Final Engineering Report

Little Britain Road Service Center New Windsor, New York

Volume 1 of 2

Central Hudson Gas & Electric Corporation Poughkeepsie, New York

August 2001

ENGINEER'S CERTIFICATION

CENTRAL HUDSON GAS & ELECTRIC CORPORATION LITTLE BRITAIN ROAD SERVICE CENTER NEW WINDSOR, NEW YORK FINAL ENGINEERING REPORT

I, David W. Hale, P.E., hereby certify, as a Professional Engineer registered in the State of New York, that based on Blasland, Bouck & Lee, Inc.'s (BBL's) observation of the voluntary cleanup of identified impacted soils conducted by Central Hudson Gas & Electric Corporation's (CHGE's) remedial Contractor, ONYX Environmental Services, Inc., the voluntary cleanup activities were completed in substantial conformance with requirements presented in the following documents and/or approved field changes detailed in this Final Engineering Report:

- The Voluntary Cleanup Agreement, Index Number: A3-0388-0599 for the Implementation of a
 Remedial Response Program for the CHGE Little Britain Road Service Center located at 610 Little
 Britain Road (formerly 410 Little Britain Road) between CHGE and the New York State Department
 of Environmental Conservation; and
- The New York State Department of Environmental Conservation-approved Remedial Work Plan,
 Little Britain Road Service Center (BBL, Revised July 2000), as amended by letters dated August 23,
 2000 and September 18, 2000 from Mr. Michael Gallucci of CHGE to Mr. John Rashak of the

11 1

David W. Hale, P.E.

New York State P.E. No. 065423

Blasland, Bouck & Lee, Inc. 6723 Towpath Road Syracuse, New York 13214 (315) 446-9120

ENGINEER'S CERTIFICATION

CENTRAL HUDSON GAS & ELECTRIC CORPORATION LITTLE BRITAIN ROAD SERVICE CENTER NEW WINDSOR, NEW YORK

FINAL ENGINEERING REPORT

In support of the required professional engineer's signature and seal on this Final Engineering Report for the voluntary cleanup of identified impacted soils at the CHGE Little Britain Road Service Center, we hereby certify that the voluntary cleanup activities were completed in substantial conformance with the requirements identified in the following documents and/or approved field changes detailed in this Final Engineering Report:

- The Voluntary Cleanup Agreement, Index Number: A3-0388-0599 for the Implementation of a Remedial Response Program for the CHGE Little Britain Road Service Center located at 610 Little Britain Road (formerly 410 Little Britain Road) between CHGE and the New York State Department of Environmental Conservation; and
- The New York State Department of Environmental Conservation-approved Remedial Work Plan, Little Britain Road Service Center (BBL, Revised July 2000), as amended by letters dated August 23, 2000 and September 18, 2000 from Mr. Michael Gallucci of CHGE to Mr. John Rashak of the NYSDEC.

Nancy Gensky

BBL Project Manager

Megan A. Miller, P.E.

BBL Field Manager

Table of Contents

٧	O	L	U	V	ΙE	1

Section	1.	Introduction	1-1
		1.1 Background Information	
Section	2.	Remedial Objectives	2-1
Section	3.	Pre-Remediation Sampling	3-1
		 3.1 Disposal Characterization Soil Sampling 3.2 Pre-Remediation Verification Soil Sampling 3.3 Groundwater Sampling 	3-3
Section	4.	Remediation	4-1
		4.1 Mobilization/Site Preparation 4.2 Excavation	4-2 4-3 4-3 4-4
Section	5.	Post-Remediation Sampling	5-1
		5.1 Monitoring Well Installation	

Tables

- 1 Concentrations of TCLP VOCs in Characterization Soil Samples November 2000
- 2 Concentrations of TCLP SVOCs in Characterization Soil Samples November 2000
- 3 Concentrations of TCLP Inorganics in Characterization Soil Samples November 2000
- 4 Results of TCLP Wet Chemistry Analyses in Characterization Soil Samples November 2000
- 5 Concentrations of PCBs in Characterization Soil Samples November 2000
- 6 Concentrations of Gasoline and Diesel Range Organics in Characterization Soil Samples November 2000
- 7 Concentrations of VOCs in Characterization Soil Samples January and February 2001
- 8 Concentrations of VOCs in Pre-Remediation Verification Soil Samples November 2000
- 9 Concentrations of VOCs in Pre-Remediation Groundwater Samples November 2000
- 10 Concentrations of VOCs in Post-Excavation Soil Samples November 2000
- 11 Air Sample Results
- 12 Concentrations of VOCs in Post-Remediation Groundwater Samples June 2001
- 13 Groundwater Elevations in Monitoring Wells

Figures

- 1 Site Location Map
- 2 General Site Location
- 3 Estimated Area of Impacted Soil and Monitoring Well Locations
- 4 Characterization Sampling Locations
- 5 Geologic Cross Section
- 6 Excavation Limits and Verification Sampling Locations

Attachments

- 1 Subsurface Boring Logs
- 2 Laboratory Data Sheets
- 3 Groundwater Sampling Logs

VOLUME 2

Attachments (continued from Volume 1)

- 4 Hazardous Waste Manifests
- 5 Non-Hazardous Waste Manifests
- 6 Daily Air Monitoring Logs
- 7 Monitoring Well Construction Logs

1. Introduction

This report documents the implementation of the voluntary cleanup of identified impacted soils at Central Hudson Gas & Electric Corporation's (CHGE's) Little Britain Road Service Center located in New Windsor, New York. This report presents a description of the activities conducted to implement the selected remedy for the site involving excavation and off-site disposal of volatile organic compound- (VOC-) impacted soil. This report also presents a description and the results of the pre- and post-remediation sampling activities conducted as part of the voluntary cleanup.

1.1 Background Information

The Little Britain Road Service Center (the site) is located at 610 Little Britain Road (formerly 410 Little Britain Road), New Windsor, Orange County, New York. Figures 1 and 2 show the site location and configuration, respectively. The site encompasses approximately 9 acres; the Service Center building is located near the center of the site. Access to the Service Center is from Little Britain Road to the south. The majority of the site is fenced; three gates, one each to the north, southwest, and east of the Service Center building, provide access to the fenced area. The employee parking lot, located east of the Service Center building, and an open grassy field located between the Service Center Building and Little Britain Road are located outside of the fenced area but within the site boundary. The employee parking lot, the entryway driveway, and the areas immediately surrounding the Service Center building are paved; the remainder of the site is either gravel covered or vegetated.

In accordance with an Order on Consent (Index No. 03-0001-95-02) with the New York State Department of Environmental Conservation (NYSDEC), CHGE agreed to conduct a Preliminary Site Assessment (PSA) to determine whether past operations/activities at the site have impacted soil or groundwater quality beneath the site. The PSA was conducted during the period from June 1995 through August 1996 in accordance with the NYSDEC-approved *PSA Work Plan* (Blasland, Bouck & Lee, Inc. [BBL], January 1995) and a June 25, 1996 letter to the NYSDEC. PSA activities included:

- Review of site history and use;
- Review of existing reports, data, and plans;
- Site reconnaissance and geophysical survey;

- Soil gas survey;
- Test boring installations/soil sampling and analysis;
- Monitoring well installations/groundwater sampling and analysis; and
- Data evaluation and validation.

The NYSDEC-approved *PSA Report* (BBL, January 1996, Final December 1996) identified one potential on-site subsurface soil source area located along the northwest site boundary. This area, shown on Figure 3, covers approximately 7,400 square feet. Based on the results of the PSA, impacted soils were encountered in this area to depths of approximately 4 to 8 feet. PSA soil sample results indicated that select VOCs (trichloroethene [TCE], 1,2-dichloroethene [1,2-DCE], toluene, and xylenes) were present in this area at concentrations exceeding the NYSDEC's recommended soil cleanup objectives. Those objectives are presented in the NYSDEC's "Technical and Administrative Guidance Memorandum #4046 (TAGM #4046): Determination of Soil Cleanup Objectives and Cleanup Levels", dated January 24, 1994.

Based on the results of the PSA and discussions with the NYSDEC, CHGE submitted an application for voluntary cleanup in March 1997 to address the identified on-site impacted soil. That application included descriptions of the following two alternatives capable of addressing the impacted soils in a manner protective of human health and the environment:

- Low-temperature thermal desorption (LTTD) using a trailer-mounted unit; and
- Off-site disposal at an appropriate facility, as a non-hazardous material.

Pursuant to further evaluation as to the cost-effectiveness and technical implementability of these two alternatives, off-site disposal at an appropriate facility as a non-hazardous material was selected as the site remedy. A *Remedial Work Plan* (BBL, June 1997) for implementation of the site remedy was prepared and submitted to the NYSDEC for review. Based on comments provided by the NYSDEC and subsequent discussions between CHGE and the NYSDEC, the *Remedial Work Plan* was revised and resubmitted in July 2000. The *Remedial Work Plan* was further amended in letters from CHGE to the NYSDEC dated August 23, 2000 and September 18, 2000.

1.2 Report Organization

To present the necessary information, this report has been organized into the following sections:

- Section 1.0 Introduction;
- Section 2.0 Remedial Objectives;
- Section 3.0 Pre-Remediation Sampling;
- Section 4.0 Remediation; and
- Section 5.0 Post-Remediation Sampling.

2. Remedial Objectives

As set forth in the *Remedial Work Plan*, the overall remedial objective is to allow the intended use of the site to proceed in a manner protective of human health and the environment. The *Remedial Work Plan* established the following specific cleanup levels for soil based on the NYSDEC TAGM #4046 recommended soil cleanup objectives:

Chemical Constituent	Cleanup Level (ppm)
Trichloroethene	0.7
1,2-Dichloroethene	0.3/0.25*
Toluene	1.5
Xylenes (total)	1.2

Note:

A description of the sampling activities conducted prior to remediation is presented below.

^{1. * =} Soil cleanup objective for trans-1,2-dichloroethene is 0.3 ppm and for cis-1,2-dichloroethene is 0.25 ppm.

3. Pre-Remediation Sampling

The following sampling activities were completed as part of the pre-remediation phase:

- Disposal Characterization Soil Sampling;
- Perimeter Verification Soil Sampling; and
- Groundwater Sampling.

A description of each of the above sampling activities is provided below.

3.1 Disposal Characterization Soil Sampling

As set forth in the *Remedial Work Plan*, samples were collected for laboratory analysis from select locations and depths within the area of impacted soil to provide results representative of the excavation area for disposal characterization purposes. The characterization sampling results, along with the PSA sampling results, were used to determine soil management, transportation, and disposal requirements for the remediation activities.

Disposal characterization soil samples were collected from 19 soil borings and one test-pit within the anticipated excavation area. On November 30, 2000, six initial test borings (CHAR-1 through CHAR-6) were drilled by BBL using a tractor-mounted direct-push geoprobe rig (AMS Power Probe 9600). The November 30, 2000 drilling activities were observed by representatives from BBL and the NYSDEC. On January 22, 2001, a test pit (TP-1) was installed within the anticipated excavation area by Miller Environmental Group, Inc. using a backhoe. To satisfy the requirements of the potential disposal facility (CWM Chemical Services, L.L.C.), 13 additional test borings (1 through 7 and 9 through 14) were installed by BBL on February 8, 2001 using the AMS Power Probe 9600. The January 22, 2001 test pit activities and February 8, 2001 drilling activities were observed by representatives of BBL, ONYX Environmental Services (ONYX), and the NYSDEC. The locations of test borings CHAR-1 through CHAR-6 were subsequently surveyed by CHGE and are shown on Figure 4. The approximate locations of the test pit (TP-1) and test borings 1 through 7 and 9 through 14 are also shown on Figure 4.

Geologic descriptions of subsurface soils were obtained for the six initial test borings (CHAR-1 through CHAR-6) installed in November 2000 and for the test pit installed in January 2001. Subsurface boring logs for CHAR-

1 through CHAR-6 are provided in Attachment 1. Soils encountered during the test pit excavation primarily consisted of gray silt with trace fine to medium gravel. Odors were observed from approximately 5.5 feet below ground surface (bgs) to the final depth of the test pit at 9 feet bgs. Because site geology had been adequately defined during previous subsurface activities, no geologic descriptions were obtained during the February 8, 2001 test boring activities. A cross-section depicting the site geology is provided on Figure 5.

Soil was continuously collected during the installation of test borings CHAR-1 through CHAR-6 until refusal, for visual observation and screening with a photoionization detector (PID) for the presence of organic vapors. Samples were collected for laboratory analysis from test borings CHAR-1 through CHAR-6 from depth intervals that exhibited the greatest impacts (e.g., odors, sheens, and relatively high PID readings). Soil samples obtained from test borings CHAR-1 through CHAR-6 were submitted to Columbia Analytical Services (CAS) of Rochester, New York for the following analyses:

- Toxicity Characteristic Leaching Procedure (TCLP) VOCs by United States Environmental Protection Agency (USEPA) SW-846 Method 8240B;
- TCLP Semivolatile Organic Compounds (SVOCs) by Method 8270;
- TCLP Inorganics by Method 6010/7000;
- Reactive Cyanide by Method 7.3.3.2;
- Reactive Sulfide by Method 7.3.3.2;
- Corrosivity by Method 7.2.2;
- Ignitability by Method 1010;
- PCBs by Method 8082; and
- Gasoline and diesel range organics by Method 8015.

No PID readings above background were encountered during installation of test boring CHAR-5. Therefore, in addition to the above-listed analyses, the soil sample collected from test boring CHAR-5 (4 to 7.7 feet bgs) was analyzed for VOCs by USEPA SW-846 Method 8260. Based on the VOC analytical results, this sample served as a perimeter verification sample (as further discussed below).

Soil samples were also obtained from borings 1 through 7, 9 through 14, and test pit TP-1 and submitted for analysis of VOCs by Method 8260. Soil was continuously collected during the boring installations until refusal, and a homogenized sample of soil from the total depth of each boring was submitted for analysis. From test pit TP-1, a soil sample was collected from approximately 9 feet bgs to represent the depth interval that exhibited the

greatest impacts (e.g., odors and relatively high PID readings). The soil sample collected from the test pit was submitted to CAS, whereas the soil samples obtained from test borings 1 through 7, and 9 through 14 were submitted to Adirondack Environmental Services Inc. (Adirondack) of Albany, New York.

Characterization soil samples collected were identified, handled, packaged, and shipped using the procedures provided in the *Sampling and Analysis Plan (SAP)* and *Quality Assurance Project Plan (QAPP)* (BBL, May 1995). The analytical results for the characterization soil samples are summarized on Tables 1 through 7. The laboratory data sheets for the characterization soil samples are provided in Attachment 2.

Analytical results for soil samples collected from three of the characterization test borings (CHAR-2, CHAR-3, and CHAR-6) indicated that soils exhibited the hazardous characteristic of toxicity due to the presence of TCE (CHAR-2 and CHAR-3) and vinyl chloride (CHAR-6). Because most of the soil to be excavated was characterized as hazardous, CHGE elected to manage, transport, and dispose of all excavated soil as hazardous waste instead of segregating the hazardous soil from the non-hazardous soils.

3.2 Perimeter Verification Soil Sampling

Verification soil sampling activities were conducted on November 29 and 30, 2000. Test borings were drilled by BBL using an AMS Power Probe 9600. The drilling activities were observed by representatives of BBL and the NYSDEC. The purpose of the verification soil sampling activities was to more definitively delineate the horizontal limits of the excavation area. A total of 19 test borings were installed at the anticipated perimeter of the excavation limits. From 12 of the 19 borings (VER-1 through VER-12), soil samples were collected from the depth interval with the highest PID reading and submitted to CAS for analysis of VOCs by Method 8260. The remaining seven borings (SB-1 through SB-7) served as observation borings only. The locations of the verification soil sampling locations VER-1 through VER-12 and observation borings SB-1 through SB-7 were subsequently surveyed by CHGE and are shown on Figure 6.

Soil samples collected during the perimeter verification sampling were identified, handled, packaged, and shipped using the procedures provided in the *SAP* and *QAPP*. Boring logs for test borings VER-1 through VER-12 and SB-1 through SB-7 are presented in Attachment 1. Analytical results for the pre-remediation verification samples are summarized in Table 8. Laboratory data sheets for the verification samples are provided in Attachment 2.

Based on the results of the pre-remediation verification samples, the horizontal limits of the excavation area were delineated. As discussed previously, one characterization soil sample, CHAR-5 (4-7.7'), was also submitted for analysis of VOCs. Only one constituent (cis-1,2-dichloroethene) was detected in that sample at a concentration of 0.025 parts per million (ppm), which is less than the TAGM #4046 recommended soil cleanup objective of 0.25 ppm. Therefore, boring CHAR-5 was used as a perimeter verification boring. The excavation limits were subsequently adjusted appropriately based on these results. The horizontal limits of the excavation area are shown on Figure 4.

3.3 Pre-Remediation Groundwater Sampling

As set forth in the *Remedial Work Plan*, groundwater samples were collected at the site on November 29 and 30, 2000 to represent baseline groundwater conditions prior to remediation. Specifically, groundwater samples were collected from existing monitoring wells MW94-5, MW96-6, MW94-1B, and MW96-7B. Additionally, a groundwater sample was collected from within the excavation limits at boring CHAR-3 via the installation of a temporary 1-inch diameter monitoring well.

Groundwater sampling activities were conducted by BBL in accordance with the procedures set forth in the *SAP* and *QAPP*. Groundwater sampling logs for the sampling of the existing monitoring wells are provided in Attachment 3. Groundwater samples were submitted to CAS for analysis of VOCs by Method 8260. The groundwater samples were identified, handled, packaged, and shipped using the procedures provided in the *SAP* and *QAPP*. Analytical results for the groundwater samples are summarized in Table 9. Laboratory data sheets for the groundwater samples are provided in Attachment 2.

4. Remediation

Remedial activities were conducted during March and April 2001 by ONYX. A representative from BBL was on-site to observe/document the remedial activities and to conduct air monitoring in accordance with the site-specific *Health and Safety Plan (HASP)* (BBL, November 2000). A description of the remedial activities and associated monitoring/sampling activities is presented below.

4.1 Mobilization/Site Preparation

To prepare for the implementation of the excavation activities, the mobilization/site preparation activities identified below were performed.

- Preparing the site-specific HASP. A HASP was prepared by BBL to include the health and safety procedures to be followed by on-site BBL personnel during the remediation activities. The HASP also outlined a comprehensive air monitoring program for the protection of on-site personnel and the surrounding community, which complied with the New York State Department of Health- (NYSDOH-) Community Air Monitoring Plan. In addition to the HASP prepared by BBL, a HASP was prepared by ONYX to include health and safety procedures to be followed by ONYX personnel and their subcontractors during the remediation.
- Removing a light pole located within the northwestern corner of the excavation limits.
- Removing a portion of the existing chain-link fence located in the northwestern corner of the excavation limits.
- Mobilizing equipment and materials (e.g., excavator, Bobcat, and utility trailer) to the site.
- Staking/marking the excavation limits and the location of an underground drainage pipe located within the
 excavation limits.

The Remedial Work Plan indicated that the abandonment of existing monitoring well MW-94-1B may be necessary to complete the excavation activities. However, as discussed previously, based on the results of pre-

remediation sampling activities, CHAR-5 was used as a perimeter verification sample and the excavation limits in the southeastern corner of the excavation area were adjusted accordingly. Due to this adjustment, the abandonment of monitoring well MW94-1B was not necessary.

4.2 Excavation

Excavation activities were conducted by ONYX between March 19 and April 10, 2001. Excavation activities were performed using a tracked excavator. Excavated material was loaded directly into truck trailers for off-site transportation and disposal. The horizontal limits of the excavation were determined based on the results of the pre-remediation verification sampling activities discussed in Section 3.0. The horizontal and vertical limits of the excavation are shown on Figure 6. As set forth in the *Remedial Work Plan*, excavation activities extended vertically to a depth of approximately 8 feet bgs throughout most of the excavation area, with the exception of the following areas identified on Figure 6:

- Three small areas along the western and eastern/southeastern excavation limits where bedrock was encountered at depths less than 8 feet bgs; and
- One area located in the center of the excavation area where visual observations and PID readings indicated that impacted material was present to depths greater than 8 feet bgs.

Groundwater was encountered throughout the excavation at depths ranging from 5 to 7 feet bgs. In addition, perched water was encountered along the western limits of the excavation at a depth of approximately 3 feet bgs. To the extent possible, water was managed within the excavation area. However, some dewatering activities were necessary to complete the excavation. Water generated during the dewatering activities was either pumped directly from the excavation by vacuum trucks which transported the water directly off-site to a treatment facility, or water was pumped from the excavation into an on-site frac tank (21,000-gallon capacity) for temporary storage pending off-site transportation via vacuum truck to the treatment facility.

An underground drainage pipe (approximately 6-inches in diameter) was present within the excavation area. The approximate location of the drainage pipe is shown on Figure 6. The drainage pipe appeared to formerly convey surface water from the paved driveway area located south of the excavation area (in the vicinity of an existing catch basin) to the wooded area located north of the excavation area. As directed by CHGE, this drainage pipe was removed.

4.3 Waste Transportation/Disposal

A total of approximately 3,090 tons of excavated soil was transported to CWM Chemical Services, L.L.C.'s (CWM's) facility located in Model City, New York for disposal. Based on the pre-remediation characterization results discussed in Section 3.0, the soil was managed, transported and disposed of as a hazardous waste. Copies of the signed Hazardous Waste Manifests (including certificates of disposal and land disposal notification and certification forms) for each load of soil transported off-site for disposal are provided as Attachment 4.

Additionally, a total of approximately 186,000 gallons of water pumped from the excavation were transported to DuPont Environmental Treatment's (DuPont's) facility located in Deepwater, New Jersey for treatment. Based on existing data available for site groundwater, the water removed from the excavation was managed, transported, and disposed of as a non-hazardous waste. Copies of the signed Non-Hazardous Waste Manifests for each truckload of water transported off-site for treatment are provided as Attachment 5.

4.4 Post-Excavation Verification Soil Sampling

In addition to the pre-remediation verification sampling activities discussed in Section 3.0, a total of 12 post-excavation verification soil samples were collected during the remediation. Figure 6 shows the approximate post-excavation verification sample locations. Four samples (LBR-SW1 through LBR-SW4) were collected from each sidewall of the excavation (in the northern, southern, eastern, and western directions). Eight samples (LBR-POST1 through LBR-POST8) were collected from the bottom of the excavation. Samples were collected using a stainless steel hand auger directly from the excavation sidewall or bottom (if possible) or from the bucket of the excavator when conditions prohibited safe entrance into the excavation. The samples were submitted to Adirondack for analysis for VOCs using Method 8260 on a rush (24-hour) turnaround basis.

The post-excavation verification samples were identified, handled, packaged, and shipped using the procedures provided in the *SAP* and *QAPP*. The analytical results of the post-excavation verification samples are summarized in Table 10. Laboratory data sheets for the post-excavation verification samples are provided in Attachment 2. VOCs were not detected in any of the 12 post-excavation verification soil samples at concentrations exceeding the NYSDEC TAGM #4046 recommended soil cleanup objectives.

4.5 Site Restoration

As agreed upon between the NYSDEC and CHGE prior to the beginning of excavation activities and to expedite the remediation schedule, backfilling of the excavation area commenced before excavation activities were completed. For example, once the results of post-excavation verification samples collected from the bottom and sidewall of an excavated area indicated that the remedial objectives had been met in this area, that area was backfilled.

Due to the presence of groundwater within the excavation area (encountered at depths ranging from approximately 5 to 7 feet bgs), the excavation was backfilled with stone (approximately 3- to 6-inches in diameter) to the depth of groundwater within the excavation. The remainder of the excavation depth was then backfilled with bank run fill, with the exception of the top six inches which was backfilled with quarry processed gravel (NYSDOT Item 4). Backfilling was accomplished using a bulldozer (for placing and spreading of backfill materials) and a vibrating drum roller for compaction. Backfill materials were compacted in layers (approximately 6 inches in depth) with the vibrating drum roller.

The final grade of the excavation area was generally consistent with pre-excavation conditions. However, a slight swale was created through the excavation area (in the approximate location of the former drainage pipe removed during the excavation activities). The purpose of the swale was to promote natural drainage of surface water from the paved driveway area located south of the excavation area to the wooded area located north of the excavation area.

Following completion of the site restoration activities, equipment (including heavy machinery and the on-site frac tank) was decontaminated appropriately. Equipment, construction support facilities, and associated debris/garbage were then removed from the site.

4.6 Air Monitoring/Sampling

In accordance with the *HASP*, BBL conducted air monitoring with a PID and MiniRAM during field activities that may generate organic vapors or dust. Monitoring was conducted at least once an hour in the worker breathing zone and at various work area/site perimeter locations to determine the appropriate response activities, as set forth in the *HASP*. Daily air monitoring logs are provided in Attachment 6.

In addition to the air monitoring activities discussed above, BBL conducted four air sampling events during the remediation activities. Air samples were collected on March 26 and 29, 2001 and April 4 and 10, 2001, on days when large volumes of soil were excavated. Air samples were collected using 3M 3520 passive organic vapor dosimeter badges. On each day of sampling, a badge was placed near the rear employee entrance to the CHGE service center building, directly southeast of the excavation area. The badges were hung for approximately 8 hours. Each badge was submitted to Galson Laboratories, an American Industrial Hygiene Association-accredited laboratory for organic vapors (including vinyl chloride). For quality assurance purposes, a blank badge was also submitted with each air sample badge for the same analyses.

The laboratory analytical results for the air samples are summarized in Table 10. The laboratory data sheets for the air samples are provided in Attachment 2. The air sample results indicate that organic vapors (including vinyl chloride) were not detected in any of the air sample badges or blank badges collected during the remediation activities.

5. Post-Remediation Sampling

In accordance with the *Remedial Work Plan*, two additional monitoring wells were installed at the site in May 2001 and the initial post-remediation groundwater sampling event was conducted in June 2001. A description of these post-remediation activities is presented below.

5.1 Monitoring Well Installation

In accordance with the *Remedial Work Plan*, two monitoring wells were installed adjacent to the excavation, one in the overburden (MW-018A) and one in the bedrock (MW-018B) at a depth below existing monitoring well MW94-1B. The purpose of the overburden well is to monitor overburden groundwater adjacent to the excavated area. The purpose of the bedrock well is to monitor bedrock groundwater deeper than monitoring well MW94-1B adjacent to the excavated area. As discussed in Section 4.0, monitoring well MW94-1B was not abandoned and therefore replacement of this well was not necessary.

Drilling and well construction activities were conducted by Parratt-Wolff, Inc. of Syracuse, New York between May 7 and May 9, 2001. Monitoring wells MW-018A and MW-018B were installed at the locations shown on Figure 6 using a CME 75-drill rig. Monitoring well MW01-8A was installed in the overburden using 4½-inch hollow stem augers. This well was installed to the depth of approximately 8 feet 10 inches, with a 5-foot screen. Monitoring well MW01-8B was installed as an open hole well using a 3 7/8-inch roller-bit to a depth of approximately 50 feet bgs, or 38.2 feet into bedrock. Construction of monitoring well MW-018B consisted of a 4-inch diameter permanent casing grouted in place to approximately 25 feet bgs, and an open bedrock hole from approximately 25 feet to 50 feet bgs (i.e., 25-foot open hole). The specific drilling techniques and well construction for each well are noted on the monitoring well logs provided in Attachment 7.

Following monitoring well installations, the wells were developed in accordance with the *SAP*. Specifically, monitoring well MW01-8A was developed with a peristaltic pump and new dedicated/disposable tubing. The well was surged/pumped dry eight times during well development. Each time the well went dry, it was allowed to recharge prior to additional surging/pumping. Monitoring well MW01-8B was developed with a Waterra pump, using tubing equipped with a check valve. Initially, the well was surged for approximately 1 hour and 45 minutes before pumping the well dry.

5.2 Initial Post-Remediation Groundwater Monitoring

As set forth in the *Remedial Work Plan*, groundwater samples were collected at the site on June 11 and 12, 2001 for the initial post-remediation groundwater sampling event. Groundwater samples were collected from monitoring wells MW94-5, MW96-6, MW94-1B, MW96-7B, MW01-8A, and MW01-8B (Figure 1).

Groundwater sampling activities were conducted by BBL in accordance with the procedures set forth in the *SAP* and *QAPP*. Groundwater sampling logs are provided in Attachment 3. Groundwater samples were submitted to CAS for analysis of VOCs by USEPA SW-846 Method 8260. The groundwater samples were identified, handled, packaged, and shipped using the procedures provided in the *SAP* and *QAPP*. Analytical results for the groundwater samples are summarized in Table 12. Laboratory data sheets for the groundwater samples are provided in Attachment 2. Groundwater elevations obtained during the initial post-remediation sampling event are summarized in Table 13.

The June 2001 groundwater sample results provide the initial assessment of post-remediation groundwater quality. After the completion of additional monitoring per the Groundwater Monitoring Plan, an assessment of the effects of the remediation on groundwater quality can be determined. Preliminary observations can be drawn between the November 2000 pre-remediation groundwater sampling and the June 2001 post-remediation groundwater sampling as follows:

- No VOCs were detected in the groundwater from wells MW94-5 and MW96-6 in either the pre- or post-remediation sampling events except for 1,1-dicholorethane and 1,1,1-trichloroethane, which are not related to the CHGE site.
- The concentrations of 1,2-dichloroethene and trichloroethene in the groundwater from well MW94-1B decreased by 112 and 46 ppb, respectively, between the pre-and post-remediation sampling.
- The concentrations of 1,2-dichloroethene, trichloroethene, and vinyl chloride in the groundwater from well MW96-7B remained the same (i.e. concentrations only varied by 2 to 6 ppb) between the pre- and the post-remediation sampling. 1,1-Dichloroethane, a constituent not related to the CHGE site, also maintained similar concentrations between the two sampling events.

• The concentrations of 1,2-dichloroethene and trichloroethene significantly decreased by approximately 3 orders of magnitude from the temporary sampling point within the excavation area at location CHAR-3 and the well MW01-8A, installed immediately adjacent to the excavation after the remediation.

Continuing improvements in the groundwater quality in the wells installed closest to the excavation area, MW01-8A and MW94-1B, are expected to occur throughout the first year of post-remediation monitoring. In addition, improvements, although expected to be slower given the hydraulic properties of the bedrock, are expected to occur at wells located deeper in the bedrock, MW01-8B, and further from the excavation, MW96-7B.

Tables

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF TCLP VOCs IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLE ID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 4'	8 - 9.1'	4 - 8'	0.5 - 4'	4 - 7.7'	0 - 3'
Benzene	ND (50)					
2-Butanone	ND (100)					
Carbon Tetrachloride	ND (50)					
Chlorobenzene	ND (50)					
Chloroform	ND (50)					
1,2-Dichloroethane	ND (50)					
1,1-Dichloroethene	ND (50)					
Tetrachloroethene	ND (50)					
Trichloroethene	ND (50)	15,000	4,200	ND (50)	ND (50)	ND (50)
Vinyl Chloride	ND (50)	130	ND (50)	ND (50)	ND (50)	380

Notes:

All concentrations expressed in μ g/l (ppb).

ND = Non-Detect (detection limit in parentheses).

TABLE 2

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF TCLP SVOCs IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLE ID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 4"	8 - 9.1'	4 - 8'	0.5 - 4"	4 - 7.7	0 - 3'
1,4-Dichlorobenzene	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
2,4-Dinitrotoluene	ND (100)	ND (100)	ND (100)	(100) GN	ND (100)	ND (100)
Hexachlorobenzene	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)
Hexachlorobutadiene	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)
Hexachloroethane	ND (100)	ND (100)	ND (100)	(100) GN	ND (100)	ND (100)
2-Methylphenol	ND (100)	ND (100)	ND (100)	(001) GN	ND (100)	ND (100)
3+4-Methylphenol	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)
Nitrobenzene	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)
Pentachlorophenol	ND (500)	ND (500)	ND (500)	(009) GN	ND (500)	ND (500)
Pyridine	ND (500)	ND (500)	ND (500)	(009) GN	ND (500)	ND (500)
2,4,6-Trichlorophenol	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)
2,4,5-Trichlorophenol	ND (100)	ND (100)	ND (100)	(100) QN	ND (100)	ND (100)

Notes:

All concentrations expressed in $\mu g / l$ (ppb).

ND = Non-Detect (detection limit in parentheses).

TABLE 3

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF TCLP INORGANICS IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLEID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 4'	8 - 9.1'	4 - 8'	0.5 - 4'	4 - 7.7	0 - 3.
Arsenic	ND (0.5)	ND (0.5)	ND (0.5)	(9'0) QN	ND (0.5)	ND (0.5)
Barium	ND (1.0)					
Cadmium	ND (0.1)					
Chromium	ND (0.1)					
Lead	0.18	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	0.823
Mercury	ND (0.003)					
Selenium	(0.5) ND	ND (0.5)				
Silver	ND (0.1)					

Notes:

All concentrations expressed in mg/L (ppm).

ND = Non-Detect (detection limit in parentheses)

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

RESULTS OF TCLP WET CHEMISTRY ANALYSES IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLE ID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 8'	4 - 14'	0 - 11.8'	0.5 - 6'	0 - 7.7'	0 - 3'
Cyanide Reactivity (mg/kg)	ND (0.397)	ND (0.434)	ND (0.381)	ND (0.402)	ND (0.392)	ND (0.363)
Flash Point (°C)	>100	>100	>100	>100	>100	>100
Percent Solids (%)	83.9	76.7	87.3	82.9	85.0	91.7
pH (standard units)	6.74	6.85	7.13	6.65	6.92	6.88
Sulfide Reactivity (mg/kg)	ND (11.9)	70.4	ND (11.5)	ND (12.1)	ND (11.8)	ND (10.9)

Notes:

ND = Non-Detect (detection limit in parentheses).

> = greater than.

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF PCBs IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLEID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 8"	4 - 14'	0 - 11.8	0.5 - 6'	0 - 7.7	0 - 3,
Aroclor 1016	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Aroclor 1221	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Aroclor 1232	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Aroclor 1242	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	8.1
Aroclor 1248	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Aroclor 1254	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Aroclor 1260	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	ND (0.87)
Total PCBs	ND (0.48)	ND (0.52)	ND (0.46)	ND (0.48)	ND (0.47)	8.1

Notes:
All concentrations expressed in mg/kg (ppm).
ND = Non-Detect (detection limits in parentheses).

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF GASOLINE & DIESEL RANGE ORGANICS IN CHARACTERIZATION SOIL SAMPLES - NOVEMBER 2000

SAMPLEID	CHAR-1	CHAR-2	CHAR-3	CHAR-4	CHAR-5	CHAR-6
DEPTH INTERVAL (FT)	0 - 4'	8 - 9.1'	4 - 8'	0.5 - 4'	4 - 7.7'	0 - 3.
Gasoline Range Organics	150	170	89	100	ND (0.059)	150
Diesel Range Organics	1,300	2,100	830	1,200	ND (4.7)	2,100

Notes

All concentrations expressed in mg/kg (ppm).

ND = Non-Detect (detection limit in parentheses).

