

SUPPLEMENTAL INVESTIGATION REPORT

HANNA FURNACE SITE THE FORMER RAILROAD YARD AREA (SUBPARCEL 1)

BUFFALO ECONOMIC RENAISSANCE CORPORATION BUFFALO, NEW YORK

JULY 2000 REVISED JANUARY 2001

MALCOLM PIRNIE, INC.

P. O. Box 1938 Buffalo, New York 14219

BUFFALO ECONOMIC RENAISSANCE CORPORATION HANNA FURNACE SUPPLEMENTAL INVESTIGATION

TABLE OF CONTENTS

	P	a	g	e
--	---	---	---	---

1.0	INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Scope 1
2.0	SUPPLEMENTAL INVESTIGATION APPROACH 4 2.1 Drilling Program 4 2.1.1 Additional Characterization of Blue-Colored Fill Material 4 2.1.2 Characterization of Eastern Portion of Former Railroad Yard Area 5 2.1.3 Shallow Overburden Well Installation 6
	 2.2 Monitoring Well Development and Sampling
	2.3 Debris Pile Characterization 7 2.3.1 Debris Pile Inventory 8 2.3.2 Debris Pile Screening and Sampling 8 2.3.3 Site Boundary Survey 9
	2.4 Quality Assurance/Quality Control
3.0	SUPPLEMENTAL INVESTIGATION RESULTS123.1Additional Characterization of Blue-Colored Fill Material123.2Subsurface Soil Characterization Results133.3Debris Pile Characterization Results143.4Groundwater Characterization Results16
4.0	QUALITATIVE RISK ASSESSMENT
5.0	CONCLUSIONS AND RECOMMENDATIONS195.1Subsurface Soil/Fill Material195.2Debris Piles195.3Groundwater205.4Recommendations20

MALCOLM PIRNIE

i

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Table <u>No.</u>	Description	Follows Page
2-1	Well Construction Summary	6
2-2	Summary of Well Development Field Measurements	7
2-3	Summary of Well Sampling Field Measurements	
2-4	Summary of Debris Pile Characteristics	8
3-1	Summary of Analytical Results – Subsurface Soil/Fill	12
3-2	Summary of Analytical Results -Fill Pipes	14
3-3	Summary of Analytical Results - Groundwater Samples	16
3-4	Groundwater Elevation Measurements	

LIST OF FIGURES

Figure <u>No.</u>	Description	Follows Page
1-1	Site Location	1
2-1	Sample Location Map	4
3-1	Potentiometric Surface of the Water Table	15

LIST OF APPENDICES

Appendix	Description
А	Boring Logs
В	Monitoring Well Construction Details
С	Well Development and Sampling Logs
D	Debris Pile Sampling Logs
Ε	Qualitative Risk Assessment

LIST OF ATTACHMENTS

· _____

Attachment Description

A Data Usability Summary Report and Validated Form 1s

1.0 INTRODUCTION

1.1 BACKGROUND

As part of the South Buffalo Redevelopment Project, Malcolm Pirnie, Inc. (Malcolm Pirnie) has prepared this Supplemental Investigation Report for the Former Railroad Yard Area at the Hanna Furnace Site in South Buffalo, New York. The approximately 43-acre Former Railroad Yard Area is part of the 113-acre, Hanna Furnace Site in Buffalo, New York, owned by the City of Buffalo (the City). After pig iron manufacturing operations ceased in 1982, the Hanna Furnace Site was used briefly by a salvaging firm, and is currently vacant. The location of the Hanna Furnace Site is shown on Figure 1-1.

The City is currently seeking to develop the Hanna Furnace Site as one element of the initiative to redevelop South Buffalo. Information previously collected to characterize the Hanna Furnace Site was summarized in the Hanna Furnace Site -Characterization of the Former Railroad Yard Report (Malcolm Pirnie, October 1999). The report concluded that the Former Railroad Yard Area is suitable for redevelopment, contingent upon the establishment of site-specific health and safety criteria and due diligence site development.

1.2 PURPOSE AND SCOPE

Since the cessation of pig iron manufacturing at the Hanna Furnace Site, several environmental investigations have been performed at the site. However, little characterization had occurred on the Former Railroad Yard Area of the Hanna Furnace Site. For this reason, Malcolm Pirnie performed an initial Site Characterization in January 1999 for the Buffalo Economic Renaissance Corporation (BERC). The characterization effort included the completion of a subsurface drilling and sampling program to collect surface and subsurface soil/fill samples at the 43-acre parcel. A report summarizing the procedures and results of that investigation was submitted to the New York State Department of Environmental Conservation (NYSDEC) in October 1999.

Based on the results of that investigation and comments by the NYSDEC, Malcolm Pirnie submitted the Work Plan for the Hanna Furnace Site - Supplemental Investigation of the Former Railroad Yard to the NYSDEC in January 2000. The NYSDEC approved the Supplemental Investigation Work Plan in a letter dated February 2, 2000. The Supplemental Investigation field program was implemented in January and February 2000.

The Supplemental Investigation was designed to provide the additional information necessary to complete the characterization of the Former Railroad Yard Area, and the characterization will serve as the basis for a voluntary cleanup agreement. The investigatory program was completed to address five outstanding issues:

- Because the grid of soil borings sampled in January 1999 did not extend to the eastern site perimeter, the NYSDEC requested the drilling and sampling of one additional soil boring in the eastern portion of the Former Railroad Yard Area.
- The NYSDEC requested additional characterization of the blue-colored material present in the subsurface throughout the Former Railroad Yard Area.
- Although two monitoring wells were previously installed in the Former Railroad Yard Area and sampled, the NYSDEC requested additional groundwater characterization information.
- The NYSDEC requested a thorough inventory and characterization of the debris piles located on the Former Railroad Yard Area.
- A complete site survey is required as part of the voluntary cleanup agreement.

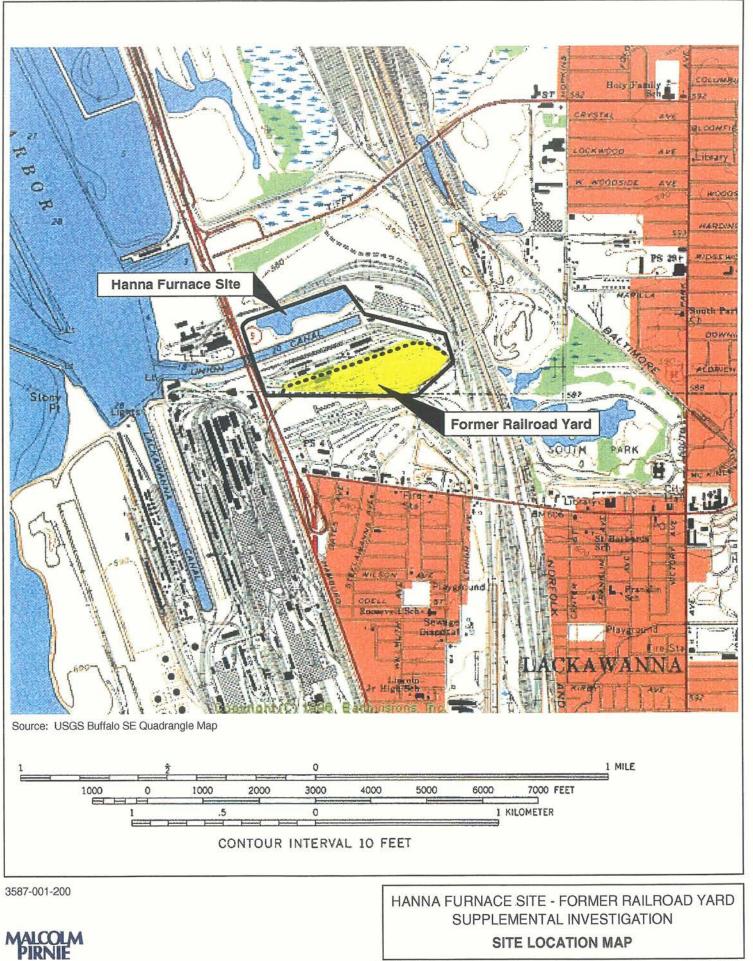
To address these issues, the following tasks were performed as part of the Supplemental Investigation:

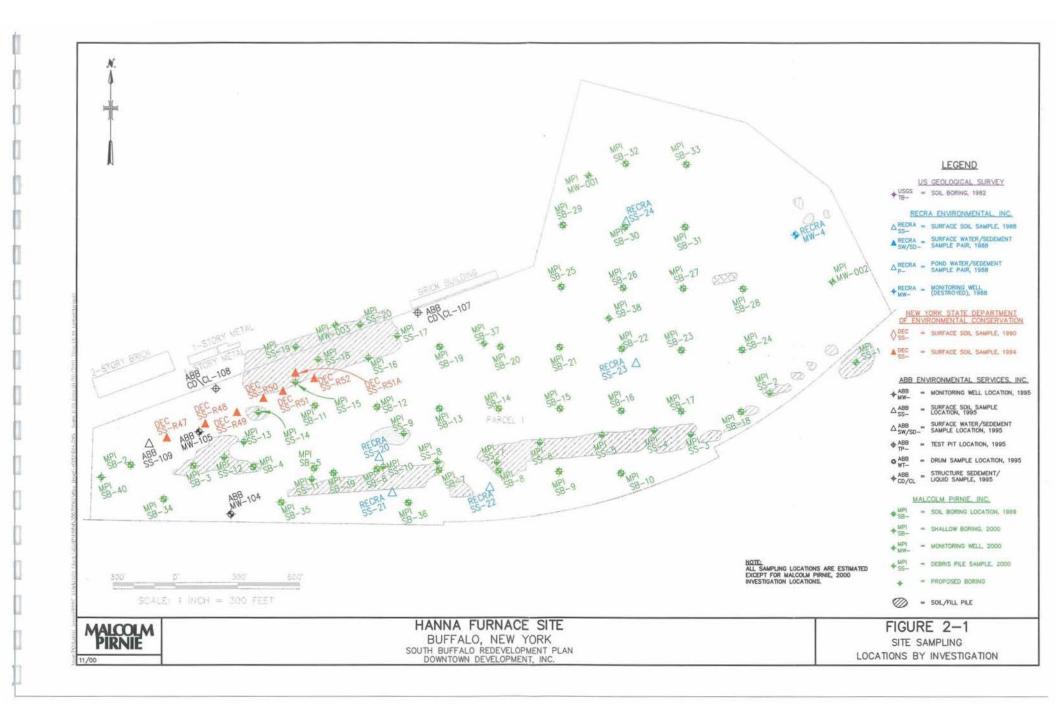
- Completion of seven shallow overburden borings.
- Installation of three shallow groundwater monitoring wells.
- Collection of subsurface soil and groundwater samples for chemical analyses.
- Characterization of on-site debris piles.
- Completion of a Site Boundary Survey.

3587-001

A description of program methodologies and results of the investigation are discussed in Sections 2.0 and 3.0, respectively.

2.0 SUPPLEMENTAL INVESTIGATION APPROACH


2.1 DRILLING PROGRAM


Drilling activities were conducted from January 24 through January 26, 2000 and included the advancement of seven borings and the installation of shallow groundwater monitoring wells in three of those borings. The borings in which monitoring wells were installed were designated MW-001 through MW-003. The remaining four borings were designated B-37 through B-40. Locations of these new borings and monitoring wells, as well as sampling locations from previous investigations, are shown on Figure 2-1. Well installation and sampling activities were completed in accordance with approved methods detailed in the Supplemental Work Plan and modifications developed during the investigation.

All borings were advanced through the fill material to the underlying native sediments using 4 ¹/₄-inch hollow-stem augers for characterization purposes. Split-spoon samples were continuously collected during drilling and described by an on-site geologist. Detailed overburden soil sample descriptions are presented on the stratigraphic borehole logs in Appendix A. Select samples were placed in pre-cleaned sampling jars provided by the laboratory for soil analyses identified in the Work Plan. Samples were placed in coolers and chilled with ice in the field, and shipped to Upstate Laboratory, Inc., in Syracuse, New York.

2.1.1 Additional Characterization of Blue-Colored Fill Material

During the January 1999 characterization, a blue-colored layer of fill material was encountered beneath the majority of the Former Railyard. This blue material was included in composite samples of the overall subsurface fill material. Additionally, one discrete sample of this blue material was collected from the 7 to 10 feet depth interval in boring SB-20 and analyzed for total and reactive cyanide because blue color is often an indicator of cyanide contamination. The analytical results of that sample indicated the cyanide concentrations were very low in the blue material. To further characterize the

chemical composition of the blue material, discrete samples of this material were collected during the Supplemental Investigation.

Four soil borings (B-37 through B-40) were drilled and sampled at locations known to contain the blue fill material. The boring locations were selected also for spatial distribution across the Former Railroad Yard Area to best represent the entire area. One discrete sample of the blue fill material was collected at each borehole location and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated benzenes (PCBs) and pesticides and Target Analyte List (TAL) metals and cyanide

2.1.2 Characterization of Eastern Portion of Former Railroad Yard Area

At the request of the NYSDEC, one additional soil boring was drilled to characterize the fill material in the extreme eastern portion of the Former Railroad Yard Area. Additionally, one boring was completed in the northeastern portion of the Former Railroad Yard Area because that portion of the area was not characterized in previous investigations. Because two of the proposed groundwater monitoring wells (MW-001 and MW-002) were to be installed in these portions of the Former Railroad Yard Area, the NYSDEC agreed that the locations of the proposed groundwater monitoring wells were sufficient to collect the desired fill samples. The well boring locations are shown on Figure 2-1.

The well borings were sampled during advancement using the same sampling techniques employed during the January 1999 investigation. The subsurface soil sample interval with the highest recorded PID measurement in each boring was submitted to the laboratory for analysis of TCL VOCs. The composite samples were created by mixing the entire vertical column of fill material from the well boring and the resulting composite samples were analyzed for TCL SVOCs, pesticides, PCBs, and TAL metals plus cyanide.

2.1.3 Shallow Overburden Well Installation

Groundwater has been characterized over the Hanna Furnace Site during previous investigations but only two groundwater monitoring wells (MW-104 and MW-105) were located on the Former Railroad Yard Area. Three shallow overburden wells were installed at locations designated MW-001, MW-002 and MW-003 to more completely characterize the groundwater quality and horizontal flow directions at the Former Railroad Yard Area. The screens of the shallow wells were installed from 4 to 14 feet below ground surface with the intent of straddling the water table.

The overburden monitoring wells were constructed using 2-inch diameter, Schedule 40 PVC screen and riser materials with #1 silica sand used as a filter pack. The screens were installed as 10-foot lengths with a 0.010-inch slot size. Approximately one foot of sand was placed on the bottom of each boring below the well screen, and the sandpack extended to approximately 0.2 feet above the top of the screen. A bentonite pellet seal approximately one foot thick was placed above the sandpack and potable water was added to hydrate the pellets. A cement bentonite grout was installed to fill the remainder of the borehole annulus to the ground surface. A lockable 4-inch diameter steel protective casing was placed over the PVC well riser to complete the installation. Table 2-1 summarizes the construction details of the newly installed wells. Monitoring well construction details for all new and existing monitoring wells on the Former Railroad Yard Area are presented in Appendix B.

2.2 MONITORING WELL DEVELOPMENT AND SAMPLING

2.2.1 Monitoring Well Development

In accordance with the approved Work Plan, the newly installed monitoring wells were developed no sooner than 48 hours after well installation. Additionally, two existing monitoring wells designated MW-104 and MW-105 were redeveloped. Well development and redevelopment were performed using a centrifugal pump for monitoring wells MW-001, MW-003, MW-104, and MW-105. Due to the low yield of monitoring well MW-002, a dedicated disposable bailer was used to develop the well by

					TA	BLE 2-1]	
	WELL CONSTRUCTION SUMMARY											
	SUPPLEMENTAL INVESTIGATION											
			HAN	NA FURN	ACE - F	ORMER R	AILYARD	SITE				
Well ID No.	Surveyed Ground Elev. ⁽¹⁾	PVC Riser Elev. ⁽¹⁾	Borehole Dia./Well Dia. (in.)		Top of Seal ⁽²⁾	•	Screened Interval ⁽²⁾	Base ⁽²⁾ of Sandpack	~ *	Screen Slot Size	Installation Date	
Existing N	Ionitoring W	Vells		· ·			£					
MW - 104	583.96	586.38	8.25/2.0	15.0	3.0	4.0	5.0 - 15.0	15.0	# 00	0.006	10/94	
MW - 105	583.74	585.59	8.25/2.0	15.0	3.0	4.0	5.0 - 15.0	15.0	# 00	0.006	10/94	
Newly Ins	talled Monit	oring Wells		<u>.</u>								
MW - 001	582.24	583.96	8.5/2.0	14.0	3.0	3.8	4.0 - 14.0	14.0	# 1	0.010	1/00	
MW - 002	584.27	586.01	8.5/2.0	14.0	3.0	3.8	4.0 - 14.0	14.0	# 1	0.010	1/00	
MW - 003	580.84	582.79	8.5/2.0	15.0	3.0	3.8	4.0 - 14.0	15.0	# 1	0.010	1/00	
	tions in feet above is are feet below g											

3587-001

repeatedly purging the well to a "dry" condition. Groundwater purged from each well location during the development process was monitored for development parameters that included pH, specific conductivity, temperature and turbidity. Table 2-2 summarizes the development measurements. Where possible, development was continued until turbidity values were less than 50 NTU, or until pH, temperature and conductivity values had stabilized. The slow recovery of monitoring well MW-002 allowed for the removal of more than 10 well volumes over a period of approximately two days. Field data sheets completed during the well development are included in Appendix C.

2.2.2 Groundwater Sampling Procedures

Prior to purging, static water level elevations were measured in all the on-site monitoring wells. The monitoring wells were then purged in accordance with the procedures specified in the approved Work Plan. All wells except MW-002 exhibited rapid or continuous recovery after purging and were allowed to recharge prior to sampling. Measurements for the field samples collected from all monitoring locations during purging or sampling operations were immediately analyzed for pH, specific conductivity, temperature and turbidity field parameters. A summary of field measurements recorded during the February 2, 2000 sampling event is presented in Table 2-3. The field data sheets are presented in Attachment C.

Groundwater samples were collected using disposable polyethylene bailers in accordance with the protocols identified the Work Plan. Samples for laboratory analysis were stored in the appropriate pre-preserved, plastic or glass sample bottles, placed in a cooler and chilled with ice in the field, and shipped to Upstate Laboratory, Inc. located in Syracuse, New York. The groundwater samples were analyzed for TCL VOCs, SVOCs, pesticides, and PCBs, and TAL metals plus cyanide.

2.3 DEBRIS PILE CHARACTERIZATION

Numerous debris piles of admixed soil and construction debris have been documented and were observed in the Former Railroad Yard Area during the January

MALCOLM PIRNIE		TABLE 2-2											
	SUM	MARY OF WEI	L DEVEI	OPMENT	FIELD MEASURE	MENTS ⁽¹⁾							
SUPPLEMENTAL INVESTIGATION HANNA FURNACE - FORMER RAILROAD YARD AREA													
LOCATION	DEVELOPMENT DATE	TURBIDITY ⁽³⁾ (NTU)	TEMP (°C)	pH (units)	CONDUCTANCE (umhos/cm) ⁽²⁾	GALLONS PURGED	SAMPLE APPEARANCE ⁽³⁾						
Existing Monitorin	g Wells	<u> </u>	L		· · · · · · · · · · · · · · · · · · ·	I							
MW-104	01/27/00	38	10	12.25	745	50	Clear						
MW-105	01/27/00	18	9	10.20	600	50	Clear						
Newly Installed M	onitoring Wells	*											
MW-001	01/27/00	39	9	8.79	850	100	Clear						
MW-002	01/27-01/28	> 100	9	7.03	1377	28	Cloudy						
		92	9	7.76	1393	150	Cloudy						

(2) Conductance corrected to 25° C.

(3) Turbidity and Sample Appearance are based on last bailer measurements.

MALCOLM PIRNIE												
	SUMMARY OF WELL SAMPLING FIELD MEASUREMENTS ⁽¹⁾											
		SUP	PLEMENT	LAL INVE	STIGATION							
					ILROAD YARD AR	REA						
LOCATION	SAMPLING DATE	TURBIDITY ⁽³⁾ (NTU)	TEMP (°C)	pH (units)	CONDUCTANCE (umhos/cm) ⁽²⁾	GALLONS PURGED	SAMPLE APPEARANCE ⁽³⁾					
Existing Monitoring	; Wells				1	111 _ 1						
MW-104	02/02/00	30	9.5	11.19	864	15	Clear					
MW-105	02/02/00	31	9.0	8.99	603	15	Clear					
Newly Installed Mo	nitoring Wells			<u></u>	-							
MW-001	02/02/00	33	7.0	7.99	780	15	Clear					
	02/02/00	46	7.5	6.56	1335	6	Clear					
MW-002	0111 0121 000											

(3) Turbidity and Sample Appearance are based on first bailer measurements.

1999 site characterization effort. The debris piles are generally located along the southern and southeastern perimeters of the Former Railroad Yard Area and are shown on Figure 2-1.

Since these piles had not yet been characterized analytically, a thorough inventory and sampling program was implemented during the Supplemental Investigation to characterize the contents of the debris piles. Malcolm Pirnie verified and updated the inventory to provide an accurate estimate of the number, location, volume, and apparent contents of all on-site debris piles and collected samples during a test pit program.

2.3.1 Debis Pile Inventory

In 1997, Ecology and Environment, Inc. inventoried the debris piles on the Former Railroad Yard Area as part of an Environmental Site Assessment. All debris piles were measured and mapped and estimates of volumes and contents of the piles were made. The total estimated volume of piled debris on the Former Railroad Yard Area was approximately 20,000 cubic yards. As part of the Supplemental Investigation, Malcolm Pirnie verified and amended the inventory to include the contents of the debris piles. Malcolm Pirnie's revised estimate of the volume of all above grade debris in the piles was approximately 24,000 cubic yards.

The materials observed in the debris piles during the investigation were generally categorized as construction and demolition debris mixed with sand and gravel with occasional railroad ties, slag, and metal refuse. A summary of debris pile characteristics is presented in Table 2-4.

2.3.2 Debris Pile Screening and Sampling

Subsequent to an inventory of all debris piles, sampling of the debris was performed. A backhoe was used to breach select debris piles to ascertain the contents and provide access to non-weathered debris for sampling. Samples were visually characterized and screened for VOCs using a PID equipped with a 10.2 eV lamp and the observations were recorded on the test pit logs. Samples were collected at an approximate frequency of one sample per estimated 1000 cubic yards for all soil-like

TABLE 2-4

SUMMARY OF DEBRIS PILE CHARACTERISTICS

SUPPLEMENTAL INVESTIGATION HANNA FURNACE - FORMER RAILROAD YARD AREA

Depris Pile ID No.	Sample ID	Debris Pile Contents	PID Screening Results	Sampled Depth (ft bgs)	Estimated Area (ft ²)	Estimated Depth	Estimated Volume (yd ³)
DP-1	SS-12	C & D debris, concrete rubble, rebar,	0.2	3-5	20,394	2	1,510
	SS-13	sand and gravel	0.2	2-4			
DP-2		C & D debris, sand and gravel			154	2	11+
DP-3	SS-8 ⁽²⁾	C & D debris, concrete, sand and gravel	0.2	3-5	28,680	3.5	3,717
	SS-10		0.2	3-5			
	SS-11		0.2	3-5			
DP-4	SS-9	Stone, gravel	0.2	4-6	6,790	2	503
DP-5		C & D debris, concrete, sand and gravel,	silt		3,416	3	316
DP-6	SS-3	C & D debris, sand, gravel, silt,	0.2	3-5	56,502	3	6,278
	SS-4		0.2	2-4			
	SS-5		0.2	2-4			
	SS-6		0.2	3-5			
	SS-7		0.2	2-4			
DP-7		Lime flux, slag			2,575	2.5	238
DP-8		Trash, tires			400	2	30

TABLE 2-4

SUMMARY OF DEBRIS PILE CHARACTERISTICS

SUPPLEMENTAL INVESTIGATION HANNA FURNACE - FORMER RAILROAD YARD AREA

Depris Pile			PID Screening	Sampled Depth (ft	Estimated	Estimated	Estimated
ID No.	Sample ID	Debris Pile Contents	Results	bgs)	Area (ft ²)	Depth	Volume (yd ³)
DP-9	*****	C & D debris, wood, concrete, sand,			1,295	2	96
		misc. metal					
DP-10	SS-2	C & D debris, concrete, rebar, brick,	0.5	2-4	2,311	2	171
		asphalt					
DP-11		C & D debris, concrete, sand and gravel			862	2	64
DP-12		C & D debris, concrete, sand and gravel			646	2	48
DP-13		C & D debris, concrete, sand and gravel			1,233	2	91
DP-15		Slag, railroad ties			2,194	3	244
DP-16		Wood, metal, debris,			433	2	32
DP-17		Sand			909	4.5	9
DP-18		Sinter,			884	5	164
DP-23	SS-15	C & D debris, concrete, sand and gravel	0.4	3-5	81,100	3	9,011
	SS-16		0.2	2-4			
	SS-17		1.6 / 0.2 (3)	3-5			
	SS-18		0.2	4-6			
	SS-19		0.2	3-5			
	SS-20		0.2	3-5			
			1	<u> </u>	L	<u> </u>	<u> </u>

TABLE 2-4

SUMMARY OF DEBRIS PILE CHARACTERISTICS

SUPPLEMENTAL INVESTIGATION HANNA FURNACE - FORMER RAILROAD YARD AREA

Depris Pile ID No.	Sample ID	Debris Pile Contents	PID Screening Results	Sampled Depth (ft bgs)	Estimated Area (ft ²)	Estimated Depth	Estimated Volume (yd ³)
DP- A	SS-1	Fill as slag, gravel, RR ties, tires, metal	0.2	2-4	7,500	4.5	1,250
DP - B	SS-14	Fill as sand, gravel, brick, misc. metal	0.2	0-3	150	2	11

NOTES:

Sampled debris piles indicated by shaded / stipple pattern.

(1) All debris piles sampled above grade unless noted.

(2) White fill material sampled below grade surface at SS-8 per NYSDEC request.

(3) Elevated PID reading measured in proximity to RR tie within excavation.

(soil, sand, gravel) debris. Other, non-soil-like, debris was sampled at a lesser frequency as determined in the field and approved by the NYSDEC.

A total of 20 debris pile test pits designated SS-1 through SS-20 were excavated at the Hanna Furnace Site on January 23 and 24, 2000, and one sample was collected from each test pit. Approved sampling locations were determined based on a site reconnaissance and discussions with the NYSDEC prior to initiating the characterization effort. Sampled debris pile locations are illustrated on Figure 2-1. A descriptive log for each sampled excavation is presented in Appendix D and is summarized in Table 2-4. The 20 debris pile samples were submitted to the laboratory for analysis of TCL VOCs, SVOCs, pesticides, and PCBs, and TAL metals plus cyanide.

2.3.3 Site Boundary Survey

To formally establish the site boundary of the Former Railroad Yard Area as required as part of the voluntary cleanup agreement, Parsons Engineering Science prepared a boundary site map. Seneca Design, P.C. performed the site survey to establish and provide field verification of a horizontal and vertical control survey for preparation of the map. Horizontal control was established based on the New York State Plane Coordinate System and vertical control was established using the Nation Geodetic Vertical Datum (1929). In addition to the map, Seneca Design, P.C. surveyed all new and existing monitoring wells and borings to determine horizontal and vertical components. Malcolm Pirnie estimated the debris pile sampling locations using mapped site features.

2.4 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

2.4.1 Field Quality Assurance/Quality Control Procedures

Quality Assurance and Quality Control (QA/QC) measures were taken to verify the reliability of the data generated during the Supplemental Investigation. The field program was conducted in accordance with the NYSDEC-approved Work Plan. Additional QA/QC measures included the collection of blind duplicates, matrix spike

samples, and matrix spike duplicates. Trip blanks were also submitted for analysis on each day that samples were collected for analysis of TCL VOCs. The analytical results for the blind duplicates and the trip blanks have been included in the analytical results summary tables. These QA/QC samples were used during data validation to assess the accuracy of the analytical results.

2.4.2 Analysis/Data Usability

The laboratory analytical packages prepared by Upstate Laboratories were reviewed and evaluated by an independent subcontractor, Chemworld Environmental, Inc. (Chemworld) of Rockville, Maryland, to assess compliance with the analytical method protocols as described by the NYSDEC Analytical Services Protocol (ASP). The evaluation of the analytical results was based on information supplied by the laboratory data sheets and chain-of-custody forms. The evaluation included the examination of sample holding times and the analytical results for the method blanks, trip blanks, matrix spike samples, and field duplicates.

Chemworld prepared a Data Usability Summary Report (DUSR) that compares the quality of the performance of the laboratory analyses to that described in the ASP. The DUSRs have been included in Attachment A with the laboratory results. All analytical results summary tables included in this report include the validated analytical results.

The evaluation of the analytical results of samples collected from the Former Railroad Yard Area indicated that Upstate Laboratories generally performed the analyses within the ASP. Although the analysis of duplicate samples indicated that precision was generally acceptable, a number of the analytical results were qualified during validation.

The reasons for qualifications of VOC results include high surrogate recoveries, elevated percent differences in continuing calibrations, and compounds (acetone, methylene chloride, and 2-butanone) detected in associated blanks. Non-detectable results for 2-butanone were rejected for some of the samples due to poor average relative response factors. 2-Butanone is not considered to be a concern at the Former Railroad Yard.

The qualification of the SVOC results were due to low reported area counts for internal standards, elevated percent differences in continuing calibrations, and one compound (bis-2-ethylhexylphthalate) detected in associated blanks. Very low surrogate recoveries were detected for sample MW-002T, and therefore the positive results were qualified as estimated and the non-detect results were rejected for that sample.

The pesticide and PCB results were qualified due to elevated percent differences in continuing calibrations or in different columns and the results were qualified as estimated. Although the surrogate recovery for seven samples was very poor and the non-detect results were rejected, reanalysis of the samples generated usable results.

No analytical results for inorganic analytes were rejected. The Contract Required Detection Limit (CRDL) for mercury was generated at 0% for the samples and it appears that the standard for mercury may not have been functioning properly. Therefore, non-detect results for mercury were qualified as estimated (UJ). Other reasons for qualification included poor precision of the laboratory duplicate samples for zinc, selenium, and nickel, elevated percent differences for serial dilutions, and recoveries of CRDL standards outside the 80 to 120 percent limits. Analytical results with these issues were qualified as estimated.

11

3.0 SUPPLEMENTAL INVESTIGATION RESULTS

The groundwater analytical results were compared to the NYSDEC June 1998 Ambient Water Quality Standards and Guidance Values for Class GA waters to determine impacts to groundwater quality. The soil sample analytical results were compared to the Recommended Soil Cleanup Guidelines in the NYSDEC January 1994 Technical Administrative Guideline Memorandum (TAGM) 4046. Where no cleanup guideline for an inorganic analyte is included in TAGM 4046, the highest value of the Eastern United States of America Background Concentrations listed in TAGM 4046 was used for comparison for that analyte. Additionally, the cadmium, chromium, and lead concentrations were compared to the guidelines of 10, 50 and 1000 milligrams/kilogram (mg/kg), respectively, suggested by the NYSDEC in a March 28, 2000 telephone conversation. The suggested lead soil cleanup guideline of 1000 mg/kg is for nonresidential soils. Because the NYSDEC does not have soil cleanup guidelines for cyanide, the USEPA Region III Soil Screening Level of 1,600 mg/kg was used for comparison.

3.1 ADDITIONAL CHARACTERIZATION OF BLUE-COLORED FILL MATERIAL

The analytical results of the samples collected from the blue-colored material (B-37, B-38, B-39, and B-40) are summarized in Table 3-1. The analysis of the samples indicated that VOCs were detected at concentrations below the soil cleanup guidelines, and pesticides and PCBs were not detected. Two SVOCs (benzo(a)anthracene and benzo(a)pyrene) were detected at concentrations above the soil cleanup guidelines in at least one sample collected from the blue-colored material. Eight metals (aluminum, barium, beryllium, calcium, iron, magnesium, selenium, and zinc) were detected in at least one of the blue-colored soil samples at concentrations above the soil cleanup guidelines.

Although the exact source of the fill at the site is not known, it is possible that portions of the material was derived from some off-site steel manufacturing operations or

					TABL	E 3-1						
PIRNIE			SUMMARY	OF ANALY	TICAL RE	SULTS - SUI	BSURFACE	SOIL/FILL				
						INVESTIGA	ATION LYARD SITE					
				IANNA FOR		OCATION	UTARD SITE	<u>ь</u>			1	FLOTION
	B-	27 1	B-38		<u>- SAMPLE I</u> -39	B-40	Duplicate	MW-001	3.411	/-002	NYSDEC	EASTERN
	1/25/00	1/25/00	1/25/00	1/25/00	1/25/00	1/26/00	1/26/00	1/26/00	1/25/00	1/25/00	TAGM	U.S. BACK- GROUND
PARAMETER ⁽¹⁾	6-8'	8-10'	6-8'	8-10'	6.5-10.4'	6-8'	(B-40)	2-4'	0-2'	0-4'	VALUES ⁽²⁾	RANGE ⁽²⁾
VOLATILE ORGANIC CON			0-8	8-10	0.5-10.4	0-8	(B-40)	2-4	0-2	0-4	VALUES	KANGE
Carbon Disulfide	12.1	NA	4 J		NA	61	61	91	5 J	NA NA	2,700	_
Chloroform	12 J	NA			NA	03	0.1		3 J	NA NA	300	
2-Butanone		NA	4 J		NA	<u> </u>	<u> </u>		27 J	NA NA	300	
Benzene		NA	4)		NA NA				27 J	NA NA	60	
2-Hexanone		NA NA			NA NA				14 J	NA NA		······································
1.1.2.2-Tetrachlorøethane		NA			NA	<u> </u>			3 J	NA NA	600	
Toluene	4 J	NA			NA NA	 		6J	8J	NA NA	1.500	
	4 J	NA NA			NA NA	_		01	21	NA NA	5,500	·····
Ethylbenzene		h	<u> </u>			<u>}</u>	<u> </u>			1	3,500	-
m-Xylene and p-Xylene		NA			NA				<u>6 J</u>	NA	1200 ⁽³⁾	
o-Xylene		NA	l	<u> </u>	NA	_	L		3 J	NA		-
SEMIVOLATILE ORGANI		JNDS (ug/kg)								······	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Phenanthrene	NA	I	L	NA		890	850		NA	380 J	50,000	-
Fluoranthene	NA	L		NA		990	1,100		NA	410 J	50,000	-
Pyrene	NA	l	L	NA		860	860		NA	600 J	50,000	_
Chrysene	NA			NA		320 J	340 J		NA	480 J	400	-
Benzo (b) fluoranthene	NA			NĂ		490 J	450 J		NA	490 J	1,100	-
Benzo (k) fluoranthene	NA	4		NĂ	Ļ	160 J	170 J		NA	R	1,100	
Bis(2-ethylhexyl)phthalate	NA	160 J	110 J	NA	210 J	170 J	180 J	250 J	NA	R	50,000	-
Benzo (a) pyrene	<u>NA</u>		<u></u>	NA		310 J	300.1		NA	R R	61	-
Acenaphthene	<u>NA</u>			NA		65 J	62 J 92 J			R	<u>50,000</u> 6.200	-
Dibenzofuran	NA NA		<u> </u>	NA NA	<u> </u>	110 J 89 J	92 J	1	NA NA	R	50,000	
Fluorene Anthracene	NA NA	<u>}</u>	┣────	NA NA	1	180 J	1945 190J	<u> </u>	NA	$\frac{1}{R}$	50,000	
Carbazole	NA NA	1		NA		601	1	1	NA	R		-
Ideno (1,2,3-cd) pyrene	NA	1	1	NA	*	110J	100 J	1	NA	R	3,200	-
Benzo (ghi) pervlene	NA	1	1	NA	1	110J			NA	R	50,000	-
Benzo (a) anthracene	NA			NA	<u> </u>	370 J	370 J		NA	R	224	-
Notes: (1) Only those parameters hav found at a minimum of on (2) Seti Cleaner Guideling 6	e location ar	e shown.	,	ction limit, ar	nd	J - Indicates NA - Not A		value. Result	is below qua	intitation limi	t but above zo	:10 .
(2) Soil Cleanup Guidelines fi (3) Soil cleanup guideline for						Shaded/bold	1 text indicates and 1 text indicate mup guideline	s guidance ci	iteria was ex			

uucou					TABL	E 3-1						
MALCOLM PIRNIE			SUMMARY	OF ANALY	YTICAL RES	SULTS - SUF	BSURFACE :	SOIL/FILL				
					EMENTAL			_				
			[·]	ANNA FUR	RNACE - FOI		YARD SITE	5				
	B-	37 1	B-38	D	SAMPLE L	B-40	Dunlingto I	MW-001		/-002	NYSDEC	EASTERN
	1/25/00	1/25/00	1/25/00	1/25/00	1/25/00	B-40 1/26/00	Duplicate 1/26/00	1/26/00	1/25/00	1/25/00	TAGM	U.S. BACK- GROUND
PARAMETER ⁽¹⁾	6-8'	8-10'	6-81	8-10'	6.5-10.4'	6-8'	(B-40)	2-4'	0-2'	0-4'	VALUES ⁽²⁾	
PESTICIDES/PCB (ug/kg)	0-0	8-10	0-0	8-10	0.5-10.4	0-8	(10-40)	2-4	0+2	0-4	VALUES	RANGE
Pesticides/PCBs	NA	rT	1	NA	T				NA		[·····	
METALS (mg/kg)		i	1		L		I	I	1 87 1	. I	L	L
Aluminum	NA	29,200 J	29,600 J	NA	26,100 J	33,200.1	32,500 J	45.700 J	NA	9.690 J	SB	33000
Arsenic	NA			NA					NA	10	7.5 or SB	3 - 12
Barium	NA	428 J	319 J	NA	269 J	210 J	214 J	201 J	NA	109 J	300 or SB	15 - 600
Beryllium	NA	5.7	5.9	NA	5.5	5.9	5.8	8.2	NA	2.1	.016 or SB	0 - 1.75
Cadmium	NA			NA				2.1	NA	6.2	(10)	0.1-1
Calcium	NA	134000	138000	NA	192000	165000	164000	259000	NA	55800	SB	130-35000
Chromium	NA	8.2	13.5	NA	4.9	8.6	10.7	6.8	NA	19.5	(50)	1.5 - 40
Cobalt	NA		J	NA					NA	5.8 B	30 or SB	2.5 - 60
Copper	NA	5.0 B		NA	-	13.3	20.9		NA	44.1	25 or SB	1 - 50
Iron	NA	13,700 J	3,860 J	NA	3,250 J	11,600 J	19,600 J	27,400 J	NA	89,400 J	2000 or SB	
Lead	NA	5.4		NA				2.2	NA	54.6	(1000)	4 - 500
Magnesium	NA	10,000 J	9,540 J	NA	10,700 J	12,200 J	12,300 J	13,500 J	NA	8,800 J	SB	100 - 5000
Manganese	NA	1,200 J	960 J	NA	1,150 J	1,980 J	2,190 J	1,290 J	NA	1,530 J	SB SB	50 - 5000
Potassium	NA	3,250 J	2,630 J	NA	2,950 J 28,3 J	4,610 J 25.8 J	4,460 J 25,2 J	6,120 J 27.1 J	NA NA	1,910 J	2 or SB	8500 - 43000
Selenium	NA	17.4 J	23.1 J	NA	28.3 J	23.8 J	<u> </u>	12.5 B	NA NA	12.9	150 or SB	1 - 300
Vanadium Zinc	NA NA	34 J	6.4 J	NA NA	7.8 J	6.8B J	15.2 J	114J	NA NA	12.9 166 J	20 or SB	9 - 50
Cyanide	NA NA	3.1	23.4	NA NA	43	5.8	4.3	19.5	NA	ISING ASSAULT		
Notes:	NA		2,74				1	trument Detec		1 nd Contract R	equired Dete	tion Limit
(1) Only those parameters have	uina a valua :	ahove the lah	wratory detec	tion limit ar	зd			value. Result				
found at a minimum of on			oratory detec	uon mini, ui	,a	NA - Not Ar		ande. Resarc	to octon qui			
(2) Soit Cleanup Guidelines a			nd Range fro	m NVSDEC	TAGM 4046			alvie was not o	detected.			
(1/24/94). Value in parent	theses are NY	SDEC revise	d values for	nonresidenti:	al			ates guidance		ackground ra	nge was exce	eded.
sites but have not yet been				someorgense				Bardance			0	
 Soil cleanup guideline or l 	•					1						
Som creatup gardenne or t	Jacagi Gand I					1						
L						<u>*</u>		······				

historical pig iron manufacturing operations at the site. This might explain the elevated iron and calcium concentrations. Additionally, it should be noted that the highest iron concentration in the blue-colored fill material was 19,600 mg/kg, which is below the highest concentration in the Eastern U.S. Background Range of 550,000 mg/kg.

