	eld Filtered	T	1	Co	ntalner	pН
- Jindir											
							<u> </u>				
						··············	 				
—			1	4			<u> </u>				

NEU-\	/ELLE	, LLC			<u>L</u>	_ow	Flow Grou	und W			
			Personn	el	Α			Weather	4000	SPIN	1Kliny
- Site Nam	e 12.6	6/Zozy E Brockfu	ار Evacuati	on Meth	od –	low	Flow	Well#	Mw.		
Site Loc	Brok	EKPULT N	Sampling		_	low	flow	Project #			- [
											
	rmation:		.					6			
Depth of		<u>12</u> <u>3.</u>	<u>**</u> ft. <i>19</i> ft.		•	weasu	rements taken		Vell Casing	NAPL?	
	Water *		π. ft.					100 OI V	ven Casing	INTELL	
Length o	f Water C	Olumin									
Start Pur	ge Time <u>:</u>	0930	 								
ſ	C	epth					Oxidation	Dissolv			
Time		Water -	Temperature		Conduct	-	Reduction		Turbidity	Flow	
	(Ft	.BTOC)	(°C)	pH	(μs/cm		Potential	(mg/l)	(NTU)		(ml/min)
0935			16.5	7.28			238.8	5.58			20
40		5,31 3,32	16.7	7.29			239.7	4,73	OW/		1
45 50	····	3.33	16.9	7.77			240.2	3.10	DUN	1 7	
55		3.34	17.0	7.25	0.75	4	234.1	2.09	Over		
1000		3.34	17.0	7.75	0.7	54	120.5	1.17	Over		
05		3.34	17.0	7.7	0.7	53	118.3	0.62		++	
10		3.34	16.9	7.21	0.75	3	75.0	0.44	86.1		
15		3.35	17.0	7.20	0.75		50.7	0.29	66.8	_	
20 25		7,70	1 100		1 0.7	2/	1 30.7		777		
30											
										_	
			<u> </u>				<u> </u>	<u> </u>		V_	
							-	 			
		<u> </u>						- 			
								_			
								<u> </u>	<u> </u>		
End Pur	ge Time:	1020									
vvater s	ample:	lo 25			1 0201 1/01		purged water r	emoveu.	3 g.	014	
I ime co	nectea:	10 00			Total voi	unie oi	pulged water i	GINOVEG.	7	<u> </u>	
Physica	I appeara	nce at start	. ,				Physical appe	earance a	it sampling	lova	
	Color	Brown /	Cloudy/mud	44				Color	Clear,	1000d	y
	Odor	Nunc		-/				Odor	home		
Sheen/F	ree Prod	uct Nove					Sheen/	Free Prod	duct 700	<u>~</u>	
		-	Pelson	4 [3000	พพ	-20-1011	124 9	•		
Analytic	cal Paran	neters:						<u> </u>			
			<u> </u>								u nhi
Contai	ner Size	Conta	iner Type	# Co	llected	F	ield Filtered			Containe	er pH
								<u> </u>			
				 				+			

NEU-VELLE, L	LC	<u>L</u>	<u>ow Flow Grou</u>	<u>ınd Water S</u>	Sampling Log
10/1/	7 W Parsonn	ad A	ndrew Rothfuss	Weather 4	of Clordy
Site Name Bunk IC	POTTROC Evacuat	lon Method	Cour Flow	Well#	(W-22 '
Site Loc Brovica	Samplin	g Method	ww flow	Project #	
Well information:	175+ #	*	Measurements taken	from	
Depth of Weil * Depth to Water *	125± ft. 7.41_ft.		X	Top of Well Casir	ng NAPL?
Length of Water Colum	******			•	NO
·	······································				
Start Purge Time:	1120				
Dept	n 1		Oxidation	Dissolved	
Time To Wa		Conducti	- 1	Oxygen Turbidi	· · · · · · · · · · · · · · · · · · ·
(Ft. BT	oc) (°C)	pH (μs/cm		(mg/l) (NTU	
1175 NI		7.37 0.93	6 717.3	7.49 5.	
3° 8.0. 35 8. 3	16.2	7.48 0.89	0 183.9		02
95 8.13 40 8.40	1 6.2	7.47 0.88	5 1600	8.09 7.7	6
40 8.40 45 8.89	10.2	752 0.88	3 (23.0	7.80 5.5	54
50 9.01	16.1	7.51 0.87	9 130-3	768 51	3'
51 9.01	16.1	7.57 0.870	9 131.9	737 4.7	4 -
1707		<u> </u>			
End Purge Time:	1155		ms/msD		
vvater sample:					
I ime collected:	<u>12</u> 60	fotal vol	ume or purged water re	emovea:	
Physical appearance	ot stad		Physical anne	earance at samplir	na
Color	Cleal		t tiyotodi uppe	Color ()	=
Odor	Anne			ن تسابل کی است	٠.٤
Sheen/Free Product	None		Sheen/f	ree Product N	DNC
		11221	25. WM	11.771	
Analytical Paramete	7 5 :	~ V14- 1	-0h-0c 5 (4	3/4 00	
			—		Container all
Container Size	Container Type	# Collected	Field Filtered	-	Container pH
 		 			

NEU-V	ELLE, LLC			<u>Lo</u>	w Flow Gro	und W	ater Sam	oling Log
Date	10/17/24	Personn	el	And	rew Rothfuss	Weather	400F MW-Z	SUMMY
Site Name	RGE Brockpr	- アナ Evacuat	on Method	し	ow typu	Well#	MW-Z	1
	Brockport Ny		g Method	し	ow flow	Project #	!	
Well infor							·	
Depth of V	Mell *	2.5 #		* Me	easurements taken	from		
Depth to V	Vater *	2.5 ft. 65 ft. 10	114/24		Х	7	/ell Casing	NAPL?
-	Water Column	ft.	, 11-1]	Ţ	64
]		
Start Purg	e Time: 0825			***************************************				
	Depth				Oxidation	Dissolve	ed	
Time	To Water	Temperature	ł I	onductivit			Turbidity	Flow
	(Ft. BTOC)	(°C)		μs/cm)	Potential	(mg/l)	(NTU)	Rate (ml/mln)
0830		15.6	7.40	<u>0.738</u>	106.9	3.35	byer	150-200
35	5.00 4.99	15.9 15.6		0.746	43.3 57.8	6.55	104.8	
46	<u> </u>	16.1	7.33	0.745	59.3	8.18	76.2	
50	4.43	15.9		0.744		8.40	64.3	1 1
55	4.96	1(,, 0	7.5	6.744	63.7	8.56	44.1	
0900							•	
						<u> </u>		
					•		 	
								1
								+
		<u> </u>	 			-		
								-
						1		
						<u> </u>	***************************************	
End Purge	e Time: <u> </u>	2						
vvater sar			t	otal volume	e of purged water re	emovea:	2.5	gat +
l							`	
1 -	appearance at start				Physical appe	earance at Color	sampling	1, 4,6
	Color <u>Cloudy</u> Odor Unicuou	43 44				Odor	None	<u>It</u> e Poy
	Odor <u>(Micwoo</u> ee Product N M				Sheen/F	ree Prodi		_]
OHOOHIN TO	se i loddor 1001							-
		" B	PT - V	4W-21	-101724	f		
Analytica	l Parameters:							
Containe	or Size Conta	ner Type	# Collec	cted	Field Filtered			Container pH
						-		

