

July 26, 2024

Mr. Gerald Pratt, P.G. Division of Environmental Remediation Section C Bureau C Geologist New York State Department of Environmental Conservation 625 Broadway 12th Floor Albany NY 12233-7014

Re: Report – 17th Post-Remediation Groundwater Sampling Event, April 2024 RG&E Brockport Former MGP Site Corner of Erie and Perry Streets Village of Brockport, Monroe County, New York NYSDEC Site #V00301

Dear Mr. Pratt:

The purpose of this report is to present the results of the seventeenth (17th) post-remediation groundwater sampling event completed at the Rochester Gas and Electric Corporation (RG&E) Brockport Former Manufactured Gas Plant (MGP) site (NYSDEC Site No. V00301), located near the northwestern corner of the intersection of Erie and Perry Streets in the Village of Brockport, Monroe County, New York (referred to herein as the "Site"). This April 2024 sampling event was completed under low-water conditions in the adjacent Erie Canal (*i.e.*, the canal had not yet been filled for the boating season). Sampling was performed by NEU-VELLE, LLC (NEU-VELLE) personnel and completed in accordance with the Site Management Plan (SMP) dated September 2017, as well as the *Report – Post Remediation Groundwater Sampling Event, September 2018*, prepared by NEU-VELLE and dated December 12, 2018, which proposed a reduction of the number of wells to be included in this and future groundwater sampling events.

SCOPE OF WORK

Synoptic Water Levels

As summarized in **Table 1**, a Site-wide round of synoptic groundwater levels was gauged at the seventeen (17) monitoring wells on and in the immediate vicinity of the Site. Additionally, the surface water elevation of the canal was gauged at two (2) locations. These field activities were completed on April 10th, 2024. The locations of the monitoring wells are depicted on the Monitoring Well Location Map provided as **Exhibit A**. Each well was also gauged for the presence of Non-aqueous Phase Liquid (NAPL) using an oil/water interface probe. Light NAPL (LNAPL) was detected in MW-15, located on a private residence property, and reported to the NYSDEC Spill Hotline that same day. A spill report (#2400393) was subsequently opened by the NYSDEC, and the spill is being investigated by the NYSDEC Region 8 spills group. As this spill did not occur on RG&E property, RG&E is not involved in the investigation other than in providing previous groundwater

flow mapping and access to any groundwater monitoring wells that are needed to assist in the investigation, at the request of the NYSDEC. The well gauging observations and field measurements are provided in **Table 1**, and a groundwater elevation contour map is provided as **Figure 1**.

Groundwater Sampling

From April 11th through April 16th, groundwater samples were collected for laboratory analysis from the following eight (8) groundwater monitoring wells:

- MW6, MW22, MW24, and MW25, in which benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), and/or cyanide have historically been detected at concentrations above their respective NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Class GA, standards, criteria, and guidance values (SCGs); and
- MW8, MW17, MW20, and MW21, which are located adjacent to the previously noted wells.

Groundwater samples were collected using the "low-flow" purging techniques outlined in the United States Environmental Protection Agency (USEPA) Ground-Water Sampling Guidelines for Superfund and Resource Conservation Recovery Act (RCRA) Project Managers, dated May 2002.

Prior to initiating purging, field personnel donned new nitrile gloves and care was taken to avoid introducing contaminants into the groundwater monitoring wells. Low-flow purging was conducted using an appropriately decontaminated stainless-steel bladder pump equipped with a polyethylene bladder and polyethylene tubing. A new, clean bladder and tubing were used at each groundwater monitoring well. During purging, time, water-level measurements, temperature, dissolved oxygen (DO), oxidation reduction potential (ORP), pH, turbidity, and specific conductance (purge parameters) were measured and recorded using calibrated field monitoring equipment.

The well information, sample information, monitoring parameters, and field observations were recorded on a groundwater sample log completed at each well. The groundwater sample logs are provided herein as **Attachment A**.

Collection of Laboratory Samples

New nitrile gloves were donned by field personnel prior to the collection of each laboratory sample. The laboratory sample was collected in appropriate laboratory-supplied sample containers. Samples were placed in a plastic cooler pre-chilled with ice and submitted under appropriate chain of custody protocols to Paradigm Environmental Services, Inc. located in Rochester, New York. Samples were analyzed for:

- volatile Organic Compounds (VOCs), BTEX only, in accordance with USEPA Method 8260C,
- semi-VOCs (SVOCs), PAHs only, in accordance with USEPA Method 8270D, and
- total cyanide in accordance with USEPA Method 335.4.

In accordance with the Quality Assurance Project Plan (QAPP), provided with the SMP, appropriate chain of custody protocols was followed. Copies of the chain of custody forms are included in **Exhibit B**.

Quality Assurance/Quality Control (QA/QC) samples were collected and submitted for laboratory analysis as described in the SMP. QA/QC samples consisted of a blind field duplicate sample (collected at MW24), matrix spike/matrix spike duplicate (MS/MSD) samples (collected at MW22), and an "equipment blank" sample. Trip blanks were also provided by the laboratory, maintained with the sample containers, and analyzed for VOCs.

Reporting of Results

Copies of the laboratory reports are presented in **Exhibit B**.

Waste Accumulation and Disposal

Well purge water and decontamination water were containerized in 5-gallon buckets and transported to the RG&E Front Street Former MGP Site to be containerized in 55-gallon drums. The drum was labeled with its contents, date of generation, generator contact information, and "Non-Hazardous." The drums were subsequently transferred to the RG&E Front Street Former MGP Site in Rochester, NY, for temporary staging prior to appropriate transportation and off-site disposal. The wastewater was picked up by Clean Harbors on 6/7/2024 at RG&E Front Street Former MGP Site and disposed off-site with records submitted to the NYSDEC under separate cover.

RESULTS

The analytical results associated with this 17th post-remediation groundwater sampling event are summarized in **Table 2** and shown on **Figure 2**. These findings were compared to the TOGS 1.1.1 Class GA SCGs, as summarized below:

- BTEX compounds were not detected above the laboratory minimum detection limits;
- PAH compounds were not detected above the laboratory minimum detection limits; and
- cyanide was detected in five (5) of the eight (8) groundwater monitoring wells that were sampled (*i.e.*, MW6, MW20, MW22, MW24, and MW25). However, the only reported concentration of cyanide that was above the TOGS 1.1.1 Class GA SCG for Cyanide [0.20 milligrams per liter (mg/L)] was in the groundwater sample collected from MW6 (2.16 mg/L reported).

The analytical results for QA/QC samples are as follows:

- Laboratory analytical results for the "blind duplicate" groundwater sample (collected from MW24) are summarized in **Table 2** and are nearly equivalent to the results reported for the "parent" sample (i.e., the groundwater sample also collected from MW24);
- no detections of BTEX, PAHs, or cyanide were reported in the "equipment blank" sample; and
- no BTEX compounds were detected in the VOC Trip Blank samples.

Groundwater Mapping

A groundwater contour map (see **Figure 1**) was prepared based on the water level data collected at the Site on April 10th, 2024. The groundwater elevation contour map is provided as **Figure 1** and

shows that the flow of overburden groundwater beneath the Site is interpreted to be generally to the southwest. This groundwater flow direction is consistent with historic groundwater flow mapped during prior occurrences of low-water conditions in the adjacent Erie Canal.

Conclusions

This report presents the results of the 17th post-remediation groundwater sampling event completed at the RG&E Brockport Former MGP site (NYSDEC Site No. V00301).

The elevated concentration of cyanide reported in the groundwater sample collected from MW6 may be attributable to remaining MGP impacts in the subsurface soil at the Site. Unlike previous sampling events, BTEX and PAH compounds were not detected above laboratory minimum detection limits.

Based upon the data collected from the post-remediation groundwater sampling events, the downgradient distribution of impacts seems to vary with low or high-water conditions in the canal. When the canal is drained (as it was during this sampling event), the water table along the canal is lower, and flows through the impacted canal soils is predominantly to the west-southwest. During high-water conditions (i.e., not during this sampling event), water flows out of the canal, through the impacted soils on the NYSCC property, and onto the Site, with a groundwater flow direction predominantly to the south. This likely explains the seasonal variation of BTEX and PAHs detected in the monitoring wells on the northern side of the Site. As previously mentioned, the laboratory analytical results associated with this groundwater sampling event are fewer detections of cyanide and no detections of BTEX or PAH compounds compared to prior springtime, low-water (in the adjacent canal) groundwater sampling events (see **Table 2**).

It was previously recommended that semi-annual sampling continues for a three- year (2022 – 2024) monitoring period at a frequency of twice per year (high and low water conditions). Therefore, the next semi-annual groundwater sampling event is scheduled for the Fall 2024 under high-water conditions in the adjacent canal, to include the same eight (8) monitoring wells (MW6, MW8, MW17, MW20, MW21, MW22, MW24, and MW25). After the completion of the three-year monitoring period in 2024, the monitoring program will be evaluated in consultation with the NYSDEC.

Please feel free to contact me at (585) 622-7678 with any questions you may have regarding this letter report, or contact Mr. Jeremy Wolf, RG&E's Project Manager for the project at (585) 500-8392.

Sincerely,

Andrew Rothfuss

NEU-VELLE, LLC

cc: Jeremy Wolf - RG&E

Attachments:

Table 1 – Monitoring Well Reference Data and Groundwater Measurements

Table 2 – Groundwater Sample Analytical Results

Exhibit A – Monitoring Well Location Map

Figure 1 – April 2024 Groundwater Elevation Contours

Figure 2 – April 2024 Groundwater Analytical Detections

Attachment A – Groundwater Sample Logs

Exhibit B – Groundwater Laboratory Reports and Chain of Custody Forms

 Table 1

 Monitoring Well Reference Data and Groundwater Measurements

Table 1 Rochester Gas Electric - Brockport, NY NYSDEC Site No. V00301-8 Monitoring Well Reference Data and Groundwater Measurements

Designation	Installation Date	Ground Surface Elevation (Feet NAVD88)	Well Diameter (Inches)	Top of PVC Riser Elevation (Feet NAVD88)	Bottom of Well Elevation (Feet)	Depth to Water 4/10/2024 (Feet)	Groundwater Elevation 4/10/2024 (Feet NAVD88)	Notes
MW1	10/15/2002	Decommissioned						
MW2	10/14/2002	Decommissioned						
MW3	10/10/2002	Decommissioned						
MW4	10/17/2002	Decommissioned						
MW5	10/15/2002	Decommissioned						
MW6	10/14/2002	511.4	2	511.15	494.65	8.11	503.04	
MW7	10/11/2002	502.2	2	501.99	484.49	2.56	499.43	
MW8	10/22/2002	513.4	2	512.94	482.62	9.46	503.48	
MW9		Decommissioned						
MW10		Decommissioned						
MW11	10/3/2003	507.2	1.5	506.90	492.48	6.55	500.35	
MW12	10/3/2003	504.8	1.5	504.46	490.38	4.33	500.13	
MW13		Decommissioned						
MW14	10/2/2003	504.7	1.5	504.28	490.53	4.95	499.33	
MW15	10/2/2003	503.1	1.5	502.52	489.08	3.91	498.61	Petrol smell/Spill
MW16	10/7/2003	Not Found						Paved-over under street?
MW17	10/1/2003	512.0	1.5	511.51	496.92	7.73	503.78	
MW18	10/8/2003	Decommissioned						
MW19	10/8/2003	504.4	1.5	503.73	491.35	2.79	500.94	
MW20	3/21/2016	506.3	2	505.64	493.14	3.54	502.10	
MW21	3/21/2016	505.9	2	505.70	493.20	5.28	500.42	
MW22	3/21/2016	510.4	2	510.22	497.72	7.33	502.89	
MW23	3/22/2016	504.5	2	504.15	491.15	3.91	500.24	
MW24	3/22/2016	512.2	2	511.88	498.88	8.96	502.92	
MW25	3/22/2016	512.8	2	512.46	499.46	9.62	502.84	no J plug
PZ1	10/16/2002	Decommissioned						
PZ2	10/3/2003	504.8	1.5	504.16	489.63	4.91	499.25	
PZ3	10/6/2003	504.2	1.5	503.84	489.55	5.73	498.11	
Surface Wate	r Elevation Refe	erence Point						
				Surface Water Reference Point Elevation (Feet)				
SWRP1	5/19/2010	NA	NA	532.22	NA	31.8	500.43	
SWRP2	5/19/2010	NA	NA	514.79	NA	15.6	499.23	

NOTES:

NA = Not Applicable NM = Not Measured

New and existing wells surveyed on March 24, 2016

 1 = Reference point established on Smith Street bridge and on southern canal wall

² = Surface water elevation

Vertical Coordinates are North American Vertical Datum 1988 (NAVD88)

Table 2 Groundwater Sample Analytical Results

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8

NTSDEC SILE NO. VOUSUI-0	
Groundwater Sample Analytical Results	

		Sample San Sample Ide	e Location nple Date ntification	n N e 4/6 n RGE	1W6 5/2016 E-MW6	N 8/1 RGE	IW6 /2016 -MW6	ן 4/1 RGI	MW6 17/2017 E-MW-6	N 10/1 N	IW6 6/2017 IW6	N 4/9 N	ЛW6 9/2018 ЛW6	9/:	MW6 17/2018 MW6	N M	1W6 4/24 IW-6	MW6 (1 4/2019 Du	DUPLICATE) Iplicate	10/ Г	MW6 12/2019 MW-6	N 4/5 BPT-MW	/IW6 5/2020 16-04052020	M 10/3 BPT-MW6	W6 /2020 5-10032020	N 4/14 BPT-MV	IW6 I/2021 V6-041421	N 10/1 BPT-MV	IW6 ./2021 V6-100121	M' 5/2/ BPT-MW	V6 2022 6-050222
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																										-					
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	1220 20 7		μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1550-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide																															
Cvanide, Total	NA	0.2	mg/L	2.35	0.0100	0.299	0.0100	7.33	0.0100	4.10	0.0100	5.70	0.0100	1.12	0.0100	3.60	0.0100	3.53	0.0100	2.98	0.0100	3.38	0.0100	1.21	0.0100	5.11	0.0100	4.64	0.0100	5.24	0.075

		Sample	Location	M	W6	MW6 (D	uplicate)	M	W6	M	W6		N6
		Sam	ple Date		10/15	/2022		4/22	/2023	10/23	3/2023	4/16/	/2024
		Sample Iden	tification	BPT-MW	6-101522	BPT-DU	P-101522	BPT-MW	6-042223	BPT-MW	6-102323	BPT-MW	6-041624
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit								
BTEX													
Benzene	71-43-2	1	µg/L	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.00
Toluene	108-88-3	5	µg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
m,p-Xylene	1220.20.7	r	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
PAHs													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Benzo(b)fluoranthene	205-99-2	0.002	µg/L	ND	10.0	ND	10.0	0.39	0.19	ND	0.10	ND	9.30
Benzo(g,h,i)perylene	191-24-2	NS	µg/L	ND	10.0	ND	10.0	0.26	0.19	ND	0.10	ND	9.30
Benzo(k)fluoranthene	207-08-9	0.002	µg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	0.34	0.19	ND	0.10	ND	9.30
2-methylnaphthalene	91-57-6	NS	µg/L	ND	10.0	ND	10.0	N	IT	1	T	N	T
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Phenanthrene	85-01-8	50	µg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
Pyrene	rene 129-00-0		μg/L	ND	10.0	ND	10.0	ND	0.19	ND	0.10	ND	9.30
yanide													
Cyanide, Total	NA	0.2	mg/L	1.2	0.10	1.2	0.10	6.20	0.010	0.41 S	0.010	2.16	0.050

Notes:

μg/L = micrograms per liter
 mg/L = milligrams per liter
 NT = not tested, NS = No standard, and ND = non-detect

4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality standards and Groundw
 Bold Sample result = compound was detected.
 Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.
 J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
 M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

		Sample San Sample I <u>den</u>	Location nple Date ntificati <u>on</u>	۲ 4/۱ <u>RG</u>	MW8 /6/2016 iE-MW8	N 8/1 R <u>G</u> E	1W8 /2016 -MW8	N 4/17 R <u>GE</u>	1W8 7/2017 -MW-8	N 10/1 _N	1W8 .6/2017 1W8	M 4/9, <u>M</u>	W8 /2018 W8	N 9/1: _N	IW8 7/2018 IW8	N 4/25 <u>M</u>	1W8 5/2019 IW-8	N 10/1 _N	/IW8 12/2019 /IW-8	N 4/5 BPT-M <u>W</u>	1W8 5/2020 8-0405202 <u>0</u>	N 10/ BPT- <u>MM</u>	VIW8 /3/2020 /8-100320 <u>20</u>	N BPT- <u>M\</u>	1W8 4/14 N8-04142 <u>1</u>	MW8 (D /2021 BPT- <u>DL</u>	UPLICATE) IP-041421	N 10/1 BPT- <u>MV</u>	1W8 L/2021 V8-10012 <u>1</u>	N 5/2 BPT- <u>MV</u>	IW8 :/2022 W8-0502 <u>22</u>
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reportin Limit
BTEX		1													1												1				_
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	µg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	1220 20 7	-	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide																															
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	0.0107	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.005

		Sample	Location	М	W8	M	W8	M	W8		W8
		Sam	ple Date	10/15	5/2022	4/22,	/2023	10/23	/2023	4/11	/2024
		Sample Ident	tification	BPT-MW	8-101522	BPT-MW	8-042223	BPT-MW	8-102323	BPT-MW	8-041124
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX											
Benzene	71-43-2	1	μg/L	ND	1.00	ND	5.0	ND	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	µg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00
m,p-Xylene	1220.20.7		µg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	2	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	5.00
PAHs											
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Benzo(a)pyrene	50-32-8	ND	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Dibenzo(a,h)anthracene	53-70-3	NS	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Chrysene	218-01-9	0.002	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Fluoranthene	206-44-0	50	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Fluorene	86-73-7	50	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	µg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
2-methylnaphthalene	91-57-6	NS	µg/L	ND	10.0	N	IT	N	IT	N	IT
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	0.19	ND	0.10	ND	9.60
Cyanide											
Cyanide, Total	NA	0.2	mg/L	ND	0.010	ND	0.010	ND S	0.010	ND	0.005

 Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

		Sample Sam Sample Ident	Location ple Date tification	M 4/25 M	W17 5/2019 W-17	MV 10/14 MV	V17 I/2019 V-17	M 4/6 BPT-MW1	W17 /2020 17-04062020	M\ 10/5 BPT-MW1	N17 /2020 7-10052020	M\ 4/13 BPT-MW	N17 /2021 17-041321	M\ 10/2 BPT-MW	N17 /2021 17-100221	M\ 4/28 BPT-MW	N17 /2022 17-042822	MV 10/20 BPT-MW2	V17)/2022 17-102022	MV 4/14 BPT-MW	N17 /2023 17-041423	MW 10/24, BPT-MW1	/17 /2023 7-102423	MW 4/15/ BPT-MW1	V17 /2024 17-041524
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																									
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
m,p-Xylene	1220 20 7	E.	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
PAHs																									
Acenaphthene	83-32-9	20	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Anthracene	120-12-7	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Benzo(g,h,i)perylene	191-24-2	NS	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9	ND	10.0	ND	0.20	ND	10.0	ND	9.6
Cyanide																									
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.005	ND	0.010	ND	0.010	ND S	0.010	ND	0.005

Notes:

1. μg/L = micrograms per liter

2. mg/L = milligrams per liter

3. NT = not tested, NS = No standard, and ND = non-detect

4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

5. Bold Sample result = compound was detected.

6. Gray shading indicates the sample result is above the

7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8

Groundwater Sample Analytical Results

		Sampl Sa Sample Ide	e Location mple Date ntification	M 4/7 RGE-	W20 /2016 MW20	M 8/3 RGE	W20 /2016 -MW20	M 4/18 RGE-	W20 3/2017 MW-20	N 10/: N	1W20 17/2017 1W20	M 4/10 M	IW20 0/2018 IW20	N 9/1 N	/W20 19/2018 /W20	M 4/2! M	W20 5/2019 W20	M 10/1 M	W20 0/2019 N-20	M) 4/4, BPT-MW2	N20 (2020 0-04042020	M BPT-MW2	W20 10/2, 0-10022020	MW20 (D /2020 BPT-DUP	UPLICATE) -10022020	M\ 4/13 BPT-MW2	V20 /2021 20-041321	MV 9/30, BPT-MW2	N20 /2021 20-093021	M\ 4/30 BPT-MW	V20 /2022 20-043022
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																															
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND D	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	µg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND D	2.00	ND	2.00	ND	2.00	ND	2.00	ND M	2.00	ND	2.00
Ethylbenzene	100-41-4	5	µg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND M	2.00	ND	2.00
m,p-Xylene	1220.20.7	-	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND N	10.0	ND	10.0	ND	10.0	ND	10.0	ND ME	0 10.0	ND	1.9
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(a)pyrene	50-32-8	ND	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Dibenzo(a,h)anthracene	53-70-3	NS	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Fluoranthene	206-44-0	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Fluorene	86-73-7	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
2-methylnaphthalene	91-57-6	NS	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Phenanthrene	85-01-8	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	1.9
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND N	10.0	ND	10.0	ND	10.0	ND	10.0	ND ME	0 10.0	ND	1.9
Cyanide																															
Cyanide, Total	NA	0.2	mg/L	0.180	0.0100	0.0439	0.0100	0.0456	0.0100	0.0128	0.0100	0.0378	0.0100	ND	0.0100	0.0104	0.0100	ND	0.0100	0.0074 J	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	0.0171	0.0100	0.006	0.005

		Sample	Location	M۱	N20	MV	V20	M۱	N20	MW20 (D	UPLICATE)	M۱	W20
		Sam	ple Date	10/14	4/2022	4/18,	/2023		10/17	/2023		4/11	/2024
		Sample Iden	tification	BPT-MW	20-101422	BPT-MW2	20-041823	BPT-MW	20-101723	BPT-DU	P-101723	BPT-MW2	20-041124
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX													
Benzene	71-43-2	1	μg/L	ND	1.00	ND	5.0	ND	1.00	ND	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.00
m,p-Xylene	1220 20 7	-	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	5.0	ND	2.00	ND	2.00	ND	5.00
PAHs													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	N	IT	1	T	1	T	1	T
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	0.20	ND	10.0	ND	10.0	ND	9.60
Cyanide													
Cyanide, Total	NA	0.2	mg/L	0.014	0.010	0.024	0.010	0.012 S	0.010	0.016 S	0.010	0.02	0.005

Notes:

1. μg/L = micrograms per liter

2. mg/L = milligrams per liter

3. NT = not tested, NS = No standard, and ND = non-detect

4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

5. Bold Sample result = compound was detected. 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

Jis a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
 M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."
 D is a laboratory data qualifier indicating "Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative PercentDifference limit."

9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

		Sample Sar Sample Ider	Location nple Date ntification	n M e 4/8 n RGE	W21 /2016 ·MW21	M 8/4 RGE-	W21 /2016 MW21	M 4/18 RGE-	W21 8/2017 MW-21	M 10/1 M	W21 8/2017 W21	MW2 4/11/2 MW2	21 2018 21	M' 9/19 M'	W21)/2018 W21	MV 4/25, MW	W21 /2019 V-21	M 10/1 M'	W21 4/2019 N-21	M 4/7 BPT-MW2	W21 //2020 21-04072020	M 10/: BPT-MW2	IW21 1/2020 21-10012020	M' 4/14 BPT-MW	W21 /2021 21-041421	M\ BPT-MW	W21 9/30/ 21-093021	MW21 (0 2021 BPT-DUI	Duplicate) P-093021
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX			1 ug/L 0																										
Benzene	71-43-2	1	μg/L	0.566 J	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	4220.20.7		μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	/ 5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs																													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Dibenzo(a,h)anthracene	53-70-3	NS	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Naphthalene	91-20-3	10	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Phenanthrene	85-01-8	50	µg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Cyanide			,																										
Cyanide, Total	NA	0.2	mg/L	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND	0.0100	ND N	0.0100	0.0083 J	0.0100	ND	0.0100

		Sample	Location	M۱	N21	MW21 ([Duplicate)	M\	W21	M	W21	M\	N21	M\	V21
		Sam Comple Iden	ipie Date		4/30,		042022		2/2022	4/1/	2023		//2023	4/12	2024
			uncation	DPT-IVIV	21-043022	BP1-DU	P-043022	DP I -IVI VV	21-101222	DP1-IVIV	21-041725	DP I-IVIVV.	21-101725	BP 1-IVI VV 2	1-041224
Analyte	Cas No.	Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX															
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	5.0	ND	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
m,p-Xylene	1220 20 7	r	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	5.0	ND	2.00	ND	5.00
PAHs															
Acenaphthene	83-32-9	20	μg/L	1.8 J	2.0	2.0	2.0	ND	10.0	1.1	0.20	ND	10.0	ND	9.60
Acenaphthylene	208-96-8	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Anthracene	120-12-7	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Chrysene	218-01-9	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Fluoranthene	206-44-0	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Fluorene	86-73-7	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
2-methylnaphthalene	91-57-6	NS	μg/L	ND	2.0	ND	2.0	ND	10.0		NT	1	NT	1	NT
Naphthalene	91-20-3	10	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Phenanthrene	85-01-8	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND	10.0	ND	9.60
Pyrene	129-00-0	50	μg/L	ND	2.0	ND	2.0	ND	10.0	ND	0.20	ND M	10.0	ND	9.60
Cyanide															
Cvanide Total	NA	0.2	mg/I	0.004 1	0 0100	0.003 1	0.005	ND	0.010	ND	0 010	ND S	0 010	ND	0 005

 Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

 10. * Lab report identified this sample as "PPT-MW8-041124" and was given Lab ID R2403033-004

Sam S Sample Id TOGS 1.1.1	Sample Sam Sample Iden	Location ple Date tification	M\ 4/7/ RGE-I	N22 /2016 MW22	M\ 8/3/ RGE-I	N22 /2016 MW22	M' 4/19 RGE-I	W22)/2017 MW-22	M\ 10/18 M\	N22 3/2017 N22	M\ 4/10 M\	N22 /2018 N22	M 9/17 M	W22 7/2018 W22	M 4/24 M	W22 4/2019 W-22	M M	W22 10/10 W-22	2 (DUPLIC) 0/2019 DUP	ATE) LICATE	M BPT-MW2	W22 4/4/ 22-04042020	MW22 (D /2020 BPT-DUP	-04042020	M ¹ 10/2 BPT-MW2	W22 2/2020 2-10022020	M) 4/13 BPT-MW	W22 /2021 22-041321	MW2 10/1/2 BPT-MW22	2 021 -100121	
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporti ng Limit
BTEX																														-	
Benzene	71-43-2	1	µg/L	ND	1.00	78.3	1.00	ND	1.00	37.7	1.00	ND	1.00	8.08	1.00	ND	1.00	0.681	1.00	0.614	J 1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	2.20	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	37.6	2.00	ND	2.00	7.35	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	1220 20 7	-	μg/L	ND	2.00	1.74 J	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	3.82	2.00	ND	2.00	1.20 J	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
PAHs		·																													
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	5.62 J	10.0	ND	10.0	5.0	10.0	ND N	/ 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	18.5	10.0	ND	10.0	16.1	10.0	ND	10.0	11.3	10.0	ND	10.0	7.44	10.0	7.91	J 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Cyanide								-																-							
Cyanide, Total	NA	0.2	mg/L	0.0476	0.0100	0.499	0.0100	0.696	0.0100	0.386	0.0100	0.973	0.0100	0.246	0.0100	0.792	0.0100	0.189	0.0100	0.178	0.0100	0.298	0.0100	0.346	0.0100	0.0936	0.0100	0.284	0.0100	0.0973	0.0100

		Sample Sam Sample Iden	Location ple Date tification	MV 5/2/ BPT-MW2	N22 /2022 22-050222	M\ 10/14 BPT-MW	N22 1/2022 22-101422	M\ BPT-MW	W22 4/18, 22-041823	MW22 (I /2023 BPT-DU	Duplicate) P-041823	M\ 10/19 BPT-MW	N22)/2023 22-101923	M\ 4/11 BPT-MW	W22 ./2024 22-041124
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reportin Limit
BTEX															
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	5.0	ND	5.0	ND	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00
m,p-Xylene	1220 20 7	r	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	5.0	ND	5.0	ND	2.00	ND	5.00
PAHs															
Acenaphthene	83-32-9	20	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Acenaphthylene	208-96-8	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Anthracene	120-12-7	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Chrysene	218-01-9	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Fluoranthene	206-44-0	50	µg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Fluorene	86-73-7	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
2-methylnaphthalene	91-57-6	NS	μg/L	ND	1.9	ND	10.0	1	T	1	NT	N	IT	N	NT
Naphthalene	91-20-3	10	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Phenanthrene	85-01-8	50	μg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Pyrene	129-00-0	50	µg/L	ND	1.9	ND	10.0	ND	0.20	ND	0.21	ND	10.0	ND	9.60
Cyanide															
Cyanide, Total	NA	0.2	mg/L	0.204	0.005	0.019	0.010	0.260	0.10	0.260	0.10	0.063 S	0.010	0.12	0.005

 Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

 5. Bold Sample result = compound was detected.

 6. Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.

 7. J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

 8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

 9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

		Sample	e Locatio	n N	MW24	1	/W24	MW24 (DUPLICATE)		MW24	MW24 (D	DUPLICATE)	N	лW24	MW24 ((DUPLICATE)	7	MW24	MW24	(DUPLICATE)	N	MW24	M	W24	M	W24	Ŋ	1W24	M	W24
		San	nple Date	e 4/	7/2016		8/3	/2016			4/19	/2017			10/1	8/2017			4/12	2/2018		9/2	20/2018	4/26	3/2019	10/1	5/2019	4/	/2020	10/5	/2020
		Sample Iden	itificatio	h RG	E-MW24	RG	E-MW24	RGE	-DUP#1	RG	E-MW-24	RGE-	DUPE 1	M	1W24	Du	upe #1	1	MW24	E	upe#1	N	/IW24	M\	W-24	MV	N-24	BPT-MW	24-04072020	BPT-MW24	-10052020
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	^g Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX	-								-	_		-	-							-					_						
Benzene	71-43-2	1	μg/L	22.9	1.00	3.36	1.00	3.04	1.00	34.6	10.0	34.3	1.00	3.81	1.00	3.56	1.00	43.9	1.00	39.0	1.00	ND	1.00	47.1	1.00	1.03	1.00	54.4	1.00	8.57	1.00
Toluene	108-88-3	5	μg/L	29.3	2.00	8.98	2.00	7.23	2.00	29.2	20.0	29.4	2.00	7.16	2.00	7.21	2.00	69.7	2.00	60.6	2.00	ND	2.00	23.1	2.00	ND	2.00	24.9	2.00	8.98	2.00
Ethylbenzene	100-41-4	5	µg/L	2.87	2.00	ND	2.00	ND	2.00	ND	20.0	ND	2.00	1.46	J 2.00	1.39	J 2.00	19.0	2.00	17.1	2.00	ND	2.00	12.0	2.00	ND	2.00	10.3	J 2.00	1.66 J	2.00
m,p-Xylene	1220 20 7	-	μg/L	21.6	2.00	7.32	2.00	5.87	2.00	32.9	20.0	32.5	2.00	6.91	2.00	6.54	2.00	78.9	2.00	71.9	2.00	ND	2.00	38.0	2.00	ND	2.00	27.5	2.00	5.75	2.00
o-Xylene	- 1330-20-7	5	μg/L	10.6	2.00	2.68	2.00	2.12	2.00	ND	20.0	ND	2.00	3.56	2.00	3.37	2.00	45.1	2.00	41.4	2.00	ND	2.00	23.7	2.00	ND	2.00	16.6	J 2.00	3.17	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	12.0	10.0	ND	10.0	12.4	10.0	ND	10.0
Acenaphthylene	208-96-8	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	5.01	J 10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	11.0	10.0	ND	10.0	11.5	10.0	ND	10.0
Anthracene	120-12-7	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Chrysene	218-01-9	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluoranthene	206-44-0	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Fluorene	86-73-7	50	μg/L	ND	20.0	5.10	J 10.0	5.75	J 10.0	ND	50.0	ND	10.0	5.59	J 10.0	5.72	J 10.0	ND	10.0	ND	10.0	ND	10.0	14.1	10.0	ND	10.0	13.7	10.0	ND	10.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
2-methylnaphthalene	91-57-6	NS	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Naphthalene	91-20-3	10	μg/L	252	20.0	62.6	10.0	70.9	10.0	357	50.0	270	10.0	91.7	10.0	87.7	10.0	711	10.0	776	10.0	ND	10.0	ND	10.0	9.40 J	10.0	ND	10.0	61.1	10.0
Phenanthrene	85-01-8	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	6.23 J	10.0	ND	10.0	11.1	10.0	ND	10.0
Pyrene	129-00-0	50	μg/L	ND	20.0	ND	10.0	ND	10.0	ND	50.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0
Cyanide																															
Cyanide, Total	NA	0.2	mg/L	0.117	0.0100	0.0662	0.0100	0.0659	0.0100	0.105	0.0100	0.0812	0.0100	0.0523	0.0100	0.0505	0.0100	0.141	0.0100	0.154	0.0100	0.0293	0.0100	0.149	0.0100	0.0257	0.0100	0.144	0.0100	0.0380	0.0100

		Sample Sam	Location ple Date	M\ 4/15	W24 /2021	MV 10/2	V24 /2021	MV 5/3/	V24 2022	MV 10/19	V24)/2022	MV 4/23/	/24 /2023	M\ 10/24	V24 4/2023	MV	V24 4/15/	MW24 ([2024	Duplicate)
		Sample Iden	tification	BPT-MW	24-041521	BPT-MW2	24-100221	BPT-MW2	24-050322	BPT-MW2	24-101922	BPT-MW2	4-042323	BPT-MW	24-102423	BPT-MW2	24-041524	DUP-0	41524
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX																			
Benzene	71-43-2	1	μg/L	23.0	1.00	0.890 J	1.00	48.9	1.00	ND	1.00	39	10	14.7	1.00	ND	5.00	ND	5.00
Toluene	108-88-3	5	μg/L	8.45	2.00	ND	2.00	26.7	2.00	ND	2.00	39	10	14.3	2.00	ND	5.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	3.22	2.00	ND	2.00	21.1	2.00	ND	2.00	22	10	7.00	2.00	ND	5.00	ND	5.00
m,p-Xylene	1330-20-7	5	μg/L	10.2	2.00	ND	2.00	36.3	2.00	ND	2.00	57	10	16.2	2.00	ND	5.00	ND	5.00
o-Xylene	1550-20-7	5	μg/L	6.89	2.00	ND	2.00	27.7	2.00	ND	2.00	35	10	9.70	2.00	ND	5.00	ND	5.00
PAHs																			
Acenaphthene	83-32-9	20	μg/L	7.57 J	10.0	ND	10.0	13	2.0	ND	10.0	10	0.19	7.82 J	10.0	ND	9.60	ND	9.60
Acenaphthylene	208-96-8	NS	μg/L	5.36 J	10.0	ND	10.0	6.0	2.0	ND	10.0	8.8	0.19	ND	10.0	ND	9.60	ND	9.60
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	1.1	0.19	ND	10.0	ND	9.60	ND	9.60
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Dibenzo(a,h)anthracene	53-70-3	NS	µg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
Fluoranthene	206-44-0	50	µg/L	ND	10.0	ND	10.0	1.2 J	2.0	ND	10.0	1.0	0.19	ND	10.0	ND	9.60	ND	9.60
Fluorene	86-73-7	50	μg/L	5.89 J	10.0	ND	10.0	7.6	2.0	ND	10.0	8.5	0.19	5.69 J	10.0	ND	9.60	ND	9.60
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	µg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	ND	0.19	ND	10.0	ND	9.60	ND	9.60
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	ND	10.0	15	2.0	ND	10.0	N	Т	1	νT	L L	IT I	L L	١T
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	37 E	0.19	112	10.0	ND	9.60	ND	9.60
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	2.0	ND	10.0	6.1	0.19	ND	10.0	ND	9.60	ND	9.60
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	0.70 J	2.0	ND	10.0	0.66	0.19	ND	10.0	ND	9.60	ND	9.60
Cyanide																			
Cyanide, Total	NA	0.2	mg/L	0.0785	0.0100	0.0317	0.0100	0.265	0.005	ND	0.010	0.388	0.010	0.036 S	0.0100	0.02	0.005	0.0227	0.005

 Notes:

 1. μg/L = micrograms per liter

 2. mg/L = milligrams per liter

 3. NT = not tested, NS = No standard, and ND = non-detect

 4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998.