The elevated calcium concentrations detected in the blue-colored material might indicate that the material is a type of slag. Because the blue-colored material appears to be similar in size and shape to the chalk-white to gray material encountered just above it in many borings throughout the site, it is possible that these two layers of material are both comprised of a type of slag material. The different colors of the two layers might indicate differential weathering above and below the water table due to oxidationreduction reactions or variations in pH. Based on the low concentrations of cyanide, the blue color of the material is not due to the presence cyanide.

The elevated selenium concentrations were detected during the analysis of the samples using inductively coupled plasma (ICP) methods. The limitation of this method is that elevated calcium concentrations, as detected in these samples, can interfere with the analysis for selenium and yield artificially high selenium concentrations as a result. The selenium concentrations using ICP analysis ranged from 17.4 to 28.3 mg/kg. Two of the samples (B-39 and B-40) were also analyzed for selenium using graphite furnace methods because calcium generally does not interfere with selenium analysis in the graphite furnace method. These results indicated that selenium concentrations in B-39 and B-40 decreased from 28.3 and 25.8 mg/kg, respectively, with the ICP method to 0.30 and 0.68 mg/kg, respectively, with the graphite furnace method. These concentrations are below the soil cleanup guideline for selenium (2 mg/kg).

3.2 SUBSURFACE SOIL CHARACTERIZATION RESULTS

Subsurface soil samples were collected from the monitoring well borings MW-001 and MW-002 to characterize soil/fill material in the eastern and northeastern portions of the Former Railroad Yard Area not previously characterized. The material encountered during the drilling of the monitoring wells was similar to that encountered in

the borings throughout the site. The analytical results of the soil samples collected from the two borings indicated that VOCs were detected at concentrations below the soil cleanup guidelines, and pesticides and PCBs were not detected. Only one SVOC (chrysene) was detected at concentrations above the soil cleanup guidelines. Chrysene was detected in the sample collected from boring MW-002 at a concentration of 480 μ g/kg, slightly above the soil cleanup guideline of 400 μ g/kg. The elevated concentrations of PAHs detected in other samples collected from the Former Railroad Yard Area were not detected in these samples. Nine metals (aluminum, arsenic, beryllium, calcium, copper, iron, magnesium, selenium, and zinc) were detected in at least one of the soil samples at concentrations above the soil cleanup guidelines.

As discussed in Section 3.1, the elevated iron and calcium concentrations are likely due to the type of fill material and historical pig iron manufacturing operations at the site. Additionally, it should be noted that the highest iron concentration in the samples was 89,400 mg/kg, which is well below the highest concentration in the Eastern U.S. Background Range (550,000 mg/kg). The elevated calcium concentrations detected in the samples indicate that some of the fill material may be a calcium-rich type of slag. Slag was observed in the sample interval in sample MW-002, and the blue-colored material, which might be slag, was observed in the sampling interval in sample MW-001.

Similar to the samples discussed in Section 3.1, elevated selenium concentrations were detected during the analysis of the soil samples using ICP methods. The selenium concentrations using ICP analysis were 27.1 mg/kg in sample MW-001, and selenium was not detected in sample MW-002. Sample MW-001 was also analyzed for selenium using graphite furnace methods and the detected concentration was 0.88 mg/kg, which is below the soil cleanup guideline of 2 mg/kg.

3.3 DEBRIS PILE CHARACTERIZATION RESULTS

The results of the analysis of the debris pile samples are summarized in Table 3-2. The analytical results of the debris pile sampling indicated that no VOCs were detected at concentrations above the soil cleanup guidelines. One pesticide (i.e., Aldrin) was

MALCOLM		<u></u> 2										TABL	Æ 3-2											<u></u>
Pirnie									5	SUMMAR	Y OF AN	ALYTIC	AL RESUI	TS - FIL	L PILES									
										5	SUPPLEN	MENTAL	INVESTIC	GATION										
	,								Н	ANNA FU			ER RAILRO	OAD YAF	RD AREA	•								
(1)	ļ					·····			······			LE LOC		-1					,		· · · · · · · · · · · · · · · · · · ·		NYSDEC	EASTERN U.S.
PARAMETER ⁽¹⁾	SS-1 2/23/00	SS-2 2/23/00	SS-3 2/23/00	SS-4 2/23/00	SS-5 2/23/00	SS-6 2/23/00	SS-7 2/23/00	SS-8 2/23/00	SS-9 2/23/00	SS-10 2/23/00	SS-11 2/23/00	SS-12 2/24/00	Duplicate (SS-12)			SS-15 2/24/00	SS-16 2/24/00	SS-17 2/24/00	SS-18 2/24/00			TRIP BLANK 2/25/00	TAGM VALUES ⁽²⁾	BACKGROUND RANGE ⁽²⁾
VOLATILE ORGANIC CO	MPOUN	DS (ug/kg)				in statistical				1		1 (12 12)						Dispersion	in an			NAME OF COMPANY	entilen er en
Chloromethane				16	T	T	T	Γ	1	1		1		T	T		T	T	Ι	T	T	[-	-
Carbon Disulfide			2 J																				2,700	-
cis-1,2-Dichloroethene				5 J																			-	-
Chloroform	2 J	2 J		2 J					7 J	2 J	2 J			1		2 J		4 J	4 J	2 J	6 J		300	-
2-Butanone				19 J								12											300	-
richloroethene				220 J							1												700	-
Benzene									11 J														-	-
-Methyl-2-pentanone	4 J			4 J	2 J												1				1		1000	-
Fetrachloroethene	1 J			2 J																			1400	-
,1,2,2-Tetrachloroethane									59 J														600	
l'oluene	3	8 J	3 J	13 J	5 J	2 J	4 J	4 J	60 J	6 J	19 J	2 J	1 J	2 J	2 J	5 J	3 J	14 J	5 J		61		1,500	-
Ethylbenzene					L	ļ	L		33 J	ļ	ļ			ļ	ļ		Ļ	ļ			ļ		5,500	-
Styrene									20 J		L				1						L		-	-
n-Xylene and p-Xylene	2 J				L			1	28 J	1				1	1	L		1		1	L	1	1,200	
EMI-VOLATILE ORGAN	IC COM	OUNDS	(ug/kg)			<u> Minder</u>																		
-Methylphenol					L	120 J					L	ļ				<u> </u>						NA	900	
Vaphthalene			170 J	71 J	240 J	720										54 J		320 J	42 J		67 J	NA	13000	-
-Methylnaphthalene			92 J	83 J	170 J	430]	ļ]	ļ	ļ				210 J				NA	36400	
Acenaphthylene			130 J		95 J	210 J		66 J						ļ	ļ		L	150 J			170 J	NA	41000	-
,6-Dinitrotoluene														ļ				120 J				NA	1000	-
Acenaphthene			220 J	140 J	320 J	690	91 J			ļ					74 J	260 J		260 J	120 J	ļ	47 J	NA	50000	
Dibenzofuran			210 J	69 J	340 J	670	47 J				ļ	ļ				87 J		200 J	48 J	ļ	57 J	NA	6,200	-
luorene			310 J	120 J	430	900	74 J								69 J	150 J		210 J	83 J			NA	50000	
henanthrene	290 J	74 J	2,300	1,400 J	4,200	6,000	1,200	43 J		230 J	150 J	61 J	230 J	670	740	1,700	230 J	2,000	720	98 J	1,100	NA	50,000	-
Anthracene	74 J	62 J	640	320 J	1,000	2,500	200 J					+	57 J	190 J	220 J	420	64 J	510	190 J		340 J	NA	50,000	
Carbazole			160 J	90 J	290 J	570	210 J							40 J		99 J		170 J	52 J		47 J	NA	-	
Di-n-butylphthalate				120 J	56 J									l				47 J	64 J			NA	8100	
luoranthene	470	120 J	1,700	1,600 J	2,400	8,500	4,100 J	53 J		520 J	280 J	120 J	450 J	1,900	1,000	1,800	750	1,800	730	260 J	2,300	NA	50,000	
yrene	460	140 J	6,700	1,700 J	9,700 J	8,500 J	3,400 J	78 J		530 J	250 J	110 J	600 J	2,100 J	1,100 J	4,300 J	920 J	4,100 J	810	410 J	<u>3,200 J</u>	NA	50,000	-
Butylbenzylphthalate		96.1	A 000 F	540 J	2 200 -		and the second second	61.1			061	641		790 J		130 J		-			10000000	NA	50000	
Benzo(a)anthracene	340 J 340 J	86 J 110 J	2,000 J	900 J	3,300 J	3,700 J 3,800 J	1,100 J	51 J 68 J		310 J 350 J	86 J	64 J 66 J	460 J	1,000 J	540 J	1,400 J	390 J	2,000 J	440	150.1	1,400 J	NA	225	
Chrysene			2,000 J	940 J	3,200 J	100 C	1,300 J		61.1		97 J		510 J	1,200 J	520 J	1,600 J	370 J	2,200 J	410	150 J	1,400 J	NA		
Bis(2-Ethylhexyl)phthalate	56 J	52 J	150 J	440 J	650 J	320 J	220 J	50 J	51 J	200 J	57 J	41 J	020.1	210 J	47 J	200 J	190 J	350 J	73 J	84 J	64 J	NA	50,000	·
Benzo(b)fluoranthene	410	220 J	1,900 J	1,300 J	5,400 J	5,300 J	2,300 J	160 J		510 J	110 J	89 J	920 J	1,200 J	570 J	1,600 J	620 J	2,200 J	510	 	2,000 J	NA	1,100	
Benzo(k)fluoranthene	170 J	55 J	700 J	480 J	1,600 J	1,500 J	750 J	52 J		150 J	39 J	67.1	350 J	490 J	260 J	700 J	240 J	860 J	210 J		780 J	NA	1,100	
Benzo(a)pyrene	280 J	130 J	1,400 J	980 J	4,200 J	4,000 J	1,600 J	120 J		370 J	64 J	57 J	800 J	820 J	490 J	1,300 J	460 J	1,500 J	410	200 J	1,500 J	NA	61	
deno(1,2,3-cd)pyrene		250 J	1,000 J	630 J	2,700 J	2,300 J	1,000 J	170 J		210 J		<u> </u>	520 J	410 J	280 J	1,300 J	290 J	1,200 J	240 J		790 J	NA	3,200	
bibenzo(a,h)anthracene		(00.1	1 000 1	(70.1	780 J	950 J	1 200 1	250.1		- 220 :		ļ	(10 I	E 40 :	1 220 :	110 J	200 1	1 200 3	240 :		270 J	NA	14	-
enzo(ghi)perylene	89 J	600 J	1,000 J	670 J	3,000 J	2,700 J	1,200 J	250 J		230 J		1	640 J	540 J	320 J	<u> </u>	390 J	1,300 J	240 J		950 J	NA	50,000	
otes:) Only those parameters having found at a minimum of one lo b) Soil Cleanup Guidelines and I TAGM 4046 (1/24/94). Value sites but have not yet been inco	cation are s Easter U.S. in parenth	shown. Backgroun eses are N	d Range fr /SDEC rev	om NYSD	EC	sidential							J - Indicates NA - Not A Blank space Shaded/bolc	nalyzed indicates a	inalyte was		:d.							
Soil cleanup guideline or backg																								

MALCOLM PIRNIE				antin min dan sama a				2				TABL	E 3-2					248-04-04-04-04-04-04						
									s	UMMAR	RY OF AN	ALYTIC	AL RESUL	TS - FILJ	L PILES									
									н				INVESTIG ER RAILRO		D AREA									
	1										SAMP	LE LOCA	ATION										NYSDEC	EASTERN U.S.
PARAMETER ⁽¹⁾	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	SS-8	SS-9	SS-10	SS-11	SS-12	Duplicate	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20	TRIP BLANK	TAGM	BACKGROUND
	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00	2/23/00		2/24/00		2/24/00		2/24/00		2/24/00	2/24/00		2/24/00	2/25/00	VALUES ⁽²⁾	RANGE ⁽²⁾
PESTICIDES / PCBs (ug/k	(p)			11000000						<u></u>	- 1		<u></u> /		1			r Den sector	SPREAKS ST	legi si denis		A STREET		
Aldrin				500 J		2.9 J	Hereiter strategies	000405068089406080	200544/76262004	HILLING AT CHONG		100000000000000000000000000000000000000	2010/01/01/2010/01/01/2010	2000000962200000	N8-004007224875	2.6 J		landen in statistica da		NICONS NUTRICES	-440-000-000000	NA	41	-
4,4'-DDE			1	PERCENT PLANTING	1		1		t	7.9 J	1			3.9 J		10.9 J	3.9 J				13.8 J	NA	2100	_
4,4'-DDT	1		8.0 J							10.9 J					4.7 J	10.8 J	1 100	32 J			15 J	NA	2100	-
alpha-Chlordane	1			500		29.3	+								1	10101	1				100	NA	540	-
gamma-Chlordane			1	1	1	1	1						1			1	2.1 J	1			1	NA	540	-
Heptachlor	1			3.2 J	1	1	1	[1	· · ·	1			1	1					NA	20	-
Aroclor 1254	1		1	İ	1	1200	No.			l	1	1	-	<u> </u>			1			1	†	NA	1000	-
Aroclor 1260				3820	1007					1	1			[1		1				1	NA	1000	-
METALS (mg/kg)													1			1							en contration de	
Aluminum	5,810	28,600	21,000	10,500	11,600	2,950	7,350	25,500	8,140	4,950	4,010	5,230	7,250	7,700	7,670	7,300	4,830	4,680	6,600	5,460	6,480	NA I	SB	33,000
Antimony	1								-		1		· · · · ·	[7.2 J			T	NA	SB	-
Arsenic	6.31	4.8	1	5.5	6.3	10.6	5.3		17.9	4.6	6.3			5.4		3.7	3.6	22.9	3.0		11.7	NA	7.5 or SB	3 - 12
Barium	75.4 J	316 J	248 J	327 J	175 J	53.1 J	55.5 J	150 J	83.7 J	65.7 J	40.2 J	49.5 J	83.5 J	96.1 J	71.3	80.3 J	60.4 J	298 J	87.8 J	55.0 J	86.6 J	NA	300 or SB	15 - 600
Beryllium		5	5.3	0.74 B				4.5	1.4				1.2	[0.73 B	154		0.92			NA	.016 or SB	0 - 1.75
Cadmium	4.6 J	2.3 J	4.5 J	5.3 J	4.6 J	19.9 J	1.7 J	2.6 J	2.0 J	2.5 J		2.2 J	1.4 J	3.3 J	1.4 J	1.9 J	3.1 J	19.9 J	1.5 J	1.4 J	3.7 J	NA	(10)	0.1 - 1
Calcium	27,500	209,000	124,000	22,600	29,400	14,200	65,700	157,000	24,500	23,800	52,900	64,100	67,000	55,600	65,100	62,100	56,300	32,900	52,100	52,700	36,200	NA	SB	130 - 35,000
Chromium	11.7 J	17.3 J	45.4 J	28.9 J	81.1 J	193 J	11.5 J	10.2 J	20.7 J	10.1 J	8.2	31.3 J	32.8 J	22.0 J	13.2 J	13.3 J	13.0 J	38.4 J	17.6 J	9.53	42.9 J	NA	(50)	1.5 - 40
Cobalt	9.6 B		5.0 B	13.5	11.2 B	15.9	8.6		7.7 B	5.6				6.4 B	6.7 B	4.5 B	6.5 B	13.1	5.2 B	5.0 B	6.7 B	NA	30 or SB	2.5 - 60
Copper	46.1 J	13.2	20.9 J	504 J	40.2 J	58.3 J	19.5 J	9.4	15.3	22.9 J	11.0	19.9 J	11.5	70.2 J	14.7	39.0 J	62.5 J	501 J	49.1 J	21.6 J	69.4 J	NA	25 or SB	1 - 50
ron	56,900	18,500	58,000	27,400	47,800	244,000	and the second se	25,400	20,100	16,700	7,910	21,000	10,900	20,300	14,300	13,700	20,200	108,000	13,300	13,100	27,800	NA	2,000 or SB	2,000 - 550,000
_ead	80.2 J	38.1 J	93.4 J	89.0 J	571 J	89.4 J	20.5 J	29.3 J	46.8 J	85.6 J	15.2 J	49.0 J	61.8 J	121 J	22.4 J	188 J	136 J	766 J	117 J	46.1 J	208 J	NA	(1000)	4 - 500
Magnesium	4,830	18,500	23,600	6,000	8,660	3,070	12,400	11,400	4,740	6,620	17,700	13,900	15,000	13,400	19,200	9,470	13,600	7,200	11,500	17,100	11,300	NA	SB	100 - 5,000
Manganese	1,240	3,320	1,770	426	777	2,410	413	1,300	194	303	230	741	1,470	419	422	510	395	1,310	610	304	384	NA	SB	50 - 5,000
Mercury	0.49 J		0.12 J	0.54 J	0.15 J				Laurenseen .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				0.18 J	0.12 J	0.30 J		0.67 J	0.48 J	0.17 J	0.19 J	NA	0.1	0.001 - 0.2
Nickel	29.0 J		13.9 J	41.7 J	29.3 J	84.8 J	21.4 J		17.8 J	15.4 J	7.7 J	9.2 J	6.9 J	24.7 J	15.6 J	13.5 J	14.3 J	38.9 J	18.1 J	12.1 J	19.0 J	NA	13 or SB	0.5 - 25
otassium	1,110 B	4,970	3,270	2,170	2,510	657 B	1,050 B	3,120	2,100	696 B	1,100 B	872 B	1,430	1,910	1,870	1,470	1,410	1,360	1,270	1,500	1,450	NA	SB	8,500 - 43,000
Selenium	2.3	35.2 J	35.9 J	11.5 J	12.3 J		23.7 J	28.0 J	10.9 J	15.3 J	33.1 J	25.6 J	29.2 J	23.5 J	33.2 J	21.4 J	25.2 J		24.0 J	29.7 J	22.6 J	NA	2 or SB	0.1 - 3.9
Sodium	+	675 B	532 B					107	J	291 B			301 B		230 B						ļ	NA	SB	6,000 - 8,000
Thallium			0.7.5		-	0.0 5	2.4 J	4.8 J	<u> </u>							2.7 J	1.0.6					NA	SB	-
/anadium	27.0	265290-632-685	8.7 B	22.6	25.3	9.0 B	14.9	9.9 B	44.2	12.7	16.4	15.9	15.0	17.2	15.9	13.4	18.6	17.6	13.3	14.6	22.9	NA	150 or SB	1 - 300
Sinc	64.3 J	133 J	261 J	264 J	299 J	86.4 J	64.8 J	101 J	73.5 J	462 J	63.8 J	113 J	140 J	239 J	66.5 J	192 J	315 J	2,380 J	108 J	77.5 J	254 J	NA	20 or SB	9 - 50
Cyanide	1	3.5	12.0	L	L	3.6		12.7	l		I	L	1.7	3.0	l	L				L	L	NA	-	-
lotes:																	imit and Co							
1) Only those parameters havin	-		boratory de	tection lim	it, and										e value. Re	sult is belo	ow quantitat	ion limit bı	it above ze	ro.				
found at a minimum of one													NA - Not Ar	,										
2) Soil Cleanup Guidelines and													Blank space											
TAGM 4046 (1/24/94). Vali				/ised value	s for nonres	sidential							Shaded/bold	text indica	ites guidanc	e criteria	or backgrou	nd range w	as exceede	:d.				
sites but have not yet been in																								
Soil cleanup guideline or back	ground rang	e not avail	able.										L											

detected in one sample (SS-4) above the soil cleanup guideline. The PCBs Aroclor 1254 and Aroclor 1260 were each detected in one sample, and were detected at concentrations above the soil cleanup guidelines.

Only six SVOCs were detected at concentrations exceeding the soil cleanup guidelines. The six compounds are polycyclic aromatic hydrocarbons (PAHs), which were also detected in the samples collected during the 1999 Site Characterization. These PAHs and the associated concentrations are consistent with those detected in the soil samples collected during previous investigations. The concentrations of these compounds detected in the soil/fill material at this site are primarily within the range typically found in urban soils. Because PAHs are formed through anthropogenic combustion processes such as the burning of coal, oil and gasoline, they are generally ubiquitous in soils, especially urban soils. The presence of PAHs at this site is consistent with its urban location and past use as a railyard.

Twelve metals were detected in at least one debris pile sample at concentrations above the soil cleanup guidelines. These metals included arsenic, barium, beryllium, cadmium, calcium, copper, iron, magnesium, mercury, nickel, selenium and zinc. Although the source of the debris piles is not known, it should be noted that the highest iron concentration in the debris pile samples was 244,000 mg/kg, which is below the highest concentration in the Eastern U.S. Background Range (550,000 mg/kg). Similar to the samples discussed in Sections 3.1 and 3.2, the elevated selenium concentrations were detected during the analysis of the soil samples using ICP methods. The selenium concentrations using ICP analysis ranged from 2.29 to 35.9 mg/kg in the debris pile samples, but selenium was not detected when the three samples with the highest concentrations were re-analyzed using graphite furnace methods. Therefore, interference due to elevated calcium concentrations during the ICP analysis likely caused the artificially inflated concentrations of selenium detected in the samples.

3.4 GROUNDWATER CHARACTERIZATION RESULTS

The results of the analysis of the groundwater samples are summarized in Table 3-3. The groundwater analytical results indicated that only two VOCs (4-methyl-2-pentanone and 2-hexanone) and one SVOC (di-n-butylphthalate) were detected in the groundwater samples. These compounds were detected at concentrations below the Class "GA" Groundwater Quality Standards. Pesticides and PCBs were not detected in the groundwater samples.

Six metals (iron, magnesium, manganese, selenium, sodium, and thallium) were detected at concentrations exceeding the Class "GA" Groundwater Quality Standards in at least one groundwater sample. As discussed previously, the elevated iron concentrations in the Former Railroad Yard Area may be due to historical operations at the site and/or the fact that 8 to 12 feet of fill material cover the site. The elevated selenium concentrations are likely due to interference of elevated calcium concentrations in the ICP analytical methods, as discussed previously. Thallium was detected in only one groundwater sample (MW-104), and was not detected in previous sampling at this location. Additionally, thallium was not previously detected in any soil samples collected in the Former Railyard.

These groundwater characterization results are useful in assessing the "oil-like sheen" observed at a depth of approximately 7.3 feet below grade in MW-003, as described on the boring log for the well (included in Appendix A). No soil samples were collected for analysis from this well boring. However, the depth of the interval with the sheen is located within the screened interval of the well, and was below the water table during the groundwater sampling event. No volatile organic compounds, pesticides, or PCBs were detected in the groundwater sample from MW-003, and only one semivolatile organic compound (di-n-butylphthalate) was detected in the sample. Di-n-butylphthalate was detected at a concentration of 4 μ g/L. Based on the groundwater sampling results, the oil-like sheen does not appear to be due to contamination by organic compounds.

				TABLE 3-	3			<u></u>	
MALCOLM PIRNIE	5	SUMMARY	OF ANALY	TICAL RESULTS	5 - GROUND	WATER SAM	PLES		
		HAN		LEMENTAL INV ACE - FORMER R					
				SAMPLE LOO	CATION				NYSDEC
PARAMETER ⁽¹⁾	MW-001	Duplicate	MW-002	MW-003	Duplicate	MW-104	MW-105	TRIP BLANK	Class GA
	2/2/00	(MW-001)	2/2/00	2/2/00	(MW-003)	2/2/00	2/2/00	2/2/00	Standards ⁽²⁾
VOLATILE ORGANIC COM	POUNDS (ug/	/L)			L				
-Methyl-2-pentanone	4 J					<u>.</u>		NA	·····
-Hexanone	9 J			·····		·····		NA	50
Foluene			-	· · · · · · · · · · · · · · · · · · ·				27	
SEMI-VOLATILE ORGANIC	COMPOUN	DS (ug/L)							
Di-n-butylphthalate		E2	3 J	4 J		3 J		NA	50
PESTICIDES / PCBs (ug/L)	<u></u>				·				
None Detected						······································		NA	
METALS (ug/L)					•				
Cyanide	39.0	36.0		20.0	10.0	90.0	20.0	NA	1000
Aluminum	162B	653	902	402	277	1630		NA	**
Barium			140 B	65.1 B	59.5 B			NA	1000
Calcium	57,100	60,300	171,000	159,000	141,000	101,000	75,100	NA	**
Соррег			10.9 B				1	NA	200
Iron	340 J	1230 J	11,700 J	2,960 J	2,340 J	231 J	304 J	NA	300
Lead			5.1 J	4.3 J	4.1 J		3.8 J	NA	25
Magnesium	6,940	7,610	55,700	32,100	28,900		7,750	NA	35000
Manganese	40.7	62.5	658	846	757		25.0	NA	300
Potassium	38,600 J	40,800 J	1,080 J	61,000 J	53,200 J	12,400 J	14,100 J	NA	
Selenium	25.0 J	20.6 J	114 J	84.5J	63.2 J	13.6 J	29.3 J	NA	10
Silver			35.9			l	<u> </u>	NA	50
Sodium	61,400	64,600	36,600	44,000	39,000	14,700	23,100	NA	20000
Thallium						16.6		NA	0.5
Zinc	1	11.3 B	14.0 B	86.2	39.5	16.5 B	10.0 B	NA	2000
Notes: (1) Only those parameters havin found at a minimum of one l (2) NYSDEC Water Quality Gu Ambient Water Quality Stand	location are sho idance Values dards and Guid	own. for Class GA lelines (June	Waters fron		Detectio J - Indicates a above ze NA - Not Ana	n Limit. an estimate val ero. alyzed		1 Limit and Contac elow quantitation l	
- Water Quality Standard or Gu	idenne not ava	anable.		10000110000000000000000000000000000000				eria was exceeded.	

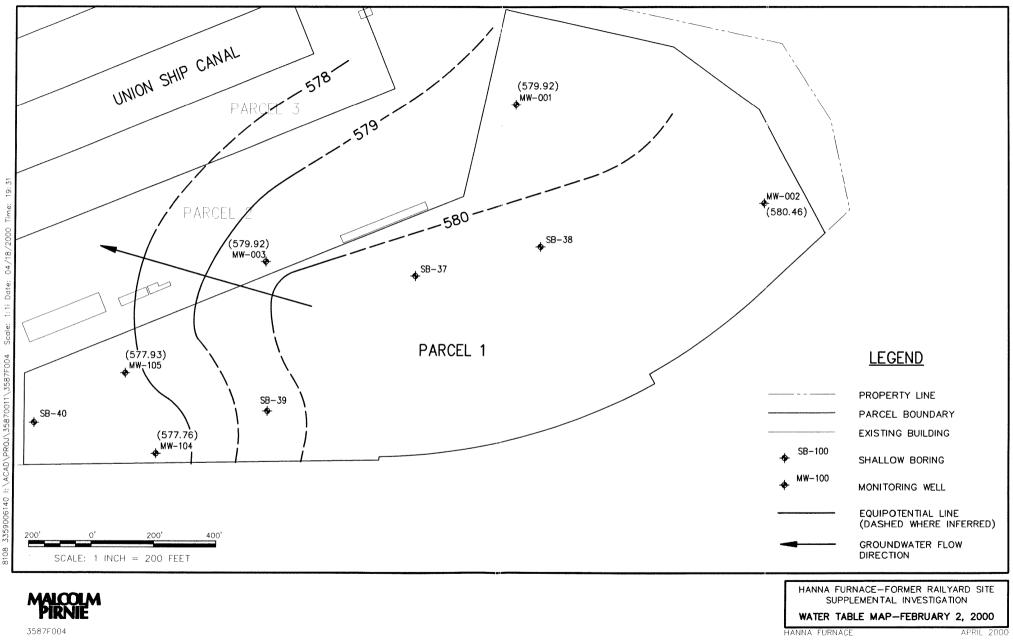
Table 3-4 shows the groundwater elevations measured on February 2, 2000. As shown in Figure 3-1, the groundwater flow direction at the Former Railroad Yard Area is north and west, toward the canal. This groundwater flow direction is consistent with that described during previous investigations at the site.

MALCOLM

TABLE 3-4

GROUNDWATER ELEVATION MEASUREMENTS

SUPPLEMENTAL INVESTIGATION HANNA FURNACE - FORMER RAILROAD YARD AREA


WELL	RISER	BOTTOM	MEASUREMENT					
NUMBER	ELEVATION ⁽¹⁾	DEPTH ⁽²⁾	STATIC LEVEL ⁽²⁾	ELEVATION				
xisting Monitoring Wel	ls			· · · · · · · · · · · · · · · · · · ·				
MW-104	586.38	17.78	8.62	577.76				
MW-105	585.59	17.60	7.66	577.93				
ewly Installed Monitori	ing Wells		1	1				
MW-001	583.96	15.60	4.18	579.78				
MW-002	586.01	15.60	5.55	580.46				
MW-003	582.79	16.05	2.87	579.92				

Notes:

(1) Measured in feet above mean sea level.

(2) Feet below top of riser.

Contraction of the local division of the loc 1 3359006140 I: \ACAD\PROJ\35870011\358 8108

I

4.0 QUALITATIVE RISK ASSESSMENT

As part of the Supplemental Investigation, Malcolm Pirnie completed a qualitative risk assessment that examines the risk that contaminants at the site pose to human health and the environment. The Qualitative Risk Assessment is included in Appendix E.

5.0 CONCLUSIONS AND RECOMMENDATIONS

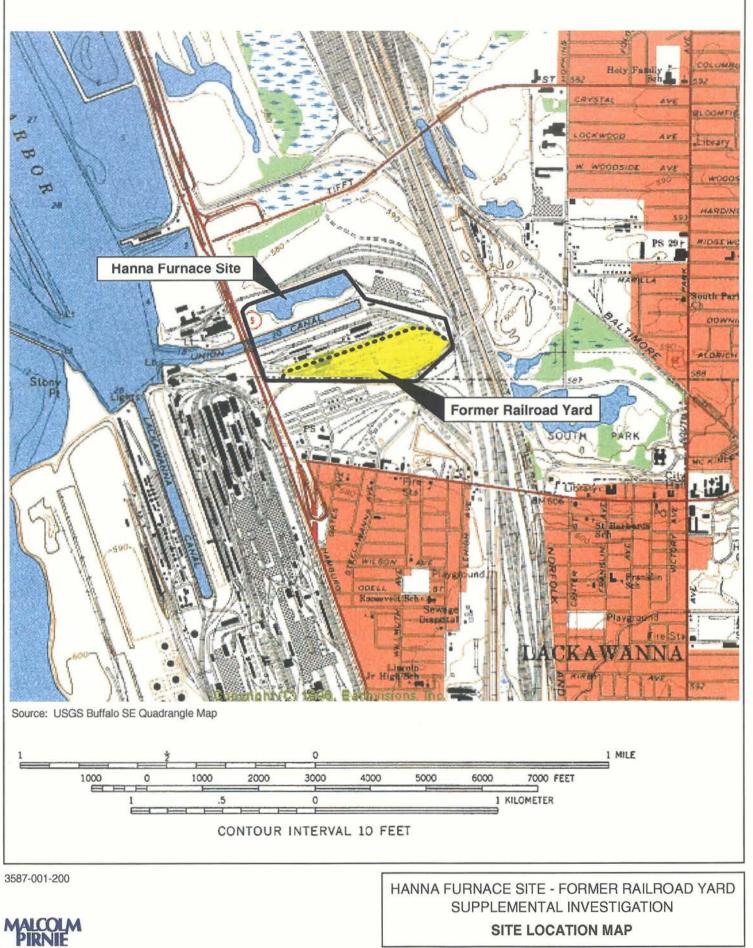
The results of the Supplemental Investigation of the Former Railroad Yard Area at the Hanna Furnace Site were consistent with previous investigations performed at the area. The media characterized during the Supplemental Investigation are separately discussed below.

5.1 SUBSURFACE SOIL/FILL MATERIAL

Consistent with the samples collected during the 1999 Site Characterization, the analytical results indicate that VOCs and PCBs were not detected in the samples collected in the eastern portion the Former Railyard. Additionally, cyanide concentrations were well below the USEPA soil screening levels. A number of metals and PAHs were detected at concentrations above the NYSDEC soil cleanup guidelines, and the concentrations were similar to those encountered in the 1999 Site Characterization.

5.2 **DEBRIS PILES**

The debris pile inventory indicated that the majority of the debris piles are composed of construction and demolition debris. Malcolm Pirnie's estimate of the volume of all above grade debris in the piles is approximately 24,000 cubic yards. The analysis of 20 samples collected from the debris piles generally indicated that some PAHs and metals were detected at concentrations above the soil cleanup guidelines. These constituents and concentrations are generally similar to those encountered in the 1999 Site Characterization.


5.3 GROUNDWATER

Analysis of the groundwater from five monitoring wells in and downgradient of the Former Railroad Yard Area indicated that only two VOCs and one SVOC were detected in the groundwater samples. Pesticides and PCBs were not detected. Six metals were detected at concentrations above the applicable groundwater standards. The elevated concentrations of these metals are most likely due to the presence of fill material and/or historical uses of the Former Railroad Yard Area rather than the presence of significant concentrations of contaminants in the subsurface.

5.4 **RECOMMENDATIONS**

As described in the 1999 Site Characterization Report and confirmed by the results of the Supplemental Investigation, the Former Railroad Yard Area is suitable for re-development as a commercial/light industrial park provided that certain precautions are taken to limit exposure to the metals and PAHs present in the on-site fill material. Minimum precautions should include:

- Establishment of health and safety protocols for specific re-development activities to minimize exposure potential.
- Development of a protocol for dealing with excavated fill material
- Placement of a minimum of 1-foot of clean soil over the surface following or during development to minimize the potential for exposure following site redevelopment. Due to the similarities in chemical constituents of the debris piles and the surface and subsurface soil/fill, the debris piles should be spread across the site (with removal and off-site disposal of large debris such as tires, railroad ties etc.), graded, and covered in the same manner planned for the surface soil/fill material. As discussed in the qualitative risk assessment, these actions will be sufficient to protect human health and the environment.
- Establishment of a protocol for digging required to maintain or enhance utilities following completion of site redevelopment including health and safety requirements and excavated soil handling/disposal requirements.