15 1

NEU-	<u>VELL</u>	E, LLC				Low	Flow Gro	und W	<u>later Sar</u>	npling Log	
Date	101	17/24	Personr			Andrev	v Rothfuss	Weather	Ī		ı
Site Nan	ne 126	& Browle	Port Evacuat	tion Meth	od			Well#	mw-	6	ı
Site Loc	Brol	ICPORTN	/ Samplin	g Metho			·	Project #			ı
			-								ı
Well info); • • • •	<u>-1</u> .								ı
Depth of		14	. 5 f ft.	14. 1		* Meas	urements taker	_			ı
Depth to		2 7 0	74 ft. 10	114/	24		<u> </u>	Top of V	Vell Casing	NAPL?	i
Length o	or vvater t	Column	п.		·			-			
				<u>, </u>							
Start Pu	rge Time	: 9:4)5									į
		Depth					Oxidation	Dissolv	ed		
Time		Fo Water	Temperature		Conduc	tivity	Reduction	Oxygen	Turbidity	Flow	1
	(F	t. BTOC)	(°C)	рН	(μs/cm)	Potential	(mg/i)	(NTU)	Rate (ml/min)	
450	90.	MANAGEMENT CONTRACTOR OF THE PARTY OF THE PA	13.6	7.18	1.50		200,1	10.72	47.3		
955	98.7		15.7	7.36	1.44		204.2	10.20	41.6		
1000	96		15,9	7.18	1.46		209.0	10.04	31,4		1
10 05	9,91		15.9	6.97	1.46		220.2	7.66	30.7		
1010	10,		16.0	6.86	1.14		723.6	5.40	15, 2		
1075	17.6	,	16.0	6.70	1.53		139.7	2.88	9,8		
1070 1875	12.		16.2	6.69	1,5		166.1	0.96	9.6		İ
1030	,		10.2	0.01	,,,,	<u> </u>	1.00.1	1	, . 2		
1035											İ
											!
			_								
							1	<u> </u>			
<u> </u>							1				
			<u> </u>	 	<u> </u>		1				l
											ļ
				<u> </u>							
											1
		·				·					
								1			Í
			<u>I</u>					1			
End Pur	ge Time:	1050]	7 01	Dicute_	11 BPT	T_ DUP-	10172411 N	PTIM
water s	ample:				4	•		·			
Time co					i otal vo	iume of	r purged water r	emovea:			1
Dhusiasi	l annon-	ince at start					Physical appe	agronee et	eamnline		
•	appeara Color	Ince at start					ппуэка арр	earance ar Color	Clear	ANADATA	į
	Odor	None	· · ·					Odor	None		
		luct None					Sheen/i		uct NOND		į
	,, ,	NUNC.							- 1 V/ W/		
			4 Ken B	M-	MW-	6-1	01724				
Analytic	al Paran	neters:						,			!
Contair	ner Size	Contai	ner Type	# Col	lected	F	ield Filtered			Container pH	Į
				<u> </u>				+			
											İ

NEU-	VELLE, LLC			Lo	w Flow C	<u> Pro</u> l	and W	<u>/ater Sam</u>	<u>pling</u>	Log
Date	10/17/24	Personn	el		rew Rothfuss		Weather			
Site Nam	10 RGG BrockPol	+ Evacuat	ion Meth	od L	on flow	ب	Well#	MW-20	4]
	BrakbitNy		g Method	d	-owflu	w	Project #	ŧ		_
Well info	rmation:		*************			<u></u>				
Depth of	Well* 14	1.5 th.		* Me	asurements t	aken	from			
Depth to	Well * 19 Water * 9.	40 ft. 10/1	4/24		Х		Top of V	Vell Casing	NAPL	?
Length o	f Water Column	ft.	!						\sim	0
									•	_
Start Pur	ge Time: 1120)								
Γ	Depth				Oxidatio	n	Dissolv	ed	T	
Time	To Water	Temperature		Conductivity	II	- 1		Turbidity	Flow	
	(Ft. BTOC)	(°C)	Нq	(μs/cm)	Potential	- 1	(mg/l)	(NTU)	Rate	(ml/min)
11 25	A	16.7	7.46	0.732	-104.	5	1.21	7.97	100	
30	8.60	16.8	7.40					4.03		
35	8.62	16.9	7.36		-130			2.80		
40	8.45 8.45	١,٣٠		0.709	<u>-135.</u>		0.80	2012.16		
46	8.65	(6.9	2.34	5.705	-132		1.15	1.76	1	
50	8.65	16.9	7.35	0.706	-153	5. 7	1:23	1.66		
55										\
1200									1	
									1	(
									1	\
						·				
										
									$+ \vee$	
	· · ·									<u> </u>
									+	
								•		
				<u>[</u>						
End Purg	ge Time: \(\ \	50								
water sa	ample:	_						1 . 1	1	
i ime coi	iectea: U 5 5			rotal volume	or purged wa	iter re	moved:	1 gal		
Physical	appearance at start				Physical	appea	arance at	sampling		
-	Color (/LA)				•	•••		Clear		
	Odor Petro DE	ov .					Odor	Petro (1000	
Sheen/F	ree Product	Lisht/sma	11 Shew	И	She	een/F	ree Prod	uct Small /S	Ti(H+	Sheen
	1(BPT~ WI	. بر ک س	محايا	W. V.			1113 Lep		
Analytic	al Parameters:	Dri~WII	Nº LY	j 101/ ₁	<u> </u>					
anay no										
Contain	er Size Contair	пет Туре	# Co	lected	Fleld Filtered				Containe	er pH
										
										1,000,000,000

NEU-\	/ELLE, LLC			Low	Flow Gro	<u>und W</u>		
Date _	10/17/24	Personr	el	Andre	v Rothfuss	Weather	50 °F MW-2	Sunny
Site Nam	· ZGE Brock	- <i>Por→</i> Evacuat	ion Method			- Well#	MW-2	5 7
Site Loc	Brockpurt	Samplin	g Method			Project#		
		•					·	
Well Info	ormation:	·		* * *		6		
Depth of Depth to	Well * 17	<u>† </u>		" Meas	surements taken	7	ell Casing	NAPL?
	Water Column	ft.			-	Toporv	ren Casing	"ก็อ
Longino	·					1		
Start Pur	ge Time: ! 255			·				
i F	Depth		1		Oxidation	Dissolve	.d	
Time	To Water	Temperature	Con	ductivity	Reduction		Turbidity	Flow
,,,,,	(Ft. BTOC)	(°C)	I I	cm)	Potential	(mg/l)	(NTU)	Rate (ml/min)
1300		17.9		64B	-50.6	200	Z7.1	100
05	99.18	19.0	7.17 12.	795	1-110.5	0.76	39.7	
10	9.10	19.1	7.19 0.	804	-115.3	0.65	39.1	<u> </u>
15	9.19	19.0	7.20 0	799'	-111.3	0.91	27.7	
30 25	9.10	19.7	7.73 0.	795 790	-116.0	0.64	18.4	
1330	alito	14.6	1.04 0	110	110.7	10.00-7		
								<u> </u>
						 		
						 		+
		 						
					1			
						1		<u> </u>
								<u> </u>
 						 		+
						1		-
End Purg	je Time: 1325							
water sa	mple: エスク						1 001	
I ime coil	ected: ())		lota	volume o	r purged water re	emovea: _	1 gn1	
Physical	appearance at start				Physical appe	arance at	sampling	
	Color <u>(leaf</u>					Color	Clear	_,
	Odor <u>Petrol</u>	020V				Odor	Petrol 0	20/
	ee Product NM				Sheen/F	ree Produ	ict Nor	یا
BPT.	-CB-101724	10 120	N 13:	PT W	W-25- 10	17244		
Analytica	al Parameters:							
Containe	er Size Contai	ner Type	# Collected	F	ield Filtered	T	l c	Container pH
Jonana	. Jimo Oosillai	, , , , , , , , , , , , , , , , ,	001100101					
ļ								
						1		

Exhibit B

Groundwater Laboratory Reports and Chain of Custody Forms

Analytical Report For

Neu-Velle

For Lab Project ID

244886

Referencing

RGE Brockport

Prepared

Thursday, October 31, 2024

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

Emilyfaimen

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Lab Project ID: 244886

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-17-101524

Lab Sample ID: 244886-01 **Date Sampled:** 10/15/2024 11:25

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Anal	<u>vzed</u>
Acenaphthene	< 12.5	ug/L		10/23/2024	15:37
Acenaphthylene	< 12.5	ug/L		10/23/2024	15:37
Anthracene	< 12.5	ug/L		10/23/2024	15:37
Benzo (a) anthracene	< 12.5	ug/L		10/23/2024	15:37
Benzo (a) pyrene	< 12.5	ug/L		10/23/2024	15:37
Benzo (b) fluoranthene	< 12.5	ug/L		10/23/2024	15:37
Benzo (g,h,i) perylene	< 12.5	ug/L		10/23/2024	15:37
Benzo (k) fluoranthene	< 12.5	ug/L		10/23/2024	15:37
Chrysene	< 12.5	ug/L		10/23/2024	15:37
Dibenz (a,h) anthracene	< 12.5	ug/L		10/23/2024	15:37
Fluoranthene	< 12.5	ug/L		10/23/2024	15:37
Fluorene	< 12.5	ug/L		10/23/2024	15:37
Indeno (1,2,3-cd) pyrene	< 12.5	ug/L		10/23/2024	15:37
Naphthalene	< 12.5	ug/L		10/23/2024	15:37
Phenanthrene	< 12.5	ug/L		10/23/2024	15:37
Pyrene	< 12.5	ug/L		10/23/2024	15:37
C	.	D 71 1.	0 11	D . A 1	

Surrogate Percent Recov		<u>Limits</u>	<u>Outliers</u>	Date An	alyzed
2-Fluorobiphenyl	66.2	15.2 - 100		10/23/2024	15:37
Nitrobenzene-d5	76.5	47.4 - 98.9		10/23/2024	15:37
Terphenyl-d14	88.0	56 - 111		10/23/2024	15:37