5. Bold Sample result = compound was detected.

boto sample result = compound was detected.
 Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.
 J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."
 M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

9. E is a laboratory data qualifier indicating "Concentration has exceeded the calibration range for that specific analysis"

10. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

\$ NEU-VELLE

Table 2 Rochester Gas & Electric - Brockport, NY NYSDEC Site No. V00301-8

Groundwater Sample Analytical Results

		Sample San Sample Iden	Location ple Date tification	M' 4/7, RGE-I	W25 /2016 MW-25	M 8/1 RGE-	W25 /2016 MW25	M\ 4/17 RGE-I	W25 7/2017 MW-25	M1 4/17 RGE-I	N25 /2017 MW-25	M\ 10/16 M\	V25 5/2017 V25	M 4/9 M	W25 /2018 W25	M 9/11 M	W25 7/2018 W25	N 4/2 M	1W25 6/2019 IW-25	N 10/1 M	1W25 15/2019 IW-25	M 4/8 BPT-MW2	W25 /2020 25-04082020	M 10/1 BPT-MW	W25 5/2020 25-10052020	M\ 4/15 BPT-MW	W25 /2021 /25-041521	MV 10/2 BPT-MW	V25 /2021 25-100221	MV 5/3/ BPT-MW	V25 2022 25-050322
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX										-		-								-						-					
Benzene	71-43-2	1	μg/L	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	ND	1.00	1.28	1.00	1.61	1.00
Toluene	108-88-3	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	11.9	2.00	ND	2.00	ND	2.00	ND	2.00	9.75	2.00	ND	2.00	ND	2.00	ND	2.00
Ethylbenzene	100-41-4	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
m,p-Xylene	1220 20 7	r	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00
o-Xylene	1330-20-7	5	μg/L	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	ND	2.00	2.78	2.00
PAHs																															
Acenaphthene	83-32-9	20	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(a)pyrene	50-32-8	ND	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Dibenzo(a,h)anthracene	53-70-3	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Chrysene	218-01-9	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluoranthene	206-44-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
2-methylnaphthalene	91-57-6	NS	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Naphthalene	91-20-3	10	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	1.1 J	2.0
Phenanthrene	85-01-8	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Pyrene	129-00-0	50	μg/L	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0	ND	2.0
Cyanide				·		·										·															
Cvanide Total	NA	0.2	mg/I	0.391	0.0100	0.14	0.0100	0 209	0.0100	0 209	0.0100	0.0277	0.0100	0 3050	0.0100	0.0263	0.0100	0 187	0.0100	ND	0.0100	0.120	0.0100	ND	0.0100	0 0744	0.0100	0.116	0.0100	0.121	0.005

		Sample Sam Sample Ident	Location ple Date tification	MV 10/18 BPT-MW2	V25 /2022 25-101822	MV 4/23, BPT-MW2	V25 /2023 24-042523	MV 10/25 BPT-MW2	V25 5/2023 25-102523	M) 4/15 BPT-MW	N25 /2024 25-041524
Analyte	Cas No.	TOGS 1.1.1 Groundwater SCG	Units	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit	Result	Reporting Limit
BTEX											
Benzene	71-43-2	1	µg/L	31.9	1.00	ND	5.0	10.6	1.00	ND	5.00
Toluene	108-88-3	5	μg/L	1.59 J	2.00	ND	5.0	ND	2.00	ND	5.00
Ethylbenzene	100-41-4	5	μg/L	10.6	2.00	ND	5.0	2.84	2.00	ND	5.00
m,p-Xylene	1220 20 7	r.	µg/L	9.12	2.00	ND	5.0	ND	2.00	ND	5.00
o-Xylene	1330-20-7	5	µg/L	17.1	2.00	ND	5.0	ND	2.00	ND	5.00
PAHs											
Acenaphthene	83-32-9	20	μg/L	ND	10.0	0.76	0.19	ND	10.0	ND	9.30
Acenaphthylene	208-96-8	NS	μg/L	ND	10.0	0.86	0.19	ND	10.0	ND	9.30
Anthracene	120-12-7	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Benzo(a)anthracene	56-55-3	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Benzo(a)pyrene	50-32-8	ND	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Benzo(b)fluoranthene	205-99-2	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Benzo(g,h,i)perylene	191-24-2	NS	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Benzo(k)fluoranthene	207-08-9	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Dibenzo(a,h)anthracene	53-70-3	NS	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Chrysene	218-01-9	0.002	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Fluoranthene	206-44-0	50	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Fluorene	86-73-7	50	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Indeno(1,2,3-cd) pyrene	193-39-5	0.002	μg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
2-methylnaphthalene	91-57-6	NS	µg/L	ND	10.0	N	IT	Ν	T	1	NT
Naphthalene	91-20-3	10	µg/L	44.0	10.0	0.29	0.19	ND	10.0	ND	9.30
Phenanthrene	85-01-8	50	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Pyrene	129-00-0	50	µg/L	ND	10.0	ND	0.19	ND	10.0	ND	9.30
Cyanide											
Cyanide, Total	NA	0.2	mg/L	0.13	0.010	0.172	0.010	0.68 S	0.010	0.0877	0.005

<u>Notes:</u> 1. μg/L = micrograms per liter 2. mg/L = milligrams per liter 3. NT = not tested, NS = No standard, and ND = non-detect

4. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Groundwater Effluent Limitations, June 1998. 5. Bold Sample result = compound was detected.

Die Jahr Person - Composition was detected.
 Gray shading indicates the sample result is above the TOGS 1.1.1 Standards, Criteria and Guidance Value.
 J is a laboratory data qualifier indicating "Result estimated between the quantitation limit and half the quantitation limit."

8. M is a laboratory data qualifier indicating "Matrix spike recoveries outside QC limits. Matrix bias indicated."

9. S is a laboratory data qualifier indicating "Spike Recovery outside accepted recovery limits"

Exhibit A Monitoring Well Location Map

Figure 1 Groundwater Elevation Contours

Figure 2

Groundwater Analytical Detections

Attachment A Groundwater Sampling Logs

NELLY		<u> </u>		Lo	w Flow Grou	Ind W	ater Sam	npling Log
NEU-V		Persona	<u></u>	And	rew Rothfuss	Weather	overcas	+
Date	MINIL M	Personne	an Maiha	1 2	2		NWB	
Site Name	e flat prover	01- Evacuati	on Metric	<u>ہ</u> ہ	247	Project #		
Site Loc	BrockPort Ny	Sampling	Method		<u> </u>			
Well info	mation:	<u></u>						
Depth of	Well* +3	0ft.		* Me	easurements taken	from	or well	Case
Depth to	Water* 9.4				×	1000	ж че	
Length of	Water Column	ft.				N	in NAPI	-
							10 1-171	
Stort Pun	ne Time: 11,10							
	ge vinto: t(t,t	 [T		Oxidation	Dissolv	ed	
	Depui To Water	Temperature		Conductivi	ty Reduction	Oxygen	Turbidity	Flow
1 Ime	(Ft_BTOC)	(°℃)	рН	(µs/cm)	Potential	(mg/1)	(NTU)	
11:25	9,91	13.2	8.14	1.90	-107.10-	14.13	120	1 1
11-50	9.29	13.3	1504	<u>1.89</u>		130	1.7.0	
1125	9.21	3.3	8.09	1.97		2.71	52.3	
11:40	9.90	15.L	18.05	1 61	-130.9	4.93	48.3	
11:4	9.89	$\frac{1}{12}$	6.04	1.61	-134.1	3.72	38.4	-1
1150	9.90	15.7	13.2	190	-136.0	2.58	31.9	V
ברים	9.11							
			<u> </u>					
			<u> </u>					
		<u> </u>						
			+					
				<u> </u>			<u> </u>	
			<u> </u>					
				<u> </u>				
				<u> </u>				
	<u></u>		+	<u> </u>				
							<u> </u>	
							<u> </u>	
	- וויה						\$	
End Pu	Irge Time: (1.) J						Itr.	/
water	sample:			i otai volu	ime of purged water	removed	: J GA	L
	Oncolou. (Della				Dhycical an	nearance	at sampling	1
Physic	al appearance at start	10.10			Filysical ap	Color	(lardy)	1Chear
	Color <u>readish</u>	LLIOVEY				Odor	Non	<u> </u>
	Odor Non				Shee	n/Free Pro	oduct NM	<u>L</u>
Sheen	Free Product NU			- PX	KANA/Q	۸L	11212	
				1311	- WWD	- 09	11 11	
Analy	tical Parameters:							
				ille ada al	Field Filtered	<u> </u>	<u> </u>	Container pH
Cont	ainer Size Con	tainer Type	<u> #C</u>	ollected	Field Fillered			······································
		<u></u>						
·					<u></u>			

۰.

lowflowlog

,

NEU-VEL	LE, LLC			Low	Flow Grou	und W	later Sam	pling Log
Date u	u/284	Personn	el	Andrew	Rothfuss	Weather	Overcas	t_
Site Name R	A BADErt	Evacuat	ion Meth	od 3P		Well #	MNV	
Site Loc DO	LICZOFT NU	Samplin	a Metho	BP		Project #	ŧ	
Well informati	ion:	<						N. N. NIA
Depth of Well *		$\sum_{n=1}^{n} f_{n}$. 1	* Measu	irements taken	from 1 സ്വാപം	all las	NONDA
Depth to Wate	r*	<u>57 </u> f.	1121		X	[03 ≫		
_ength of Wate	er Column	π.						
						1		
Start Purge Tir	me <u>: 1</u> 3205							
	Depth				Oxidation	Dissolv	ed	
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
1	(FL BTOC)	(°C)	рН	(us/cm hoch	Potential	(mg/l)	(NTU)	Rate (ml/min)
(710)	7.7	11.0	7.81	Or la Aito	241.5	6.83	25.6	-2.81
13:5	1.05	10.5	7.42	474/10	201.9	7,15	13.4-	
1332 8	·17	10.5	1.00	Martin Lan	7125		10.13	1 1
1327 0	<u>~ 7 M</u>	10. Y	- <u>60</u> - Ai	117/2	127.3	6.21	8.91	
335 0	<u>. 60</u>	10.3	7.85		135.0	5.88	8.02	
				Sechelv				· ·
				474.2				
				474.6				
				472.4				
				476.0		<u> </u>		
				421 2				
						1		
End Durne Tin	13:4D							
Liu Fuige fiit								
water sample i ime collected				l otal volume of	purgea water re	emovea:		
					D			,
Physical appea	arance at start	JOAN			Physical appe	arance a Color	And I	16'un/
Color	<u> </u>					Odor	Nen	
	roduct Ne 3	<u></u>			Sheen/F	ree Prod	uct ND	
Cuor Sheen/Free Dr		Q.c	1x - 11	NW 270	411 24	\ '	<u> </u>	
Sheen/Free Pi	•	(NG)	~] - I	······································		1		
Sheen/Free Pi	•	<u></u>	the second s					
Sheen/Free Pi Analytical Par	rameters:	<u></u>						
Sheen/Free Pi Analytical Par	rameters:	<u> </u>	••••••••••••••••••••••••••••••••••••••		- 1	T	·······	Containor pl
Container Siz	rameters:	ner Type	# Co	lected Fie	eld Filtered	<u> </u>		Container pH
Coor Sheen/Free Pi Analytical Par Container Siz	rameters:	ner Type	# Co	lected Fie	eld Filtered			Container pH
Container Siz	rameters:	ner Type	# Co	lected Fie	eld Filtered			Container pH

4

` **.**.

-

lowflowlog

••

FU-VELI	F. LLC			Low	Flow Grou	and W	ater Sam	<u>oling</u>	Log
to l	4/11/14	Personn	el	Andrew	Rothfuss	Weather	NerCas	<u>+</u>	
alle	K BACKAOC	F Evacuat	ion Method	B	P	Well #	MW 2	<u> </u>	
te Loc Qr	ocleport M	Samplin	g Method	BP		Project #			
ell information	on:	<u></u>							
eoth of Well *	12	ft. 1	1	* Measu	urements taken	from		٨	by A CAO
epth to Water	* 3.50	<u>પ</u>	10/27		X	The P	ull lar		01VAA
ength of Wate	r Column	ft.							
	-				L) 			
tart Purge Tin	ne: 1505							···	
	Depth	[Γ	····	Oxidation	Dissolv	ed		
Time	To Water	Temperature	Coi	nductivity	Reduction	Oxygen	Turbidity	Flow	(ml/min
	(FL BTOC)	(°℃)	pH (µ	s/cm)	Potential	(mg/l)		Rate	7)
1505	3.4	1,0	7.55 5	00	181.1	<u>>.10</u>	<u> </u>	++3	
150	5.39	10.10	750 3	<u>zu</u>	118.5	51	<u> </u>	+	
1515	3 yz	10.3	1.99 2	<u>, '8</u>	160.3		<u>Over</u>	++	
1520	<u>7, 42</u>	<u>w.r</u>			127	77	77.3	+++	
1525	3.41	$\frac{1}{1}$	264	> le e1	86.7	2.37	UN Z		
1530	3.42		7.96	572	174,1	1.97	39.4		<u> </u>
1575	5.45	a7	7.76	564	629	1.64	19.4		/
1546	2 47	a.5	772	570	521	2.32	20.4		
13 []	2.90								
									<u> </u>
			<u></u>			+	+		
	· · · · · · · · · · · · · · · · · · ·								
						+			
						+			
				<u></u>					
							<u> </u>		
End Burge Ti	545								
End Purge II	ine. 17.0								
water samp	154P		10	nai volume (or purged water	removea:			
					Dhueicol con	0000000	et sampling		
Physical app	earance at start	No.			Physical app	Color	(UM		
Colo	r V(own)	v Triman				Odor	REAN		
Odo	non non				Sheen	/Free Pro			
Sheen/Free F	Product N	0			Sheen	1100110	<u> </u>		
Analytical Pa	arameters:								
			<u> </u>	tool 1	Field Filtered		<u> </u>	Conta	iner pH
Container S	ize Cont	ainer Type							
1						1			

. जन्म

٦

NEU-V	/ELLE. LLC	, · · · · · · · · · · · · · · · · · · ·		Low	Flow Grou	und W	ater Sam	oling Log
)ote	4/12/24	Personn	el	Andrew	Rothfuss	Weather	over cast 1	windy 50°
	Diel Barrent	Fvacuati	ion Meth	od BP		Well#	MW 21	ć.
	2 BUR DIDULION	Comelin	a Matha	RD	> ····································	Project #		
Site Loc_	PIQUEVOIT NU	Samplin						
Nell info	rmation:	· 1				_	•	
Depth of 1	Well* 12.5	t ft ,		* Measu	irements taken	from	at we c	50
Depth to	Water * 4,	<u>5 </u> ft. 41	n u	4	×	i jor i	MAR CI	
Length of	Water Column	ft.					NONA	PL
Start Pur		<u></u>						
Jan Cult	84 1 miles				Oxidation	Dissolv	ed	
Time	Leptn To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
ı me	(Ft RTOC)	(°C)	рH	(µs/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min)
1210		10.0	7.00	424.4	-73.9	1.7	over	200 ms/m
100	4:69	<u>q</u> 5	1.50	422.8	-77.3	1.21	OVUV	<u> </u>
1225	4.08	9.3	7.\$	420.6	1-83,6	1.17	over	
133	Ч. 69	9.1	7.56	383.4	6,96-	12.16	aver	
1375	4.55 6-hm	1.0	7.55	585.2	35 5	7 54	96.7-	
1340	¥ 4.69	8.9	1.5	403.5	-30.10	2.65	45.0	
1345	<u> </u>	0.0	7 64	455.9	-28.5	3.97	36.0	
1350		0.0	7.5	470.5	-30.4	7.75	27.6	<u> </u>
1400	4 6h	<u>8</u> .9	7.44	480.8	-30:1	3.4	24.5	- <u></u>
14.5	4.64	8.9	ገ. 4ን	494.6	-30.3	3.17	14.9	
<u>, wr</u>							<u> </u>	
			<u> </u>					
				+		+	<u>l</u>	
					<u> </u>			
		-				1		
			+	1				
							L	_ <u></u>
						<u> </u>		
						+	<u> </u>	
		<u> </u>	<u> </u>	<u> </u>			<u></u>	
End Pu	rge Time: 350	14:05						
water 4	ample:							
Lime co	niected:			i otal volume o	r purged water	removed:	<u></u>	<u> </u>
District	I appearance of atom				Physical app	earance	at sampling	
Physica	Color (),),	M. New				Color		
1	Odor Nava					Odor		
Sheen/	Free Product	<u>, </u>			Sheen	/Free Pro	duct	
Analyti	cal Parameters:							
Contai	iner Size Conta	ainer Type	#C	ollected f	-ield Filtered			Container pH
oona		•			· · · · · · · · · · · · · · · · · · ·			
		<u></u>			·····			
			1		<u></u>		L	

FU-V	FLLE, LLC			Low	Flow Gro	und Wa	<u>ater Sam</u>	pling Log
	1115/24	Personr	nel	Andrev	w Rothfuss	Weather	55, Cla	10 Jy 5-10 mp
ie	a De las Benk	Evacuat	tion Meth	od B	9 3/4"	 Well # _	MWM	
	Brack But M	Samplir	g Method	BP	3/4/1	Project #		
<u> </u>	DIDUE PE 1 P			······································				
ell info	mation:	m14.5t		* Moa	surements taken	from		
pth of \	Well*			Weas	X	7690	fuell a	ise
pin io v nath of	Water Column	<u>اللہ اللہ</u> ft.				1 .	n AsA:	2
igai oi] <i>I</i> V	UNAY	2
			<u></u>			<u></u>		
rt Purg	ge lime: 1/:45		T		Ovidation	Dissolve	d	
	Depth To Mator	Tomporature		Conductivity	Reduction	Oxygen	- Turbidity	Flow
me	(Et BTOC)	(°C)	рΗ	(µs/cm)	Potential	(mg/l)	(NTU)	Rate (ml/mjn)
100	2.110	10.2	7.5	1220	230.1	7.07	104.6	75m1/m
45	7.19	10.3	7.51	1236	197.6	2.51	105.3	_ _
50	7.20	10.3	1.49	1226	1861	5.99	90.5	 /
<u></u>	7.20	10.3	747	1191.	177. K	2.4	74.4	
14	7.20	10.3	8.00	1169	160.5	2.74	76.5	
.10	2.16	10.4	7.41	1123	170.2	2.56	60.2	
:15	7.14	10.3	7.33	1091	174.3	4.51	78.8	
w	7.19	10.3	17.15	1043	181.1	2.71	26.2	
25	7.20	10.7	7.71	0196	141.4	2.75	21.7	
35	5.19	10.2	7.20	986	133.8	2.87	13.6	
.40	7,20	10.3	7.27	969	170.9	2.99	11.45	
1:44	7.20	10.3	7.22	956	117.3	5.00	- 2. 28-	
:9	7,21	10.2	7.70	751	110.0	- 3.19	7,00	
			+					
+	······································							
						+		
	······································							
	12:50)							
a Puli	ge nine.			BPT W	w17_04	1524	$1 \sim 1$	
ter s ne col	ample: liecteo:			I otal volume	or purged water	removed:		yer!
•					Physical app	earance at	t sampling	
ysical	Color Kinita	ndi				Color	closer 1	none
	Odor NOAL1					Odor	nine	
een/F	ree Product NO				Sheen	/Free Prod	uct NO	
								Ē
alytic	cal Parameters:							_ I
alytic	cal Parameters:	iner Type	# C(ollected	Field Filtered			Container pH
ontair	cal Parameters: ner Size Conta	iner Type	# C	ollected	Field Filtered			Container pH
ontair	cal Parameters:	iner Type	# C(Field Filtered			Container pH

lowflowlog

NEIT				Low	Flow Gro	und W	ater Sam	oling Log
INEU-	HINCON	Personn		Andrew	/ Rothfuss	Weather	Mardy	600F
Date	ALC GALLANT	Evacuat	ion Method	ß	P	 Well#	MW EY	
Site Nan	Den Work NY	Samplin	a Method	B	P	 Project #		
Site Loc	BIOLICY UP T NY							
Well inf	ormation:	-+ .		* Moos	uromonte taken	from	o of he	11 (251
Depth of	fWell*	<u>, "</u>		Weas	X	סך ייין	ip or m	
Depth to	of Water Column	/n. ft.					NIA NIAL	
Lengui t]		
			<u></u>	<u></u>	<u></u>			
Start Pu			<u> </u>		Ovidation	Dissolv	ed	T
T :	Depth To Water	Temperature	Con	ductivity	Reduction	Oxygen	Turbidity	Flow
IIMe	(Ft BTOC)	(°C)	pΗ (μs	/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min)
ILIAS	8.60	11.80	6.98 7	82	75.3	1,11	10.9	150 mC/m
1410	8.73	11.4	7.04 -	74	44.3	0.91	13.3	<u> </u>
1415	8.80	11.2	7.12 7	25	-11.0	88	15.1	+
1420	<i>R.83</i>	10.9	1.20 7	73	- 37.6	0.65	6.46	
1425	8.86	10.5	1.18 1	65	- 547	0.00	7.91	
430	8.90	10.3	7.10 7	61	- 59.9	0.38	2.90	
µ735	8.97			<u> </u>				
·						<u> </u>		_\\ _/
								+-\/
			<u> </u>					
			<u></u>			╂━───		
<u> </u>			<u> </u>					
ļ			+					
		<u> </u>	+					
<u> </u>			+					
							····	
							<u> </u>	
								<u></u>
			<u> </u>					-
ļ	<u> </u>	<u> </u>	┼╾┈┽─				·	
	<u> </u>					~~~ ; ;		
End Pu	urge Time: 1435		RP1-	WW	24-071	s 69		
water	sample:		101	ai volume (or purged water	removed:	2.5I	GAL
1 ime c								
Physic	al appearance at start				Physical app	earance a	at sampling	
	Color Cloudy	<u> </u>				Color	went	
	Odor Une	•			-	Odor — D	pine_	
Sheen	/Free Product No				Sheen	/Free Proc		
	•							
Apolet	ical Parameters							······································
Analyt	uvai Faiailicitis.				<u></u>			Container of
Conta	ainer Size Conta	iiner Type	# Collect	ed	Field Filtered			Container pri
 					·····			
								······
					<u> </u>			

.