APPENDIX A

BORING LOGS

BERC/Hanna Furnace Supplemental Investigation Report

3587-001

	CLIEN		<u>Ss</u>	B	1.1. VA	Fur		LD BOREHOLE LO			
	LOCAT CONTI METH OF BORIN	TION		M.	4×10 4/4	יי ח	Tech LOGGED BY J-HILES	BOREHOLE NO. MW-001 STARTED 13.15 M 1/24 19 2007 FINISHED 15 45 M 1/24 19 200 ELEVATIONS: DATUM			
	SAMPLE NO.	HNU BANT	DEPTH	BLOWS 'N'	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Bampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.			
. 1				2 7 15 14	1.3/		1.3 Fill black brown Silt AND MED (rs SAND W/little-Some F (rs Gravel, Slag & brick (MeD)	WET-MOIST			
Fill	2.		2	3/ 14 47	1.8/ 1. E.		-5 Fill SAND Red-brown trace Fine Grave sharp contract of 1.3 Fill, dark blue-years (rs SAND, slag-li	Moist Ke			
Jue 7. 2-60 260	3 -		4	9, 13 50	1.4/-		1. = Fill SAND, Gine dark brown-red 1. = Fill SAND, Crs Blac-green	WRT-SAT SOCNT/.4			
SAND	4		-le_ -7	14 25 13 12	13/		1.3 SAND Fine Mes HACK w/ toace - 1141	¢ SAT			
silt i	5		89	327	0.0/	•	No Recovery				
CIAY	6.		70 71	3 4 5	1.2/	-	1. O SITAND Clay Ner brown yellan. I. O SITAND CLAY NER brown yellan. Frading downwards to gear still	SAT			
	7		12	3 3 10	1.6/		12 CAY, brown - gray w/ trace - 1, Hhe Silt as TAMINAN	Haist			
			14								
	-		1				· · ·				

MAIM

LOCAT CONT METH OF BORIN	RACTO	DR SOIL ROCK		Ma 4 24 11	XIN HS	LOGGED BY <u>JIPH</u>	BOREHOLE NO. <u>MW-002</u> STARTED <u>10:00</u> M <u>1/24</u> 19 200 FINISHED <u>11:50</u> M <u>1/24</u> 18 200 ELEVATIONS: DATUM		
SAMPLE NO.	HNU	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sam Procedures ,Water Less and Ga Drilling and Testing Equipment ,		
1	1.2		2 4 5 6	1,0 2.0		1. D Fill SAND AND SILF black - browning FINE W/ Jittle F-Crs Gravel As CINDERS, AND SING	DRY- Moist took VOC sample 0.		
2	0.4	2	4 4 7	0.2		DODY FREDVERY	Composite SVX, MET. Rest/PCE 0-41		
3	0.3	4	24	.7/-		0.9 Clay, svay rev Mottles is/ Lt brown Silt			
4	 0,Z	6 7	2 3 4 4	1.1		1.4 CAY toos Silt MEDium GRAY, trace			
5	0.2	<u>. 8</u> 9	$\frac{1}{4}$	1.5		1.5 CLAY dArk-MED, GIAY, W/SILLAND Figle SAVE interbes (2 3.7-9.0	WET		
6.	0.2	<u>јз</u> П	1 1 4	1.1/		1.7 CVAY Sight plastic gray - black W/ peot interbed (200,9-11.0	WET		
7	0.2	12 13	$\frac{1}{3}$	2.0	· · · · ·	2.5 CLAY It gray-brown still Mongale plastic Mr. J. trace - Title	WET		
		14							

Ċ

CONTRA METHOD OF) S	OIL	Maxi,	an T HSA	LOGGED BY J. P. H. Herd ST.	ARTED 10:30 N 1/26 18 2 HISHED 12:00 N 1/26 18 2		
BORING SAMPLE NO.	: R 3471	DEPTH	BLOWS "N" RECOVERY	MOISTURE TIN NO.	CORE DIA EL SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Molsture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring , Testing and Su Procedures , Water Less and C Drilling and Testing Equipment		
1			3 1.2/ 3 2.0		1.2 F.II SAND, dark red-brown, P-MED grain	WET Distriburdes As iro.J. clust		
2		2 4	$\frac{7}{1.1}$,	1.7 Fill SAND AS Aburk (A/A) red-braun W/some black Silt (Ash)	SATURATED		
3 -		¥ 5	2 <u>3</u> <u>1</u> <u>4</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>		1.4 Fill SAND A/A 4 Silt	SAT		
٤/		6 7	8 1.5		1.3 Fill SAND, A/IL W/ BACK Silt Sharp contact W/ Black Silt 2 Prat AND UMANIC Silt, Black-brown	Woil-like sheed		
5		छ न	2 2.0		5 Prat AND Cripanic Silt A/A	Contact Moist		
6		10 2 11	2 3 1		.3 SAND brown-black, Fine grain	SAT		
7	-	12 13	2 /2·0 1 ,3 2 , 3	1	3 SAND W/ Reat JARK brown 5 SIT gray-brown	HOIST		

Sheel No. ____

	LOCAT CONTE METHO OF BORIN		DR Soil Rock				Ech LOGGED BY J. P. A. How BT	OREHOLE NO		
	SAMPLE NO.	TYPE	DEPTH	.N. SMOTB	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions , Odor , Etc.	NOTES: Boring ,Testing and Samplin Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.		
	(·			3 2	.3/		.3 Fill, Silt MARK 500 AND Slag & Brick, NANS	kist - Franku		
7.11	Ζ.		2	23 43 35 22	11/		11 Fill is Gravel as stand cousted store w/dark brown sitt, sharp contract w/ r 5 Fill Chatk - White Stand Gravel w/five Gravel AN Vallast	Wit ->+1		
6 <u>.</u> Q	N.		4 	13 14 24 22	C.0/2	11.50	No ELECTRAY presmind RR 102 Mast of Formship. Store			
51.6.N F.N	L[.		-(- -7	19 29 29 29 29 27	. l/ 2. U	12:10	6 Fill blue - green Crs SirNis / 5/23	SAT		
7.2'	5		8 9	30 32 14 16	1.4	12:20	1.2 Fill SAND/SLAG SINC - GREEN AS Abure Sharp Coutre w/ 12 Feat, dark 60000 Yill, wordy these	JAT JUC, MT/CN		
	6	•	10	· · ·						
	7		12 13							
	•									

	CLIENT			BFI.			Cel 1 Anna 1				
	CONTRACTOR MAXIMITEL					"		BOREHOLE NO. B. 38			
	OF)R	M	AX1	m	LOGGED BY JY Hiltoni B	TARTED 12:55 W 1/25 10 2000			
			SOIL		4'4"	HSA		INISHED 13: 306 1/25 10 2001			
			ROCK		·····	T	CORE DIA E	LEVATIONS: DATUM			
	SAMPLE NO.	TYPE	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Molsture Condition, Weathering/Fracturing, Inclusions , Odor ,Etc.	NOTES: Boring ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.			
			6	2 4	1,0 '	1	1.0 FILLIN SILAND SAND dack brown,	WEt			
r.11		-	1	7 5		12:35	64D SAND AT brown, Cos V/Fire Graves				
F:11				7.5	2.0	 	1.4 Fill SAND WINTE-LT MOUND, Cro w/	545			
	2		4	3	1,4	13:00	1.4 Fill SAND Winte-Lt MOUN, Crs 4/2 TEACE FINE GRAVE				
	14		3	5	12.0	12.					
			4	<u>i</u> H	2.0/		2.0 (113) SHND White - MAY black Crs	SATA A A A A A A A A A A A A A A A A A A			
5.7	3		5	4 4		13.05	(1) SAND BRUN, BLACK, FINE-Med (1) SAND green-Ulae, MED. Lrs				
BI-GIN				30	1						
	-	••	6	13	1.3/	.5	1.3 Fill SAND/SIND At blue-green crs	SAT VUL /SLUC			
0.	14		7	24	1/20	13:15		6-91			
8.5	<u> </u>		e,	8 7	1.		I Reat dark brown black Sitty, wood plant tissue	WET			
Pert	5	-		4].//		· · · · · · · · · · · · · · · · · · ·				
				3	12.0	<u> </u>					
	1	•	10		- /						
	$ _{\mathcal{O}}$		il			}					
			12		1/	<u> </u>					
	17		16	<u> </u>	1 /						
			13_		1/-						
			14		17	1					
	R		75		- / / -	1					
	Ľ				1'	<u>t</u>					
	Sheet	Nå	1					MALCOLM			

	LOCAT CONTE METHO OF		SOIL	4	14" Y	i Te tsa		BOREHOLE NO. <u>B-39</u> STARTED <u>/S. 30 M <u>-</u>/25- 10 2000 FINISHED <u>/6 20 M <u>-</u>/25- 10 2000</u></u>
	SAMPLE NO.	17PE	ROCK HT90	.N. SMOTB	RECOVERY \$	MOISTURE TIN NO.	CORE DIA. SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	ELEVATIONS: DATUM NOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
$\left(\right)$	1			10 19 50	11/		1.1 Fill SAND AND GRAVEL, dark browning, MED-Crs W/F-Crs crushed store	DRY-FROZEN SOCNT/.2
	2		2	14 16 12	1.3/		1.3 Fill SAND AND GRAVEL AS Above (A/A) 	SAT
GIAVE	3		Ч 	11 3 5 4	1.1/-		1.7 Fill SAND white gray, crs w/ trace hive Gravel	
ક. ৩	4		6 7	4 5 4	1.8/	-	1.4 Fill SAND A/A W/ Five Gravel .4 Fill SAND blue-white MED-Crs	
1 611 (- : 11	5		8	6 4 8 11	197	16.00.	1.8 Fill SAND blue-green MED-Crs of trace hive Glave	547
10.5	6	•	10 11	16 5 5 8	1.1		. 4 Fill SAND A/A Y sharp contract 0 = 10.5 7 Prat brown-black, w/silt grading down	SAT Azt Moist
	1 		12	D				
					-			

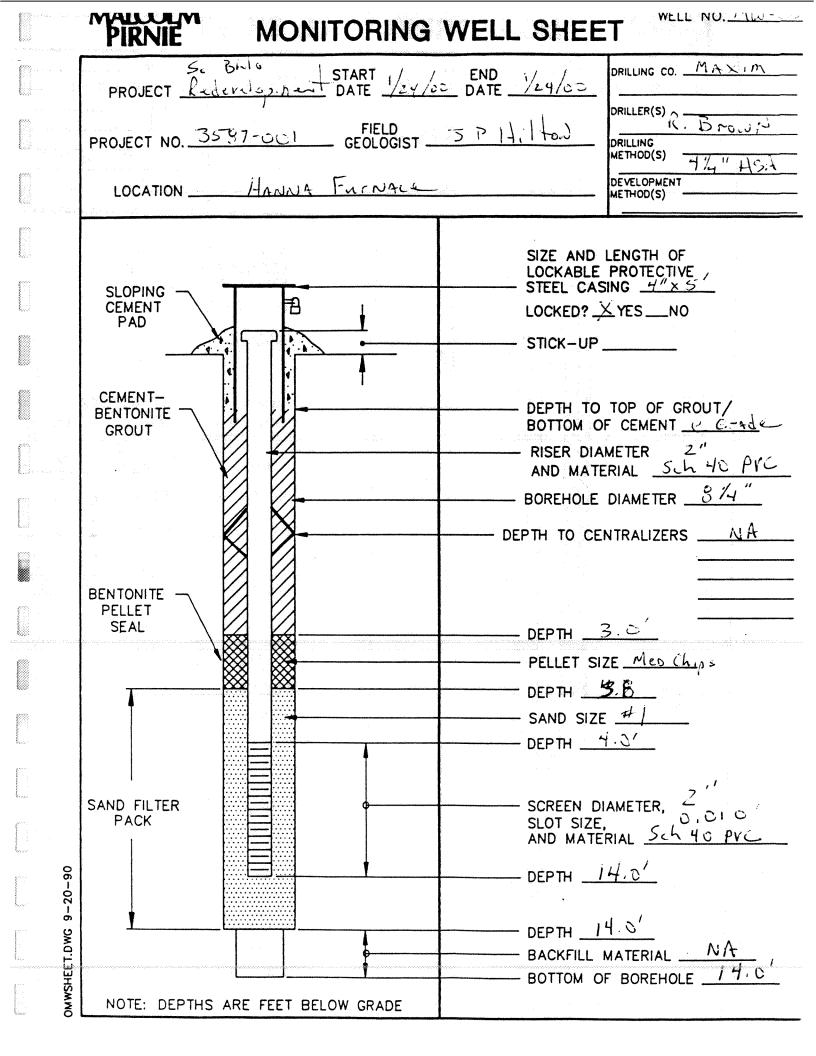
LOCATI CONTR METHO OF BORING	ACTO	DR	M	AX.	<u>т</u> н	elopment JUB NO. 3597-001 FII NACE Tech LOGGED BY J.P. Hiltons SA CORE DIA.	BOREHOLE NO. $B-40$ STARTED 9:00 M $\frac{1}{26}$ 19 FINISHED 10:00 M $\frac{1}{26}$ 19 ELEVATIONS: DATUM
SAMPLE NO.	TYPE	ОЕРТН	N. SMOTB	RECOVERY	MOISTURE TIN NO.	BAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and S Procedures ,Water Less and Drilling and Testing Equipmen
			3 32 14	1.0/		1. D Fill Silt AND SAND dark brown - black, F-MED V/SLAG IMETAL SHAPP CONTAct W/ D.B. SAND VELLOW BROWN, MED-CIS, FRACE NINE GLAVEL	Moist
Z		2	9 7 75	1.6/	g:40	1.6 SAND VELLOW-DEANSIE, MED-US W/ FRACE Fine GRAVEL AS & Mished State	Hoist-Wet
3-		4	7 11 32 31 50	1.6/		1.4 SAND W/F-(rs Grave) A/A 2 SAND MED-(rs, blue-gray	SAT
4		6	9 15 16	14/	9:25	1.4 SAND blue - Effect Med-crs A/A White Augulan gravel	SAT
5		8	10 2 1	1.2/		.1 SAND blue-green A/A, sharp contact .3 Peat brown-black	SAT Moist Asticity
		10		12.10		.B. S. It AND CLAY dark gray-brown, soft, weak pl	
				<u> </u>			

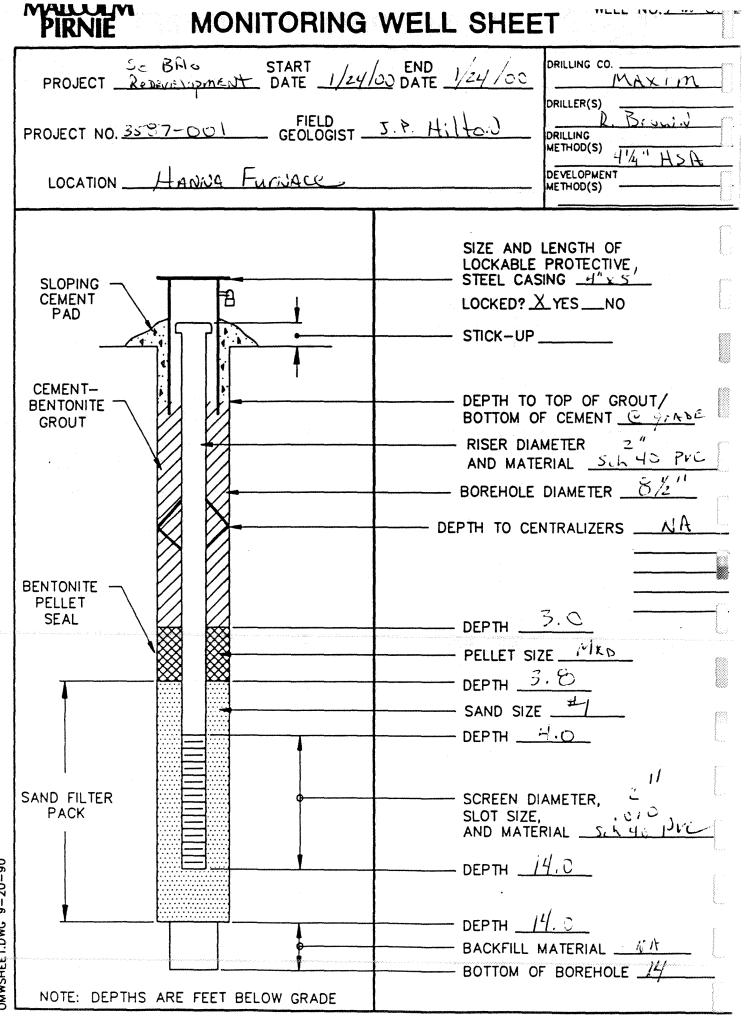
APPENDIX B

MONITORING WELL CONSTRUCTION DETAILS

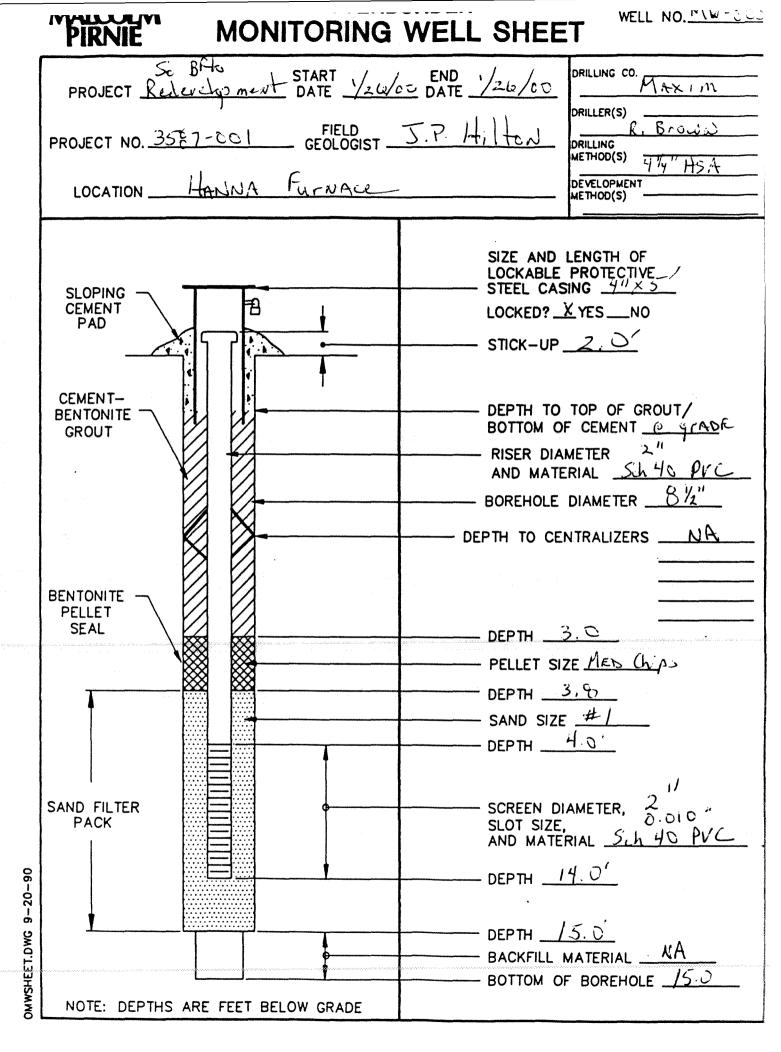
Project Hama Furnace	Study Area	bouth UPG	Driller <u>B. Lunbet</u>
Project No. 71164-40		<u>nw-104</u>	Drilling Method 4.25" (D HSA
1001	Date Installed	10/21/94	Development Method PUMP & SUR
Field Geologist BLBut	<u></u>		
0			op of Surface Casing: 587.19
			op of Riser Pipe: 586.90
			op of Riser Pipe: <u>586.90</u> ce Seal: <u>concret Bent Goot</u>
Ground 584.4			ce Casing: <u>Stept</u>
	17.7		
			Casing: 6"
		ID of Surface	
		Diameter of B	orehole: <u>BrZ5</u> "
			
		Riser Pipe ID:	· · · · · · · · · · · · · · · · · · ·
		Type of Riser	Pipe: <u>PVC</u>
		Type of Backf	ill: 95% & Concrt, 5% Bettonit
		Elevation of To	op of Seal: 581.4
	and Markey .	Depth of Top	
		Type of Seal:	Bettonite Chips
		Elevation of To	op of Sand: 580.4
		Depth of Top of	
(∭ 		Elevation of T	op of Screen: 579.4
		Depth of Tap of	of Screen: <u>5'</u>
三十二		Tues of Coros	n: RVC
		Type of Scree Slot Size x Lei	
		ID of Screen:	
	1		
	l -	Type of Sandp	back: #00 Morie
			attom of Screen:
	4	Depth of Botto	
	J		nent Sump with Plug: NIA
	J 1		
l I	1		
	···		ottom of Borehole: 569.4
		Depth of Botto	

the second
ار کې . موند د محمد د مرد د


Accession and Accession


n Suminadal-music

(Supported at a support


	udy Area Boile-House Driller B. Lambert
· · · · · · · · · · · · · · · · · · ·	pring No. MW-105 Drilling Method 4.75 HSA
Dield Geologist <u>BKBUHEr</u>	ate Installed 10/21/44 Development Method PUMP & SURKE
9	Elevation of Top of Surface Casing: <u>586.32</u> Stick-up of Casing Above Ground Surface: +2,5
	Elevation of Top of Riser Pipe: 586.03
round	Type of Surface Seal: Ceret/Best 6-CU+
iround levation 584.0	Type of Surface Casing: <u>Steet</u>
	ID of Surface Casing: 6"
	Diameter of Borehole: 8, 25"
	Riser Pipe ID:
	Type of Riser Pipe: PNC, Sch 40
	Type of Backfill: <u>95% Portland Cornelt</u> ,
	5% bestanite
	Elevation of Top of Seal: 58
	Depth of Tup of Seal: 31 1045
	Type of Seal: Chips
	Elevation of Top of Sand:580
	Depth of Top of Sand: 4' bgs
L +	Elevation of Top of Screen: 579
	Depth of Top of Screen: <u>5'bys</u>
	Type of Screen:
	Slot Size x Length: # 6 × 10'
	ID of Screen: Z"
	- Type of Sandpack: # OC Morie Silicu
	Elevation of Bottom of Screen:
	Depth of Bottom of Screen: <u>15 by-</u> Depth of Sediment Sump with Plug: <u>NIA</u>
	Elevation of Bottom of Borehole: 569
Restoration of the destination of the second s	Elevation of Bottom of Borehole: 569 Depth of Bottom of Borehole: 15'045

9406046D(z) L 16

DMWSHEET.DWG 9-20-90

APPENDIX C

WELL DEVELOPMENT AND SAMPLING LOGS

3587-001

BERC/Hanna Furnace Supplemental Investigation Report MALCOLM PIRNIE

WELL DEVELOPMENT / PURGING LOG

PROJECT TITLE:	So. Buffalo Redevelopme	ent @ Hanna Furnace	
PROJECT NO. :	3587-001	· · · · · · · · · · · · · · · · · · ·	
STAFF:	ZPH		
DATE:	\$127100		:

WELL NO.: MW-001

(1) TOTAL CASING AND SCREEN LENGTH (ft.):	16.22	WELL I.D. 1"	VOL. GAL/Ft. 0.04
(2) CASING INTERNAL DIAMETER (in.):	2"	2"	0.17
		3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	4.2	4''	0.66
Alterna de la companya de la company Alterna de la companya		5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	2.0	6''	1.50
		8"	2.60

$$V = 0.0408 [(2)^2 x \{(1) - (3)\}] = _____ GAL.$$

Time	10:15	15:21	10:25	10:32	10.40						
		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	20	40	60	80	100						
рĦ	8.93	8.75	8.72	8.82	8.73						
CONDUCTIVITY	856	874	852	840	830	· · · ·					
TEMPERATURE	7°C	G P	9	٩	9	·		аналан (так) С			
TURBIDITY	201<	47	601<	0012	39			-			
APPEARANCE	silty	Sill	hilky	M:1Ky	clear						

COMMENTS: - Initially purged 10 gal with 14" disposable bailer 1/26/00 - Note strong sultime obor during purge & development process - Continued development w/centrichugal pumps, well recharges

readily - UNAble to pump well to "dry" conditions

WELL DEVELOPMENT / PURGING LOG PROJECT TITLE: So. Buffalo Redevelopment @ Hanas Furnace PROJECT NO.: STAFF: D H /SRD DATE: 2/2/09 WELL NO.: WW-001 VOL (1) TOTAL CASING AND SCREEN LENGTH (h.): 16.22 WELL LD. OALF: (2) CASING AND SCREEN LENGTH (h.): 16.22 WELL LD. OALF: (2) CASING AND SCREEN LENGTH (h.): 16.22 WELL LD. OALF: (2) CASING AND SCREEN LENGTH (h.): (2) CASING INTERNAL DIAMETER (h.): (2) CASING INTERNAL DIAMETER (h.): (2) CASING INTERNAL DIAMETER (h.): (2) CASING (h.): V= 0.0408 [Q? x (1) - (3)] 1 = CAL Time: TO IS T	MALCOLM PIRNIE		
PROJECT NO.: 3587-001 STAFF: \bigcirc		WELL DEVELOPMENT / PURGING LO	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PROJECT TITLE:	So. Buffalo Redevelopment @ Hanna Furnace	
DATE: $2/2/00$ VOL (1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.22 VELL LD. GALFt. (1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.22 VELL LD. GALFt. (2) CASING INTERNAL DIAMETER (in.): $2"$ 2" 0.17 (3) WATER LEVEL BELOW TOP OF CASING (ft.): $4/.18$ 4" 0.66 (4) VOLUME OF WATER IN CASING (gal.): 2.1 6" 1.50 V = 0.0408 [(2) ² x { (1) - (3) }] = GAL. Time $9:25$ $9:24$ $9:27$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 / 5 JOINT 10: $3:29$ PH $6:2$ $5:3.2$ PH $6:2$ $5:3.2$ TEMPERATURE $6:4$ $6:6.5$ TURBIDITY 777 $6:6.5$ $7:2$ TURBIDITY $3:7$ $3:9$ APPEARANCE $6:6:4$ $6:6:4$ $6:6:4:4$	PROJECT NO. :		
WELL NO.: MW-001 (1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.22 WELL LD. GAL/FL (2) CASING INTERNAL DIAMETER (in.): 2" 1" 0.04 (3) WATER LEVEL BELOW TOP OF CASING (ft.): $\frac{4}{.9.8}$ 4" 0.66 (4) VOLUME OF WATER IN CASING (gal.): $2 \cdot 1$ 6" 1.50 $V = 0.0408 [(2)^2 x {(1)-(3)}] =GAL.$ 8" 2.60 V = 0.0408 [(2)^2 x {(1)-(3)}] =GAL. Time 9:22 9:24 9:27 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 / 2 (5) JOINT 10:33 PH 8:2 8:22 9:24 V=0.0408 [(2) ² x {(1)-(3)}] =GAL. Time 9:22 9:24 PH 8:2 8:22 9:24 V=0.0408 [(2) ² x {(1)-(3)}] =GAL. TIME ODUCTIVITY 777 8:5 5:32 DOUCTIVITY 777 8:5 5:32 TEMPERATURE 9:2 5:2 9:2 TURBIDITY 3:9 TIBUTY 3:9 OT 3:9 OULIME OF WATER IN CASING (6:2)	STAFF:	JPH/SRD	
(1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.22 VOL (1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.22 VOL (2) CASING INTERNAL DIAMETER (in.): 2" 0.04 (3) WATER LEVEL BELOW TOP OF CASING (ft.): $\frac{4}{18}$ 4" 0.66 (4) VOLUME OF WATER IN CASING (gal.): $2 \cdot 1$ 6" 1.50 8" 2.60 V = 0.0408 (2) ² x { (1) - (3) } = GAL. Time 9:25 9:24 9:27 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 12 15 132 PARAMETERS 5 12 15 132 PH 8:2 8:22 9:24 9:27 CONDUCTIVITY 777 8:15 5:32 TEMPERATURE 8: $8: 5:32$ 12 15 12 12 12 12 12 12 12 12 12 12 12 12 12	DATE:	2/2/00	
(1) TOTAL CASING AND SCREEN LENGTH (ft.): <u>16.22</u> 1° 0.04 (2) CASING INTERNAL DIAMETER (in.): <u>2°</u> 0.17 (3) WATER LEVEL BELOW TOP OF CASING (ft.): <u>4/.18</u> 4° 0.66 5° 1.04 (4) VOLUME OF WATER IN CASING (gal.): <u>2.1</u> $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $V = 0.0408 \{(2)^2 x \{(1) - (3)\}\} = GAL$ $Time \frac{9! 2.5}{1.24} \frac{9! 2.7}{1.27}$ $PARAMETERS \frac{5}{1.2} \frac{1.2}{1.5} \frac{9! 2.7}{1.5} 9$	WELL NO.:	MW-001	VOI
(2) CASING INTERNAL DIAMETER (in.): 2" 0.17 3" 0.38 (3) WATER LEVEL BELOW TOP OF CASING (ft.): $\frac{4}{1/8}$ 4" 0.66 (4) VOLUME OF WATER IN CASING (gal.): $2 \cdot 1$ 6" 1.50 8" 2.60 V = 0.0408 [(2) ² x { (1) - (3) }] = GAL. Time 7:25 7:24 7:27 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 7.0 15 1.50 pH $6:2$ $5:3.7$ 1.51 CONDUCTIVITY 777 $6:5$ $5:3.7$ 1.51 TEMPERATURE $6:2$ $6:5$ 7.2 APPEARANCE $6:4:4:4$ 1.51 APPEARANCE $6:4:4:4:4$ 1.51 2" 0.17 3" 0.38 4" 0.66 5" 0.38 4" 0.66 5" 1.04 6" 1.50 8" 2.60 1.51 3" 0.38 4" 0.66 5" 1.04 6" 1.50 8" 2.60 1.51 1.52 1.52 1.54 1.54 1.54 1.55 1.54 1.	(1) TOTAL CASIN		LD. GAL/FL
(3) WATER LEVEL BELOW TOP OF CASING (ft.): $\frac{47.78}{5''}$ 4" 0.66 5" 1.04 (4) VOLUME OF WATER IN CASING (gal.): 2.1 6" 1.50 8" 2.60 V = 0.0408 [(2) ² x {(1)-(3)}] = GAL. Time $7:25$ $7:24$ $7:27$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS $5 7.24$ $7:27$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS $5 7.24$ $7:97$ ACCUMULATED VOLUME PURGED (GALLONS) PH $8:2$ $8:02$ $7:97$ TEMPERATURE $9:2$ $9:5$ $7:2$ TURBIDITY $3:7$ $2:7$ $3:9$ APPEARANCE $2:63$ $2:74$ $3:97$	(2) CASING INTE		
(4) VOLUME OF WATER IN CASING (gal.): 2.1 5" 1.04 6" 1.50 8" 2.60 V = 0.0408 [(2) ² x {(1)-(3)}] =GAL. Time 9125 9124 9127 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 15 15 15 15 15 15 15 15 15 15 15 15 1	(3) WATER LEVE	L BELOW TOP OF CASING (ft.): 4.10°	
8" 2.60 V = 0.0408 [(2) ² x {(1)-(3)}] =GAL. Time 91:25 91:24 91:27 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 5 12 15 15 5 12 15 pH 8:2 8:02 9:99 CONDUCTIVITY 777 8:15 5:37 TEMPERATURE 8:2 8:5 9:2 9:2 TURBIDITY 39 27: 39 APPEARANCE 6:614 6:144	147		
Time 7125 7124 7127 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 57 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10	(4) VOLUME OF		
Time 7125 7124 7127 ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 57 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 15 10		$V = 0.0408 [(2)^2 x \{ (1) - (3) \}] = GAL.$	
ACCUMULATED VOLUME PURGED (GALLONS)PARAMETERS 5 $1 \odot$ $1 \le$ $1 \le$ $1 \le$ pH $8,2$ $8,02$ $9,99$ 1 1 CONDUCTIVITY 777 815 53.7 1 TEMPERATURE 9.2 8.5 1.2 1 TURBIDITY 39 27 39 1 APPEARANCE 61.44 21.44 1 1	Time		
3 10 15 pH $8,2$ $8,02$ $7,94$ CONDUCTIVITY 777 815 532 TEMPERATURE $8,2$ 8.5 7.2 TURBIDITY 34 27.34 34 27.34 APPEARANCE 61.4 61.4 61.4 61.4			LLONS)
CONDUCTIVITY 777 515 532 TEMPERATURE 92 65 92 92 TURBIDITY 39 25 38 12 APPEARANCE 6124 1244 1244 1244	PARAMETERS	5 10 15	
TEMPERATURE S. 2 S. 2 S. 2 S. 2 TURBIDITY 39 39 S. 39 <ths. 39<="" th=""> <ths. 39<="" th=""> <ths. 39<<="" th=""><th>рН</th><th>8,2 8,02 9,94</th><th></th></ths.></ths.></ths.>	рН	8,2 8,02 9,94	
TURBIDITY 39 39 APPEARANCE Clevel 1	CONDUCTIVITY	777 815 532	
APPEARANCE CIENT CIENT	TEMPERATURE	82 8.5 9.2	
	TURBIDITY	39 27 39	
COMMENTS: - purged w/ custa. Injal pung? shute 9116 - Strong Sulfue open	APPEARANCE	cientic cient	
COMMENTS: - purged cylentritural pung? strate 9116 - Strong Sulling ober			
- Strong Sulfar spice	COMMENTS:	might w cutriminal pump shul	· @ 9116
	- Stiller : 3	aller oper	
		•	

- Aller States

WELL DATA: DATE: $\frac{1}{2}/2$ TIME: $\frac{9}{2}/5$ Casing Diameter (inches): 2 inches Casing Material: SCH 40 PVC Screend interval (ft. BGS): 4.0 - 14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft.): $\frac{4}{2}/\frac{1}{2}$ Bottom Depth (ft.): 14.0 Datum Ground Surface: Datum Ground Surface: Datum Ground Surface: No Elevation Top of Screen: Pumping Rate (gal/min): No No No Standing Volume Gal.) $\frac{2}{2}/a$ Was well purged dry? Yes No No No Standing Volume (Gal.) $\frac{2}{2}/a$ No Well Nolumes Purged (Gal.) $\frac{2}{2}/a$ No Yes No Standing Volume (Gal.) $\frac{2}{2}/a$ No Yes No Yes No Yes No Is purging equipment dedicated to sample location? Yes No Yes No Yes No Standing optiment dedicated to sample location? Yes Air Tomperature (F): $\frac{2}{a}/a^{-0}$ $\frac{2}{a}/a^{-0}$ Source and type of the Sample (ft.): $\frac{2}{2}/a^{-2}/a^{-2}$ Materialer Sampler: $$	MALCOLM PIRNIE WATER	SAMPLING FIELD DATA	A SHEETS
JOB NO:	PROJECT So. Buffalo Redevelopment	TYPE OF SAMPLE:	Water
JOB NO:: 3587-001 LAB SAMPLE NO.: WELL DATA: DATE:: $2/z^2$ TIME:: $9/z/S^2$ Casing Diameter (inches): 2 inches Casing Material: SCH 40 PVC Screened interval (ft. BGS): 4.0 - 14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft.): $4/.7^2$ Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface:	CLIENT: BERC	LOCATION NO.:	MW - 001
WELL DATA: DATE: \sqrt{z} TIME: $91/5$ Casing Diameter (inches): 2 inches Casing Material: SCH 40 PVC Screened interval (ft. BGS): 40 - 14.0 Screene Material: SCH 40 PVC Static Water Level Below TOR (ft.): $4/.7$ Bottom Depth (ft.): 14.0 Elevation Top of Well Riser:	IOP NO : 3587-001		
Screen disterval (ft. BGS): 4.0-14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft): 4.0-75 Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface: Image: Contribugal Pump TIME: Stat: $\frac{7}{16}$ Finish: $\frac{9}{125}$ PURCINC DATA: DATE: $\frac{2}{2}$ Pumping Rate (gal/min): No No Volume Purged: Pumping Rate (gal/min): Was well purged dry? Yes_ No No Volume Purged (Gal.) $\frac{2}{2}$ Well Volume Well LD. Volume Is purging equipment dedicated to sample location? Yes_ No No YES	JUB NU.:		*******
Screen disterval (ft. BGS): 4.0-14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft): 4.0-75 Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface: 14.0 Elevation Top of Screen: Datum Ground Surface: 14.0 PURCINC DATA: DATE: $\frac{2}{2}/\frac{2}{0.0}$ TIME: Start: $\frac{7}{10}$ ($\frac{6}{0}$ Finish: $\frac{9}{2}$ ($\frac{2}{0}$) Well Volumes Purged: Pumping Rate (gal/min): No No Volume Purged (Gal.) $\frac{2}{2}$ ($\frac{2}{0}$) Was well purged below sand pack? Yes No YES NO Well LD. Volume Volume No No YES NO 2 0.17 0.66 150 SAMPLING DATA: DATE: $\frac{2}{2}/\sqrt{0.0}$ TIME: Start: $\frac{1}{1}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) SAMPLING DATA: DATE: $\frac{2}{2}/\sqrt{0.0}$ TIME: Start: $\frac{1}{1}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) Sampling equipment dedicated to sample location? Yes No $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	WELL DATA: DATE: 2/2	TIME : 9.	15
Screen dinterval (ft. BGS): 4.0-14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft): 4.0-72 Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface: Image: Centrifugal Pump TIME: Stat: $\frac{7}{16}$ //6 PURCINC DATA: DATE: $\frac{2}{2}/2.00$ TIME: Stat: $\frac{7}{16}$ //6 Finish: $\frac{7}{2.2}$ /0 Well Volumes Purged:	Casing Diameter (inches): 2 incl	hes Casing Material:	SCH 40 PVC
Static Water Level Below TOR (h):	Screened interval (ft BGS): 4.0 -	14.0 Screen Material:	SCH 40 PVC
Elevation Top of Well Riser:	Streened mich van (n. DOS) 4.0	14.0 Scitch Matchial.	<u> </u>
Elevation Top of Screen: PURGING DATA: DATE: $\frac{2}{2}/\frac{2}{0.0}$ Method:	Static Water Level Delow TOR (IL)	Dottom Deptn (it.	
Method: Centrifugal Pump TIME: Start: $\frac{7}{2}/\frac{6}{6}$ Finish: $\frac{7}{2}, \frac{2}{6}$ Well Volumes Purged: Pumping Rate (gal/min):			игтасе:
Method: Centrifugal Pump TIME: Start: $\frac{7}{2}/\frac{1}{6}$ Finish: $\frac{7}{2}$ $\frac{7}{2}$ Well Volumes Purged (Gal.) $\frac{2}{21}$ Was well purged dry? Yes	PURGING DATA: DATE: $\frac{z}{z}$	2/00	
Volume Purged (Gal.) $/ 5 - 74$ (Was well purged below sand pack? Yes No_> Is purging equipment dedicated to sample location? Well LD. Volume YESNO_X_ 2 0.17 Field Personnel:SR_D6 1.50 SAMPLING DATA: DATE: $2/2/0.5$ TIME: Start: $1/1.4/5$ Finish: $1/1.555$ Method:Disposable Plastic Bailer Sampler: $5fH/SR_D$ Present Water Level (ft.): $4/.1\%$ Weather Conditions: $Clewc_$ Is sampling equipment dedicated to sample location? : Yes_XNo No Source and type of water used in field for QC purposes:	Method: Centrifugal Pump	TIME: Start: 7	16 Finish: 7, 20
Volume Purged (Gal.) $/ 5 - 2^{4}$ (Was well purged below sand pack? Yes No_X Is purging equipment dedicated to sample location? Well LD. Volume YESNO_X 2 0.17 Field Personnel:SR_D 6 1.50 SAMPLING DATA: DATE: 2/2/0.5 TIME: Start: $1/1.4/5$ Finish: $1/1.555$ Method:Disposable Plastic Bailer Sampler: $5^{P}H/SCD$ Air Temperature (F): 20° Present Water Level (ft.): $4/1/E$ Weather Conditions: $C \log_{0}$ Color: Js sampling equipment dedicated to sample location? : Yes X No No Source and type of water used in field for QC purposes:	Well Volumes Purged:	Pumping Rate (ga	l/min):
Volume Purged (Gal.) $/ 5 - 2^{4}$ (Was well purged below sand pack? Yes No_X Is purging equipment dedicated to sample location? Well LD. Volume YESNO_X 2 0.17 Field Personnel:SR_D 6 1.50 SAMPLING DATA: DATE: 2/2/0.5 TIME: Start: $1/1.4/5$ Finish: $1/1.555$ Method:Disposable Plastic Bailer Sampler: $5^{P}H/SCD$ Air Temperature (F): 20° Present Water Level (ft.): $4/1/E$ Weather Conditions: $C \log_{0}$ Color: Js sampling equipment dedicated to sample location? : Yes X No No Source and type of water used in field for QC purposes:	Standing Volume (Gal.)ノ	Was well purged	dry? Yes No 🗡
Well LD. Volume Is purging equipment dedicated to sample location? YESNO_X 2 0.17 Field Personnel: $\Im FH / SR D$ 6 1.50 SAMPLING DATA: DATE: $2/2/0.5$ TIME: Start: $/1.4/5$ Finish: $/1.555$ Method: Disposable Plastic Bailer Sampler: $\overline{\Im FH} / SR D$ Present Water Level (ft.): $/1.6$ Air Temperature (F): 20° Present Water Level (ft.): $/1.1$ $/1.555$ Depth of Sample (ft.): $/1.1$ $/2.6$ Source and type of water used in field for QC purposes: $No_{$	Volume Purged (Gal.) 15 2A	Was well purged	below sand pack? YesNo >>
Is purging equipment dedicated to sample location? <u>(inches)</u> (gal/ft) YESNOX			
YESNOX 20.17 Field Personnel: $\overline{\Im H}/\underline{SRD}$ 6 SAMPLING DATA: DATE: $2/z/2/2$ TTME: Start: $1/1.45^{\circ}$ Method: Disposable Plastic Bailer Sampler: $\overline{\Im H}/SRD$ Present Water Level (ft.): $4/16^{\circ}$ Air Temperature (°F): 20° Depth of Sample (ft.): $4/16^{\circ}$ Weather Conditions: (1260°) Is sampling equipment dedicated to sample location? : Yes_X No	Is nurging equipment dedicated to sample		
Field Personnel: $\overline{JFH}/\overline{SRD}$ 4 0.66 SAMPLING DATA: DATE: $2/2/\sqrt{2}$ TIME: Start: 11.5° Method: Disposable Plastic Bailer Sampler: \overline{JFH}/SRD Finish: 11.5° Method: Disposable Plastic Bailer Sampler: \overline{JFH}/SRD Air Temperature (°F): 20° Present Water Level (ft.): $4/1^{\circ}$ Air Temperature (°F): 20° Depth of Sample (ft.): $4/1^{\circ}$ Weather Conditions: $Olegae$ Is sampling equipment dedicated to sample location? : Yes No Source and type of water used in field for QC purposes: $\mathcal{N} A$ PHYSICAL AND CHEMICAL DATA: Appearance: Celar Odor: Other: Other: PH Specific Conductivity (umhos/cm) $7.5 & 9./1/1$ $7.5 & 9./1/1$ $7.5 & 9./1/1$ Specific Conductivity (NTU) Eh (mV) $3 = 3.5/1$ $3.5/1$ $3.5/1$			2 0 17
Field Personnel:			πατάτελα το 200 -
SAMPLING DATA: DATE: $2/2/2$ TIME: Start: $11:55$ Method: Disposable Plastic Bailer Sampler: $5fH/SQD$ Present Water Level (ft.): $4/16$ Air Temperature (°F): $20°$ Depth of Sample (ft.): $4/16$ Weather Conditions: $11:55$ Source and type of water used in field for QC purposes: No Source and type of water used in field for QC purposes: NA PHYSICAL AND CHEMICAL DATA: Color: $Odor:$ Other: $Odor:$ PHYSICAL AND CHEMICAL DATA: Odor: $Other:$ $Other:$ $Other:$ PHYSICAL AND CHEMICAL DATA: $Odor:$ $Other:$ $Other:$ $Other:$ PHYSICAL AND CHEMICAL DATA: $Odor:$ $Other:$ $Other:$ $Other:$ $Other:$ PHYSICAL AND CHEMICAL DATA: $Other:$ $Other:$ $Other:$ $Other:$ $Other:$ $Other:$ $Dreservice PH PH Specific Conductivity (umhos/cm) Tick (F), 1/1 Tick (F), 1/1 Tick (F), 1/1 Specific Conductivity (NTU) Eh (mV) Specific Spe$	Field Barronmale JPH SON		
Method: Disposable Plastic Bailer Sampler: $\int f H / S c D$ Present Water Level (ft.): $4/16$ Air Temperature (°F): 20° Depth of Sample (ft.): $4/18$ Weather Conditions: 20° Is sampling equipment dedicated to sample location?: Yes_X No			U 1.50
Method: Disposable Plastic Bailer Sampler: $\int f H / S c b$ Present Water Level (ft.): $4/18$ Air Temperature (°F): 20° Depth of Sample (ft.): $4/18$ Weather Conditions: 10° cos Is sampling equipment dedicated to sample location?: Yes_X No Source and type of water used in field for QC purposes: λA PHYSICAL AND CHEMICAL DATA: λA Appearance: Clear Turbid Contains Sediment Odor: Other: PH Specific Conductivity (umhos/cm) $7 + 0^{\circ}$ Temperature (°C) Turbidity (NTU) $3 - 3^{\circ}$ Len (mV) $3 - 3^{\circ}$ 3°	SAMPLING DATA: DATE: $2/z$	JOG TIME: Start:	1:45 Finish: 11:55
Present Water Level (ft.): $4/.1$	Method: Disposable Plastic	Bailer Sampler:	JEH /SCID
Is sampling equipment dedicated to sample location? : Yes_XNo Source and type of water used in field for QC purposes: A A PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Contains Sediment Odor: Other: PARAMETER Measurement PH Specific Conductivity (umhos/cm) T & U & U & U & U & U & U & U & U & U &	Present Water Level (ft.): 4/6	Air Temperature	(°F): 20°
Is sampling equipment dedicated to sample location? : Yes_XNo Source and type of water used in field for QC purposes: A A PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Contains Sediment Odor: Other: PARAMETER Measurement PH Specific Conductivity (umhos/cm) T & U & U & U & U & U & U & U & U & U &	Denth of Sample (ft.): $\frac{2}{4}$	Weather Conditio	
Source and type of water used in field for QC purposes: A			
PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Other: Contains Sediment Odor: Other: Other: PARAMETER Measurement Other: PARAMETER Measurement Other: PH Specific Conductivity (umhos/cm) Temperature (°C) Turbidity (NTU) Eh (mV) Total (mV) Total (mV)			
Appearance: Clear Turbid Color: Other: Contains Sediment PARAMETER Odor: Other: PARAMETER pH 7.5 & gr.// 7.7 gr. Specific Conductivity (umhos/cm) Temperature (°C) Turbidity (NTU) Eh (mV) 7.5 & gr.// 7.7 gr. Lore	Source and type of water used in field for (QC purposes: <u> </u>	
Appearance: Clear Turbid Color: Other: Contains Sediment PARAMETER Other: Other: PH 5pecific Conductivity (umhos/cm) 7 5 4 9	PHYSICAL AND CHEMICAL DATA		
Contains Sediment Odor: Other: PARAMETER Measurement pH 7.54 Specific Conductivity (umhos/cm) 7.54 Temperature (°C) 7.54 Turbidity (NTU) 3.3 Eh (mV) 3.3		Color	
PARAMETER pHMeasurementpH7.54Specific Conductivity (umhos/cm)7.54Temperature (°C) Turbidity (NTU) Eh (mV)7.542.33.4	**		Other
pH Specific Conductivity (umhos/cm) Temperature (°C) Turbidity (NTU) Eh (mV)	Contains Sediment		Other:
pH Specific Conductivity (umhos/cm) Temperature (°C) Turbidity (NTU) Eh (mV)	PARA	METER Measuremen	*
Specific Conductivity (umhos/cm) 7 + () 7 + () Temperature (°C) 6 6 Turbidity (NTU) 3 3 3 () 3 3 () Eh (mV) 10 10			
Temperature (°C) L.* Turbidity (NTU) 3 3 3 1 Eh (mV) 3 3 3 1	•		7 (3
Turbidity (NTU) 33331 Eh (mV) 3331			
Eh (mV)	-		
			<u>`</u>
REMARKS: Sulfyr ODOL	Eh ((mV)	
REMARKS: Juliyr UDCA			
	REMARKS: Julian ODOM		