Method Reference(s): EPA 8270D

EPA 3510C

 Preparation Date:
 10/22/2024

 Data File:
 B74549.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 16:12
Ethylbenzene	< 1.00	ug/L		10/22/2024 16:12

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Lab Project ID: 244886

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-17-101524

Lab Sample ID: 244886-01 **Date Sampled:** 10/15/2024 11:25

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 16:12
o-Xylene	< 1.00	ug/L	10/22/2024 16:12
Toluene	< 1.00	ug/L	10/22/2024 16:12

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	<u>alyzed</u>
1,2-Dichloroethane-d4	106	80.5 - 124		10/22/2024	16:12
4-Bromofluorobenzene	90.0	78.2 - 114		10/22/2024	16:12
Pentafluorobenzene	96.7	90.8 - 109		10/22/2024	16:12
Toluene-D8	97.4	90.3 - 110		10/22/2024	16:12

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27263.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-8-101524

Lab Sample ID: 244886-02 **Date Sampled:** 10/15/2024 13:20

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
Acenaphthene	< 10.8	ug/L	10/23/2024 16:07
Acenaphthylene	< 10.8	ug/L	10/23/2024 16:07
Anthracene	< 10.8	ug/L	10/23/2024 16:07
Benzo (a) anthracene	< 10.8	ug/L	10/23/2024 16:07
Benzo (a) pyrene	< 10.8	ug/L	10/23/2024 16:07
Benzo (b) fluoranthene	< 10.8	ug/L	10/23/2024 16:07
Benzo (g,h,i) perylene	< 10.8	ug/L	10/23/2024 16:07
Benzo (k) fluoranthene	< 10.8	ug/L	10/23/2024 16:07
Chrysene	< 10.8	ug/L	10/23/2024 16:07
Dibenz (a,h) anthracene	< 10.8	ug/L	10/23/2024 16:07
Fluoranthene	< 10.8	ug/L	10/23/2024 16:07
Fluorene	< 10.8	ug/L	10/23/2024 16:07
Indeno (1,2,3-cd) pyrene	< 10.8	ug/L	10/23/2024 16:07
Naphthalene	< 10.8	ug/L	10/23/2024 16:07
Phenanthrene	< 10.8	ug/L	10/23/2024 16:07
Pyrene	< 10.8	ug/L	10/23/2024 16:07

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	63.5	15.2 - 100		10/23/2024	16:07
Nitrobenzene-d5	72.4	47.4 - 98.9		10/23/2024	16:07
Terphenyl-d14	75.6	56 - 111		10/23/2024	16:07

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74550.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 16:32
Ethylbenzene	< 1.00	ug/L		10/22/2024 16:32

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-8-101524

Lab Sample ID: 244886-02 **Date Sampled:** 10/15/2024 13:20

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 16:32
o-Xylene	< 1.00	ug/L	10/22/2024 16:32
Toluene	< 1.00	ug/L	10/22/2024 16:32
_			

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	104	80.5 - 124		10/22/2024	16:32
4-Bromofluorobenzene	92.6	78.2 - 114		10/22/2024	16:32
Pentafluorobenzene	97.5	90.8 - 109		10/22/2024	16:32
Toluene-D8	98.5	90.3 - 110		10/22/2024	16:32

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27264.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-20-101624

Lab Sample ID: 244886-03 **Date Sampled:** 10/16/2024 10:25

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 10.6	ug/L			10/23/2024 16:36
Acenaphthylene	< 10.6	ug/L			10/23/2024 16:36
Anthracene	< 10.6	ug/L			10/23/2024 16:36
Benzo (a) anthracene	< 10.6	ug/L			10/23/2024 16:36
Benzo (a) pyrene	< 10.6	ug/L			10/23/2024 16:36
Benzo (b) fluoranthene	< 10.6	ug/L			10/23/2024 16:36
Benzo (g,h,i) perylene	< 10.6	ug/L			10/23/2024 16:36
Benzo (k) fluoranthene	< 10.6	ug/L			10/23/2024 16:36
Chrysene	< 10.6	ug/L			10/23/2024 16:36
Dibenz (a,h) anthracene	< 10.6	ug/L			10/23/2024 16:36
Fluoranthene	< 10.6	ug/L			10/23/2024 16:36
Fluorene	< 10.6	ug/L			10/23/2024 16:36
Indeno (1,2,3-cd) pyrene	< 10.6	ug/L			10/23/2024 16:36
Naphthalene	< 10.6	ug/L			10/23/2024 16:36
Phenanthrene	< 10.6	ug/L			10/23/2024 16:36
Pyrene	< 10.6	ug/L			10/23/2024 16:36
<u>Surrogate</u>	Percen	t Recovery	Limits	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>
2-Fluorobiphenyl	67.3	15.2 - 100		10/23/2024	16:36
Nitrobenzene-d5	78.2	47.4 - 98.9		10/23/2024	16:36
Terphenyl-d14	85.2	56 - 111		10/23/2024	16:36

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74551.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 16:51
Ethylbenzene	< 1.00	ug/L		10/22/2024 16:51

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-20-101624

Lab Sample ID: 244886-03 **Date Sampled:** 10/16/2024 10:25

Matrix: Groundwater Date Received 10/18/2024

Surrogate	Percen	t Recovery	Limits	Outliers	Date Analyzed
Toluene	< 1.00	ug/L			10/22/2024 16:51
o-Xylene	< 1.00	ug/L			10/22/2024 16:51
m,p-Xylene	< 2.00	ug/L			10/22/2024 16:51

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	109	80.5 - 124		10/22/2024	16:51
4-Bromofluorobenzene	89.4	78.2 - 114		10/22/2024	16:51
Pentafluorobenzene	98.7	90.8 - 109		10/22/2024	16:51
Toluene-D8	100	90.3 - 110		10/22/2024	16:51

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27265.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-22-101624

Lab Sample ID: 244886-04 **Date Sampled:** 10/16/2024 12:00

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 10.8	ug/L			10/23/2024 17:05
Acenaphthylene	< 10.8	ug/L			10/23/2024 17:05
Anthracene	< 10.8	ug/L			10/23/2024 17:05
Benzo (a) anthracene	< 10.8	ug/L			10/23/2024 17:05
Benzo (a) pyrene	< 10.8	ug/L			10/23/2024 17:05
Benzo (b) fluoranthene	< 10.8	ug/L			10/23/2024 17:05
Benzo (g,h,i) perylene	< 10.8	ug/L			10/23/2024 17:05
Benzo (k) fluoranthene	< 10.8	ug/L			10/23/2024 17:05
Chrysene	< 10.8	ug/L			10/23/2024 17:05
Dibenz (a,h) anthracene	< 10.8	ug/L			10/23/2024 17:05
Fluoranthene	< 10.8	ug/L			10/23/2024 17:05
Fluorene	< 10.8	ug/L			10/23/2024 17:05
Indeno (1,2,3-cd) pyrene	< 10.8	ug/L			10/23/2024 17:05
Naphthalene	< 10.8	ug/L			10/23/2024 17:05
Phenanthrene	< 10.8	ug/L			10/23/2024 17:05
Pyrene	< 10.8	ug/L			10/23/2024 17:05
Currogata	Dorgont Dogovory		Limita	Outlions	Data Analyzad

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	61.5	15.2 - 100		10/23/2024	17:05
Nitrobenzene-d5	74.5	47.4 - 98.9		10/23/2024	17:05
Terphenyl-d14	71.4	56 - 111		10/23/2024	17:05

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74552.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 17:11
Ethylbenzene	< 1.00	ug/L		10/22/2024 17:11

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-22-101624

Lab Sample ID: 244886-04 **Date Sampled:** 10/16/2024 12:00

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 17:11
o-Xylene	< 1.00	ug/L	10/22/2024 17:11
Toluene	< 1.00	ug/L	10/22/2024 17:11

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>	
1,2-Dichloroethane-d4	104	80.5 - 124		10/22/2024	17:11	
4-Bromofluorobenzene	92.3	78.2 - 114		10/22/2024	17:11	
Pentafluorobenzene	96.6	90.8 - 109		10/22/2024	17:11	
Toluene-D8	97.5	90.3 - 110		10/22/2024	17:11	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27266.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-21-101724