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF VOCS IN CHARACTERIZATION SOIL SAMPLES - JANUARY AND FEBRUARY 2001

			ľ	ľ	ļ		ľ		ļ					
SAMPLE ID	<u>:</u>	-	7	,	ŧ	n	٥	•	n	2	F	7.	13	4
DEPTH INTERVAL (FT)	,6	0 - 6.5'	.9-0	0 - 4'	0 - 8.2'	0 - 7	0 - 4.2'	0 - 9,	0 - 3,	0 - 5'	0 - 4.5	.8,	0 - 1.8'	0 - 5.5'
Benzene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	(500:0) QN	ND (0.05)	ND (0.05)	(9:0) QN	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Bromodichloromethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Bromoform	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Bromomethane	ND (3.0)	ND (0.1)	ND (0.5)	ND (0.1)	ND (0.5)	ND (0.01)	ND (0.1)	ND (0.1)	ND (1.0)	ND (0.5)	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.01)
Carbon Tetrachloride	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	(0.5) ON	ND (0.25)	ND (0.05)	(0.05) ON	ND (0.25)	ND (0.005)
Chlorobenzene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Chloroethane	ND (3.0)	ND (0.1)	ND (0.5)	ND (0.1)	ND (0.5)	ND (0.01)	ND (0.1)	ND (0.1)	ND (1.0)	ND (0.5)	ND (0.1)	ND (0.1)	(0.5)	ND (0.01)
2-Chloroethylvinylether	Ą	ND (0.1)	ND (0.5)	ND (0.05)	ND (0.5)	ND (0.01)	ND (0.1)	ND (0.1)	ND (1.0)	ND (0.5)	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.01)
Chloroform	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	(S00:0) QN	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Chloromethane	ND (3.0)	ND (0.1)	ND (0.5)	ND (0.1)	ND (0.5)	ND (0.01)	ND (0.1)	ND (0.1)	ND (1.0)	(9.0) QN	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.01)
Dibromochloromethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	(50.0) QN	ND (0.05)	ND (0.25)	ND (0.005)
1,1-Dichloroethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
1,2-Dichloroethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
1,1-Dichloroethene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
1,2-Dichloroethene (Total)	58*	ND (0.05)	0.3	ND (0.05)	15	ND (0.005)	2.5	ND (0.05)	2.2	3.8	(50.0) QN	2.2	1.3	ND (0.005)
1,2-Dichloropropane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	(9.0) QN	ND (0.25)	(0.05) QN	ND (0.05)	ND (0.25)	ND (0.005)
cis-1,3-Dichloropropene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
trans-1,3-Dichloropropene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Ethylbenzene	ND (3.0)	960.0	ND (0.25)	0.094	ND (0.25)	ND (0.005)	0.068	0.28	ND (0.5)	ND (0.25)	ND (0.05)	0.23	2.3	ND (0.005)
Methylene Chloride	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
1,1,2,2-Tetrachloroethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Tetrachloroethene	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Toluene	5.8	ND (0.05)	1.7	0.078	4.0	ND (0.005)	ND (0.05)	0.1	ND (0.5)	ND (0.25)	ND (0.05)	2.2	1.4	ND (0.005)
1,1,1-Trichloroethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
1,1,2-Trichloroethane	ND (3.0)	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Trichloroethene	ND (3.0)	0.07	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	17	3.1	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Trichlorofluoromethane	ΑĀ	ND (0.05)	ND (0.25)	ND (0.05)	ND (0.25)	ND (0.005)	ND (0.05)	ND (0.05)	ND (0.5)	ND (0.25)	ND (0.05)	ND (0.05)	ND (0.25)	ND (0.005)
Vinyl Chloride	က	ND (0.1)	ND (0.5)	ND (0.1)	ND (0.5)	ND (0.01)	ND (0.1)	ND (0.1)	ND (1.0)	ND (0.5)	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.01)
Xylene (Total)	4.8	90.0	0.65	0.44	0.75	ND (0.005)	0.35	0.67	ND (0.5)	ND (0.25)	0.36	1.0	9.5	ND (0.005)
Acetone	ND (12.0)	Ā	¥	Ą	Ϋ́	ΑΝ	ΑN	NA	ΑĀ	NA	NA	NA	NA	NA
2-Butanone (MEK)	ND (6.0)	NA NA	¥	NA	NA	NA	NA	NA	NA	NA	NA	Ą	NA	ΝΑ
Carbon disulfide	ND (6.0)	Y.	Ą	Ϋ́	ΑN	NA	NA	NA	NA	NA	ĄN	¥	ΝΑ	AN
2-Hexanone	ND (6.0)	Ą	¥	Ą	NA	NA	NA	NA	NA	NA	AN	ΑN	ΝΑ	Ą
4-Methyl-2-Pentanone (MIBK)	ND (6.0)	NA	NA	NA	NA	٧N	AN	NA	NA	Ϋ́	¥	¥	Ą	Ϋ́
Styrene	ND (3.0)	NA	NA	NA	NA	NA	NA	NA	NA	NA	N A	NA	NA	ΑN

Notes:

All concentrations expressed in mg/kg (ppm).

ND = Non-Detect (detection limit in parentheses).

* Concentration reported is for cis-1,2-dichloroethene.

** Concentration reported is for M+P-Xylene.

NA = Constituent not analalized.

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF VOCs IN PRE-REMEDIATION VERIFICATION SOIL SAMPLES - NOVEMBER 2000

Moti 0.0029 Moti 0.0029 Moti 0.023 Moti 0.024 Moti 0.025 M	SAMPLEID	CHAR-5(1)	VER-1	VER-2	VER-3	VER-4	VER-5	VER-6	VER-7	VER-8	VER-9	VER-10	VER-11	VER-12	NYSDEC
NO 0.0253 NO 0.0254 NO 0.0264 NO 0.0265 NO 0.0255 NO 0.0265	DEPTH (ft)	4 - 7.7	4-7	0 - 2.5'	0 - 3.3'	.8.	4 - 7.2'	4 - 7.3'	0 - 4'	4 - 8'	4 - 8'	4-5'	.4-0	4 - 8.	TAGM
No (10.0056) NO (10.0056) NO (10.0057) NO (10.0056) NO (10.0059) NO (Acetone	ND (0.023)	ND (0.023)	ND (0.046)	0.091	0.036	ND (0.024)	ND (0.024)	ND (0.023)	ND (0.12)	ND (0.023)	ND (0.023)	0.11	ND (0.023)	0.2
NO 10.00593 NO 10.00593 NO 10.00597 NO 10.00597 NO 10.00595 NO 10.00593	Benzene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900:0) GN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(0.00G) QN	ND (0.0056)	0.7
NO 10.00593 NO 10.00593 NO 10.0057 NO 10.0057 NO 10.00569 NO 10.0059	Bromodichloromethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	Ą
Marky No (2012) No (2012) No (2012) No (2012) No (2011) No (2011) No (2012) No (2012	Bromoform	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900.0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	¥
Michical Biological No. 10 codes	Bromomethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	(0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	ΑN
Mot 000695 MOt 000695 MOt 000695 MOt 000697 MOt 000695 MOt 000696 MOt 000699 MOt 000695 MOT 000699 MOT	2-Butanone (MEK)	ND (0.012)	ND (0.012)	ND (0.023)	0.011	ND (0.011)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.059)	ND (0.012)	ND (0.011)	0.022	ND (0.011)	0.3
NO (20059) NO (20059) NO (20059) NO (20057) NO (20059) NO	Carbon Disulfide	ND (0.012)	ND (0.012)	ND (0.023)	ND (0.011)	ND (0.011)	ND (0.012)	ND (0.012)	ND (0.012)	(0.059) ND	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.011)	2.7
ND (0.0056) ND (0.0056) ND (0.0051) ND (0.0057) ND (0.0056) ND (0.0059)	Carbon Tetrachloride	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	(0.029)	(8500.0) QN	ND (0.0057)	ND (0.006)	ND (0.0056)	9.0
ND (0.00568) ND (0.0058) ND (0.0057) ND (0.00569) ND (0.	Chlorobenzene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	1.7
ND (10 0055) ND (10 0055) ND (10 0055) ND (10 0057) ND (10 0055) ND (Chloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900:0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(0.00e)	ND (0.0056)	1.9
ND (0.0056) ND (0.0056) ND (0.0056) ND (0.0057) ND (0.0056)	Chloroform	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	(0:0028) QN	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) an	ND (0.0056)	0.3
NO (0.0058) NO (0.0058) NO (0.0058) NO (0.0057) NO (0.0059)	Chloromethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	(8500'0) GN	ND (0.0057)	(900:0) QN	ND (0.0056)	ΑN
ND (10.0056) ND (Dibromochloromethane	ND (0:0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	ΨV
ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0059)	1,1-Dichloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	0.2
ND (10.0058) ND (10.0058) ND (10.0057) ND (10.0056) ND (10.0058) ND (1,2-Dichloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	(8500'0) GN	ND (0.0057)	(900:0) QN	ND (0.0056)	0.1
vocable 0.025 0.029 ND (0.012) ND (0.0054) ND (0.0058) ND (0.0058	1,1-Dichloroethene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	(8500'0) GN	ND (0.0057)	(900:0) QN	ND (0.0056)	0,4
No. (10.0568) ND (10.0569) ND	cis-1,2-Dichloroethene	0.025	0.029	ND (0.012)	ND (0.0057)	0.021	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	0.0065	0.025	ND (0.0056)	0.25
ropane ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0059) ND (0.0059) <t< td=""><td>trans-1,2-Dichloroethene</td><td>ND (0.0058)</td><td>ND (0.0058)</td><td>ND (0.012)</td><td>ND (0.0057)</td><td>ND (0.0056)</td><td>ND (0.0059)</td><td>ND (0.006)</td><td>ND (0.0058)</td><td>ND (0.029)</td><td>ND (0.0058)</td><td>ND (0.0057)</td><td>(900:0) QN</td><td>ND (0.0056)</td><td>0.3</td></t<>	trans-1,2-Dichloroethene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	0.3
ND (0.0056) ND (0.0056) ND (0.0056) ND (0.0057) ND (0.0056) ND (0.0059)	1,2-Dichloropropane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0:0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	ΑN
ND (0.0056) ND (0.0056) ND (0.0056) ND (0.0057) ND (0.0056) ND (0.0059)	cis-1,3-Dichloropropene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0:0056)	ND (0.0059)	(900.0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) GN	ND (0.0056)	ΑN
ND (0.0056) ND (0.0058) ND (0.0057) ND (0.0056) ND (0.0059)	trans-1,3-Dichloropropene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	Ϋ́
ND (0.012) ND (0.0058) ND (0.00	Ethylbenzene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	(8500'0) GN	ND (0.0057)	(900'0) QN	ND (0.011)	5.5
ND (0.0058) ND (0.0058) ND (0.0057) ND (0.0056) ND (0.0059) ND (0.0058) ND (0.0058) ND (0.0059) ND (0.0057) ND (0.0057) ND (0.0059)	2-Hexanone	ND (0.012)	ND (0.012)	ND (0.023)	ND (0.011)	ND (0.011)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.059)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.0056)	Ϋ́
ND (0.012) ND (0.012) ND (0.012) ND (0.011) ND (0.011) ND (0.012) ND (0.0058)	Methylene Chloride	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900:0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.011)	0.1
ND (0.0058) ND (0.0058) ND (0.0057) ND (0.0056) ND (0.0059)	4-Methyl-2-Pentanone (MIBK)	ND (0.012)	ND (0.012)	ND (0.023)	ND (0.011)	ND (0.011)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.059)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.0056)	1.0
etrachloroethane ND (0.0058) ND (0.0058) ND (0.0059) ND (0.0058) ND (0.0059) ND (0.0059) ND (0.0059) ND (0.0057) ND (0.0059) ND (0.0059) ND (0.0059) ND (0.0057) ND (0.0059) ND (0.0058)	Styrene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	NA
rocethene ND (0.0058)	1,1,2,2-Tetrachloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(0.00e)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	9.0
ND (0.0058)	Tetrachloroethene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900'0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	0.011	1,4
Althoroethrane ND (0.0058)	Toluene	ND (0.0058)	ND (0.0058)	ND (0.012)	0.0068	0.031	ND (0.0059)	(900:0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	0.041	ND (0.0056)	1.5
Ablicroettrane ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0057) ND (0.0056) ND (0.0059) ND (0.0059) ND (0.0059) ND (0.0059) ND (0.0059) ND (0.0058) ND	1,1,1-Trichloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0:0059)	(0.00e)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(900:0) QN	ND (0.0056)	8.0
strene ND (0.058) 0.038 ND (0.058)	1,1,2-Trichloroethane	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900:0) GN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	NA
oride ND (0.0058) ND (0.0058) <th< td=""><td>Trichloroethene</td><td>ND (0.0058)</td><td>0.038</td><td>ND (0.012)</td><td>ND (0.0057)</td><td>0.013</td><td>ND (0.0059)</td><td>(900:0) QN</td><td>ND (0.0058)</td><td>ND (0.029)</td><td>0.0062</td><td>0.150</td><td>0.01</td><td>ND (0:0056)</td><td>7.0</td></th<>	Trichloroethene	ND (0.0058)	0.038	ND (0.012)	ND (0.0057)	0.013	ND (0.0059)	(900:0) QN	ND (0.0058)	ND (0.029)	0.0062	0.150	0.01	ND (0:0056)	7.0
ND (0.0058) ND (0.0058) ND (0.0058) ND (0.0057) ND (0.0056) ND (0.0059) ND (0.0059) ND (0.0058) ND (0.	Vinyl Chloride	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0:0056)	0.2
1	o-Xylene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	ND (0.006)	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	ND (0.006)	ND (0.0056)	1.2 ⁽³⁾
(1.000.0) (1.000.0) (1.000.0) (1.000.0) (1.000.0) (1.000.0) (1.000.0) (1.000.0) (1.000.0)	m+p-Xylene	ND (0.0058)	ND (0.0058)	ND (0.012)	ND (0.0057)	ND (0.0056)	ND (0.0059)	(900'0) QN	ND (0.0058)	ND (0.029)	ND (0.0058)	ND (0.0057)	(0.00E)	ND (0.0056)	1.2 ⁽³⁾

(1) Concentrations expressed in mg/kg (ppm).

ND = Non-Detect (detection limit in parentheses)

(1) This sample served the purpose of a verification sample.

(2) NYSDEC TAGM #4046 recommended soil cleanup objective.

NA = NYSDEC TAGM #4046 recommended soil cleanup objective is not available.

(3) NYSDEC TAGM #4046 recommended soil cleanup objective for total xylenes is 1.2 ppm.

53811750.xts

TABLE 9

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF VOCs IN PRE-REMEDIATION GROUNDWATER SAMPLES - NOVEMBER 2000

SAMPLE ID	CHAR-3	MW94-1B	DUP-2 ⁽¹⁾	MW94-5	MW96-6	MW96-7B
Acetone	8.9 J	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)
Benzene	3.1 J	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Bromodichloromethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Bromoform	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Bromomethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
2-Butanone (MEK)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Chlorobenzene	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Chloroethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Chloroform	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Chloromethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Dibromochloromethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
1,1-Dichloroethane	ND (5.0)	ND (5.0)	ND (5.0)	1.1 J	ND (5.0)	12
1,2-Dichloroethane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
1,1-Dichloroethene	96	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
cis-1,2-Dichloroethene	25,000	190	190	ND (5.0)	ND (5.0)	58
trans-1,2-Dichloroethene	180	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	1.9 J
1,2-Dichloropropane	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
cis-1,3-Dichloropropene	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
trans-1,3-Dichloropropene	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Ethylbenzene	140	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
4-Methyl-2-Pentanone (MIBK)	4.6 J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
1,1,2,2-Tetrachloroethane	2.2 J	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Tetrachloroethene	110	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Toluene	1,300 J	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
1,1,1-Trichloroethane	ND (5.0)	ND (5.0)	ND (5.0)	1.0 J	ND (5.0)	2.1 J
1,1,2-Trichloroethane	50	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Trichloroethene	60,000	59	59	ND (5.0) E	ND (5.0)	15
Vinyl Chloride	960 E	1.0 J	1.4 J	ND (5.0)	ND (5.0)	38
o-Xylene	170	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
m+p-Xylene	480 E	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)

Notes:

All concentrations expressed in µg/L (ppb).

ND = Non-Detect (detection limit in parentheses).

E = Identifies compounds whose concentrations exceed the calibration range of the instruments.

(1) Dup-2 is a duplicate sample of MW94-1B.

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF VOCs IN POST-EXCAVATION VERIFICATION SOIL SAMPLES

SAMPLEID	LBR-POST 1	LBR-POST 2	LBR-POST 3	LBR-POST 4	LBR-POST 5	LBR-POST 6	LBR-POST 7	LBR-POST 8	LBR-SW1	LBR-SW 2	LBR-SW3	I BR.SW 4	NYSDEC
DEPTH (ft)	8.	.80	-80		8,	œ,	èo	15'	4.	4.	. 4	.4	TAGM(1)
Chloromethane	ND (0.010)	ND (0.100)	Ϋ́										
Bromomethane	ND (0.010)	ND (0.100)	ΑN										
Vinyl Chloride	ND (0.010)	ND (0.010)	0.056	0.026	ND (0.010)	0.023	ND (0.010)	ND (0.010)	0.013	ND (0.010)	ND (0.010)	ND (0.100)	0.2
Chloroethane	ND (0.010)	ND (0.100)	1.9										
Methylene Chloride	ND (0.005)	ND (0.050)	0.1										
Trichlorofluoromethane	ND (0.005)	ND (0.050)	AN										
1,1-Dichloroethene	ND (0.005)	ND (0.050)	0.4										
1,1-Dichloroethane	ND (0.005)	ND (0.050)	0.2										
1,2-Dichloroethene Total	ND (0.006)	ND (0.005)	0.036	ND (0.005)	ND (0.005)	0.21	0.015	900'0	0.01	ND (0.005)	ND (0.005)	ND (0.050)	0.55 ⁽²⁾
Chloroform	ND (0.005)	ND (0.050)	0.3										
1,2-Dichloroethane	ND (0.005)	ND (0.050)	0.1										
1,1,1-Trichloroethane	ND (0.005)	ND (0.050)	0.8										
Carbon Tetrachloride	ND (0.005)	(500.0) QN	ND (0.005)	ND (0.005)	(\$00.0) QN	ND (0.050)	0.6						
Bromodichloroemethane	ND (0.005)	ND (0.050)	AN										
1,2-Dichloropropane	ND (0.005)	ND (0.050)	Ϋ́										
trans,1,3-Dichloropropene	ND (0.005)	ND (0.050)	NA NA										
Trichloroethene	ND (0.005)	0.057	ND (0.005)	ND (0.005)	0.007	ND (0.005)	ND (0.005)	ND (0.050)	0.7				
Benzene	ND (0.005)	ND (0:050)	0.06										
Dibromochloromethane	ND (0.005)	ND (0.050)	NA A										
1,1,2-Trichloroethane	ND (0.005)	ND (0:050)	ΑN										
cis-1,3-Dichloropropene	ND (0.005)	ND (0:050)	Ϋ́										
2-Chloroethylvinylether	ND (0.010)	ND (0.100)	Ą										
Bromoform	ND (0.005)	ND (0:050)	ΑN										
1,1,2,2-Tetrachloroethane	ND (0.005)	ND (0.050)	9.0										
Tetrachloroethene	ND (0.005)	ND (0.050)	4.1										
Toluene	ND (0.005)	0.044	ND (0.005)	ND (0.050)	1.5								
Chlorobenzene	ND (0.005)	ND (0.050)	1.7										
Ethylbenzene	ND (0.005)	0.007	ND (0.005)	ND (0.050)	5.5								
Xylenes, Total	ND (0.005)	0.035	ND (0.005)	ND (0:050)	1.2								

All concentrations expressed in mg/kg (ppm). ND = Non-Detect (detection limit in parentheses).

(1) NYSDEC TAGM #4046 recommended soil cleanup objective.
(2) NYSDEC TAGM #4046 recommended soil cleanup objective for trans-1,2-dichloroethene is 0.3 ppm and for cis-1,2-dichloroethene is 0.25 ppm.
NA = NYSDEC TAGM #4046 recommended soil cleanup objective is not available.

Table 11

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

Air Sample Results

Parameter	AIR-1 (3/26/01)	AIR-2 (3/29/01)	AIR-3 (4/4/01)	AIR-4 (4/10/01)
Vinyl Chloride	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.02)
Other Volatile Organics	ND (0.3)	ND (0.2)	ND (0.2)	ND (0.2)

Notes:

All concentrations expressed in ppm.

ND = Non-Detect (detection limits in parentheses).

Sample medium used was a 3M 3520 passive organic vapor dosimeter badge.

TABLE 12

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

CONCENTRATIONS OF VOCs IN POST-REMEDIATION GROUNDWATER SAMPLES - JUNE 2001

SAMPLE ID	MW94-1B	MW94-5	MW96-6	MW96-7B	MW01-8A	MW01-8B
Acetone	ND (20)					
Benzene	ND (5.0)					
Bromodichloromethane	ND (5.0)					
Bromoform	ND (5.0)					
Bromomethane	ND (5.0)					
2-Butanone (MEK)	ND (10)					
Carbon Disulfide	ND (10)					
Carbon Tetrachloride	ND (5.0)					
Chlorobenzene	ND (5.0)					
Chloroethane	ND (5.0)					
Chloroform	ND (5.0)					
Chloromethane	ND (5.0)					
Dibromochloromethane	ND (5.0)					
1,1-Dichloroethane	ND (5.0)	ND (5.0)	ND (5.0)	14	ND (5.0)	ND (5.0)
1,2-Dichloroethane	ND (5.0)					
1,1-Dichloroethene	ND (5.0)					
cis-1,2-Dichloroethene	78	ND (5.0)	ND (5.0)	62	21	740
trans-1,2-Dichloroethene	ND (5.0)	5.4				
1,2-Dichloropropane	ND (5.0)					
cis-1,3-Dichloropropene	ND (5.0)					
trans-1,3-Dichloropropene	ND (5.0)					
Ethylbenzene	ND (5.0)					
2-Hexanone	ND (10)					
Methylene Chloride	ND (5.0)					
4-Methyl-2-Pentanone (MIBK)	ND (10)					
Styrene	ND (5.0)					
1,1,2,2-Tetrachloroethane	ND (5.0)					
Tetrachloroethene	ND (5.0)					
Toluene	ND (5.0)	11				
1,1,1-Trichloroethane	ND (5.0)					
1,1,2-Trichloroethane	ND (5.0)					
Trichloroethene	13	ND (5.0)	ND (5.0)	21	28	640
Vinyl Chloride	ND (5.0)	ND (5.0)	ND (5.0)	35	ND (5.0)	80
o-Xylene	ND (5.0)					
m+p-Xylene	ND (5.0)					

Notes:

All concentrations expressed in µg/L (ppb).

ND = Non-Detect (detection limit in parentheses).

Central Hudson Gas & Electric Corporation Little Britain Road Service Center New Windsor, New York

GROUNDWATER ELEVATIONS IN MONITORING WELLS

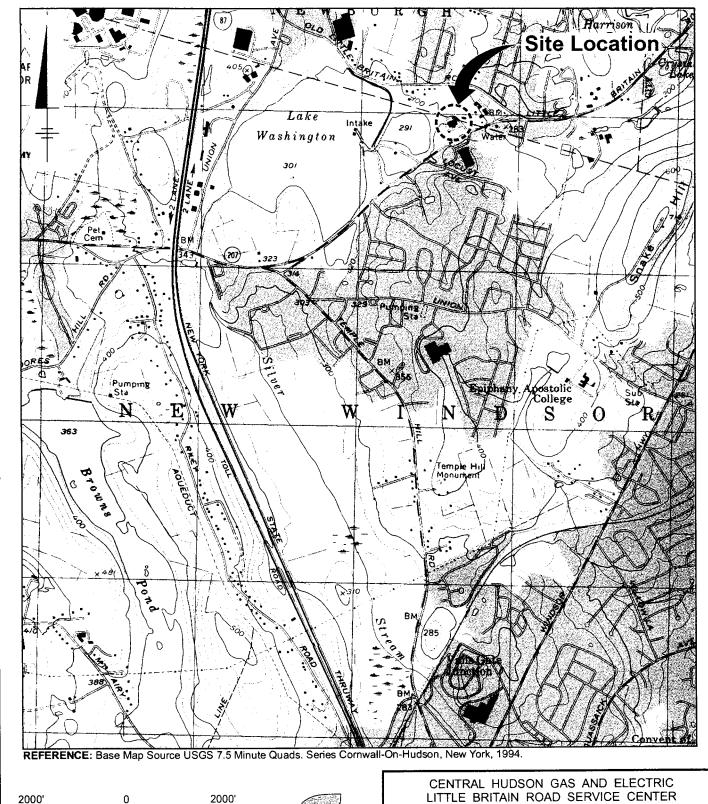
Well ID	Reference Elevation (ft amsi)	Depth to Water (ft)	Groundwater Elevation 6/12/01 (ft amsl)
MW94-1B	295.24	5.40	289.84
MW94-5	297.62	5.74	291.88
MW96-6	301.02	9.93	291.09
MW96-7B	295.54	8.00	287.54
MW01-8A	297.39	7.92	289.47
MW01-8B	297.35	9.08	288.27

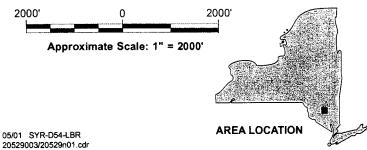
Surface Water Monitoring Point	Reference Elevation (ft amsl)	Depth to Water (ft)	Surface Water Elevation 6/12/01 (ft amsl)
Staff Gauge ¹ (Lake Washington Stilling Basin)	290.02	approx. 0.25 (above) ³	290.27
Pump House ² (Lake Washington)	301.83	1.33	300.50

Notes:

ft = feet

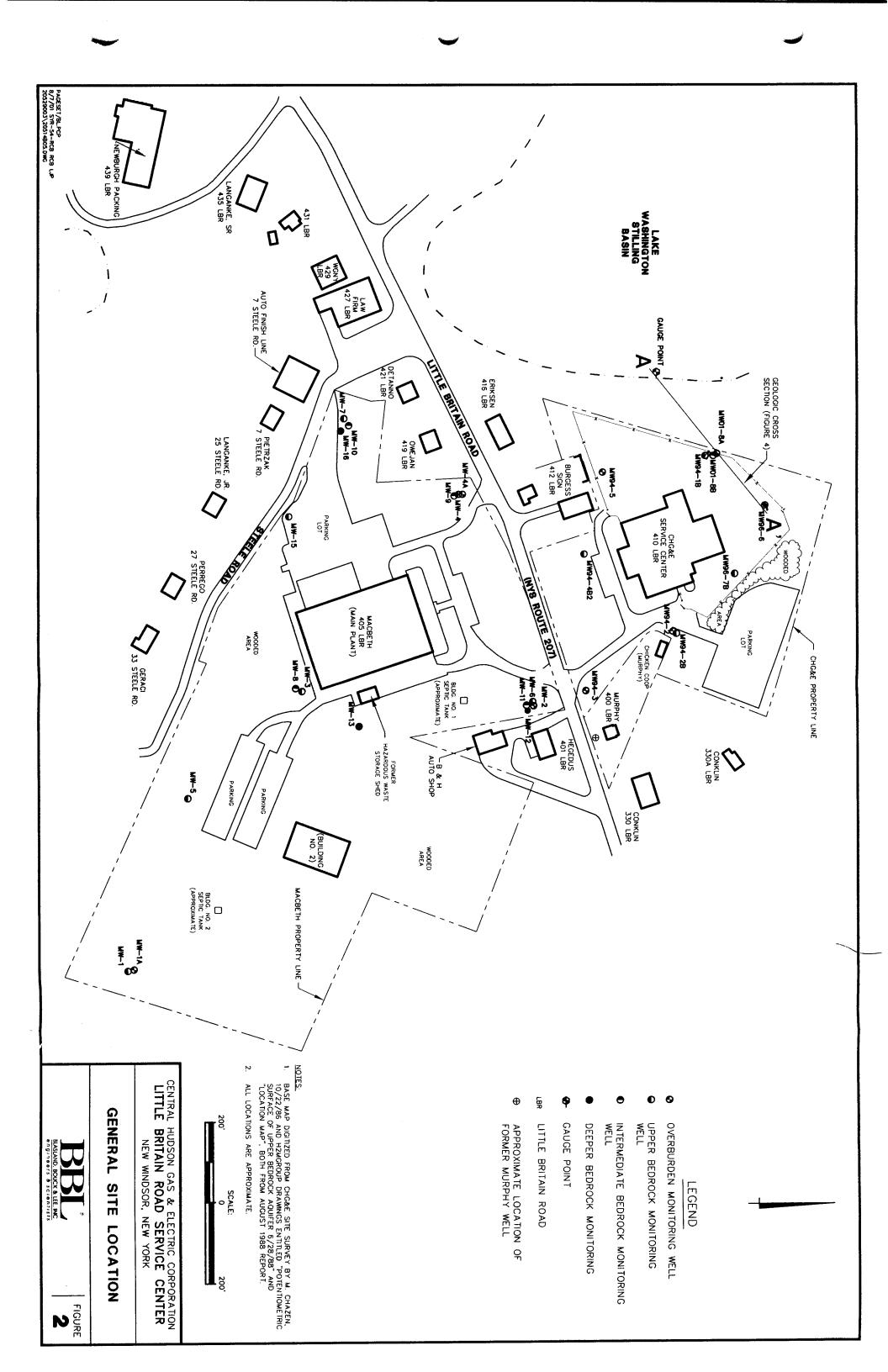
amsl = above mean sea level


¹ Reference point is at top of 3/4-inch iron pipe set in water on east side of Lake Washington Stilling Basin. Note: This reference point elevation may not be accurate and should be resurveyed when the water levels in the stilling basin recede.


² Reference point is the chiseled square on the southeast corner of concrete footing to metal catwalk to the Pump House on Lake Washington.

³ The reference point was under water and this measurement is an approximation.

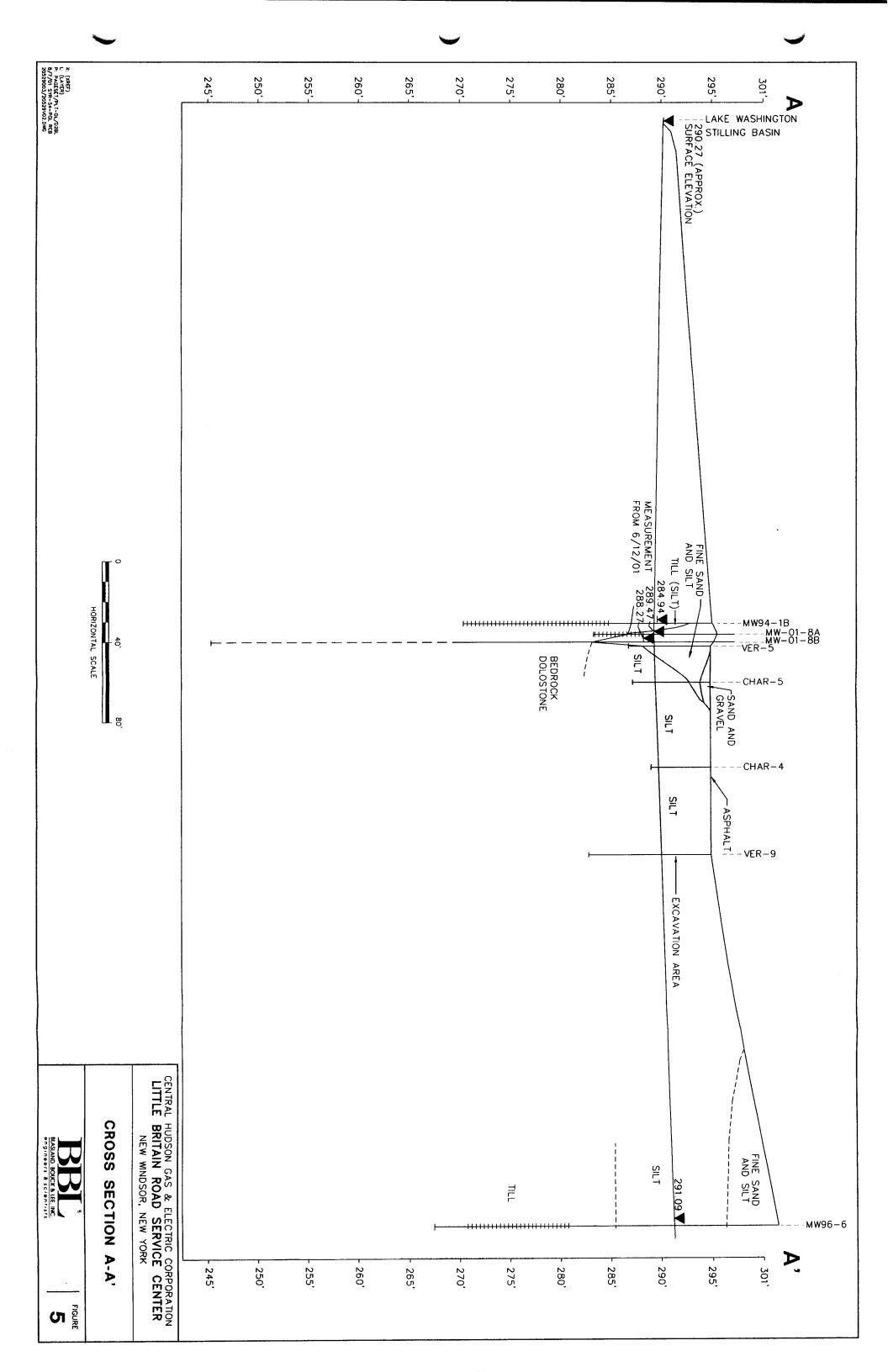
Figures

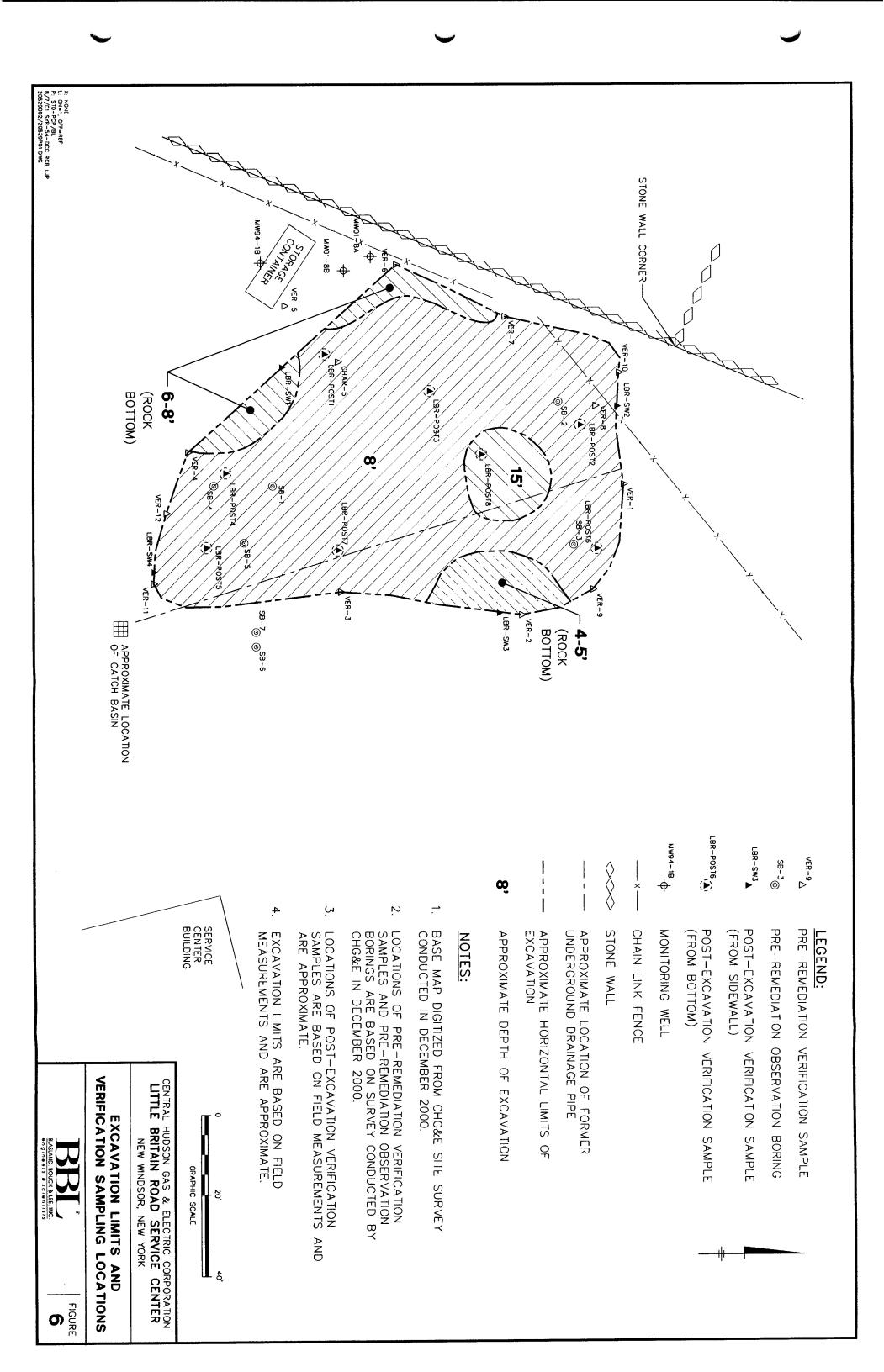




NEW WINDSOR, NEW YORK

SITE LOCATION MAP


BLASLAND, BOUCK & LEE, INC. engineers & scientists **FIGURE** 1



STONE WALL CORNER. MW94-18 → STORES D₀ CHAR-5 **⊳**9 $\triangleright_{\mathbf{4}}$ CHAR-1⊕ ۵۱۵ D₁₂ D₂ ⊕CHAR-6 TP-1 ⊳ ۵ CHAR-4 D__ D₄ ⊕CHAR-2 \triangleright ^{Ξ} MW94-18 + CHAR-2⊕ 4. FEBRUARY 2000 CHARACTERIZATION AND TEST PIT SAMPLING LOCATIONS ARE BASED ON FIELD MEASUREMENTS AND ARE APPROXIMATE. 3. NOVEMBER 2000 CHARACTERIZATION SOIL SAMPLING LOCATIONS BASED ON SURVEY CONDUCTED BY CHGE IN DECEMBER 2000. 2. EXCAVATION LIMITS ARE BASED ON FIELD MEASUREMENTS AND ARE APPROXIMATE. 1. BASE MAP DIGITIZED FROM DECEMBER 2000. TP--1 ■ NOTES: $\Diamond \Diamond \Diamond$ ī APPROXIMATE HORIZONTAL LIMITS OF EXCAVATION STONE WALL CHAIN LINK FENCE MONITORING WEL APPROXIMATE CHARACTERIZATION SOIL SAMPLING LOCATION CHARACTERIZATION SOIL SAMPLING LOCATION (NOVEMBER 2000) APPROXIMATE TEST PIT LOCATION SERVICE CENTER BUILDING (FEBRUARY 2001) LEGEND: CHG&E SITE SURVEY CONDUCTED IN CENTRAL HUDSON GAS & ELECTRIC CORPORATION LITTLE BRITAIN ROAD SERVICE CENTER NEW WINDSOR, NEW YORK CHARACTERIZATION SAMPLING LOCATIONS GRAPHIC SCALE

X: NONE
L: ON** OFF=REF
P: BL
8/7/DI SYR-54-DCC PGL LJP
20529003/20529P01.DWG

Attachments 1 - 3

Attachment 1

Subsurface Boring Logs

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: CHAR-1

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	1							
-0 -0	7 1	0-4	3.1	<9999	×		Dark gray grading to gray SILT and fine SAND, trace medium to coarse Sand and fine Gravel, very stiff, slight odor, moist. Tan SILT, trace fine to medium Sand, trace Clay, strong odor, moist.	Borehole backfilled with cuttings and Bentonite chips.
5 <i>5</i>	2	4-8	3.5	1777	×		As above, gray grading to brown and gray, very stiff, moist.	
10 10	3	8-11	B.L.	<9999			As above, brown, moist to wet.	
15 15							i	

flash point, and sulfide reactivity. B.L.=Broken Liner.