Control Personnel Andrew Rotifies Weather C 2° Duff Sympy Lot 5 Wait Site Loc Brute Brute Sampling Method B7 Project #	NEU-	VFILE LLC			Lov	v Flow Gro	und W	ater Sam	<u>ipling l</u>	<u>_oq</u>		
Late ISSE Evacuation Method ISP Well # WW I/S // Site Loc StackBark-ML Sampling Method ISP Project #	Dete	ulir/24	Personn		Andre	ew Rothfuss	Weather	620	PNIT	SMU	WF5	WOW
Site Name Description Description Description Description Well information: U.C. R. * Measuraments taken from provide a sumpling Method Project a sumpling Method Project a sumpling Method Depth of Well* U.C. R. * Measuraments taken from provide a sumpling Method Project a sumpling Method Project a sumpling Method Depth of Well* U.C. R. * Measuraments taken from provide a sumpling Method Project a sumpling Method Start Purge Time: S22 * Measuraments taken from provide Turbuildity Flow Method Start Purge Time: S22 Start Purge Time: S22 Start Purge Time: S22 Start Purge Time: S23 Start Purge Time: List S Size Size Size Size Size Size Size Size	Date -	DGS Backout	Evecuat	ion Meth	SI bo	P	- – Well#	MW	25	/		
Set Loc Set purp winted Loc -9.74 Well information: 9.03 n.	Site Nam	e conc storent	Complia	a Mothor	ँडि	P	 Proiect #			-		
Well information: Image: Construction of the second se	Site Loc_	BIOCKART-NY	. Samplin		L	· · · · · · · · · · · · · · · · · · ·				-		
Doph of Weil* Itel: * Measurements taken from or port with case. Depth to Weil* Itel: n. x Time for Water Column n. x x Start Purge Time: ISZ2 x x Time for Water Column Temperature Conductivity Reduction Oxygent Turbicity Flow 15225 I.05 12:0 7.4/1 57.8 * 74.9 8.58.8 104:0 1/52 ent/er 1525 I.05 12:0 7.4/1 57.8 * 74.9 8.58.8 104:0 1/52 ent/er 1525 I.06 11:1 7.57.8 57.8 - 74.9 8.58.8 104:0 1/52 ent/er 1525 I.08 11:1 7.57.9 57.9 - 27.9 2.7 1 1/57.9 1/57.9 57.9 2.7.9 2.7.9 1 1/57.9 1/57.9 1/57.9 1/57.9 2.7.9 2.7.9 1 1/57.9 1/57.9 1/57.9 2.7.9 2.7.9 1 1/57.9 1/57.9 1/57.9 1/57.9 1/57.9 1/57.9 1/57.9 1/57.9 1/57.9 <td>Well info</td> <td>ormation:</td> <td></td>	Well info	ormation:										
Doph to Water - 9.03 n. x product Length of Water Column	Depth of	Well* <u>145</u>	ft.		* Mea	asurements taken		well	case			
Length of Water Column	Depth to	Water* 9.03	5ft.			×	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V.				
Start Purge Time Depth Time	Length o	f Water Column	ft.				-					
Start Purge Time: S20 Time Optim To Water Temperature (1) (1) (1) (1) Potential]					
Open International Conductivity Oxidation Reduction Reductin Reduction Reduction Reduction Reduction Reductin Reduct	Start Pur	rge Time: 1570										
Time To Water (P. BTCC) Temperature (*C) Conductivity (*S) Reduction (*G) Conductivity (*G) Provential (*G) Flow (*G) Flow	<u>г</u> осался сп г	0th	T T	1		Oxidation	Dissolve	ed			1	
Integration (model) (model) <td>Time</td> <td>Deptn To Mater</td> <td>Temperature</td> <td></td> <td>Conductivity</td> <td>Reduction</td> <td>Oxygen</td> <td>Turbidity</td> <td>Flow</td> <td></td> <td></td> <td></td>	Time	Deptn To Mater	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow			
1325 1/10 1/1/1 528 -4/1/8 1.88 10/1.0 1/55 ent/en 535 9.02 11.0 7.46 54 -53.1 0.91 69.8 1 1576 9.02 11.0 7.46 54 -53.1 0.82 72.2 1 1576 9.02 11.0 7.46 54 -53.4 0.82 72.2 1 1576 9.02 10.9 7.47 54 -53.4 0.82 173.2 2 1576 9.02 11.1 7.47 54.9 -57.1 0.82 7.3 2 7 2 2 7 2 2 2 2 2 </td <td>lime</td> <td>(Ft BTOC)</td> <td>(°C)</td> <td>На</td> <td>(µs/cm)</td> <td>Potential</td> <td>(mg/l)</td> <td>(NTU)</td> <td>Rate</td> <td>(ml/min</td> <td>)</td> <td></td>	lime	(Ft BTOC)	(°C)	На	(µs/cm)	Potential	(mg/l)	(NTU)	Rate	(ml/min)	
250 9.62 11.5 7.56 556 -53.7 0.61 64.6 1535 9.67 11.0 7.56 54.2 7.60 2.57 7.60 2.57 1556 9.67 11.1 7.57 54.2 7.76 54.2 7.76 54.2 7.76 54.2 7.76 54.2 7.76 54.2 7.76 54.2 7.76 54.2 7.76 <t< td=""><td>1575</td><td>9.05</td><td>17:0</td><td>7.41</td><td>578</td><td>- 46.8</td><td>1.88</td><td>104.0</td><td>150</td><td>m/m</td><td></td><td></td></t<>	1575	9.05	17:0	7.41	578	- 46.8	1.88	104.0	150	m/m		
1585 9,07 11,0 7,5% 5% -57,4 0,27,2,4,4 15% 9,07 11,1 2,5% 5% -57,4 0,22,1 2,2 1555 9,07 10,4 7,5% 5% -57,4 0,22,1 2,2 1555 9,07 10,4 7,4% 5% -57,4 0,22,1 2,2 1557 9,08 11,1 7,4% 5% -6,2,7 0,23 3,2,7 1600 9,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 9,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 9,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 9,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 9,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 10,07 11,0 7,4% 5% -62,4 0,25 3,2,7 1600 10,07 10,07 <t< td=""><td>30</td><td>9.00</td><td>11.5</td><td>7.45</td><td>556</td><td>-53.1</td><td>0.91</td><td>69.8</td><td></td><td> </td><td></td><td></td></t<>	30	9.00	11.5	7.45	556	-53.1	0.91	69.8				
11.1 2.57 542 -57.1 0.67 13.2 1576 7.07 10.9 7.42 542 -57.4 0.72 9.35 1550 7.07 10.1 7.47 544 -57.4 0.72 9.35 1550 7.07 10.1 7.47 544 -57.4 0.72 9.37 1550 7.08 11.1 7.47 544 -57.4 0.74 3.77 1600 9.07 11.0 7.44 549 -61.4 0.74 3.77 1600 9.07 11.0 7.44 549 -62.4 0.25 3.27 1600 9.07 11.0 7.44 549 -62.4 0.25 3.27 1600 9.07 11.0 7.44 549 -62.4 0.25 3.27 1600 9.07 11.0 1.44 549 -62.4 0.25 3.27 1600 9.07 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.00 10.01 10.01	1535	9.07	11.0	7.46	SYR	-57.4	0.87	24.4		. <u></u>	-	
15% 9.07 10.9 7.42 544 -57.4 0.28 174 5.71 1550 9.08 11.1 7.42 544 -62.4 0.24 3.97 1600 9.08 11.1 7.42 544 -62.4 0.25 3.27 1600 9.08 11.1 7.42 544 -62.4 0.25 3.27 1600 9.08 11.1 7.44 544 -62.4 0.25 3.27 1600 9.08 11.0 7.44 544 -62.4 0.25 3.27 1600 9.08 11.0 7.44 544 -62.4 0.25 3.27 1600 9.08 11.0 7.46 544 -62.4 0.25 3.27 1600 9.08 10.0 1.44 1.44 1.44 1.44 1.44 17 9.08 10.0 1.44 1.44 1.44 1.44 1.44 17 9.08 10.0 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44	1540	9.0>	16	2.59	Syg	-55.1	0.83	13.2			ł	
1/352 9,07 11,1 7,39 544 - 59,1 6,74 2,74 2,74 1/307 9,08 11,1 7,39 549 - 61,5 2,74 <t< td=""><td>1545</td><td>9.07</td><td>10.9</td><td>7.42</td><td>544</td><td></td><td>0.78</td><td><u>7:35</u></td><td></td><td></td><td>1</td><td></td></t<>	1545	9.07	10.9	7.42	544		0.78	<u>7:35</u>			1	
1555 9,68 1.1 1.74 349 -67.4 0.74 3.74 1007 9,07 11.0 7.44 \$49 -62.4 0.75 3.74 1007 9,07 11.0 7.44 \$49 -62.4 0.75 3.74 1007 11.0 7.44 \$49 -62.4 0.75 3.74 1007 11.0 7.44 \$49 -62.4 0.75 3.74 1007 10.0 7.44 \$49 -62.4 0.75 3.74 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008<	1350	9.07	<u> 11. (</u>	7.42	546	- 39.1	0.79	<u>). 11</u> 2 97			1	
Import	1555	9,08		7,79	749	- 67 4	0.74	221	<u> </u>	·	1	
End Purge Time: 1681 Water sample: 1681 Horizon Collected: 1601 Horizon Collected: 1601 <td>1600</td> <td>9,67</td> <td></td> <td>1.96</td> <td>1 2 77</td> <td>-26.9</td> <td>0.77</td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	1600	9,67		1.96	1 2 77	-26.9	0.77			1		
Image: Same start Color Container Start North Image: Sheen/Free Product No Sheen/Free Product No Image: Sheen/Free Product No Sheen/Free Product No Image: Sheen/Free Product No Image: Sheen/Free Product No Image: Sheen/Free Product No <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>V</td> <td>]</td> <td></td>										V]	
Image: State of the state		<u> </u>									1	
End Purge Time: 1600 End Purge Time: 1600 Water sample: 1600 I'me collected: 1600 Physical appearance at start Physical appearance at sampling Color Clourly Odor NOME Sheen/Free Product NOME Sheen/Free Product NOME Sheen/Free Product NOME Container Size Container Type # Collected Field Filtered Container Size Container Type											4	
Image: Streen/Free Product No Sheen/Free Product No Sheen/Free Product Sheen/Free Product Image: Streen/Free Product Image: Streen/Free Product Image: Streen/Free Product											4	
End Purge Time: 1600 Water sample: 1600 Water sample: 1600 Vater sample: 1600 Color Color Color Color Mater sample: 1000 Sheen/Free Product Monte Sheen/Free Product Sheen/Free Product Malytical Parameters: Container Type # Collected Field Filtered Container Size Container Type # Collected Field Filtered Container Size Container Type Mater Size Container Type							ļ	<u></u>			4	
End Purge Time: 16 10 Water sample: 16 10 Inme contexted: 16 10 Physical appearance at start Physical appearance at start Color Cloudy (m/tpilly) Odor NAL Sheen/Free Product NO Sheen/Free Product NO Sheen/Free Product NO Sheen/Free Product NO Sheen/Free Container Type # Coliected Field Filtered Container Size Container Type # Coliected Field Filtered Container Type # Coliected					ļ						-	
End Purge Time: 1601 Water sample: 1605 Imme contention Iotal volume or purged water removed: Physical appearance at start Physical appearance at sampling Color Clouby MAL Sheen/Free Product Sheen/Free Product NO Sheen/Free Product Sheen/Free Product Container Type # Collected Field Filtered Container PH					<u> </u>						1	
End Purge Time: 16 61 Water sample: 16 61 Imme collected: 16 61 Physical appearance at start Physical appearance at sampling Color Clerky Odor NAL Sheen/Free Product NOT Sheen/Free Product NOT Sheen/Free Product NOT Sheen/Free Product NOT Container Size Container Type # Collected Field Filtered Container Size Container Type # Collected Field Filtered Container Size Container Type										<u> </u>	1	
End Purge Time: 161 Water sample: 165 Imme collected: 165 Physical appearance at start Physical appearance at sampling Color Cloudy Odor NML Sheen/Free Product NO Sheen/Free Product				<u> </u>	<u> </u>		1				1	
End Purge Time: 6 61 water sample: 16 05 I'me collected: 16 05 Physical appearance at start Physical appearance at sampling Color Cloudy Odor MAN							-					
End Purge Time: 1601 Water sample: 1605 Imme collected: 1605 Physical appearance at start Physical appearance at sampling Color Cloudy (MURLY) Odor Note: Sheen/Free Product NO Sheen				-	-						_	
End Purge Time: 6 61 water sample: 105 I'me collected: 105 Physical appearance at start Physical appearance at sampling Color Colory Odor NAM Sheen/Free Product NO Sheen/Free Product NO Sheen/Free Product NO Sheen/Free Product NO Container Size Container Type # Collected Field Filtered Container Size Container Type I'me collected Field Filtered											4	
End Purge Time: 601 water sample: 105 Imme collected: 105 Physical appearance at start Physical appearance at sampling Color Cloudy (MURLY) Odor NAML Sheen/Free Product NO BPT_WWX5_0Y1525 Analytical Parameters: Container Size Container Type # Collected Field Filtered Container Size Container Type	<u></u>	·			1						-	
End Purge Time: [000] water sample: [005] Imme collected: [005] Physical appearance at start Physical appearance at sampling Color Color Color [004] Odor [004] Sheen/Free Product Note: BPSWW55_091525 Analytical Parameters: Container Size Container Type # Collected Field Filtered Container Size Container Type		1661										
water sample: U.05 I otal volume of purged water removed: 2000 minute Physical appearance at start Physical appearance at sampling Color Cloudy (MVIK44 Color Color Odor MML Odor Minute Sheen/Free Product NO Sheen/Free Product Monute Analytical Parameters: Container Type # Collected Field Filtered Container pH	End Pu	rge lime: <u>IVV</u>	<u> </u>					~ +	o 1			
Physical appearance at start Physical appearance at sampling Color Color Chan Odor NML Odor Nome Sheen/Free Product NO Sheen/Free Product No Analytical Parameters: Explanation Explanation Container Type # Collected Field Filtered Container pH Container Size Container Type # Collected Field Filtered	water s				i otal volume	e or purged water i	removea:	2-4	Sal _	_		
Physical appearance at start Physical appearance at sampling Color Cloudy (mUply) Odor Non Sheen/Free Product No Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Free Product Sheen/Sheen Sheen/Free Product Sheen Sheen/Free Product Sheen Sheen Sheen								· · · · · · · · · · · · · · · · · · ·	/		1	
Color Color <td< td=""><td>Physica</td><td>I appearance at start</td><td>ı</td><td></td><td></td><td>Physical app</td><td>earance a</td><td>د معلم المعد مرام</td><td></td><td></td><td></td><td></td></td<>	Physica	I appearance at start	ı			Physical app	earance a	د معلم المعد مرام				
Odor Null Sheen/Free Product No Sheen/Free Product No Image: Sheen/Free Product Image: Sheen/Free Product	1	Color Cloudy (MUNKY				Oder	L INMA				
Sheen/Free Product NO Sheen/Free Product Sheen/Free Product Office Product		Odor MML	e 			Choose	Udur Eree Drod					
Analytical Parameters: Container Size Container Type # Collected Field Filtered Container pH	Sheen/	Free Product ND			^ -	Sileen	1.166 11100					
Analytical Parameters:					ISPT_	MW25-	-041	525				
Analytical Falameters. Container Size Container Type # Collected Field Filtered Container pH	Anabet	col Paramotora:			<u><u> </u></u>							
Container Size Container Type # Collected Field Filtered Container pH	Anaiyu	cai rarameters:										
	Contai	ner Size Conta	iner Type	# Co	ollected	Field Filtered			Containe	er pH	-	
											-	
				<u> </u>		·					1	
											-	
							<u> </u>				_	

JELLV				Low	Flow Grou	<u>und W</u>	ater Sam	pling Log
	411/74	Person	nel	Andrew	Rothfuss	Weather	65 Sm	my light brea
	7/10/07 24 Backs 1		ion Meth	RP		- Well#	MNG	
ite Name Viet DIOLUNIT BY Evacuation Method								
ite Loc_	Brockport Ny	- Samplin	g Method	<u> </u>		Piloject #		
lell info	rmation:							
onth of l		5 ⁴ ft.		* Measu	rements taken	from	<i>с</i> .	
epui or i	Water * 7.	60 ft.			X	TOP	st usll co	SC.
epui to v	Water Column	11ft.					1. A.A.	
sigin oi	Water Column						IO NAPL	
			<u> </u>					
tart Purg	ge Time: 17:10							
Г	Depth	1			Oxidation	Dissolv	ed	
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
	(Ft. BTOC)	(°C)	рН	(µs/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min
7:15	7.52	12	640	441.9	203.7	5.44	over	100 W/A
2:20	7.61	10.5	6.71	426-8	2.47,1	5.52	461	_
2:05	7.75	10.4	6.72	425.6	300.7	5.66	84.4	
2:30	7.96	10.2	6,72	428.7	305.2	5.82	68.3	
235	7.99	10.3	6.67	432.8	308.5	17:68	61.3	_ /
240	8.04	10.1	662	438.2	510.8	13.97	2 1 7	_ _\
1245	8.27	10.	6.63	442.0		4.01	30'	
29	8.24	70.	6.65	447.3	- Sine	6.60	72 1	
255	9.24	10.0	6.67	748.	314.1	10.30	160	+,+7
300	8.30	[0.]	6.60	450.3	1727	6.41	9.70	+++/-
35	9.40	10.7	6.01	40-61	27711	0.60	6,72	
iŝio	<u>8.40</u>	10.1	16.58	753.3	241.4	10,00	<u> </u>	
135								
		·	+					
							<u> </u>	
	·····			<u> </u>		+		
			+		- <u> </u>	1		
			+					
			+			1		
						T		~
			1					
	1210			$\sim \sim $		1	1.11.71	
End Pur	rge Time: 30			KP/	-MW	7 - 0	4102	ł
water s	ample:					emovea.	7.5-3	ant
I me co	onectea: 1313			Total volume of	i puigea water i	citiovou.		3-1
	I of ofort		+		Physical app	earance a	at sampling	
Physical	appearance at start	bluck	MUNK	ル/	•	Color	Chem	
	Color I Color	U PWCI ***	4	1		Odor	Non	
	Odor A.M.				Sheen/	Free Proc	Juct No	
0h/	Odor <u>No</u>							
Sheen/F	Odor No Free Product ND							
Sheen/F	Odor No Free Product NO							
Sheen/F	Odor No							
Sheen/F	Odor ND Free Product ND cal Parameters:				<u></u>			
Sheen/F	Odor No Free Product NO cal Parameters:	ainer Type		Dilected F	ield Filtered			Container pH
Sheen/F Analytic Contai	Odor No Free Product NO cal Parameters:	ainer Type	# Cc	ollected F	ield Filtered			Container pH
Sheen/F Analytic Contai	Odor <u>No</u> Free Product <u>NO</u> cal Parameters:	ainer Type	# Cc	Dilected F	ield Filtered			Container pH
Sheen/F	Odor No Free Product NO cal Parameters:	ainer Type	# Cc	Dilected F	ield Filtered			Container pH

•

.