Lab Sample ID: 244886-05 **Date Sampled:** 10/17/2024 9:00

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 10.6	ug/L			10/23/2024 17:33
Acenaphthylene	< 10.6	ug/L			10/23/2024 17:33
Anthracene	< 10.6	ug/L			10/23/2024 17:33
Benzo (a) anthracene	< 10.6	ug/L			10/23/2024 17:33
Benzo (a) pyrene	< 10.6	ug/L			10/23/2024 17:33
Benzo (b) fluoranthene	< 10.6	ug/L			10/23/2024 17:33
Benzo (g,h,i) perylene	< 10.6	ug/L			10/23/2024 17:33
Benzo (k) fluoranthene	< 10.6	ug/L			10/23/2024 17:33
Chrysene	< 10.6	ug/L			10/23/2024 17:33
Dibenz (a,h) anthracene	< 10.6	ug/L			10/23/2024 17:33
Fluoranthene	< 10.6	ug/L			10/23/2024 17:33
Fluorene	< 10.6	ug/L			10/23/2024 17:33
Indeno (1,2,3-cd) pyrene	< 10.6	ug/L			10/23/2024 17:33
Naphthalene	< 10.6	ug/L			10/23/2024 17:33
Phenanthrene	< 10.6	ug/L			10/23/2024 17:33
Pyrene	< 10.6	ug/L			10/23/2024 17:33
Cumpagata	Dongon	+ Dogovory	Limita	Outlions	Data Analyzad

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	54.6	15.2 - 100		10/23/2024	17:33
Nitrobenzene-d5	66.8	47.4 - 98.9		10/23/2024	17:33
Terphenyl-d14	71.4	56 - 111		10/23/2024	17:33

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74553.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 17:31
Ethylbenzene	< 1.00	ug/L		10/22/2024 17:31

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-21-101724

Lab Sample ID: 244886-05 **Date Sampled:** 10/17/2024 9:00

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024	17:31
o-Xylene	< 1.00	ug/L	10/22/2024	17:31
Toluene	< 1.00	ug/L	10/22/2024	17:31

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>	
1,2-Dichloroethane-d4	106	80.5 - 124		10/22/2024	17:31	
4-Bromofluorobenzene	91.7	78.2 - 114		10/22/2024	17:31	
Pentafluorobenzene	99.2	90.8 - 109		10/22/2024	17:31	
Toluene-D8	98.1	90.3 - 110		10/22/2024	17:31	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27267.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-6-101724

Lab Sample ID: 244886-06 **Date Sampled:** 10/17/2024 10:40

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>vzed</u>
Acenaphthene	< 10.8	ug/L		10/23/2024	18:03
Acenaphthylene	< 10.8	ug/L		10/23/2024	18:03
Anthracene	< 10.8	ug/L		10/23/2024	18:03
Benzo (a) anthracene	< 10.8	ug/L		10/23/2024	18:03
Benzo (a) pyrene	< 10.8	ug/L		10/23/2024	18:03
Benzo (b) fluoranthene	< 10.8	ug/L		10/23/2024	18:03
Benzo (g,h,i) perylene	< 10.8	ug/L		10/23/2024	18:03
Benzo (k) fluoranthene	< 10.8	ug/L		10/23/2024	18:03
Chrysene	< 10.8	ug/L		10/23/2024	18:03
Dibenz (a,h) anthracene	< 10.8	ug/L		10/23/2024	18:03
Fluoranthene	< 10.8	ug/L		10/23/2024	18:03
Fluorene	< 10.8	ug/L		10/23/2024	18:03
Indeno (1,2,3-cd) pyrene	< 10.8	ug/L		10/23/2024	18:03
Naphthalene	< 10.8	ug/L		10/23/2024	18:03
Phenanthrene	< 10.8	ug/L		10/23/2024	18:03
Pyrene	< 10.8	ug/L		10/23/2024	18:03
	.	D 71 1.	0 11	D	

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	41.6	15.2 - 100		10/23/2024	18:03
Nitrobenzene-d5	62.0	47.4 - 98.9		10/23/2024	18:03
Terphenyl-d14	62.0	56 - 111		10/23/2024	18:03

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74554.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 17:51
Ethylbenzene	< 1.00	ug/L		10/22/2024 17:51

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-6-101724

Lab Sample ID: 244886-06 **Date Sampled:** 10/17/2024 10:40

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 17:51
o-Xylene	< 1.00	ug/L	10/22/2024 17:51
Toluene	< 1.00	ug/L	10/22/2024 17:51

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
1,2-Dichloroethane-d4	107	80.5 - 124		10/22/2024	17:51	
4-Bromofluorobenzene	89.7	78.2 - 114		10/22/2024	17:51	
Pentafluorobenzene	98.2	90.8 - 109		10/22/2024	17:51	
Toluene-D8	98.9	90.3 - 110		10/22/2024	17:51	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27268.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-DUP-101724

Lab Sample ID:244886-07Date Sampled: 10/17/2024Matrix:GroundwaterDate Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 10.9	ug/L			10/23/2024 18:32
Acenaphthylene	< 10.9	ug/L			10/23/2024 18:32
Anthracene	< 10.9	ug/L			10/23/2024 18:32
Benzo (a) anthracene	< 10.9	ug/L			10/23/2024 18:32
Benzo (a) pyrene	< 10.9	ug/L			10/23/2024 18:32
Benzo (b) fluoranthene	< 10.9	ug/L			10/23/2024 18:32
Benzo (g,h,i) perylene	< 10.9	ug/L			10/23/2024 18:32
Benzo (k) fluoranthene	< 10.9	ug/L			10/23/2024 18:32
Chrysene	< 10.9	ug/L			10/23/2024 18:32
Dibenz (a,h) anthracene	< 10.9	ug/L			10/23/2024 18:32
Fluoranthene	< 10.9	ug/L			10/23/2024 18:32
Fluorene	< 10.9	ug/L			10/23/2024 18:32
Indeno (1,2,3-cd) pyrene	< 10.9	ug/L			10/23/2024 18:32
Naphthalene	< 10.9	ug/L			10/23/2024 18:32
Phenanthrene	< 10.9	ug/L			10/23/2024 18:32
Pyrene	< 10.9	ug/L			10/23/2024 18:32
Surrogate	Percen	t Recovery	Limits	Outliers	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>
2-Fluorobiphenyl	42.4	15.2 - 100		10/23/2024	18:32
Nitrobenzene-d5	58.7	47.4 - 98.9		10/23/2024	18:32
Terphenyl-d14	49.2	56 - 111	*	10/23/2024	18:32

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74555.D

Volatile Organics (BTEX)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 18:11
Ethylbenzene	< 1.00	ug/L		10/22/2024 18:11

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-DUP-101724

Lab Sample ID:244886-07Date Sampled: 10/17/2024Matrix:GroundwaterDate Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024	18:11
o-Xylene	< 1.00	ug/L	10/22/2024	18:11
Toluene	< 1.00	ug/L	10/22/2024	18:11

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>	
1,2-Dichloroethane-d4	109	80.5 - 124		10/22/2024	18:11	
4-Bromofluorobenzene	92.2	78.2 - 114		10/22/2024	18:11	
Pentafluorobenzene	96.8	90.8 - 109		10/22/2024	18:11	
Toluene-D8	96.0	90.3 - 110		10/22/2024	18:11	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27269.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-24-101724

Lab Sample ID: 244886-08 **Date Sampled:** 10/17/2024 11:55

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.7	ug/L			10/23/2024 19:00
Acenaphthylene	< 11.7	ug/L			10/23/2024 19:00
Anthracene	< 11.7	ug/L			10/23/2024 19:00
Benzo (a) anthracene	< 11.7	ug/L			10/23/2024 19:00
Benzo (a) pyrene	< 11.7	ug/L			10/23/2024 19:00
Benzo (b) fluoranthene	< 11.7	ug/L			10/23/2024 19:00
Benzo (g,h,i) perylene	< 11.7	ug/L			10/23/2024 19:00
Benzo (k) fluoranthene	< 11.7	ug/L			10/23/2024 19:00
Chrysene	< 11.7	ug/L			10/23/2024 19:00
Dibenz (a,h) anthracene	< 11.7	ug/L			10/23/2024 19:00
Fluoranthene	< 11.7	ug/L			10/23/2024 19:00
Fluorene	< 11.7	ug/L			10/23/2024 19:00
Indeno (1,2,3-cd) pyrene	< 11.7	ug/L			10/23/2024 19:00
Naphthalene	57.0	ug/L			10/23/2024 19:00
Phenanthrene	< 11.7	ug/L			10/23/2024 19:00
Pyrene	< 11.7	ug/L			10/23/2024 19:00
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed	
2-Fluorobiphenyl	54.6	15.2 - 100		10/23/2024	19:00	
Nitrobenzene-d5	65.9	47.4 - 98.9		10/23/2024	19:00	
Terphenyl-d14	63.7	56 - 111		10/23/2024	19:00	

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74556.D

Volatile Organics (BTEX)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Benzene	9.73	ug/L		10/22/2024 18:31
Ethylbenzene	4.99	ug/L		10/22/2024 18:31