Project: 205.29.003 Data File:CHAR-1.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 20' below grade **Surface Elevation**: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: CHAR-2

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-									
	-				0.8		x x x x x x	Brown to orange-brown FILL material, fine to coarse Sand and Gravel, trace Silt, dry.	55.7
					32		====	Gray SILT, trace Clay, fine to coarse Sand, and fine Gravel, stiff, dry.	
	-	1	0-4	2.6	0.0			As above, brown with orange and gray mottling.	Borehole backfilled with cuttings and Bentonite chips.
-5 5		2	4-8	1.5	37.8	×		Gray SILT with brown mottles, soft, trace medium to coarse Sand and fine Gravel, strong odor, saturated.	
· 10 1	0 -	3	8-12	1.1	94	×		Grayish-brown fine SAND, trace Silt, medium to coarse Sand, and Gravel, soft, strong odor, saturated.	
15 1.		4	12-16	2.0	40.2	\times		As above, strong odor.	

cyanide reactivity, pH, flash point, & sulfide reactivity.

Project: 205.29.003 Data File:CHAR-2.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

2.dat Date: 12/11/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Client:

Central Hudson Gas & Electric

Site Location:

Little Britain Road

New Windsor, New York

Boring ID: CHAR-2

Borehole Depth: 20' below grade

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytcal Sample	Geologic Column	Stratigraphic Description	Boring Construction
	-	5	16-20	0.0	0.0			No Recovery.	Borehole backfilled with cuttings and Bentonite chips.
-	20 20 - - -					The state of the s			
- 2	- 25 <i>25 -</i> -								
	- 30 <i>30 -</i> -								-
	- - 35 <i>35</i> -		<u>-</u>						

cyanide reactivity, pH, flash point, & sulfide reactivity.

Project: 205.29.003 Data File:CHAR-2.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/11/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Page: 2 of 2

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11.8' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: CHAR-3

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

L								
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	_							
-	1	0-4	1.4	243	×		Brown fine to coarse SAND and fine to medium GRAVEL, trace Clay and Silt, wet. Tan SILT with orangish mottles, trace fine to medium Sand, stiff, moist.	Borehole backfilled with cuttings and Bentonite chips.
-5 5	2	4-6	2.9	3076	×		ROCK pieces. Tan SILT and fine SAND, trace medium to coarse Sand and fine Gravel, stiff, strong odor, moist. Fine SAND, some Silt, trace fine to coarse Sand, not as stiff as above, strong odor, wet.	-
- 10 10	3	8-11.8	3.7	759	×		Orangish-brown SILT, some very fine Sand, trace medium to coarse Sand and fine to medium Gravel, grading to a softer fine Sand and Gravel, wet. SILT, some fine to coarse Sand and fine Gravel, very stiff, dry.	
- - 15 <i>15</i>					Table in the second sec			_
	E		3				Remarks: Interval from 4'-8' analyzed for VOCs, SVOCs and DRO. Interval from 0'-11.8' analyzed for F solids, cyanide reactivity, pH, flash point, and reactivity.	PCBs, percent

Project: 205.29.003 Data File:CHAR-3.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

CHAR-3.dat Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMs Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 6' below grade **Surface Elevation:** NA

.

Client: Central Hudson Gas & Electric

Location: Little Britain Road

Boring ID: CHAR-4

New Windsor, New York

Descriptions By: Tamara M. Hauptfleisch

PID Headspace (ppm) Sample Run Number Analytical Sample Geologic Column Sample/Int/Type Recovery (feet) Boring ELEVATION Stratigraphic Description Construction DEPTH ASPHALT. Greenish-gray SILT, trace fine to medium Sand and fine Gravel, very stiff, strong odor, dry to moist. 0-4 3.2 65.3 Borehole backfilled with cuttings and Bentonite chips. As above, strong odor, moist. ·5 5 2 4-6 2.0 35.4 - 10 10 15 15 Remarks: Interval from 0.5'-4' analyzed for TCLP VOCs, SVOCs, metals, GRO, and DRO. Interval from 0.5'-6' analyzed for PCBs, percent solids, cyanide reactivity, pH, flash point, and

Project: 205.29.003 Data File:CHAR-4.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

sulfide reactivity.

R-4.dat Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 7.7' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: CHAR-5

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

L						•		
DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	1	0-4	3.0	0.0	×	O'S III	Brown fine to coarse SAND and GRAVEL, wet. Gray grading to greenish-gray SILT and very fine SAND, trace medium to coarse Sand, moist. Orangish-brown SILT with orange mottles, trace Organics, fine to coarse Sand, and fine Gravel, stiff grading to very stiff, dry.	Borehole backfilled with cuttings and Bentonite chips.
-5 <i>5</i> -	. 2	4-7.7	1.7	0.0	×		As above, tan with orange mottles, stiff, dry to mosit.	-
- 10 10 -					Aller of the state			
 15 15 -								-
-					r		Remarks: Interval from 4'-7.7' analyzed for TCLP VOCs	s, SVOCs, metals,

Interval from 0'-7.7' analyzed for PCBs, percent solids, cyanide reactivity, pH, flash point, and sulfide reactivity.

Project: 205.29.003

Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Data File:CHAR-5.dat Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 3' below grade **Surface Elevation**: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: CHAR-6

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u> </u>									
DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
		1	0-3	2.8	177	×		Brown to orangish-brown to gray fine to coarse SAND and GRAVEL, dry. Tannish-gray SILT, some fine SAND, trace medium to coarse Sand, stiff, slight odor, moist.	Borehole backfilled with cuttings and Bentonite chips.
- 5	5 -								
-									
-10	10 -								-
- 15	15 -								
		3						Remarks: Interval from 0'-3' analyzed for TCLP VOCs, PCBs, GRO, DRO, percent solids, cyanide re flash point, and sulfide reactivity.	

Project: 205.29.003 Data File:CHAR-6.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

R-6.dat Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Date Start/Finish: 11/29/00-11/29/00 Drilling Company: BBL

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 8' below grade **Surface Elevation**: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-1

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction		
- 0	- 0							ASPHALT.			
		1	0-4	4.0	553			Orangish-brown SILT and fine SAND, trace medium to coarse Sand, very stiff, slight odor, dry. As above, gray, strong odor. As above, tan, grading to Silt @ 4.0' bgs, stiff, strong odor, moist.	Borehole backfilled with cuttings and Bentonite chips.		
-5.	5 -	2	4-8	2.3	73.5			Tannish gray SILT, some Clay, trace fine to medium Sand and fine Gravel, strong odor, wet.			
- 10 :	10 -										
- 15	15 -							Remarks:			
	BLASLAND, BOUCK & LEE, INC. engineers & scientists										

Project: 205.29.003 Data File:SB-1.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 8' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-2

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

L					***				
DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	_								
-	-	1	0-4	2.8	18.6			Brown SILT, SAND, and GRAVEL, saturated. Grayish-brown CLAYEY SILT, trace black Organics, strong odor, moist. Orangish-brown SILT with gray mottles, trace orange mottles, trace fine to coarse Sand and fine Gravel, stiff, moist.	Borehole backfilled with cuttings and Bentonite chips.
- 5 <i>5</i>		2	4-8	3.5	2.4			As above, strong odor. As above, soft, strong odor. As above, very soft, strong odor.	
10 <i>1</i> (0 -								
-									-
15 15			ID, BC			EIN		Remarks:	
			eers						Page: 1 of 1

Project: 205.29.003 Data File:SB-2.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 12' below grade **Surface Elevation:** NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-3

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	-								
	_	1	0-4	2.7	132			Brown SILT with orange mottles, some fine Sand, trace medium to coarse Sand, fine Gravel, and Organics, dry. Grayish-brown SILT with orange mottles, trace Organics and fine to coarse Sand, stiff, slight odor, dry to moist.	Borehole backfilled with cuttings and Bentonite chips.
- 5	5 -	2	4-8	4.0	104			As above, trace fine Gravel, strong odor.	
- 10	10 -	3	8-12	4.0	143			Orangish brown SILT, some fine to medium Sand, trace coarse Sand, and fine to medium Gravel, stiff, moist.	
- - 15 .	15 -								
T :	BLAS	LAN	D, BO	UCK	& LE	E, IN	1 IC.	Remarks: Lost liner from 12'-16' and had to pull rods.	

Project: 205.29.003 Data File:SB-3.dat

engineers & scientists

Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 9.5' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-4

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-	~							
	1	0-4	4.0	177*			Dark gray and brown SILT, some fine to coarse Sand and fine Gravel, very stiff, tight, strong odor, dry. As above, orangish brown and gray, tight, wet.	Borehole backfilled with cuttings and Bentonite chips.
-5 5	2	4-8	2.5	1.3			Grayish-brown SILT with orange mottles, trace fine to coarse Sand and fine Gravel, very tight, strong odor, moist. As above, orangish-brown, very tight, dry to moist. ROCK fragments, dry.	
-1010	3	8-9.5	1.0	1.0		00000000000000000000000000000000000000		- -
-					***************************************			
- 15 <i>15</i> -				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
			7			1	Remarks: *This PID reading was obtained at 2.5' bgs, th this interval had a reading from 20 - 30 ppm.	e remainder of

Project: 205.29.003 Data File:SB-4.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 4' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-5

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction	
-	_						~:::	Brown fine to coarse GRAVEL and fine to coarse SAND, dry.		
-		1	0-4	3.2	35.2		0000	Dark gray grading to brownish-gray SILT, trace fine to coarse Sand and fine to medium Gravel, stiff, slight odor, moist.	Borehole backfilled with cuttings and Bentonite chips.	
- 5	5 -	7.00								
- 10	10 -	100								
	1								-	
- 15	15 -							Remarks:		
	BLASLAND, BOUCK & LEE, INC. engineers & scientists									

Project: 205.29.003 Data File:SB-5.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

5.dat Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 4' below grade **Surface Elevation:** NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-6

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	- -								
	-	1	0-4	3.0	59.8			Dark brown fine to coarse SAND, dry. ROCK fragments. Gray grading to light gray SILT, little fine to coarse Sand and fine Gravel, slight odor, moist.	Borehole backfilled With cuttings and Bentonite chips.
-5	5 -								
- 10	10 -		The state of the s						
- 15	15 -			e e e e e e e e e e e e e e e e e e e	77.4.4				
BLASLAND, BOUCK & LEE, INC. engineers & scientists Projects 205 20 003 Tomology in the leaves to the scient in t									

Project: 205.29.003

Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Data File:SB-6.dat Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 7' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: SB-7

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u> </u>			-					
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-								
-	1	0-4	2.3	15.4			Dark gray fine to coarse GRAVEL and fine to coarse SAND, some Silt, dry to moist. Dark gray to brown SILT, little fine to coarse Sand and fine to medium Gravel, moist.	Borehole backfilled with cuttings and Bentonite chips.
-55-	2	4-7	1.5	0.0			Dark gray grading to tan SILT, trace fine to medium Sand grading to Silt with little fine to coarse Sand and fine Gravel, stiffer with depth, moist.	
- 10 10 -								·
15 15 -		and the						
		D, BO					Remarks: Borehole adjacent to SB-6.	

Project: 205.29.003 Data File:SB-7.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11' below grade **Surface Elevation:** NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-1

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	-								-
		1	0-4	2.6	0.0			Dark brown SILT with some Organics, moist. Tan SILTY CLAY with orange and black mottles, trace fine Gravel, stiff, moist.	Borehole backfilled with cuttings and Bentonite chips.
-5	5	2	4-8	3.0	0.0	×		Tan fine SAND, some Silt and medium to coarse Sand, trace fine Gravel, soft, wet.	
- 10	10 -	3	8-11	2.5	0.0			Till-like material, trace mottles, tan fine Sand, some medium to coarse Sand, trace fine Gravel, stiff, saturated.	
- 15 1	-								
			ID, BO					Remarks: Interval from 4'-7' analyzed for TCL VOCs an solids.	nd percent

Project: 205.29.003 Data File:VER-1.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/11/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 7' below grade **Surface Elevation:** NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-2

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-								
	1	0-4	2.5	1.4	×	× × × × × × × × × × × × × × × × × × ×	Brown SILT, fine SAND, and FILL material, some Gravel pieces, dry. Gray SILT, black Organics, some fine to coarse Sand, trace fine Gravel, very stiff, slight odor, moist. As above, orangish-tan, very stiff, no odor, moist.	Borehole backfilled with cuttings and Bentonite chips.
-5 5 -	2	4-7	1.9	0.0			Gray freshly broken DOLOSTONE/LIMESTONE, dry.	
- 10 10 -								
15 <i>15 -</i>		- mg visit	THE TAX AND ADDRESS OF THE TAX A					
		D, BO					Remarks: Interval from 0'-2.5' analyzed for TCL VOCs a solids.	and percent

Project: 205.29.003 Data File:VER-2.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 3.3' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-3

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-	- -								-
		1	0-3.3	3.3	2.3	×		Dark brown fine SAND, some medium to coarse Sand and fine Gravel, trace Slag, dry. As above, orangish-brown. ROCK pieces. Brownish-gray SILT, some Clay, trace fine to coarse Sand and fine Gravel, stiff, slight odor, moist.	Borehole backfilled with cuttings and Bentonite chips.
-5	5 -								-
1	-								
- 10	10 -								
- 15	15 -								-
 			D, BO					Remarks: Interval from 0'-3.3' analyzed for TCL VOCs an solids.	id percent

Project: 205.29.003 Data File:VER-3.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

engineers & scientists

Drilling Company: BBL Driller's Name: Alex Marconi Drilling Method: Geoprobe Rig Type: AMs Power Probe 9600 Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-4

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u> </u>									
ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	_								-
		1	0-4	3.5	1.4			Dark gray and tan SAND and fine to coarse GRAVEL, Rock pieces, dry. Tannish-gray SILT, trace fine to coarse Sand and fine Gravel, very stiff, slight odor, moist.	Borehole backfilled with cuttings and Bentonite chips.
5 5	į	2	4-8	2.0	1.9	×		As above, grading to an orangish-brown, slight odor, moist.	Bentonile drips.
- 10 1		3	8-11	1.85	0.5			Grayish-tan fine SAND, trace medium to coarse Sand and fine to medium Gravel, moist. ROCK fragments.	
- - 15 1	5 -								-
	BLASLAND, BOUCK & LEE, INC. engineers & scientists							Remarks: Interval from 4'-8' analyzed for TCL VOCs and solids.	percent

Project: 205.29.003 Data File:VER-4.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 8.5' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-5

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u> </u>									
ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
-	· _								
		1	0-4	3.0	0.0			ASPHALT. Tan CLAYEY SILT with orange mottles, trace fine to coarse Sand, grading from stiff to soft back to stiff, moist.	Borehole backfilled with cuttings and
-5	5 -	2	4-8	3.2	0.0	X	620	Tan fine SAND and SILT with orange mottles, trace medium to coarse Sand and fine Gravel, moist. ROCK fragments. Brown with orange mottling very fine SAND and SILT, moist.	Bentonite chips.
- 10	10	3	8-8.5	0.5	0.0			Tan very fine SAND with orange mottles and trace black mottles, trace coase Sand, very stiff, dry.	-
	-		į						
- 15	15 -								-
			D, BO					Remarks: Interval from 4'-7.2' analyzed for TCL VOCs ar solids.	ıd percent

Project: 205.29.003 Data File:VER-5.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

R-5.dat Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 7.3' below grade Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-6

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

	L	-						***	
	ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Boring Stratigraphic Description Construction
	0 0	_							Brown SILT, some Organics, trace fine to coarse Sand and fine Gravel, wet.
			1	0-4	2.5	0.0			Brown SILT, some Clay, trace Organics, moist. Grayish-tan SILT, trace fine to coarse Sand and fine Gravel, very stiff, dry. Borehole backfilled with cuttings and Bentonite chips.
	- 5 <i>5</i>		2	4-7.3	3.3	0.0	\times		Grayish-tan SILT with orange mottles, trace coarse Sand and fine Gravel, dry to moist.
	· 10 <i>10</i>	, -							_
-									
	15 <i>15</i>								
				D, BOL					Remarks: Interval from 4'-7.3' analyzed for TCL VOCs and percent solids.

Project: 205.29.003 Data File:VER-6.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 4' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-7

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u> </u>								
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	1	0-4	2.3	0.0	×		Brown SILT, trace Organics, moist. Brown SILT with slight orange tint, trace fine to medium Sand, some very fine Sand, soft, moist. Brown SILT, some very fine Sand, trace fine to coarse Sand, stiff, moist.	Borehole backfilled with cuttings and Bentonite chips.
-55-								
- 10 10 -								
- 15 15 -			7,70,000					
	7	2	3	1			Remarks: Interval from 0'-4' analyzed for TCL VOCs and solids. Collected duplicate sample DUP-1 at to	

Project: 205.29.003 Data File:VER-7.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.idf

Date: 12/12/00

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 9' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Client: Central Hudson Gas & Electric

Location: Little Britain Road

Boring ID: VER-8

New Windsor, New York

PID Headspace (ppm) Sample Run Number Analytical Sample Geologic Column Sample/Int/Type Recovery (feet) Boring ELEVATION Stratigraphic Description Construction DEPTH Brown fine to coarse SAND and SILT, some fine Gravel, wet. Grayish-brown SILT with brown to orange colored mottling, trace Organics, fine to coarse Sand, and fine Gravel, very stiff, moist. 0-4 2.2 2.1 Borehole backfilled with cuttings and Bentonite chips. - 5 5 As above, some fine Sand, no Organics, very soft, strong odor, saturated. 2 4-8 4.0 17.7 As above, some fine Gravel, sheen. 0.95 6.5 Orangish-brown very fine SAND, trace fine to coarse Sand and Fine Gravel, rock chips at very tip, stiff, moist - 10 10 - 15 *15* Remarks: Interval from 4'-8' analyzed for TCL VOCs and percent solids. BLASLAND, BOUCK & LEE, INC.

Project: 205.29.003 Data File:VER-8.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

engineers & scientists

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 14' below grade Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-9

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

<u>L</u>								
ОЕРТН	ELEVATION	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	_							-
	1	0-4	3.0	0.0			Brown SILT and fine SAND, some medium to coarse Sand, trace Organics and Gravel, dry. Orangish-brown to brownish-gray SILT with orange mottles, some fine Sand, trace CLAY, medium to coarse Sand, and fine Gravel, moist.	Borehole backfilled with cuttings and Bentonite chips.
-5 5	2	4-8	1.9	0.0	×			
- 10 <i>10</i>	3	8-12	1.9	0.0			As above, brown coloration, wet to saturated.	-
-	4	12-14	0.0	NA			No Recovery.	_
- 15 <i>15</i>								_
		ND, BC					Remarks: Interval from 4'-8' analyzed for TCL VOCs and solids. NA = Not Available	percent

Project: 205.29.003 Data File:VER-9.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 12.5' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-10

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

		Jec			(md	T			
DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
	-	·							
		1	0-4	2.6	0.0			Brown SILT, trace fine to coarse Sand, fine Gravel, and Organics, soft, wet. Grayish-brown SILT, some fine to coarse Sand, trace fine Gravel, stiff, dry to moist.	Borehole backfilled with cuttings and Bentonite chips.
-5 <i>5</i>		2	4-8	3.2	1.8	×		As above, very soft, saturated @ 5' bgs. As above, soft.	
- 10 <i>10</i>			8-12	4.0	0.0	ш	のくの震震	As above, stiff. TiLL, very stiff, tight, dry. As above, very tight, stiff, and dry.	
- 15 <i>15</i>		4	12-12.5	0.5	0.0			As above, very light, suπ, and dry.	
			D, BO					Remarks: Interval from 4'-5' analyzed for VOCs and percentage	ent solids.

Project: 205.29.003 Data File:VER-10.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.idf

Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11' below grade

Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-11

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Boring Construction
- 0 - 0	9	1	0-4	4.0.	16.4	×		ROCK pieces. Dark brown fine to coarse SAND and fine GRAVEL, trace Silt, Brick fragments, crumbly. Tannish-gray SILT, trace fine Sand, stiff, slight odor, moist.	
-5 5	5 -	2	4-8	3.0	0.0			As above, grading to orangish-tan stiff SILT, trace fine to coarse Sand and fine Gravel, dry to moist.	Borehole backfilled with cuttings and Bentonite chipss.
- 10 1		3	8-11	1.8	0.0		00000000000000000000000000000000000000	Gray ROCK fragments with tannish-gray fine SAND, moist.	
- 15 <i>1</i>	5 -							Remarks: Interval from 0'-4' analyzed for TCL VOCs and solids.	percent
			D, BO					SUIIUS.	

Project: 205.29.003 Data File:VER-11.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

1.dat Date: 12/12/00

Drilling Company: BBL
Driller's Name: Alex Marconi
Drilling Method: Geoprobe
Rig Type: AMS Power Probe 9600

Northing: NA Easting: NA

Casing Elevation: NA

Borehole Depth: 11' below grade Surface Elevation: NA

Descriptions By: Tamara M. Hauptfleisch

Boring ID: VER-12

Client: Central Hudson Gas & Electric

Location: Little Britain Road

New Windsor, New York

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Boring Stratigraphic Description Construction
	-							
-	-	1	0-4	3.8	0.0			Dark gray to gray ROCK fragments. Gray SILT, fine to coarse Sand and fine Gravel, very stiff, dry. Dark gray to gray ROCK fragments. Gray grading to tannish-gray SILT with orange mottles, trace fine to medium Sand and fine Gravel, moist. Borehole backfilled with cuttings and Bentonite chips.
-5	5 -	2	4-8	1.5	0.4	×		As above with larger rock fragments at 5.2'-5.3' and at very tip, dry to moist.
- 10	10 -	3	8-11	0.0	NA			No Recovery.
- 15	15 -							
			ID, BO					Remarks: Interval from 4'-8' analyzed for TCL VOCs and percent solids. NA = Not Available

Project: 205.29.003 Data File:VER-12.dat Template: j:\rockware\logplot2001\logfiles\20529\geoprobe.ldf

Date: 12/12/00

Attachment 2

Laboratory Data Sheets

Attachment 2-1	Disposal Characterization Soil Samples
Attachment 2-2	Perimeter Verification Soil Samples
Attachment 2-3	Pre-Remediation Groundwater Samples
Attachment 2-4	Post-Excavation Verification Soil Samples
Attachment 2-5	Air Samples
Attachment 2-6	Initial Post Domodiation Croundwater Samples

Attachment 2-1 Disposal Characterization Soil Samples

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-1 (0-4)

Date Sampled: 11/30, Date Received: 12/01,	/00 09:15 Order #: /00 Submission #:	: 428052 : R2004935	Sample Matrix: Analytical Run:	SOIL/SEDIME 58690
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : ANALYTICAL DILUTION:	12/06/00			
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE		5.0 10 5.0 5.0 5.0 5.0 5.0	50 U 100 U 50 U 50 U 50 U 50 U 50 U 50 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMI	TS		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(88 - 1	.15) .10) .18)	9 7 98 93	אה היי היי

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

DIBROMOFLUOROMETHANE

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled : 11/29/00 11:10 Order #: 428050 Sample Matrix: SOIL/SEDIME Date Received: 12/01/00 Submission #: R2004935 Analytical Run: 58690 ANALYTE POL RESULT UNITS DATE ANALYZED : 12/06/00 ANALYTICAL DILUTION: 10.0 BENZENE 5.0 50 U UG/L 2-BUTANONE (MEK) 10 100 U UG/L CARBON TETRACHLORIDE 5.0 50 U UG/L CHLOROBENZENE 5.0 50 U UG/L CHLOROFORM 5.0 50 U UG/L 1,2-DICHLOROETHANE 5.0 50 U UG/L 1,1-DICHLOROETHENE 5.0 50 U UG/L TETRACHLOROETHENE 5.0 50 U UG/L TRICHLOROETHENE 5.0 11000 E UG/L VINYL CHLORIDE 5.0 130 UG/L SURROGATE RECOVERIES QC LIMITS **BROMOFLUOROBENZENE** (86 - 115) 97 ક્ષ TOLUENE - D8 (88) -110)99 ક

Data Report Following TCLP Toxicity Charecteristic Leaching Procedure. Federal Register, part 261, Vol. 55, No. 126, June 29, 1990.

- 118)

99

(86

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled: 11/29/00 11:10 Order #: 428050 Sample Matrix: SOIL/SEDIME Date Received: 12/01/00 Submission #: R2004935 Analytical Run: 58690

ANALYTE		PQL	RESULT		UNITS
DATE ANALYZED : 12/06/00		· · · · · · · · · · · · · · · · · · ·			
	00.0				
BENZENE		5.0	500	U	UG/L
2-BUTANONE (MEK)		10	1000	_	UG/L
CARBON TETRACHLORIDE		5.0	500	U	UG/L
CHLOROBENZENE		5.0	500	U	UG/L
CHLOROFORM		5.0	500	U	UG/L
1,2-DICHLOROETHANE		5.0	500	U	UG/L
1,1-DICHLOROETHENE		5.0	500	U	UG/L
TETRACHLOROETHENE		5.0	500	U	UG/L
TRICHLOROETHENE		5.0	15000		UG/L
VINYL CHLORIDE		5.0	500	U	UG/L
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(86 - 115))	99		ę
TOLUENE-D8	(88 - 110))	97		dy. Or
DIBROMOFLUOROMETHANE	(86 - 118))	90		ક્

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (4-8)

Date Sampled: 11/30/00 11:10 Date Received: 12/01/00 Submi	Order #: 428043 .ssion #: R2004935	Sample Matrix Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/06/00 ANALYTICAL DILUTION: 1	.0.0		
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	5.0 10 5.0 5.0 5.0 5.0 5.0 5.0	50 U 100 U 50 U 50 U 50 U 50 U 50 U 4000 E 50 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 - 115) (88 - 110) (86 - 118)	94 95 92	of of of

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (4-8)

Date Sampled: 11/30/00 Date Received: 12/01/00	11:10 Order #: Submission #:	428043 R2004935	Sample Matrix: Analytical Run:	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12 ANALYTICAL DILUTION:	/06/00 2 5.0			
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE		5.0 5.0 5.0 5.0 5.0 5.0 5.0	130 U 250 U 130 U 130 U 130 U 130 U 130 U 130 U 4200	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMI	rs		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 - 13 (88 - 13 (86 - 13	10)	96 95 87	ake ake

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

SURROGATE RECOVERIES

BROMOFLUOROBENZENE

DIBROMOFLUOROMETHANE

TOLUENE-D8

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-4)

Date Sampled : 11/30/00 10:20 Order #: 428041 Sample Matrix: SOIL/SEDIME Date Received: 12/01/00 Submission #: R2004935 Analytical Run: 58690 ANALYTE POL RESULT UNITS DATE ANALYZED : 12/06/00 ANALYTICAL DILUTION: 10.0 BENZENE 5.0 50 T UG/L 2-BUTANONE (MEK) 10 100 U UG/L CARBON TETRACHLORIDE 5.0 50 U UG/L CHLOROBENZENE 5.0 50 U UG/L CHLOROFORM 5.0 50 U UG/L 1,2-DICHLOROETHANE 5.0 50 U UG/L 1,1-DICHLOROETHENE 5.0 50 U UG/L TETRACHLOROETHENE 5.0 50 U UG/L TRICHLOROETHENE 5.0 50 U UG/L VINYL CHLORIDE 5.0 50 U UG/L

Data Report Following TCLP Toxicity Charecteristic Leaching Procedure. Federal Register, part 261, Vol. 55, No. 126, June 29, 1990.