/

Exhibit B

Groundwater Laboratory Reports and Chain of Custody Forms

Logan Reid Neu-Velle LLC 10 Jones Avenue Rochester, NY 14608

Laboratory Results for: RGE Brockport

Dear Logan,

Enclosed are the results of the sample(s) submitted to our laboratory April 15, 2024 For your reference, these analyses have been assigned our service request number **R2403033**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighan tedio

Meghan Pedro Project Manager

CC: Andrew Rothfuss

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

Service Request: R2403033 Date Received: 04/15/2024

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 04/15/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Approved by

Mighran Hedro

Date

04/22/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: BPT-MW22-041124							
Analyte	Results	Flag	MDL	MRL	Units	Method	
Cyanide, Total	0.118			0.0050	mg/L	Kelada-01	
CLIENT ID: BPT-MW20-041124		Lab ID: R2403033-003					
Analyte	Results	Flag	MDL	MRL	Units	Method	
Cyanide, Total	0.0168			0.0050	mg/L	Kelada-01	

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Neu-Velle LLCProject:RGE Brockport

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	DATE	TIME
BPT-MW8-041124	4/11/2024	1210
BPT-MW22-041124	4/11/2024	1345
BPT-MW20-041124	4/11/2024	1550
PPT-MW8-041124	4/11/2024	1420
	<u>CLIENT SAMPLE ID</u> BPT-MW8-041124 BPT-MW22-041124 BPT-MW20-041124 PPT-MW8-041124	CLIENT SAMPLE IDDATEBPT-MW8-0411244/11/2024BPT-MW22-0411244/11/2024BPT-MW20-0411244/11/2024PPT-MW8-0411244/11/2024

·		W											_									
Α		Chain d	of Custo	dy / Analyt	ical Reque	st Fo	rm						- 7	734	179)		SRI	‡:			
(ALS)	1565 Jefferson Road	l, Building 300, S	uite 360) Rochest	er, NY 1462	3 • +	1 58	5 28	88 5	380	• al	sglo	bal.	com	· · · · · ·			Pag	ge L			;
	Report To:	ALL SHAD	ED AREAS CLIE	<u>MUST</u> BE COM NT / SAMPLER	PLETED BY THE	Pr	reserva	ative														0. None
	ev-veile	Project Name:	E Bra	Le Port]			CLP	LP					ilter							1. HCl
Contart:	nn Reid	Project Number:	1]			24⊕Ţ	• TC	đ				LabF				1			2. HNO3
Email:	Ireida Nev-velle	ALS Quote #:			•	Gw			4 • 5:	625	Ŧ.	S	م	elow	d∕tn-				1			3. H2SO4
Phone:		Sampin Signat		lall	2	sw	ners		● 62	• 0/	800	7	● TCI	ect B	- Fiel				1			4. NAOH
Address:	0 Jours Ave	Email CC:	ntres (Nev-ull	e com] bw	ntai		8260	- 82	8	8	151 (- Sele	ved							5. Zn Acet.
R	ochester NY	Email CC:	_				L C		- AC	AO'	8	7 • 6	- 8 - 8	otal	issol							6. MeOH
		State Sample (Circle or	es Collected Write):	NY, MA, PA, CT	, Other:] _	er o	ISD?	S VC	S SV	ides	808	cide:	s, Tc	s, D							7. NaHSO4
Lab ID	Sai	mple Collection In	formatio	on:	<u>г </u>	atri		s/N	c/M	c/M	etie	ŝ	erbi	etal	etal							8. Other
(ALS)	Samp	le ID:		Date	Time	Σ	Ź	Σ	Ŭ	ğ	Pe	R R	Η€	Σ	Σ							Notes:
	BPT_MW8-041	124		<u> 4/11/24</u>	U.SD	W	15	-	Ł	×		X							-	╀─		4
	BPT_MNLL_C	041124		4/11/24	1345	1		K	*	4		X						$\left \cdot \right $	+	-	<u> </u>	Ms/VS
	BPI-MWW-	041124		4/1/29	1350		17 1		7	X J		X						┝┼		+	+	
	PIT_MWILL	0412.24		4/13/24	1920	~			*	*		X					<u> </u>	┞┞	-	<u> </u>		<u> </u>
	PIAME					+			×									$\left \right $	+		-{	łł
						+														+		<u> </u>
	· · · · · · · · · · · · · · · · · · ·																	$\left \right $			+	łł
						┼─												$\left \right $		+	╉╼╴	
																			+	+		
Special Ins	tructions / Comments:				Turnarou	nd Re	quire	men	ts	R	epoi	t Red	quire	men	ts	Met	als: R	CRA 8	•PP 13	I TAL 2	3●TCLP	●Other (List)
					Rush (Sur	charge: ilability	s Apply	')		X	_Tier	II/Cat	A -Res	ults/C	ίC	VOA	/svo		enort	List: 1	(C) = 81	
					Please Check v	vith you	ur PM				Tler	IV/Cat	8 - Da	ata		CP-51	/Stars	•тні	l = Oth	er:		-
					Standard	l (10 Bu	usiness	Days))	Valida	ation	Report	w/. D	ata			Invoi	ice T	'o: (⊏	sam	e as	Report To)
					Date Required:					EDD:		Yes _	N	0		PO #:		[· - · - ·			
		I					<u> </u>			EDD	Type:					Cont	act.					
	Relinquished By:	Received By:	Reline	quished By:	Received B	y:	<u> </u>	Relin	quish	ed By:			Receiv	/ed By	:	Emai						
Sign	ature A A A A A						╂					┨──				R	240)3()33	3		5
Printed I	Name Hour Kor 1.S	Gregory U. Smen	4))									<u> </u>				Neu-V RGE	/elle LL Brockp Itil III	C ort	 1]] 00 1	1 1 (1111	i dig n i tt	
Com	ipany New-WILL	45																				₩₩₩ <u>}</u>
Date/ Distribution: W	Time 4115 129 101 &	אייען די וכוודי			Page 7 of	42	L					l			1	r					e	2012 by A1S Group

								403033	5-
ALS	Cooler Re	eceipt	and Pro	eservatio	n Ch	eck Form			
Project/Client_Neu-	` `~~~. 								
Cooler received on 4/15/24	by	r: <u>N</u> E	~	COURIER:	ALS	UPS FEDE	X VELO	CITY CLIEN	$\overline{\mathcal{O}}$
1 Were Custody seals on ou	tside of cooler?		YN	5a Perch	lorate	samples have rea	puired head	space? Y	NNA
2 Custody papers properly (completed (ink, :	signed)?		50 Die	OA via	ls, Alk, or Sulfid	e have sig*	bubbles? Y	N NA
3 Did all bottles arrive in goo	d condition (un	nbroken)?	YN	6 When	e did th	e bottles originat	e? (LS/ROC C	LIENT
4 Circle: Wet Ice Dry Ice	Gel packs	present?	YN	7 Soil V	OA rec	eived as: Bu	ulk Enco	ore 5035set	(NA)
8. Temperature Readings	Date: 4/15/22	Time	: <u> </u> D:15_	ĺD:		R#11	From:	Temp Blank	Sample Bottle
Observed Temp (°C)	57								
Within 0-6°C?	(Y) N	Y	N	Y N	Y	N Y	N	Y N	Y N
If <0°C, were samples frozen?	Y N	Y	N	Y N	Y	N Y	N	YN	Y N
If out of Temperature, not	e packing/ice c	ondition:		Ice melt	ed P	oorly Packed (d	escribed be	low) San	ne Day Rule
&Client Approval to Run	Samples:	Star	iding Appr	oval Client	aware	at drop-off Cl	ient notifie	1 by:	
All samples held in storage lo	cation: 5/	MO	y TE	on 4/15/0	14 at):25)
5035 samples placed in storag	ge location:		by	on	at	within 48	hours of s	ampling? Y	N
		·							
Cooler Breakdown/Preservat	tion Check**:	Date :	15/24	Time:	1213	by:	RYDH		
9. Were all bottle labe	ls complete (i.e.	. analysis.	preservatio	n, etc.)?	Ş	ES NO			
10. Did all bottle labels	and tags agree	with custo	dy papers?		Ŕ	NO NO			
12. Were 5035 vials ac	ceptable (no ext	tra labels. 1	not leaking	?	Z	TS NO N/	۸		
13. Were dissolved me	tals filtered in th	ne field?	0.	,.	Y	ES NO N/	Â		
14. Air Samples: Casse	ettes / Tubes Inta	act Y/N	with MS Y	/N Canis	ters Pre	ssurized Te	diar® Bag	Inflated (N77	R
pH Lot of test Re	eagent Pr	reserved?	Lot Rece	ived	Exp	Sample ID	Vol	Lot Added	Final
>12 912(22)			22001		shri	Adjusted	Added		pH
			4014		NIET				
	50								
<4 N:	HSO₄								
5-9 For	r 608pest		No=Notif	y for 3day					
Residual Fo	or CN,		If +, conta	t PM to add					··
Chlorine Ph	ienol, 625,		Na2S2O3 (6	25, 608,					
(-) 60	8pest, 522		CIN), ascor	oic (pnenol).					
Na Na	$a_2 S_2 O_3$								
Zn	Acetate -	· ·	L		L]	**VOAs and 1664	Not to be tes	ted before analysis	
He	Ci *	* **				Unciwise, all DOLL	ICS OI all sam	pies with chemical	preservatives

Bottle lot numbers: <u>dl323-2ELS</u>, <u>022C23-3Ax1}</u>, <u>060622-16</u> Explain all Discrepancies/ Other Comments:

X HCL chemical 101 22080153 Exp 6/25 It Trop blank was not in the Cader

HPROD BULK HTR FLDT SUB HGFB ALS LL3541

Labels secondary reviewed by: RDA

PC Secondary Review: ____

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r20.doc

01/23/2023

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

NELAP States
Florida ID # E87674
New Hampshire ID # 2941
New York ID # 10145
Pennsylvania ID# 68-786
Virginia #460167

+ Correlation coefficient for MSA is <0.995.

- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

Rochester Lab ID # for State Accreditations¹

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client: Neu-Velle LLC **Project:** RGE Brockport/

Sample Matrix:

Water

Service Request: R2403033

Sample Name:	BPT-MW8-041124	Date Collected: 04/11/24
Lab Code:	R2403033-001	Date Received: 04/15/24
Sample Matrix:	Water	

Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
8270D		JVANHEYNINGEN	AMOSES
Kelada-01			MROGERSON
Sample Name:	BPT-MW22-041124	Date	Collected: 04/11/24
Lab Code:	R2403033-002	Dat	e Received: 04/15/24

Analysis Method	Extracted/Digested By	Analyzed By
8260C		FNAEGLER
8270D	JVANHEYNINGEN	AMOSES
Kelada-01		MROGERSON

Sample Name:	BPT-MW20-041124
Lab Code:	R2403033-003
Sample Matrix:	Water

R2403033-004

Water

Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
8270D		JVANHEYNINGEN	AMOSES
Kelada-01			MROGERSON
Sample Name:	PPT-MW8-041124	Da	te Collected: 04/11/24

Date Collected:	04/11/24
Date Received:	04/15/24

Date Collected: 04/11/24 **Date Received:** 04/15/24

Analysis Method	Extracted/Digested By	Analyzed By
8260C		FNAEGLER
8270D	JVANHEYNINGEN	AMOSES
Kelada-01		MROGERSON

Lab Code:

Sample Matrix:

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Analytical Method	Preparation			
	Method			
6010C	3050B			
6020A	3050B			
6010C TCLP (1311)	3005A/3010A			
extract				
6010 SPLP (1312) extract	3005A/3010A			
7199	3060A			
300.0 Anions/ 350.1/	DI extraction			
353.2/ SM 2320B/ SM				
5210B/ 9056A Anions				
For analytical methods not listed, the preparation				
method is the same as the analytical method				
reference.				

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 12:10 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: BPT-MW8-041124 Units: ug/L Lab Code: R2403033-001 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	5.0 U	5.0	1	04/20/24 19:45	
Ethylbenzene	5.0 U	5.0	1	04/20/24 19:45	
Toluene	5.0 U	5.0	1	04/20/24 19:45	
Xylenes, Total	5.0 U	5.0	1	04/20/24 19:45	
m,p-Xylenes	5.0 U	5.0	1	04/20/24 19:45	
o-Xylene	5.0 U	5.0	1	04/20/24 19:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	04/20/24 19:45	
Dibromofluoromethane	90	80 - 116	04/20/24 19:45	
Toluene-d8	96	87 - 121	04/20/24 19:45	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 13:45 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: BPT-MW22-041124 Units: ug/L Lab Code: R2403033-002 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	5.0 U	5.0	1	04/20/24 20:08	
Ethylbenzene	5.0 U	5.0	1	04/20/24 20:08	
Toluene	5.0 U	5.0	1	04/20/24 20:08	
Xylenes, Total	5.0 U	5.0	1	04/20/24 20:08	
m,p-Xylenes	5.0 U	5.0	1	04/20/24 20:08	
o-Xylene	5.0 U	5.0	1	04/20/24 20:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	86	85 - 122	04/20/24 20:08	
Dibromofluoromethane	87	80 - 116	04/20/24 20:08	
Toluene-d8	92	87 - 121	04/20/24 20:08	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 15:50 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: BPT-MW20-041124 Units: ug/L Lab Code: R2403033-003 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	5.0 U	5.0	1	04/20/24 20:30	
Ethylbenzene	5.0 U	5.0	1	04/20/24 20:30	
Toluene	5.0 U	5.0	1	04/20/24 20:30	
Xylenes, Total	5.0 U	5.0	1	04/20/24 20:30	
m,p-Xylenes	5.0 U	5.0	1	04/20/24 20:30	
o-Xylene	5.0 U	5.0	1	04/20/24 20:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	04/20/24 20:30	
Dibromofluoromethane	92	80 - 116	04/20/24 20:30	
Toluene-d8	97	87 - 121	04/20/24 20:30	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 14:20 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: PPT-MW8-041124 Units: ug/L Lab Code: R2403033-004 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	5.0 U	5.0	1	04/20/24 20:52	
Ethylbenzene	5.0 U	5.0	1	04/20/24 20:52	
Toluene	5.0 U	5.0	1	04/20/24 20:52	
Xylenes, Total	5.0 U	5.0	1	04/20/24 20:52	
m,p-Xylenes	5.0 U	5.0	1	04/20/24 20:52	
o-Xylene	5.0 U	5.0	1	04/20/24 20:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	04/20/24 20:52	
Dibromofluoromethane	92	80 - 116	04/20/24 20:52	
Toluene-d8	95	87 - 121	04/20/24 20:52	

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 12:10 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: BPT-MW8-041124 Units: ug/L Lab Code: R2403033-001 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Acenaphthylene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Anthracene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Benz(a)anthracene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Benzo(a)pyrene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Chrysene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Fluoranthene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Fluorene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Naphthalene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Phenanthrene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	
Pyrene	9.6 U	9.6	1	04/17/24 20:16	4/16/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	80	25 - 99	04/17/24 20:16	
Nitrobenzene-d5	81	22 - 104	04/17/24 20:16	
p-Terphenyl-d14	73	10 - 143	04/17/24 20:16	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 13:45 **Project: RGE Brockport** Sample Matrix: Date Received: 04/15/24 10:12 Water Sample Name: BPT-MW22-041124 Units: ug/L Lab Code: R2403033-002 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Acenaphthylene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Anthracene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Benz(a)anthracene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Benzo(a)pyrene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Chrysene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Fluoranthene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Fluorene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Naphthalene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Phenanthrene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	
Pyrene	9.6 U	9.6	1	04/17/24 20:41	4/16/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	88	25 - 99	04/17/24 20:41	
Nitrobenzene-d5	88	22 - 104	04/17/24 20:41	
p-Terphenyl-d14	84	10 - 143	04/17/24 20:41	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 15:50 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: BPT-MW20-041124 Units: ug/L Lab Code: R2403033-003 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Acenaphthylene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Anthracene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Benz(a)anthracene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Benzo(a)pyrene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Chrysene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Fluoranthene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Fluorene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Naphthalene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Phenanthrene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	
Pyrene	9.6 U	9.6	1	04/17/24 21:05	4/16/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	84	25 - 99	04/17/24 21:05	
Nitrobenzene-d5	83	22 - 104	04/17/24 21:05	
p-Terphenyl-d14	76	10 - 143	04/17/24 21:05	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Date Collected:** 04/11/24 14:20 **Project: RGE Brockport** Date Received: 04/15/24 10:12 Sample Matrix: Water Sample Name: PPT-MW8-041124 Units: ug/L Lab Code: R2403033-004 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Acenaphthylene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Anthracene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Benz(a)anthracene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Benzo(a)pyrene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Chrysene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Fluoranthene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Fluorene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Naphthalene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Phenanthrene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	
Pyrene	9.6 U	9.6	1	04/17/24 21:29	4/16/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	81	25 - 99	04/17/24 21:29	
Nitrobenzene-d5	82	22 - 104	04/17/24 21:29	
p-Terphenyl-d14	87	10 - 143	04/17/24 21:29	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

		Analytical Report	
Client:	Neu-Velle LLC	Service Request: H	R2403033
Project:	RGE Brockport	Date Collected: ()4/11/24 12:10
Sample Matrix:	Water	Date Received: (04/15/24 10:12
Sample Name:	BPT-MW8-041124	Basis: 1	NA
Lab Code:	R2403033-001		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/17/24 21:18	

	Analyti	cal Report
Client:	Neu-Velle LLC	Service Request: R2403033
Project:	RGE Brockport	Date Collected: 04/11/24 13:45
Sample Matrix:	Water	Date Received: 04/15/24 10:12
Sample Name:	BPT-MW22-041124	Basis: NA
Lab Code:	R2403033-002	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Cyanide, Total	Kelada-01	0.118	mg/L	0.0050	1	04/17/24 21:23	

		Analytical Report
Client:	Neu-Velle LLC	Service Request: R2403033
Project:	RGE Brockport	Date Collected: 04/11/24 15:50
Sample Matrix:	Water	Date Received: 04/15/24 10:12
Sample Name: Lab Code:	BPT-MW20-041124 R2403033-003	Basis: NA

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Cyanide, Total	Kelada-01	0.0168	mg/L	0.0050	1	04/17/24 21:27	

		Analytical Report	
Client:	Neu-Velle LLC	Service Request: 1	R2403033
Project:	RGE Brockport	Date Collected:	04/11/24 14:20
Sample Matrix:	Water	Date Received:	04/15/24 10:12
Sample Name:	PPT-MW8-041124	Basis: 1	NA
Lab Code:	R2403033-004		

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/17/24 21:32	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

Service Request: R2403033

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
BPT-MW8-041124	R2403033-001	89	90	96
BPT-MW22-041124	R2403033-002	86	87	92
BPT-MW20-041124	R2403033-003	91	92	97
PPT-MW8-041124	R2403033-004	90	92	95
Lab Control Sample	RQ2404142-04	94	96	97
Method Blank	RQ2404142-07	89	91	94
BPT-MW22-041124 MS	RQ2404142-08	96	95	98
BPT-MW22-041124 DMS	RQ2404142-09	95	97	99