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-24-101724

Lab Sample ID: 244886-08 **Date Sampled:** 10/17/2024 11:55

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	14.6	ug/L			10/22/202	24 18:31
o-Xylene	8.44	ug/L			10/22/202	24 18:31
Toluene	10.5	ug/L			10/22/202	24 18:31
<u>Surrogate</u>	<u>Perc</u>	Percent Recovery		Outliers	Date Analyzed	
1,2-Dichloroethane-d4		105	80.5 - 124		10/22/2024	18:31
4-Bromofluorobenzene		96.8	78.2 - 114		10/22/2024	18:31
Pentafluorobenzene		101	90.8 - 109		10/22/2024	18:31
Toluene-D8		96.6	90.3 - 110		10/22/2024	18:31

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27270.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-EB-101724

Lab Sample ID: 244886-09 **Date Sampled:** 10/17/2024 12:30

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.1	ug/L			10/23/2024 19:29
Acenaphthylene	< 11.1	ug/L			10/23/2024 19:29
Anthracene	< 11.1	ug/L			10/23/2024 19:29
Benzo (a) anthracene	< 11.1	ug/L			10/23/2024 19:29
Benzo (a) pyrene	< 11.1	ug/L			10/23/2024 19:29
Benzo (b) fluoranthene	< 11.1	ug/L			10/23/2024 19:29
Benzo (g,h,i) perylene	< 11.1	ug/L			10/23/2024 19:29
Benzo (k) fluoranthene	< 11.1	ug/L			10/23/2024 19:29
Chrysene	< 11.1	ug/L			10/23/2024 19:29
Dibenz (a,h) anthracene	< 11.1	ug/L			10/23/2024 19:29
Fluoranthene	< 11.1	ug/L			10/23/2024 19:29
Fluorene	< 11.1	ug/L			10/23/2024 19:29
Indeno (1,2,3-cd) pyrene	< 11.1	ug/L			10/23/2024 19:29
Naphthalene	< 11.1	ug/L			10/23/2024 19:29
Phenanthrene	< 11.1	ug/L			10/23/2024 19:29
Pyrene	< 11.1	ug/L			10/23/2024 19:29
Surrogate	Percen	t Recovery	Limits	Outliers	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	63.3	15.2 - 100		10/23/2024	19:29
Nitrobenzene-d5	75.0	47.4 - 98.9		10/23/2024	19:29
Terphenyl-d14	87.9	56 - 111		10/23/2024	19:29

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74557.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	< 1.00	ug/L		10/22/2024 18:51
Ethylbenzene	< 1.00	ug/L		10/22/2024 18:51

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-EB-101724

Lab Sample ID: 244886-09 **Date Sampled:** 10/17/2024 12:30

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 18:51
o-Xylene	< 1.00	ug/L	10/22/2024 18:51
Toluene	< 1.00	ug/L	10/22/2024 18:51

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	103	80.5 - 124		10/22/2024	18:51
4-Bromofluorobenzene	92.7	78.2 - 114		10/22/2024	18:51
Pentafluorobenzene	98.0	90.8 - 109		10/22/2024	18:51
Toluene-D8	96.8	90.3 - 110		10/22/2024	18:51

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27271.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-25-101724

Lab Sample ID: 244886-10 **Date Sampled:** 10/17/2024 13:30

Matrix: Groundwater Date Received 10/18/2024

Semi-Volatile Organics (PAHs)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analyzed
Acenaphthene	< 11.7	ug/L			10/23/2024 19:58
Acenaphthylene	< 11.7	ug/L			10/23/2024 19:58
Anthracene	< 11.7	ug/L			10/23/2024 19:58
Benzo (a) anthracene	< 11.7	ug/L			10/23/2024 19:58
Benzo (a) pyrene	< 11.7	ug/L			10/23/2024 19:58
Benzo (b) fluoranthene	< 11.7	ug/L			10/23/2024 19:58
Benzo (g,h,i) perylene	< 11.7	ug/L			10/23/2024 19:58
Benzo (k) fluoranthene	< 11.7	ug/L			10/23/2024 19:58
Chrysene	< 11.7	ug/L			10/23/2024 19:58
Dibenz (a,h) anthracene	< 11.7	ug/L			10/23/2024 19:58
Fluoranthene	< 11.7	ug/L			10/23/2024 19:58
Fluorene	< 11.7	ug/L			10/23/2024 19:58
Indeno (1,2,3-cd) pyrene	< 11.7	ug/L			10/23/2024 19:58
Naphthalene	< 11.7	ug/L			10/23/2024 19:58
Phenanthrene	< 11.7	ug/L			10/23/2024 19:58
Pyrene	< 11.7	ug/L			10/23/2024 19:58
Surrogate	Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
2-Fluorobiphenyl	47.4	15.2 - 100		10/23/2024	19:58
Nitrobenzene-d5	57.8	47.4 - 98.9		10/23/2024	19:58
Terphenyl-d14	60.6	56 - 111		10/23/2024	19:58

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74558.D

Volatile Organics (BTEX)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Benzene	9.52	ug/L		10/22/2024 19:11
Ethylbenzene	2.50	ug/L		10/22/2024 19:11

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: BPT-MW-25-101724

Lab Sample ID: 244886-10 **Date Sampled:** 10/17/2024 13:30

Matrix: Groundwater Date Received 10/18/2024

m,p-Xylene	< 2.00	ug/L	10/22/2024 19:11
o-Xylene	< 1.00	ug/L	10/22/2024 19:11
Toluene	< 1.00	ug/L	10/22/2024 19:11

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Ana	alyzed
1,2-Dichloroethane-d4	108	80.5 - 124		10/22/2024	19:11
4-Bromofluorobenzene	93.0	78.2 - 114		10/22/2024	19:11
Pentafluorobenzene	98.8	90.8 - 109		10/22/2024	19:11
Toluene-D8	98.1	90.3 - 110		10/22/2024	19:11

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27272.D

Client: <u>Neu-Velle</u>

Project Reference: RGE Brockport

Sample Identifier: Trip Blank T1195

Lab Sample ID:244886-11Date Sampled: 10/14/2024Matrix:WaterDate Received 10/18/2024

Volatile Organics (BTEX)

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date An	<u>alyzed</u>
Benzene	< 1.00	ug/L			10/22/202	24 19:30
Ethylbenzene	< 1.00	ug/L			10/22/202	24 19:30
m,p-Xylene	< 2.00	ug/L			10/22/202	24 19:30
o-Xylene	< 1.00	ug/L			10/22/202	24 19:30
Toluene	< 1.00	ug/L			10/22/202	24 19:30
Surrogate	Percent Recovery		<u>Limits</u>	Outliers	Date Ana	llyzed
1,2-Dichloroethane-d4		115	80.5 - 124		10/22/2024	19:30
4-Bromofluorobenzene		97.4	78.2 - 114		10/22/2024	19:30
Pentafluorobenzene		105	90.8 - 109		10/22/2024	19:30
Toluene-D8		106	90.3 - 110		10/22/2024	19:30

Method Reference(s): EPA 8260C

EPA 5030C

Data File: z27273.D

Method Blank Report

Client: Neu-Velle

Project Reference: RGE Brockport

Lab Project ID: 244886

Matrix: Groundwater

Semi-Volatile Organics (PAHs)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Acenaphthene	<10.0	ug/L		10/23/2024	14:11
Acenaphthylene	<10.0	ug/L		10/23/2024	14:11
Anthracene	<10.0	ug/L		10/23/2024	14:11
Benzo (a) anthracene	<10.0	ug/L		10/23/2024	14:11
Benzo (a) pyrene	<10.0	ug/L		10/23/2024	14:11
Benzo (b) fluoranthene	<10.0	ug/L		10/23/2024	14:11
Benzo (g,h,i) perylene	<10.0	ug/L		10/23/2024	14:11
Benzo (k) fluoranthene	<10.0	ug/L		10/23/2024	14:11
Chrysene	<10.0	ug/L		10/23/2024	14:11
Dibenz (a,h) anthracene	<10.0	ug/L		10/23/2024	14:11
Fluoranthene	<10.0	ug/L		10/23/2024	14:11
Fluorene	<10.0	ug/L		10/23/2024	14:11
Indeno (1,2,3-cd) pyrene	<10.0	ug/L		10/23/2024	14:11
Naphthalene	<10.0	ug/L		10/23/2024	14:11
Phenanthrene	<10.0	ug/L		10/23/2024	14:11
Pyrene	<10.0	ug/L		10/23/2024	14:11
<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
2-Fluorobiphenyl	63.4	15.2 - 100		10/23/2024	14:11
Nitrobenzene-d5	79.0	47.4 - 98.9		10/23/2024	14:11
Terphenyl-d14	95.6	56 - 111		10/23/2024	14:11