Second Second

Second Second

PROJECT NO. : STAFF: DATE:		<u>So. Buff</u> 3587-00 <u>5</u> P 21-100	1			1/2.2				
WELL NO.: 1) TOTAL CASIN 2) CASING INTE 3) WATER LEVE 4) VOLUME OF V	RNAL DI L BELO'	SCREEN AMETE W TOP (R (in.): OF CASI	NG (ft.):	2''	-		WELL I.D 1" 2" 3" 4" 5" 6" 8"	Maria de las	VOL GAL/Ft. 0.04 0.17 0.38 0.66 1.04 1.50 2.60
		-						**************************************		
Time				(3) }] =		1/28	5:39	11:15		
Time PARAMETERS			5 11:00	11:10	13:35	- ½8 - <u>5:30</u> DLUME 1		/1:15 (GALL		
		9:43	<u>ACC</u>	11.10 CUMULA 14	13:35 TED VC 18	2 C	PURGED	(GALL Z-8		
PARAMETERS pH	9:31 7 7.06	9:43 9 7.12	11 00 ACC 12 7,21	11:10 CUMULA 14 7,37	13:35 TED VC 18 7.42	^{1/28} 5:30 DLUME 1 2 C (6.6)	24 6.66	(GALL) 2-8 6.79		
PARAMETERS	9:31 7 7.06 1336	9:43 9 7.12 1331	11 00 ACC 12 7,21	11:10 CUMULA 14 7,37	13:35 TED VC 18 7.42	^{1/28} 5:30 DLUME 1 2 C (6.6)	24 6.66	(GALL) 2-8 6.79		
PARAMETERS pH CONDUCTIVITY	9:31 7 7,06 1336 10°C >,00	9:43 9 7.12 1331 10 >100	11:00 ACC 12 7,21 1367 9 >100	11.10 CUMULA 7.37 1357 9 >100	13:35 TED VC 18 7.42 1362 9	^{1/28} 5:30 DLUME 2 C (6.6) 1369	24 6.66 1376 9 >100	(GALL) 28 6.79 1514 9 ≻100		

					MENT						
PROJECT TITLE: PROJECT NO. :		So. Buff 3587-00		velopme	ent @ Hanı	ia Furnac	:e				
STAFF: DATE:		- PH 2/2/00	/ 5	SRT.							
WELL NO.:	MW-	002	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · ·				
(1) TOTAL CASIN(2) CASING INTER	RNAL D	IAMETE	CR (in.):		2"			WELL I.I 1" 2" 3"		VOL. GAL/Ft. 0.04 0.17 0.38	
(3) WATER LEVE			and and a set of the s		1.7			4" 5" 6" 8"		0.66 1.04 1.50 2.60	• • • •
Time		408 [(2) ² 3::4/7	E.5]			- · ·		 			ڪي ک
PARAMETERS	2	4	<u>ACC</u>		ATED VO	LUME PI	URGED	(GALL	ONS)		
рН	6.61	6.55	6.64								
CONDUCTIVITY	13 ⁹⁰	13:1	1330			, , , , , , , , , , , , , , , , , , ,	n an an an tha Alaysi				ersensi unt
TEMPERATURE	30	9.5	10				n an hegi Le da hedi N				
TURBIDITY	>100	7/00	7100						·		
APPEARANCE	lonpy	Chinisting	BREWN								
COMMENTS: -	Pury	CD U	/ 1 4	* d	15 22 5/4	ble	5A.1	4 r-	star	te 8	

JOB NO.: 3587-001 LAB SAMPLE NO.: WELL DATA: DATE: TIME: Casing Diameter (inches): 2 inches Casing Material: SCH 40 PVC Screened interval (ft. BGS): 4.0 - 14.0 Screen Material: SCH 40 PVC Static Water Level Below TOR (ft.): 5^{-} , 5^{-} Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface: Datum Ground Surface: 14.0 PURGING DATA: DATE: $2/Z$ TIME: Start: $\beta', 3^{-}/1$ Pulkel Volumes Purged: Disposable Bailer TIME: Start: $\beta', 5^{-}/1$ Well Volume (Gal.) $j, 7$ Was well purged dry? Yes No		E OF SAMPLE: Water OCATION NO.: MW - 002
Casing Diameter (inches): 2 inches Casing Material: SCH 40 PVC Screened interval (ft. BGS): 4.0 - 14.0 Screen Material: SCH 40 PVC Screened interval (ft. BGS): 4.0 - 14.0 Screen Material: SCH 40 PVC Screene Material: SCH 40 PVC Static Water Level Bailer Pumping Rate (gal/min): Was well purged dry? Yes × No Well Volumes Purged (Gal.) $i.7$ Well Volume (Gal.) $i.7$ Was well purged below sand pack? Yes × Well LD. Volume Is purging equipment dedicated to sample location? YES × NO Field Personnel: JCH / SAD SAMPLING DATA: DATE: TIME: Start: $j0$ Finish: $j2://S$ Method: Disposable Plastic Bailer Present Water Level (ft.): 5.7% Sample (ft.): $5.\%\%$ Source and type of water used in field for QC purposes: MA Source and type of water used in field for QC purposes: MA PH Specific Conductivity (unhos/cm) Temperature (°C) PARAMETER Measurement j4 0.66 j2.0 j	DB NO.: 3587-001 LAB	SAMPLE NO.:
Screened interval (ft. BGS): 4.0 - 14.0 Screene Material: SCH 40 PVC Static Water Level Below TOR (ft.): 5.55 Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface:	ELL DATA: DATE:	TIME:
Static Water Level Below TOR (ft.): $5^{+}, 5^{+}, 5^{+}$ Bottom Depth (ft.): 14.0 Elevation Top of Well Riser: Datum Ground Surface:	asing Diameter (inches): <u>2 inches</u>	Casing Material: <u>SCH 40 PVC</u>
Elevation Top of Well Riser: Datum Ground Surface: Elevation Top of Screen: PURGING DATA: DATE: $2/2$ Method: Disposable Bailer Well Volumes (Gal.) / T Was well purged dry? Yes No Volume Purged (Gal.) / Was well purged below sand pack? Yes Yes NO 2 0.17 YES NO 2 0.17 YES NO 2 0.17 SAMPLING DATA: DATE: TIME: Start: j_{Q} Finish: $j_{Z}:/_{S}$ SAMPLING DATA: DATE: TIME: Start: j_{Q} Finish: $j_{Z}:/_{S}$ Present Water Level (ft.): $5, 9E$ Source and type of water used in field for QC purposes: No PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Other:	creened interval (tt. BGS): 4.0 - 14.0	Bottom Donth (ft.)
Elevation Top of Screen:		
Method: Disposable Bailer TIME: Start: $\frac{2\cdot3}{2}$ Finish: $\frac{2\cdot3}{2}$ Finish: $\frac{2\cdot3}{2}$ Well Volumes Purged: Pumping Rate (gal/min):		Datum Ground Surface:
Method: Disposable Bailer TIME: Start: 2^{i} , 3^{-j} Well Volumes Purged: Pumping Rate (gal/min):	URGING DATA: DATE: $2/2$	
Well Volumes Purged:Pumping Rate (gal/min):Standing Volume (Gal.) $i.7$ Volume Purged (Gal.) $i.7$ Volume Purged (Gal.) $i.7$ Was well purged dry? YesNoIs purging equipment dedicated to sample location?Was well purged below sand pack? YesYES_X_NO $inches$ YES_X_NO	ethod: Disposable Bailer	TIME: Start: <u>8:37</u> Finish: <u>8:5</u>
Volume Purged (Gal.) 4 4 4 Is purging equipment dedicated to sample location? 4 0.66 YES_X NO 4 0.66 Field Personnel: $5CH/SED$ 6 1.50 SAMPLING DATA: DATE: Disposable Plastic Bailer Sampler: $5CH/SED$ Present Water Level (ft.): $5CF/SE$ Air Temperature (°F): 20 Depth of Sample (ft.): $5CF/SE$ Weather Conditions: $20COVY$ Is sampling equipment dedicated to sample location? : Yes No $2C$ PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Odor: Other: $2C$ PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid $Color:$ $2C$ $2C$ $2C$ PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid $Color:$ <td>/ell Volumes Purged:</td> <td></td>	/ell Volumes Purged:	
Volume Purged (Gal.) 4 Was well purged below sand pack? Yes Is purging equipment dedicated to sample location? Was well purged below sand pack? Yes X YES_X_NO	anding Volume (Gal.) <u>1.7</u>	
Is purging equipment dedicated to sample location? (inches) (gal/ft) YES_X_NO	blume Purged (Gal.) <u>(</u>	Was well purged below sand pack? Yes 🗡 No
YES_X_NO		
Field Personnel: $\overrightarrow{JFH}/\overrightarrow{SAD}$ 4 0.66 SAMPLING DATA: DATE: \overrightarrow{IIME} : Start: \overrightarrow{IO} Finish: $\cancel{12.1}/\cancel{5}$ Method: Disposable Plastic Bailer Sampler: $\overrightarrow{JT}H/\overrightarrow{5AD}$ Air Temperature (°F): $\cancel{20.1}/\cancel{5}$ Present Water Level (ft.): $\overrightarrow{5.7}$ $\overrightarrow{5.7}$ Air Temperature (°F): $\cancel{20.1}$ Depth of Sample (ft.): $\overrightarrow{5.7}$ $\overrightarrow{5.7}$ Weather Conditions: $\cancel{20.0}$ Is sampling equipment dedicated to sample location?: Yes Y No $\cancel{10.0}$ Source and type of water used in field for QC purposes: $\cancel{10.4}$ $\cancel{10.4}$ $\cancel{10.6}$ PHYSICAL AND CHEMICAL DATA: Appearance: Celar $\cancel{10.5}$ $\cancel{10.5}$ Appearance: Clear $\overbrace{10.5}$ $\cancel{10.5}$ $\cancel{10.5}$ PH Specific Conductivity (umhos/cm) $\cancel{12.9}$ $\cancel{13.72}$ $\cancel{7.9}$ $\cancel{2.9}$ No $\cancel{7.9}$	purging equipment dedicated to sample location?	
Field Personnel: $\overrightarrow{JCH}/\overrightarrow{SCD}$ 6 1.50 SAMPLING DATA: DATE: TIME: Start: \overrightarrow{JC} Finish: $\overrightarrow{J2.1/5}$ Method: Disposable Plastic Bailer Sampler: $\overrightarrow{Jr}H/\overrightarrow{ScD}$ Air Temperature (°F): $\overrightarrow{20}$ Present Water Level (ft.): $\overrightarrow{5.9\%}$ Air Temperature (°F): $\overrightarrow{20}$ Depth of Sample (ft.): $\overrightarrow{5.9\%}$ Weather Conditions: $\overrightarrow{20.000}$ Is sampling equipment dedicated to sample location?: Yes No No Source and type of water used in field for QC purposes: $\overrightarrow{10.4}$ $\overrightarrow{10.4}$ PHYSICAL AND CHEMICAL DATA: Appearance: Clear $\overrightarrow{10.4}$ Appearance: Clear $\overrightarrow{10.4}$ Odor: Other: $\overrightarrow{10.4}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.4}$ Specific Conductivity (umhos/cm) $\overrightarrow{12.9\%}$ $\overrightarrow{13.72}$ $\overrightarrow{12.9\%}$ $\overrightarrow{13.72}$ Temperature (°C) $\overrightarrow{12.9\%}$ $\overrightarrow{13.72}$ $\overrightarrow{20.5}$ $\overrightarrow{12.9\%}$ $\overrightarrow{13.72}$	ES_X_ NO	
SAMPLING DATA: DATE: TIME: TIME: Start: 12 ; Method: Disposable Plastic Bailer Sampler: $\exists r$ " $H / S \land D$ Present Water Level (ft.): $5, 9 \in$ Air Temperature (°F): 20 Depth of Sample (ft.): $5, 9 \in$ Weather Conditions: 20 Depth of Sample (ft.): $5, 9 \in$ Weather Conditions: 20 Is sampling equipment dedicated to sample location?: Yes No 20 Source and type of water used in field for QC purposes: $M'A$ $M'A$ PHYSICAL AND CHEMICAL DATA: Color: $M'A$ Appearance: Clear Turbid Color: PH Odor: Other: 0 pH Specific Conductivity (umhos/cm) $fa \cdot 5 \in (a \cdot 5 = fa - fa$	TOU LEON	
SAMPLING DATA: DATE: TIME: Start: $\int O$ Finish: $\int 2 \cdot l / 5$ Method: Disposable Plastic Bailer Sampler: $\sum l + l / 5 A D$ Present Water Level (ft.): $5 \cdot 9 \in$ Air Temperature (°F): 200 Depth of Sample (ft.): $5 \cdot 9 \in$ Weather Conditions: 200 Source and type of water used in field for QC purposes: No 200 PHYSICAL AND CHEMICAL DATA: Appearance: Celear X Appearance: Clear X Turbid Color: PH Odor: Other: Other: PH Specific Conductivity (umhos/cm) $\int A \in S \subseteq I$ $\int A \in S \subseteq I$ Temperature (°C) $7 + 2 = I$ $7 = E$ $7 = E$	eid Personnel: <u>JLT / JKD</u>	6 1.50
Is sampling equipment dedicated to sample location? : Yes <u>Y</u> No	MPLING DATA: DATE:	12: TIME: Start: 10 Finish: 12:15
Is sampling equipment dedicated to sample location? : Yes <u>Y</u> No	ethod: Disposable Plastic Bailer	Sampler: JiH/SAD
Is sampling equipment dedicated to sample location? : Yes <u>Y</u> No	resent Water Level (ft.): 5,98	Air Temperature (°F): <u>20</u>
Is sampling equipment dedicated to sample location? : Yes <u>Y</u> No	epth of Sample (ft.): 5,99	Weather Conditions:
PHYSICAL AND CHEMICAL DATA: Appearance: Clear Turbid Color: Contains Sediment Odor: Other: PARAMETER Measurement Other: pH Co.5% Co.5% Specific Conductivity (umhos/cm) Imperature (°C) Imperature Comment	sampling equipment dedicated to sample location? : N	Yes X No
Appearance: Clear Turbid Color: Contains Sediment Odor: Other: PARAMETER Measurement Other: pH Co.5 (c - (L, S) 5 - (ource and type of water used in field for QC purposes: _	<i>N</i> ^{<i>r</i>+}
Contains Sediment Odor: Other: PARAMETER Measurement pH Constant Constant Specific Conductivity (umhos/cm) Constant Constant Temperature (°C) Constant Constant		
PARAMETERMeasurementpH 6.56 (55) Specific Conductivity (umhos/cm) 1292 1372 Temperature (°C) 7 E		
pH Specific Conductivity (umhos/cm) Temperature (°C) Construction Co	Contains Sediment	Odor: Other:
Specific Conductivity (umhos/cm)12921372Temperature (°C)78	PARAMETER	Measurement
Temperature (°C) 7 8	-	
		m) <u>1298</u> 1372
Turbidity (NTU) 445	•	
	• • • •	46 45
Eh (mV)	Eh (mV)	
REMARKS:	CMARKS:	

. ...

PIRNIE WELL DEVELOPMENT / PURGING LOG PROJECT TITLE: So. Buffalo Redevelopment @ Hanna Furnace **PROJECT NO. :** 3587-001 JPH STAFF: DATE: _____ 1/28/00 MW-003 WELL NO.: VOL (1) TOTAL CASING AND SCREEN LENGTH (ft.): 16.05 WELL LD. GAL/Ft. 1" 0.04 2" (2) CASING INTERNAL DIAMETER (in.): 2" 0.17 3" 0.38 (3) WATER LEVEL BELOW TOP OF CASING (ft.): 2.7 (6) 4. 0.66 5" 1.04 (4) VOLUME OF WATER IN CASING (gal.): 2.36" 1.50 8" 2.60 $V = 0.0408 [(2)^2 x \{(1) - (3)\}] = GAL.$ 1/28 15:10 15:20 15:37 10:09 10:19 10:35 Time **ACCUMULATED VOLUME PURGED (GALLONS)** PARAMETERS 40 60 80 100 150 20 pH 8-18 7.57 8.04 7.37 7.49 7.52 CONDUCTIVITY 1426 1416 1419 1379 1352 1367 9°C TEMPERATURE 9 9 9 9 9 TURBIDITY 2001<001< 001< 001< 001< 92 black black black clonoy black Nondy **APPEARANCE** COMMENTS: - Initially purged 60 gal on 1/27, completes development 1/28 - Dil sheen (blebs) Notes ou surface of initial 20 gal purges from vell - Significant volume of black, Ash-like sediment Removed during development process Unable to purge well to dry coudition, quick recharge

		So. Buff	alo Rede	velopm	ent @ Hai	ına Furi	lace				
PROJECT NO. :											
STAFF:		571	4/?	SRT	>		/				
DATE:	****************	2/ 汉/00	<u></u>								
WELL NO.: 1) TOTAL CASIN		ingdilling defende fa	LENGT	H (ft.):	16.05	j		WELL 1.1 1"	D.	VOL GAL/Ft. 0.04	
2) CASING INTE 3) WATER LEVE	L BELO	W TOP	OF CASI					2" 3" 4" 5"		0.17 0.38 0.66 1.04	
4) VOLUME OF V	VATER	IN CASI	NG (gal.)	:	Z.4	-		6" 		1.50 2.60	
	V = 0.04	08 [(2) ²	x { (1) -	(3) }]	121	GAL.					
Time	_		9:07			-					
PARAMETERS				CUMUI	ATED V	DLUME	PURGED	(GALL	ONS)		
: 	5	i i i i i i i i i i i i i i i i i i i	15								
pH	7.41	7.55	Tix								
CONDUCTIVITY	1295	1343	1369	1999 - 1999 -	a na esta de la servicia de la secon				n geben systemet en ange Stangen en ange		ant the edu .
	70	7	7			1. 1.					
TEMPERATURE		30	32								
and the first of the second	32		<u> </u>								
TEMPERATURE TURBIDITY	32 Jahr	ł	dear	-						1 1	
TEMPERATURE		ł	clear					L			
TEMPERATURE TURBIDITY	ياديانك	clear	1	L							

MALCOLM PIRNIE WATER SA	MPLING FIELD DATA S	HEETS
PROJECT So. Buffalo Redevelopment	TYPE OF SAMPLE:	Water
CLIENT: BERC	LOCATION NO.:	MW - 003
CLIENT: BERC JOB NO.: 3587-001	LAB SAMPLE NO.:	
WELL DATA: DATE: 2/2/	<u>ν</u> ε ΤΙΜΕ :	
Casing Diameter (inches): 2 inches	Casing Material:	SCH 40 PVC
Casing Diameter (inches): 2 inches Screened interval (ft. BGS): 4.0-14.0	Screen Material:	SCH 40 PVC
Static Water Level Below TOR (ft.): 2, 5	Bottom Depth (ft.):	
Elevation Top of Well Riser:	Datum Ground Surfa	ce:
Elevation Top of Screen:		
PURGING DATA: DATE: Z/Z/		al a state of the second se
Method: Centrifugal Pump	TIME: Start: 8:5	Finish: 9:07
Well Volumes Purged:/ 5	Pumping Rate (gal/mi	n):
Standing Volume (Gal.) 2,4	Was well purged dry?	n): YesNo w sand pack? Yes
Volume Purged (Gal.)	Was well purged belo	w sand pack? Yes
	Well LI). Volume
Is purging equipment dedicated to sample loca	tion? (inches) (gal/ft)
YES NO_X	2	0.17
Field Personnel: JPH /SRD	4	0.66
Field Personnel: JPH /SACD	6	1.50
Method:Disposable Plastic BaiPresent Water Level (ft.):2.77Depth of Sample (ft.):2.77	ler Sampler: String Air Temperature (°F) Weather Conditions:	H/SRD : <u>ZC⁰</u> SUNNY
Is sampling equipment dedicated to sample loc	ation? : Yes 🗙 No	
Is sampling equipment dedicated to sample loc Source and type of water used in field for QC	purposes: <u> </u>	
PHYSICAL AND CHEMICAL DATA:		
Appearance: Clear X Turbid	Color:	
Contains Sediment	Odor:	Other:
PARAMET		
pH Saccific Conductivity	7.307.49	
Specific Conductivity Temperature		
Turbidity (N		
Eh (mV)		
	· L	
REMARKS: Blind Dupt #	ET J.V.	
REMARKS: DIND Dupt	1 MARCN	
/		

MALCOLM PIRNIE		en de la composition de la composition de la composition		 1 - 1 - 1							n de la composition La composition de la br>La composition de la c
	N.	WELL	DEVE	LOP	MENT	/ PUI	RGING	LOG			و المراجع
PROJECT TITLE:		So. Buff	alo Redev	elopme	nt @ Har	ina Furn	ace			• •	
PROJECT NO. : STAFF:		3587-00: <u> </u> <u> </u>					·				
DATE:		2/100	1/27	7							
WELL NO.:	MW-	104	<u>, , , , , , , , , , , , , , , , , , , </u>								
(1) TOTAL CASIN	G AND S	SCREEN	LENGT	ff (ft.):	17.78			WELL LI 1").	VOL. GAL/Ft. 0.04	
(2) CASING INTE(3) WATER LEVE				NG (ft)	<u>2"</u> 8.49	→ ************************************		2" 3" 4"		0.17 0.38 0.66	
(4) VOLUME OF V	in an the state of		- 26		1.6	- -		5" 6" 8"		1.04 1.50 2.60	
	V = 0.04	08 [(2) ²	x { (1) - ([3)		GAL.					•
Time	14:20	14:35	- 14:45								
PARAMETERS	20	40	SO	UMUL	ATED VO		PURGED	GALL	ONS)		
рН	12.73	11.96	12.06	· · ·							
CONDUCTIVITY	889	610	735	yan ar syndyning san ar syndyn. T	a ang anan ny jôrar da	i Mirannar ann					
TEMPERATURE	10°c	13	10								
TURBIDITY	16	14	38	ture to a to a to a to a to							
APPEARANCE	CLEAR	Clear	CLEAR			- :					
COMMENTS: - - Well recha	Purges e	D w/	Centri,	huga	l Zu	.m ²					

Security 11

		VELL I									
PROJECT TITLE:	:	So. Buffal	o Redev	elopmen	nt @ Hanr	a Furn	ace				
PROJECT NO. :		3587-001	<u> </u>		»	а. н		er i se E k g			
STAFF: DATE:			<u>SKD</u>)							1999 1997 1997 - 1998 -
WELL NO.:	MW-1	04			<u></u>	<u> </u>				n na seann an stàitean sha	
(1) TOTAL CASIN	IG AND S	CREEN L	ENGTI	H (ft.):	17.78		an anna A	VELL LI).	VOL GAL/Ft	
(2) CASING INTE	RNAL DL	AMETER	(in.):		2"			1" 2"		0.04 0.17	
(3) WATER LEVE	L BELOV	N TOP OI	F CASI	NG (ft.):	R.G	2		3" 4"		0.38 0.66	
		900 - 20 - 20 - 1999 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -			16			5" 6"		1.04	
	verselet to the second	N CASING									
(4) VOLUME OF V	WATER II				1,0	CAT		8"		1.50 2.60	
(4) VOLUME OF V	WATER II V = 0.040	N CASING 08 [(2) ² x / <u>/)², 2 /</u>	{(1)-(/D;2 ^{<}	3)}] =	7 - C		PURGED	8"	ONS)		
(4) VOLUME OF V	WATER II V = 0.040	08 [(2) ² x	{(1)-(/D;2 ^{<}	3)}] =	a start a		PURGED	8"	ONS)		
(4) VOLUME OF V	WATER II $V = 0.040$ $\frac{10;17}{5}$	08 [(2) ² x	{(1)-(();2 ACC /5	3)}] =	a start a		PURGED	8"	ONS)		
(4) VOLUME OF V Time PARAMETERS	WATER II V = 0.040 10:17 5 11.26	08[(2) ² x / <u>0', 2</u>]/ /0 /	{(1)-((1);2 ACC /S	3)}] =	a start a		PURGED	8"	ONS)		
(4) VOLUME OF V Time PARAMETERS pH	WATER II V = 0.040 <i>IU</i> ;/7 <i>S</i> 11.26 <i>B</i> ,0	08 [(2) ² x 10; 21 / 20 , 11, 21 / 27 0 9	{(1)-((1);2 ACC /S	3)}] =	a start a		PURGED	8"	ONS)		
(4) VOLUME OF V Time PARAMETERS pH CONDUCTIVITY	WATER II V = 0.040 <i>IU</i> :/7 <i>S</i> 11.24 <i>B</i> ID <i>I</i> 1.2	08 [(2) ² x 10; 21 / 20 , 11, 21 / 11, 21 / 87 D 9 12 ,	(1)-(1);2 15 1,2 1,2 109 12	3)}] =	a start a			8"	ONS)		
(4) VOLUME OF V Time PARAMETERS pH CONDUCTIVITY TEMPERATURE TURBIDITY	WATER I V = 0.040 $I\dot{U}; I7$ S 11, 24 B, 0 11, 2 4/5	08 [(2) ² x 10; 21 / 20 , 11, 21 / 27 0 9	{(1)-(D;2 /S /S //S //S //S //S //S //S //S //S	3)}] =	a start a			8"	ONS)		
(4) VOLUME OF V Time PARAMETERS pH CONDUCTIVITY TEMPERATURE TURBIDITY	WATER I V = 0.040 $I\dot{U}; I7$ S 11, 24 B, 0 11, 2 4/5	08 [(2) ² x 10; 21 / 20 / 11, 21 / 20 / 11, 21 / 20 / 12 / 32 ;	{(1)-(D;2 /S /S //S //S //S //S //S //S //S //S	3)}] =	a start a		PURGED	8"	ONS)		

MALCOLM PIRNIE WATER SAMPLI	ING FIELD DATA SHEETS
CLIENT: BERC	YPE OF SAMPLE: Water LOCATION NO.: MW - 104 AB SAMPLE NO.:
Static Water Level Below TOR (ft.): 8.6.2	Screen Material: <u>SCH 40 PVC</u> Bottom Depth (ft.): <u>Datum Ground Surface</u> :
PURGING DATA: DATE: 2/2/00 Method: Centrifugal Pump Well Volumes Purged:	Pumping Rate (gal/min): Was well purged dry? Yes No X Was well purged below sand pack? Yes No X Well LD. Volume (inches) (gal/ft) 2 0.17 4 0.66
SAMPLING DATA: DATE: Z/Z/QO Method: Disposable Plastic Bailer Present Water Level (ft.): 4 Depth of Sample (ft.): 6 Is sampling equipment dedicated to sample location? : Source and type of water used in field for QC purpose	Sampler: Air Temperature (°F):2 C c Weather Conditions: Yes No
PHYSICAL AND CHEMICAL DATA: Appearance: Clear X Turbid Contains Sediment PARAMETER pH Specific Conductivity (umho Temperature (°C) Turbidity (NTU) Eh (mV)	
REMARKS:	

a de la composición d

MALCOLM PIRNIE

And the second second

Constanting of

Non-

WELL DEVELOPMENT / PURGING LOG

PROJECT TITLE:	So. Buffalo Redevelopment @ Hanna Furnace
PROJECT NO. :	3587-001
STAFF:	SPH
DATE:	24 100 1/27/00
•	

VOI

WELL NO.: MW-105

(1) TOTAL CASING AND SCREEN LENGTH (ft.): 17.6	WELL LD.	0.04
(2) CASING INTERNAL DIAMETER (in.): 2"	1 2"	0.17
	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.): 7.5	4"	0.66
	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	6"	1.50
	8"	2.60

 $V = 0.0408 [(2)^2 x \{(1) - (3)\}] = _____GAL.$

Time	12:13	12:21	12:25	-						· ·	
à.			ACC	UMULA	TED VC	LUME	PURGED	(GALL	ONS)		
PARAMETERS	20	40	50								
рН	9.5	10.32	7 7.'01								
CONDUCTIVITY	601	600	600	,				20140000-00-00-00-00-00-00-00-00-00-00-00-0			
TEMPERATURE	9° c	٩	9					:			
TURBIDITY	33	32	18								
APPEARANCE	clear	CLEAR	()err								

COMMENTS: - Purges w/ Centritugal pump - Well recharges readily

ROJECT TITLE:												
	200000000000000000000000000000000000000			velopmei	nt @ Har	ina Furn	ace					
ROJECT NO. :		3587-001, JCH/SRD										
· · ·	<i>ت</i>											
WELL NO.:) TOTAL CASIN	MW-1 g and s	an San	LENGT	H (ft.):	17.6			WELL LI).	VOL. GAL/Ft.		
CASING INTE					<u>2"</u>	- (_		3"	Alexander	0.38		
) WATER LEVE	1 A.				1.00	e		4" 5"		0.66 1.04		
) VOLUME OF V	VATER I	IN CASI	NG (gal.)	•	1./_	-		6" 8"		1.50 2.60		
	V = 0.04	08 I (2) ²	τ { (1) -	(3) }] =		GAL						
			- ((-)	(-)))								
Time	9:41	9:48	9:50	•								
Time	9:46	9:48	9:50 ACC		TED VO	DLUME	PURGE	D (GALL	ONS)	T		
Time PARAMETERS	9:46		9:50 ACC 15		TED VO	DLUME	PURGE	D (GALL	ONS)			
	5	10	ACC 15		TED VO		PURGE	D (GALL	ONS)			
PARAMETERS pH	5 7.6	10 8.3	ACC 15 8.8				PURGE	D (GALL	ONS)			
PARAMETERS	5 7.6 626	70 8.3 401	ACC 15 8.8				PURGE	D (GALL	ONS)			
PARAMETERS pH CONDUCTIVITY FEMPERATURE	5 7.6 626	10 8.3 401 9°	ACC 15 8.8. 595 9.2				PURGE	D (GALL	ONS)			
PARAMETERS pH CONDUCTIVITY FEMPERATURE TURBIDITY	5 7.6 626 9.0:	10 8.3 601 9° 33	ACC 15 8.8. 595 9.2 35				PURGE	D (GALL	ONS)			

	TVDE OF CANEDI F.	WV adam
PROJECT So. Buffalo Redevelopment	TYPE OF SAMPLE:	Water 105
CLIENT: BERC JOB NO.: 3587-001	LOCATION NO.:	MW - 105
JOB NO.:3587-001	LAB SAMPLE NO.:	
WELL DATA: DATE: 2/2	TIME:	
Casing Diameter (inches): 2 inches	Casing Material:	SCH 40 PVC
Screened interval (ft. BGS):	Screen Material:	SCH 40 PVC
Static Water Level Below TOR (ft.): 7 , نولو	Bottom Depth (ft.):	
Elevation Top of Well Riser:	Datum Ground Sur	face:
Elevation Top of Screen:		
PURGING DATA: DATE: 2/2/00		
Method: Centrifugal Pump	TIME: Start: 74	<u>43</u> Finish: <u>9,50</u>
Well Volumes Purged:	Pumping Rate (gal/	min):
Standing Volume (Gal.) <u><i>i</i>, 7</u>	Was well purged dr	ry? Yes No_ <u>×</u> clow sand pack? Yes No <u>×</u>
Volume Purged (Gal.) /5	Was well purged be	elow sand pack? Yes No X
	Well	LD. Volume
Is purging equipment dedicated to sample location	?(inch	es) (gal/ft)
YES NO X		0.17
	4	
Field Personnel:		1.50
SAMPLING DATA:DATE: Z/z Method:Disposable Plastic BailerPresent Water Level (ft.):Depth of Sample (ft.):	TIME: Start: /3	100 Finish: 13 07
Method: Disposable Plastic Bailer	Sampler:	TOH/SED
Present Water Level (ft.): 7, 65	Air Temperature (°	F): 2°C
Depth of Sample (ft.): 7, 6.5	Weather Condition	S: SUINNY
Is sampling equipment dedicated to sample location	n?: Yes 🗙 No	
Source and type of water used in field for QC purp		
PHYSICAL AND CHEMICAL DATA:		
Appearance: Clear X Turbid	Color:	
Contains Sediment		Other:
Contains Scament	0.001	Other:
PARAMETER	Measurement	
рН	8.80 9.1	6
Specific Conductivity (un		3
Temperature (°C		
Turbidity (NTU)) 30 32	
Eh (mV)		
REMARKS:		
		-

Second and second and second and second and second and second and second and second and second and second and s

All and a second second second

And a state of the state of the

APPENDIX D

DEBRIS PILE SAMPLING LOGS

CLIEN	י ז דס	<u>S.</u> #	BU	<u>H</u> A	-lo Fri	Kedevelopment JOB NO. 3597-001 FI	IELD BOREHOLE LO
OCAT	ION				e-100.00		BOREHOLE NO. <u>SS-1</u>
CONTE	ACTO	A	M	351	m	Technologies LOGGED BY J.P. H. 110.0	STARTED 11130 A 727 10 00
61 C 1 1 1 V	DD	SOIL		bAC	Khs		FINISHED 12:00 6 425 11 00
OF SORIN	G :	ROCK .				CORE DIA	ELEVATIONS: DATUM
SAMPLE NO.	TYPE 24	DEPTH	N. SMOID	HECOVER 1	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classifluction , Compactness/Consistency, Molature Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	HOTES: Boring ,Teeling and Bamplin Procedures ,Water Less and Gain Drilling and Testing Equipment ,Ete
		ス		2		F.II SAND MED BAWD F.C.S. BRANLY	
55	0.2	3		52		w/ SIAq, Some Silt	
	-]		
		4					
			[
-							
				4			
-				1			
1	-						
1				1			
- Charles				ł			
				1			
		-	······				
asta an					•		
1			{				
•	• •						
an a							
- Andrews		┠───╂	{				
					-		
•		 	[
	· •	} ┠					
	İ İ	<u> </u> †		ł			

LOCA CONT METH OF BORIN	RACT(OD	DR Soil _	/`	LAX bac	Kho	Technologies LOGGED BY JP- H. 110.0 CORE DIA.	BOREHOLE NO. $3S-2$ STARTED 1210 M $2/23$ 19 FINISHED $12:30$ M $3/23$ 18 ELEVATIONS: DATUM
SAMPLE NO.	1thu		.H. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moleture Condition, Weathering/Frecturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and 1 Procedures ,Water Less and Drilling and Testing Equipment
52	0.5	2 3		14		SAND AND GRAND, dark brought - GRAT Rive grand with frat Rive grand compacted, comentari	SAmpled Adiace to two RR fies
		4					slight creatore of Noted in tranch
		· · · · ·					
		· · · · · · · · · · · · · · · · · · ·		-			
	<u> </u>	· .					
-	·	· · · · · · · · · · · · · · · · · · ·					
	•						
-	· 			-	╏──┟		an an an an an an an an an an an an an a

OCAT	ION		11			FNALE	BOREHOLE NO. <u>38-3</u>		
CONTRACTOR METHOD SOIL _ OF		-M	XAX	112	Technologics LOGGED BY J. H. Ho. J	STARTED 12:35 M 423 10 00 FINISHED 13:00 M 2/23 10 00			
			bac	Kho	<u> </u>				
ORINO	3 :	ROCK				CORE DIA.	ELEVATIONS: DATUM		
SAMPLE NO.	TYPE 2	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions , Odor ,Etc.	NOTES: Boring ,Testing and Ban Procedures ,Water Less and Ga Drilling and Testing Equipment ,		
		3		- <u>-</u> 0		Fill, SAND AND SILF, MED Browd-GRY WER-CAS GRAVEL, ASDHALT, DUCK			
3	0,-	4		N		W/F-US GAMELY ASPIALLY DUCT			
		5							
				 					
							n an an Air an Air An Air an Air Air an Air an		
ł	1								
				1					
ļ									
				1					
ļ	· .			1					
				-					
	ļ								
]				1					
				ł		han an			

÷

LOCAT CONTI METHO OF BORIN	TION RACTO	DR	M	113	Kh.	Technologics LOGGED BY JP- H. 110.0 CORE DIA.	BOREHOLE NO. <u>58-4</u> STARTED <u>13:15 m 2/23</u> 19 0 FINISHED <u>13:30 m 2/23</u> 19 0 ELEVATIONS: DATUM		
SAMPLE NO.	HIN BAYT	DEPTH	.N. SMOTE	RECOVERY \$	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sa Procedures ,Water Less and G Drilling and Testing Equipment		
554	D. ²	2 3		13. 13.		Fill Silt dank gray-brown, fittle Crs Grave, trace-little Clay, occasiona glass, brick, wood			
		4							
	•								
	• •								
Ř.	ł			1	-	· · · · · · · · · · · · · · · · · · ·			

	and the second se	i Çeşerineyên k	7	undridentes a chila						
C 11	FNT	Ć	De.	B		1.	Kedevelsome St	JOB NO. 3587-001		D BOREHOLE LO
PRO		r	H	Lan'	$\frac{\sqrt{1}}{\sqrt{9}}$	Fu	ENAL E	JUB NO. <u>2011</u>	IEL	D BURENULE LU
LOG	CATIO	N		1	<u></u>		INALE		80	REHOLE NO. <u>55-5</u>
co	NTRA	сто	A	M	14-41	in	Technologies	LOGGED BY JP 14.110.0	BT	ARTED 13:35 \$ 2/23 10 00
ME	THOD) [SOIL		6AL	Kho	ر بر ج	LOGGED BY JP. H. 110.0	FIN	ARTED 13:35 M 2/23 10 00 IISHED 13:55 M 2/23 10 00
80	OF RING	: F	JOCK	-				CORE DIA.		EVATIONS: DATUM
SAMPLE	ų.	TYPEN	DEPTH	-N- SMOTB	RECOVERY	MOISTURE TIN NO.	Compactness/Consist Weathering/Fracturing	H: Color, Texture Classification , ency, Molsture Cendition, h, inclusions, Odor ,Etc.		NOTES: Boring ,Tooting and Samplin Procedures ,Water Less and Gain Brilling and Testing Equipment ,Etc.
2000	2	-		2	2		CLAY AT GRAY-	K brown Sand No Gravel		
14	510	,V	}	3	5.5		brick MED-DAN	K BROWN MUL NO GINYEI	/	
12					1					
		ŀ		4						
	1	Ī			1					
-								an an an an an an an an an an an an an a		
de secondo		t								
	ł	ł							.	
									4 N	
		ŀ								
ana kana	1	ł							. ÷	
			•							
	1	ł	·							
	1				I					
and second	4.	ŀ								
a dan da ange	1	-1			1					
									<i>2</i> 11	
1		ţ			1				÷.	
		ł			-					
h					1					
and a second		ł			-	1			(
		·			1	1				
			1	1			~	•		MALCOLM

CONT METH OI	OD	SOIL		LAX LA	Kh.	Technologics LOGGED BY JP- H. 110.)	BOREHOLE NO. $35-6$ BTARTED $/3:55$ M $\frac{7/23}{1000}$ FINISHED $14:20$ M $\frac{7}{23}$ 10 00 ELEVATIONS: DATUM
SAMPLE	TYPE W	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Samp Procedures ,Water Less and Gair Drilling and Tooting Equipment ,E
55.1	0,2	· · · · · · · · · · · · · · · · · · ·	3 4			Silt, MRD. 91AM-TRD, I. HIL Five SAND, w/ black F-MRN SAND layen & Morsy 13-4' bgs, cobules, brick, glass	
			5				
				1			
-							
]			
	· ·		•	 			
				-			
•							
	<u> </u>		 				
				·			

TOR	M	LAX Edu	Kho	Technologics LOGGED BY J. T. H. 110.0	BOREHOLE NO. <u>5</u> S-7 BTARTED <u>14:20</u> <u>M</u> <u>2/23</u> 10 <u>0</u> FINISHED <u>14:50</u> <u>M</u> <u>2/25</u> 18 <u>0</u>		
N E		RECOVERY		BAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Cendition, Weathering/Fracturing, inclusions , Odor , Etc.	ELEVATIONS: DATUM NOTES: Bering ,Teeting and Se Precedures ,Water Less and G Drilling and Testing Equipment		
2		14.40		Fill as Silf and SAIND, Vellow - brows, First scow w/ trace - little F- (rs Grand w/ Shall coldbles			
4		-					
		-					
		• • • • •					
1					In the second s second second se second second sec second second sec		
	TOR	HHN TOR SOIL ROCK ROCK HLdy 018 2 2 3 - - - - - - - - - - - - -	HANNIA TOR SOIL ROCK W H SNO ROCK W H SNO SOIL N H H SNO SOIL N H H SNO N H H SNO N H H H SNO N H H H SNO N H H H SNO N H H H H H H H H H H H H H H H H H H H	HANNA FIL	TOR Maxim Lection SOIL backhox I ROCK CORE DIA. I W I I W I I<		

2042-004 AC 184

METHOD SOIL <u>backh</u>						Technologics LOGGED BY JP-14.110.0 B	BOREHOLE NO. <u>55-8</u> STARTED <u>14:30 M 423</u> 10 00 FINISHED <u>14:50 M 423</u> 10 0 ELEVATIONS: DATUM		
NO.	TYPE	ROCK HLdBO	.N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Molature Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Procedures ,Water Less an Drilling and Testing Equipm		
550	D.	う 4		12		Fill Olive - brows S. It 0-2 Silf AND SAND Red - brows Kine 2-4 White SAND, Crs, have chalk-like	SAN, shed white 1.7 Materia) per UVSU request		
		3							
-					-				
					-				
	-								
•				-					

	HA	P.V.V	Fri	Keclevelopment JOB NO. 3587-001 F -NALE LOGGED BY JP- Alton	IELD BOREHOLE I BOREHOLE NO. <u>3</u> S-9		
ONTRACTO	8/	10×	Kh.	Technologics LOGGED BY ST- H. Ito.)	BTARTED 15:05 M 2/23 10 01 FINISHED 15:20 2/23 10 01		
OF OF BORING : ROCK				CORE DIA	FINISHED /5 7 2 0 92 5 18 0 0		
SAMPLE NO. TYPE Z	DEPTH BLOWS 'N'		MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Ser Procedures ,Water Less and Gr Drilling and Testing Equipment		
59 0.2		- 5		Fill AS BLACK Ash/S. + 0-5 W/ Frace Crs Gravel Auto cobbles SANG JARK BROWLD-BLACK MED-Crs			
-							
- **							
		_					

.