QA/QC Report

Client:	Neu-Velle LLC					Servio	e Request	R24	03033	
Project:	RGE Brockport					Date	Collected:	04/1	1/24	
Sample Matrix:	Water					Date 1	Received:	04/1	5/24	
						Date 4	Analyzed:	04/2	0/24	
						Date 1	Extracted:	NA		
			Duplicate M	atrix Spik	e Summa	ry				
		Vo	olatile Organi	c Compou	nds by G	C/MS				
Sample Name:	BPT-MW22-04112	4					Units:	ug/L		
Lab Code:	R2403033-002						Basis:	NA		
Analysis Method:	8260C									
Prep Method:	EPA 5030C									
			Matrix Spike Duplicate Matrix Spike							
			RQ240414	2-08		- RQ240414	2-09			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Benzene	5.0 U	47.8	50.0	96	51.5	50.0	103	76-129	8	30
Ethylbenzene	5.0 U	46.4	50.0	93	50.2	50.0	100	72-134	8	30
Toluene	5.0 U	47.6	50.0	95	51.3	50.0	103	79-119	8	30
Xylenes, Total	5.0 U	139	150	93	151	150	101	78-121	9	30
m,p-Xylenes	5.0 U	92.7	100	93	101	100	101	80-126	9	30
o-Xylene	5.0 U	46.2	50.0	92	50.1	50.0	100	79-123	8	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Project: RGE Brockport** Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank Basis: NA Lab Code: RQ2404142-07

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	5.0 U	5.0	1	04/20/24 13:27	
Ethylbenzene	5.0 U	5.0	1	04/20/24 13:27	
Toluene	5.0 U	5.0	1	04/20/24 13:27	
Xylenes, Total	5.0 U	5.0	1	04/20/24 13:27	
m,p-Xylenes	5.0 U	5.0	1	04/20/24 13:27	
o-Xylene	5.0 U	5.0	1	04/20/24 13:27	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	04/20/24 13:27	
Dibromofluoromethane	91	80 - 116	04/20/24 13:27	
Toluene-d8	94	87 - 121	04/20/24 13:27	

QA/QC Report

Client: Project: Sample Matrix: Neu-Velle LLC RGE Brockport Water

Service Request: R2403033 **Date Analyzed:** 04/20/24

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ2404142-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Benzene	8260C	18.5	20.0	93	79-119
Ethylbenzene	8260C	18.3	20.0	92	76-120
Toluene	8260C	18.4	20.0	92	79-119
Xylenes, Total	8260C	54.1	60.0	90	78-121
m,p-Xylenes	8260C	36.1	40.0	90	80-126
o-Xylene	8260C	18.0	20.0	90	79-123

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R2403033

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

SURROGATE RECOVERY SUMMARY

Analysis Method:	8270D
Extraction Method:	EPA 3510C

		2-Fluorobiphenyl	Nitrobenzene-d5	p-Terphenyl-d14
Sample Name	Lab Code	25 - 99	22 - 104	10 - 143
BPT-MW8-041124	R2403033-001	80	81	73
BPT-MW22-041124	R2403033-002	88	88	84
BPT-MW20-041124	R2403033-003	84	83	76
PPT-MW8-041124	R2403033-004	81	82	87
Method Blank	RQ2403917-01	76	85	107
Lab Control Sample	RQ2403917-02	91	91	103
Duplicate Lab Control Sample	RQ2403917-03	91	92	103

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403033 **Project: RGE Brockport** Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank Basis: NA Lab Code: RQ2403917-01

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	10 U	10	1	04/17/24 15:02	4/16/24	
Acenaphthylene	10 U	10	1	04/17/24 15:02	4/16/24	
Anthracene	10 U	10	1	04/17/24 15:02	4/16/24	
Benz(a)anthracene	10 U	10	1	04/17/24 15:02	4/16/24	
Benzo(a)pyrene	10 U	10	1	04/17/24 15:02	4/16/24	
Benzo(b)fluoranthene	10 U	10	1	04/17/24 15:02	4/16/24	
Benzo(g,h,i)perylene	10 U	10	1	04/17/24 15:02	4/16/24	
Benzo(k)fluoranthene	10 U	10	1	04/17/24 15:02	4/16/24	
Chrysene	10 U	10	1	04/17/24 15:02	4/16/24	
Dibenz(a,h)anthracene	10 U	10	1	04/17/24 15:02	4/16/24	
Fluoranthene	10 U	10	1	04/17/24 15:02	4/16/24	
Fluorene	10 U	10	1	04/17/24 15:02	4/16/24	
Indeno(1,2,3-cd)pyrene	10 U	10	1	04/17/24 15:02	4/16/24	
Naphthalene	10 U	10	1	04/17/24 15:02	4/16/24	
Phenanthrene	10 U	10	1	04/17/24 15:02	4/16/24	
Pyrene	10 U	10	1	04/17/24 15:02	4/16/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	76	25 - 99	04/17/24 15:02	
Nitrobenzene-d5	85	22 - 104	04/17/24 15:02	
p-Terphenyl-d14	107	10 - 143	04/17/24 15:02	

QA/QC Report

Client: Project: Sample Matrix: Neu-Velle LLC RGE Brockport Water

Service Request: R2403033 **Date Analyzed:** 04/17/24

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab Control Sample RQ2403917-02		ole 1	Duplicate Lab Control Sample RQ2403917-03					
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit	
Acenaphthene	8270D	76.3	80.0	95	75.5	80.0	94	46-103	1	30	
Acenaphthylene	8270D	79.4	80.0	99	78.9	80.0	99	51-114	<1	30	
Anthracene	8270D	88.1	80.0	110	89.1	80.0	111	61-115	<1	30	
Benz(a)anthracene	8270D	84.5	80.0	106	83.7	80.0	105	60-110	<1	30	
Benzo(a)pyrene	8270D	86.7	80.0	108	87.1	80.0	109	68-137	<1	30	
Benzo(b)fluoranthene	8270D	82.2	80.0	103	82.6	80.0	103	59-114	<1	30	
Benzo(g,h,i)perylene	8270D	80.5	80.0	101	80.2	80.0	100	60-123	<1	30	
Benzo(k)fluoranthene	8270D	92.0	80.0	115	93.1	80.0	116	62-122	<1	30	
Chrysene	8270D	88.2	80.0	110	88.1	80.0	110	64-116	<1	30	
Dibenz(a,h)anthracene	8270D	80.7	80.0	101	81.1	80.0	101	34-140	<1	30	
Fluoranthene	8270D	86.5	80.0	108	87.9	80.0	110	58-129	2	30	
Fluorene	8270D	79.8	80.0	100	79.1	80.0	99	54-111	1	30	
Indeno(1,2,3-cd)pyrene	8270D	74.5	80.0	93	75.0	80.0	94	54-119	1	30	
Naphthalene	8270D	66.1	80.0	83	64.9	80.0	81	32-91	2	30	
Phenanthrene	8270D	87.9	80.0	110	88.4	80.0	110	60-111	<1	30	
Pyrene	8270D	88.0	80.0	110	87.9	80.0	110	62-111	<1	30	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com
		Analytical Report	
Client:	Neu-Velle LLC	Service Request: R2	2403033
Project:	RGE Brockport	Date Collected: NA	А
Sample Matrix:	Water	Date Received: NA	А
Sample Name:	Method Blank	Basis: NA	А
Lab Code:	R2403033-MB		
Client: Project: Sample Matrix: Sample Name: Lab Code:	Neu-Velle LLC RGE Brockport Water Method Blank R2403033-MB	Service Request: R2 Date Collected: NA Date Received: NA Basis: NA	2403033 A A A

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/17/24 19:40	

QA/QC Report

Client: Project: Sample Matrix: Neu-Velle LLC RGE Brockport Water **Service Request:** R2403033 **Date Analyzed:** 04/17/24

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R2403033-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	Kelada-01	0.0969	0.100	97	90-110

Logan Reid Neu-Velle LLC 10 Jones Avenue Rochester, NY 14608

Laboratory Results for: RGE Brockport

Dear Logan,

Enclosed are the results of the sample(s) submitted to our laboratory April 17, 2024 For your reference, these analyses have been assigned our service request number **R2403159**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighan tedio

Meghan Pedro Project Manager

CC: Andrew Rothfuss

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

Service Request: R2403159 Date Received: 04/17/2024

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Seven water samples were received for analysis at ALS Environmental on 04/17/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Approved by

Mighan Hedro

Date

04/25/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: BPT_DUP_041524		Lab ID: R2403159-001							
Analyte	Results	Flag	MDL	MRL	Units	Method			
Cyanide, Total	0.0200			0.0050	mg/L	Kelada-01			
CLIENT ID: BPT_MW24_041524		Lab	DID: R240	3159-003					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Cyanide, Total	0.0227			0.0050	mg/L	Kelada-01			
CLIENT ID: BPT_MW25_041524		Lab	DID: R240	3159-004					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Cyanide, Total	0.0877			0.0050	mg/L	Kelada-01			
CLIENT ID: BPT_MW6_041624		Lab	D: R240	3159-005					
Analyte	Results	Flag	MDL	MRL	Units	Method			
Cyanide, Total	2.16			0.050	mg/L	Kelada-01			

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Neu-Velle LLCProject:RGE Brockport

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	<u>DATE</u>	TIME
R2403159-001	BPT_DUP_041524	4/15/2024	
R2403159-002	BPT_MW17_041524	4/15/2024	1255
R2403159-003	BPT_MW24_041524	4/15/2024	1440
R2403159-004	BPT_MW25_041524	4/15/2024	1605
R2403159-005	BPT_MW6_041624	4/16/2024	1315
R2403159-006	BPT_EQBlank_041624	4/16/2024	1335
R2403159-007	Trip Blank	4/16/2024	

Chain of Custody / Analytical Request Form 734.80 R#:: 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 • 11 585 288 5380 • alsglobal.com Page of Report To: Cullent / Subaco Rate MUSACO PREADWITE OV THE Preservative Preservative NUL Nulle Auto Advaca Preservative Preservative None Nulle Auto Advaca Preservative Preservative None Nulle Auto Advaca Auto Advaca Preservative Preservative None Auto Advaca Auto Advaca Preservative Preservative None Advaca Advaca Advaca Preservative <td colsp<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th></th>																						
A.S. 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 • +1585 288 5380 • alsglobal.com Page of Report To: ALSHADDO AREAS MUSI BE COMPLETE OF YHE current V AMPLETE Preservative preservative Preservative and the current V AMPLETE Preservative D. None Musi Be Complete Complete Preservative and the current V AMPLETE D. None Musi Be Complete Complete Complete Complete Complete Complete Complete Complete Complete Compl	Λ		Chain	of Custody / Analy	tical Request	: Foi	rm						7	'34	180)	[SR#:					
Report To: All Stable Area Multiple Conducting by the mattern McL - Nulle Preservative 0 0. None Mich and Michael Lishan Lish and Lish an	<u> (AL3)</u>	1565 Jefferson Road	l, Building 300, S	uite 360 • Rochest	er, NY 14623	• +	1 58	35 28	38 5	380	• a	sglo	bal.	com				Pag	e		of		
American Nucl. Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using An Ariab Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds 1. HCl Using Andrew Gale Holds Hold Holds Hold Holds Hold Holds		Report To:	ALL SHAD	ED AREAS <u>MUST</u> BE COM CLIENT / SAMPLER	PLETED BY THE	Pre	eserv	ative). None	
Jornell Josef Markelling Parter Mindee: Source Source <td></td> <td>en-Welle</td> <td>Project Name:</td> <td>Brockport</td> <td>ľ</td> <td></td> <td></td> <td></td> <td>сгр</td> <td>Ч</td> <td></td> <td></td> <td></td> <td></td> <td>lter</td> <td></td> <td></td> <td></td> <td></td> <td>\square</td> <td></td> <td> HCl</td>		en-Welle	Project Name:	Brockport	ľ				сгр	Ч					lter					\square		HCl	
market As Guide # own As Guide # own Signed State # own Signed State # own Signed State # Signe	Contagt:	an kird	Project Number	· · · · · · · · · · · · · · · · · · ·					4 ● T	• TCI	ы	S			Lab Fi						Z	. HNO3	
Improve Sequence improve Market Sequence	Email	1 @ Now-WILC. COM	ALS Quote #:			GW			1•52	525	• 10	21 (<u>م</u>	<u>s</u> N	-u /]					3	. H2SO4	
deferse	Phone:		Sampler's Sign	n mill		ww sw	lers		•624	0 • (608	201	Ţ	B t	Field			ſ				. NAOH	
Image: Construction of Constructions / Construc	Address:	Smis Au	Erhall CC:	tos a Noverelles	`0-а.	DW S	itair		260	827	•	8	51.	Sele	ed	ĺ						. Zn Acet.	
Start Singlet Collection Information: Time So Start Singlet Collection Information: So Start Singlet Collection Information: Start Singlet C	<u> </u>	Charles NI.	Email CC:			L NA	Cor		A - 8	- AC	808	9	- 81	-iei	Solv		Í				F	MeOH	
Line Line <thline< th=""> Line Line</thline<>		- tog tog	State Sampk	S Collected NY, MA, PA, CT	, Other:		r of	ä	NO N	SVC	les .	1082	des	Ĩ	ij								
(ALS)Sample ID:DateTime $\stackrel{\circ}{\Sigma}$	Lab ID	Sai	mple Collection Ir	iformation:		trix	nbe	Ň	/MS	/MS	ticic	3	bici	tals,	tals,						8	3. Other	
DPT_Dvp_04/524 4/15/24 2/4 4/2 2/4 4/2 2/4	(ALS)	Samp	le ID:	Date	Time	Ma	Nui	NS	60)	20	Pes	303	Her	Me.	Ř							Notes:	
BPTMW 17L_0 4/1524 4/15/14 1255 4 × <t< td=""><td></td><td>BPT_0-041</td><td>524</td><td>1115124</td><td></td><td>w</td><td>4</td><td></td><td>イ</td><td>¥</td><td></td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		BPT_0-041	524	1115124		w	4		イ	¥		X											
13P1_mW24_041524 1/15/24 1/40 4 x x 1 14PT_mW25-041524 1/15/24 1/25 4 x x 1 1 14PT_mw6_041624 1/15/24 1/25 4 x x 1 1 1 14PT_mw6_041624 1/16/24 1/25 4 x x 1 1 1 1 14PT_mw6_041624 1/16/24 1/255 4 x x 1<		BPT_MWITLO	41524	4/15/24	1255		4		$\boldsymbol{\varkappa}$	\star		*											
Far		BPt_MW24_0	41524	4/15/24	1440		4		×	×		×											
ØTT_mwb_oktorung Yilleling Yillelin		19T MW 25-01	41524	4/15/24	1605		4		×	×		x											
BRT_ £@blunk_ 041624 41614 335 4 X X Image: Construction of the construle of the construction of the construction of the cons		BPT_MW6-041	624	4/16/24	1745		4		メ	X		×											
pecial Instructions / Comments: Turnaround Requirements Report Requirements Metals: RCRA & +PP 13 + TAL 23 + TCLP + Other (Ust)		BBT_ feblunk_ of	1624	4/16/24	1335	W	4		X	Y		X											
pecial Instructions / Comments:			•		v																		
pecial Instructions / Comments: Turnaround Requirements Rush (Surcharges Apply) *Subject to Availability* *Please Check with your PM* Tior II/Cat A -Results/QC VOA/SVOA Report List: TCL + & TCL P + CP-51/Stars +THM + Other:														·									
pecial Instructions / Comments: Turnaround Requirements Rush (Surcharges Apply) *Subject to Availability* *Please Check with your PM* Tior II/Cat A - Results/QC CP-51/Stars +THM + Other:																		Ī					
ipecial Instructions / Comments: Turnaround Requirements Report Requirements Metals: RCRA & PP 13+TAL 23+TCLP+Other (List) 																							
Rush (Surcharges Apply) Tier II/Cat A -Results/QC VOA/SVOA Report List: TCL + BTEX + TCLP + *Please Check with your PM* Tier IV/Cat B + Data CP-51/Stars +THM + Other:	Special Ins	tructions / Comments:			Turnaround	d Rea	quire	men	ts	R	ерог	t Rec	luire	ment	ts	Meta	Is: RC	RA	PP 13	TAL 23•	TCLP+C	ther (List)	
Please Check with your PM CP-51/Stars •THM • Other:					Rush (Surcha *Subject to Availal	arges bility*	Apply	()	:		_Tier	II/Cat	A -Res	ults/Q	ic I	VOA	'svo/	A Re	port l	.ist: TCI	. • BTEX	• TCLP •	
					Please Check with	h you	ir PM	•			Tier IV/Cat B - Data					CP-51/	Stars •	тни	• Othe	r:			
Standard (10 Business Days) Validation Report w/. Data Invoice to: (Same as Report To)					Standard (1	10 Bu	siness	Days)		Valida	ation	Report	w/. D	ata		<u>t</u>	nvoid	<u>e †</u>	<u>o: (</u> 0	Same	as Re	eport To)	
Date Required: EDD: Yes No					Date Required:				1	EDD:		Yes	N	0		FO #:		4					
EDD Type:			r I							EDD 1	Гуре:					Conta	any:	\dashv					
Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Contact:		Relinquished By:	Received By:	Relinguished By:	Received By:			Relin	quishe	ed By:			Receiv	ed By:	:	Email		_	-				
Signature main main R2403159 5	Sign	ature man	macyp													Dh.	R	24	031	59		5	
Printed Name Ander With the LLC ROE Brockport	Printed	Name Andrew Koputy 5	bridi for				 										Neu-V RGE E	'elle (Brock	LC port			v	
Company Nev-run Aug	Con	ipany Nev- VIIL	AUS																				
Date/Time 4/17 12 1608 4/17/24 1608 Page 7 of 50	Date,	Time 4117124 1608	1 4/17/24 1608		Page 7 of 50)						[