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date:10/22/2024Data File:B74546.DQC Batch ID:QC241022ABNW

QC Number: Blk 1

QC Report for Laboratory Control Sample

Client: Neu-Velle

Project Reference: RGE Brockport

Lab Project ID: 244886

Matrix: Groundwater

Semi-Volatile Organics (PAHs)

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	% Rec	<u>LCS</u>	<u>Date</u>
<u>Analyte</u>	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	Outliers	Analyzed
Acenaphthene	50.0	ug/L	34.0	68.1	48 - 90.7		10/23/2024
Pyrene	50.0	ug/L	39.2	78.3	56 - 105		10/23/2024

Method Reference(s): EPA 8270D

EPA 3510C

Preparation Date: 10/22/2024 Data File: B74547.D OC Number: LCS 1

QC Batch ID: QC241022ABNW

QC Report for Matrix Spike and Matrix Spike Duplicate

Client: Neu-Velle Lab Project ID: 244886

Project Reference: RGE Brockport

Lab Sample ID: 244886-04

Sample Identifier: BPT-MW-22-101624

Matrix: Groundwater

T-MW-22-101624 **Date Received:** 10/18/2024

ndwater Date Analyzed: 10/30/2024

Semi-Volatile Organics (PAHs)

	<u>Sample</u>	<u>Result</u>	<u>MS</u>	<u>MS</u>	MS %	<u>MSD</u>	<u>MSD</u>	<u>MSD %</u>	<u>% Rec.</u>	<u>MS</u>	MSD	<u>Relative</u>	<u>RPD</u>	<u>RPD</u>
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Added</u>	<u>Result</u>	Recovery	<u>Added</u>	<u>Result</u>	Recovery	Limits	<u>Outlier</u>	<u>Outlier</u>	% Diff.	<u>Limit</u>	<u>Outlier</u>
Acenaphthene	< 10.8	ug/L	55.8	46.7	83.7	59.0	49.8	84.4	48 - 90.7			0.820	26.9	
Pyrene	< 10.8	ug/L	55.8	47.1	84.3	59.0	53.1	89.9	56 - 105			6.41	36	

 Method Reference(s):
 EPA 8270D

 EPA 3510C
 10/29/2024

 Preparation Date:
 10/29/2024

 Data File(s):
 B74681.D

 B74682.D
 B74552.D

 1
 1

QC Batch ID: QC241022ABNW

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Date Sampled: 10/16/2024

Method Blank Report

Client: Neu-Velle

Project Reference: RGE Brockport

Lab Project ID: 244886

Matrix: Groundwater

Volatile Organics (BTEX)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Benzene	<1.00	ug/L		10/22/2024	11:42
Ethylbenzene	<1.00	ug/L		10/22/2024	11:42
m,p-Xylene	<2.00	ug/L		10/22/2024	11:42
o-Xylene	<1.00	ug/L		10/22/2024	11:42
Toluene	<1.00	ug/L		10/22/2024	11:42
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	104	80.5 - 124		10/22/2024	11:42
4-Bromofluorobenzene	92.5	78.2 - 114		10/22/2024	11:42
Pentafluorobenzene	96.4	90.8 - 109		10/22/2024	11:42
Toluene-D8	97.8	90.3 - 110		10/22/2024	11:42

Method Reference(s): EPA 8260C

EPA 5030C

 $\begin{array}{lll} \textbf{Data File:} & z27250.D \\ \textbf{QC Batch ID:} & voaw241022 \\ \textbf{QC Number:} & Blk\ 1 \\ \end{array}$

QC Report for Laboratory Control Sample

Client: Neu-Velle

Project Reference: RGE Brockport

Lab Project ID: 244886

Matrix: Groundwater

Volatile Organics (BTEX)

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	% Rec	<u>LCS</u>	<u>Date</u>
Analyte	Added	<u>Units</u>	Result	Recovery	<u>Limits</u>	Outliers	Analyzed
Benzene	20.0	ug/L	19.1	95.3	83.4 - 108		10/22/2024
Ethylbenzene	20.0	ug/L	19.0	95.1	83.3 - 107		10/22/2024
Toluene	20.0	ug/L	18.4	91.9	84.8 - 106		10/22/2024

Method Reference(s): EPA 8260C

EPA 5030C

Data File:z27249.DQC Number:LCS 1

QC Batch ID: voaw241022

QC Report for Matrix Spike and Matrix Spike Duplicate

Client: Lab Project ID: 244886

Project Reference: RGE Brockport

Lab Sample ID: 244886-04

Sample Identifier: BPT-MW-22-101624

Matrix: Groundwater

Date Sampled: 10/16/2024 **Date Received:** 10/18/2024

Date Analyzed: 10/22/2024

Volatile Organics (BTEX)

	<u>Sample</u>	<u>Result</u>	<u>MS</u>	<u>MS</u>	<u>MS %</u>	<u>MSD</u>	<u>MSD</u>	MSD %	<u>% Rec.</u>	<u>MS</u>	MSD	<u>Relative</u>	<u>RPD</u>	<u>RPD</u>
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Added</u>	<u>Result</u>	Recovery	<u>Added</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outlier</u>	<u>Outlier</u>	% Diff.	<u>Limit</u>	<u>Outlier</u>
Benzene	< 1.00	ug/L	50.0	44.0	87.9	50.0	47.7	95.4	83.4 - 108			8.21	13.6	
Ethylbenzene	< 1.00	ug/L	50.0	46.1	92.2	50.0	50.1	100	83.3 - 107			8.28	11.8	
Toluene	< 1.00	ug/L	50.0	42.8	85.7	50.0	45.8	91.5	84.8 - 106			6.63	12.8	

Method Reference(s): EPA 8260C

EPA 5030C

Data File(s): z27274.D

z27275.D z27266.D

1

QC Batch ID: voaw241022

Any estimated values are displayed, and derived values calculated, based on numeric result only. See primary analytical report for data flags.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "H" = Denotes a parameter analyzed outside of holding time.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

1017

CHAIN OF CUSTODY

	te needed:	Date Needed	Rush 1 day	Rush 2 day Category B	Rush 3 day Category A	10 day Batch QC	Standard 5 day None Required	Availability contingent upon lab a	Turnaround Time		10/17/24 1330 4/4	1230 8	10 117/74 USS X X	10/17/24 - + x	x x 0401 12161101	10 117174 0900 × x	10/16/24 1200 4 4	10/16/24 1025 X X	10 /15/24 1325 X X	10/15/24 1128 XX		DATE COLLECTED TIME P R COLLECTED S A	₹ 00		RUE Brownport	PROJECT REFERENCE				PARADIGM	
	please indicate package needed: please indicate EDD needed:				NYSDEC EDD	Basic EDD	ired None Required	Availability contingent upon lab approval; additional fees may apply.	Report Supplements	Try Blank 71195	- BPT_MW-25-101	- EB-1017	BPT- mw-24-101724	BPT_DUP_101724	BPT_mw-6-101724	BPT_ MW-21_1017	13PT_ MW-22_1016	BPT_MW-20-1016	C BPT_mw-8-101524	C BFT_MW-17_101524		R SAMPLE IDENTIFIER			Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	ATTN:	PHONE:	CITY: STATE:	ADDRESS:	CLIENT:	- CE FORDER
	ing this form, client agrees	ice [0/18/24	Received @ Lab By	Co navious		Relinquished By		J Pototos o Lan	0	WA I Eper wind an	724 WG 11 XX X		724 WG Y XXX	My 4 XX		24 Wb 4 X X X	24 NG 1/2 XXX 11	24 W6 4 XXX	WG 4 XXX	me 4 x x x	BTex	827	RCZ IZOC	REQUESTED ANAL	WA - Water WG - Groundwater WW - Wastewater	ATTN:	PHONE:	ZIP CITY: STATE:	ADDRESS:	CLIENT:	COLOR
See additional page for sample conditions	to Paradigm Terms and Conditions (reverse).	10:29	Time	10/8/2 1037	My 1030	111		16/15-10/17		10/18/107	1 Om 10/18/2024	1 01/4/1014	male a Pa	*Trip Blank			05 m/s/m	1 On 10/18/202	15 y 60' of 50	10 1.0 pt for		REMARKS		ALYSIS	SO-Soil SD-Solid V SL-Sludge PT-Paint C	lreid	Email: Ov	E: ZIP: Quotation #:	244		
sample conditions	e).						Total Cost:			-11	1-10	T* 1-09	80- Wym	20- 5612	10-	-05	1-04	20-	70-	10- X31.8		PARADIGM LAB SAMPLE NUMBER			WP - Wipe OL - Oil CK - Caulk AR - Air	d (whon-mue	avotutos		7884	LAB PROJECT ID	The second second