(86

(88

(86

QC LIMITS

- 115)

- 110)

-118)

94

95

90

ક્ર

욷

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 12:00 Or Date Received: 12/01/00 Submiss	der #: 428045 ion #: R2004935	Sample Matrix Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/06/00 ANALYTICAL DILUTION: 10.	0		
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	5.0 10 5.0 5.0 5.0 5.0 5.0 5.0	50 U 100 U 50 U 50 U 50 U 50 U 50 U 50 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	C LIMITS		
TOLUENE-D8 (8	66 - 115) 88 - 110) 86 - 118)	97 97 90	ate of other

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 12/12/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30 Date Received: 12/01	/00 12:15 Order # /00 Submission #	: 428049 : R2004935	Sample Matrix Analytical Run	:: SOIL/SEDIME
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : ANALYTICAL DILUTION:	12/06/00			
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE		5.0 10 5.0 5.0 5.0 5.0 5.0 5.0	50 U 100 U 50 U 50 U 50 U 50 U 50 U 50 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIM	ITS		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(88 -	115) 110) 118)	94 96 94	الم الحان علق

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID : CHAR-1 (0-8)

Date Sampled: 11/30/00 Date Received: 12/01/00	Order #: 428053 Submission #: R2004935		Sample Matrix: SOIL/SEDIMENT		
ANALYTE	PQL	RESULT	DRY WEIGH UNITS	T DATE ANALYZED	ANALYTICAL DILUTION
WET CHEMISTRY		-			
CYANIDE REACTIVITY	0.333	០.397 ប	MG/KG	12/08/00	1.00
FLASH POINT		> 100	•c	12/07/00	NA
PERCENT SOLIDS	1.0	83.9	*	12/05/00	1.00
PH		6.74		12/05/00	NA
SULFIDE REACTIVITY	10.0	11.9 U	MG/KG	12/05/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID: CHAR-2 (4-14)

Date Sampled: 11/29/00 Date Received: 12/01/00 ANALYTE	Order #: 428051 Submission #: R2004935		Sample Matrix: SOIL/SEDIMENT		
	PQL	RESULT	DRY WEIGH UNITS	TT DATE ANALYZED	ANALYTICAL DILUTION
WET CHEMISTRY		•	-		
CYANIDE REACTIVITY	0.333	0.434 U	MG/KG	12/08/00	1.00
FLASH POINT		> 100	°C	12/07/00	NA
PERCENT SOLIDS	1.0	76.7	\$	12/05/00	1.00
PH		6.85		12/05/00	NA
SULFIDE REACTIVITY	10.0	70.4	MG/KG	12/05/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID : CHAR-3 (0-11.8)

Date Sampled: 11/30/00 Date Received: 12/01/00	Order #: 428044 Submission #: R2004935		Sample Matrix: SOIL/SEDIMENT			_
ANALYTE	PQL	RESULT	DRY WEIGH UNITS	T DATE ANALYZED	ANALYTICAL DILUTION	
		_				
WET CHEMISTRY						
CYANIDE REACTIVITY	0.333	0.381 U	MG/KG	12/08/00	1.00	
FLASH POINT		> 100	°C	12/05/00	NA	
PERCENT SOLIDS	1.0	87.3	일	12/05/00	1.00	
PH		7.13		12/05/00	NA	
SULFIDE REACTIVITY	10.0	11.5 U	MG/KG	12/05/00	1.00	

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID : CHAR-4 (0.5-6)

Date Sampled: 11/30/00	Order #: 428042	Sample Matrix: SOIL/SEDIMENT
Date Received: 12/01/00	Submission #: R2004935	

ANALYTE	PQL	RESULT	DRY WEIGH	HT DATE ANALYZED	ANALYTICAL DILUTION	
WET CHEMISTRY CYANIDE REACTIVITY FLASH POINT PERCENT SOLIDS PH SULFIDE REACTIVITY	0.333 1.0 10.0	0.402 U > 100 82.9 6.65 12.1 U	MG/KG °C % MG/KG	12/08/00 12/05/00 12/05/00 12/05/00 12/05/00	1.00 NA 1.00 NA 1.00	

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID: CHAR-5 (0-7.7)

Date Sampled: 11/30/00 Date Received: 12/01/00	Order #: 428047 Submission #: R2004935		Sample Matrix: SOIL/SEDIMENT		
ANALYTE	PQL	RESULT	DRY WEIGH UNITS	T DATE ANALYZED	ANALYTICAL DILUTION
WET CHEMISTRY		-			
CYANIDE REACTIVITY	0.333	0.392 U	MG/KG	12/08/00	1.00
FLASH POINT		> 100	· •c	12/05/00	NA
PERCENT SOLIDS	1.0	85.0	%	12/05/00	1.00
PH		6.92		12/05/00	NA
SULFIDE REACTIVITY	10.0	11.8 U	MG/KG	12/05/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30/00 Date Received: 12/01/00	-	der #: 428048 ion #: R2004935		Sample Mat	rix: SOIL/SEDIMENT
ANALYTE	PQL	RESULT	DRY WEIGH UNITS	I DATE ANALYZED	ANALYTICAL DILUTION
WET CHEMISTRY		-			
CYANIDE REACTIVITY	0.333	0.363 U	MG/KG	12/08/00	1.00
FLASH POINT		> 100	°C	12/07/00	NA
PERCENT SOLIDS	1.0	91.7	\$	12/05/00	1.00
PH		6.88		12/05/00	N.A.
SULFIDE REACTIVITY	10.0	10.9 U	MG/KG	12/05/00	1.00

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-1 (0-4)

Date Sampled : 11/30/00 09:15 Order #: 428052 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 12/05/ DATE ANALYZED : 12/06/ ANALYTICAL DILUTION: 1			
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL	10 10 10 10 10 10 10 50 50	100 U 100 U 100 U 100 U 100 U 100 U 100 U 500 U 500 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS	100 U	UG/L
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141 %) (35 - 114 %) (10 - 94 %) (43 - 116 %) (21 - 110 %) (10 - 123 %)	48 74 30 59 44 68	වර අප අප අප අප

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled: 11/29/00 11:10 Order #: 428050 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

ANALYTE	P	QL	RESULT	UNITS
DATE EXTRACTED : 12/07 DATE ANALYZED : 12/07 ANALYTICAL DILUTION:				
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL ?,4,5-TRICHLOROPHENOL		10 10 10 10 10 10 10 10 50 50	100 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS			
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141 %) (35 - 114 %) (10 - 94 %) (43 - 116 %) (21 - 110 %) (10 - 123 %)		43 72 11 67 22 56	of of of of of

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (4-8)

Date Sampled: 11/30/00 11:10 Order #: 428043 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

ANALYTE		PQL	RESULT	UNITS
	2/05/00 2/06/00 10.00	_		
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 1,4,6-TRICHLOROPHENOL ,4,5-TRICHLOROPHENOL		10 10 10 10 10 10 10 50 50	100 U 500 U 500 U 100 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS	3		
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 143 (35 - 114 (10 - 94 (43 - 116 (21 - 110 (10 - 123	4 용) 용) 5 용)) 용)	60 73 34 69 47 67	०५० वर तर तर वर वर्ष

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-4)

Date Sampled: 11/30/00 10:20 Order #: 428041 Sample Matrix: SOIL/SEDIMED Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

				20212
ANALYTE	I	PQL	RESULT	UNITS
DATE EXTRACTED : 12/0 DATE ANALYZED : 12/0 ANALYTICAL DILUTION:	5/00 6/00 10.00			
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL ?,4,5-TRICHLOROPHENOL		10 10 10 10 10 10 10 10 50 50	100 U 100 U 100 U 100 U 100 U 100 U 100 U 500 U 500 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS			
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141 %) (35 - 114 %) (10 - 94 %) (43 - 116 %) (21 - 110 %) (10 - 123 %)		82 79 15 74 21 64	אם שני סני שני שני

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 12:00 Order #: 428045 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

		Amarycicar Run	20217
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 12/0 DATE ANALYZED : 12/0 ANALYTICAL DILUTION:	5/00 6/00 10.00		
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL ,4,5-TRICHLOROPHENOL	10 10 10 10 10 10 10 10 50 50	100 U 100 U 100 U 100 U 100 U 100 U 100 U 500 U 500 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS		
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141 %) (35 - 114 %) (10 - 94 %) (43 - 116 %) (21 - 110 %) (10 - 123 %)	86 76 36 70 49 82	مه مه مه مه مه

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30/00 12:15 Order #: 428049 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004935 Analytical Run 58512

ANALYTE	PÇ	ĴΓ	RESULT	UNITS
DATE EXTRACTED : 12/0 DATE ANALYZED : 12/0 ANALYTICAL DILUTION:				
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL ,4,5-TRICHLOROPHENOL		10 10 10 10 10 10 10 10 50 50	100 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS			
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141 %) (35 - 114 %) (10 - 94 %) (43 - 116 %) (21 - 110 %) (10 - 123 %)		53 82 26 70 38 72	מאם שאם סאם סאם סאם

EXTRACTABLE ORGANICS

METHOD 8082 PCBS Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-1 (0-8)

Date Sampled: 11/30/00 09:15 Order #: 428053
Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMENT

Percent Solid: 83.9

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 12/04/DATE ANALYZED : 12/07/ANALYTICAL DILUTION:		_		Dry Weight
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260		400 400 400 400 400 400	480 U 480 U 480 U 480 U 480 U 480 U 480 U	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIMIT	.s		
DECACHLOROBIPHENYL ETRACHLORO-META-XYLENE	(30 - 15 (30 - 15	 (0 왕) (0 왕)	101 101	95 95

EXTRACTABLE ORGANICS

METHOD 8082 PCBS Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (4-14)

Date Sampled: 11/29/00 11:10 Order #: 428051 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 76.7

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 12/04 DATE ANALYZED : 12/07 ANALYTICAL DILUTION:		-		Dry Weight
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260		400 400 400 400 400 400 400	520 U 520 U 520 U 520 U 520 U 520 U 520 U	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIMITS			
DECACHLOROBIPHENYL DETRACHLORO-META-XYLENE	(30 - 150 s (30 - 150 s	s) s)	99 100	<i>ბ0 4</i> ,

EXTRACTABLE ORGANICS METHOD 8082 PCBS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (0-11.8)

Date Sampled: 11/30/00 11:10 Order #: 428044 Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 87.3

Sample Matrix: SOIL/SEDIMEN

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 12/04/ DATE ANALYZED : 12/07/ ANALYTICAL DILUTION:		-		Dry Weight
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260		400 400 400 400 400 400	460 U 460 U 460 U 460 U 460 U 460 U	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIMITS	1		
DECACHLOROBIPHENYL TETRACHLORO-META-XYLENE	(30 - 150 (30 - 150	•	111 116	એ એ

EXTRACTABLE ORGANICS

METHOD 8082 PCBS Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-6)

Date Sampled: 11/30/00 10:20 Order #: 428042 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 82.9

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 12/04/	00			
DATE ANALYZED : 12/07/	00			
ANALYTICAL DILUTION:	1.00	-		Dry Weight
PCB 1016		400	480 U	UG/KG
PCB 1221		400	480 U	UG/KG
PCB 1232		400	480 U	UG/KG
PCB 1242		400	480 U	UG/KG
PCB 1248		400	480 U	UG/KG
PCB 1254		400	480 U	UG/KG
PCB 1260		400	480 U	UG/KG
SURROGATE RECOVERIES	QC LIMI	rs		
TECACHLOROBIPHENYL	(30 - 1	 50 왕)	102	وني
ETRACHLORO-META-XYLENE	(30 - 1	50 %)	108	ş

EXTRACTABLE ORGANICS

METHOD 8082 PCBS Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (0-7.7)

Date Sampled: 11/30/00 12:00 Order #: 428047 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 85.0

DATE EXTRACTED : 12/04/00 DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 1.00	-		Dry Weight
ANALYTICAL DILUTION: 1.00			Dry Weight
			Dry Weight
D			
PCB 1016	400	470 U	UG/KG
PCB 1221	400	470 U	UG/KG
PCB 1232	400	470 U	UG/KG
PCB 1242	400	470 U	UG/KG
PCB 1248	400	470 U	UG/KG
PCB 1254	400	470 U	UG/KG
PCB 1260	400	470 U	UG/KG
SURROGATE RECOVERIES QC LIMITS			
DECACHLOROBIPHENYL (30 - 150 %)		106	ο _ι ο
ETRACHLORO-META-XYLENE (30 - 150 %)		108	ક

EXTRACTABLE ORGANICS

METHOD 8082 PCBS Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30/00 12:15 Order #: 428048 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 91.7

ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 12/04/00				
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 2	0 .00	-		Dry Weight
PCB 1016		400	870 U	UG/KG
PCB 1221		400	870 U	UG/KG
PCB 1232		400	870 U	UG/KG
PCB 1242		400	8100	UG/KG
PCB 1248		400	870 U	UG/KG
PCB 1254		400	870 U	UG/KG
PCB 1260		400	870 U	UG/KG
SURROGATE RECOVERIES	QC LIMI	TS		
DECACHLOROBIPHENYL	(30 - 1	 50 왕)	114	₹ ·
ETRACHLORO-META-XYLENE	(30 - 1	50 %)	113	δ ₀

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID :CHAR-1 (0-4)

Date Sampled: 11/30/00 Order #: 428052 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004935

ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS		_			
ARSENIC	0.500	0.500 U	MG/L	12/08/00	1.00
BARIUM	1.00	1.00 U	MG/L	12/08/00	1.00
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
LEAD	0.100	0.180	MG/L	12/08/00	1.00
MERCURY	0.000300	0.00300 U	MG/L	12/05/00	10.0
SELENIUM	0.500	០.500 ប	MG/L	12/08/00	1.00
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled: 11/29/00 Date Received: 12/01/00 ANALYTE		Order #: 428050 abmission #: R2004935		Sample Matrix: SOIL/SEDIME		
	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
METALS		_				
ARSENIC	0.500	0.500 ປ	MG/L	12/08/00	1.00	
BARIUM	1.00	1.00 U	MG/L	12/08/00	1.00	
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
LEAD	0.100	0.100 U	MG/L	12/08/00	1.00	
MERCURY	0.000300	0.00300 U	MG/L	12/06/00	10.0	
SELENIUM	0.500	0.500 U	MG/L	12/08/00	1.00	
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00	

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID: CHAR-3 (4-8)

Date Sampled: 11/30/00 Order #: 428043 Sample Matrix: SOIL/SEDIM

Date Sampled: 11/30/00 Date Received: 12/01/00		rder #: 428043 sion #: R2004935	Sample Matrix: SOIL/SEDIM		:ix: SOIL/SEDIMENT
ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS		-			
ARSENIC	0,500	0.500 T	MG/L	12/08/00	1.00
BARIUM	1.00	1.00 ប	MG/L	12/08/00	1.00
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
LEAD	0.100	0.100 U	MG/L	12/08/00	1.00
MERCURY	0.000300	0.00300 U	MG/L	12/06/00	10.0
SELENIUM	0.500	0.500 U	MG/L	12/08/00	1.00
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-4)

Date Sampled: 11/30/00 Date Received: 12/01/00		Order #: 428041 Submission #: R2004935		Sample Matrix: SOIL/SEDIMENT		
ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
METALS		-				
ARSENIC	0.500	0.500 T	MG/L	12/08/00	1.00	
BARIUM	1.00	1.00 U	MG/L	12/08/00	1,00	
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
LEAD	0.100	0.100 U	MG/L	12/08/00	1.00	
MERCURY	0.000300	0.00300 U	MG/L	12/06/00	10.0	
SELENIUM	0.500	0.500 U	MG/L	12/08/00	1.00	
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00	

Reported: 12/08/00

Plasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 Date Received: 12/01/00		Order #: 428045 Sample Matr pission #: R2004935		cix: SOIL/SEDIMENT	
ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS		-			
ARSENIC	0.500	0.500 U	MG/L	12/08/00	1.00
BARIUM	1.00	1.00 U	MG/L	12/08/00	1.00
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00
LEAD	0.100	0.100 U	MG/L	12/08/00	1.00
MERCURY	0.000300	0.00300 U	MG/L	12/06/00	10.0
SELENIUM	0.500	0.500 Ŭ	${ t MG/L}$	12/08/00	1.00
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00

Reported: 12/08/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID :CHAR-6 (0-3)

Date Sampled: 11/30/00 Date Received: 12/01/00	•	Order #: 428049 ubmission #: R2004935		Sample Matrix: SOIL/SEDIMENT		
ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
METALS		_				
ARSENIC	0.500	0.500 U	MG/L	12/08/00	1.00	
BARIUM	1.00	1.00 U	MG/L	12/08/00	1.00	
CADMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
CHROMIUM	0.100	0.100 U	MG/L	12/08/00	1.00	
LEAD	0.100	0.823	MG/L	12/08/00	1.00	
MERCURY	0.000300	0.00300 U	MG/L	12/06/00	10.0	
SELENIUM	0.500	0.500 U	MG/L	12/08/00	1.00	
SILVER	0.100	0.100 U	MG/L	12/08/00	1.00	

VOLATILE ORGANICS

METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-1 (0-4)

Date Sampled: 11/30/00 09:15 Order #: 428431

Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 84.6

ANALYTE	PQI		RESULT	UNITS
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 125.00	_			Dry Weight
GASOLINE RANGE ORGANICS		50	150000	UG/KG
SURROGATE RECOVERIES Q	LIMITS			
CHLOROFLUOROBENZENE (FID) (60) - 140 %)		117	જ

VOLATILE ORGANICS

METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled: 11/29/00 11:10 Order #: 428430 Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMEN

Percent Solid: 87.0

·			
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 125.00			Dry Weight
GASOLINE RANGE ORGANICS	50	170000	UG/KG
SURROGATE RECOVERIES QC LIMITS	;		
CHLOROFLUOROBENZENE (FID) (60 - 140	- ሄ)	136	ફ

VOLATILE ORGANICS METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (4-8)

Date Sampled: 11/30/00 11:10 Order #: 428427
Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMEN

Percent Solid: 88.2

ANALYTE]	PQL	RESULT	UNITS
DATE ANALYZED : 12/07/0 ANALYTICAL DILUTION: 125	5.00			Dry Weight
GASOLINE RANGE ORGANICS	-	50	68000	UG/KG
SURROGATE RECOVERIES	QC LIMITS			
CHLOROFLUOROBENZENE (FID)	(60 - 140 %))	122	*

VOLATILE ORGANICS

METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-4)

Date Sampled: 11/30/00 10:20 Order #: 428426 Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMEN Percent Solid: 84.5

		rerectic borre.	04.5
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 125.0	00		Dry Weight
GASOLINE RANGE ORGANICS	50	100000	UG/KG
SURROGATE RECOVERIES	QC LIMITS		, in the second
CHLOROFLUOROBENZENE (FID)	(60 - 140 %)	121	ዩ

VOLATILE ORGANICS METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 12:00 Order #: 428428
Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMENT

Percent Solid: 84.4

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/06/00 ANALYTICAL DILUTION: 1.0	00		Dry Weight
GASOLINE RANGE ORGANICS	50	59 U	UG/KG
SURROGATE RECOVERIES	QC LIMITS		
CHLOROFLUOROBENZENE (FID)	(60 - 140 %)	68	જ

VOLATILE ORGANICS METHOD 8015B GRO Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30/00 12:15 Order #: 428429 Date Received: 12/01/00 Submission #: R2004935 Sample Matrix: SOIL/SEDIMEN Percent Solid: 84.0

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/07/0 ANALYTICAL DILUTION: 125	0		Dry Weight
GASOLINE RANGE ORGANICS	_ [150000	UG/KG
SURROGATE RECOVERIES	QC LIMITS		·
CHLOROFLUOROBENZENE (FID)	(60 - 140 %)	115	*

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-1 (0-4)

Sample Matrix: SOIL/SEDIMENT Date Sampled: 11/30/00 09:15 Order #: 428431 Sample Matrix: SOIL/Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 84.6

	POI	RESULT	UNITS	
ANALYTE	PQL	RESULI		
DATE EXTRACTED : 12/05 DATE ANALYZED : 12/06 ANALYTICAL DILUTION:			Dry Weight	
DIESEL RANGE ORGANICS	4000	1300000	UG/KG	
SURROGATE RECOVERIES	QC LIMITS			
O-TERPHENYL	(50 - 150 %)	86	ક	

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-2 (8-9.1)

Date Sampled: 11/29/00 11:10 Order #: 428430 Sample Matrix: SOIL/SEDIMEN Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 87.0

ANALYTE			PQL	RESULT	UNITS
	12/05/00 12/06/00 1.00		-		Dry Weight
DIESEL RANGE ORGANICS			4000	2100000	UG/KG
SURROGATE RECOVERIES	QC	LIMITS			
O-TERPHENYL	(50	- 150	옿)	82	ફ્

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3 (4-8)

Date Sampled: 11/30/00 11:10 Order #: 428427 Sample Matrix: SOIL Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 88.2 Sample Matrix: SOIL/SEDIMENT

ANALYTE		PQL	RESULT	UNITS
	2/05/00 2/06/00 1.00	-		Dry Weight
DIESEL RANGE ORGANICS		4000	830000	UG/KG
SURROGATE RECOVERIES	QC LIMIT	'S		
O-TERPHENYL	(50 - 15	 0 %)	75	୯୬

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-4 (0.5-4)

Date Sampled: 11/30/00 10:20 Order #: 428426 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 84.5

ANALYTE		PQL	RESULT	UNITS
	.2/05/00 .2/06/00 1.00	_		Dry Weight
DIESEL RANGE ORGANICS		4000	1200000	UG/KG
SURROGATE RECOVERIES	QC LI	MITS		
O-TERPHENYL	(50 -	150 %)	85	%

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 12:00 Order #: 428428 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 84.4

ANALYTE		PQL	RESULT	UNITS
	/06/00 /07/00 1.00	_		Dry Weight
DIESEL RANGE ORGANICS		4000	4700 U	UG/KG
SURROGATE RECOVERIES	QC LIMIT	s		
O-TERPHENYL	(50 - 15	_ 이 왕)	91	%

EXTRACTABLE ORGANICS

METHOD 8015B DIESEL RANGE ORGANICS

Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-6 (0-3)

Date Sampled: 11/30/00 12:15 Order #: 428429 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 84.0

ANALYTE	PQL	RESULT	UNITS
	05/00 06/00 1.00		Dry Weight
DIESEL RANGE ORGANICS	4000	2100000	UG/KG
SURROGATE RECOVERIES	QC LIMITS		
O-TERPHENYL	(50 - 150 %)	93	ક

VOLATILE ORGANICS METHOD 8260B TCL Reported: 01/25/01

Blasland, Bouck & Lae, Inc.
Project Reference: CHGE LITTLE BRITAIN RD
Client Sample ID: TP-1 (9')

Date Sampled: 01/22/01 14:45 Order Date Received: 01/23/01 Submission		437569 R2105552	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 82.9	
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : 01/23/01					
ANALYTICAL DILUTION: 500.00		_		Dry Weight	
ACETONE		20	12000 U	UG/KG	
BENZENE		5.0	U 000E	UG/KG	
BROMODICHLOROMETHANE		5.0	3000 U	UG/KG	
Bromoform		5.0	3000 U	UG/KG	
Bromomethane		5.0	3000 U	ug/kg	
2-Butanone (mek)		10	6000 U	UG/KG	
CARBON DISULFIDE		10	6000 U	UG/KG	
CARBON TETRACHLORIDE		5.0	3000 U	UG/KG	
CHLOROBENZENE		5.0	3000 U	UG/KG	
CHLOROETHANE		5.0	3000 U	ug/kg	
CHLOROFORM		5.0	3000 U	UG/KG	
CHLOROMETHANE		5.0	3000 U	ug/kg	
DIBROMOCHLOROMETHANE		5.0	3000 U	UG/KG	
1,1-DICHLOROETHANE		5.0	3000 U	UG/KG	
1,2-DICHLOROETHANE		5.0	3000 U	UG/KG	
1,1-DICHLOROETHENE		5.0	3000 T	UG/KG	
CIS-1,2-DICHLOROETHENE		5.0	58000	UG/KG	
TRANS-1,2-DICHLOROETHENE		5.0	3000 U	UG/KG	
1,2-DICHLOROPROPANE		5.0	3000 U	UG/KG	
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	•	5.0	3000 U	UG/KG	
ETHYLBENZENE		5.0	3000 U	UG/KG	
2-HEXANONE		5.0	3000 U	UG/KG	
METHYLENE CHLORIDE		10	6000 U	UG/KG	
4-METHYL-2-PENTANONE (MIBK)		5.0 10	3000 U	UG/KG	
STYRENE		5.0	6000 U 3000 U	UG/KG	
1,1,2,2-TETRACHLOROETHANE		5.0	3000 U	ug/kg ug/kg	
TETRACHLOROETHENE		5.0	3000 U	UG/KG	
TOLUENE		5.0	5800	UG/KG	
1,1,1-TRICHLOROETHANE		5.0	3000 U	UG/KG	
1,1,2-TRICHLOROETHANE		5.0	3000 U	UG/KG	
TRICHLOROETHENE		5.0	ט 2000	UG/KG	
VINYL CHLORIDE		5.0	3000	UG/KG	
O-XYLENE		5.0	3000 U	UG/KG	
M+P-XYLENE		5.0	4800	UG/KG	
SURROGATE RECOVERIES	QC LI	MITS			
		121 %)	96	ક	
	81 -	117 %)	101	¥	
DIBROMOFLUOROMETHANE (80 -	120 %)	103	ş.	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 1 (0-6.5)

Date sample received: 02/09/01

AES sample #: 010208AW01

Samples taken by: T. Hauptfleisch Location: Little Britain

composite MATRIX: Soil

PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/0i
1,2-Dichloroethene Total	EPA-8260	<50	nd\kd	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	70	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

Soil

MATRIX:

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 1 (0-6.5)

Date sample received: 02/09/01

AES sample #: 010208AW01

Samples taken by: T.Hauptfleisch Location: Little Britain

			٠				
CO	n	۲.	1	ות	æ	$\boldsymbol{\alpha}$	•

PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	ZPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	<i>n</i> g∖¢g	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Toluene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/0i
Chlorobenzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	96	ug/kg	JF-BX-10	02/09/01
Xylenes,Total	EPA-3260	80	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 2 (0-6)

Date sample received: 02/09/01 Samples taken by: T.Hauptfleisch Location: Little Britain

AES sample #: 010208AW02 MATRIX: Soil

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
Chloromethane	EPA-8260	<500	nd\kd	JF-BX-10	02/09/01
Bromomethane	EPA-3260	<500	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-3260	<500	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	300	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Bromo dichloromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<250	<i>u</i> g/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
•					

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 2 (0-6)

Date sample received: 02/09/01

AES sample #: 010208AW02

Samples taken by: T. Hauptfleisch Location: Little Britain

ALS SAMPLE #. VIVEOCHIOZ	MATRIX: Soil	2000000	com	posite		
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE	
cis-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
2-Chloroethylvinylether	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01	
Bromoform	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
1,1,2,2-Tetrachloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Tetrachloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Toluene	EPA-8260	1700	ug/kg	JF-BX-10	02/09/01	
Chlorobenzene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Ethylbenzene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Xylenes,Total	EPA-8260	650	ug/kg	JF-EX-10	02/09/01	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 3 (0-4)

Date sample received: 02/09/01 Samples taken by: T. Hauptfleisch Location: Little Britain

AES sample #: 010208AW03 MATRIX: Soil

				_	
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-6260	<100	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<100	ug/kg	JF-EX-10	02/09/01
Vinyl Chloride	EPA-8260	₹100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8250	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-S260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/0 <mark>9</mark> /01
Carbon Tetrachloride	ZPA-8260	<50	лā∖kā	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Trichloroethene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 3 (0-4)

Date sample received: 02/09/01

AES sample #: 010208AW03

Xylenes, Total

Samples taken by: T. Hauptfleisch Location: Little Britain

	MATRIX: Soil		com	posite	
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	2 50	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Toluene	EPA-8260	78	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	94	ug/kg	JF-BX-10	02/09/01
Xylenes,Total	EPA-8260	440	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/03/01

CLIENT'S SAMPLE ID: 4 (0-8.2)

Date sample received: 02/09/01

AES sample #: 010208AW04

Samples taken by: T.Hauptfleisch Location: Little Britain

Soil MATRIX:

composite

		MAIRIA. SOII				
PA	RAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
CI:	nloromethane	EPA-8260	<500	nd\ka	JF-BX-10	02/09/01
Br	romomethane	EPA-6260	<500	ug/kg	JF-BX-10	02/09/01
Vi	inyl Chloride	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Ct	nloroethane	EPA-8260	<500	ug∕kg	JF-BX-10	02/09/01
Me	ethylene Chloride	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Tı	richlorofluoromethane	EPA-8260	<250	πā∖ķā	JF-BX-10	02/09/01
1,	,1-Dichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1	,1-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1	,2-Dichloroethene Total	ZPA-8260	15,000	ug/kg	JF-BX-10	02/09/01
a	hloroform	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
1	,2-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1	,1,1-Trichloroethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
С	arbon Tetrachloride	EPA-8260	<250	ug/kg	JE-BX-10	02/09/01
В	romo dichloromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1	,2 Dichloropropane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
t	rans-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
r	richloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Ε	Senzene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Ε)ibromochloromethane	₽A-8260	<250	ug/kg	JF-BX-10	02/09/01
3	1,1,2-Trichloroethane	EPA-8260	<250	nd\kd	JF-EX-10	02/09/01

8

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/03/01

CLIENT'S SAMPLE ID: 4 (0-8.2)

Date sample received: 02/09/01

AES sample #: 010208AW04

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain composite

20	nt	٠ì.	יורד	ıed	٠	

continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	4000	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Xylenes, Total	EPA-8260	750	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 5 (0-7)

Date sample received: 02/09/01

AES sample #: 010208AW05

Samples taken by: T. Hauptfleisch Location: Little Britain

MATRIX: Soil

	IBILICALI. OVII		-		
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	nd\kd	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<:0	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	ā0	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<10	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<5	nd\kd	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<5	πā\ķā	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
Carbon Tetrachloride	EPA-8260	< 5	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	< 5	ug/kg	JF-EX-10	02/09/01
1,2 Dichloropropane	EPA-8260	< 5	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
Trichloroethene	EPA-8260	<5	<i>n</i> g∕kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 5 (0-7)

Date sample received: 02/09/01

AES sample #: 010208AW05

Samples taken by: T.Hauptfleisch Location: Little Britain MATRIX: Soil

cont	1	נומ	ed	•

continued:					
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<10	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	~ 5	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	< 5	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Ethylbenzene	EPA-8260	< 5	ug/kg	_ 	02/09/01
Xylenes, Total	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 6 (0-4.2)

Date sample received: 02/09/01

AES sample #: 010208AW06

Samples taken by: T.Hauptfleisch Location: Little Britain MATRIX: Soil

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-S260	<100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	2500	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	<50	nd∖yd	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 6 (0-4.2)

Date sample received: 02/09/01

AES sample #: 010208AW06

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain composite

con	٠.	י וודו ל	ואמו	•
			-	

tinuea:					
AMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
nloroethylvinylether	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
noform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
rachloroethene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
uene	EPA-8260	<50	nā\ķā	JF-BX-10	02/09/01
probenzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
ylbenzene	EPA-8260	68	ug/kg	JF-BX-10	02/09/01
enes,Total	EPA-8260	350	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • S00-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 7 (0-9)

Date sample received: 02/09/01

AES sample #: 010208AW07

Samples taken by: T.Hauptfleisch Location: Little Britain

MATRIX: Soil

•					
PARAMETER PERFORMED	<u>METHOD</u>	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<100	ug/kg	JF-EX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug∕kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8250	<50	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-\$260	<50	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	< 50	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 7 (0-9)

Date sample received: 02/09/01

AES sample #: 010208AW07

Samples taken by: T. Hauptfleisch Location: Little Britain

comp (mused .	MATRIX: Soil	-	com	posite	
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8250	<100	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	100	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	280	ug/kg	JF-BX-10	02/09/01
Xylenes, Total	EPA-8260	670	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 9 (0-3)

Date sample received: 02/09/01

AES sample #: 010208AW08

Samples taken by: T. Hauptfleisch Location: Little Britain MATRIX: Soil

			-		
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<1000	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<1000	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<1000	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<1000	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<500	<i>u</i> g∕kg	JF-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	2200	nd\ka	JF-BX-10	02/09/01
Chloroform	EPA-8260	<500	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<500	ug/kg	JF-EX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	17,000	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<500	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4985 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 9 (0-3)

Date sample received: 02/09/01

Samples taken by: T.Hauptfleisch Location: Little Britain

AES sample #: 010208AW08

MATRIX: Soil

~~	•	٠	٠	m	•	~	•
	11	-	1	116	-	u	

continued:					
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<1000	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	₹500	ug/kg	JF-EX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<500	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Xylenes, Total	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 10 (0-5)

Date sample received: 02/09/01

AES sample #: 010208AW09

Samples taken by: T. Hauptfleisch Location: Little Britain

MATRIX: Soil composite

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<250	πā\ķā	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	3800	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	3100	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
1,1,2-Trichloroethane	EPA-6260	<250	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 10 (0-5)

Date sample received: 02/09/01

AES sample #: 010208AW09

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain

cont i	nued:
--------	-------

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBY REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Toluene	EPA-8260	<250	<i>n</i> g∕kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<250	ug/kg	JF-EX-10	02/69/01
Ethylbenzene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Xylenes, Total	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 11 (0-4.5)

Date sample received: 02/09/01

AES sample #: 010208AW10

Samples taken by: T.Hauptfleisch Location: Little Britain

composite MATRIX: Soil

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<100	nā∖ķā	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<:00	ng∖kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260 -	<100	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	<50	nd\kd	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-EX-10	02/0 9 /01
Trichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	πā∖xā	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

Soil

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 11 (0-4.5)

Date sample received: 02/09/01

AES sample #: 010208AW10

MATRIX:

Samples taken by: T.Hauptfleisch Location: Little Britain

conti	nued:
-------	-------

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	TPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	₹50	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Ethylbenzene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Xylenes, Total	EPA-8260	360	ug/kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 12 (0-8)

AES sample #: 010208AW11

Date sample received: 02/09/01 Samples taken by: T.Hauptfleisch Location: Little Britain

MATRIX: Soil

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	SPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<100	ug/kg	JF-EX-10	02/09/01
Vinyl Chloride	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<50	nd\xd	JE-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	2200	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<50	nē∖xā	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichlorcethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	JF-EX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<50	<i>n</i> ā\ x ā	JF-EX-10	02/09/01
Trichloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Dibromochloromethane	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<50	ug∕kg	JF-BX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 12 (0-8)

Date sample received: 02/09/01

AES sample #: 010208AW11

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain composite

 :	-	 ٠.	