Cooler Receipt and Preservation Check Form

						ier nui	mber_			<u>-</u>	<u></u> ·	-		
Cooler receiv	red on 4/17/2	24	by:/	14		COU	RIER:	ALS	UPS	FEDH	EX VEL	OCITY CL	IENR	
1 Were Cu	ustody seals or	a outside of coole	я?		YN) 5a	Percl	lorate	sample	s have re	equired he	adspace?	Y	N (NA)
2 Custody	-papers-prope	rly completed (in	ık, sign	ed)?	YN	> 55	Did	OA via	als, Alk,	or Sulfi	de have si	g* bubbles?	YC	N NA
3 Did all b	ottles arrive in	good condition	(unbrol	ken)	YN	6	Wher	e did th	e bottle	s origina	ite?	ALS/ROC)	CLL	ENT
4 Circle Wet Ice Dry Ice Gel packs present Y N 7 Soil VOA received as: Bulk Encore 5035set NA														
8. Temperatu	re Readings	Date: 4 17	24	Time	: 16:2	5	ID:	I R#12	2 (R#1	$\hat{\mathbf{b}}$	From	: Temp Bla	nk Sa	mple Bottle
Observed To	emp (°C)	7.5	-					-						
Within 0-6°	C?	YC	>	Y	N	Y	N	Y	N	Y	N	Y N	ŤŸ	N
If <0°C, we	re samples froz	ren? Y N		Y	N	Y	N	Y	N	<u>Y</u>	N	Y N		N
If out of]	l'emperature,	note packing/ic	e cond	ition:]	Ice melt	ted P	ofrly P	acked	escribed		Same I	Day Rule
&Client A	Approval to R	un Samples:		_ Stan	ding Ap	proval	Client	t aware	at drop-	-off C	lient notif	ied by:		
	hold in stores		Ola		NV L		nital	aat	11 11	<u> </u>				
All samples	es placed in st	c location:	щu		· · · · · · · · · · · · · · · · · · ·	<u>~</u>	- ЧМД	Щ" [16:31			_		
2022 ampi		oruge rocanon.		⁽	···		·	ai		within 4	to pours o	f sampling?	Y	N
			_											
Cooler Breakdown/Preservation Check**: Date: 4/17/24 Time: 1705 by: RR														
Cooler Br	eakdown/Prese	rvation Check**	: Date	; <u> </u>	4/17/2	Ч	_Time:_	[] -	05	by	: RR		·····	
Cooler Br	eakdown/Prese Were all bottle Did all bottle la	rvation Check** labels complete (: Date <i>i.e.</i> ana	e : <u> </u>	4/17/2 preserva	2 <u>4</u> ation, etc	_Time:_ :.)?	<i>[7-</i>		by NO	:R		<u></u>	
Cooler Br - 9. 7 10. 1 11. 7	eakdown/Prese Were all bottle Did all bottle la Were correct co	avation Check** labels complete (bels and tags agr ontainers used for	: Date <i>i.e.</i> and ee with the tes	e: ilysis, j custo its indi	<u>4/17/2</u> preserva dy paper icated?	14 ution, etc rs?	_Time: :.)?	Fr C C		by NO NO	:R K			
Cooler Br 9. V 10. I 11. V 12. V	eakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no	: Date (<i>i.e.</i> ana ee with the tes extra la	e : ilysis, j i custo its indi ibels, 1	<u>4/17/2</u> preserva dy paper icated? not leaking	ng)?	_Time: :.)?	1000 H		by NO NO NO NO Ø	: <u></u>			
Cooler Br 9. V 10. I 11. V 12. V 13. V	eakdown/Prese Were all bottle Did all bottle la Were correct co Were 5035 vial Were dissolved	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in	: Date (<i>i.e.</i> ana ee with the tes extra la a the fie	e: ilysis, j custo its indi bels, r eld?	yreserva dy paper icated? not leaki	ry ng)?	_Time: :.)?	H CCC		by NO NO NO NO NO			••••••••••••••••••••••••••••••••••••••	
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A	eakdown/Prese Were all bottle la Did all bottle la Were correct or Were 5035 vial Were dissolved <u>Air Samples:</u> C	avation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes	: Date (<i>i.e.</i> ana ee with the tes extra la the fie Intact Y	tysis, custo ts indi bels, r d?	y/17/2 preserva dy paper icated? not leaking with MS	ng)?	_Time:)? Canis	IF C C C Y Y ters Pre	05 TES TES TES TES TES TES TES TES TES TES	by NO NO NO NO NO NO NO NO	E RK	gs Inflated ((N/A)	
Cooler Br 9. V 10. L 11. V 12. V 13. V 14. A pH	eakdown/Prese Were all bottle la Did all bottle la Were correct or Were 5035 vial Were dissolved Air Samples: C Lot of test	avation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent	: Date (<i>i.e.</i> ana ee with the tes extra la the fic Intact Y Preser	thysis, custo ts indi bels, r eld? //N ved?	y paper dy paper icated? not leaking with MS	ng)?	_Tirne: .)? Canis	IF C C C Y Y ters Pre-	05 TES TES TES TES TES TES TES Samp	by NO NO NO NO NO NO I T	:RK	gs Inflated (Lot Add	N/A) ed	Final
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A PH	eakdown/Prese Were all bottle la Did all bottle la Were correct co Were 5035 vial Were dissolved Air Samples: C Lot of test paper	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent	: Date (<i>i.e.</i> ana ee with the tes extra la the fic Intact Y Preser Yes	tysis, custo its indi bels, r eld? / N ved? No	y preserva dy paper icated? not leaking with MS	ng)?	_Time:_ :.)? Canis	IT Iters Pre- Exp	25 TES TES TES TES TES TES TES Samp Adjus	by NO NO NO NO NO NO I I E-ID ted	IA IA edlar® Ba Vol. Added	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥12	eakdown/Prese Were all bottle la Did all bottle la Were correct or Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13623	avation Check** labels complete (bels and tags agr intainers used for s acceptable (no metals filtered in assettes / Tubes) Reagent	: Date (<i>i.e.</i> ana ee with the tes extra la the field Intact Y Preser Yes	tysis, custo ts indi bels, r eld? Y/N ved? No	y preserva dy paper icated? not leaki with MS Lot Re	ttion, etc rs? ng)? Y / N exceived	_Time:	P C C C C C C C C C C C C C C C C C C C	25 TES TES TES TES TES TES Samp Adjus	by NO NO NO NO NO I T te-ID ted	IA IA edlar® Ba Vol. Added	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥12 ≤2	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Were dissolved Air Samples: C Lot of test paper 213623	avation Check** labels complete (bels and tags agr intainers used for s acceptable (no metals filtered in assettes / Tubes) Reagent NaOH HINO ₃	: Date (i.e. ana ce with the tes extra la the fid Intact Y Preser Yes	tysis, custo ts indi bels, r eld? / N ved?	y preserva dy paper icated? not leaking with MS Lot Re 22.0	ry rs? ng)? Y/N sceived	_Time:	F C Y Y ters Pree Exp 5/24	25 TES TES TES TES TES TES TES TES TES TES	by NO NO NO NO I T Ie-ID ted	IA) IA IA edlar® Ba Vol. Added	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4	eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HINO ₃ H ₂ SO ₄	: Date (i.e. ana ee with the tess extra la in the field Preser Yes	tysis, custo ts indi bels, r eld? Y / N ved?	y 172 preserva dy paper icated? not leakin with MS Lot Re	H thion, etc rs? ng)? Y / N exceived	_Time:)? Canis	17- C I I Y Y Y ters Pre Exp 5124	25 TES TES TES TES TES TES TES TES TES TES	by NO NO NO NO NO I I te-ID ted	IA) IA edlar® Ba Vol. Added	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. X 10. I 11. X 12. X 13. X 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 ≤ 0	eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Were dissolved Air Samples: C Lot of test paper 213623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HINO ₃ H ₂ SO ₄ NaHSO ₄	: Date (<i>i.e.</i> ana ee with the tes extra la the fie Intact Y Preser Yes	tysis, custo its indi bels, r eld? 7 / N ved? No	4/17/2 preserva dy paper icated? not leaking with MS Lot Re 22.0	H thion, etc rs? ng)? Y / N exceived	_Time:	17- C Y ters Pre- Exp 5/24	25 TES TES TES TES TES TES TES TES TES TES	by NO NO NO NO MO i T ie-ID ted	Ediar® Ba	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9 Paridual	eakdown/Prese Were all bottle la Were correct or Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13.623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	: Date (<i>i.e.</i> ana ee with the tes extra la the fie Intact Y Preser Yes	thysis, custo tts indi bels, r eld? 7 / N ved? No	4/17/2 preserva dy paper icated? not leaking with MS Lot Re 22.0 No=No	ttion, etc rs? ng)? Y / N eccived D146	_Time:	17- C Y ters Pree Exp 524	25 TES TES TES TES TES TES TES Ssurized	by NO NO NO NO I T ie-ID ted	IA IA edlar® Ba Vol. Added	gs Inflated (Lot Add	ed	Final pH
Cooler Bn 9. V 10. II 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chloring	eakdown/Prese Were all bottle la Were correct or Were 5035 vial Were dissolved Air Samples: C Lot of test paper 213623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN	: Date (<i>i.e.</i> ana ee with the tes extra la the fie Intact Y Preser Yes	thysis, custo tts indi bels, r eld? 7 / N ved? No	y 17/2 preserva dy paper icated? not leaking Lot Res 22.0 No=No If +, con NasSo	H thion, etc rs? rg)? Y / N ecceived D146 D146 D146 C	_Time: 	17- C V V V V V V V V V V V V V	25 TES TES TES TES TES TES Ssurized Samp Adjus	by NO NO NO NO I I ted	IA IA Vol. Added	gs Inflated (Lot Add	ed	Final pH
Cooler Bn 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 $\leq 5-9$ Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Were dissolved Air Samples: C Lot of test paper 213623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes] Reagent NaOH HINO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN? Phenol, 625, 608pest 523	: Date (<i>i.e.</i> ana ee with the tess extra la the fie Intact Y Preser Yes	thysis, custo tts indi bels, r eld? Y / N ved? No	y preserva dy paper icated? not leaki with MS Lot Re 22.0 No=No If +, con NasS20 CN), as	H thion, etc rs? ng)? Y/N ceeived D146 D146 ceived 0146 (ceived) 0146 (ceived) 0146 (ceived) 0146 (ceived) (c	_Time:	IT CO I Y Y Y Y Y Y Ters Pree Exp 5/24	25 TES TES TES TES TES Ssurized Samp Adjus	by NO NO NO NO NO I I I I I I I I I I I I	E RE	gs Inflated (Lot Add	ed	Final pH
Cooler Bn 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 $\leq 5-9$ Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13623	rvation Check** labels complete (bels and tags agr intainers used for s acceptable (no metals filtered in assettes / Tubes) Reagent NaOH HINO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₂	: Date (<i>i.e.</i> ana ee with the tes extra la in the field Intact Y Preser Yes	thysis, j custo tts indi bels, r eld? / N ved? No	y preserva dy paper icated? not leaking with MS Lot Re 22.C No=No If +, con Na2S20 CN), as	thion, etc rs? ng)? Y / N ecceived D14 (c D14 (c D14 (c Corbic (pt	_Time:	Iters Pres Exp 5124	o 5 TES TES TES TES TES TES Ssurized Samp Adjus	by NO NO NO NO I I I I I I I I I I I I I I	IA IA Vol. Added	gs Inflated (Lot Add	ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 ≤ -9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HINO3 H ₂ SO4 NaHSO4 For 608pest For CN Phenol, 625, 608pest, 522 Na2S ₂ O3 ZnAcetate	E Date (i.e. ana ee with the tese extra la the fice Intact Y Preser Yes	<pre>:</pre>	y 1/17/2 preserva dy paper icated? not leakin with MS Lot Re 22.0 No=No If +, con Na ₂ S ₂ O CN), as	thion, etc rs? ng)? Y / N cceived 014 (c 014 (c 014 (c) 014 (c	_Time:	17- CONTRACTOR	e 5 TES TES TES TES TES TES TES TES TES Samp Adjus	by NO NO NO NO I I I I I I I I S and 166	IA) IA Vol. Added	gs Inflated (Lot Add	ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct co Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13623	rvation Check** labels complete (bels and tags agr intainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HINO3 H ₂ SO4 NaHSO4 For 608pest For CN? Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	E Date (i.e. ana ee with the tes extra la the fic Intact Y Preser Yes	<pre>:</pre>	y 172 preserva dy paper icated? not leaking Lot Re 22.0 No=No If +, con NasS20 CN), as	rs? ng)? Y / N exceived 014 (c 014 (c 014 (c) 014 (c)	_Time:	17- C I I I I I I I I I I I I I	05 TES TES TES TES TES TES TES TES TES Adjus	by NO NO NO NO ie-ID ted s and 166 ise, all bo	 RK IA IA edlar® Ba Vol. Added Added Added At to be in the sof all satisfies of all satisfies of	gs Inflated (Lot Add	N/A ed	Final pH
Cooler Br 9. V 10. I 11. V 12. V 13. V 14. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine (-)	eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Were dissolved Air Samples: C Lot of test paper 2.13.623	rvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no metals filtered in assettes / Tubes Reagent NaOH HNO3 H ₂ SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	E Date (i.e. ana ee with the tes extra la the fie Intact Y Preser Yes	<pre>:</pre>	4/17/2 preserva dy paper icated? not leaking with MS Lot Re 22.0 No=No If +2.00 CN, as 22.0	24 ttion, etc rs? ng)? 2 Y / N ecceived 0146 01	_Time:	17- (1) 1 1 1 1 1 1 1 1 1 1 1 1 1	25 TES TES TES TES TES TES TES TES Samp Adjus	by NO NO NO NO I I ted s and 166 ise, all box ked (not	E RK	gs Inflated (Lot Add	N/A ed	Final pH

Bottle lot numbers: <u>101022 - 3AXH</u>, 022023 - 3AXH, 040323 - 2ELS, 060622 - 1GJ, Explain all Discrepancies/ Other Comments:

Ice on top only

Labels secondary reviewed by: <u>RR</u> PC Secondary Review: _____

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r20.doc

HPROD

HTR

SUB

ALS

BULK

FLDT

HGFB

LL3541

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

NELAP States
Florida ID # E87674
New Hampshire ID # 2941
New York ID # 10145
Pennsylvania ID# 68-786
Virginia #460167

+ Correlation coefficient for MSA is <0.995.

- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

Rochester Lab ID # for State Accreditations¹

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client: Neu-Velle LLC **Project:** RGE Brockport/ Service Request: R2403159

Date Received: 04/17/24

Date Collected: 04/15/24 **Date Received:** 04/17/24

Sample Name:	BPT_DUP_041524	Date Collected:	04/15/24
Lab Code:	R2403159-001	Date Received:	04/17/24
Sample Matrix:	Water		

Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
8270D		JVANHEYNINGEN	AMOSES
Kelada-01			MROGERSON
Sample Name:	BPT_MW17_041524	Dat	e Collected: 04/15/24
Lab Code:	R2403159-002	Dat	e Received: 04/17/24

Analysis Method	Extracted/Digested By	Analyzed By
8260C		FNAEGLER
8270D	JVANHEYNINGEN	AMOSES
Kelada-01		MROGERSON

Sample Name:	BPT_MW24_041524
Lab Code:	R2403159-003
Sample Matrix:	Water

BPT_MW25_041524

R2403159-004

Water

Water

Sample Matrix:

Sample Name:

Sample Matrix:

Lab Code:

Analysis Method	Extracted/Digested By	Analyzed By
8260C		FNAEGLER
8270D	JVANHEYNINGEN	AMOSES
Kelada-01		MROGERSON

Date Collected: 04/15/24 **Date Received:** 04/17/24

Analysis Method	Extracted/Digested By	Analyzed By
8260C		FNAEGLER
8270D	JVANHEYNINGEN	AMOSES
Kelada-01		MROGERSON

Analyst Summary report

Client:Neu-Velle LLCProject:RGE Brockport/

Service Request: R2403159

Sample Name:	BPT_MW6_041624	Date Collected:	04/16/24
Lab Code:	R2403159-005	Date Received:	04/17/24
Sample Matrix:	Water		

Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
8270D		JVANHEYNINGEN	AMOSES
Kelada-01			MROGERSON
Sample Name:	BPT_EQBlank_041624	Da	te Collected: 04/16/24
Lab Code:	R2403159-006	Da	ate Received: 04/17/24
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By
8260C			FNAEGLER
8270D		JVANHEYNINGEN	AMOSES
Kelada-01			MROGERSON
Sample Name:	Trip Blank	Da	te Collected • 04/16/24

Sample Name:	Trip Blank	Date Collected: 04/16/24
Lab Code:	R2403159-007	Date Received: 04/17/24
Sample Matrix:	Water	

Analysis Method	
8260C	

Extracted/Digested By

Analyzed By FNAEGLER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
60204	
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Analytical Method	Preparation	
	Method	
6010C	3050B	
6020A	3050B	
6010C TCLP (1311)	3005A/3010A	
extract		
6010 SPLP (1312) extract	3005A/3010A	
7199	3060A	
300.0 Anions/ 350.1/	DI extraction	
353.2/ SM 2320B/ SM		
5210B/ 9056A Anions		
For analytical methods not listed, the preparation		
method is the same as the analytical method		
reference.		

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_DUP_041524 Units: ug/L Lab Code: R2403159-001 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 05:27	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 05:27	NA	
Toluene	5.0 U	5.0	1	04/24/24 05:27	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 05:27	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 05:27	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 05:27	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	04/24/24 05:27	
Dibromofluoromethane	93	80 - 116	04/24/24 05:27	
Toluene-d8	97	87 - 121	04/24/24 05:27	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 12:55 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW17_041524 Units: ug/L Lab Code: R2403159-002 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 04:20	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 04:20	NA	
Toluene	5.0 U	5.0	1	04/24/24 04:20	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 04:20	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 04:20	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 04:20	NA	
•						

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	04/24/24 04:20	
Dibromofluoromethane	93	80 - 116	04/24/24 04:20	
Toluene-d8	97	87 - 121	04/24/24 04:20	

	Analytical	Report	
Client:	Neu-Velle LLC	Service Request:	R2403159
Project:	RGE Brockport	Date Collected:	04/15/24 14:40
Sample Matrix:	Water	Date Received:	04/17/24 16:08
Sample Name:	BPT_MW24_041524	Units:	ug/L
Lab Code:	R2403159-003	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 05:49	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 05:49	NA	
Toluene	5.0 U	5.0	1	04/24/24 05:49	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 05:49	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 05:49	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 05:49	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/24/24 05:49	
Dibromofluoromethane	94	80 - 116	04/24/24 05:49	
Toluene-d8	99	87 - 121	04/24/24 05:49	

	Analytical	Report	
Client:	Neu-Velle LLC	Service Request:	R2403159
Project:	RGE Brockport	Date Collected:	04/15/24 16:05
Sample Matrix:	Water	Date Received:	04/17/24 16:08
Sample Name:	BPT_MW25_041524	Units:	ug/L
Lab Code:	R2403159-004	Basis:	NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 04:42	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 04:42	NA	
Toluene	5.0 U	5.0	1	04/24/24 04:42	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 04:42	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 04:42	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 04:42	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/24/24 04:42	
Dibromofluoromethane	93	80 - 116	04/24/24 04:42	
Toluene-d8	98	87 - 121	04/24/24 04:42	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/16/24 13:15 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW6_041624 Units: ug/L Lab Code: R2403159-005 Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
5.0 U	5.0	1	04/24/24 05:05	NA	
5.0 U	5.0	1	04/24/24 05:05	NA	
5.0 U	5.0	1	04/24/24 05:05	NA	
5.0 U	5.0	1	04/24/24 05:05	NA	
5.0 U	5.0	1	04/24/24 05:05	NA	
5.0 U	5.0	1	04/24/24 05:05	NA	
	Result 5.0 U 5.0 U	Result MRL 5.0 U 5.0 5.0 U 5.0	ResultMRLDil.5.0 U5.015.0 U5.015.0 U5.015.0 U5.015.0 U5.015.0 U5.015.0 U5.01	ResultMRLDil.Date Analyzed5.0 U5.0104/24/24 05:055.0 U5.0104/24/24 05:05	ResultMRLDil.Date AnalyzedDate Extracted5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA5.0 U5.0104/24/24 05:05NA

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	04/24/24 05:05	
Dibromofluoromethane	93	80 - 116	04/24/24 05:05	
Toluene-d8	99	87 - 121	04/24/24 05:05	

	Analytical F	Report
Client:	Neu-Velle LLC	Service Request: R2403159
Project:	RGE Brockport	Date Collected: 04/16/24 13:35
Sample Matrix:	Water	Date Received: 04/17/24 16:08
Sample Name:	BPT_EQBlank_041624	Units: ug/L
Lab Code:	R2403159-006	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 03:58	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 03:58	NA	
Toluene	5.0 U	5.0	1	04/24/24 03:58	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 03:58	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 03:58	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 03:58	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	04/24/24 03:58	
Dibromofluoromethane	94	80 - 116	04/24/24 03:58	
Toluene-d8	100	87 - 121	04/24/24 03:58	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/16/24 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: Trip Blank Units: ug/L R2403159-007 Lab Code: Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/24/24 03:36	NA	
Ethylbenzene	5.0 U	5.0	1	04/24/24 03:36	NA	
Toluene	5.0 U	5.0	1	04/24/24 03:36	NA	
Xylenes, Total	5.0 U	5.0	1	04/24/24 03:36	NA	
m,p-Xylenes	5.0 U	5.0	1	04/24/24 03:36	NA	
o-Xylene	5.0 U	5.0	1	04/24/24 03:36	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	04/24/24 03:36	
Dibromofluoromethane	92	80 - 116	04/24/24 03:36	
Toluene-d8	98	87 - 121	04/24/24 03:36	