PARADIGM ENVIRONMENTAL SERVICES

Chain of Custody Supplement

8=			
Client: Lab Project ID:	NewVelle 244886	Completed by:	Selection from
Lau Froject ID.	Sample Condition	Date: on Requirements 10/241/242/243/244	10/10/1017
Condition	NELAC compliance with the sample Yes	condition requirements up No	pon receipt N/A
Container Type Comments	مل		
Transferred to method- compliant container			
Headspace (<1 mL)	VOA		
Preservation Comments	20 7(N	(saber)	PAH
Chlorine Absent (<0.10 ppm per test strip) Comments	VOA: C/- reg.		10 T(N)
Holding Time Comments			
Temperature Comments	5.6°C Fred		
Compliant Sample Quantity/T	'ype		

Experience is the solution

314 North Pearl Street ♦ Albany, New York 12207 (800) 848-4983 ♦ (518) 434-4546 ♦ Fax (518) 434-0891

October 25, 2024

Emily Farmen Paradigm Environmental 179 Lake Avenue Rochester, NY 14608

TEL: (800) 724-1997

RE: Analysis of Samples Project #244886

Adirondack Environmental Services, Inc received 10 samples on 10/21/2024 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

ELAP#: 10709

Work Order No: 241021015

Christopher Hess

QA Manager

Adirondack Environmental Services, Inc

CASE NARRATIVE

Paradigm Environmental

Analysis of Samples

Project #244886

Date: 25-Oct-24

Lab WorkOrder: 241021015

Sample containers were not supplied by Adirondack Environmental Services.

Definitions - RL: Reporting Limit DF: Dilution factor

Qualifiers: ND: Not Detected at reporting limit C: CCV below acceptable Limits

J: Analyte detected below quantitation limit C+: CCV above acceptable Limits

B: Analyte detected in Blank S: LCS Spike recovery is below acceptable limits

X: Exceeds maximum contamination limit S+: LCS Spike recovery is above acceptable limits

H: Hold time exceeded Z: Duplication outside acceptable limits

N: Matrix Spike below acceptable limits T: Tentatively Identified Compound-Estimated

N+: Matrix Spike is above acceptable limits E: Above quantitation range-Estimated

Note: All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

Adirondack Environmental Services, Inc

CLIENT: Paradigm Environmental LabWork Order: 241021015 **Project:** Analysis of Samples **PO#:** Project #244886 Lab SampleID: 241021015-001 **Collection Date:** 10/15/2024 11:25:00 AM Matrix: GROUNDWATER **Client Sample ID:** 244886-01 (BPT-MW-17-10152) **Analyses RL Qual Units** DF **Date Analyzed** Result **CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/23/2024 Cyanide ND 0.01 mg/L 10/24/2024 12:56:53 PM Lab SampleID: 241021015-002 **Collection Date:** 10/15/2024 1:20:00 PM Client Sample ID: 244886-02 (BPT-MW-8-101524 Matrix: GROUNDWATER **RL Qual Units Analyses** Result DF **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/23/2024) 0.01 10/24/2024 12:58:36 PM Cyanide ND mg/L **Collection Date:** 10/16/2024 10:25:00 AM Lab SampleID: 241021015-003 Client Sample ID: 244886-03 (BPT-MW-20-10162 Matrix: GROUNDWATER **RL Qual Units** Result DF **Analyses Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/23/2024) Cyanide 0.02 0.01 mg/L 10/24/2024 1:00:19 PM **Collection Date:** 10/16/2024 12:00:00 PM Lab SampleID: 241021015-004 Client Sample ID: 244886-04 (BPT-MW-22-10162 **Matrix:** GROUNDWATER **Analyses** Result **RL Qual Units** DF **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: **GK** (Prep: 9010C - 10/23/2024 0.01 Cyanide 0.07 mg/L 10/24/2024 1:05:28 PM Lab SampleID: 241021015-005 **Collection Date:** 10/17/2024 9:00:00 AM Matrix: GROUNDWATER **Client Sample ID:** 244886-05 (BPT-MW-21-10172 **RL Qual Units** DF Analyses Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/24/2024) Cyanide ND 0.01 mg/L 10/25/2024 1:57:29 PM

Date: 25-Oct-24

Adirondack Environmental Services, Inc

(Prep: 9010C - 10/24/2024

0.11

0.01

mg/L

Cyanide

CLIENT: Paradigm Environmental LabWork Order: 241021015 **Project:** Analysis of Samples **PO#:** Project #244886 Lab SampleID: 241021015-006 **Collection Date:** 10/17/2024 10:40:00 AM Matrix: GROUNDWATER **Client Sample ID:** 244886-06 (BPT-MW-6-101724 **Analyses RL Qual Units** DF **Date Analyzed** Result **CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/24/2024 Cyanide 0.72 0.10 mg/L 10 10/25/2024 2:54:02 PM Lab SampleID: 241021015-007 Collection Date: 10/17/2024 Client Sample ID: 244886-07 (BPT-MW-DUP-101 Matrix: GROUNDWATER **RL Qual Units Analyses** Result DF **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/24/2024) 10/25/2024 2:55:40 PM Cyanide 0.10 mg/L 10 0.78 Collection Date: 10/17/2024 11:55:00 AM Lab SampleID: 241021015-008 **Client Sample ID:** 244886-08 (BPT-MW-24-10172 Matrix: GROUNDWATER **RL Qual Units** Result DF **Analyses Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK (Prep: 9010C - 10/24/2024) Cyanide 0.08 0.01 mg/L 10/25/2024 2:04:28 PM **Collection Date:** 10/17/2024 12:30:00 PM Lab SampleID: 241021015-009 **Client Sample ID:** 244886-09 (BPT-MW-EB-10172 **Matrix:** GROUNDWATER **Analyses** Result **RL Qual Units** DF **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: **GK** (Prep: 9010C - 10/24/2024) 0.01 Cyanide ND mg/L 10/25/2024 2:06:11 PM Lab SampleID: 241021015-010 **Collection Date:** 10/17/2024 1:30:00 PM Matrix: GROUNDWATER **Client Sample ID:** 244886-10 (BPT-MW-25-10172 **RL Qual Units** DF Analyses Result **Date Analyzed CYANIDE, TOTAL - EPA 9012B** Analyst: GK

Date: 25-Oct-24

10/25/2024 2:07:54 PM

Date: 25-Oct-24

CLIENT: Paradigm Environmental

Work Order: 241021015

Project:

Paradigm Environmental
241021015
Analysis of Samples

ANALYTICAL QC SUMMARY REPORT
BatchID: 112415

SeaNo: 3003881			PrenDate:				
'			•				
Samp ID: MB-11234/ 101			Preprier:(9010C)		Units: mg /L	Analysis Date: 10/25/2024	
	<u>Result</u>	<u>PQL</u>	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	%RPD(SD-%D) RPDLimit	<u>Qual</u>
	ND	0.010					
SeqNo: 3902882			PrepDate:		TestNo: E335.4	RunNo: 238981	
Samp ID: LCS-112347 TO			PrepRef:(9010C)		Units: mg/L	Analysis Date: 10/25/2024	
	<u>Result</u>	<u>PQL</u>	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	%RPD(SD-%D) RPDLimit	Qual
	0.4938	0.10	0.547 0	90.3	90 110	0 0	
SeqNo: 3902961			PrepDate:		TestNo: SW9012B	RunNo: 238981	
Samp ID: MB-112415			PrepRef:(9010C)		Units: mg/L	Analysis Date: 10/25/2024	
	Result	<u>PQL</u>	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	%RPD(SD-%D) RPDLimit	Qual
	ND	0.010					
SeqNo: 3902974			PrepDate:		TestNo: SW9012B	RunNo: 238924	
Samp ID: MB-112415			PrepRef:(9010C)		Units: mg/L	Analysis Date: 10/24/2024	
	Result	<u>PQL</u>	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref	%RPD(SD-%D) RPDLimit	Qual
	ND	0.010					
SeqNo: 3902962			PrepDate:				
004110. 3302302			Ртервате.		TestNo: SW9012B	RunNo: 238981	
Samp ID: LCS-112415			PrepRef:(9010C)		TestNo: SW9012B Units: mg/L	RunNo: 238981 Analysis Date: 10/25/2024	
·	Result	<u>PQL</u>	•	%REC		Analysis Date: 10/25/2024	Qual
·	<u>Result</u> 0.08792	<u>PQL</u> 0.010	PrepRef:(9010C)	<u>%REC</u> 89.7	Units: mg/L	Analysis Date: 10/25/2024	Qual
·		· · · · · · · · · · · · · · · · · · ·	PrepRef:(9010C) SPK value SPK Ref Val		Units: mg/L LowLimit HighLimit RPD Ref	Analysis Date: 10/25/2024 %RPD(SD-%D) RPDLimit	Qual
Samp ID: LCS-112415		· · · · · · · · · · · · · · · · · · ·	PrepRef:(9010C) SPK value SPK Ref Val 0.098 0		Units: mg/L LowLimit HighLimit RPD Ref 80 120	Analysis Date: 10/25/2024	Qual
Samp ID: LCS-112415 SeqNo: 3902975		· · · · · · · · · · · · · · · · · · ·	PrepRef:(9010C) SPK value SPK Ref Val 0.098 0 PrepDate:		Units: mg/L LowLimit HighLimit RPD Ref 80 120 TestNo: SW9012B	Analysis Date: 10/25/2024	Qual Qual
	Samp ID: LCS-112347 TO SeqNo: 3902961 Samp ID: MB-112415 SeqNo: 3902974 Samp ID: MB-112415	Samp ID: MB-112347 TOT Result ND SeqNo: 3902882 Samp ID: LCS-112347 TO Result 0.4938 SeqNo: 3902961 Samp ID: MB-112415 Result ND SeqNo: 3902974 Samp ID: MB-112415	Samp ID: MB-112347 TOT Result ND PQL 0.010 SeqNo: 3902882 Samp ID: LCS-112347 TO Result 0.4938 PQL 0.4938 0.10 SeqNo: 3902961 Samp ID: MB-112415 Result ND PQL 0.010 SeqNo: 3902974 Samp ID: MB-112415 Result ND O.010 PQL 0.010	Samp ID: MB-112347 TOT PrepRef:(9010C) Result ND PQL 0.010 SPK value SPK Ref Value SeqNo: 3902882 PrepDate: PrepRef:(9010C) Samp ID: LCS-112347 TO PQL 0.10 SPK value 0.547 SPK Ref Val 0.547 SeqNo: 3902961 PrepDate: PrepRef:(9010C) Samp ID: MB-112415 PQL 0.010 SPK value 0.000 SPK Ref Val 0.000 SeqNo: 3902974 PrepDate: PrepRef:(9010C) PrepRef:(9010C) Semp ID: MB-112415 PQL 0.010 SPK value 0.000 SPK Ref Val 0.000	Samp ID: MB-112347 TOT PrepRef:(9010C) Result ND PQL 0.010 SPK value SPK Ref Val wall %REC SeqNo: 3902882 PrepDate: PrepRef:(9010C) Samp ID: LCS-112347 TO PrepRef:(9010C) Result 0.4938 PQL 0.10 SPK value SPK Ref Val 0.547 0 90.3 SeqNo: 3902961 PrepDate: PrepRef:(9010C) Samp ID: MB-112415 PQL 0.010 SPK value SPK Ref Val %REC SeqNo: 3902974 PrepDate: PrepRef:(9010C) Samp ID: MB-112415 PrepRef:(9010C)	Samp ID: MB-112347 TOT	Samp ID: MB-112347 TOT PrepRef:(9010C) Units: mg/L Analysis Date: 10/25/2024 Samp ID: MB-112347 TOT PrepRef:(9010C) Units: mg/L Result PD (Analysis Date: 10/25/2024 SeqNo: 3902882 Samp ID: LCS-112347 TO PrepRef:(9010C) TestNo: E335.4 Analysis Date: 10/25/2024 RunNo: 238981 Analysis Date: 10/25/2024 Result 0.4938 PQL 0.10 SPK value PCPL ND SPK Ref Val ND %REC ND LowLimit HighLimit HighLimit HighLimit PCPL ND RPD Ref ND (SD-%D) ND RPDLimit ND SeqNo: 3902961 Samp ID: MB-112415 PrepRef:(9010C) TestNo: SW9012B ND RunNo: 238981 Analysis Date: 10/25/2024 SeqNo: 3902974 Samp ID: MB-112415 PQL ND SPK value SPK Ref Val ND %REC ND LowLimit HighLimit HighLimit RPD Ref ND(SD-%D) Analysis Date: 10/24/2024 RunNo: 238924 Analysis Date: 10/24/2024 SeqNo: 3902974 Samp ID: MB-112415 PrepRef:(9010C) TestNo: SW9012B ND(SD-%D) Analysis Date: 10/24/2024 RunNo: 238924 Analysis Date: 10/24/2024

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Paradigm Environmental **CLIENT:**

Work Order: 241021015

Analysis of Samples **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: 112415

MS	SeqNo: 3902980 Samp ID: 241021015-004	(24886-04 (BPT-M		PrepDate:10/23/20 PrepRef:(9010C)	24		stNo: SW901 nits: mg/L			38924 0/24/2024	
Analyte Cyanide		<u>Result</u> 0.172	<u>PQL</u> 0.010	<u>SPK value</u> <u>SPK Ref Va</u> 0.098 0.0733	· · · · · · · · · · · · · · · · · · ·	LowLimit 75	HighLimit 125	RPD Ref	<u>%RPD(SD-%D)</u> 0 0	RPDLimit	Qual
MSD	SeqNo: 3902981 Samp ID: 241021015-004	(24886-04 (BPT-M		PrepDate:10/23/20 PrepRef:(9010C)		Tes	stNo: SW901			38924 0/24/2024	
Analyte Cyanide		<u>Result</u> 0.1724	<u>PQL</u> 0.010	SPK value SPK Ref Value 0.098 0.0733	·	<u>LowLimit</u> 75	HighLimit 125	RPD Ref 0.17	<u>%RPD(SD-%D)</u> 2 0.222	RPDLimit 20	Qual
DUP	SeqNo: 3902973 Samp ID: 241021015-005	(24886-05 (BPT-M		PrepDate:10/24/20 PrepRef:(9010C)	24		stNo: SW901 nits: mg/L			38981 0/25/2024	
Analyte Cyanide		<u>Result</u> 0.0101	<u>PQL</u> 0.010	SPK value SPK Ref Va	<u>%REC</u> 0 0	<u>LowLimit</u> 0	<u>HighLimit</u> 0	RPD Ref 0.00944	<u>%RPD(SD-%D)</u> 6 6.71	RPDLimit 20	Qual

S - Spike Recovery outside accepted recovery limits

241021015

CHAIN OF CUSTODY

ELAP ID:

	COLUMN TO THE PARTY OF THE PART		T = ====	是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,也是一个时间,也是一个		
ENVIRONMENTAL SERVICES, INC.		Paradigm Environmental	Company	Same		
	ADDRESS:		ADDRESS:			
	CITY	STATE: ZIP:	; CITY:	STATE: ZIP:	P: TURNAROUND TIME: (WORKING DAYS)	(ING DAYS)
	PHONE:	FAX:	PHONE:	FAX:		STD
PROJECT NAME/SITE NAME:	ATTN:	Reporting	ATTN:	Accounts Payable	1 2 3	
	COMMENTS:	Please email results to reporting@paradigmenv.com	ling@paradigmen	v. com	Date Due: 10/	
				REQUESTED ANALYSIS		
M O C	>		M NOO			
DATE TIME P	00 P 20 G	SAMPLE LOCATION/FIELD ID	z – > ⊣ ω		REMARKS	PARADIC SAMPLE Number
n			70 m			
1/W15/124/125	~	PT-MW-17-101524	X 1 8M		244886-01	
2 17320	53	PT-INU-R-101524	7		(0)	
310/16/24 1025		RPT-MV-20-101624	9		7	
4 / 1200	70;	pt-MW-22-101624	<i>√</i> √		-04/85/MSD	
5 10/71/24 0400	[B)	1- mu-21-10/724	<u>~</u>		-05 miles	Varie, 1
6 [040]	<i>P</i>	B87-MW-6-101724	7		-06	
	Ø	BPT- DUI-101724	7		-07	
8 1/55	B	17-MW-24-101724	7		80-	
9 7.30	8	597-EB-101724	8		6	
10 1 1330		BDT-MV-25-101724	7		4	
HEABUSE ONLY BELOW THIS LINE	LINE*					
Sample Condition: Per NELAC/ELAP 210/241/242/243/244	10/241/242/243/2	4	TO A STATE OF THE PARTY OF THE			
Receipt Parameter		NELAC Compliance				
Comments.		Z	Client			
		Kapandung Sample Samp	1	// Date/Time		

Holding Time:

z

Received By

Received @ Lab By

10/21/24

17:00

P.I.F

Date/Time

Date/Time

Date/Time

880

Total Cost:

z []

Relinquished By

Preservation:

Temperature:

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services**, **Inc**. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.