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
2-Chloroethylvinylether	EPA-8260	<100	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	JF-EX-10	02/ 09 /01
Tetrachloroethene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	2200	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<50	ug/kg	JF-BX-10	02/09/01
Ethylbenzene	EPA-3260	230	nd\kd	JF-BX-10	02/09/01
Xylenes,Total	EPA-8260	1000	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 13 (0-1.8)

Date sample received: 02/09/01

AES sample #: 010208AW12

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain

,					
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	< 500	ug/kg	JF-EX-10	02/09/01
Chloroethane	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	1300	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<250	ug/kg	JF-BX-10	92/09/01
1,1,1-Trichloroethane	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Carbon Tetrachloride	EPA-8260	<250	ug/kg	JE-BX-10	02/09/01
Bromo dichloromethane	EPA-8260	<250	ug/kg	JE-EX-10	02/09/01
1,2 Dichloropropane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	<250	ηā∖ķē	JF-EX-10	02/09/01
Trichloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<250	nd\kd	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 13 (0-1.8)

Date sample received: 02/09/01

AES sample #: 010206AW12	Samples taken by: MATRIX: Soil	T.Hauptfleisch Location: Little Britain composite				
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE	
cis-1,3-Dichloropropene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01	
2-Chloroethylvinylether	EPA-8260	<500	ug/kg	JF-BX-10	02/09/01	
Bromoform	EPA-8260	₹250	π d ∖kd	JF-BX-10	02/09/01	
1,1,2,2-Tetrachloroethane	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Tetrachloroethene	EPA-8260	<250	ug/kg	JF-BX-10	02/09/01	
Toluene	EPA-8260	1400	ug/kg	JF-BX-10	02/09/01	
Chlorobenzene	EPA-8260	<250	ug/kg	JF-EX-10	02/09/01	
Ethylbenzene	EPA-8260	2300	ug/kg	JF-BX-10	02/09/01	
Xylenes,Total	EPA-8260	9500	ug/kg	JF-BX-10	02/09/01	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 14 (0-5.5)

Date sample received: 02/09/01

AES sample #: 010206AW13

MATRIX: Soil

Samples taken by: T. Hauptfleisch Location: Little Britain

				٠		
C	OBI	100	S	1	t.	e

			•	•	
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	₹PA-8260	<10	ug/kg	JF-BX-10	02/09/01
Bromomethane	EPA-8260	<10	ug/kg	JF-BX-10	02/09/01
Vinyl Chloride	EPA-8260	€10	ug/kg	JF-BX-10	02/09/01
Chloroethane	EPA-8260	<10	ug/kg	JF-BX-10	02/09/01
Methylene Chloride	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Trichlorofluoromethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1-Dichloroethane	EPA-8260	<5	nd\xd	JF-EX-10	02/09/01
1,2-Dichloroethene Total	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Chloroform	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	JF-BX-10	@2/@9/@ <u>1</u>
Carbon Tetrachloride	EPA-8260	<5	ug/kg	JE-EX-10	02/09/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
1,2 Dichloropropane	ZPA-8260	<5	ug/kg	JF-BX-10	02/09/01
trans-1,3-Dichloropropene	EPA-8260	< 5	ug/kg	JF-BX-10	02/09/01
Trichloroethene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Benzene	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
Dibromochloromethane	EPA-8260	<5	nd/kd	JF-BX-10	02/09/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

02/08/01

CLIENT'S SAMPLE ID: 14 (0-5.5) AES sample #: 010208AW13

Samples taken by: T. Hauptfleisch Location: Little Britain

Soil

MATRIX:

Date sample received: 02/09/01

composite

continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
2-Chloroethylvinylether	⊒PA- 8260	<10	ug/kg	JF-BX-10	02/09/01
Bromoform	EPA-8260	< 5	ug/kg	JF-BX-10	02/09/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Tetrachloroethene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Toluene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Chlorobenzene	EPA-8260	<5	ug/kg	JF-EX-10	02/09/01
Ethylbenzene	EPA-8260	<5	ug/kg	JF-BX-10	02/09/01
Xylenes, Total	EPA-8260	<5	πâ\Ķā	JF-BX-10	02/09/01

APPROVED BY:

Report date: 02/12/01

Page 27

Attachment 2-2 Perimeter Verification Soil Samples

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/08/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-5 (4-7.7)

Date Sampled: 11/30/00 12:00 Order #: 428046 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004935 Percent Solid: 86.3

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/05/00			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	- 20	23 U	UG/KG
BENZENE	5.0	5.8 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.8 Ŭ	UG/KG
BROMOFORM	5.0	5.8 U	UG/KG
BROMOMETHANE	5.0	5.8 Ü	UG/KG
2-BUTANONE (MEK)	10	12 U	UG/KG
CARBON DISULFIDE	10	12 Ū	UG/KG
CARBON TETRACHLORIDE	5.0	5.8 U	UG/KG
CHLOROBENZENE	5.0	5.8 U	UG/KG
CHLOROETHANE	5.0	5.8 U	UG/KG
CHLOROFORM	5.0	5.8 U	UG/KG
CHLOROMETHANE	5.0	5.8 U	UG/KG
TBROMOCHLOROMETHANE		5.8 U	UG/KG
	5.0		UG/KG
,1-DICHLOROETHANE	5.0	5.8 Ū	-
_,2-DICHLOROETHANE	5.0	5.8 U	UG/KG
1,1-DICHLOROETHENE	5.0	5.8 Ŭ	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	25	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	5.8 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5.8 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.8 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.8 U	UG/KG
ETHYLBENZENE	5.0	5.8 U	UG/KG
2-HEXANONE	10	12 U	UG/KG
METHYLENE CHLORIDE	5.0	5.8 U	ŬĠ∕KG
4-METHYL-2-PENTANONE (MIBK)	10	12 U	UG/KG
STYRENE	5.0	5.8 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.8 U	UG/KG
TETRACHLOROETHENE	5.0	5.8 Ŭ	UG/KG
TOLUENE	5.0	5.8 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	5.8 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0	5.8 U	UG/KG
TRICHLOROETHENE	5 - 0	5.8 U	UG/KG
VINYL CHLORIDE	5.0	5.8 U	UG/KG
O-XYLENE	5.0	5.8 บั	UG/KG
M+P-XYLENE	5.0	5.8 U	UG/KG
SURROGATE RECOVERIES Q	C LIMITS		
-BROMOFLUOROBENZENE (7		97	ક
_OLUENE-D8 (8		101	&
DIBROMOFLUOROMETHANE (8	० - 120 %)	101	ષ્ટ્

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID: VER-1 (4-7)

Date Sampled : 11/29/00 10:05 Order Date Received: 12/01/00 Submission	#:	42805 R2004	4 936	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 86.9
ANALYTE			QL	RESULT	UNITS
DATE ANALYZED : 12/07/00					Dry Weight
ANALYTICAL DILUTION: 1.00			_		<i>D1</i> 1•15116
ACETONE			20	23 U	UG/KG
BENZENE			5.0	5.8 U	UG/KG
BROMODICHLOROMETHANE			5.0	5.8 U	UG/KG
BROMOFORM			5.0	5.8 U	UG/KG
BROMOMETHANE			5.0	5.8 Ŭ	UG/KG
2-BUTANONE (MEK)			10	12 U	UG/KG
CARBON DISULFIDE			10	12 U	UG/KG
CARBON TETRACHLORIDE			5.0	5.8 U	UG/KG
CHLOROBENZENE			5.0	5.8 U	UG/KG
CHLOROETHANE			5.0	5.8 U	UG/KG
CHLOROFORM			5.0	5.8 Ŭ	UG/KG
'HLOROMETHANE			5.0	5.8 U	UG/KG
_) IBROMOCHLOROMETHANE			5.0	5.8 U	UG/KG
1,1-DICHLOROETHANE			5.0	5.8 U	UG/KG
1,2-DICHLOROETHANE			5.0	5.8 U	ug/kg
1,1-DICHLOROETHENE			5.C	5.8 U	UG/KG
CIS-1,2-DICHLORDETHENE			5.0	29	UG/KG
TRINS-1, 2-DICHLOROETHENE			5.0	5.8 U	UG/KG
1,2-DICHLGROPROPANE			5.0	5.8 U	ng/kg
CIS-1,3-DICHLOROPROPENE			5.0	5.8 U	UG/KG
TRANS-1,3-DICHLOROPROPENE			5.0	- -	UG/KG
ETHYLBENZENE			5.0		UG/KG
2-HEXANONE			10		UG/KG
METHYLENE CHLORIDE			5.0		UG/KG
4-METHYL-2-PENTANONE (MIBK)			10		UG/KG
STYRENE			5.0		UG/KG UG/KG
1,1,2,2-TETRACHLOROETHANE			5.0		UG/KG
TETRACHLOROETHENE			5.0		ug/KG
TOLUENE			5.0		UG/KG UG/KG
1,1,1-TRICHLOROETHANE			5.0		UG/KG
1,1,2-TRICHLORGETHANE			5 - (UG/KG
TRICHLOROETHENE			5.0		UG/KG
VINYL CHLORIDE			5.		ng\ke
C-XYLENE			5.		ug/Kg
M+5-XATENE			5.	0 5.8 U	09/10
SURROGATE RECOVERIES	C L	IMITS			
4 4 4 K (MICE TOOK O D D M D D M D	-	- 121		95	ىن. من من
TOLUENE-D8 (8	31	- 117		101	ર્જ સ્
DIBROMOFLUOROMETHANE (8	30	- 120	&)	96	€

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : VER-2 (0-2.5)

Date Sampled : 11/29/00 11:30 Order # Date Received: 12/01/00 Submission #	: 428055 : R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 86.5
ANALYTE	PQI.	RESULT	UNITS
DATE ANALYZED : 12/08/00			Dry Weight
ANALYTICAL DILUTION: 2.00	_		Dr.A. Merdir
ACETONE	20	46 U	ug/KG
BENZENE	5.0	12 U	UG/KG
BROMODICHLOROMETHANE	5.0	12 U	UG/KG
BROMOFORM	5.0	12 U	UG/KG
BROMOMETHANE	5.0	12 U	UG/KG
2-BUTANONE (MEK)	10	23 U	UG/KG
CARBON DISULFIDE	10	23 U	UG/KG
CARBON TETRACHLORIDE	5.0	12 U	UG/KG
CHLOROBENZENE	5.0	<u>1</u> 2 U	UG/KG
CHLOROETHANE	5.0	12 U	UG/KG
——————————————————————————————————————	5.0	12 Ü	UG/KG
CHLOROFORM	5.0	12 U	UG/KG
CHLOROMETHANE	5.0	12 U	UG/KG
DIBROMOCHLOROMETHANE	5.0	12 U	UG/KG
1,1-DICHLOROETHANE	5.0	12 U	UG/KG
1,2-DICHLOROETHANE	5.0	12 U	UG/KG
1,1-DICHLOROETHENE	5.0	12 Ŭ	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	12 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	12 U	UG/KG
1,2-DICHLOROPROPANE	5.0		UG/KG
CIS-1,3-DICHLOROPROPENE	5.0		UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0		UG/KG
ETHYLBENZENE	10		UG/KG
2-HEXANONE	5.0		UG/KG
METHYLENE CHLORIDE	10		UG/KG
4-METHYL-2-PENTANONE (MIBK)	5.0		UG/KG
STYRENE	5.0		UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0		UG/KG
TETRACHLOROETHENE	5.0		UG/KG
TOLUENE	5.0		UG/KG
1,1,1-TRICHLOROETHANE	5.0		UG/KG
1,1,2-TRICHLOROETHANE	5.0		UG/KG
TRICHLOROETHENE	5.0		UG/KG
VINYL CHLORIDE	5.0		UG/KG
C-XYLENE	5.0	•	UG/KG
M-B-XATENE	٠. ر		
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (74	- 12 <u>-</u> 号)	78 96	જે જે
TOTHENE-D8 (81	- 117 %)	96	₹ 2
DIBROMOFLUOROMETHANE (80	- 120 %)	102	שר

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Elasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID: VER-3 (0-3.3)

Date Sampled: 11/29/00 11:50 Orde: Date Received: 12/01/00 Submission	r #:	428056 R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMENT
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00				Dry Weight
ANALYTICAL DILUTION: 1.00		-		•
ACETONE		20 5.0	91 5.7 U	UG/KG UG/KG
BENZENE		5.0	5.7 U	UG/KG
BROMODICHLOROMETHANE		5.0	5.7 Ŭ	UG/KG
BROMOFORM			5.7 Ū	UG/KG
BROMOMETHANE		5.0 10	11	UG/KG
2-BUTANONE (MEK)		10	11 U	UG/KG
CARBON DISULFIDE		5.0	5.7 Ŭ	UG/KG
CARBON TETRACHLORIDE		5.0	5.7 Ū	UG/KG
CHLOROBENZENE		5.0	5.7 U	UG/KG
CHLOROETHANE		5.0	5.7 U	UG/KG
THLOROFORM		5.0	5.7 Ŭ	UG/KG
CHLOROMETHANE		5.0	5.7 บี	UG/KG
DIBROMOCHLOROMETHANE		5.0	5.7 U	UG/KG
1,1-DICHLOROETHANE		5.0	5.7 U	UG/KG
1,2-DICHLOROETHANE		5.0	5.7 U	UG/KG
1,1-DICHLOROETHENE		5.0	5.7 U	UG/KG
CIS-1,2-DICHLOROETHENE		5.0		UG/KG
TRANS-1,2-DICHLOROETHENE		5.0		AG\KG
1,2-DICHLOROPROPANE		5.0		UG/KG
CIS-1,3-DICHLOROPROPENE		5.0		UG/KG
TRANS-1,3-DICHLOROPROPENE		5.0		UG/KG
ETHYLBENZENE		10		UG/KG
2-HEXANONE		5.0	5.7 U	UG/KG
METHYLENE CHLORIDE		10) 11 Ü	UG/KG
4-METHYL-2-PENTANONE (MIBK)		5.0	5.7 Ŭ	UG/KG
STYRENE		5.0	5.7 U	UG/KG
1,1,2,2-TETRACHLOROETHANE		5.0		UG/KG
TETRACHLOROETHENE		5.0		UG/KG
TOLUENE 1,1,1-TRICHLOROETHANE		5.0		UG/KG
1,1,2-TRICHLOROETHANE		5.		UG/KG
TRICHLOROETHENE		5.		UG/KG
VINYL CHLORIDE		5.		UG/KG UG/KG
O-XYLENE		5.		UG/KG
M-5-XATENE		5 .	o 5.7 U	ug/Rs
SURROGATE RECOVERIES	QC I	LIMITS	_	a
4-BROMOFLUOROBENZENE	74	- 121 원)	97	ەرى م
	(81	- 117 °E)	103	م ^و م
(1 1) J 183(18. = 1 18.	(80	- 120 왕)	100	***

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID: VER-4 (4-8)

Date Sampled: 11/30 Date Received: 12/01	00 15:15 Order # 00 Submission #	†: 428065 †: R2004936	Sample Matrix: Percent Solid:	
		201	T.HIPRC	INTTS

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00 ANALYTICAL DILUTION: 1.00)		Dry Weight
ACETONE	20	36	UG/KG
BENZENE	5.0	5.6 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.6 U	UG/KG
BROMOFORM	5.0	5.6 Ŭ	UG/KG
BROMOMETHANE	5.0	5.6 U	UG/KG
2-BUTANONE (MEK)	10	11 U	UG/KG
CARBON DISULFIDE	10	11 U	UG/KG
CARBON TETRACHLORIDE	5.0	5.6 U	UG/KG
CHLOROBENZENE	5.0	5.5 U	UG/KG
CHLOROETHANE	5.0	5.6 U	UG/KG
CHLOROFORM	5.0	5.6 U	UG/KG
THLOROMETHANE	5.0	5.6 ប	UG/KG
DIBROMOCHLOROMETHANE	5.0	5.6 U	UG/KG
1,1-DICHLOROETHANE	5.0	5.6 U	UG/KG
1,2-DICHLOROETHANE	5.0	5.6 Ŭ	UG/KG
1,1-DICHLOROETHENE	5.0	5.6 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	21	UG/KG
TRANS-1, 2-DICHLOROETHENE	5.0	5.6 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5. E U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.5 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.6 U	UG/KG
ETHYLBENZENE	5.0	5.5 U	UG/KG
2-HEXANONE	10	11 U	UG/KG
METHYLENE CHLORIDE	5.0	5.6 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	_10	11 U	UG/KG UG/KG
STYRENE	5.0	5.6 U	UG/KG UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.6 U	UG/KG UG/KG
TETRACHLOROETHENE	5.C	5.6 U	UG/KG UG/KG
TOLUENE	5.0	31 5.6 U	UG/KG
1,1,1-TRICHLORGETHANE	5.0	5.5 U 5.6 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0 5.0	13	UG/KG
TRICHLOROETHENE		5.6 U	UG/KG
VINYL CHLORIDE	5.0 5.0	5.5 U	UG/KG
O-XYLENE	5.0	5.6 U	UG/KG
M+P-XYLENE	5.0	3.0 0	00) 110
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(74 - 121 %)	96	% a
TOLUENE-D8	(81 - 117 %)	103	કે હ
DIBROMOFLUOROMETHANE	(80 - 120 %)	100	%

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID: VER-5 (4-7.2)

Date Sampled: 11/29/00 12:45 Ord Date Received: 12/01/00 Submissi	er #:	428057 R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 84.3
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 1.00				Dry Weight
ANALYTICAL DILUTION: 1.00		-		-
ACETONE		20	24 U	UG/KG
BENZENE		5.0	5.9 Ŭ	UG/KG
BROMODICHLOROMETHANE		5.0	5.9 U	UG/KG
BROMOFORM		5.0	5.9 U	UG/KG
PROMOMETHANE		5.0	5.9 U	UG/KG
2-BUTANONE (MEK)		10	12 U	UG/KG
CARBON DISULFIDE		10	12 U	AG\KG
CARBON TETRACHLORIDE		5.0	5.9 U	UG/KG
CHLOROBENZENE		5.0	5.9 U	UG/KG
CHLOROETHANE		5.0	5.9 U	UG/KG
CHLOROFORM		5.0	5.9 U	ug/Kg
CHLOROMETHANE		5.0	5.9 U	UG/KG
DIBROMOCHLOROMETHANE		5.0	5.9 Ŭ	UG/KG UG/KG
1,1-DICHLOROETHANE		5.0	5.9 U	UG/KG
1,2-DICHLOROETHANE		5.0	5.9 Ū 5.9 Ū	UG/KG
1,1-DICHLOROETHENE		5.0	5.9 U 5.9 U	UG/KG
CIS-1,2-DICHLOROETHENE		5.0	5.9 U	ng\ka
TRANS-1, 2-DICHLOROETHENE		5.0	5.9 U	UG/KG
1,2-DICHLOROPROPANE		5.0	5.9 U	UG/KG
CIS-1,3-DICHLOROPROPENE		5.0	5.9 U	UG/KG
TRANS-1,3-DICHLOROPROPENE		5.0 5.0	5.9 U	UG/KG
ETHYLBENZENE			12 U	UG/KG
2-HEXANONE		10 5.0	5.9 Ü	UG/KG
METHYLENE CHLORIDE		10	12 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)		5.0		UG/KG
STYRENE		5.0		UG/KG
1,1,2,2-TETRACHLOROETHANE		5.0		UG/KG
TETRACHLOROETHENE		5.0		UG/KG
TOLUENE		5.0		UG/KG
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE		5.0	5.9 Ŭ	UG/KG
TRICHLOROETHENE		5.0		UG/KG
VINYL CHLORIDE		5.0		UG/KG
		5.0	5.9 U	UG/KG
C-XYLENE M+P-XYLENE		5.0) 5.9 U	UG/KG
SURROGATE RECOVERIES	QC L	IMITS		
4-BROMOFLUOROBENZENE	(74	- 121 %)	110 105	ું જ
	(81	- <u>21</u> 7 %)	99	a a
DIBROMOFLUOROMETHANE	(80	- 120 号)		•

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID: VER-6 (4-7.3)

Date Sampled: 11/29/00 13:05 Order #: 428056 Sample Matrix: SOIL/SEDIMEN

Date Received: 12/01/00 Submission #: R2004936 Percent Solid: 83.2

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	24 U	UG/KG
BENZENE	5.0	6.0 U	UG/KG
BROMODICHLOROMETHANE	5.0	6.0 Ŭ	UG/KG
BROMOFORM	5.0	6.0 U	UG/KG
BROMOMETHANE	5.0	6.0 U	UG/KG
2-BUTANONE (MEK)	10	12 U	UG/KG
CARBON DISULFIDE	10	12 U	UG/KG
CARBON TETRACHLORIDE	5.0	6.0 U	UG/KG
CHLOROBENZENE	5.0	6.0 U	UG/KG
CHLOROETHANE	5.0	6.0 U	UG/KG
CHLOROFORM	5.0	6.0 Ū	UG/KG
CHLOROMETHANE	5.0	6.0 U	UG/KG
DIBROMOCHLOROMETHANE	5.0	6.0 U	UG/KG
1,1-DICHLOROETHANE	5.0	6.0 U	UG/KG
1,2-DICHLOROETHANE	5.0	6.0 U	UG/KG
1,1-DICHLOROETHENE	5.0	6.0 Ŭ	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	6.0 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	6.0 U	UG/KG
1,2-DICHLOROPROPANE	5.0	6.0 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	6.0 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	6.0 Ŭ	UG/KG
ETHYLBENZENE	5.0	6.0 U	UG/KG
2-HEXANONE	10	12 U	UG/KG
METHYLENE CHLORIDE	5.0	6.0 Ŭ	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	12 U	UG/KG
STYRENE	5.0	6.0 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	6.0 U	UG/KG
TETRACHLOROETHENE	5.0	6.0 U	UG/KG
TOLUENE	5.0	6.0 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	6.0 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0	6.0 U	ug/KG
TRICHLOROETHENE	5.0	6.0 U	UG/KG
VINYL CHLORIDE	5.0	6.0 U	UG/KG UG/KG
C-XYLENE	5.0	6.0 U	•
M-P-XYLENE	5.0	6.0 U	UG/KG
SURROGATE RECOVERIES QC L	IMITS		
- 5.01.01.50	- 121 %)	113	o _C o
	- 117 왕)	105	46
DIBROMOFLUOROMETHANE (80	- 120 %)	103	લ્ક

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : VER-7 (0-4)

Date Sampled: 11/29/00 13:30 Ordo Date Received: 12/01/00 Submission	er #:	428059 R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 86.9
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00				Dry Weight
ANALYTICAL DILUTION: 1.00		-		227
ACETONE		20 5.0	23 U 5.8 U	UG/KG UG/KG
BENZENE		5.0	5.8 U	UG/KG
BROMODICHLOROMETHANE		5.0	5.8 U	UG/KG
BROMOFORM		5.0	5.8 T	UG/KG
BROMOMETHANE		10	12 U	UG/KG
2-BUTANONE (MEK)		10	12 U	UG/KG
CARBON DISULFIDE		5.0	5.8 U	UG/KG
CARBON TETRACHLORIDE		5.0	5.8 U	UG/KG
CHLOROBENZENE CHLOROETHANE		5.0	5.8 U	UG/KG
'HLOROFORM		5.0	5.8 U	UG/KG
CHLOROMETHANE		5.0	5.8 U	UG/KG
DIBROMOCHLOROMETHANE		5.0	5.8 U	UG/KG
1,1-DICHLOROETHANE		5.0	5.8 U	UG/KG
1,2-DICHLOROETHANE		5.0	5.8 U	UG/KG
1,1-DICHLOROETHENE		5.0	5.8 U	UG/KG
CIS-1,2-DICHLOROETHENE		5.0	5.8 U	UG/KG
TRANS-1, 2-DICHLOROETHENE		5.0	5.8 Ŭ	UG/KG UG/KG
1,2-DICHLOROPROPANE		5.0	5.8 Ŭ	UG/KG UG/KG
CIS-1,3-DICHLOROPROPENE		5.0	5.8 U 5.8 U	UG/KG
TRANS-1,3-DICHLOROPROPENE		5.0	5.8 U	UG/KG
ETHYLBENZENÉ		5.0	12 U	UG/KG
2-HEXANONE		10 5.0		UG/KG
METHYLENE CHLORIDE		10		UG/KG
4-METHYL-2-PENTANONE (MIBK)		5.0		UG/KG
STYRENE		5.0		UG\KG
1,1,2,2-TETRACHLOROETHANE		5.0		UG/KG
TETRACHLOROETHENE		5.0		UG/KG
TOLUENE		5.0		UG/KG
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE		5.0		UG/KG
TRICHLOROETHENE		5.0	5.8 U	UG/KG
VINYL CHLORIDE		5.0	5.8 U	UG/KG
O-XATENE		5.0		UG/KG
M-P-XYLENE		5.0	5.8 U	UG/KG
SURROGATE RECOVERIES	QC L	IMITS		
4-BROMOFLUOROBENZENE		- 121 %)	111 105	<i>તે</i> અં
TOLUENE-D8		- 117 %)	101	٠ و
DIBROMOFLUOROMETHANE	(80	- 120 %)	101	<u>.</u>

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Plasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID: VER-8 (4-8)

Date Sampled: 11/29/00 14:45 Order #: 428061 Sample Matrix: SOIL/SEDIMENT Date Received: 12/01/00 Submission #: R2004936 Percent Solid: 85.3

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00			
ANALYTICAL DILUTION: 5.00			Dry Weight
ACETONE	20	120 U	UG/KG
BENZENE	5.0	29 U	UG/KG
BROMODICHLOROMETHANE	5.0	29 U	UG/KG
BROMOFORM	5.0	29 U	UG/KG
BROMOMETHANE	5.0	29 U	UG/KG
2-BUTANONE (MEK)	10	59 U	UG/KG
CARBON DISULFIDE	10	59 U	ŬG∕KG
CARBON TETRACHLORIDE	5.0	29 U	UG/KG
CHLOROBENZENE	5.0	29 U	UG/KG
CHLOROETHANE	5.0	29 U	UG/KG
CHLOROFORM	5.0	29 U	UG/KG
HLOROMETHANE	5.0	29 U	UG/KG
IBROMOCHLOROMETHANE	5.0	29 U	UG/KG
1,1-DICHLOROETHANE	5.0	29 U	UG/KG
2,2-DICHLOROETHANE	5.0	29 Ū	UG/KG
1,1-DICHLOROETHENE	5.0	29 Ü	UG/KG
CIS-1,2-DICHLORDETHENE	5.0	29 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	29 U	UG/KG
1,2-DICHLCROPROPANE	5.0	29 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	29 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	29 U	UG/KG
ETHYLBENZENE	5.0	29 Ü	UG/KG
2-HEXANONE	10	59 Ŭ	UG/KG
METHYLENE CHLORIDE	5.0	29 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	59 U	ug/kg
STYRENE	5.0	29 Ū	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	29 U	UG/KG
TETRACHLOROETHENE	5.0	29 U	ug/kg
TOLUENE	5.0	29 U	UG/KG
1,1,1-TRICHLORGETHANE	5.0	29 Ū	UG/KG
1,1,2-TRICHLOROETHANE	5.0	29 Ü	UG/KG
TRICHLOROETHENE	5.0	29 U	UG/KG
VINYL CHLORIDE	5.0	29 U	UG/KG
O-XYLENE	5.0	29 Ū	U G /KG
M+P-XYLENE	5.0	29 Ū	UG/KG
M+2-XILENE	5.0	2,7 4	/
SURROGATE RECOVERIES QC	LIMITS		
	- 121 %)	8 9	do o
TOLUENE-D8 (81	- 117 %)	100	€
DIBROMOFLUOROMETHANE (80	- 120 %)	98	%

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID: VER-9 (4-8)

Date Sampled: 11/29/00 16:10 Order Date Received: 12/01/00 Submission	#: 428062 #: R2004936	Sample Matrix: Percent Solid:	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	23 U	UG/KG
BENZENE	5.0	5.8 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.8 U	UG/KG
BROMOFORM	5.0	5.8 U	UG/KG
BROMOMETHANE	5.0	5.8 U	UG/KG
2-BUTANONE (MEK)	10	12 U	UG/KG
CARBON DISULFIDE	10	12 U	UG/KG
CARBON TETRACHLORIDE	5.0	5.8 U	UG/KG
CHLOROBENZENE	5.0	5.8 U	_ UG/KG
CHLOROETHANE	5.0	5.8 V	TJG/KG
THLOROFORM	5.0	5.8 Ú	JG/KG
CHLOROMETHANE	5.0	5.8 U	UG/KG
_DIBROMOCHLOROMETHANE	5.0	5.8 %	UG/KG
1,1-DICHLOROETHANE	5.0	5.8 Ú	UG/KG
1,2-DICHLOROETHANE	5.0	5.8 U	UG/KG
1,1-DICHLOROETHENE	5.0	5.8 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	5.8 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	5.8 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5.8 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.8 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.8 U	ug/kg
ETHYLBENZENE	5.0	5.8 Ŭ	UG/KG
2-HEXANONE	10	12 U	UG/KG
METHYLENE CHLORIDE	5.0	5.8 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	12 U	UG/KG
STYRENE	5.0	5.8 T	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.8 Ŭ	UG/KG
TETRACHLOROETHENE	5.0	5.8 U	UG/KG
TOLUENE	5.0	5.8 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	5.8 U	UG/KG
1,1,2-TRICHLORGETHANE	5.0	5.8 U	UG/KG
TRICHLOROETHENE	5.0	6.2	UG/KG
VINYL CHLORIDE	5.0	5.8 U	UG/KG
O-XYLÉNE	5.0	5.8 Ŭ	UG/KG
M+P-XYLENE	5.0	5.8 U	UG/KG
SURROGATE RECOVERIES QC 1	LIMITS		
	- 121 %)	103	8
TOLUENE-D8 (81	- 117 %)	105	ક
DIBROMOFLUOROMETHANE (80	- 120 %)	100	ક

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID: VER-10 (4-5)

Date Sampled: 11/29/00 16:40 Orde Date Received: 12/01/00 Submission	er #:	428063 R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMER
ANALYTE		5ÕT	RESULT	UNITS
DATE ANALYZED : 12/08/00 ANALYTICAL DILUTION: 1.00				Dry Weight
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		00000000000000000000000000000000000000	5.777777777777777777777777777777777777	UG/KG
ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE		10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	11 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U	UG/KG
SURROGATE RECOVERIES	QC L	MITS		
TOLUENE-D8	81 -	- 121 %) - 117 %) - 120 %)	108 104 99	क कि वि

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : VER-11 (0-4)

Date Sampled: 11/30/00 13:25 On Date Received: 12/01/00 Submiss	rder #: sion #:	428064 R2004936	Sample Matrix: Percent Solid:	SOIL/SEDIMENT
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00 ANALYTICAL DILUTION: 1.0	0			Dry Weight
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM THLOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TCLUENE 1,1,1-TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE		20000000000000000000000000000000000000	110 6.00 6.00 6.00 110 6.00 110 110 110 110 110 110 110 110 110	UG/KG
M-P-XYLENE M-P-XYLENE		5.0 5.0	6.0 Ŭ 6.0 Ŭ	UG/KG
SURROGATE RECOVERIES	QC LI (74 -	MITS 121 号)	65 *	3
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(81 -	127 %) 120 %)	92 102	من دره

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD Client Sample ID: VER-11 (0-4)

Date Sampled: 11/30/00 13:25 Order #: 428064 Sample Matrix: SOIL/SEDIMENT

Date Received: 12/01/00 Submission #: R2004936 Percent Solid: 82.7

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/11/00			
ANALYTICAL DILUTION: 5.0	0		Dry Weight
ACETONE	- 20	120 U	UG/KG
BENZENE	5.0	30 U	UG/KG
BROMODICHLOROMETHANE	5.0	30 U	UG/KG
BROMOFORM	5.0	30 U	UG/KG
BROMOMETHANE	5.0	30 U	UG/KG
2-BUTANONE (MEK)	10	60 U	UG/KG
CARBON DISULFIDE	10	60 U	UG/KG
CARBON TETRACHLORIDE	5.0	30 U	UG/KG
CHLOROBENZENE	5.0	30 U	UG/KG
CHLOROETHANE	5.0 ^	30 U	UG/KG
THLOROFORM	5.0	30 U	UG/KG
HLOROMETHANE	5.0	30 U	UG/KG
TIBROMOCHLOROMETHANE	5.0	30 U	UG/KG
, 1-DICHLOROETHANE	5.0	30 U	UG/KG
1,2-DICHLOROETHANE	5 - 0	30 U	UG/KG
1,1-DICHLOROETHENE	5.0	30 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	30 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	30 U	UG/KG
1,2-DICHLOROPROPANE	5.0	30 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	30 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	30 U	UG/KG
ETHYLBENZENE	5.0	30 U	UG/KG UG/KG
2-HEXANONE		60 U	UG/KG
METHYLENE CHLORIDE	5.0	30 U 60 U	UG/KG UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	30 U	UG/KG
STYRENE	5.0 5.0	30 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	30 U	UG/KG
TETRACHLOROETHENE	5.0	150	UG/KG
TOLUENE 1,1,1-TRICHLOROETHANE	5.0	30 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0	30 U	UG/KG
· .	5.0	30	UG/KG
TRICHLOROETHENE VINYL CHLORIDE	5.0	30 U	UG/KG
O-XYLENE	5.0	30 U	UG/KG
M+P-XYLENE	5.0	30 U	UG/KG
M+5-VIPENE	J. 0	200	0.07.112
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(74 - 121 %)	87	dp.
TOLUENE-D8	(81 - Il7 %)	96	٥,٠
DIBROMOFLUOROMETHANE	(80 - 120 %)	104	<i>8</i> €

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : VER-12 (4-8)

Date Sampled: 11/30/00 15:55 Order #: 428066 Sample Matrix: SOIL/SEDIMEN Date Received: 12/01/00 Submission #: R2004936 Percent Solid: 88.5

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	- 20	23 U	UG/KG
BENZENE	5.0	5.6 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.6 Ŭ	UG/KG
BROMOFORM	5.0	5,6 U	UG/KG
BROMOMETHANE	5.0	5.6 U	UG/KG
2-BUTANONE (MEK)	10	11 U	UG/KG
CARBON DISULFIDE	10	11 U	UG/KG
CARBON TETRACHLORIDE	5.0	5.6 U	UG/KG
CHLOROBENZENE	5.0	5.6 U	UG/KG
CHLOROETHANE -	5.0	5.6 U	UG/KG
CHLOROFORM	5.0	5.6 U	UG/KG
THLOROMETHANE	5.0	5.6 Ü	UG/KG
DIBROMOCHLOROMETHANE	5.0	5.6 U	UG/KG
1,1-DICHLOROETHANE	5.0	5.6 U	UG/KG
1,2-DICHLOROETHANE	5.0	5.6 Ŭ	UG/KG
1,1-DICHLOROETHENE	5.0	5.6 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	5.6 Ü	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	5.6 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5.6 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.6 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.6 U	UG/KG
ETHYLBENZENE	5.0	5.6 U	UG/KG
2-HEXANONE	10	11 U	UG/KG
METHYLENE CHLORIDE	5.0	5.6 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	11 U	UG/KG
STYRENE	5.0	5.6 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.6 Ŭ	UG/KG
TETRACHLOROETHENE	5.0	5.6 U	UG/KG
TOLUENE	5.0	11	UG/KG
1,1,1-TRICHLORCETHANE	5.0	5.6 U	UG/KG
1,1,2-TRICHLORGETHANE	5.0	5.6 U	UG/KG
TRICHLOROSTHENS	5.0	5.6 U	UG/KG
VINYL CHLORIDE	5.0	5.6 U	UG/KG
O-XYLENE	5.0	5.6 U	UG/KG
M÷P-XYLENE	5.0	5.6 Ū	UG/KG
SURROGATE RECOVERIES QC LI	MITS		
4-BROMOFLUOROBENZENE (74 -	121 %)	106	<i>બ</i>
TOLUENE-D8 (81 -	117 %)	104	용
	120 %)	99	%

Attachment 2-3 Pre-Remediation Groundwater Samples

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID: CHAR-3

Date Sampled: 11/30/00 14:35 Order: Date Received: 12/01/00 Submission:	#: 428072 #: R2004937	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/08/00 ANALYTICAL DILUTION: 1.00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM HLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROFOPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TETRACHLOROETHANE TILUENE 1,1,1-TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	20000000000000000000000000000000000000		UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC	LIMITS		
-4-BROMOFLUOROBENZENE (86 TOLUENE-D8 (88 DIBROMOFLUOROMETHANE (86	- 115 %) - 110 %) - 118 %)	91 96 79 *	مهر مهر

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : CHAR-3

Date Sampled: 11/30/00 14:35 Orde Date Received: 12/01/00 Submission	r #:	428072 R2004937	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/15/00				
ANALYTICAL DILUTION: 500.00				
ACETONE		20	10000 U	UG/L
BENZENE		5.0	2500 Ŭ	UG/L
BROMODICHLOROMETHANE		5.0	2500 U	UG/L
BROMOFORM		5.0	2500 Ŭ	UG/L
BROMOMETHANE		5.0	2500 U	UG/L
2-BUTANONE (MEK)		10	5000 U	UG/L
CARBON DISULFIDE		10	5000 Ŭ	ug/L
CARBON TETRACHLORIDE		5.0	2500 Ŭ	UG/L
CHLOROBENZENE.		5.0	2500 U	UG/L
CHLOROETHANE		5.0	2500 Ŭ	UG/L
CHLOROFORM		5.0	2500 U	UG/L
THLOROMETHANE		5.0	2500 U	UG/L
		5.0	2500 Ŭ	UG/L UG/L
1,1-DICHLOROETHANE		5.0	2500 U	UG/L
1,2-DICHLOROETHANE		5.0	2500 U	UG/L
1,1-DICHLOROETHENE		5.0	2500 Ŭ	UG/L UG/L
CIS-1,2-DICHLOROETHENE		5.0	25000 2500 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	2500 U	UG/L
1,2-DICHLOROPROPANE		5.0 5.0	2500 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	2500 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	2500 Ü	UG/L
ETHYLBENZENE		10	5000 U	UG/L
2-HEXANONE		5.0	2500 U	UG/L
METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK)		10	5000 U	UG/L
• • • • • • • • • • • • • • • • • • • •		5.0	2500 U	UG/L
STYRENE 1,1,2,2-TETRACHLOROETHANE		5.0	2500 U	UG/L
TETRACHLOROETHENE		5.0	2500 U	UG/L
TOLUENE		5.0	1300 ជ	UG/L
1,1,1-TRICHLOROETHANE		5.0	2500 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	25 0 0 U	UG/L
TRICHLOROETHENE		5.0	60000	UG/L
VINYL CHLORIDE		5.0	2500 U	UG/L
O-XATENE		5.0	2500 Ŭ	UG/L
M+P-XYLENE		5.0	2500 U	UG/L
SURROGATE RECOVERIES	C LI	MITS		
		115 %)	95	9. 6
TOLUENE-D8 (8	_	110 %)	98	& a.
DIBROMOFLUOROMETHANE (8	36 -	· 118 号)	90	ર

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.
Project Reference: CHGE LITTLE BRITAIN ROAD
Client Sample ID : MW94-1B