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_DUP_041524 Units: ug/L Lab Code: R2403159-001 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/22/24 16:05	NA	
Acenaphthylene	9.6 U	9.6	1	04/22/24 16:05	NA	
Anthracene	9.6 U	9.6	1	04/22/24 16:05	NA	
Benz(a)anthracene	9.6 U	9.6	1	04/22/24 16:05	NA	
Benzo(a)pyrene	9.6 U	9.6	1	04/22/24 16:05	NA	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/22/24 16:05	NA	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/22/24 16:05	NA	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/22/24 16:05	NA	
Chrysene	9.6 U	9.6	1	04/22/24 16:05	NA	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/22/24 16:05	NA	
Fluoranthene	9.6 U	9.6	1	04/22/24 16:05	NA	
Fluorene	9.6 U	9.6	1	04/22/24 16:05	NA	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/22/24 16:05	NA	
Naphthalene	9.6 U	9.6	1	04/22/24 16:05	NA	
Phenanthrene	9.6 U	9.6	1	04/22/24 16:05	NA	
Pyrene	9.6 U	9.6	1	04/22/24 16:05	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	80	25 - 99	04/22/24 16:05	
Nitrobenzene-d5	79	22 - 104	04/22/24 16:05	
p-Terphenyl-d14	82	10 - 143	04/22/24 16:05	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 12:55 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW17_041524 Units: ug/L Lab Code: R2403159-002 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/22/24 16:29	NA	
Acenaphthylene	9.6 U	9.6	1	04/22/24 16:29	NA	
Anthracene	9.6 U	9.6	1	04/22/24 16:29	NA	
Benz(a)anthracene	9.6 U	9.6	1	04/22/24 16:29	NA	
Benzo(a)pyrene	9.6 U	9.6	1	04/22/24 16:29	NA	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/22/24 16:29	NA	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/22/24 16:29	NA	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/22/24 16:29	NA	
Chrysene	9.6 U	9.6	1	04/22/24 16:29	NA	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/22/24 16:29	NA	
Fluoranthene	9.6 U	9.6	1	04/22/24 16:29	NA	
Fluorene	9.6 U	9.6	1	04/22/24 16:29	NA	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/22/24 16:29	NA	
Naphthalene	9.6 U	9.6	1	04/22/24 16:29	NA	
Phenanthrene	9.6 U	9.6	1	04/22/24 16:29	NA	
Pyrene	9.6 U	9.6	1	04/22/24 16:29	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	69	25 - 99	04/22/24 16:29	
Nitrobenzene-d5	67	22 - 104	04/22/24 16:29	
p-Terphenyl-d14	55	10 - 143	04/22/24 16:29	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 14:40 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW24_041524 Units: ug/L Lab Code: R2403159-003 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.6 U	9.6	1	04/22/24 16:53	NA	
Acenaphthylene	9.6 U	9.6	1	04/22/24 16:53	NA	
Anthracene	9.6 U	9.6	1	04/22/24 16:53	NA	
Benz(a)anthracene	9.6 U	9.6	1	04/22/24 16:53	NA	
Benzo(a)pyrene	9.6 U	9.6	1	04/22/24 16:53	NA	
Benzo(b)fluoranthene	9.6 U	9.6	1	04/22/24 16:53	NA	
Benzo(g,h,i)perylene	9.6 U	9.6	1	04/22/24 16:53	NA	
Benzo(k)fluoranthene	9.6 U	9.6	1	04/22/24 16:53	NA	
Chrysene	9.6 U	9.6	1	04/22/24 16:53	NA	
Dibenz(a,h)anthracene	9.6 U	9.6	1	04/22/24 16:53	NA	
Fluoranthene	9.6 U	9.6	1	04/22/24 16:53	NA	
Fluorene	9.6 U	9.6	1	04/22/24 16:53	NA	
Indeno(1,2,3-cd)pyrene	9.6 U	9.6	1	04/22/24 16:53	NA	
Naphthalene	9.6 U	9.6	1	04/22/24 16:53	NA	
Phenanthrene	9.6 U	9.6	1	04/22/24 16:53	NA	
Pyrene	9.6 U	9.6	1	04/22/24 16:53	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	72	25 - 99	04/22/24 16:53	
Nitrobenzene-d5	72	22 - 104	04/22/24 16:53	
p-Terphenyl-d14	65	10 - 143	04/22/24 16:53	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Date Collected:** 04/15/24 16:05 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW25_041524 Units: ug/L Lab Code: R2403159-004 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.3 U	9.3	1	04/22/24 17:17	NA	
Acenaphthylene	9.3 U	9.3	1	04/22/24 17:17	NA	
Anthracene	9.3 U	9.3	1	04/22/24 17:17	NA	
Benz(a)anthracene	9.3 U	9.3	1	04/22/24 17:17	NA	
Benzo(a)pyrene	9.3 U	9.3	1	04/22/24 17:17	NA	
Benzo(b)fluoranthene	9.3 U	9.3	1	04/22/24 17:17	NA	
Benzo(g,h,i)perylene	9.3 U	9.3	1	04/22/24 17:17	NA	
Benzo(k)fluoranthene	9.3 U	9.3	1	04/22/24 17:17	NA	
Chrysene	9.3 U	9.3	1	04/22/24 17:17	NA	
Dibenz(a,h)anthracene	9.3 U	9.3	1	04/22/24 17:17	NA	
Fluoranthene	9.3 U	9.3	1	04/22/24 17:17	NA	
Fluorene	9.3 U	9.3	1	04/22/24 17:17	NA	
Indeno(1,2,3-cd)pyrene	9.3 U	9.3	1	04/22/24 17:17	NA	
Naphthalene	9.3 U	9.3	1	04/22/24 17:17	NA	
Phenanthrene	9.3 U	9.3	1	04/22/24 17:17	NA	
Pyrene	9.3 U	9.3	1	04/22/24 17:17	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	75	25 - 99	04/22/24 17:17	
Nitrobenzene-d5	72	22 - 104	04/22/24 17:17	
p-Terphenyl-d14	76	10 - 143	04/22/24 17:17	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 Date Collected: 04/16/24 13:15 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_MW6_041624 Units: ug/L Lab Code: R2403159-005 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.3 U	9.3	1	04/22/24 17:41	NA	
Acenaphthylene	9.3 U	9.3	1	04/22/24 17:41	NA	
Anthracene	9.3 U	9.3	1	04/22/24 17:41	NA	
Benz(a)anthracene	9.3 U	9.3	1	04/22/24 17:41	NA	
Benzo(a)pyrene	9.3 U	9.3	1	04/22/24 17:41	NA	
Benzo(b)fluoranthene	9.3 U	9.3	1	04/22/24 17:41	NA	
Benzo(g,h,i)perylene	9.3 U	9.3	1	04/22/24 17:41	NA	
Benzo(k)fluoranthene	9.3 U	9.3	1	04/22/24 17:41	NA	
Chrysene	9.3 U	9.3	1	04/22/24 17:41	NA	
Dibenz(a,h)anthracene	9.3 U	9.3	1	04/22/24 17:41	NA	
Fluoranthene	9.3 U	9.3	1	04/22/24 17:41	NA	
Fluorene	9.3 U	9.3	1	04/22/24 17:41	NA	
Indeno(1,2,3-cd)pyrene	9.3 U	9.3	1	04/22/24 17:41	NA	
Naphthalene	9.3 U	9.3	1	04/22/24 17:41	NA	
Phenanthrene	9.3 U	9.3	1	04/22/24 17:41	NA	
Pyrene	9.3 U	9.3	1	04/22/24 17:41	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	79	25 - 99	04/22/24 17:41	
Nitrobenzene-d5	76	22 - 104	04/22/24 17:41	
p-Terphenyl-d14	74	10 - 143	04/22/24 17:41	

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 Date Collected: 04/16/24 13:35 **Project: RGE Brockport** Sample Matrix: Water Date Received: 04/17/24 16:08 Sample Name: BPT_EQBlank_041624 Units: ug/L Lab Code: R2403159-006 Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	9.3 U	9.3	1	04/22/24 18:05	NA	
Acenaphthylene	9.3 U	9.3	1	04/22/24 18:05	NA	
Anthracene	9.3 U	9.3	1	04/22/24 18:05	NA	
Benz(a)anthracene	9.3 U	9.3	1	04/22/24 18:05	NA	
Benzo(a)pyrene	9.3 U	9.3	1	04/22/24 18:05	NA	
Benzo(b)fluoranthene	9.3 U	9.3	1	04/22/24 18:05	NA	
Benzo(g,h,i)perylene	9.3 U	9.3	1	04/22/24 18:05	NA	
Benzo(k)fluoranthene	9.3 U	9.3	1	04/22/24 18:05	NA	
Chrysene	9.3 U	9.3	1	04/22/24 18:05	NA	
Dibenz(a,h)anthracene	9.3 U	9.3	1	04/22/24 18:05	NA	
Fluoranthene	9.3 U	9.3	1	04/22/24 18:05	NA	
Fluorene	9.3 U	9.3	1	04/22/24 18:05	NA	
Indeno(1,2,3-cd)pyrene	9.3 U	9.3	1	04/22/24 18:05	NA	
Naphthalene	9.3 U	9.3	1	04/22/24 18:05	NA	
Phenanthrene	9.3 U	9.3	1	04/22/24 18:05	NA	
Pyrene	9.3 U	9.3	1	04/22/24 18:05	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	73	25 - 99	04/22/24 18:05	
Nitrobenzene-d5	70	22 - 104	04/22/24 18:05	
p-Terphenyl-d14	85	10 - 143	04/22/24 18:05	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

	A	Analytical Report
Client:	Neu-Velle LLC	Service Request: R2403159
Project:	RGE Brockport	Date Collected: 04/15/24
Sample Matrix:	Water	Date Received: 04/17/24 16:08
Sample Name: Lab Code:	BPT_DUP_041524 R2403159-001	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0200	mg/L	0.0050	1	04/18/24 01:20	NA	

	Ana	lytical Report
Client:	Neu-Velle LLC	Service Request: R2403159
Project:	RGE Brockport	Date Collected: 04/15/24 12:55
Sample Matrix:	Water	Date Received: 04/17/24 16:08
Sample Name:	BPT_MW17_041524	Basis: NA
Lab Code:	R2403159-002	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/18/24 01:30	NA	

		Analytical Report	
Client:	Neu-Velle LLC	Service Request: R24031	59
Project:	RGE Brockport	Date Collected: 04/15/2	4 14:40
Sample Matrix:	Water	Date Received: 04/17/2	4 16:08
Sample Name: Lab Code:	BPT_MW24_041524 R2403159-003	Basis: NA	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0227	mg/L	0.0050	1	04/18/24 01:35	NA	
		Analytical Report						
---------------------------	---------------------------------	---------------------------------------						
Client:	Neu-Velle LLC	Service Request: R2403159						
Project:	RGE Brockport	Date Collected: 04/15/24 16:05						
Sample Matrix:	Water	Date Received: 04/17/24 16:08						
Sample Name: Lab Code:	BPT_MW25_041524 R2403159-004	Basis: NA						

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0877	mg/L	0.0050	1	04/18/24 01:40	NA	

		Analytical Report
Client:	Neu-Velle LLC	Service Request: R2403159
Project:	RGE Brockport	Date Collected: 04/16/24 13:15
Sample Matrix:	Water	Date Received: 04/17/24 16:08
Sample Name: Lab Code:	BPT_MW6_041624 R2403159-005	Basis: NA
	112 100107 000	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	2.16	mg/L	0.050	10	04/24/24 21:10	NA	

	Analytical	Report
Client:	Neu-Velle LLC	Service Request: R2403159
Project:	RGE Brockport	Date Collected: 04/16/24 13:35
Sample Matrix:	Water	Date Received: 04/17/24 16:08
Sample Name: Lab Code:	BPT_EQBlank_041624 R2403159-006	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/18/24 01:49	NA	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R2403159

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
BPT_DUP_041524	R2403159-001	91	93	97
BPT_MW17_041524	R2403159-002	92	93	97
BPT_MW24_041524	R2403159-003	93	94	99
BPT_MW25_041524	R2403159-004	93	93	98
BPT_MW6_041624	R2403159-005	93	93	99
BPT_EQBlank_041624	R2403159-006	95	94	100
Trip Blank	R2403159-007	92	92	98
Lab Control Sample	RQ2404233-03	97	98	100
Duplicate Lab Control Sample	RQ2404233-04	98	100	101
Method Blank	RQ2404233-05	91	92	97

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Project: RGE Brockport** Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Basis: NA Lab Code: RQ2404233-05

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Benzene	5.0 U	5.0	1	04/23/24 22:46	NA	
Ethylbenzene	5.0 U	5.0	1	04/23/24 22:46	NA	
Toluene	5.0 U	5.0	1	04/23/24 22:46	NA	
Xylenes, Total	5.0 U	5.0	1	04/23/24 22:46	NA	
m,p-Xylenes	5.0 U	5.0	1	04/23/24 22:46	NA	
o-Xylene	5.0 U	5.0	1	04/23/24 22:46	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	04/23/24 22:46	
Dibromofluoromethane	92	80 - 116	04/23/24 22:46	
Toluene-d8	97	87 - 121	04/23/24 22:46	

QA/QC Report

Client: Project: Sample Matrix: Neu-Velle LLC RGE Brockport Water

Service Request: R2403159 **Date Analyzed:** 04/23/24

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab R	Lab Control Sample RQ2404233-03		Duplicate Lab Control Sample RQ2404233-04				
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzene	8260C	20.0	20.0	100	18.8	20.0	94	79-119	6	30
Ethylbenzene	8260C	19.8	20.0	99	18.0	20.0	90	76-120	10	30
Toluene	8260C	20.4	20.0	102	18.6	20.0	93	79-119	9	30
Xylenes, Total	8260C	60.5	60.0	101	55.5	60.0	92	78-121	9	30
m,p-Xylenes	8260C	40.5	40.0	101	37.1	40.0	93	80-126	9	30
o-Xylene	8260C	20.0	20.0	100	18.4	20.0	92	79-123	8	30

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R2403159

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS

Analysis Method:	8270D		
Extraction Method:	EPA 3510C		

		2-Fluorobiphenyl	Nitrobenzene-d5	p-Terphenyl-d14
Sample Name	Lab Code	25 - 99	22 - 104	10 - 143
BPT_DUP_041524	R2403159-001	80	79	82
BPT_MW17_041524	R2403159-002	69	67	55
BPT_MW24_041524	R2403159-003	72	72	65
BPT_MW25_041524	R2403159-004	75	72	76
BPT_MW6_041624	R2403159-005	79	76	74
BPT_EQBlank_041624	R2403159-006	73	70	85
Method Blank	RQ2404042-01	69	73	94
Lab Control Sample	RQ2404042-02	81	83	97
Duplicate Lab Control Sample	RQ2404042-03	82	84	98

Analytical Report **Client:** Neu-Velle LLC Service Request: R2403159 **Project: RGE Brockport** Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: RQ2404042-01 Basis: NA

Semivolatile Organic Compounds by GC/MS

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Acenaphthene	10 U	10	1	04/22/24 14:52	NA	
Acenaphthylene	10 U	10	1	04/22/24 14:52	NA	
Anthracene	10 U	10	1	04/22/24 14:52	NA	
Benz(a)anthracene	10 U	10	1	04/22/24 14:52	NA	
Benzo(a)pyrene	10 U	10	1	04/22/24 14:52	NA	
Benzo(b)fluoranthene	10 U	10	1	04/22/24 14:52	NA	
Benzo(g,h,i)perylene	10 U	10	1	04/22/24 14:52	NA	
Benzo(k)fluoranthene	10 U	10	1	04/22/24 14:52	NA	
Chrysene	10 U	10	1	04/22/24 14:52	NA	
Dibenz(a,h)anthracene	10 U	10	1	04/22/24 14:52	NA	
Fluoranthene	10 U	10	1	04/22/24 14:52	NA	
Fluorene	10 U	10	1	04/22/24 14:52	NA	
Indeno(1,2,3-cd)pyrene	10 U	10	1	04/22/24 14:52	NA	
Naphthalene	10 U	10	1	04/22/24 14:52	NA	
Phenanthrene	10 U	10	1	04/22/24 14:52	NA	
Pyrene	10 U	10	1	04/22/24 14:52	NA	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	69	25 - 99	04/22/24 14:52	
Nitrobenzene-d5	73	22 - 104	04/22/24 14:52	
p-Terphenyl-d14	94	10 - 143	04/22/24 14:52	

QA/QC Report

Client: Project: Sample Matrix: Neu-Velle LLC RGE Brockport Water

Service Request: R2403159 **Date Analyzed:** 04/22/24

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab Control Sample RQ2404042-02		ble	Duplicate Lab Control Sample RQ2404042-03					
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit	
Acenaphthene	8270D	61.5	80.0	77	61.5	80.0	77	46-103	<1	30	
Acenaphthylene	8270D	64.4	80.0	81	64.5	80.0	81	51-114	<1	30	
Anthracene	8270D	77.6	80.0	97	80.8	80.0	101	61-115	4	30	
Benz(a)anthracene	8270D	73.3	80.0	92	77.0	80.0	96	60-110	4	30	
Benzo(a)pyrene	8270D	75.3	80.0	94	79.9	80.0	100	68-137	6	30	
Benzo(b)fluoranthene	8270D	70.8	80.0	88	75.3	80.0	94	59-114	7	30	
Benzo(g,h,i)perylene	8270D	71.4	80.0	89	75.3	80.0	94	60-123	5	30	
Benzo(k)fluoranthene	8270D	81.4	80.0	102	86.2	80.0	108	62-122	6	30	
Chrysene	8270D	76.8	80.0	96	80.6	80.0	101	64-116	5	30	
Dibenz(a,h)anthracene	8270D	68.7	80.0	86	72.8	80.0	91	34-140	6	30	
Fluoranthene	8270D	75.3	80.0	94	80.0	80.0	100	58-129	6	30	
Fluorene	8270D	66.2	80.0	83	67.2	80.0	84	54-111	1	30	
Indeno(1,2,3-cd)pyrene	8270D	64.4	80.0	81	68.1	80.0	85	54-119	5	30	
Naphthalene	8270D	54.3	80.0	68	54.1	80.0	68	32-91	<1	30	
Phenanthrene	8270D	75.8	80.0	95	79.7	80.0	100	60-111	5	30	
Pyrene	8270D	75.8	80.0	95	79.9	80.0	100	62-111	5	30	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

		Analytical Report	
Client:	Neu-Velle LLC	Service Request: R2	403159
Project:	RGE Brockport	Date Collected: NA	1
Sample Matrix:	Water	Date Received: NA	A
Sample Name:	Method Blank	Basis: NA	A
Lab Code:	KQ2404355-14		

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	1	04/24/24 20:37	NA	

QA/QC Report

Project:	RGE Brockpo	ort				Dat	e Collected	: 04	/16/24	
Sample Matrix:	Water					Dat	e Received:	: 04	/17/24	
						Dat	e Analyzed	: 04	/18/24	
			Duplicat	e Matrix S	pike Sumi	nary				
				Cyanide,	Total					
Sample Name:	BPT_EQBlar	nk_041624					Units	s: m	g/L	
Lab Code:	R2403159-00)6					Basis	NA NA	A	
Analysis Method:	Kelada-01									
			Matri	x Spike		Duplicate M	atrix Spike	.		
			RQ240	4083-07			083-08			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

105

0.100

0.107

107

0.100

90-110

1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

0.0050 U

0.105

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Cyanide, Total

QA/QC Report

Client:Neu-Velle LLCProject:RGE BrockportSample Matrix:Water

Service Request: R2403159 **Date Analyzed:** 04/24/24

Lab Control Sample Summary

Cyanide, Total, Automated Colorimetric with In-Line UV Digestion and Flash Distillation

Units:mg/L Basis:NA

Lab Control Sample RQ2404355-13

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	Kelada-01	0.101	0.100	101	90-110