.

LOCA CONT METH OF	RACTO	DR		LAX DAI	Kh.	Technologics LOGGED BY JP- H. 110.0	BOREHOLE NO. <u>55-15</u> STARTED <u>15:125</u> <u>2/23</u> 19 <u>00</u> FINISHED <u>15:145</u> <u>2/23</u> 19 <u>07</u>		
BORIN	G :	ROCK		T		CORE DIA.	ELEVATIONS: DATUM		
SAMPLE NO.	TYPE Z	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	BAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions , Odor ,Etc.	NOTES: Boring ,Teating and Procedures ,Water Less and Drilling and Teating Equipme		
SSIC	0,2		<u>3</u> 4	-		Fill As Silt wo Clay, olive browd-re W/ little Fire Studd, F-Crs Gro brick, plastic, glass	vil. wet		
			5						
		•							
•									
	•								
•									
1. L	1	 	1	1					

ROJECT	Ĥ,	PINNA 	Fra	Reclevelopment JOB NO. 3597-001 FI	BOREHOLE NO. <u>55-1</u>		
OF		MAX	sp.	Technologics LOGGED BY J 1- H. 1to.)	STARTED 13:50 M 423 10 0 5		
		DA	<u>ckh</u>				
SAMPLE NO. NO.	HLAU	BLOWS 'N' RECOVERY	MOISTURE TIN NO.	CORE DIA. SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Molsture Condition, Weathering/Fracturing, Inclusions, Oder ,Etc.	ELEVATIONS: DATUM NOTES: Boring ,Testing and Samp Procedures ,Water Less and Gain Drilling and Testing Equipment ,E		
55-11 072		三日 王 王 [6 ^{,65}		SAND At Grades Fine of little F-Crs Gravel, Shale couples, trace			
		5					
-							
			F				
			1				

	PROJE LOCAT CONTR METHO OF	CT ION IACTC	/- DR SOIL	+ANN M	N.9 DAI	Fu	Keclevelopment JOB NO. 3587-001 FI NALE Technologics LOGGED BY J.P. H. 110.0 CORE DIA.	BOR STA FINI	RTED 08:40	HOLE LO S - 1Z $\frac{2}{24}$, 00 $\frac{7}{24}$, 00
۰,	NO.	туре Н		.N. SMOTB	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.		Procedures "We	Teating and Sampli tor Loss and Gain ting Equipment ,Etc
	~ 55	v 0`		3 4			Silt, Lt brows - olive, hittle hive Grave, trace day, cooples		Blints bu	pl #1 taken
				5			RR ballast below 4'			
,								•		
		•		•						•
		•								
							•			

LOCATI CONTR METHO OF	ACTO	SOIL	M		Kh.	<u> </u>	BOREHOLE NO. <u>SS-13</u> STARTED <u>8:45 M</u> <u>2/24</u> 19 <u>8</u> FINISHED <u>7:10 M</u> <u>2/24</u> 19 <u>0</u> ELEVATIONS: DATUM		
BORING	:	ROCK		12		CORE DIA			
SAMPLE NO.	TYPE	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION; Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions, Odor "Etc.	NOTES: Boring ,Tooling and 1 Procedures ,Water Less and Drilling and Tesling Equipmer		
35	ر م		2			Fill AS SILL MO CLAY, MED 91AY-rets Title Rinu Sourd TWD P-Crs Grave WOOD, Metal W/RR fies, ballast wind trench			
			4			W/RK ties, ballast y/in treach			
				<u> </u>					
	•	•			· ·				
	· ·								
				-					

	ION NACTO DD)A	M	bai		Technologics LOGGED BY JP- H. 110.0 CORE DIA.	BOREHOLE NO. $3S - 14'$ STARTED $10:00$ M $3/24'$ 10 C FINISHED M $3/24'$ 10 C ELEVATIONS: DATUM
SAMPLE NO.	TYPE	DEPTH		RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Molature Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sam Procedures ,Water Less and Ga Drilling and Testing Equipment ,
5514	0.	0				CIAY AND Silt rea-brown, little-So / P-Crs gravel, sharp contact e 3 bgs w/ Sand dark brow - ut RR ballast	m
		2 3					
-	-						
		······································					
•		•					
ı	•						
•							

PROJECT _	H	н М М	19	Fu	Technologics LOGGED BY JP- Alton B	DBOREHOLE L DREHOLE NO. $SS - 15$ TARTED 1015 $\frac{3}{2}/24$ 11 $\frac{3}{2}$ INISHED M $\frac{2}{2}/24$ 11 $\frac{5}{2}$
	ROCK	7		MOISTURE TIN NO.		NOTES: Boring ,Testing and San Procedures ,Water Less and Ga
No. 17 No.	06PTH	SMOJB 3		MON	Weathering/Fracturing, Inclusions, Odor, Elc. Fill AS SAND AND GRAVE W/ Some Silt AND CLAV FILL GLATIN W/ DECAS, SIL CODDYES > 6" dia METALLie Rill below	Drilling and Teating Equipment ,
		5			Apprix 4-5' depth (RR bullast)	
			-			
•						

IOCATIO	TOR		1134		Technologies LOGGED BY J 1- H. Ito. J	BOREHOLE NO. $3S - 10$ STARTED $10:30$ M $3/24$ 1 FINISHED $10:50$ M $2/24$ 1 ELEVATIONS: DATUM		
SAMPLE No.	DEPTH	N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Cendition, Weathering/Fracturing, Inclusions , Odor ,Etc.	NOTES: Boring ,Tooting an Procedures ,Water Less an Drilling and Tooting Equips		
55-160	v	23			Fill as Silt AND F-Crs Gravely Lt mcD girl, trace Ride Saula W/ black canbouited Material, brick	perchet #20 @ Apprix 4 bgs		
		4			DENSE AR GALLAST C APPLY 415' 555			
			<u>}</u>					
			<u> </u>					
			<u> </u>					
		-						
· · ·								
•			 					
•]	▎▕				

PROJECTADINALA FUIC OCATION CONTRACTOR METHOD SOILALKLS OF					<u>(n</u>	Technologies LOGGED BY JP- H. 110.2	DOREHOLE NO. <u>55-17</u> STARTED <u>11:00 A 2/24</u> 10 C INISHED <u>11:20 A 2/24</u> 10 C		
SAMPLE NO.	TYPEN	HLLL BOCK		RECOVERY %	MOISTURE TIN NO.	CORE DIA. SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Cendition, Weathering/Fracturing, Inclusions, Odor ,Etc.	ELEVATIONS: DATUM NOTES: Boring ,Testing and Sa Procedures ,Water Less and G Drilling and Testing Equipment		
,5 î	1.6		3			Fill AS SAND dank brown F-Crs w/ Some P-Crs Graver, Frace Blag, brick, Clay, wood	H20 CAPPIER		
			5				HNU reasing of 1,6 p Adjacut to RR the 0,2 ppm in other Arease of est.		
-				s					
	· ·				- -				
					-				

÷

CLIEN	т						JOB NO	FIELD BOREHOLE LO
PROJE	CT		<u>.</u>					
						1. ¹		BOREHOLE NO. <u>SS-18</u> BTARTED <u>11:30 N⁴ 2/24</u> 19 05
S						ana tanàna amin'ny fisiana amin'ny fisiana. N		STARTED 1. 30 N - 224 19 0
1	ETHOD SOIL OF DRING : ROCK					· · · · · · · · · · · · · · · · · · · ·	CORE DIA.	FINISHED 12:00 1 2/24 19 0 ELEVATIONS: DATUM
SAMPLE NO.		DEPTH	.N. SMOTB	RECOVERY	MOISTURE TIN NO.	SAMPLE D Compactne	EBCRIPTION: Color, Texture Classification , ess/Consistency, Moisture Condition, g/Fracturing, inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Samp Procedures ,Water Less and Gain Drilling and Testing Equipment ,Et
8,			4	1		Fill AS	2 Rill layers	
5	0.		5		╞╴┣	0-4	Red-brown Clay of Silt and F-Crs MED-DANK BREW Silt NO SAND	longue w/ Brick
5				1		1 14		
			6		-			
]	T	14 14 14 14		
and the second			1000 A		╞┈┠			an an an an an an an an an an an an an a
	1			1 1				
					<u> </u>			
	1 "	· •				-		
and the second				e.				n an Alexandra ann an Alexandra ann an Alexandra ann an Alexandra ann an Alexandra ann an Alexandra ann an Alex Alexandra ann an Alexandra
ana da an				1	1			
					┝┟┟			
			••					
							ti fata a tana ka mana ka ka mana ka mana ka ka ka ka mana ka mana ka ka ka ka ka ka ka ka ka ka ka ka ka	
· ·	1			1				
				4				
				1	╏╴┟			
	1			1	ļÌ			
ana di Dire				-	ŀ ŀ			
1	1	T	I	1	t t			

•

2						JOB NO FIE	LD BOREHOLE LO
LOCATI	ON _					LOGGED BY	BOREHOLE NO. 55-19 STARTED 13:30 1 2/24 10 00
CONTR METHO OF						LOGGED BY	STARTED 13:50 924 19 00 FINISHED 13:50 924 19 00
BORING	l:	ROCK				CORE DIA	ELEVATIONS: DATUM
SAMPLE NO.	HNW BAYT	DEPTH	N. SMOTB	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification , Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions , Odor ,Etc.	NOTES: Boring ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
45 M	√ 0'		3			Fill AS two (2) laytens 0-3 CLAY red-brown, stift u/Some Gravel (Col 3-5 SAND yellow-brown R-MED, w/Silf	061. s
			5			5 + SAND Dark Grown HEN of Eme Granel	
				-			
•	· _						
•							
	•		· · · · · · · · · · · · · · · · · · ·				

MALCOLM

							NO	FIELD BOREHOLI
1								BOREHOLE NO. 55-2
						LOGGED		STARTED 12:55 & 2/24
METH							an an an an an an an an an an an an an a	FINISHED 13:20 4 2/24
BORIN	a :	ROCK				CORE D	DIA	ELEVATIONS: DATUM
SAMPLE NO.	Hyber Hyber	DEPTH	.N. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Te Compactness/Consistency, Mois Weathering/Fracturing, Inclusion	ture Condition,	NOTES: Boring ,Testing and Procedures ,Water Less ar Drilling and Testing Equipm
20		3	~			Fill AS DACK GARY-bas	War Silt AND	
45	0.2	4		1		Cobolis > Other, Coster	CIS Grant apis	
						RR ties, brick		
		<u> </u>		1		·····		
-				4			<u></u>	
				1			an marina anna an agus ann an ann an ann an ann ann an ann an	
-						• • • • • • • • • • • • • • • • • • •		
				1	 			
-		·		-				
]				
 		•						
				-				
L				1	ţ			
			·•	4				
				1				an e se an an an an an an an an an an an an an
		 			<u> </u>			
]				
				-	-			
·				-				
	ł	ł		-1	1 .			an an an an an an an an an an an an an a

APPENDIX E

QUALITATIVE RISK ASSESSMENT

HANNA FURNACE SITE – FORMER RAILROAD YARD QUALITATIVE HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

BUFFALO ECONOMIC RENAISSANCE CORPORATION BUFFALO, NEW YORK

MAY 2000

MALCOLM PIRNIE, INC.

P.O. Box 1938 Buffalo, New York 14219

MALCOLM

HANNA FURNACE SITE FORMER RAILROAD YARD QUALITATIVE HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

TABLE OF CONTENTS

			Page
1.0	INTI	RODUCTION	
	1.1	Site Background	
2.0	HUMA	AN HEALTH EVALUATION	
	2.1	Data Evaluation	4
		2.1.1 Selection of Chemicals of Potential Concern	4
		2.1.2 Data by Environmental Medium	5
	2.2	Toxicity Assessment	9
	2.3	Exposure Assessment	9
		2.3.1 Identification of Potential Exposure Pathways	9
		2.3.2 Identification of Pathways Considered Complete	10
	2.4	Risk Characterization	
		2.4.1 Current Scenario	12
		2.4.2 Future Scenario	
3.0	ECOL	OGICAL RISK ASSESSMENT	
5.0	3.1	Introduction	
	3.2	Ecological Characterization	
	2.2	3.2.1 Description of Natural Resources	
		3.2.2 Observations of Stress	
		3.2.3 Value of Resources to Wildlife and Humans	
	3.3	Chemicals of Potential Ecological Concern	
	5.5	3.3.1 Soil	
		3.3.2 Groundwater	
	3.4	Exposure and Effects Assessment	
	<i>.</i> , т	3.4.1 Chemical Migration and Fate	
		3.4.2 Exposure Pathways and Potential Receptors	
	3.5	Ecological Risk Characterization.	
	2.2	3.5.1 Soil	
		3.5.2 Groundwater	
	3.6	Uncertainty Analysis.	
4.0	CTINANA		22
4.0	SUMM	IARY	
5.0		RENCES	
	5.1	References for Human Health Evaluation	
	5.2	References for Ecological Risk Assessment	25

HANNA FURNACE SITE FORMER RAILROAD YARD QUALITATIVE HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

LIST OF TABLES

Table		Following
No.	Description	Page
1	Subsurface Soil Data	6
2	Surface Soil Data	
3	Soil/Fill Piles Data	
4	Groundwater Data	
5	Chemicals of Potential Concern	
6	Non-Carcinogenic Health Effects of Chemicals	
7	of Potential Concern Carcinogenic Health Effects of Chemicals of Potential Concern	
8	Chemical Release Mechanisms in Absence of	
	Remedial Action	
9	Identification of Potential Receptors and Routes	
	of Exposure	
10	Ecological Risk Characterization: Surface Soil	
11	Ecological Risk Characterization: Subsurface Soil	
12	Ecological Risk Characterization: Soil/Fill Piles	
13	Ecological Risk Characterization: Groundwater	

LIST OF FIGURES

Figure No.	Description	Following Page
1	Site Location	1
2	New York State Freshwater Wetlands Map	
3	National Wetlands Inventory Map	

MALCOLM PIRNIE FORMER RAILROAD YARD QUALITATIVE HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

LIST OF ATTACMENTS

Attachment No.	Description
I	Essential Nutrient Screen
II	Toxicological Profiles of Chemicals of Potential Concern for Human Health Evaluation
III	Toxicological Profiles for Chemicals of Potential Ecological Concern

1.0 INTRODUCTION

Following are the qualitative human and qualitative ecological health risk assessments for the Hanna Furnace Site, Former Railroad Yard Area. Each assessment seeks to identify relevant environmental media and chemicals of potential concern that may present a health risk to the populations in and around the vicinity of the Former Railroad Yard Area of the Hanna Furnace Site in Buffalo, NY. Consideration is given to the current and potential future conditions within and surrounding the site.

The site is currently zoned industrial/commercial. Some industrial development exists in the vicinity of the Former Railroad Yard Area. On the north side of the site is the Union Ship Canal. There is a Bethlehem Steel facility on the west side of Route 5. The nearest residential populations are approximately one-half mile to the south, and between one-half to one mile to the southeast, east, and northeast.

In each section, data are evaluated, exposure and toxicity are assessed, and risks are characterized. As these risk assessments are of a qualitative nature, quantitative estimates of specific risks to human and ecological health are not made; rather, chemicals of potential concern and potentially exposed populations are identified and considered to determine the extent of possible adverse health effects that may result from exposure under current and future conditions at the Former Railroad Yard Area, in the absence of remediation.

1.1 SITE BACKGROUND

The Former Railroad Yard Area is a 43-acre portion of the 113-acre Hanna Furnace Site (Figure 1). The site was owned by the Hanna Furnace Corporation, and was comprised of the Union Ship Canal, manufacturing buildings, the railroad yard, and a storage area. The site was closed in the early 1980s, and subsequently purchased by a scrap metal company. This company proceeded to remove the rails and demolish the buildings, salvaging scrap metal where feasible. Later, the U.S. Army Reserves removed many of the remaining railroad ties and stockpiled them on-site. Debris piles still remain

throughout the site. These piles consist of primarily soil, along with some demolition and construction debris.

The grounds are partially vegetated. The soil consists of fill material to a depth of 8-10 feet. The Union Ship Canal was used for shipping of cargo, and is currently not in use. Otherwise, no other surface water bodies lie in the Former Railroad Yard Area or within the Hanna Furnace Site.

The Hanna Furnace Site is bordered on the west by Route 5. On the west side of Route 5 is a Bethlehem Steel facility. On the north of the Hanna Furnace Site is the Tifft Landfill/Park area. To the east is an operating railroad yard, the Marilla Street Landfill, and South Park. A small industrial park is located to the south of the site, and Ridge Road forms the southern boundary of the industrial park. Bethlehem Park, a residential community, is located to the south of Ridge Road.

Several buildings remain within the Hanna Furnace Site, but not within the Former Railroad Yard Area. The Former Railroad Yard Area is currently abandoned and only partially bordered by a fence. Therefore, the site is accessible to trespassers.

2.0 HUMAN HEALTH EVALUATION

The purpose of this risk assessment is to evaluate potential human health risks associated with the Former Railroad Yard Area. The objectives of the risk assessment are to:

- Identify environmental media and chemicals of potential concern;
- Provide an evaluation of potential human receptors and exposure pathways associated with the groundwater and soil at and around the complex;
- Characterize the potential for adverse effects to human health in the absence of any actions to control or mitigate site contamination.

The human health evaluation is conducted in the typical four-step process:

- <u>Data Evaluation</u>: relevant site data are analyzed, and environmental media and chemicals of potential concern are identified;
- <u>Exposure Assessment</u>: chemical release mechanisms are analyzed, potentially exposed human populations are identified, and potential exposure pathways and routes are identified;
- <u>Toxicity Assessment</u>: qualitative toxicity information is presented for the chemicals of potential concern;
- <u>Risk Characterization</u>: the potential for adverse human health risks (noncarcinogenic and carcinogenic) is evaluated, and the risk information is summarized to determine the baseline risk in the absence of future remediation.

This risk assessment is of a qualitative nature; as such, quantitative estimates of risk from exposure to the chemicals of potential concern will not be derived. By evaluating the analytical data for each environmental medium, possible exposure points, potential human receptors, and reasonable exposure routes, it can be evaluated whether or not human health is or will be subjected to significant chemical risks. The results of the qualitative risk assessment are important in considering the potential for reuse of the Former Railroad Yard Area.

MALCOLM PIRNIE

2.1 DATA EVALUATION

Environmental investigations have taken place at the Hanna Furnace Site since 1979. Soil samples and groundwater samples within the Former Railroad Yard Area from historical sampling are used, along with more recent analytical data collected by Malcolm Pirnie from 1999 to 2000 as described below.

2.1.1 Selection of Chemicals of Potential Concern

The following hierarchy is used to select chemicals of potential concern (COPCs) in subsurface soil, surface soil, soil fill piles, and groundwater:

Subsurface Soil, Surface Soil, Soil/Fill Piles - For all soil samples, total organic carbon (TOC) is assumed to be 1%. For volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), phenolic compounds, and pesticides/polychlorinated biphenyls (PCBs), maximum detected chemical concentrations are compared to the NYSDEC TAGM 4046 recommended soil cleanup objectives. Chemicals with maximum detected concentrations exceeding these levels are selected as COPCs. Chemicals that are detected but are not assigned NYSDEC recommended soil cleanup objectives are selected as COPCs.

For inorganic chemicals, the following procedures are used:

- If the inorganic chemical is one of the five essential nutrients (calcium, iron, magnesium, potassium, or sodium), then a derived nutrient screening concentration is used as the screening criterion. If the maximum detected concentration for an essential nutrient exceeds the derived nutrient screening concentration (see Attachment I), then it is selected as a COPC.
- If the NYSDEC recommended soil cleanup objective is listed as "Site Background," then the average value for New York State (Eastern United States, if not available) from Dragun and Chiasson (1991) is used as the "site background" criterion. If the average of detected concentrations for an inorganic chemical exceeds twice the background value, then it is selected as a COPC.

- If the NYSDEC recommended soil cleanup objective for an inorganic is listed as "[numerical concentration] or Site Background", then the given numerical concentration is used as a screening value, since no background samples are available. If the maximum detected concentration for an inorganic chemical exceeds the NYSDEC criterion, then it is selected as a COPC.
- If the NYSDEC recommended soil cleanup objective for an inorganic chemical is given as a numerical value, then the maximum detected concentration is compared to the numerical value. If the maximum detected concentration for an inorganic chemical exceeds the NYSDEC criterion, then it is selected as a COPC.
- If an inorganic chemical is detected but does not have a NYSDEC recommended soil cleanup objective assigned to it, then it is selected as a COPC.

Groundwater - For the essential nutrients (calcium, iron, magnesium, potassium, or sodium), maximum detected concentrations are compared to derived nutrient screening concentrations (Attachment I) to determine inclusion as COPCs. Chemicals with maximum detected concentrations exceeding these levels are selected as COPCs.

For all other chemicals, maximum detected chemical concentrations are compared to the NYSDEC Class GA groundwater quality standards. Chemicals with maximum detected concentrations exceeding these levels are selected as COPCs, while chemicals that are detected but are not assigned NYSDEC standards are selected as COPCs.

2.1.2 Data by Environmental Medium

For all environmental media, chemical-specific analytical data are used. Data with qualifiers (e.g., "J" and "B") are used. If a sample has a duplicate, then the higher value for each detected analyte is used.

Subsurface Soil – Soil boring data are used to characterize subsurface soil conditions at the Former Railroad Yard Area. These samples were taken at depths at 2 feet or more below ground surface. The soil is comprised of fill material to depths of approximately 8-10 feet below ground surface. In 1988, Recra Environmental, Inc., collected two subsurface soil samples (HF-4/SB-2 and HF-4/SB-5) as part of its "Site

Characterization and Environmental Assessment". These samples were analyzed for arsenic, chromium, copper, and lead. As part of a Preliminary Site Assessment, ABB Environmental Services took two subsurface soil samples (BS-104 and BS-105) in 1995. These samples were analyzed for VOCs, SVOCs, pesticides/PCBs, target analyte list (TAL) metals, and cyanide. In 1999, Malcolm Pirnie, Inc. made 36 additional soil borings. Composite samples were made, where two soil borings were combined to make one composite subsurface soil sample; as such, 18 subsurface soil samples were collected. These samples were analyzed for polynuclear aromatic hydrocarbons (PAHs)/phenolics, TAL metals, and cyanide. In 2000, Malcolm Pirnie, Inc. collected six more soil borings from the Former Railroad Yard Area. These samples were analyzed individually for VOCs, SVOCs, pesticides/PCBs, TAL metals, and/or cyanide. The analytical results are presented in Table 1.

Chemicals selected as COPCs in subsurface soil are as follows:

- SVOCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, and chrysene;
- Inorganic chemicals: antimony, arsenic, barium, beryllium, copper, iron, lead, manganese, nickel, and zinc;
- Other chemicals: cyanide.

The maximum detected concentration for iron exceeds the nutrient screening concentration. The average of detected concentrations for antimony, lead, and manganese exceed two times their respective average background concentrations. For all other chemicals, the maximum detected concentrations exceed the respective NYSDEC recommended soil cleanup objectives.

Surface Soil – Soil samples at depths of 0-2 feet below ground surface are used to characterize surface soil conditions at the Former Railroad Yard Area. In 1998, five samples (numbers 20–24) were taken within the Former Railroad Yard Area by Recra Environmental, Inc., as part of its "Site Characterization and Environmental Assessment". These samples were analyzed for phenolic compounds, pesticides/PCBs,

				TABLE 1 BSURFACE SOIL DA CR RAILROAÐ YARI					
	Jan 2	000 (MPI)	Jan 19	99 (MPI)	199	5 (ABB)	1988	8 (Recra)	NYSDEC TAGM
ANALYTE	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Recommended Soi Cleanup Objective
VOLATILE ORGANICS (ug/kg)									
2-Butanone	1/5	4	NA	NA	1 / 2	18	NA	NA	300
Carbon disulfide	4 / 5	4 - 12	NA	NA	0 / 2	ND	NA	NA	2.700
Toluene	2 / 5	4 - 6	NA	NA	0 / 2	ND	NA	NA	1,500
SEMI-VOLATILE ORGANICS (ug/kg)				an an an Araba An Araba					
Acenaphthene	1/6	65	1 / 18	170	0 / 2	ND	NA	NA	50,000
Anthracene	1/6	190	3 / 18	110 - 360	0 / 2	ND	NA	NA	50,000
Benzo(a)anthracene	1/6	370	5 / 18	110 - 450	0 / 2	ND	NA	NA	224
Benzo(a)pyrene	1/6	310	5 / 18	160 - 470	0 / 2	ND	NA	NA	61
Benzo(b)fluoranthene	2 / 6	450 - 490	5 / 18	220 - 650	0 / 2	ND	NA	NA	224
Benzo(g,h,i)perylene	1 / 6	110	5 / 18	89 - 410	0 / 2	ND	NA	NA	50,000
Benzo(k)fluoranthene	1/6	170	1 / 18	150	0 / 2	ND	NA	NA	1,100
bis(2-Ethylhexyl)phthalate	5/6	110 - 250	NA	NA	0 / 2	ND	NA	NA	50,000
Carbazole	1/6	60	NA	NA	0 / 2	ND	NA	NA	
Chrysene	2/6	340 - 480	5 / 18	160 - 500	0 / 2	ND	NA	NA	400
Dibenzofuran	1/6	110	NA	NA	0 / 2	ND	NA	NA	6,200
Fluoranthene	2/6	410 - 990	6 / 18	96 - 980	0 / 2	ND	NA	NA	50,000
Fluorene	1/6	94	0 / 18	ND	0 / 2	ND	NA	NA	50,000
Indeno(1,2,3-cd)pyrene	1/6.	110	2 / 18	220 - 330	0 / 2	ND	NA	NA	3,200
2-Methylnaphthalene	0 / 6	ND	3 / 18	96 - 230	0 / 2	ND	NA	NA	36,400
Naphthalene	0/6	ND	3 / 18	79 - 150	0 / 2	ND	NA	NA	13,000
Phenanthrene	2 / 6	380 - 890	5 / 18	180 - 1,400	0 / 2	ND	NA	NA	50,000
Pyrene	2 / 6	600 - 860	5 / 18	170 - 1,100	0 / 2	ND	NA	NA	50,000

Pe____2

TABLE 1 (cont'd) SUBSURFACE SOIL DATA FORMER RAILROAD YARD AREA												
		Jan 2	000 (MPI)	Jan 1	999 (MPI)	199	5 (ABB)		(Recra)	NYSDEC TAGM		
	ANALYTE	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	f Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Recommended Soi Cleanup Objective		
INORGANIC	S (mg/kg)											
Aluminum	(average = 33,784)	6/6	9,690 - 45,700	18 / 18	12,200 - 54,000	2 / 2	35,300 - 43,600	NA	NA	144,000 *		
Antimony	(average = 12.19)	0 / 6	ND	9 / 18	10.3 - 16.6	0 / 2	ND	NA	NA	2.0 *		
Arsenic		1/6	10	2 / 18	20.4 - 35.6	0 / 2	ND	2 / 2	11	7.5		
Barium		6/6	109 - 428	18 / 18	89.3 - 416	2 / 2	188 - 464	NA	NA	300		
Beryllium		6/6	2.1 - 8.2	18 / 18	0.73 - 9.61	2 / 2	3.8 - 6.3	NA	NA	0.16		
Cadmium		2 / 6	2.1 - 6.2	4 / 18	1.05 - 8.1	0 / 2	ND	NA	NA	10		
Calcium		6/6	55,800 - 259,000	18 / 18	37,400 - 296,000	2/2	132,000 - 233,000	NA	NA	1,000,000 **		
Chromium		6/6	4.9 - 19.5	18 / 18	4.36 - 35.2	1 / 2	9.6	2/2	4.2 - 23	50		
Cobalt		1/6	5.8	16 / 18	3.08 - 14	0 / 2	ND	NA	NA	30		
Copper		3/6	5 - 44.1	18 / 18	5.53 - 42.2	1 / 2	7.3	2 / 2	17 - 28	25		
Iron		6/6	3,250 - 89,400	18 / 18	4,250 - 209,000	2 / 2	1,780 - 9,450	NA	NA	200,000 **		
Lead	(average = 52.63)	3/6	2.2 - 54.6	15 / 18	9.78 - 175	2 / 2	1.9 - 113	2 / 2	19 - 22	42 *		
Magnesium		6 / 6	8,800 - 13,500	18 / 18	5,320 - 26,800	2 / 2	9,220 - 16,700	NA	NA	1,000,000 **		
Manganese	(average = 2,392)	6/6	960 - 2,190	17 / 18	671 - 5,150	2 / 2	2,690 - 2,710	NA	NA	1,280 *		
Mercury		0 / 6	ND	5 / 18	0.022 - 0.097	0 / 2	ND	NA	NA	0.1		
Nickel		0 / 6	ND	18 / 18	8.71 - 33.5	0 / 2	ND	NA	NA	13		
Potassium		6/6	1,910 - 6,120	18 / 18	1,080 - 2,970	2 / 2	655 - 1,230	NA	NA	1,000,000 **		
Selenium		5/6	17.4 - 28.3	0 / 18	ND	0 / 2	ND	NA	NA	0.6 *		
Sodium		0 / 6	ND	18 / 18	189 - 746	2 / 2	522 - 1,400	NA	NA	1,000,000 **		
Vanadium		2 / 6	12.5 - 12.9	18 / 18	8.4 - 104	1 / 2	13.8	NA	NA	150		
Zinc		6 / 6	6.4 - 166	17 / 18	9.05 - 1,670	2 / 2	5.4 - 74.8	NA	NA	20		
OTHER (mg	/kg)											
Cyanide, total		5 / 6	3.1 - 43	18 / 18	0.99 - 33.2	2 / 2	3.9 - 32.1	NA	NA			

NA: Not Analyzed. ND: Not Detected.

--: Not Available.

*: Two times the New York or Eastern United States average background value, from Dragun and Chiasson (1991). **: Nutrient screening concentration.

oil & grease, and four heavy metals (arsenic, chromium, iron, and lead). In 1999, Malcolm Pirnie, Inc. made 36 additional soil borings. As described above for subsurface soils, composite samples were made, where two soil borings were combined to make one composite subsurface soil sample; as such, 18 surface soil samples were collected. These samples were analyzed for PAHs/phenolics, TAL metals, and cyanide. In 2000, Malcolm Pirnie, Inc. took one surface soil sample (MW-002). This sample was analyzed for VOCs. The sampling results are presented in Table 2.

Chemicals selected as COPCs in surface soil are as follows:

- VOCs: 2-hexanone;
- SVOCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene;
- Pesticides/PCBs: Aroclor 1254;
- Inorganic chemicals: antimony, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, vanadium, and zinc;
- Other chemicals: cyanide.

The maximum detected concentration of iron exceeds the nutrient screening concentration. The average detected concentrations for antimony, lead, and manganese exceed two times their respective average background concentrations. For all other chemicals, the maximum detected concentrations exceed the respective NYSDEC recommended soil cleanup objectives.

Soil/Fill Piles – In 1999, twenty samples were taken from the soil/fill piles in the Former Railroad Yard Area by Malcolm Pirnie, Inc. These samples were analyzed for VOCs, SVOCs, pesticides/PCBs, TAL metals, and cyanide. These sampling results are presented in Table 3.

The following chemicals are selected as COPCs:

• VOCs: chloromethane, cis-1,2-dichloroethene, and styrene;

And a second sec

1000

and the second

Construction of the second

Sector Constraints

TABLE 2 SURFACE SOIL DATA FORMER RAILROAD YARD AREA - jî î

ANALYTE	Jan 2000 (MPI)		Jan 1999 (MPI)		1988 (RECRA)		NYSDEC TAGM Recommended Soil
	Frequency of Range of Detected		Frequency of Range of Detected		Frequency of Range of Detected		
	Detection	Concentrations	Detection	Concentrations	Detection	Concentrations	Cleanup Objective
VOLATILE ORGANICS (ug/kg)					•		
Benzene	1 / 1	2	NA	NA	NA	NA	60
2-Butanone	1/1	27	NA	NA	NA	NA	300
Carbon Disulfide	1 / 1	5	NA	NA	NA	NA	2,700
Chloroform	1 / 1	3	NA	NA	NA	NA	300
Ethylbenzene	1 / 1	2	NA	NA	NA	NA	5,500
2-Hexanone	1/1	14	NA	NA	NA	NA	
1,2,2-Tetrachloroethane	1/1	3	NA	NA	NA	NA	600
Toluene	1/1	8	NA	NA	NA	NA	1,500
Xylenes (total)		9	NA	NA .	NA	NA	1,200
,,,,	1 / 1	,	INA	NA .	NA	NA	1,200
\$EMI-VOLATILE ORGANICS (ug/kg)							
Acenaphthene	NA	NA	5 / 18	74 - 400	NA	NA	50,000
Acenaphthylene	NA	NA	2 / 18	130 - 200	NA	NA	41.000
Anthracene	NA	NA	8 / 18	78 - 530	NA	NA	50,000
Benzo(a)anthracene	NA	NA	16 / 18	75 - 3,700	NA	NA	224
Benzo(a)pyrene	NA	NA	17 / 18	73 - 5,100	NA	NA	61
Benzo(b)fluoranthene	NA	NA	17 / 18	120 - 6,400	NA	NA	224
Benzo(g,h,i)perylene	NA	NA	13 / 18	95 - 4,100	NA	NA	
Benzo(k)fluoranthene	NA	NA	8 / 18				50,000
Chrysene	NA	NA		250 - 1,900	NA	NA	1,100
Dibenz(a,h)anthracene			17 / 18	82 - 3,300	NA	NA	400
Fluoranthene	NA	NA	3 / 18	170 - 960	NA	NA	14
	NA	NA	17 / 18	83 - 2,000	NA	NA	50,000
ndeno(1,2,3-cd)pyrene	NA	NA	8 / 18	430 - 3,700	NA	NA	3,200
-Methylnaphthalene	NA	NA	6 / 18	65 - 210	NA	NA	36,400
Naphthalene	NA	NA	6 / 18	65 - 130	NA	NA	13,000
henanthrene	NA	NA	13 / 18	78 - 1,500	NA	NA	50,000
yrene	NA	NA	15 / 18	110 - 5,200	NA	NA	50,000
PHENOLIC COMPOUNDS (mg/kg)	ND	ND	ND	ND	1 / 5	1.5	30
PESTICIDES/PCBs (mg/kg)							
Aroclor 1242	NA	NA	NA	NA	2 / 5	0.15 - 0.37	I I
Aroclor 1254	NA	NA	NA	NA	2/5	0.35 - 1.3	
Aroclor 1260	NA	NA	NA	NA	1/5	0.074	1

Bace 1 - F1

TABLE 2 (cont'd) SURFACE SOIL DATA FORMER RAILROAD YARD AREA

ANALYTE		Jan 2000 (MPI)		Jan 1999 (MPI)		1988 (RECRA)		NYSDEC TAGM
		Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Recommended Soil Cleanup Objectives
INORGANICS (1	ng/kg)							
Aluminum	(average = 24,717)	NA	NA	18 / 18	16,300 - 45,700	NA	NA	144,000 *
Antimony	(average = 9.43)	NA	NA	12 / 18	6.99 - 15.1	NA	NA	2.0 *
Arsenic		NA	NA	3 / 18	15.4 - 61.7	5 / 5	14 - 32	7.5
Barium		NA	NA	18 / 18	80.7 - 365	NA	NA	300
Beryllium		NA	NA	18 / 18	1.44 - 7.45	NA	NA	0.16
Çadmium		NA	NA	5 / 18	0.707 - 8.00	NA	NA	10
Çalcium		NA	NA	18 / 18	48,000 - 212,000	NA	NA	1,000,000 **
Chromium		NA	NA	18 / 18	6.89 - 127	5 / 5	22 - 4,700	50
Çobalt		NA	NA	18 / 18	1.89 - 15.7	NA	NA	30
Copper		NA	NA	18 / 18	20.1 - 181	5 / 5	23 - 640	25
lron		NA	NA	18 / 18	13,700 - 236,000	NA	NA	200,000 **
Lead	(average = 408.2)	NA	NA	18 / 18	22.1 - 1,120	5 / 5	21 - 3,300	42 *
Magnesium		NA	NA	18 / 18	5,890 - 38,200	NA	NA	1,000,000 **
Manganese	(average = 3,548)	NA	NA	18 / 18	1,900 - 10,400	NA	NA	1,280 *
Mercury		NA	NA	4 / 18	0.025 - 0.21	NA	NA	0.1
Nickel		NA	NA	18 / 18	11.9 - 96.9	NA	NA	13
Potassium	1	NA	NA	18 / 18	716 - 2,310	NA	NA	1,000,000 **
Şilver		NA	NA	18 / 18	191 - 1,170	NA	NA	
Sodium		NA	NA	18 / 18	6.26 - 66.3	NA	NA	1,000,000 **
Vanadium		NA	NA	18 / 18	63.7 - 1,150	NA	NA	150
Zinc		NA	NA	18 / 18	64 - 1,200	NA	NA	20
OTHER (mg/kg)								
Cyanide, total		NA	NA	18 / 18	2.17 - 28.8	4 / 5	3.2 - 70	

Page 2 of 2

Summerse State

-: Not Available.