Date Sampled: 11/29/00 19:40 O Date Received: 12/01/00 Submis	rder #: sion #:	428069 R2004937	Sample Matrix: Analytical Run	WATER 58848
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00				
ANALYTICAL DILUTION: 1.0	0	_		
ACETONE		20	20 U 5.0 U	UG/L UG/L
BENZENE		5.0 5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 Ŭ	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		10	10 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		5.0	5.0 Ŭ	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
) I BROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 Ü	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	190	UG/L
CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
		5.0	5.0 U	UG/L
ETHYLBENZENE 2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 Ŭ	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 Ŭ	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0		UG/L
TRICHLOROSTHENE		5.0		UG/L
VINYL CHLORIDE		5.0		UG/L
O-XYLENE		5.0		UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LI	MITS		
4-BROMOFLUOROBENZENE	•	· 115 %)	95 04	% Q.
TOLUENE-D8	•	· 110 %)	96	die op
DIBROMOFLUOROMETHANE	(86 -	- 118 %)	99	70

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : DUP-2

Date Sampled: 11/29/00 Orde Date Received: 12/01/00 Submission		428068 R2004937	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00				
ANALYTICAL DILUTION: 1.00				
ACETONE		- 20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 บั	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	\mathtt{UG}/\mathtt{L}
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	\mathtt{UG}/\mathtt{L}
CHLOROFORM		5.0	5.0 Ŭ	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
IBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	ng\r
1,2-DICHLOROETHANE		5.0	5.0 Ŭ	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	190	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 Ŭ	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U 5.0 U	UG/L UG/L
1,1,2,2-TETRACHLOROETHANE		5.0 5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 0	UG/L
VINYL CHLORIDE		5.0	1.4 J	UG/L
O-XATENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	C LI	MITS		
-BROMOFLUOROBENZENE (8	6 -	115 %)	94	જ
		110 왕)	97	8
	36 -	118 %)	97	de de

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc. Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : MW-94-5

Date Sampled: 11/30/00 08:47 Or Date Received: 12/01/00 Submiss	der #:	428073 R2004937	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/15/00				
ANALYTICAL DILUTION: 1.00		_		
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L UG/L
BROMOMETHANE		5.0	5.0 U 10 U	UG/L
2-BUTANONE (MEK)		10 10	10 U	UG/L
CARSON DISULFIDE		5.0	5.0 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM 'HLOROMETHANE		5.0	5.0 U	UG/L
IBROMOCHLOROMETHANE		5.0	5.0 Ŭ	UG/L
1,1-DICHLOROETHANE		5.0	1.1 J	UG/L
1, 2-DICHLOROETHANE		5.0	5.0 Ū	UG/L
1,1-DICHLOROETHENE		5.0	5.0 Ū	UG/L
CIS-1, 2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1, 2-DICHLOROETHENE		5.0	5.0 Ŭ	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L UG/L
1,1,1-TRICHLOROETHANE		5.0	1.0 J	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U 5.0 UE	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0 5.0	5.0 U	UG/L
C-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 0	00/11
SURROGATE RECOVERIES	QC LI	MITS		
4-BROMOFLUOROBENZENE		115 %)	98	ν _ο α.
TOLUENE-D8	•	110 %)	99	% •-
DIBROMOFLUOROMETHANE	(8,6 -	118 %)	94	ક

VOLATILE ORGANICS METHOD 8260B TCL Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : MW96-6

Date Sampled: 11/29/00 16:55 C Date Received: 12/01/00 Submis	Order #:	428067 R2004937	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 1.0	00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM THLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE COLUENE 1,1,1-TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE C-XYLENE		00000000000000000000000000000000000000	5.0 U 5.0 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
M-P-XYLENE	OC LI	5.0 MTTS	5.0 U	UG/L
SURROGATE RECOVERIES 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 - (88 -	- 115 号) - 110 号) - 118 号)	94 96 94	क के के

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 12/15/00

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD

Client Sample ID : MW96-7B

Date Sampled: 11/30/00 16:40 Order #: Date Received: 12/01/00 Submission #:	#: 428070 Sample Matrix: WATER h #: R2004937 Analytical Run 58848			
ANALYTE	PQL	RESULT	UNITS	
DATE ANALYZED : 12/07/00 ANALYTICAL DILUTION: 1.00				
interpretation partition, and				
ACETONE	20	20 U	UG/L	
BENZENE	5.0	5.0 U	UG/L	
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L	
BROMOFORM	5.0	5.0 U	UG/L	
BROMOMETHANE	5.0	5.0 Ü	UG/L	
2-BUTANONE (MEK)	10	10 U	UG/L	
CARBON DISULFIDE	10	10 U	UG/L	
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L	
CHLOROBENZENE	5.0	5.0 U 5.0 U	UG/L UG/L	
CHLOROETHANE	5.0 5.0	5.0 U	UG/L	
CHLOROFORM	5.0	5.0 U	UG/L	
THLOROMETHANE DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L	
1, 1-DICHLOROETHANE	5.0	12	UG/L	
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L	
1,2-bichlorobirane 1,1-bichloroethene	5.0	5.0 U	UG/L	
CIS-1,2-DICHLOROETHENE	5.0	58	UG/L	
TRANS-1,2-DICHLOROETHENE	5.0	1.9 J	UG/L	
1,2-DICHLOROPROPANE	5.0	5.0 Ü	UG/L	
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L	
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L	
ETHYLBENZENE	5.0	5.0 Ŭ	UG/L	
2-HEXANONE	10	10 U	UG/L	
METHYLENE CHLORIDE	5.0	5.0 U	UG/L	
4-METHYL-2-PENTANONE (MIBK)	10	10 U	\mathtt{UG}/\mathtt{L}	
STYRENE	5.0	5.0 U	UG/L	
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L	
TETRACHLOROETHENE	5.0	5.0 Ŭ	UG/L	
TOLUENE	5.0	5.0 U	UG/L	
1,1,1-TRICHLOROETHANE	5.0	2.1 J	UG/L	
1,1,2-TRICHLORGETHANE	5.0	5.0 Ŭ	UG/L	
TRICHLOROSTHENS	5.0	15	UG/L UG/L	
VINYL CHLORIDE	5.0	38 5.0 U	UG/L	
O-XYLENE	5.0	5.0 U	UG/L	
M+P-XYLENE	5.0	5.0 0	0 G / 11	
SURROGATE RECOVERIES QC LI	MITS			
4-BROMOFLUOROBENZENE (86 -	115 %)	93	<u>4</u>	
- DIVO: 101 HOVE	110 %)	95	d _o	
	118 %)	95	¥	

Attachment 2-4

Post-Excavation verification Soil Samples

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/21/01

CLIENT'S SAMPLE ID: LBR-SWI

AES sample #: 010323AH01 Samples taken by: M. Miller

Date sample received: 03/23/01 Er Location: Little Britain

MATRIX: Soil grab

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Bromomethane	EPA-8260	<10	ug/kg	MG-EX-22	03/23/01
Vinyl Chloride	EPA-8260	13	ug/kg	MG-BX-22	03/23/01
Chloroethane	EPA-8260	<10	ug/kg	MG-EX-22	03/23/01
Methylene Chloride	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Trichlorofluoromethane	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01
1,1-Dichloroethene	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,1-Dichloroethane	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
1,2-Dichloroethene Total	EPA-8260	10	ug/kg	MG-BX-22	03/23/01
Chloroform	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Carbon Tetrachloride	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Trichloroethene	EPA-8250	7	ug/kg	MG-BX-22	03/23/01
Benzene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Dibromochloromethane	SPA-8260	<5	ug/kg	MG-3X-22	03/23/01
1,1,2-Trichloroethane	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

ug/kg

ug/kg

MG-BX-22

MG-EX-22

03/23/01

03/23/01

03/21/01

CLIENT'S SAMPLE ID: LBR-SW1

Date sample received: 03/23/01

AES sample #: 010323AH01

Ethylbenzene

Xylenes, Total

Samples taken by: M. Miller MATRIX: Soil

EPA-8260

EPA-8260

Location: Little Britain

continued:	MATRIX: SOII		grai)	
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
2-Chloroethylvinylether	EPA-8260	<u><</u> 10	ug/kg	MG-BX-22	03/23/01
Bromoform	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Toluene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01

<5

<5

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/22/01

CLIENT'S SAMPLE ID: LBR-SW2

AES sample #: 010323AH02

Samples taken by: M. Miller

Date sample received: 03/23/01 Example Location: Little Britain

MATRIX: Soil grab

PARAMETER PERFORMED	METHOD ·	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Bromomethane	EPA-8260	≤10	ug/kg	MG-BX-22	03/23/01
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Chloroethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Methylene Chloride	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Trichlorofluoromethane	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01
1,1-Dichloroethene	≌PA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,1-Dichloroethane	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,2-Dichloroethene Total	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Chloroform	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Carbon Tetrachloride	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-22	93/23/91
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Trichloroethene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Benzene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Dibromochloromethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1,2-Trichloroethane	EPA-826∂	<5	ug/kg	MG-EX-22	03/23/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT:	Central Hudson Gas & Electric	Date Sampled:	03/22/01
CLIENT'S	SAMPLE ID: LBR-SW2	Date sample received:	

AES sample #: 010323AH02	Samples taken by: MATRIX: Soil	M. Miller	Loc gra	ation: Little Britain		
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE	
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01	
2-Chloroethylvinylether	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01	
Bromoform	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01	
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01	
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01	
Toluene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01	
Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01	
Ethylbenzene	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01	
Xylenes,Total	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01	

314 North Pearl Street . Albany, New York 12207 . 800-848-4983 . (518) 434-4546 - Fax (518) 454-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/27/01

CLIENT'S SAMPLE ID: LER-SW3 AES sample #: 010329AS01

Samples taken by: M.A.Miller

MATRIX: Soil

grab

Date	sampred:	03/27/01
Date	sample receiv	red: 03/29/01
ler		Little Britain
	אפיית	

		ga an			
PARAMETER PERFORMED	HETHOD	RESULT	UNITS	NOTEBE REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	HG-BX-26	03/30/01
Bromomethane	EFA-8260	<10	ug/kg	MG-BX-26	03/30/01
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-BX-26	03/30/01
Chloroethane	EPA-8260	<10	ug/kg	MG-BX-26	03/30/01
Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Tricklorofluoromethane	EPA-8260	< 5	<i>⊐</i> g/kg	MG-BX-26	03/30/01
1,1-Dichloroethene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
1,1-Dichloroethane	EPA-8260	< 5	ug/kg	MG-BX-26	03/30/0 <u>1</u>
1,2-Dichloroethene Total	52A-8260	<5	ug/kg	11G-B X-26	03/30/01
Chloroform	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Carbon Tetrachloride	5PA-8260	< 5	ug/kg	MG-BX-26	03/30/01
Bromo dichloromethane	EFA-8260	< 5	ug/kg	MG-BX-26	03/30/01
1,2 Dichloropropane	EPA-8260	< 5	ug/kg	MG-BX-26	03/30/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Trichloroethene	EPA-8260	డ	η d∖ κὰ	MG-BX-26	03/30/0:
Benzene	EPA-8260	<5	ug/kg	MG-6X-26	03/30/0 <u>1</u>
Dibromochloromethane	EPA-8260	< 5	ug/kg	MG-BX-26	93/39/91
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/0 <u>1</u>

2

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & CLIENT'S SAMPLE ID: LBR-SW3 AES sample #: 010329AS01	Date Sampled: 03/27/01 Date sample received: 03/29/01 M.A.Miller Location: Little Britain grab				
continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	EFA-8260	<5	<i>n</i> द∖xa	HG-EX-26	03/30/01
2-Chloroethylvinylether	EPA-8260	<10	ug/kg	MG-BX-26	93/30/01
Bromoform	EPA-8260	- <5	ug/kg	MG-6X-25	03/36/01
1,1,2,2-Tetrachloroethane	EPA-8250	<5	ug/kg	MG-BX-26	03/30/01
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Toluene	EPA-2260	< 5	ug/kg	MG-EX-26	03/30/0i
Chlorobenzene	EPA-8260	<5	πê\κā	MG-EX-26	03/30/01
Ethylbenzene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Xylenes, Total	EFA-8260	< 5	<i>n</i> g∖kg	MG-EX-26	03/30/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/02/01

CLIENT'S SAMPLE ID: LBR-SW 4

Date sample received: 04/03/01

AES sample #: 010403 C02

Samples taken by: M. Miller

Location: Little Britain

MATRIX: Soi1 grab

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<100	ug/kg	MG-BX-27	04/03/01
Bromomethane	EPA-8260	<100	ug/kg	MG-BX-27	04/03/01
Vinyl Chloride	EPA-8260	<100	ug/kg	MG-BX-27	04/03/01
Chloroethane	EPA-8260	<100	ug/kg	MG-BX-27	04/03/01
Methylene Chloride	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Trichlorofluoromethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,1-Dichloroethene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,1-Dichloroethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,2-Dichloroethene Total	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Chloroform	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,2-Dichloroethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,1,1-Trichloroethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Carbon Tetrachloride	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Bromo dichloromethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,2 Dichloropropane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
trans-1,3-Dichloropropene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Trichloroethene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Benzene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Dibromochloromethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,1,2-Trichloroethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/02/01

CLIENT'S SAMPLE ID: LER-SW 4

Date sample received: 04/03/01

AES sample #: 010403 C02

Samples taken by: M. Miller MATRIX: Soil

Location: Little Britain

continued:	MAIRIX: SOII	grab			
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
2-Chloroethylvinylether	EPA-8260	<100	ug/kg	MG-BX-27	04/03/01
Bromoform	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
1,1,2,2-Tetrachloroethane	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Tetrachloroethene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Toluene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Chlorobenzene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Ethylbenzene	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01
Xylenes, Total	EPA-8260	<50	ug/kg	MG-BX-27	04/03/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/21/01

CLIENT'S SAMPLE ID: LBR-POST 1

Date sample received: 03/22/01

AES sample #: 010322 H01

Samples taken by: M. Miller

Location: Little Britain

MATRIX: Soil grab

PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-21	03/22/01
Bromomethane	EPA-8260	≤10	ug/kg	MG-BX-21	03/22/01
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-EX-21	03/22/01
Chloroethane	EPA-8260	<10	ug/kg	MG-BX-21	03/22/01
Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Trichlorofluoromethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,1-Dichloroethene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,1-Dichloroethane	EPA-8260	< 5	ug/kg	MG-BX-21	03/22/01
1,2-Dichloroethene Total	EPA-8260	6	ug/kg	MG-BX-21	03/22/01
Chloroform	EPA-8260	< 5	ug/kg	MG-BX-21	03/22/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Carbon Tetrachloride	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Trichloroethene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Benzene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Dibromochloromethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/21/01

CLIENT'S SAMPLE ID: LBR-POST 1

AES sample #: 010322 H01

Samples taken by: M. Miller

Date sample received: 03/22/01 Location: Little Britain

MATRIX: Soil

continued:	PIATRIX: SOTT	grab			
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
2-Chloroethylvinylether	EPA-8260	≤10	ug/kg	MG-BX-21	03/22/01
Bromoform	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
1,1,2,2-Tetrachloroethane	EPA-8260	< 5	ug/kg	MG-BX-21	03/22/01
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Toluene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Ethylbenzene	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01
Xylenes,Total	EPA-8260	<5	ug/kg	MG-BX-21	03/22/01

APPROVED BY:

Report date: $\overline{03/23/01}$

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/23/01

CLIENT'S SAMPLE ID: LBR-POST 2

Date sample received: 03/23/01

AES sample #: 010323AH03

Samples taken by: M. Miller

Location: Little Britain

MATRIX: Soil grab

PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Bromomethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-EX-22	03/23/01
Chloroethane	EPA-8260	<10	ug/kg	MG-BX-22	03/23/01
Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Trichlorofluoromethane	EPA-8260	< 5	ug/kg	MG-EX-22	ଡ3/23/ଡ1
1,1-Dichloroethene	TPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1-Dichloroethane	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01
1,2-Dichloroethene Total	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Chloroform	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,2-Dichloroethane	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Carbon Tetrachloride	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Bromo dichloromethane	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Trichloroethene	EPA-8260	<5	ug/kg	MG-EK-22	03/23/01
Benzene	EPA-8260	<5	ug/kg	MG-EX-22	03/23/01
Dibromochloromethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/23/01

CLIENT'S SAMPLE ID: LBR-POST 2

AES sample #: 010323AH03

Samples taken by: M. Miller

Date sample received: 03/23/01 Location: Little Britain

continued:	MATRIX: Soil	grab			
PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	< 5	ug/kg	MG-EX-22	03/23/01
2-Chloroethylvinylether	EPA-8260	≤10	ug/kg	MG-BX-22	03/23/01
Bromoform	EPA-826⊘	< 5	ug/kg	MG-EX-22	03/23/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Toluene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Chlorobenzene	EPA-8260	< 5	ug/kg	MG-BX-22	03/23/01
Ethylbenzene	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01
Xylenes,Total	EPA-8260	<5	ug/kg	MG-BX-22	03/23/01

APPROVED BY:

Report date: 03/26/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/29/01

CLIENT'S SAMPLE ID: LER-POST 3 AES sample #: 010329AS02

Date sample received: 03/29/01 Samples taken by: M.A.Miller Location: Little Britain

MATRIX: Soil

grab

			grass			
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEEK REF	TEST DATE	
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-26	03/30/01	
Bromomethane	ZPA-8260	<10	ug/kg	MG-BX-26	03/30/01	
Vinyl Chloride	EPA-8260	56	ug/kg	MG-6X-26	03/30/01	
Chloroethane	SPA-8260	<10	g/kg.	MG-BX-26	03/30/01	
Methylene Chloride	EPA-8250	<5	ug/kg	<u> </u>	03/30/01	
Trichlorofluoromethane	EPA-8250	<5	ug/kg	HG-BX- 26	03/30/01	
1,1-Dichloroethene	EPA-8260	<5	ug/kg	MG-EX-26	03/30/01	
1,1-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01	
1,2-Dichloroethene Total	EPA-8260	36	ug/kg	MG-BX-26	03/30/01	
Chloroform	EPA-8260	< 5	ug/kg	MG-BX -26	03/30/01	
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01	
1,1,1-Trichloroethane	EPA- 8260	<5	ug/kg	MG-EX-26	03/30/01	
Carbon Tetrachloride	EPA-8260	< 5	ug/kg	₩G- 3 K-26	03/30/01	
Bromo dichloromethane	EPA-8260	<5	чg/kg	MG-EX-26	03/30/01	
1,2 Dichloropropane	EPA-8250	<5	π≧\kā	MG-BX-26	03/30/01	
trans-1,3-Dichloropropene	EPA-8260	<5	υ g/kg	MG-EX-26	03/30/01	
Trichloroethene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01	
Benzene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01	
Dibromochloromethane	EPA-8260	< 5	ਪੜ੍ਹ/kg	MG-BX-26	03/30/01	
1,1,2-Trichloroethane	EPA-8260	< 5	ug/kg	MG-BX-26	03/30/01	
					03/30/01	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fzz (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

03/29/01

CLIENT'S SAMPLE ID: LER-POST 3

Date sample received: 03/29/01

Location: Little Britain

AES sample #: 010329AS02

Samples taken by: M.A.Miller

	MATRIX: Soil		gra	b	
continued: PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	₹PA-8260	< \$	nd\kd	MG-BX-56	03/30/01
2-Chloroethylvinylether	SPA- 9260	<10	ug/kg	HG-BX-26	03/30/01
Bromoform	EFA-3260	<5	ug/kg	MG-EX-26	03/30/01
1,1,2,2-Tetrachloroethane	E2A-8260	<5	ug/kg	HG-3X-26	03/30/01
Tetrachloroethene	EPA-8260	<5	πċ\;kg	MG-3X-26	03/30/01
Toluene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Chlorobenzene	EPA-8250	<5	nd\kd	MG-5X-26	03/30/01
Ethylbenzene	EPA-8250	<5	ug/kg	MG-BX-26	03/30/01
Xylenes,Total	EFA-8260	< 5	ng/kg	HG-BX-26	03/30/01

APPROVED BY:

Report date: 03/30/01

314 North Pearl Street • Albany, New York 12207 • 800-548-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Blasland, Bouck & Lee, Inc.

Date Sampled:

03/29/01

CLIENT'S SAMPLE ID: LER-POST 4

Samples taken by: M.A.Miller

Date sample received: 03/30/01 er Location: CHG&E Lit.Brt.R

AES sample #: 010330 H01

MATRIX: Soil

grab

	milala. Soii		3	_	
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	%G-BX-25	03/30/01
Bromomethane	EPA-8260	<10	ug/kg	MG-BX-26	0 3/30/01
Vinyl Chloride	EPA-8260	25	ug/kg	MG-BX-26	03/30/01
Chloroethane	EPA-8260	<19	ug/kg	HG-6X-26	03/30/01
Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Trichlorofluoromethane	E2A-8260	<5	πā\ķā	HG-5X-26	03/30/01
1,1-Dichloroethene	EPA-\$260	<5	ug/kg	MG-EX-26	03/30/01
1,1-Dichloroethane	EPA-8250	<5	ug/kg	MG-BX-26	03/30/01
1,2-Dichloroethene Total	EPA-9260	12	ug/kg	MG-BX-26	03/30/01
Chloroform	EPA-8260	<5	ug/kg	14 G-13 %-26	03/30/01
1,2-Dichloroethane	EPA-8260	ح5	næ/ka	MC-BX-26	03/30/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	MG-6X-26	03/30/01
Carbon Tetrachloride	₽ A-92€0	<5	ug/kg	MG-EX-26	03/30/01
Bromo dichloromethane	EPA-\$260	<5	ug/kg	MG-BX-26	03/30/01
1,2 Dichloropropane	₹250 £250	<5	ug/kg	MG-EX-26	03/30/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Trichloroethene	SPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Benzene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Dibromochloromethane	5PA-8260	<5	ug/kg	MG-BX-26	03/30/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-EX-25	03/30/01

314 North Pear! Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIEWT:	Blasland,	Bouck	&	Lee,	Inc.
---------	-----------	-------	---	------	------

Date Sampled:

ug/kg

ug/kg

ug/kg

MG-EX-26

MG-EX-26

MG-BX-26

03/29/01

CLIENT'S SAMPLE ID: LER-POST 4

Date sample received: 03/30/01

AES sample #: 010330 H01

Chlorobenzene

Ethylbenzene

Xylenes, Total

Samples taken by: M.A.Miller MATRIX: Soil

drap.

Location: CHG&E Lit.Brt.R

03/30/01

93/39/91

03/30/01

continued:

PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTERK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
2-Chloroethylvinylether	EPA-8260	<70	na\ka	MG-BX-26	03/30/01
Bromoform	EPA-8260	<5	ug/kg	MG-BX-26	03 /3 0/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-26	03/30/01
Tetrachloroethene	EPA-8260	ح ة	ug/kg	MG-BX-26	03/30/01
Toluene	£23-8250	<5	ug/kg	MG-BX-26	93/30/91

<5

<5

<5

EPA-8260

EPA-8260

EPA-825@

APPROVED BY:

Report date: 03/30/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric Date Sampled: 04/02/01 CLIENT'S SAMPLE ID: LBR-Post 5 Date sample received: 04/03/01

AES sample #: 010403 C01 Samples taken by: M. Miller Location: Little Britain

MATRIX: Soil grab

			9.0		
PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
Bromomethane	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
Chloroethane	EPA-8260	<10	ug/kg	MG-EX-27	04/03/01
Methylene Chloride	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
Trichlorofluoromethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
1,1-Dichloroethene	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
1,1-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
, 1,2-Dichloroethene Total	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
Chloroform	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
1,1,1-Trichloroethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
Carbon Tetrachloride	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
Trichloroethene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
Benzene	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
Dibromochloromethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
1,1,2-Trichloroethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/02/01

CLIENT'S SAMPLE ID: LBR-Post 5 AES sample #: 010403 C01

Date sample received: 04/03/01 Samples taken by: M. Miller

Location: Little Britain

MATRIX: Soil grab

	continued:	initian.	grab					
	PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE		
	cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01		
	2-Chloroethylvinylether	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01		
	Bromoform	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01		
	1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01		
	Tetrachloroethene	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01		
	Toluene	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01		
	Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01		
	Ethylbenzene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01		
j	Xylenes, Total	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01		

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/02/01

CLIENT'S SAMPLE ID: LBR-Post 6

Date sample received: 04/03/01

AES sample #: 010403 C03

Samples taken by: M. Miller

Location: Little Britain

MATRIX: Soi1

grab

				924	~	
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Chloromethane	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
	Bromomethane	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
	Vinyl Chloride	EPA-8260	23	ug/kg	MG-BX-27	04/03/01
	Chloroethane	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
	Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Trichlorofluoromethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
	1,1-Dichloroethene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	1,1-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
,	, 1,2-Dichloroethene Total	EPA-8260	210	ug/kg	MG-BX-27	04/03/01
	Chloroform	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	1,2-Dichloroethane	EPA-8260	<5	ug/kg	MG-EX-27	04/03/01
	1,1,1-Trichloroethane	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
	Carbon Tetrachloride	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Trichloroethene	EPA-8260	57	ug/kg	MG-BX-27	04/03/01
	Benzene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Dibromochloromethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/02/01

CLIENT'S SAMPLE ID: LBR-Post 6

Date sample received: 04/03/01

Location: Little Britain

AES sample #: 010403 C03

Samples taken by: M. Miller MATRIX: Soi1

	continued:	mairix: 5011		gra	ď	
	PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
	cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	2-Chloroethylvinylether	EPA-8260	<10	ug/kg	MG-BX-27	04/03/01
	Bromoform	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
	1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Tetrachloroethene	EPA-8260	< 5	ug/kg	MG-BX-27	04/03/01
	Toluene	EPA-8260	44	ug/kg	MG-BX-27	04/03/01
	Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-27	04/03/01
	Ethylbenzene	EPA-8260	7	ug/kg	MG-BX-27	04/03/01
•	Xylenes, Total	EPA-8260	35	ug/kg	MG-BX-27	04/03/01

APPROVED BY:

Report date: 04/03/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/03/01

CLIENT'S SAMPLE ID: LBR-POST 7

AES sample #: 010404 H01

Samples taken by: M. Miller

Date sample received: 04/04/01 r Location: Little Britain

MATRIX: Soil

grab

			gran	,		
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE	
Chloromethane	EPA-8260	<10	ug/kg	MG-BX-28	04/04/01	
Bromomethane	EPA-8260	<10	ug/kg	MG-BX-28	04/04/01	
Vinyl Chloride	EPA-8260	<10	ug/kg	MG-BX-28	04/04/01	
Chloroethane	EPA-8260	<10	ug/kg	MG-BX-28	04/04/01	
Methylene Chloride	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
Trichlorofluoromethane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
1,1-Dichloroethene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
1,1-Dichloroethane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
1,2-Dichloroethene Total	EPA-8260	15	ug/kg	MG-BX-28	04/04/01	
Chloroform	EPA-8260	< 5	ug/kg	MG-BX-28	04/04/01	
1,2-Dichloroethane	EPA-8260	< 5	ug/kg	MG-BX-28	04/04/01	
1,1,1-Trichloroethane	EPA-8260	< 5	ug/kg	MG-BX-28	04/04/01	
Carbon Tetrachloride	EPA-8260	< 5	ug/kg	MG-BX-28	04/04/01	
Bromo dichloromethane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
1,2 Dichloropropane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
Trichloroethene	EPA-8260	< 5	ug/kg	MG-BX-28	04/04/01	
Benzene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
Dibromochloromethane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01	
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	MG-EX-28	04/04/01	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric Date Sampled: 04/03/01 CLIENT'S SAMPLE ID: LBR-POST 7 Date sample received: 04/04/01

AES sample #: 010404 H01 Samples taken by: M. Miller Location: Little Britain

continued:	MATRIX: Soil		gra	b	
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
2-Chloroethylvinylether	EPA-8260	<10	ug/kg	MG-BX-28	04/04/01
Bromoform	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
1,1,2,2-Tetrachloroethane	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
Tetrachloroethene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
Toluene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
Chlorobenzene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
Ethylbenzene	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01
Xylenes,Total	EPA-8260	<5	ug/kg	MG-BX-28	04/04/01

APPROVED BY:

Report date: 04/04/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/10/01

CLIENT'S SAMPLE ID: LBR-POST 8

AES sample #: 010411 E01 Samples taken by: M. Miller

Date sample received: 04/11/01

Location: Little Britain

MATRIX: Soil

grab

PARAMETER PERFORMED	<u>METHOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
Chloromethane	EPA-8260	<10	ug/kg	JF-BX-30	04/11/01
Bromomethane	EPA-8260	<10	ug/kg	JF-BX-30	04/11/01
Vinyl Chloride	EPA-8260	<10	ug/kg	JF-BX-30	04/11/01
Chloroethane	EPA-8260	<10	ug/kg	JF-BX-30	04/11/01
Methylene Chloride	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Trichlorofluoromethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,1-Dichloroethene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,1-Dichloroethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
 1,2-Dichloroethene Total	EPA-8260	6.0	ug/kg	JF-BX-30	04/11/01
Chloroform	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,2-Dichloroethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,1,1-Trichloroethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Carbon Tetrachloride	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Bromo dichloromethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,2 Dichloropropane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
trans-1,3-Dichloropropene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Trichloroethene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Benzene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Dibromochloromethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
1,1,2-Trichloroethane	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

CLIENT: Central Hudson Gas & Electric

Date Sampled:

04/10/01

CLIENT'S SAMPLE ID: LBR-POST 8

Date sample received: 04/11/01

AES sample #: 010411 E01

Samples taken by: M. Miller MATRIX: Soil

Location: Little Britain grab

con	+ 1	ונת	24	•

continued:					
PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
cis-1,3-Dichloropropene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
2-Chloroethylvinylether	EPA-8260	<10	ug/kg	JF-BX-30	04/11/01
Bromoform	EPA-8260	< 5	ug/kg	JF-BX-30	04/11/01
1,1,2,2-Tetrachloroethane	EPA-8260	< 5	ug/kg	JF-BX-30	04/11/01
Tetrachloroethene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Toluene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Chlorobenzene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Ethylbenzene	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01
Xylenes, Total	EPA-8260	<5	ug/kg	JF-BX-30	04/11/01

APPROVED BY:

Report date: 04/11/01

Attachment 2-5 Air Samples

Client

: Blasland, Bouck & Lee

Site

: Central Hudson Gas & Electric

Project No.

: Little Britain Road

Date Sampled : 26-MAR-01

Account No.: 10624

Login No. : L69563

Date Received : 27-MAR-01 Late Analyzed : 28-MAR-01

Other Volatile Organics

Sample ID	Lab ID	Time minutes	Pront uq	Back ug	Total ug	ppm
BLANK	L69563-1	NA	<15	<15	< 15	NA
AIR-1	L69563-2	480	<15	<15	< 15	< 0.3

COMMENTS: Quantified as n-hexane.

Level of quantitation: 14 ug Analytical Method : OVM 3M

OSHA PEL (TWA) : NA

Collection Media : OVM2-3520 Submitted by: LEO LUCISANO

Approved by : jal Date : 28-MAR-01 QC by: QC STAFF NYS DOH # : 11626

< -Less Than

-Greater Than

mg -Milligrams

ug -Micrograms

m3 -Cubic Meters

kg -Kilograms

-Liters 1

NS -Not Specified

NA -Not Applicable

ND -Not Detected

Galson 8801 Kirkville Rd. E Syracuse, NY 13057

LABORATORY ANALYSIS REPORT

Client

: Blasland, Bouck & Lee

Site

: Central Hudson Gas & Electric

Project No.

: Little Britain Road

Date Sampled : 26-MAR-01

Account No.: 10624

Date Received : 27-MAR-01

Login No. : L69563

Date Analyzed : 28-MAR-01

Vinyl Chloride

Sample ID	Lab ID	Time minutes	Pront uq	Back uq	Total ug	pp m
BLANK	L69563-1	NA	<2	<2	< 2	NA
AIR-1	L69563-2	480	<2	<2	< 2	< 0.04

Level of quantitation: 2 ug Analytical Method : OVM 3M OSHA PEL (TWA) : 1 ppm

Collection Media : OVM2-3520 Submitted by: LEO LUCISANO

Approved by : jal Date : 28-MAR-01 QC by: QC STAFF NYS DOH # : 11626

< -Less Than

> -Greater Than

mg -Milligrams ug -Micrograms

m3 -Cubic Meters 1 -Liters

kg -Kilograms NS -Not Specified

NA -Not Applicable

ND -Not Detected

Client

: Blasland, Bouck & Lee

6601 Kirkville Road

Site : Central Hudson Gas + Electric Project No. : Little Britain Road 205.29

E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

Date Sampled : 29-MAR-01 Date Received : 30-MAR-01

Account No.: 10624 Login No. : L69723

Date Analyzed: 30-MAR-01

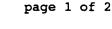
Other Volatile Organics

Sample ID	<u>Lab ID</u>	Time minutes	Front ug	Back ug	Total ug	
AIR-2	L69723-1	480	<15	<15	< 14	< 0.2
BLANK	L69723-2	NA	<15 -	<15	< 14	NA

Level of quantitation: 14 ug
Analytical Method : OVM 3M
OSHA PEL (TWA) : NA

Collection Media : OVM2-3520

Submitted by: JK
Approved by: jal
Date: 02-APR-01
QC by:
NYS DOH #: 11626


< -Less Than

> -Greater Than
"A -Not Applicable

mg -Milligrams ug -Micrograms m3 -Cubic Meters
l -Liters

kg -Kilograms NS -Not Specified

ND -Not Detected

Client

: Blasland, Bouck & Lee

6601 Kirkville Road E. Syracuse, NY 13057-0369 Site : Central Hudson Gas + Electric Project No.

Phone: (315) 432-5227

: Little Britain Road 205.29

Fax: (315) 437-0571 www.galsonlabs.com

Date Sampled : 29-MAR-01 Date Received: 30-MAR-01 Account No.: 10624 Login No. : L69723

Date Analyzed: 30-MAR-01

Vinyl Chloride

Sample ID	Lab ID	Time <u>minutes</u>	Front ug	Back ug	Total uq	ppm
AIR-2	L69723-1	480	<2	<2	<, 2	< 0.04
BLANK	L69723-2	NA	<2 -	<2	< 2	NA

Level of quantitation: 2 ug Analytical Method : OVM 3M

OSHA PEL (TWA) : 1 ppm

Collection Media : OVM2-3520 Submitted by: JK Approved by : jal Date: 02-APR-01 QC by:

NYS DOH #: 11626

< -Less Than

> -Greater Than NA -Not Applicable

mg -Milligrams ug -Micrograms

ND -Not Detected

m3 -Cubic Meters -Liters

1

kg -Kilograms NS -Not Specified

6601 Kirkville Road E. Syracuse, NY 13057-0369 Phone: (315) 432-5227

Fax: (315) 437-0571 www.galsonlabs.com Client : Blasland, Bouck & Lee Site : CHGE-Little Britain Road

Project No. : 205.29.002

Date Sampled : 04-APR-01 Date Received : 05-APR-01

Account No.: 10624 Login No. : L69891

Date Analyzed: 06-APR-01

Other Volatile Organics

Sample ID	<u>Lab ID</u>	Time <u>minutes</u>	Front ug	Back ug	Total uq	ppm
BLANK	L69891-1	NA	<15	<15	< 15	NA
AIR-3	L69891-2	480	<15 -	<15	< 15	< 0.2

COMMENTS: Quantified as n-hexane.