*: Two times the New York or Eastern United States average background value, from Dragun and Chiasson (1991).

**: Nutrient screening concentration.

h. /3587 001/tables/data cummary tbls/surfsoil-summ

TABLE 3SOIL/FILL PILES DATAFORMER RAILROAD YARD AREA

	Feb 2	Feb 2000 (MPI)			
ANALYTE	Frequency of	Range of Detected	Recommended Soil		
	Detection	Concentrations	Cleanup Objectives		
VOLATILE ORGANICS (ug/kg)					
VOLATILE ORGANICS (ug/kg)	1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Benzene	1 / 20	11	60		
2-Butanone	1 / 20	12 - 19	300		
Carbon disulfide	2 / 20	2	2,700		
Chloroform	11 / 20	2 - 7	300		
Chloromethane	1 / 20	16	<u></u>		
cis-1,2-Dichloroethene	1 / 20	5	40. NH		
Ethylbenzene	1 / 20	33	5,500		
4-Methyl-2-pentanone	3 / 20	2 - 4	1,000		
Styrene	1 / 20	20			
1,1,2,2-Tetrachloroethane	1 / 20	59	600		
Tetrachloroethene	2 / 20	1 - 2	1,400		
Toluene	19 / 20	2 - 60	1,500		
Trichloroethene	1 / 20	220	700		
Xylenes (total)	2 / 20	2 - 28	1,200		
			n yn rei de saar far rys daar ar de rei de saar far rys daar		
SEMIVOLATILE ORGANICS (ug/kg)					
			50 000		
Acenaphthene	10 / 20	47 - 690	50,000		
Acenaphthylene	6 / 20	66 - 210	41,000		
Anthracene	14 / 20	62 - 2,500	50,000		
Benzo(a)anthracene	18 / 20	51 - 3,700	224		
Benzo(a)pyrene	19 / 20	57 - 4,200	61		
Benzo(b)fluoranthene	18 / 20	89 - 5,400	224		
Benzo(g,h,i)perylene	15 / 20	89 - 3,000	50,000		
Benzo(k)fluoranthene	17 / 20	39 - 1,600	1,100		
bis(2-Ethylhexyl)phthalate	20 / 20	41 - 650	50,000		
Butylbenzylphthalate	3 / 20	130 - 790	50,000		
	10 / 20	40 - 570			
Chrysene	19 / 20	66 - 3,800	400		
Dibenz(a,h)anthracene	4 / 20	110 - 950	14		
Dibenzofuran	9 / 20	47 - 670	6,200		
Di-n-butylphthalate	4 / 20	47 - 120	8,100		
2,6-Dinitrotoluene	1 / 20	120	1,000		
Fluoranthene	19 / 20	53 - 8,500	50,000		
Fluorene	9 / 20	69 - 900	50,000		
Indeno(1,2,3-cd)pyrene	15 / 20	170 - 2,700	3,200		
2-Methylnaphthalene	5 / 20	83 - 430	36,400		
4-Methylphenol	1 / 20	120	900		
Naphthalene	8 / 20	42 - 720	13,000		
Phenanthrene	19 / 20	43 - 6,000	50,000		
Pyrene	19 / 20	78 - 9,700	50,000		
1 yrchic	17 / 20	/0 - 9,/00	50,000		

TABLE 3 SOIL/FILL PILES DATA FORMER RAILROAD YARD AREA

		Feb 2	NYSDEC TAGM		
ANALYTE		Frequency of	Range of Detected		
		Detection	Concentrations	Cleanup Objectives	
PESTICIDES / PCI	Bs (ug/kg)				
Aldrin		3 / 20	2.6 - 500	41	
alpha-Chlordane		2 / 20	29.3 - 500	540	
gamma-Chlordane		1 / 20	2.1	540	
4,4'-DDE		5 / 20	3.9 - 13.8	2,100	
4,4'-DDT		6 / 20	4.7 - 32	2,100	
Heptachlor		1 / 20	3.2	20	
Aroclor 1254		1 / 20	1,200	1,000	
Aroclor 1260		1 / 20	3,820	1,000	
INORGANICS (mg	, lka)				
INORGAINICS (ing	(/Kg)				
Aluminum	(average = 9,318)	20 / 20	2,950 - 28,600	144,000 *	
Antimony	(average = 7.16)	1 / 20	7.2	2.0 *	
Arsenic		15 / 20	3.0 - 22.9	7.5	
Barium		20 / 20	40.2 - 327	300	
Beryllium		8 / 20	0.73 - 5.3	0.16	
Cadmium		19 / 20	1.4 - 19.9	10	
Calcium		20 / 20	14,200 - 209,000	1,000,000 **	
Chromium		20 / 20	8.2 - 193	50	
Cobalt		15 / 20	5.0 - 15.9	30	
Copper		20 / 20	9.4 - 504	25	
Iron		20 / 20	7,910 - 244,000	200,000 **	
Lead	(average = 140.7)	20 / 20	15.2 - 766	42 *	
Magnesium		20 / 20	3,070 - 23,600	1,000,000 **	
Manganese	(average = 882.0)	20 / 20	194 - 3,320	1,280 *	
Mercury	(,	11 / 20	0.12 - 0.67	0.1	
Nickel		18 / 20	7.74 - 84.8	13	
Potassium		20 / 20	657 - 4,970	1,000,000 **	
Selenium		19 / 20	2.3 - 35.9	0.6 *	
Sodium		5 / 20	230 - 675	1,000,000 **	
Thallium		3 / 20	2.4 - 4.8		
Vanadium		19 / 20	8.7 - 44.2	150	
Zinc		20 / 20	63.8 - 2,380	20	
OTHER (mg/kg)					
Cyanide, total		6 / 20	1.7 - 12.7		

--: Not Available.

*: Two times the New York or Eastern United States average background value, from Dragun and Chiasson (1991).

**: Nutrient screening concentration.

- SVOCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, and dibenz(a,h)anthracene;
- Pesticides/PCBs: aldrin, Aroclor 1254, Aroclor 1260;
- Inorganic chemicals: antimony, arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, mercury, nickel, silver, thallium, and zinc;
- Other chemicals: cyanide.

The maximum detected concentration of iron exceeds the screening concentration. The average detected concentrations of antimony, lead, and selenium exceed two times their respective average background concentrations. For all other chemicals, the maximum detected concentrations exceed the respective NYSDEC recommended soil cleanup objectives.

Groundwater – In 1988, one monitoring well (MW-4) was installed in the Former Railroad Yard Area as part of the Recra Environmental, Inc. "Site Characterization and Environmental Assessment". This sample was analyzed for PCBs, phenolics, three heavy metals (arsenic, chromium, and lead), and cyanide. In 1995, ABB installed two monitoring wells in the Former Railroad Yard Area (MW-104 and MW-105) and analyzed a sample from each well for VOCs, SVOCs, pesticides/PCBs, TAL metals, and cyanide. In 2000, Malcolm Pirnie, Inc. installed three more monitoring wells (MW-001, MW-002, and MW-003), and sampled them and the two ABB wells. These samples were analyzed for VOCs, SVOCs, pesticides/PCBs, TAL metals, and cyanide. Because MW-002 (Malcolm Pirnie, Inc., 2000) lies near the location of MW-4 (Recra Environmental, Inc., 1988), and represents more current groundwater conditions at this point, the data from the 1988 sampling event are not used. These results are presented in Table 4.

The following chemicals are selected as COPCs:

- VOCs: 4-methyl-2-pentanone;
- Inorganic chemicals: aluminum, iron, manganese, and thallium;

	Feb 2	2000 (MPI)	1995	5 (ABB)	NYSDEC Ambient Water Q
ANALYTE	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Standards and Guidance V for Class GA Groundwa
VOLATILE ORGANICS (ug/L)		ter di standari di standari di standari di standari di standari di standari di standari di standari di standari Standari di standari di stan			
2-Hexanone	1 / 5	9	0 / 2	ND	50
4-Methyl-2-pentanone	1 / 5	4	0 / 2	ND	
SEMI-VOLATILE ORGANICS (ug/L)					
Di-n-butylphthalate	3 / 5	3 - 4	0 / 2	ND	50
INORGANICS (ug/L)					
Aluminum	4 / 5	402 - 1,630	2 / 2	150 - 1,600	. · · ·
Barium	2 / 5	65.1 - 140	2 / 2	23.2 - 29.4	1,000
Calcium	5 / 5	60,300 - 171,000	2 / 2	45,100 - 98,600	800,000
Copper	1 / 5	10.9	0 / 2	ND	200
Iron	5 / 5	231 - 11,700	2 / 2	25.8 - 53.5	10,000
Lead	3 / 5	3.8 - 5.1	0 / 2	ND	25
Magnesium	4 / 5	7,610 - 55,700	1 / 2	11,700	80,000
Manganese	4 / 5	25.0 - 846	1 / 2	13.6	300
Potassium	5 / 5	1,080 - 61,000	2 / 2	13,500 - 16,200	1,000,000
Selenium	5/5	13.6 - 114	1 / 2	8.7	10
Silver	1 / 5	35.9	1 / 2	41.2	50
Sodium	5 / 5	14,700 - 64,600	2 / 2	24,600 - 26,300	975,000
Thallium	1 / 5	16.6	0 / 2	ND	0.5
Zinc	5 / 5	10.0 - 86.2	0 / 2	ND	2,000
OTHER (ug/L)					
Cyanide, total	4 / 5	20.0 - 90.0	2 / 2	50.0 - 240	200

• Other chemicals: cyanide.

The maximum detected concentration of iron exceeds the nutrient screening concentration. For all other chemicals, the maximum detected concentrations exceed the respective NYSDEC Ambient Water Quality Standards for Class GA Groundwater.

Based on this analysis, the chemicals of potential concern for each environmental medium are summarized in Table 5.

2.2 TOXICITY ASSESSMENT

For each COPC, critical oral and inhalation effects are presented in Tables 6 (noncarcinogenic health effects) and 7 (carcinogenic health effects). The critical health effects given are those that are used by the USEPA (2000, 1997) to derive reference doses, reference concentrations, and slope factors. In a quantitative human health risk assessment, reference doses and reference concentrations are used to assess the potential for chronic noncarcinogenic health effects, and slope factors are used to assess carcinogenic risk. The reference doses, reference concentrations, and slope factors are not presented in these tables.

For the VOCs, SVOCs, and pesticides/PCBs selected as COPCs, brief toxicological profiles are provided in Attachment II. For the inorganic chemicals selected as COPCs, a brief composite toxicological profile is provided in Attachment II.

2.3 EXPOSURE ASSESSMENT

2.3.1 Identification of Potential Exposure Pathways

As described above, the site is currently abandoned. The current designation of the grounds is industrial/commercial, and it is expected to remain that way in the future. The City of Buffalo is planning to redevelop the Former Railroad Yard Area as a commercial/light industrial park. The Union Ship Canal, which lies outside the study area, is currently inactive and not fenced off to trespassers. In the future, the City of Buffalo may expand the water area to the north, and make the canal into a boat harbor.

	CHEMICALS OF	TABLE 5 POTENTIAL CON ILROAD YARD AR		
ANALYTE	SUBSURFACE SOIL	SURFACE SOIL	SOIL/FILL PILES	GROUNDWATER
VOLATILE ORGANICS				
Chloromethane	ND	ND	x	ND
cis-1,2-Dichloroethene	ND	ND	\sim \sim \sim X	ND
2-Hexanone	ND	X	ND	*
4-Methyl-2-pentanone	ND	ND	*	X
Styrene	ND	ND	X	ND
SEMI-VOLATILE ORGANICS				
Denne(a)anthmaana	x	v	x	ND
Benzo(a)anthracene			X	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene			X	ND
Benzo(k)fluoranthene	*	X	X	ND
Carbazole	x	ND	X	ND
Chrysene	x	X	X	ND
Dibenz(a,h)anthracene	ND	x	X	ND
Indeno(1,2,3-cd)pyrene	· · · · · · · · · · · · · · · · · · ·	x	*	ND
PESTICIDES/PCBs				
Aldrin	ND	ND	X	ND
Aroclor 1254	ND	X	X	ND
Aroclor 1260	ND	*	Х	ND
INORGANICS				
Aluminum	*	*	*	x
Antimony	X	x	x	ND
Arsenic	X	X	X	ND
Barium	X		X	• •
Beryllium	X	X	X	ND
Cadmium	*	*	X	ND
Chromium	*	X	X	ND
Copper	X	X	X	*
Iron	X	X	X	Х
Lead	X	X	X	*
Manganese	X	X	*	Х
Mercury	*	X	ND	ND
Nickel	X	X	X	ND
Selenium	*	ND	*	*
Silver	ND	X	. · X	*
Thallium	ND	ND	X	X
Vanadium	*	X	*	ND
Zinc	x	X	X	*
OTHER				
Cyanide, total	Х	Х	X	х

X: Selected as a chemical of potential concern (COPC).

*: Detected, but not selected as a COPC.

ND: Not Detected.

NA: Not Analyzed.

TABLE 6 NON-CARCINOGENIC HEALTH EFFECTS OF CHEMICALS OF POTENTIAL CONCERN FORMER RAILROAD YARD AREA							
CHEMICAL	CAS #	NON-CARCINOGENIC ORAL CRITICAL EFFECT	NON-CARCINOGENIC INHALATION CRITICAL EFFECT				
VOLATILE ORGANICS							
hløromethane	74-87-3		Cerebellar degeneration and severe neurological impairment				
cis-1,2-Dichloroethene	156-59-2	Decreased hemoglobin and hematocrit					
2-Hexanone	591-78-6		Neurological effects				
4-Methyl-2-pentanone	108-10-1	Liver and kidney effects	Liver and kidney effects				
Styrene	100-42-5	Red blood cell & liver effects	CNS effects				
SEMI-VOLATILE ORGANI							
Benzo(a)anthracene	56-55-3	T					
Senzo(a)antinacene Senzo(a)pyrene	50-32-8						
Benzo(b)fluoranthene	205-99-2						
Benžo(k)fluoranthene	203-99-2 207-08-9						
Carbazole	86-74-8						
Chrysene	218-01-09						
Dibenz(a,h)anthracene	53-70-3						
Indeno(1,2,3-cd)pyrene	193-39-5						
PESTICIDES/PCBs		L					
Aldrin	309-00-2		Liver, diet				
Aroclor 1254	11097-69-1	Ocular exudate, inflamed Meibomian glands, distorted nail growth, decreased antibody response.					
Aroclor 1260	11096-82-5	Ocular exudate, inflamed Meibornian glands, distorted nail growth, decreased antibody response.					
INORGANICS							
Aluminum	7429-90-5	Minimal neurotoxicity	Psychomotor and cognitive impairment				
Antimony	7440-36-0	Longevity, blood glucose, and cholesterol					
Arsenic	7440-38-2	Hyperpigmentation, keratosis and possible vascular complications					
Barium	7440-39-3	Increased blood pressure	Fetotoxicity				
Beryllium	7440-41-7	Small intestine lesions	Sensitization and progression to chronic beryllium disease				
Cadmium	7440-43-9		Significant proteinuria (cadmium in water)				
Chromium III	16065-83-1	No effects observed					
Copper	7440-50-8	Gastrointestinal irritation					
ron	7439-89-6						
_ead	7439-92-1						
Manganese	7439-96-5	CNS effects	Impairment of neurobehavioral function				
Mercury (elemental)	7439-97-6		Neurotoxicity				
Nickel (soluble salts)	7440-02-0	Decreased body and organ weights					
Silver	7440-02-0	Argyria	Argyrosis				
Fhallium	7440-22-4						
√anadium	7440-62-2						
Zinc	7440-66-6	Decrease in erythrocyte superoxide					
DTHER							
		T					
yanide	57-12-5	Weight loss, thyroid effects and myelin degeneration.					

	CAR	TABLE 7 CINOGENIC HEALTH EFFECTS OF CHEM FORMER RAILROAD Y		
Chemical	CAS #	ORAL CARCINOGENIC CANCER TYPE	INHALATION CARCINOGENIC CANCER TYPE	Weight-of-Evidence Classification (*)
VOLATILE ORGANICS				
Carbon disulfide	75-15-0			
Chloromethane	74-87-3	Kidney tumors	Kidney tumors	C
is-1,2-Dichloroethene	156-59-2			D
-Hexanone	591-78-6			
-Methyl-2-pentanone	108-10-1			
tyrene	100-42-5			
SEMI-VOLATILE ORGANI	CS			
Benzo(a)anthracene	56-55-3			B2
Benzo(a)pyrene	205-99-2	Forestomach	· · · · ·	B2
Benzo(b)fluoranthene	207-08-9			B2
Benzo(k)fluoranthene	50-32-8			B2
arbazole	86-74-8	Liver	Liver carcinoma	B2
hrysene	218-01-09	-	<i>8</i> 79	B2
Dibenz(a,h)anthracene	53-70-3			B2
ndeno(1,2,3-cd)pyrene	193-39-5			B2
PESTICIDES/PCBs		n en en en en en en en en en en en en en		
Aldrin	309-00-2	Liver	Liver carcinoma	B2
Aroclor 1254	11097-69-1	Trabecelar carcinoma/adenocarcinoma (**)	(**)	B2 (**)
Aroclor 1260	11096-82-5	Trabecelar carcinoma/adenocarcinoma (**)	(**)	B2 (**)
INORGANICS				
Aluminum	7429-90-5			D
Antimony	7440-36-0			BI
Arsenic	7440-38-2	Skin	Respiratory	A
Barium	7440-39-3	JKIII	respiratory	D
Beryllium	7440-33-3		Lung tumors	BI
Cadmium	7440-41-7		Respiratory (cadmium in water)	BI
Chromium III	16065-83-1		Respiratory (cadimum in water)	D
Copper	7440-50-8			D
ron	7439-89-6			
.ead	7439-89-0			B2
Aanganese	7439-92-1			D B2
Aercury (elemental)	7439-96-5	- 1		D
vickel (soluble salts)	7439-97-6			
ilver	7440-02-0			D
"hallium	7440-22-4 7440-28-0			U U
anadium	7440-28-0		· · · · ·	-
Zinc	7440-62-2			D
DTHER		I		
Cyanide	57-12-5		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	D

giftenes. Se o como como

*: Weight of Evidence Classification refers to the known carcinogenicity of the chemical. "A" = Human Carcinogen; "B" = Probable Human Carcinogen;

"C" = Possible Human Carcinogen; "D" = Not classifiable as to human carcinogenicity; "-" = Has not been classified. **: Carcinogenic health effects and weight-of-evidence ratings are for total PCBs.

While boating would be permitted in such a development, swimming and fishing are not likely to be permitted. Also, ground area bordering the canal may be developed by approximately 100-200 feet to the east, west, and south into a recreational park area. There is no expectation of the site being used for residential purposes.

The surrounding community obtains its drinking water from the City of Buffalo, and as such, does not rely on the underlying groundwater for its potable water supply. During the operation of the site's businesses, groundwater is not known to have been drawn from production wells on-site, and the Union Ship Canal was used only for industrial and cargo-related purposes. No water in the investigation area is currently used by residential or commercial entities in the vicinity of the site.

An overview of the site dynamics and the potential human for exposure to the environmental media is presented in Table 8.

2.3.2 Identification of Pathways Considered Complete

The possible means by which people (i.e., construction/utility workers, off-site residents, future on-site workers, and trespassers) could come in contact with the COPCs, either now or in the future, are itemized in Table 9. Each of these possible exposure scenarios has been analyzed to determine whether it is viable and the reason associated with each determination is provided.

Because the Former Railroad Yard Area is currently unoccupied, there are no current site workers included in the analysis. Construction and utility workers are included in the future scenario, as redevelopment of the railroad yard will require their efforts. As a result, these workers may come in contact with soil, ingest soil, and inhale respirable particulates during such activities as excavation, drilling, and removal of the soil/fill piles. Additionally, since the groundwater lies 4 to 8 feet below ground surface, construction activity may infiltrate the water table, leading to dermal contact with contaminated groundwater. Also, future on-site workers are included in the analysis to consider possible exposure pathways in the event of new building construction.

The Former Railroad Yard Area is accessible to trespassers. Trespassers may come in contact with soil contamination via dermal contact, ingestion, and inhalation of

TABLE 8 CHEMICAL RELEASE MECHANISMS IN ABSENCE OF REMEDIAL ACTION FORMER RAILROAD YARD AREA

RELEASE SOURCE	RELEASE MECHANISM	RECEIVING MEDIUM	SITE CONDITIONS	VIABLE CURRENT RELEASE SCENARIO?	VIABLE FUTURE RELEASE SCENARIO?
Contaminated surface soil, subsurface soil, or soil/fill piles	Fugitive dust generation	A 1 K		Possible - particulate material from surface soil and soil/fill piles may be introduced and spread throughout the vicinity of the site via wind dispersion.	Possible -releases from subsurface soil, surface soil, and/or soil/fill piles may be caused by construction/utility activity, but are not likely to result from wind dispersion, as the soil/fill piles will have been removed, and the entire area will have been covered with clean fill.
Contaminated surface soil, subsurface soil, or soil/fill piles	Volatilization	AIR	Chemical contamination found in subsurface soil, surface soil, and soil/fill piles. Surface soil is exposed, as the area is partially vegetated. However, little VOC contamination was detected.	Possible - chemicals may volatilize from subsurface soil, surface soil, and/or soil/fill piles and into the ambient air.	Possible - the entire area will be covered with clean fill; subsurface and surface soil may release volatile chemicals which may enter the ambient air; soil/fill piles will have been removed; construction activity may cause the release of volatile chemicals upon excavation into native soil/fill. However, little VOC contamination was detected.
Contaminated surface soil, subsurface soil, or groundwater	Volatilization		All existing buildings on the site are vacated. Groundwater flows toward the Union Ship Canal.	No - volatile chemicals may enter buildings via migration through their foundations, but given the vacancy of the buildings, exposure is not currently a concern.	Possible - construction upon contaminated soil may lead to volatilization of chemicals from soil and groundwater into indoor air through cracks in the foundations of new buildings. However, little VOC contamination was detected, and addition of clean fill will reduce the intrusion of volatile chemicals into the indoor air.
Contaminated surface soil, subsurface soil, or soil/fill piles	Fugitive dust generation / deposition	SOIL	Chemical contamination found in surface soil and soil/fill piles. Surface soil is exposed, as the area is partially vegetated.	Yes	No - soil/fill piles will have been removed, and clean fill will have been laid down over the entire site.
Contaminated surface soil, subsurface soil, or soil/fill piles	Tracking	SOIL	Chemical contamination found in surface soil and soil/fill piles. Surface soil is exposed, as the area is partially vegetated.	Yes	Possible - construction activity may relocate contamination from surface soil, subsurface soil, and soil/fill piles to surface soil.
Contaminated surface soil, subsurface soil, or soil/fill piles	Infiltration / Percolation	GROUND- WATER	Groundwater samples did not demonstrate SVOC contamination as found in soil samples. Groundwater flows toward the Union Ship Canal.	Possible, but unlikely - groundwater sampling showed corresponding contamination for inorganic chemicals, but not for other chemicals.	Possible, but unlikely - groundwater sampling showed corresponding contamination for inorganic chemicals, but not for other chemicals.

energianeses Constantiones

4644444

- -----

	TABLE 9 IDENTIFICATION OF POTENTIAL RECEPTORS AND ROUTES OF EXPOSURE FORMER RAILROAD YARD AREA								
Exposure Route, Exposure Medium, and Exposure Point	Potentially Exposed Population	Exposure Pathway Complete?	Scenario, and Reason for Selection or Exclusion as Complete Exposure Pathway						
Incidental dermal contact with chemicals in groundwater	Construction/utility workers	Possible (future only)	<u>Current</u> : No construction/utility work is currently in progress. <u>Future</u> : Construction/utility workers may come in contact with groundwater in excavation/drilling work due to the depth of the groundwater (4-8 ft below ground surface).						
	Construction/utility workers	Yes (future only)	<u>Current</u> : No construction/utility work is currently in progress. <u>Future</u> : Construction/utility workers may come in contact with soils during excavation, drilling, and removal of soil/fill piles.						
Incidental ingestion of and dermal contact with chemicals in on-site soil	Off-site residents, on-site workers	No	Current/Future: It is not expected that off-site residents or future on-site workers will come in conta with on-site soil.						
	Trespassers	Yes (current only)	<u>Current</u> : Soil and soil/fill piles are accessible, despite fencing. <u>Future</u> : Soil/fill piles will have been removed, and clean fill will have been laid down over the entire site.						
	Construction/utility workers	Yes (future only)	<u>Current</u> : No construction/utility work is currently in progress. <u>Future</u> : Construction/utility workers may come in contact with fugitive dust during excavation, drilling, and removal of soil/fill piles.						
Incidental inhalation of volatile	Off-site residents	Possible (current only)	<u>Current</u> : Particulate matter from soil/fill piles and surface soil may be introduced and spread throughout the vicinity of the site via wind dispersion. <u>Future</u> : Soil/fill piles will have been remove and clean fill will have been laid down over the entire site.						
chemicals and of chemicals on fugitive dust	On-site workers	No	<u>Current</u> : The site is currently unoccupied. <u>Future</u> : Soil/fill piles will have been removed, and clear fill will have been laid down over the entire site.						
	Trespassers	Possible (current only)	<u>Current</u> : Particulate matter from soil/fill piles and surface soil may be introduced and spread throughout the vicinity of the site via wind dispersion. <u>Future</u> : Soil/fill piles will have been remove and clean fill will have been laid down over the entire site.						
Inhalation of volatile chemicals in indoor air from groundwater and/or soil.	On-site workers	Possible (future only), but unlikely	<u>Current</u> : The site is currently unoccupied. <u>Future</u> : Volatile chemicals may be transported into buildings through cracks in the foundation. However, few volatile chemicals are of potential concer and a layer of clean fill is to be added to the entire site before construction.						
Ingestion of, dermal contact with, and inhalation of chemicals in groundwater	Off-site residents, on-site workers	No	<u>Current</u> : City water is used by area residents for potable use. <u>Future</u> : City water is expected to be used for potable purposes; underlying groundwater sources will not be used by the community.						

p://3587-001/tables/exp tbls - human/exp routes

MALCOLM PIRNIE

respirable particulates at the railroad yard. Soil contact may occur from exposure to surface soils, as the Former Railroad Yard Area is partially vegetated, and from the soil/fill piles, which may be attractive play areas for trespassers.

Off-site residents are not expected to contact soil on the site. However, a scenario in which winds disperse soil particles from the surface soil and soil/fill piles in the direction of residential areas (primarily to the south, southeast, east, and northeast) in the form of fugitive emissions, is possible, but unlikely.

Off-site residents are not expected to be exposed to groundwater contamination from the site. Currently, potable water is supplied to the site from the City of Buffalo. Under future conditions, water will be provided by either the City of Buffalo or the Erie County Water Authority. Furthermore, groundwater flows from the area of the Former Railroad Yard Area toward the Union Ship Canal. As such, migration of groundwater to the underlying soil of residential homes and subsequent volatilization of chemicals through building foundations and into the indoor air of residences is unlikely.

Future on-site workers are not expected to contact contaminated soil in the area of the Former Railroad Yard Area for the following reasons: (1) soil/fill piles will have been bulldozed, graded, covered with fill, and grassed over; and (2) it is expected that a onefoot (or greater) layer of clean fill material will have been laid over the current ground surface before any new construction (which is expected to be primarily slab-on-grade) takes place.

Future on-site workers are not expected to be exposed to groundwater contamination from the Former Railroad Yard Area. Potable water is expected to be supplied by the City of Buffalo or Eire County Water Authority; as such, groundwater underlying the Former Railroad Yard Area would not be used as a potable water supply.

2.4 **RISK CHARACTERIZATION**

2.4.1 Current Scenario

The potential for exposure to the COPCs at the Former Railroad Yard Area in the Hanna Furnace Site is very limited, given that the site is vacated. The Former Railroad Yard Area is accessible to trespassers. Surface soil is exposed throughout much of the Former Railroad Yard Area. Also, soil/fill piles, which contain soil, fill, construction debris, and building debris, are a source of exposed soil. As such, dermal contact and ingestion of soil is a viable exposure pathway. Also, for trespassers, the generation and dispersion of windblown dust, and thus, inhalation of such particles, is possible. For the neighboring communities, which lie approximately one-half mile to the south, northeast, and east of the study area, inhalation of respirable particulates generated by wind is possible, although such an event is less likely, given the distance to the study area.

Groundwater is not currently used for potable drinking water by any residential or commercial entities in the area. Current water use is supplied by the City of Buffalo. As such, exposure to groundwater in the current scenario is unlikely.

2.4.2 Future Scenario

The extent of future exposure to the COPCs at the Former Railroad Yard Area depends on the nature of activities and uses of the land. Currently, the Buffalo Economic Renaissance Corporation plans to have the Former Railroad Yard Area redeveloped as a light industrial/commercial area. As part of the redevelopment plan, the soil/fill piles are expected to be bulldozed and graded. The area will then be covered with a one-foot layer of clean fill material (seeded with grass), asphalt, or concrete, depending on the redevelopment plan.

Based on such plans, potential exposure by construction and utility workers and off-site residents is discussed as follows. Subsurface soil and surface soil may be excavated during construction activities. Such action could generate fugitive dust, and could expose workers and off-site residents via inhalation. Furthermore, soil could be dermally contacted and ingested by workers throughout construction activities.

Groundwater may be reached during construction activity and may be contacted by construction and utility workers given its depth (4 to 8 feet below ground surface). As such, dermal contact with groundwater is possible.

Given the redevelopment plans, exposure to the soil fill piles and surface soil would be substantially precluded for future on-site workers.

For the trespasser, potential exposure to contaminated soil is expected to be precluded due to the planned redevelopment activity.

3.0 ECOLOGICAL RISK ASSESSMENT

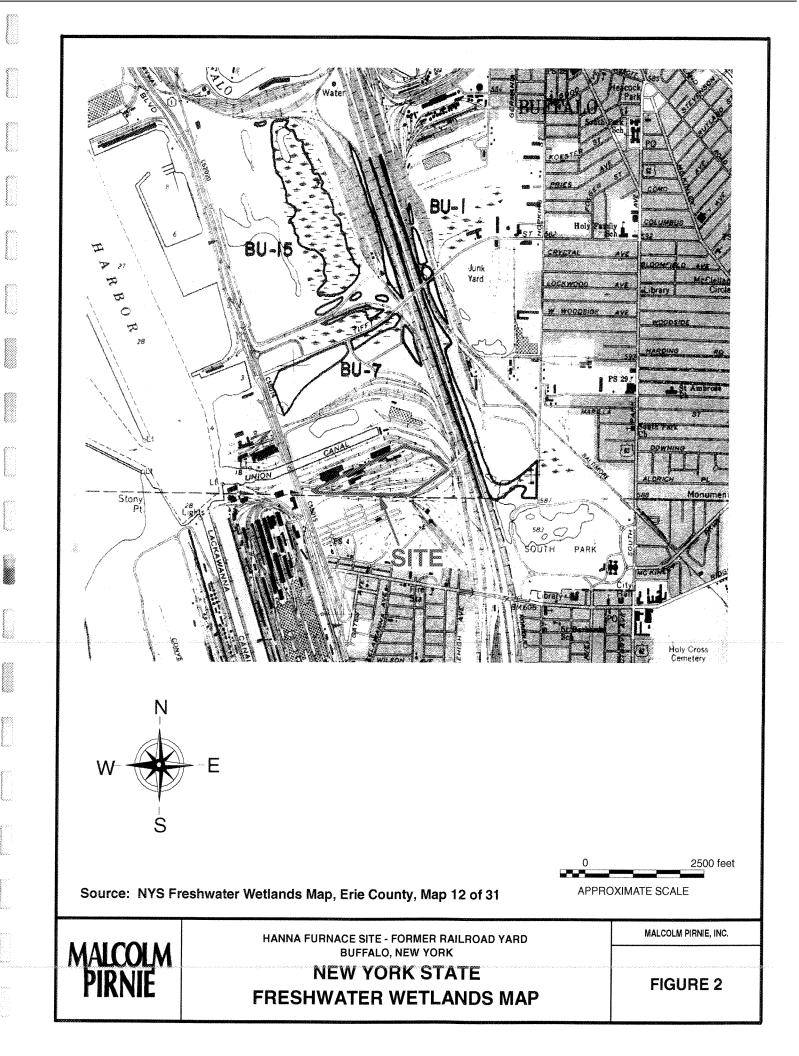
3.1 INTRODUCTION

A qualitative ecological risk assessment was prepared to characterize the natural resources and potential ecological receptors at the Former Railroad Yard Area. The ecological risk assessment was performed in accordance with applicable New York State and USEPA guidance for ecological assessments at hazardous waste sites, including the NYSDEC guidance, *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites* (FWIA) (NYSDEC, 1994). This evaluation consists of the following six components of an ecological risk assessment:

- Ecological characterization
- Identification of chemicals of potential ecological concern.
- Exposure and effects assessment.
- Ecological risk characterization.
- Assessment of uncertainties and limitations.
- Summary.

3.2 ECOLOGICAL CHARACTERIZATION

Ecological resources within the 2-mile radius were identified from review of site photos, aerial photos, the U.S. Geological Survey (USGS) Buffalo SE, NY topographic quadrangle map, the National Wetlands Inventory (NWI) map and the New York State Freshwater Wetlands map for the site vicinity. Descriptions of the terrestrial and aquatic resources near the Former Railroad Yard Area follow, along with discussions of wildlife resources and the value of ecological resources in the vicinity to both wildlife and humans.

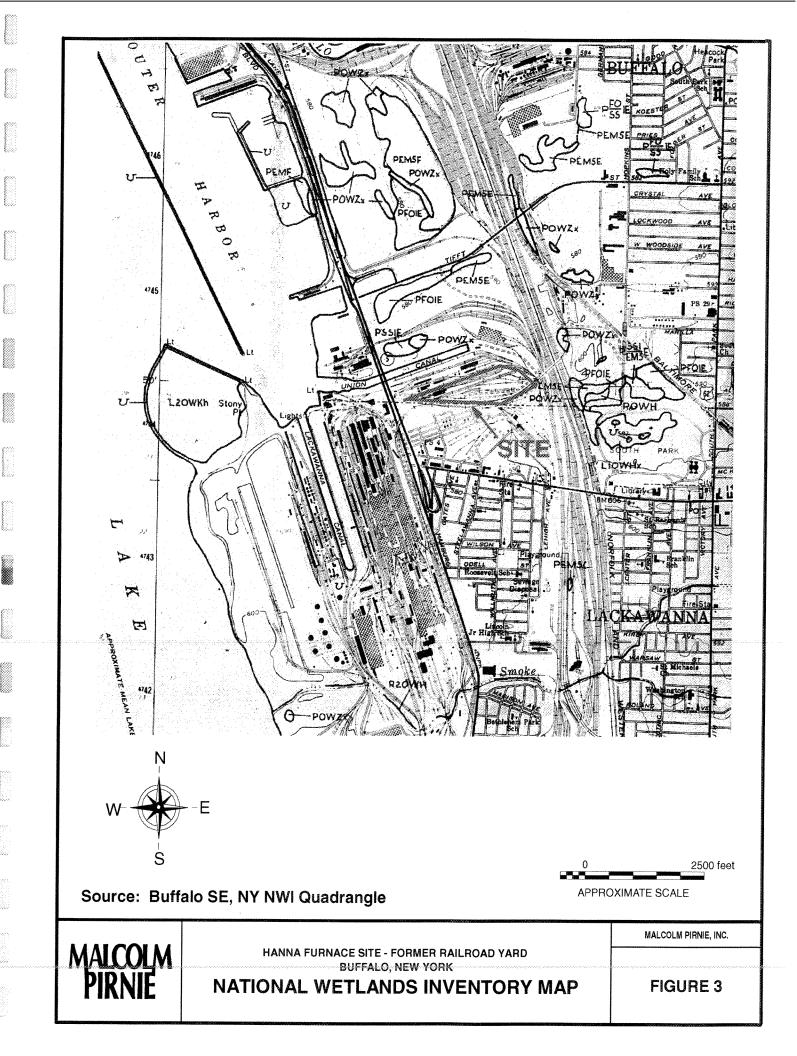

3.2.1 Description of Natural Resources

Lake Erie in the vicinity of the site is classified by the NYSDEC as Class C. The Union Ship Canal and the Lackawanna Canal are also Class C. Class C waters support warm water species. The New York State Freshwater Wetlands Map for the site vicinity (Figure 2) shows that there are several State wetlands in the immediate vicinity of the site, but there are no State wetlands within the Former Railroad Yard Area boundaries. Wetlands BU-7, BU-1 and BU-15 are located to the north of the site.

According to the NYSDEC (personal communication, 1993), Wetland BU-1 is approximately 58 acres in size, and is considered to be a Class I wetland since it exhibits four or more Class II characteristics. It is classified as an emergent marsh with a maximum 66% of the covertype being purple loosestrife and/or phragmites, and it is considered to be one of the three largest wetlands in the city of Buffalo. Also according to NYSDEC (personal communication, 1993), Wetland BU-1 also contains softstem bulrush, various sedges, water plaintain, duckweed, joe-pye weed, soft rush, pondweeds, water milfoil, and American elodea.

Wetland BU-7 is described by the NYSDEC as a combined deciduous woods and emergent marsh which is approximately 20 acres in size (personal communication, 1993). It is a Class II wetland which is a maximum of 66% purple loosestrife and/or phragmites. Tree and shrub species include black willow, eastern cottonwood, and red-osier dogwood. Emergent species include cattail, purple loosestrife, phragmites, and swamp milkweed. Wildlife observed by NYSDEC personnel in 1980 include cottontail rabbit, ring-necked pheasant, and muskrat, and it was believed at the time to be an excellent site for breeding waterfowl and for use by waterfowl during migration periods.

Wetland BU-15 is approximately 95 acres in size and is part of the Tifft Farm Nature Preserve which is owned by the City of Buffalo. It is listed as a Class I wetland since it has four or more Class II characteristics. It is one of the three largest wetlands in the City of Buffalo, and it is within a publicly owned recreation area. Vegetation found to occur within this wetland area includes cattail, purple loosestrife, phragmites, black willow, red-osier dogwood, cottonwood, reed canary grass, rushes, duckweed, water horsetail, and skunk cabbage. Included in this area is a 75-acre cattail wetland. Wildlife



observed by the NYSDEC in 1976 include mallard, horned grebe, blue-winged teal, bufflehead, scaup, American widgeon, coot, northern shoveler, ring-necked duck, herring gull, American bittern, red-winged blackbird, killdeer, white-throated sparrow, brown thrasher, cottontail rabbit and muskrat. Other furbearers such as mink, red fox, gray fox, raccoon, and beaver may also be associated with this wetland (personal communication, 1993).

South Park, a public recreation area, is located southeast of the site. South Park is owned by the City of Buffalo, and has a 9-hole golf course, several baseball diamonds, and a picnic area (Buffalo City Parks Commissioner Office, personal communication, 1993). Other activities which take place within the park include walking, jogging, bicycling, rollerskating, and bird watching. An arboretum is also located in the area of the park, which is owned and run by the Erie County Parks Department. There are two ponds within the park which are connected by culverts. The two South Park ponds are classified as L1OWHx on the NWI mapping, which indicates that they are lacustrine (L) limnetic (1) open water (OW) which is a permanent (H) excavation (x). Several upland islands appear within the larger pond. No boating or swimming is permitted within South Park, but fishing is permitted with a license.

The NWI map (Figure 3) also indicates the presence of several wetland areas `in the immediate vicinity of the site, but not within the site boundaries. These wetlands are classified as:

- **POWZx**: Palustrine Open Water, Intermittently Exposed/Permanent
- PSS1E: Palustrine Scrub Shrub, Broad-leaved Deciduous, Seasonal Saturated
- **PFO1E**: Palustrine Forested, Broad-leaved Deciduous, Seasonal Saturated
- PEM5E: Palustrine Emergent, Narrow-leaved Persistent, Seasonal Saturated
- PEM5F: Palustrine Emergent, Narrow-leaved Persistent, Semipermanent
- **POWH**: Palustrine Open Water, Permanent
- R2OWH: Riverine, Lower Perennial, Open Water, Permanent
- **PEMF**: Palustrine, Emergent, Semipermanent
- L2OWKh: Lacustrine, Littoral, Open Water, Artificial, Diked/Impounded
- L1OWHx: Lacustrine, Limnetic, Open Water, Permanent, Excavated

The area itself comprises a Former Railroad Yard Area, which has not been in active use since 1982. A significant amount of debris is present in mounds, which contain tires, scrap metal, wood and appliances. Railroad ties are present in piles as well as in place in the Former Railroad Yard Area. The area has become overgrown with early successional scrub-shrub and herbaceous vegetation. These species tend to be opportunistic and thrive well in urban locations. Some representative herbaceous species include ragweed, goldenrod, Queen Anne's Lace, common mullein and Yarrow. Tree and shrub species include cottonwood and sumac. Wildlife likely to use the site include small birds and mammals such as robins, sparrows, starlings, voles, mice, rats, rabbits, woodchucks, raccoons and squirrels.

3.2.2 Observations of Stress

Signs of stress to vegetation and wildlife from site-related chemicals have not been observed. Physical stress, however, exists throughout the area since the Hanna Furnace Site contains piles of demolition debris, tires, scrap metal, wood, appliances and railroad ties. The vegetation that exists on the Former Railroad Yard Area consists of opportunistic species that can thrive in urban/industrial settings.

3.2.3 Value of Resources to Wildlife and Humans

As discussed above, the area itself offers little habitat for wildlife. The surrounding area, within the 0.5-mile radius, is mainly industrial/commercial, with some residential areas to the south. It is an urban setting with little wildlife habitat. The only potential habitat within the 0.5-mile radius exists in several open and/or wooded areas associated with municipal parks and wetlands.

The land uses within 2-mile radius surrounding the Former Railroad Yard Area are slightly more varied than the land uses within the 0.5-mile radius. More open space exists, along with residential areas and some commercial/industrial facilities. Wildlife would tend to utilize the open areas within the 2-mile radius of the Former Railroad Yard Area, such as the Tifft Farms Nature Preserve, rather than those areas closer to the railroad yard. Also within the 2-mile radius is Lake Erie, to the west and downstream.

The value of ecological resources to humans, within the 0.5-mile radius of the Former Railroad Yard Area, is expected to be minimal. As discussed above, the immediate vicinity of the site consists of industrial/commercial and residential uses. Little open space exists, with the exception of South Park, the Union Ship Canal and Lackawanna Canal. The value of resources within the 2-mile radius is expected to be higher, since more open space exists in this area. Land uses within the 2-mile radius include residential, commercial, wetlands and wooded areas. Human use of the area within the 2-mile radius includes fishing in the open space areas and Lake Erie.

3.3 CHEMICALS OF POTENTIAL ECOLOGICAL CONCERN

The Former Railroad Yard Area was constructed on fill that is present to an approximate depth of 8 to 12 feet. Metals and polynuclear aromatic hydrocarbons (PAHs) were detected at concentrations above the NYSDEC-recommended soil cleanup objectives. The highest concentrations of metals and PAHs were generally found in the 0 to 2-foot interval. Soil and groundwater samples within the Former Railroad Yard Area from investigations conducted by Recra Environmental, Inc. in 1988 and ABB Environmental Services in 1995 as well as more recent sampling conducted by Malcolm Pirnie from 1999 to 2000 are summarized here for use in this ecological risk assessment. A discussion of data used and selection of chemicals of potential ecological concern (COPEC) follows, for each medium sampled.

3.3.1 Soil

Although most burrowing animals create dens in the upper 4 feet of soil, all the surface soil and subsurface soil data (up to 10 feet below ground surface) were considered for the ecological evaluation. Soil samples were analyzed for VOCs, SVOCs pesticides/PCBs, inorganic chemicals and cyanide. The soil data, segregated by surface soil (0 to 2 feet) and subsurface soil (2 feet and greater), are summarized and presented in Tables 10 and 11. Samples were also collected from the various debris piles on-site and these data were summarized separately and presented in Table 12. All detected chemicals are considered to be COPEC for this assessment, as follows:

		FORM	ER RAILROAD YA	· ··· ·		(DECEA)	· · · ·
ANALYTE	Jan 2 Frequency of Detection	000 (MPI) Range of Detected Concentrations	Jan 1 Frequency of Detection	999 (MPI) Range of Detected Concentrations	Frequency of Detection	(RECRA) Range of Detected Concentrations	Benchmarks ⁽¹⁾
OLATILE ORGANICS (ug/kg)							
Benzene	1 / 1	2	NA	NA	NA	NA	53,100
2-Butanone	1/1	27	NA	NA	NA	NA	6,590,000
Carbon Disulfide	1/1	5	NA	NA	NA	NA	
Chloroform	1 / 1	3	NA	NA	NA	NA	56,000
thylbenzene	1 / 1	2	NA	NA	NA	NA	
-Hexanone	1 / 1	2 14	NA	NA	NA	NA	
,1,2,2-Tetrachloroethane	1 / 1	3	NA	NA	NA	NA	2820
`oluene	1 / 1	8	NA	NA	NA	NA	52,300
(ylenes (total)	1 / 1	9	NA	NA	NA	NA	4,228
SEMI-VOLATILE ORGANICS (ug/kg)							
Acenaphthene	NA	NA	5 / 18	74 - 400	NA	NA	
Acenaphthylene	NA	NA	2 / 18	130 - 200	NA	NA	
Anthracene	NA	NA	8 / 18	78 - 530	NA	NA	
Benzo(a)anthracene	NA	NA	16 / 18	75 - 3,700	NA	NA	
Benzo(a)pyrene	NA	NA	17 / 18	73 - 5,100	NA	NA	2010
Benzo(b)fluoranthene	NA	NA	17 / 18	120 - 6,400	NA	NA	
Benzo(g,h,i)perylene	NA	NA	13 / 18	95 - 4,100	NA	NA	
Benzo(k)fluoranthene	NA	NA	8 / 18	250 - 1,900	NA	NA	
Thrysene	NA	NA	17 / 18	82 - 3,300	NA	NA	
Dibenz(a,h)anthracene	NA	NA	3 / 18	170 - 960	NA	NA	
luoranthene	NA	NA	17 / 18	83 - 2,000	NA	NA	
ndeno(1,2,3-cd)pyrene	NA	NA	8 / 18	430 - 3,700	NA	NA	
-Methylnaphthalene	NA	NA	6 / 18	65 - 210	NA	NA	
Naphthalene	NA	NĂ	6 / 18	65 - 130	NA	NA	
Phenanthrene	NA	NA	13 / 18	78 - 1,500	NA	NA	
Pyrene	NA	NA	15 / 18	110 - 5,200	NA	NA	

ANALYTEFrequency of DetectionRange of Detected ConcentrationsFrequency of DetectionRange of Detected ConcentrationsBenchmiPHENOLIC COMPOUNDS (mg/kg)NDNDNDNDND1 / 51.5PESTICIDES/PCBs (mg/kg)NANANANANA2 / 50.15 - 0.37334Aroclor 1242NANANANANA2 / 50.35 - 1.3111Aroclor 1240NANANANANA2 / 50.074Aroclor 1240NANANANANA1 / 50.074Aroclor 1260NANANANANA1 / 50.074INORGANICS (mg/kg)	Jan 2000 (MPI) Jan 1999 (MPI) 1988 (RECRA)								
PESTICIDES/PCBs (mg/kg) NA	ANALYTE	Frequency of	Range of Detected	Frequency of	Range of Detected	Frequency of	Range of Detected	Benchmarks ⁽¹	
Araclor 1242 NA 2 / 5 0.15 - 0.37 134 Vroclor 1260 NA NA NA NA NA NA NA NA 1 / 5 0.074	PHENOLIC COMPOUNDS (mg/kg)	ND	ND	ND	ND .	1 / 5	1.5		
Aroclor 1254 NA	PESTICIDES/PCBs (mg/kg)								
Aroclor 1254 NA	Aroclor 1242	NA	NA	NA	NA	2/5	0.15 0.27	224	
Norder NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
INORGANICS (mg/kg) NA NA <td>and a second second second second second second second second second second second second second second second</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	and a second second second second second second second second second second second second second second second	1							
Aluminum NA NA NA I8 / 18 I6,300 - 45,700 NA NA 3.8 Antimony NA NA NA 12 / 18 6.99 - 15.1 NA NA 0.25 Arsenic NA NA NA 3 / 18 15.4 - 61.7 5 / 5 14 - 32 0.25 Barium NA NA NA 18 / 18 6.99 - 365 NA NA 20 2.25 Beryllium NA NA NA 18 / 18 0.707 8.00 NA NA 2.40 Cadmium NA NA NA 18 / 18 0.707 8.00 NA NA			in	INA	INA.	1/5	0.074		
Antimony NA <	NORGANICS (mg/kg)								
NAL NA NA NA 12 / 18 6.99 - 15.1 NA NA NA 0.25 Varsenic NA NA NA 3 / 18 15.4 - 61.7 5 / 5 14 - 32 0.25 Baryum NA NA NA NA 18 / 18 15.4 - 61.7 5 / 5 14 - 32 0.25 Beryllium NA NA NA NA 18 / 18 80.7 - 365 NA NA NA 20 Beryllium NA NA NA 18 / 18 0.707 - 8.00 NA NA 3.58 Calcium NA NA NA 18 / 18 0.707 - 8.00 NA NA Chorinium NA NA NA 18 / 18 0.707 - 5 5 2.2 - 4,700 10.18 Cobalt NA NA NA 18 / 18 1.89 - 15.7 NA NA Cobalt NA NA NA 18 / 18 1.900 1.4000 NA	Juminum	NA	NA	18 / 18	16 300 - 45 700	NA	NA	3 886	
InstantNANA $3 / 18$ $15.4 - 61.7$ $5 / 5$ $14 - 32$ 0.25 ariumNANANA $18 / 18$ $80.7 - 365$ NANANA 20 erylliumNANANA $18 / 18$ $1.44 - 7.45$ NANA 20 admiumNANANA $18 / 18$ $1.44 - 7.45$ NANA 2.40 admiumNANANA $5 / 18$ $0.707 - 8.00$ NANA 3.58 alciumNANANA $18 / 18$ $0.800 - 212,000$ NANA $$ hromiumNANANA $18 / 18$ $0.89 - 15.7$ NANA $$ hobaltNANANA $18 / 18$ $1.89 - 15.7$ NANA $$ obaltNANANA $18 / 18$ $1.20 - 236,000$ NANA $$ agesiumNANANA $18 / 18$ $22.1 - 1,120$ $5 / 5$ $21 - 3,300$ 29.7 agesiumNANA $18 / 18$ $1.900 - 38,200$ NANA $$ anganeseNANA $18 / 18$ $1.900 - 38,200$ NANA $$ itckelNANA $18 / 18$ $1.900 - 10,400$ NANA $$ itckelNANA $18 / 18$ $1.90 - 2,310$ NANA $$ itckelNANA $18 / 18$ $1.91 - 1,170$ NANA $$ iterNANA $18 / 18$ </td <td>ntimony</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.252</td>	ntimony							0.252	
arium NA NA 18 / 18 80.7 - 365 NA NA 20 eryllium NA NA NA 18 / 18 1.44 - 7.45 NA NA 2.4 admium NA NA NA 18 / 18 0.707 - 8.00 NA NA 2.4 admium NA NA NA 18 / 18 0.707 - 8.00 NA NA 3.58 alcium NA NA NA 18 / 18 0.707 - 8.00 NA NA 3.58 alcium NA NA NA 18 / 18 6.89<- 127	rsenic	1							
eryllium NA NA NA 18 18 1.44 - 7.45 NA NA 2.40 admium NA NA NA NA S / 18 0.707 - 8.00 NA NA NA 3.58 alcium NA NA NA NA NA NA NA 3.58 alcium NA NA NA NA 18 / 18 48000 - 212,000 NA NA NA hnomium NA NA NA 18 / 18 6.89 - 127 5 / 5 22 - 4,700 10.18 obalt NA NA NA 18 / 18 1.89 - 15.7 NA NA opper NA NA NA 18 / 18 13,700 - 236,000 NA NA 13300 29.7 fagnesium NA NA 18 / 18 5,890 - 38,200 NA NA 148,18 1900 - 10,400	arium	1	· · ·)]		1			3	
admiumNANA5 / 180.707 - 8.00NANANA3.58alciumNANANANA18 / 1848,000 - 212,000NANANAthromiumNANANA18 / 1848,000 - 212,000NANANAthromiumNANANA18 / 186.89 - 1275 / 522 - 4,70010.18tobaltNANANA18 / 181.89 - 15.7NANANAtopperNANANA18 / 1820.1 - 1815 / 523 - 64056.0toonNANANA18 / 1813,700 - 236,000NANAeadNANANA18 / 1813,700 - 38,200NANAfagnesiumNANANA18 / 1819,900 - 10,400NANAfarganeseNANANA18 / 1819,900 - 10,400NANA327fercuryNANANA18 / 1811.9 - 96.9NANA26.5tickelNANANA18 / 1811.9 - 96.9NANAtotassiumNANA18 / 1819.1 - 1,170NANAtotassiumNANA18 / 18191 - 1,170NANAtotassiumNANA18 / 1863.7 - 1,150NANAanadiumNANA18 / 1	eryllium	1						2.46	
adcium NA NA I8 I8 I8 48,000 - 212,000 NA NA NA	Cadmium	NA						3.589	
NA NA NA 18 / 18 6.89 - 127 5 / 5 22 - 4,700 10.18 bobalt NA	Calcium	NA							
bobaltNANA18 / 181.89 - 15.7NANANAopperNANANA18 / 1820.1 - 1815 / 523 - 64056.6onNANANA18 / 1813,700 - 236,000NANANAeadNANANA18 / 1813,700 - 236,000NANANAfagnesiumNANANA18 / 1822.1 - 1,1205 / 521 - 3,30029.7fagnesiumNANANA18 / 185,890 - 38,200NANAfarceuryNANANA18 / 181,900 - 10,400NANA327farceuryNANANA18 / 180.025 - 0.21NANA326.5lickelNANANA18 / 1811.9 - 96.9NANA148.8otassiumNANANA18 / 18191 - 1,170NANAilverNANANA18 / 18191 - 1,170NANAodiumNANA18 / 1863.7 - 1,150NANA0.72	hromium	NA						10.184	
Sopper ronNANA18 / 1820.1 - 1815 / 523 - 64056.6SonNANANA18 / 1813,700 - 236,000NANANAeadNANANA18 / 1822.1 - 1,1205 / 521 - 3,30029.7fagnesiumNANANA18 / 185,890 - 38,200NANAfanganeseNANANA18 / 181,900 - 10,400NANA327farcuryNANANA4 / 180.025 - 0.21NANA327fickelNANA18 / 1811.9 - 96.9NANA148.8otassiumNANA18 / 1811.9 - 96.9NANAilverNANA18 / 18191 - 1,170NANAodiumNANA18 / 186.26 - 66.3NANAanadiumNANA18 / 186.3.7 - 1,150NANA0.72	Cobalt	NA			1				
ronNANA18 / 1813,700 - 236,000NANANAeadNANANA18 / 1822.1 - 1,1205 / 521 - 3,30029.7fagnesiumNANANA18 / 185,890 - 38,200NANAfanganeseNANA18 / 181,900 - 10,400NANAfarcuryNANA18 / 181,900 - 10,400NANA327faceuryNANA4 / 180.025 - 0.21NANA26.5lickelNANA18 / 1811.9 - 96.9NANA148.8otassiumNANA18 / 18716 - 2,310NANAilverNANA18 / 18191 - 1,170NANAodiumNANA18 / 1863.6 - 66.3NANAanadiumNANA18 / 1863.7 - 1,150NANA0.72	opper	NA							
ead NA NA NA 18 18 22.1 - 1,120 5 / 5 21 - 3,300 29.7 fagnesium NA NA NA 18 / 18 5,890 - 3,8200 NA NA - - fanganese NA NA NA 18 / 18 1,900 - 10,400 NA NA - - fargenesie NA NA NA 18 / 18 1,900 - 10,400 NA NA 327 fargenesie NA NA NA 4 / 18 0.025 - 0.21 NA NA 26.5 lickel NA NA NA 18 / 18 11.9 - 96.9 NA NA -		NA			1				
MagnesiumNANA18 / 185,890 - 38,200NANAManganeseNANANA18 / 181,900 - 10,400NANA327MarcuryNANANA4 / 180.025 - 0.21NANA26.5IckelNANA18 / 1811.9 - 96.9NANA148.6otassiumNANA18 / 18716 - 2,310NANAIlverNANA18 / 18191 - 1,170NANAodiumNANA18 / 186.26 - 66.3NANAanadiumNANA18 / 1863.7 - 1,150NANA0.72	ead								
ManganeseNANA18 / 181,900 - 10,400NANA327MercuryNANANA4 / 180.025 - 0.21NANA26.5lickelNANA18 / 1811.9 - 96.9NANA148.8otassiumNANA18 / 18716 - 2,310NANAilverNANA18 / 18191 - 1,170NANAodiumNANA18 / 186.26 - 66.3NANAanadiumNANA18 / 1863.7 - 1,150NANA0.72	1agnesium	1	1.4				-		
Marcury NA NA NA 4 / 18 0.025 - 0.21 NA NA 26.5 lickel NA NA NA 18 / 18 11.9 - 96.9 NA NA 148.8 otassium NA NA NA 18 / 18 716 - 2,310 NA NA ilver NA NA 18 / 18 191 - 1,170 NA NA odium NA NA 18 / 18 6.26 - 66.3 NA NA anadium NA NA 18 / 18 63.7 - 1,150 NA NA 0.72	langanese	1							
NA NA 18 / 18 11.9 - 96.9 NA NA 148.8 otassium NA NA NA 18 / 18 716 - 2,310 NA NA ilver NA NA 18 / 18 716 - 2,310 NA NA odium NA NA 18 / 18 191 - 1,170 NA NA odium NA NA 18 / 18 6.26 - 66.3 NA NA anadium NA NA 18 / 18 63.7 - 1,150 NA NA 0.72	1ercury	NA						26.58	
otassium NA NA 18 / 18 716 - 2,310 NA NA ilver NA NA NA 18 / 18 191 - 1,170 NA NA odium NA NA 18 / 18 6.26 - 66.3 NA NA vanadium NA NA 18 / 18 63.7 - 1,150 NA NA 0.72	lickel	1						148.84	
ilverNANA18 / 18191 - 1,170NANAodiumNANA18 / 186.26 - 66.3NANAanadiumNANA18 / 1863.7 - 1,150NANA0.72	otassium	NA							
odium NA NA 18 / 18 6.26 - 66.3 NA NA anadium NA NA 18 / 18 63.7 - 1,150 NA NA 0.72		NA							
anadium NA NA 18 / 18 63.7 - 1,150 NA NA 0.72		1							
	anadium	NA						0.725	
	inc							595.4	
OTHER (mg/kg))THER (mg/kg)								

--: Not Available.

⁽¹⁾ Toxicological Benchmarks for Wildlife: 1996 Revision (NOAEL-Based Benchmarks for food for cottontail rabbit). (Sample et al., 1996)

		ECO		TABLE 11 CHARACTERIZATIO IER RAILROAD YAR		E SOIL			
	Jan 20	000 (MPI)	Jan 1	999 (MPI)	1995	5 (ABB)	1988	(Recra)	······································
ANALYTE	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Benchmarks ⁽¹
OLATILE ORGANICS (ug/kg)									
l-Butanone Carbon disulfide Yoluene	1 / 5 4 / 5 2 / 5	4 4 - 12 4 - 6	NA NA NA	NA NA NA	1 / 2 0 / 2 0 / 2	18 ND ND	NA NA NA	NA NA NA	6,590,000 52,300
EMI-VOLATILE ORGANICS (ug/kg)									
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene pis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzofuran Fluoranthene Fluorene	1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 5 / 6 1 / 6 2 / 6 1 / 6 2 / 6 1 / 6 2 / 6 1 / 6	$\begin{array}{c} 65\\ 190\\ 370\\ 310\\ 450\\ - 490\\ 110\\ 170\\ 110\\ - 250\\ 60\\ 340\\ - 480\\ 110\\ 410\\ - 990\\ 94\\ 110\\ \end{array}$	1 / 18 3 / 18 5 / 18 5 / 18 5 / 18 5 / 18 5 / 18 1 / 18 NA NA 5 / 18 NA 6 / 18 0 / 18	170 110 - 360 110 - 450 160 - 470 220 - 650 89 - 410 150 NA NA 160 - 500 NA 96 - 980 ND 220 - 330	0 / 2 0	ND ND ND ND ND ND ND ND ND ND ND ND ND	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	

		Jan 20)00 (MPI)	Jan 19	Jan 1999 (MPI)		5 (ABB)	1988 (Recra)		
Α	NALYTE	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection	Range of Detected Concentrations	Benchmarks ⁽¹⁾
INORGANICS	(mg/kg)									
Aluminum	(average = 33,784)	6 / 6	9,690 - 45,700	18 / 18	12,200 - 54,000	2 / 2	35,300 - 43,600	NA NA	NA NA	3.886 0.252
Antimony Arsenic	(average = 12.19)	0 / 6	ND 10	9 / 18 2 / 18	10.3 - 16.6 20.4 - 35.6	0 / 2 0 / 2	ND ND	2 / 2	11 NA	0.252
Barium		6 / 6	109 - 428	18 / 18	20.4 - 35.6 89.3 - 416	2/2	188 - 464	NA	NA	20
Beryllium		6 / 6	2.1 - 8.2	18 / 18	0.73 - 9.61	$\frac{2}{2}$ / $\frac{2}{2}$	3.8 - 6.3	NA	NA	2.46
Cadmium		2 / 6	2.1 - 6.2	4 / 18	1.05 - 8.1	0 / 2	ND	NA	NA	3.589
Calcium		6 / 6	55,800 - 259,000	18 / 18	37,400 - 296,000	2 / 2	132,000 - 233,000	NA	NA	
Chromium		6 / 6	4.9 - 19.5	18 / 18	4.36 - 35.2	1 / 2	9.6	2 / 2	4.2 - 23	10.184
Cobalt		1 / 6	5.8	16 / 18	3.08 - 14	0 / 2	ND	NA	NA	
Copper		3 / 6	5 - 44.1	18 / 18	5.53 - 42.2	1 / 2	7.3	2 / 2	17 - 28	56.6
Iron		6 / 6	3,250 - 89,400	18 / 18	4,250 - 209,000	2 / 2	1,780 - 9,450	NA	NA	
Lead	(average = 52.63)	3 / 6	2.2 - 54.6	15 / 18	9.78 - 175	2 / 2	1.9 - 113	2 / 2	19 - 22	29.77
Magnesium		6 / 6	8,800 - 13,500	18 / 18	5,320 - 26,800	2 / 2	9,220 - 16,700	NA	NA	
Manganese	(average = 2,392)	6 / 6	960 - 2,190	17 / 18	671 - 5,150	2 / 2	2,690 - 2,710	NA	NA	327
Mercury		0 / 6	ND	5 / 18	0.022 - 0.097	0 / 2	ND	NA	NA	119
Nickel		0 / 6	ND	18 / 18	8.71 - 33.5	0 / 2	ND	NA	NA	148.84
Potassium		6 / 6	1,910 - 6,120	18 / 18	1,080 - 2,970	2 / 2	655 - 1,230	NA	NA	0 744
Selenium Sodium		5 / 6	17.4 - 28.3	0 / 18	ND	0 / 2	ND	NA	NA	0.744
Vanadium		0 / 6	ND 12.5 - 12.9	18 / 18	189 - 746	2 / 2	522 - 1,400	NA NA	NA NA	0.725
Zinc		2 / 6 6 / 6	12.5 - 12.9 6.4 - 166	18 / 18 17 / 18	8.4 - 104	1 / 2 2 / 2	13.8 5.4 - 74.8	NA	NA	595.4
Line		0 / 0	0.4 - 100	1//18	9.05 - 1,670	2/2	5.4 - 74.8	INA	INA	393.4
OTHER (mg/k	g)									
Cyanide, total		5 / 6	3.1 - 43	18 / 18	0.99 - 33.2	2 / 2	3.9 - 32.1	NA	NA	240.2

TARIE 11 (contid)

NA: Not Analyzed. ND: Not Detected.

--: Not Available.

⁽¹⁾ Toxicological Benchmarks for Wildlife: 1996 Revision (NOAEL-based benchmarks for food for cottontail rabbit). (Sample et al., 1996)

and caracteria

TABLE 12 ECOLOGICAL RISK CHARACATERIZATION: SOIL/FILL PILES FORMER RAILROAD YARD AREA

	Feb 2	000 (MPI)	
ANALYTE	Frequency of Detection	Range of Detected Concentrations	Benchmarks ⁽¹
VOLATILE ORGANICS (ug/kg)			
Benzene	1 / 20	11	53100
2-Butanone	2 / 20	12	6,590,000
Carbon disulfide	1 / 20	2	
Chloroform	11 / 20	2 - 7	56000
Chloromethane	1 / 20	16	 : <u>*</u>
cis-1,2-Dichloroethene	1 / 20	5	91000
Ethylbenzene	1 / 20	33	
4-Methyl-2-pentanone	3 / 20	2 - 4	93,000
Styrene	1 / 20	20	
1,1,2,2-Tetrachloroethane	1 / 20	59	2820
Tetrachloroethene	2 / 20	1 - 2	
Toluene	19 / 20	$\frac{1}{2} - \frac{2}{60}$	52,300
Trichloroethene	1 / 20	220	1409
Xylenes (total)	2 / 20	2 - 28	4,228
SEMIVOLATILE ORGANICS (ug/kg		17 (00	
Acenaphthene	10 / 20	47 - 690	
Acenaphthylene	6 / 20	66 - 210	
Anthracene	14 / 20	62 - 2,500	
Benzo(a)anthracene	18 / 20	51 - 3,700	
Benzo(a)pyrene	19 / 20	57 - 4,200	2010
Benzo(b)fluoranthene	18 / 20	89 - 5,400	
Benzo(g,h,i)perylene	15 / 20	89 - 3,000	
Benzo(k)fluoranthene	17 / 20	39 - 1,600	
bis(2-Ethylhexyl)phthalate	20 / 20	41 - 650	37,000
Butylbenzylphthalate	3 / 20		
Carbazole	10 / 20	40 - 570	
Chrysene	19 / 20	66 - 3,800	••••
Dibenzo(a,h)anthracene	4 / 20	110 - 950	
Dibenzofuran	9 / 20	47 - 670	
Di-n-butylphthalate	4 / 20	47 - 120	1,107,000
2,6-Dinitrotoluene	1 / 20	120	
Fluoranthene	19 / 20	53 - 8,500	
Fluorene	9 / 20	69 - 900	~~
Indeno(1,2,3-cd)pyrene	15 / 20	170 - 2,700	
2-Methylnaphthalene	5 / 20	83 - 430	201 - 401
4-Methylphenol	1 / 20	120	
Naphthalene	8 / 20	42 - 720	
Phenanthrene	19 / 20	43 - 6,000	
Pyrene	19 / 20	78 - 9,700	

TABLE 12 ECOLOGICAL RISK CHARACATERIZATION: SOIL/FILL PILES FORMER RAILROAD YARD AREA

	Feb 2	Feb 2000 (MPI)				
ANALYTE	Frequency of	Range of Detected	Benchmarks ⁽¹⁾			
	Detection	Concentrations				
PESTICIDES / PCBs (ug/kg)						
Aldrin	3 / 20	2.6 - 500	744			
alpha-Chlordane	2 / 20	29.3 - 500	9300			
gamma-Chlordane	1 / 20	2.1	9300			
4,4'-DDE	5 / 20	3.9 - 13.8	2,980			
4,4'-DDT	6 / 20	4.7 - 32	2,980			
Heptachlor	1 / 20	3.2	20			
Aroclor 1254	1 / 20	1,200	1,000			
Aroclor 1260	1 / 20	3,820	1,000			
INORGANICS (mg/kg)						
Aluminum	20 / 20	2,950 - 28,600	3.886			
Antimony	1 / 20	7.2	0.252			
Arsenic	15 / 20	3.0 - 22.9	0.254			
Barium	20 / 20	40.2 - 327	20			
Beryllium	8 / 20	0.73 - 5.3	2.46			
Cadmium	19 / 20	1.4 - 19.9	3.589			
Calcium	20 / 20	14,200 - 209,000				
Chromium	20 / 20	8.2 - 193	10.184			
Cobalt	15 / 20	5.0 - 15.9				
Copper	20 / 20	9.4 - 504	56.6			
Iron	20 / 20	7,910 - 244,000				
Lead	20 / 20	15.2 - 766	29.77			
Magnesium	20 / 20	3,070 - 23,600				
Manganese	20 / 20	194 - 3,320	327			
Mercury	11 / 20	0.12 - 0.67	4.84			
Nickel	18 / 20	7.74 - 84.8	148.84			
Potassium	20 / 20	657 - 4,970				
Selenium	19 / 20	2.3 - 35.9	0.744			
Sodium	5 / 20	230 - 675				
Thallium	3 / 20	2.4 - 4.8	0.028			
Vanadium	19 / 20	8.7 - 44.2	0.725			
Zinc	20 / 20	63.8 - 2,380	595.4			
OTHER (mg/kg)						
Cyanide, total	12 / 20	1.40 - 13.0	240.2			

--: Not Available.

⁽¹⁾ Toxicological Benchmarks for Wildlife: 1996 Revision (NOAEL-Based Benchmarks for food for cottontail rabbit). (Sample et al., 1996)

ANALYTE	Feb 2000 (MPI)		1995 (ABB)		NYSDEC Ambient Water Quality	Benchmarl	Benchmark Values ²	
	Frequency of	Range of Detected	Frequency of	Range of Detected	Standards and Guidance Values			
	Detection	Concentrations	Detection	Concentrations	for Fish Propogation (fresh water)	1		
VOLATILE ORGANICS (ug/L)								
2-Hexanone	1 / 5	9	0 / 2	ND		99	b	
4-Methyl-2-pentanone	1 / 5	4	0 / 2	ND		170	b	
 SEMI-VOLATILE ORGANICS (ug/L)						· ·		
Di-n-butylphthalate	3 / 5	3 - 4	0 / 2	ND		35	b	
INORGANICS (ug/L)								
Aluminum	4 / 5	402 - 1,630	2 / 2	150 - 1,600	100 *	87	а	
Barium	2 / 5	65.1 - 140	2 / 2	23.2 - 29.4		4	b	
Calcium	5 / 5	60,300 - 171,000	2 / 2	45,100 - 98,600	·	116,000	с	
Copper	1 / 5	10.9	0 / 2	ND	0.904 a	12+	a	
Iron	5 / 5	231 - 11,700	2 / 2	25.8 - 53.5	300 **	1,000	а	
Lead	3 / 5	3.8 - 5.1	0 / 2	ND	0.912 b	3.2+	а	
Magnesium	4 / 5	7,610 - 55,700	1 / 2	11,700		82,000	·c	
Manganese	4 / 5	25.0 - 846	1 / 2	13.6		120	b	
Potassium	5 / 5	1,080 - 61,000	2 / 2	13,500 - 16,200		53,000	с	
Selenium	5 / 5	13.6 - 114	1 / 2	8.7	4.6 c	5	а	
Silver	1 / 5	35.9	1 / 2	41.2	0.1 d	0.36	b	
Sodium	5 / 5	14,700 - 64,600	2 / 2	24,600 - 26,300		680,000	с	
Thallium	1 / 5	16.6	0 / 2	ND	8 *	12	b	
Zinc	5 / 5	10.0 - 86.2	0 / 2	ND	121 e	110+	а	
OTHER (ug/L)								
Cyanide, total	4 / 5	20.0 - 90.0	2 / 2	50.0 - 240	5.2 f	5.2		

ND: Not Detected.

--: Not Available.

1 = New York State Department of Environmental Conservation Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

* = For the waters of the Great Lakes System, the Department will substitute a guidance value for the aquatic Type standard if so determined under 702.15 (c).

** = For the waters of the Great Lakes System, the Department will substitute a guidance value for the aquatic Type standard if so determined under 702.15 (c) and (d).

a = (0.96)exp(0.8545[ln(ppm hardness)]-1.702), with a default hardness of 100 mg/l

 $b = \{1.46203 - [ln(hardness) * (0.145712]\} * exp(1.273[ln(hardness)]-4.297), with a default hardness of 100 mg/l = (0.145712) + (0.14$

c = Aquatic Type standard applies to dissolved form.

d = Applies to ionic silver.

e = exp(0.85[ln(ppm hardness)]+0.5), with a default hardness of 100 mg/l

f = As free cyanide: the sum of HCN and CN⁻ expressed as CN.

2 = Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision

a = Tier II Values, Secondary Chronic Value

b = National Ambient Water Quality Criteria, chronic

c = Lowest Chronic Value for all organisms

- Surface Soil Nine VOCs, 16 SVOCs, total phenolic compounds, PCBs, 21 inorganic chemicals and cyanide were detected in surface soil.
- Subsurface Soil Three VOCs, 18 SVOCs, 21 inorganic chemicals and cyanide were detected in subsurface soil.
- Soil/Fill Piles Fourteen VOCs, 24 SVOCs, five pesticides, 23 inorganic chemicals and cyanide were detected in the soil/fill pile samples.

3.3.2 Groundwater

The depth to groundwater on-site is generally between 4 and 8 feet below ground surface (bgs). This is below the root zone of most herbaceous plants. However, due to the proximity to the Union Ship Canal, which discharges to Lake Erie, groundwater is considered for the potential to discharge to surface water. Groundwater samples were analyzed for volatile chemicals, semi-volatile organic chemicals, pesticides/PCBs, inorganic chemicals and cyanide. The groundwater data are summarized and presented in Table 13. Two VOCs, one SVOC, and 15 inorganic chemicals were detected in groundwater. All of the detected chemicals are considered to be COPEC for this assessment.

3.4 EXPOSURE AND EFFECTS ASSESSMENT

3.4.1 Chemical Migration and Fate

Transformation or losses due to environmental degradation are not considered in this assessment. It is assumed that following uptake, concentrations in soil will equal concentrations in organisms. The approach used in the ecological risk assessment is conservative in that plants readily volatilize the COPEC and wildlife have limited contact with these chemicals in the soil and plants. The approach is also conservative because no dilution or attentuation of the groundwater potentially entering surface water bodies is considered. Information regarding the environmental migration and fate of those chemicals of potential ecological concern that exceed screening levels is presented below

MALCOLM PIRNIE

by chemical class. General information about the toxicity of these chemicals is included in Attachment III.

3.4.2 Exposure Pathways and Potential Receptors

There are two environmental media (groundwater and surface soils) that can be potential sources of risk for receptors at and in the immediate vicinity of the Former Railroad Yard Area. Surface water runoff and groundwater discharge are two pathways for chemical migration. Several ecologically relevant exposure pathways for chemicals exist. Wildlife near the Former Railroad Yard Area may have incidental contact with or ingest COPEC while foraging, nesting, or engaging in other activities in the terrestrial portion of the area. COPEC can also adversely affect plants and animals in surrounding habitats via the food chain. COPEC in surface water may be taken up by aquatic life as well as semi-aquatic and terrestrial wildlife. Upon their release, some COPEC may be persistent and may be transformed to more bioavailable forms and mobilized in the food chain

Based on the pathways and receptors identified, detrimental effects (i.e., reduced vigor or population decline) in fish and small mammals (e.g., cottontail rabbit) were selected as the endpoints for this screening-level assessment.

3.5 ECOLOGICAL RISK CHARACTERIZATION

3.5.1 Soil

Since there are currently no criteria or guidelines available for protection of ecological resources, screening benchmarks developed by the Oak Ridge National Laboratory (ORNL) for toxicity to wildlife (Sample et al., 1996) were used for comparison with concentrations of the COPEC in surface soil. Benchmark values for the cottontail rabbit are presented in Tables 10, 11 and 12. The cottontail rabbit was selected to represent a herbivorous small mammal. Small mammals are at the base of the food chain and an important food source for higher organisms. The benchmark values for the rabbit are presented in Tables 10, 11 and 12 as dietary concentrations in mg of chemical per kg of diet that correspond to the appropriate no observed adverse effect levels

(NOAELs). For screening purposes, it was assumed that the chemical concentrations in soil would be found in the food items of the receptor. This is a conservative approach that should result in the overestimation of potential exposure and risk.

For surface soil, one PAH (benzo(a)pyrene) and 13 inorganic chemicals exceed the ORNL toxicological benchmarks for the cottontail rabbit. For subsurface soil, 12 inorganic chemicals exceed the ORNL toxicological benchmarks for the cottontail rabbit. For the soil/fill piles, one PAH (benzo(a)pyrene) and 14 inorganic chemicals exceed the ORNL toxicological benchmarks for the cottontail rabbit. Brief toxicological profiles for the COEPC containing further information on toxicity are provided in Attachment III.

3.5.2 Groundwater

Since groundwater at the site may discharge to the surface waters of the Union Ship Canal, groundwater data were compared with NYSDEC and USEPA Ambient Water Quality Criteria (AWQC) for chronic effects in fresh water. As shown in Table 13, concentrations of several COPEC exceeded either or both of the AWQC. In Table 13, additional benchmarks are shown for those chemicals that do not currently have AWQC. These benchmarks were taken from "*Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota*", developed by the Oak Ridge National Laboratory (Suter and Tsao, 1996). Of the detected chemicals, carbon disulfide and 12 inorganic chemicals in groundwater exceed one or both of the NYSDEC AWQC and the ORNL toxicological benchmarks for aquatic biota. It should be noted that this is a conservative screening-level assessment as dilution or attenuation of the groundwater potentially entering surface water bodies are not considered. Brief toxicological profiles for the COEPC containing further information on toxicity are provided in Attachment III.

MALCOLM PIRNIE

3.6 UNCERTAINTY ANALYSIS

Uncertainty is inherent in the process of conducting predictive risk assessments. Environmental sampling and analysis are prone to uncertainty, as are the available toxicity data used to characterize risk. Uncertainty associated with environmental sampling is generally related to the limitations of the sampling program in terms of the number and distribution of samples, while uncertainty associated with the analysis of the samples is generally related to systematic or random errors. Aspects of the current exposure assessment methodology can result in overestimation or underestimation of long-term exposure.

The methodologies used in this screening-level ecological risk assessment rely on very conservative assumptions and, therefore, the risk is overestimated. These assumptions include:

- Terrestrial receptors forage exclusively from the Former Railroad Yard Area (however, with the limited habitat on the area, receptors would need to forage outside of the area as well).
- The receptors' entire food source is contaminated at the maximum detected concentrations of each COPEC (however, this is unlikely since the COPEC were not detected across the entire area and some receptors are likely to forage outside of the area as well as on the area).
- The COPEC concentrations in soil represent the concentration of COPEC in the rabbit's food source (vegetation) (however, plants do not readily take up all COPEC in a 1:1 ratio).

Other sources of uncertainty in the ecological risk assessment, which could lead to overestimation of risk, include:

- Screening benchmark values were derived from data for laboratory animals; differences in toxicity may exist between these animals and wild species.
- In most cases, the lowest available benchmark values were used in the assessment; benchmark values can range by orders of magnitude for the same chemical, depending upon the species used and the type of test conducted.
- Other receptor species, which may inhabit the area, may be less sensitive to COPEC than the receptors chosen for this assessment.

4.0 SUMMARY

Soil is the predominant environmental medium of concern and a number of PAHs and inorganic chemicals are the predominant COPC at the Former Railroad Yard Area in the Hanna Furnace Site. However, these COPCs are typical components of fill material.

The potential for human exposure to the COPCs in the current scenario is very limited, given that the Former Railroad Yard is vacated. Surface soil is exposed throughout much of the Former Railroad Yard Area and the soil/fill piles are a source of exposed soil. Thus, dermal contact with and ingestion of soil, and inhalation of respirable particulates generated by wind, are viable exposure routes for trespassers. For the neighboring communities, inhalation of respirable particulates generated by wind is possible, although such an event is less likely, given the distance to the study area. Groundwater is not currently used for potable drinking water by any residential or commercial entities in the area. As such, exposure to groundwater in the current scenario is unlikely.