Level of quantitation: 14 ug
Analytical Method : OVM 3M
OSHA PEL (TWA) : NA

Collection Media : OVM2-3520

Submitted by: BJC
Approved by: jal
Date: 06-APK-01
QC by:
NYS DOH #: 11626

< -Less Than
> -Greater Than
NA -Not Applicable

mg -Milligrams
ug -Micrograms
ND -Not Detected

m3 -Cubic Meters l -Liters kg -Kilograms NS -Not Specified

6601 Kirkville Road E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com Client : Blasland, Bouck & Lee
Site : CHGE-Little Britain Road

Project No. : 205.29.002

Date Sampled : 04-APR-01
Date Received : 05-APR-01
Date Analyzed : 06-APR-01

Account No.: 10624 Login No. : L69891

Vinyl Chloride

Sample ID	Lab ID	Time minutes	Front ug	Back ug	Total uq	
BLANK	L69891-1	NA	<2	<2	< 2	NA
AIR-3	L69891-2	480	<2 -	<2	< 2	< 0.04

Level of quantitation: 2 ug
Analytical Method : OVM 3M
OSHA PEL (TWA) : 1 ppm
Collection Media : OVM2-3520

Submitted by: BJC Approved by: jal Date: 06-APR-01 QC by: NYS DOH # : 11626

< -Less Than
> -Greater Than
NT -Not Applicable

mg -Milligrams ug -Micrograms ND -Not Detected m3 -Cubic Meters 1 -Liters kg -Kilograms NS -Not Specified

Client

: Blasland, Bouck & Lee

Site

: CHGE-Little Britain Road

Project No. E. Syracuse, NY 13057-0369

Account No.: 10624

Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

6601 Kirkville Road

Date Sampled : 10-APR-01 Date Received : 11-APR-01

Date Analyzed: 11-APR-01

: 205.29.002

Login No. : L70066

Other Volatile Organics

Sample ID	Lab ID	Time minutes	Front uq	Back ug	Total ug	
AIR-4	L70066-1	480	<10	<10	< 10	< 0.2
BLANK	L70066-2	NA	<10	<10	< 10	NA

COMMENTS: Quantified as n-hexane.

Level of quantitation: 10 ug

Analytical Method : OVM 3M

OSHA PEL (TWA) : NA

Collection Media : OVM2-3520 Submitted by: SF Approved by : jal

Date: 12-APR-01

QC by:

NYS DOH #: 11626

< -Less Than

mg -Milligrams

m3 -Cubic Meters

kg -Kilograms

> -Greater Than

ug -Micrograms

-Liters

NS -Not Specified

NA -Not Applicable

ND -Not Detected

Client

: Blasland, Bouck & Lee

Site

: CHGE-Little Britain Road

Project No.

: 205.29.002

E. Syracuse, NY 13057-0369 Phone: (315) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

6601 Kirkville Road

Date Sampled : 10-APR-01 Date Received : 11-APR-01

Account No.: 10624 Login No. : L70066

Date Analyzed : 11-APR-01

Vinyl Chloride

Sample ID	Lab ID	Time minutes	Front ug	Back ug	Total uq	ppm
AIR-4	L70066-1	480	<1	<1	< 1	< 0.02
BLANK	L70066-2	NA	<1	<1	< 1	NA

Level of quantitation: 1 ug Analytical Method : OVM 3M

OSHA PEL (TWA) Collection Media

: 1 ppm : OVM2-3520 Submitted by: SF Approved by : jal Date: 12-APR-01 QC by:

NYS DOH # :

< -Less Than > -Greater Than NA -Not Applicable mg -Milligrams ug -Micrograms m3 -Cubic Meters 1 -Liters

kg -Kilograms NS -Not Specified

ND -Not Detected

Attachment 2-6

Initial Post-Remediation Groundwater Samples

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID: MW94-5

Date Sampled: 06/12/01 12:35 Order to Date Received: 06/13/01 Submission		Sample Matrix: Manalytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.00			
ACETONE	<i>=</i> 20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L UG/L
CHLOROETHANE	5.0	5.0 U 5.0 U	UG/L
CHLOROFORM	5.0 5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 Ŭ	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 Ŭ	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2 - HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 Ŭ	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES QC L	IMITS		
1 Divolior Docked David Line	- 115 %)	104	96
10202112 2	- 110 %)	102	8
DIBROMOFLUOROMETHANE (86	- 118 %)	101	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID : MW96-7B

Date Sampled : 06/12/01 10:50 O Date Received: 06/13/01 Submis		Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01 ANALYTICAL DILUTION: 1.0	0		
ACETONE	- 20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	_10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	14	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	62	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	21	UG/L
VINYL CHLORIDE	5.0	35	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(86 - 115 %)	103	8
TOLUENE-D8	(88 - 110 %)	104	૪
DIBROMOFLUOROMETHANE	(86 - 118 %)	104	%

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID : MW01-8A

Date Sampled:	06/11/01	18:20 Order #	: 470784	Sample Matrix: WATER
Date Received:				Analytical Run 65894

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.00			
ACETONE	-20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 Ŭ	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 Ŭ	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	21	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	28	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
	C LIMITS		
	- ·	100	o,
4-BROMOFLUOROBENZENE (8		100	જે જ
TOLUENE-D8 (8		102	% %
DIBROMOFLUOROMETHANE (8	6 - 118 %)	99	75

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID : MW01-8B

Date Sampled: 06/11/01 16:15 Order Date Received: 06/13/01 Submission	#: 470785 #: R2107328	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01 ANALYTICAL DILUTION: 1.00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE	20 5.0 5.0 10 10 10 10 10 10 10 10 10 10 10 10 10	20 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
O-XYLENE M+P-XYLENE	5.0 5.0	5.0 U 5.0 U	UG/L UG/L
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (86 TOLUENE-D8 (88 DIBROMOFLUOROMETHANE (86	- 110 %)	99 104 99	જે જ

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003 Client Sample ID: MW01-8B

Date Sampled: 06/11/01 16:15 Order Date Received: 06/13/01 Submission		Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/21/01			
ANALYTICAL DILUTION: 5.00			
ACETONE	_20	100 U	UG/L
BENZENE	5.0	25 U	UG/L
BROMODICHLOROMETHANE	5.0	25 U	UG/L
BROMOFORM	5.0	25 U	UG/L
BROMOMETHANE	5.0	25 U	UG/L
2-BUTANONE (MEK)	10	50 U	UG/L
CARBON DISULFIDE	10	50 U	UG/L
CARBON TETRACHLORIDE	5.0	25 U	UG/L UG/L
CHLOROBENZENE	5.0	25 U	•
CHLOROETHANE	5.0	25 U	UG/L UG/L
CHLOROFORM	5.0	25 U	UG/L
CHLOROMETHANE	5.0	25 U	UG/L
DIBROMOCHLOROMETHANE	5.0	25 U 25 U	UG/L
1,1-DICHLOROETHANE	5.0 5.0	25 U	UG/L
1,2-DICHLOROETHANE	5.0	25 U	UG/L
1,1-DICHLOROETHENE	5.0	740	UG/L
CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	5.0	25 U	UG/L
1,2-DICHLOROPROPANE	5.0	25 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L
ETHYLBENZENE	5.0	25 U	UG/L
2-HEXANONE	10	50 U	UG/L
METHYLENE CHLORIDE	5.0	25 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	50 U	UG/L
STYRENE	5.0	25 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	25 U	UG/L
TETRACHLOROETHENE	5.0	25 U	UG/L
TOLUENE	5.0	25 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	25 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	25 U	UG/L
TRICHLOROETHENE	5.0	640	UG/L
VINYL CHLORIDE	5.0	70	UG/L
O-XYLENE	5.0	25 Ŭ	UG/L
M+P-XYLENE	5.0	25 U	UG/L
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (86	- 115 %)	99	%
TOLUENE-D8 (88		105	%
DIBROMOFLUOROMETHANE (86	- 118 %)	102	%

VOLATILE ORGANICS METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003 Client Sample ID: MW94-1B

Date Sampled: 06/12/01 08:30 Ordo Date Received: 06/13/01 Submission		Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.00			
ACETONE	_ 20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0		UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 Ŭ	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	78	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 Ŭ	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 Ŭ	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	13	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L UG/L
O-XYLENE	5.0	5.0 U	•
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE (8	36 - 115 %)	101	96
1 2	38 - 110 %)	100	8
	36 - 118 %)	99	8

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID: MW96-6

		09:50 Order #: 470787		WATER
Date Received:	06/13/01	Submission #: R210732	8 Analytical Run	65894

Date Received: 06/13/01 Submiss	ion #: R2107328	R2107328 Analytical Run 6	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.00			
ACETONE	<u>.</u> 20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 Ŭ	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U -	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE (86 - 115 %)	103	%
	88 - 110 %)	103	ક
·	86 - 118 %)	99	ş
	,		-

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 06/28/01

▶ Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID : TRIP BLANK

Date Sampled: 06/11/01 Order #: 470788 Sample Matrix: WATER Date Received: 06/13/01 Submission #: R2107328 Analytical Run 65894

Date Received: 06/13/01 Subm	mission #: R2107328	Analytical Run	65894
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/0			
ANALYTICAL DILUTION: 1	1.00		
ACETONE	_20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L UG/L
CHLOROFORM	5.0 5.0	5.0 U 5.0 U	UG/L
CHLOROMETHANE DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
✓ 1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 Ŭ	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 Ŭ	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 Ŭ	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 Ŭ	UG/L
ETHYLBENZENE	5.0	5.0 Ŭ	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L UG/L
TETRACHLOROETHENE	5.0 5.0	5.0 U 5.0 U	UG/L
TOLUENE 1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(86 - 115 %)	102	જ વ
TOLUENE-D8	(88 - 110 %)	101	કે સ્
DIBROMOFLUOROMETHANE	(86 - 118 %)	101	5

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Blasland, Bouck & Lee, Inc.

Project Reference: CHGE LITTLE BRITAIN ROAD PROJECT #205.29.003

Client Sample ID : MW94-5 LAB DUPLICATE

Date Sampled:	06/12/01	12:35 Order #: 47138	1 Sample Matrix: WATER
Date Received:	06/13/01	Submission #: R2107	328 Analytical Run 65894

	31 Ψ: R210/328	Analytical Run	00094
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.00			
ACETONE	_ 20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES QC	C LIMITS		
4-BROMOFLUOROBENZENE (86		100	%
	3 - 110 %)	103	8
DIBROMOFLUOROMETHANE (80	5 - 118 %)	102	8

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 06/28/01

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled : Date Received:	Order Submission	#: 473637 #:	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
	06/19/01			
ANALYTICAL DILUTION:	1.00			•
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1, 2-DICHLOROETHEN	Έ	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETH		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPE	NE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPRO		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE	(MIBK)	10	10 U	UG/L
STYRENE	(,	5.0	5.0 บั	UG/L
1,1,2,2-TETRACHLOROET	HANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 บั	UG/L
VINYL CHLORIDE		5.0	5.0 Ŭ	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC L	IMITS		
4-BROMOFLUOROBENZENE	•	- 115 %)	99	ક
TOLUENE-D8	(88)	- 110 %)	103	क्ष
DIBROMOFLUOROMETHANE	(86	- 118 %)	99	%

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 06/28/01

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled: Date Received: Subm	Order #: 473639 ission #:	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 06/19/0			
ANALYTICAL DILUTION: 1	.00		
ACETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0 5.0	5.0 U 5.0 U	UG/L UG/L
1,2-DICHLOROPROPANE	5.0	5.0 U 5.0 U	UG/L UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
2-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 Ŭ	UG/L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 Ŭ	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(86 - 115 %)	101	ફ
TOLUENE-D8	(88 - 110 %)	102	ફ
DIBROMOFLUOROMETHANE	(86 - 118 %)	103	જે

VOLATILE ORGANICS METHOD 8260B TCL Reported: 06/28/01

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled : Date Received:	Order Submission	#: 473641 #:	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 06 ANALYTICAL DILUTION:	/21/01 1.00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		20 0.00 10 0.00 10 0.00 0.00 0.00 0.00 0	20 UU	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MI STYRENE 1,1,2,2-TETRACHLOROETHAN TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE SURROGATE RECOVERIES	BK) E	5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 U 10 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 (88 (86	- 115 %) - 110 %) - 118 %)	101 103 102	% % %

VOLATILE ORGANICS METHOD: 8260B TCL

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 473638	ANALYT	ICAL RUN # :	65894
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 06/19/01			
ANALYTICAL DILUTION: 1.0	_		
ACETONE	20.0	96	21 - 165
BENZENE	20.0	97	37 - 151
BROMODICHLOROMETHANE	20.0	100	35 - 155
BROMOFORM	20.0	95	45 - 169
BROMOMETHANE	20.0	108	10 - 242
2-BUTANONE (MEK)	20.0	91	25 - 162
CARBON DISULFIDE	20.0	95	45 - 148
CARBON TETRACHLORIDE	20.0	85	70 - 140
CHLOROBENZENE	20.0	96	37 - 160
CHLOROETHANE	20.0	99	53 - 149
CHLOROFORM	20.0	98	51 - 138
CHLOROMETHANE	20.0	113	10 - 273
DIBROMOCHLOROMETHANE	20.0	93	53 - 149
1,1-DICHLOROETHANE	20.0	101	59 - 155
1,2-DICHLOROETHANE	20.0	98	49 - 155
1,1-DICHLOROETHENE	20.0	86	10 - 234
CIS-1,2-DICHLOROETHENE	20.0	121	54 - 156
TRANS-1,2-DICHLOROETHENE	20.0	92	54 - 156
1,2-DICHLOROPROPANE	20.0	97	10 - 210
CIS-1,3-DICHLOROPROPENE	20.0	95	10 - 227
TRANS-1,3-DICHLOROPROPENE	20.0	99	17 - 183
ETHYLBENZENE	20.0	96	37 - 162
2-HEXANONE	20.0	85	22 - 155
METHYLENE CHLORIDE	20.0	96	10 - 221
4-METHYL-2-PENTANONE (MIBK)	20.0	89	46 - 157
STYRENE	20.0	99	66 - 144
1,1,2,2-TETRACHLOROETHANE	20.0	83	46 - 157
TETRACHLOROETHENE	20.0	90	64 - 148
TOLUENE	20.0	99	47 - 150
1,1,1-TRICHLOROETHANE	20.0	85	52 - 162 53 - 150
1,1,2-TRICHLOROETHANE	20.0	97	52 - 150 71
TRICHLOROETHENE	20.0	107	71 - 157
VINYL CHLORIDE	20.0	103	10 - 251 71 - 135
O-XYLENE	20.0	93 93	71 - 135
M+P-XYLENE	40.0	73	11 - 133

VOLATILE ORGANICS METHOD: 8260B TCL

LABORATORY REFERENCE SPIKE SUMMARY

DATE ANALYZED : 06/19/01 ANALYTICAL DILUTION: 1.0 CETAMALYZED 1.0 1.0 CETAMALYZED 1.0 CETA	REFERENCE ORDER #: 473640	ANALYT	ICAL RUN # :	65894
ACETONE 20.0 100 21 - 165 BENZENE 20.0 108 37 - 151 BROMODICHLOROMETHANE 20.0 106 35 - 155 BROMOMETHANE 20.0 107 45 - 169 BROMOMETHANE 20.0 101 25 - 162 CARBON DISULFIDE 20.0 101 25 - 162 CARBON DISULFIDE 20.0 101 25 - 162 CARBON DISULFIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 103 37 - 160 CHLOROBENZENE 20.0 103 37 - 160 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 120 10 - 273 JEROMOCHLOROMETHANE 20.0 199 53 - 149 1,1-DICHLOROETHANE 20.0 197 59 - 155 1,2-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHENE 20.0 107 59 - 155 1,2-DICHLOROETHENE 20.0 108 49 - 155 CIS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,3-DICHLOROETHENE 20.0 107 37 - 162 CIS-1,3-DICHLOROPROPENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLEBEN 2ENE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 104 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 104 66 - 157 STYRENE 20.0 104 67 - 157 TETRACHLOROETHANE 20.0 105 71 - 157 TETRACHLOROETHANE 20.0 105 71 - 157 TETRACHLOROETHANE 20.0 105 71 - 157 TETRACHLOROETHANE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 107 107 52 - 150 TETRACHLOROETHANE 20.0 105 71 - 157	ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
ACETONE BENZENE 20.0 108 37 - 151 BROMODICHLOROMETHANE 20.0 106 35 - 155 BROMOFORM 20.0 107 45 - 169 BROMOMETHANE 20.0 107 45 - 169 BROMOMETHANE 20.0 101 11 10 - 242 2-BUTANONE (MEK) 20.0 101 25 - 162 CARBON DISULFIDE 20.0 96 45 - 148 CARBON TETRACHLORIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 103 37 - 160 CHLOROFTHANE 20.0 107 53 - 149 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 107 59 - 155 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,2-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,3-DICHLOROETHENE 20.0 100 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 100 107 22 10 CIS-1,3-DICHLOROPROPENE 20.0 100 107 22 155 METHYLENEZENE 20.0 100 107 22 155 METHYLENEZENE 20.0 100 100 22 155 METHYLENEZENE 20.0 100 100 22 155 TETRACHLOROETHENE 20.0 100 100 22 155 TETRACHLOROETHENE 20.0 100 46 - 157 STYRENE 20.0 100 46 - 157 STYRENE 20.0 104 64 - 157 STYRENE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 106 71 - 135				
ACETONE BENZENE 20.0 108 37 - 151 BROMODICHLOROMETHANE 20.0 106 35 - 155 BROMOFORM 20.0 107 45 - 169 BROMOMETHANE 20.0 101 25 - 169 BROMOMETHANE 20.0 101 25 - 162 CARBON DISULFIDE 20.0 96 45 - 148 CARBON DISULFIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 100 70 - 140 CHLOROBENZENE 20.0 107 53 - 149 CHLOROFORM 20.0 107 53 - 149 CHLOROMETHANE 20.0 107 53 - 149 CHLOROFORM 20.0 107 59 - 155 CHLOROFORM 20.0 107 59 - 155 CHLOROFORHANE 20.0 99 53 - 149 CHLOROFORHANE 20.0 107 59 - 155 CHLOROFORHANE 20.0 108 49 - 155 CHLOROFORHANE 20.0 108 49 - 155 CHLOROFORHANE 20.0 108 49 - 155 CHLOROFORHANE 20.0 100 54 - 156 CHLOROFORDENE 20.0 100 54 - 156 CHLOROFOROPROPENE 20.0 100 100 54 - 156 CHLOROFOROPROPENE 20.0 100 100 227 CIS-1,3-DICHLOROFOROPENE 20.0 100 100 227 CIS-1,3-DICHLOROPROPENE 20.0 107 37 - 162 CHEARNS-1,3-DICHLOROPROPENE 20.0 100 100 22- 155 CHEARNS-1,3-DICHLOROPROPENE 20.0 100 100 20- 221 CHEARNS-1,3-DICHLOROPROPENE 20.0 100 100 20- 221 CHEARNS-1,3-DICHLOROPROPENE 20.0	ANALYTICAL DILUTION: 1.0	_		
BENZENE BROMODICHLOROMETHANE BROMOFORM 20.0 106 35 - 155 BROMOFORM 20.0 107 45 - 169 BROMOMETHANE 20.0 111 10 - 242 2-BUTANONE (MEK) CARBON DISULFIDE 20.0 101 25 - 162 CARBON DISULFIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 103 37 - 160 CHLOROETHANE 20.0 103 37 - 160 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 11.1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 108 49 - 155 1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,3-DICHLOROFOPENE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROFOPENE 20.0 107 20 107 20 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 107 37 - 165 STYRENE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 TETRACHLOROETHANE 20.0 104 64 - 157 TETRACHLOROETHANE 20.0 104 64 - 157 TETRACHLOROETHANE 20.0 105 71 - 150 TITLITICHLOROETHANE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 107 50 - 221 TRANS-1,1-TRICHLOROETHANE 20.0 104 64 - 148 TOLUENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 106 71 - 157	ACETONE		100	21 - 165
BROMODICHLOROMETHANE 20.0 106 35 - 155 BROMOFORM 20.0 107 45 - 169 BROMOMETHANE 20.0 111 10 - 242 2-BUTANONE (MEK) 20.0 101 25 - 162 CARBON DISULFIDE 20.0 96 45 - 148 CARBON DISULFIDE 20.0 96 45 - 148 CARBON DISULFIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 103 37 - 160 CHLOROFORM 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 107 59 - 155 1,2-DICHLOROFTHANE 20.0 107 59 - 155 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,1-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 100 54 - 156 17.2-DICHLOROETHENE 20.0 100 54 - 156 17.2-DICHLOROPROPENE 20.0 100 54 - 156 17.2-DICHLOROPROPENE 20.0 100 54 - 156 17.2-DICHLOROPROPENE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 22 - 155 METHYLENE CHLORIDE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE MIBK) 20.0 101 46 - 157 STYRENE 20.0 104 64 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 104 64 - 148 TOLURNE 20.0 104 64 - 148 TOLURNE 20.0 104 64 - 148 TOLURNE 20.0 104 64 - 157 TETRACHLOROETHANE 20.0 104 64 - 157 TETRACHLOROETHANE 20.0 104 64 - 148 TOLURNE 20.0 104 64 - 148 TOLURNE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 100 251 100 - 251 O-XYLENE 20.0 109 100 251 100 - 251 O-XYLENE				
BROMOFORM BROMOMETHANE 20.0 111 10 242 2-BUTANONE (MEK) 20.0 101 25 - 162 CARBON DISULFIDE 20.0 96 45 - 148 CARBON TETRACHLORIDE 20.0 100 70 - 140 CHLOROBENZENE 20.0 103 37 - 160 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 HLOROMETHANE 20.0 105 51 - 138 1,1-DICHLOROMETHANE 20.0 120 10 - 273 DIBROMOCHLOROMETHANE 20.0 199 53 - 149 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 54 - 156 1,2-DICHLOROPROPENE 20.0 100 10 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 515 METHYLBENZENE 20.0 101 46 - 157 TETRACHLOROETHENE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 144 TOLUENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 TRICHLOROETHENE 20.0 106 47 - 150 TRICHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 105 71 - 150 TRICHLOROETHENE 20.0 106 47 - 150 TRICHLOROETHENE 20.0 107 37 - 162 2-157 TETRACHLOROETHENE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 105 71 - 150 TRICHLOROETHENE 20.0 106 47 - 150 TRICHLOROETHENE 20.0 109 10 - 221 TRICHLOROETHENE 20.0 109 52 - 162 1,1,2-TRICHLOROETHANE 20.0 109 52 - 162 1,1,2-TRICHLOROETHANE 20.0 109 100 52 - 150 TRICHLOROETHENE 20.0 109 100 251 TOLUENE				
BROMOMETHANE 2 -BUTANONE (MEK) 2 -BUTANONE (MEK) 2 - BUTANONE (MEK) 3 - BUTANONE (MEK) 4 - BUTANONE (MEK) 5				
2-BUTANONE (MEK) CARBON DISULFIDE 20.0 96 45-148 CARBON TETRACHLORIDE 20.0 100 70-140 CHLOROBENZENE 20.0 103 37-160 CHLOROETHANE 20.0 107 53-149 CHLOROFORM 20.0 105 51-138 HLOROMETHANE 20.0 107 53-149 1,1-DICHLOROETHANE 20.0 107 59-155 1,2-DICHLOROETHANE 20.0 107 59-155 1,1-DICHLOROETHENE 20.0 108 49-155 1,1-DICHLOROETHENE 20.0 99 10-234 CIS-1,2-DICHLOROETHENE 20.0 99 10-234 CIS-1,2-DICHLOROETHENE 20.0 100 54-156 TRANS-1,2-DICHLOROETHENE 20.0 100 101 22-TRANS-1,3-DICHLOROETHENE 20.0 107 10-227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10-227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10-227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10-227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 10-227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17-183 ETHYLBENZENE 20.0 101 22-155 METHYLENE CHLORIDE 20.0 101 46-157 TETRACHLOROETHENE 20.0 104 64-148 TOLUENE 1,1,2-TETRACHLOROETHANE 20.0 106 47 150 TRICHLOROETHENE 20.0 106 171 185 TRICHLOROETHENE 20.0 107 107 10-221 TRICHLOROETHENE 20.0 106 171 135 TRICHLOROETHENE 20.0 109 10-251 TRICHLOROETHENE 20.0 109 10-251 TRICHLOROETHENE 20.0 109 10-251 TRICHLOROETHENE 20.0 109 105 71 135				
CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE 20.0 100 70 - 140 CHLOROBENZENE 20.0 107 CHLOROFORM 20.0 107 CHLOROFORM 20.0 105 51 - 138 CHLOROMETHANE 20.0 105 51 - 138 CHLOROMETHANE 20.0 107 DIBROMOCHLOROMETHANE 20.0 108 DIBROMOCHLOROMETHANE 20.0 108 DIBROMOCHLOROMETHANE 20.0 108 DIBROMOCHLOROMETHANE 20.0 109 DICTOR DIC				
CARBON TETRACHLORIDE CHLOROBENZENE 20.0 103 37 - 160 CHLOROETHANE 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 106 51 - 138 HLOROMETHANE 20.0 107 53 - 149 1,1-DICHLOROETHANE 20.0 107 1,1-DICHLOROETHANE 20.0 107 1,1-DICHLOROETHANE 20.0 108 49 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 108 CIS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROFORDENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 100 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 109 17 - 183 ETHYLBENZENE 20.0 107 107 22 - 155 METHYLENE CHLORIDE 20.0 107 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 TETRACHLOROETHENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 105 1,1,1-TRICHLOROETHANE 20.0 106 107 107 107 107 107 107 107 107 107 107	· · · · ·			
CHLOROBENZENE 20.0 103 37 - 160 CHLOROETHANE 20.0 107 53 - 149 CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 120 10 - 273 DIBROMOCHLOROMETHANE 20.0 99 53 - 149 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 102 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 54 - 156 1,2-DICHLOROPROPENE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 107 37 - 162 2-HEXANONE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 101 46 - 157 STYRENE 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 104 64 - 157 TETRACHLOROETHENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251				
CHLOROETHANE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROETHANE CHLOROFOPANE CHLOROFROPANE CHLOROFROPANE CHLOROFROPANE CHLOROFROPANE CHLOROFOPANE				
CHLOROFORM 20.0 105 51 - 138 HLOROMETHANE 20.0 120 10 - 273 DIBROMOCHLOROMETHANE 20.0 99 53 - 149 1,1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHENE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 102 54 - 156 TRANS-1,2-DICHLOROPROPANE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 107 10 - 221 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 101 22 - 155 METHYLENE CHLOROETHANE 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2-TETCHLOROETHANE 20.0 104 64 - 157 TETRACHLOROETHANE 20.0 <t< td=""><td></td><td></td><td></td><td></td></t<>				
HLOROMETHANE				
DIBROMOCHLOROMETHANE 20.0 99 53 - 149				
1,1-DICHLOROETHANE 20.0 107 59 - 155 1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 102 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 106 47 - 150 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLORIDE 20.	§δ			
1,2-DICHLOROETHANE 20.0 108 49 - 155 1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 102 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLOROETHENE 20.0 105 71 - 157 VINYL CHLOROETHENE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135 <td></td> <td></td> <td></td> <td></td>				
1,1-DICHLOROETHENE 20.0 99 10 - 234 CIS-1,2-DICHLOROETHENE 20.0 102				
CIS-1,2-DICHLOROETHENE 20.0 102 54 - 156 TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135				
TRANS-1,2-DICHLOROETHENE 20.0 100 54 - 156 1,2-DICHLOROPROPANE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135				
1,2-DICHLOROPROPANE 20.0 100 10 - 210 CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 0-XYLENE 20.0 106 71 - 135	·			
CIS-1,3-DICHLOROPROPENE 20.0 107 10 - 227 TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	·			
TRANS-1,3-DICHLOROPROPENE 20.0 109 17 - 183 ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	·			
ETHYLBENZENE 20.0 107 37 - 162 2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	·			
2-HEXANONE 20.0 101 22 - 155 METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	· ·			
METHYLENE CHLORIDE 20.0 100 10 - 221 4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135				
4-METHYL-2-PENTANONE (MIBK) 20.0 101 46 - 157 STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135				10 - 221
STYRENE 20.0 109 66 - 144 1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135			101	46 - 157
1,1,2,2-TETRACHLOROETHANE 20.0 102 46 - 157 TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	· · · · · · · · · · · · · · · · · · ·	20.0	109	66 - 144
TETRACHLOROETHENE 20.0 104 64 - 148 TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135		20.0	102	46 - 157
TOLUENE 20.0 106 47 - 150 1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	· · · · ·	20.0	104	64 - 148
1,1,1-TRICHLOROETHANE 20.0 98 52 - 162 1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135		20.0	106	47 - 150
1,1,2-TRICHLOROETHANE 20.0 110 52 - 150 TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135		20.0	98	
TRICHLOROETHENE 20.0 105 71 - 157 VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135		20.0	110	52 - 150
VINYL CHLORIDE 20.0 109 10 - 251 O-XYLENE 20.0 106 71 - 135	• •	20.0	105	
O-XYLENE 20.0 106 71 - 135		20.0	109	10 - 251
		20.0	106	
		40.0	105	71 - 135

VOLATILE ORGANICS METHOD: 8260B TCL

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 473642	ANALYT	ICAL RUN # :	65894
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 06/21/01			
ANALYTICAL DILUTION: 1.0			
	" مي		
ACETONE	20.0	116	21 - 165
BENZENE	20.0	109	37 - 151
BROMODICHLOROMETHANE	20.0	115	35 - 155
BROMOFORM	20.0	107	45 - 169
BROMOMETHANE	20.0	126	10 - 242
2-BUTANONE (MEK)	20.0	107	25 - 162
CARBON DISULFIDE	20.0	105	45 - 148
CARBON TETRACHLORIDE	20.0	92	70 - 140
CHLOROBENZENE	20.0	108	37 - 160
CHLOROETHANE	20.0	114	53 - 149
CHLOROFORM	20.0	110	51 - 138
CHLOROMETHANE	20.0	127	10 - 273
_DIBROMOCHLOROMETHANE	20.0	104	53 - 149
1,1-DICHLOROETHANE	20.0	114	59 - 155
1,2-DICHLOROETHANE	20.0	113	49 - 155
1,1-DICHLOROETHENE	20.0	94	10 - 234
CIS-1,2-DICHLOROETHENE	20.0	110	54 - 156
TRANS-1,2-DICHLOROETHENE	20.0	106	54 - 156
1,2-DICHLOROPROPANE	20.0	108	10 - 210
CIS-1,3-DICHLOROPROPENE	20.0	111	10 - 227
TRANS-1,3-DICHLOROPROPENE	20.0	115	17 - 183
ETHYLBENZENE	20.0	109	37 - 162
2-HEXANONE	20.0	107 ·	22 - 155
METHYLENE CHLORIDE	20.0	107	10 - 221
4-METHYL-2-PENTANONE (MIBK)	20.0	104	46 - 157
STYRENE	20.0	108	66 - 144
1,1,2,2-TETRACHLOROETHANE	20.0	102	46 - 157
TETRACHLOROETHENE	20.0	101	64 - 148
TOLUENE	20.0	112	47 - 150
1,1,1-TRICHLOROETHANE	20.0	95	52 - 162
1,1,2-TRICHLOROETHANE	20.0	110	52 - 150
TRICHLOROETHENE	20.0	104	71 - 157
VINYL CHLORIDE	20.0	116.	10 - 251
O-XYLENE	20.0	103	71 - 135
M+P-XYLENE	40.0	103	71 - 135

Attachment 3

Groundwater Sampling Logs

Well No.	MW94-1B			Site Name	Little Britain Ro	ad Service Cente	er	
Key No.				Sampling Person				
Date/Time	11/29/2000			Weather	Partly cloudy, mid 4		V	
Sample ID				PID Background				
Duplicate Sample ID	NA .			PID Well	NA .			
MS/MSD ID	NA							
				-				
WELL INFORMATIO	М			×	,			
			TIC	тос	BGL	Į		
Reference Point Mark	ked on Casing			Top of outer casing	-			
Well Diameter				3.78 inches				
Well Depth	7,			24.5 feet				
Water Table Depth				8.45 feet		ł		
Depth to Casing Below	w Grade			0.33 feet		ļ		
Slug Test?	N	-	Redevelop? (Y/N) N	_				
WELL WATER INFO	RMATION	,						
Length of Water Colu	mn		16.05 feet	1				
Volume of Water in W			9.6 gailons	4				
Pumping Rate of Pum		ар	prox 0.3 gpm	4				
			NA	4				
Minutes of Pumping			10 minutes	-{				
Number of Balls			NA	_				
EVACUATION INFO	RMATION							
Volume of Water Rem		30		ation Method: Bailer () Grund		taltic Pump (X)	(Pump & dedicated to	ibing]
Did well go dry?	N		Pumpi	ng Rate	mL/min			
	Time	Water Level (ft)	Temperature (celclus)	pH	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)	Gallons removed
Initial	1750	8.45						
1	1805	11	12	5.9	0.9	64	5.2	5
2	1830	11	12	6	0.9	10	4.8	10
3	1855	11	12	5.9	!!	10	5.2	15
4	1910	11	12	5.8	0.9	2	5.5	20
5	1925	. 11	12	6.5	0.9	3	6.2	25
- 6	1940	11	12	6.6	0.9	33	6.4	30
8								
9								
10		*						
11								
12 Final								
rna			L	1	<u> </u>			
MISCELLANEOUS O	BSERVATIONS/PROBLEMS	3	Slight odor.					
	CAMPLE DECTINATION							
	SAMPLE DESTINATION Analysis Requested	TCL VOCs	Method 8260					
	Analysis Requested	TCL VOCs	Method 8260					
	Analysis Requested Laboratory	Columbia Analytical	Method 8260					
	Analysis Requested Laboratory Via	Columbia Analytical Courier	Method 8260					
	Analysis Requested Laboratory Via	Columbia Analytical	Method 5260					
Field Sampling Coordi	Analysis Requested Laboratory Via Sent By	Columbia Analytical Courier	Method 8250					
Notes	Analysis Requested Laboratory Via Sent By	Columbia Analytical Courier TMH/NEG	Method 8260	G = Develop Continued			SI = Simpler4 :::il	
	Analysis Requested Laboratory Via Sent By	Columbia Analytical Courier	Method 8260	C = Degrees Centigrad mS/cm = MillStemens	je. per centimeler.		SU = Standard unit. NTU = Naphalometric Turbins see itse	dity Units
Notes: TIC = Top of inner casing.	Analysis Requested Laboratory Via Sent By	Columbia Analytical Courier TMH/NEG	Method 8260	C = Degrees Centigred mS/cm = MilliSiemens	le. per centimeter.		SU = Stendard unit. NTU = Naphadometric Turbi mg/L = Milligrama per liter	dity Units

TC = Top of inner casing. BGL = Below ground level. C = Degrees Centionade SLL = Standard unit					GROUND-WATE	R SAMPLING LOG	į		
Service Serv	Well No.	MW94-5			Site Name	Little Britain R	oad Service Cent	ter	
Description 1,000,000 1,	Key No.				Sampling Perso				
POR BRADGOUND ME MICHAEL MIC	Date/Time	11/30/2000					···		
MANISO	Sample ID								
MOLLAND FOR MATCH NO	Duplicate Sample ID) NA							
T.C. TOC. RGL	MS/MSD ID	NA			_				
Top of PIC Market on Casing Top of PIC Market Description Top of PIC Top of PIC Market Description Top of PIC Top of PIC Market Description Top of PIC Market Description Top of PIC Top of PIC Market Description Top of PIC Top	WELL INFORMATION	ON							
Top of PUC Wat Dames			Military or other	тіс	TOC	BGL	7		
March	Reference Point Mar	rked on Casing					1		
March	Well Diameter						1		
Depth to Casing Ballow Grade	Weil Depth			18 feet			1		
Sup Test N	Water Table Depth			6.6 feet			1		
MEDIT MATERINFORMATION	Depth to Casing Belo	ow Grade		0.57 feet]		
Legic of Vision in Visio	Slug Test?	N	_	Redevelop? (Y/N) N	_				
Supplies	WELL WATER INFO	DRMATION			_				
Pumping Rate of Pumping	Length of Water Colu	ener .		11.4 feet]				
Manufact of Baller NA	Volume of Water in V	Yell .		1.9 gallons					
Mumber of Base		mp .	ару	prox 0.15 gpm					
NA		7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		NA NA					
EVACUATION INFORMATION Volume (Did Mater Removed from Well 7.5 gallons Evacuation Method: Baller () Grundos Pump () Peristalic Pump (X) Pump & dedicated being) Pump & dedicated being methods Pump () Pump & dedicated being) Pump & dedicated being methods Pump () Pump & dedicated being methods					_				
Volume Mare Removed from Well 7.5 gallons Evacuation Method Basier) Grundtos Pump () Peristatic Pump (X)	Number of Balls			NA	J				
Initial	Did well go dry?		Water Level (ft)		Facilities		Turbilet ATT I		
1	inital				, P11	Spc (instan)	Turbidity (NTO)	DO (mg/L)	Gallons removed
2 MS 6.75 11 7 0.69 2 2.9 7.5 3				11	7	0.69	NR	18	5
3	2	845	6.75	11	7				
SAMPLE DESTINATION Analysis Requested TCL VOCs Method 5000 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG BOL = Below ground level gram = Galdens per minute SCAMPLE DESTINATION Analysis Requested TCL VOCs Method 5000 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG SOURCE Top of other camp, GC = Degrees Certifograte MSCENT Mill Semens per continuater NTU = Représentation to Institute of the supplications of Turbally, Units	3								
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4								
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5		· · · · · · · · · · · · · · · · · · ·						
8 9 10 10 11 11 11 12 11	6								
9 10 10 11 11 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	7								
10 11 12 Final MISCELLANEOUS OBSERVATIONS/PROBLEMS SAMPLE DESTINATION Analysis Requested TCL VOCs Method 8280 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG Field Sampling Coordinator Notes 10 = 10 of Innex cesting, BOL = Balow ground level, gram = Settleman Series SU = Standard unit NOTE = 10 of Innex cesting, BOL = Balow ground level, gram = Galdons per minute SU = Standard unit NTU = Represendence Turbidity Units	8								
11									
Final MISCELLANEOUS OBSERVATIONS/PROBLEMS SAMPLE DESTINATION Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG Field Sampling Coordinator Notes TC = Top of Inner cesting. BGL = Below ground level. GC = Top of outer casting. BGL = Below ground level. MS/cm = Mill/Signmens per centimeter. NTU = Neighardenditire Turbidity Units									***************************************
Final MISCELLANEOUS OBSERVATIONS/PROBLEMS SAMPLE DESTINATION Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG Field Sampling Coordinator Notes BGL = Below ground level. gm = Gelions per minute BGL = Degrees Centigrade. mS/cm = Mis/Semens per centimeter. SU = Standard unit NTI = Nephelometric Turbidity Units									***
SAMPLE DESTINATION Analysis Requested TCL VOCS Method 8260 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG Field Sampling Coordinator Notes BGL = Below ground level CC= Top of order casing. GD= Gelons per minute BGL = Below ground level BGC = Top of outer casing. GD= Gelons per minute BGC = September Survey Standard unit NTU = Nephelometric Turbidity Units									**
SAMPLE DESTINATION Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: 105 = Top of Inner casing; Sel = Below ground level: gm = Gallons per minute	Final		*******						
Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: 1C = Top of Inner casing: Co = Top of outer casing: gm = Gallons per minute BGL = Below ground level: gm = Gallons per minute mScm = Malli Stemens per centimeter NTU = Neigheliometric Turbidity Units	MISCELLANEOUS O	BSERVATIONS/PROBLEMS	i						
Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: 1C = Top of Inner casing: Co = Top of outer casing: gm = Gallons per minute BGL = Below ground level: gm = Gallons per minute mScm = Malli Stemens per centimeter NTU = Neigheliometric Turbidity Units									
Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: 1C = Top of Inner casing: Co = Top of outer casing: gm = Gallons per minute. BGL = Below ground level. gm = Gallons per minute. BC = Degrees Centigrade mS/cm = Malli Stemens per centimeter NTU = Neigheiometric Turbidity Units					7.112				
Analysis Requested TCL VOCs Method 8260 Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: 1C = Top of Inner casing: Co = Top of outer casing: gm = Gallons per minute. BGL = Below ground level. gm = Gallons per minute. BC = Degrees Centigrade mS/cm = Malli Stemens per centimeter NTU = Neigheiometric Turbidity Units									
Laboratory Columbia Analytical Via Counier Sent By TMH/NEG Field Sampling Coordinator Notes: ICT of yor of inner casing. BGL = Below ground level. C = Degrees Centigrade. MSICH = Malli Stemens per centimeter NTU = Neigheitometric Turbidity Units			TCL VOCs	Mathed 8360					
Via Courier Sent By TMH/NEG Field Sampling Coordinator Notes: TC□ Top of Inner casing. BGL = Below ground level: C = Degrees Centigrade SU = Standard unit TC□ Top of outer casing. SU = Standard unit NTU = Neigheitometric Turbidity Units		-		Method 6260		=			
Sent By TMH/NEG Field Sampling Coordinator Actives IC = Top of Inner casing. C = Degrees Centigrade SU = Standard unit C = Top of outer casing. SU = Standard unit NTU = Nephelometric Turbidity Units		• -				-			
Field Sampling Coordinator Notes: C = Degrees Centigrade		-				-			
Notes: Notes: Note:		33,4 by_				•			
TC = Top of inner cealing. BGL = Below ground level. C = Degrees Centigrade. SU ≈ Standard unit. CC = Top of outer casing. BGL = Below ground level. CT = Degrees Centigrade. SU ≈ Standard unit. NTU ≈ Nephelometric Turbidity Units	Field Sampling Coordi	inator							
TOC = Top of outer casing. gpm = Gallons per minute. mS/cm = Milli Slemens per certificater. NTU = Nephelometric Turbidity Units	Notes:		SGI = Bairon mound in1		C = D 0				
	TOC = Top of outer casing. TOC = Top of outer casing.	\$	pm = Gallons per minute.		C = Degrees Centigrad mS/cm = MilliSlemens	re. per centimeter.		NTU = Nephelometric Turbid	lity Units

Initial 1530 9.9					GROUND-WATER	SAMPLING LOG			
Debt Time	Well No.	MW96-6			Site Name	Little Britain Ro	oad Service Cente	er	
PID Background Nat	Key No.	See notes below			Sampling Person	nel NEG/TM	н		
Pro	Date/Time	11/29/2000			Weather	Partly cloudy, mid 4	0s F		
MSMSD D NA	Sample ID				PID Background	NA .			
TIC TOC BGL	Duplicate Sample ID) NA			PID Well	NA			
Time Make Clave (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time	MS/MSD ID	NA .			_				
Time Make Clave (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time Make Level (t) Temporature (calculus) Time									
Reference Point Marked on Casing Top of PVC	WELL INFORMATION	ON				I de la Reseaución	1		
Med Doarneleer	Reference Deint Ma	ted on Code			TOC	BGL			
Water Table Depth 30.5 feet 9.9 feet		ked on Casing					1		
Name of Balts Name of Water Removed from Well Time Water Level (ft) Temperature (celclus) Pumping Rate Name of Water Removed from Well 150 9.9 126 5.14 0.577 11 4.8 2.5 1.2 1.0 1.5						 	1		
Pepth to Casing Below Grade		· · · · · · · · · · · · · · · · · · ·					1		
Sing Test? N		ow Grade					1		
WELL WATER INFORMATION Length of Water Column 20.6 feet Volume of Baller 3.4 gallons Number of Balls NA Number of Balls NA EVACUATION INFORMATION Yolume of Salier NA Number of Balls NA EVACUATION INFORMATION Yolume of Water Removed from Well 7.5 gallons Evacuation Method: Baller () Grundfos Pump () Peristaltic Pump (X) [Pump & dedicated tubing] Did well go dry? Y N Pumping Rate SpC (ms/cm) Turbidity (NTU) DO (mgd.) Gallons removed removed from Well Initial 1535 9.9 PH SpC (ms/cm) Turbidity (NTU) DO (mgd.) Gallons removed from Yell 1 1546 21.9 12.6 5.14 0.577 11 4.8 2.5 2 1500 22.5 12.1 6.3 0.547 10 5.71 5 3 1616 21.95 12.3 6.25 0.521 10 9.61 7 5 1656 21.5	Shiri Teet?	N					•		
Ength of Water Column 20.6 feet 3.4 gallons 3.4 gallons 3.4 gallons 3.4 gallons 4.5 gallons 4.5 gallons 5.5 ga	-		-	Redevelop? (Y/N) N	-				
Volume of Water in Well 3.4 gallons approx 0.1 gpm approx 0.1 gpm yolume of Baller NA NA Minutes of Pumping 80 minutes NA	11.1	The state of the s		20.00	1				
Pumping Rate of Pump					-				
Volume of Baller NA Minutes of Pumping 80 minutes Number of Balls Pumping Rate Grundfos Pump () Peristaltic Pump (X) [Pump & dedicated tubing] Did well go dry? Y N Time Waler Level (ft) Temperature (celclus) pH SpC (ms/cm) Tubidity (NTU) DO (mg/L) Gaelions removed Initial 1530 9.9 12.6 5.14 0.577 11 4.8 2.5 2 1600 22.5 12.1 6.3 0.547 10 5.71 5 3 1615 21.95 12.3 6.31 0.528 10 2.43 6 4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1655 21.5 12.5 6.31 0.515 10					1				
Minutes of Pumping 80 minutes NA	Calaborate Company of the Calaborate Company		ар		1				
EVACUATION INFORMATION FORMATION Form					1				
Volume of Water Removed from Well Did well go dry? 7.5 gallons Evacuation Method: Pumping Rate Bailer () Grundfos Pump () Peristaltic Pump (X) mL/min Pumping & dedicated tubing Pumping Rate Pumping Rate mL/min DO (mg/L) Gailons removed from Well (NTU) DO (mg/L)	Number of Bails			NA]				
Initial 1530 9.9 12.6 5.14 0.577 11 4.8 2.5 2 1600 22.5 12.1 6.3 0.547 10 5.71 5 3 1615 21.95 12 6.31 0.528 10 2.43 6 4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1635 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7 <	Did well go dry?			M. 1801 - 100 M. 1804 M					
1 1545 21.9 12.6 5.14 0.577 11 4.8 2.5 2 1600 22.5 12.1 6.3 0.547 10 5.71 5 3 1616 21.95 12 6.31 0.528 10 2.43 6 4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1655 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7 8 9 10	Initial			Temperature (celclus)	<u> </u>	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)	Gallons removed
2 1600 22.5 12.1 6.3 0.547 10 5.71 5 3 1616 21.95 12 6.31 0.528 10 2.43 6 4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1655 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7 8 9 10		1		12.6	5.14	0.577	44	4.0	25
3 1615 21.95 12 6.31 0.528 10 2.43 6 4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1655 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7									
4 1635 21.95 12.3 6.25 0.521 10 9.61 7 5 1655 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7 8 9 9 10									
5 1655 21.5 12.5 6.31 0.515 10 4.12 7.5 6 7.5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4								
6 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9		1655							
8 9 10	6								
0 10	7								
	8			N					
	9					No. 1			
	10								
	11								
Final Control	Final								
		Laboratory Via	Columbia Analytical Courier	Method 8260		.			
SAMPLE DESTINATION Analysis Requested TCL VOCs Method 8250 Laboratory Columbia Analytical Via Courier Sent By TMH/NEG	Field Sampling Coord	linator							
Analysis Requested TCL VOCS Method 8250 Laboratory Columbia Analytical Via Courier	Notes: TIC ≈ Top of inner casing. TOC ≈ Top of outer casing		BGL = Below ground level. gpm = Gallons per minute.		C = Degrees Centigrade mS/cm = MilliSiemens ;	e. oer centimeter.		SU ≈ Standard unit. NTU = Nephelometric Turbi mg/L = Milligrams per liter.	dity Units

				GROUND-WATER	R SAMPLING LOG			
Well No.	MW96-7B			Site Name	Little Britain Ro	ad Service Cent	er	
Key No.				Sampling Person				
Date/Time	11/30/2000			Weather	Cloudy, low 30s F			
Sample ID				PID Background			·	
Duplicate Sample ID) NA			PID Well	NA .			
MS/MSD ID	NA							···
WELL INFORMATION	ON							
			пс	тос	BGL	1		
Reference Point Ma	rked on Casing			Top of outer casing	BGL .	1		
Well Diameter				3.78 inches				
Well Depth				18 feet		1		
Water Table Depth				9.35 feet		1		
Depth to Casing Bek	ow Grade			0 feet		1		
Slug Test?	N		Redevelop? (Y/N) N		·····	•		
WELL WATER INFO		-	Redevelop (1714) 14	-				
Length of Water Col		1	0.05.6	7				
Volume of Water in \			8.65 feet 5.2 gallons	-				
Pumping Rate of Pur								
Volume of Bailer		ару	orox 0.3 gpm NA	-				
Minutes of Pumping			55 minutes					
Number of Bails			NA					
EVACUATION INFO Volume of Water Rei Did well go dry?		15		ation Method: Bailer () Grundf ng Rate	fos Pump () Perist mL/min	altic Pump (X)	[Pump & dedicated to	ubing]
	Time	Water Level (fl)	Temperature (celcius)	рН	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)	Gallons removed
Initial	1545	9.35				·		
1	1600	9.45	NR	5.8	62.1	10	11.6	5
2	1820	9.45	NR	5.4	39	10	5.4	10
3	1640	9.45	NR	5.4	40.7	10	9.8	15
4								
5								
. 8								
7							<u> </u>	
. 8								
9 10								
11								-/
12								
Final					40			
MISCELLANEOUS C	DBSERVATIONS/PROBLEMS	3	Horiba readings for temperatu	re and DO were erratic. Possible	meter damage due to	use in temporary wel	water measurements.	
	•	TCL VOCs	Method 8260					
		Columbia Analytical						
	_	Courier TMH/NEG						
ield Sampling Coord	inator							
lotes: IC = Top of Inner casing. OC = Top of outer casing.		BGL = Below ground level. gpm = Gallons per minute.		C = Degrees Centigrade mS/cm = MilliSiemens p	er centimeter.		SU = Standard unit. NTU = Nephelometric Turbi mg/L = Milligrams per liter	dity Units

Well No.	MW94-1E	3	_			Site Name	Little Britain R	oad Service (Center
Key No.						Sampling Person			
Date/Time	06/12/2001					Weather			
Sample ID						PID Background	0.0 pom		
Duplicate Sample ID	NA					PID Well	0.6 ppm		
MS/MSD ID	NA								
WELL INFORMATIO		. 3.6.e.v				T			
			71	ic	тос	BGL			
Reference Point Mark	red on Casing	1250.01			Top of outer casing				
Well Diameter					3.78 inches				
Well Depth		·			24.5 feet				
Water Table Depth Depth to Casing Belo	w Grado		 		5.40 feet				
	w Grade				0.33 feet				
Slug Test?	N		_	Redevelop? (Y/N)	N				
WELL WATER INFO	RMATION	1			ì				
Length of Water Colu			19.10 feet						
Volume of Water in W		<u> </u>							
Pumping Rate of Pum	IP .		150-200 ml/min						
Volume of Bailer			NA						
Minutes of Pumping Number of Bails			36 minutes NA						
NOMEST COSCIS	Constitu	·	140						
Volume of Water Rem Did well go dry?	N		liters		Pumping Rate	150-200	mL/min	islanic Fump (X) [Pump & dedicated t
	Time	Pumping Rate (ml/min)	Water Level (ft)	Temperature (co	elclus)	рН	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)
Initial	0715		5.4			· · · · · · · · · · · · · · · · · · ·			
	0751	1	5.58	13.6		7.11	1.64	484	0.94
3	0755		5.58	13.3		7.16	1.63	419	0.11
4	0801 0805		5.6 5.6	13.1		7.09	1.58	75.4	1.44
5	0808		5.61	13.2 13.1		7.06	1.59	56.4	0.7
6	0811	180	5.6	13.2		7.05 7.06	1.59 1.59	50.6	0.17
7	0814		5.6	13.2		7.07	1.59	41.2 41.4	0.16
8	0817		5.6	13.2		7.06	1.59	35,3	0.08
9	0820		5.6	13.2		7.09	1.6	28.3	0.03
10	0823	180	5.6	13.2		7.09	1.6	30.9	0.05
11	0827	180	5.6	13.3		7.14	1.6	28	0.01
12									
Final	0840		5.41						
MISCELLANEOUS OI	BSERVATIONS/	/PROBLEMS							

······································							**		
:	SAMPLE DESTI								
Anal	ysis Requested		TCL VOCs	Method 8260					
	Laboratory	,	Columbia Analytical						
	Via	•	Fed Ex						
	Sent By		TMH/DGB						
ield Sampling Coordin	nator								
Notes: FIC = Top of inner casing. FOC = Top of outer casing.			BGL = Below ground level gpm = Gallons per minute		1	C = Degrees Centigra mS/cm = MilfiSiemens	de. per centimeter.		SU = Standard unit. NTU = Nephelometric Tu

GW94-1BN.WB2

Page 1 of 1

Well No.	MW94-5	•			Site Name	Little Britain R	oad Service C	Center
Key No.					Sampling Person			
Date/Time	06/12/2001				Weather			
Sample iD					PID Background	0.0 ppm		
Duplicate Sample ID	NA				PID Well	0.0 ppm	 	· · · · · · · · · · · · · · · · · · ·
MS/MSD ID	NA				7 10 17611	о.о рри		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
WELL INFORMATIO	N						_	
				TIC	тос	BGL		
Reference Point Mart	ked on Casing			Top of PVC				
Well Diameter	- 1.5 - 1.1			2 Inch			1	
Well Depth				18 feet			4	
Water Table Depth				5.74 feet				
Depth to Casing Belo	w Grade			0.57 feet		<u> </u>	j	
Slug Test?	N		_	Redevelop? (Y/N) N	<u> </u>			
WELL WATER INFO	RMATION							
Length of Water Colu	T 20 TT 12 VALUE		12.26 feet					
Volume of Water in V								
Pumping Rate of Pun	1 p		220 ml/min					
Volume of Bailer			NA					
Minutes of Pumping			22 minutes					
Number of Bails			NA					
Did well go dry?	N	Pumping Rate (ml/min)			Pumping Rate 220			
1-10-1	Time	(mirmin)	Water Level (ft)	Temperature (celo	lus) pH	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)
Initial	1205	220	5.74	40.0		0.000	40.7	4.55
2	1210	220 220	5.74	12.3	6.94	0.868	13.7	1.55
3	1214	220	5.74 5.74	12.1	6.78	0.865 0.866	9.6	1.65
	1217	220	5.74	11.9	6.55 6.48	0.866	13.1	0.19 0.13
5	1223	220	5.74	12.3	6.46	0.864	14.5	0.13
6	1226	220	5.75	12.4	6.44	0.863	20.4	0.06
7	1229	220	5.75	12.5	6.46	0.863	23.4	0.06
8	1232		5.75	12.7	6.46	0.863	22.1	0.05
9	1202			12.7	0.40	0.000		0.00
10								
41								
12								
Final	1239		5.75					
MISCELLANEOUS O	SAMPLE DESTI			in the second se				
	SAMPLE DESTI		TCL VOCs	Method 8260				
Alie	Laboratory		Columbia Analytical					
	Via		Fed Ex					
	Sent By		TMH/DGB					
	Jeni by		, im regu					
Field Sampling Coord	inator							
Notes: TIC = Top of inner casing. TOC = Top of outer casing) .		BGL = Below ground leve gpm = Gallons per minute		C = Degrees Centigra mS/cm = MilliSiemens			SU = Standard unit. NTU = Nephelometric Tu mg/L = Milligrams per lite

GW94-5N.WB2 Page 1 of 1 09-Jul-2001

Well No.	MW96-6					Site Name	Little Britain Ro	oad Service (Center
Key No.				······································		Sampling Persor			7011101
Date/Time	06/12/2001				*****	Weather	114111111111111111111111111111111111111	<u></u>	
Sample ID						PID Background	0.0 ppm		
Duplicate Sample ID	NA NA	***************************************			***************************************	PID Well	110 ppm		
MS/MSD ID	NA					TID WEII	4 4	4	
WELL INFORMATIO)N								
				TIC		тос	BGL		
Reference Point Mar	ked on Casing			Top of PVC]	
Well Diameter				2 inches					
Well Depth				31.04 feet]	
Water Table Depth				9.93 feet					
Depth to Casing Belo	w Grade			0.36 feet]	
Slug Test?	N			Redevelop? (Y/N) N	1				
WELL WATER INFO	RMATION		_						
Length of Water Colu	E		21.11 feet						
Volume of Water in V									
Pumping Rate of Pur			50-110 ml/min						
Volume of Bailer			NA NA						
Minutes of Pumping			39 minutes						
Number of Bails			NA						
Did well go dry?	N Time	Pumping Rate (ml/min)	Water Level (fl)	Temperature (celo	Pumping Rate	50-110 pH	mL/min	Turbidity (NTU)	DO (mg/L)
Initial	0858		9.93						
1	0904	110	11.1	15.1		7.16	0.7	. 12	1.53
2	0913	80	11.84	16.1		6.85	0.696	9.1	0.26
3	0916	60	11.95	16.3		6.8	0.696	10.3	0.23
4	0920	50	12.02	16.7		6.77	0.694	10.7	0.26
- 5	0924	50	12.08	17.2		6.78	0.692	11.3	0.24
6	0928	50	12.14	17.6		6.81	0.693	12.2	0.22
7	0932	50	12.18	18.1		6.89	0.694	13.8	0.22
8	0936		12.25	18.4		6.99	0.695	12.6	0.22
9	0940		12.32	18.5		7.07	0.7	14.2	0.22
10	0943	50	12.35	18.5		7.11	0.701	15.5	0.23
11 42.64 (21.54)								· · · · · · · · · · · · · · · · · · ·	
12			40.40						
Final	0958		12.19						
	SAMPLE DESTI	NATION	TCL VOCs	Method 8280					
	Laboratory		Columbia Analytical	**************************************			-		
	Via		Fed Ex				-		
	Sent By		TMH/DGB				-		
	55 5	•					•		
Field Sampling Coord	inator			- · · · · · · · · · · · · · · · · · · ·					
Notes: TIC = Top of inner casing. TOC = Top of outer casing) .		BGL = Below ground leve gpm = Gallons per minute			C = Degrees Centigra mS/cm = MilliSiemen			SU = Standard unit. NTU = Nephelometric Tu mg/L = Milligrams per lite

GW96-8N.WB2 Page 1 of 1 09-Jul-2001

Well No.	MW96-7E	3			Site Name	Little Britain R	toad Service C	enter
Key No.					Sampling Person			
Date/Time	06/12/2001				Weather			
Sample ID					PID Background	0.0 ppm		
Duplicate Sample ID	NA				PID Well	0.0 ppm	1700 801	
MS/MSD ID	NA						-	
					_			
WELL INFORMATIO	N			пс	TOC	BGL		
Reference Point Mark	ed on Casing	**************************************		100	Top of outer casing	BGL	1	
Well Diameter					3.78 inches			
Well Depth			****		18 feet		·	
Water Table Depth					8.0 feet		1	
Depth to Casing Belo	w Grade				0 feet]	
Slug Test?	N			Redevelop? (Y/N) N			_	
WELL WATER INFO			•		_			
Length of Water Colu			10 feet	***				
Volume of Water in W								
Pumping Rate of Pum	p .		180-220 ml/min					
Volume of Bailer			NA					
Minutes of Pumping			30 minutes					
Number of Bails			NA					
	Time	Pumping Rate (ml/min)	Water Level (ft)	Temperature (celcius)	PH	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)
Initial	1005	1	8			-		
######################################	1018		8.04	17	6.8	0.877	25.6	2.8
2	1022	200	8.04	17.1	6.75	0.897	16.7	1.49
3	1026	200	8.04	17	6.55	0.93	10.3	0.74
	1029	200	8.04 8.04	16.9	6.45	0.932	9.8	0.41
6	1035	200	8.04	16.8	6.39	0.925	14.1	0.22
7	1038	220	8.05	16.9	6.38	0.924	15.7	0.16
В	1041	220	8.05	16.9	6.39	0.919	16	0.14
9	1045	220	8.05	16.9	6.42	0.917	16.9	0.11
10	1048	220	8.05	17.1	6.45	0.917	18	0.1
12								
Final	1056		8.02					
		/PROBLEMS	8.02					
	SAMPLE DESTI		TCL VOCs	Method 8260				
Ana	lysis Requested	•		MISTRIBU OZOU	 -	-		
	Laboratory		Columbia Analytical			-		
	Via Cont Bu	•	Fed Ex					
	Sent By		TMH/DGB			-		
Field Sampling Coordi	nator					=		
ion cemping coord	100							
Notes: FIC = Top of inner casing. FOC = Top of outer casing	ı.		BGL = Below ground leve gpm = Gallons per minut	el. e.	C = Degrees Centigra mS/cm = MilliSiemen	ade. is per centimeter.	S	SU = Standard unit. ITU = Nephelometric Tu

GW96-7BN.WB2

Page 1 of 1

NTU = Nephelometric Tu mg/L = Milligrams per lite

Key No. Date/Time 06/1 Sample ID Duplicate Sample ID NA MS/MSD ID NA WELL INFORMATION	11/2001							
ample ID uplicate Sample ID NA IS/MSD ID NA	11/2001				Sampling Person	nnel TMH/DG	BB	
uplicate Sample ID NA IS/MSD ID NA					Weather			
S/MSD ID NA					PID Background	0.0 ppm		
					PID Weil	NA		
ELL INFORMATION					_			
			ar iya Jawa	тіс	тос	BGL	8 8	
eference Point Marked or	n Casing						4	
ell Diameter								
ell Depth				10.62 feet	 		4	
ater Table Depth				7.77 feet			-	
epth to Casing Below Gra	ade			<u> </u>		<u> </u>	J	
ug Test? N				Redevelop? (Y/N) N	_			
ELL WATER INFORMA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
ngth of Water Column		•	2.85 feet					
www.co.water in Well			E0.00					
imping Rate of Pump Jume of Bailer			50-80 ml/min NA					
nume of baller inutes of Pumping			67 minutes					
ımber of Bails			NA	**************************************				
		Pumping Rate (ml/mln)						
		(mi/min)	Water Level (ft)	Temperature (celcius)	pH	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)
Initial 1	1648 1701	80	7.77 8.3	17	6.69	1.86	6	4 24
	1704	80	8.14	17			1	1.31
AND THE RESERVE	1704	- 00				1 92	1 8 1	
2	1709	80			6.63	1.82	6.7	1.19
3	1709 1713	80 80	8.22	17	6.5	1.81	6.7	1.23
4	1713	80	8.22 8.28		6.5 6.42	1.81	6.7 15.6	1.23
3			8.22	17 17	6.5	1.81	6.7	1.23
3 4 5	1713 1717	80 80	8.22 8.28 8.36	17 17 17	6.5 6.42 6.37	1.81 1.8 1.81	6.7 15.6 15.2	1.23 1.17 1.29
3 4 5 6	1713 1717 1721	80 80 60	8.22 8.28 8.36 8.34	17 17 17 17	6.5 6.42 6.37 6.37	1.81 1.8 1.81 1.82	6.7 15.6 15.2 21.2	1.23 1.17 1.29 1.35
3 4 5 6 7 7	1713 1717 1721 1741	80 80 60 50	8.22 8.28 8.36 8.34 8.3	17 17 17 17 17 18.2	6.5 6.42 6.37 6.37 6.64	1.81 1.8 1.81 1.82 1.91	6.7 15.6 15.2 21.2 25.8	1.23 1.17 1.29 1.35 2.71
3 4 5 6 6 7 7 8 8	1713 1717 1721 1741 1745	80 80 60 50	8.22 8.28 8.36 8.34 8.3 8.3	17 17 17 17 17 18.2 18.2	6.5 6.42 6.37 6.37 6.64 6.62	1.81 1.8 1.81 1.82 1.91	6.7 15.6 15.2 21.2 25.8 25.1	1.23 1.17 1.29 1.35 2.71 1.52
3 4 5 6 7 7 8 9 9	1713 1717 1721 1741 1745 1750	80 80 60 50 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32	17 17 17 17 18.2 18.2 18.2 18.1	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99
3 4 5 6 6 6 7 7 8 8 9 10 11 11 12	1713 1717 1721 1741 1745 1750 1753 1756 1759	80 80 60 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32 8.32	17 17 17 17 18.2 18.2 18.2 18.1 18.1	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61 6.6	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91 1.91 1.9	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1 5.6	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99
3 4 5 6 7 7 8 9 9 10 11 12 13	1713 1717 1721 1741 1745 1750 1753 1756 1759	80 80 60 50 50 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32 8.32 8.34	17 17 17 17 18.2 18.2 18.2 18.1 18.1 18.1	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61 6.6 6.6	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91 1.91 1.89 1.88	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1 5.6	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99 0.91 0.83
3 4 5 6 7 7 7 7 8 8 9 10 11 12 13	1713 1717 1721 1741 1745 1750 1753 1756 1759 1802	80 80 60 50 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32 8.32 8.34 8.35	17 17 17 17 18.2 18.2 18.2 18.1 18.1 18.1 18.1 17.8	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61 6.6 6.6 6.6	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91 1.98 1.89 1.88	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1 5.6 4.8	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99 0.91
3 4 5 7 7	1713 1717 1721 1741 1745 1750	80 80 60 50	8.22 8.28 8.36 8.34 8.3 8.3	17 17 17 17 18.2 18.2 18.2	6.5 6.42 6.37 6.37 6.64 6.62 6.61	1.81 1.8 1.81 1.82 1.91 1.91	6.7 15.6 15.2 21.2 25.8 25.1 23.3	1.23 1.17 1.29 1.35 2.71 1.52
3 4 5 6 7 7 7 7 7 10 11 12 12	1713 1717 1721 1741 1745 1750 1753 1756 1759	80 80 60 50 50 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32 8.32 8.34	17 17 17 17 18.2 18.2 18.2 18.1 18.1 18.1	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61 6.6 6.6	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91 1.91 1.89 1.88	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1 5.6	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99 0.91
3 4 5 6 7 7 8 8 9 9 10	1713 1717 1721 1741 1745 1750 1753 1756 1759	80 80 60 50 50 50	8.22 8.28 8.36 8.34 8.3 8.3 8.31 8.32 8.32 8.32 8.34	17 17 17 17 18.2 18.2 18.2 18.1 18.1 18.1	6.5 6.42 6.37 6.37 6.64 6.62 6.61 6.61 6.6 6.6	1.81 1.8 1.81 1.82 1.91 1.91 1.91 1.91 1.91 1.89 1.88	6.7 15.6 15.2 21.2 25.8 25.1 23.3 12.4 9.1 5.6	1.23 1.17 1.29 1.35 2.71 1.52 1.23 1.16 0.99 0.91

C = Degrees Centigrade. mS/cm = MilliSiemens per centimeter. SU = Standard unit. NTU = Nephelometric Tu mg/L = Milligrams per lite

			<u>G</u> F	ROUND-WATER SAMPLI	NG LOG			
Well No.	MW01-8B				Site Name	Little Britain Roa	ad Service Cen	iter
Key No.					Sampling Person	onnel TMH/DGI	3	
Date/Time	06/11/2001				Weather			
Sample ID	mple ID					d 0.0 ppm		
Duplicate Sample ID NA					PID Well	0.0 ppm		
	NA				- -			
WELL INFORMATIO	N						_	
	Maria Jagi	- X-1		пс	тос	BGL.		
Reference Point Mark	ed on Casing						}	
Well Diameter								
Well Depth				Not Measured			1	
Water Table Depth				8.63 feet			1	
Depth to Casing Belo	w Grade				<u> </u>]	
Slug Test?	N			Redevelop? (Y/N) N	_			
WELL WATER INFO				1				
Length of Water Colu								
Volume of Water in Well			40-80 ml/min					
Pumping Rate of Pump Volume of Baller			NA					
Minutes of Pumping			79 minutes					
Number of Balls			NA NA					
HUMBO OF CHAIN								
EVACUATION INFO Volume of Water Ren Did well go dry?			liters		uation Method: Bailer () Gr ing Rate 40-80	undfos Pump()P mL/min	eristaltic Pump ([Pump & dedicated t
	Time	Pumping Rate (ml/mln)	Water Level (ft)	Temperature (celcius)	pΗ	SpC (ms/cm)	Turbidity (NTU)	DO (mg/L)
initial	1428		8.6		ļ			
1	1450	80	9.23	14.4	9.61	0.893	67.5	0.81
2	1454		9.31	14.5	9.43	0.889	59.1	0.55
3	1457	70	9.31	15	9.36	0.888	49.1	0.76
4	1500		9.39	15.5	9.31	0.883	41.9	0.79
5	1504	40	9.46	15.9	9.29	0.881	42.2	0.61
8	1507		9.58	16.3	9.27	0.88	31.5	0.8
7	1510	40	9.27	16.7	9.27	0.881	34.6	0.27
8	1516		9.64	17.3	9.28	0.88	30.6	0.36
9	1519	40	9.67	17.6	9.3	0.879	29.4	0.39
10	1523		9.7	18	9.33	0.879	25.1	0.4
11	1526		9.73	18.4	9.36	0.878	24.5	0.33
12	1529		9.78	18.6	9.42	0.879	23.1	0.29
13	1533		9.81	18.9	9.47	0.878	22.3	0.36
14	1538		9.88	19.3	9.57	0.877	22.9	0.24
15	1543		9.92	19.6	9.63	0.877	16.9	0.35
16	1547	1	9.96	19.7	9.67	0.878	21.4	0.26
17	1550		9.99	19.9	9.69	0.877	22.3	0.26
18	1553		10.02	20	9.69	0.878	20.7	0.26
19	1557		10.05	20.2	9.71	0.878	21	0.26
20	1603		10.1	20.3	9.71	0.878	21.2	0.24
21	1606	"	10.13	20.4	9.71	0.878	21.1	0.23
22	1609		10.17	20.5	9.71	0.88	22.8	0.23
Final	1620		10.22	7.5.5				
MISCELLANEOUS								
middleLANEOUS (SAMPLE DEST							
Ana	alysis Requested	ı	TCL VOCs Method 8260					
	Laboratory	,	Columbia Analytical					
Via			Fed Ex					
	Sent By		TMH/DGB			_		

Field Sampling Coordinator

Notes: TIC = Top of inner casing. TOC = Top of outer casing.

BGL = Below ground level. gpm = Gallons per minute. C = Degrees Centigrade, mS/cm = MilliSiemens per centimeter. SU = Standard unit. NTU = Nephelometric Tu mg/L = Milligrams per lite