The extent of future exposure to the COPCs at the Former Railroad Yard Area depends on the nature of activities and uses of the land. As part of the redevelopment plan, the soil/fill piles are expected to be bulldozed, graded and covered with clean soil/fill and grassed over. The remaining area is expected to be covered with a one-foot layer of clean fill material (seeded with grass cover), asphalt, or concrete, depending on the redevelopment plan. Based on such plans, potential exposure for construction and utility workers and off-site residents is discussed as follows. Surface soil and subsurface soil may be excavated during construction activities. Such action could generate respirable particulates, and could expose workers and off-site residents via inhalation. Soil could be dermally contacted and ingested by workers, and groundwater may be reached and contacted by workers, throughout construction activity. Exposures to construction workers could be effectively mitigated through implementation of a site-specific health and safety plan. Given the redevelopment plans, exposure to the soil fill piles and surface soil would be precluded for future on-site workers and trespassers.

Using conservative assumptions that overestimate risk (i.e., receptors foraging exclusively from the Former Railroad Yard Area), a risk to wildlife inhabiting the area

and the area vicinity may exist. A comparison of chemical concentrations in soil at the Former Railroad Yard Area with available screening benchmarks indicates that a risk may exist from the presence of benzo(a)pyrene and inorganic chemicals in soil at the Former Railroad Yard Area.

Future use of the area as a light industrial/commercial area will significantly limit wildlife use. As part of the redevelopment plan, the soil/fill piles are expected to be bulldozed, graded and covered with clean soil/fill and grassed over. The entire Former Railroad Yard Area will be covered with a one-foot layer of clean fill (with grass cover), asphalt or concrete, depending on the redevelopment plan. With the combination of limited wildlife use and the one-foot cover of clean fill over the entire area, it is highly unlikely that the redeveloped Former Railroad Yard Area will present a significant risk to wildlife through ingestion of soils.

An evaluation of chemical concentrations in groundwater indicates that a risk may exist for aquatic life in the Union Ship Canal from the presence of carbon disulfide, bis(2ethylhexyl)phthalate and inorganic chemicals in groundwater. It should be noted, however, that comparing groundwater concentrations to surface water quality criteria requires the conservative assumption that the maximum COPEC concentrations in groundwater are equal to in-stream surface water concentrations. Also, it must be assumed that groundwater will not be diluted upon entering the surface water body. With large bodies of water such as the Union Ship Canal and Lake Erie, these assumptions are overly conservative.

Printed on Recycled Paper

5.0 REFERENCES

5.1 **REFERENCES FOR HUMAN HEALTH EVALUATION**

- New York State Department of Environmental Conservation, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Albany, NY.
- New York State Department of Environmental Conservation, 1994. Technical Administrative Guidance Memorandum 4046: Determination of Soil Cleanup Objectives and Cleanup Levels. Division of Hazardous Waste Remediation, Albany, NY.
- U.S. Environmental Protection Agency, 2000. Integrated Risk Information System (IRIS).
- U.S. Environmental Protection Agency, 1997. *Health Effects Assessment Summary Tables. FY 1997 Update.* EPA-540-R-97-036. Office of Solid Waste and Emergency Response, Washington, DC.

5.2 **REFERENCES FOR ECOLOGICAL RISK ASSESSMENT**

Alloway, B.J. 1990. Soil Processes and the Behavior of Metals. In: Heavy Metals in Soils. Edited by Dr. B.J. Alloway. John Wiley & Sons, Inc., New York, NY.

- Agency for Toxic Substances and Disease Registry, 1989. *Toxicological Profile for Aldrin/Dieldrin*. U.S. Public Health Service, Atlanta, GA.
- Clement Associates, Inc., 1985. Chemical, Physical, and Biological Properties of Compounds Present at Hazardous Waste Sites. Final Report. Prepared for USEPA. Arlington, VA.
- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. Prepared for the U.S. Department of Energy. Oak Ridge National Laboratory. Oak Ridge, TN. June 1996.
- Eisler, 1986 (cited in TAMS et al. 1991). Polychlorinated Biphenyl Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. U.S. Fish Wildl. Serv. Biol. Rep. 85(1.7). 72 pp.

- Eisler, R., 1987. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish. Wildl. Serv. Biol. Rep. 85(1.11).
 81 pp.
- Howard, P.H., 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers. Chelsea, Michigan.
- Jones, D.S., G.W. Suter II, and R.N. Hull, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision. Prepared for the U.S. Dept. of Energy. Oak Ridge National Laboratory. Oak Ridge, TN. November 1997.
- Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder, 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management, Vol. 19, No. 1, pp. 81-97.
- McIntosh, A., 1992. Trace Metals in Freshwater Sediments: A Review of the Literature and an Assessment of Research Needs. In: Metal Ecotoxicology Concepts & Applications. Edited by M.C. Newman and A.W. McIntosh, Lewis Publishers, Inc., Chelsea, MI.
- New York State Department of Environmental Conservation (NYSDEC), 1994a. Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sties (FWIA). Division of Fish and Wildlife. October 1994.
- New York State Department of Environmental Conservation (NYSDEC), 1994b. *Technical Guidance for Screening Contaminated Sediments*. Division of Fish and Wildlife and Division of Marine Resources. July 1994.
- Persaud, D., R. Jaagumagi and A. Hayton, 1992. *Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario*. Ontario Ministry of the Environment. Water Resources Branch. June 1992.
- Reschke, C., 1990. *Ecological Communities of New York State*. New York Natural Heritage Program. Latham, NY. March 1990.
- Sample, B.E., D.M. Opresko and G.W. Suter, 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Prepared by the Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory for the U.S. Department of Energy. Oak Ridge, TN. June 1996.
- Sposito, G. and A.L. Page. 1984. Cycling of Metal Ions in the Soil Environment. Chapter 9 in Metal Ions in Biological Systems. Volume 18. In H. Sigal (ed.) Circulation of Metals in the Environment. Marcel Dekker, Inc., New York, NY.

- Suter, G.W. II and C.L. Tsao, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared by the Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory for the U.S. Department of Energy. Oak Ridge, TN. June 1996.
- TAMS Consultants, Inc. and Gradient Corporation, 1991. Phase 1 Report Review Copy. Interim Characterization and Evaluation, Hudson River PCB Reassessment RI/FS. EPA Work Assignment No. 013-2N84.
- U.S. Environmental Protection Agency, 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. Environmental Response Team. Edison, NJ. June 5, 1997.
- U.S. Environmental Protection Agency, 1996. *Ecotox Thresholds. ECO Update* 3(2):1-12. Office of Solid Waste and Emergency Response (OSWER).
- U.S. Environmental Protection Agency, 1991. Water Quality Criteria Summary. Office of Science and Technology, Health and Ecological Criteria Division, Ecological Risk Assessment Branch (WH-585), Human Risk Assessment Branch (WH-550 D). Washington, D.C. May 1, 1991.

ATTACHMENT I

ESSENTIAL NUTRIENT SCREEN

ATTACHMENT I – ESSENTIAL NUTRIENT SCREEN

Nutrient screening concentrations to evaluate the concentrations of essential nutrients (i.e., calcium, iron, magnesium, potassium, and sodium) in soil were derived from Recommended Daily Allowances (RDAs) and typical default exposure parameters used by the USEPA. Based on the exposure scenarios considered in the human health evaluation, nutrient screening concentrations for soil were derived for ingestion by a future site worker. Nutrient screening concentrations in groundwater were derived for future residential tap water use by a child. (ESHA Research, 1990).

Nutrient Screening Concentrations for Soil - Adult

 $RC_s = (RDA_a / IR_s) * CF$

 $\begin{array}{ll} RC_{s} &= \text{nutrient screening concentration for soil (}\mu g/kg) \\ RDA_{a} &= \text{recommended daily allowance for an adult (}mg/day) \\ IR_{s} &= \text{soil ingestion rate (50 mg/day)} \\ CF &= \text{conversion factor (}10^{9} \, \mu g/kg) \end{array}$

Essential	Recommended	Nutrient
Nutrient	Daily	Screening
	Allowance	Concentration
	(mg/day; male	for Soil
	adult)	(µg/kg)
Calcium	800	>1E+09 (*)
Iron	10	2E+08
Magnesium	350	>1E+09 (*)
Potassium	2000	>1E+09 (*)
Sodium	2400	>1E+09 (*)

(*): indicates that the calculated value is greater than 1E+09, but is not applicable, as there is a maximum of 1E+09 μ g of substance per kg of soil.

where

Nutrient Screening Concentrations for Groundwater - Child

 $RC_w = (RDA_c / IR_w) * CF$

where

 $\begin{array}{ll} RC_w &= \text{nutrient screening concentration for water } (\mu g/L) \\ RDA_a &= \text{recommended daily allowance for a child } (mg/day) \\ IR_w &= \text{water ingestion rate } (1 \text{ L/day}) \\ CF &= \text{conversion factor } (10^3 \ \mu g/mg) \end{array}$

	Recommended	Nutrient Screening
Essential	Daily Allowance	Concentration for
Nutrient	(mg/day; male child)	Groundwater
		(µg /L)
Calcium	800	800,000
Iron	10	10,000
Magnesium	80	80,000
Potassium	1000	1,000,000
Sodium	975	975,000

<u>References</u>

ESHA Research. 1990. The Food Processor II. Nutrient Analysis System.

ATTACHMENT II

TOXICOLOGICAL PROFILES OF CHEMICALS OF POTENTIAL CONCERN FOR HUMAN HEALTH EVALUATION

ATTACHMENT II – TOXICOLOGICAL PROFILES OF CHEMICALS OF POTENTIAL CONCERN FOR HUMAN HEALTH EVALUATION

VOLATILE ORGANIC COMPOUNDS

Chloromethane (ATSDR, 1999c)

Chloromethane is a clear, colorless gas (vapor) that is difficult to smell. It has a faintly sweet, nonirritating odor at high levels in the air. It is a naturally occurring chemical that is made in large amounts in the oceans and is produced by some plants and rotting wood and when materials such as grass, wood, and charcoal burn. Chloromethane is also produced industrially, but most of it is destroyed during use. It is used mainly in the production of other chemicals such as silicones, agricultural chemicals, and butyl rubber.

Chloromethane was used widely in refrigerators over 30 years old, but has generally been replaced by refrigerants such as Freon. Other consumer sources of chloromethane include cigarette smoke, polystyrene insulation, aerosol propellants, home burning of wood, grass, coal, or certain plastics, and the use of chlorinated swimming pools. Chloromethane is continuously released into the atmosphere from oceans and biomass; as such, a very low concentration will always be present. When present in water, chloromethane evaporates rapidly. Chloromethane will evaporate from the soil surface, but if present in a landfill or waste site, it may move downward and contaminate groundwater aquifers.

Brief exposures to very high levels of chloromethane can have serious effects on the nervous system, including convulsions, coma, and death. Health effects from inhalation of high levels of chloromethane include staggering, blurred and double vision, dizziness, fatigue, personality changes, confusion, tremors, uncoordinated movements, nausea, and vomiting. These symptoms can last for several months or more, but complete recovery is possible. Exposure to chloromethane has also had harmful effects on the liver, kidney, heart rate, and blood pressure.

Chloromethane has been classified by the USEPA as a "possible human carcinogen" (weight-of-evidence rating of "C").

cis-1,2-Dichloroethene (ATSDR, 1997c)

Two forms of 1,2-dichloroethene exist: cis-1,2-dichloroethene, and trans-1,2dichloroethene. These chemicals are commonly found together in a mixture. 1,2-Dichloroethene is used primarily as a chemical intermediate in the synthesis of chlorinated solvents and compounds. It has also been used as a solvent for waxes, resins, acetylcellulose, perfumes, dyes, lacquers, thermoplastics, fats, and phenols. It is used in the extraction of rubber, as a refrigerant, in the manufacture of pharmaceuticals and artificial pearls, and in the extraction of oils and fats from fish and meat. It has also been used as a low-temperature extraction solvent for organic materials such as decaffeinated coffee. The trans- isomer is more widely used in industry than either the cis- isomer or the commercial mixture.

Sources of environmental exposure to 1,2-dichloroethene include: process and fugitive emissions from its production and use as a chemical intermediate; evaporation from waste water streams, landfills, and solvents; emissions from combustion or heating of polyvinyl chloride and some vinyl copolymers; formation via anaerobic biodegradation of some chlorinated solvents; and leaching from landfills. Most of the 1,2-dichloroethene released in the environment will eventually enter the atmosphere or groundwater, where it may be subject to further biotic or abiotic degradation processes.

Inhalation of high levels of 1,2-dichloroethene can cause drowsiness, nausea, tiredness, and in extreme cases, death. Ingestion of cis-1,2-dichloroethene can cause decreased levels of hemoglobin and hematocrit in the blood. The USEPA has assigned cis-1,2-dichloroethene a weight-of-evidence rating of "D" – "Not classifiable as to carcinogenicity".

<u>2-Hexanone (Amdur et al., 1991; ATSDR 1995c)</u>

2-Hexanone is a clear, colorless liquid with a sharp odor. It is used as a paint thinner, cleaning agent and solvent for dye printing and to dissolve oils and waxes; it is also used in the lacquer industry. It is no longer manufactured or used in the United States due to its harmful health effects. It is formed, however, as a waste product resulting from industrial activities such as making wood pulp and producing gas from coal, and in oil shale operations.

2-Hexanone dissolves easily in water, and evaporates quickly into the air. In the atmosphere, it may be broken down into other chemicals or may be removed by precipitation. Also, microorganisms may metabolize 2-hexanone. Typically, 2-hexanone does not bind to soils or sediment, and does not accumulate in plants and animals.

Inhalation of 2-hexanone can cause damage to the nervous system, including weakness, numbress, and tingling in the skin of the hands and the feet.

2-Hexanone has not undergone a complete evaluation and determination by the USEPA for evidence of human carcinogenic potential.

<u>4-Methyl-2-pentanone</u> (NTP Chemical Health and Safety Data, 1991b)

4-Methyl-2-pentanone is used as a solvent for paints, varnishes, nitrocellulose, lacquers, fats, oils, waxes, natural and synthetic gums, resins, cellulose esters and other coating systems. It is also used in adhesives, as an alcohol denaturant, in the manufacture of methyl amyl alcohol, and in extraction processes including extraction of uranium from fission products and in organic synthesis.

This chemical is a poison by intraperitoneal route, moderately toxic by ingestion, and mildly toxic by inhalation. It is an irritant of the skin, eyes and mucous membranes, is narcotic in high concentrations, and is readily absorbed by the skin. Adverse health effects resulting from exposure to 4-methyl-2-pentanone also include mental sluggishness, irritation of the respiratory tract, gastroenteritis, dizziness, unconsciousness, weakness, headache, nausea and vomiting. Lightheadedness, narcosis, incoordination, loss of appetite, and diarrhea have also been reported. Exposure to high concentrations may cause central nervous system depression, and prolonged skin contact may cause drying of the skin.

4-Methyl-2-pentanone has not undergone a complete evaluation and determination by the USEPA for evidence of human carcinogenic potential.

Ś.

Styrene (ATSDR, 1995d)

Styrene is a colorless liquid characterized by a sweet smell. However, it is commonly combined with other chemicals which contribute to a sharper, less pleasant odor. It is primarily a synthetic chemical which does not dissolve easily in water.

Styrene is manufactured for used in rubber, plastic, fiberglass, pipe, automobile parts, food containers, and carpet backing products. Styrene is commonly found in products as a polymer (polystyrene). Also, low levels of styrene occur in foods such as fruits, vegetables, nuts, beverages, and meats.

Styrene enters the environment during the manufacture, use, and disposal of styrene-based products, and can be found in the air, water, and soil. It breaks down in the air within 1-2 days, and evaporates from shallow soils and surface water. It does not bind easily to soils and sediments. The half-life of styrene in surface water is usually several days, whereas in groundwater, the half-life is between 1-7 months. Bacteria metabolize styrene in soil and water, and styrene is not known to accumulate in animals.

Inhalation of styrene can cause depression, concentration problems, muscle weakness, tiredness, nausea, and irritation of the eyes, nose, and throat. Ingestion of styrene is associated with red blood cell and liver effects.

Styrene has not undergone a complete evaluation and determination by the USEPA for evidence of human carcinogenic potential.

SEMI-VOLATILE ORGANIC COMPOUNDS

Polycyclic Aromatic Hydrocarbons (PAHs) (Amdur et al., 1991; ATSDR, 1995f)

This class of chemicals consist of annelated aromatic (benzene) rings, and includes benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene, among others. These chemicals are probable human carcinogens (the USEPA has assigned these chemicals a weight-of-evidence rating of "B2"), and occur in a number of environmental products such as soot, coal tar, tobacco smoke, petroleum, combustion engine exhaust, and cutting oils. These chemicals tend to occur in groups, and are products of natural processes including volcano eruptions, forest fires, and combustion (particularly incomplete combustion) of coal, gas, wood, oil, and garbage. As pure chemicals, PAHs generally exist as colorless, white, or pale yellow-green solids. They can have a faint or pleasant odor.

The movement of PAHs in the environment depends on physicochemical factors such as water solubility, and ability to evaporate into the air. PAHs generally do not dissolve in water. They are present in air as vapors or stuck to small solid particles. Some PAHs evaporate into the atmosphere from surface waters, but most stick tightly to solid particles and settle to the bottoms of rivers or lakes. In soils, PAHs are most likely to stick tightly to particles. PAHs can break down to longer-lasting products by reacting with sunlight and other airborne chemicals. Breakdown in soil and water can be mediated by microorganisms.

Inhalation of PAHs have been linked with respiratory and immunological effects in human beings, as well as with lung cancer.

Carbazole (NTP Chemical Health and Safety Data, 1991a)

Carbazole appears as white crystals, plates or leaflets. It is an important dye intermediate and is used in making photographic plates sensitive to ultraviolet light. It is a reagent for lignin, carbohydrates and formaldehyde. It is also used in the manufacture of reagents, explosives, insecticides, lubricants and rubber antioxidants. It is an odor inhibitor in detergents.

This chemical occurs in the products of incomplete combustion of nitrogencontaining organic matter. It has been identified in mainstream cigarette smoke, crude oils and coal tar. Carbazole may be harmful by ingestion, inhalation and skin absorption, and may cause irritation. When heated to decomposition it emits toxic fumes of carbon monoxide, carbon dioxide and nitrogen oxides.

Carbazole has not undergone a complete evaluation and determination by the USEPA for evidence of human carcinogenic potential.

PESTICIDES/PCBs

Aldrin (Amdur et al., 1991)

Aldrin is an organochlorine pesticide classified as a carbamate. It is a tan to dark brown solid with a mild chemical odor. As an insecticide, it acts by poisoning the central nervous system of the target organisms. It is known to interfere with membrane transport of ions, inhibit selective enzymatic activities, and contribute to the release and/or persistence of chemical transmitters at nerve endings. While aldrin is known to alter immune function in rodents, it is unclear whether similar effects can be had on human beings.

Aldrin is classified as a probable human carcinogen by the USEPA (weight-ofevidence rating of "B2"), and can be epoxidized to another pesticide – dieldrin.

Aroclor 1254, Aroclor 1260 (ATSDR, 1997f)

Aroclor 1254 and Aroclor 1260 are congeners of the polychlorinated biphenyls (PCBs) class of chemicals. These are synthetic chemicals of high stability and low flammability; they are either oily liquids or solids, are colorless to light yellow, and have no known smell or taste. PCBs enter the environment as mixtures containing from 12 to 68 percent chlorine, and are known to be highly persistent in the environment. Commercial uses of PCBs include insulating material in electrical capacitors and transformers, plasticizers, in waxes, and in paper manufacturing. PCBs are known to bioconcentrate in fish and marine mammals: they have been detected in these organisms at levels hundreds of thousand times higher than the levels in the water. In general, the higher degree of chlorination, the more resistant to biodegradation and the more persistent in the environment PCBs are.

PCBs are ubiquitous in the environment. Besides exposure via animal ingestion (because of the ability of PCBs to bioconcentrate, these chemicals have been found at various points in the food chain, including birds, dairy cattle, and so forth), indoor air inhalation of PCBs, and dermal contact and ingestion of PCBs via contaminated soil are also possible. It has been found that PCB levels in air, water, and soil have generally decreased since their halt in production in 1977.

Health effects of PCBs include skin irritation (e.g., acne and rashes), irritation of the nose and lungs, general weakness, numbness of the limbs, respiratory symptoms, altered immune response, and damage to the liver. PCBs have been classified as probable human carcinogens (USEPA-assigned WOE of "B2") by the USEPA.

INORGANIC CHEMICALS

Metals (Williams and Burson, 1985)

Metals can result from numerous industrial operations. Their use by human beings influences the potential for health effects in at least two significant ways: first, by environmental transport via air, water, soil, and food; second, by altering the speciation or biochemical form of the element.

Metals can be absorbed by the human body via respiratory and gastrointestinal (GI) absorption. They can then be excreted by the kidneys, GI tract, enterohepatic circulation, and through minor pathways such as the hair, nails, saliva, perspiration, exhalation, lactation, and exfoliation of skin.

The mechanisms by which metals exert toxic effects are enzyme inhibition, indirect effects, substitution for essential metals, and metals imbalance. Similar to other toxic chemicals, there is often little correlation between the sensitivity of an organ or tissue to the toxic effects of a metal and the concentration of the metal in that tissue. Some tissues can sequester toxic metals in more or less biologically inactive forms.

Of the COPCs selected, the following is classified as a "human carcinogen" (USEPA-assigned weight-of-evidence rating of "A"): arsenic.

<u>Arsenic</u> and arsenic compounds found in nature tend to be less harmful than inorganic arsenic compounds. Inorganic arsenic compounds are used in wood preservation, insecticides, and weed killers. Exposure to inorganic arsenic can cause swelling, nausea, vomiting, diarrhea, cardiovascular damage, and death. Arsenic is known to increase risks to lung, skin, bladder, kidney, and liver cancers (ATSDR, 1993a).

The following inorganic COPCs are classified as "probable human carcinogens" (USEPA-assigned weight-of-evidence rating of "B1" or "B2"): antimony, beryllium, cadmium, and lead.

<u>Antimony</u> is a silvery-white metal used as a component in alloys which are then used in lead storage batteries, solder, sheet and pipe metal, bearings, castings, and pewter. Antimony compounds are also used in paints, ceramics, and fireworks. Exposure to antimony can cause irritation to the eyes and lungs, heart and lung problems, stomach pain, diarrhea, vomiting, and stomach ulcers (ATSDR, 1995b).

<u>Beryllium</u> is a hard, grayish metal found in mineral rocks, coal, soil, and volcanic dust. Beryllium compounds are commercially mined, and the beryllium is purified for use in electrical, machine, and aircraft parts, ceramics, nuclear weapons, and mirrors. Exposure to beryllium can cause inflammatory reactions, pneumonia, weakness, and fatigue (ATSDR, 1993b).

<u>Cadmium</u> is a naturally occurring soft, silver-white metal. It is usually found as a mineral combined with other elements such as oxygen, chlorine, or sulfur. All soils and rocks, including coal and mineral fertilizers, contain some cadmium. Cadmium has no definite taste or odor. Inhalation of cadmium can cause lung and bone damage. Ingestion of cadmium can cause stomach irritation, vomiting, diarrhea, and kidney damage (ATSDR, 1999b).

Lead is a naturally occurring bluish-gray metal used in batteries, ammunition, solder, pipes, roofing, paints, and X-ray shielding apparati. Chronic exposure to low levels of lead may result in hematologic (blood and blood-forming), neurobehavioral, kidney, and other effects in humans. Effects such as slowed nerve conduction velocities, altered testicular function, reduced hemoglobin production, and other signs of impaired heme synthesis, and blood pressure effects have been observed in adults. Children, who represent a sensitive portion of the population, may experience an array of pathophysiological effects. Electrophysiological effects, impaired cognitive performance (as measured by IQ tests, performance in school, and other means), heme synthesis impairment, inhibition of pyrimidine and alanine synthesis, interference with vitamin D hormone synthesis, and early childhood growth reductions have been observed in children. In addition, factors influencing neurological development such as low birth

weights and decreased gestational age and deficits in mental indices have been reported in infants (ATSDR, 1999d).

The following inorganic COPCs are "not classifiable as to human carcinogenicity" (USEPA-assigned weight-of-evidence rating of "D"): aluminum, barium, chromium (III), copper, manganese, mercury, selenium, silver, and zinc.

<u>Aluminum</u> is a flexible, silver-white metal used in cooking utensils, containers, appliances, and building materials. Exposure to high levels of aluminum can cause skin rashes, respiratory problems, nervous system disorders, and bone disease (ATSDR, 1999a).

<u>Barium</u> is a naturally occurring silvery-white metal. Barium compounds are used by the oil and gas industries to make drilling muds, and in paint, bricks, tiles, glass, rubber, and in medical examinations. Exposure to barium can lead to difficulties in breathing, increased blood pressure, changes in heart rhythm, stomach irritation, brain swelling, muscle weakness, and damage to the liver, kidney, heart, and spleen (ATSDR, 1995b).

<u>Chromium</u> is a naturally occurring metal which is found in several oxidation states. It is used in the production of stainless steel, chrome pigments, chrome salts, and as an anticorrosive in cooking systems, boilers, and oil drilling muds. Chromium III is not known to convert to chromium VI (which is known to be carcinogenic) and is not associated with irritation and corrosiveness, although chromic compounds and manufacturing processes are known to have such effects (Amdur et al., 1991). All forms of chromium can be toxic at high levels, but chromium III is less toxic than chromium VI. (ATSDR, 1993c)

<u>Copper</u> is a reddish metal that occurs naturally in rock, soil, water, sediment, and air. It is used in U.S. pennies, electrical wiring, water pipes, and alloys such as brass and bronze. Exposure to copper can lead to nose, mouth, and eye irritation, headaches, dizziness, nausea, stomach cramps, and diarrhea (ATSDR, 1990a).

<u>Manganese</u> is a naturally occurring essential metal used in alloys, dry-cell batteries, electrical coils, ceramics, matches, glass, dyes, fertilizers, welding rods, and as animal food additives. Exposure to manganese can lead to respiratory disorders, liver

cirrhosis, and central nervous system damage, including irritability, difficulty in walking, and speech disturbances (ATSDR, 1992).

Mercury is a naturally occurring metal which can be found as a shiny, silverwhite, odorless liquid, and if heated, as a colorless, odorless gas. Mercury is often used in compounds as "salts," and are often white powders or crystals. Metallic mercury compounds are used to produce chlorine gas and caustic soda, in thermometers, dental fillings, batteries; mercury salts are used in skin-lightening creams and as antiseptic creams and ointments. Exposure to mercury can cause damage to the brain, kidneys, and developing fetus, as well as lung damage, nausea, vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and diarrhea (ATSDR, 1999e).

<u>Selenium</u> is a naturally occurring metal commonly found in rocks and soil. It is typically found combined with sulfide minerals, or with silver, copper, lead, and nickel minerals. Selenium compounds are used in anti-dandruff shampoos, and in other industrial applications.

Selenium particles can settle to the ground, or be removed from the air by precipitation. Soluble selenium compounds in agricultural fields can leave the field in irrigation drainage water. Also, selenium can collect in animals that live in water containing high levels of selenium.

Exposure to high levels of selenium can cause dizziness, fatigue, pulmonary edema, and bronchitis. Dermal contact can lead to rashes, swelling, and pain. Although selenium is required in the human diet, overconsumption of selenium can lead to brittle hair, deformed nails, and loss of feeling and control in the arms and legs (ATSDR, 1997e).

<u>Silver</u> is a naturally occurring metal which is used in eating utensils, coins, and jewelry; silver compounds are used in the manufacture of photographic plates, indelible inks, and for medicinal purposes. Exposure to silver and silver compounds can cause eye, skin, and lung irritation, and damage to the gastrointestinal system, kidneys, lungs, and cardiovascular system (ATSDR, 1990b).

Zinc is a bluish-white shiny metal found commonly in the earth's crust. It is used in rust-preventing coatings, dry cell batteries, alloys, paint, rubber, dyes, wood preservatives, and ointments. Zinc is an essential dietary element, but overexposure can lead to stomach cramps, nausea, vomiting, anemia, pancreas damage, and lower levels of high density lipoprotein cholesterol. Inhalation of zinc dust can cause lung damage and fever (ATSDR, 1995h).

The following inorganic COPCs do not have USEPA-assigned weight-ofevidence ratings: iron, nickel, thallium, and vanadium.

<u>Iron</u> is a malleable, ductile, and metallic silver-white metallic element. It is found in meteorites and in most igneous rocks. Iron is the most widely used metal, and is used in numerous applications. It is an essential element in the human diet and is utilized in the formation of hemoglobin and is contained in some enzymes. Iron tends to be conserved in the human body, and is excreted through the gastrointestinal tract and through the loss of blood. Chronic oral iron intoxication can lead to hemosiderosis (a generalized increase in the iron content of the body tissues, particularly the liver or the spleen), or hemochromatosis (marked by the accumulation of iron and fibrotic changes in the affected organ, most often the liver). Pulmonary siderosis can result from inhalation of iron dust or fumes (Amdur et al., 1991).

<u>Nickel</u> is a hard silvery-white metal used to make stainless steel and other metal alloys. Exposure to nickel can cause skin rashes, asthma attacks, and respiratory disorders (found primarily in workers exposed to nickel dust) (ATSDR, 1997d).

<u>Thallium</u> is a bluish-white metal used mostly in manufacturing electronic devices, switches, and closures, primarily for the semiconductor industry, and in the manufacture of special glass and for certain medical procedures. Exposure to thallium can cause nervous system effects, vomiting, diarrhea, temporary hair loss, effects on the heart, lungs, liver, and kidneys, and death (ATSDR, 1995e).

<u>Vanadium</u> is a naturally occurring white-to-gray metal, often found as crystals, and is usually found in compound form with oxygen, sodium, sulfur, or chloride. Vanadium is used in alloys for special kinds of steel which are used for automotive parts, springs, and ball bearings; vanadium is also used in rubber, plastics, ceramics, and in aircraft engines. Exposure to vanadium can cause lung, throat, and eye irritation, and chest pain (ATSDR, 1995g).

OTHER CHEMICALS

Cyanide (ATSDR, 1997b)

Cyanide and hydrogen cyanide are used in electroplating, metallurgy, chemical and plastic production, and photographic development. Cyanide can cause breathing difficulties, heart pains, vomiting, headaches, brain and heart damage, and death. Cyanide is "not classifiable as to human carcinogenicity" (USEPA-assigned weight-of-evidence rating of "D").

REFERENCES

- Agency for Toxic Substances and Disease Registry. 1999a. Aluminum. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1999b. Cadmium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1999c. Chloromethane. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1999d. Lead. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1999e. Mercury. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1997a. Carbon disulfide. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1997b. Cyanide. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.

- Agency for Toxic Substances and Disease Registry. 1997c. 1,2-Dichloroethene. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1997d. Nickel. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1997e. Selenium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1997f. Toxicological Profile for PCBs. U.S. Public Health Service, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995a. Antimony. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995b. Barium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995c. 2-Hexanone. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995d. Styrene. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995e. *Thallium. Agency for Toxic Substances and Disease Registry ToxFAQs.* U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995f. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). U.S. Public Health Service, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995g. Vanadium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1995h. Zinc. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.

- Agency for Toxic Substances and Disease Registry. 1993a. Arsenic. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1993b. Beryllium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1993c. Chromium. Agency for Toxic Substances and Disease Registry ToxFAQs. U.S. Department of Health and Human Services, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1992. Toxicological Profile for Manganese. U.S. Public Health Service, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1990a. Toxicological Profile for Copper. U.S. Public Health Service, Atlanta, GA.
- Agency for Toxic Substances and Disease Registry. 1990b. Toxicological Profile for Silver. U.S. Public Health Service, Atlanta, GA.
- Amdur, M.O., J. Doull and C.D. Klaassen (Eds.). 1991. Casarett and Doull's Toxicology. The Basic Science of Poisons. Fourth Edition. Macmillan Publishing Company, New York, NY. 974 p.
- NTP Chemical Health and Safety Data. 1991a. Carbazole. URL: http://ntpserver.niehs.nih.gov/cgi/iH_Indexes/Chem_H&S/iH_Chem_H&S_Frames.html
- NTP Chemical Health and Safety Data. 1991b. 4-Methyl-2-pentanone. URL: http://ntpserver.niehs.nih.gov/cgi/iH Indexes/Chem H&S/iH Chem H&S Frames.html
- Williams, P.L., and J.L. Burson. 1985. Industrial Toxicology: Safety and Health Applications in the Wokplace. Van Nostrand Reinhold, New York, NY. 502 p.

ATTACHMENT III

TOXICOLOGICAL PROFILES FOR CHEMICALS OF POTENTIAL ECOLOGICAL CONCERN

ATTACHMENT III TOXICOLOGICAL PROFILES OF CHEMICALS OF POTENTIAL ECOLOGICAL CONCERN

Volatile Organic Chemicals

Volatile organic chemicals of concern have high vapor pressures and, therefore, would be expected to volatilize readily from surface water to the atmosphere. Once released to the atmosphere, these chemicals are rapidly photodegraded.

In subsurface soil, these chemicals degrade slowly, are water soluble, and may leach into groundwater. These chemicals have low octanol/water coefficients (log K_{ow}) and, therefore, do not adsorb to sediment or particulate matter present in the water column.

Bioconcentration is usually reported as the bioconcentration factor (BCF), which is the concentration of the chemical in the organism at equilibrium divided by the concentration of the chemical in water. BCFs correlate with the octanol/water coefficients and solubility of a chemical. Since volatile organic chemicals have low octanol/water coefficients and high water solubility, these chemicals have a low potential to bioconcentrate in organisms (Howard, 1990).

Carbon disulfide

Carbon disulfide is a clear, colorless, flammable liquid that is heavier than water. It is moderately soluble in water. Concentrations of between 1 to 1,000 milligrams will mix with a liter of water. Carbon disulfide is non-persistent in water, with a half-life of less than 2 days. About 99.8% of carbon disulfide will eventually end up in air; the rest will end up in the water.

Acute toxic effects may include the death of animals, birds, or fish, and death or low growth rate in plants. Acute effects are seen two to four days after animals or plants come in contact with a toxic chemical substance. Carbon disulfide has moderate acute toxicity to aquatic life. No data are available on the short-term effects of carbon disulfide to plants, birds, or land animals. Chronic toxic effects may include shortened life span, reproductive problems, lower fertility, and changes in appearance or behavior. Chronic effects can be seen long after first exposure(s) to a toxic chemical. Carbon disulfide has high chronic toxicity to aquatic life. No data are available on the long term effects of carbon disulfide to plants, birds, or land animals.

The concentration of carbon disulfide found in fish tissues is expected to be somewhat higher than the average concentration of carbon disulfide in the water from which the fish was taken.

(Source: gopher://ecosys.drdr.Vi...xics/Carbon%20Disulfide)

Semi-Volatile Organic Chemicals

Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs contain only carbon and hydrogen and consist of two or more fused benzene rings in linear, angular or cluster arrangements. In general, most PAHs can be characterized as having low vapor pressure, low water solubility, low Henry's Law constants, high log K_{ow} , and high organic carbon partition coefficients (K_{oc}).

High partition coefficients and low solubilities suggest that PAHs are likely to be adsorbed onto sediment or soil particles. Conversely, these properties indicate that most PAHs will not readily volatilize into the atmosphere.

Although PAHs are regarded as persistent in the environment, they are degradable by microorganisms. Environmental factors, microbial flora and physicochemical properties of the PAHs themselves influence degradation rates and degree of degradation. Important environmental factors influencing degradation include temperature, pH, redox potential and microbial species. Physicochemical properties include chemical structure, concentration and lipophilicity.

In general, PAHs show little tendency to biomagnify in food chains, despite their high lipid solubility, probably because most PAHs are rapidly metabolized (Eisler, 1987). Plant roots are not discriminating in the uptake of small organic molecules (molecular weight less than 500) except on the basis of polarity. The more water-soluble molecules pass through the root epidermis and translocate throughout the plant and are eventually volatilized from the leaves (Efroymson *et al.*, 1997). Wildlife will have limited exposure

to these chemicals. Potential exposure could occur through direct contact with or accidental ingestion of contaminated soil or through the terrestrial food chain.

Inorganic Chemicals

In a terrestrial setting, inorganic chemicals released to the environment accumulate in the soil (Sposito and Page, 1984). Mobility of these trace elements in soil is low and accumulated inorganics are depleted slowly by leaching, plant uptake, erosion, or chelation. The half-life of trace elements in a temperate climate ranges from 75 years for cadmium to more than 3,000 years for zinc.

The transport of trace elements in soil may occur via the dissolution of inorganic chemicals into pore water and leaching to groundwater, or colloidal or bulk movement (i.e., wind or surface water erosion). The rate of trace element migration in soil is affected by the chemical, physical and biological characteristics of the soil. The most important characteristics include: Eh-pH system; cation exchange capacity and salt content; quantity of organic matter; plant species; water content and temperature; and microbial activity.

Most inorganic chemicals may exist mainly as cations in the soil solution, and their adsorption therefore depends on the density of negative charges on the surface colloids (Alloway, 1990). Sandy soils, such as those found at the site, characteristically have low cation exchange capacities, low organic content and low pH. This suggests that the inorganic chemicals at the site are not adsorbed to soil particles as readily as to clayey soil. These inorganic chemicals could be mobilized to deep soil layers, to groundwater, or to the aquatic environment.

Inorganic chemicals that do mobilize from the soil into the water column are most mobile under acid conditions and increasing pH usually reduces their bioavailability. Generally, inorganic chemicals do not exist in soluble forms for long and generally accumulate in bottom sediment. Once in the sediment, most inorganic chemicals sorb onto hydrous iron and manganese oxides, clayey minerals and organic materials and are eventually partitioned into the sediments. Inorganic bioavailability from the sediment is enhanced under conditions of low pH, high dissolved oxygen, high temperature, and

oxidation state. During these conditions, inorganic chemicals become soluble and freely move in the interstitial pore water and the water column (McIntosh, 1992).

Inorganic chemicals may be bound to exterior exchange sites on plant roots and not actually taken up. They may enter the root passively in organic or inorganic complexes or actively by way of metabolically controlled membrane transport. Once in the plant, an inorganic chemical can be stored in the root or translocated to other plant parts. Wildlife will have limited exposure to these chemicals. Potential exposure could occur through direct contact with or accidental ingestion of contaminated soil or through the terrestrial food chain.

Like the terrestrial food chain, chemicals could be mobilized in the aquatic food chain. Roots of aquatic macrophytes can mobilize and uptake chemicals that are bound to sediments. Wildlife could be exposed by contact or ingestion of surface water and sediment or through the aquatic food chain. Therefore, a moderate potential for exposure exists for aquatic macrophytes and wildlife inhabiting the site to the chemicals of potential ecological concern.

REFERENCES

- Alloway, B.J. 1990. Soil Processes and the Behavior of Metals. In: Heavy Metals in Soils. Edited by Dr. B.J. Alloway. John Wiley & Sons, Inc., New York, NY.
- Clement Associates, Inc., 1985. <u>Chemical, Physical, and Biological Properties of</u> <u>Compounds present at Hazardous Waste Sites.</u> Final Report. Prepared for USEPA. Arlington, VA.
- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. Prepared for the U.S. Department of Energy. Oak Ridge National Laboratory. Oak Ridge, TN. June 1996.
- Eisler, R., 1987. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish. Wildl. Serv. Biol. Rep. 85(1.11). 81 pp.
- Howard, P.H., 1990. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers. Chelsea, Michigan.

McIntosh, A., 1992. Trace Metals in Freshwater Sediments: A Review of the Literature and an Assessment of Research Needs. In: Metal Ecotoxicology Concepts & Applications. Edited by M.C. Newman and A.W. McIntosh, Lewis Publishers, Inc., Chelsea, MI.

Sposito, G. and A.L. Page. 1984. Cycling of Metal Ions in the Soil Environment. Chapter 9 in Metal Ions in Biological Systems. Volume 18. In H. Sigal (ed.) Circulation of Metals in the Environment. Marcel Dekker, Inc., New York, NY.

U.S. Environmental Protection Agency, 1979. <u>Water-Related Environmental Fate of 129</u> <u>Priority Pollutants. Volume II</u>. Prepared by Versar, Incorporated.